xref: /openbmc/linux/drivers/md/raid5.c (revision 5d4a2e29)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58 
59 /*
60  * Stripe cache
61  */
62 
63 #define NR_STRIPES		256
64 #define STRIPE_SIZE		PAGE_SIZE
65 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
67 #define	IO_THRESHOLD		1
68 #define BYPASS_THRESHOLD	1
69 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK		(NR_HASH - 1)
71 
72 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73 
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75  * order without overlap.  There may be several bio's per stripe+device, and
76  * a bio could span several devices.
77  * When walking this list for a particular stripe+device, we must never proceed
78  * beyond a bio that extends past this device, as the next bio might no longer
79  * be valid.
80  * This macro is used to determine the 'next' bio in the list, given the sector
81  * of the current stripe+device
82  */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85  * The following can be used to debug the driver
86  */
87 #define RAID5_PARANOIA	1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93 
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98 
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100 
101 /*
102  * We maintain a biased count of active stripes in the bottom 16 bits of
103  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104  */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107 	return bio->bi_phys_segments & 0xffff;
108 }
109 
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112 	return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114 
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117 	--bio->bi_phys_segments;
118 	return raid5_bi_phys_segments(bio);
119 }
120 
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123 	unsigned short val = raid5_bi_hw_segments(bio);
124 
125 	--val;
126 	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 	return val;
128 }
129 
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132 	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 }
134 
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138 	if (sh->ddf_layout)
139 		/* ddf always start from first device */
140 		return 0;
141 	/* md starts just after Q block */
142 	if (sh->qd_idx == sh->disks - 1)
143 		return 0;
144 	else
145 		return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149 	disk++;
150 	return (disk < raid_disks) ? disk : 0;
151 }
152 
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154  * We need to map each disk to a 'slot', where the data disks are slot
155  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156  * is raid_disks-1.  This help does that mapping.
157  */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 			     int *count, int syndrome_disks)
160 {
161 	int slot = *count;
162 
163 	if (sh->ddf_layout)
164 		(*count)++;
165 	if (idx == sh->pd_idx)
166 		return syndrome_disks;
167 	if (idx == sh->qd_idx)
168 		return syndrome_disks + 1;
169 	if (!sh->ddf_layout)
170 		(*count)++;
171 	return slot;
172 }
173 
174 static void return_io(struct bio *return_bi)
175 {
176 	struct bio *bi = return_bi;
177 	while (bi) {
178 
179 		return_bi = bi->bi_next;
180 		bi->bi_next = NULL;
181 		bi->bi_size = 0;
182 		bio_endio(bi, 0);
183 		bi = return_bi;
184 	}
185 }
186 
187 static void print_raid5_conf (raid5_conf_t *conf);
188 
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191 	return sh->check_state || sh->reconstruct_state ||
192 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195 
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198 	if (atomic_dec_and_test(&sh->count)) {
199 		BUG_ON(!list_empty(&sh->lru));
200 		BUG_ON(atomic_read(&conf->active_stripes)==0);
201 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
202 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
203 				list_add_tail(&sh->lru, &conf->delayed_list);
204 				blk_plug_device(conf->mddev->queue);
205 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206 				   sh->bm_seq - conf->seq_write > 0) {
207 				list_add_tail(&sh->lru, &conf->bitmap_list);
208 				blk_plug_device(conf->mddev->queue);
209 			} else {
210 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
211 				list_add_tail(&sh->lru, &conf->handle_list);
212 			}
213 			md_wakeup_thread(conf->mddev->thread);
214 		} else {
215 			BUG_ON(stripe_operations_active(sh));
216 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
217 				atomic_dec(&conf->preread_active_stripes);
218 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
219 					md_wakeup_thread(conf->mddev->thread);
220 			}
221 			atomic_dec(&conf->active_stripes);
222 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
223 				list_add_tail(&sh->lru, &conf->inactive_list);
224 				wake_up(&conf->wait_for_stripe);
225 				if (conf->retry_read_aligned)
226 					md_wakeup_thread(conf->mddev->thread);
227 			}
228 		}
229 	}
230 }
231 
232 static void release_stripe(struct stripe_head *sh)
233 {
234 	raid5_conf_t *conf = sh->raid_conf;
235 	unsigned long flags;
236 
237 	spin_lock_irqsave(&conf->device_lock, flags);
238 	__release_stripe(conf, sh);
239 	spin_unlock_irqrestore(&conf->device_lock, flags);
240 }
241 
242 static inline void remove_hash(struct stripe_head *sh)
243 {
244 	pr_debug("remove_hash(), stripe %llu\n",
245 		(unsigned long long)sh->sector);
246 
247 	hlist_del_init(&sh->hash);
248 }
249 
250 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
251 {
252 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
253 
254 	pr_debug("insert_hash(), stripe %llu\n",
255 		(unsigned long long)sh->sector);
256 
257 	CHECK_DEVLOCK();
258 	hlist_add_head(&sh->hash, hp);
259 }
260 
261 
262 /* find an idle stripe, make sure it is unhashed, and return it. */
263 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
264 {
265 	struct stripe_head *sh = NULL;
266 	struct list_head *first;
267 
268 	CHECK_DEVLOCK();
269 	if (list_empty(&conf->inactive_list))
270 		goto out;
271 	first = conf->inactive_list.next;
272 	sh = list_entry(first, struct stripe_head, lru);
273 	list_del_init(first);
274 	remove_hash(sh);
275 	atomic_inc(&conf->active_stripes);
276 out:
277 	return sh;
278 }
279 
280 static void shrink_buffers(struct stripe_head *sh, int num)
281 {
282 	struct page *p;
283 	int i;
284 
285 	for (i=0; i<num ; i++) {
286 		p = sh->dev[i].page;
287 		if (!p)
288 			continue;
289 		sh->dev[i].page = NULL;
290 		put_page(p);
291 	}
292 }
293 
294 static int grow_buffers(struct stripe_head *sh, int num)
295 {
296 	int i;
297 
298 	for (i=0; i<num; i++) {
299 		struct page *page;
300 
301 		if (!(page = alloc_page(GFP_KERNEL))) {
302 			return 1;
303 		}
304 		sh->dev[i].page = page;
305 	}
306 	return 0;
307 }
308 
309 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
311 			    struct stripe_head *sh);
312 
313 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
314 {
315 	raid5_conf_t *conf = sh->raid_conf;
316 	int i;
317 
318 	BUG_ON(atomic_read(&sh->count) != 0);
319 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320 	BUG_ON(stripe_operations_active(sh));
321 
322 	CHECK_DEVLOCK();
323 	pr_debug("init_stripe called, stripe %llu\n",
324 		(unsigned long long)sh->sector);
325 
326 	remove_hash(sh);
327 
328 	sh->generation = conf->generation - previous;
329 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
330 	sh->sector = sector;
331 	stripe_set_idx(sector, conf, previous, sh);
332 	sh->state = 0;
333 
334 
335 	for (i = sh->disks; i--; ) {
336 		struct r5dev *dev = &sh->dev[i];
337 
338 		if (dev->toread || dev->read || dev->towrite || dev->written ||
339 		    test_bit(R5_LOCKED, &dev->flags)) {
340 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
341 			       (unsigned long long)sh->sector, i, dev->toread,
342 			       dev->read, dev->towrite, dev->written,
343 			       test_bit(R5_LOCKED, &dev->flags));
344 			BUG();
345 		}
346 		dev->flags = 0;
347 		raid5_build_block(sh, i, previous);
348 	}
349 	insert_hash(conf, sh);
350 }
351 
352 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
353 					 short generation)
354 {
355 	struct stripe_head *sh;
356 	struct hlist_node *hn;
357 
358 	CHECK_DEVLOCK();
359 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361 		if (sh->sector == sector && sh->generation == generation)
362 			return sh;
363 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
364 	return NULL;
365 }
366 
367 static void unplug_slaves(mddev_t *mddev);
368 static void raid5_unplug_device(struct request_queue *q);
369 
370 static struct stripe_head *
371 get_active_stripe(raid5_conf_t *conf, sector_t sector,
372 		  int previous, int noblock, int noquiesce)
373 {
374 	struct stripe_head *sh;
375 
376 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
377 
378 	spin_lock_irq(&conf->device_lock);
379 
380 	do {
381 		wait_event_lock_irq(conf->wait_for_stripe,
382 				    conf->quiesce == 0 || noquiesce,
383 				    conf->device_lock, /* nothing */);
384 		sh = __find_stripe(conf, sector, conf->generation - previous);
385 		if (!sh) {
386 			if (!conf->inactive_blocked)
387 				sh = get_free_stripe(conf);
388 			if (noblock && sh == NULL)
389 				break;
390 			if (!sh) {
391 				conf->inactive_blocked = 1;
392 				wait_event_lock_irq(conf->wait_for_stripe,
393 						    !list_empty(&conf->inactive_list) &&
394 						    (atomic_read(&conf->active_stripes)
395 						     < (conf->max_nr_stripes *3/4)
396 						     || !conf->inactive_blocked),
397 						    conf->device_lock,
398 						    raid5_unplug_device(conf->mddev->queue)
399 					);
400 				conf->inactive_blocked = 0;
401 			} else
402 				init_stripe(sh, sector, previous);
403 		} else {
404 			if (atomic_read(&sh->count)) {
405 				BUG_ON(!list_empty(&sh->lru)
406 				    && !test_bit(STRIPE_EXPANDING, &sh->state));
407 			} else {
408 				if (!test_bit(STRIPE_HANDLE, &sh->state))
409 					atomic_inc(&conf->active_stripes);
410 				if (list_empty(&sh->lru) &&
411 				    !test_bit(STRIPE_EXPANDING, &sh->state))
412 					BUG();
413 				list_del_init(&sh->lru);
414 			}
415 		}
416 	} while (sh == NULL);
417 
418 	if (sh)
419 		atomic_inc(&sh->count);
420 
421 	spin_unlock_irq(&conf->device_lock);
422 	return sh;
423 }
424 
425 static void
426 raid5_end_read_request(struct bio *bi, int error);
427 static void
428 raid5_end_write_request(struct bio *bi, int error);
429 
430 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
431 {
432 	raid5_conf_t *conf = sh->raid_conf;
433 	int i, disks = sh->disks;
434 
435 	might_sleep();
436 
437 	for (i = disks; i--; ) {
438 		int rw;
439 		struct bio *bi;
440 		mdk_rdev_t *rdev;
441 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
442 			rw = WRITE;
443 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
444 			rw = READ;
445 		else
446 			continue;
447 
448 		bi = &sh->dev[i].req;
449 
450 		bi->bi_rw = rw;
451 		if (rw == WRITE)
452 			bi->bi_end_io = raid5_end_write_request;
453 		else
454 			bi->bi_end_io = raid5_end_read_request;
455 
456 		rcu_read_lock();
457 		rdev = rcu_dereference(conf->disks[i].rdev);
458 		if (rdev && test_bit(Faulty, &rdev->flags))
459 			rdev = NULL;
460 		if (rdev)
461 			atomic_inc(&rdev->nr_pending);
462 		rcu_read_unlock();
463 
464 		if (rdev) {
465 			if (s->syncing || s->expanding || s->expanded)
466 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
467 
468 			set_bit(STRIPE_IO_STARTED, &sh->state);
469 
470 			bi->bi_bdev = rdev->bdev;
471 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
472 				__func__, (unsigned long long)sh->sector,
473 				bi->bi_rw, i);
474 			atomic_inc(&sh->count);
475 			bi->bi_sector = sh->sector + rdev->data_offset;
476 			bi->bi_flags = 1 << BIO_UPTODATE;
477 			bi->bi_vcnt = 1;
478 			bi->bi_max_vecs = 1;
479 			bi->bi_idx = 0;
480 			bi->bi_io_vec = &sh->dev[i].vec;
481 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
482 			bi->bi_io_vec[0].bv_offset = 0;
483 			bi->bi_size = STRIPE_SIZE;
484 			bi->bi_next = NULL;
485 			if (rw == WRITE &&
486 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
487 				atomic_add(STRIPE_SECTORS,
488 					&rdev->corrected_errors);
489 			generic_make_request(bi);
490 		} else {
491 			if (rw == WRITE)
492 				set_bit(STRIPE_DEGRADED, &sh->state);
493 			pr_debug("skip op %ld on disc %d for sector %llu\n",
494 				bi->bi_rw, i, (unsigned long long)sh->sector);
495 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
496 			set_bit(STRIPE_HANDLE, &sh->state);
497 		}
498 	}
499 }
500 
501 static struct dma_async_tx_descriptor *
502 async_copy_data(int frombio, struct bio *bio, struct page *page,
503 	sector_t sector, struct dma_async_tx_descriptor *tx)
504 {
505 	struct bio_vec *bvl;
506 	struct page *bio_page;
507 	int i;
508 	int page_offset;
509 	struct async_submit_ctl submit;
510 	enum async_tx_flags flags = 0;
511 
512 	if (bio->bi_sector >= sector)
513 		page_offset = (signed)(bio->bi_sector - sector) * 512;
514 	else
515 		page_offset = (signed)(sector - bio->bi_sector) * -512;
516 
517 	if (frombio)
518 		flags |= ASYNC_TX_FENCE;
519 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
520 
521 	bio_for_each_segment(bvl, bio, i) {
522 		int len = bio_iovec_idx(bio, i)->bv_len;
523 		int clen;
524 		int b_offset = 0;
525 
526 		if (page_offset < 0) {
527 			b_offset = -page_offset;
528 			page_offset += b_offset;
529 			len -= b_offset;
530 		}
531 
532 		if (len > 0 && page_offset + len > STRIPE_SIZE)
533 			clen = STRIPE_SIZE - page_offset;
534 		else
535 			clen = len;
536 
537 		if (clen > 0) {
538 			b_offset += bio_iovec_idx(bio, i)->bv_offset;
539 			bio_page = bio_iovec_idx(bio, i)->bv_page;
540 			if (frombio)
541 				tx = async_memcpy(page, bio_page, page_offset,
542 						  b_offset, clen, &submit);
543 			else
544 				tx = async_memcpy(bio_page, page, b_offset,
545 						  page_offset, clen, &submit);
546 		}
547 		/* chain the operations */
548 		submit.depend_tx = tx;
549 
550 		if (clen < len) /* hit end of page */
551 			break;
552 		page_offset +=  len;
553 	}
554 
555 	return tx;
556 }
557 
558 static void ops_complete_biofill(void *stripe_head_ref)
559 {
560 	struct stripe_head *sh = stripe_head_ref;
561 	struct bio *return_bi = NULL;
562 	raid5_conf_t *conf = sh->raid_conf;
563 	int i;
564 
565 	pr_debug("%s: stripe %llu\n", __func__,
566 		(unsigned long long)sh->sector);
567 
568 	/* clear completed biofills */
569 	spin_lock_irq(&conf->device_lock);
570 	for (i = sh->disks; i--; ) {
571 		struct r5dev *dev = &sh->dev[i];
572 
573 		/* acknowledge completion of a biofill operation */
574 		/* and check if we need to reply to a read request,
575 		 * new R5_Wantfill requests are held off until
576 		 * !STRIPE_BIOFILL_RUN
577 		 */
578 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
579 			struct bio *rbi, *rbi2;
580 
581 			BUG_ON(!dev->read);
582 			rbi = dev->read;
583 			dev->read = NULL;
584 			while (rbi && rbi->bi_sector <
585 				dev->sector + STRIPE_SECTORS) {
586 				rbi2 = r5_next_bio(rbi, dev->sector);
587 				if (!raid5_dec_bi_phys_segments(rbi)) {
588 					rbi->bi_next = return_bi;
589 					return_bi = rbi;
590 				}
591 				rbi = rbi2;
592 			}
593 		}
594 	}
595 	spin_unlock_irq(&conf->device_lock);
596 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
597 
598 	return_io(return_bi);
599 
600 	set_bit(STRIPE_HANDLE, &sh->state);
601 	release_stripe(sh);
602 }
603 
604 static void ops_run_biofill(struct stripe_head *sh)
605 {
606 	struct dma_async_tx_descriptor *tx = NULL;
607 	raid5_conf_t *conf = sh->raid_conf;
608 	struct async_submit_ctl submit;
609 	int i;
610 
611 	pr_debug("%s: stripe %llu\n", __func__,
612 		(unsigned long long)sh->sector);
613 
614 	for (i = sh->disks; i--; ) {
615 		struct r5dev *dev = &sh->dev[i];
616 		if (test_bit(R5_Wantfill, &dev->flags)) {
617 			struct bio *rbi;
618 			spin_lock_irq(&conf->device_lock);
619 			dev->read = rbi = dev->toread;
620 			dev->toread = NULL;
621 			spin_unlock_irq(&conf->device_lock);
622 			while (rbi && rbi->bi_sector <
623 				dev->sector + STRIPE_SECTORS) {
624 				tx = async_copy_data(0, rbi, dev->page,
625 					dev->sector, tx);
626 				rbi = r5_next_bio(rbi, dev->sector);
627 			}
628 		}
629 	}
630 
631 	atomic_inc(&sh->count);
632 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
633 	async_trigger_callback(&submit);
634 }
635 
636 static void mark_target_uptodate(struct stripe_head *sh, int target)
637 {
638 	struct r5dev *tgt;
639 
640 	if (target < 0)
641 		return;
642 
643 	tgt = &sh->dev[target];
644 	set_bit(R5_UPTODATE, &tgt->flags);
645 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
646 	clear_bit(R5_Wantcompute, &tgt->flags);
647 }
648 
649 static void ops_complete_compute(void *stripe_head_ref)
650 {
651 	struct stripe_head *sh = stripe_head_ref;
652 
653 	pr_debug("%s: stripe %llu\n", __func__,
654 		(unsigned long long)sh->sector);
655 
656 	/* mark the computed target(s) as uptodate */
657 	mark_target_uptodate(sh, sh->ops.target);
658 	mark_target_uptodate(sh, sh->ops.target2);
659 
660 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
661 	if (sh->check_state == check_state_compute_run)
662 		sh->check_state = check_state_compute_result;
663 	set_bit(STRIPE_HANDLE, &sh->state);
664 	release_stripe(sh);
665 }
666 
667 /* return a pointer to the address conversion region of the scribble buffer */
668 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
669 				 struct raid5_percpu *percpu)
670 {
671 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
672 }
673 
674 static struct dma_async_tx_descriptor *
675 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
676 {
677 	int disks = sh->disks;
678 	struct page **xor_srcs = percpu->scribble;
679 	int target = sh->ops.target;
680 	struct r5dev *tgt = &sh->dev[target];
681 	struct page *xor_dest = tgt->page;
682 	int count = 0;
683 	struct dma_async_tx_descriptor *tx;
684 	struct async_submit_ctl submit;
685 	int i;
686 
687 	pr_debug("%s: stripe %llu block: %d\n",
688 		__func__, (unsigned long long)sh->sector, target);
689 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
690 
691 	for (i = disks; i--; )
692 		if (i != target)
693 			xor_srcs[count++] = sh->dev[i].page;
694 
695 	atomic_inc(&sh->count);
696 
697 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
698 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
699 	if (unlikely(count == 1))
700 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
701 	else
702 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
703 
704 	return tx;
705 }
706 
707 /* set_syndrome_sources - populate source buffers for gen_syndrome
708  * @srcs - (struct page *) array of size sh->disks
709  * @sh - stripe_head to parse
710  *
711  * Populates srcs in proper layout order for the stripe and returns the
712  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
713  * destination buffer is recorded in srcs[count] and the Q destination
714  * is recorded in srcs[count+1]].
715  */
716 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
717 {
718 	int disks = sh->disks;
719 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
720 	int d0_idx = raid6_d0(sh);
721 	int count;
722 	int i;
723 
724 	for (i = 0; i < disks; i++)
725 		srcs[i] = NULL;
726 
727 	count = 0;
728 	i = d0_idx;
729 	do {
730 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
731 
732 		srcs[slot] = sh->dev[i].page;
733 		i = raid6_next_disk(i, disks);
734 	} while (i != d0_idx);
735 
736 	return syndrome_disks;
737 }
738 
739 static struct dma_async_tx_descriptor *
740 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
741 {
742 	int disks = sh->disks;
743 	struct page **blocks = percpu->scribble;
744 	int target;
745 	int qd_idx = sh->qd_idx;
746 	struct dma_async_tx_descriptor *tx;
747 	struct async_submit_ctl submit;
748 	struct r5dev *tgt;
749 	struct page *dest;
750 	int i;
751 	int count;
752 
753 	if (sh->ops.target < 0)
754 		target = sh->ops.target2;
755 	else if (sh->ops.target2 < 0)
756 		target = sh->ops.target;
757 	else
758 		/* we should only have one valid target */
759 		BUG();
760 	BUG_ON(target < 0);
761 	pr_debug("%s: stripe %llu block: %d\n",
762 		__func__, (unsigned long long)sh->sector, target);
763 
764 	tgt = &sh->dev[target];
765 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
766 	dest = tgt->page;
767 
768 	atomic_inc(&sh->count);
769 
770 	if (target == qd_idx) {
771 		count = set_syndrome_sources(blocks, sh);
772 		blocks[count] = NULL; /* regenerating p is not necessary */
773 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
774 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
775 				  ops_complete_compute, sh,
776 				  to_addr_conv(sh, percpu));
777 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
778 	} else {
779 		/* Compute any data- or p-drive using XOR */
780 		count = 0;
781 		for (i = disks; i-- ; ) {
782 			if (i == target || i == qd_idx)
783 				continue;
784 			blocks[count++] = sh->dev[i].page;
785 		}
786 
787 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
788 				  NULL, ops_complete_compute, sh,
789 				  to_addr_conv(sh, percpu));
790 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
791 	}
792 
793 	return tx;
794 }
795 
796 static struct dma_async_tx_descriptor *
797 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
798 {
799 	int i, count, disks = sh->disks;
800 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
801 	int d0_idx = raid6_d0(sh);
802 	int faila = -1, failb = -1;
803 	int target = sh->ops.target;
804 	int target2 = sh->ops.target2;
805 	struct r5dev *tgt = &sh->dev[target];
806 	struct r5dev *tgt2 = &sh->dev[target2];
807 	struct dma_async_tx_descriptor *tx;
808 	struct page **blocks = percpu->scribble;
809 	struct async_submit_ctl submit;
810 
811 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
812 		 __func__, (unsigned long long)sh->sector, target, target2);
813 	BUG_ON(target < 0 || target2 < 0);
814 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
815 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
816 
817 	/* we need to open-code set_syndrome_sources to handle the
818 	 * slot number conversion for 'faila' and 'failb'
819 	 */
820 	for (i = 0; i < disks ; i++)
821 		blocks[i] = NULL;
822 	count = 0;
823 	i = d0_idx;
824 	do {
825 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
826 
827 		blocks[slot] = sh->dev[i].page;
828 
829 		if (i == target)
830 			faila = slot;
831 		if (i == target2)
832 			failb = slot;
833 		i = raid6_next_disk(i, disks);
834 	} while (i != d0_idx);
835 
836 	BUG_ON(faila == failb);
837 	if (failb < faila)
838 		swap(faila, failb);
839 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
840 		 __func__, (unsigned long long)sh->sector, faila, failb);
841 
842 	atomic_inc(&sh->count);
843 
844 	if (failb == syndrome_disks+1) {
845 		/* Q disk is one of the missing disks */
846 		if (faila == syndrome_disks) {
847 			/* Missing P+Q, just recompute */
848 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
849 					  ops_complete_compute, sh,
850 					  to_addr_conv(sh, percpu));
851 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
852 						  STRIPE_SIZE, &submit);
853 		} else {
854 			struct page *dest;
855 			int data_target;
856 			int qd_idx = sh->qd_idx;
857 
858 			/* Missing D+Q: recompute D from P, then recompute Q */
859 			if (target == qd_idx)
860 				data_target = target2;
861 			else
862 				data_target = target;
863 
864 			count = 0;
865 			for (i = disks; i-- ; ) {
866 				if (i == data_target || i == qd_idx)
867 					continue;
868 				blocks[count++] = sh->dev[i].page;
869 			}
870 			dest = sh->dev[data_target].page;
871 			init_async_submit(&submit,
872 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
873 					  NULL, NULL, NULL,
874 					  to_addr_conv(sh, percpu));
875 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
876 				       &submit);
877 
878 			count = set_syndrome_sources(blocks, sh);
879 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
880 					  ops_complete_compute, sh,
881 					  to_addr_conv(sh, percpu));
882 			return async_gen_syndrome(blocks, 0, count+2,
883 						  STRIPE_SIZE, &submit);
884 		}
885 	} else {
886 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
887 				  ops_complete_compute, sh,
888 				  to_addr_conv(sh, percpu));
889 		if (failb == syndrome_disks) {
890 			/* We're missing D+P. */
891 			return async_raid6_datap_recov(syndrome_disks+2,
892 						       STRIPE_SIZE, faila,
893 						       blocks, &submit);
894 		} else {
895 			/* We're missing D+D. */
896 			return async_raid6_2data_recov(syndrome_disks+2,
897 						       STRIPE_SIZE, faila, failb,
898 						       blocks, &submit);
899 		}
900 	}
901 }
902 
903 
904 static void ops_complete_prexor(void *stripe_head_ref)
905 {
906 	struct stripe_head *sh = stripe_head_ref;
907 
908 	pr_debug("%s: stripe %llu\n", __func__,
909 		(unsigned long long)sh->sector);
910 }
911 
912 static struct dma_async_tx_descriptor *
913 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
914 	       struct dma_async_tx_descriptor *tx)
915 {
916 	int disks = sh->disks;
917 	struct page **xor_srcs = percpu->scribble;
918 	int count = 0, pd_idx = sh->pd_idx, i;
919 	struct async_submit_ctl submit;
920 
921 	/* existing parity data subtracted */
922 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
923 
924 	pr_debug("%s: stripe %llu\n", __func__,
925 		(unsigned long long)sh->sector);
926 
927 	for (i = disks; i--; ) {
928 		struct r5dev *dev = &sh->dev[i];
929 		/* Only process blocks that are known to be uptodate */
930 		if (test_bit(R5_Wantdrain, &dev->flags))
931 			xor_srcs[count++] = dev->page;
932 	}
933 
934 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
935 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
936 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
937 
938 	return tx;
939 }
940 
941 static struct dma_async_tx_descriptor *
942 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
943 {
944 	int disks = sh->disks;
945 	int i;
946 
947 	pr_debug("%s: stripe %llu\n", __func__,
948 		(unsigned long long)sh->sector);
949 
950 	for (i = disks; i--; ) {
951 		struct r5dev *dev = &sh->dev[i];
952 		struct bio *chosen;
953 
954 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
955 			struct bio *wbi;
956 
957 			spin_lock(&sh->lock);
958 			chosen = dev->towrite;
959 			dev->towrite = NULL;
960 			BUG_ON(dev->written);
961 			wbi = dev->written = chosen;
962 			spin_unlock(&sh->lock);
963 
964 			while (wbi && wbi->bi_sector <
965 				dev->sector + STRIPE_SECTORS) {
966 				tx = async_copy_data(1, wbi, dev->page,
967 					dev->sector, tx);
968 				wbi = r5_next_bio(wbi, dev->sector);
969 			}
970 		}
971 	}
972 
973 	return tx;
974 }
975 
976 static void ops_complete_reconstruct(void *stripe_head_ref)
977 {
978 	struct stripe_head *sh = stripe_head_ref;
979 	int disks = sh->disks;
980 	int pd_idx = sh->pd_idx;
981 	int qd_idx = sh->qd_idx;
982 	int i;
983 
984 	pr_debug("%s: stripe %llu\n", __func__,
985 		(unsigned long long)sh->sector);
986 
987 	for (i = disks; i--; ) {
988 		struct r5dev *dev = &sh->dev[i];
989 
990 		if (dev->written || i == pd_idx || i == qd_idx)
991 			set_bit(R5_UPTODATE, &dev->flags);
992 	}
993 
994 	if (sh->reconstruct_state == reconstruct_state_drain_run)
995 		sh->reconstruct_state = reconstruct_state_drain_result;
996 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
997 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
998 	else {
999 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1000 		sh->reconstruct_state = reconstruct_state_result;
1001 	}
1002 
1003 	set_bit(STRIPE_HANDLE, &sh->state);
1004 	release_stripe(sh);
1005 }
1006 
1007 static void
1008 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1009 		     struct dma_async_tx_descriptor *tx)
1010 {
1011 	int disks = sh->disks;
1012 	struct page **xor_srcs = percpu->scribble;
1013 	struct async_submit_ctl submit;
1014 	int count = 0, pd_idx = sh->pd_idx, i;
1015 	struct page *xor_dest;
1016 	int prexor = 0;
1017 	unsigned long flags;
1018 
1019 	pr_debug("%s: stripe %llu\n", __func__,
1020 		(unsigned long long)sh->sector);
1021 
1022 	/* check if prexor is active which means only process blocks
1023 	 * that are part of a read-modify-write (written)
1024 	 */
1025 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1026 		prexor = 1;
1027 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1028 		for (i = disks; i--; ) {
1029 			struct r5dev *dev = &sh->dev[i];
1030 			if (dev->written)
1031 				xor_srcs[count++] = dev->page;
1032 		}
1033 	} else {
1034 		xor_dest = sh->dev[pd_idx].page;
1035 		for (i = disks; i--; ) {
1036 			struct r5dev *dev = &sh->dev[i];
1037 			if (i != pd_idx)
1038 				xor_srcs[count++] = dev->page;
1039 		}
1040 	}
1041 
1042 	/* 1/ if we prexor'd then the dest is reused as a source
1043 	 * 2/ if we did not prexor then we are redoing the parity
1044 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1045 	 * for the synchronous xor case
1046 	 */
1047 	flags = ASYNC_TX_ACK |
1048 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1049 
1050 	atomic_inc(&sh->count);
1051 
1052 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1053 			  to_addr_conv(sh, percpu));
1054 	if (unlikely(count == 1))
1055 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1056 	else
1057 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1058 }
1059 
1060 static void
1061 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1062 		     struct dma_async_tx_descriptor *tx)
1063 {
1064 	struct async_submit_ctl submit;
1065 	struct page **blocks = percpu->scribble;
1066 	int count;
1067 
1068 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1069 
1070 	count = set_syndrome_sources(blocks, sh);
1071 
1072 	atomic_inc(&sh->count);
1073 
1074 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1075 			  sh, to_addr_conv(sh, percpu));
1076 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1077 }
1078 
1079 static void ops_complete_check(void *stripe_head_ref)
1080 {
1081 	struct stripe_head *sh = stripe_head_ref;
1082 
1083 	pr_debug("%s: stripe %llu\n", __func__,
1084 		(unsigned long long)sh->sector);
1085 
1086 	sh->check_state = check_state_check_result;
1087 	set_bit(STRIPE_HANDLE, &sh->state);
1088 	release_stripe(sh);
1089 }
1090 
1091 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1092 {
1093 	int disks = sh->disks;
1094 	int pd_idx = sh->pd_idx;
1095 	int qd_idx = sh->qd_idx;
1096 	struct page *xor_dest;
1097 	struct page **xor_srcs = percpu->scribble;
1098 	struct dma_async_tx_descriptor *tx;
1099 	struct async_submit_ctl submit;
1100 	int count;
1101 	int i;
1102 
1103 	pr_debug("%s: stripe %llu\n", __func__,
1104 		(unsigned long long)sh->sector);
1105 
1106 	count = 0;
1107 	xor_dest = sh->dev[pd_idx].page;
1108 	xor_srcs[count++] = xor_dest;
1109 	for (i = disks; i--; ) {
1110 		if (i == pd_idx || i == qd_idx)
1111 			continue;
1112 		xor_srcs[count++] = sh->dev[i].page;
1113 	}
1114 
1115 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1116 			  to_addr_conv(sh, percpu));
1117 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1118 			   &sh->ops.zero_sum_result, &submit);
1119 
1120 	atomic_inc(&sh->count);
1121 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1122 	tx = async_trigger_callback(&submit);
1123 }
1124 
1125 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1126 {
1127 	struct page **srcs = percpu->scribble;
1128 	struct async_submit_ctl submit;
1129 	int count;
1130 
1131 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1132 		(unsigned long long)sh->sector, checkp);
1133 
1134 	count = set_syndrome_sources(srcs, sh);
1135 	if (!checkp)
1136 		srcs[count] = NULL;
1137 
1138 	atomic_inc(&sh->count);
1139 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1140 			  sh, to_addr_conv(sh, percpu));
1141 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1142 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1143 }
1144 
1145 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1146 {
1147 	int overlap_clear = 0, i, disks = sh->disks;
1148 	struct dma_async_tx_descriptor *tx = NULL;
1149 	raid5_conf_t *conf = sh->raid_conf;
1150 	int level = conf->level;
1151 	struct raid5_percpu *percpu;
1152 	unsigned long cpu;
1153 
1154 	cpu = get_cpu();
1155 	percpu = per_cpu_ptr(conf->percpu, cpu);
1156 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1157 		ops_run_biofill(sh);
1158 		overlap_clear++;
1159 	}
1160 
1161 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1162 		if (level < 6)
1163 			tx = ops_run_compute5(sh, percpu);
1164 		else {
1165 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1166 				tx = ops_run_compute6_1(sh, percpu);
1167 			else
1168 				tx = ops_run_compute6_2(sh, percpu);
1169 		}
1170 		/* terminate the chain if reconstruct is not set to be run */
1171 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1172 			async_tx_ack(tx);
1173 	}
1174 
1175 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1176 		tx = ops_run_prexor(sh, percpu, tx);
1177 
1178 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1179 		tx = ops_run_biodrain(sh, tx);
1180 		overlap_clear++;
1181 	}
1182 
1183 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1184 		if (level < 6)
1185 			ops_run_reconstruct5(sh, percpu, tx);
1186 		else
1187 			ops_run_reconstruct6(sh, percpu, tx);
1188 	}
1189 
1190 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1191 		if (sh->check_state == check_state_run)
1192 			ops_run_check_p(sh, percpu);
1193 		else if (sh->check_state == check_state_run_q)
1194 			ops_run_check_pq(sh, percpu, 0);
1195 		else if (sh->check_state == check_state_run_pq)
1196 			ops_run_check_pq(sh, percpu, 1);
1197 		else
1198 			BUG();
1199 	}
1200 
1201 	if (overlap_clear)
1202 		for (i = disks; i--; ) {
1203 			struct r5dev *dev = &sh->dev[i];
1204 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1205 				wake_up(&sh->raid_conf->wait_for_overlap);
1206 		}
1207 	put_cpu();
1208 }
1209 
1210 #ifdef CONFIG_MULTICORE_RAID456
1211 static void async_run_ops(void *param, async_cookie_t cookie)
1212 {
1213 	struct stripe_head *sh = param;
1214 	unsigned long ops_request = sh->ops.request;
1215 
1216 	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1217 	wake_up(&sh->ops.wait_for_ops);
1218 
1219 	__raid_run_ops(sh, ops_request);
1220 	release_stripe(sh);
1221 }
1222 
1223 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1224 {
1225 	/* since handle_stripe can be called outside of raid5d context
1226 	 * we need to ensure sh->ops.request is de-staged before another
1227 	 * request arrives
1228 	 */
1229 	wait_event(sh->ops.wait_for_ops,
1230 		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1231 	sh->ops.request = ops_request;
1232 
1233 	atomic_inc(&sh->count);
1234 	async_schedule(async_run_ops, sh);
1235 }
1236 #else
1237 #define raid_run_ops __raid_run_ops
1238 #endif
1239 
1240 static int grow_one_stripe(raid5_conf_t *conf)
1241 {
1242 	struct stripe_head *sh;
1243 	int disks = max(conf->raid_disks, conf->previous_raid_disks);
1244 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1245 	if (!sh)
1246 		return 0;
1247 	memset(sh, 0, sizeof(*sh) + (disks-1)*sizeof(struct r5dev));
1248 	sh->raid_conf = conf;
1249 	spin_lock_init(&sh->lock);
1250 	#ifdef CONFIG_MULTICORE_RAID456
1251 	init_waitqueue_head(&sh->ops.wait_for_ops);
1252 	#endif
1253 
1254 	if (grow_buffers(sh, disks)) {
1255 		shrink_buffers(sh, disks);
1256 		kmem_cache_free(conf->slab_cache, sh);
1257 		return 0;
1258 	}
1259 	/* we just created an active stripe so... */
1260 	atomic_set(&sh->count, 1);
1261 	atomic_inc(&conf->active_stripes);
1262 	INIT_LIST_HEAD(&sh->lru);
1263 	release_stripe(sh);
1264 	return 1;
1265 }
1266 
1267 static int grow_stripes(raid5_conf_t *conf, int num)
1268 {
1269 	struct kmem_cache *sc;
1270 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1271 
1272 	sprintf(conf->cache_name[0],
1273 		"raid%d-%s", conf->level, mdname(conf->mddev));
1274 	sprintf(conf->cache_name[1],
1275 		"raid%d-%s-alt", conf->level, mdname(conf->mddev));
1276 	conf->active_name = 0;
1277 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1278 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1279 			       0, 0, NULL);
1280 	if (!sc)
1281 		return 1;
1282 	conf->slab_cache = sc;
1283 	conf->pool_size = devs;
1284 	while (num--)
1285 		if (!grow_one_stripe(conf))
1286 			return 1;
1287 	return 0;
1288 }
1289 
1290 /**
1291  * scribble_len - return the required size of the scribble region
1292  * @num - total number of disks in the array
1293  *
1294  * The size must be enough to contain:
1295  * 1/ a struct page pointer for each device in the array +2
1296  * 2/ room to convert each entry in (1) to its corresponding dma
1297  *    (dma_map_page()) or page (page_address()) address.
1298  *
1299  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1300  * calculate over all devices (not just the data blocks), using zeros in place
1301  * of the P and Q blocks.
1302  */
1303 static size_t scribble_len(int num)
1304 {
1305 	size_t len;
1306 
1307 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1308 
1309 	return len;
1310 }
1311 
1312 static int resize_stripes(raid5_conf_t *conf, int newsize)
1313 {
1314 	/* Make all the stripes able to hold 'newsize' devices.
1315 	 * New slots in each stripe get 'page' set to a new page.
1316 	 *
1317 	 * This happens in stages:
1318 	 * 1/ create a new kmem_cache and allocate the required number of
1319 	 *    stripe_heads.
1320 	 * 2/ gather all the old stripe_heads and tranfer the pages across
1321 	 *    to the new stripe_heads.  This will have the side effect of
1322 	 *    freezing the array as once all stripe_heads have been collected,
1323 	 *    no IO will be possible.  Old stripe heads are freed once their
1324 	 *    pages have been transferred over, and the old kmem_cache is
1325 	 *    freed when all stripes are done.
1326 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1327 	 *    we simple return a failre status - no need to clean anything up.
1328 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1329 	 *    If this fails, we don't bother trying the shrink the
1330 	 *    stripe_heads down again, we just leave them as they are.
1331 	 *    As each stripe_head is processed the new one is released into
1332 	 *    active service.
1333 	 *
1334 	 * Once step2 is started, we cannot afford to wait for a write,
1335 	 * so we use GFP_NOIO allocations.
1336 	 */
1337 	struct stripe_head *osh, *nsh;
1338 	LIST_HEAD(newstripes);
1339 	struct disk_info *ndisks;
1340 	unsigned long cpu;
1341 	int err;
1342 	struct kmem_cache *sc;
1343 	int i;
1344 
1345 	if (newsize <= conf->pool_size)
1346 		return 0; /* never bother to shrink */
1347 
1348 	err = md_allow_write(conf->mddev);
1349 	if (err)
1350 		return err;
1351 
1352 	/* Step 1 */
1353 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1354 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1355 			       0, 0, NULL);
1356 	if (!sc)
1357 		return -ENOMEM;
1358 
1359 	for (i = conf->max_nr_stripes; i; i--) {
1360 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1361 		if (!nsh)
1362 			break;
1363 
1364 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1365 
1366 		nsh->raid_conf = conf;
1367 		spin_lock_init(&nsh->lock);
1368 		#ifdef CONFIG_MULTICORE_RAID456
1369 		init_waitqueue_head(&nsh->ops.wait_for_ops);
1370 		#endif
1371 
1372 		list_add(&nsh->lru, &newstripes);
1373 	}
1374 	if (i) {
1375 		/* didn't get enough, give up */
1376 		while (!list_empty(&newstripes)) {
1377 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1378 			list_del(&nsh->lru);
1379 			kmem_cache_free(sc, nsh);
1380 		}
1381 		kmem_cache_destroy(sc);
1382 		return -ENOMEM;
1383 	}
1384 	/* Step 2 - Must use GFP_NOIO now.
1385 	 * OK, we have enough stripes, start collecting inactive
1386 	 * stripes and copying them over
1387 	 */
1388 	list_for_each_entry(nsh, &newstripes, lru) {
1389 		spin_lock_irq(&conf->device_lock);
1390 		wait_event_lock_irq(conf->wait_for_stripe,
1391 				    !list_empty(&conf->inactive_list),
1392 				    conf->device_lock,
1393 				    unplug_slaves(conf->mddev)
1394 			);
1395 		osh = get_free_stripe(conf);
1396 		spin_unlock_irq(&conf->device_lock);
1397 		atomic_set(&nsh->count, 1);
1398 		for(i=0; i<conf->pool_size; i++)
1399 			nsh->dev[i].page = osh->dev[i].page;
1400 		for( ; i<newsize; i++)
1401 			nsh->dev[i].page = NULL;
1402 		kmem_cache_free(conf->slab_cache, osh);
1403 	}
1404 	kmem_cache_destroy(conf->slab_cache);
1405 
1406 	/* Step 3.
1407 	 * At this point, we are holding all the stripes so the array
1408 	 * is completely stalled, so now is a good time to resize
1409 	 * conf->disks and the scribble region
1410 	 */
1411 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1412 	if (ndisks) {
1413 		for (i=0; i<conf->raid_disks; i++)
1414 			ndisks[i] = conf->disks[i];
1415 		kfree(conf->disks);
1416 		conf->disks = ndisks;
1417 	} else
1418 		err = -ENOMEM;
1419 
1420 	get_online_cpus();
1421 	conf->scribble_len = scribble_len(newsize);
1422 	for_each_present_cpu(cpu) {
1423 		struct raid5_percpu *percpu;
1424 		void *scribble;
1425 
1426 		percpu = per_cpu_ptr(conf->percpu, cpu);
1427 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1428 
1429 		if (scribble) {
1430 			kfree(percpu->scribble);
1431 			percpu->scribble = scribble;
1432 		} else {
1433 			err = -ENOMEM;
1434 			break;
1435 		}
1436 	}
1437 	put_online_cpus();
1438 
1439 	/* Step 4, return new stripes to service */
1440 	while(!list_empty(&newstripes)) {
1441 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1442 		list_del_init(&nsh->lru);
1443 
1444 		for (i=conf->raid_disks; i < newsize; i++)
1445 			if (nsh->dev[i].page == NULL) {
1446 				struct page *p = alloc_page(GFP_NOIO);
1447 				nsh->dev[i].page = p;
1448 				if (!p)
1449 					err = -ENOMEM;
1450 			}
1451 		release_stripe(nsh);
1452 	}
1453 	/* critical section pass, GFP_NOIO no longer needed */
1454 
1455 	conf->slab_cache = sc;
1456 	conf->active_name = 1-conf->active_name;
1457 	conf->pool_size = newsize;
1458 	return err;
1459 }
1460 
1461 static int drop_one_stripe(raid5_conf_t *conf)
1462 {
1463 	struct stripe_head *sh;
1464 
1465 	spin_lock_irq(&conf->device_lock);
1466 	sh = get_free_stripe(conf);
1467 	spin_unlock_irq(&conf->device_lock);
1468 	if (!sh)
1469 		return 0;
1470 	BUG_ON(atomic_read(&sh->count));
1471 	shrink_buffers(sh, conf->pool_size);
1472 	kmem_cache_free(conf->slab_cache, sh);
1473 	atomic_dec(&conf->active_stripes);
1474 	return 1;
1475 }
1476 
1477 static void shrink_stripes(raid5_conf_t *conf)
1478 {
1479 	while (drop_one_stripe(conf))
1480 		;
1481 
1482 	if (conf->slab_cache)
1483 		kmem_cache_destroy(conf->slab_cache);
1484 	conf->slab_cache = NULL;
1485 }
1486 
1487 static void raid5_end_read_request(struct bio * bi, int error)
1488 {
1489 	struct stripe_head *sh = bi->bi_private;
1490 	raid5_conf_t *conf = sh->raid_conf;
1491 	int disks = sh->disks, i;
1492 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1493 	char b[BDEVNAME_SIZE];
1494 	mdk_rdev_t *rdev;
1495 
1496 
1497 	for (i=0 ; i<disks; i++)
1498 		if (bi == &sh->dev[i].req)
1499 			break;
1500 
1501 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1502 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1503 		uptodate);
1504 	if (i == disks) {
1505 		BUG();
1506 		return;
1507 	}
1508 
1509 	if (uptodate) {
1510 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1511 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1512 			rdev = conf->disks[i].rdev;
1513 			printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1514 				  " (%lu sectors at %llu on %s)\n",
1515 				  mdname(conf->mddev), STRIPE_SECTORS,
1516 				  (unsigned long long)(sh->sector
1517 						       + rdev->data_offset),
1518 				  bdevname(rdev->bdev, b));
1519 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1520 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1521 		}
1522 		if (atomic_read(&conf->disks[i].rdev->read_errors))
1523 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1524 	} else {
1525 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1526 		int retry = 0;
1527 		rdev = conf->disks[i].rdev;
1528 
1529 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1530 		atomic_inc(&rdev->read_errors);
1531 		if (conf->mddev->degraded >= conf->max_degraded)
1532 			printk_rl(KERN_WARNING
1533 				  "md/raid:%s: read error not correctable "
1534 				  "(sector %llu on %s).\n",
1535 				  mdname(conf->mddev),
1536 				  (unsigned long long)(sh->sector
1537 						       + rdev->data_offset),
1538 				  bdn);
1539 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1540 			/* Oh, no!!! */
1541 			printk_rl(KERN_WARNING
1542 				  "md/raid:%s: read error NOT corrected!! "
1543 				  "(sector %llu on %s).\n",
1544 				  mdname(conf->mddev),
1545 				  (unsigned long long)(sh->sector
1546 						       + rdev->data_offset),
1547 				  bdn);
1548 		else if (atomic_read(&rdev->read_errors)
1549 			 > conf->max_nr_stripes)
1550 			printk(KERN_WARNING
1551 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1552 			       mdname(conf->mddev), bdn);
1553 		else
1554 			retry = 1;
1555 		if (retry)
1556 			set_bit(R5_ReadError, &sh->dev[i].flags);
1557 		else {
1558 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1559 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1560 			md_error(conf->mddev, rdev);
1561 		}
1562 	}
1563 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1564 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1565 	set_bit(STRIPE_HANDLE, &sh->state);
1566 	release_stripe(sh);
1567 }
1568 
1569 static void raid5_end_write_request(struct bio *bi, int error)
1570 {
1571 	struct stripe_head *sh = bi->bi_private;
1572 	raid5_conf_t *conf = sh->raid_conf;
1573 	int disks = sh->disks, i;
1574 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1575 
1576 	for (i=0 ; i<disks; i++)
1577 		if (bi == &sh->dev[i].req)
1578 			break;
1579 
1580 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1581 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1582 		uptodate);
1583 	if (i == disks) {
1584 		BUG();
1585 		return;
1586 	}
1587 
1588 	if (!uptodate)
1589 		md_error(conf->mddev, conf->disks[i].rdev);
1590 
1591 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1592 
1593 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1594 	set_bit(STRIPE_HANDLE, &sh->state);
1595 	release_stripe(sh);
1596 }
1597 
1598 
1599 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1600 
1601 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1602 {
1603 	struct r5dev *dev = &sh->dev[i];
1604 
1605 	bio_init(&dev->req);
1606 	dev->req.bi_io_vec = &dev->vec;
1607 	dev->req.bi_vcnt++;
1608 	dev->req.bi_max_vecs++;
1609 	dev->vec.bv_page = dev->page;
1610 	dev->vec.bv_len = STRIPE_SIZE;
1611 	dev->vec.bv_offset = 0;
1612 
1613 	dev->req.bi_sector = sh->sector;
1614 	dev->req.bi_private = sh;
1615 
1616 	dev->flags = 0;
1617 	dev->sector = compute_blocknr(sh, i, previous);
1618 }
1619 
1620 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1621 {
1622 	char b[BDEVNAME_SIZE];
1623 	raid5_conf_t *conf = mddev->private;
1624 	pr_debug("raid456: error called\n");
1625 
1626 	if (!test_bit(Faulty, &rdev->flags)) {
1627 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1628 		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1629 			unsigned long flags;
1630 			spin_lock_irqsave(&conf->device_lock, flags);
1631 			mddev->degraded++;
1632 			spin_unlock_irqrestore(&conf->device_lock, flags);
1633 			/*
1634 			 * if recovery was running, make sure it aborts.
1635 			 */
1636 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1637 		}
1638 		set_bit(Faulty, &rdev->flags);
1639 		printk(KERN_ALERT
1640 		       "md/raid:%s: Disk failure on %s, disabling device.\n"
1641 		       KERN_ALERT
1642 		       "md/raid:%s: Operation continuing on %d devices.\n",
1643 		       mdname(mddev),
1644 		       bdevname(rdev->bdev, b),
1645 		       mdname(mddev),
1646 		       conf->raid_disks - mddev->degraded);
1647 	}
1648 }
1649 
1650 /*
1651  * Input: a 'big' sector number,
1652  * Output: index of the data and parity disk, and the sector # in them.
1653  */
1654 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1655 				     int previous, int *dd_idx,
1656 				     struct stripe_head *sh)
1657 {
1658 	sector_t stripe, stripe2;
1659 	sector_t chunk_number;
1660 	unsigned int chunk_offset;
1661 	int pd_idx, qd_idx;
1662 	int ddf_layout = 0;
1663 	sector_t new_sector;
1664 	int algorithm = previous ? conf->prev_algo
1665 				 : conf->algorithm;
1666 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1667 					 : conf->chunk_sectors;
1668 	int raid_disks = previous ? conf->previous_raid_disks
1669 				  : conf->raid_disks;
1670 	int data_disks = raid_disks - conf->max_degraded;
1671 
1672 	/* First compute the information on this sector */
1673 
1674 	/*
1675 	 * Compute the chunk number and the sector offset inside the chunk
1676 	 */
1677 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1678 	chunk_number = r_sector;
1679 
1680 	/*
1681 	 * Compute the stripe number
1682 	 */
1683 	stripe = chunk_number;
1684 	*dd_idx = sector_div(stripe, data_disks);
1685 	stripe2 = stripe;
1686 	/*
1687 	 * Select the parity disk based on the user selected algorithm.
1688 	 */
1689 	pd_idx = qd_idx = ~0;
1690 	switch(conf->level) {
1691 	case 4:
1692 		pd_idx = data_disks;
1693 		break;
1694 	case 5:
1695 		switch (algorithm) {
1696 		case ALGORITHM_LEFT_ASYMMETRIC:
1697 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1698 			if (*dd_idx >= pd_idx)
1699 				(*dd_idx)++;
1700 			break;
1701 		case ALGORITHM_RIGHT_ASYMMETRIC:
1702 			pd_idx = sector_div(stripe2, raid_disks);
1703 			if (*dd_idx >= pd_idx)
1704 				(*dd_idx)++;
1705 			break;
1706 		case ALGORITHM_LEFT_SYMMETRIC:
1707 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1708 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1709 			break;
1710 		case ALGORITHM_RIGHT_SYMMETRIC:
1711 			pd_idx = sector_div(stripe2, raid_disks);
1712 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1713 			break;
1714 		case ALGORITHM_PARITY_0:
1715 			pd_idx = 0;
1716 			(*dd_idx)++;
1717 			break;
1718 		case ALGORITHM_PARITY_N:
1719 			pd_idx = data_disks;
1720 			break;
1721 		default:
1722 			BUG();
1723 		}
1724 		break;
1725 	case 6:
1726 
1727 		switch (algorithm) {
1728 		case ALGORITHM_LEFT_ASYMMETRIC:
1729 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1730 			qd_idx = pd_idx + 1;
1731 			if (pd_idx == raid_disks-1) {
1732 				(*dd_idx)++;	/* Q D D D P */
1733 				qd_idx = 0;
1734 			} else if (*dd_idx >= pd_idx)
1735 				(*dd_idx) += 2; /* D D P Q D */
1736 			break;
1737 		case ALGORITHM_RIGHT_ASYMMETRIC:
1738 			pd_idx = sector_div(stripe2, raid_disks);
1739 			qd_idx = pd_idx + 1;
1740 			if (pd_idx == raid_disks-1) {
1741 				(*dd_idx)++;	/* Q D D D P */
1742 				qd_idx = 0;
1743 			} else if (*dd_idx >= pd_idx)
1744 				(*dd_idx) += 2; /* D D P Q D */
1745 			break;
1746 		case ALGORITHM_LEFT_SYMMETRIC:
1747 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1748 			qd_idx = (pd_idx + 1) % raid_disks;
1749 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1750 			break;
1751 		case ALGORITHM_RIGHT_SYMMETRIC:
1752 			pd_idx = sector_div(stripe2, raid_disks);
1753 			qd_idx = (pd_idx + 1) % raid_disks;
1754 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1755 			break;
1756 
1757 		case ALGORITHM_PARITY_0:
1758 			pd_idx = 0;
1759 			qd_idx = 1;
1760 			(*dd_idx) += 2;
1761 			break;
1762 		case ALGORITHM_PARITY_N:
1763 			pd_idx = data_disks;
1764 			qd_idx = data_disks + 1;
1765 			break;
1766 
1767 		case ALGORITHM_ROTATING_ZERO_RESTART:
1768 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1769 			 * of blocks for computing Q is different.
1770 			 */
1771 			pd_idx = sector_div(stripe2, raid_disks);
1772 			qd_idx = pd_idx + 1;
1773 			if (pd_idx == raid_disks-1) {
1774 				(*dd_idx)++;	/* Q D D D P */
1775 				qd_idx = 0;
1776 			} else if (*dd_idx >= pd_idx)
1777 				(*dd_idx) += 2; /* D D P Q D */
1778 			ddf_layout = 1;
1779 			break;
1780 
1781 		case ALGORITHM_ROTATING_N_RESTART:
1782 			/* Same a left_asymmetric, by first stripe is
1783 			 * D D D P Q  rather than
1784 			 * Q D D D P
1785 			 */
1786 			stripe2 += 1;
1787 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1788 			qd_idx = pd_idx + 1;
1789 			if (pd_idx == raid_disks-1) {
1790 				(*dd_idx)++;	/* Q D D D P */
1791 				qd_idx = 0;
1792 			} else if (*dd_idx >= pd_idx)
1793 				(*dd_idx) += 2; /* D D P Q D */
1794 			ddf_layout = 1;
1795 			break;
1796 
1797 		case ALGORITHM_ROTATING_N_CONTINUE:
1798 			/* Same as left_symmetric but Q is before P */
1799 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1800 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1801 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1802 			ddf_layout = 1;
1803 			break;
1804 
1805 		case ALGORITHM_LEFT_ASYMMETRIC_6:
1806 			/* RAID5 left_asymmetric, with Q on last device */
1807 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1808 			if (*dd_idx >= pd_idx)
1809 				(*dd_idx)++;
1810 			qd_idx = raid_disks - 1;
1811 			break;
1812 
1813 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1814 			pd_idx = sector_div(stripe2, raid_disks-1);
1815 			if (*dd_idx >= pd_idx)
1816 				(*dd_idx)++;
1817 			qd_idx = raid_disks - 1;
1818 			break;
1819 
1820 		case ALGORITHM_LEFT_SYMMETRIC_6:
1821 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1822 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1823 			qd_idx = raid_disks - 1;
1824 			break;
1825 
1826 		case ALGORITHM_RIGHT_SYMMETRIC_6:
1827 			pd_idx = sector_div(stripe2, raid_disks-1);
1828 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1829 			qd_idx = raid_disks - 1;
1830 			break;
1831 
1832 		case ALGORITHM_PARITY_0_6:
1833 			pd_idx = 0;
1834 			(*dd_idx)++;
1835 			qd_idx = raid_disks - 1;
1836 			break;
1837 
1838 		default:
1839 			BUG();
1840 		}
1841 		break;
1842 	}
1843 
1844 	if (sh) {
1845 		sh->pd_idx = pd_idx;
1846 		sh->qd_idx = qd_idx;
1847 		sh->ddf_layout = ddf_layout;
1848 	}
1849 	/*
1850 	 * Finally, compute the new sector number
1851 	 */
1852 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1853 	return new_sector;
1854 }
1855 
1856 
1857 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1858 {
1859 	raid5_conf_t *conf = sh->raid_conf;
1860 	int raid_disks = sh->disks;
1861 	int data_disks = raid_disks - conf->max_degraded;
1862 	sector_t new_sector = sh->sector, check;
1863 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1864 					 : conf->chunk_sectors;
1865 	int algorithm = previous ? conf->prev_algo
1866 				 : conf->algorithm;
1867 	sector_t stripe;
1868 	int chunk_offset;
1869 	sector_t chunk_number;
1870 	int dummy1, dd_idx = i;
1871 	sector_t r_sector;
1872 	struct stripe_head sh2;
1873 
1874 
1875 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1876 	stripe = new_sector;
1877 
1878 	if (i == sh->pd_idx)
1879 		return 0;
1880 	switch(conf->level) {
1881 	case 4: break;
1882 	case 5:
1883 		switch (algorithm) {
1884 		case ALGORITHM_LEFT_ASYMMETRIC:
1885 		case ALGORITHM_RIGHT_ASYMMETRIC:
1886 			if (i > sh->pd_idx)
1887 				i--;
1888 			break;
1889 		case ALGORITHM_LEFT_SYMMETRIC:
1890 		case ALGORITHM_RIGHT_SYMMETRIC:
1891 			if (i < sh->pd_idx)
1892 				i += raid_disks;
1893 			i -= (sh->pd_idx + 1);
1894 			break;
1895 		case ALGORITHM_PARITY_0:
1896 			i -= 1;
1897 			break;
1898 		case ALGORITHM_PARITY_N:
1899 			break;
1900 		default:
1901 			BUG();
1902 		}
1903 		break;
1904 	case 6:
1905 		if (i == sh->qd_idx)
1906 			return 0; /* It is the Q disk */
1907 		switch (algorithm) {
1908 		case ALGORITHM_LEFT_ASYMMETRIC:
1909 		case ALGORITHM_RIGHT_ASYMMETRIC:
1910 		case ALGORITHM_ROTATING_ZERO_RESTART:
1911 		case ALGORITHM_ROTATING_N_RESTART:
1912 			if (sh->pd_idx == raid_disks-1)
1913 				i--;	/* Q D D D P */
1914 			else if (i > sh->pd_idx)
1915 				i -= 2; /* D D P Q D */
1916 			break;
1917 		case ALGORITHM_LEFT_SYMMETRIC:
1918 		case ALGORITHM_RIGHT_SYMMETRIC:
1919 			if (sh->pd_idx == raid_disks-1)
1920 				i--; /* Q D D D P */
1921 			else {
1922 				/* D D P Q D */
1923 				if (i < sh->pd_idx)
1924 					i += raid_disks;
1925 				i -= (sh->pd_idx + 2);
1926 			}
1927 			break;
1928 		case ALGORITHM_PARITY_0:
1929 			i -= 2;
1930 			break;
1931 		case ALGORITHM_PARITY_N:
1932 			break;
1933 		case ALGORITHM_ROTATING_N_CONTINUE:
1934 			/* Like left_symmetric, but P is before Q */
1935 			if (sh->pd_idx == 0)
1936 				i--;	/* P D D D Q */
1937 			else {
1938 				/* D D Q P D */
1939 				if (i < sh->pd_idx)
1940 					i += raid_disks;
1941 				i -= (sh->pd_idx + 1);
1942 			}
1943 			break;
1944 		case ALGORITHM_LEFT_ASYMMETRIC_6:
1945 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1946 			if (i > sh->pd_idx)
1947 				i--;
1948 			break;
1949 		case ALGORITHM_LEFT_SYMMETRIC_6:
1950 		case ALGORITHM_RIGHT_SYMMETRIC_6:
1951 			if (i < sh->pd_idx)
1952 				i += data_disks + 1;
1953 			i -= (sh->pd_idx + 1);
1954 			break;
1955 		case ALGORITHM_PARITY_0_6:
1956 			i -= 1;
1957 			break;
1958 		default:
1959 			BUG();
1960 		}
1961 		break;
1962 	}
1963 
1964 	chunk_number = stripe * data_disks + i;
1965 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1966 
1967 	check = raid5_compute_sector(conf, r_sector,
1968 				     previous, &dummy1, &sh2);
1969 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1970 		|| sh2.qd_idx != sh->qd_idx) {
1971 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
1972 		       mdname(conf->mddev));
1973 		return 0;
1974 	}
1975 	return r_sector;
1976 }
1977 
1978 
1979 static void
1980 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1981 			 int rcw, int expand)
1982 {
1983 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1984 	raid5_conf_t *conf = sh->raid_conf;
1985 	int level = conf->level;
1986 
1987 	if (rcw) {
1988 		/* if we are not expanding this is a proper write request, and
1989 		 * there will be bios with new data to be drained into the
1990 		 * stripe cache
1991 		 */
1992 		if (!expand) {
1993 			sh->reconstruct_state = reconstruct_state_drain_run;
1994 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1995 		} else
1996 			sh->reconstruct_state = reconstruct_state_run;
1997 
1998 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
1999 
2000 		for (i = disks; i--; ) {
2001 			struct r5dev *dev = &sh->dev[i];
2002 
2003 			if (dev->towrite) {
2004 				set_bit(R5_LOCKED, &dev->flags);
2005 				set_bit(R5_Wantdrain, &dev->flags);
2006 				if (!expand)
2007 					clear_bit(R5_UPTODATE, &dev->flags);
2008 				s->locked++;
2009 			}
2010 		}
2011 		if (s->locked + conf->max_degraded == disks)
2012 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2013 				atomic_inc(&conf->pending_full_writes);
2014 	} else {
2015 		BUG_ON(level == 6);
2016 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2017 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2018 
2019 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2020 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2021 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2022 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2023 
2024 		for (i = disks; i--; ) {
2025 			struct r5dev *dev = &sh->dev[i];
2026 			if (i == pd_idx)
2027 				continue;
2028 
2029 			if (dev->towrite &&
2030 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2031 			     test_bit(R5_Wantcompute, &dev->flags))) {
2032 				set_bit(R5_Wantdrain, &dev->flags);
2033 				set_bit(R5_LOCKED, &dev->flags);
2034 				clear_bit(R5_UPTODATE, &dev->flags);
2035 				s->locked++;
2036 			}
2037 		}
2038 	}
2039 
2040 	/* keep the parity disk(s) locked while asynchronous operations
2041 	 * are in flight
2042 	 */
2043 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2044 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2045 	s->locked++;
2046 
2047 	if (level == 6) {
2048 		int qd_idx = sh->qd_idx;
2049 		struct r5dev *dev = &sh->dev[qd_idx];
2050 
2051 		set_bit(R5_LOCKED, &dev->flags);
2052 		clear_bit(R5_UPTODATE, &dev->flags);
2053 		s->locked++;
2054 	}
2055 
2056 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2057 		__func__, (unsigned long long)sh->sector,
2058 		s->locked, s->ops_request);
2059 }
2060 
2061 /*
2062  * Each stripe/dev can have one or more bion attached.
2063  * toread/towrite point to the first in a chain.
2064  * The bi_next chain must be in order.
2065  */
2066 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2067 {
2068 	struct bio **bip;
2069 	raid5_conf_t *conf = sh->raid_conf;
2070 	int firstwrite=0;
2071 
2072 	pr_debug("adding bh b#%llu to stripe s#%llu\n",
2073 		(unsigned long long)bi->bi_sector,
2074 		(unsigned long long)sh->sector);
2075 
2076 
2077 	spin_lock(&sh->lock);
2078 	spin_lock_irq(&conf->device_lock);
2079 	if (forwrite) {
2080 		bip = &sh->dev[dd_idx].towrite;
2081 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2082 			firstwrite = 1;
2083 	} else
2084 		bip = &sh->dev[dd_idx].toread;
2085 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2086 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2087 			goto overlap;
2088 		bip = & (*bip)->bi_next;
2089 	}
2090 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2091 		goto overlap;
2092 
2093 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2094 	if (*bip)
2095 		bi->bi_next = *bip;
2096 	*bip = bi;
2097 	bi->bi_phys_segments++;
2098 	spin_unlock_irq(&conf->device_lock);
2099 	spin_unlock(&sh->lock);
2100 
2101 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2102 		(unsigned long long)bi->bi_sector,
2103 		(unsigned long long)sh->sector, dd_idx);
2104 
2105 	if (conf->mddev->bitmap && firstwrite) {
2106 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2107 				  STRIPE_SECTORS, 0);
2108 		sh->bm_seq = conf->seq_flush+1;
2109 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2110 	}
2111 
2112 	if (forwrite) {
2113 		/* check if page is covered */
2114 		sector_t sector = sh->dev[dd_idx].sector;
2115 		for (bi=sh->dev[dd_idx].towrite;
2116 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2117 			     bi && bi->bi_sector <= sector;
2118 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2119 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2120 				sector = bi->bi_sector + (bi->bi_size>>9);
2121 		}
2122 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2123 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2124 	}
2125 	return 1;
2126 
2127  overlap:
2128 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2129 	spin_unlock_irq(&conf->device_lock);
2130 	spin_unlock(&sh->lock);
2131 	return 0;
2132 }
2133 
2134 static void end_reshape(raid5_conf_t *conf);
2135 
2136 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2137 			    struct stripe_head *sh)
2138 {
2139 	int sectors_per_chunk =
2140 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2141 	int dd_idx;
2142 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2143 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2144 
2145 	raid5_compute_sector(conf,
2146 			     stripe * (disks - conf->max_degraded)
2147 			     *sectors_per_chunk + chunk_offset,
2148 			     previous,
2149 			     &dd_idx, sh);
2150 }
2151 
2152 static void
2153 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2154 				struct stripe_head_state *s, int disks,
2155 				struct bio **return_bi)
2156 {
2157 	int i;
2158 	for (i = disks; i--; ) {
2159 		struct bio *bi;
2160 		int bitmap_end = 0;
2161 
2162 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2163 			mdk_rdev_t *rdev;
2164 			rcu_read_lock();
2165 			rdev = rcu_dereference(conf->disks[i].rdev);
2166 			if (rdev && test_bit(In_sync, &rdev->flags))
2167 				/* multiple read failures in one stripe */
2168 				md_error(conf->mddev, rdev);
2169 			rcu_read_unlock();
2170 		}
2171 		spin_lock_irq(&conf->device_lock);
2172 		/* fail all writes first */
2173 		bi = sh->dev[i].towrite;
2174 		sh->dev[i].towrite = NULL;
2175 		if (bi) {
2176 			s->to_write--;
2177 			bitmap_end = 1;
2178 		}
2179 
2180 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2181 			wake_up(&conf->wait_for_overlap);
2182 
2183 		while (bi && bi->bi_sector <
2184 			sh->dev[i].sector + STRIPE_SECTORS) {
2185 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2186 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2187 			if (!raid5_dec_bi_phys_segments(bi)) {
2188 				md_write_end(conf->mddev);
2189 				bi->bi_next = *return_bi;
2190 				*return_bi = bi;
2191 			}
2192 			bi = nextbi;
2193 		}
2194 		/* and fail all 'written' */
2195 		bi = sh->dev[i].written;
2196 		sh->dev[i].written = NULL;
2197 		if (bi) bitmap_end = 1;
2198 		while (bi && bi->bi_sector <
2199 		       sh->dev[i].sector + STRIPE_SECTORS) {
2200 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2201 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2202 			if (!raid5_dec_bi_phys_segments(bi)) {
2203 				md_write_end(conf->mddev);
2204 				bi->bi_next = *return_bi;
2205 				*return_bi = bi;
2206 			}
2207 			bi = bi2;
2208 		}
2209 
2210 		/* fail any reads if this device is non-operational and
2211 		 * the data has not reached the cache yet.
2212 		 */
2213 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2214 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2215 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2216 			bi = sh->dev[i].toread;
2217 			sh->dev[i].toread = NULL;
2218 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2219 				wake_up(&conf->wait_for_overlap);
2220 			if (bi) s->to_read--;
2221 			while (bi && bi->bi_sector <
2222 			       sh->dev[i].sector + STRIPE_SECTORS) {
2223 				struct bio *nextbi =
2224 					r5_next_bio(bi, sh->dev[i].sector);
2225 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2226 				if (!raid5_dec_bi_phys_segments(bi)) {
2227 					bi->bi_next = *return_bi;
2228 					*return_bi = bi;
2229 				}
2230 				bi = nextbi;
2231 			}
2232 		}
2233 		spin_unlock_irq(&conf->device_lock);
2234 		if (bitmap_end)
2235 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2236 					STRIPE_SECTORS, 0, 0);
2237 	}
2238 
2239 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2240 		if (atomic_dec_and_test(&conf->pending_full_writes))
2241 			md_wakeup_thread(conf->mddev->thread);
2242 }
2243 
2244 /* fetch_block5 - checks the given member device to see if its data needs
2245  * to be read or computed to satisfy a request.
2246  *
2247  * Returns 1 when no more member devices need to be checked, otherwise returns
2248  * 0 to tell the loop in handle_stripe_fill5 to continue
2249  */
2250 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2251 			int disk_idx, int disks)
2252 {
2253 	struct r5dev *dev = &sh->dev[disk_idx];
2254 	struct r5dev *failed_dev = &sh->dev[s->failed_num];
2255 
2256 	/* is the data in this block needed, and can we get it? */
2257 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2258 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2259 	    (dev->toread ||
2260 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2261 	     s->syncing || s->expanding ||
2262 	     (s->failed &&
2263 	      (failed_dev->toread ||
2264 	       (failed_dev->towrite &&
2265 		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2266 		/* We would like to get this block, possibly by computing it,
2267 		 * otherwise read it if the backing disk is insync
2268 		 */
2269 		if ((s->uptodate == disks - 1) &&
2270 		    (s->failed && disk_idx == s->failed_num)) {
2271 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2272 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2273 			set_bit(R5_Wantcompute, &dev->flags);
2274 			sh->ops.target = disk_idx;
2275 			sh->ops.target2 = -1;
2276 			s->req_compute = 1;
2277 			/* Careful: from this point on 'uptodate' is in the eye
2278 			 * of raid_run_ops which services 'compute' operations
2279 			 * before writes. R5_Wantcompute flags a block that will
2280 			 * be R5_UPTODATE by the time it is needed for a
2281 			 * subsequent operation.
2282 			 */
2283 			s->uptodate++;
2284 			return 1; /* uptodate + compute == disks */
2285 		} else if (test_bit(R5_Insync, &dev->flags)) {
2286 			set_bit(R5_LOCKED, &dev->flags);
2287 			set_bit(R5_Wantread, &dev->flags);
2288 			s->locked++;
2289 			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2290 				s->syncing);
2291 		}
2292 	}
2293 
2294 	return 0;
2295 }
2296 
2297 /**
2298  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2299  */
2300 static void handle_stripe_fill5(struct stripe_head *sh,
2301 			struct stripe_head_state *s, int disks)
2302 {
2303 	int i;
2304 
2305 	/* look for blocks to read/compute, skip this if a compute
2306 	 * is already in flight, or if the stripe contents are in the
2307 	 * midst of changing due to a write
2308 	 */
2309 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2310 	    !sh->reconstruct_state)
2311 		for (i = disks; i--; )
2312 			if (fetch_block5(sh, s, i, disks))
2313 				break;
2314 	set_bit(STRIPE_HANDLE, &sh->state);
2315 }
2316 
2317 /* fetch_block6 - checks the given member device to see if its data needs
2318  * to be read or computed to satisfy a request.
2319  *
2320  * Returns 1 when no more member devices need to be checked, otherwise returns
2321  * 0 to tell the loop in handle_stripe_fill6 to continue
2322  */
2323 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2324 			 struct r6_state *r6s, int disk_idx, int disks)
2325 {
2326 	struct r5dev *dev = &sh->dev[disk_idx];
2327 	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2328 				  &sh->dev[r6s->failed_num[1]] };
2329 
2330 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2331 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2332 	    (dev->toread ||
2333 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2334 	     s->syncing || s->expanding ||
2335 	     (s->failed >= 1 &&
2336 	      (fdev[0]->toread || s->to_write)) ||
2337 	     (s->failed >= 2 &&
2338 	      (fdev[1]->toread || s->to_write)))) {
2339 		/* we would like to get this block, possibly by computing it,
2340 		 * otherwise read it if the backing disk is insync
2341 		 */
2342 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2343 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2344 		if ((s->uptodate == disks - 1) &&
2345 		    (s->failed && (disk_idx == r6s->failed_num[0] ||
2346 				   disk_idx == r6s->failed_num[1]))) {
2347 			/* have disk failed, and we're requested to fetch it;
2348 			 * do compute it
2349 			 */
2350 			pr_debug("Computing stripe %llu block %d\n",
2351 			       (unsigned long long)sh->sector, disk_idx);
2352 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2353 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2354 			set_bit(R5_Wantcompute, &dev->flags);
2355 			sh->ops.target = disk_idx;
2356 			sh->ops.target2 = -1; /* no 2nd target */
2357 			s->req_compute = 1;
2358 			s->uptodate++;
2359 			return 1;
2360 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2361 			/* Computing 2-failure is *very* expensive; only
2362 			 * do it if failed >= 2
2363 			 */
2364 			int other;
2365 			for (other = disks; other--; ) {
2366 				if (other == disk_idx)
2367 					continue;
2368 				if (!test_bit(R5_UPTODATE,
2369 				      &sh->dev[other].flags))
2370 					break;
2371 			}
2372 			BUG_ON(other < 0);
2373 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2374 			       (unsigned long long)sh->sector,
2375 			       disk_idx, other);
2376 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2377 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2378 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2379 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2380 			sh->ops.target = disk_idx;
2381 			sh->ops.target2 = other;
2382 			s->uptodate += 2;
2383 			s->req_compute = 1;
2384 			return 1;
2385 		} else if (test_bit(R5_Insync, &dev->flags)) {
2386 			set_bit(R5_LOCKED, &dev->flags);
2387 			set_bit(R5_Wantread, &dev->flags);
2388 			s->locked++;
2389 			pr_debug("Reading block %d (sync=%d)\n",
2390 				disk_idx, s->syncing);
2391 		}
2392 	}
2393 
2394 	return 0;
2395 }
2396 
2397 /**
2398  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2399  */
2400 static void handle_stripe_fill6(struct stripe_head *sh,
2401 			struct stripe_head_state *s, struct r6_state *r6s,
2402 			int disks)
2403 {
2404 	int i;
2405 
2406 	/* look for blocks to read/compute, skip this if a compute
2407 	 * is already in flight, or if the stripe contents are in the
2408 	 * midst of changing due to a write
2409 	 */
2410 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2411 	    !sh->reconstruct_state)
2412 		for (i = disks; i--; )
2413 			if (fetch_block6(sh, s, r6s, i, disks))
2414 				break;
2415 	set_bit(STRIPE_HANDLE, &sh->state);
2416 }
2417 
2418 
2419 /* handle_stripe_clean_event
2420  * any written block on an uptodate or failed drive can be returned.
2421  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2422  * never LOCKED, so we don't need to test 'failed' directly.
2423  */
2424 static void handle_stripe_clean_event(raid5_conf_t *conf,
2425 	struct stripe_head *sh, int disks, struct bio **return_bi)
2426 {
2427 	int i;
2428 	struct r5dev *dev;
2429 
2430 	for (i = disks; i--; )
2431 		if (sh->dev[i].written) {
2432 			dev = &sh->dev[i];
2433 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2434 				test_bit(R5_UPTODATE, &dev->flags)) {
2435 				/* We can return any write requests */
2436 				struct bio *wbi, *wbi2;
2437 				int bitmap_end = 0;
2438 				pr_debug("Return write for disc %d\n", i);
2439 				spin_lock_irq(&conf->device_lock);
2440 				wbi = dev->written;
2441 				dev->written = NULL;
2442 				while (wbi && wbi->bi_sector <
2443 					dev->sector + STRIPE_SECTORS) {
2444 					wbi2 = r5_next_bio(wbi, dev->sector);
2445 					if (!raid5_dec_bi_phys_segments(wbi)) {
2446 						md_write_end(conf->mddev);
2447 						wbi->bi_next = *return_bi;
2448 						*return_bi = wbi;
2449 					}
2450 					wbi = wbi2;
2451 				}
2452 				if (dev->towrite == NULL)
2453 					bitmap_end = 1;
2454 				spin_unlock_irq(&conf->device_lock);
2455 				if (bitmap_end)
2456 					bitmap_endwrite(conf->mddev->bitmap,
2457 							sh->sector,
2458 							STRIPE_SECTORS,
2459 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2460 							0);
2461 			}
2462 		}
2463 
2464 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2465 		if (atomic_dec_and_test(&conf->pending_full_writes))
2466 			md_wakeup_thread(conf->mddev->thread);
2467 }
2468 
2469 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2470 		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2471 {
2472 	int rmw = 0, rcw = 0, i;
2473 	for (i = disks; i--; ) {
2474 		/* would I have to read this buffer for read_modify_write */
2475 		struct r5dev *dev = &sh->dev[i];
2476 		if ((dev->towrite || i == sh->pd_idx) &&
2477 		    !test_bit(R5_LOCKED, &dev->flags) &&
2478 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2479 		      test_bit(R5_Wantcompute, &dev->flags))) {
2480 			if (test_bit(R5_Insync, &dev->flags))
2481 				rmw++;
2482 			else
2483 				rmw += 2*disks;  /* cannot read it */
2484 		}
2485 		/* Would I have to read this buffer for reconstruct_write */
2486 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2487 		    !test_bit(R5_LOCKED, &dev->flags) &&
2488 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2489 		    test_bit(R5_Wantcompute, &dev->flags))) {
2490 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2491 			else
2492 				rcw += 2*disks;
2493 		}
2494 	}
2495 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2496 		(unsigned long long)sh->sector, rmw, rcw);
2497 	set_bit(STRIPE_HANDLE, &sh->state);
2498 	if (rmw < rcw && rmw > 0)
2499 		/* prefer read-modify-write, but need to get some data */
2500 		for (i = disks; i--; ) {
2501 			struct r5dev *dev = &sh->dev[i];
2502 			if ((dev->towrite || i == sh->pd_idx) &&
2503 			    !test_bit(R5_LOCKED, &dev->flags) &&
2504 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2505 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2506 			    test_bit(R5_Insync, &dev->flags)) {
2507 				if (
2508 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2509 					pr_debug("Read_old block "
2510 						"%d for r-m-w\n", i);
2511 					set_bit(R5_LOCKED, &dev->flags);
2512 					set_bit(R5_Wantread, &dev->flags);
2513 					s->locked++;
2514 				} else {
2515 					set_bit(STRIPE_DELAYED, &sh->state);
2516 					set_bit(STRIPE_HANDLE, &sh->state);
2517 				}
2518 			}
2519 		}
2520 	if (rcw <= rmw && rcw > 0)
2521 		/* want reconstruct write, but need to get some data */
2522 		for (i = disks; i--; ) {
2523 			struct r5dev *dev = &sh->dev[i];
2524 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2525 			    i != sh->pd_idx &&
2526 			    !test_bit(R5_LOCKED, &dev->flags) &&
2527 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2528 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2529 			    test_bit(R5_Insync, &dev->flags)) {
2530 				if (
2531 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2532 					pr_debug("Read_old block "
2533 						"%d for Reconstruct\n", i);
2534 					set_bit(R5_LOCKED, &dev->flags);
2535 					set_bit(R5_Wantread, &dev->flags);
2536 					s->locked++;
2537 				} else {
2538 					set_bit(STRIPE_DELAYED, &sh->state);
2539 					set_bit(STRIPE_HANDLE, &sh->state);
2540 				}
2541 			}
2542 		}
2543 	/* now if nothing is locked, and if we have enough data,
2544 	 * we can start a write request
2545 	 */
2546 	/* since handle_stripe can be called at any time we need to handle the
2547 	 * case where a compute block operation has been submitted and then a
2548 	 * subsequent call wants to start a write request.  raid_run_ops only
2549 	 * handles the case where compute block and reconstruct are requested
2550 	 * simultaneously.  If this is not the case then new writes need to be
2551 	 * held off until the compute completes.
2552 	 */
2553 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2554 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2555 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2556 		schedule_reconstruction(sh, s, rcw == 0, 0);
2557 }
2558 
2559 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2560 		struct stripe_head *sh,	struct stripe_head_state *s,
2561 		struct r6_state *r6s, int disks)
2562 {
2563 	int rcw = 0, pd_idx = sh->pd_idx, i;
2564 	int qd_idx = sh->qd_idx;
2565 
2566 	set_bit(STRIPE_HANDLE, &sh->state);
2567 	for (i = disks; i--; ) {
2568 		struct r5dev *dev = &sh->dev[i];
2569 		/* check if we haven't enough data */
2570 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2571 		    i != pd_idx && i != qd_idx &&
2572 		    !test_bit(R5_LOCKED, &dev->flags) &&
2573 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2574 		      test_bit(R5_Wantcompute, &dev->flags))) {
2575 			rcw++;
2576 			if (!test_bit(R5_Insync, &dev->flags))
2577 				continue; /* it's a failed drive */
2578 
2579 			if (
2580 			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2581 				pr_debug("Read_old stripe %llu "
2582 					"block %d for Reconstruct\n",
2583 				     (unsigned long long)sh->sector, i);
2584 				set_bit(R5_LOCKED, &dev->flags);
2585 				set_bit(R5_Wantread, &dev->flags);
2586 				s->locked++;
2587 			} else {
2588 				pr_debug("Request delayed stripe %llu "
2589 					"block %d for Reconstruct\n",
2590 				     (unsigned long long)sh->sector, i);
2591 				set_bit(STRIPE_DELAYED, &sh->state);
2592 				set_bit(STRIPE_HANDLE, &sh->state);
2593 			}
2594 		}
2595 	}
2596 	/* now if nothing is locked, and if we have enough data, we can start a
2597 	 * write request
2598 	 */
2599 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2600 	    s->locked == 0 && rcw == 0 &&
2601 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2602 		schedule_reconstruction(sh, s, 1, 0);
2603 	}
2604 }
2605 
2606 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2607 				struct stripe_head_state *s, int disks)
2608 {
2609 	struct r5dev *dev = NULL;
2610 
2611 	set_bit(STRIPE_HANDLE, &sh->state);
2612 
2613 	switch (sh->check_state) {
2614 	case check_state_idle:
2615 		/* start a new check operation if there are no failures */
2616 		if (s->failed == 0) {
2617 			BUG_ON(s->uptodate != disks);
2618 			sh->check_state = check_state_run;
2619 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2620 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2621 			s->uptodate--;
2622 			break;
2623 		}
2624 		dev = &sh->dev[s->failed_num];
2625 		/* fall through */
2626 	case check_state_compute_result:
2627 		sh->check_state = check_state_idle;
2628 		if (!dev)
2629 			dev = &sh->dev[sh->pd_idx];
2630 
2631 		/* check that a write has not made the stripe insync */
2632 		if (test_bit(STRIPE_INSYNC, &sh->state))
2633 			break;
2634 
2635 		/* either failed parity check, or recovery is happening */
2636 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2637 		BUG_ON(s->uptodate != disks);
2638 
2639 		set_bit(R5_LOCKED, &dev->flags);
2640 		s->locked++;
2641 		set_bit(R5_Wantwrite, &dev->flags);
2642 
2643 		clear_bit(STRIPE_DEGRADED, &sh->state);
2644 		set_bit(STRIPE_INSYNC, &sh->state);
2645 		break;
2646 	case check_state_run:
2647 		break; /* we will be called again upon completion */
2648 	case check_state_check_result:
2649 		sh->check_state = check_state_idle;
2650 
2651 		/* if a failure occurred during the check operation, leave
2652 		 * STRIPE_INSYNC not set and let the stripe be handled again
2653 		 */
2654 		if (s->failed)
2655 			break;
2656 
2657 		/* handle a successful check operation, if parity is correct
2658 		 * we are done.  Otherwise update the mismatch count and repair
2659 		 * parity if !MD_RECOVERY_CHECK
2660 		 */
2661 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2662 			/* parity is correct (on disc,
2663 			 * not in buffer any more)
2664 			 */
2665 			set_bit(STRIPE_INSYNC, &sh->state);
2666 		else {
2667 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2668 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2669 				/* don't try to repair!! */
2670 				set_bit(STRIPE_INSYNC, &sh->state);
2671 			else {
2672 				sh->check_state = check_state_compute_run;
2673 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2674 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2675 				set_bit(R5_Wantcompute,
2676 					&sh->dev[sh->pd_idx].flags);
2677 				sh->ops.target = sh->pd_idx;
2678 				sh->ops.target2 = -1;
2679 				s->uptodate++;
2680 			}
2681 		}
2682 		break;
2683 	case check_state_compute_run:
2684 		break;
2685 	default:
2686 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2687 		       __func__, sh->check_state,
2688 		       (unsigned long long) sh->sector);
2689 		BUG();
2690 	}
2691 }
2692 
2693 
2694 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2695 				  struct stripe_head_state *s,
2696 				  struct r6_state *r6s, int disks)
2697 {
2698 	int pd_idx = sh->pd_idx;
2699 	int qd_idx = sh->qd_idx;
2700 	struct r5dev *dev;
2701 
2702 	set_bit(STRIPE_HANDLE, &sh->state);
2703 
2704 	BUG_ON(s->failed > 2);
2705 
2706 	/* Want to check and possibly repair P and Q.
2707 	 * However there could be one 'failed' device, in which
2708 	 * case we can only check one of them, possibly using the
2709 	 * other to generate missing data
2710 	 */
2711 
2712 	switch (sh->check_state) {
2713 	case check_state_idle:
2714 		/* start a new check operation if there are < 2 failures */
2715 		if (s->failed == r6s->q_failed) {
2716 			/* The only possible failed device holds Q, so it
2717 			 * makes sense to check P (If anything else were failed,
2718 			 * we would have used P to recreate it).
2719 			 */
2720 			sh->check_state = check_state_run;
2721 		}
2722 		if (!r6s->q_failed && s->failed < 2) {
2723 			/* Q is not failed, and we didn't use it to generate
2724 			 * anything, so it makes sense to check it
2725 			 */
2726 			if (sh->check_state == check_state_run)
2727 				sh->check_state = check_state_run_pq;
2728 			else
2729 				sh->check_state = check_state_run_q;
2730 		}
2731 
2732 		/* discard potentially stale zero_sum_result */
2733 		sh->ops.zero_sum_result = 0;
2734 
2735 		if (sh->check_state == check_state_run) {
2736 			/* async_xor_zero_sum destroys the contents of P */
2737 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2738 			s->uptodate--;
2739 		}
2740 		if (sh->check_state >= check_state_run &&
2741 		    sh->check_state <= check_state_run_pq) {
2742 			/* async_syndrome_zero_sum preserves P and Q, so
2743 			 * no need to mark them !uptodate here
2744 			 */
2745 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2746 			break;
2747 		}
2748 
2749 		/* we have 2-disk failure */
2750 		BUG_ON(s->failed != 2);
2751 		/* fall through */
2752 	case check_state_compute_result:
2753 		sh->check_state = check_state_idle;
2754 
2755 		/* check that a write has not made the stripe insync */
2756 		if (test_bit(STRIPE_INSYNC, &sh->state))
2757 			break;
2758 
2759 		/* now write out any block on a failed drive,
2760 		 * or P or Q if they were recomputed
2761 		 */
2762 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2763 		if (s->failed == 2) {
2764 			dev = &sh->dev[r6s->failed_num[1]];
2765 			s->locked++;
2766 			set_bit(R5_LOCKED, &dev->flags);
2767 			set_bit(R5_Wantwrite, &dev->flags);
2768 		}
2769 		if (s->failed >= 1) {
2770 			dev = &sh->dev[r6s->failed_num[0]];
2771 			s->locked++;
2772 			set_bit(R5_LOCKED, &dev->flags);
2773 			set_bit(R5_Wantwrite, &dev->flags);
2774 		}
2775 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2776 			dev = &sh->dev[pd_idx];
2777 			s->locked++;
2778 			set_bit(R5_LOCKED, &dev->flags);
2779 			set_bit(R5_Wantwrite, &dev->flags);
2780 		}
2781 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2782 			dev = &sh->dev[qd_idx];
2783 			s->locked++;
2784 			set_bit(R5_LOCKED, &dev->flags);
2785 			set_bit(R5_Wantwrite, &dev->flags);
2786 		}
2787 		clear_bit(STRIPE_DEGRADED, &sh->state);
2788 
2789 		set_bit(STRIPE_INSYNC, &sh->state);
2790 		break;
2791 	case check_state_run:
2792 	case check_state_run_q:
2793 	case check_state_run_pq:
2794 		break; /* we will be called again upon completion */
2795 	case check_state_check_result:
2796 		sh->check_state = check_state_idle;
2797 
2798 		/* handle a successful check operation, if parity is correct
2799 		 * we are done.  Otherwise update the mismatch count and repair
2800 		 * parity if !MD_RECOVERY_CHECK
2801 		 */
2802 		if (sh->ops.zero_sum_result == 0) {
2803 			/* both parities are correct */
2804 			if (!s->failed)
2805 				set_bit(STRIPE_INSYNC, &sh->state);
2806 			else {
2807 				/* in contrast to the raid5 case we can validate
2808 				 * parity, but still have a failure to write
2809 				 * back
2810 				 */
2811 				sh->check_state = check_state_compute_result;
2812 				/* Returning at this point means that we may go
2813 				 * off and bring p and/or q uptodate again so
2814 				 * we make sure to check zero_sum_result again
2815 				 * to verify if p or q need writeback
2816 				 */
2817 			}
2818 		} else {
2819 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2820 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2821 				/* don't try to repair!! */
2822 				set_bit(STRIPE_INSYNC, &sh->state);
2823 			else {
2824 				int *target = &sh->ops.target;
2825 
2826 				sh->ops.target = -1;
2827 				sh->ops.target2 = -1;
2828 				sh->check_state = check_state_compute_run;
2829 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2830 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2831 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2832 					set_bit(R5_Wantcompute,
2833 						&sh->dev[pd_idx].flags);
2834 					*target = pd_idx;
2835 					target = &sh->ops.target2;
2836 					s->uptodate++;
2837 				}
2838 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2839 					set_bit(R5_Wantcompute,
2840 						&sh->dev[qd_idx].flags);
2841 					*target = qd_idx;
2842 					s->uptodate++;
2843 				}
2844 			}
2845 		}
2846 		break;
2847 	case check_state_compute_run:
2848 		break;
2849 	default:
2850 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2851 		       __func__, sh->check_state,
2852 		       (unsigned long long) sh->sector);
2853 		BUG();
2854 	}
2855 }
2856 
2857 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2858 				struct r6_state *r6s)
2859 {
2860 	int i;
2861 
2862 	/* We have read all the blocks in this stripe and now we need to
2863 	 * copy some of them into a target stripe for expand.
2864 	 */
2865 	struct dma_async_tx_descriptor *tx = NULL;
2866 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2867 	for (i = 0; i < sh->disks; i++)
2868 		if (i != sh->pd_idx && i != sh->qd_idx) {
2869 			int dd_idx, j;
2870 			struct stripe_head *sh2;
2871 			struct async_submit_ctl submit;
2872 
2873 			sector_t bn = compute_blocknr(sh, i, 1);
2874 			sector_t s = raid5_compute_sector(conf, bn, 0,
2875 							  &dd_idx, NULL);
2876 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2877 			if (sh2 == NULL)
2878 				/* so far only the early blocks of this stripe
2879 				 * have been requested.  When later blocks
2880 				 * get requested, we will try again
2881 				 */
2882 				continue;
2883 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2884 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2885 				/* must have already done this block */
2886 				release_stripe(sh2);
2887 				continue;
2888 			}
2889 
2890 			/* place all the copies on one channel */
2891 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2892 			tx = async_memcpy(sh2->dev[dd_idx].page,
2893 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2894 					  &submit);
2895 
2896 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2897 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2898 			for (j = 0; j < conf->raid_disks; j++)
2899 				if (j != sh2->pd_idx &&
2900 				    (!r6s || j != sh2->qd_idx) &&
2901 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2902 					break;
2903 			if (j == conf->raid_disks) {
2904 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2905 				set_bit(STRIPE_HANDLE, &sh2->state);
2906 			}
2907 			release_stripe(sh2);
2908 
2909 		}
2910 	/* done submitting copies, wait for them to complete */
2911 	if (tx) {
2912 		async_tx_ack(tx);
2913 		dma_wait_for_async_tx(tx);
2914 	}
2915 }
2916 
2917 
2918 /*
2919  * handle_stripe - do things to a stripe.
2920  *
2921  * We lock the stripe and then examine the state of various bits
2922  * to see what needs to be done.
2923  * Possible results:
2924  *    return some read request which now have data
2925  *    return some write requests which are safely on disc
2926  *    schedule a read on some buffers
2927  *    schedule a write of some buffers
2928  *    return confirmation of parity correctness
2929  *
2930  * buffers are taken off read_list or write_list, and bh_cache buffers
2931  * get BH_Lock set before the stripe lock is released.
2932  *
2933  */
2934 
2935 static void handle_stripe5(struct stripe_head *sh)
2936 {
2937 	raid5_conf_t *conf = sh->raid_conf;
2938 	int disks = sh->disks, i;
2939 	struct bio *return_bi = NULL;
2940 	struct stripe_head_state s;
2941 	struct r5dev *dev;
2942 	mdk_rdev_t *blocked_rdev = NULL;
2943 	int prexor;
2944 	int dec_preread_active = 0;
2945 
2946 	memset(&s, 0, sizeof(s));
2947 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2948 		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2949 		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2950 		 sh->reconstruct_state);
2951 
2952 	spin_lock(&sh->lock);
2953 	clear_bit(STRIPE_HANDLE, &sh->state);
2954 	clear_bit(STRIPE_DELAYED, &sh->state);
2955 
2956 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2957 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2958 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2959 
2960 	/* Now to look around and see what can be done */
2961 	rcu_read_lock();
2962 	for (i=disks; i--; ) {
2963 		mdk_rdev_t *rdev;
2964 
2965 		dev = &sh->dev[i];
2966 		clear_bit(R5_Insync, &dev->flags);
2967 
2968 		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2969 			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2970 			dev->towrite, dev->written);
2971 
2972 		/* maybe we can request a biofill operation
2973 		 *
2974 		 * new wantfill requests are only permitted while
2975 		 * ops_complete_biofill is guaranteed to be inactive
2976 		 */
2977 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2978 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2979 			set_bit(R5_Wantfill, &dev->flags);
2980 
2981 		/* now count some things */
2982 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2983 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2984 		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2985 
2986 		if (test_bit(R5_Wantfill, &dev->flags))
2987 			s.to_fill++;
2988 		else if (dev->toread)
2989 			s.to_read++;
2990 		if (dev->towrite) {
2991 			s.to_write++;
2992 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2993 				s.non_overwrite++;
2994 		}
2995 		if (dev->written)
2996 			s.written++;
2997 		rdev = rcu_dereference(conf->disks[i].rdev);
2998 		if (blocked_rdev == NULL &&
2999 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3000 			blocked_rdev = rdev;
3001 			atomic_inc(&rdev->nr_pending);
3002 		}
3003 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3004 			/* The ReadError flag will just be confusing now */
3005 			clear_bit(R5_ReadError, &dev->flags);
3006 			clear_bit(R5_ReWrite, &dev->flags);
3007 		}
3008 		if (!rdev || !test_bit(In_sync, &rdev->flags)
3009 		    || test_bit(R5_ReadError, &dev->flags)) {
3010 			s.failed++;
3011 			s.failed_num = i;
3012 		} else
3013 			set_bit(R5_Insync, &dev->flags);
3014 	}
3015 	rcu_read_unlock();
3016 
3017 	if (unlikely(blocked_rdev)) {
3018 		if (s.syncing || s.expanding || s.expanded ||
3019 		    s.to_write || s.written) {
3020 			set_bit(STRIPE_HANDLE, &sh->state);
3021 			goto unlock;
3022 		}
3023 		/* There is nothing for the blocked_rdev to block */
3024 		rdev_dec_pending(blocked_rdev, conf->mddev);
3025 		blocked_rdev = NULL;
3026 	}
3027 
3028 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3029 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3030 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3031 	}
3032 
3033 	pr_debug("locked=%d uptodate=%d to_read=%d"
3034 		" to_write=%d failed=%d failed_num=%d\n",
3035 		s.locked, s.uptodate, s.to_read, s.to_write,
3036 		s.failed, s.failed_num);
3037 	/* check if the array has lost two devices and, if so, some requests might
3038 	 * need to be failed
3039 	 */
3040 	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3041 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3042 	if (s.failed > 1 && s.syncing) {
3043 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3044 		clear_bit(STRIPE_SYNCING, &sh->state);
3045 		s.syncing = 0;
3046 	}
3047 
3048 	/* might be able to return some write requests if the parity block
3049 	 * is safe, or on a failed drive
3050 	 */
3051 	dev = &sh->dev[sh->pd_idx];
3052 	if ( s.written &&
3053 	     ((test_bit(R5_Insync, &dev->flags) &&
3054 	       !test_bit(R5_LOCKED, &dev->flags) &&
3055 	       test_bit(R5_UPTODATE, &dev->flags)) ||
3056 	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3057 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3058 
3059 	/* Now we might consider reading some blocks, either to check/generate
3060 	 * parity, or to satisfy requests
3061 	 * or to load a block that is being partially written.
3062 	 */
3063 	if (s.to_read || s.non_overwrite ||
3064 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3065 		handle_stripe_fill5(sh, &s, disks);
3066 
3067 	/* Now we check to see if any write operations have recently
3068 	 * completed
3069 	 */
3070 	prexor = 0;
3071 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3072 		prexor = 1;
3073 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3074 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3075 		sh->reconstruct_state = reconstruct_state_idle;
3076 
3077 		/* All the 'written' buffers and the parity block are ready to
3078 		 * be written back to disk
3079 		 */
3080 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3081 		for (i = disks; i--; ) {
3082 			dev = &sh->dev[i];
3083 			if (test_bit(R5_LOCKED, &dev->flags) &&
3084 				(i == sh->pd_idx || dev->written)) {
3085 				pr_debug("Writing block %d\n", i);
3086 				set_bit(R5_Wantwrite, &dev->flags);
3087 				if (prexor)
3088 					continue;
3089 				if (!test_bit(R5_Insync, &dev->flags) ||
3090 				    (i == sh->pd_idx && s.failed == 0))
3091 					set_bit(STRIPE_INSYNC, &sh->state);
3092 			}
3093 		}
3094 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3095 			dec_preread_active = 1;
3096 	}
3097 
3098 	/* Now to consider new write requests and what else, if anything
3099 	 * should be read.  We do not handle new writes when:
3100 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3101 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3102 	 *    block.
3103 	 */
3104 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3105 		handle_stripe_dirtying5(conf, sh, &s, disks);
3106 
3107 	/* maybe we need to check and possibly fix the parity for this stripe
3108 	 * Any reads will already have been scheduled, so we just see if enough
3109 	 * data is available.  The parity check is held off while parity
3110 	 * dependent operations are in flight.
3111 	 */
3112 	if (sh->check_state ||
3113 	    (s.syncing && s.locked == 0 &&
3114 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3115 	     !test_bit(STRIPE_INSYNC, &sh->state)))
3116 		handle_parity_checks5(conf, sh, &s, disks);
3117 
3118 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3119 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3120 		clear_bit(STRIPE_SYNCING, &sh->state);
3121 	}
3122 
3123 	/* If the failed drive is just a ReadError, then we might need to progress
3124 	 * the repair/check process
3125 	 */
3126 	if (s.failed == 1 && !conf->mddev->ro &&
3127 	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3128 	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3129 	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3130 		) {
3131 		dev = &sh->dev[s.failed_num];
3132 		if (!test_bit(R5_ReWrite, &dev->flags)) {
3133 			set_bit(R5_Wantwrite, &dev->flags);
3134 			set_bit(R5_ReWrite, &dev->flags);
3135 			set_bit(R5_LOCKED, &dev->flags);
3136 			s.locked++;
3137 		} else {
3138 			/* let's read it back */
3139 			set_bit(R5_Wantread, &dev->flags);
3140 			set_bit(R5_LOCKED, &dev->flags);
3141 			s.locked++;
3142 		}
3143 	}
3144 
3145 	/* Finish reconstruct operations initiated by the expansion process */
3146 	if (sh->reconstruct_state == reconstruct_state_result) {
3147 		struct stripe_head *sh2
3148 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3149 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3150 			/* sh cannot be written until sh2 has been read.
3151 			 * so arrange for sh to be delayed a little
3152 			 */
3153 			set_bit(STRIPE_DELAYED, &sh->state);
3154 			set_bit(STRIPE_HANDLE, &sh->state);
3155 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3156 					      &sh2->state))
3157 				atomic_inc(&conf->preread_active_stripes);
3158 			release_stripe(sh2);
3159 			goto unlock;
3160 		}
3161 		if (sh2)
3162 			release_stripe(sh2);
3163 
3164 		sh->reconstruct_state = reconstruct_state_idle;
3165 		clear_bit(STRIPE_EXPANDING, &sh->state);
3166 		for (i = conf->raid_disks; i--; ) {
3167 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3168 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3169 			s.locked++;
3170 		}
3171 	}
3172 
3173 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3174 	    !sh->reconstruct_state) {
3175 		/* Need to write out all blocks after computing parity */
3176 		sh->disks = conf->raid_disks;
3177 		stripe_set_idx(sh->sector, conf, 0, sh);
3178 		schedule_reconstruction(sh, &s, 1, 1);
3179 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3180 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3181 		atomic_dec(&conf->reshape_stripes);
3182 		wake_up(&conf->wait_for_overlap);
3183 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3184 	}
3185 
3186 	if (s.expanding && s.locked == 0 &&
3187 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3188 		handle_stripe_expansion(conf, sh, NULL);
3189 
3190  unlock:
3191 	spin_unlock(&sh->lock);
3192 
3193 	/* wait for this device to become unblocked */
3194 	if (unlikely(blocked_rdev))
3195 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3196 
3197 	if (s.ops_request)
3198 		raid_run_ops(sh, s.ops_request);
3199 
3200 	ops_run_io(sh, &s);
3201 
3202 	if (dec_preread_active) {
3203 		/* We delay this until after ops_run_io so that if make_request
3204 		 * is waiting on a barrier, it won't continue until the writes
3205 		 * have actually been submitted.
3206 		 */
3207 		atomic_dec(&conf->preread_active_stripes);
3208 		if (atomic_read(&conf->preread_active_stripes) <
3209 		    IO_THRESHOLD)
3210 			md_wakeup_thread(conf->mddev->thread);
3211 	}
3212 	return_io(return_bi);
3213 }
3214 
3215 static void handle_stripe6(struct stripe_head *sh)
3216 {
3217 	raid5_conf_t *conf = sh->raid_conf;
3218 	int disks = sh->disks;
3219 	struct bio *return_bi = NULL;
3220 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3221 	struct stripe_head_state s;
3222 	struct r6_state r6s;
3223 	struct r5dev *dev, *pdev, *qdev;
3224 	mdk_rdev_t *blocked_rdev = NULL;
3225 	int dec_preread_active = 0;
3226 
3227 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3228 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3229 	       (unsigned long long)sh->sector, sh->state,
3230 	       atomic_read(&sh->count), pd_idx, qd_idx,
3231 	       sh->check_state, sh->reconstruct_state);
3232 	memset(&s, 0, sizeof(s));
3233 
3234 	spin_lock(&sh->lock);
3235 	clear_bit(STRIPE_HANDLE, &sh->state);
3236 	clear_bit(STRIPE_DELAYED, &sh->state);
3237 
3238 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3239 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3240 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3241 	/* Now to look around and see what can be done */
3242 
3243 	rcu_read_lock();
3244 	for (i=disks; i--; ) {
3245 		mdk_rdev_t *rdev;
3246 		dev = &sh->dev[i];
3247 		clear_bit(R5_Insync, &dev->flags);
3248 
3249 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3250 			i, dev->flags, dev->toread, dev->towrite, dev->written);
3251 		/* maybe we can reply to a read
3252 		 *
3253 		 * new wantfill requests are only permitted while
3254 		 * ops_complete_biofill is guaranteed to be inactive
3255 		 */
3256 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3257 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3258 			set_bit(R5_Wantfill, &dev->flags);
3259 
3260 		/* now count some things */
3261 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3262 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3263 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3264 			s.compute++;
3265 			BUG_ON(s.compute > 2);
3266 		}
3267 
3268 		if (test_bit(R5_Wantfill, &dev->flags)) {
3269 			s.to_fill++;
3270 		} else if (dev->toread)
3271 			s.to_read++;
3272 		if (dev->towrite) {
3273 			s.to_write++;
3274 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3275 				s.non_overwrite++;
3276 		}
3277 		if (dev->written)
3278 			s.written++;
3279 		rdev = rcu_dereference(conf->disks[i].rdev);
3280 		if (blocked_rdev == NULL &&
3281 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3282 			blocked_rdev = rdev;
3283 			atomic_inc(&rdev->nr_pending);
3284 		}
3285 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3286 			/* The ReadError flag will just be confusing now */
3287 			clear_bit(R5_ReadError, &dev->flags);
3288 			clear_bit(R5_ReWrite, &dev->flags);
3289 		}
3290 		if (!rdev || !test_bit(In_sync, &rdev->flags)
3291 		    || test_bit(R5_ReadError, &dev->flags)) {
3292 			if (s.failed < 2)
3293 				r6s.failed_num[s.failed] = i;
3294 			s.failed++;
3295 		} else
3296 			set_bit(R5_Insync, &dev->flags);
3297 	}
3298 	rcu_read_unlock();
3299 
3300 	if (unlikely(blocked_rdev)) {
3301 		if (s.syncing || s.expanding || s.expanded ||
3302 		    s.to_write || s.written) {
3303 			set_bit(STRIPE_HANDLE, &sh->state);
3304 			goto unlock;
3305 		}
3306 		/* There is nothing for the blocked_rdev to block */
3307 		rdev_dec_pending(blocked_rdev, conf->mddev);
3308 		blocked_rdev = NULL;
3309 	}
3310 
3311 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3312 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3313 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3314 	}
3315 
3316 	pr_debug("locked=%d uptodate=%d to_read=%d"
3317 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3318 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3319 	       r6s.failed_num[0], r6s.failed_num[1]);
3320 	/* check if the array has lost >2 devices and, if so, some requests
3321 	 * might need to be failed
3322 	 */
3323 	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3324 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3325 	if (s.failed > 2 && s.syncing) {
3326 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3327 		clear_bit(STRIPE_SYNCING, &sh->state);
3328 		s.syncing = 0;
3329 	}
3330 
3331 	/*
3332 	 * might be able to return some write requests if the parity blocks
3333 	 * are safe, or on a failed drive
3334 	 */
3335 	pdev = &sh->dev[pd_idx];
3336 	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3337 		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3338 	qdev = &sh->dev[qd_idx];
3339 	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3340 		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3341 
3342 	if ( s.written &&
3343 	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3344 			     && !test_bit(R5_LOCKED, &pdev->flags)
3345 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3346 	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3347 			     && !test_bit(R5_LOCKED, &qdev->flags)
3348 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3349 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3350 
3351 	/* Now we might consider reading some blocks, either to check/generate
3352 	 * parity, or to satisfy requests
3353 	 * or to load a block that is being partially written.
3354 	 */
3355 	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3356 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3357 		handle_stripe_fill6(sh, &s, &r6s, disks);
3358 
3359 	/* Now we check to see if any write operations have recently
3360 	 * completed
3361 	 */
3362 	if (sh->reconstruct_state == reconstruct_state_drain_result) {
3363 
3364 		sh->reconstruct_state = reconstruct_state_idle;
3365 		/* All the 'written' buffers and the parity blocks are ready to
3366 		 * be written back to disk
3367 		 */
3368 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3369 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3370 		for (i = disks; i--; ) {
3371 			dev = &sh->dev[i];
3372 			if (test_bit(R5_LOCKED, &dev->flags) &&
3373 			    (i == sh->pd_idx || i == qd_idx ||
3374 			     dev->written)) {
3375 				pr_debug("Writing block %d\n", i);
3376 				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3377 				set_bit(R5_Wantwrite, &dev->flags);
3378 				if (!test_bit(R5_Insync, &dev->flags) ||
3379 				    ((i == sh->pd_idx || i == qd_idx) &&
3380 				      s.failed == 0))
3381 					set_bit(STRIPE_INSYNC, &sh->state);
3382 			}
3383 		}
3384 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3385 			dec_preread_active = 1;
3386 	}
3387 
3388 	/* Now to consider new write requests and what else, if anything
3389 	 * should be read.  We do not handle new writes when:
3390 	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3391 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3392 	 *    block.
3393 	 */
3394 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3395 		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3396 
3397 	/* maybe we need to check and possibly fix the parity for this stripe
3398 	 * Any reads will already have been scheduled, so we just see if enough
3399 	 * data is available.  The parity check is held off while parity
3400 	 * dependent operations are in flight.
3401 	 */
3402 	if (sh->check_state ||
3403 	    (s.syncing && s.locked == 0 &&
3404 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3405 	     !test_bit(STRIPE_INSYNC, &sh->state)))
3406 		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3407 
3408 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3409 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3410 		clear_bit(STRIPE_SYNCING, &sh->state);
3411 	}
3412 
3413 	/* If the failed drives are just a ReadError, then we might need
3414 	 * to progress the repair/check process
3415 	 */
3416 	if (s.failed <= 2 && !conf->mddev->ro)
3417 		for (i = 0; i < s.failed; i++) {
3418 			dev = &sh->dev[r6s.failed_num[i]];
3419 			if (test_bit(R5_ReadError, &dev->flags)
3420 			    && !test_bit(R5_LOCKED, &dev->flags)
3421 			    && test_bit(R5_UPTODATE, &dev->flags)
3422 				) {
3423 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3424 					set_bit(R5_Wantwrite, &dev->flags);
3425 					set_bit(R5_ReWrite, &dev->flags);
3426 					set_bit(R5_LOCKED, &dev->flags);
3427 					s.locked++;
3428 				} else {
3429 					/* let's read it back */
3430 					set_bit(R5_Wantread, &dev->flags);
3431 					set_bit(R5_LOCKED, &dev->flags);
3432 					s.locked++;
3433 				}
3434 			}
3435 		}
3436 
3437 	/* Finish reconstruct operations initiated by the expansion process */
3438 	if (sh->reconstruct_state == reconstruct_state_result) {
3439 		sh->reconstruct_state = reconstruct_state_idle;
3440 		clear_bit(STRIPE_EXPANDING, &sh->state);
3441 		for (i = conf->raid_disks; i--; ) {
3442 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3443 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3444 			s.locked++;
3445 		}
3446 	}
3447 
3448 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3449 	    !sh->reconstruct_state) {
3450 		struct stripe_head *sh2
3451 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3452 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3453 			/* sh cannot be written until sh2 has been read.
3454 			 * so arrange for sh to be delayed a little
3455 			 */
3456 			set_bit(STRIPE_DELAYED, &sh->state);
3457 			set_bit(STRIPE_HANDLE, &sh->state);
3458 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3459 					      &sh2->state))
3460 				atomic_inc(&conf->preread_active_stripes);
3461 			release_stripe(sh2);
3462 			goto unlock;
3463 		}
3464 		if (sh2)
3465 			release_stripe(sh2);
3466 
3467 		/* Need to write out all blocks after computing P&Q */
3468 		sh->disks = conf->raid_disks;
3469 		stripe_set_idx(sh->sector, conf, 0, sh);
3470 		schedule_reconstruction(sh, &s, 1, 1);
3471 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3472 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3473 		atomic_dec(&conf->reshape_stripes);
3474 		wake_up(&conf->wait_for_overlap);
3475 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3476 	}
3477 
3478 	if (s.expanding && s.locked == 0 &&
3479 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3480 		handle_stripe_expansion(conf, sh, &r6s);
3481 
3482  unlock:
3483 	spin_unlock(&sh->lock);
3484 
3485 	/* wait for this device to become unblocked */
3486 	if (unlikely(blocked_rdev))
3487 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3488 
3489 	if (s.ops_request)
3490 		raid_run_ops(sh, s.ops_request);
3491 
3492 	ops_run_io(sh, &s);
3493 
3494 
3495 	if (dec_preread_active) {
3496 		/* We delay this until after ops_run_io so that if make_request
3497 		 * is waiting on a barrier, it won't continue until the writes
3498 		 * have actually been submitted.
3499 		 */
3500 		atomic_dec(&conf->preread_active_stripes);
3501 		if (atomic_read(&conf->preread_active_stripes) <
3502 		    IO_THRESHOLD)
3503 			md_wakeup_thread(conf->mddev->thread);
3504 	}
3505 
3506 	return_io(return_bi);
3507 }
3508 
3509 static void handle_stripe(struct stripe_head *sh)
3510 {
3511 	if (sh->raid_conf->level == 6)
3512 		handle_stripe6(sh);
3513 	else
3514 		handle_stripe5(sh);
3515 }
3516 
3517 static void raid5_activate_delayed(raid5_conf_t *conf)
3518 {
3519 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3520 		while (!list_empty(&conf->delayed_list)) {
3521 			struct list_head *l = conf->delayed_list.next;
3522 			struct stripe_head *sh;
3523 			sh = list_entry(l, struct stripe_head, lru);
3524 			list_del_init(l);
3525 			clear_bit(STRIPE_DELAYED, &sh->state);
3526 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3527 				atomic_inc(&conf->preread_active_stripes);
3528 			list_add_tail(&sh->lru, &conf->hold_list);
3529 		}
3530 	} else
3531 		blk_plug_device(conf->mddev->queue);
3532 }
3533 
3534 static void activate_bit_delay(raid5_conf_t *conf)
3535 {
3536 	/* device_lock is held */
3537 	struct list_head head;
3538 	list_add(&head, &conf->bitmap_list);
3539 	list_del_init(&conf->bitmap_list);
3540 	while (!list_empty(&head)) {
3541 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3542 		list_del_init(&sh->lru);
3543 		atomic_inc(&sh->count);
3544 		__release_stripe(conf, sh);
3545 	}
3546 }
3547 
3548 static void unplug_slaves(mddev_t *mddev)
3549 {
3550 	raid5_conf_t *conf = mddev->private;
3551 	int i;
3552 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
3553 
3554 	rcu_read_lock();
3555 	for (i = 0; i < devs; i++) {
3556 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3557 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3558 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3559 
3560 			atomic_inc(&rdev->nr_pending);
3561 			rcu_read_unlock();
3562 
3563 			blk_unplug(r_queue);
3564 
3565 			rdev_dec_pending(rdev, mddev);
3566 			rcu_read_lock();
3567 		}
3568 	}
3569 	rcu_read_unlock();
3570 }
3571 
3572 static void raid5_unplug_device(struct request_queue *q)
3573 {
3574 	mddev_t *mddev = q->queuedata;
3575 	raid5_conf_t *conf = mddev->private;
3576 	unsigned long flags;
3577 
3578 	spin_lock_irqsave(&conf->device_lock, flags);
3579 
3580 	if (blk_remove_plug(q)) {
3581 		conf->seq_flush++;
3582 		raid5_activate_delayed(conf);
3583 	}
3584 	md_wakeup_thread(mddev->thread);
3585 
3586 	spin_unlock_irqrestore(&conf->device_lock, flags);
3587 
3588 	unplug_slaves(mddev);
3589 }
3590 
3591 static int raid5_congested(void *data, int bits)
3592 {
3593 	mddev_t *mddev = data;
3594 	raid5_conf_t *conf = mddev->private;
3595 
3596 	/* No difference between reads and writes.  Just check
3597 	 * how busy the stripe_cache is
3598 	 */
3599 
3600 	if (mddev_congested(mddev, bits))
3601 		return 1;
3602 	if (conf->inactive_blocked)
3603 		return 1;
3604 	if (conf->quiesce)
3605 		return 1;
3606 	if (list_empty_careful(&conf->inactive_list))
3607 		return 1;
3608 
3609 	return 0;
3610 }
3611 
3612 /* We want read requests to align with chunks where possible,
3613  * but write requests don't need to.
3614  */
3615 static int raid5_mergeable_bvec(struct request_queue *q,
3616 				struct bvec_merge_data *bvm,
3617 				struct bio_vec *biovec)
3618 {
3619 	mddev_t *mddev = q->queuedata;
3620 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3621 	int max;
3622 	unsigned int chunk_sectors = mddev->chunk_sectors;
3623 	unsigned int bio_sectors = bvm->bi_size >> 9;
3624 
3625 	if ((bvm->bi_rw & 1) == WRITE)
3626 		return biovec->bv_len; /* always allow writes to be mergeable */
3627 
3628 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3629 		chunk_sectors = mddev->new_chunk_sectors;
3630 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3631 	if (max < 0) max = 0;
3632 	if (max <= biovec->bv_len && bio_sectors == 0)
3633 		return biovec->bv_len;
3634 	else
3635 		return max;
3636 }
3637 
3638 
3639 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3640 {
3641 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3642 	unsigned int chunk_sectors = mddev->chunk_sectors;
3643 	unsigned int bio_sectors = bio->bi_size >> 9;
3644 
3645 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3646 		chunk_sectors = mddev->new_chunk_sectors;
3647 	return  chunk_sectors >=
3648 		((sector & (chunk_sectors - 1)) + bio_sectors);
3649 }
3650 
3651 /*
3652  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3653  *  later sampled by raid5d.
3654  */
3655 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3656 {
3657 	unsigned long flags;
3658 
3659 	spin_lock_irqsave(&conf->device_lock, flags);
3660 
3661 	bi->bi_next = conf->retry_read_aligned_list;
3662 	conf->retry_read_aligned_list = bi;
3663 
3664 	spin_unlock_irqrestore(&conf->device_lock, flags);
3665 	md_wakeup_thread(conf->mddev->thread);
3666 }
3667 
3668 
3669 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3670 {
3671 	struct bio *bi;
3672 
3673 	bi = conf->retry_read_aligned;
3674 	if (bi) {
3675 		conf->retry_read_aligned = NULL;
3676 		return bi;
3677 	}
3678 	bi = conf->retry_read_aligned_list;
3679 	if(bi) {
3680 		conf->retry_read_aligned_list = bi->bi_next;
3681 		bi->bi_next = NULL;
3682 		/*
3683 		 * this sets the active strip count to 1 and the processed
3684 		 * strip count to zero (upper 8 bits)
3685 		 */
3686 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3687 	}
3688 
3689 	return bi;
3690 }
3691 
3692 
3693 /*
3694  *  The "raid5_align_endio" should check if the read succeeded and if it
3695  *  did, call bio_endio on the original bio (having bio_put the new bio
3696  *  first).
3697  *  If the read failed..
3698  */
3699 static void raid5_align_endio(struct bio *bi, int error)
3700 {
3701 	struct bio* raid_bi  = bi->bi_private;
3702 	mddev_t *mddev;
3703 	raid5_conf_t *conf;
3704 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3705 	mdk_rdev_t *rdev;
3706 
3707 	bio_put(bi);
3708 
3709 	rdev = (void*)raid_bi->bi_next;
3710 	raid_bi->bi_next = NULL;
3711 	mddev = rdev->mddev;
3712 	conf = mddev->private;
3713 
3714 	rdev_dec_pending(rdev, conf->mddev);
3715 
3716 	if (!error && uptodate) {
3717 		bio_endio(raid_bi, 0);
3718 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3719 			wake_up(&conf->wait_for_stripe);
3720 		return;
3721 	}
3722 
3723 
3724 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3725 
3726 	add_bio_to_retry(raid_bi, conf);
3727 }
3728 
3729 static int bio_fits_rdev(struct bio *bi)
3730 {
3731 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3732 
3733 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3734 		return 0;
3735 	blk_recount_segments(q, bi);
3736 	if (bi->bi_phys_segments > queue_max_segments(q))
3737 		return 0;
3738 
3739 	if (q->merge_bvec_fn)
3740 		/* it's too hard to apply the merge_bvec_fn at this stage,
3741 		 * just just give up
3742 		 */
3743 		return 0;
3744 
3745 	return 1;
3746 }
3747 
3748 
3749 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3750 {
3751 	raid5_conf_t *conf = mddev->private;
3752 	int dd_idx;
3753 	struct bio* align_bi;
3754 	mdk_rdev_t *rdev;
3755 
3756 	if (!in_chunk_boundary(mddev, raid_bio)) {
3757 		pr_debug("chunk_aligned_read : non aligned\n");
3758 		return 0;
3759 	}
3760 	/*
3761 	 * use bio_clone to make a copy of the bio
3762 	 */
3763 	align_bi = bio_clone(raid_bio, GFP_NOIO);
3764 	if (!align_bi)
3765 		return 0;
3766 	/*
3767 	 *   set bi_end_io to a new function, and set bi_private to the
3768 	 *     original bio.
3769 	 */
3770 	align_bi->bi_end_io  = raid5_align_endio;
3771 	align_bi->bi_private = raid_bio;
3772 	/*
3773 	 *	compute position
3774 	 */
3775 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3776 						    0,
3777 						    &dd_idx, NULL);
3778 
3779 	rcu_read_lock();
3780 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3781 	if (rdev && test_bit(In_sync, &rdev->flags)) {
3782 		atomic_inc(&rdev->nr_pending);
3783 		rcu_read_unlock();
3784 		raid_bio->bi_next = (void*)rdev;
3785 		align_bi->bi_bdev =  rdev->bdev;
3786 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3787 		align_bi->bi_sector += rdev->data_offset;
3788 
3789 		if (!bio_fits_rdev(align_bi)) {
3790 			/* too big in some way */
3791 			bio_put(align_bi);
3792 			rdev_dec_pending(rdev, mddev);
3793 			return 0;
3794 		}
3795 
3796 		spin_lock_irq(&conf->device_lock);
3797 		wait_event_lock_irq(conf->wait_for_stripe,
3798 				    conf->quiesce == 0,
3799 				    conf->device_lock, /* nothing */);
3800 		atomic_inc(&conf->active_aligned_reads);
3801 		spin_unlock_irq(&conf->device_lock);
3802 
3803 		generic_make_request(align_bi);
3804 		return 1;
3805 	} else {
3806 		rcu_read_unlock();
3807 		bio_put(align_bi);
3808 		return 0;
3809 	}
3810 }
3811 
3812 /* __get_priority_stripe - get the next stripe to process
3813  *
3814  * Full stripe writes are allowed to pass preread active stripes up until
3815  * the bypass_threshold is exceeded.  In general the bypass_count
3816  * increments when the handle_list is handled before the hold_list; however, it
3817  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3818  * stripe with in flight i/o.  The bypass_count will be reset when the
3819  * head of the hold_list has changed, i.e. the head was promoted to the
3820  * handle_list.
3821  */
3822 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3823 {
3824 	struct stripe_head *sh;
3825 
3826 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3827 		  __func__,
3828 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3829 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3830 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3831 
3832 	if (!list_empty(&conf->handle_list)) {
3833 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3834 
3835 		if (list_empty(&conf->hold_list))
3836 			conf->bypass_count = 0;
3837 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3838 			if (conf->hold_list.next == conf->last_hold)
3839 				conf->bypass_count++;
3840 			else {
3841 				conf->last_hold = conf->hold_list.next;
3842 				conf->bypass_count -= conf->bypass_threshold;
3843 				if (conf->bypass_count < 0)
3844 					conf->bypass_count = 0;
3845 			}
3846 		}
3847 	} else if (!list_empty(&conf->hold_list) &&
3848 		   ((conf->bypass_threshold &&
3849 		     conf->bypass_count > conf->bypass_threshold) ||
3850 		    atomic_read(&conf->pending_full_writes) == 0)) {
3851 		sh = list_entry(conf->hold_list.next,
3852 				typeof(*sh), lru);
3853 		conf->bypass_count -= conf->bypass_threshold;
3854 		if (conf->bypass_count < 0)
3855 			conf->bypass_count = 0;
3856 	} else
3857 		return NULL;
3858 
3859 	list_del_init(&sh->lru);
3860 	atomic_inc(&sh->count);
3861 	BUG_ON(atomic_read(&sh->count) != 1);
3862 	return sh;
3863 }
3864 
3865 static int make_request(mddev_t *mddev, struct bio * bi)
3866 {
3867 	raid5_conf_t *conf = mddev->private;
3868 	int dd_idx;
3869 	sector_t new_sector;
3870 	sector_t logical_sector, last_sector;
3871 	struct stripe_head *sh;
3872 	const int rw = bio_data_dir(bi);
3873 	int remaining;
3874 
3875 	if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3876 		/* Drain all pending writes.  We only really need
3877 		 * to ensure they have been submitted, but this is
3878 		 * easier.
3879 		 */
3880 		mddev->pers->quiesce(mddev, 1);
3881 		mddev->pers->quiesce(mddev, 0);
3882 		md_barrier_request(mddev, bi);
3883 		return 0;
3884 	}
3885 
3886 	md_write_start(mddev, bi);
3887 
3888 	if (rw == READ &&
3889 	     mddev->reshape_position == MaxSector &&
3890 	     chunk_aligned_read(mddev,bi))
3891 		return 0;
3892 
3893 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3894 	last_sector = bi->bi_sector + (bi->bi_size>>9);
3895 	bi->bi_next = NULL;
3896 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3897 
3898 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3899 		DEFINE_WAIT(w);
3900 		int disks, data_disks;
3901 		int previous;
3902 
3903 	retry:
3904 		previous = 0;
3905 		disks = conf->raid_disks;
3906 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3907 		if (unlikely(conf->reshape_progress != MaxSector)) {
3908 			/* spinlock is needed as reshape_progress may be
3909 			 * 64bit on a 32bit platform, and so it might be
3910 			 * possible to see a half-updated value
3911 			 * Ofcourse reshape_progress could change after
3912 			 * the lock is dropped, so once we get a reference
3913 			 * to the stripe that we think it is, we will have
3914 			 * to check again.
3915 			 */
3916 			spin_lock_irq(&conf->device_lock);
3917 			if (mddev->delta_disks < 0
3918 			    ? logical_sector < conf->reshape_progress
3919 			    : logical_sector >= conf->reshape_progress) {
3920 				disks = conf->previous_raid_disks;
3921 				previous = 1;
3922 			} else {
3923 				if (mddev->delta_disks < 0
3924 				    ? logical_sector < conf->reshape_safe
3925 				    : logical_sector >= conf->reshape_safe) {
3926 					spin_unlock_irq(&conf->device_lock);
3927 					schedule();
3928 					goto retry;
3929 				}
3930 			}
3931 			spin_unlock_irq(&conf->device_lock);
3932 		}
3933 		data_disks = disks - conf->max_degraded;
3934 
3935 		new_sector = raid5_compute_sector(conf, logical_sector,
3936 						  previous,
3937 						  &dd_idx, NULL);
3938 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
3939 			(unsigned long long)new_sector,
3940 			(unsigned long long)logical_sector);
3941 
3942 		sh = get_active_stripe(conf, new_sector, previous,
3943 				       (bi->bi_rw&RWA_MASK), 0);
3944 		if (sh) {
3945 			if (unlikely(previous)) {
3946 				/* expansion might have moved on while waiting for a
3947 				 * stripe, so we must do the range check again.
3948 				 * Expansion could still move past after this
3949 				 * test, but as we are holding a reference to
3950 				 * 'sh', we know that if that happens,
3951 				 *  STRIPE_EXPANDING will get set and the expansion
3952 				 * won't proceed until we finish with the stripe.
3953 				 */
3954 				int must_retry = 0;
3955 				spin_lock_irq(&conf->device_lock);
3956 				if (mddev->delta_disks < 0
3957 				    ? logical_sector >= conf->reshape_progress
3958 				    : logical_sector < conf->reshape_progress)
3959 					/* mismatch, need to try again */
3960 					must_retry = 1;
3961 				spin_unlock_irq(&conf->device_lock);
3962 				if (must_retry) {
3963 					release_stripe(sh);
3964 					schedule();
3965 					goto retry;
3966 				}
3967 			}
3968 
3969 			if (bio_data_dir(bi) == WRITE &&
3970 			    logical_sector >= mddev->suspend_lo &&
3971 			    logical_sector < mddev->suspend_hi) {
3972 				release_stripe(sh);
3973 				/* As the suspend_* range is controlled by
3974 				 * userspace, we want an interruptible
3975 				 * wait.
3976 				 */
3977 				flush_signals(current);
3978 				prepare_to_wait(&conf->wait_for_overlap,
3979 						&w, TASK_INTERRUPTIBLE);
3980 				if (logical_sector >= mddev->suspend_lo &&
3981 				    logical_sector < mddev->suspend_hi)
3982 					schedule();
3983 				goto retry;
3984 			}
3985 
3986 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3987 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3988 				/* Stripe is busy expanding or
3989 				 * add failed due to overlap.  Flush everything
3990 				 * and wait a while
3991 				 */
3992 				raid5_unplug_device(mddev->queue);
3993 				release_stripe(sh);
3994 				schedule();
3995 				goto retry;
3996 			}
3997 			finish_wait(&conf->wait_for_overlap, &w);
3998 			set_bit(STRIPE_HANDLE, &sh->state);
3999 			clear_bit(STRIPE_DELAYED, &sh->state);
4000 			if (mddev->barrier &&
4001 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4002 				atomic_inc(&conf->preread_active_stripes);
4003 			release_stripe(sh);
4004 		} else {
4005 			/* cannot get stripe for read-ahead, just give-up */
4006 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4007 			finish_wait(&conf->wait_for_overlap, &w);
4008 			break;
4009 		}
4010 
4011 	}
4012 	spin_lock_irq(&conf->device_lock);
4013 	remaining = raid5_dec_bi_phys_segments(bi);
4014 	spin_unlock_irq(&conf->device_lock);
4015 	if (remaining == 0) {
4016 
4017 		if ( rw == WRITE )
4018 			md_write_end(mddev);
4019 
4020 		bio_endio(bi, 0);
4021 	}
4022 
4023 	if (mddev->barrier) {
4024 		/* We need to wait for the stripes to all be handled.
4025 		 * So: wait for preread_active_stripes to drop to 0.
4026 		 */
4027 		wait_event(mddev->thread->wqueue,
4028 			   atomic_read(&conf->preread_active_stripes) == 0);
4029 	}
4030 	return 0;
4031 }
4032 
4033 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4034 
4035 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4036 {
4037 	/* reshaping is quite different to recovery/resync so it is
4038 	 * handled quite separately ... here.
4039 	 *
4040 	 * On each call to sync_request, we gather one chunk worth of
4041 	 * destination stripes and flag them as expanding.
4042 	 * Then we find all the source stripes and request reads.
4043 	 * As the reads complete, handle_stripe will copy the data
4044 	 * into the destination stripe and release that stripe.
4045 	 */
4046 	raid5_conf_t *conf = mddev->private;
4047 	struct stripe_head *sh;
4048 	sector_t first_sector, last_sector;
4049 	int raid_disks = conf->previous_raid_disks;
4050 	int data_disks = raid_disks - conf->max_degraded;
4051 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4052 	int i;
4053 	int dd_idx;
4054 	sector_t writepos, readpos, safepos;
4055 	sector_t stripe_addr;
4056 	int reshape_sectors;
4057 	struct list_head stripes;
4058 
4059 	if (sector_nr == 0) {
4060 		/* If restarting in the middle, skip the initial sectors */
4061 		if (mddev->delta_disks < 0 &&
4062 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4063 			sector_nr = raid5_size(mddev, 0, 0)
4064 				- conf->reshape_progress;
4065 		} else if (mddev->delta_disks >= 0 &&
4066 			   conf->reshape_progress > 0)
4067 			sector_nr = conf->reshape_progress;
4068 		sector_div(sector_nr, new_data_disks);
4069 		if (sector_nr) {
4070 			mddev->curr_resync_completed = sector_nr;
4071 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4072 			*skipped = 1;
4073 			return sector_nr;
4074 		}
4075 	}
4076 
4077 	/* We need to process a full chunk at a time.
4078 	 * If old and new chunk sizes differ, we need to process the
4079 	 * largest of these
4080 	 */
4081 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4082 		reshape_sectors = mddev->new_chunk_sectors;
4083 	else
4084 		reshape_sectors = mddev->chunk_sectors;
4085 
4086 	/* we update the metadata when there is more than 3Meg
4087 	 * in the block range (that is rather arbitrary, should
4088 	 * probably be time based) or when the data about to be
4089 	 * copied would over-write the source of the data at
4090 	 * the front of the range.
4091 	 * i.e. one new_stripe along from reshape_progress new_maps
4092 	 * to after where reshape_safe old_maps to
4093 	 */
4094 	writepos = conf->reshape_progress;
4095 	sector_div(writepos, new_data_disks);
4096 	readpos = conf->reshape_progress;
4097 	sector_div(readpos, data_disks);
4098 	safepos = conf->reshape_safe;
4099 	sector_div(safepos, data_disks);
4100 	if (mddev->delta_disks < 0) {
4101 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4102 		readpos += reshape_sectors;
4103 		safepos += reshape_sectors;
4104 	} else {
4105 		writepos += reshape_sectors;
4106 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4107 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4108 	}
4109 
4110 	/* 'writepos' is the most advanced device address we might write.
4111 	 * 'readpos' is the least advanced device address we might read.
4112 	 * 'safepos' is the least address recorded in the metadata as having
4113 	 *     been reshaped.
4114 	 * If 'readpos' is behind 'writepos', then there is no way that we can
4115 	 * ensure safety in the face of a crash - that must be done by userspace
4116 	 * making a backup of the data.  So in that case there is no particular
4117 	 * rush to update metadata.
4118 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4119 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4120 	 * we can be safe in the event of a crash.
4121 	 * So we insist on updating metadata if safepos is behind writepos and
4122 	 * readpos is beyond writepos.
4123 	 * In any case, update the metadata every 10 seconds.
4124 	 * Maybe that number should be configurable, but I'm not sure it is
4125 	 * worth it.... maybe it could be a multiple of safemode_delay???
4126 	 */
4127 	if ((mddev->delta_disks < 0
4128 	     ? (safepos > writepos && readpos < writepos)
4129 	     : (safepos < writepos && readpos > writepos)) ||
4130 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4131 		/* Cannot proceed until we've updated the superblock... */
4132 		wait_event(conf->wait_for_overlap,
4133 			   atomic_read(&conf->reshape_stripes)==0);
4134 		mddev->reshape_position = conf->reshape_progress;
4135 		mddev->curr_resync_completed = mddev->curr_resync;
4136 		conf->reshape_checkpoint = jiffies;
4137 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4138 		md_wakeup_thread(mddev->thread);
4139 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4140 			   kthread_should_stop());
4141 		spin_lock_irq(&conf->device_lock);
4142 		conf->reshape_safe = mddev->reshape_position;
4143 		spin_unlock_irq(&conf->device_lock);
4144 		wake_up(&conf->wait_for_overlap);
4145 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4146 	}
4147 
4148 	if (mddev->delta_disks < 0) {
4149 		BUG_ON(conf->reshape_progress == 0);
4150 		stripe_addr = writepos;
4151 		BUG_ON((mddev->dev_sectors &
4152 			~((sector_t)reshape_sectors - 1))
4153 		       - reshape_sectors - stripe_addr
4154 		       != sector_nr);
4155 	} else {
4156 		BUG_ON(writepos != sector_nr + reshape_sectors);
4157 		stripe_addr = sector_nr;
4158 	}
4159 	INIT_LIST_HEAD(&stripes);
4160 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4161 		int j;
4162 		int skipped_disk = 0;
4163 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4164 		set_bit(STRIPE_EXPANDING, &sh->state);
4165 		atomic_inc(&conf->reshape_stripes);
4166 		/* If any of this stripe is beyond the end of the old
4167 		 * array, then we need to zero those blocks
4168 		 */
4169 		for (j=sh->disks; j--;) {
4170 			sector_t s;
4171 			if (j == sh->pd_idx)
4172 				continue;
4173 			if (conf->level == 6 &&
4174 			    j == sh->qd_idx)
4175 				continue;
4176 			s = compute_blocknr(sh, j, 0);
4177 			if (s < raid5_size(mddev, 0, 0)) {
4178 				skipped_disk = 1;
4179 				continue;
4180 			}
4181 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4182 			set_bit(R5_Expanded, &sh->dev[j].flags);
4183 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4184 		}
4185 		if (!skipped_disk) {
4186 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4187 			set_bit(STRIPE_HANDLE, &sh->state);
4188 		}
4189 		list_add(&sh->lru, &stripes);
4190 	}
4191 	spin_lock_irq(&conf->device_lock);
4192 	if (mddev->delta_disks < 0)
4193 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4194 	else
4195 		conf->reshape_progress += reshape_sectors * new_data_disks;
4196 	spin_unlock_irq(&conf->device_lock);
4197 	/* Ok, those stripe are ready. We can start scheduling
4198 	 * reads on the source stripes.
4199 	 * The source stripes are determined by mapping the first and last
4200 	 * block on the destination stripes.
4201 	 */
4202 	first_sector =
4203 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4204 				     1, &dd_idx, NULL);
4205 	last_sector =
4206 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4207 					    * new_data_disks - 1),
4208 				     1, &dd_idx, NULL);
4209 	if (last_sector >= mddev->dev_sectors)
4210 		last_sector = mddev->dev_sectors - 1;
4211 	while (first_sector <= last_sector) {
4212 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4213 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4214 		set_bit(STRIPE_HANDLE, &sh->state);
4215 		release_stripe(sh);
4216 		first_sector += STRIPE_SECTORS;
4217 	}
4218 	/* Now that the sources are clearly marked, we can release
4219 	 * the destination stripes
4220 	 */
4221 	while (!list_empty(&stripes)) {
4222 		sh = list_entry(stripes.next, struct stripe_head, lru);
4223 		list_del_init(&sh->lru);
4224 		release_stripe(sh);
4225 	}
4226 	/* If this takes us to the resync_max point where we have to pause,
4227 	 * then we need to write out the superblock.
4228 	 */
4229 	sector_nr += reshape_sectors;
4230 	if ((sector_nr - mddev->curr_resync_completed) * 2
4231 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4232 		/* Cannot proceed until we've updated the superblock... */
4233 		wait_event(conf->wait_for_overlap,
4234 			   atomic_read(&conf->reshape_stripes) == 0);
4235 		mddev->reshape_position = conf->reshape_progress;
4236 		mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4237 		conf->reshape_checkpoint = jiffies;
4238 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4239 		md_wakeup_thread(mddev->thread);
4240 		wait_event(mddev->sb_wait,
4241 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4242 			   || kthread_should_stop());
4243 		spin_lock_irq(&conf->device_lock);
4244 		conf->reshape_safe = mddev->reshape_position;
4245 		spin_unlock_irq(&conf->device_lock);
4246 		wake_up(&conf->wait_for_overlap);
4247 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4248 	}
4249 	return reshape_sectors;
4250 }
4251 
4252 /* FIXME go_faster isn't used */
4253 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4254 {
4255 	raid5_conf_t *conf = mddev->private;
4256 	struct stripe_head *sh;
4257 	sector_t max_sector = mddev->dev_sectors;
4258 	int sync_blocks;
4259 	int still_degraded = 0;
4260 	int i;
4261 
4262 	if (sector_nr >= max_sector) {
4263 		/* just being told to finish up .. nothing much to do */
4264 		unplug_slaves(mddev);
4265 
4266 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4267 			end_reshape(conf);
4268 			return 0;
4269 		}
4270 
4271 		if (mddev->curr_resync < max_sector) /* aborted */
4272 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4273 					&sync_blocks, 1);
4274 		else /* completed sync */
4275 			conf->fullsync = 0;
4276 		bitmap_close_sync(mddev->bitmap);
4277 
4278 		return 0;
4279 	}
4280 
4281 	/* Allow raid5_quiesce to complete */
4282 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4283 
4284 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4285 		return reshape_request(mddev, sector_nr, skipped);
4286 
4287 	/* No need to check resync_max as we never do more than one
4288 	 * stripe, and as resync_max will always be on a chunk boundary,
4289 	 * if the check in md_do_sync didn't fire, there is no chance
4290 	 * of overstepping resync_max here
4291 	 */
4292 
4293 	/* if there is too many failed drives and we are trying
4294 	 * to resync, then assert that we are finished, because there is
4295 	 * nothing we can do.
4296 	 */
4297 	if (mddev->degraded >= conf->max_degraded &&
4298 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4299 		sector_t rv = mddev->dev_sectors - sector_nr;
4300 		*skipped = 1;
4301 		return rv;
4302 	}
4303 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4304 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4305 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4306 		/* we can skip this block, and probably more */
4307 		sync_blocks /= STRIPE_SECTORS;
4308 		*skipped = 1;
4309 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4310 	}
4311 
4312 
4313 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4314 
4315 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4316 	if (sh == NULL) {
4317 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4318 		/* make sure we don't swamp the stripe cache if someone else
4319 		 * is trying to get access
4320 		 */
4321 		schedule_timeout_uninterruptible(1);
4322 	}
4323 	/* Need to check if array will still be degraded after recovery/resync
4324 	 * We don't need to check the 'failed' flag as when that gets set,
4325 	 * recovery aborts.
4326 	 */
4327 	for (i = 0; i < conf->raid_disks; i++)
4328 		if (conf->disks[i].rdev == NULL)
4329 			still_degraded = 1;
4330 
4331 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4332 
4333 	spin_lock(&sh->lock);
4334 	set_bit(STRIPE_SYNCING, &sh->state);
4335 	clear_bit(STRIPE_INSYNC, &sh->state);
4336 	spin_unlock(&sh->lock);
4337 
4338 	handle_stripe(sh);
4339 	release_stripe(sh);
4340 
4341 	return STRIPE_SECTORS;
4342 }
4343 
4344 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4345 {
4346 	/* We may not be able to submit a whole bio at once as there
4347 	 * may not be enough stripe_heads available.
4348 	 * We cannot pre-allocate enough stripe_heads as we may need
4349 	 * more than exist in the cache (if we allow ever large chunks).
4350 	 * So we do one stripe head at a time and record in
4351 	 * ->bi_hw_segments how many have been done.
4352 	 *
4353 	 * We *know* that this entire raid_bio is in one chunk, so
4354 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4355 	 */
4356 	struct stripe_head *sh;
4357 	int dd_idx;
4358 	sector_t sector, logical_sector, last_sector;
4359 	int scnt = 0;
4360 	int remaining;
4361 	int handled = 0;
4362 
4363 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4364 	sector = raid5_compute_sector(conf, logical_sector,
4365 				      0, &dd_idx, NULL);
4366 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4367 
4368 	for (; logical_sector < last_sector;
4369 	     logical_sector += STRIPE_SECTORS,
4370 		     sector += STRIPE_SECTORS,
4371 		     scnt++) {
4372 
4373 		if (scnt < raid5_bi_hw_segments(raid_bio))
4374 			/* already done this stripe */
4375 			continue;
4376 
4377 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4378 
4379 		if (!sh) {
4380 			/* failed to get a stripe - must wait */
4381 			raid5_set_bi_hw_segments(raid_bio, scnt);
4382 			conf->retry_read_aligned = raid_bio;
4383 			return handled;
4384 		}
4385 
4386 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4387 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4388 			release_stripe(sh);
4389 			raid5_set_bi_hw_segments(raid_bio, scnt);
4390 			conf->retry_read_aligned = raid_bio;
4391 			return handled;
4392 		}
4393 
4394 		handle_stripe(sh);
4395 		release_stripe(sh);
4396 		handled++;
4397 	}
4398 	spin_lock_irq(&conf->device_lock);
4399 	remaining = raid5_dec_bi_phys_segments(raid_bio);
4400 	spin_unlock_irq(&conf->device_lock);
4401 	if (remaining == 0)
4402 		bio_endio(raid_bio, 0);
4403 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4404 		wake_up(&conf->wait_for_stripe);
4405 	return handled;
4406 }
4407 
4408 
4409 /*
4410  * This is our raid5 kernel thread.
4411  *
4412  * We scan the hash table for stripes which can be handled now.
4413  * During the scan, completed stripes are saved for us by the interrupt
4414  * handler, so that they will not have to wait for our next wakeup.
4415  */
4416 static void raid5d(mddev_t *mddev)
4417 {
4418 	struct stripe_head *sh;
4419 	raid5_conf_t *conf = mddev->private;
4420 	int handled;
4421 
4422 	pr_debug("+++ raid5d active\n");
4423 
4424 	md_check_recovery(mddev);
4425 
4426 	handled = 0;
4427 	spin_lock_irq(&conf->device_lock);
4428 	while (1) {
4429 		struct bio *bio;
4430 
4431 		if (conf->seq_flush != conf->seq_write) {
4432 			int seq = conf->seq_flush;
4433 			spin_unlock_irq(&conf->device_lock);
4434 			bitmap_unplug(mddev->bitmap);
4435 			spin_lock_irq(&conf->device_lock);
4436 			conf->seq_write = seq;
4437 			activate_bit_delay(conf);
4438 		}
4439 
4440 		while ((bio = remove_bio_from_retry(conf))) {
4441 			int ok;
4442 			spin_unlock_irq(&conf->device_lock);
4443 			ok = retry_aligned_read(conf, bio);
4444 			spin_lock_irq(&conf->device_lock);
4445 			if (!ok)
4446 				break;
4447 			handled++;
4448 		}
4449 
4450 		sh = __get_priority_stripe(conf);
4451 
4452 		if (!sh)
4453 			break;
4454 		spin_unlock_irq(&conf->device_lock);
4455 
4456 		handled++;
4457 		handle_stripe(sh);
4458 		release_stripe(sh);
4459 		cond_resched();
4460 
4461 		spin_lock_irq(&conf->device_lock);
4462 	}
4463 	pr_debug("%d stripes handled\n", handled);
4464 
4465 	spin_unlock_irq(&conf->device_lock);
4466 
4467 	async_tx_issue_pending_all();
4468 	unplug_slaves(mddev);
4469 
4470 	pr_debug("--- raid5d inactive\n");
4471 }
4472 
4473 static ssize_t
4474 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4475 {
4476 	raid5_conf_t *conf = mddev->private;
4477 	if (conf)
4478 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4479 	else
4480 		return 0;
4481 }
4482 
4483 static ssize_t
4484 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4485 {
4486 	raid5_conf_t *conf = mddev->private;
4487 	unsigned long new;
4488 	int err;
4489 
4490 	if (len >= PAGE_SIZE)
4491 		return -EINVAL;
4492 	if (!conf)
4493 		return -ENODEV;
4494 
4495 	if (strict_strtoul(page, 10, &new))
4496 		return -EINVAL;
4497 	if (new <= 16 || new > 32768)
4498 		return -EINVAL;
4499 	while (new < conf->max_nr_stripes) {
4500 		if (drop_one_stripe(conf))
4501 			conf->max_nr_stripes--;
4502 		else
4503 			break;
4504 	}
4505 	err = md_allow_write(mddev);
4506 	if (err)
4507 		return err;
4508 	while (new > conf->max_nr_stripes) {
4509 		if (grow_one_stripe(conf))
4510 			conf->max_nr_stripes++;
4511 		else break;
4512 	}
4513 	return len;
4514 }
4515 
4516 static struct md_sysfs_entry
4517 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4518 				raid5_show_stripe_cache_size,
4519 				raid5_store_stripe_cache_size);
4520 
4521 static ssize_t
4522 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4523 {
4524 	raid5_conf_t *conf = mddev->private;
4525 	if (conf)
4526 		return sprintf(page, "%d\n", conf->bypass_threshold);
4527 	else
4528 		return 0;
4529 }
4530 
4531 static ssize_t
4532 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4533 {
4534 	raid5_conf_t *conf = mddev->private;
4535 	unsigned long new;
4536 	if (len >= PAGE_SIZE)
4537 		return -EINVAL;
4538 	if (!conf)
4539 		return -ENODEV;
4540 
4541 	if (strict_strtoul(page, 10, &new))
4542 		return -EINVAL;
4543 	if (new > conf->max_nr_stripes)
4544 		return -EINVAL;
4545 	conf->bypass_threshold = new;
4546 	return len;
4547 }
4548 
4549 static struct md_sysfs_entry
4550 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4551 					S_IRUGO | S_IWUSR,
4552 					raid5_show_preread_threshold,
4553 					raid5_store_preread_threshold);
4554 
4555 static ssize_t
4556 stripe_cache_active_show(mddev_t *mddev, char *page)
4557 {
4558 	raid5_conf_t *conf = mddev->private;
4559 	if (conf)
4560 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4561 	else
4562 		return 0;
4563 }
4564 
4565 static struct md_sysfs_entry
4566 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4567 
4568 static struct attribute *raid5_attrs[] =  {
4569 	&raid5_stripecache_size.attr,
4570 	&raid5_stripecache_active.attr,
4571 	&raid5_preread_bypass_threshold.attr,
4572 	NULL,
4573 };
4574 static struct attribute_group raid5_attrs_group = {
4575 	.name = NULL,
4576 	.attrs = raid5_attrs,
4577 };
4578 
4579 static sector_t
4580 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4581 {
4582 	raid5_conf_t *conf = mddev->private;
4583 
4584 	if (!sectors)
4585 		sectors = mddev->dev_sectors;
4586 	if (!raid_disks)
4587 		/* size is defined by the smallest of previous and new size */
4588 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4589 
4590 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4591 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4592 	return sectors * (raid_disks - conf->max_degraded);
4593 }
4594 
4595 static void raid5_free_percpu(raid5_conf_t *conf)
4596 {
4597 	struct raid5_percpu *percpu;
4598 	unsigned long cpu;
4599 
4600 	if (!conf->percpu)
4601 		return;
4602 
4603 	get_online_cpus();
4604 	for_each_possible_cpu(cpu) {
4605 		percpu = per_cpu_ptr(conf->percpu, cpu);
4606 		safe_put_page(percpu->spare_page);
4607 		kfree(percpu->scribble);
4608 	}
4609 #ifdef CONFIG_HOTPLUG_CPU
4610 	unregister_cpu_notifier(&conf->cpu_notify);
4611 #endif
4612 	put_online_cpus();
4613 
4614 	free_percpu(conf->percpu);
4615 }
4616 
4617 static void free_conf(raid5_conf_t *conf)
4618 {
4619 	shrink_stripes(conf);
4620 	raid5_free_percpu(conf);
4621 	kfree(conf->disks);
4622 	kfree(conf->stripe_hashtbl);
4623 	kfree(conf);
4624 }
4625 
4626 #ifdef CONFIG_HOTPLUG_CPU
4627 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4628 			      void *hcpu)
4629 {
4630 	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4631 	long cpu = (long)hcpu;
4632 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4633 
4634 	switch (action) {
4635 	case CPU_UP_PREPARE:
4636 	case CPU_UP_PREPARE_FROZEN:
4637 		if (conf->level == 6 && !percpu->spare_page)
4638 			percpu->spare_page = alloc_page(GFP_KERNEL);
4639 		if (!percpu->scribble)
4640 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4641 
4642 		if (!percpu->scribble ||
4643 		    (conf->level == 6 && !percpu->spare_page)) {
4644 			safe_put_page(percpu->spare_page);
4645 			kfree(percpu->scribble);
4646 			pr_err("%s: failed memory allocation for cpu%ld\n",
4647 			       __func__, cpu);
4648 			return notifier_from_errno(-ENOMEM);
4649 		}
4650 		break;
4651 	case CPU_DEAD:
4652 	case CPU_DEAD_FROZEN:
4653 		safe_put_page(percpu->spare_page);
4654 		kfree(percpu->scribble);
4655 		percpu->spare_page = NULL;
4656 		percpu->scribble = NULL;
4657 		break;
4658 	default:
4659 		break;
4660 	}
4661 	return NOTIFY_OK;
4662 }
4663 #endif
4664 
4665 static int raid5_alloc_percpu(raid5_conf_t *conf)
4666 {
4667 	unsigned long cpu;
4668 	struct page *spare_page;
4669 	struct raid5_percpu __percpu *allcpus;
4670 	void *scribble;
4671 	int err;
4672 
4673 	allcpus = alloc_percpu(struct raid5_percpu);
4674 	if (!allcpus)
4675 		return -ENOMEM;
4676 	conf->percpu = allcpus;
4677 
4678 	get_online_cpus();
4679 	err = 0;
4680 	for_each_present_cpu(cpu) {
4681 		if (conf->level == 6) {
4682 			spare_page = alloc_page(GFP_KERNEL);
4683 			if (!spare_page) {
4684 				err = -ENOMEM;
4685 				break;
4686 			}
4687 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4688 		}
4689 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4690 		if (!scribble) {
4691 			err = -ENOMEM;
4692 			break;
4693 		}
4694 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4695 	}
4696 #ifdef CONFIG_HOTPLUG_CPU
4697 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4698 	conf->cpu_notify.priority = 0;
4699 	if (err == 0)
4700 		err = register_cpu_notifier(&conf->cpu_notify);
4701 #endif
4702 	put_online_cpus();
4703 
4704 	return err;
4705 }
4706 
4707 static raid5_conf_t *setup_conf(mddev_t *mddev)
4708 {
4709 	raid5_conf_t *conf;
4710 	int raid_disk, memory, max_disks;
4711 	mdk_rdev_t *rdev;
4712 	struct disk_info *disk;
4713 
4714 	if (mddev->new_level != 5
4715 	    && mddev->new_level != 4
4716 	    && mddev->new_level != 6) {
4717 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4718 		       mdname(mddev), mddev->new_level);
4719 		return ERR_PTR(-EIO);
4720 	}
4721 	if ((mddev->new_level == 5
4722 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4723 	    (mddev->new_level == 6
4724 	     && !algorithm_valid_raid6(mddev->new_layout))) {
4725 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4726 		       mdname(mddev), mddev->new_layout);
4727 		return ERR_PTR(-EIO);
4728 	}
4729 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4730 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4731 		       mdname(mddev), mddev->raid_disks);
4732 		return ERR_PTR(-EINVAL);
4733 	}
4734 
4735 	if (!mddev->new_chunk_sectors ||
4736 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4737 	    !is_power_of_2(mddev->new_chunk_sectors)) {
4738 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4739 		       mdname(mddev), mddev->new_chunk_sectors << 9);
4740 		return ERR_PTR(-EINVAL);
4741 	}
4742 
4743 	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4744 	if (conf == NULL)
4745 		goto abort;
4746 	spin_lock_init(&conf->device_lock);
4747 	init_waitqueue_head(&conf->wait_for_stripe);
4748 	init_waitqueue_head(&conf->wait_for_overlap);
4749 	INIT_LIST_HEAD(&conf->handle_list);
4750 	INIT_LIST_HEAD(&conf->hold_list);
4751 	INIT_LIST_HEAD(&conf->delayed_list);
4752 	INIT_LIST_HEAD(&conf->bitmap_list);
4753 	INIT_LIST_HEAD(&conf->inactive_list);
4754 	atomic_set(&conf->active_stripes, 0);
4755 	atomic_set(&conf->preread_active_stripes, 0);
4756 	atomic_set(&conf->active_aligned_reads, 0);
4757 	conf->bypass_threshold = BYPASS_THRESHOLD;
4758 
4759 	conf->raid_disks = mddev->raid_disks;
4760 	if (mddev->reshape_position == MaxSector)
4761 		conf->previous_raid_disks = mddev->raid_disks;
4762 	else
4763 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4764 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4765 	conf->scribble_len = scribble_len(max_disks);
4766 
4767 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4768 			      GFP_KERNEL);
4769 	if (!conf->disks)
4770 		goto abort;
4771 
4772 	conf->mddev = mddev;
4773 
4774 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4775 		goto abort;
4776 
4777 	conf->level = mddev->new_level;
4778 	if (raid5_alloc_percpu(conf) != 0)
4779 		goto abort;
4780 
4781 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4782 
4783 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4784 		raid_disk = rdev->raid_disk;
4785 		if (raid_disk >= max_disks
4786 		    || raid_disk < 0)
4787 			continue;
4788 		disk = conf->disks + raid_disk;
4789 
4790 		disk->rdev = rdev;
4791 
4792 		if (test_bit(In_sync, &rdev->flags)) {
4793 			char b[BDEVNAME_SIZE];
4794 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4795 			       " disk %d\n",
4796 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4797 		} else
4798 			/* Cannot rely on bitmap to complete recovery */
4799 			conf->fullsync = 1;
4800 	}
4801 
4802 	conf->chunk_sectors = mddev->new_chunk_sectors;
4803 	conf->level = mddev->new_level;
4804 	if (conf->level == 6)
4805 		conf->max_degraded = 2;
4806 	else
4807 		conf->max_degraded = 1;
4808 	conf->algorithm = mddev->new_layout;
4809 	conf->max_nr_stripes = NR_STRIPES;
4810 	conf->reshape_progress = mddev->reshape_position;
4811 	if (conf->reshape_progress != MaxSector) {
4812 		conf->prev_chunk_sectors = mddev->chunk_sectors;
4813 		conf->prev_algo = mddev->layout;
4814 	}
4815 
4816 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4817 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4818 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4819 		printk(KERN_ERR
4820 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
4821 		       mdname(mddev), memory);
4822 		goto abort;
4823 	} else
4824 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4825 		       mdname(mddev), memory);
4826 
4827 	conf->thread = md_register_thread(raid5d, mddev, NULL);
4828 	if (!conf->thread) {
4829 		printk(KERN_ERR
4830 		       "md/raid:%s: couldn't allocate thread.\n",
4831 		       mdname(mddev));
4832 		goto abort;
4833 	}
4834 
4835 	return conf;
4836 
4837  abort:
4838 	if (conf) {
4839 		free_conf(conf);
4840 		return ERR_PTR(-EIO);
4841 	} else
4842 		return ERR_PTR(-ENOMEM);
4843 }
4844 
4845 
4846 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4847 {
4848 	switch (algo) {
4849 	case ALGORITHM_PARITY_0:
4850 		if (raid_disk < max_degraded)
4851 			return 1;
4852 		break;
4853 	case ALGORITHM_PARITY_N:
4854 		if (raid_disk >= raid_disks - max_degraded)
4855 			return 1;
4856 		break;
4857 	case ALGORITHM_PARITY_0_6:
4858 		if (raid_disk == 0 ||
4859 		    raid_disk == raid_disks - 1)
4860 			return 1;
4861 		break;
4862 	case ALGORITHM_LEFT_ASYMMETRIC_6:
4863 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
4864 	case ALGORITHM_LEFT_SYMMETRIC_6:
4865 	case ALGORITHM_RIGHT_SYMMETRIC_6:
4866 		if (raid_disk == raid_disks - 1)
4867 			return 1;
4868 	}
4869 	return 0;
4870 }
4871 
4872 static int run(mddev_t *mddev)
4873 {
4874 	raid5_conf_t *conf;
4875 	int working_disks = 0, chunk_size;
4876 	int dirty_parity_disks = 0;
4877 	mdk_rdev_t *rdev;
4878 	sector_t reshape_offset = 0;
4879 
4880 	if (mddev->recovery_cp != MaxSector)
4881 		printk(KERN_NOTICE "md/raid:%s: not clean"
4882 		       " -- starting background reconstruction\n",
4883 		       mdname(mddev));
4884 	if (mddev->reshape_position != MaxSector) {
4885 		/* Check that we can continue the reshape.
4886 		 * Currently only disks can change, it must
4887 		 * increase, and we must be past the point where
4888 		 * a stripe over-writes itself
4889 		 */
4890 		sector_t here_new, here_old;
4891 		int old_disks;
4892 		int max_degraded = (mddev->level == 6 ? 2 : 1);
4893 
4894 		if (mddev->new_level != mddev->level) {
4895 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
4896 			       "required - aborting.\n",
4897 			       mdname(mddev));
4898 			return -EINVAL;
4899 		}
4900 		old_disks = mddev->raid_disks - mddev->delta_disks;
4901 		/* reshape_position must be on a new-stripe boundary, and one
4902 		 * further up in new geometry must map after here in old
4903 		 * geometry.
4904 		 */
4905 		here_new = mddev->reshape_position;
4906 		if (sector_div(here_new, mddev->new_chunk_sectors *
4907 			       (mddev->raid_disks - max_degraded))) {
4908 			printk(KERN_ERR "md/raid:%s: reshape_position not "
4909 			       "on a stripe boundary\n", mdname(mddev));
4910 			return -EINVAL;
4911 		}
4912 		reshape_offset = here_new * mddev->new_chunk_sectors;
4913 		/* here_new is the stripe we will write to */
4914 		here_old = mddev->reshape_position;
4915 		sector_div(here_old, mddev->chunk_sectors *
4916 			   (old_disks-max_degraded));
4917 		/* here_old is the first stripe that we might need to read
4918 		 * from */
4919 		if (mddev->delta_disks == 0) {
4920 			/* We cannot be sure it is safe to start an in-place
4921 			 * reshape.  It is only safe if user-space if monitoring
4922 			 * and taking constant backups.
4923 			 * mdadm always starts a situation like this in
4924 			 * readonly mode so it can take control before
4925 			 * allowing any writes.  So just check for that.
4926 			 */
4927 			if ((here_new * mddev->new_chunk_sectors !=
4928 			     here_old * mddev->chunk_sectors) ||
4929 			    mddev->ro == 0) {
4930 				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4931 				       " in read-only mode - aborting\n",
4932 				       mdname(mddev));
4933 				return -EINVAL;
4934 			}
4935 		} else if (mddev->delta_disks < 0
4936 		    ? (here_new * mddev->new_chunk_sectors <=
4937 		       here_old * mddev->chunk_sectors)
4938 		    : (here_new * mddev->new_chunk_sectors >=
4939 		       here_old * mddev->chunk_sectors)) {
4940 			/* Reading from the same stripe as writing to - bad */
4941 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4942 			       "auto-recovery - aborting.\n",
4943 			       mdname(mddev));
4944 			return -EINVAL;
4945 		}
4946 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4947 		       mdname(mddev));
4948 		/* OK, we should be able to continue; */
4949 	} else {
4950 		BUG_ON(mddev->level != mddev->new_level);
4951 		BUG_ON(mddev->layout != mddev->new_layout);
4952 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4953 		BUG_ON(mddev->delta_disks != 0);
4954 	}
4955 
4956 	if (mddev->private == NULL)
4957 		conf = setup_conf(mddev);
4958 	else
4959 		conf = mddev->private;
4960 
4961 	if (IS_ERR(conf))
4962 		return PTR_ERR(conf);
4963 
4964 	mddev->thread = conf->thread;
4965 	conf->thread = NULL;
4966 	mddev->private = conf;
4967 
4968 	/*
4969 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4970 	 */
4971 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4972 		if (rdev->raid_disk < 0)
4973 			continue;
4974 		if (test_bit(In_sync, &rdev->flags))
4975 			working_disks++;
4976 		/* This disc is not fully in-sync.  However if it
4977 		 * just stored parity (beyond the recovery_offset),
4978 		 * when we don't need to be concerned about the
4979 		 * array being dirty.
4980 		 * When reshape goes 'backwards', we never have
4981 		 * partially completed devices, so we only need
4982 		 * to worry about reshape going forwards.
4983 		 */
4984 		/* Hack because v0.91 doesn't store recovery_offset properly. */
4985 		if (mddev->major_version == 0 &&
4986 		    mddev->minor_version > 90)
4987 			rdev->recovery_offset = reshape_offset;
4988 
4989 		if (rdev->recovery_offset < reshape_offset) {
4990 			/* We need to check old and new layout */
4991 			if (!only_parity(rdev->raid_disk,
4992 					 conf->algorithm,
4993 					 conf->raid_disks,
4994 					 conf->max_degraded))
4995 				continue;
4996 		}
4997 		if (!only_parity(rdev->raid_disk,
4998 				 conf->prev_algo,
4999 				 conf->previous_raid_disks,
5000 				 conf->max_degraded))
5001 			continue;
5002 		dirty_parity_disks++;
5003 	}
5004 
5005 	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5006 			   - working_disks);
5007 
5008 	if (mddev->degraded > conf->max_degraded) {
5009 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5010 			" (%d/%d failed)\n",
5011 			mdname(mddev), mddev->degraded, conf->raid_disks);
5012 		goto abort;
5013 	}
5014 
5015 	/* device size must be a multiple of chunk size */
5016 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5017 	mddev->resync_max_sectors = mddev->dev_sectors;
5018 
5019 	if (mddev->degraded > dirty_parity_disks &&
5020 	    mddev->recovery_cp != MaxSector) {
5021 		if (mddev->ok_start_degraded)
5022 			printk(KERN_WARNING
5023 			       "md/raid:%s: starting dirty degraded array"
5024 			       " - data corruption possible.\n",
5025 			       mdname(mddev));
5026 		else {
5027 			printk(KERN_ERR
5028 			       "md/raid:%s: cannot start dirty degraded array.\n",
5029 			       mdname(mddev));
5030 			goto abort;
5031 		}
5032 	}
5033 
5034 	if (mddev->degraded == 0)
5035 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5036 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5037 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5038 		       mddev->new_layout);
5039 	else
5040 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5041 		       " out of %d devices, algorithm %d\n",
5042 		       mdname(mddev), conf->level,
5043 		       mddev->raid_disks - mddev->degraded,
5044 		       mddev->raid_disks, mddev->new_layout);
5045 
5046 	print_raid5_conf(conf);
5047 
5048 	if (conf->reshape_progress != MaxSector) {
5049 		conf->reshape_safe = conf->reshape_progress;
5050 		atomic_set(&conf->reshape_stripes, 0);
5051 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5052 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5053 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5054 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5055 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5056 							"reshape");
5057 	}
5058 
5059 	/* read-ahead size must cover two whole stripes, which is
5060 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5061 	 */
5062 	{
5063 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5064 		int stripe = data_disks *
5065 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5066 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5067 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5068 	}
5069 
5070 	/* Ok, everything is just fine now */
5071 	if (mddev->to_remove == &raid5_attrs_group)
5072 		mddev->to_remove = NULL;
5073 	else if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5074 		printk(KERN_WARNING
5075 		       "md/raid:%s: failed to create sysfs attributes.\n",
5076 		       mdname(mddev));
5077 
5078 	mddev->queue->queue_lock = &conf->device_lock;
5079 
5080 	mddev->queue->unplug_fn = raid5_unplug_device;
5081 	mddev->queue->backing_dev_info.congested_data = mddev;
5082 	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5083 
5084 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5085 
5086 	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5087 	chunk_size = mddev->chunk_sectors << 9;
5088 	blk_queue_io_min(mddev->queue, chunk_size);
5089 	blk_queue_io_opt(mddev->queue, chunk_size *
5090 			 (conf->raid_disks - conf->max_degraded));
5091 
5092 	list_for_each_entry(rdev, &mddev->disks, same_set)
5093 		disk_stack_limits(mddev->gendisk, rdev->bdev,
5094 				  rdev->data_offset << 9);
5095 
5096 	return 0;
5097 abort:
5098 	md_unregister_thread(mddev->thread);
5099 	mddev->thread = NULL;
5100 	if (conf) {
5101 		print_raid5_conf(conf);
5102 		free_conf(conf);
5103 	}
5104 	mddev->private = NULL;
5105 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5106 	return -EIO;
5107 }
5108 
5109 static int stop(mddev_t *mddev)
5110 {
5111 	raid5_conf_t *conf = mddev->private;
5112 
5113 	md_unregister_thread(mddev->thread);
5114 	mddev->thread = NULL;
5115 	mddev->queue->backing_dev_info.congested_fn = NULL;
5116 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5117 	free_conf(conf);
5118 	mddev->private = NULL;
5119 	mddev->to_remove = &raid5_attrs_group;
5120 	return 0;
5121 }
5122 
5123 #ifdef DEBUG
5124 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5125 {
5126 	int i;
5127 
5128 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5129 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5130 	seq_printf(seq, "sh %llu,  count %d.\n",
5131 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
5132 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5133 	for (i = 0; i < sh->disks; i++) {
5134 		seq_printf(seq, "(cache%d: %p %ld) ",
5135 			   i, sh->dev[i].page, sh->dev[i].flags);
5136 	}
5137 	seq_printf(seq, "\n");
5138 }
5139 
5140 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5141 {
5142 	struct stripe_head *sh;
5143 	struct hlist_node *hn;
5144 	int i;
5145 
5146 	spin_lock_irq(&conf->device_lock);
5147 	for (i = 0; i < NR_HASH; i++) {
5148 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5149 			if (sh->raid_conf != conf)
5150 				continue;
5151 			print_sh(seq, sh);
5152 		}
5153 	}
5154 	spin_unlock_irq(&conf->device_lock);
5155 }
5156 #endif
5157 
5158 static void status(struct seq_file *seq, mddev_t *mddev)
5159 {
5160 	raid5_conf_t *conf = mddev->private;
5161 	int i;
5162 
5163 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5164 		mddev->chunk_sectors / 2, mddev->layout);
5165 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5166 	for (i = 0; i < conf->raid_disks; i++)
5167 		seq_printf (seq, "%s",
5168 			       conf->disks[i].rdev &&
5169 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5170 	seq_printf (seq, "]");
5171 #ifdef DEBUG
5172 	seq_printf (seq, "\n");
5173 	printall(seq, conf);
5174 #endif
5175 }
5176 
5177 static void print_raid5_conf (raid5_conf_t *conf)
5178 {
5179 	int i;
5180 	struct disk_info *tmp;
5181 
5182 	printk(KERN_DEBUG "RAID conf printout:\n");
5183 	if (!conf) {
5184 		printk("(conf==NULL)\n");
5185 		return;
5186 	}
5187 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5188 	       conf->raid_disks,
5189 	       conf->raid_disks - conf->mddev->degraded);
5190 
5191 	for (i = 0; i < conf->raid_disks; i++) {
5192 		char b[BDEVNAME_SIZE];
5193 		tmp = conf->disks + i;
5194 		if (tmp->rdev)
5195 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5196 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5197 			       bdevname(tmp->rdev->bdev, b));
5198 	}
5199 }
5200 
5201 static int raid5_spare_active(mddev_t *mddev)
5202 {
5203 	int i;
5204 	raid5_conf_t *conf = mddev->private;
5205 	struct disk_info *tmp;
5206 
5207 	for (i = 0; i < conf->raid_disks; i++) {
5208 		tmp = conf->disks + i;
5209 		if (tmp->rdev
5210 		    && !test_bit(Faulty, &tmp->rdev->flags)
5211 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5212 			unsigned long flags;
5213 			spin_lock_irqsave(&conf->device_lock, flags);
5214 			mddev->degraded--;
5215 			spin_unlock_irqrestore(&conf->device_lock, flags);
5216 		}
5217 	}
5218 	print_raid5_conf(conf);
5219 	return 0;
5220 }
5221 
5222 static int raid5_remove_disk(mddev_t *mddev, int number)
5223 {
5224 	raid5_conf_t *conf = mddev->private;
5225 	int err = 0;
5226 	mdk_rdev_t *rdev;
5227 	struct disk_info *p = conf->disks + number;
5228 
5229 	print_raid5_conf(conf);
5230 	rdev = p->rdev;
5231 	if (rdev) {
5232 		if (number >= conf->raid_disks &&
5233 		    conf->reshape_progress == MaxSector)
5234 			clear_bit(In_sync, &rdev->flags);
5235 
5236 		if (test_bit(In_sync, &rdev->flags) ||
5237 		    atomic_read(&rdev->nr_pending)) {
5238 			err = -EBUSY;
5239 			goto abort;
5240 		}
5241 		/* Only remove non-faulty devices if recovery
5242 		 * isn't possible.
5243 		 */
5244 		if (!test_bit(Faulty, &rdev->flags) &&
5245 		    mddev->degraded <= conf->max_degraded &&
5246 		    number < conf->raid_disks) {
5247 			err = -EBUSY;
5248 			goto abort;
5249 		}
5250 		p->rdev = NULL;
5251 		synchronize_rcu();
5252 		if (atomic_read(&rdev->nr_pending)) {
5253 			/* lost the race, try later */
5254 			err = -EBUSY;
5255 			p->rdev = rdev;
5256 		}
5257 	}
5258 abort:
5259 
5260 	print_raid5_conf(conf);
5261 	return err;
5262 }
5263 
5264 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5265 {
5266 	raid5_conf_t *conf = mddev->private;
5267 	int err = -EEXIST;
5268 	int disk;
5269 	struct disk_info *p;
5270 	int first = 0;
5271 	int last = conf->raid_disks - 1;
5272 
5273 	if (mddev->degraded > conf->max_degraded)
5274 		/* no point adding a device */
5275 		return -EINVAL;
5276 
5277 	if (rdev->raid_disk >= 0)
5278 		first = last = rdev->raid_disk;
5279 
5280 	/*
5281 	 * find the disk ... but prefer rdev->saved_raid_disk
5282 	 * if possible.
5283 	 */
5284 	if (rdev->saved_raid_disk >= 0 &&
5285 	    rdev->saved_raid_disk >= first &&
5286 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5287 		disk = rdev->saved_raid_disk;
5288 	else
5289 		disk = first;
5290 	for ( ; disk <= last ; disk++)
5291 		if ((p=conf->disks + disk)->rdev == NULL) {
5292 			clear_bit(In_sync, &rdev->flags);
5293 			rdev->raid_disk = disk;
5294 			err = 0;
5295 			if (rdev->saved_raid_disk != disk)
5296 				conf->fullsync = 1;
5297 			rcu_assign_pointer(p->rdev, rdev);
5298 			break;
5299 		}
5300 	print_raid5_conf(conf);
5301 	return err;
5302 }
5303 
5304 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5305 {
5306 	/* no resync is happening, and there is enough space
5307 	 * on all devices, so we can resize.
5308 	 * We need to make sure resync covers any new space.
5309 	 * If the array is shrinking we should possibly wait until
5310 	 * any io in the removed space completes, but it hardly seems
5311 	 * worth it.
5312 	 */
5313 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5314 	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5315 					       mddev->raid_disks));
5316 	if (mddev->array_sectors >
5317 	    raid5_size(mddev, sectors, mddev->raid_disks))
5318 		return -EINVAL;
5319 	set_capacity(mddev->gendisk, mddev->array_sectors);
5320 	revalidate_disk(mddev->gendisk);
5321 	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5322 		mddev->recovery_cp = mddev->dev_sectors;
5323 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5324 	}
5325 	mddev->dev_sectors = sectors;
5326 	mddev->resync_max_sectors = sectors;
5327 	return 0;
5328 }
5329 
5330 static int check_stripe_cache(mddev_t *mddev)
5331 {
5332 	/* Can only proceed if there are plenty of stripe_heads.
5333 	 * We need a minimum of one full stripe,, and for sensible progress
5334 	 * it is best to have about 4 times that.
5335 	 * If we require 4 times, then the default 256 4K stripe_heads will
5336 	 * allow for chunk sizes up to 256K, which is probably OK.
5337 	 * If the chunk size is greater, user-space should request more
5338 	 * stripe_heads first.
5339 	 */
5340 	raid5_conf_t *conf = mddev->private;
5341 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5342 	    > conf->max_nr_stripes ||
5343 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5344 	    > conf->max_nr_stripes) {
5345 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5346 		       mdname(mddev),
5347 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5348 			/ STRIPE_SIZE)*4);
5349 		return 0;
5350 	}
5351 	return 1;
5352 }
5353 
5354 static int check_reshape(mddev_t *mddev)
5355 {
5356 	raid5_conf_t *conf = mddev->private;
5357 
5358 	if (mddev->delta_disks == 0 &&
5359 	    mddev->new_layout == mddev->layout &&
5360 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5361 		return 0; /* nothing to do */
5362 	if (mddev->bitmap)
5363 		/* Cannot grow a bitmap yet */
5364 		return -EBUSY;
5365 	if (mddev->degraded > conf->max_degraded)
5366 		return -EINVAL;
5367 	if (mddev->delta_disks < 0) {
5368 		/* We might be able to shrink, but the devices must
5369 		 * be made bigger first.
5370 		 * For raid6, 4 is the minimum size.
5371 		 * Otherwise 2 is the minimum
5372 		 */
5373 		int min = 2;
5374 		if (mddev->level == 6)
5375 			min = 4;
5376 		if (mddev->raid_disks + mddev->delta_disks < min)
5377 			return -EINVAL;
5378 	}
5379 
5380 	if (!check_stripe_cache(mddev))
5381 		return -ENOSPC;
5382 
5383 	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5384 }
5385 
5386 static int raid5_start_reshape(mddev_t *mddev)
5387 {
5388 	raid5_conf_t *conf = mddev->private;
5389 	mdk_rdev_t *rdev;
5390 	int spares = 0;
5391 	int added_devices = 0;
5392 	unsigned long flags;
5393 
5394 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5395 		return -EBUSY;
5396 
5397 	if (!check_stripe_cache(mddev))
5398 		return -ENOSPC;
5399 
5400 	list_for_each_entry(rdev, &mddev->disks, same_set)
5401 		if (rdev->raid_disk < 0 &&
5402 		    !test_bit(Faulty, &rdev->flags))
5403 			spares++;
5404 
5405 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5406 		/* Not enough devices even to make a degraded array
5407 		 * of that size
5408 		 */
5409 		return -EINVAL;
5410 
5411 	/* Refuse to reduce size of the array.  Any reductions in
5412 	 * array size must be through explicit setting of array_size
5413 	 * attribute.
5414 	 */
5415 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5416 	    < mddev->array_sectors) {
5417 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5418 		       "before number of disks\n", mdname(mddev));
5419 		return -EINVAL;
5420 	}
5421 
5422 	atomic_set(&conf->reshape_stripes, 0);
5423 	spin_lock_irq(&conf->device_lock);
5424 	conf->previous_raid_disks = conf->raid_disks;
5425 	conf->raid_disks += mddev->delta_disks;
5426 	conf->prev_chunk_sectors = conf->chunk_sectors;
5427 	conf->chunk_sectors = mddev->new_chunk_sectors;
5428 	conf->prev_algo = conf->algorithm;
5429 	conf->algorithm = mddev->new_layout;
5430 	if (mddev->delta_disks < 0)
5431 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5432 	else
5433 		conf->reshape_progress = 0;
5434 	conf->reshape_safe = conf->reshape_progress;
5435 	conf->generation++;
5436 	spin_unlock_irq(&conf->device_lock);
5437 
5438 	/* Add some new drives, as many as will fit.
5439 	 * We know there are enough to make the newly sized array work.
5440 	 */
5441 	list_for_each_entry(rdev, &mddev->disks, same_set)
5442 		if (rdev->raid_disk < 0 &&
5443 		    !test_bit(Faulty, &rdev->flags)) {
5444 			if (raid5_add_disk(mddev, rdev) == 0) {
5445 				char nm[20];
5446 				if (rdev->raid_disk >= conf->previous_raid_disks) {
5447 					set_bit(In_sync, &rdev->flags);
5448 					added_devices++;
5449 				} else
5450 					rdev->recovery_offset = 0;
5451 				sprintf(nm, "rd%d", rdev->raid_disk);
5452 				if (sysfs_create_link(&mddev->kobj,
5453 						      &rdev->kobj, nm))
5454 					printk(KERN_WARNING
5455 					       "md/raid:%s: failed to create "
5456 					       " link %s\n",
5457 					       mdname(mddev), nm);
5458 			} else
5459 				break;
5460 		}
5461 
5462 	/* When a reshape changes the number of devices, ->degraded
5463 	 * is measured against the large of the pre and post number of
5464 	 * devices.*/
5465 	if (mddev->delta_disks > 0) {
5466 		spin_lock_irqsave(&conf->device_lock, flags);
5467 		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5468 			- added_devices;
5469 		spin_unlock_irqrestore(&conf->device_lock, flags);
5470 	}
5471 	mddev->raid_disks = conf->raid_disks;
5472 	mddev->reshape_position = conf->reshape_progress;
5473 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5474 
5475 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5476 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5477 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5478 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5479 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5480 						"reshape");
5481 	if (!mddev->sync_thread) {
5482 		mddev->recovery = 0;
5483 		spin_lock_irq(&conf->device_lock);
5484 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5485 		conf->reshape_progress = MaxSector;
5486 		spin_unlock_irq(&conf->device_lock);
5487 		return -EAGAIN;
5488 	}
5489 	conf->reshape_checkpoint = jiffies;
5490 	md_wakeup_thread(mddev->sync_thread);
5491 	md_new_event(mddev);
5492 	return 0;
5493 }
5494 
5495 /* This is called from the reshape thread and should make any
5496  * changes needed in 'conf'
5497  */
5498 static void end_reshape(raid5_conf_t *conf)
5499 {
5500 
5501 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5502 
5503 		spin_lock_irq(&conf->device_lock);
5504 		conf->previous_raid_disks = conf->raid_disks;
5505 		conf->reshape_progress = MaxSector;
5506 		spin_unlock_irq(&conf->device_lock);
5507 		wake_up(&conf->wait_for_overlap);
5508 
5509 		/* read-ahead size must cover two whole stripes, which is
5510 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5511 		 */
5512 		{
5513 			int data_disks = conf->raid_disks - conf->max_degraded;
5514 			int stripe = data_disks * ((conf->chunk_sectors << 9)
5515 						   / PAGE_SIZE);
5516 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5517 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5518 		}
5519 	}
5520 }
5521 
5522 /* This is called from the raid5d thread with mddev_lock held.
5523  * It makes config changes to the device.
5524  */
5525 static void raid5_finish_reshape(mddev_t *mddev)
5526 {
5527 	raid5_conf_t *conf = mddev->private;
5528 
5529 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5530 
5531 		if (mddev->delta_disks > 0) {
5532 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5533 			set_capacity(mddev->gendisk, mddev->array_sectors);
5534 			revalidate_disk(mddev->gendisk);
5535 		} else {
5536 			int d;
5537 			mddev->degraded = conf->raid_disks;
5538 			for (d = 0; d < conf->raid_disks ; d++)
5539 				if (conf->disks[d].rdev &&
5540 				    test_bit(In_sync,
5541 					     &conf->disks[d].rdev->flags))
5542 					mddev->degraded--;
5543 			for (d = conf->raid_disks ;
5544 			     d < conf->raid_disks - mddev->delta_disks;
5545 			     d++) {
5546 				mdk_rdev_t *rdev = conf->disks[d].rdev;
5547 				if (rdev && raid5_remove_disk(mddev, d) == 0) {
5548 					char nm[20];
5549 					sprintf(nm, "rd%d", rdev->raid_disk);
5550 					sysfs_remove_link(&mddev->kobj, nm);
5551 					rdev->raid_disk = -1;
5552 				}
5553 			}
5554 		}
5555 		mddev->layout = conf->algorithm;
5556 		mddev->chunk_sectors = conf->chunk_sectors;
5557 		mddev->reshape_position = MaxSector;
5558 		mddev->delta_disks = 0;
5559 	}
5560 }
5561 
5562 static void raid5_quiesce(mddev_t *mddev, int state)
5563 {
5564 	raid5_conf_t *conf = mddev->private;
5565 
5566 	switch(state) {
5567 	case 2: /* resume for a suspend */
5568 		wake_up(&conf->wait_for_overlap);
5569 		break;
5570 
5571 	case 1: /* stop all writes */
5572 		spin_lock_irq(&conf->device_lock);
5573 		/* '2' tells resync/reshape to pause so that all
5574 		 * active stripes can drain
5575 		 */
5576 		conf->quiesce = 2;
5577 		wait_event_lock_irq(conf->wait_for_stripe,
5578 				    atomic_read(&conf->active_stripes) == 0 &&
5579 				    atomic_read(&conf->active_aligned_reads) == 0,
5580 				    conf->device_lock, /* nothing */);
5581 		conf->quiesce = 1;
5582 		spin_unlock_irq(&conf->device_lock);
5583 		/* allow reshape to continue */
5584 		wake_up(&conf->wait_for_overlap);
5585 		break;
5586 
5587 	case 0: /* re-enable writes */
5588 		spin_lock_irq(&conf->device_lock);
5589 		conf->quiesce = 0;
5590 		wake_up(&conf->wait_for_stripe);
5591 		wake_up(&conf->wait_for_overlap);
5592 		spin_unlock_irq(&conf->device_lock);
5593 		break;
5594 	}
5595 }
5596 
5597 
5598 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5599 {
5600 	struct raid0_private_data *raid0_priv = mddev->private;
5601 
5602 	/* for raid0 takeover only one zone is supported */
5603 	if (raid0_priv->nr_strip_zones > 1) {
5604 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5605 		       mdname(mddev));
5606 		return ERR_PTR(-EINVAL);
5607 	}
5608 
5609 	mddev->new_level = level;
5610 	mddev->new_layout = ALGORITHM_PARITY_N;
5611 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5612 	mddev->raid_disks += 1;
5613 	mddev->delta_disks = 1;
5614 	/* make sure it will be not marked as dirty */
5615 	mddev->recovery_cp = MaxSector;
5616 
5617 	return setup_conf(mddev);
5618 }
5619 
5620 
5621 static void *raid5_takeover_raid1(mddev_t *mddev)
5622 {
5623 	int chunksect;
5624 
5625 	if (mddev->raid_disks != 2 ||
5626 	    mddev->degraded > 1)
5627 		return ERR_PTR(-EINVAL);
5628 
5629 	/* Should check if there are write-behind devices? */
5630 
5631 	chunksect = 64*2; /* 64K by default */
5632 
5633 	/* The array must be an exact multiple of chunksize */
5634 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5635 		chunksect >>= 1;
5636 
5637 	if ((chunksect<<9) < STRIPE_SIZE)
5638 		/* array size does not allow a suitable chunk size */
5639 		return ERR_PTR(-EINVAL);
5640 
5641 	mddev->new_level = 5;
5642 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5643 	mddev->new_chunk_sectors = chunksect;
5644 
5645 	return setup_conf(mddev);
5646 }
5647 
5648 static void *raid5_takeover_raid6(mddev_t *mddev)
5649 {
5650 	int new_layout;
5651 
5652 	switch (mddev->layout) {
5653 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5654 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5655 		break;
5656 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5657 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5658 		break;
5659 	case ALGORITHM_LEFT_SYMMETRIC_6:
5660 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5661 		break;
5662 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5663 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5664 		break;
5665 	case ALGORITHM_PARITY_0_6:
5666 		new_layout = ALGORITHM_PARITY_0;
5667 		break;
5668 	case ALGORITHM_PARITY_N:
5669 		new_layout = ALGORITHM_PARITY_N;
5670 		break;
5671 	default:
5672 		return ERR_PTR(-EINVAL);
5673 	}
5674 	mddev->new_level = 5;
5675 	mddev->new_layout = new_layout;
5676 	mddev->delta_disks = -1;
5677 	mddev->raid_disks -= 1;
5678 	return setup_conf(mddev);
5679 }
5680 
5681 
5682 static int raid5_check_reshape(mddev_t *mddev)
5683 {
5684 	/* For a 2-drive array, the layout and chunk size can be changed
5685 	 * immediately as not restriping is needed.
5686 	 * For larger arrays we record the new value - after validation
5687 	 * to be used by a reshape pass.
5688 	 */
5689 	raid5_conf_t *conf = mddev->private;
5690 	int new_chunk = mddev->new_chunk_sectors;
5691 
5692 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5693 		return -EINVAL;
5694 	if (new_chunk > 0) {
5695 		if (!is_power_of_2(new_chunk))
5696 			return -EINVAL;
5697 		if (new_chunk < (PAGE_SIZE>>9))
5698 			return -EINVAL;
5699 		if (mddev->array_sectors & (new_chunk-1))
5700 			/* not factor of array size */
5701 			return -EINVAL;
5702 	}
5703 
5704 	/* They look valid */
5705 
5706 	if (mddev->raid_disks == 2) {
5707 		/* can make the change immediately */
5708 		if (mddev->new_layout >= 0) {
5709 			conf->algorithm = mddev->new_layout;
5710 			mddev->layout = mddev->new_layout;
5711 		}
5712 		if (new_chunk > 0) {
5713 			conf->chunk_sectors = new_chunk ;
5714 			mddev->chunk_sectors = new_chunk;
5715 		}
5716 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5717 		md_wakeup_thread(mddev->thread);
5718 	}
5719 	return check_reshape(mddev);
5720 }
5721 
5722 static int raid6_check_reshape(mddev_t *mddev)
5723 {
5724 	int new_chunk = mddev->new_chunk_sectors;
5725 
5726 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5727 		return -EINVAL;
5728 	if (new_chunk > 0) {
5729 		if (!is_power_of_2(new_chunk))
5730 			return -EINVAL;
5731 		if (new_chunk < (PAGE_SIZE >> 9))
5732 			return -EINVAL;
5733 		if (mddev->array_sectors & (new_chunk-1))
5734 			/* not factor of array size */
5735 			return -EINVAL;
5736 	}
5737 
5738 	/* They look valid */
5739 	return check_reshape(mddev);
5740 }
5741 
5742 static void *raid5_takeover(mddev_t *mddev)
5743 {
5744 	/* raid5 can take over:
5745 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5746 	 *  raid1 - if there are two drives.  We need to know the chunk size
5747 	 *  raid4 - trivial - just use a raid4 layout.
5748 	 *  raid6 - Providing it is a *_6 layout
5749 	 */
5750 	if (mddev->level == 0)
5751 		return raid45_takeover_raid0(mddev, 5);
5752 	if (mddev->level == 1)
5753 		return raid5_takeover_raid1(mddev);
5754 	if (mddev->level == 4) {
5755 		mddev->new_layout = ALGORITHM_PARITY_N;
5756 		mddev->new_level = 5;
5757 		return setup_conf(mddev);
5758 	}
5759 	if (mddev->level == 6)
5760 		return raid5_takeover_raid6(mddev);
5761 
5762 	return ERR_PTR(-EINVAL);
5763 }
5764 
5765 static void *raid4_takeover(mddev_t *mddev)
5766 {
5767 	/* raid4 can take over:
5768 	 *  raid0 - if there is only one strip zone
5769 	 *  raid5 - if layout is right
5770 	 */
5771 	if (mddev->level == 0)
5772 		return raid45_takeover_raid0(mddev, 4);
5773 	if (mddev->level == 5 &&
5774 	    mddev->layout == ALGORITHM_PARITY_N) {
5775 		mddev->new_layout = 0;
5776 		mddev->new_level = 4;
5777 		return setup_conf(mddev);
5778 	}
5779 	return ERR_PTR(-EINVAL);
5780 }
5781 
5782 static struct mdk_personality raid5_personality;
5783 
5784 static void *raid6_takeover(mddev_t *mddev)
5785 {
5786 	/* Currently can only take over a raid5.  We map the
5787 	 * personality to an equivalent raid6 personality
5788 	 * with the Q block at the end.
5789 	 */
5790 	int new_layout;
5791 
5792 	if (mddev->pers != &raid5_personality)
5793 		return ERR_PTR(-EINVAL);
5794 	if (mddev->degraded > 1)
5795 		return ERR_PTR(-EINVAL);
5796 	if (mddev->raid_disks > 253)
5797 		return ERR_PTR(-EINVAL);
5798 	if (mddev->raid_disks < 3)
5799 		return ERR_PTR(-EINVAL);
5800 
5801 	switch (mddev->layout) {
5802 	case ALGORITHM_LEFT_ASYMMETRIC:
5803 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5804 		break;
5805 	case ALGORITHM_RIGHT_ASYMMETRIC:
5806 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5807 		break;
5808 	case ALGORITHM_LEFT_SYMMETRIC:
5809 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5810 		break;
5811 	case ALGORITHM_RIGHT_SYMMETRIC:
5812 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5813 		break;
5814 	case ALGORITHM_PARITY_0:
5815 		new_layout = ALGORITHM_PARITY_0_6;
5816 		break;
5817 	case ALGORITHM_PARITY_N:
5818 		new_layout = ALGORITHM_PARITY_N;
5819 		break;
5820 	default:
5821 		return ERR_PTR(-EINVAL);
5822 	}
5823 	mddev->new_level = 6;
5824 	mddev->new_layout = new_layout;
5825 	mddev->delta_disks = 1;
5826 	mddev->raid_disks += 1;
5827 	return setup_conf(mddev);
5828 }
5829 
5830 
5831 static struct mdk_personality raid6_personality =
5832 {
5833 	.name		= "raid6",
5834 	.level		= 6,
5835 	.owner		= THIS_MODULE,
5836 	.make_request	= make_request,
5837 	.run		= run,
5838 	.stop		= stop,
5839 	.status		= status,
5840 	.error_handler	= error,
5841 	.hot_add_disk	= raid5_add_disk,
5842 	.hot_remove_disk= raid5_remove_disk,
5843 	.spare_active	= raid5_spare_active,
5844 	.sync_request	= sync_request,
5845 	.resize		= raid5_resize,
5846 	.size		= raid5_size,
5847 	.check_reshape	= raid6_check_reshape,
5848 	.start_reshape  = raid5_start_reshape,
5849 	.finish_reshape = raid5_finish_reshape,
5850 	.quiesce	= raid5_quiesce,
5851 	.takeover	= raid6_takeover,
5852 };
5853 static struct mdk_personality raid5_personality =
5854 {
5855 	.name		= "raid5",
5856 	.level		= 5,
5857 	.owner		= THIS_MODULE,
5858 	.make_request	= make_request,
5859 	.run		= run,
5860 	.stop		= stop,
5861 	.status		= status,
5862 	.error_handler	= error,
5863 	.hot_add_disk	= raid5_add_disk,
5864 	.hot_remove_disk= raid5_remove_disk,
5865 	.spare_active	= raid5_spare_active,
5866 	.sync_request	= sync_request,
5867 	.resize		= raid5_resize,
5868 	.size		= raid5_size,
5869 	.check_reshape	= raid5_check_reshape,
5870 	.start_reshape  = raid5_start_reshape,
5871 	.finish_reshape = raid5_finish_reshape,
5872 	.quiesce	= raid5_quiesce,
5873 	.takeover	= raid5_takeover,
5874 };
5875 
5876 static struct mdk_personality raid4_personality =
5877 {
5878 	.name		= "raid4",
5879 	.level		= 4,
5880 	.owner		= THIS_MODULE,
5881 	.make_request	= make_request,
5882 	.run		= run,
5883 	.stop		= stop,
5884 	.status		= status,
5885 	.error_handler	= error,
5886 	.hot_add_disk	= raid5_add_disk,
5887 	.hot_remove_disk= raid5_remove_disk,
5888 	.spare_active	= raid5_spare_active,
5889 	.sync_request	= sync_request,
5890 	.resize		= raid5_resize,
5891 	.size		= raid5_size,
5892 	.check_reshape	= raid5_check_reshape,
5893 	.start_reshape  = raid5_start_reshape,
5894 	.finish_reshape = raid5_finish_reshape,
5895 	.quiesce	= raid5_quiesce,
5896 	.takeover	= raid4_takeover,
5897 };
5898 
5899 static int __init raid5_init(void)
5900 {
5901 	register_md_personality(&raid6_personality);
5902 	register_md_personality(&raid5_personality);
5903 	register_md_personality(&raid4_personality);
5904 	return 0;
5905 }
5906 
5907 static void raid5_exit(void)
5908 {
5909 	unregister_md_personality(&raid6_personality);
5910 	unregister_md_personality(&raid5_personality);
5911 	unregister_md_personality(&raid4_personality);
5912 }
5913 
5914 module_init(raid5_init);
5915 module_exit(raid5_exit);
5916 MODULE_LICENSE("GPL");
5917 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5918 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5919 MODULE_ALIAS("md-raid5");
5920 MODULE_ALIAS("md-raid4");
5921 MODULE_ALIAS("md-level-5");
5922 MODULE_ALIAS("md-level-4");
5923 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5924 MODULE_ALIAS("md-raid6");
5925 MODULE_ALIAS("md-level-6");
5926 
5927 /* This used to be two separate modules, they were: */
5928 MODULE_ALIAS("raid5");
5929 MODULE_ALIAS("raid6");
5930