xref: /openbmc/linux/drivers/md/raid5.c (revision 63dc02bd)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60 
61 /*
62  * Stripe cache
63  */
64 
65 #define NR_STRIPES		256
66 #define STRIPE_SIZE		PAGE_SIZE
67 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
69 #define	IO_THRESHOLD		1
70 #define BYPASS_THRESHOLD	1
71 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK		(NR_HASH - 1)
73 
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 	return &conf->stripe_hashtbl[hash];
78 }
79 
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91 	int sectors = bio->bi_size >> 9;
92 	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 		return bio->bi_next;
94 	else
95 		return NULL;
96 }
97 
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_phys_segments(struct bio *bio)
103 {
104 	return bio->bi_phys_segments & 0xffff;
105 }
106 
107 static inline int raid5_bi_hw_segments(struct bio *bio)
108 {
109 	return (bio->bi_phys_segments >> 16) & 0xffff;
110 }
111 
112 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 {
114 	--bio->bi_phys_segments;
115 	return raid5_bi_phys_segments(bio);
116 }
117 
118 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 {
120 	unsigned short val = raid5_bi_hw_segments(bio);
121 
122 	--val;
123 	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124 	return val;
125 }
126 
127 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 {
129 	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 }
131 
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head *sh)
134 {
135 	if (sh->ddf_layout)
136 		/* ddf always start from first device */
137 		return 0;
138 	/* md starts just after Q block */
139 	if (sh->qd_idx == sh->disks - 1)
140 		return 0;
141 	else
142 		return sh->qd_idx + 1;
143 }
144 static inline int raid6_next_disk(int disk, int raid_disks)
145 {
146 	disk++;
147 	return (disk < raid_disks) ? disk : 0;
148 }
149 
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151  * We need to map each disk to a 'slot', where the data disks are slot
152  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153  * is raid_disks-1.  This help does that mapping.
154  */
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156 			     int *count, int syndrome_disks)
157 {
158 	int slot = *count;
159 
160 	if (sh->ddf_layout)
161 		(*count)++;
162 	if (idx == sh->pd_idx)
163 		return syndrome_disks;
164 	if (idx == sh->qd_idx)
165 		return syndrome_disks + 1;
166 	if (!sh->ddf_layout)
167 		(*count)++;
168 	return slot;
169 }
170 
171 static void return_io(struct bio *return_bi)
172 {
173 	struct bio *bi = return_bi;
174 	while (bi) {
175 
176 		return_bi = bi->bi_next;
177 		bi->bi_next = NULL;
178 		bi->bi_size = 0;
179 		bio_endio(bi, 0);
180 		bi = return_bi;
181 	}
182 }
183 
184 static void print_raid5_conf (struct r5conf *conf);
185 
186 static int stripe_operations_active(struct stripe_head *sh)
187 {
188 	return sh->check_state || sh->reconstruct_state ||
189 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191 }
192 
193 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
194 {
195 	if (atomic_dec_and_test(&sh->count)) {
196 		BUG_ON(!list_empty(&sh->lru));
197 		BUG_ON(atomic_read(&conf->active_stripes)==0);
198 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
199 			if (test_bit(STRIPE_DELAYED, &sh->state))
200 				list_add_tail(&sh->lru, &conf->delayed_list);
201 			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
202 				   sh->bm_seq - conf->seq_write > 0)
203 				list_add_tail(&sh->lru, &conf->bitmap_list);
204 			else {
205 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
206 				list_add_tail(&sh->lru, &conf->handle_list);
207 			}
208 			md_wakeup_thread(conf->mddev->thread);
209 		} else {
210 			BUG_ON(stripe_operations_active(sh));
211 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
212 				if (atomic_dec_return(&conf->preread_active_stripes)
213 				    < IO_THRESHOLD)
214 					md_wakeup_thread(conf->mddev->thread);
215 			atomic_dec(&conf->active_stripes);
216 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
217 				list_add_tail(&sh->lru, &conf->inactive_list);
218 				wake_up(&conf->wait_for_stripe);
219 				if (conf->retry_read_aligned)
220 					md_wakeup_thread(conf->mddev->thread);
221 			}
222 		}
223 	}
224 }
225 
226 static void release_stripe(struct stripe_head *sh)
227 {
228 	struct r5conf *conf = sh->raid_conf;
229 	unsigned long flags;
230 
231 	spin_lock_irqsave(&conf->device_lock, flags);
232 	__release_stripe(conf, sh);
233 	spin_unlock_irqrestore(&conf->device_lock, flags);
234 }
235 
236 static inline void remove_hash(struct stripe_head *sh)
237 {
238 	pr_debug("remove_hash(), stripe %llu\n",
239 		(unsigned long long)sh->sector);
240 
241 	hlist_del_init(&sh->hash);
242 }
243 
244 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
245 {
246 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
247 
248 	pr_debug("insert_hash(), stripe %llu\n",
249 		(unsigned long long)sh->sector);
250 
251 	hlist_add_head(&sh->hash, hp);
252 }
253 
254 
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head *get_free_stripe(struct r5conf *conf)
257 {
258 	struct stripe_head *sh = NULL;
259 	struct list_head *first;
260 
261 	if (list_empty(&conf->inactive_list))
262 		goto out;
263 	first = conf->inactive_list.next;
264 	sh = list_entry(first, struct stripe_head, lru);
265 	list_del_init(first);
266 	remove_hash(sh);
267 	atomic_inc(&conf->active_stripes);
268 out:
269 	return sh;
270 }
271 
272 static void shrink_buffers(struct stripe_head *sh)
273 {
274 	struct page *p;
275 	int i;
276 	int num = sh->raid_conf->pool_size;
277 
278 	for (i = 0; i < num ; i++) {
279 		p = sh->dev[i].page;
280 		if (!p)
281 			continue;
282 		sh->dev[i].page = NULL;
283 		put_page(p);
284 	}
285 }
286 
287 static int grow_buffers(struct stripe_head *sh)
288 {
289 	int i;
290 	int num = sh->raid_conf->pool_size;
291 
292 	for (i = 0; i < num; i++) {
293 		struct page *page;
294 
295 		if (!(page = alloc_page(GFP_KERNEL))) {
296 			return 1;
297 		}
298 		sh->dev[i].page = page;
299 	}
300 	return 0;
301 }
302 
303 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
304 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
305 			    struct stripe_head *sh);
306 
307 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
308 {
309 	struct r5conf *conf = sh->raid_conf;
310 	int i;
311 
312 	BUG_ON(atomic_read(&sh->count) != 0);
313 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
314 	BUG_ON(stripe_operations_active(sh));
315 
316 	pr_debug("init_stripe called, stripe %llu\n",
317 		(unsigned long long)sh->sector);
318 
319 	remove_hash(sh);
320 
321 	sh->generation = conf->generation - previous;
322 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
323 	sh->sector = sector;
324 	stripe_set_idx(sector, conf, previous, sh);
325 	sh->state = 0;
326 
327 
328 	for (i = sh->disks; i--; ) {
329 		struct r5dev *dev = &sh->dev[i];
330 
331 		if (dev->toread || dev->read || dev->towrite || dev->written ||
332 		    test_bit(R5_LOCKED, &dev->flags)) {
333 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
334 			       (unsigned long long)sh->sector, i, dev->toread,
335 			       dev->read, dev->towrite, dev->written,
336 			       test_bit(R5_LOCKED, &dev->flags));
337 			WARN_ON(1);
338 		}
339 		dev->flags = 0;
340 		raid5_build_block(sh, i, previous);
341 	}
342 	insert_hash(conf, sh);
343 }
344 
345 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
346 					 short generation)
347 {
348 	struct stripe_head *sh;
349 	struct hlist_node *hn;
350 
351 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
352 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
353 		if (sh->sector == sector && sh->generation == generation)
354 			return sh;
355 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
356 	return NULL;
357 }
358 
359 /*
360  * Need to check if array has failed when deciding whether to:
361  *  - start an array
362  *  - remove non-faulty devices
363  *  - add a spare
364  *  - allow a reshape
365  * This determination is simple when no reshape is happening.
366  * However if there is a reshape, we need to carefully check
367  * both the before and after sections.
368  * This is because some failed devices may only affect one
369  * of the two sections, and some non-in_sync devices may
370  * be insync in the section most affected by failed devices.
371  */
372 static int calc_degraded(struct r5conf *conf)
373 {
374 	int degraded, degraded2;
375 	int i;
376 
377 	rcu_read_lock();
378 	degraded = 0;
379 	for (i = 0; i < conf->previous_raid_disks; i++) {
380 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
381 		if (!rdev || test_bit(Faulty, &rdev->flags))
382 			degraded++;
383 		else if (test_bit(In_sync, &rdev->flags))
384 			;
385 		else
386 			/* not in-sync or faulty.
387 			 * If the reshape increases the number of devices,
388 			 * this is being recovered by the reshape, so
389 			 * this 'previous' section is not in_sync.
390 			 * If the number of devices is being reduced however,
391 			 * the device can only be part of the array if
392 			 * we are reverting a reshape, so this section will
393 			 * be in-sync.
394 			 */
395 			if (conf->raid_disks >= conf->previous_raid_disks)
396 				degraded++;
397 	}
398 	rcu_read_unlock();
399 	if (conf->raid_disks == conf->previous_raid_disks)
400 		return degraded;
401 	rcu_read_lock();
402 	degraded2 = 0;
403 	for (i = 0; i < conf->raid_disks; i++) {
404 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
405 		if (!rdev || test_bit(Faulty, &rdev->flags))
406 			degraded2++;
407 		else if (test_bit(In_sync, &rdev->flags))
408 			;
409 		else
410 			/* not in-sync or faulty.
411 			 * If reshape increases the number of devices, this
412 			 * section has already been recovered, else it
413 			 * almost certainly hasn't.
414 			 */
415 			if (conf->raid_disks <= conf->previous_raid_disks)
416 				degraded2++;
417 	}
418 	rcu_read_unlock();
419 	if (degraded2 > degraded)
420 		return degraded2;
421 	return degraded;
422 }
423 
424 static int has_failed(struct r5conf *conf)
425 {
426 	int degraded;
427 
428 	if (conf->mddev->reshape_position == MaxSector)
429 		return conf->mddev->degraded > conf->max_degraded;
430 
431 	degraded = calc_degraded(conf);
432 	if (degraded > conf->max_degraded)
433 		return 1;
434 	return 0;
435 }
436 
437 static struct stripe_head *
438 get_active_stripe(struct r5conf *conf, sector_t sector,
439 		  int previous, int noblock, int noquiesce)
440 {
441 	struct stripe_head *sh;
442 
443 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
444 
445 	spin_lock_irq(&conf->device_lock);
446 
447 	do {
448 		wait_event_lock_irq(conf->wait_for_stripe,
449 				    conf->quiesce == 0 || noquiesce,
450 				    conf->device_lock, /* nothing */);
451 		sh = __find_stripe(conf, sector, conf->generation - previous);
452 		if (!sh) {
453 			if (!conf->inactive_blocked)
454 				sh = get_free_stripe(conf);
455 			if (noblock && sh == NULL)
456 				break;
457 			if (!sh) {
458 				conf->inactive_blocked = 1;
459 				wait_event_lock_irq(conf->wait_for_stripe,
460 						    !list_empty(&conf->inactive_list) &&
461 						    (atomic_read(&conf->active_stripes)
462 						     < (conf->max_nr_stripes *3/4)
463 						     || !conf->inactive_blocked),
464 						    conf->device_lock,
465 						    );
466 				conf->inactive_blocked = 0;
467 			} else
468 				init_stripe(sh, sector, previous);
469 		} else {
470 			if (atomic_read(&sh->count)) {
471 				BUG_ON(!list_empty(&sh->lru)
472 				    && !test_bit(STRIPE_EXPANDING, &sh->state));
473 			} else {
474 				if (!test_bit(STRIPE_HANDLE, &sh->state))
475 					atomic_inc(&conf->active_stripes);
476 				if (list_empty(&sh->lru) &&
477 				    !test_bit(STRIPE_EXPANDING, &sh->state))
478 					BUG();
479 				list_del_init(&sh->lru);
480 			}
481 		}
482 	} while (sh == NULL);
483 
484 	if (sh)
485 		atomic_inc(&sh->count);
486 
487 	spin_unlock_irq(&conf->device_lock);
488 	return sh;
489 }
490 
491 static void
492 raid5_end_read_request(struct bio *bi, int error);
493 static void
494 raid5_end_write_request(struct bio *bi, int error);
495 
496 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
497 {
498 	struct r5conf *conf = sh->raid_conf;
499 	int i, disks = sh->disks;
500 
501 	might_sleep();
502 
503 	for (i = disks; i--; ) {
504 		int rw;
505 		int replace_only = 0;
506 		struct bio *bi, *rbi;
507 		struct md_rdev *rdev, *rrdev = NULL;
508 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
509 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
510 				rw = WRITE_FUA;
511 			else
512 				rw = WRITE;
513 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
514 			rw = READ;
515 		else if (test_and_clear_bit(R5_WantReplace,
516 					    &sh->dev[i].flags)) {
517 			rw = WRITE;
518 			replace_only = 1;
519 		} else
520 			continue;
521 
522 		bi = &sh->dev[i].req;
523 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
524 
525 		bi->bi_rw = rw;
526 		rbi->bi_rw = rw;
527 		if (rw & WRITE) {
528 			bi->bi_end_io = raid5_end_write_request;
529 			rbi->bi_end_io = raid5_end_write_request;
530 		} else
531 			bi->bi_end_io = raid5_end_read_request;
532 
533 		rcu_read_lock();
534 		rrdev = rcu_dereference(conf->disks[i].replacement);
535 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
536 		rdev = rcu_dereference(conf->disks[i].rdev);
537 		if (!rdev) {
538 			rdev = rrdev;
539 			rrdev = NULL;
540 		}
541 		if (rw & WRITE) {
542 			if (replace_only)
543 				rdev = NULL;
544 			if (rdev == rrdev)
545 				/* We raced and saw duplicates */
546 				rrdev = NULL;
547 		} else {
548 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
549 				rdev = rrdev;
550 			rrdev = NULL;
551 		}
552 
553 		if (rdev && test_bit(Faulty, &rdev->flags))
554 			rdev = NULL;
555 		if (rdev)
556 			atomic_inc(&rdev->nr_pending);
557 		if (rrdev && test_bit(Faulty, &rrdev->flags))
558 			rrdev = NULL;
559 		if (rrdev)
560 			atomic_inc(&rrdev->nr_pending);
561 		rcu_read_unlock();
562 
563 		/* We have already checked bad blocks for reads.  Now
564 		 * need to check for writes.  We never accept write errors
565 		 * on the replacement, so we don't to check rrdev.
566 		 */
567 		while ((rw & WRITE) && rdev &&
568 		       test_bit(WriteErrorSeen, &rdev->flags)) {
569 			sector_t first_bad;
570 			int bad_sectors;
571 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
572 					      &first_bad, &bad_sectors);
573 			if (!bad)
574 				break;
575 
576 			if (bad < 0) {
577 				set_bit(BlockedBadBlocks, &rdev->flags);
578 				if (!conf->mddev->external &&
579 				    conf->mddev->flags) {
580 					/* It is very unlikely, but we might
581 					 * still need to write out the
582 					 * bad block log - better give it
583 					 * a chance*/
584 					md_check_recovery(conf->mddev);
585 				}
586 				md_wait_for_blocked_rdev(rdev, conf->mddev);
587 			} else {
588 				/* Acknowledged bad block - skip the write */
589 				rdev_dec_pending(rdev, conf->mddev);
590 				rdev = NULL;
591 			}
592 		}
593 
594 		if (rdev) {
595 			if (s->syncing || s->expanding || s->expanded
596 			    || s->replacing)
597 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
598 
599 			set_bit(STRIPE_IO_STARTED, &sh->state);
600 
601 			bi->bi_bdev = rdev->bdev;
602 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
603 				__func__, (unsigned long long)sh->sector,
604 				bi->bi_rw, i);
605 			atomic_inc(&sh->count);
606 			bi->bi_sector = sh->sector + rdev->data_offset;
607 			bi->bi_flags = 1 << BIO_UPTODATE;
608 			bi->bi_idx = 0;
609 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
610 			bi->bi_io_vec[0].bv_offset = 0;
611 			bi->bi_size = STRIPE_SIZE;
612 			bi->bi_next = NULL;
613 			if (rrdev)
614 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
615 			generic_make_request(bi);
616 		}
617 		if (rrdev) {
618 			if (s->syncing || s->expanding || s->expanded
619 			    || s->replacing)
620 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
621 
622 			set_bit(STRIPE_IO_STARTED, &sh->state);
623 
624 			rbi->bi_bdev = rrdev->bdev;
625 			pr_debug("%s: for %llu schedule op %ld on "
626 				 "replacement disc %d\n",
627 				__func__, (unsigned long long)sh->sector,
628 				rbi->bi_rw, i);
629 			atomic_inc(&sh->count);
630 			rbi->bi_sector = sh->sector + rrdev->data_offset;
631 			rbi->bi_flags = 1 << BIO_UPTODATE;
632 			rbi->bi_idx = 0;
633 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
634 			rbi->bi_io_vec[0].bv_offset = 0;
635 			rbi->bi_size = STRIPE_SIZE;
636 			rbi->bi_next = NULL;
637 			generic_make_request(rbi);
638 		}
639 		if (!rdev && !rrdev) {
640 			if (rw & WRITE)
641 				set_bit(STRIPE_DEGRADED, &sh->state);
642 			pr_debug("skip op %ld on disc %d for sector %llu\n",
643 				bi->bi_rw, i, (unsigned long long)sh->sector);
644 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
645 			set_bit(STRIPE_HANDLE, &sh->state);
646 		}
647 	}
648 }
649 
650 static struct dma_async_tx_descriptor *
651 async_copy_data(int frombio, struct bio *bio, struct page *page,
652 	sector_t sector, struct dma_async_tx_descriptor *tx)
653 {
654 	struct bio_vec *bvl;
655 	struct page *bio_page;
656 	int i;
657 	int page_offset;
658 	struct async_submit_ctl submit;
659 	enum async_tx_flags flags = 0;
660 
661 	if (bio->bi_sector >= sector)
662 		page_offset = (signed)(bio->bi_sector - sector) * 512;
663 	else
664 		page_offset = (signed)(sector - bio->bi_sector) * -512;
665 
666 	if (frombio)
667 		flags |= ASYNC_TX_FENCE;
668 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
669 
670 	bio_for_each_segment(bvl, bio, i) {
671 		int len = bvl->bv_len;
672 		int clen;
673 		int b_offset = 0;
674 
675 		if (page_offset < 0) {
676 			b_offset = -page_offset;
677 			page_offset += b_offset;
678 			len -= b_offset;
679 		}
680 
681 		if (len > 0 && page_offset + len > STRIPE_SIZE)
682 			clen = STRIPE_SIZE - page_offset;
683 		else
684 			clen = len;
685 
686 		if (clen > 0) {
687 			b_offset += bvl->bv_offset;
688 			bio_page = bvl->bv_page;
689 			if (frombio)
690 				tx = async_memcpy(page, bio_page, page_offset,
691 						  b_offset, clen, &submit);
692 			else
693 				tx = async_memcpy(bio_page, page, b_offset,
694 						  page_offset, clen, &submit);
695 		}
696 		/* chain the operations */
697 		submit.depend_tx = tx;
698 
699 		if (clen < len) /* hit end of page */
700 			break;
701 		page_offset +=  len;
702 	}
703 
704 	return tx;
705 }
706 
707 static void ops_complete_biofill(void *stripe_head_ref)
708 {
709 	struct stripe_head *sh = stripe_head_ref;
710 	struct bio *return_bi = NULL;
711 	struct r5conf *conf = sh->raid_conf;
712 	int i;
713 
714 	pr_debug("%s: stripe %llu\n", __func__,
715 		(unsigned long long)sh->sector);
716 
717 	/* clear completed biofills */
718 	spin_lock_irq(&conf->device_lock);
719 	for (i = sh->disks; i--; ) {
720 		struct r5dev *dev = &sh->dev[i];
721 
722 		/* acknowledge completion of a biofill operation */
723 		/* and check if we need to reply to a read request,
724 		 * new R5_Wantfill requests are held off until
725 		 * !STRIPE_BIOFILL_RUN
726 		 */
727 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
728 			struct bio *rbi, *rbi2;
729 
730 			BUG_ON(!dev->read);
731 			rbi = dev->read;
732 			dev->read = NULL;
733 			while (rbi && rbi->bi_sector <
734 				dev->sector + STRIPE_SECTORS) {
735 				rbi2 = r5_next_bio(rbi, dev->sector);
736 				if (!raid5_dec_bi_phys_segments(rbi)) {
737 					rbi->bi_next = return_bi;
738 					return_bi = rbi;
739 				}
740 				rbi = rbi2;
741 			}
742 		}
743 	}
744 	spin_unlock_irq(&conf->device_lock);
745 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
746 
747 	return_io(return_bi);
748 
749 	set_bit(STRIPE_HANDLE, &sh->state);
750 	release_stripe(sh);
751 }
752 
753 static void ops_run_biofill(struct stripe_head *sh)
754 {
755 	struct dma_async_tx_descriptor *tx = NULL;
756 	struct r5conf *conf = sh->raid_conf;
757 	struct async_submit_ctl submit;
758 	int i;
759 
760 	pr_debug("%s: stripe %llu\n", __func__,
761 		(unsigned long long)sh->sector);
762 
763 	for (i = sh->disks; i--; ) {
764 		struct r5dev *dev = &sh->dev[i];
765 		if (test_bit(R5_Wantfill, &dev->flags)) {
766 			struct bio *rbi;
767 			spin_lock_irq(&conf->device_lock);
768 			dev->read = rbi = dev->toread;
769 			dev->toread = NULL;
770 			spin_unlock_irq(&conf->device_lock);
771 			while (rbi && rbi->bi_sector <
772 				dev->sector + STRIPE_SECTORS) {
773 				tx = async_copy_data(0, rbi, dev->page,
774 					dev->sector, tx);
775 				rbi = r5_next_bio(rbi, dev->sector);
776 			}
777 		}
778 	}
779 
780 	atomic_inc(&sh->count);
781 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
782 	async_trigger_callback(&submit);
783 }
784 
785 static void mark_target_uptodate(struct stripe_head *sh, int target)
786 {
787 	struct r5dev *tgt;
788 
789 	if (target < 0)
790 		return;
791 
792 	tgt = &sh->dev[target];
793 	set_bit(R5_UPTODATE, &tgt->flags);
794 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
795 	clear_bit(R5_Wantcompute, &tgt->flags);
796 }
797 
798 static void ops_complete_compute(void *stripe_head_ref)
799 {
800 	struct stripe_head *sh = stripe_head_ref;
801 
802 	pr_debug("%s: stripe %llu\n", __func__,
803 		(unsigned long long)sh->sector);
804 
805 	/* mark the computed target(s) as uptodate */
806 	mark_target_uptodate(sh, sh->ops.target);
807 	mark_target_uptodate(sh, sh->ops.target2);
808 
809 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
810 	if (sh->check_state == check_state_compute_run)
811 		sh->check_state = check_state_compute_result;
812 	set_bit(STRIPE_HANDLE, &sh->state);
813 	release_stripe(sh);
814 }
815 
816 /* return a pointer to the address conversion region of the scribble buffer */
817 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
818 				 struct raid5_percpu *percpu)
819 {
820 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
821 }
822 
823 static struct dma_async_tx_descriptor *
824 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
825 {
826 	int disks = sh->disks;
827 	struct page **xor_srcs = percpu->scribble;
828 	int target = sh->ops.target;
829 	struct r5dev *tgt = &sh->dev[target];
830 	struct page *xor_dest = tgt->page;
831 	int count = 0;
832 	struct dma_async_tx_descriptor *tx;
833 	struct async_submit_ctl submit;
834 	int i;
835 
836 	pr_debug("%s: stripe %llu block: %d\n",
837 		__func__, (unsigned long long)sh->sector, target);
838 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
839 
840 	for (i = disks; i--; )
841 		if (i != target)
842 			xor_srcs[count++] = sh->dev[i].page;
843 
844 	atomic_inc(&sh->count);
845 
846 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
847 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
848 	if (unlikely(count == 1))
849 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
850 	else
851 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
852 
853 	return tx;
854 }
855 
856 /* set_syndrome_sources - populate source buffers for gen_syndrome
857  * @srcs - (struct page *) array of size sh->disks
858  * @sh - stripe_head to parse
859  *
860  * Populates srcs in proper layout order for the stripe and returns the
861  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
862  * destination buffer is recorded in srcs[count] and the Q destination
863  * is recorded in srcs[count+1]].
864  */
865 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
866 {
867 	int disks = sh->disks;
868 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
869 	int d0_idx = raid6_d0(sh);
870 	int count;
871 	int i;
872 
873 	for (i = 0; i < disks; i++)
874 		srcs[i] = NULL;
875 
876 	count = 0;
877 	i = d0_idx;
878 	do {
879 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
880 
881 		srcs[slot] = sh->dev[i].page;
882 		i = raid6_next_disk(i, disks);
883 	} while (i != d0_idx);
884 
885 	return syndrome_disks;
886 }
887 
888 static struct dma_async_tx_descriptor *
889 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
890 {
891 	int disks = sh->disks;
892 	struct page **blocks = percpu->scribble;
893 	int target;
894 	int qd_idx = sh->qd_idx;
895 	struct dma_async_tx_descriptor *tx;
896 	struct async_submit_ctl submit;
897 	struct r5dev *tgt;
898 	struct page *dest;
899 	int i;
900 	int count;
901 
902 	if (sh->ops.target < 0)
903 		target = sh->ops.target2;
904 	else if (sh->ops.target2 < 0)
905 		target = sh->ops.target;
906 	else
907 		/* we should only have one valid target */
908 		BUG();
909 	BUG_ON(target < 0);
910 	pr_debug("%s: stripe %llu block: %d\n",
911 		__func__, (unsigned long long)sh->sector, target);
912 
913 	tgt = &sh->dev[target];
914 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
915 	dest = tgt->page;
916 
917 	atomic_inc(&sh->count);
918 
919 	if (target == qd_idx) {
920 		count = set_syndrome_sources(blocks, sh);
921 		blocks[count] = NULL; /* regenerating p is not necessary */
922 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
923 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
924 				  ops_complete_compute, sh,
925 				  to_addr_conv(sh, percpu));
926 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
927 	} else {
928 		/* Compute any data- or p-drive using XOR */
929 		count = 0;
930 		for (i = disks; i-- ; ) {
931 			if (i == target || i == qd_idx)
932 				continue;
933 			blocks[count++] = sh->dev[i].page;
934 		}
935 
936 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
937 				  NULL, ops_complete_compute, sh,
938 				  to_addr_conv(sh, percpu));
939 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
940 	}
941 
942 	return tx;
943 }
944 
945 static struct dma_async_tx_descriptor *
946 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
947 {
948 	int i, count, disks = sh->disks;
949 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
950 	int d0_idx = raid6_d0(sh);
951 	int faila = -1, failb = -1;
952 	int target = sh->ops.target;
953 	int target2 = sh->ops.target2;
954 	struct r5dev *tgt = &sh->dev[target];
955 	struct r5dev *tgt2 = &sh->dev[target2];
956 	struct dma_async_tx_descriptor *tx;
957 	struct page **blocks = percpu->scribble;
958 	struct async_submit_ctl submit;
959 
960 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
961 		 __func__, (unsigned long long)sh->sector, target, target2);
962 	BUG_ON(target < 0 || target2 < 0);
963 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
964 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
965 
966 	/* we need to open-code set_syndrome_sources to handle the
967 	 * slot number conversion for 'faila' and 'failb'
968 	 */
969 	for (i = 0; i < disks ; i++)
970 		blocks[i] = NULL;
971 	count = 0;
972 	i = d0_idx;
973 	do {
974 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
975 
976 		blocks[slot] = sh->dev[i].page;
977 
978 		if (i == target)
979 			faila = slot;
980 		if (i == target2)
981 			failb = slot;
982 		i = raid6_next_disk(i, disks);
983 	} while (i != d0_idx);
984 
985 	BUG_ON(faila == failb);
986 	if (failb < faila)
987 		swap(faila, failb);
988 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
989 		 __func__, (unsigned long long)sh->sector, faila, failb);
990 
991 	atomic_inc(&sh->count);
992 
993 	if (failb == syndrome_disks+1) {
994 		/* Q disk is one of the missing disks */
995 		if (faila == syndrome_disks) {
996 			/* Missing P+Q, just recompute */
997 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
998 					  ops_complete_compute, sh,
999 					  to_addr_conv(sh, percpu));
1000 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1001 						  STRIPE_SIZE, &submit);
1002 		} else {
1003 			struct page *dest;
1004 			int data_target;
1005 			int qd_idx = sh->qd_idx;
1006 
1007 			/* Missing D+Q: recompute D from P, then recompute Q */
1008 			if (target == qd_idx)
1009 				data_target = target2;
1010 			else
1011 				data_target = target;
1012 
1013 			count = 0;
1014 			for (i = disks; i-- ; ) {
1015 				if (i == data_target || i == qd_idx)
1016 					continue;
1017 				blocks[count++] = sh->dev[i].page;
1018 			}
1019 			dest = sh->dev[data_target].page;
1020 			init_async_submit(&submit,
1021 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1022 					  NULL, NULL, NULL,
1023 					  to_addr_conv(sh, percpu));
1024 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1025 				       &submit);
1026 
1027 			count = set_syndrome_sources(blocks, sh);
1028 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1029 					  ops_complete_compute, sh,
1030 					  to_addr_conv(sh, percpu));
1031 			return async_gen_syndrome(blocks, 0, count+2,
1032 						  STRIPE_SIZE, &submit);
1033 		}
1034 	} else {
1035 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1036 				  ops_complete_compute, sh,
1037 				  to_addr_conv(sh, percpu));
1038 		if (failb == syndrome_disks) {
1039 			/* We're missing D+P. */
1040 			return async_raid6_datap_recov(syndrome_disks+2,
1041 						       STRIPE_SIZE, faila,
1042 						       blocks, &submit);
1043 		} else {
1044 			/* We're missing D+D. */
1045 			return async_raid6_2data_recov(syndrome_disks+2,
1046 						       STRIPE_SIZE, faila, failb,
1047 						       blocks, &submit);
1048 		}
1049 	}
1050 }
1051 
1052 
1053 static void ops_complete_prexor(void *stripe_head_ref)
1054 {
1055 	struct stripe_head *sh = stripe_head_ref;
1056 
1057 	pr_debug("%s: stripe %llu\n", __func__,
1058 		(unsigned long long)sh->sector);
1059 }
1060 
1061 static struct dma_async_tx_descriptor *
1062 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1063 	       struct dma_async_tx_descriptor *tx)
1064 {
1065 	int disks = sh->disks;
1066 	struct page **xor_srcs = percpu->scribble;
1067 	int count = 0, pd_idx = sh->pd_idx, i;
1068 	struct async_submit_ctl submit;
1069 
1070 	/* existing parity data subtracted */
1071 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1072 
1073 	pr_debug("%s: stripe %llu\n", __func__,
1074 		(unsigned long long)sh->sector);
1075 
1076 	for (i = disks; i--; ) {
1077 		struct r5dev *dev = &sh->dev[i];
1078 		/* Only process blocks that are known to be uptodate */
1079 		if (test_bit(R5_Wantdrain, &dev->flags))
1080 			xor_srcs[count++] = dev->page;
1081 	}
1082 
1083 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1084 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1085 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1086 
1087 	return tx;
1088 }
1089 
1090 static struct dma_async_tx_descriptor *
1091 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1092 {
1093 	int disks = sh->disks;
1094 	int i;
1095 
1096 	pr_debug("%s: stripe %llu\n", __func__,
1097 		(unsigned long long)sh->sector);
1098 
1099 	for (i = disks; i--; ) {
1100 		struct r5dev *dev = &sh->dev[i];
1101 		struct bio *chosen;
1102 
1103 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1104 			struct bio *wbi;
1105 
1106 			spin_lock_irq(&sh->raid_conf->device_lock);
1107 			chosen = dev->towrite;
1108 			dev->towrite = NULL;
1109 			BUG_ON(dev->written);
1110 			wbi = dev->written = chosen;
1111 			spin_unlock_irq(&sh->raid_conf->device_lock);
1112 
1113 			while (wbi && wbi->bi_sector <
1114 				dev->sector + STRIPE_SECTORS) {
1115 				if (wbi->bi_rw & REQ_FUA)
1116 					set_bit(R5_WantFUA, &dev->flags);
1117 				tx = async_copy_data(1, wbi, dev->page,
1118 					dev->sector, tx);
1119 				wbi = r5_next_bio(wbi, dev->sector);
1120 			}
1121 		}
1122 	}
1123 
1124 	return tx;
1125 }
1126 
1127 static void ops_complete_reconstruct(void *stripe_head_ref)
1128 {
1129 	struct stripe_head *sh = stripe_head_ref;
1130 	int disks = sh->disks;
1131 	int pd_idx = sh->pd_idx;
1132 	int qd_idx = sh->qd_idx;
1133 	int i;
1134 	bool fua = false;
1135 
1136 	pr_debug("%s: stripe %llu\n", __func__,
1137 		(unsigned long long)sh->sector);
1138 
1139 	for (i = disks; i--; )
1140 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1141 
1142 	for (i = disks; i--; ) {
1143 		struct r5dev *dev = &sh->dev[i];
1144 
1145 		if (dev->written || i == pd_idx || i == qd_idx) {
1146 			set_bit(R5_UPTODATE, &dev->flags);
1147 			if (fua)
1148 				set_bit(R5_WantFUA, &dev->flags);
1149 		}
1150 	}
1151 
1152 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1153 		sh->reconstruct_state = reconstruct_state_drain_result;
1154 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1155 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1156 	else {
1157 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1158 		sh->reconstruct_state = reconstruct_state_result;
1159 	}
1160 
1161 	set_bit(STRIPE_HANDLE, &sh->state);
1162 	release_stripe(sh);
1163 }
1164 
1165 static void
1166 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1167 		     struct dma_async_tx_descriptor *tx)
1168 {
1169 	int disks = sh->disks;
1170 	struct page **xor_srcs = percpu->scribble;
1171 	struct async_submit_ctl submit;
1172 	int count = 0, pd_idx = sh->pd_idx, i;
1173 	struct page *xor_dest;
1174 	int prexor = 0;
1175 	unsigned long flags;
1176 
1177 	pr_debug("%s: stripe %llu\n", __func__,
1178 		(unsigned long long)sh->sector);
1179 
1180 	/* check if prexor is active which means only process blocks
1181 	 * that are part of a read-modify-write (written)
1182 	 */
1183 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1184 		prexor = 1;
1185 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1186 		for (i = disks; i--; ) {
1187 			struct r5dev *dev = &sh->dev[i];
1188 			if (dev->written)
1189 				xor_srcs[count++] = dev->page;
1190 		}
1191 	} else {
1192 		xor_dest = sh->dev[pd_idx].page;
1193 		for (i = disks; i--; ) {
1194 			struct r5dev *dev = &sh->dev[i];
1195 			if (i != pd_idx)
1196 				xor_srcs[count++] = dev->page;
1197 		}
1198 	}
1199 
1200 	/* 1/ if we prexor'd then the dest is reused as a source
1201 	 * 2/ if we did not prexor then we are redoing the parity
1202 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1203 	 * for the synchronous xor case
1204 	 */
1205 	flags = ASYNC_TX_ACK |
1206 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1207 
1208 	atomic_inc(&sh->count);
1209 
1210 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1211 			  to_addr_conv(sh, percpu));
1212 	if (unlikely(count == 1))
1213 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1214 	else
1215 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1216 }
1217 
1218 static void
1219 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1220 		     struct dma_async_tx_descriptor *tx)
1221 {
1222 	struct async_submit_ctl submit;
1223 	struct page **blocks = percpu->scribble;
1224 	int count;
1225 
1226 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1227 
1228 	count = set_syndrome_sources(blocks, sh);
1229 
1230 	atomic_inc(&sh->count);
1231 
1232 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1233 			  sh, to_addr_conv(sh, percpu));
1234 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1235 }
1236 
1237 static void ops_complete_check(void *stripe_head_ref)
1238 {
1239 	struct stripe_head *sh = stripe_head_ref;
1240 
1241 	pr_debug("%s: stripe %llu\n", __func__,
1242 		(unsigned long long)sh->sector);
1243 
1244 	sh->check_state = check_state_check_result;
1245 	set_bit(STRIPE_HANDLE, &sh->state);
1246 	release_stripe(sh);
1247 }
1248 
1249 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1250 {
1251 	int disks = sh->disks;
1252 	int pd_idx = sh->pd_idx;
1253 	int qd_idx = sh->qd_idx;
1254 	struct page *xor_dest;
1255 	struct page **xor_srcs = percpu->scribble;
1256 	struct dma_async_tx_descriptor *tx;
1257 	struct async_submit_ctl submit;
1258 	int count;
1259 	int i;
1260 
1261 	pr_debug("%s: stripe %llu\n", __func__,
1262 		(unsigned long long)sh->sector);
1263 
1264 	count = 0;
1265 	xor_dest = sh->dev[pd_idx].page;
1266 	xor_srcs[count++] = xor_dest;
1267 	for (i = disks; i--; ) {
1268 		if (i == pd_idx || i == qd_idx)
1269 			continue;
1270 		xor_srcs[count++] = sh->dev[i].page;
1271 	}
1272 
1273 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1274 			  to_addr_conv(sh, percpu));
1275 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1276 			   &sh->ops.zero_sum_result, &submit);
1277 
1278 	atomic_inc(&sh->count);
1279 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1280 	tx = async_trigger_callback(&submit);
1281 }
1282 
1283 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1284 {
1285 	struct page **srcs = percpu->scribble;
1286 	struct async_submit_ctl submit;
1287 	int count;
1288 
1289 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1290 		(unsigned long long)sh->sector, checkp);
1291 
1292 	count = set_syndrome_sources(srcs, sh);
1293 	if (!checkp)
1294 		srcs[count] = NULL;
1295 
1296 	atomic_inc(&sh->count);
1297 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1298 			  sh, to_addr_conv(sh, percpu));
1299 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1300 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1301 }
1302 
1303 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1304 {
1305 	int overlap_clear = 0, i, disks = sh->disks;
1306 	struct dma_async_tx_descriptor *tx = NULL;
1307 	struct r5conf *conf = sh->raid_conf;
1308 	int level = conf->level;
1309 	struct raid5_percpu *percpu;
1310 	unsigned long cpu;
1311 
1312 	cpu = get_cpu();
1313 	percpu = per_cpu_ptr(conf->percpu, cpu);
1314 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1315 		ops_run_biofill(sh);
1316 		overlap_clear++;
1317 	}
1318 
1319 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1320 		if (level < 6)
1321 			tx = ops_run_compute5(sh, percpu);
1322 		else {
1323 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1324 				tx = ops_run_compute6_1(sh, percpu);
1325 			else
1326 				tx = ops_run_compute6_2(sh, percpu);
1327 		}
1328 		/* terminate the chain if reconstruct is not set to be run */
1329 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1330 			async_tx_ack(tx);
1331 	}
1332 
1333 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1334 		tx = ops_run_prexor(sh, percpu, tx);
1335 
1336 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1337 		tx = ops_run_biodrain(sh, tx);
1338 		overlap_clear++;
1339 	}
1340 
1341 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1342 		if (level < 6)
1343 			ops_run_reconstruct5(sh, percpu, tx);
1344 		else
1345 			ops_run_reconstruct6(sh, percpu, tx);
1346 	}
1347 
1348 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1349 		if (sh->check_state == check_state_run)
1350 			ops_run_check_p(sh, percpu);
1351 		else if (sh->check_state == check_state_run_q)
1352 			ops_run_check_pq(sh, percpu, 0);
1353 		else if (sh->check_state == check_state_run_pq)
1354 			ops_run_check_pq(sh, percpu, 1);
1355 		else
1356 			BUG();
1357 	}
1358 
1359 	if (overlap_clear)
1360 		for (i = disks; i--; ) {
1361 			struct r5dev *dev = &sh->dev[i];
1362 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1363 				wake_up(&sh->raid_conf->wait_for_overlap);
1364 		}
1365 	put_cpu();
1366 }
1367 
1368 #ifdef CONFIG_MULTICORE_RAID456
1369 static void async_run_ops(void *param, async_cookie_t cookie)
1370 {
1371 	struct stripe_head *sh = param;
1372 	unsigned long ops_request = sh->ops.request;
1373 
1374 	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1375 	wake_up(&sh->ops.wait_for_ops);
1376 
1377 	__raid_run_ops(sh, ops_request);
1378 	release_stripe(sh);
1379 }
1380 
1381 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1382 {
1383 	/* since handle_stripe can be called outside of raid5d context
1384 	 * we need to ensure sh->ops.request is de-staged before another
1385 	 * request arrives
1386 	 */
1387 	wait_event(sh->ops.wait_for_ops,
1388 		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1389 	sh->ops.request = ops_request;
1390 
1391 	atomic_inc(&sh->count);
1392 	async_schedule(async_run_ops, sh);
1393 }
1394 #else
1395 #define raid_run_ops __raid_run_ops
1396 #endif
1397 
1398 static int grow_one_stripe(struct r5conf *conf)
1399 {
1400 	struct stripe_head *sh;
1401 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1402 	if (!sh)
1403 		return 0;
1404 
1405 	sh->raid_conf = conf;
1406 	#ifdef CONFIG_MULTICORE_RAID456
1407 	init_waitqueue_head(&sh->ops.wait_for_ops);
1408 	#endif
1409 
1410 	if (grow_buffers(sh)) {
1411 		shrink_buffers(sh);
1412 		kmem_cache_free(conf->slab_cache, sh);
1413 		return 0;
1414 	}
1415 	/* we just created an active stripe so... */
1416 	atomic_set(&sh->count, 1);
1417 	atomic_inc(&conf->active_stripes);
1418 	INIT_LIST_HEAD(&sh->lru);
1419 	release_stripe(sh);
1420 	return 1;
1421 }
1422 
1423 static int grow_stripes(struct r5conf *conf, int num)
1424 {
1425 	struct kmem_cache *sc;
1426 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1427 
1428 	if (conf->mddev->gendisk)
1429 		sprintf(conf->cache_name[0],
1430 			"raid%d-%s", conf->level, mdname(conf->mddev));
1431 	else
1432 		sprintf(conf->cache_name[0],
1433 			"raid%d-%p", conf->level, conf->mddev);
1434 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1435 
1436 	conf->active_name = 0;
1437 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1438 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1439 			       0, 0, NULL);
1440 	if (!sc)
1441 		return 1;
1442 	conf->slab_cache = sc;
1443 	conf->pool_size = devs;
1444 	while (num--)
1445 		if (!grow_one_stripe(conf))
1446 			return 1;
1447 	return 0;
1448 }
1449 
1450 /**
1451  * scribble_len - return the required size of the scribble region
1452  * @num - total number of disks in the array
1453  *
1454  * The size must be enough to contain:
1455  * 1/ a struct page pointer for each device in the array +2
1456  * 2/ room to convert each entry in (1) to its corresponding dma
1457  *    (dma_map_page()) or page (page_address()) address.
1458  *
1459  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1460  * calculate over all devices (not just the data blocks), using zeros in place
1461  * of the P and Q blocks.
1462  */
1463 static size_t scribble_len(int num)
1464 {
1465 	size_t len;
1466 
1467 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1468 
1469 	return len;
1470 }
1471 
1472 static int resize_stripes(struct r5conf *conf, int newsize)
1473 {
1474 	/* Make all the stripes able to hold 'newsize' devices.
1475 	 * New slots in each stripe get 'page' set to a new page.
1476 	 *
1477 	 * This happens in stages:
1478 	 * 1/ create a new kmem_cache and allocate the required number of
1479 	 *    stripe_heads.
1480 	 * 2/ gather all the old stripe_heads and tranfer the pages across
1481 	 *    to the new stripe_heads.  This will have the side effect of
1482 	 *    freezing the array as once all stripe_heads have been collected,
1483 	 *    no IO will be possible.  Old stripe heads are freed once their
1484 	 *    pages have been transferred over, and the old kmem_cache is
1485 	 *    freed when all stripes are done.
1486 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1487 	 *    we simple return a failre status - no need to clean anything up.
1488 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1489 	 *    If this fails, we don't bother trying the shrink the
1490 	 *    stripe_heads down again, we just leave them as they are.
1491 	 *    As each stripe_head is processed the new one is released into
1492 	 *    active service.
1493 	 *
1494 	 * Once step2 is started, we cannot afford to wait for a write,
1495 	 * so we use GFP_NOIO allocations.
1496 	 */
1497 	struct stripe_head *osh, *nsh;
1498 	LIST_HEAD(newstripes);
1499 	struct disk_info *ndisks;
1500 	unsigned long cpu;
1501 	int err;
1502 	struct kmem_cache *sc;
1503 	int i;
1504 
1505 	if (newsize <= conf->pool_size)
1506 		return 0; /* never bother to shrink */
1507 
1508 	err = md_allow_write(conf->mddev);
1509 	if (err)
1510 		return err;
1511 
1512 	/* Step 1 */
1513 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1514 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1515 			       0, 0, NULL);
1516 	if (!sc)
1517 		return -ENOMEM;
1518 
1519 	for (i = conf->max_nr_stripes; i; i--) {
1520 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1521 		if (!nsh)
1522 			break;
1523 
1524 		nsh->raid_conf = conf;
1525 		#ifdef CONFIG_MULTICORE_RAID456
1526 		init_waitqueue_head(&nsh->ops.wait_for_ops);
1527 		#endif
1528 
1529 		list_add(&nsh->lru, &newstripes);
1530 	}
1531 	if (i) {
1532 		/* didn't get enough, give up */
1533 		while (!list_empty(&newstripes)) {
1534 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1535 			list_del(&nsh->lru);
1536 			kmem_cache_free(sc, nsh);
1537 		}
1538 		kmem_cache_destroy(sc);
1539 		return -ENOMEM;
1540 	}
1541 	/* Step 2 - Must use GFP_NOIO now.
1542 	 * OK, we have enough stripes, start collecting inactive
1543 	 * stripes and copying them over
1544 	 */
1545 	list_for_each_entry(nsh, &newstripes, lru) {
1546 		spin_lock_irq(&conf->device_lock);
1547 		wait_event_lock_irq(conf->wait_for_stripe,
1548 				    !list_empty(&conf->inactive_list),
1549 				    conf->device_lock,
1550 				    );
1551 		osh = get_free_stripe(conf);
1552 		spin_unlock_irq(&conf->device_lock);
1553 		atomic_set(&nsh->count, 1);
1554 		for(i=0; i<conf->pool_size; i++)
1555 			nsh->dev[i].page = osh->dev[i].page;
1556 		for( ; i<newsize; i++)
1557 			nsh->dev[i].page = NULL;
1558 		kmem_cache_free(conf->slab_cache, osh);
1559 	}
1560 	kmem_cache_destroy(conf->slab_cache);
1561 
1562 	/* Step 3.
1563 	 * At this point, we are holding all the stripes so the array
1564 	 * is completely stalled, so now is a good time to resize
1565 	 * conf->disks and the scribble region
1566 	 */
1567 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1568 	if (ndisks) {
1569 		for (i=0; i<conf->raid_disks; i++)
1570 			ndisks[i] = conf->disks[i];
1571 		kfree(conf->disks);
1572 		conf->disks = ndisks;
1573 	} else
1574 		err = -ENOMEM;
1575 
1576 	get_online_cpus();
1577 	conf->scribble_len = scribble_len(newsize);
1578 	for_each_present_cpu(cpu) {
1579 		struct raid5_percpu *percpu;
1580 		void *scribble;
1581 
1582 		percpu = per_cpu_ptr(conf->percpu, cpu);
1583 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1584 
1585 		if (scribble) {
1586 			kfree(percpu->scribble);
1587 			percpu->scribble = scribble;
1588 		} else {
1589 			err = -ENOMEM;
1590 			break;
1591 		}
1592 	}
1593 	put_online_cpus();
1594 
1595 	/* Step 4, return new stripes to service */
1596 	while(!list_empty(&newstripes)) {
1597 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1598 		list_del_init(&nsh->lru);
1599 
1600 		for (i=conf->raid_disks; i < newsize; i++)
1601 			if (nsh->dev[i].page == NULL) {
1602 				struct page *p = alloc_page(GFP_NOIO);
1603 				nsh->dev[i].page = p;
1604 				if (!p)
1605 					err = -ENOMEM;
1606 			}
1607 		release_stripe(nsh);
1608 	}
1609 	/* critical section pass, GFP_NOIO no longer needed */
1610 
1611 	conf->slab_cache = sc;
1612 	conf->active_name = 1-conf->active_name;
1613 	conf->pool_size = newsize;
1614 	return err;
1615 }
1616 
1617 static int drop_one_stripe(struct r5conf *conf)
1618 {
1619 	struct stripe_head *sh;
1620 
1621 	spin_lock_irq(&conf->device_lock);
1622 	sh = get_free_stripe(conf);
1623 	spin_unlock_irq(&conf->device_lock);
1624 	if (!sh)
1625 		return 0;
1626 	BUG_ON(atomic_read(&sh->count));
1627 	shrink_buffers(sh);
1628 	kmem_cache_free(conf->slab_cache, sh);
1629 	atomic_dec(&conf->active_stripes);
1630 	return 1;
1631 }
1632 
1633 static void shrink_stripes(struct r5conf *conf)
1634 {
1635 	while (drop_one_stripe(conf))
1636 		;
1637 
1638 	if (conf->slab_cache)
1639 		kmem_cache_destroy(conf->slab_cache);
1640 	conf->slab_cache = NULL;
1641 }
1642 
1643 static void raid5_end_read_request(struct bio * bi, int error)
1644 {
1645 	struct stripe_head *sh = bi->bi_private;
1646 	struct r5conf *conf = sh->raid_conf;
1647 	int disks = sh->disks, i;
1648 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1649 	char b[BDEVNAME_SIZE];
1650 	struct md_rdev *rdev = NULL;
1651 
1652 
1653 	for (i=0 ; i<disks; i++)
1654 		if (bi == &sh->dev[i].req)
1655 			break;
1656 
1657 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1658 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1659 		uptodate);
1660 	if (i == disks) {
1661 		BUG();
1662 		return;
1663 	}
1664 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1665 		/* If replacement finished while this request was outstanding,
1666 		 * 'replacement' might be NULL already.
1667 		 * In that case it moved down to 'rdev'.
1668 		 * rdev is not removed until all requests are finished.
1669 		 */
1670 		rdev = conf->disks[i].replacement;
1671 	if (!rdev)
1672 		rdev = conf->disks[i].rdev;
1673 
1674 	if (uptodate) {
1675 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1676 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1677 			/* Note that this cannot happen on a
1678 			 * replacement device.  We just fail those on
1679 			 * any error
1680 			 */
1681 			printk_ratelimited(
1682 				KERN_INFO
1683 				"md/raid:%s: read error corrected"
1684 				" (%lu sectors at %llu on %s)\n",
1685 				mdname(conf->mddev), STRIPE_SECTORS,
1686 				(unsigned long long)(sh->sector
1687 						     + rdev->data_offset),
1688 				bdevname(rdev->bdev, b));
1689 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1690 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1691 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1692 		}
1693 		if (atomic_read(&rdev->read_errors))
1694 			atomic_set(&rdev->read_errors, 0);
1695 	} else {
1696 		const char *bdn = bdevname(rdev->bdev, b);
1697 		int retry = 0;
1698 
1699 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1700 		atomic_inc(&rdev->read_errors);
1701 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1702 			printk_ratelimited(
1703 				KERN_WARNING
1704 				"md/raid:%s: read error on replacement device "
1705 				"(sector %llu on %s).\n",
1706 				mdname(conf->mddev),
1707 				(unsigned long long)(sh->sector
1708 						     + rdev->data_offset),
1709 				bdn);
1710 		else if (conf->mddev->degraded >= conf->max_degraded)
1711 			printk_ratelimited(
1712 				KERN_WARNING
1713 				"md/raid:%s: read error not correctable "
1714 				"(sector %llu on %s).\n",
1715 				mdname(conf->mddev),
1716 				(unsigned long long)(sh->sector
1717 						     + rdev->data_offset),
1718 				bdn);
1719 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1720 			/* Oh, no!!! */
1721 			printk_ratelimited(
1722 				KERN_WARNING
1723 				"md/raid:%s: read error NOT corrected!! "
1724 				"(sector %llu on %s).\n",
1725 				mdname(conf->mddev),
1726 				(unsigned long long)(sh->sector
1727 						     + rdev->data_offset),
1728 				bdn);
1729 		else if (atomic_read(&rdev->read_errors)
1730 			 > conf->max_nr_stripes)
1731 			printk(KERN_WARNING
1732 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1733 			       mdname(conf->mddev), bdn);
1734 		else
1735 			retry = 1;
1736 		if (retry)
1737 			set_bit(R5_ReadError, &sh->dev[i].flags);
1738 		else {
1739 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1740 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1741 			md_error(conf->mddev, rdev);
1742 		}
1743 	}
1744 	rdev_dec_pending(rdev, conf->mddev);
1745 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1746 	set_bit(STRIPE_HANDLE, &sh->state);
1747 	release_stripe(sh);
1748 }
1749 
1750 static void raid5_end_write_request(struct bio *bi, int error)
1751 {
1752 	struct stripe_head *sh = bi->bi_private;
1753 	struct r5conf *conf = sh->raid_conf;
1754 	int disks = sh->disks, i;
1755 	struct md_rdev *uninitialized_var(rdev);
1756 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1757 	sector_t first_bad;
1758 	int bad_sectors;
1759 	int replacement = 0;
1760 
1761 	for (i = 0 ; i < disks; i++) {
1762 		if (bi == &sh->dev[i].req) {
1763 			rdev = conf->disks[i].rdev;
1764 			break;
1765 		}
1766 		if (bi == &sh->dev[i].rreq) {
1767 			rdev = conf->disks[i].replacement;
1768 			if (rdev)
1769 				replacement = 1;
1770 			else
1771 				/* rdev was removed and 'replacement'
1772 				 * replaced it.  rdev is not removed
1773 				 * until all requests are finished.
1774 				 */
1775 				rdev = conf->disks[i].rdev;
1776 			break;
1777 		}
1778 	}
1779 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1780 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1781 		uptodate);
1782 	if (i == disks) {
1783 		BUG();
1784 		return;
1785 	}
1786 
1787 	if (replacement) {
1788 		if (!uptodate)
1789 			md_error(conf->mddev, rdev);
1790 		else if (is_badblock(rdev, sh->sector,
1791 				     STRIPE_SECTORS,
1792 				     &first_bad, &bad_sectors))
1793 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1794 	} else {
1795 		if (!uptodate) {
1796 			set_bit(WriteErrorSeen, &rdev->flags);
1797 			set_bit(R5_WriteError, &sh->dev[i].flags);
1798 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1799 				set_bit(MD_RECOVERY_NEEDED,
1800 					&rdev->mddev->recovery);
1801 		} else if (is_badblock(rdev, sh->sector,
1802 				       STRIPE_SECTORS,
1803 				       &first_bad, &bad_sectors))
1804 			set_bit(R5_MadeGood, &sh->dev[i].flags);
1805 	}
1806 	rdev_dec_pending(rdev, conf->mddev);
1807 
1808 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1809 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
1810 	set_bit(STRIPE_HANDLE, &sh->state);
1811 	release_stripe(sh);
1812 }
1813 
1814 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1815 
1816 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1817 {
1818 	struct r5dev *dev = &sh->dev[i];
1819 
1820 	bio_init(&dev->req);
1821 	dev->req.bi_io_vec = &dev->vec;
1822 	dev->req.bi_vcnt++;
1823 	dev->req.bi_max_vecs++;
1824 	dev->req.bi_private = sh;
1825 	dev->vec.bv_page = dev->page;
1826 
1827 	bio_init(&dev->rreq);
1828 	dev->rreq.bi_io_vec = &dev->rvec;
1829 	dev->rreq.bi_vcnt++;
1830 	dev->rreq.bi_max_vecs++;
1831 	dev->rreq.bi_private = sh;
1832 	dev->rvec.bv_page = dev->page;
1833 
1834 	dev->flags = 0;
1835 	dev->sector = compute_blocknr(sh, i, previous);
1836 }
1837 
1838 static void error(struct mddev *mddev, struct md_rdev *rdev)
1839 {
1840 	char b[BDEVNAME_SIZE];
1841 	struct r5conf *conf = mddev->private;
1842 	unsigned long flags;
1843 	pr_debug("raid456: error called\n");
1844 
1845 	spin_lock_irqsave(&conf->device_lock, flags);
1846 	clear_bit(In_sync, &rdev->flags);
1847 	mddev->degraded = calc_degraded(conf);
1848 	spin_unlock_irqrestore(&conf->device_lock, flags);
1849 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1850 
1851 	set_bit(Blocked, &rdev->flags);
1852 	set_bit(Faulty, &rdev->flags);
1853 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1854 	printk(KERN_ALERT
1855 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
1856 	       "md/raid:%s: Operation continuing on %d devices.\n",
1857 	       mdname(mddev),
1858 	       bdevname(rdev->bdev, b),
1859 	       mdname(mddev),
1860 	       conf->raid_disks - mddev->degraded);
1861 }
1862 
1863 /*
1864  * Input: a 'big' sector number,
1865  * Output: index of the data and parity disk, and the sector # in them.
1866  */
1867 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1868 				     int previous, int *dd_idx,
1869 				     struct stripe_head *sh)
1870 {
1871 	sector_t stripe, stripe2;
1872 	sector_t chunk_number;
1873 	unsigned int chunk_offset;
1874 	int pd_idx, qd_idx;
1875 	int ddf_layout = 0;
1876 	sector_t new_sector;
1877 	int algorithm = previous ? conf->prev_algo
1878 				 : conf->algorithm;
1879 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1880 					 : conf->chunk_sectors;
1881 	int raid_disks = previous ? conf->previous_raid_disks
1882 				  : conf->raid_disks;
1883 	int data_disks = raid_disks - conf->max_degraded;
1884 
1885 	/* First compute the information on this sector */
1886 
1887 	/*
1888 	 * Compute the chunk number and the sector offset inside the chunk
1889 	 */
1890 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1891 	chunk_number = r_sector;
1892 
1893 	/*
1894 	 * Compute the stripe number
1895 	 */
1896 	stripe = chunk_number;
1897 	*dd_idx = sector_div(stripe, data_disks);
1898 	stripe2 = stripe;
1899 	/*
1900 	 * Select the parity disk based on the user selected algorithm.
1901 	 */
1902 	pd_idx = qd_idx = -1;
1903 	switch(conf->level) {
1904 	case 4:
1905 		pd_idx = data_disks;
1906 		break;
1907 	case 5:
1908 		switch (algorithm) {
1909 		case ALGORITHM_LEFT_ASYMMETRIC:
1910 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1911 			if (*dd_idx >= pd_idx)
1912 				(*dd_idx)++;
1913 			break;
1914 		case ALGORITHM_RIGHT_ASYMMETRIC:
1915 			pd_idx = sector_div(stripe2, raid_disks);
1916 			if (*dd_idx >= pd_idx)
1917 				(*dd_idx)++;
1918 			break;
1919 		case ALGORITHM_LEFT_SYMMETRIC:
1920 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1921 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1922 			break;
1923 		case ALGORITHM_RIGHT_SYMMETRIC:
1924 			pd_idx = sector_div(stripe2, raid_disks);
1925 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1926 			break;
1927 		case ALGORITHM_PARITY_0:
1928 			pd_idx = 0;
1929 			(*dd_idx)++;
1930 			break;
1931 		case ALGORITHM_PARITY_N:
1932 			pd_idx = data_disks;
1933 			break;
1934 		default:
1935 			BUG();
1936 		}
1937 		break;
1938 	case 6:
1939 
1940 		switch (algorithm) {
1941 		case ALGORITHM_LEFT_ASYMMETRIC:
1942 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1943 			qd_idx = pd_idx + 1;
1944 			if (pd_idx == raid_disks-1) {
1945 				(*dd_idx)++;	/* Q D D D P */
1946 				qd_idx = 0;
1947 			} else if (*dd_idx >= pd_idx)
1948 				(*dd_idx) += 2; /* D D P Q D */
1949 			break;
1950 		case ALGORITHM_RIGHT_ASYMMETRIC:
1951 			pd_idx = sector_div(stripe2, raid_disks);
1952 			qd_idx = pd_idx + 1;
1953 			if (pd_idx == raid_disks-1) {
1954 				(*dd_idx)++;	/* Q D D D P */
1955 				qd_idx = 0;
1956 			} else if (*dd_idx >= pd_idx)
1957 				(*dd_idx) += 2; /* D D P Q D */
1958 			break;
1959 		case ALGORITHM_LEFT_SYMMETRIC:
1960 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1961 			qd_idx = (pd_idx + 1) % raid_disks;
1962 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1963 			break;
1964 		case ALGORITHM_RIGHT_SYMMETRIC:
1965 			pd_idx = sector_div(stripe2, raid_disks);
1966 			qd_idx = (pd_idx + 1) % raid_disks;
1967 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1968 			break;
1969 
1970 		case ALGORITHM_PARITY_0:
1971 			pd_idx = 0;
1972 			qd_idx = 1;
1973 			(*dd_idx) += 2;
1974 			break;
1975 		case ALGORITHM_PARITY_N:
1976 			pd_idx = data_disks;
1977 			qd_idx = data_disks + 1;
1978 			break;
1979 
1980 		case ALGORITHM_ROTATING_ZERO_RESTART:
1981 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1982 			 * of blocks for computing Q is different.
1983 			 */
1984 			pd_idx = sector_div(stripe2, raid_disks);
1985 			qd_idx = pd_idx + 1;
1986 			if (pd_idx == raid_disks-1) {
1987 				(*dd_idx)++;	/* Q D D D P */
1988 				qd_idx = 0;
1989 			} else if (*dd_idx >= pd_idx)
1990 				(*dd_idx) += 2; /* D D P Q D */
1991 			ddf_layout = 1;
1992 			break;
1993 
1994 		case ALGORITHM_ROTATING_N_RESTART:
1995 			/* Same a left_asymmetric, by first stripe is
1996 			 * D D D P Q  rather than
1997 			 * Q D D D P
1998 			 */
1999 			stripe2 += 1;
2000 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2001 			qd_idx = pd_idx + 1;
2002 			if (pd_idx == raid_disks-1) {
2003 				(*dd_idx)++;	/* Q D D D P */
2004 				qd_idx = 0;
2005 			} else if (*dd_idx >= pd_idx)
2006 				(*dd_idx) += 2; /* D D P Q D */
2007 			ddf_layout = 1;
2008 			break;
2009 
2010 		case ALGORITHM_ROTATING_N_CONTINUE:
2011 			/* Same as left_symmetric but Q is before P */
2012 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2013 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2014 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2015 			ddf_layout = 1;
2016 			break;
2017 
2018 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2019 			/* RAID5 left_asymmetric, with Q on last device */
2020 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2021 			if (*dd_idx >= pd_idx)
2022 				(*dd_idx)++;
2023 			qd_idx = raid_disks - 1;
2024 			break;
2025 
2026 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2027 			pd_idx = sector_div(stripe2, raid_disks-1);
2028 			if (*dd_idx >= pd_idx)
2029 				(*dd_idx)++;
2030 			qd_idx = raid_disks - 1;
2031 			break;
2032 
2033 		case ALGORITHM_LEFT_SYMMETRIC_6:
2034 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2035 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2036 			qd_idx = raid_disks - 1;
2037 			break;
2038 
2039 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2040 			pd_idx = sector_div(stripe2, raid_disks-1);
2041 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2042 			qd_idx = raid_disks - 1;
2043 			break;
2044 
2045 		case ALGORITHM_PARITY_0_6:
2046 			pd_idx = 0;
2047 			(*dd_idx)++;
2048 			qd_idx = raid_disks - 1;
2049 			break;
2050 
2051 		default:
2052 			BUG();
2053 		}
2054 		break;
2055 	}
2056 
2057 	if (sh) {
2058 		sh->pd_idx = pd_idx;
2059 		sh->qd_idx = qd_idx;
2060 		sh->ddf_layout = ddf_layout;
2061 	}
2062 	/*
2063 	 * Finally, compute the new sector number
2064 	 */
2065 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2066 	return new_sector;
2067 }
2068 
2069 
2070 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2071 {
2072 	struct r5conf *conf = sh->raid_conf;
2073 	int raid_disks = sh->disks;
2074 	int data_disks = raid_disks - conf->max_degraded;
2075 	sector_t new_sector = sh->sector, check;
2076 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2077 					 : conf->chunk_sectors;
2078 	int algorithm = previous ? conf->prev_algo
2079 				 : conf->algorithm;
2080 	sector_t stripe;
2081 	int chunk_offset;
2082 	sector_t chunk_number;
2083 	int dummy1, dd_idx = i;
2084 	sector_t r_sector;
2085 	struct stripe_head sh2;
2086 
2087 
2088 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2089 	stripe = new_sector;
2090 
2091 	if (i == sh->pd_idx)
2092 		return 0;
2093 	switch(conf->level) {
2094 	case 4: break;
2095 	case 5:
2096 		switch (algorithm) {
2097 		case ALGORITHM_LEFT_ASYMMETRIC:
2098 		case ALGORITHM_RIGHT_ASYMMETRIC:
2099 			if (i > sh->pd_idx)
2100 				i--;
2101 			break;
2102 		case ALGORITHM_LEFT_SYMMETRIC:
2103 		case ALGORITHM_RIGHT_SYMMETRIC:
2104 			if (i < sh->pd_idx)
2105 				i += raid_disks;
2106 			i -= (sh->pd_idx + 1);
2107 			break;
2108 		case ALGORITHM_PARITY_0:
2109 			i -= 1;
2110 			break;
2111 		case ALGORITHM_PARITY_N:
2112 			break;
2113 		default:
2114 			BUG();
2115 		}
2116 		break;
2117 	case 6:
2118 		if (i == sh->qd_idx)
2119 			return 0; /* It is the Q disk */
2120 		switch (algorithm) {
2121 		case ALGORITHM_LEFT_ASYMMETRIC:
2122 		case ALGORITHM_RIGHT_ASYMMETRIC:
2123 		case ALGORITHM_ROTATING_ZERO_RESTART:
2124 		case ALGORITHM_ROTATING_N_RESTART:
2125 			if (sh->pd_idx == raid_disks-1)
2126 				i--;	/* Q D D D P */
2127 			else if (i > sh->pd_idx)
2128 				i -= 2; /* D D P Q D */
2129 			break;
2130 		case ALGORITHM_LEFT_SYMMETRIC:
2131 		case ALGORITHM_RIGHT_SYMMETRIC:
2132 			if (sh->pd_idx == raid_disks-1)
2133 				i--; /* Q D D D P */
2134 			else {
2135 				/* D D P Q D */
2136 				if (i < sh->pd_idx)
2137 					i += raid_disks;
2138 				i -= (sh->pd_idx + 2);
2139 			}
2140 			break;
2141 		case ALGORITHM_PARITY_0:
2142 			i -= 2;
2143 			break;
2144 		case ALGORITHM_PARITY_N:
2145 			break;
2146 		case ALGORITHM_ROTATING_N_CONTINUE:
2147 			/* Like left_symmetric, but P is before Q */
2148 			if (sh->pd_idx == 0)
2149 				i--;	/* P D D D Q */
2150 			else {
2151 				/* D D Q P D */
2152 				if (i < sh->pd_idx)
2153 					i += raid_disks;
2154 				i -= (sh->pd_idx + 1);
2155 			}
2156 			break;
2157 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2158 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2159 			if (i > sh->pd_idx)
2160 				i--;
2161 			break;
2162 		case ALGORITHM_LEFT_SYMMETRIC_6:
2163 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2164 			if (i < sh->pd_idx)
2165 				i += data_disks + 1;
2166 			i -= (sh->pd_idx + 1);
2167 			break;
2168 		case ALGORITHM_PARITY_0_6:
2169 			i -= 1;
2170 			break;
2171 		default:
2172 			BUG();
2173 		}
2174 		break;
2175 	}
2176 
2177 	chunk_number = stripe * data_disks + i;
2178 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2179 
2180 	check = raid5_compute_sector(conf, r_sector,
2181 				     previous, &dummy1, &sh2);
2182 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2183 		|| sh2.qd_idx != sh->qd_idx) {
2184 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2185 		       mdname(conf->mddev));
2186 		return 0;
2187 	}
2188 	return r_sector;
2189 }
2190 
2191 
2192 static void
2193 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2194 			 int rcw, int expand)
2195 {
2196 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2197 	struct r5conf *conf = sh->raid_conf;
2198 	int level = conf->level;
2199 
2200 	if (rcw) {
2201 		/* if we are not expanding this is a proper write request, and
2202 		 * there will be bios with new data to be drained into the
2203 		 * stripe cache
2204 		 */
2205 		if (!expand) {
2206 			sh->reconstruct_state = reconstruct_state_drain_run;
2207 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2208 		} else
2209 			sh->reconstruct_state = reconstruct_state_run;
2210 
2211 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2212 
2213 		for (i = disks; i--; ) {
2214 			struct r5dev *dev = &sh->dev[i];
2215 
2216 			if (dev->towrite) {
2217 				set_bit(R5_LOCKED, &dev->flags);
2218 				set_bit(R5_Wantdrain, &dev->flags);
2219 				if (!expand)
2220 					clear_bit(R5_UPTODATE, &dev->flags);
2221 				s->locked++;
2222 			}
2223 		}
2224 		if (s->locked + conf->max_degraded == disks)
2225 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2226 				atomic_inc(&conf->pending_full_writes);
2227 	} else {
2228 		BUG_ON(level == 6);
2229 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2230 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2231 
2232 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2233 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2234 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2235 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2236 
2237 		for (i = disks; i--; ) {
2238 			struct r5dev *dev = &sh->dev[i];
2239 			if (i == pd_idx)
2240 				continue;
2241 
2242 			if (dev->towrite &&
2243 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2244 			     test_bit(R5_Wantcompute, &dev->flags))) {
2245 				set_bit(R5_Wantdrain, &dev->flags);
2246 				set_bit(R5_LOCKED, &dev->flags);
2247 				clear_bit(R5_UPTODATE, &dev->flags);
2248 				s->locked++;
2249 			}
2250 		}
2251 	}
2252 
2253 	/* keep the parity disk(s) locked while asynchronous operations
2254 	 * are in flight
2255 	 */
2256 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2257 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2258 	s->locked++;
2259 
2260 	if (level == 6) {
2261 		int qd_idx = sh->qd_idx;
2262 		struct r5dev *dev = &sh->dev[qd_idx];
2263 
2264 		set_bit(R5_LOCKED, &dev->flags);
2265 		clear_bit(R5_UPTODATE, &dev->flags);
2266 		s->locked++;
2267 	}
2268 
2269 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2270 		__func__, (unsigned long long)sh->sector,
2271 		s->locked, s->ops_request);
2272 }
2273 
2274 /*
2275  * Each stripe/dev can have one or more bion attached.
2276  * toread/towrite point to the first in a chain.
2277  * The bi_next chain must be in order.
2278  */
2279 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2280 {
2281 	struct bio **bip;
2282 	struct r5conf *conf = sh->raid_conf;
2283 	int firstwrite=0;
2284 
2285 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2286 		(unsigned long long)bi->bi_sector,
2287 		(unsigned long long)sh->sector);
2288 
2289 
2290 	spin_lock_irq(&conf->device_lock);
2291 	if (forwrite) {
2292 		bip = &sh->dev[dd_idx].towrite;
2293 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2294 			firstwrite = 1;
2295 	} else
2296 		bip = &sh->dev[dd_idx].toread;
2297 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2298 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2299 			goto overlap;
2300 		bip = & (*bip)->bi_next;
2301 	}
2302 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2303 		goto overlap;
2304 
2305 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2306 	if (*bip)
2307 		bi->bi_next = *bip;
2308 	*bip = bi;
2309 	bi->bi_phys_segments++;
2310 
2311 	if (forwrite) {
2312 		/* check if page is covered */
2313 		sector_t sector = sh->dev[dd_idx].sector;
2314 		for (bi=sh->dev[dd_idx].towrite;
2315 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2316 			     bi && bi->bi_sector <= sector;
2317 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2318 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2319 				sector = bi->bi_sector + (bi->bi_size>>9);
2320 		}
2321 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2322 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2323 	}
2324 	spin_unlock_irq(&conf->device_lock);
2325 
2326 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2327 		(unsigned long long)(*bip)->bi_sector,
2328 		(unsigned long long)sh->sector, dd_idx);
2329 
2330 	if (conf->mddev->bitmap && firstwrite) {
2331 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2332 				  STRIPE_SECTORS, 0);
2333 		sh->bm_seq = conf->seq_flush+1;
2334 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2335 	}
2336 	return 1;
2337 
2338  overlap:
2339 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2340 	spin_unlock_irq(&conf->device_lock);
2341 	return 0;
2342 }
2343 
2344 static void end_reshape(struct r5conf *conf);
2345 
2346 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2347 			    struct stripe_head *sh)
2348 {
2349 	int sectors_per_chunk =
2350 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2351 	int dd_idx;
2352 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2353 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2354 
2355 	raid5_compute_sector(conf,
2356 			     stripe * (disks - conf->max_degraded)
2357 			     *sectors_per_chunk + chunk_offset,
2358 			     previous,
2359 			     &dd_idx, sh);
2360 }
2361 
2362 static void
2363 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2364 				struct stripe_head_state *s, int disks,
2365 				struct bio **return_bi)
2366 {
2367 	int i;
2368 	for (i = disks; i--; ) {
2369 		struct bio *bi;
2370 		int bitmap_end = 0;
2371 
2372 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2373 			struct md_rdev *rdev;
2374 			rcu_read_lock();
2375 			rdev = rcu_dereference(conf->disks[i].rdev);
2376 			if (rdev && test_bit(In_sync, &rdev->flags))
2377 				atomic_inc(&rdev->nr_pending);
2378 			else
2379 				rdev = NULL;
2380 			rcu_read_unlock();
2381 			if (rdev) {
2382 				if (!rdev_set_badblocks(
2383 					    rdev,
2384 					    sh->sector,
2385 					    STRIPE_SECTORS, 0))
2386 					md_error(conf->mddev, rdev);
2387 				rdev_dec_pending(rdev, conf->mddev);
2388 			}
2389 		}
2390 		spin_lock_irq(&conf->device_lock);
2391 		/* fail all writes first */
2392 		bi = sh->dev[i].towrite;
2393 		sh->dev[i].towrite = NULL;
2394 		if (bi) {
2395 			s->to_write--;
2396 			bitmap_end = 1;
2397 		}
2398 
2399 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2400 			wake_up(&conf->wait_for_overlap);
2401 
2402 		while (bi && bi->bi_sector <
2403 			sh->dev[i].sector + STRIPE_SECTORS) {
2404 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2405 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2406 			if (!raid5_dec_bi_phys_segments(bi)) {
2407 				md_write_end(conf->mddev);
2408 				bi->bi_next = *return_bi;
2409 				*return_bi = bi;
2410 			}
2411 			bi = nextbi;
2412 		}
2413 		/* and fail all 'written' */
2414 		bi = sh->dev[i].written;
2415 		sh->dev[i].written = NULL;
2416 		if (bi) bitmap_end = 1;
2417 		while (bi && bi->bi_sector <
2418 		       sh->dev[i].sector + STRIPE_SECTORS) {
2419 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2420 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2421 			if (!raid5_dec_bi_phys_segments(bi)) {
2422 				md_write_end(conf->mddev);
2423 				bi->bi_next = *return_bi;
2424 				*return_bi = bi;
2425 			}
2426 			bi = bi2;
2427 		}
2428 
2429 		/* fail any reads if this device is non-operational and
2430 		 * the data has not reached the cache yet.
2431 		 */
2432 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2433 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2434 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2435 			bi = sh->dev[i].toread;
2436 			sh->dev[i].toread = NULL;
2437 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2438 				wake_up(&conf->wait_for_overlap);
2439 			if (bi) s->to_read--;
2440 			while (bi && bi->bi_sector <
2441 			       sh->dev[i].sector + STRIPE_SECTORS) {
2442 				struct bio *nextbi =
2443 					r5_next_bio(bi, sh->dev[i].sector);
2444 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2445 				if (!raid5_dec_bi_phys_segments(bi)) {
2446 					bi->bi_next = *return_bi;
2447 					*return_bi = bi;
2448 				}
2449 				bi = nextbi;
2450 			}
2451 		}
2452 		spin_unlock_irq(&conf->device_lock);
2453 		if (bitmap_end)
2454 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2455 					STRIPE_SECTORS, 0, 0);
2456 		/* If we were in the middle of a write the parity block might
2457 		 * still be locked - so just clear all R5_LOCKED flags
2458 		 */
2459 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2460 	}
2461 
2462 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2463 		if (atomic_dec_and_test(&conf->pending_full_writes))
2464 			md_wakeup_thread(conf->mddev->thread);
2465 }
2466 
2467 static void
2468 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2469 		   struct stripe_head_state *s)
2470 {
2471 	int abort = 0;
2472 	int i;
2473 
2474 	clear_bit(STRIPE_SYNCING, &sh->state);
2475 	s->syncing = 0;
2476 	s->replacing = 0;
2477 	/* There is nothing more to do for sync/check/repair.
2478 	 * Don't even need to abort as that is handled elsewhere
2479 	 * if needed, and not always wanted e.g. if there is a known
2480 	 * bad block here.
2481 	 * For recover/replace we need to record a bad block on all
2482 	 * non-sync devices, or abort the recovery
2483 	 */
2484 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2485 		/* During recovery devices cannot be removed, so
2486 		 * locking and refcounting of rdevs is not needed
2487 		 */
2488 		for (i = 0; i < conf->raid_disks; i++) {
2489 			struct md_rdev *rdev = conf->disks[i].rdev;
2490 			if (rdev
2491 			    && !test_bit(Faulty, &rdev->flags)
2492 			    && !test_bit(In_sync, &rdev->flags)
2493 			    && !rdev_set_badblocks(rdev, sh->sector,
2494 						   STRIPE_SECTORS, 0))
2495 				abort = 1;
2496 			rdev = conf->disks[i].replacement;
2497 			if (rdev
2498 			    && !test_bit(Faulty, &rdev->flags)
2499 			    && !test_bit(In_sync, &rdev->flags)
2500 			    && !rdev_set_badblocks(rdev, sh->sector,
2501 						   STRIPE_SECTORS, 0))
2502 				abort = 1;
2503 		}
2504 		if (abort)
2505 			conf->recovery_disabled =
2506 				conf->mddev->recovery_disabled;
2507 	}
2508 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2509 }
2510 
2511 static int want_replace(struct stripe_head *sh, int disk_idx)
2512 {
2513 	struct md_rdev *rdev;
2514 	int rv = 0;
2515 	/* Doing recovery so rcu locking not required */
2516 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2517 	if (rdev
2518 	    && !test_bit(Faulty, &rdev->flags)
2519 	    && !test_bit(In_sync, &rdev->flags)
2520 	    && (rdev->recovery_offset <= sh->sector
2521 		|| rdev->mddev->recovery_cp <= sh->sector))
2522 		rv = 1;
2523 
2524 	return rv;
2525 }
2526 
2527 /* fetch_block - checks the given member device to see if its data needs
2528  * to be read or computed to satisfy a request.
2529  *
2530  * Returns 1 when no more member devices need to be checked, otherwise returns
2531  * 0 to tell the loop in handle_stripe_fill to continue
2532  */
2533 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2534 		       int disk_idx, int disks)
2535 {
2536 	struct r5dev *dev = &sh->dev[disk_idx];
2537 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2538 				  &sh->dev[s->failed_num[1]] };
2539 
2540 	/* is the data in this block needed, and can we get it? */
2541 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2542 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2543 	    (dev->toread ||
2544 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2545 	     s->syncing || s->expanding ||
2546 	     (s->replacing && want_replace(sh, disk_idx)) ||
2547 	     (s->failed >= 1 && fdev[0]->toread) ||
2548 	     (s->failed >= 2 && fdev[1]->toread) ||
2549 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2550 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2551 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2552 		/* we would like to get this block, possibly by computing it,
2553 		 * otherwise read it if the backing disk is insync
2554 		 */
2555 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2556 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2557 		if ((s->uptodate == disks - 1) &&
2558 		    (s->failed && (disk_idx == s->failed_num[0] ||
2559 				   disk_idx == s->failed_num[1]))) {
2560 			/* have disk failed, and we're requested to fetch it;
2561 			 * do compute it
2562 			 */
2563 			pr_debug("Computing stripe %llu block %d\n",
2564 			       (unsigned long long)sh->sector, disk_idx);
2565 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2566 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2567 			set_bit(R5_Wantcompute, &dev->flags);
2568 			sh->ops.target = disk_idx;
2569 			sh->ops.target2 = -1; /* no 2nd target */
2570 			s->req_compute = 1;
2571 			/* Careful: from this point on 'uptodate' is in the eye
2572 			 * of raid_run_ops which services 'compute' operations
2573 			 * before writes. R5_Wantcompute flags a block that will
2574 			 * be R5_UPTODATE by the time it is needed for a
2575 			 * subsequent operation.
2576 			 */
2577 			s->uptodate++;
2578 			return 1;
2579 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2580 			/* Computing 2-failure is *very* expensive; only
2581 			 * do it if failed >= 2
2582 			 */
2583 			int other;
2584 			for (other = disks; other--; ) {
2585 				if (other == disk_idx)
2586 					continue;
2587 				if (!test_bit(R5_UPTODATE,
2588 				      &sh->dev[other].flags))
2589 					break;
2590 			}
2591 			BUG_ON(other < 0);
2592 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2593 			       (unsigned long long)sh->sector,
2594 			       disk_idx, other);
2595 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2596 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2597 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2598 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2599 			sh->ops.target = disk_idx;
2600 			sh->ops.target2 = other;
2601 			s->uptodate += 2;
2602 			s->req_compute = 1;
2603 			return 1;
2604 		} else if (test_bit(R5_Insync, &dev->flags)) {
2605 			set_bit(R5_LOCKED, &dev->flags);
2606 			set_bit(R5_Wantread, &dev->flags);
2607 			s->locked++;
2608 			pr_debug("Reading block %d (sync=%d)\n",
2609 				disk_idx, s->syncing);
2610 		}
2611 	}
2612 
2613 	return 0;
2614 }
2615 
2616 /**
2617  * handle_stripe_fill - read or compute data to satisfy pending requests.
2618  */
2619 static void handle_stripe_fill(struct stripe_head *sh,
2620 			       struct stripe_head_state *s,
2621 			       int disks)
2622 {
2623 	int i;
2624 
2625 	/* look for blocks to read/compute, skip this if a compute
2626 	 * is already in flight, or if the stripe contents are in the
2627 	 * midst of changing due to a write
2628 	 */
2629 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2630 	    !sh->reconstruct_state)
2631 		for (i = disks; i--; )
2632 			if (fetch_block(sh, s, i, disks))
2633 				break;
2634 	set_bit(STRIPE_HANDLE, &sh->state);
2635 }
2636 
2637 
2638 /* handle_stripe_clean_event
2639  * any written block on an uptodate or failed drive can be returned.
2640  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2641  * never LOCKED, so we don't need to test 'failed' directly.
2642  */
2643 static void handle_stripe_clean_event(struct r5conf *conf,
2644 	struct stripe_head *sh, int disks, struct bio **return_bi)
2645 {
2646 	int i;
2647 	struct r5dev *dev;
2648 
2649 	for (i = disks; i--; )
2650 		if (sh->dev[i].written) {
2651 			dev = &sh->dev[i];
2652 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2653 				test_bit(R5_UPTODATE, &dev->flags)) {
2654 				/* We can return any write requests */
2655 				struct bio *wbi, *wbi2;
2656 				int bitmap_end = 0;
2657 				pr_debug("Return write for disc %d\n", i);
2658 				spin_lock_irq(&conf->device_lock);
2659 				wbi = dev->written;
2660 				dev->written = NULL;
2661 				while (wbi && wbi->bi_sector <
2662 					dev->sector + STRIPE_SECTORS) {
2663 					wbi2 = r5_next_bio(wbi, dev->sector);
2664 					if (!raid5_dec_bi_phys_segments(wbi)) {
2665 						md_write_end(conf->mddev);
2666 						wbi->bi_next = *return_bi;
2667 						*return_bi = wbi;
2668 					}
2669 					wbi = wbi2;
2670 				}
2671 				if (dev->towrite == NULL)
2672 					bitmap_end = 1;
2673 				spin_unlock_irq(&conf->device_lock);
2674 				if (bitmap_end)
2675 					bitmap_endwrite(conf->mddev->bitmap,
2676 							sh->sector,
2677 							STRIPE_SECTORS,
2678 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2679 							0);
2680 			}
2681 		}
2682 
2683 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2684 		if (atomic_dec_and_test(&conf->pending_full_writes))
2685 			md_wakeup_thread(conf->mddev->thread);
2686 }
2687 
2688 static void handle_stripe_dirtying(struct r5conf *conf,
2689 				   struct stripe_head *sh,
2690 				   struct stripe_head_state *s,
2691 				   int disks)
2692 {
2693 	int rmw = 0, rcw = 0, i;
2694 	if (conf->max_degraded == 2) {
2695 		/* RAID6 requires 'rcw' in current implementation
2696 		 * Calculate the real rcw later - for now fake it
2697 		 * look like rcw is cheaper
2698 		 */
2699 		rcw = 1; rmw = 2;
2700 	} else for (i = disks; i--; ) {
2701 		/* would I have to read this buffer for read_modify_write */
2702 		struct r5dev *dev = &sh->dev[i];
2703 		if ((dev->towrite || i == sh->pd_idx) &&
2704 		    !test_bit(R5_LOCKED, &dev->flags) &&
2705 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2706 		      test_bit(R5_Wantcompute, &dev->flags))) {
2707 			if (test_bit(R5_Insync, &dev->flags))
2708 				rmw++;
2709 			else
2710 				rmw += 2*disks;  /* cannot read it */
2711 		}
2712 		/* Would I have to read this buffer for reconstruct_write */
2713 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2714 		    !test_bit(R5_LOCKED, &dev->flags) &&
2715 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2716 		    test_bit(R5_Wantcompute, &dev->flags))) {
2717 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2718 			else
2719 				rcw += 2*disks;
2720 		}
2721 	}
2722 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2723 		(unsigned long long)sh->sector, rmw, rcw);
2724 	set_bit(STRIPE_HANDLE, &sh->state);
2725 	if (rmw < rcw && rmw > 0)
2726 		/* prefer read-modify-write, but need to get some data */
2727 		for (i = disks; i--; ) {
2728 			struct r5dev *dev = &sh->dev[i];
2729 			if ((dev->towrite || i == sh->pd_idx) &&
2730 			    !test_bit(R5_LOCKED, &dev->flags) &&
2731 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2732 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2733 			    test_bit(R5_Insync, &dev->flags)) {
2734 				if (
2735 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2736 					pr_debug("Read_old block "
2737 						"%d for r-m-w\n", i);
2738 					set_bit(R5_LOCKED, &dev->flags);
2739 					set_bit(R5_Wantread, &dev->flags);
2740 					s->locked++;
2741 				} else {
2742 					set_bit(STRIPE_DELAYED, &sh->state);
2743 					set_bit(STRIPE_HANDLE, &sh->state);
2744 				}
2745 			}
2746 		}
2747 	if (rcw <= rmw && rcw > 0) {
2748 		/* want reconstruct write, but need to get some data */
2749 		rcw = 0;
2750 		for (i = disks; i--; ) {
2751 			struct r5dev *dev = &sh->dev[i];
2752 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2753 			    i != sh->pd_idx && i != sh->qd_idx &&
2754 			    !test_bit(R5_LOCKED, &dev->flags) &&
2755 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2756 			      test_bit(R5_Wantcompute, &dev->flags))) {
2757 				rcw++;
2758 				if (!test_bit(R5_Insync, &dev->flags))
2759 					continue; /* it's a failed drive */
2760 				if (
2761 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2762 					pr_debug("Read_old block "
2763 						"%d for Reconstruct\n", i);
2764 					set_bit(R5_LOCKED, &dev->flags);
2765 					set_bit(R5_Wantread, &dev->flags);
2766 					s->locked++;
2767 				} else {
2768 					set_bit(STRIPE_DELAYED, &sh->state);
2769 					set_bit(STRIPE_HANDLE, &sh->state);
2770 				}
2771 			}
2772 		}
2773 	}
2774 	/* now if nothing is locked, and if we have enough data,
2775 	 * we can start a write request
2776 	 */
2777 	/* since handle_stripe can be called at any time we need to handle the
2778 	 * case where a compute block operation has been submitted and then a
2779 	 * subsequent call wants to start a write request.  raid_run_ops only
2780 	 * handles the case where compute block and reconstruct are requested
2781 	 * simultaneously.  If this is not the case then new writes need to be
2782 	 * held off until the compute completes.
2783 	 */
2784 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2785 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2786 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2787 		schedule_reconstruction(sh, s, rcw == 0, 0);
2788 }
2789 
2790 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2791 				struct stripe_head_state *s, int disks)
2792 {
2793 	struct r5dev *dev = NULL;
2794 
2795 	set_bit(STRIPE_HANDLE, &sh->state);
2796 
2797 	switch (sh->check_state) {
2798 	case check_state_idle:
2799 		/* start a new check operation if there are no failures */
2800 		if (s->failed == 0) {
2801 			BUG_ON(s->uptodate != disks);
2802 			sh->check_state = check_state_run;
2803 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2804 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2805 			s->uptodate--;
2806 			break;
2807 		}
2808 		dev = &sh->dev[s->failed_num[0]];
2809 		/* fall through */
2810 	case check_state_compute_result:
2811 		sh->check_state = check_state_idle;
2812 		if (!dev)
2813 			dev = &sh->dev[sh->pd_idx];
2814 
2815 		/* check that a write has not made the stripe insync */
2816 		if (test_bit(STRIPE_INSYNC, &sh->state))
2817 			break;
2818 
2819 		/* either failed parity check, or recovery is happening */
2820 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2821 		BUG_ON(s->uptodate != disks);
2822 
2823 		set_bit(R5_LOCKED, &dev->flags);
2824 		s->locked++;
2825 		set_bit(R5_Wantwrite, &dev->flags);
2826 
2827 		clear_bit(STRIPE_DEGRADED, &sh->state);
2828 		set_bit(STRIPE_INSYNC, &sh->state);
2829 		break;
2830 	case check_state_run:
2831 		break; /* we will be called again upon completion */
2832 	case check_state_check_result:
2833 		sh->check_state = check_state_idle;
2834 
2835 		/* if a failure occurred during the check operation, leave
2836 		 * STRIPE_INSYNC not set and let the stripe be handled again
2837 		 */
2838 		if (s->failed)
2839 			break;
2840 
2841 		/* handle a successful check operation, if parity is correct
2842 		 * we are done.  Otherwise update the mismatch count and repair
2843 		 * parity if !MD_RECOVERY_CHECK
2844 		 */
2845 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2846 			/* parity is correct (on disc,
2847 			 * not in buffer any more)
2848 			 */
2849 			set_bit(STRIPE_INSYNC, &sh->state);
2850 		else {
2851 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2852 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2853 				/* don't try to repair!! */
2854 				set_bit(STRIPE_INSYNC, &sh->state);
2855 			else {
2856 				sh->check_state = check_state_compute_run;
2857 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2858 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2859 				set_bit(R5_Wantcompute,
2860 					&sh->dev[sh->pd_idx].flags);
2861 				sh->ops.target = sh->pd_idx;
2862 				sh->ops.target2 = -1;
2863 				s->uptodate++;
2864 			}
2865 		}
2866 		break;
2867 	case check_state_compute_run:
2868 		break;
2869 	default:
2870 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2871 		       __func__, sh->check_state,
2872 		       (unsigned long long) sh->sector);
2873 		BUG();
2874 	}
2875 }
2876 
2877 
2878 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2879 				  struct stripe_head_state *s,
2880 				  int disks)
2881 {
2882 	int pd_idx = sh->pd_idx;
2883 	int qd_idx = sh->qd_idx;
2884 	struct r5dev *dev;
2885 
2886 	set_bit(STRIPE_HANDLE, &sh->state);
2887 
2888 	BUG_ON(s->failed > 2);
2889 
2890 	/* Want to check and possibly repair P and Q.
2891 	 * However there could be one 'failed' device, in which
2892 	 * case we can only check one of them, possibly using the
2893 	 * other to generate missing data
2894 	 */
2895 
2896 	switch (sh->check_state) {
2897 	case check_state_idle:
2898 		/* start a new check operation if there are < 2 failures */
2899 		if (s->failed == s->q_failed) {
2900 			/* The only possible failed device holds Q, so it
2901 			 * makes sense to check P (If anything else were failed,
2902 			 * we would have used P to recreate it).
2903 			 */
2904 			sh->check_state = check_state_run;
2905 		}
2906 		if (!s->q_failed && s->failed < 2) {
2907 			/* Q is not failed, and we didn't use it to generate
2908 			 * anything, so it makes sense to check it
2909 			 */
2910 			if (sh->check_state == check_state_run)
2911 				sh->check_state = check_state_run_pq;
2912 			else
2913 				sh->check_state = check_state_run_q;
2914 		}
2915 
2916 		/* discard potentially stale zero_sum_result */
2917 		sh->ops.zero_sum_result = 0;
2918 
2919 		if (sh->check_state == check_state_run) {
2920 			/* async_xor_zero_sum destroys the contents of P */
2921 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2922 			s->uptodate--;
2923 		}
2924 		if (sh->check_state >= check_state_run &&
2925 		    sh->check_state <= check_state_run_pq) {
2926 			/* async_syndrome_zero_sum preserves P and Q, so
2927 			 * no need to mark them !uptodate here
2928 			 */
2929 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2930 			break;
2931 		}
2932 
2933 		/* we have 2-disk failure */
2934 		BUG_ON(s->failed != 2);
2935 		/* fall through */
2936 	case check_state_compute_result:
2937 		sh->check_state = check_state_idle;
2938 
2939 		/* check that a write has not made the stripe insync */
2940 		if (test_bit(STRIPE_INSYNC, &sh->state))
2941 			break;
2942 
2943 		/* now write out any block on a failed drive,
2944 		 * or P or Q if they were recomputed
2945 		 */
2946 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2947 		if (s->failed == 2) {
2948 			dev = &sh->dev[s->failed_num[1]];
2949 			s->locked++;
2950 			set_bit(R5_LOCKED, &dev->flags);
2951 			set_bit(R5_Wantwrite, &dev->flags);
2952 		}
2953 		if (s->failed >= 1) {
2954 			dev = &sh->dev[s->failed_num[0]];
2955 			s->locked++;
2956 			set_bit(R5_LOCKED, &dev->flags);
2957 			set_bit(R5_Wantwrite, &dev->flags);
2958 		}
2959 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2960 			dev = &sh->dev[pd_idx];
2961 			s->locked++;
2962 			set_bit(R5_LOCKED, &dev->flags);
2963 			set_bit(R5_Wantwrite, &dev->flags);
2964 		}
2965 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2966 			dev = &sh->dev[qd_idx];
2967 			s->locked++;
2968 			set_bit(R5_LOCKED, &dev->flags);
2969 			set_bit(R5_Wantwrite, &dev->flags);
2970 		}
2971 		clear_bit(STRIPE_DEGRADED, &sh->state);
2972 
2973 		set_bit(STRIPE_INSYNC, &sh->state);
2974 		break;
2975 	case check_state_run:
2976 	case check_state_run_q:
2977 	case check_state_run_pq:
2978 		break; /* we will be called again upon completion */
2979 	case check_state_check_result:
2980 		sh->check_state = check_state_idle;
2981 
2982 		/* handle a successful check operation, if parity is correct
2983 		 * we are done.  Otherwise update the mismatch count and repair
2984 		 * parity if !MD_RECOVERY_CHECK
2985 		 */
2986 		if (sh->ops.zero_sum_result == 0) {
2987 			/* both parities are correct */
2988 			if (!s->failed)
2989 				set_bit(STRIPE_INSYNC, &sh->state);
2990 			else {
2991 				/* in contrast to the raid5 case we can validate
2992 				 * parity, but still have a failure to write
2993 				 * back
2994 				 */
2995 				sh->check_state = check_state_compute_result;
2996 				/* Returning at this point means that we may go
2997 				 * off and bring p and/or q uptodate again so
2998 				 * we make sure to check zero_sum_result again
2999 				 * to verify if p or q need writeback
3000 				 */
3001 			}
3002 		} else {
3003 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
3004 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3005 				/* don't try to repair!! */
3006 				set_bit(STRIPE_INSYNC, &sh->state);
3007 			else {
3008 				int *target = &sh->ops.target;
3009 
3010 				sh->ops.target = -1;
3011 				sh->ops.target2 = -1;
3012 				sh->check_state = check_state_compute_run;
3013 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3014 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3015 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3016 					set_bit(R5_Wantcompute,
3017 						&sh->dev[pd_idx].flags);
3018 					*target = pd_idx;
3019 					target = &sh->ops.target2;
3020 					s->uptodate++;
3021 				}
3022 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3023 					set_bit(R5_Wantcompute,
3024 						&sh->dev[qd_idx].flags);
3025 					*target = qd_idx;
3026 					s->uptodate++;
3027 				}
3028 			}
3029 		}
3030 		break;
3031 	case check_state_compute_run:
3032 		break;
3033 	default:
3034 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3035 		       __func__, sh->check_state,
3036 		       (unsigned long long) sh->sector);
3037 		BUG();
3038 	}
3039 }
3040 
3041 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3042 {
3043 	int i;
3044 
3045 	/* We have read all the blocks in this stripe and now we need to
3046 	 * copy some of them into a target stripe for expand.
3047 	 */
3048 	struct dma_async_tx_descriptor *tx = NULL;
3049 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3050 	for (i = 0; i < sh->disks; i++)
3051 		if (i != sh->pd_idx && i != sh->qd_idx) {
3052 			int dd_idx, j;
3053 			struct stripe_head *sh2;
3054 			struct async_submit_ctl submit;
3055 
3056 			sector_t bn = compute_blocknr(sh, i, 1);
3057 			sector_t s = raid5_compute_sector(conf, bn, 0,
3058 							  &dd_idx, NULL);
3059 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3060 			if (sh2 == NULL)
3061 				/* so far only the early blocks of this stripe
3062 				 * have been requested.  When later blocks
3063 				 * get requested, we will try again
3064 				 */
3065 				continue;
3066 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3067 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3068 				/* must have already done this block */
3069 				release_stripe(sh2);
3070 				continue;
3071 			}
3072 
3073 			/* place all the copies on one channel */
3074 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3075 			tx = async_memcpy(sh2->dev[dd_idx].page,
3076 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3077 					  &submit);
3078 
3079 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3080 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3081 			for (j = 0; j < conf->raid_disks; j++)
3082 				if (j != sh2->pd_idx &&
3083 				    j != sh2->qd_idx &&
3084 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3085 					break;
3086 			if (j == conf->raid_disks) {
3087 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3088 				set_bit(STRIPE_HANDLE, &sh2->state);
3089 			}
3090 			release_stripe(sh2);
3091 
3092 		}
3093 	/* done submitting copies, wait for them to complete */
3094 	if (tx) {
3095 		async_tx_ack(tx);
3096 		dma_wait_for_async_tx(tx);
3097 	}
3098 }
3099 
3100 /*
3101  * handle_stripe - do things to a stripe.
3102  *
3103  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3104  * state of various bits to see what needs to be done.
3105  * Possible results:
3106  *    return some read requests which now have data
3107  *    return some write requests which are safely on storage
3108  *    schedule a read on some buffers
3109  *    schedule a write of some buffers
3110  *    return confirmation of parity correctness
3111  *
3112  */
3113 
3114 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3115 {
3116 	struct r5conf *conf = sh->raid_conf;
3117 	int disks = sh->disks;
3118 	struct r5dev *dev;
3119 	int i;
3120 	int do_recovery = 0;
3121 
3122 	memset(s, 0, sizeof(*s));
3123 
3124 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3125 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3126 	s->failed_num[0] = -1;
3127 	s->failed_num[1] = -1;
3128 
3129 	/* Now to look around and see what can be done */
3130 	rcu_read_lock();
3131 	spin_lock_irq(&conf->device_lock);
3132 	for (i=disks; i--; ) {
3133 		struct md_rdev *rdev;
3134 		sector_t first_bad;
3135 		int bad_sectors;
3136 		int is_bad = 0;
3137 
3138 		dev = &sh->dev[i];
3139 
3140 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3141 			 i, dev->flags,
3142 			 dev->toread, dev->towrite, dev->written);
3143 		/* maybe we can reply to a read
3144 		 *
3145 		 * new wantfill requests are only permitted while
3146 		 * ops_complete_biofill is guaranteed to be inactive
3147 		 */
3148 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3149 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3150 			set_bit(R5_Wantfill, &dev->flags);
3151 
3152 		/* now count some things */
3153 		if (test_bit(R5_LOCKED, &dev->flags))
3154 			s->locked++;
3155 		if (test_bit(R5_UPTODATE, &dev->flags))
3156 			s->uptodate++;
3157 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3158 			s->compute++;
3159 			BUG_ON(s->compute > 2);
3160 		}
3161 
3162 		if (test_bit(R5_Wantfill, &dev->flags))
3163 			s->to_fill++;
3164 		else if (dev->toread)
3165 			s->to_read++;
3166 		if (dev->towrite) {
3167 			s->to_write++;
3168 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3169 				s->non_overwrite++;
3170 		}
3171 		if (dev->written)
3172 			s->written++;
3173 		/* Prefer to use the replacement for reads, but only
3174 		 * if it is recovered enough and has no bad blocks.
3175 		 */
3176 		rdev = rcu_dereference(conf->disks[i].replacement);
3177 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3178 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3179 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3180 				 &first_bad, &bad_sectors))
3181 			set_bit(R5_ReadRepl, &dev->flags);
3182 		else {
3183 			if (rdev)
3184 				set_bit(R5_NeedReplace, &dev->flags);
3185 			rdev = rcu_dereference(conf->disks[i].rdev);
3186 			clear_bit(R5_ReadRepl, &dev->flags);
3187 		}
3188 		if (rdev && test_bit(Faulty, &rdev->flags))
3189 			rdev = NULL;
3190 		if (rdev) {
3191 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3192 					     &first_bad, &bad_sectors);
3193 			if (s->blocked_rdev == NULL
3194 			    && (test_bit(Blocked, &rdev->flags)
3195 				|| is_bad < 0)) {
3196 				if (is_bad < 0)
3197 					set_bit(BlockedBadBlocks,
3198 						&rdev->flags);
3199 				s->blocked_rdev = rdev;
3200 				atomic_inc(&rdev->nr_pending);
3201 			}
3202 		}
3203 		clear_bit(R5_Insync, &dev->flags);
3204 		if (!rdev)
3205 			/* Not in-sync */;
3206 		else if (is_bad) {
3207 			/* also not in-sync */
3208 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3209 			    test_bit(R5_UPTODATE, &dev->flags)) {
3210 				/* treat as in-sync, but with a read error
3211 				 * which we can now try to correct
3212 				 */
3213 				set_bit(R5_Insync, &dev->flags);
3214 				set_bit(R5_ReadError, &dev->flags);
3215 			}
3216 		} else if (test_bit(In_sync, &rdev->flags))
3217 			set_bit(R5_Insync, &dev->flags);
3218 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3219 			/* in sync if before recovery_offset */
3220 			set_bit(R5_Insync, &dev->flags);
3221 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3222 			 test_bit(R5_Expanded, &dev->flags))
3223 			/* If we've reshaped into here, we assume it is Insync.
3224 			 * We will shortly update recovery_offset to make
3225 			 * it official.
3226 			 */
3227 			set_bit(R5_Insync, &dev->flags);
3228 
3229 		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3230 			/* This flag does not apply to '.replacement'
3231 			 * only to .rdev, so make sure to check that*/
3232 			struct md_rdev *rdev2 = rcu_dereference(
3233 				conf->disks[i].rdev);
3234 			if (rdev2 == rdev)
3235 				clear_bit(R5_Insync, &dev->flags);
3236 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3237 				s->handle_bad_blocks = 1;
3238 				atomic_inc(&rdev2->nr_pending);
3239 			} else
3240 				clear_bit(R5_WriteError, &dev->flags);
3241 		}
3242 		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3243 			/* This flag does not apply to '.replacement'
3244 			 * only to .rdev, so make sure to check that*/
3245 			struct md_rdev *rdev2 = rcu_dereference(
3246 				conf->disks[i].rdev);
3247 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3248 				s->handle_bad_blocks = 1;
3249 				atomic_inc(&rdev2->nr_pending);
3250 			} else
3251 				clear_bit(R5_MadeGood, &dev->flags);
3252 		}
3253 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3254 			struct md_rdev *rdev2 = rcu_dereference(
3255 				conf->disks[i].replacement);
3256 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3257 				s->handle_bad_blocks = 1;
3258 				atomic_inc(&rdev2->nr_pending);
3259 			} else
3260 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3261 		}
3262 		if (!test_bit(R5_Insync, &dev->flags)) {
3263 			/* The ReadError flag will just be confusing now */
3264 			clear_bit(R5_ReadError, &dev->flags);
3265 			clear_bit(R5_ReWrite, &dev->flags);
3266 		}
3267 		if (test_bit(R5_ReadError, &dev->flags))
3268 			clear_bit(R5_Insync, &dev->flags);
3269 		if (!test_bit(R5_Insync, &dev->flags)) {
3270 			if (s->failed < 2)
3271 				s->failed_num[s->failed] = i;
3272 			s->failed++;
3273 			if (rdev && !test_bit(Faulty, &rdev->flags))
3274 				do_recovery = 1;
3275 		}
3276 	}
3277 	spin_unlock_irq(&conf->device_lock);
3278 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3279 		/* If there is a failed device being replaced,
3280 		 *     we must be recovering.
3281 		 * else if we are after recovery_cp, we must be syncing
3282 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3283 		 * else we can only be replacing
3284 		 * sync and recovery both need to read all devices, and so
3285 		 * use the same flag.
3286 		 */
3287 		if (do_recovery ||
3288 		    sh->sector >= conf->mddev->recovery_cp ||
3289 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3290 			s->syncing = 1;
3291 		else
3292 			s->replacing = 1;
3293 	}
3294 	rcu_read_unlock();
3295 }
3296 
3297 static void handle_stripe(struct stripe_head *sh)
3298 {
3299 	struct stripe_head_state s;
3300 	struct r5conf *conf = sh->raid_conf;
3301 	int i;
3302 	int prexor;
3303 	int disks = sh->disks;
3304 	struct r5dev *pdev, *qdev;
3305 
3306 	clear_bit(STRIPE_HANDLE, &sh->state);
3307 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3308 		/* already being handled, ensure it gets handled
3309 		 * again when current action finishes */
3310 		set_bit(STRIPE_HANDLE, &sh->state);
3311 		return;
3312 	}
3313 
3314 	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3315 		set_bit(STRIPE_SYNCING, &sh->state);
3316 		clear_bit(STRIPE_INSYNC, &sh->state);
3317 	}
3318 	clear_bit(STRIPE_DELAYED, &sh->state);
3319 
3320 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3321 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3322 	       (unsigned long long)sh->sector, sh->state,
3323 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3324 	       sh->check_state, sh->reconstruct_state);
3325 
3326 	analyse_stripe(sh, &s);
3327 
3328 	if (s.handle_bad_blocks) {
3329 		set_bit(STRIPE_HANDLE, &sh->state);
3330 		goto finish;
3331 	}
3332 
3333 	if (unlikely(s.blocked_rdev)) {
3334 		if (s.syncing || s.expanding || s.expanded ||
3335 		    s.replacing || s.to_write || s.written) {
3336 			set_bit(STRIPE_HANDLE, &sh->state);
3337 			goto finish;
3338 		}
3339 		/* There is nothing for the blocked_rdev to block */
3340 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3341 		s.blocked_rdev = NULL;
3342 	}
3343 
3344 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3345 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3346 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3347 	}
3348 
3349 	pr_debug("locked=%d uptodate=%d to_read=%d"
3350 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3351 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3352 	       s.failed_num[0], s.failed_num[1]);
3353 	/* check if the array has lost more than max_degraded devices and,
3354 	 * if so, some requests might need to be failed.
3355 	 */
3356 	if (s.failed > conf->max_degraded) {
3357 		sh->check_state = 0;
3358 		sh->reconstruct_state = 0;
3359 		if (s.to_read+s.to_write+s.written)
3360 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3361 		if (s.syncing + s.replacing)
3362 			handle_failed_sync(conf, sh, &s);
3363 	}
3364 
3365 	/*
3366 	 * might be able to return some write requests if the parity blocks
3367 	 * are safe, or on a failed drive
3368 	 */
3369 	pdev = &sh->dev[sh->pd_idx];
3370 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3371 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3372 	qdev = &sh->dev[sh->qd_idx];
3373 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3374 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3375 		|| conf->level < 6;
3376 
3377 	if (s.written &&
3378 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3379 			     && !test_bit(R5_LOCKED, &pdev->flags)
3380 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3381 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3382 			     && !test_bit(R5_LOCKED, &qdev->flags)
3383 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3384 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3385 
3386 	/* Now we might consider reading some blocks, either to check/generate
3387 	 * parity, or to satisfy requests
3388 	 * or to load a block that is being partially written.
3389 	 */
3390 	if (s.to_read || s.non_overwrite
3391 	    || (conf->level == 6 && s.to_write && s.failed)
3392 	    || (s.syncing && (s.uptodate + s.compute < disks))
3393 	    || s.replacing
3394 	    || s.expanding)
3395 		handle_stripe_fill(sh, &s, disks);
3396 
3397 	/* Now we check to see if any write operations have recently
3398 	 * completed
3399 	 */
3400 	prexor = 0;
3401 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3402 		prexor = 1;
3403 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3404 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3405 		sh->reconstruct_state = reconstruct_state_idle;
3406 
3407 		/* All the 'written' buffers and the parity block are ready to
3408 		 * be written back to disk
3409 		 */
3410 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3411 		BUG_ON(sh->qd_idx >= 0 &&
3412 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3413 		for (i = disks; i--; ) {
3414 			struct r5dev *dev = &sh->dev[i];
3415 			if (test_bit(R5_LOCKED, &dev->flags) &&
3416 				(i == sh->pd_idx || i == sh->qd_idx ||
3417 				 dev->written)) {
3418 				pr_debug("Writing block %d\n", i);
3419 				set_bit(R5_Wantwrite, &dev->flags);
3420 				if (prexor)
3421 					continue;
3422 				if (!test_bit(R5_Insync, &dev->flags) ||
3423 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3424 				     s.failed == 0))
3425 					set_bit(STRIPE_INSYNC, &sh->state);
3426 			}
3427 		}
3428 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3429 			s.dec_preread_active = 1;
3430 	}
3431 
3432 	/* Now to consider new write requests and what else, if anything
3433 	 * should be read.  We do not handle new writes when:
3434 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3435 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3436 	 *    block.
3437 	 */
3438 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3439 		handle_stripe_dirtying(conf, sh, &s, disks);
3440 
3441 	/* maybe we need to check and possibly fix the parity for this stripe
3442 	 * Any reads will already have been scheduled, so we just see if enough
3443 	 * data is available.  The parity check is held off while parity
3444 	 * dependent operations are in flight.
3445 	 */
3446 	if (sh->check_state ||
3447 	    (s.syncing && s.locked == 0 &&
3448 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3449 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3450 		if (conf->level == 6)
3451 			handle_parity_checks6(conf, sh, &s, disks);
3452 		else
3453 			handle_parity_checks5(conf, sh, &s, disks);
3454 	}
3455 
3456 	if (s.replacing && s.locked == 0
3457 	    && !test_bit(STRIPE_INSYNC, &sh->state)) {
3458 		/* Write out to replacement devices where possible */
3459 		for (i = 0; i < conf->raid_disks; i++)
3460 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3461 			    test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3462 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3463 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3464 				s.locked++;
3465 			}
3466 		set_bit(STRIPE_INSYNC, &sh->state);
3467 	}
3468 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3469 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3470 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3471 		clear_bit(STRIPE_SYNCING, &sh->state);
3472 	}
3473 
3474 	/* If the failed drives are just a ReadError, then we might need
3475 	 * to progress the repair/check process
3476 	 */
3477 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3478 		for (i = 0; i < s.failed; i++) {
3479 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3480 			if (test_bit(R5_ReadError, &dev->flags)
3481 			    && !test_bit(R5_LOCKED, &dev->flags)
3482 			    && test_bit(R5_UPTODATE, &dev->flags)
3483 				) {
3484 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3485 					set_bit(R5_Wantwrite, &dev->flags);
3486 					set_bit(R5_ReWrite, &dev->flags);
3487 					set_bit(R5_LOCKED, &dev->flags);
3488 					s.locked++;
3489 				} else {
3490 					/* let's read it back */
3491 					set_bit(R5_Wantread, &dev->flags);
3492 					set_bit(R5_LOCKED, &dev->flags);
3493 					s.locked++;
3494 				}
3495 			}
3496 		}
3497 
3498 
3499 	/* Finish reconstruct operations initiated by the expansion process */
3500 	if (sh->reconstruct_state == reconstruct_state_result) {
3501 		struct stripe_head *sh_src
3502 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3503 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3504 			/* sh cannot be written until sh_src has been read.
3505 			 * so arrange for sh to be delayed a little
3506 			 */
3507 			set_bit(STRIPE_DELAYED, &sh->state);
3508 			set_bit(STRIPE_HANDLE, &sh->state);
3509 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3510 					      &sh_src->state))
3511 				atomic_inc(&conf->preread_active_stripes);
3512 			release_stripe(sh_src);
3513 			goto finish;
3514 		}
3515 		if (sh_src)
3516 			release_stripe(sh_src);
3517 
3518 		sh->reconstruct_state = reconstruct_state_idle;
3519 		clear_bit(STRIPE_EXPANDING, &sh->state);
3520 		for (i = conf->raid_disks; i--; ) {
3521 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3522 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3523 			s.locked++;
3524 		}
3525 	}
3526 
3527 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3528 	    !sh->reconstruct_state) {
3529 		/* Need to write out all blocks after computing parity */
3530 		sh->disks = conf->raid_disks;
3531 		stripe_set_idx(sh->sector, conf, 0, sh);
3532 		schedule_reconstruction(sh, &s, 1, 1);
3533 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3534 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3535 		atomic_dec(&conf->reshape_stripes);
3536 		wake_up(&conf->wait_for_overlap);
3537 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3538 	}
3539 
3540 	if (s.expanding && s.locked == 0 &&
3541 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3542 		handle_stripe_expansion(conf, sh);
3543 
3544 finish:
3545 	/* wait for this device to become unblocked */
3546 	if (conf->mddev->external && unlikely(s.blocked_rdev))
3547 		md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3548 
3549 	if (s.handle_bad_blocks)
3550 		for (i = disks; i--; ) {
3551 			struct md_rdev *rdev;
3552 			struct r5dev *dev = &sh->dev[i];
3553 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3554 				/* We own a safe reference to the rdev */
3555 				rdev = conf->disks[i].rdev;
3556 				if (!rdev_set_badblocks(rdev, sh->sector,
3557 							STRIPE_SECTORS, 0))
3558 					md_error(conf->mddev, rdev);
3559 				rdev_dec_pending(rdev, conf->mddev);
3560 			}
3561 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3562 				rdev = conf->disks[i].rdev;
3563 				rdev_clear_badblocks(rdev, sh->sector,
3564 						     STRIPE_SECTORS);
3565 				rdev_dec_pending(rdev, conf->mddev);
3566 			}
3567 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3568 				rdev = conf->disks[i].replacement;
3569 				if (!rdev)
3570 					/* rdev have been moved down */
3571 					rdev = conf->disks[i].rdev;
3572 				rdev_clear_badblocks(rdev, sh->sector,
3573 						     STRIPE_SECTORS);
3574 				rdev_dec_pending(rdev, conf->mddev);
3575 			}
3576 		}
3577 
3578 	if (s.ops_request)
3579 		raid_run_ops(sh, s.ops_request);
3580 
3581 	ops_run_io(sh, &s);
3582 
3583 	if (s.dec_preread_active) {
3584 		/* We delay this until after ops_run_io so that if make_request
3585 		 * is waiting on a flush, it won't continue until the writes
3586 		 * have actually been submitted.
3587 		 */
3588 		atomic_dec(&conf->preread_active_stripes);
3589 		if (atomic_read(&conf->preread_active_stripes) <
3590 		    IO_THRESHOLD)
3591 			md_wakeup_thread(conf->mddev->thread);
3592 	}
3593 
3594 	return_io(s.return_bi);
3595 
3596 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3597 }
3598 
3599 static void raid5_activate_delayed(struct r5conf *conf)
3600 {
3601 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3602 		while (!list_empty(&conf->delayed_list)) {
3603 			struct list_head *l = conf->delayed_list.next;
3604 			struct stripe_head *sh;
3605 			sh = list_entry(l, struct stripe_head, lru);
3606 			list_del_init(l);
3607 			clear_bit(STRIPE_DELAYED, &sh->state);
3608 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3609 				atomic_inc(&conf->preread_active_stripes);
3610 			list_add_tail(&sh->lru, &conf->hold_list);
3611 		}
3612 	}
3613 }
3614 
3615 static void activate_bit_delay(struct r5conf *conf)
3616 {
3617 	/* device_lock is held */
3618 	struct list_head head;
3619 	list_add(&head, &conf->bitmap_list);
3620 	list_del_init(&conf->bitmap_list);
3621 	while (!list_empty(&head)) {
3622 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3623 		list_del_init(&sh->lru);
3624 		atomic_inc(&sh->count);
3625 		__release_stripe(conf, sh);
3626 	}
3627 }
3628 
3629 int md_raid5_congested(struct mddev *mddev, int bits)
3630 {
3631 	struct r5conf *conf = mddev->private;
3632 
3633 	/* No difference between reads and writes.  Just check
3634 	 * how busy the stripe_cache is
3635 	 */
3636 
3637 	if (conf->inactive_blocked)
3638 		return 1;
3639 	if (conf->quiesce)
3640 		return 1;
3641 	if (list_empty_careful(&conf->inactive_list))
3642 		return 1;
3643 
3644 	return 0;
3645 }
3646 EXPORT_SYMBOL_GPL(md_raid5_congested);
3647 
3648 static int raid5_congested(void *data, int bits)
3649 {
3650 	struct mddev *mddev = data;
3651 
3652 	return mddev_congested(mddev, bits) ||
3653 		md_raid5_congested(mddev, bits);
3654 }
3655 
3656 /* We want read requests to align with chunks where possible,
3657  * but write requests don't need to.
3658  */
3659 static int raid5_mergeable_bvec(struct request_queue *q,
3660 				struct bvec_merge_data *bvm,
3661 				struct bio_vec *biovec)
3662 {
3663 	struct mddev *mddev = q->queuedata;
3664 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3665 	int max;
3666 	unsigned int chunk_sectors = mddev->chunk_sectors;
3667 	unsigned int bio_sectors = bvm->bi_size >> 9;
3668 
3669 	if ((bvm->bi_rw & 1) == WRITE)
3670 		return biovec->bv_len; /* always allow writes to be mergeable */
3671 
3672 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3673 		chunk_sectors = mddev->new_chunk_sectors;
3674 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3675 	if (max < 0) max = 0;
3676 	if (max <= biovec->bv_len && bio_sectors == 0)
3677 		return biovec->bv_len;
3678 	else
3679 		return max;
3680 }
3681 
3682 
3683 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3684 {
3685 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3686 	unsigned int chunk_sectors = mddev->chunk_sectors;
3687 	unsigned int bio_sectors = bio->bi_size >> 9;
3688 
3689 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3690 		chunk_sectors = mddev->new_chunk_sectors;
3691 	return  chunk_sectors >=
3692 		((sector & (chunk_sectors - 1)) + bio_sectors);
3693 }
3694 
3695 /*
3696  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3697  *  later sampled by raid5d.
3698  */
3699 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3700 {
3701 	unsigned long flags;
3702 
3703 	spin_lock_irqsave(&conf->device_lock, flags);
3704 
3705 	bi->bi_next = conf->retry_read_aligned_list;
3706 	conf->retry_read_aligned_list = bi;
3707 
3708 	spin_unlock_irqrestore(&conf->device_lock, flags);
3709 	md_wakeup_thread(conf->mddev->thread);
3710 }
3711 
3712 
3713 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3714 {
3715 	struct bio *bi;
3716 
3717 	bi = conf->retry_read_aligned;
3718 	if (bi) {
3719 		conf->retry_read_aligned = NULL;
3720 		return bi;
3721 	}
3722 	bi = conf->retry_read_aligned_list;
3723 	if(bi) {
3724 		conf->retry_read_aligned_list = bi->bi_next;
3725 		bi->bi_next = NULL;
3726 		/*
3727 		 * this sets the active strip count to 1 and the processed
3728 		 * strip count to zero (upper 8 bits)
3729 		 */
3730 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3731 	}
3732 
3733 	return bi;
3734 }
3735 
3736 
3737 /*
3738  *  The "raid5_align_endio" should check if the read succeeded and if it
3739  *  did, call bio_endio on the original bio (having bio_put the new bio
3740  *  first).
3741  *  If the read failed..
3742  */
3743 static void raid5_align_endio(struct bio *bi, int error)
3744 {
3745 	struct bio* raid_bi  = bi->bi_private;
3746 	struct mddev *mddev;
3747 	struct r5conf *conf;
3748 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3749 	struct md_rdev *rdev;
3750 
3751 	bio_put(bi);
3752 
3753 	rdev = (void*)raid_bi->bi_next;
3754 	raid_bi->bi_next = NULL;
3755 	mddev = rdev->mddev;
3756 	conf = mddev->private;
3757 
3758 	rdev_dec_pending(rdev, conf->mddev);
3759 
3760 	if (!error && uptodate) {
3761 		bio_endio(raid_bi, 0);
3762 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3763 			wake_up(&conf->wait_for_stripe);
3764 		return;
3765 	}
3766 
3767 
3768 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3769 
3770 	add_bio_to_retry(raid_bi, conf);
3771 }
3772 
3773 static int bio_fits_rdev(struct bio *bi)
3774 {
3775 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3776 
3777 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3778 		return 0;
3779 	blk_recount_segments(q, bi);
3780 	if (bi->bi_phys_segments > queue_max_segments(q))
3781 		return 0;
3782 
3783 	if (q->merge_bvec_fn)
3784 		/* it's too hard to apply the merge_bvec_fn at this stage,
3785 		 * just just give up
3786 		 */
3787 		return 0;
3788 
3789 	return 1;
3790 }
3791 
3792 
3793 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3794 {
3795 	struct r5conf *conf = mddev->private;
3796 	int dd_idx;
3797 	struct bio* align_bi;
3798 	struct md_rdev *rdev;
3799 	sector_t end_sector;
3800 
3801 	if (!in_chunk_boundary(mddev, raid_bio)) {
3802 		pr_debug("chunk_aligned_read : non aligned\n");
3803 		return 0;
3804 	}
3805 	/*
3806 	 * use bio_clone_mddev to make a copy of the bio
3807 	 */
3808 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3809 	if (!align_bi)
3810 		return 0;
3811 	/*
3812 	 *   set bi_end_io to a new function, and set bi_private to the
3813 	 *     original bio.
3814 	 */
3815 	align_bi->bi_end_io  = raid5_align_endio;
3816 	align_bi->bi_private = raid_bio;
3817 	/*
3818 	 *	compute position
3819 	 */
3820 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3821 						    0,
3822 						    &dd_idx, NULL);
3823 
3824 	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3825 	rcu_read_lock();
3826 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3827 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
3828 	    rdev->recovery_offset < end_sector) {
3829 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3830 		if (rdev &&
3831 		    (test_bit(Faulty, &rdev->flags) ||
3832 		    !(test_bit(In_sync, &rdev->flags) ||
3833 		      rdev->recovery_offset >= end_sector)))
3834 			rdev = NULL;
3835 	}
3836 	if (rdev) {
3837 		sector_t first_bad;
3838 		int bad_sectors;
3839 
3840 		atomic_inc(&rdev->nr_pending);
3841 		rcu_read_unlock();
3842 		raid_bio->bi_next = (void*)rdev;
3843 		align_bi->bi_bdev =  rdev->bdev;
3844 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3845 		align_bi->bi_sector += rdev->data_offset;
3846 
3847 		if (!bio_fits_rdev(align_bi) ||
3848 		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3849 				&first_bad, &bad_sectors)) {
3850 			/* too big in some way, or has a known bad block */
3851 			bio_put(align_bi);
3852 			rdev_dec_pending(rdev, mddev);
3853 			return 0;
3854 		}
3855 
3856 		spin_lock_irq(&conf->device_lock);
3857 		wait_event_lock_irq(conf->wait_for_stripe,
3858 				    conf->quiesce == 0,
3859 				    conf->device_lock, /* nothing */);
3860 		atomic_inc(&conf->active_aligned_reads);
3861 		spin_unlock_irq(&conf->device_lock);
3862 
3863 		generic_make_request(align_bi);
3864 		return 1;
3865 	} else {
3866 		rcu_read_unlock();
3867 		bio_put(align_bi);
3868 		return 0;
3869 	}
3870 }
3871 
3872 /* __get_priority_stripe - get the next stripe to process
3873  *
3874  * Full stripe writes are allowed to pass preread active stripes up until
3875  * the bypass_threshold is exceeded.  In general the bypass_count
3876  * increments when the handle_list is handled before the hold_list; however, it
3877  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3878  * stripe with in flight i/o.  The bypass_count will be reset when the
3879  * head of the hold_list has changed, i.e. the head was promoted to the
3880  * handle_list.
3881  */
3882 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3883 {
3884 	struct stripe_head *sh;
3885 
3886 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3887 		  __func__,
3888 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3889 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3890 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3891 
3892 	if (!list_empty(&conf->handle_list)) {
3893 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3894 
3895 		if (list_empty(&conf->hold_list))
3896 			conf->bypass_count = 0;
3897 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3898 			if (conf->hold_list.next == conf->last_hold)
3899 				conf->bypass_count++;
3900 			else {
3901 				conf->last_hold = conf->hold_list.next;
3902 				conf->bypass_count -= conf->bypass_threshold;
3903 				if (conf->bypass_count < 0)
3904 					conf->bypass_count = 0;
3905 			}
3906 		}
3907 	} else if (!list_empty(&conf->hold_list) &&
3908 		   ((conf->bypass_threshold &&
3909 		     conf->bypass_count > conf->bypass_threshold) ||
3910 		    atomic_read(&conf->pending_full_writes) == 0)) {
3911 		sh = list_entry(conf->hold_list.next,
3912 				typeof(*sh), lru);
3913 		conf->bypass_count -= conf->bypass_threshold;
3914 		if (conf->bypass_count < 0)
3915 			conf->bypass_count = 0;
3916 	} else
3917 		return NULL;
3918 
3919 	list_del_init(&sh->lru);
3920 	atomic_inc(&sh->count);
3921 	BUG_ON(atomic_read(&sh->count) != 1);
3922 	return sh;
3923 }
3924 
3925 static void make_request(struct mddev *mddev, struct bio * bi)
3926 {
3927 	struct r5conf *conf = mddev->private;
3928 	int dd_idx;
3929 	sector_t new_sector;
3930 	sector_t logical_sector, last_sector;
3931 	struct stripe_head *sh;
3932 	const int rw = bio_data_dir(bi);
3933 	int remaining;
3934 	int plugged;
3935 
3936 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3937 		md_flush_request(mddev, bi);
3938 		return;
3939 	}
3940 
3941 	md_write_start(mddev, bi);
3942 
3943 	if (rw == READ &&
3944 	     mddev->reshape_position == MaxSector &&
3945 	     chunk_aligned_read(mddev,bi))
3946 		return;
3947 
3948 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3949 	last_sector = bi->bi_sector + (bi->bi_size>>9);
3950 	bi->bi_next = NULL;
3951 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3952 
3953 	plugged = mddev_check_plugged(mddev);
3954 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3955 		DEFINE_WAIT(w);
3956 		int disks, data_disks;
3957 		int previous;
3958 
3959 	retry:
3960 		previous = 0;
3961 		disks = conf->raid_disks;
3962 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3963 		if (unlikely(conf->reshape_progress != MaxSector)) {
3964 			/* spinlock is needed as reshape_progress may be
3965 			 * 64bit on a 32bit platform, and so it might be
3966 			 * possible to see a half-updated value
3967 			 * Of course reshape_progress could change after
3968 			 * the lock is dropped, so once we get a reference
3969 			 * to the stripe that we think it is, we will have
3970 			 * to check again.
3971 			 */
3972 			spin_lock_irq(&conf->device_lock);
3973 			if (mddev->delta_disks < 0
3974 			    ? logical_sector < conf->reshape_progress
3975 			    : logical_sector >= conf->reshape_progress) {
3976 				disks = conf->previous_raid_disks;
3977 				previous = 1;
3978 			} else {
3979 				if (mddev->delta_disks < 0
3980 				    ? logical_sector < conf->reshape_safe
3981 				    : logical_sector >= conf->reshape_safe) {
3982 					spin_unlock_irq(&conf->device_lock);
3983 					schedule();
3984 					goto retry;
3985 				}
3986 			}
3987 			spin_unlock_irq(&conf->device_lock);
3988 		}
3989 		data_disks = disks - conf->max_degraded;
3990 
3991 		new_sector = raid5_compute_sector(conf, logical_sector,
3992 						  previous,
3993 						  &dd_idx, NULL);
3994 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
3995 			(unsigned long long)new_sector,
3996 			(unsigned long long)logical_sector);
3997 
3998 		sh = get_active_stripe(conf, new_sector, previous,
3999 				       (bi->bi_rw&RWA_MASK), 0);
4000 		if (sh) {
4001 			if (unlikely(previous)) {
4002 				/* expansion might have moved on while waiting for a
4003 				 * stripe, so we must do the range check again.
4004 				 * Expansion could still move past after this
4005 				 * test, but as we are holding a reference to
4006 				 * 'sh', we know that if that happens,
4007 				 *  STRIPE_EXPANDING will get set and the expansion
4008 				 * won't proceed until we finish with the stripe.
4009 				 */
4010 				int must_retry = 0;
4011 				spin_lock_irq(&conf->device_lock);
4012 				if (mddev->delta_disks < 0
4013 				    ? logical_sector >= conf->reshape_progress
4014 				    : logical_sector < conf->reshape_progress)
4015 					/* mismatch, need to try again */
4016 					must_retry = 1;
4017 				spin_unlock_irq(&conf->device_lock);
4018 				if (must_retry) {
4019 					release_stripe(sh);
4020 					schedule();
4021 					goto retry;
4022 				}
4023 			}
4024 
4025 			if (rw == WRITE &&
4026 			    logical_sector >= mddev->suspend_lo &&
4027 			    logical_sector < mddev->suspend_hi) {
4028 				release_stripe(sh);
4029 				/* As the suspend_* range is controlled by
4030 				 * userspace, we want an interruptible
4031 				 * wait.
4032 				 */
4033 				flush_signals(current);
4034 				prepare_to_wait(&conf->wait_for_overlap,
4035 						&w, TASK_INTERRUPTIBLE);
4036 				if (logical_sector >= mddev->suspend_lo &&
4037 				    logical_sector < mddev->suspend_hi)
4038 					schedule();
4039 				goto retry;
4040 			}
4041 
4042 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4043 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4044 				/* Stripe is busy expanding or
4045 				 * add failed due to overlap.  Flush everything
4046 				 * and wait a while
4047 				 */
4048 				md_wakeup_thread(mddev->thread);
4049 				release_stripe(sh);
4050 				schedule();
4051 				goto retry;
4052 			}
4053 			finish_wait(&conf->wait_for_overlap, &w);
4054 			set_bit(STRIPE_HANDLE, &sh->state);
4055 			clear_bit(STRIPE_DELAYED, &sh->state);
4056 			if ((bi->bi_rw & REQ_SYNC) &&
4057 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4058 				atomic_inc(&conf->preread_active_stripes);
4059 			release_stripe(sh);
4060 		} else {
4061 			/* cannot get stripe for read-ahead, just give-up */
4062 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4063 			finish_wait(&conf->wait_for_overlap, &w);
4064 			break;
4065 		}
4066 
4067 	}
4068 	if (!plugged)
4069 		md_wakeup_thread(mddev->thread);
4070 
4071 	spin_lock_irq(&conf->device_lock);
4072 	remaining = raid5_dec_bi_phys_segments(bi);
4073 	spin_unlock_irq(&conf->device_lock);
4074 	if (remaining == 0) {
4075 
4076 		if ( rw == WRITE )
4077 			md_write_end(mddev);
4078 
4079 		bio_endio(bi, 0);
4080 	}
4081 }
4082 
4083 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4084 
4085 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4086 {
4087 	/* reshaping is quite different to recovery/resync so it is
4088 	 * handled quite separately ... here.
4089 	 *
4090 	 * On each call to sync_request, we gather one chunk worth of
4091 	 * destination stripes and flag them as expanding.
4092 	 * Then we find all the source stripes and request reads.
4093 	 * As the reads complete, handle_stripe will copy the data
4094 	 * into the destination stripe and release that stripe.
4095 	 */
4096 	struct r5conf *conf = mddev->private;
4097 	struct stripe_head *sh;
4098 	sector_t first_sector, last_sector;
4099 	int raid_disks = conf->previous_raid_disks;
4100 	int data_disks = raid_disks - conf->max_degraded;
4101 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4102 	int i;
4103 	int dd_idx;
4104 	sector_t writepos, readpos, safepos;
4105 	sector_t stripe_addr;
4106 	int reshape_sectors;
4107 	struct list_head stripes;
4108 
4109 	if (sector_nr == 0) {
4110 		/* If restarting in the middle, skip the initial sectors */
4111 		if (mddev->delta_disks < 0 &&
4112 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4113 			sector_nr = raid5_size(mddev, 0, 0)
4114 				- conf->reshape_progress;
4115 		} else if (mddev->delta_disks >= 0 &&
4116 			   conf->reshape_progress > 0)
4117 			sector_nr = conf->reshape_progress;
4118 		sector_div(sector_nr, new_data_disks);
4119 		if (sector_nr) {
4120 			mddev->curr_resync_completed = sector_nr;
4121 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4122 			*skipped = 1;
4123 			return sector_nr;
4124 		}
4125 	}
4126 
4127 	/* We need to process a full chunk at a time.
4128 	 * If old and new chunk sizes differ, we need to process the
4129 	 * largest of these
4130 	 */
4131 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4132 		reshape_sectors = mddev->new_chunk_sectors;
4133 	else
4134 		reshape_sectors = mddev->chunk_sectors;
4135 
4136 	/* we update the metadata when there is more than 3Meg
4137 	 * in the block range (that is rather arbitrary, should
4138 	 * probably be time based) or when the data about to be
4139 	 * copied would over-write the source of the data at
4140 	 * the front of the range.
4141 	 * i.e. one new_stripe along from reshape_progress new_maps
4142 	 * to after where reshape_safe old_maps to
4143 	 */
4144 	writepos = conf->reshape_progress;
4145 	sector_div(writepos, new_data_disks);
4146 	readpos = conf->reshape_progress;
4147 	sector_div(readpos, data_disks);
4148 	safepos = conf->reshape_safe;
4149 	sector_div(safepos, data_disks);
4150 	if (mddev->delta_disks < 0) {
4151 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4152 		readpos += reshape_sectors;
4153 		safepos += reshape_sectors;
4154 	} else {
4155 		writepos += reshape_sectors;
4156 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4157 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4158 	}
4159 
4160 	/* 'writepos' is the most advanced device address we might write.
4161 	 * 'readpos' is the least advanced device address we might read.
4162 	 * 'safepos' is the least address recorded in the metadata as having
4163 	 *     been reshaped.
4164 	 * If 'readpos' is behind 'writepos', then there is no way that we can
4165 	 * ensure safety in the face of a crash - that must be done by userspace
4166 	 * making a backup of the data.  So in that case there is no particular
4167 	 * rush to update metadata.
4168 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4169 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4170 	 * we can be safe in the event of a crash.
4171 	 * So we insist on updating metadata if safepos is behind writepos and
4172 	 * readpos is beyond writepos.
4173 	 * In any case, update the metadata every 10 seconds.
4174 	 * Maybe that number should be configurable, but I'm not sure it is
4175 	 * worth it.... maybe it could be a multiple of safemode_delay???
4176 	 */
4177 	if ((mddev->delta_disks < 0
4178 	     ? (safepos > writepos && readpos < writepos)
4179 	     : (safepos < writepos && readpos > writepos)) ||
4180 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4181 		/* Cannot proceed until we've updated the superblock... */
4182 		wait_event(conf->wait_for_overlap,
4183 			   atomic_read(&conf->reshape_stripes)==0);
4184 		mddev->reshape_position = conf->reshape_progress;
4185 		mddev->curr_resync_completed = sector_nr;
4186 		conf->reshape_checkpoint = jiffies;
4187 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4188 		md_wakeup_thread(mddev->thread);
4189 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4190 			   kthread_should_stop());
4191 		spin_lock_irq(&conf->device_lock);
4192 		conf->reshape_safe = mddev->reshape_position;
4193 		spin_unlock_irq(&conf->device_lock);
4194 		wake_up(&conf->wait_for_overlap);
4195 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4196 	}
4197 
4198 	if (mddev->delta_disks < 0) {
4199 		BUG_ON(conf->reshape_progress == 0);
4200 		stripe_addr = writepos;
4201 		BUG_ON((mddev->dev_sectors &
4202 			~((sector_t)reshape_sectors - 1))
4203 		       - reshape_sectors - stripe_addr
4204 		       != sector_nr);
4205 	} else {
4206 		BUG_ON(writepos != sector_nr + reshape_sectors);
4207 		stripe_addr = sector_nr;
4208 	}
4209 	INIT_LIST_HEAD(&stripes);
4210 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4211 		int j;
4212 		int skipped_disk = 0;
4213 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4214 		set_bit(STRIPE_EXPANDING, &sh->state);
4215 		atomic_inc(&conf->reshape_stripes);
4216 		/* If any of this stripe is beyond the end of the old
4217 		 * array, then we need to zero those blocks
4218 		 */
4219 		for (j=sh->disks; j--;) {
4220 			sector_t s;
4221 			if (j == sh->pd_idx)
4222 				continue;
4223 			if (conf->level == 6 &&
4224 			    j == sh->qd_idx)
4225 				continue;
4226 			s = compute_blocknr(sh, j, 0);
4227 			if (s < raid5_size(mddev, 0, 0)) {
4228 				skipped_disk = 1;
4229 				continue;
4230 			}
4231 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4232 			set_bit(R5_Expanded, &sh->dev[j].flags);
4233 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4234 		}
4235 		if (!skipped_disk) {
4236 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4237 			set_bit(STRIPE_HANDLE, &sh->state);
4238 		}
4239 		list_add(&sh->lru, &stripes);
4240 	}
4241 	spin_lock_irq(&conf->device_lock);
4242 	if (mddev->delta_disks < 0)
4243 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4244 	else
4245 		conf->reshape_progress += reshape_sectors * new_data_disks;
4246 	spin_unlock_irq(&conf->device_lock);
4247 	/* Ok, those stripe are ready. We can start scheduling
4248 	 * reads on the source stripes.
4249 	 * The source stripes are determined by mapping the first and last
4250 	 * block on the destination stripes.
4251 	 */
4252 	first_sector =
4253 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4254 				     1, &dd_idx, NULL);
4255 	last_sector =
4256 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4257 					    * new_data_disks - 1),
4258 				     1, &dd_idx, NULL);
4259 	if (last_sector >= mddev->dev_sectors)
4260 		last_sector = mddev->dev_sectors - 1;
4261 	while (first_sector <= last_sector) {
4262 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4263 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4264 		set_bit(STRIPE_HANDLE, &sh->state);
4265 		release_stripe(sh);
4266 		first_sector += STRIPE_SECTORS;
4267 	}
4268 	/* Now that the sources are clearly marked, we can release
4269 	 * the destination stripes
4270 	 */
4271 	while (!list_empty(&stripes)) {
4272 		sh = list_entry(stripes.next, struct stripe_head, lru);
4273 		list_del_init(&sh->lru);
4274 		release_stripe(sh);
4275 	}
4276 	/* If this takes us to the resync_max point where we have to pause,
4277 	 * then we need to write out the superblock.
4278 	 */
4279 	sector_nr += reshape_sectors;
4280 	if ((sector_nr - mddev->curr_resync_completed) * 2
4281 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4282 		/* Cannot proceed until we've updated the superblock... */
4283 		wait_event(conf->wait_for_overlap,
4284 			   atomic_read(&conf->reshape_stripes) == 0);
4285 		mddev->reshape_position = conf->reshape_progress;
4286 		mddev->curr_resync_completed = sector_nr;
4287 		conf->reshape_checkpoint = jiffies;
4288 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4289 		md_wakeup_thread(mddev->thread);
4290 		wait_event(mddev->sb_wait,
4291 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4292 			   || kthread_should_stop());
4293 		spin_lock_irq(&conf->device_lock);
4294 		conf->reshape_safe = mddev->reshape_position;
4295 		spin_unlock_irq(&conf->device_lock);
4296 		wake_up(&conf->wait_for_overlap);
4297 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4298 	}
4299 	return reshape_sectors;
4300 }
4301 
4302 /* FIXME go_faster isn't used */
4303 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4304 {
4305 	struct r5conf *conf = mddev->private;
4306 	struct stripe_head *sh;
4307 	sector_t max_sector = mddev->dev_sectors;
4308 	sector_t sync_blocks;
4309 	int still_degraded = 0;
4310 	int i;
4311 
4312 	if (sector_nr >= max_sector) {
4313 		/* just being told to finish up .. nothing much to do */
4314 
4315 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4316 			end_reshape(conf);
4317 			return 0;
4318 		}
4319 
4320 		if (mddev->curr_resync < max_sector) /* aborted */
4321 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4322 					&sync_blocks, 1);
4323 		else /* completed sync */
4324 			conf->fullsync = 0;
4325 		bitmap_close_sync(mddev->bitmap);
4326 
4327 		return 0;
4328 	}
4329 
4330 	/* Allow raid5_quiesce to complete */
4331 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4332 
4333 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4334 		return reshape_request(mddev, sector_nr, skipped);
4335 
4336 	/* No need to check resync_max as we never do more than one
4337 	 * stripe, and as resync_max will always be on a chunk boundary,
4338 	 * if the check in md_do_sync didn't fire, there is no chance
4339 	 * of overstepping resync_max here
4340 	 */
4341 
4342 	/* if there is too many failed drives and we are trying
4343 	 * to resync, then assert that we are finished, because there is
4344 	 * nothing we can do.
4345 	 */
4346 	if (mddev->degraded >= conf->max_degraded &&
4347 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4348 		sector_t rv = mddev->dev_sectors - sector_nr;
4349 		*skipped = 1;
4350 		return rv;
4351 	}
4352 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4353 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4354 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4355 		/* we can skip this block, and probably more */
4356 		sync_blocks /= STRIPE_SECTORS;
4357 		*skipped = 1;
4358 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4359 	}
4360 
4361 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4362 
4363 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4364 	if (sh == NULL) {
4365 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4366 		/* make sure we don't swamp the stripe cache if someone else
4367 		 * is trying to get access
4368 		 */
4369 		schedule_timeout_uninterruptible(1);
4370 	}
4371 	/* Need to check if array will still be degraded after recovery/resync
4372 	 * We don't need to check the 'failed' flag as when that gets set,
4373 	 * recovery aborts.
4374 	 */
4375 	for (i = 0; i < conf->raid_disks; i++)
4376 		if (conf->disks[i].rdev == NULL)
4377 			still_degraded = 1;
4378 
4379 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4380 
4381 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4382 
4383 	handle_stripe(sh);
4384 	release_stripe(sh);
4385 
4386 	return STRIPE_SECTORS;
4387 }
4388 
4389 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4390 {
4391 	/* We may not be able to submit a whole bio at once as there
4392 	 * may not be enough stripe_heads available.
4393 	 * We cannot pre-allocate enough stripe_heads as we may need
4394 	 * more than exist in the cache (if we allow ever large chunks).
4395 	 * So we do one stripe head at a time and record in
4396 	 * ->bi_hw_segments how many have been done.
4397 	 *
4398 	 * We *know* that this entire raid_bio is in one chunk, so
4399 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4400 	 */
4401 	struct stripe_head *sh;
4402 	int dd_idx;
4403 	sector_t sector, logical_sector, last_sector;
4404 	int scnt = 0;
4405 	int remaining;
4406 	int handled = 0;
4407 
4408 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4409 	sector = raid5_compute_sector(conf, logical_sector,
4410 				      0, &dd_idx, NULL);
4411 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4412 
4413 	for (; logical_sector < last_sector;
4414 	     logical_sector += STRIPE_SECTORS,
4415 		     sector += STRIPE_SECTORS,
4416 		     scnt++) {
4417 
4418 		if (scnt < raid5_bi_hw_segments(raid_bio))
4419 			/* already done this stripe */
4420 			continue;
4421 
4422 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4423 
4424 		if (!sh) {
4425 			/* failed to get a stripe - must wait */
4426 			raid5_set_bi_hw_segments(raid_bio, scnt);
4427 			conf->retry_read_aligned = raid_bio;
4428 			return handled;
4429 		}
4430 
4431 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4432 			release_stripe(sh);
4433 			raid5_set_bi_hw_segments(raid_bio, scnt);
4434 			conf->retry_read_aligned = raid_bio;
4435 			return handled;
4436 		}
4437 
4438 		handle_stripe(sh);
4439 		release_stripe(sh);
4440 		handled++;
4441 	}
4442 	spin_lock_irq(&conf->device_lock);
4443 	remaining = raid5_dec_bi_phys_segments(raid_bio);
4444 	spin_unlock_irq(&conf->device_lock);
4445 	if (remaining == 0)
4446 		bio_endio(raid_bio, 0);
4447 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4448 		wake_up(&conf->wait_for_stripe);
4449 	return handled;
4450 }
4451 
4452 
4453 /*
4454  * This is our raid5 kernel thread.
4455  *
4456  * We scan the hash table for stripes which can be handled now.
4457  * During the scan, completed stripes are saved for us by the interrupt
4458  * handler, so that they will not have to wait for our next wakeup.
4459  */
4460 static void raid5d(struct mddev *mddev)
4461 {
4462 	struct stripe_head *sh;
4463 	struct r5conf *conf = mddev->private;
4464 	int handled;
4465 	struct blk_plug plug;
4466 
4467 	pr_debug("+++ raid5d active\n");
4468 
4469 	md_check_recovery(mddev);
4470 
4471 	blk_start_plug(&plug);
4472 	handled = 0;
4473 	spin_lock_irq(&conf->device_lock);
4474 	while (1) {
4475 		struct bio *bio;
4476 
4477 		if (atomic_read(&mddev->plug_cnt) == 0 &&
4478 		    !list_empty(&conf->bitmap_list)) {
4479 			/* Now is a good time to flush some bitmap updates */
4480 			conf->seq_flush++;
4481 			spin_unlock_irq(&conf->device_lock);
4482 			bitmap_unplug(mddev->bitmap);
4483 			spin_lock_irq(&conf->device_lock);
4484 			conf->seq_write = conf->seq_flush;
4485 			activate_bit_delay(conf);
4486 		}
4487 		if (atomic_read(&mddev->plug_cnt) == 0)
4488 			raid5_activate_delayed(conf);
4489 
4490 		while ((bio = remove_bio_from_retry(conf))) {
4491 			int ok;
4492 			spin_unlock_irq(&conf->device_lock);
4493 			ok = retry_aligned_read(conf, bio);
4494 			spin_lock_irq(&conf->device_lock);
4495 			if (!ok)
4496 				break;
4497 			handled++;
4498 		}
4499 
4500 		sh = __get_priority_stripe(conf);
4501 
4502 		if (!sh)
4503 			break;
4504 		spin_unlock_irq(&conf->device_lock);
4505 
4506 		handled++;
4507 		handle_stripe(sh);
4508 		release_stripe(sh);
4509 		cond_resched();
4510 
4511 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4512 			md_check_recovery(mddev);
4513 
4514 		spin_lock_irq(&conf->device_lock);
4515 	}
4516 	pr_debug("%d stripes handled\n", handled);
4517 
4518 	spin_unlock_irq(&conf->device_lock);
4519 
4520 	async_tx_issue_pending_all();
4521 	blk_finish_plug(&plug);
4522 
4523 	pr_debug("--- raid5d inactive\n");
4524 }
4525 
4526 static ssize_t
4527 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4528 {
4529 	struct r5conf *conf = mddev->private;
4530 	if (conf)
4531 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4532 	else
4533 		return 0;
4534 }
4535 
4536 int
4537 raid5_set_cache_size(struct mddev *mddev, int size)
4538 {
4539 	struct r5conf *conf = mddev->private;
4540 	int err;
4541 
4542 	if (size <= 16 || size > 32768)
4543 		return -EINVAL;
4544 	while (size < conf->max_nr_stripes) {
4545 		if (drop_one_stripe(conf))
4546 			conf->max_nr_stripes--;
4547 		else
4548 			break;
4549 	}
4550 	err = md_allow_write(mddev);
4551 	if (err)
4552 		return err;
4553 	while (size > conf->max_nr_stripes) {
4554 		if (grow_one_stripe(conf))
4555 			conf->max_nr_stripes++;
4556 		else break;
4557 	}
4558 	return 0;
4559 }
4560 EXPORT_SYMBOL(raid5_set_cache_size);
4561 
4562 static ssize_t
4563 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4564 {
4565 	struct r5conf *conf = mddev->private;
4566 	unsigned long new;
4567 	int err;
4568 
4569 	if (len >= PAGE_SIZE)
4570 		return -EINVAL;
4571 	if (!conf)
4572 		return -ENODEV;
4573 
4574 	if (strict_strtoul(page, 10, &new))
4575 		return -EINVAL;
4576 	err = raid5_set_cache_size(mddev, new);
4577 	if (err)
4578 		return err;
4579 	return len;
4580 }
4581 
4582 static struct md_sysfs_entry
4583 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4584 				raid5_show_stripe_cache_size,
4585 				raid5_store_stripe_cache_size);
4586 
4587 static ssize_t
4588 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4589 {
4590 	struct r5conf *conf = mddev->private;
4591 	if (conf)
4592 		return sprintf(page, "%d\n", conf->bypass_threshold);
4593 	else
4594 		return 0;
4595 }
4596 
4597 static ssize_t
4598 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4599 {
4600 	struct r5conf *conf = mddev->private;
4601 	unsigned long new;
4602 	if (len >= PAGE_SIZE)
4603 		return -EINVAL;
4604 	if (!conf)
4605 		return -ENODEV;
4606 
4607 	if (strict_strtoul(page, 10, &new))
4608 		return -EINVAL;
4609 	if (new > conf->max_nr_stripes)
4610 		return -EINVAL;
4611 	conf->bypass_threshold = new;
4612 	return len;
4613 }
4614 
4615 static struct md_sysfs_entry
4616 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4617 					S_IRUGO | S_IWUSR,
4618 					raid5_show_preread_threshold,
4619 					raid5_store_preread_threshold);
4620 
4621 static ssize_t
4622 stripe_cache_active_show(struct mddev *mddev, char *page)
4623 {
4624 	struct r5conf *conf = mddev->private;
4625 	if (conf)
4626 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4627 	else
4628 		return 0;
4629 }
4630 
4631 static struct md_sysfs_entry
4632 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4633 
4634 static struct attribute *raid5_attrs[] =  {
4635 	&raid5_stripecache_size.attr,
4636 	&raid5_stripecache_active.attr,
4637 	&raid5_preread_bypass_threshold.attr,
4638 	NULL,
4639 };
4640 static struct attribute_group raid5_attrs_group = {
4641 	.name = NULL,
4642 	.attrs = raid5_attrs,
4643 };
4644 
4645 static sector_t
4646 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4647 {
4648 	struct r5conf *conf = mddev->private;
4649 
4650 	if (!sectors)
4651 		sectors = mddev->dev_sectors;
4652 	if (!raid_disks)
4653 		/* size is defined by the smallest of previous and new size */
4654 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4655 
4656 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4657 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4658 	return sectors * (raid_disks - conf->max_degraded);
4659 }
4660 
4661 static void raid5_free_percpu(struct r5conf *conf)
4662 {
4663 	struct raid5_percpu *percpu;
4664 	unsigned long cpu;
4665 
4666 	if (!conf->percpu)
4667 		return;
4668 
4669 	get_online_cpus();
4670 	for_each_possible_cpu(cpu) {
4671 		percpu = per_cpu_ptr(conf->percpu, cpu);
4672 		safe_put_page(percpu->spare_page);
4673 		kfree(percpu->scribble);
4674 	}
4675 #ifdef CONFIG_HOTPLUG_CPU
4676 	unregister_cpu_notifier(&conf->cpu_notify);
4677 #endif
4678 	put_online_cpus();
4679 
4680 	free_percpu(conf->percpu);
4681 }
4682 
4683 static void free_conf(struct r5conf *conf)
4684 {
4685 	shrink_stripes(conf);
4686 	raid5_free_percpu(conf);
4687 	kfree(conf->disks);
4688 	kfree(conf->stripe_hashtbl);
4689 	kfree(conf);
4690 }
4691 
4692 #ifdef CONFIG_HOTPLUG_CPU
4693 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4694 			      void *hcpu)
4695 {
4696 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4697 	long cpu = (long)hcpu;
4698 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4699 
4700 	switch (action) {
4701 	case CPU_UP_PREPARE:
4702 	case CPU_UP_PREPARE_FROZEN:
4703 		if (conf->level == 6 && !percpu->spare_page)
4704 			percpu->spare_page = alloc_page(GFP_KERNEL);
4705 		if (!percpu->scribble)
4706 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4707 
4708 		if (!percpu->scribble ||
4709 		    (conf->level == 6 && !percpu->spare_page)) {
4710 			safe_put_page(percpu->spare_page);
4711 			kfree(percpu->scribble);
4712 			pr_err("%s: failed memory allocation for cpu%ld\n",
4713 			       __func__, cpu);
4714 			return notifier_from_errno(-ENOMEM);
4715 		}
4716 		break;
4717 	case CPU_DEAD:
4718 	case CPU_DEAD_FROZEN:
4719 		safe_put_page(percpu->spare_page);
4720 		kfree(percpu->scribble);
4721 		percpu->spare_page = NULL;
4722 		percpu->scribble = NULL;
4723 		break;
4724 	default:
4725 		break;
4726 	}
4727 	return NOTIFY_OK;
4728 }
4729 #endif
4730 
4731 static int raid5_alloc_percpu(struct r5conf *conf)
4732 {
4733 	unsigned long cpu;
4734 	struct page *spare_page;
4735 	struct raid5_percpu __percpu *allcpus;
4736 	void *scribble;
4737 	int err;
4738 
4739 	allcpus = alloc_percpu(struct raid5_percpu);
4740 	if (!allcpus)
4741 		return -ENOMEM;
4742 	conf->percpu = allcpus;
4743 
4744 	get_online_cpus();
4745 	err = 0;
4746 	for_each_present_cpu(cpu) {
4747 		if (conf->level == 6) {
4748 			spare_page = alloc_page(GFP_KERNEL);
4749 			if (!spare_page) {
4750 				err = -ENOMEM;
4751 				break;
4752 			}
4753 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4754 		}
4755 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4756 		if (!scribble) {
4757 			err = -ENOMEM;
4758 			break;
4759 		}
4760 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4761 	}
4762 #ifdef CONFIG_HOTPLUG_CPU
4763 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4764 	conf->cpu_notify.priority = 0;
4765 	if (err == 0)
4766 		err = register_cpu_notifier(&conf->cpu_notify);
4767 #endif
4768 	put_online_cpus();
4769 
4770 	return err;
4771 }
4772 
4773 static struct r5conf *setup_conf(struct mddev *mddev)
4774 {
4775 	struct r5conf *conf;
4776 	int raid_disk, memory, max_disks;
4777 	struct md_rdev *rdev;
4778 	struct disk_info *disk;
4779 
4780 	if (mddev->new_level != 5
4781 	    && mddev->new_level != 4
4782 	    && mddev->new_level != 6) {
4783 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4784 		       mdname(mddev), mddev->new_level);
4785 		return ERR_PTR(-EIO);
4786 	}
4787 	if ((mddev->new_level == 5
4788 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4789 	    (mddev->new_level == 6
4790 	     && !algorithm_valid_raid6(mddev->new_layout))) {
4791 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4792 		       mdname(mddev), mddev->new_layout);
4793 		return ERR_PTR(-EIO);
4794 	}
4795 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4796 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4797 		       mdname(mddev), mddev->raid_disks);
4798 		return ERR_PTR(-EINVAL);
4799 	}
4800 
4801 	if (!mddev->new_chunk_sectors ||
4802 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4803 	    !is_power_of_2(mddev->new_chunk_sectors)) {
4804 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4805 		       mdname(mddev), mddev->new_chunk_sectors << 9);
4806 		return ERR_PTR(-EINVAL);
4807 	}
4808 
4809 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4810 	if (conf == NULL)
4811 		goto abort;
4812 	spin_lock_init(&conf->device_lock);
4813 	init_waitqueue_head(&conf->wait_for_stripe);
4814 	init_waitqueue_head(&conf->wait_for_overlap);
4815 	INIT_LIST_HEAD(&conf->handle_list);
4816 	INIT_LIST_HEAD(&conf->hold_list);
4817 	INIT_LIST_HEAD(&conf->delayed_list);
4818 	INIT_LIST_HEAD(&conf->bitmap_list);
4819 	INIT_LIST_HEAD(&conf->inactive_list);
4820 	atomic_set(&conf->active_stripes, 0);
4821 	atomic_set(&conf->preread_active_stripes, 0);
4822 	atomic_set(&conf->active_aligned_reads, 0);
4823 	conf->bypass_threshold = BYPASS_THRESHOLD;
4824 	conf->recovery_disabled = mddev->recovery_disabled - 1;
4825 
4826 	conf->raid_disks = mddev->raid_disks;
4827 	if (mddev->reshape_position == MaxSector)
4828 		conf->previous_raid_disks = mddev->raid_disks;
4829 	else
4830 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4831 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4832 	conf->scribble_len = scribble_len(max_disks);
4833 
4834 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4835 			      GFP_KERNEL);
4836 	if (!conf->disks)
4837 		goto abort;
4838 
4839 	conf->mddev = mddev;
4840 
4841 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4842 		goto abort;
4843 
4844 	conf->level = mddev->new_level;
4845 	if (raid5_alloc_percpu(conf) != 0)
4846 		goto abort;
4847 
4848 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4849 
4850 	rdev_for_each(rdev, mddev) {
4851 		raid_disk = rdev->raid_disk;
4852 		if (raid_disk >= max_disks
4853 		    || raid_disk < 0)
4854 			continue;
4855 		disk = conf->disks + raid_disk;
4856 
4857 		if (test_bit(Replacement, &rdev->flags)) {
4858 			if (disk->replacement)
4859 				goto abort;
4860 			disk->replacement = rdev;
4861 		} else {
4862 			if (disk->rdev)
4863 				goto abort;
4864 			disk->rdev = rdev;
4865 		}
4866 
4867 		if (test_bit(In_sync, &rdev->flags)) {
4868 			char b[BDEVNAME_SIZE];
4869 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4870 			       " disk %d\n",
4871 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4872 		} else if (rdev->saved_raid_disk != raid_disk)
4873 			/* Cannot rely on bitmap to complete recovery */
4874 			conf->fullsync = 1;
4875 	}
4876 
4877 	conf->chunk_sectors = mddev->new_chunk_sectors;
4878 	conf->level = mddev->new_level;
4879 	if (conf->level == 6)
4880 		conf->max_degraded = 2;
4881 	else
4882 		conf->max_degraded = 1;
4883 	conf->algorithm = mddev->new_layout;
4884 	conf->max_nr_stripes = NR_STRIPES;
4885 	conf->reshape_progress = mddev->reshape_position;
4886 	if (conf->reshape_progress != MaxSector) {
4887 		conf->prev_chunk_sectors = mddev->chunk_sectors;
4888 		conf->prev_algo = mddev->layout;
4889 	}
4890 
4891 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4892 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4893 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4894 		printk(KERN_ERR
4895 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
4896 		       mdname(mddev), memory);
4897 		goto abort;
4898 	} else
4899 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4900 		       mdname(mddev), memory);
4901 
4902 	conf->thread = md_register_thread(raid5d, mddev, NULL);
4903 	if (!conf->thread) {
4904 		printk(KERN_ERR
4905 		       "md/raid:%s: couldn't allocate thread.\n",
4906 		       mdname(mddev));
4907 		goto abort;
4908 	}
4909 
4910 	return conf;
4911 
4912  abort:
4913 	if (conf) {
4914 		free_conf(conf);
4915 		return ERR_PTR(-EIO);
4916 	} else
4917 		return ERR_PTR(-ENOMEM);
4918 }
4919 
4920 
4921 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4922 {
4923 	switch (algo) {
4924 	case ALGORITHM_PARITY_0:
4925 		if (raid_disk < max_degraded)
4926 			return 1;
4927 		break;
4928 	case ALGORITHM_PARITY_N:
4929 		if (raid_disk >= raid_disks - max_degraded)
4930 			return 1;
4931 		break;
4932 	case ALGORITHM_PARITY_0_6:
4933 		if (raid_disk == 0 ||
4934 		    raid_disk == raid_disks - 1)
4935 			return 1;
4936 		break;
4937 	case ALGORITHM_LEFT_ASYMMETRIC_6:
4938 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
4939 	case ALGORITHM_LEFT_SYMMETRIC_6:
4940 	case ALGORITHM_RIGHT_SYMMETRIC_6:
4941 		if (raid_disk == raid_disks - 1)
4942 			return 1;
4943 	}
4944 	return 0;
4945 }
4946 
4947 static int run(struct mddev *mddev)
4948 {
4949 	struct r5conf *conf;
4950 	int working_disks = 0;
4951 	int dirty_parity_disks = 0;
4952 	struct md_rdev *rdev;
4953 	sector_t reshape_offset = 0;
4954 	int i;
4955 
4956 	if (mddev->recovery_cp != MaxSector)
4957 		printk(KERN_NOTICE "md/raid:%s: not clean"
4958 		       " -- starting background reconstruction\n",
4959 		       mdname(mddev));
4960 	if (mddev->reshape_position != MaxSector) {
4961 		/* Check that we can continue the reshape.
4962 		 * Currently only disks can change, it must
4963 		 * increase, and we must be past the point where
4964 		 * a stripe over-writes itself
4965 		 */
4966 		sector_t here_new, here_old;
4967 		int old_disks;
4968 		int max_degraded = (mddev->level == 6 ? 2 : 1);
4969 
4970 		if (mddev->new_level != mddev->level) {
4971 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
4972 			       "required - aborting.\n",
4973 			       mdname(mddev));
4974 			return -EINVAL;
4975 		}
4976 		old_disks = mddev->raid_disks - mddev->delta_disks;
4977 		/* reshape_position must be on a new-stripe boundary, and one
4978 		 * further up in new geometry must map after here in old
4979 		 * geometry.
4980 		 */
4981 		here_new = mddev->reshape_position;
4982 		if (sector_div(here_new, mddev->new_chunk_sectors *
4983 			       (mddev->raid_disks - max_degraded))) {
4984 			printk(KERN_ERR "md/raid:%s: reshape_position not "
4985 			       "on a stripe boundary\n", mdname(mddev));
4986 			return -EINVAL;
4987 		}
4988 		reshape_offset = here_new * mddev->new_chunk_sectors;
4989 		/* here_new is the stripe we will write to */
4990 		here_old = mddev->reshape_position;
4991 		sector_div(here_old, mddev->chunk_sectors *
4992 			   (old_disks-max_degraded));
4993 		/* here_old is the first stripe that we might need to read
4994 		 * from */
4995 		if (mddev->delta_disks == 0) {
4996 			/* We cannot be sure it is safe to start an in-place
4997 			 * reshape.  It is only safe if user-space if monitoring
4998 			 * and taking constant backups.
4999 			 * mdadm always starts a situation like this in
5000 			 * readonly mode so it can take control before
5001 			 * allowing any writes.  So just check for that.
5002 			 */
5003 			if ((here_new * mddev->new_chunk_sectors !=
5004 			     here_old * mddev->chunk_sectors) ||
5005 			    mddev->ro == 0) {
5006 				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5007 				       " in read-only mode - aborting\n",
5008 				       mdname(mddev));
5009 				return -EINVAL;
5010 			}
5011 		} else if (mddev->delta_disks < 0
5012 		    ? (here_new * mddev->new_chunk_sectors <=
5013 		       here_old * mddev->chunk_sectors)
5014 		    : (here_new * mddev->new_chunk_sectors >=
5015 		       here_old * mddev->chunk_sectors)) {
5016 			/* Reading from the same stripe as writing to - bad */
5017 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5018 			       "auto-recovery - aborting.\n",
5019 			       mdname(mddev));
5020 			return -EINVAL;
5021 		}
5022 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5023 		       mdname(mddev));
5024 		/* OK, we should be able to continue; */
5025 	} else {
5026 		BUG_ON(mddev->level != mddev->new_level);
5027 		BUG_ON(mddev->layout != mddev->new_layout);
5028 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5029 		BUG_ON(mddev->delta_disks != 0);
5030 	}
5031 
5032 	if (mddev->private == NULL)
5033 		conf = setup_conf(mddev);
5034 	else
5035 		conf = mddev->private;
5036 
5037 	if (IS_ERR(conf))
5038 		return PTR_ERR(conf);
5039 
5040 	mddev->thread = conf->thread;
5041 	conf->thread = NULL;
5042 	mddev->private = conf;
5043 
5044 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5045 	     i++) {
5046 		rdev = conf->disks[i].rdev;
5047 		if (!rdev && conf->disks[i].replacement) {
5048 			/* The replacement is all we have yet */
5049 			rdev = conf->disks[i].replacement;
5050 			conf->disks[i].replacement = NULL;
5051 			clear_bit(Replacement, &rdev->flags);
5052 			conf->disks[i].rdev = rdev;
5053 		}
5054 		if (!rdev)
5055 			continue;
5056 		if (conf->disks[i].replacement &&
5057 		    conf->reshape_progress != MaxSector) {
5058 			/* replacements and reshape simply do not mix. */
5059 			printk(KERN_ERR "md: cannot handle concurrent "
5060 			       "replacement and reshape.\n");
5061 			goto abort;
5062 		}
5063 		if (test_bit(In_sync, &rdev->flags)) {
5064 			working_disks++;
5065 			continue;
5066 		}
5067 		/* This disc is not fully in-sync.  However if it
5068 		 * just stored parity (beyond the recovery_offset),
5069 		 * when we don't need to be concerned about the
5070 		 * array being dirty.
5071 		 * When reshape goes 'backwards', we never have
5072 		 * partially completed devices, so we only need
5073 		 * to worry about reshape going forwards.
5074 		 */
5075 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5076 		if (mddev->major_version == 0 &&
5077 		    mddev->minor_version > 90)
5078 			rdev->recovery_offset = reshape_offset;
5079 
5080 		if (rdev->recovery_offset < reshape_offset) {
5081 			/* We need to check old and new layout */
5082 			if (!only_parity(rdev->raid_disk,
5083 					 conf->algorithm,
5084 					 conf->raid_disks,
5085 					 conf->max_degraded))
5086 				continue;
5087 		}
5088 		if (!only_parity(rdev->raid_disk,
5089 				 conf->prev_algo,
5090 				 conf->previous_raid_disks,
5091 				 conf->max_degraded))
5092 			continue;
5093 		dirty_parity_disks++;
5094 	}
5095 
5096 	/*
5097 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5098 	 */
5099 	mddev->degraded = calc_degraded(conf);
5100 
5101 	if (has_failed(conf)) {
5102 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5103 			" (%d/%d failed)\n",
5104 			mdname(mddev), mddev->degraded, conf->raid_disks);
5105 		goto abort;
5106 	}
5107 
5108 	/* device size must be a multiple of chunk size */
5109 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5110 	mddev->resync_max_sectors = mddev->dev_sectors;
5111 
5112 	if (mddev->degraded > dirty_parity_disks &&
5113 	    mddev->recovery_cp != MaxSector) {
5114 		if (mddev->ok_start_degraded)
5115 			printk(KERN_WARNING
5116 			       "md/raid:%s: starting dirty degraded array"
5117 			       " - data corruption possible.\n",
5118 			       mdname(mddev));
5119 		else {
5120 			printk(KERN_ERR
5121 			       "md/raid:%s: cannot start dirty degraded array.\n",
5122 			       mdname(mddev));
5123 			goto abort;
5124 		}
5125 	}
5126 
5127 	if (mddev->degraded == 0)
5128 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5129 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5130 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5131 		       mddev->new_layout);
5132 	else
5133 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5134 		       " out of %d devices, algorithm %d\n",
5135 		       mdname(mddev), conf->level,
5136 		       mddev->raid_disks - mddev->degraded,
5137 		       mddev->raid_disks, mddev->new_layout);
5138 
5139 	print_raid5_conf(conf);
5140 
5141 	if (conf->reshape_progress != MaxSector) {
5142 		conf->reshape_safe = conf->reshape_progress;
5143 		atomic_set(&conf->reshape_stripes, 0);
5144 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5145 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5146 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5147 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5148 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5149 							"reshape");
5150 	}
5151 
5152 
5153 	/* Ok, everything is just fine now */
5154 	if (mddev->to_remove == &raid5_attrs_group)
5155 		mddev->to_remove = NULL;
5156 	else if (mddev->kobj.sd &&
5157 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5158 		printk(KERN_WARNING
5159 		       "raid5: failed to create sysfs attributes for %s\n",
5160 		       mdname(mddev));
5161 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5162 
5163 	if (mddev->queue) {
5164 		int chunk_size;
5165 		/* read-ahead size must cover two whole stripes, which
5166 		 * is 2 * (datadisks) * chunksize where 'n' is the
5167 		 * number of raid devices
5168 		 */
5169 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5170 		int stripe = data_disks *
5171 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5172 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5173 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5174 
5175 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5176 
5177 		mddev->queue->backing_dev_info.congested_data = mddev;
5178 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5179 
5180 		chunk_size = mddev->chunk_sectors << 9;
5181 		blk_queue_io_min(mddev->queue, chunk_size);
5182 		blk_queue_io_opt(mddev->queue, chunk_size *
5183 				 (conf->raid_disks - conf->max_degraded));
5184 
5185 		rdev_for_each(rdev, mddev)
5186 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5187 					  rdev->data_offset << 9);
5188 	}
5189 
5190 	return 0;
5191 abort:
5192 	md_unregister_thread(&mddev->thread);
5193 	print_raid5_conf(conf);
5194 	free_conf(conf);
5195 	mddev->private = NULL;
5196 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5197 	return -EIO;
5198 }
5199 
5200 static int stop(struct mddev *mddev)
5201 {
5202 	struct r5conf *conf = mddev->private;
5203 
5204 	md_unregister_thread(&mddev->thread);
5205 	if (mddev->queue)
5206 		mddev->queue->backing_dev_info.congested_fn = NULL;
5207 	free_conf(conf);
5208 	mddev->private = NULL;
5209 	mddev->to_remove = &raid5_attrs_group;
5210 	return 0;
5211 }
5212 
5213 static void status(struct seq_file *seq, struct mddev *mddev)
5214 {
5215 	struct r5conf *conf = mddev->private;
5216 	int i;
5217 
5218 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5219 		mddev->chunk_sectors / 2, mddev->layout);
5220 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5221 	for (i = 0; i < conf->raid_disks; i++)
5222 		seq_printf (seq, "%s",
5223 			       conf->disks[i].rdev &&
5224 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5225 	seq_printf (seq, "]");
5226 }
5227 
5228 static void print_raid5_conf (struct r5conf *conf)
5229 {
5230 	int i;
5231 	struct disk_info *tmp;
5232 
5233 	printk(KERN_DEBUG "RAID conf printout:\n");
5234 	if (!conf) {
5235 		printk("(conf==NULL)\n");
5236 		return;
5237 	}
5238 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5239 	       conf->raid_disks,
5240 	       conf->raid_disks - conf->mddev->degraded);
5241 
5242 	for (i = 0; i < conf->raid_disks; i++) {
5243 		char b[BDEVNAME_SIZE];
5244 		tmp = conf->disks + i;
5245 		if (tmp->rdev)
5246 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5247 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5248 			       bdevname(tmp->rdev->bdev, b));
5249 	}
5250 }
5251 
5252 static int raid5_spare_active(struct mddev *mddev)
5253 {
5254 	int i;
5255 	struct r5conf *conf = mddev->private;
5256 	struct disk_info *tmp;
5257 	int count = 0;
5258 	unsigned long flags;
5259 
5260 	for (i = 0; i < conf->raid_disks; i++) {
5261 		tmp = conf->disks + i;
5262 		if (tmp->replacement
5263 		    && tmp->replacement->recovery_offset == MaxSector
5264 		    && !test_bit(Faulty, &tmp->replacement->flags)
5265 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5266 			/* Replacement has just become active. */
5267 			if (!tmp->rdev
5268 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5269 				count++;
5270 			if (tmp->rdev) {
5271 				/* Replaced device not technically faulty,
5272 				 * but we need to be sure it gets removed
5273 				 * and never re-added.
5274 				 */
5275 				set_bit(Faulty, &tmp->rdev->flags);
5276 				sysfs_notify_dirent_safe(
5277 					tmp->rdev->sysfs_state);
5278 			}
5279 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5280 		} else if (tmp->rdev
5281 		    && tmp->rdev->recovery_offset == MaxSector
5282 		    && !test_bit(Faulty, &tmp->rdev->flags)
5283 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5284 			count++;
5285 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5286 		}
5287 	}
5288 	spin_lock_irqsave(&conf->device_lock, flags);
5289 	mddev->degraded = calc_degraded(conf);
5290 	spin_unlock_irqrestore(&conf->device_lock, flags);
5291 	print_raid5_conf(conf);
5292 	return count;
5293 }
5294 
5295 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5296 {
5297 	struct r5conf *conf = mddev->private;
5298 	int err = 0;
5299 	int number = rdev->raid_disk;
5300 	struct md_rdev **rdevp;
5301 	struct disk_info *p = conf->disks + number;
5302 
5303 	print_raid5_conf(conf);
5304 	if (rdev == p->rdev)
5305 		rdevp = &p->rdev;
5306 	else if (rdev == p->replacement)
5307 		rdevp = &p->replacement;
5308 	else
5309 		return 0;
5310 
5311 	if (number >= conf->raid_disks &&
5312 	    conf->reshape_progress == MaxSector)
5313 		clear_bit(In_sync, &rdev->flags);
5314 
5315 	if (test_bit(In_sync, &rdev->flags) ||
5316 	    atomic_read(&rdev->nr_pending)) {
5317 		err = -EBUSY;
5318 		goto abort;
5319 	}
5320 	/* Only remove non-faulty devices if recovery
5321 	 * isn't possible.
5322 	 */
5323 	if (!test_bit(Faulty, &rdev->flags) &&
5324 	    mddev->recovery_disabled != conf->recovery_disabled &&
5325 	    !has_failed(conf) &&
5326 	    (!p->replacement || p->replacement == rdev) &&
5327 	    number < conf->raid_disks) {
5328 		err = -EBUSY;
5329 		goto abort;
5330 	}
5331 	*rdevp = NULL;
5332 	synchronize_rcu();
5333 	if (atomic_read(&rdev->nr_pending)) {
5334 		/* lost the race, try later */
5335 		err = -EBUSY;
5336 		*rdevp = rdev;
5337 	} else if (p->replacement) {
5338 		/* We must have just cleared 'rdev' */
5339 		p->rdev = p->replacement;
5340 		clear_bit(Replacement, &p->replacement->flags);
5341 		smp_mb(); /* Make sure other CPUs may see both as identical
5342 			   * but will never see neither - if they are careful
5343 			   */
5344 		p->replacement = NULL;
5345 		clear_bit(WantReplacement, &rdev->flags);
5346 	} else
5347 		/* We might have just removed the Replacement as faulty-
5348 		 * clear the bit just in case
5349 		 */
5350 		clear_bit(WantReplacement, &rdev->flags);
5351 abort:
5352 
5353 	print_raid5_conf(conf);
5354 	return err;
5355 }
5356 
5357 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5358 {
5359 	struct r5conf *conf = mddev->private;
5360 	int err = -EEXIST;
5361 	int disk;
5362 	struct disk_info *p;
5363 	int first = 0;
5364 	int last = conf->raid_disks - 1;
5365 
5366 	if (mddev->recovery_disabled == conf->recovery_disabled)
5367 		return -EBUSY;
5368 
5369 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
5370 		/* no point adding a device */
5371 		return -EINVAL;
5372 
5373 	if (rdev->raid_disk >= 0)
5374 		first = last = rdev->raid_disk;
5375 
5376 	/*
5377 	 * find the disk ... but prefer rdev->saved_raid_disk
5378 	 * if possible.
5379 	 */
5380 	if (rdev->saved_raid_disk >= 0 &&
5381 	    rdev->saved_raid_disk >= first &&
5382 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5383 		disk = rdev->saved_raid_disk;
5384 	else
5385 		disk = first;
5386 	for ( ; disk <= last ; disk++) {
5387 		p = conf->disks + disk;
5388 		if (p->rdev == NULL) {
5389 			clear_bit(In_sync, &rdev->flags);
5390 			rdev->raid_disk = disk;
5391 			err = 0;
5392 			if (rdev->saved_raid_disk != disk)
5393 				conf->fullsync = 1;
5394 			rcu_assign_pointer(p->rdev, rdev);
5395 			break;
5396 		}
5397 		if (test_bit(WantReplacement, &p->rdev->flags) &&
5398 		    p->replacement == NULL) {
5399 			clear_bit(In_sync, &rdev->flags);
5400 			set_bit(Replacement, &rdev->flags);
5401 			rdev->raid_disk = disk;
5402 			err = 0;
5403 			conf->fullsync = 1;
5404 			rcu_assign_pointer(p->replacement, rdev);
5405 			break;
5406 		}
5407 	}
5408 	print_raid5_conf(conf);
5409 	return err;
5410 }
5411 
5412 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5413 {
5414 	/* no resync is happening, and there is enough space
5415 	 * on all devices, so we can resize.
5416 	 * We need to make sure resync covers any new space.
5417 	 * If the array is shrinking we should possibly wait until
5418 	 * any io in the removed space completes, but it hardly seems
5419 	 * worth it.
5420 	 */
5421 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5422 	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5423 					       mddev->raid_disks));
5424 	if (mddev->array_sectors >
5425 	    raid5_size(mddev, sectors, mddev->raid_disks))
5426 		return -EINVAL;
5427 	set_capacity(mddev->gendisk, mddev->array_sectors);
5428 	revalidate_disk(mddev->gendisk);
5429 	if (sectors > mddev->dev_sectors &&
5430 	    mddev->recovery_cp > mddev->dev_sectors) {
5431 		mddev->recovery_cp = mddev->dev_sectors;
5432 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5433 	}
5434 	mddev->dev_sectors = sectors;
5435 	mddev->resync_max_sectors = sectors;
5436 	return 0;
5437 }
5438 
5439 static int check_stripe_cache(struct mddev *mddev)
5440 {
5441 	/* Can only proceed if there are plenty of stripe_heads.
5442 	 * We need a minimum of one full stripe,, and for sensible progress
5443 	 * it is best to have about 4 times that.
5444 	 * If we require 4 times, then the default 256 4K stripe_heads will
5445 	 * allow for chunk sizes up to 256K, which is probably OK.
5446 	 * If the chunk size is greater, user-space should request more
5447 	 * stripe_heads first.
5448 	 */
5449 	struct r5conf *conf = mddev->private;
5450 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5451 	    > conf->max_nr_stripes ||
5452 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5453 	    > conf->max_nr_stripes) {
5454 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5455 		       mdname(mddev),
5456 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5457 			/ STRIPE_SIZE)*4);
5458 		return 0;
5459 	}
5460 	return 1;
5461 }
5462 
5463 static int check_reshape(struct mddev *mddev)
5464 {
5465 	struct r5conf *conf = mddev->private;
5466 
5467 	if (mddev->delta_disks == 0 &&
5468 	    mddev->new_layout == mddev->layout &&
5469 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5470 		return 0; /* nothing to do */
5471 	if (mddev->bitmap)
5472 		/* Cannot grow a bitmap yet */
5473 		return -EBUSY;
5474 	if (has_failed(conf))
5475 		return -EINVAL;
5476 	if (mddev->delta_disks < 0) {
5477 		/* We might be able to shrink, but the devices must
5478 		 * be made bigger first.
5479 		 * For raid6, 4 is the minimum size.
5480 		 * Otherwise 2 is the minimum
5481 		 */
5482 		int min = 2;
5483 		if (mddev->level == 6)
5484 			min = 4;
5485 		if (mddev->raid_disks + mddev->delta_disks < min)
5486 			return -EINVAL;
5487 	}
5488 
5489 	if (!check_stripe_cache(mddev))
5490 		return -ENOSPC;
5491 
5492 	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5493 }
5494 
5495 static int raid5_start_reshape(struct mddev *mddev)
5496 {
5497 	struct r5conf *conf = mddev->private;
5498 	struct md_rdev *rdev;
5499 	int spares = 0;
5500 	unsigned long flags;
5501 
5502 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5503 		return -EBUSY;
5504 
5505 	if (!check_stripe_cache(mddev))
5506 		return -ENOSPC;
5507 
5508 	rdev_for_each(rdev, mddev)
5509 		if (!test_bit(In_sync, &rdev->flags)
5510 		    && !test_bit(Faulty, &rdev->flags))
5511 			spares++;
5512 
5513 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5514 		/* Not enough devices even to make a degraded array
5515 		 * of that size
5516 		 */
5517 		return -EINVAL;
5518 
5519 	/* Refuse to reduce size of the array.  Any reductions in
5520 	 * array size must be through explicit setting of array_size
5521 	 * attribute.
5522 	 */
5523 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5524 	    < mddev->array_sectors) {
5525 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5526 		       "before number of disks\n", mdname(mddev));
5527 		return -EINVAL;
5528 	}
5529 
5530 	atomic_set(&conf->reshape_stripes, 0);
5531 	spin_lock_irq(&conf->device_lock);
5532 	conf->previous_raid_disks = conf->raid_disks;
5533 	conf->raid_disks += mddev->delta_disks;
5534 	conf->prev_chunk_sectors = conf->chunk_sectors;
5535 	conf->chunk_sectors = mddev->new_chunk_sectors;
5536 	conf->prev_algo = conf->algorithm;
5537 	conf->algorithm = mddev->new_layout;
5538 	if (mddev->delta_disks < 0)
5539 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5540 	else
5541 		conf->reshape_progress = 0;
5542 	conf->reshape_safe = conf->reshape_progress;
5543 	conf->generation++;
5544 	spin_unlock_irq(&conf->device_lock);
5545 
5546 	/* Add some new drives, as many as will fit.
5547 	 * We know there are enough to make the newly sized array work.
5548 	 * Don't add devices if we are reducing the number of
5549 	 * devices in the array.  This is because it is not possible
5550 	 * to correctly record the "partially reconstructed" state of
5551 	 * such devices during the reshape and confusion could result.
5552 	 */
5553 	if (mddev->delta_disks >= 0) {
5554 		rdev_for_each(rdev, mddev)
5555 			if (rdev->raid_disk < 0 &&
5556 			    !test_bit(Faulty, &rdev->flags)) {
5557 				if (raid5_add_disk(mddev, rdev) == 0) {
5558 					if (rdev->raid_disk
5559 					    >= conf->previous_raid_disks)
5560 						set_bit(In_sync, &rdev->flags);
5561 					else
5562 						rdev->recovery_offset = 0;
5563 
5564 					if (sysfs_link_rdev(mddev, rdev))
5565 						/* Failure here is OK */;
5566 				}
5567 			} else if (rdev->raid_disk >= conf->previous_raid_disks
5568 				   && !test_bit(Faulty, &rdev->flags)) {
5569 				/* This is a spare that was manually added */
5570 				set_bit(In_sync, &rdev->flags);
5571 			}
5572 
5573 		/* When a reshape changes the number of devices,
5574 		 * ->degraded is measured against the larger of the
5575 		 * pre and post number of devices.
5576 		 */
5577 		spin_lock_irqsave(&conf->device_lock, flags);
5578 		mddev->degraded = calc_degraded(conf);
5579 		spin_unlock_irqrestore(&conf->device_lock, flags);
5580 	}
5581 	mddev->raid_disks = conf->raid_disks;
5582 	mddev->reshape_position = conf->reshape_progress;
5583 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5584 
5585 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5586 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5587 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5588 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5589 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5590 						"reshape");
5591 	if (!mddev->sync_thread) {
5592 		mddev->recovery = 0;
5593 		spin_lock_irq(&conf->device_lock);
5594 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5595 		conf->reshape_progress = MaxSector;
5596 		mddev->reshape_position = MaxSector;
5597 		spin_unlock_irq(&conf->device_lock);
5598 		return -EAGAIN;
5599 	}
5600 	conf->reshape_checkpoint = jiffies;
5601 	md_wakeup_thread(mddev->sync_thread);
5602 	md_new_event(mddev);
5603 	return 0;
5604 }
5605 
5606 /* This is called from the reshape thread and should make any
5607  * changes needed in 'conf'
5608  */
5609 static void end_reshape(struct r5conf *conf)
5610 {
5611 
5612 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5613 
5614 		spin_lock_irq(&conf->device_lock);
5615 		conf->previous_raid_disks = conf->raid_disks;
5616 		conf->reshape_progress = MaxSector;
5617 		spin_unlock_irq(&conf->device_lock);
5618 		wake_up(&conf->wait_for_overlap);
5619 
5620 		/* read-ahead size must cover two whole stripes, which is
5621 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5622 		 */
5623 		if (conf->mddev->queue) {
5624 			int data_disks = conf->raid_disks - conf->max_degraded;
5625 			int stripe = data_disks * ((conf->chunk_sectors << 9)
5626 						   / PAGE_SIZE);
5627 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5628 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5629 		}
5630 	}
5631 }
5632 
5633 /* This is called from the raid5d thread with mddev_lock held.
5634  * It makes config changes to the device.
5635  */
5636 static void raid5_finish_reshape(struct mddev *mddev)
5637 {
5638 	struct r5conf *conf = mddev->private;
5639 
5640 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5641 
5642 		if (mddev->delta_disks > 0) {
5643 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5644 			set_capacity(mddev->gendisk, mddev->array_sectors);
5645 			revalidate_disk(mddev->gendisk);
5646 		} else {
5647 			int d;
5648 			spin_lock_irq(&conf->device_lock);
5649 			mddev->degraded = calc_degraded(conf);
5650 			spin_unlock_irq(&conf->device_lock);
5651 			for (d = conf->raid_disks ;
5652 			     d < conf->raid_disks - mddev->delta_disks;
5653 			     d++) {
5654 				struct md_rdev *rdev = conf->disks[d].rdev;
5655 				if (rdev &&
5656 				    raid5_remove_disk(mddev, rdev) == 0) {
5657 					sysfs_unlink_rdev(mddev, rdev);
5658 					rdev->raid_disk = -1;
5659 				}
5660 			}
5661 		}
5662 		mddev->layout = conf->algorithm;
5663 		mddev->chunk_sectors = conf->chunk_sectors;
5664 		mddev->reshape_position = MaxSector;
5665 		mddev->delta_disks = 0;
5666 	}
5667 }
5668 
5669 static void raid5_quiesce(struct mddev *mddev, int state)
5670 {
5671 	struct r5conf *conf = mddev->private;
5672 
5673 	switch(state) {
5674 	case 2: /* resume for a suspend */
5675 		wake_up(&conf->wait_for_overlap);
5676 		break;
5677 
5678 	case 1: /* stop all writes */
5679 		spin_lock_irq(&conf->device_lock);
5680 		/* '2' tells resync/reshape to pause so that all
5681 		 * active stripes can drain
5682 		 */
5683 		conf->quiesce = 2;
5684 		wait_event_lock_irq(conf->wait_for_stripe,
5685 				    atomic_read(&conf->active_stripes) == 0 &&
5686 				    atomic_read(&conf->active_aligned_reads) == 0,
5687 				    conf->device_lock, /* nothing */);
5688 		conf->quiesce = 1;
5689 		spin_unlock_irq(&conf->device_lock);
5690 		/* allow reshape to continue */
5691 		wake_up(&conf->wait_for_overlap);
5692 		break;
5693 
5694 	case 0: /* re-enable writes */
5695 		spin_lock_irq(&conf->device_lock);
5696 		conf->quiesce = 0;
5697 		wake_up(&conf->wait_for_stripe);
5698 		wake_up(&conf->wait_for_overlap);
5699 		spin_unlock_irq(&conf->device_lock);
5700 		break;
5701 	}
5702 }
5703 
5704 
5705 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5706 {
5707 	struct r0conf *raid0_conf = mddev->private;
5708 	sector_t sectors;
5709 
5710 	/* for raid0 takeover only one zone is supported */
5711 	if (raid0_conf->nr_strip_zones > 1) {
5712 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5713 		       mdname(mddev));
5714 		return ERR_PTR(-EINVAL);
5715 	}
5716 
5717 	sectors = raid0_conf->strip_zone[0].zone_end;
5718 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5719 	mddev->dev_sectors = sectors;
5720 	mddev->new_level = level;
5721 	mddev->new_layout = ALGORITHM_PARITY_N;
5722 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5723 	mddev->raid_disks += 1;
5724 	mddev->delta_disks = 1;
5725 	/* make sure it will be not marked as dirty */
5726 	mddev->recovery_cp = MaxSector;
5727 
5728 	return setup_conf(mddev);
5729 }
5730 
5731 
5732 static void *raid5_takeover_raid1(struct mddev *mddev)
5733 {
5734 	int chunksect;
5735 
5736 	if (mddev->raid_disks != 2 ||
5737 	    mddev->degraded > 1)
5738 		return ERR_PTR(-EINVAL);
5739 
5740 	/* Should check if there are write-behind devices? */
5741 
5742 	chunksect = 64*2; /* 64K by default */
5743 
5744 	/* The array must be an exact multiple of chunksize */
5745 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5746 		chunksect >>= 1;
5747 
5748 	if ((chunksect<<9) < STRIPE_SIZE)
5749 		/* array size does not allow a suitable chunk size */
5750 		return ERR_PTR(-EINVAL);
5751 
5752 	mddev->new_level = 5;
5753 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5754 	mddev->new_chunk_sectors = chunksect;
5755 
5756 	return setup_conf(mddev);
5757 }
5758 
5759 static void *raid5_takeover_raid6(struct mddev *mddev)
5760 {
5761 	int new_layout;
5762 
5763 	switch (mddev->layout) {
5764 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5765 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5766 		break;
5767 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5768 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5769 		break;
5770 	case ALGORITHM_LEFT_SYMMETRIC_6:
5771 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5772 		break;
5773 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5774 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5775 		break;
5776 	case ALGORITHM_PARITY_0_6:
5777 		new_layout = ALGORITHM_PARITY_0;
5778 		break;
5779 	case ALGORITHM_PARITY_N:
5780 		new_layout = ALGORITHM_PARITY_N;
5781 		break;
5782 	default:
5783 		return ERR_PTR(-EINVAL);
5784 	}
5785 	mddev->new_level = 5;
5786 	mddev->new_layout = new_layout;
5787 	mddev->delta_disks = -1;
5788 	mddev->raid_disks -= 1;
5789 	return setup_conf(mddev);
5790 }
5791 
5792 
5793 static int raid5_check_reshape(struct mddev *mddev)
5794 {
5795 	/* For a 2-drive array, the layout and chunk size can be changed
5796 	 * immediately as not restriping is needed.
5797 	 * For larger arrays we record the new value - after validation
5798 	 * to be used by a reshape pass.
5799 	 */
5800 	struct r5conf *conf = mddev->private;
5801 	int new_chunk = mddev->new_chunk_sectors;
5802 
5803 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5804 		return -EINVAL;
5805 	if (new_chunk > 0) {
5806 		if (!is_power_of_2(new_chunk))
5807 			return -EINVAL;
5808 		if (new_chunk < (PAGE_SIZE>>9))
5809 			return -EINVAL;
5810 		if (mddev->array_sectors & (new_chunk-1))
5811 			/* not factor of array size */
5812 			return -EINVAL;
5813 	}
5814 
5815 	/* They look valid */
5816 
5817 	if (mddev->raid_disks == 2) {
5818 		/* can make the change immediately */
5819 		if (mddev->new_layout >= 0) {
5820 			conf->algorithm = mddev->new_layout;
5821 			mddev->layout = mddev->new_layout;
5822 		}
5823 		if (new_chunk > 0) {
5824 			conf->chunk_sectors = new_chunk ;
5825 			mddev->chunk_sectors = new_chunk;
5826 		}
5827 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5828 		md_wakeup_thread(mddev->thread);
5829 	}
5830 	return check_reshape(mddev);
5831 }
5832 
5833 static int raid6_check_reshape(struct mddev *mddev)
5834 {
5835 	int new_chunk = mddev->new_chunk_sectors;
5836 
5837 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5838 		return -EINVAL;
5839 	if (new_chunk > 0) {
5840 		if (!is_power_of_2(new_chunk))
5841 			return -EINVAL;
5842 		if (new_chunk < (PAGE_SIZE >> 9))
5843 			return -EINVAL;
5844 		if (mddev->array_sectors & (new_chunk-1))
5845 			/* not factor of array size */
5846 			return -EINVAL;
5847 	}
5848 
5849 	/* They look valid */
5850 	return check_reshape(mddev);
5851 }
5852 
5853 static void *raid5_takeover(struct mddev *mddev)
5854 {
5855 	/* raid5 can take over:
5856 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5857 	 *  raid1 - if there are two drives.  We need to know the chunk size
5858 	 *  raid4 - trivial - just use a raid4 layout.
5859 	 *  raid6 - Providing it is a *_6 layout
5860 	 */
5861 	if (mddev->level == 0)
5862 		return raid45_takeover_raid0(mddev, 5);
5863 	if (mddev->level == 1)
5864 		return raid5_takeover_raid1(mddev);
5865 	if (mddev->level == 4) {
5866 		mddev->new_layout = ALGORITHM_PARITY_N;
5867 		mddev->new_level = 5;
5868 		return setup_conf(mddev);
5869 	}
5870 	if (mddev->level == 6)
5871 		return raid5_takeover_raid6(mddev);
5872 
5873 	return ERR_PTR(-EINVAL);
5874 }
5875 
5876 static void *raid4_takeover(struct mddev *mddev)
5877 {
5878 	/* raid4 can take over:
5879 	 *  raid0 - if there is only one strip zone
5880 	 *  raid5 - if layout is right
5881 	 */
5882 	if (mddev->level == 0)
5883 		return raid45_takeover_raid0(mddev, 4);
5884 	if (mddev->level == 5 &&
5885 	    mddev->layout == ALGORITHM_PARITY_N) {
5886 		mddev->new_layout = 0;
5887 		mddev->new_level = 4;
5888 		return setup_conf(mddev);
5889 	}
5890 	return ERR_PTR(-EINVAL);
5891 }
5892 
5893 static struct md_personality raid5_personality;
5894 
5895 static void *raid6_takeover(struct mddev *mddev)
5896 {
5897 	/* Currently can only take over a raid5.  We map the
5898 	 * personality to an equivalent raid6 personality
5899 	 * with the Q block at the end.
5900 	 */
5901 	int new_layout;
5902 
5903 	if (mddev->pers != &raid5_personality)
5904 		return ERR_PTR(-EINVAL);
5905 	if (mddev->degraded > 1)
5906 		return ERR_PTR(-EINVAL);
5907 	if (mddev->raid_disks > 253)
5908 		return ERR_PTR(-EINVAL);
5909 	if (mddev->raid_disks < 3)
5910 		return ERR_PTR(-EINVAL);
5911 
5912 	switch (mddev->layout) {
5913 	case ALGORITHM_LEFT_ASYMMETRIC:
5914 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5915 		break;
5916 	case ALGORITHM_RIGHT_ASYMMETRIC:
5917 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5918 		break;
5919 	case ALGORITHM_LEFT_SYMMETRIC:
5920 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5921 		break;
5922 	case ALGORITHM_RIGHT_SYMMETRIC:
5923 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5924 		break;
5925 	case ALGORITHM_PARITY_0:
5926 		new_layout = ALGORITHM_PARITY_0_6;
5927 		break;
5928 	case ALGORITHM_PARITY_N:
5929 		new_layout = ALGORITHM_PARITY_N;
5930 		break;
5931 	default:
5932 		return ERR_PTR(-EINVAL);
5933 	}
5934 	mddev->new_level = 6;
5935 	mddev->new_layout = new_layout;
5936 	mddev->delta_disks = 1;
5937 	mddev->raid_disks += 1;
5938 	return setup_conf(mddev);
5939 }
5940 
5941 
5942 static struct md_personality raid6_personality =
5943 {
5944 	.name		= "raid6",
5945 	.level		= 6,
5946 	.owner		= THIS_MODULE,
5947 	.make_request	= make_request,
5948 	.run		= run,
5949 	.stop		= stop,
5950 	.status		= status,
5951 	.error_handler	= error,
5952 	.hot_add_disk	= raid5_add_disk,
5953 	.hot_remove_disk= raid5_remove_disk,
5954 	.spare_active	= raid5_spare_active,
5955 	.sync_request	= sync_request,
5956 	.resize		= raid5_resize,
5957 	.size		= raid5_size,
5958 	.check_reshape	= raid6_check_reshape,
5959 	.start_reshape  = raid5_start_reshape,
5960 	.finish_reshape = raid5_finish_reshape,
5961 	.quiesce	= raid5_quiesce,
5962 	.takeover	= raid6_takeover,
5963 };
5964 static struct md_personality raid5_personality =
5965 {
5966 	.name		= "raid5",
5967 	.level		= 5,
5968 	.owner		= THIS_MODULE,
5969 	.make_request	= make_request,
5970 	.run		= run,
5971 	.stop		= stop,
5972 	.status		= status,
5973 	.error_handler	= error,
5974 	.hot_add_disk	= raid5_add_disk,
5975 	.hot_remove_disk= raid5_remove_disk,
5976 	.spare_active	= raid5_spare_active,
5977 	.sync_request	= sync_request,
5978 	.resize		= raid5_resize,
5979 	.size		= raid5_size,
5980 	.check_reshape	= raid5_check_reshape,
5981 	.start_reshape  = raid5_start_reshape,
5982 	.finish_reshape = raid5_finish_reshape,
5983 	.quiesce	= raid5_quiesce,
5984 	.takeover	= raid5_takeover,
5985 };
5986 
5987 static struct md_personality raid4_personality =
5988 {
5989 	.name		= "raid4",
5990 	.level		= 4,
5991 	.owner		= THIS_MODULE,
5992 	.make_request	= make_request,
5993 	.run		= run,
5994 	.stop		= stop,
5995 	.status		= status,
5996 	.error_handler	= error,
5997 	.hot_add_disk	= raid5_add_disk,
5998 	.hot_remove_disk= raid5_remove_disk,
5999 	.spare_active	= raid5_spare_active,
6000 	.sync_request	= sync_request,
6001 	.resize		= raid5_resize,
6002 	.size		= raid5_size,
6003 	.check_reshape	= raid5_check_reshape,
6004 	.start_reshape  = raid5_start_reshape,
6005 	.finish_reshape = raid5_finish_reshape,
6006 	.quiesce	= raid5_quiesce,
6007 	.takeover	= raid4_takeover,
6008 };
6009 
6010 static int __init raid5_init(void)
6011 {
6012 	register_md_personality(&raid6_personality);
6013 	register_md_personality(&raid5_personality);
6014 	register_md_personality(&raid4_personality);
6015 	return 0;
6016 }
6017 
6018 static void raid5_exit(void)
6019 {
6020 	unregister_md_personality(&raid6_personality);
6021 	unregister_md_personality(&raid5_personality);
6022 	unregister_md_personality(&raid4_personality);
6023 }
6024 
6025 module_init(raid5_init);
6026 module_exit(raid5_exit);
6027 MODULE_LICENSE("GPL");
6028 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6029 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6030 MODULE_ALIAS("md-raid5");
6031 MODULE_ALIAS("md-raid4");
6032 MODULE_ALIAS("md-level-5");
6033 MODULE_ALIAS("md-level-4");
6034 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6035 MODULE_ALIAS("md-raid6");
6036 MODULE_ALIAS("md-level-6");
6037 
6038 /* This used to be two separate modules, they were: */
6039 MODULE_ALIAS("raid5");
6040 MODULE_ALIAS("raid6");
6041