xref: /openbmc/linux/drivers/md/raid5.c (revision 565d76cb)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58 
59 /*
60  * Stripe cache
61  */
62 
63 #define NR_STRIPES		256
64 #define STRIPE_SIZE		PAGE_SIZE
65 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
67 #define	IO_THRESHOLD		1
68 #define BYPASS_THRESHOLD	1
69 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK		(NR_HASH - 1)
71 
72 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73 
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75  * order without overlap.  There may be several bio's per stripe+device, and
76  * a bio could span several devices.
77  * When walking this list for a particular stripe+device, we must never proceed
78  * beyond a bio that extends past this device, as the next bio might no longer
79  * be valid.
80  * This macro is used to determine the 'next' bio in the list, given the sector
81  * of the current stripe+device
82  */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85  * The following can be used to debug the driver
86  */
87 #define RAID5_PARANOIA	1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93 
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98 
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100 
101 /*
102  * We maintain a biased count of active stripes in the bottom 16 bits of
103  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104  */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107 	return bio->bi_phys_segments & 0xffff;
108 }
109 
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112 	return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114 
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117 	--bio->bi_phys_segments;
118 	return raid5_bi_phys_segments(bio);
119 }
120 
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123 	unsigned short val = raid5_bi_hw_segments(bio);
124 
125 	--val;
126 	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 	return val;
128 }
129 
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132 	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 }
134 
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138 	if (sh->ddf_layout)
139 		/* ddf always start from first device */
140 		return 0;
141 	/* md starts just after Q block */
142 	if (sh->qd_idx == sh->disks - 1)
143 		return 0;
144 	else
145 		return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149 	disk++;
150 	return (disk < raid_disks) ? disk : 0;
151 }
152 
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154  * We need to map each disk to a 'slot', where the data disks are slot
155  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156  * is raid_disks-1.  This help does that mapping.
157  */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 			     int *count, int syndrome_disks)
160 {
161 	int slot = *count;
162 
163 	if (sh->ddf_layout)
164 		(*count)++;
165 	if (idx == sh->pd_idx)
166 		return syndrome_disks;
167 	if (idx == sh->qd_idx)
168 		return syndrome_disks + 1;
169 	if (!sh->ddf_layout)
170 		(*count)++;
171 	return slot;
172 }
173 
174 static void return_io(struct bio *return_bi)
175 {
176 	struct bio *bi = return_bi;
177 	while (bi) {
178 
179 		return_bi = bi->bi_next;
180 		bi->bi_next = NULL;
181 		bi->bi_size = 0;
182 		bio_endio(bi, 0);
183 		bi = return_bi;
184 	}
185 }
186 
187 static void print_raid5_conf (raid5_conf_t *conf);
188 
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191 	return sh->check_state || sh->reconstruct_state ||
192 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195 
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198 	if (atomic_dec_and_test(&sh->count)) {
199 		BUG_ON(!list_empty(&sh->lru));
200 		BUG_ON(atomic_read(&conf->active_stripes)==0);
201 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
202 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
203 				list_add_tail(&sh->lru, &conf->delayed_list);
204 				plugger_set_plug(&conf->plug);
205 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206 				   sh->bm_seq - conf->seq_write > 0) {
207 				list_add_tail(&sh->lru, &conf->bitmap_list);
208 				plugger_set_plug(&conf->plug);
209 			} else {
210 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
211 				list_add_tail(&sh->lru, &conf->handle_list);
212 			}
213 			md_wakeup_thread(conf->mddev->thread);
214 		} else {
215 			BUG_ON(stripe_operations_active(sh));
216 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
217 				atomic_dec(&conf->preread_active_stripes);
218 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
219 					md_wakeup_thread(conf->mddev->thread);
220 			}
221 			atomic_dec(&conf->active_stripes);
222 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
223 				list_add_tail(&sh->lru, &conf->inactive_list);
224 				wake_up(&conf->wait_for_stripe);
225 				if (conf->retry_read_aligned)
226 					md_wakeup_thread(conf->mddev->thread);
227 			}
228 		}
229 	}
230 }
231 
232 static void release_stripe(struct stripe_head *sh)
233 {
234 	raid5_conf_t *conf = sh->raid_conf;
235 	unsigned long flags;
236 
237 	spin_lock_irqsave(&conf->device_lock, flags);
238 	__release_stripe(conf, sh);
239 	spin_unlock_irqrestore(&conf->device_lock, flags);
240 }
241 
242 static inline void remove_hash(struct stripe_head *sh)
243 {
244 	pr_debug("remove_hash(), stripe %llu\n",
245 		(unsigned long long)sh->sector);
246 
247 	hlist_del_init(&sh->hash);
248 }
249 
250 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
251 {
252 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
253 
254 	pr_debug("insert_hash(), stripe %llu\n",
255 		(unsigned long long)sh->sector);
256 
257 	CHECK_DEVLOCK();
258 	hlist_add_head(&sh->hash, hp);
259 }
260 
261 
262 /* find an idle stripe, make sure it is unhashed, and return it. */
263 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
264 {
265 	struct stripe_head *sh = NULL;
266 	struct list_head *first;
267 
268 	CHECK_DEVLOCK();
269 	if (list_empty(&conf->inactive_list))
270 		goto out;
271 	first = conf->inactive_list.next;
272 	sh = list_entry(first, struct stripe_head, lru);
273 	list_del_init(first);
274 	remove_hash(sh);
275 	atomic_inc(&conf->active_stripes);
276 out:
277 	return sh;
278 }
279 
280 static void shrink_buffers(struct stripe_head *sh)
281 {
282 	struct page *p;
283 	int i;
284 	int num = sh->raid_conf->pool_size;
285 
286 	for (i = 0; i < num ; i++) {
287 		p = sh->dev[i].page;
288 		if (!p)
289 			continue;
290 		sh->dev[i].page = NULL;
291 		put_page(p);
292 	}
293 }
294 
295 static int grow_buffers(struct stripe_head *sh)
296 {
297 	int i;
298 	int num = sh->raid_conf->pool_size;
299 
300 	for (i = 0; i < num; i++) {
301 		struct page *page;
302 
303 		if (!(page = alloc_page(GFP_KERNEL))) {
304 			return 1;
305 		}
306 		sh->dev[i].page = page;
307 	}
308 	return 0;
309 }
310 
311 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
312 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
313 			    struct stripe_head *sh);
314 
315 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
316 {
317 	raid5_conf_t *conf = sh->raid_conf;
318 	int i;
319 
320 	BUG_ON(atomic_read(&sh->count) != 0);
321 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
322 	BUG_ON(stripe_operations_active(sh));
323 
324 	CHECK_DEVLOCK();
325 	pr_debug("init_stripe called, stripe %llu\n",
326 		(unsigned long long)sh->sector);
327 
328 	remove_hash(sh);
329 
330 	sh->generation = conf->generation - previous;
331 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
332 	sh->sector = sector;
333 	stripe_set_idx(sector, conf, previous, sh);
334 	sh->state = 0;
335 
336 
337 	for (i = sh->disks; i--; ) {
338 		struct r5dev *dev = &sh->dev[i];
339 
340 		if (dev->toread || dev->read || dev->towrite || dev->written ||
341 		    test_bit(R5_LOCKED, &dev->flags)) {
342 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
343 			       (unsigned long long)sh->sector, i, dev->toread,
344 			       dev->read, dev->towrite, dev->written,
345 			       test_bit(R5_LOCKED, &dev->flags));
346 			BUG();
347 		}
348 		dev->flags = 0;
349 		raid5_build_block(sh, i, previous);
350 	}
351 	insert_hash(conf, sh);
352 }
353 
354 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
355 					 short generation)
356 {
357 	struct stripe_head *sh;
358 	struct hlist_node *hn;
359 
360 	CHECK_DEVLOCK();
361 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
362 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
363 		if (sh->sector == sector && sh->generation == generation)
364 			return sh;
365 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
366 	return NULL;
367 }
368 
369 /*
370  * Need to check if array has failed when deciding whether to:
371  *  - start an array
372  *  - remove non-faulty devices
373  *  - add a spare
374  *  - allow a reshape
375  * This determination is simple when no reshape is happening.
376  * However if there is a reshape, we need to carefully check
377  * both the before and after sections.
378  * This is because some failed devices may only affect one
379  * of the two sections, and some non-in_sync devices may
380  * be insync in the section most affected by failed devices.
381  */
382 static int has_failed(raid5_conf_t *conf)
383 {
384 	int degraded;
385 	int i;
386 	if (conf->mddev->reshape_position == MaxSector)
387 		return conf->mddev->degraded > conf->max_degraded;
388 
389 	rcu_read_lock();
390 	degraded = 0;
391 	for (i = 0; i < conf->previous_raid_disks; i++) {
392 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
393 		if (!rdev || test_bit(Faulty, &rdev->flags))
394 			degraded++;
395 		else if (test_bit(In_sync, &rdev->flags))
396 			;
397 		else
398 			/* not in-sync or faulty.
399 			 * If the reshape increases the number of devices,
400 			 * this is being recovered by the reshape, so
401 			 * this 'previous' section is not in_sync.
402 			 * If the number of devices is being reduced however,
403 			 * the device can only be part of the array if
404 			 * we are reverting a reshape, so this section will
405 			 * be in-sync.
406 			 */
407 			if (conf->raid_disks >= conf->previous_raid_disks)
408 				degraded++;
409 	}
410 	rcu_read_unlock();
411 	if (degraded > conf->max_degraded)
412 		return 1;
413 	rcu_read_lock();
414 	degraded = 0;
415 	for (i = 0; i < conf->raid_disks; i++) {
416 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
417 		if (!rdev || test_bit(Faulty, &rdev->flags))
418 			degraded++;
419 		else if (test_bit(In_sync, &rdev->flags))
420 			;
421 		else
422 			/* not in-sync or faulty.
423 			 * If reshape increases the number of devices, this
424 			 * section has already been recovered, else it
425 			 * almost certainly hasn't.
426 			 */
427 			if (conf->raid_disks <= conf->previous_raid_disks)
428 				degraded++;
429 	}
430 	rcu_read_unlock();
431 	if (degraded > conf->max_degraded)
432 		return 1;
433 	return 0;
434 }
435 
436 static void unplug_slaves(mddev_t *mddev);
437 
438 static struct stripe_head *
439 get_active_stripe(raid5_conf_t *conf, sector_t sector,
440 		  int previous, int noblock, int noquiesce)
441 {
442 	struct stripe_head *sh;
443 
444 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
445 
446 	spin_lock_irq(&conf->device_lock);
447 
448 	do {
449 		wait_event_lock_irq(conf->wait_for_stripe,
450 				    conf->quiesce == 0 || noquiesce,
451 				    conf->device_lock, /* nothing */);
452 		sh = __find_stripe(conf, sector, conf->generation - previous);
453 		if (!sh) {
454 			if (!conf->inactive_blocked)
455 				sh = get_free_stripe(conf);
456 			if (noblock && sh == NULL)
457 				break;
458 			if (!sh) {
459 				conf->inactive_blocked = 1;
460 				wait_event_lock_irq(conf->wait_for_stripe,
461 						    !list_empty(&conf->inactive_list) &&
462 						    (atomic_read(&conf->active_stripes)
463 						     < (conf->max_nr_stripes *3/4)
464 						     || !conf->inactive_blocked),
465 						    conf->device_lock,
466 						    md_raid5_unplug_device(conf)
467 					);
468 				conf->inactive_blocked = 0;
469 			} else
470 				init_stripe(sh, sector, previous);
471 		} else {
472 			if (atomic_read(&sh->count)) {
473 				BUG_ON(!list_empty(&sh->lru)
474 				    && !test_bit(STRIPE_EXPANDING, &sh->state));
475 			} else {
476 				if (!test_bit(STRIPE_HANDLE, &sh->state))
477 					atomic_inc(&conf->active_stripes);
478 				if (list_empty(&sh->lru) &&
479 				    !test_bit(STRIPE_EXPANDING, &sh->state))
480 					BUG();
481 				list_del_init(&sh->lru);
482 			}
483 		}
484 	} while (sh == NULL);
485 
486 	if (sh)
487 		atomic_inc(&sh->count);
488 
489 	spin_unlock_irq(&conf->device_lock);
490 	return sh;
491 }
492 
493 static void
494 raid5_end_read_request(struct bio *bi, int error);
495 static void
496 raid5_end_write_request(struct bio *bi, int error);
497 
498 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
499 {
500 	raid5_conf_t *conf = sh->raid_conf;
501 	int i, disks = sh->disks;
502 
503 	might_sleep();
504 
505 	for (i = disks; i--; ) {
506 		int rw;
507 		struct bio *bi;
508 		mdk_rdev_t *rdev;
509 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
510 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
511 				rw = WRITE_FUA;
512 			else
513 				rw = WRITE;
514 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
515 			rw = READ;
516 		else
517 			continue;
518 
519 		bi = &sh->dev[i].req;
520 
521 		bi->bi_rw = rw;
522 		if (rw == WRITE)
523 			bi->bi_end_io = raid5_end_write_request;
524 		else
525 			bi->bi_end_io = raid5_end_read_request;
526 
527 		rcu_read_lock();
528 		rdev = rcu_dereference(conf->disks[i].rdev);
529 		if (rdev && test_bit(Faulty, &rdev->flags))
530 			rdev = NULL;
531 		if (rdev)
532 			atomic_inc(&rdev->nr_pending);
533 		rcu_read_unlock();
534 
535 		if (rdev) {
536 			if (s->syncing || s->expanding || s->expanded)
537 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
538 
539 			set_bit(STRIPE_IO_STARTED, &sh->state);
540 
541 			bi->bi_bdev = rdev->bdev;
542 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
543 				__func__, (unsigned long long)sh->sector,
544 				bi->bi_rw, i);
545 			atomic_inc(&sh->count);
546 			bi->bi_sector = sh->sector + rdev->data_offset;
547 			bi->bi_flags = 1 << BIO_UPTODATE;
548 			bi->bi_vcnt = 1;
549 			bi->bi_max_vecs = 1;
550 			bi->bi_idx = 0;
551 			bi->bi_io_vec = &sh->dev[i].vec;
552 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
553 			bi->bi_io_vec[0].bv_offset = 0;
554 			bi->bi_size = STRIPE_SIZE;
555 			bi->bi_next = NULL;
556 			if (rw == WRITE &&
557 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
558 				atomic_add(STRIPE_SECTORS,
559 					&rdev->corrected_errors);
560 			generic_make_request(bi);
561 		} else {
562 			if (rw == WRITE)
563 				set_bit(STRIPE_DEGRADED, &sh->state);
564 			pr_debug("skip op %ld on disc %d for sector %llu\n",
565 				bi->bi_rw, i, (unsigned long long)sh->sector);
566 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
567 			set_bit(STRIPE_HANDLE, &sh->state);
568 		}
569 	}
570 }
571 
572 static struct dma_async_tx_descriptor *
573 async_copy_data(int frombio, struct bio *bio, struct page *page,
574 	sector_t sector, struct dma_async_tx_descriptor *tx)
575 {
576 	struct bio_vec *bvl;
577 	struct page *bio_page;
578 	int i;
579 	int page_offset;
580 	struct async_submit_ctl submit;
581 	enum async_tx_flags flags = 0;
582 
583 	if (bio->bi_sector >= sector)
584 		page_offset = (signed)(bio->bi_sector - sector) * 512;
585 	else
586 		page_offset = (signed)(sector - bio->bi_sector) * -512;
587 
588 	if (frombio)
589 		flags |= ASYNC_TX_FENCE;
590 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
591 
592 	bio_for_each_segment(bvl, bio, i) {
593 		int len = bio_iovec_idx(bio, i)->bv_len;
594 		int clen;
595 		int b_offset = 0;
596 
597 		if (page_offset < 0) {
598 			b_offset = -page_offset;
599 			page_offset += b_offset;
600 			len -= b_offset;
601 		}
602 
603 		if (len > 0 && page_offset + len > STRIPE_SIZE)
604 			clen = STRIPE_SIZE - page_offset;
605 		else
606 			clen = len;
607 
608 		if (clen > 0) {
609 			b_offset += bio_iovec_idx(bio, i)->bv_offset;
610 			bio_page = bio_iovec_idx(bio, i)->bv_page;
611 			if (frombio)
612 				tx = async_memcpy(page, bio_page, page_offset,
613 						  b_offset, clen, &submit);
614 			else
615 				tx = async_memcpy(bio_page, page, b_offset,
616 						  page_offset, clen, &submit);
617 		}
618 		/* chain the operations */
619 		submit.depend_tx = tx;
620 
621 		if (clen < len) /* hit end of page */
622 			break;
623 		page_offset +=  len;
624 	}
625 
626 	return tx;
627 }
628 
629 static void ops_complete_biofill(void *stripe_head_ref)
630 {
631 	struct stripe_head *sh = stripe_head_ref;
632 	struct bio *return_bi = NULL;
633 	raid5_conf_t *conf = sh->raid_conf;
634 	int i;
635 
636 	pr_debug("%s: stripe %llu\n", __func__,
637 		(unsigned long long)sh->sector);
638 
639 	/* clear completed biofills */
640 	spin_lock_irq(&conf->device_lock);
641 	for (i = sh->disks; i--; ) {
642 		struct r5dev *dev = &sh->dev[i];
643 
644 		/* acknowledge completion of a biofill operation */
645 		/* and check if we need to reply to a read request,
646 		 * new R5_Wantfill requests are held off until
647 		 * !STRIPE_BIOFILL_RUN
648 		 */
649 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
650 			struct bio *rbi, *rbi2;
651 
652 			BUG_ON(!dev->read);
653 			rbi = dev->read;
654 			dev->read = NULL;
655 			while (rbi && rbi->bi_sector <
656 				dev->sector + STRIPE_SECTORS) {
657 				rbi2 = r5_next_bio(rbi, dev->sector);
658 				if (!raid5_dec_bi_phys_segments(rbi)) {
659 					rbi->bi_next = return_bi;
660 					return_bi = rbi;
661 				}
662 				rbi = rbi2;
663 			}
664 		}
665 	}
666 	spin_unlock_irq(&conf->device_lock);
667 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
668 
669 	return_io(return_bi);
670 
671 	set_bit(STRIPE_HANDLE, &sh->state);
672 	release_stripe(sh);
673 }
674 
675 static void ops_run_biofill(struct stripe_head *sh)
676 {
677 	struct dma_async_tx_descriptor *tx = NULL;
678 	raid5_conf_t *conf = sh->raid_conf;
679 	struct async_submit_ctl submit;
680 	int i;
681 
682 	pr_debug("%s: stripe %llu\n", __func__,
683 		(unsigned long long)sh->sector);
684 
685 	for (i = sh->disks; i--; ) {
686 		struct r5dev *dev = &sh->dev[i];
687 		if (test_bit(R5_Wantfill, &dev->flags)) {
688 			struct bio *rbi;
689 			spin_lock_irq(&conf->device_lock);
690 			dev->read = rbi = dev->toread;
691 			dev->toread = NULL;
692 			spin_unlock_irq(&conf->device_lock);
693 			while (rbi && rbi->bi_sector <
694 				dev->sector + STRIPE_SECTORS) {
695 				tx = async_copy_data(0, rbi, dev->page,
696 					dev->sector, tx);
697 				rbi = r5_next_bio(rbi, dev->sector);
698 			}
699 		}
700 	}
701 
702 	atomic_inc(&sh->count);
703 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
704 	async_trigger_callback(&submit);
705 }
706 
707 static void mark_target_uptodate(struct stripe_head *sh, int target)
708 {
709 	struct r5dev *tgt;
710 
711 	if (target < 0)
712 		return;
713 
714 	tgt = &sh->dev[target];
715 	set_bit(R5_UPTODATE, &tgt->flags);
716 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
717 	clear_bit(R5_Wantcompute, &tgt->flags);
718 }
719 
720 static void ops_complete_compute(void *stripe_head_ref)
721 {
722 	struct stripe_head *sh = stripe_head_ref;
723 
724 	pr_debug("%s: stripe %llu\n", __func__,
725 		(unsigned long long)sh->sector);
726 
727 	/* mark the computed target(s) as uptodate */
728 	mark_target_uptodate(sh, sh->ops.target);
729 	mark_target_uptodate(sh, sh->ops.target2);
730 
731 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
732 	if (sh->check_state == check_state_compute_run)
733 		sh->check_state = check_state_compute_result;
734 	set_bit(STRIPE_HANDLE, &sh->state);
735 	release_stripe(sh);
736 }
737 
738 /* return a pointer to the address conversion region of the scribble buffer */
739 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
740 				 struct raid5_percpu *percpu)
741 {
742 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
743 }
744 
745 static struct dma_async_tx_descriptor *
746 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
747 {
748 	int disks = sh->disks;
749 	struct page **xor_srcs = percpu->scribble;
750 	int target = sh->ops.target;
751 	struct r5dev *tgt = &sh->dev[target];
752 	struct page *xor_dest = tgt->page;
753 	int count = 0;
754 	struct dma_async_tx_descriptor *tx;
755 	struct async_submit_ctl submit;
756 	int i;
757 
758 	pr_debug("%s: stripe %llu block: %d\n",
759 		__func__, (unsigned long long)sh->sector, target);
760 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
761 
762 	for (i = disks; i--; )
763 		if (i != target)
764 			xor_srcs[count++] = sh->dev[i].page;
765 
766 	atomic_inc(&sh->count);
767 
768 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
769 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
770 	if (unlikely(count == 1))
771 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
772 	else
773 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
774 
775 	return tx;
776 }
777 
778 /* set_syndrome_sources - populate source buffers for gen_syndrome
779  * @srcs - (struct page *) array of size sh->disks
780  * @sh - stripe_head to parse
781  *
782  * Populates srcs in proper layout order for the stripe and returns the
783  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
784  * destination buffer is recorded in srcs[count] and the Q destination
785  * is recorded in srcs[count+1]].
786  */
787 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
788 {
789 	int disks = sh->disks;
790 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
791 	int d0_idx = raid6_d0(sh);
792 	int count;
793 	int i;
794 
795 	for (i = 0; i < disks; i++)
796 		srcs[i] = NULL;
797 
798 	count = 0;
799 	i = d0_idx;
800 	do {
801 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
802 
803 		srcs[slot] = sh->dev[i].page;
804 		i = raid6_next_disk(i, disks);
805 	} while (i != d0_idx);
806 
807 	return syndrome_disks;
808 }
809 
810 static struct dma_async_tx_descriptor *
811 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
812 {
813 	int disks = sh->disks;
814 	struct page **blocks = percpu->scribble;
815 	int target;
816 	int qd_idx = sh->qd_idx;
817 	struct dma_async_tx_descriptor *tx;
818 	struct async_submit_ctl submit;
819 	struct r5dev *tgt;
820 	struct page *dest;
821 	int i;
822 	int count;
823 
824 	if (sh->ops.target < 0)
825 		target = sh->ops.target2;
826 	else if (sh->ops.target2 < 0)
827 		target = sh->ops.target;
828 	else
829 		/* we should only have one valid target */
830 		BUG();
831 	BUG_ON(target < 0);
832 	pr_debug("%s: stripe %llu block: %d\n",
833 		__func__, (unsigned long long)sh->sector, target);
834 
835 	tgt = &sh->dev[target];
836 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
837 	dest = tgt->page;
838 
839 	atomic_inc(&sh->count);
840 
841 	if (target == qd_idx) {
842 		count = set_syndrome_sources(blocks, sh);
843 		blocks[count] = NULL; /* regenerating p is not necessary */
844 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
845 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
846 				  ops_complete_compute, sh,
847 				  to_addr_conv(sh, percpu));
848 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
849 	} else {
850 		/* Compute any data- or p-drive using XOR */
851 		count = 0;
852 		for (i = disks; i-- ; ) {
853 			if (i == target || i == qd_idx)
854 				continue;
855 			blocks[count++] = sh->dev[i].page;
856 		}
857 
858 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
859 				  NULL, ops_complete_compute, sh,
860 				  to_addr_conv(sh, percpu));
861 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
862 	}
863 
864 	return tx;
865 }
866 
867 static struct dma_async_tx_descriptor *
868 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
869 {
870 	int i, count, disks = sh->disks;
871 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
872 	int d0_idx = raid6_d0(sh);
873 	int faila = -1, failb = -1;
874 	int target = sh->ops.target;
875 	int target2 = sh->ops.target2;
876 	struct r5dev *tgt = &sh->dev[target];
877 	struct r5dev *tgt2 = &sh->dev[target2];
878 	struct dma_async_tx_descriptor *tx;
879 	struct page **blocks = percpu->scribble;
880 	struct async_submit_ctl submit;
881 
882 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
883 		 __func__, (unsigned long long)sh->sector, target, target2);
884 	BUG_ON(target < 0 || target2 < 0);
885 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
886 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
887 
888 	/* we need to open-code set_syndrome_sources to handle the
889 	 * slot number conversion for 'faila' and 'failb'
890 	 */
891 	for (i = 0; i < disks ; i++)
892 		blocks[i] = NULL;
893 	count = 0;
894 	i = d0_idx;
895 	do {
896 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
897 
898 		blocks[slot] = sh->dev[i].page;
899 
900 		if (i == target)
901 			faila = slot;
902 		if (i == target2)
903 			failb = slot;
904 		i = raid6_next_disk(i, disks);
905 	} while (i != d0_idx);
906 
907 	BUG_ON(faila == failb);
908 	if (failb < faila)
909 		swap(faila, failb);
910 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
911 		 __func__, (unsigned long long)sh->sector, faila, failb);
912 
913 	atomic_inc(&sh->count);
914 
915 	if (failb == syndrome_disks+1) {
916 		/* Q disk is one of the missing disks */
917 		if (faila == syndrome_disks) {
918 			/* Missing P+Q, just recompute */
919 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
920 					  ops_complete_compute, sh,
921 					  to_addr_conv(sh, percpu));
922 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
923 						  STRIPE_SIZE, &submit);
924 		} else {
925 			struct page *dest;
926 			int data_target;
927 			int qd_idx = sh->qd_idx;
928 
929 			/* Missing D+Q: recompute D from P, then recompute Q */
930 			if (target == qd_idx)
931 				data_target = target2;
932 			else
933 				data_target = target;
934 
935 			count = 0;
936 			for (i = disks; i-- ; ) {
937 				if (i == data_target || i == qd_idx)
938 					continue;
939 				blocks[count++] = sh->dev[i].page;
940 			}
941 			dest = sh->dev[data_target].page;
942 			init_async_submit(&submit,
943 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
944 					  NULL, NULL, NULL,
945 					  to_addr_conv(sh, percpu));
946 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
947 				       &submit);
948 
949 			count = set_syndrome_sources(blocks, sh);
950 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
951 					  ops_complete_compute, sh,
952 					  to_addr_conv(sh, percpu));
953 			return async_gen_syndrome(blocks, 0, count+2,
954 						  STRIPE_SIZE, &submit);
955 		}
956 	} else {
957 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
958 				  ops_complete_compute, sh,
959 				  to_addr_conv(sh, percpu));
960 		if (failb == syndrome_disks) {
961 			/* We're missing D+P. */
962 			return async_raid6_datap_recov(syndrome_disks+2,
963 						       STRIPE_SIZE, faila,
964 						       blocks, &submit);
965 		} else {
966 			/* We're missing D+D. */
967 			return async_raid6_2data_recov(syndrome_disks+2,
968 						       STRIPE_SIZE, faila, failb,
969 						       blocks, &submit);
970 		}
971 	}
972 }
973 
974 
975 static void ops_complete_prexor(void *stripe_head_ref)
976 {
977 	struct stripe_head *sh = stripe_head_ref;
978 
979 	pr_debug("%s: stripe %llu\n", __func__,
980 		(unsigned long long)sh->sector);
981 }
982 
983 static struct dma_async_tx_descriptor *
984 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
985 	       struct dma_async_tx_descriptor *tx)
986 {
987 	int disks = sh->disks;
988 	struct page **xor_srcs = percpu->scribble;
989 	int count = 0, pd_idx = sh->pd_idx, i;
990 	struct async_submit_ctl submit;
991 
992 	/* existing parity data subtracted */
993 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
994 
995 	pr_debug("%s: stripe %llu\n", __func__,
996 		(unsigned long long)sh->sector);
997 
998 	for (i = disks; i--; ) {
999 		struct r5dev *dev = &sh->dev[i];
1000 		/* Only process blocks that are known to be uptodate */
1001 		if (test_bit(R5_Wantdrain, &dev->flags))
1002 			xor_srcs[count++] = dev->page;
1003 	}
1004 
1005 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1006 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1007 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1008 
1009 	return tx;
1010 }
1011 
1012 static struct dma_async_tx_descriptor *
1013 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1014 {
1015 	int disks = sh->disks;
1016 	int i;
1017 
1018 	pr_debug("%s: stripe %llu\n", __func__,
1019 		(unsigned long long)sh->sector);
1020 
1021 	for (i = disks; i--; ) {
1022 		struct r5dev *dev = &sh->dev[i];
1023 		struct bio *chosen;
1024 
1025 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1026 			struct bio *wbi;
1027 
1028 			spin_lock(&sh->lock);
1029 			chosen = dev->towrite;
1030 			dev->towrite = NULL;
1031 			BUG_ON(dev->written);
1032 			wbi = dev->written = chosen;
1033 			spin_unlock(&sh->lock);
1034 
1035 			while (wbi && wbi->bi_sector <
1036 				dev->sector + STRIPE_SECTORS) {
1037 				if (wbi->bi_rw & REQ_FUA)
1038 					set_bit(R5_WantFUA, &dev->flags);
1039 				tx = async_copy_data(1, wbi, dev->page,
1040 					dev->sector, tx);
1041 				wbi = r5_next_bio(wbi, dev->sector);
1042 			}
1043 		}
1044 	}
1045 
1046 	return tx;
1047 }
1048 
1049 static void ops_complete_reconstruct(void *stripe_head_ref)
1050 {
1051 	struct stripe_head *sh = stripe_head_ref;
1052 	int disks = sh->disks;
1053 	int pd_idx = sh->pd_idx;
1054 	int qd_idx = sh->qd_idx;
1055 	int i;
1056 	bool fua = false;
1057 
1058 	pr_debug("%s: stripe %llu\n", __func__,
1059 		(unsigned long long)sh->sector);
1060 
1061 	for (i = disks; i--; )
1062 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1063 
1064 	for (i = disks; i--; ) {
1065 		struct r5dev *dev = &sh->dev[i];
1066 
1067 		if (dev->written || i == pd_idx || i == qd_idx) {
1068 			set_bit(R5_UPTODATE, &dev->flags);
1069 			if (fua)
1070 				set_bit(R5_WantFUA, &dev->flags);
1071 		}
1072 	}
1073 
1074 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1075 		sh->reconstruct_state = reconstruct_state_drain_result;
1076 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1077 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1078 	else {
1079 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1080 		sh->reconstruct_state = reconstruct_state_result;
1081 	}
1082 
1083 	set_bit(STRIPE_HANDLE, &sh->state);
1084 	release_stripe(sh);
1085 }
1086 
1087 static void
1088 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1089 		     struct dma_async_tx_descriptor *tx)
1090 {
1091 	int disks = sh->disks;
1092 	struct page **xor_srcs = percpu->scribble;
1093 	struct async_submit_ctl submit;
1094 	int count = 0, pd_idx = sh->pd_idx, i;
1095 	struct page *xor_dest;
1096 	int prexor = 0;
1097 	unsigned long flags;
1098 
1099 	pr_debug("%s: stripe %llu\n", __func__,
1100 		(unsigned long long)sh->sector);
1101 
1102 	/* check if prexor is active which means only process blocks
1103 	 * that are part of a read-modify-write (written)
1104 	 */
1105 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1106 		prexor = 1;
1107 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1108 		for (i = disks; i--; ) {
1109 			struct r5dev *dev = &sh->dev[i];
1110 			if (dev->written)
1111 				xor_srcs[count++] = dev->page;
1112 		}
1113 	} else {
1114 		xor_dest = sh->dev[pd_idx].page;
1115 		for (i = disks; i--; ) {
1116 			struct r5dev *dev = &sh->dev[i];
1117 			if (i != pd_idx)
1118 				xor_srcs[count++] = dev->page;
1119 		}
1120 	}
1121 
1122 	/* 1/ if we prexor'd then the dest is reused as a source
1123 	 * 2/ if we did not prexor then we are redoing the parity
1124 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1125 	 * for the synchronous xor case
1126 	 */
1127 	flags = ASYNC_TX_ACK |
1128 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1129 
1130 	atomic_inc(&sh->count);
1131 
1132 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1133 			  to_addr_conv(sh, percpu));
1134 	if (unlikely(count == 1))
1135 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1136 	else
1137 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1138 }
1139 
1140 static void
1141 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1142 		     struct dma_async_tx_descriptor *tx)
1143 {
1144 	struct async_submit_ctl submit;
1145 	struct page **blocks = percpu->scribble;
1146 	int count;
1147 
1148 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1149 
1150 	count = set_syndrome_sources(blocks, sh);
1151 
1152 	atomic_inc(&sh->count);
1153 
1154 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1155 			  sh, to_addr_conv(sh, percpu));
1156 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1157 }
1158 
1159 static void ops_complete_check(void *stripe_head_ref)
1160 {
1161 	struct stripe_head *sh = stripe_head_ref;
1162 
1163 	pr_debug("%s: stripe %llu\n", __func__,
1164 		(unsigned long long)sh->sector);
1165 
1166 	sh->check_state = check_state_check_result;
1167 	set_bit(STRIPE_HANDLE, &sh->state);
1168 	release_stripe(sh);
1169 }
1170 
1171 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1172 {
1173 	int disks = sh->disks;
1174 	int pd_idx = sh->pd_idx;
1175 	int qd_idx = sh->qd_idx;
1176 	struct page *xor_dest;
1177 	struct page **xor_srcs = percpu->scribble;
1178 	struct dma_async_tx_descriptor *tx;
1179 	struct async_submit_ctl submit;
1180 	int count;
1181 	int i;
1182 
1183 	pr_debug("%s: stripe %llu\n", __func__,
1184 		(unsigned long long)sh->sector);
1185 
1186 	count = 0;
1187 	xor_dest = sh->dev[pd_idx].page;
1188 	xor_srcs[count++] = xor_dest;
1189 	for (i = disks; i--; ) {
1190 		if (i == pd_idx || i == qd_idx)
1191 			continue;
1192 		xor_srcs[count++] = sh->dev[i].page;
1193 	}
1194 
1195 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1196 			  to_addr_conv(sh, percpu));
1197 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1198 			   &sh->ops.zero_sum_result, &submit);
1199 
1200 	atomic_inc(&sh->count);
1201 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1202 	tx = async_trigger_callback(&submit);
1203 }
1204 
1205 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1206 {
1207 	struct page **srcs = percpu->scribble;
1208 	struct async_submit_ctl submit;
1209 	int count;
1210 
1211 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1212 		(unsigned long long)sh->sector, checkp);
1213 
1214 	count = set_syndrome_sources(srcs, sh);
1215 	if (!checkp)
1216 		srcs[count] = NULL;
1217 
1218 	atomic_inc(&sh->count);
1219 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1220 			  sh, to_addr_conv(sh, percpu));
1221 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1222 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1223 }
1224 
1225 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1226 {
1227 	int overlap_clear = 0, i, disks = sh->disks;
1228 	struct dma_async_tx_descriptor *tx = NULL;
1229 	raid5_conf_t *conf = sh->raid_conf;
1230 	int level = conf->level;
1231 	struct raid5_percpu *percpu;
1232 	unsigned long cpu;
1233 
1234 	cpu = get_cpu();
1235 	percpu = per_cpu_ptr(conf->percpu, cpu);
1236 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1237 		ops_run_biofill(sh);
1238 		overlap_clear++;
1239 	}
1240 
1241 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1242 		if (level < 6)
1243 			tx = ops_run_compute5(sh, percpu);
1244 		else {
1245 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1246 				tx = ops_run_compute6_1(sh, percpu);
1247 			else
1248 				tx = ops_run_compute6_2(sh, percpu);
1249 		}
1250 		/* terminate the chain if reconstruct is not set to be run */
1251 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1252 			async_tx_ack(tx);
1253 	}
1254 
1255 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1256 		tx = ops_run_prexor(sh, percpu, tx);
1257 
1258 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1259 		tx = ops_run_biodrain(sh, tx);
1260 		overlap_clear++;
1261 	}
1262 
1263 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1264 		if (level < 6)
1265 			ops_run_reconstruct5(sh, percpu, tx);
1266 		else
1267 			ops_run_reconstruct6(sh, percpu, tx);
1268 	}
1269 
1270 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1271 		if (sh->check_state == check_state_run)
1272 			ops_run_check_p(sh, percpu);
1273 		else if (sh->check_state == check_state_run_q)
1274 			ops_run_check_pq(sh, percpu, 0);
1275 		else if (sh->check_state == check_state_run_pq)
1276 			ops_run_check_pq(sh, percpu, 1);
1277 		else
1278 			BUG();
1279 	}
1280 
1281 	if (overlap_clear)
1282 		for (i = disks; i--; ) {
1283 			struct r5dev *dev = &sh->dev[i];
1284 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1285 				wake_up(&sh->raid_conf->wait_for_overlap);
1286 		}
1287 	put_cpu();
1288 }
1289 
1290 #ifdef CONFIG_MULTICORE_RAID456
1291 static void async_run_ops(void *param, async_cookie_t cookie)
1292 {
1293 	struct stripe_head *sh = param;
1294 	unsigned long ops_request = sh->ops.request;
1295 
1296 	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1297 	wake_up(&sh->ops.wait_for_ops);
1298 
1299 	__raid_run_ops(sh, ops_request);
1300 	release_stripe(sh);
1301 }
1302 
1303 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1304 {
1305 	/* since handle_stripe can be called outside of raid5d context
1306 	 * we need to ensure sh->ops.request is de-staged before another
1307 	 * request arrives
1308 	 */
1309 	wait_event(sh->ops.wait_for_ops,
1310 		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1311 	sh->ops.request = ops_request;
1312 
1313 	atomic_inc(&sh->count);
1314 	async_schedule(async_run_ops, sh);
1315 }
1316 #else
1317 #define raid_run_ops __raid_run_ops
1318 #endif
1319 
1320 static int grow_one_stripe(raid5_conf_t *conf)
1321 {
1322 	struct stripe_head *sh;
1323 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1324 	if (!sh)
1325 		return 0;
1326 	memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1327 	sh->raid_conf = conf;
1328 	spin_lock_init(&sh->lock);
1329 	#ifdef CONFIG_MULTICORE_RAID456
1330 	init_waitqueue_head(&sh->ops.wait_for_ops);
1331 	#endif
1332 
1333 	if (grow_buffers(sh)) {
1334 		shrink_buffers(sh);
1335 		kmem_cache_free(conf->slab_cache, sh);
1336 		return 0;
1337 	}
1338 	/* we just created an active stripe so... */
1339 	atomic_set(&sh->count, 1);
1340 	atomic_inc(&conf->active_stripes);
1341 	INIT_LIST_HEAD(&sh->lru);
1342 	release_stripe(sh);
1343 	return 1;
1344 }
1345 
1346 static int grow_stripes(raid5_conf_t *conf, int num)
1347 {
1348 	struct kmem_cache *sc;
1349 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1350 
1351 	if (conf->mddev->gendisk)
1352 		sprintf(conf->cache_name[0],
1353 			"raid%d-%s", conf->level, mdname(conf->mddev));
1354 	else
1355 		sprintf(conf->cache_name[0],
1356 			"raid%d-%p", conf->level, conf->mddev);
1357 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1358 
1359 	conf->active_name = 0;
1360 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1361 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1362 			       0, 0, NULL);
1363 	if (!sc)
1364 		return 1;
1365 	conf->slab_cache = sc;
1366 	conf->pool_size = devs;
1367 	while (num--)
1368 		if (!grow_one_stripe(conf))
1369 			return 1;
1370 	return 0;
1371 }
1372 
1373 /**
1374  * scribble_len - return the required size of the scribble region
1375  * @num - total number of disks in the array
1376  *
1377  * The size must be enough to contain:
1378  * 1/ a struct page pointer for each device in the array +2
1379  * 2/ room to convert each entry in (1) to its corresponding dma
1380  *    (dma_map_page()) or page (page_address()) address.
1381  *
1382  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1383  * calculate over all devices (not just the data blocks), using zeros in place
1384  * of the P and Q blocks.
1385  */
1386 static size_t scribble_len(int num)
1387 {
1388 	size_t len;
1389 
1390 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1391 
1392 	return len;
1393 }
1394 
1395 static int resize_stripes(raid5_conf_t *conf, int newsize)
1396 {
1397 	/* Make all the stripes able to hold 'newsize' devices.
1398 	 * New slots in each stripe get 'page' set to a new page.
1399 	 *
1400 	 * This happens in stages:
1401 	 * 1/ create a new kmem_cache and allocate the required number of
1402 	 *    stripe_heads.
1403 	 * 2/ gather all the old stripe_heads and tranfer the pages across
1404 	 *    to the new stripe_heads.  This will have the side effect of
1405 	 *    freezing the array as once all stripe_heads have been collected,
1406 	 *    no IO will be possible.  Old stripe heads are freed once their
1407 	 *    pages have been transferred over, and the old kmem_cache is
1408 	 *    freed when all stripes are done.
1409 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1410 	 *    we simple return a failre status - no need to clean anything up.
1411 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1412 	 *    If this fails, we don't bother trying the shrink the
1413 	 *    stripe_heads down again, we just leave them as they are.
1414 	 *    As each stripe_head is processed the new one is released into
1415 	 *    active service.
1416 	 *
1417 	 * Once step2 is started, we cannot afford to wait for a write,
1418 	 * so we use GFP_NOIO allocations.
1419 	 */
1420 	struct stripe_head *osh, *nsh;
1421 	LIST_HEAD(newstripes);
1422 	struct disk_info *ndisks;
1423 	unsigned long cpu;
1424 	int err;
1425 	struct kmem_cache *sc;
1426 	int i;
1427 
1428 	if (newsize <= conf->pool_size)
1429 		return 0; /* never bother to shrink */
1430 
1431 	err = md_allow_write(conf->mddev);
1432 	if (err)
1433 		return err;
1434 
1435 	/* Step 1 */
1436 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1437 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1438 			       0, 0, NULL);
1439 	if (!sc)
1440 		return -ENOMEM;
1441 
1442 	for (i = conf->max_nr_stripes; i; i--) {
1443 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1444 		if (!nsh)
1445 			break;
1446 
1447 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1448 
1449 		nsh->raid_conf = conf;
1450 		spin_lock_init(&nsh->lock);
1451 		#ifdef CONFIG_MULTICORE_RAID456
1452 		init_waitqueue_head(&nsh->ops.wait_for_ops);
1453 		#endif
1454 
1455 		list_add(&nsh->lru, &newstripes);
1456 	}
1457 	if (i) {
1458 		/* didn't get enough, give up */
1459 		while (!list_empty(&newstripes)) {
1460 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1461 			list_del(&nsh->lru);
1462 			kmem_cache_free(sc, nsh);
1463 		}
1464 		kmem_cache_destroy(sc);
1465 		return -ENOMEM;
1466 	}
1467 	/* Step 2 - Must use GFP_NOIO now.
1468 	 * OK, we have enough stripes, start collecting inactive
1469 	 * stripes and copying them over
1470 	 */
1471 	list_for_each_entry(nsh, &newstripes, lru) {
1472 		spin_lock_irq(&conf->device_lock);
1473 		wait_event_lock_irq(conf->wait_for_stripe,
1474 				    !list_empty(&conf->inactive_list),
1475 				    conf->device_lock,
1476 				    unplug_slaves(conf->mddev)
1477 			);
1478 		osh = get_free_stripe(conf);
1479 		spin_unlock_irq(&conf->device_lock);
1480 		atomic_set(&nsh->count, 1);
1481 		for(i=0; i<conf->pool_size; i++)
1482 			nsh->dev[i].page = osh->dev[i].page;
1483 		for( ; i<newsize; i++)
1484 			nsh->dev[i].page = NULL;
1485 		kmem_cache_free(conf->slab_cache, osh);
1486 	}
1487 	kmem_cache_destroy(conf->slab_cache);
1488 
1489 	/* Step 3.
1490 	 * At this point, we are holding all the stripes so the array
1491 	 * is completely stalled, so now is a good time to resize
1492 	 * conf->disks and the scribble region
1493 	 */
1494 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1495 	if (ndisks) {
1496 		for (i=0; i<conf->raid_disks; i++)
1497 			ndisks[i] = conf->disks[i];
1498 		kfree(conf->disks);
1499 		conf->disks = ndisks;
1500 	} else
1501 		err = -ENOMEM;
1502 
1503 	get_online_cpus();
1504 	conf->scribble_len = scribble_len(newsize);
1505 	for_each_present_cpu(cpu) {
1506 		struct raid5_percpu *percpu;
1507 		void *scribble;
1508 
1509 		percpu = per_cpu_ptr(conf->percpu, cpu);
1510 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1511 
1512 		if (scribble) {
1513 			kfree(percpu->scribble);
1514 			percpu->scribble = scribble;
1515 		} else {
1516 			err = -ENOMEM;
1517 			break;
1518 		}
1519 	}
1520 	put_online_cpus();
1521 
1522 	/* Step 4, return new stripes to service */
1523 	while(!list_empty(&newstripes)) {
1524 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1525 		list_del_init(&nsh->lru);
1526 
1527 		for (i=conf->raid_disks; i < newsize; i++)
1528 			if (nsh->dev[i].page == NULL) {
1529 				struct page *p = alloc_page(GFP_NOIO);
1530 				nsh->dev[i].page = p;
1531 				if (!p)
1532 					err = -ENOMEM;
1533 			}
1534 		release_stripe(nsh);
1535 	}
1536 	/* critical section pass, GFP_NOIO no longer needed */
1537 
1538 	conf->slab_cache = sc;
1539 	conf->active_name = 1-conf->active_name;
1540 	conf->pool_size = newsize;
1541 	return err;
1542 }
1543 
1544 static int drop_one_stripe(raid5_conf_t *conf)
1545 {
1546 	struct stripe_head *sh;
1547 
1548 	spin_lock_irq(&conf->device_lock);
1549 	sh = get_free_stripe(conf);
1550 	spin_unlock_irq(&conf->device_lock);
1551 	if (!sh)
1552 		return 0;
1553 	BUG_ON(atomic_read(&sh->count));
1554 	shrink_buffers(sh);
1555 	kmem_cache_free(conf->slab_cache, sh);
1556 	atomic_dec(&conf->active_stripes);
1557 	return 1;
1558 }
1559 
1560 static void shrink_stripes(raid5_conf_t *conf)
1561 {
1562 	while (drop_one_stripe(conf))
1563 		;
1564 
1565 	if (conf->slab_cache)
1566 		kmem_cache_destroy(conf->slab_cache);
1567 	conf->slab_cache = NULL;
1568 }
1569 
1570 static void raid5_end_read_request(struct bio * bi, int error)
1571 {
1572 	struct stripe_head *sh = bi->bi_private;
1573 	raid5_conf_t *conf = sh->raid_conf;
1574 	int disks = sh->disks, i;
1575 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1576 	char b[BDEVNAME_SIZE];
1577 	mdk_rdev_t *rdev;
1578 
1579 
1580 	for (i=0 ; i<disks; i++)
1581 		if (bi == &sh->dev[i].req)
1582 			break;
1583 
1584 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1585 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1586 		uptodate);
1587 	if (i == disks) {
1588 		BUG();
1589 		return;
1590 	}
1591 
1592 	if (uptodate) {
1593 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1594 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1595 			rdev = conf->disks[i].rdev;
1596 			printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1597 				  " (%lu sectors at %llu on %s)\n",
1598 				  mdname(conf->mddev), STRIPE_SECTORS,
1599 				  (unsigned long long)(sh->sector
1600 						       + rdev->data_offset),
1601 				  bdevname(rdev->bdev, b));
1602 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1603 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1604 		}
1605 		if (atomic_read(&conf->disks[i].rdev->read_errors))
1606 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1607 	} else {
1608 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1609 		int retry = 0;
1610 		rdev = conf->disks[i].rdev;
1611 
1612 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1613 		atomic_inc(&rdev->read_errors);
1614 		if (conf->mddev->degraded >= conf->max_degraded)
1615 			printk_rl(KERN_WARNING
1616 				  "md/raid:%s: read error not correctable "
1617 				  "(sector %llu on %s).\n",
1618 				  mdname(conf->mddev),
1619 				  (unsigned long long)(sh->sector
1620 						       + rdev->data_offset),
1621 				  bdn);
1622 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1623 			/* Oh, no!!! */
1624 			printk_rl(KERN_WARNING
1625 				  "md/raid:%s: read error NOT corrected!! "
1626 				  "(sector %llu on %s).\n",
1627 				  mdname(conf->mddev),
1628 				  (unsigned long long)(sh->sector
1629 						       + rdev->data_offset),
1630 				  bdn);
1631 		else if (atomic_read(&rdev->read_errors)
1632 			 > conf->max_nr_stripes)
1633 			printk(KERN_WARNING
1634 			       "md/raid:%s: Too many read errors, failing device %s.\n",
1635 			       mdname(conf->mddev), bdn);
1636 		else
1637 			retry = 1;
1638 		if (retry)
1639 			set_bit(R5_ReadError, &sh->dev[i].flags);
1640 		else {
1641 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1642 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1643 			md_error(conf->mddev, rdev);
1644 		}
1645 	}
1646 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1647 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1648 	set_bit(STRIPE_HANDLE, &sh->state);
1649 	release_stripe(sh);
1650 }
1651 
1652 static void raid5_end_write_request(struct bio *bi, int error)
1653 {
1654 	struct stripe_head *sh = bi->bi_private;
1655 	raid5_conf_t *conf = sh->raid_conf;
1656 	int disks = sh->disks, i;
1657 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1658 
1659 	for (i=0 ; i<disks; i++)
1660 		if (bi == &sh->dev[i].req)
1661 			break;
1662 
1663 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1664 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1665 		uptodate);
1666 	if (i == disks) {
1667 		BUG();
1668 		return;
1669 	}
1670 
1671 	if (!uptodate)
1672 		md_error(conf->mddev, conf->disks[i].rdev);
1673 
1674 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1675 
1676 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1677 	set_bit(STRIPE_HANDLE, &sh->state);
1678 	release_stripe(sh);
1679 }
1680 
1681 
1682 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1683 
1684 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1685 {
1686 	struct r5dev *dev = &sh->dev[i];
1687 
1688 	bio_init(&dev->req);
1689 	dev->req.bi_io_vec = &dev->vec;
1690 	dev->req.bi_vcnt++;
1691 	dev->req.bi_max_vecs++;
1692 	dev->vec.bv_page = dev->page;
1693 	dev->vec.bv_len = STRIPE_SIZE;
1694 	dev->vec.bv_offset = 0;
1695 
1696 	dev->req.bi_sector = sh->sector;
1697 	dev->req.bi_private = sh;
1698 
1699 	dev->flags = 0;
1700 	dev->sector = compute_blocknr(sh, i, previous);
1701 }
1702 
1703 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1704 {
1705 	char b[BDEVNAME_SIZE];
1706 	raid5_conf_t *conf = mddev->private;
1707 	pr_debug("raid456: error called\n");
1708 
1709 	if (!test_bit(Faulty, &rdev->flags)) {
1710 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711 		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1712 			unsigned long flags;
1713 			spin_lock_irqsave(&conf->device_lock, flags);
1714 			mddev->degraded++;
1715 			spin_unlock_irqrestore(&conf->device_lock, flags);
1716 			/*
1717 			 * if recovery was running, make sure it aborts.
1718 			 */
1719 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1720 		}
1721 		set_bit(Faulty, &rdev->flags);
1722 		printk(KERN_ALERT
1723 		       "md/raid:%s: Disk failure on %s, disabling device.\n"
1724 		       "md/raid:%s: Operation continuing on %d devices.\n",
1725 		       mdname(mddev),
1726 		       bdevname(rdev->bdev, b),
1727 		       mdname(mddev),
1728 		       conf->raid_disks - mddev->degraded);
1729 	}
1730 }
1731 
1732 /*
1733  * Input: a 'big' sector number,
1734  * Output: index of the data and parity disk, and the sector # in them.
1735  */
1736 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1737 				     int previous, int *dd_idx,
1738 				     struct stripe_head *sh)
1739 {
1740 	sector_t stripe, stripe2;
1741 	sector_t chunk_number;
1742 	unsigned int chunk_offset;
1743 	int pd_idx, qd_idx;
1744 	int ddf_layout = 0;
1745 	sector_t new_sector;
1746 	int algorithm = previous ? conf->prev_algo
1747 				 : conf->algorithm;
1748 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1749 					 : conf->chunk_sectors;
1750 	int raid_disks = previous ? conf->previous_raid_disks
1751 				  : conf->raid_disks;
1752 	int data_disks = raid_disks - conf->max_degraded;
1753 
1754 	/* First compute the information on this sector */
1755 
1756 	/*
1757 	 * Compute the chunk number and the sector offset inside the chunk
1758 	 */
1759 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1760 	chunk_number = r_sector;
1761 
1762 	/*
1763 	 * Compute the stripe number
1764 	 */
1765 	stripe = chunk_number;
1766 	*dd_idx = sector_div(stripe, data_disks);
1767 	stripe2 = stripe;
1768 	/*
1769 	 * Select the parity disk based on the user selected algorithm.
1770 	 */
1771 	pd_idx = qd_idx = ~0;
1772 	switch(conf->level) {
1773 	case 4:
1774 		pd_idx = data_disks;
1775 		break;
1776 	case 5:
1777 		switch (algorithm) {
1778 		case ALGORITHM_LEFT_ASYMMETRIC:
1779 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1780 			if (*dd_idx >= pd_idx)
1781 				(*dd_idx)++;
1782 			break;
1783 		case ALGORITHM_RIGHT_ASYMMETRIC:
1784 			pd_idx = sector_div(stripe2, raid_disks);
1785 			if (*dd_idx >= pd_idx)
1786 				(*dd_idx)++;
1787 			break;
1788 		case ALGORITHM_LEFT_SYMMETRIC:
1789 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1790 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1791 			break;
1792 		case ALGORITHM_RIGHT_SYMMETRIC:
1793 			pd_idx = sector_div(stripe2, raid_disks);
1794 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1795 			break;
1796 		case ALGORITHM_PARITY_0:
1797 			pd_idx = 0;
1798 			(*dd_idx)++;
1799 			break;
1800 		case ALGORITHM_PARITY_N:
1801 			pd_idx = data_disks;
1802 			break;
1803 		default:
1804 			BUG();
1805 		}
1806 		break;
1807 	case 6:
1808 
1809 		switch (algorithm) {
1810 		case ALGORITHM_LEFT_ASYMMETRIC:
1811 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1812 			qd_idx = pd_idx + 1;
1813 			if (pd_idx == raid_disks-1) {
1814 				(*dd_idx)++;	/* Q D D D P */
1815 				qd_idx = 0;
1816 			} else if (*dd_idx >= pd_idx)
1817 				(*dd_idx) += 2; /* D D P Q D */
1818 			break;
1819 		case ALGORITHM_RIGHT_ASYMMETRIC:
1820 			pd_idx = sector_div(stripe2, raid_disks);
1821 			qd_idx = pd_idx + 1;
1822 			if (pd_idx == raid_disks-1) {
1823 				(*dd_idx)++;	/* Q D D D P */
1824 				qd_idx = 0;
1825 			} else if (*dd_idx >= pd_idx)
1826 				(*dd_idx) += 2; /* D D P Q D */
1827 			break;
1828 		case ALGORITHM_LEFT_SYMMETRIC:
1829 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1830 			qd_idx = (pd_idx + 1) % raid_disks;
1831 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1832 			break;
1833 		case ALGORITHM_RIGHT_SYMMETRIC:
1834 			pd_idx = sector_div(stripe2, raid_disks);
1835 			qd_idx = (pd_idx + 1) % raid_disks;
1836 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1837 			break;
1838 
1839 		case ALGORITHM_PARITY_0:
1840 			pd_idx = 0;
1841 			qd_idx = 1;
1842 			(*dd_idx) += 2;
1843 			break;
1844 		case ALGORITHM_PARITY_N:
1845 			pd_idx = data_disks;
1846 			qd_idx = data_disks + 1;
1847 			break;
1848 
1849 		case ALGORITHM_ROTATING_ZERO_RESTART:
1850 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1851 			 * of blocks for computing Q is different.
1852 			 */
1853 			pd_idx = sector_div(stripe2, raid_disks);
1854 			qd_idx = pd_idx + 1;
1855 			if (pd_idx == raid_disks-1) {
1856 				(*dd_idx)++;	/* Q D D D P */
1857 				qd_idx = 0;
1858 			} else if (*dd_idx >= pd_idx)
1859 				(*dd_idx) += 2; /* D D P Q D */
1860 			ddf_layout = 1;
1861 			break;
1862 
1863 		case ALGORITHM_ROTATING_N_RESTART:
1864 			/* Same a left_asymmetric, by first stripe is
1865 			 * D D D P Q  rather than
1866 			 * Q D D D P
1867 			 */
1868 			stripe2 += 1;
1869 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1870 			qd_idx = pd_idx + 1;
1871 			if (pd_idx == raid_disks-1) {
1872 				(*dd_idx)++;	/* Q D D D P */
1873 				qd_idx = 0;
1874 			} else if (*dd_idx >= pd_idx)
1875 				(*dd_idx) += 2; /* D D P Q D */
1876 			ddf_layout = 1;
1877 			break;
1878 
1879 		case ALGORITHM_ROTATING_N_CONTINUE:
1880 			/* Same as left_symmetric but Q is before P */
1881 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1882 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1883 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1884 			ddf_layout = 1;
1885 			break;
1886 
1887 		case ALGORITHM_LEFT_ASYMMETRIC_6:
1888 			/* RAID5 left_asymmetric, with Q on last device */
1889 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1890 			if (*dd_idx >= pd_idx)
1891 				(*dd_idx)++;
1892 			qd_idx = raid_disks - 1;
1893 			break;
1894 
1895 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1896 			pd_idx = sector_div(stripe2, raid_disks-1);
1897 			if (*dd_idx >= pd_idx)
1898 				(*dd_idx)++;
1899 			qd_idx = raid_disks - 1;
1900 			break;
1901 
1902 		case ALGORITHM_LEFT_SYMMETRIC_6:
1903 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1904 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1905 			qd_idx = raid_disks - 1;
1906 			break;
1907 
1908 		case ALGORITHM_RIGHT_SYMMETRIC_6:
1909 			pd_idx = sector_div(stripe2, raid_disks-1);
1910 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1911 			qd_idx = raid_disks - 1;
1912 			break;
1913 
1914 		case ALGORITHM_PARITY_0_6:
1915 			pd_idx = 0;
1916 			(*dd_idx)++;
1917 			qd_idx = raid_disks - 1;
1918 			break;
1919 
1920 		default:
1921 			BUG();
1922 		}
1923 		break;
1924 	}
1925 
1926 	if (sh) {
1927 		sh->pd_idx = pd_idx;
1928 		sh->qd_idx = qd_idx;
1929 		sh->ddf_layout = ddf_layout;
1930 	}
1931 	/*
1932 	 * Finally, compute the new sector number
1933 	 */
1934 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1935 	return new_sector;
1936 }
1937 
1938 
1939 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1940 {
1941 	raid5_conf_t *conf = sh->raid_conf;
1942 	int raid_disks = sh->disks;
1943 	int data_disks = raid_disks - conf->max_degraded;
1944 	sector_t new_sector = sh->sector, check;
1945 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1946 					 : conf->chunk_sectors;
1947 	int algorithm = previous ? conf->prev_algo
1948 				 : conf->algorithm;
1949 	sector_t stripe;
1950 	int chunk_offset;
1951 	sector_t chunk_number;
1952 	int dummy1, dd_idx = i;
1953 	sector_t r_sector;
1954 	struct stripe_head sh2;
1955 
1956 
1957 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1958 	stripe = new_sector;
1959 
1960 	if (i == sh->pd_idx)
1961 		return 0;
1962 	switch(conf->level) {
1963 	case 4: break;
1964 	case 5:
1965 		switch (algorithm) {
1966 		case ALGORITHM_LEFT_ASYMMETRIC:
1967 		case ALGORITHM_RIGHT_ASYMMETRIC:
1968 			if (i > sh->pd_idx)
1969 				i--;
1970 			break;
1971 		case ALGORITHM_LEFT_SYMMETRIC:
1972 		case ALGORITHM_RIGHT_SYMMETRIC:
1973 			if (i < sh->pd_idx)
1974 				i += raid_disks;
1975 			i -= (sh->pd_idx + 1);
1976 			break;
1977 		case ALGORITHM_PARITY_0:
1978 			i -= 1;
1979 			break;
1980 		case ALGORITHM_PARITY_N:
1981 			break;
1982 		default:
1983 			BUG();
1984 		}
1985 		break;
1986 	case 6:
1987 		if (i == sh->qd_idx)
1988 			return 0; /* It is the Q disk */
1989 		switch (algorithm) {
1990 		case ALGORITHM_LEFT_ASYMMETRIC:
1991 		case ALGORITHM_RIGHT_ASYMMETRIC:
1992 		case ALGORITHM_ROTATING_ZERO_RESTART:
1993 		case ALGORITHM_ROTATING_N_RESTART:
1994 			if (sh->pd_idx == raid_disks-1)
1995 				i--;	/* Q D D D P */
1996 			else if (i > sh->pd_idx)
1997 				i -= 2; /* D D P Q D */
1998 			break;
1999 		case ALGORITHM_LEFT_SYMMETRIC:
2000 		case ALGORITHM_RIGHT_SYMMETRIC:
2001 			if (sh->pd_idx == raid_disks-1)
2002 				i--; /* Q D D D P */
2003 			else {
2004 				/* D D P Q D */
2005 				if (i < sh->pd_idx)
2006 					i += raid_disks;
2007 				i -= (sh->pd_idx + 2);
2008 			}
2009 			break;
2010 		case ALGORITHM_PARITY_0:
2011 			i -= 2;
2012 			break;
2013 		case ALGORITHM_PARITY_N:
2014 			break;
2015 		case ALGORITHM_ROTATING_N_CONTINUE:
2016 			/* Like left_symmetric, but P is before Q */
2017 			if (sh->pd_idx == 0)
2018 				i--;	/* P D D D Q */
2019 			else {
2020 				/* D D Q P D */
2021 				if (i < sh->pd_idx)
2022 					i += raid_disks;
2023 				i -= (sh->pd_idx + 1);
2024 			}
2025 			break;
2026 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2027 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2028 			if (i > sh->pd_idx)
2029 				i--;
2030 			break;
2031 		case ALGORITHM_LEFT_SYMMETRIC_6:
2032 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2033 			if (i < sh->pd_idx)
2034 				i += data_disks + 1;
2035 			i -= (sh->pd_idx + 1);
2036 			break;
2037 		case ALGORITHM_PARITY_0_6:
2038 			i -= 1;
2039 			break;
2040 		default:
2041 			BUG();
2042 		}
2043 		break;
2044 	}
2045 
2046 	chunk_number = stripe * data_disks + i;
2047 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2048 
2049 	check = raid5_compute_sector(conf, r_sector,
2050 				     previous, &dummy1, &sh2);
2051 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2052 		|| sh2.qd_idx != sh->qd_idx) {
2053 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2054 		       mdname(conf->mddev));
2055 		return 0;
2056 	}
2057 	return r_sector;
2058 }
2059 
2060 
2061 static void
2062 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2063 			 int rcw, int expand)
2064 {
2065 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2066 	raid5_conf_t *conf = sh->raid_conf;
2067 	int level = conf->level;
2068 
2069 	if (rcw) {
2070 		/* if we are not expanding this is a proper write request, and
2071 		 * there will be bios with new data to be drained into the
2072 		 * stripe cache
2073 		 */
2074 		if (!expand) {
2075 			sh->reconstruct_state = reconstruct_state_drain_run;
2076 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2077 		} else
2078 			sh->reconstruct_state = reconstruct_state_run;
2079 
2080 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2081 
2082 		for (i = disks; i--; ) {
2083 			struct r5dev *dev = &sh->dev[i];
2084 
2085 			if (dev->towrite) {
2086 				set_bit(R5_LOCKED, &dev->flags);
2087 				set_bit(R5_Wantdrain, &dev->flags);
2088 				if (!expand)
2089 					clear_bit(R5_UPTODATE, &dev->flags);
2090 				s->locked++;
2091 			}
2092 		}
2093 		if (s->locked + conf->max_degraded == disks)
2094 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2095 				atomic_inc(&conf->pending_full_writes);
2096 	} else {
2097 		BUG_ON(level == 6);
2098 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2099 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2100 
2101 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2102 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2103 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2104 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2105 
2106 		for (i = disks; i--; ) {
2107 			struct r5dev *dev = &sh->dev[i];
2108 			if (i == pd_idx)
2109 				continue;
2110 
2111 			if (dev->towrite &&
2112 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2113 			     test_bit(R5_Wantcompute, &dev->flags))) {
2114 				set_bit(R5_Wantdrain, &dev->flags);
2115 				set_bit(R5_LOCKED, &dev->flags);
2116 				clear_bit(R5_UPTODATE, &dev->flags);
2117 				s->locked++;
2118 			}
2119 		}
2120 	}
2121 
2122 	/* keep the parity disk(s) locked while asynchronous operations
2123 	 * are in flight
2124 	 */
2125 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2126 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2127 	s->locked++;
2128 
2129 	if (level == 6) {
2130 		int qd_idx = sh->qd_idx;
2131 		struct r5dev *dev = &sh->dev[qd_idx];
2132 
2133 		set_bit(R5_LOCKED, &dev->flags);
2134 		clear_bit(R5_UPTODATE, &dev->flags);
2135 		s->locked++;
2136 	}
2137 
2138 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2139 		__func__, (unsigned long long)sh->sector,
2140 		s->locked, s->ops_request);
2141 }
2142 
2143 /*
2144  * Each stripe/dev can have one or more bion attached.
2145  * toread/towrite point to the first in a chain.
2146  * The bi_next chain must be in order.
2147  */
2148 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2149 {
2150 	struct bio **bip;
2151 	raid5_conf_t *conf = sh->raid_conf;
2152 	int firstwrite=0;
2153 
2154 	pr_debug("adding bh b#%llu to stripe s#%llu\n",
2155 		(unsigned long long)bi->bi_sector,
2156 		(unsigned long long)sh->sector);
2157 
2158 
2159 	spin_lock(&sh->lock);
2160 	spin_lock_irq(&conf->device_lock);
2161 	if (forwrite) {
2162 		bip = &sh->dev[dd_idx].towrite;
2163 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2164 			firstwrite = 1;
2165 	} else
2166 		bip = &sh->dev[dd_idx].toread;
2167 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2168 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2169 			goto overlap;
2170 		bip = & (*bip)->bi_next;
2171 	}
2172 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2173 		goto overlap;
2174 
2175 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2176 	if (*bip)
2177 		bi->bi_next = *bip;
2178 	*bip = bi;
2179 	bi->bi_phys_segments++;
2180 	spin_unlock_irq(&conf->device_lock);
2181 	spin_unlock(&sh->lock);
2182 
2183 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2184 		(unsigned long long)bi->bi_sector,
2185 		(unsigned long long)sh->sector, dd_idx);
2186 
2187 	if (conf->mddev->bitmap && firstwrite) {
2188 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2189 				  STRIPE_SECTORS, 0);
2190 		sh->bm_seq = conf->seq_flush+1;
2191 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2192 	}
2193 
2194 	if (forwrite) {
2195 		/* check if page is covered */
2196 		sector_t sector = sh->dev[dd_idx].sector;
2197 		for (bi=sh->dev[dd_idx].towrite;
2198 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2199 			     bi && bi->bi_sector <= sector;
2200 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2201 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2202 				sector = bi->bi_sector + (bi->bi_size>>9);
2203 		}
2204 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2205 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2206 	}
2207 	return 1;
2208 
2209  overlap:
2210 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2211 	spin_unlock_irq(&conf->device_lock);
2212 	spin_unlock(&sh->lock);
2213 	return 0;
2214 }
2215 
2216 static void end_reshape(raid5_conf_t *conf);
2217 
2218 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2219 			    struct stripe_head *sh)
2220 {
2221 	int sectors_per_chunk =
2222 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2223 	int dd_idx;
2224 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2225 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2226 
2227 	raid5_compute_sector(conf,
2228 			     stripe * (disks - conf->max_degraded)
2229 			     *sectors_per_chunk + chunk_offset,
2230 			     previous,
2231 			     &dd_idx, sh);
2232 }
2233 
2234 static void
2235 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2236 				struct stripe_head_state *s, int disks,
2237 				struct bio **return_bi)
2238 {
2239 	int i;
2240 	for (i = disks; i--; ) {
2241 		struct bio *bi;
2242 		int bitmap_end = 0;
2243 
2244 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2245 			mdk_rdev_t *rdev;
2246 			rcu_read_lock();
2247 			rdev = rcu_dereference(conf->disks[i].rdev);
2248 			if (rdev && test_bit(In_sync, &rdev->flags))
2249 				/* multiple read failures in one stripe */
2250 				md_error(conf->mddev, rdev);
2251 			rcu_read_unlock();
2252 		}
2253 		spin_lock_irq(&conf->device_lock);
2254 		/* fail all writes first */
2255 		bi = sh->dev[i].towrite;
2256 		sh->dev[i].towrite = NULL;
2257 		if (bi) {
2258 			s->to_write--;
2259 			bitmap_end = 1;
2260 		}
2261 
2262 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2263 			wake_up(&conf->wait_for_overlap);
2264 
2265 		while (bi && bi->bi_sector <
2266 			sh->dev[i].sector + STRIPE_SECTORS) {
2267 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2268 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2269 			if (!raid5_dec_bi_phys_segments(bi)) {
2270 				md_write_end(conf->mddev);
2271 				bi->bi_next = *return_bi;
2272 				*return_bi = bi;
2273 			}
2274 			bi = nextbi;
2275 		}
2276 		/* and fail all 'written' */
2277 		bi = sh->dev[i].written;
2278 		sh->dev[i].written = NULL;
2279 		if (bi) bitmap_end = 1;
2280 		while (bi && bi->bi_sector <
2281 		       sh->dev[i].sector + STRIPE_SECTORS) {
2282 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2283 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2284 			if (!raid5_dec_bi_phys_segments(bi)) {
2285 				md_write_end(conf->mddev);
2286 				bi->bi_next = *return_bi;
2287 				*return_bi = bi;
2288 			}
2289 			bi = bi2;
2290 		}
2291 
2292 		/* fail any reads if this device is non-operational and
2293 		 * the data has not reached the cache yet.
2294 		 */
2295 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2296 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2297 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2298 			bi = sh->dev[i].toread;
2299 			sh->dev[i].toread = NULL;
2300 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2301 				wake_up(&conf->wait_for_overlap);
2302 			if (bi) s->to_read--;
2303 			while (bi && bi->bi_sector <
2304 			       sh->dev[i].sector + STRIPE_SECTORS) {
2305 				struct bio *nextbi =
2306 					r5_next_bio(bi, sh->dev[i].sector);
2307 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2308 				if (!raid5_dec_bi_phys_segments(bi)) {
2309 					bi->bi_next = *return_bi;
2310 					*return_bi = bi;
2311 				}
2312 				bi = nextbi;
2313 			}
2314 		}
2315 		spin_unlock_irq(&conf->device_lock);
2316 		if (bitmap_end)
2317 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2318 					STRIPE_SECTORS, 0, 0);
2319 	}
2320 
2321 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2322 		if (atomic_dec_and_test(&conf->pending_full_writes))
2323 			md_wakeup_thread(conf->mddev->thread);
2324 }
2325 
2326 /* fetch_block5 - checks the given member device to see if its data needs
2327  * to be read or computed to satisfy a request.
2328  *
2329  * Returns 1 when no more member devices need to be checked, otherwise returns
2330  * 0 to tell the loop in handle_stripe_fill5 to continue
2331  */
2332 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2333 			int disk_idx, int disks)
2334 {
2335 	struct r5dev *dev = &sh->dev[disk_idx];
2336 	struct r5dev *failed_dev = &sh->dev[s->failed_num];
2337 
2338 	/* is the data in this block needed, and can we get it? */
2339 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2340 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2341 	    (dev->toread ||
2342 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2343 	     s->syncing || s->expanding ||
2344 	     (s->failed &&
2345 	      (failed_dev->toread ||
2346 	       (failed_dev->towrite &&
2347 		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2348 		/* We would like to get this block, possibly by computing it,
2349 		 * otherwise read it if the backing disk is insync
2350 		 */
2351 		if ((s->uptodate == disks - 1) &&
2352 		    (s->failed && disk_idx == s->failed_num)) {
2353 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2354 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2355 			set_bit(R5_Wantcompute, &dev->flags);
2356 			sh->ops.target = disk_idx;
2357 			sh->ops.target2 = -1;
2358 			s->req_compute = 1;
2359 			/* Careful: from this point on 'uptodate' is in the eye
2360 			 * of raid_run_ops which services 'compute' operations
2361 			 * before writes. R5_Wantcompute flags a block that will
2362 			 * be R5_UPTODATE by the time it is needed for a
2363 			 * subsequent operation.
2364 			 */
2365 			s->uptodate++;
2366 			return 1; /* uptodate + compute == disks */
2367 		} else if (test_bit(R5_Insync, &dev->flags)) {
2368 			set_bit(R5_LOCKED, &dev->flags);
2369 			set_bit(R5_Wantread, &dev->flags);
2370 			s->locked++;
2371 			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2372 				s->syncing);
2373 		}
2374 	}
2375 
2376 	return 0;
2377 }
2378 
2379 /**
2380  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2381  */
2382 static void handle_stripe_fill5(struct stripe_head *sh,
2383 			struct stripe_head_state *s, int disks)
2384 {
2385 	int i;
2386 
2387 	/* look for blocks to read/compute, skip this if a compute
2388 	 * is already in flight, or if the stripe contents are in the
2389 	 * midst of changing due to a write
2390 	 */
2391 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2392 	    !sh->reconstruct_state)
2393 		for (i = disks; i--; )
2394 			if (fetch_block5(sh, s, i, disks))
2395 				break;
2396 	set_bit(STRIPE_HANDLE, &sh->state);
2397 }
2398 
2399 /* fetch_block6 - checks the given member device to see if its data needs
2400  * to be read or computed to satisfy a request.
2401  *
2402  * Returns 1 when no more member devices need to be checked, otherwise returns
2403  * 0 to tell the loop in handle_stripe_fill6 to continue
2404  */
2405 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2406 			 struct r6_state *r6s, int disk_idx, int disks)
2407 {
2408 	struct r5dev *dev = &sh->dev[disk_idx];
2409 	struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2410 				  &sh->dev[r6s->failed_num[1]] };
2411 
2412 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2413 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2414 	    (dev->toread ||
2415 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2416 	     s->syncing || s->expanding ||
2417 	     (s->failed >= 1 &&
2418 	      (fdev[0]->toread || s->to_write)) ||
2419 	     (s->failed >= 2 &&
2420 	      (fdev[1]->toread || s->to_write)))) {
2421 		/* we would like to get this block, possibly by computing it,
2422 		 * otherwise read it if the backing disk is insync
2423 		 */
2424 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2425 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2426 		if ((s->uptodate == disks - 1) &&
2427 		    (s->failed && (disk_idx == r6s->failed_num[0] ||
2428 				   disk_idx == r6s->failed_num[1]))) {
2429 			/* have disk failed, and we're requested to fetch it;
2430 			 * do compute it
2431 			 */
2432 			pr_debug("Computing stripe %llu block %d\n",
2433 			       (unsigned long long)sh->sector, disk_idx);
2434 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2435 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2436 			set_bit(R5_Wantcompute, &dev->flags);
2437 			sh->ops.target = disk_idx;
2438 			sh->ops.target2 = -1; /* no 2nd target */
2439 			s->req_compute = 1;
2440 			s->uptodate++;
2441 			return 1;
2442 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2443 			/* Computing 2-failure is *very* expensive; only
2444 			 * do it if failed >= 2
2445 			 */
2446 			int other;
2447 			for (other = disks; other--; ) {
2448 				if (other == disk_idx)
2449 					continue;
2450 				if (!test_bit(R5_UPTODATE,
2451 				      &sh->dev[other].flags))
2452 					break;
2453 			}
2454 			BUG_ON(other < 0);
2455 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2456 			       (unsigned long long)sh->sector,
2457 			       disk_idx, other);
2458 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2459 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2460 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2461 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2462 			sh->ops.target = disk_idx;
2463 			sh->ops.target2 = other;
2464 			s->uptodate += 2;
2465 			s->req_compute = 1;
2466 			return 1;
2467 		} else if (test_bit(R5_Insync, &dev->flags)) {
2468 			set_bit(R5_LOCKED, &dev->flags);
2469 			set_bit(R5_Wantread, &dev->flags);
2470 			s->locked++;
2471 			pr_debug("Reading block %d (sync=%d)\n",
2472 				disk_idx, s->syncing);
2473 		}
2474 	}
2475 
2476 	return 0;
2477 }
2478 
2479 /**
2480  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2481  */
2482 static void handle_stripe_fill6(struct stripe_head *sh,
2483 			struct stripe_head_state *s, struct r6_state *r6s,
2484 			int disks)
2485 {
2486 	int i;
2487 
2488 	/* look for blocks to read/compute, skip this if a compute
2489 	 * is already in flight, or if the stripe contents are in the
2490 	 * midst of changing due to a write
2491 	 */
2492 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2493 	    !sh->reconstruct_state)
2494 		for (i = disks; i--; )
2495 			if (fetch_block6(sh, s, r6s, i, disks))
2496 				break;
2497 	set_bit(STRIPE_HANDLE, &sh->state);
2498 }
2499 
2500 
2501 /* handle_stripe_clean_event
2502  * any written block on an uptodate or failed drive can be returned.
2503  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2504  * never LOCKED, so we don't need to test 'failed' directly.
2505  */
2506 static void handle_stripe_clean_event(raid5_conf_t *conf,
2507 	struct stripe_head *sh, int disks, struct bio **return_bi)
2508 {
2509 	int i;
2510 	struct r5dev *dev;
2511 
2512 	for (i = disks; i--; )
2513 		if (sh->dev[i].written) {
2514 			dev = &sh->dev[i];
2515 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2516 				test_bit(R5_UPTODATE, &dev->flags)) {
2517 				/* We can return any write requests */
2518 				struct bio *wbi, *wbi2;
2519 				int bitmap_end = 0;
2520 				pr_debug("Return write for disc %d\n", i);
2521 				spin_lock_irq(&conf->device_lock);
2522 				wbi = dev->written;
2523 				dev->written = NULL;
2524 				while (wbi && wbi->bi_sector <
2525 					dev->sector + STRIPE_SECTORS) {
2526 					wbi2 = r5_next_bio(wbi, dev->sector);
2527 					if (!raid5_dec_bi_phys_segments(wbi)) {
2528 						md_write_end(conf->mddev);
2529 						wbi->bi_next = *return_bi;
2530 						*return_bi = wbi;
2531 					}
2532 					wbi = wbi2;
2533 				}
2534 				if (dev->towrite == NULL)
2535 					bitmap_end = 1;
2536 				spin_unlock_irq(&conf->device_lock);
2537 				if (bitmap_end)
2538 					bitmap_endwrite(conf->mddev->bitmap,
2539 							sh->sector,
2540 							STRIPE_SECTORS,
2541 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2542 							0);
2543 			}
2544 		}
2545 
2546 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2547 		if (atomic_dec_and_test(&conf->pending_full_writes))
2548 			md_wakeup_thread(conf->mddev->thread);
2549 }
2550 
2551 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2552 		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2553 {
2554 	int rmw = 0, rcw = 0, i;
2555 	for (i = disks; i--; ) {
2556 		/* would I have to read this buffer for read_modify_write */
2557 		struct r5dev *dev = &sh->dev[i];
2558 		if ((dev->towrite || i == sh->pd_idx) &&
2559 		    !test_bit(R5_LOCKED, &dev->flags) &&
2560 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2561 		      test_bit(R5_Wantcompute, &dev->flags))) {
2562 			if (test_bit(R5_Insync, &dev->flags))
2563 				rmw++;
2564 			else
2565 				rmw += 2*disks;  /* cannot read it */
2566 		}
2567 		/* Would I have to read this buffer for reconstruct_write */
2568 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2569 		    !test_bit(R5_LOCKED, &dev->flags) &&
2570 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2571 		    test_bit(R5_Wantcompute, &dev->flags))) {
2572 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2573 			else
2574 				rcw += 2*disks;
2575 		}
2576 	}
2577 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2578 		(unsigned long long)sh->sector, rmw, rcw);
2579 	set_bit(STRIPE_HANDLE, &sh->state);
2580 	if (rmw < rcw && rmw > 0)
2581 		/* prefer read-modify-write, but need to get some data */
2582 		for (i = disks; i--; ) {
2583 			struct r5dev *dev = &sh->dev[i];
2584 			if ((dev->towrite || i == sh->pd_idx) &&
2585 			    !test_bit(R5_LOCKED, &dev->flags) &&
2586 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2587 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2588 			    test_bit(R5_Insync, &dev->flags)) {
2589 				if (
2590 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2591 					pr_debug("Read_old block "
2592 						"%d for r-m-w\n", i);
2593 					set_bit(R5_LOCKED, &dev->flags);
2594 					set_bit(R5_Wantread, &dev->flags);
2595 					s->locked++;
2596 				} else {
2597 					set_bit(STRIPE_DELAYED, &sh->state);
2598 					set_bit(STRIPE_HANDLE, &sh->state);
2599 				}
2600 			}
2601 		}
2602 	if (rcw <= rmw && rcw > 0)
2603 		/* want reconstruct write, but need to get some data */
2604 		for (i = disks; i--; ) {
2605 			struct r5dev *dev = &sh->dev[i];
2606 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2607 			    i != sh->pd_idx &&
2608 			    !test_bit(R5_LOCKED, &dev->flags) &&
2609 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2610 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2611 			    test_bit(R5_Insync, &dev->flags)) {
2612 				if (
2613 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2614 					pr_debug("Read_old block "
2615 						"%d for Reconstruct\n", i);
2616 					set_bit(R5_LOCKED, &dev->flags);
2617 					set_bit(R5_Wantread, &dev->flags);
2618 					s->locked++;
2619 				} else {
2620 					set_bit(STRIPE_DELAYED, &sh->state);
2621 					set_bit(STRIPE_HANDLE, &sh->state);
2622 				}
2623 			}
2624 		}
2625 	/* now if nothing is locked, and if we have enough data,
2626 	 * we can start a write request
2627 	 */
2628 	/* since handle_stripe can be called at any time we need to handle the
2629 	 * case where a compute block operation has been submitted and then a
2630 	 * subsequent call wants to start a write request.  raid_run_ops only
2631 	 * handles the case where compute block and reconstruct are requested
2632 	 * simultaneously.  If this is not the case then new writes need to be
2633 	 * held off until the compute completes.
2634 	 */
2635 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2636 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2637 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2638 		schedule_reconstruction(sh, s, rcw == 0, 0);
2639 }
2640 
2641 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2642 		struct stripe_head *sh,	struct stripe_head_state *s,
2643 		struct r6_state *r6s, int disks)
2644 {
2645 	int rcw = 0, pd_idx = sh->pd_idx, i;
2646 	int qd_idx = sh->qd_idx;
2647 
2648 	set_bit(STRIPE_HANDLE, &sh->state);
2649 	for (i = disks; i--; ) {
2650 		struct r5dev *dev = &sh->dev[i];
2651 		/* check if we haven't enough data */
2652 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2653 		    i != pd_idx && i != qd_idx &&
2654 		    !test_bit(R5_LOCKED, &dev->flags) &&
2655 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2656 		      test_bit(R5_Wantcompute, &dev->flags))) {
2657 			rcw++;
2658 			if (!test_bit(R5_Insync, &dev->flags))
2659 				continue; /* it's a failed drive */
2660 
2661 			if (
2662 			  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2663 				pr_debug("Read_old stripe %llu "
2664 					"block %d for Reconstruct\n",
2665 				     (unsigned long long)sh->sector, i);
2666 				set_bit(R5_LOCKED, &dev->flags);
2667 				set_bit(R5_Wantread, &dev->flags);
2668 				s->locked++;
2669 			} else {
2670 				pr_debug("Request delayed stripe %llu "
2671 					"block %d for Reconstruct\n",
2672 				     (unsigned long long)sh->sector, i);
2673 				set_bit(STRIPE_DELAYED, &sh->state);
2674 				set_bit(STRIPE_HANDLE, &sh->state);
2675 			}
2676 		}
2677 	}
2678 	/* now if nothing is locked, and if we have enough data, we can start a
2679 	 * write request
2680 	 */
2681 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2682 	    s->locked == 0 && rcw == 0 &&
2683 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2684 		schedule_reconstruction(sh, s, 1, 0);
2685 	}
2686 }
2687 
2688 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2689 				struct stripe_head_state *s, int disks)
2690 {
2691 	struct r5dev *dev = NULL;
2692 
2693 	set_bit(STRIPE_HANDLE, &sh->state);
2694 
2695 	switch (sh->check_state) {
2696 	case check_state_idle:
2697 		/* start a new check operation if there are no failures */
2698 		if (s->failed == 0) {
2699 			BUG_ON(s->uptodate != disks);
2700 			sh->check_state = check_state_run;
2701 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2702 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2703 			s->uptodate--;
2704 			break;
2705 		}
2706 		dev = &sh->dev[s->failed_num];
2707 		/* fall through */
2708 	case check_state_compute_result:
2709 		sh->check_state = check_state_idle;
2710 		if (!dev)
2711 			dev = &sh->dev[sh->pd_idx];
2712 
2713 		/* check that a write has not made the stripe insync */
2714 		if (test_bit(STRIPE_INSYNC, &sh->state))
2715 			break;
2716 
2717 		/* either failed parity check, or recovery is happening */
2718 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2719 		BUG_ON(s->uptodate != disks);
2720 
2721 		set_bit(R5_LOCKED, &dev->flags);
2722 		s->locked++;
2723 		set_bit(R5_Wantwrite, &dev->flags);
2724 
2725 		clear_bit(STRIPE_DEGRADED, &sh->state);
2726 		set_bit(STRIPE_INSYNC, &sh->state);
2727 		break;
2728 	case check_state_run:
2729 		break; /* we will be called again upon completion */
2730 	case check_state_check_result:
2731 		sh->check_state = check_state_idle;
2732 
2733 		/* if a failure occurred during the check operation, leave
2734 		 * STRIPE_INSYNC not set and let the stripe be handled again
2735 		 */
2736 		if (s->failed)
2737 			break;
2738 
2739 		/* handle a successful check operation, if parity is correct
2740 		 * we are done.  Otherwise update the mismatch count and repair
2741 		 * parity if !MD_RECOVERY_CHECK
2742 		 */
2743 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2744 			/* parity is correct (on disc,
2745 			 * not in buffer any more)
2746 			 */
2747 			set_bit(STRIPE_INSYNC, &sh->state);
2748 		else {
2749 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2750 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2751 				/* don't try to repair!! */
2752 				set_bit(STRIPE_INSYNC, &sh->state);
2753 			else {
2754 				sh->check_state = check_state_compute_run;
2755 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2756 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2757 				set_bit(R5_Wantcompute,
2758 					&sh->dev[sh->pd_idx].flags);
2759 				sh->ops.target = sh->pd_idx;
2760 				sh->ops.target2 = -1;
2761 				s->uptodate++;
2762 			}
2763 		}
2764 		break;
2765 	case check_state_compute_run:
2766 		break;
2767 	default:
2768 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2769 		       __func__, sh->check_state,
2770 		       (unsigned long long) sh->sector);
2771 		BUG();
2772 	}
2773 }
2774 
2775 
2776 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2777 				  struct stripe_head_state *s,
2778 				  struct r6_state *r6s, int disks)
2779 {
2780 	int pd_idx = sh->pd_idx;
2781 	int qd_idx = sh->qd_idx;
2782 	struct r5dev *dev;
2783 
2784 	set_bit(STRIPE_HANDLE, &sh->state);
2785 
2786 	BUG_ON(s->failed > 2);
2787 
2788 	/* Want to check and possibly repair P and Q.
2789 	 * However there could be one 'failed' device, in which
2790 	 * case we can only check one of them, possibly using the
2791 	 * other to generate missing data
2792 	 */
2793 
2794 	switch (sh->check_state) {
2795 	case check_state_idle:
2796 		/* start a new check operation if there are < 2 failures */
2797 		if (s->failed == r6s->q_failed) {
2798 			/* The only possible failed device holds Q, so it
2799 			 * makes sense to check P (If anything else were failed,
2800 			 * we would have used P to recreate it).
2801 			 */
2802 			sh->check_state = check_state_run;
2803 		}
2804 		if (!r6s->q_failed && s->failed < 2) {
2805 			/* Q is not failed, and we didn't use it to generate
2806 			 * anything, so it makes sense to check it
2807 			 */
2808 			if (sh->check_state == check_state_run)
2809 				sh->check_state = check_state_run_pq;
2810 			else
2811 				sh->check_state = check_state_run_q;
2812 		}
2813 
2814 		/* discard potentially stale zero_sum_result */
2815 		sh->ops.zero_sum_result = 0;
2816 
2817 		if (sh->check_state == check_state_run) {
2818 			/* async_xor_zero_sum destroys the contents of P */
2819 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2820 			s->uptodate--;
2821 		}
2822 		if (sh->check_state >= check_state_run &&
2823 		    sh->check_state <= check_state_run_pq) {
2824 			/* async_syndrome_zero_sum preserves P and Q, so
2825 			 * no need to mark them !uptodate here
2826 			 */
2827 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2828 			break;
2829 		}
2830 
2831 		/* we have 2-disk failure */
2832 		BUG_ON(s->failed != 2);
2833 		/* fall through */
2834 	case check_state_compute_result:
2835 		sh->check_state = check_state_idle;
2836 
2837 		/* check that a write has not made the stripe insync */
2838 		if (test_bit(STRIPE_INSYNC, &sh->state))
2839 			break;
2840 
2841 		/* now write out any block on a failed drive,
2842 		 * or P or Q if they were recomputed
2843 		 */
2844 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2845 		if (s->failed == 2) {
2846 			dev = &sh->dev[r6s->failed_num[1]];
2847 			s->locked++;
2848 			set_bit(R5_LOCKED, &dev->flags);
2849 			set_bit(R5_Wantwrite, &dev->flags);
2850 		}
2851 		if (s->failed >= 1) {
2852 			dev = &sh->dev[r6s->failed_num[0]];
2853 			s->locked++;
2854 			set_bit(R5_LOCKED, &dev->flags);
2855 			set_bit(R5_Wantwrite, &dev->flags);
2856 		}
2857 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2858 			dev = &sh->dev[pd_idx];
2859 			s->locked++;
2860 			set_bit(R5_LOCKED, &dev->flags);
2861 			set_bit(R5_Wantwrite, &dev->flags);
2862 		}
2863 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2864 			dev = &sh->dev[qd_idx];
2865 			s->locked++;
2866 			set_bit(R5_LOCKED, &dev->flags);
2867 			set_bit(R5_Wantwrite, &dev->flags);
2868 		}
2869 		clear_bit(STRIPE_DEGRADED, &sh->state);
2870 
2871 		set_bit(STRIPE_INSYNC, &sh->state);
2872 		break;
2873 	case check_state_run:
2874 	case check_state_run_q:
2875 	case check_state_run_pq:
2876 		break; /* we will be called again upon completion */
2877 	case check_state_check_result:
2878 		sh->check_state = check_state_idle;
2879 
2880 		/* handle a successful check operation, if parity is correct
2881 		 * we are done.  Otherwise update the mismatch count and repair
2882 		 * parity if !MD_RECOVERY_CHECK
2883 		 */
2884 		if (sh->ops.zero_sum_result == 0) {
2885 			/* both parities are correct */
2886 			if (!s->failed)
2887 				set_bit(STRIPE_INSYNC, &sh->state);
2888 			else {
2889 				/* in contrast to the raid5 case we can validate
2890 				 * parity, but still have a failure to write
2891 				 * back
2892 				 */
2893 				sh->check_state = check_state_compute_result;
2894 				/* Returning at this point means that we may go
2895 				 * off and bring p and/or q uptodate again so
2896 				 * we make sure to check zero_sum_result again
2897 				 * to verify if p or q need writeback
2898 				 */
2899 			}
2900 		} else {
2901 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2902 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2903 				/* don't try to repair!! */
2904 				set_bit(STRIPE_INSYNC, &sh->state);
2905 			else {
2906 				int *target = &sh->ops.target;
2907 
2908 				sh->ops.target = -1;
2909 				sh->ops.target2 = -1;
2910 				sh->check_state = check_state_compute_run;
2911 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2912 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2913 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2914 					set_bit(R5_Wantcompute,
2915 						&sh->dev[pd_idx].flags);
2916 					*target = pd_idx;
2917 					target = &sh->ops.target2;
2918 					s->uptodate++;
2919 				}
2920 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2921 					set_bit(R5_Wantcompute,
2922 						&sh->dev[qd_idx].flags);
2923 					*target = qd_idx;
2924 					s->uptodate++;
2925 				}
2926 			}
2927 		}
2928 		break;
2929 	case check_state_compute_run:
2930 		break;
2931 	default:
2932 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2933 		       __func__, sh->check_state,
2934 		       (unsigned long long) sh->sector);
2935 		BUG();
2936 	}
2937 }
2938 
2939 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2940 				struct r6_state *r6s)
2941 {
2942 	int i;
2943 
2944 	/* We have read all the blocks in this stripe and now we need to
2945 	 * copy some of them into a target stripe for expand.
2946 	 */
2947 	struct dma_async_tx_descriptor *tx = NULL;
2948 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2949 	for (i = 0; i < sh->disks; i++)
2950 		if (i != sh->pd_idx && i != sh->qd_idx) {
2951 			int dd_idx, j;
2952 			struct stripe_head *sh2;
2953 			struct async_submit_ctl submit;
2954 
2955 			sector_t bn = compute_blocknr(sh, i, 1);
2956 			sector_t s = raid5_compute_sector(conf, bn, 0,
2957 							  &dd_idx, NULL);
2958 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2959 			if (sh2 == NULL)
2960 				/* so far only the early blocks of this stripe
2961 				 * have been requested.  When later blocks
2962 				 * get requested, we will try again
2963 				 */
2964 				continue;
2965 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2966 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2967 				/* must have already done this block */
2968 				release_stripe(sh2);
2969 				continue;
2970 			}
2971 
2972 			/* place all the copies on one channel */
2973 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2974 			tx = async_memcpy(sh2->dev[dd_idx].page,
2975 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2976 					  &submit);
2977 
2978 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2979 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2980 			for (j = 0; j < conf->raid_disks; j++)
2981 				if (j != sh2->pd_idx &&
2982 				    (!r6s || j != sh2->qd_idx) &&
2983 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2984 					break;
2985 			if (j == conf->raid_disks) {
2986 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2987 				set_bit(STRIPE_HANDLE, &sh2->state);
2988 			}
2989 			release_stripe(sh2);
2990 
2991 		}
2992 	/* done submitting copies, wait for them to complete */
2993 	if (tx) {
2994 		async_tx_ack(tx);
2995 		dma_wait_for_async_tx(tx);
2996 	}
2997 }
2998 
2999 
3000 /*
3001  * handle_stripe - do things to a stripe.
3002  *
3003  * We lock the stripe and then examine the state of various bits
3004  * to see what needs to be done.
3005  * Possible results:
3006  *    return some read request which now have data
3007  *    return some write requests which are safely on disc
3008  *    schedule a read on some buffers
3009  *    schedule a write of some buffers
3010  *    return confirmation of parity correctness
3011  *
3012  * buffers are taken off read_list or write_list, and bh_cache buffers
3013  * get BH_Lock set before the stripe lock is released.
3014  *
3015  */
3016 
3017 static void handle_stripe5(struct stripe_head *sh)
3018 {
3019 	raid5_conf_t *conf = sh->raid_conf;
3020 	int disks = sh->disks, i;
3021 	struct bio *return_bi = NULL;
3022 	struct stripe_head_state s;
3023 	struct r5dev *dev;
3024 	mdk_rdev_t *blocked_rdev = NULL;
3025 	int prexor;
3026 	int dec_preread_active = 0;
3027 
3028 	memset(&s, 0, sizeof(s));
3029 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3030 		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3031 		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3032 		 sh->reconstruct_state);
3033 
3034 	spin_lock(&sh->lock);
3035 	clear_bit(STRIPE_HANDLE, &sh->state);
3036 	clear_bit(STRIPE_DELAYED, &sh->state);
3037 
3038 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3039 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3040 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3041 
3042 	/* Now to look around and see what can be done */
3043 	rcu_read_lock();
3044 	for (i=disks; i--; ) {
3045 		mdk_rdev_t *rdev;
3046 
3047 		dev = &sh->dev[i];
3048 
3049 		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3050 			"written %p\n",	i, dev->flags, dev->toread, dev->read,
3051 			dev->towrite, dev->written);
3052 
3053 		/* maybe we can request a biofill operation
3054 		 *
3055 		 * new wantfill requests are only permitted while
3056 		 * ops_complete_biofill is guaranteed to be inactive
3057 		 */
3058 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3059 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3060 			set_bit(R5_Wantfill, &dev->flags);
3061 
3062 		/* now count some things */
3063 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3064 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3065 		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3066 
3067 		if (test_bit(R5_Wantfill, &dev->flags))
3068 			s.to_fill++;
3069 		else if (dev->toread)
3070 			s.to_read++;
3071 		if (dev->towrite) {
3072 			s.to_write++;
3073 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3074 				s.non_overwrite++;
3075 		}
3076 		if (dev->written)
3077 			s.written++;
3078 		rdev = rcu_dereference(conf->disks[i].rdev);
3079 		if (blocked_rdev == NULL &&
3080 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3081 			blocked_rdev = rdev;
3082 			atomic_inc(&rdev->nr_pending);
3083 		}
3084 		clear_bit(R5_Insync, &dev->flags);
3085 		if (!rdev)
3086 			/* Not in-sync */;
3087 		else if (test_bit(In_sync, &rdev->flags))
3088 			set_bit(R5_Insync, &dev->flags);
3089 		else {
3090 			/* could be in-sync depending on recovery/reshape status */
3091 			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3092 				set_bit(R5_Insync, &dev->flags);
3093 		}
3094 		if (!test_bit(R5_Insync, &dev->flags)) {
3095 			/* The ReadError flag will just be confusing now */
3096 			clear_bit(R5_ReadError, &dev->flags);
3097 			clear_bit(R5_ReWrite, &dev->flags);
3098 		}
3099 		if (test_bit(R5_ReadError, &dev->flags))
3100 			clear_bit(R5_Insync, &dev->flags);
3101 		if (!test_bit(R5_Insync, &dev->flags)) {
3102 			s.failed++;
3103 			s.failed_num = i;
3104 		}
3105 	}
3106 	rcu_read_unlock();
3107 
3108 	if (unlikely(blocked_rdev)) {
3109 		if (s.syncing || s.expanding || s.expanded ||
3110 		    s.to_write || s.written) {
3111 			set_bit(STRIPE_HANDLE, &sh->state);
3112 			goto unlock;
3113 		}
3114 		/* There is nothing for the blocked_rdev to block */
3115 		rdev_dec_pending(blocked_rdev, conf->mddev);
3116 		blocked_rdev = NULL;
3117 	}
3118 
3119 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3120 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3121 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3122 	}
3123 
3124 	pr_debug("locked=%d uptodate=%d to_read=%d"
3125 		" to_write=%d failed=%d failed_num=%d\n",
3126 		s.locked, s.uptodate, s.to_read, s.to_write,
3127 		s.failed, s.failed_num);
3128 	/* check if the array has lost two devices and, if so, some requests might
3129 	 * need to be failed
3130 	 */
3131 	if (s.failed > 1 && s.to_read+s.to_write+s.written)
3132 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3133 	if (s.failed > 1 && s.syncing) {
3134 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3135 		clear_bit(STRIPE_SYNCING, &sh->state);
3136 		s.syncing = 0;
3137 	}
3138 
3139 	/* might be able to return some write requests if the parity block
3140 	 * is safe, or on a failed drive
3141 	 */
3142 	dev = &sh->dev[sh->pd_idx];
3143 	if ( s.written &&
3144 	     ((test_bit(R5_Insync, &dev->flags) &&
3145 	       !test_bit(R5_LOCKED, &dev->flags) &&
3146 	       test_bit(R5_UPTODATE, &dev->flags)) ||
3147 	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
3148 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3149 
3150 	/* Now we might consider reading some blocks, either to check/generate
3151 	 * parity, or to satisfy requests
3152 	 * or to load a block that is being partially written.
3153 	 */
3154 	if (s.to_read || s.non_overwrite ||
3155 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3156 		handle_stripe_fill5(sh, &s, disks);
3157 
3158 	/* Now we check to see if any write operations have recently
3159 	 * completed
3160 	 */
3161 	prexor = 0;
3162 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3163 		prexor = 1;
3164 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3165 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3166 		sh->reconstruct_state = reconstruct_state_idle;
3167 
3168 		/* All the 'written' buffers and the parity block are ready to
3169 		 * be written back to disk
3170 		 */
3171 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3172 		for (i = disks; i--; ) {
3173 			dev = &sh->dev[i];
3174 			if (test_bit(R5_LOCKED, &dev->flags) &&
3175 				(i == sh->pd_idx || dev->written)) {
3176 				pr_debug("Writing block %d\n", i);
3177 				set_bit(R5_Wantwrite, &dev->flags);
3178 				if (prexor)
3179 					continue;
3180 				if (!test_bit(R5_Insync, &dev->flags) ||
3181 				    (i == sh->pd_idx && s.failed == 0))
3182 					set_bit(STRIPE_INSYNC, &sh->state);
3183 			}
3184 		}
3185 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3186 			dec_preread_active = 1;
3187 	}
3188 
3189 	/* Now to consider new write requests and what else, if anything
3190 	 * should be read.  We do not handle new writes when:
3191 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3192 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3193 	 *    block.
3194 	 */
3195 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3196 		handle_stripe_dirtying5(conf, sh, &s, disks);
3197 
3198 	/* maybe we need to check and possibly fix the parity for this stripe
3199 	 * Any reads will already have been scheduled, so we just see if enough
3200 	 * data is available.  The parity check is held off while parity
3201 	 * dependent operations are in flight.
3202 	 */
3203 	if (sh->check_state ||
3204 	    (s.syncing && s.locked == 0 &&
3205 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3206 	     !test_bit(STRIPE_INSYNC, &sh->state)))
3207 		handle_parity_checks5(conf, sh, &s, disks);
3208 
3209 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3210 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3211 		clear_bit(STRIPE_SYNCING, &sh->state);
3212 	}
3213 
3214 	/* If the failed drive is just a ReadError, then we might need to progress
3215 	 * the repair/check process
3216 	 */
3217 	if (s.failed == 1 && !conf->mddev->ro &&
3218 	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3219 	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3220 	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3221 		) {
3222 		dev = &sh->dev[s.failed_num];
3223 		if (!test_bit(R5_ReWrite, &dev->flags)) {
3224 			set_bit(R5_Wantwrite, &dev->flags);
3225 			set_bit(R5_ReWrite, &dev->flags);
3226 			set_bit(R5_LOCKED, &dev->flags);
3227 			s.locked++;
3228 		} else {
3229 			/* let's read it back */
3230 			set_bit(R5_Wantread, &dev->flags);
3231 			set_bit(R5_LOCKED, &dev->flags);
3232 			s.locked++;
3233 		}
3234 	}
3235 
3236 	/* Finish reconstruct operations initiated by the expansion process */
3237 	if (sh->reconstruct_state == reconstruct_state_result) {
3238 		struct stripe_head *sh2
3239 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3240 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3241 			/* sh cannot be written until sh2 has been read.
3242 			 * so arrange for sh to be delayed a little
3243 			 */
3244 			set_bit(STRIPE_DELAYED, &sh->state);
3245 			set_bit(STRIPE_HANDLE, &sh->state);
3246 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3247 					      &sh2->state))
3248 				atomic_inc(&conf->preread_active_stripes);
3249 			release_stripe(sh2);
3250 			goto unlock;
3251 		}
3252 		if (sh2)
3253 			release_stripe(sh2);
3254 
3255 		sh->reconstruct_state = reconstruct_state_idle;
3256 		clear_bit(STRIPE_EXPANDING, &sh->state);
3257 		for (i = conf->raid_disks; i--; ) {
3258 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3259 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3260 			s.locked++;
3261 		}
3262 	}
3263 
3264 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3265 	    !sh->reconstruct_state) {
3266 		/* Need to write out all blocks after computing parity */
3267 		sh->disks = conf->raid_disks;
3268 		stripe_set_idx(sh->sector, conf, 0, sh);
3269 		schedule_reconstruction(sh, &s, 1, 1);
3270 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3271 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3272 		atomic_dec(&conf->reshape_stripes);
3273 		wake_up(&conf->wait_for_overlap);
3274 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3275 	}
3276 
3277 	if (s.expanding && s.locked == 0 &&
3278 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3279 		handle_stripe_expansion(conf, sh, NULL);
3280 
3281  unlock:
3282 	spin_unlock(&sh->lock);
3283 
3284 	/* wait for this device to become unblocked */
3285 	if (unlikely(blocked_rdev))
3286 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3287 
3288 	if (s.ops_request)
3289 		raid_run_ops(sh, s.ops_request);
3290 
3291 	ops_run_io(sh, &s);
3292 
3293 	if (dec_preread_active) {
3294 		/* We delay this until after ops_run_io so that if make_request
3295 		 * is waiting on a flush, it won't continue until the writes
3296 		 * have actually been submitted.
3297 		 */
3298 		atomic_dec(&conf->preread_active_stripes);
3299 		if (atomic_read(&conf->preread_active_stripes) <
3300 		    IO_THRESHOLD)
3301 			md_wakeup_thread(conf->mddev->thread);
3302 	}
3303 	return_io(return_bi);
3304 }
3305 
3306 static void handle_stripe6(struct stripe_head *sh)
3307 {
3308 	raid5_conf_t *conf = sh->raid_conf;
3309 	int disks = sh->disks;
3310 	struct bio *return_bi = NULL;
3311 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3312 	struct stripe_head_state s;
3313 	struct r6_state r6s;
3314 	struct r5dev *dev, *pdev, *qdev;
3315 	mdk_rdev_t *blocked_rdev = NULL;
3316 	int dec_preread_active = 0;
3317 
3318 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3319 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3320 	       (unsigned long long)sh->sector, sh->state,
3321 	       atomic_read(&sh->count), pd_idx, qd_idx,
3322 	       sh->check_state, sh->reconstruct_state);
3323 	memset(&s, 0, sizeof(s));
3324 
3325 	spin_lock(&sh->lock);
3326 	clear_bit(STRIPE_HANDLE, &sh->state);
3327 	clear_bit(STRIPE_DELAYED, &sh->state);
3328 
3329 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3330 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3331 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3332 	/* Now to look around and see what can be done */
3333 
3334 	rcu_read_lock();
3335 	for (i=disks; i--; ) {
3336 		mdk_rdev_t *rdev;
3337 		dev = &sh->dev[i];
3338 
3339 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3340 			i, dev->flags, dev->toread, dev->towrite, dev->written);
3341 		/* maybe we can reply to a read
3342 		 *
3343 		 * new wantfill requests are only permitted while
3344 		 * ops_complete_biofill is guaranteed to be inactive
3345 		 */
3346 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3347 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3348 			set_bit(R5_Wantfill, &dev->flags);
3349 
3350 		/* now count some things */
3351 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3352 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3353 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3354 			s.compute++;
3355 			BUG_ON(s.compute > 2);
3356 		}
3357 
3358 		if (test_bit(R5_Wantfill, &dev->flags)) {
3359 			s.to_fill++;
3360 		} else if (dev->toread)
3361 			s.to_read++;
3362 		if (dev->towrite) {
3363 			s.to_write++;
3364 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3365 				s.non_overwrite++;
3366 		}
3367 		if (dev->written)
3368 			s.written++;
3369 		rdev = rcu_dereference(conf->disks[i].rdev);
3370 		if (blocked_rdev == NULL &&
3371 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3372 			blocked_rdev = rdev;
3373 			atomic_inc(&rdev->nr_pending);
3374 		}
3375 		clear_bit(R5_Insync, &dev->flags);
3376 		if (!rdev)
3377 			/* Not in-sync */;
3378 		else if (test_bit(In_sync, &rdev->flags))
3379 			set_bit(R5_Insync, &dev->flags);
3380 		else {
3381 			/* in sync if before recovery_offset */
3382 			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3383 				set_bit(R5_Insync, &dev->flags);
3384 		}
3385 		if (!test_bit(R5_Insync, &dev->flags)) {
3386 			/* The ReadError flag will just be confusing now */
3387 			clear_bit(R5_ReadError, &dev->flags);
3388 			clear_bit(R5_ReWrite, &dev->flags);
3389 		}
3390 		if (test_bit(R5_ReadError, &dev->flags))
3391 			clear_bit(R5_Insync, &dev->flags);
3392 		if (!test_bit(R5_Insync, &dev->flags)) {
3393 			if (s.failed < 2)
3394 				r6s.failed_num[s.failed] = i;
3395 			s.failed++;
3396 		}
3397 	}
3398 	rcu_read_unlock();
3399 
3400 	if (unlikely(blocked_rdev)) {
3401 		if (s.syncing || s.expanding || s.expanded ||
3402 		    s.to_write || s.written) {
3403 			set_bit(STRIPE_HANDLE, &sh->state);
3404 			goto unlock;
3405 		}
3406 		/* There is nothing for the blocked_rdev to block */
3407 		rdev_dec_pending(blocked_rdev, conf->mddev);
3408 		blocked_rdev = NULL;
3409 	}
3410 
3411 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3412 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3413 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3414 	}
3415 
3416 	pr_debug("locked=%d uptodate=%d to_read=%d"
3417 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3418 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3419 	       r6s.failed_num[0], r6s.failed_num[1]);
3420 	/* check if the array has lost >2 devices and, if so, some requests
3421 	 * might need to be failed
3422 	 */
3423 	if (s.failed > 2 && s.to_read+s.to_write+s.written)
3424 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3425 	if (s.failed > 2 && s.syncing) {
3426 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3427 		clear_bit(STRIPE_SYNCING, &sh->state);
3428 		s.syncing = 0;
3429 	}
3430 
3431 	/*
3432 	 * might be able to return some write requests if the parity blocks
3433 	 * are safe, or on a failed drive
3434 	 */
3435 	pdev = &sh->dev[pd_idx];
3436 	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3437 		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3438 	qdev = &sh->dev[qd_idx];
3439 	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3440 		|| (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3441 
3442 	if ( s.written &&
3443 	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3444 			     && !test_bit(R5_LOCKED, &pdev->flags)
3445 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3446 	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3447 			     && !test_bit(R5_LOCKED, &qdev->flags)
3448 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3449 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
3450 
3451 	/* Now we might consider reading some blocks, either to check/generate
3452 	 * parity, or to satisfy requests
3453 	 * or to load a block that is being partially written.
3454 	 */
3455 	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3456 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3457 		handle_stripe_fill6(sh, &s, &r6s, disks);
3458 
3459 	/* Now we check to see if any write operations have recently
3460 	 * completed
3461 	 */
3462 	if (sh->reconstruct_state == reconstruct_state_drain_result) {
3463 
3464 		sh->reconstruct_state = reconstruct_state_idle;
3465 		/* All the 'written' buffers and the parity blocks are ready to
3466 		 * be written back to disk
3467 		 */
3468 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3469 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3470 		for (i = disks; i--; ) {
3471 			dev = &sh->dev[i];
3472 			if (test_bit(R5_LOCKED, &dev->flags) &&
3473 			    (i == sh->pd_idx || i == qd_idx ||
3474 			     dev->written)) {
3475 				pr_debug("Writing block %d\n", i);
3476 				BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3477 				set_bit(R5_Wantwrite, &dev->flags);
3478 				if (!test_bit(R5_Insync, &dev->flags) ||
3479 				    ((i == sh->pd_idx || i == qd_idx) &&
3480 				      s.failed == 0))
3481 					set_bit(STRIPE_INSYNC, &sh->state);
3482 			}
3483 		}
3484 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3485 			dec_preread_active = 1;
3486 	}
3487 
3488 	/* Now to consider new write requests and what else, if anything
3489 	 * should be read.  We do not handle new writes when:
3490 	 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3491 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3492 	 *    block.
3493 	 */
3494 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3495 		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3496 
3497 	/* maybe we need to check and possibly fix the parity for this stripe
3498 	 * Any reads will already have been scheduled, so we just see if enough
3499 	 * data is available.  The parity check is held off while parity
3500 	 * dependent operations are in flight.
3501 	 */
3502 	if (sh->check_state ||
3503 	    (s.syncing && s.locked == 0 &&
3504 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3505 	     !test_bit(STRIPE_INSYNC, &sh->state)))
3506 		handle_parity_checks6(conf, sh, &s, &r6s, disks);
3507 
3508 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3509 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3510 		clear_bit(STRIPE_SYNCING, &sh->state);
3511 	}
3512 
3513 	/* If the failed drives are just a ReadError, then we might need
3514 	 * to progress the repair/check process
3515 	 */
3516 	if (s.failed <= 2 && !conf->mddev->ro)
3517 		for (i = 0; i < s.failed; i++) {
3518 			dev = &sh->dev[r6s.failed_num[i]];
3519 			if (test_bit(R5_ReadError, &dev->flags)
3520 			    && !test_bit(R5_LOCKED, &dev->flags)
3521 			    && test_bit(R5_UPTODATE, &dev->flags)
3522 				) {
3523 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3524 					set_bit(R5_Wantwrite, &dev->flags);
3525 					set_bit(R5_ReWrite, &dev->flags);
3526 					set_bit(R5_LOCKED, &dev->flags);
3527 					s.locked++;
3528 				} else {
3529 					/* let's read it back */
3530 					set_bit(R5_Wantread, &dev->flags);
3531 					set_bit(R5_LOCKED, &dev->flags);
3532 					s.locked++;
3533 				}
3534 			}
3535 		}
3536 
3537 	/* Finish reconstruct operations initiated by the expansion process */
3538 	if (sh->reconstruct_state == reconstruct_state_result) {
3539 		sh->reconstruct_state = reconstruct_state_idle;
3540 		clear_bit(STRIPE_EXPANDING, &sh->state);
3541 		for (i = conf->raid_disks; i--; ) {
3542 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3543 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3544 			s.locked++;
3545 		}
3546 	}
3547 
3548 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3549 	    !sh->reconstruct_state) {
3550 		struct stripe_head *sh2
3551 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3552 		if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3553 			/* sh cannot be written until sh2 has been read.
3554 			 * so arrange for sh to be delayed a little
3555 			 */
3556 			set_bit(STRIPE_DELAYED, &sh->state);
3557 			set_bit(STRIPE_HANDLE, &sh->state);
3558 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3559 					      &sh2->state))
3560 				atomic_inc(&conf->preread_active_stripes);
3561 			release_stripe(sh2);
3562 			goto unlock;
3563 		}
3564 		if (sh2)
3565 			release_stripe(sh2);
3566 
3567 		/* Need to write out all blocks after computing P&Q */
3568 		sh->disks = conf->raid_disks;
3569 		stripe_set_idx(sh->sector, conf, 0, sh);
3570 		schedule_reconstruction(sh, &s, 1, 1);
3571 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3572 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3573 		atomic_dec(&conf->reshape_stripes);
3574 		wake_up(&conf->wait_for_overlap);
3575 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3576 	}
3577 
3578 	if (s.expanding && s.locked == 0 &&
3579 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3580 		handle_stripe_expansion(conf, sh, &r6s);
3581 
3582  unlock:
3583 	spin_unlock(&sh->lock);
3584 
3585 	/* wait for this device to become unblocked */
3586 	if (unlikely(blocked_rdev))
3587 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3588 
3589 	if (s.ops_request)
3590 		raid_run_ops(sh, s.ops_request);
3591 
3592 	ops_run_io(sh, &s);
3593 
3594 
3595 	if (dec_preread_active) {
3596 		/* We delay this until after ops_run_io so that if make_request
3597 		 * is waiting on a flush, it won't continue until the writes
3598 		 * have actually been submitted.
3599 		 */
3600 		atomic_dec(&conf->preread_active_stripes);
3601 		if (atomic_read(&conf->preread_active_stripes) <
3602 		    IO_THRESHOLD)
3603 			md_wakeup_thread(conf->mddev->thread);
3604 	}
3605 
3606 	return_io(return_bi);
3607 }
3608 
3609 static void handle_stripe(struct stripe_head *sh)
3610 {
3611 	if (sh->raid_conf->level == 6)
3612 		handle_stripe6(sh);
3613 	else
3614 		handle_stripe5(sh);
3615 }
3616 
3617 static void raid5_activate_delayed(raid5_conf_t *conf)
3618 {
3619 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3620 		while (!list_empty(&conf->delayed_list)) {
3621 			struct list_head *l = conf->delayed_list.next;
3622 			struct stripe_head *sh;
3623 			sh = list_entry(l, struct stripe_head, lru);
3624 			list_del_init(l);
3625 			clear_bit(STRIPE_DELAYED, &sh->state);
3626 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3627 				atomic_inc(&conf->preread_active_stripes);
3628 			list_add_tail(&sh->lru, &conf->hold_list);
3629 		}
3630 	} else
3631 		plugger_set_plug(&conf->plug);
3632 }
3633 
3634 static void activate_bit_delay(raid5_conf_t *conf)
3635 {
3636 	/* device_lock is held */
3637 	struct list_head head;
3638 	list_add(&head, &conf->bitmap_list);
3639 	list_del_init(&conf->bitmap_list);
3640 	while (!list_empty(&head)) {
3641 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3642 		list_del_init(&sh->lru);
3643 		atomic_inc(&sh->count);
3644 		__release_stripe(conf, sh);
3645 	}
3646 }
3647 
3648 static void unplug_slaves(mddev_t *mddev)
3649 {
3650 	raid5_conf_t *conf = mddev->private;
3651 	int i;
3652 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
3653 
3654 	rcu_read_lock();
3655 	for (i = 0; i < devs; i++) {
3656 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3657 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3658 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3659 
3660 			atomic_inc(&rdev->nr_pending);
3661 			rcu_read_unlock();
3662 
3663 			blk_unplug(r_queue);
3664 
3665 			rdev_dec_pending(rdev, mddev);
3666 			rcu_read_lock();
3667 		}
3668 	}
3669 	rcu_read_unlock();
3670 }
3671 
3672 void md_raid5_unplug_device(raid5_conf_t *conf)
3673 {
3674 	unsigned long flags;
3675 
3676 	spin_lock_irqsave(&conf->device_lock, flags);
3677 
3678 	if (plugger_remove_plug(&conf->plug)) {
3679 		conf->seq_flush++;
3680 		raid5_activate_delayed(conf);
3681 	}
3682 	md_wakeup_thread(conf->mddev->thread);
3683 
3684 	spin_unlock_irqrestore(&conf->device_lock, flags);
3685 
3686 	unplug_slaves(conf->mddev);
3687 }
3688 EXPORT_SYMBOL_GPL(md_raid5_unplug_device);
3689 
3690 static void raid5_unplug(struct plug_handle *plug)
3691 {
3692 	raid5_conf_t *conf = container_of(plug, raid5_conf_t, plug);
3693 	md_raid5_unplug_device(conf);
3694 }
3695 
3696 static void raid5_unplug_queue(struct request_queue *q)
3697 {
3698 	mddev_t *mddev = q->queuedata;
3699 	md_raid5_unplug_device(mddev->private);
3700 }
3701 
3702 int md_raid5_congested(mddev_t *mddev, int bits)
3703 {
3704 	raid5_conf_t *conf = mddev->private;
3705 
3706 	/* No difference between reads and writes.  Just check
3707 	 * how busy the stripe_cache is
3708 	 */
3709 
3710 	if (conf->inactive_blocked)
3711 		return 1;
3712 	if (conf->quiesce)
3713 		return 1;
3714 	if (list_empty_careful(&conf->inactive_list))
3715 		return 1;
3716 
3717 	return 0;
3718 }
3719 EXPORT_SYMBOL_GPL(md_raid5_congested);
3720 
3721 static int raid5_congested(void *data, int bits)
3722 {
3723 	mddev_t *mddev = data;
3724 
3725 	return mddev_congested(mddev, bits) ||
3726 		md_raid5_congested(mddev, bits);
3727 }
3728 
3729 /* We want read requests to align with chunks where possible,
3730  * but write requests don't need to.
3731  */
3732 static int raid5_mergeable_bvec(struct request_queue *q,
3733 				struct bvec_merge_data *bvm,
3734 				struct bio_vec *biovec)
3735 {
3736 	mddev_t *mddev = q->queuedata;
3737 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3738 	int max;
3739 	unsigned int chunk_sectors = mddev->chunk_sectors;
3740 	unsigned int bio_sectors = bvm->bi_size >> 9;
3741 
3742 	if ((bvm->bi_rw & 1) == WRITE)
3743 		return biovec->bv_len; /* always allow writes to be mergeable */
3744 
3745 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3746 		chunk_sectors = mddev->new_chunk_sectors;
3747 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3748 	if (max < 0) max = 0;
3749 	if (max <= biovec->bv_len && bio_sectors == 0)
3750 		return biovec->bv_len;
3751 	else
3752 		return max;
3753 }
3754 
3755 
3756 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3757 {
3758 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3759 	unsigned int chunk_sectors = mddev->chunk_sectors;
3760 	unsigned int bio_sectors = bio->bi_size >> 9;
3761 
3762 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3763 		chunk_sectors = mddev->new_chunk_sectors;
3764 	return  chunk_sectors >=
3765 		((sector & (chunk_sectors - 1)) + bio_sectors);
3766 }
3767 
3768 /*
3769  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3770  *  later sampled by raid5d.
3771  */
3772 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3773 {
3774 	unsigned long flags;
3775 
3776 	spin_lock_irqsave(&conf->device_lock, flags);
3777 
3778 	bi->bi_next = conf->retry_read_aligned_list;
3779 	conf->retry_read_aligned_list = bi;
3780 
3781 	spin_unlock_irqrestore(&conf->device_lock, flags);
3782 	md_wakeup_thread(conf->mddev->thread);
3783 }
3784 
3785 
3786 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3787 {
3788 	struct bio *bi;
3789 
3790 	bi = conf->retry_read_aligned;
3791 	if (bi) {
3792 		conf->retry_read_aligned = NULL;
3793 		return bi;
3794 	}
3795 	bi = conf->retry_read_aligned_list;
3796 	if(bi) {
3797 		conf->retry_read_aligned_list = bi->bi_next;
3798 		bi->bi_next = NULL;
3799 		/*
3800 		 * this sets the active strip count to 1 and the processed
3801 		 * strip count to zero (upper 8 bits)
3802 		 */
3803 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3804 	}
3805 
3806 	return bi;
3807 }
3808 
3809 
3810 /*
3811  *  The "raid5_align_endio" should check if the read succeeded and if it
3812  *  did, call bio_endio on the original bio (having bio_put the new bio
3813  *  first).
3814  *  If the read failed..
3815  */
3816 static void raid5_align_endio(struct bio *bi, int error)
3817 {
3818 	struct bio* raid_bi  = bi->bi_private;
3819 	mddev_t *mddev;
3820 	raid5_conf_t *conf;
3821 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3822 	mdk_rdev_t *rdev;
3823 
3824 	bio_put(bi);
3825 
3826 	rdev = (void*)raid_bi->bi_next;
3827 	raid_bi->bi_next = NULL;
3828 	mddev = rdev->mddev;
3829 	conf = mddev->private;
3830 
3831 	rdev_dec_pending(rdev, conf->mddev);
3832 
3833 	if (!error && uptodate) {
3834 		bio_endio(raid_bi, 0);
3835 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3836 			wake_up(&conf->wait_for_stripe);
3837 		return;
3838 	}
3839 
3840 
3841 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3842 
3843 	add_bio_to_retry(raid_bi, conf);
3844 }
3845 
3846 static int bio_fits_rdev(struct bio *bi)
3847 {
3848 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3849 
3850 	if ((bi->bi_size>>9) > queue_max_sectors(q))
3851 		return 0;
3852 	blk_recount_segments(q, bi);
3853 	if (bi->bi_phys_segments > queue_max_segments(q))
3854 		return 0;
3855 
3856 	if (q->merge_bvec_fn)
3857 		/* it's too hard to apply the merge_bvec_fn at this stage,
3858 		 * just just give up
3859 		 */
3860 		return 0;
3861 
3862 	return 1;
3863 }
3864 
3865 
3866 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3867 {
3868 	raid5_conf_t *conf = mddev->private;
3869 	int dd_idx;
3870 	struct bio* align_bi;
3871 	mdk_rdev_t *rdev;
3872 
3873 	if (!in_chunk_boundary(mddev, raid_bio)) {
3874 		pr_debug("chunk_aligned_read : non aligned\n");
3875 		return 0;
3876 	}
3877 	/*
3878 	 * use bio_clone_mddev to make a copy of the bio
3879 	 */
3880 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3881 	if (!align_bi)
3882 		return 0;
3883 	/*
3884 	 *   set bi_end_io to a new function, and set bi_private to the
3885 	 *     original bio.
3886 	 */
3887 	align_bi->bi_end_io  = raid5_align_endio;
3888 	align_bi->bi_private = raid_bio;
3889 	/*
3890 	 *	compute position
3891 	 */
3892 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3893 						    0,
3894 						    &dd_idx, NULL);
3895 
3896 	rcu_read_lock();
3897 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3898 	if (rdev && test_bit(In_sync, &rdev->flags)) {
3899 		atomic_inc(&rdev->nr_pending);
3900 		rcu_read_unlock();
3901 		raid_bio->bi_next = (void*)rdev;
3902 		align_bi->bi_bdev =  rdev->bdev;
3903 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3904 		align_bi->bi_sector += rdev->data_offset;
3905 
3906 		if (!bio_fits_rdev(align_bi)) {
3907 			/* too big in some way */
3908 			bio_put(align_bi);
3909 			rdev_dec_pending(rdev, mddev);
3910 			return 0;
3911 		}
3912 
3913 		spin_lock_irq(&conf->device_lock);
3914 		wait_event_lock_irq(conf->wait_for_stripe,
3915 				    conf->quiesce == 0,
3916 				    conf->device_lock, /* nothing */);
3917 		atomic_inc(&conf->active_aligned_reads);
3918 		spin_unlock_irq(&conf->device_lock);
3919 
3920 		generic_make_request(align_bi);
3921 		return 1;
3922 	} else {
3923 		rcu_read_unlock();
3924 		bio_put(align_bi);
3925 		return 0;
3926 	}
3927 }
3928 
3929 /* __get_priority_stripe - get the next stripe to process
3930  *
3931  * Full stripe writes are allowed to pass preread active stripes up until
3932  * the bypass_threshold is exceeded.  In general the bypass_count
3933  * increments when the handle_list is handled before the hold_list; however, it
3934  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3935  * stripe with in flight i/o.  The bypass_count will be reset when the
3936  * head of the hold_list has changed, i.e. the head was promoted to the
3937  * handle_list.
3938  */
3939 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3940 {
3941 	struct stripe_head *sh;
3942 
3943 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3944 		  __func__,
3945 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3946 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3947 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3948 
3949 	if (!list_empty(&conf->handle_list)) {
3950 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3951 
3952 		if (list_empty(&conf->hold_list))
3953 			conf->bypass_count = 0;
3954 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3955 			if (conf->hold_list.next == conf->last_hold)
3956 				conf->bypass_count++;
3957 			else {
3958 				conf->last_hold = conf->hold_list.next;
3959 				conf->bypass_count -= conf->bypass_threshold;
3960 				if (conf->bypass_count < 0)
3961 					conf->bypass_count = 0;
3962 			}
3963 		}
3964 	} else if (!list_empty(&conf->hold_list) &&
3965 		   ((conf->bypass_threshold &&
3966 		     conf->bypass_count > conf->bypass_threshold) ||
3967 		    atomic_read(&conf->pending_full_writes) == 0)) {
3968 		sh = list_entry(conf->hold_list.next,
3969 				typeof(*sh), lru);
3970 		conf->bypass_count -= conf->bypass_threshold;
3971 		if (conf->bypass_count < 0)
3972 			conf->bypass_count = 0;
3973 	} else
3974 		return NULL;
3975 
3976 	list_del_init(&sh->lru);
3977 	atomic_inc(&sh->count);
3978 	BUG_ON(atomic_read(&sh->count) != 1);
3979 	return sh;
3980 }
3981 
3982 static int make_request(mddev_t *mddev, struct bio * bi)
3983 {
3984 	raid5_conf_t *conf = mddev->private;
3985 	int dd_idx;
3986 	sector_t new_sector;
3987 	sector_t logical_sector, last_sector;
3988 	struct stripe_head *sh;
3989 	const int rw = bio_data_dir(bi);
3990 	int remaining;
3991 
3992 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3993 		md_flush_request(mddev, bi);
3994 		return 0;
3995 	}
3996 
3997 	md_write_start(mddev, bi);
3998 
3999 	if (rw == READ &&
4000 	     mddev->reshape_position == MaxSector &&
4001 	     chunk_aligned_read(mddev,bi))
4002 		return 0;
4003 
4004 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4005 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4006 	bi->bi_next = NULL;
4007 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4008 
4009 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4010 		DEFINE_WAIT(w);
4011 		int disks, data_disks;
4012 		int previous;
4013 
4014 	retry:
4015 		previous = 0;
4016 		disks = conf->raid_disks;
4017 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4018 		if (unlikely(conf->reshape_progress != MaxSector)) {
4019 			/* spinlock is needed as reshape_progress may be
4020 			 * 64bit on a 32bit platform, and so it might be
4021 			 * possible to see a half-updated value
4022 			 * Ofcourse reshape_progress could change after
4023 			 * the lock is dropped, so once we get a reference
4024 			 * to the stripe that we think it is, we will have
4025 			 * to check again.
4026 			 */
4027 			spin_lock_irq(&conf->device_lock);
4028 			if (mddev->delta_disks < 0
4029 			    ? logical_sector < conf->reshape_progress
4030 			    : logical_sector >= conf->reshape_progress) {
4031 				disks = conf->previous_raid_disks;
4032 				previous = 1;
4033 			} else {
4034 				if (mddev->delta_disks < 0
4035 				    ? logical_sector < conf->reshape_safe
4036 				    : logical_sector >= conf->reshape_safe) {
4037 					spin_unlock_irq(&conf->device_lock);
4038 					schedule();
4039 					goto retry;
4040 				}
4041 			}
4042 			spin_unlock_irq(&conf->device_lock);
4043 		}
4044 		data_disks = disks - conf->max_degraded;
4045 
4046 		new_sector = raid5_compute_sector(conf, logical_sector,
4047 						  previous,
4048 						  &dd_idx, NULL);
4049 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4050 			(unsigned long long)new_sector,
4051 			(unsigned long long)logical_sector);
4052 
4053 		sh = get_active_stripe(conf, new_sector, previous,
4054 				       (bi->bi_rw&RWA_MASK), 0);
4055 		if (sh) {
4056 			if (unlikely(previous)) {
4057 				/* expansion might have moved on while waiting for a
4058 				 * stripe, so we must do the range check again.
4059 				 * Expansion could still move past after this
4060 				 * test, but as we are holding a reference to
4061 				 * 'sh', we know that if that happens,
4062 				 *  STRIPE_EXPANDING will get set and the expansion
4063 				 * won't proceed until we finish with the stripe.
4064 				 */
4065 				int must_retry = 0;
4066 				spin_lock_irq(&conf->device_lock);
4067 				if (mddev->delta_disks < 0
4068 				    ? logical_sector >= conf->reshape_progress
4069 				    : logical_sector < conf->reshape_progress)
4070 					/* mismatch, need to try again */
4071 					must_retry = 1;
4072 				spin_unlock_irq(&conf->device_lock);
4073 				if (must_retry) {
4074 					release_stripe(sh);
4075 					schedule();
4076 					goto retry;
4077 				}
4078 			}
4079 
4080 			if (bio_data_dir(bi) == WRITE &&
4081 			    logical_sector >= mddev->suspend_lo &&
4082 			    logical_sector < mddev->suspend_hi) {
4083 				release_stripe(sh);
4084 				/* As the suspend_* range is controlled by
4085 				 * userspace, we want an interruptible
4086 				 * wait.
4087 				 */
4088 				flush_signals(current);
4089 				prepare_to_wait(&conf->wait_for_overlap,
4090 						&w, TASK_INTERRUPTIBLE);
4091 				if (logical_sector >= mddev->suspend_lo &&
4092 				    logical_sector < mddev->suspend_hi)
4093 					schedule();
4094 				goto retry;
4095 			}
4096 
4097 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4098 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4099 				/* Stripe is busy expanding or
4100 				 * add failed due to overlap.  Flush everything
4101 				 * and wait a while
4102 				 */
4103 				md_raid5_unplug_device(conf);
4104 				release_stripe(sh);
4105 				schedule();
4106 				goto retry;
4107 			}
4108 			finish_wait(&conf->wait_for_overlap, &w);
4109 			set_bit(STRIPE_HANDLE, &sh->state);
4110 			clear_bit(STRIPE_DELAYED, &sh->state);
4111 			if ((bi->bi_rw & REQ_SYNC) &&
4112 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4113 				atomic_inc(&conf->preread_active_stripes);
4114 			release_stripe(sh);
4115 		} else {
4116 			/* cannot get stripe for read-ahead, just give-up */
4117 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4118 			finish_wait(&conf->wait_for_overlap, &w);
4119 			break;
4120 		}
4121 
4122 	}
4123 	spin_lock_irq(&conf->device_lock);
4124 	remaining = raid5_dec_bi_phys_segments(bi);
4125 	spin_unlock_irq(&conf->device_lock);
4126 	if (remaining == 0) {
4127 
4128 		if ( rw == WRITE )
4129 			md_write_end(mddev);
4130 
4131 		bio_endio(bi, 0);
4132 	}
4133 
4134 	return 0;
4135 }
4136 
4137 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4138 
4139 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4140 {
4141 	/* reshaping is quite different to recovery/resync so it is
4142 	 * handled quite separately ... here.
4143 	 *
4144 	 * On each call to sync_request, we gather one chunk worth of
4145 	 * destination stripes and flag them as expanding.
4146 	 * Then we find all the source stripes and request reads.
4147 	 * As the reads complete, handle_stripe will copy the data
4148 	 * into the destination stripe and release that stripe.
4149 	 */
4150 	raid5_conf_t *conf = mddev->private;
4151 	struct stripe_head *sh;
4152 	sector_t first_sector, last_sector;
4153 	int raid_disks = conf->previous_raid_disks;
4154 	int data_disks = raid_disks - conf->max_degraded;
4155 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4156 	int i;
4157 	int dd_idx;
4158 	sector_t writepos, readpos, safepos;
4159 	sector_t stripe_addr;
4160 	int reshape_sectors;
4161 	struct list_head stripes;
4162 
4163 	if (sector_nr == 0) {
4164 		/* If restarting in the middle, skip the initial sectors */
4165 		if (mddev->delta_disks < 0 &&
4166 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4167 			sector_nr = raid5_size(mddev, 0, 0)
4168 				- conf->reshape_progress;
4169 		} else if (mddev->delta_disks >= 0 &&
4170 			   conf->reshape_progress > 0)
4171 			sector_nr = conf->reshape_progress;
4172 		sector_div(sector_nr, new_data_disks);
4173 		if (sector_nr) {
4174 			mddev->curr_resync_completed = sector_nr;
4175 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4176 			*skipped = 1;
4177 			return sector_nr;
4178 		}
4179 	}
4180 
4181 	/* We need to process a full chunk at a time.
4182 	 * If old and new chunk sizes differ, we need to process the
4183 	 * largest of these
4184 	 */
4185 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4186 		reshape_sectors = mddev->new_chunk_sectors;
4187 	else
4188 		reshape_sectors = mddev->chunk_sectors;
4189 
4190 	/* we update the metadata when there is more than 3Meg
4191 	 * in the block range (that is rather arbitrary, should
4192 	 * probably be time based) or when the data about to be
4193 	 * copied would over-write the source of the data at
4194 	 * the front of the range.
4195 	 * i.e. one new_stripe along from reshape_progress new_maps
4196 	 * to after where reshape_safe old_maps to
4197 	 */
4198 	writepos = conf->reshape_progress;
4199 	sector_div(writepos, new_data_disks);
4200 	readpos = conf->reshape_progress;
4201 	sector_div(readpos, data_disks);
4202 	safepos = conf->reshape_safe;
4203 	sector_div(safepos, data_disks);
4204 	if (mddev->delta_disks < 0) {
4205 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4206 		readpos += reshape_sectors;
4207 		safepos += reshape_sectors;
4208 	} else {
4209 		writepos += reshape_sectors;
4210 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4211 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4212 	}
4213 
4214 	/* 'writepos' is the most advanced device address we might write.
4215 	 * 'readpos' is the least advanced device address we might read.
4216 	 * 'safepos' is the least address recorded in the metadata as having
4217 	 *     been reshaped.
4218 	 * If 'readpos' is behind 'writepos', then there is no way that we can
4219 	 * ensure safety in the face of a crash - that must be done by userspace
4220 	 * making a backup of the data.  So in that case there is no particular
4221 	 * rush to update metadata.
4222 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4223 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4224 	 * we can be safe in the event of a crash.
4225 	 * So we insist on updating metadata if safepos is behind writepos and
4226 	 * readpos is beyond writepos.
4227 	 * In any case, update the metadata every 10 seconds.
4228 	 * Maybe that number should be configurable, but I'm not sure it is
4229 	 * worth it.... maybe it could be a multiple of safemode_delay???
4230 	 */
4231 	if ((mddev->delta_disks < 0
4232 	     ? (safepos > writepos && readpos < writepos)
4233 	     : (safepos < writepos && readpos > writepos)) ||
4234 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4235 		/* Cannot proceed until we've updated the superblock... */
4236 		wait_event(conf->wait_for_overlap,
4237 			   atomic_read(&conf->reshape_stripes)==0);
4238 		mddev->reshape_position = conf->reshape_progress;
4239 		mddev->curr_resync_completed = sector_nr;
4240 		conf->reshape_checkpoint = jiffies;
4241 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4242 		md_wakeup_thread(mddev->thread);
4243 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4244 			   kthread_should_stop());
4245 		spin_lock_irq(&conf->device_lock);
4246 		conf->reshape_safe = mddev->reshape_position;
4247 		spin_unlock_irq(&conf->device_lock);
4248 		wake_up(&conf->wait_for_overlap);
4249 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4250 	}
4251 
4252 	if (mddev->delta_disks < 0) {
4253 		BUG_ON(conf->reshape_progress == 0);
4254 		stripe_addr = writepos;
4255 		BUG_ON((mddev->dev_sectors &
4256 			~((sector_t)reshape_sectors - 1))
4257 		       - reshape_sectors - stripe_addr
4258 		       != sector_nr);
4259 	} else {
4260 		BUG_ON(writepos != sector_nr + reshape_sectors);
4261 		stripe_addr = sector_nr;
4262 	}
4263 	INIT_LIST_HEAD(&stripes);
4264 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4265 		int j;
4266 		int skipped_disk = 0;
4267 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4268 		set_bit(STRIPE_EXPANDING, &sh->state);
4269 		atomic_inc(&conf->reshape_stripes);
4270 		/* If any of this stripe is beyond the end of the old
4271 		 * array, then we need to zero those blocks
4272 		 */
4273 		for (j=sh->disks; j--;) {
4274 			sector_t s;
4275 			if (j == sh->pd_idx)
4276 				continue;
4277 			if (conf->level == 6 &&
4278 			    j == sh->qd_idx)
4279 				continue;
4280 			s = compute_blocknr(sh, j, 0);
4281 			if (s < raid5_size(mddev, 0, 0)) {
4282 				skipped_disk = 1;
4283 				continue;
4284 			}
4285 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4286 			set_bit(R5_Expanded, &sh->dev[j].flags);
4287 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4288 		}
4289 		if (!skipped_disk) {
4290 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4291 			set_bit(STRIPE_HANDLE, &sh->state);
4292 		}
4293 		list_add(&sh->lru, &stripes);
4294 	}
4295 	spin_lock_irq(&conf->device_lock);
4296 	if (mddev->delta_disks < 0)
4297 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4298 	else
4299 		conf->reshape_progress += reshape_sectors * new_data_disks;
4300 	spin_unlock_irq(&conf->device_lock);
4301 	/* Ok, those stripe are ready. We can start scheduling
4302 	 * reads on the source stripes.
4303 	 * The source stripes are determined by mapping the first and last
4304 	 * block on the destination stripes.
4305 	 */
4306 	first_sector =
4307 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4308 				     1, &dd_idx, NULL);
4309 	last_sector =
4310 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4311 					    * new_data_disks - 1),
4312 				     1, &dd_idx, NULL);
4313 	if (last_sector >= mddev->dev_sectors)
4314 		last_sector = mddev->dev_sectors - 1;
4315 	while (first_sector <= last_sector) {
4316 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4317 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4318 		set_bit(STRIPE_HANDLE, &sh->state);
4319 		release_stripe(sh);
4320 		first_sector += STRIPE_SECTORS;
4321 	}
4322 	/* Now that the sources are clearly marked, we can release
4323 	 * the destination stripes
4324 	 */
4325 	while (!list_empty(&stripes)) {
4326 		sh = list_entry(stripes.next, struct stripe_head, lru);
4327 		list_del_init(&sh->lru);
4328 		release_stripe(sh);
4329 	}
4330 	/* If this takes us to the resync_max point where we have to pause,
4331 	 * then we need to write out the superblock.
4332 	 */
4333 	sector_nr += reshape_sectors;
4334 	if ((sector_nr - mddev->curr_resync_completed) * 2
4335 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4336 		/* Cannot proceed until we've updated the superblock... */
4337 		wait_event(conf->wait_for_overlap,
4338 			   atomic_read(&conf->reshape_stripes) == 0);
4339 		mddev->reshape_position = conf->reshape_progress;
4340 		mddev->curr_resync_completed = sector_nr;
4341 		conf->reshape_checkpoint = jiffies;
4342 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4343 		md_wakeup_thread(mddev->thread);
4344 		wait_event(mddev->sb_wait,
4345 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4346 			   || kthread_should_stop());
4347 		spin_lock_irq(&conf->device_lock);
4348 		conf->reshape_safe = mddev->reshape_position;
4349 		spin_unlock_irq(&conf->device_lock);
4350 		wake_up(&conf->wait_for_overlap);
4351 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4352 	}
4353 	return reshape_sectors;
4354 }
4355 
4356 /* FIXME go_faster isn't used */
4357 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4358 {
4359 	raid5_conf_t *conf = mddev->private;
4360 	struct stripe_head *sh;
4361 	sector_t max_sector = mddev->dev_sectors;
4362 	sector_t sync_blocks;
4363 	int still_degraded = 0;
4364 	int i;
4365 
4366 	if (sector_nr >= max_sector) {
4367 		/* just being told to finish up .. nothing much to do */
4368 		unplug_slaves(mddev);
4369 
4370 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4371 			end_reshape(conf);
4372 			return 0;
4373 		}
4374 
4375 		if (mddev->curr_resync < max_sector) /* aborted */
4376 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4377 					&sync_blocks, 1);
4378 		else /* completed sync */
4379 			conf->fullsync = 0;
4380 		bitmap_close_sync(mddev->bitmap);
4381 
4382 		return 0;
4383 	}
4384 
4385 	/* Allow raid5_quiesce to complete */
4386 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4387 
4388 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4389 		return reshape_request(mddev, sector_nr, skipped);
4390 
4391 	/* No need to check resync_max as we never do more than one
4392 	 * stripe, and as resync_max will always be on a chunk boundary,
4393 	 * if the check in md_do_sync didn't fire, there is no chance
4394 	 * of overstepping resync_max here
4395 	 */
4396 
4397 	/* if there is too many failed drives and we are trying
4398 	 * to resync, then assert that we are finished, because there is
4399 	 * nothing we can do.
4400 	 */
4401 	if (mddev->degraded >= conf->max_degraded &&
4402 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4403 		sector_t rv = mddev->dev_sectors - sector_nr;
4404 		*skipped = 1;
4405 		return rv;
4406 	}
4407 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4408 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4409 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4410 		/* we can skip this block, and probably more */
4411 		sync_blocks /= STRIPE_SECTORS;
4412 		*skipped = 1;
4413 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4414 	}
4415 
4416 
4417 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4418 
4419 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4420 	if (sh == NULL) {
4421 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4422 		/* make sure we don't swamp the stripe cache if someone else
4423 		 * is trying to get access
4424 		 */
4425 		schedule_timeout_uninterruptible(1);
4426 	}
4427 	/* Need to check if array will still be degraded after recovery/resync
4428 	 * We don't need to check the 'failed' flag as when that gets set,
4429 	 * recovery aborts.
4430 	 */
4431 	for (i = 0; i < conf->raid_disks; i++)
4432 		if (conf->disks[i].rdev == NULL)
4433 			still_degraded = 1;
4434 
4435 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4436 
4437 	spin_lock(&sh->lock);
4438 	set_bit(STRIPE_SYNCING, &sh->state);
4439 	clear_bit(STRIPE_INSYNC, &sh->state);
4440 	spin_unlock(&sh->lock);
4441 
4442 	handle_stripe(sh);
4443 	release_stripe(sh);
4444 
4445 	return STRIPE_SECTORS;
4446 }
4447 
4448 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4449 {
4450 	/* We may not be able to submit a whole bio at once as there
4451 	 * may not be enough stripe_heads available.
4452 	 * We cannot pre-allocate enough stripe_heads as we may need
4453 	 * more than exist in the cache (if we allow ever large chunks).
4454 	 * So we do one stripe head at a time and record in
4455 	 * ->bi_hw_segments how many have been done.
4456 	 *
4457 	 * We *know* that this entire raid_bio is in one chunk, so
4458 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4459 	 */
4460 	struct stripe_head *sh;
4461 	int dd_idx;
4462 	sector_t sector, logical_sector, last_sector;
4463 	int scnt = 0;
4464 	int remaining;
4465 	int handled = 0;
4466 
4467 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4468 	sector = raid5_compute_sector(conf, logical_sector,
4469 				      0, &dd_idx, NULL);
4470 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4471 
4472 	for (; logical_sector < last_sector;
4473 	     logical_sector += STRIPE_SECTORS,
4474 		     sector += STRIPE_SECTORS,
4475 		     scnt++) {
4476 
4477 		if (scnt < raid5_bi_hw_segments(raid_bio))
4478 			/* already done this stripe */
4479 			continue;
4480 
4481 		sh = get_active_stripe(conf, sector, 0, 1, 0);
4482 
4483 		if (!sh) {
4484 			/* failed to get a stripe - must wait */
4485 			raid5_set_bi_hw_segments(raid_bio, scnt);
4486 			conf->retry_read_aligned = raid_bio;
4487 			return handled;
4488 		}
4489 
4490 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4491 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4492 			release_stripe(sh);
4493 			raid5_set_bi_hw_segments(raid_bio, scnt);
4494 			conf->retry_read_aligned = raid_bio;
4495 			return handled;
4496 		}
4497 
4498 		handle_stripe(sh);
4499 		release_stripe(sh);
4500 		handled++;
4501 	}
4502 	spin_lock_irq(&conf->device_lock);
4503 	remaining = raid5_dec_bi_phys_segments(raid_bio);
4504 	spin_unlock_irq(&conf->device_lock);
4505 	if (remaining == 0)
4506 		bio_endio(raid_bio, 0);
4507 	if (atomic_dec_and_test(&conf->active_aligned_reads))
4508 		wake_up(&conf->wait_for_stripe);
4509 	return handled;
4510 }
4511 
4512 
4513 /*
4514  * This is our raid5 kernel thread.
4515  *
4516  * We scan the hash table for stripes which can be handled now.
4517  * During the scan, completed stripes are saved for us by the interrupt
4518  * handler, so that they will not have to wait for our next wakeup.
4519  */
4520 static void raid5d(mddev_t *mddev)
4521 {
4522 	struct stripe_head *sh;
4523 	raid5_conf_t *conf = mddev->private;
4524 	int handled;
4525 
4526 	pr_debug("+++ raid5d active\n");
4527 
4528 	md_check_recovery(mddev);
4529 
4530 	handled = 0;
4531 	spin_lock_irq(&conf->device_lock);
4532 	while (1) {
4533 		struct bio *bio;
4534 
4535 		if (conf->seq_flush != conf->seq_write) {
4536 			int seq = conf->seq_flush;
4537 			spin_unlock_irq(&conf->device_lock);
4538 			bitmap_unplug(mddev->bitmap);
4539 			spin_lock_irq(&conf->device_lock);
4540 			conf->seq_write = seq;
4541 			activate_bit_delay(conf);
4542 		}
4543 
4544 		while ((bio = remove_bio_from_retry(conf))) {
4545 			int ok;
4546 			spin_unlock_irq(&conf->device_lock);
4547 			ok = retry_aligned_read(conf, bio);
4548 			spin_lock_irq(&conf->device_lock);
4549 			if (!ok)
4550 				break;
4551 			handled++;
4552 		}
4553 
4554 		sh = __get_priority_stripe(conf);
4555 
4556 		if (!sh)
4557 			break;
4558 		spin_unlock_irq(&conf->device_lock);
4559 
4560 		handled++;
4561 		handle_stripe(sh);
4562 		release_stripe(sh);
4563 		cond_resched();
4564 
4565 		spin_lock_irq(&conf->device_lock);
4566 	}
4567 	pr_debug("%d stripes handled\n", handled);
4568 
4569 	spin_unlock_irq(&conf->device_lock);
4570 
4571 	async_tx_issue_pending_all();
4572 	unplug_slaves(mddev);
4573 
4574 	pr_debug("--- raid5d inactive\n");
4575 }
4576 
4577 static ssize_t
4578 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4579 {
4580 	raid5_conf_t *conf = mddev->private;
4581 	if (conf)
4582 		return sprintf(page, "%d\n", conf->max_nr_stripes);
4583 	else
4584 		return 0;
4585 }
4586 
4587 int
4588 raid5_set_cache_size(mddev_t *mddev, int size)
4589 {
4590 	raid5_conf_t *conf = mddev->private;
4591 	int err;
4592 
4593 	if (size <= 16 || size > 32768)
4594 		return -EINVAL;
4595 	while (size < conf->max_nr_stripes) {
4596 		if (drop_one_stripe(conf))
4597 			conf->max_nr_stripes--;
4598 		else
4599 			break;
4600 	}
4601 	err = md_allow_write(mddev);
4602 	if (err)
4603 		return err;
4604 	while (size > conf->max_nr_stripes) {
4605 		if (grow_one_stripe(conf))
4606 			conf->max_nr_stripes++;
4607 		else break;
4608 	}
4609 	return 0;
4610 }
4611 EXPORT_SYMBOL(raid5_set_cache_size);
4612 
4613 static ssize_t
4614 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4615 {
4616 	raid5_conf_t *conf = mddev->private;
4617 	unsigned long new;
4618 	int err;
4619 
4620 	if (len >= PAGE_SIZE)
4621 		return -EINVAL;
4622 	if (!conf)
4623 		return -ENODEV;
4624 
4625 	if (strict_strtoul(page, 10, &new))
4626 		return -EINVAL;
4627 	err = raid5_set_cache_size(mddev, new);
4628 	if (err)
4629 		return err;
4630 	return len;
4631 }
4632 
4633 static struct md_sysfs_entry
4634 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4635 				raid5_show_stripe_cache_size,
4636 				raid5_store_stripe_cache_size);
4637 
4638 static ssize_t
4639 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4640 {
4641 	raid5_conf_t *conf = mddev->private;
4642 	if (conf)
4643 		return sprintf(page, "%d\n", conf->bypass_threshold);
4644 	else
4645 		return 0;
4646 }
4647 
4648 static ssize_t
4649 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4650 {
4651 	raid5_conf_t *conf = mddev->private;
4652 	unsigned long new;
4653 	if (len >= PAGE_SIZE)
4654 		return -EINVAL;
4655 	if (!conf)
4656 		return -ENODEV;
4657 
4658 	if (strict_strtoul(page, 10, &new))
4659 		return -EINVAL;
4660 	if (new > conf->max_nr_stripes)
4661 		return -EINVAL;
4662 	conf->bypass_threshold = new;
4663 	return len;
4664 }
4665 
4666 static struct md_sysfs_entry
4667 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4668 					S_IRUGO | S_IWUSR,
4669 					raid5_show_preread_threshold,
4670 					raid5_store_preread_threshold);
4671 
4672 static ssize_t
4673 stripe_cache_active_show(mddev_t *mddev, char *page)
4674 {
4675 	raid5_conf_t *conf = mddev->private;
4676 	if (conf)
4677 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4678 	else
4679 		return 0;
4680 }
4681 
4682 static struct md_sysfs_entry
4683 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4684 
4685 static struct attribute *raid5_attrs[] =  {
4686 	&raid5_stripecache_size.attr,
4687 	&raid5_stripecache_active.attr,
4688 	&raid5_preread_bypass_threshold.attr,
4689 	NULL,
4690 };
4691 static struct attribute_group raid5_attrs_group = {
4692 	.name = NULL,
4693 	.attrs = raid5_attrs,
4694 };
4695 
4696 static sector_t
4697 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4698 {
4699 	raid5_conf_t *conf = mddev->private;
4700 
4701 	if (!sectors)
4702 		sectors = mddev->dev_sectors;
4703 	if (!raid_disks)
4704 		/* size is defined by the smallest of previous and new size */
4705 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4706 
4707 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4708 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4709 	return sectors * (raid_disks - conf->max_degraded);
4710 }
4711 
4712 static void raid5_free_percpu(raid5_conf_t *conf)
4713 {
4714 	struct raid5_percpu *percpu;
4715 	unsigned long cpu;
4716 
4717 	if (!conf->percpu)
4718 		return;
4719 
4720 	get_online_cpus();
4721 	for_each_possible_cpu(cpu) {
4722 		percpu = per_cpu_ptr(conf->percpu, cpu);
4723 		safe_put_page(percpu->spare_page);
4724 		kfree(percpu->scribble);
4725 	}
4726 #ifdef CONFIG_HOTPLUG_CPU
4727 	unregister_cpu_notifier(&conf->cpu_notify);
4728 #endif
4729 	put_online_cpus();
4730 
4731 	free_percpu(conf->percpu);
4732 }
4733 
4734 static void free_conf(raid5_conf_t *conf)
4735 {
4736 	shrink_stripes(conf);
4737 	raid5_free_percpu(conf);
4738 	kfree(conf->disks);
4739 	kfree(conf->stripe_hashtbl);
4740 	kfree(conf);
4741 }
4742 
4743 #ifdef CONFIG_HOTPLUG_CPU
4744 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4745 			      void *hcpu)
4746 {
4747 	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4748 	long cpu = (long)hcpu;
4749 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4750 
4751 	switch (action) {
4752 	case CPU_UP_PREPARE:
4753 	case CPU_UP_PREPARE_FROZEN:
4754 		if (conf->level == 6 && !percpu->spare_page)
4755 			percpu->spare_page = alloc_page(GFP_KERNEL);
4756 		if (!percpu->scribble)
4757 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4758 
4759 		if (!percpu->scribble ||
4760 		    (conf->level == 6 && !percpu->spare_page)) {
4761 			safe_put_page(percpu->spare_page);
4762 			kfree(percpu->scribble);
4763 			pr_err("%s: failed memory allocation for cpu%ld\n",
4764 			       __func__, cpu);
4765 			return notifier_from_errno(-ENOMEM);
4766 		}
4767 		break;
4768 	case CPU_DEAD:
4769 	case CPU_DEAD_FROZEN:
4770 		safe_put_page(percpu->spare_page);
4771 		kfree(percpu->scribble);
4772 		percpu->spare_page = NULL;
4773 		percpu->scribble = NULL;
4774 		break;
4775 	default:
4776 		break;
4777 	}
4778 	return NOTIFY_OK;
4779 }
4780 #endif
4781 
4782 static int raid5_alloc_percpu(raid5_conf_t *conf)
4783 {
4784 	unsigned long cpu;
4785 	struct page *spare_page;
4786 	struct raid5_percpu __percpu *allcpus;
4787 	void *scribble;
4788 	int err;
4789 
4790 	allcpus = alloc_percpu(struct raid5_percpu);
4791 	if (!allcpus)
4792 		return -ENOMEM;
4793 	conf->percpu = allcpus;
4794 
4795 	get_online_cpus();
4796 	err = 0;
4797 	for_each_present_cpu(cpu) {
4798 		if (conf->level == 6) {
4799 			spare_page = alloc_page(GFP_KERNEL);
4800 			if (!spare_page) {
4801 				err = -ENOMEM;
4802 				break;
4803 			}
4804 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4805 		}
4806 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4807 		if (!scribble) {
4808 			err = -ENOMEM;
4809 			break;
4810 		}
4811 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4812 	}
4813 #ifdef CONFIG_HOTPLUG_CPU
4814 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4815 	conf->cpu_notify.priority = 0;
4816 	if (err == 0)
4817 		err = register_cpu_notifier(&conf->cpu_notify);
4818 #endif
4819 	put_online_cpus();
4820 
4821 	return err;
4822 }
4823 
4824 static raid5_conf_t *setup_conf(mddev_t *mddev)
4825 {
4826 	raid5_conf_t *conf;
4827 	int raid_disk, memory, max_disks;
4828 	mdk_rdev_t *rdev;
4829 	struct disk_info *disk;
4830 
4831 	if (mddev->new_level != 5
4832 	    && mddev->new_level != 4
4833 	    && mddev->new_level != 6) {
4834 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4835 		       mdname(mddev), mddev->new_level);
4836 		return ERR_PTR(-EIO);
4837 	}
4838 	if ((mddev->new_level == 5
4839 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4840 	    (mddev->new_level == 6
4841 	     && !algorithm_valid_raid6(mddev->new_layout))) {
4842 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4843 		       mdname(mddev), mddev->new_layout);
4844 		return ERR_PTR(-EIO);
4845 	}
4846 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4847 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4848 		       mdname(mddev), mddev->raid_disks);
4849 		return ERR_PTR(-EINVAL);
4850 	}
4851 
4852 	if (!mddev->new_chunk_sectors ||
4853 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4854 	    !is_power_of_2(mddev->new_chunk_sectors)) {
4855 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4856 		       mdname(mddev), mddev->new_chunk_sectors << 9);
4857 		return ERR_PTR(-EINVAL);
4858 	}
4859 
4860 	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4861 	if (conf == NULL)
4862 		goto abort;
4863 	spin_lock_init(&conf->device_lock);
4864 	init_waitqueue_head(&conf->wait_for_stripe);
4865 	init_waitqueue_head(&conf->wait_for_overlap);
4866 	INIT_LIST_HEAD(&conf->handle_list);
4867 	INIT_LIST_HEAD(&conf->hold_list);
4868 	INIT_LIST_HEAD(&conf->delayed_list);
4869 	INIT_LIST_HEAD(&conf->bitmap_list);
4870 	INIT_LIST_HEAD(&conf->inactive_list);
4871 	atomic_set(&conf->active_stripes, 0);
4872 	atomic_set(&conf->preread_active_stripes, 0);
4873 	atomic_set(&conf->active_aligned_reads, 0);
4874 	conf->bypass_threshold = BYPASS_THRESHOLD;
4875 
4876 	conf->raid_disks = mddev->raid_disks;
4877 	if (mddev->reshape_position == MaxSector)
4878 		conf->previous_raid_disks = mddev->raid_disks;
4879 	else
4880 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4881 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4882 	conf->scribble_len = scribble_len(max_disks);
4883 
4884 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4885 			      GFP_KERNEL);
4886 	if (!conf->disks)
4887 		goto abort;
4888 
4889 	conf->mddev = mddev;
4890 
4891 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4892 		goto abort;
4893 
4894 	conf->level = mddev->new_level;
4895 	if (raid5_alloc_percpu(conf) != 0)
4896 		goto abort;
4897 
4898 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4899 
4900 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4901 		raid_disk = rdev->raid_disk;
4902 		if (raid_disk >= max_disks
4903 		    || raid_disk < 0)
4904 			continue;
4905 		disk = conf->disks + raid_disk;
4906 
4907 		disk->rdev = rdev;
4908 
4909 		if (test_bit(In_sync, &rdev->flags)) {
4910 			char b[BDEVNAME_SIZE];
4911 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4912 			       " disk %d\n",
4913 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4914 		} else
4915 			/* Cannot rely on bitmap to complete recovery */
4916 			conf->fullsync = 1;
4917 	}
4918 
4919 	conf->chunk_sectors = mddev->new_chunk_sectors;
4920 	conf->level = mddev->new_level;
4921 	if (conf->level == 6)
4922 		conf->max_degraded = 2;
4923 	else
4924 		conf->max_degraded = 1;
4925 	conf->algorithm = mddev->new_layout;
4926 	conf->max_nr_stripes = NR_STRIPES;
4927 	conf->reshape_progress = mddev->reshape_position;
4928 	if (conf->reshape_progress != MaxSector) {
4929 		conf->prev_chunk_sectors = mddev->chunk_sectors;
4930 		conf->prev_algo = mddev->layout;
4931 	}
4932 
4933 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4934 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4935 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4936 		printk(KERN_ERR
4937 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
4938 		       mdname(mddev), memory);
4939 		goto abort;
4940 	} else
4941 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4942 		       mdname(mddev), memory);
4943 
4944 	conf->thread = md_register_thread(raid5d, mddev, NULL);
4945 	if (!conf->thread) {
4946 		printk(KERN_ERR
4947 		       "md/raid:%s: couldn't allocate thread.\n",
4948 		       mdname(mddev));
4949 		goto abort;
4950 	}
4951 
4952 	return conf;
4953 
4954  abort:
4955 	if (conf) {
4956 		free_conf(conf);
4957 		return ERR_PTR(-EIO);
4958 	} else
4959 		return ERR_PTR(-ENOMEM);
4960 }
4961 
4962 
4963 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4964 {
4965 	switch (algo) {
4966 	case ALGORITHM_PARITY_0:
4967 		if (raid_disk < max_degraded)
4968 			return 1;
4969 		break;
4970 	case ALGORITHM_PARITY_N:
4971 		if (raid_disk >= raid_disks - max_degraded)
4972 			return 1;
4973 		break;
4974 	case ALGORITHM_PARITY_0_6:
4975 		if (raid_disk == 0 ||
4976 		    raid_disk == raid_disks - 1)
4977 			return 1;
4978 		break;
4979 	case ALGORITHM_LEFT_ASYMMETRIC_6:
4980 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
4981 	case ALGORITHM_LEFT_SYMMETRIC_6:
4982 	case ALGORITHM_RIGHT_SYMMETRIC_6:
4983 		if (raid_disk == raid_disks - 1)
4984 			return 1;
4985 	}
4986 	return 0;
4987 }
4988 
4989 static int run(mddev_t *mddev)
4990 {
4991 	raid5_conf_t *conf;
4992 	int working_disks = 0;
4993 	int dirty_parity_disks = 0;
4994 	mdk_rdev_t *rdev;
4995 	sector_t reshape_offset = 0;
4996 
4997 	if (mddev->recovery_cp != MaxSector)
4998 		printk(KERN_NOTICE "md/raid:%s: not clean"
4999 		       " -- starting background reconstruction\n",
5000 		       mdname(mddev));
5001 	if (mddev->reshape_position != MaxSector) {
5002 		/* Check that we can continue the reshape.
5003 		 * Currently only disks can change, it must
5004 		 * increase, and we must be past the point where
5005 		 * a stripe over-writes itself
5006 		 */
5007 		sector_t here_new, here_old;
5008 		int old_disks;
5009 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5010 
5011 		if (mddev->new_level != mddev->level) {
5012 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5013 			       "required - aborting.\n",
5014 			       mdname(mddev));
5015 			return -EINVAL;
5016 		}
5017 		old_disks = mddev->raid_disks - mddev->delta_disks;
5018 		/* reshape_position must be on a new-stripe boundary, and one
5019 		 * further up in new geometry must map after here in old
5020 		 * geometry.
5021 		 */
5022 		here_new = mddev->reshape_position;
5023 		if (sector_div(here_new, mddev->new_chunk_sectors *
5024 			       (mddev->raid_disks - max_degraded))) {
5025 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5026 			       "on a stripe boundary\n", mdname(mddev));
5027 			return -EINVAL;
5028 		}
5029 		reshape_offset = here_new * mddev->new_chunk_sectors;
5030 		/* here_new is the stripe we will write to */
5031 		here_old = mddev->reshape_position;
5032 		sector_div(here_old, mddev->chunk_sectors *
5033 			   (old_disks-max_degraded));
5034 		/* here_old is the first stripe that we might need to read
5035 		 * from */
5036 		if (mddev->delta_disks == 0) {
5037 			/* We cannot be sure it is safe to start an in-place
5038 			 * reshape.  It is only safe if user-space if monitoring
5039 			 * and taking constant backups.
5040 			 * mdadm always starts a situation like this in
5041 			 * readonly mode so it can take control before
5042 			 * allowing any writes.  So just check for that.
5043 			 */
5044 			if ((here_new * mddev->new_chunk_sectors !=
5045 			     here_old * mddev->chunk_sectors) ||
5046 			    mddev->ro == 0) {
5047 				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5048 				       " in read-only mode - aborting\n",
5049 				       mdname(mddev));
5050 				return -EINVAL;
5051 			}
5052 		} else if (mddev->delta_disks < 0
5053 		    ? (here_new * mddev->new_chunk_sectors <=
5054 		       here_old * mddev->chunk_sectors)
5055 		    : (here_new * mddev->new_chunk_sectors >=
5056 		       here_old * mddev->chunk_sectors)) {
5057 			/* Reading from the same stripe as writing to - bad */
5058 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5059 			       "auto-recovery - aborting.\n",
5060 			       mdname(mddev));
5061 			return -EINVAL;
5062 		}
5063 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5064 		       mdname(mddev));
5065 		/* OK, we should be able to continue; */
5066 	} else {
5067 		BUG_ON(mddev->level != mddev->new_level);
5068 		BUG_ON(mddev->layout != mddev->new_layout);
5069 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5070 		BUG_ON(mddev->delta_disks != 0);
5071 	}
5072 
5073 	if (mddev->private == NULL)
5074 		conf = setup_conf(mddev);
5075 	else
5076 		conf = mddev->private;
5077 
5078 	if (IS_ERR(conf))
5079 		return PTR_ERR(conf);
5080 
5081 	mddev->thread = conf->thread;
5082 	conf->thread = NULL;
5083 	mddev->private = conf;
5084 
5085 	/*
5086 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
5087 	 */
5088 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5089 		if (rdev->raid_disk < 0)
5090 			continue;
5091 		if (test_bit(In_sync, &rdev->flags)) {
5092 			working_disks++;
5093 			continue;
5094 		}
5095 		/* This disc is not fully in-sync.  However if it
5096 		 * just stored parity (beyond the recovery_offset),
5097 		 * when we don't need to be concerned about the
5098 		 * array being dirty.
5099 		 * When reshape goes 'backwards', we never have
5100 		 * partially completed devices, so we only need
5101 		 * to worry about reshape going forwards.
5102 		 */
5103 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5104 		if (mddev->major_version == 0 &&
5105 		    mddev->minor_version > 90)
5106 			rdev->recovery_offset = reshape_offset;
5107 
5108 		if (rdev->recovery_offset < reshape_offset) {
5109 			/* We need to check old and new layout */
5110 			if (!only_parity(rdev->raid_disk,
5111 					 conf->algorithm,
5112 					 conf->raid_disks,
5113 					 conf->max_degraded))
5114 				continue;
5115 		}
5116 		if (!only_parity(rdev->raid_disk,
5117 				 conf->prev_algo,
5118 				 conf->previous_raid_disks,
5119 				 conf->max_degraded))
5120 			continue;
5121 		dirty_parity_disks++;
5122 	}
5123 
5124 	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5125 			   - working_disks);
5126 
5127 	if (has_failed(conf)) {
5128 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
5129 			" (%d/%d failed)\n",
5130 			mdname(mddev), mddev->degraded, conf->raid_disks);
5131 		goto abort;
5132 	}
5133 
5134 	/* device size must be a multiple of chunk size */
5135 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5136 	mddev->resync_max_sectors = mddev->dev_sectors;
5137 
5138 	if (mddev->degraded > dirty_parity_disks &&
5139 	    mddev->recovery_cp != MaxSector) {
5140 		if (mddev->ok_start_degraded)
5141 			printk(KERN_WARNING
5142 			       "md/raid:%s: starting dirty degraded array"
5143 			       " - data corruption possible.\n",
5144 			       mdname(mddev));
5145 		else {
5146 			printk(KERN_ERR
5147 			       "md/raid:%s: cannot start dirty degraded array.\n",
5148 			       mdname(mddev));
5149 			goto abort;
5150 		}
5151 	}
5152 
5153 	if (mddev->degraded == 0)
5154 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5155 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
5156 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5157 		       mddev->new_layout);
5158 	else
5159 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5160 		       " out of %d devices, algorithm %d\n",
5161 		       mdname(mddev), conf->level,
5162 		       mddev->raid_disks - mddev->degraded,
5163 		       mddev->raid_disks, mddev->new_layout);
5164 
5165 	print_raid5_conf(conf);
5166 
5167 	if (conf->reshape_progress != MaxSector) {
5168 		conf->reshape_safe = conf->reshape_progress;
5169 		atomic_set(&conf->reshape_stripes, 0);
5170 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5171 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5172 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5173 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5174 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5175 							"reshape");
5176 	}
5177 
5178 
5179 	/* Ok, everything is just fine now */
5180 	if (mddev->to_remove == &raid5_attrs_group)
5181 		mddev->to_remove = NULL;
5182 	else if (mddev->kobj.sd &&
5183 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5184 		printk(KERN_WARNING
5185 		       "raid5: failed to create sysfs attributes for %s\n",
5186 		       mdname(mddev));
5187 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5188 
5189 	plugger_init(&conf->plug, raid5_unplug);
5190 	mddev->plug = &conf->plug;
5191 	if (mddev->queue) {
5192 		int chunk_size;
5193 		/* read-ahead size must cover two whole stripes, which
5194 		 * is 2 * (datadisks) * chunksize where 'n' is the
5195 		 * number of raid devices
5196 		 */
5197 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
5198 		int stripe = data_disks *
5199 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
5200 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5201 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5202 
5203 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5204 
5205 		mddev->queue->backing_dev_info.congested_data = mddev;
5206 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5207 		mddev->queue->unplug_fn = raid5_unplug_queue;
5208 
5209 		chunk_size = mddev->chunk_sectors << 9;
5210 		blk_queue_io_min(mddev->queue, chunk_size);
5211 		blk_queue_io_opt(mddev->queue, chunk_size *
5212 				 (conf->raid_disks - conf->max_degraded));
5213 
5214 		list_for_each_entry(rdev, &mddev->disks, same_set)
5215 			disk_stack_limits(mddev->gendisk, rdev->bdev,
5216 					  rdev->data_offset << 9);
5217 	}
5218 
5219 	return 0;
5220 abort:
5221 	md_unregister_thread(mddev->thread);
5222 	mddev->thread = NULL;
5223 	if (conf) {
5224 		print_raid5_conf(conf);
5225 		free_conf(conf);
5226 	}
5227 	mddev->private = NULL;
5228 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5229 	return -EIO;
5230 }
5231 
5232 static int stop(mddev_t *mddev)
5233 {
5234 	raid5_conf_t *conf = mddev->private;
5235 
5236 	md_unregister_thread(mddev->thread);
5237 	mddev->thread = NULL;
5238 	if (mddev->queue)
5239 		mddev->queue->backing_dev_info.congested_fn = NULL;
5240 	plugger_flush(&conf->plug); /* the unplug fn references 'conf'*/
5241 	free_conf(conf);
5242 	mddev->private = NULL;
5243 	mddev->to_remove = &raid5_attrs_group;
5244 	return 0;
5245 }
5246 
5247 #ifdef DEBUG
5248 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5249 {
5250 	int i;
5251 
5252 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5253 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5254 	seq_printf(seq, "sh %llu,  count %d.\n",
5255 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
5256 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5257 	for (i = 0; i < sh->disks; i++) {
5258 		seq_printf(seq, "(cache%d: %p %ld) ",
5259 			   i, sh->dev[i].page, sh->dev[i].flags);
5260 	}
5261 	seq_printf(seq, "\n");
5262 }
5263 
5264 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5265 {
5266 	struct stripe_head *sh;
5267 	struct hlist_node *hn;
5268 	int i;
5269 
5270 	spin_lock_irq(&conf->device_lock);
5271 	for (i = 0; i < NR_HASH; i++) {
5272 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5273 			if (sh->raid_conf != conf)
5274 				continue;
5275 			print_sh(seq, sh);
5276 		}
5277 	}
5278 	spin_unlock_irq(&conf->device_lock);
5279 }
5280 #endif
5281 
5282 static void status(struct seq_file *seq, mddev_t *mddev)
5283 {
5284 	raid5_conf_t *conf = mddev->private;
5285 	int i;
5286 
5287 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5288 		mddev->chunk_sectors / 2, mddev->layout);
5289 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5290 	for (i = 0; i < conf->raid_disks; i++)
5291 		seq_printf (seq, "%s",
5292 			       conf->disks[i].rdev &&
5293 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5294 	seq_printf (seq, "]");
5295 #ifdef DEBUG
5296 	seq_printf (seq, "\n");
5297 	printall(seq, conf);
5298 #endif
5299 }
5300 
5301 static void print_raid5_conf (raid5_conf_t *conf)
5302 {
5303 	int i;
5304 	struct disk_info *tmp;
5305 
5306 	printk(KERN_DEBUG "RAID conf printout:\n");
5307 	if (!conf) {
5308 		printk("(conf==NULL)\n");
5309 		return;
5310 	}
5311 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5312 	       conf->raid_disks,
5313 	       conf->raid_disks - conf->mddev->degraded);
5314 
5315 	for (i = 0; i < conf->raid_disks; i++) {
5316 		char b[BDEVNAME_SIZE];
5317 		tmp = conf->disks + i;
5318 		if (tmp->rdev)
5319 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5320 			       i, !test_bit(Faulty, &tmp->rdev->flags),
5321 			       bdevname(tmp->rdev->bdev, b));
5322 	}
5323 }
5324 
5325 static int raid5_spare_active(mddev_t *mddev)
5326 {
5327 	int i;
5328 	raid5_conf_t *conf = mddev->private;
5329 	struct disk_info *tmp;
5330 	int count = 0;
5331 	unsigned long flags;
5332 
5333 	for (i = 0; i < conf->raid_disks; i++) {
5334 		tmp = conf->disks + i;
5335 		if (tmp->rdev
5336 		    && tmp->rdev->recovery_offset == MaxSector
5337 		    && !test_bit(Faulty, &tmp->rdev->flags)
5338 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5339 			count++;
5340 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5341 		}
5342 	}
5343 	spin_lock_irqsave(&conf->device_lock, flags);
5344 	mddev->degraded -= count;
5345 	spin_unlock_irqrestore(&conf->device_lock, flags);
5346 	print_raid5_conf(conf);
5347 	return count;
5348 }
5349 
5350 static int raid5_remove_disk(mddev_t *mddev, int number)
5351 {
5352 	raid5_conf_t *conf = mddev->private;
5353 	int err = 0;
5354 	mdk_rdev_t *rdev;
5355 	struct disk_info *p = conf->disks + number;
5356 
5357 	print_raid5_conf(conf);
5358 	rdev = p->rdev;
5359 	if (rdev) {
5360 		if (number >= conf->raid_disks &&
5361 		    conf->reshape_progress == MaxSector)
5362 			clear_bit(In_sync, &rdev->flags);
5363 
5364 		if (test_bit(In_sync, &rdev->flags) ||
5365 		    atomic_read(&rdev->nr_pending)) {
5366 			err = -EBUSY;
5367 			goto abort;
5368 		}
5369 		/* Only remove non-faulty devices if recovery
5370 		 * isn't possible.
5371 		 */
5372 		if (!test_bit(Faulty, &rdev->flags) &&
5373 		    !has_failed(conf) &&
5374 		    number < conf->raid_disks) {
5375 			err = -EBUSY;
5376 			goto abort;
5377 		}
5378 		p->rdev = NULL;
5379 		synchronize_rcu();
5380 		if (atomic_read(&rdev->nr_pending)) {
5381 			/* lost the race, try later */
5382 			err = -EBUSY;
5383 			p->rdev = rdev;
5384 		}
5385 	}
5386 abort:
5387 
5388 	print_raid5_conf(conf);
5389 	return err;
5390 }
5391 
5392 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5393 {
5394 	raid5_conf_t *conf = mddev->private;
5395 	int err = -EEXIST;
5396 	int disk;
5397 	struct disk_info *p;
5398 	int first = 0;
5399 	int last = conf->raid_disks - 1;
5400 
5401 	if (has_failed(conf))
5402 		/* no point adding a device */
5403 		return -EINVAL;
5404 
5405 	if (rdev->raid_disk >= 0)
5406 		first = last = rdev->raid_disk;
5407 
5408 	/*
5409 	 * find the disk ... but prefer rdev->saved_raid_disk
5410 	 * if possible.
5411 	 */
5412 	if (rdev->saved_raid_disk >= 0 &&
5413 	    rdev->saved_raid_disk >= first &&
5414 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5415 		disk = rdev->saved_raid_disk;
5416 	else
5417 		disk = first;
5418 	for ( ; disk <= last ; disk++)
5419 		if ((p=conf->disks + disk)->rdev == NULL) {
5420 			clear_bit(In_sync, &rdev->flags);
5421 			rdev->raid_disk = disk;
5422 			err = 0;
5423 			if (rdev->saved_raid_disk != disk)
5424 				conf->fullsync = 1;
5425 			rcu_assign_pointer(p->rdev, rdev);
5426 			break;
5427 		}
5428 	print_raid5_conf(conf);
5429 	return err;
5430 }
5431 
5432 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5433 {
5434 	/* no resync is happening, and there is enough space
5435 	 * on all devices, so we can resize.
5436 	 * We need to make sure resync covers any new space.
5437 	 * If the array is shrinking we should possibly wait until
5438 	 * any io in the removed space completes, but it hardly seems
5439 	 * worth it.
5440 	 */
5441 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5442 	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5443 					       mddev->raid_disks));
5444 	if (mddev->array_sectors >
5445 	    raid5_size(mddev, sectors, mddev->raid_disks))
5446 		return -EINVAL;
5447 	set_capacity(mddev->gendisk, mddev->array_sectors);
5448 	revalidate_disk(mddev->gendisk);
5449 	if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5450 		mddev->recovery_cp = mddev->dev_sectors;
5451 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5452 	}
5453 	mddev->dev_sectors = sectors;
5454 	mddev->resync_max_sectors = sectors;
5455 	return 0;
5456 }
5457 
5458 static int check_stripe_cache(mddev_t *mddev)
5459 {
5460 	/* Can only proceed if there are plenty of stripe_heads.
5461 	 * We need a minimum of one full stripe,, and for sensible progress
5462 	 * it is best to have about 4 times that.
5463 	 * If we require 4 times, then the default 256 4K stripe_heads will
5464 	 * allow for chunk sizes up to 256K, which is probably OK.
5465 	 * If the chunk size is greater, user-space should request more
5466 	 * stripe_heads first.
5467 	 */
5468 	raid5_conf_t *conf = mddev->private;
5469 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5470 	    > conf->max_nr_stripes ||
5471 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5472 	    > conf->max_nr_stripes) {
5473 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5474 		       mdname(mddev),
5475 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5476 			/ STRIPE_SIZE)*4);
5477 		return 0;
5478 	}
5479 	return 1;
5480 }
5481 
5482 static int check_reshape(mddev_t *mddev)
5483 {
5484 	raid5_conf_t *conf = mddev->private;
5485 
5486 	if (mddev->delta_disks == 0 &&
5487 	    mddev->new_layout == mddev->layout &&
5488 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5489 		return 0; /* nothing to do */
5490 	if (mddev->bitmap)
5491 		/* Cannot grow a bitmap yet */
5492 		return -EBUSY;
5493 	if (has_failed(conf))
5494 		return -EINVAL;
5495 	if (mddev->delta_disks < 0) {
5496 		/* We might be able to shrink, but the devices must
5497 		 * be made bigger first.
5498 		 * For raid6, 4 is the minimum size.
5499 		 * Otherwise 2 is the minimum
5500 		 */
5501 		int min = 2;
5502 		if (mddev->level == 6)
5503 			min = 4;
5504 		if (mddev->raid_disks + mddev->delta_disks < min)
5505 			return -EINVAL;
5506 	}
5507 
5508 	if (!check_stripe_cache(mddev))
5509 		return -ENOSPC;
5510 
5511 	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5512 }
5513 
5514 static int raid5_start_reshape(mddev_t *mddev)
5515 {
5516 	raid5_conf_t *conf = mddev->private;
5517 	mdk_rdev_t *rdev;
5518 	int spares = 0;
5519 	unsigned long flags;
5520 
5521 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5522 		return -EBUSY;
5523 
5524 	if (!check_stripe_cache(mddev))
5525 		return -ENOSPC;
5526 
5527 	list_for_each_entry(rdev, &mddev->disks, same_set)
5528 		if (!test_bit(In_sync, &rdev->flags)
5529 		    && !test_bit(Faulty, &rdev->flags))
5530 			spares++;
5531 
5532 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5533 		/* Not enough devices even to make a degraded array
5534 		 * of that size
5535 		 */
5536 		return -EINVAL;
5537 
5538 	/* Refuse to reduce size of the array.  Any reductions in
5539 	 * array size must be through explicit setting of array_size
5540 	 * attribute.
5541 	 */
5542 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5543 	    < mddev->array_sectors) {
5544 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5545 		       "before number of disks\n", mdname(mddev));
5546 		return -EINVAL;
5547 	}
5548 
5549 	atomic_set(&conf->reshape_stripes, 0);
5550 	spin_lock_irq(&conf->device_lock);
5551 	conf->previous_raid_disks = conf->raid_disks;
5552 	conf->raid_disks += mddev->delta_disks;
5553 	conf->prev_chunk_sectors = conf->chunk_sectors;
5554 	conf->chunk_sectors = mddev->new_chunk_sectors;
5555 	conf->prev_algo = conf->algorithm;
5556 	conf->algorithm = mddev->new_layout;
5557 	if (mddev->delta_disks < 0)
5558 		conf->reshape_progress = raid5_size(mddev, 0, 0);
5559 	else
5560 		conf->reshape_progress = 0;
5561 	conf->reshape_safe = conf->reshape_progress;
5562 	conf->generation++;
5563 	spin_unlock_irq(&conf->device_lock);
5564 
5565 	/* Add some new drives, as many as will fit.
5566 	 * We know there are enough to make the newly sized array work.
5567 	 * Don't add devices if we are reducing the number of
5568 	 * devices in the array.  This is because it is not possible
5569 	 * to correctly record the "partially reconstructed" state of
5570 	 * such devices during the reshape and confusion could result.
5571 	 */
5572 	if (mddev->delta_disks >= 0) {
5573 		int added_devices = 0;
5574 		list_for_each_entry(rdev, &mddev->disks, same_set)
5575 			if (rdev->raid_disk < 0 &&
5576 			    !test_bit(Faulty, &rdev->flags)) {
5577 				if (raid5_add_disk(mddev, rdev) == 0) {
5578 					char nm[20];
5579 					if (rdev->raid_disk
5580 					    >= conf->previous_raid_disks) {
5581 						set_bit(In_sync, &rdev->flags);
5582 						added_devices++;
5583 					} else
5584 						rdev->recovery_offset = 0;
5585 					sprintf(nm, "rd%d", rdev->raid_disk);
5586 					if (sysfs_create_link(&mddev->kobj,
5587 							      &rdev->kobj, nm))
5588 						/* Failure here is OK */;
5589 				}
5590 			} else if (rdev->raid_disk >= conf->previous_raid_disks
5591 				   && !test_bit(Faulty, &rdev->flags)) {
5592 				/* This is a spare that was manually added */
5593 				set_bit(In_sync, &rdev->flags);
5594 				added_devices++;
5595 			}
5596 
5597 		/* When a reshape changes the number of devices,
5598 		 * ->degraded is measured against the larger of the
5599 		 * pre and post number of devices.
5600 		 */
5601 		spin_lock_irqsave(&conf->device_lock, flags);
5602 		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5603 			- added_devices;
5604 		spin_unlock_irqrestore(&conf->device_lock, flags);
5605 	}
5606 	mddev->raid_disks = conf->raid_disks;
5607 	mddev->reshape_position = conf->reshape_progress;
5608 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5609 
5610 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5611 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5612 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5613 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5614 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5615 						"reshape");
5616 	if (!mddev->sync_thread) {
5617 		mddev->recovery = 0;
5618 		spin_lock_irq(&conf->device_lock);
5619 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5620 		conf->reshape_progress = MaxSector;
5621 		spin_unlock_irq(&conf->device_lock);
5622 		return -EAGAIN;
5623 	}
5624 	conf->reshape_checkpoint = jiffies;
5625 	md_wakeup_thread(mddev->sync_thread);
5626 	md_new_event(mddev);
5627 	return 0;
5628 }
5629 
5630 /* This is called from the reshape thread and should make any
5631  * changes needed in 'conf'
5632  */
5633 static void end_reshape(raid5_conf_t *conf)
5634 {
5635 
5636 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5637 
5638 		spin_lock_irq(&conf->device_lock);
5639 		conf->previous_raid_disks = conf->raid_disks;
5640 		conf->reshape_progress = MaxSector;
5641 		spin_unlock_irq(&conf->device_lock);
5642 		wake_up(&conf->wait_for_overlap);
5643 
5644 		/* read-ahead size must cover two whole stripes, which is
5645 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5646 		 */
5647 		if (conf->mddev->queue) {
5648 			int data_disks = conf->raid_disks - conf->max_degraded;
5649 			int stripe = data_disks * ((conf->chunk_sectors << 9)
5650 						   / PAGE_SIZE);
5651 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5652 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5653 		}
5654 	}
5655 }
5656 
5657 /* This is called from the raid5d thread with mddev_lock held.
5658  * It makes config changes to the device.
5659  */
5660 static void raid5_finish_reshape(mddev_t *mddev)
5661 {
5662 	raid5_conf_t *conf = mddev->private;
5663 
5664 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5665 
5666 		if (mddev->delta_disks > 0) {
5667 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5668 			set_capacity(mddev->gendisk, mddev->array_sectors);
5669 			revalidate_disk(mddev->gendisk);
5670 		} else {
5671 			int d;
5672 			mddev->degraded = conf->raid_disks;
5673 			for (d = 0; d < conf->raid_disks ; d++)
5674 				if (conf->disks[d].rdev &&
5675 				    test_bit(In_sync,
5676 					     &conf->disks[d].rdev->flags))
5677 					mddev->degraded--;
5678 			for (d = conf->raid_disks ;
5679 			     d < conf->raid_disks - mddev->delta_disks;
5680 			     d++) {
5681 				mdk_rdev_t *rdev = conf->disks[d].rdev;
5682 				if (rdev && raid5_remove_disk(mddev, d) == 0) {
5683 					char nm[20];
5684 					sprintf(nm, "rd%d", rdev->raid_disk);
5685 					sysfs_remove_link(&mddev->kobj, nm);
5686 					rdev->raid_disk = -1;
5687 				}
5688 			}
5689 		}
5690 		mddev->layout = conf->algorithm;
5691 		mddev->chunk_sectors = conf->chunk_sectors;
5692 		mddev->reshape_position = MaxSector;
5693 		mddev->delta_disks = 0;
5694 	}
5695 }
5696 
5697 static void raid5_quiesce(mddev_t *mddev, int state)
5698 {
5699 	raid5_conf_t *conf = mddev->private;
5700 
5701 	switch(state) {
5702 	case 2: /* resume for a suspend */
5703 		wake_up(&conf->wait_for_overlap);
5704 		break;
5705 
5706 	case 1: /* stop all writes */
5707 		spin_lock_irq(&conf->device_lock);
5708 		/* '2' tells resync/reshape to pause so that all
5709 		 * active stripes can drain
5710 		 */
5711 		conf->quiesce = 2;
5712 		wait_event_lock_irq(conf->wait_for_stripe,
5713 				    atomic_read(&conf->active_stripes) == 0 &&
5714 				    atomic_read(&conf->active_aligned_reads) == 0,
5715 				    conf->device_lock, /* nothing */);
5716 		conf->quiesce = 1;
5717 		spin_unlock_irq(&conf->device_lock);
5718 		/* allow reshape to continue */
5719 		wake_up(&conf->wait_for_overlap);
5720 		break;
5721 
5722 	case 0: /* re-enable writes */
5723 		spin_lock_irq(&conf->device_lock);
5724 		conf->quiesce = 0;
5725 		wake_up(&conf->wait_for_stripe);
5726 		wake_up(&conf->wait_for_overlap);
5727 		spin_unlock_irq(&conf->device_lock);
5728 		break;
5729 	}
5730 }
5731 
5732 
5733 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5734 {
5735 	struct raid0_private_data *raid0_priv = mddev->private;
5736 
5737 	/* for raid0 takeover only one zone is supported */
5738 	if (raid0_priv->nr_strip_zones > 1) {
5739 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5740 		       mdname(mddev));
5741 		return ERR_PTR(-EINVAL);
5742 	}
5743 
5744 	mddev->new_level = level;
5745 	mddev->new_layout = ALGORITHM_PARITY_N;
5746 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5747 	mddev->raid_disks += 1;
5748 	mddev->delta_disks = 1;
5749 	/* make sure it will be not marked as dirty */
5750 	mddev->recovery_cp = MaxSector;
5751 
5752 	return setup_conf(mddev);
5753 }
5754 
5755 
5756 static void *raid5_takeover_raid1(mddev_t *mddev)
5757 {
5758 	int chunksect;
5759 
5760 	if (mddev->raid_disks != 2 ||
5761 	    mddev->degraded > 1)
5762 		return ERR_PTR(-EINVAL);
5763 
5764 	/* Should check if there are write-behind devices? */
5765 
5766 	chunksect = 64*2; /* 64K by default */
5767 
5768 	/* The array must be an exact multiple of chunksize */
5769 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5770 		chunksect >>= 1;
5771 
5772 	if ((chunksect<<9) < STRIPE_SIZE)
5773 		/* array size does not allow a suitable chunk size */
5774 		return ERR_PTR(-EINVAL);
5775 
5776 	mddev->new_level = 5;
5777 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5778 	mddev->new_chunk_sectors = chunksect;
5779 
5780 	return setup_conf(mddev);
5781 }
5782 
5783 static void *raid5_takeover_raid6(mddev_t *mddev)
5784 {
5785 	int new_layout;
5786 
5787 	switch (mddev->layout) {
5788 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5789 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5790 		break;
5791 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5792 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5793 		break;
5794 	case ALGORITHM_LEFT_SYMMETRIC_6:
5795 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5796 		break;
5797 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5798 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5799 		break;
5800 	case ALGORITHM_PARITY_0_6:
5801 		new_layout = ALGORITHM_PARITY_0;
5802 		break;
5803 	case ALGORITHM_PARITY_N:
5804 		new_layout = ALGORITHM_PARITY_N;
5805 		break;
5806 	default:
5807 		return ERR_PTR(-EINVAL);
5808 	}
5809 	mddev->new_level = 5;
5810 	mddev->new_layout = new_layout;
5811 	mddev->delta_disks = -1;
5812 	mddev->raid_disks -= 1;
5813 	return setup_conf(mddev);
5814 }
5815 
5816 
5817 static int raid5_check_reshape(mddev_t *mddev)
5818 {
5819 	/* For a 2-drive array, the layout and chunk size can be changed
5820 	 * immediately as not restriping is needed.
5821 	 * For larger arrays we record the new value - after validation
5822 	 * to be used by a reshape pass.
5823 	 */
5824 	raid5_conf_t *conf = mddev->private;
5825 	int new_chunk = mddev->new_chunk_sectors;
5826 
5827 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5828 		return -EINVAL;
5829 	if (new_chunk > 0) {
5830 		if (!is_power_of_2(new_chunk))
5831 			return -EINVAL;
5832 		if (new_chunk < (PAGE_SIZE>>9))
5833 			return -EINVAL;
5834 		if (mddev->array_sectors & (new_chunk-1))
5835 			/* not factor of array size */
5836 			return -EINVAL;
5837 	}
5838 
5839 	/* They look valid */
5840 
5841 	if (mddev->raid_disks == 2) {
5842 		/* can make the change immediately */
5843 		if (mddev->new_layout >= 0) {
5844 			conf->algorithm = mddev->new_layout;
5845 			mddev->layout = mddev->new_layout;
5846 		}
5847 		if (new_chunk > 0) {
5848 			conf->chunk_sectors = new_chunk ;
5849 			mddev->chunk_sectors = new_chunk;
5850 		}
5851 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5852 		md_wakeup_thread(mddev->thread);
5853 	}
5854 	return check_reshape(mddev);
5855 }
5856 
5857 static int raid6_check_reshape(mddev_t *mddev)
5858 {
5859 	int new_chunk = mddev->new_chunk_sectors;
5860 
5861 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5862 		return -EINVAL;
5863 	if (new_chunk > 0) {
5864 		if (!is_power_of_2(new_chunk))
5865 			return -EINVAL;
5866 		if (new_chunk < (PAGE_SIZE >> 9))
5867 			return -EINVAL;
5868 		if (mddev->array_sectors & (new_chunk-1))
5869 			/* not factor of array size */
5870 			return -EINVAL;
5871 	}
5872 
5873 	/* They look valid */
5874 	return check_reshape(mddev);
5875 }
5876 
5877 static void *raid5_takeover(mddev_t *mddev)
5878 {
5879 	/* raid5 can take over:
5880 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5881 	 *  raid1 - if there are two drives.  We need to know the chunk size
5882 	 *  raid4 - trivial - just use a raid4 layout.
5883 	 *  raid6 - Providing it is a *_6 layout
5884 	 */
5885 	if (mddev->level == 0)
5886 		return raid45_takeover_raid0(mddev, 5);
5887 	if (mddev->level == 1)
5888 		return raid5_takeover_raid1(mddev);
5889 	if (mddev->level == 4) {
5890 		mddev->new_layout = ALGORITHM_PARITY_N;
5891 		mddev->new_level = 5;
5892 		return setup_conf(mddev);
5893 	}
5894 	if (mddev->level == 6)
5895 		return raid5_takeover_raid6(mddev);
5896 
5897 	return ERR_PTR(-EINVAL);
5898 }
5899 
5900 static void *raid4_takeover(mddev_t *mddev)
5901 {
5902 	/* raid4 can take over:
5903 	 *  raid0 - if there is only one strip zone
5904 	 *  raid5 - if layout is right
5905 	 */
5906 	if (mddev->level == 0)
5907 		return raid45_takeover_raid0(mddev, 4);
5908 	if (mddev->level == 5 &&
5909 	    mddev->layout == ALGORITHM_PARITY_N) {
5910 		mddev->new_layout = 0;
5911 		mddev->new_level = 4;
5912 		return setup_conf(mddev);
5913 	}
5914 	return ERR_PTR(-EINVAL);
5915 }
5916 
5917 static struct mdk_personality raid5_personality;
5918 
5919 static void *raid6_takeover(mddev_t *mddev)
5920 {
5921 	/* Currently can only take over a raid5.  We map the
5922 	 * personality to an equivalent raid6 personality
5923 	 * with the Q block at the end.
5924 	 */
5925 	int new_layout;
5926 
5927 	if (mddev->pers != &raid5_personality)
5928 		return ERR_PTR(-EINVAL);
5929 	if (mddev->degraded > 1)
5930 		return ERR_PTR(-EINVAL);
5931 	if (mddev->raid_disks > 253)
5932 		return ERR_PTR(-EINVAL);
5933 	if (mddev->raid_disks < 3)
5934 		return ERR_PTR(-EINVAL);
5935 
5936 	switch (mddev->layout) {
5937 	case ALGORITHM_LEFT_ASYMMETRIC:
5938 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5939 		break;
5940 	case ALGORITHM_RIGHT_ASYMMETRIC:
5941 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5942 		break;
5943 	case ALGORITHM_LEFT_SYMMETRIC:
5944 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5945 		break;
5946 	case ALGORITHM_RIGHT_SYMMETRIC:
5947 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5948 		break;
5949 	case ALGORITHM_PARITY_0:
5950 		new_layout = ALGORITHM_PARITY_0_6;
5951 		break;
5952 	case ALGORITHM_PARITY_N:
5953 		new_layout = ALGORITHM_PARITY_N;
5954 		break;
5955 	default:
5956 		return ERR_PTR(-EINVAL);
5957 	}
5958 	mddev->new_level = 6;
5959 	mddev->new_layout = new_layout;
5960 	mddev->delta_disks = 1;
5961 	mddev->raid_disks += 1;
5962 	return setup_conf(mddev);
5963 }
5964 
5965 
5966 static struct mdk_personality raid6_personality =
5967 {
5968 	.name		= "raid6",
5969 	.level		= 6,
5970 	.owner		= THIS_MODULE,
5971 	.make_request	= make_request,
5972 	.run		= run,
5973 	.stop		= stop,
5974 	.status		= status,
5975 	.error_handler	= error,
5976 	.hot_add_disk	= raid5_add_disk,
5977 	.hot_remove_disk= raid5_remove_disk,
5978 	.spare_active	= raid5_spare_active,
5979 	.sync_request	= sync_request,
5980 	.resize		= raid5_resize,
5981 	.size		= raid5_size,
5982 	.check_reshape	= raid6_check_reshape,
5983 	.start_reshape  = raid5_start_reshape,
5984 	.finish_reshape = raid5_finish_reshape,
5985 	.quiesce	= raid5_quiesce,
5986 	.takeover	= raid6_takeover,
5987 };
5988 static struct mdk_personality raid5_personality =
5989 {
5990 	.name		= "raid5",
5991 	.level		= 5,
5992 	.owner		= THIS_MODULE,
5993 	.make_request	= make_request,
5994 	.run		= run,
5995 	.stop		= stop,
5996 	.status		= status,
5997 	.error_handler	= error,
5998 	.hot_add_disk	= raid5_add_disk,
5999 	.hot_remove_disk= raid5_remove_disk,
6000 	.spare_active	= raid5_spare_active,
6001 	.sync_request	= sync_request,
6002 	.resize		= raid5_resize,
6003 	.size		= raid5_size,
6004 	.check_reshape	= raid5_check_reshape,
6005 	.start_reshape  = raid5_start_reshape,
6006 	.finish_reshape = raid5_finish_reshape,
6007 	.quiesce	= raid5_quiesce,
6008 	.takeover	= raid5_takeover,
6009 };
6010 
6011 static struct mdk_personality raid4_personality =
6012 {
6013 	.name		= "raid4",
6014 	.level		= 4,
6015 	.owner		= THIS_MODULE,
6016 	.make_request	= make_request,
6017 	.run		= run,
6018 	.stop		= stop,
6019 	.status		= status,
6020 	.error_handler	= error,
6021 	.hot_add_disk	= raid5_add_disk,
6022 	.hot_remove_disk= raid5_remove_disk,
6023 	.spare_active	= raid5_spare_active,
6024 	.sync_request	= sync_request,
6025 	.resize		= raid5_resize,
6026 	.size		= raid5_size,
6027 	.check_reshape	= raid5_check_reshape,
6028 	.start_reshape  = raid5_start_reshape,
6029 	.finish_reshape = raid5_finish_reshape,
6030 	.quiesce	= raid5_quiesce,
6031 	.takeover	= raid4_takeover,
6032 };
6033 
6034 static int __init raid5_init(void)
6035 {
6036 	register_md_personality(&raid6_personality);
6037 	register_md_personality(&raid5_personality);
6038 	register_md_personality(&raid4_personality);
6039 	return 0;
6040 }
6041 
6042 static void raid5_exit(void)
6043 {
6044 	unregister_md_personality(&raid6_personality);
6045 	unregister_md_personality(&raid5_personality);
6046 	unregister_md_personality(&raid4_personality);
6047 }
6048 
6049 module_init(raid5_init);
6050 module_exit(raid5_exit);
6051 MODULE_LICENSE("GPL");
6052 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6053 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6054 MODULE_ALIAS("md-raid5");
6055 MODULE_ALIAS("md-raid4");
6056 MODULE_ALIAS("md-level-5");
6057 MODULE_ALIAS("md-level-4");
6058 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6059 MODULE_ALIAS("md-raid6");
6060 MODULE_ALIAS("md-level-6");
6061 
6062 /* This used to be two separate modules, they were: */
6063 MODULE_ALIAS("raid5");
6064 MODULE_ALIAS("raid6");
6065