xref: /openbmc/linux/drivers/md/raid5.c (revision 5fb859f7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid5.c : Multiple Devices driver for Linux
4  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5  *	   Copyright (C) 1999, 2000 Ingo Molnar
6  *	   Copyright (C) 2002, 2003 H. Peter Anvin
7  *
8  * RAID-4/5/6 management functions.
9  * Thanks to Penguin Computing for making the RAID-6 development possible
10  * by donating a test server!
11  */
12 
13 /*
14  * BITMAP UNPLUGGING:
15  *
16  * The sequencing for updating the bitmap reliably is a little
17  * subtle (and I got it wrong the first time) so it deserves some
18  * explanation.
19  *
20  * We group bitmap updates into batches.  Each batch has a number.
21  * We may write out several batches at once, but that isn't very important.
22  * conf->seq_write is the number of the last batch successfully written.
23  * conf->seq_flush is the number of the last batch that was closed to
24  *    new additions.
25  * When we discover that we will need to write to any block in a stripe
26  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27  * the number of the batch it will be in. This is seq_flush+1.
28  * When we are ready to do a write, if that batch hasn't been written yet,
29  *   we plug the array and queue the stripe for later.
30  * When an unplug happens, we increment bm_flush, thus closing the current
31  *   batch.
32  * When we notice that bm_flush > bm_write, we write out all pending updates
33  * to the bitmap, and advance bm_write to where bm_flush was.
34  * This may occasionally write a bit out twice, but is sure never to
35  * miss any bits.
36  */
37 
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49 
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52 
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58 
59 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
60 
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63 
64 static bool devices_handle_discard_safely = false;
65 module_param(devices_handle_discard_safely, bool, 0644);
66 MODULE_PARM_DESC(devices_handle_discard_safely,
67 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68 static struct workqueue_struct *raid5_wq;
69 
70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
71 {
72 	int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
73 	return &conf->stripe_hashtbl[hash];
74 }
75 
76 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
77 {
78 	return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
79 }
80 
81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82 	__acquires(&conf->device_lock)
83 {
84 	spin_lock_irq(conf->hash_locks + hash);
85 	spin_lock(&conf->device_lock);
86 }
87 
88 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
89 	__releases(&conf->device_lock)
90 {
91 	spin_unlock(&conf->device_lock);
92 	spin_unlock_irq(conf->hash_locks + hash);
93 }
94 
95 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
96 	__acquires(&conf->device_lock)
97 {
98 	int i;
99 	spin_lock_irq(conf->hash_locks);
100 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
101 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
102 	spin_lock(&conf->device_lock);
103 }
104 
105 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
106 	__releases(&conf->device_lock)
107 {
108 	int i;
109 	spin_unlock(&conf->device_lock);
110 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
111 		spin_unlock(conf->hash_locks + i);
112 	spin_unlock_irq(conf->hash_locks);
113 }
114 
115 /* Find first data disk in a raid6 stripe */
116 static inline int raid6_d0(struct stripe_head *sh)
117 {
118 	if (sh->ddf_layout)
119 		/* ddf always start from first device */
120 		return 0;
121 	/* md starts just after Q block */
122 	if (sh->qd_idx == sh->disks - 1)
123 		return 0;
124 	else
125 		return sh->qd_idx + 1;
126 }
127 static inline int raid6_next_disk(int disk, int raid_disks)
128 {
129 	disk++;
130 	return (disk < raid_disks) ? disk : 0;
131 }
132 
133 /* When walking through the disks in a raid5, starting at raid6_d0,
134  * We need to map each disk to a 'slot', where the data disks are slot
135  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
136  * is raid_disks-1.  This help does that mapping.
137  */
138 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
139 			     int *count, int syndrome_disks)
140 {
141 	int slot = *count;
142 
143 	if (sh->ddf_layout)
144 		(*count)++;
145 	if (idx == sh->pd_idx)
146 		return syndrome_disks;
147 	if (idx == sh->qd_idx)
148 		return syndrome_disks + 1;
149 	if (!sh->ddf_layout)
150 		(*count)++;
151 	return slot;
152 }
153 
154 static void print_raid5_conf (struct r5conf *conf);
155 
156 static int stripe_operations_active(struct stripe_head *sh)
157 {
158 	return sh->check_state || sh->reconstruct_state ||
159 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
160 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
161 }
162 
163 static bool stripe_is_lowprio(struct stripe_head *sh)
164 {
165 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
166 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
167 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
168 }
169 
170 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
171 	__must_hold(&sh->raid_conf->device_lock)
172 {
173 	struct r5conf *conf = sh->raid_conf;
174 	struct r5worker_group *group;
175 	int thread_cnt;
176 	int i, cpu = sh->cpu;
177 
178 	if (!cpu_online(cpu)) {
179 		cpu = cpumask_any(cpu_online_mask);
180 		sh->cpu = cpu;
181 	}
182 
183 	if (list_empty(&sh->lru)) {
184 		struct r5worker_group *group;
185 		group = conf->worker_groups + cpu_to_group(cpu);
186 		if (stripe_is_lowprio(sh))
187 			list_add_tail(&sh->lru, &group->loprio_list);
188 		else
189 			list_add_tail(&sh->lru, &group->handle_list);
190 		group->stripes_cnt++;
191 		sh->group = group;
192 	}
193 
194 	if (conf->worker_cnt_per_group == 0) {
195 		md_wakeup_thread(conf->mddev->thread);
196 		return;
197 	}
198 
199 	group = conf->worker_groups + cpu_to_group(sh->cpu);
200 
201 	group->workers[0].working = true;
202 	/* at least one worker should run to avoid race */
203 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
204 
205 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
206 	/* wakeup more workers */
207 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
208 		if (group->workers[i].working == false) {
209 			group->workers[i].working = true;
210 			queue_work_on(sh->cpu, raid5_wq,
211 				      &group->workers[i].work);
212 			thread_cnt--;
213 		}
214 	}
215 }
216 
217 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
218 			      struct list_head *temp_inactive_list)
219 	__must_hold(&conf->device_lock)
220 {
221 	int i;
222 	int injournal = 0;	/* number of date pages with R5_InJournal */
223 
224 	BUG_ON(!list_empty(&sh->lru));
225 	BUG_ON(atomic_read(&conf->active_stripes)==0);
226 
227 	if (r5c_is_writeback(conf->log))
228 		for (i = sh->disks; i--; )
229 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
230 				injournal++;
231 	/*
232 	 * In the following cases, the stripe cannot be released to cached
233 	 * lists. Therefore, we make the stripe write out and set
234 	 * STRIPE_HANDLE:
235 	 *   1. when quiesce in r5c write back;
236 	 *   2. when resync is requested fot the stripe.
237 	 */
238 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
239 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
240 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
241 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
242 			r5c_make_stripe_write_out(sh);
243 		set_bit(STRIPE_HANDLE, &sh->state);
244 	}
245 
246 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
247 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
248 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
249 			list_add_tail(&sh->lru, &conf->delayed_list);
250 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
251 			   sh->bm_seq - conf->seq_write > 0)
252 			list_add_tail(&sh->lru, &conf->bitmap_list);
253 		else {
254 			clear_bit(STRIPE_DELAYED, &sh->state);
255 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
256 			if (conf->worker_cnt_per_group == 0) {
257 				if (stripe_is_lowprio(sh))
258 					list_add_tail(&sh->lru,
259 							&conf->loprio_list);
260 				else
261 					list_add_tail(&sh->lru,
262 							&conf->handle_list);
263 			} else {
264 				raid5_wakeup_stripe_thread(sh);
265 				return;
266 			}
267 		}
268 		md_wakeup_thread(conf->mddev->thread);
269 	} else {
270 		BUG_ON(stripe_operations_active(sh));
271 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
272 			if (atomic_dec_return(&conf->preread_active_stripes)
273 			    < IO_THRESHOLD)
274 				md_wakeup_thread(conf->mddev->thread);
275 		atomic_dec(&conf->active_stripes);
276 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
277 			if (!r5c_is_writeback(conf->log))
278 				list_add_tail(&sh->lru, temp_inactive_list);
279 			else {
280 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
281 				if (injournal == 0)
282 					list_add_tail(&sh->lru, temp_inactive_list);
283 				else if (injournal == conf->raid_disks - conf->max_degraded) {
284 					/* full stripe */
285 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
286 						atomic_inc(&conf->r5c_cached_full_stripes);
287 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
288 						atomic_dec(&conf->r5c_cached_partial_stripes);
289 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
290 					r5c_check_cached_full_stripe(conf);
291 				} else
292 					/*
293 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
294 					 * r5c_try_caching_write(). No need to
295 					 * set it again.
296 					 */
297 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
298 			}
299 		}
300 	}
301 }
302 
303 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
304 			     struct list_head *temp_inactive_list)
305 	__must_hold(&conf->device_lock)
306 {
307 	if (atomic_dec_and_test(&sh->count))
308 		do_release_stripe(conf, sh, temp_inactive_list);
309 }
310 
311 /*
312  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
313  *
314  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
315  * given time. Adding stripes only takes device lock, while deleting stripes
316  * only takes hash lock.
317  */
318 static void release_inactive_stripe_list(struct r5conf *conf,
319 					 struct list_head *temp_inactive_list,
320 					 int hash)
321 {
322 	int size;
323 	bool do_wakeup = false;
324 	unsigned long flags;
325 
326 	if (hash == NR_STRIPE_HASH_LOCKS) {
327 		size = NR_STRIPE_HASH_LOCKS;
328 		hash = NR_STRIPE_HASH_LOCKS - 1;
329 	} else
330 		size = 1;
331 	while (size) {
332 		struct list_head *list = &temp_inactive_list[size - 1];
333 
334 		/*
335 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
336 		 * remove stripes from the list
337 		 */
338 		if (!list_empty_careful(list)) {
339 			spin_lock_irqsave(conf->hash_locks + hash, flags);
340 			if (list_empty(conf->inactive_list + hash) &&
341 			    !list_empty(list))
342 				atomic_dec(&conf->empty_inactive_list_nr);
343 			list_splice_tail_init(list, conf->inactive_list + hash);
344 			do_wakeup = true;
345 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
346 		}
347 		size--;
348 		hash--;
349 	}
350 
351 	if (do_wakeup) {
352 		wake_up(&conf->wait_for_stripe);
353 		if (atomic_read(&conf->active_stripes) == 0)
354 			wake_up(&conf->wait_for_quiescent);
355 		if (conf->retry_read_aligned)
356 			md_wakeup_thread(conf->mddev->thread);
357 	}
358 }
359 
360 static int release_stripe_list(struct r5conf *conf,
361 			       struct list_head *temp_inactive_list)
362 	__must_hold(&conf->device_lock)
363 {
364 	struct stripe_head *sh, *t;
365 	int count = 0;
366 	struct llist_node *head;
367 
368 	head = llist_del_all(&conf->released_stripes);
369 	head = llist_reverse_order(head);
370 	llist_for_each_entry_safe(sh, t, head, release_list) {
371 		int hash;
372 
373 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
374 		smp_mb();
375 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
376 		/*
377 		 * Don't worry the bit is set here, because if the bit is set
378 		 * again, the count is always > 1. This is true for
379 		 * STRIPE_ON_UNPLUG_LIST bit too.
380 		 */
381 		hash = sh->hash_lock_index;
382 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
383 		count++;
384 	}
385 
386 	return count;
387 }
388 
389 void raid5_release_stripe(struct stripe_head *sh)
390 {
391 	struct r5conf *conf = sh->raid_conf;
392 	unsigned long flags;
393 	struct list_head list;
394 	int hash;
395 	bool wakeup;
396 
397 	/* Avoid release_list until the last reference.
398 	 */
399 	if (atomic_add_unless(&sh->count, -1, 1))
400 		return;
401 
402 	if (unlikely(!conf->mddev->thread) ||
403 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
404 		goto slow_path;
405 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
406 	if (wakeup)
407 		md_wakeup_thread(conf->mddev->thread);
408 	return;
409 slow_path:
410 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
411 	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
412 		INIT_LIST_HEAD(&list);
413 		hash = sh->hash_lock_index;
414 		do_release_stripe(conf, sh, &list);
415 		spin_unlock_irqrestore(&conf->device_lock, flags);
416 		release_inactive_stripe_list(conf, &list, hash);
417 	}
418 }
419 
420 static inline void remove_hash(struct stripe_head *sh)
421 {
422 	pr_debug("remove_hash(), stripe %llu\n",
423 		(unsigned long long)sh->sector);
424 
425 	hlist_del_init(&sh->hash);
426 }
427 
428 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
429 {
430 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
431 
432 	pr_debug("insert_hash(), stripe %llu\n",
433 		(unsigned long long)sh->sector);
434 
435 	hlist_add_head(&sh->hash, hp);
436 }
437 
438 /* find an idle stripe, make sure it is unhashed, and return it. */
439 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
440 {
441 	struct stripe_head *sh = NULL;
442 	struct list_head *first;
443 
444 	if (list_empty(conf->inactive_list + hash))
445 		goto out;
446 	first = (conf->inactive_list + hash)->next;
447 	sh = list_entry(first, struct stripe_head, lru);
448 	list_del_init(first);
449 	remove_hash(sh);
450 	atomic_inc(&conf->active_stripes);
451 	BUG_ON(hash != sh->hash_lock_index);
452 	if (list_empty(conf->inactive_list + hash))
453 		atomic_inc(&conf->empty_inactive_list_nr);
454 out:
455 	return sh;
456 }
457 
458 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
459 static void free_stripe_pages(struct stripe_head *sh)
460 {
461 	int i;
462 	struct page *p;
463 
464 	/* Have not allocate page pool */
465 	if (!sh->pages)
466 		return;
467 
468 	for (i = 0; i < sh->nr_pages; i++) {
469 		p = sh->pages[i];
470 		if (p)
471 			put_page(p);
472 		sh->pages[i] = NULL;
473 	}
474 }
475 
476 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
477 {
478 	int i;
479 	struct page *p;
480 
481 	for (i = 0; i < sh->nr_pages; i++) {
482 		/* The page have allocated. */
483 		if (sh->pages[i])
484 			continue;
485 
486 		p = alloc_page(gfp);
487 		if (!p) {
488 			free_stripe_pages(sh);
489 			return -ENOMEM;
490 		}
491 		sh->pages[i] = p;
492 	}
493 	return 0;
494 }
495 
496 static int
497 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
498 {
499 	int nr_pages, cnt;
500 
501 	if (sh->pages)
502 		return 0;
503 
504 	/* Each of the sh->dev[i] need one conf->stripe_size */
505 	cnt = PAGE_SIZE / conf->stripe_size;
506 	nr_pages = (disks + cnt - 1) / cnt;
507 
508 	sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
509 	if (!sh->pages)
510 		return -ENOMEM;
511 	sh->nr_pages = nr_pages;
512 	sh->stripes_per_page = cnt;
513 	return 0;
514 }
515 #endif
516 
517 static void shrink_buffers(struct stripe_head *sh)
518 {
519 	int i;
520 	int num = sh->raid_conf->pool_size;
521 
522 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
523 	for (i = 0; i < num ; i++) {
524 		struct page *p;
525 
526 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
527 		p = sh->dev[i].page;
528 		if (!p)
529 			continue;
530 		sh->dev[i].page = NULL;
531 		put_page(p);
532 	}
533 #else
534 	for (i = 0; i < num; i++)
535 		sh->dev[i].page = NULL;
536 	free_stripe_pages(sh); /* Free pages */
537 #endif
538 }
539 
540 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
541 {
542 	int i;
543 	int num = sh->raid_conf->pool_size;
544 
545 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
546 	for (i = 0; i < num; i++) {
547 		struct page *page;
548 
549 		if (!(page = alloc_page(gfp))) {
550 			return 1;
551 		}
552 		sh->dev[i].page = page;
553 		sh->dev[i].orig_page = page;
554 		sh->dev[i].offset = 0;
555 	}
556 #else
557 	if (alloc_stripe_pages(sh, gfp))
558 		return -ENOMEM;
559 
560 	for (i = 0; i < num; i++) {
561 		sh->dev[i].page = raid5_get_dev_page(sh, i);
562 		sh->dev[i].orig_page = sh->dev[i].page;
563 		sh->dev[i].offset = raid5_get_page_offset(sh, i);
564 	}
565 #endif
566 	return 0;
567 }
568 
569 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
570 			    struct stripe_head *sh);
571 
572 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
573 {
574 	struct r5conf *conf = sh->raid_conf;
575 	int i, seq;
576 
577 	BUG_ON(atomic_read(&sh->count) != 0);
578 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
579 	BUG_ON(stripe_operations_active(sh));
580 	BUG_ON(sh->batch_head);
581 
582 	pr_debug("init_stripe called, stripe %llu\n",
583 		(unsigned long long)sector);
584 retry:
585 	seq = read_seqcount_begin(&conf->gen_lock);
586 	sh->generation = conf->generation - previous;
587 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
588 	sh->sector = sector;
589 	stripe_set_idx(sector, conf, previous, sh);
590 	sh->state = 0;
591 
592 	for (i = sh->disks; i--; ) {
593 		struct r5dev *dev = &sh->dev[i];
594 
595 		if (dev->toread || dev->read || dev->towrite || dev->written ||
596 		    test_bit(R5_LOCKED, &dev->flags)) {
597 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
598 			       (unsigned long long)sh->sector, i, dev->toread,
599 			       dev->read, dev->towrite, dev->written,
600 			       test_bit(R5_LOCKED, &dev->flags));
601 			WARN_ON(1);
602 		}
603 		dev->flags = 0;
604 		dev->sector = raid5_compute_blocknr(sh, i, previous);
605 	}
606 	if (read_seqcount_retry(&conf->gen_lock, seq))
607 		goto retry;
608 	sh->overwrite_disks = 0;
609 	insert_hash(conf, sh);
610 	sh->cpu = smp_processor_id();
611 	set_bit(STRIPE_BATCH_READY, &sh->state);
612 }
613 
614 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
615 					 short generation)
616 {
617 	struct stripe_head *sh;
618 
619 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
620 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
621 		if (sh->sector == sector && sh->generation == generation)
622 			return sh;
623 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
624 	return NULL;
625 }
626 
627 /*
628  * Need to check if array has failed when deciding whether to:
629  *  - start an array
630  *  - remove non-faulty devices
631  *  - add a spare
632  *  - allow a reshape
633  * This determination is simple when no reshape is happening.
634  * However if there is a reshape, we need to carefully check
635  * both the before and after sections.
636  * This is because some failed devices may only affect one
637  * of the two sections, and some non-in_sync devices may
638  * be insync in the section most affected by failed devices.
639  *
640  * Most calls to this function hold &conf->device_lock. Calls
641  * in raid5_run() do not require the lock as no other threads
642  * have been started yet.
643  */
644 int raid5_calc_degraded(struct r5conf *conf)
645 {
646 	int degraded, degraded2;
647 	int i;
648 
649 	rcu_read_lock();
650 	degraded = 0;
651 	for (i = 0; i < conf->previous_raid_disks; i++) {
652 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
653 		if (rdev && test_bit(Faulty, &rdev->flags))
654 			rdev = rcu_dereference(conf->disks[i].replacement);
655 		if (!rdev || test_bit(Faulty, &rdev->flags))
656 			degraded++;
657 		else if (test_bit(In_sync, &rdev->flags))
658 			;
659 		else
660 			/* not in-sync or faulty.
661 			 * If the reshape increases the number of devices,
662 			 * this is being recovered by the reshape, so
663 			 * this 'previous' section is not in_sync.
664 			 * If the number of devices is being reduced however,
665 			 * the device can only be part of the array if
666 			 * we are reverting a reshape, so this section will
667 			 * be in-sync.
668 			 */
669 			if (conf->raid_disks >= conf->previous_raid_disks)
670 				degraded++;
671 	}
672 	rcu_read_unlock();
673 	if (conf->raid_disks == conf->previous_raid_disks)
674 		return degraded;
675 	rcu_read_lock();
676 	degraded2 = 0;
677 	for (i = 0; i < conf->raid_disks; i++) {
678 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
679 		if (rdev && test_bit(Faulty, &rdev->flags))
680 			rdev = rcu_dereference(conf->disks[i].replacement);
681 		if (!rdev || test_bit(Faulty, &rdev->flags))
682 			degraded2++;
683 		else if (test_bit(In_sync, &rdev->flags))
684 			;
685 		else
686 			/* not in-sync or faulty.
687 			 * If reshape increases the number of devices, this
688 			 * section has already been recovered, else it
689 			 * almost certainly hasn't.
690 			 */
691 			if (conf->raid_disks <= conf->previous_raid_disks)
692 				degraded2++;
693 	}
694 	rcu_read_unlock();
695 	if (degraded2 > degraded)
696 		return degraded2;
697 	return degraded;
698 }
699 
700 static bool has_failed(struct r5conf *conf)
701 {
702 	int degraded = conf->mddev->degraded;
703 
704 	if (test_bit(MD_BROKEN, &conf->mddev->flags))
705 		return true;
706 
707 	if (conf->mddev->reshape_position != MaxSector)
708 		degraded = raid5_calc_degraded(conf);
709 
710 	return degraded > conf->max_degraded;
711 }
712 
713 struct stripe_head *
714 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
715 			int previous, int noblock, int noquiesce)
716 {
717 	struct stripe_head *sh;
718 	int hash = stripe_hash_locks_hash(conf, sector);
719 	int inc_empty_inactive_list_flag;
720 
721 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
722 
723 	spin_lock_irq(conf->hash_locks + hash);
724 
725 	do {
726 		wait_event_lock_irq(conf->wait_for_quiescent,
727 				    conf->quiesce == 0 || noquiesce,
728 				    *(conf->hash_locks + hash));
729 		sh = __find_stripe(conf, sector, conf->generation - previous);
730 		if (!sh) {
731 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
732 				sh = get_free_stripe(conf, hash);
733 				if (!sh && !test_bit(R5_DID_ALLOC,
734 						     &conf->cache_state))
735 					set_bit(R5_ALLOC_MORE,
736 						&conf->cache_state);
737 			}
738 			if (noblock && sh == NULL)
739 				break;
740 
741 			r5c_check_stripe_cache_usage(conf);
742 			if (!sh) {
743 				set_bit(R5_INACTIVE_BLOCKED,
744 					&conf->cache_state);
745 				r5l_wake_reclaim(conf->log, 0);
746 				wait_event_lock_irq(
747 					conf->wait_for_stripe,
748 					!list_empty(conf->inactive_list + hash) &&
749 					(atomic_read(&conf->active_stripes)
750 					 < (conf->max_nr_stripes * 3 / 4)
751 					 || !test_bit(R5_INACTIVE_BLOCKED,
752 						      &conf->cache_state)),
753 					*(conf->hash_locks + hash));
754 				clear_bit(R5_INACTIVE_BLOCKED,
755 					  &conf->cache_state);
756 			} else {
757 				init_stripe(sh, sector, previous);
758 				atomic_inc(&sh->count);
759 			}
760 		} else if (!atomic_inc_not_zero(&sh->count)) {
761 			spin_lock(&conf->device_lock);
762 			if (!atomic_read(&sh->count)) {
763 				if (!test_bit(STRIPE_HANDLE, &sh->state))
764 					atomic_inc(&conf->active_stripes);
765 				BUG_ON(list_empty(&sh->lru) &&
766 				       !test_bit(STRIPE_EXPANDING, &sh->state));
767 				inc_empty_inactive_list_flag = 0;
768 				if (!list_empty(conf->inactive_list + hash))
769 					inc_empty_inactive_list_flag = 1;
770 				list_del_init(&sh->lru);
771 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
772 					atomic_inc(&conf->empty_inactive_list_nr);
773 				if (sh->group) {
774 					sh->group->stripes_cnt--;
775 					sh->group = NULL;
776 				}
777 			}
778 			atomic_inc(&sh->count);
779 			spin_unlock(&conf->device_lock);
780 		}
781 	} while (sh == NULL);
782 
783 	spin_unlock_irq(conf->hash_locks + hash);
784 	return sh;
785 }
786 
787 static bool is_full_stripe_write(struct stripe_head *sh)
788 {
789 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
790 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
791 }
792 
793 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
794 		__acquires(&sh1->stripe_lock)
795 		__acquires(&sh2->stripe_lock)
796 {
797 	if (sh1 > sh2) {
798 		spin_lock_irq(&sh2->stripe_lock);
799 		spin_lock_nested(&sh1->stripe_lock, 1);
800 	} else {
801 		spin_lock_irq(&sh1->stripe_lock);
802 		spin_lock_nested(&sh2->stripe_lock, 1);
803 	}
804 }
805 
806 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
807 		__releases(&sh1->stripe_lock)
808 		__releases(&sh2->stripe_lock)
809 {
810 	spin_unlock(&sh1->stripe_lock);
811 	spin_unlock_irq(&sh2->stripe_lock);
812 }
813 
814 /* Only freshly new full stripe normal write stripe can be added to a batch list */
815 static bool stripe_can_batch(struct stripe_head *sh)
816 {
817 	struct r5conf *conf = sh->raid_conf;
818 
819 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
820 		return false;
821 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
822 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
823 		is_full_stripe_write(sh);
824 }
825 
826 /* we only do back search */
827 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
828 {
829 	struct stripe_head *head;
830 	sector_t head_sector, tmp_sec;
831 	int hash;
832 	int dd_idx;
833 	int inc_empty_inactive_list_flag;
834 
835 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
836 	tmp_sec = sh->sector;
837 	if (!sector_div(tmp_sec, conf->chunk_sectors))
838 		return;
839 	head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
840 
841 	hash = stripe_hash_locks_hash(conf, head_sector);
842 	spin_lock_irq(conf->hash_locks + hash);
843 	head = __find_stripe(conf, head_sector, conf->generation);
844 	if (head && !atomic_inc_not_zero(&head->count)) {
845 		spin_lock(&conf->device_lock);
846 		if (!atomic_read(&head->count)) {
847 			if (!test_bit(STRIPE_HANDLE, &head->state))
848 				atomic_inc(&conf->active_stripes);
849 			BUG_ON(list_empty(&head->lru) &&
850 			       !test_bit(STRIPE_EXPANDING, &head->state));
851 			inc_empty_inactive_list_flag = 0;
852 			if (!list_empty(conf->inactive_list + hash))
853 				inc_empty_inactive_list_flag = 1;
854 			list_del_init(&head->lru);
855 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
856 				atomic_inc(&conf->empty_inactive_list_nr);
857 			if (head->group) {
858 				head->group->stripes_cnt--;
859 				head->group = NULL;
860 			}
861 		}
862 		atomic_inc(&head->count);
863 		spin_unlock(&conf->device_lock);
864 	}
865 	spin_unlock_irq(conf->hash_locks + hash);
866 
867 	if (!head)
868 		return;
869 	if (!stripe_can_batch(head))
870 		goto out;
871 
872 	lock_two_stripes(head, sh);
873 	/* clear_batch_ready clear the flag */
874 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
875 		goto unlock_out;
876 
877 	if (sh->batch_head)
878 		goto unlock_out;
879 
880 	dd_idx = 0;
881 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
882 		dd_idx++;
883 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
884 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
885 		goto unlock_out;
886 
887 	if (head->batch_head) {
888 		spin_lock(&head->batch_head->batch_lock);
889 		/* This batch list is already running */
890 		if (!stripe_can_batch(head)) {
891 			spin_unlock(&head->batch_head->batch_lock);
892 			goto unlock_out;
893 		}
894 		/*
895 		 * We must assign batch_head of this stripe within the
896 		 * batch_lock, otherwise clear_batch_ready of batch head
897 		 * stripe could clear BATCH_READY bit of this stripe and
898 		 * this stripe->batch_head doesn't get assigned, which
899 		 * could confuse clear_batch_ready for this stripe
900 		 */
901 		sh->batch_head = head->batch_head;
902 
903 		/*
904 		 * at this point, head's BATCH_READY could be cleared, but we
905 		 * can still add the stripe to batch list
906 		 */
907 		list_add(&sh->batch_list, &head->batch_list);
908 		spin_unlock(&head->batch_head->batch_lock);
909 	} else {
910 		head->batch_head = head;
911 		sh->batch_head = head->batch_head;
912 		spin_lock(&head->batch_lock);
913 		list_add_tail(&sh->batch_list, &head->batch_list);
914 		spin_unlock(&head->batch_lock);
915 	}
916 
917 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
918 		if (atomic_dec_return(&conf->preread_active_stripes)
919 		    < IO_THRESHOLD)
920 			md_wakeup_thread(conf->mddev->thread);
921 
922 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
923 		int seq = sh->bm_seq;
924 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
925 		    sh->batch_head->bm_seq > seq)
926 			seq = sh->batch_head->bm_seq;
927 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
928 		sh->batch_head->bm_seq = seq;
929 	}
930 
931 	atomic_inc(&sh->count);
932 unlock_out:
933 	unlock_two_stripes(head, sh);
934 out:
935 	raid5_release_stripe(head);
936 }
937 
938 /* Determine if 'data_offset' or 'new_data_offset' should be used
939  * in this stripe_head.
940  */
941 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
942 {
943 	sector_t progress = conf->reshape_progress;
944 	/* Need a memory barrier to make sure we see the value
945 	 * of conf->generation, or ->data_offset that was set before
946 	 * reshape_progress was updated.
947 	 */
948 	smp_rmb();
949 	if (progress == MaxSector)
950 		return 0;
951 	if (sh->generation == conf->generation - 1)
952 		return 0;
953 	/* We are in a reshape, and this is a new-generation stripe,
954 	 * so use new_data_offset.
955 	 */
956 	return 1;
957 }
958 
959 static void dispatch_bio_list(struct bio_list *tmp)
960 {
961 	struct bio *bio;
962 
963 	while ((bio = bio_list_pop(tmp)))
964 		submit_bio_noacct(bio);
965 }
966 
967 static int cmp_stripe(void *priv, const struct list_head *a,
968 		      const struct list_head *b)
969 {
970 	const struct r5pending_data *da = list_entry(a,
971 				struct r5pending_data, sibling);
972 	const struct r5pending_data *db = list_entry(b,
973 				struct r5pending_data, sibling);
974 	if (da->sector > db->sector)
975 		return 1;
976 	if (da->sector < db->sector)
977 		return -1;
978 	return 0;
979 }
980 
981 static void dispatch_defer_bios(struct r5conf *conf, int target,
982 				struct bio_list *list)
983 {
984 	struct r5pending_data *data;
985 	struct list_head *first, *next = NULL;
986 	int cnt = 0;
987 
988 	if (conf->pending_data_cnt == 0)
989 		return;
990 
991 	list_sort(NULL, &conf->pending_list, cmp_stripe);
992 
993 	first = conf->pending_list.next;
994 
995 	/* temporarily move the head */
996 	if (conf->next_pending_data)
997 		list_move_tail(&conf->pending_list,
998 				&conf->next_pending_data->sibling);
999 
1000 	while (!list_empty(&conf->pending_list)) {
1001 		data = list_first_entry(&conf->pending_list,
1002 			struct r5pending_data, sibling);
1003 		if (&data->sibling == first)
1004 			first = data->sibling.next;
1005 		next = data->sibling.next;
1006 
1007 		bio_list_merge(list, &data->bios);
1008 		list_move(&data->sibling, &conf->free_list);
1009 		cnt++;
1010 		if (cnt >= target)
1011 			break;
1012 	}
1013 	conf->pending_data_cnt -= cnt;
1014 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1015 
1016 	if (next != &conf->pending_list)
1017 		conf->next_pending_data = list_entry(next,
1018 				struct r5pending_data, sibling);
1019 	else
1020 		conf->next_pending_data = NULL;
1021 	/* list isn't empty */
1022 	if (first != &conf->pending_list)
1023 		list_move_tail(&conf->pending_list, first);
1024 }
1025 
1026 static void flush_deferred_bios(struct r5conf *conf)
1027 {
1028 	struct bio_list tmp = BIO_EMPTY_LIST;
1029 
1030 	if (conf->pending_data_cnt == 0)
1031 		return;
1032 
1033 	spin_lock(&conf->pending_bios_lock);
1034 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1035 	BUG_ON(conf->pending_data_cnt != 0);
1036 	spin_unlock(&conf->pending_bios_lock);
1037 
1038 	dispatch_bio_list(&tmp);
1039 }
1040 
1041 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1042 				struct bio_list *bios)
1043 {
1044 	struct bio_list tmp = BIO_EMPTY_LIST;
1045 	struct r5pending_data *ent;
1046 
1047 	spin_lock(&conf->pending_bios_lock);
1048 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
1049 							sibling);
1050 	list_move_tail(&ent->sibling, &conf->pending_list);
1051 	ent->sector = sector;
1052 	bio_list_init(&ent->bios);
1053 	bio_list_merge(&ent->bios, bios);
1054 	conf->pending_data_cnt++;
1055 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
1056 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1057 
1058 	spin_unlock(&conf->pending_bios_lock);
1059 
1060 	dispatch_bio_list(&tmp);
1061 }
1062 
1063 static void
1064 raid5_end_read_request(struct bio *bi);
1065 static void
1066 raid5_end_write_request(struct bio *bi);
1067 
1068 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1069 {
1070 	struct r5conf *conf = sh->raid_conf;
1071 	int i, disks = sh->disks;
1072 	struct stripe_head *head_sh = sh;
1073 	struct bio_list pending_bios = BIO_EMPTY_LIST;
1074 	struct r5dev *dev;
1075 	bool should_defer;
1076 
1077 	might_sleep();
1078 
1079 	if (log_stripe(sh, s) == 0)
1080 		return;
1081 
1082 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1083 
1084 	for (i = disks; i--; ) {
1085 		int op, op_flags = 0;
1086 		int replace_only = 0;
1087 		struct bio *bi, *rbi;
1088 		struct md_rdev *rdev, *rrdev = NULL;
1089 
1090 		sh = head_sh;
1091 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1092 			op = REQ_OP_WRITE;
1093 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1094 				op_flags = REQ_FUA;
1095 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1096 				op = REQ_OP_DISCARD;
1097 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1098 			op = REQ_OP_READ;
1099 		else if (test_and_clear_bit(R5_WantReplace,
1100 					    &sh->dev[i].flags)) {
1101 			op = REQ_OP_WRITE;
1102 			replace_only = 1;
1103 		} else
1104 			continue;
1105 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1106 			op_flags |= REQ_SYNC;
1107 
1108 again:
1109 		dev = &sh->dev[i];
1110 		bi = &dev->req;
1111 		rbi = &dev->rreq; /* For writing to replacement */
1112 
1113 		rcu_read_lock();
1114 		rrdev = rcu_dereference(conf->disks[i].replacement);
1115 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1116 		rdev = rcu_dereference(conf->disks[i].rdev);
1117 		if (!rdev) {
1118 			rdev = rrdev;
1119 			rrdev = NULL;
1120 		}
1121 		if (op_is_write(op)) {
1122 			if (replace_only)
1123 				rdev = NULL;
1124 			if (rdev == rrdev)
1125 				/* We raced and saw duplicates */
1126 				rrdev = NULL;
1127 		} else {
1128 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1129 				rdev = rrdev;
1130 			rrdev = NULL;
1131 		}
1132 
1133 		if (rdev && test_bit(Faulty, &rdev->flags))
1134 			rdev = NULL;
1135 		if (rdev)
1136 			atomic_inc(&rdev->nr_pending);
1137 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1138 			rrdev = NULL;
1139 		if (rrdev)
1140 			atomic_inc(&rrdev->nr_pending);
1141 		rcu_read_unlock();
1142 
1143 		/* We have already checked bad blocks for reads.  Now
1144 		 * need to check for writes.  We never accept write errors
1145 		 * on the replacement, so we don't to check rrdev.
1146 		 */
1147 		while (op_is_write(op) && rdev &&
1148 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1149 			sector_t first_bad;
1150 			int bad_sectors;
1151 			int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1152 					      &first_bad, &bad_sectors);
1153 			if (!bad)
1154 				break;
1155 
1156 			if (bad < 0) {
1157 				set_bit(BlockedBadBlocks, &rdev->flags);
1158 				if (!conf->mddev->external &&
1159 				    conf->mddev->sb_flags) {
1160 					/* It is very unlikely, but we might
1161 					 * still need to write out the
1162 					 * bad block log - better give it
1163 					 * a chance*/
1164 					md_check_recovery(conf->mddev);
1165 				}
1166 				/*
1167 				 * Because md_wait_for_blocked_rdev
1168 				 * will dec nr_pending, we must
1169 				 * increment it first.
1170 				 */
1171 				atomic_inc(&rdev->nr_pending);
1172 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1173 			} else {
1174 				/* Acknowledged bad block - skip the write */
1175 				rdev_dec_pending(rdev, conf->mddev);
1176 				rdev = NULL;
1177 			}
1178 		}
1179 
1180 		if (rdev) {
1181 			if (s->syncing || s->expanding || s->expanded
1182 			    || s->replacing)
1183 				md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1184 
1185 			set_bit(STRIPE_IO_STARTED, &sh->state);
1186 
1187 			bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1188 			bi->bi_end_io = op_is_write(op)
1189 				? raid5_end_write_request
1190 				: raid5_end_read_request;
1191 			bi->bi_private = sh;
1192 
1193 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1194 				__func__, (unsigned long long)sh->sector,
1195 				bi->bi_opf, i);
1196 			atomic_inc(&sh->count);
1197 			if (sh != head_sh)
1198 				atomic_inc(&head_sh->count);
1199 			if (use_new_offset(conf, sh))
1200 				bi->bi_iter.bi_sector = (sh->sector
1201 						 + rdev->new_data_offset);
1202 			else
1203 				bi->bi_iter.bi_sector = (sh->sector
1204 						 + rdev->data_offset);
1205 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1206 				bi->bi_opf |= REQ_NOMERGE;
1207 
1208 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1209 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1210 
1211 			if (!op_is_write(op) &&
1212 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1213 				/*
1214 				 * issuing read for a page in journal, this
1215 				 * must be preparing for prexor in rmw; read
1216 				 * the data into orig_page
1217 				 */
1218 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1219 			else
1220 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1221 			bi->bi_vcnt = 1;
1222 			bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1223 			bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1224 			bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1225 			/*
1226 			 * If this is discard request, set bi_vcnt 0. We don't
1227 			 * want to confuse SCSI because SCSI will replace payload
1228 			 */
1229 			if (op == REQ_OP_DISCARD)
1230 				bi->bi_vcnt = 0;
1231 			if (rrdev)
1232 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1233 
1234 			if (conf->mddev->gendisk)
1235 				trace_block_bio_remap(bi,
1236 						disk_devt(conf->mddev->gendisk),
1237 						sh->dev[i].sector);
1238 			if (should_defer && op_is_write(op))
1239 				bio_list_add(&pending_bios, bi);
1240 			else
1241 				submit_bio_noacct(bi);
1242 		}
1243 		if (rrdev) {
1244 			if (s->syncing || s->expanding || s->expanded
1245 			    || s->replacing)
1246 				md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1247 
1248 			set_bit(STRIPE_IO_STARTED, &sh->state);
1249 
1250 			bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1251 			BUG_ON(!op_is_write(op));
1252 			rbi->bi_end_io = raid5_end_write_request;
1253 			rbi->bi_private = sh;
1254 
1255 			pr_debug("%s: for %llu schedule op %d on "
1256 				 "replacement disc %d\n",
1257 				__func__, (unsigned long long)sh->sector,
1258 				rbi->bi_opf, i);
1259 			atomic_inc(&sh->count);
1260 			if (sh != head_sh)
1261 				atomic_inc(&head_sh->count);
1262 			if (use_new_offset(conf, sh))
1263 				rbi->bi_iter.bi_sector = (sh->sector
1264 						  + rrdev->new_data_offset);
1265 			else
1266 				rbi->bi_iter.bi_sector = (sh->sector
1267 						  + rrdev->data_offset);
1268 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1269 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1270 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1271 			rbi->bi_vcnt = 1;
1272 			rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1273 			rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1274 			rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1275 			/*
1276 			 * If this is discard request, set bi_vcnt 0. We don't
1277 			 * want to confuse SCSI because SCSI will replace payload
1278 			 */
1279 			if (op == REQ_OP_DISCARD)
1280 				rbi->bi_vcnt = 0;
1281 			if (conf->mddev->gendisk)
1282 				trace_block_bio_remap(rbi,
1283 						disk_devt(conf->mddev->gendisk),
1284 						sh->dev[i].sector);
1285 			if (should_defer && op_is_write(op))
1286 				bio_list_add(&pending_bios, rbi);
1287 			else
1288 				submit_bio_noacct(rbi);
1289 		}
1290 		if (!rdev && !rrdev) {
1291 			if (op_is_write(op))
1292 				set_bit(STRIPE_DEGRADED, &sh->state);
1293 			pr_debug("skip op %d on disc %d for sector %llu\n",
1294 				bi->bi_opf, i, (unsigned long long)sh->sector);
1295 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1296 			set_bit(STRIPE_HANDLE, &sh->state);
1297 		}
1298 
1299 		if (!head_sh->batch_head)
1300 			continue;
1301 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1302 				      batch_list);
1303 		if (sh != head_sh)
1304 			goto again;
1305 	}
1306 
1307 	if (should_defer && !bio_list_empty(&pending_bios))
1308 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1309 }
1310 
1311 static struct dma_async_tx_descriptor *
1312 async_copy_data(int frombio, struct bio *bio, struct page **page,
1313 	unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1314 	struct stripe_head *sh, int no_skipcopy)
1315 {
1316 	struct bio_vec bvl;
1317 	struct bvec_iter iter;
1318 	struct page *bio_page;
1319 	int page_offset;
1320 	struct async_submit_ctl submit;
1321 	enum async_tx_flags flags = 0;
1322 	struct r5conf *conf = sh->raid_conf;
1323 
1324 	if (bio->bi_iter.bi_sector >= sector)
1325 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1326 	else
1327 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1328 
1329 	if (frombio)
1330 		flags |= ASYNC_TX_FENCE;
1331 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1332 
1333 	bio_for_each_segment(bvl, bio, iter) {
1334 		int len = bvl.bv_len;
1335 		int clen;
1336 		int b_offset = 0;
1337 
1338 		if (page_offset < 0) {
1339 			b_offset = -page_offset;
1340 			page_offset += b_offset;
1341 			len -= b_offset;
1342 		}
1343 
1344 		if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1345 			clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1346 		else
1347 			clen = len;
1348 
1349 		if (clen > 0) {
1350 			b_offset += bvl.bv_offset;
1351 			bio_page = bvl.bv_page;
1352 			if (frombio) {
1353 				if (conf->skip_copy &&
1354 				    b_offset == 0 && page_offset == 0 &&
1355 				    clen == RAID5_STRIPE_SIZE(conf) &&
1356 				    !no_skipcopy)
1357 					*page = bio_page;
1358 				else
1359 					tx = async_memcpy(*page, bio_page, page_offset + poff,
1360 						  b_offset, clen, &submit);
1361 			} else
1362 				tx = async_memcpy(bio_page, *page, b_offset,
1363 						  page_offset + poff, clen, &submit);
1364 		}
1365 		/* chain the operations */
1366 		submit.depend_tx = tx;
1367 
1368 		if (clen < len) /* hit end of page */
1369 			break;
1370 		page_offset +=  len;
1371 	}
1372 
1373 	return tx;
1374 }
1375 
1376 static void ops_complete_biofill(void *stripe_head_ref)
1377 {
1378 	struct stripe_head *sh = stripe_head_ref;
1379 	int i;
1380 	struct r5conf *conf = sh->raid_conf;
1381 
1382 	pr_debug("%s: stripe %llu\n", __func__,
1383 		(unsigned long long)sh->sector);
1384 
1385 	/* clear completed biofills */
1386 	for (i = sh->disks; i--; ) {
1387 		struct r5dev *dev = &sh->dev[i];
1388 
1389 		/* acknowledge completion of a biofill operation */
1390 		/* and check if we need to reply to a read request,
1391 		 * new R5_Wantfill requests are held off until
1392 		 * !STRIPE_BIOFILL_RUN
1393 		 */
1394 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1395 			struct bio *rbi, *rbi2;
1396 
1397 			BUG_ON(!dev->read);
1398 			rbi = dev->read;
1399 			dev->read = NULL;
1400 			while (rbi && rbi->bi_iter.bi_sector <
1401 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1402 				rbi2 = r5_next_bio(conf, rbi, dev->sector);
1403 				bio_endio(rbi);
1404 				rbi = rbi2;
1405 			}
1406 		}
1407 	}
1408 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1409 
1410 	set_bit(STRIPE_HANDLE, &sh->state);
1411 	raid5_release_stripe(sh);
1412 }
1413 
1414 static void ops_run_biofill(struct stripe_head *sh)
1415 {
1416 	struct dma_async_tx_descriptor *tx = NULL;
1417 	struct async_submit_ctl submit;
1418 	int i;
1419 	struct r5conf *conf = sh->raid_conf;
1420 
1421 	BUG_ON(sh->batch_head);
1422 	pr_debug("%s: stripe %llu\n", __func__,
1423 		(unsigned long long)sh->sector);
1424 
1425 	for (i = sh->disks; i--; ) {
1426 		struct r5dev *dev = &sh->dev[i];
1427 		if (test_bit(R5_Wantfill, &dev->flags)) {
1428 			struct bio *rbi;
1429 			spin_lock_irq(&sh->stripe_lock);
1430 			dev->read = rbi = dev->toread;
1431 			dev->toread = NULL;
1432 			spin_unlock_irq(&sh->stripe_lock);
1433 			while (rbi && rbi->bi_iter.bi_sector <
1434 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1435 				tx = async_copy_data(0, rbi, &dev->page,
1436 						     dev->offset,
1437 						     dev->sector, tx, sh, 0);
1438 				rbi = r5_next_bio(conf, rbi, dev->sector);
1439 			}
1440 		}
1441 	}
1442 
1443 	atomic_inc(&sh->count);
1444 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1445 	async_trigger_callback(&submit);
1446 }
1447 
1448 static void mark_target_uptodate(struct stripe_head *sh, int target)
1449 {
1450 	struct r5dev *tgt;
1451 
1452 	if (target < 0)
1453 		return;
1454 
1455 	tgt = &sh->dev[target];
1456 	set_bit(R5_UPTODATE, &tgt->flags);
1457 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1458 	clear_bit(R5_Wantcompute, &tgt->flags);
1459 }
1460 
1461 static void ops_complete_compute(void *stripe_head_ref)
1462 {
1463 	struct stripe_head *sh = stripe_head_ref;
1464 
1465 	pr_debug("%s: stripe %llu\n", __func__,
1466 		(unsigned long long)sh->sector);
1467 
1468 	/* mark the computed target(s) as uptodate */
1469 	mark_target_uptodate(sh, sh->ops.target);
1470 	mark_target_uptodate(sh, sh->ops.target2);
1471 
1472 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1473 	if (sh->check_state == check_state_compute_run)
1474 		sh->check_state = check_state_compute_result;
1475 	set_bit(STRIPE_HANDLE, &sh->state);
1476 	raid5_release_stripe(sh);
1477 }
1478 
1479 /* return a pointer to the address conversion region of the scribble buffer */
1480 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1481 {
1482 	return percpu->scribble + i * percpu->scribble_obj_size;
1483 }
1484 
1485 /* return a pointer to the address conversion region of the scribble buffer */
1486 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1487 				 struct raid5_percpu *percpu, int i)
1488 {
1489 	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1490 }
1491 
1492 /*
1493  * Return a pointer to record offset address.
1494  */
1495 static unsigned int *
1496 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1497 {
1498 	return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1499 }
1500 
1501 static struct dma_async_tx_descriptor *
1502 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1503 {
1504 	int disks = sh->disks;
1505 	struct page **xor_srcs = to_addr_page(percpu, 0);
1506 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1507 	int target = sh->ops.target;
1508 	struct r5dev *tgt = &sh->dev[target];
1509 	struct page *xor_dest = tgt->page;
1510 	unsigned int off_dest = tgt->offset;
1511 	int count = 0;
1512 	struct dma_async_tx_descriptor *tx;
1513 	struct async_submit_ctl submit;
1514 	int i;
1515 
1516 	BUG_ON(sh->batch_head);
1517 
1518 	pr_debug("%s: stripe %llu block: %d\n",
1519 		__func__, (unsigned long long)sh->sector, target);
1520 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1521 
1522 	for (i = disks; i--; ) {
1523 		if (i != target) {
1524 			off_srcs[count] = sh->dev[i].offset;
1525 			xor_srcs[count++] = sh->dev[i].page;
1526 		}
1527 	}
1528 
1529 	atomic_inc(&sh->count);
1530 
1531 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1532 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1533 	if (unlikely(count == 1))
1534 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1535 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1536 	else
1537 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1538 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1539 
1540 	return tx;
1541 }
1542 
1543 /* set_syndrome_sources - populate source buffers for gen_syndrome
1544  * @srcs - (struct page *) array of size sh->disks
1545  * @offs - (unsigned int) array of offset for each page
1546  * @sh - stripe_head to parse
1547  *
1548  * Populates srcs in proper layout order for the stripe and returns the
1549  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1550  * destination buffer is recorded in srcs[count] and the Q destination
1551  * is recorded in srcs[count+1]].
1552  */
1553 static int set_syndrome_sources(struct page **srcs,
1554 				unsigned int *offs,
1555 				struct stripe_head *sh,
1556 				int srctype)
1557 {
1558 	int disks = sh->disks;
1559 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1560 	int d0_idx = raid6_d0(sh);
1561 	int count;
1562 	int i;
1563 
1564 	for (i = 0; i < disks; i++)
1565 		srcs[i] = NULL;
1566 
1567 	count = 0;
1568 	i = d0_idx;
1569 	do {
1570 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1571 		struct r5dev *dev = &sh->dev[i];
1572 
1573 		if (i == sh->qd_idx || i == sh->pd_idx ||
1574 		    (srctype == SYNDROME_SRC_ALL) ||
1575 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1576 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1577 		      test_bit(R5_InJournal, &dev->flags))) ||
1578 		    (srctype == SYNDROME_SRC_WRITTEN &&
1579 		     (dev->written ||
1580 		      test_bit(R5_InJournal, &dev->flags)))) {
1581 			if (test_bit(R5_InJournal, &dev->flags))
1582 				srcs[slot] = sh->dev[i].orig_page;
1583 			else
1584 				srcs[slot] = sh->dev[i].page;
1585 			/*
1586 			 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1587 			 * not shared page. In that case, dev[i].offset
1588 			 * is 0.
1589 			 */
1590 			offs[slot] = sh->dev[i].offset;
1591 		}
1592 		i = raid6_next_disk(i, disks);
1593 	} while (i != d0_idx);
1594 
1595 	return syndrome_disks;
1596 }
1597 
1598 static struct dma_async_tx_descriptor *
1599 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1600 {
1601 	int disks = sh->disks;
1602 	struct page **blocks = to_addr_page(percpu, 0);
1603 	unsigned int *offs = to_addr_offs(sh, percpu);
1604 	int target;
1605 	int qd_idx = sh->qd_idx;
1606 	struct dma_async_tx_descriptor *tx;
1607 	struct async_submit_ctl submit;
1608 	struct r5dev *tgt;
1609 	struct page *dest;
1610 	unsigned int dest_off;
1611 	int i;
1612 	int count;
1613 
1614 	BUG_ON(sh->batch_head);
1615 	if (sh->ops.target < 0)
1616 		target = sh->ops.target2;
1617 	else if (sh->ops.target2 < 0)
1618 		target = sh->ops.target;
1619 	else
1620 		/* we should only have one valid target */
1621 		BUG();
1622 	BUG_ON(target < 0);
1623 	pr_debug("%s: stripe %llu block: %d\n",
1624 		__func__, (unsigned long long)sh->sector, target);
1625 
1626 	tgt = &sh->dev[target];
1627 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1628 	dest = tgt->page;
1629 	dest_off = tgt->offset;
1630 
1631 	atomic_inc(&sh->count);
1632 
1633 	if (target == qd_idx) {
1634 		count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1635 		blocks[count] = NULL; /* regenerating p is not necessary */
1636 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1637 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1638 				  ops_complete_compute, sh,
1639 				  to_addr_conv(sh, percpu, 0));
1640 		tx = async_gen_syndrome(blocks, offs, count+2,
1641 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1642 	} else {
1643 		/* Compute any data- or p-drive using XOR */
1644 		count = 0;
1645 		for (i = disks; i-- ; ) {
1646 			if (i == target || i == qd_idx)
1647 				continue;
1648 			offs[count] = sh->dev[i].offset;
1649 			blocks[count++] = sh->dev[i].page;
1650 		}
1651 
1652 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1653 				  NULL, ops_complete_compute, sh,
1654 				  to_addr_conv(sh, percpu, 0));
1655 		tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1656 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1657 	}
1658 
1659 	return tx;
1660 }
1661 
1662 static struct dma_async_tx_descriptor *
1663 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1664 {
1665 	int i, count, disks = sh->disks;
1666 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1667 	int d0_idx = raid6_d0(sh);
1668 	int faila = -1, failb = -1;
1669 	int target = sh->ops.target;
1670 	int target2 = sh->ops.target2;
1671 	struct r5dev *tgt = &sh->dev[target];
1672 	struct r5dev *tgt2 = &sh->dev[target2];
1673 	struct dma_async_tx_descriptor *tx;
1674 	struct page **blocks = to_addr_page(percpu, 0);
1675 	unsigned int *offs = to_addr_offs(sh, percpu);
1676 	struct async_submit_ctl submit;
1677 
1678 	BUG_ON(sh->batch_head);
1679 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1680 		 __func__, (unsigned long long)sh->sector, target, target2);
1681 	BUG_ON(target < 0 || target2 < 0);
1682 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1683 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1684 
1685 	/* we need to open-code set_syndrome_sources to handle the
1686 	 * slot number conversion for 'faila' and 'failb'
1687 	 */
1688 	for (i = 0; i < disks ; i++) {
1689 		offs[i] = 0;
1690 		blocks[i] = NULL;
1691 	}
1692 	count = 0;
1693 	i = d0_idx;
1694 	do {
1695 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1696 
1697 		offs[slot] = sh->dev[i].offset;
1698 		blocks[slot] = sh->dev[i].page;
1699 
1700 		if (i == target)
1701 			faila = slot;
1702 		if (i == target2)
1703 			failb = slot;
1704 		i = raid6_next_disk(i, disks);
1705 	} while (i != d0_idx);
1706 
1707 	BUG_ON(faila == failb);
1708 	if (failb < faila)
1709 		swap(faila, failb);
1710 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1711 		 __func__, (unsigned long long)sh->sector, faila, failb);
1712 
1713 	atomic_inc(&sh->count);
1714 
1715 	if (failb == syndrome_disks+1) {
1716 		/* Q disk is one of the missing disks */
1717 		if (faila == syndrome_disks) {
1718 			/* Missing P+Q, just recompute */
1719 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1720 					  ops_complete_compute, sh,
1721 					  to_addr_conv(sh, percpu, 0));
1722 			return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1723 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1724 						  &submit);
1725 		} else {
1726 			struct page *dest;
1727 			unsigned int dest_off;
1728 			int data_target;
1729 			int qd_idx = sh->qd_idx;
1730 
1731 			/* Missing D+Q: recompute D from P, then recompute Q */
1732 			if (target == qd_idx)
1733 				data_target = target2;
1734 			else
1735 				data_target = target;
1736 
1737 			count = 0;
1738 			for (i = disks; i-- ; ) {
1739 				if (i == data_target || i == qd_idx)
1740 					continue;
1741 				offs[count] = sh->dev[i].offset;
1742 				blocks[count++] = sh->dev[i].page;
1743 			}
1744 			dest = sh->dev[data_target].page;
1745 			dest_off = sh->dev[data_target].offset;
1746 			init_async_submit(&submit,
1747 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1748 					  NULL, NULL, NULL,
1749 					  to_addr_conv(sh, percpu, 0));
1750 			tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1751 				       RAID5_STRIPE_SIZE(sh->raid_conf),
1752 				       &submit);
1753 
1754 			count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1755 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1756 					  ops_complete_compute, sh,
1757 					  to_addr_conv(sh, percpu, 0));
1758 			return async_gen_syndrome(blocks, offs, count+2,
1759 						  RAID5_STRIPE_SIZE(sh->raid_conf),
1760 						  &submit);
1761 		}
1762 	} else {
1763 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1764 				  ops_complete_compute, sh,
1765 				  to_addr_conv(sh, percpu, 0));
1766 		if (failb == syndrome_disks) {
1767 			/* We're missing D+P. */
1768 			return async_raid6_datap_recov(syndrome_disks+2,
1769 						RAID5_STRIPE_SIZE(sh->raid_conf),
1770 						faila,
1771 						blocks, offs, &submit);
1772 		} else {
1773 			/* We're missing D+D. */
1774 			return async_raid6_2data_recov(syndrome_disks+2,
1775 						RAID5_STRIPE_SIZE(sh->raid_conf),
1776 						faila, failb,
1777 						blocks, offs, &submit);
1778 		}
1779 	}
1780 }
1781 
1782 static void ops_complete_prexor(void *stripe_head_ref)
1783 {
1784 	struct stripe_head *sh = stripe_head_ref;
1785 
1786 	pr_debug("%s: stripe %llu\n", __func__,
1787 		(unsigned long long)sh->sector);
1788 
1789 	if (r5c_is_writeback(sh->raid_conf->log))
1790 		/*
1791 		 * raid5-cache write back uses orig_page during prexor.
1792 		 * After prexor, it is time to free orig_page
1793 		 */
1794 		r5c_release_extra_page(sh);
1795 }
1796 
1797 static struct dma_async_tx_descriptor *
1798 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1799 		struct dma_async_tx_descriptor *tx)
1800 {
1801 	int disks = sh->disks;
1802 	struct page **xor_srcs = to_addr_page(percpu, 0);
1803 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1804 	int count = 0, pd_idx = sh->pd_idx, i;
1805 	struct async_submit_ctl submit;
1806 
1807 	/* existing parity data subtracted */
1808 	unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1809 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1810 
1811 	BUG_ON(sh->batch_head);
1812 	pr_debug("%s: stripe %llu\n", __func__,
1813 		(unsigned long long)sh->sector);
1814 
1815 	for (i = disks; i--; ) {
1816 		struct r5dev *dev = &sh->dev[i];
1817 		/* Only process blocks that are known to be uptodate */
1818 		if (test_bit(R5_InJournal, &dev->flags)) {
1819 			/*
1820 			 * For this case, PAGE_SIZE must be equal to 4KB and
1821 			 * page offset is zero.
1822 			 */
1823 			off_srcs[count] = dev->offset;
1824 			xor_srcs[count++] = dev->orig_page;
1825 		} else if (test_bit(R5_Wantdrain, &dev->flags)) {
1826 			off_srcs[count] = dev->offset;
1827 			xor_srcs[count++] = dev->page;
1828 		}
1829 	}
1830 
1831 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1832 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1833 	tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1834 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1835 
1836 	return tx;
1837 }
1838 
1839 static struct dma_async_tx_descriptor *
1840 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1841 		struct dma_async_tx_descriptor *tx)
1842 {
1843 	struct page **blocks = to_addr_page(percpu, 0);
1844 	unsigned int *offs = to_addr_offs(sh, percpu);
1845 	int count;
1846 	struct async_submit_ctl submit;
1847 
1848 	pr_debug("%s: stripe %llu\n", __func__,
1849 		(unsigned long long)sh->sector);
1850 
1851 	count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1852 
1853 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1854 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1855 	tx = async_gen_syndrome(blocks, offs, count+2,
1856 			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1857 
1858 	return tx;
1859 }
1860 
1861 static struct dma_async_tx_descriptor *
1862 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1863 {
1864 	struct r5conf *conf = sh->raid_conf;
1865 	int disks = sh->disks;
1866 	int i;
1867 	struct stripe_head *head_sh = sh;
1868 
1869 	pr_debug("%s: stripe %llu\n", __func__,
1870 		(unsigned long long)sh->sector);
1871 
1872 	for (i = disks; i--; ) {
1873 		struct r5dev *dev;
1874 		struct bio *chosen;
1875 
1876 		sh = head_sh;
1877 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1878 			struct bio *wbi;
1879 
1880 again:
1881 			dev = &sh->dev[i];
1882 			/*
1883 			 * clear R5_InJournal, so when rewriting a page in
1884 			 * journal, it is not skipped by r5l_log_stripe()
1885 			 */
1886 			clear_bit(R5_InJournal, &dev->flags);
1887 			spin_lock_irq(&sh->stripe_lock);
1888 			chosen = dev->towrite;
1889 			dev->towrite = NULL;
1890 			sh->overwrite_disks = 0;
1891 			BUG_ON(dev->written);
1892 			wbi = dev->written = chosen;
1893 			spin_unlock_irq(&sh->stripe_lock);
1894 			WARN_ON(dev->page != dev->orig_page);
1895 
1896 			while (wbi && wbi->bi_iter.bi_sector <
1897 				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1898 				if (wbi->bi_opf & REQ_FUA)
1899 					set_bit(R5_WantFUA, &dev->flags);
1900 				if (wbi->bi_opf & REQ_SYNC)
1901 					set_bit(R5_SyncIO, &dev->flags);
1902 				if (bio_op(wbi) == REQ_OP_DISCARD)
1903 					set_bit(R5_Discard, &dev->flags);
1904 				else {
1905 					tx = async_copy_data(1, wbi, &dev->page,
1906 							     dev->offset,
1907 							     dev->sector, tx, sh,
1908 							     r5c_is_writeback(conf->log));
1909 					if (dev->page != dev->orig_page &&
1910 					    !r5c_is_writeback(conf->log)) {
1911 						set_bit(R5_SkipCopy, &dev->flags);
1912 						clear_bit(R5_UPTODATE, &dev->flags);
1913 						clear_bit(R5_OVERWRITE, &dev->flags);
1914 					}
1915 				}
1916 				wbi = r5_next_bio(conf, wbi, dev->sector);
1917 			}
1918 
1919 			if (head_sh->batch_head) {
1920 				sh = list_first_entry(&sh->batch_list,
1921 						      struct stripe_head,
1922 						      batch_list);
1923 				if (sh == head_sh)
1924 					continue;
1925 				goto again;
1926 			}
1927 		}
1928 	}
1929 
1930 	return tx;
1931 }
1932 
1933 static void ops_complete_reconstruct(void *stripe_head_ref)
1934 {
1935 	struct stripe_head *sh = stripe_head_ref;
1936 	int disks = sh->disks;
1937 	int pd_idx = sh->pd_idx;
1938 	int qd_idx = sh->qd_idx;
1939 	int i;
1940 	bool fua = false, sync = false, discard = false;
1941 
1942 	pr_debug("%s: stripe %llu\n", __func__,
1943 		(unsigned long long)sh->sector);
1944 
1945 	for (i = disks; i--; ) {
1946 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1947 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1948 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1949 	}
1950 
1951 	for (i = disks; i--; ) {
1952 		struct r5dev *dev = &sh->dev[i];
1953 
1954 		if (dev->written || i == pd_idx || i == qd_idx) {
1955 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1956 				set_bit(R5_UPTODATE, &dev->flags);
1957 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1958 					set_bit(R5_Expanded, &dev->flags);
1959 			}
1960 			if (fua)
1961 				set_bit(R5_WantFUA, &dev->flags);
1962 			if (sync)
1963 				set_bit(R5_SyncIO, &dev->flags);
1964 		}
1965 	}
1966 
1967 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1968 		sh->reconstruct_state = reconstruct_state_drain_result;
1969 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1970 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1971 	else {
1972 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1973 		sh->reconstruct_state = reconstruct_state_result;
1974 	}
1975 
1976 	set_bit(STRIPE_HANDLE, &sh->state);
1977 	raid5_release_stripe(sh);
1978 }
1979 
1980 static void
1981 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1982 		     struct dma_async_tx_descriptor *tx)
1983 {
1984 	int disks = sh->disks;
1985 	struct page **xor_srcs;
1986 	unsigned int *off_srcs;
1987 	struct async_submit_ctl submit;
1988 	int count, pd_idx = sh->pd_idx, i;
1989 	struct page *xor_dest;
1990 	unsigned int off_dest;
1991 	int prexor = 0;
1992 	unsigned long flags;
1993 	int j = 0;
1994 	struct stripe_head *head_sh = sh;
1995 	int last_stripe;
1996 
1997 	pr_debug("%s: stripe %llu\n", __func__,
1998 		(unsigned long long)sh->sector);
1999 
2000 	for (i = 0; i < sh->disks; i++) {
2001 		if (pd_idx == i)
2002 			continue;
2003 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2004 			break;
2005 	}
2006 	if (i >= sh->disks) {
2007 		atomic_inc(&sh->count);
2008 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2009 		ops_complete_reconstruct(sh);
2010 		return;
2011 	}
2012 again:
2013 	count = 0;
2014 	xor_srcs = to_addr_page(percpu, j);
2015 	off_srcs = to_addr_offs(sh, percpu);
2016 	/* check if prexor is active which means only process blocks
2017 	 * that are part of a read-modify-write (written)
2018 	 */
2019 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2020 		prexor = 1;
2021 		off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2022 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2023 		for (i = disks; i--; ) {
2024 			struct r5dev *dev = &sh->dev[i];
2025 			if (head_sh->dev[i].written ||
2026 			    test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2027 				off_srcs[count] = dev->offset;
2028 				xor_srcs[count++] = dev->page;
2029 			}
2030 		}
2031 	} else {
2032 		xor_dest = sh->dev[pd_idx].page;
2033 		off_dest = sh->dev[pd_idx].offset;
2034 		for (i = disks; i--; ) {
2035 			struct r5dev *dev = &sh->dev[i];
2036 			if (i != pd_idx) {
2037 				off_srcs[count] = dev->offset;
2038 				xor_srcs[count++] = dev->page;
2039 			}
2040 		}
2041 	}
2042 
2043 	/* 1/ if we prexor'd then the dest is reused as a source
2044 	 * 2/ if we did not prexor then we are redoing the parity
2045 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2046 	 * for the synchronous xor case
2047 	 */
2048 	last_stripe = !head_sh->batch_head ||
2049 		list_first_entry(&sh->batch_list,
2050 				 struct stripe_head, batch_list) == head_sh;
2051 	if (last_stripe) {
2052 		flags = ASYNC_TX_ACK |
2053 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2054 
2055 		atomic_inc(&head_sh->count);
2056 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2057 				  to_addr_conv(sh, percpu, j));
2058 	} else {
2059 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2060 		init_async_submit(&submit, flags, tx, NULL, NULL,
2061 				  to_addr_conv(sh, percpu, j));
2062 	}
2063 
2064 	if (unlikely(count == 1))
2065 		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2066 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2067 	else
2068 		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2069 				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2070 	if (!last_stripe) {
2071 		j++;
2072 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2073 				      batch_list);
2074 		goto again;
2075 	}
2076 }
2077 
2078 static void
2079 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2080 		     struct dma_async_tx_descriptor *tx)
2081 {
2082 	struct async_submit_ctl submit;
2083 	struct page **blocks;
2084 	unsigned int *offs;
2085 	int count, i, j = 0;
2086 	struct stripe_head *head_sh = sh;
2087 	int last_stripe;
2088 	int synflags;
2089 	unsigned long txflags;
2090 
2091 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2092 
2093 	for (i = 0; i < sh->disks; i++) {
2094 		if (sh->pd_idx == i || sh->qd_idx == i)
2095 			continue;
2096 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2097 			break;
2098 	}
2099 	if (i >= sh->disks) {
2100 		atomic_inc(&sh->count);
2101 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2102 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2103 		ops_complete_reconstruct(sh);
2104 		return;
2105 	}
2106 
2107 again:
2108 	blocks = to_addr_page(percpu, j);
2109 	offs = to_addr_offs(sh, percpu);
2110 
2111 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2112 		synflags = SYNDROME_SRC_WRITTEN;
2113 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2114 	} else {
2115 		synflags = SYNDROME_SRC_ALL;
2116 		txflags = ASYNC_TX_ACK;
2117 	}
2118 
2119 	count = set_syndrome_sources(blocks, offs, sh, synflags);
2120 	last_stripe = !head_sh->batch_head ||
2121 		list_first_entry(&sh->batch_list,
2122 				 struct stripe_head, batch_list) == head_sh;
2123 
2124 	if (last_stripe) {
2125 		atomic_inc(&head_sh->count);
2126 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2127 				  head_sh, to_addr_conv(sh, percpu, j));
2128 	} else
2129 		init_async_submit(&submit, 0, tx, NULL, NULL,
2130 				  to_addr_conv(sh, percpu, j));
2131 	tx = async_gen_syndrome(blocks, offs, count+2,
2132 			RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
2133 	if (!last_stripe) {
2134 		j++;
2135 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2136 				      batch_list);
2137 		goto again;
2138 	}
2139 }
2140 
2141 static void ops_complete_check(void *stripe_head_ref)
2142 {
2143 	struct stripe_head *sh = stripe_head_ref;
2144 
2145 	pr_debug("%s: stripe %llu\n", __func__,
2146 		(unsigned long long)sh->sector);
2147 
2148 	sh->check_state = check_state_check_result;
2149 	set_bit(STRIPE_HANDLE, &sh->state);
2150 	raid5_release_stripe(sh);
2151 }
2152 
2153 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2154 {
2155 	int disks = sh->disks;
2156 	int pd_idx = sh->pd_idx;
2157 	int qd_idx = sh->qd_idx;
2158 	struct page *xor_dest;
2159 	unsigned int off_dest;
2160 	struct page **xor_srcs = to_addr_page(percpu, 0);
2161 	unsigned int *off_srcs = to_addr_offs(sh, percpu);
2162 	struct dma_async_tx_descriptor *tx;
2163 	struct async_submit_ctl submit;
2164 	int count;
2165 	int i;
2166 
2167 	pr_debug("%s: stripe %llu\n", __func__,
2168 		(unsigned long long)sh->sector);
2169 
2170 	BUG_ON(sh->batch_head);
2171 	count = 0;
2172 	xor_dest = sh->dev[pd_idx].page;
2173 	off_dest = sh->dev[pd_idx].offset;
2174 	off_srcs[count] = off_dest;
2175 	xor_srcs[count++] = xor_dest;
2176 	for (i = disks; i--; ) {
2177 		if (i == pd_idx || i == qd_idx)
2178 			continue;
2179 		off_srcs[count] = sh->dev[i].offset;
2180 		xor_srcs[count++] = sh->dev[i].page;
2181 	}
2182 
2183 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2184 			  to_addr_conv(sh, percpu, 0));
2185 	tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2186 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2187 			   &sh->ops.zero_sum_result, &submit);
2188 
2189 	atomic_inc(&sh->count);
2190 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2191 	tx = async_trigger_callback(&submit);
2192 }
2193 
2194 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2195 {
2196 	struct page **srcs = to_addr_page(percpu, 0);
2197 	unsigned int *offs = to_addr_offs(sh, percpu);
2198 	struct async_submit_ctl submit;
2199 	int count;
2200 
2201 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2202 		(unsigned long long)sh->sector, checkp);
2203 
2204 	BUG_ON(sh->batch_head);
2205 	count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2206 	if (!checkp)
2207 		srcs[count] = NULL;
2208 
2209 	atomic_inc(&sh->count);
2210 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2211 			  sh, to_addr_conv(sh, percpu, 0));
2212 	async_syndrome_val(srcs, offs, count+2,
2213 			   RAID5_STRIPE_SIZE(sh->raid_conf),
2214 			   &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2215 }
2216 
2217 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2218 {
2219 	int overlap_clear = 0, i, disks = sh->disks;
2220 	struct dma_async_tx_descriptor *tx = NULL;
2221 	struct r5conf *conf = sh->raid_conf;
2222 	int level = conf->level;
2223 	struct raid5_percpu *percpu;
2224 
2225 	local_lock(&conf->percpu->lock);
2226 	percpu = this_cpu_ptr(conf->percpu);
2227 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2228 		ops_run_biofill(sh);
2229 		overlap_clear++;
2230 	}
2231 
2232 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2233 		if (level < 6)
2234 			tx = ops_run_compute5(sh, percpu);
2235 		else {
2236 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2237 				tx = ops_run_compute6_1(sh, percpu);
2238 			else
2239 				tx = ops_run_compute6_2(sh, percpu);
2240 		}
2241 		/* terminate the chain if reconstruct is not set to be run */
2242 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2243 			async_tx_ack(tx);
2244 	}
2245 
2246 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2247 		if (level < 6)
2248 			tx = ops_run_prexor5(sh, percpu, tx);
2249 		else
2250 			tx = ops_run_prexor6(sh, percpu, tx);
2251 	}
2252 
2253 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2254 		tx = ops_run_partial_parity(sh, percpu, tx);
2255 
2256 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2257 		tx = ops_run_biodrain(sh, tx);
2258 		overlap_clear++;
2259 	}
2260 
2261 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2262 		if (level < 6)
2263 			ops_run_reconstruct5(sh, percpu, tx);
2264 		else
2265 			ops_run_reconstruct6(sh, percpu, tx);
2266 	}
2267 
2268 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2269 		if (sh->check_state == check_state_run)
2270 			ops_run_check_p(sh, percpu);
2271 		else if (sh->check_state == check_state_run_q)
2272 			ops_run_check_pq(sh, percpu, 0);
2273 		else if (sh->check_state == check_state_run_pq)
2274 			ops_run_check_pq(sh, percpu, 1);
2275 		else
2276 			BUG();
2277 	}
2278 
2279 	if (overlap_clear && !sh->batch_head) {
2280 		for (i = disks; i--; ) {
2281 			struct r5dev *dev = &sh->dev[i];
2282 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2283 				wake_up(&sh->raid_conf->wait_for_overlap);
2284 		}
2285 	}
2286 	local_unlock(&conf->percpu->lock);
2287 }
2288 
2289 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2290 {
2291 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2292 	kfree(sh->pages);
2293 #endif
2294 	if (sh->ppl_page)
2295 		__free_page(sh->ppl_page);
2296 	kmem_cache_free(sc, sh);
2297 }
2298 
2299 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2300 	int disks, struct r5conf *conf)
2301 {
2302 	struct stripe_head *sh;
2303 
2304 	sh = kmem_cache_zalloc(sc, gfp);
2305 	if (sh) {
2306 		spin_lock_init(&sh->stripe_lock);
2307 		spin_lock_init(&sh->batch_lock);
2308 		INIT_LIST_HEAD(&sh->batch_list);
2309 		INIT_LIST_HEAD(&sh->lru);
2310 		INIT_LIST_HEAD(&sh->r5c);
2311 		INIT_LIST_HEAD(&sh->log_list);
2312 		atomic_set(&sh->count, 1);
2313 		sh->raid_conf = conf;
2314 		sh->log_start = MaxSector;
2315 
2316 		if (raid5_has_ppl(conf)) {
2317 			sh->ppl_page = alloc_page(gfp);
2318 			if (!sh->ppl_page) {
2319 				free_stripe(sc, sh);
2320 				return NULL;
2321 			}
2322 		}
2323 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2324 		if (init_stripe_shared_pages(sh, conf, disks)) {
2325 			free_stripe(sc, sh);
2326 			return NULL;
2327 		}
2328 #endif
2329 	}
2330 	return sh;
2331 }
2332 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2333 {
2334 	struct stripe_head *sh;
2335 
2336 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2337 	if (!sh)
2338 		return 0;
2339 
2340 	if (grow_buffers(sh, gfp)) {
2341 		shrink_buffers(sh);
2342 		free_stripe(conf->slab_cache, sh);
2343 		return 0;
2344 	}
2345 	sh->hash_lock_index =
2346 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2347 	/* we just created an active stripe so... */
2348 	atomic_inc(&conf->active_stripes);
2349 
2350 	raid5_release_stripe(sh);
2351 	conf->max_nr_stripes++;
2352 	return 1;
2353 }
2354 
2355 static int grow_stripes(struct r5conf *conf, int num)
2356 {
2357 	struct kmem_cache *sc;
2358 	size_t namelen = sizeof(conf->cache_name[0]);
2359 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2360 
2361 	if (conf->mddev->gendisk)
2362 		snprintf(conf->cache_name[0], namelen,
2363 			"raid%d-%s", conf->level, mdname(conf->mddev));
2364 	else
2365 		snprintf(conf->cache_name[0], namelen,
2366 			"raid%d-%p", conf->level, conf->mddev);
2367 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2368 
2369 	conf->active_name = 0;
2370 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2371 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2372 			       0, 0, NULL);
2373 	if (!sc)
2374 		return 1;
2375 	conf->slab_cache = sc;
2376 	conf->pool_size = devs;
2377 	while (num--)
2378 		if (!grow_one_stripe(conf, GFP_KERNEL))
2379 			return 1;
2380 
2381 	return 0;
2382 }
2383 
2384 /**
2385  * scribble_alloc - allocate percpu scribble buffer for required size
2386  *		    of the scribble region
2387  * @percpu: from for_each_present_cpu() of the caller
2388  * @num: total number of disks in the array
2389  * @cnt: scribble objs count for required size of the scribble region
2390  *
2391  * The scribble buffer size must be enough to contain:
2392  * 1/ a struct page pointer for each device in the array +2
2393  * 2/ room to convert each entry in (1) to its corresponding dma
2394  *    (dma_map_page()) or page (page_address()) address.
2395  *
2396  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2397  * calculate over all devices (not just the data blocks), using zeros in place
2398  * of the P and Q blocks.
2399  */
2400 static int scribble_alloc(struct raid5_percpu *percpu,
2401 			  int num, int cnt)
2402 {
2403 	size_t obj_size =
2404 		sizeof(struct page *) * (num + 2) +
2405 		sizeof(addr_conv_t) * (num + 2) +
2406 		sizeof(unsigned int) * (num + 2);
2407 	void *scribble;
2408 
2409 	/*
2410 	 * If here is in raid array suspend context, it is in memalloc noio
2411 	 * context as well, there is no potential recursive memory reclaim
2412 	 * I/Os with the GFP_KERNEL flag.
2413 	 */
2414 	scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2415 	if (!scribble)
2416 		return -ENOMEM;
2417 
2418 	kvfree(percpu->scribble);
2419 
2420 	percpu->scribble = scribble;
2421 	percpu->scribble_obj_size = obj_size;
2422 	return 0;
2423 }
2424 
2425 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2426 {
2427 	unsigned long cpu;
2428 	int err = 0;
2429 
2430 	/*
2431 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2432 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2433 	 * should equal to new_disks and new_sectors
2434 	 */
2435 	if (conf->scribble_disks >= new_disks &&
2436 	    conf->scribble_sectors >= new_sectors)
2437 		return 0;
2438 	mddev_suspend(conf->mddev);
2439 	cpus_read_lock();
2440 
2441 	for_each_present_cpu(cpu) {
2442 		struct raid5_percpu *percpu;
2443 
2444 		percpu = per_cpu_ptr(conf->percpu, cpu);
2445 		err = scribble_alloc(percpu, new_disks,
2446 				     new_sectors / RAID5_STRIPE_SECTORS(conf));
2447 		if (err)
2448 			break;
2449 	}
2450 
2451 	cpus_read_unlock();
2452 	mddev_resume(conf->mddev);
2453 	if (!err) {
2454 		conf->scribble_disks = new_disks;
2455 		conf->scribble_sectors = new_sectors;
2456 	}
2457 	return err;
2458 }
2459 
2460 static int resize_stripes(struct r5conf *conf, int newsize)
2461 {
2462 	/* Make all the stripes able to hold 'newsize' devices.
2463 	 * New slots in each stripe get 'page' set to a new page.
2464 	 *
2465 	 * This happens in stages:
2466 	 * 1/ create a new kmem_cache and allocate the required number of
2467 	 *    stripe_heads.
2468 	 * 2/ gather all the old stripe_heads and transfer the pages across
2469 	 *    to the new stripe_heads.  This will have the side effect of
2470 	 *    freezing the array as once all stripe_heads have been collected,
2471 	 *    no IO will be possible.  Old stripe heads are freed once their
2472 	 *    pages have been transferred over, and the old kmem_cache is
2473 	 *    freed when all stripes are done.
2474 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2475 	 *    we simple return a failure status - no need to clean anything up.
2476 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2477 	 *    If this fails, we don't bother trying the shrink the
2478 	 *    stripe_heads down again, we just leave them as they are.
2479 	 *    As each stripe_head is processed the new one is released into
2480 	 *    active service.
2481 	 *
2482 	 * Once step2 is started, we cannot afford to wait for a write,
2483 	 * so we use GFP_NOIO allocations.
2484 	 */
2485 	struct stripe_head *osh, *nsh;
2486 	LIST_HEAD(newstripes);
2487 	struct disk_info *ndisks;
2488 	int err = 0;
2489 	struct kmem_cache *sc;
2490 	int i;
2491 	int hash, cnt;
2492 
2493 	md_allow_write(conf->mddev);
2494 
2495 	/* Step 1 */
2496 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2497 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2498 			       0, 0, NULL);
2499 	if (!sc)
2500 		return -ENOMEM;
2501 
2502 	/* Need to ensure auto-resizing doesn't interfere */
2503 	mutex_lock(&conf->cache_size_mutex);
2504 
2505 	for (i = conf->max_nr_stripes; i; i--) {
2506 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2507 		if (!nsh)
2508 			break;
2509 
2510 		list_add(&nsh->lru, &newstripes);
2511 	}
2512 	if (i) {
2513 		/* didn't get enough, give up */
2514 		while (!list_empty(&newstripes)) {
2515 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2516 			list_del(&nsh->lru);
2517 			free_stripe(sc, nsh);
2518 		}
2519 		kmem_cache_destroy(sc);
2520 		mutex_unlock(&conf->cache_size_mutex);
2521 		return -ENOMEM;
2522 	}
2523 	/* Step 2 - Must use GFP_NOIO now.
2524 	 * OK, we have enough stripes, start collecting inactive
2525 	 * stripes and copying them over
2526 	 */
2527 	hash = 0;
2528 	cnt = 0;
2529 	list_for_each_entry(nsh, &newstripes, lru) {
2530 		lock_device_hash_lock(conf, hash);
2531 		wait_event_cmd(conf->wait_for_stripe,
2532 				    !list_empty(conf->inactive_list + hash),
2533 				    unlock_device_hash_lock(conf, hash),
2534 				    lock_device_hash_lock(conf, hash));
2535 		osh = get_free_stripe(conf, hash);
2536 		unlock_device_hash_lock(conf, hash);
2537 
2538 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2539 	for (i = 0; i < osh->nr_pages; i++) {
2540 		nsh->pages[i] = osh->pages[i];
2541 		osh->pages[i] = NULL;
2542 	}
2543 #endif
2544 		for(i=0; i<conf->pool_size; i++) {
2545 			nsh->dev[i].page = osh->dev[i].page;
2546 			nsh->dev[i].orig_page = osh->dev[i].page;
2547 			nsh->dev[i].offset = osh->dev[i].offset;
2548 		}
2549 		nsh->hash_lock_index = hash;
2550 		free_stripe(conf->slab_cache, osh);
2551 		cnt++;
2552 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2553 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2554 			hash++;
2555 			cnt = 0;
2556 		}
2557 	}
2558 	kmem_cache_destroy(conf->slab_cache);
2559 
2560 	/* Step 3.
2561 	 * At this point, we are holding all the stripes so the array
2562 	 * is completely stalled, so now is a good time to resize
2563 	 * conf->disks and the scribble region
2564 	 */
2565 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2566 	if (ndisks) {
2567 		for (i = 0; i < conf->pool_size; i++)
2568 			ndisks[i] = conf->disks[i];
2569 
2570 		for (i = conf->pool_size; i < newsize; i++) {
2571 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2572 			if (!ndisks[i].extra_page)
2573 				err = -ENOMEM;
2574 		}
2575 
2576 		if (err) {
2577 			for (i = conf->pool_size; i < newsize; i++)
2578 				if (ndisks[i].extra_page)
2579 					put_page(ndisks[i].extra_page);
2580 			kfree(ndisks);
2581 		} else {
2582 			kfree(conf->disks);
2583 			conf->disks = ndisks;
2584 		}
2585 	} else
2586 		err = -ENOMEM;
2587 
2588 	conf->slab_cache = sc;
2589 	conf->active_name = 1-conf->active_name;
2590 
2591 	/* Step 4, return new stripes to service */
2592 	while(!list_empty(&newstripes)) {
2593 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2594 		list_del_init(&nsh->lru);
2595 
2596 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2597 		for (i = 0; i < nsh->nr_pages; i++) {
2598 			if (nsh->pages[i])
2599 				continue;
2600 			nsh->pages[i] = alloc_page(GFP_NOIO);
2601 			if (!nsh->pages[i])
2602 				err = -ENOMEM;
2603 		}
2604 
2605 		for (i = conf->raid_disks; i < newsize; i++) {
2606 			if (nsh->dev[i].page)
2607 				continue;
2608 			nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2609 			nsh->dev[i].orig_page = nsh->dev[i].page;
2610 			nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2611 		}
2612 #else
2613 		for (i=conf->raid_disks; i < newsize; i++)
2614 			if (nsh->dev[i].page == NULL) {
2615 				struct page *p = alloc_page(GFP_NOIO);
2616 				nsh->dev[i].page = p;
2617 				nsh->dev[i].orig_page = p;
2618 				nsh->dev[i].offset = 0;
2619 				if (!p)
2620 					err = -ENOMEM;
2621 			}
2622 #endif
2623 		raid5_release_stripe(nsh);
2624 	}
2625 	/* critical section pass, GFP_NOIO no longer needed */
2626 
2627 	if (!err)
2628 		conf->pool_size = newsize;
2629 	mutex_unlock(&conf->cache_size_mutex);
2630 
2631 	return err;
2632 }
2633 
2634 static int drop_one_stripe(struct r5conf *conf)
2635 {
2636 	struct stripe_head *sh;
2637 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2638 
2639 	spin_lock_irq(conf->hash_locks + hash);
2640 	sh = get_free_stripe(conf, hash);
2641 	spin_unlock_irq(conf->hash_locks + hash);
2642 	if (!sh)
2643 		return 0;
2644 	BUG_ON(atomic_read(&sh->count));
2645 	shrink_buffers(sh);
2646 	free_stripe(conf->slab_cache, sh);
2647 	atomic_dec(&conf->active_stripes);
2648 	conf->max_nr_stripes--;
2649 	return 1;
2650 }
2651 
2652 static void shrink_stripes(struct r5conf *conf)
2653 {
2654 	while (conf->max_nr_stripes &&
2655 	       drop_one_stripe(conf))
2656 		;
2657 
2658 	kmem_cache_destroy(conf->slab_cache);
2659 	conf->slab_cache = NULL;
2660 }
2661 
2662 /*
2663  * This helper wraps rcu_dereference_protected() and can be used when
2664  * it is known that the nr_pending of the rdev is elevated.
2665  */
2666 static struct md_rdev *rdev_pend_deref(struct md_rdev __rcu *rdev)
2667 {
2668 	return rcu_dereference_protected(rdev,
2669 			atomic_read(&rcu_access_pointer(rdev)->nr_pending));
2670 }
2671 
2672 /*
2673  * This helper wraps rcu_dereference_protected() and should be used
2674  * when it is known that the mddev_lock() is held. This is safe
2675  * seeing raid5_remove_disk() has the same lock held.
2676  */
2677 static struct md_rdev *rdev_mdlock_deref(struct mddev *mddev,
2678 					 struct md_rdev __rcu *rdev)
2679 {
2680 	return rcu_dereference_protected(rdev,
2681 			lockdep_is_held(&mddev->reconfig_mutex));
2682 }
2683 
2684 static void raid5_end_read_request(struct bio * bi)
2685 {
2686 	struct stripe_head *sh = bi->bi_private;
2687 	struct r5conf *conf = sh->raid_conf;
2688 	int disks = sh->disks, i;
2689 	struct md_rdev *rdev = NULL;
2690 	sector_t s;
2691 
2692 	for (i=0 ; i<disks; i++)
2693 		if (bi == &sh->dev[i].req)
2694 			break;
2695 
2696 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2697 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2698 		bi->bi_status);
2699 	if (i == disks) {
2700 		BUG();
2701 		return;
2702 	}
2703 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2704 		/* If replacement finished while this request was outstanding,
2705 		 * 'replacement' might be NULL already.
2706 		 * In that case it moved down to 'rdev'.
2707 		 * rdev is not removed until all requests are finished.
2708 		 */
2709 		rdev = rdev_pend_deref(conf->disks[i].replacement);
2710 	if (!rdev)
2711 		rdev = rdev_pend_deref(conf->disks[i].rdev);
2712 
2713 	if (use_new_offset(conf, sh))
2714 		s = sh->sector + rdev->new_data_offset;
2715 	else
2716 		s = sh->sector + rdev->data_offset;
2717 	if (!bi->bi_status) {
2718 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2719 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2720 			/* Note that this cannot happen on a
2721 			 * replacement device.  We just fail those on
2722 			 * any error
2723 			 */
2724 			pr_info_ratelimited(
2725 				"md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2726 				mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2727 				(unsigned long long)s,
2728 				rdev->bdev);
2729 			atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2730 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2731 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2732 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2733 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2734 
2735 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2736 			/*
2737 			 * end read for a page in journal, this
2738 			 * must be preparing for prexor in rmw
2739 			 */
2740 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2741 
2742 		if (atomic_read(&rdev->read_errors))
2743 			atomic_set(&rdev->read_errors, 0);
2744 	} else {
2745 		int retry = 0;
2746 		int set_bad = 0;
2747 
2748 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2749 		if (!(bi->bi_status == BLK_STS_PROTECTION))
2750 			atomic_inc(&rdev->read_errors);
2751 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2752 			pr_warn_ratelimited(
2753 				"md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2754 				mdname(conf->mddev),
2755 				(unsigned long long)s,
2756 				rdev->bdev);
2757 		else if (conf->mddev->degraded >= conf->max_degraded) {
2758 			set_bad = 1;
2759 			pr_warn_ratelimited(
2760 				"md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2761 				mdname(conf->mddev),
2762 				(unsigned long long)s,
2763 				rdev->bdev);
2764 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2765 			/* Oh, no!!! */
2766 			set_bad = 1;
2767 			pr_warn_ratelimited(
2768 				"md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2769 				mdname(conf->mddev),
2770 				(unsigned long long)s,
2771 				rdev->bdev);
2772 		} else if (atomic_read(&rdev->read_errors)
2773 			 > conf->max_nr_stripes) {
2774 			if (!test_bit(Faulty, &rdev->flags)) {
2775 				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2776 				    mdname(conf->mddev),
2777 				    atomic_read(&rdev->read_errors),
2778 				    conf->max_nr_stripes);
2779 				pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2780 				    mdname(conf->mddev), rdev->bdev);
2781 			}
2782 		} else
2783 			retry = 1;
2784 		if (set_bad && test_bit(In_sync, &rdev->flags)
2785 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2786 			retry = 1;
2787 		if (retry)
2788 			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2789 				set_bit(R5_ReadError, &sh->dev[i].flags);
2790 			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2791 				set_bit(R5_ReadError, &sh->dev[i].flags);
2792 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2793 			} else
2794 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2795 		else {
2796 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2797 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2798 			if (!(set_bad
2799 			      && test_bit(In_sync, &rdev->flags)
2800 			      && rdev_set_badblocks(
2801 				      rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2802 				md_error(conf->mddev, rdev);
2803 		}
2804 	}
2805 	rdev_dec_pending(rdev, conf->mddev);
2806 	bio_uninit(bi);
2807 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2808 	set_bit(STRIPE_HANDLE, &sh->state);
2809 	raid5_release_stripe(sh);
2810 }
2811 
2812 static void raid5_end_write_request(struct bio *bi)
2813 {
2814 	struct stripe_head *sh = bi->bi_private;
2815 	struct r5conf *conf = sh->raid_conf;
2816 	int disks = sh->disks, i;
2817 	struct md_rdev *rdev;
2818 	sector_t first_bad;
2819 	int bad_sectors;
2820 	int replacement = 0;
2821 
2822 	for (i = 0 ; i < disks; i++) {
2823 		if (bi == &sh->dev[i].req) {
2824 			rdev = rdev_pend_deref(conf->disks[i].rdev);
2825 			break;
2826 		}
2827 		if (bi == &sh->dev[i].rreq) {
2828 			rdev = rdev_pend_deref(conf->disks[i].replacement);
2829 			if (rdev)
2830 				replacement = 1;
2831 			else
2832 				/* rdev was removed and 'replacement'
2833 				 * replaced it.  rdev is not removed
2834 				 * until all requests are finished.
2835 				 */
2836 				rdev = rdev_pend_deref(conf->disks[i].rdev);
2837 			break;
2838 		}
2839 	}
2840 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2841 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2842 		bi->bi_status);
2843 	if (i == disks) {
2844 		BUG();
2845 		return;
2846 	}
2847 
2848 	if (replacement) {
2849 		if (bi->bi_status)
2850 			md_error(conf->mddev, rdev);
2851 		else if (is_badblock(rdev, sh->sector,
2852 				     RAID5_STRIPE_SECTORS(conf),
2853 				     &first_bad, &bad_sectors))
2854 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2855 	} else {
2856 		if (bi->bi_status) {
2857 			set_bit(STRIPE_DEGRADED, &sh->state);
2858 			set_bit(WriteErrorSeen, &rdev->flags);
2859 			set_bit(R5_WriteError, &sh->dev[i].flags);
2860 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2861 				set_bit(MD_RECOVERY_NEEDED,
2862 					&rdev->mddev->recovery);
2863 		} else if (is_badblock(rdev, sh->sector,
2864 				       RAID5_STRIPE_SECTORS(conf),
2865 				       &first_bad, &bad_sectors)) {
2866 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2867 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2868 				/* That was a successful write so make
2869 				 * sure it looks like we already did
2870 				 * a re-write.
2871 				 */
2872 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2873 		}
2874 	}
2875 	rdev_dec_pending(rdev, conf->mddev);
2876 
2877 	if (sh->batch_head && bi->bi_status && !replacement)
2878 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2879 
2880 	bio_uninit(bi);
2881 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2882 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2883 	set_bit(STRIPE_HANDLE, &sh->state);
2884 	raid5_release_stripe(sh);
2885 
2886 	if (sh->batch_head && sh != sh->batch_head)
2887 		raid5_release_stripe(sh->batch_head);
2888 }
2889 
2890 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2891 {
2892 	struct r5conf *conf = mddev->private;
2893 	unsigned long flags;
2894 	pr_debug("raid456: error called\n");
2895 
2896 	pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2897 		mdname(mddev), rdev->bdev);
2898 
2899 	spin_lock_irqsave(&conf->device_lock, flags);
2900 	set_bit(Faulty, &rdev->flags);
2901 	clear_bit(In_sync, &rdev->flags);
2902 	mddev->degraded = raid5_calc_degraded(conf);
2903 
2904 	if (has_failed(conf)) {
2905 		set_bit(MD_BROKEN, &conf->mddev->flags);
2906 		conf->recovery_disabled = mddev->recovery_disabled;
2907 
2908 		pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2909 			mdname(mddev), mddev->degraded, conf->raid_disks);
2910 	} else {
2911 		pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2912 			mdname(mddev), conf->raid_disks - mddev->degraded);
2913 	}
2914 
2915 	spin_unlock_irqrestore(&conf->device_lock, flags);
2916 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2917 
2918 	set_bit(Blocked, &rdev->flags);
2919 	set_mask_bits(&mddev->sb_flags, 0,
2920 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2921 	r5c_update_on_rdev_error(mddev, rdev);
2922 }
2923 
2924 /*
2925  * Input: a 'big' sector number,
2926  * Output: index of the data and parity disk, and the sector # in them.
2927  */
2928 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2929 			      int previous, int *dd_idx,
2930 			      struct stripe_head *sh)
2931 {
2932 	sector_t stripe, stripe2;
2933 	sector_t chunk_number;
2934 	unsigned int chunk_offset;
2935 	int pd_idx, qd_idx;
2936 	int ddf_layout = 0;
2937 	sector_t new_sector;
2938 	int algorithm = previous ? conf->prev_algo
2939 				 : conf->algorithm;
2940 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2941 					 : conf->chunk_sectors;
2942 	int raid_disks = previous ? conf->previous_raid_disks
2943 				  : conf->raid_disks;
2944 	int data_disks = raid_disks - conf->max_degraded;
2945 
2946 	/* First compute the information on this sector */
2947 
2948 	/*
2949 	 * Compute the chunk number and the sector offset inside the chunk
2950 	 */
2951 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2952 	chunk_number = r_sector;
2953 
2954 	/*
2955 	 * Compute the stripe number
2956 	 */
2957 	stripe = chunk_number;
2958 	*dd_idx = sector_div(stripe, data_disks);
2959 	stripe2 = stripe;
2960 	/*
2961 	 * Select the parity disk based on the user selected algorithm.
2962 	 */
2963 	pd_idx = qd_idx = -1;
2964 	switch(conf->level) {
2965 	case 4:
2966 		pd_idx = data_disks;
2967 		break;
2968 	case 5:
2969 		switch (algorithm) {
2970 		case ALGORITHM_LEFT_ASYMMETRIC:
2971 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2972 			if (*dd_idx >= pd_idx)
2973 				(*dd_idx)++;
2974 			break;
2975 		case ALGORITHM_RIGHT_ASYMMETRIC:
2976 			pd_idx = sector_div(stripe2, raid_disks);
2977 			if (*dd_idx >= pd_idx)
2978 				(*dd_idx)++;
2979 			break;
2980 		case ALGORITHM_LEFT_SYMMETRIC:
2981 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2982 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2983 			break;
2984 		case ALGORITHM_RIGHT_SYMMETRIC:
2985 			pd_idx = sector_div(stripe2, raid_disks);
2986 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2987 			break;
2988 		case ALGORITHM_PARITY_0:
2989 			pd_idx = 0;
2990 			(*dd_idx)++;
2991 			break;
2992 		case ALGORITHM_PARITY_N:
2993 			pd_idx = data_disks;
2994 			break;
2995 		default:
2996 			BUG();
2997 		}
2998 		break;
2999 	case 6:
3000 
3001 		switch (algorithm) {
3002 		case ALGORITHM_LEFT_ASYMMETRIC:
3003 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3004 			qd_idx = pd_idx + 1;
3005 			if (pd_idx == raid_disks-1) {
3006 				(*dd_idx)++;	/* Q D D D P */
3007 				qd_idx = 0;
3008 			} else if (*dd_idx >= pd_idx)
3009 				(*dd_idx) += 2; /* D D P Q D */
3010 			break;
3011 		case ALGORITHM_RIGHT_ASYMMETRIC:
3012 			pd_idx = sector_div(stripe2, raid_disks);
3013 			qd_idx = pd_idx + 1;
3014 			if (pd_idx == raid_disks-1) {
3015 				(*dd_idx)++;	/* Q D D D P */
3016 				qd_idx = 0;
3017 			} else if (*dd_idx >= pd_idx)
3018 				(*dd_idx) += 2; /* D D P Q D */
3019 			break;
3020 		case ALGORITHM_LEFT_SYMMETRIC:
3021 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3022 			qd_idx = (pd_idx + 1) % raid_disks;
3023 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3024 			break;
3025 		case ALGORITHM_RIGHT_SYMMETRIC:
3026 			pd_idx = sector_div(stripe2, raid_disks);
3027 			qd_idx = (pd_idx + 1) % raid_disks;
3028 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3029 			break;
3030 
3031 		case ALGORITHM_PARITY_0:
3032 			pd_idx = 0;
3033 			qd_idx = 1;
3034 			(*dd_idx) += 2;
3035 			break;
3036 		case ALGORITHM_PARITY_N:
3037 			pd_idx = data_disks;
3038 			qd_idx = data_disks + 1;
3039 			break;
3040 
3041 		case ALGORITHM_ROTATING_ZERO_RESTART:
3042 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
3043 			 * of blocks for computing Q is different.
3044 			 */
3045 			pd_idx = sector_div(stripe2, raid_disks);
3046 			qd_idx = pd_idx + 1;
3047 			if (pd_idx == raid_disks-1) {
3048 				(*dd_idx)++;	/* Q D D D P */
3049 				qd_idx = 0;
3050 			} else if (*dd_idx >= pd_idx)
3051 				(*dd_idx) += 2; /* D D P Q D */
3052 			ddf_layout = 1;
3053 			break;
3054 
3055 		case ALGORITHM_ROTATING_N_RESTART:
3056 			/* Same a left_asymmetric, by first stripe is
3057 			 * D D D P Q  rather than
3058 			 * Q D D D P
3059 			 */
3060 			stripe2 += 1;
3061 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3062 			qd_idx = pd_idx + 1;
3063 			if (pd_idx == raid_disks-1) {
3064 				(*dd_idx)++;	/* Q D D D P */
3065 				qd_idx = 0;
3066 			} else if (*dd_idx >= pd_idx)
3067 				(*dd_idx) += 2; /* D D P Q D */
3068 			ddf_layout = 1;
3069 			break;
3070 
3071 		case ALGORITHM_ROTATING_N_CONTINUE:
3072 			/* Same as left_symmetric but Q is before P */
3073 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3074 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3075 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3076 			ddf_layout = 1;
3077 			break;
3078 
3079 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3080 			/* RAID5 left_asymmetric, with Q on last device */
3081 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3082 			if (*dd_idx >= pd_idx)
3083 				(*dd_idx)++;
3084 			qd_idx = raid_disks - 1;
3085 			break;
3086 
3087 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3088 			pd_idx = sector_div(stripe2, raid_disks-1);
3089 			if (*dd_idx >= pd_idx)
3090 				(*dd_idx)++;
3091 			qd_idx = raid_disks - 1;
3092 			break;
3093 
3094 		case ALGORITHM_LEFT_SYMMETRIC_6:
3095 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3096 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3097 			qd_idx = raid_disks - 1;
3098 			break;
3099 
3100 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3101 			pd_idx = sector_div(stripe2, raid_disks-1);
3102 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3103 			qd_idx = raid_disks - 1;
3104 			break;
3105 
3106 		case ALGORITHM_PARITY_0_6:
3107 			pd_idx = 0;
3108 			(*dd_idx)++;
3109 			qd_idx = raid_disks - 1;
3110 			break;
3111 
3112 		default:
3113 			BUG();
3114 		}
3115 		break;
3116 	}
3117 
3118 	if (sh) {
3119 		sh->pd_idx = pd_idx;
3120 		sh->qd_idx = qd_idx;
3121 		sh->ddf_layout = ddf_layout;
3122 	}
3123 	/*
3124 	 * Finally, compute the new sector number
3125 	 */
3126 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3127 	return new_sector;
3128 }
3129 
3130 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3131 {
3132 	struct r5conf *conf = sh->raid_conf;
3133 	int raid_disks = sh->disks;
3134 	int data_disks = raid_disks - conf->max_degraded;
3135 	sector_t new_sector = sh->sector, check;
3136 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3137 					 : conf->chunk_sectors;
3138 	int algorithm = previous ? conf->prev_algo
3139 				 : conf->algorithm;
3140 	sector_t stripe;
3141 	int chunk_offset;
3142 	sector_t chunk_number;
3143 	int dummy1, dd_idx = i;
3144 	sector_t r_sector;
3145 	struct stripe_head sh2;
3146 
3147 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
3148 	stripe = new_sector;
3149 
3150 	if (i == sh->pd_idx)
3151 		return 0;
3152 	switch(conf->level) {
3153 	case 4: break;
3154 	case 5:
3155 		switch (algorithm) {
3156 		case ALGORITHM_LEFT_ASYMMETRIC:
3157 		case ALGORITHM_RIGHT_ASYMMETRIC:
3158 			if (i > sh->pd_idx)
3159 				i--;
3160 			break;
3161 		case ALGORITHM_LEFT_SYMMETRIC:
3162 		case ALGORITHM_RIGHT_SYMMETRIC:
3163 			if (i < sh->pd_idx)
3164 				i += raid_disks;
3165 			i -= (sh->pd_idx + 1);
3166 			break;
3167 		case ALGORITHM_PARITY_0:
3168 			i -= 1;
3169 			break;
3170 		case ALGORITHM_PARITY_N:
3171 			break;
3172 		default:
3173 			BUG();
3174 		}
3175 		break;
3176 	case 6:
3177 		if (i == sh->qd_idx)
3178 			return 0; /* It is the Q disk */
3179 		switch (algorithm) {
3180 		case ALGORITHM_LEFT_ASYMMETRIC:
3181 		case ALGORITHM_RIGHT_ASYMMETRIC:
3182 		case ALGORITHM_ROTATING_ZERO_RESTART:
3183 		case ALGORITHM_ROTATING_N_RESTART:
3184 			if (sh->pd_idx == raid_disks-1)
3185 				i--;	/* Q D D D P */
3186 			else if (i > sh->pd_idx)
3187 				i -= 2; /* D D P Q D */
3188 			break;
3189 		case ALGORITHM_LEFT_SYMMETRIC:
3190 		case ALGORITHM_RIGHT_SYMMETRIC:
3191 			if (sh->pd_idx == raid_disks-1)
3192 				i--; /* Q D D D P */
3193 			else {
3194 				/* D D P Q D */
3195 				if (i < sh->pd_idx)
3196 					i += raid_disks;
3197 				i -= (sh->pd_idx + 2);
3198 			}
3199 			break;
3200 		case ALGORITHM_PARITY_0:
3201 			i -= 2;
3202 			break;
3203 		case ALGORITHM_PARITY_N:
3204 			break;
3205 		case ALGORITHM_ROTATING_N_CONTINUE:
3206 			/* Like left_symmetric, but P is before Q */
3207 			if (sh->pd_idx == 0)
3208 				i--;	/* P D D D Q */
3209 			else {
3210 				/* D D Q P D */
3211 				if (i < sh->pd_idx)
3212 					i += raid_disks;
3213 				i -= (sh->pd_idx + 1);
3214 			}
3215 			break;
3216 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3217 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3218 			if (i > sh->pd_idx)
3219 				i--;
3220 			break;
3221 		case ALGORITHM_LEFT_SYMMETRIC_6:
3222 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3223 			if (i < sh->pd_idx)
3224 				i += data_disks + 1;
3225 			i -= (sh->pd_idx + 1);
3226 			break;
3227 		case ALGORITHM_PARITY_0_6:
3228 			i -= 1;
3229 			break;
3230 		default:
3231 			BUG();
3232 		}
3233 		break;
3234 	}
3235 
3236 	chunk_number = stripe * data_disks + i;
3237 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3238 
3239 	check = raid5_compute_sector(conf, r_sector,
3240 				     previous, &dummy1, &sh2);
3241 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3242 		|| sh2.qd_idx != sh->qd_idx) {
3243 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3244 			mdname(conf->mddev));
3245 		return 0;
3246 	}
3247 	return r_sector;
3248 }
3249 
3250 /*
3251  * There are cases where we want handle_stripe_dirtying() and
3252  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3253  *
3254  * This function checks whether we want to delay the towrite. Specifically,
3255  * we delay the towrite when:
3256  *
3257  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3258  *      stripe has data in journal (for other devices).
3259  *
3260  *      In this case, when reading data for the non-overwrite dev, it is
3261  *      necessary to handle complex rmw of write back cache (prexor with
3262  *      orig_page, and xor with page). To keep read path simple, we would
3263  *      like to flush data in journal to RAID disks first, so complex rmw
3264  *      is handled in the write patch (handle_stripe_dirtying).
3265  *
3266  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3267  *
3268  *      It is important to be able to flush all stripes in raid5-cache.
3269  *      Therefore, we need reserve some space on the journal device for
3270  *      these flushes. If flush operation includes pending writes to the
3271  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3272  *      for the flush out. If we exclude these pending writes from flush
3273  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3274  *      Therefore, excluding pending writes in these cases enables more
3275  *      efficient use of the journal device.
3276  *
3277  *      Note: To make sure the stripe makes progress, we only delay
3278  *      towrite for stripes with data already in journal (injournal > 0).
3279  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3280  *      no_space_stripes list.
3281  *
3282  *   3. during journal failure
3283  *      In journal failure, we try to flush all cached data to raid disks
3284  *      based on data in stripe cache. The array is read-only to upper
3285  *      layers, so we would skip all pending writes.
3286  *
3287  */
3288 static inline bool delay_towrite(struct r5conf *conf,
3289 				 struct r5dev *dev,
3290 				 struct stripe_head_state *s)
3291 {
3292 	/* case 1 above */
3293 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3294 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3295 		return true;
3296 	/* case 2 above */
3297 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3298 	    s->injournal > 0)
3299 		return true;
3300 	/* case 3 above */
3301 	if (s->log_failed && s->injournal)
3302 		return true;
3303 	return false;
3304 }
3305 
3306 static void
3307 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3308 			 int rcw, int expand)
3309 {
3310 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3311 	struct r5conf *conf = sh->raid_conf;
3312 	int level = conf->level;
3313 
3314 	if (rcw) {
3315 		/*
3316 		 * In some cases, handle_stripe_dirtying initially decided to
3317 		 * run rmw and allocates extra page for prexor. However, rcw is
3318 		 * cheaper later on. We need to free the extra page now,
3319 		 * because we won't be able to do that in ops_complete_prexor().
3320 		 */
3321 		r5c_release_extra_page(sh);
3322 
3323 		for (i = disks; i--; ) {
3324 			struct r5dev *dev = &sh->dev[i];
3325 
3326 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3327 				set_bit(R5_LOCKED, &dev->flags);
3328 				set_bit(R5_Wantdrain, &dev->flags);
3329 				if (!expand)
3330 					clear_bit(R5_UPTODATE, &dev->flags);
3331 				s->locked++;
3332 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3333 				set_bit(R5_LOCKED, &dev->flags);
3334 				s->locked++;
3335 			}
3336 		}
3337 		/* if we are not expanding this is a proper write request, and
3338 		 * there will be bios with new data to be drained into the
3339 		 * stripe cache
3340 		 */
3341 		if (!expand) {
3342 			if (!s->locked)
3343 				/* False alarm, nothing to do */
3344 				return;
3345 			sh->reconstruct_state = reconstruct_state_drain_run;
3346 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3347 		} else
3348 			sh->reconstruct_state = reconstruct_state_run;
3349 
3350 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3351 
3352 		if (s->locked + conf->max_degraded == disks)
3353 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3354 				atomic_inc(&conf->pending_full_writes);
3355 	} else {
3356 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3357 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3358 		BUG_ON(level == 6 &&
3359 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3360 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3361 
3362 		for (i = disks; i--; ) {
3363 			struct r5dev *dev = &sh->dev[i];
3364 			if (i == pd_idx || i == qd_idx)
3365 				continue;
3366 
3367 			if (dev->towrite &&
3368 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3369 			     test_bit(R5_Wantcompute, &dev->flags))) {
3370 				set_bit(R5_Wantdrain, &dev->flags);
3371 				set_bit(R5_LOCKED, &dev->flags);
3372 				clear_bit(R5_UPTODATE, &dev->flags);
3373 				s->locked++;
3374 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3375 				set_bit(R5_LOCKED, &dev->flags);
3376 				s->locked++;
3377 			}
3378 		}
3379 		if (!s->locked)
3380 			/* False alarm - nothing to do */
3381 			return;
3382 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3383 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3384 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3385 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3386 	}
3387 
3388 	/* keep the parity disk(s) locked while asynchronous operations
3389 	 * are in flight
3390 	 */
3391 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3392 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3393 	s->locked++;
3394 
3395 	if (level == 6) {
3396 		int qd_idx = sh->qd_idx;
3397 		struct r5dev *dev = &sh->dev[qd_idx];
3398 
3399 		set_bit(R5_LOCKED, &dev->flags);
3400 		clear_bit(R5_UPTODATE, &dev->flags);
3401 		s->locked++;
3402 	}
3403 
3404 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3405 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3406 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3407 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3408 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3409 
3410 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3411 		__func__, (unsigned long long)sh->sector,
3412 		s->locked, s->ops_request);
3413 }
3414 
3415 /*
3416  * Each stripe/dev can have one or more bion attached.
3417  * toread/towrite point to the first in a chain.
3418  * The bi_next chain must be in order.
3419  */
3420 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3421 			  int forwrite, int previous)
3422 {
3423 	struct bio **bip;
3424 	struct r5conf *conf = sh->raid_conf;
3425 	int firstwrite=0;
3426 
3427 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3428 		(unsigned long long)bi->bi_iter.bi_sector,
3429 		(unsigned long long)sh->sector);
3430 
3431 	spin_lock_irq(&sh->stripe_lock);
3432 	/* Don't allow new IO added to stripes in batch list */
3433 	if (sh->batch_head)
3434 		goto overlap;
3435 	if (forwrite) {
3436 		bip = &sh->dev[dd_idx].towrite;
3437 		if (*bip == NULL)
3438 			firstwrite = 1;
3439 	} else
3440 		bip = &sh->dev[dd_idx].toread;
3441 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3442 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3443 			goto overlap;
3444 		bip = & (*bip)->bi_next;
3445 	}
3446 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3447 		goto overlap;
3448 
3449 	if (forwrite && raid5_has_ppl(conf)) {
3450 		/*
3451 		 * With PPL only writes to consecutive data chunks within a
3452 		 * stripe are allowed because for a single stripe_head we can
3453 		 * only have one PPL entry at a time, which describes one data
3454 		 * range. Not really an overlap, but wait_for_overlap can be
3455 		 * used to handle this.
3456 		 */
3457 		sector_t sector;
3458 		sector_t first = 0;
3459 		sector_t last = 0;
3460 		int count = 0;
3461 		int i;
3462 
3463 		for (i = 0; i < sh->disks; i++) {
3464 			if (i != sh->pd_idx &&
3465 			    (i == dd_idx || sh->dev[i].towrite)) {
3466 				sector = sh->dev[i].sector;
3467 				if (count == 0 || sector < first)
3468 					first = sector;
3469 				if (sector > last)
3470 					last = sector;
3471 				count++;
3472 			}
3473 		}
3474 
3475 		if (first + conf->chunk_sectors * (count - 1) != last)
3476 			goto overlap;
3477 	}
3478 
3479 	if (!forwrite || previous)
3480 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3481 
3482 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3483 	if (*bip)
3484 		bi->bi_next = *bip;
3485 	*bip = bi;
3486 	bio_inc_remaining(bi);
3487 	md_write_inc(conf->mddev, bi);
3488 
3489 	if (forwrite) {
3490 		/* check if page is covered */
3491 		sector_t sector = sh->dev[dd_idx].sector;
3492 		for (bi=sh->dev[dd_idx].towrite;
3493 		     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3494 			     bi && bi->bi_iter.bi_sector <= sector;
3495 		     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3496 			if (bio_end_sector(bi) >= sector)
3497 				sector = bio_end_sector(bi);
3498 		}
3499 		if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3500 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3501 				sh->overwrite_disks++;
3502 	}
3503 
3504 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3505 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3506 		(unsigned long long)sh->sector, dd_idx);
3507 
3508 	if (conf->mddev->bitmap && firstwrite) {
3509 		/* Cannot hold spinlock over bitmap_startwrite,
3510 		 * but must ensure this isn't added to a batch until
3511 		 * we have added to the bitmap and set bm_seq.
3512 		 * So set STRIPE_BITMAP_PENDING to prevent
3513 		 * batching.
3514 		 * If multiple add_stripe_bio() calls race here they
3515 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3516 		 * to complete "bitmap_startwrite" gets to set
3517 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3518 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3519 		 * any more.
3520 		 */
3521 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3522 		spin_unlock_irq(&sh->stripe_lock);
3523 		md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3524 				     RAID5_STRIPE_SECTORS(conf), 0);
3525 		spin_lock_irq(&sh->stripe_lock);
3526 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3527 		if (!sh->batch_head) {
3528 			sh->bm_seq = conf->seq_flush+1;
3529 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3530 		}
3531 	}
3532 	spin_unlock_irq(&sh->stripe_lock);
3533 
3534 	if (stripe_can_batch(sh))
3535 		stripe_add_to_batch_list(conf, sh);
3536 	return 1;
3537 
3538  overlap:
3539 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3540 	spin_unlock_irq(&sh->stripe_lock);
3541 	return 0;
3542 }
3543 
3544 static void end_reshape(struct r5conf *conf);
3545 
3546 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3547 			    struct stripe_head *sh)
3548 {
3549 	int sectors_per_chunk =
3550 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3551 	int dd_idx;
3552 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3553 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3554 
3555 	raid5_compute_sector(conf,
3556 			     stripe * (disks - conf->max_degraded)
3557 			     *sectors_per_chunk + chunk_offset,
3558 			     previous,
3559 			     &dd_idx, sh);
3560 }
3561 
3562 static void
3563 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3564 		     struct stripe_head_state *s, int disks)
3565 {
3566 	int i;
3567 	BUG_ON(sh->batch_head);
3568 	for (i = disks; i--; ) {
3569 		struct bio *bi;
3570 		int bitmap_end = 0;
3571 
3572 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3573 			struct md_rdev *rdev;
3574 			rcu_read_lock();
3575 			rdev = rcu_dereference(conf->disks[i].rdev);
3576 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3577 			    !test_bit(Faulty, &rdev->flags))
3578 				atomic_inc(&rdev->nr_pending);
3579 			else
3580 				rdev = NULL;
3581 			rcu_read_unlock();
3582 			if (rdev) {
3583 				if (!rdev_set_badblocks(
3584 					    rdev,
3585 					    sh->sector,
3586 					    RAID5_STRIPE_SECTORS(conf), 0))
3587 					md_error(conf->mddev, rdev);
3588 				rdev_dec_pending(rdev, conf->mddev);
3589 			}
3590 		}
3591 		spin_lock_irq(&sh->stripe_lock);
3592 		/* fail all writes first */
3593 		bi = sh->dev[i].towrite;
3594 		sh->dev[i].towrite = NULL;
3595 		sh->overwrite_disks = 0;
3596 		spin_unlock_irq(&sh->stripe_lock);
3597 		if (bi)
3598 			bitmap_end = 1;
3599 
3600 		log_stripe_write_finished(sh);
3601 
3602 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3603 			wake_up(&conf->wait_for_overlap);
3604 
3605 		while (bi && bi->bi_iter.bi_sector <
3606 			sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3607 			struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3608 
3609 			md_write_end(conf->mddev);
3610 			bio_io_error(bi);
3611 			bi = nextbi;
3612 		}
3613 		if (bitmap_end)
3614 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3615 					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3616 		bitmap_end = 0;
3617 		/* and fail all 'written' */
3618 		bi = sh->dev[i].written;
3619 		sh->dev[i].written = NULL;
3620 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3621 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3622 			sh->dev[i].page = sh->dev[i].orig_page;
3623 		}
3624 
3625 		if (bi) bitmap_end = 1;
3626 		while (bi && bi->bi_iter.bi_sector <
3627 		       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3628 			struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3629 
3630 			md_write_end(conf->mddev);
3631 			bio_io_error(bi);
3632 			bi = bi2;
3633 		}
3634 
3635 		/* fail any reads if this device is non-operational and
3636 		 * the data has not reached the cache yet.
3637 		 */
3638 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3639 		    s->failed > conf->max_degraded &&
3640 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3641 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3642 			spin_lock_irq(&sh->stripe_lock);
3643 			bi = sh->dev[i].toread;
3644 			sh->dev[i].toread = NULL;
3645 			spin_unlock_irq(&sh->stripe_lock);
3646 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3647 				wake_up(&conf->wait_for_overlap);
3648 			if (bi)
3649 				s->to_read--;
3650 			while (bi && bi->bi_iter.bi_sector <
3651 			       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3652 				struct bio *nextbi =
3653 					r5_next_bio(conf, bi, sh->dev[i].sector);
3654 
3655 				bio_io_error(bi);
3656 				bi = nextbi;
3657 			}
3658 		}
3659 		if (bitmap_end)
3660 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3661 					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3662 		/* If we were in the middle of a write the parity block might
3663 		 * still be locked - so just clear all R5_LOCKED flags
3664 		 */
3665 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3666 	}
3667 	s->to_write = 0;
3668 	s->written = 0;
3669 
3670 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3671 		if (atomic_dec_and_test(&conf->pending_full_writes))
3672 			md_wakeup_thread(conf->mddev->thread);
3673 }
3674 
3675 static void
3676 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3677 		   struct stripe_head_state *s)
3678 {
3679 	int abort = 0;
3680 	int i;
3681 
3682 	BUG_ON(sh->batch_head);
3683 	clear_bit(STRIPE_SYNCING, &sh->state);
3684 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3685 		wake_up(&conf->wait_for_overlap);
3686 	s->syncing = 0;
3687 	s->replacing = 0;
3688 	/* There is nothing more to do for sync/check/repair.
3689 	 * Don't even need to abort as that is handled elsewhere
3690 	 * if needed, and not always wanted e.g. if there is a known
3691 	 * bad block here.
3692 	 * For recover/replace we need to record a bad block on all
3693 	 * non-sync devices, or abort the recovery
3694 	 */
3695 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3696 		/* During recovery devices cannot be removed, so
3697 		 * locking and refcounting of rdevs is not needed
3698 		 */
3699 		rcu_read_lock();
3700 		for (i = 0; i < conf->raid_disks; i++) {
3701 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3702 			if (rdev
3703 			    && !test_bit(Faulty, &rdev->flags)
3704 			    && !test_bit(In_sync, &rdev->flags)
3705 			    && !rdev_set_badblocks(rdev, sh->sector,
3706 						   RAID5_STRIPE_SECTORS(conf), 0))
3707 				abort = 1;
3708 			rdev = rcu_dereference(conf->disks[i].replacement);
3709 			if (rdev
3710 			    && !test_bit(Faulty, &rdev->flags)
3711 			    && !test_bit(In_sync, &rdev->flags)
3712 			    && !rdev_set_badblocks(rdev, sh->sector,
3713 						   RAID5_STRIPE_SECTORS(conf), 0))
3714 				abort = 1;
3715 		}
3716 		rcu_read_unlock();
3717 		if (abort)
3718 			conf->recovery_disabled =
3719 				conf->mddev->recovery_disabled;
3720 	}
3721 	md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3722 }
3723 
3724 static int want_replace(struct stripe_head *sh, int disk_idx)
3725 {
3726 	struct md_rdev *rdev;
3727 	int rv = 0;
3728 
3729 	rcu_read_lock();
3730 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3731 	if (rdev
3732 	    && !test_bit(Faulty, &rdev->flags)
3733 	    && !test_bit(In_sync, &rdev->flags)
3734 	    && (rdev->recovery_offset <= sh->sector
3735 		|| rdev->mddev->recovery_cp <= sh->sector))
3736 		rv = 1;
3737 	rcu_read_unlock();
3738 	return rv;
3739 }
3740 
3741 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3742 			   int disk_idx, int disks)
3743 {
3744 	struct r5dev *dev = &sh->dev[disk_idx];
3745 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3746 				  &sh->dev[s->failed_num[1]] };
3747 	int i;
3748 	bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3749 
3750 
3751 	if (test_bit(R5_LOCKED, &dev->flags) ||
3752 	    test_bit(R5_UPTODATE, &dev->flags))
3753 		/* No point reading this as we already have it or have
3754 		 * decided to get it.
3755 		 */
3756 		return 0;
3757 
3758 	if (dev->toread ||
3759 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3760 		/* We need this block to directly satisfy a request */
3761 		return 1;
3762 
3763 	if (s->syncing || s->expanding ||
3764 	    (s->replacing && want_replace(sh, disk_idx)))
3765 		/* When syncing, or expanding we read everything.
3766 		 * When replacing, we need the replaced block.
3767 		 */
3768 		return 1;
3769 
3770 	if ((s->failed >= 1 && fdev[0]->toread) ||
3771 	    (s->failed >= 2 && fdev[1]->toread))
3772 		/* If we want to read from a failed device, then
3773 		 * we need to actually read every other device.
3774 		 */
3775 		return 1;
3776 
3777 	/* Sometimes neither read-modify-write nor reconstruct-write
3778 	 * cycles can work.  In those cases we read every block we
3779 	 * can.  Then the parity-update is certain to have enough to
3780 	 * work with.
3781 	 * This can only be a problem when we need to write something,
3782 	 * and some device has failed.  If either of those tests
3783 	 * fail we need look no further.
3784 	 */
3785 	if (!s->failed || !s->to_write)
3786 		return 0;
3787 
3788 	if (test_bit(R5_Insync, &dev->flags) &&
3789 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3790 		/* Pre-reads at not permitted until after short delay
3791 		 * to gather multiple requests.  However if this
3792 		 * device is no Insync, the block could only be computed
3793 		 * and there is no need to delay that.
3794 		 */
3795 		return 0;
3796 
3797 	for (i = 0; i < s->failed && i < 2; i++) {
3798 		if (fdev[i]->towrite &&
3799 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3800 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3801 			/* If we have a partial write to a failed
3802 			 * device, then we will need to reconstruct
3803 			 * the content of that device, so all other
3804 			 * devices must be read.
3805 			 */
3806 			return 1;
3807 
3808 		if (s->failed >= 2 &&
3809 		    (fdev[i]->towrite ||
3810 		     s->failed_num[i] == sh->pd_idx ||
3811 		     s->failed_num[i] == sh->qd_idx) &&
3812 		    !test_bit(R5_UPTODATE, &fdev[i]->flags))
3813 			/* In max degraded raid6, If the failed disk is P, Q,
3814 			 * or we want to read the failed disk, we need to do
3815 			 * reconstruct-write.
3816 			 */
3817 			force_rcw = true;
3818 	}
3819 
3820 	/* If we are forced to do a reconstruct-write, because parity
3821 	 * cannot be trusted and we are currently recovering it, there
3822 	 * is extra need to be careful.
3823 	 * If one of the devices that we would need to read, because
3824 	 * it is not being overwritten (and maybe not written at all)
3825 	 * is missing/faulty, then we need to read everything we can.
3826 	 */
3827 	if (!force_rcw &&
3828 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3829 		/* reconstruct-write isn't being forced */
3830 		return 0;
3831 	for (i = 0; i < s->failed && i < 2; i++) {
3832 		if (s->failed_num[i] != sh->pd_idx &&
3833 		    s->failed_num[i] != sh->qd_idx &&
3834 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3835 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3836 			return 1;
3837 	}
3838 
3839 	return 0;
3840 }
3841 
3842 /* fetch_block - checks the given member device to see if its data needs
3843  * to be read or computed to satisfy a request.
3844  *
3845  * Returns 1 when no more member devices need to be checked, otherwise returns
3846  * 0 to tell the loop in handle_stripe_fill to continue
3847  */
3848 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3849 		       int disk_idx, int disks)
3850 {
3851 	struct r5dev *dev = &sh->dev[disk_idx];
3852 
3853 	/* is the data in this block needed, and can we get it? */
3854 	if (need_this_block(sh, s, disk_idx, disks)) {
3855 		/* we would like to get this block, possibly by computing it,
3856 		 * otherwise read it if the backing disk is insync
3857 		 */
3858 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3859 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3860 		BUG_ON(sh->batch_head);
3861 
3862 		/*
3863 		 * In the raid6 case if the only non-uptodate disk is P
3864 		 * then we already trusted P to compute the other failed
3865 		 * drives. It is safe to compute rather than re-read P.
3866 		 * In other cases we only compute blocks from failed
3867 		 * devices, otherwise check/repair might fail to detect
3868 		 * a real inconsistency.
3869 		 */
3870 
3871 		if ((s->uptodate == disks - 1) &&
3872 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3873 		    (s->failed && (disk_idx == s->failed_num[0] ||
3874 				   disk_idx == s->failed_num[1])))) {
3875 			/* have disk failed, and we're requested to fetch it;
3876 			 * do compute it
3877 			 */
3878 			pr_debug("Computing stripe %llu block %d\n",
3879 			       (unsigned long long)sh->sector, disk_idx);
3880 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3881 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3882 			set_bit(R5_Wantcompute, &dev->flags);
3883 			sh->ops.target = disk_idx;
3884 			sh->ops.target2 = -1; /* no 2nd target */
3885 			s->req_compute = 1;
3886 			/* Careful: from this point on 'uptodate' is in the eye
3887 			 * of raid_run_ops which services 'compute' operations
3888 			 * before writes. R5_Wantcompute flags a block that will
3889 			 * be R5_UPTODATE by the time it is needed for a
3890 			 * subsequent operation.
3891 			 */
3892 			s->uptodate++;
3893 			return 1;
3894 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3895 			/* Computing 2-failure is *very* expensive; only
3896 			 * do it if failed >= 2
3897 			 */
3898 			int other;
3899 			for (other = disks; other--; ) {
3900 				if (other == disk_idx)
3901 					continue;
3902 				if (!test_bit(R5_UPTODATE,
3903 				      &sh->dev[other].flags))
3904 					break;
3905 			}
3906 			BUG_ON(other < 0);
3907 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3908 			       (unsigned long long)sh->sector,
3909 			       disk_idx, other);
3910 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3911 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3912 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3913 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3914 			sh->ops.target = disk_idx;
3915 			sh->ops.target2 = other;
3916 			s->uptodate += 2;
3917 			s->req_compute = 1;
3918 			return 1;
3919 		} else if (test_bit(R5_Insync, &dev->flags)) {
3920 			set_bit(R5_LOCKED, &dev->flags);
3921 			set_bit(R5_Wantread, &dev->flags);
3922 			s->locked++;
3923 			pr_debug("Reading block %d (sync=%d)\n",
3924 				disk_idx, s->syncing);
3925 		}
3926 	}
3927 
3928 	return 0;
3929 }
3930 
3931 /*
3932  * handle_stripe_fill - read or compute data to satisfy pending requests.
3933  */
3934 static void handle_stripe_fill(struct stripe_head *sh,
3935 			       struct stripe_head_state *s,
3936 			       int disks)
3937 {
3938 	int i;
3939 
3940 	/* look for blocks to read/compute, skip this if a compute
3941 	 * is already in flight, or if the stripe contents are in the
3942 	 * midst of changing due to a write
3943 	 */
3944 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3945 	    !sh->reconstruct_state) {
3946 
3947 		/*
3948 		 * For degraded stripe with data in journal, do not handle
3949 		 * read requests yet, instead, flush the stripe to raid
3950 		 * disks first, this avoids handling complex rmw of write
3951 		 * back cache (prexor with orig_page, and then xor with
3952 		 * page) in the read path
3953 		 */
3954 		if (s->injournal && s->failed) {
3955 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3956 				r5c_make_stripe_write_out(sh);
3957 			goto out;
3958 		}
3959 
3960 		for (i = disks; i--; )
3961 			if (fetch_block(sh, s, i, disks))
3962 				break;
3963 	}
3964 out:
3965 	set_bit(STRIPE_HANDLE, &sh->state);
3966 }
3967 
3968 static void break_stripe_batch_list(struct stripe_head *head_sh,
3969 				    unsigned long handle_flags);
3970 /* handle_stripe_clean_event
3971  * any written block on an uptodate or failed drive can be returned.
3972  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3973  * never LOCKED, so we don't need to test 'failed' directly.
3974  */
3975 static void handle_stripe_clean_event(struct r5conf *conf,
3976 	struct stripe_head *sh, int disks)
3977 {
3978 	int i;
3979 	struct r5dev *dev;
3980 	int discard_pending = 0;
3981 	struct stripe_head *head_sh = sh;
3982 	bool do_endio = false;
3983 
3984 	for (i = disks; i--; )
3985 		if (sh->dev[i].written) {
3986 			dev = &sh->dev[i];
3987 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3988 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3989 			     test_bit(R5_Discard, &dev->flags) ||
3990 			     test_bit(R5_SkipCopy, &dev->flags))) {
3991 				/* We can return any write requests */
3992 				struct bio *wbi, *wbi2;
3993 				pr_debug("Return write for disc %d\n", i);
3994 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3995 					clear_bit(R5_UPTODATE, &dev->flags);
3996 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3997 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3998 				}
3999 				do_endio = true;
4000 
4001 returnbi:
4002 				dev->page = dev->orig_page;
4003 				wbi = dev->written;
4004 				dev->written = NULL;
4005 				while (wbi && wbi->bi_iter.bi_sector <
4006 					dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4007 					wbi2 = r5_next_bio(conf, wbi, dev->sector);
4008 					md_write_end(conf->mddev);
4009 					bio_endio(wbi);
4010 					wbi = wbi2;
4011 				}
4012 				md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
4013 						   RAID5_STRIPE_SECTORS(conf),
4014 						   !test_bit(STRIPE_DEGRADED, &sh->state),
4015 						   0);
4016 				if (head_sh->batch_head) {
4017 					sh = list_first_entry(&sh->batch_list,
4018 							      struct stripe_head,
4019 							      batch_list);
4020 					if (sh != head_sh) {
4021 						dev = &sh->dev[i];
4022 						goto returnbi;
4023 					}
4024 				}
4025 				sh = head_sh;
4026 				dev = &sh->dev[i];
4027 			} else if (test_bit(R5_Discard, &dev->flags))
4028 				discard_pending = 1;
4029 		}
4030 
4031 	log_stripe_write_finished(sh);
4032 
4033 	if (!discard_pending &&
4034 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4035 		int hash;
4036 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4037 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4038 		if (sh->qd_idx >= 0) {
4039 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4040 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4041 		}
4042 		/* now that discard is done we can proceed with any sync */
4043 		clear_bit(STRIPE_DISCARD, &sh->state);
4044 		/*
4045 		 * SCSI discard will change some bio fields and the stripe has
4046 		 * no updated data, so remove it from hash list and the stripe
4047 		 * will be reinitialized
4048 		 */
4049 unhash:
4050 		hash = sh->hash_lock_index;
4051 		spin_lock_irq(conf->hash_locks + hash);
4052 		remove_hash(sh);
4053 		spin_unlock_irq(conf->hash_locks + hash);
4054 		if (head_sh->batch_head) {
4055 			sh = list_first_entry(&sh->batch_list,
4056 					      struct stripe_head, batch_list);
4057 			if (sh != head_sh)
4058 					goto unhash;
4059 		}
4060 		sh = head_sh;
4061 
4062 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4063 			set_bit(STRIPE_HANDLE, &sh->state);
4064 
4065 	}
4066 
4067 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4068 		if (atomic_dec_and_test(&conf->pending_full_writes))
4069 			md_wakeup_thread(conf->mddev->thread);
4070 
4071 	if (head_sh->batch_head && do_endio)
4072 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4073 }
4074 
4075 /*
4076  * For RMW in write back cache, we need extra page in prexor to store the
4077  * old data. This page is stored in dev->orig_page.
4078  *
4079  * This function checks whether we have data for prexor. The exact logic
4080  * is:
4081  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4082  */
4083 static inline bool uptodate_for_rmw(struct r5dev *dev)
4084 {
4085 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
4086 		(!test_bit(R5_InJournal, &dev->flags) ||
4087 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4088 }
4089 
4090 static int handle_stripe_dirtying(struct r5conf *conf,
4091 				  struct stripe_head *sh,
4092 				  struct stripe_head_state *s,
4093 				  int disks)
4094 {
4095 	int rmw = 0, rcw = 0, i;
4096 	sector_t recovery_cp = conf->mddev->recovery_cp;
4097 
4098 	/* Check whether resync is now happening or should start.
4099 	 * If yes, then the array is dirty (after unclean shutdown or
4100 	 * initial creation), so parity in some stripes might be inconsistent.
4101 	 * In this case, we need to always do reconstruct-write, to ensure
4102 	 * that in case of drive failure or read-error correction, we
4103 	 * generate correct data from the parity.
4104 	 */
4105 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
4106 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4107 	     s->failed == 0)) {
4108 		/* Calculate the real rcw later - for now make it
4109 		 * look like rcw is cheaper
4110 		 */
4111 		rcw = 1; rmw = 2;
4112 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4113 			 conf->rmw_level, (unsigned long long)recovery_cp,
4114 			 (unsigned long long)sh->sector);
4115 	} else for (i = disks; i--; ) {
4116 		/* would I have to read this buffer for read_modify_write */
4117 		struct r5dev *dev = &sh->dev[i];
4118 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4119 		     i == sh->pd_idx || i == sh->qd_idx ||
4120 		     test_bit(R5_InJournal, &dev->flags)) &&
4121 		    !test_bit(R5_LOCKED, &dev->flags) &&
4122 		    !(uptodate_for_rmw(dev) ||
4123 		      test_bit(R5_Wantcompute, &dev->flags))) {
4124 			if (test_bit(R5_Insync, &dev->flags))
4125 				rmw++;
4126 			else
4127 				rmw += 2*disks;  /* cannot read it */
4128 		}
4129 		/* Would I have to read this buffer for reconstruct_write */
4130 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4131 		    i != sh->pd_idx && i != sh->qd_idx &&
4132 		    !test_bit(R5_LOCKED, &dev->flags) &&
4133 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
4134 		      test_bit(R5_Wantcompute, &dev->flags))) {
4135 			if (test_bit(R5_Insync, &dev->flags))
4136 				rcw++;
4137 			else
4138 				rcw += 2*disks;
4139 		}
4140 	}
4141 
4142 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4143 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4144 	set_bit(STRIPE_HANDLE, &sh->state);
4145 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4146 		/* prefer read-modify-write, but need to get some data */
4147 		if (conf->mddev->queue)
4148 			blk_add_trace_msg(conf->mddev->queue,
4149 					  "raid5 rmw %llu %d",
4150 					  (unsigned long long)sh->sector, rmw);
4151 		for (i = disks; i--; ) {
4152 			struct r5dev *dev = &sh->dev[i];
4153 			if (test_bit(R5_InJournal, &dev->flags) &&
4154 			    dev->page == dev->orig_page &&
4155 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4156 				/* alloc page for prexor */
4157 				struct page *p = alloc_page(GFP_NOIO);
4158 
4159 				if (p) {
4160 					dev->orig_page = p;
4161 					continue;
4162 				}
4163 
4164 				/*
4165 				 * alloc_page() failed, try use
4166 				 * disk_info->extra_page
4167 				 */
4168 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4169 						      &conf->cache_state)) {
4170 					r5c_use_extra_page(sh);
4171 					break;
4172 				}
4173 
4174 				/* extra_page in use, add to delayed_list */
4175 				set_bit(STRIPE_DELAYED, &sh->state);
4176 				s->waiting_extra_page = 1;
4177 				return -EAGAIN;
4178 			}
4179 		}
4180 
4181 		for (i = disks; i--; ) {
4182 			struct r5dev *dev = &sh->dev[i];
4183 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4184 			     i == sh->pd_idx || i == sh->qd_idx ||
4185 			     test_bit(R5_InJournal, &dev->flags)) &&
4186 			    !test_bit(R5_LOCKED, &dev->flags) &&
4187 			    !(uptodate_for_rmw(dev) ||
4188 			      test_bit(R5_Wantcompute, &dev->flags)) &&
4189 			    test_bit(R5_Insync, &dev->flags)) {
4190 				if (test_bit(STRIPE_PREREAD_ACTIVE,
4191 					     &sh->state)) {
4192 					pr_debug("Read_old block %d for r-m-w\n",
4193 						 i);
4194 					set_bit(R5_LOCKED, &dev->flags);
4195 					set_bit(R5_Wantread, &dev->flags);
4196 					s->locked++;
4197 				} else
4198 					set_bit(STRIPE_DELAYED, &sh->state);
4199 			}
4200 		}
4201 	}
4202 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4203 		/* want reconstruct write, but need to get some data */
4204 		int qread =0;
4205 		rcw = 0;
4206 		for (i = disks; i--; ) {
4207 			struct r5dev *dev = &sh->dev[i];
4208 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4209 			    i != sh->pd_idx && i != sh->qd_idx &&
4210 			    !test_bit(R5_LOCKED, &dev->flags) &&
4211 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
4212 			      test_bit(R5_Wantcompute, &dev->flags))) {
4213 				rcw++;
4214 				if (test_bit(R5_Insync, &dev->flags) &&
4215 				    test_bit(STRIPE_PREREAD_ACTIVE,
4216 					     &sh->state)) {
4217 					pr_debug("Read_old block "
4218 						"%d for Reconstruct\n", i);
4219 					set_bit(R5_LOCKED, &dev->flags);
4220 					set_bit(R5_Wantread, &dev->flags);
4221 					s->locked++;
4222 					qread++;
4223 				} else
4224 					set_bit(STRIPE_DELAYED, &sh->state);
4225 			}
4226 		}
4227 		if (rcw && conf->mddev->queue)
4228 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4229 					  (unsigned long long)sh->sector,
4230 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4231 	}
4232 
4233 	if (rcw > disks && rmw > disks &&
4234 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4235 		set_bit(STRIPE_DELAYED, &sh->state);
4236 
4237 	/* now if nothing is locked, and if we have enough data,
4238 	 * we can start a write request
4239 	 */
4240 	/* since handle_stripe can be called at any time we need to handle the
4241 	 * case where a compute block operation has been submitted and then a
4242 	 * subsequent call wants to start a write request.  raid_run_ops only
4243 	 * handles the case where compute block and reconstruct are requested
4244 	 * simultaneously.  If this is not the case then new writes need to be
4245 	 * held off until the compute completes.
4246 	 */
4247 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4248 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4249 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4250 		schedule_reconstruction(sh, s, rcw == 0, 0);
4251 	return 0;
4252 }
4253 
4254 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4255 				struct stripe_head_state *s, int disks)
4256 {
4257 	struct r5dev *dev = NULL;
4258 
4259 	BUG_ON(sh->batch_head);
4260 	set_bit(STRIPE_HANDLE, &sh->state);
4261 
4262 	switch (sh->check_state) {
4263 	case check_state_idle:
4264 		/* start a new check operation if there are no failures */
4265 		if (s->failed == 0) {
4266 			BUG_ON(s->uptodate != disks);
4267 			sh->check_state = check_state_run;
4268 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4269 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4270 			s->uptodate--;
4271 			break;
4272 		}
4273 		dev = &sh->dev[s->failed_num[0]];
4274 		fallthrough;
4275 	case check_state_compute_result:
4276 		sh->check_state = check_state_idle;
4277 		if (!dev)
4278 			dev = &sh->dev[sh->pd_idx];
4279 
4280 		/* check that a write has not made the stripe insync */
4281 		if (test_bit(STRIPE_INSYNC, &sh->state))
4282 			break;
4283 
4284 		/* either failed parity check, or recovery is happening */
4285 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4286 		BUG_ON(s->uptodate != disks);
4287 
4288 		set_bit(R5_LOCKED, &dev->flags);
4289 		s->locked++;
4290 		set_bit(R5_Wantwrite, &dev->flags);
4291 
4292 		clear_bit(STRIPE_DEGRADED, &sh->state);
4293 		set_bit(STRIPE_INSYNC, &sh->state);
4294 		break;
4295 	case check_state_run:
4296 		break; /* we will be called again upon completion */
4297 	case check_state_check_result:
4298 		sh->check_state = check_state_idle;
4299 
4300 		/* if a failure occurred during the check operation, leave
4301 		 * STRIPE_INSYNC not set and let the stripe be handled again
4302 		 */
4303 		if (s->failed)
4304 			break;
4305 
4306 		/* handle a successful check operation, if parity is correct
4307 		 * we are done.  Otherwise update the mismatch count and repair
4308 		 * parity if !MD_RECOVERY_CHECK
4309 		 */
4310 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4311 			/* parity is correct (on disc,
4312 			 * not in buffer any more)
4313 			 */
4314 			set_bit(STRIPE_INSYNC, &sh->state);
4315 		else {
4316 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4317 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4318 				/* don't try to repair!! */
4319 				set_bit(STRIPE_INSYNC, &sh->state);
4320 				pr_warn_ratelimited("%s: mismatch sector in range "
4321 						    "%llu-%llu\n", mdname(conf->mddev),
4322 						    (unsigned long long) sh->sector,
4323 						    (unsigned long long) sh->sector +
4324 						    RAID5_STRIPE_SECTORS(conf));
4325 			} else {
4326 				sh->check_state = check_state_compute_run;
4327 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4328 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4329 				set_bit(R5_Wantcompute,
4330 					&sh->dev[sh->pd_idx].flags);
4331 				sh->ops.target = sh->pd_idx;
4332 				sh->ops.target2 = -1;
4333 				s->uptodate++;
4334 			}
4335 		}
4336 		break;
4337 	case check_state_compute_run:
4338 		break;
4339 	default:
4340 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4341 		       __func__, sh->check_state,
4342 		       (unsigned long long) sh->sector);
4343 		BUG();
4344 	}
4345 }
4346 
4347 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4348 				  struct stripe_head_state *s,
4349 				  int disks)
4350 {
4351 	int pd_idx = sh->pd_idx;
4352 	int qd_idx = sh->qd_idx;
4353 	struct r5dev *dev;
4354 
4355 	BUG_ON(sh->batch_head);
4356 	set_bit(STRIPE_HANDLE, &sh->state);
4357 
4358 	BUG_ON(s->failed > 2);
4359 
4360 	/* Want to check and possibly repair P and Q.
4361 	 * However there could be one 'failed' device, in which
4362 	 * case we can only check one of them, possibly using the
4363 	 * other to generate missing data
4364 	 */
4365 
4366 	switch (sh->check_state) {
4367 	case check_state_idle:
4368 		/* start a new check operation if there are < 2 failures */
4369 		if (s->failed == s->q_failed) {
4370 			/* The only possible failed device holds Q, so it
4371 			 * makes sense to check P (If anything else were failed,
4372 			 * we would have used P to recreate it).
4373 			 */
4374 			sh->check_state = check_state_run;
4375 		}
4376 		if (!s->q_failed && s->failed < 2) {
4377 			/* Q is not failed, and we didn't use it to generate
4378 			 * anything, so it makes sense to check it
4379 			 */
4380 			if (sh->check_state == check_state_run)
4381 				sh->check_state = check_state_run_pq;
4382 			else
4383 				sh->check_state = check_state_run_q;
4384 		}
4385 
4386 		/* discard potentially stale zero_sum_result */
4387 		sh->ops.zero_sum_result = 0;
4388 
4389 		if (sh->check_state == check_state_run) {
4390 			/* async_xor_zero_sum destroys the contents of P */
4391 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4392 			s->uptodate--;
4393 		}
4394 		if (sh->check_state >= check_state_run &&
4395 		    sh->check_state <= check_state_run_pq) {
4396 			/* async_syndrome_zero_sum preserves P and Q, so
4397 			 * no need to mark them !uptodate here
4398 			 */
4399 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4400 			break;
4401 		}
4402 
4403 		/* we have 2-disk failure */
4404 		BUG_ON(s->failed != 2);
4405 		fallthrough;
4406 	case check_state_compute_result:
4407 		sh->check_state = check_state_idle;
4408 
4409 		/* check that a write has not made the stripe insync */
4410 		if (test_bit(STRIPE_INSYNC, &sh->state))
4411 			break;
4412 
4413 		/* now write out any block on a failed drive,
4414 		 * or P or Q if they were recomputed
4415 		 */
4416 		dev = NULL;
4417 		if (s->failed == 2) {
4418 			dev = &sh->dev[s->failed_num[1]];
4419 			s->locked++;
4420 			set_bit(R5_LOCKED, &dev->flags);
4421 			set_bit(R5_Wantwrite, &dev->flags);
4422 		}
4423 		if (s->failed >= 1) {
4424 			dev = &sh->dev[s->failed_num[0]];
4425 			s->locked++;
4426 			set_bit(R5_LOCKED, &dev->flags);
4427 			set_bit(R5_Wantwrite, &dev->flags);
4428 		}
4429 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4430 			dev = &sh->dev[pd_idx];
4431 			s->locked++;
4432 			set_bit(R5_LOCKED, &dev->flags);
4433 			set_bit(R5_Wantwrite, &dev->flags);
4434 		}
4435 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4436 			dev = &sh->dev[qd_idx];
4437 			s->locked++;
4438 			set_bit(R5_LOCKED, &dev->flags);
4439 			set_bit(R5_Wantwrite, &dev->flags);
4440 		}
4441 		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4442 			      "%s: disk%td not up to date\n",
4443 			      mdname(conf->mddev),
4444 			      dev - (struct r5dev *) &sh->dev)) {
4445 			clear_bit(R5_LOCKED, &dev->flags);
4446 			clear_bit(R5_Wantwrite, &dev->flags);
4447 			s->locked--;
4448 		}
4449 		clear_bit(STRIPE_DEGRADED, &sh->state);
4450 
4451 		set_bit(STRIPE_INSYNC, &sh->state);
4452 		break;
4453 	case check_state_run:
4454 	case check_state_run_q:
4455 	case check_state_run_pq:
4456 		break; /* we will be called again upon completion */
4457 	case check_state_check_result:
4458 		sh->check_state = check_state_idle;
4459 
4460 		/* handle a successful check operation, if parity is correct
4461 		 * we are done.  Otherwise update the mismatch count and repair
4462 		 * parity if !MD_RECOVERY_CHECK
4463 		 */
4464 		if (sh->ops.zero_sum_result == 0) {
4465 			/* both parities are correct */
4466 			if (!s->failed)
4467 				set_bit(STRIPE_INSYNC, &sh->state);
4468 			else {
4469 				/* in contrast to the raid5 case we can validate
4470 				 * parity, but still have a failure to write
4471 				 * back
4472 				 */
4473 				sh->check_state = check_state_compute_result;
4474 				/* Returning at this point means that we may go
4475 				 * off and bring p and/or q uptodate again so
4476 				 * we make sure to check zero_sum_result again
4477 				 * to verify if p or q need writeback
4478 				 */
4479 			}
4480 		} else {
4481 			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4482 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4483 				/* don't try to repair!! */
4484 				set_bit(STRIPE_INSYNC, &sh->state);
4485 				pr_warn_ratelimited("%s: mismatch sector in range "
4486 						    "%llu-%llu\n", mdname(conf->mddev),
4487 						    (unsigned long long) sh->sector,
4488 						    (unsigned long long) sh->sector +
4489 						    RAID5_STRIPE_SECTORS(conf));
4490 			} else {
4491 				int *target = &sh->ops.target;
4492 
4493 				sh->ops.target = -1;
4494 				sh->ops.target2 = -1;
4495 				sh->check_state = check_state_compute_run;
4496 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4497 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4498 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4499 					set_bit(R5_Wantcompute,
4500 						&sh->dev[pd_idx].flags);
4501 					*target = pd_idx;
4502 					target = &sh->ops.target2;
4503 					s->uptodate++;
4504 				}
4505 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4506 					set_bit(R5_Wantcompute,
4507 						&sh->dev[qd_idx].flags);
4508 					*target = qd_idx;
4509 					s->uptodate++;
4510 				}
4511 			}
4512 		}
4513 		break;
4514 	case check_state_compute_run:
4515 		break;
4516 	default:
4517 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4518 			__func__, sh->check_state,
4519 			(unsigned long long) sh->sector);
4520 		BUG();
4521 	}
4522 }
4523 
4524 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4525 {
4526 	int i;
4527 
4528 	/* We have read all the blocks in this stripe and now we need to
4529 	 * copy some of them into a target stripe for expand.
4530 	 */
4531 	struct dma_async_tx_descriptor *tx = NULL;
4532 	BUG_ON(sh->batch_head);
4533 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4534 	for (i = 0; i < sh->disks; i++)
4535 		if (i != sh->pd_idx && i != sh->qd_idx) {
4536 			int dd_idx, j;
4537 			struct stripe_head *sh2;
4538 			struct async_submit_ctl submit;
4539 
4540 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4541 			sector_t s = raid5_compute_sector(conf, bn, 0,
4542 							  &dd_idx, NULL);
4543 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4544 			if (sh2 == NULL)
4545 				/* so far only the early blocks of this stripe
4546 				 * have been requested.  When later blocks
4547 				 * get requested, we will try again
4548 				 */
4549 				continue;
4550 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4551 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4552 				/* must have already done this block */
4553 				raid5_release_stripe(sh2);
4554 				continue;
4555 			}
4556 
4557 			/* place all the copies on one channel */
4558 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4559 			tx = async_memcpy(sh2->dev[dd_idx].page,
4560 					  sh->dev[i].page, sh2->dev[dd_idx].offset,
4561 					  sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4562 					  &submit);
4563 
4564 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4565 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4566 			for (j = 0; j < conf->raid_disks; j++)
4567 				if (j != sh2->pd_idx &&
4568 				    j != sh2->qd_idx &&
4569 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4570 					break;
4571 			if (j == conf->raid_disks) {
4572 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4573 				set_bit(STRIPE_HANDLE, &sh2->state);
4574 			}
4575 			raid5_release_stripe(sh2);
4576 
4577 		}
4578 	/* done submitting copies, wait for them to complete */
4579 	async_tx_quiesce(&tx);
4580 }
4581 
4582 /*
4583  * handle_stripe - do things to a stripe.
4584  *
4585  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4586  * state of various bits to see what needs to be done.
4587  * Possible results:
4588  *    return some read requests which now have data
4589  *    return some write requests which are safely on storage
4590  *    schedule a read on some buffers
4591  *    schedule a write of some buffers
4592  *    return confirmation of parity correctness
4593  *
4594  */
4595 
4596 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4597 {
4598 	struct r5conf *conf = sh->raid_conf;
4599 	int disks = sh->disks;
4600 	struct r5dev *dev;
4601 	int i;
4602 	int do_recovery = 0;
4603 
4604 	memset(s, 0, sizeof(*s));
4605 
4606 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4607 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4608 	s->failed_num[0] = -1;
4609 	s->failed_num[1] = -1;
4610 	s->log_failed = r5l_log_disk_error(conf);
4611 
4612 	/* Now to look around and see what can be done */
4613 	rcu_read_lock();
4614 	for (i=disks; i--; ) {
4615 		struct md_rdev *rdev;
4616 		sector_t first_bad;
4617 		int bad_sectors;
4618 		int is_bad = 0;
4619 
4620 		dev = &sh->dev[i];
4621 
4622 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4623 			 i, dev->flags,
4624 			 dev->toread, dev->towrite, dev->written);
4625 		/* maybe we can reply to a read
4626 		 *
4627 		 * new wantfill requests are only permitted while
4628 		 * ops_complete_biofill is guaranteed to be inactive
4629 		 */
4630 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4631 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4632 			set_bit(R5_Wantfill, &dev->flags);
4633 
4634 		/* now count some things */
4635 		if (test_bit(R5_LOCKED, &dev->flags))
4636 			s->locked++;
4637 		if (test_bit(R5_UPTODATE, &dev->flags))
4638 			s->uptodate++;
4639 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4640 			s->compute++;
4641 			BUG_ON(s->compute > 2);
4642 		}
4643 
4644 		if (test_bit(R5_Wantfill, &dev->flags))
4645 			s->to_fill++;
4646 		else if (dev->toread)
4647 			s->to_read++;
4648 		if (dev->towrite) {
4649 			s->to_write++;
4650 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4651 				s->non_overwrite++;
4652 		}
4653 		if (dev->written)
4654 			s->written++;
4655 		/* Prefer to use the replacement for reads, but only
4656 		 * if it is recovered enough and has no bad blocks.
4657 		 */
4658 		rdev = rcu_dereference(conf->disks[i].replacement);
4659 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4660 		    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4661 		    !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4662 				 &first_bad, &bad_sectors))
4663 			set_bit(R5_ReadRepl, &dev->flags);
4664 		else {
4665 			if (rdev && !test_bit(Faulty, &rdev->flags))
4666 				set_bit(R5_NeedReplace, &dev->flags);
4667 			else
4668 				clear_bit(R5_NeedReplace, &dev->flags);
4669 			rdev = rcu_dereference(conf->disks[i].rdev);
4670 			clear_bit(R5_ReadRepl, &dev->flags);
4671 		}
4672 		if (rdev && test_bit(Faulty, &rdev->flags))
4673 			rdev = NULL;
4674 		if (rdev) {
4675 			is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4676 					     &first_bad, &bad_sectors);
4677 			if (s->blocked_rdev == NULL
4678 			    && (test_bit(Blocked, &rdev->flags)
4679 				|| is_bad < 0)) {
4680 				if (is_bad < 0)
4681 					set_bit(BlockedBadBlocks,
4682 						&rdev->flags);
4683 				s->blocked_rdev = rdev;
4684 				atomic_inc(&rdev->nr_pending);
4685 			}
4686 		}
4687 		clear_bit(R5_Insync, &dev->flags);
4688 		if (!rdev)
4689 			/* Not in-sync */;
4690 		else if (is_bad) {
4691 			/* also not in-sync */
4692 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4693 			    test_bit(R5_UPTODATE, &dev->flags)) {
4694 				/* treat as in-sync, but with a read error
4695 				 * which we can now try to correct
4696 				 */
4697 				set_bit(R5_Insync, &dev->flags);
4698 				set_bit(R5_ReadError, &dev->flags);
4699 			}
4700 		} else if (test_bit(In_sync, &rdev->flags))
4701 			set_bit(R5_Insync, &dev->flags);
4702 		else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4703 			/* in sync if before recovery_offset */
4704 			set_bit(R5_Insync, &dev->flags);
4705 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4706 			 test_bit(R5_Expanded, &dev->flags))
4707 			/* If we've reshaped into here, we assume it is Insync.
4708 			 * We will shortly update recovery_offset to make
4709 			 * it official.
4710 			 */
4711 			set_bit(R5_Insync, &dev->flags);
4712 
4713 		if (test_bit(R5_WriteError, &dev->flags)) {
4714 			/* This flag does not apply to '.replacement'
4715 			 * only to .rdev, so make sure to check that*/
4716 			struct md_rdev *rdev2 = rcu_dereference(
4717 				conf->disks[i].rdev);
4718 			if (rdev2 == rdev)
4719 				clear_bit(R5_Insync, &dev->flags);
4720 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4721 				s->handle_bad_blocks = 1;
4722 				atomic_inc(&rdev2->nr_pending);
4723 			} else
4724 				clear_bit(R5_WriteError, &dev->flags);
4725 		}
4726 		if (test_bit(R5_MadeGood, &dev->flags)) {
4727 			/* This flag does not apply to '.replacement'
4728 			 * only to .rdev, so make sure to check that*/
4729 			struct md_rdev *rdev2 = rcu_dereference(
4730 				conf->disks[i].rdev);
4731 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4732 				s->handle_bad_blocks = 1;
4733 				atomic_inc(&rdev2->nr_pending);
4734 			} else
4735 				clear_bit(R5_MadeGood, &dev->flags);
4736 		}
4737 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4738 			struct md_rdev *rdev2 = rcu_dereference(
4739 				conf->disks[i].replacement);
4740 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4741 				s->handle_bad_blocks = 1;
4742 				atomic_inc(&rdev2->nr_pending);
4743 			} else
4744 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4745 		}
4746 		if (!test_bit(R5_Insync, &dev->flags)) {
4747 			/* The ReadError flag will just be confusing now */
4748 			clear_bit(R5_ReadError, &dev->flags);
4749 			clear_bit(R5_ReWrite, &dev->flags);
4750 		}
4751 		if (test_bit(R5_ReadError, &dev->flags))
4752 			clear_bit(R5_Insync, &dev->flags);
4753 		if (!test_bit(R5_Insync, &dev->flags)) {
4754 			if (s->failed < 2)
4755 				s->failed_num[s->failed] = i;
4756 			s->failed++;
4757 			if (rdev && !test_bit(Faulty, &rdev->flags))
4758 				do_recovery = 1;
4759 			else if (!rdev) {
4760 				rdev = rcu_dereference(
4761 				    conf->disks[i].replacement);
4762 				if (rdev && !test_bit(Faulty, &rdev->flags))
4763 					do_recovery = 1;
4764 			}
4765 		}
4766 
4767 		if (test_bit(R5_InJournal, &dev->flags))
4768 			s->injournal++;
4769 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4770 			s->just_cached++;
4771 	}
4772 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4773 		/* If there is a failed device being replaced,
4774 		 *     we must be recovering.
4775 		 * else if we are after recovery_cp, we must be syncing
4776 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4777 		 * else we can only be replacing
4778 		 * sync and recovery both need to read all devices, and so
4779 		 * use the same flag.
4780 		 */
4781 		if (do_recovery ||
4782 		    sh->sector >= conf->mddev->recovery_cp ||
4783 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4784 			s->syncing = 1;
4785 		else
4786 			s->replacing = 1;
4787 	}
4788 	rcu_read_unlock();
4789 }
4790 
4791 /*
4792  * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4793  * a head which can now be handled.
4794  */
4795 static int clear_batch_ready(struct stripe_head *sh)
4796 {
4797 	struct stripe_head *tmp;
4798 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4799 		return (sh->batch_head && sh->batch_head != sh);
4800 	spin_lock(&sh->stripe_lock);
4801 	if (!sh->batch_head) {
4802 		spin_unlock(&sh->stripe_lock);
4803 		return 0;
4804 	}
4805 
4806 	/*
4807 	 * this stripe could be added to a batch list before we check
4808 	 * BATCH_READY, skips it
4809 	 */
4810 	if (sh->batch_head != sh) {
4811 		spin_unlock(&sh->stripe_lock);
4812 		return 1;
4813 	}
4814 	spin_lock(&sh->batch_lock);
4815 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4816 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4817 	spin_unlock(&sh->batch_lock);
4818 	spin_unlock(&sh->stripe_lock);
4819 
4820 	/*
4821 	 * BATCH_READY is cleared, no new stripes can be added.
4822 	 * batch_list can be accessed without lock
4823 	 */
4824 	return 0;
4825 }
4826 
4827 static void break_stripe_batch_list(struct stripe_head *head_sh,
4828 				    unsigned long handle_flags)
4829 {
4830 	struct stripe_head *sh, *next;
4831 	int i;
4832 	int do_wakeup = 0;
4833 
4834 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4835 
4836 		list_del_init(&sh->batch_list);
4837 
4838 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4839 					  (1 << STRIPE_SYNCING) |
4840 					  (1 << STRIPE_REPLACED) |
4841 					  (1 << STRIPE_DELAYED) |
4842 					  (1 << STRIPE_BIT_DELAY) |
4843 					  (1 << STRIPE_FULL_WRITE) |
4844 					  (1 << STRIPE_BIOFILL_RUN) |
4845 					  (1 << STRIPE_COMPUTE_RUN)  |
4846 					  (1 << STRIPE_DISCARD) |
4847 					  (1 << STRIPE_BATCH_READY) |
4848 					  (1 << STRIPE_BATCH_ERR) |
4849 					  (1 << STRIPE_BITMAP_PENDING)),
4850 			"stripe state: %lx\n", sh->state);
4851 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4852 					      (1 << STRIPE_REPLACED)),
4853 			"head stripe state: %lx\n", head_sh->state);
4854 
4855 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4856 					    (1 << STRIPE_PREREAD_ACTIVE) |
4857 					    (1 << STRIPE_DEGRADED) |
4858 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4859 			      head_sh->state & (1 << STRIPE_INSYNC));
4860 
4861 		sh->check_state = head_sh->check_state;
4862 		sh->reconstruct_state = head_sh->reconstruct_state;
4863 		spin_lock_irq(&sh->stripe_lock);
4864 		sh->batch_head = NULL;
4865 		spin_unlock_irq(&sh->stripe_lock);
4866 		for (i = 0; i < sh->disks; i++) {
4867 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4868 				do_wakeup = 1;
4869 			sh->dev[i].flags = head_sh->dev[i].flags &
4870 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4871 		}
4872 		if (handle_flags == 0 ||
4873 		    sh->state & handle_flags)
4874 			set_bit(STRIPE_HANDLE, &sh->state);
4875 		raid5_release_stripe(sh);
4876 	}
4877 	spin_lock_irq(&head_sh->stripe_lock);
4878 	head_sh->batch_head = NULL;
4879 	spin_unlock_irq(&head_sh->stripe_lock);
4880 	for (i = 0; i < head_sh->disks; i++)
4881 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4882 			do_wakeup = 1;
4883 	if (head_sh->state & handle_flags)
4884 		set_bit(STRIPE_HANDLE, &head_sh->state);
4885 
4886 	if (do_wakeup)
4887 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4888 }
4889 
4890 static void handle_stripe(struct stripe_head *sh)
4891 {
4892 	struct stripe_head_state s;
4893 	struct r5conf *conf = sh->raid_conf;
4894 	int i;
4895 	int prexor;
4896 	int disks = sh->disks;
4897 	struct r5dev *pdev, *qdev;
4898 
4899 	clear_bit(STRIPE_HANDLE, &sh->state);
4900 
4901 	/*
4902 	 * handle_stripe should not continue handle the batched stripe, only
4903 	 * the head of batch list or lone stripe can continue. Otherwise we
4904 	 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4905 	 * is set for the batched stripe.
4906 	 */
4907 	if (clear_batch_ready(sh))
4908 		return;
4909 
4910 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4911 		/* already being handled, ensure it gets handled
4912 		 * again when current action finishes */
4913 		set_bit(STRIPE_HANDLE, &sh->state);
4914 		return;
4915 	}
4916 
4917 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4918 		break_stripe_batch_list(sh, 0);
4919 
4920 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4921 		spin_lock(&sh->stripe_lock);
4922 		/*
4923 		 * Cannot process 'sync' concurrently with 'discard'.
4924 		 * Flush data in r5cache before 'sync'.
4925 		 */
4926 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4927 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4928 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4929 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4930 			set_bit(STRIPE_SYNCING, &sh->state);
4931 			clear_bit(STRIPE_INSYNC, &sh->state);
4932 			clear_bit(STRIPE_REPLACED, &sh->state);
4933 		}
4934 		spin_unlock(&sh->stripe_lock);
4935 	}
4936 	clear_bit(STRIPE_DELAYED, &sh->state);
4937 
4938 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4939 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4940 	       (unsigned long long)sh->sector, sh->state,
4941 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4942 	       sh->check_state, sh->reconstruct_state);
4943 
4944 	analyse_stripe(sh, &s);
4945 
4946 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4947 		goto finish;
4948 
4949 	if (s.handle_bad_blocks ||
4950 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4951 		set_bit(STRIPE_HANDLE, &sh->state);
4952 		goto finish;
4953 	}
4954 
4955 	if (unlikely(s.blocked_rdev)) {
4956 		if (s.syncing || s.expanding || s.expanded ||
4957 		    s.replacing || s.to_write || s.written) {
4958 			set_bit(STRIPE_HANDLE, &sh->state);
4959 			goto finish;
4960 		}
4961 		/* There is nothing for the blocked_rdev to block */
4962 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4963 		s.blocked_rdev = NULL;
4964 	}
4965 
4966 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4967 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4968 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4969 	}
4970 
4971 	pr_debug("locked=%d uptodate=%d to_read=%d"
4972 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4973 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4974 	       s.failed_num[0], s.failed_num[1]);
4975 	/*
4976 	 * check if the array has lost more than max_degraded devices and,
4977 	 * if so, some requests might need to be failed.
4978 	 *
4979 	 * When journal device failed (log_failed), we will only process
4980 	 * the stripe if there is data need write to raid disks
4981 	 */
4982 	if (s.failed > conf->max_degraded ||
4983 	    (s.log_failed && s.injournal == 0)) {
4984 		sh->check_state = 0;
4985 		sh->reconstruct_state = 0;
4986 		break_stripe_batch_list(sh, 0);
4987 		if (s.to_read+s.to_write+s.written)
4988 			handle_failed_stripe(conf, sh, &s, disks);
4989 		if (s.syncing + s.replacing)
4990 			handle_failed_sync(conf, sh, &s);
4991 	}
4992 
4993 	/* Now we check to see if any write operations have recently
4994 	 * completed
4995 	 */
4996 	prexor = 0;
4997 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4998 		prexor = 1;
4999 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
5000 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5001 		sh->reconstruct_state = reconstruct_state_idle;
5002 
5003 		/* All the 'written' buffers and the parity block are ready to
5004 		 * be written back to disk
5005 		 */
5006 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5007 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5008 		BUG_ON(sh->qd_idx >= 0 &&
5009 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5010 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5011 		for (i = disks; i--; ) {
5012 			struct r5dev *dev = &sh->dev[i];
5013 			if (test_bit(R5_LOCKED, &dev->flags) &&
5014 				(i == sh->pd_idx || i == sh->qd_idx ||
5015 				 dev->written || test_bit(R5_InJournal,
5016 							  &dev->flags))) {
5017 				pr_debug("Writing block %d\n", i);
5018 				set_bit(R5_Wantwrite, &dev->flags);
5019 				if (prexor)
5020 					continue;
5021 				if (s.failed > 1)
5022 					continue;
5023 				if (!test_bit(R5_Insync, &dev->flags) ||
5024 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
5025 				     s.failed == 0))
5026 					set_bit(STRIPE_INSYNC, &sh->state);
5027 			}
5028 		}
5029 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5030 			s.dec_preread_active = 1;
5031 	}
5032 
5033 	/*
5034 	 * might be able to return some write requests if the parity blocks
5035 	 * are safe, or on a failed drive
5036 	 */
5037 	pdev = &sh->dev[sh->pd_idx];
5038 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5039 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5040 	qdev = &sh->dev[sh->qd_idx];
5041 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5042 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5043 		|| conf->level < 6;
5044 
5045 	if (s.written &&
5046 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5047 			     && !test_bit(R5_LOCKED, &pdev->flags)
5048 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
5049 				 test_bit(R5_Discard, &pdev->flags))))) &&
5050 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5051 			     && !test_bit(R5_LOCKED, &qdev->flags)
5052 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
5053 				 test_bit(R5_Discard, &qdev->flags))))))
5054 		handle_stripe_clean_event(conf, sh, disks);
5055 
5056 	if (s.just_cached)
5057 		r5c_handle_cached_data_endio(conf, sh, disks);
5058 	log_stripe_write_finished(sh);
5059 
5060 	/* Now we might consider reading some blocks, either to check/generate
5061 	 * parity, or to satisfy requests
5062 	 * or to load a block that is being partially written.
5063 	 */
5064 	if (s.to_read || s.non_overwrite
5065 	    || (s.to_write && s.failed)
5066 	    || (s.syncing && (s.uptodate + s.compute < disks))
5067 	    || s.replacing
5068 	    || s.expanding)
5069 		handle_stripe_fill(sh, &s, disks);
5070 
5071 	/*
5072 	 * When the stripe finishes full journal write cycle (write to journal
5073 	 * and raid disk), this is the clean up procedure so it is ready for
5074 	 * next operation.
5075 	 */
5076 	r5c_finish_stripe_write_out(conf, sh, &s);
5077 
5078 	/*
5079 	 * Now to consider new write requests, cache write back and what else,
5080 	 * if anything should be read.  We do not handle new writes when:
5081 	 * 1/ A 'write' operation (copy+xor) is already in flight.
5082 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
5083 	 *    block.
5084 	 * 3/ A r5c cache log write is in flight.
5085 	 */
5086 
5087 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5088 		if (!r5c_is_writeback(conf->log)) {
5089 			if (s.to_write)
5090 				handle_stripe_dirtying(conf, sh, &s, disks);
5091 		} else { /* write back cache */
5092 			int ret = 0;
5093 
5094 			/* First, try handle writes in caching phase */
5095 			if (s.to_write)
5096 				ret = r5c_try_caching_write(conf, sh, &s,
5097 							    disks);
5098 			/*
5099 			 * If caching phase failed: ret == -EAGAIN
5100 			 *    OR
5101 			 * stripe under reclaim: !caching && injournal
5102 			 *
5103 			 * fall back to handle_stripe_dirtying()
5104 			 */
5105 			if (ret == -EAGAIN ||
5106 			    /* stripe under reclaim: !caching && injournal */
5107 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5108 			     s.injournal > 0)) {
5109 				ret = handle_stripe_dirtying(conf, sh, &s,
5110 							     disks);
5111 				if (ret == -EAGAIN)
5112 					goto finish;
5113 			}
5114 		}
5115 	}
5116 
5117 	/* maybe we need to check and possibly fix the parity for this stripe
5118 	 * Any reads will already have been scheduled, so we just see if enough
5119 	 * data is available.  The parity check is held off while parity
5120 	 * dependent operations are in flight.
5121 	 */
5122 	if (sh->check_state ||
5123 	    (s.syncing && s.locked == 0 &&
5124 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5125 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
5126 		if (conf->level == 6)
5127 			handle_parity_checks6(conf, sh, &s, disks);
5128 		else
5129 			handle_parity_checks5(conf, sh, &s, disks);
5130 	}
5131 
5132 	if ((s.replacing || s.syncing) && s.locked == 0
5133 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5134 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
5135 		/* Write out to replacement devices where possible */
5136 		for (i = 0; i < conf->raid_disks; i++)
5137 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5138 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5139 				set_bit(R5_WantReplace, &sh->dev[i].flags);
5140 				set_bit(R5_LOCKED, &sh->dev[i].flags);
5141 				s.locked++;
5142 			}
5143 		if (s.replacing)
5144 			set_bit(STRIPE_INSYNC, &sh->state);
5145 		set_bit(STRIPE_REPLACED, &sh->state);
5146 	}
5147 	if ((s.syncing || s.replacing) && s.locked == 0 &&
5148 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5149 	    test_bit(STRIPE_INSYNC, &sh->state)) {
5150 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5151 		clear_bit(STRIPE_SYNCING, &sh->state);
5152 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5153 			wake_up(&conf->wait_for_overlap);
5154 	}
5155 
5156 	/* If the failed drives are just a ReadError, then we might need
5157 	 * to progress the repair/check process
5158 	 */
5159 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5160 		for (i = 0; i < s.failed; i++) {
5161 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
5162 			if (test_bit(R5_ReadError, &dev->flags)
5163 			    && !test_bit(R5_LOCKED, &dev->flags)
5164 			    && test_bit(R5_UPTODATE, &dev->flags)
5165 				) {
5166 				if (!test_bit(R5_ReWrite, &dev->flags)) {
5167 					set_bit(R5_Wantwrite, &dev->flags);
5168 					set_bit(R5_ReWrite, &dev->flags);
5169 				} else
5170 					/* let's read it back */
5171 					set_bit(R5_Wantread, &dev->flags);
5172 				set_bit(R5_LOCKED, &dev->flags);
5173 				s.locked++;
5174 			}
5175 		}
5176 
5177 	/* Finish reconstruct operations initiated by the expansion process */
5178 	if (sh->reconstruct_state == reconstruct_state_result) {
5179 		struct stripe_head *sh_src
5180 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
5181 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5182 			/* sh cannot be written until sh_src has been read.
5183 			 * so arrange for sh to be delayed a little
5184 			 */
5185 			set_bit(STRIPE_DELAYED, &sh->state);
5186 			set_bit(STRIPE_HANDLE, &sh->state);
5187 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5188 					      &sh_src->state))
5189 				atomic_inc(&conf->preread_active_stripes);
5190 			raid5_release_stripe(sh_src);
5191 			goto finish;
5192 		}
5193 		if (sh_src)
5194 			raid5_release_stripe(sh_src);
5195 
5196 		sh->reconstruct_state = reconstruct_state_idle;
5197 		clear_bit(STRIPE_EXPANDING, &sh->state);
5198 		for (i = conf->raid_disks; i--; ) {
5199 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
5200 			set_bit(R5_LOCKED, &sh->dev[i].flags);
5201 			s.locked++;
5202 		}
5203 	}
5204 
5205 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5206 	    !sh->reconstruct_state) {
5207 		/* Need to write out all blocks after computing parity */
5208 		sh->disks = conf->raid_disks;
5209 		stripe_set_idx(sh->sector, conf, 0, sh);
5210 		schedule_reconstruction(sh, &s, 1, 1);
5211 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5212 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
5213 		atomic_dec(&conf->reshape_stripes);
5214 		wake_up(&conf->wait_for_overlap);
5215 		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5216 	}
5217 
5218 	if (s.expanding && s.locked == 0 &&
5219 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5220 		handle_stripe_expansion(conf, sh);
5221 
5222 finish:
5223 	/* wait for this device to become unblocked */
5224 	if (unlikely(s.blocked_rdev)) {
5225 		if (conf->mddev->external)
5226 			md_wait_for_blocked_rdev(s.blocked_rdev,
5227 						 conf->mddev);
5228 		else
5229 			/* Internal metadata will immediately
5230 			 * be written by raid5d, so we don't
5231 			 * need to wait here.
5232 			 */
5233 			rdev_dec_pending(s.blocked_rdev,
5234 					 conf->mddev);
5235 	}
5236 
5237 	if (s.handle_bad_blocks)
5238 		for (i = disks; i--; ) {
5239 			struct md_rdev *rdev;
5240 			struct r5dev *dev = &sh->dev[i];
5241 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5242 				/* We own a safe reference to the rdev */
5243 				rdev = rdev_pend_deref(conf->disks[i].rdev);
5244 				if (!rdev_set_badblocks(rdev, sh->sector,
5245 							RAID5_STRIPE_SECTORS(conf), 0))
5246 					md_error(conf->mddev, rdev);
5247 				rdev_dec_pending(rdev, conf->mddev);
5248 			}
5249 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5250 				rdev = rdev_pend_deref(conf->disks[i].rdev);
5251 				rdev_clear_badblocks(rdev, sh->sector,
5252 						     RAID5_STRIPE_SECTORS(conf), 0);
5253 				rdev_dec_pending(rdev, conf->mddev);
5254 			}
5255 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5256 				rdev = rdev_pend_deref(conf->disks[i].replacement);
5257 				if (!rdev)
5258 					/* rdev have been moved down */
5259 					rdev = rdev_pend_deref(conf->disks[i].rdev);
5260 				rdev_clear_badblocks(rdev, sh->sector,
5261 						     RAID5_STRIPE_SECTORS(conf), 0);
5262 				rdev_dec_pending(rdev, conf->mddev);
5263 			}
5264 		}
5265 
5266 	if (s.ops_request)
5267 		raid_run_ops(sh, s.ops_request);
5268 
5269 	ops_run_io(sh, &s);
5270 
5271 	if (s.dec_preread_active) {
5272 		/* We delay this until after ops_run_io so that if make_request
5273 		 * is waiting on a flush, it won't continue until the writes
5274 		 * have actually been submitted.
5275 		 */
5276 		atomic_dec(&conf->preread_active_stripes);
5277 		if (atomic_read(&conf->preread_active_stripes) <
5278 		    IO_THRESHOLD)
5279 			md_wakeup_thread(conf->mddev->thread);
5280 	}
5281 
5282 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5283 }
5284 
5285 static void raid5_activate_delayed(struct r5conf *conf)
5286 	__must_hold(&conf->device_lock)
5287 {
5288 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5289 		while (!list_empty(&conf->delayed_list)) {
5290 			struct list_head *l = conf->delayed_list.next;
5291 			struct stripe_head *sh;
5292 			sh = list_entry(l, struct stripe_head, lru);
5293 			list_del_init(l);
5294 			clear_bit(STRIPE_DELAYED, &sh->state);
5295 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5296 				atomic_inc(&conf->preread_active_stripes);
5297 			list_add_tail(&sh->lru, &conf->hold_list);
5298 			raid5_wakeup_stripe_thread(sh);
5299 		}
5300 	}
5301 }
5302 
5303 static void activate_bit_delay(struct r5conf *conf,
5304 		struct list_head *temp_inactive_list)
5305 	__must_hold(&conf->device_lock)
5306 {
5307 	struct list_head head;
5308 	list_add(&head, &conf->bitmap_list);
5309 	list_del_init(&conf->bitmap_list);
5310 	while (!list_empty(&head)) {
5311 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5312 		int hash;
5313 		list_del_init(&sh->lru);
5314 		atomic_inc(&sh->count);
5315 		hash = sh->hash_lock_index;
5316 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5317 	}
5318 }
5319 
5320 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5321 {
5322 	struct r5conf *conf = mddev->private;
5323 	sector_t sector = bio->bi_iter.bi_sector;
5324 	unsigned int chunk_sectors;
5325 	unsigned int bio_sectors = bio_sectors(bio);
5326 
5327 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5328 	return  chunk_sectors >=
5329 		((sector & (chunk_sectors - 1)) + bio_sectors);
5330 }
5331 
5332 /*
5333  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5334  *  later sampled by raid5d.
5335  */
5336 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5337 {
5338 	unsigned long flags;
5339 
5340 	spin_lock_irqsave(&conf->device_lock, flags);
5341 
5342 	bi->bi_next = conf->retry_read_aligned_list;
5343 	conf->retry_read_aligned_list = bi;
5344 
5345 	spin_unlock_irqrestore(&conf->device_lock, flags);
5346 	md_wakeup_thread(conf->mddev->thread);
5347 }
5348 
5349 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5350 					 unsigned int *offset)
5351 {
5352 	struct bio *bi;
5353 
5354 	bi = conf->retry_read_aligned;
5355 	if (bi) {
5356 		*offset = conf->retry_read_offset;
5357 		conf->retry_read_aligned = NULL;
5358 		return bi;
5359 	}
5360 	bi = conf->retry_read_aligned_list;
5361 	if(bi) {
5362 		conf->retry_read_aligned_list = bi->bi_next;
5363 		bi->bi_next = NULL;
5364 		*offset = 0;
5365 	}
5366 
5367 	return bi;
5368 }
5369 
5370 /*
5371  *  The "raid5_align_endio" should check if the read succeeded and if it
5372  *  did, call bio_endio on the original bio (having bio_put the new bio
5373  *  first).
5374  *  If the read failed..
5375  */
5376 static void raid5_align_endio(struct bio *bi)
5377 {
5378 	struct md_io_acct *md_io_acct = bi->bi_private;
5379 	struct bio *raid_bi = md_io_acct->orig_bio;
5380 	struct mddev *mddev;
5381 	struct r5conf *conf;
5382 	struct md_rdev *rdev;
5383 	blk_status_t error = bi->bi_status;
5384 	unsigned long start_time = md_io_acct->start_time;
5385 
5386 	bio_put(bi);
5387 
5388 	rdev = (void*)raid_bi->bi_next;
5389 	raid_bi->bi_next = NULL;
5390 	mddev = rdev->mddev;
5391 	conf = mddev->private;
5392 
5393 	rdev_dec_pending(rdev, conf->mddev);
5394 
5395 	if (!error) {
5396 		if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue))
5397 			bio_end_io_acct(raid_bi, start_time);
5398 		bio_endio(raid_bi);
5399 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5400 			wake_up(&conf->wait_for_quiescent);
5401 		return;
5402 	}
5403 
5404 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5405 
5406 	add_bio_to_retry(raid_bi, conf);
5407 }
5408 
5409 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5410 {
5411 	struct r5conf *conf = mddev->private;
5412 	struct bio *align_bio;
5413 	struct md_rdev *rdev;
5414 	sector_t sector, end_sector, first_bad;
5415 	int bad_sectors, dd_idx;
5416 	struct md_io_acct *md_io_acct;
5417 	bool did_inc;
5418 
5419 	if (!in_chunk_boundary(mddev, raid_bio)) {
5420 		pr_debug("%s: non aligned\n", __func__);
5421 		return 0;
5422 	}
5423 
5424 	sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5425 				      &dd_idx, NULL);
5426 	end_sector = bio_end_sector(raid_bio);
5427 
5428 	rcu_read_lock();
5429 	if (r5c_big_stripe_cached(conf, sector))
5430 		goto out_rcu_unlock;
5431 
5432 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5433 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5434 	    rdev->recovery_offset < end_sector) {
5435 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5436 		if (!rdev)
5437 			goto out_rcu_unlock;
5438 		if (test_bit(Faulty, &rdev->flags) ||
5439 		    !(test_bit(In_sync, &rdev->flags) ||
5440 		      rdev->recovery_offset >= end_sector))
5441 			goto out_rcu_unlock;
5442 	}
5443 
5444 	atomic_inc(&rdev->nr_pending);
5445 	rcu_read_unlock();
5446 
5447 	if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
5448 			&bad_sectors)) {
5449 		bio_put(raid_bio);
5450 		rdev_dec_pending(rdev, mddev);
5451 		return 0;
5452 	}
5453 
5454 	align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5455 				    &mddev->io_acct_set);
5456 	md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone);
5457 	raid_bio->bi_next = (void *)rdev;
5458 	if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue))
5459 		md_io_acct->start_time = bio_start_io_acct(raid_bio);
5460 	md_io_acct->orig_bio = raid_bio;
5461 
5462 	align_bio->bi_end_io = raid5_align_endio;
5463 	align_bio->bi_private = md_io_acct;
5464 	align_bio->bi_iter.bi_sector = sector;
5465 
5466 	/* No reshape active, so we can trust rdev->data_offset */
5467 	align_bio->bi_iter.bi_sector += rdev->data_offset;
5468 
5469 	did_inc = false;
5470 	if (conf->quiesce == 0) {
5471 		atomic_inc(&conf->active_aligned_reads);
5472 		did_inc = true;
5473 	}
5474 	/* need a memory barrier to detect the race with raid5_quiesce() */
5475 	if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5476 		/* quiesce is in progress, so we need to undo io activation and wait
5477 		 * for it to finish
5478 		 */
5479 		if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5480 			wake_up(&conf->wait_for_quiescent);
5481 		spin_lock_irq(&conf->device_lock);
5482 		wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5483 				    conf->device_lock);
5484 		atomic_inc(&conf->active_aligned_reads);
5485 		spin_unlock_irq(&conf->device_lock);
5486 	}
5487 
5488 	if (mddev->gendisk)
5489 		trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5490 				      raid_bio->bi_iter.bi_sector);
5491 	submit_bio_noacct(align_bio);
5492 	return 1;
5493 
5494 out_rcu_unlock:
5495 	rcu_read_unlock();
5496 	return 0;
5497 }
5498 
5499 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5500 {
5501 	struct bio *split;
5502 	sector_t sector = raid_bio->bi_iter.bi_sector;
5503 	unsigned chunk_sects = mddev->chunk_sectors;
5504 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5505 
5506 	if (sectors < bio_sectors(raid_bio)) {
5507 		struct r5conf *conf = mddev->private;
5508 		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5509 		bio_chain(split, raid_bio);
5510 		submit_bio_noacct(raid_bio);
5511 		raid_bio = split;
5512 	}
5513 
5514 	if (!raid5_read_one_chunk(mddev, raid_bio))
5515 		return raid_bio;
5516 
5517 	return NULL;
5518 }
5519 
5520 /* __get_priority_stripe - get the next stripe to process
5521  *
5522  * Full stripe writes are allowed to pass preread active stripes up until
5523  * the bypass_threshold is exceeded.  In general the bypass_count
5524  * increments when the handle_list is handled before the hold_list; however, it
5525  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5526  * stripe with in flight i/o.  The bypass_count will be reset when the
5527  * head of the hold_list has changed, i.e. the head was promoted to the
5528  * handle_list.
5529  */
5530 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5531 	__must_hold(&conf->device_lock)
5532 {
5533 	struct stripe_head *sh, *tmp;
5534 	struct list_head *handle_list = NULL;
5535 	struct r5worker_group *wg;
5536 	bool second_try = !r5c_is_writeback(conf->log) &&
5537 		!r5l_log_disk_error(conf);
5538 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5539 		r5l_log_disk_error(conf);
5540 
5541 again:
5542 	wg = NULL;
5543 	sh = NULL;
5544 	if (conf->worker_cnt_per_group == 0) {
5545 		handle_list = try_loprio ? &conf->loprio_list :
5546 					&conf->handle_list;
5547 	} else if (group != ANY_GROUP) {
5548 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5549 				&conf->worker_groups[group].handle_list;
5550 		wg = &conf->worker_groups[group];
5551 	} else {
5552 		int i;
5553 		for (i = 0; i < conf->group_cnt; i++) {
5554 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5555 				&conf->worker_groups[i].handle_list;
5556 			wg = &conf->worker_groups[i];
5557 			if (!list_empty(handle_list))
5558 				break;
5559 		}
5560 	}
5561 
5562 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5563 		  __func__,
5564 		  list_empty(handle_list) ? "empty" : "busy",
5565 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5566 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5567 
5568 	if (!list_empty(handle_list)) {
5569 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5570 
5571 		if (list_empty(&conf->hold_list))
5572 			conf->bypass_count = 0;
5573 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5574 			if (conf->hold_list.next == conf->last_hold)
5575 				conf->bypass_count++;
5576 			else {
5577 				conf->last_hold = conf->hold_list.next;
5578 				conf->bypass_count -= conf->bypass_threshold;
5579 				if (conf->bypass_count < 0)
5580 					conf->bypass_count = 0;
5581 			}
5582 		}
5583 	} else if (!list_empty(&conf->hold_list) &&
5584 		   ((conf->bypass_threshold &&
5585 		     conf->bypass_count > conf->bypass_threshold) ||
5586 		    atomic_read(&conf->pending_full_writes) == 0)) {
5587 
5588 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5589 			if (conf->worker_cnt_per_group == 0 ||
5590 			    group == ANY_GROUP ||
5591 			    !cpu_online(tmp->cpu) ||
5592 			    cpu_to_group(tmp->cpu) == group) {
5593 				sh = tmp;
5594 				break;
5595 			}
5596 		}
5597 
5598 		if (sh) {
5599 			conf->bypass_count -= conf->bypass_threshold;
5600 			if (conf->bypass_count < 0)
5601 				conf->bypass_count = 0;
5602 		}
5603 		wg = NULL;
5604 	}
5605 
5606 	if (!sh) {
5607 		if (second_try)
5608 			return NULL;
5609 		second_try = true;
5610 		try_loprio = !try_loprio;
5611 		goto again;
5612 	}
5613 
5614 	if (wg) {
5615 		wg->stripes_cnt--;
5616 		sh->group = NULL;
5617 	}
5618 	list_del_init(&sh->lru);
5619 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5620 	return sh;
5621 }
5622 
5623 struct raid5_plug_cb {
5624 	struct blk_plug_cb	cb;
5625 	struct list_head	list;
5626 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5627 };
5628 
5629 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5630 {
5631 	struct raid5_plug_cb *cb = container_of(
5632 		blk_cb, struct raid5_plug_cb, cb);
5633 	struct stripe_head *sh;
5634 	struct mddev *mddev = cb->cb.data;
5635 	struct r5conf *conf = mddev->private;
5636 	int cnt = 0;
5637 	int hash;
5638 
5639 	if (cb->list.next && !list_empty(&cb->list)) {
5640 		spin_lock_irq(&conf->device_lock);
5641 		while (!list_empty(&cb->list)) {
5642 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5643 			list_del_init(&sh->lru);
5644 			/*
5645 			 * avoid race release_stripe_plug() sees
5646 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5647 			 * is still in our list
5648 			 */
5649 			smp_mb__before_atomic();
5650 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5651 			/*
5652 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5653 			 * case, the count is always > 1 here
5654 			 */
5655 			hash = sh->hash_lock_index;
5656 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5657 			cnt++;
5658 		}
5659 		spin_unlock_irq(&conf->device_lock);
5660 	}
5661 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5662 				     NR_STRIPE_HASH_LOCKS);
5663 	if (mddev->queue)
5664 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5665 	kfree(cb);
5666 }
5667 
5668 static void release_stripe_plug(struct mddev *mddev,
5669 				struct stripe_head *sh)
5670 {
5671 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5672 		raid5_unplug, mddev,
5673 		sizeof(struct raid5_plug_cb));
5674 	struct raid5_plug_cb *cb;
5675 
5676 	if (!blk_cb) {
5677 		raid5_release_stripe(sh);
5678 		return;
5679 	}
5680 
5681 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5682 
5683 	if (cb->list.next == NULL) {
5684 		int i;
5685 		INIT_LIST_HEAD(&cb->list);
5686 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5687 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5688 	}
5689 
5690 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5691 		list_add_tail(&sh->lru, &cb->list);
5692 	else
5693 		raid5_release_stripe(sh);
5694 }
5695 
5696 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5697 {
5698 	struct r5conf *conf = mddev->private;
5699 	sector_t logical_sector, last_sector;
5700 	struct stripe_head *sh;
5701 	int stripe_sectors;
5702 
5703 	/* We need to handle this when io_uring supports discard/trim */
5704 	if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5705 		return;
5706 
5707 	if (mddev->reshape_position != MaxSector)
5708 		/* Skip discard while reshape is happening */
5709 		return;
5710 
5711 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5712 	last_sector = bio_end_sector(bi);
5713 
5714 	bi->bi_next = NULL;
5715 
5716 	stripe_sectors = conf->chunk_sectors *
5717 		(conf->raid_disks - conf->max_degraded);
5718 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5719 					       stripe_sectors);
5720 	sector_div(last_sector, stripe_sectors);
5721 
5722 	logical_sector *= conf->chunk_sectors;
5723 	last_sector *= conf->chunk_sectors;
5724 
5725 	for (; logical_sector < last_sector;
5726 	     logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5727 		DEFINE_WAIT(w);
5728 		int d;
5729 	again:
5730 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5731 		prepare_to_wait(&conf->wait_for_overlap, &w,
5732 				TASK_UNINTERRUPTIBLE);
5733 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5734 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5735 			raid5_release_stripe(sh);
5736 			schedule();
5737 			goto again;
5738 		}
5739 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5740 		spin_lock_irq(&sh->stripe_lock);
5741 		for (d = 0; d < conf->raid_disks; d++) {
5742 			if (d == sh->pd_idx || d == sh->qd_idx)
5743 				continue;
5744 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5745 				set_bit(R5_Overlap, &sh->dev[d].flags);
5746 				spin_unlock_irq(&sh->stripe_lock);
5747 				raid5_release_stripe(sh);
5748 				schedule();
5749 				goto again;
5750 			}
5751 		}
5752 		set_bit(STRIPE_DISCARD, &sh->state);
5753 		finish_wait(&conf->wait_for_overlap, &w);
5754 		sh->overwrite_disks = 0;
5755 		for (d = 0; d < conf->raid_disks; d++) {
5756 			if (d == sh->pd_idx || d == sh->qd_idx)
5757 				continue;
5758 			sh->dev[d].towrite = bi;
5759 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5760 			bio_inc_remaining(bi);
5761 			md_write_inc(mddev, bi);
5762 			sh->overwrite_disks++;
5763 		}
5764 		spin_unlock_irq(&sh->stripe_lock);
5765 		if (conf->mddev->bitmap) {
5766 			for (d = 0;
5767 			     d < conf->raid_disks - conf->max_degraded;
5768 			     d++)
5769 				md_bitmap_startwrite(mddev->bitmap,
5770 						     sh->sector,
5771 						     RAID5_STRIPE_SECTORS(conf),
5772 						     0);
5773 			sh->bm_seq = conf->seq_flush + 1;
5774 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5775 		}
5776 
5777 		set_bit(STRIPE_HANDLE, &sh->state);
5778 		clear_bit(STRIPE_DELAYED, &sh->state);
5779 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5780 			atomic_inc(&conf->preread_active_stripes);
5781 		release_stripe_plug(mddev, sh);
5782 	}
5783 
5784 	bio_endio(bi);
5785 }
5786 
5787 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5788 {
5789 	struct r5conf *conf = mddev->private;
5790 	int dd_idx;
5791 	sector_t new_sector;
5792 	sector_t logical_sector, last_sector;
5793 	struct stripe_head *sh;
5794 	const int rw = bio_data_dir(bi);
5795 	DEFINE_WAIT(w);
5796 	bool do_prepare;
5797 	bool do_flush = false;
5798 
5799 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5800 		int ret = log_handle_flush_request(conf, bi);
5801 
5802 		if (ret == 0)
5803 			return true;
5804 		if (ret == -ENODEV) {
5805 			if (md_flush_request(mddev, bi))
5806 				return true;
5807 		}
5808 		/* ret == -EAGAIN, fallback */
5809 		/*
5810 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5811 		 * we need to flush journal device
5812 		 */
5813 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5814 	}
5815 
5816 	if (!md_write_start(mddev, bi))
5817 		return false;
5818 	/*
5819 	 * If array is degraded, better not do chunk aligned read because
5820 	 * later we might have to read it again in order to reconstruct
5821 	 * data on failed drives.
5822 	 */
5823 	if (rw == READ && mddev->degraded == 0 &&
5824 	    mddev->reshape_position == MaxSector) {
5825 		bi = chunk_aligned_read(mddev, bi);
5826 		if (!bi)
5827 			return true;
5828 	}
5829 
5830 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5831 		make_discard_request(mddev, bi);
5832 		md_write_end(mddev);
5833 		return true;
5834 	}
5835 
5836 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5837 	last_sector = bio_end_sector(bi);
5838 	bi->bi_next = NULL;
5839 
5840 	/* Bail out if conflicts with reshape and REQ_NOWAIT is set */
5841 	if ((bi->bi_opf & REQ_NOWAIT) &&
5842 	    (conf->reshape_progress != MaxSector) &&
5843 	    (mddev->reshape_backwards
5844 	    ? (logical_sector > conf->reshape_progress && logical_sector <= conf->reshape_safe)
5845 	    : (logical_sector >= conf->reshape_safe && logical_sector < conf->reshape_progress))) {
5846 		bio_wouldblock_error(bi);
5847 		if (rw == WRITE)
5848 			md_write_end(mddev);
5849 		return true;
5850 	}
5851 	md_account_bio(mddev, &bi);
5852 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5853 	for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5854 		int previous;
5855 		int seq;
5856 
5857 		do_prepare = false;
5858 	retry:
5859 		seq = read_seqcount_begin(&conf->gen_lock);
5860 		previous = 0;
5861 		if (do_prepare)
5862 			prepare_to_wait(&conf->wait_for_overlap, &w,
5863 				TASK_UNINTERRUPTIBLE);
5864 		if (unlikely(conf->reshape_progress != MaxSector)) {
5865 			/* spinlock is needed as reshape_progress may be
5866 			 * 64bit on a 32bit platform, and so it might be
5867 			 * possible to see a half-updated value
5868 			 * Of course reshape_progress could change after
5869 			 * the lock is dropped, so once we get a reference
5870 			 * to the stripe that we think it is, we will have
5871 			 * to check again.
5872 			 */
5873 			spin_lock_irq(&conf->device_lock);
5874 			if (mddev->reshape_backwards
5875 			    ? logical_sector < conf->reshape_progress
5876 			    : logical_sector >= conf->reshape_progress) {
5877 				previous = 1;
5878 			} else {
5879 				if (mddev->reshape_backwards
5880 				    ? logical_sector < conf->reshape_safe
5881 				    : logical_sector >= conf->reshape_safe) {
5882 					spin_unlock_irq(&conf->device_lock);
5883 					schedule();
5884 					do_prepare = true;
5885 					goto retry;
5886 				}
5887 			}
5888 			spin_unlock_irq(&conf->device_lock);
5889 		}
5890 
5891 		new_sector = raid5_compute_sector(conf, logical_sector,
5892 						  previous,
5893 						  &dd_idx, NULL);
5894 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5895 			(unsigned long long)new_sector,
5896 			(unsigned long long)logical_sector);
5897 
5898 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5899 				       (bi->bi_opf & REQ_RAHEAD), 0);
5900 		if (sh) {
5901 			if (unlikely(previous)) {
5902 				/* expansion might have moved on while waiting for a
5903 				 * stripe, so we must do the range check again.
5904 				 * Expansion could still move past after this
5905 				 * test, but as we are holding a reference to
5906 				 * 'sh', we know that if that happens,
5907 				 *  STRIPE_EXPANDING will get set and the expansion
5908 				 * won't proceed until we finish with the stripe.
5909 				 */
5910 				int must_retry = 0;
5911 				spin_lock_irq(&conf->device_lock);
5912 				if (mddev->reshape_backwards
5913 				    ? logical_sector >= conf->reshape_progress
5914 				    : logical_sector < conf->reshape_progress)
5915 					/* mismatch, need to try again */
5916 					must_retry = 1;
5917 				spin_unlock_irq(&conf->device_lock);
5918 				if (must_retry) {
5919 					raid5_release_stripe(sh);
5920 					schedule();
5921 					do_prepare = true;
5922 					goto retry;
5923 				}
5924 			}
5925 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5926 				/* Might have got the wrong stripe_head
5927 				 * by accident
5928 				 */
5929 				raid5_release_stripe(sh);
5930 				goto retry;
5931 			}
5932 
5933 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5934 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5935 				/* Stripe is busy expanding or
5936 				 * add failed due to overlap.  Flush everything
5937 				 * and wait a while
5938 				 */
5939 				md_wakeup_thread(mddev->thread);
5940 				raid5_release_stripe(sh);
5941 				schedule();
5942 				do_prepare = true;
5943 				goto retry;
5944 			}
5945 			if (do_flush) {
5946 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5947 				/* we only need flush for one stripe */
5948 				do_flush = false;
5949 			}
5950 
5951 			set_bit(STRIPE_HANDLE, &sh->state);
5952 			clear_bit(STRIPE_DELAYED, &sh->state);
5953 			if ((!sh->batch_head || sh == sh->batch_head) &&
5954 			    (bi->bi_opf & REQ_SYNC) &&
5955 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5956 				atomic_inc(&conf->preread_active_stripes);
5957 			release_stripe_plug(mddev, sh);
5958 		} else {
5959 			/* cannot get stripe for read-ahead, just give-up */
5960 			bi->bi_status = BLK_STS_IOERR;
5961 			break;
5962 		}
5963 	}
5964 	finish_wait(&conf->wait_for_overlap, &w);
5965 
5966 	if (rw == WRITE)
5967 		md_write_end(mddev);
5968 	bio_endio(bi);
5969 	return true;
5970 }
5971 
5972 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5973 
5974 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5975 {
5976 	/* reshaping is quite different to recovery/resync so it is
5977 	 * handled quite separately ... here.
5978 	 *
5979 	 * On each call to sync_request, we gather one chunk worth of
5980 	 * destination stripes and flag them as expanding.
5981 	 * Then we find all the source stripes and request reads.
5982 	 * As the reads complete, handle_stripe will copy the data
5983 	 * into the destination stripe and release that stripe.
5984 	 */
5985 	struct r5conf *conf = mddev->private;
5986 	struct stripe_head *sh;
5987 	struct md_rdev *rdev;
5988 	sector_t first_sector, last_sector;
5989 	int raid_disks = conf->previous_raid_disks;
5990 	int data_disks = raid_disks - conf->max_degraded;
5991 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5992 	int i;
5993 	int dd_idx;
5994 	sector_t writepos, readpos, safepos;
5995 	sector_t stripe_addr;
5996 	int reshape_sectors;
5997 	struct list_head stripes;
5998 	sector_t retn;
5999 
6000 	if (sector_nr == 0) {
6001 		/* If restarting in the middle, skip the initial sectors */
6002 		if (mddev->reshape_backwards &&
6003 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6004 			sector_nr = raid5_size(mddev, 0, 0)
6005 				- conf->reshape_progress;
6006 		} else if (mddev->reshape_backwards &&
6007 			   conf->reshape_progress == MaxSector) {
6008 			/* shouldn't happen, but just in case, finish up.*/
6009 			sector_nr = MaxSector;
6010 		} else if (!mddev->reshape_backwards &&
6011 			   conf->reshape_progress > 0)
6012 			sector_nr = conf->reshape_progress;
6013 		sector_div(sector_nr, new_data_disks);
6014 		if (sector_nr) {
6015 			mddev->curr_resync_completed = sector_nr;
6016 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
6017 			*skipped = 1;
6018 			retn = sector_nr;
6019 			goto finish;
6020 		}
6021 	}
6022 
6023 	/* We need to process a full chunk at a time.
6024 	 * If old and new chunk sizes differ, we need to process the
6025 	 * largest of these
6026 	 */
6027 
6028 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6029 
6030 	/* We update the metadata at least every 10 seconds, or when
6031 	 * the data about to be copied would over-write the source of
6032 	 * the data at the front of the range.  i.e. one new_stripe
6033 	 * along from reshape_progress new_maps to after where
6034 	 * reshape_safe old_maps to
6035 	 */
6036 	writepos = conf->reshape_progress;
6037 	sector_div(writepos, new_data_disks);
6038 	readpos = conf->reshape_progress;
6039 	sector_div(readpos, data_disks);
6040 	safepos = conf->reshape_safe;
6041 	sector_div(safepos, data_disks);
6042 	if (mddev->reshape_backwards) {
6043 		BUG_ON(writepos < reshape_sectors);
6044 		writepos -= reshape_sectors;
6045 		readpos += reshape_sectors;
6046 		safepos += reshape_sectors;
6047 	} else {
6048 		writepos += reshape_sectors;
6049 		/* readpos and safepos are worst-case calculations.
6050 		 * A negative number is overly pessimistic, and causes
6051 		 * obvious problems for unsigned storage.  So clip to 0.
6052 		 */
6053 		readpos -= min_t(sector_t, reshape_sectors, readpos);
6054 		safepos -= min_t(sector_t, reshape_sectors, safepos);
6055 	}
6056 
6057 	/* Having calculated the 'writepos' possibly use it
6058 	 * to set 'stripe_addr' which is where we will write to.
6059 	 */
6060 	if (mddev->reshape_backwards) {
6061 		BUG_ON(conf->reshape_progress == 0);
6062 		stripe_addr = writepos;
6063 		BUG_ON((mddev->dev_sectors &
6064 			~((sector_t)reshape_sectors - 1))
6065 		       - reshape_sectors - stripe_addr
6066 		       != sector_nr);
6067 	} else {
6068 		BUG_ON(writepos != sector_nr + reshape_sectors);
6069 		stripe_addr = sector_nr;
6070 	}
6071 
6072 	/* 'writepos' is the most advanced device address we might write.
6073 	 * 'readpos' is the least advanced device address we might read.
6074 	 * 'safepos' is the least address recorded in the metadata as having
6075 	 *     been reshaped.
6076 	 * If there is a min_offset_diff, these are adjusted either by
6077 	 * increasing the safepos/readpos if diff is negative, or
6078 	 * increasing writepos if diff is positive.
6079 	 * If 'readpos' is then behind 'writepos', there is no way that we can
6080 	 * ensure safety in the face of a crash - that must be done by userspace
6081 	 * making a backup of the data.  So in that case there is no particular
6082 	 * rush to update metadata.
6083 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6084 	 * update the metadata to advance 'safepos' to match 'readpos' so that
6085 	 * we can be safe in the event of a crash.
6086 	 * So we insist on updating metadata if safepos is behind writepos and
6087 	 * readpos is beyond writepos.
6088 	 * In any case, update the metadata every 10 seconds.
6089 	 * Maybe that number should be configurable, but I'm not sure it is
6090 	 * worth it.... maybe it could be a multiple of safemode_delay???
6091 	 */
6092 	if (conf->min_offset_diff < 0) {
6093 		safepos += -conf->min_offset_diff;
6094 		readpos += -conf->min_offset_diff;
6095 	} else
6096 		writepos += conf->min_offset_diff;
6097 
6098 	if ((mddev->reshape_backwards
6099 	     ? (safepos > writepos && readpos < writepos)
6100 	     : (safepos < writepos && readpos > writepos)) ||
6101 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6102 		/* Cannot proceed until we've updated the superblock... */
6103 		wait_event(conf->wait_for_overlap,
6104 			   atomic_read(&conf->reshape_stripes)==0
6105 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6106 		if (atomic_read(&conf->reshape_stripes) != 0)
6107 			return 0;
6108 		mddev->reshape_position = conf->reshape_progress;
6109 		mddev->curr_resync_completed = sector_nr;
6110 		if (!mddev->reshape_backwards)
6111 			/* Can update recovery_offset */
6112 			rdev_for_each(rdev, mddev)
6113 				if (rdev->raid_disk >= 0 &&
6114 				    !test_bit(Journal, &rdev->flags) &&
6115 				    !test_bit(In_sync, &rdev->flags) &&
6116 				    rdev->recovery_offset < sector_nr)
6117 					rdev->recovery_offset = sector_nr;
6118 
6119 		conf->reshape_checkpoint = jiffies;
6120 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6121 		md_wakeup_thread(mddev->thread);
6122 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6123 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6124 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6125 			return 0;
6126 		spin_lock_irq(&conf->device_lock);
6127 		conf->reshape_safe = mddev->reshape_position;
6128 		spin_unlock_irq(&conf->device_lock);
6129 		wake_up(&conf->wait_for_overlap);
6130 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6131 	}
6132 
6133 	INIT_LIST_HEAD(&stripes);
6134 	for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6135 		int j;
6136 		int skipped_disk = 0;
6137 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
6138 		set_bit(STRIPE_EXPANDING, &sh->state);
6139 		atomic_inc(&conf->reshape_stripes);
6140 		/* If any of this stripe is beyond the end of the old
6141 		 * array, then we need to zero those blocks
6142 		 */
6143 		for (j=sh->disks; j--;) {
6144 			sector_t s;
6145 			if (j == sh->pd_idx)
6146 				continue;
6147 			if (conf->level == 6 &&
6148 			    j == sh->qd_idx)
6149 				continue;
6150 			s = raid5_compute_blocknr(sh, j, 0);
6151 			if (s < raid5_size(mddev, 0, 0)) {
6152 				skipped_disk = 1;
6153 				continue;
6154 			}
6155 			memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6156 			set_bit(R5_Expanded, &sh->dev[j].flags);
6157 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
6158 		}
6159 		if (!skipped_disk) {
6160 			set_bit(STRIPE_EXPAND_READY, &sh->state);
6161 			set_bit(STRIPE_HANDLE, &sh->state);
6162 		}
6163 		list_add(&sh->lru, &stripes);
6164 	}
6165 	spin_lock_irq(&conf->device_lock);
6166 	if (mddev->reshape_backwards)
6167 		conf->reshape_progress -= reshape_sectors * new_data_disks;
6168 	else
6169 		conf->reshape_progress += reshape_sectors * new_data_disks;
6170 	spin_unlock_irq(&conf->device_lock);
6171 	/* Ok, those stripe are ready. We can start scheduling
6172 	 * reads on the source stripes.
6173 	 * The source stripes are determined by mapping the first and last
6174 	 * block on the destination stripes.
6175 	 */
6176 	first_sector =
6177 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6178 				     1, &dd_idx, NULL);
6179 	last_sector =
6180 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6181 					    * new_data_disks - 1),
6182 				     1, &dd_idx, NULL);
6183 	if (last_sector >= mddev->dev_sectors)
6184 		last_sector = mddev->dev_sectors - 1;
6185 	while (first_sector <= last_sector) {
6186 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
6187 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6188 		set_bit(STRIPE_HANDLE, &sh->state);
6189 		raid5_release_stripe(sh);
6190 		first_sector += RAID5_STRIPE_SECTORS(conf);
6191 	}
6192 	/* Now that the sources are clearly marked, we can release
6193 	 * the destination stripes
6194 	 */
6195 	while (!list_empty(&stripes)) {
6196 		sh = list_entry(stripes.next, struct stripe_head, lru);
6197 		list_del_init(&sh->lru);
6198 		raid5_release_stripe(sh);
6199 	}
6200 	/* If this takes us to the resync_max point where we have to pause,
6201 	 * then we need to write out the superblock.
6202 	 */
6203 	sector_nr += reshape_sectors;
6204 	retn = reshape_sectors;
6205 finish:
6206 	if (mddev->curr_resync_completed > mddev->resync_max ||
6207 	    (sector_nr - mddev->curr_resync_completed) * 2
6208 	    >= mddev->resync_max - mddev->curr_resync_completed) {
6209 		/* Cannot proceed until we've updated the superblock... */
6210 		wait_event(conf->wait_for_overlap,
6211 			   atomic_read(&conf->reshape_stripes) == 0
6212 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6213 		if (atomic_read(&conf->reshape_stripes) != 0)
6214 			goto ret;
6215 		mddev->reshape_position = conf->reshape_progress;
6216 		mddev->curr_resync_completed = sector_nr;
6217 		if (!mddev->reshape_backwards)
6218 			/* Can update recovery_offset */
6219 			rdev_for_each(rdev, mddev)
6220 				if (rdev->raid_disk >= 0 &&
6221 				    !test_bit(Journal, &rdev->flags) &&
6222 				    !test_bit(In_sync, &rdev->flags) &&
6223 				    rdev->recovery_offset < sector_nr)
6224 					rdev->recovery_offset = sector_nr;
6225 		conf->reshape_checkpoint = jiffies;
6226 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6227 		md_wakeup_thread(mddev->thread);
6228 		wait_event(mddev->sb_wait,
6229 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6230 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6231 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6232 			goto ret;
6233 		spin_lock_irq(&conf->device_lock);
6234 		conf->reshape_safe = mddev->reshape_position;
6235 		spin_unlock_irq(&conf->device_lock);
6236 		wake_up(&conf->wait_for_overlap);
6237 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6238 	}
6239 ret:
6240 	return retn;
6241 }
6242 
6243 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6244 					  int *skipped)
6245 {
6246 	struct r5conf *conf = mddev->private;
6247 	struct stripe_head *sh;
6248 	sector_t max_sector = mddev->dev_sectors;
6249 	sector_t sync_blocks;
6250 	int still_degraded = 0;
6251 	int i;
6252 
6253 	if (sector_nr >= max_sector) {
6254 		/* just being told to finish up .. nothing much to do */
6255 
6256 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6257 			end_reshape(conf);
6258 			return 0;
6259 		}
6260 
6261 		if (mddev->curr_resync < max_sector) /* aborted */
6262 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6263 					   &sync_blocks, 1);
6264 		else /* completed sync */
6265 			conf->fullsync = 0;
6266 		md_bitmap_close_sync(mddev->bitmap);
6267 
6268 		return 0;
6269 	}
6270 
6271 	/* Allow raid5_quiesce to complete */
6272 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6273 
6274 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6275 		return reshape_request(mddev, sector_nr, skipped);
6276 
6277 	/* No need to check resync_max as we never do more than one
6278 	 * stripe, and as resync_max will always be on a chunk boundary,
6279 	 * if the check in md_do_sync didn't fire, there is no chance
6280 	 * of overstepping resync_max here
6281 	 */
6282 
6283 	/* if there is too many failed drives and we are trying
6284 	 * to resync, then assert that we are finished, because there is
6285 	 * nothing we can do.
6286 	 */
6287 	if (mddev->degraded >= conf->max_degraded &&
6288 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6289 		sector_t rv = mddev->dev_sectors - sector_nr;
6290 		*skipped = 1;
6291 		return rv;
6292 	}
6293 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6294 	    !conf->fullsync &&
6295 	    !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6296 	    sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6297 		/* we can skip this block, and probably more */
6298 		do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6299 		*skipped = 1;
6300 		/* keep things rounded to whole stripes */
6301 		return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6302 	}
6303 
6304 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6305 
6306 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6307 	if (sh == NULL) {
6308 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6309 		/* make sure we don't swamp the stripe cache if someone else
6310 		 * is trying to get access
6311 		 */
6312 		schedule_timeout_uninterruptible(1);
6313 	}
6314 	/* Need to check if array will still be degraded after recovery/resync
6315 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6316 	 * one drive while leaving another faulty drive in array.
6317 	 */
6318 	rcu_read_lock();
6319 	for (i = 0; i < conf->raid_disks; i++) {
6320 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
6321 
6322 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6323 			still_degraded = 1;
6324 	}
6325 	rcu_read_unlock();
6326 
6327 	md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6328 
6329 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6330 	set_bit(STRIPE_HANDLE, &sh->state);
6331 
6332 	raid5_release_stripe(sh);
6333 
6334 	return RAID5_STRIPE_SECTORS(conf);
6335 }
6336 
6337 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6338 			       unsigned int offset)
6339 {
6340 	/* We may not be able to submit a whole bio at once as there
6341 	 * may not be enough stripe_heads available.
6342 	 * We cannot pre-allocate enough stripe_heads as we may need
6343 	 * more than exist in the cache (if we allow ever large chunks).
6344 	 * So we do one stripe head at a time and record in
6345 	 * ->bi_hw_segments how many have been done.
6346 	 *
6347 	 * We *know* that this entire raid_bio is in one chunk, so
6348 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6349 	 */
6350 	struct stripe_head *sh;
6351 	int dd_idx;
6352 	sector_t sector, logical_sector, last_sector;
6353 	int scnt = 0;
6354 	int handled = 0;
6355 
6356 	logical_sector = raid_bio->bi_iter.bi_sector &
6357 		~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6358 	sector = raid5_compute_sector(conf, logical_sector,
6359 				      0, &dd_idx, NULL);
6360 	last_sector = bio_end_sector(raid_bio);
6361 
6362 	for (; logical_sector < last_sector;
6363 	     logical_sector += RAID5_STRIPE_SECTORS(conf),
6364 		     sector += RAID5_STRIPE_SECTORS(conf),
6365 		     scnt++) {
6366 
6367 		if (scnt < offset)
6368 			/* already done this stripe */
6369 			continue;
6370 
6371 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6372 
6373 		if (!sh) {
6374 			/* failed to get a stripe - must wait */
6375 			conf->retry_read_aligned = raid_bio;
6376 			conf->retry_read_offset = scnt;
6377 			return handled;
6378 		}
6379 
6380 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6381 			raid5_release_stripe(sh);
6382 			conf->retry_read_aligned = raid_bio;
6383 			conf->retry_read_offset = scnt;
6384 			return handled;
6385 		}
6386 
6387 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6388 		handle_stripe(sh);
6389 		raid5_release_stripe(sh);
6390 		handled++;
6391 	}
6392 
6393 	bio_endio(raid_bio);
6394 
6395 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6396 		wake_up(&conf->wait_for_quiescent);
6397 	return handled;
6398 }
6399 
6400 static int handle_active_stripes(struct r5conf *conf, int group,
6401 				 struct r5worker *worker,
6402 				 struct list_head *temp_inactive_list)
6403 		__must_hold(&conf->device_lock)
6404 {
6405 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6406 	int i, batch_size = 0, hash;
6407 	bool release_inactive = false;
6408 
6409 	while (batch_size < MAX_STRIPE_BATCH &&
6410 			(sh = __get_priority_stripe(conf, group)) != NULL)
6411 		batch[batch_size++] = sh;
6412 
6413 	if (batch_size == 0) {
6414 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6415 			if (!list_empty(temp_inactive_list + i))
6416 				break;
6417 		if (i == NR_STRIPE_HASH_LOCKS) {
6418 			spin_unlock_irq(&conf->device_lock);
6419 			log_flush_stripe_to_raid(conf);
6420 			spin_lock_irq(&conf->device_lock);
6421 			return batch_size;
6422 		}
6423 		release_inactive = true;
6424 	}
6425 	spin_unlock_irq(&conf->device_lock);
6426 
6427 	release_inactive_stripe_list(conf, temp_inactive_list,
6428 				     NR_STRIPE_HASH_LOCKS);
6429 
6430 	r5l_flush_stripe_to_raid(conf->log);
6431 	if (release_inactive) {
6432 		spin_lock_irq(&conf->device_lock);
6433 		return 0;
6434 	}
6435 
6436 	for (i = 0; i < batch_size; i++)
6437 		handle_stripe(batch[i]);
6438 	log_write_stripe_run(conf);
6439 
6440 	cond_resched();
6441 
6442 	spin_lock_irq(&conf->device_lock);
6443 	for (i = 0; i < batch_size; i++) {
6444 		hash = batch[i]->hash_lock_index;
6445 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6446 	}
6447 	return batch_size;
6448 }
6449 
6450 static void raid5_do_work(struct work_struct *work)
6451 {
6452 	struct r5worker *worker = container_of(work, struct r5worker, work);
6453 	struct r5worker_group *group = worker->group;
6454 	struct r5conf *conf = group->conf;
6455 	struct mddev *mddev = conf->mddev;
6456 	int group_id = group - conf->worker_groups;
6457 	int handled;
6458 	struct blk_plug plug;
6459 
6460 	pr_debug("+++ raid5worker active\n");
6461 
6462 	blk_start_plug(&plug);
6463 	handled = 0;
6464 	spin_lock_irq(&conf->device_lock);
6465 	while (1) {
6466 		int batch_size, released;
6467 
6468 		released = release_stripe_list(conf, worker->temp_inactive_list);
6469 
6470 		batch_size = handle_active_stripes(conf, group_id, worker,
6471 						   worker->temp_inactive_list);
6472 		worker->working = false;
6473 		if (!batch_size && !released)
6474 			break;
6475 		handled += batch_size;
6476 		wait_event_lock_irq(mddev->sb_wait,
6477 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6478 			conf->device_lock);
6479 	}
6480 	pr_debug("%d stripes handled\n", handled);
6481 
6482 	spin_unlock_irq(&conf->device_lock);
6483 
6484 	flush_deferred_bios(conf);
6485 
6486 	r5l_flush_stripe_to_raid(conf->log);
6487 
6488 	async_tx_issue_pending_all();
6489 	blk_finish_plug(&plug);
6490 
6491 	pr_debug("--- raid5worker inactive\n");
6492 }
6493 
6494 /*
6495  * This is our raid5 kernel thread.
6496  *
6497  * We scan the hash table for stripes which can be handled now.
6498  * During the scan, completed stripes are saved for us by the interrupt
6499  * handler, so that they will not have to wait for our next wakeup.
6500  */
6501 static void raid5d(struct md_thread *thread)
6502 {
6503 	struct mddev *mddev = thread->mddev;
6504 	struct r5conf *conf = mddev->private;
6505 	int handled;
6506 	struct blk_plug plug;
6507 
6508 	pr_debug("+++ raid5d active\n");
6509 
6510 	md_check_recovery(mddev);
6511 
6512 	blk_start_plug(&plug);
6513 	handled = 0;
6514 	spin_lock_irq(&conf->device_lock);
6515 	while (1) {
6516 		struct bio *bio;
6517 		int batch_size, released;
6518 		unsigned int offset;
6519 
6520 		released = release_stripe_list(conf, conf->temp_inactive_list);
6521 		if (released)
6522 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6523 
6524 		if (
6525 		    !list_empty(&conf->bitmap_list)) {
6526 			/* Now is a good time to flush some bitmap updates */
6527 			conf->seq_flush++;
6528 			spin_unlock_irq(&conf->device_lock);
6529 			md_bitmap_unplug(mddev->bitmap);
6530 			spin_lock_irq(&conf->device_lock);
6531 			conf->seq_write = conf->seq_flush;
6532 			activate_bit_delay(conf, conf->temp_inactive_list);
6533 		}
6534 		raid5_activate_delayed(conf);
6535 
6536 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6537 			int ok;
6538 			spin_unlock_irq(&conf->device_lock);
6539 			ok = retry_aligned_read(conf, bio, offset);
6540 			spin_lock_irq(&conf->device_lock);
6541 			if (!ok)
6542 				break;
6543 			handled++;
6544 		}
6545 
6546 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6547 						   conf->temp_inactive_list);
6548 		if (!batch_size && !released)
6549 			break;
6550 		handled += batch_size;
6551 
6552 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6553 			spin_unlock_irq(&conf->device_lock);
6554 			md_check_recovery(mddev);
6555 			spin_lock_irq(&conf->device_lock);
6556 		}
6557 	}
6558 	pr_debug("%d stripes handled\n", handled);
6559 
6560 	spin_unlock_irq(&conf->device_lock);
6561 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6562 	    mutex_trylock(&conf->cache_size_mutex)) {
6563 		grow_one_stripe(conf, __GFP_NOWARN);
6564 		/* Set flag even if allocation failed.  This helps
6565 		 * slow down allocation requests when mem is short
6566 		 */
6567 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6568 		mutex_unlock(&conf->cache_size_mutex);
6569 	}
6570 
6571 	flush_deferred_bios(conf);
6572 
6573 	r5l_flush_stripe_to_raid(conf->log);
6574 
6575 	async_tx_issue_pending_all();
6576 	blk_finish_plug(&plug);
6577 
6578 	pr_debug("--- raid5d inactive\n");
6579 }
6580 
6581 static ssize_t
6582 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6583 {
6584 	struct r5conf *conf;
6585 	int ret = 0;
6586 	spin_lock(&mddev->lock);
6587 	conf = mddev->private;
6588 	if (conf)
6589 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6590 	spin_unlock(&mddev->lock);
6591 	return ret;
6592 }
6593 
6594 int
6595 raid5_set_cache_size(struct mddev *mddev, int size)
6596 {
6597 	int result = 0;
6598 	struct r5conf *conf = mddev->private;
6599 
6600 	if (size <= 16 || size > 32768)
6601 		return -EINVAL;
6602 
6603 	conf->min_nr_stripes = size;
6604 	mutex_lock(&conf->cache_size_mutex);
6605 	while (size < conf->max_nr_stripes &&
6606 	       drop_one_stripe(conf))
6607 		;
6608 	mutex_unlock(&conf->cache_size_mutex);
6609 
6610 	md_allow_write(mddev);
6611 
6612 	mutex_lock(&conf->cache_size_mutex);
6613 	while (size > conf->max_nr_stripes)
6614 		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6615 			conf->min_nr_stripes = conf->max_nr_stripes;
6616 			result = -ENOMEM;
6617 			break;
6618 		}
6619 	mutex_unlock(&conf->cache_size_mutex);
6620 
6621 	return result;
6622 }
6623 EXPORT_SYMBOL(raid5_set_cache_size);
6624 
6625 static ssize_t
6626 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6627 {
6628 	struct r5conf *conf;
6629 	unsigned long new;
6630 	int err;
6631 
6632 	if (len >= PAGE_SIZE)
6633 		return -EINVAL;
6634 	if (kstrtoul(page, 10, &new))
6635 		return -EINVAL;
6636 	err = mddev_lock(mddev);
6637 	if (err)
6638 		return err;
6639 	conf = mddev->private;
6640 	if (!conf)
6641 		err = -ENODEV;
6642 	else
6643 		err = raid5_set_cache_size(mddev, new);
6644 	mddev_unlock(mddev);
6645 
6646 	return err ?: len;
6647 }
6648 
6649 static struct md_sysfs_entry
6650 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6651 				raid5_show_stripe_cache_size,
6652 				raid5_store_stripe_cache_size);
6653 
6654 static ssize_t
6655 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6656 {
6657 	struct r5conf *conf = mddev->private;
6658 	if (conf)
6659 		return sprintf(page, "%d\n", conf->rmw_level);
6660 	else
6661 		return 0;
6662 }
6663 
6664 static ssize_t
6665 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6666 {
6667 	struct r5conf *conf = mddev->private;
6668 	unsigned long new;
6669 
6670 	if (!conf)
6671 		return -ENODEV;
6672 
6673 	if (len >= PAGE_SIZE)
6674 		return -EINVAL;
6675 
6676 	if (kstrtoul(page, 10, &new))
6677 		return -EINVAL;
6678 
6679 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6680 		return -EINVAL;
6681 
6682 	if (new != PARITY_DISABLE_RMW &&
6683 	    new != PARITY_ENABLE_RMW &&
6684 	    new != PARITY_PREFER_RMW)
6685 		return -EINVAL;
6686 
6687 	conf->rmw_level = new;
6688 	return len;
6689 }
6690 
6691 static struct md_sysfs_entry
6692 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6693 			 raid5_show_rmw_level,
6694 			 raid5_store_rmw_level);
6695 
6696 static ssize_t
6697 raid5_show_stripe_size(struct mddev  *mddev, char *page)
6698 {
6699 	struct r5conf *conf;
6700 	int ret = 0;
6701 
6702 	spin_lock(&mddev->lock);
6703 	conf = mddev->private;
6704 	if (conf)
6705 		ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6706 	spin_unlock(&mddev->lock);
6707 	return ret;
6708 }
6709 
6710 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6711 static ssize_t
6712 raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
6713 {
6714 	struct r5conf *conf;
6715 	unsigned long new;
6716 	int err;
6717 	int size;
6718 
6719 	if (len >= PAGE_SIZE)
6720 		return -EINVAL;
6721 	if (kstrtoul(page, 10, &new))
6722 		return -EINVAL;
6723 
6724 	/*
6725 	 * The value should not be bigger than PAGE_SIZE. It requires to
6726 	 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6727 	 * of two.
6728 	 */
6729 	if (new % DEFAULT_STRIPE_SIZE != 0 ||
6730 			new > PAGE_SIZE || new == 0 ||
6731 			new != roundup_pow_of_two(new))
6732 		return -EINVAL;
6733 
6734 	err = mddev_lock(mddev);
6735 	if (err)
6736 		return err;
6737 
6738 	conf = mddev->private;
6739 	if (!conf) {
6740 		err = -ENODEV;
6741 		goto out_unlock;
6742 	}
6743 
6744 	if (new == conf->stripe_size)
6745 		goto out_unlock;
6746 
6747 	pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6748 			conf->stripe_size, new);
6749 
6750 	if (mddev->sync_thread ||
6751 		test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6752 		mddev->reshape_position != MaxSector ||
6753 		mddev->sysfs_active) {
6754 		err = -EBUSY;
6755 		goto out_unlock;
6756 	}
6757 
6758 	mddev_suspend(mddev);
6759 	mutex_lock(&conf->cache_size_mutex);
6760 	size = conf->max_nr_stripes;
6761 
6762 	shrink_stripes(conf);
6763 
6764 	conf->stripe_size = new;
6765 	conf->stripe_shift = ilog2(new) - 9;
6766 	conf->stripe_sectors = new >> 9;
6767 	if (grow_stripes(conf, size)) {
6768 		pr_warn("md/raid:%s: couldn't allocate buffers\n",
6769 				mdname(mddev));
6770 		err = -ENOMEM;
6771 	}
6772 	mutex_unlock(&conf->cache_size_mutex);
6773 	mddev_resume(mddev);
6774 
6775 out_unlock:
6776 	mddev_unlock(mddev);
6777 	return err ?: len;
6778 }
6779 
6780 static struct md_sysfs_entry
6781 raid5_stripe_size = __ATTR(stripe_size, 0644,
6782 			 raid5_show_stripe_size,
6783 			 raid5_store_stripe_size);
6784 #else
6785 static struct md_sysfs_entry
6786 raid5_stripe_size = __ATTR(stripe_size, 0444,
6787 			 raid5_show_stripe_size,
6788 			 NULL);
6789 #endif
6790 
6791 static ssize_t
6792 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6793 {
6794 	struct r5conf *conf;
6795 	int ret = 0;
6796 	spin_lock(&mddev->lock);
6797 	conf = mddev->private;
6798 	if (conf)
6799 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6800 	spin_unlock(&mddev->lock);
6801 	return ret;
6802 }
6803 
6804 static ssize_t
6805 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6806 {
6807 	struct r5conf *conf;
6808 	unsigned long new;
6809 	int err;
6810 
6811 	if (len >= PAGE_SIZE)
6812 		return -EINVAL;
6813 	if (kstrtoul(page, 10, &new))
6814 		return -EINVAL;
6815 
6816 	err = mddev_lock(mddev);
6817 	if (err)
6818 		return err;
6819 	conf = mddev->private;
6820 	if (!conf)
6821 		err = -ENODEV;
6822 	else if (new > conf->min_nr_stripes)
6823 		err = -EINVAL;
6824 	else
6825 		conf->bypass_threshold = new;
6826 	mddev_unlock(mddev);
6827 	return err ?: len;
6828 }
6829 
6830 static struct md_sysfs_entry
6831 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6832 					S_IRUGO | S_IWUSR,
6833 					raid5_show_preread_threshold,
6834 					raid5_store_preread_threshold);
6835 
6836 static ssize_t
6837 raid5_show_skip_copy(struct mddev *mddev, char *page)
6838 {
6839 	struct r5conf *conf;
6840 	int ret = 0;
6841 	spin_lock(&mddev->lock);
6842 	conf = mddev->private;
6843 	if (conf)
6844 		ret = sprintf(page, "%d\n", conf->skip_copy);
6845 	spin_unlock(&mddev->lock);
6846 	return ret;
6847 }
6848 
6849 static ssize_t
6850 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6851 {
6852 	struct r5conf *conf;
6853 	unsigned long new;
6854 	int err;
6855 
6856 	if (len >= PAGE_SIZE)
6857 		return -EINVAL;
6858 	if (kstrtoul(page, 10, &new))
6859 		return -EINVAL;
6860 	new = !!new;
6861 
6862 	err = mddev_lock(mddev);
6863 	if (err)
6864 		return err;
6865 	conf = mddev->private;
6866 	if (!conf)
6867 		err = -ENODEV;
6868 	else if (new != conf->skip_copy) {
6869 		struct request_queue *q = mddev->queue;
6870 
6871 		mddev_suspend(mddev);
6872 		conf->skip_copy = new;
6873 		if (new)
6874 			blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
6875 		else
6876 			blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
6877 		mddev_resume(mddev);
6878 	}
6879 	mddev_unlock(mddev);
6880 	return err ?: len;
6881 }
6882 
6883 static struct md_sysfs_entry
6884 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6885 					raid5_show_skip_copy,
6886 					raid5_store_skip_copy);
6887 
6888 static ssize_t
6889 stripe_cache_active_show(struct mddev *mddev, char *page)
6890 {
6891 	struct r5conf *conf = mddev->private;
6892 	if (conf)
6893 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6894 	else
6895 		return 0;
6896 }
6897 
6898 static struct md_sysfs_entry
6899 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6900 
6901 static ssize_t
6902 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6903 {
6904 	struct r5conf *conf;
6905 	int ret = 0;
6906 	spin_lock(&mddev->lock);
6907 	conf = mddev->private;
6908 	if (conf)
6909 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6910 	spin_unlock(&mddev->lock);
6911 	return ret;
6912 }
6913 
6914 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6915 			       int *group_cnt,
6916 			       struct r5worker_group **worker_groups);
6917 static ssize_t
6918 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6919 {
6920 	struct r5conf *conf;
6921 	unsigned int new;
6922 	int err;
6923 	struct r5worker_group *new_groups, *old_groups;
6924 	int group_cnt;
6925 
6926 	if (len >= PAGE_SIZE)
6927 		return -EINVAL;
6928 	if (kstrtouint(page, 10, &new))
6929 		return -EINVAL;
6930 	/* 8192 should be big enough */
6931 	if (new > 8192)
6932 		return -EINVAL;
6933 
6934 	err = mddev_lock(mddev);
6935 	if (err)
6936 		return err;
6937 	conf = mddev->private;
6938 	if (!conf)
6939 		err = -ENODEV;
6940 	else if (new != conf->worker_cnt_per_group) {
6941 		mddev_suspend(mddev);
6942 
6943 		old_groups = conf->worker_groups;
6944 		if (old_groups)
6945 			flush_workqueue(raid5_wq);
6946 
6947 		err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6948 		if (!err) {
6949 			spin_lock_irq(&conf->device_lock);
6950 			conf->group_cnt = group_cnt;
6951 			conf->worker_cnt_per_group = new;
6952 			conf->worker_groups = new_groups;
6953 			spin_unlock_irq(&conf->device_lock);
6954 
6955 			if (old_groups)
6956 				kfree(old_groups[0].workers);
6957 			kfree(old_groups);
6958 		}
6959 		mddev_resume(mddev);
6960 	}
6961 	mddev_unlock(mddev);
6962 
6963 	return err ?: len;
6964 }
6965 
6966 static struct md_sysfs_entry
6967 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6968 				raid5_show_group_thread_cnt,
6969 				raid5_store_group_thread_cnt);
6970 
6971 static struct attribute *raid5_attrs[] =  {
6972 	&raid5_stripecache_size.attr,
6973 	&raid5_stripecache_active.attr,
6974 	&raid5_preread_bypass_threshold.attr,
6975 	&raid5_group_thread_cnt.attr,
6976 	&raid5_skip_copy.attr,
6977 	&raid5_rmw_level.attr,
6978 	&raid5_stripe_size.attr,
6979 	&r5c_journal_mode.attr,
6980 	&ppl_write_hint.attr,
6981 	NULL,
6982 };
6983 static const struct attribute_group raid5_attrs_group = {
6984 	.name = NULL,
6985 	.attrs = raid5_attrs,
6986 };
6987 
6988 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
6989 			       struct r5worker_group **worker_groups)
6990 {
6991 	int i, j, k;
6992 	ssize_t size;
6993 	struct r5worker *workers;
6994 
6995 	if (cnt == 0) {
6996 		*group_cnt = 0;
6997 		*worker_groups = NULL;
6998 		return 0;
6999 	}
7000 	*group_cnt = num_possible_nodes();
7001 	size = sizeof(struct r5worker) * cnt;
7002 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
7003 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7004 				 GFP_NOIO);
7005 	if (!*worker_groups || !workers) {
7006 		kfree(workers);
7007 		kfree(*worker_groups);
7008 		return -ENOMEM;
7009 	}
7010 
7011 	for (i = 0; i < *group_cnt; i++) {
7012 		struct r5worker_group *group;
7013 
7014 		group = &(*worker_groups)[i];
7015 		INIT_LIST_HEAD(&group->handle_list);
7016 		INIT_LIST_HEAD(&group->loprio_list);
7017 		group->conf = conf;
7018 		group->workers = workers + i * cnt;
7019 
7020 		for (j = 0; j < cnt; j++) {
7021 			struct r5worker *worker = group->workers + j;
7022 			worker->group = group;
7023 			INIT_WORK(&worker->work, raid5_do_work);
7024 
7025 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7026 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
7027 		}
7028 	}
7029 
7030 	return 0;
7031 }
7032 
7033 static void free_thread_groups(struct r5conf *conf)
7034 {
7035 	if (conf->worker_groups)
7036 		kfree(conf->worker_groups[0].workers);
7037 	kfree(conf->worker_groups);
7038 	conf->worker_groups = NULL;
7039 }
7040 
7041 static sector_t
7042 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7043 {
7044 	struct r5conf *conf = mddev->private;
7045 
7046 	if (!sectors)
7047 		sectors = mddev->dev_sectors;
7048 	if (!raid_disks)
7049 		/* size is defined by the smallest of previous and new size */
7050 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7051 
7052 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7053 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7054 	return sectors * (raid_disks - conf->max_degraded);
7055 }
7056 
7057 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7058 {
7059 	safe_put_page(percpu->spare_page);
7060 	percpu->spare_page = NULL;
7061 	kvfree(percpu->scribble);
7062 	percpu->scribble = NULL;
7063 }
7064 
7065 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7066 {
7067 	if (conf->level == 6 && !percpu->spare_page) {
7068 		percpu->spare_page = alloc_page(GFP_KERNEL);
7069 		if (!percpu->spare_page)
7070 			return -ENOMEM;
7071 	}
7072 
7073 	if (scribble_alloc(percpu,
7074 			   max(conf->raid_disks,
7075 			       conf->previous_raid_disks),
7076 			   max(conf->chunk_sectors,
7077 			       conf->prev_chunk_sectors)
7078 			   / RAID5_STRIPE_SECTORS(conf))) {
7079 		free_scratch_buffer(conf, percpu);
7080 		return -ENOMEM;
7081 	}
7082 
7083 	local_lock_init(&percpu->lock);
7084 	return 0;
7085 }
7086 
7087 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7088 {
7089 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7090 
7091 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7092 	return 0;
7093 }
7094 
7095 static void raid5_free_percpu(struct r5conf *conf)
7096 {
7097 	if (!conf->percpu)
7098 		return;
7099 
7100 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7101 	free_percpu(conf->percpu);
7102 }
7103 
7104 static void free_conf(struct r5conf *conf)
7105 {
7106 	int i;
7107 
7108 	log_exit(conf);
7109 
7110 	unregister_shrinker(&conf->shrinker);
7111 	free_thread_groups(conf);
7112 	shrink_stripes(conf);
7113 	raid5_free_percpu(conf);
7114 	for (i = 0; i < conf->pool_size; i++)
7115 		if (conf->disks[i].extra_page)
7116 			put_page(conf->disks[i].extra_page);
7117 	kfree(conf->disks);
7118 	bioset_exit(&conf->bio_split);
7119 	kfree(conf->stripe_hashtbl);
7120 	kfree(conf->pending_data);
7121 	kfree(conf);
7122 }
7123 
7124 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7125 {
7126 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7127 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7128 
7129 	if (alloc_scratch_buffer(conf, percpu)) {
7130 		pr_warn("%s: failed memory allocation for cpu%u\n",
7131 			__func__, cpu);
7132 		return -ENOMEM;
7133 	}
7134 	return 0;
7135 }
7136 
7137 static int raid5_alloc_percpu(struct r5conf *conf)
7138 {
7139 	int err = 0;
7140 
7141 	conf->percpu = alloc_percpu(struct raid5_percpu);
7142 	if (!conf->percpu)
7143 		return -ENOMEM;
7144 
7145 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7146 	if (!err) {
7147 		conf->scribble_disks = max(conf->raid_disks,
7148 			conf->previous_raid_disks);
7149 		conf->scribble_sectors = max(conf->chunk_sectors,
7150 			conf->prev_chunk_sectors);
7151 	}
7152 	return err;
7153 }
7154 
7155 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7156 				      struct shrink_control *sc)
7157 {
7158 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7159 	unsigned long ret = SHRINK_STOP;
7160 
7161 	if (mutex_trylock(&conf->cache_size_mutex)) {
7162 		ret= 0;
7163 		while (ret < sc->nr_to_scan &&
7164 		       conf->max_nr_stripes > conf->min_nr_stripes) {
7165 			if (drop_one_stripe(conf) == 0) {
7166 				ret = SHRINK_STOP;
7167 				break;
7168 			}
7169 			ret++;
7170 		}
7171 		mutex_unlock(&conf->cache_size_mutex);
7172 	}
7173 	return ret;
7174 }
7175 
7176 static unsigned long raid5_cache_count(struct shrinker *shrink,
7177 				       struct shrink_control *sc)
7178 {
7179 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7180 
7181 	if (conf->max_nr_stripes < conf->min_nr_stripes)
7182 		/* unlikely, but not impossible */
7183 		return 0;
7184 	return conf->max_nr_stripes - conf->min_nr_stripes;
7185 }
7186 
7187 static struct r5conf *setup_conf(struct mddev *mddev)
7188 {
7189 	struct r5conf *conf;
7190 	int raid_disk, memory, max_disks;
7191 	struct md_rdev *rdev;
7192 	struct disk_info *disk;
7193 	char pers_name[6];
7194 	int i;
7195 	int group_cnt;
7196 	struct r5worker_group *new_group;
7197 	int ret = -ENOMEM;
7198 
7199 	if (mddev->new_level != 5
7200 	    && mddev->new_level != 4
7201 	    && mddev->new_level != 6) {
7202 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7203 			mdname(mddev), mddev->new_level);
7204 		return ERR_PTR(-EIO);
7205 	}
7206 	if ((mddev->new_level == 5
7207 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
7208 	    (mddev->new_level == 6
7209 	     && !algorithm_valid_raid6(mddev->new_layout))) {
7210 		pr_warn("md/raid:%s: layout %d not supported\n",
7211 			mdname(mddev), mddev->new_layout);
7212 		return ERR_PTR(-EIO);
7213 	}
7214 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7215 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7216 			mdname(mddev), mddev->raid_disks);
7217 		return ERR_PTR(-EINVAL);
7218 	}
7219 
7220 	if (!mddev->new_chunk_sectors ||
7221 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7222 	    !is_power_of_2(mddev->new_chunk_sectors)) {
7223 		pr_warn("md/raid:%s: invalid chunk size %d\n",
7224 			mdname(mddev), mddev->new_chunk_sectors << 9);
7225 		return ERR_PTR(-EINVAL);
7226 	}
7227 
7228 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7229 	if (conf == NULL)
7230 		goto abort;
7231 
7232 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7233 	conf->stripe_size = DEFAULT_STRIPE_SIZE;
7234 	conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7235 	conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7236 #endif
7237 	INIT_LIST_HEAD(&conf->free_list);
7238 	INIT_LIST_HEAD(&conf->pending_list);
7239 	conf->pending_data = kcalloc(PENDING_IO_MAX,
7240 				     sizeof(struct r5pending_data),
7241 				     GFP_KERNEL);
7242 	if (!conf->pending_data)
7243 		goto abort;
7244 	for (i = 0; i < PENDING_IO_MAX; i++)
7245 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
7246 	/* Don't enable multi-threading by default*/
7247 	if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7248 		conf->group_cnt = group_cnt;
7249 		conf->worker_cnt_per_group = 0;
7250 		conf->worker_groups = new_group;
7251 	} else
7252 		goto abort;
7253 	spin_lock_init(&conf->device_lock);
7254 	seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7255 	mutex_init(&conf->cache_size_mutex);
7256 
7257 	init_waitqueue_head(&conf->wait_for_quiescent);
7258 	init_waitqueue_head(&conf->wait_for_stripe);
7259 	init_waitqueue_head(&conf->wait_for_overlap);
7260 	INIT_LIST_HEAD(&conf->handle_list);
7261 	INIT_LIST_HEAD(&conf->loprio_list);
7262 	INIT_LIST_HEAD(&conf->hold_list);
7263 	INIT_LIST_HEAD(&conf->delayed_list);
7264 	INIT_LIST_HEAD(&conf->bitmap_list);
7265 	init_llist_head(&conf->released_stripes);
7266 	atomic_set(&conf->active_stripes, 0);
7267 	atomic_set(&conf->preread_active_stripes, 0);
7268 	atomic_set(&conf->active_aligned_reads, 0);
7269 	spin_lock_init(&conf->pending_bios_lock);
7270 	conf->batch_bio_dispatch = true;
7271 	rdev_for_each(rdev, mddev) {
7272 		if (test_bit(Journal, &rdev->flags))
7273 			continue;
7274 		if (bdev_nonrot(rdev->bdev)) {
7275 			conf->batch_bio_dispatch = false;
7276 			break;
7277 		}
7278 	}
7279 
7280 	conf->bypass_threshold = BYPASS_THRESHOLD;
7281 	conf->recovery_disabled = mddev->recovery_disabled - 1;
7282 
7283 	conf->raid_disks = mddev->raid_disks;
7284 	if (mddev->reshape_position == MaxSector)
7285 		conf->previous_raid_disks = mddev->raid_disks;
7286 	else
7287 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7288 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7289 
7290 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7291 			      GFP_KERNEL);
7292 
7293 	if (!conf->disks)
7294 		goto abort;
7295 
7296 	for (i = 0; i < max_disks; i++) {
7297 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7298 		if (!conf->disks[i].extra_page)
7299 			goto abort;
7300 	}
7301 
7302 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7303 	if (ret)
7304 		goto abort;
7305 	conf->mddev = mddev;
7306 
7307 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
7308 		goto abort;
7309 
7310 	/* We init hash_locks[0] separately to that it can be used
7311 	 * as the reference lock in the spin_lock_nest_lock() call
7312 	 * in lock_all_device_hash_locks_irq in order to convince
7313 	 * lockdep that we know what we are doing.
7314 	 */
7315 	spin_lock_init(conf->hash_locks);
7316 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7317 		spin_lock_init(conf->hash_locks + i);
7318 
7319 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7320 		INIT_LIST_HEAD(conf->inactive_list + i);
7321 
7322 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7323 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7324 
7325 	atomic_set(&conf->r5c_cached_full_stripes, 0);
7326 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7327 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7328 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7329 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7330 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7331 
7332 	conf->level = mddev->new_level;
7333 	conf->chunk_sectors = mddev->new_chunk_sectors;
7334 	ret = raid5_alloc_percpu(conf);
7335 	if (ret)
7336 		goto abort;
7337 
7338 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7339 
7340 	ret = -EIO;
7341 	rdev_for_each(rdev, mddev) {
7342 		raid_disk = rdev->raid_disk;
7343 		if (raid_disk >= max_disks
7344 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7345 			continue;
7346 		disk = conf->disks + raid_disk;
7347 
7348 		if (test_bit(Replacement, &rdev->flags)) {
7349 			if (disk->replacement)
7350 				goto abort;
7351 			RCU_INIT_POINTER(disk->replacement, rdev);
7352 		} else {
7353 			if (disk->rdev)
7354 				goto abort;
7355 			RCU_INIT_POINTER(disk->rdev, rdev);
7356 		}
7357 
7358 		if (test_bit(In_sync, &rdev->flags)) {
7359 			pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7360 				mdname(mddev), rdev->bdev, raid_disk);
7361 		} else if (rdev->saved_raid_disk != raid_disk)
7362 			/* Cannot rely on bitmap to complete recovery */
7363 			conf->fullsync = 1;
7364 	}
7365 
7366 	conf->level = mddev->new_level;
7367 	if (conf->level == 6) {
7368 		conf->max_degraded = 2;
7369 		if (raid6_call.xor_syndrome)
7370 			conf->rmw_level = PARITY_ENABLE_RMW;
7371 		else
7372 			conf->rmw_level = PARITY_DISABLE_RMW;
7373 	} else {
7374 		conf->max_degraded = 1;
7375 		conf->rmw_level = PARITY_ENABLE_RMW;
7376 	}
7377 	conf->algorithm = mddev->new_layout;
7378 	conf->reshape_progress = mddev->reshape_position;
7379 	if (conf->reshape_progress != MaxSector) {
7380 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7381 		conf->prev_algo = mddev->layout;
7382 	} else {
7383 		conf->prev_chunk_sectors = conf->chunk_sectors;
7384 		conf->prev_algo = conf->algorithm;
7385 	}
7386 
7387 	conf->min_nr_stripes = NR_STRIPES;
7388 	if (mddev->reshape_position != MaxSector) {
7389 		int stripes = max_t(int,
7390 			((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7391 			((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7392 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7393 		if (conf->min_nr_stripes != NR_STRIPES)
7394 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7395 				mdname(mddev), conf->min_nr_stripes);
7396 	}
7397 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7398 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7399 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7400 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7401 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7402 			mdname(mddev), memory);
7403 		ret = -ENOMEM;
7404 		goto abort;
7405 	} else
7406 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7407 	/*
7408 	 * Losing a stripe head costs more than the time to refill it,
7409 	 * it reduces the queue depth and so can hurt throughput.
7410 	 * So set it rather large, scaled by number of devices.
7411 	 */
7412 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7413 	conf->shrinker.scan_objects = raid5_cache_scan;
7414 	conf->shrinker.count_objects = raid5_cache_count;
7415 	conf->shrinker.batch = 128;
7416 	conf->shrinker.flags = 0;
7417 	ret = register_shrinker(&conf->shrinker);
7418 	if (ret) {
7419 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7420 			mdname(mddev));
7421 		goto abort;
7422 	}
7423 
7424 	sprintf(pers_name, "raid%d", mddev->new_level);
7425 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7426 	if (!conf->thread) {
7427 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7428 			mdname(mddev));
7429 		ret = -ENOMEM;
7430 		goto abort;
7431 	}
7432 
7433 	return conf;
7434 
7435  abort:
7436 	if (conf)
7437 		free_conf(conf);
7438 	return ERR_PTR(ret);
7439 }
7440 
7441 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7442 {
7443 	switch (algo) {
7444 	case ALGORITHM_PARITY_0:
7445 		if (raid_disk < max_degraded)
7446 			return 1;
7447 		break;
7448 	case ALGORITHM_PARITY_N:
7449 		if (raid_disk >= raid_disks - max_degraded)
7450 			return 1;
7451 		break;
7452 	case ALGORITHM_PARITY_0_6:
7453 		if (raid_disk == 0 ||
7454 		    raid_disk == raid_disks - 1)
7455 			return 1;
7456 		break;
7457 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7458 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7459 	case ALGORITHM_LEFT_SYMMETRIC_6:
7460 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7461 		if (raid_disk == raid_disks - 1)
7462 			return 1;
7463 	}
7464 	return 0;
7465 }
7466 
7467 static void raid5_set_io_opt(struct r5conf *conf)
7468 {
7469 	blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7470 			 (conf->raid_disks - conf->max_degraded));
7471 }
7472 
7473 static int raid5_run(struct mddev *mddev)
7474 {
7475 	struct r5conf *conf;
7476 	int working_disks = 0;
7477 	int dirty_parity_disks = 0;
7478 	struct md_rdev *rdev;
7479 	struct md_rdev *journal_dev = NULL;
7480 	sector_t reshape_offset = 0;
7481 	int i, ret = 0;
7482 	long long min_offset_diff = 0;
7483 	int first = 1;
7484 
7485 	if (acct_bioset_init(mddev)) {
7486 		pr_err("md/raid456:%s: alloc acct bioset failed.\n", mdname(mddev));
7487 		return -ENOMEM;
7488 	}
7489 
7490 	if (mddev_init_writes_pending(mddev) < 0) {
7491 		ret = -ENOMEM;
7492 		goto exit_acct_set;
7493 	}
7494 
7495 	if (mddev->recovery_cp != MaxSector)
7496 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7497 			  mdname(mddev));
7498 
7499 	rdev_for_each(rdev, mddev) {
7500 		long long diff;
7501 
7502 		if (test_bit(Journal, &rdev->flags)) {
7503 			journal_dev = rdev;
7504 			continue;
7505 		}
7506 		if (rdev->raid_disk < 0)
7507 			continue;
7508 		diff = (rdev->new_data_offset - rdev->data_offset);
7509 		if (first) {
7510 			min_offset_diff = diff;
7511 			first = 0;
7512 		} else if (mddev->reshape_backwards &&
7513 			 diff < min_offset_diff)
7514 			min_offset_diff = diff;
7515 		else if (!mddev->reshape_backwards &&
7516 			 diff > min_offset_diff)
7517 			min_offset_diff = diff;
7518 	}
7519 
7520 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7521 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7522 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7523 			  mdname(mddev));
7524 		ret = -EINVAL;
7525 		goto exit_acct_set;
7526 	}
7527 
7528 	if (mddev->reshape_position != MaxSector) {
7529 		/* Check that we can continue the reshape.
7530 		 * Difficulties arise if the stripe we would write to
7531 		 * next is at or after the stripe we would read from next.
7532 		 * For a reshape that changes the number of devices, this
7533 		 * is only possible for a very short time, and mdadm makes
7534 		 * sure that time appears to have past before assembling
7535 		 * the array.  So we fail if that time hasn't passed.
7536 		 * For a reshape that keeps the number of devices the same
7537 		 * mdadm must be monitoring the reshape can keeping the
7538 		 * critical areas read-only and backed up.  It will start
7539 		 * the array in read-only mode, so we check for that.
7540 		 */
7541 		sector_t here_new, here_old;
7542 		int old_disks;
7543 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7544 		int chunk_sectors;
7545 		int new_data_disks;
7546 
7547 		if (journal_dev) {
7548 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7549 				mdname(mddev));
7550 			ret = -EINVAL;
7551 			goto exit_acct_set;
7552 		}
7553 
7554 		if (mddev->new_level != mddev->level) {
7555 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7556 				mdname(mddev));
7557 			ret = -EINVAL;
7558 			goto exit_acct_set;
7559 		}
7560 		old_disks = mddev->raid_disks - mddev->delta_disks;
7561 		/* reshape_position must be on a new-stripe boundary, and one
7562 		 * further up in new geometry must map after here in old
7563 		 * geometry.
7564 		 * If the chunk sizes are different, then as we perform reshape
7565 		 * in units of the largest of the two, reshape_position needs
7566 		 * be a multiple of the largest chunk size times new data disks.
7567 		 */
7568 		here_new = mddev->reshape_position;
7569 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7570 		new_data_disks = mddev->raid_disks - max_degraded;
7571 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7572 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7573 				mdname(mddev));
7574 			ret = -EINVAL;
7575 			goto exit_acct_set;
7576 		}
7577 		reshape_offset = here_new * chunk_sectors;
7578 		/* here_new is the stripe we will write to */
7579 		here_old = mddev->reshape_position;
7580 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7581 		/* here_old is the first stripe that we might need to read
7582 		 * from */
7583 		if (mddev->delta_disks == 0) {
7584 			/* We cannot be sure it is safe to start an in-place
7585 			 * reshape.  It is only safe if user-space is monitoring
7586 			 * and taking constant backups.
7587 			 * mdadm always starts a situation like this in
7588 			 * readonly mode so it can take control before
7589 			 * allowing any writes.  So just check for that.
7590 			 */
7591 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7592 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7593 				/* not really in-place - so OK */;
7594 			else if (mddev->ro == 0) {
7595 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7596 					mdname(mddev));
7597 				ret = -EINVAL;
7598 				goto exit_acct_set;
7599 			}
7600 		} else if (mddev->reshape_backwards
7601 		    ? (here_new * chunk_sectors + min_offset_diff <=
7602 		       here_old * chunk_sectors)
7603 		    : (here_new * chunk_sectors >=
7604 		       here_old * chunk_sectors + (-min_offset_diff))) {
7605 			/* Reading from the same stripe as writing to - bad */
7606 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7607 				mdname(mddev));
7608 			ret = -EINVAL;
7609 			goto exit_acct_set;
7610 		}
7611 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7612 		/* OK, we should be able to continue; */
7613 	} else {
7614 		BUG_ON(mddev->level != mddev->new_level);
7615 		BUG_ON(mddev->layout != mddev->new_layout);
7616 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7617 		BUG_ON(mddev->delta_disks != 0);
7618 	}
7619 
7620 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7621 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7622 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7623 			mdname(mddev));
7624 		clear_bit(MD_HAS_PPL, &mddev->flags);
7625 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7626 	}
7627 
7628 	if (mddev->private == NULL)
7629 		conf = setup_conf(mddev);
7630 	else
7631 		conf = mddev->private;
7632 
7633 	if (IS_ERR(conf)) {
7634 		ret = PTR_ERR(conf);
7635 		goto exit_acct_set;
7636 	}
7637 
7638 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7639 		if (!journal_dev) {
7640 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7641 				mdname(mddev));
7642 			mddev->ro = 1;
7643 			set_disk_ro(mddev->gendisk, 1);
7644 		} else if (mddev->recovery_cp == MaxSector)
7645 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7646 	}
7647 
7648 	conf->min_offset_diff = min_offset_diff;
7649 	mddev->thread = conf->thread;
7650 	conf->thread = NULL;
7651 	mddev->private = conf;
7652 
7653 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7654 	     i++) {
7655 		rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
7656 		if (!rdev && conf->disks[i].replacement) {
7657 			/* The replacement is all we have yet */
7658 			rdev = rdev_mdlock_deref(mddev,
7659 						 conf->disks[i].replacement);
7660 			conf->disks[i].replacement = NULL;
7661 			clear_bit(Replacement, &rdev->flags);
7662 			rcu_assign_pointer(conf->disks[i].rdev, rdev);
7663 		}
7664 		if (!rdev)
7665 			continue;
7666 		if (rcu_access_pointer(conf->disks[i].replacement) &&
7667 		    conf->reshape_progress != MaxSector) {
7668 			/* replacements and reshape simply do not mix. */
7669 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7670 			goto abort;
7671 		}
7672 		if (test_bit(In_sync, &rdev->flags)) {
7673 			working_disks++;
7674 			continue;
7675 		}
7676 		/* This disc is not fully in-sync.  However if it
7677 		 * just stored parity (beyond the recovery_offset),
7678 		 * when we don't need to be concerned about the
7679 		 * array being dirty.
7680 		 * When reshape goes 'backwards', we never have
7681 		 * partially completed devices, so we only need
7682 		 * to worry about reshape going forwards.
7683 		 */
7684 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7685 		if (mddev->major_version == 0 &&
7686 		    mddev->minor_version > 90)
7687 			rdev->recovery_offset = reshape_offset;
7688 
7689 		if (rdev->recovery_offset < reshape_offset) {
7690 			/* We need to check old and new layout */
7691 			if (!only_parity(rdev->raid_disk,
7692 					 conf->algorithm,
7693 					 conf->raid_disks,
7694 					 conf->max_degraded))
7695 				continue;
7696 		}
7697 		if (!only_parity(rdev->raid_disk,
7698 				 conf->prev_algo,
7699 				 conf->previous_raid_disks,
7700 				 conf->max_degraded))
7701 			continue;
7702 		dirty_parity_disks++;
7703 	}
7704 
7705 	/*
7706 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7707 	 */
7708 	mddev->degraded = raid5_calc_degraded(conf);
7709 
7710 	if (has_failed(conf)) {
7711 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7712 			mdname(mddev), mddev->degraded, conf->raid_disks);
7713 		goto abort;
7714 	}
7715 
7716 	/* device size must be a multiple of chunk size */
7717 	mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7718 	mddev->resync_max_sectors = mddev->dev_sectors;
7719 
7720 	if (mddev->degraded > dirty_parity_disks &&
7721 	    mddev->recovery_cp != MaxSector) {
7722 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7723 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7724 				mdname(mddev));
7725 		else if (mddev->ok_start_degraded)
7726 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7727 				mdname(mddev));
7728 		else {
7729 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7730 				mdname(mddev));
7731 			goto abort;
7732 		}
7733 	}
7734 
7735 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7736 		mdname(mddev), conf->level,
7737 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7738 		mddev->new_layout);
7739 
7740 	print_raid5_conf(conf);
7741 
7742 	if (conf->reshape_progress != MaxSector) {
7743 		conf->reshape_safe = conf->reshape_progress;
7744 		atomic_set(&conf->reshape_stripes, 0);
7745 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7746 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7747 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7748 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7749 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7750 							"reshape");
7751 		if (!mddev->sync_thread)
7752 			goto abort;
7753 	}
7754 
7755 	/* Ok, everything is just fine now */
7756 	if (mddev->to_remove == &raid5_attrs_group)
7757 		mddev->to_remove = NULL;
7758 	else if (mddev->kobj.sd &&
7759 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7760 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7761 			mdname(mddev));
7762 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7763 
7764 	if (mddev->queue) {
7765 		int chunk_size;
7766 		/* read-ahead size must cover two whole stripes, which
7767 		 * is 2 * (datadisks) * chunksize where 'n' is the
7768 		 * number of raid devices
7769 		 */
7770 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7771 		int stripe = data_disks *
7772 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7773 
7774 		chunk_size = mddev->chunk_sectors << 9;
7775 		blk_queue_io_min(mddev->queue, chunk_size);
7776 		raid5_set_io_opt(conf);
7777 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7778 		/*
7779 		 * We can only discard a whole stripe. It doesn't make sense to
7780 		 * discard data disk but write parity disk
7781 		 */
7782 		stripe = stripe * PAGE_SIZE;
7783 		stripe = roundup_pow_of_two(stripe);
7784 		mddev->queue->limits.discard_granularity = stripe;
7785 
7786 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7787 
7788 		rdev_for_each(rdev, mddev) {
7789 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7790 					  rdev->data_offset << 9);
7791 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7792 					  rdev->new_data_offset << 9);
7793 		}
7794 
7795 		/*
7796 		 * zeroing is required, otherwise data
7797 		 * could be lost. Consider a scenario: discard a stripe
7798 		 * (the stripe could be inconsistent if
7799 		 * discard_zeroes_data is 0); write one disk of the
7800 		 * stripe (the stripe could be inconsistent again
7801 		 * depending on which disks are used to calculate
7802 		 * parity); the disk is broken; The stripe data of this
7803 		 * disk is lost.
7804 		 *
7805 		 * We only allow DISCARD if the sysadmin has confirmed that
7806 		 * only safe devices are in use by setting a module parameter.
7807 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7808 		 * requests, as that is required to be safe.
7809 		 */
7810 		if (!devices_handle_discard_safely ||
7811 		    mddev->queue->limits.max_discard_sectors < (stripe >> 9) ||
7812 		    mddev->queue->limits.discard_granularity < stripe)
7813 			blk_queue_max_discard_sectors(mddev->queue, 0);
7814 
7815 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7816 	}
7817 
7818 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7819 		goto abort;
7820 
7821 	return 0;
7822 abort:
7823 	md_unregister_thread(&mddev->thread);
7824 	print_raid5_conf(conf);
7825 	free_conf(conf);
7826 	mddev->private = NULL;
7827 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7828 	ret = -EIO;
7829 exit_acct_set:
7830 	acct_bioset_exit(mddev);
7831 	return ret;
7832 }
7833 
7834 static void raid5_free(struct mddev *mddev, void *priv)
7835 {
7836 	struct r5conf *conf = priv;
7837 
7838 	free_conf(conf);
7839 	acct_bioset_exit(mddev);
7840 	mddev->to_remove = &raid5_attrs_group;
7841 }
7842 
7843 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7844 {
7845 	struct r5conf *conf = mddev->private;
7846 	int i;
7847 
7848 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7849 		conf->chunk_sectors / 2, mddev->layout);
7850 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7851 	rcu_read_lock();
7852 	for (i = 0; i < conf->raid_disks; i++) {
7853 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7854 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7855 	}
7856 	rcu_read_unlock();
7857 	seq_printf (seq, "]");
7858 }
7859 
7860 static void print_raid5_conf (struct r5conf *conf)
7861 {
7862 	struct md_rdev *rdev;
7863 	int i;
7864 
7865 	pr_debug("RAID conf printout:\n");
7866 	if (!conf) {
7867 		pr_debug("(conf==NULL)\n");
7868 		return;
7869 	}
7870 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7871 	       conf->raid_disks,
7872 	       conf->raid_disks - conf->mddev->degraded);
7873 
7874 	rcu_read_lock();
7875 	for (i = 0; i < conf->raid_disks; i++) {
7876 		rdev = rcu_dereference(conf->disks[i].rdev);
7877 		if (rdev)
7878 			pr_debug(" disk %d, o:%d, dev:%pg\n",
7879 			       i, !test_bit(Faulty, &rdev->flags),
7880 			       rdev->bdev);
7881 	}
7882 	rcu_read_unlock();
7883 }
7884 
7885 static int raid5_spare_active(struct mddev *mddev)
7886 {
7887 	int i;
7888 	struct r5conf *conf = mddev->private;
7889 	struct md_rdev *rdev, *replacement;
7890 	int count = 0;
7891 	unsigned long flags;
7892 
7893 	for (i = 0; i < conf->raid_disks; i++) {
7894 		rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev);
7895 		replacement = rdev_mdlock_deref(mddev,
7896 						conf->disks[i].replacement);
7897 		if (replacement
7898 		    && replacement->recovery_offset == MaxSector
7899 		    && !test_bit(Faulty, &replacement->flags)
7900 		    && !test_and_set_bit(In_sync, &replacement->flags)) {
7901 			/* Replacement has just become active. */
7902 			if (!rdev
7903 			    || !test_and_clear_bit(In_sync, &rdev->flags))
7904 				count++;
7905 			if (rdev) {
7906 				/* Replaced device not technically faulty,
7907 				 * but we need to be sure it gets removed
7908 				 * and never re-added.
7909 				 */
7910 				set_bit(Faulty, &rdev->flags);
7911 				sysfs_notify_dirent_safe(
7912 					rdev->sysfs_state);
7913 			}
7914 			sysfs_notify_dirent_safe(replacement->sysfs_state);
7915 		} else if (rdev
7916 		    && rdev->recovery_offset == MaxSector
7917 		    && !test_bit(Faulty, &rdev->flags)
7918 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
7919 			count++;
7920 			sysfs_notify_dirent_safe(rdev->sysfs_state);
7921 		}
7922 	}
7923 	spin_lock_irqsave(&conf->device_lock, flags);
7924 	mddev->degraded = raid5_calc_degraded(conf);
7925 	spin_unlock_irqrestore(&conf->device_lock, flags);
7926 	print_raid5_conf(conf);
7927 	return count;
7928 }
7929 
7930 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7931 {
7932 	struct r5conf *conf = mddev->private;
7933 	int err = 0;
7934 	int number = rdev->raid_disk;
7935 	struct md_rdev __rcu **rdevp;
7936 	struct disk_info *p;
7937 	struct md_rdev *tmp;
7938 
7939 	print_raid5_conf(conf);
7940 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7941 		/*
7942 		 * we can't wait pending write here, as this is called in
7943 		 * raid5d, wait will deadlock.
7944 		 * neilb: there is no locking about new writes here,
7945 		 * so this cannot be safe.
7946 		 */
7947 		if (atomic_read(&conf->active_stripes) ||
7948 		    atomic_read(&conf->r5c_cached_full_stripes) ||
7949 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
7950 			return -EBUSY;
7951 		}
7952 		log_exit(conf);
7953 		return 0;
7954 	}
7955 	if (unlikely(number >= conf->pool_size))
7956 		return 0;
7957 	p = conf->disks + number;
7958 	if (rdev == rcu_access_pointer(p->rdev))
7959 		rdevp = &p->rdev;
7960 	else if (rdev == rcu_access_pointer(p->replacement))
7961 		rdevp = &p->replacement;
7962 	else
7963 		return 0;
7964 
7965 	if (number >= conf->raid_disks &&
7966 	    conf->reshape_progress == MaxSector)
7967 		clear_bit(In_sync, &rdev->flags);
7968 
7969 	if (test_bit(In_sync, &rdev->flags) ||
7970 	    atomic_read(&rdev->nr_pending)) {
7971 		err = -EBUSY;
7972 		goto abort;
7973 	}
7974 	/* Only remove non-faulty devices if recovery
7975 	 * isn't possible.
7976 	 */
7977 	if (!test_bit(Faulty, &rdev->flags) &&
7978 	    mddev->recovery_disabled != conf->recovery_disabled &&
7979 	    !has_failed(conf) &&
7980 	    (!rcu_access_pointer(p->replacement) ||
7981 	     rcu_access_pointer(p->replacement) == rdev) &&
7982 	    number < conf->raid_disks) {
7983 		err = -EBUSY;
7984 		goto abort;
7985 	}
7986 	*rdevp = NULL;
7987 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7988 		lockdep_assert_held(&mddev->reconfig_mutex);
7989 		synchronize_rcu();
7990 		if (atomic_read(&rdev->nr_pending)) {
7991 			/* lost the race, try later */
7992 			err = -EBUSY;
7993 			rcu_assign_pointer(*rdevp, rdev);
7994 		}
7995 	}
7996 	if (!err) {
7997 		err = log_modify(conf, rdev, false);
7998 		if (err)
7999 			goto abort;
8000 	}
8001 
8002 	tmp = rcu_access_pointer(p->replacement);
8003 	if (tmp) {
8004 		/* We must have just cleared 'rdev' */
8005 		rcu_assign_pointer(p->rdev, tmp);
8006 		clear_bit(Replacement, &tmp->flags);
8007 		smp_mb(); /* Make sure other CPUs may see both as identical
8008 			   * but will never see neither - if they are careful
8009 			   */
8010 		rcu_assign_pointer(p->replacement, NULL);
8011 
8012 		if (!err)
8013 			err = log_modify(conf, tmp, true);
8014 	}
8015 
8016 	clear_bit(WantReplacement, &rdev->flags);
8017 abort:
8018 
8019 	print_raid5_conf(conf);
8020 	return err;
8021 }
8022 
8023 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8024 {
8025 	struct r5conf *conf = mddev->private;
8026 	int ret, err = -EEXIST;
8027 	int disk;
8028 	struct disk_info *p;
8029 	struct md_rdev *tmp;
8030 	int first = 0;
8031 	int last = conf->raid_disks - 1;
8032 
8033 	if (test_bit(Journal, &rdev->flags)) {
8034 		if (conf->log)
8035 			return -EBUSY;
8036 
8037 		rdev->raid_disk = 0;
8038 		/*
8039 		 * The array is in readonly mode if journal is missing, so no
8040 		 * write requests running. We should be safe
8041 		 */
8042 		ret = log_init(conf, rdev, false);
8043 		if (ret)
8044 			return ret;
8045 
8046 		ret = r5l_start(conf->log);
8047 		if (ret)
8048 			return ret;
8049 
8050 		return 0;
8051 	}
8052 	if (mddev->recovery_disabled == conf->recovery_disabled)
8053 		return -EBUSY;
8054 
8055 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
8056 		/* no point adding a device */
8057 		return -EINVAL;
8058 
8059 	if (rdev->raid_disk >= 0)
8060 		first = last = rdev->raid_disk;
8061 
8062 	/*
8063 	 * find the disk ... but prefer rdev->saved_raid_disk
8064 	 * if possible.
8065 	 */
8066 	if (rdev->saved_raid_disk >= 0 &&
8067 	    rdev->saved_raid_disk >= first &&
8068 	    rdev->saved_raid_disk <= last &&
8069 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
8070 		first = rdev->saved_raid_disk;
8071 
8072 	for (disk = first; disk <= last; disk++) {
8073 		p = conf->disks + disk;
8074 		if (p->rdev == NULL) {
8075 			clear_bit(In_sync, &rdev->flags);
8076 			rdev->raid_disk = disk;
8077 			if (rdev->saved_raid_disk != disk)
8078 				conf->fullsync = 1;
8079 			rcu_assign_pointer(p->rdev, rdev);
8080 
8081 			err = log_modify(conf, rdev, true);
8082 
8083 			goto out;
8084 		}
8085 	}
8086 	for (disk = first; disk <= last; disk++) {
8087 		p = conf->disks + disk;
8088 		tmp = rdev_mdlock_deref(mddev, p->rdev);
8089 		if (test_bit(WantReplacement, &tmp->flags) &&
8090 		    p->replacement == NULL) {
8091 			clear_bit(In_sync, &rdev->flags);
8092 			set_bit(Replacement, &rdev->flags);
8093 			rdev->raid_disk = disk;
8094 			err = 0;
8095 			conf->fullsync = 1;
8096 			rcu_assign_pointer(p->replacement, rdev);
8097 			break;
8098 		}
8099 	}
8100 out:
8101 	print_raid5_conf(conf);
8102 	return err;
8103 }
8104 
8105 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8106 {
8107 	/* no resync is happening, and there is enough space
8108 	 * on all devices, so we can resize.
8109 	 * We need to make sure resync covers any new space.
8110 	 * If the array is shrinking we should possibly wait until
8111 	 * any io in the removed space completes, but it hardly seems
8112 	 * worth it.
8113 	 */
8114 	sector_t newsize;
8115 	struct r5conf *conf = mddev->private;
8116 
8117 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8118 		return -EINVAL;
8119 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
8120 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8121 	if (mddev->external_size &&
8122 	    mddev->array_sectors > newsize)
8123 		return -EINVAL;
8124 	if (mddev->bitmap) {
8125 		int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8126 		if (ret)
8127 			return ret;
8128 	}
8129 	md_set_array_sectors(mddev, newsize);
8130 	if (sectors > mddev->dev_sectors &&
8131 	    mddev->recovery_cp > mddev->dev_sectors) {
8132 		mddev->recovery_cp = mddev->dev_sectors;
8133 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8134 	}
8135 	mddev->dev_sectors = sectors;
8136 	mddev->resync_max_sectors = sectors;
8137 	return 0;
8138 }
8139 
8140 static int check_stripe_cache(struct mddev *mddev)
8141 {
8142 	/* Can only proceed if there are plenty of stripe_heads.
8143 	 * We need a minimum of one full stripe,, and for sensible progress
8144 	 * it is best to have about 4 times that.
8145 	 * If we require 4 times, then the default 256 4K stripe_heads will
8146 	 * allow for chunk sizes up to 256K, which is probably OK.
8147 	 * If the chunk size is greater, user-space should request more
8148 	 * stripe_heads first.
8149 	 */
8150 	struct r5conf *conf = mddev->private;
8151 	if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8152 	    > conf->min_nr_stripes ||
8153 	    ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8154 	    > conf->min_nr_stripes) {
8155 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
8156 			mdname(mddev),
8157 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8158 			 / RAID5_STRIPE_SIZE(conf))*4);
8159 		return 0;
8160 	}
8161 	return 1;
8162 }
8163 
8164 static int check_reshape(struct mddev *mddev)
8165 {
8166 	struct r5conf *conf = mddev->private;
8167 
8168 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8169 		return -EINVAL;
8170 	if (mddev->delta_disks == 0 &&
8171 	    mddev->new_layout == mddev->layout &&
8172 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
8173 		return 0; /* nothing to do */
8174 	if (has_failed(conf))
8175 		return -EINVAL;
8176 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8177 		/* We might be able to shrink, but the devices must
8178 		 * be made bigger first.
8179 		 * For raid6, 4 is the minimum size.
8180 		 * Otherwise 2 is the minimum
8181 		 */
8182 		int min = 2;
8183 		if (mddev->level == 6)
8184 			min = 4;
8185 		if (mddev->raid_disks + mddev->delta_disks < min)
8186 			return -EINVAL;
8187 	}
8188 
8189 	if (!check_stripe_cache(mddev))
8190 		return -ENOSPC;
8191 
8192 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8193 	    mddev->delta_disks > 0)
8194 		if (resize_chunks(conf,
8195 				  conf->previous_raid_disks
8196 				  + max(0, mddev->delta_disks),
8197 				  max(mddev->new_chunk_sectors,
8198 				      mddev->chunk_sectors)
8199 			    ) < 0)
8200 			return -ENOMEM;
8201 
8202 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8203 		return 0; /* never bother to shrink */
8204 	return resize_stripes(conf, (conf->previous_raid_disks
8205 				     + mddev->delta_disks));
8206 }
8207 
8208 static int raid5_start_reshape(struct mddev *mddev)
8209 {
8210 	struct r5conf *conf = mddev->private;
8211 	struct md_rdev *rdev;
8212 	int spares = 0;
8213 	unsigned long flags;
8214 
8215 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8216 		return -EBUSY;
8217 
8218 	if (!check_stripe_cache(mddev))
8219 		return -ENOSPC;
8220 
8221 	if (has_failed(conf))
8222 		return -EINVAL;
8223 
8224 	rdev_for_each(rdev, mddev) {
8225 		if (!test_bit(In_sync, &rdev->flags)
8226 		    && !test_bit(Faulty, &rdev->flags))
8227 			spares++;
8228 	}
8229 
8230 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8231 		/* Not enough devices even to make a degraded array
8232 		 * of that size
8233 		 */
8234 		return -EINVAL;
8235 
8236 	/* Refuse to reduce size of the array.  Any reductions in
8237 	 * array size must be through explicit setting of array_size
8238 	 * attribute.
8239 	 */
8240 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8241 	    < mddev->array_sectors) {
8242 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8243 			mdname(mddev));
8244 		return -EINVAL;
8245 	}
8246 
8247 	atomic_set(&conf->reshape_stripes, 0);
8248 	spin_lock_irq(&conf->device_lock);
8249 	write_seqcount_begin(&conf->gen_lock);
8250 	conf->previous_raid_disks = conf->raid_disks;
8251 	conf->raid_disks += mddev->delta_disks;
8252 	conf->prev_chunk_sectors = conf->chunk_sectors;
8253 	conf->chunk_sectors = mddev->new_chunk_sectors;
8254 	conf->prev_algo = conf->algorithm;
8255 	conf->algorithm = mddev->new_layout;
8256 	conf->generation++;
8257 	/* Code that selects data_offset needs to see the generation update
8258 	 * if reshape_progress has been set - so a memory barrier needed.
8259 	 */
8260 	smp_mb();
8261 	if (mddev->reshape_backwards)
8262 		conf->reshape_progress = raid5_size(mddev, 0, 0);
8263 	else
8264 		conf->reshape_progress = 0;
8265 	conf->reshape_safe = conf->reshape_progress;
8266 	write_seqcount_end(&conf->gen_lock);
8267 	spin_unlock_irq(&conf->device_lock);
8268 
8269 	/* Now make sure any requests that proceeded on the assumption
8270 	 * the reshape wasn't running - like Discard or Read - have
8271 	 * completed.
8272 	 */
8273 	mddev_suspend(mddev);
8274 	mddev_resume(mddev);
8275 
8276 	/* Add some new drives, as many as will fit.
8277 	 * We know there are enough to make the newly sized array work.
8278 	 * Don't add devices if we are reducing the number of
8279 	 * devices in the array.  This is because it is not possible
8280 	 * to correctly record the "partially reconstructed" state of
8281 	 * such devices during the reshape and confusion could result.
8282 	 */
8283 	if (mddev->delta_disks >= 0) {
8284 		rdev_for_each(rdev, mddev)
8285 			if (rdev->raid_disk < 0 &&
8286 			    !test_bit(Faulty, &rdev->flags)) {
8287 				if (raid5_add_disk(mddev, rdev) == 0) {
8288 					if (rdev->raid_disk
8289 					    >= conf->previous_raid_disks)
8290 						set_bit(In_sync, &rdev->flags);
8291 					else
8292 						rdev->recovery_offset = 0;
8293 
8294 					/* Failure here is OK */
8295 					sysfs_link_rdev(mddev, rdev);
8296 				}
8297 			} else if (rdev->raid_disk >= conf->previous_raid_disks
8298 				   && !test_bit(Faulty, &rdev->flags)) {
8299 				/* This is a spare that was manually added */
8300 				set_bit(In_sync, &rdev->flags);
8301 			}
8302 
8303 		/* When a reshape changes the number of devices,
8304 		 * ->degraded is measured against the larger of the
8305 		 * pre and post number of devices.
8306 		 */
8307 		spin_lock_irqsave(&conf->device_lock, flags);
8308 		mddev->degraded = raid5_calc_degraded(conf);
8309 		spin_unlock_irqrestore(&conf->device_lock, flags);
8310 	}
8311 	mddev->raid_disks = conf->raid_disks;
8312 	mddev->reshape_position = conf->reshape_progress;
8313 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8314 
8315 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8316 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8317 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8318 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8319 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8320 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
8321 						"reshape");
8322 	if (!mddev->sync_thread) {
8323 		mddev->recovery = 0;
8324 		spin_lock_irq(&conf->device_lock);
8325 		write_seqcount_begin(&conf->gen_lock);
8326 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8327 		mddev->new_chunk_sectors =
8328 			conf->chunk_sectors = conf->prev_chunk_sectors;
8329 		mddev->new_layout = conf->algorithm = conf->prev_algo;
8330 		rdev_for_each(rdev, mddev)
8331 			rdev->new_data_offset = rdev->data_offset;
8332 		smp_wmb();
8333 		conf->generation --;
8334 		conf->reshape_progress = MaxSector;
8335 		mddev->reshape_position = MaxSector;
8336 		write_seqcount_end(&conf->gen_lock);
8337 		spin_unlock_irq(&conf->device_lock);
8338 		return -EAGAIN;
8339 	}
8340 	conf->reshape_checkpoint = jiffies;
8341 	md_wakeup_thread(mddev->sync_thread);
8342 	md_new_event();
8343 	return 0;
8344 }
8345 
8346 /* This is called from the reshape thread and should make any
8347  * changes needed in 'conf'
8348  */
8349 static void end_reshape(struct r5conf *conf)
8350 {
8351 
8352 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8353 		struct md_rdev *rdev;
8354 
8355 		spin_lock_irq(&conf->device_lock);
8356 		conf->previous_raid_disks = conf->raid_disks;
8357 		md_finish_reshape(conf->mddev);
8358 		smp_wmb();
8359 		conf->reshape_progress = MaxSector;
8360 		conf->mddev->reshape_position = MaxSector;
8361 		rdev_for_each(rdev, conf->mddev)
8362 			if (rdev->raid_disk >= 0 &&
8363 			    !test_bit(Journal, &rdev->flags) &&
8364 			    !test_bit(In_sync, &rdev->flags))
8365 				rdev->recovery_offset = MaxSector;
8366 		spin_unlock_irq(&conf->device_lock);
8367 		wake_up(&conf->wait_for_overlap);
8368 
8369 		if (conf->mddev->queue)
8370 			raid5_set_io_opt(conf);
8371 	}
8372 }
8373 
8374 /* This is called from the raid5d thread with mddev_lock held.
8375  * It makes config changes to the device.
8376  */
8377 static void raid5_finish_reshape(struct mddev *mddev)
8378 {
8379 	struct r5conf *conf = mddev->private;
8380 	struct md_rdev *rdev;
8381 
8382 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8383 
8384 		if (mddev->delta_disks <= 0) {
8385 			int d;
8386 			spin_lock_irq(&conf->device_lock);
8387 			mddev->degraded = raid5_calc_degraded(conf);
8388 			spin_unlock_irq(&conf->device_lock);
8389 			for (d = conf->raid_disks ;
8390 			     d < conf->raid_disks - mddev->delta_disks;
8391 			     d++) {
8392 				rdev = rdev_mdlock_deref(mddev,
8393 							 conf->disks[d].rdev);
8394 				if (rdev)
8395 					clear_bit(In_sync, &rdev->flags);
8396 				rdev = rdev_mdlock_deref(mddev,
8397 						conf->disks[d].replacement);
8398 				if (rdev)
8399 					clear_bit(In_sync, &rdev->flags);
8400 			}
8401 		}
8402 		mddev->layout = conf->algorithm;
8403 		mddev->chunk_sectors = conf->chunk_sectors;
8404 		mddev->reshape_position = MaxSector;
8405 		mddev->delta_disks = 0;
8406 		mddev->reshape_backwards = 0;
8407 	}
8408 }
8409 
8410 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8411 {
8412 	struct r5conf *conf = mddev->private;
8413 
8414 	if (quiesce) {
8415 		/* stop all writes */
8416 		lock_all_device_hash_locks_irq(conf);
8417 		/* '2' tells resync/reshape to pause so that all
8418 		 * active stripes can drain
8419 		 */
8420 		r5c_flush_cache(conf, INT_MAX);
8421 		/* need a memory barrier to make sure read_one_chunk() sees
8422 		 * quiesce started and reverts to slow (locked) path.
8423 		 */
8424 		smp_store_release(&conf->quiesce, 2);
8425 		wait_event_cmd(conf->wait_for_quiescent,
8426 				    atomic_read(&conf->active_stripes) == 0 &&
8427 				    atomic_read(&conf->active_aligned_reads) == 0,
8428 				    unlock_all_device_hash_locks_irq(conf),
8429 				    lock_all_device_hash_locks_irq(conf));
8430 		conf->quiesce = 1;
8431 		unlock_all_device_hash_locks_irq(conf);
8432 		/* allow reshape to continue */
8433 		wake_up(&conf->wait_for_overlap);
8434 	} else {
8435 		/* re-enable writes */
8436 		lock_all_device_hash_locks_irq(conf);
8437 		conf->quiesce = 0;
8438 		wake_up(&conf->wait_for_quiescent);
8439 		wake_up(&conf->wait_for_overlap);
8440 		unlock_all_device_hash_locks_irq(conf);
8441 	}
8442 	log_quiesce(conf, quiesce);
8443 }
8444 
8445 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8446 {
8447 	struct r0conf *raid0_conf = mddev->private;
8448 	sector_t sectors;
8449 
8450 	/* for raid0 takeover only one zone is supported */
8451 	if (raid0_conf->nr_strip_zones > 1) {
8452 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8453 			mdname(mddev));
8454 		return ERR_PTR(-EINVAL);
8455 	}
8456 
8457 	sectors = raid0_conf->strip_zone[0].zone_end;
8458 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8459 	mddev->dev_sectors = sectors;
8460 	mddev->new_level = level;
8461 	mddev->new_layout = ALGORITHM_PARITY_N;
8462 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8463 	mddev->raid_disks += 1;
8464 	mddev->delta_disks = 1;
8465 	/* make sure it will be not marked as dirty */
8466 	mddev->recovery_cp = MaxSector;
8467 
8468 	return setup_conf(mddev);
8469 }
8470 
8471 static void *raid5_takeover_raid1(struct mddev *mddev)
8472 {
8473 	int chunksect;
8474 	void *ret;
8475 
8476 	if (mddev->raid_disks != 2 ||
8477 	    mddev->degraded > 1)
8478 		return ERR_PTR(-EINVAL);
8479 
8480 	/* Should check if there are write-behind devices? */
8481 
8482 	chunksect = 64*2; /* 64K by default */
8483 
8484 	/* The array must be an exact multiple of chunksize */
8485 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8486 		chunksect >>= 1;
8487 
8488 	if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8489 		/* array size does not allow a suitable chunk size */
8490 		return ERR_PTR(-EINVAL);
8491 
8492 	mddev->new_level = 5;
8493 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8494 	mddev->new_chunk_sectors = chunksect;
8495 
8496 	ret = setup_conf(mddev);
8497 	if (!IS_ERR(ret))
8498 		mddev_clear_unsupported_flags(mddev,
8499 			UNSUPPORTED_MDDEV_FLAGS);
8500 	return ret;
8501 }
8502 
8503 static void *raid5_takeover_raid6(struct mddev *mddev)
8504 {
8505 	int new_layout;
8506 
8507 	switch (mddev->layout) {
8508 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8509 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8510 		break;
8511 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8512 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8513 		break;
8514 	case ALGORITHM_LEFT_SYMMETRIC_6:
8515 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8516 		break;
8517 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8518 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8519 		break;
8520 	case ALGORITHM_PARITY_0_6:
8521 		new_layout = ALGORITHM_PARITY_0;
8522 		break;
8523 	case ALGORITHM_PARITY_N:
8524 		new_layout = ALGORITHM_PARITY_N;
8525 		break;
8526 	default:
8527 		return ERR_PTR(-EINVAL);
8528 	}
8529 	mddev->new_level = 5;
8530 	mddev->new_layout = new_layout;
8531 	mddev->delta_disks = -1;
8532 	mddev->raid_disks -= 1;
8533 	return setup_conf(mddev);
8534 }
8535 
8536 static int raid5_check_reshape(struct mddev *mddev)
8537 {
8538 	/* For a 2-drive array, the layout and chunk size can be changed
8539 	 * immediately as not restriping is needed.
8540 	 * For larger arrays we record the new value - after validation
8541 	 * to be used by a reshape pass.
8542 	 */
8543 	struct r5conf *conf = mddev->private;
8544 	int new_chunk = mddev->new_chunk_sectors;
8545 
8546 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8547 		return -EINVAL;
8548 	if (new_chunk > 0) {
8549 		if (!is_power_of_2(new_chunk))
8550 			return -EINVAL;
8551 		if (new_chunk < (PAGE_SIZE>>9))
8552 			return -EINVAL;
8553 		if (mddev->array_sectors & (new_chunk-1))
8554 			/* not factor of array size */
8555 			return -EINVAL;
8556 	}
8557 
8558 	/* They look valid */
8559 
8560 	if (mddev->raid_disks == 2) {
8561 		/* can make the change immediately */
8562 		if (mddev->new_layout >= 0) {
8563 			conf->algorithm = mddev->new_layout;
8564 			mddev->layout = mddev->new_layout;
8565 		}
8566 		if (new_chunk > 0) {
8567 			conf->chunk_sectors = new_chunk ;
8568 			mddev->chunk_sectors = new_chunk;
8569 		}
8570 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8571 		md_wakeup_thread(mddev->thread);
8572 	}
8573 	return check_reshape(mddev);
8574 }
8575 
8576 static int raid6_check_reshape(struct mddev *mddev)
8577 {
8578 	int new_chunk = mddev->new_chunk_sectors;
8579 
8580 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8581 		return -EINVAL;
8582 	if (new_chunk > 0) {
8583 		if (!is_power_of_2(new_chunk))
8584 			return -EINVAL;
8585 		if (new_chunk < (PAGE_SIZE >> 9))
8586 			return -EINVAL;
8587 		if (mddev->array_sectors & (new_chunk-1))
8588 			/* not factor of array size */
8589 			return -EINVAL;
8590 	}
8591 
8592 	/* They look valid */
8593 	return check_reshape(mddev);
8594 }
8595 
8596 static void *raid5_takeover(struct mddev *mddev)
8597 {
8598 	/* raid5 can take over:
8599 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8600 	 *  raid1 - if there are two drives.  We need to know the chunk size
8601 	 *  raid4 - trivial - just use a raid4 layout.
8602 	 *  raid6 - Providing it is a *_6 layout
8603 	 */
8604 	if (mddev->level == 0)
8605 		return raid45_takeover_raid0(mddev, 5);
8606 	if (mddev->level == 1)
8607 		return raid5_takeover_raid1(mddev);
8608 	if (mddev->level == 4) {
8609 		mddev->new_layout = ALGORITHM_PARITY_N;
8610 		mddev->new_level = 5;
8611 		return setup_conf(mddev);
8612 	}
8613 	if (mddev->level == 6)
8614 		return raid5_takeover_raid6(mddev);
8615 
8616 	return ERR_PTR(-EINVAL);
8617 }
8618 
8619 static void *raid4_takeover(struct mddev *mddev)
8620 {
8621 	/* raid4 can take over:
8622 	 *  raid0 - if there is only one strip zone
8623 	 *  raid5 - if layout is right
8624 	 */
8625 	if (mddev->level == 0)
8626 		return raid45_takeover_raid0(mddev, 4);
8627 	if (mddev->level == 5 &&
8628 	    mddev->layout == ALGORITHM_PARITY_N) {
8629 		mddev->new_layout = 0;
8630 		mddev->new_level = 4;
8631 		return setup_conf(mddev);
8632 	}
8633 	return ERR_PTR(-EINVAL);
8634 }
8635 
8636 static struct md_personality raid5_personality;
8637 
8638 static void *raid6_takeover(struct mddev *mddev)
8639 {
8640 	/* Currently can only take over a raid5.  We map the
8641 	 * personality to an equivalent raid6 personality
8642 	 * with the Q block at the end.
8643 	 */
8644 	int new_layout;
8645 
8646 	if (mddev->pers != &raid5_personality)
8647 		return ERR_PTR(-EINVAL);
8648 	if (mddev->degraded > 1)
8649 		return ERR_PTR(-EINVAL);
8650 	if (mddev->raid_disks > 253)
8651 		return ERR_PTR(-EINVAL);
8652 	if (mddev->raid_disks < 3)
8653 		return ERR_PTR(-EINVAL);
8654 
8655 	switch (mddev->layout) {
8656 	case ALGORITHM_LEFT_ASYMMETRIC:
8657 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8658 		break;
8659 	case ALGORITHM_RIGHT_ASYMMETRIC:
8660 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8661 		break;
8662 	case ALGORITHM_LEFT_SYMMETRIC:
8663 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8664 		break;
8665 	case ALGORITHM_RIGHT_SYMMETRIC:
8666 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8667 		break;
8668 	case ALGORITHM_PARITY_0:
8669 		new_layout = ALGORITHM_PARITY_0_6;
8670 		break;
8671 	case ALGORITHM_PARITY_N:
8672 		new_layout = ALGORITHM_PARITY_N;
8673 		break;
8674 	default:
8675 		return ERR_PTR(-EINVAL);
8676 	}
8677 	mddev->new_level = 6;
8678 	mddev->new_layout = new_layout;
8679 	mddev->delta_disks = 1;
8680 	mddev->raid_disks += 1;
8681 	return setup_conf(mddev);
8682 }
8683 
8684 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8685 {
8686 	struct r5conf *conf;
8687 	int err;
8688 
8689 	err = mddev_lock(mddev);
8690 	if (err)
8691 		return err;
8692 	conf = mddev->private;
8693 	if (!conf) {
8694 		mddev_unlock(mddev);
8695 		return -ENODEV;
8696 	}
8697 
8698 	if (strncmp(buf, "ppl", 3) == 0) {
8699 		/* ppl only works with RAID 5 */
8700 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8701 			err = log_init(conf, NULL, true);
8702 			if (!err) {
8703 				err = resize_stripes(conf, conf->pool_size);
8704 				if (err)
8705 					log_exit(conf);
8706 			}
8707 		} else
8708 			err = -EINVAL;
8709 	} else if (strncmp(buf, "resync", 6) == 0) {
8710 		if (raid5_has_ppl(conf)) {
8711 			mddev_suspend(mddev);
8712 			log_exit(conf);
8713 			mddev_resume(mddev);
8714 			err = resize_stripes(conf, conf->pool_size);
8715 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8716 			   r5l_log_disk_error(conf)) {
8717 			bool journal_dev_exists = false;
8718 			struct md_rdev *rdev;
8719 
8720 			rdev_for_each(rdev, mddev)
8721 				if (test_bit(Journal, &rdev->flags)) {
8722 					journal_dev_exists = true;
8723 					break;
8724 				}
8725 
8726 			if (!journal_dev_exists) {
8727 				mddev_suspend(mddev);
8728 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8729 				mddev_resume(mddev);
8730 			} else  /* need remove journal device first */
8731 				err = -EBUSY;
8732 		} else
8733 			err = -EINVAL;
8734 	} else {
8735 		err = -EINVAL;
8736 	}
8737 
8738 	if (!err)
8739 		md_update_sb(mddev, 1);
8740 
8741 	mddev_unlock(mddev);
8742 
8743 	return err;
8744 }
8745 
8746 static int raid5_start(struct mddev *mddev)
8747 {
8748 	struct r5conf *conf = mddev->private;
8749 
8750 	return r5l_start(conf->log);
8751 }
8752 
8753 static struct md_personality raid6_personality =
8754 {
8755 	.name		= "raid6",
8756 	.level		= 6,
8757 	.owner		= THIS_MODULE,
8758 	.make_request	= raid5_make_request,
8759 	.run		= raid5_run,
8760 	.start		= raid5_start,
8761 	.free		= raid5_free,
8762 	.status		= raid5_status,
8763 	.error_handler	= raid5_error,
8764 	.hot_add_disk	= raid5_add_disk,
8765 	.hot_remove_disk= raid5_remove_disk,
8766 	.spare_active	= raid5_spare_active,
8767 	.sync_request	= raid5_sync_request,
8768 	.resize		= raid5_resize,
8769 	.size		= raid5_size,
8770 	.check_reshape	= raid6_check_reshape,
8771 	.start_reshape  = raid5_start_reshape,
8772 	.finish_reshape = raid5_finish_reshape,
8773 	.quiesce	= raid5_quiesce,
8774 	.takeover	= raid6_takeover,
8775 	.change_consistency_policy = raid5_change_consistency_policy,
8776 };
8777 static struct md_personality raid5_personality =
8778 {
8779 	.name		= "raid5",
8780 	.level		= 5,
8781 	.owner		= THIS_MODULE,
8782 	.make_request	= raid5_make_request,
8783 	.run		= raid5_run,
8784 	.start		= raid5_start,
8785 	.free		= raid5_free,
8786 	.status		= raid5_status,
8787 	.error_handler	= raid5_error,
8788 	.hot_add_disk	= raid5_add_disk,
8789 	.hot_remove_disk= raid5_remove_disk,
8790 	.spare_active	= raid5_spare_active,
8791 	.sync_request	= raid5_sync_request,
8792 	.resize		= raid5_resize,
8793 	.size		= raid5_size,
8794 	.check_reshape	= raid5_check_reshape,
8795 	.start_reshape  = raid5_start_reshape,
8796 	.finish_reshape = raid5_finish_reshape,
8797 	.quiesce	= raid5_quiesce,
8798 	.takeover	= raid5_takeover,
8799 	.change_consistency_policy = raid5_change_consistency_policy,
8800 };
8801 
8802 static struct md_personality raid4_personality =
8803 {
8804 	.name		= "raid4",
8805 	.level		= 4,
8806 	.owner		= THIS_MODULE,
8807 	.make_request	= raid5_make_request,
8808 	.run		= raid5_run,
8809 	.start		= raid5_start,
8810 	.free		= raid5_free,
8811 	.status		= raid5_status,
8812 	.error_handler	= raid5_error,
8813 	.hot_add_disk	= raid5_add_disk,
8814 	.hot_remove_disk= raid5_remove_disk,
8815 	.spare_active	= raid5_spare_active,
8816 	.sync_request	= raid5_sync_request,
8817 	.resize		= raid5_resize,
8818 	.size		= raid5_size,
8819 	.check_reshape	= raid5_check_reshape,
8820 	.start_reshape  = raid5_start_reshape,
8821 	.finish_reshape = raid5_finish_reshape,
8822 	.quiesce	= raid5_quiesce,
8823 	.takeover	= raid4_takeover,
8824 	.change_consistency_policy = raid5_change_consistency_policy,
8825 };
8826 
8827 static int __init raid5_init(void)
8828 {
8829 	int ret;
8830 
8831 	raid5_wq = alloc_workqueue("raid5wq",
8832 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8833 	if (!raid5_wq)
8834 		return -ENOMEM;
8835 
8836 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8837 				      "md/raid5:prepare",
8838 				      raid456_cpu_up_prepare,
8839 				      raid456_cpu_dead);
8840 	if (ret) {
8841 		destroy_workqueue(raid5_wq);
8842 		return ret;
8843 	}
8844 	register_md_personality(&raid6_personality);
8845 	register_md_personality(&raid5_personality);
8846 	register_md_personality(&raid4_personality);
8847 	return 0;
8848 }
8849 
8850 static void raid5_exit(void)
8851 {
8852 	unregister_md_personality(&raid6_personality);
8853 	unregister_md_personality(&raid5_personality);
8854 	unregister_md_personality(&raid4_personality);
8855 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8856 	destroy_workqueue(raid5_wq);
8857 }
8858 
8859 module_init(raid5_init);
8860 module_exit(raid5_exit);
8861 MODULE_LICENSE("GPL");
8862 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8863 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8864 MODULE_ALIAS("md-raid5");
8865 MODULE_ALIAS("md-raid4");
8866 MODULE_ALIAS("md-level-5");
8867 MODULE_ALIAS("md-level-4");
8868 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8869 MODULE_ALIAS("md-raid6");
8870 MODULE_ALIAS("md-level-6");
8871 
8872 /* This used to be two separate modules, they were: */
8873 MODULE_ALIAS("raid5");
8874 MODULE_ALIAS("raid6");
8875