xref: /openbmc/linux/drivers/md/raid5.c (revision 6a613ac6)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59 
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64 
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67 
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76 
77 #define NR_STRIPES		256
78 #define STRIPE_SIZE		PAGE_SIZE
79 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
81 #define	IO_THRESHOLD		1
82 #define BYPASS_THRESHOLD	1
83 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK		(NR_HASH - 1)
85 #define MAX_STRIPE_BATCH	8
86 
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 	return &conf->stripe_hashtbl[hash];
91 }
92 
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97 
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 	spin_lock_irq(conf->hash_locks + hash);
101 	spin_lock(&conf->device_lock);
102 }
103 
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 	spin_unlock(&conf->device_lock);
107 	spin_unlock_irq(conf->hash_locks + hash);
108 }
109 
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 	int i;
113 	local_irq_disable();
114 	spin_lock(conf->hash_locks);
115 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 	spin_lock(&conf->device_lock);
118 }
119 
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 	int i;
123 	spin_unlock(&conf->device_lock);
124 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 		spin_unlock(conf->hash_locks + i - 1);
126 	local_irq_enable();
127 }
128 
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 	int sectors = bio_sectors(bio);
141 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 		return bio->bi_next;
143 	else
144 		return NULL;
145 }
146 
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 	return (atomic_read(segments) >> 16) & 0xffff;
155 }
156 
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 	return atomic_sub_return(1, segments) & 0xffff;
161 }
162 
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 	atomic_inc(segments);
167 }
168 
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 	unsigned int cnt)
171 {
172 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 	int old, new;
174 
175 	do {
176 		old = atomic_read(segments);
177 		new = (old & 0xffff) | (cnt << 16);
178 	} while (atomic_cmpxchg(segments, old, new) != old);
179 }
180 
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 	atomic_set(segments, cnt);
185 }
186 
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 	if (sh->ddf_layout)
191 		/* ddf always start from first device */
192 		return 0;
193 	/* md starts just after Q block */
194 	if (sh->qd_idx == sh->disks - 1)
195 		return 0;
196 	else
197 		return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 	disk++;
202 	return (disk < raid_disks) ? disk : 0;
203 }
204 
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 			     int *count, int syndrome_disks)
212 {
213 	int slot = *count;
214 
215 	if (sh->ddf_layout)
216 		(*count)++;
217 	if (idx == sh->pd_idx)
218 		return syndrome_disks;
219 	if (idx == sh->qd_idx)
220 		return syndrome_disks + 1;
221 	if (!sh->ddf_layout)
222 		(*count)++;
223 	return slot;
224 }
225 
226 static void return_io(struct bio_list *return_bi)
227 {
228 	struct bio *bi;
229 	while ((bi = bio_list_pop(return_bi)) != NULL) {
230 		bi->bi_iter.bi_size = 0;
231 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 					 bi, 0);
233 		bio_endio(bi);
234 	}
235 }
236 
237 static void print_raid5_conf (struct r5conf *conf);
238 
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241 	return sh->check_state || sh->reconstruct_state ||
242 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245 
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248 	struct r5conf *conf = sh->raid_conf;
249 	struct r5worker_group *group;
250 	int thread_cnt;
251 	int i, cpu = sh->cpu;
252 
253 	if (!cpu_online(cpu)) {
254 		cpu = cpumask_any(cpu_online_mask);
255 		sh->cpu = cpu;
256 	}
257 
258 	if (list_empty(&sh->lru)) {
259 		struct r5worker_group *group;
260 		group = conf->worker_groups + cpu_to_group(cpu);
261 		list_add_tail(&sh->lru, &group->handle_list);
262 		group->stripes_cnt++;
263 		sh->group = group;
264 	}
265 
266 	if (conf->worker_cnt_per_group == 0) {
267 		md_wakeup_thread(conf->mddev->thread);
268 		return;
269 	}
270 
271 	group = conf->worker_groups + cpu_to_group(sh->cpu);
272 
273 	group->workers[0].working = true;
274 	/* at least one worker should run to avoid race */
275 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276 
277 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 	/* wakeup more workers */
279 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 		if (group->workers[i].working == false) {
281 			group->workers[i].working = true;
282 			queue_work_on(sh->cpu, raid5_wq,
283 				      &group->workers[i].work);
284 			thread_cnt--;
285 		}
286 	}
287 }
288 
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 			      struct list_head *temp_inactive_list)
291 {
292 	BUG_ON(!list_empty(&sh->lru));
293 	BUG_ON(atomic_read(&conf->active_stripes)==0);
294 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
296 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297 			list_add_tail(&sh->lru, &conf->delayed_list);
298 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299 			   sh->bm_seq - conf->seq_write > 0)
300 			list_add_tail(&sh->lru, &conf->bitmap_list);
301 		else {
302 			clear_bit(STRIPE_DELAYED, &sh->state);
303 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
304 			if (conf->worker_cnt_per_group == 0) {
305 				list_add_tail(&sh->lru, &conf->handle_list);
306 			} else {
307 				raid5_wakeup_stripe_thread(sh);
308 				return;
309 			}
310 		}
311 		md_wakeup_thread(conf->mddev->thread);
312 	} else {
313 		BUG_ON(stripe_operations_active(sh));
314 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 			if (atomic_dec_return(&conf->preread_active_stripes)
316 			    < IO_THRESHOLD)
317 				md_wakeup_thread(conf->mddev->thread);
318 		atomic_dec(&conf->active_stripes);
319 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 			list_add_tail(&sh->lru, temp_inactive_list);
321 	}
322 }
323 
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 			     struct list_head *temp_inactive_list)
326 {
327 	if (atomic_dec_and_test(&sh->count))
328 		do_release_stripe(conf, sh, temp_inactive_list);
329 }
330 
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339 					 struct list_head *temp_inactive_list,
340 					 int hash)
341 {
342 	int size;
343 	unsigned long do_wakeup = 0;
344 	int i = 0;
345 	unsigned long flags;
346 
347 	if (hash == NR_STRIPE_HASH_LOCKS) {
348 		size = NR_STRIPE_HASH_LOCKS;
349 		hash = NR_STRIPE_HASH_LOCKS - 1;
350 	} else
351 		size = 1;
352 	while (size) {
353 		struct list_head *list = &temp_inactive_list[size - 1];
354 
355 		/*
356 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
357 		 * remove stripes from the list
358 		 */
359 		if (!list_empty_careful(list)) {
360 			spin_lock_irqsave(conf->hash_locks + hash, flags);
361 			if (list_empty(conf->inactive_list + hash) &&
362 			    !list_empty(list))
363 				atomic_dec(&conf->empty_inactive_list_nr);
364 			list_splice_tail_init(list, conf->inactive_list + hash);
365 			do_wakeup |= 1 << hash;
366 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
367 		}
368 		size--;
369 		hash--;
370 	}
371 
372 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
373 		if (do_wakeup & (1 << i))
374 			wake_up(&conf->wait_for_stripe[i]);
375 	}
376 
377 	if (do_wakeup) {
378 		if (atomic_read(&conf->active_stripes) == 0)
379 			wake_up(&conf->wait_for_quiescent);
380 		if (conf->retry_read_aligned)
381 			md_wakeup_thread(conf->mddev->thread);
382 	}
383 }
384 
385 /* should hold conf->device_lock already */
386 static int release_stripe_list(struct r5conf *conf,
387 			       struct list_head *temp_inactive_list)
388 {
389 	struct stripe_head *sh;
390 	int count = 0;
391 	struct llist_node *head;
392 
393 	head = llist_del_all(&conf->released_stripes);
394 	head = llist_reverse_order(head);
395 	while (head) {
396 		int hash;
397 
398 		sh = llist_entry(head, struct stripe_head, release_list);
399 		head = llist_next(head);
400 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
401 		smp_mb();
402 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
403 		/*
404 		 * Don't worry the bit is set here, because if the bit is set
405 		 * again, the count is always > 1. This is true for
406 		 * STRIPE_ON_UNPLUG_LIST bit too.
407 		 */
408 		hash = sh->hash_lock_index;
409 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
410 		count++;
411 	}
412 
413 	return count;
414 }
415 
416 void raid5_release_stripe(struct stripe_head *sh)
417 {
418 	struct r5conf *conf = sh->raid_conf;
419 	unsigned long flags;
420 	struct list_head list;
421 	int hash;
422 	bool wakeup;
423 
424 	/* Avoid release_list until the last reference.
425 	 */
426 	if (atomic_add_unless(&sh->count, -1, 1))
427 		return;
428 
429 	if (unlikely(!conf->mddev->thread) ||
430 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
431 		goto slow_path;
432 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
433 	if (wakeup)
434 		md_wakeup_thread(conf->mddev->thread);
435 	return;
436 slow_path:
437 	local_irq_save(flags);
438 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
439 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
440 		INIT_LIST_HEAD(&list);
441 		hash = sh->hash_lock_index;
442 		do_release_stripe(conf, sh, &list);
443 		spin_unlock(&conf->device_lock);
444 		release_inactive_stripe_list(conf, &list, hash);
445 	}
446 	local_irq_restore(flags);
447 }
448 
449 static inline void remove_hash(struct stripe_head *sh)
450 {
451 	pr_debug("remove_hash(), stripe %llu\n",
452 		(unsigned long long)sh->sector);
453 
454 	hlist_del_init(&sh->hash);
455 }
456 
457 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
458 {
459 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
460 
461 	pr_debug("insert_hash(), stripe %llu\n",
462 		(unsigned long long)sh->sector);
463 
464 	hlist_add_head(&sh->hash, hp);
465 }
466 
467 /* find an idle stripe, make sure it is unhashed, and return it. */
468 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
469 {
470 	struct stripe_head *sh = NULL;
471 	struct list_head *first;
472 
473 	if (list_empty(conf->inactive_list + hash))
474 		goto out;
475 	first = (conf->inactive_list + hash)->next;
476 	sh = list_entry(first, struct stripe_head, lru);
477 	list_del_init(first);
478 	remove_hash(sh);
479 	atomic_inc(&conf->active_stripes);
480 	BUG_ON(hash != sh->hash_lock_index);
481 	if (list_empty(conf->inactive_list + hash))
482 		atomic_inc(&conf->empty_inactive_list_nr);
483 out:
484 	return sh;
485 }
486 
487 static void shrink_buffers(struct stripe_head *sh)
488 {
489 	struct page *p;
490 	int i;
491 	int num = sh->raid_conf->pool_size;
492 
493 	for (i = 0; i < num ; i++) {
494 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
495 		p = sh->dev[i].page;
496 		if (!p)
497 			continue;
498 		sh->dev[i].page = NULL;
499 		put_page(p);
500 	}
501 }
502 
503 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
504 {
505 	int i;
506 	int num = sh->raid_conf->pool_size;
507 
508 	for (i = 0; i < num; i++) {
509 		struct page *page;
510 
511 		if (!(page = alloc_page(gfp))) {
512 			return 1;
513 		}
514 		sh->dev[i].page = page;
515 		sh->dev[i].orig_page = page;
516 	}
517 	return 0;
518 }
519 
520 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
521 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
522 			    struct stripe_head *sh);
523 
524 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
525 {
526 	struct r5conf *conf = sh->raid_conf;
527 	int i, seq;
528 
529 	BUG_ON(atomic_read(&sh->count) != 0);
530 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
531 	BUG_ON(stripe_operations_active(sh));
532 	BUG_ON(sh->batch_head);
533 
534 	pr_debug("init_stripe called, stripe %llu\n",
535 		(unsigned long long)sector);
536 retry:
537 	seq = read_seqcount_begin(&conf->gen_lock);
538 	sh->generation = conf->generation - previous;
539 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
540 	sh->sector = sector;
541 	stripe_set_idx(sector, conf, previous, sh);
542 	sh->state = 0;
543 
544 	for (i = sh->disks; i--; ) {
545 		struct r5dev *dev = &sh->dev[i];
546 
547 		if (dev->toread || dev->read || dev->towrite || dev->written ||
548 		    test_bit(R5_LOCKED, &dev->flags)) {
549 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
550 			       (unsigned long long)sh->sector, i, dev->toread,
551 			       dev->read, dev->towrite, dev->written,
552 			       test_bit(R5_LOCKED, &dev->flags));
553 			WARN_ON(1);
554 		}
555 		dev->flags = 0;
556 		raid5_build_block(sh, i, previous);
557 	}
558 	if (read_seqcount_retry(&conf->gen_lock, seq))
559 		goto retry;
560 	sh->overwrite_disks = 0;
561 	insert_hash(conf, sh);
562 	sh->cpu = smp_processor_id();
563 	set_bit(STRIPE_BATCH_READY, &sh->state);
564 }
565 
566 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
567 					 short generation)
568 {
569 	struct stripe_head *sh;
570 
571 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
572 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
573 		if (sh->sector == sector && sh->generation == generation)
574 			return sh;
575 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
576 	return NULL;
577 }
578 
579 /*
580  * Need to check if array has failed when deciding whether to:
581  *  - start an array
582  *  - remove non-faulty devices
583  *  - add a spare
584  *  - allow a reshape
585  * This determination is simple when no reshape is happening.
586  * However if there is a reshape, we need to carefully check
587  * both the before and after sections.
588  * This is because some failed devices may only affect one
589  * of the two sections, and some non-in_sync devices may
590  * be insync in the section most affected by failed devices.
591  */
592 static int calc_degraded(struct r5conf *conf)
593 {
594 	int degraded, degraded2;
595 	int i;
596 
597 	rcu_read_lock();
598 	degraded = 0;
599 	for (i = 0; i < conf->previous_raid_disks; i++) {
600 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601 		if (rdev && test_bit(Faulty, &rdev->flags))
602 			rdev = rcu_dereference(conf->disks[i].replacement);
603 		if (!rdev || test_bit(Faulty, &rdev->flags))
604 			degraded++;
605 		else if (test_bit(In_sync, &rdev->flags))
606 			;
607 		else
608 			/* not in-sync or faulty.
609 			 * If the reshape increases the number of devices,
610 			 * this is being recovered by the reshape, so
611 			 * this 'previous' section is not in_sync.
612 			 * If the number of devices is being reduced however,
613 			 * the device can only be part of the array if
614 			 * we are reverting a reshape, so this section will
615 			 * be in-sync.
616 			 */
617 			if (conf->raid_disks >= conf->previous_raid_disks)
618 				degraded++;
619 	}
620 	rcu_read_unlock();
621 	if (conf->raid_disks == conf->previous_raid_disks)
622 		return degraded;
623 	rcu_read_lock();
624 	degraded2 = 0;
625 	for (i = 0; i < conf->raid_disks; i++) {
626 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
627 		if (rdev && test_bit(Faulty, &rdev->flags))
628 			rdev = rcu_dereference(conf->disks[i].replacement);
629 		if (!rdev || test_bit(Faulty, &rdev->flags))
630 			degraded2++;
631 		else if (test_bit(In_sync, &rdev->flags))
632 			;
633 		else
634 			/* not in-sync or faulty.
635 			 * If reshape increases the number of devices, this
636 			 * section has already been recovered, else it
637 			 * almost certainly hasn't.
638 			 */
639 			if (conf->raid_disks <= conf->previous_raid_disks)
640 				degraded2++;
641 	}
642 	rcu_read_unlock();
643 	if (degraded2 > degraded)
644 		return degraded2;
645 	return degraded;
646 }
647 
648 static int has_failed(struct r5conf *conf)
649 {
650 	int degraded;
651 
652 	if (conf->mddev->reshape_position == MaxSector)
653 		return conf->mddev->degraded > conf->max_degraded;
654 
655 	degraded = calc_degraded(conf);
656 	if (degraded > conf->max_degraded)
657 		return 1;
658 	return 0;
659 }
660 
661 struct stripe_head *
662 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
663 			int previous, int noblock, int noquiesce)
664 {
665 	struct stripe_head *sh;
666 	int hash = stripe_hash_locks_hash(sector);
667 
668 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
669 
670 	spin_lock_irq(conf->hash_locks + hash);
671 
672 	do {
673 		wait_event_lock_irq(conf->wait_for_quiescent,
674 				    conf->quiesce == 0 || noquiesce,
675 				    *(conf->hash_locks + hash));
676 		sh = __find_stripe(conf, sector, conf->generation - previous);
677 		if (!sh) {
678 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
679 				sh = get_free_stripe(conf, hash);
680 				if (!sh && !test_bit(R5_DID_ALLOC,
681 						     &conf->cache_state))
682 					set_bit(R5_ALLOC_MORE,
683 						&conf->cache_state);
684 			}
685 			if (noblock && sh == NULL)
686 				break;
687 			if (!sh) {
688 				set_bit(R5_INACTIVE_BLOCKED,
689 					&conf->cache_state);
690 				wait_event_exclusive_cmd(
691 					conf->wait_for_stripe[hash],
692 					!list_empty(conf->inactive_list + hash) &&
693 					(atomic_read(&conf->active_stripes)
694 					 < (conf->max_nr_stripes * 3 / 4)
695 					 || !test_bit(R5_INACTIVE_BLOCKED,
696 						      &conf->cache_state)),
697 					spin_unlock_irq(conf->hash_locks + hash),
698 					spin_lock_irq(conf->hash_locks + hash));
699 				clear_bit(R5_INACTIVE_BLOCKED,
700 					  &conf->cache_state);
701 			} else {
702 				init_stripe(sh, sector, previous);
703 				atomic_inc(&sh->count);
704 			}
705 		} else if (!atomic_inc_not_zero(&sh->count)) {
706 			spin_lock(&conf->device_lock);
707 			if (!atomic_read(&sh->count)) {
708 				if (!test_bit(STRIPE_HANDLE, &sh->state))
709 					atomic_inc(&conf->active_stripes);
710 				BUG_ON(list_empty(&sh->lru) &&
711 				       !test_bit(STRIPE_EXPANDING, &sh->state));
712 				list_del_init(&sh->lru);
713 				if (sh->group) {
714 					sh->group->stripes_cnt--;
715 					sh->group = NULL;
716 				}
717 			}
718 			atomic_inc(&sh->count);
719 			spin_unlock(&conf->device_lock);
720 		}
721 	} while (sh == NULL);
722 
723 	if (!list_empty(conf->inactive_list + hash))
724 		wake_up(&conf->wait_for_stripe[hash]);
725 
726 	spin_unlock_irq(conf->hash_locks + hash);
727 	return sh;
728 }
729 
730 static bool is_full_stripe_write(struct stripe_head *sh)
731 {
732 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
733 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
734 }
735 
736 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
737 {
738 	local_irq_disable();
739 	if (sh1 > sh2) {
740 		spin_lock(&sh2->stripe_lock);
741 		spin_lock_nested(&sh1->stripe_lock, 1);
742 	} else {
743 		spin_lock(&sh1->stripe_lock);
744 		spin_lock_nested(&sh2->stripe_lock, 1);
745 	}
746 }
747 
748 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
749 {
750 	spin_unlock(&sh1->stripe_lock);
751 	spin_unlock(&sh2->stripe_lock);
752 	local_irq_enable();
753 }
754 
755 /* Only freshly new full stripe normal write stripe can be added to a batch list */
756 static bool stripe_can_batch(struct stripe_head *sh)
757 {
758 	struct r5conf *conf = sh->raid_conf;
759 
760 	if (conf->log)
761 		return false;
762 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
763 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
764 		is_full_stripe_write(sh);
765 }
766 
767 /* we only do back search */
768 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
769 {
770 	struct stripe_head *head;
771 	sector_t head_sector, tmp_sec;
772 	int hash;
773 	int dd_idx;
774 
775 	if (!stripe_can_batch(sh))
776 		return;
777 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
778 	tmp_sec = sh->sector;
779 	if (!sector_div(tmp_sec, conf->chunk_sectors))
780 		return;
781 	head_sector = sh->sector - STRIPE_SECTORS;
782 
783 	hash = stripe_hash_locks_hash(head_sector);
784 	spin_lock_irq(conf->hash_locks + hash);
785 	head = __find_stripe(conf, head_sector, conf->generation);
786 	if (head && !atomic_inc_not_zero(&head->count)) {
787 		spin_lock(&conf->device_lock);
788 		if (!atomic_read(&head->count)) {
789 			if (!test_bit(STRIPE_HANDLE, &head->state))
790 				atomic_inc(&conf->active_stripes);
791 			BUG_ON(list_empty(&head->lru) &&
792 			       !test_bit(STRIPE_EXPANDING, &head->state));
793 			list_del_init(&head->lru);
794 			if (head->group) {
795 				head->group->stripes_cnt--;
796 				head->group = NULL;
797 			}
798 		}
799 		atomic_inc(&head->count);
800 		spin_unlock(&conf->device_lock);
801 	}
802 	spin_unlock_irq(conf->hash_locks + hash);
803 
804 	if (!head)
805 		return;
806 	if (!stripe_can_batch(head))
807 		goto out;
808 
809 	lock_two_stripes(head, sh);
810 	/* clear_batch_ready clear the flag */
811 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
812 		goto unlock_out;
813 
814 	if (sh->batch_head)
815 		goto unlock_out;
816 
817 	dd_idx = 0;
818 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
819 		dd_idx++;
820 	if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
821 		goto unlock_out;
822 
823 	if (head->batch_head) {
824 		spin_lock(&head->batch_head->batch_lock);
825 		/* This batch list is already running */
826 		if (!stripe_can_batch(head)) {
827 			spin_unlock(&head->batch_head->batch_lock);
828 			goto unlock_out;
829 		}
830 
831 		/*
832 		 * at this point, head's BATCH_READY could be cleared, but we
833 		 * can still add the stripe to batch list
834 		 */
835 		list_add(&sh->batch_list, &head->batch_list);
836 		spin_unlock(&head->batch_head->batch_lock);
837 
838 		sh->batch_head = head->batch_head;
839 	} else {
840 		head->batch_head = head;
841 		sh->batch_head = head->batch_head;
842 		spin_lock(&head->batch_lock);
843 		list_add_tail(&sh->batch_list, &head->batch_list);
844 		spin_unlock(&head->batch_lock);
845 	}
846 
847 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
848 		if (atomic_dec_return(&conf->preread_active_stripes)
849 		    < IO_THRESHOLD)
850 			md_wakeup_thread(conf->mddev->thread);
851 
852 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
853 		int seq = sh->bm_seq;
854 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
855 		    sh->batch_head->bm_seq > seq)
856 			seq = sh->batch_head->bm_seq;
857 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
858 		sh->batch_head->bm_seq = seq;
859 	}
860 
861 	atomic_inc(&sh->count);
862 unlock_out:
863 	unlock_two_stripes(head, sh);
864 out:
865 	raid5_release_stripe(head);
866 }
867 
868 /* Determine if 'data_offset' or 'new_data_offset' should be used
869  * in this stripe_head.
870  */
871 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
872 {
873 	sector_t progress = conf->reshape_progress;
874 	/* Need a memory barrier to make sure we see the value
875 	 * of conf->generation, or ->data_offset that was set before
876 	 * reshape_progress was updated.
877 	 */
878 	smp_rmb();
879 	if (progress == MaxSector)
880 		return 0;
881 	if (sh->generation == conf->generation - 1)
882 		return 0;
883 	/* We are in a reshape, and this is a new-generation stripe,
884 	 * so use new_data_offset.
885 	 */
886 	return 1;
887 }
888 
889 static void
890 raid5_end_read_request(struct bio *bi);
891 static void
892 raid5_end_write_request(struct bio *bi);
893 
894 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
895 {
896 	struct r5conf *conf = sh->raid_conf;
897 	int i, disks = sh->disks;
898 	struct stripe_head *head_sh = sh;
899 
900 	might_sleep();
901 
902 	if (r5l_write_stripe(conf->log, sh) == 0)
903 		return;
904 	for (i = disks; i--; ) {
905 		int rw;
906 		int replace_only = 0;
907 		struct bio *bi, *rbi;
908 		struct md_rdev *rdev, *rrdev = NULL;
909 
910 		sh = head_sh;
911 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
912 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
913 				rw = WRITE_FUA;
914 			else
915 				rw = WRITE;
916 			if (test_bit(R5_Discard, &sh->dev[i].flags))
917 				rw |= REQ_DISCARD;
918 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
919 			rw = READ;
920 		else if (test_and_clear_bit(R5_WantReplace,
921 					    &sh->dev[i].flags)) {
922 			rw = WRITE;
923 			replace_only = 1;
924 		} else
925 			continue;
926 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
927 			rw |= REQ_SYNC;
928 
929 again:
930 		bi = &sh->dev[i].req;
931 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
932 
933 		rcu_read_lock();
934 		rrdev = rcu_dereference(conf->disks[i].replacement);
935 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
936 		rdev = rcu_dereference(conf->disks[i].rdev);
937 		if (!rdev) {
938 			rdev = rrdev;
939 			rrdev = NULL;
940 		}
941 		if (rw & WRITE) {
942 			if (replace_only)
943 				rdev = NULL;
944 			if (rdev == rrdev)
945 				/* We raced and saw duplicates */
946 				rrdev = NULL;
947 		} else {
948 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
949 				rdev = rrdev;
950 			rrdev = NULL;
951 		}
952 
953 		if (rdev && test_bit(Faulty, &rdev->flags))
954 			rdev = NULL;
955 		if (rdev)
956 			atomic_inc(&rdev->nr_pending);
957 		if (rrdev && test_bit(Faulty, &rrdev->flags))
958 			rrdev = NULL;
959 		if (rrdev)
960 			atomic_inc(&rrdev->nr_pending);
961 		rcu_read_unlock();
962 
963 		/* We have already checked bad blocks for reads.  Now
964 		 * need to check for writes.  We never accept write errors
965 		 * on the replacement, so we don't to check rrdev.
966 		 */
967 		while ((rw & WRITE) && rdev &&
968 		       test_bit(WriteErrorSeen, &rdev->flags)) {
969 			sector_t first_bad;
970 			int bad_sectors;
971 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
972 					      &first_bad, &bad_sectors);
973 			if (!bad)
974 				break;
975 
976 			if (bad < 0) {
977 				set_bit(BlockedBadBlocks, &rdev->flags);
978 				if (!conf->mddev->external &&
979 				    conf->mddev->flags) {
980 					/* It is very unlikely, but we might
981 					 * still need to write out the
982 					 * bad block log - better give it
983 					 * a chance*/
984 					md_check_recovery(conf->mddev);
985 				}
986 				/*
987 				 * Because md_wait_for_blocked_rdev
988 				 * will dec nr_pending, we must
989 				 * increment it first.
990 				 */
991 				atomic_inc(&rdev->nr_pending);
992 				md_wait_for_blocked_rdev(rdev, conf->mddev);
993 			} else {
994 				/* Acknowledged bad block - skip the write */
995 				rdev_dec_pending(rdev, conf->mddev);
996 				rdev = NULL;
997 			}
998 		}
999 
1000 		if (rdev) {
1001 			if (s->syncing || s->expanding || s->expanded
1002 			    || s->replacing)
1003 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1004 
1005 			set_bit(STRIPE_IO_STARTED, &sh->state);
1006 
1007 			bio_reset(bi);
1008 			bi->bi_bdev = rdev->bdev;
1009 			bi->bi_rw = rw;
1010 			bi->bi_end_io = (rw & WRITE)
1011 				? raid5_end_write_request
1012 				: raid5_end_read_request;
1013 			bi->bi_private = sh;
1014 
1015 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1016 				__func__, (unsigned long long)sh->sector,
1017 				bi->bi_rw, i);
1018 			atomic_inc(&sh->count);
1019 			if (sh != head_sh)
1020 				atomic_inc(&head_sh->count);
1021 			if (use_new_offset(conf, sh))
1022 				bi->bi_iter.bi_sector = (sh->sector
1023 						 + rdev->new_data_offset);
1024 			else
1025 				bi->bi_iter.bi_sector = (sh->sector
1026 						 + rdev->data_offset);
1027 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1028 				bi->bi_rw |= REQ_NOMERGE;
1029 
1030 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1031 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1032 			sh->dev[i].vec.bv_page = sh->dev[i].page;
1033 			bi->bi_vcnt = 1;
1034 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1035 			bi->bi_io_vec[0].bv_offset = 0;
1036 			bi->bi_iter.bi_size = STRIPE_SIZE;
1037 			/*
1038 			 * If this is discard request, set bi_vcnt 0. We don't
1039 			 * want to confuse SCSI because SCSI will replace payload
1040 			 */
1041 			if (rw & REQ_DISCARD)
1042 				bi->bi_vcnt = 0;
1043 			if (rrdev)
1044 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1045 
1046 			if (conf->mddev->gendisk)
1047 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1048 						      bi, disk_devt(conf->mddev->gendisk),
1049 						      sh->dev[i].sector);
1050 			generic_make_request(bi);
1051 		}
1052 		if (rrdev) {
1053 			if (s->syncing || s->expanding || s->expanded
1054 			    || s->replacing)
1055 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1056 
1057 			set_bit(STRIPE_IO_STARTED, &sh->state);
1058 
1059 			bio_reset(rbi);
1060 			rbi->bi_bdev = rrdev->bdev;
1061 			rbi->bi_rw = rw;
1062 			BUG_ON(!(rw & WRITE));
1063 			rbi->bi_end_io = raid5_end_write_request;
1064 			rbi->bi_private = sh;
1065 
1066 			pr_debug("%s: for %llu schedule op %ld on "
1067 				 "replacement disc %d\n",
1068 				__func__, (unsigned long long)sh->sector,
1069 				rbi->bi_rw, i);
1070 			atomic_inc(&sh->count);
1071 			if (sh != head_sh)
1072 				atomic_inc(&head_sh->count);
1073 			if (use_new_offset(conf, sh))
1074 				rbi->bi_iter.bi_sector = (sh->sector
1075 						  + rrdev->new_data_offset);
1076 			else
1077 				rbi->bi_iter.bi_sector = (sh->sector
1078 						  + rrdev->data_offset);
1079 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1080 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1081 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1082 			rbi->bi_vcnt = 1;
1083 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1084 			rbi->bi_io_vec[0].bv_offset = 0;
1085 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1086 			/*
1087 			 * If this is discard request, set bi_vcnt 0. We don't
1088 			 * want to confuse SCSI because SCSI will replace payload
1089 			 */
1090 			if (rw & REQ_DISCARD)
1091 				rbi->bi_vcnt = 0;
1092 			if (conf->mddev->gendisk)
1093 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1094 						      rbi, disk_devt(conf->mddev->gendisk),
1095 						      sh->dev[i].sector);
1096 			generic_make_request(rbi);
1097 		}
1098 		if (!rdev && !rrdev) {
1099 			if (rw & WRITE)
1100 				set_bit(STRIPE_DEGRADED, &sh->state);
1101 			pr_debug("skip op %ld on disc %d for sector %llu\n",
1102 				bi->bi_rw, i, (unsigned long long)sh->sector);
1103 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1104 			set_bit(STRIPE_HANDLE, &sh->state);
1105 		}
1106 
1107 		if (!head_sh->batch_head)
1108 			continue;
1109 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1110 				      batch_list);
1111 		if (sh != head_sh)
1112 			goto again;
1113 	}
1114 }
1115 
1116 static struct dma_async_tx_descriptor *
1117 async_copy_data(int frombio, struct bio *bio, struct page **page,
1118 	sector_t sector, struct dma_async_tx_descriptor *tx,
1119 	struct stripe_head *sh)
1120 {
1121 	struct bio_vec bvl;
1122 	struct bvec_iter iter;
1123 	struct page *bio_page;
1124 	int page_offset;
1125 	struct async_submit_ctl submit;
1126 	enum async_tx_flags flags = 0;
1127 
1128 	if (bio->bi_iter.bi_sector >= sector)
1129 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1130 	else
1131 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1132 
1133 	if (frombio)
1134 		flags |= ASYNC_TX_FENCE;
1135 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1136 
1137 	bio_for_each_segment(bvl, bio, iter) {
1138 		int len = bvl.bv_len;
1139 		int clen;
1140 		int b_offset = 0;
1141 
1142 		if (page_offset < 0) {
1143 			b_offset = -page_offset;
1144 			page_offset += b_offset;
1145 			len -= b_offset;
1146 		}
1147 
1148 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1149 			clen = STRIPE_SIZE - page_offset;
1150 		else
1151 			clen = len;
1152 
1153 		if (clen > 0) {
1154 			b_offset += bvl.bv_offset;
1155 			bio_page = bvl.bv_page;
1156 			if (frombio) {
1157 				if (sh->raid_conf->skip_copy &&
1158 				    b_offset == 0 && page_offset == 0 &&
1159 				    clen == STRIPE_SIZE)
1160 					*page = bio_page;
1161 				else
1162 					tx = async_memcpy(*page, bio_page, page_offset,
1163 						  b_offset, clen, &submit);
1164 			} else
1165 				tx = async_memcpy(bio_page, *page, b_offset,
1166 						  page_offset, clen, &submit);
1167 		}
1168 		/* chain the operations */
1169 		submit.depend_tx = tx;
1170 
1171 		if (clen < len) /* hit end of page */
1172 			break;
1173 		page_offset +=  len;
1174 	}
1175 
1176 	return tx;
1177 }
1178 
1179 static void ops_complete_biofill(void *stripe_head_ref)
1180 {
1181 	struct stripe_head *sh = stripe_head_ref;
1182 	struct bio_list return_bi = BIO_EMPTY_LIST;
1183 	int i;
1184 
1185 	pr_debug("%s: stripe %llu\n", __func__,
1186 		(unsigned long long)sh->sector);
1187 
1188 	/* clear completed biofills */
1189 	for (i = sh->disks; i--; ) {
1190 		struct r5dev *dev = &sh->dev[i];
1191 
1192 		/* acknowledge completion of a biofill operation */
1193 		/* and check if we need to reply to a read request,
1194 		 * new R5_Wantfill requests are held off until
1195 		 * !STRIPE_BIOFILL_RUN
1196 		 */
1197 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1198 			struct bio *rbi, *rbi2;
1199 
1200 			BUG_ON(!dev->read);
1201 			rbi = dev->read;
1202 			dev->read = NULL;
1203 			while (rbi && rbi->bi_iter.bi_sector <
1204 				dev->sector + STRIPE_SECTORS) {
1205 				rbi2 = r5_next_bio(rbi, dev->sector);
1206 				if (!raid5_dec_bi_active_stripes(rbi))
1207 					bio_list_add(&return_bi, rbi);
1208 				rbi = rbi2;
1209 			}
1210 		}
1211 	}
1212 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1213 
1214 	return_io(&return_bi);
1215 
1216 	set_bit(STRIPE_HANDLE, &sh->state);
1217 	raid5_release_stripe(sh);
1218 }
1219 
1220 static void ops_run_biofill(struct stripe_head *sh)
1221 {
1222 	struct dma_async_tx_descriptor *tx = NULL;
1223 	struct async_submit_ctl submit;
1224 	int i;
1225 
1226 	BUG_ON(sh->batch_head);
1227 	pr_debug("%s: stripe %llu\n", __func__,
1228 		(unsigned long long)sh->sector);
1229 
1230 	for (i = sh->disks; i--; ) {
1231 		struct r5dev *dev = &sh->dev[i];
1232 		if (test_bit(R5_Wantfill, &dev->flags)) {
1233 			struct bio *rbi;
1234 			spin_lock_irq(&sh->stripe_lock);
1235 			dev->read = rbi = dev->toread;
1236 			dev->toread = NULL;
1237 			spin_unlock_irq(&sh->stripe_lock);
1238 			while (rbi && rbi->bi_iter.bi_sector <
1239 				dev->sector + STRIPE_SECTORS) {
1240 				tx = async_copy_data(0, rbi, &dev->page,
1241 					dev->sector, tx, sh);
1242 				rbi = r5_next_bio(rbi, dev->sector);
1243 			}
1244 		}
1245 	}
1246 
1247 	atomic_inc(&sh->count);
1248 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1249 	async_trigger_callback(&submit);
1250 }
1251 
1252 static void mark_target_uptodate(struct stripe_head *sh, int target)
1253 {
1254 	struct r5dev *tgt;
1255 
1256 	if (target < 0)
1257 		return;
1258 
1259 	tgt = &sh->dev[target];
1260 	set_bit(R5_UPTODATE, &tgt->flags);
1261 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1262 	clear_bit(R5_Wantcompute, &tgt->flags);
1263 }
1264 
1265 static void ops_complete_compute(void *stripe_head_ref)
1266 {
1267 	struct stripe_head *sh = stripe_head_ref;
1268 
1269 	pr_debug("%s: stripe %llu\n", __func__,
1270 		(unsigned long long)sh->sector);
1271 
1272 	/* mark the computed target(s) as uptodate */
1273 	mark_target_uptodate(sh, sh->ops.target);
1274 	mark_target_uptodate(sh, sh->ops.target2);
1275 
1276 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1277 	if (sh->check_state == check_state_compute_run)
1278 		sh->check_state = check_state_compute_result;
1279 	set_bit(STRIPE_HANDLE, &sh->state);
1280 	raid5_release_stripe(sh);
1281 }
1282 
1283 /* return a pointer to the address conversion region of the scribble buffer */
1284 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1285 				 struct raid5_percpu *percpu, int i)
1286 {
1287 	void *addr;
1288 
1289 	addr = flex_array_get(percpu->scribble, i);
1290 	return addr + sizeof(struct page *) * (sh->disks + 2);
1291 }
1292 
1293 /* return a pointer to the address conversion region of the scribble buffer */
1294 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1295 {
1296 	void *addr;
1297 
1298 	addr = flex_array_get(percpu->scribble, i);
1299 	return addr;
1300 }
1301 
1302 static struct dma_async_tx_descriptor *
1303 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1304 {
1305 	int disks = sh->disks;
1306 	struct page **xor_srcs = to_addr_page(percpu, 0);
1307 	int target = sh->ops.target;
1308 	struct r5dev *tgt = &sh->dev[target];
1309 	struct page *xor_dest = tgt->page;
1310 	int count = 0;
1311 	struct dma_async_tx_descriptor *tx;
1312 	struct async_submit_ctl submit;
1313 	int i;
1314 
1315 	BUG_ON(sh->batch_head);
1316 
1317 	pr_debug("%s: stripe %llu block: %d\n",
1318 		__func__, (unsigned long long)sh->sector, target);
1319 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1320 
1321 	for (i = disks; i--; )
1322 		if (i != target)
1323 			xor_srcs[count++] = sh->dev[i].page;
1324 
1325 	atomic_inc(&sh->count);
1326 
1327 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1328 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1329 	if (unlikely(count == 1))
1330 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1331 	else
1332 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1333 
1334 	return tx;
1335 }
1336 
1337 /* set_syndrome_sources - populate source buffers for gen_syndrome
1338  * @srcs - (struct page *) array of size sh->disks
1339  * @sh - stripe_head to parse
1340  *
1341  * Populates srcs in proper layout order for the stripe and returns the
1342  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1343  * destination buffer is recorded in srcs[count] and the Q destination
1344  * is recorded in srcs[count+1]].
1345  */
1346 static int set_syndrome_sources(struct page **srcs,
1347 				struct stripe_head *sh,
1348 				int srctype)
1349 {
1350 	int disks = sh->disks;
1351 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1352 	int d0_idx = raid6_d0(sh);
1353 	int count;
1354 	int i;
1355 
1356 	for (i = 0; i < disks; i++)
1357 		srcs[i] = NULL;
1358 
1359 	count = 0;
1360 	i = d0_idx;
1361 	do {
1362 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1363 		struct r5dev *dev = &sh->dev[i];
1364 
1365 		if (i == sh->qd_idx || i == sh->pd_idx ||
1366 		    (srctype == SYNDROME_SRC_ALL) ||
1367 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1368 		     test_bit(R5_Wantdrain, &dev->flags)) ||
1369 		    (srctype == SYNDROME_SRC_WRITTEN &&
1370 		     dev->written))
1371 			srcs[slot] = sh->dev[i].page;
1372 		i = raid6_next_disk(i, disks);
1373 	} while (i != d0_idx);
1374 
1375 	return syndrome_disks;
1376 }
1377 
1378 static struct dma_async_tx_descriptor *
1379 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1380 {
1381 	int disks = sh->disks;
1382 	struct page **blocks = to_addr_page(percpu, 0);
1383 	int target;
1384 	int qd_idx = sh->qd_idx;
1385 	struct dma_async_tx_descriptor *tx;
1386 	struct async_submit_ctl submit;
1387 	struct r5dev *tgt;
1388 	struct page *dest;
1389 	int i;
1390 	int count;
1391 
1392 	BUG_ON(sh->batch_head);
1393 	if (sh->ops.target < 0)
1394 		target = sh->ops.target2;
1395 	else if (sh->ops.target2 < 0)
1396 		target = sh->ops.target;
1397 	else
1398 		/* we should only have one valid target */
1399 		BUG();
1400 	BUG_ON(target < 0);
1401 	pr_debug("%s: stripe %llu block: %d\n",
1402 		__func__, (unsigned long long)sh->sector, target);
1403 
1404 	tgt = &sh->dev[target];
1405 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1406 	dest = tgt->page;
1407 
1408 	atomic_inc(&sh->count);
1409 
1410 	if (target == qd_idx) {
1411 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1412 		blocks[count] = NULL; /* regenerating p is not necessary */
1413 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1414 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1415 				  ops_complete_compute, sh,
1416 				  to_addr_conv(sh, percpu, 0));
1417 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1418 	} else {
1419 		/* Compute any data- or p-drive using XOR */
1420 		count = 0;
1421 		for (i = disks; i-- ; ) {
1422 			if (i == target || i == qd_idx)
1423 				continue;
1424 			blocks[count++] = sh->dev[i].page;
1425 		}
1426 
1427 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1428 				  NULL, ops_complete_compute, sh,
1429 				  to_addr_conv(sh, percpu, 0));
1430 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1431 	}
1432 
1433 	return tx;
1434 }
1435 
1436 static struct dma_async_tx_descriptor *
1437 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1438 {
1439 	int i, count, disks = sh->disks;
1440 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1441 	int d0_idx = raid6_d0(sh);
1442 	int faila = -1, failb = -1;
1443 	int target = sh->ops.target;
1444 	int target2 = sh->ops.target2;
1445 	struct r5dev *tgt = &sh->dev[target];
1446 	struct r5dev *tgt2 = &sh->dev[target2];
1447 	struct dma_async_tx_descriptor *tx;
1448 	struct page **blocks = to_addr_page(percpu, 0);
1449 	struct async_submit_ctl submit;
1450 
1451 	BUG_ON(sh->batch_head);
1452 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1453 		 __func__, (unsigned long long)sh->sector, target, target2);
1454 	BUG_ON(target < 0 || target2 < 0);
1455 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1456 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1457 
1458 	/* we need to open-code set_syndrome_sources to handle the
1459 	 * slot number conversion for 'faila' and 'failb'
1460 	 */
1461 	for (i = 0; i < disks ; i++)
1462 		blocks[i] = NULL;
1463 	count = 0;
1464 	i = d0_idx;
1465 	do {
1466 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1467 
1468 		blocks[slot] = sh->dev[i].page;
1469 
1470 		if (i == target)
1471 			faila = slot;
1472 		if (i == target2)
1473 			failb = slot;
1474 		i = raid6_next_disk(i, disks);
1475 	} while (i != d0_idx);
1476 
1477 	BUG_ON(faila == failb);
1478 	if (failb < faila)
1479 		swap(faila, failb);
1480 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1481 		 __func__, (unsigned long long)sh->sector, faila, failb);
1482 
1483 	atomic_inc(&sh->count);
1484 
1485 	if (failb == syndrome_disks+1) {
1486 		/* Q disk is one of the missing disks */
1487 		if (faila == syndrome_disks) {
1488 			/* Missing P+Q, just recompute */
1489 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1490 					  ops_complete_compute, sh,
1491 					  to_addr_conv(sh, percpu, 0));
1492 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1493 						  STRIPE_SIZE, &submit);
1494 		} else {
1495 			struct page *dest;
1496 			int data_target;
1497 			int qd_idx = sh->qd_idx;
1498 
1499 			/* Missing D+Q: recompute D from P, then recompute Q */
1500 			if (target == qd_idx)
1501 				data_target = target2;
1502 			else
1503 				data_target = target;
1504 
1505 			count = 0;
1506 			for (i = disks; i-- ; ) {
1507 				if (i == data_target || i == qd_idx)
1508 					continue;
1509 				blocks[count++] = sh->dev[i].page;
1510 			}
1511 			dest = sh->dev[data_target].page;
1512 			init_async_submit(&submit,
1513 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1514 					  NULL, NULL, NULL,
1515 					  to_addr_conv(sh, percpu, 0));
1516 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1517 				       &submit);
1518 
1519 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1521 					  ops_complete_compute, sh,
1522 					  to_addr_conv(sh, percpu, 0));
1523 			return async_gen_syndrome(blocks, 0, count+2,
1524 						  STRIPE_SIZE, &submit);
1525 		}
1526 	} else {
1527 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1528 				  ops_complete_compute, sh,
1529 				  to_addr_conv(sh, percpu, 0));
1530 		if (failb == syndrome_disks) {
1531 			/* We're missing D+P. */
1532 			return async_raid6_datap_recov(syndrome_disks+2,
1533 						       STRIPE_SIZE, faila,
1534 						       blocks, &submit);
1535 		} else {
1536 			/* We're missing D+D. */
1537 			return async_raid6_2data_recov(syndrome_disks+2,
1538 						       STRIPE_SIZE, faila, failb,
1539 						       blocks, &submit);
1540 		}
1541 	}
1542 }
1543 
1544 static void ops_complete_prexor(void *stripe_head_ref)
1545 {
1546 	struct stripe_head *sh = stripe_head_ref;
1547 
1548 	pr_debug("%s: stripe %llu\n", __func__,
1549 		(unsigned long long)sh->sector);
1550 }
1551 
1552 static struct dma_async_tx_descriptor *
1553 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1554 		struct dma_async_tx_descriptor *tx)
1555 {
1556 	int disks = sh->disks;
1557 	struct page **xor_srcs = to_addr_page(percpu, 0);
1558 	int count = 0, pd_idx = sh->pd_idx, i;
1559 	struct async_submit_ctl submit;
1560 
1561 	/* existing parity data subtracted */
1562 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1563 
1564 	BUG_ON(sh->batch_head);
1565 	pr_debug("%s: stripe %llu\n", __func__,
1566 		(unsigned long long)sh->sector);
1567 
1568 	for (i = disks; i--; ) {
1569 		struct r5dev *dev = &sh->dev[i];
1570 		/* Only process blocks that are known to be uptodate */
1571 		if (test_bit(R5_Wantdrain, &dev->flags))
1572 			xor_srcs[count++] = dev->page;
1573 	}
1574 
1575 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1576 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1577 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1578 
1579 	return tx;
1580 }
1581 
1582 static struct dma_async_tx_descriptor *
1583 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1584 		struct dma_async_tx_descriptor *tx)
1585 {
1586 	struct page **blocks = to_addr_page(percpu, 0);
1587 	int count;
1588 	struct async_submit_ctl submit;
1589 
1590 	pr_debug("%s: stripe %llu\n", __func__,
1591 		(unsigned long long)sh->sector);
1592 
1593 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1594 
1595 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1596 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1597 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1598 
1599 	return tx;
1600 }
1601 
1602 static struct dma_async_tx_descriptor *
1603 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1604 {
1605 	int disks = sh->disks;
1606 	int i;
1607 	struct stripe_head *head_sh = sh;
1608 
1609 	pr_debug("%s: stripe %llu\n", __func__,
1610 		(unsigned long long)sh->sector);
1611 
1612 	for (i = disks; i--; ) {
1613 		struct r5dev *dev;
1614 		struct bio *chosen;
1615 
1616 		sh = head_sh;
1617 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1618 			struct bio *wbi;
1619 
1620 again:
1621 			dev = &sh->dev[i];
1622 			spin_lock_irq(&sh->stripe_lock);
1623 			chosen = dev->towrite;
1624 			dev->towrite = NULL;
1625 			sh->overwrite_disks = 0;
1626 			BUG_ON(dev->written);
1627 			wbi = dev->written = chosen;
1628 			spin_unlock_irq(&sh->stripe_lock);
1629 			WARN_ON(dev->page != dev->orig_page);
1630 
1631 			while (wbi && wbi->bi_iter.bi_sector <
1632 				dev->sector + STRIPE_SECTORS) {
1633 				if (wbi->bi_rw & REQ_FUA)
1634 					set_bit(R5_WantFUA, &dev->flags);
1635 				if (wbi->bi_rw & REQ_SYNC)
1636 					set_bit(R5_SyncIO, &dev->flags);
1637 				if (wbi->bi_rw & REQ_DISCARD)
1638 					set_bit(R5_Discard, &dev->flags);
1639 				else {
1640 					tx = async_copy_data(1, wbi, &dev->page,
1641 						dev->sector, tx, sh);
1642 					if (dev->page != dev->orig_page) {
1643 						set_bit(R5_SkipCopy, &dev->flags);
1644 						clear_bit(R5_UPTODATE, &dev->flags);
1645 						clear_bit(R5_OVERWRITE, &dev->flags);
1646 					}
1647 				}
1648 				wbi = r5_next_bio(wbi, dev->sector);
1649 			}
1650 
1651 			if (head_sh->batch_head) {
1652 				sh = list_first_entry(&sh->batch_list,
1653 						      struct stripe_head,
1654 						      batch_list);
1655 				if (sh == head_sh)
1656 					continue;
1657 				goto again;
1658 			}
1659 		}
1660 	}
1661 
1662 	return tx;
1663 }
1664 
1665 static void ops_complete_reconstruct(void *stripe_head_ref)
1666 {
1667 	struct stripe_head *sh = stripe_head_ref;
1668 	int disks = sh->disks;
1669 	int pd_idx = sh->pd_idx;
1670 	int qd_idx = sh->qd_idx;
1671 	int i;
1672 	bool fua = false, sync = false, discard = false;
1673 
1674 	pr_debug("%s: stripe %llu\n", __func__,
1675 		(unsigned long long)sh->sector);
1676 
1677 	for (i = disks; i--; ) {
1678 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1679 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1680 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1681 	}
1682 
1683 	for (i = disks; i--; ) {
1684 		struct r5dev *dev = &sh->dev[i];
1685 
1686 		if (dev->written || i == pd_idx || i == qd_idx) {
1687 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1688 				set_bit(R5_UPTODATE, &dev->flags);
1689 			if (fua)
1690 				set_bit(R5_WantFUA, &dev->flags);
1691 			if (sync)
1692 				set_bit(R5_SyncIO, &dev->flags);
1693 		}
1694 	}
1695 
1696 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1697 		sh->reconstruct_state = reconstruct_state_drain_result;
1698 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1699 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1700 	else {
1701 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1702 		sh->reconstruct_state = reconstruct_state_result;
1703 	}
1704 
1705 	set_bit(STRIPE_HANDLE, &sh->state);
1706 	raid5_release_stripe(sh);
1707 }
1708 
1709 static void
1710 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1711 		     struct dma_async_tx_descriptor *tx)
1712 {
1713 	int disks = sh->disks;
1714 	struct page **xor_srcs;
1715 	struct async_submit_ctl submit;
1716 	int count, pd_idx = sh->pd_idx, i;
1717 	struct page *xor_dest;
1718 	int prexor = 0;
1719 	unsigned long flags;
1720 	int j = 0;
1721 	struct stripe_head *head_sh = sh;
1722 	int last_stripe;
1723 
1724 	pr_debug("%s: stripe %llu\n", __func__,
1725 		(unsigned long long)sh->sector);
1726 
1727 	for (i = 0; i < sh->disks; i++) {
1728 		if (pd_idx == i)
1729 			continue;
1730 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1731 			break;
1732 	}
1733 	if (i >= sh->disks) {
1734 		atomic_inc(&sh->count);
1735 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1736 		ops_complete_reconstruct(sh);
1737 		return;
1738 	}
1739 again:
1740 	count = 0;
1741 	xor_srcs = to_addr_page(percpu, j);
1742 	/* check if prexor is active which means only process blocks
1743 	 * that are part of a read-modify-write (written)
1744 	 */
1745 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1746 		prexor = 1;
1747 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1748 		for (i = disks; i--; ) {
1749 			struct r5dev *dev = &sh->dev[i];
1750 			if (head_sh->dev[i].written)
1751 				xor_srcs[count++] = dev->page;
1752 		}
1753 	} else {
1754 		xor_dest = sh->dev[pd_idx].page;
1755 		for (i = disks; i--; ) {
1756 			struct r5dev *dev = &sh->dev[i];
1757 			if (i != pd_idx)
1758 				xor_srcs[count++] = dev->page;
1759 		}
1760 	}
1761 
1762 	/* 1/ if we prexor'd then the dest is reused as a source
1763 	 * 2/ if we did not prexor then we are redoing the parity
1764 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1765 	 * for the synchronous xor case
1766 	 */
1767 	last_stripe = !head_sh->batch_head ||
1768 		list_first_entry(&sh->batch_list,
1769 				 struct stripe_head, batch_list) == head_sh;
1770 	if (last_stripe) {
1771 		flags = ASYNC_TX_ACK |
1772 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1773 
1774 		atomic_inc(&head_sh->count);
1775 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1776 				  to_addr_conv(sh, percpu, j));
1777 	} else {
1778 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1779 		init_async_submit(&submit, flags, tx, NULL, NULL,
1780 				  to_addr_conv(sh, percpu, j));
1781 	}
1782 
1783 	if (unlikely(count == 1))
1784 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1785 	else
1786 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1787 	if (!last_stripe) {
1788 		j++;
1789 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1790 				      batch_list);
1791 		goto again;
1792 	}
1793 }
1794 
1795 static void
1796 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1797 		     struct dma_async_tx_descriptor *tx)
1798 {
1799 	struct async_submit_ctl submit;
1800 	struct page **blocks;
1801 	int count, i, j = 0;
1802 	struct stripe_head *head_sh = sh;
1803 	int last_stripe;
1804 	int synflags;
1805 	unsigned long txflags;
1806 
1807 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1808 
1809 	for (i = 0; i < sh->disks; i++) {
1810 		if (sh->pd_idx == i || sh->qd_idx == i)
1811 			continue;
1812 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1813 			break;
1814 	}
1815 	if (i >= sh->disks) {
1816 		atomic_inc(&sh->count);
1817 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1818 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1819 		ops_complete_reconstruct(sh);
1820 		return;
1821 	}
1822 
1823 again:
1824 	blocks = to_addr_page(percpu, j);
1825 
1826 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1827 		synflags = SYNDROME_SRC_WRITTEN;
1828 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1829 	} else {
1830 		synflags = SYNDROME_SRC_ALL;
1831 		txflags = ASYNC_TX_ACK;
1832 	}
1833 
1834 	count = set_syndrome_sources(blocks, sh, synflags);
1835 	last_stripe = !head_sh->batch_head ||
1836 		list_first_entry(&sh->batch_list,
1837 				 struct stripe_head, batch_list) == head_sh;
1838 
1839 	if (last_stripe) {
1840 		atomic_inc(&head_sh->count);
1841 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1842 				  head_sh, to_addr_conv(sh, percpu, j));
1843 	} else
1844 		init_async_submit(&submit, 0, tx, NULL, NULL,
1845 				  to_addr_conv(sh, percpu, j));
1846 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1847 	if (!last_stripe) {
1848 		j++;
1849 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1850 				      batch_list);
1851 		goto again;
1852 	}
1853 }
1854 
1855 static void ops_complete_check(void *stripe_head_ref)
1856 {
1857 	struct stripe_head *sh = stripe_head_ref;
1858 
1859 	pr_debug("%s: stripe %llu\n", __func__,
1860 		(unsigned long long)sh->sector);
1861 
1862 	sh->check_state = check_state_check_result;
1863 	set_bit(STRIPE_HANDLE, &sh->state);
1864 	raid5_release_stripe(sh);
1865 }
1866 
1867 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1868 {
1869 	int disks = sh->disks;
1870 	int pd_idx = sh->pd_idx;
1871 	int qd_idx = sh->qd_idx;
1872 	struct page *xor_dest;
1873 	struct page **xor_srcs = to_addr_page(percpu, 0);
1874 	struct dma_async_tx_descriptor *tx;
1875 	struct async_submit_ctl submit;
1876 	int count;
1877 	int i;
1878 
1879 	pr_debug("%s: stripe %llu\n", __func__,
1880 		(unsigned long long)sh->sector);
1881 
1882 	BUG_ON(sh->batch_head);
1883 	count = 0;
1884 	xor_dest = sh->dev[pd_idx].page;
1885 	xor_srcs[count++] = xor_dest;
1886 	for (i = disks; i--; ) {
1887 		if (i == pd_idx || i == qd_idx)
1888 			continue;
1889 		xor_srcs[count++] = sh->dev[i].page;
1890 	}
1891 
1892 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1893 			  to_addr_conv(sh, percpu, 0));
1894 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1895 			   &sh->ops.zero_sum_result, &submit);
1896 
1897 	atomic_inc(&sh->count);
1898 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1899 	tx = async_trigger_callback(&submit);
1900 }
1901 
1902 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1903 {
1904 	struct page **srcs = to_addr_page(percpu, 0);
1905 	struct async_submit_ctl submit;
1906 	int count;
1907 
1908 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1909 		(unsigned long long)sh->sector, checkp);
1910 
1911 	BUG_ON(sh->batch_head);
1912 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1913 	if (!checkp)
1914 		srcs[count] = NULL;
1915 
1916 	atomic_inc(&sh->count);
1917 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1918 			  sh, to_addr_conv(sh, percpu, 0));
1919 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1920 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1921 }
1922 
1923 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1924 {
1925 	int overlap_clear = 0, i, disks = sh->disks;
1926 	struct dma_async_tx_descriptor *tx = NULL;
1927 	struct r5conf *conf = sh->raid_conf;
1928 	int level = conf->level;
1929 	struct raid5_percpu *percpu;
1930 	unsigned long cpu;
1931 
1932 	cpu = get_cpu();
1933 	percpu = per_cpu_ptr(conf->percpu, cpu);
1934 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1935 		ops_run_biofill(sh);
1936 		overlap_clear++;
1937 	}
1938 
1939 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1940 		if (level < 6)
1941 			tx = ops_run_compute5(sh, percpu);
1942 		else {
1943 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1944 				tx = ops_run_compute6_1(sh, percpu);
1945 			else
1946 				tx = ops_run_compute6_2(sh, percpu);
1947 		}
1948 		/* terminate the chain if reconstruct is not set to be run */
1949 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1950 			async_tx_ack(tx);
1951 	}
1952 
1953 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1954 		if (level < 6)
1955 			tx = ops_run_prexor5(sh, percpu, tx);
1956 		else
1957 			tx = ops_run_prexor6(sh, percpu, tx);
1958 	}
1959 
1960 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1961 		tx = ops_run_biodrain(sh, tx);
1962 		overlap_clear++;
1963 	}
1964 
1965 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1966 		if (level < 6)
1967 			ops_run_reconstruct5(sh, percpu, tx);
1968 		else
1969 			ops_run_reconstruct6(sh, percpu, tx);
1970 	}
1971 
1972 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1973 		if (sh->check_state == check_state_run)
1974 			ops_run_check_p(sh, percpu);
1975 		else if (sh->check_state == check_state_run_q)
1976 			ops_run_check_pq(sh, percpu, 0);
1977 		else if (sh->check_state == check_state_run_pq)
1978 			ops_run_check_pq(sh, percpu, 1);
1979 		else
1980 			BUG();
1981 	}
1982 
1983 	if (overlap_clear && !sh->batch_head)
1984 		for (i = disks; i--; ) {
1985 			struct r5dev *dev = &sh->dev[i];
1986 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1987 				wake_up(&sh->raid_conf->wait_for_overlap);
1988 		}
1989 	put_cpu();
1990 }
1991 
1992 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1993 {
1994 	struct stripe_head *sh;
1995 
1996 	sh = kmem_cache_zalloc(sc, gfp);
1997 	if (sh) {
1998 		spin_lock_init(&sh->stripe_lock);
1999 		spin_lock_init(&sh->batch_lock);
2000 		INIT_LIST_HEAD(&sh->batch_list);
2001 		INIT_LIST_HEAD(&sh->lru);
2002 		atomic_set(&sh->count, 1);
2003 	}
2004 	return sh;
2005 }
2006 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2007 {
2008 	struct stripe_head *sh;
2009 
2010 	sh = alloc_stripe(conf->slab_cache, gfp);
2011 	if (!sh)
2012 		return 0;
2013 
2014 	sh->raid_conf = conf;
2015 
2016 	if (grow_buffers(sh, gfp)) {
2017 		shrink_buffers(sh);
2018 		kmem_cache_free(conf->slab_cache, sh);
2019 		return 0;
2020 	}
2021 	sh->hash_lock_index =
2022 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2023 	/* we just created an active stripe so... */
2024 	atomic_inc(&conf->active_stripes);
2025 
2026 	raid5_release_stripe(sh);
2027 	conf->max_nr_stripes++;
2028 	return 1;
2029 }
2030 
2031 static int grow_stripes(struct r5conf *conf, int num)
2032 {
2033 	struct kmem_cache *sc;
2034 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2035 
2036 	if (conf->mddev->gendisk)
2037 		sprintf(conf->cache_name[0],
2038 			"raid%d-%s", conf->level, mdname(conf->mddev));
2039 	else
2040 		sprintf(conf->cache_name[0],
2041 			"raid%d-%p", conf->level, conf->mddev);
2042 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2043 
2044 	conf->active_name = 0;
2045 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2046 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2047 			       0, 0, NULL);
2048 	if (!sc)
2049 		return 1;
2050 	conf->slab_cache = sc;
2051 	conf->pool_size = devs;
2052 	while (num--)
2053 		if (!grow_one_stripe(conf, GFP_KERNEL))
2054 			return 1;
2055 
2056 	return 0;
2057 }
2058 
2059 /**
2060  * scribble_len - return the required size of the scribble region
2061  * @num - total number of disks in the array
2062  *
2063  * The size must be enough to contain:
2064  * 1/ a struct page pointer for each device in the array +2
2065  * 2/ room to convert each entry in (1) to its corresponding dma
2066  *    (dma_map_page()) or page (page_address()) address.
2067  *
2068  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2069  * calculate over all devices (not just the data blocks), using zeros in place
2070  * of the P and Q blocks.
2071  */
2072 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2073 {
2074 	struct flex_array *ret;
2075 	size_t len;
2076 
2077 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2078 	ret = flex_array_alloc(len, cnt, flags);
2079 	if (!ret)
2080 		return NULL;
2081 	/* always prealloc all elements, so no locking is required */
2082 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2083 		flex_array_free(ret);
2084 		return NULL;
2085 	}
2086 	return ret;
2087 }
2088 
2089 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2090 {
2091 	unsigned long cpu;
2092 	int err = 0;
2093 
2094 	mddev_suspend(conf->mddev);
2095 	get_online_cpus();
2096 	for_each_present_cpu(cpu) {
2097 		struct raid5_percpu *percpu;
2098 		struct flex_array *scribble;
2099 
2100 		percpu = per_cpu_ptr(conf->percpu, cpu);
2101 		scribble = scribble_alloc(new_disks,
2102 					  new_sectors / STRIPE_SECTORS,
2103 					  GFP_NOIO);
2104 
2105 		if (scribble) {
2106 			flex_array_free(percpu->scribble);
2107 			percpu->scribble = scribble;
2108 		} else {
2109 			err = -ENOMEM;
2110 			break;
2111 		}
2112 	}
2113 	put_online_cpus();
2114 	mddev_resume(conf->mddev);
2115 	return err;
2116 }
2117 
2118 static int resize_stripes(struct r5conf *conf, int newsize)
2119 {
2120 	/* Make all the stripes able to hold 'newsize' devices.
2121 	 * New slots in each stripe get 'page' set to a new page.
2122 	 *
2123 	 * This happens in stages:
2124 	 * 1/ create a new kmem_cache and allocate the required number of
2125 	 *    stripe_heads.
2126 	 * 2/ gather all the old stripe_heads and transfer the pages across
2127 	 *    to the new stripe_heads.  This will have the side effect of
2128 	 *    freezing the array as once all stripe_heads have been collected,
2129 	 *    no IO will be possible.  Old stripe heads are freed once their
2130 	 *    pages have been transferred over, and the old kmem_cache is
2131 	 *    freed when all stripes are done.
2132 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2133 	 *    we simple return a failre status - no need to clean anything up.
2134 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2135 	 *    If this fails, we don't bother trying the shrink the
2136 	 *    stripe_heads down again, we just leave them as they are.
2137 	 *    As each stripe_head is processed the new one is released into
2138 	 *    active service.
2139 	 *
2140 	 * Once step2 is started, we cannot afford to wait for a write,
2141 	 * so we use GFP_NOIO allocations.
2142 	 */
2143 	struct stripe_head *osh, *nsh;
2144 	LIST_HEAD(newstripes);
2145 	struct disk_info *ndisks;
2146 	int err;
2147 	struct kmem_cache *sc;
2148 	int i;
2149 	int hash, cnt;
2150 
2151 	if (newsize <= conf->pool_size)
2152 		return 0; /* never bother to shrink */
2153 
2154 	err = md_allow_write(conf->mddev);
2155 	if (err)
2156 		return err;
2157 
2158 	/* Step 1 */
2159 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2160 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2161 			       0, 0, NULL);
2162 	if (!sc)
2163 		return -ENOMEM;
2164 
2165 	/* Need to ensure auto-resizing doesn't interfere */
2166 	mutex_lock(&conf->cache_size_mutex);
2167 
2168 	for (i = conf->max_nr_stripes; i; i--) {
2169 		nsh = alloc_stripe(sc, GFP_KERNEL);
2170 		if (!nsh)
2171 			break;
2172 
2173 		nsh->raid_conf = conf;
2174 		list_add(&nsh->lru, &newstripes);
2175 	}
2176 	if (i) {
2177 		/* didn't get enough, give up */
2178 		while (!list_empty(&newstripes)) {
2179 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2180 			list_del(&nsh->lru);
2181 			kmem_cache_free(sc, nsh);
2182 		}
2183 		kmem_cache_destroy(sc);
2184 		mutex_unlock(&conf->cache_size_mutex);
2185 		return -ENOMEM;
2186 	}
2187 	/* Step 2 - Must use GFP_NOIO now.
2188 	 * OK, we have enough stripes, start collecting inactive
2189 	 * stripes and copying them over
2190 	 */
2191 	hash = 0;
2192 	cnt = 0;
2193 	list_for_each_entry(nsh, &newstripes, lru) {
2194 		lock_device_hash_lock(conf, hash);
2195 		wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2196 				    !list_empty(conf->inactive_list + hash),
2197 				    unlock_device_hash_lock(conf, hash),
2198 				    lock_device_hash_lock(conf, hash));
2199 		osh = get_free_stripe(conf, hash);
2200 		unlock_device_hash_lock(conf, hash);
2201 
2202 		for(i=0; i<conf->pool_size; i++) {
2203 			nsh->dev[i].page = osh->dev[i].page;
2204 			nsh->dev[i].orig_page = osh->dev[i].page;
2205 		}
2206 		nsh->hash_lock_index = hash;
2207 		kmem_cache_free(conf->slab_cache, osh);
2208 		cnt++;
2209 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2210 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2211 			hash++;
2212 			cnt = 0;
2213 		}
2214 	}
2215 	kmem_cache_destroy(conf->slab_cache);
2216 
2217 	/* Step 3.
2218 	 * At this point, we are holding all the stripes so the array
2219 	 * is completely stalled, so now is a good time to resize
2220 	 * conf->disks and the scribble region
2221 	 */
2222 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2223 	if (ndisks) {
2224 		for (i=0; i<conf->raid_disks; i++)
2225 			ndisks[i] = conf->disks[i];
2226 		kfree(conf->disks);
2227 		conf->disks = ndisks;
2228 	} else
2229 		err = -ENOMEM;
2230 
2231 	mutex_unlock(&conf->cache_size_mutex);
2232 	/* Step 4, return new stripes to service */
2233 	while(!list_empty(&newstripes)) {
2234 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2235 		list_del_init(&nsh->lru);
2236 
2237 		for (i=conf->raid_disks; i < newsize; i++)
2238 			if (nsh->dev[i].page == NULL) {
2239 				struct page *p = alloc_page(GFP_NOIO);
2240 				nsh->dev[i].page = p;
2241 				nsh->dev[i].orig_page = p;
2242 				if (!p)
2243 					err = -ENOMEM;
2244 			}
2245 		raid5_release_stripe(nsh);
2246 	}
2247 	/* critical section pass, GFP_NOIO no longer needed */
2248 
2249 	conf->slab_cache = sc;
2250 	conf->active_name = 1-conf->active_name;
2251 	if (!err)
2252 		conf->pool_size = newsize;
2253 	return err;
2254 }
2255 
2256 static int drop_one_stripe(struct r5conf *conf)
2257 {
2258 	struct stripe_head *sh;
2259 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2260 
2261 	spin_lock_irq(conf->hash_locks + hash);
2262 	sh = get_free_stripe(conf, hash);
2263 	spin_unlock_irq(conf->hash_locks + hash);
2264 	if (!sh)
2265 		return 0;
2266 	BUG_ON(atomic_read(&sh->count));
2267 	shrink_buffers(sh);
2268 	kmem_cache_free(conf->slab_cache, sh);
2269 	atomic_dec(&conf->active_stripes);
2270 	conf->max_nr_stripes--;
2271 	return 1;
2272 }
2273 
2274 static void shrink_stripes(struct r5conf *conf)
2275 {
2276 	while (conf->max_nr_stripes &&
2277 	       drop_one_stripe(conf))
2278 		;
2279 
2280 	kmem_cache_destroy(conf->slab_cache);
2281 	conf->slab_cache = NULL;
2282 }
2283 
2284 static void raid5_end_read_request(struct bio * bi)
2285 {
2286 	struct stripe_head *sh = bi->bi_private;
2287 	struct r5conf *conf = sh->raid_conf;
2288 	int disks = sh->disks, i;
2289 	char b[BDEVNAME_SIZE];
2290 	struct md_rdev *rdev = NULL;
2291 	sector_t s;
2292 
2293 	for (i=0 ; i<disks; i++)
2294 		if (bi == &sh->dev[i].req)
2295 			break;
2296 
2297 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2298 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2299 		bi->bi_error);
2300 	if (i == disks) {
2301 		BUG();
2302 		return;
2303 	}
2304 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2305 		/* If replacement finished while this request was outstanding,
2306 		 * 'replacement' might be NULL already.
2307 		 * In that case it moved down to 'rdev'.
2308 		 * rdev is not removed until all requests are finished.
2309 		 */
2310 		rdev = conf->disks[i].replacement;
2311 	if (!rdev)
2312 		rdev = conf->disks[i].rdev;
2313 
2314 	if (use_new_offset(conf, sh))
2315 		s = sh->sector + rdev->new_data_offset;
2316 	else
2317 		s = sh->sector + rdev->data_offset;
2318 	if (!bi->bi_error) {
2319 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2320 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2321 			/* Note that this cannot happen on a
2322 			 * replacement device.  We just fail those on
2323 			 * any error
2324 			 */
2325 			printk_ratelimited(
2326 				KERN_INFO
2327 				"md/raid:%s: read error corrected"
2328 				" (%lu sectors at %llu on %s)\n",
2329 				mdname(conf->mddev), STRIPE_SECTORS,
2330 				(unsigned long long)s,
2331 				bdevname(rdev->bdev, b));
2332 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2333 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2334 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2335 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2336 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2337 
2338 		if (atomic_read(&rdev->read_errors))
2339 			atomic_set(&rdev->read_errors, 0);
2340 	} else {
2341 		const char *bdn = bdevname(rdev->bdev, b);
2342 		int retry = 0;
2343 		int set_bad = 0;
2344 
2345 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2346 		atomic_inc(&rdev->read_errors);
2347 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2348 			printk_ratelimited(
2349 				KERN_WARNING
2350 				"md/raid:%s: read error on replacement device "
2351 				"(sector %llu on %s).\n",
2352 				mdname(conf->mddev),
2353 				(unsigned long long)s,
2354 				bdn);
2355 		else if (conf->mddev->degraded >= conf->max_degraded) {
2356 			set_bad = 1;
2357 			printk_ratelimited(
2358 				KERN_WARNING
2359 				"md/raid:%s: read error not correctable "
2360 				"(sector %llu on %s).\n",
2361 				mdname(conf->mddev),
2362 				(unsigned long long)s,
2363 				bdn);
2364 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2365 			/* Oh, no!!! */
2366 			set_bad = 1;
2367 			printk_ratelimited(
2368 				KERN_WARNING
2369 				"md/raid:%s: read error NOT corrected!! "
2370 				"(sector %llu on %s).\n",
2371 				mdname(conf->mddev),
2372 				(unsigned long long)s,
2373 				bdn);
2374 		} else if (atomic_read(&rdev->read_errors)
2375 			 > conf->max_nr_stripes)
2376 			printk(KERN_WARNING
2377 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2378 			       mdname(conf->mddev), bdn);
2379 		else
2380 			retry = 1;
2381 		if (set_bad && test_bit(In_sync, &rdev->flags)
2382 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2383 			retry = 1;
2384 		if (retry)
2385 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2386 				set_bit(R5_ReadError, &sh->dev[i].flags);
2387 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2388 			} else
2389 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2390 		else {
2391 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2392 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2393 			if (!(set_bad
2394 			      && test_bit(In_sync, &rdev->flags)
2395 			      && rdev_set_badblocks(
2396 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2397 				md_error(conf->mddev, rdev);
2398 		}
2399 	}
2400 	rdev_dec_pending(rdev, conf->mddev);
2401 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2402 	set_bit(STRIPE_HANDLE, &sh->state);
2403 	raid5_release_stripe(sh);
2404 }
2405 
2406 static void raid5_end_write_request(struct bio *bi)
2407 {
2408 	struct stripe_head *sh = bi->bi_private;
2409 	struct r5conf *conf = sh->raid_conf;
2410 	int disks = sh->disks, i;
2411 	struct md_rdev *uninitialized_var(rdev);
2412 	sector_t first_bad;
2413 	int bad_sectors;
2414 	int replacement = 0;
2415 
2416 	for (i = 0 ; i < disks; i++) {
2417 		if (bi == &sh->dev[i].req) {
2418 			rdev = conf->disks[i].rdev;
2419 			break;
2420 		}
2421 		if (bi == &sh->dev[i].rreq) {
2422 			rdev = conf->disks[i].replacement;
2423 			if (rdev)
2424 				replacement = 1;
2425 			else
2426 				/* rdev was removed and 'replacement'
2427 				 * replaced it.  rdev is not removed
2428 				 * until all requests are finished.
2429 				 */
2430 				rdev = conf->disks[i].rdev;
2431 			break;
2432 		}
2433 	}
2434 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2435 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2436 		bi->bi_error);
2437 	if (i == disks) {
2438 		BUG();
2439 		return;
2440 	}
2441 
2442 	if (replacement) {
2443 		if (bi->bi_error)
2444 			md_error(conf->mddev, rdev);
2445 		else if (is_badblock(rdev, sh->sector,
2446 				     STRIPE_SECTORS,
2447 				     &first_bad, &bad_sectors))
2448 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2449 	} else {
2450 		if (bi->bi_error) {
2451 			set_bit(STRIPE_DEGRADED, &sh->state);
2452 			set_bit(WriteErrorSeen, &rdev->flags);
2453 			set_bit(R5_WriteError, &sh->dev[i].flags);
2454 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2455 				set_bit(MD_RECOVERY_NEEDED,
2456 					&rdev->mddev->recovery);
2457 		} else if (is_badblock(rdev, sh->sector,
2458 				       STRIPE_SECTORS,
2459 				       &first_bad, &bad_sectors)) {
2460 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2461 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2462 				/* That was a successful write so make
2463 				 * sure it looks like we already did
2464 				 * a re-write.
2465 				 */
2466 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2467 		}
2468 	}
2469 	rdev_dec_pending(rdev, conf->mddev);
2470 
2471 	if (sh->batch_head && bi->bi_error && !replacement)
2472 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2473 
2474 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2475 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2476 	set_bit(STRIPE_HANDLE, &sh->state);
2477 	raid5_release_stripe(sh);
2478 
2479 	if (sh->batch_head && sh != sh->batch_head)
2480 		raid5_release_stripe(sh->batch_head);
2481 }
2482 
2483 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2484 {
2485 	struct r5dev *dev = &sh->dev[i];
2486 
2487 	bio_init(&dev->req);
2488 	dev->req.bi_io_vec = &dev->vec;
2489 	dev->req.bi_max_vecs = 1;
2490 	dev->req.bi_private = sh;
2491 
2492 	bio_init(&dev->rreq);
2493 	dev->rreq.bi_io_vec = &dev->rvec;
2494 	dev->rreq.bi_max_vecs = 1;
2495 	dev->rreq.bi_private = sh;
2496 
2497 	dev->flags = 0;
2498 	dev->sector = raid5_compute_blocknr(sh, i, previous);
2499 }
2500 
2501 static void error(struct mddev *mddev, struct md_rdev *rdev)
2502 {
2503 	char b[BDEVNAME_SIZE];
2504 	struct r5conf *conf = mddev->private;
2505 	unsigned long flags;
2506 	pr_debug("raid456: error called\n");
2507 
2508 	spin_lock_irqsave(&conf->device_lock, flags);
2509 	clear_bit(In_sync, &rdev->flags);
2510 	mddev->degraded = calc_degraded(conf);
2511 	spin_unlock_irqrestore(&conf->device_lock, flags);
2512 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2513 
2514 	set_bit(Blocked, &rdev->flags);
2515 	set_bit(Faulty, &rdev->flags);
2516 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2517 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
2518 	printk(KERN_ALERT
2519 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2520 	       "md/raid:%s: Operation continuing on %d devices.\n",
2521 	       mdname(mddev),
2522 	       bdevname(rdev->bdev, b),
2523 	       mdname(mddev),
2524 	       conf->raid_disks - mddev->degraded);
2525 }
2526 
2527 /*
2528  * Input: a 'big' sector number,
2529  * Output: index of the data and parity disk, and the sector # in them.
2530  */
2531 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2532 			      int previous, int *dd_idx,
2533 			      struct stripe_head *sh)
2534 {
2535 	sector_t stripe, stripe2;
2536 	sector_t chunk_number;
2537 	unsigned int chunk_offset;
2538 	int pd_idx, qd_idx;
2539 	int ddf_layout = 0;
2540 	sector_t new_sector;
2541 	int algorithm = previous ? conf->prev_algo
2542 				 : conf->algorithm;
2543 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2544 					 : conf->chunk_sectors;
2545 	int raid_disks = previous ? conf->previous_raid_disks
2546 				  : conf->raid_disks;
2547 	int data_disks = raid_disks - conf->max_degraded;
2548 
2549 	/* First compute the information on this sector */
2550 
2551 	/*
2552 	 * Compute the chunk number and the sector offset inside the chunk
2553 	 */
2554 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2555 	chunk_number = r_sector;
2556 
2557 	/*
2558 	 * Compute the stripe number
2559 	 */
2560 	stripe = chunk_number;
2561 	*dd_idx = sector_div(stripe, data_disks);
2562 	stripe2 = stripe;
2563 	/*
2564 	 * Select the parity disk based on the user selected algorithm.
2565 	 */
2566 	pd_idx = qd_idx = -1;
2567 	switch(conf->level) {
2568 	case 4:
2569 		pd_idx = data_disks;
2570 		break;
2571 	case 5:
2572 		switch (algorithm) {
2573 		case ALGORITHM_LEFT_ASYMMETRIC:
2574 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2575 			if (*dd_idx >= pd_idx)
2576 				(*dd_idx)++;
2577 			break;
2578 		case ALGORITHM_RIGHT_ASYMMETRIC:
2579 			pd_idx = sector_div(stripe2, raid_disks);
2580 			if (*dd_idx >= pd_idx)
2581 				(*dd_idx)++;
2582 			break;
2583 		case ALGORITHM_LEFT_SYMMETRIC:
2584 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2585 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2586 			break;
2587 		case ALGORITHM_RIGHT_SYMMETRIC:
2588 			pd_idx = sector_div(stripe2, raid_disks);
2589 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2590 			break;
2591 		case ALGORITHM_PARITY_0:
2592 			pd_idx = 0;
2593 			(*dd_idx)++;
2594 			break;
2595 		case ALGORITHM_PARITY_N:
2596 			pd_idx = data_disks;
2597 			break;
2598 		default:
2599 			BUG();
2600 		}
2601 		break;
2602 	case 6:
2603 
2604 		switch (algorithm) {
2605 		case ALGORITHM_LEFT_ASYMMETRIC:
2606 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2607 			qd_idx = pd_idx + 1;
2608 			if (pd_idx == raid_disks-1) {
2609 				(*dd_idx)++;	/* Q D D D P */
2610 				qd_idx = 0;
2611 			} else if (*dd_idx >= pd_idx)
2612 				(*dd_idx) += 2; /* D D P Q D */
2613 			break;
2614 		case ALGORITHM_RIGHT_ASYMMETRIC:
2615 			pd_idx = sector_div(stripe2, raid_disks);
2616 			qd_idx = pd_idx + 1;
2617 			if (pd_idx == raid_disks-1) {
2618 				(*dd_idx)++;	/* Q D D D P */
2619 				qd_idx = 0;
2620 			} else if (*dd_idx >= pd_idx)
2621 				(*dd_idx) += 2; /* D D P Q D */
2622 			break;
2623 		case ALGORITHM_LEFT_SYMMETRIC:
2624 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2625 			qd_idx = (pd_idx + 1) % raid_disks;
2626 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2627 			break;
2628 		case ALGORITHM_RIGHT_SYMMETRIC:
2629 			pd_idx = sector_div(stripe2, raid_disks);
2630 			qd_idx = (pd_idx + 1) % raid_disks;
2631 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2632 			break;
2633 
2634 		case ALGORITHM_PARITY_0:
2635 			pd_idx = 0;
2636 			qd_idx = 1;
2637 			(*dd_idx) += 2;
2638 			break;
2639 		case ALGORITHM_PARITY_N:
2640 			pd_idx = data_disks;
2641 			qd_idx = data_disks + 1;
2642 			break;
2643 
2644 		case ALGORITHM_ROTATING_ZERO_RESTART:
2645 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2646 			 * of blocks for computing Q is different.
2647 			 */
2648 			pd_idx = sector_div(stripe2, raid_disks);
2649 			qd_idx = pd_idx + 1;
2650 			if (pd_idx == raid_disks-1) {
2651 				(*dd_idx)++;	/* Q D D D P */
2652 				qd_idx = 0;
2653 			} else if (*dd_idx >= pd_idx)
2654 				(*dd_idx) += 2; /* D D P Q D */
2655 			ddf_layout = 1;
2656 			break;
2657 
2658 		case ALGORITHM_ROTATING_N_RESTART:
2659 			/* Same a left_asymmetric, by first stripe is
2660 			 * D D D P Q  rather than
2661 			 * Q D D D P
2662 			 */
2663 			stripe2 += 1;
2664 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2665 			qd_idx = pd_idx + 1;
2666 			if (pd_idx == raid_disks-1) {
2667 				(*dd_idx)++;	/* Q D D D P */
2668 				qd_idx = 0;
2669 			} else if (*dd_idx >= pd_idx)
2670 				(*dd_idx) += 2; /* D D P Q D */
2671 			ddf_layout = 1;
2672 			break;
2673 
2674 		case ALGORITHM_ROTATING_N_CONTINUE:
2675 			/* Same as left_symmetric but Q is before P */
2676 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2677 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2678 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2679 			ddf_layout = 1;
2680 			break;
2681 
2682 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2683 			/* RAID5 left_asymmetric, with Q on last device */
2684 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2685 			if (*dd_idx >= pd_idx)
2686 				(*dd_idx)++;
2687 			qd_idx = raid_disks - 1;
2688 			break;
2689 
2690 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2691 			pd_idx = sector_div(stripe2, raid_disks-1);
2692 			if (*dd_idx >= pd_idx)
2693 				(*dd_idx)++;
2694 			qd_idx = raid_disks - 1;
2695 			break;
2696 
2697 		case ALGORITHM_LEFT_SYMMETRIC_6:
2698 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2699 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2700 			qd_idx = raid_disks - 1;
2701 			break;
2702 
2703 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2704 			pd_idx = sector_div(stripe2, raid_disks-1);
2705 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2706 			qd_idx = raid_disks - 1;
2707 			break;
2708 
2709 		case ALGORITHM_PARITY_0_6:
2710 			pd_idx = 0;
2711 			(*dd_idx)++;
2712 			qd_idx = raid_disks - 1;
2713 			break;
2714 
2715 		default:
2716 			BUG();
2717 		}
2718 		break;
2719 	}
2720 
2721 	if (sh) {
2722 		sh->pd_idx = pd_idx;
2723 		sh->qd_idx = qd_idx;
2724 		sh->ddf_layout = ddf_layout;
2725 	}
2726 	/*
2727 	 * Finally, compute the new sector number
2728 	 */
2729 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2730 	return new_sector;
2731 }
2732 
2733 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2734 {
2735 	struct r5conf *conf = sh->raid_conf;
2736 	int raid_disks = sh->disks;
2737 	int data_disks = raid_disks - conf->max_degraded;
2738 	sector_t new_sector = sh->sector, check;
2739 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2740 					 : conf->chunk_sectors;
2741 	int algorithm = previous ? conf->prev_algo
2742 				 : conf->algorithm;
2743 	sector_t stripe;
2744 	int chunk_offset;
2745 	sector_t chunk_number;
2746 	int dummy1, dd_idx = i;
2747 	sector_t r_sector;
2748 	struct stripe_head sh2;
2749 
2750 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2751 	stripe = new_sector;
2752 
2753 	if (i == sh->pd_idx)
2754 		return 0;
2755 	switch(conf->level) {
2756 	case 4: break;
2757 	case 5:
2758 		switch (algorithm) {
2759 		case ALGORITHM_LEFT_ASYMMETRIC:
2760 		case ALGORITHM_RIGHT_ASYMMETRIC:
2761 			if (i > sh->pd_idx)
2762 				i--;
2763 			break;
2764 		case ALGORITHM_LEFT_SYMMETRIC:
2765 		case ALGORITHM_RIGHT_SYMMETRIC:
2766 			if (i < sh->pd_idx)
2767 				i += raid_disks;
2768 			i -= (sh->pd_idx + 1);
2769 			break;
2770 		case ALGORITHM_PARITY_0:
2771 			i -= 1;
2772 			break;
2773 		case ALGORITHM_PARITY_N:
2774 			break;
2775 		default:
2776 			BUG();
2777 		}
2778 		break;
2779 	case 6:
2780 		if (i == sh->qd_idx)
2781 			return 0; /* It is the Q disk */
2782 		switch (algorithm) {
2783 		case ALGORITHM_LEFT_ASYMMETRIC:
2784 		case ALGORITHM_RIGHT_ASYMMETRIC:
2785 		case ALGORITHM_ROTATING_ZERO_RESTART:
2786 		case ALGORITHM_ROTATING_N_RESTART:
2787 			if (sh->pd_idx == raid_disks-1)
2788 				i--;	/* Q D D D P */
2789 			else if (i > sh->pd_idx)
2790 				i -= 2; /* D D P Q D */
2791 			break;
2792 		case ALGORITHM_LEFT_SYMMETRIC:
2793 		case ALGORITHM_RIGHT_SYMMETRIC:
2794 			if (sh->pd_idx == raid_disks-1)
2795 				i--; /* Q D D D P */
2796 			else {
2797 				/* D D P Q D */
2798 				if (i < sh->pd_idx)
2799 					i += raid_disks;
2800 				i -= (sh->pd_idx + 2);
2801 			}
2802 			break;
2803 		case ALGORITHM_PARITY_0:
2804 			i -= 2;
2805 			break;
2806 		case ALGORITHM_PARITY_N:
2807 			break;
2808 		case ALGORITHM_ROTATING_N_CONTINUE:
2809 			/* Like left_symmetric, but P is before Q */
2810 			if (sh->pd_idx == 0)
2811 				i--;	/* P D D D Q */
2812 			else {
2813 				/* D D Q P D */
2814 				if (i < sh->pd_idx)
2815 					i += raid_disks;
2816 				i -= (sh->pd_idx + 1);
2817 			}
2818 			break;
2819 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2820 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2821 			if (i > sh->pd_idx)
2822 				i--;
2823 			break;
2824 		case ALGORITHM_LEFT_SYMMETRIC_6:
2825 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2826 			if (i < sh->pd_idx)
2827 				i += data_disks + 1;
2828 			i -= (sh->pd_idx + 1);
2829 			break;
2830 		case ALGORITHM_PARITY_0_6:
2831 			i -= 1;
2832 			break;
2833 		default:
2834 			BUG();
2835 		}
2836 		break;
2837 	}
2838 
2839 	chunk_number = stripe * data_disks + i;
2840 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2841 
2842 	check = raid5_compute_sector(conf, r_sector,
2843 				     previous, &dummy1, &sh2);
2844 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2845 		|| sh2.qd_idx != sh->qd_idx) {
2846 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2847 		       mdname(conf->mddev));
2848 		return 0;
2849 	}
2850 	return r_sector;
2851 }
2852 
2853 static void
2854 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2855 			 int rcw, int expand)
2856 {
2857 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2858 	struct r5conf *conf = sh->raid_conf;
2859 	int level = conf->level;
2860 
2861 	if (rcw) {
2862 
2863 		for (i = disks; i--; ) {
2864 			struct r5dev *dev = &sh->dev[i];
2865 
2866 			if (dev->towrite) {
2867 				set_bit(R5_LOCKED, &dev->flags);
2868 				set_bit(R5_Wantdrain, &dev->flags);
2869 				if (!expand)
2870 					clear_bit(R5_UPTODATE, &dev->flags);
2871 				s->locked++;
2872 			}
2873 		}
2874 		/* if we are not expanding this is a proper write request, and
2875 		 * there will be bios with new data to be drained into the
2876 		 * stripe cache
2877 		 */
2878 		if (!expand) {
2879 			if (!s->locked)
2880 				/* False alarm, nothing to do */
2881 				return;
2882 			sh->reconstruct_state = reconstruct_state_drain_run;
2883 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2884 		} else
2885 			sh->reconstruct_state = reconstruct_state_run;
2886 
2887 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2888 
2889 		if (s->locked + conf->max_degraded == disks)
2890 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2891 				atomic_inc(&conf->pending_full_writes);
2892 	} else {
2893 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2894 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2895 		BUG_ON(level == 6 &&
2896 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2897 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2898 
2899 		for (i = disks; i--; ) {
2900 			struct r5dev *dev = &sh->dev[i];
2901 			if (i == pd_idx || i == qd_idx)
2902 				continue;
2903 
2904 			if (dev->towrite &&
2905 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2906 			     test_bit(R5_Wantcompute, &dev->flags))) {
2907 				set_bit(R5_Wantdrain, &dev->flags);
2908 				set_bit(R5_LOCKED, &dev->flags);
2909 				clear_bit(R5_UPTODATE, &dev->flags);
2910 				s->locked++;
2911 			}
2912 		}
2913 		if (!s->locked)
2914 			/* False alarm - nothing to do */
2915 			return;
2916 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2917 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2918 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2919 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2920 	}
2921 
2922 	/* keep the parity disk(s) locked while asynchronous operations
2923 	 * are in flight
2924 	 */
2925 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2926 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2927 	s->locked++;
2928 
2929 	if (level == 6) {
2930 		int qd_idx = sh->qd_idx;
2931 		struct r5dev *dev = &sh->dev[qd_idx];
2932 
2933 		set_bit(R5_LOCKED, &dev->flags);
2934 		clear_bit(R5_UPTODATE, &dev->flags);
2935 		s->locked++;
2936 	}
2937 
2938 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2939 		__func__, (unsigned long long)sh->sector,
2940 		s->locked, s->ops_request);
2941 }
2942 
2943 /*
2944  * Each stripe/dev can have one or more bion attached.
2945  * toread/towrite point to the first in a chain.
2946  * The bi_next chain must be in order.
2947  */
2948 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2949 			  int forwrite, int previous)
2950 {
2951 	struct bio **bip;
2952 	struct r5conf *conf = sh->raid_conf;
2953 	int firstwrite=0;
2954 
2955 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2956 		(unsigned long long)bi->bi_iter.bi_sector,
2957 		(unsigned long long)sh->sector);
2958 
2959 	/*
2960 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2961 	 * reference count to avoid race. The reference count should already be
2962 	 * increased before this function is called (for example, in
2963 	 * make_request()), so other bio sharing this stripe will not free the
2964 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2965 	 * protect it.
2966 	 */
2967 	spin_lock_irq(&sh->stripe_lock);
2968 	/* Don't allow new IO added to stripes in batch list */
2969 	if (sh->batch_head)
2970 		goto overlap;
2971 	if (forwrite) {
2972 		bip = &sh->dev[dd_idx].towrite;
2973 		if (*bip == NULL)
2974 			firstwrite = 1;
2975 	} else
2976 		bip = &sh->dev[dd_idx].toread;
2977 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2978 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2979 			goto overlap;
2980 		bip = & (*bip)->bi_next;
2981 	}
2982 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2983 		goto overlap;
2984 
2985 	if (!forwrite || previous)
2986 		clear_bit(STRIPE_BATCH_READY, &sh->state);
2987 
2988 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2989 	if (*bip)
2990 		bi->bi_next = *bip;
2991 	*bip = bi;
2992 	raid5_inc_bi_active_stripes(bi);
2993 
2994 	if (forwrite) {
2995 		/* check if page is covered */
2996 		sector_t sector = sh->dev[dd_idx].sector;
2997 		for (bi=sh->dev[dd_idx].towrite;
2998 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2999 			     bi && bi->bi_iter.bi_sector <= sector;
3000 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3001 			if (bio_end_sector(bi) >= sector)
3002 				sector = bio_end_sector(bi);
3003 		}
3004 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3005 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3006 				sh->overwrite_disks++;
3007 	}
3008 
3009 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3010 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3011 		(unsigned long long)sh->sector, dd_idx);
3012 
3013 	if (conf->mddev->bitmap && firstwrite) {
3014 		/* Cannot hold spinlock over bitmap_startwrite,
3015 		 * but must ensure this isn't added to a batch until
3016 		 * we have added to the bitmap and set bm_seq.
3017 		 * So set STRIPE_BITMAP_PENDING to prevent
3018 		 * batching.
3019 		 * If multiple add_stripe_bio() calls race here they
3020 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3021 		 * to complete "bitmap_startwrite" gets to set
3022 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3023 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3024 		 * any more.
3025 		 */
3026 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3027 		spin_unlock_irq(&sh->stripe_lock);
3028 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3029 				  STRIPE_SECTORS, 0);
3030 		spin_lock_irq(&sh->stripe_lock);
3031 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3032 		if (!sh->batch_head) {
3033 			sh->bm_seq = conf->seq_flush+1;
3034 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3035 		}
3036 	}
3037 	spin_unlock_irq(&sh->stripe_lock);
3038 
3039 	if (stripe_can_batch(sh))
3040 		stripe_add_to_batch_list(conf, sh);
3041 	return 1;
3042 
3043  overlap:
3044 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3045 	spin_unlock_irq(&sh->stripe_lock);
3046 	return 0;
3047 }
3048 
3049 static void end_reshape(struct r5conf *conf);
3050 
3051 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3052 			    struct stripe_head *sh)
3053 {
3054 	int sectors_per_chunk =
3055 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3056 	int dd_idx;
3057 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3058 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3059 
3060 	raid5_compute_sector(conf,
3061 			     stripe * (disks - conf->max_degraded)
3062 			     *sectors_per_chunk + chunk_offset,
3063 			     previous,
3064 			     &dd_idx, sh);
3065 }
3066 
3067 static void
3068 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3069 				struct stripe_head_state *s, int disks,
3070 				struct bio_list *return_bi)
3071 {
3072 	int i;
3073 	BUG_ON(sh->batch_head);
3074 	for (i = disks; i--; ) {
3075 		struct bio *bi;
3076 		int bitmap_end = 0;
3077 
3078 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3079 			struct md_rdev *rdev;
3080 			rcu_read_lock();
3081 			rdev = rcu_dereference(conf->disks[i].rdev);
3082 			if (rdev && test_bit(In_sync, &rdev->flags))
3083 				atomic_inc(&rdev->nr_pending);
3084 			else
3085 				rdev = NULL;
3086 			rcu_read_unlock();
3087 			if (rdev) {
3088 				if (!rdev_set_badblocks(
3089 					    rdev,
3090 					    sh->sector,
3091 					    STRIPE_SECTORS, 0))
3092 					md_error(conf->mddev, rdev);
3093 				rdev_dec_pending(rdev, conf->mddev);
3094 			}
3095 		}
3096 		spin_lock_irq(&sh->stripe_lock);
3097 		/* fail all writes first */
3098 		bi = sh->dev[i].towrite;
3099 		sh->dev[i].towrite = NULL;
3100 		sh->overwrite_disks = 0;
3101 		spin_unlock_irq(&sh->stripe_lock);
3102 		if (bi)
3103 			bitmap_end = 1;
3104 
3105 		r5l_stripe_write_finished(sh);
3106 
3107 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3108 			wake_up(&conf->wait_for_overlap);
3109 
3110 		while (bi && bi->bi_iter.bi_sector <
3111 			sh->dev[i].sector + STRIPE_SECTORS) {
3112 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3113 
3114 			bi->bi_error = -EIO;
3115 			if (!raid5_dec_bi_active_stripes(bi)) {
3116 				md_write_end(conf->mddev);
3117 				bio_list_add(return_bi, bi);
3118 			}
3119 			bi = nextbi;
3120 		}
3121 		if (bitmap_end)
3122 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3123 				STRIPE_SECTORS, 0, 0);
3124 		bitmap_end = 0;
3125 		/* and fail all 'written' */
3126 		bi = sh->dev[i].written;
3127 		sh->dev[i].written = NULL;
3128 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3129 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3130 			sh->dev[i].page = sh->dev[i].orig_page;
3131 		}
3132 
3133 		if (bi) bitmap_end = 1;
3134 		while (bi && bi->bi_iter.bi_sector <
3135 		       sh->dev[i].sector + STRIPE_SECTORS) {
3136 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3137 
3138 			bi->bi_error = -EIO;
3139 			if (!raid5_dec_bi_active_stripes(bi)) {
3140 				md_write_end(conf->mddev);
3141 				bio_list_add(return_bi, bi);
3142 			}
3143 			bi = bi2;
3144 		}
3145 
3146 		/* fail any reads if this device is non-operational and
3147 		 * the data has not reached the cache yet.
3148 		 */
3149 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3150 		    s->failed > conf->max_degraded &&
3151 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3152 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3153 			spin_lock_irq(&sh->stripe_lock);
3154 			bi = sh->dev[i].toread;
3155 			sh->dev[i].toread = NULL;
3156 			spin_unlock_irq(&sh->stripe_lock);
3157 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3158 				wake_up(&conf->wait_for_overlap);
3159 			if (bi)
3160 				s->to_read--;
3161 			while (bi && bi->bi_iter.bi_sector <
3162 			       sh->dev[i].sector + STRIPE_SECTORS) {
3163 				struct bio *nextbi =
3164 					r5_next_bio(bi, sh->dev[i].sector);
3165 
3166 				bi->bi_error = -EIO;
3167 				if (!raid5_dec_bi_active_stripes(bi))
3168 					bio_list_add(return_bi, bi);
3169 				bi = nextbi;
3170 			}
3171 		}
3172 		if (bitmap_end)
3173 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3174 					STRIPE_SECTORS, 0, 0);
3175 		/* If we were in the middle of a write the parity block might
3176 		 * still be locked - so just clear all R5_LOCKED flags
3177 		 */
3178 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3179 	}
3180 	s->to_write = 0;
3181 	s->written = 0;
3182 
3183 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3184 		if (atomic_dec_and_test(&conf->pending_full_writes))
3185 			md_wakeup_thread(conf->mddev->thread);
3186 }
3187 
3188 static void
3189 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3190 		   struct stripe_head_state *s)
3191 {
3192 	int abort = 0;
3193 	int i;
3194 
3195 	BUG_ON(sh->batch_head);
3196 	clear_bit(STRIPE_SYNCING, &sh->state);
3197 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3198 		wake_up(&conf->wait_for_overlap);
3199 	s->syncing = 0;
3200 	s->replacing = 0;
3201 	/* There is nothing more to do for sync/check/repair.
3202 	 * Don't even need to abort as that is handled elsewhere
3203 	 * if needed, and not always wanted e.g. if there is a known
3204 	 * bad block here.
3205 	 * For recover/replace we need to record a bad block on all
3206 	 * non-sync devices, or abort the recovery
3207 	 */
3208 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3209 		/* During recovery devices cannot be removed, so
3210 		 * locking and refcounting of rdevs is not needed
3211 		 */
3212 		for (i = 0; i < conf->raid_disks; i++) {
3213 			struct md_rdev *rdev = conf->disks[i].rdev;
3214 			if (rdev
3215 			    && !test_bit(Faulty, &rdev->flags)
3216 			    && !test_bit(In_sync, &rdev->flags)
3217 			    && !rdev_set_badblocks(rdev, sh->sector,
3218 						   STRIPE_SECTORS, 0))
3219 				abort = 1;
3220 			rdev = conf->disks[i].replacement;
3221 			if (rdev
3222 			    && !test_bit(Faulty, &rdev->flags)
3223 			    && !test_bit(In_sync, &rdev->flags)
3224 			    && !rdev_set_badblocks(rdev, sh->sector,
3225 						   STRIPE_SECTORS, 0))
3226 				abort = 1;
3227 		}
3228 		if (abort)
3229 			conf->recovery_disabled =
3230 				conf->mddev->recovery_disabled;
3231 	}
3232 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3233 }
3234 
3235 static int want_replace(struct stripe_head *sh, int disk_idx)
3236 {
3237 	struct md_rdev *rdev;
3238 	int rv = 0;
3239 	/* Doing recovery so rcu locking not required */
3240 	rdev = sh->raid_conf->disks[disk_idx].replacement;
3241 	if (rdev
3242 	    && !test_bit(Faulty, &rdev->flags)
3243 	    && !test_bit(In_sync, &rdev->flags)
3244 	    && (rdev->recovery_offset <= sh->sector
3245 		|| rdev->mddev->recovery_cp <= sh->sector))
3246 		rv = 1;
3247 
3248 	return rv;
3249 }
3250 
3251 /* fetch_block - checks the given member device to see if its data needs
3252  * to be read or computed to satisfy a request.
3253  *
3254  * Returns 1 when no more member devices need to be checked, otherwise returns
3255  * 0 to tell the loop in handle_stripe_fill to continue
3256  */
3257 
3258 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3259 			   int disk_idx, int disks)
3260 {
3261 	struct r5dev *dev = &sh->dev[disk_idx];
3262 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3263 				  &sh->dev[s->failed_num[1]] };
3264 	int i;
3265 
3266 
3267 	if (test_bit(R5_LOCKED, &dev->flags) ||
3268 	    test_bit(R5_UPTODATE, &dev->flags))
3269 		/* No point reading this as we already have it or have
3270 		 * decided to get it.
3271 		 */
3272 		return 0;
3273 
3274 	if (dev->toread ||
3275 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3276 		/* We need this block to directly satisfy a request */
3277 		return 1;
3278 
3279 	if (s->syncing || s->expanding ||
3280 	    (s->replacing && want_replace(sh, disk_idx)))
3281 		/* When syncing, or expanding we read everything.
3282 		 * When replacing, we need the replaced block.
3283 		 */
3284 		return 1;
3285 
3286 	if ((s->failed >= 1 && fdev[0]->toread) ||
3287 	    (s->failed >= 2 && fdev[1]->toread))
3288 		/* If we want to read from a failed device, then
3289 		 * we need to actually read every other device.
3290 		 */
3291 		return 1;
3292 
3293 	/* Sometimes neither read-modify-write nor reconstruct-write
3294 	 * cycles can work.  In those cases we read every block we
3295 	 * can.  Then the parity-update is certain to have enough to
3296 	 * work with.
3297 	 * This can only be a problem when we need to write something,
3298 	 * and some device has failed.  If either of those tests
3299 	 * fail we need look no further.
3300 	 */
3301 	if (!s->failed || !s->to_write)
3302 		return 0;
3303 
3304 	if (test_bit(R5_Insync, &dev->flags) &&
3305 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3306 		/* Pre-reads at not permitted until after short delay
3307 		 * to gather multiple requests.  However if this
3308 		 * device is no Insync, the block could only be be computed
3309 		 * and there is no need to delay that.
3310 		 */
3311 		return 0;
3312 
3313 	for (i = 0; i < s->failed && i < 2; i++) {
3314 		if (fdev[i]->towrite &&
3315 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3316 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3317 			/* If we have a partial write to a failed
3318 			 * device, then we will need to reconstruct
3319 			 * the content of that device, so all other
3320 			 * devices must be read.
3321 			 */
3322 			return 1;
3323 	}
3324 
3325 	/* If we are forced to do a reconstruct-write, either because
3326 	 * the current RAID6 implementation only supports that, or
3327 	 * or because parity cannot be trusted and we are currently
3328 	 * recovering it, there is extra need to be careful.
3329 	 * If one of the devices that we would need to read, because
3330 	 * it is not being overwritten (and maybe not written at all)
3331 	 * is missing/faulty, then we need to read everything we can.
3332 	 */
3333 	if (sh->raid_conf->level != 6 &&
3334 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3335 		/* reconstruct-write isn't being forced */
3336 		return 0;
3337 	for (i = 0; i < s->failed && i < 2; i++) {
3338 		if (s->failed_num[i] != sh->pd_idx &&
3339 		    s->failed_num[i] != sh->qd_idx &&
3340 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3341 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3342 			return 1;
3343 	}
3344 
3345 	return 0;
3346 }
3347 
3348 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3349 		       int disk_idx, int disks)
3350 {
3351 	struct r5dev *dev = &sh->dev[disk_idx];
3352 
3353 	/* is the data in this block needed, and can we get it? */
3354 	if (need_this_block(sh, s, disk_idx, disks)) {
3355 		/* we would like to get this block, possibly by computing it,
3356 		 * otherwise read it if the backing disk is insync
3357 		 */
3358 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3359 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3360 		BUG_ON(sh->batch_head);
3361 		if ((s->uptodate == disks - 1) &&
3362 		    (s->failed && (disk_idx == s->failed_num[0] ||
3363 				   disk_idx == s->failed_num[1]))) {
3364 			/* have disk failed, and we're requested to fetch it;
3365 			 * do compute it
3366 			 */
3367 			pr_debug("Computing stripe %llu block %d\n",
3368 			       (unsigned long long)sh->sector, disk_idx);
3369 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3370 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3371 			set_bit(R5_Wantcompute, &dev->flags);
3372 			sh->ops.target = disk_idx;
3373 			sh->ops.target2 = -1; /* no 2nd target */
3374 			s->req_compute = 1;
3375 			/* Careful: from this point on 'uptodate' is in the eye
3376 			 * of raid_run_ops which services 'compute' operations
3377 			 * before writes. R5_Wantcompute flags a block that will
3378 			 * be R5_UPTODATE by the time it is needed for a
3379 			 * subsequent operation.
3380 			 */
3381 			s->uptodate++;
3382 			return 1;
3383 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3384 			/* Computing 2-failure is *very* expensive; only
3385 			 * do it if failed >= 2
3386 			 */
3387 			int other;
3388 			for (other = disks; other--; ) {
3389 				if (other == disk_idx)
3390 					continue;
3391 				if (!test_bit(R5_UPTODATE,
3392 				      &sh->dev[other].flags))
3393 					break;
3394 			}
3395 			BUG_ON(other < 0);
3396 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3397 			       (unsigned long long)sh->sector,
3398 			       disk_idx, other);
3399 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3400 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3401 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3402 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3403 			sh->ops.target = disk_idx;
3404 			sh->ops.target2 = other;
3405 			s->uptodate += 2;
3406 			s->req_compute = 1;
3407 			return 1;
3408 		} else if (test_bit(R5_Insync, &dev->flags)) {
3409 			set_bit(R5_LOCKED, &dev->flags);
3410 			set_bit(R5_Wantread, &dev->flags);
3411 			s->locked++;
3412 			pr_debug("Reading block %d (sync=%d)\n",
3413 				disk_idx, s->syncing);
3414 		}
3415 	}
3416 
3417 	return 0;
3418 }
3419 
3420 /**
3421  * handle_stripe_fill - read or compute data to satisfy pending requests.
3422  */
3423 static void handle_stripe_fill(struct stripe_head *sh,
3424 			       struct stripe_head_state *s,
3425 			       int disks)
3426 {
3427 	int i;
3428 
3429 	/* look for blocks to read/compute, skip this if a compute
3430 	 * is already in flight, or if the stripe contents are in the
3431 	 * midst of changing due to a write
3432 	 */
3433 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3434 	    !sh->reconstruct_state)
3435 		for (i = disks; i--; )
3436 			if (fetch_block(sh, s, i, disks))
3437 				break;
3438 	set_bit(STRIPE_HANDLE, &sh->state);
3439 }
3440 
3441 static void break_stripe_batch_list(struct stripe_head *head_sh,
3442 				    unsigned long handle_flags);
3443 /* handle_stripe_clean_event
3444  * any written block on an uptodate or failed drive can be returned.
3445  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3446  * never LOCKED, so we don't need to test 'failed' directly.
3447  */
3448 static void handle_stripe_clean_event(struct r5conf *conf,
3449 	struct stripe_head *sh, int disks, struct bio_list *return_bi)
3450 {
3451 	int i;
3452 	struct r5dev *dev;
3453 	int discard_pending = 0;
3454 	struct stripe_head *head_sh = sh;
3455 	bool do_endio = false;
3456 
3457 	for (i = disks; i--; )
3458 		if (sh->dev[i].written) {
3459 			dev = &sh->dev[i];
3460 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3461 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3462 			     test_bit(R5_Discard, &dev->flags) ||
3463 			     test_bit(R5_SkipCopy, &dev->flags))) {
3464 				/* We can return any write requests */
3465 				struct bio *wbi, *wbi2;
3466 				pr_debug("Return write for disc %d\n", i);
3467 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3468 					clear_bit(R5_UPTODATE, &dev->flags);
3469 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3470 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3471 				}
3472 				do_endio = true;
3473 
3474 returnbi:
3475 				dev->page = dev->orig_page;
3476 				wbi = dev->written;
3477 				dev->written = NULL;
3478 				while (wbi && wbi->bi_iter.bi_sector <
3479 					dev->sector + STRIPE_SECTORS) {
3480 					wbi2 = r5_next_bio(wbi, dev->sector);
3481 					if (!raid5_dec_bi_active_stripes(wbi)) {
3482 						md_write_end(conf->mddev);
3483 						bio_list_add(return_bi, wbi);
3484 					}
3485 					wbi = wbi2;
3486 				}
3487 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3488 						STRIPE_SECTORS,
3489 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3490 						0);
3491 				if (head_sh->batch_head) {
3492 					sh = list_first_entry(&sh->batch_list,
3493 							      struct stripe_head,
3494 							      batch_list);
3495 					if (sh != head_sh) {
3496 						dev = &sh->dev[i];
3497 						goto returnbi;
3498 					}
3499 				}
3500 				sh = head_sh;
3501 				dev = &sh->dev[i];
3502 			} else if (test_bit(R5_Discard, &dev->flags))
3503 				discard_pending = 1;
3504 			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3505 			WARN_ON(dev->page != dev->orig_page);
3506 		}
3507 
3508 	r5l_stripe_write_finished(sh);
3509 
3510 	if (!discard_pending &&
3511 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3512 		int hash;
3513 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3514 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3515 		if (sh->qd_idx >= 0) {
3516 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3517 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3518 		}
3519 		/* now that discard is done we can proceed with any sync */
3520 		clear_bit(STRIPE_DISCARD, &sh->state);
3521 		/*
3522 		 * SCSI discard will change some bio fields and the stripe has
3523 		 * no updated data, so remove it from hash list and the stripe
3524 		 * will be reinitialized
3525 		 */
3526 unhash:
3527 		hash = sh->hash_lock_index;
3528 		spin_lock_irq(conf->hash_locks + hash);
3529 		remove_hash(sh);
3530 		spin_unlock_irq(conf->hash_locks + hash);
3531 		if (head_sh->batch_head) {
3532 			sh = list_first_entry(&sh->batch_list,
3533 					      struct stripe_head, batch_list);
3534 			if (sh != head_sh)
3535 					goto unhash;
3536 		}
3537 		sh = head_sh;
3538 
3539 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3540 			set_bit(STRIPE_HANDLE, &sh->state);
3541 
3542 	}
3543 
3544 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3545 		if (atomic_dec_and_test(&conf->pending_full_writes))
3546 			md_wakeup_thread(conf->mddev->thread);
3547 
3548 	if (head_sh->batch_head && do_endio)
3549 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3550 }
3551 
3552 static void handle_stripe_dirtying(struct r5conf *conf,
3553 				   struct stripe_head *sh,
3554 				   struct stripe_head_state *s,
3555 				   int disks)
3556 {
3557 	int rmw = 0, rcw = 0, i;
3558 	sector_t recovery_cp = conf->mddev->recovery_cp;
3559 
3560 	/* Check whether resync is now happening or should start.
3561 	 * If yes, then the array is dirty (after unclean shutdown or
3562 	 * initial creation), so parity in some stripes might be inconsistent.
3563 	 * In this case, we need to always do reconstruct-write, to ensure
3564 	 * that in case of drive failure or read-error correction, we
3565 	 * generate correct data from the parity.
3566 	 */
3567 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3568 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3569 	     s->failed == 0)) {
3570 		/* Calculate the real rcw later - for now make it
3571 		 * look like rcw is cheaper
3572 		 */
3573 		rcw = 1; rmw = 2;
3574 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3575 			 conf->rmw_level, (unsigned long long)recovery_cp,
3576 			 (unsigned long long)sh->sector);
3577 	} else for (i = disks; i--; ) {
3578 		/* would I have to read this buffer for read_modify_write */
3579 		struct r5dev *dev = &sh->dev[i];
3580 		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3581 		    !test_bit(R5_LOCKED, &dev->flags) &&
3582 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3583 		      test_bit(R5_Wantcompute, &dev->flags))) {
3584 			if (test_bit(R5_Insync, &dev->flags))
3585 				rmw++;
3586 			else
3587 				rmw += 2*disks;  /* cannot read it */
3588 		}
3589 		/* Would I have to read this buffer for reconstruct_write */
3590 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3591 		    i != sh->pd_idx && i != sh->qd_idx &&
3592 		    !test_bit(R5_LOCKED, &dev->flags) &&
3593 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3594 		    test_bit(R5_Wantcompute, &dev->flags))) {
3595 			if (test_bit(R5_Insync, &dev->flags))
3596 				rcw++;
3597 			else
3598 				rcw += 2*disks;
3599 		}
3600 	}
3601 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3602 		(unsigned long long)sh->sector, rmw, rcw);
3603 	set_bit(STRIPE_HANDLE, &sh->state);
3604 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3605 		/* prefer read-modify-write, but need to get some data */
3606 		if (conf->mddev->queue)
3607 			blk_add_trace_msg(conf->mddev->queue,
3608 					  "raid5 rmw %llu %d",
3609 					  (unsigned long long)sh->sector, rmw);
3610 		for (i = disks; i--; ) {
3611 			struct r5dev *dev = &sh->dev[i];
3612 			if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3613 			    !test_bit(R5_LOCKED, &dev->flags) &&
3614 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3615 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3616 			    test_bit(R5_Insync, &dev->flags)) {
3617 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3618 					     &sh->state)) {
3619 					pr_debug("Read_old block %d for r-m-w\n",
3620 						 i);
3621 					set_bit(R5_LOCKED, &dev->flags);
3622 					set_bit(R5_Wantread, &dev->flags);
3623 					s->locked++;
3624 				} else {
3625 					set_bit(STRIPE_DELAYED, &sh->state);
3626 					set_bit(STRIPE_HANDLE, &sh->state);
3627 				}
3628 			}
3629 		}
3630 	}
3631 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3632 		/* want reconstruct write, but need to get some data */
3633 		int qread =0;
3634 		rcw = 0;
3635 		for (i = disks; i--; ) {
3636 			struct r5dev *dev = &sh->dev[i];
3637 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3638 			    i != sh->pd_idx && i != sh->qd_idx &&
3639 			    !test_bit(R5_LOCKED, &dev->flags) &&
3640 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3641 			      test_bit(R5_Wantcompute, &dev->flags))) {
3642 				rcw++;
3643 				if (test_bit(R5_Insync, &dev->flags) &&
3644 				    test_bit(STRIPE_PREREAD_ACTIVE,
3645 					     &sh->state)) {
3646 					pr_debug("Read_old block "
3647 						"%d for Reconstruct\n", i);
3648 					set_bit(R5_LOCKED, &dev->flags);
3649 					set_bit(R5_Wantread, &dev->flags);
3650 					s->locked++;
3651 					qread++;
3652 				} else {
3653 					set_bit(STRIPE_DELAYED, &sh->state);
3654 					set_bit(STRIPE_HANDLE, &sh->state);
3655 				}
3656 			}
3657 		}
3658 		if (rcw && conf->mddev->queue)
3659 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3660 					  (unsigned long long)sh->sector,
3661 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3662 	}
3663 
3664 	if (rcw > disks && rmw > disks &&
3665 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3666 		set_bit(STRIPE_DELAYED, &sh->state);
3667 
3668 	/* now if nothing is locked, and if we have enough data,
3669 	 * we can start a write request
3670 	 */
3671 	/* since handle_stripe can be called at any time we need to handle the
3672 	 * case where a compute block operation has been submitted and then a
3673 	 * subsequent call wants to start a write request.  raid_run_ops only
3674 	 * handles the case where compute block and reconstruct are requested
3675 	 * simultaneously.  If this is not the case then new writes need to be
3676 	 * held off until the compute completes.
3677 	 */
3678 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3679 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3680 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3681 		schedule_reconstruction(sh, s, rcw == 0, 0);
3682 }
3683 
3684 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3685 				struct stripe_head_state *s, int disks)
3686 {
3687 	struct r5dev *dev = NULL;
3688 
3689 	BUG_ON(sh->batch_head);
3690 	set_bit(STRIPE_HANDLE, &sh->state);
3691 
3692 	switch (sh->check_state) {
3693 	case check_state_idle:
3694 		/* start a new check operation if there are no failures */
3695 		if (s->failed == 0) {
3696 			BUG_ON(s->uptodate != disks);
3697 			sh->check_state = check_state_run;
3698 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3699 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3700 			s->uptodate--;
3701 			break;
3702 		}
3703 		dev = &sh->dev[s->failed_num[0]];
3704 		/* fall through */
3705 	case check_state_compute_result:
3706 		sh->check_state = check_state_idle;
3707 		if (!dev)
3708 			dev = &sh->dev[sh->pd_idx];
3709 
3710 		/* check that a write has not made the stripe insync */
3711 		if (test_bit(STRIPE_INSYNC, &sh->state))
3712 			break;
3713 
3714 		/* either failed parity check, or recovery is happening */
3715 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3716 		BUG_ON(s->uptodate != disks);
3717 
3718 		set_bit(R5_LOCKED, &dev->flags);
3719 		s->locked++;
3720 		set_bit(R5_Wantwrite, &dev->flags);
3721 
3722 		clear_bit(STRIPE_DEGRADED, &sh->state);
3723 		set_bit(STRIPE_INSYNC, &sh->state);
3724 		break;
3725 	case check_state_run:
3726 		break; /* we will be called again upon completion */
3727 	case check_state_check_result:
3728 		sh->check_state = check_state_idle;
3729 
3730 		/* if a failure occurred during the check operation, leave
3731 		 * STRIPE_INSYNC not set and let the stripe be handled again
3732 		 */
3733 		if (s->failed)
3734 			break;
3735 
3736 		/* handle a successful check operation, if parity is correct
3737 		 * we are done.  Otherwise update the mismatch count and repair
3738 		 * parity if !MD_RECOVERY_CHECK
3739 		 */
3740 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3741 			/* parity is correct (on disc,
3742 			 * not in buffer any more)
3743 			 */
3744 			set_bit(STRIPE_INSYNC, &sh->state);
3745 		else {
3746 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3747 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3748 				/* don't try to repair!! */
3749 				set_bit(STRIPE_INSYNC, &sh->state);
3750 			else {
3751 				sh->check_state = check_state_compute_run;
3752 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3753 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3754 				set_bit(R5_Wantcompute,
3755 					&sh->dev[sh->pd_idx].flags);
3756 				sh->ops.target = sh->pd_idx;
3757 				sh->ops.target2 = -1;
3758 				s->uptodate++;
3759 			}
3760 		}
3761 		break;
3762 	case check_state_compute_run:
3763 		break;
3764 	default:
3765 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3766 		       __func__, sh->check_state,
3767 		       (unsigned long long) sh->sector);
3768 		BUG();
3769 	}
3770 }
3771 
3772 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3773 				  struct stripe_head_state *s,
3774 				  int disks)
3775 {
3776 	int pd_idx = sh->pd_idx;
3777 	int qd_idx = sh->qd_idx;
3778 	struct r5dev *dev;
3779 
3780 	BUG_ON(sh->batch_head);
3781 	set_bit(STRIPE_HANDLE, &sh->state);
3782 
3783 	BUG_ON(s->failed > 2);
3784 
3785 	/* Want to check and possibly repair P and Q.
3786 	 * However there could be one 'failed' device, in which
3787 	 * case we can only check one of them, possibly using the
3788 	 * other to generate missing data
3789 	 */
3790 
3791 	switch (sh->check_state) {
3792 	case check_state_idle:
3793 		/* start a new check operation if there are < 2 failures */
3794 		if (s->failed == s->q_failed) {
3795 			/* The only possible failed device holds Q, so it
3796 			 * makes sense to check P (If anything else were failed,
3797 			 * we would have used P to recreate it).
3798 			 */
3799 			sh->check_state = check_state_run;
3800 		}
3801 		if (!s->q_failed && s->failed < 2) {
3802 			/* Q is not failed, and we didn't use it to generate
3803 			 * anything, so it makes sense to check it
3804 			 */
3805 			if (sh->check_state == check_state_run)
3806 				sh->check_state = check_state_run_pq;
3807 			else
3808 				sh->check_state = check_state_run_q;
3809 		}
3810 
3811 		/* discard potentially stale zero_sum_result */
3812 		sh->ops.zero_sum_result = 0;
3813 
3814 		if (sh->check_state == check_state_run) {
3815 			/* async_xor_zero_sum destroys the contents of P */
3816 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3817 			s->uptodate--;
3818 		}
3819 		if (sh->check_state >= check_state_run &&
3820 		    sh->check_state <= check_state_run_pq) {
3821 			/* async_syndrome_zero_sum preserves P and Q, so
3822 			 * no need to mark them !uptodate here
3823 			 */
3824 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3825 			break;
3826 		}
3827 
3828 		/* we have 2-disk failure */
3829 		BUG_ON(s->failed != 2);
3830 		/* fall through */
3831 	case check_state_compute_result:
3832 		sh->check_state = check_state_idle;
3833 
3834 		/* check that a write has not made the stripe insync */
3835 		if (test_bit(STRIPE_INSYNC, &sh->state))
3836 			break;
3837 
3838 		/* now write out any block on a failed drive,
3839 		 * or P or Q if they were recomputed
3840 		 */
3841 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3842 		if (s->failed == 2) {
3843 			dev = &sh->dev[s->failed_num[1]];
3844 			s->locked++;
3845 			set_bit(R5_LOCKED, &dev->flags);
3846 			set_bit(R5_Wantwrite, &dev->flags);
3847 		}
3848 		if (s->failed >= 1) {
3849 			dev = &sh->dev[s->failed_num[0]];
3850 			s->locked++;
3851 			set_bit(R5_LOCKED, &dev->flags);
3852 			set_bit(R5_Wantwrite, &dev->flags);
3853 		}
3854 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3855 			dev = &sh->dev[pd_idx];
3856 			s->locked++;
3857 			set_bit(R5_LOCKED, &dev->flags);
3858 			set_bit(R5_Wantwrite, &dev->flags);
3859 		}
3860 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3861 			dev = &sh->dev[qd_idx];
3862 			s->locked++;
3863 			set_bit(R5_LOCKED, &dev->flags);
3864 			set_bit(R5_Wantwrite, &dev->flags);
3865 		}
3866 		clear_bit(STRIPE_DEGRADED, &sh->state);
3867 
3868 		set_bit(STRIPE_INSYNC, &sh->state);
3869 		break;
3870 	case check_state_run:
3871 	case check_state_run_q:
3872 	case check_state_run_pq:
3873 		break; /* we will be called again upon completion */
3874 	case check_state_check_result:
3875 		sh->check_state = check_state_idle;
3876 
3877 		/* handle a successful check operation, if parity is correct
3878 		 * we are done.  Otherwise update the mismatch count and repair
3879 		 * parity if !MD_RECOVERY_CHECK
3880 		 */
3881 		if (sh->ops.zero_sum_result == 0) {
3882 			/* both parities are correct */
3883 			if (!s->failed)
3884 				set_bit(STRIPE_INSYNC, &sh->state);
3885 			else {
3886 				/* in contrast to the raid5 case we can validate
3887 				 * parity, but still have a failure to write
3888 				 * back
3889 				 */
3890 				sh->check_state = check_state_compute_result;
3891 				/* Returning at this point means that we may go
3892 				 * off and bring p and/or q uptodate again so
3893 				 * we make sure to check zero_sum_result again
3894 				 * to verify if p or q need writeback
3895 				 */
3896 			}
3897 		} else {
3898 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3899 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3900 				/* don't try to repair!! */
3901 				set_bit(STRIPE_INSYNC, &sh->state);
3902 			else {
3903 				int *target = &sh->ops.target;
3904 
3905 				sh->ops.target = -1;
3906 				sh->ops.target2 = -1;
3907 				sh->check_state = check_state_compute_run;
3908 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3909 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3910 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3911 					set_bit(R5_Wantcompute,
3912 						&sh->dev[pd_idx].flags);
3913 					*target = pd_idx;
3914 					target = &sh->ops.target2;
3915 					s->uptodate++;
3916 				}
3917 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3918 					set_bit(R5_Wantcompute,
3919 						&sh->dev[qd_idx].flags);
3920 					*target = qd_idx;
3921 					s->uptodate++;
3922 				}
3923 			}
3924 		}
3925 		break;
3926 	case check_state_compute_run:
3927 		break;
3928 	default:
3929 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3930 		       __func__, sh->check_state,
3931 		       (unsigned long long) sh->sector);
3932 		BUG();
3933 	}
3934 }
3935 
3936 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3937 {
3938 	int i;
3939 
3940 	/* We have read all the blocks in this stripe and now we need to
3941 	 * copy some of them into a target stripe for expand.
3942 	 */
3943 	struct dma_async_tx_descriptor *tx = NULL;
3944 	BUG_ON(sh->batch_head);
3945 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3946 	for (i = 0; i < sh->disks; i++)
3947 		if (i != sh->pd_idx && i != sh->qd_idx) {
3948 			int dd_idx, j;
3949 			struct stripe_head *sh2;
3950 			struct async_submit_ctl submit;
3951 
3952 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
3953 			sector_t s = raid5_compute_sector(conf, bn, 0,
3954 							  &dd_idx, NULL);
3955 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3956 			if (sh2 == NULL)
3957 				/* so far only the early blocks of this stripe
3958 				 * have been requested.  When later blocks
3959 				 * get requested, we will try again
3960 				 */
3961 				continue;
3962 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3963 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3964 				/* must have already done this block */
3965 				raid5_release_stripe(sh2);
3966 				continue;
3967 			}
3968 
3969 			/* place all the copies on one channel */
3970 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3971 			tx = async_memcpy(sh2->dev[dd_idx].page,
3972 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3973 					  &submit);
3974 
3975 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3976 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3977 			for (j = 0; j < conf->raid_disks; j++)
3978 				if (j != sh2->pd_idx &&
3979 				    j != sh2->qd_idx &&
3980 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3981 					break;
3982 			if (j == conf->raid_disks) {
3983 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3984 				set_bit(STRIPE_HANDLE, &sh2->state);
3985 			}
3986 			raid5_release_stripe(sh2);
3987 
3988 		}
3989 	/* done submitting copies, wait for them to complete */
3990 	async_tx_quiesce(&tx);
3991 }
3992 
3993 /*
3994  * handle_stripe - do things to a stripe.
3995  *
3996  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3997  * state of various bits to see what needs to be done.
3998  * Possible results:
3999  *    return some read requests which now have data
4000  *    return some write requests which are safely on storage
4001  *    schedule a read on some buffers
4002  *    schedule a write of some buffers
4003  *    return confirmation of parity correctness
4004  *
4005  */
4006 
4007 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4008 {
4009 	struct r5conf *conf = sh->raid_conf;
4010 	int disks = sh->disks;
4011 	struct r5dev *dev;
4012 	int i;
4013 	int do_recovery = 0;
4014 
4015 	memset(s, 0, sizeof(*s));
4016 
4017 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4018 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4019 	s->failed_num[0] = -1;
4020 	s->failed_num[1] = -1;
4021 	s->log_failed = r5l_log_disk_error(conf);
4022 
4023 	/* Now to look around and see what can be done */
4024 	rcu_read_lock();
4025 	for (i=disks; i--; ) {
4026 		struct md_rdev *rdev;
4027 		sector_t first_bad;
4028 		int bad_sectors;
4029 		int is_bad = 0;
4030 
4031 		dev = &sh->dev[i];
4032 
4033 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4034 			 i, dev->flags,
4035 			 dev->toread, dev->towrite, dev->written);
4036 		/* maybe we can reply to a read
4037 		 *
4038 		 * new wantfill requests are only permitted while
4039 		 * ops_complete_biofill is guaranteed to be inactive
4040 		 */
4041 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4042 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4043 			set_bit(R5_Wantfill, &dev->flags);
4044 
4045 		/* now count some things */
4046 		if (test_bit(R5_LOCKED, &dev->flags))
4047 			s->locked++;
4048 		if (test_bit(R5_UPTODATE, &dev->flags))
4049 			s->uptodate++;
4050 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4051 			s->compute++;
4052 			BUG_ON(s->compute > 2);
4053 		}
4054 
4055 		if (test_bit(R5_Wantfill, &dev->flags))
4056 			s->to_fill++;
4057 		else if (dev->toread)
4058 			s->to_read++;
4059 		if (dev->towrite) {
4060 			s->to_write++;
4061 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4062 				s->non_overwrite++;
4063 		}
4064 		if (dev->written)
4065 			s->written++;
4066 		/* Prefer to use the replacement for reads, but only
4067 		 * if it is recovered enough and has no bad blocks.
4068 		 */
4069 		rdev = rcu_dereference(conf->disks[i].replacement);
4070 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4071 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4072 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4073 				 &first_bad, &bad_sectors))
4074 			set_bit(R5_ReadRepl, &dev->flags);
4075 		else {
4076 			if (rdev && !test_bit(Faulty, &rdev->flags))
4077 				set_bit(R5_NeedReplace, &dev->flags);
4078 			else
4079 				clear_bit(R5_NeedReplace, &dev->flags);
4080 			rdev = rcu_dereference(conf->disks[i].rdev);
4081 			clear_bit(R5_ReadRepl, &dev->flags);
4082 		}
4083 		if (rdev && test_bit(Faulty, &rdev->flags))
4084 			rdev = NULL;
4085 		if (rdev) {
4086 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4087 					     &first_bad, &bad_sectors);
4088 			if (s->blocked_rdev == NULL
4089 			    && (test_bit(Blocked, &rdev->flags)
4090 				|| is_bad < 0)) {
4091 				if (is_bad < 0)
4092 					set_bit(BlockedBadBlocks,
4093 						&rdev->flags);
4094 				s->blocked_rdev = rdev;
4095 				atomic_inc(&rdev->nr_pending);
4096 			}
4097 		}
4098 		clear_bit(R5_Insync, &dev->flags);
4099 		if (!rdev)
4100 			/* Not in-sync */;
4101 		else if (is_bad) {
4102 			/* also not in-sync */
4103 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4104 			    test_bit(R5_UPTODATE, &dev->flags)) {
4105 				/* treat as in-sync, but with a read error
4106 				 * which we can now try to correct
4107 				 */
4108 				set_bit(R5_Insync, &dev->flags);
4109 				set_bit(R5_ReadError, &dev->flags);
4110 			}
4111 		} else if (test_bit(In_sync, &rdev->flags))
4112 			set_bit(R5_Insync, &dev->flags);
4113 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4114 			/* in sync if before recovery_offset */
4115 			set_bit(R5_Insync, &dev->flags);
4116 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4117 			 test_bit(R5_Expanded, &dev->flags))
4118 			/* If we've reshaped into here, we assume it is Insync.
4119 			 * We will shortly update recovery_offset to make
4120 			 * it official.
4121 			 */
4122 			set_bit(R5_Insync, &dev->flags);
4123 
4124 		if (test_bit(R5_WriteError, &dev->flags)) {
4125 			/* This flag does not apply to '.replacement'
4126 			 * only to .rdev, so make sure to check that*/
4127 			struct md_rdev *rdev2 = rcu_dereference(
4128 				conf->disks[i].rdev);
4129 			if (rdev2 == rdev)
4130 				clear_bit(R5_Insync, &dev->flags);
4131 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4132 				s->handle_bad_blocks = 1;
4133 				atomic_inc(&rdev2->nr_pending);
4134 			} else
4135 				clear_bit(R5_WriteError, &dev->flags);
4136 		}
4137 		if (test_bit(R5_MadeGood, &dev->flags)) {
4138 			/* This flag does not apply to '.replacement'
4139 			 * only to .rdev, so make sure to check that*/
4140 			struct md_rdev *rdev2 = rcu_dereference(
4141 				conf->disks[i].rdev);
4142 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4143 				s->handle_bad_blocks = 1;
4144 				atomic_inc(&rdev2->nr_pending);
4145 			} else
4146 				clear_bit(R5_MadeGood, &dev->flags);
4147 		}
4148 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4149 			struct md_rdev *rdev2 = rcu_dereference(
4150 				conf->disks[i].replacement);
4151 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4152 				s->handle_bad_blocks = 1;
4153 				atomic_inc(&rdev2->nr_pending);
4154 			} else
4155 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4156 		}
4157 		if (!test_bit(R5_Insync, &dev->flags)) {
4158 			/* The ReadError flag will just be confusing now */
4159 			clear_bit(R5_ReadError, &dev->flags);
4160 			clear_bit(R5_ReWrite, &dev->flags);
4161 		}
4162 		if (test_bit(R5_ReadError, &dev->flags))
4163 			clear_bit(R5_Insync, &dev->flags);
4164 		if (!test_bit(R5_Insync, &dev->flags)) {
4165 			if (s->failed < 2)
4166 				s->failed_num[s->failed] = i;
4167 			s->failed++;
4168 			if (rdev && !test_bit(Faulty, &rdev->flags))
4169 				do_recovery = 1;
4170 		}
4171 	}
4172 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4173 		/* If there is a failed device being replaced,
4174 		 *     we must be recovering.
4175 		 * else if we are after recovery_cp, we must be syncing
4176 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4177 		 * else we can only be replacing
4178 		 * sync and recovery both need to read all devices, and so
4179 		 * use the same flag.
4180 		 */
4181 		if (do_recovery ||
4182 		    sh->sector >= conf->mddev->recovery_cp ||
4183 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4184 			s->syncing = 1;
4185 		else
4186 			s->replacing = 1;
4187 	}
4188 	rcu_read_unlock();
4189 }
4190 
4191 static int clear_batch_ready(struct stripe_head *sh)
4192 {
4193 	/* Return '1' if this is a member of batch, or
4194 	 * '0' if it is a lone stripe or a head which can now be
4195 	 * handled.
4196 	 */
4197 	struct stripe_head *tmp;
4198 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4199 		return (sh->batch_head && sh->batch_head != sh);
4200 	spin_lock(&sh->stripe_lock);
4201 	if (!sh->batch_head) {
4202 		spin_unlock(&sh->stripe_lock);
4203 		return 0;
4204 	}
4205 
4206 	/*
4207 	 * this stripe could be added to a batch list before we check
4208 	 * BATCH_READY, skips it
4209 	 */
4210 	if (sh->batch_head != sh) {
4211 		spin_unlock(&sh->stripe_lock);
4212 		return 1;
4213 	}
4214 	spin_lock(&sh->batch_lock);
4215 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4216 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4217 	spin_unlock(&sh->batch_lock);
4218 	spin_unlock(&sh->stripe_lock);
4219 
4220 	/*
4221 	 * BATCH_READY is cleared, no new stripes can be added.
4222 	 * batch_list can be accessed without lock
4223 	 */
4224 	return 0;
4225 }
4226 
4227 static void break_stripe_batch_list(struct stripe_head *head_sh,
4228 				    unsigned long handle_flags)
4229 {
4230 	struct stripe_head *sh, *next;
4231 	int i;
4232 	int do_wakeup = 0;
4233 
4234 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4235 
4236 		list_del_init(&sh->batch_list);
4237 
4238 		WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4239 					  (1 << STRIPE_SYNCING) |
4240 					  (1 << STRIPE_REPLACED) |
4241 					  (1 << STRIPE_PREREAD_ACTIVE) |
4242 					  (1 << STRIPE_DELAYED) |
4243 					  (1 << STRIPE_BIT_DELAY) |
4244 					  (1 << STRIPE_FULL_WRITE) |
4245 					  (1 << STRIPE_BIOFILL_RUN) |
4246 					  (1 << STRIPE_COMPUTE_RUN)  |
4247 					  (1 << STRIPE_OPS_REQ_PENDING) |
4248 					  (1 << STRIPE_DISCARD) |
4249 					  (1 << STRIPE_BATCH_READY) |
4250 					  (1 << STRIPE_BATCH_ERR) |
4251 					  (1 << STRIPE_BITMAP_PENDING)));
4252 		WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4253 					      (1 << STRIPE_REPLACED)));
4254 
4255 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4256 					    (1 << STRIPE_DEGRADED)),
4257 			      head_sh->state & (1 << STRIPE_INSYNC));
4258 
4259 		sh->check_state = head_sh->check_state;
4260 		sh->reconstruct_state = head_sh->reconstruct_state;
4261 		for (i = 0; i < sh->disks; i++) {
4262 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4263 				do_wakeup = 1;
4264 			sh->dev[i].flags = head_sh->dev[i].flags &
4265 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4266 		}
4267 		spin_lock_irq(&sh->stripe_lock);
4268 		sh->batch_head = NULL;
4269 		spin_unlock_irq(&sh->stripe_lock);
4270 		if (handle_flags == 0 ||
4271 		    sh->state & handle_flags)
4272 			set_bit(STRIPE_HANDLE, &sh->state);
4273 		raid5_release_stripe(sh);
4274 	}
4275 	spin_lock_irq(&head_sh->stripe_lock);
4276 	head_sh->batch_head = NULL;
4277 	spin_unlock_irq(&head_sh->stripe_lock);
4278 	for (i = 0; i < head_sh->disks; i++)
4279 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4280 			do_wakeup = 1;
4281 	if (head_sh->state & handle_flags)
4282 		set_bit(STRIPE_HANDLE, &head_sh->state);
4283 
4284 	if (do_wakeup)
4285 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4286 }
4287 
4288 static void handle_stripe(struct stripe_head *sh)
4289 {
4290 	struct stripe_head_state s;
4291 	struct r5conf *conf = sh->raid_conf;
4292 	int i;
4293 	int prexor;
4294 	int disks = sh->disks;
4295 	struct r5dev *pdev, *qdev;
4296 
4297 	clear_bit(STRIPE_HANDLE, &sh->state);
4298 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4299 		/* already being handled, ensure it gets handled
4300 		 * again when current action finishes */
4301 		set_bit(STRIPE_HANDLE, &sh->state);
4302 		return;
4303 	}
4304 
4305 	if (clear_batch_ready(sh) ) {
4306 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4307 		return;
4308 	}
4309 
4310 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4311 		break_stripe_batch_list(sh, 0);
4312 
4313 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4314 		spin_lock(&sh->stripe_lock);
4315 		/* Cannot process 'sync' concurrently with 'discard' */
4316 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4317 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4318 			set_bit(STRIPE_SYNCING, &sh->state);
4319 			clear_bit(STRIPE_INSYNC, &sh->state);
4320 			clear_bit(STRIPE_REPLACED, &sh->state);
4321 		}
4322 		spin_unlock(&sh->stripe_lock);
4323 	}
4324 	clear_bit(STRIPE_DELAYED, &sh->state);
4325 
4326 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4327 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4328 	       (unsigned long long)sh->sector, sh->state,
4329 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4330 	       sh->check_state, sh->reconstruct_state);
4331 
4332 	analyse_stripe(sh, &s);
4333 
4334 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4335 		goto finish;
4336 
4337 	if (s.handle_bad_blocks) {
4338 		set_bit(STRIPE_HANDLE, &sh->state);
4339 		goto finish;
4340 	}
4341 
4342 	if (unlikely(s.blocked_rdev)) {
4343 		if (s.syncing || s.expanding || s.expanded ||
4344 		    s.replacing || s.to_write || s.written) {
4345 			set_bit(STRIPE_HANDLE, &sh->state);
4346 			goto finish;
4347 		}
4348 		/* There is nothing for the blocked_rdev to block */
4349 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4350 		s.blocked_rdev = NULL;
4351 	}
4352 
4353 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4354 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4355 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4356 	}
4357 
4358 	pr_debug("locked=%d uptodate=%d to_read=%d"
4359 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4360 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4361 	       s.failed_num[0], s.failed_num[1]);
4362 	/* check if the array has lost more than max_degraded devices and,
4363 	 * if so, some requests might need to be failed.
4364 	 */
4365 	if (s.failed > conf->max_degraded || s.log_failed) {
4366 		sh->check_state = 0;
4367 		sh->reconstruct_state = 0;
4368 		break_stripe_batch_list(sh, 0);
4369 		if (s.to_read+s.to_write+s.written)
4370 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4371 		if (s.syncing + s.replacing)
4372 			handle_failed_sync(conf, sh, &s);
4373 	}
4374 
4375 	/* Now we check to see if any write operations have recently
4376 	 * completed
4377 	 */
4378 	prexor = 0;
4379 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4380 		prexor = 1;
4381 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4382 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4383 		sh->reconstruct_state = reconstruct_state_idle;
4384 
4385 		/* All the 'written' buffers and the parity block are ready to
4386 		 * be written back to disk
4387 		 */
4388 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4389 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4390 		BUG_ON(sh->qd_idx >= 0 &&
4391 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4392 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4393 		for (i = disks; i--; ) {
4394 			struct r5dev *dev = &sh->dev[i];
4395 			if (test_bit(R5_LOCKED, &dev->flags) &&
4396 				(i == sh->pd_idx || i == sh->qd_idx ||
4397 				 dev->written)) {
4398 				pr_debug("Writing block %d\n", i);
4399 				set_bit(R5_Wantwrite, &dev->flags);
4400 				if (prexor)
4401 					continue;
4402 				if (s.failed > 1)
4403 					continue;
4404 				if (!test_bit(R5_Insync, &dev->flags) ||
4405 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4406 				     s.failed == 0))
4407 					set_bit(STRIPE_INSYNC, &sh->state);
4408 			}
4409 		}
4410 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4411 			s.dec_preread_active = 1;
4412 	}
4413 
4414 	/*
4415 	 * might be able to return some write requests if the parity blocks
4416 	 * are safe, or on a failed drive
4417 	 */
4418 	pdev = &sh->dev[sh->pd_idx];
4419 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4420 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4421 	qdev = &sh->dev[sh->qd_idx];
4422 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4423 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4424 		|| conf->level < 6;
4425 
4426 	if (s.written &&
4427 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4428 			     && !test_bit(R5_LOCKED, &pdev->flags)
4429 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4430 				 test_bit(R5_Discard, &pdev->flags))))) &&
4431 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4432 			     && !test_bit(R5_LOCKED, &qdev->flags)
4433 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4434 				 test_bit(R5_Discard, &qdev->flags))))))
4435 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4436 
4437 	/* Now we might consider reading some blocks, either to check/generate
4438 	 * parity, or to satisfy requests
4439 	 * or to load a block that is being partially written.
4440 	 */
4441 	if (s.to_read || s.non_overwrite
4442 	    || (conf->level == 6 && s.to_write && s.failed)
4443 	    || (s.syncing && (s.uptodate + s.compute < disks))
4444 	    || s.replacing
4445 	    || s.expanding)
4446 		handle_stripe_fill(sh, &s, disks);
4447 
4448 	/* Now to consider new write requests and what else, if anything
4449 	 * should be read.  We do not handle new writes when:
4450 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4451 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4452 	 *    block.
4453 	 */
4454 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4455 		handle_stripe_dirtying(conf, sh, &s, disks);
4456 
4457 	/* maybe we need to check and possibly fix the parity for this stripe
4458 	 * Any reads will already have been scheduled, so we just see if enough
4459 	 * data is available.  The parity check is held off while parity
4460 	 * dependent operations are in flight.
4461 	 */
4462 	if (sh->check_state ||
4463 	    (s.syncing && s.locked == 0 &&
4464 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4465 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4466 		if (conf->level == 6)
4467 			handle_parity_checks6(conf, sh, &s, disks);
4468 		else
4469 			handle_parity_checks5(conf, sh, &s, disks);
4470 	}
4471 
4472 	if ((s.replacing || s.syncing) && s.locked == 0
4473 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4474 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4475 		/* Write out to replacement devices where possible */
4476 		for (i = 0; i < conf->raid_disks; i++)
4477 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4478 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4479 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4480 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4481 				s.locked++;
4482 			}
4483 		if (s.replacing)
4484 			set_bit(STRIPE_INSYNC, &sh->state);
4485 		set_bit(STRIPE_REPLACED, &sh->state);
4486 	}
4487 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4488 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4489 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4490 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4491 		clear_bit(STRIPE_SYNCING, &sh->state);
4492 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4493 			wake_up(&conf->wait_for_overlap);
4494 	}
4495 
4496 	/* If the failed drives are just a ReadError, then we might need
4497 	 * to progress the repair/check process
4498 	 */
4499 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4500 		for (i = 0; i < s.failed; i++) {
4501 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4502 			if (test_bit(R5_ReadError, &dev->flags)
4503 			    && !test_bit(R5_LOCKED, &dev->flags)
4504 			    && test_bit(R5_UPTODATE, &dev->flags)
4505 				) {
4506 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4507 					set_bit(R5_Wantwrite, &dev->flags);
4508 					set_bit(R5_ReWrite, &dev->flags);
4509 					set_bit(R5_LOCKED, &dev->flags);
4510 					s.locked++;
4511 				} else {
4512 					/* let's read it back */
4513 					set_bit(R5_Wantread, &dev->flags);
4514 					set_bit(R5_LOCKED, &dev->flags);
4515 					s.locked++;
4516 				}
4517 			}
4518 		}
4519 
4520 	/* Finish reconstruct operations initiated by the expansion process */
4521 	if (sh->reconstruct_state == reconstruct_state_result) {
4522 		struct stripe_head *sh_src
4523 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4524 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4525 			/* sh cannot be written until sh_src has been read.
4526 			 * so arrange for sh to be delayed a little
4527 			 */
4528 			set_bit(STRIPE_DELAYED, &sh->state);
4529 			set_bit(STRIPE_HANDLE, &sh->state);
4530 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4531 					      &sh_src->state))
4532 				atomic_inc(&conf->preread_active_stripes);
4533 			raid5_release_stripe(sh_src);
4534 			goto finish;
4535 		}
4536 		if (sh_src)
4537 			raid5_release_stripe(sh_src);
4538 
4539 		sh->reconstruct_state = reconstruct_state_idle;
4540 		clear_bit(STRIPE_EXPANDING, &sh->state);
4541 		for (i = conf->raid_disks; i--; ) {
4542 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4543 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4544 			s.locked++;
4545 		}
4546 	}
4547 
4548 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4549 	    !sh->reconstruct_state) {
4550 		/* Need to write out all blocks after computing parity */
4551 		sh->disks = conf->raid_disks;
4552 		stripe_set_idx(sh->sector, conf, 0, sh);
4553 		schedule_reconstruction(sh, &s, 1, 1);
4554 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4555 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4556 		atomic_dec(&conf->reshape_stripes);
4557 		wake_up(&conf->wait_for_overlap);
4558 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4559 	}
4560 
4561 	if (s.expanding && s.locked == 0 &&
4562 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4563 		handle_stripe_expansion(conf, sh);
4564 
4565 finish:
4566 	/* wait for this device to become unblocked */
4567 	if (unlikely(s.blocked_rdev)) {
4568 		if (conf->mddev->external)
4569 			md_wait_for_blocked_rdev(s.blocked_rdev,
4570 						 conf->mddev);
4571 		else
4572 			/* Internal metadata will immediately
4573 			 * be written by raid5d, so we don't
4574 			 * need to wait here.
4575 			 */
4576 			rdev_dec_pending(s.blocked_rdev,
4577 					 conf->mddev);
4578 	}
4579 
4580 	if (s.handle_bad_blocks)
4581 		for (i = disks; i--; ) {
4582 			struct md_rdev *rdev;
4583 			struct r5dev *dev = &sh->dev[i];
4584 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4585 				/* We own a safe reference to the rdev */
4586 				rdev = conf->disks[i].rdev;
4587 				if (!rdev_set_badblocks(rdev, sh->sector,
4588 							STRIPE_SECTORS, 0))
4589 					md_error(conf->mddev, rdev);
4590 				rdev_dec_pending(rdev, conf->mddev);
4591 			}
4592 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4593 				rdev = conf->disks[i].rdev;
4594 				rdev_clear_badblocks(rdev, sh->sector,
4595 						     STRIPE_SECTORS, 0);
4596 				rdev_dec_pending(rdev, conf->mddev);
4597 			}
4598 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4599 				rdev = conf->disks[i].replacement;
4600 				if (!rdev)
4601 					/* rdev have been moved down */
4602 					rdev = conf->disks[i].rdev;
4603 				rdev_clear_badblocks(rdev, sh->sector,
4604 						     STRIPE_SECTORS, 0);
4605 				rdev_dec_pending(rdev, conf->mddev);
4606 			}
4607 		}
4608 
4609 	if (s.ops_request)
4610 		raid_run_ops(sh, s.ops_request);
4611 
4612 	ops_run_io(sh, &s);
4613 
4614 	if (s.dec_preread_active) {
4615 		/* We delay this until after ops_run_io so that if make_request
4616 		 * is waiting on a flush, it won't continue until the writes
4617 		 * have actually been submitted.
4618 		 */
4619 		atomic_dec(&conf->preread_active_stripes);
4620 		if (atomic_read(&conf->preread_active_stripes) <
4621 		    IO_THRESHOLD)
4622 			md_wakeup_thread(conf->mddev->thread);
4623 	}
4624 
4625 	if (!bio_list_empty(&s.return_bi)) {
4626 		if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags)) {
4627 			spin_lock_irq(&conf->device_lock);
4628 			bio_list_merge(&conf->return_bi, &s.return_bi);
4629 			spin_unlock_irq(&conf->device_lock);
4630 			md_wakeup_thread(conf->mddev->thread);
4631 		} else
4632 			return_io(&s.return_bi);
4633 	}
4634 
4635 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4636 }
4637 
4638 static void raid5_activate_delayed(struct r5conf *conf)
4639 {
4640 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4641 		while (!list_empty(&conf->delayed_list)) {
4642 			struct list_head *l = conf->delayed_list.next;
4643 			struct stripe_head *sh;
4644 			sh = list_entry(l, struct stripe_head, lru);
4645 			list_del_init(l);
4646 			clear_bit(STRIPE_DELAYED, &sh->state);
4647 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4648 				atomic_inc(&conf->preread_active_stripes);
4649 			list_add_tail(&sh->lru, &conf->hold_list);
4650 			raid5_wakeup_stripe_thread(sh);
4651 		}
4652 	}
4653 }
4654 
4655 static void activate_bit_delay(struct r5conf *conf,
4656 	struct list_head *temp_inactive_list)
4657 {
4658 	/* device_lock is held */
4659 	struct list_head head;
4660 	list_add(&head, &conf->bitmap_list);
4661 	list_del_init(&conf->bitmap_list);
4662 	while (!list_empty(&head)) {
4663 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4664 		int hash;
4665 		list_del_init(&sh->lru);
4666 		atomic_inc(&sh->count);
4667 		hash = sh->hash_lock_index;
4668 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4669 	}
4670 }
4671 
4672 static int raid5_congested(struct mddev *mddev, int bits)
4673 {
4674 	struct r5conf *conf = mddev->private;
4675 
4676 	/* No difference between reads and writes.  Just check
4677 	 * how busy the stripe_cache is
4678 	 */
4679 
4680 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4681 		return 1;
4682 	if (conf->quiesce)
4683 		return 1;
4684 	if (atomic_read(&conf->empty_inactive_list_nr))
4685 		return 1;
4686 
4687 	return 0;
4688 }
4689 
4690 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4691 {
4692 	struct r5conf *conf = mddev->private;
4693 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4694 	unsigned int chunk_sectors;
4695 	unsigned int bio_sectors = bio_sectors(bio);
4696 
4697 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4698 	return  chunk_sectors >=
4699 		((sector & (chunk_sectors - 1)) + bio_sectors);
4700 }
4701 
4702 /*
4703  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4704  *  later sampled by raid5d.
4705  */
4706 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4707 {
4708 	unsigned long flags;
4709 
4710 	spin_lock_irqsave(&conf->device_lock, flags);
4711 
4712 	bi->bi_next = conf->retry_read_aligned_list;
4713 	conf->retry_read_aligned_list = bi;
4714 
4715 	spin_unlock_irqrestore(&conf->device_lock, flags);
4716 	md_wakeup_thread(conf->mddev->thread);
4717 }
4718 
4719 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4720 {
4721 	struct bio *bi;
4722 
4723 	bi = conf->retry_read_aligned;
4724 	if (bi) {
4725 		conf->retry_read_aligned = NULL;
4726 		return bi;
4727 	}
4728 	bi = conf->retry_read_aligned_list;
4729 	if(bi) {
4730 		conf->retry_read_aligned_list = bi->bi_next;
4731 		bi->bi_next = NULL;
4732 		/*
4733 		 * this sets the active strip count to 1 and the processed
4734 		 * strip count to zero (upper 8 bits)
4735 		 */
4736 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4737 	}
4738 
4739 	return bi;
4740 }
4741 
4742 /*
4743  *  The "raid5_align_endio" should check if the read succeeded and if it
4744  *  did, call bio_endio on the original bio (having bio_put the new bio
4745  *  first).
4746  *  If the read failed..
4747  */
4748 static void raid5_align_endio(struct bio *bi)
4749 {
4750 	struct bio* raid_bi  = bi->bi_private;
4751 	struct mddev *mddev;
4752 	struct r5conf *conf;
4753 	struct md_rdev *rdev;
4754 	int error = bi->bi_error;
4755 
4756 	bio_put(bi);
4757 
4758 	rdev = (void*)raid_bi->bi_next;
4759 	raid_bi->bi_next = NULL;
4760 	mddev = rdev->mddev;
4761 	conf = mddev->private;
4762 
4763 	rdev_dec_pending(rdev, conf->mddev);
4764 
4765 	if (!error) {
4766 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4767 					 raid_bi, 0);
4768 		bio_endio(raid_bi);
4769 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4770 			wake_up(&conf->wait_for_quiescent);
4771 		return;
4772 	}
4773 
4774 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4775 
4776 	add_bio_to_retry(raid_bi, conf);
4777 }
4778 
4779 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4780 {
4781 	struct r5conf *conf = mddev->private;
4782 	int dd_idx;
4783 	struct bio* align_bi;
4784 	struct md_rdev *rdev;
4785 	sector_t end_sector;
4786 
4787 	if (!in_chunk_boundary(mddev, raid_bio)) {
4788 		pr_debug("%s: non aligned\n", __func__);
4789 		return 0;
4790 	}
4791 	/*
4792 	 * use bio_clone_mddev to make a copy of the bio
4793 	 */
4794 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4795 	if (!align_bi)
4796 		return 0;
4797 	/*
4798 	 *   set bi_end_io to a new function, and set bi_private to the
4799 	 *     original bio.
4800 	 */
4801 	align_bi->bi_end_io  = raid5_align_endio;
4802 	align_bi->bi_private = raid_bio;
4803 	/*
4804 	 *	compute position
4805 	 */
4806 	align_bi->bi_iter.bi_sector =
4807 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4808 				     0, &dd_idx, NULL);
4809 
4810 	end_sector = bio_end_sector(align_bi);
4811 	rcu_read_lock();
4812 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4813 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4814 	    rdev->recovery_offset < end_sector) {
4815 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4816 		if (rdev &&
4817 		    (test_bit(Faulty, &rdev->flags) ||
4818 		    !(test_bit(In_sync, &rdev->flags) ||
4819 		      rdev->recovery_offset >= end_sector)))
4820 			rdev = NULL;
4821 	}
4822 	if (rdev) {
4823 		sector_t first_bad;
4824 		int bad_sectors;
4825 
4826 		atomic_inc(&rdev->nr_pending);
4827 		rcu_read_unlock();
4828 		raid_bio->bi_next = (void*)rdev;
4829 		align_bi->bi_bdev =  rdev->bdev;
4830 		bio_clear_flag(align_bi, BIO_SEG_VALID);
4831 
4832 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4833 				bio_sectors(align_bi),
4834 				&first_bad, &bad_sectors)) {
4835 			bio_put(align_bi);
4836 			rdev_dec_pending(rdev, mddev);
4837 			return 0;
4838 		}
4839 
4840 		/* No reshape active, so we can trust rdev->data_offset */
4841 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4842 
4843 		spin_lock_irq(&conf->device_lock);
4844 		wait_event_lock_irq(conf->wait_for_quiescent,
4845 				    conf->quiesce == 0,
4846 				    conf->device_lock);
4847 		atomic_inc(&conf->active_aligned_reads);
4848 		spin_unlock_irq(&conf->device_lock);
4849 
4850 		if (mddev->gendisk)
4851 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4852 					      align_bi, disk_devt(mddev->gendisk),
4853 					      raid_bio->bi_iter.bi_sector);
4854 		generic_make_request(align_bi);
4855 		return 1;
4856 	} else {
4857 		rcu_read_unlock();
4858 		bio_put(align_bi);
4859 		return 0;
4860 	}
4861 }
4862 
4863 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4864 {
4865 	struct bio *split;
4866 
4867 	do {
4868 		sector_t sector = raid_bio->bi_iter.bi_sector;
4869 		unsigned chunk_sects = mddev->chunk_sectors;
4870 		unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4871 
4872 		if (sectors < bio_sectors(raid_bio)) {
4873 			split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4874 			bio_chain(split, raid_bio);
4875 		} else
4876 			split = raid_bio;
4877 
4878 		if (!raid5_read_one_chunk(mddev, split)) {
4879 			if (split != raid_bio)
4880 				generic_make_request(raid_bio);
4881 			return split;
4882 		}
4883 	} while (split != raid_bio);
4884 
4885 	return NULL;
4886 }
4887 
4888 /* __get_priority_stripe - get the next stripe to process
4889  *
4890  * Full stripe writes are allowed to pass preread active stripes up until
4891  * the bypass_threshold is exceeded.  In general the bypass_count
4892  * increments when the handle_list is handled before the hold_list; however, it
4893  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4894  * stripe with in flight i/o.  The bypass_count will be reset when the
4895  * head of the hold_list has changed, i.e. the head was promoted to the
4896  * handle_list.
4897  */
4898 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4899 {
4900 	struct stripe_head *sh = NULL, *tmp;
4901 	struct list_head *handle_list = NULL;
4902 	struct r5worker_group *wg = NULL;
4903 
4904 	if (conf->worker_cnt_per_group == 0) {
4905 		handle_list = &conf->handle_list;
4906 	} else if (group != ANY_GROUP) {
4907 		handle_list = &conf->worker_groups[group].handle_list;
4908 		wg = &conf->worker_groups[group];
4909 	} else {
4910 		int i;
4911 		for (i = 0; i < conf->group_cnt; i++) {
4912 			handle_list = &conf->worker_groups[i].handle_list;
4913 			wg = &conf->worker_groups[i];
4914 			if (!list_empty(handle_list))
4915 				break;
4916 		}
4917 	}
4918 
4919 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4920 		  __func__,
4921 		  list_empty(handle_list) ? "empty" : "busy",
4922 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4923 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4924 
4925 	if (!list_empty(handle_list)) {
4926 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4927 
4928 		if (list_empty(&conf->hold_list))
4929 			conf->bypass_count = 0;
4930 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4931 			if (conf->hold_list.next == conf->last_hold)
4932 				conf->bypass_count++;
4933 			else {
4934 				conf->last_hold = conf->hold_list.next;
4935 				conf->bypass_count -= conf->bypass_threshold;
4936 				if (conf->bypass_count < 0)
4937 					conf->bypass_count = 0;
4938 			}
4939 		}
4940 	} else if (!list_empty(&conf->hold_list) &&
4941 		   ((conf->bypass_threshold &&
4942 		     conf->bypass_count > conf->bypass_threshold) ||
4943 		    atomic_read(&conf->pending_full_writes) == 0)) {
4944 
4945 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4946 			if (conf->worker_cnt_per_group == 0 ||
4947 			    group == ANY_GROUP ||
4948 			    !cpu_online(tmp->cpu) ||
4949 			    cpu_to_group(tmp->cpu) == group) {
4950 				sh = tmp;
4951 				break;
4952 			}
4953 		}
4954 
4955 		if (sh) {
4956 			conf->bypass_count -= conf->bypass_threshold;
4957 			if (conf->bypass_count < 0)
4958 				conf->bypass_count = 0;
4959 		}
4960 		wg = NULL;
4961 	}
4962 
4963 	if (!sh)
4964 		return NULL;
4965 
4966 	if (wg) {
4967 		wg->stripes_cnt--;
4968 		sh->group = NULL;
4969 	}
4970 	list_del_init(&sh->lru);
4971 	BUG_ON(atomic_inc_return(&sh->count) != 1);
4972 	return sh;
4973 }
4974 
4975 struct raid5_plug_cb {
4976 	struct blk_plug_cb	cb;
4977 	struct list_head	list;
4978 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4979 };
4980 
4981 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4982 {
4983 	struct raid5_plug_cb *cb = container_of(
4984 		blk_cb, struct raid5_plug_cb, cb);
4985 	struct stripe_head *sh;
4986 	struct mddev *mddev = cb->cb.data;
4987 	struct r5conf *conf = mddev->private;
4988 	int cnt = 0;
4989 	int hash;
4990 
4991 	if (cb->list.next && !list_empty(&cb->list)) {
4992 		spin_lock_irq(&conf->device_lock);
4993 		while (!list_empty(&cb->list)) {
4994 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4995 			list_del_init(&sh->lru);
4996 			/*
4997 			 * avoid race release_stripe_plug() sees
4998 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4999 			 * is still in our list
5000 			 */
5001 			smp_mb__before_atomic();
5002 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5003 			/*
5004 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5005 			 * case, the count is always > 1 here
5006 			 */
5007 			hash = sh->hash_lock_index;
5008 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5009 			cnt++;
5010 		}
5011 		spin_unlock_irq(&conf->device_lock);
5012 	}
5013 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5014 				     NR_STRIPE_HASH_LOCKS);
5015 	if (mddev->queue)
5016 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5017 	kfree(cb);
5018 }
5019 
5020 static void release_stripe_plug(struct mddev *mddev,
5021 				struct stripe_head *sh)
5022 {
5023 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5024 		raid5_unplug, mddev,
5025 		sizeof(struct raid5_plug_cb));
5026 	struct raid5_plug_cb *cb;
5027 
5028 	if (!blk_cb) {
5029 		raid5_release_stripe(sh);
5030 		return;
5031 	}
5032 
5033 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5034 
5035 	if (cb->list.next == NULL) {
5036 		int i;
5037 		INIT_LIST_HEAD(&cb->list);
5038 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5039 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5040 	}
5041 
5042 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5043 		list_add_tail(&sh->lru, &cb->list);
5044 	else
5045 		raid5_release_stripe(sh);
5046 }
5047 
5048 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5049 {
5050 	struct r5conf *conf = mddev->private;
5051 	sector_t logical_sector, last_sector;
5052 	struct stripe_head *sh;
5053 	int remaining;
5054 	int stripe_sectors;
5055 
5056 	if (mddev->reshape_position != MaxSector)
5057 		/* Skip discard while reshape is happening */
5058 		return;
5059 
5060 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5061 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5062 
5063 	bi->bi_next = NULL;
5064 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5065 
5066 	stripe_sectors = conf->chunk_sectors *
5067 		(conf->raid_disks - conf->max_degraded);
5068 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5069 					       stripe_sectors);
5070 	sector_div(last_sector, stripe_sectors);
5071 
5072 	logical_sector *= conf->chunk_sectors;
5073 	last_sector *= conf->chunk_sectors;
5074 
5075 	for (; logical_sector < last_sector;
5076 	     logical_sector += STRIPE_SECTORS) {
5077 		DEFINE_WAIT(w);
5078 		int d;
5079 	again:
5080 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5081 		prepare_to_wait(&conf->wait_for_overlap, &w,
5082 				TASK_UNINTERRUPTIBLE);
5083 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5084 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5085 			raid5_release_stripe(sh);
5086 			schedule();
5087 			goto again;
5088 		}
5089 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5090 		spin_lock_irq(&sh->stripe_lock);
5091 		for (d = 0; d < conf->raid_disks; d++) {
5092 			if (d == sh->pd_idx || d == sh->qd_idx)
5093 				continue;
5094 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5095 				set_bit(R5_Overlap, &sh->dev[d].flags);
5096 				spin_unlock_irq(&sh->stripe_lock);
5097 				raid5_release_stripe(sh);
5098 				schedule();
5099 				goto again;
5100 			}
5101 		}
5102 		set_bit(STRIPE_DISCARD, &sh->state);
5103 		finish_wait(&conf->wait_for_overlap, &w);
5104 		sh->overwrite_disks = 0;
5105 		for (d = 0; d < conf->raid_disks; d++) {
5106 			if (d == sh->pd_idx || d == sh->qd_idx)
5107 				continue;
5108 			sh->dev[d].towrite = bi;
5109 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5110 			raid5_inc_bi_active_stripes(bi);
5111 			sh->overwrite_disks++;
5112 		}
5113 		spin_unlock_irq(&sh->stripe_lock);
5114 		if (conf->mddev->bitmap) {
5115 			for (d = 0;
5116 			     d < conf->raid_disks - conf->max_degraded;
5117 			     d++)
5118 				bitmap_startwrite(mddev->bitmap,
5119 						  sh->sector,
5120 						  STRIPE_SECTORS,
5121 						  0);
5122 			sh->bm_seq = conf->seq_flush + 1;
5123 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5124 		}
5125 
5126 		set_bit(STRIPE_HANDLE, &sh->state);
5127 		clear_bit(STRIPE_DELAYED, &sh->state);
5128 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5129 			atomic_inc(&conf->preread_active_stripes);
5130 		release_stripe_plug(mddev, sh);
5131 	}
5132 
5133 	remaining = raid5_dec_bi_active_stripes(bi);
5134 	if (remaining == 0) {
5135 		md_write_end(mddev);
5136 		bio_endio(bi);
5137 	}
5138 }
5139 
5140 static void make_request(struct mddev *mddev, struct bio * bi)
5141 {
5142 	struct r5conf *conf = mddev->private;
5143 	int dd_idx;
5144 	sector_t new_sector;
5145 	sector_t logical_sector, last_sector;
5146 	struct stripe_head *sh;
5147 	const int rw = bio_data_dir(bi);
5148 	int remaining;
5149 	DEFINE_WAIT(w);
5150 	bool do_prepare;
5151 
5152 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5153 		int ret = r5l_handle_flush_request(conf->log, bi);
5154 
5155 		if (ret == 0)
5156 			return;
5157 		if (ret == -ENODEV) {
5158 			md_flush_request(mddev, bi);
5159 			return;
5160 		}
5161 		/* ret == -EAGAIN, fallback */
5162 	}
5163 
5164 	md_write_start(mddev, bi);
5165 
5166 	/*
5167 	 * If array is degraded, better not do chunk aligned read because
5168 	 * later we might have to read it again in order to reconstruct
5169 	 * data on failed drives.
5170 	 */
5171 	if (rw == READ && mddev->degraded == 0 &&
5172 	    mddev->reshape_position == MaxSector) {
5173 		bi = chunk_aligned_read(mddev, bi);
5174 		if (!bi)
5175 			return;
5176 	}
5177 
5178 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5179 		make_discard_request(mddev, bi);
5180 		return;
5181 	}
5182 
5183 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5184 	last_sector = bio_end_sector(bi);
5185 	bi->bi_next = NULL;
5186 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5187 
5188 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5189 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5190 		int previous;
5191 		int seq;
5192 
5193 		do_prepare = false;
5194 	retry:
5195 		seq = read_seqcount_begin(&conf->gen_lock);
5196 		previous = 0;
5197 		if (do_prepare)
5198 			prepare_to_wait(&conf->wait_for_overlap, &w,
5199 				TASK_UNINTERRUPTIBLE);
5200 		if (unlikely(conf->reshape_progress != MaxSector)) {
5201 			/* spinlock is needed as reshape_progress may be
5202 			 * 64bit on a 32bit platform, and so it might be
5203 			 * possible to see a half-updated value
5204 			 * Of course reshape_progress could change after
5205 			 * the lock is dropped, so once we get a reference
5206 			 * to the stripe that we think it is, we will have
5207 			 * to check again.
5208 			 */
5209 			spin_lock_irq(&conf->device_lock);
5210 			if (mddev->reshape_backwards
5211 			    ? logical_sector < conf->reshape_progress
5212 			    : logical_sector >= conf->reshape_progress) {
5213 				previous = 1;
5214 			} else {
5215 				if (mddev->reshape_backwards
5216 				    ? logical_sector < conf->reshape_safe
5217 				    : logical_sector >= conf->reshape_safe) {
5218 					spin_unlock_irq(&conf->device_lock);
5219 					schedule();
5220 					do_prepare = true;
5221 					goto retry;
5222 				}
5223 			}
5224 			spin_unlock_irq(&conf->device_lock);
5225 		}
5226 
5227 		new_sector = raid5_compute_sector(conf, logical_sector,
5228 						  previous,
5229 						  &dd_idx, NULL);
5230 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
5231 			(unsigned long long)new_sector,
5232 			(unsigned long long)logical_sector);
5233 
5234 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5235 				       (bi->bi_rw&RWA_MASK), 0);
5236 		if (sh) {
5237 			if (unlikely(previous)) {
5238 				/* expansion might have moved on while waiting for a
5239 				 * stripe, so we must do the range check again.
5240 				 * Expansion could still move past after this
5241 				 * test, but as we are holding a reference to
5242 				 * 'sh', we know that if that happens,
5243 				 *  STRIPE_EXPANDING will get set and the expansion
5244 				 * won't proceed until we finish with the stripe.
5245 				 */
5246 				int must_retry = 0;
5247 				spin_lock_irq(&conf->device_lock);
5248 				if (mddev->reshape_backwards
5249 				    ? logical_sector >= conf->reshape_progress
5250 				    : logical_sector < conf->reshape_progress)
5251 					/* mismatch, need to try again */
5252 					must_retry = 1;
5253 				spin_unlock_irq(&conf->device_lock);
5254 				if (must_retry) {
5255 					raid5_release_stripe(sh);
5256 					schedule();
5257 					do_prepare = true;
5258 					goto retry;
5259 				}
5260 			}
5261 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5262 				/* Might have got the wrong stripe_head
5263 				 * by accident
5264 				 */
5265 				raid5_release_stripe(sh);
5266 				goto retry;
5267 			}
5268 
5269 			if (rw == WRITE &&
5270 			    logical_sector >= mddev->suspend_lo &&
5271 			    logical_sector < mddev->suspend_hi) {
5272 				raid5_release_stripe(sh);
5273 				/* As the suspend_* range is controlled by
5274 				 * userspace, we want an interruptible
5275 				 * wait.
5276 				 */
5277 				flush_signals(current);
5278 				prepare_to_wait(&conf->wait_for_overlap,
5279 						&w, TASK_INTERRUPTIBLE);
5280 				if (logical_sector >= mddev->suspend_lo &&
5281 				    logical_sector < mddev->suspend_hi) {
5282 					schedule();
5283 					do_prepare = true;
5284 				}
5285 				goto retry;
5286 			}
5287 
5288 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5289 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5290 				/* Stripe is busy expanding or
5291 				 * add failed due to overlap.  Flush everything
5292 				 * and wait a while
5293 				 */
5294 				md_wakeup_thread(mddev->thread);
5295 				raid5_release_stripe(sh);
5296 				schedule();
5297 				do_prepare = true;
5298 				goto retry;
5299 			}
5300 			set_bit(STRIPE_HANDLE, &sh->state);
5301 			clear_bit(STRIPE_DELAYED, &sh->state);
5302 			if ((!sh->batch_head || sh == sh->batch_head) &&
5303 			    (bi->bi_rw & REQ_SYNC) &&
5304 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5305 				atomic_inc(&conf->preread_active_stripes);
5306 			release_stripe_plug(mddev, sh);
5307 		} else {
5308 			/* cannot get stripe for read-ahead, just give-up */
5309 			bi->bi_error = -EIO;
5310 			break;
5311 		}
5312 	}
5313 	finish_wait(&conf->wait_for_overlap, &w);
5314 
5315 	remaining = raid5_dec_bi_active_stripes(bi);
5316 	if (remaining == 0) {
5317 
5318 		if ( rw == WRITE )
5319 			md_write_end(mddev);
5320 
5321 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5322 					 bi, 0);
5323 		bio_endio(bi);
5324 	}
5325 }
5326 
5327 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5328 
5329 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5330 {
5331 	/* reshaping is quite different to recovery/resync so it is
5332 	 * handled quite separately ... here.
5333 	 *
5334 	 * On each call to sync_request, we gather one chunk worth of
5335 	 * destination stripes and flag them as expanding.
5336 	 * Then we find all the source stripes and request reads.
5337 	 * As the reads complete, handle_stripe will copy the data
5338 	 * into the destination stripe and release that stripe.
5339 	 */
5340 	struct r5conf *conf = mddev->private;
5341 	struct stripe_head *sh;
5342 	sector_t first_sector, last_sector;
5343 	int raid_disks = conf->previous_raid_disks;
5344 	int data_disks = raid_disks - conf->max_degraded;
5345 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5346 	int i;
5347 	int dd_idx;
5348 	sector_t writepos, readpos, safepos;
5349 	sector_t stripe_addr;
5350 	int reshape_sectors;
5351 	struct list_head stripes;
5352 	sector_t retn;
5353 
5354 	if (sector_nr == 0) {
5355 		/* If restarting in the middle, skip the initial sectors */
5356 		if (mddev->reshape_backwards &&
5357 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5358 			sector_nr = raid5_size(mddev, 0, 0)
5359 				- conf->reshape_progress;
5360 		} else if (mddev->reshape_backwards &&
5361 			   conf->reshape_progress == MaxSector) {
5362 			/* shouldn't happen, but just in case, finish up.*/
5363 			sector_nr = MaxSector;
5364 		} else if (!mddev->reshape_backwards &&
5365 			   conf->reshape_progress > 0)
5366 			sector_nr = conf->reshape_progress;
5367 		sector_div(sector_nr, new_data_disks);
5368 		if (sector_nr) {
5369 			mddev->curr_resync_completed = sector_nr;
5370 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5371 			*skipped = 1;
5372 			retn = sector_nr;
5373 			goto finish;
5374 		}
5375 	}
5376 
5377 	/* We need to process a full chunk at a time.
5378 	 * If old and new chunk sizes differ, we need to process the
5379 	 * largest of these
5380 	 */
5381 
5382 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5383 
5384 	/* We update the metadata at least every 10 seconds, or when
5385 	 * the data about to be copied would over-write the source of
5386 	 * the data at the front of the range.  i.e. one new_stripe
5387 	 * along from reshape_progress new_maps to after where
5388 	 * reshape_safe old_maps to
5389 	 */
5390 	writepos = conf->reshape_progress;
5391 	sector_div(writepos, new_data_disks);
5392 	readpos = conf->reshape_progress;
5393 	sector_div(readpos, data_disks);
5394 	safepos = conf->reshape_safe;
5395 	sector_div(safepos, data_disks);
5396 	if (mddev->reshape_backwards) {
5397 		BUG_ON(writepos < reshape_sectors);
5398 		writepos -= reshape_sectors;
5399 		readpos += reshape_sectors;
5400 		safepos += reshape_sectors;
5401 	} else {
5402 		writepos += reshape_sectors;
5403 		/* readpos and safepos are worst-case calculations.
5404 		 * A negative number is overly pessimistic, and causes
5405 		 * obvious problems for unsigned storage.  So clip to 0.
5406 		 */
5407 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5408 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5409 	}
5410 
5411 	/* Having calculated the 'writepos' possibly use it
5412 	 * to set 'stripe_addr' which is where we will write to.
5413 	 */
5414 	if (mddev->reshape_backwards) {
5415 		BUG_ON(conf->reshape_progress == 0);
5416 		stripe_addr = writepos;
5417 		BUG_ON((mddev->dev_sectors &
5418 			~((sector_t)reshape_sectors - 1))
5419 		       - reshape_sectors - stripe_addr
5420 		       != sector_nr);
5421 	} else {
5422 		BUG_ON(writepos != sector_nr + reshape_sectors);
5423 		stripe_addr = sector_nr;
5424 	}
5425 
5426 	/* 'writepos' is the most advanced device address we might write.
5427 	 * 'readpos' is the least advanced device address we might read.
5428 	 * 'safepos' is the least address recorded in the metadata as having
5429 	 *     been reshaped.
5430 	 * If there is a min_offset_diff, these are adjusted either by
5431 	 * increasing the safepos/readpos if diff is negative, or
5432 	 * increasing writepos if diff is positive.
5433 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5434 	 * ensure safety in the face of a crash - that must be done by userspace
5435 	 * making a backup of the data.  So in that case there is no particular
5436 	 * rush to update metadata.
5437 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5438 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5439 	 * we can be safe in the event of a crash.
5440 	 * So we insist on updating metadata if safepos is behind writepos and
5441 	 * readpos is beyond writepos.
5442 	 * In any case, update the metadata every 10 seconds.
5443 	 * Maybe that number should be configurable, but I'm not sure it is
5444 	 * worth it.... maybe it could be a multiple of safemode_delay???
5445 	 */
5446 	if (conf->min_offset_diff < 0) {
5447 		safepos += -conf->min_offset_diff;
5448 		readpos += -conf->min_offset_diff;
5449 	} else
5450 		writepos += conf->min_offset_diff;
5451 
5452 	if ((mddev->reshape_backwards
5453 	     ? (safepos > writepos && readpos < writepos)
5454 	     : (safepos < writepos && readpos > writepos)) ||
5455 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5456 		/* Cannot proceed until we've updated the superblock... */
5457 		wait_event(conf->wait_for_overlap,
5458 			   atomic_read(&conf->reshape_stripes)==0
5459 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5460 		if (atomic_read(&conf->reshape_stripes) != 0)
5461 			return 0;
5462 		mddev->reshape_position = conf->reshape_progress;
5463 		mddev->curr_resync_completed = sector_nr;
5464 		conf->reshape_checkpoint = jiffies;
5465 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5466 		md_wakeup_thread(mddev->thread);
5467 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
5468 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5469 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5470 			return 0;
5471 		spin_lock_irq(&conf->device_lock);
5472 		conf->reshape_safe = mddev->reshape_position;
5473 		spin_unlock_irq(&conf->device_lock);
5474 		wake_up(&conf->wait_for_overlap);
5475 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5476 	}
5477 
5478 	INIT_LIST_HEAD(&stripes);
5479 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5480 		int j;
5481 		int skipped_disk = 0;
5482 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5483 		set_bit(STRIPE_EXPANDING, &sh->state);
5484 		atomic_inc(&conf->reshape_stripes);
5485 		/* If any of this stripe is beyond the end of the old
5486 		 * array, then we need to zero those blocks
5487 		 */
5488 		for (j=sh->disks; j--;) {
5489 			sector_t s;
5490 			if (j == sh->pd_idx)
5491 				continue;
5492 			if (conf->level == 6 &&
5493 			    j == sh->qd_idx)
5494 				continue;
5495 			s = raid5_compute_blocknr(sh, j, 0);
5496 			if (s < raid5_size(mddev, 0, 0)) {
5497 				skipped_disk = 1;
5498 				continue;
5499 			}
5500 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5501 			set_bit(R5_Expanded, &sh->dev[j].flags);
5502 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5503 		}
5504 		if (!skipped_disk) {
5505 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5506 			set_bit(STRIPE_HANDLE, &sh->state);
5507 		}
5508 		list_add(&sh->lru, &stripes);
5509 	}
5510 	spin_lock_irq(&conf->device_lock);
5511 	if (mddev->reshape_backwards)
5512 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5513 	else
5514 		conf->reshape_progress += reshape_sectors * new_data_disks;
5515 	spin_unlock_irq(&conf->device_lock);
5516 	/* Ok, those stripe are ready. We can start scheduling
5517 	 * reads on the source stripes.
5518 	 * The source stripes are determined by mapping the first and last
5519 	 * block on the destination stripes.
5520 	 */
5521 	first_sector =
5522 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5523 				     1, &dd_idx, NULL);
5524 	last_sector =
5525 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5526 					    * new_data_disks - 1),
5527 				     1, &dd_idx, NULL);
5528 	if (last_sector >= mddev->dev_sectors)
5529 		last_sector = mddev->dev_sectors - 1;
5530 	while (first_sector <= last_sector) {
5531 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5532 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5533 		set_bit(STRIPE_HANDLE, &sh->state);
5534 		raid5_release_stripe(sh);
5535 		first_sector += STRIPE_SECTORS;
5536 	}
5537 	/* Now that the sources are clearly marked, we can release
5538 	 * the destination stripes
5539 	 */
5540 	while (!list_empty(&stripes)) {
5541 		sh = list_entry(stripes.next, struct stripe_head, lru);
5542 		list_del_init(&sh->lru);
5543 		raid5_release_stripe(sh);
5544 	}
5545 	/* If this takes us to the resync_max point where we have to pause,
5546 	 * then we need to write out the superblock.
5547 	 */
5548 	sector_nr += reshape_sectors;
5549 	retn = reshape_sectors;
5550 finish:
5551 	if (mddev->curr_resync_completed > mddev->resync_max ||
5552 	    (sector_nr - mddev->curr_resync_completed) * 2
5553 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5554 		/* Cannot proceed until we've updated the superblock... */
5555 		wait_event(conf->wait_for_overlap,
5556 			   atomic_read(&conf->reshape_stripes) == 0
5557 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5558 		if (atomic_read(&conf->reshape_stripes) != 0)
5559 			goto ret;
5560 		mddev->reshape_position = conf->reshape_progress;
5561 		mddev->curr_resync_completed = sector_nr;
5562 		conf->reshape_checkpoint = jiffies;
5563 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5564 		md_wakeup_thread(mddev->thread);
5565 		wait_event(mddev->sb_wait,
5566 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5567 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5568 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5569 			goto ret;
5570 		spin_lock_irq(&conf->device_lock);
5571 		conf->reshape_safe = mddev->reshape_position;
5572 		spin_unlock_irq(&conf->device_lock);
5573 		wake_up(&conf->wait_for_overlap);
5574 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5575 	}
5576 ret:
5577 	return retn;
5578 }
5579 
5580 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5581 {
5582 	struct r5conf *conf = mddev->private;
5583 	struct stripe_head *sh;
5584 	sector_t max_sector = mddev->dev_sectors;
5585 	sector_t sync_blocks;
5586 	int still_degraded = 0;
5587 	int i;
5588 
5589 	if (sector_nr >= max_sector) {
5590 		/* just being told to finish up .. nothing much to do */
5591 
5592 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5593 			end_reshape(conf);
5594 			return 0;
5595 		}
5596 
5597 		if (mddev->curr_resync < max_sector) /* aborted */
5598 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5599 					&sync_blocks, 1);
5600 		else /* completed sync */
5601 			conf->fullsync = 0;
5602 		bitmap_close_sync(mddev->bitmap);
5603 
5604 		return 0;
5605 	}
5606 
5607 	/* Allow raid5_quiesce to complete */
5608 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5609 
5610 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5611 		return reshape_request(mddev, sector_nr, skipped);
5612 
5613 	/* No need to check resync_max as we never do more than one
5614 	 * stripe, and as resync_max will always be on a chunk boundary,
5615 	 * if the check in md_do_sync didn't fire, there is no chance
5616 	 * of overstepping resync_max here
5617 	 */
5618 
5619 	/* if there is too many failed drives and we are trying
5620 	 * to resync, then assert that we are finished, because there is
5621 	 * nothing we can do.
5622 	 */
5623 	if (mddev->degraded >= conf->max_degraded &&
5624 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5625 		sector_t rv = mddev->dev_sectors - sector_nr;
5626 		*skipped = 1;
5627 		return rv;
5628 	}
5629 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5630 	    !conf->fullsync &&
5631 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5632 	    sync_blocks >= STRIPE_SECTORS) {
5633 		/* we can skip this block, and probably more */
5634 		sync_blocks /= STRIPE_SECTORS;
5635 		*skipped = 1;
5636 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5637 	}
5638 
5639 	bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5640 
5641 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5642 	if (sh == NULL) {
5643 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5644 		/* make sure we don't swamp the stripe cache if someone else
5645 		 * is trying to get access
5646 		 */
5647 		schedule_timeout_uninterruptible(1);
5648 	}
5649 	/* Need to check if array will still be degraded after recovery/resync
5650 	 * Note in case of > 1 drive failures it's possible we're rebuilding
5651 	 * one drive while leaving another faulty drive in array.
5652 	 */
5653 	rcu_read_lock();
5654 	for (i = 0; i < conf->raid_disks; i++) {
5655 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5656 
5657 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5658 			still_degraded = 1;
5659 	}
5660 	rcu_read_unlock();
5661 
5662 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5663 
5664 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5665 	set_bit(STRIPE_HANDLE, &sh->state);
5666 
5667 	raid5_release_stripe(sh);
5668 
5669 	return STRIPE_SECTORS;
5670 }
5671 
5672 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5673 {
5674 	/* We may not be able to submit a whole bio at once as there
5675 	 * may not be enough stripe_heads available.
5676 	 * We cannot pre-allocate enough stripe_heads as we may need
5677 	 * more than exist in the cache (if we allow ever large chunks).
5678 	 * So we do one stripe head at a time and record in
5679 	 * ->bi_hw_segments how many have been done.
5680 	 *
5681 	 * We *know* that this entire raid_bio is in one chunk, so
5682 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5683 	 */
5684 	struct stripe_head *sh;
5685 	int dd_idx;
5686 	sector_t sector, logical_sector, last_sector;
5687 	int scnt = 0;
5688 	int remaining;
5689 	int handled = 0;
5690 
5691 	logical_sector = raid_bio->bi_iter.bi_sector &
5692 		~((sector_t)STRIPE_SECTORS-1);
5693 	sector = raid5_compute_sector(conf, logical_sector,
5694 				      0, &dd_idx, NULL);
5695 	last_sector = bio_end_sector(raid_bio);
5696 
5697 	for (; logical_sector < last_sector;
5698 	     logical_sector += STRIPE_SECTORS,
5699 		     sector += STRIPE_SECTORS,
5700 		     scnt++) {
5701 
5702 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5703 			/* already done this stripe */
5704 			continue;
5705 
5706 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5707 
5708 		if (!sh) {
5709 			/* failed to get a stripe - must wait */
5710 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5711 			conf->retry_read_aligned = raid_bio;
5712 			return handled;
5713 		}
5714 
5715 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5716 			raid5_release_stripe(sh);
5717 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5718 			conf->retry_read_aligned = raid_bio;
5719 			return handled;
5720 		}
5721 
5722 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5723 		handle_stripe(sh);
5724 		raid5_release_stripe(sh);
5725 		handled++;
5726 	}
5727 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5728 	if (remaining == 0) {
5729 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5730 					 raid_bio, 0);
5731 		bio_endio(raid_bio);
5732 	}
5733 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5734 		wake_up(&conf->wait_for_quiescent);
5735 	return handled;
5736 }
5737 
5738 static int handle_active_stripes(struct r5conf *conf, int group,
5739 				 struct r5worker *worker,
5740 				 struct list_head *temp_inactive_list)
5741 {
5742 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5743 	int i, batch_size = 0, hash;
5744 	bool release_inactive = false;
5745 
5746 	while (batch_size < MAX_STRIPE_BATCH &&
5747 			(sh = __get_priority_stripe(conf, group)) != NULL)
5748 		batch[batch_size++] = sh;
5749 
5750 	if (batch_size == 0) {
5751 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5752 			if (!list_empty(temp_inactive_list + i))
5753 				break;
5754 		if (i == NR_STRIPE_HASH_LOCKS) {
5755 			spin_unlock_irq(&conf->device_lock);
5756 			r5l_flush_stripe_to_raid(conf->log);
5757 			spin_lock_irq(&conf->device_lock);
5758 			return batch_size;
5759 		}
5760 		release_inactive = true;
5761 	}
5762 	spin_unlock_irq(&conf->device_lock);
5763 
5764 	release_inactive_stripe_list(conf, temp_inactive_list,
5765 				     NR_STRIPE_HASH_LOCKS);
5766 
5767 	r5l_flush_stripe_to_raid(conf->log);
5768 	if (release_inactive) {
5769 		spin_lock_irq(&conf->device_lock);
5770 		return 0;
5771 	}
5772 
5773 	for (i = 0; i < batch_size; i++)
5774 		handle_stripe(batch[i]);
5775 	r5l_write_stripe_run(conf->log);
5776 
5777 	cond_resched();
5778 
5779 	spin_lock_irq(&conf->device_lock);
5780 	for (i = 0; i < batch_size; i++) {
5781 		hash = batch[i]->hash_lock_index;
5782 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5783 	}
5784 	return batch_size;
5785 }
5786 
5787 static void raid5_do_work(struct work_struct *work)
5788 {
5789 	struct r5worker *worker = container_of(work, struct r5worker, work);
5790 	struct r5worker_group *group = worker->group;
5791 	struct r5conf *conf = group->conf;
5792 	int group_id = group - conf->worker_groups;
5793 	int handled;
5794 	struct blk_plug plug;
5795 
5796 	pr_debug("+++ raid5worker active\n");
5797 
5798 	blk_start_plug(&plug);
5799 	handled = 0;
5800 	spin_lock_irq(&conf->device_lock);
5801 	while (1) {
5802 		int batch_size, released;
5803 
5804 		released = release_stripe_list(conf, worker->temp_inactive_list);
5805 
5806 		batch_size = handle_active_stripes(conf, group_id, worker,
5807 						   worker->temp_inactive_list);
5808 		worker->working = false;
5809 		if (!batch_size && !released)
5810 			break;
5811 		handled += batch_size;
5812 	}
5813 	pr_debug("%d stripes handled\n", handled);
5814 
5815 	spin_unlock_irq(&conf->device_lock);
5816 	blk_finish_plug(&plug);
5817 
5818 	pr_debug("--- raid5worker inactive\n");
5819 }
5820 
5821 /*
5822  * This is our raid5 kernel thread.
5823  *
5824  * We scan the hash table for stripes which can be handled now.
5825  * During the scan, completed stripes are saved for us by the interrupt
5826  * handler, so that they will not have to wait for our next wakeup.
5827  */
5828 static void raid5d(struct md_thread *thread)
5829 {
5830 	struct mddev *mddev = thread->mddev;
5831 	struct r5conf *conf = mddev->private;
5832 	int handled;
5833 	struct blk_plug plug;
5834 
5835 	pr_debug("+++ raid5d active\n");
5836 
5837 	md_check_recovery(mddev);
5838 
5839 	if (!bio_list_empty(&conf->return_bi) &&
5840 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5841 		struct bio_list tmp = BIO_EMPTY_LIST;
5842 		spin_lock_irq(&conf->device_lock);
5843 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5844 			bio_list_merge(&tmp, &conf->return_bi);
5845 			bio_list_init(&conf->return_bi);
5846 		}
5847 		spin_unlock_irq(&conf->device_lock);
5848 		return_io(&tmp);
5849 	}
5850 
5851 	blk_start_plug(&plug);
5852 	handled = 0;
5853 	spin_lock_irq(&conf->device_lock);
5854 	while (1) {
5855 		struct bio *bio;
5856 		int batch_size, released;
5857 
5858 		released = release_stripe_list(conf, conf->temp_inactive_list);
5859 		if (released)
5860 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
5861 
5862 		if (
5863 		    !list_empty(&conf->bitmap_list)) {
5864 			/* Now is a good time to flush some bitmap updates */
5865 			conf->seq_flush++;
5866 			spin_unlock_irq(&conf->device_lock);
5867 			bitmap_unplug(mddev->bitmap);
5868 			spin_lock_irq(&conf->device_lock);
5869 			conf->seq_write = conf->seq_flush;
5870 			activate_bit_delay(conf, conf->temp_inactive_list);
5871 		}
5872 		raid5_activate_delayed(conf);
5873 
5874 		while ((bio = remove_bio_from_retry(conf))) {
5875 			int ok;
5876 			spin_unlock_irq(&conf->device_lock);
5877 			ok = retry_aligned_read(conf, bio);
5878 			spin_lock_irq(&conf->device_lock);
5879 			if (!ok)
5880 				break;
5881 			handled++;
5882 		}
5883 
5884 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5885 						   conf->temp_inactive_list);
5886 		if (!batch_size && !released)
5887 			break;
5888 		handled += batch_size;
5889 
5890 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5891 			spin_unlock_irq(&conf->device_lock);
5892 			md_check_recovery(mddev);
5893 			spin_lock_irq(&conf->device_lock);
5894 		}
5895 	}
5896 	pr_debug("%d stripes handled\n", handled);
5897 
5898 	spin_unlock_irq(&conf->device_lock);
5899 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5900 	    mutex_trylock(&conf->cache_size_mutex)) {
5901 		grow_one_stripe(conf, __GFP_NOWARN);
5902 		/* Set flag even if allocation failed.  This helps
5903 		 * slow down allocation requests when mem is short
5904 		 */
5905 		set_bit(R5_DID_ALLOC, &conf->cache_state);
5906 		mutex_unlock(&conf->cache_size_mutex);
5907 	}
5908 
5909 	r5l_flush_stripe_to_raid(conf->log);
5910 
5911 	async_tx_issue_pending_all();
5912 	blk_finish_plug(&plug);
5913 
5914 	pr_debug("--- raid5d inactive\n");
5915 }
5916 
5917 static ssize_t
5918 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5919 {
5920 	struct r5conf *conf;
5921 	int ret = 0;
5922 	spin_lock(&mddev->lock);
5923 	conf = mddev->private;
5924 	if (conf)
5925 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5926 	spin_unlock(&mddev->lock);
5927 	return ret;
5928 }
5929 
5930 int
5931 raid5_set_cache_size(struct mddev *mddev, int size)
5932 {
5933 	struct r5conf *conf = mddev->private;
5934 	int err;
5935 
5936 	if (size <= 16 || size > 32768)
5937 		return -EINVAL;
5938 
5939 	conf->min_nr_stripes = size;
5940 	mutex_lock(&conf->cache_size_mutex);
5941 	while (size < conf->max_nr_stripes &&
5942 	       drop_one_stripe(conf))
5943 		;
5944 	mutex_unlock(&conf->cache_size_mutex);
5945 
5946 
5947 	err = md_allow_write(mddev);
5948 	if (err)
5949 		return err;
5950 
5951 	mutex_lock(&conf->cache_size_mutex);
5952 	while (size > conf->max_nr_stripes)
5953 		if (!grow_one_stripe(conf, GFP_KERNEL))
5954 			break;
5955 	mutex_unlock(&conf->cache_size_mutex);
5956 
5957 	return 0;
5958 }
5959 EXPORT_SYMBOL(raid5_set_cache_size);
5960 
5961 static ssize_t
5962 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5963 {
5964 	struct r5conf *conf;
5965 	unsigned long new;
5966 	int err;
5967 
5968 	if (len >= PAGE_SIZE)
5969 		return -EINVAL;
5970 	if (kstrtoul(page, 10, &new))
5971 		return -EINVAL;
5972 	err = mddev_lock(mddev);
5973 	if (err)
5974 		return err;
5975 	conf = mddev->private;
5976 	if (!conf)
5977 		err = -ENODEV;
5978 	else
5979 		err = raid5_set_cache_size(mddev, new);
5980 	mddev_unlock(mddev);
5981 
5982 	return err ?: len;
5983 }
5984 
5985 static struct md_sysfs_entry
5986 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5987 				raid5_show_stripe_cache_size,
5988 				raid5_store_stripe_cache_size);
5989 
5990 static ssize_t
5991 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5992 {
5993 	struct r5conf *conf = mddev->private;
5994 	if (conf)
5995 		return sprintf(page, "%d\n", conf->rmw_level);
5996 	else
5997 		return 0;
5998 }
5999 
6000 static ssize_t
6001 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6002 {
6003 	struct r5conf *conf = mddev->private;
6004 	unsigned long new;
6005 
6006 	if (!conf)
6007 		return -ENODEV;
6008 
6009 	if (len >= PAGE_SIZE)
6010 		return -EINVAL;
6011 
6012 	if (kstrtoul(page, 10, &new))
6013 		return -EINVAL;
6014 
6015 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6016 		return -EINVAL;
6017 
6018 	if (new != PARITY_DISABLE_RMW &&
6019 	    new != PARITY_ENABLE_RMW &&
6020 	    new != PARITY_PREFER_RMW)
6021 		return -EINVAL;
6022 
6023 	conf->rmw_level = new;
6024 	return len;
6025 }
6026 
6027 static struct md_sysfs_entry
6028 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6029 			 raid5_show_rmw_level,
6030 			 raid5_store_rmw_level);
6031 
6032 
6033 static ssize_t
6034 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6035 {
6036 	struct r5conf *conf;
6037 	int ret = 0;
6038 	spin_lock(&mddev->lock);
6039 	conf = mddev->private;
6040 	if (conf)
6041 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6042 	spin_unlock(&mddev->lock);
6043 	return ret;
6044 }
6045 
6046 static ssize_t
6047 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6048 {
6049 	struct r5conf *conf;
6050 	unsigned long new;
6051 	int err;
6052 
6053 	if (len >= PAGE_SIZE)
6054 		return -EINVAL;
6055 	if (kstrtoul(page, 10, &new))
6056 		return -EINVAL;
6057 
6058 	err = mddev_lock(mddev);
6059 	if (err)
6060 		return err;
6061 	conf = mddev->private;
6062 	if (!conf)
6063 		err = -ENODEV;
6064 	else if (new > conf->min_nr_stripes)
6065 		err = -EINVAL;
6066 	else
6067 		conf->bypass_threshold = new;
6068 	mddev_unlock(mddev);
6069 	return err ?: len;
6070 }
6071 
6072 static struct md_sysfs_entry
6073 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6074 					S_IRUGO | S_IWUSR,
6075 					raid5_show_preread_threshold,
6076 					raid5_store_preread_threshold);
6077 
6078 static ssize_t
6079 raid5_show_skip_copy(struct mddev *mddev, char *page)
6080 {
6081 	struct r5conf *conf;
6082 	int ret = 0;
6083 	spin_lock(&mddev->lock);
6084 	conf = mddev->private;
6085 	if (conf)
6086 		ret = sprintf(page, "%d\n", conf->skip_copy);
6087 	spin_unlock(&mddev->lock);
6088 	return ret;
6089 }
6090 
6091 static ssize_t
6092 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6093 {
6094 	struct r5conf *conf;
6095 	unsigned long new;
6096 	int err;
6097 
6098 	if (len >= PAGE_SIZE)
6099 		return -EINVAL;
6100 	if (kstrtoul(page, 10, &new))
6101 		return -EINVAL;
6102 	new = !!new;
6103 
6104 	err = mddev_lock(mddev);
6105 	if (err)
6106 		return err;
6107 	conf = mddev->private;
6108 	if (!conf)
6109 		err = -ENODEV;
6110 	else if (new != conf->skip_copy) {
6111 		mddev_suspend(mddev);
6112 		conf->skip_copy = new;
6113 		if (new)
6114 			mddev->queue->backing_dev_info.capabilities |=
6115 				BDI_CAP_STABLE_WRITES;
6116 		else
6117 			mddev->queue->backing_dev_info.capabilities &=
6118 				~BDI_CAP_STABLE_WRITES;
6119 		mddev_resume(mddev);
6120 	}
6121 	mddev_unlock(mddev);
6122 	return err ?: len;
6123 }
6124 
6125 static struct md_sysfs_entry
6126 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6127 					raid5_show_skip_copy,
6128 					raid5_store_skip_copy);
6129 
6130 static ssize_t
6131 stripe_cache_active_show(struct mddev *mddev, char *page)
6132 {
6133 	struct r5conf *conf = mddev->private;
6134 	if (conf)
6135 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6136 	else
6137 		return 0;
6138 }
6139 
6140 static struct md_sysfs_entry
6141 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6142 
6143 static ssize_t
6144 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6145 {
6146 	struct r5conf *conf;
6147 	int ret = 0;
6148 	spin_lock(&mddev->lock);
6149 	conf = mddev->private;
6150 	if (conf)
6151 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6152 	spin_unlock(&mddev->lock);
6153 	return ret;
6154 }
6155 
6156 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6157 			       int *group_cnt,
6158 			       int *worker_cnt_per_group,
6159 			       struct r5worker_group **worker_groups);
6160 static ssize_t
6161 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6162 {
6163 	struct r5conf *conf;
6164 	unsigned long new;
6165 	int err;
6166 	struct r5worker_group *new_groups, *old_groups;
6167 	int group_cnt, worker_cnt_per_group;
6168 
6169 	if (len >= PAGE_SIZE)
6170 		return -EINVAL;
6171 	if (kstrtoul(page, 10, &new))
6172 		return -EINVAL;
6173 
6174 	err = mddev_lock(mddev);
6175 	if (err)
6176 		return err;
6177 	conf = mddev->private;
6178 	if (!conf)
6179 		err = -ENODEV;
6180 	else if (new != conf->worker_cnt_per_group) {
6181 		mddev_suspend(mddev);
6182 
6183 		old_groups = conf->worker_groups;
6184 		if (old_groups)
6185 			flush_workqueue(raid5_wq);
6186 
6187 		err = alloc_thread_groups(conf, new,
6188 					  &group_cnt, &worker_cnt_per_group,
6189 					  &new_groups);
6190 		if (!err) {
6191 			spin_lock_irq(&conf->device_lock);
6192 			conf->group_cnt = group_cnt;
6193 			conf->worker_cnt_per_group = worker_cnt_per_group;
6194 			conf->worker_groups = new_groups;
6195 			spin_unlock_irq(&conf->device_lock);
6196 
6197 			if (old_groups)
6198 				kfree(old_groups[0].workers);
6199 			kfree(old_groups);
6200 		}
6201 		mddev_resume(mddev);
6202 	}
6203 	mddev_unlock(mddev);
6204 
6205 	return err ?: len;
6206 }
6207 
6208 static struct md_sysfs_entry
6209 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6210 				raid5_show_group_thread_cnt,
6211 				raid5_store_group_thread_cnt);
6212 
6213 static struct attribute *raid5_attrs[] =  {
6214 	&raid5_stripecache_size.attr,
6215 	&raid5_stripecache_active.attr,
6216 	&raid5_preread_bypass_threshold.attr,
6217 	&raid5_group_thread_cnt.attr,
6218 	&raid5_skip_copy.attr,
6219 	&raid5_rmw_level.attr,
6220 	NULL,
6221 };
6222 static struct attribute_group raid5_attrs_group = {
6223 	.name = NULL,
6224 	.attrs = raid5_attrs,
6225 };
6226 
6227 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6228 			       int *group_cnt,
6229 			       int *worker_cnt_per_group,
6230 			       struct r5worker_group **worker_groups)
6231 {
6232 	int i, j, k;
6233 	ssize_t size;
6234 	struct r5worker *workers;
6235 
6236 	*worker_cnt_per_group = cnt;
6237 	if (cnt == 0) {
6238 		*group_cnt = 0;
6239 		*worker_groups = NULL;
6240 		return 0;
6241 	}
6242 	*group_cnt = num_possible_nodes();
6243 	size = sizeof(struct r5worker) * cnt;
6244 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6245 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6246 				*group_cnt, GFP_NOIO);
6247 	if (!*worker_groups || !workers) {
6248 		kfree(workers);
6249 		kfree(*worker_groups);
6250 		return -ENOMEM;
6251 	}
6252 
6253 	for (i = 0; i < *group_cnt; i++) {
6254 		struct r5worker_group *group;
6255 
6256 		group = &(*worker_groups)[i];
6257 		INIT_LIST_HEAD(&group->handle_list);
6258 		group->conf = conf;
6259 		group->workers = workers + i * cnt;
6260 
6261 		for (j = 0; j < cnt; j++) {
6262 			struct r5worker *worker = group->workers + j;
6263 			worker->group = group;
6264 			INIT_WORK(&worker->work, raid5_do_work);
6265 
6266 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6267 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6268 		}
6269 	}
6270 
6271 	return 0;
6272 }
6273 
6274 static void free_thread_groups(struct r5conf *conf)
6275 {
6276 	if (conf->worker_groups)
6277 		kfree(conf->worker_groups[0].workers);
6278 	kfree(conf->worker_groups);
6279 	conf->worker_groups = NULL;
6280 }
6281 
6282 static sector_t
6283 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6284 {
6285 	struct r5conf *conf = mddev->private;
6286 
6287 	if (!sectors)
6288 		sectors = mddev->dev_sectors;
6289 	if (!raid_disks)
6290 		/* size is defined by the smallest of previous and new size */
6291 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6292 
6293 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6294 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6295 	return sectors * (raid_disks - conf->max_degraded);
6296 }
6297 
6298 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6299 {
6300 	safe_put_page(percpu->spare_page);
6301 	if (percpu->scribble)
6302 		flex_array_free(percpu->scribble);
6303 	percpu->spare_page = NULL;
6304 	percpu->scribble = NULL;
6305 }
6306 
6307 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6308 {
6309 	if (conf->level == 6 && !percpu->spare_page)
6310 		percpu->spare_page = alloc_page(GFP_KERNEL);
6311 	if (!percpu->scribble)
6312 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6313 						      conf->previous_raid_disks),
6314 						  max(conf->chunk_sectors,
6315 						      conf->prev_chunk_sectors)
6316 						   / STRIPE_SECTORS,
6317 						  GFP_KERNEL);
6318 
6319 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6320 		free_scratch_buffer(conf, percpu);
6321 		return -ENOMEM;
6322 	}
6323 
6324 	return 0;
6325 }
6326 
6327 static void raid5_free_percpu(struct r5conf *conf)
6328 {
6329 	unsigned long cpu;
6330 
6331 	if (!conf->percpu)
6332 		return;
6333 
6334 #ifdef CONFIG_HOTPLUG_CPU
6335 	unregister_cpu_notifier(&conf->cpu_notify);
6336 #endif
6337 
6338 	get_online_cpus();
6339 	for_each_possible_cpu(cpu)
6340 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6341 	put_online_cpus();
6342 
6343 	free_percpu(conf->percpu);
6344 }
6345 
6346 static void free_conf(struct r5conf *conf)
6347 {
6348 	if (conf->log)
6349 		r5l_exit_log(conf->log);
6350 	if (conf->shrinker.seeks)
6351 		unregister_shrinker(&conf->shrinker);
6352 
6353 	free_thread_groups(conf);
6354 	shrink_stripes(conf);
6355 	raid5_free_percpu(conf);
6356 	kfree(conf->disks);
6357 	kfree(conf->stripe_hashtbl);
6358 	kfree(conf);
6359 }
6360 
6361 #ifdef CONFIG_HOTPLUG_CPU
6362 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6363 			      void *hcpu)
6364 {
6365 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6366 	long cpu = (long)hcpu;
6367 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6368 
6369 	switch (action) {
6370 	case CPU_UP_PREPARE:
6371 	case CPU_UP_PREPARE_FROZEN:
6372 		if (alloc_scratch_buffer(conf, percpu)) {
6373 			pr_err("%s: failed memory allocation for cpu%ld\n",
6374 			       __func__, cpu);
6375 			return notifier_from_errno(-ENOMEM);
6376 		}
6377 		break;
6378 	case CPU_DEAD:
6379 	case CPU_DEAD_FROZEN:
6380 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6381 		break;
6382 	default:
6383 		break;
6384 	}
6385 	return NOTIFY_OK;
6386 }
6387 #endif
6388 
6389 static int raid5_alloc_percpu(struct r5conf *conf)
6390 {
6391 	unsigned long cpu;
6392 	int err = 0;
6393 
6394 	conf->percpu = alloc_percpu(struct raid5_percpu);
6395 	if (!conf->percpu)
6396 		return -ENOMEM;
6397 
6398 #ifdef CONFIG_HOTPLUG_CPU
6399 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
6400 	conf->cpu_notify.priority = 0;
6401 	err = register_cpu_notifier(&conf->cpu_notify);
6402 	if (err)
6403 		return err;
6404 #endif
6405 
6406 	get_online_cpus();
6407 	for_each_present_cpu(cpu) {
6408 		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6409 		if (err) {
6410 			pr_err("%s: failed memory allocation for cpu%ld\n",
6411 			       __func__, cpu);
6412 			break;
6413 		}
6414 	}
6415 	put_online_cpus();
6416 
6417 	return err;
6418 }
6419 
6420 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6421 				      struct shrink_control *sc)
6422 {
6423 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6424 	unsigned long ret = SHRINK_STOP;
6425 
6426 	if (mutex_trylock(&conf->cache_size_mutex)) {
6427 		ret= 0;
6428 		while (ret < sc->nr_to_scan &&
6429 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6430 			if (drop_one_stripe(conf) == 0) {
6431 				ret = SHRINK_STOP;
6432 				break;
6433 			}
6434 			ret++;
6435 		}
6436 		mutex_unlock(&conf->cache_size_mutex);
6437 	}
6438 	return ret;
6439 }
6440 
6441 static unsigned long raid5_cache_count(struct shrinker *shrink,
6442 				       struct shrink_control *sc)
6443 {
6444 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6445 
6446 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6447 		/* unlikely, but not impossible */
6448 		return 0;
6449 	return conf->max_nr_stripes - conf->min_nr_stripes;
6450 }
6451 
6452 static struct r5conf *setup_conf(struct mddev *mddev)
6453 {
6454 	struct r5conf *conf;
6455 	int raid_disk, memory, max_disks;
6456 	struct md_rdev *rdev;
6457 	struct disk_info *disk;
6458 	char pers_name[6];
6459 	int i;
6460 	int group_cnt, worker_cnt_per_group;
6461 	struct r5worker_group *new_group;
6462 
6463 	if (mddev->new_level != 5
6464 	    && mddev->new_level != 4
6465 	    && mddev->new_level != 6) {
6466 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6467 		       mdname(mddev), mddev->new_level);
6468 		return ERR_PTR(-EIO);
6469 	}
6470 	if ((mddev->new_level == 5
6471 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6472 	    (mddev->new_level == 6
6473 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6474 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6475 		       mdname(mddev), mddev->new_layout);
6476 		return ERR_PTR(-EIO);
6477 	}
6478 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6479 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6480 		       mdname(mddev), mddev->raid_disks);
6481 		return ERR_PTR(-EINVAL);
6482 	}
6483 
6484 	if (!mddev->new_chunk_sectors ||
6485 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6486 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6487 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6488 		       mdname(mddev), mddev->new_chunk_sectors << 9);
6489 		return ERR_PTR(-EINVAL);
6490 	}
6491 
6492 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6493 	if (conf == NULL)
6494 		goto abort;
6495 	/* Don't enable multi-threading by default*/
6496 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6497 				 &new_group)) {
6498 		conf->group_cnt = group_cnt;
6499 		conf->worker_cnt_per_group = worker_cnt_per_group;
6500 		conf->worker_groups = new_group;
6501 	} else
6502 		goto abort;
6503 	spin_lock_init(&conf->device_lock);
6504 	seqcount_init(&conf->gen_lock);
6505 	mutex_init(&conf->cache_size_mutex);
6506 	init_waitqueue_head(&conf->wait_for_quiescent);
6507 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6508 		init_waitqueue_head(&conf->wait_for_stripe[i]);
6509 	}
6510 	init_waitqueue_head(&conf->wait_for_overlap);
6511 	INIT_LIST_HEAD(&conf->handle_list);
6512 	INIT_LIST_HEAD(&conf->hold_list);
6513 	INIT_LIST_HEAD(&conf->delayed_list);
6514 	INIT_LIST_HEAD(&conf->bitmap_list);
6515 	bio_list_init(&conf->return_bi);
6516 	init_llist_head(&conf->released_stripes);
6517 	atomic_set(&conf->active_stripes, 0);
6518 	atomic_set(&conf->preread_active_stripes, 0);
6519 	atomic_set(&conf->active_aligned_reads, 0);
6520 	conf->bypass_threshold = BYPASS_THRESHOLD;
6521 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6522 
6523 	conf->raid_disks = mddev->raid_disks;
6524 	if (mddev->reshape_position == MaxSector)
6525 		conf->previous_raid_disks = mddev->raid_disks;
6526 	else
6527 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6528 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6529 
6530 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6531 			      GFP_KERNEL);
6532 	if (!conf->disks)
6533 		goto abort;
6534 
6535 	conf->mddev = mddev;
6536 
6537 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6538 		goto abort;
6539 
6540 	/* We init hash_locks[0] separately to that it can be used
6541 	 * as the reference lock in the spin_lock_nest_lock() call
6542 	 * in lock_all_device_hash_locks_irq in order to convince
6543 	 * lockdep that we know what we are doing.
6544 	 */
6545 	spin_lock_init(conf->hash_locks);
6546 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6547 		spin_lock_init(conf->hash_locks + i);
6548 
6549 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6550 		INIT_LIST_HEAD(conf->inactive_list + i);
6551 
6552 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6553 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6554 
6555 	conf->level = mddev->new_level;
6556 	conf->chunk_sectors = mddev->new_chunk_sectors;
6557 	if (raid5_alloc_percpu(conf) != 0)
6558 		goto abort;
6559 
6560 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6561 
6562 	rdev_for_each(rdev, mddev) {
6563 		raid_disk = rdev->raid_disk;
6564 		if (raid_disk >= max_disks
6565 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6566 			continue;
6567 		disk = conf->disks + raid_disk;
6568 
6569 		if (test_bit(Replacement, &rdev->flags)) {
6570 			if (disk->replacement)
6571 				goto abort;
6572 			disk->replacement = rdev;
6573 		} else {
6574 			if (disk->rdev)
6575 				goto abort;
6576 			disk->rdev = rdev;
6577 		}
6578 
6579 		if (test_bit(In_sync, &rdev->flags)) {
6580 			char b[BDEVNAME_SIZE];
6581 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6582 			       " disk %d\n",
6583 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6584 		} else if (rdev->saved_raid_disk != raid_disk)
6585 			/* Cannot rely on bitmap to complete recovery */
6586 			conf->fullsync = 1;
6587 	}
6588 
6589 	conf->level = mddev->new_level;
6590 	if (conf->level == 6) {
6591 		conf->max_degraded = 2;
6592 		if (raid6_call.xor_syndrome)
6593 			conf->rmw_level = PARITY_ENABLE_RMW;
6594 		else
6595 			conf->rmw_level = PARITY_DISABLE_RMW;
6596 	} else {
6597 		conf->max_degraded = 1;
6598 		conf->rmw_level = PARITY_ENABLE_RMW;
6599 	}
6600 	conf->algorithm = mddev->new_layout;
6601 	conf->reshape_progress = mddev->reshape_position;
6602 	if (conf->reshape_progress != MaxSector) {
6603 		conf->prev_chunk_sectors = mddev->chunk_sectors;
6604 		conf->prev_algo = mddev->layout;
6605 	} else {
6606 		conf->prev_chunk_sectors = conf->chunk_sectors;
6607 		conf->prev_algo = conf->algorithm;
6608 	}
6609 
6610 	conf->min_nr_stripes = NR_STRIPES;
6611 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6612 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6613 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6614 	if (grow_stripes(conf, conf->min_nr_stripes)) {
6615 		printk(KERN_ERR
6616 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
6617 		       mdname(mddev), memory);
6618 		goto abort;
6619 	} else
6620 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6621 		       mdname(mddev), memory);
6622 	/*
6623 	 * Losing a stripe head costs more than the time to refill it,
6624 	 * it reduces the queue depth and so can hurt throughput.
6625 	 * So set it rather large, scaled by number of devices.
6626 	 */
6627 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6628 	conf->shrinker.scan_objects = raid5_cache_scan;
6629 	conf->shrinker.count_objects = raid5_cache_count;
6630 	conf->shrinker.batch = 128;
6631 	conf->shrinker.flags = 0;
6632 	register_shrinker(&conf->shrinker);
6633 
6634 	sprintf(pers_name, "raid%d", mddev->new_level);
6635 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
6636 	if (!conf->thread) {
6637 		printk(KERN_ERR
6638 		       "md/raid:%s: couldn't allocate thread.\n",
6639 		       mdname(mddev));
6640 		goto abort;
6641 	}
6642 
6643 	return conf;
6644 
6645  abort:
6646 	if (conf) {
6647 		free_conf(conf);
6648 		return ERR_PTR(-EIO);
6649 	} else
6650 		return ERR_PTR(-ENOMEM);
6651 }
6652 
6653 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6654 {
6655 	switch (algo) {
6656 	case ALGORITHM_PARITY_0:
6657 		if (raid_disk < max_degraded)
6658 			return 1;
6659 		break;
6660 	case ALGORITHM_PARITY_N:
6661 		if (raid_disk >= raid_disks - max_degraded)
6662 			return 1;
6663 		break;
6664 	case ALGORITHM_PARITY_0_6:
6665 		if (raid_disk == 0 ||
6666 		    raid_disk == raid_disks - 1)
6667 			return 1;
6668 		break;
6669 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6670 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6671 	case ALGORITHM_LEFT_SYMMETRIC_6:
6672 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6673 		if (raid_disk == raid_disks - 1)
6674 			return 1;
6675 	}
6676 	return 0;
6677 }
6678 
6679 static int run(struct mddev *mddev)
6680 {
6681 	struct r5conf *conf;
6682 	int working_disks = 0;
6683 	int dirty_parity_disks = 0;
6684 	struct md_rdev *rdev;
6685 	struct md_rdev *journal_dev = NULL;
6686 	sector_t reshape_offset = 0;
6687 	int i;
6688 	long long min_offset_diff = 0;
6689 	int first = 1;
6690 
6691 	if (mddev->recovery_cp != MaxSector)
6692 		printk(KERN_NOTICE "md/raid:%s: not clean"
6693 		       " -- starting background reconstruction\n",
6694 		       mdname(mddev));
6695 
6696 	rdev_for_each(rdev, mddev) {
6697 		long long diff;
6698 
6699 		if (test_bit(Journal, &rdev->flags)) {
6700 			journal_dev = rdev;
6701 			continue;
6702 		}
6703 		if (rdev->raid_disk < 0)
6704 			continue;
6705 		diff = (rdev->new_data_offset - rdev->data_offset);
6706 		if (first) {
6707 			min_offset_diff = diff;
6708 			first = 0;
6709 		} else if (mddev->reshape_backwards &&
6710 			 diff < min_offset_diff)
6711 			min_offset_diff = diff;
6712 		else if (!mddev->reshape_backwards &&
6713 			 diff > min_offset_diff)
6714 			min_offset_diff = diff;
6715 	}
6716 
6717 	if (mddev->reshape_position != MaxSector) {
6718 		/* Check that we can continue the reshape.
6719 		 * Difficulties arise if the stripe we would write to
6720 		 * next is at or after the stripe we would read from next.
6721 		 * For a reshape that changes the number of devices, this
6722 		 * is only possible for a very short time, and mdadm makes
6723 		 * sure that time appears to have past before assembling
6724 		 * the array.  So we fail if that time hasn't passed.
6725 		 * For a reshape that keeps the number of devices the same
6726 		 * mdadm must be monitoring the reshape can keeping the
6727 		 * critical areas read-only and backed up.  It will start
6728 		 * the array in read-only mode, so we check for that.
6729 		 */
6730 		sector_t here_new, here_old;
6731 		int old_disks;
6732 		int max_degraded = (mddev->level == 6 ? 2 : 1);
6733 		int chunk_sectors;
6734 		int new_data_disks;
6735 
6736 		if (journal_dev) {
6737 			printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6738 			       mdname(mddev));
6739 			return -EINVAL;
6740 		}
6741 
6742 		if (mddev->new_level != mddev->level) {
6743 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
6744 			       "required - aborting.\n",
6745 			       mdname(mddev));
6746 			return -EINVAL;
6747 		}
6748 		old_disks = mddev->raid_disks - mddev->delta_disks;
6749 		/* reshape_position must be on a new-stripe boundary, and one
6750 		 * further up in new geometry must map after here in old
6751 		 * geometry.
6752 		 * If the chunk sizes are different, then as we perform reshape
6753 		 * in units of the largest of the two, reshape_position needs
6754 		 * be a multiple of the largest chunk size times new data disks.
6755 		 */
6756 		here_new = mddev->reshape_position;
6757 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6758 		new_data_disks = mddev->raid_disks - max_degraded;
6759 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6760 			printk(KERN_ERR "md/raid:%s: reshape_position not "
6761 			       "on a stripe boundary\n", mdname(mddev));
6762 			return -EINVAL;
6763 		}
6764 		reshape_offset = here_new * chunk_sectors;
6765 		/* here_new is the stripe we will write to */
6766 		here_old = mddev->reshape_position;
6767 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6768 		/* here_old is the first stripe that we might need to read
6769 		 * from */
6770 		if (mddev->delta_disks == 0) {
6771 			/* We cannot be sure it is safe to start an in-place
6772 			 * reshape.  It is only safe if user-space is monitoring
6773 			 * and taking constant backups.
6774 			 * mdadm always starts a situation like this in
6775 			 * readonly mode so it can take control before
6776 			 * allowing any writes.  So just check for that.
6777 			 */
6778 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6779 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6780 				/* not really in-place - so OK */;
6781 			else if (mddev->ro == 0) {
6782 				printk(KERN_ERR "md/raid:%s: in-place reshape "
6783 				       "must be started in read-only mode "
6784 				       "- aborting\n",
6785 				       mdname(mddev));
6786 				return -EINVAL;
6787 			}
6788 		} else if (mddev->reshape_backwards
6789 		    ? (here_new * chunk_sectors + min_offset_diff <=
6790 		       here_old * chunk_sectors)
6791 		    : (here_new * chunk_sectors >=
6792 		       here_old * chunk_sectors + (-min_offset_diff))) {
6793 			/* Reading from the same stripe as writing to - bad */
6794 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6795 			       "auto-recovery - aborting.\n",
6796 			       mdname(mddev));
6797 			return -EINVAL;
6798 		}
6799 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6800 		       mdname(mddev));
6801 		/* OK, we should be able to continue; */
6802 	} else {
6803 		BUG_ON(mddev->level != mddev->new_level);
6804 		BUG_ON(mddev->layout != mddev->new_layout);
6805 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6806 		BUG_ON(mddev->delta_disks != 0);
6807 	}
6808 
6809 	if (mddev->private == NULL)
6810 		conf = setup_conf(mddev);
6811 	else
6812 		conf = mddev->private;
6813 
6814 	if (IS_ERR(conf))
6815 		return PTR_ERR(conf);
6816 
6817 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !journal_dev) {
6818 		printk(KERN_ERR "md/raid:%s: journal disk is missing, force array readonly\n",
6819 		       mdname(mddev));
6820 		mddev->ro = 1;
6821 		set_disk_ro(mddev->gendisk, 1);
6822 	}
6823 
6824 	conf->min_offset_diff = min_offset_diff;
6825 	mddev->thread = conf->thread;
6826 	conf->thread = NULL;
6827 	mddev->private = conf;
6828 
6829 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6830 	     i++) {
6831 		rdev = conf->disks[i].rdev;
6832 		if (!rdev && conf->disks[i].replacement) {
6833 			/* The replacement is all we have yet */
6834 			rdev = conf->disks[i].replacement;
6835 			conf->disks[i].replacement = NULL;
6836 			clear_bit(Replacement, &rdev->flags);
6837 			conf->disks[i].rdev = rdev;
6838 		}
6839 		if (!rdev)
6840 			continue;
6841 		if (conf->disks[i].replacement &&
6842 		    conf->reshape_progress != MaxSector) {
6843 			/* replacements and reshape simply do not mix. */
6844 			printk(KERN_ERR "md: cannot handle concurrent "
6845 			       "replacement and reshape.\n");
6846 			goto abort;
6847 		}
6848 		if (test_bit(In_sync, &rdev->flags)) {
6849 			working_disks++;
6850 			continue;
6851 		}
6852 		/* This disc is not fully in-sync.  However if it
6853 		 * just stored parity (beyond the recovery_offset),
6854 		 * when we don't need to be concerned about the
6855 		 * array being dirty.
6856 		 * When reshape goes 'backwards', we never have
6857 		 * partially completed devices, so we only need
6858 		 * to worry about reshape going forwards.
6859 		 */
6860 		/* Hack because v0.91 doesn't store recovery_offset properly. */
6861 		if (mddev->major_version == 0 &&
6862 		    mddev->minor_version > 90)
6863 			rdev->recovery_offset = reshape_offset;
6864 
6865 		if (rdev->recovery_offset < reshape_offset) {
6866 			/* We need to check old and new layout */
6867 			if (!only_parity(rdev->raid_disk,
6868 					 conf->algorithm,
6869 					 conf->raid_disks,
6870 					 conf->max_degraded))
6871 				continue;
6872 		}
6873 		if (!only_parity(rdev->raid_disk,
6874 				 conf->prev_algo,
6875 				 conf->previous_raid_disks,
6876 				 conf->max_degraded))
6877 			continue;
6878 		dirty_parity_disks++;
6879 	}
6880 
6881 	/*
6882 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6883 	 */
6884 	mddev->degraded = calc_degraded(conf);
6885 
6886 	if (has_failed(conf)) {
6887 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6888 			" (%d/%d failed)\n",
6889 			mdname(mddev), mddev->degraded, conf->raid_disks);
6890 		goto abort;
6891 	}
6892 
6893 	/* device size must be a multiple of chunk size */
6894 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6895 	mddev->resync_max_sectors = mddev->dev_sectors;
6896 
6897 	if (mddev->degraded > dirty_parity_disks &&
6898 	    mddev->recovery_cp != MaxSector) {
6899 		if (mddev->ok_start_degraded)
6900 			printk(KERN_WARNING
6901 			       "md/raid:%s: starting dirty degraded array"
6902 			       " - data corruption possible.\n",
6903 			       mdname(mddev));
6904 		else {
6905 			printk(KERN_ERR
6906 			       "md/raid:%s: cannot start dirty degraded array.\n",
6907 			       mdname(mddev));
6908 			goto abort;
6909 		}
6910 	}
6911 
6912 	if (mddev->degraded == 0)
6913 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6914 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6915 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6916 		       mddev->new_layout);
6917 	else
6918 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6919 		       " out of %d devices, algorithm %d\n",
6920 		       mdname(mddev), conf->level,
6921 		       mddev->raid_disks - mddev->degraded,
6922 		       mddev->raid_disks, mddev->new_layout);
6923 
6924 	print_raid5_conf(conf);
6925 
6926 	if (conf->reshape_progress != MaxSector) {
6927 		conf->reshape_safe = conf->reshape_progress;
6928 		atomic_set(&conf->reshape_stripes, 0);
6929 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6930 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6931 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6932 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6933 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6934 							"reshape");
6935 	}
6936 
6937 	/* Ok, everything is just fine now */
6938 	if (mddev->to_remove == &raid5_attrs_group)
6939 		mddev->to_remove = NULL;
6940 	else if (mddev->kobj.sd &&
6941 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6942 		printk(KERN_WARNING
6943 		       "raid5: failed to create sysfs attributes for %s\n",
6944 		       mdname(mddev));
6945 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6946 
6947 	if (mddev->queue) {
6948 		int chunk_size;
6949 		bool discard_supported = true;
6950 		/* read-ahead size must cover two whole stripes, which
6951 		 * is 2 * (datadisks) * chunksize where 'n' is the
6952 		 * number of raid devices
6953 		 */
6954 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6955 		int stripe = data_disks *
6956 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6957 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6958 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6959 
6960 		chunk_size = mddev->chunk_sectors << 9;
6961 		blk_queue_io_min(mddev->queue, chunk_size);
6962 		blk_queue_io_opt(mddev->queue, chunk_size *
6963 				 (conf->raid_disks - conf->max_degraded));
6964 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6965 		/*
6966 		 * We can only discard a whole stripe. It doesn't make sense to
6967 		 * discard data disk but write parity disk
6968 		 */
6969 		stripe = stripe * PAGE_SIZE;
6970 		/* Round up to power of 2, as discard handling
6971 		 * currently assumes that */
6972 		while ((stripe-1) & stripe)
6973 			stripe = (stripe | (stripe-1)) + 1;
6974 		mddev->queue->limits.discard_alignment = stripe;
6975 		mddev->queue->limits.discard_granularity = stripe;
6976 		/*
6977 		 * unaligned part of discard request will be ignored, so can't
6978 		 * guarantee discard_zeroes_data
6979 		 */
6980 		mddev->queue->limits.discard_zeroes_data = 0;
6981 
6982 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6983 
6984 		rdev_for_each(rdev, mddev) {
6985 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6986 					  rdev->data_offset << 9);
6987 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6988 					  rdev->new_data_offset << 9);
6989 			/*
6990 			 * discard_zeroes_data is required, otherwise data
6991 			 * could be lost. Consider a scenario: discard a stripe
6992 			 * (the stripe could be inconsistent if
6993 			 * discard_zeroes_data is 0); write one disk of the
6994 			 * stripe (the stripe could be inconsistent again
6995 			 * depending on which disks are used to calculate
6996 			 * parity); the disk is broken; The stripe data of this
6997 			 * disk is lost.
6998 			 */
6999 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7000 			    !bdev_get_queue(rdev->bdev)->
7001 						limits.discard_zeroes_data)
7002 				discard_supported = false;
7003 			/* Unfortunately, discard_zeroes_data is not currently
7004 			 * a guarantee - just a hint.  So we only allow DISCARD
7005 			 * if the sysadmin has confirmed that only safe devices
7006 			 * are in use by setting a module parameter.
7007 			 */
7008 			if (!devices_handle_discard_safely) {
7009 				if (discard_supported) {
7010 					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7011 					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7012 				}
7013 				discard_supported = false;
7014 			}
7015 		}
7016 
7017 		if (discard_supported &&
7018 		   mddev->queue->limits.max_discard_sectors >= stripe &&
7019 		   mddev->queue->limits.discard_granularity >= stripe)
7020 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7021 						mddev->queue);
7022 		else
7023 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7024 						mddev->queue);
7025 	}
7026 
7027 	if (journal_dev) {
7028 		char b[BDEVNAME_SIZE];
7029 
7030 		printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7031 		       mdname(mddev), bdevname(journal_dev->bdev, b));
7032 		r5l_init_log(conf, journal_dev);
7033 	}
7034 
7035 	return 0;
7036 abort:
7037 	md_unregister_thread(&mddev->thread);
7038 	print_raid5_conf(conf);
7039 	free_conf(conf);
7040 	mddev->private = NULL;
7041 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7042 	return -EIO;
7043 }
7044 
7045 static void raid5_free(struct mddev *mddev, void *priv)
7046 {
7047 	struct r5conf *conf = priv;
7048 
7049 	free_conf(conf);
7050 	mddev->to_remove = &raid5_attrs_group;
7051 }
7052 
7053 static void status(struct seq_file *seq, struct mddev *mddev)
7054 {
7055 	struct r5conf *conf = mddev->private;
7056 	int i;
7057 
7058 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7059 		conf->chunk_sectors / 2, mddev->layout);
7060 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7061 	for (i = 0; i < conf->raid_disks; i++)
7062 		seq_printf (seq, "%s",
7063 			       conf->disks[i].rdev &&
7064 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
7065 	seq_printf (seq, "]");
7066 }
7067 
7068 static void print_raid5_conf (struct r5conf *conf)
7069 {
7070 	int i;
7071 	struct disk_info *tmp;
7072 
7073 	printk(KERN_DEBUG "RAID conf printout:\n");
7074 	if (!conf) {
7075 		printk("(conf==NULL)\n");
7076 		return;
7077 	}
7078 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7079 	       conf->raid_disks,
7080 	       conf->raid_disks - conf->mddev->degraded);
7081 
7082 	for (i = 0; i < conf->raid_disks; i++) {
7083 		char b[BDEVNAME_SIZE];
7084 		tmp = conf->disks + i;
7085 		if (tmp->rdev)
7086 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7087 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7088 			       bdevname(tmp->rdev->bdev, b));
7089 	}
7090 }
7091 
7092 static int raid5_spare_active(struct mddev *mddev)
7093 {
7094 	int i;
7095 	struct r5conf *conf = mddev->private;
7096 	struct disk_info *tmp;
7097 	int count = 0;
7098 	unsigned long flags;
7099 
7100 	for (i = 0; i < conf->raid_disks; i++) {
7101 		tmp = conf->disks + i;
7102 		if (tmp->replacement
7103 		    && tmp->replacement->recovery_offset == MaxSector
7104 		    && !test_bit(Faulty, &tmp->replacement->flags)
7105 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7106 			/* Replacement has just become active. */
7107 			if (!tmp->rdev
7108 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7109 				count++;
7110 			if (tmp->rdev) {
7111 				/* Replaced device not technically faulty,
7112 				 * but we need to be sure it gets removed
7113 				 * and never re-added.
7114 				 */
7115 				set_bit(Faulty, &tmp->rdev->flags);
7116 				sysfs_notify_dirent_safe(
7117 					tmp->rdev->sysfs_state);
7118 			}
7119 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7120 		} else if (tmp->rdev
7121 		    && tmp->rdev->recovery_offset == MaxSector
7122 		    && !test_bit(Faulty, &tmp->rdev->flags)
7123 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7124 			count++;
7125 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7126 		}
7127 	}
7128 	spin_lock_irqsave(&conf->device_lock, flags);
7129 	mddev->degraded = calc_degraded(conf);
7130 	spin_unlock_irqrestore(&conf->device_lock, flags);
7131 	print_raid5_conf(conf);
7132 	return count;
7133 }
7134 
7135 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7136 {
7137 	struct r5conf *conf = mddev->private;
7138 	int err = 0;
7139 	int number = rdev->raid_disk;
7140 	struct md_rdev **rdevp;
7141 	struct disk_info *p = conf->disks + number;
7142 
7143 	print_raid5_conf(conf);
7144 	if (test_bit(Journal, &rdev->flags)) {
7145 		/*
7146 		 * journal disk is not removable, but we need give a chance to
7147 		 * update superblock of other disks. Otherwise journal disk
7148 		 * will be considered as 'fresh'
7149 		 */
7150 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7151 		return -EINVAL;
7152 	}
7153 	if (rdev == p->rdev)
7154 		rdevp = &p->rdev;
7155 	else if (rdev == p->replacement)
7156 		rdevp = &p->replacement;
7157 	else
7158 		return 0;
7159 
7160 	if (number >= conf->raid_disks &&
7161 	    conf->reshape_progress == MaxSector)
7162 		clear_bit(In_sync, &rdev->flags);
7163 
7164 	if (test_bit(In_sync, &rdev->flags) ||
7165 	    atomic_read(&rdev->nr_pending)) {
7166 		err = -EBUSY;
7167 		goto abort;
7168 	}
7169 	/* Only remove non-faulty devices if recovery
7170 	 * isn't possible.
7171 	 */
7172 	if (!test_bit(Faulty, &rdev->flags) &&
7173 	    mddev->recovery_disabled != conf->recovery_disabled &&
7174 	    !has_failed(conf) &&
7175 	    (!p->replacement || p->replacement == rdev) &&
7176 	    number < conf->raid_disks) {
7177 		err = -EBUSY;
7178 		goto abort;
7179 	}
7180 	*rdevp = NULL;
7181 	synchronize_rcu();
7182 	if (atomic_read(&rdev->nr_pending)) {
7183 		/* lost the race, try later */
7184 		err = -EBUSY;
7185 		*rdevp = rdev;
7186 	} else if (p->replacement) {
7187 		/* We must have just cleared 'rdev' */
7188 		p->rdev = p->replacement;
7189 		clear_bit(Replacement, &p->replacement->flags);
7190 		smp_mb(); /* Make sure other CPUs may see both as identical
7191 			   * but will never see neither - if they are careful
7192 			   */
7193 		p->replacement = NULL;
7194 		clear_bit(WantReplacement, &rdev->flags);
7195 	} else
7196 		/* We might have just removed the Replacement as faulty-
7197 		 * clear the bit just in case
7198 		 */
7199 		clear_bit(WantReplacement, &rdev->flags);
7200 abort:
7201 
7202 	print_raid5_conf(conf);
7203 	return err;
7204 }
7205 
7206 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7207 {
7208 	struct r5conf *conf = mddev->private;
7209 	int err = -EEXIST;
7210 	int disk;
7211 	struct disk_info *p;
7212 	int first = 0;
7213 	int last = conf->raid_disks - 1;
7214 
7215 	if (test_bit(Journal, &rdev->flags))
7216 		return -EINVAL;
7217 	if (mddev->recovery_disabled == conf->recovery_disabled)
7218 		return -EBUSY;
7219 
7220 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7221 		/* no point adding a device */
7222 		return -EINVAL;
7223 
7224 	if (rdev->raid_disk >= 0)
7225 		first = last = rdev->raid_disk;
7226 
7227 	/*
7228 	 * find the disk ... but prefer rdev->saved_raid_disk
7229 	 * if possible.
7230 	 */
7231 	if (rdev->saved_raid_disk >= 0 &&
7232 	    rdev->saved_raid_disk >= first &&
7233 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7234 		first = rdev->saved_raid_disk;
7235 
7236 	for (disk = first; disk <= last; disk++) {
7237 		p = conf->disks + disk;
7238 		if (p->rdev == NULL) {
7239 			clear_bit(In_sync, &rdev->flags);
7240 			rdev->raid_disk = disk;
7241 			err = 0;
7242 			if (rdev->saved_raid_disk != disk)
7243 				conf->fullsync = 1;
7244 			rcu_assign_pointer(p->rdev, rdev);
7245 			goto out;
7246 		}
7247 	}
7248 	for (disk = first; disk <= last; disk++) {
7249 		p = conf->disks + disk;
7250 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7251 		    p->replacement == NULL) {
7252 			clear_bit(In_sync, &rdev->flags);
7253 			set_bit(Replacement, &rdev->flags);
7254 			rdev->raid_disk = disk;
7255 			err = 0;
7256 			conf->fullsync = 1;
7257 			rcu_assign_pointer(p->replacement, rdev);
7258 			break;
7259 		}
7260 	}
7261 out:
7262 	print_raid5_conf(conf);
7263 	return err;
7264 }
7265 
7266 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7267 {
7268 	/* no resync is happening, and there is enough space
7269 	 * on all devices, so we can resize.
7270 	 * We need to make sure resync covers any new space.
7271 	 * If the array is shrinking we should possibly wait until
7272 	 * any io in the removed space completes, but it hardly seems
7273 	 * worth it.
7274 	 */
7275 	sector_t newsize;
7276 	struct r5conf *conf = mddev->private;
7277 
7278 	if (conf->log)
7279 		return -EINVAL;
7280 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7281 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7282 	if (mddev->external_size &&
7283 	    mddev->array_sectors > newsize)
7284 		return -EINVAL;
7285 	if (mddev->bitmap) {
7286 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7287 		if (ret)
7288 			return ret;
7289 	}
7290 	md_set_array_sectors(mddev, newsize);
7291 	set_capacity(mddev->gendisk, mddev->array_sectors);
7292 	revalidate_disk(mddev->gendisk);
7293 	if (sectors > mddev->dev_sectors &&
7294 	    mddev->recovery_cp > mddev->dev_sectors) {
7295 		mddev->recovery_cp = mddev->dev_sectors;
7296 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7297 	}
7298 	mddev->dev_sectors = sectors;
7299 	mddev->resync_max_sectors = sectors;
7300 	return 0;
7301 }
7302 
7303 static int check_stripe_cache(struct mddev *mddev)
7304 {
7305 	/* Can only proceed if there are plenty of stripe_heads.
7306 	 * We need a minimum of one full stripe,, and for sensible progress
7307 	 * it is best to have about 4 times that.
7308 	 * If we require 4 times, then the default 256 4K stripe_heads will
7309 	 * allow for chunk sizes up to 256K, which is probably OK.
7310 	 * If the chunk size is greater, user-space should request more
7311 	 * stripe_heads first.
7312 	 */
7313 	struct r5conf *conf = mddev->private;
7314 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7315 	    > conf->min_nr_stripes ||
7316 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7317 	    > conf->min_nr_stripes) {
7318 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7319 		       mdname(mddev),
7320 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7321 			/ STRIPE_SIZE)*4);
7322 		return 0;
7323 	}
7324 	return 1;
7325 }
7326 
7327 static int check_reshape(struct mddev *mddev)
7328 {
7329 	struct r5conf *conf = mddev->private;
7330 
7331 	if (conf->log)
7332 		return -EINVAL;
7333 	if (mddev->delta_disks == 0 &&
7334 	    mddev->new_layout == mddev->layout &&
7335 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7336 		return 0; /* nothing to do */
7337 	if (has_failed(conf))
7338 		return -EINVAL;
7339 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7340 		/* We might be able to shrink, but the devices must
7341 		 * be made bigger first.
7342 		 * For raid6, 4 is the minimum size.
7343 		 * Otherwise 2 is the minimum
7344 		 */
7345 		int min = 2;
7346 		if (mddev->level == 6)
7347 			min = 4;
7348 		if (mddev->raid_disks + mddev->delta_disks < min)
7349 			return -EINVAL;
7350 	}
7351 
7352 	if (!check_stripe_cache(mddev))
7353 		return -ENOSPC;
7354 
7355 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7356 	    mddev->delta_disks > 0)
7357 		if (resize_chunks(conf,
7358 				  conf->previous_raid_disks
7359 				  + max(0, mddev->delta_disks),
7360 				  max(mddev->new_chunk_sectors,
7361 				      mddev->chunk_sectors)
7362 			    ) < 0)
7363 			return -ENOMEM;
7364 	return resize_stripes(conf, (conf->previous_raid_disks
7365 				     + mddev->delta_disks));
7366 }
7367 
7368 static int raid5_start_reshape(struct mddev *mddev)
7369 {
7370 	struct r5conf *conf = mddev->private;
7371 	struct md_rdev *rdev;
7372 	int spares = 0;
7373 	unsigned long flags;
7374 
7375 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7376 		return -EBUSY;
7377 
7378 	if (!check_stripe_cache(mddev))
7379 		return -ENOSPC;
7380 
7381 	if (has_failed(conf))
7382 		return -EINVAL;
7383 
7384 	rdev_for_each(rdev, mddev) {
7385 		if (!test_bit(In_sync, &rdev->flags)
7386 		    && !test_bit(Faulty, &rdev->flags))
7387 			spares++;
7388 	}
7389 
7390 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7391 		/* Not enough devices even to make a degraded array
7392 		 * of that size
7393 		 */
7394 		return -EINVAL;
7395 
7396 	/* Refuse to reduce size of the array.  Any reductions in
7397 	 * array size must be through explicit setting of array_size
7398 	 * attribute.
7399 	 */
7400 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7401 	    < mddev->array_sectors) {
7402 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
7403 		       "before number of disks\n", mdname(mddev));
7404 		return -EINVAL;
7405 	}
7406 
7407 	atomic_set(&conf->reshape_stripes, 0);
7408 	spin_lock_irq(&conf->device_lock);
7409 	write_seqcount_begin(&conf->gen_lock);
7410 	conf->previous_raid_disks = conf->raid_disks;
7411 	conf->raid_disks += mddev->delta_disks;
7412 	conf->prev_chunk_sectors = conf->chunk_sectors;
7413 	conf->chunk_sectors = mddev->new_chunk_sectors;
7414 	conf->prev_algo = conf->algorithm;
7415 	conf->algorithm = mddev->new_layout;
7416 	conf->generation++;
7417 	/* Code that selects data_offset needs to see the generation update
7418 	 * if reshape_progress has been set - so a memory barrier needed.
7419 	 */
7420 	smp_mb();
7421 	if (mddev->reshape_backwards)
7422 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7423 	else
7424 		conf->reshape_progress = 0;
7425 	conf->reshape_safe = conf->reshape_progress;
7426 	write_seqcount_end(&conf->gen_lock);
7427 	spin_unlock_irq(&conf->device_lock);
7428 
7429 	/* Now make sure any requests that proceeded on the assumption
7430 	 * the reshape wasn't running - like Discard or Read - have
7431 	 * completed.
7432 	 */
7433 	mddev_suspend(mddev);
7434 	mddev_resume(mddev);
7435 
7436 	/* Add some new drives, as many as will fit.
7437 	 * We know there are enough to make the newly sized array work.
7438 	 * Don't add devices if we are reducing the number of
7439 	 * devices in the array.  This is because it is not possible
7440 	 * to correctly record the "partially reconstructed" state of
7441 	 * such devices during the reshape and confusion could result.
7442 	 */
7443 	if (mddev->delta_disks >= 0) {
7444 		rdev_for_each(rdev, mddev)
7445 			if (rdev->raid_disk < 0 &&
7446 			    !test_bit(Faulty, &rdev->flags)) {
7447 				if (raid5_add_disk(mddev, rdev) == 0) {
7448 					if (rdev->raid_disk
7449 					    >= conf->previous_raid_disks)
7450 						set_bit(In_sync, &rdev->flags);
7451 					else
7452 						rdev->recovery_offset = 0;
7453 
7454 					if (sysfs_link_rdev(mddev, rdev))
7455 						/* Failure here is OK */;
7456 				}
7457 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7458 				   && !test_bit(Faulty, &rdev->flags)) {
7459 				/* This is a spare that was manually added */
7460 				set_bit(In_sync, &rdev->flags);
7461 			}
7462 
7463 		/* When a reshape changes the number of devices,
7464 		 * ->degraded is measured against the larger of the
7465 		 * pre and post number of devices.
7466 		 */
7467 		spin_lock_irqsave(&conf->device_lock, flags);
7468 		mddev->degraded = calc_degraded(conf);
7469 		spin_unlock_irqrestore(&conf->device_lock, flags);
7470 	}
7471 	mddev->raid_disks = conf->raid_disks;
7472 	mddev->reshape_position = conf->reshape_progress;
7473 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7474 
7475 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7476 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7477 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7478 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7479 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7480 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7481 						"reshape");
7482 	if (!mddev->sync_thread) {
7483 		mddev->recovery = 0;
7484 		spin_lock_irq(&conf->device_lock);
7485 		write_seqcount_begin(&conf->gen_lock);
7486 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7487 		mddev->new_chunk_sectors =
7488 			conf->chunk_sectors = conf->prev_chunk_sectors;
7489 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7490 		rdev_for_each(rdev, mddev)
7491 			rdev->new_data_offset = rdev->data_offset;
7492 		smp_wmb();
7493 		conf->generation --;
7494 		conf->reshape_progress = MaxSector;
7495 		mddev->reshape_position = MaxSector;
7496 		write_seqcount_end(&conf->gen_lock);
7497 		spin_unlock_irq(&conf->device_lock);
7498 		return -EAGAIN;
7499 	}
7500 	conf->reshape_checkpoint = jiffies;
7501 	md_wakeup_thread(mddev->sync_thread);
7502 	md_new_event(mddev);
7503 	return 0;
7504 }
7505 
7506 /* This is called from the reshape thread and should make any
7507  * changes needed in 'conf'
7508  */
7509 static void end_reshape(struct r5conf *conf)
7510 {
7511 
7512 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7513 		struct md_rdev *rdev;
7514 
7515 		spin_lock_irq(&conf->device_lock);
7516 		conf->previous_raid_disks = conf->raid_disks;
7517 		rdev_for_each(rdev, conf->mddev)
7518 			rdev->data_offset = rdev->new_data_offset;
7519 		smp_wmb();
7520 		conf->reshape_progress = MaxSector;
7521 		conf->mddev->reshape_position = MaxSector;
7522 		spin_unlock_irq(&conf->device_lock);
7523 		wake_up(&conf->wait_for_overlap);
7524 
7525 		/* read-ahead size must cover two whole stripes, which is
7526 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7527 		 */
7528 		if (conf->mddev->queue) {
7529 			int data_disks = conf->raid_disks - conf->max_degraded;
7530 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7531 						   / PAGE_SIZE);
7532 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7533 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7534 		}
7535 	}
7536 }
7537 
7538 /* This is called from the raid5d thread with mddev_lock held.
7539  * It makes config changes to the device.
7540  */
7541 static void raid5_finish_reshape(struct mddev *mddev)
7542 {
7543 	struct r5conf *conf = mddev->private;
7544 
7545 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7546 
7547 		if (mddev->delta_disks > 0) {
7548 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7549 			set_capacity(mddev->gendisk, mddev->array_sectors);
7550 			revalidate_disk(mddev->gendisk);
7551 		} else {
7552 			int d;
7553 			spin_lock_irq(&conf->device_lock);
7554 			mddev->degraded = calc_degraded(conf);
7555 			spin_unlock_irq(&conf->device_lock);
7556 			for (d = conf->raid_disks ;
7557 			     d < conf->raid_disks - mddev->delta_disks;
7558 			     d++) {
7559 				struct md_rdev *rdev = conf->disks[d].rdev;
7560 				if (rdev)
7561 					clear_bit(In_sync, &rdev->flags);
7562 				rdev = conf->disks[d].replacement;
7563 				if (rdev)
7564 					clear_bit(In_sync, &rdev->flags);
7565 			}
7566 		}
7567 		mddev->layout = conf->algorithm;
7568 		mddev->chunk_sectors = conf->chunk_sectors;
7569 		mddev->reshape_position = MaxSector;
7570 		mddev->delta_disks = 0;
7571 		mddev->reshape_backwards = 0;
7572 	}
7573 }
7574 
7575 static void raid5_quiesce(struct mddev *mddev, int state)
7576 {
7577 	struct r5conf *conf = mddev->private;
7578 
7579 	switch(state) {
7580 	case 2: /* resume for a suspend */
7581 		wake_up(&conf->wait_for_overlap);
7582 		break;
7583 
7584 	case 1: /* stop all writes */
7585 		lock_all_device_hash_locks_irq(conf);
7586 		/* '2' tells resync/reshape to pause so that all
7587 		 * active stripes can drain
7588 		 */
7589 		conf->quiesce = 2;
7590 		wait_event_cmd(conf->wait_for_quiescent,
7591 				    atomic_read(&conf->active_stripes) == 0 &&
7592 				    atomic_read(&conf->active_aligned_reads) == 0,
7593 				    unlock_all_device_hash_locks_irq(conf),
7594 				    lock_all_device_hash_locks_irq(conf));
7595 		conf->quiesce = 1;
7596 		unlock_all_device_hash_locks_irq(conf);
7597 		/* allow reshape to continue */
7598 		wake_up(&conf->wait_for_overlap);
7599 		break;
7600 
7601 	case 0: /* re-enable writes */
7602 		lock_all_device_hash_locks_irq(conf);
7603 		conf->quiesce = 0;
7604 		wake_up(&conf->wait_for_quiescent);
7605 		wake_up(&conf->wait_for_overlap);
7606 		unlock_all_device_hash_locks_irq(conf);
7607 		break;
7608 	}
7609 	r5l_quiesce(conf->log, state);
7610 }
7611 
7612 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7613 {
7614 	struct r0conf *raid0_conf = mddev->private;
7615 	sector_t sectors;
7616 
7617 	/* for raid0 takeover only one zone is supported */
7618 	if (raid0_conf->nr_strip_zones > 1) {
7619 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7620 		       mdname(mddev));
7621 		return ERR_PTR(-EINVAL);
7622 	}
7623 
7624 	sectors = raid0_conf->strip_zone[0].zone_end;
7625 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7626 	mddev->dev_sectors = sectors;
7627 	mddev->new_level = level;
7628 	mddev->new_layout = ALGORITHM_PARITY_N;
7629 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7630 	mddev->raid_disks += 1;
7631 	mddev->delta_disks = 1;
7632 	/* make sure it will be not marked as dirty */
7633 	mddev->recovery_cp = MaxSector;
7634 
7635 	return setup_conf(mddev);
7636 }
7637 
7638 static void *raid5_takeover_raid1(struct mddev *mddev)
7639 {
7640 	int chunksect;
7641 
7642 	if (mddev->raid_disks != 2 ||
7643 	    mddev->degraded > 1)
7644 		return ERR_PTR(-EINVAL);
7645 
7646 	/* Should check if there are write-behind devices? */
7647 
7648 	chunksect = 64*2; /* 64K by default */
7649 
7650 	/* The array must be an exact multiple of chunksize */
7651 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
7652 		chunksect >>= 1;
7653 
7654 	if ((chunksect<<9) < STRIPE_SIZE)
7655 		/* array size does not allow a suitable chunk size */
7656 		return ERR_PTR(-EINVAL);
7657 
7658 	mddev->new_level = 5;
7659 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7660 	mddev->new_chunk_sectors = chunksect;
7661 
7662 	return setup_conf(mddev);
7663 }
7664 
7665 static void *raid5_takeover_raid6(struct mddev *mddev)
7666 {
7667 	int new_layout;
7668 
7669 	switch (mddev->layout) {
7670 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7671 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7672 		break;
7673 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7674 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7675 		break;
7676 	case ALGORITHM_LEFT_SYMMETRIC_6:
7677 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
7678 		break;
7679 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7680 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7681 		break;
7682 	case ALGORITHM_PARITY_0_6:
7683 		new_layout = ALGORITHM_PARITY_0;
7684 		break;
7685 	case ALGORITHM_PARITY_N:
7686 		new_layout = ALGORITHM_PARITY_N;
7687 		break;
7688 	default:
7689 		return ERR_PTR(-EINVAL);
7690 	}
7691 	mddev->new_level = 5;
7692 	mddev->new_layout = new_layout;
7693 	mddev->delta_disks = -1;
7694 	mddev->raid_disks -= 1;
7695 	return setup_conf(mddev);
7696 }
7697 
7698 static int raid5_check_reshape(struct mddev *mddev)
7699 {
7700 	/* For a 2-drive array, the layout and chunk size can be changed
7701 	 * immediately as not restriping is needed.
7702 	 * For larger arrays we record the new value - after validation
7703 	 * to be used by a reshape pass.
7704 	 */
7705 	struct r5conf *conf = mddev->private;
7706 	int new_chunk = mddev->new_chunk_sectors;
7707 
7708 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7709 		return -EINVAL;
7710 	if (new_chunk > 0) {
7711 		if (!is_power_of_2(new_chunk))
7712 			return -EINVAL;
7713 		if (new_chunk < (PAGE_SIZE>>9))
7714 			return -EINVAL;
7715 		if (mddev->array_sectors & (new_chunk-1))
7716 			/* not factor of array size */
7717 			return -EINVAL;
7718 	}
7719 
7720 	/* They look valid */
7721 
7722 	if (mddev->raid_disks == 2) {
7723 		/* can make the change immediately */
7724 		if (mddev->new_layout >= 0) {
7725 			conf->algorithm = mddev->new_layout;
7726 			mddev->layout = mddev->new_layout;
7727 		}
7728 		if (new_chunk > 0) {
7729 			conf->chunk_sectors = new_chunk ;
7730 			mddev->chunk_sectors = new_chunk;
7731 		}
7732 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7733 		md_wakeup_thread(mddev->thread);
7734 	}
7735 	return check_reshape(mddev);
7736 }
7737 
7738 static int raid6_check_reshape(struct mddev *mddev)
7739 {
7740 	int new_chunk = mddev->new_chunk_sectors;
7741 
7742 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7743 		return -EINVAL;
7744 	if (new_chunk > 0) {
7745 		if (!is_power_of_2(new_chunk))
7746 			return -EINVAL;
7747 		if (new_chunk < (PAGE_SIZE >> 9))
7748 			return -EINVAL;
7749 		if (mddev->array_sectors & (new_chunk-1))
7750 			/* not factor of array size */
7751 			return -EINVAL;
7752 	}
7753 
7754 	/* They look valid */
7755 	return check_reshape(mddev);
7756 }
7757 
7758 static void *raid5_takeover(struct mddev *mddev)
7759 {
7760 	/* raid5 can take over:
7761 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7762 	 *  raid1 - if there are two drives.  We need to know the chunk size
7763 	 *  raid4 - trivial - just use a raid4 layout.
7764 	 *  raid6 - Providing it is a *_6 layout
7765 	 */
7766 	if (mddev->level == 0)
7767 		return raid45_takeover_raid0(mddev, 5);
7768 	if (mddev->level == 1)
7769 		return raid5_takeover_raid1(mddev);
7770 	if (mddev->level == 4) {
7771 		mddev->new_layout = ALGORITHM_PARITY_N;
7772 		mddev->new_level = 5;
7773 		return setup_conf(mddev);
7774 	}
7775 	if (mddev->level == 6)
7776 		return raid5_takeover_raid6(mddev);
7777 
7778 	return ERR_PTR(-EINVAL);
7779 }
7780 
7781 static void *raid4_takeover(struct mddev *mddev)
7782 {
7783 	/* raid4 can take over:
7784 	 *  raid0 - if there is only one strip zone
7785 	 *  raid5 - if layout is right
7786 	 */
7787 	if (mddev->level == 0)
7788 		return raid45_takeover_raid0(mddev, 4);
7789 	if (mddev->level == 5 &&
7790 	    mddev->layout == ALGORITHM_PARITY_N) {
7791 		mddev->new_layout = 0;
7792 		mddev->new_level = 4;
7793 		return setup_conf(mddev);
7794 	}
7795 	return ERR_PTR(-EINVAL);
7796 }
7797 
7798 static struct md_personality raid5_personality;
7799 
7800 static void *raid6_takeover(struct mddev *mddev)
7801 {
7802 	/* Currently can only take over a raid5.  We map the
7803 	 * personality to an equivalent raid6 personality
7804 	 * with the Q block at the end.
7805 	 */
7806 	int new_layout;
7807 
7808 	if (mddev->pers != &raid5_personality)
7809 		return ERR_PTR(-EINVAL);
7810 	if (mddev->degraded > 1)
7811 		return ERR_PTR(-EINVAL);
7812 	if (mddev->raid_disks > 253)
7813 		return ERR_PTR(-EINVAL);
7814 	if (mddev->raid_disks < 3)
7815 		return ERR_PTR(-EINVAL);
7816 
7817 	switch (mddev->layout) {
7818 	case ALGORITHM_LEFT_ASYMMETRIC:
7819 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7820 		break;
7821 	case ALGORITHM_RIGHT_ASYMMETRIC:
7822 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7823 		break;
7824 	case ALGORITHM_LEFT_SYMMETRIC:
7825 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7826 		break;
7827 	case ALGORITHM_RIGHT_SYMMETRIC:
7828 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7829 		break;
7830 	case ALGORITHM_PARITY_0:
7831 		new_layout = ALGORITHM_PARITY_0_6;
7832 		break;
7833 	case ALGORITHM_PARITY_N:
7834 		new_layout = ALGORITHM_PARITY_N;
7835 		break;
7836 	default:
7837 		return ERR_PTR(-EINVAL);
7838 	}
7839 	mddev->new_level = 6;
7840 	mddev->new_layout = new_layout;
7841 	mddev->delta_disks = 1;
7842 	mddev->raid_disks += 1;
7843 	return setup_conf(mddev);
7844 }
7845 
7846 static struct md_personality raid6_personality =
7847 {
7848 	.name		= "raid6",
7849 	.level		= 6,
7850 	.owner		= THIS_MODULE,
7851 	.make_request	= make_request,
7852 	.run		= run,
7853 	.free		= raid5_free,
7854 	.status		= status,
7855 	.error_handler	= error,
7856 	.hot_add_disk	= raid5_add_disk,
7857 	.hot_remove_disk= raid5_remove_disk,
7858 	.spare_active	= raid5_spare_active,
7859 	.sync_request	= sync_request,
7860 	.resize		= raid5_resize,
7861 	.size		= raid5_size,
7862 	.check_reshape	= raid6_check_reshape,
7863 	.start_reshape  = raid5_start_reshape,
7864 	.finish_reshape = raid5_finish_reshape,
7865 	.quiesce	= raid5_quiesce,
7866 	.takeover	= raid6_takeover,
7867 	.congested	= raid5_congested,
7868 };
7869 static struct md_personality raid5_personality =
7870 {
7871 	.name		= "raid5",
7872 	.level		= 5,
7873 	.owner		= THIS_MODULE,
7874 	.make_request	= make_request,
7875 	.run		= run,
7876 	.free		= raid5_free,
7877 	.status		= status,
7878 	.error_handler	= error,
7879 	.hot_add_disk	= raid5_add_disk,
7880 	.hot_remove_disk= raid5_remove_disk,
7881 	.spare_active	= raid5_spare_active,
7882 	.sync_request	= sync_request,
7883 	.resize		= raid5_resize,
7884 	.size		= raid5_size,
7885 	.check_reshape	= raid5_check_reshape,
7886 	.start_reshape  = raid5_start_reshape,
7887 	.finish_reshape = raid5_finish_reshape,
7888 	.quiesce	= raid5_quiesce,
7889 	.takeover	= raid5_takeover,
7890 	.congested	= raid5_congested,
7891 };
7892 
7893 static struct md_personality raid4_personality =
7894 {
7895 	.name		= "raid4",
7896 	.level		= 4,
7897 	.owner		= THIS_MODULE,
7898 	.make_request	= make_request,
7899 	.run		= run,
7900 	.free		= raid5_free,
7901 	.status		= status,
7902 	.error_handler	= error,
7903 	.hot_add_disk	= raid5_add_disk,
7904 	.hot_remove_disk= raid5_remove_disk,
7905 	.spare_active	= raid5_spare_active,
7906 	.sync_request	= sync_request,
7907 	.resize		= raid5_resize,
7908 	.size		= raid5_size,
7909 	.check_reshape	= raid5_check_reshape,
7910 	.start_reshape  = raid5_start_reshape,
7911 	.finish_reshape = raid5_finish_reshape,
7912 	.quiesce	= raid5_quiesce,
7913 	.takeover	= raid4_takeover,
7914 	.congested	= raid5_congested,
7915 };
7916 
7917 static int __init raid5_init(void)
7918 {
7919 	raid5_wq = alloc_workqueue("raid5wq",
7920 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7921 	if (!raid5_wq)
7922 		return -ENOMEM;
7923 	register_md_personality(&raid6_personality);
7924 	register_md_personality(&raid5_personality);
7925 	register_md_personality(&raid4_personality);
7926 	return 0;
7927 }
7928 
7929 static void raid5_exit(void)
7930 {
7931 	unregister_md_personality(&raid6_personality);
7932 	unregister_md_personality(&raid5_personality);
7933 	unregister_md_personality(&raid4_personality);
7934 	destroy_workqueue(raid5_wq);
7935 }
7936 
7937 module_init(raid5_init);
7938 module_exit(raid5_exit);
7939 MODULE_LICENSE("GPL");
7940 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7941 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7942 MODULE_ALIAS("md-raid5");
7943 MODULE_ALIAS("md-raid4");
7944 MODULE_ALIAS("md-level-5");
7945 MODULE_ALIAS("md-level-4");
7946 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7947 MODULE_ALIAS("md-raid6");
7948 MODULE_ALIAS("md-level-6");
7949 
7950 /* This used to be two separate modules, they were: */
7951 MODULE_ALIAS("raid5");
7952 MODULE_ALIAS("raid6");
7953