xref: /openbmc/linux/drivers/md/raid5.c (revision 6b66a6f2)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59 
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64 
65 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
66 
67 #define cpu_to_group(cpu) cpu_to_node(cpu)
68 #define ANY_GROUP NUMA_NO_NODE
69 
70 static bool devices_handle_discard_safely = false;
71 module_param(devices_handle_discard_safely, bool, 0644);
72 MODULE_PARM_DESC(devices_handle_discard_safely,
73 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
74 static struct workqueue_struct *raid5_wq;
75 
76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
77 {
78 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
79 	return &conf->stripe_hashtbl[hash];
80 }
81 
82 static inline int stripe_hash_locks_hash(sector_t sect)
83 {
84 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
85 }
86 
87 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
88 {
89 	spin_lock_irq(conf->hash_locks + hash);
90 	spin_lock(&conf->device_lock);
91 }
92 
93 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
94 {
95 	spin_unlock(&conf->device_lock);
96 	spin_unlock_irq(conf->hash_locks + hash);
97 }
98 
99 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
100 {
101 	int i;
102 	local_irq_disable();
103 	spin_lock(conf->hash_locks);
104 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
105 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
106 	spin_lock(&conf->device_lock);
107 }
108 
109 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
110 {
111 	int i;
112 	spin_unlock(&conf->device_lock);
113 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
114 		spin_unlock(conf->hash_locks + i - 1);
115 	local_irq_enable();
116 }
117 
118 /* Find first data disk in a raid6 stripe */
119 static inline int raid6_d0(struct stripe_head *sh)
120 {
121 	if (sh->ddf_layout)
122 		/* ddf always start from first device */
123 		return 0;
124 	/* md starts just after Q block */
125 	if (sh->qd_idx == sh->disks - 1)
126 		return 0;
127 	else
128 		return sh->qd_idx + 1;
129 }
130 static inline int raid6_next_disk(int disk, int raid_disks)
131 {
132 	disk++;
133 	return (disk < raid_disks) ? disk : 0;
134 }
135 
136 /* When walking through the disks in a raid5, starting at raid6_d0,
137  * We need to map each disk to a 'slot', where the data disks are slot
138  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
139  * is raid_disks-1.  This help does that mapping.
140  */
141 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
142 			     int *count, int syndrome_disks)
143 {
144 	int slot = *count;
145 
146 	if (sh->ddf_layout)
147 		(*count)++;
148 	if (idx == sh->pd_idx)
149 		return syndrome_disks;
150 	if (idx == sh->qd_idx)
151 		return syndrome_disks + 1;
152 	if (!sh->ddf_layout)
153 		(*count)++;
154 	return slot;
155 }
156 
157 static void return_io(struct bio_list *return_bi)
158 {
159 	struct bio *bi;
160 	while ((bi = bio_list_pop(return_bi)) != NULL) {
161 		bi->bi_iter.bi_size = 0;
162 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
163 					 bi, 0);
164 		bio_endio(bi);
165 	}
166 }
167 
168 static void print_raid5_conf (struct r5conf *conf);
169 
170 static int stripe_operations_active(struct stripe_head *sh)
171 {
172 	return sh->check_state || sh->reconstruct_state ||
173 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
174 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
175 }
176 
177 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
178 {
179 	struct r5conf *conf = sh->raid_conf;
180 	struct r5worker_group *group;
181 	int thread_cnt;
182 	int i, cpu = sh->cpu;
183 
184 	if (!cpu_online(cpu)) {
185 		cpu = cpumask_any(cpu_online_mask);
186 		sh->cpu = cpu;
187 	}
188 
189 	if (list_empty(&sh->lru)) {
190 		struct r5worker_group *group;
191 		group = conf->worker_groups + cpu_to_group(cpu);
192 		list_add_tail(&sh->lru, &group->handle_list);
193 		group->stripes_cnt++;
194 		sh->group = group;
195 	}
196 
197 	if (conf->worker_cnt_per_group == 0) {
198 		md_wakeup_thread(conf->mddev->thread);
199 		return;
200 	}
201 
202 	group = conf->worker_groups + cpu_to_group(sh->cpu);
203 
204 	group->workers[0].working = true;
205 	/* at least one worker should run to avoid race */
206 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
207 
208 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
209 	/* wakeup more workers */
210 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
211 		if (group->workers[i].working == false) {
212 			group->workers[i].working = true;
213 			queue_work_on(sh->cpu, raid5_wq,
214 				      &group->workers[i].work);
215 			thread_cnt--;
216 		}
217 	}
218 }
219 
220 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
221 			      struct list_head *temp_inactive_list)
222 {
223 	int i;
224 	int injournal = 0;	/* number of date pages with R5_InJournal */
225 
226 	BUG_ON(!list_empty(&sh->lru));
227 	BUG_ON(atomic_read(&conf->active_stripes)==0);
228 
229 	if (r5c_is_writeback(conf->log))
230 		for (i = sh->disks; i--; )
231 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
232 				injournal++;
233 	/*
234 	 * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with
235 	 * data in journal, so they are not released to cached lists
236 	 */
237 	if (conf->quiesce && r5c_is_writeback(conf->log) &&
238 	    !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0) {
239 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
240 			r5c_make_stripe_write_out(sh);
241 		set_bit(STRIPE_HANDLE, &sh->state);
242 	}
243 
244 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
245 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
246 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
247 			list_add_tail(&sh->lru, &conf->delayed_list);
248 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
249 			   sh->bm_seq - conf->seq_write > 0)
250 			list_add_tail(&sh->lru, &conf->bitmap_list);
251 		else {
252 			clear_bit(STRIPE_DELAYED, &sh->state);
253 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
254 			if (conf->worker_cnt_per_group == 0) {
255 				list_add_tail(&sh->lru, &conf->handle_list);
256 			} else {
257 				raid5_wakeup_stripe_thread(sh);
258 				return;
259 			}
260 		}
261 		md_wakeup_thread(conf->mddev->thread);
262 	} else {
263 		BUG_ON(stripe_operations_active(sh));
264 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
265 			if (atomic_dec_return(&conf->preread_active_stripes)
266 			    < IO_THRESHOLD)
267 				md_wakeup_thread(conf->mddev->thread);
268 		atomic_dec(&conf->active_stripes);
269 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
270 			if (!r5c_is_writeback(conf->log))
271 				list_add_tail(&sh->lru, temp_inactive_list);
272 			else {
273 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
274 				if (injournal == 0)
275 					list_add_tail(&sh->lru, temp_inactive_list);
276 				else if (injournal == conf->raid_disks - conf->max_degraded) {
277 					/* full stripe */
278 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
279 						atomic_inc(&conf->r5c_cached_full_stripes);
280 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
281 						atomic_dec(&conf->r5c_cached_partial_stripes);
282 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
283 					r5c_check_cached_full_stripe(conf);
284 				} else {
285 					/* partial stripe */
286 					if (!test_and_set_bit(STRIPE_R5C_PARTIAL_STRIPE,
287 							      &sh->state))
288 						atomic_inc(&conf->r5c_cached_partial_stripes);
289 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
290 				}
291 			}
292 		}
293 	}
294 }
295 
296 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
297 			     struct list_head *temp_inactive_list)
298 {
299 	if (atomic_dec_and_test(&sh->count))
300 		do_release_stripe(conf, sh, temp_inactive_list);
301 }
302 
303 /*
304  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
305  *
306  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
307  * given time. Adding stripes only takes device lock, while deleting stripes
308  * only takes hash lock.
309  */
310 static void release_inactive_stripe_list(struct r5conf *conf,
311 					 struct list_head *temp_inactive_list,
312 					 int hash)
313 {
314 	int size;
315 	bool do_wakeup = false;
316 	unsigned long flags;
317 
318 	if (hash == NR_STRIPE_HASH_LOCKS) {
319 		size = NR_STRIPE_HASH_LOCKS;
320 		hash = NR_STRIPE_HASH_LOCKS - 1;
321 	} else
322 		size = 1;
323 	while (size) {
324 		struct list_head *list = &temp_inactive_list[size - 1];
325 
326 		/*
327 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
328 		 * remove stripes from the list
329 		 */
330 		if (!list_empty_careful(list)) {
331 			spin_lock_irqsave(conf->hash_locks + hash, flags);
332 			if (list_empty(conf->inactive_list + hash) &&
333 			    !list_empty(list))
334 				atomic_dec(&conf->empty_inactive_list_nr);
335 			list_splice_tail_init(list, conf->inactive_list + hash);
336 			do_wakeup = true;
337 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
338 		}
339 		size--;
340 		hash--;
341 	}
342 
343 	if (do_wakeup) {
344 		wake_up(&conf->wait_for_stripe);
345 		if (atomic_read(&conf->active_stripes) == 0)
346 			wake_up(&conf->wait_for_quiescent);
347 		if (conf->retry_read_aligned)
348 			md_wakeup_thread(conf->mddev->thread);
349 	}
350 }
351 
352 /* should hold conf->device_lock already */
353 static int release_stripe_list(struct r5conf *conf,
354 			       struct list_head *temp_inactive_list)
355 {
356 	struct stripe_head *sh;
357 	int count = 0;
358 	struct llist_node *head;
359 
360 	head = llist_del_all(&conf->released_stripes);
361 	head = llist_reverse_order(head);
362 	while (head) {
363 		int hash;
364 
365 		sh = llist_entry(head, struct stripe_head, release_list);
366 		head = llist_next(head);
367 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
368 		smp_mb();
369 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
370 		/*
371 		 * Don't worry the bit is set here, because if the bit is set
372 		 * again, the count is always > 1. This is true for
373 		 * STRIPE_ON_UNPLUG_LIST bit too.
374 		 */
375 		hash = sh->hash_lock_index;
376 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
377 		count++;
378 	}
379 
380 	return count;
381 }
382 
383 void raid5_release_stripe(struct stripe_head *sh)
384 {
385 	struct r5conf *conf = sh->raid_conf;
386 	unsigned long flags;
387 	struct list_head list;
388 	int hash;
389 	bool wakeup;
390 
391 	/* Avoid release_list until the last reference.
392 	 */
393 	if (atomic_add_unless(&sh->count, -1, 1))
394 		return;
395 
396 	if (unlikely(!conf->mddev->thread) ||
397 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
398 		goto slow_path;
399 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
400 	if (wakeup)
401 		md_wakeup_thread(conf->mddev->thread);
402 	return;
403 slow_path:
404 	local_irq_save(flags);
405 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
406 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
407 		INIT_LIST_HEAD(&list);
408 		hash = sh->hash_lock_index;
409 		do_release_stripe(conf, sh, &list);
410 		spin_unlock(&conf->device_lock);
411 		release_inactive_stripe_list(conf, &list, hash);
412 	}
413 	local_irq_restore(flags);
414 }
415 
416 static inline void remove_hash(struct stripe_head *sh)
417 {
418 	pr_debug("remove_hash(), stripe %llu\n",
419 		(unsigned long long)sh->sector);
420 
421 	hlist_del_init(&sh->hash);
422 }
423 
424 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
425 {
426 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
427 
428 	pr_debug("insert_hash(), stripe %llu\n",
429 		(unsigned long long)sh->sector);
430 
431 	hlist_add_head(&sh->hash, hp);
432 }
433 
434 /* find an idle stripe, make sure it is unhashed, and return it. */
435 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
436 {
437 	struct stripe_head *sh = NULL;
438 	struct list_head *first;
439 
440 	if (list_empty(conf->inactive_list + hash))
441 		goto out;
442 	first = (conf->inactive_list + hash)->next;
443 	sh = list_entry(first, struct stripe_head, lru);
444 	list_del_init(first);
445 	remove_hash(sh);
446 	atomic_inc(&conf->active_stripes);
447 	BUG_ON(hash != sh->hash_lock_index);
448 	if (list_empty(conf->inactive_list + hash))
449 		atomic_inc(&conf->empty_inactive_list_nr);
450 out:
451 	return sh;
452 }
453 
454 static void shrink_buffers(struct stripe_head *sh)
455 {
456 	struct page *p;
457 	int i;
458 	int num = sh->raid_conf->pool_size;
459 
460 	for (i = 0; i < num ; i++) {
461 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
462 		p = sh->dev[i].page;
463 		if (!p)
464 			continue;
465 		sh->dev[i].page = NULL;
466 		put_page(p);
467 	}
468 }
469 
470 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
471 {
472 	int i;
473 	int num = sh->raid_conf->pool_size;
474 
475 	for (i = 0; i < num; i++) {
476 		struct page *page;
477 
478 		if (!(page = alloc_page(gfp))) {
479 			return 1;
480 		}
481 		sh->dev[i].page = page;
482 		sh->dev[i].orig_page = page;
483 	}
484 	return 0;
485 }
486 
487 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
488 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
489 			    struct stripe_head *sh);
490 
491 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
492 {
493 	struct r5conf *conf = sh->raid_conf;
494 	int i, seq;
495 
496 	BUG_ON(atomic_read(&sh->count) != 0);
497 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
498 	BUG_ON(stripe_operations_active(sh));
499 	BUG_ON(sh->batch_head);
500 
501 	pr_debug("init_stripe called, stripe %llu\n",
502 		(unsigned long long)sector);
503 retry:
504 	seq = read_seqcount_begin(&conf->gen_lock);
505 	sh->generation = conf->generation - previous;
506 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
507 	sh->sector = sector;
508 	stripe_set_idx(sector, conf, previous, sh);
509 	sh->state = 0;
510 
511 	for (i = sh->disks; i--; ) {
512 		struct r5dev *dev = &sh->dev[i];
513 
514 		if (dev->toread || dev->read || dev->towrite || dev->written ||
515 		    test_bit(R5_LOCKED, &dev->flags)) {
516 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
517 			       (unsigned long long)sh->sector, i, dev->toread,
518 			       dev->read, dev->towrite, dev->written,
519 			       test_bit(R5_LOCKED, &dev->flags));
520 			WARN_ON(1);
521 		}
522 		dev->flags = 0;
523 		raid5_build_block(sh, i, previous);
524 	}
525 	if (read_seqcount_retry(&conf->gen_lock, seq))
526 		goto retry;
527 	sh->overwrite_disks = 0;
528 	insert_hash(conf, sh);
529 	sh->cpu = smp_processor_id();
530 	set_bit(STRIPE_BATCH_READY, &sh->state);
531 }
532 
533 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
534 					 short generation)
535 {
536 	struct stripe_head *sh;
537 
538 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
539 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
540 		if (sh->sector == sector && sh->generation == generation)
541 			return sh;
542 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
543 	return NULL;
544 }
545 
546 /*
547  * Need to check if array has failed when deciding whether to:
548  *  - start an array
549  *  - remove non-faulty devices
550  *  - add a spare
551  *  - allow a reshape
552  * This determination is simple when no reshape is happening.
553  * However if there is a reshape, we need to carefully check
554  * both the before and after sections.
555  * This is because some failed devices may only affect one
556  * of the two sections, and some non-in_sync devices may
557  * be insync in the section most affected by failed devices.
558  */
559 static int calc_degraded(struct r5conf *conf)
560 {
561 	int degraded, degraded2;
562 	int i;
563 
564 	rcu_read_lock();
565 	degraded = 0;
566 	for (i = 0; i < conf->previous_raid_disks; i++) {
567 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
568 		if (rdev && test_bit(Faulty, &rdev->flags))
569 			rdev = rcu_dereference(conf->disks[i].replacement);
570 		if (!rdev || test_bit(Faulty, &rdev->flags))
571 			degraded++;
572 		else if (test_bit(In_sync, &rdev->flags))
573 			;
574 		else
575 			/* not in-sync or faulty.
576 			 * If the reshape increases the number of devices,
577 			 * this is being recovered by the reshape, so
578 			 * this 'previous' section is not in_sync.
579 			 * If the number of devices is being reduced however,
580 			 * the device can only be part of the array if
581 			 * we are reverting a reshape, so this section will
582 			 * be in-sync.
583 			 */
584 			if (conf->raid_disks >= conf->previous_raid_disks)
585 				degraded++;
586 	}
587 	rcu_read_unlock();
588 	if (conf->raid_disks == conf->previous_raid_disks)
589 		return degraded;
590 	rcu_read_lock();
591 	degraded2 = 0;
592 	for (i = 0; i < conf->raid_disks; i++) {
593 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
594 		if (rdev && test_bit(Faulty, &rdev->flags))
595 			rdev = rcu_dereference(conf->disks[i].replacement);
596 		if (!rdev || test_bit(Faulty, &rdev->flags))
597 			degraded2++;
598 		else if (test_bit(In_sync, &rdev->flags))
599 			;
600 		else
601 			/* not in-sync or faulty.
602 			 * If reshape increases the number of devices, this
603 			 * section has already been recovered, else it
604 			 * almost certainly hasn't.
605 			 */
606 			if (conf->raid_disks <= conf->previous_raid_disks)
607 				degraded2++;
608 	}
609 	rcu_read_unlock();
610 	if (degraded2 > degraded)
611 		return degraded2;
612 	return degraded;
613 }
614 
615 static int has_failed(struct r5conf *conf)
616 {
617 	int degraded;
618 
619 	if (conf->mddev->reshape_position == MaxSector)
620 		return conf->mddev->degraded > conf->max_degraded;
621 
622 	degraded = calc_degraded(conf);
623 	if (degraded > conf->max_degraded)
624 		return 1;
625 	return 0;
626 }
627 
628 struct stripe_head *
629 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
630 			int previous, int noblock, int noquiesce)
631 {
632 	struct stripe_head *sh;
633 	int hash = stripe_hash_locks_hash(sector);
634 	int inc_empty_inactive_list_flag;
635 
636 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
637 
638 	spin_lock_irq(conf->hash_locks + hash);
639 
640 	do {
641 		wait_event_lock_irq(conf->wait_for_quiescent,
642 				    conf->quiesce == 0 || noquiesce,
643 				    *(conf->hash_locks + hash));
644 		sh = __find_stripe(conf, sector, conf->generation - previous);
645 		if (!sh) {
646 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
647 				sh = get_free_stripe(conf, hash);
648 				if (!sh && !test_bit(R5_DID_ALLOC,
649 						     &conf->cache_state))
650 					set_bit(R5_ALLOC_MORE,
651 						&conf->cache_state);
652 			}
653 			if (noblock && sh == NULL)
654 				break;
655 
656 			r5c_check_stripe_cache_usage(conf);
657 			if (!sh) {
658 				set_bit(R5_INACTIVE_BLOCKED,
659 					&conf->cache_state);
660 				r5l_wake_reclaim(conf->log, 0);
661 				wait_event_lock_irq(
662 					conf->wait_for_stripe,
663 					!list_empty(conf->inactive_list + hash) &&
664 					(atomic_read(&conf->active_stripes)
665 					 < (conf->max_nr_stripes * 3 / 4)
666 					 || !test_bit(R5_INACTIVE_BLOCKED,
667 						      &conf->cache_state)),
668 					*(conf->hash_locks + hash));
669 				clear_bit(R5_INACTIVE_BLOCKED,
670 					  &conf->cache_state);
671 			} else {
672 				init_stripe(sh, sector, previous);
673 				atomic_inc(&sh->count);
674 			}
675 		} else if (!atomic_inc_not_zero(&sh->count)) {
676 			spin_lock(&conf->device_lock);
677 			if (!atomic_read(&sh->count)) {
678 				if (!test_bit(STRIPE_HANDLE, &sh->state))
679 					atomic_inc(&conf->active_stripes);
680 				BUG_ON(list_empty(&sh->lru) &&
681 				       !test_bit(STRIPE_EXPANDING, &sh->state));
682 				inc_empty_inactive_list_flag = 0;
683 				if (!list_empty(conf->inactive_list + hash))
684 					inc_empty_inactive_list_flag = 1;
685 				list_del_init(&sh->lru);
686 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
687 					atomic_inc(&conf->empty_inactive_list_nr);
688 				if (sh->group) {
689 					sh->group->stripes_cnt--;
690 					sh->group = NULL;
691 				}
692 			}
693 			atomic_inc(&sh->count);
694 			spin_unlock(&conf->device_lock);
695 		}
696 	} while (sh == NULL);
697 
698 	spin_unlock_irq(conf->hash_locks + hash);
699 	return sh;
700 }
701 
702 static bool is_full_stripe_write(struct stripe_head *sh)
703 {
704 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
705 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
706 }
707 
708 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
709 {
710 	local_irq_disable();
711 	if (sh1 > sh2) {
712 		spin_lock(&sh2->stripe_lock);
713 		spin_lock_nested(&sh1->stripe_lock, 1);
714 	} else {
715 		spin_lock(&sh1->stripe_lock);
716 		spin_lock_nested(&sh2->stripe_lock, 1);
717 	}
718 }
719 
720 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
721 {
722 	spin_unlock(&sh1->stripe_lock);
723 	spin_unlock(&sh2->stripe_lock);
724 	local_irq_enable();
725 }
726 
727 /* Only freshly new full stripe normal write stripe can be added to a batch list */
728 static bool stripe_can_batch(struct stripe_head *sh)
729 {
730 	struct r5conf *conf = sh->raid_conf;
731 
732 	if (conf->log)
733 		return false;
734 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
735 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
736 		is_full_stripe_write(sh);
737 }
738 
739 /* we only do back search */
740 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
741 {
742 	struct stripe_head *head;
743 	sector_t head_sector, tmp_sec;
744 	int hash;
745 	int dd_idx;
746 	int inc_empty_inactive_list_flag;
747 
748 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
749 	tmp_sec = sh->sector;
750 	if (!sector_div(tmp_sec, conf->chunk_sectors))
751 		return;
752 	head_sector = sh->sector - STRIPE_SECTORS;
753 
754 	hash = stripe_hash_locks_hash(head_sector);
755 	spin_lock_irq(conf->hash_locks + hash);
756 	head = __find_stripe(conf, head_sector, conf->generation);
757 	if (head && !atomic_inc_not_zero(&head->count)) {
758 		spin_lock(&conf->device_lock);
759 		if (!atomic_read(&head->count)) {
760 			if (!test_bit(STRIPE_HANDLE, &head->state))
761 				atomic_inc(&conf->active_stripes);
762 			BUG_ON(list_empty(&head->lru) &&
763 			       !test_bit(STRIPE_EXPANDING, &head->state));
764 			inc_empty_inactive_list_flag = 0;
765 			if (!list_empty(conf->inactive_list + hash))
766 				inc_empty_inactive_list_flag = 1;
767 			list_del_init(&head->lru);
768 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
769 				atomic_inc(&conf->empty_inactive_list_nr);
770 			if (head->group) {
771 				head->group->stripes_cnt--;
772 				head->group = NULL;
773 			}
774 		}
775 		atomic_inc(&head->count);
776 		spin_unlock(&conf->device_lock);
777 	}
778 	spin_unlock_irq(conf->hash_locks + hash);
779 
780 	if (!head)
781 		return;
782 	if (!stripe_can_batch(head))
783 		goto out;
784 
785 	lock_two_stripes(head, sh);
786 	/* clear_batch_ready clear the flag */
787 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
788 		goto unlock_out;
789 
790 	if (sh->batch_head)
791 		goto unlock_out;
792 
793 	dd_idx = 0;
794 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
795 		dd_idx++;
796 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
797 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
798 		goto unlock_out;
799 
800 	if (head->batch_head) {
801 		spin_lock(&head->batch_head->batch_lock);
802 		/* This batch list is already running */
803 		if (!stripe_can_batch(head)) {
804 			spin_unlock(&head->batch_head->batch_lock);
805 			goto unlock_out;
806 		}
807 
808 		/*
809 		 * at this point, head's BATCH_READY could be cleared, but we
810 		 * can still add the stripe to batch list
811 		 */
812 		list_add(&sh->batch_list, &head->batch_list);
813 		spin_unlock(&head->batch_head->batch_lock);
814 
815 		sh->batch_head = head->batch_head;
816 	} else {
817 		head->batch_head = head;
818 		sh->batch_head = head->batch_head;
819 		spin_lock(&head->batch_lock);
820 		list_add_tail(&sh->batch_list, &head->batch_list);
821 		spin_unlock(&head->batch_lock);
822 	}
823 
824 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
825 		if (atomic_dec_return(&conf->preread_active_stripes)
826 		    < IO_THRESHOLD)
827 			md_wakeup_thread(conf->mddev->thread);
828 
829 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
830 		int seq = sh->bm_seq;
831 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
832 		    sh->batch_head->bm_seq > seq)
833 			seq = sh->batch_head->bm_seq;
834 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
835 		sh->batch_head->bm_seq = seq;
836 	}
837 
838 	atomic_inc(&sh->count);
839 unlock_out:
840 	unlock_two_stripes(head, sh);
841 out:
842 	raid5_release_stripe(head);
843 }
844 
845 /* Determine if 'data_offset' or 'new_data_offset' should be used
846  * in this stripe_head.
847  */
848 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
849 {
850 	sector_t progress = conf->reshape_progress;
851 	/* Need a memory barrier to make sure we see the value
852 	 * of conf->generation, or ->data_offset that was set before
853 	 * reshape_progress was updated.
854 	 */
855 	smp_rmb();
856 	if (progress == MaxSector)
857 		return 0;
858 	if (sh->generation == conf->generation - 1)
859 		return 0;
860 	/* We are in a reshape, and this is a new-generation stripe,
861 	 * so use new_data_offset.
862 	 */
863 	return 1;
864 }
865 
866 static void
867 raid5_end_read_request(struct bio *bi);
868 static void
869 raid5_end_write_request(struct bio *bi);
870 
871 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
872 {
873 	struct r5conf *conf = sh->raid_conf;
874 	int i, disks = sh->disks;
875 	struct stripe_head *head_sh = sh;
876 
877 	might_sleep();
878 
879 	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
880 		/* writing out phase */
881 		if (s->waiting_extra_page)
882 			return;
883 		if (r5l_write_stripe(conf->log, sh) == 0)
884 			return;
885 	} else {  /* caching phase */
886 		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) {
887 			r5c_cache_data(conf->log, sh, s);
888 			return;
889 		}
890 	}
891 
892 	for (i = disks; i--; ) {
893 		int op, op_flags = 0;
894 		int replace_only = 0;
895 		struct bio *bi, *rbi;
896 		struct md_rdev *rdev, *rrdev = NULL;
897 
898 		sh = head_sh;
899 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
900 			op = REQ_OP_WRITE;
901 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
902 				op_flags = REQ_FUA;
903 			if (test_bit(R5_Discard, &sh->dev[i].flags))
904 				op = REQ_OP_DISCARD;
905 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
906 			op = REQ_OP_READ;
907 		else if (test_and_clear_bit(R5_WantReplace,
908 					    &sh->dev[i].flags)) {
909 			op = REQ_OP_WRITE;
910 			replace_only = 1;
911 		} else
912 			continue;
913 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
914 			op_flags |= REQ_SYNC;
915 
916 again:
917 		bi = &sh->dev[i].req;
918 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
919 
920 		rcu_read_lock();
921 		rrdev = rcu_dereference(conf->disks[i].replacement);
922 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
923 		rdev = rcu_dereference(conf->disks[i].rdev);
924 		if (!rdev) {
925 			rdev = rrdev;
926 			rrdev = NULL;
927 		}
928 		if (op_is_write(op)) {
929 			if (replace_only)
930 				rdev = NULL;
931 			if (rdev == rrdev)
932 				/* We raced and saw duplicates */
933 				rrdev = NULL;
934 		} else {
935 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
936 				rdev = rrdev;
937 			rrdev = NULL;
938 		}
939 
940 		if (rdev && test_bit(Faulty, &rdev->flags))
941 			rdev = NULL;
942 		if (rdev)
943 			atomic_inc(&rdev->nr_pending);
944 		if (rrdev && test_bit(Faulty, &rrdev->flags))
945 			rrdev = NULL;
946 		if (rrdev)
947 			atomic_inc(&rrdev->nr_pending);
948 		rcu_read_unlock();
949 
950 		/* We have already checked bad blocks for reads.  Now
951 		 * need to check for writes.  We never accept write errors
952 		 * on the replacement, so we don't to check rrdev.
953 		 */
954 		while (op_is_write(op) && rdev &&
955 		       test_bit(WriteErrorSeen, &rdev->flags)) {
956 			sector_t first_bad;
957 			int bad_sectors;
958 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
959 					      &first_bad, &bad_sectors);
960 			if (!bad)
961 				break;
962 
963 			if (bad < 0) {
964 				set_bit(BlockedBadBlocks, &rdev->flags);
965 				if (!conf->mddev->external &&
966 				    conf->mddev->sb_flags) {
967 					/* It is very unlikely, but we might
968 					 * still need to write out the
969 					 * bad block log - better give it
970 					 * a chance*/
971 					md_check_recovery(conf->mddev);
972 				}
973 				/*
974 				 * Because md_wait_for_blocked_rdev
975 				 * will dec nr_pending, we must
976 				 * increment it first.
977 				 */
978 				atomic_inc(&rdev->nr_pending);
979 				md_wait_for_blocked_rdev(rdev, conf->mddev);
980 			} else {
981 				/* Acknowledged bad block - skip the write */
982 				rdev_dec_pending(rdev, conf->mddev);
983 				rdev = NULL;
984 			}
985 		}
986 
987 		if (rdev) {
988 			if (s->syncing || s->expanding || s->expanded
989 			    || s->replacing)
990 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
991 
992 			set_bit(STRIPE_IO_STARTED, &sh->state);
993 
994 			bi->bi_bdev = rdev->bdev;
995 			bio_set_op_attrs(bi, op, op_flags);
996 			bi->bi_end_io = op_is_write(op)
997 				? raid5_end_write_request
998 				: raid5_end_read_request;
999 			bi->bi_private = sh;
1000 
1001 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1002 				__func__, (unsigned long long)sh->sector,
1003 				bi->bi_opf, i);
1004 			atomic_inc(&sh->count);
1005 			if (sh != head_sh)
1006 				atomic_inc(&head_sh->count);
1007 			if (use_new_offset(conf, sh))
1008 				bi->bi_iter.bi_sector = (sh->sector
1009 						 + rdev->new_data_offset);
1010 			else
1011 				bi->bi_iter.bi_sector = (sh->sector
1012 						 + rdev->data_offset);
1013 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1014 				bi->bi_opf |= REQ_NOMERGE;
1015 
1016 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1017 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1018 			sh->dev[i].vec.bv_page = sh->dev[i].page;
1019 			bi->bi_vcnt = 1;
1020 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1021 			bi->bi_io_vec[0].bv_offset = 0;
1022 			bi->bi_iter.bi_size = STRIPE_SIZE;
1023 			/*
1024 			 * If this is discard request, set bi_vcnt 0. We don't
1025 			 * want to confuse SCSI because SCSI will replace payload
1026 			 */
1027 			if (op == REQ_OP_DISCARD)
1028 				bi->bi_vcnt = 0;
1029 			if (rrdev)
1030 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1031 
1032 			if (conf->mddev->gendisk)
1033 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1034 						      bi, disk_devt(conf->mddev->gendisk),
1035 						      sh->dev[i].sector);
1036 			generic_make_request(bi);
1037 		}
1038 		if (rrdev) {
1039 			if (s->syncing || s->expanding || s->expanded
1040 			    || s->replacing)
1041 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1042 
1043 			set_bit(STRIPE_IO_STARTED, &sh->state);
1044 
1045 			rbi->bi_bdev = rrdev->bdev;
1046 			bio_set_op_attrs(rbi, op, op_flags);
1047 			BUG_ON(!op_is_write(op));
1048 			rbi->bi_end_io = raid5_end_write_request;
1049 			rbi->bi_private = sh;
1050 
1051 			pr_debug("%s: for %llu schedule op %d on "
1052 				 "replacement disc %d\n",
1053 				__func__, (unsigned long long)sh->sector,
1054 				rbi->bi_opf, i);
1055 			atomic_inc(&sh->count);
1056 			if (sh != head_sh)
1057 				atomic_inc(&head_sh->count);
1058 			if (use_new_offset(conf, sh))
1059 				rbi->bi_iter.bi_sector = (sh->sector
1060 						  + rrdev->new_data_offset);
1061 			else
1062 				rbi->bi_iter.bi_sector = (sh->sector
1063 						  + rrdev->data_offset);
1064 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1065 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1066 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1067 			rbi->bi_vcnt = 1;
1068 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1069 			rbi->bi_io_vec[0].bv_offset = 0;
1070 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1071 			/*
1072 			 * If this is discard request, set bi_vcnt 0. We don't
1073 			 * want to confuse SCSI because SCSI will replace payload
1074 			 */
1075 			if (op == REQ_OP_DISCARD)
1076 				rbi->bi_vcnt = 0;
1077 			if (conf->mddev->gendisk)
1078 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1079 						      rbi, disk_devt(conf->mddev->gendisk),
1080 						      sh->dev[i].sector);
1081 			generic_make_request(rbi);
1082 		}
1083 		if (!rdev && !rrdev) {
1084 			if (op_is_write(op))
1085 				set_bit(STRIPE_DEGRADED, &sh->state);
1086 			pr_debug("skip op %d on disc %d for sector %llu\n",
1087 				bi->bi_opf, i, (unsigned long long)sh->sector);
1088 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1089 			set_bit(STRIPE_HANDLE, &sh->state);
1090 		}
1091 
1092 		if (!head_sh->batch_head)
1093 			continue;
1094 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1095 				      batch_list);
1096 		if (sh != head_sh)
1097 			goto again;
1098 	}
1099 }
1100 
1101 static struct dma_async_tx_descriptor *
1102 async_copy_data(int frombio, struct bio *bio, struct page **page,
1103 	sector_t sector, struct dma_async_tx_descriptor *tx,
1104 	struct stripe_head *sh, int no_skipcopy)
1105 {
1106 	struct bio_vec bvl;
1107 	struct bvec_iter iter;
1108 	struct page *bio_page;
1109 	int page_offset;
1110 	struct async_submit_ctl submit;
1111 	enum async_tx_flags flags = 0;
1112 
1113 	if (bio->bi_iter.bi_sector >= sector)
1114 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1115 	else
1116 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1117 
1118 	if (frombio)
1119 		flags |= ASYNC_TX_FENCE;
1120 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1121 
1122 	bio_for_each_segment(bvl, bio, iter) {
1123 		int len = bvl.bv_len;
1124 		int clen;
1125 		int b_offset = 0;
1126 
1127 		if (page_offset < 0) {
1128 			b_offset = -page_offset;
1129 			page_offset += b_offset;
1130 			len -= b_offset;
1131 		}
1132 
1133 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1134 			clen = STRIPE_SIZE - page_offset;
1135 		else
1136 			clen = len;
1137 
1138 		if (clen > 0) {
1139 			b_offset += bvl.bv_offset;
1140 			bio_page = bvl.bv_page;
1141 			if (frombio) {
1142 				if (sh->raid_conf->skip_copy &&
1143 				    b_offset == 0 && page_offset == 0 &&
1144 				    clen == STRIPE_SIZE &&
1145 				    !no_skipcopy)
1146 					*page = bio_page;
1147 				else
1148 					tx = async_memcpy(*page, bio_page, page_offset,
1149 						  b_offset, clen, &submit);
1150 			} else
1151 				tx = async_memcpy(bio_page, *page, b_offset,
1152 						  page_offset, clen, &submit);
1153 		}
1154 		/* chain the operations */
1155 		submit.depend_tx = tx;
1156 
1157 		if (clen < len) /* hit end of page */
1158 			break;
1159 		page_offset +=  len;
1160 	}
1161 
1162 	return tx;
1163 }
1164 
1165 static void ops_complete_biofill(void *stripe_head_ref)
1166 {
1167 	struct stripe_head *sh = stripe_head_ref;
1168 	struct bio_list return_bi = BIO_EMPTY_LIST;
1169 	int i;
1170 
1171 	pr_debug("%s: stripe %llu\n", __func__,
1172 		(unsigned long long)sh->sector);
1173 
1174 	/* clear completed biofills */
1175 	for (i = sh->disks; i--; ) {
1176 		struct r5dev *dev = &sh->dev[i];
1177 
1178 		/* acknowledge completion of a biofill operation */
1179 		/* and check if we need to reply to a read request,
1180 		 * new R5_Wantfill requests are held off until
1181 		 * !STRIPE_BIOFILL_RUN
1182 		 */
1183 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1184 			struct bio *rbi, *rbi2;
1185 
1186 			BUG_ON(!dev->read);
1187 			rbi = dev->read;
1188 			dev->read = NULL;
1189 			while (rbi && rbi->bi_iter.bi_sector <
1190 				dev->sector + STRIPE_SECTORS) {
1191 				rbi2 = r5_next_bio(rbi, dev->sector);
1192 				if (!raid5_dec_bi_active_stripes(rbi))
1193 					bio_list_add(&return_bi, rbi);
1194 				rbi = rbi2;
1195 			}
1196 		}
1197 	}
1198 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1199 
1200 	return_io(&return_bi);
1201 
1202 	set_bit(STRIPE_HANDLE, &sh->state);
1203 	raid5_release_stripe(sh);
1204 }
1205 
1206 static void ops_run_biofill(struct stripe_head *sh)
1207 {
1208 	struct dma_async_tx_descriptor *tx = NULL;
1209 	struct async_submit_ctl submit;
1210 	int i;
1211 
1212 	BUG_ON(sh->batch_head);
1213 	pr_debug("%s: stripe %llu\n", __func__,
1214 		(unsigned long long)sh->sector);
1215 
1216 	for (i = sh->disks; i--; ) {
1217 		struct r5dev *dev = &sh->dev[i];
1218 		if (test_bit(R5_Wantfill, &dev->flags)) {
1219 			struct bio *rbi;
1220 			spin_lock_irq(&sh->stripe_lock);
1221 			dev->read = rbi = dev->toread;
1222 			dev->toread = NULL;
1223 			spin_unlock_irq(&sh->stripe_lock);
1224 			while (rbi && rbi->bi_iter.bi_sector <
1225 				dev->sector + STRIPE_SECTORS) {
1226 				tx = async_copy_data(0, rbi, &dev->page,
1227 						     dev->sector, tx, sh, 0);
1228 				rbi = r5_next_bio(rbi, dev->sector);
1229 			}
1230 		}
1231 	}
1232 
1233 	atomic_inc(&sh->count);
1234 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1235 	async_trigger_callback(&submit);
1236 }
1237 
1238 static void mark_target_uptodate(struct stripe_head *sh, int target)
1239 {
1240 	struct r5dev *tgt;
1241 
1242 	if (target < 0)
1243 		return;
1244 
1245 	tgt = &sh->dev[target];
1246 	set_bit(R5_UPTODATE, &tgt->flags);
1247 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1248 	clear_bit(R5_Wantcompute, &tgt->flags);
1249 }
1250 
1251 static void ops_complete_compute(void *stripe_head_ref)
1252 {
1253 	struct stripe_head *sh = stripe_head_ref;
1254 
1255 	pr_debug("%s: stripe %llu\n", __func__,
1256 		(unsigned long long)sh->sector);
1257 
1258 	/* mark the computed target(s) as uptodate */
1259 	mark_target_uptodate(sh, sh->ops.target);
1260 	mark_target_uptodate(sh, sh->ops.target2);
1261 
1262 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1263 	if (sh->check_state == check_state_compute_run)
1264 		sh->check_state = check_state_compute_result;
1265 	set_bit(STRIPE_HANDLE, &sh->state);
1266 	raid5_release_stripe(sh);
1267 }
1268 
1269 /* return a pointer to the address conversion region of the scribble buffer */
1270 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1271 				 struct raid5_percpu *percpu, int i)
1272 {
1273 	void *addr;
1274 
1275 	addr = flex_array_get(percpu->scribble, i);
1276 	return addr + sizeof(struct page *) * (sh->disks + 2);
1277 }
1278 
1279 /* return a pointer to the address conversion region of the scribble buffer */
1280 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1281 {
1282 	void *addr;
1283 
1284 	addr = flex_array_get(percpu->scribble, i);
1285 	return addr;
1286 }
1287 
1288 static struct dma_async_tx_descriptor *
1289 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1290 {
1291 	int disks = sh->disks;
1292 	struct page **xor_srcs = to_addr_page(percpu, 0);
1293 	int target = sh->ops.target;
1294 	struct r5dev *tgt = &sh->dev[target];
1295 	struct page *xor_dest = tgt->page;
1296 	int count = 0;
1297 	struct dma_async_tx_descriptor *tx;
1298 	struct async_submit_ctl submit;
1299 	int i;
1300 
1301 	BUG_ON(sh->batch_head);
1302 
1303 	pr_debug("%s: stripe %llu block: %d\n",
1304 		__func__, (unsigned long long)sh->sector, target);
1305 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1306 
1307 	for (i = disks; i--; )
1308 		if (i != target)
1309 			xor_srcs[count++] = sh->dev[i].page;
1310 
1311 	atomic_inc(&sh->count);
1312 
1313 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1314 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1315 	if (unlikely(count == 1))
1316 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1317 	else
1318 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1319 
1320 	return tx;
1321 }
1322 
1323 /* set_syndrome_sources - populate source buffers for gen_syndrome
1324  * @srcs - (struct page *) array of size sh->disks
1325  * @sh - stripe_head to parse
1326  *
1327  * Populates srcs in proper layout order for the stripe and returns the
1328  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1329  * destination buffer is recorded in srcs[count] and the Q destination
1330  * is recorded in srcs[count+1]].
1331  */
1332 static int set_syndrome_sources(struct page **srcs,
1333 				struct stripe_head *sh,
1334 				int srctype)
1335 {
1336 	int disks = sh->disks;
1337 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1338 	int d0_idx = raid6_d0(sh);
1339 	int count;
1340 	int i;
1341 
1342 	for (i = 0; i < disks; i++)
1343 		srcs[i] = NULL;
1344 
1345 	count = 0;
1346 	i = d0_idx;
1347 	do {
1348 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1349 		struct r5dev *dev = &sh->dev[i];
1350 
1351 		if (i == sh->qd_idx || i == sh->pd_idx ||
1352 		    (srctype == SYNDROME_SRC_ALL) ||
1353 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1354 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1355 		      test_bit(R5_InJournal, &dev->flags))) ||
1356 		    (srctype == SYNDROME_SRC_WRITTEN &&
1357 		     dev->written)) {
1358 			if (test_bit(R5_InJournal, &dev->flags))
1359 				srcs[slot] = sh->dev[i].orig_page;
1360 			else
1361 				srcs[slot] = sh->dev[i].page;
1362 		}
1363 		i = raid6_next_disk(i, disks);
1364 	} while (i != d0_idx);
1365 
1366 	return syndrome_disks;
1367 }
1368 
1369 static struct dma_async_tx_descriptor *
1370 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1371 {
1372 	int disks = sh->disks;
1373 	struct page **blocks = to_addr_page(percpu, 0);
1374 	int target;
1375 	int qd_idx = sh->qd_idx;
1376 	struct dma_async_tx_descriptor *tx;
1377 	struct async_submit_ctl submit;
1378 	struct r5dev *tgt;
1379 	struct page *dest;
1380 	int i;
1381 	int count;
1382 
1383 	BUG_ON(sh->batch_head);
1384 	if (sh->ops.target < 0)
1385 		target = sh->ops.target2;
1386 	else if (sh->ops.target2 < 0)
1387 		target = sh->ops.target;
1388 	else
1389 		/* we should only have one valid target */
1390 		BUG();
1391 	BUG_ON(target < 0);
1392 	pr_debug("%s: stripe %llu block: %d\n",
1393 		__func__, (unsigned long long)sh->sector, target);
1394 
1395 	tgt = &sh->dev[target];
1396 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1397 	dest = tgt->page;
1398 
1399 	atomic_inc(&sh->count);
1400 
1401 	if (target == qd_idx) {
1402 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1403 		blocks[count] = NULL; /* regenerating p is not necessary */
1404 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1405 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1406 				  ops_complete_compute, sh,
1407 				  to_addr_conv(sh, percpu, 0));
1408 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1409 	} else {
1410 		/* Compute any data- or p-drive using XOR */
1411 		count = 0;
1412 		for (i = disks; i-- ; ) {
1413 			if (i == target || i == qd_idx)
1414 				continue;
1415 			blocks[count++] = sh->dev[i].page;
1416 		}
1417 
1418 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1419 				  NULL, ops_complete_compute, sh,
1420 				  to_addr_conv(sh, percpu, 0));
1421 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1422 	}
1423 
1424 	return tx;
1425 }
1426 
1427 static struct dma_async_tx_descriptor *
1428 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1429 {
1430 	int i, count, disks = sh->disks;
1431 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1432 	int d0_idx = raid6_d0(sh);
1433 	int faila = -1, failb = -1;
1434 	int target = sh->ops.target;
1435 	int target2 = sh->ops.target2;
1436 	struct r5dev *tgt = &sh->dev[target];
1437 	struct r5dev *tgt2 = &sh->dev[target2];
1438 	struct dma_async_tx_descriptor *tx;
1439 	struct page **blocks = to_addr_page(percpu, 0);
1440 	struct async_submit_ctl submit;
1441 
1442 	BUG_ON(sh->batch_head);
1443 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1444 		 __func__, (unsigned long long)sh->sector, target, target2);
1445 	BUG_ON(target < 0 || target2 < 0);
1446 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1447 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1448 
1449 	/* we need to open-code set_syndrome_sources to handle the
1450 	 * slot number conversion for 'faila' and 'failb'
1451 	 */
1452 	for (i = 0; i < disks ; i++)
1453 		blocks[i] = NULL;
1454 	count = 0;
1455 	i = d0_idx;
1456 	do {
1457 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1458 
1459 		blocks[slot] = sh->dev[i].page;
1460 
1461 		if (i == target)
1462 			faila = slot;
1463 		if (i == target2)
1464 			failb = slot;
1465 		i = raid6_next_disk(i, disks);
1466 	} while (i != d0_idx);
1467 
1468 	BUG_ON(faila == failb);
1469 	if (failb < faila)
1470 		swap(faila, failb);
1471 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1472 		 __func__, (unsigned long long)sh->sector, faila, failb);
1473 
1474 	atomic_inc(&sh->count);
1475 
1476 	if (failb == syndrome_disks+1) {
1477 		/* Q disk is one of the missing disks */
1478 		if (faila == syndrome_disks) {
1479 			/* Missing P+Q, just recompute */
1480 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1481 					  ops_complete_compute, sh,
1482 					  to_addr_conv(sh, percpu, 0));
1483 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1484 						  STRIPE_SIZE, &submit);
1485 		} else {
1486 			struct page *dest;
1487 			int data_target;
1488 			int qd_idx = sh->qd_idx;
1489 
1490 			/* Missing D+Q: recompute D from P, then recompute Q */
1491 			if (target == qd_idx)
1492 				data_target = target2;
1493 			else
1494 				data_target = target;
1495 
1496 			count = 0;
1497 			for (i = disks; i-- ; ) {
1498 				if (i == data_target || i == qd_idx)
1499 					continue;
1500 				blocks[count++] = sh->dev[i].page;
1501 			}
1502 			dest = sh->dev[data_target].page;
1503 			init_async_submit(&submit,
1504 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1505 					  NULL, NULL, NULL,
1506 					  to_addr_conv(sh, percpu, 0));
1507 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1508 				       &submit);
1509 
1510 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1511 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1512 					  ops_complete_compute, sh,
1513 					  to_addr_conv(sh, percpu, 0));
1514 			return async_gen_syndrome(blocks, 0, count+2,
1515 						  STRIPE_SIZE, &submit);
1516 		}
1517 	} else {
1518 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1519 				  ops_complete_compute, sh,
1520 				  to_addr_conv(sh, percpu, 0));
1521 		if (failb == syndrome_disks) {
1522 			/* We're missing D+P. */
1523 			return async_raid6_datap_recov(syndrome_disks+2,
1524 						       STRIPE_SIZE, faila,
1525 						       blocks, &submit);
1526 		} else {
1527 			/* We're missing D+D. */
1528 			return async_raid6_2data_recov(syndrome_disks+2,
1529 						       STRIPE_SIZE, faila, failb,
1530 						       blocks, &submit);
1531 		}
1532 	}
1533 }
1534 
1535 static void ops_complete_prexor(void *stripe_head_ref)
1536 {
1537 	struct stripe_head *sh = stripe_head_ref;
1538 
1539 	pr_debug("%s: stripe %llu\n", __func__,
1540 		(unsigned long long)sh->sector);
1541 
1542 	if (r5c_is_writeback(sh->raid_conf->log))
1543 		/*
1544 		 * raid5-cache write back uses orig_page during prexor.
1545 		 * After prexor, it is time to free orig_page
1546 		 */
1547 		r5c_release_extra_page(sh);
1548 }
1549 
1550 static struct dma_async_tx_descriptor *
1551 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1552 		struct dma_async_tx_descriptor *tx)
1553 {
1554 	int disks = sh->disks;
1555 	struct page **xor_srcs = to_addr_page(percpu, 0);
1556 	int count = 0, pd_idx = sh->pd_idx, i;
1557 	struct async_submit_ctl submit;
1558 
1559 	/* existing parity data subtracted */
1560 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1561 
1562 	BUG_ON(sh->batch_head);
1563 	pr_debug("%s: stripe %llu\n", __func__,
1564 		(unsigned long long)sh->sector);
1565 
1566 	for (i = disks; i--; ) {
1567 		struct r5dev *dev = &sh->dev[i];
1568 		/* Only process blocks that are known to be uptodate */
1569 		if (test_bit(R5_InJournal, &dev->flags))
1570 			xor_srcs[count++] = dev->orig_page;
1571 		else if (test_bit(R5_Wantdrain, &dev->flags))
1572 			xor_srcs[count++] = dev->page;
1573 	}
1574 
1575 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1576 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1577 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1578 
1579 	return tx;
1580 }
1581 
1582 static struct dma_async_tx_descriptor *
1583 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1584 		struct dma_async_tx_descriptor *tx)
1585 {
1586 	struct page **blocks = to_addr_page(percpu, 0);
1587 	int count;
1588 	struct async_submit_ctl submit;
1589 
1590 	pr_debug("%s: stripe %llu\n", __func__,
1591 		(unsigned long long)sh->sector);
1592 
1593 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1594 
1595 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1596 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1597 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1598 
1599 	return tx;
1600 }
1601 
1602 static struct dma_async_tx_descriptor *
1603 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1604 {
1605 	struct r5conf *conf = sh->raid_conf;
1606 	int disks = sh->disks;
1607 	int i;
1608 	struct stripe_head *head_sh = sh;
1609 
1610 	pr_debug("%s: stripe %llu\n", __func__,
1611 		(unsigned long long)sh->sector);
1612 
1613 	for (i = disks; i--; ) {
1614 		struct r5dev *dev;
1615 		struct bio *chosen;
1616 
1617 		sh = head_sh;
1618 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1619 			struct bio *wbi;
1620 
1621 again:
1622 			dev = &sh->dev[i];
1623 			/*
1624 			 * clear R5_InJournal, so when rewriting a page in
1625 			 * journal, it is not skipped by r5l_log_stripe()
1626 			 */
1627 			clear_bit(R5_InJournal, &dev->flags);
1628 			spin_lock_irq(&sh->stripe_lock);
1629 			chosen = dev->towrite;
1630 			dev->towrite = NULL;
1631 			sh->overwrite_disks = 0;
1632 			BUG_ON(dev->written);
1633 			wbi = dev->written = chosen;
1634 			spin_unlock_irq(&sh->stripe_lock);
1635 			WARN_ON(dev->page != dev->orig_page);
1636 
1637 			while (wbi && wbi->bi_iter.bi_sector <
1638 				dev->sector + STRIPE_SECTORS) {
1639 				if (wbi->bi_opf & REQ_FUA)
1640 					set_bit(R5_WantFUA, &dev->flags);
1641 				if (wbi->bi_opf & REQ_SYNC)
1642 					set_bit(R5_SyncIO, &dev->flags);
1643 				if (bio_op(wbi) == REQ_OP_DISCARD)
1644 					set_bit(R5_Discard, &dev->flags);
1645 				else {
1646 					tx = async_copy_data(1, wbi, &dev->page,
1647 							     dev->sector, tx, sh,
1648 							     r5c_is_writeback(conf->log));
1649 					if (dev->page != dev->orig_page &&
1650 					    !r5c_is_writeback(conf->log)) {
1651 						set_bit(R5_SkipCopy, &dev->flags);
1652 						clear_bit(R5_UPTODATE, &dev->flags);
1653 						clear_bit(R5_OVERWRITE, &dev->flags);
1654 					}
1655 				}
1656 				wbi = r5_next_bio(wbi, dev->sector);
1657 			}
1658 
1659 			if (head_sh->batch_head) {
1660 				sh = list_first_entry(&sh->batch_list,
1661 						      struct stripe_head,
1662 						      batch_list);
1663 				if (sh == head_sh)
1664 					continue;
1665 				goto again;
1666 			}
1667 		}
1668 	}
1669 
1670 	return tx;
1671 }
1672 
1673 static void ops_complete_reconstruct(void *stripe_head_ref)
1674 {
1675 	struct stripe_head *sh = stripe_head_ref;
1676 	int disks = sh->disks;
1677 	int pd_idx = sh->pd_idx;
1678 	int qd_idx = sh->qd_idx;
1679 	int i;
1680 	bool fua = false, sync = false, discard = false;
1681 
1682 	pr_debug("%s: stripe %llu\n", __func__,
1683 		(unsigned long long)sh->sector);
1684 
1685 	for (i = disks; i--; ) {
1686 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1687 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1688 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1689 	}
1690 
1691 	for (i = disks; i--; ) {
1692 		struct r5dev *dev = &sh->dev[i];
1693 
1694 		if (dev->written || i == pd_idx || i == qd_idx) {
1695 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1696 				set_bit(R5_UPTODATE, &dev->flags);
1697 			if (fua)
1698 				set_bit(R5_WantFUA, &dev->flags);
1699 			if (sync)
1700 				set_bit(R5_SyncIO, &dev->flags);
1701 		}
1702 	}
1703 
1704 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1705 		sh->reconstruct_state = reconstruct_state_drain_result;
1706 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1707 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1708 	else {
1709 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1710 		sh->reconstruct_state = reconstruct_state_result;
1711 	}
1712 
1713 	set_bit(STRIPE_HANDLE, &sh->state);
1714 	raid5_release_stripe(sh);
1715 }
1716 
1717 static void
1718 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1719 		     struct dma_async_tx_descriptor *tx)
1720 {
1721 	int disks = sh->disks;
1722 	struct page **xor_srcs;
1723 	struct async_submit_ctl submit;
1724 	int count, pd_idx = sh->pd_idx, i;
1725 	struct page *xor_dest;
1726 	int prexor = 0;
1727 	unsigned long flags;
1728 	int j = 0;
1729 	struct stripe_head *head_sh = sh;
1730 	int last_stripe;
1731 
1732 	pr_debug("%s: stripe %llu\n", __func__,
1733 		(unsigned long long)sh->sector);
1734 
1735 	for (i = 0; i < sh->disks; i++) {
1736 		if (pd_idx == i)
1737 			continue;
1738 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1739 			break;
1740 	}
1741 	if (i >= sh->disks) {
1742 		atomic_inc(&sh->count);
1743 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1744 		ops_complete_reconstruct(sh);
1745 		return;
1746 	}
1747 again:
1748 	count = 0;
1749 	xor_srcs = to_addr_page(percpu, j);
1750 	/* check if prexor is active which means only process blocks
1751 	 * that are part of a read-modify-write (written)
1752 	 */
1753 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1754 		prexor = 1;
1755 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1756 		for (i = disks; i--; ) {
1757 			struct r5dev *dev = &sh->dev[i];
1758 			if (head_sh->dev[i].written ||
1759 			    test_bit(R5_InJournal, &head_sh->dev[i].flags))
1760 				xor_srcs[count++] = dev->page;
1761 		}
1762 	} else {
1763 		xor_dest = sh->dev[pd_idx].page;
1764 		for (i = disks; i--; ) {
1765 			struct r5dev *dev = &sh->dev[i];
1766 			if (i != pd_idx)
1767 				xor_srcs[count++] = dev->page;
1768 		}
1769 	}
1770 
1771 	/* 1/ if we prexor'd then the dest is reused as a source
1772 	 * 2/ if we did not prexor then we are redoing the parity
1773 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1774 	 * for the synchronous xor case
1775 	 */
1776 	last_stripe = !head_sh->batch_head ||
1777 		list_first_entry(&sh->batch_list,
1778 				 struct stripe_head, batch_list) == head_sh;
1779 	if (last_stripe) {
1780 		flags = ASYNC_TX_ACK |
1781 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1782 
1783 		atomic_inc(&head_sh->count);
1784 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1785 				  to_addr_conv(sh, percpu, j));
1786 	} else {
1787 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1788 		init_async_submit(&submit, flags, tx, NULL, NULL,
1789 				  to_addr_conv(sh, percpu, j));
1790 	}
1791 
1792 	if (unlikely(count == 1))
1793 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1794 	else
1795 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1796 	if (!last_stripe) {
1797 		j++;
1798 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1799 				      batch_list);
1800 		goto again;
1801 	}
1802 }
1803 
1804 static void
1805 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1806 		     struct dma_async_tx_descriptor *tx)
1807 {
1808 	struct async_submit_ctl submit;
1809 	struct page **blocks;
1810 	int count, i, j = 0;
1811 	struct stripe_head *head_sh = sh;
1812 	int last_stripe;
1813 	int synflags;
1814 	unsigned long txflags;
1815 
1816 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1817 
1818 	for (i = 0; i < sh->disks; i++) {
1819 		if (sh->pd_idx == i || sh->qd_idx == i)
1820 			continue;
1821 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1822 			break;
1823 	}
1824 	if (i >= sh->disks) {
1825 		atomic_inc(&sh->count);
1826 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1827 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1828 		ops_complete_reconstruct(sh);
1829 		return;
1830 	}
1831 
1832 again:
1833 	blocks = to_addr_page(percpu, j);
1834 
1835 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1836 		synflags = SYNDROME_SRC_WRITTEN;
1837 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1838 	} else {
1839 		synflags = SYNDROME_SRC_ALL;
1840 		txflags = ASYNC_TX_ACK;
1841 	}
1842 
1843 	count = set_syndrome_sources(blocks, sh, synflags);
1844 	last_stripe = !head_sh->batch_head ||
1845 		list_first_entry(&sh->batch_list,
1846 				 struct stripe_head, batch_list) == head_sh;
1847 
1848 	if (last_stripe) {
1849 		atomic_inc(&head_sh->count);
1850 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1851 				  head_sh, to_addr_conv(sh, percpu, j));
1852 	} else
1853 		init_async_submit(&submit, 0, tx, NULL, NULL,
1854 				  to_addr_conv(sh, percpu, j));
1855 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1856 	if (!last_stripe) {
1857 		j++;
1858 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1859 				      batch_list);
1860 		goto again;
1861 	}
1862 }
1863 
1864 static void ops_complete_check(void *stripe_head_ref)
1865 {
1866 	struct stripe_head *sh = stripe_head_ref;
1867 
1868 	pr_debug("%s: stripe %llu\n", __func__,
1869 		(unsigned long long)sh->sector);
1870 
1871 	sh->check_state = check_state_check_result;
1872 	set_bit(STRIPE_HANDLE, &sh->state);
1873 	raid5_release_stripe(sh);
1874 }
1875 
1876 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1877 {
1878 	int disks = sh->disks;
1879 	int pd_idx = sh->pd_idx;
1880 	int qd_idx = sh->qd_idx;
1881 	struct page *xor_dest;
1882 	struct page **xor_srcs = to_addr_page(percpu, 0);
1883 	struct dma_async_tx_descriptor *tx;
1884 	struct async_submit_ctl submit;
1885 	int count;
1886 	int i;
1887 
1888 	pr_debug("%s: stripe %llu\n", __func__,
1889 		(unsigned long long)sh->sector);
1890 
1891 	BUG_ON(sh->batch_head);
1892 	count = 0;
1893 	xor_dest = sh->dev[pd_idx].page;
1894 	xor_srcs[count++] = xor_dest;
1895 	for (i = disks; i--; ) {
1896 		if (i == pd_idx || i == qd_idx)
1897 			continue;
1898 		xor_srcs[count++] = sh->dev[i].page;
1899 	}
1900 
1901 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1902 			  to_addr_conv(sh, percpu, 0));
1903 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1904 			   &sh->ops.zero_sum_result, &submit);
1905 
1906 	atomic_inc(&sh->count);
1907 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1908 	tx = async_trigger_callback(&submit);
1909 }
1910 
1911 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1912 {
1913 	struct page **srcs = to_addr_page(percpu, 0);
1914 	struct async_submit_ctl submit;
1915 	int count;
1916 
1917 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1918 		(unsigned long long)sh->sector, checkp);
1919 
1920 	BUG_ON(sh->batch_head);
1921 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1922 	if (!checkp)
1923 		srcs[count] = NULL;
1924 
1925 	atomic_inc(&sh->count);
1926 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1927 			  sh, to_addr_conv(sh, percpu, 0));
1928 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1929 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1930 }
1931 
1932 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1933 {
1934 	int overlap_clear = 0, i, disks = sh->disks;
1935 	struct dma_async_tx_descriptor *tx = NULL;
1936 	struct r5conf *conf = sh->raid_conf;
1937 	int level = conf->level;
1938 	struct raid5_percpu *percpu;
1939 	unsigned long cpu;
1940 
1941 	cpu = get_cpu();
1942 	percpu = per_cpu_ptr(conf->percpu, cpu);
1943 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1944 		ops_run_biofill(sh);
1945 		overlap_clear++;
1946 	}
1947 
1948 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1949 		if (level < 6)
1950 			tx = ops_run_compute5(sh, percpu);
1951 		else {
1952 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1953 				tx = ops_run_compute6_1(sh, percpu);
1954 			else
1955 				tx = ops_run_compute6_2(sh, percpu);
1956 		}
1957 		/* terminate the chain if reconstruct is not set to be run */
1958 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1959 			async_tx_ack(tx);
1960 	}
1961 
1962 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1963 		if (level < 6)
1964 			tx = ops_run_prexor5(sh, percpu, tx);
1965 		else
1966 			tx = ops_run_prexor6(sh, percpu, tx);
1967 	}
1968 
1969 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1970 		tx = ops_run_biodrain(sh, tx);
1971 		overlap_clear++;
1972 	}
1973 
1974 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1975 		if (level < 6)
1976 			ops_run_reconstruct5(sh, percpu, tx);
1977 		else
1978 			ops_run_reconstruct6(sh, percpu, tx);
1979 	}
1980 
1981 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1982 		if (sh->check_state == check_state_run)
1983 			ops_run_check_p(sh, percpu);
1984 		else if (sh->check_state == check_state_run_q)
1985 			ops_run_check_pq(sh, percpu, 0);
1986 		else if (sh->check_state == check_state_run_pq)
1987 			ops_run_check_pq(sh, percpu, 1);
1988 		else
1989 			BUG();
1990 	}
1991 
1992 	if (overlap_clear && !sh->batch_head)
1993 		for (i = disks; i--; ) {
1994 			struct r5dev *dev = &sh->dev[i];
1995 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1996 				wake_up(&sh->raid_conf->wait_for_overlap);
1997 		}
1998 	put_cpu();
1999 }
2000 
2001 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2002 	int disks)
2003 {
2004 	struct stripe_head *sh;
2005 	int i;
2006 
2007 	sh = kmem_cache_zalloc(sc, gfp);
2008 	if (sh) {
2009 		spin_lock_init(&sh->stripe_lock);
2010 		spin_lock_init(&sh->batch_lock);
2011 		INIT_LIST_HEAD(&sh->batch_list);
2012 		INIT_LIST_HEAD(&sh->lru);
2013 		INIT_LIST_HEAD(&sh->r5c);
2014 		INIT_LIST_HEAD(&sh->log_list);
2015 		atomic_set(&sh->count, 1);
2016 		sh->log_start = MaxSector;
2017 		for (i = 0; i < disks; i++) {
2018 			struct r5dev *dev = &sh->dev[i];
2019 
2020 			bio_init(&dev->req, &dev->vec, 1);
2021 			bio_init(&dev->rreq, &dev->rvec, 1);
2022 		}
2023 	}
2024 	return sh;
2025 }
2026 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2027 {
2028 	struct stripe_head *sh;
2029 
2030 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size);
2031 	if (!sh)
2032 		return 0;
2033 
2034 	sh->raid_conf = conf;
2035 
2036 	if (grow_buffers(sh, gfp)) {
2037 		shrink_buffers(sh);
2038 		kmem_cache_free(conf->slab_cache, sh);
2039 		return 0;
2040 	}
2041 	sh->hash_lock_index =
2042 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2043 	/* we just created an active stripe so... */
2044 	atomic_inc(&conf->active_stripes);
2045 
2046 	raid5_release_stripe(sh);
2047 	conf->max_nr_stripes++;
2048 	return 1;
2049 }
2050 
2051 static int grow_stripes(struct r5conf *conf, int num)
2052 {
2053 	struct kmem_cache *sc;
2054 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2055 
2056 	if (conf->mddev->gendisk)
2057 		sprintf(conf->cache_name[0],
2058 			"raid%d-%s", conf->level, mdname(conf->mddev));
2059 	else
2060 		sprintf(conf->cache_name[0],
2061 			"raid%d-%p", conf->level, conf->mddev);
2062 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2063 
2064 	conf->active_name = 0;
2065 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2066 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2067 			       0, 0, NULL);
2068 	if (!sc)
2069 		return 1;
2070 	conf->slab_cache = sc;
2071 	conf->pool_size = devs;
2072 	while (num--)
2073 		if (!grow_one_stripe(conf, GFP_KERNEL))
2074 			return 1;
2075 
2076 	return 0;
2077 }
2078 
2079 /**
2080  * scribble_len - return the required size of the scribble region
2081  * @num - total number of disks in the array
2082  *
2083  * The size must be enough to contain:
2084  * 1/ a struct page pointer for each device in the array +2
2085  * 2/ room to convert each entry in (1) to its corresponding dma
2086  *    (dma_map_page()) or page (page_address()) address.
2087  *
2088  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2089  * calculate over all devices (not just the data blocks), using zeros in place
2090  * of the P and Q blocks.
2091  */
2092 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2093 {
2094 	struct flex_array *ret;
2095 	size_t len;
2096 
2097 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2098 	ret = flex_array_alloc(len, cnt, flags);
2099 	if (!ret)
2100 		return NULL;
2101 	/* always prealloc all elements, so no locking is required */
2102 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2103 		flex_array_free(ret);
2104 		return NULL;
2105 	}
2106 	return ret;
2107 }
2108 
2109 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2110 {
2111 	unsigned long cpu;
2112 	int err = 0;
2113 
2114 	/*
2115 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2116 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2117 	 * should equal to new_disks and new_sectors
2118 	 */
2119 	if (conf->scribble_disks >= new_disks &&
2120 	    conf->scribble_sectors >= new_sectors)
2121 		return 0;
2122 	mddev_suspend(conf->mddev);
2123 	get_online_cpus();
2124 	for_each_present_cpu(cpu) {
2125 		struct raid5_percpu *percpu;
2126 		struct flex_array *scribble;
2127 
2128 		percpu = per_cpu_ptr(conf->percpu, cpu);
2129 		scribble = scribble_alloc(new_disks,
2130 					  new_sectors / STRIPE_SECTORS,
2131 					  GFP_NOIO);
2132 
2133 		if (scribble) {
2134 			flex_array_free(percpu->scribble);
2135 			percpu->scribble = scribble;
2136 		} else {
2137 			err = -ENOMEM;
2138 			break;
2139 		}
2140 	}
2141 	put_online_cpus();
2142 	mddev_resume(conf->mddev);
2143 	if (!err) {
2144 		conf->scribble_disks = new_disks;
2145 		conf->scribble_sectors = new_sectors;
2146 	}
2147 	return err;
2148 }
2149 
2150 static int resize_stripes(struct r5conf *conf, int newsize)
2151 {
2152 	/* Make all the stripes able to hold 'newsize' devices.
2153 	 * New slots in each stripe get 'page' set to a new page.
2154 	 *
2155 	 * This happens in stages:
2156 	 * 1/ create a new kmem_cache and allocate the required number of
2157 	 *    stripe_heads.
2158 	 * 2/ gather all the old stripe_heads and transfer the pages across
2159 	 *    to the new stripe_heads.  This will have the side effect of
2160 	 *    freezing the array as once all stripe_heads have been collected,
2161 	 *    no IO will be possible.  Old stripe heads are freed once their
2162 	 *    pages have been transferred over, and the old kmem_cache is
2163 	 *    freed when all stripes are done.
2164 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2165 	 *    we simple return a failre status - no need to clean anything up.
2166 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2167 	 *    If this fails, we don't bother trying the shrink the
2168 	 *    stripe_heads down again, we just leave them as they are.
2169 	 *    As each stripe_head is processed the new one is released into
2170 	 *    active service.
2171 	 *
2172 	 * Once step2 is started, we cannot afford to wait for a write,
2173 	 * so we use GFP_NOIO allocations.
2174 	 */
2175 	struct stripe_head *osh, *nsh;
2176 	LIST_HEAD(newstripes);
2177 	struct disk_info *ndisks;
2178 	int err;
2179 	struct kmem_cache *sc;
2180 	int i;
2181 	int hash, cnt;
2182 
2183 	if (newsize <= conf->pool_size)
2184 		return 0; /* never bother to shrink */
2185 
2186 	err = md_allow_write(conf->mddev);
2187 	if (err)
2188 		return err;
2189 
2190 	/* Step 1 */
2191 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2192 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2193 			       0, 0, NULL);
2194 	if (!sc)
2195 		return -ENOMEM;
2196 
2197 	/* Need to ensure auto-resizing doesn't interfere */
2198 	mutex_lock(&conf->cache_size_mutex);
2199 
2200 	for (i = conf->max_nr_stripes; i; i--) {
2201 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize);
2202 		if (!nsh)
2203 			break;
2204 
2205 		nsh->raid_conf = conf;
2206 		list_add(&nsh->lru, &newstripes);
2207 	}
2208 	if (i) {
2209 		/* didn't get enough, give up */
2210 		while (!list_empty(&newstripes)) {
2211 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2212 			list_del(&nsh->lru);
2213 			kmem_cache_free(sc, nsh);
2214 		}
2215 		kmem_cache_destroy(sc);
2216 		mutex_unlock(&conf->cache_size_mutex);
2217 		return -ENOMEM;
2218 	}
2219 	/* Step 2 - Must use GFP_NOIO now.
2220 	 * OK, we have enough stripes, start collecting inactive
2221 	 * stripes and copying them over
2222 	 */
2223 	hash = 0;
2224 	cnt = 0;
2225 	list_for_each_entry(nsh, &newstripes, lru) {
2226 		lock_device_hash_lock(conf, hash);
2227 		wait_event_cmd(conf->wait_for_stripe,
2228 				    !list_empty(conf->inactive_list + hash),
2229 				    unlock_device_hash_lock(conf, hash),
2230 				    lock_device_hash_lock(conf, hash));
2231 		osh = get_free_stripe(conf, hash);
2232 		unlock_device_hash_lock(conf, hash);
2233 
2234 		for(i=0; i<conf->pool_size; i++) {
2235 			nsh->dev[i].page = osh->dev[i].page;
2236 			nsh->dev[i].orig_page = osh->dev[i].page;
2237 		}
2238 		nsh->hash_lock_index = hash;
2239 		kmem_cache_free(conf->slab_cache, osh);
2240 		cnt++;
2241 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2242 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2243 			hash++;
2244 			cnt = 0;
2245 		}
2246 	}
2247 	kmem_cache_destroy(conf->slab_cache);
2248 
2249 	/* Step 3.
2250 	 * At this point, we are holding all the stripes so the array
2251 	 * is completely stalled, so now is a good time to resize
2252 	 * conf->disks and the scribble region
2253 	 */
2254 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2255 	if (ndisks) {
2256 		for (i = 0; i < conf->pool_size; i++)
2257 			ndisks[i] = conf->disks[i];
2258 
2259 		for (i = conf->pool_size; i < newsize; i++) {
2260 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2261 			if (!ndisks[i].extra_page)
2262 				err = -ENOMEM;
2263 		}
2264 
2265 		if (err) {
2266 			for (i = conf->pool_size; i < newsize; i++)
2267 				if (ndisks[i].extra_page)
2268 					put_page(ndisks[i].extra_page);
2269 			kfree(ndisks);
2270 		} else {
2271 			kfree(conf->disks);
2272 			conf->disks = ndisks;
2273 		}
2274 	} else
2275 		err = -ENOMEM;
2276 
2277 	mutex_unlock(&conf->cache_size_mutex);
2278 	/* Step 4, return new stripes to service */
2279 	while(!list_empty(&newstripes)) {
2280 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2281 		list_del_init(&nsh->lru);
2282 
2283 		for (i=conf->raid_disks; i < newsize; i++)
2284 			if (nsh->dev[i].page == NULL) {
2285 				struct page *p = alloc_page(GFP_NOIO);
2286 				nsh->dev[i].page = p;
2287 				nsh->dev[i].orig_page = p;
2288 				if (!p)
2289 					err = -ENOMEM;
2290 			}
2291 		raid5_release_stripe(nsh);
2292 	}
2293 	/* critical section pass, GFP_NOIO no longer needed */
2294 
2295 	conf->slab_cache = sc;
2296 	conf->active_name = 1-conf->active_name;
2297 	if (!err)
2298 		conf->pool_size = newsize;
2299 	return err;
2300 }
2301 
2302 static int drop_one_stripe(struct r5conf *conf)
2303 {
2304 	struct stripe_head *sh;
2305 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2306 
2307 	spin_lock_irq(conf->hash_locks + hash);
2308 	sh = get_free_stripe(conf, hash);
2309 	spin_unlock_irq(conf->hash_locks + hash);
2310 	if (!sh)
2311 		return 0;
2312 	BUG_ON(atomic_read(&sh->count));
2313 	shrink_buffers(sh);
2314 	kmem_cache_free(conf->slab_cache, sh);
2315 	atomic_dec(&conf->active_stripes);
2316 	conf->max_nr_stripes--;
2317 	return 1;
2318 }
2319 
2320 static void shrink_stripes(struct r5conf *conf)
2321 {
2322 	while (conf->max_nr_stripes &&
2323 	       drop_one_stripe(conf))
2324 		;
2325 
2326 	kmem_cache_destroy(conf->slab_cache);
2327 	conf->slab_cache = NULL;
2328 }
2329 
2330 static void raid5_end_read_request(struct bio * bi)
2331 {
2332 	struct stripe_head *sh = bi->bi_private;
2333 	struct r5conf *conf = sh->raid_conf;
2334 	int disks = sh->disks, i;
2335 	char b[BDEVNAME_SIZE];
2336 	struct md_rdev *rdev = NULL;
2337 	sector_t s;
2338 
2339 	for (i=0 ; i<disks; i++)
2340 		if (bi == &sh->dev[i].req)
2341 			break;
2342 
2343 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2344 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2345 		bi->bi_error);
2346 	if (i == disks) {
2347 		bio_reset(bi);
2348 		BUG();
2349 		return;
2350 	}
2351 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2352 		/* If replacement finished while this request was outstanding,
2353 		 * 'replacement' might be NULL already.
2354 		 * In that case it moved down to 'rdev'.
2355 		 * rdev is not removed until all requests are finished.
2356 		 */
2357 		rdev = conf->disks[i].replacement;
2358 	if (!rdev)
2359 		rdev = conf->disks[i].rdev;
2360 
2361 	if (use_new_offset(conf, sh))
2362 		s = sh->sector + rdev->new_data_offset;
2363 	else
2364 		s = sh->sector + rdev->data_offset;
2365 	if (!bi->bi_error) {
2366 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2367 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2368 			/* Note that this cannot happen on a
2369 			 * replacement device.  We just fail those on
2370 			 * any error
2371 			 */
2372 			pr_info_ratelimited(
2373 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2374 				mdname(conf->mddev), STRIPE_SECTORS,
2375 				(unsigned long long)s,
2376 				bdevname(rdev->bdev, b));
2377 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2378 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2379 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2380 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2381 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2382 
2383 		if (atomic_read(&rdev->read_errors))
2384 			atomic_set(&rdev->read_errors, 0);
2385 	} else {
2386 		const char *bdn = bdevname(rdev->bdev, b);
2387 		int retry = 0;
2388 		int set_bad = 0;
2389 
2390 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2391 		atomic_inc(&rdev->read_errors);
2392 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2393 			pr_warn_ratelimited(
2394 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2395 				mdname(conf->mddev),
2396 				(unsigned long long)s,
2397 				bdn);
2398 		else if (conf->mddev->degraded >= conf->max_degraded) {
2399 			set_bad = 1;
2400 			pr_warn_ratelimited(
2401 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2402 				mdname(conf->mddev),
2403 				(unsigned long long)s,
2404 				bdn);
2405 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2406 			/* Oh, no!!! */
2407 			set_bad = 1;
2408 			pr_warn_ratelimited(
2409 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2410 				mdname(conf->mddev),
2411 				(unsigned long long)s,
2412 				bdn);
2413 		} else if (atomic_read(&rdev->read_errors)
2414 			 > conf->max_nr_stripes)
2415 			pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2416 			       mdname(conf->mddev), bdn);
2417 		else
2418 			retry = 1;
2419 		if (set_bad && test_bit(In_sync, &rdev->flags)
2420 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2421 			retry = 1;
2422 		if (retry)
2423 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2424 				set_bit(R5_ReadError, &sh->dev[i].flags);
2425 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2426 			} else
2427 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2428 		else {
2429 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2430 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2431 			if (!(set_bad
2432 			      && test_bit(In_sync, &rdev->flags)
2433 			      && rdev_set_badblocks(
2434 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2435 				md_error(conf->mddev, rdev);
2436 		}
2437 	}
2438 	rdev_dec_pending(rdev, conf->mddev);
2439 	bio_reset(bi);
2440 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2441 	set_bit(STRIPE_HANDLE, &sh->state);
2442 	raid5_release_stripe(sh);
2443 }
2444 
2445 static void raid5_end_write_request(struct bio *bi)
2446 {
2447 	struct stripe_head *sh = bi->bi_private;
2448 	struct r5conf *conf = sh->raid_conf;
2449 	int disks = sh->disks, i;
2450 	struct md_rdev *uninitialized_var(rdev);
2451 	sector_t first_bad;
2452 	int bad_sectors;
2453 	int replacement = 0;
2454 
2455 	for (i = 0 ; i < disks; i++) {
2456 		if (bi == &sh->dev[i].req) {
2457 			rdev = conf->disks[i].rdev;
2458 			break;
2459 		}
2460 		if (bi == &sh->dev[i].rreq) {
2461 			rdev = conf->disks[i].replacement;
2462 			if (rdev)
2463 				replacement = 1;
2464 			else
2465 				/* rdev was removed and 'replacement'
2466 				 * replaced it.  rdev is not removed
2467 				 * until all requests are finished.
2468 				 */
2469 				rdev = conf->disks[i].rdev;
2470 			break;
2471 		}
2472 	}
2473 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2474 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2475 		bi->bi_error);
2476 	if (i == disks) {
2477 		bio_reset(bi);
2478 		BUG();
2479 		return;
2480 	}
2481 
2482 	if (replacement) {
2483 		if (bi->bi_error)
2484 			md_error(conf->mddev, rdev);
2485 		else if (is_badblock(rdev, sh->sector,
2486 				     STRIPE_SECTORS,
2487 				     &first_bad, &bad_sectors))
2488 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2489 	} else {
2490 		if (bi->bi_error) {
2491 			set_bit(STRIPE_DEGRADED, &sh->state);
2492 			set_bit(WriteErrorSeen, &rdev->flags);
2493 			set_bit(R5_WriteError, &sh->dev[i].flags);
2494 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2495 				set_bit(MD_RECOVERY_NEEDED,
2496 					&rdev->mddev->recovery);
2497 		} else if (is_badblock(rdev, sh->sector,
2498 				       STRIPE_SECTORS,
2499 				       &first_bad, &bad_sectors)) {
2500 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2501 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2502 				/* That was a successful write so make
2503 				 * sure it looks like we already did
2504 				 * a re-write.
2505 				 */
2506 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2507 		}
2508 	}
2509 	rdev_dec_pending(rdev, conf->mddev);
2510 
2511 	if (sh->batch_head && bi->bi_error && !replacement)
2512 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2513 
2514 	bio_reset(bi);
2515 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2516 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2517 	set_bit(STRIPE_HANDLE, &sh->state);
2518 	raid5_release_stripe(sh);
2519 
2520 	if (sh->batch_head && sh != sh->batch_head)
2521 		raid5_release_stripe(sh->batch_head);
2522 }
2523 
2524 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2525 {
2526 	struct r5dev *dev = &sh->dev[i];
2527 
2528 	dev->flags = 0;
2529 	dev->sector = raid5_compute_blocknr(sh, i, previous);
2530 }
2531 
2532 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2533 {
2534 	char b[BDEVNAME_SIZE];
2535 	struct r5conf *conf = mddev->private;
2536 	unsigned long flags;
2537 	pr_debug("raid456: error called\n");
2538 
2539 	spin_lock_irqsave(&conf->device_lock, flags);
2540 	clear_bit(In_sync, &rdev->flags);
2541 	mddev->degraded = calc_degraded(conf);
2542 	spin_unlock_irqrestore(&conf->device_lock, flags);
2543 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2544 
2545 	set_bit(Blocked, &rdev->flags);
2546 	set_bit(Faulty, &rdev->flags);
2547 	set_mask_bits(&mddev->sb_flags, 0,
2548 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2549 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2550 		"md/raid:%s: Operation continuing on %d devices.\n",
2551 		mdname(mddev),
2552 		bdevname(rdev->bdev, b),
2553 		mdname(mddev),
2554 		conf->raid_disks - mddev->degraded);
2555 }
2556 
2557 /*
2558  * Input: a 'big' sector number,
2559  * Output: index of the data and parity disk, and the sector # in them.
2560  */
2561 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2562 			      int previous, int *dd_idx,
2563 			      struct stripe_head *sh)
2564 {
2565 	sector_t stripe, stripe2;
2566 	sector_t chunk_number;
2567 	unsigned int chunk_offset;
2568 	int pd_idx, qd_idx;
2569 	int ddf_layout = 0;
2570 	sector_t new_sector;
2571 	int algorithm = previous ? conf->prev_algo
2572 				 : conf->algorithm;
2573 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2574 					 : conf->chunk_sectors;
2575 	int raid_disks = previous ? conf->previous_raid_disks
2576 				  : conf->raid_disks;
2577 	int data_disks = raid_disks - conf->max_degraded;
2578 
2579 	/* First compute the information on this sector */
2580 
2581 	/*
2582 	 * Compute the chunk number and the sector offset inside the chunk
2583 	 */
2584 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2585 	chunk_number = r_sector;
2586 
2587 	/*
2588 	 * Compute the stripe number
2589 	 */
2590 	stripe = chunk_number;
2591 	*dd_idx = sector_div(stripe, data_disks);
2592 	stripe2 = stripe;
2593 	/*
2594 	 * Select the parity disk based on the user selected algorithm.
2595 	 */
2596 	pd_idx = qd_idx = -1;
2597 	switch(conf->level) {
2598 	case 4:
2599 		pd_idx = data_disks;
2600 		break;
2601 	case 5:
2602 		switch (algorithm) {
2603 		case ALGORITHM_LEFT_ASYMMETRIC:
2604 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2605 			if (*dd_idx >= pd_idx)
2606 				(*dd_idx)++;
2607 			break;
2608 		case ALGORITHM_RIGHT_ASYMMETRIC:
2609 			pd_idx = sector_div(stripe2, raid_disks);
2610 			if (*dd_idx >= pd_idx)
2611 				(*dd_idx)++;
2612 			break;
2613 		case ALGORITHM_LEFT_SYMMETRIC:
2614 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2615 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2616 			break;
2617 		case ALGORITHM_RIGHT_SYMMETRIC:
2618 			pd_idx = sector_div(stripe2, raid_disks);
2619 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2620 			break;
2621 		case ALGORITHM_PARITY_0:
2622 			pd_idx = 0;
2623 			(*dd_idx)++;
2624 			break;
2625 		case ALGORITHM_PARITY_N:
2626 			pd_idx = data_disks;
2627 			break;
2628 		default:
2629 			BUG();
2630 		}
2631 		break;
2632 	case 6:
2633 
2634 		switch (algorithm) {
2635 		case ALGORITHM_LEFT_ASYMMETRIC:
2636 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2637 			qd_idx = pd_idx + 1;
2638 			if (pd_idx == raid_disks-1) {
2639 				(*dd_idx)++;	/* Q D D D P */
2640 				qd_idx = 0;
2641 			} else if (*dd_idx >= pd_idx)
2642 				(*dd_idx) += 2; /* D D P Q D */
2643 			break;
2644 		case ALGORITHM_RIGHT_ASYMMETRIC:
2645 			pd_idx = sector_div(stripe2, raid_disks);
2646 			qd_idx = pd_idx + 1;
2647 			if (pd_idx == raid_disks-1) {
2648 				(*dd_idx)++;	/* Q D D D P */
2649 				qd_idx = 0;
2650 			} else if (*dd_idx >= pd_idx)
2651 				(*dd_idx) += 2; /* D D P Q D */
2652 			break;
2653 		case ALGORITHM_LEFT_SYMMETRIC:
2654 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2655 			qd_idx = (pd_idx + 1) % raid_disks;
2656 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2657 			break;
2658 		case ALGORITHM_RIGHT_SYMMETRIC:
2659 			pd_idx = sector_div(stripe2, raid_disks);
2660 			qd_idx = (pd_idx + 1) % raid_disks;
2661 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2662 			break;
2663 
2664 		case ALGORITHM_PARITY_0:
2665 			pd_idx = 0;
2666 			qd_idx = 1;
2667 			(*dd_idx) += 2;
2668 			break;
2669 		case ALGORITHM_PARITY_N:
2670 			pd_idx = data_disks;
2671 			qd_idx = data_disks + 1;
2672 			break;
2673 
2674 		case ALGORITHM_ROTATING_ZERO_RESTART:
2675 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2676 			 * of blocks for computing Q is different.
2677 			 */
2678 			pd_idx = sector_div(stripe2, raid_disks);
2679 			qd_idx = pd_idx + 1;
2680 			if (pd_idx == raid_disks-1) {
2681 				(*dd_idx)++;	/* Q D D D P */
2682 				qd_idx = 0;
2683 			} else if (*dd_idx >= pd_idx)
2684 				(*dd_idx) += 2; /* D D P Q D */
2685 			ddf_layout = 1;
2686 			break;
2687 
2688 		case ALGORITHM_ROTATING_N_RESTART:
2689 			/* Same a left_asymmetric, by first stripe is
2690 			 * D D D P Q  rather than
2691 			 * Q D D D P
2692 			 */
2693 			stripe2 += 1;
2694 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2695 			qd_idx = pd_idx + 1;
2696 			if (pd_idx == raid_disks-1) {
2697 				(*dd_idx)++;	/* Q D D D P */
2698 				qd_idx = 0;
2699 			} else if (*dd_idx >= pd_idx)
2700 				(*dd_idx) += 2; /* D D P Q D */
2701 			ddf_layout = 1;
2702 			break;
2703 
2704 		case ALGORITHM_ROTATING_N_CONTINUE:
2705 			/* Same as left_symmetric but Q is before P */
2706 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2707 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2708 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2709 			ddf_layout = 1;
2710 			break;
2711 
2712 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2713 			/* RAID5 left_asymmetric, with Q on last device */
2714 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2715 			if (*dd_idx >= pd_idx)
2716 				(*dd_idx)++;
2717 			qd_idx = raid_disks - 1;
2718 			break;
2719 
2720 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2721 			pd_idx = sector_div(stripe2, raid_disks-1);
2722 			if (*dd_idx >= pd_idx)
2723 				(*dd_idx)++;
2724 			qd_idx = raid_disks - 1;
2725 			break;
2726 
2727 		case ALGORITHM_LEFT_SYMMETRIC_6:
2728 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2729 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2730 			qd_idx = raid_disks - 1;
2731 			break;
2732 
2733 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2734 			pd_idx = sector_div(stripe2, raid_disks-1);
2735 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2736 			qd_idx = raid_disks - 1;
2737 			break;
2738 
2739 		case ALGORITHM_PARITY_0_6:
2740 			pd_idx = 0;
2741 			(*dd_idx)++;
2742 			qd_idx = raid_disks - 1;
2743 			break;
2744 
2745 		default:
2746 			BUG();
2747 		}
2748 		break;
2749 	}
2750 
2751 	if (sh) {
2752 		sh->pd_idx = pd_idx;
2753 		sh->qd_idx = qd_idx;
2754 		sh->ddf_layout = ddf_layout;
2755 	}
2756 	/*
2757 	 * Finally, compute the new sector number
2758 	 */
2759 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2760 	return new_sector;
2761 }
2762 
2763 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2764 {
2765 	struct r5conf *conf = sh->raid_conf;
2766 	int raid_disks = sh->disks;
2767 	int data_disks = raid_disks - conf->max_degraded;
2768 	sector_t new_sector = sh->sector, check;
2769 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2770 					 : conf->chunk_sectors;
2771 	int algorithm = previous ? conf->prev_algo
2772 				 : conf->algorithm;
2773 	sector_t stripe;
2774 	int chunk_offset;
2775 	sector_t chunk_number;
2776 	int dummy1, dd_idx = i;
2777 	sector_t r_sector;
2778 	struct stripe_head sh2;
2779 
2780 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2781 	stripe = new_sector;
2782 
2783 	if (i == sh->pd_idx)
2784 		return 0;
2785 	switch(conf->level) {
2786 	case 4: break;
2787 	case 5:
2788 		switch (algorithm) {
2789 		case ALGORITHM_LEFT_ASYMMETRIC:
2790 		case ALGORITHM_RIGHT_ASYMMETRIC:
2791 			if (i > sh->pd_idx)
2792 				i--;
2793 			break;
2794 		case ALGORITHM_LEFT_SYMMETRIC:
2795 		case ALGORITHM_RIGHT_SYMMETRIC:
2796 			if (i < sh->pd_idx)
2797 				i += raid_disks;
2798 			i -= (sh->pd_idx + 1);
2799 			break;
2800 		case ALGORITHM_PARITY_0:
2801 			i -= 1;
2802 			break;
2803 		case ALGORITHM_PARITY_N:
2804 			break;
2805 		default:
2806 			BUG();
2807 		}
2808 		break;
2809 	case 6:
2810 		if (i == sh->qd_idx)
2811 			return 0; /* It is the Q disk */
2812 		switch (algorithm) {
2813 		case ALGORITHM_LEFT_ASYMMETRIC:
2814 		case ALGORITHM_RIGHT_ASYMMETRIC:
2815 		case ALGORITHM_ROTATING_ZERO_RESTART:
2816 		case ALGORITHM_ROTATING_N_RESTART:
2817 			if (sh->pd_idx == raid_disks-1)
2818 				i--;	/* Q D D D P */
2819 			else if (i > sh->pd_idx)
2820 				i -= 2; /* D D P Q D */
2821 			break;
2822 		case ALGORITHM_LEFT_SYMMETRIC:
2823 		case ALGORITHM_RIGHT_SYMMETRIC:
2824 			if (sh->pd_idx == raid_disks-1)
2825 				i--; /* Q D D D P */
2826 			else {
2827 				/* D D P Q D */
2828 				if (i < sh->pd_idx)
2829 					i += raid_disks;
2830 				i -= (sh->pd_idx + 2);
2831 			}
2832 			break;
2833 		case ALGORITHM_PARITY_0:
2834 			i -= 2;
2835 			break;
2836 		case ALGORITHM_PARITY_N:
2837 			break;
2838 		case ALGORITHM_ROTATING_N_CONTINUE:
2839 			/* Like left_symmetric, but P is before Q */
2840 			if (sh->pd_idx == 0)
2841 				i--;	/* P D D D Q */
2842 			else {
2843 				/* D D Q P D */
2844 				if (i < sh->pd_idx)
2845 					i += raid_disks;
2846 				i -= (sh->pd_idx + 1);
2847 			}
2848 			break;
2849 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2850 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2851 			if (i > sh->pd_idx)
2852 				i--;
2853 			break;
2854 		case ALGORITHM_LEFT_SYMMETRIC_6:
2855 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2856 			if (i < sh->pd_idx)
2857 				i += data_disks + 1;
2858 			i -= (sh->pd_idx + 1);
2859 			break;
2860 		case ALGORITHM_PARITY_0_6:
2861 			i -= 1;
2862 			break;
2863 		default:
2864 			BUG();
2865 		}
2866 		break;
2867 	}
2868 
2869 	chunk_number = stripe * data_disks + i;
2870 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2871 
2872 	check = raid5_compute_sector(conf, r_sector,
2873 				     previous, &dummy1, &sh2);
2874 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2875 		|| sh2.qd_idx != sh->qd_idx) {
2876 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
2877 			mdname(conf->mddev));
2878 		return 0;
2879 	}
2880 	return r_sector;
2881 }
2882 
2883 static void
2884 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2885 			 int rcw, int expand)
2886 {
2887 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2888 	struct r5conf *conf = sh->raid_conf;
2889 	int level = conf->level;
2890 
2891 	if (rcw) {
2892 		/*
2893 		 * In some cases, handle_stripe_dirtying initially decided to
2894 		 * run rmw and allocates extra page for prexor. However, rcw is
2895 		 * cheaper later on. We need to free the extra page now,
2896 		 * because we won't be able to do that in ops_complete_prexor().
2897 		 */
2898 		r5c_release_extra_page(sh);
2899 
2900 		for (i = disks; i--; ) {
2901 			struct r5dev *dev = &sh->dev[i];
2902 
2903 			if (dev->towrite) {
2904 				set_bit(R5_LOCKED, &dev->flags);
2905 				set_bit(R5_Wantdrain, &dev->flags);
2906 				if (!expand)
2907 					clear_bit(R5_UPTODATE, &dev->flags);
2908 				s->locked++;
2909 			} else if (test_bit(R5_InJournal, &dev->flags)) {
2910 				set_bit(R5_LOCKED, &dev->flags);
2911 				s->locked++;
2912 			}
2913 		}
2914 		/* if we are not expanding this is a proper write request, and
2915 		 * there will be bios with new data to be drained into the
2916 		 * stripe cache
2917 		 */
2918 		if (!expand) {
2919 			if (!s->locked)
2920 				/* False alarm, nothing to do */
2921 				return;
2922 			sh->reconstruct_state = reconstruct_state_drain_run;
2923 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2924 		} else
2925 			sh->reconstruct_state = reconstruct_state_run;
2926 
2927 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2928 
2929 		if (s->locked + conf->max_degraded == disks)
2930 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2931 				atomic_inc(&conf->pending_full_writes);
2932 	} else {
2933 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2934 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2935 		BUG_ON(level == 6 &&
2936 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2937 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2938 
2939 		for (i = disks; i--; ) {
2940 			struct r5dev *dev = &sh->dev[i];
2941 			if (i == pd_idx || i == qd_idx)
2942 				continue;
2943 
2944 			if (dev->towrite &&
2945 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2946 			     test_bit(R5_Wantcompute, &dev->flags))) {
2947 				set_bit(R5_Wantdrain, &dev->flags);
2948 				set_bit(R5_LOCKED, &dev->flags);
2949 				clear_bit(R5_UPTODATE, &dev->flags);
2950 				s->locked++;
2951 			} else if (test_bit(R5_InJournal, &dev->flags)) {
2952 				set_bit(R5_LOCKED, &dev->flags);
2953 				s->locked++;
2954 			}
2955 		}
2956 		if (!s->locked)
2957 			/* False alarm - nothing to do */
2958 			return;
2959 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2960 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2961 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2962 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2963 	}
2964 
2965 	/* keep the parity disk(s) locked while asynchronous operations
2966 	 * are in flight
2967 	 */
2968 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2969 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2970 	s->locked++;
2971 
2972 	if (level == 6) {
2973 		int qd_idx = sh->qd_idx;
2974 		struct r5dev *dev = &sh->dev[qd_idx];
2975 
2976 		set_bit(R5_LOCKED, &dev->flags);
2977 		clear_bit(R5_UPTODATE, &dev->flags);
2978 		s->locked++;
2979 	}
2980 
2981 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2982 		__func__, (unsigned long long)sh->sector,
2983 		s->locked, s->ops_request);
2984 }
2985 
2986 /*
2987  * Each stripe/dev can have one or more bion attached.
2988  * toread/towrite point to the first in a chain.
2989  * The bi_next chain must be in order.
2990  */
2991 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2992 			  int forwrite, int previous)
2993 {
2994 	struct bio **bip;
2995 	struct r5conf *conf = sh->raid_conf;
2996 	int firstwrite=0;
2997 
2998 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2999 		(unsigned long long)bi->bi_iter.bi_sector,
3000 		(unsigned long long)sh->sector);
3001 
3002 	/*
3003 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
3004 	 * reference count to avoid race. The reference count should already be
3005 	 * increased before this function is called (for example, in
3006 	 * raid5_make_request()), so other bio sharing this stripe will not free the
3007 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
3008 	 * protect it.
3009 	 */
3010 	spin_lock_irq(&sh->stripe_lock);
3011 	/* Don't allow new IO added to stripes in batch list */
3012 	if (sh->batch_head)
3013 		goto overlap;
3014 	if (forwrite) {
3015 		bip = &sh->dev[dd_idx].towrite;
3016 		if (*bip == NULL)
3017 			firstwrite = 1;
3018 	} else
3019 		bip = &sh->dev[dd_idx].toread;
3020 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3021 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3022 			goto overlap;
3023 		bip = & (*bip)->bi_next;
3024 	}
3025 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3026 		goto overlap;
3027 
3028 	if (!forwrite || previous)
3029 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3030 
3031 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3032 	if (*bip)
3033 		bi->bi_next = *bip;
3034 	*bip = bi;
3035 	raid5_inc_bi_active_stripes(bi);
3036 
3037 	if (forwrite) {
3038 		/* check if page is covered */
3039 		sector_t sector = sh->dev[dd_idx].sector;
3040 		for (bi=sh->dev[dd_idx].towrite;
3041 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3042 			     bi && bi->bi_iter.bi_sector <= sector;
3043 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3044 			if (bio_end_sector(bi) >= sector)
3045 				sector = bio_end_sector(bi);
3046 		}
3047 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3048 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3049 				sh->overwrite_disks++;
3050 	}
3051 
3052 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3053 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3054 		(unsigned long long)sh->sector, dd_idx);
3055 
3056 	if (conf->mddev->bitmap && firstwrite) {
3057 		/* Cannot hold spinlock over bitmap_startwrite,
3058 		 * but must ensure this isn't added to a batch until
3059 		 * we have added to the bitmap and set bm_seq.
3060 		 * So set STRIPE_BITMAP_PENDING to prevent
3061 		 * batching.
3062 		 * If multiple add_stripe_bio() calls race here they
3063 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3064 		 * to complete "bitmap_startwrite" gets to set
3065 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3066 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3067 		 * any more.
3068 		 */
3069 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3070 		spin_unlock_irq(&sh->stripe_lock);
3071 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3072 				  STRIPE_SECTORS, 0);
3073 		spin_lock_irq(&sh->stripe_lock);
3074 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3075 		if (!sh->batch_head) {
3076 			sh->bm_seq = conf->seq_flush+1;
3077 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3078 		}
3079 	}
3080 	spin_unlock_irq(&sh->stripe_lock);
3081 
3082 	if (stripe_can_batch(sh))
3083 		stripe_add_to_batch_list(conf, sh);
3084 	return 1;
3085 
3086  overlap:
3087 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3088 	spin_unlock_irq(&sh->stripe_lock);
3089 	return 0;
3090 }
3091 
3092 static void end_reshape(struct r5conf *conf);
3093 
3094 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3095 			    struct stripe_head *sh)
3096 {
3097 	int sectors_per_chunk =
3098 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3099 	int dd_idx;
3100 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3101 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3102 
3103 	raid5_compute_sector(conf,
3104 			     stripe * (disks - conf->max_degraded)
3105 			     *sectors_per_chunk + chunk_offset,
3106 			     previous,
3107 			     &dd_idx, sh);
3108 }
3109 
3110 static void
3111 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3112 				struct stripe_head_state *s, int disks,
3113 				struct bio_list *return_bi)
3114 {
3115 	int i;
3116 	BUG_ON(sh->batch_head);
3117 	for (i = disks; i--; ) {
3118 		struct bio *bi;
3119 		int bitmap_end = 0;
3120 
3121 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3122 			struct md_rdev *rdev;
3123 			rcu_read_lock();
3124 			rdev = rcu_dereference(conf->disks[i].rdev);
3125 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3126 			    !test_bit(Faulty, &rdev->flags))
3127 				atomic_inc(&rdev->nr_pending);
3128 			else
3129 				rdev = NULL;
3130 			rcu_read_unlock();
3131 			if (rdev) {
3132 				if (!rdev_set_badblocks(
3133 					    rdev,
3134 					    sh->sector,
3135 					    STRIPE_SECTORS, 0))
3136 					md_error(conf->mddev, rdev);
3137 				rdev_dec_pending(rdev, conf->mddev);
3138 			}
3139 		}
3140 		spin_lock_irq(&sh->stripe_lock);
3141 		/* fail all writes first */
3142 		bi = sh->dev[i].towrite;
3143 		sh->dev[i].towrite = NULL;
3144 		sh->overwrite_disks = 0;
3145 		spin_unlock_irq(&sh->stripe_lock);
3146 		if (bi)
3147 			bitmap_end = 1;
3148 
3149 		r5l_stripe_write_finished(sh);
3150 
3151 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3152 			wake_up(&conf->wait_for_overlap);
3153 
3154 		while (bi && bi->bi_iter.bi_sector <
3155 			sh->dev[i].sector + STRIPE_SECTORS) {
3156 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3157 
3158 			bi->bi_error = -EIO;
3159 			if (!raid5_dec_bi_active_stripes(bi)) {
3160 				md_write_end(conf->mddev);
3161 				bio_list_add(return_bi, bi);
3162 			}
3163 			bi = nextbi;
3164 		}
3165 		if (bitmap_end)
3166 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3167 				STRIPE_SECTORS, 0, 0);
3168 		bitmap_end = 0;
3169 		/* and fail all 'written' */
3170 		bi = sh->dev[i].written;
3171 		sh->dev[i].written = NULL;
3172 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3173 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3174 			sh->dev[i].page = sh->dev[i].orig_page;
3175 		}
3176 
3177 		if (bi) bitmap_end = 1;
3178 		while (bi && bi->bi_iter.bi_sector <
3179 		       sh->dev[i].sector + STRIPE_SECTORS) {
3180 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3181 
3182 			bi->bi_error = -EIO;
3183 			if (!raid5_dec_bi_active_stripes(bi)) {
3184 				md_write_end(conf->mddev);
3185 				bio_list_add(return_bi, bi);
3186 			}
3187 			bi = bi2;
3188 		}
3189 
3190 		/* fail any reads if this device is non-operational and
3191 		 * the data has not reached the cache yet.
3192 		 */
3193 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3194 		    s->failed > conf->max_degraded &&
3195 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3196 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3197 			spin_lock_irq(&sh->stripe_lock);
3198 			bi = sh->dev[i].toread;
3199 			sh->dev[i].toread = NULL;
3200 			spin_unlock_irq(&sh->stripe_lock);
3201 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3202 				wake_up(&conf->wait_for_overlap);
3203 			if (bi)
3204 				s->to_read--;
3205 			while (bi && bi->bi_iter.bi_sector <
3206 			       sh->dev[i].sector + STRIPE_SECTORS) {
3207 				struct bio *nextbi =
3208 					r5_next_bio(bi, sh->dev[i].sector);
3209 
3210 				bi->bi_error = -EIO;
3211 				if (!raid5_dec_bi_active_stripes(bi))
3212 					bio_list_add(return_bi, bi);
3213 				bi = nextbi;
3214 			}
3215 		}
3216 		if (bitmap_end)
3217 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3218 					STRIPE_SECTORS, 0, 0);
3219 		/* If we were in the middle of a write the parity block might
3220 		 * still be locked - so just clear all R5_LOCKED flags
3221 		 */
3222 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3223 	}
3224 	s->to_write = 0;
3225 	s->written = 0;
3226 
3227 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3228 		if (atomic_dec_and_test(&conf->pending_full_writes))
3229 			md_wakeup_thread(conf->mddev->thread);
3230 }
3231 
3232 static void
3233 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3234 		   struct stripe_head_state *s)
3235 {
3236 	int abort = 0;
3237 	int i;
3238 
3239 	BUG_ON(sh->batch_head);
3240 	clear_bit(STRIPE_SYNCING, &sh->state);
3241 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3242 		wake_up(&conf->wait_for_overlap);
3243 	s->syncing = 0;
3244 	s->replacing = 0;
3245 	/* There is nothing more to do for sync/check/repair.
3246 	 * Don't even need to abort as that is handled elsewhere
3247 	 * if needed, and not always wanted e.g. if there is a known
3248 	 * bad block here.
3249 	 * For recover/replace we need to record a bad block on all
3250 	 * non-sync devices, or abort the recovery
3251 	 */
3252 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3253 		/* During recovery devices cannot be removed, so
3254 		 * locking and refcounting of rdevs is not needed
3255 		 */
3256 		rcu_read_lock();
3257 		for (i = 0; i < conf->raid_disks; i++) {
3258 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3259 			if (rdev
3260 			    && !test_bit(Faulty, &rdev->flags)
3261 			    && !test_bit(In_sync, &rdev->flags)
3262 			    && !rdev_set_badblocks(rdev, sh->sector,
3263 						   STRIPE_SECTORS, 0))
3264 				abort = 1;
3265 			rdev = rcu_dereference(conf->disks[i].replacement);
3266 			if (rdev
3267 			    && !test_bit(Faulty, &rdev->flags)
3268 			    && !test_bit(In_sync, &rdev->flags)
3269 			    && !rdev_set_badblocks(rdev, sh->sector,
3270 						   STRIPE_SECTORS, 0))
3271 				abort = 1;
3272 		}
3273 		rcu_read_unlock();
3274 		if (abort)
3275 			conf->recovery_disabled =
3276 				conf->mddev->recovery_disabled;
3277 	}
3278 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3279 }
3280 
3281 static int want_replace(struct stripe_head *sh, int disk_idx)
3282 {
3283 	struct md_rdev *rdev;
3284 	int rv = 0;
3285 
3286 	rcu_read_lock();
3287 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3288 	if (rdev
3289 	    && !test_bit(Faulty, &rdev->flags)
3290 	    && !test_bit(In_sync, &rdev->flags)
3291 	    && (rdev->recovery_offset <= sh->sector
3292 		|| rdev->mddev->recovery_cp <= sh->sector))
3293 		rv = 1;
3294 	rcu_read_unlock();
3295 	return rv;
3296 }
3297 
3298 /* fetch_block - checks the given member device to see if its data needs
3299  * to be read or computed to satisfy a request.
3300  *
3301  * Returns 1 when no more member devices need to be checked, otherwise returns
3302  * 0 to tell the loop in handle_stripe_fill to continue
3303  */
3304 
3305 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3306 			   int disk_idx, int disks)
3307 {
3308 	struct r5dev *dev = &sh->dev[disk_idx];
3309 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3310 				  &sh->dev[s->failed_num[1]] };
3311 	int i;
3312 
3313 
3314 	if (test_bit(R5_LOCKED, &dev->flags) ||
3315 	    test_bit(R5_UPTODATE, &dev->flags))
3316 		/* No point reading this as we already have it or have
3317 		 * decided to get it.
3318 		 */
3319 		return 0;
3320 
3321 	if (dev->toread ||
3322 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3323 		/* We need this block to directly satisfy a request */
3324 		return 1;
3325 
3326 	if (s->syncing || s->expanding ||
3327 	    (s->replacing && want_replace(sh, disk_idx)))
3328 		/* When syncing, or expanding we read everything.
3329 		 * When replacing, we need the replaced block.
3330 		 */
3331 		return 1;
3332 
3333 	if ((s->failed >= 1 && fdev[0]->toread) ||
3334 	    (s->failed >= 2 && fdev[1]->toread))
3335 		/* If we want to read from a failed device, then
3336 		 * we need to actually read every other device.
3337 		 */
3338 		return 1;
3339 
3340 	/* Sometimes neither read-modify-write nor reconstruct-write
3341 	 * cycles can work.  In those cases we read every block we
3342 	 * can.  Then the parity-update is certain to have enough to
3343 	 * work with.
3344 	 * This can only be a problem when we need to write something,
3345 	 * and some device has failed.  If either of those tests
3346 	 * fail we need look no further.
3347 	 */
3348 	if (!s->failed || !s->to_write)
3349 		return 0;
3350 
3351 	if (test_bit(R5_Insync, &dev->flags) &&
3352 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3353 		/* Pre-reads at not permitted until after short delay
3354 		 * to gather multiple requests.  However if this
3355 		 * device is no Insync, the block could only be be computed
3356 		 * and there is no need to delay that.
3357 		 */
3358 		return 0;
3359 
3360 	for (i = 0; i < s->failed && i < 2; i++) {
3361 		if (fdev[i]->towrite &&
3362 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3363 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3364 			/* If we have a partial write to a failed
3365 			 * device, then we will need to reconstruct
3366 			 * the content of that device, so all other
3367 			 * devices must be read.
3368 			 */
3369 			return 1;
3370 	}
3371 
3372 	/* If we are forced to do a reconstruct-write, either because
3373 	 * the current RAID6 implementation only supports that, or
3374 	 * or because parity cannot be trusted and we are currently
3375 	 * recovering it, there is extra need to be careful.
3376 	 * If one of the devices that we would need to read, because
3377 	 * it is not being overwritten (and maybe not written at all)
3378 	 * is missing/faulty, then we need to read everything we can.
3379 	 */
3380 	if (sh->raid_conf->level != 6 &&
3381 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3382 		/* reconstruct-write isn't being forced */
3383 		return 0;
3384 	for (i = 0; i < s->failed && i < 2; i++) {
3385 		if (s->failed_num[i] != sh->pd_idx &&
3386 		    s->failed_num[i] != sh->qd_idx &&
3387 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3388 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3389 			return 1;
3390 	}
3391 
3392 	return 0;
3393 }
3394 
3395 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3396 		       int disk_idx, int disks)
3397 {
3398 	struct r5dev *dev = &sh->dev[disk_idx];
3399 
3400 	/* is the data in this block needed, and can we get it? */
3401 	if (need_this_block(sh, s, disk_idx, disks)) {
3402 		/* we would like to get this block, possibly by computing it,
3403 		 * otherwise read it if the backing disk is insync
3404 		 */
3405 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3406 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3407 		BUG_ON(sh->batch_head);
3408 		if ((s->uptodate == disks - 1) &&
3409 		    (s->failed && (disk_idx == s->failed_num[0] ||
3410 				   disk_idx == s->failed_num[1]))) {
3411 			/* have disk failed, and we're requested to fetch it;
3412 			 * do compute it
3413 			 */
3414 			pr_debug("Computing stripe %llu block %d\n",
3415 			       (unsigned long long)sh->sector, disk_idx);
3416 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3417 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3418 			set_bit(R5_Wantcompute, &dev->flags);
3419 			sh->ops.target = disk_idx;
3420 			sh->ops.target2 = -1; /* no 2nd target */
3421 			s->req_compute = 1;
3422 			/* Careful: from this point on 'uptodate' is in the eye
3423 			 * of raid_run_ops which services 'compute' operations
3424 			 * before writes. R5_Wantcompute flags a block that will
3425 			 * be R5_UPTODATE by the time it is needed for a
3426 			 * subsequent operation.
3427 			 */
3428 			s->uptodate++;
3429 			return 1;
3430 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3431 			/* Computing 2-failure is *very* expensive; only
3432 			 * do it if failed >= 2
3433 			 */
3434 			int other;
3435 			for (other = disks; other--; ) {
3436 				if (other == disk_idx)
3437 					continue;
3438 				if (!test_bit(R5_UPTODATE,
3439 				      &sh->dev[other].flags))
3440 					break;
3441 			}
3442 			BUG_ON(other < 0);
3443 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3444 			       (unsigned long long)sh->sector,
3445 			       disk_idx, other);
3446 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3447 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3448 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3449 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3450 			sh->ops.target = disk_idx;
3451 			sh->ops.target2 = other;
3452 			s->uptodate += 2;
3453 			s->req_compute = 1;
3454 			return 1;
3455 		} else if (test_bit(R5_Insync, &dev->flags)) {
3456 			set_bit(R5_LOCKED, &dev->flags);
3457 			set_bit(R5_Wantread, &dev->flags);
3458 			s->locked++;
3459 			pr_debug("Reading block %d (sync=%d)\n",
3460 				disk_idx, s->syncing);
3461 		}
3462 	}
3463 
3464 	return 0;
3465 }
3466 
3467 /**
3468  * handle_stripe_fill - read or compute data to satisfy pending requests.
3469  */
3470 static void handle_stripe_fill(struct stripe_head *sh,
3471 			       struct stripe_head_state *s,
3472 			       int disks)
3473 {
3474 	int i;
3475 
3476 	/* look for blocks to read/compute, skip this if a compute
3477 	 * is already in flight, or if the stripe contents are in the
3478 	 * midst of changing due to a write
3479 	 */
3480 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3481 	    !sh->reconstruct_state)
3482 		for (i = disks; i--; )
3483 			if (fetch_block(sh, s, i, disks))
3484 				break;
3485 	set_bit(STRIPE_HANDLE, &sh->state);
3486 }
3487 
3488 static void break_stripe_batch_list(struct stripe_head *head_sh,
3489 				    unsigned long handle_flags);
3490 /* handle_stripe_clean_event
3491  * any written block on an uptodate or failed drive can be returned.
3492  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3493  * never LOCKED, so we don't need to test 'failed' directly.
3494  */
3495 static void handle_stripe_clean_event(struct r5conf *conf,
3496 	struct stripe_head *sh, int disks, struct bio_list *return_bi)
3497 {
3498 	int i;
3499 	struct r5dev *dev;
3500 	int discard_pending = 0;
3501 	struct stripe_head *head_sh = sh;
3502 	bool do_endio = false;
3503 
3504 	for (i = disks; i--; )
3505 		if (sh->dev[i].written) {
3506 			dev = &sh->dev[i];
3507 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3508 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3509 			     test_bit(R5_Discard, &dev->flags) ||
3510 			     test_bit(R5_SkipCopy, &dev->flags))) {
3511 				/* We can return any write requests */
3512 				struct bio *wbi, *wbi2;
3513 				pr_debug("Return write for disc %d\n", i);
3514 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3515 					clear_bit(R5_UPTODATE, &dev->flags);
3516 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3517 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3518 				}
3519 				do_endio = true;
3520 
3521 returnbi:
3522 				dev->page = dev->orig_page;
3523 				wbi = dev->written;
3524 				dev->written = NULL;
3525 				while (wbi && wbi->bi_iter.bi_sector <
3526 					dev->sector + STRIPE_SECTORS) {
3527 					wbi2 = r5_next_bio(wbi, dev->sector);
3528 					if (!raid5_dec_bi_active_stripes(wbi)) {
3529 						md_write_end(conf->mddev);
3530 						bio_list_add(return_bi, wbi);
3531 					}
3532 					wbi = wbi2;
3533 				}
3534 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3535 						STRIPE_SECTORS,
3536 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3537 						0);
3538 				if (head_sh->batch_head) {
3539 					sh = list_first_entry(&sh->batch_list,
3540 							      struct stripe_head,
3541 							      batch_list);
3542 					if (sh != head_sh) {
3543 						dev = &sh->dev[i];
3544 						goto returnbi;
3545 					}
3546 				}
3547 				sh = head_sh;
3548 				dev = &sh->dev[i];
3549 			} else if (test_bit(R5_Discard, &dev->flags))
3550 				discard_pending = 1;
3551 		}
3552 
3553 	r5l_stripe_write_finished(sh);
3554 
3555 	if (!discard_pending &&
3556 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3557 		int hash;
3558 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3559 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3560 		if (sh->qd_idx >= 0) {
3561 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3562 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3563 		}
3564 		/* now that discard is done we can proceed with any sync */
3565 		clear_bit(STRIPE_DISCARD, &sh->state);
3566 		/*
3567 		 * SCSI discard will change some bio fields and the stripe has
3568 		 * no updated data, so remove it from hash list and the stripe
3569 		 * will be reinitialized
3570 		 */
3571 unhash:
3572 		hash = sh->hash_lock_index;
3573 		spin_lock_irq(conf->hash_locks + hash);
3574 		remove_hash(sh);
3575 		spin_unlock_irq(conf->hash_locks + hash);
3576 		if (head_sh->batch_head) {
3577 			sh = list_first_entry(&sh->batch_list,
3578 					      struct stripe_head, batch_list);
3579 			if (sh != head_sh)
3580 					goto unhash;
3581 		}
3582 		sh = head_sh;
3583 
3584 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3585 			set_bit(STRIPE_HANDLE, &sh->state);
3586 
3587 	}
3588 
3589 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3590 		if (atomic_dec_and_test(&conf->pending_full_writes))
3591 			md_wakeup_thread(conf->mddev->thread);
3592 
3593 	if (head_sh->batch_head && do_endio)
3594 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3595 }
3596 
3597 static int handle_stripe_dirtying(struct r5conf *conf,
3598 				  struct stripe_head *sh,
3599 				  struct stripe_head_state *s,
3600 				  int disks)
3601 {
3602 	int rmw = 0, rcw = 0, i;
3603 	sector_t recovery_cp = conf->mddev->recovery_cp;
3604 
3605 	/* Check whether resync is now happening or should start.
3606 	 * If yes, then the array is dirty (after unclean shutdown or
3607 	 * initial creation), so parity in some stripes might be inconsistent.
3608 	 * In this case, we need to always do reconstruct-write, to ensure
3609 	 * that in case of drive failure or read-error correction, we
3610 	 * generate correct data from the parity.
3611 	 */
3612 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3613 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3614 	     s->failed == 0)) {
3615 		/* Calculate the real rcw later - for now make it
3616 		 * look like rcw is cheaper
3617 		 */
3618 		rcw = 1; rmw = 2;
3619 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3620 			 conf->rmw_level, (unsigned long long)recovery_cp,
3621 			 (unsigned long long)sh->sector);
3622 	} else for (i = disks; i--; ) {
3623 		/* would I have to read this buffer for read_modify_write */
3624 		struct r5dev *dev = &sh->dev[i];
3625 		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx ||
3626 		     test_bit(R5_InJournal, &dev->flags)) &&
3627 		    !test_bit(R5_LOCKED, &dev->flags) &&
3628 		    !((test_bit(R5_UPTODATE, &dev->flags) &&
3629 		       (!test_bit(R5_InJournal, &dev->flags) ||
3630 			dev->page != dev->orig_page)) ||
3631 		      test_bit(R5_Wantcompute, &dev->flags))) {
3632 			if (test_bit(R5_Insync, &dev->flags))
3633 				rmw++;
3634 			else
3635 				rmw += 2*disks;  /* cannot read it */
3636 		}
3637 		/* Would I have to read this buffer for reconstruct_write */
3638 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3639 		    i != sh->pd_idx && i != sh->qd_idx &&
3640 		    !test_bit(R5_LOCKED, &dev->flags) &&
3641 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3642 		      test_bit(R5_InJournal, &dev->flags) ||
3643 		      test_bit(R5_Wantcompute, &dev->flags))) {
3644 			if (test_bit(R5_Insync, &dev->flags))
3645 				rcw++;
3646 			else
3647 				rcw += 2*disks;
3648 		}
3649 	}
3650 
3651 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3652 		(unsigned long long)sh->sector, rmw, rcw);
3653 	set_bit(STRIPE_HANDLE, &sh->state);
3654 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3655 		/* prefer read-modify-write, but need to get some data */
3656 		if (conf->mddev->queue)
3657 			blk_add_trace_msg(conf->mddev->queue,
3658 					  "raid5 rmw %llu %d",
3659 					  (unsigned long long)sh->sector, rmw);
3660 		for (i = disks; i--; ) {
3661 			struct r5dev *dev = &sh->dev[i];
3662 			if (test_bit(R5_InJournal, &dev->flags) &&
3663 			    dev->page == dev->orig_page &&
3664 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3665 				/* alloc page for prexor */
3666 				struct page *p = alloc_page(GFP_NOIO);
3667 
3668 				if (p) {
3669 					dev->orig_page = p;
3670 					continue;
3671 				}
3672 
3673 				/*
3674 				 * alloc_page() failed, try use
3675 				 * disk_info->extra_page
3676 				 */
3677 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3678 						      &conf->cache_state)) {
3679 					r5c_use_extra_page(sh);
3680 					break;
3681 				}
3682 
3683 				/* extra_page in use, add to delayed_list */
3684 				set_bit(STRIPE_DELAYED, &sh->state);
3685 				s->waiting_extra_page = 1;
3686 				return -EAGAIN;
3687 			}
3688 		}
3689 
3690 		for (i = disks; i--; ) {
3691 			struct r5dev *dev = &sh->dev[i];
3692 			if ((dev->towrite ||
3693 			     i == sh->pd_idx || i == sh->qd_idx ||
3694 			     test_bit(R5_InJournal, &dev->flags)) &&
3695 			    !test_bit(R5_LOCKED, &dev->flags) &&
3696 			    !((test_bit(R5_UPTODATE, &dev->flags) &&
3697 			       (!test_bit(R5_InJournal, &dev->flags) ||
3698 				dev->page != dev->orig_page)) ||
3699 			      test_bit(R5_Wantcompute, &dev->flags)) &&
3700 			    test_bit(R5_Insync, &dev->flags)) {
3701 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3702 					     &sh->state)) {
3703 					pr_debug("Read_old block %d for r-m-w\n",
3704 						 i);
3705 					set_bit(R5_LOCKED, &dev->flags);
3706 					set_bit(R5_Wantread, &dev->flags);
3707 					s->locked++;
3708 				} else {
3709 					set_bit(STRIPE_DELAYED, &sh->state);
3710 					set_bit(STRIPE_HANDLE, &sh->state);
3711 				}
3712 			}
3713 		}
3714 	}
3715 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3716 		/* want reconstruct write, but need to get some data */
3717 		int qread =0;
3718 		rcw = 0;
3719 		for (i = disks; i--; ) {
3720 			struct r5dev *dev = &sh->dev[i];
3721 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3722 			    i != sh->pd_idx && i != sh->qd_idx &&
3723 			    !test_bit(R5_LOCKED, &dev->flags) &&
3724 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3725 			      test_bit(R5_InJournal, &dev->flags) ||
3726 			      test_bit(R5_Wantcompute, &dev->flags))) {
3727 				rcw++;
3728 				if (test_bit(R5_Insync, &dev->flags) &&
3729 				    test_bit(STRIPE_PREREAD_ACTIVE,
3730 					     &sh->state)) {
3731 					pr_debug("Read_old block "
3732 						"%d for Reconstruct\n", i);
3733 					set_bit(R5_LOCKED, &dev->flags);
3734 					set_bit(R5_Wantread, &dev->flags);
3735 					s->locked++;
3736 					qread++;
3737 				} else {
3738 					set_bit(STRIPE_DELAYED, &sh->state);
3739 					set_bit(STRIPE_HANDLE, &sh->state);
3740 				}
3741 			}
3742 		}
3743 		if (rcw && conf->mddev->queue)
3744 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3745 					  (unsigned long long)sh->sector,
3746 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3747 	}
3748 
3749 	if (rcw > disks && rmw > disks &&
3750 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3751 		set_bit(STRIPE_DELAYED, &sh->state);
3752 
3753 	/* now if nothing is locked, and if we have enough data,
3754 	 * we can start a write request
3755 	 */
3756 	/* since handle_stripe can be called at any time we need to handle the
3757 	 * case where a compute block operation has been submitted and then a
3758 	 * subsequent call wants to start a write request.  raid_run_ops only
3759 	 * handles the case where compute block and reconstruct are requested
3760 	 * simultaneously.  If this is not the case then new writes need to be
3761 	 * held off until the compute completes.
3762 	 */
3763 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3764 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3765 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3766 		schedule_reconstruction(sh, s, rcw == 0, 0);
3767 	return 0;
3768 }
3769 
3770 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3771 				struct stripe_head_state *s, int disks)
3772 {
3773 	struct r5dev *dev = NULL;
3774 
3775 	BUG_ON(sh->batch_head);
3776 	set_bit(STRIPE_HANDLE, &sh->state);
3777 
3778 	switch (sh->check_state) {
3779 	case check_state_idle:
3780 		/* start a new check operation if there are no failures */
3781 		if (s->failed == 0) {
3782 			BUG_ON(s->uptodate != disks);
3783 			sh->check_state = check_state_run;
3784 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3785 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3786 			s->uptodate--;
3787 			break;
3788 		}
3789 		dev = &sh->dev[s->failed_num[0]];
3790 		/* fall through */
3791 	case check_state_compute_result:
3792 		sh->check_state = check_state_idle;
3793 		if (!dev)
3794 			dev = &sh->dev[sh->pd_idx];
3795 
3796 		/* check that a write has not made the stripe insync */
3797 		if (test_bit(STRIPE_INSYNC, &sh->state))
3798 			break;
3799 
3800 		/* either failed parity check, or recovery is happening */
3801 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3802 		BUG_ON(s->uptodate != disks);
3803 
3804 		set_bit(R5_LOCKED, &dev->flags);
3805 		s->locked++;
3806 		set_bit(R5_Wantwrite, &dev->flags);
3807 
3808 		clear_bit(STRIPE_DEGRADED, &sh->state);
3809 		set_bit(STRIPE_INSYNC, &sh->state);
3810 		break;
3811 	case check_state_run:
3812 		break; /* we will be called again upon completion */
3813 	case check_state_check_result:
3814 		sh->check_state = check_state_idle;
3815 
3816 		/* if a failure occurred during the check operation, leave
3817 		 * STRIPE_INSYNC not set and let the stripe be handled again
3818 		 */
3819 		if (s->failed)
3820 			break;
3821 
3822 		/* handle a successful check operation, if parity is correct
3823 		 * we are done.  Otherwise update the mismatch count and repair
3824 		 * parity if !MD_RECOVERY_CHECK
3825 		 */
3826 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3827 			/* parity is correct (on disc,
3828 			 * not in buffer any more)
3829 			 */
3830 			set_bit(STRIPE_INSYNC, &sh->state);
3831 		else {
3832 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3833 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3834 				/* don't try to repair!! */
3835 				set_bit(STRIPE_INSYNC, &sh->state);
3836 			else {
3837 				sh->check_state = check_state_compute_run;
3838 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3839 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3840 				set_bit(R5_Wantcompute,
3841 					&sh->dev[sh->pd_idx].flags);
3842 				sh->ops.target = sh->pd_idx;
3843 				sh->ops.target2 = -1;
3844 				s->uptodate++;
3845 			}
3846 		}
3847 		break;
3848 	case check_state_compute_run:
3849 		break;
3850 	default:
3851 		pr_err("%s: unknown check_state: %d sector: %llu\n",
3852 		       __func__, sh->check_state,
3853 		       (unsigned long long) sh->sector);
3854 		BUG();
3855 	}
3856 }
3857 
3858 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3859 				  struct stripe_head_state *s,
3860 				  int disks)
3861 {
3862 	int pd_idx = sh->pd_idx;
3863 	int qd_idx = sh->qd_idx;
3864 	struct r5dev *dev;
3865 
3866 	BUG_ON(sh->batch_head);
3867 	set_bit(STRIPE_HANDLE, &sh->state);
3868 
3869 	BUG_ON(s->failed > 2);
3870 
3871 	/* Want to check and possibly repair P and Q.
3872 	 * However there could be one 'failed' device, in which
3873 	 * case we can only check one of them, possibly using the
3874 	 * other to generate missing data
3875 	 */
3876 
3877 	switch (sh->check_state) {
3878 	case check_state_idle:
3879 		/* start a new check operation if there are < 2 failures */
3880 		if (s->failed == s->q_failed) {
3881 			/* The only possible failed device holds Q, so it
3882 			 * makes sense to check P (If anything else were failed,
3883 			 * we would have used P to recreate it).
3884 			 */
3885 			sh->check_state = check_state_run;
3886 		}
3887 		if (!s->q_failed && s->failed < 2) {
3888 			/* Q is not failed, and we didn't use it to generate
3889 			 * anything, so it makes sense to check it
3890 			 */
3891 			if (sh->check_state == check_state_run)
3892 				sh->check_state = check_state_run_pq;
3893 			else
3894 				sh->check_state = check_state_run_q;
3895 		}
3896 
3897 		/* discard potentially stale zero_sum_result */
3898 		sh->ops.zero_sum_result = 0;
3899 
3900 		if (sh->check_state == check_state_run) {
3901 			/* async_xor_zero_sum destroys the contents of P */
3902 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3903 			s->uptodate--;
3904 		}
3905 		if (sh->check_state >= check_state_run &&
3906 		    sh->check_state <= check_state_run_pq) {
3907 			/* async_syndrome_zero_sum preserves P and Q, so
3908 			 * no need to mark them !uptodate here
3909 			 */
3910 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3911 			break;
3912 		}
3913 
3914 		/* we have 2-disk failure */
3915 		BUG_ON(s->failed != 2);
3916 		/* fall through */
3917 	case check_state_compute_result:
3918 		sh->check_state = check_state_idle;
3919 
3920 		/* check that a write has not made the stripe insync */
3921 		if (test_bit(STRIPE_INSYNC, &sh->state))
3922 			break;
3923 
3924 		/* now write out any block on a failed drive,
3925 		 * or P or Q if they were recomputed
3926 		 */
3927 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3928 		if (s->failed == 2) {
3929 			dev = &sh->dev[s->failed_num[1]];
3930 			s->locked++;
3931 			set_bit(R5_LOCKED, &dev->flags);
3932 			set_bit(R5_Wantwrite, &dev->flags);
3933 		}
3934 		if (s->failed >= 1) {
3935 			dev = &sh->dev[s->failed_num[0]];
3936 			s->locked++;
3937 			set_bit(R5_LOCKED, &dev->flags);
3938 			set_bit(R5_Wantwrite, &dev->flags);
3939 		}
3940 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3941 			dev = &sh->dev[pd_idx];
3942 			s->locked++;
3943 			set_bit(R5_LOCKED, &dev->flags);
3944 			set_bit(R5_Wantwrite, &dev->flags);
3945 		}
3946 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3947 			dev = &sh->dev[qd_idx];
3948 			s->locked++;
3949 			set_bit(R5_LOCKED, &dev->flags);
3950 			set_bit(R5_Wantwrite, &dev->flags);
3951 		}
3952 		clear_bit(STRIPE_DEGRADED, &sh->state);
3953 
3954 		set_bit(STRIPE_INSYNC, &sh->state);
3955 		break;
3956 	case check_state_run:
3957 	case check_state_run_q:
3958 	case check_state_run_pq:
3959 		break; /* we will be called again upon completion */
3960 	case check_state_check_result:
3961 		sh->check_state = check_state_idle;
3962 
3963 		/* handle a successful check operation, if parity is correct
3964 		 * we are done.  Otherwise update the mismatch count and repair
3965 		 * parity if !MD_RECOVERY_CHECK
3966 		 */
3967 		if (sh->ops.zero_sum_result == 0) {
3968 			/* both parities are correct */
3969 			if (!s->failed)
3970 				set_bit(STRIPE_INSYNC, &sh->state);
3971 			else {
3972 				/* in contrast to the raid5 case we can validate
3973 				 * parity, but still have a failure to write
3974 				 * back
3975 				 */
3976 				sh->check_state = check_state_compute_result;
3977 				/* Returning at this point means that we may go
3978 				 * off and bring p and/or q uptodate again so
3979 				 * we make sure to check zero_sum_result again
3980 				 * to verify if p or q need writeback
3981 				 */
3982 			}
3983 		} else {
3984 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3985 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3986 				/* don't try to repair!! */
3987 				set_bit(STRIPE_INSYNC, &sh->state);
3988 			else {
3989 				int *target = &sh->ops.target;
3990 
3991 				sh->ops.target = -1;
3992 				sh->ops.target2 = -1;
3993 				sh->check_state = check_state_compute_run;
3994 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3995 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3996 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3997 					set_bit(R5_Wantcompute,
3998 						&sh->dev[pd_idx].flags);
3999 					*target = pd_idx;
4000 					target = &sh->ops.target2;
4001 					s->uptodate++;
4002 				}
4003 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4004 					set_bit(R5_Wantcompute,
4005 						&sh->dev[qd_idx].flags);
4006 					*target = qd_idx;
4007 					s->uptodate++;
4008 				}
4009 			}
4010 		}
4011 		break;
4012 	case check_state_compute_run:
4013 		break;
4014 	default:
4015 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4016 			__func__, sh->check_state,
4017 			(unsigned long long) sh->sector);
4018 		BUG();
4019 	}
4020 }
4021 
4022 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4023 {
4024 	int i;
4025 
4026 	/* We have read all the blocks in this stripe and now we need to
4027 	 * copy some of them into a target stripe for expand.
4028 	 */
4029 	struct dma_async_tx_descriptor *tx = NULL;
4030 	BUG_ON(sh->batch_head);
4031 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4032 	for (i = 0; i < sh->disks; i++)
4033 		if (i != sh->pd_idx && i != sh->qd_idx) {
4034 			int dd_idx, j;
4035 			struct stripe_head *sh2;
4036 			struct async_submit_ctl submit;
4037 
4038 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4039 			sector_t s = raid5_compute_sector(conf, bn, 0,
4040 							  &dd_idx, NULL);
4041 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4042 			if (sh2 == NULL)
4043 				/* so far only the early blocks of this stripe
4044 				 * have been requested.  When later blocks
4045 				 * get requested, we will try again
4046 				 */
4047 				continue;
4048 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4049 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4050 				/* must have already done this block */
4051 				raid5_release_stripe(sh2);
4052 				continue;
4053 			}
4054 
4055 			/* place all the copies on one channel */
4056 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4057 			tx = async_memcpy(sh2->dev[dd_idx].page,
4058 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
4059 					  &submit);
4060 
4061 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4062 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4063 			for (j = 0; j < conf->raid_disks; j++)
4064 				if (j != sh2->pd_idx &&
4065 				    j != sh2->qd_idx &&
4066 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4067 					break;
4068 			if (j == conf->raid_disks) {
4069 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4070 				set_bit(STRIPE_HANDLE, &sh2->state);
4071 			}
4072 			raid5_release_stripe(sh2);
4073 
4074 		}
4075 	/* done submitting copies, wait for them to complete */
4076 	async_tx_quiesce(&tx);
4077 }
4078 
4079 /*
4080  * handle_stripe - do things to a stripe.
4081  *
4082  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4083  * state of various bits to see what needs to be done.
4084  * Possible results:
4085  *    return some read requests which now have data
4086  *    return some write requests which are safely on storage
4087  *    schedule a read on some buffers
4088  *    schedule a write of some buffers
4089  *    return confirmation of parity correctness
4090  *
4091  */
4092 
4093 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4094 {
4095 	struct r5conf *conf = sh->raid_conf;
4096 	int disks = sh->disks;
4097 	struct r5dev *dev;
4098 	int i;
4099 	int do_recovery = 0;
4100 
4101 	memset(s, 0, sizeof(*s));
4102 
4103 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4104 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4105 	s->failed_num[0] = -1;
4106 	s->failed_num[1] = -1;
4107 	s->log_failed = r5l_log_disk_error(conf);
4108 
4109 	/* Now to look around and see what can be done */
4110 	rcu_read_lock();
4111 	for (i=disks; i--; ) {
4112 		struct md_rdev *rdev;
4113 		sector_t first_bad;
4114 		int bad_sectors;
4115 		int is_bad = 0;
4116 
4117 		dev = &sh->dev[i];
4118 
4119 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4120 			 i, dev->flags,
4121 			 dev->toread, dev->towrite, dev->written);
4122 		/* maybe we can reply to a read
4123 		 *
4124 		 * new wantfill requests are only permitted while
4125 		 * ops_complete_biofill is guaranteed to be inactive
4126 		 */
4127 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4128 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4129 			set_bit(R5_Wantfill, &dev->flags);
4130 
4131 		/* now count some things */
4132 		if (test_bit(R5_LOCKED, &dev->flags))
4133 			s->locked++;
4134 		if (test_bit(R5_UPTODATE, &dev->flags))
4135 			s->uptodate++;
4136 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4137 			s->compute++;
4138 			BUG_ON(s->compute > 2);
4139 		}
4140 
4141 		if (test_bit(R5_Wantfill, &dev->flags))
4142 			s->to_fill++;
4143 		else if (dev->toread)
4144 			s->to_read++;
4145 		if (dev->towrite) {
4146 			s->to_write++;
4147 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4148 				s->non_overwrite++;
4149 		}
4150 		if (dev->written)
4151 			s->written++;
4152 		/* Prefer to use the replacement for reads, but only
4153 		 * if it is recovered enough and has no bad blocks.
4154 		 */
4155 		rdev = rcu_dereference(conf->disks[i].replacement);
4156 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4157 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4158 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4159 				 &first_bad, &bad_sectors))
4160 			set_bit(R5_ReadRepl, &dev->flags);
4161 		else {
4162 			if (rdev && !test_bit(Faulty, &rdev->flags))
4163 				set_bit(R5_NeedReplace, &dev->flags);
4164 			else
4165 				clear_bit(R5_NeedReplace, &dev->flags);
4166 			rdev = rcu_dereference(conf->disks[i].rdev);
4167 			clear_bit(R5_ReadRepl, &dev->flags);
4168 		}
4169 		if (rdev && test_bit(Faulty, &rdev->flags))
4170 			rdev = NULL;
4171 		if (rdev) {
4172 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4173 					     &first_bad, &bad_sectors);
4174 			if (s->blocked_rdev == NULL
4175 			    && (test_bit(Blocked, &rdev->flags)
4176 				|| is_bad < 0)) {
4177 				if (is_bad < 0)
4178 					set_bit(BlockedBadBlocks,
4179 						&rdev->flags);
4180 				s->blocked_rdev = rdev;
4181 				atomic_inc(&rdev->nr_pending);
4182 			}
4183 		}
4184 		clear_bit(R5_Insync, &dev->flags);
4185 		if (!rdev)
4186 			/* Not in-sync */;
4187 		else if (is_bad) {
4188 			/* also not in-sync */
4189 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4190 			    test_bit(R5_UPTODATE, &dev->flags)) {
4191 				/* treat as in-sync, but with a read error
4192 				 * which we can now try to correct
4193 				 */
4194 				set_bit(R5_Insync, &dev->flags);
4195 				set_bit(R5_ReadError, &dev->flags);
4196 			}
4197 		} else if (test_bit(In_sync, &rdev->flags))
4198 			set_bit(R5_Insync, &dev->flags);
4199 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4200 			/* in sync if before recovery_offset */
4201 			set_bit(R5_Insync, &dev->flags);
4202 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4203 			 test_bit(R5_Expanded, &dev->flags))
4204 			/* If we've reshaped into here, we assume it is Insync.
4205 			 * We will shortly update recovery_offset to make
4206 			 * it official.
4207 			 */
4208 			set_bit(R5_Insync, &dev->flags);
4209 
4210 		if (test_bit(R5_WriteError, &dev->flags)) {
4211 			/* This flag does not apply to '.replacement'
4212 			 * only to .rdev, so make sure to check that*/
4213 			struct md_rdev *rdev2 = rcu_dereference(
4214 				conf->disks[i].rdev);
4215 			if (rdev2 == rdev)
4216 				clear_bit(R5_Insync, &dev->flags);
4217 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4218 				s->handle_bad_blocks = 1;
4219 				atomic_inc(&rdev2->nr_pending);
4220 			} else
4221 				clear_bit(R5_WriteError, &dev->flags);
4222 		}
4223 		if (test_bit(R5_MadeGood, &dev->flags)) {
4224 			/* This flag does not apply to '.replacement'
4225 			 * only to .rdev, so make sure to check that*/
4226 			struct md_rdev *rdev2 = rcu_dereference(
4227 				conf->disks[i].rdev);
4228 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4229 				s->handle_bad_blocks = 1;
4230 				atomic_inc(&rdev2->nr_pending);
4231 			} else
4232 				clear_bit(R5_MadeGood, &dev->flags);
4233 		}
4234 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4235 			struct md_rdev *rdev2 = rcu_dereference(
4236 				conf->disks[i].replacement);
4237 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4238 				s->handle_bad_blocks = 1;
4239 				atomic_inc(&rdev2->nr_pending);
4240 			} else
4241 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4242 		}
4243 		if (!test_bit(R5_Insync, &dev->flags)) {
4244 			/* The ReadError flag will just be confusing now */
4245 			clear_bit(R5_ReadError, &dev->flags);
4246 			clear_bit(R5_ReWrite, &dev->flags);
4247 		}
4248 		if (test_bit(R5_ReadError, &dev->flags))
4249 			clear_bit(R5_Insync, &dev->flags);
4250 		if (!test_bit(R5_Insync, &dev->flags)) {
4251 			if (s->failed < 2)
4252 				s->failed_num[s->failed] = i;
4253 			s->failed++;
4254 			if (rdev && !test_bit(Faulty, &rdev->flags))
4255 				do_recovery = 1;
4256 		}
4257 
4258 		if (test_bit(R5_InJournal, &dev->flags))
4259 			s->injournal++;
4260 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4261 			s->just_cached++;
4262 	}
4263 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4264 		/* If there is a failed device being replaced,
4265 		 *     we must be recovering.
4266 		 * else if we are after recovery_cp, we must be syncing
4267 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4268 		 * else we can only be replacing
4269 		 * sync and recovery both need to read all devices, and so
4270 		 * use the same flag.
4271 		 */
4272 		if (do_recovery ||
4273 		    sh->sector >= conf->mddev->recovery_cp ||
4274 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4275 			s->syncing = 1;
4276 		else
4277 			s->replacing = 1;
4278 	}
4279 	rcu_read_unlock();
4280 }
4281 
4282 static int clear_batch_ready(struct stripe_head *sh)
4283 {
4284 	/* Return '1' if this is a member of batch, or
4285 	 * '0' if it is a lone stripe or a head which can now be
4286 	 * handled.
4287 	 */
4288 	struct stripe_head *tmp;
4289 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4290 		return (sh->batch_head && sh->batch_head != sh);
4291 	spin_lock(&sh->stripe_lock);
4292 	if (!sh->batch_head) {
4293 		spin_unlock(&sh->stripe_lock);
4294 		return 0;
4295 	}
4296 
4297 	/*
4298 	 * this stripe could be added to a batch list before we check
4299 	 * BATCH_READY, skips it
4300 	 */
4301 	if (sh->batch_head != sh) {
4302 		spin_unlock(&sh->stripe_lock);
4303 		return 1;
4304 	}
4305 	spin_lock(&sh->batch_lock);
4306 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4307 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4308 	spin_unlock(&sh->batch_lock);
4309 	spin_unlock(&sh->stripe_lock);
4310 
4311 	/*
4312 	 * BATCH_READY is cleared, no new stripes can be added.
4313 	 * batch_list can be accessed without lock
4314 	 */
4315 	return 0;
4316 }
4317 
4318 static void break_stripe_batch_list(struct stripe_head *head_sh,
4319 				    unsigned long handle_flags)
4320 {
4321 	struct stripe_head *sh, *next;
4322 	int i;
4323 	int do_wakeup = 0;
4324 
4325 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4326 
4327 		list_del_init(&sh->batch_list);
4328 
4329 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4330 					  (1 << STRIPE_SYNCING) |
4331 					  (1 << STRIPE_REPLACED) |
4332 					  (1 << STRIPE_DELAYED) |
4333 					  (1 << STRIPE_BIT_DELAY) |
4334 					  (1 << STRIPE_FULL_WRITE) |
4335 					  (1 << STRIPE_BIOFILL_RUN) |
4336 					  (1 << STRIPE_COMPUTE_RUN)  |
4337 					  (1 << STRIPE_OPS_REQ_PENDING) |
4338 					  (1 << STRIPE_DISCARD) |
4339 					  (1 << STRIPE_BATCH_READY) |
4340 					  (1 << STRIPE_BATCH_ERR) |
4341 					  (1 << STRIPE_BITMAP_PENDING)),
4342 			"stripe state: %lx\n", sh->state);
4343 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4344 					      (1 << STRIPE_REPLACED)),
4345 			"head stripe state: %lx\n", head_sh->state);
4346 
4347 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4348 					    (1 << STRIPE_PREREAD_ACTIVE) |
4349 					    (1 << STRIPE_DEGRADED)),
4350 			      head_sh->state & (1 << STRIPE_INSYNC));
4351 
4352 		sh->check_state = head_sh->check_state;
4353 		sh->reconstruct_state = head_sh->reconstruct_state;
4354 		for (i = 0; i < sh->disks; i++) {
4355 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4356 				do_wakeup = 1;
4357 			sh->dev[i].flags = head_sh->dev[i].flags &
4358 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4359 		}
4360 		spin_lock_irq(&sh->stripe_lock);
4361 		sh->batch_head = NULL;
4362 		spin_unlock_irq(&sh->stripe_lock);
4363 		if (handle_flags == 0 ||
4364 		    sh->state & handle_flags)
4365 			set_bit(STRIPE_HANDLE, &sh->state);
4366 		raid5_release_stripe(sh);
4367 	}
4368 	spin_lock_irq(&head_sh->stripe_lock);
4369 	head_sh->batch_head = NULL;
4370 	spin_unlock_irq(&head_sh->stripe_lock);
4371 	for (i = 0; i < head_sh->disks; i++)
4372 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4373 			do_wakeup = 1;
4374 	if (head_sh->state & handle_flags)
4375 		set_bit(STRIPE_HANDLE, &head_sh->state);
4376 
4377 	if (do_wakeup)
4378 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4379 }
4380 
4381 static void handle_stripe(struct stripe_head *sh)
4382 {
4383 	struct stripe_head_state s;
4384 	struct r5conf *conf = sh->raid_conf;
4385 	int i;
4386 	int prexor;
4387 	int disks = sh->disks;
4388 	struct r5dev *pdev, *qdev;
4389 
4390 	clear_bit(STRIPE_HANDLE, &sh->state);
4391 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4392 		/* already being handled, ensure it gets handled
4393 		 * again when current action finishes */
4394 		set_bit(STRIPE_HANDLE, &sh->state);
4395 		return;
4396 	}
4397 
4398 	if (clear_batch_ready(sh) ) {
4399 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4400 		return;
4401 	}
4402 
4403 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4404 		break_stripe_batch_list(sh, 0);
4405 
4406 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4407 		spin_lock(&sh->stripe_lock);
4408 		/* Cannot process 'sync' concurrently with 'discard' */
4409 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4410 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4411 			set_bit(STRIPE_SYNCING, &sh->state);
4412 			clear_bit(STRIPE_INSYNC, &sh->state);
4413 			clear_bit(STRIPE_REPLACED, &sh->state);
4414 		}
4415 		spin_unlock(&sh->stripe_lock);
4416 	}
4417 	clear_bit(STRIPE_DELAYED, &sh->state);
4418 
4419 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4420 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4421 	       (unsigned long long)sh->sector, sh->state,
4422 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4423 	       sh->check_state, sh->reconstruct_state);
4424 
4425 	analyse_stripe(sh, &s);
4426 
4427 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4428 		goto finish;
4429 
4430 	if (s.handle_bad_blocks) {
4431 		set_bit(STRIPE_HANDLE, &sh->state);
4432 		goto finish;
4433 	}
4434 
4435 	if (unlikely(s.blocked_rdev)) {
4436 		if (s.syncing || s.expanding || s.expanded ||
4437 		    s.replacing || s.to_write || s.written) {
4438 			set_bit(STRIPE_HANDLE, &sh->state);
4439 			goto finish;
4440 		}
4441 		/* There is nothing for the blocked_rdev to block */
4442 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4443 		s.blocked_rdev = NULL;
4444 	}
4445 
4446 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4447 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4448 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4449 	}
4450 
4451 	pr_debug("locked=%d uptodate=%d to_read=%d"
4452 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4453 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4454 	       s.failed_num[0], s.failed_num[1]);
4455 	/* check if the array has lost more than max_degraded devices and,
4456 	 * if so, some requests might need to be failed.
4457 	 */
4458 	if (s.failed > conf->max_degraded || s.log_failed) {
4459 		sh->check_state = 0;
4460 		sh->reconstruct_state = 0;
4461 		break_stripe_batch_list(sh, 0);
4462 		if (s.to_read+s.to_write+s.written)
4463 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4464 		if (s.syncing + s.replacing)
4465 			handle_failed_sync(conf, sh, &s);
4466 	}
4467 
4468 	/* Now we check to see if any write operations have recently
4469 	 * completed
4470 	 */
4471 	prexor = 0;
4472 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4473 		prexor = 1;
4474 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4475 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4476 		sh->reconstruct_state = reconstruct_state_idle;
4477 
4478 		/* All the 'written' buffers and the parity block are ready to
4479 		 * be written back to disk
4480 		 */
4481 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4482 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4483 		BUG_ON(sh->qd_idx >= 0 &&
4484 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4485 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4486 		for (i = disks; i--; ) {
4487 			struct r5dev *dev = &sh->dev[i];
4488 			if (test_bit(R5_LOCKED, &dev->flags) &&
4489 				(i == sh->pd_idx || i == sh->qd_idx ||
4490 				 dev->written || test_bit(R5_InJournal,
4491 							  &dev->flags))) {
4492 				pr_debug("Writing block %d\n", i);
4493 				set_bit(R5_Wantwrite, &dev->flags);
4494 				if (prexor)
4495 					continue;
4496 				if (s.failed > 1)
4497 					continue;
4498 				if (!test_bit(R5_Insync, &dev->flags) ||
4499 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4500 				     s.failed == 0))
4501 					set_bit(STRIPE_INSYNC, &sh->state);
4502 			}
4503 		}
4504 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4505 			s.dec_preread_active = 1;
4506 	}
4507 
4508 	/*
4509 	 * might be able to return some write requests if the parity blocks
4510 	 * are safe, or on a failed drive
4511 	 */
4512 	pdev = &sh->dev[sh->pd_idx];
4513 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4514 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4515 	qdev = &sh->dev[sh->qd_idx];
4516 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4517 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4518 		|| conf->level < 6;
4519 
4520 	if (s.written &&
4521 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4522 			     && !test_bit(R5_LOCKED, &pdev->flags)
4523 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4524 				 test_bit(R5_Discard, &pdev->flags))))) &&
4525 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4526 			     && !test_bit(R5_LOCKED, &qdev->flags)
4527 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4528 				 test_bit(R5_Discard, &qdev->flags))))))
4529 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4530 
4531 	if (s.just_cached)
4532 		r5c_handle_cached_data_endio(conf, sh, disks, &s.return_bi);
4533 	r5l_stripe_write_finished(sh);
4534 
4535 	/* Now we might consider reading some blocks, either to check/generate
4536 	 * parity, or to satisfy requests
4537 	 * or to load a block that is being partially written.
4538 	 */
4539 	if (s.to_read || s.non_overwrite
4540 	    || (conf->level == 6 && s.to_write && s.failed)
4541 	    || (s.syncing && (s.uptodate + s.compute < disks))
4542 	    || s.replacing
4543 	    || s.expanding)
4544 		handle_stripe_fill(sh, &s, disks);
4545 
4546 	/*
4547 	 * When the stripe finishes full journal write cycle (write to journal
4548 	 * and raid disk), this is the clean up procedure so it is ready for
4549 	 * next operation.
4550 	 */
4551 	r5c_finish_stripe_write_out(conf, sh, &s);
4552 
4553 	/*
4554 	 * Now to consider new write requests, cache write back and what else,
4555 	 * if anything should be read.  We do not handle new writes when:
4556 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4557 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4558 	 *    block.
4559 	 * 3/ A r5c cache log write is in flight.
4560 	 */
4561 
4562 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4563 		if (!r5c_is_writeback(conf->log)) {
4564 			if (s.to_write)
4565 				handle_stripe_dirtying(conf, sh, &s, disks);
4566 		} else { /* write back cache */
4567 			int ret = 0;
4568 
4569 			/* First, try handle writes in caching phase */
4570 			if (s.to_write)
4571 				ret = r5c_try_caching_write(conf, sh, &s,
4572 							    disks);
4573 			/*
4574 			 * If caching phase failed: ret == -EAGAIN
4575 			 *    OR
4576 			 * stripe under reclaim: !caching && injournal
4577 			 *
4578 			 * fall back to handle_stripe_dirtying()
4579 			 */
4580 			if (ret == -EAGAIN ||
4581 			    /* stripe under reclaim: !caching && injournal */
4582 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4583 			     s.injournal > 0)) {
4584 				ret = handle_stripe_dirtying(conf, sh, &s,
4585 							     disks);
4586 				if (ret == -EAGAIN)
4587 					goto finish;
4588 			}
4589 		}
4590 	}
4591 
4592 	/* maybe we need to check and possibly fix the parity for this stripe
4593 	 * Any reads will already have been scheduled, so we just see if enough
4594 	 * data is available.  The parity check is held off while parity
4595 	 * dependent operations are in flight.
4596 	 */
4597 	if (sh->check_state ||
4598 	    (s.syncing && s.locked == 0 &&
4599 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4600 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4601 		if (conf->level == 6)
4602 			handle_parity_checks6(conf, sh, &s, disks);
4603 		else
4604 			handle_parity_checks5(conf, sh, &s, disks);
4605 	}
4606 
4607 	if ((s.replacing || s.syncing) && s.locked == 0
4608 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4609 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4610 		/* Write out to replacement devices where possible */
4611 		for (i = 0; i < conf->raid_disks; i++)
4612 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4613 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4614 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4615 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4616 				s.locked++;
4617 			}
4618 		if (s.replacing)
4619 			set_bit(STRIPE_INSYNC, &sh->state);
4620 		set_bit(STRIPE_REPLACED, &sh->state);
4621 	}
4622 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4623 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4624 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4625 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4626 		clear_bit(STRIPE_SYNCING, &sh->state);
4627 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4628 			wake_up(&conf->wait_for_overlap);
4629 	}
4630 
4631 	/* If the failed drives are just a ReadError, then we might need
4632 	 * to progress the repair/check process
4633 	 */
4634 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4635 		for (i = 0; i < s.failed; i++) {
4636 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4637 			if (test_bit(R5_ReadError, &dev->flags)
4638 			    && !test_bit(R5_LOCKED, &dev->flags)
4639 			    && test_bit(R5_UPTODATE, &dev->flags)
4640 				) {
4641 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4642 					set_bit(R5_Wantwrite, &dev->flags);
4643 					set_bit(R5_ReWrite, &dev->flags);
4644 					set_bit(R5_LOCKED, &dev->flags);
4645 					s.locked++;
4646 				} else {
4647 					/* let's read it back */
4648 					set_bit(R5_Wantread, &dev->flags);
4649 					set_bit(R5_LOCKED, &dev->flags);
4650 					s.locked++;
4651 				}
4652 			}
4653 		}
4654 
4655 	/* Finish reconstruct operations initiated by the expansion process */
4656 	if (sh->reconstruct_state == reconstruct_state_result) {
4657 		struct stripe_head *sh_src
4658 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4659 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4660 			/* sh cannot be written until sh_src has been read.
4661 			 * so arrange for sh to be delayed a little
4662 			 */
4663 			set_bit(STRIPE_DELAYED, &sh->state);
4664 			set_bit(STRIPE_HANDLE, &sh->state);
4665 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4666 					      &sh_src->state))
4667 				atomic_inc(&conf->preread_active_stripes);
4668 			raid5_release_stripe(sh_src);
4669 			goto finish;
4670 		}
4671 		if (sh_src)
4672 			raid5_release_stripe(sh_src);
4673 
4674 		sh->reconstruct_state = reconstruct_state_idle;
4675 		clear_bit(STRIPE_EXPANDING, &sh->state);
4676 		for (i = conf->raid_disks; i--; ) {
4677 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4678 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4679 			s.locked++;
4680 		}
4681 	}
4682 
4683 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4684 	    !sh->reconstruct_state) {
4685 		/* Need to write out all blocks after computing parity */
4686 		sh->disks = conf->raid_disks;
4687 		stripe_set_idx(sh->sector, conf, 0, sh);
4688 		schedule_reconstruction(sh, &s, 1, 1);
4689 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4690 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4691 		atomic_dec(&conf->reshape_stripes);
4692 		wake_up(&conf->wait_for_overlap);
4693 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4694 	}
4695 
4696 	if (s.expanding && s.locked == 0 &&
4697 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4698 		handle_stripe_expansion(conf, sh);
4699 
4700 finish:
4701 	/* wait for this device to become unblocked */
4702 	if (unlikely(s.blocked_rdev)) {
4703 		if (conf->mddev->external)
4704 			md_wait_for_blocked_rdev(s.blocked_rdev,
4705 						 conf->mddev);
4706 		else
4707 			/* Internal metadata will immediately
4708 			 * be written by raid5d, so we don't
4709 			 * need to wait here.
4710 			 */
4711 			rdev_dec_pending(s.blocked_rdev,
4712 					 conf->mddev);
4713 	}
4714 
4715 	if (s.handle_bad_blocks)
4716 		for (i = disks; i--; ) {
4717 			struct md_rdev *rdev;
4718 			struct r5dev *dev = &sh->dev[i];
4719 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4720 				/* We own a safe reference to the rdev */
4721 				rdev = conf->disks[i].rdev;
4722 				if (!rdev_set_badblocks(rdev, sh->sector,
4723 							STRIPE_SECTORS, 0))
4724 					md_error(conf->mddev, rdev);
4725 				rdev_dec_pending(rdev, conf->mddev);
4726 			}
4727 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4728 				rdev = conf->disks[i].rdev;
4729 				rdev_clear_badblocks(rdev, sh->sector,
4730 						     STRIPE_SECTORS, 0);
4731 				rdev_dec_pending(rdev, conf->mddev);
4732 			}
4733 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4734 				rdev = conf->disks[i].replacement;
4735 				if (!rdev)
4736 					/* rdev have been moved down */
4737 					rdev = conf->disks[i].rdev;
4738 				rdev_clear_badblocks(rdev, sh->sector,
4739 						     STRIPE_SECTORS, 0);
4740 				rdev_dec_pending(rdev, conf->mddev);
4741 			}
4742 		}
4743 
4744 	if (s.ops_request)
4745 		raid_run_ops(sh, s.ops_request);
4746 
4747 	ops_run_io(sh, &s);
4748 
4749 	if (s.dec_preread_active) {
4750 		/* We delay this until after ops_run_io so that if make_request
4751 		 * is waiting on a flush, it won't continue until the writes
4752 		 * have actually been submitted.
4753 		 */
4754 		atomic_dec(&conf->preread_active_stripes);
4755 		if (atomic_read(&conf->preread_active_stripes) <
4756 		    IO_THRESHOLD)
4757 			md_wakeup_thread(conf->mddev->thread);
4758 	}
4759 
4760 	if (!bio_list_empty(&s.return_bi)) {
4761 		if (test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4762 			spin_lock_irq(&conf->device_lock);
4763 			bio_list_merge(&conf->return_bi, &s.return_bi);
4764 			spin_unlock_irq(&conf->device_lock);
4765 			md_wakeup_thread(conf->mddev->thread);
4766 		} else
4767 			return_io(&s.return_bi);
4768 	}
4769 
4770 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4771 }
4772 
4773 static void raid5_activate_delayed(struct r5conf *conf)
4774 {
4775 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4776 		while (!list_empty(&conf->delayed_list)) {
4777 			struct list_head *l = conf->delayed_list.next;
4778 			struct stripe_head *sh;
4779 			sh = list_entry(l, struct stripe_head, lru);
4780 			list_del_init(l);
4781 			clear_bit(STRIPE_DELAYED, &sh->state);
4782 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4783 				atomic_inc(&conf->preread_active_stripes);
4784 			list_add_tail(&sh->lru, &conf->hold_list);
4785 			raid5_wakeup_stripe_thread(sh);
4786 		}
4787 	}
4788 }
4789 
4790 static void activate_bit_delay(struct r5conf *conf,
4791 	struct list_head *temp_inactive_list)
4792 {
4793 	/* device_lock is held */
4794 	struct list_head head;
4795 	list_add(&head, &conf->bitmap_list);
4796 	list_del_init(&conf->bitmap_list);
4797 	while (!list_empty(&head)) {
4798 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4799 		int hash;
4800 		list_del_init(&sh->lru);
4801 		atomic_inc(&sh->count);
4802 		hash = sh->hash_lock_index;
4803 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4804 	}
4805 }
4806 
4807 static int raid5_congested(struct mddev *mddev, int bits)
4808 {
4809 	struct r5conf *conf = mddev->private;
4810 
4811 	/* No difference between reads and writes.  Just check
4812 	 * how busy the stripe_cache is
4813 	 */
4814 
4815 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4816 		return 1;
4817 
4818 	/* Also checks whether there is pressure on r5cache log space */
4819 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
4820 		return 1;
4821 	if (conf->quiesce)
4822 		return 1;
4823 	if (atomic_read(&conf->empty_inactive_list_nr))
4824 		return 1;
4825 
4826 	return 0;
4827 }
4828 
4829 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4830 {
4831 	struct r5conf *conf = mddev->private;
4832 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4833 	unsigned int chunk_sectors;
4834 	unsigned int bio_sectors = bio_sectors(bio);
4835 
4836 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4837 	return  chunk_sectors >=
4838 		((sector & (chunk_sectors - 1)) + bio_sectors);
4839 }
4840 
4841 /*
4842  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4843  *  later sampled by raid5d.
4844  */
4845 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4846 {
4847 	unsigned long flags;
4848 
4849 	spin_lock_irqsave(&conf->device_lock, flags);
4850 
4851 	bi->bi_next = conf->retry_read_aligned_list;
4852 	conf->retry_read_aligned_list = bi;
4853 
4854 	spin_unlock_irqrestore(&conf->device_lock, flags);
4855 	md_wakeup_thread(conf->mddev->thread);
4856 }
4857 
4858 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4859 {
4860 	struct bio *bi;
4861 
4862 	bi = conf->retry_read_aligned;
4863 	if (bi) {
4864 		conf->retry_read_aligned = NULL;
4865 		return bi;
4866 	}
4867 	bi = conf->retry_read_aligned_list;
4868 	if(bi) {
4869 		conf->retry_read_aligned_list = bi->bi_next;
4870 		bi->bi_next = NULL;
4871 		/*
4872 		 * this sets the active strip count to 1 and the processed
4873 		 * strip count to zero (upper 8 bits)
4874 		 */
4875 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4876 	}
4877 
4878 	return bi;
4879 }
4880 
4881 /*
4882  *  The "raid5_align_endio" should check if the read succeeded and if it
4883  *  did, call bio_endio on the original bio (having bio_put the new bio
4884  *  first).
4885  *  If the read failed..
4886  */
4887 static void raid5_align_endio(struct bio *bi)
4888 {
4889 	struct bio* raid_bi  = bi->bi_private;
4890 	struct mddev *mddev;
4891 	struct r5conf *conf;
4892 	struct md_rdev *rdev;
4893 	int error = bi->bi_error;
4894 
4895 	bio_put(bi);
4896 
4897 	rdev = (void*)raid_bi->bi_next;
4898 	raid_bi->bi_next = NULL;
4899 	mddev = rdev->mddev;
4900 	conf = mddev->private;
4901 
4902 	rdev_dec_pending(rdev, conf->mddev);
4903 
4904 	if (!error) {
4905 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4906 					 raid_bi, 0);
4907 		bio_endio(raid_bi);
4908 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4909 			wake_up(&conf->wait_for_quiescent);
4910 		return;
4911 	}
4912 
4913 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4914 
4915 	add_bio_to_retry(raid_bi, conf);
4916 }
4917 
4918 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4919 {
4920 	struct r5conf *conf = mddev->private;
4921 	int dd_idx;
4922 	struct bio* align_bi;
4923 	struct md_rdev *rdev;
4924 	sector_t end_sector;
4925 
4926 	if (!in_chunk_boundary(mddev, raid_bio)) {
4927 		pr_debug("%s: non aligned\n", __func__);
4928 		return 0;
4929 	}
4930 	/*
4931 	 * use bio_clone_mddev to make a copy of the bio
4932 	 */
4933 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4934 	if (!align_bi)
4935 		return 0;
4936 	/*
4937 	 *   set bi_end_io to a new function, and set bi_private to the
4938 	 *     original bio.
4939 	 */
4940 	align_bi->bi_end_io  = raid5_align_endio;
4941 	align_bi->bi_private = raid_bio;
4942 	/*
4943 	 *	compute position
4944 	 */
4945 	align_bi->bi_iter.bi_sector =
4946 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4947 				     0, &dd_idx, NULL);
4948 
4949 	end_sector = bio_end_sector(align_bi);
4950 	rcu_read_lock();
4951 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4952 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4953 	    rdev->recovery_offset < end_sector) {
4954 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4955 		if (rdev &&
4956 		    (test_bit(Faulty, &rdev->flags) ||
4957 		    !(test_bit(In_sync, &rdev->flags) ||
4958 		      rdev->recovery_offset >= end_sector)))
4959 			rdev = NULL;
4960 	}
4961 	if (rdev) {
4962 		sector_t first_bad;
4963 		int bad_sectors;
4964 
4965 		atomic_inc(&rdev->nr_pending);
4966 		rcu_read_unlock();
4967 		raid_bio->bi_next = (void*)rdev;
4968 		align_bi->bi_bdev =  rdev->bdev;
4969 		bio_clear_flag(align_bi, BIO_SEG_VALID);
4970 
4971 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4972 				bio_sectors(align_bi),
4973 				&first_bad, &bad_sectors)) {
4974 			bio_put(align_bi);
4975 			rdev_dec_pending(rdev, mddev);
4976 			return 0;
4977 		}
4978 
4979 		/* No reshape active, so we can trust rdev->data_offset */
4980 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4981 
4982 		spin_lock_irq(&conf->device_lock);
4983 		wait_event_lock_irq(conf->wait_for_quiescent,
4984 				    conf->quiesce == 0,
4985 				    conf->device_lock);
4986 		atomic_inc(&conf->active_aligned_reads);
4987 		spin_unlock_irq(&conf->device_lock);
4988 
4989 		if (mddev->gendisk)
4990 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4991 					      align_bi, disk_devt(mddev->gendisk),
4992 					      raid_bio->bi_iter.bi_sector);
4993 		generic_make_request(align_bi);
4994 		return 1;
4995 	} else {
4996 		rcu_read_unlock();
4997 		bio_put(align_bi);
4998 		return 0;
4999 	}
5000 }
5001 
5002 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5003 {
5004 	struct bio *split;
5005 
5006 	do {
5007 		sector_t sector = raid_bio->bi_iter.bi_sector;
5008 		unsigned chunk_sects = mddev->chunk_sectors;
5009 		unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5010 
5011 		if (sectors < bio_sectors(raid_bio)) {
5012 			split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
5013 			bio_chain(split, raid_bio);
5014 		} else
5015 			split = raid_bio;
5016 
5017 		if (!raid5_read_one_chunk(mddev, split)) {
5018 			if (split != raid_bio)
5019 				generic_make_request(raid_bio);
5020 			return split;
5021 		}
5022 	} while (split != raid_bio);
5023 
5024 	return NULL;
5025 }
5026 
5027 /* __get_priority_stripe - get the next stripe to process
5028  *
5029  * Full stripe writes are allowed to pass preread active stripes up until
5030  * the bypass_threshold is exceeded.  In general the bypass_count
5031  * increments when the handle_list is handled before the hold_list; however, it
5032  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5033  * stripe with in flight i/o.  The bypass_count will be reset when the
5034  * head of the hold_list has changed, i.e. the head was promoted to the
5035  * handle_list.
5036  */
5037 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5038 {
5039 	struct stripe_head *sh = NULL, *tmp;
5040 	struct list_head *handle_list = NULL;
5041 	struct r5worker_group *wg = NULL;
5042 
5043 	if (conf->worker_cnt_per_group == 0) {
5044 		handle_list = &conf->handle_list;
5045 	} else if (group != ANY_GROUP) {
5046 		handle_list = &conf->worker_groups[group].handle_list;
5047 		wg = &conf->worker_groups[group];
5048 	} else {
5049 		int i;
5050 		for (i = 0; i < conf->group_cnt; i++) {
5051 			handle_list = &conf->worker_groups[i].handle_list;
5052 			wg = &conf->worker_groups[i];
5053 			if (!list_empty(handle_list))
5054 				break;
5055 		}
5056 	}
5057 
5058 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5059 		  __func__,
5060 		  list_empty(handle_list) ? "empty" : "busy",
5061 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5062 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5063 
5064 	if (!list_empty(handle_list)) {
5065 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5066 
5067 		if (list_empty(&conf->hold_list))
5068 			conf->bypass_count = 0;
5069 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5070 			if (conf->hold_list.next == conf->last_hold)
5071 				conf->bypass_count++;
5072 			else {
5073 				conf->last_hold = conf->hold_list.next;
5074 				conf->bypass_count -= conf->bypass_threshold;
5075 				if (conf->bypass_count < 0)
5076 					conf->bypass_count = 0;
5077 			}
5078 		}
5079 	} else if (!list_empty(&conf->hold_list) &&
5080 		   ((conf->bypass_threshold &&
5081 		     conf->bypass_count > conf->bypass_threshold) ||
5082 		    atomic_read(&conf->pending_full_writes) == 0)) {
5083 
5084 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5085 			if (conf->worker_cnt_per_group == 0 ||
5086 			    group == ANY_GROUP ||
5087 			    !cpu_online(tmp->cpu) ||
5088 			    cpu_to_group(tmp->cpu) == group) {
5089 				sh = tmp;
5090 				break;
5091 			}
5092 		}
5093 
5094 		if (sh) {
5095 			conf->bypass_count -= conf->bypass_threshold;
5096 			if (conf->bypass_count < 0)
5097 				conf->bypass_count = 0;
5098 		}
5099 		wg = NULL;
5100 	}
5101 
5102 	if (!sh)
5103 		return NULL;
5104 
5105 	if (wg) {
5106 		wg->stripes_cnt--;
5107 		sh->group = NULL;
5108 	}
5109 	list_del_init(&sh->lru);
5110 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5111 	return sh;
5112 }
5113 
5114 struct raid5_plug_cb {
5115 	struct blk_plug_cb	cb;
5116 	struct list_head	list;
5117 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5118 };
5119 
5120 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5121 {
5122 	struct raid5_plug_cb *cb = container_of(
5123 		blk_cb, struct raid5_plug_cb, cb);
5124 	struct stripe_head *sh;
5125 	struct mddev *mddev = cb->cb.data;
5126 	struct r5conf *conf = mddev->private;
5127 	int cnt = 0;
5128 	int hash;
5129 
5130 	if (cb->list.next && !list_empty(&cb->list)) {
5131 		spin_lock_irq(&conf->device_lock);
5132 		while (!list_empty(&cb->list)) {
5133 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5134 			list_del_init(&sh->lru);
5135 			/*
5136 			 * avoid race release_stripe_plug() sees
5137 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5138 			 * is still in our list
5139 			 */
5140 			smp_mb__before_atomic();
5141 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5142 			/*
5143 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5144 			 * case, the count is always > 1 here
5145 			 */
5146 			hash = sh->hash_lock_index;
5147 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5148 			cnt++;
5149 		}
5150 		spin_unlock_irq(&conf->device_lock);
5151 	}
5152 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5153 				     NR_STRIPE_HASH_LOCKS);
5154 	if (mddev->queue)
5155 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5156 	kfree(cb);
5157 }
5158 
5159 static void release_stripe_plug(struct mddev *mddev,
5160 				struct stripe_head *sh)
5161 {
5162 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5163 		raid5_unplug, mddev,
5164 		sizeof(struct raid5_plug_cb));
5165 	struct raid5_plug_cb *cb;
5166 
5167 	if (!blk_cb) {
5168 		raid5_release_stripe(sh);
5169 		return;
5170 	}
5171 
5172 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5173 
5174 	if (cb->list.next == NULL) {
5175 		int i;
5176 		INIT_LIST_HEAD(&cb->list);
5177 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5178 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5179 	}
5180 
5181 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5182 		list_add_tail(&sh->lru, &cb->list);
5183 	else
5184 		raid5_release_stripe(sh);
5185 }
5186 
5187 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5188 {
5189 	struct r5conf *conf = mddev->private;
5190 	sector_t logical_sector, last_sector;
5191 	struct stripe_head *sh;
5192 	int remaining;
5193 	int stripe_sectors;
5194 
5195 	if (mddev->reshape_position != MaxSector)
5196 		/* Skip discard while reshape is happening */
5197 		return;
5198 
5199 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5200 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5201 
5202 	bi->bi_next = NULL;
5203 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5204 
5205 	stripe_sectors = conf->chunk_sectors *
5206 		(conf->raid_disks - conf->max_degraded);
5207 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5208 					       stripe_sectors);
5209 	sector_div(last_sector, stripe_sectors);
5210 
5211 	logical_sector *= conf->chunk_sectors;
5212 	last_sector *= conf->chunk_sectors;
5213 
5214 	for (; logical_sector < last_sector;
5215 	     logical_sector += STRIPE_SECTORS) {
5216 		DEFINE_WAIT(w);
5217 		int d;
5218 	again:
5219 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5220 		prepare_to_wait(&conf->wait_for_overlap, &w,
5221 				TASK_UNINTERRUPTIBLE);
5222 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5223 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5224 			raid5_release_stripe(sh);
5225 			schedule();
5226 			goto again;
5227 		}
5228 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5229 		spin_lock_irq(&sh->stripe_lock);
5230 		for (d = 0; d < conf->raid_disks; d++) {
5231 			if (d == sh->pd_idx || d == sh->qd_idx)
5232 				continue;
5233 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5234 				set_bit(R5_Overlap, &sh->dev[d].flags);
5235 				spin_unlock_irq(&sh->stripe_lock);
5236 				raid5_release_stripe(sh);
5237 				schedule();
5238 				goto again;
5239 			}
5240 		}
5241 		set_bit(STRIPE_DISCARD, &sh->state);
5242 		finish_wait(&conf->wait_for_overlap, &w);
5243 		sh->overwrite_disks = 0;
5244 		for (d = 0; d < conf->raid_disks; d++) {
5245 			if (d == sh->pd_idx || d == sh->qd_idx)
5246 				continue;
5247 			sh->dev[d].towrite = bi;
5248 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5249 			raid5_inc_bi_active_stripes(bi);
5250 			sh->overwrite_disks++;
5251 		}
5252 		spin_unlock_irq(&sh->stripe_lock);
5253 		if (conf->mddev->bitmap) {
5254 			for (d = 0;
5255 			     d < conf->raid_disks - conf->max_degraded;
5256 			     d++)
5257 				bitmap_startwrite(mddev->bitmap,
5258 						  sh->sector,
5259 						  STRIPE_SECTORS,
5260 						  0);
5261 			sh->bm_seq = conf->seq_flush + 1;
5262 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5263 		}
5264 
5265 		set_bit(STRIPE_HANDLE, &sh->state);
5266 		clear_bit(STRIPE_DELAYED, &sh->state);
5267 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5268 			atomic_inc(&conf->preread_active_stripes);
5269 		release_stripe_plug(mddev, sh);
5270 	}
5271 
5272 	remaining = raid5_dec_bi_active_stripes(bi);
5273 	if (remaining == 0) {
5274 		md_write_end(mddev);
5275 		bio_endio(bi);
5276 	}
5277 }
5278 
5279 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5280 {
5281 	struct r5conf *conf = mddev->private;
5282 	int dd_idx;
5283 	sector_t new_sector;
5284 	sector_t logical_sector, last_sector;
5285 	struct stripe_head *sh;
5286 	const int rw = bio_data_dir(bi);
5287 	int remaining;
5288 	DEFINE_WAIT(w);
5289 	bool do_prepare;
5290 	bool do_flush = false;
5291 
5292 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5293 		int ret = r5l_handle_flush_request(conf->log, bi);
5294 
5295 		if (ret == 0)
5296 			return;
5297 		if (ret == -ENODEV) {
5298 			md_flush_request(mddev, bi);
5299 			return;
5300 		}
5301 		/* ret == -EAGAIN, fallback */
5302 		/*
5303 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5304 		 * we need to flush journal device
5305 		 */
5306 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5307 	}
5308 
5309 	md_write_start(mddev, bi);
5310 
5311 	/*
5312 	 * If array is degraded, better not do chunk aligned read because
5313 	 * later we might have to read it again in order to reconstruct
5314 	 * data on failed drives.
5315 	 */
5316 	if (rw == READ && mddev->degraded == 0 &&
5317 	    !r5c_is_writeback(conf->log) &&
5318 	    mddev->reshape_position == MaxSector) {
5319 		bi = chunk_aligned_read(mddev, bi);
5320 		if (!bi)
5321 			return;
5322 	}
5323 
5324 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5325 		make_discard_request(mddev, bi);
5326 		return;
5327 	}
5328 
5329 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5330 	last_sector = bio_end_sector(bi);
5331 	bi->bi_next = NULL;
5332 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5333 
5334 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5335 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5336 		int previous;
5337 		int seq;
5338 
5339 		do_prepare = false;
5340 	retry:
5341 		seq = read_seqcount_begin(&conf->gen_lock);
5342 		previous = 0;
5343 		if (do_prepare)
5344 			prepare_to_wait(&conf->wait_for_overlap, &w,
5345 				TASK_UNINTERRUPTIBLE);
5346 		if (unlikely(conf->reshape_progress != MaxSector)) {
5347 			/* spinlock is needed as reshape_progress may be
5348 			 * 64bit on a 32bit platform, and so it might be
5349 			 * possible to see a half-updated value
5350 			 * Of course reshape_progress could change after
5351 			 * the lock is dropped, so once we get a reference
5352 			 * to the stripe that we think it is, we will have
5353 			 * to check again.
5354 			 */
5355 			spin_lock_irq(&conf->device_lock);
5356 			if (mddev->reshape_backwards
5357 			    ? logical_sector < conf->reshape_progress
5358 			    : logical_sector >= conf->reshape_progress) {
5359 				previous = 1;
5360 			} else {
5361 				if (mddev->reshape_backwards
5362 				    ? logical_sector < conf->reshape_safe
5363 				    : logical_sector >= conf->reshape_safe) {
5364 					spin_unlock_irq(&conf->device_lock);
5365 					schedule();
5366 					do_prepare = true;
5367 					goto retry;
5368 				}
5369 			}
5370 			spin_unlock_irq(&conf->device_lock);
5371 		}
5372 
5373 		new_sector = raid5_compute_sector(conf, logical_sector,
5374 						  previous,
5375 						  &dd_idx, NULL);
5376 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5377 			(unsigned long long)new_sector,
5378 			(unsigned long long)logical_sector);
5379 
5380 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5381 				       (bi->bi_opf & REQ_RAHEAD), 0);
5382 		if (sh) {
5383 			if (unlikely(previous)) {
5384 				/* expansion might have moved on while waiting for a
5385 				 * stripe, so we must do the range check again.
5386 				 * Expansion could still move past after this
5387 				 * test, but as we are holding a reference to
5388 				 * 'sh', we know that if that happens,
5389 				 *  STRIPE_EXPANDING will get set and the expansion
5390 				 * won't proceed until we finish with the stripe.
5391 				 */
5392 				int must_retry = 0;
5393 				spin_lock_irq(&conf->device_lock);
5394 				if (mddev->reshape_backwards
5395 				    ? logical_sector >= conf->reshape_progress
5396 				    : logical_sector < conf->reshape_progress)
5397 					/* mismatch, need to try again */
5398 					must_retry = 1;
5399 				spin_unlock_irq(&conf->device_lock);
5400 				if (must_retry) {
5401 					raid5_release_stripe(sh);
5402 					schedule();
5403 					do_prepare = true;
5404 					goto retry;
5405 				}
5406 			}
5407 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5408 				/* Might have got the wrong stripe_head
5409 				 * by accident
5410 				 */
5411 				raid5_release_stripe(sh);
5412 				goto retry;
5413 			}
5414 
5415 			if (rw == WRITE &&
5416 			    logical_sector >= mddev->suspend_lo &&
5417 			    logical_sector < mddev->suspend_hi) {
5418 				raid5_release_stripe(sh);
5419 				/* As the suspend_* range is controlled by
5420 				 * userspace, we want an interruptible
5421 				 * wait.
5422 				 */
5423 				flush_signals(current);
5424 				prepare_to_wait(&conf->wait_for_overlap,
5425 						&w, TASK_INTERRUPTIBLE);
5426 				if (logical_sector >= mddev->suspend_lo &&
5427 				    logical_sector < mddev->suspend_hi) {
5428 					schedule();
5429 					do_prepare = true;
5430 				}
5431 				goto retry;
5432 			}
5433 
5434 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5435 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5436 				/* Stripe is busy expanding or
5437 				 * add failed due to overlap.  Flush everything
5438 				 * and wait a while
5439 				 */
5440 				md_wakeup_thread(mddev->thread);
5441 				raid5_release_stripe(sh);
5442 				schedule();
5443 				do_prepare = true;
5444 				goto retry;
5445 			}
5446 			if (do_flush) {
5447 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5448 				/* we only need flush for one stripe */
5449 				do_flush = false;
5450 			}
5451 
5452 			set_bit(STRIPE_HANDLE, &sh->state);
5453 			clear_bit(STRIPE_DELAYED, &sh->state);
5454 			if ((!sh->batch_head || sh == sh->batch_head) &&
5455 			    (bi->bi_opf & REQ_SYNC) &&
5456 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5457 				atomic_inc(&conf->preread_active_stripes);
5458 			release_stripe_plug(mddev, sh);
5459 		} else {
5460 			/* cannot get stripe for read-ahead, just give-up */
5461 			bi->bi_error = -EIO;
5462 			break;
5463 		}
5464 	}
5465 	finish_wait(&conf->wait_for_overlap, &w);
5466 
5467 	remaining = raid5_dec_bi_active_stripes(bi);
5468 	if (remaining == 0) {
5469 
5470 		if ( rw == WRITE )
5471 			md_write_end(mddev);
5472 
5473 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5474 					 bi, 0);
5475 		bio_endio(bi);
5476 	}
5477 }
5478 
5479 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5480 
5481 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5482 {
5483 	/* reshaping is quite different to recovery/resync so it is
5484 	 * handled quite separately ... here.
5485 	 *
5486 	 * On each call to sync_request, we gather one chunk worth of
5487 	 * destination stripes and flag them as expanding.
5488 	 * Then we find all the source stripes and request reads.
5489 	 * As the reads complete, handle_stripe will copy the data
5490 	 * into the destination stripe and release that stripe.
5491 	 */
5492 	struct r5conf *conf = mddev->private;
5493 	struct stripe_head *sh;
5494 	sector_t first_sector, last_sector;
5495 	int raid_disks = conf->previous_raid_disks;
5496 	int data_disks = raid_disks - conf->max_degraded;
5497 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5498 	int i;
5499 	int dd_idx;
5500 	sector_t writepos, readpos, safepos;
5501 	sector_t stripe_addr;
5502 	int reshape_sectors;
5503 	struct list_head stripes;
5504 	sector_t retn;
5505 
5506 	if (sector_nr == 0) {
5507 		/* If restarting in the middle, skip the initial sectors */
5508 		if (mddev->reshape_backwards &&
5509 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5510 			sector_nr = raid5_size(mddev, 0, 0)
5511 				- conf->reshape_progress;
5512 		} else if (mddev->reshape_backwards &&
5513 			   conf->reshape_progress == MaxSector) {
5514 			/* shouldn't happen, but just in case, finish up.*/
5515 			sector_nr = MaxSector;
5516 		} else if (!mddev->reshape_backwards &&
5517 			   conf->reshape_progress > 0)
5518 			sector_nr = conf->reshape_progress;
5519 		sector_div(sector_nr, new_data_disks);
5520 		if (sector_nr) {
5521 			mddev->curr_resync_completed = sector_nr;
5522 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5523 			*skipped = 1;
5524 			retn = sector_nr;
5525 			goto finish;
5526 		}
5527 	}
5528 
5529 	/* We need to process a full chunk at a time.
5530 	 * If old and new chunk sizes differ, we need to process the
5531 	 * largest of these
5532 	 */
5533 
5534 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5535 
5536 	/* We update the metadata at least every 10 seconds, or when
5537 	 * the data about to be copied would over-write the source of
5538 	 * the data at the front of the range.  i.e. one new_stripe
5539 	 * along from reshape_progress new_maps to after where
5540 	 * reshape_safe old_maps to
5541 	 */
5542 	writepos = conf->reshape_progress;
5543 	sector_div(writepos, new_data_disks);
5544 	readpos = conf->reshape_progress;
5545 	sector_div(readpos, data_disks);
5546 	safepos = conf->reshape_safe;
5547 	sector_div(safepos, data_disks);
5548 	if (mddev->reshape_backwards) {
5549 		BUG_ON(writepos < reshape_sectors);
5550 		writepos -= reshape_sectors;
5551 		readpos += reshape_sectors;
5552 		safepos += reshape_sectors;
5553 	} else {
5554 		writepos += reshape_sectors;
5555 		/* readpos and safepos are worst-case calculations.
5556 		 * A negative number is overly pessimistic, and causes
5557 		 * obvious problems for unsigned storage.  So clip to 0.
5558 		 */
5559 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5560 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5561 	}
5562 
5563 	/* Having calculated the 'writepos' possibly use it
5564 	 * to set 'stripe_addr' which is where we will write to.
5565 	 */
5566 	if (mddev->reshape_backwards) {
5567 		BUG_ON(conf->reshape_progress == 0);
5568 		stripe_addr = writepos;
5569 		BUG_ON((mddev->dev_sectors &
5570 			~((sector_t)reshape_sectors - 1))
5571 		       - reshape_sectors - stripe_addr
5572 		       != sector_nr);
5573 	} else {
5574 		BUG_ON(writepos != sector_nr + reshape_sectors);
5575 		stripe_addr = sector_nr;
5576 	}
5577 
5578 	/* 'writepos' is the most advanced device address we might write.
5579 	 * 'readpos' is the least advanced device address we might read.
5580 	 * 'safepos' is the least address recorded in the metadata as having
5581 	 *     been reshaped.
5582 	 * If there is a min_offset_diff, these are adjusted either by
5583 	 * increasing the safepos/readpos if diff is negative, or
5584 	 * increasing writepos if diff is positive.
5585 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5586 	 * ensure safety in the face of a crash - that must be done by userspace
5587 	 * making a backup of the data.  So in that case there is no particular
5588 	 * rush to update metadata.
5589 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5590 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5591 	 * we can be safe in the event of a crash.
5592 	 * So we insist on updating metadata if safepos is behind writepos and
5593 	 * readpos is beyond writepos.
5594 	 * In any case, update the metadata every 10 seconds.
5595 	 * Maybe that number should be configurable, but I'm not sure it is
5596 	 * worth it.... maybe it could be a multiple of safemode_delay???
5597 	 */
5598 	if (conf->min_offset_diff < 0) {
5599 		safepos += -conf->min_offset_diff;
5600 		readpos += -conf->min_offset_diff;
5601 	} else
5602 		writepos += conf->min_offset_diff;
5603 
5604 	if ((mddev->reshape_backwards
5605 	     ? (safepos > writepos && readpos < writepos)
5606 	     : (safepos < writepos && readpos > writepos)) ||
5607 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5608 		/* Cannot proceed until we've updated the superblock... */
5609 		wait_event(conf->wait_for_overlap,
5610 			   atomic_read(&conf->reshape_stripes)==0
5611 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5612 		if (atomic_read(&conf->reshape_stripes) != 0)
5613 			return 0;
5614 		mddev->reshape_position = conf->reshape_progress;
5615 		mddev->curr_resync_completed = sector_nr;
5616 		conf->reshape_checkpoint = jiffies;
5617 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5618 		md_wakeup_thread(mddev->thread);
5619 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5620 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5621 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5622 			return 0;
5623 		spin_lock_irq(&conf->device_lock);
5624 		conf->reshape_safe = mddev->reshape_position;
5625 		spin_unlock_irq(&conf->device_lock);
5626 		wake_up(&conf->wait_for_overlap);
5627 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5628 	}
5629 
5630 	INIT_LIST_HEAD(&stripes);
5631 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5632 		int j;
5633 		int skipped_disk = 0;
5634 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5635 		set_bit(STRIPE_EXPANDING, &sh->state);
5636 		atomic_inc(&conf->reshape_stripes);
5637 		/* If any of this stripe is beyond the end of the old
5638 		 * array, then we need to zero those blocks
5639 		 */
5640 		for (j=sh->disks; j--;) {
5641 			sector_t s;
5642 			if (j == sh->pd_idx)
5643 				continue;
5644 			if (conf->level == 6 &&
5645 			    j == sh->qd_idx)
5646 				continue;
5647 			s = raid5_compute_blocknr(sh, j, 0);
5648 			if (s < raid5_size(mddev, 0, 0)) {
5649 				skipped_disk = 1;
5650 				continue;
5651 			}
5652 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5653 			set_bit(R5_Expanded, &sh->dev[j].flags);
5654 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5655 		}
5656 		if (!skipped_disk) {
5657 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5658 			set_bit(STRIPE_HANDLE, &sh->state);
5659 		}
5660 		list_add(&sh->lru, &stripes);
5661 	}
5662 	spin_lock_irq(&conf->device_lock);
5663 	if (mddev->reshape_backwards)
5664 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5665 	else
5666 		conf->reshape_progress += reshape_sectors * new_data_disks;
5667 	spin_unlock_irq(&conf->device_lock);
5668 	/* Ok, those stripe are ready. We can start scheduling
5669 	 * reads on the source stripes.
5670 	 * The source stripes are determined by mapping the first and last
5671 	 * block on the destination stripes.
5672 	 */
5673 	first_sector =
5674 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5675 				     1, &dd_idx, NULL);
5676 	last_sector =
5677 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5678 					    * new_data_disks - 1),
5679 				     1, &dd_idx, NULL);
5680 	if (last_sector >= mddev->dev_sectors)
5681 		last_sector = mddev->dev_sectors - 1;
5682 	while (first_sector <= last_sector) {
5683 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5684 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5685 		set_bit(STRIPE_HANDLE, &sh->state);
5686 		raid5_release_stripe(sh);
5687 		first_sector += STRIPE_SECTORS;
5688 	}
5689 	/* Now that the sources are clearly marked, we can release
5690 	 * the destination stripes
5691 	 */
5692 	while (!list_empty(&stripes)) {
5693 		sh = list_entry(stripes.next, struct stripe_head, lru);
5694 		list_del_init(&sh->lru);
5695 		raid5_release_stripe(sh);
5696 	}
5697 	/* If this takes us to the resync_max point where we have to pause,
5698 	 * then we need to write out the superblock.
5699 	 */
5700 	sector_nr += reshape_sectors;
5701 	retn = reshape_sectors;
5702 finish:
5703 	if (mddev->curr_resync_completed > mddev->resync_max ||
5704 	    (sector_nr - mddev->curr_resync_completed) * 2
5705 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5706 		/* Cannot proceed until we've updated the superblock... */
5707 		wait_event(conf->wait_for_overlap,
5708 			   atomic_read(&conf->reshape_stripes) == 0
5709 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5710 		if (atomic_read(&conf->reshape_stripes) != 0)
5711 			goto ret;
5712 		mddev->reshape_position = conf->reshape_progress;
5713 		mddev->curr_resync_completed = sector_nr;
5714 		conf->reshape_checkpoint = jiffies;
5715 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5716 		md_wakeup_thread(mddev->thread);
5717 		wait_event(mddev->sb_wait,
5718 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5719 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5720 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5721 			goto ret;
5722 		spin_lock_irq(&conf->device_lock);
5723 		conf->reshape_safe = mddev->reshape_position;
5724 		spin_unlock_irq(&conf->device_lock);
5725 		wake_up(&conf->wait_for_overlap);
5726 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5727 	}
5728 ret:
5729 	return retn;
5730 }
5731 
5732 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5733 					  int *skipped)
5734 {
5735 	struct r5conf *conf = mddev->private;
5736 	struct stripe_head *sh;
5737 	sector_t max_sector = mddev->dev_sectors;
5738 	sector_t sync_blocks;
5739 	int still_degraded = 0;
5740 	int i;
5741 
5742 	if (sector_nr >= max_sector) {
5743 		/* just being told to finish up .. nothing much to do */
5744 
5745 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5746 			end_reshape(conf);
5747 			return 0;
5748 		}
5749 
5750 		if (mddev->curr_resync < max_sector) /* aborted */
5751 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5752 					&sync_blocks, 1);
5753 		else /* completed sync */
5754 			conf->fullsync = 0;
5755 		bitmap_close_sync(mddev->bitmap);
5756 
5757 		return 0;
5758 	}
5759 
5760 	/* Allow raid5_quiesce to complete */
5761 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5762 
5763 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5764 		return reshape_request(mddev, sector_nr, skipped);
5765 
5766 	/* No need to check resync_max as we never do more than one
5767 	 * stripe, and as resync_max will always be on a chunk boundary,
5768 	 * if the check in md_do_sync didn't fire, there is no chance
5769 	 * of overstepping resync_max here
5770 	 */
5771 
5772 	/* if there is too many failed drives and we are trying
5773 	 * to resync, then assert that we are finished, because there is
5774 	 * nothing we can do.
5775 	 */
5776 	if (mddev->degraded >= conf->max_degraded &&
5777 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5778 		sector_t rv = mddev->dev_sectors - sector_nr;
5779 		*skipped = 1;
5780 		return rv;
5781 	}
5782 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5783 	    !conf->fullsync &&
5784 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5785 	    sync_blocks >= STRIPE_SECTORS) {
5786 		/* we can skip this block, and probably more */
5787 		sync_blocks /= STRIPE_SECTORS;
5788 		*skipped = 1;
5789 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5790 	}
5791 
5792 	bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5793 
5794 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5795 	if (sh == NULL) {
5796 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5797 		/* make sure we don't swamp the stripe cache if someone else
5798 		 * is trying to get access
5799 		 */
5800 		schedule_timeout_uninterruptible(1);
5801 	}
5802 	/* Need to check if array will still be degraded after recovery/resync
5803 	 * Note in case of > 1 drive failures it's possible we're rebuilding
5804 	 * one drive while leaving another faulty drive in array.
5805 	 */
5806 	rcu_read_lock();
5807 	for (i = 0; i < conf->raid_disks; i++) {
5808 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5809 
5810 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5811 			still_degraded = 1;
5812 	}
5813 	rcu_read_unlock();
5814 
5815 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5816 
5817 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5818 	set_bit(STRIPE_HANDLE, &sh->state);
5819 
5820 	raid5_release_stripe(sh);
5821 
5822 	return STRIPE_SECTORS;
5823 }
5824 
5825 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5826 {
5827 	/* We may not be able to submit a whole bio at once as there
5828 	 * may not be enough stripe_heads available.
5829 	 * We cannot pre-allocate enough stripe_heads as we may need
5830 	 * more than exist in the cache (if we allow ever large chunks).
5831 	 * So we do one stripe head at a time and record in
5832 	 * ->bi_hw_segments how many have been done.
5833 	 *
5834 	 * We *know* that this entire raid_bio is in one chunk, so
5835 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5836 	 */
5837 	struct stripe_head *sh;
5838 	int dd_idx;
5839 	sector_t sector, logical_sector, last_sector;
5840 	int scnt = 0;
5841 	int remaining;
5842 	int handled = 0;
5843 
5844 	logical_sector = raid_bio->bi_iter.bi_sector &
5845 		~((sector_t)STRIPE_SECTORS-1);
5846 	sector = raid5_compute_sector(conf, logical_sector,
5847 				      0, &dd_idx, NULL);
5848 	last_sector = bio_end_sector(raid_bio);
5849 
5850 	for (; logical_sector < last_sector;
5851 	     logical_sector += STRIPE_SECTORS,
5852 		     sector += STRIPE_SECTORS,
5853 		     scnt++) {
5854 
5855 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5856 			/* already done this stripe */
5857 			continue;
5858 
5859 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5860 
5861 		if (!sh) {
5862 			/* failed to get a stripe - must wait */
5863 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5864 			conf->retry_read_aligned = raid_bio;
5865 			return handled;
5866 		}
5867 
5868 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5869 			raid5_release_stripe(sh);
5870 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5871 			conf->retry_read_aligned = raid_bio;
5872 			return handled;
5873 		}
5874 
5875 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5876 		handle_stripe(sh);
5877 		raid5_release_stripe(sh);
5878 		handled++;
5879 	}
5880 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5881 	if (remaining == 0) {
5882 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5883 					 raid_bio, 0);
5884 		bio_endio(raid_bio);
5885 	}
5886 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5887 		wake_up(&conf->wait_for_quiescent);
5888 	return handled;
5889 }
5890 
5891 static int handle_active_stripes(struct r5conf *conf, int group,
5892 				 struct r5worker *worker,
5893 				 struct list_head *temp_inactive_list)
5894 {
5895 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5896 	int i, batch_size = 0, hash;
5897 	bool release_inactive = false;
5898 
5899 	while (batch_size < MAX_STRIPE_BATCH &&
5900 			(sh = __get_priority_stripe(conf, group)) != NULL)
5901 		batch[batch_size++] = sh;
5902 
5903 	if (batch_size == 0) {
5904 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5905 			if (!list_empty(temp_inactive_list + i))
5906 				break;
5907 		if (i == NR_STRIPE_HASH_LOCKS) {
5908 			spin_unlock_irq(&conf->device_lock);
5909 			r5l_flush_stripe_to_raid(conf->log);
5910 			spin_lock_irq(&conf->device_lock);
5911 			return batch_size;
5912 		}
5913 		release_inactive = true;
5914 	}
5915 	spin_unlock_irq(&conf->device_lock);
5916 
5917 	release_inactive_stripe_list(conf, temp_inactive_list,
5918 				     NR_STRIPE_HASH_LOCKS);
5919 
5920 	r5l_flush_stripe_to_raid(conf->log);
5921 	if (release_inactive) {
5922 		spin_lock_irq(&conf->device_lock);
5923 		return 0;
5924 	}
5925 
5926 	for (i = 0; i < batch_size; i++)
5927 		handle_stripe(batch[i]);
5928 	r5l_write_stripe_run(conf->log);
5929 
5930 	cond_resched();
5931 
5932 	spin_lock_irq(&conf->device_lock);
5933 	for (i = 0; i < batch_size; i++) {
5934 		hash = batch[i]->hash_lock_index;
5935 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5936 	}
5937 	return batch_size;
5938 }
5939 
5940 static void raid5_do_work(struct work_struct *work)
5941 {
5942 	struct r5worker *worker = container_of(work, struct r5worker, work);
5943 	struct r5worker_group *group = worker->group;
5944 	struct r5conf *conf = group->conf;
5945 	int group_id = group - conf->worker_groups;
5946 	int handled;
5947 	struct blk_plug plug;
5948 
5949 	pr_debug("+++ raid5worker active\n");
5950 
5951 	blk_start_plug(&plug);
5952 	handled = 0;
5953 	spin_lock_irq(&conf->device_lock);
5954 	while (1) {
5955 		int batch_size, released;
5956 
5957 		released = release_stripe_list(conf, worker->temp_inactive_list);
5958 
5959 		batch_size = handle_active_stripes(conf, group_id, worker,
5960 						   worker->temp_inactive_list);
5961 		worker->working = false;
5962 		if (!batch_size && !released)
5963 			break;
5964 		handled += batch_size;
5965 	}
5966 	pr_debug("%d stripes handled\n", handled);
5967 
5968 	spin_unlock_irq(&conf->device_lock);
5969 	blk_finish_plug(&plug);
5970 
5971 	pr_debug("--- raid5worker inactive\n");
5972 }
5973 
5974 /*
5975  * This is our raid5 kernel thread.
5976  *
5977  * We scan the hash table for stripes which can be handled now.
5978  * During the scan, completed stripes are saved for us by the interrupt
5979  * handler, so that they will not have to wait for our next wakeup.
5980  */
5981 static void raid5d(struct md_thread *thread)
5982 {
5983 	struct mddev *mddev = thread->mddev;
5984 	struct r5conf *conf = mddev->private;
5985 	int handled;
5986 	struct blk_plug plug;
5987 
5988 	pr_debug("+++ raid5d active\n");
5989 
5990 	md_check_recovery(mddev);
5991 
5992 	if (!bio_list_empty(&conf->return_bi) &&
5993 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
5994 		struct bio_list tmp = BIO_EMPTY_LIST;
5995 		spin_lock_irq(&conf->device_lock);
5996 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
5997 			bio_list_merge(&tmp, &conf->return_bi);
5998 			bio_list_init(&conf->return_bi);
5999 		}
6000 		spin_unlock_irq(&conf->device_lock);
6001 		return_io(&tmp);
6002 	}
6003 
6004 	blk_start_plug(&plug);
6005 	handled = 0;
6006 	spin_lock_irq(&conf->device_lock);
6007 	while (1) {
6008 		struct bio *bio;
6009 		int batch_size, released;
6010 
6011 		released = release_stripe_list(conf, conf->temp_inactive_list);
6012 		if (released)
6013 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6014 
6015 		if (
6016 		    !list_empty(&conf->bitmap_list)) {
6017 			/* Now is a good time to flush some bitmap updates */
6018 			conf->seq_flush++;
6019 			spin_unlock_irq(&conf->device_lock);
6020 			bitmap_unplug(mddev->bitmap);
6021 			spin_lock_irq(&conf->device_lock);
6022 			conf->seq_write = conf->seq_flush;
6023 			activate_bit_delay(conf, conf->temp_inactive_list);
6024 		}
6025 		raid5_activate_delayed(conf);
6026 
6027 		while ((bio = remove_bio_from_retry(conf))) {
6028 			int ok;
6029 			spin_unlock_irq(&conf->device_lock);
6030 			ok = retry_aligned_read(conf, bio);
6031 			spin_lock_irq(&conf->device_lock);
6032 			if (!ok)
6033 				break;
6034 			handled++;
6035 		}
6036 
6037 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6038 						   conf->temp_inactive_list);
6039 		if (!batch_size && !released)
6040 			break;
6041 		handled += batch_size;
6042 
6043 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6044 			spin_unlock_irq(&conf->device_lock);
6045 			md_check_recovery(mddev);
6046 			spin_lock_irq(&conf->device_lock);
6047 		}
6048 	}
6049 	pr_debug("%d stripes handled\n", handled);
6050 
6051 	spin_unlock_irq(&conf->device_lock);
6052 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6053 	    mutex_trylock(&conf->cache_size_mutex)) {
6054 		grow_one_stripe(conf, __GFP_NOWARN);
6055 		/* Set flag even if allocation failed.  This helps
6056 		 * slow down allocation requests when mem is short
6057 		 */
6058 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6059 		mutex_unlock(&conf->cache_size_mutex);
6060 	}
6061 
6062 	r5l_flush_stripe_to_raid(conf->log);
6063 
6064 	async_tx_issue_pending_all();
6065 	blk_finish_plug(&plug);
6066 
6067 	pr_debug("--- raid5d inactive\n");
6068 }
6069 
6070 static ssize_t
6071 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6072 {
6073 	struct r5conf *conf;
6074 	int ret = 0;
6075 	spin_lock(&mddev->lock);
6076 	conf = mddev->private;
6077 	if (conf)
6078 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6079 	spin_unlock(&mddev->lock);
6080 	return ret;
6081 }
6082 
6083 int
6084 raid5_set_cache_size(struct mddev *mddev, int size)
6085 {
6086 	struct r5conf *conf = mddev->private;
6087 	int err;
6088 
6089 	if (size <= 16 || size > 32768)
6090 		return -EINVAL;
6091 
6092 	conf->min_nr_stripes = size;
6093 	mutex_lock(&conf->cache_size_mutex);
6094 	while (size < conf->max_nr_stripes &&
6095 	       drop_one_stripe(conf))
6096 		;
6097 	mutex_unlock(&conf->cache_size_mutex);
6098 
6099 
6100 	err = md_allow_write(mddev);
6101 	if (err)
6102 		return err;
6103 
6104 	mutex_lock(&conf->cache_size_mutex);
6105 	while (size > conf->max_nr_stripes)
6106 		if (!grow_one_stripe(conf, GFP_KERNEL))
6107 			break;
6108 	mutex_unlock(&conf->cache_size_mutex);
6109 
6110 	return 0;
6111 }
6112 EXPORT_SYMBOL(raid5_set_cache_size);
6113 
6114 static ssize_t
6115 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6116 {
6117 	struct r5conf *conf;
6118 	unsigned long new;
6119 	int err;
6120 
6121 	if (len >= PAGE_SIZE)
6122 		return -EINVAL;
6123 	if (kstrtoul(page, 10, &new))
6124 		return -EINVAL;
6125 	err = mddev_lock(mddev);
6126 	if (err)
6127 		return err;
6128 	conf = mddev->private;
6129 	if (!conf)
6130 		err = -ENODEV;
6131 	else
6132 		err = raid5_set_cache_size(mddev, new);
6133 	mddev_unlock(mddev);
6134 
6135 	return err ?: len;
6136 }
6137 
6138 static struct md_sysfs_entry
6139 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6140 				raid5_show_stripe_cache_size,
6141 				raid5_store_stripe_cache_size);
6142 
6143 static ssize_t
6144 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6145 {
6146 	struct r5conf *conf = mddev->private;
6147 	if (conf)
6148 		return sprintf(page, "%d\n", conf->rmw_level);
6149 	else
6150 		return 0;
6151 }
6152 
6153 static ssize_t
6154 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6155 {
6156 	struct r5conf *conf = mddev->private;
6157 	unsigned long new;
6158 
6159 	if (!conf)
6160 		return -ENODEV;
6161 
6162 	if (len >= PAGE_SIZE)
6163 		return -EINVAL;
6164 
6165 	if (kstrtoul(page, 10, &new))
6166 		return -EINVAL;
6167 
6168 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6169 		return -EINVAL;
6170 
6171 	if (new != PARITY_DISABLE_RMW &&
6172 	    new != PARITY_ENABLE_RMW &&
6173 	    new != PARITY_PREFER_RMW)
6174 		return -EINVAL;
6175 
6176 	conf->rmw_level = new;
6177 	return len;
6178 }
6179 
6180 static struct md_sysfs_entry
6181 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6182 			 raid5_show_rmw_level,
6183 			 raid5_store_rmw_level);
6184 
6185 
6186 static ssize_t
6187 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6188 {
6189 	struct r5conf *conf;
6190 	int ret = 0;
6191 	spin_lock(&mddev->lock);
6192 	conf = mddev->private;
6193 	if (conf)
6194 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6195 	spin_unlock(&mddev->lock);
6196 	return ret;
6197 }
6198 
6199 static ssize_t
6200 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6201 {
6202 	struct r5conf *conf;
6203 	unsigned long new;
6204 	int err;
6205 
6206 	if (len >= PAGE_SIZE)
6207 		return -EINVAL;
6208 	if (kstrtoul(page, 10, &new))
6209 		return -EINVAL;
6210 
6211 	err = mddev_lock(mddev);
6212 	if (err)
6213 		return err;
6214 	conf = mddev->private;
6215 	if (!conf)
6216 		err = -ENODEV;
6217 	else if (new > conf->min_nr_stripes)
6218 		err = -EINVAL;
6219 	else
6220 		conf->bypass_threshold = new;
6221 	mddev_unlock(mddev);
6222 	return err ?: len;
6223 }
6224 
6225 static struct md_sysfs_entry
6226 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6227 					S_IRUGO | S_IWUSR,
6228 					raid5_show_preread_threshold,
6229 					raid5_store_preread_threshold);
6230 
6231 static ssize_t
6232 raid5_show_skip_copy(struct mddev *mddev, char *page)
6233 {
6234 	struct r5conf *conf;
6235 	int ret = 0;
6236 	spin_lock(&mddev->lock);
6237 	conf = mddev->private;
6238 	if (conf)
6239 		ret = sprintf(page, "%d\n", conf->skip_copy);
6240 	spin_unlock(&mddev->lock);
6241 	return ret;
6242 }
6243 
6244 static ssize_t
6245 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6246 {
6247 	struct r5conf *conf;
6248 	unsigned long new;
6249 	int err;
6250 
6251 	if (len >= PAGE_SIZE)
6252 		return -EINVAL;
6253 	if (kstrtoul(page, 10, &new))
6254 		return -EINVAL;
6255 	new = !!new;
6256 
6257 	err = mddev_lock(mddev);
6258 	if (err)
6259 		return err;
6260 	conf = mddev->private;
6261 	if (!conf)
6262 		err = -ENODEV;
6263 	else if (new != conf->skip_copy) {
6264 		mddev_suspend(mddev);
6265 		conf->skip_copy = new;
6266 		if (new)
6267 			mddev->queue->backing_dev_info.capabilities |=
6268 				BDI_CAP_STABLE_WRITES;
6269 		else
6270 			mddev->queue->backing_dev_info.capabilities &=
6271 				~BDI_CAP_STABLE_WRITES;
6272 		mddev_resume(mddev);
6273 	}
6274 	mddev_unlock(mddev);
6275 	return err ?: len;
6276 }
6277 
6278 static struct md_sysfs_entry
6279 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6280 					raid5_show_skip_copy,
6281 					raid5_store_skip_copy);
6282 
6283 static ssize_t
6284 stripe_cache_active_show(struct mddev *mddev, char *page)
6285 {
6286 	struct r5conf *conf = mddev->private;
6287 	if (conf)
6288 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6289 	else
6290 		return 0;
6291 }
6292 
6293 static struct md_sysfs_entry
6294 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6295 
6296 static ssize_t
6297 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6298 {
6299 	struct r5conf *conf;
6300 	int ret = 0;
6301 	spin_lock(&mddev->lock);
6302 	conf = mddev->private;
6303 	if (conf)
6304 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6305 	spin_unlock(&mddev->lock);
6306 	return ret;
6307 }
6308 
6309 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6310 			       int *group_cnt,
6311 			       int *worker_cnt_per_group,
6312 			       struct r5worker_group **worker_groups);
6313 static ssize_t
6314 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6315 {
6316 	struct r5conf *conf;
6317 	unsigned long new;
6318 	int err;
6319 	struct r5worker_group *new_groups, *old_groups;
6320 	int group_cnt, worker_cnt_per_group;
6321 
6322 	if (len >= PAGE_SIZE)
6323 		return -EINVAL;
6324 	if (kstrtoul(page, 10, &new))
6325 		return -EINVAL;
6326 
6327 	err = mddev_lock(mddev);
6328 	if (err)
6329 		return err;
6330 	conf = mddev->private;
6331 	if (!conf)
6332 		err = -ENODEV;
6333 	else if (new != conf->worker_cnt_per_group) {
6334 		mddev_suspend(mddev);
6335 
6336 		old_groups = conf->worker_groups;
6337 		if (old_groups)
6338 			flush_workqueue(raid5_wq);
6339 
6340 		err = alloc_thread_groups(conf, new,
6341 					  &group_cnt, &worker_cnt_per_group,
6342 					  &new_groups);
6343 		if (!err) {
6344 			spin_lock_irq(&conf->device_lock);
6345 			conf->group_cnt = group_cnt;
6346 			conf->worker_cnt_per_group = worker_cnt_per_group;
6347 			conf->worker_groups = new_groups;
6348 			spin_unlock_irq(&conf->device_lock);
6349 
6350 			if (old_groups)
6351 				kfree(old_groups[0].workers);
6352 			kfree(old_groups);
6353 		}
6354 		mddev_resume(mddev);
6355 	}
6356 	mddev_unlock(mddev);
6357 
6358 	return err ?: len;
6359 }
6360 
6361 static struct md_sysfs_entry
6362 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6363 				raid5_show_group_thread_cnt,
6364 				raid5_store_group_thread_cnt);
6365 
6366 static struct attribute *raid5_attrs[] =  {
6367 	&raid5_stripecache_size.attr,
6368 	&raid5_stripecache_active.attr,
6369 	&raid5_preread_bypass_threshold.attr,
6370 	&raid5_group_thread_cnt.attr,
6371 	&raid5_skip_copy.attr,
6372 	&raid5_rmw_level.attr,
6373 	&r5c_journal_mode.attr,
6374 	NULL,
6375 };
6376 static struct attribute_group raid5_attrs_group = {
6377 	.name = NULL,
6378 	.attrs = raid5_attrs,
6379 };
6380 
6381 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6382 			       int *group_cnt,
6383 			       int *worker_cnt_per_group,
6384 			       struct r5worker_group **worker_groups)
6385 {
6386 	int i, j, k;
6387 	ssize_t size;
6388 	struct r5worker *workers;
6389 
6390 	*worker_cnt_per_group = cnt;
6391 	if (cnt == 0) {
6392 		*group_cnt = 0;
6393 		*worker_groups = NULL;
6394 		return 0;
6395 	}
6396 	*group_cnt = num_possible_nodes();
6397 	size = sizeof(struct r5worker) * cnt;
6398 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6399 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6400 				*group_cnt, GFP_NOIO);
6401 	if (!*worker_groups || !workers) {
6402 		kfree(workers);
6403 		kfree(*worker_groups);
6404 		return -ENOMEM;
6405 	}
6406 
6407 	for (i = 0; i < *group_cnt; i++) {
6408 		struct r5worker_group *group;
6409 
6410 		group = &(*worker_groups)[i];
6411 		INIT_LIST_HEAD(&group->handle_list);
6412 		group->conf = conf;
6413 		group->workers = workers + i * cnt;
6414 
6415 		for (j = 0; j < cnt; j++) {
6416 			struct r5worker *worker = group->workers + j;
6417 			worker->group = group;
6418 			INIT_WORK(&worker->work, raid5_do_work);
6419 
6420 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6421 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6422 		}
6423 	}
6424 
6425 	return 0;
6426 }
6427 
6428 static void free_thread_groups(struct r5conf *conf)
6429 {
6430 	if (conf->worker_groups)
6431 		kfree(conf->worker_groups[0].workers);
6432 	kfree(conf->worker_groups);
6433 	conf->worker_groups = NULL;
6434 }
6435 
6436 static sector_t
6437 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6438 {
6439 	struct r5conf *conf = mddev->private;
6440 
6441 	if (!sectors)
6442 		sectors = mddev->dev_sectors;
6443 	if (!raid_disks)
6444 		/* size is defined by the smallest of previous and new size */
6445 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6446 
6447 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6448 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6449 	return sectors * (raid_disks - conf->max_degraded);
6450 }
6451 
6452 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6453 {
6454 	safe_put_page(percpu->spare_page);
6455 	if (percpu->scribble)
6456 		flex_array_free(percpu->scribble);
6457 	percpu->spare_page = NULL;
6458 	percpu->scribble = NULL;
6459 }
6460 
6461 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6462 {
6463 	if (conf->level == 6 && !percpu->spare_page)
6464 		percpu->spare_page = alloc_page(GFP_KERNEL);
6465 	if (!percpu->scribble)
6466 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6467 						      conf->previous_raid_disks),
6468 						  max(conf->chunk_sectors,
6469 						      conf->prev_chunk_sectors)
6470 						   / STRIPE_SECTORS,
6471 						  GFP_KERNEL);
6472 
6473 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6474 		free_scratch_buffer(conf, percpu);
6475 		return -ENOMEM;
6476 	}
6477 
6478 	return 0;
6479 }
6480 
6481 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6482 {
6483 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6484 
6485 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6486 	return 0;
6487 }
6488 
6489 static void raid5_free_percpu(struct r5conf *conf)
6490 {
6491 	if (!conf->percpu)
6492 		return;
6493 
6494 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6495 	free_percpu(conf->percpu);
6496 }
6497 
6498 static void free_conf(struct r5conf *conf)
6499 {
6500 	int i;
6501 
6502 	if (conf->log)
6503 		r5l_exit_log(conf->log);
6504 	if (conf->shrinker.nr_deferred)
6505 		unregister_shrinker(&conf->shrinker);
6506 
6507 	free_thread_groups(conf);
6508 	shrink_stripes(conf);
6509 	raid5_free_percpu(conf);
6510 	for (i = 0; i < conf->pool_size; i++)
6511 		if (conf->disks[i].extra_page)
6512 			put_page(conf->disks[i].extra_page);
6513 	kfree(conf->disks);
6514 	kfree(conf->stripe_hashtbl);
6515 	kfree(conf);
6516 }
6517 
6518 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6519 {
6520 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6521 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6522 
6523 	if (alloc_scratch_buffer(conf, percpu)) {
6524 		pr_warn("%s: failed memory allocation for cpu%u\n",
6525 			__func__, cpu);
6526 		return -ENOMEM;
6527 	}
6528 	return 0;
6529 }
6530 
6531 static int raid5_alloc_percpu(struct r5conf *conf)
6532 {
6533 	int err = 0;
6534 
6535 	conf->percpu = alloc_percpu(struct raid5_percpu);
6536 	if (!conf->percpu)
6537 		return -ENOMEM;
6538 
6539 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6540 	if (!err) {
6541 		conf->scribble_disks = max(conf->raid_disks,
6542 			conf->previous_raid_disks);
6543 		conf->scribble_sectors = max(conf->chunk_sectors,
6544 			conf->prev_chunk_sectors);
6545 	}
6546 	return err;
6547 }
6548 
6549 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6550 				      struct shrink_control *sc)
6551 {
6552 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6553 	unsigned long ret = SHRINK_STOP;
6554 
6555 	if (mutex_trylock(&conf->cache_size_mutex)) {
6556 		ret= 0;
6557 		while (ret < sc->nr_to_scan &&
6558 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6559 			if (drop_one_stripe(conf) == 0) {
6560 				ret = SHRINK_STOP;
6561 				break;
6562 			}
6563 			ret++;
6564 		}
6565 		mutex_unlock(&conf->cache_size_mutex);
6566 	}
6567 	return ret;
6568 }
6569 
6570 static unsigned long raid5_cache_count(struct shrinker *shrink,
6571 				       struct shrink_control *sc)
6572 {
6573 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6574 
6575 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6576 		/* unlikely, but not impossible */
6577 		return 0;
6578 	return conf->max_nr_stripes - conf->min_nr_stripes;
6579 }
6580 
6581 static struct r5conf *setup_conf(struct mddev *mddev)
6582 {
6583 	struct r5conf *conf;
6584 	int raid_disk, memory, max_disks;
6585 	struct md_rdev *rdev;
6586 	struct disk_info *disk;
6587 	char pers_name[6];
6588 	int i;
6589 	int group_cnt, worker_cnt_per_group;
6590 	struct r5worker_group *new_group;
6591 
6592 	if (mddev->new_level != 5
6593 	    && mddev->new_level != 4
6594 	    && mddev->new_level != 6) {
6595 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6596 			mdname(mddev), mddev->new_level);
6597 		return ERR_PTR(-EIO);
6598 	}
6599 	if ((mddev->new_level == 5
6600 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6601 	    (mddev->new_level == 6
6602 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6603 		pr_warn("md/raid:%s: layout %d not supported\n",
6604 			mdname(mddev), mddev->new_layout);
6605 		return ERR_PTR(-EIO);
6606 	}
6607 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6608 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6609 			mdname(mddev), mddev->raid_disks);
6610 		return ERR_PTR(-EINVAL);
6611 	}
6612 
6613 	if (!mddev->new_chunk_sectors ||
6614 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6615 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6616 		pr_warn("md/raid:%s: invalid chunk size %d\n",
6617 			mdname(mddev), mddev->new_chunk_sectors << 9);
6618 		return ERR_PTR(-EINVAL);
6619 	}
6620 
6621 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6622 	if (conf == NULL)
6623 		goto abort;
6624 	/* Don't enable multi-threading by default*/
6625 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6626 				 &new_group)) {
6627 		conf->group_cnt = group_cnt;
6628 		conf->worker_cnt_per_group = worker_cnt_per_group;
6629 		conf->worker_groups = new_group;
6630 	} else
6631 		goto abort;
6632 	spin_lock_init(&conf->device_lock);
6633 	seqcount_init(&conf->gen_lock);
6634 	mutex_init(&conf->cache_size_mutex);
6635 	init_waitqueue_head(&conf->wait_for_quiescent);
6636 	init_waitqueue_head(&conf->wait_for_stripe);
6637 	init_waitqueue_head(&conf->wait_for_overlap);
6638 	INIT_LIST_HEAD(&conf->handle_list);
6639 	INIT_LIST_HEAD(&conf->hold_list);
6640 	INIT_LIST_HEAD(&conf->delayed_list);
6641 	INIT_LIST_HEAD(&conf->bitmap_list);
6642 	bio_list_init(&conf->return_bi);
6643 	init_llist_head(&conf->released_stripes);
6644 	atomic_set(&conf->active_stripes, 0);
6645 	atomic_set(&conf->preread_active_stripes, 0);
6646 	atomic_set(&conf->active_aligned_reads, 0);
6647 	conf->bypass_threshold = BYPASS_THRESHOLD;
6648 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6649 
6650 	conf->raid_disks = mddev->raid_disks;
6651 	if (mddev->reshape_position == MaxSector)
6652 		conf->previous_raid_disks = mddev->raid_disks;
6653 	else
6654 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6655 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6656 
6657 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6658 			      GFP_KERNEL);
6659 
6660 	if (!conf->disks)
6661 		goto abort;
6662 
6663 	for (i = 0; i < max_disks; i++) {
6664 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6665 		if (!conf->disks[i].extra_page)
6666 			goto abort;
6667 	}
6668 
6669 	conf->mddev = mddev;
6670 
6671 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6672 		goto abort;
6673 
6674 	/* We init hash_locks[0] separately to that it can be used
6675 	 * as the reference lock in the spin_lock_nest_lock() call
6676 	 * in lock_all_device_hash_locks_irq in order to convince
6677 	 * lockdep that we know what we are doing.
6678 	 */
6679 	spin_lock_init(conf->hash_locks);
6680 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6681 		spin_lock_init(conf->hash_locks + i);
6682 
6683 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6684 		INIT_LIST_HEAD(conf->inactive_list + i);
6685 
6686 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6687 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6688 
6689 	atomic_set(&conf->r5c_cached_full_stripes, 0);
6690 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6691 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
6692 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6693 
6694 	conf->level = mddev->new_level;
6695 	conf->chunk_sectors = mddev->new_chunk_sectors;
6696 	if (raid5_alloc_percpu(conf) != 0)
6697 		goto abort;
6698 
6699 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6700 
6701 	rdev_for_each(rdev, mddev) {
6702 		raid_disk = rdev->raid_disk;
6703 		if (raid_disk >= max_disks
6704 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6705 			continue;
6706 		disk = conf->disks + raid_disk;
6707 
6708 		if (test_bit(Replacement, &rdev->flags)) {
6709 			if (disk->replacement)
6710 				goto abort;
6711 			disk->replacement = rdev;
6712 		} else {
6713 			if (disk->rdev)
6714 				goto abort;
6715 			disk->rdev = rdev;
6716 		}
6717 
6718 		if (test_bit(In_sync, &rdev->flags)) {
6719 			char b[BDEVNAME_SIZE];
6720 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
6721 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6722 		} else if (rdev->saved_raid_disk != raid_disk)
6723 			/* Cannot rely on bitmap to complete recovery */
6724 			conf->fullsync = 1;
6725 	}
6726 
6727 	conf->level = mddev->new_level;
6728 	if (conf->level == 6) {
6729 		conf->max_degraded = 2;
6730 		if (raid6_call.xor_syndrome)
6731 			conf->rmw_level = PARITY_ENABLE_RMW;
6732 		else
6733 			conf->rmw_level = PARITY_DISABLE_RMW;
6734 	} else {
6735 		conf->max_degraded = 1;
6736 		conf->rmw_level = PARITY_ENABLE_RMW;
6737 	}
6738 	conf->algorithm = mddev->new_layout;
6739 	conf->reshape_progress = mddev->reshape_position;
6740 	if (conf->reshape_progress != MaxSector) {
6741 		conf->prev_chunk_sectors = mddev->chunk_sectors;
6742 		conf->prev_algo = mddev->layout;
6743 	} else {
6744 		conf->prev_chunk_sectors = conf->chunk_sectors;
6745 		conf->prev_algo = conf->algorithm;
6746 	}
6747 
6748 	conf->min_nr_stripes = NR_STRIPES;
6749 	if (mddev->reshape_position != MaxSector) {
6750 		int stripes = max_t(int,
6751 			((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
6752 			((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
6753 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
6754 		if (conf->min_nr_stripes != NR_STRIPES)
6755 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
6756 				mdname(mddev), conf->min_nr_stripes);
6757 	}
6758 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6759 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6760 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6761 	if (grow_stripes(conf, conf->min_nr_stripes)) {
6762 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
6763 			mdname(mddev), memory);
6764 		goto abort;
6765 	} else
6766 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
6767 	/*
6768 	 * Losing a stripe head costs more than the time to refill it,
6769 	 * it reduces the queue depth and so can hurt throughput.
6770 	 * So set it rather large, scaled by number of devices.
6771 	 */
6772 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6773 	conf->shrinker.scan_objects = raid5_cache_scan;
6774 	conf->shrinker.count_objects = raid5_cache_count;
6775 	conf->shrinker.batch = 128;
6776 	conf->shrinker.flags = 0;
6777 	if (register_shrinker(&conf->shrinker)) {
6778 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
6779 			mdname(mddev));
6780 		goto abort;
6781 	}
6782 
6783 	sprintf(pers_name, "raid%d", mddev->new_level);
6784 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
6785 	if (!conf->thread) {
6786 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
6787 			mdname(mddev));
6788 		goto abort;
6789 	}
6790 
6791 	return conf;
6792 
6793  abort:
6794 	if (conf) {
6795 		free_conf(conf);
6796 		return ERR_PTR(-EIO);
6797 	} else
6798 		return ERR_PTR(-ENOMEM);
6799 }
6800 
6801 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6802 {
6803 	switch (algo) {
6804 	case ALGORITHM_PARITY_0:
6805 		if (raid_disk < max_degraded)
6806 			return 1;
6807 		break;
6808 	case ALGORITHM_PARITY_N:
6809 		if (raid_disk >= raid_disks - max_degraded)
6810 			return 1;
6811 		break;
6812 	case ALGORITHM_PARITY_0_6:
6813 		if (raid_disk == 0 ||
6814 		    raid_disk == raid_disks - 1)
6815 			return 1;
6816 		break;
6817 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6818 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6819 	case ALGORITHM_LEFT_SYMMETRIC_6:
6820 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6821 		if (raid_disk == raid_disks - 1)
6822 			return 1;
6823 	}
6824 	return 0;
6825 }
6826 
6827 static int raid5_run(struct mddev *mddev)
6828 {
6829 	struct r5conf *conf;
6830 	int working_disks = 0;
6831 	int dirty_parity_disks = 0;
6832 	struct md_rdev *rdev;
6833 	struct md_rdev *journal_dev = NULL;
6834 	sector_t reshape_offset = 0;
6835 	int i;
6836 	long long min_offset_diff = 0;
6837 	int first = 1;
6838 
6839 	if (mddev->recovery_cp != MaxSector)
6840 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
6841 			  mdname(mddev));
6842 
6843 	rdev_for_each(rdev, mddev) {
6844 		long long diff;
6845 
6846 		if (test_bit(Journal, &rdev->flags)) {
6847 			journal_dev = rdev;
6848 			continue;
6849 		}
6850 		if (rdev->raid_disk < 0)
6851 			continue;
6852 		diff = (rdev->new_data_offset - rdev->data_offset);
6853 		if (first) {
6854 			min_offset_diff = diff;
6855 			first = 0;
6856 		} else if (mddev->reshape_backwards &&
6857 			 diff < min_offset_diff)
6858 			min_offset_diff = diff;
6859 		else if (!mddev->reshape_backwards &&
6860 			 diff > min_offset_diff)
6861 			min_offset_diff = diff;
6862 	}
6863 
6864 	if (mddev->reshape_position != MaxSector) {
6865 		/* Check that we can continue the reshape.
6866 		 * Difficulties arise if the stripe we would write to
6867 		 * next is at or after the stripe we would read from next.
6868 		 * For a reshape that changes the number of devices, this
6869 		 * is only possible for a very short time, and mdadm makes
6870 		 * sure that time appears to have past before assembling
6871 		 * the array.  So we fail if that time hasn't passed.
6872 		 * For a reshape that keeps the number of devices the same
6873 		 * mdadm must be monitoring the reshape can keeping the
6874 		 * critical areas read-only and backed up.  It will start
6875 		 * the array in read-only mode, so we check for that.
6876 		 */
6877 		sector_t here_new, here_old;
6878 		int old_disks;
6879 		int max_degraded = (mddev->level == 6 ? 2 : 1);
6880 		int chunk_sectors;
6881 		int new_data_disks;
6882 
6883 		if (journal_dev) {
6884 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
6885 				mdname(mddev));
6886 			return -EINVAL;
6887 		}
6888 
6889 		if (mddev->new_level != mddev->level) {
6890 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
6891 				mdname(mddev));
6892 			return -EINVAL;
6893 		}
6894 		old_disks = mddev->raid_disks - mddev->delta_disks;
6895 		/* reshape_position must be on a new-stripe boundary, and one
6896 		 * further up in new geometry must map after here in old
6897 		 * geometry.
6898 		 * If the chunk sizes are different, then as we perform reshape
6899 		 * in units of the largest of the two, reshape_position needs
6900 		 * be a multiple of the largest chunk size times new data disks.
6901 		 */
6902 		here_new = mddev->reshape_position;
6903 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6904 		new_data_disks = mddev->raid_disks - max_degraded;
6905 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6906 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
6907 				mdname(mddev));
6908 			return -EINVAL;
6909 		}
6910 		reshape_offset = here_new * chunk_sectors;
6911 		/* here_new is the stripe we will write to */
6912 		here_old = mddev->reshape_position;
6913 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6914 		/* here_old is the first stripe that we might need to read
6915 		 * from */
6916 		if (mddev->delta_disks == 0) {
6917 			/* We cannot be sure it is safe to start an in-place
6918 			 * reshape.  It is only safe if user-space is monitoring
6919 			 * and taking constant backups.
6920 			 * mdadm always starts a situation like this in
6921 			 * readonly mode so it can take control before
6922 			 * allowing any writes.  So just check for that.
6923 			 */
6924 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6925 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6926 				/* not really in-place - so OK */;
6927 			else if (mddev->ro == 0) {
6928 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
6929 					mdname(mddev));
6930 				return -EINVAL;
6931 			}
6932 		} else if (mddev->reshape_backwards
6933 		    ? (here_new * chunk_sectors + min_offset_diff <=
6934 		       here_old * chunk_sectors)
6935 		    : (here_new * chunk_sectors >=
6936 		       here_old * chunk_sectors + (-min_offset_diff))) {
6937 			/* Reading from the same stripe as writing to - bad */
6938 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
6939 				mdname(mddev));
6940 			return -EINVAL;
6941 		}
6942 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
6943 		/* OK, we should be able to continue; */
6944 	} else {
6945 		BUG_ON(mddev->level != mddev->new_level);
6946 		BUG_ON(mddev->layout != mddev->new_layout);
6947 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6948 		BUG_ON(mddev->delta_disks != 0);
6949 	}
6950 
6951 	if (mddev->private == NULL)
6952 		conf = setup_conf(mddev);
6953 	else
6954 		conf = mddev->private;
6955 
6956 	if (IS_ERR(conf))
6957 		return PTR_ERR(conf);
6958 
6959 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
6960 		if (!journal_dev) {
6961 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
6962 				mdname(mddev));
6963 			mddev->ro = 1;
6964 			set_disk_ro(mddev->gendisk, 1);
6965 		} else if (mddev->recovery_cp == MaxSector)
6966 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
6967 	}
6968 
6969 	conf->min_offset_diff = min_offset_diff;
6970 	mddev->thread = conf->thread;
6971 	conf->thread = NULL;
6972 	mddev->private = conf;
6973 
6974 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6975 	     i++) {
6976 		rdev = conf->disks[i].rdev;
6977 		if (!rdev && conf->disks[i].replacement) {
6978 			/* The replacement is all we have yet */
6979 			rdev = conf->disks[i].replacement;
6980 			conf->disks[i].replacement = NULL;
6981 			clear_bit(Replacement, &rdev->flags);
6982 			conf->disks[i].rdev = rdev;
6983 		}
6984 		if (!rdev)
6985 			continue;
6986 		if (conf->disks[i].replacement &&
6987 		    conf->reshape_progress != MaxSector) {
6988 			/* replacements and reshape simply do not mix. */
6989 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
6990 			goto abort;
6991 		}
6992 		if (test_bit(In_sync, &rdev->flags)) {
6993 			working_disks++;
6994 			continue;
6995 		}
6996 		/* This disc is not fully in-sync.  However if it
6997 		 * just stored parity (beyond the recovery_offset),
6998 		 * when we don't need to be concerned about the
6999 		 * array being dirty.
7000 		 * When reshape goes 'backwards', we never have
7001 		 * partially completed devices, so we only need
7002 		 * to worry about reshape going forwards.
7003 		 */
7004 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7005 		if (mddev->major_version == 0 &&
7006 		    mddev->minor_version > 90)
7007 			rdev->recovery_offset = reshape_offset;
7008 
7009 		if (rdev->recovery_offset < reshape_offset) {
7010 			/* We need to check old and new layout */
7011 			if (!only_parity(rdev->raid_disk,
7012 					 conf->algorithm,
7013 					 conf->raid_disks,
7014 					 conf->max_degraded))
7015 				continue;
7016 		}
7017 		if (!only_parity(rdev->raid_disk,
7018 				 conf->prev_algo,
7019 				 conf->previous_raid_disks,
7020 				 conf->max_degraded))
7021 			continue;
7022 		dirty_parity_disks++;
7023 	}
7024 
7025 	/*
7026 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7027 	 */
7028 	mddev->degraded = calc_degraded(conf);
7029 
7030 	if (has_failed(conf)) {
7031 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7032 			mdname(mddev), mddev->degraded, conf->raid_disks);
7033 		goto abort;
7034 	}
7035 
7036 	/* device size must be a multiple of chunk size */
7037 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7038 	mddev->resync_max_sectors = mddev->dev_sectors;
7039 
7040 	if (mddev->degraded > dirty_parity_disks &&
7041 	    mddev->recovery_cp != MaxSector) {
7042 		if (mddev->ok_start_degraded)
7043 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7044 				mdname(mddev));
7045 		else {
7046 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7047 				mdname(mddev));
7048 			goto abort;
7049 		}
7050 	}
7051 
7052 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7053 		mdname(mddev), conf->level,
7054 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7055 		mddev->new_layout);
7056 
7057 	print_raid5_conf(conf);
7058 
7059 	if (conf->reshape_progress != MaxSector) {
7060 		conf->reshape_safe = conf->reshape_progress;
7061 		atomic_set(&conf->reshape_stripes, 0);
7062 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7063 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7064 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7065 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7066 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7067 							"reshape");
7068 	}
7069 
7070 	/* Ok, everything is just fine now */
7071 	if (mddev->to_remove == &raid5_attrs_group)
7072 		mddev->to_remove = NULL;
7073 	else if (mddev->kobj.sd &&
7074 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7075 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7076 			mdname(mddev));
7077 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7078 
7079 	if (mddev->queue) {
7080 		int chunk_size;
7081 		bool discard_supported = true;
7082 		/* read-ahead size must cover two whole stripes, which
7083 		 * is 2 * (datadisks) * chunksize where 'n' is the
7084 		 * number of raid devices
7085 		 */
7086 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7087 		int stripe = data_disks *
7088 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7089 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7090 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7091 
7092 		chunk_size = mddev->chunk_sectors << 9;
7093 		blk_queue_io_min(mddev->queue, chunk_size);
7094 		blk_queue_io_opt(mddev->queue, chunk_size *
7095 				 (conf->raid_disks - conf->max_degraded));
7096 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7097 		/*
7098 		 * We can only discard a whole stripe. It doesn't make sense to
7099 		 * discard data disk but write parity disk
7100 		 */
7101 		stripe = stripe * PAGE_SIZE;
7102 		/* Round up to power of 2, as discard handling
7103 		 * currently assumes that */
7104 		while ((stripe-1) & stripe)
7105 			stripe = (stripe | (stripe-1)) + 1;
7106 		mddev->queue->limits.discard_alignment = stripe;
7107 		mddev->queue->limits.discard_granularity = stripe;
7108 
7109 		/*
7110 		 * We use 16-bit counter of active stripes in bi_phys_segments
7111 		 * (minus one for over-loaded initialization)
7112 		 */
7113 		blk_queue_max_hw_sectors(mddev->queue, 0xfffe * STRIPE_SECTORS);
7114 		blk_queue_max_discard_sectors(mddev->queue,
7115 					      0xfffe * STRIPE_SECTORS);
7116 
7117 		/*
7118 		 * unaligned part of discard request will be ignored, so can't
7119 		 * guarantee discard_zeroes_data
7120 		 */
7121 		mddev->queue->limits.discard_zeroes_data = 0;
7122 
7123 		blk_queue_max_write_same_sectors(mddev->queue, 0);
7124 
7125 		rdev_for_each(rdev, mddev) {
7126 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7127 					  rdev->data_offset << 9);
7128 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7129 					  rdev->new_data_offset << 9);
7130 			/*
7131 			 * discard_zeroes_data is required, otherwise data
7132 			 * could be lost. Consider a scenario: discard a stripe
7133 			 * (the stripe could be inconsistent if
7134 			 * discard_zeroes_data is 0); write one disk of the
7135 			 * stripe (the stripe could be inconsistent again
7136 			 * depending on which disks are used to calculate
7137 			 * parity); the disk is broken; The stripe data of this
7138 			 * disk is lost.
7139 			 */
7140 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7141 			    !bdev_get_queue(rdev->bdev)->
7142 						limits.discard_zeroes_data)
7143 				discard_supported = false;
7144 			/* Unfortunately, discard_zeroes_data is not currently
7145 			 * a guarantee - just a hint.  So we only allow DISCARD
7146 			 * if the sysadmin has confirmed that only safe devices
7147 			 * are in use by setting a module parameter.
7148 			 */
7149 			if (!devices_handle_discard_safely) {
7150 				if (discard_supported) {
7151 					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7152 					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7153 				}
7154 				discard_supported = false;
7155 			}
7156 		}
7157 
7158 		if (discard_supported &&
7159 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7160 		    mddev->queue->limits.discard_granularity >= stripe)
7161 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7162 						mddev->queue);
7163 		else
7164 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7165 						mddev->queue);
7166 
7167 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7168 	}
7169 
7170 	if (journal_dev) {
7171 		char b[BDEVNAME_SIZE];
7172 
7173 		pr_debug("md/raid:%s: using device %s as journal\n",
7174 			 mdname(mddev), bdevname(journal_dev->bdev, b));
7175 		if (r5l_init_log(conf, journal_dev))
7176 			goto abort;
7177 	}
7178 
7179 	return 0;
7180 abort:
7181 	md_unregister_thread(&mddev->thread);
7182 	print_raid5_conf(conf);
7183 	free_conf(conf);
7184 	mddev->private = NULL;
7185 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7186 	return -EIO;
7187 }
7188 
7189 static void raid5_free(struct mddev *mddev, void *priv)
7190 {
7191 	struct r5conf *conf = priv;
7192 
7193 	free_conf(conf);
7194 	mddev->to_remove = &raid5_attrs_group;
7195 }
7196 
7197 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7198 {
7199 	struct r5conf *conf = mddev->private;
7200 	int i;
7201 
7202 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7203 		conf->chunk_sectors / 2, mddev->layout);
7204 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7205 	rcu_read_lock();
7206 	for (i = 0; i < conf->raid_disks; i++) {
7207 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7208 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7209 	}
7210 	rcu_read_unlock();
7211 	seq_printf (seq, "]");
7212 }
7213 
7214 static void print_raid5_conf (struct r5conf *conf)
7215 {
7216 	int i;
7217 	struct disk_info *tmp;
7218 
7219 	pr_debug("RAID conf printout:\n");
7220 	if (!conf) {
7221 		pr_debug("(conf==NULL)\n");
7222 		return;
7223 	}
7224 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7225 	       conf->raid_disks,
7226 	       conf->raid_disks - conf->mddev->degraded);
7227 
7228 	for (i = 0; i < conf->raid_disks; i++) {
7229 		char b[BDEVNAME_SIZE];
7230 		tmp = conf->disks + i;
7231 		if (tmp->rdev)
7232 			pr_debug(" disk %d, o:%d, dev:%s\n",
7233 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7234 			       bdevname(tmp->rdev->bdev, b));
7235 	}
7236 }
7237 
7238 static int raid5_spare_active(struct mddev *mddev)
7239 {
7240 	int i;
7241 	struct r5conf *conf = mddev->private;
7242 	struct disk_info *tmp;
7243 	int count = 0;
7244 	unsigned long flags;
7245 
7246 	for (i = 0; i < conf->raid_disks; i++) {
7247 		tmp = conf->disks + i;
7248 		if (tmp->replacement
7249 		    && tmp->replacement->recovery_offset == MaxSector
7250 		    && !test_bit(Faulty, &tmp->replacement->flags)
7251 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7252 			/* Replacement has just become active. */
7253 			if (!tmp->rdev
7254 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7255 				count++;
7256 			if (tmp->rdev) {
7257 				/* Replaced device not technically faulty,
7258 				 * but we need to be sure it gets removed
7259 				 * and never re-added.
7260 				 */
7261 				set_bit(Faulty, &tmp->rdev->flags);
7262 				sysfs_notify_dirent_safe(
7263 					tmp->rdev->sysfs_state);
7264 			}
7265 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7266 		} else if (tmp->rdev
7267 		    && tmp->rdev->recovery_offset == MaxSector
7268 		    && !test_bit(Faulty, &tmp->rdev->flags)
7269 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7270 			count++;
7271 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7272 		}
7273 	}
7274 	spin_lock_irqsave(&conf->device_lock, flags);
7275 	mddev->degraded = calc_degraded(conf);
7276 	spin_unlock_irqrestore(&conf->device_lock, flags);
7277 	print_raid5_conf(conf);
7278 	return count;
7279 }
7280 
7281 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7282 {
7283 	struct r5conf *conf = mddev->private;
7284 	int err = 0;
7285 	int number = rdev->raid_disk;
7286 	struct md_rdev **rdevp;
7287 	struct disk_info *p = conf->disks + number;
7288 
7289 	print_raid5_conf(conf);
7290 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7291 		struct r5l_log *log;
7292 		/*
7293 		 * we can't wait pending write here, as this is called in
7294 		 * raid5d, wait will deadlock.
7295 		 */
7296 		if (atomic_read(&mddev->writes_pending))
7297 			return -EBUSY;
7298 		log = conf->log;
7299 		conf->log = NULL;
7300 		synchronize_rcu();
7301 		r5l_exit_log(log);
7302 		return 0;
7303 	}
7304 	if (rdev == p->rdev)
7305 		rdevp = &p->rdev;
7306 	else if (rdev == p->replacement)
7307 		rdevp = &p->replacement;
7308 	else
7309 		return 0;
7310 
7311 	if (number >= conf->raid_disks &&
7312 	    conf->reshape_progress == MaxSector)
7313 		clear_bit(In_sync, &rdev->flags);
7314 
7315 	if (test_bit(In_sync, &rdev->flags) ||
7316 	    atomic_read(&rdev->nr_pending)) {
7317 		err = -EBUSY;
7318 		goto abort;
7319 	}
7320 	/* Only remove non-faulty devices if recovery
7321 	 * isn't possible.
7322 	 */
7323 	if (!test_bit(Faulty, &rdev->flags) &&
7324 	    mddev->recovery_disabled != conf->recovery_disabled &&
7325 	    !has_failed(conf) &&
7326 	    (!p->replacement || p->replacement == rdev) &&
7327 	    number < conf->raid_disks) {
7328 		err = -EBUSY;
7329 		goto abort;
7330 	}
7331 	*rdevp = NULL;
7332 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7333 		synchronize_rcu();
7334 		if (atomic_read(&rdev->nr_pending)) {
7335 			/* lost the race, try later */
7336 			err = -EBUSY;
7337 			*rdevp = rdev;
7338 		}
7339 	}
7340 	if (p->replacement) {
7341 		/* We must have just cleared 'rdev' */
7342 		p->rdev = p->replacement;
7343 		clear_bit(Replacement, &p->replacement->flags);
7344 		smp_mb(); /* Make sure other CPUs may see both as identical
7345 			   * but will never see neither - if they are careful
7346 			   */
7347 		p->replacement = NULL;
7348 		clear_bit(WantReplacement, &rdev->flags);
7349 	} else
7350 		/* We might have just removed the Replacement as faulty-
7351 		 * clear the bit just in case
7352 		 */
7353 		clear_bit(WantReplacement, &rdev->flags);
7354 abort:
7355 
7356 	print_raid5_conf(conf);
7357 	return err;
7358 }
7359 
7360 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7361 {
7362 	struct r5conf *conf = mddev->private;
7363 	int err = -EEXIST;
7364 	int disk;
7365 	struct disk_info *p;
7366 	int first = 0;
7367 	int last = conf->raid_disks - 1;
7368 
7369 	if (test_bit(Journal, &rdev->flags)) {
7370 		char b[BDEVNAME_SIZE];
7371 		if (conf->log)
7372 			return -EBUSY;
7373 
7374 		rdev->raid_disk = 0;
7375 		/*
7376 		 * The array is in readonly mode if journal is missing, so no
7377 		 * write requests running. We should be safe
7378 		 */
7379 		r5l_init_log(conf, rdev);
7380 		pr_debug("md/raid:%s: using device %s as journal\n",
7381 			 mdname(mddev), bdevname(rdev->bdev, b));
7382 		return 0;
7383 	}
7384 	if (mddev->recovery_disabled == conf->recovery_disabled)
7385 		return -EBUSY;
7386 
7387 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7388 		/* no point adding a device */
7389 		return -EINVAL;
7390 
7391 	if (rdev->raid_disk >= 0)
7392 		first = last = rdev->raid_disk;
7393 
7394 	/*
7395 	 * find the disk ... but prefer rdev->saved_raid_disk
7396 	 * if possible.
7397 	 */
7398 	if (rdev->saved_raid_disk >= 0 &&
7399 	    rdev->saved_raid_disk >= first &&
7400 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7401 		first = rdev->saved_raid_disk;
7402 
7403 	for (disk = first; disk <= last; disk++) {
7404 		p = conf->disks + disk;
7405 		if (p->rdev == NULL) {
7406 			clear_bit(In_sync, &rdev->flags);
7407 			rdev->raid_disk = disk;
7408 			err = 0;
7409 			if (rdev->saved_raid_disk != disk)
7410 				conf->fullsync = 1;
7411 			rcu_assign_pointer(p->rdev, rdev);
7412 			goto out;
7413 		}
7414 	}
7415 	for (disk = first; disk <= last; disk++) {
7416 		p = conf->disks + disk;
7417 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7418 		    p->replacement == NULL) {
7419 			clear_bit(In_sync, &rdev->flags);
7420 			set_bit(Replacement, &rdev->flags);
7421 			rdev->raid_disk = disk;
7422 			err = 0;
7423 			conf->fullsync = 1;
7424 			rcu_assign_pointer(p->replacement, rdev);
7425 			break;
7426 		}
7427 	}
7428 out:
7429 	print_raid5_conf(conf);
7430 	return err;
7431 }
7432 
7433 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7434 {
7435 	/* no resync is happening, and there is enough space
7436 	 * on all devices, so we can resize.
7437 	 * We need to make sure resync covers any new space.
7438 	 * If the array is shrinking we should possibly wait until
7439 	 * any io in the removed space completes, but it hardly seems
7440 	 * worth it.
7441 	 */
7442 	sector_t newsize;
7443 	struct r5conf *conf = mddev->private;
7444 
7445 	if (conf->log)
7446 		return -EINVAL;
7447 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7448 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7449 	if (mddev->external_size &&
7450 	    mddev->array_sectors > newsize)
7451 		return -EINVAL;
7452 	if (mddev->bitmap) {
7453 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7454 		if (ret)
7455 			return ret;
7456 	}
7457 	md_set_array_sectors(mddev, newsize);
7458 	set_capacity(mddev->gendisk, mddev->array_sectors);
7459 	revalidate_disk(mddev->gendisk);
7460 	if (sectors > mddev->dev_sectors &&
7461 	    mddev->recovery_cp > mddev->dev_sectors) {
7462 		mddev->recovery_cp = mddev->dev_sectors;
7463 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7464 	}
7465 	mddev->dev_sectors = sectors;
7466 	mddev->resync_max_sectors = sectors;
7467 	return 0;
7468 }
7469 
7470 static int check_stripe_cache(struct mddev *mddev)
7471 {
7472 	/* Can only proceed if there are plenty of stripe_heads.
7473 	 * We need a minimum of one full stripe,, and for sensible progress
7474 	 * it is best to have about 4 times that.
7475 	 * If we require 4 times, then the default 256 4K stripe_heads will
7476 	 * allow for chunk sizes up to 256K, which is probably OK.
7477 	 * If the chunk size is greater, user-space should request more
7478 	 * stripe_heads first.
7479 	 */
7480 	struct r5conf *conf = mddev->private;
7481 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7482 	    > conf->min_nr_stripes ||
7483 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7484 	    > conf->min_nr_stripes) {
7485 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7486 			mdname(mddev),
7487 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7488 			 / STRIPE_SIZE)*4);
7489 		return 0;
7490 	}
7491 	return 1;
7492 }
7493 
7494 static int check_reshape(struct mddev *mddev)
7495 {
7496 	struct r5conf *conf = mddev->private;
7497 
7498 	if (conf->log)
7499 		return -EINVAL;
7500 	if (mddev->delta_disks == 0 &&
7501 	    mddev->new_layout == mddev->layout &&
7502 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7503 		return 0; /* nothing to do */
7504 	if (has_failed(conf))
7505 		return -EINVAL;
7506 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7507 		/* We might be able to shrink, but the devices must
7508 		 * be made bigger first.
7509 		 * For raid6, 4 is the minimum size.
7510 		 * Otherwise 2 is the minimum
7511 		 */
7512 		int min = 2;
7513 		if (mddev->level == 6)
7514 			min = 4;
7515 		if (mddev->raid_disks + mddev->delta_disks < min)
7516 			return -EINVAL;
7517 	}
7518 
7519 	if (!check_stripe_cache(mddev))
7520 		return -ENOSPC;
7521 
7522 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7523 	    mddev->delta_disks > 0)
7524 		if (resize_chunks(conf,
7525 				  conf->previous_raid_disks
7526 				  + max(0, mddev->delta_disks),
7527 				  max(mddev->new_chunk_sectors,
7528 				      mddev->chunk_sectors)
7529 			    ) < 0)
7530 			return -ENOMEM;
7531 	return resize_stripes(conf, (conf->previous_raid_disks
7532 				     + mddev->delta_disks));
7533 }
7534 
7535 static int raid5_start_reshape(struct mddev *mddev)
7536 {
7537 	struct r5conf *conf = mddev->private;
7538 	struct md_rdev *rdev;
7539 	int spares = 0;
7540 	unsigned long flags;
7541 
7542 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7543 		return -EBUSY;
7544 
7545 	if (!check_stripe_cache(mddev))
7546 		return -ENOSPC;
7547 
7548 	if (has_failed(conf))
7549 		return -EINVAL;
7550 
7551 	rdev_for_each(rdev, mddev) {
7552 		if (!test_bit(In_sync, &rdev->flags)
7553 		    && !test_bit(Faulty, &rdev->flags))
7554 			spares++;
7555 	}
7556 
7557 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7558 		/* Not enough devices even to make a degraded array
7559 		 * of that size
7560 		 */
7561 		return -EINVAL;
7562 
7563 	/* Refuse to reduce size of the array.  Any reductions in
7564 	 * array size must be through explicit setting of array_size
7565 	 * attribute.
7566 	 */
7567 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7568 	    < mddev->array_sectors) {
7569 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7570 			mdname(mddev));
7571 		return -EINVAL;
7572 	}
7573 
7574 	atomic_set(&conf->reshape_stripes, 0);
7575 	spin_lock_irq(&conf->device_lock);
7576 	write_seqcount_begin(&conf->gen_lock);
7577 	conf->previous_raid_disks = conf->raid_disks;
7578 	conf->raid_disks += mddev->delta_disks;
7579 	conf->prev_chunk_sectors = conf->chunk_sectors;
7580 	conf->chunk_sectors = mddev->new_chunk_sectors;
7581 	conf->prev_algo = conf->algorithm;
7582 	conf->algorithm = mddev->new_layout;
7583 	conf->generation++;
7584 	/* Code that selects data_offset needs to see the generation update
7585 	 * if reshape_progress has been set - so a memory barrier needed.
7586 	 */
7587 	smp_mb();
7588 	if (mddev->reshape_backwards)
7589 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7590 	else
7591 		conf->reshape_progress = 0;
7592 	conf->reshape_safe = conf->reshape_progress;
7593 	write_seqcount_end(&conf->gen_lock);
7594 	spin_unlock_irq(&conf->device_lock);
7595 
7596 	/* Now make sure any requests that proceeded on the assumption
7597 	 * the reshape wasn't running - like Discard or Read - have
7598 	 * completed.
7599 	 */
7600 	mddev_suspend(mddev);
7601 	mddev_resume(mddev);
7602 
7603 	/* Add some new drives, as many as will fit.
7604 	 * We know there are enough to make the newly sized array work.
7605 	 * Don't add devices if we are reducing the number of
7606 	 * devices in the array.  This is because it is not possible
7607 	 * to correctly record the "partially reconstructed" state of
7608 	 * such devices during the reshape and confusion could result.
7609 	 */
7610 	if (mddev->delta_disks >= 0) {
7611 		rdev_for_each(rdev, mddev)
7612 			if (rdev->raid_disk < 0 &&
7613 			    !test_bit(Faulty, &rdev->flags)) {
7614 				if (raid5_add_disk(mddev, rdev) == 0) {
7615 					if (rdev->raid_disk
7616 					    >= conf->previous_raid_disks)
7617 						set_bit(In_sync, &rdev->flags);
7618 					else
7619 						rdev->recovery_offset = 0;
7620 
7621 					if (sysfs_link_rdev(mddev, rdev))
7622 						/* Failure here is OK */;
7623 				}
7624 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7625 				   && !test_bit(Faulty, &rdev->flags)) {
7626 				/* This is a spare that was manually added */
7627 				set_bit(In_sync, &rdev->flags);
7628 			}
7629 
7630 		/* When a reshape changes the number of devices,
7631 		 * ->degraded is measured against the larger of the
7632 		 * pre and post number of devices.
7633 		 */
7634 		spin_lock_irqsave(&conf->device_lock, flags);
7635 		mddev->degraded = calc_degraded(conf);
7636 		spin_unlock_irqrestore(&conf->device_lock, flags);
7637 	}
7638 	mddev->raid_disks = conf->raid_disks;
7639 	mddev->reshape_position = conf->reshape_progress;
7640 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7641 
7642 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7643 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7644 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7645 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7646 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7647 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7648 						"reshape");
7649 	if (!mddev->sync_thread) {
7650 		mddev->recovery = 0;
7651 		spin_lock_irq(&conf->device_lock);
7652 		write_seqcount_begin(&conf->gen_lock);
7653 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7654 		mddev->new_chunk_sectors =
7655 			conf->chunk_sectors = conf->prev_chunk_sectors;
7656 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7657 		rdev_for_each(rdev, mddev)
7658 			rdev->new_data_offset = rdev->data_offset;
7659 		smp_wmb();
7660 		conf->generation --;
7661 		conf->reshape_progress = MaxSector;
7662 		mddev->reshape_position = MaxSector;
7663 		write_seqcount_end(&conf->gen_lock);
7664 		spin_unlock_irq(&conf->device_lock);
7665 		return -EAGAIN;
7666 	}
7667 	conf->reshape_checkpoint = jiffies;
7668 	md_wakeup_thread(mddev->sync_thread);
7669 	md_new_event(mddev);
7670 	return 0;
7671 }
7672 
7673 /* This is called from the reshape thread and should make any
7674  * changes needed in 'conf'
7675  */
7676 static void end_reshape(struct r5conf *conf)
7677 {
7678 
7679 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7680 		struct md_rdev *rdev;
7681 
7682 		spin_lock_irq(&conf->device_lock);
7683 		conf->previous_raid_disks = conf->raid_disks;
7684 		rdev_for_each(rdev, conf->mddev)
7685 			rdev->data_offset = rdev->new_data_offset;
7686 		smp_wmb();
7687 		conf->reshape_progress = MaxSector;
7688 		conf->mddev->reshape_position = MaxSector;
7689 		spin_unlock_irq(&conf->device_lock);
7690 		wake_up(&conf->wait_for_overlap);
7691 
7692 		/* read-ahead size must cover two whole stripes, which is
7693 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7694 		 */
7695 		if (conf->mddev->queue) {
7696 			int data_disks = conf->raid_disks - conf->max_degraded;
7697 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7698 						   / PAGE_SIZE);
7699 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7700 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7701 		}
7702 	}
7703 }
7704 
7705 /* This is called from the raid5d thread with mddev_lock held.
7706  * It makes config changes to the device.
7707  */
7708 static void raid5_finish_reshape(struct mddev *mddev)
7709 {
7710 	struct r5conf *conf = mddev->private;
7711 
7712 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7713 
7714 		if (mddev->delta_disks > 0) {
7715 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7716 			if (mddev->queue) {
7717 				set_capacity(mddev->gendisk, mddev->array_sectors);
7718 				revalidate_disk(mddev->gendisk);
7719 			}
7720 		} else {
7721 			int d;
7722 			spin_lock_irq(&conf->device_lock);
7723 			mddev->degraded = calc_degraded(conf);
7724 			spin_unlock_irq(&conf->device_lock);
7725 			for (d = conf->raid_disks ;
7726 			     d < conf->raid_disks - mddev->delta_disks;
7727 			     d++) {
7728 				struct md_rdev *rdev = conf->disks[d].rdev;
7729 				if (rdev)
7730 					clear_bit(In_sync, &rdev->flags);
7731 				rdev = conf->disks[d].replacement;
7732 				if (rdev)
7733 					clear_bit(In_sync, &rdev->flags);
7734 			}
7735 		}
7736 		mddev->layout = conf->algorithm;
7737 		mddev->chunk_sectors = conf->chunk_sectors;
7738 		mddev->reshape_position = MaxSector;
7739 		mddev->delta_disks = 0;
7740 		mddev->reshape_backwards = 0;
7741 	}
7742 }
7743 
7744 static void raid5_quiesce(struct mddev *mddev, int state)
7745 {
7746 	struct r5conf *conf = mddev->private;
7747 
7748 	switch(state) {
7749 	case 2: /* resume for a suspend */
7750 		wake_up(&conf->wait_for_overlap);
7751 		break;
7752 
7753 	case 1: /* stop all writes */
7754 		lock_all_device_hash_locks_irq(conf);
7755 		/* '2' tells resync/reshape to pause so that all
7756 		 * active stripes can drain
7757 		 */
7758 		r5c_flush_cache(conf, INT_MAX);
7759 		conf->quiesce = 2;
7760 		wait_event_cmd(conf->wait_for_quiescent,
7761 				    atomic_read(&conf->active_stripes) == 0 &&
7762 				    atomic_read(&conf->active_aligned_reads) == 0,
7763 				    unlock_all_device_hash_locks_irq(conf),
7764 				    lock_all_device_hash_locks_irq(conf));
7765 		conf->quiesce = 1;
7766 		unlock_all_device_hash_locks_irq(conf);
7767 		/* allow reshape to continue */
7768 		wake_up(&conf->wait_for_overlap);
7769 		break;
7770 
7771 	case 0: /* re-enable writes */
7772 		lock_all_device_hash_locks_irq(conf);
7773 		conf->quiesce = 0;
7774 		wake_up(&conf->wait_for_quiescent);
7775 		wake_up(&conf->wait_for_overlap);
7776 		unlock_all_device_hash_locks_irq(conf);
7777 		break;
7778 	}
7779 	r5l_quiesce(conf->log, state);
7780 }
7781 
7782 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7783 {
7784 	struct r0conf *raid0_conf = mddev->private;
7785 	sector_t sectors;
7786 
7787 	/* for raid0 takeover only one zone is supported */
7788 	if (raid0_conf->nr_strip_zones > 1) {
7789 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7790 			mdname(mddev));
7791 		return ERR_PTR(-EINVAL);
7792 	}
7793 
7794 	sectors = raid0_conf->strip_zone[0].zone_end;
7795 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7796 	mddev->dev_sectors = sectors;
7797 	mddev->new_level = level;
7798 	mddev->new_layout = ALGORITHM_PARITY_N;
7799 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7800 	mddev->raid_disks += 1;
7801 	mddev->delta_disks = 1;
7802 	/* make sure it will be not marked as dirty */
7803 	mddev->recovery_cp = MaxSector;
7804 
7805 	return setup_conf(mddev);
7806 }
7807 
7808 static void *raid5_takeover_raid1(struct mddev *mddev)
7809 {
7810 	int chunksect;
7811 	void *ret;
7812 
7813 	if (mddev->raid_disks != 2 ||
7814 	    mddev->degraded > 1)
7815 		return ERR_PTR(-EINVAL);
7816 
7817 	/* Should check if there are write-behind devices? */
7818 
7819 	chunksect = 64*2; /* 64K by default */
7820 
7821 	/* The array must be an exact multiple of chunksize */
7822 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
7823 		chunksect >>= 1;
7824 
7825 	if ((chunksect<<9) < STRIPE_SIZE)
7826 		/* array size does not allow a suitable chunk size */
7827 		return ERR_PTR(-EINVAL);
7828 
7829 	mddev->new_level = 5;
7830 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7831 	mddev->new_chunk_sectors = chunksect;
7832 
7833 	ret = setup_conf(mddev);
7834 	if (!IS_ERR(ret))
7835 		mddev_clear_unsupported_flags(mddev,
7836 			UNSUPPORTED_MDDEV_FLAGS);
7837 	return ret;
7838 }
7839 
7840 static void *raid5_takeover_raid6(struct mddev *mddev)
7841 {
7842 	int new_layout;
7843 
7844 	switch (mddev->layout) {
7845 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7846 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7847 		break;
7848 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7849 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7850 		break;
7851 	case ALGORITHM_LEFT_SYMMETRIC_6:
7852 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
7853 		break;
7854 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7855 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7856 		break;
7857 	case ALGORITHM_PARITY_0_6:
7858 		new_layout = ALGORITHM_PARITY_0;
7859 		break;
7860 	case ALGORITHM_PARITY_N:
7861 		new_layout = ALGORITHM_PARITY_N;
7862 		break;
7863 	default:
7864 		return ERR_PTR(-EINVAL);
7865 	}
7866 	mddev->new_level = 5;
7867 	mddev->new_layout = new_layout;
7868 	mddev->delta_disks = -1;
7869 	mddev->raid_disks -= 1;
7870 	return setup_conf(mddev);
7871 }
7872 
7873 static int raid5_check_reshape(struct mddev *mddev)
7874 {
7875 	/* For a 2-drive array, the layout and chunk size can be changed
7876 	 * immediately as not restriping is needed.
7877 	 * For larger arrays we record the new value - after validation
7878 	 * to be used by a reshape pass.
7879 	 */
7880 	struct r5conf *conf = mddev->private;
7881 	int new_chunk = mddev->new_chunk_sectors;
7882 
7883 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7884 		return -EINVAL;
7885 	if (new_chunk > 0) {
7886 		if (!is_power_of_2(new_chunk))
7887 			return -EINVAL;
7888 		if (new_chunk < (PAGE_SIZE>>9))
7889 			return -EINVAL;
7890 		if (mddev->array_sectors & (new_chunk-1))
7891 			/* not factor of array size */
7892 			return -EINVAL;
7893 	}
7894 
7895 	/* They look valid */
7896 
7897 	if (mddev->raid_disks == 2) {
7898 		/* can make the change immediately */
7899 		if (mddev->new_layout >= 0) {
7900 			conf->algorithm = mddev->new_layout;
7901 			mddev->layout = mddev->new_layout;
7902 		}
7903 		if (new_chunk > 0) {
7904 			conf->chunk_sectors = new_chunk ;
7905 			mddev->chunk_sectors = new_chunk;
7906 		}
7907 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7908 		md_wakeup_thread(mddev->thread);
7909 	}
7910 	return check_reshape(mddev);
7911 }
7912 
7913 static int raid6_check_reshape(struct mddev *mddev)
7914 {
7915 	int new_chunk = mddev->new_chunk_sectors;
7916 
7917 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7918 		return -EINVAL;
7919 	if (new_chunk > 0) {
7920 		if (!is_power_of_2(new_chunk))
7921 			return -EINVAL;
7922 		if (new_chunk < (PAGE_SIZE >> 9))
7923 			return -EINVAL;
7924 		if (mddev->array_sectors & (new_chunk-1))
7925 			/* not factor of array size */
7926 			return -EINVAL;
7927 	}
7928 
7929 	/* They look valid */
7930 	return check_reshape(mddev);
7931 }
7932 
7933 static void *raid5_takeover(struct mddev *mddev)
7934 {
7935 	/* raid5 can take over:
7936 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7937 	 *  raid1 - if there are two drives.  We need to know the chunk size
7938 	 *  raid4 - trivial - just use a raid4 layout.
7939 	 *  raid6 - Providing it is a *_6 layout
7940 	 */
7941 	if (mddev->level == 0)
7942 		return raid45_takeover_raid0(mddev, 5);
7943 	if (mddev->level == 1)
7944 		return raid5_takeover_raid1(mddev);
7945 	if (mddev->level == 4) {
7946 		mddev->new_layout = ALGORITHM_PARITY_N;
7947 		mddev->new_level = 5;
7948 		return setup_conf(mddev);
7949 	}
7950 	if (mddev->level == 6)
7951 		return raid5_takeover_raid6(mddev);
7952 
7953 	return ERR_PTR(-EINVAL);
7954 }
7955 
7956 static void *raid4_takeover(struct mddev *mddev)
7957 {
7958 	/* raid4 can take over:
7959 	 *  raid0 - if there is only one strip zone
7960 	 *  raid5 - if layout is right
7961 	 */
7962 	if (mddev->level == 0)
7963 		return raid45_takeover_raid0(mddev, 4);
7964 	if (mddev->level == 5 &&
7965 	    mddev->layout == ALGORITHM_PARITY_N) {
7966 		mddev->new_layout = 0;
7967 		mddev->new_level = 4;
7968 		return setup_conf(mddev);
7969 	}
7970 	return ERR_PTR(-EINVAL);
7971 }
7972 
7973 static struct md_personality raid5_personality;
7974 
7975 static void *raid6_takeover(struct mddev *mddev)
7976 {
7977 	/* Currently can only take over a raid5.  We map the
7978 	 * personality to an equivalent raid6 personality
7979 	 * with the Q block at the end.
7980 	 */
7981 	int new_layout;
7982 
7983 	if (mddev->pers != &raid5_personality)
7984 		return ERR_PTR(-EINVAL);
7985 	if (mddev->degraded > 1)
7986 		return ERR_PTR(-EINVAL);
7987 	if (mddev->raid_disks > 253)
7988 		return ERR_PTR(-EINVAL);
7989 	if (mddev->raid_disks < 3)
7990 		return ERR_PTR(-EINVAL);
7991 
7992 	switch (mddev->layout) {
7993 	case ALGORITHM_LEFT_ASYMMETRIC:
7994 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7995 		break;
7996 	case ALGORITHM_RIGHT_ASYMMETRIC:
7997 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7998 		break;
7999 	case ALGORITHM_LEFT_SYMMETRIC:
8000 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8001 		break;
8002 	case ALGORITHM_RIGHT_SYMMETRIC:
8003 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8004 		break;
8005 	case ALGORITHM_PARITY_0:
8006 		new_layout = ALGORITHM_PARITY_0_6;
8007 		break;
8008 	case ALGORITHM_PARITY_N:
8009 		new_layout = ALGORITHM_PARITY_N;
8010 		break;
8011 	default:
8012 		return ERR_PTR(-EINVAL);
8013 	}
8014 	mddev->new_level = 6;
8015 	mddev->new_layout = new_layout;
8016 	mddev->delta_disks = 1;
8017 	mddev->raid_disks += 1;
8018 	return setup_conf(mddev);
8019 }
8020 
8021 static struct md_personality raid6_personality =
8022 {
8023 	.name		= "raid6",
8024 	.level		= 6,
8025 	.owner		= THIS_MODULE,
8026 	.make_request	= raid5_make_request,
8027 	.run		= raid5_run,
8028 	.free		= raid5_free,
8029 	.status		= raid5_status,
8030 	.error_handler	= raid5_error,
8031 	.hot_add_disk	= raid5_add_disk,
8032 	.hot_remove_disk= raid5_remove_disk,
8033 	.spare_active	= raid5_spare_active,
8034 	.sync_request	= raid5_sync_request,
8035 	.resize		= raid5_resize,
8036 	.size		= raid5_size,
8037 	.check_reshape	= raid6_check_reshape,
8038 	.start_reshape  = raid5_start_reshape,
8039 	.finish_reshape = raid5_finish_reshape,
8040 	.quiesce	= raid5_quiesce,
8041 	.takeover	= raid6_takeover,
8042 	.congested	= raid5_congested,
8043 };
8044 static struct md_personality raid5_personality =
8045 {
8046 	.name		= "raid5",
8047 	.level		= 5,
8048 	.owner		= THIS_MODULE,
8049 	.make_request	= raid5_make_request,
8050 	.run		= raid5_run,
8051 	.free		= raid5_free,
8052 	.status		= raid5_status,
8053 	.error_handler	= raid5_error,
8054 	.hot_add_disk	= raid5_add_disk,
8055 	.hot_remove_disk= raid5_remove_disk,
8056 	.spare_active	= raid5_spare_active,
8057 	.sync_request	= raid5_sync_request,
8058 	.resize		= raid5_resize,
8059 	.size		= raid5_size,
8060 	.check_reshape	= raid5_check_reshape,
8061 	.start_reshape  = raid5_start_reshape,
8062 	.finish_reshape = raid5_finish_reshape,
8063 	.quiesce	= raid5_quiesce,
8064 	.takeover	= raid5_takeover,
8065 	.congested	= raid5_congested,
8066 };
8067 
8068 static struct md_personality raid4_personality =
8069 {
8070 	.name		= "raid4",
8071 	.level		= 4,
8072 	.owner		= THIS_MODULE,
8073 	.make_request	= raid5_make_request,
8074 	.run		= raid5_run,
8075 	.free		= raid5_free,
8076 	.status		= raid5_status,
8077 	.error_handler	= raid5_error,
8078 	.hot_add_disk	= raid5_add_disk,
8079 	.hot_remove_disk= raid5_remove_disk,
8080 	.spare_active	= raid5_spare_active,
8081 	.sync_request	= raid5_sync_request,
8082 	.resize		= raid5_resize,
8083 	.size		= raid5_size,
8084 	.check_reshape	= raid5_check_reshape,
8085 	.start_reshape  = raid5_start_reshape,
8086 	.finish_reshape = raid5_finish_reshape,
8087 	.quiesce	= raid5_quiesce,
8088 	.takeover	= raid4_takeover,
8089 	.congested	= raid5_congested,
8090 };
8091 
8092 static int __init raid5_init(void)
8093 {
8094 	int ret;
8095 
8096 	raid5_wq = alloc_workqueue("raid5wq",
8097 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8098 	if (!raid5_wq)
8099 		return -ENOMEM;
8100 
8101 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8102 				      "md/raid5:prepare",
8103 				      raid456_cpu_up_prepare,
8104 				      raid456_cpu_dead);
8105 	if (ret) {
8106 		destroy_workqueue(raid5_wq);
8107 		return ret;
8108 	}
8109 	register_md_personality(&raid6_personality);
8110 	register_md_personality(&raid5_personality);
8111 	register_md_personality(&raid4_personality);
8112 	return 0;
8113 }
8114 
8115 static void raid5_exit(void)
8116 {
8117 	unregister_md_personality(&raid6_personality);
8118 	unregister_md_personality(&raid5_personality);
8119 	unregister_md_personality(&raid4_personality);
8120 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8121 	destroy_workqueue(raid5_wq);
8122 }
8123 
8124 module_init(raid5_init);
8125 module_exit(raid5_exit);
8126 MODULE_LICENSE("GPL");
8127 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8128 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8129 MODULE_ALIAS("md-raid5");
8130 MODULE_ALIAS("md-raid4");
8131 MODULE_ALIAS("md-level-5");
8132 MODULE_ALIAS("md-level-4");
8133 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8134 MODULE_ALIAS("md-raid6");
8135 MODULE_ALIAS("md-level-6");
8136 
8137 /* This used to be two separate modules, they were: */
8138 MODULE_ALIAS("raid5");
8139 MODULE_ALIAS("raid6");
8140