1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->bm_write is the number of the last batch successfully written. 31 * conf->bm_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is bm_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/async.h> 51 #include <linux/seq_file.h> 52 #include <linux/cpu.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "raid5.h" 56 #include "raid0.h" 57 #include "bitmap.h" 58 59 /* 60 * Stripe cache 61 */ 62 63 #define NR_STRIPES 256 64 #define STRIPE_SIZE PAGE_SIZE 65 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 66 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 67 #define IO_THRESHOLD 1 68 #define BYPASS_THRESHOLD 1 69 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 70 #define HASH_MASK (NR_HASH - 1) 71 72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK])) 73 74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 75 * order without overlap. There may be several bio's per stripe+device, and 76 * a bio could span several devices. 77 * When walking this list for a particular stripe+device, we must never proceed 78 * beyond a bio that extends past this device, as the next bio might no longer 79 * be valid. 80 * This macro is used to determine the 'next' bio in the list, given the sector 81 * of the current stripe+device 82 */ 83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL) 84 /* 85 * The following can be used to debug the driver 86 */ 87 #define RAID5_PARANOIA 1 88 #if RAID5_PARANOIA && defined(CONFIG_SMP) 89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock) 90 #else 91 # define CHECK_DEVLOCK() 92 #endif 93 94 #ifdef DEBUG 95 #define inline 96 #define __inline__ 97 #endif 98 99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args))) 100 101 /* 102 * We maintain a biased count of active stripes in the bottom 16 bits of 103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 104 */ 105 static inline int raid5_bi_phys_segments(struct bio *bio) 106 { 107 return bio->bi_phys_segments & 0xffff; 108 } 109 110 static inline int raid5_bi_hw_segments(struct bio *bio) 111 { 112 return (bio->bi_phys_segments >> 16) & 0xffff; 113 } 114 115 static inline int raid5_dec_bi_phys_segments(struct bio *bio) 116 { 117 --bio->bi_phys_segments; 118 return raid5_bi_phys_segments(bio); 119 } 120 121 static inline int raid5_dec_bi_hw_segments(struct bio *bio) 122 { 123 unsigned short val = raid5_bi_hw_segments(bio); 124 125 --val; 126 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio); 127 return val; 128 } 129 130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt) 131 { 132 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16); 133 } 134 135 /* Find first data disk in a raid6 stripe */ 136 static inline int raid6_d0(struct stripe_head *sh) 137 { 138 if (sh->ddf_layout) 139 /* ddf always start from first device */ 140 return 0; 141 /* md starts just after Q block */ 142 if (sh->qd_idx == sh->disks - 1) 143 return 0; 144 else 145 return sh->qd_idx + 1; 146 } 147 static inline int raid6_next_disk(int disk, int raid_disks) 148 { 149 disk++; 150 return (disk < raid_disks) ? disk : 0; 151 } 152 153 /* When walking through the disks in a raid5, starting at raid6_d0, 154 * We need to map each disk to a 'slot', where the data disks are slot 155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 156 * is raid_disks-1. This help does that mapping. 157 */ 158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 159 int *count, int syndrome_disks) 160 { 161 int slot = *count; 162 163 if (sh->ddf_layout) 164 (*count)++; 165 if (idx == sh->pd_idx) 166 return syndrome_disks; 167 if (idx == sh->qd_idx) 168 return syndrome_disks + 1; 169 if (!sh->ddf_layout) 170 (*count)++; 171 return slot; 172 } 173 174 static void return_io(struct bio *return_bi) 175 { 176 struct bio *bi = return_bi; 177 while (bi) { 178 179 return_bi = bi->bi_next; 180 bi->bi_next = NULL; 181 bi->bi_size = 0; 182 bio_endio(bi, 0); 183 bi = return_bi; 184 } 185 } 186 187 static void print_raid5_conf (raid5_conf_t *conf); 188 189 static int stripe_operations_active(struct stripe_head *sh) 190 { 191 return sh->check_state || sh->reconstruct_state || 192 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 193 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 194 } 195 196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh) 197 { 198 if (atomic_dec_and_test(&sh->count)) { 199 BUG_ON(!list_empty(&sh->lru)); 200 BUG_ON(atomic_read(&conf->active_stripes)==0); 201 if (test_bit(STRIPE_HANDLE, &sh->state)) { 202 if (test_bit(STRIPE_DELAYED, &sh->state)) { 203 list_add_tail(&sh->lru, &conf->delayed_list); 204 plugger_set_plug(&conf->plug); 205 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 206 sh->bm_seq - conf->seq_write > 0) { 207 list_add_tail(&sh->lru, &conf->bitmap_list); 208 plugger_set_plug(&conf->plug); 209 } else { 210 clear_bit(STRIPE_BIT_DELAY, &sh->state); 211 list_add_tail(&sh->lru, &conf->handle_list); 212 } 213 md_wakeup_thread(conf->mddev->thread); 214 } else { 215 BUG_ON(stripe_operations_active(sh)); 216 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 217 atomic_dec(&conf->preread_active_stripes); 218 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) 219 md_wakeup_thread(conf->mddev->thread); 220 } 221 atomic_dec(&conf->active_stripes); 222 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 223 list_add_tail(&sh->lru, &conf->inactive_list); 224 wake_up(&conf->wait_for_stripe); 225 if (conf->retry_read_aligned) 226 md_wakeup_thread(conf->mddev->thread); 227 } 228 } 229 } 230 } 231 232 static void release_stripe(struct stripe_head *sh) 233 { 234 raid5_conf_t *conf = sh->raid_conf; 235 unsigned long flags; 236 237 spin_lock_irqsave(&conf->device_lock, flags); 238 __release_stripe(conf, sh); 239 spin_unlock_irqrestore(&conf->device_lock, flags); 240 } 241 242 static inline void remove_hash(struct stripe_head *sh) 243 { 244 pr_debug("remove_hash(), stripe %llu\n", 245 (unsigned long long)sh->sector); 246 247 hlist_del_init(&sh->hash); 248 } 249 250 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh) 251 { 252 struct hlist_head *hp = stripe_hash(conf, sh->sector); 253 254 pr_debug("insert_hash(), stripe %llu\n", 255 (unsigned long long)sh->sector); 256 257 CHECK_DEVLOCK(); 258 hlist_add_head(&sh->hash, hp); 259 } 260 261 262 /* find an idle stripe, make sure it is unhashed, and return it. */ 263 static struct stripe_head *get_free_stripe(raid5_conf_t *conf) 264 { 265 struct stripe_head *sh = NULL; 266 struct list_head *first; 267 268 CHECK_DEVLOCK(); 269 if (list_empty(&conf->inactive_list)) 270 goto out; 271 first = conf->inactive_list.next; 272 sh = list_entry(first, struct stripe_head, lru); 273 list_del_init(first); 274 remove_hash(sh); 275 atomic_inc(&conf->active_stripes); 276 out: 277 return sh; 278 } 279 280 static void shrink_buffers(struct stripe_head *sh) 281 { 282 struct page *p; 283 int i; 284 int num = sh->raid_conf->pool_size; 285 286 for (i = 0; i < num ; i++) { 287 p = sh->dev[i].page; 288 if (!p) 289 continue; 290 sh->dev[i].page = NULL; 291 put_page(p); 292 } 293 } 294 295 static int grow_buffers(struct stripe_head *sh) 296 { 297 int i; 298 int num = sh->raid_conf->pool_size; 299 300 for (i = 0; i < num; i++) { 301 struct page *page; 302 303 if (!(page = alloc_page(GFP_KERNEL))) { 304 return 1; 305 } 306 sh->dev[i].page = page; 307 } 308 return 0; 309 } 310 311 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 312 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous, 313 struct stripe_head *sh); 314 315 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 316 { 317 raid5_conf_t *conf = sh->raid_conf; 318 int i; 319 320 BUG_ON(atomic_read(&sh->count) != 0); 321 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 322 BUG_ON(stripe_operations_active(sh)); 323 324 CHECK_DEVLOCK(); 325 pr_debug("init_stripe called, stripe %llu\n", 326 (unsigned long long)sh->sector); 327 328 remove_hash(sh); 329 330 sh->generation = conf->generation - previous; 331 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 332 sh->sector = sector; 333 stripe_set_idx(sector, conf, previous, sh); 334 sh->state = 0; 335 336 337 for (i = sh->disks; i--; ) { 338 struct r5dev *dev = &sh->dev[i]; 339 340 if (dev->toread || dev->read || dev->towrite || dev->written || 341 test_bit(R5_LOCKED, &dev->flags)) { 342 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 343 (unsigned long long)sh->sector, i, dev->toread, 344 dev->read, dev->towrite, dev->written, 345 test_bit(R5_LOCKED, &dev->flags)); 346 BUG(); 347 } 348 dev->flags = 0; 349 raid5_build_block(sh, i, previous); 350 } 351 insert_hash(conf, sh); 352 } 353 354 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, 355 short generation) 356 { 357 struct stripe_head *sh; 358 struct hlist_node *hn; 359 360 CHECK_DEVLOCK(); 361 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 362 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash) 363 if (sh->sector == sector && sh->generation == generation) 364 return sh; 365 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 366 return NULL; 367 } 368 369 /* 370 * Need to check if array has failed when deciding whether to: 371 * - start an array 372 * - remove non-faulty devices 373 * - add a spare 374 * - allow a reshape 375 * This determination is simple when no reshape is happening. 376 * However if there is a reshape, we need to carefully check 377 * both the before and after sections. 378 * This is because some failed devices may only affect one 379 * of the two sections, and some non-in_sync devices may 380 * be insync in the section most affected by failed devices. 381 */ 382 static int has_failed(raid5_conf_t *conf) 383 { 384 int degraded; 385 int i; 386 if (conf->mddev->reshape_position == MaxSector) 387 return conf->mddev->degraded > conf->max_degraded; 388 389 rcu_read_lock(); 390 degraded = 0; 391 for (i = 0; i < conf->previous_raid_disks; i++) { 392 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev); 393 if (!rdev || test_bit(Faulty, &rdev->flags)) 394 degraded++; 395 else if (test_bit(In_sync, &rdev->flags)) 396 ; 397 else 398 /* not in-sync or faulty. 399 * If the reshape increases the number of devices, 400 * this is being recovered by the reshape, so 401 * this 'previous' section is not in_sync. 402 * If the number of devices is being reduced however, 403 * the device can only be part of the array if 404 * we are reverting a reshape, so this section will 405 * be in-sync. 406 */ 407 if (conf->raid_disks >= conf->previous_raid_disks) 408 degraded++; 409 } 410 rcu_read_unlock(); 411 if (degraded > conf->max_degraded) 412 return 1; 413 rcu_read_lock(); 414 degraded = 0; 415 for (i = 0; i < conf->raid_disks; i++) { 416 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev); 417 if (!rdev || test_bit(Faulty, &rdev->flags)) 418 degraded++; 419 else if (test_bit(In_sync, &rdev->flags)) 420 ; 421 else 422 /* not in-sync or faulty. 423 * If reshape increases the number of devices, this 424 * section has already been recovered, else it 425 * almost certainly hasn't. 426 */ 427 if (conf->raid_disks <= conf->previous_raid_disks) 428 degraded++; 429 } 430 rcu_read_unlock(); 431 if (degraded > conf->max_degraded) 432 return 1; 433 return 0; 434 } 435 436 static void unplug_slaves(mddev_t *mddev); 437 438 static struct stripe_head * 439 get_active_stripe(raid5_conf_t *conf, sector_t sector, 440 int previous, int noblock, int noquiesce) 441 { 442 struct stripe_head *sh; 443 444 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 445 446 spin_lock_irq(&conf->device_lock); 447 448 do { 449 wait_event_lock_irq(conf->wait_for_stripe, 450 conf->quiesce == 0 || noquiesce, 451 conf->device_lock, /* nothing */); 452 sh = __find_stripe(conf, sector, conf->generation - previous); 453 if (!sh) { 454 if (!conf->inactive_blocked) 455 sh = get_free_stripe(conf); 456 if (noblock && sh == NULL) 457 break; 458 if (!sh) { 459 conf->inactive_blocked = 1; 460 wait_event_lock_irq(conf->wait_for_stripe, 461 !list_empty(&conf->inactive_list) && 462 (atomic_read(&conf->active_stripes) 463 < (conf->max_nr_stripes *3/4) 464 || !conf->inactive_blocked), 465 conf->device_lock, 466 md_raid5_unplug_device(conf) 467 ); 468 conf->inactive_blocked = 0; 469 } else 470 init_stripe(sh, sector, previous); 471 } else { 472 if (atomic_read(&sh->count)) { 473 BUG_ON(!list_empty(&sh->lru) 474 && !test_bit(STRIPE_EXPANDING, &sh->state)); 475 } else { 476 if (!test_bit(STRIPE_HANDLE, &sh->state)) 477 atomic_inc(&conf->active_stripes); 478 if (list_empty(&sh->lru) && 479 !test_bit(STRIPE_EXPANDING, &sh->state)) 480 BUG(); 481 list_del_init(&sh->lru); 482 } 483 } 484 } while (sh == NULL); 485 486 if (sh) 487 atomic_inc(&sh->count); 488 489 spin_unlock_irq(&conf->device_lock); 490 return sh; 491 } 492 493 static void 494 raid5_end_read_request(struct bio *bi, int error); 495 static void 496 raid5_end_write_request(struct bio *bi, int error); 497 498 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 499 { 500 raid5_conf_t *conf = sh->raid_conf; 501 int i, disks = sh->disks; 502 503 might_sleep(); 504 505 for (i = disks; i--; ) { 506 int rw; 507 struct bio *bi; 508 mdk_rdev_t *rdev; 509 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 510 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 511 rw = WRITE_FUA; 512 else 513 rw = WRITE; 514 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 515 rw = READ; 516 else 517 continue; 518 519 bi = &sh->dev[i].req; 520 521 bi->bi_rw = rw; 522 if (rw == WRITE) 523 bi->bi_end_io = raid5_end_write_request; 524 else 525 bi->bi_end_io = raid5_end_read_request; 526 527 rcu_read_lock(); 528 rdev = rcu_dereference(conf->disks[i].rdev); 529 if (rdev && test_bit(Faulty, &rdev->flags)) 530 rdev = NULL; 531 if (rdev) 532 atomic_inc(&rdev->nr_pending); 533 rcu_read_unlock(); 534 535 if (rdev) { 536 if (s->syncing || s->expanding || s->expanded) 537 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 538 539 set_bit(STRIPE_IO_STARTED, &sh->state); 540 541 bi->bi_bdev = rdev->bdev; 542 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 543 __func__, (unsigned long long)sh->sector, 544 bi->bi_rw, i); 545 atomic_inc(&sh->count); 546 bi->bi_sector = sh->sector + rdev->data_offset; 547 bi->bi_flags = 1 << BIO_UPTODATE; 548 bi->bi_vcnt = 1; 549 bi->bi_max_vecs = 1; 550 bi->bi_idx = 0; 551 bi->bi_io_vec = &sh->dev[i].vec; 552 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 553 bi->bi_io_vec[0].bv_offset = 0; 554 bi->bi_size = STRIPE_SIZE; 555 bi->bi_next = NULL; 556 if (rw == WRITE && 557 test_bit(R5_ReWrite, &sh->dev[i].flags)) 558 atomic_add(STRIPE_SECTORS, 559 &rdev->corrected_errors); 560 generic_make_request(bi); 561 } else { 562 if (rw == WRITE) 563 set_bit(STRIPE_DEGRADED, &sh->state); 564 pr_debug("skip op %ld on disc %d for sector %llu\n", 565 bi->bi_rw, i, (unsigned long long)sh->sector); 566 clear_bit(R5_LOCKED, &sh->dev[i].flags); 567 set_bit(STRIPE_HANDLE, &sh->state); 568 } 569 } 570 } 571 572 static struct dma_async_tx_descriptor * 573 async_copy_data(int frombio, struct bio *bio, struct page *page, 574 sector_t sector, struct dma_async_tx_descriptor *tx) 575 { 576 struct bio_vec *bvl; 577 struct page *bio_page; 578 int i; 579 int page_offset; 580 struct async_submit_ctl submit; 581 enum async_tx_flags flags = 0; 582 583 if (bio->bi_sector >= sector) 584 page_offset = (signed)(bio->bi_sector - sector) * 512; 585 else 586 page_offset = (signed)(sector - bio->bi_sector) * -512; 587 588 if (frombio) 589 flags |= ASYNC_TX_FENCE; 590 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 591 592 bio_for_each_segment(bvl, bio, i) { 593 int len = bio_iovec_idx(bio, i)->bv_len; 594 int clen; 595 int b_offset = 0; 596 597 if (page_offset < 0) { 598 b_offset = -page_offset; 599 page_offset += b_offset; 600 len -= b_offset; 601 } 602 603 if (len > 0 && page_offset + len > STRIPE_SIZE) 604 clen = STRIPE_SIZE - page_offset; 605 else 606 clen = len; 607 608 if (clen > 0) { 609 b_offset += bio_iovec_idx(bio, i)->bv_offset; 610 bio_page = bio_iovec_idx(bio, i)->bv_page; 611 if (frombio) 612 tx = async_memcpy(page, bio_page, page_offset, 613 b_offset, clen, &submit); 614 else 615 tx = async_memcpy(bio_page, page, b_offset, 616 page_offset, clen, &submit); 617 } 618 /* chain the operations */ 619 submit.depend_tx = tx; 620 621 if (clen < len) /* hit end of page */ 622 break; 623 page_offset += len; 624 } 625 626 return tx; 627 } 628 629 static void ops_complete_biofill(void *stripe_head_ref) 630 { 631 struct stripe_head *sh = stripe_head_ref; 632 struct bio *return_bi = NULL; 633 raid5_conf_t *conf = sh->raid_conf; 634 int i; 635 636 pr_debug("%s: stripe %llu\n", __func__, 637 (unsigned long long)sh->sector); 638 639 /* clear completed biofills */ 640 spin_lock_irq(&conf->device_lock); 641 for (i = sh->disks; i--; ) { 642 struct r5dev *dev = &sh->dev[i]; 643 644 /* acknowledge completion of a biofill operation */ 645 /* and check if we need to reply to a read request, 646 * new R5_Wantfill requests are held off until 647 * !STRIPE_BIOFILL_RUN 648 */ 649 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 650 struct bio *rbi, *rbi2; 651 652 BUG_ON(!dev->read); 653 rbi = dev->read; 654 dev->read = NULL; 655 while (rbi && rbi->bi_sector < 656 dev->sector + STRIPE_SECTORS) { 657 rbi2 = r5_next_bio(rbi, dev->sector); 658 if (!raid5_dec_bi_phys_segments(rbi)) { 659 rbi->bi_next = return_bi; 660 return_bi = rbi; 661 } 662 rbi = rbi2; 663 } 664 } 665 } 666 spin_unlock_irq(&conf->device_lock); 667 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 668 669 return_io(return_bi); 670 671 set_bit(STRIPE_HANDLE, &sh->state); 672 release_stripe(sh); 673 } 674 675 static void ops_run_biofill(struct stripe_head *sh) 676 { 677 struct dma_async_tx_descriptor *tx = NULL; 678 raid5_conf_t *conf = sh->raid_conf; 679 struct async_submit_ctl submit; 680 int i; 681 682 pr_debug("%s: stripe %llu\n", __func__, 683 (unsigned long long)sh->sector); 684 685 for (i = sh->disks; i--; ) { 686 struct r5dev *dev = &sh->dev[i]; 687 if (test_bit(R5_Wantfill, &dev->flags)) { 688 struct bio *rbi; 689 spin_lock_irq(&conf->device_lock); 690 dev->read = rbi = dev->toread; 691 dev->toread = NULL; 692 spin_unlock_irq(&conf->device_lock); 693 while (rbi && rbi->bi_sector < 694 dev->sector + STRIPE_SECTORS) { 695 tx = async_copy_data(0, rbi, dev->page, 696 dev->sector, tx); 697 rbi = r5_next_bio(rbi, dev->sector); 698 } 699 } 700 } 701 702 atomic_inc(&sh->count); 703 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 704 async_trigger_callback(&submit); 705 } 706 707 static void mark_target_uptodate(struct stripe_head *sh, int target) 708 { 709 struct r5dev *tgt; 710 711 if (target < 0) 712 return; 713 714 tgt = &sh->dev[target]; 715 set_bit(R5_UPTODATE, &tgt->flags); 716 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 717 clear_bit(R5_Wantcompute, &tgt->flags); 718 } 719 720 static void ops_complete_compute(void *stripe_head_ref) 721 { 722 struct stripe_head *sh = stripe_head_ref; 723 724 pr_debug("%s: stripe %llu\n", __func__, 725 (unsigned long long)sh->sector); 726 727 /* mark the computed target(s) as uptodate */ 728 mark_target_uptodate(sh, sh->ops.target); 729 mark_target_uptodate(sh, sh->ops.target2); 730 731 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 732 if (sh->check_state == check_state_compute_run) 733 sh->check_state = check_state_compute_result; 734 set_bit(STRIPE_HANDLE, &sh->state); 735 release_stripe(sh); 736 } 737 738 /* return a pointer to the address conversion region of the scribble buffer */ 739 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 740 struct raid5_percpu *percpu) 741 { 742 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2); 743 } 744 745 static struct dma_async_tx_descriptor * 746 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 747 { 748 int disks = sh->disks; 749 struct page **xor_srcs = percpu->scribble; 750 int target = sh->ops.target; 751 struct r5dev *tgt = &sh->dev[target]; 752 struct page *xor_dest = tgt->page; 753 int count = 0; 754 struct dma_async_tx_descriptor *tx; 755 struct async_submit_ctl submit; 756 int i; 757 758 pr_debug("%s: stripe %llu block: %d\n", 759 __func__, (unsigned long long)sh->sector, target); 760 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 761 762 for (i = disks; i--; ) 763 if (i != target) 764 xor_srcs[count++] = sh->dev[i].page; 765 766 atomic_inc(&sh->count); 767 768 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 769 ops_complete_compute, sh, to_addr_conv(sh, percpu)); 770 if (unlikely(count == 1)) 771 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 772 else 773 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 774 775 return tx; 776 } 777 778 /* set_syndrome_sources - populate source buffers for gen_syndrome 779 * @srcs - (struct page *) array of size sh->disks 780 * @sh - stripe_head to parse 781 * 782 * Populates srcs in proper layout order for the stripe and returns the 783 * 'count' of sources to be used in a call to async_gen_syndrome. The P 784 * destination buffer is recorded in srcs[count] and the Q destination 785 * is recorded in srcs[count+1]]. 786 */ 787 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh) 788 { 789 int disks = sh->disks; 790 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 791 int d0_idx = raid6_d0(sh); 792 int count; 793 int i; 794 795 for (i = 0; i < disks; i++) 796 srcs[i] = NULL; 797 798 count = 0; 799 i = d0_idx; 800 do { 801 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 802 803 srcs[slot] = sh->dev[i].page; 804 i = raid6_next_disk(i, disks); 805 } while (i != d0_idx); 806 807 return syndrome_disks; 808 } 809 810 static struct dma_async_tx_descriptor * 811 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 812 { 813 int disks = sh->disks; 814 struct page **blocks = percpu->scribble; 815 int target; 816 int qd_idx = sh->qd_idx; 817 struct dma_async_tx_descriptor *tx; 818 struct async_submit_ctl submit; 819 struct r5dev *tgt; 820 struct page *dest; 821 int i; 822 int count; 823 824 if (sh->ops.target < 0) 825 target = sh->ops.target2; 826 else if (sh->ops.target2 < 0) 827 target = sh->ops.target; 828 else 829 /* we should only have one valid target */ 830 BUG(); 831 BUG_ON(target < 0); 832 pr_debug("%s: stripe %llu block: %d\n", 833 __func__, (unsigned long long)sh->sector, target); 834 835 tgt = &sh->dev[target]; 836 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 837 dest = tgt->page; 838 839 atomic_inc(&sh->count); 840 841 if (target == qd_idx) { 842 count = set_syndrome_sources(blocks, sh); 843 blocks[count] = NULL; /* regenerating p is not necessary */ 844 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 845 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 846 ops_complete_compute, sh, 847 to_addr_conv(sh, percpu)); 848 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 849 } else { 850 /* Compute any data- or p-drive using XOR */ 851 count = 0; 852 for (i = disks; i-- ; ) { 853 if (i == target || i == qd_idx) 854 continue; 855 blocks[count++] = sh->dev[i].page; 856 } 857 858 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 859 NULL, ops_complete_compute, sh, 860 to_addr_conv(sh, percpu)); 861 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 862 } 863 864 return tx; 865 } 866 867 static struct dma_async_tx_descriptor * 868 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 869 { 870 int i, count, disks = sh->disks; 871 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 872 int d0_idx = raid6_d0(sh); 873 int faila = -1, failb = -1; 874 int target = sh->ops.target; 875 int target2 = sh->ops.target2; 876 struct r5dev *tgt = &sh->dev[target]; 877 struct r5dev *tgt2 = &sh->dev[target2]; 878 struct dma_async_tx_descriptor *tx; 879 struct page **blocks = percpu->scribble; 880 struct async_submit_ctl submit; 881 882 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 883 __func__, (unsigned long long)sh->sector, target, target2); 884 BUG_ON(target < 0 || target2 < 0); 885 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 886 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 887 888 /* we need to open-code set_syndrome_sources to handle the 889 * slot number conversion for 'faila' and 'failb' 890 */ 891 for (i = 0; i < disks ; i++) 892 blocks[i] = NULL; 893 count = 0; 894 i = d0_idx; 895 do { 896 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 897 898 blocks[slot] = sh->dev[i].page; 899 900 if (i == target) 901 faila = slot; 902 if (i == target2) 903 failb = slot; 904 i = raid6_next_disk(i, disks); 905 } while (i != d0_idx); 906 907 BUG_ON(faila == failb); 908 if (failb < faila) 909 swap(faila, failb); 910 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 911 __func__, (unsigned long long)sh->sector, faila, failb); 912 913 atomic_inc(&sh->count); 914 915 if (failb == syndrome_disks+1) { 916 /* Q disk is one of the missing disks */ 917 if (faila == syndrome_disks) { 918 /* Missing P+Q, just recompute */ 919 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 920 ops_complete_compute, sh, 921 to_addr_conv(sh, percpu)); 922 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 923 STRIPE_SIZE, &submit); 924 } else { 925 struct page *dest; 926 int data_target; 927 int qd_idx = sh->qd_idx; 928 929 /* Missing D+Q: recompute D from P, then recompute Q */ 930 if (target == qd_idx) 931 data_target = target2; 932 else 933 data_target = target; 934 935 count = 0; 936 for (i = disks; i-- ; ) { 937 if (i == data_target || i == qd_idx) 938 continue; 939 blocks[count++] = sh->dev[i].page; 940 } 941 dest = sh->dev[data_target].page; 942 init_async_submit(&submit, 943 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 944 NULL, NULL, NULL, 945 to_addr_conv(sh, percpu)); 946 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 947 &submit); 948 949 count = set_syndrome_sources(blocks, sh); 950 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 951 ops_complete_compute, sh, 952 to_addr_conv(sh, percpu)); 953 return async_gen_syndrome(blocks, 0, count+2, 954 STRIPE_SIZE, &submit); 955 } 956 } else { 957 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 958 ops_complete_compute, sh, 959 to_addr_conv(sh, percpu)); 960 if (failb == syndrome_disks) { 961 /* We're missing D+P. */ 962 return async_raid6_datap_recov(syndrome_disks+2, 963 STRIPE_SIZE, faila, 964 blocks, &submit); 965 } else { 966 /* We're missing D+D. */ 967 return async_raid6_2data_recov(syndrome_disks+2, 968 STRIPE_SIZE, faila, failb, 969 blocks, &submit); 970 } 971 } 972 } 973 974 975 static void ops_complete_prexor(void *stripe_head_ref) 976 { 977 struct stripe_head *sh = stripe_head_ref; 978 979 pr_debug("%s: stripe %llu\n", __func__, 980 (unsigned long long)sh->sector); 981 } 982 983 static struct dma_async_tx_descriptor * 984 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu, 985 struct dma_async_tx_descriptor *tx) 986 { 987 int disks = sh->disks; 988 struct page **xor_srcs = percpu->scribble; 989 int count = 0, pd_idx = sh->pd_idx, i; 990 struct async_submit_ctl submit; 991 992 /* existing parity data subtracted */ 993 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 994 995 pr_debug("%s: stripe %llu\n", __func__, 996 (unsigned long long)sh->sector); 997 998 for (i = disks; i--; ) { 999 struct r5dev *dev = &sh->dev[i]; 1000 /* Only process blocks that are known to be uptodate */ 1001 if (test_bit(R5_Wantdrain, &dev->flags)) 1002 xor_srcs[count++] = dev->page; 1003 } 1004 1005 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1006 ops_complete_prexor, sh, to_addr_conv(sh, percpu)); 1007 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1008 1009 return tx; 1010 } 1011 1012 static struct dma_async_tx_descriptor * 1013 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1014 { 1015 int disks = sh->disks; 1016 int i; 1017 1018 pr_debug("%s: stripe %llu\n", __func__, 1019 (unsigned long long)sh->sector); 1020 1021 for (i = disks; i--; ) { 1022 struct r5dev *dev = &sh->dev[i]; 1023 struct bio *chosen; 1024 1025 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) { 1026 struct bio *wbi; 1027 1028 spin_lock(&sh->lock); 1029 chosen = dev->towrite; 1030 dev->towrite = NULL; 1031 BUG_ON(dev->written); 1032 wbi = dev->written = chosen; 1033 spin_unlock(&sh->lock); 1034 1035 while (wbi && wbi->bi_sector < 1036 dev->sector + STRIPE_SECTORS) { 1037 if (wbi->bi_rw & REQ_FUA) 1038 set_bit(R5_WantFUA, &dev->flags); 1039 tx = async_copy_data(1, wbi, dev->page, 1040 dev->sector, tx); 1041 wbi = r5_next_bio(wbi, dev->sector); 1042 } 1043 } 1044 } 1045 1046 return tx; 1047 } 1048 1049 static void ops_complete_reconstruct(void *stripe_head_ref) 1050 { 1051 struct stripe_head *sh = stripe_head_ref; 1052 int disks = sh->disks; 1053 int pd_idx = sh->pd_idx; 1054 int qd_idx = sh->qd_idx; 1055 int i; 1056 bool fua = false; 1057 1058 pr_debug("%s: stripe %llu\n", __func__, 1059 (unsigned long long)sh->sector); 1060 1061 for (i = disks; i--; ) 1062 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1063 1064 for (i = disks; i--; ) { 1065 struct r5dev *dev = &sh->dev[i]; 1066 1067 if (dev->written || i == pd_idx || i == qd_idx) { 1068 set_bit(R5_UPTODATE, &dev->flags); 1069 if (fua) 1070 set_bit(R5_WantFUA, &dev->flags); 1071 } 1072 } 1073 1074 if (sh->reconstruct_state == reconstruct_state_drain_run) 1075 sh->reconstruct_state = reconstruct_state_drain_result; 1076 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1077 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1078 else { 1079 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1080 sh->reconstruct_state = reconstruct_state_result; 1081 } 1082 1083 set_bit(STRIPE_HANDLE, &sh->state); 1084 release_stripe(sh); 1085 } 1086 1087 static void 1088 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1089 struct dma_async_tx_descriptor *tx) 1090 { 1091 int disks = sh->disks; 1092 struct page **xor_srcs = percpu->scribble; 1093 struct async_submit_ctl submit; 1094 int count = 0, pd_idx = sh->pd_idx, i; 1095 struct page *xor_dest; 1096 int prexor = 0; 1097 unsigned long flags; 1098 1099 pr_debug("%s: stripe %llu\n", __func__, 1100 (unsigned long long)sh->sector); 1101 1102 /* check if prexor is active which means only process blocks 1103 * that are part of a read-modify-write (written) 1104 */ 1105 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1106 prexor = 1; 1107 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1108 for (i = disks; i--; ) { 1109 struct r5dev *dev = &sh->dev[i]; 1110 if (dev->written) 1111 xor_srcs[count++] = dev->page; 1112 } 1113 } else { 1114 xor_dest = sh->dev[pd_idx].page; 1115 for (i = disks; i--; ) { 1116 struct r5dev *dev = &sh->dev[i]; 1117 if (i != pd_idx) 1118 xor_srcs[count++] = dev->page; 1119 } 1120 } 1121 1122 /* 1/ if we prexor'd then the dest is reused as a source 1123 * 2/ if we did not prexor then we are redoing the parity 1124 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1125 * for the synchronous xor case 1126 */ 1127 flags = ASYNC_TX_ACK | 1128 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1129 1130 atomic_inc(&sh->count); 1131 1132 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh, 1133 to_addr_conv(sh, percpu)); 1134 if (unlikely(count == 1)) 1135 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1136 else 1137 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1138 } 1139 1140 static void 1141 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1142 struct dma_async_tx_descriptor *tx) 1143 { 1144 struct async_submit_ctl submit; 1145 struct page **blocks = percpu->scribble; 1146 int count; 1147 1148 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1149 1150 count = set_syndrome_sources(blocks, sh); 1151 1152 atomic_inc(&sh->count); 1153 1154 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct, 1155 sh, to_addr_conv(sh, percpu)); 1156 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1157 } 1158 1159 static void ops_complete_check(void *stripe_head_ref) 1160 { 1161 struct stripe_head *sh = stripe_head_ref; 1162 1163 pr_debug("%s: stripe %llu\n", __func__, 1164 (unsigned long long)sh->sector); 1165 1166 sh->check_state = check_state_check_result; 1167 set_bit(STRIPE_HANDLE, &sh->state); 1168 release_stripe(sh); 1169 } 1170 1171 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1172 { 1173 int disks = sh->disks; 1174 int pd_idx = sh->pd_idx; 1175 int qd_idx = sh->qd_idx; 1176 struct page *xor_dest; 1177 struct page **xor_srcs = percpu->scribble; 1178 struct dma_async_tx_descriptor *tx; 1179 struct async_submit_ctl submit; 1180 int count; 1181 int i; 1182 1183 pr_debug("%s: stripe %llu\n", __func__, 1184 (unsigned long long)sh->sector); 1185 1186 count = 0; 1187 xor_dest = sh->dev[pd_idx].page; 1188 xor_srcs[count++] = xor_dest; 1189 for (i = disks; i--; ) { 1190 if (i == pd_idx || i == qd_idx) 1191 continue; 1192 xor_srcs[count++] = sh->dev[i].page; 1193 } 1194 1195 init_async_submit(&submit, 0, NULL, NULL, NULL, 1196 to_addr_conv(sh, percpu)); 1197 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1198 &sh->ops.zero_sum_result, &submit); 1199 1200 atomic_inc(&sh->count); 1201 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1202 tx = async_trigger_callback(&submit); 1203 } 1204 1205 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1206 { 1207 struct page **srcs = percpu->scribble; 1208 struct async_submit_ctl submit; 1209 int count; 1210 1211 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1212 (unsigned long long)sh->sector, checkp); 1213 1214 count = set_syndrome_sources(srcs, sh); 1215 if (!checkp) 1216 srcs[count] = NULL; 1217 1218 atomic_inc(&sh->count); 1219 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1220 sh, to_addr_conv(sh, percpu)); 1221 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1222 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1223 } 1224 1225 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1226 { 1227 int overlap_clear = 0, i, disks = sh->disks; 1228 struct dma_async_tx_descriptor *tx = NULL; 1229 raid5_conf_t *conf = sh->raid_conf; 1230 int level = conf->level; 1231 struct raid5_percpu *percpu; 1232 unsigned long cpu; 1233 1234 cpu = get_cpu(); 1235 percpu = per_cpu_ptr(conf->percpu, cpu); 1236 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1237 ops_run_biofill(sh); 1238 overlap_clear++; 1239 } 1240 1241 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1242 if (level < 6) 1243 tx = ops_run_compute5(sh, percpu); 1244 else { 1245 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1246 tx = ops_run_compute6_1(sh, percpu); 1247 else 1248 tx = ops_run_compute6_2(sh, percpu); 1249 } 1250 /* terminate the chain if reconstruct is not set to be run */ 1251 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1252 async_tx_ack(tx); 1253 } 1254 1255 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) 1256 tx = ops_run_prexor(sh, percpu, tx); 1257 1258 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1259 tx = ops_run_biodrain(sh, tx); 1260 overlap_clear++; 1261 } 1262 1263 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1264 if (level < 6) 1265 ops_run_reconstruct5(sh, percpu, tx); 1266 else 1267 ops_run_reconstruct6(sh, percpu, tx); 1268 } 1269 1270 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1271 if (sh->check_state == check_state_run) 1272 ops_run_check_p(sh, percpu); 1273 else if (sh->check_state == check_state_run_q) 1274 ops_run_check_pq(sh, percpu, 0); 1275 else if (sh->check_state == check_state_run_pq) 1276 ops_run_check_pq(sh, percpu, 1); 1277 else 1278 BUG(); 1279 } 1280 1281 if (overlap_clear) 1282 for (i = disks; i--; ) { 1283 struct r5dev *dev = &sh->dev[i]; 1284 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1285 wake_up(&sh->raid_conf->wait_for_overlap); 1286 } 1287 put_cpu(); 1288 } 1289 1290 #ifdef CONFIG_MULTICORE_RAID456 1291 static void async_run_ops(void *param, async_cookie_t cookie) 1292 { 1293 struct stripe_head *sh = param; 1294 unsigned long ops_request = sh->ops.request; 1295 1296 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state); 1297 wake_up(&sh->ops.wait_for_ops); 1298 1299 __raid_run_ops(sh, ops_request); 1300 release_stripe(sh); 1301 } 1302 1303 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1304 { 1305 /* since handle_stripe can be called outside of raid5d context 1306 * we need to ensure sh->ops.request is de-staged before another 1307 * request arrives 1308 */ 1309 wait_event(sh->ops.wait_for_ops, 1310 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state)); 1311 sh->ops.request = ops_request; 1312 1313 atomic_inc(&sh->count); 1314 async_schedule(async_run_ops, sh); 1315 } 1316 #else 1317 #define raid_run_ops __raid_run_ops 1318 #endif 1319 1320 static int grow_one_stripe(raid5_conf_t *conf) 1321 { 1322 struct stripe_head *sh; 1323 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL); 1324 if (!sh) 1325 return 0; 1326 memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev)); 1327 sh->raid_conf = conf; 1328 spin_lock_init(&sh->lock); 1329 #ifdef CONFIG_MULTICORE_RAID456 1330 init_waitqueue_head(&sh->ops.wait_for_ops); 1331 #endif 1332 1333 if (grow_buffers(sh)) { 1334 shrink_buffers(sh); 1335 kmem_cache_free(conf->slab_cache, sh); 1336 return 0; 1337 } 1338 /* we just created an active stripe so... */ 1339 atomic_set(&sh->count, 1); 1340 atomic_inc(&conf->active_stripes); 1341 INIT_LIST_HEAD(&sh->lru); 1342 release_stripe(sh); 1343 return 1; 1344 } 1345 1346 static int grow_stripes(raid5_conf_t *conf, int num) 1347 { 1348 struct kmem_cache *sc; 1349 int devs = max(conf->raid_disks, conf->previous_raid_disks); 1350 1351 if (conf->mddev->gendisk) 1352 sprintf(conf->cache_name[0], 1353 "raid%d-%s", conf->level, mdname(conf->mddev)); 1354 else 1355 sprintf(conf->cache_name[0], 1356 "raid%d-%p", conf->level, conf->mddev); 1357 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 1358 1359 conf->active_name = 0; 1360 sc = kmem_cache_create(conf->cache_name[conf->active_name], 1361 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 1362 0, 0, NULL); 1363 if (!sc) 1364 return 1; 1365 conf->slab_cache = sc; 1366 conf->pool_size = devs; 1367 while (num--) 1368 if (!grow_one_stripe(conf)) 1369 return 1; 1370 return 0; 1371 } 1372 1373 /** 1374 * scribble_len - return the required size of the scribble region 1375 * @num - total number of disks in the array 1376 * 1377 * The size must be enough to contain: 1378 * 1/ a struct page pointer for each device in the array +2 1379 * 2/ room to convert each entry in (1) to its corresponding dma 1380 * (dma_map_page()) or page (page_address()) address. 1381 * 1382 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 1383 * calculate over all devices (not just the data blocks), using zeros in place 1384 * of the P and Q blocks. 1385 */ 1386 static size_t scribble_len(int num) 1387 { 1388 size_t len; 1389 1390 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 1391 1392 return len; 1393 } 1394 1395 static int resize_stripes(raid5_conf_t *conf, int newsize) 1396 { 1397 /* Make all the stripes able to hold 'newsize' devices. 1398 * New slots in each stripe get 'page' set to a new page. 1399 * 1400 * This happens in stages: 1401 * 1/ create a new kmem_cache and allocate the required number of 1402 * stripe_heads. 1403 * 2/ gather all the old stripe_heads and tranfer the pages across 1404 * to the new stripe_heads. This will have the side effect of 1405 * freezing the array as once all stripe_heads have been collected, 1406 * no IO will be possible. Old stripe heads are freed once their 1407 * pages have been transferred over, and the old kmem_cache is 1408 * freed when all stripes are done. 1409 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 1410 * we simple return a failre status - no need to clean anything up. 1411 * 4/ allocate new pages for the new slots in the new stripe_heads. 1412 * If this fails, we don't bother trying the shrink the 1413 * stripe_heads down again, we just leave them as they are. 1414 * As each stripe_head is processed the new one is released into 1415 * active service. 1416 * 1417 * Once step2 is started, we cannot afford to wait for a write, 1418 * so we use GFP_NOIO allocations. 1419 */ 1420 struct stripe_head *osh, *nsh; 1421 LIST_HEAD(newstripes); 1422 struct disk_info *ndisks; 1423 unsigned long cpu; 1424 int err; 1425 struct kmem_cache *sc; 1426 int i; 1427 1428 if (newsize <= conf->pool_size) 1429 return 0; /* never bother to shrink */ 1430 1431 err = md_allow_write(conf->mddev); 1432 if (err) 1433 return err; 1434 1435 /* Step 1 */ 1436 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 1437 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 1438 0, 0, NULL); 1439 if (!sc) 1440 return -ENOMEM; 1441 1442 for (i = conf->max_nr_stripes; i; i--) { 1443 nsh = kmem_cache_alloc(sc, GFP_KERNEL); 1444 if (!nsh) 1445 break; 1446 1447 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev)); 1448 1449 nsh->raid_conf = conf; 1450 spin_lock_init(&nsh->lock); 1451 #ifdef CONFIG_MULTICORE_RAID456 1452 init_waitqueue_head(&nsh->ops.wait_for_ops); 1453 #endif 1454 1455 list_add(&nsh->lru, &newstripes); 1456 } 1457 if (i) { 1458 /* didn't get enough, give up */ 1459 while (!list_empty(&newstripes)) { 1460 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1461 list_del(&nsh->lru); 1462 kmem_cache_free(sc, nsh); 1463 } 1464 kmem_cache_destroy(sc); 1465 return -ENOMEM; 1466 } 1467 /* Step 2 - Must use GFP_NOIO now. 1468 * OK, we have enough stripes, start collecting inactive 1469 * stripes and copying them over 1470 */ 1471 list_for_each_entry(nsh, &newstripes, lru) { 1472 spin_lock_irq(&conf->device_lock); 1473 wait_event_lock_irq(conf->wait_for_stripe, 1474 !list_empty(&conf->inactive_list), 1475 conf->device_lock, 1476 unplug_slaves(conf->mddev) 1477 ); 1478 osh = get_free_stripe(conf); 1479 spin_unlock_irq(&conf->device_lock); 1480 atomic_set(&nsh->count, 1); 1481 for(i=0; i<conf->pool_size; i++) 1482 nsh->dev[i].page = osh->dev[i].page; 1483 for( ; i<newsize; i++) 1484 nsh->dev[i].page = NULL; 1485 kmem_cache_free(conf->slab_cache, osh); 1486 } 1487 kmem_cache_destroy(conf->slab_cache); 1488 1489 /* Step 3. 1490 * At this point, we are holding all the stripes so the array 1491 * is completely stalled, so now is a good time to resize 1492 * conf->disks and the scribble region 1493 */ 1494 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 1495 if (ndisks) { 1496 for (i=0; i<conf->raid_disks; i++) 1497 ndisks[i] = conf->disks[i]; 1498 kfree(conf->disks); 1499 conf->disks = ndisks; 1500 } else 1501 err = -ENOMEM; 1502 1503 get_online_cpus(); 1504 conf->scribble_len = scribble_len(newsize); 1505 for_each_present_cpu(cpu) { 1506 struct raid5_percpu *percpu; 1507 void *scribble; 1508 1509 percpu = per_cpu_ptr(conf->percpu, cpu); 1510 scribble = kmalloc(conf->scribble_len, GFP_NOIO); 1511 1512 if (scribble) { 1513 kfree(percpu->scribble); 1514 percpu->scribble = scribble; 1515 } else { 1516 err = -ENOMEM; 1517 break; 1518 } 1519 } 1520 put_online_cpus(); 1521 1522 /* Step 4, return new stripes to service */ 1523 while(!list_empty(&newstripes)) { 1524 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1525 list_del_init(&nsh->lru); 1526 1527 for (i=conf->raid_disks; i < newsize; i++) 1528 if (nsh->dev[i].page == NULL) { 1529 struct page *p = alloc_page(GFP_NOIO); 1530 nsh->dev[i].page = p; 1531 if (!p) 1532 err = -ENOMEM; 1533 } 1534 release_stripe(nsh); 1535 } 1536 /* critical section pass, GFP_NOIO no longer needed */ 1537 1538 conf->slab_cache = sc; 1539 conf->active_name = 1-conf->active_name; 1540 conf->pool_size = newsize; 1541 return err; 1542 } 1543 1544 static int drop_one_stripe(raid5_conf_t *conf) 1545 { 1546 struct stripe_head *sh; 1547 1548 spin_lock_irq(&conf->device_lock); 1549 sh = get_free_stripe(conf); 1550 spin_unlock_irq(&conf->device_lock); 1551 if (!sh) 1552 return 0; 1553 BUG_ON(atomic_read(&sh->count)); 1554 shrink_buffers(sh); 1555 kmem_cache_free(conf->slab_cache, sh); 1556 atomic_dec(&conf->active_stripes); 1557 return 1; 1558 } 1559 1560 static void shrink_stripes(raid5_conf_t *conf) 1561 { 1562 while (drop_one_stripe(conf)) 1563 ; 1564 1565 if (conf->slab_cache) 1566 kmem_cache_destroy(conf->slab_cache); 1567 conf->slab_cache = NULL; 1568 } 1569 1570 static void raid5_end_read_request(struct bio * bi, int error) 1571 { 1572 struct stripe_head *sh = bi->bi_private; 1573 raid5_conf_t *conf = sh->raid_conf; 1574 int disks = sh->disks, i; 1575 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1576 char b[BDEVNAME_SIZE]; 1577 mdk_rdev_t *rdev; 1578 1579 1580 for (i=0 ; i<disks; i++) 1581 if (bi == &sh->dev[i].req) 1582 break; 1583 1584 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", 1585 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1586 uptodate); 1587 if (i == disks) { 1588 BUG(); 1589 return; 1590 } 1591 1592 if (uptodate) { 1593 set_bit(R5_UPTODATE, &sh->dev[i].flags); 1594 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 1595 rdev = conf->disks[i].rdev; 1596 printk_rl(KERN_INFO "md/raid:%s: read error corrected" 1597 " (%lu sectors at %llu on %s)\n", 1598 mdname(conf->mddev), STRIPE_SECTORS, 1599 (unsigned long long)(sh->sector 1600 + rdev->data_offset), 1601 bdevname(rdev->bdev, b)); 1602 clear_bit(R5_ReadError, &sh->dev[i].flags); 1603 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1604 } 1605 if (atomic_read(&conf->disks[i].rdev->read_errors)) 1606 atomic_set(&conf->disks[i].rdev->read_errors, 0); 1607 } else { 1608 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b); 1609 int retry = 0; 1610 rdev = conf->disks[i].rdev; 1611 1612 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 1613 atomic_inc(&rdev->read_errors); 1614 if (conf->mddev->degraded >= conf->max_degraded) 1615 printk_rl(KERN_WARNING 1616 "md/raid:%s: read error not correctable " 1617 "(sector %llu on %s).\n", 1618 mdname(conf->mddev), 1619 (unsigned long long)(sh->sector 1620 + rdev->data_offset), 1621 bdn); 1622 else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) 1623 /* Oh, no!!! */ 1624 printk_rl(KERN_WARNING 1625 "md/raid:%s: read error NOT corrected!! " 1626 "(sector %llu on %s).\n", 1627 mdname(conf->mddev), 1628 (unsigned long long)(sh->sector 1629 + rdev->data_offset), 1630 bdn); 1631 else if (atomic_read(&rdev->read_errors) 1632 > conf->max_nr_stripes) 1633 printk(KERN_WARNING 1634 "md/raid:%s: Too many read errors, failing device %s.\n", 1635 mdname(conf->mddev), bdn); 1636 else 1637 retry = 1; 1638 if (retry) 1639 set_bit(R5_ReadError, &sh->dev[i].flags); 1640 else { 1641 clear_bit(R5_ReadError, &sh->dev[i].flags); 1642 clear_bit(R5_ReWrite, &sh->dev[i].flags); 1643 md_error(conf->mddev, rdev); 1644 } 1645 } 1646 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 1647 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1648 set_bit(STRIPE_HANDLE, &sh->state); 1649 release_stripe(sh); 1650 } 1651 1652 static void raid5_end_write_request(struct bio *bi, int error) 1653 { 1654 struct stripe_head *sh = bi->bi_private; 1655 raid5_conf_t *conf = sh->raid_conf; 1656 int disks = sh->disks, i; 1657 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1658 1659 for (i=0 ; i<disks; i++) 1660 if (bi == &sh->dev[i].req) 1661 break; 1662 1663 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", 1664 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1665 uptodate); 1666 if (i == disks) { 1667 BUG(); 1668 return; 1669 } 1670 1671 if (!uptodate) 1672 md_error(conf->mddev, conf->disks[i].rdev); 1673 1674 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 1675 1676 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1677 set_bit(STRIPE_HANDLE, &sh->state); 1678 release_stripe(sh); 1679 } 1680 1681 1682 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous); 1683 1684 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 1685 { 1686 struct r5dev *dev = &sh->dev[i]; 1687 1688 bio_init(&dev->req); 1689 dev->req.bi_io_vec = &dev->vec; 1690 dev->req.bi_vcnt++; 1691 dev->req.bi_max_vecs++; 1692 dev->vec.bv_page = dev->page; 1693 dev->vec.bv_len = STRIPE_SIZE; 1694 dev->vec.bv_offset = 0; 1695 1696 dev->req.bi_sector = sh->sector; 1697 dev->req.bi_private = sh; 1698 1699 dev->flags = 0; 1700 dev->sector = compute_blocknr(sh, i, previous); 1701 } 1702 1703 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1704 { 1705 char b[BDEVNAME_SIZE]; 1706 raid5_conf_t *conf = mddev->private; 1707 pr_debug("raid456: error called\n"); 1708 1709 if (!test_bit(Faulty, &rdev->flags)) { 1710 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1711 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1712 unsigned long flags; 1713 spin_lock_irqsave(&conf->device_lock, flags); 1714 mddev->degraded++; 1715 spin_unlock_irqrestore(&conf->device_lock, flags); 1716 /* 1717 * if recovery was running, make sure it aborts. 1718 */ 1719 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1720 } 1721 set_bit(Faulty, &rdev->flags); 1722 printk(KERN_ALERT 1723 "md/raid:%s: Disk failure on %s, disabling device.\n" 1724 "md/raid:%s: Operation continuing on %d devices.\n", 1725 mdname(mddev), 1726 bdevname(rdev->bdev, b), 1727 mdname(mddev), 1728 conf->raid_disks - mddev->degraded); 1729 } 1730 } 1731 1732 /* 1733 * Input: a 'big' sector number, 1734 * Output: index of the data and parity disk, and the sector # in them. 1735 */ 1736 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector, 1737 int previous, int *dd_idx, 1738 struct stripe_head *sh) 1739 { 1740 sector_t stripe, stripe2; 1741 sector_t chunk_number; 1742 unsigned int chunk_offset; 1743 int pd_idx, qd_idx; 1744 int ddf_layout = 0; 1745 sector_t new_sector; 1746 int algorithm = previous ? conf->prev_algo 1747 : conf->algorithm; 1748 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 1749 : conf->chunk_sectors; 1750 int raid_disks = previous ? conf->previous_raid_disks 1751 : conf->raid_disks; 1752 int data_disks = raid_disks - conf->max_degraded; 1753 1754 /* First compute the information on this sector */ 1755 1756 /* 1757 * Compute the chunk number and the sector offset inside the chunk 1758 */ 1759 chunk_offset = sector_div(r_sector, sectors_per_chunk); 1760 chunk_number = r_sector; 1761 1762 /* 1763 * Compute the stripe number 1764 */ 1765 stripe = chunk_number; 1766 *dd_idx = sector_div(stripe, data_disks); 1767 stripe2 = stripe; 1768 /* 1769 * Select the parity disk based on the user selected algorithm. 1770 */ 1771 pd_idx = qd_idx = ~0; 1772 switch(conf->level) { 1773 case 4: 1774 pd_idx = data_disks; 1775 break; 1776 case 5: 1777 switch (algorithm) { 1778 case ALGORITHM_LEFT_ASYMMETRIC: 1779 pd_idx = data_disks - sector_div(stripe2, raid_disks); 1780 if (*dd_idx >= pd_idx) 1781 (*dd_idx)++; 1782 break; 1783 case ALGORITHM_RIGHT_ASYMMETRIC: 1784 pd_idx = sector_div(stripe2, raid_disks); 1785 if (*dd_idx >= pd_idx) 1786 (*dd_idx)++; 1787 break; 1788 case ALGORITHM_LEFT_SYMMETRIC: 1789 pd_idx = data_disks - sector_div(stripe2, raid_disks); 1790 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 1791 break; 1792 case ALGORITHM_RIGHT_SYMMETRIC: 1793 pd_idx = sector_div(stripe2, raid_disks); 1794 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 1795 break; 1796 case ALGORITHM_PARITY_0: 1797 pd_idx = 0; 1798 (*dd_idx)++; 1799 break; 1800 case ALGORITHM_PARITY_N: 1801 pd_idx = data_disks; 1802 break; 1803 default: 1804 BUG(); 1805 } 1806 break; 1807 case 6: 1808 1809 switch (algorithm) { 1810 case ALGORITHM_LEFT_ASYMMETRIC: 1811 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 1812 qd_idx = pd_idx + 1; 1813 if (pd_idx == raid_disks-1) { 1814 (*dd_idx)++; /* Q D D D P */ 1815 qd_idx = 0; 1816 } else if (*dd_idx >= pd_idx) 1817 (*dd_idx) += 2; /* D D P Q D */ 1818 break; 1819 case ALGORITHM_RIGHT_ASYMMETRIC: 1820 pd_idx = sector_div(stripe2, raid_disks); 1821 qd_idx = pd_idx + 1; 1822 if (pd_idx == raid_disks-1) { 1823 (*dd_idx)++; /* Q D D D P */ 1824 qd_idx = 0; 1825 } else if (*dd_idx >= pd_idx) 1826 (*dd_idx) += 2; /* D D P Q D */ 1827 break; 1828 case ALGORITHM_LEFT_SYMMETRIC: 1829 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 1830 qd_idx = (pd_idx + 1) % raid_disks; 1831 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 1832 break; 1833 case ALGORITHM_RIGHT_SYMMETRIC: 1834 pd_idx = sector_div(stripe2, raid_disks); 1835 qd_idx = (pd_idx + 1) % raid_disks; 1836 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 1837 break; 1838 1839 case ALGORITHM_PARITY_0: 1840 pd_idx = 0; 1841 qd_idx = 1; 1842 (*dd_idx) += 2; 1843 break; 1844 case ALGORITHM_PARITY_N: 1845 pd_idx = data_disks; 1846 qd_idx = data_disks + 1; 1847 break; 1848 1849 case ALGORITHM_ROTATING_ZERO_RESTART: 1850 /* Exactly the same as RIGHT_ASYMMETRIC, but or 1851 * of blocks for computing Q is different. 1852 */ 1853 pd_idx = sector_div(stripe2, raid_disks); 1854 qd_idx = pd_idx + 1; 1855 if (pd_idx == raid_disks-1) { 1856 (*dd_idx)++; /* Q D D D P */ 1857 qd_idx = 0; 1858 } else if (*dd_idx >= pd_idx) 1859 (*dd_idx) += 2; /* D D P Q D */ 1860 ddf_layout = 1; 1861 break; 1862 1863 case ALGORITHM_ROTATING_N_RESTART: 1864 /* Same a left_asymmetric, by first stripe is 1865 * D D D P Q rather than 1866 * Q D D D P 1867 */ 1868 stripe2 += 1; 1869 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 1870 qd_idx = pd_idx + 1; 1871 if (pd_idx == raid_disks-1) { 1872 (*dd_idx)++; /* Q D D D P */ 1873 qd_idx = 0; 1874 } else if (*dd_idx >= pd_idx) 1875 (*dd_idx) += 2; /* D D P Q D */ 1876 ddf_layout = 1; 1877 break; 1878 1879 case ALGORITHM_ROTATING_N_CONTINUE: 1880 /* Same as left_symmetric but Q is before P */ 1881 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 1882 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 1883 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 1884 ddf_layout = 1; 1885 break; 1886 1887 case ALGORITHM_LEFT_ASYMMETRIC_6: 1888 /* RAID5 left_asymmetric, with Q on last device */ 1889 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 1890 if (*dd_idx >= pd_idx) 1891 (*dd_idx)++; 1892 qd_idx = raid_disks - 1; 1893 break; 1894 1895 case ALGORITHM_RIGHT_ASYMMETRIC_6: 1896 pd_idx = sector_div(stripe2, raid_disks-1); 1897 if (*dd_idx >= pd_idx) 1898 (*dd_idx)++; 1899 qd_idx = raid_disks - 1; 1900 break; 1901 1902 case ALGORITHM_LEFT_SYMMETRIC_6: 1903 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 1904 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 1905 qd_idx = raid_disks - 1; 1906 break; 1907 1908 case ALGORITHM_RIGHT_SYMMETRIC_6: 1909 pd_idx = sector_div(stripe2, raid_disks-1); 1910 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 1911 qd_idx = raid_disks - 1; 1912 break; 1913 1914 case ALGORITHM_PARITY_0_6: 1915 pd_idx = 0; 1916 (*dd_idx)++; 1917 qd_idx = raid_disks - 1; 1918 break; 1919 1920 default: 1921 BUG(); 1922 } 1923 break; 1924 } 1925 1926 if (sh) { 1927 sh->pd_idx = pd_idx; 1928 sh->qd_idx = qd_idx; 1929 sh->ddf_layout = ddf_layout; 1930 } 1931 /* 1932 * Finally, compute the new sector number 1933 */ 1934 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 1935 return new_sector; 1936 } 1937 1938 1939 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous) 1940 { 1941 raid5_conf_t *conf = sh->raid_conf; 1942 int raid_disks = sh->disks; 1943 int data_disks = raid_disks - conf->max_degraded; 1944 sector_t new_sector = sh->sector, check; 1945 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 1946 : conf->chunk_sectors; 1947 int algorithm = previous ? conf->prev_algo 1948 : conf->algorithm; 1949 sector_t stripe; 1950 int chunk_offset; 1951 sector_t chunk_number; 1952 int dummy1, dd_idx = i; 1953 sector_t r_sector; 1954 struct stripe_head sh2; 1955 1956 1957 chunk_offset = sector_div(new_sector, sectors_per_chunk); 1958 stripe = new_sector; 1959 1960 if (i == sh->pd_idx) 1961 return 0; 1962 switch(conf->level) { 1963 case 4: break; 1964 case 5: 1965 switch (algorithm) { 1966 case ALGORITHM_LEFT_ASYMMETRIC: 1967 case ALGORITHM_RIGHT_ASYMMETRIC: 1968 if (i > sh->pd_idx) 1969 i--; 1970 break; 1971 case ALGORITHM_LEFT_SYMMETRIC: 1972 case ALGORITHM_RIGHT_SYMMETRIC: 1973 if (i < sh->pd_idx) 1974 i += raid_disks; 1975 i -= (sh->pd_idx + 1); 1976 break; 1977 case ALGORITHM_PARITY_0: 1978 i -= 1; 1979 break; 1980 case ALGORITHM_PARITY_N: 1981 break; 1982 default: 1983 BUG(); 1984 } 1985 break; 1986 case 6: 1987 if (i == sh->qd_idx) 1988 return 0; /* It is the Q disk */ 1989 switch (algorithm) { 1990 case ALGORITHM_LEFT_ASYMMETRIC: 1991 case ALGORITHM_RIGHT_ASYMMETRIC: 1992 case ALGORITHM_ROTATING_ZERO_RESTART: 1993 case ALGORITHM_ROTATING_N_RESTART: 1994 if (sh->pd_idx == raid_disks-1) 1995 i--; /* Q D D D P */ 1996 else if (i > sh->pd_idx) 1997 i -= 2; /* D D P Q D */ 1998 break; 1999 case ALGORITHM_LEFT_SYMMETRIC: 2000 case ALGORITHM_RIGHT_SYMMETRIC: 2001 if (sh->pd_idx == raid_disks-1) 2002 i--; /* Q D D D P */ 2003 else { 2004 /* D D P Q D */ 2005 if (i < sh->pd_idx) 2006 i += raid_disks; 2007 i -= (sh->pd_idx + 2); 2008 } 2009 break; 2010 case ALGORITHM_PARITY_0: 2011 i -= 2; 2012 break; 2013 case ALGORITHM_PARITY_N: 2014 break; 2015 case ALGORITHM_ROTATING_N_CONTINUE: 2016 /* Like left_symmetric, but P is before Q */ 2017 if (sh->pd_idx == 0) 2018 i--; /* P D D D Q */ 2019 else { 2020 /* D D Q P D */ 2021 if (i < sh->pd_idx) 2022 i += raid_disks; 2023 i -= (sh->pd_idx + 1); 2024 } 2025 break; 2026 case ALGORITHM_LEFT_ASYMMETRIC_6: 2027 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2028 if (i > sh->pd_idx) 2029 i--; 2030 break; 2031 case ALGORITHM_LEFT_SYMMETRIC_6: 2032 case ALGORITHM_RIGHT_SYMMETRIC_6: 2033 if (i < sh->pd_idx) 2034 i += data_disks + 1; 2035 i -= (sh->pd_idx + 1); 2036 break; 2037 case ALGORITHM_PARITY_0_6: 2038 i -= 1; 2039 break; 2040 default: 2041 BUG(); 2042 } 2043 break; 2044 } 2045 2046 chunk_number = stripe * data_disks + i; 2047 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2048 2049 check = raid5_compute_sector(conf, r_sector, 2050 previous, &dummy1, &sh2); 2051 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2052 || sh2.qd_idx != sh->qd_idx) { 2053 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2054 mdname(conf->mddev)); 2055 return 0; 2056 } 2057 return r_sector; 2058 } 2059 2060 2061 static void 2062 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2063 int rcw, int expand) 2064 { 2065 int i, pd_idx = sh->pd_idx, disks = sh->disks; 2066 raid5_conf_t *conf = sh->raid_conf; 2067 int level = conf->level; 2068 2069 if (rcw) { 2070 /* if we are not expanding this is a proper write request, and 2071 * there will be bios with new data to be drained into the 2072 * stripe cache 2073 */ 2074 if (!expand) { 2075 sh->reconstruct_state = reconstruct_state_drain_run; 2076 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2077 } else 2078 sh->reconstruct_state = reconstruct_state_run; 2079 2080 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2081 2082 for (i = disks; i--; ) { 2083 struct r5dev *dev = &sh->dev[i]; 2084 2085 if (dev->towrite) { 2086 set_bit(R5_LOCKED, &dev->flags); 2087 set_bit(R5_Wantdrain, &dev->flags); 2088 if (!expand) 2089 clear_bit(R5_UPTODATE, &dev->flags); 2090 s->locked++; 2091 } 2092 } 2093 if (s->locked + conf->max_degraded == disks) 2094 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2095 atomic_inc(&conf->pending_full_writes); 2096 } else { 2097 BUG_ON(level == 6); 2098 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2099 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2100 2101 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2102 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2103 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2104 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2105 2106 for (i = disks; i--; ) { 2107 struct r5dev *dev = &sh->dev[i]; 2108 if (i == pd_idx) 2109 continue; 2110 2111 if (dev->towrite && 2112 (test_bit(R5_UPTODATE, &dev->flags) || 2113 test_bit(R5_Wantcompute, &dev->flags))) { 2114 set_bit(R5_Wantdrain, &dev->flags); 2115 set_bit(R5_LOCKED, &dev->flags); 2116 clear_bit(R5_UPTODATE, &dev->flags); 2117 s->locked++; 2118 } 2119 } 2120 } 2121 2122 /* keep the parity disk(s) locked while asynchronous operations 2123 * are in flight 2124 */ 2125 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2126 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2127 s->locked++; 2128 2129 if (level == 6) { 2130 int qd_idx = sh->qd_idx; 2131 struct r5dev *dev = &sh->dev[qd_idx]; 2132 2133 set_bit(R5_LOCKED, &dev->flags); 2134 clear_bit(R5_UPTODATE, &dev->flags); 2135 s->locked++; 2136 } 2137 2138 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2139 __func__, (unsigned long long)sh->sector, 2140 s->locked, s->ops_request); 2141 } 2142 2143 /* 2144 * Each stripe/dev can have one or more bion attached. 2145 * toread/towrite point to the first in a chain. 2146 * The bi_next chain must be in order. 2147 */ 2148 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 2149 { 2150 struct bio **bip; 2151 raid5_conf_t *conf = sh->raid_conf; 2152 int firstwrite=0; 2153 2154 pr_debug("adding bh b#%llu to stripe s#%llu\n", 2155 (unsigned long long)bi->bi_sector, 2156 (unsigned long long)sh->sector); 2157 2158 2159 spin_lock(&sh->lock); 2160 spin_lock_irq(&conf->device_lock); 2161 if (forwrite) { 2162 bip = &sh->dev[dd_idx].towrite; 2163 if (*bip == NULL && sh->dev[dd_idx].written == NULL) 2164 firstwrite = 1; 2165 } else 2166 bip = &sh->dev[dd_idx].toread; 2167 while (*bip && (*bip)->bi_sector < bi->bi_sector) { 2168 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) 2169 goto overlap; 2170 bip = & (*bip)->bi_next; 2171 } 2172 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) 2173 goto overlap; 2174 2175 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2176 if (*bip) 2177 bi->bi_next = *bip; 2178 *bip = bi; 2179 bi->bi_phys_segments++; 2180 spin_unlock_irq(&conf->device_lock); 2181 spin_unlock(&sh->lock); 2182 2183 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 2184 (unsigned long long)bi->bi_sector, 2185 (unsigned long long)sh->sector, dd_idx); 2186 2187 if (conf->mddev->bitmap && firstwrite) { 2188 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 2189 STRIPE_SECTORS, 0); 2190 sh->bm_seq = conf->seq_flush+1; 2191 set_bit(STRIPE_BIT_DELAY, &sh->state); 2192 } 2193 2194 if (forwrite) { 2195 /* check if page is covered */ 2196 sector_t sector = sh->dev[dd_idx].sector; 2197 for (bi=sh->dev[dd_idx].towrite; 2198 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 2199 bi && bi->bi_sector <= sector; 2200 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 2201 if (bi->bi_sector + (bi->bi_size>>9) >= sector) 2202 sector = bi->bi_sector + (bi->bi_size>>9); 2203 } 2204 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 2205 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 2206 } 2207 return 1; 2208 2209 overlap: 2210 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 2211 spin_unlock_irq(&conf->device_lock); 2212 spin_unlock(&sh->lock); 2213 return 0; 2214 } 2215 2216 static void end_reshape(raid5_conf_t *conf); 2217 2218 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous, 2219 struct stripe_head *sh) 2220 { 2221 int sectors_per_chunk = 2222 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 2223 int dd_idx; 2224 int chunk_offset = sector_div(stripe, sectors_per_chunk); 2225 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 2226 2227 raid5_compute_sector(conf, 2228 stripe * (disks - conf->max_degraded) 2229 *sectors_per_chunk + chunk_offset, 2230 previous, 2231 &dd_idx, sh); 2232 } 2233 2234 static void 2235 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh, 2236 struct stripe_head_state *s, int disks, 2237 struct bio **return_bi) 2238 { 2239 int i; 2240 for (i = disks; i--; ) { 2241 struct bio *bi; 2242 int bitmap_end = 0; 2243 2244 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2245 mdk_rdev_t *rdev; 2246 rcu_read_lock(); 2247 rdev = rcu_dereference(conf->disks[i].rdev); 2248 if (rdev && test_bit(In_sync, &rdev->flags)) 2249 /* multiple read failures in one stripe */ 2250 md_error(conf->mddev, rdev); 2251 rcu_read_unlock(); 2252 } 2253 spin_lock_irq(&conf->device_lock); 2254 /* fail all writes first */ 2255 bi = sh->dev[i].towrite; 2256 sh->dev[i].towrite = NULL; 2257 if (bi) { 2258 s->to_write--; 2259 bitmap_end = 1; 2260 } 2261 2262 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2263 wake_up(&conf->wait_for_overlap); 2264 2265 while (bi && bi->bi_sector < 2266 sh->dev[i].sector + STRIPE_SECTORS) { 2267 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 2268 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2269 if (!raid5_dec_bi_phys_segments(bi)) { 2270 md_write_end(conf->mddev); 2271 bi->bi_next = *return_bi; 2272 *return_bi = bi; 2273 } 2274 bi = nextbi; 2275 } 2276 /* and fail all 'written' */ 2277 bi = sh->dev[i].written; 2278 sh->dev[i].written = NULL; 2279 if (bi) bitmap_end = 1; 2280 while (bi && bi->bi_sector < 2281 sh->dev[i].sector + STRIPE_SECTORS) { 2282 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 2283 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2284 if (!raid5_dec_bi_phys_segments(bi)) { 2285 md_write_end(conf->mddev); 2286 bi->bi_next = *return_bi; 2287 *return_bi = bi; 2288 } 2289 bi = bi2; 2290 } 2291 2292 /* fail any reads if this device is non-operational and 2293 * the data has not reached the cache yet. 2294 */ 2295 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 2296 (!test_bit(R5_Insync, &sh->dev[i].flags) || 2297 test_bit(R5_ReadError, &sh->dev[i].flags))) { 2298 bi = sh->dev[i].toread; 2299 sh->dev[i].toread = NULL; 2300 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2301 wake_up(&conf->wait_for_overlap); 2302 if (bi) s->to_read--; 2303 while (bi && bi->bi_sector < 2304 sh->dev[i].sector + STRIPE_SECTORS) { 2305 struct bio *nextbi = 2306 r5_next_bio(bi, sh->dev[i].sector); 2307 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2308 if (!raid5_dec_bi_phys_segments(bi)) { 2309 bi->bi_next = *return_bi; 2310 *return_bi = bi; 2311 } 2312 bi = nextbi; 2313 } 2314 } 2315 spin_unlock_irq(&conf->device_lock); 2316 if (bitmap_end) 2317 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2318 STRIPE_SECTORS, 0, 0); 2319 } 2320 2321 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2322 if (atomic_dec_and_test(&conf->pending_full_writes)) 2323 md_wakeup_thread(conf->mddev->thread); 2324 } 2325 2326 /* fetch_block5 - checks the given member device to see if its data needs 2327 * to be read or computed to satisfy a request. 2328 * 2329 * Returns 1 when no more member devices need to be checked, otherwise returns 2330 * 0 to tell the loop in handle_stripe_fill5 to continue 2331 */ 2332 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s, 2333 int disk_idx, int disks) 2334 { 2335 struct r5dev *dev = &sh->dev[disk_idx]; 2336 struct r5dev *failed_dev = &sh->dev[s->failed_num]; 2337 2338 /* is the data in this block needed, and can we get it? */ 2339 if (!test_bit(R5_LOCKED, &dev->flags) && 2340 !test_bit(R5_UPTODATE, &dev->flags) && 2341 (dev->toread || 2342 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 2343 s->syncing || s->expanding || 2344 (s->failed && 2345 (failed_dev->toread || 2346 (failed_dev->towrite && 2347 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) { 2348 /* We would like to get this block, possibly by computing it, 2349 * otherwise read it if the backing disk is insync 2350 */ 2351 if ((s->uptodate == disks - 1) && 2352 (s->failed && disk_idx == s->failed_num)) { 2353 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2354 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2355 set_bit(R5_Wantcompute, &dev->flags); 2356 sh->ops.target = disk_idx; 2357 sh->ops.target2 = -1; 2358 s->req_compute = 1; 2359 /* Careful: from this point on 'uptodate' is in the eye 2360 * of raid_run_ops which services 'compute' operations 2361 * before writes. R5_Wantcompute flags a block that will 2362 * be R5_UPTODATE by the time it is needed for a 2363 * subsequent operation. 2364 */ 2365 s->uptodate++; 2366 return 1; /* uptodate + compute == disks */ 2367 } else if (test_bit(R5_Insync, &dev->flags)) { 2368 set_bit(R5_LOCKED, &dev->flags); 2369 set_bit(R5_Wantread, &dev->flags); 2370 s->locked++; 2371 pr_debug("Reading block %d (sync=%d)\n", disk_idx, 2372 s->syncing); 2373 } 2374 } 2375 2376 return 0; 2377 } 2378 2379 /** 2380 * handle_stripe_fill5 - read or compute data to satisfy pending requests. 2381 */ 2382 static void handle_stripe_fill5(struct stripe_head *sh, 2383 struct stripe_head_state *s, int disks) 2384 { 2385 int i; 2386 2387 /* look for blocks to read/compute, skip this if a compute 2388 * is already in flight, or if the stripe contents are in the 2389 * midst of changing due to a write 2390 */ 2391 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 2392 !sh->reconstruct_state) 2393 for (i = disks; i--; ) 2394 if (fetch_block5(sh, s, i, disks)) 2395 break; 2396 set_bit(STRIPE_HANDLE, &sh->state); 2397 } 2398 2399 /* fetch_block6 - checks the given member device to see if its data needs 2400 * to be read or computed to satisfy a request. 2401 * 2402 * Returns 1 when no more member devices need to be checked, otherwise returns 2403 * 0 to tell the loop in handle_stripe_fill6 to continue 2404 */ 2405 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s, 2406 struct r6_state *r6s, int disk_idx, int disks) 2407 { 2408 struct r5dev *dev = &sh->dev[disk_idx]; 2409 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]], 2410 &sh->dev[r6s->failed_num[1]] }; 2411 2412 if (!test_bit(R5_LOCKED, &dev->flags) && 2413 !test_bit(R5_UPTODATE, &dev->flags) && 2414 (dev->toread || 2415 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 2416 s->syncing || s->expanding || 2417 (s->failed >= 1 && 2418 (fdev[0]->toread || s->to_write)) || 2419 (s->failed >= 2 && 2420 (fdev[1]->toread || s->to_write)))) { 2421 /* we would like to get this block, possibly by computing it, 2422 * otherwise read it if the backing disk is insync 2423 */ 2424 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 2425 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 2426 if ((s->uptodate == disks - 1) && 2427 (s->failed && (disk_idx == r6s->failed_num[0] || 2428 disk_idx == r6s->failed_num[1]))) { 2429 /* have disk failed, and we're requested to fetch it; 2430 * do compute it 2431 */ 2432 pr_debug("Computing stripe %llu block %d\n", 2433 (unsigned long long)sh->sector, disk_idx); 2434 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2435 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2436 set_bit(R5_Wantcompute, &dev->flags); 2437 sh->ops.target = disk_idx; 2438 sh->ops.target2 = -1; /* no 2nd target */ 2439 s->req_compute = 1; 2440 s->uptodate++; 2441 return 1; 2442 } else if (s->uptodate == disks-2 && s->failed >= 2) { 2443 /* Computing 2-failure is *very* expensive; only 2444 * do it if failed >= 2 2445 */ 2446 int other; 2447 for (other = disks; other--; ) { 2448 if (other == disk_idx) 2449 continue; 2450 if (!test_bit(R5_UPTODATE, 2451 &sh->dev[other].flags)) 2452 break; 2453 } 2454 BUG_ON(other < 0); 2455 pr_debug("Computing stripe %llu blocks %d,%d\n", 2456 (unsigned long long)sh->sector, 2457 disk_idx, other); 2458 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2459 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2460 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 2461 set_bit(R5_Wantcompute, &sh->dev[other].flags); 2462 sh->ops.target = disk_idx; 2463 sh->ops.target2 = other; 2464 s->uptodate += 2; 2465 s->req_compute = 1; 2466 return 1; 2467 } else if (test_bit(R5_Insync, &dev->flags)) { 2468 set_bit(R5_LOCKED, &dev->flags); 2469 set_bit(R5_Wantread, &dev->flags); 2470 s->locked++; 2471 pr_debug("Reading block %d (sync=%d)\n", 2472 disk_idx, s->syncing); 2473 } 2474 } 2475 2476 return 0; 2477 } 2478 2479 /** 2480 * handle_stripe_fill6 - read or compute data to satisfy pending requests. 2481 */ 2482 static void handle_stripe_fill6(struct stripe_head *sh, 2483 struct stripe_head_state *s, struct r6_state *r6s, 2484 int disks) 2485 { 2486 int i; 2487 2488 /* look for blocks to read/compute, skip this if a compute 2489 * is already in flight, or if the stripe contents are in the 2490 * midst of changing due to a write 2491 */ 2492 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 2493 !sh->reconstruct_state) 2494 for (i = disks; i--; ) 2495 if (fetch_block6(sh, s, r6s, i, disks)) 2496 break; 2497 set_bit(STRIPE_HANDLE, &sh->state); 2498 } 2499 2500 2501 /* handle_stripe_clean_event 2502 * any written block on an uptodate or failed drive can be returned. 2503 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 2504 * never LOCKED, so we don't need to test 'failed' directly. 2505 */ 2506 static void handle_stripe_clean_event(raid5_conf_t *conf, 2507 struct stripe_head *sh, int disks, struct bio **return_bi) 2508 { 2509 int i; 2510 struct r5dev *dev; 2511 2512 for (i = disks; i--; ) 2513 if (sh->dev[i].written) { 2514 dev = &sh->dev[i]; 2515 if (!test_bit(R5_LOCKED, &dev->flags) && 2516 test_bit(R5_UPTODATE, &dev->flags)) { 2517 /* We can return any write requests */ 2518 struct bio *wbi, *wbi2; 2519 int bitmap_end = 0; 2520 pr_debug("Return write for disc %d\n", i); 2521 spin_lock_irq(&conf->device_lock); 2522 wbi = dev->written; 2523 dev->written = NULL; 2524 while (wbi && wbi->bi_sector < 2525 dev->sector + STRIPE_SECTORS) { 2526 wbi2 = r5_next_bio(wbi, dev->sector); 2527 if (!raid5_dec_bi_phys_segments(wbi)) { 2528 md_write_end(conf->mddev); 2529 wbi->bi_next = *return_bi; 2530 *return_bi = wbi; 2531 } 2532 wbi = wbi2; 2533 } 2534 if (dev->towrite == NULL) 2535 bitmap_end = 1; 2536 spin_unlock_irq(&conf->device_lock); 2537 if (bitmap_end) 2538 bitmap_endwrite(conf->mddev->bitmap, 2539 sh->sector, 2540 STRIPE_SECTORS, 2541 !test_bit(STRIPE_DEGRADED, &sh->state), 2542 0); 2543 } 2544 } 2545 2546 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2547 if (atomic_dec_and_test(&conf->pending_full_writes)) 2548 md_wakeup_thread(conf->mddev->thread); 2549 } 2550 2551 static void handle_stripe_dirtying5(raid5_conf_t *conf, 2552 struct stripe_head *sh, struct stripe_head_state *s, int disks) 2553 { 2554 int rmw = 0, rcw = 0, i; 2555 for (i = disks; i--; ) { 2556 /* would I have to read this buffer for read_modify_write */ 2557 struct r5dev *dev = &sh->dev[i]; 2558 if ((dev->towrite || i == sh->pd_idx) && 2559 !test_bit(R5_LOCKED, &dev->flags) && 2560 !(test_bit(R5_UPTODATE, &dev->flags) || 2561 test_bit(R5_Wantcompute, &dev->flags))) { 2562 if (test_bit(R5_Insync, &dev->flags)) 2563 rmw++; 2564 else 2565 rmw += 2*disks; /* cannot read it */ 2566 } 2567 /* Would I have to read this buffer for reconstruct_write */ 2568 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 2569 !test_bit(R5_LOCKED, &dev->flags) && 2570 !(test_bit(R5_UPTODATE, &dev->flags) || 2571 test_bit(R5_Wantcompute, &dev->flags))) { 2572 if (test_bit(R5_Insync, &dev->flags)) rcw++; 2573 else 2574 rcw += 2*disks; 2575 } 2576 } 2577 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 2578 (unsigned long long)sh->sector, rmw, rcw); 2579 set_bit(STRIPE_HANDLE, &sh->state); 2580 if (rmw < rcw && rmw > 0) 2581 /* prefer read-modify-write, but need to get some data */ 2582 for (i = disks; i--; ) { 2583 struct r5dev *dev = &sh->dev[i]; 2584 if ((dev->towrite || i == sh->pd_idx) && 2585 !test_bit(R5_LOCKED, &dev->flags) && 2586 !(test_bit(R5_UPTODATE, &dev->flags) || 2587 test_bit(R5_Wantcompute, &dev->flags)) && 2588 test_bit(R5_Insync, &dev->flags)) { 2589 if ( 2590 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2591 pr_debug("Read_old block " 2592 "%d for r-m-w\n", i); 2593 set_bit(R5_LOCKED, &dev->flags); 2594 set_bit(R5_Wantread, &dev->flags); 2595 s->locked++; 2596 } else { 2597 set_bit(STRIPE_DELAYED, &sh->state); 2598 set_bit(STRIPE_HANDLE, &sh->state); 2599 } 2600 } 2601 } 2602 if (rcw <= rmw && rcw > 0) 2603 /* want reconstruct write, but need to get some data */ 2604 for (i = disks; i--; ) { 2605 struct r5dev *dev = &sh->dev[i]; 2606 if (!test_bit(R5_OVERWRITE, &dev->flags) && 2607 i != sh->pd_idx && 2608 !test_bit(R5_LOCKED, &dev->flags) && 2609 !(test_bit(R5_UPTODATE, &dev->flags) || 2610 test_bit(R5_Wantcompute, &dev->flags)) && 2611 test_bit(R5_Insync, &dev->flags)) { 2612 if ( 2613 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2614 pr_debug("Read_old block " 2615 "%d for Reconstruct\n", i); 2616 set_bit(R5_LOCKED, &dev->flags); 2617 set_bit(R5_Wantread, &dev->flags); 2618 s->locked++; 2619 } else { 2620 set_bit(STRIPE_DELAYED, &sh->state); 2621 set_bit(STRIPE_HANDLE, &sh->state); 2622 } 2623 } 2624 } 2625 /* now if nothing is locked, and if we have enough data, 2626 * we can start a write request 2627 */ 2628 /* since handle_stripe can be called at any time we need to handle the 2629 * case where a compute block operation has been submitted and then a 2630 * subsequent call wants to start a write request. raid_run_ops only 2631 * handles the case where compute block and reconstruct are requested 2632 * simultaneously. If this is not the case then new writes need to be 2633 * held off until the compute completes. 2634 */ 2635 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 2636 (s->locked == 0 && (rcw == 0 || rmw == 0) && 2637 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 2638 schedule_reconstruction(sh, s, rcw == 0, 0); 2639 } 2640 2641 static void handle_stripe_dirtying6(raid5_conf_t *conf, 2642 struct stripe_head *sh, struct stripe_head_state *s, 2643 struct r6_state *r6s, int disks) 2644 { 2645 int rcw = 0, pd_idx = sh->pd_idx, i; 2646 int qd_idx = sh->qd_idx; 2647 2648 set_bit(STRIPE_HANDLE, &sh->state); 2649 for (i = disks; i--; ) { 2650 struct r5dev *dev = &sh->dev[i]; 2651 /* check if we haven't enough data */ 2652 if (!test_bit(R5_OVERWRITE, &dev->flags) && 2653 i != pd_idx && i != qd_idx && 2654 !test_bit(R5_LOCKED, &dev->flags) && 2655 !(test_bit(R5_UPTODATE, &dev->flags) || 2656 test_bit(R5_Wantcompute, &dev->flags))) { 2657 rcw++; 2658 if (!test_bit(R5_Insync, &dev->flags)) 2659 continue; /* it's a failed drive */ 2660 2661 if ( 2662 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 2663 pr_debug("Read_old stripe %llu " 2664 "block %d for Reconstruct\n", 2665 (unsigned long long)sh->sector, i); 2666 set_bit(R5_LOCKED, &dev->flags); 2667 set_bit(R5_Wantread, &dev->flags); 2668 s->locked++; 2669 } else { 2670 pr_debug("Request delayed stripe %llu " 2671 "block %d for Reconstruct\n", 2672 (unsigned long long)sh->sector, i); 2673 set_bit(STRIPE_DELAYED, &sh->state); 2674 set_bit(STRIPE_HANDLE, &sh->state); 2675 } 2676 } 2677 } 2678 /* now if nothing is locked, and if we have enough data, we can start a 2679 * write request 2680 */ 2681 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 2682 s->locked == 0 && rcw == 0 && 2683 !test_bit(STRIPE_BIT_DELAY, &sh->state)) { 2684 schedule_reconstruction(sh, s, 1, 0); 2685 } 2686 } 2687 2688 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh, 2689 struct stripe_head_state *s, int disks) 2690 { 2691 struct r5dev *dev = NULL; 2692 2693 set_bit(STRIPE_HANDLE, &sh->state); 2694 2695 switch (sh->check_state) { 2696 case check_state_idle: 2697 /* start a new check operation if there are no failures */ 2698 if (s->failed == 0) { 2699 BUG_ON(s->uptodate != disks); 2700 sh->check_state = check_state_run; 2701 set_bit(STRIPE_OP_CHECK, &s->ops_request); 2702 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 2703 s->uptodate--; 2704 break; 2705 } 2706 dev = &sh->dev[s->failed_num]; 2707 /* fall through */ 2708 case check_state_compute_result: 2709 sh->check_state = check_state_idle; 2710 if (!dev) 2711 dev = &sh->dev[sh->pd_idx]; 2712 2713 /* check that a write has not made the stripe insync */ 2714 if (test_bit(STRIPE_INSYNC, &sh->state)) 2715 break; 2716 2717 /* either failed parity check, or recovery is happening */ 2718 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 2719 BUG_ON(s->uptodate != disks); 2720 2721 set_bit(R5_LOCKED, &dev->flags); 2722 s->locked++; 2723 set_bit(R5_Wantwrite, &dev->flags); 2724 2725 clear_bit(STRIPE_DEGRADED, &sh->state); 2726 set_bit(STRIPE_INSYNC, &sh->state); 2727 break; 2728 case check_state_run: 2729 break; /* we will be called again upon completion */ 2730 case check_state_check_result: 2731 sh->check_state = check_state_idle; 2732 2733 /* if a failure occurred during the check operation, leave 2734 * STRIPE_INSYNC not set and let the stripe be handled again 2735 */ 2736 if (s->failed) 2737 break; 2738 2739 /* handle a successful check operation, if parity is correct 2740 * we are done. Otherwise update the mismatch count and repair 2741 * parity if !MD_RECOVERY_CHECK 2742 */ 2743 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 2744 /* parity is correct (on disc, 2745 * not in buffer any more) 2746 */ 2747 set_bit(STRIPE_INSYNC, &sh->state); 2748 else { 2749 conf->mddev->resync_mismatches += STRIPE_SECTORS; 2750 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 2751 /* don't try to repair!! */ 2752 set_bit(STRIPE_INSYNC, &sh->state); 2753 else { 2754 sh->check_state = check_state_compute_run; 2755 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2756 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2757 set_bit(R5_Wantcompute, 2758 &sh->dev[sh->pd_idx].flags); 2759 sh->ops.target = sh->pd_idx; 2760 sh->ops.target2 = -1; 2761 s->uptodate++; 2762 } 2763 } 2764 break; 2765 case check_state_compute_run: 2766 break; 2767 default: 2768 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 2769 __func__, sh->check_state, 2770 (unsigned long long) sh->sector); 2771 BUG(); 2772 } 2773 } 2774 2775 2776 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh, 2777 struct stripe_head_state *s, 2778 struct r6_state *r6s, int disks) 2779 { 2780 int pd_idx = sh->pd_idx; 2781 int qd_idx = sh->qd_idx; 2782 struct r5dev *dev; 2783 2784 set_bit(STRIPE_HANDLE, &sh->state); 2785 2786 BUG_ON(s->failed > 2); 2787 2788 /* Want to check and possibly repair P and Q. 2789 * However there could be one 'failed' device, in which 2790 * case we can only check one of them, possibly using the 2791 * other to generate missing data 2792 */ 2793 2794 switch (sh->check_state) { 2795 case check_state_idle: 2796 /* start a new check operation if there are < 2 failures */ 2797 if (s->failed == r6s->q_failed) { 2798 /* The only possible failed device holds Q, so it 2799 * makes sense to check P (If anything else were failed, 2800 * we would have used P to recreate it). 2801 */ 2802 sh->check_state = check_state_run; 2803 } 2804 if (!r6s->q_failed && s->failed < 2) { 2805 /* Q is not failed, and we didn't use it to generate 2806 * anything, so it makes sense to check it 2807 */ 2808 if (sh->check_state == check_state_run) 2809 sh->check_state = check_state_run_pq; 2810 else 2811 sh->check_state = check_state_run_q; 2812 } 2813 2814 /* discard potentially stale zero_sum_result */ 2815 sh->ops.zero_sum_result = 0; 2816 2817 if (sh->check_state == check_state_run) { 2818 /* async_xor_zero_sum destroys the contents of P */ 2819 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2820 s->uptodate--; 2821 } 2822 if (sh->check_state >= check_state_run && 2823 sh->check_state <= check_state_run_pq) { 2824 /* async_syndrome_zero_sum preserves P and Q, so 2825 * no need to mark them !uptodate here 2826 */ 2827 set_bit(STRIPE_OP_CHECK, &s->ops_request); 2828 break; 2829 } 2830 2831 /* we have 2-disk failure */ 2832 BUG_ON(s->failed != 2); 2833 /* fall through */ 2834 case check_state_compute_result: 2835 sh->check_state = check_state_idle; 2836 2837 /* check that a write has not made the stripe insync */ 2838 if (test_bit(STRIPE_INSYNC, &sh->state)) 2839 break; 2840 2841 /* now write out any block on a failed drive, 2842 * or P or Q if they were recomputed 2843 */ 2844 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 2845 if (s->failed == 2) { 2846 dev = &sh->dev[r6s->failed_num[1]]; 2847 s->locked++; 2848 set_bit(R5_LOCKED, &dev->flags); 2849 set_bit(R5_Wantwrite, &dev->flags); 2850 } 2851 if (s->failed >= 1) { 2852 dev = &sh->dev[r6s->failed_num[0]]; 2853 s->locked++; 2854 set_bit(R5_LOCKED, &dev->flags); 2855 set_bit(R5_Wantwrite, &dev->flags); 2856 } 2857 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 2858 dev = &sh->dev[pd_idx]; 2859 s->locked++; 2860 set_bit(R5_LOCKED, &dev->flags); 2861 set_bit(R5_Wantwrite, &dev->flags); 2862 } 2863 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 2864 dev = &sh->dev[qd_idx]; 2865 s->locked++; 2866 set_bit(R5_LOCKED, &dev->flags); 2867 set_bit(R5_Wantwrite, &dev->flags); 2868 } 2869 clear_bit(STRIPE_DEGRADED, &sh->state); 2870 2871 set_bit(STRIPE_INSYNC, &sh->state); 2872 break; 2873 case check_state_run: 2874 case check_state_run_q: 2875 case check_state_run_pq: 2876 break; /* we will be called again upon completion */ 2877 case check_state_check_result: 2878 sh->check_state = check_state_idle; 2879 2880 /* handle a successful check operation, if parity is correct 2881 * we are done. Otherwise update the mismatch count and repair 2882 * parity if !MD_RECOVERY_CHECK 2883 */ 2884 if (sh->ops.zero_sum_result == 0) { 2885 /* both parities are correct */ 2886 if (!s->failed) 2887 set_bit(STRIPE_INSYNC, &sh->state); 2888 else { 2889 /* in contrast to the raid5 case we can validate 2890 * parity, but still have a failure to write 2891 * back 2892 */ 2893 sh->check_state = check_state_compute_result; 2894 /* Returning at this point means that we may go 2895 * off and bring p and/or q uptodate again so 2896 * we make sure to check zero_sum_result again 2897 * to verify if p or q need writeback 2898 */ 2899 } 2900 } else { 2901 conf->mddev->resync_mismatches += STRIPE_SECTORS; 2902 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 2903 /* don't try to repair!! */ 2904 set_bit(STRIPE_INSYNC, &sh->state); 2905 else { 2906 int *target = &sh->ops.target; 2907 2908 sh->ops.target = -1; 2909 sh->ops.target2 = -1; 2910 sh->check_state = check_state_compute_run; 2911 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2912 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2913 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 2914 set_bit(R5_Wantcompute, 2915 &sh->dev[pd_idx].flags); 2916 *target = pd_idx; 2917 target = &sh->ops.target2; 2918 s->uptodate++; 2919 } 2920 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 2921 set_bit(R5_Wantcompute, 2922 &sh->dev[qd_idx].flags); 2923 *target = qd_idx; 2924 s->uptodate++; 2925 } 2926 } 2927 } 2928 break; 2929 case check_state_compute_run: 2930 break; 2931 default: 2932 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 2933 __func__, sh->check_state, 2934 (unsigned long long) sh->sector); 2935 BUG(); 2936 } 2937 } 2938 2939 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh, 2940 struct r6_state *r6s) 2941 { 2942 int i; 2943 2944 /* We have read all the blocks in this stripe and now we need to 2945 * copy some of them into a target stripe for expand. 2946 */ 2947 struct dma_async_tx_descriptor *tx = NULL; 2948 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 2949 for (i = 0; i < sh->disks; i++) 2950 if (i != sh->pd_idx && i != sh->qd_idx) { 2951 int dd_idx, j; 2952 struct stripe_head *sh2; 2953 struct async_submit_ctl submit; 2954 2955 sector_t bn = compute_blocknr(sh, i, 1); 2956 sector_t s = raid5_compute_sector(conf, bn, 0, 2957 &dd_idx, NULL); 2958 sh2 = get_active_stripe(conf, s, 0, 1, 1); 2959 if (sh2 == NULL) 2960 /* so far only the early blocks of this stripe 2961 * have been requested. When later blocks 2962 * get requested, we will try again 2963 */ 2964 continue; 2965 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 2966 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 2967 /* must have already done this block */ 2968 release_stripe(sh2); 2969 continue; 2970 } 2971 2972 /* place all the copies on one channel */ 2973 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 2974 tx = async_memcpy(sh2->dev[dd_idx].page, 2975 sh->dev[i].page, 0, 0, STRIPE_SIZE, 2976 &submit); 2977 2978 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 2979 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 2980 for (j = 0; j < conf->raid_disks; j++) 2981 if (j != sh2->pd_idx && 2982 (!r6s || j != sh2->qd_idx) && 2983 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 2984 break; 2985 if (j == conf->raid_disks) { 2986 set_bit(STRIPE_EXPAND_READY, &sh2->state); 2987 set_bit(STRIPE_HANDLE, &sh2->state); 2988 } 2989 release_stripe(sh2); 2990 2991 } 2992 /* done submitting copies, wait for them to complete */ 2993 if (tx) { 2994 async_tx_ack(tx); 2995 dma_wait_for_async_tx(tx); 2996 } 2997 } 2998 2999 3000 /* 3001 * handle_stripe - do things to a stripe. 3002 * 3003 * We lock the stripe and then examine the state of various bits 3004 * to see what needs to be done. 3005 * Possible results: 3006 * return some read request which now have data 3007 * return some write requests which are safely on disc 3008 * schedule a read on some buffers 3009 * schedule a write of some buffers 3010 * return confirmation of parity correctness 3011 * 3012 * buffers are taken off read_list or write_list, and bh_cache buffers 3013 * get BH_Lock set before the stripe lock is released. 3014 * 3015 */ 3016 3017 static void handle_stripe5(struct stripe_head *sh) 3018 { 3019 raid5_conf_t *conf = sh->raid_conf; 3020 int disks = sh->disks, i; 3021 struct bio *return_bi = NULL; 3022 struct stripe_head_state s; 3023 struct r5dev *dev; 3024 mdk_rdev_t *blocked_rdev = NULL; 3025 int prexor; 3026 int dec_preread_active = 0; 3027 3028 memset(&s, 0, sizeof(s)); 3029 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d " 3030 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state, 3031 atomic_read(&sh->count), sh->pd_idx, sh->check_state, 3032 sh->reconstruct_state); 3033 3034 spin_lock(&sh->lock); 3035 clear_bit(STRIPE_HANDLE, &sh->state); 3036 clear_bit(STRIPE_DELAYED, &sh->state); 3037 3038 s.syncing = test_bit(STRIPE_SYNCING, &sh->state); 3039 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3040 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 3041 3042 /* Now to look around and see what can be done */ 3043 rcu_read_lock(); 3044 for (i=disks; i--; ) { 3045 mdk_rdev_t *rdev; 3046 3047 dev = &sh->dev[i]; 3048 3049 pr_debug("check %d: state 0x%lx toread %p read %p write %p " 3050 "written %p\n", i, dev->flags, dev->toread, dev->read, 3051 dev->towrite, dev->written); 3052 3053 /* maybe we can request a biofill operation 3054 * 3055 * new wantfill requests are only permitted while 3056 * ops_complete_biofill is guaranteed to be inactive 3057 */ 3058 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 3059 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 3060 set_bit(R5_Wantfill, &dev->flags); 3061 3062 /* now count some things */ 3063 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++; 3064 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++; 3065 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++; 3066 3067 if (test_bit(R5_Wantfill, &dev->flags)) 3068 s.to_fill++; 3069 else if (dev->toread) 3070 s.to_read++; 3071 if (dev->towrite) { 3072 s.to_write++; 3073 if (!test_bit(R5_OVERWRITE, &dev->flags)) 3074 s.non_overwrite++; 3075 } 3076 if (dev->written) 3077 s.written++; 3078 rdev = rcu_dereference(conf->disks[i].rdev); 3079 if (blocked_rdev == NULL && 3080 rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 3081 blocked_rdev = rdev; 3082 atomic_inc(&rdev->nr_pending); 3083 } 3084 clear_bit(R5_Insync, &dev->flags); 3085 if (!rdev) 3086 /* Not in-sync */; 3087 else if (test_bit(In_sync, &rdev->flags)) 3088 set_bit(R5_Insync, &dev->flags); 3089 else { 3090 /* could be in-sync depending on recovery/reshape status */ 3091 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 3092 set_bit(R5_Insync, &dev->flags); 3093 } 3094 if (!test_bit(R5_Insync, &dev->flags)) { 3095 /* The ReadError flag will just be confusing now */ 3096 clear_bit(R5_ReadError, &dev->flags); 3097 clear_bit(R5_ReWrite, &dev->flags); 3098 } 3099 if (test_bit(R5_ReadError, &dev->flags)) 3100 clear_bit(R5_Insync, &dev->flags); 3101 if (!test_bit(R5_Insync, &dev->flags)) { 3102 s.failed++; 3103 s.failed_num = i; 3104 } 3105 } 3106 rcu_read_unlock(); 3107 3108 if (unlikely(blocked_rdev)) { 3109 if (s.syncing || s.expanding || s.expanded || 3110 s.to_write || s.written) { 3111 set_bit(STRIPE_HANDLE, &sh->state); 3112 goto unlock; 3113 } 3114 /* There is nothing for the blocked_rdev to block */ 3115 rdev_dec_pending(blocked_rdev, conf->mddev); 3116 blocked_rdev = NULL; 3117 } 3118 3119 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 3120 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 3121 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 3122 } 3123 3124 pr_debug("locked=%d uptodate=%d to_read=%d" 3125 " to_write=%d failed=%d failed_num=%d\n", 3126 s.locked, s.uptodate, s.to_read, s.to_write, 3127 s.failed, s.failed_num); 3128 /* check if the array has lost two devices and, if so, some requests might 3129 * need to be failed 3130 */ 3131 if (s.failed > 1 && s.to_read+s.to_write+s.written) 3132 handle_failed_stripe(conf, sh, &s, disks, &return_bi); 3133 if (s.failed > 1 && s.syncing) { 3134 md_done_sync(conf->mddev, STRIPE_SECTORS,0); 3135 clear_bit(STRIPE_SYNCING, &sh->state); 3136 s.syncing = 0; 3137 } 3138 3139 /* might be able to return some write requests if the parity block 3140 * is safe, or on a failed drive 3141 */ 3142 dev = &sh->dev[sh->pd_idx]; 3143 if ( s.written && 3144 ((test_bit(R5_Insync, &dev->flags) && 3145 !test_bit(R5_LOCKED, &dev->flags) && 3146 test_bit(R5_UPTODATE, &dev->flags)) || 3147 (s.failed == 1 && s.failed_num == sh->pd_idx))) 3148 handle_stripe_clean_event(conf, sh, disks, &return_bi); 3149 3150 /* Now we might consider reading some blocks, either to check/generate 3151 * parity, or to satisfy requests 3152 * or to load a block that is being partially written. 3153 */ 3154 if (s.to_read || s.non_overwrite || 3155 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding) 3156 handle_stripe_fill5(sh, &s, disks); 3157 3158 /* Now we check to see if any write operations have recently 3159 * completed 3160 */ 3161 prexor = 0; 3162 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 3163 prexor = 1; 3164 if (sh->reconstruct_state == reconstruct_state_drain_result || 3165 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 3166 sh->reconstruct_state = reconstruct_state_idle; 3167 3168 /* All the 'written' buffers and the parity block are ready to 3169 * be written back to disk 3170 */ 3171 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags)); 3172 for (i = disks; i--; ) { 3173 dev = &sh->dev[i]; 3174 if (test_bit(R5_LOCKED, &dev->flags) && 3175 (i == sh->pd_idx || dev->written)) { 3176 pr_debug("Writing block %d\n", i); 3177 set_bit(R5_Wantwrite, &dev->flags); 3178 if (prexor) 3179 continue; 3180 if (!test_bit(R5_Insync, &dev->flags) || 3181 (i == sh->pd_idx && s.failed == 0)) 3182 set_bit(STRIPE_INSYNC, &sh->state); 3183 } 3184 } 3185 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3186 dec_preread_active = 1; 3187 } 3188 3189 /* Now to consider new write requests and what else, if anything 3190 * should be read. We do not handle new writes when: 3191 * 1/ A 'write' operation (copy+xor) is already in flight. 3192 * 2/ A 'check' operation is in flight, as it may clobber the parity 3193 * block. 3194 */ 3195 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 3196 handle_stripe_dirtying5(conf, sh, &s, disks); 3197 3198 /* maybe we need to check and possibly fix the parity for this stripe 3199 * Any reads will already have been scheduled, so we just see if enough 3200 * data is available. The parity check is held off while parity 3201 * dependent operations are in flight. 3202 */ 3203 if (sh->check_state || 3204 (s.syncing && s.locked == 0 && 3205 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3206 !test_bit(STRIPE_INSYNC, &sh->state))) 3207 handle_parity_checks5(conf, sh, &s, disks); 3208 3209 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { 3210 md_done_sync(conf->mddev, STRIPE_SECTORS,1); 3211 clear_bit(STRIPE_SYNCING, &sh->state); 3212 } 3213 3214 /* If the failed drive is just a ReadError, then we might need to progress 3215 * the repair/check process 3216 */ 3217 if (s.failed == 1 && !conf->mddev->ro && 3218 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags) 3219 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags) 3220 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags) 3221 ) { 3222 dev = &sh->dev[s.failed_num]; 3223 if (!test_bit(R5_ReWrite, &dev->flags)) { 3224 set_bit(R5_Wantwrite, &dev->flags); 3225 set_bit(R5_ReWrite, &dev->flags); 3226 set_bit(R5_LOCKED, &dev->flags); 3227 s.locked++; 3228 } else { 3229 /* let's read it back */ 3230 set_bit(R5_Wantread, &dev->flags); 3231 set_bit(R5_LOCKED, &dev->flags); 3232 s.locked++; 3233 } 3234 } 3235 3236 /* Finish reconstruct operations initiated by the expansion process */ 3237 if (sh->reconstruct_state == reconstruct_state_result) { 3238 struct stripe_head *sh2 3239 = get_active_stripe(conf, sh->sector, 1, 1, 1); 3240 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) { 3241 /* sh cannot be written until sh2 has been read. 3242 * so arrange for sh to be delayed a little 3243 */ 3244 set_bit(STRIPE_DELAYED, &sh->state); 3245 set_bit(STRIPE_HANDLE, &sh->state); 3246 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 3247 &sh2->state)) 3248 atomic_inc(&conf->preread_active_stripes); 3249 release_stripe(sh2); 3250 goto unlock; 3251 } 3252 if (sh2) 3253 release_stripe(sh2); 3254 3255 sh->reconstruct_state = reconstruct_state_idle; 3256 clear_bit(STRIPE_EXPANDING, &sh->state); 3257 for (i = conf->raid_disks; i--; ) { 3258 set_bit(R5_Wantwrite, &sh->dev[i].flags); 3259 set_bit(R5_LOCKED, &sh->dev[i].flags); 3260 s.locked++; 3261 } 3262 } 3263 3264 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 3265 !sh->reconstruct_state) { 3266 /* Need to write out all blocks after computing parity */ 3267 sh->disks = conf->raid_disks; 3268 stripe_set_idx(sh->sector, conf, 0, sh); 3269 schedule_reconstruction(sh, &s, 1, 1); 3270 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 3271 clear_bit(STRIPE_EXPAND_READY, &sh->state); 3272 atomic_dec(&conf->reshape_stripes); 3273 wake_up(&conf->wait_for_overlap); 3274 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3275 } 3276 3277 if (s.expanding && s.locked == 0 && 3278 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 3279 handle_stripe_expansion(conf, sh, NULL); 3280 3281 unlock: 3282 spin_unlock(&sh->lock); 3283 3284 /* wait for this device to become unblocked */ 3285 if (unlikely(blocked_rdev)) 3286 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev); 3287 3288 if (s.ops_request) 3289 raid_run_ops(sh, s.ops_request); 3290 3291 ops_run_io(sh, &s); 3292 3293 if (dec_preread_active) { 3294 /* We delay this until after ops_run_io so that if make_request 3295 * is waiting on a flush, it won't continue until the writes 3296 * have actually been submitted. 3297 */ 3298 atomic_dec(&conf->preread_active_stripes); 3299 if (atomic_read(&conf->preread_active_stripes) < 3300 IO_THRESHOLD) 3301 md_wakeup_thread(conf->mddev->thread); 3302 } 3303 return_io(return_bi); 3304 } 3305 3306 static void handle_stripe6(struct stripe_head *sh) 3307 { 3308 raid5_conf_t *conf = sh->raid_conf; 3309 int disks = sh->disks; 3310 struct bio *return_bi = NULL; 3311 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx; 3312 struct stripe_head_state s; 3313 struct r6_state r6s; 3314 struct r5dev *dev, *pdev, *qdev; 3315 mdk_rdev_t *blocked_rdev = NULL; 3316 int dec_preread_active = 0; 3317 3318 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 3319 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 3320 (unsigned long long)sh->sector, sh->state, 3321 atomic_read(&sh->count), pd_idx, qd_idx, 3322 sh->check_state, sh->reconstruct_state); 3323 memset(&s, 0, sizeof(s)); 3324 3325 spin_lock(&sh->lock); 3326 clear_bit(STRIPE_HANDLE, &sh->state); 3327 clear_bit(STRIPE_DELAYED, &sh->state); 3328 3329 s.syncing = test_bit(STRIPE_SYNCING, &sh->state); 3330 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3331 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 3332 /* Now to look around and see what can be done */ 3333 3334 rcu_read_lock(); 3335 for (i=disks; i--; ) { 3336 mdk_rdev_t *rdev; 3337 dev = &sh->dev[i]; 3338 3339 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 3340 i, dev->flags, dev->toread, dev->towrite, dev->written); 3341 /* maybe we can reply to a read 3342 * 3343 * new wantfill requests are only permitted while 3344 * ops_complete_biofill is guaranteed to be inactive 3345 */ 3346 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 3347 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 3348 set_bit(R5_Wantfill, &dev->flags); 3349 3350 /* now count some things */ 3351 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++; 3352 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++; 3353 if (test_bit(R5_Wantcompute, &dev->flags)) { 3354 s.compute++; 3355 BUG_ON(s.compute > 2); 3356 } 3357 3358 if (test_bit(R5_Wantfill, &dev->flags)) { 3359 s.to_fill++; 3360 } else if (dev->toread) 3361 s.to_read++; 3362 if (dev->towrite) { 3363 s.to_write++; 3364 if (!test_bit(R5_OVERWRITE, &dev->flags)) 3365 s.non_overwrite++; 3366 } 3367 if (dev->written) 3368 s.written++; 3369 rdev = rcu_dereference(conf->disks[i].rdev); 3370 if (blocked_rdev == NULL && 3371 rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 3372 blocked_rdev = rdev; 3373 atomic_inc(&rdev->nr_pending); 3374 } 3375 clear_bit(R5_Insync, &dev->flags); 3376 if (!rdev) 3377 /* Not in-sync */; 3378 else if (test_bit(In_sync, &rdev->flags)) 3379 set_bit(R5_Insync, &dev->flags); 3380 else { 3381 /* in sync if before recovery_offset */ 3382 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 3383 set_bit(R5_Insync, &dev->flags); 3384 } 3385 if (!test_bit(R5_Insync, &dev->flags)) { 3386 /* The ReadError flag will just be confusing now */ 3387 clear_bit(R5_ReadError, &dev->flags); 3388 clear_bit(R5_ReWrite, &dev->flags); 3389 } 3390 if (test_bit(R5_ReadError, &dev->flags)) 3391 clear_bit(R5_Insync, &dev->flags); 3392 if (!test_bit(R5_Insync, &dev->flags)) { 3393 if (s.failed < 2) 3394 r6s.failed_num[s.failed] = i; 3395 s.failed++; 3396 } 3397 } 3398 rcu_read_unlock(); 3399 3400 if (unlikely(blocked_rdev)) { 3401 if (s.syncing || s.expanding || s.expanded || 3402 s.to_write || s.written) { 3403 set_bit(STRIPE_HANDLE, &sh->state); 3404 goto unlock; 3405 } 3406 /* There is nothing for the blocked_rdev to block */ 3407 rdev_dec_pending(blocked_rdev, conf->mddev); 3408 blocked_rdev = NULL; 3409 } 3410 3411 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 3412 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 3413 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 3414 } 3415 3416 pr_debug("locked=%d uptodate=%d to_read=%d" 3417 " to_write=%d failed=%d failed_num=%d,%d\n", 3418 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 3419 r6s.failed_num[0], r6s.failed_num[1]); 3420 /* check if the array has lost >2 devices and, if so, some requests 3421 * might need to be failed 3422 */ 3423 if (s.failed > 2 && s.to_read+s.to_write+s.written) 3424 handle_failed_stripe(conf, sh, &s, disks, &return_bi); 3425 if (s.failed > 2 && s.syncing) { 3426 md_done_sync(conf->mddev, STRIPE_SECTORS,0); 3427 clear_bit(STRIPE_SYNCING, &sh->state); 3428 s.syncing = 0; 3429 } 3430 3431 /* 3432 * might be able to return some write requests if the parity blocks 3433 * are safe, or on a failed drive 3434 */ 3435 pdev = &sh->dev[pd_idx]; 3436 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx) 3437 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx); 3438 qdev = &sh->dev[qd_idx]; 3439 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx) 3440 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx); 3441 3442 if ( s.written && 3443 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 3444 && !test_bit(R5_LOCKED, &pdev->flags) 3445 && test_bit(R5_UPTODATE, &pdev->flags)))) && 3446 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 3447 && !test_bit(R5_LOCKED, &qdev->flags) 3448 && test_bit(R5_UPTODATE, &qdev->flags))))) 3449 handle_stripe_clean_event(conf, sh, disks, &return_bi); 3450 3451 /* Now we might consider reading some blocks, either to check/generate 3452 * parity, or to satisfy requests 3453 * or to load a block that is being partially written. 3454 */ 3455 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) || 3456 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding) 3457 handle_stripe_fill6(sh, &s, &r6s, disks); 3458 3459 /* Now we check to see if any write operations have recently 3460 * completed 3461 */ 3462 if (sh->reconstruct_state == reconstruct_state_drain_result) { 3463 3464 sh->reconstruct_state = reconstruct_state_idle; 3465 /* All the 'written' buffers and the parity blocks are ready to 3466 * be written back to disk 3467 */ 3468 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags)); 3469 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags)); 3470 for (i = disks; i--; ) { 3471 dev = &sh->dev[i]; 3472 if (test_bit(R5_LOCKED, &dev->flags) && 3473 (i == sh->pd_idx || i == qd_idx || 3474 dev->written)) { 3475 pr_debug("Writing block %d\n", i); 3476 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 3477 set_bit(R5_Wantwrite, &dev->flags); 3478 if (!test_bit(R5_Insync, &dev->flags) || 3479 ((i == sh->pd_idx || i == qd_idx) && 3480 s.failed == 0)) 3481 set_bit(STRIPE_INSYNC, &sh->state); 3482 } 3483 } 3484 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3485 dec_preread_active = 1; 3486 } 3487 3488 /* Now to consider new write requests and what else, if anything 3489 * should be read. We do not handle new writes when: 3490 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight. 3491 * 2/ A 'check' operation is in flight, as it may clobber the parity 3492 * block. 3493 */ 3494 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 3495 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks); 3496 3497 /* maybe we need to check and possibly fix the parity for this stripe 3498 * Any reads will already have been scheduled, so we just see if enough 3499 * data is available. The parity check is held off while parity 3500 * dependent operations are in flight. 3501 */ 3502 if (sh->check_state || 3503 (s.syncing && s.locked == 0 && 3504 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3505 !test_bit(STRIPE_INSYNC, &sh->state))) 3506 handle_parity_checks6(conf, sh, &s, &r6s, disks); 3507 3508 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { 3509 md_done_sync(conf->mddev, STRIPE_SECTORS,1); 3510 clear_bit(STRIPE_SYNCING, &sh->state); 3511 } 3512 3513 /* If the failed drives are just a ReadError, then we might need 3514 * to progress the repair/check process 3515 */ 3516 if (s.failed <= 2 && !conf->mddev->ro) 3517 for (i = 0; i < s.failed; i++) { 3518 dev = &sh->dev[r6s.failed_num[i]]; 3519 if (test_bit(R5_ReadError, &dev->flags) 3520 && !test_bit(R5_LOCKED, &dev->flags) 3521 && test_bit(R5_UPTODATE, &dev->flags) 3522 ) { 3523 if (!test_bit(R5_ReWrite, &dev->flags)) { 3524 set_bit(R5_Wantwrite, &dev->flags); 3525 set_bit(R5_ReWrite, &dev->flags); 3526 set_bit(R5_LOCKED, &dev->flags); 3527 s.locked++; 3528 } else { 3529 /* let's read it back */ 3530 set_bit(R5_Wantread, &dev->flags); 3531 set_bit(R5_LOCKED, &dev->flags); 3532 s.locked++; 3533 } 3534 } 3535 } 3536 3537 /* Finish reconstruct operations initiated by the expansion process */ 3538 if (sh->reconstruct_state == reconstruct_state_result) { 3539 sh->reconstruct_state = reconstruct_state_idle; 3540 clear_bit(STRIPE_EXPANDING, &sh->state); 3541 for (i = conf->raid_disks; i--; ) { 3542 set_bit(R5_Wantwrite, &sh->dev[i].flags); 3543 set_bit(R5_LOCKED, &sh->dev[i].flags); 3544 s.locked++; 3545 } 3546 } 3547 3548 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 3549 !sh->reconstruct_state) { 3550 struct stripe_head *sh2 3551 = get_active_stripe(conf, sh->sector, 1, 1, 1); 3552 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) { 3553 /* sh cannot be written until sh2 has been read. 3554 * so arrange for sh to be delayed a little 3555 */ 3556 set_bit(STRIPE_DELAYED, &sh->state); 3557 set_bit(STRIPE_HANDLE, &sh->state); 3558 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 3559 &sh2->state)) 3560 atomic_inc(&conf->preread_active_stripes); 3561 release_stripe(sh2); 3562 goto unlock; 3563 } 3564 if (sh2) 3565 release_stripe(sh2); 3566 3567 /* Need to write out all blocks after computing P&Q */ 3568 sh->disks = conf->raid_disks; 3569 stripe_set_idx(sh->sector, conf, 0, sh); 3570 schedule_reconstruction(sh, &s, 1, 1); 3571 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 3572 clear_bit(STRIPE_EXPAND_READY, &sh->state); 3573 atomic_dec(&conf->reshape_stripes); 3574 wake_up(&conf->wait_for_overlap); 3575 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3576 } 3577 3578 if (s.expanding && s.locked == 0 && 3579 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 3580 handle_stripe_expansion(conf, sh, &r6s); 3581 3582 unlock: 3583 spin_unlock(&sh->lock); 3584 3585 /* wait for this device to become unblocked */ 3586 if (unlikely(blocked_rdev)) 3587 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev); 3588 3589 if (s.ops_request) 3590 raid_run_ops(sh, s.ops_request); 3591 3592 ops_run_io(sh, &s); 3593 3594 3595 if (dec_preread_active) { 3596 /* We delay this until after ops_run_io so that if make_request 3597 * is waiting on a flush, it won't continue until the writes 3598 * have actually been submitted. 3599 */ 3600 atomic_dec(&conf->preread_active_stripes); 3601 if (atomic_read(&conf->preread_active_stripes) < 3602 IO_THRESHOLD) 3603 md_wakeup_thread(conf->mddev->thread); 3604 } 3605 3606 return_io(return_bi); 3607 } 3608 3609 static void handle_stripe(struct stripe_head *sh) 3610 { 3611 if (sh->raid_conf->level == 6) 3612 handle_stripe6(sh); 3613 else 3614 handle_stripe5(sh); 3615 } 3616 3617 static void raid5_activate_delayed(raid5_conf_t *conf) 3618 { 3619 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 3620 while (!list_empty(&conf->delayed_list)) { 3621 struct list_head *l = conf->delayed_list.next; 3622 struct stripe_head *sh; 3623 sh = list_entry(l, struct stripe_head, lru); 3624 list_del_init(l); 3625 clear_bit(STRIPE_DELAYED, &sh->state); 3626 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3627 atomic_inc(&conf->preread_active_stripes); 3628 list_add_tail(&sh->lru, &conf->hold_list); 3629 } 3630 } else 3631 plugger_set_plug(&conf->plug); 3632 } 3633 3634 static void activate_bit_delay(raid5_conf_t *conf) 3635 { 3636 /* device_lock is held */ 3637 struct list_head head; 3638 list_add(&head, &conf->bitmap_list); 3639 list_del_init(&conf->bitmap_list); 3640 while (!list_empty(&head)) { 3641 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 3642 list_del_init(&sh->lru); 3643 atomic_inc(&sh->count); 3644 __release_stripe(conf, sh); 3645 } 3646 } 3647 3648 static void unplug_slaves(mddev_t *mddev) 3649 { 3650 raid5_conf_t *conf = mddev->private; 3651 int i; 3652 int devs = max(conf->raid_disks, conf->previous_raid_disks); 3653 3654 rcu_read_lock(); 3655 for (i = 0; i < devs; i++) { 3656 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev); 3657 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 3658 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 3659 3660 atomic_inc(&rdev->nr_pending); 3661 rcu_read_unlock(); 3662 3663 blk_unplug(r_queue); 3664 3665 rdev_dec_pending(rdev, mddev); 3666 rcu_read_lock(); 3667 } 3668 } 3669 rcu_read_unlock(); 3670 } 3671 3672 void md_raid5_unplug_device(raid5_conf_t *conf) 3673 { 3674 unsigned long flags; 3675 3676 spin_lock_irqsave(&conf->device_lock, flags); 3677 3678 if (plugger_remove_plug(&conf->plug)) { 3679 conf->seq_flush++; 3680 raid5_activate_delayed(conf); 3681 } 3682 md_wakeup_thread(conf->mddev->thread); 3683 3684 spin_unlock_irqrestore(&conf->device_lock, flags); 3685 3686 unplug_slaves(conf->mddev); 3687 } 3688 EXPORT_SYMBOL_GPL(md_raid5_unplug_device); 3689 3690 static void raid5_unplug(struct plug_handle *plug) 3691 { 3692 raid5_conf_t *conf = container_of(plug, raid5_conf_t, plug); 3693 md_raid5_unplug_device(conf); 3694 } 3695 3696 static void raid5_unplug_queue(struct request_queue *q) 3697 { 3698 mddev_t *mddev = q->queuedata; 3699 md_raid5_unplug_device(mddev->private); 3700 } 3701 3702 int md_raid5_congested(mddev_t *mddev, int bits) 3703 { 3704 raid5_conf_t *conf = mddev->private; 3705 3706 /* No difference between reads and writes. Just check 3707 * how busy the stripe_cache is 3708 */ 3709 3710 if (conf->inactive_blocked) 3711 return 1; 3712 if (conf->quiesce) 3713 return 1; 3714 if (list_empty_careful(&conf->inactive_list)) 3715 return 1; 3716 3717 return 0; 3718 } 3719 EXPORT_SYMBOL_GPL(md_raid5_congested); 3720 3721 static int raid5_congested(void *data, int bits) 3722 { 3723 mddev_t *mddev = data; 3724 3725 return mddev_congested(mddev, bits) || 3726 md_raid5_congested(mddev, bits); 3727 } 3728 3729 /* We want read requests to align with chunks where possible, 3730 * but write requests don't need to. 3731 */ 3732 static int raid5_mergeable_bvec(struct request_queue *q, 3733 struct bvec_merge_data *bvm, 3734 struct bio_vec *biovec) 3735 { 3736 mddev_t *mddev = q->queuedata; 3737 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 3738 int max; 3739 unsigned int chunk_sectors = mddev->chunk_sectors; 3740 unsigned int bio_sectors = bvm->bi_size >> 9; 3741 3742 if ((bvm->bi_rw & 1) == WRITE) 3743 return biovec->bv_len; /* always allow writes to be mergeable */ 3744 3745 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 3746 chunk_sectors = mddev->new_chunk_sectors; 3747 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 3748 if (max < 0) max = 0; 3749 if (max <= biovec->bv_len && bio_sectors == 0) 3750 return biovec->bv_len; 3751 else 3752 return max; 3753 } 3754 3755 3756 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio) 3757 { 3758 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 3759 unsigned int chunk_sectors = mddev->chunk_sectors; 3760 unsigned int bio_sectors = bio->bi_size >> 9; 3761 3762 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 3763 chunk_sectors = mddev->new_chunk_sectors; 3764 return chunk_sectors >= 3765 ((sector & (chunk_sectors - 1)) + bio_sectors); 3766 } 3767 3768 /* 3769 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 3770 * later sampled by raid5d. 3771 */ 3772 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf) 3773 { 3774 unsigned long flags; 3775 3776 spin_lock_irqsave(&conf->device_lock, flags); 3777 3778 bi->bi_next = conf->retry_read_aligned_list; 3779 conf->retry_read_aligned_list = bi; 3780 3781 spin_unlock_irqrestore(&conf->device_lock, flags); 3782 md_wakeup_thread(conf->mddev->thread); 3783 } 3784 3785 3786 static struct bio *remove_bio_from_retry(raid5_conf_t *conf) 3787 { 3788 struct bio *bi; 3789 3790 bi = conf->retry_read_aligned; 3791 if (bi) { 3792 conf->retry_read_aligned = NULL; 3793 return bi; 3794 } 3795 bi = conf->retry_read_aligned_list; 3796 if(bi) { 3797 conf->retry_read_aligned_list = bi->bi_next; 3798 bi->bi_next = NULL; 3799 /* 3800 * this sets the active strip count to 1 and the processed 3801 * strip count to zero (upper 8 bits) 3802 */ 3803 bi->bi_phys_segments = 1; /* biased count of active stripes */ 3804 } 3805 3806 return bi; 3807 } 3808 3809 3810 /* 3811 * The "raid5_align_endio" should check if the read succeeded and if it 3812 * did, call bio_endio on the original bio (having bio_put the new bio 3813 * first). 3814 * If the read failed.. 3815 */ 3816 static void raid5_align_endio(struct bio *bi, int error) 3817 { 3818 struct bio* raid_bi = bi->bi_private; 3819 mddev_t *mddev; 3820 raid5_conf_t *conf; 3821 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 3822 mdk_rdev_t *rdev; 3823 3824 bio_put(bi); 3825 3826 rdev = (void*)raid_bi->bi_next; 3827 raid_bi->bi_next = NULL; 3828 mddev = rdev->mddev; 3829 conf = mddev->private; 3830 3831 rdev_dec_pending(rdev, conf->mddev); 3832 3833 if (!error && uptodate) { 3834 bio_endio(raid_bi, 0); 3835 if (atomic_dec_and_test(&conf->active_aligned_reads)) 3836 wake_up(&conf->wait_for_stripe); 3837 return; 3838 } 3839 3840 3841 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 3842 3843 add_bio_to_retry(raid_bi, conf); 3844 } 3845 3846 static int bio_fits_rdev(struct bio *bi) 3847 { 3848 struct request_queue *q = bdev_get_queue(bi->bi_bdev); 3849 3850 if ((bi->bi_size>>9) > queue_max_sectors(q)) 3851 return 0; 3852 blk_recount_segments(q, bi); 3853 if (bi->bi_phys_segments > queue_max_segments(q)) 3854 return 0; 3855 3856 if (q->merge_bvec_fn) 3857 /* it's too hard to apply the merge_bvec_fn at this stage, 3858 * just just give up 3859 */ 3860 return 0; 3861 3862 return 1; 3863 } 3864 3865 3866 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio) 3867 { 3868 raid5_conf_t *conf = mddev->private; 3869 int dd_idx; 3870 struct bio* align_bi; 3871 mdk_rdev_t *rdev; 3872 3873 if (!in_chunk_boundary(mddev, raid_bio)) { 3874 pr_debug("chunk_aligned_read : non aligned\n"); 3875 return 0; 3876 } 3877 /* 3878 * use bio_clone_mddev to make a copy of the bio 3879 */ 3880 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 3881 if (!align_bi) 3882 return 0; 3883 /* 3884 * set bi_end_io to a new function, and set bi_private to the 3885 * original bio. 3886 */ 3887 align_bi->bi_end_io = raid5_align_endio; 3888 align_bi->bi_private = raid_bio; 3889 /* 3890 * compute position 3891 */ 3892 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector, 3893 0, 3894 &dd_idx, NULL); 3895 3896 rcu_read_lock(); 3897 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 3898 if (rdev && test_bit(In_sync, &rdev->flags)) { 3899 atomic_inc(&rdev->nr_pending); 3900 rcu_read_unlock(); 3901 raid_bio->bi_next = (void*)rdev; 3902 align_bi->bi_bdev = rdev->bdev; 3903 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID); 3904 align_bi->bi_sector += rdev->data_offset; 3905 3906 if (!bio_fits_rdev(align_bi)) { 3907 /* too big in some way */ 3908 bio_put(align_bi); 3909 rdev_dec_pending(rdev, mddev); 3910 return 0; 3911 } 3912 3913 spin_lock_irq(&conf->device_lock); 3914 wait_event_lock_irq(conf->wait_for_stripe, 3915 conf->quiesce == 0, 3916 conf->device_lock, /* nothing */); 3917 atomic_inc(&conf->active_aligned_reads); 3918 spin_unlock_irq(&conf->device_lock); 3919 3920 generic_make_request(align_bi); 3921 return 1; 3922 } else { 3923 rcu_read_unlock(); 3924 bio_put(align_bi); 3925 return 0; 3926 } 3927 } 3928 3929 /* __get_priority_stripe - get the next stripe to process 3930 * 3931 * Full stripe writes are allowed to pass preread active stripes up until 3932 * the bypass_threshold is exceeded. In general the bypass_count 3933 * increments when the handle_list is handled before the hold_list; however, it 3934 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 3935 * stripe with in flight i/o. The bypass_count will be reset when the 3936 * head of the hold_list has changed, i.e. the head was promoted to the 3937 * handle_list. 3938 */ 3939 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf) 3940 { 3941 struct stripe_head *sh; 3942 3943 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 3944 __func__, 3945 list_empty(&conf->handle_list) ? "empty" : "busy", 3946 list_empty(&conf->hold_list) ? "empty" : "busy", 3947 atomic_read(&conf->pending_full_writes), conf->bypass_count); 3948 3949 if (!list_empty(&conf->handle_list)) { 3950 sh = list_entry(conf->handle_list.next, typeof(*sh), lru); 3951 3952 if (list_empty(&conf->hold_list)) 3953 conf->bypass_count = 0; 3954 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 3955 if (conf->hold_list.next == conf->last_hold) 3956 conf->bypass_count++; 3957 else { 3958 conf->last_hold = conf->hold_list.next; 3959 conf->bypass_count -= conf->bypass_threshold; 3960 if (conf->bypass_count < 0) 3961 conf->bypass_count = 0; 3962 } 3963 } 3964 } else if (!list_empty(&conf->hold_list) && 3965 ((conf->bypass_threshold && 3966 conf->bypass_count > conf->bypass_threshold) || 3967 atomic_read(&conf->pending_full_writes) == 0)) { 3968 sh = list_entry(conf->hold_list.next, 3969 typeof(*sh), lru); 3970 conf->bypass_count -= conf->bypass_threshold; 3971 if (conf->bypass_count < 0) 3972 conf->bypass_count = 0; 3973 } else 3974 return NULL; 3975 3976 list_del_init(&sh->lru); 3977 atomic_inc(&sh->count); 3978 BUG_ON(atomic_read(&sh->count) != 1); 3979 return sh; 3980 } 3981 3982 static int make_request(mddev_t *mddev, struct bio * bi) 3983 { 3984 raid5_conf_t *conf = mddev->private; 3985 int dd_idx; 3986 sector_t new_sector; 3987 sector_t logical_sector, last_sector; 3988 struct stripe_head *sh; 3989 const int rw = bio_data_dir(bi); 3990 int remaining; 3991 3992 if (unlikely(bi->bi_rw & REQ_FLUSH)) { 3993 md_flush_request(mddev, bi); 3994 return 0; 3995 } 3996 3997 md_write_start(mddev, bi); 3998 3999 if (rw == READ && 4000 mddev->reshape_position == MaxSector && 4001 chunk_aligned_read(mddev,bi)) 4002 return 0; 4003 4004 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4005 last_sector = bi->bi_sector + (bi->bi_size>>9); 4006 bi->bi_next = NULL; 4007 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4008 4009 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 4010 DEFINE_WAIT(w); 4011 int disks, data_disks; 4012 int previous; 4013 4014 retry: 4015 previous = 0; 4016 disks = conf->raid_disks; 4017 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 4018 if (unlikely(conf->reshape_progress != MaxSector)) { 4019 /* spinlock is needed as reshape_progress may be 4020 * 64bit on a 32bit platform, and so it might be 4021 * possible to see a half-updated value 4022 * Ofcourse reshape_progress could change after 4023 * the lock is dropped, so once we get a reference 4024 * to the stripe that we think it is, we will have 4025 * to check again. 4026 */ 4027 spin_lock_irq(&conf->device_lock); 4028 if (mddev->delta_disks < 0 4029 ? logical_sector < conf->reshape_progress 4030 : logical_sector >= conf->reshape_progress) { 4031 disks = conf->previous_raid_disks; 4032 previous = 1; 4033 } else { 4034 if (mddev->delta_disks < 0 4035 ? logical_sector < conf->reshape_safe 4036 : logical_sector >= conf->reshape_safe) { 4037 spin_unlock_irq(&conf->device_lock); 4038 schedule(); 4039 goto retry; 4040 } 4041 } 4042 spin_unlock_irq(&conf->device_lock); 4043 } 4044 data_disks = disks - conf->max_degraded; 4045 4046 new_sector = raid5_compute_sector(conf, logical_sector, 4047 previous, 4048 &dd_idx, NULL); 4049 pr_debug("raid456: make_request, sector %llu logical %llu\n", 4050 (unsigned long long)new_sector, 4051 (unsigned long long)logical_sector); 4052 4053 sh = get_active_stripe(conf, new_sector, previous, 4054 (bi->bi_rw&RWA_MASK), 0); 4055 if (sh) { 4056 if (unlikely(previous)) { 4057 /* expansion might have moved on while waiting for a 4058 * stripe, so we must do the range check again. 4059 * Expansion could still move past after this 4060 * test, but as we are holding a reference to 4061 * 'sh', we know that if that happens, 4062 * STRIPE_EXPANDING will get set and the expansion 4063 * won't proceed until we finish with the stripe. 4064 */ 4065 int must_retry = 0; 4066 spin_lock_irq(&conf->device_lock); 4067 if (mddev->delta_disks < 0 4068 ? logical_sector >= conf->reshape_progress 4069 : logical_sector < conf->reshape_progress) 4070 /* mismatch, need to try again */ 4071 must_retry = 1; 4072 spin_unlock_irq(&conf->device_lock); 4073 if (must_retry) { 4074 release_stripe(sh); 4075 schedule(); 4076 goto retry; 4077 } 4078 } 4079 4080 if (bio_data_dir(bi) == WRITE && 4081 logical_sector >= mddev->suspend_lo && 4082 logical_sector < mddev->suspend_hi) { 4083 release_stripe(sh); 4084 /* As the suspend_* range is controlled by 4085 * userspace, we want an interruptible 4086 * wait. 4087 */ 4088 flush_signals(current); 4089 prepare_to_wait(&conf->wait_for_overlap, 4090 &w, TASK_INTERRUPTIBLE); 4091 if (logical_sector >= mddev->suspend_lo && 4092 logical_sector < mddev->suspend_hi) 4093 schedule(); 4094 goto retry; 4095 } 4096 4097 if (test_bit(STRIPE_EXPANDING, &sh->state) || 4098 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) { 4099 /* Stripe is busy expanding or 4100 * add failed due to overlap. Flush everything 4101 * and wait a while 4102 */ 4103 md_raid5_unplug_device(conf); 4104 release_stripe(sh); 4105 schedule(); 4106 goto retry; 4107 } 4108 finish_wait(&conf->wait_for_overlap, &w); 4109 set_bit(STRIPE_HANDLE, &sh->state); 4110 clear_bit(STRIPE_DELAYED, &sh->state); 4111 if ((bi->bi_rw & REQ_SYNC) && 4112 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4113 atomic_inc(&conf->preread_active_stripes); 4114 release_stripe(sh); 4115 } else { 4116 /* cannot get stripe for read-ahead, just give-up */ 4117 clear_bit(BIO_UPTODATE, &bi->bi_flags); 4118 finish_wait(&conf->wait_for_overlap, &w); 4119 break; 4120 } 4121 4122 } 4123 spin_lock_irq(&conf->device_lock); 4124 remaining = raid5_dec_bi_phys_segments(bi); 4125 spin_unlock_irq(&conf->device_lock); 4126 if (remaining == 0) { 4127 4128 if ( rw == WRITE ) 4129 md_write_end(mddev); 4130 4131 bio_endio(bi, 0); 4132 } 4133 4134 return 0; 4135 } 4136 4137 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks); 4138 4139 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped) 4140 { 4141 /* reshaping is quite different to recovery/resync so it is 4142 * handled quite separately ... here. 4143 * 4144 * On each call to sync_request, we gather one chunk worth of 4145 * destination stripes and flag them as expanding. 4146 * Then we find all the source stripes and request reads. 4147 * As the reads complete, handle_stripe will copy the data 4148 * into the destination stripe and release that stripe. 4149 */ 4150 raid5_conf_t *conf = mddev->private; 4151 struct stripe_head *sh; 4152 sector_t first_sector, last_sector; 4153 int raid_disks = conf->previous_raid_disks; 4154 int data_disks = raid_disks - conf->max_degraded; 4155 int new_data_disks = conf->raid_disks - conf->max_degraded; 4156 int i; 4157 int dd_idx; 4158 sector_t writepos, readpos, safepos; 4159 sector_t stripe_addr; 4160 int reshape_sectors; 4161 struct list_head stripes; 4162 4163 if (sector_nr == 0) { 4164 /* If restarting in the middle, skip the initial sectors */ 4165 if (mddev->delta_disks < 0 && 4166 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 4167 sector_nr = raid5_size(mddev, 0, 0) 4168 - conf->reshape_progress; 4169 } else if (mddev->delta_disks >= 0 && 4170 conf->reshape_progress > 0) 4171 sector_nr = conf->reshape_progress; 4172 sector_div(sector_nr, new_data_disks); 4173 if (sector_nr) { 4174 mddev->curr_resync_completed = sector_nr; 4175 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4176 *skipped = 1; 4177 return sector_nr; 4178 } 4179 } 4180 4181 /* We need to process a full chunk at a time. 4182 * If old and new chunk sizes differ, we need to process the 4183 * largest of these 4184 */ 4185 if (mddev->new_chunk_sectors > mddev->chunk_sectors) 4186 reshape_sectors = mddev->new_chunk_sectors; 4187 else 4188 reshape_sectors = mddev->chunk_sectors; 4189 4190 /* we update the metadata when there is more than 3Meg 4191 * in the block range (that is rather arbitrary, should 4192 * probably be time based) or when the data about to be 4193 * copied would over-write the source of the data at 4194 * the front of the range. 4195 * i.e. one new_stripe along from reshape_progress new_maps 4196 * to after where reshape_safe old_maps to 4197 */ 4198 writepos = conf->reshape_progress; 4199 sector_div(writepos, new_data_disks); 4200 readpos = conf->reshape_progress; 4201 sector_div(readpos, data_disks); 4202 safepos = conf->reshape_safe; 4203 sector_div(safepos, data_disks); 4204 if (mddev->delta_disks < 0) { 4205 writepos -= min_t(sector_t, reshape_sectors, writepos); 4206 readpos += reshape_sectors; 4207 safepos += reshape_sectors; 4208 } else { 4209 writepos += reshape_sectors; 4210 readpos -= min_t(sector_t, reshape_sectors, readpos); 4211 safepos -= min_t(sector_t, reshape_sectors, safepos); 4212 } 4213 4214 /* 'writepos' is the most advanced device address we might write. 4215 * 'readpos' is the least advanced device address we might read. 4216 * 'safepos' is the least address recorded in the metadata as having 4217 * been reshaped. 4218 * If 'readpos' is behind 'writepos', then there is no way that we can 4219 * ensure safety in the face of a crash - that must be done by userspace 4220 * making a backup of the data. So in that case there is no particular 4221 * rush to update metadata. 4222 * Otherwise if 'safepos' is behind 'writepos', then we really need to 4223 * update the metadata to advance 'safepos' to match 'readpos' so that 4224 * we can be safe in the event of a crash. 4225 * So we insist on updating metadata if safepos is behind writepos and 4226 * readpos is beyond writepos. 4227 * In any case, update the metadata every 10 seconds. 4228 * Maybe that number should be configurable, but I'm not sure it is 4229 * worth it.... maybe it could be a multiple of safemode_delay??? 4230 */ 4231 if ((mddev->delta_disks < 0 4232 ? (safepos > writepos && readpos < writepos) 4233 : (safepos < writepos && readpos > writepos)) || 4234 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4235 /* Cannot proceed until we've updated the superblock... */ 4236 wait_event(conf->wait_for_overlap, 4237 atomic_read(&conf->reshape_stripes)==0); 4238 mddev->reshape_position = conf->reshape_progress; 4239 mddev->curr_resync_completed = sector_nr; 4240 conf->reshape_checkpoint = jiffies; 4241 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4242 md_wakeup_thread(mddev->thread); 4243 wait_event(mddev->sb_wait, mddev->flags == 0 || 4244 kthread_should_stop()); 4245 spin_lock_irq(&conf->device_lock); 4246 conf->reshape_safe = mddev->reshape_position; 4247 spin_unlock_irq(&conf->device_lock); 4248 wake_up(&conf->wait_for_overlap); 4249 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4250 } 4251 4252 if (mddev->delta_disks < 0) { 4253 BUG_ON(conf->reshape_progress == 0); 4254 stripe_addr = writepos; 4255 BUG_ON((mddev->dev_sectors & 4256 ~((sector_t)reshape_sectors - 1)) 4257 - reshape_sectors - stripe_addr 4258 != sector_nr); 4259 } else { 4260 BUG_ON(writepos != sector_nr + reshape_sectors); 4261 stripe_addr = sector_nr; 4262 } 4263 INIT_LIST_HEAD(&stripes); 4264 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 4265 int j; 4266 int skipped_disk = 0; 4267 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 4268 set_bit(STRIPE_EXPANDING, &sh->state); 4269 atomic_inc(&conf->reshape_stripes); 4270 /* If any of this stripe is beyond the end of the old 4271 * array, then we need to zero those blocks 4272 */ 4273 for (j=sh->disks; j--;) { 4274 sector_t s; 4275 if (j == sh->pd_idx) 4276 continue; 4277 if (conf->level == 6 && 4278 j == sh->qd_idx) 4279 continue; 4280 s = compute_blocknr(sh, j, 0); 4281 if (s < raid5_size(mddev, 0, 0)) { 4282 skipped_disk = 1; 4283 continue; 4284 } 4285 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 4286 set_bit(R5_Expanded, &sh->dev[j].flags); 4287 set_bit(R5_UPTODATE, &sh->dev[j].flags); 4288 } 4289 if (!skipped_disk) { 4290 set_bit(STRIPE_EXPAND_READY, &sh->state); 4291 set_bit(STRIPE_HANDLE, &sh->state); 4292 } 4293 list_add(&sh->lru, &stripes); 4294 } 4295 spin_lock_irq(&conf->device_lock); 4296 if (mddev->delta_disks < 0) 4297 conf->reshape_progress -= reshape_sectors * new_data_disks; 4298 else 4299 conf->reshape_progress += reshape_sectors * new_data_disks; 4300 spin_unlock_irq(&conf->device_lock); 4301 /* Ok, those stripe are ready. We can start scheduling 4302 * reads on the source stripes. 4303 * The source stripes are determined by mapping the first and last 4304 * block on the destination stripes. 4305 */ 4306 first_sector = 4307 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 4308 1, &dd_idx, NULL); 4309 last_sector = 4310 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 4311 * new_data_disks - 1), 4312 1, &dd_idx, NULL); 4313 if (last_sector >= mddev->dev_sectors) 4314 last_sector = mddev->dev_sectors - 1; 4315 while (first_sector <= last_sector) { 4316 sh = get_active_stripe(conf, first_sector, 1, 0, 1); 4317 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4318 set_bit(STRIPE_HANDLE, &sh->state); 4319 release_stripe(sh); 4320 first_sector += STRIPE_SECTORS; 4321 } 4322 /* Now that the sources are clearly marked, we can release 4323 * the destination stripes 4324 */ 4325 while (!list_empty(&stripes)) { 4326 sh = list_entry(stripes.next, struct stripe_head, lru); 4327 list_del_init(&sh->lru); 4328 release_stripe(sh); 4329 } 4330 /* If this takes us to the resync_max point where we have to pause, 4331 * then we need to write out the superblock. 4332 */ 4333 sector_nr += reshape_sectors; 4334 if ((sector_nr - mddev->curr_resync_completed) * 2 4335 >= mddev->resync_max - mddev->curr_resync_completed) { 4336 /* Cannot proceed until we've updated the superblock... */ 4337 wait_event(conf->wait_for_overlap, 4338 atomic_read(&conf->reshape_stripes) == 0); 4339 mddev->reshape_position = conf->reshape_progress; 4340 mddev->curr_resync_completed = sector_nr; 4341 conf->reshape_checkpoint = jiffies; 4342 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4343 md_wakeup_thread(mddev->thread); 4344 wait_event(mddev->sb_wait, 4345 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 4346 || kthread_should_stop()); 4347 spin_lock_irq(&conf->device_lock); 4348 conf->reshape_safe = mddev->reshape_position; 4349 spin_unlock_irq(&conf->device_lock); 4350 wake_up(&conf->wait_for_overlap); 4351 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4352 } 4353 return reshape_sectors; 4354 } 4355 4356 /* FIXME go_faster isn't used */ 4357 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 4358 { 4359 raid5_conf_t *conf = mddev->private; 4360 struct stripe_head *sh; 4361 sector_t max_sector = mddev->dev_sectors; 4362 sector_t sync_blocks; 4363 int still_degraded = 0; 4364 int i; 4365 4366 if (sector_nr >= max_sector) { 4367 /* just being told to finish up .. nothing much to do */ 4368 unplug_slaves(mddev); 4369 4370 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 4371 end_reshape(conf); 4372 return 0; 4373 } 4374 4375 if (mddev->curr_resync < max_sector) /* aborted */ 4376 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 4377 &sync_blocks, 1); 4378 else /* completed sync */ 4379 conf->fullsync = 0; 4380 bitmap_close_sync(mddev->bitmap); 4381 4382 return 0; 4383 } 4384 4385 /* Allow raid5_quiesce to complete */ 4386 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 4387 4388 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4389 return reshape_request(mddev, sector_nr, skipped); 4390 4391 /* No need to check resync_max as we never do more than one 4392 * stripe, and as resync_max will always be on a chunk boundary, 4393 * if the check in md_do_sync didn't fire, there is no chance 4394 * of overstepping resync_max here 4395 */ 4396 4397 /* if there is too many failed drives and we are trying 4398 * to resync, then assert that we are finished, because there is 4399 * nothing we can do. 4400 */ 4401 if (mddev->degraded >= conf->max_degraded && 4402 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4403 sector_t rv = mddev->dev_sectors - sector_nr; 4404 *skipped = 1; 4405 return rv; 4406 } 4407 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 4408 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 4409 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) { 4410 /* we can skip this block, and probably more */ 4411 sync_blocks /= STRIPE_SECTORS; 4412 *skipped = 1; 4413 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 4414 } 4415 4416 4417 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 4418 4419 sh = get_active_stripe(conf, sector_nr, 0, 1, 0); 4420 if (sh == NULL) { 4421 sh = get_active_stripe(conf, sector_nr, 0, 0, 0); 4422 /* make sure we don't swamp the stripe cache if someone else 4423 * is trying to get access 4424 */ 4425 schedule_timeout_uninterruptible(1); 4426 } 4427 /* Need to check if array will still be degraded after recovery/resync 4428 * We don't need to check the 'failed' flag as when that gets set, 4429 * recovery aborts. 4430 */ 4431 for (i = 0; i < conf->raid_disks; i++) 4432 if (conf->disks[i].rdev == NULL) 4433 still_degraded = 1; 4434 4435 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 4436 4437 spin_lock(&sh->lock); 4438 set_bit(STRIPE_SYNCING, &sh->state); 4439 clear_bit(STRIPE_INSYNC, &sh->state); 4440 spin_unlock(&sh->lock); 4441 4442 handle_stripe(sh); 4443 release_stripe(sh); 4444 4445 return STRIPE_SECTORS; 4446 } 4447 4448 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio) 4449 { 4450 /* We may not be able to submit a whole bio at once as there 4451 * may not be enough stripe_heads available. 4452 * We cannot pre-allocate enough stripe_heads as we may need 4453 * more than exist in the cache (if we allow ever large chunks). 4454 * So we do one stripe head at a time and record in 4455 * ->bi_hw_segments how many have been done. 4456 * 4457 * We *know* that this entire raid_bio is in one chunk, so 4458 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 4459 */ 4460 struct stripe_head *sh; 4461 int dd_idx; 4462 sector_t sector, logical_sector, last_sector; 4463 int scnt = 0; 4464 int remaining; 4465 int handled = 0; 4466 4467 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4468 sector = raid5_compute_sector(conf, logical_sector, 4469 0, &dd_idx, NULL); 4470 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9); 4471 4472 for (; logical_sector < last_sector; 4473 logical_sector += STRIPE_SECTORS, 4474 sector += STRIPE_SECTORS, 4475 scnt++) { 4476 4477 if (scnt < raid5_bi_hw_segments(raid_bio)) 4478 /* already done this stripe */ 4479 continue; 4480 4481 sh = get_active_stripe(conf, sector, 0, 1, 0); 4482 4483 if (!sh) { 4484 /* failed to get a stripe - must wait */ 4485 raid5_set_bi_hw_segments(raid_bio, scnt); 4486 conf->retry_read_aligned = raid_bio; 4487 return handled; 4488 } 4489 4490 set_bit(R5_ReadError, &sh->dev[dd_idx].flags); 4491 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) { 4492 release_stripe(sh); 4493 raid5_set_bi_hw_segments(raid_bio, scnt); 4494 conf->retry_read_aligned = raid_bio; 4495 return handled; 4496 } 4497 4498 handle_stripe(sh); 4499 release_stripe(sh); 4500 handled++; 4501 } 4502 spin_lock_irq(&conf->device_lock); 4503 remaining = raid5_dec_bi_phys_segments(raid_bio); 4504 spin_unlock_irq(&conf->device_lock); 4505 if (remaining == 0) 4506 bio_endio(raid_bio, 0); 4507 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4508 wake_up(&conf->wait_for_stripe); 4509 return handled; 4510 } 4511 4512 4513 /* 4514 * This is our raid5 kernel thread. 4515 * 4516 * We scan the hash table for stripes which can be handled now. 4517 * During the scan, completed stripes are saved for us by the interrupt 4518 * handler, so that they will not have to wait for our next wakeup. 4519 */ 4520 static void raid5d(mddev_t *mddev) 4521 { 4522 struct stripe_head *sh; 4523 raid5_conf_t *conf = mddev->private; 4524 int handled; 4525 4526 pr_debug("+++ raid5d active\n"); 4527 4528 md_check_recovery(mddev); 4529 4530 handled = 0; 4531 spin_lock_irq(&conf->device_lock); 4532 while (1) { 4533 struct bio *bio; 4534 4535 if (conf->seq_flush != conf->seq_write) { 4536 int seq = conf->seq_flush; 4537 spin_unlock_irq(&conf->device_lock); 4538 bitmap_unplug(mddev->bitmap); 4539 spin_lock_irq(&conf->device_lock); 4540 conf->seq_write = seq; 4541 activate_bit_delay(conf); 4542 } 4543 4544 while ((bio = remove_bio_from_retry(conf))) { 4545 int ok; 4546 spin_unlock_irq(&conf->device_lock); 4547 ok = retry_aligned_read(conf, bio); 4548 spin_lock_irq(&conf->device_lock); 4549 if (!ok) 4550 break; 4551 handled++; 4552 } 4553 4554 sh = __get_priority_stripe(conf); 4555 4556 if (!sh) 4557 break; 4558 spin_unlock_irq(&conf->device_lock); 4559 4560 handled++; 4561 handle_stripe(sh); 4562 release_stripe(sh); 4563 cond_resched(); 4564 4565 spin_lock_irq(&conf->device_lock); 4566 } 4567 pr_debug("%d stripes handled\n", handled); 4568 4569 spin_unlock_irq(&conf->device_lock); 4570 4571 async_tx_issue_pending_all(); 4572 unplug_slaves(mddev); 4573 4574 pr_debug("--- raid5d inactive\n"); 4575 } 4576 4577 static ssize_t 4578 raid5_show_stripe_cache_size(mddev_t *mddev, char *page) 4579 { 4580 raid5_conf_t *conf = mddev->private; 4581 if (conf) 4582 return sprintf(page, "%d\n", conf->max_nr_stripes); 4583 else 4584 return 0; 4585 } 4586 4587 int 4588 raid5_set_cache_size(mddev_t *mddev, int size) 4589 { 4590 raid5_conf_t *conf = mddev->private; 4591 int err; 4592 4593 if (size <= 16 || size > 32768) 4594 return -EINVAL; 4595 while (size < conf->max_nr_stripes) { 4596 if (drop_one_stripe(conf)) 4597 conf->max_nr_stripes--; 4598 else 4599 break; 4600 } 4601 err = md_allow_write(mddev); 4602 if (err) 4603 return err; 4604 while (size > conf->max_nr_stripes) { 4605 if (grow_one_stripe(conf)) 4606 conf->max_nr_stripes++; 4607 else break; 4608 } 4609 return 0; 4610 } 4611 EXPORT_SYMBOL(raid5_set_cache_size); 4612 4613 static ssize_t 4614 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len) 4615 { 4616 raid5_conf_t *conf = mddev->private; 4617 unsigned long new; 4618 int err; 4619 4620 if (len >= PAGE_SIZE) 4621 return -EINVAL; 4622 if (!conf) 4623 return -ENODEV; 4624 4625 if (strict_strtoul(page, 10, &new)) 4626 return -EINVAL; 4627 err = raid5_set_cache_size(mddev, new); 4628 if (err) 4629 return err; 4630 return len; 4631 } 4632 4633 static struct md_sysfs_entry 4634 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 4635 raid5_show_stripe_cache_size, 4636 raid5_store_stripe_cache_size); 4637 4638 static ssize_t 4639 raid5_show_preread_threshold(mddev_t *mddev, char *page) 4640 { 4641 raid5_conf_t *conf = mddev->private; 4642 if (conf) 4643 return sprintf(page, "%d\n", conf->bypass_threshold); 4644 else 4645 return 0; 4646 } 4647 4648 static ssize_t 4649 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len) 4650 { 4651 raid5_conf_t *conf = mddev->private; 4652 unsigned long new; 4653 if (len >= PAGE_SIZE) 4654 return -EINVAL; 4655 if (!conf) 4656 return -ENODEV; 4657 4658 if (strict_strtoul(page, 10, &new)) 4659 return -EINVAL; 4660 if (new > conf->max_nr_stripes) 4661 return -EINVAL; 4662 conf->bypass_threshold = new; 4663 return len; 4664 } 4665 4666 static struct md_sysfs_entry 4667 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 4668 S_IRUGO | S_IWUSR, 4669 raid5_show_preread_threshold, 4670 raid5_store_preread_threshold); 4671 4672 static ssize_t 4673 stripe_cache_active_show(mddev_t *mddev, char *page) 4674 { 4675 raid5_conf_t *conf = mddev->private; 4676 if (conf) 4677 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 4678 else 4679 return 0; 4680 } 4681 4682 static struct md_sysfs_entry 4683 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 4684 4685 static struct attribute *raid5_attrs[] = { 4686 &raid5_stripecache_size.attr, 4687 &raid5_stripecache_active.attr, 4688 &raid5_preread_bypass_threshold.attr, 4689 NULL, 4690 }; 4691 static struct attribute_group raid5_attrs_group = { 4692 .name = NULL, 4693 .attrs = raid5_attrs, 4694 }; 4695 4696 static sector_t 4697 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks) 4698 { 4699 raid5_conf_t *conf = mddev->private; 4700 4701 if (!sectors) 4702 sectors = mddev->dev_sectors; 4703 if (!raid_disks) 4704 /* size is defined by the smallest of previous and new size */ 4705 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 4706 4707 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 4708 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1); 4709 return sectors * (raid_disks - conf->max_degraded); 4710 } 4711 4712 static void raid5_free_percpu(raid5_conf_t *conf) 4713 { 4714 struct raid5_percpu *percpu; 4715 unsigned long cpu; 4716 4717 if (!conf->percpu) 4718 return; 4719 4720 get_online_cpus(); 4721 for_each_possible_cpu(cpu) { 4722 percpu = per_cpu_ptr(conf->percpu, cpu); 4723 safe_put_page(percpu->spare_page); 4724 kfree(percpu->scribble); 4725 } 4726 #ifdef CONFIG_HOTPLUG_CPU 4727 unregister_cpu_notifier(&conf->cpu_notify); 4728 #endif 4729 put_online_cpus(); 4730 4731 free_percpu(conf->percpu); 4732 } 4733 4734 static void free_conf(raid5_conf_t *conf) 4735 { 4736 shrink_stripes(conf); 4737 raid5_free_percpu(conf); 4738 kfree(conf->disks); 4739 kfree(conf->stripe_hashtbl); 4740 kfree(conf); 4741 } 4742 4743 #ifdef CONFIG_HOTPLUG_CPU 4744 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 4745 void *hcpu) 4746 { 4747 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify); 4748 long cpu = (long)hcpu; 4749 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 4750 4751 switch (action) { 4752 case CPU_UP_PREPARE: 4753 case CPU_UP_PREPARE_FROZEN: 4754 if (conf->level == 6 && !percpu->spare_page) 4755 percpu->spare_page = alloc_page(GFP_KERNEL); 4756 if (!percpu->scribble) 4757 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 4758 4759 if (!percpu->scribble || 4760 (conf->level == 6 && !percpu->spare_page)) { 4761 safe_put_page(percpu->spare_page); 4762 kfree(percpu->scribble); 4763 pr_err("%s: failed memory allocation for cpu%ld\n", 4764 __func__, cpu); 4765 return notifier_from_errno(-ENOMEM); 4766 } 4767 break; 4768 case CPU_DEAD: 4769 case CPU_DEAD_FROZEN: 4770 safe_put_page(percpu->spare_page); 4771 kfree(percpu->scribble); 4772 percpu->spare_page = NULL; 4773 percpu->scribble = NULL; 4774 break; 4775 default: 4776 break; 4777 } 4778 return NOTIFY_OK; 4779 } 4780 #endif 4781 4782 static int raid5_alloc_percpu(raid5_conf_t *conf) 4783 { 4784 unsigned long cpu; 4785 struct page *spare_page; 4786 struct raid5_percpu __percpu *allcpus; 4787 void *scribble; 4788 int err; 4789 4790 allcpus = alloc_percpu(struct raid5_percpu); 4791 if (!allcpus) 4792 return -ENOMEM; 4793 conf->percpu = allcpus; 4794 4795 get_online_cpus(); 4796 err = 0; 4797 for_each_present_cpu(cpu) { 4798 if (conf->level == 6) { 4799 spare_page = alloc_page(GFP_KERNEL); 4800 if (!spare_page) { 4801 err = -ENOMEM; 4802 break; 4803 } 4804 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page; 4805 } 4806 scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 4807 if (!scribble) { 4808 err = -ENOMEM; 4809 break; 4810 } 4811 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble; 4812 } 4813 #ifdef CONFIG_HOTPLUG_CPU 4814 conf->cpu_notify.notifier_call = raid456_cpu_notify; 4815 conf->cpu_notify.priority = 0; 4816 if (err == 0) 4817 err = register_cpu_notifier(&conf->cpu_notify); 4818 #endif 4819 put_online_cpus(); 4820 4821 return err; 4822 } 4823 4824 static raid5_conf_t *setup_conf(mddev_t *mddev) 4825 { 4826 raid5_conf_t *conf; 4827 int raid_disk, memory, max_disks; 4828 mdk_rdev_t *rdev; 4829 struct disk_info *disk; 4830 4831 if (mddev->new_level != 5 4832 && mddev->new_level != 4 4833 && mddev->new_level != 6) { 4834 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 4835 mdname(mddev), mddev->new_level); 4836 return ERR_PTR(-EIO); 4837 } 4838 if ((mddev->new_level == 5 4839 && !algorithm_valid_raid5(mddev->new_layout)) || 4840 (mddev->new_level == 6 4841 && !algorithm_valid_raid6(mddev->new_layout))) { 4842 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 4843 mdname(mddev), mddev->new_layout); 4844 return ERR_PTR(-EIO); 4845 } 4846 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 4847 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 4848 mdname(mddev), mddev->raid_disks); 4849 return ERR_PTR(-EINVAL); 4850 } 4851 4852 if (!mddev->new_chunk_sectors || 4853 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 4854 !is_power_of_2(mddev->new_chunk_sectors)) { 4855 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 4856 mdname(mddev), mddev->new_chunk_sectors << 9); 4857 return ERR_PTR(-EINVAL); 4858 } 4859 4860 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL); 4861 if (conf == NULL) 4862 goto abort; 4863 spin_lock_init(&conf->device_lock); 4864 init_waitqueue_head(&conf->wait_for_stripe); 4865 init_waitqueue_head(&conf->wait_for_overlap); 4866 INIT_LIST_HEAD(&conf->handle_list); 4867 INIT_LIST_HEAD(&conf->hold_list); 4868 INIT_LIST_HEAD(&conf->delayed_list); 4869 INIT_LIST_HEAD(&conf->bitmap_list); 4870 INIT_LIST_HEAD(&conf->inactive_list); 4871 atomic_set(&conf->active_stripes, 0); 4872 atomic_set(&conf->preread_active_stripes, 0); 4873 atomic_set(&conf->active_aligned_reads, 0); 4874 conf->bypass_threshold = BYPASS_THRESHOLD; 4875 4876 conf->raid_disks = mddev->raid_disks; 4877 if (mddev->reshape_position == MaxSector) 4878 conf->previous_raid_disks = mddev->raid_disks; 4879 else 4880 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 4881 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 4882 conf->scribble_len = scribble_len(max_disks); 4883 4884 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 4885 GFP_KERNEL); 4886 if (!conf->disks) 4887 goto abort; 4888 4889 conf->mddev = mddev; 4890 4891 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 4892 goto abort; 4893 4894 conf->level = mddev->new_level; 4895 if (raid5_alloc_percpu(conf) != 0) 4896 goto abort; 4897 4898 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 4899 4900 list_for_each_entry(rdev, &mddev->disks, same_set) { 4901 raid_disk = rdev->raid_disk; 4902 if (raid_disk >= max_disks 4903 || raid_disk < 0) 4904 continue; 4905 disk = conf->disks + raid_disk; 4906 4907 disk->rdev = rdev; 4908 4909 if (test_bit(In_sync, &rdev->flags)) { 4910 char b[BDEVNAME_SIZE]; 4911 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 4912 " disk %d\n", 4913 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 4914 } else 4915 /* Cannot rely on bitmap to complete recovery */ 4916 conf->fullsync = 1; 4917 } 4918 4919 conf->chunk_sectors = mddev->new_chunk_sectors; 4920 conf->level = mddev->new_level; 4921 if (conf->level == 6) 4922 conf->max_degraded = 2; 4923 else 4924 conf->max_degraded = 1; 4925 conf->algorithm = mddev->new_layout; 4926 conf->max_nr_stripes = NR_STRIPES; 4927 conf->reshape_progress = mddev->reshape_position; 4928 if (conf->reshape_progress != MaxSector) { 4929 conf->prev_chunk_sectors = mddev->chunk_sectors; 4930 conf->prev_algo = mddev->layout; 4931 } 4932 4933 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 4934 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 4935 if (grow_stripes(conf, conf->max_nr_stripes)) { 4936 printk(KERN_ERR 4937 "md/raid:%s: couldn't allocate %dkB for buffers\n", 4938 mdname(mddev), memory); 4939 goto abort; 4940 } else 4941 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 4942 mdname(mddev), memory); 4943 4944 conf->thread = md_register_thread(raid5d, mddev, NULL); 4945 if (!conf->thread) { 4946 printk(KERN_ERR 4947 "md/raid:%s: couldn't allocate thread.\n", 4948 mdname(mddev)); 4949 goto abort; 4950 } 4951 4952 return conf; 4953 4954 abort: 4955 if (conf) { 4956 free_conf(conf); 4957 return ERR_PTR(-EIO); 4958 } else 4959 return ERR_PTR(-ENOMEM); 4960 } 4961 4962 4963 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 4964 { 4965 switch (algo) { 4966 case ALGORITHM_PARITY_0: 4967 if (raid_disk < max_degraded) 4968 return 1; 4969 break; 4970 case ALGORITHM_PARITY_N: 4971 if (raid_disk >= raid_disks - max_degraded) 4972 return 1; 4973 break; 4974 case ALGORITHM_PARITY_0_6: 4975 if (raid_disk == 0 || 4976 raid_disk == raid_disks - 1) 4977 return 1; 4978 break; 4979 case ALGORITHM_LEFT_ASYMMETRIC_6: 4980 case ALGORITHM_RIGHT_ASYMMETRIC_6: 4981 case ALGORITHM_LEFT_SYMMETRIC_6: 4982 case ALGORITHM_RIGHT_SYMMETRIC_6: 4983 if (raid_disk == raid_disks - 1) 4984 return 1; 4985 } 4986 return 0; 4987 } 4988 4989 static int run(mddev_t *mddev) 4990 { 4991 raid5_conf_t *conf; 4992 int working_disks = 0; 4993 int dirty_parity_disks = 0; 4994 mdk_rdev_t *rdev; 4995 sector_t reshape_offset = 0; 4996 4997 if (mddev->recovery_cp != MaxSector) 4998 printk(KERN_NOTICE "md/raid:%s: not clean" 4999 " -- starting background reconstruction\n", 5000 mdname(mddev)); 5001 if (mddev->reshape_position != MaxSector) { 5002 /* Check that we can continue the reshape. 5003 * Currently only disks can change, it must 5004 * increase, and we must be past the point where 5005 * a stripe over-writes itself 5006 */ 5007 sector_t here_new, here_old; 5008 int old_disks; 5009 int max_degraded = (mddev->level == 6 ? 2 : 1); 5010 5011 if (mddev->new_level != mddev->level) { 5012 printk(KERN_ERR "md/raid:%s: unsupported reshape " 5013 "required - aborting.\n", 5014 mdname(mddev)); 5015 return -EINVAL; 5016 } 5017 old_disks = mddev->raid_disks - mddev->delta_disks; 5018 /* reshape_position must be on a new-stripe boundary, and one 5019 * further up in new geometry must map after here in old 5020 * geometry. 5021 */ 5022 here_new = mddev->reshape_position; 5023 if (sector_div(here_new, mddev->new_chunk_sectors * 5024 (mddev->raid_disks - max_degraded))) { 5025 printk(KERN_ERR "md/raid:%s: reshape_position not " 5026 "on a stripe boundary\n", mdname(mddev)); 5027 return -EINVAL; 5028 } 5029 reshape_offset = here_new * mddev->new_chunk_sectors; 5030 /* here_new is the stripe we will write to */ 5031 here_old = mddev->reshape_position; 5032 sector_div(here_old, mddev->chunk_sectors * 5033 (old_disks-max_degraded)); 5034 /* here_old is the first stripe that we might need to read 5035 * from */ 5036 if (mddev->delta_disks == 0) { 5037 /* We cannot be sure it is safe to start an in-place 5038 * reshape. It is only safe if user-space if monitoring 5039 * and taking constant backups. 5040 * mdadm always starts a situation like this in 5041 * readonly mode so it can take control before 5042 * allowing any writes. So just check for that. 5043 */ 5044 if ((here_new * mddev->new_chunk_sectors != 5045 here_old * mddev->chunk_sectors) || 5046 mddev->ro == 0) { 5047 printk(KERN_ERR "md/raid:%s: in-place reshape must be started" 5048 " in read-only mode - aborting\n", 5049 mdname(mddev)); 5050 return -EINVAL; 5051 } 5052 } else if (mddev->delta_disks < 0 5053 ? (here_new * mddev->new_chunk_sectors <= 5054 here_old * mddev->chunk_sectors) 5055 : (here_new * mddev->new_chunk_sectors >= 5056 here_old * mddev->chunk_sectors)) { 5057 /* Reading from the same stripe as writing to - bad */ 5058 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 5059 "auto-recovery - aborting.\n", 5060 mdname(mddev)); 5061 return -EINVAL; 5062 } 5063 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 5064 mdname(mddev)); 5065 /* OK, we should be able to continue; */ 5066 } else { 5067 BUG_ON(mddev->level != mddev->new_level); 5068 BUG_ON(mddev->layout != mddev->new_layout); 5069 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 5070 BUG_ON(mddev->delta_disks != 0); 5071 } 5072 5073 if (mddev->private == NULL) 5074 conf = setup_conf(mddev); 5075 else 5076 conf = mddev->private; 5077 5078 if (IS_ERR(conf)) 5079 return PTR_ERR(conf); 5080 5081 mddev->thread = conf->thread; 5082 conf->thread = NULL; 5083 mddev->private = conf; 5084 5085 /* 5086 * 0 for a fully functional array, 1 or 2 for a degraded array. 5087 */ 5088 list_for_each_entry(rdev, &mddev->disks, same_set) { 5089 if (rdev->raid_disk < 0) 5090 continue; 5091 if (test_bit(In_sync, &rdev->flags)) { 5092 working_disks++; 5093 continue; 5094 } 5095 /* This disc is not fully in-sync. However if it 5096 * just stored parity (beyond the recovery_offset), 5097 * when we don't need to be concerned about the 5098 * array being dirty. 5099 * When reshape goes 'backwards', we never have 5100 * partially completed devices, so we only need 5101 * to worry about reshape going forwards. 5102 */ 5103 /* Hack because v0.91 doesn't store recovery_offset properly. */ 5104 if (mddev->major_version == 0 && 5105 mddev->minor_version > 90) 5106 rdev->recovery_offset = reshape_offset; 5107 5108 if (rdev->recovery_offset < reshape_offset) { 5109 /* We need to check old and new layout */ 5110 if (!only_parity(rdev->raid_disk, 5111 conf->algorithm, 5112 conf->raid_disks, 5113 conf->max_degraded)) 5114 continue; 5115 } 5116 if (!only_parity(rdev->raid_disk, 5117 conf->prev_algo, 5118 conf->previous_raid_disks, 5119 conf->max_degraded)) 5120 continue; 5121 dirty_parity_disks++; 5122 } 5123 5124 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks) 5125 - working_disks); 5126 5127 if (has_failed(conf)) { 5128 printk(KERN_ERR "md/raid:%s: not enough operational devices" 5129 " (%d/%d failed)\n", 5130 mdname(mddev), mddev->degraded, conf->raid_disks); 5131 goto abort; 5132 } 5133 5134 /* device size must be a multiple of chunk size */ 5135 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 5136 mddev->resync_max_sectors = mddev->dev_sectors; 5137 5138 if (mddev->degraded > dirty_parity_disks && 5139 mddev->recovery_cp != MaxSector) { 5140 if (mddev->ok_start_degraded) 5141 printk(KERN_WARNING 5142 "md/raid:%s: starting dirty degraded array" 5143 " - data corruption possible.\n", 5144 mdname(mddev)); 5145 else { 5146 printk(KERN_ERR 5147 "md/raid:%s: cannot start dirty degraded array.\n", 5148 mdname(mddev)); 5149 goto abort; 5150 } 5151 } 5152 5153 if (mddev->degraded == 0) 5154 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 5155 " devices, algorithm %d\n", mdname(mddev), conf->level, 5156 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 5157 mddev->new_layout); 5158 else 5159 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 5160 " out of %d devices, algorithm %d\n", 5161 mdname(mddev), conf->level, 5162 mddev->raid_disks - mddev->degraded, 5163 mddev->raid_disks, mddev->new_layout); 5164 5165 print_raid5_conf(conf); 5166 5167 if (conf->reshape_progress != MaxSector) { 5168 conf->reshape_safe = conf->reshape_progress; 5169 atomic_set(&conf->reshape_stripes, 0); 5170 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5171 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 5172 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 5173 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 5174 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 5175 "reshape"); 5176 } 5177 5178 5179 /* Ok, everything is just fine now */ 5180 if (mddev->to_remove == &raid5_attrs_group) 5181 mddev->to_remove = NULL; 5182 else if (mddev->kobj.sd && 5183 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 5184 printk(KERN_WARNING 5185 "raid5: failed to create sysfs attributes for %s\n", 5186 mdname(mddev)); 5187 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 5188 5189 plugger_init(&conf->plug, raid5_unplug); 5190 mddev->plug = &conf->plug; 5191 if (mddev->queue) { 5192 int chunk_size; 5193 /* read-ahead size must cover two whole stripes, which 5194 * is 2 * (datadisks) * chunksize where 'n' is the 5195 * number of raid devices 5196 */ 5197 int data_disks = conf->previous_raid_disks - conf->max_degraded; 5198 int stripe = data_disks * 5199 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 5200 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 5201 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 5202 5203 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); 5204 5205 mddev->queue->backing_dev_info.congested_data = mddev; 5206 mddev->queue->backing_dev_info.congested_fn = raid5_congested; 5207 mddev->queue->unplug_fn = raid5_unplug_queue; 5208 5209 chunk_size = mddev->chunk_sectors << 9; 5210 blk_queue_io_min(mddev->queue, chunk_size); 5211 blk_queue_io_opt(mddev->queue, chunk_size * 5212 (conf->raid_disks - conf->max_degraded)); 5213 5214 list_for_each_entry(rdev, &mddev->disks, same_set) 5215 disk_stack_limits(mddev->gendisk, rdev->bdev, 5216 rdev->data_offset << 9); 5217 } 5218 5219 return 0; 5220 abort: 5221 md_unregister_thread(mddev->thread); 5222 mddev->thread = NULL; 5223 if (conf) { 5224 print_raid5_conf(conf); 5225 free_conf(conf); 5226 } 5227 mddev->private = NULL; 5228 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 5229 return -EIO; 5230 } 5231 5232 static int stop(mddev_t *mddev) 5233 { 5234 raid5_conf_t *conf = mddev->private; 5235 5236 md_unregister_thread(mddev->thread); 5237 mddev->thread = NULL; 5238 if (mddev->queue) 5239 mddev->queue->backing_dev_info.congested_fn = NULL; 5240 plugger_flush(&conf->plug); /* the unplug fn references 'conf'*/ 5241 free_conf(conf); 5242 mddev->private = NULL; 5243 mddev->to_remove = &raid5_attrs_group; 5244 return 0; 5245 } 5246 5247 #ifdef DEBUG 5248 static void print_sh(struct seq_file *seq, struct stripe_head *sh) 5249 { 5250 int i; 5251 5252 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n", 5253 (unsigned long long)sh->sector, sh->pd_idx, sh->state); 5254 seq_printf(seq, "sh %llu, count %d.\n", 5255 (unsigned long long)sh->sector, atomic_read(&sh->count)); 5256 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector); 5257 for (i = 0; i < sh->disks; i++) { 5258 seq_printf(seq, "(cache%d: %p %ld) ", 5259 i, sh->dev[i].page, sh->dev[i].flags); 5260 } 5261 seq_printf(seq, "\n"); 5262 } 5263 5264 static void printall(struct seq_file *seq, raid5_conf_t *conf) 5265 { 5266 struct stripe_head *sh; 5267 struct hlist_node *hn; 5268 int i; 5269 5270 spin_lock_irq(&conf->device_lock); 5271 for (i = 0; i < NR_HASH; i++) { 5272 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) { 5273 if (sh->raid_conf != conf) 5274 continue; 5275 print_sh(seq, sh); 5276 } 5277 } 5278 spin_unlock_irq(&conf->device_lock); 5279 } 5280 #endif 5281 5282 static void status(struct seq_file *seq, mddev_t *mddev) 5283 { 5284 raid5_conf_t *conf = mddev->private; 5285 int i; 5286 5287 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 5288 mddev->chunk_sectors / 2, mddev->layout); 5289 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 5290 for (i = 0; i < conf->raid_disks; i++) 5291 seq_printf (seq, "%s", 5292 conf->disks[i].rdev && 5293 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 5294 seq_printf (seq, "]"); 5295 #ifdef DEBUG 5296 seq_printf (seq, "\n"); 5297 printall(seq, conf); 5298 #endif 5299 } 5300 5301 static void print_raid5_conf (raid5_conf_t *conf) 5302 { 5303 int i; 5304 struct disk_info *tmp; 5305 5306 printk(KERN_DEBUG "RAID conf printout:\n"); 5307 if (!conf) { 5308 printk("(conf==NULL)\n"); 5309 return; 5310 } 5311 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 5312 conf->raid_disks, 5313 conf->raid_disks - conf->mddev->degraded); 5314 5315 for (i = 0; i < conf->raid_disks; i++) { 5316 char b[BDEVNAME_SIZE]; 5317 tmp = conf->disks + i; 5318 if (tmp->rdev) 5319 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 5320 i, !test_bit(Faulty, &tmp->rdev->flags), 5321 bdevname(tmp->rdev->bdev, b)); 5322 } 5323 } 5324 5325 static int raid5_spare_active(mddev_t *mddev) 5326 { 5327 int i; 5328 raid5_conf_t *conf = mddev->private; 5329 struct disk_info *tmp; 5330 int count = 0; 5331 unsigned long flags; 5332 5333 for (i = 0; i < conf->raid_disks; i++) { 5334 tmp = conf->disks + i; 5335 if (tmp->rdev 5336 && tmp->rdev->recovery_offset == MaxSector 5337 && !test_bit(Faulty, &tmp->rdev->flags) 5338 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 5339 count++; 5340 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 5341 } 5342 } 5343 spin_lock_irqsave(&conf->device_lock, flags); 5344 mddev->degraded -= count; 5345 spin_unlock_irqrestore(&conf->device_lock, flags); 5346 print_raid5_conf(conf); 5347 return count; 5348 } 5349 5350 static int raid5_remove_disk(mddev_t *mddev, int number) 5351 { 5352 raid5_conf_t *conf = mddev->private; 5353 int err = 0; 5354 mdk_rdev_t *rdev; 5355 struct disk_info *p = conf->disks + number; 5356 5357 print_raid5_conf(conf); 5358 rdev = p->rdev; 5359 if (rdev) { 5360 if (number >= conf->raid_disks && 5361 conf->reshape_progress == MaxSector) 5362 clear_bit(In_sync, &rdev->flags); 5363 5364 if (test_bit(In_sync, &rdev->flags) || 5365 atomic_read(&rdev->nr_pending)) { 5366 err = -EBUSY; 5367 goto abort; 5368 } 5369 /* Only remove non-faulty devices if recovery 5370 * isn't possible. 5371 */ 5372 if (!test_bit(Faulty, &rdev->flags) && 5373 !has_failed(conf) && 5374 number < conf->raid_disks) { 5375 err = -EBUSY; 5376 goto abort; 5377 } 5378 p->rdev = NULL; 5379 synchronize_rcu(); 5380 if (atomic_read(&rdev->nr_pending)) { 5381 /* lost the race, try later */ 5382 err = -EBUSY; 5383 p->rdev = rdev; 5384 } 5385 } 5386 abort: 5387 5388 print_raid5_conf(conf); 5389 return err; 5390 } 5391 5392 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 5393 { 5394 raid5_conf_t *conf = mddev->private; 5395 int err = -EEXIST; 5396 int disk; 5397 struct disk_info *p; 5398 int first = 0; 5399 int last = conf->raid_disks - 1; 5400 5401 if (has_failed(conf)) 5402 /* no point adding a device */ 5403 return -EINVAL; 5404 5405 if (rdev->raid_disk >= 0) 5406 first = last = rdev->raid_disk; 5407 5408 /* 5409 * find the disk ... but prefer rdev->saved_raid_disk 5410 * if possible. 5411 */ 5412 if (rdev->saved_raid_disk >= 0 && 5413 rdev->saved_raid_disk >= first && 5414 conf->disks[rdev->saved_raid_disk].rdev == NULL) 5415 disk = rdev->saved_raid_disk; 5416 else 5417 disk = first; 5418 for ( ; disk <= last ; disk++) 5419 if ((p=conf->disks + disk)->rdev == NULL) { 5420 clear_bit(In_sync, &rdev->flags); 5421 rdev->raid_disk = disk; 5422 err = 0; 5423 if (rdev->saved_raid_disk != disk) 5424 conf->fullsync = 1; 5425 rcu_assign_pointer(p->rdev, rdev); 5426 break; 5427 } 5428 print_raid5_conf(conf); 5429 return err; 5430 } 5431 5432 static int raid5_resize(mddev_t *mddev, sector_t sectors) 5433 { 5434 /* no resync is happening, and there is enough space 5435 * on all devices, so we can resize. 5436 * We need to make sure resync covers any new space. 5437 * If the array is shrinking we should possibly wait until 5438 * any io in the removed space completes, but it hardly seems 5439 * worth it. 5440 */ 5441 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 5442 md_set_array_sectors(mddev, raid5_size(mddev, sectors, 5443 mddev->raid_disks)); 5444 if (mddev->array_sectors > 5445 raid5_size(mddev, sectors, mddev->raid_disks)) 5446 return -EINVAL; 5447 set_capacity(mddev->gendisk, mddev->array_sectors); 5448 revalidate_disk(mddev->gendisk); 5449 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) { 5450 mddev->recovery_cp = mddev->dev_sectors; 5451 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5452 } 5453 mddev->dev_sectors = sectors; 5454 mddev->resync_max_sectors = sectors; 5455 return 0; 5456 } 5457 5458 static int check_stripe_cache(mddev_t *mddev) 5459 { 5460 /* Can only proceed if there are plenty of stripe_heads. 5461 * We need a minimum of one full stripe,, and for sensible progress 5462 * it is best to have about 4 times that. 5463 * If we require 4 times, then the default 256 4K stripe_heads will 5464 * allow for chunk sizes up to 256K, which is probably OK. 5465 * If the chunk size is greater, user-space should request more 5466 * stripe_heads first. 5467 */ 5468 raid5_conf_t *conf = mddev->private; 5469 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 5470 > conf->max_nr_stripes || 5471 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 5472 > conf->max_nr_stripes) { 5473 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 5474 mdname(mddev), 5475 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 5476 / STRIPE_SIZE)*4); 5477 return 0; 5478 } 5479 return 1; 5480 } 5481 5482 static int check_reshape(mddev_t *mddev) 5483 { 5484 raid5_conf_t *conf = mddev->private; 5485 5486 if (mddev->delta_disks == 0 && 5487 mddev->new_layout == mddev->layout && 5488 mddev->new_chunk_sectors == mddev->chunk_sectors) 5489 return 0; /* nothing to do */ 5490 if (mddev->bitmap) 5491 /* Cannot grow a bitmap yet */ 5492 return -EBUSY; 5493 if (has_failed(conf)) 5494 return -EINVAL; 5495 if (mddev->delta_disks < 0) { 5496 /* We might be able to shrink, but the devices must 5497 * be made bigger first. 5498 * For raid6, 4 is the minimum size. 5499 * Otherwise 2 is the minimum 5500 */ 5501 int min = 2; 5502 if (mddev->level == 6) 5503 min = 4; 5504 if (mddev->raid_disks + mddev->delta_disks < min) 5505 return -EINVAL; 5506 } 5507 5508 if (!check_stripe_cache(mddev)) 5509 return -ENOSPC; 5510 5511 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks); 5512 } 5513 5514 static int raid5_start_reshape(mddev_t *mddev) 5515 { 5516 raid5_conf_t *conf = mddev->private; 5517 mdk_rdev_t *rdev; 5518 int spares = 0; 5519 unsigned long flags; 5520 5521 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5522 return -EBUSY; 5523 5524 if (!check_stripe_cache(mddev)) 5525 return -ENOSPC; 5526 5527 list_for_each_entry(rdev, &mddev->disks, same_set) 5528 if (!test_bit(In_sync, &rdev->flags) 5529 && !test_bit(Faulty, &rdev->flags)) 5530 spares++; 5531 5532 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 5533 /* Not enough devices even to make a degraded array 5534 * of that size 5535 */ 5536 return -EINVAL; 5537 5538 /* Refuse to reduce size of the array. Any reductions in 5539 * array size must be through explicit setting of array_size 5540 * attribute. 5541 */ 5542 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 5543 < mddev->array_sectors) { 5544 printk(KERN_ERR "md/raid:%s: array size must be reduced " 5545 "before number of disks\n", mdname(mddev)); 5546 return -EINVAL; 5547 } 5548 5549 atomic_set(&conf->reshape_stripes, 0); 5550 spin_lock_irq(&conf->device_lock); 5551 conf->previous_raid_disks = conf->raid_disks; 5552 conf->raid_disks += mddev->delta_disks; 5553 conf->prev_chunk_sectors = conf->chunk_sectors; 5554 conf->chunk_sectors = mddev->new_chunk_sectors; 5555 conf->prev_algo = conf->algorithm; 5556 conf->algorithm = mddev->new_layout; 5557 if (mddev->delta_disks < 0) 5558 conf->reshape_progress = raid5_size(mddev, 0, 0); 5559 else 5560 conf->reshape_progress = 0; 5561 conf->reshape_safe = conf->reshape_progress; 5562 conf->generation++; 5563 spin_unlock_irq(&conf->device_lock); 5564 5565 /* Add some new drives, as many as will fit. 5566 * We know there are enough to make the newly sized array work. 5567 * Don't add devices if we are reducing the number of 5568 * devices in the array. This is because it is not possible 5569 * to correctly record the "partially reconstructed" state of 5570 * such devices during the reshape and confusion could result. 5571 */ 5572 if (mddev->delta_disks >= 0) { 5573 int added_devices = 0; 5574 list_for_each_entry(rdev, &mddev->disks, same_set) 5575 if (rdev->raid_disk < 0 && 5576 !test_bit(Faulty, &rdev->flags)) { 5577 if (raid5_add_disk(mddev, rdev) == 0) { 5578 char nm[20]; 5579 if (rdev->raid_disk 5580 >= conf->previous_raid_disks) { 5581 set_bit(In_sync, &rdev->flags); 5582 added_devices++; 5583 } else 5584 rdev->recovery_offset = 0; 5585 sprintf(nm, "rd%d", rdev->raid_disk); 5586 if (sysfs_create_link(&mddev->kobj, 5587 &rdev->kobj, nm)) 5588 /* Failure here is OK */; 5589 } 5590 } else if (rdev->raid_disk >= conf->previous_raid_disks 5591 && !test_bit(Faulty, &rdev->flags)) { 5592 /* This is a spare that was manually added */ 5593 set_bit(In_sync, &rdev->flags); 5594 added_devices++; 5595 } 5596 5597 /* When a reshape changes the number of devices, 5598 * ->degraded is measured against the larger of the 5599 * pre and post number of devices. 5600 */ 5601 spin_lock_irqsave(&conf->device_lock, flags); 5602 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks) 5603 - added_devices; 5604 spin_unlock_irqrestore(&conf->device_lock, flags); 5605 } 5606 mddev->raid_disks = conf->raid_disks; 5607 mddev->reshape_position = conf->reshape_progress; 5608 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5609 5610 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5611 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 5612 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 5613 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 5614 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 5615 "reshape"); 5616 if (!mddev->sync_thread) { 5617 mddev->recovery = 0; 5618 spin_lock_irq(&conf->device_lock); 5619 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 5620 conf->reshape_progress = MaxSector; 5621 spin_unlock_irq(&conf->device_lock); 5622 return -EAGAIN; 5623 } 5624 conf->reshape_checkpoint = jiffies; 5625 md_wakeup_thread(mddev->sync_thread); 5626 md_new_event(mddev); 5627 return 0; 5628 } 5629 5630 /* This is called from the reshape thread and should make any 5631 * changes needed in 'conf' 5632 */ 5633 static void end_reshape(raid5_conf_t *conf) 5634 { 5635 5636 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 5637 5638 spin_lock_irq(&conf->device_lock); 5639 conf->previous_raid_disks = conf->raid_disks; 5640 conf->reshape_progress = MaxSector; 5641 spin_unlock_irq(&conf->device_lock); 5642 wake_up(&conf->wait_for_overlap); 5643 5644 /* read-ahead size must cover two whole stripes, which is 5645 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 5646 */ 5647 if (conf->mddev->queue) { 5648 int data_disks = conf->raid_disks - conf->max_degraded; 5649 int stripe = data_disks * ((conf->chunk_sectors << 9) 5650 / PAGE_SIZE); 5651 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 5652 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 5653 } 5654 } 5655 } 5656 5657 /* This is called from the raid5d thread with mddev_lock held. 5658 * It makes config changes to the device. 5659 */ 5660 static void raid5_finish_reshape(mddev_t *mddev) 5661 { 5662 raid5_conf_t *conf = mddev->private; 5663 5664 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 5665 5666 if (mddev->delta_disks > 0) { 5667 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 5668 set_capacity(mddev->gendisk, mddev->array_sectors); 5669 revalidate_disk(mddev->gendisk); 5670 } else { 5671 int d; 5672 mddev->degraded = conf->raid_disks; 5673 for (d = 0; d < conf->raid_disks ; d++) 5674 if (conf->disks[d].rdev && 5675 test_bit(In_sync, 5676 &conf->disks[d].rdev->flags)) 5677 mddev->degraded--; 5678 for (d = conf->raid_disks ; 5679 d < conf->raid_disks - mddev->delta_disks; 5680 d++) { 5681 mdk_rdev_t *rdev = conf->disks[d].rdev; 5682 if (rdev && raid5_remove_disk(mddev, d) == 0) { 5683 char nm[20]; 5684 sprintf(nm, "rd%d", rdev->raid_disk); 5685 sysfs_remove_link(&mddev->kobj, nm); 5686 rdev->raid_disk = -1; 5687 } 5688 } 5689 } 5690 mddev->layout = conf->algorithm; 5691 mddev->chunk_sectors = conf->chunk_sectors; 5692 mddev->reshape_position = MaxSector; 5693 mddev->delta_disks = 0; 5694 } 5695 } 5696 5697 static void raid5_quiesce(mddev_t *mddev, int state) 5698 { 5699 raid5_conf_t *conf = mddev->private; 5700 5701 switch(state) { 5702 case 2: /* resume for a suspend */ 5703 wake_up(&conf->wait_for_overlap); 5704 break; 5705 5706 case 1: /* stop all writes */ 5707 spin_lock_irq(&conf->device_lock); 5708 /* '2' tells resync/reshape to pause so that all 5709 * active stripes can drain 5710 */ 5711 conf->quiesce = 2; 5712 wait_event_lock_irq(conf->wait_for_stripe, 5713 atomic_read(&conf->active_stripes) == 0 && 5714 atomic_read(&conf->active_aligned_reads) == 0, 5715 conf->device_lock, /* nothing */); 5716 conf->quiesce = 1; 5717 spin_unlock_irq(&conf->device_lock); 5718 /* allow reshape to continue */ 5719 wake_up(&conf->wait_for_overlap); 5720 break; 5721 5722 case 0: /* re-enable writes */ 5723 spin_lock_irq(&conf->device_lock); 5724 conf->quiesce = 0; 5725 wake_up(&conf->wait_for_stripe); 5726 wake_up(&conf->wait_for_overlap); 5727 spin_unlock_irq(&conf->device_lock); 5728 break; 5729 } 5730 } 5731 5732 5733 static void *raid45_takeover_raid0(mddev_t *mddev, int level) 5734 { 5735 struct raid0_private_data *raid0_priv = mddev->private; 5736 5737 /* for raid0 takeover only one zone is supported */ 5738 if (raid0_priv->nr_strip_zones > 1) { 5739 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 5740 mdname(mddev)); 5741 return ERR_PTR(-EINVAL); 5742 } 5743 5744 mddev->new_level = level; 5745 mddev->new_layout = ALGORITHM_PARITY_N; 5746 mddev->new_chunk_sectors = mddev->chunk_sectors; 5747 mddev->raid_disks += 1; 5748 mddev->delta_disks = 1; 5749 /* make sure it will be not marked as dirty */ 5750 mddev->recovery_cp = MaxSector; 5751 5752 return setup_conf(mddev); 5753 } 5754 5755 5756 static void *raid5_takeover_raid1(mddev_t *mddev) 5757 { 5758 int chunksect; 5759 5760 if (mddev->raid_disks != 2 || 5761 mddev->degraded > 1) 5762 return ERR_PTR(-EINVAL); 5763 5764 /* Should check if there are write-behind devices? */ 5765 5766 chunksect = 64*2; /* 64K by default */ 5767 5768 /* The array must be an exact multiple of chunksize */ 5769 while (chunksect && (mddev->array_sectors & (chunksect-1))) 5770 chunksect >>= 1; 5771 5772 if ((chunksect<<9) < STRIPE_SIZE) 5773 /* array size does not allow a suitable chunk size */ 5774 return ERR_PTR(-EINVAL); 5775 5776 mddev->new_level = 5; 5777 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 5778 mddev->new_chunk_sectors = chunksect; 5779 5780 return setup_conf(mddev); 5781 } 5782 5783 static void *raid5_takeover_raid6(mddev_t *mddev) 5784 { 5785 int new_layout; 5786 5787 switch (mddev->layout) { 5788 case ALGORITHM_LEFT_ASYMMETRIC_6: 5789 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 5790 break; 5791 case ALGORITHM_RIGHT_ASYMMETRIC_6: 5792 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 5793 break; 5794 case ALGORITHM_LEFT_SYMMETRIC_6: 5795 new_layout = ALGORITHM_LEFT_SYMMETRIC; 5796 break; 5797 case ALGORITHM_RIGHT_SYMMETRIC_6: 5798 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 5799 break; 5800 case ALGORITHM_PARITY_0_6: 5801 new_layout = ALGORITHM_PARITY_0; 5802 break; 5803 case ALGORITHM_PARITY_N: 5804 new_layout = ALGORITHM_PARITY_N; 5805 break; 5806 default: 5807 return ERR_PTR(-EINVAL); 5808 } 5809 mddev->new_level = 5; 5810 mddev->new_layout = new_layout; 5811 mddev->delta_disks = -1; 5812 mddev->raid_disks -= 1; 5813 return setup_conf(mddev); 5814 } 5815 5816 5817 static int raid5_check_reshape(mddev_t *mddev) 5818 { 5819 /* For a 2-drive array, the layout and chunk size can be changed 5820 * immediately as not restriping is needed. 5821 * For larger arrays we record the new value - after validation 5822 * to be used by a reshape pass. 5823 */ 5824 raid5_conf_t *conf = mddev->private; 5825 int new_chunk = mddev->new_chunk_sectors; 5826 5827 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 5828 return -EINVAL; 5829 if (new_chunk > 0) { 5830 if (!is_power_of_2(new_chunk)) 5831 return -EINVAL; 5832 if (new_chunk < (PAGE_SIZE>>9)) 5833 return -EINVAL; 5834 if (mddev->array_sectors & (new_chunk-1)) 5835 /* not factor of array size */ 5836 return -EINVAL; 5837 } 5838 5839 /* They look valid */ 5840 5841 if (mddev->raid_disks == 2) { 5842 /* can make the change immediately */ 5843 if (mddev->new_layout >= 0) { 5844 conf->algorithm = mddev->new_layout; 5845 mddev->layout = mddev->new_layout; 5846 } 5847 if (new_chunk > 0) { 5848 conf->chunk_sectors = new_chunk ; 5849 mddev->chunk_sectors = new_chunk; 5850 } 5851 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5852 md_wakeup_thread(mddev->thread); 5853 } 5854 return check_reshape(mddev); 5855 } 5856 5857 static int raid6_check_reshape(mddev_t *mddev) 5858 { 5859 int new_chunk = mddev->new_chunk_sectors; 5860 5861 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 5862 return -EINVAL; 5863 if (new_chunk > 0) { 5864 if (!is_power_of_2(new_chunk)) 5865 return -EINVAL; 5866 if (new_chunk < (PAGE_SIZE >> 9)) 5867 return -EINVAL; 5868 if (mddev->array_sectors & (new_chunk-1)) 5869 /* not factor of array size */ 5870 return -EINVAL; 5871 } 5872 5873 /* They look valid */ 5874 return check_reshape(mddev); 5875 } 5876 5877 static void *raid5_takeover(mddev_t *mddev) 5878 { 5879 /* raid5 can take over: 5880 * raid0 - if there is only one strip zone - make it a raid4 layout 5881 * raid1 - if there are two drives. We need to know the chunk size 5882 * raid4 - trivial - just use a raid4 layout. 5883 * raid6 - Providing it is a *_6 layout 5884 */ 5885 if (mddev->level == 0) 5886 return raid45_takeover_raid0(mddev, 5); 5887 if (mddev->level == 1) 5888 return raid5_takeover_raid1(mddev); 5889 if (mddev->level == 4) { 5890 mddev->new_layout = ALGORITHM_PARITY_N; 5891 mddev->new_level = 5; 5892 return setup_conf(mddev); 5893 } 5894 if (mddev->level == 6) 5895 return raid5_takeover_raid6(mddev); 5896 5897 return ERR_PTR(-EINVAL); 5898 } 5899 5900 static void *raid4_takeover(mddev_t *mddev) 5901 { 5902 /* raid4 can take over: 5903 * raid0 - if there is only one strip zone 5904 * raid5 - if layout is right 5905 */ 5906 if (mddev->level == 0) 5907 return raid45_takeover_raid0(mddev, 4); 5908 if (mddev->level == 5 && 5909 mddev->layout == ALGORITHM_PARITY_N) { 5910 mddev->new_layout = 0; 5911 mddev->new_level = 4; 5912 return setup_conf(mddev); 5913 } 5914 return ERR_PTR(-EINVAL); 5915 } 5916 5917 static struct mdk_personality raid5_personality; 5918 5919 static void *raid6_takeover(mddev_t *mddev) 5920 { 5921 /* Currently can only take over a raid5. We map the 5922 * personality to an equivalent raid6 personality 5923 * with the Q block at the end. 5924 */ 5925 int new_layout; 5926 5927 if (mddev->pers != &raid5_personality) 5928 return ERR_PTR(-EINVAL); 5929 if (mddev->degraded > 1) 5930 return ERR_PTR(-EINVAL); 5931 if (mddev->raid_disks > 253) 5932 return ERR_PTR(-EINVAL); 5933 if (mddev->raid_disks < 3) 5934 return ERR_PTR(-EINVAL); 5935 5936 switch (mddev->layout) { 5937 case ALGORITHM_LEFT_ASYMMETRIC: 5938 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 5939 break; 5940 case ALGORITHM_RIGHT_ASYMMETRIC: 5941 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 5942 break; 5943 case ALGORITHM_LEFT_SYMMETRIC: 5944 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 5945 break; 5946 case ALGORITHM_RIGHT_SYMMETRIC: 5947 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 5948 break; 5949 case ALGORITHM_PARITY_0: 5950 new_layout = ALGORITHM_PARITY_0_6; 5951 break; 5952 case ALGORITHM_PARITY_N: 5953 new_layout = ALGORITHM_PARITY_N; 5954 break; 5955 default: 5956 return ERR_PTR(-EINVAL); 5957 } 5958 mddev->new_level = 6; 5959 mddev->new_layout = new_layout; 5960 mddev->delta_disks = 1; 5961 mddev->raid_disks += 1; 5962 return setup_conf(mddev); 5963 } 5964 5965 5966 static struct mdk_personality raid6_personality = 5967 { 5968 .name = "raid6", 5969 .level = 6, 5970 .owner = THIS_MODULE, 5971 .make_request = make_request, 5972 .run = run, 5973 .stop = stop, 5974 .status = status, 5975 .error_handler = error, 5976 .hot_add_disk = raid5_add_disk, 5977 .hot_remove_disk= raid5_remove_disk, 5978 .spare_active = raid5_spare_active, 5979 .sync_request = sync_request, 5980 .resize = raid5_resize, 5981 .size = raid5_size, 5982 .check_reshape = raid6_check_reshape, 5983 .start_reshape = raid5_start_reshape, 5984 .finish_reshape = raid5_finish_reshape, 5985 .quiesce = raid5_quiesce, 5986 .takeover = raid6_takeover, 5987 }; 5988 static struct mdk_personality raid5_personality = 5989 { 5990 .name = "raid5", 5991 .level = 5, 5992 .owner = THIS_MODULE, 5993 .make_request = make_request, 5994 .run = run, 5995 .stop = stop, 5996 .status = status, 5997 .error_handler = error, 5998 .hot_add_disk = raid5_add_disk, 5999 .hot_remove_disk= raid5_remove_disk, 6000 .spare_active = raid5_spare_active, 6001 .sync_request = sync_request, 6002 .resize = raid5_resize, 6003 .size = raid5_size, 6004 .check_reshape = raid5_check_reshape, 6005 .start_reshape = raid5_start_reshape, 6006 .finish_reshape = raid5_finish_reshape, 6007 .quiesce = raid5_quiesce, 6008 .takeover = raid5_takeover, 6009 }; 6010 6011 static struct mdk_personality raid4_personality = 6012 { 6013 .name = "raid4", 6014 .level = 4, 6015 .owner = THIS_MODULE, 6016 .make_request = make_request, 6017 .run = run, 6018 .stop = stop, 6019 .status = status, 6020 .error_handler = error, 6021 .hot_add_disk = raid5_add_disk, 6022 .hot_remove_disk= raid5_remove_disk, 6023 .spare_active = raid5_spare_active, 6024 .sync_request = sync_request, 6025 .resize = raid5_resize, 6026 .size = raid5_size, 6027 .check_reshape = raid5_check_reshape, 6028 .start_reshape = raid5_start_reshape, 6029 .finish_reshape = raid5_finish_reshape, 6030 .quiesce = raid5_quiesce, 6031 .takeover = raid4_takeover, 6032 }; 6033 6034 static int __init raid5_init(void) 6035 { 6036 register_md_personality(&raid6_personality); 6037 register_md_personality(&raid5_personality); 6038 register_md_personality(&raid4_personality); 6039 return 0; 6040 } 6041 6042 static void raid5_exit(void) 6043 { 6044 unregister_md_personality(&raid6_personality); 6045 unregister_md_personality(&raid5_personality); 6046 unregister_md_personality(&raid4_personality); 6047 } 6048 6049 module_init(raid5_init); 6050 module_exit(raid5_exit); 6051 MODULE_LICENSE("GPL"); 6052 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 6053 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 6054 MODULE_ALIAS("md-raid5"); 6055 MODULE_ALIAS("md-raid4"); 6056 MODULE_ALIAS("md-level-5"); 6057 MODULE_ALIAS("md-level-4"); 6058 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 6059 MODULE_ALIAS("md-raid6"); 6060 MODULE_ALIAS("md-level-6"); 6061 6062 /* This used to be two separate modules, they were: */ 6063 MODULE_ALIAS("raid5"); 6064 MODULE_ALIAS("raid6"); 6065