xref: /openbmc/linux/drivers/md/raid5.c (revision 4e5e4705)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58 
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63 
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66 
67 static struct workqueue_struct *raid5_wq;
68 /*
69  * Stripe cache
70  */
71 
72 #define NR_STRIPES		256
73 #define STRIPE_SIZE		PAGE_SIZE
74 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
76 #define	IO_THRESHOLD		1
77 #define BYPASS_THRESHOLD	1
78 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK		(NR_HASH - 1)
80 #define MAX_STRIPE_BATCH	8
81 
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85 	return &conf->stripe_hashtbl[hash];
86 }
87 
88 static inline int stripe_hash_locks_hash(sector_t sect)
89 {
90 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91 }
92 
93 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
94 {
95 	spin_lock_irq(conf->hash_locks + hash);
96 	spin_lock(&conf->device_lock);
97 }
98 
99 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
100 {
101 	spin_unlock(&conf->device_lock);
102 	spin_unlock_irq(conf->hash_locks + hash);
103 }
104 
105 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106 {
107 	int i;
108 	local_irq_disable();
109 	spin_lock(conf->hash_locks);
110 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112 	spin_lock(&conf->device_lock);
113 }
114 
115 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
116 {
117 	int i;
118 	spin_unlock(&conf->device_lock);
119 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120 		spin_unlock(conf->hash_locks + i - 1);
121 	local_irq_enable();
122 }
123 
124 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
125  * order without overlap.  There may be several bio's per stripe+device, and
126  * a bio could span several devices.
127  * When walking this list for a particular stripe+device, we must never proceed
128  * beyond a bio that extends past this device, as the next bio might no longer
129  * be valid.
130  * This function is used to determine the 'next' bio in the list, given the sector
131  * of the current stripe+device
132  */
133 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
134 {
135 	int sectors = bio_sectors(bio);
136 	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
137 		return bio->bi_next;
138 	else
139 		return NULL;
140 }
141 
142 /*
143  * We maintain a biased count of active stripes in the bottom 16 bits of
144  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
145  */
146 static inline int raid5_bi_processed_stripes(struct bio *bio)
147 {
148 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149 	return (atomic_read(segments) >> 16) & 0xffff;
150 }
151 
152 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
153 {
154 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155 	return atomic_sub_return(1, segments) & 0xffff;
156 }
157 
158 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
159 {
160 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161 	atomic_inc(segments);
162 }
163 
164 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165 	unsigned int cnt)
166 {
167 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168 	int old, new;
169 
170 	do {
171 		old = atomic_read(segments);
172 		new = (old & 0xffff) | (cnt << 16);
173 	} while (atomic_cmpxchg(segments, old, new) != old);
174 }
175 
176 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
177 {
178 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179 	atomic_set(segments, cnt);
180 }
181 
182 /* Find first data disk in a raid6 stripe */
183 static inline int raid6_d0(struct stripe_head *sh)
184 {
185 	if (sh->ddf_layout)
186 		/* ddf always start from first device */
187 		return 0;
188 	/* md starts just after Q block */
189 	if (sh->qd_idx == sh->disks - 1)
190 		return 0;
191 	else
192 		return sh->qd_idx + 1;
193 }
194 static inline int raid6_next_disk(int disk, int raid_disks)
195 {
196 	disk++;
197 	return (disk < raid_disks) ? disk : 0;
198 }
199 
200 /* When walking through the disks in a raid5, starting at raid6_d0,
201  * We need to map each disk to a 'slot', where the data disks are slot
202  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203  * is raid_disks-1.  This help does that mapping.
204  */
205 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206 			     int *count, int syndrome_disks)
207 {
208 	int slot = *count;
209 
210 	if (sh->ddf_layout)
211 		(*count)++;
212 	if (idx == sh->pd_idx)
213 		return syndrome_disks;
214 	if (idx == sh->qd_idx)
215 		return syndrome_disks + 1;
216 	if (!sh->ddf_layout)
217 		(*count)++;
218 	return slot;
219 }
220 
221 static void return_io(struct bio *return_bi)
222 {
223 	struct bio *bi = return_bi;
224 	while (bi) {
225 
226 		return_bi = bi->bi_next;
227 		bi->bi_next = NULL;
228 		bi->bi_size = 0;
229 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230 					 bi, 0);
231 		bio_endio(bi, 0);
232 		bi = return_bi;
233 	}
234 }
235 
236 static void print_raid5_conf (struct r5conf *conf);
237 
238 static int stripe_operations_active(struct stripe_head *sh)
239 {
240 	return sh->check_state || sh->reconstruct_state ||
241 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243 }
244 
245 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246 {
247 	struct r5conf *conf = sh->raid_conf;
248 	struct r5worker_group *group;
249 	int thread_cnt;
250 	int i, cpu = sh->cpu;
251 
252 	if (!cpu_online(cpu)) {
253 		cpu = cpumask_any(cpu_online_mask);
254 		sh->cpu = cpu;
255 	}
256 
257 	if (list_empty(&sh->lru)) {
258 		struct r5worker_group *group;
259 		group = conf->worker_groups + cpu_to_group(cpu);
260 		list_add_tail(&sh->lru, &group->handle_list);
261 		group->stripes_cnt++;
262 		sh->group = group;
263 	}
264 
265 	if (conf->worker_cnt_per_group == 0) {
266 		md_wakeup_thread(conf->mddev->thread);
267 		return;
268 	}
269 
270 	group = conf->worker_groups + cpu_to_group(sh->cpu);
271 
272 	group->workers[0].working = true;
273 	/* at least one worker should run to avoid race */
274 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275 
276 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277 	/* wakeup more workers */
278 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279 		if (group->workers[i].working == false) {
280 			group->workers[i].working = true;
281 			queue_work_on(sh->cpu, raid5_wq,
282 				      &group->workers[i].work);
283 			thread_cnt--;
284 		}
285 	}
286 }
287 
288 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289 			      struct list_head *temp_inactive_list)
290 {
291 	BUG_ON(!list_empty(&sh->lru));
292 	BUG_ON(atomic_read(&conf->active_stripes)==0);
293 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
294 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
295 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
296 			list_add_tail(&sh->lru, &conf->delayed_list);
297 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
298 			   sh->bm_seq - conf->seq_write > 0)
299 			list_add_tail(&sh->lru, &conf->bitmap_list);
300 		else {
301 			clear_bit(STRIPE_DELAYED, &sh->state);
302 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
303 			if (conf->worker_cnt_per_group == 0) {
304 				list_add_tail(&sh->lru, &conf->handle_list);
305 			} else {
306 				raid5_wakeup_stripe_thread(sh);
307 				return;
308 			}
309 		}
310 		md_wakeup_thread(conf->mddev->thread);
311 	} else {
312 		BUG_ON(stripe_operations_active(sh));
313 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
314 			if (atomic_dec_return(&conf->preread_active_stripes)
315 			    < IO_THRESHOLD)
316 				md_wakeup_thread(conf->mddev->thread);
317 		atomic_dec(&conf->active_stripes);
318 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
319 			list_add_tail(&sh->lru, temp_inactive_list);
320 	}
321 }
322 
323 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
324 			     struct list_head *temp_inactive_list)
325 {
326 	if (atomic_dec_and_test(&sh->count))
327 		do_release_stripe(conf, sh, temp_inactive_list);
328 }
329 
330 /*
331  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
332  *
333  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
334  * given time. Adding stripes only takes device lock, while deleting stripes
335  * only takes hash lock.
336  */
337 static void release_inactive_stripe_list(struct r5conf *conf,
338 					 struct list_head *temp_inactive_list,
339 					 int hash)
340 {
341 	int size;
342 	bool do_wakeup = false;
343 	unsigned long flags;
344 
345 	if (hash == NR_STRIPE_HASH_LOCKS) {
346 		size = NR_STRIPE_HASH_LOCKS;
347 		hash = NR_STRIPE_HASH_LOCKS - 1;
348 	} else
349 		size = 1;
350 	while (size) {
351 		struct list_head *list = &temp_inactive_list[size - 1];
352 
353 		/*
354 		 * We don't hold any lock here yet, get_active_stripe() might
355 		 * remove stripes from the list
356 		 */
357 		if (!list_empty_careful(list)) {
358 			spin_lock_irqsave(conf->hash_locks + hash, flags);
359 			if (list_empty(conf->inactive_list + hash) &&
360 			    !list_empty(list))
361 				atomic_dec(&conf->empty_inactive_list_nr);
362 			list_splice_tail_init(list, conf->inactive_list + hash);
363 			do_wakeup = true;
364 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
365 		}
366 		size--;
367 		hash--;
368 	}
369 
370 	if (do_wakeup) {
371 		wake_up(&conf->wait_for_stripe);
372 		if (conf->retry_read_aligned)
373 			md_wakeup_thread(conf->mddev->thread);
374 	}
375 }
376 
377 /* should hold conf->device_lock already */
378 static int release_stripe_list(struct r5conf *conf,
379 			       struct list_head *temp_inactive_list)
380 {
381 	struct stripe_head *sh;
382 	int count = 0;
383 	struct llist_node *head;
384 
385 	head = llist_del_all(&conf->released_stripes);
386 	head = llist_reverse_order(head);
387 	while (head) {
388 		int hash;
389 
390 		sh = llist_entry(head, struct stripe_head, release_list);
391 		head = llist_next(head);
392 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
393 		smp_mb();
394 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
395 		/*
396 		 * Don't worry the bit is set here, because if the bit is set
397 		 * again, the count is always > 1. This is true for
398 		 * STRIPE_ON_UNPLUG_LIST bit too.
399 		 */
400 		hash = sh->hash_lock_index;
401 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
402 		count++;
403 	}
404 
405 	return count;
406 }
407 
408 static void release_stripe(struct stripe_head *sh)
409 {
410 	struct r5conf *conf = sh->raid_conf;
411 	unsigned long flags;
412 	struct list_head list;
413 	int hash;
414 	bool wakeup;
415 
416 	if (unlikely(!conf->mddev->thread) ||
417 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
418 		goto slow_path;
419 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
420 	if (wakeup)
421 		md_wakeup_thread(conf->mddev->thread);
422 	return;
423 slow_path:
424 	local_irq_save(flags);
425 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
426 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
427 		INIT_LIST_HEAD(&list);
428 		hash = sh->hash_lock_index;
429 		do_release_stripe(conf, sh, &list);
430 		spin_unlock(&conf->device_lock);
431 		release_inactive_stripe_list(conf, &list, hash);
432 	}
433 	local_irq_restore(flags);
434 }
435 
436 static inline void remove_hash(struct stripe_head *sh)
437 {
438 	pr_debug("remove_hash(), stripe %llu\n",
439 		(unsigned long long)sh->sector);
440 
441 	hlist_del_init(&sh->hash);
442 }
443 
444 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
445 {
446 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
447 
448 	pr_debug("insert_hash(), stripe %llu\n",
449 		(unsigned long long)sh->sector);
450 
451 	hlist_add_head(&sh->hash, hp);
452 }
453 
454 
455 /* find an idle stripe, make sure it is unhashed, and return it. */
456 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
457 {
458 	struct stripe_head *sh = NULL;
459 	struct list_head *first;
460 
461 	if (list_empty(conf->inactive_list + hash))
462 		goto out;
463 	first = (conf->inactive_list + hash)->next;
464 	sh = list_entry(first, struct stripe_head, lru);
465 	list_del_init(first);
466 	remove_hash(sh);
467 	atomic_inc(&conf->active_stripes);
468 	BUG_ON(hash != sh->hash_lock_index);
469 	if (list_empty(conf->inactive_list + hash))
470 		atomic_inc(&conf->empty_inactive_list_nr);
471 out:
472 	return sh;
473 }
474 
475 static void shrink_buffers(struct stripe_head *sh)
476 {
477 	struct page *p;
478 	int i;
479 	int num = sh->raid_conf->pool_size;
480 
481 	for (i = 0; i < num ; i++) {
482 		p = sh->dev[i].page;
483 		if (!p)
484 			continue;
485 		sh->dev[i].page = NULL;
486 		put_page(p);
487 	}
488 }
489 
490 static int grow_buffers(struct stripe_head *sh)
491 {
492 	int i;
493 	int num = sh->raid_conf->pool_size;
494 
495 	for (i = 0; i < num; i++) {
496 		struct page *page;
497 
498 		if (!(page = alloc_page(GFP_KERNEL))) {
499 			return 1;
500 		}
501 		sh->dev[i].page = page;
502 	}
503 	return 0;
504 }
505 
506 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
507 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
508 			    struct stripe_head *sh);
509 
510 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
511 {
512 	struct r5conf *conf = sh->raid_conf;
513 	int i, seq;
514 
515 	BUG_ON(atomic_read(&sh->count) != 0);
516 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
517 	BUG_ON(stripe_operations_active(sh));
518 
519 	pr_debug("init_stripe called, stripe %llu\n",
520 		(unsigned long long)sh->sector);
521 
522 	remove_hash(sh);
523 retry:
524 	seq = read_seqcount_begin(&conf->gen_lock);
525 	sh->generation = conf->generation - previous;
526 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
527 	sh->sector = sector;
528 	stripe_set_idx(sector, conf, previous, sh);
529 	sh->state = 0;
530 
531 
532 	for (i = sh->disks; i--; ) {
533 		struct r5dev *dev = &sh->dev[i];
534 
535 		if (dev->toread || dev->read || dev->towrite || dev->written ||
536 		    test_bit(R5_LOCKED, &dev->flags)) {
537 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
538 			       (unsigned long long)sh->sector, i, dev->toread,
539 			       dev->read, dev->towrite, dev->written,
540 			       test_bit(R5_LOCKED, &dev->flags));
541 			WARN_ON(1);
542 		}
543 		dev->flags = 0;
544 		raid5_build_block(sh, i, previous);
545 	}
546 	if (read_seqcount_retry(&conf->gen_lock, seq))
547 		goto retry;
548 	insert_hash(conf, sh);
549 	sh->cpu = smp_processor_id();
550 }
551 
552 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
553 					 short generation)
554 {
555 	struct stripe_head *sh;
556 
557 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
558 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
559 		if (sh->sector == sector && sh->generation == generation)
560 			return sh;
561 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
562 	return NULL;
563 }
564 
565 /*
566  * Need to check if array has failed when deciding whether to:
567  *  - start an array
568  *  - remove non-faulty devices
569  *  - add a spare
570  *  - allow a reshape
571  * This determination is simple when no reshape is happening.
572  * However if there is a reshape, we need to carefully check
573  * both the before and after sections.
574  * This is because some failed devices may only affect one
575  * of the two sections, and some non-in_sync devices may
576  * be insync in the section most affected by failed devices.
577  */
578 static int calc_degraded(struct r5conf *conf)
579 {
580 	int degraded, degraded2;
581 	int i;
582 
583 	rcu_read_lock();
584 	degraded = 0;
585 	for (i = 0; i < conf->previous_raid_disks; i++) {
586 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
587 		if (rdev && test_bit(Faulty, &rdev->flags))
588 			rdev = rcu_dereference(conf->disks[i].replacement);
589 		if (!rdev || test_bit(Faulty, &rdev->flags))
590 			degraded++;
591 		else if (test_bit(In_sync, &rdev->flags))
592 			;
593 		else
594 			/* not in-sync or faulty.
595 			 * If the reshape increases the number of devices,
596 			 * this is being recovered by the reshape, so
597 			 * this 'previous' section is not in_sync.
598 			 * If the number of devices is being reduced however,
599 			 * the device can only be part of the array if
600 			 * we are reverting a reshape, so this section will
601 			 * be in-sync.
602 			 */
603 			if (conf->raid_disks >= conf->previous_raid_disks)
604 				degraded++;
605 	}
606 	rcu_read_unlock();
607 	if (conf->raid_disks == conf->previous_raid_disks)
608 		return degraded;
609 	rcu_read_lock();
610 	degraded2 = 0;
611 	for (i = 0; i < conf->raid_disks; i++) {
612 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
613 		if (rdev && test_bit(Faulty, &rdev->flags))
614 			rdev = rcu_dereference(conf->disks[i].replacement);
615 		if (!rdev || test_bit(Faulty, &rdev->flags))
616 			degraded2++;
617 		else if (test_bit(In_sync, &rdev->flags))
618 			;
619 		else
620 			/* not in-sync or faulty.
621 			 * If reshape increases the number of devices, this
622 			 * section has already been recovered, else it
623 			 * almost certainly hasn't.
624 			 */
625 			if (conf->raid_disks <= conf->previous_raid_disks)
626 				degraded2++;
627 	}
628 	rcu_read_unlock();
629 	if (degraded2 > degraded)
630 		return degraded2;
631 	return degraded;
632 }
633 
634 static int has_failed(struct r5conf *conf)
635 {
636 	int degraded;
637 
638 	if (conf->mddev->reshape_position == MaxSector)
639 		return conf->mddev->degraded > conf->max_degraded;
640 
641 	degraded = calc_degraded(conf);
642 	if (degraded > conf->max_degraded)
643 		return 1;
644 	return 0;
645 }
646 
647 static struct stripe_head *
648 get_active_stripe(struct r5conf *conf, sector_t sector,
649 		  int previous, int noblock, int noquiesce)
650 {
651 	struct stripe_head *sh;
652 	int hash = stripe_hash_locks_hash(sector);
653 
654 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
655 
656 	spin_lock_irq(conf->hash_locks + hash);
657 
658 	do {
659 		wait_event_lock_irq(conf->wait_for_stripe,
660 				    conf->quiesce == 0 || noquiesce,
661 				    *(conf->hash_locks + hash));
662 		sh = __find_stripe(conf, sector, conf->generation - previous);
663 		if (!sh) {
664 			if (!conf->inactive_blocked)
665 				sh = get_free_stripe(conf, hash);
666 			if (noblock && sh == NULL)
667 				break;
668 			if (!sh) {
669 				conf->inactive_blocked = 1;
670 				wait_event_lock_irq(
671 					conf->wait_for_stripe,
672 					!list_empty(conf->inactive_list + hash) &&
673 					(atomic_read(&conf->active_stripes)
674 					 < (conf->max_nr_stripes * 3 / 4)
675 					 || !conf->inactive_blocked),
676 					*(conf->hash_locks + hash));
677 				conf->inactive_blocked = 0;
678 			} else
679 				init_stripe(sh, sector, previous);
680 		} else {
681 			spin_lock(&conf->device_lock);
682 			if (atomic_read(&sh->count)) {
683 				BUG_ON(!list_empty(&sh->lru)
684 				    && !test_bit(STRIPE_EXPANDING, &sh->state)
685 				    && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)
686 					);
687 			} else {
688 				if (!test_bit(STRIPE_HANDLE, &sh->state))
689 					atomic_inc(&conf->active_stripes);
690 				BUG_ON(list_empty(&sh->lru));
691 				list_del_init(&sh->lru);
692 				if (sh->group) {
693 					sh->group->stripes_cnt--;
694 					sh->group = NULL;
695 				}
696 			}
697 			spin_unlock(&conf->device_lock);
698 		}
699 	} while (sh == NULL);
700 
701 	if (sh)
702 		atomic_inc(&sh->count);
703 
704 	spin_unlock_irq(conf->hash_locks + hash);
705 	return sh;
706 }
707 
708 /* Determine if 'data_offset' or 'new_data_offset' should be used
709  * in this stripe_head.
710  */
711 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
712 {
713 	sector_t progress = conf->reshape_progress;
714 	/* Need a memory barrier to make sure we see the value
715 	 * of conf->generation, or ->data_offset that was set before
716 	 * reshape_progress was updated.
717 	 */
718 	smp_rmb();
719 	if (progress == MaxSector)
720 		return 0;
721 	if (sh->generation == conf->generation - 1)
722 		return 0;
723 	/* We are in a reshape, and this is a new-generation stripe,
724 	 * so use new_data_offset.
725 	 */
726 	return 1;
727 }
728 
729 static void
730 raid5_end_read_request(struct bio *bi, int error);
731 static void
732 raid5_end_write_request(struct bio *bi, int error);
733 
734 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
735 {
736 	struct r5conf *conf = sh->raid_conf;
737 	int i, disks = sh->disks;
738 
739 	might_sleep();
740 
741 	for (i = disks; i--; ) {
742 		int rw;
743 		int replace_only = 0;
744 		struct bio *bi, *rbi;
745 		struct md_rdev *rdev, *rrdev = NULL;
746 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
747 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
748 				rw = WRITE_FUA;
749 			else
750 				rw = WRITE;
751 			if (test_bit(R5_Discard, &sh->dev[i].flags))
752 				rw |= REQ_DISCARD;
753 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
754 			rw = READ;
755 		else if (test_and_clear_bit(R5_WantReplace,
756 					    &sh->dev[i].flags)) {
757 			rw = WRITE;
758 			replace_only = 1;
759 		} else
760 			continue;
761 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
762 			rw |= REQ_SYNC;
763 
764 		bi = &sh->dev[i].req;
765 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
766 
767 		rcu_read_lock();
768 		rrdev = rcu_dereference(conf->disks[i].replacement);
769 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
770 		rdev = rcu_dereference(conf->disks[i].rdev);
771 		if (!rdev) {
772 			rdev = rrdev;
773 			rrdev = NULL;
774 		}
775 		if (rw & WRITE) {
776 			if (replace_only)
777 				rdev = NULL;
778 			if (rdev == rrdev)
779 				/* We raced and saw duplicates */
780 				rrdev = NULL;
781 		} else {
782 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
783 				rdev = rrdev;
784 			rrdev = NULL;
785 		}
786 
787 		if (rdev && test_bit(Faulty, &rdev->flags))
788 			rdev = NULL;
789 		if (rdev)
790 			atomic_inc(&rdev->nr_pending);
791 		if (rrdev && test_bit(Faulty, &rrdev->flags))
792 			rrdev = NULL;
793 		if (rrdev)
794 			atomic_inc(&rrdev->nr_pending);
795 		rcu_read_unlock();
796 
797 		/* We have already checked bad blocks for reads.  Now
798 		 * need to check for writes.  We never accept write errors
799 		 * on the replacement, so we don't to check rrdev.
800 		 */
801 		while ((rw & WRITE) && rdev &&
802 		       test_bit(WriteErrorSeen, &rdev->flags)) {
803 			sector_t first_bad;
804 			int bad_sectors;
805 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
806 					      &first_bad, &bad_sectors);
807 			if (!bad)
808 				break;
809 
810 			if (bad < 0) {
811 				set_bit(BlockedBadBlocks, &rdev->flags);
812 				if (!conf->mddev->external &&
813 				    conf->mddev->flags) {
814 					/* It is very unlikely, but we might
815 					 * still need to write out the
816 					 * bad block log - better give it
817 					 * a chance*/
818 					md_check_recovery(conf->mddev);
819 				}
820 				/*
821 				 * Because md_wait_for_blocked_rdev
822 				 * will dec nr_pending, we must
823 				 * increment it first.
824 				 */
825 				atomic_inc(&rdev->nr_pending);
826 				md_wait_for_blocked_rdev(rdev, conf->mddev);
827 			} else {
828 				/* Acknowledged bad block - skip the write */
829 				rdev_dec_pending(rdev, conf->mddev);
830 				rdev = NULL;
831 			}
832 		}
833 
834 		if (rdev) {
835 			if (s->syncing || s->expanding || s->expanded
836 			    || s->replacing)
837 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
838 
839 			set_bit(STRIPE_IO_STARTED, &sh->state);
840 
841 			bio_reset(bi);
842 			bi->bi_bdev = rdev->bdev;
843 			bi->bi_rw = rw;
844 			bi->bi_end_io = (rw & WRITE)
845 				? raid5_end_write_request
846 				: raid5_end_read_request;
847 			bi->bi_private = sh;
848 
849 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
850 				__func__, (unsigned long long)sh->sector,
851 				bi->bi_rw, i);
852 			atomic_inc(&sh->count);
853 			if (use_new_offset(conf, sh))
854 				bi->bi_sector = (sh->sector
855 						 + rdev->new_data_offset);
856 			else
857 				bi->bi_sector = (sh->sector
858 						 + rdev->data_offset);
859 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
860 				bi->bi_rw |= REQ_NOMERGE;
861 
862 			bi->bi_vcnt = 1;
863 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
864 			bi->bi_io_vec[0].bv_offset = 0;
865 			bi->bi_size = STRIPE_SIZE;
866 			/*
867 			 * If this is discard request, set bi_vcnt 0. We don't
868 			 * want to confuse SCSI because SCSI will replace payload
869 			 */
870 			if (rw & REQ_DISCARD)
871 				bi->bi_vcnt = 0;
872 			if (rrdev)
873 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
874 
875 			if (conf->mddev->gendisk)
876 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
877 						      bi, disk_devt(conf->mddev->gendisk),
878 						      sh->dev[i].sector);
879 			generic_make_request(bi);
880 		}
881 		if (rrdev) {
882 			if (s->syncing || s->expanding || s->expanded
883 			    || s->replacing)
884 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
885 
886 			set_bit(STRIPE_IO_STARTED, &sh->state);
887 
888 			bio_reset(rbi);
889 			rbi->bi_bdev = rrdev->bdev;
890 			rbi->bi_rw = rw;
891 			BUG_ON(!(rw & WRITE));
892 			rbi->bi_end_io = raid5_end_write_request;
893 			rbi->bi_private = sh;
894 
895 			pr_debug("%s: for %llu schedule op %ld on "
896 				 "replacement disc %d\n",
897 				__func__, (unsigned long long)sh->sector,
898 				rbi->bi_rw, i);
899 			atomic_inc(&sh->count);
900 			if (use_new_offset(conf, sh))
901 				rbi->bi_sector = (sh->sector
902 						  + rrdev->new_data_offset);
903 			else
904 				rbi->bi_sector = (sh->sector
905 						  + rrdev->data_offset);
906 			rbi->bi_vcnt = 1;
907 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
908 			rbi->bi_io_vec[0].bv_offset = 0;
909 			rbi->bi_size = STRIPE_SIZE;
910 			/*
911 			 * If this is discard request, set bi_vcnt 0. We don't
912 			 * want to confuse SCSI because SCSI will replace payload
913 			 */
914 			if (rw & REQ_DISCARD)
915 				rbi->bi_vcnt = 0;
916 			if (conf->mddev->gendisk)
917 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
918 						      rbi, disk_devt(conf->mddev->gendisk),
919 						      sh->dev[i].sector);
920 			generic_make_request(rbi);
921 		}
922 		if (!rdev && !rrdev) {
923 			if (rw & WRITE)
924 				set_bit(STRIPE_DEGRADED, &sh->state);
925 			pr_debug("skip op %ld on disc %d for sector %llu\n",
926 				bi->bi_rw, i, (unsigned long long)sh->sector);
927 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
928 			set_bit(STRIPE_HANDLE, &sh->state);
929 		}
930 	}
931 }
932 
933 static struct dma_async_tx_descriptor *
934 async_copy_data(int frombio, struct bio *bio, struct page *page,
935 	sector_t sector, struct dma_async_tx_descriptor *tx)
936 {
937 	struct bio_vec *bvl;
938 	struct page *bio_page;
939 	int i;
940 	int page_offset;
941 	struct async_submit_ctl submit;
942 	enum async_tx_flags flags = 0;
943 
944 	if (bio->bi_sector >= sector)
945 		page_offset = (signed)(bio->bi_sector - sector) * 512;
946 	else
947 		page_offset = (signed)(sector - bio->bi_sector) * -512;
948 
949 	if (frombio)
950 		flags |= ASYNC_TX_FENCE;
951 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
952 
953 	bio_for_each_segment(bvl, bio, i) {
954 		int len = bvl->bv_len;
955 		int clen;
956 		int b_offset = 0;
957 
958 		if (page_offset < 0) {
959 			b_offset = -page_offset;
960 			page_offset += b_offset;
961 			len -= b_offset;
962 		}
963 
964 		if (len > 0 && page_offset + len > STRIPE_SIZE)
965 			clen = STRIPE_SIZE - page_offset;
966 		else
967 			clen = len;
968 
969 		if (clen > 0) {
970 			b_offset += bvl->bv_offset;
971 			bio_page = bvl->bv_page;
972 			if (frombio)
973 				tx = async_memcpy(page, bio_page, page_offset,
974 						  b_offset, clen, &submit);
975 			else
976 				tx = async_memcpy(bio_page, page, b_offset,
977 						  page_offset, clen, &submit);
978 		}
979 		/* chain the operations */
980 		submit.depend_tx = tx;
981 
982 		if (clen < len) /* hit end of page */
983 			break;
984 		page_offset +=  len;
985 	}
986 
987 	return tx;
988 }
989 
990 static void ops_complete_biofill(void *stripe_head_ref)
991 {
992 	struct stripe_head *sh = stripe_head_ref;
993 	struct bio *return_bi = NULL;
994 	int i;
995 
996 	pr_debug("%s: stripe %llu\n", __func__,
997 		(unsigned long long)sh->sector);
998 
999 	/* clear completed biofills */
1000 	for (i = sh->disks; i--; ) {
1001 		struct r5dev *dev = &sh->dev[i];
1002 
1003 		/* acknowledge completion of a biofill operation */
1004 		/* and check if we need to reply to a read request,
1005 		 * new R5_Wantfill requests are held off until
1006 		 * !STRIPE_BIOFILL_RUN
1007 		 */
1008 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1009 			struct bio *rbi, *rbi2;
1010 
1011 			BUG_ON(!dev->read);
1012 			rbi = dev->read;
1013 			dev->read = NULL;
1014 			while (rbi && rbi->bi_sector <
1015 				dev->sector + STRIPE_SECTORS) {
1016 				rbi2 = r5_next_bio(rbi, dev->sector);
1017 				if (!raid5_dec_bi_active_stripes(rbi)) {
1018 					rbi->bi_next = return_bi;
1019 					return_bi = rbi;
1020 				}
1021 				rbi = rbi2;
1022 			}
1023 		}
1024 	}
1025 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1026 
1027 	return_io(return_bi);
1028 
1029 	set_bit(STRIPE_HANDLE, &sh->state);
1030 	release_stripe(sh);
1031 }
1032 
1033 static void ops_run_biofill(struct stripe_head *sh)
1034 {
1035 	struct dma_async_tx_descriptor *tx = NULL;
1036 	struct async_submit_ctl submit;
1037 	int i;
1038 
1039 	pr_debug("%s: stripe %llu\n", __func__,
1040 		(unsigned long long)sh->sector);
1041 
1042 	for (i = sh->disks; i--; ) {
1043 		struct r5dev *dev = &sh->dev[i];
1044 		if (test_bit(R5_Wantfill, &dev->flags)) {
1045 			struct bio *rbi;
1046 			spin_lock_irq(&sh->stripe_lock);
1047 			dev->read = rbi = dev->toread;
1048 			dev->toread = NULL;
1049 			spin_unlock_irq(&sh->stripe_lock);
1050 			while (rbi && rbi->bi_sector <
1051 				dev->sector + STRIPE_SECTORS) {
1052 				tx = async_copy_data(0, rbi, dev->page,
1053 					dev->sector, tx);
1054 				rbi = r5_next_bio(rbi, dev->sector);
1055 			}
1056 		}
1057 	}
1058 
1059 	atomic_inc(&sh->count);
1060 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1061 	async_trigger_callback(&submit);
1062 }
1063 
1064 static void mark_target_uptodate(struct stripe_head *sh, int target)
1065 {
1066 	struct r5dev *tgt;
1067 
1068 	if (target < 0)
1069 		return;
1070 
1071 	tgt = &sh->dev[target];
1072 	set_bit(R5_UPTODATE, &tgt->flags);
1073 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1074 	clear_bit(R5_Wantcompute, &tgt->flags);
1075 }
1076 
1077 static void ops_complete_compute(void *stripe_head_ref)
1078 {
1079 	struct stripe_head *sh = stripe_head_ref;
1080 
1081 	pr_debug("%s: stripe %llu\n", __func__,
1082 		(unsigned long long)sh->sector);
1083 
1084 	/* mark the computed target(s) as uptodate */
1085 	mark_target_uptodate(sh, sh->ops.target);
1086 	mark_target_uptodate(sh, sh->ops.target2);
1087 
1088 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1089 	if (sh->check_state == check_state_compute_run)
1090 		sh->check_state = check_state_compute_result;
1091 	set_bit(STRIPE_HANDLE, &sh->state);
1092 	release_stripe(sh);
1093 }
1094 
1095 /* return a pointer to the address conversion region of the scribble buffer */
1096 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1097 				 struct raid5_percpu *percpu)
1098 {
1099 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1100 }
1101 
1102 static struct dma_async_tx_descriptor *
1103 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1104 {
1105 	int disks = sh->disks;
1106 	struct page **xor_srcs = percpu->scribble;
1107 	int target = sh->ops.target;
1108 	struct r5dev *tgt = &sh->dev[target];
1109 	struct page *xor_dest = tgt->page;
1110 	int count = 0;
1111 	struct dma_async_tx_descriptor *tx;
1112 	struct async_submit_ctl submit;
1113 	int i;
1114 
1115 	pr_debug("%s: stripe %llu block: %d\n",
1116 		__func__, (unsigned long long)sh->sector, target);
1117 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1118 
1119 	for (i = disks; i--; )
1120 		if (i != target)
1121 			xor_srcs[count++] = sh->dev[i].page;
1122 
1123 	atomic_inc(&sh->count);
1124 
1125 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1126 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
1127 	if (unlikely(count == 1))
1128 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1129 	else
1130 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1131 
1132 	return tx;
1133 }
1134 
1135 /* set_syndrome_sources - populate source buffers for gen_syndrome
1136  * @srcs - (struct page *) array of size sh->disks
1137  * @sh - stripe_head to parse
1138  *
1139  * Populates srcs in proper layout order for the stripe and returns the
1140  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1141  * destination buffer is recorded in srcs[count] and the Q destination
1142  * is recorded in srcs[count+1]].
1143  */
1144 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1145 {
1146 	int disks = sh->disks;
1147 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1148 	int d0_idx = raid6_d0(sh);
1149 	int count;
1150 	int i;
1151 
1152 	for (i = 0; i < disks; i++)
1153 		srcs[i] = NULL;
1154 
1155 	count = 0;
1156 	i = d0_idx;
1157 	do {
1158 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1159 
1160 		srcs[slot] = sh->dev[i].page;
1161 		i = raid6_next_disk(i, disks);
1162 	} while (i != d0_idx);
1163 
1164 	return syndrome_disks;
1165 }
1166 
1167 static struct dma_async_tx_descriptor *
1168 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1169 {
1170 	int disks = sh->disks;
1171 	struct page **blocks = percpu->scribble;
1172 	int target;
1173 	int qd_idx = sh->qd_idx;
1174 	struct dma_async_tx_descriptor *tx;
1175 	struct async_submit_ctl submit;
1176 	struct r5dev *tgt;
1177 	struct page *dest;
1178 	int i;
1179 	int count;
1180 
1181 	if (sh->ops.target < 0)
1182 		target = sh->ops.target2;
1183 	else if (sh->ops.target2 < 0)
1184 		target = sh->ops.target;
1185 	else
1186 		/* we should only have one valid target */
1187 		BUG();
1188 	BUG_ON(target < 0);
1189 	pr_debug("%s: stripe %llu block: %d\n",
1190 		__func__, (unsigned long long)sh->sector, target);
1191 
1192 	tgt = &sh->dev[target];
1193 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1194 	dest = tgt->page;
1195 
1196 	atomic_inc(&sh->count);
1197 
1198 	if (target == qd_idx) {
1199 		count = set_syndrome_sources(blocks, sh);
1200 		blocks[count] = NULL; /* regenerating p is not necessary */
1201 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1202 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1203 				  ops_complete_compute, sh,
1204 				  to_addr_conv(sh, percpu));
1205 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1206 	} else {
1207 		/* Compute any data- or p-drive using XOR */
1208 		count = 0;
1209 		for (i = disks; i-- ; ) {
1210 			if (i == target || i == qd_idx)
1211 				continue;
1212 			blocks[count++] = sh->dev[i].page;
1213 		}
1214 
1215 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1216 				  NULL, ops_complete_compute, sh,
1217 				  to_addr_conv(sh, percpu));
1218 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1219 	}
1220 
1221 	return tx;
1222 }
1223 
1224 static struct dma_async_tx_descriptor *
1225 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1226 {
1227 	int i, count, disks = sh->disks;
1228 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1229 	int d0_idx = raid6_d0(sh);
1230 	int faila = -1, failb = -1;
1231 	int target = sh->ops.target;
1232 	int target2 = sh->ops.target2;
1233 	struct r5dev *tgt = &sh->dev[target];
1234 	struct r5dev *tgt2 = &sh->dev[target2];
1235 	struct dma_async_tx_descriptor *tx;
1236 	struct page **blocks = percpu->scribble;
1237 	struct async_submit_ctl submit;
1238 
1239 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1240 		 __func__, (unsigned long long)sh->sector, target, target2);
1241 	BUG_ON(target < 0 || target2 < 0);
1242 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1243 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1244 
1245 	/* we need to open-code set_syndrome_sources to handle the
1246 	 * slot number conversion for 'faila' and 'failb'
1247 	 */
1248 	for (i = 0; i < disks ; i++)
1249 		blocks[i] = NULL;
1250 	count = 0;
1251 	i = d0_idx;
1252 	do {
1253 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1254 
1255 		blocks[slot] = sh->dev[i].page;
1256 
1257 		if (i == target)
1258 			faila = slot;
1259 		if (i == target2)
1260 			failb = slot;
1261 		i = raid6_next_disk(i, disks);
1262 	} while (i != d0_idx);
1263 
1264 	BUG_ON(faila == failb);
1265 	if (failb < faila)
1266 		swap(faila, failb);
1267 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1268 		 __func__, (unsigned long long)sh->sector, faila, failb);
1269 
1270 	atomic_inc(&sh->count);
1271 
1272 	if (failb == syndrome_disks+1) {
1273 		/* Q disk is one of the missing disks */
1274 		if (faila == syndrome_disks) {
1275 			/* Missing P+Q, just recompute */
1276 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1277 					  ops_complete_compute, sh,
1278 					  to_addr_conv(sh, percpu));
1279 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1280 						  STRIPE_SIZE, &submit);
1281 		} else {
1282 			struct page *dest;
1283 			int data_target;
1284 			int qd_idx = sh->qd_idx;
1285 
1286 			/* Missing D+Q: recompute D from P, then recompute Q */
1287 			if (target == qd_idx)
1288 				data_target = target2;
1289 			else
1290 				data_target = target;
1291 
1292 			count = 0;
1293 			for (i = disks; i-- ; ) {
1294 				if (i == data_target || i == qd_idx)
1295 					continue;
1296 				blocks[count++] = sh->dev[i].page;
1297 			}
1298 			dest = sh->dev[data_target].page;
1299 			init_async_submit(&submit,
1300 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1301 					  NULL, NULL, NULL,
1302 					  to_addr_conv(sh, percpu));
1303 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1304 				       &submit);
1305 
1306 			count = set_syndrome_sources(blocks, sh);
1307 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1308 					  ops_complete_compute, sh,
1309 					  to_addr_conv(sh, percpu));
1310 			return async_gen_syndrome(blocks, 0, count+2,
1311 						  STRIPE_SIZE, &submit);
1312 		}
1313 	} else {
1314 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1315 				  ops_complete_compute, sh,
1316 				  to_addr_conv(sh, percpu));
1317 		if (failb == syndrome_disks) {
1318 			/* We're missing D+P. */
1319 			return async_raid6_datap_recov(syndrome_disks+2,
1320 						       STRIPE_SIZE, faila,
1321 						       blocks, &submit);
1322 		} else {
1323 			/* We're missing D+D. */
1324 			return async_raid6_2data_recov(syndrome_disks+2,
1325 						       STRIPE_SIZE, faila, failb,
1326 						       blocks, &submit);
1327 		}
1328 	}
1329 }
1330 
1331 
1332 static void ops_complete_prexor(void *stripe_head_ref)
1333 {
1334 	struct stripe_head *sh = stripe_head_ref;
1335 
1336 	pr_debug("%s: stripe %llu\n", __func__,
1337 		(unsigned long long)sh->sector);
1338 }
1339 
1340 static struct dma_async_tx_descriptor *
1341 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1342 	       struct dma_async_tx_descriptor *tx)
1343 {
1344 	int disks = sh->disks;
1345 	struct page **xor_srcs = percpu->scribble;
1346 	int count = 0, pd_idx = sh->pd_idx, i;
1347 	struct async_submit_ctl submit;
1348 
1349 	/* existing parity data subtracted */
1350 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1351 
1352 	pr_debug("%s: stripe %llu\n", __func__,
1353 		(unsigned long long)sh->sector);
1354 
1355 	for (i = disks; i--; ) {
1356 		struct r5dev *dev = &sh->dev[i];
1357 		/* Only process blocks that are known to be uptodate */
1358 		if (test_bit(R5_Wantdrain, &dev->flags))
1359 			xor_srcs[count++] = dev->page;
1360 	}
1361 
1362 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1363 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1364 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1365 
1366 	return tx;
1367 }
1368 
1369 static struct dma_async_tx_descriptor *
1370 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1371 {
1372 	int disks = sh->disks;
1373 	int i;
1374 
1375 	pr_debug("%s: stripe %llu\n", __func__,
1376 		(unsigned long long)sh->sector);
1377 
1378 	for (i = disks; i--; ) {
1379 		struct r5dev *dev = &sh->dev[i];
1380 		struct bio *chosen;
1381 
1382 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1383 			struct bio *wbi;
1384 
1385 			spin_lock_irq(&sh->stripe_lock);
1386 			chosen = dev->towrite;
1387 			dev->towrite = NULL;
1388 			BUG_ON(dev->written);
1389 			wbi = dev->written = chosen;
1390 			spin_unlock_irq(&sh->stripe_lock);
1391 
1392 			while (wbi && wbi->bi_sector <
1393 				dev->sector + STRIPE_SECTORS) {
1394 				if (wbi->bi_rw & REQ_FUA)
1395 					set_bit(R5_WantFUA, &dev->flags);
1396 				if (wbi->bi_rw & REQ_SYNC)
1397 					set_bit(R5_SyncIO, &dev->flags);
1398 				if (wbi->bi_rw & REQ_DISCARD)
1399 					set_bit(R5_Discard, &dev->flags);
1400 				else
1401 					tx = async_copy_data(1, wbi, dev->page,
1402 						dev->sector, tx);
1403 				wbi = r5_next_bio(wbi, dev->sector);
1404 			}
1405 		}
1406 	}
1407 
1408 	return tx;
1409 }
1410 
1411 static void ops_complete_reconstruct(void *stripe_head_ref)
1412 {
1413 	struct stripe_head *sh = stripe_head_ref;
1414 	int disks = sh->disks;
1415 	int pd_idx = sh->pd_idx;
1416 	int qd_idx = sh->qd_idx;
1417 	int i;
1418 	bool fua = false, sync = false, discard = false;
1419 
1420 	pr_debug("%s: stripe %llu\n", __func__,
1421 		(unsigned long long)sh->sector);
1422 
1423 	for (i = disks; i--; ) {
1424 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1425 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1426 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1427 	}
1428 
1429 	for (i = disks; i--; ) {
1430 		struct r5dev *dev = &sh->dev[i];
1431 
1432 		if (dev->written || i == pd_idx || i == qd_idx) {
1433 			if (!discard)
1434 				set_bit(R5_UPTODATE, &dev->flags);
1435 			if (fua)
1436 				set_bit(R5_WantFUA, &dev->flags);
1437 			if (sync)
1438 				set_bit(R5_SyncIO, &dev->flags);
1439 		}
1440 	}
1441 
1442 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1443 		sh->reconstruct_state = reconstruct_state_drain_result;
1444 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1445 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1446 	else {
1447 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1448 		sh->reconstruct_state = reconstruct_state_result;
1449 	}
1450 
1451 	set_bit(STRIPE_HANDLE, &sh->state);
1452 	release_stripe(sh);
1453 }
1454 
1455 static void
1456 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1457 		     struct dma_async_tx_descriptor *tx)
1458 {
1459 	int disks = sh->disks;
1460 	struct page **xor_srcs = percpu->scribble;
1461 	struct async_submit_ctl submit;
1462 	int count = 0, pd_idx = sh->pd_idx, i;
1463 	struct page *xor_dest;
1464 	int prexor = 0;
1465 	unsigned long flags;
1466 
1467 	pr_debug("%s: stripe %llu\n", __func__,
1468 		(unsigned long long)sh->sector);
1469 
1470 	for (i = 0; i < sh->disks; i++) {
1471 		if (pd_idx == i)
1472 			continue;
1473 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1474 			break;
1475 	}
1476 	if (i >= sh->disks) {
1477 		atomic_inc(&sh->count);
1478 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1479 		ops_complete_reconstruct(sh);
1480 		return;
1481 	}
1482 	/* check if prexor is active which means only process blocks
1483 	 * that are part of a read-modify-write (written)
1484 	 */
1485 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1486 		prexor = 1;
1487 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1488 		for (i = disks; i--; ) {
1489 			struct r5dev *dev = &sh->dev[i];
1490 			if (dev->written)
1491 				xor_srcs[count++] = dev->page;
1492 		}
1493 	} else {
1494 		xor_dest = sh->dev[pd_idx].page;
1495 		for (i = disks; i--; ) {
1496 			struct r5dev *dev = &sh->dev[i];
1497 			if (i != pd_idx)
1498 				xor_srcs[count++] = dev->page;
1499 		}
1500 	}
1501 
1502 	/* 1/ if we prexor'd then the dest is reused as a source
1503 	 * 2/ if we did not prexor then we are redoing the parity
1504 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1505 	 * for the synchronous xor case
1506 	 */
1507 	flags = ASYNC_TX_ACK |
1508 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1509 
1510 	atomic_inc(&sh->count);
1511 
1512 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1513 			  to_addr_conv(sh, percpu));
1514 	if (unlikely(count == 1))
1515 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1516 	else
1517 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1518 }
1519 
1520 static void
1521 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1522 		     struct dma_async_tx_descriptor *tx)
1523 {
1524 	struct async_submit_ctl submit;
1525 	struct page **blocks = percpu->scribble;
1526 	int count, i;
1527 
1528 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1529 
1530 	for (i = 0; i < sh->disks; i++) {
1531 		if (sh->pd_idx == i || sh->qd_idx == i)
1532 			continue;
1533 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1534 			break;
1535 	}
1536 	if (i >= sh->disks) {
1537 		atomic_inc(&sh->count);
1538 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1539 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1540 		ops_complete_reconstruct(sh);
1541 		return;
1542 	}
1543 
1544 	count = set_syndrome_sources(blocks, sh);
1545 
1546 	atomic_inc(&sh->count);
1547 
1548 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1549 			  sh, to_addr_conv(sh, percpu));
1550 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1551 }
1552 
1553 static void ops_complete_check(void *stripe_head_ref)
1554 {
1555 	struct stripe_head *sh = stripe_head_ref;
1556 
1557 	pr_debug("%s: stripe %llu\n", __func__,
1558 		(unsigned long long)sh->sector);
1559 
1560 	sh->check_state = check_state_check_result;
1561 	set_bit(STRIPE_HANDLE, &sh->state);
1562 	release_stripe(sh);
1563 }
1564 
1565 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1566 {
1567 	int disks = sh->disks;
1568 	int pd_idx = sh->pd_idx;
1569 	int qd_idx = sh->qd_idx;
1570 	struct page *xor_dest;
1571 	struct page **xor_srcs = percpu->scribble;
1572 	struct dma_async_tx_descriptor *tx;
1573 	struct async_submit_ctl submit;
1574 	int count;
1575 	int i;
1576 
1577 	pr_debug("%s: stripe %llu\n", __func__,
1578 		(unsigned long long)sh->sector);
1579 
1580 	count = 0;
1581 	xor_dest = sh->dev[pd_idx].page;
1582 	xor_srcs[count++] = xor_dest;
1583 	for (i = disks; i--; ) {
1584 		if (i == pd_idx || i == qd_idx)
1585 			continue;
1586 		xor_srcs[count++] = sh->dev[i].page;
1587 	}
1588 
1589 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1590 			  to_addr_conv(sh, percpu));
1591 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1592 			   &sh->ops.zero_sum_result, &submit);
1593 
1594 	atomic_inc(&sh->count);
1595 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1596 	tx = async_trigger_callback(&submit);
1597 }
1598 
1599 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1600 {
1601 	struct page **srcs = percpu->scribble;
1602 	struct async_submit_ctl submit;
1603 	int count;
1604 
1605 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1606 		(unsigned long long)sh->sector, checkp);
1607 
1608 	count = set_syndrome_sources(srcs, sh);
1609 	if (!checkp)
1610 		srcs[count] = NULL;
1611 
1612 	atomic_inc(&sh->count);
1613 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1614 			  sh, to_addr_conv(sh, percpu));
1615 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1616 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1617 }
1618 
1619 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1620 {
1621 	int overlap_clear = 0, i, disks = sh->disks;
1622 	struct dma_async_tx_descriptor *tx = NULL;
1623 	struct r5conf *conf = sh->raid_conf;
1624 	int level = conf->level;
1625 	struct raid5_percpu *percpu;
1626 	unsigned long cpu;
1627 
1628 	cpu = get_cpu();
1629 	percpu = per_cpu_ptr(conf->percpu, cpu);
1630 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1631 		ops_run_biofill(sh);
1632 		overlap_clear++;
1633 	}
1634 
1635 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1636 		if (level < 6)
1637 			tx = ops_run_compute5(sh, percpu);
1638 		else {
1639 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1640 				tx = ops_run_compute6_1(sh, percpu);
1641 			else
1642 				tx = ops_run_compute6_2(sh, percpu);
1643 		}
1644 		/* terminate the chain if reconstruct is not set to be run */
1645 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1646 			async_tx_ack(tx);
1647 	}
1648 
1649 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1650 		tx = ops_run_prexor(sh, percpu, tx);
1651 
1652 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1653 		tx = ops_run_biodrain(sh, tx);
1654 		overlap_clear++;
1655 	}
1656 
1657 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1658 		if (level < 6)
1659 			ops_run_reconstruct5(sh, percpu, tx);
1660 		else
1661 			ops_run_reconstruct6(sh, percpu, tx);
1662 	}
1663 
1664 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1665 		if (sh->check_state == check_state_run)
1666 			ops_run_check_p(sh, percpu);
1667 		else if (sh->check_state == check_state_run_q)
1668 			ops_run_check_pq(sh, percpu, 0);
1669 		else if (sh->check_state == check_state_run_pq)
1670 			ops_run_check_pq(sh, percpu, 1);
1671 		else
1672 			BUG();
1673 	}
1674 
1675 	if (overlap_clear)
1676 		for (i = disks; i--; ) {
1677 			struct r5dev *dev = &sh->dev[i];
1678 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1679 				wake_up(&sh->raid_conf->wait_for_overlap);
1680 		}
1681 	put_cpu();
1682 }
1683 
1684 static int grow_one_stripe(struct r5conf *conf, int hash)
1685 {
1686 	struct stripe_head *sh;
1687 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1688 	if (!sh)
1689 		return 0;
1690 
1691 	sh->raid_conf = conf;
1692 
1693 	spin_lock_init(&sh->stripe_lock);
1694 
1695 	if (grow_buffers(sh)) {
1696 		shrink_buffers(sh);
1697 		kmem_cache_free(conf->slab_cache, sh);
1698 		return 0;
1699 	}
1700 	sh->hash_lock_index = hash;
1701 	/* we just created an active stripe so... */
1702 	atomic_set(&sh->count, 1);
1703 	atomic_inc(&conf->active_stripes);
1704 	INIT_LIST_HEAD(&sh->lru);
1705 	release_stripe(sh);
1706 	return 1;
1707 }
1708 
1709 static int grow_stripes(struct r5conf *conf, int num)
1710 {
1711 	struct kmem_cache *sc;
1712 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1713 	int hash;
1714 
1715 	if (conf->mddev->gendisk)
1716 		sprintf(conf->cache_name[0],
1717 			"raid%d-%s", conf->level, mdname(conf->mddev));
1718 	else
1719 		sprintf(conf->cache_name[0],
1720 			"raid%d-%p", conf->level, conf->mddev);
1721 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1722 
1723 	conf->active_name = 0;
1724 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1725 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1726 			       0, 0, NULL);
1727 	if (!sc)
1728 		return 1;
1729 	conf->slab_cache = sc;
1730 	conf->pool_size = devs;
1731 	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1732 	while (num--) {
1733 		if (!grow_one_stripe(conf, hash))
1734 			return 1;
1735 		conf->max_nr_stripes++;
1736 		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1737 	}
1738 	return 0;
1739 }
1740 
1741 /**
1742  * scribble_len - return the required size of the scribble region
1743  * @num - total number of disks in the array
1744  *
1745  * The size must be enough to contain:
1746  * 1/ a struct page pointer for each device in the array +2
1747  * 2/ room to convert each entry in (1) to its corresponding dma
1748  *    (dma_map_page()) or page (page_address()) address.
1749  *
1750  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1751  * calculate over all devices (not just the data blocks), using zeros in place
1752  * of the P and Q blocks.
1753  */
1754 static size_t scribble_len(int num)
1755 {
1756 	size_t len;
1757 
1758 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1759 
1760 	return len;
1761 }
1762 
1763 static int resize_stripes(struct r5conf *conf, int newsize)
1764 {
1765 	/* Make all the stripes able to hold 'newsize' devices.
1766 	 * New slots in each stripe get 'page' set to a new page.
1767 	 *
1768 	 * This happens in stages:
1769 	 * 1/ create a new kmem_cache and allocate the required number of
1770 	 *    stripe_heads.
1771 	 * 2/ gather all the old stripe_heads and transfer the pages across
1772 	 *    to the new stripe_heads.  This will have the side effect of
1773 	 *    freezing the array as once all stripe_heads have been collected,
1774 	 *    no IO will be possible.  Old stripe heads are freed once their
1775 	 *    pages have been transferred over, and the old kmem_cache is
1776 	 *    freed when all stripes are done.
1777 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1778 	 *    we simple return a failre status - no need to clean anything up.
1779 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1780 	 *    If this fails, we don't bother trying the shrink the
1781 	 *    stripe_heads down again, we just leave them as they are.
1782 	 *    As each stripe_head is processed the new one is released into
1783 	 *    active service.
1784 	 *
1785 	 * Once step2 is started, we cannot afford to wait for a write,
1786 	 * so we use GFP_NOIO allocations.
1787 	 */
1788 	struct stripe_head *osh, *nsh;
1789 	LIST_HEAD(newstripes);
1790 	struct disk_info *ndisks;
1791 	unsigned long cpu;
1792 	int err;
1793 	struct kmem_cache *sc;
1794 	int i;
1795 	int hash, cnt;
1796 
1797 	if (newsize <= conf->pool_size)
1798 		return 0; /* never bother to shrink */
1799 
1800 	err = md_allow_write(conf->mddev);
1801 	if (err)
1802 		return err;
1803 
1804 	/* Step 1 */
1805 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1806 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1807 			       0, 0, NULL);
1808 	if (!sc)
1809 		return -ENOMEM;
1810 
1811 	for (i = conf->max_nr_stripes; i; i--) {
1812 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1813 		if (!nsh)
1814 			break;
1815 
1816 		nsh->raid_conf = conf;
1817 		spin_lock_init(&nsh->stripe_lock);
1818 
1819 		list_add(&nsh->lru, &newstripes);
1820 	}
1821 	if (i) {
1822 		/* didn't get enough, give up */
1823 		while (!list_empty(&newstripes)) {
1824 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1825 			list_del(&nsh->lru);
1826 			kmem_cache_free(sc, nsh);
1827 		}
1828 		kmem_cache_destroy(sc);
1829 		return -ENOMEM;
1830 	}
1831 	/* Step 2 - Must use GFP_NOIO now.
1832 	 * OK, we have enough stripes, start collecting inactive
1833 	 * stripes and copying them over
1834 	 */
1835 	hash = 0;
1836 	cnt = 0;
1837 	list_for_each_entry(nsh, &newstripes, lru) {
1838 		lock_device_hash_lock(conf, hash);
1839 		wait_event_cmd(conf->wait_for_stripe,
1840 				    !list_empty(conf->inactive_list + hash),
1841 				    unlock_device_hash_lock(conf, hash),
1842 				    lock_device_hash_lock(conf, hash));
1843 		osh = get_free_stripe(conf, hash);
1844 		unlock_device_hash_lock(conf, hash);
1845 		atomic_set(&nsh->count, 1);
1846 		for(i=0; i<conf->pool_size; i++)
1847 			nsh->dev[i].page = osh->dev[i].page;
1848 		for( ; i<newsize; i++)
1849 			nsh->dev[i].page = NULL;
1850 		nsh->hash_lock_index = hash;
1851 		kmem_cache_free(conf->slab_cache, osh);
1852 		cnt++;
1853 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1854 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1855 			hash++;
1856 			cnt = 0;
1857 		}
1858 	}
1859 	kmem_cache_destroy(conf->slab_cache);
1860 
1861 	/* Step 3.
1862 	 * At this point, we are holding all the stripes so the array
1863 	 * is completely stalled, so now is a good time to resize
1864 	 * conf->disks and the scribble region
1865 	 */
1866 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1867 	if (ndisks) {
1868 		for (i=0; i<conf->raid_disks; i++)
1869 			ndisks[i] = conf->disks[i];
1870 		kfree(conf->disks);
1871 		conf->disks = ndisks;
1872 	} else
1873 		err = -ENOMEM;
1874 
1875 	get_online_cpus();
1876 	conf->scribble_len = scribble_len(newsize);
1877 	for_each_present_cpu(cpu) {
1878 		struct raid5_percpu *percpu;
1879 		void *scribble;
1880 
1881 		percpu = per_cpu_ptr(conf->percpu, cpu);
1882 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1883 
1884 		if (scribble) {
1885 			kfree(percpu->scribble);
1886 			percpu->scribble = scribble;
1887 		} else {
1888 			err = -ENOMEM;
1889 			break;
1890 		}
1891 	}
1892 	put_online_cpus();
1893 
1894 	/* Step 4, return new stripes to service */
1895 	while(!list_empty(&newstripes)) {
1896 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1897 		list_del_init(&nsh->lru);
1898 
1899 		for (i=conf->raid_disks; i < newsize; i++)
1900 			if (nsh->dev[i].page == NULL) {
1901 				struct page *p = alloc_page(GFP_NOIO);
1902 				nsh->dev[i].page = p;
1903 				if (!p)
1904 					err = -ENOMEM;
1905 			}
1906 		release_stripe(nsh);
1907 	}
1908 	/* critical section pass, GFP_NOIO no longer needed */
1909 
1910 	conf->slab_cache = sc;
1911 	conf->active_name = 1-conf->active_name;
1912 	conf->pool_size = newsize;
1913 	return err;
1914 }
1915 
1916 static int drop_one_stripe(struct r5conf *conf, int hash)
1917 {
1918 	struct stripe_head *sh;
1919 
1920 	spin_lock_irq(conf->hash_locks + hash);
1921 	sh = get_free_stripe(conf, hash);
1922 	spin_unlock_irq(conf->hash_locks + hash);
1923 	if (!sh)
1924 		return 0;
1925 	BUG_ON(atomic_read(&sh->count));
1926 	shrink_buffers(sh);
1927 	kmem_cache_free(conf->slab_cache, sh);
1928 	atomic_dec(&conf->active_stripes);
1929 	return 1;
1930 }
1931 
1932 static void shrink_stripes(struct r5conf *conf)
1933 {
1934 	int hash;
1935 	for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1936 		while (drop_one_stripe(conf, hash))
1937 			;
1938 
1939 	if (conf->slab_cache)
1940 		kmem_cache_destroy(conf->slab_cache);
1941 	conf->slab_cache = NULL;
1942 }
1943 
1944 static void raid5_end_read_request(struct bio * bi, int error)
1945 {
1946 	struct stripe_head *sh = bi->bi_private;
1947 	struct r5conf *conf = sh->raid_conf;
1948 	int disks = sh->disks, i;
1949 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1950 	char b[BDEVNAME_SIZE];
1951 	struct md_rdev *rdev = NULL;
1952 	sector_t s;
1953 
1954 	for (i=0 ; i<disks; i++)
1955 		if (bi == &sh->dev[i].req)
1956 			break;
1957 
1958 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1959 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1960 		uptodate);
1961 	if (i == disks) {
1962 		BUG();
1963 		return;
1964 	}
1965 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1966 		/* If replacement finished while this request was outstanding,
1967 		 * 'replacement' might be NULL already.
1968 		 * In that case it moved down to 'rdev'.
1969 		 * rdev is not removed until all requests are finished.
1970 		 */
1971 		rdev = conf->disks[i].replacement;
1972 	if (!rdev)
1973 		rdev = conf->disks[i].rdev;
1974 
1975 	if (use_new_offset(conf, sh))
1976 		s = sh->sector + rdev->new_data_offset;
1977 	else
1978 		s = sh->sector + rdev->data_offset;
1979 	if (uptodate) {
1980 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1981 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1982 			/* Note that this cannot happen on a
1983 			 * replacement device.  We just fail those on
1984 			 * any error
1985 			 */
1986 			printk_ratelimited(
1987 				KERN_INFO
1988 				"md/raid:%s: read error corrected"
1989 				" (%lu sectors at %llu on %s)\n",
1990 				mdname(conf->mddev), STRIPE_SECTORS,
1991 				(unsigned long long)s,
1992 				bdevname(rdev->bdev, b));
1993 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1994 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1995 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1996 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1997 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1998 
1999 		if (atomic_read(&rdev->read_errors))
2000 			atomic_set(&rdev->read_errors, 0);
2001 	} else {
2002 		const char *bdn = bdevname(rdev->bdev, b);
2003 		int retry = 0;
2004 		int set_bad = 0;
2005 
2006 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2007 		atomic_inc(&rdev->read_errors);
2008 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2009 			printk_ratelimited(
2010 				KERN_WARNING
2011 				"md/raid:%s: read error on replacement device "
2012 				"(sector %llu on %s).\n",
2013 				mdname(conf->mddev),
2014 				(unsigned long long)s,
2015 				bdn);
2016 		else if (conf->mddev->degraded >= conf->max_degraded) {
2017 			set_bad = 1;
2018 			printk_ratelimited(
2019 				KERN_WARNING
2020 				"md/raid:%s: read error not correctable "
2021 				"(sector %llu on %s).\n",
2022 				mdname(conf->mddev),
2023 				(unsigned long long)s,
2024 				bdn);
2025 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2026 			/* Oh, no!!! */
2027 			set_bad = 1;
2028 			printk_ratelimited(
2029 				KERN_WARNING
2030 				"md/raid:%s: read error NOT corrected!! "
2031 				"(sector %llu on %s).\n",
2032 				mdname(conf->mddev),
2033 				(unsigned long long)s,
2034 				bdn);
2035 		} else if (atomic_read(&rdev->read_errors)
2036 			 > conf->max_nr_stripes)
2037 			printk(KERN_WARNING
2038 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2039 			       mdname(conf->mddev), bdn);
2040 		else
2041 			retry = 1;
2042 		if (set_bad && test_bit(In_sync, &rdev->flags)
2043 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2044 			retry = 1;
2045 		if (retry)
2046 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2047 				set_bit(R5_ReadError, &sh->dev[i].flags);
2048 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2049 			} else
2050 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2051 		else {
2052 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2053 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2054 			if (!(set_bad
2055 			      && test_bit(In_sync, &rdev->flags)
2056 			      && rdev_set_badblocks(
2057 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2058 				md_error(conf->mddev, rdev);
2059 		}
2060 	}
2061 	rdev_dec_pending(rdev, conf->mddev);
2062 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2063 	set_bit(STRIPE_HANDLE, &sh->state);
2064 	release_stripe(sh);
2065 }
2066 
2067 static void raid5_end_write_request(struct bio *bi, int error)
2068 {
2069 	struct stripe_head *sh = bi->bi_private;
2070 	struct r5conf *conf = sh->raid_conf;
2071 	int disks = sh->disks, i;
2072 	struct md_rdev *uninitialized_var(rdev);
2073 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2074 	sector_t first_bad;
2075 	int bad_sectors;
2076 	int replacement = 0;
2077 
2078 	for (i = 0 ; i < disks; i++) {
2079 		if (bi == &sh->dev[i].req) {
2080 			rdev = conf->disks[i].rdev;
2081 			break;
2082 		}
2083 		if (bi == &sh->dev[i].rreq) {
2084 			rdev = conf->disks[i].replacement;
2085 			if (rdev)
2086 				replacement = 1;
2087 			else
2088 				/* rdev was removed and 'replacement'
2089 				 * replaced it.  rdev is not removed
2090 				 * until all requests are finished.
2091 				 */
2092 				rdev = conf->disks[i].rdev;
2093 			break;
2094 		}
2095 	}
2096 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2097 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2098 		uptodate);
2099 	if (i == disks) {
2100 		BUG();
2101 		return;
2102 	}
2103 
2104 	if (replacement) {
2105 		if (!uptodate)
2106 			md_error(conf->mddev, rdev);
2107 		else if (is_badblock(rdev, sh->sector,
2108 				     STRIPE_SECTORS,
2109 				     &first_bad, &bad_sectors))
2110 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2111 	} else {
2112 		if (!uptodate) {
2113 			set_bit(WriteErrorSeen, &rdev->flags);
2114 			set_bit(R5_WriteError, &sh->dev[i].flags);
2115 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2116 				set_bit(MD_RECOVERY_NEEDED,
2117 					&rdev->mddev->recovery);
2118 		} else if (is_badblock(rdev, sh->sector,
2119 				       STRIPE_SECTORS,
2120 				       &first_bad, &bad_sectors)) {
2121 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2122 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2123 				/* That was a successful write so make
2124 				 * sure it looks like we already did
2125 				 * a re-write.
2126 				 */
2127 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2128 		}
2129 	}
2130 	rdev_dec_pending(rdev, conf->mddev);
2131 
2132 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2133 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2134 	set_bit(STRIPE_HANDLE, &sh->state);
2135 	release_stripe(sh);
2136 }
2137 
2138 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2139 
2140 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2141 {
2142 	struct r5dev *dev = &sh->dev[i];
2143 
2144 	bio_init(&dev->req);
2145 	dev->req.bi_io_vec = &dev->vec;
2146 	dev->req.bi_vcnt++;
2147 	dev->req.bi_max_vecs++;
2148 	dev->req.bi_private = sh;
2149 	dev->vec.bv_page = dev->page;
2150 
2151 	bio_init(&dev->rreq);
2152 	dev->rreq.bi_io_vec = &dev->rvec;
2153 	dev->rreq.bi_vcnt++;
2154 	dev->rreq.bi_max_vecs++;
2155 	dev->rreq.bi_private = sh;
2156 	dev->rvec.bv_page = dev->page;
2157 
2158 	dev->flags = 0;
2159 	dev->sector = compute_blocknr(sh, i, previous);
2160 }
2161 
2162 static void error(struct mddev *mddev, struct md_rdev *rdev)
2163 {
2164 	char b[BDEVNAME_SIZE];
2165 	struct r5conf *conf = mddev->private;
2166 	unsigned long flags;
2167 	pr_debug("raid456: error called\n");
2168 
2169 	spin_lock_irqsave(&conf->device_lock, flags);
2170 	clear_bit(In_sync, &rdev->flags);
2171 	mddev->degraded = calc_degraded(conf);
2172 	spin_unlock_irqrestore(&conf->device_lock, flags);
2173 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2174 
2175 	set_bit(Blocked, &rdev->flags);
2176 	set_bit(Faulty, &rdev->flags);
2177 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2178 	printk(KERN_ALERT
2179 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2180 	       "md/raid:%s: Operation continuing on %d devices.\n",
2181 	       mdname(mddev),
2182 	       bdevname(rdev->bdev, b),
2183 	       mdname(mddev),
2184 	       conf->raid_disks - mddev->degraded);
2185 }
2186 
2187 /*
2188  * Input: a 'big' sector number,
2189  * Output: index of the data and parity disk, and the sector # in them.
2190  */
2191 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2192 				     int previous, int *dd_idx,
2193 				     struct stripe_head *sh)
2194 {
2195 	sector_t stripe, stripe2;
2196 	sector_t chunk_number;
2197 	unsigned int chunk_offset;
2198 	int pd_idx, qd_idx;
2199 	int ddf_layout = 0;
2200 	sector_t new_sector;
2201 	int algorithm = previous ? conf->prev_algo
2202 				 : conf->algorithm;
2203 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2204 					 : conf->chunk_sectors;
2205 	int raid_disks = previous ? conf->previous_raid_disks
2206 				  : conf->raid_disks;
2207 	int data_disks = raid_disks - conf->max_degraded;
2208 
2209 	/* First compute the information on this sector */
2210 
2211 	/*
2212 	 * Compute the chunk number and the sector offset inside the chunk
2213 	 */
2214 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2215 	chunk_number = r_sector;
2216 
2217 	/*
2218 	 * Compute the stripe number
2219 	 */
2220 	stripe = chunk_number;
2221 	*dd_idx = sector_div(stripe, data_disks);
2222 	stripe2 = stripe;
2223 	/*
2224 	 * Select the parity disk based on the user selected algorithm.
2225 	 */
2226 	pd_idx = qd_idx = -1;
2227 	switch(conf->level) {
2228 	case 4:
2229 		pd_idx = data_disks;
2230 		break;
2231 	case 5:
2232 		switch (algorithm) {
2233 		case ALGORITHM_LEFT_ASYMMETRIC:
2234 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2235 			if (*dd_idx >= pd_idx)
2236 				(*dd_idx)++;
2237 			break;
2238 		case ALGORITHM_RIGHT_ASYMMETRIC:
2239 			pd_idx = sector_div(stripe2, raid_disks);
2240 			if (*dd_idx >= pd_idx)
2241 				(*dd_idx)++;
2242 			break;
2243 		case ALGORITHM_LEFT_SYMMETRIC:
2244 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2245 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2246 			break;
2247 		case ALGORITHM_RIGHT_SYMMETRIC:
2248 			pd_idx = sector_div(stripe2, raid_disks);
2249 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2250 			break;
2251 		case ALGORITHM_PARITY_0:
2252 			pd_idx = 0;
2253 			(*dd_idx)++;
2254 			break;
2255 		case ALGORITHM_PARITY_N:
2256 			pd_idx = data_disks;
2257 			break;
2258 		default:
2259 			BUG();
2260 		}
2261 		break;
2262 	case 6:
2263 
2264 		switch (algorithm) {
2265 		case ALGORITHM_LEFT_ASYMMETRIC:
2266 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2267 			qd_idx = pd_idx + 1;
2268 			if (pd_idx == raid_disks-1) {
2269 				(*dd_idx)++;	/* Q D D D P */
2270 				qd_idx = 0;
2271 			} else if (*dd_idx >= pd_idx)
2272 				(*dd_idx) += 2; /* D D P Q D */
2273 			break;
2274 		case ALGORITHM_RIGHT_ASYMMETRIC:
2275 			pd_idx = sector_div(stripe2, raid_disks);
2276 			qd_idx = pd_idx + 1;
2277 			if (pd_idx == raid_disks-1) {
2278 				(*dd_idx)++;	/* Q D D D P */
2279 				qd_idx = 0;
2280 			} else if (*dd_idx >= pd_idx)
2281 				(*dd_idx) += 2; /* D D P Q D */
2282 			break;
2283 		case ALGORITHM_LEFT_SYMMETRIC:
2284 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2285 			qd_idx = (pd_idx + 1) % raid_disks;
2286 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2287 			break;
2288 		case ALGORITHM_RIGHT_SYMMETRIC:
2289 			pd_idx = sector_div(stripe2, raid_disks);
2290 			qd_idx = (pd_idx + 1) % raid_disks;
2291 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2292 			break;
2293 
2294 		case ALGORITHM_PARITY_0:
2295 			pd_idx = 0;
2296 			qd_idx = 1;
2297 			(*dd_idx) += 2;
2298 			break;
2299 		case ALGORITHM_PARITY_N:
2300 			pd_idx = data_disks;
2301 			qd_idx = data_disks + 1;
2302 			break;
2303 
2304 		case ALGORITHM_ROTATING_ZERO_RESTART:
2305 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2306 			 * of blocks for computing Q is different.
2307 			 */
2308 			pd_idx = sector_div(stripe2, raid_disks);
2309 			qd_idx = pd_idx + 1;
2310 			if (pd_idx == raid_disks-1) {
2311 				(*dd_idx)++;	/* Q D D D P */
2312 				qd_idx = 0;
2313 			} else if (*dd_idx >= pd_idx)
2314 				(*dd_idx) += 2; /* D D P Q D */
2315 			ddf_layout = 1;
2316 			break;
2317 
2318 		case ALGORITHM_ROTATING_N_RESTART:
2319 			/* Same a left_asymmetric, by first stripe is
2320 			 * D D D P Q  rather than
2321 			 * Q D D D P
2322 			 */
2323 			stripe2 += 1;
2324 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2325 			qd_idx = pd_idx + 1;
2326 			if (pd_idx == raid_disks-1) {
2327 				(*dd_idx)++;	/* Q D D D P */
2328 				qd_idx = 0;
2329 			} else if (*dd_idx >= pd_idx)
2330 				(*dd_idx) += 2; /* D D P Q D */
2331 			ddf_layout = 1;
2332 			break;
2333 
2334 		case ALGORITHM_ROTATING_N_CONTINUE:
2335 			/* Same as left_symmetric but Q is before P */
2336 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2337 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2338 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2339 			ddf_layout = 1;
2340 			break;
2341 
2342 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2343 			/* RAID5 left_asymmetric, with Q on last device */
2344 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2345 			if (*dd_idx >= pd_idx)
2346 				(*dd_idx)++;
2347 			qd_idx = raid_disks - 1;
2348 			break;
2349 
2350 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2351 			pd_idx = sector_div(stripe2, raid_disks-1);
2352 			if (*dd_idx >= pd_idx)
2353 				(*dd_idx)++;
2354 			qd_idx = raid_disks - 1;
2355 			break;
2356 
2357 		case ALGORITHM_LEFT_SYMMETRIC_6:
2358 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2359 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2360 			qd_idx = raid_disks - 1;
2361 			break;
2362 
2363 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2364 			pd_idx = sector_div(stripe2, raid_disks-1);
2365 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2366 			qd_idx = raid_disks - 1;
2367 			break;
2368 
2369 		case ALGORITHM_PARITY_0_6:
2370 			pd_idx = 0;
2371 			(*dd_idx)++;
2372 			qd_idx = raid_disks - 1;
2373 			break;
2374 
2375 		default:
2376 			BUG();
2377 		}
2378 		break;
2379 	}
2380 
2381 	if (sh) {
2382 		sh->pd_idx = pd_idx;
2383 		sh->qd_idx = qd_idx;
2384 		sh->ddf_layout = ddf_layout;
2385 	}
2386 	/*
2387 	 * Finally, compute the new sector number
2388 	 */
2389 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2390 	return new_sector;
2391 }
2392 
2393 
2394 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2395 {
2396 	struct r5conf *conf = sh->raid_conf;
2397 	int raid_disks = sh->disks;
2398 	int data_disks = raid_disks - conf->max_degraded;
2399 	sector_t new_sector = sh->sector, check;
2400 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2401 					 : conf->chunk_sectors;
2402 	int algorithm = previous ? conf->prev_algo
2403 				 : conf->algorithm;
2404 	sector_t stripe;
2405 	int chunk_offset;
2406 	sector_t chunk_number;
2407 	int dummy1, dd_idx = i;
2408 	sector_t r_sector;
2409 	struct stripe_head sh2;
2410 
2411 
2412 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2413 	stripe = new_sector;
2414 
2415 	if (i == sh->pd_idx)
2416 		return 0;
2417 	switch(conf->level) {
2418 	case 4: break;
2419 	case 5:
2420 		switch (algorithm) {
2421 		case ALGORITHM_LEFT_ASYMMETRIC:
2422 		case ALGORITHM_RIGHT_ASYMMETRIC:
2423 			if (i > sh->pd_idx)
2424 				i--;
2425 			break;
2426 		case ALGORITHM_LEFT_SYMMETRIC:
2427 		case ALGORITHM_RIGHT_SYMMETRIC:
2428 			if (i < sh->pd_idx)
2429 				i += raid_disks;
2430 			i -= (sh->pd_idx + 1);
2431 			break;
2432 		case ALGORITHM_PARITY_0:
2433 			i -= 1;
2434 			break;
2435 		case ALGORITHM_PARITY_N:
2436 			break;
2437 		default:
2438 			BUG();
2439 		}
2440 		break;
2441 	case 6:
2442 		if (i == sh->qd_idx)
2443 			return 0; /* It is the Q disk */
2444 		switch (algorithm) {
2445 		case ALGORITHM_LEFT_ASYMMETRIC:
2446 		case ALGORITHM_RIGHT_ASYMMETRIC:
2447 		case ALGORITHM_ROTATING_ZERO_RESTART:
2448 		case ALGORITHM_ROTATING_N_RESTART:
2449 			if (sh->pd_idx == raid_disks-1)
2450 				i--;	/* Q D D D P */
2451 			else if (i > sh->pd_idx)
2452 				i -= 2; /* D D P Q D */
2453 			break;
2454 		case ALGORITHM_LEFT_SYMMETRIC:
2455 		case ALGORITHM_RIGHT_SYMMETRIC:
2456 			if (sh->pd_idx == raid_disks-1)
2457 				i--; /* Q D D D P */
2458 			else {
2459 				/* D D P Q D */
2460 				if (i < sh->pd_idx)
2461 					i += raid_disks;
2462 				i -= (sh->pd_idx + 2);
2463 			}
2464 			break;
2465 		case ALGORITHM_PARITY_0:
2466 			i -= 2;
2467 			break;
2468 		case ALGORITHM_PARITY_N:
2469 			break;
2470 		case ALGORITHM_ROTATING_N_CONTINUE:
2471 			/* Like left_symmetric, but P is before Q */
2472 			if (sh->pd_idx == 0)
2473 				i--;	/* P D D D Q */
2474 			else {
2475 				/* D D Q P D */
2476 				if (i < sh->pd_idx)
2477 					i += raid_disks;
2478 				i -= (sh->pd_idx + 1);
2479 			}
2480 			break;
2481 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2482 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2483 			if (i > sh->pd_idx)
2484 				i--;
2485 			break;
2486 		case ALGORITHM_LEFT_SYMMETRIC_6:
2487 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2488 			if (i < sh->pd_idx)
2489 				i += data_disks + 1;
2490 			i -= (sh->pd_idx + 1);
2491 			break;
2492 		case ALGORITHM_PARITY_0_6:
2493 			i -= 1;
2494 			break;
2495 		default:
2496 			BUG();
2497 		}
2498 		break;
2499 	}
2500 
2501 	chunk_number = stripe * data_disks + i;
2502 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2503 
2504 	check = raid5_compute_sector(conf, r_sector,
2505 				     previous, &dummy1, &sh2);
2506 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2507 		|| sh2.qd_idx != sh->qd_idx) {
2508 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2509 		       mdname(conf->mddev));
2510 		return 0;
2511 	}
2512 	return r_sector;
2513 }
2514 
2515 
2516 static void
2517 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2518 			 int rcw, int expand)
2519 {
2520 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2521 	struct r5conf *conf = sh->raid_conf;
2522 	int level = conf->level;
2523 
2524 	if (rcw) {
2525 
2526 		for (i = disks; i--; ) {
2527 			struct r5dev *dev = &sh->dev[i];
2528 
2529 			if (dev->towrite) {
2530 				set_bit(R5_LOCKED, &dev->flags);
2531 				set_bit(R5_Wantdrain, &dev->flags);
2532 				if (!expand)
2533 					clear_bit(R5_UPTODATE, &dev->flags);
2534 				s->locked++;
2535 			}
2536 		}
2537 		/* if we are not expanding this is a proper write request, and
2538 		 * there will be bios with new data to be drained into the
2539 		 * stripe cache
2540 		 */
2541 		if (!expand) {
2542 			if (!s->locked)
2543 				/* False alarm, nothing to do */
2544 				return;
2545 			sh->reconstruct_state = reconstruct_state_drain_run;
2546 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2547 		} else
2548 			sh->reconstruct_state = reconstruct_state_run;
2549 
2550 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2551 
2552 		if (s->locked + conf->max_degraded == disks)
2553 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2554 				atomic_inc(&conf->pending_full_writes);
2555 	} else {
2556 		BUG_ON(level == 6);
2557 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2558 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2559 
2560 		for (i = disks; i--; ) {
2561 			struct r5dev *dev = &sh->dev[i];
2562 			if (i == pd_idx)
2563 				continue;
2564 
2565 			if (dev->towrite &&
2566 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2567 			     test_bit(R5_Wantcompute, &dev->flags))) {
2568 				set_bit(R5_Wantdrain, &dev->flags);
2569 				set_bit(R5_LOCKED, &dev->flags);
2570 				clear_bit(R5_UPTODATE, &dev->flags);
2571 				s->locked++;
2572 			}
2573 		}
2574 		if (!s->locked)
2575 			/* False alarm - nothing to do */
2576 			return;
2577 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2578 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2579 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2580 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2581 	}
2582 
2583 	/* keep the parity disk(s) locked while asynchronous operations
2584 	 * are in flight
2585 	 */
2586 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2587 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2588 	s->locked++;
2589 
2590 	if (level == 6) {
2591 		int qd_idx = sh->qd_idx;
2592 		struct r5dev *dev = &sh->dev[qd_idx];
2593 
2594 		set_bit(R5_LOCKED, &dev->flags);
2595 		clear_bit(R5_UPTODATE, &dev->flags);
2596 		s->locked++;
2597 	}
2598 
2599 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2600 		__func__, (unsigned long long)sh->sector,
2601 		s->locked, s->ops_request);
2602 }
2603 
2604 /*
2605  * Each stripe/dev can have one or more bion attached.
2606  * toread/towrite point to the first in a chain.
2607  * The bi_next chain must be in order.
2608  */
2609 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2610 {
2611 	struct bio **bip;
2612 	struct r5conf *conf = sh->raid_conf;
2613 	int firstwrite=0;
2614 
2615 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2616 		(unsigned long long)bi->bi_sector,
2617 		(unsigned long long)sh->sector);
2618 
2619 	/*
2620 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2621 	 * reference count to avoid race. The reference count should already be
2622 	 * increased before this function is called (for example, in
2623 	 * make_request()), so other bio sharing this stripe will not free the
2624 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2625 	 * protect it.
2626 	 */
2627 	spin_lock_irq(&sh->stripe_lock);
2628 	if (forwrite) {
2629 		bip = &sh->dev[dd_idx].towrite;
2630 		if (*bip == NULL)
2631 			firstwrite = 1;
2632 	} else
2633 		bip = &sh->dev[dd_idx].toread;
2634 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2635 		if (bio_end_sector(*bip) > bi->bi_sector)
2636 			goto overlap;
2637 		bip = & (*bip)->bi_next;
2638 	}
2639 	if (*bip && (*bip)->bi_sector < bio_end_sector(bi))
2640 		goto overlap;
2641 
2642 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2643 	if (*bip)
2644 		bi->bi_next = *bip;
2645 	*bip = bi;
2646 	raid5_inc_bi_active_stripes(bi);
2647 
2648 	if (forwrite) {
2649 		/* check if page is covered */
2650 		sector_t sector = sh->dev[dd_idx].sector;
2651 		for (bi=sh->dev[dd_idx].towrite;
2652 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2653 			     bi && bi->bi_sector <= sector;
2654 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2655 			if (bio_end_sector(bi) >= sector)
2656 				sector = bio_end_sector(bi);
2657 		}
2658 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2659 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2660 	}
2661 
2662 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2663 		(unsigned long long)(*bip)->bi_sector,
2664 		(unsigned long long)sh->sector, dd_idx);
2665 	spin_unlock_irq(&sh->stripe_lock);
2666 
2667 	if (conf->mddev->bitmap && firstwrite) {
2668 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2669 				  STRIPE_SECTORS, 0);
2670 		sh->bm_seq = conf->seq_flush+1;
2671 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2672 	}
2673 	return 1;
2674 
2675  overlap:
2676 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2677 	spin_unlock_irq(&sh->stripe_lock);
2678 	return 0;
2679 }
2680 
2681 static void end_reshape(struct r5conf *conf);
2682 
2683 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2684 			    struct stripe_head *sh)
2685 {
2686 	int sectors_per_chunk =
2687 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2688 	int dd_idx;
2689 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2690 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2691 
2692 	raid5_compute_sector(conf,
2693 			     stripe * (disks - conf->max_degraded)
2694 			     *sectors_per_chunk + chunk_offset,
2695 			     previous,
2696 			     &dd_idx, sh);
2697 }
2698 
2699 static void
2700 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2701 				struct stripe_head_state *s, int disks,
2702 				struct bio **return_bi)
2703 {
2704 	int i;
2705 	for (i = disks; i--; ) {
2706 		struct bio *bi;
2707 		int bitmap_end = 0;
2708 
2709 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2710 			struct md_rdev *rdev;
2711 			rcu_read_lock();
2712 			rdev = rcu_dereference(conf->disks[i].rdev);
2713 			if (rdev && test_bit(In_sync, &rdev->flags))
2714 				atomic_inc(&rdev->nr_pending);
2715 			else
2716 				rdev = NULL;
2717 			rcu_read_unlock();
2718 			if (rdev) {
2719 				if (!rdev_set_badblocks(
2720 					    rdev,
2721 					    sh->sector,
2722 					    STRIPE_SECTORS, 0))
2723 					md_error(conf->mddev, rdev);
2724 				rdev_dec_pending(rdev, conf->mddev);
2725 			}
2726 		}
2727 		spin_lock_irq(&sh->stripe_lock);
2728 		/* fail all writes first */
2729 		bi = sh->dev[i].towrite;
2730 		sh->dev[i].towrite = NULL;
2731 		spin_unlock_irq(&sh->stripe_lock);
2732 		if (bi)
2733 			bitmap_end = 1;
2734 
2735 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2736 			wake_up(&conf->wait_for_overlap);
2737 
2738 		while (bi && bi->bi_sector <
2739 			sh->dev[i].sector + STRIPE_SECTORS) {
2740 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2741 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2742 			if (!raid5_dec_bi_active_stripes(bi)) {
2743 				md_write_end(conf->mddev);
2744 				bi->bi_next = *return_bi;
2745 				*return_bi = bi;
2746 			}
2747 			bi = nextbi;
2748 		}
2749 		if (bitmap_end)
2750 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2751 				STRIPE_SECTORS, 0, 0);
2752 		bitmap_end = 0;
2753 		/* and fail all 'written' */
2754 		bi = sh->dev[i].written;
2755 		sh->dev[i].written = NULL;
2756 		if (bi) bitmap_end = 1;
2757 		while (bi && bi->bi_sector <
2758 		       sh->dev[i].sector + STRIPE_SECTORS) {
2759 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2760 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2761 			if (!raid5_dec_bi_active_stripes(bi)) {
2762 				md_write_end(conf->mddev);
2763 				bi->bi_next = *return_bi;
2764 				*return_bi = bi;
2765 			}
2766 			bi = bi2;
2767 		}
2768 
2769 		/* fail any reads if this device is non-operational and
2770 		 * the data has not reached the cache yet.
2771 		 */
2772 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2773 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2774 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2775 			spin_lock_irq(&sh->stripe_lock);
2776 			bi = sh->dev[i].toread;
2777 			sh->dev[i].toread = NULL;
2778 			spin_unlock_irq(&sh->stripe_lock);
2779 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2780 				wake_up(&conf->wait_for_overlap);
2781 			while (bi && bi->bi_sector <
2782 			       sh->dev[i].sector + STRIPE_SECTORS) {
2783 				struct bio *nextbi =
2784 					r5_next_bio(bi, sh->dev[i].sector);
2785 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2786 				if (!raid5_dec_bi_active_stripes(bi)) {
2787 					bi->bi_next = *return_bi;
2788 					*return_bi = bi;
2789 				}
2790 				bi = nextbi;
2791 			}
2792 		}
2793 		if (bitmap_end)
2794 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2795 					STRIPE_SECTORS, 0, 0);
2796 		/* If we were in the middle of a write the parity block might
2797 		 * still be locked - so just clear all R5_LOCKED flags
2798 		 */
2799 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2800 	}
2801 
2802 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2803 		if (atomic_dec_and_test(&conf->pending_full_writes))
2804 			md_wakeup_thread(conf->mddev->thread);
2805 }
2806 
2807 static void
2808 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2809 		   struct stripe_head_state *s)
2810 {
2811 	int abort = 0;
2812 	int i;
2813 
2814 	clear_bit(STRIPE_SYNCING, &sh->state);
2815 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2816 		wake_up(&conf->wait_for_overlap);
2817 	s->syncing = 0;
2818 	s->replacing = 0;
2819 	/* There is nothing more to do for sync/check/repair.
2820 	 * Don't even need to abort as that is handled elsewhere
2821 	 * if needed, and not always wanted e.g. if there is a known
2822 	 * bad block here.
2823 	 * For recover/replace we need to record a bad block on all
2824 	 * non-sync devices, or abort the recovery
2825 	 */
2826 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2827 		/* During recovery devices cannot be removed, so
2828 		 * locking and refcounting of rdevs is not needed
2829 		 */
2830 		for (i = 0; i < conf->raid_disks; i++) {
2831 			struct md_rdev *rdev = conf->disks[i].rdev;
2832 			if (rdev
2833 			    && !test_bit(Faulty, &rdev->flags)
2834 			    && !test_bit(In_sync, &rdev->flags)
2835 			    && !rdev_set_badblocks(rdev, sh->sector,
2836 						   STRIPE_SECTORS, 0))
2837 				abort = 1;
2838 			rdev = conf->disks[i].replacement;
2839 			if (rdev
2840 			    && !test_bit(Faulty, &rdev->flags)
2841 			    && !test_bit(In_sync, &rdev->flags)
2842 			    && !rdev_set_badblocks(rdev, sh->sector,
2843 						   STRIPE_SECTORS, 0))
2844 				abort = 1;
2845 		}
2846 		if (abort)
2847 			conf->recovery_disabled =
2848 				conf->mddev->recovery_disabled;
2849 	}
2850 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2851 }
2852 
2853 static int want_replace(struct stripe_head *sh, int disk_idx)
2854 {
2855 	struct md_rdev *rdev;
2856 	int rv = 0;
2857 	/* Doing recovery so rcu locking not required */
2858 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2859 	if (rdev
2860 	    && !test_bit(Faulty, &rdev->flags)
2861 	    && !test_bit(In_sync, &rdev->flags)
2862 	    && (rdev->recovery_offset <= sh->sector
2863 		|| rdev->mddev->recovery_cp <= sh->sector))
2864 		rv = 1;
2865 
2866 	return rv;
2867 }
2868 
2869 /* fetch_block - checks the given member device to see if its data needs
2870  * to be read or computed to satisfy a request.
2871  *
2872  * Returns 1 when no more member devices need to be checked, otherwise returns
2873  * 0 to tell the loop in handle_stripe_fill to continue
2874  */
2875 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2876 		       int disk_idx, int disks)
2877 {
2878 	struct r5dev *dev = &sh->dev[disk_idx];
2879 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2880 				  &sh->dev[s->failed_num[1]] };
2881 
2882 	/* is the data in this block needed, and can we get it? */
2883 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2884 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2885 	    (dev->toread ||
2886 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2887 	     s->syncing || s->expanding ||
2888 	     (s->replacing && want_replace(sh, disk_idx)) ||
2889 	     (s->failed >= 1 && fdev[0]->toread) ||
2890 	     (s->failed >= 2 && fdev[1]->toread) ||
2891 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2892 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2893 	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2894 		/* we would like to get this block, possibly by computing it,
2895 		 * otherwise read it if the backing disk is insync
2896 		 */
2897 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2898 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2899 		if ((s->uptodate == disks - 1) &&
2900 		    (s->failed && (disk_idx == s->failed_num[0] ||
2901 				   disk_idx == s->failed_num[1]))) {
2902 			/* have disk failed, and we're requested to fetch it;
2903 			 * do compute it
2904 			 */
2905 			pr_debug("Computing stripe %llu block %d\n",
2906 			       (unsigned long long)sh->sector, disk_idx);
2907 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2908 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2909 			set_bit(R5_Wantcompute, &dev->flags);
2910 			sh->ops.target = disk_idx;
2911 			sh->ops.target2 = -1; /* no 2nd target */
2912 			s->req_compute = 1;
2913 			/* Careful: from this point on 'uptodate' is in the eye
2914 			 * of raid_run_ops which services 'compute' operations
2915 			 * before writes. R5_Wantcompute flags a block that will
2916 			 * be R5_UPTODATE by the time it is needed for a
2917 			 * subsequent operation.
2918 			 */
2919 			s->uptodate++;
2920 			return 1;
2921 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2922 			/* Computing 2-failure is *very* expensive; only
2923 			 * do it if failed >= 2
2924 			 */
2925 			int other;
2926 			for (other = disks; other--; ) {
2927 				if (other == disk_idx)
2928 					continue;
2929 				if (!test_bit(R5_UPTODATE,
2930 				      &sh->dev[other].flags))
2931 					break;
2932 			}
2933 			BUG_ON(other < 0);
2934 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2935 			       (unsigned long long)sh->sector,
2936 			       disk_idx, other);
2937 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2938 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2939 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2940 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2941 			sh->ops.target = disk_idx;
2942 			sh->ops.target2 = other;
2943 			s->uptodate += 2;
2944 			s->req_compute = 1;
2945 			return 1;
2946 		} else if (test_bit(R5_Insync, &dev->flags)) {
2947 			set_bit(R5_LOCKED, &dev->flags);
2948 			set_bit(R5_Wantread, &dev->flags);
2949 			s->locked++;
2950 			pr_debug("Reading block %d (sync=%d)\n",
2951 				disk_idx, s->syncing);
2952 		}
2953 	}
2954 
2955 	return 0;
2956 }
2957 
2958 /**
2959  * handle_stripe_fill - read or compute data to satisfy pending requests.
2960  */
2961 static void handle_stripe_fill(struct stripe_head *sh,
2962 			       struct stripe_head_state *s,
2963 			       int disks)
2964 {
2965 	int i;
2966 
2967 	/* look for blocks to read/compute, skip this if a compute
2968 	 * is already in flight, or if the stripe contents are in the
2969 	 * midst of changing due to a write
2970 	 */
2971 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2972 	    !sh->reconstruct_state)
2973 		for (i = disks; i--; )
2974 			if (fetch_block(sh, s, i, disks))
2975 				break;
2976 	set_bit(STRIPE_HANDLE, &sh->state);
2977 }
2978 
2979 
2980 /* handle_stripe_clean_event
2981  * any written block on an uptodate or failed drive can be returned.
2982  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2983  * never LOCKED, so we don't need to test 'failed' directly.
2984  */
2985 static void handle_stripe_clean_event(struct r5conf *conf,
2986 	struct stripe_head *sh, int disks, struct bio **return_bi)
2987 {
2988 	int i;
2989 	struct r5dev *dev;
2990 	int discard_pending = 0;
2991 
2992 	for (i = disks; i--; )
2993 		if (sh->dev[i].written) {
2994 			dev = &sh->dev[i];
2995 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2996 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2997 			     test_bit(R5_Discard, &dev->flags))) {
2998 				/* We can return any write requests */
2999 				struct bio *wbi, *wbi2;
3000 				pr_debug("Return write for disc %d\n", i);
3001 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3002 					clear_bit(R5_UPTODATE, &dev->flags);
3003 				wbi = dev->written;
3004 				dev->written = NULL;
3005 				while (wbi && wbi->bi_sector <
3006 					dev->sector + STRIPE_SECTORS) {
3007 					wbi2 = r5_next_bio(wbi, dev->sector);
3008 					if (!raid5_dec_bi_active_stripes(wbi)) {
3009 						md_write_end(conf->mddev);
3010 						wbi->bi_next = *return_bi;
3011 						*return_bi = wbi;
3012 					}
3013 					wbi = wbi2;
3014 				}
3015 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3016 						STRIPE_SECTORS,
3017 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3018 						0);
3019 			} else if (test_bit(R5_Discard, &dev->flags))
3020 				discard_pending = 1;
3021 		}
3022 	if (!discard_pending &&
3023 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3024 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3025 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3026 		if (sh->qd_idx >= 0) {
3027 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3028 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3029 		}
3030 		/* now that discard is done we can proceed with any sync */
3031 		clear_bit(STRIPE_DISCARD, &sh->state);
3032 		/*
3033 		 * SCSI discard will change some bio fields and the stripe has
3034 		 * no updated data, so remove it from hash list and the stripe
3035 		 * will be reinitialized
3036 		 */
3037 		spin_lock_irq(&conf->device_lock);
3038 		remove_hash(sh);
3039 		spin_unlock_irq(&conf->device_lock);
3040 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3041 			set_bit(STRIPE_HANDLE, &sh->state);
3042 
3043 	}
3044 
3045 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3046 		if (atomic_dec_and_test(&conf->pending_full_writes))
3047 			md_wakeup_thread(conf->mddev->thread);
3048 }
3049 
3050 static void handle_stripe_dirtying(struct r5conf *conf,
3051 				   struct stripe_head *sh,
3052 				   struct stripe_head_state *s,
3053 				   int disks)
3054 {
3055 	int rmw = 0, rcw = 0, i;
3056 	sector_t recovery_cp = conf->mddev->recovery_cp;
3057 
3058 	/* RAID6 requires 'rcw' in current implementation.
3059 	 * Otherwise, check whether resync is now happening or should start.
3060 	 * If yes, then the array is dirty (after unclean shutdown or
3061 	 * initial creation), so parity in some stripes might be inconsistent.
3062 	 * In this case, we need to always do reconstruct-write, to ensure
3063 	 * that in case of drive failure or read-error correction, we
3064 	 * generate correct data from the parity.
3065 	 */
3066 	if (conf->max_degraded == 2 ||
3067 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3068 		/* Calculate the real rcw later - for now make it
3069 		 * look like rcw is cheaper
3070 		 */
3071 		rcw = 1; rmw = 2;
3072 		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3073 			 conf->max_degraded, (unsigned long long)recovery_cp,
3074 			 (unsigned long long)sh->sector);
3075 	} else for (i = disks; i--; ) {
3076 		/* would I have to read this buffer for read_modify_write */
3077 		struct r5dev *dev = &sh->dev[i];
3078 		if ((dev->towrite || i == sh->pd_idx) &&
3079 		    !test_bit(R5_LOCKED, &dev->flags) &&
3080 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3081 		      test_bit(R5_Wantcompute, &dev->flags))) {
3082 			if (test_bit(R5_Insync, &dev->flags))
3083 				rmw++;
3084 			else
3085 				rmw += 2*disks;  /* cannot read it */
3086 		}
3087 		/* Would I have to read this buffer for reconstruct_write */
3088 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3089 		    !test_bit(R5_LOCKED, &dev->flags) &&
3090 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3091 		    test_bit(R5_Wantcompute, &dev->flags))) {
3092 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
3093 			else
3094 				rcw += 2*disks;
3095 		}
3096 	}
3097 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3098 		(unsigned long long)sh->sector, rmw, rcw);
3099 	set_bit(STRIPE_HANDLE, &sh->state);
3100 	if (rmw < rcw && rmw > 0) {
3101 		/* prefer read-modify-write, but need to get some data */
3102 		if (conf->mddev->queue)
3103 			blk_add_trace_msg(conf->mddev->queue,
3104 					  "raid5 rmw %llu %d",
3105 					  (unsigned long long)sh->sector, rmw);
3106 		for (i = disks; i--; ) {
3107 			struct r5dev *dev = &sh->dev[i];
3108 			if ((dev->towrite || i == sh->pd_idx) &&
3109 			    !test_bit(R5_LOCKED, &dev->flags) &&
3110 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3111 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3112 			    test_bit(R5_Insync, &dev->flags)) {
3113 				if (
3114 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3115 					pr_debug("Read_old block "
3116 						 "%d for r-m-w\n", i);
3117 					set_bit(R5_LOCKED, &dev->flags);
3118 					set_bit(R5_Wantread, &dev->flags);
3119 					s->locked++;
3120 				} else {
3121 					set_bit(STRIPE_DELAYED, &sh->state);
3122 					set_bit(STRIPE_HANDLE, &sh->state);
3123 				}
3124 			}
3125 		}
3126 	}
3127 	if (rcw <= rmw && rcw > 0) {
3128 		/* want reconstruct write, but need to get some data */
3129 		int qread =0;
3130 		rcw = 0;
3131 		for (i = disks; i--; ) {
3132 			struct r5dev *dev = &sh->dev[i];
3133 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3134 			    i != sh->pd_idx && i != sh->qd_idx &&
3135 			    !test_bit(R5_LOCKED, &dev->flags) &&
3136 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3137 			      test_bit(R5_Wantcompute, &dev->flags))) {
3138 				rcw++;
3139 				if (!test_bit(R5_Insync, &dev->flags))
3140 					continue; /* it's a failed drive */
3141 				if (
3142 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3143 					pr_debug("Read_old block "
3144 						"%d for Reconstruct\n", i);
3145 					set_bit(R5_LOCKED, &dev->flags);
3146 					set_bit(R5_Wantread, &dev->flags);
3147 					s->locked++;
3148 					qread++;
3149 				} else {
3150 					set_bit(STRIPE_DELAYED, &sh->state);
3151 					set_bit(STRIPE_HANDLE, &sh->state);
3152 				}
3153 			}
3154 		}
3155 		if (rcw && conf->mddev->queue)
3156 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3157 					  (unsigned long long)sh->sector,
3158 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3159 	}
3160 	/* now if nothing is locked, and if we have enough data,
3161 	 * we can start a write request
3162 	 */
3163 	/* since handle_stripe can be called at any time we need to handle the
3164 	 * case where a compute block operation has been submitted and then a
3165 	 * subsequent call wants to start a write request.  raid_run_ops only
3166 	 * handles the case where compute block and reconstruct are requested
3167 	 * simultaneously.  If this is not the case then new writes need to be
3168 	 * held off until the compute completes.
3169 	 */
3170 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3171 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3172 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3173 		schedule_reconstruction(sh, s, rcw == 0, 0);
3174 }
3175 
3176 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3177 				struct stripe_head_state *s, int disks)
3178 {
3179 	struct r5dev *dev = NULL;
3180 
3181 	set_bit(STRIPE_HANDLE, &sh->state);
3182 
3183 	switch (sh->check_state) {
3184 	case check_state_idle:
3185 		/* start a new check operation if there are no failures */
3186 		if (s->failed == 0) {
3187 			BUG_ON(s->uptodate != disks);
3188 			sh->check_state = check_state_run;
3189 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3190 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3191 			s->uptodate--;
3192 			break;
3193 		}
3194 		dev = &sh->dev[s->failed_num[0]];
3195 		/* fall through */
3196 	case check_state_compute_result:
3197 		sh->check_state = check_state_idle;
3198 		if (!dev)
3199 			dev = &sh->dev[sh->pd_idx];
3200 
3201 		/* check that a write has not made the stripe insync */
3202 		if (test_bit(STRIPE_INSYNC, &sh->state))
3203 			break;
3204 
3205 		/* either failed parity check, or recovery is happening */
3206 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3207 		BUG_ON(s->uptodate != disks);
3208 
3209 		set_bit(R5_LOCKED, &dev->flags);
3210 		s->locked++;
3211 		set_bit(R5_Wantwrite, &dev->flags);
3212 
3213 		clear_bit(STRIPE_DEGRADED, &sh->state);
3214 		set_bit(STRIPE_INSYNC, &sh->state);
3215 		break;
3216 	case check_state_run:
3217 		break; /* we will be called again upon completion */
3218 	case check_state_check_result:
3219 		sh->check_state = check_state_idle;
3220 
3221 		/* if a failure occurred during the check operation, leave
3222 		 * STRIPE_INSYNC not set and let the stripe be handled again
3223 		 */
3224 		if (s->failed)
3225 			break;
3226 
3227 		/* handle a successful check operation, if parity is correct
3228 		 * we are done.  Otherwise update the mismatch count and repair
3229 		 * parity if !MD_RECOVERY_CHECK
3230 		 */
3231 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3232 			/* parity is correct (on disc,
3233 			 * not in buffer any more)
3234 			 */
3235 			set_bit(STRIPE_INSYNC, &sh->state);
3236 		else {
3237 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3238 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3239 				/* don't try to repair!! */
3240 				set_bit(STRIPE_INSYNC, &sh->state);
3241 			else {
3242 				sh->check_state = check_state_compute_run;
3243 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3244 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3245 				set_bit(R5_Wantcompute,
3246 					&sh->dev[sh->pd_idx].flags);
3247 				sh->ops.target = sh->pd_idx;
3248 				sh->ops.target2 = -1;
3249 				s->uptodate++;
3250 			}
3251 		}
3252 		break;
3253 	case check_state_compute_run:
3254 		break;
3255 	default:
3256 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3257 		       __func__, sh->check_state,
3258 		       (unsigned long long) sh->sector);
3259 		BUG();
3260 	}
3261 }
3262 
3263 
3264 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3265 				  struct stripe_head_state *s,
3266 				  int disks)
3267 {
3268 	int pd_idx = sh->pd_idx;
3269 	int qd_idx = sh->qd_idx;
3270 	struct r5dev *dev;
3271 
3272 	set_bit(STRIPE_HANDLE, &sh->state);
3273 
3274 	BUG_ON(s->failed > 2);
3275 
3276 	/* Want to check and possibly repair P and Q.
3277 	 * However there could be one 'failed' device, in which
3278 	 * case we can only check one of them, possibly using the
3279 	 * other to generate missing data
3280 	 */
3281 
3282 	switch (sh->check_state) {
3283 	case check_state_idle:
3284 		/* start a new check operation if there are < 2 failures */
3285 		if (s->failed == s->q_failed) {
3286 			/* The only possible failed device holds Q, so it
3287 			 * makes sense to check P (If anything else were failed,
3288 			 * we would have used P to recreate it).
3289 			 */
3290 			sh->check_state = check_state_run;
3291 		}
3292 		if (!s->q_failed && s->failed < 2) {
3293 			/* Q is not failed, and we didn't use it to generate
3294 			 * anything, so it makes sense to check it
3295 			 */
3296 			if (sh->check_state == check_state_run)
3297 				sh->check_state = check_state_run_pq;
3298 			else
3299 				sh->check_state = check_state_run_q;
3300 		}
3301 
3302 		/* discard potentially stale zero_sum_result */
3303 		sh->ops.zero_sum_result = 0;
3304 
3305 		if (sh->check_state == check_state_run) {
3306 			/* async_xor_zero_sum destroys the contents of P */
3307 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3308 			s->uptodate--;
3309 		}
3310 		if (sh->check_state >= check_state_run &&
3311 		    sh->check_state <= check_state_run_pq) {
3312 			/* async_syndrome_zero_sum preserves P and Q, so
3313 			 * no need to mark them !uptodate here
3314 			 */
3315 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3316 			break;
3317 		}
3318 
3319 		/* we have 2-disk failure */
3320 		BUG_ON(s->failed != 2);
3321 		/* fall through */
3322 	case check_state_compute_result:
3323 		sh->check_state = check_state_idle;
3324 
3325 		/* check that a write has not made the stripe insync */
3326 		if (test_bit(STRIPE_INSYNC, &sh->state))
3327 			break;
3328 
3329 		/* now write out any block on a failed drive,
3330 		 * or P or Q if they were recomputed
3331 		 */
3332 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3333 		if (s->failed == 2) {
3334 			dev = &sh->dev[s->failed_num[1]];
3335 			s->locked++;
3336 			set_bit(R5_LOCKED, &dev->flags);
3337 			set_bit(R5_Wantwrite, &dev->flags);
3338 		}
3339 		if (s->failed >= 1) {
3340 			dev = &sh->dev[s->failed_num[0]];
3341 			s->locked++;
3342 			set_bit(R5_LOCKED, &dev->flags);
3343 			set_bit(R5_Wantwrite, &dev->flags);
3344 		}
3345 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3346 			dev = &sh->dev[pd_idx];
3347 			s->locked++;
3348 			set_bit(R5_LOCKED, &dev->flags);
3349 			set_bit(R5_Wantwrite, &dev->flags);
3350 		}
3351 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3352 			dev = &sh->dev[qd_idx];
3353 			s->locked++;
3354 			set_bit(R5_LOCKED, &dev->flags);
3355 			set_bit(R5_Wantwrite, &dev->flags);
3356 		}
3357 		clear_bit(STRIPE_DEGRADED, &sh->state);
3358 
3359 		set_bit(STRIPE_INSYNC, &sh->state);
3360 		break;
3361 	case check_state_run:
3362 	case check_state_run_q:
3363 	case check_state_run_pq:
3364 		break; /* we will be called again upon completion */
3365 	case check_state_check_result:
3366 		sh->check_state = check_state_idle;
3367 
3368 		/* handle a successful check operation, if parity is correct
3369 		 * we are done.  Otherwise update the mismatch count and repair
3370 		 * parity if !MD_RECOVERY_CHECK
3371 		 */
3372 		if (sh->ops.zero_sum_result == 0) {
3373 			/* both parities are correct */
3374 			if (!s->failed)
3375 				set_bit(STRIPE_INSYNC, &sh->state);
3376 			else {
3377 				/* in contrast to the raid5 case we can validate
3378 				 * parity, but still have a failure to write
3379 				 * back
3380 				 */
3381 				sh->check_state = check_state_compute_result;
3382 				/* Returning at this point means that we may go
3383 				 * off and bring p and/or q uptodate again so
3384 				 * we make sure to check zero_sum_result again
3385 				 * to verify if p or q need writeback
3386 				 */
3387 			}
3388 		} else {
3389 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3390 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3391 				/* don't try to repair!! */
3392 				set_bit(STRIPE_INSYNC, &sh->state);
3393 			else {
3394 				int *target = &sh->ops.target;
3395 
3396 				sh->ops.target = -1;
3397 				sh->ops.target2 = -1;
3398 				sh->check_state = check_state_compute_run;
3399 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3400 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3401 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3402 					set_bit(R5_Wantcompute,
3403 						&sh->dev[pd_idx].flags);
3404 					*target = pd_idx;
3405 					target = &sh->ops.target2;
3406 					s->uptodate++;
3407 				}
3408 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3409 					set_bit(R5_Wantcompute,
3410 						&sh->dev[qd_idx].flags);
3411 					*target = qd_idx;
3412 					s->uptodate++;
3413 				}
3414 			}
3415 		}
3416 		break;
3417 	case check_state_compute_run:
3418 		break;
3419 	default:
3420 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3421 		       __func__, sh->check_state,
3422 		       (unsigned long long) sh->sector);
3423 		BUG();
3424 	}
3425 }
3426 
3427 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3428 {
3429 	int i;
3430 
3431 	/* We have read all the blocks in this stripe and now we need to
3432 	 * copy some of them into a target stripe for expand.
3433 	 */
3434 	struct dma_async_tx_descriptor *tx = NULL;
3435 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3436 	for (i = 0; i < sh->disks; i++)
3437 		if (i != sh->pd_idx && i != sh->qd_idx) {
3438 			int dd_idx, j;
3439 			struct stripe_head *sh2;
3440 			struct async_submit_ctl submit;
3441 
3442 			sector_t bn = compute_blocknr(sh, i, 1);
3443 			sector_t s = raid5_compute_sector(conf, bn, 0,
3444 							  &dd_idx, NULL);
3445 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3446 			if (sh2 == NULL)
3447 				/* so far only the early blocks of this stripe
3448 				 * have been requested.  When later blocks
3449 				 * get requested, we will try again
3450 				 */
3451 				continue;
3452 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3453 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3454 				/* must have already done this block */
3455 				release_stripe(sh2);
3456 				continue;
3457 			}
3458 
3459 			/* place all the copies on one channel */
3460 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3461 			tx = async_memcpy(sh2->dev[dd_idx].page,
3462 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3463 					  &submit);
3464 
3465 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3466 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3467 			for (j = 0; j < conf->raid_disks; j++)
3468 				if (j != sh2->pd_idx &&
3469 				    j != sh2->qd_idx &&
3470 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3471 					break;
3472 			if (j == conf->raid_disks) {
3473 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3474 				set_bit(STRIPE_HANDLE, &sh2->state);
3475 			}
3476 			release_stripe(sh2);
3477 
3478 		}
3479 	/* done submitting copies, wait for them to complete */
3480 	async_tx_quiesce(&tx);
3481 }
3482 
3483 /*
3484  * handle_stripe - do things to a stripe.
3485  *
3486  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3487  * state of various bits to see what needs to be done.
3488  * Possible results:
3489  *    return some read requests which now have data
3490  *    return some write requests which are safely on storage
3491  *    schedule a read on some buffers
3492  *    schedule a write of some buffers
3493  *    return confirmation of parity correctness
3494  *
3495  */
3496 
3497 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3498 {
3499 	struct r5conf *conf = sh->raid_conf;
3500 	int disks = sh->disks;
3501 	struct r5dev *dev;
3502 	int i;
3503 	int do_recovery = 0;
3504 
3505 	memset(s, 0, sizeof(*s));
3506 
3507 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3508 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3509 	s->failed_num[0] = -1;
3510 	s->failed_num[1] = -1;
3511 
3512 	/* Now to look around and see what can be done */
3513 	rcu_read_lock();
3514 	for (i=disks; i--; ) {
3515 		struct md_rdev *rdev;
3516 		sector_t first_bad;
3517 		int bad_sectors;
3518 		int is_bad = 0;
3519 
3520 		dev = &sh->dev[i];
3521 
3522 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3523 			 i, dev->flags,
3524 			 dev->toread, dev->towrite, dev->written);
3525 		/* maybe we can reply to a read
3526 		 *
3527 		 * new wantfill requests are only permitted while
3528 		 * ops_complete_biofill is guaranteed to be inactive
3529 		 */
3530 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3531 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3532 			set_bit(R5_Wantfill, &dev->flags);
3533 
3534 		/* now count some things */
3535 		if (test_bit(R5_LOCKED, &dev->flags))
3536 			s->locked++;
3537 		if (test_bit(R5_UPTODATE, &dev->flags))
3538 			s->uptodate++;
3539 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3540 			s->compute++;
3541 			BUG_ON(s->compute > 2);
3542 		}
3543 
3544 		if (test_bit(R5_Wantfill, &dev->flags))
3545 			s->to_fill++;
3546 		else if (dev->toread)
3547 			s->to_read++;
3548 		if (dev->towrite) {
3549 			s->to_write++;
3550 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3551 				s->non_overwrite++;
3552 		}
3553 		if (dev->written)
3554 			s->written++;
3555 		/* Prefer to use the replacement for reads, but only
3556 		 * if it is recovered enough and has no bad blocks.
3557 		 */
3558 		rdev = rcu_dereference(conf->disks[i].replacement);
3559 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3560 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3561 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3562 				 &first_bad, &bad_sectors))
3563 			set_bit(R5_ReadRepl, &dev->flags);
3564 		else {
3565 			if (rdev)
3566 				set_bit(R5_NeedReplace, &dev->flags);
3567 			rdev = rcu_dereference(conf->disks[i].rdev);
3568 			clear_bit(R5_ReadRepl, &dev->flags);
3569 		}
3570 		if (rdev && test_bit(Faulty, &rdev->flags))
3571 			rdev = NULL;
3572 		if (rdev) {
3573 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3574 					     &first_bad, &bad_sectors);
3575 			if (s->blocked_rdev == NULL
3576 			    && (test_bit(Blocked, &rdev->flags)
3577 				|| is_bad < 0)) {
3578 				if (is_bad < 0)
3579 					set_bit(BlockedBadBlocks,
3580 						&rdev->flags);
3581 				s->blocked_rdev = rdev;
3582 				atomic_inc(&rdev->nr_pending);
3583 			}
3584 		}
3585 		clear_bit(R5_Insync, &dev->flags);
3586 		if (!rdev)
3587 			/* Not in-sync */;
3588 		else if (is_bad) {
3589 			/* also not in-sync */
3590 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3591 			    test_bit(R5_UPTODATE, &dev->flags)) {
3592 				/* treat as in-sync, but with a read error
3593 				 * which we can now try to correct
3594 				 */
3595 				set_bit(R5_Insync, &dev->flags);
3596 				set_bit(R5_ReadError, &dev->flags);
3597 			}
3598 		} else if (test_bit(In_sync, &rdev->flags))
3599 			set_bit(R5_Insync, &dev->flags);
3600 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3601 			/* in sync if before recovery_offset */
3602 			set_bit(R5_Insync, &dev->flags);
3603 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3604 			 test_bit(R5_Expanded, &dev->flags))
3605 			/* If we've reshaped into here, we assume it is Insync.
3606 			 * We will shortly update recovery_offset to make
3607 			 * it official.
3608 			 */
3609 			set_bit(R5_Insync, &dev->flags);
3610 
3611 		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3612 			/* This flag does not apply to '.replacement'
3613 			 * only to .rdev, so make sure to check that*/
3614 			struct md_rdev *rdev2 = rcu_dereference(
3615 				conf->disks[i].rdev);
3616 			if (rdev2 == rdev)
3617 				clear_bit(R5_Insync, &dev->flags);
3618 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3619 				s->handle_bad_blocks = 1;
3620 				atomic_inc(&rdev2->nr_pending);
3621 			} else
3622 				clear_bit(R5_WriteError, &dev->flags);
3623 		}
3624 		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3625 			/* This flag does not apply to '.replacement'
3626 			 * only to .rdev, so make sure to check that*/
3627 			struct md_rdev *rdev2 = rcu_dereference(
3628 				conf->disks[i].rdev);
3629 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3630 				s->handle_bad_blocks = 1;
3631 				atomic_inc(&rdev2->nr_pending);
3632 			} else
3633 				clear_bit(R5_MadeGood, &dev->flags);
3634 		}
3635 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3636 			struct md_rdev *rdev2 = rcu_dereference(
3637 				conf->disks[i].replacement);
3638 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3639 				s->handle_bad_blocks = 1;
3640 				atomic_inc(&rdev2->nr_pending);
3641 			} else
3642 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3643 		}
3644 		if (!test_bit(R5_Insync, &dev->flags)) {
3645 			/* The ReadError flag will just be confusing now */
3646 			clear_bit(R5_ReadError, &dev->flags);
3647 			clear_bit(R5_ReWrite, &dev->flags);
3648 		}
3649 		if (test_bit(R5_ReadError, &dev->flags))
3650 			clear_bit(R5_Insync, &dev->flags);
3651 		if (!test_bit(R5_Insync, &dev->flags)) {
3652 			if (s->failed < 2)
3653 				s->failed_num[s->failed] = i;
3654 			s->failed++;
3655 			if (rdev && !test_bit(Faulty, &rdev->flags))
3656 				do_recovery = 1;
3657 		}
3658 	}
3659 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3660 		/* If there is a failed device being replaced,
3661 		 *     we must be recovering.
3662 		 * else if we are after recovery_cp, we must be syncing
3663 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3664 		 * else we can only be replacing
3665 		 * sync and recovery both need to read all devices, and so
3666 		 * use the same flag.
3667 		 */
3668 		if (do_recovery ||
3669 		    sh->sector >= conf->mddev->recovery_cp ||
3670 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3671 			s->syncing = 1;
3672 		else
3673 			s->replacing = 1;
3674 	}
3675 	rcu_read_unlock();
3676 }
3677 
3678 static void handle_stripe(struct stripe_head *sh)
3679 {
3680 	struct stripe_head_state s;
3681 	struct r5conf *conf = sh->raid_conf;
3682 	int i;
3683 	int prexor;
3684 	int disks = sh->disks;
3685 	struct r5dev *pdev, *qdev;
3686 
3687 	clear_bit(STRIPE_HANDLE, &sh->state);
3688 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3689 		/* already being handled, ensure it gets handled
3690 		 * again when current action finishes */
3691 		set_bit(STRIPE_HANDLE, &sh->state);
3692 		return;
3693 	}
3694 
3695 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3696 		spin_lock(&sh->stripe_lock);
3697 		/* Cannot process 'sync' concurrently with 'discard' */
3698 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3699 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3700 			set_bit(STRIPE_SYNCING, &sh->state);
3701 			clear_bit(STRIPE_INSYNC, &sh->state);
3702 			clear_bit(STRIPE_REPLACED, &sh->state);
3703 		}
3704 		spin_unlock(&sh->stripe_lock);
3705 	}
3706 	clear_bit(STRIPE_DELAYED, &sh->state);
3707 
3708 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3709 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3710 	       (unsigned long long)sh->sector, sh->state,
3711 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3712 	       sh->check_state, sh->reconstruct_state);
3713 
3714 	analyse_stripe(sh, &s);
3715 
3716 	if (s.handle_bad_blocks) {
3717 		set_bit(STRIPE_HANDLE, &sh->state);
3718 		goto finish;
3719 	}
3720 
3721 	if (unlikely(s.blocked_rdev)) {
3722 		if (s.syncing || s.expanding || s.expanded ||
3723 		    s.replacing || s.to_write || s.written) {
3724 			set_bit(STRIPE_HANDLE, &sh->state);
3725 			goto finish;
3726 		}
3727 		/* There is nothing for the blocked_rdev to block */
3728 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3729 		s.blocked_rdev = NULL;
3730 	}
3731 
3732 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3733 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3734 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3735 	}
3736 
3737 	pr_debug("locked=%d uptodate=%d to_read=%d"
3738 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3739 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3740 	       s.failed_num[0], s.failed_num[1]);
3741 	/* check if the array has lost more than max_degraded devices and,
3742 	 * if so, some requests might need to be failed.
3743 	 */
3744 	if (s.failed > conf->max_degraded) {
3745 		sh->check_state = 0;
3746 		sh->reconstruct_state = 0;
3747 		if (s.to_read+s.to_write+s.written)
3748 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3749 		if (s.syncing + s.replacing)
3750 			handle_failed_sync(conf, sh, &s);
3751 	}
3752 
3753 	/* Now we check to see if any write operations have recently
3754 	 * completed
3755 	 */
3756 	prexor = 0;
3757 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3758 		prexor = 1;
3759 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3760 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3761 		sh->reconstruct_state = reconstruct_state_idle;
3762 
3763 		/* All the 'written' buffers and the parity block are ready to
3764 		 * be written back to disk
3765 		 */
3766 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3767 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3768 		BUG_ON(sh->qd_idx >= 0 &&
3769 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3770 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3771 		for (i = disks; i--; ) {
3772 			struct r5dev *dev = &sh->dev[i];
3773 			if (test_bit(R5_LOCKED, &dev->flags) &&
3774 				(i == sh->pd_idx || i == sh->qd_idx ||
3775 				 dev->written)) {
3776 				pr_debug("Writing block %d\n", i);
3777 				set_bit(R5_Wantwrite, &dev->flags);
3778 				if (prexor)
3779 					continue;
3780 				if (!test_bit(R5_Insync, &dev->flags) ||
3781 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3782 				     s.failed == 0))
3783 					set_bit(STRIPE_INSYNC, &sh->state);
3784 			}
3785 		}
3786 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3787 			s.dec_preread_active = 1;
3788 	}
3789 
3790 	/*
3791 	 * might be able to return some write requests if the parity blocks
3792 	 * are safe, or on a failed drive
3793 	 */
3794 	pdev = &sh->dev[sh->pd_idx];
3795 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3796 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3797 	qdev = &sh->dev[sh->qd_idx];
3798 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3799 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3800 		|| conf->level < 6;
3801 
3802 	if (s.written &&
3803 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3804 			     && !test_bit(R5_LOCKED, &pdev->flags)
3805 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
3806 				 test_bit(R5_Discard, &pdev->flags))))) &&
3807 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3808 			     && !test_bit(R5_LOCKED, &qdev->flags)
3809 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
3810 				 test_bit(R5_Discard, &qdev->flags))))))
3811 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3812 
3813 	/* Now we might consider reading some blocks, either to check/generate
3814 	 * parity, or to satisfy requests
3815 	 * or to load a block that is being partially written.
3816 	 */
3817 	if (s.to_read || s.non_overwrite
3818 	    || (conf->level == 6 && s.to_write && s.failed)
3819 	    || (s.syncing && (s.uptodate + s.compute < disks))
3820 	    || s.replacing
3821 	    || s.expanding)
3822 		handle_stripe_fill(sh, &s, disks);
3823 
3824 	/* Now to consider new write requests and what else, if anything
3825 	 * should be read.  We do not handle new writes when:
3826 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3827 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3828 	 *    block.
3829 	 */
3830 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3831 		handle_stripe_dirtying(conf, sh, &s, disks);
3832 
3833 	/* maybe we need to check and possibly fix the parity for this stripe
3834 	 * Any reads will already have been scheduled, so we just see if enough
3835 	 * data is available.  The parity check is held off while parity
3836 	 * dependent operations are in flight.
3837 	 */
3838 	if (sh->check_state ||
3839 	    (s.syncing && s.locked == 0 &&
3840 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3841 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3842 		if (conf->level == 6)
3843 			handle_parity_checks6(conf, sh, &s, disks);
3844 		else
3845 			handle_parity_checks5(conf, sh, &s, disks);
3846 	}
3847 
3848 	if ((s.replacing || s.syncing) && s.locked == 0
3849 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3850 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
3851 		/* Write out to replacement devices where possible */
3852 		for (i = 0; i < conf->raid_disks; i++)
3853 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3854 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3855 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3856 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3857 				s.locked++;
3858 			}
3859 		if (s.replacing)
3860 			set_bit(STRIPE_INSYNC, &sh->state);
3861 		set_bit(STRIPE_REPLACED, &sh->state);
3862 	}
3863 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3864 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3865 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3866 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3867 		clear_bit(STRIPE_SYNCING, &sh->state);
3868 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3869 			wake_up(&conf->wait_for_overlap);
3870 	}
3871 
3872 	/* If the failed drives are just a ReadError, then we might need
3873 	 * to progress the repair/check process
3874 	 */
3875 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3876 		for (i = 0; i < s.failed; i++) {
3877 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3878 			if (test_bit(R5_ReadError, &dev->flags)
3879 			    && !test_bit(R5_LOCKED, &dev->flags)
3880 			    && test_bit(R5_UPTODATE, &dev->flags)
3881 				) {
3882 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3883 					set_bit(R5_Wantwrite, &dev->flags);
3884 					set_bit(R5_ReWrite, &dev->flags);
3885 					set_bit(R5_LOCKED, &dev->flags);
3886 					s.locked++;
3887 				} else {
3888 					/* let's read it back */
3889 					set_bit(R5_Wantread, &dev->flags);
3890 					set_bit(R5_LOCKED, &dev->flags);
3891 					s.locked++;
3892 				}
3893 			}
3894 		}
3895 
3896 
3897 	/* Finish reconstruct operations initiated by the expansion process */
3898 	if (sh->reconstruct_state == reconstruct_state_result) {
3899 		struct stripe_head *sh_src
3900 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3901 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3902 			/* sh cannot be written until sh_src has been read.
3903 			 * so arrange for sh to be delayed a little
3904 			 */
3905 			set_bit(STRIPE_DELAYED, &sh->state);
3906 			set_bit(STRIPE_HANDLE, &sh->state);
3907 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3908 					      &sh_src->state))
3909 				atomic_inc(&conf->preread_active_stripes);
3910 			release_stripe(sh_src);
3911 			goto finish;
3912 		}
3913 		if (sh_src)
3914 			release_stripe(sh_src);
3915 
3916 		sh->reconstruct_state = reconstruct_state_idle;
3917 		clear_bit(STRIPE_EXPANDING, &sh->state);
3918 		for (i = conf->raid_disks; i--; ) {
3919 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3920 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3921 			s.locked++;
3922 		}
3923 	}
3924 
3925 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3926 	    !sh->reconstruct_state) {
3927 		/* Need to write out all blocks after computing parity */
3928 		sh->disks = conf->raid_disks;
3929 		stripe_set_idx(sh->sector, conf, 0, sh);
3930 		schedule_reconstruction(sh, &s, 1, 1);
3931 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3932 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3933 		atomic_dec(&conf->reshape_stripes);
3934 		wake_up(&conf->wait_for_overlap);
3935 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3936 	}
3937 
3938 	if (s.expanding && s.locked == 0 &&
3939 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3940 		handle_stripe_expansion(conf, sh);
3941 
3942 finish:
3943 	/* wait for this device to become unblocked */
3944 	if (unlikely(s.blocked_rdev)) {
3945 		if (conf->mddev->external)
3946 			md_wait_for_blocked_rdev(s.blocked_rdev,
3947 						 conf->mddev);
3948 		else
3949 			/* Internal metadata will immediately
3950 			 * be written by raid5d, so we don't
3951 			 * need to wait here.
3952 			 */
3953 			rdev_dec_pending(s.blocked_rdev,
3954 					 conf->mddev);
3955 	}
3956 
3957 	if (s.handle_bad_blocks)
3958 		for (i = disks; i--; ) {
3959 			struct md_rdev *rdev;
3960 			struct r5dev *dev = &sh->dev[i];
3961 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3962 				/* We own a safe reference to the rdev */
3963 				rdev = conf->disks[i].rdev;
3964 				if (!rdev_set_badblocks(rdev, sh->sector,
3965 							STRIPE_SECTORS, 0))
3966 					md_error(conf->mddev, rdev);
3967 				rdev_dec_pending(rdev, conf->mddev);
3968 			}
3969 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3970 				rdev = conf->disks[i].rdev;
3971 				rdev_clear_badblocks(rdev, sh->sector,
3972 						     STRIPE_SECTORS, 0);
3973 				rdev_dec_pending(rdev, conf->mddev);
3974 			}
3975 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3976 				rdev = conf->disks[i].replacement;
3977 				if (!rdev)
3978 					/* rdev have been moved down */
3979 					rdev = conf->disks[i].rdev;
3980 				rdev_clear_badblocks(rdev, sh->sector,
3981 						     STRIPE_SECTORS, 0);
3982 				rdev_dec_pending(rdev, conf->mddev);
3983 			}
3984 		}
3985 
3986 	if (s.ops_request)
3987 		raid_run_ops(sh, s.ops_request);
3988 
3989 	ops_run_io(sh, &s);
3990 
3991 	if (s.dec_preread_active) {
3992 		/* We delay this until after ops_run_io so that if make_request
3993 		 * is waiting on a flush, it won't continue until the writes
3994 		 * have actually been submitted.
3995 		 */
3996 		atomic_dec(&conf->preread_active_stripes);
3997 		if (atomic_read(&conf->preread_active_stripes) <
3998 		    IO_THRESHOLD)
3999 			md_wakeup_thread(conf->mddev->thread);
4000 	}
4001 
4002 	return_io(s.return_bi);
4003 
4004 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4005 }
4006 
4007 static void raid5_activate_delayed(struct r5conf *conf)
4008 {
4009 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4010 		while (!list_empty(&conf->delayed_list)) {
4011 			struct list_head *l = conf->delayed_list.next;
4012 			struct stripe_head *sh;
4013 			sh = list_entry(l, struct stripe_head, lru);
4014 			list_del_init(l);
4015 			clear_bit(STRIPE_DELAYED, &sh->state);
4016 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4017 				atomic_inc(&conf->preread_active_stripes);
4018 			list_add_tail(&sh->lru, &conf->hold_list);
4019 			raid5_wakeup_stripe_thread(sh);
4020 		}
4021 	}
4022 }
4023 
4024 static void activate_bit_delay(struct r5conf *conf,
4025 	struct list_head *temp_inactive_list)
4026 {
4027 	/* device_lock is held */
4028 	struct list_head head;
4029 	list_add(&head, &conf->bitmap_list);
4030 	list_del_init(&conf->bitmap_list);
4031 	while (!list_empty(&head)) {
4032 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4033 		int hash;
4034 		list_del_init(&sh->lru);
4035 		atomic_inc(&sh->count);
4036 		hash = sh->hash_lock_index;
4037 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4038 	}
4039 }
4040 
4041 int md_raid5_congested(struct mddev *mddev, int bits)
4042 {
4043 	struct r5conf *conf = mddev->private;
4044 
4045 	/* No difference between reads and writes.  Just check
4046 	 * how busy the stripe_cache is
4047 	 */
4048 
4049 	if (conf->inactive_blocked)
4050 		return 1;
4051 	if (conf->quiesce)
4052 		return 1;
4053 	if (atomic_read(&conf->empty_inactive_list_nr))
4054 		return 1;
4055 
4056 	return 0;
4057 }
4058 EXPORT_SYMBOL_GPL(md_raid5_congested);
4059 
4060 static int raid5_congested(void *data, int bits)
4061 {
4062 	struct mddev *mddev = data;
4063 
4064 	return mddev_congested(mddev, bits) ||
4065 		md_raid5_congested(mddev, bits);
4066 }
4067 
4068 /* We want read requests to align with chunks where possible,
4069  * but write requests don't need to.
4070  */
4071 static int raid5_mergeable_bvec(struct request_queue *q,
4072 				struct bvec_merge_data *bvm,
4073 				struct bio_vec *biovec)
4074 {
4075 	struct mddev *mddev = q->queuedata;
4076 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4077 	int max;
4078 	unsigned int chunk_sectors = mddev->chunk_sectors;
4079 	unsigned int bio_sectors = bvm->bi_size >> 9;
4080 
4081 	if ((bvm->bi_rw & 1) == WRITE)
4082 		return biovec->bv_len; /* always allow writes to be mergeable */
4083 
4084 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4085 		chunk_sectors = mddev->new_chunk_sectors;
4086 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4087 	if (max < 0) max = 0;
4088 	if (max <= biovec->bv_len && bio_sectors == 0)
4089 		return biovec->bv_len;
4090 	else
4091 		return max;
4092 }
4093 
4094 
4095 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4096 {
4097 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
4098 	unsigned int chunk_sectors = mddev->chunk_sectors;
4099 	unsigned int bio_sectors = bio_sectors(bio);
4100 
4101 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4102 		chunk_sectors = mddev->new_chunk_sectors;
4103 	return  chunk_sectors >=
4104 		((sector & (chunk_sectors - 1)) + bio_sectors);
4105 }
4106 
4107 /*
4108  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4109  *  later sampled by raid5d.
4110  */
4111 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4112 {
4113 	unsigned long flags;
4114 
4115 	spin_lock_irqsave(&conf->device_lock, flags);
4116 
4117 	bi->bi_next = conf->retry_read_aligned_list;
4118 	conf->retry_read_aligned_list = bi;
4119 
4120 	spin_unlock_irqrestore(&conf->device_lock, flags);
4121 	md_wakeup_thread(conf->mddev->thread);
4122 }
4123 
4124 
4125 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4126 {
4127 	struct bio *bi;
4128 
4129 	bi = conf->retry_read_aligned;
4130 	if (bi) {
4131 		conf->retry_read_aligned = NULL;
4132 		return bi;
4133 	}
4134 	bi = conf->retry_read_aligned_list;
4135 	if(bi) {
4136 		conf->retry_read_aligned_list = bi->bi_next;
4137 		bi->bi_next = NULL;
4138 		/*
4139 		 * this sets the active strip count to 1 and the processed
4140 		 * strip count to zero (upper 8 bits)
4141 		 */
4142 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4143 	}
4144 
4145 	return bi;
4146 }
4147 
4148 
4149 /*
4150  *  The "raid5_align_endio" should check if the read succeeded and if it
4151  *  did, call bio_endio on the original bio (having bio_put the new bio
4152  *  first).
4153  *  If the read failed..
4154  */
4155 static void raid5_align_endio(struct bio *bi, int error)
4156 {
4157 	struct bio* raid_bi  = bi->bi_private;
4158 	struct mddev *mddev;
4159 	struct r5conf *conf;
4160 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4161 	struct md_rdev *rdev;
4162 
4163 	bio_put(bi);
4164 
4165 	rdev = (void*)raid_bi->bi_next;
4166 	raid_bi->bi_next = NULL;
4167 	mddev = rdev->mddev;
4168 	conf = mddev->private;
4169 
4170 	rdev_dec_pending(rdev, conf->mddev);
4171 
4172 	if (!error && uptodate) {
4173 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4174 					 raid_bi, 0);
4175 		bio_endio(raid_bi, 0);
4176 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4177 			wake_up(&conf->wait_for_stripe);
4178 		return;
4179 	}
4180 
4181 
4182 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4183 
4184 	add_bio_to_retry(raid_bi, conf);
4185 }
4186 
4187 static int bio_fits_rdev(struct bio *bi)
4188 {
4189 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4190 
4191 	if (bio_sectors(bi) > queue_max_sectors(q))
4192 		return 0;
4193 	blk_recount_segments(q, bi);
4194 	if (bi->bi_phys_segments > queue_max_segments(q))
4195 		return 0;
4196 
4197 	if (q->merge_bvec_fn)
4198 		/* it's too hard to apply the merge_bvec_fn at this stage,
4199 		 * just just give up
4200 		 */
4201 		return 0;
4202 
4203 	return 1;
4204 }
4205 
4206 
4207 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4208 {
4209 	struct r5conf *conf = mddev->private;
4210 	int dd_idx;
4211 	struct bio* align_bi;
4212 	struct md_rdev *rdev;
4213 	sector_t end_sector;
4214 
4215 	if (!in_chunk_boundary(mddev, raid_bio)) {
4216 		pr_debug("chunk_aligned_read : non aligned\n");
4217 		return 0;
4218 	}
4219 	/*
4220 	 * use bio_clone_mddev to make a copy of the bio
4221 	 */
4222 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4223 	if (!align_bi)
4224 		return 0;
4225 	/*
4226 	 *   set bi_end_io to a new function, and set bi_private to the
4227 	 *     original bio.
4228 	 */
4229 	align_bi->bi_end_io  = raid5_align_endio;
4230 	align_bi->bi_private = raid_bio;
4231 	/*
4232 	 *	compute position
4233 	 */
4234 	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
4235 						    0,
4236 						    &dd_idx, NULL);
4237 
4238 	end_sector = bio_end_sector(align_bi);
4239 	rcu_read_lock();
4240 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4241 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4242 	    rdev->recovery_offset < end_sector) {
4243 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4244 		if (rdev &&
4245 		    (test_bit(Faulty, &rdev->flags) ||
4246 		    !(test_bit(In_sync, &rdev->flags) ||
4247 		      rdev->recovery_offset >= end_sector)))
4248 			rdev = NULL;
4249 	}
4250 	if (rdev) {
4251 		sector_t first_bad;
4252 		int bad_sectors;
4253 
4254 		atomic_inc(&rdev->nr_pending);
4255 		rcu_read_unlock();
4256 		raid_bio->bi_next = (void*)rdev;
4257 		align_bi->bi_bdev =  rdev->bdev;
4258 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4259 
4260 		if (!bio_fits_rdev(align_bi) ||
4261 		    is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi),
4262 				&first_bad, &bad_sectors)) {
4263 			/* too big in some way, or has a known bad block */
4264 			bio_put(align_bi);
4265 			rdev_dec_pending(rdev, mddev);
4266 			return 0;
4267 		}
4268 
4269 		/* No reshape active, so we can trust rdev->data_offset */
4270 		align_bi->bi_sector += rdev->data_offset;
4271 
4272 		spin_lock_irq(&conf->device_lock);
4273 		wait_event_lock_irq(conf->wait_for_stripe,
4274 				    conf->quiesce == 0,
4275 				    conf->device_lock);
4276 		atomic_inc(&conf->active_aligned_reads);
4277 		spin_unlock_irq(&conf->device_lock);
4278 
4279 		if (mddev->gendisk)
4280 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4281 					      align_bi, disk_devt(mddev->gendisk),
4282 					      raid_bio->bi_sector);
4283 		generic_make_request(align_bi);
4284 		return 1;
4285 	} else {
4286 		rcu_read_unlock();
4287 		bio_put(align_bi);
4288 		return 0;
4289 	}
4290 }
4291 
4292 /* __get_priority_stripe - get the next stripe to process
4293  *
4294  * Full stripe writes are allowed to pass preread active stripes up until
4295  * the bypass_threshold is exceeded.  In general the bypass_count
4296  * increments when the handle_list is handled before the hold_list; however, it
4297  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4298  * stripe with in flight i/o.  The bypass_count will be reset when the
4299  * head of the hold_list has changed, i.e. the head was promoted to the
4300  * handle_list.
4301  */
4302 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4303 {
4304 	struct stripe_head *sh = NULL, *tmp;
4305 	struct list_head *handle_list = NULL;
4306 	struct r5worker_group *wg = NULL;
4307 
4308 	if (conf->worker_cnt_per_group == 0) {
4309 		handle_list = &conf->handle_list;
4310 	} else if (group != ANY_GROUP) {
4311 		handle_list = &conf->worker_groups[group].handle_list;
4312 		wg = &conf->worker_groups[group];
4313 	} else {
4314 		int i;
4315 		for (i = 0; i < conf->group_cnt; i++) {
4316 			handle_list = &conf->worker_groups[i].handle_list;
4317 			wg = &conf->worker_groups[i];
4318 			if (!list_empty(handle_list))
4319 				break;
4320 		}
4321 	}
4322 
4323 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4324 		  __func__,
4325 		  list_empty(handle_list) ? "empty" : "busy",
4326 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4327 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4328 
4329 	if (!list_empty(handle_list)) {
4330 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4331 
4332 		if (list_empty(&conf->hold_list))
4333 			conf->bypass_count = 0;
4334 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4335 			if (conf->hold_list.next == conf->last_hold)
4336 				conf->bypass_count++;
4337 			else {
4338 				conf->last_hold = conf->hold_list.next;
4339 				conf->bypass_count -= conf->bypass_threshold;
4340 				if (conf->bypass_count < 0)
4341 					conf->bypass_count = 0;
4342 			}
4343 		}
4344 	} else if (!list_empty(&conf->hold_list) &&
4345 		   ((conf->bypass_threshold &&
4346 		     conf->bypass_count > conf->bypass_threshold) ||
4347 		    atomic_read(&conf->pending_full_writes) == 0)) {
4348 
4349 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4350 			if (conf->worker_cnt_per_group == 0 ||
4351 			    group == ANY_GROUP ||
4352 			    !cpu_online(tmp->cpu) ||
4353 			    cpu_to_group(tmp->cpu) == group) {
4354 				sh = tmp;
4355 				break;
4356 			}
4357 		}
4358 
4359 		if (sh) {
4360 			conf->bypass_count -= conf->bypass_threshold;
4361 			if (conf->bypass_count < 0)
4362 				conf->bypass_count = 0;
4363 		}
4364 		wg = NULL;
4365 	}
4366 
4367 	if (!sh)
4368 		return NULL;
4369 
4370 	if (wg) {
4371 		wg->stripes_cnt--;
4372 		sh->group = NULL;
4373 	}
4374 	list_del_init(&sh->lru);
4375 	atomic_inc(&sh->count);
4376 	BUG_ON(atomic_read(&sh->count) != 1);
4377 	return sh;
4378 }
4379 
4380 struct raid5_plug_cb {
4381 	struct blk_plug_cb	cb;
4382 	struct list_head	list;
4383 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4384 };
4385 
4386 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4387 {
4388 	struct raid5_plug_cb *cb = container_of(
4389 		blk_cb, struct raid5_plug_cb, cb);
4390 	struct stripe_head *sh;
4391 	struct mddev *mddev = cb->cb.data;
4392 	struct r5conf *conf = mddev->private;
4393 	int cnt = 0;
4394 	int hash;
4395 
4396 	if (cb->list.next && !list_empty(&cb->list)) {
4397 		spin_lock_irq(&conf->device_lock);
4398 		while (!list_empty(&cb->list)) {
4399 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4400 			list_del_init(&sh->lru);
4401 			/*
4402 			 * avoid race release_stripe_plug() sees
4403 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4404 			 * is still in our list
4405 			 */
4406 			smp_mb__before_clear_bit();
4407 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4408 			/*
4409 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
4410 			 * case, the count is always > 1 here
4411 			 */
4412 			hash = sh->hash_lock_index;
4413 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4414 			cnt++;
4415 		}
4416 		spin_unlock_irq(&conf->device_lock);
4417 	}
4418 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
4419 				     NR_STRIPE_HASH_LOCKS);
4420 	if (mddev->queue)
4421 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4422 	kfree(cb);
4423 }
4424 
4425 static void release_stripe_plug(struct mddev *mddev,
4426 				struct stripe_head *sh)
4427 {
4428 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4429 		raid5_unplug, mddev,
4430 		sizeof(struct raid5_plug_cb));
4431 	struct raid5_plug_cb *cb;
4432 
4433 	if (!blk_cb) {
4434 		release_stripe(sh);
4435 		return;
4436 	}
4437 
4438 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4439 
4440 	if (cb->list.next == NULL) {
4441 		int i;
4442 		INIT_LIST_HEAD(&cb->list);
4443 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4444 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
4445 	}
4446 
4447 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4448 		list_add_tail(&sh->lru, &cb->list);
4449 	else
4450 		release_stripe(sh);
4451 }
4452 
4453 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4454 {
4455 	struct r5conf *conf = mddev->private;
4456 	sector_t logical_sector, last_sector;
4457 	struct stripe_head *sh;
4458 	int remaining;
4459 	int stripe_sectors;
4460 
4461 	if (mddev->reshape_position != MaxSector)
4462 		/* Skip discard while reshape is happening */
4463 		return;
4464 
4465 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4466 	last_sector = bi->bi_sector + (bi->bi_size>>9);
4467 
4468 	bi->bi_next = NULL;
4469 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4470 
4471 	stripe_sectors = conf->chunk_sectors *
4472 		(conf->raid_disks - conf->max_degraded);
4473 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4474 					       stripe_sectors);
4475 	sector_div(last_sector, stripe_sectors);
4476 
4477 	logical_sector *= conf->chunk_sectors;
4478 	last_sector *= conf->chunk_sectors;
4479 
4480 	for (; logical_sector < last_sector;
4481 	     logical_sector += STRIPE_SECTORS) {
4482 		DEFINE_WAIT(w);
4483 		int d;
4484 	again:
4485 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4486 		prepare_to_wait(&conf->wait_for_overlap, &w,
4487 				TASK_UNINTERRUPTIBLE);
4488 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4489 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
4490 			release_stripe(sh);
4491 			schedule();
4492 			goto again;
4493 		}
4494 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4495 		spin_lock_irq(&sh->stripe_lock);
4496 		for (d = 0; d < conf->raid_disks; d++) {
4497 			if (d == sh->pd_idx || d == sh->qd_idx)
4498 				continue;
4499 			if (sh->dev[d].towrite || sh->dev[d].toread) {
4500 				set_bit(R5_Overlap, &sh->dev[d].flags);
4501 				spin_unlock_irq(&sh->stripe_lock);
4502 				release_stripe(sh);
4503 				schedule();
4504 				goto again;
4505 			}
4506 		}
4507 		set_bit(STRIPE_DISCARD, &sh->state);
4508 		finish_wait(&conf->wait_for_overlap, &w);
4509 		for (d = 0; d < conf->raid_disks; d++) {
4510 			if (d == sh->pd_idx || d == sh->qd_idx)
4511 				continue;
4512 			sh->dev[d].towrite = bi;
4513 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4514 			raid5_inc_bi_active_stripes(bi);
4515 		}
4516 		spin_unlock_irq(&sh->stripe_lock);
4517 		if (conf->mddev->bitmap) {
4518 			for (d = 0;
4519 			     d < conf->raid_disks - conf->max_degraded;
4520 			     d++)
4521 				bitmap_startwrite(mddev->bitmap,
4522 						  sh->sector,
4523 						  STRIPE_SECTORS,
4524 						  0);
4525 			sh->bm_seq = conf->seq_flush + 1;
4526 			set_bit(STRIPE_BIT_DELAY, &sh->state);
4527 		}
4528 
4529 		set_bit(STRIPE_HANDLE, &sh->state);
4530 		clear_bit(STRIPE_DELAYED, &sh->state);
4531 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4532 			atomic_inc(&conf->preread_active_stripes);
4533 		release_stripe_plug(mddev, sh);
4534 	}
4535 
4536 	remaining = raid5_dec_bi_active_stripes(bi);
4537 	if (remaining == 0) {
4538 		md_write_end(mddev);
4539 		bio_endio(bi, 0);
4540 	}
4541 }
4542 
4543 static void make_request(struct mddev *mddev, struct bio * bi)
4544 {
4545 	struct r5conf *conf = mddev->private;
4546 	int dd_idx;
4547 	sector_t new_sector;
4548 	sector_t logical_sector, last_sector;
4549 	struct stripe_head *sh;
4550 	const int rw = bio_data_dir(bi);
4551 	int remaining;
4552 
4553 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4554 		md_flush_request(mddev, bi);
4555 		return;
4556 	}
4557 
4558 	md_write_start(mddev, bi);
4559 
4560 	if (rw == READ &&
4561 	     mddev->reshape_position == MaxSector &&
4562 	     chunk_aligned_read(mddev,bi))
4563 		return;
4564 
4565 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4566 		make_discard_request(mddev, bi);
4567 		return;
4568 	}
4569 
4570 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4571 	last_sector = bio_end_sector(bi);
4572 	bi->bi_next = NULL;
4573 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4574 
4575 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4576 		DEFINE_WAIT(w);
4577 		int previous;
4578 		int seq;
4579 
4580 	retry:
4581 		seq = read_seqcount_begin(&conf->gen_lock);
4582 		previous = 0;
4583 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4584 		if (unlikely(conf->reshape_progress != MaxSector)) {
4585 			/* spinlock is needed as reshape_progress may be
4586 			 * 64bit on a 32bit platform, and so it might be
4587 			 * possible to see a half-updated value
4588 			 * Of course reshape_progress could change after
4589 			 * the lock is dropped, so once we get a reference
4590 			 * to the stripe that we think it is, we will have
4591 			 * to check again.
4592 			 */
4593 			spin_lock_irq(&conf->device_lock);
4594 			if (mddev->reshape_backwards
4595 			    ? logical_sector < conf->reshape_progress
4596 			    : logical_sector >= conf->reshape_progress) {
4597 				previous = 1;
4598 			} else {
4599 				if (mddev->reshape_backwards
4600 				    ? logical_sector < conf->reshape_safe
4601 				    : logical_sector >= conf->reshape_safe) {
4602 					spin_unlock_irq(&conf->device_lock);
4603 					schedule();
4604 					goto retry;
4605 				}
4606 			}
4607 			spin_unlock_irq(&conf->device_lock);
4608 		}
4609 
4610 		new_sector = raid5_compute_sector(conf, logical_sector,
4611 						  previous,
4612 						  &dd_idx, NULL);
4613 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4614 			(unsigned long long)new_sector,
4615 			(unsigned long long)logical_sector);
4616 
4617 		sh = get_active_stripe(conf, new_sector, previous,
4618 				       (bi->bi_rw&RWA_MASK), 0);
4619 		if (sh) {
4620 			if (unlikely(previous)) {
4621 				/* expansion might have moved on while waiting for a
4622 				 * stripe, so we must do the range check again.
4623 				 * Expansion could still move past after this
4624 				 * test, but as we are holding a reference to
4625 				 * 'sh', we know that if that happens,
4626 				 *  STRIPE_EXPANDING will get set and the expansion
4627 				 * won't proceed until we finish with the stripe.
4628 				 */
4629 				int must_retry = 0;
4630 				spin_lock_irq(&conf->device_lock);
4631 				if (mddev->reshape_backwards
4632 				    ? logical_sector >= conf->reshape_progress
4633 				    : logical_sector < conf->reshape_progress)
4634 					/* mismatch, need to try again */
4635 					must_retry = 1;
4636 				spin_unlock_irq(&conf->device_lock);
4637 				if (must_retry) {
4638 					release_stripe(sh);
4639 					schedule();
4640 					goto retry;
4641 				}
4642 			}
4643 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
4644 				/* Might have got the wrong stripe_head
4645 				 * by accident
4646 				 */
4647 				release_stripe(sh);
4648 				goto retry;
4649 			}
4650 
4651 			if (rw == WRITE &&
4652 			    logical_sector >= mddev->suspend_lo &&
4653 			    logical_sector < mddev->suspend_hi) {
4654 				release_stripe(sh);
4655 				/* As the suspend_* range is controlled by
4656 				 * userspace, we want an interruptible
4657 				 * wait.
4658 				 */
4659 				flush_signals(current);
4660 				prepare_to_wait(&conf->wait_for_overlap,
4661 						&w, TASK_INTERRUPTIBLE);
4662 				if (logical_sector >= mddev->suspend_lo &&
4663 				    logical_sector < mddev->suspend_hi)
4664 					schedule();
4665 				goto retry;
4666 			}
4667 
4668 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4669 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4670 				/* Stripe is busy expanding or
4671 				 * add failed due to overlap.  Flush everything
4672 				 * and wait a while
4673 				 */
4674 				md_wakeup_thread(mddev->thread);
4675 				release_stripe(sh);
4676 				schedule();
4677 				goto retry;
4678 			}
4679 			finish_wait(&conf->wait_for_overlap, &w);
4680 			set_bit(STRIPE_HANDLE, &sh->state);
4681 			clear_bit(STRIPE_DELAYED, &sh->state);
4682 			if ((bi->bi_rw & REQ_SYNC) &&
4683 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4684 				atomic_inc(&conf->preread_active_stripes);
4685 			release_stripe_plug(mddev, sh);
4686 		} else {
4687 			/* cannot get stripe for read-ahead, just give-up */
4688 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4689 			finish_wait(&conf->wait_for_overlap, &w);
4690 			break;
4691 		}
4692 	}
4693 
4694 	remaining = raid5_dec_bi_active_stripes(bi);
4695 	if (remaining == 0) {
4696 
4697 		if ( rw == WRITE )
4698 			md_write_end(mddev);
4699 
4700 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4701 					 bi, 0);
4702 		bio_endio(bi, 0);
4703 	}
4704 }
4705 
4706 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4707 
4708 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4709 {
4710 	/* reshaping is quite different to recovery/resync so it is
4711 	 * handled quite separately ... here.
4712 	 *
4713 	 * On each call to sync_request, we gather one chunk worth of
4714 	 * destination stripes and flag them as expanding.
4715 	 * Then we find all the source stripes and request reads.
4716 	 * As the reads complete, handle_stripe will copy the data
4717 	 * into the destination stripe and release that stripe.
4718 	 */
4719 	struct r5conf *conf = mddev->private;
4720 	struct stripe_head *sh;
4721 	sector_t first_sector, last_sector;
4722 	int raid_disks = conf->previous_raid_disks;
4723 	int data_disks = raid_disks - conf->max_degraded;
4724 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4725 	int i;
4726 	int dd_idx;
4727 	sector_t writepos, readpos, safepos;
4728 	sector_t stripe_addr;
4729 	int reshape_sectors;
4730 	struct list_head stripes;
4731 
4732 	if (sector_nr == 0) {
4733 		/* If restarting in the middle, skip the initial sectors */
4734 		if (mddev->reshape_backwards &&
4735 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4736 			sector_nr = raid5_size(mddev, 0, 0)
4737 				- conf->reshape_progress;
4738 		} else if (!mddev->reshape_backwards &&
4739 			   conf->reshape_progress > 0)
4740 			sector_nr = conf->reshape_progress;
4741 		sector_div(sector_nr, new_data_disks);
4742 		if (sector_nr) {
4743 			mddev->curr_resync_completed = sector_nr;
4744 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4745 			*skipped = 1;
4746 			return sector_nr;
4747 		}
4748 	}
4749 
4750 	/* We need to process a full chunk at a time.
4751 	 * If old and new chunk sizes differ, we need to process the
4752 	 * largest of these
4753 	 */
4754 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4755 		reshape_sectors = mddev->new_chunk_sectors;
4756 	else
4757 		reshape_sectors = mddev->chunk_sectors;
4758 
4759 	/* We update the metadata at least every 10 seconds, or when
4760 	 * the data about to be copied would over-write the source of
4761 	 * the data at the front of the range.  i.e. one new_stripe
4762 	 * along from reshape_progress new_maps to after where
4763 	 * reshape_safe old_maps to
4764 	 */
4765 	writepos = conf->reshape_progress;
4766 	sector_div(writepos, new_data_disks);
4767 	readpos = conf->reshape_progress;
4768 	sector_div(readpos, data_disks);
4769 	safepos = conf->reshape_safe;
4770 	sector_div(safepos, data_disks);
4771 	if (mddev->reshape_backwards) {
4772 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4773 		readpos += reshape_sectors;
4774 		safepos += reshape_sectors;
4775 	} else {
4776 		writepos += reshape_sectors;
4777 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4778 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4779 	}
4780 
4781 	/* Having calculated the 'writepos' possibly use it
4782 	 * to set 'stripe_addr' which is where we will write to.
4783 	 */
4784 	if (mddev->reshape_backwards) {
4785 		BUG_ON(conf->reshape_progress == 0);
4786 		stripe_addr = writepos;
4787 		BUG_ON((mddev->dev_sectors &
4788 			~((sector_t)reshape_sectors - 1))
4789 		       - reshape_sectors - stripe_addr
4790 		       != sector_nr);
4791 	} else {
4792 		BUG_ON(writepos != sector_nr + reshape_sectors);
4793 		stripe_addr = sector_nr;
4794 	}
4795 
4796 	/* 'writepos' is the most advanced device address we might write.
4797 	 * 'readpos' is the least advanced device address we might read.
4798 	 * 'safepos' is the least address recorded in the metadata as having
4799 	 *     been reshaped.
4800 	 * If there is a min_offset_diff, these are adjusted either by
4801 	 * increasing the safepos/readpos if diff is negative, or
4802 	 * increasing writepos if diff is positive.
4803 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4804 	 * ensure safety in the face of a crash - that must be done by userspace
4805 	 * making a backup of the data.  So in that case there is no particular
4806 	 * rush to update metadata.
4807 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4808 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4809 	 * we can be safe in the event of a crash.
4810 	 * So we insist on updating metadata if safepos is behind writepos and
4811 	 * readpos is beyond writepos.
4812 	 * In any case, update the metadata every 10 seconds.
4813 	 * Maybe that number should be configurable, but I'm not sure it is
4814 	 * worth it.... maybe it could be a multiple of safemode_delay???
4815 	 */
4816 	if (conf->min_offset_diff < 0) {
4817 		safepos += -conf->min_offset_diff;
4818 		readpos += -conf->min_offset_diff;
4819 	} else
4820 		writepos += conf->min_offset_diff;
4821 
4822 	if ((mddev->reshape_backwards
4823 	     ? (safepos > writepos && readpos < writepos)
4824 	     : (safepos < writepos && readpos > writepos)) ||
4825 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4826 		/* Cannot proceed until we've updated the superblock... */
4827 		wait_event(conf->wait_for_overlap,
4828 			   atomic_read(&conf->reshape_stripes)==0
4829 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4830 		if (atomic_read(&conf->reshape_stripes) != 0)
4831 			return 0;
4832 		mddev->reshape_position = conf->reshape_progress;
4833 		mddev->curr_resync_completed = sector_nr;
4834 		conf->reshape_checkpoint = jiffies;
4835 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4836 		md_wakeup_thread(mddev->thread);
4837 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4838 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4839 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4840 			return 0;
4841 		spin_lock_irq(&conf->device_lock);
4842 		conf->reshape_safe = mddev->reshape_position;
4843 		spin_unlock_irq(&conf->device_lock);
4844 		wake_up(&conf->wait_for_overlap);
4845 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4846 	}
4847 
4848 	INIT_LIST_HEAD(&stripes);
4849 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4850 		int j;
4851 		int skipped_disk = 0;
4852 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4853 		set_bit(STRIPE_EXPANDING, &sh->state);
4854 		atomic_inc(&conf->reshape_stripes);
4855 		/* If any of this stripe is beyond the end of the old
4856 		 * array, then we need to zero those blocks
4857 		 */
4858 		for (j=sh->disks; j--;) {
4859 			sector_t s;
4860 			if (j == sh->pd_idx)
4861 				continue;
4862 			if (conf->level == 6 &&
4863 			    j == sh->qd_idx)
4864 				continue;
4865 			s = compute_blocknr(sh, j, 0);
4866 			if (s < raid5_size(mddev, 0, 0)) {
4867 				skipped_disk = 1;
4868 				continue;
4869 			}
4870 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4871 			set_bit(R5_Expanded, &sh->dev[j].flags);
4872 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4873 		}
4874 		if (!skipped_disk) {
4875 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4876 			set_bit(STRIPE_HANDLE, &sh->state);
4877 		}
4878 		list_add(&sh->lru, &stripes);
4879 	}
4880 	spin_lock_irq(&conf->device_lock);
4881 	if (mddev->reshape_backwards)
4882 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4883 	else
4884 		conf->reshape_progress += reshape_sectors * new_data_disks;
4885 	spin_unlock_irq(&conf->device_lock);
4886 	/* Ok, those stripe are ready. We can start scheduling
4887 	 * reads on the source stripes.
4888 	 * The source stripes are determined by mapping the first and last
4889 	 * block on the destination stripes.
4890 	 */
4891 	first_sector =
4892 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4893 				     1, &dd_idx, NULL);
4894 	last_sector =
4895 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4896 					    * new_data_disks - 1),
4897 				     1, &dd_idx, NULL);
4898 	if (last_sector >= mddev->dev_sectors)
4899 		last_sector = mddev->dev_sectors - 1;
4900 	while (first_sector <= last_sector) {
4901 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4902 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4903 		set_bit(STRIPE_HANDLE, &sh->state);
4904 		release_stripe(sh);
4905 		first_sector += STRIPE_SECTORS;
4906 	}
4907 	/* Now that the sources are clearly marked, we can release
4908 	 * the destination stripes
4909 	 */
4910 	while (!list_empty(&stripes)) {
4911 		sh = list_entry(stripes.next, struct stripe_head, lru);
4912 		list_del_init(&sh->lru);
4913 		release_stripe(sh);
4914 	}
4915 	/* If this takes us to the resync_max point where we have to pause,
4916 	 * then we need to write out the superblock.
4917 	 */
4918 	sector_nr += reshape_sectors;
4919 	if ((sector_nr - mddev->curr_resync_completed) * 2
4920 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4921 		/* Cannot proceed until we've updated the superblock... */
4922 		wait_event(conf->wait_for_overlap,
4923 			   atomic_read(&conf->reshape_stripes) == 0
4924 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4925 		if (atomic_read(&conf->reshape_stripes) != 0)
4926 			goto ret;
4927 		mddev->reshape_position = conf->reshape_progress;
4928 		mddev->curr_resync_completed = sector_nr;
4929 		conf->reshape_checkpoint = jiffies;
4930 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4931 		md_wakeup_thread(mddev->thread);
4932 		wait_event(mddev->sb_wait,
4933 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4934 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4935 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4936 			goto ret;
4937 		spin_lock_irq(&conf->device_lock);
4938 		conf->reshape_safe = mddev->reshape_position;
4939 		spin_unlock_irq(&conf->device_lock);
4940 		wake_up(&conf->wait_for_overlap);
4941 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4942 	}
4943 ret:
4944 	return reshape_sectors;
4945 }
4946 
4947 /* FIXME go_faster isn't used */
4948 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4949 {
4950 	struct r5conf *conf = mddev->private;
4951 	struct stripe_head *sh;
4952 	sector_t max_sector = mddev->dev_sectors;
4953 	sector_t sync_blocks;
4954 	int still_degraded = 0;
4955 	int i;
4956 
4957 	if (sector_nr >= max_sector) {
4958 		/* just being told to finish up .. nothing much to do */
4959 
4960 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4961 			end_reshape(conf);
4962 			return 0;
4963 		}
4964 
4965 		if (mddev->curr_resync < max_sector) /* aborted */
4966 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4967 					&sync_blocks, 1);
4968 		else /* completed sync */
4969 			conf->fullsync = 0;
4970 		bitmap_close_sync(mddev->bitmap);
4971 
4972 		return 0;
4973 	}
4974 
4975 	/* Allow raid5_quiesce to complete */
4976 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4977 
4978 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4979 		return reshape_request(mddev, sector_nr, skipped);
4980 
4981 	/* No need to check resync_max as we never do more than one
4982 	 * stripe, and as resync_max will always be on a chunk boundary,
4983 	 * if the check in md_do_sync didn't fire, there is no chance
4984 	 * of overstepping resync_max here
4985 	 */
4986 
4987 	/* if there is too many failed drives and we are trying
4988 	 * to resync, then assert that we are finished, because there is
4989 	 * nothing we can do.
4990 	 */
4991 	if (mddev->degraded >= conf->max_degraded &&
4992 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4993 		sector_t rv = mddev->dev_sectors - sector_nr;
4994 		*skipped = 1;
4995 		return rv;
4996 	}
4997 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4998 	    !conf->fullsync &&
4999 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5000 	    sync_blocks >= STRIPE_SECTORS) {
5001 		/* we can skip this block, and probably more */
5002 		sync_blocks /= STRIPE_SECTORS;
5003 		*skipped = 1;
5004 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5005 	}
5006 
5007 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5008 
5009 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5010 	if (sh == NULL) {
5011 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5012 		/* make sure we don't swamp the stripe cache if someone else
5013 		 * is trying to get access
5014 		 */
5015 		schedule_timeout_uninterruptible(1);
5016 	}
5017 	/* Need to check if array will still be degraded after recovery/resync
5018 	 * We don't need to check the 'failed' flag as when that gets set,
5019 	 * recovery aborts.
5020 	 */
5021 	for (i = 0; i < conf->raid_disks; i++)
5022 		if (conf->disks[i].rdev == NULL)
5023 			still_degraded = 1;
5024 
5025 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5026 
5027 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5028 
5029 	handle_stripe(sh);
5030 	release_stripe(sh);
5031 
5032 	return STRIPE_SECTORS;
5033 }
5034 
5035 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5036 {
5037 	/* We may not be able to submit a whole bio at once as there
5038 	 * may not be enough stripe_heads available.
5039 	 * We cannot pre-allocate enough stripe_heads as we may need
5040 	 * more than exist in the cache (if we allow ever large chunks).
5041 	 * So we do one stripe head at a time and record in
5042 	 * ->bi_hw_segments how many have been done.
5043 	 *
5044 	 * We *know* that this entire raid_bio is in one chunk, so
5045 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5046 	 */
5047 	struct stripe_head *sh;
5048 	int dd_idx;
5049 	sector_t sector, logical_sector, last_sector;
5050 	int scnt = 0;
5051 	int remaining;
5052 	int handled = 0;
5053 
5054 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5055 	sector = raid5_compute_sector(conf, logical_sector,
5056 				      0, &dd_idx, NULL);
5057 	last_sector = bio_end_sector(raid_bio);
5058 
5059 	for (; logical_sector < last_sector;
5060 	     logical_sector += STRIPE_SECTORS,
5061 		     sector += STRIPE_SECTORS,
5062 		     scnt++) {
5063 
5064 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5065 			/* already done this stripe */
5066 			continue;
5067 
5068 		sh = get_active_stripe(conf, sector, 0, 1, 0);
5069 
5070 		if (!sh) {
5071 			/* failed to get a stripe - must wait */
5072 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5073 			conf->retry_read_aligned = raid_bio;
5074 			return handled;
5075 		}
5076 
5077 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5078 			release_stripe(sh);
5079 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5080 			conf->retry_read_aligned = raid_bio;
5081 			return handled;
5082 		}
5083 
5084 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5085 		handle_stripe(sh);
5086 		release_stripe(sh);
5087 		handled++;
5088 	}
5089 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5090 	if (remaining == 0) {
5091 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5092 					 raid_bio, 0);
5093 		bio_endio(raid_bio, 0);
5094 	}
5095 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5096 		wake_up(&conf->wait_for_stripe);
5097 	return handled;
5098 }
5099 
5100 static int handle_active_stripes(struct r5conf *conf, int group,
5101 				 struct r5worker *worker,
5102 				 struct list_head *temp_inactive_list)
5103 {
5104 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5105 	int i, batch_size = 0, hash;
5106 	bool release_inactive = false;
5107 
5108 	while (batch_size < MAX_STRIPE_BATCH &&
5109 			(sh = __get_priority_stripe(conf, group)) != NULL)
5110 		batch[batch_size++] = sh;
5111 
5112 	if (batch_size == 0) {
5113 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5114 			if (!list_empty(temp_inactive_list + i))
5115 				break;
5116 		if (i == NR_STRIPE_HASH_LOCKS)
5117 			return batch_size;
5118 		release_inactive = true;
5119 	}
5120 	spin_unlock_irq(&conf->device_lock);
5121 
5122 	release_inactive_stripe_list(conf, temp_inactive_list,
5123 				     NR_STRIPE_HASH_LOCKS);
5124 
5125 	if (release_inactive) {
5126 		spin_lock_irq(&conf->device_lock);
5127 		return 0;
5128 	}
5129 
5130 	for (i = 0; i < batch_size; i++)
5131 		handle_stripe(batch[i]);
5132 
5133 	cond_resched();
5134 
5135 	spin_lock_irq(&conf->device_lock);
5136 	for (i = 0; i < batch_size; i++) {
5137 		hash = batch[i]->hash_lock_index;
5138 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5139 	}
5140 	return batch_size;
5141 }
5142 
5143 static void raid5_do_work(struct work_struct *work)
5144 {
5145 	struct r5worker *worker = container_of(work, struct r5worker, work);
5146 	struct r5worker_group *group = worker->group;
5147 	struct r5conf *conf = group->conf;
5148 	int group_id = group - conf->worker_groups;
5149 	int handled;
5150 	struct blk_plug plug;
5151 
5152 	pr_debug("+++ raid5worker active\n");
5153 
5154 	blk_start_plug(&plug);
5155 	handled = 0;
5156 	spin_lock_irq(&conf->device_lock);
5157 	while (1) {
5158 		int batch_size, released;
5159 
5160 		released = release_stripe_list(conf, worker->temp_inactive_list);
5161 
5162 		batch_size = handle_active_stripes(conf, group_id, worker,
5163 						   worker->temp_inactive_list);
5164 		worker->working = false;
5165 		if (!batch_size && !released)
5166 			break;
5167 		handled += batch_size;
5168 	}
5169 	pr_debug("%d stripes handled\n", handled);
5170 
5171 	spin_unlock_irq(&conf->device_lock);
5172 	blk_finish_plug(&plug);
5173 
5174 	pr_debug("--- raid5worker inactive\n");
5175 }
5176 
5177 /*
5178  * This is our raid5 kernel thread.
5179  *
5180  * We scan the hash table for stripes which can be handled now.
5181  * During the scan, completed stripes are saved for us by the interrupt
5182  * handler, so that they will not have to wait for our next wakeup.
5183  */
5184 static void raid5d(struct md_thread *thread)
5185 {
5186 	struct mddev *mddev = thread->mddev;
5187 	struct r5conf *conf = mddev->private;
5188 	int handled;
5189 	struct blk_plug plug;
5190 
5191 	pr_debug("+++ raid5d active\n");
5192 
5193 	md_check_recovery(mddev);
5194 
5195 	blk_start_plug(&plug);
5196 	handled = 0;
5197 	spin_lock_irq(&conf->device_lock);
5198 	while (1) {
5199 		struct bio *bio;
5200 		int batch_size, released;
5201 
5202 		released = release_stripe_list(conf, conf->temp_inactive_list);
5203 
5204 		if (
5205 		    !list_empty(&conf->bitmap_list)) {
5206 			/* Now is a good time to flush some bitmap updates */
5207 			conf->seq_flush++;
5208 			spin_unlock_irq(&conf->device_lock);
5209 			bitmap_unplug(mddev->bitmap);
5210 			spin_lock_irq(&conf->device_lock);
5211 			conf->seq_write = conf->seq_flush;
5212 			activate_bit_delay(conf, conf->temp_inactive_list);
5213 		}
5214 		raid5_activate_delayed(conf);
5215 
5216 		while ((bio = remove_bio_from_retry(conf))) {
5217 			int ok;
5218 			spin_unlock_irq(&conf->device_lock);
5219 			ok = retry_aligned_read(conf, bio);
5220 			spin_lock_irq(&conf->device_lock);
5221 			if (!ok)
5222 				break;
5223 			handled++;
5224 		}
5225 
5226 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5227 						   conf->temp_inactive_list);
5228 		if (!batch_size && !released)
5229 			break;
5230 		handled += batch_size;
5231 
5232 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5233 			spin_unlock_irq(&conf->device_lock);
5234 			md_check_recovery(mddev);
5235 			spin_lock_irq(&conf->device_lock);
5236 		}
5237 	}
5238 	pr_debug("%d stripes handled\n", handled);
5239 
5240 	spin_unlock_irq(&conf->device_lock);
5241 
5242 	async_tx_issue_pending_all();
5243 	blk_finish_plug(&plug);
5244 
5245 	pr_debug("--- raid5d inactive\n");
5246 }
5247 
5248 static ssize_t
5249 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5250 {
5251 	struct r5conf *conf = mddev->private;
5252 	if (conf)
5253 		return sprintf(page, "%d\n", conf->max_nr_stripes);
5254 	else
5255 		return 0;
5256 }
5257 
5258 int
5259 raid5_set_cache_size(struct mddev *mddev, int size)
5260 {
5261 	struct r5conf *conf = mddev->private;
5262 	int err;
5263 	int hash;
5264 
5265 	if (size <= 16 || size > 32768)
5266 		return -EINVAL;
5267 	hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5268 	while (size < conf->max_nr_stripes) {
5269 		if (drop_one_stripe(conf, hash))
5270 			conf->max_nr_stripes--;
5271 		else
5272 			break;
5273 		hash--;
5274 		if (hash < 0)
5275 			hash = NR_STRIPE_HASH_LOCKS - 1;
5276 	}
5277 	err = md_allow_write(mddev);
5278 	if (err)
5279 		return err;
5280 	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5281 	while (size > conf->max_nr_stripes) {
5282 		if (grow_one_stripe(conf, hash))
5283 			conf->max_nr_stripes++;
5284 		else break;
5285 		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5286 	}
5287 	return 0;
5288 }
5289 EXPORT_SYMBOL(raid5_set_cache_size);
5290 
5291 static ssize_t
5292 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5293 {
5294 	struct r5conf *conf = mddev->private;
5295 	unsigned long new;
5296 	int err;
5297 
5298 	if (len >= PAGE_SIZE)
5299 		return -EINVAL;
5300 	if (!conf)
5301 		return -ENODEV;
5302 
5303 	if (kstrtoul(page, 10, &new))
5304 		return -EINVAL;
5305 	err = raid5_set_cache_size(mddev, new);
5306 	if (err)
5307 		return err;
5308 	return len;
5309 }
5310 
5311 static struct md_sysfs_entry
5312 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5313 				raid5_show_stripe_cache_size,
5314 				raid5_store_stripe_cache_size);
5315 
5316 static ssize_t
5317 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5318 {
5319 	struct r5conf *conf = mddev->private;
5320 	if (conf)
5321 		return sprintf(page, "%d\n", conf->bypass_threshold);
5322 	else
5323 		return 0;
5324 }
5325 
5326 static ssize_t
5327 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5328 {
5329 	struct r5conf *conf = mddev->private;
5330 	unsigned long new;
5331 	if (len >= PAGE_SIZE)
5332 		return -EINVAL;
5333 	if (!conf)
5334 		return -ENODEV;
5335 
5336 	if (kstrtoul(page, 10, &new))
5337 		return -EINVAL;
5338 	if (new > conf->max_nr_stripes)
5339 		return -EINVAL;
5340 	conf->bypass_threshold = new;
5341 	return len;
5342 }
5343 
5344 static struct md_sysfs_entry
5345 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5346 					S_IRUGO | S_IWUSR,
5347 					raid5_show_preread_threshold,
5348 					raid5_store_preread_threshold);
5349 
5350 static ssize_t
5351 stripe_cache_active_show(struct mddev *mddev, char *page)
5352 {
5353 	struct r5conf *conf = mddev->private;
5354 	if (conf)
5355 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5356 	else
5357 		return 0;
5358 }
5359 
5360 static struct md_sysfs_entry
5361 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5362 
5363 static ssize_t
5364 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5365 {
5366 	struct r5conf *conf = mddev->private;
5367 	if (conf)
5368 		return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5369 	else
5370 		return 0;
5371 }
5372 
5373 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5374 			       int *group_cnt,
5375 			       int *worker_cnt_per_group,
5376 			       struct r5worker_group **worker_groups);
5377 static ssize_t
5378 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5379 {
5380 	struct r5conf *conf = mddev->private;
5381 	unsigned long new;
5382 	int err;
5383 	struct r5worker_group *new_groups, *old_groups;
5384 	int group_cnt, worker_cnt_per_group;
5385 
5386 	if (len >= PAGE_SIZE)
5387 		return -EINVAL;
5388 	if (!conf)
5389 		return -ENODEV;
5390 
5391 	if (kstrtoul(page, 10, &new))
5392 		return -EINVAL;
5393 
5394 	if (new == conf->worker_cnt_per_group)
5395 		return len;
5396 
5397 	mddev_suspend(mddev);
5398 
5399 	old_groups = conf->worker_groups;
5400 	if (old_groups)
5401 		flush_workqueue(raid5_wq);
5402 
5403 	err = alloc_thread_groups(conf, new,
5404 				  &group_cnt, &worker_cnt_per_group,
5405 				  &new_groups);
5406 	if (!err) {
5407 		spin_lock_irq(&conf->device_lock);
5408 		conf->group_cnt = group_cnt;
5409 		conf->worker_cnt_per_group = worker_cnt_per_group;
5410 		conf->worker_groups = new_groups;
5411 		spin_unlock_irq(&conf->device_lock);
5412 
5413 		if (old_groups)
5414 			kfree(old_groups[0].workers);
5415 		kfree(old_groups);
5416 	}
5417 
5418 	mddev_resume(mddev);
5419 
5420 	if (err)
5421 		return err;
5422 	return len;
5423 }
5424 
5425 static struct md_sysfs_entry
5426 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5427 				raid5_show_group_thread_cnt,
5428 				raid5_store_group_thread_cnt);
5429 
5430 static struct attribute *raid5_attrs[] =  {
5431 	&raid5_stripecache_size.attr,
5432 	&raid5_stripecache_active.attr,
5433 	&raid5_preread_bypass_threshold.attr,
5434 	&raid5_group_thread_cnt.attr,
5435 	NULL,
5436 };
5437 static struct attribute_group raid5_attrs_group = {
5438 	.name = NULL,
5439 	.attrs = raid5_attrs,
5440 };
5441 
5442 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5443 			       int *group_cnt,
5444 			       int *worker_cnt_per_group,
5445 			       struct r5worker_group **worker_groups)
5446 {
5447 	int i, j, k;
5448 	ssize_t size;
5449 	struct r5worker *workers;
5450 
5451 	*worker_cnt_per_group = cnt;
5452 	if (cnt == 0) {
5453 		*group_cnt = 0;
5454 		*worker_groups = NULL;
5455 		return 0;
5456 	}
5457 	*group_cnt = num_possible_nodes();
5458 	size = sizeof(struct r5worker) * cnt;
5459 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
5460 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
5461 				*group_cnt, GFP_NOIO);
5462 	if (!*worker_groups || !workers) {
5463 		kfree(workers);
5464 		kfree(*worker_groups);
5465 		return -ENOMEM;
5466 	}
5467 
5468 	for (i = 0; i < *group_cnt; i++) {
5469 		struct r5worker_group *group;
5470 
5471 		group = &(*worker_groups)[i];
5472 		INIT_LIST_HEAD(&group->handle_list);
5473 		group->conf = conf;
5474 		group->workers = workers + i * cnt;
5475 
5476 		for (j = 0; j < cnt; j++) {
5477 			struct r5worker *worker = group->workers + j;
5478 			worker->group = group;
5479 			INIT_WORK(&worker->work, raid5_do_work);
5480 
5481 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5482 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
5483 		}
5484 	}
5485 
5486 	return 0;
5487 }
5488 
5489 static void free_thread_groups(struct r5conf *conf)
5490 {
5491 	if (conf->worker_groups)
5492 		kfree(conf->worker_groups[0].workers);
5493 	kfree(conf->worker_groups);
5494 	conf->worker_groups = NULL;
5495 }
5496 
5497 static sector_t
5498 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5499 {
5500 	struct r5conf *conf = mddev->private;
5501 
5502 	if (!sectors)
5503 		sectors = mddev->dev_sectors;
5504 	if (!raid_disks)
5505 		/* size is defined by the smallest of previous and new size */
5506 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5507 
5508 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5509 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5510 	return sectors * (raid_disks - conf->max_degraded);
5511 }
5512 
5513 static void raid5_free_percpu(struct r5conf *conf)
5514 {
5515 	struct raid5_percpu *percpu;
5516 	unsigned long cpu;
5517 
5518 	if (!conf->percpu)
5519 		return;
5520 
5521 	get_online_cpus();
5522 	for_each_possible_cpu(cpu) {
5523 		percpu = per_cpu_ptr(conf->percpu, cpu);
5524 		safe_put_page(percpu->spare_page);
5525 		kfree(percpu->scribble);
5526 	}
5527 #ifdef CONFIG_HOTPLUG_CPU
5528 	unregister_cpu_notifier(&conf->cpu_notify);
5529 #endif
5530 	put_online_cpus();
5531 
5532 	free_percpu(conf->percpu);
5533 }
5534 
5535 static void free_conf(struct r5conf *conf)
5536 {
5537 	free_thread_groups(conf);
5538 	shrink_stripes(conf);
5539 	raid5_free_percpu(conf);
5540 	kfree(conf->disks);
5541 	kfree(conf->stripe_hashtbl);
5542 	kfree(conf);
5543 }
5544 
5545 #ifdef CONFIG_HOTPLUG_CPU
5546 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5547 			      void *hcpu)
5548 {
5549 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5550 	long cpu = (long)hcpu;
5551 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5552 
5553 	switch (action) {
5554 	case CPU_UP_PREPARE:
5555 	case CPU_UP_PREPARE_FROZEN:
5556 		if (conf->level == 6 && !percpu->spare_page)
5557 			percpu->spare_page = alloc_page(GFP_KERNEL);
5558 		if (!percpu->scribble)
5559 			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5560 
5561 		if (!percpu->scribble ||
5562 		    (conf->level == 6 && !percpu->spare_page)) {
5563 			safe_put_page(percpu->spare_page);
5564 			kfree(percpu->scribble);
5565 			pr_err("%s: failed memory allocation for cpu%ld\n",
5566 			       __func__, cpu);
5567 			return notifier_from_errno(-ENOMEM);
5568 		}
5569 		break;
5570 	case CPU_DEAD:
5571 	case CPU_DEAD_FROZEN:
5572 		safe_put_page(percpu->spare_page);
5573 		kfree(percpu->scribble);
5574 		percpu->spare_page = NULL;
5575 		percpu->scribble = NULL;
5576 		break;
5577 	default:
5578 		break;
5579 	}
5580 	return NOTIFY_OK;
5581 }
5582 #endif
5583 
5584 static int raid5_alloc_percpu(struct r5conf *conf)
5585 {
5586 	unsigned long cpu;
5587 	struct page *spare_page;
5588 	struct raid5_percpu __percpu *allcpus;
5589 	void *scribble;
5590 	int err;
5591 
5592 	allcpus = alloc_percpu(struct raid5_percpu);
5593 	if (!allcpus)
5594 		return -ENOMEM;
5595 	conf->percpu = allcpus;
5596 
5597 	get_online_cpus();
5598 	err = 0;
5599 	for_each_present_cpu(cpu) {
5600 		if (conf->level == 6) {
5601 			spare_page = alloc_page(GFP_KERNEL);
5602 			if (!spare_page) {
5603 				err = -ENOMEM;
5604 				break;
5605 			}
5606 			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5607 		}
5608 		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5609 		if (!scribble) {
5610 			err = -ENOMEM;
5611 			break;
5612 		}
5613 		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5614 	}
5615 #ifdef CONFIG_HOTPLUG_CPU
5616 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
5617 	conf->cpu_notify.priority = 0;
5618 	if (err == 0)
5619 		err = register_cpu_notifier(&conf->cpu_notify);
5620 #endif
5621 	put_online_cpus();
5622 
5623 	return err;
5624 }
5625 
5626 static struct r5conf *setup_conf(struct mddev *mddev)
5627 {
5628 	struct r5conf *conf;
5629 	int raid_disk, memory, max_disks;
5630 	struct md_rdev *rdev;
5631 	struct disk_info *disk;
5632 	char pers_name[6];
5633 	int i;
5634 	int group_cnt, worker_cnt_per_group;
5635 	struct r5worker_group *new_group;
5636 
5637 	if (mddev->new_level != 5
5638 	    && mddev->new_level != 4
5639 	    && mddev->new_level != 6) {
5640 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5641 		       mdname(mddev), mddev->new_level);
5642 		return ERR_PTR(-EIO);
5643 	}
5644 	if ((mddev->new_level == 5
5645 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
5646 	    (mddev->new_level == 6
5647 	     && !algorithm_valid_raid6(mddev->new_layout))) {
5648 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5649 		       mdname(mddev), mddev->new_layout);
5650 		return ERR_PTR(-EIO);
5651 	}
5652 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5653 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5654 		       mdname(mddev), mddev->raid_disks);
5655 		return ERR_PTR(-EINVAL);
5656 	}
5657 
5658 	if (!mddev->new_chunk_sectors ||
5659 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5660 	    !is_power_of_2(mddev->new_chunk_sectors)) {
5661 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5662 		       mdname(mddev), mddev->new_chunk_sectors << 9);
5663 		return ERR_PTR(-EINVAL);
5664 	}
5665 
5666 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5667 	if (conf == NULL)
5668 		goto abort;
5669 	/* Don't enable multi-threading by default*/
5670 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5671 				 &new_group)) {
5672 		conf->group_cnt = group_cnt;
5673 		conf->worker_cnt_per_group = worker_cnt_per_group;
5674 		conf->worker_groups = new_group;
5675 	} else
5676 		goto abort;
5677 	spin_lock_init(&conf->device_lock);
5678 	seqcount_init(&conf->gen_lock);
5679 	init_waitqueue_head(&conf->wait_for_stripe);
5680 	init_waitqueue_head(&conf->wait_for_overlap);
5681 	INIT_LIST_HEAD(&conf->handle_list);
5682 	INIT_LIST_HEAD(&conf->hold_list);
5683 	INIT_LIST_HEAD(&conf->delayed_list);
5684 	INIT_LIST_HEAD(&conf->bitmap_list);
5685 	init_llist_head(&conf->released_stripes);
5686 	atomic_set(&conf->active_stripes, 0);
5687 	atomic_set(&conf->preread_active_stripes, 0);
5688 	atomic_set(&conf->active_aligned_reads, 0);
5689 	conf->bypass_threshold = BYPASS_THRESHOLD;
5690 	conf->recovery_disabled = mddev->recovery_disabled - 1;
5691 
5692 	conf->raid_disks = mddev->raid_disks;
5693 	if (mddev->reshape_position == MaxSector)
5694 		conf->previous_raid_disks = mddev->raid_disks;
5695 	else
5696 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5697 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5698 	conf->scribble_len = scribble_len(max_disks);
5699 
5700 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5701 			      GFP_KERNEL);
5702 	if (!conf->disks)
5703 		goto abort;
5704 
5705 	conf->mddev = mddev;
5706 
5707 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5708 		goto abort;
5709 
5710 	/* We init hash_locks[0] separately to that it can be used
5711 	 * as the reference lock in the spin_lock_nest_lock() call
5712 	 * in lock_all_device_hash_locks_irq in order to convince
5713 	 * lockdep that we know what we are doing.
5714 	 */
5715 	spin_lock_init(conf->hash_locks);
5716 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5717 		spin_lock_init(conf->hash_locks + i);
5718 
5719 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5720 		INIT_LIST_HEAD(conf->inactive_list + i);
5721 
5722 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5723 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
5724 
5725 	conf->level = mddev->new_level;
5726 	if (raid5_alloc_percpu(conf) != 0)
5727 		goto abort;
5728 
5729 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5730 
5731 	rdev_for_each(rdev, mddev) {
5732 		raid_disk = rdev->raid_disk;
5733 		if (raid_disk >= max_disks
5734 		    || raid_disk < 0)
5735 			continue;
5736 		disk = conf->disks + raid_disk;
5737 
5738 		if (test_bit(Replacement, &rdev->flags)) {
5739 			if (disk->replacement)
5740 				goto abort;
5741 			disk->replacement = rdev;
5742 		} else {
5743 			if (disk->rdev)
5744 				goto abort;
5745 			disk->rdev = rdev;
5746 		}
5747 
5748 		if (test_bit(In_sync, &rdev->flags)) {
5749 			char b[BDEVNAME_SIZE];
5750 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5751 			       " disk %d\n",
5752 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5753 		} else if (rdev->saved_raid_disk != raid_disk)
5754 			/* Cannot rely on bitmap to complete recovery */
5755 			conf->fullsync = 1;
5756 	}
5757 
5758 	conf->chunk_sectors = mddev->new_chunk_sectors;
5759 	conf->level = mddev->new_level;
5760 	if (conf->level == 6)
5761 		conf->max_degraded = 2;
5762 	else
5763 		conf->max_degraded = 1;
5764 	conf->algorithm = mddev->new_layout;
5765 	conf->reshape_progress = mddev->reshape_position;
5766 	if (conf->reshape_progress != MaxSector) {
5767 		conf->prev_chunk_sectors = mddev->chunk_sectors;
5768 		conf->prev_algo = mddev->layout;
5769 	}
5770 
5771 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5772 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5773 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5774 	if (grow_stripes(conf, NR_STRIPES)) {
5775 		printk(KERN_ERR
5776 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5777 		       mdname(mddev), memory);
5778 		goto abort;
5779 	} else
5780 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5781 		       mdname(mddev), memory);
5782 
5783 	sprintf(pers_name, "raid%d", mddev->new_level);
5784 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5785 	if (!conf->thread) {
5786 		printk(KERN_ERR
5787 		       "md/raid:%s: couldn't allocate thread.\n",
5788 		       mdname(mddev));
5789 		goto abort;
5790 	}
5791 
5792 	return conf;
5793 
5794  abort:
5795 	if (conf) {
5796 		free_conf(conf);
5797 		return ERR_PTR(-EIO);
5798 	} else
5799 		return ERR_PTR(-ENOMEM);
5800 }
5801 
5802 
5803 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5804 {
5805 	switch (algo) {
5806 	case ALGORITHM_PARITY_0:
5807 		if (raid_disk < max_degraded)
5808 			return 1;
5809 		break;
5810 	case ALGORITHM_PARITY_N:
5811 		if (raid_disk >= raid_disks - max_degraded)
5812 			return 1;
5813 		break;
5814 	case ALGORITHM_PARITY_0_6:
5815 		if (raid_disk == 0 ||
5816 		    raid_disk == raid_disks - 1)
5817 			return 1;
5818 		break;
5819 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5820 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5821 	case ALGORITHM_LEFT_SYMMETRIC_6:
5822 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5823 		if (raid_disk == raid_disks - 1)
5824 			return 1;
5825 	}
5826 	return 0;
5827 }
5828 
5829 static int run(struct mddev *mddev)
5830 {
5831 	struct r5conf *conf;
5832 	int working_disks = 0;
5833 	int dirty_parity_disks = 0;
5834 	struct md_rdev *rdev;
5835 	sector_t reshape_offset = 0;
5836 	int i;
5837 	long long min_offset_diff = 0;
5838 	int first = 1;
5839 
5840 	if (mddev->recovery_cp != MaxSector)
5841 		printk(KERN_NOTICE "md/raid:%s: not clean"
5842 		       " -- starting background reconstruction\n",
5843 		       mdname(mddev));
5844 
5845 	rdev_for_each(rdev, mddev) {
5846 		long long diff;
5847 		if (rdev->raid_disk < 0)
5848 			continue;
5849 		diff = (rdev->new_data_offset - rdev->data_offset);
5850 		if (first) {
5851 			min_offset_diff = diff;
5852 			first = 0;
5853 		} else if (mddev->reshape_backwards &&
5854 			 diff < min_offset_diff)
5855 			min_offset_diff = diff;
5856 		else if (!mddev->reshape_backwards &&
5857 			 diff > min_offset_diff)
5858 			min_offset_diff = diff;
5859 	}
5860 
5861 	if (mddev->reshape_position != MaxSector) {
5862 		/* Check that we can continue the reshape.
5863 		 * Difficulties arise if the stripe we would write to
5864 		 * next is at or after the stripe we would read from next.
5865 		 * For a reshape that changes the number of devices, this
5866 		 * is only possible for a very short time, and mdadm makes
5867 		 * sure that time appears to have past before assembling
5868 		 * the array.  So we fail if that time hasn't passed.
5869 		 * For a reshape that keeps the number of devices the same
5870 		 * mdadm must be monitoring the reshape can keeping the
5871 		 * critical areas read-only and backed up.  It will start
5872 		 * the array in read-only mode, so we check for that.
5873 		 */
5874 		sector_t here_new, here_old;
5875 		int old_disks;
5876 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5877 
5878 		if (mddev->new_level != mddev->level) {
5879 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5880 			       "required - aborting.\n",
5881 			       mdname(mddev));
5882 			return -EINVAL;
5883 		}
5884 		old_disks = mddev->raid_disks - mddev->delta_disks;
5885 		/* reshape_position must be on a new-stripe boundary, and one
5886 		 * further up in new geometry must map after here in old
5887 		 * geometry.
5888 		 */
5889 		here_new = mddev->reshape_position;
5890 		if (sector_div(here_new, mddev->new_chunk_sectors *
5891 			       (mddev->raid_disks - max_degraded))) {
5892 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5893 			       "on a stripe boundary\n", mdname(mddev));
5894 			return -EINVAL;
5895 		}
5896 		reshape_offset = here_new * mddev->new_chunk_sectors;
5897 		/* here_new is the stripe we will write to */
5898 		here_old = mddev->reshape_position;
5899 		sector_div(here_old, mddev->chunk_sectors *
5900 			   (old_disks-max_degraded));
5901 		/* here_old is the first stripe that we might need to read
5902 		 * from */
5903 		if (mddev->delta_disks == 0) {
5904 			if ((here_new * mddev->new_chunk_sectors !=
5905 			     here_old * mddev->chunk_sectors)) {
5906 				printk(KERN_ERR "md/raid:%s: reshape position is"
5907 				       " confused - aborting\n", mdname(mddev));
5908 				return -EINVAL;
5909 			}
5910 			/* We cannot be sure it is safe to start an in-place
5911 			 * reshape.  It is only safe if user-space is monitoring
5912 			 * and taking constant backups.
5913 			 * mdadm always starts a situation like this in
5914 			 * readonly mode so it can take control before
5915 			 * allowing any writes.  So just check for that.
5916 			 */
5917 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5918 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
5919 				/* not really in-place - so OK */;
5920 			else if (mddev->ro == 0) {
5921 				printk(KERN_ERR "md/raid:%s: in-place reshape "
5922 				       "must be started in read-only mode "
5923 				       "- aborting\n",
5924 				       mdname(mddev));
5925 				return -EINVAL;
5926 			}
5927 		} else if (mddev->reshape_backwards
5928 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5929 		       here_old * mddev->chunk_sectors)
5930 		    : (here_new * mddev->new_chunk_sectors >=
5931 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5932 			/* Reading from the same stripe as writing to - bad */
5933 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5934 			       "auto-recovery - aborting.\n",
5935 			       mdname(mddev));
5936 			return -EINVAL;
5937 		}
5938 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5939 		       mdname(mddev));
5940 		/* OK, we should be able to continue; */
5941 	} else {
5942 		BUG_ON(mddev->level != mddev->new_level);
5943 		BUG_ON(mddev->layout != mddev->new_layout);
5944 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5945 		BUG_ON(mddev->delta_disks != 0);
5946 	}
5947 
5948 	if (mddev->private == NULL)
5949 		conf = setup_conf(mddev);
5950 	else
5951 		conf = mddev->private;
5952 
5953 	if (IS_ERR(conf))
5954 		return PTR_ERR(conf);
5955 
5956 	conf->min_offset_diff = min_offset_diff;
5957 	mddev->thread = conf->thread;
5958 	conf->thread = NULL;
5959 	mddev->private = conf;
5960 
5961 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5962 	     i++) {
5963 		rdev = conf->disks[i].rdev;
5964 		if (!rdev && conf->disks[i].replacement) {
5965 			/* The replacement is all we have yet */
5966 			rdev = conf->disks[i].replacement;
5967 			conf->disks[i].replacement = NULL;
5968 			clear_bit(Replacement, &rdev->flags);
5969 			conf->disks[i].rdev = rdev;
5970 		}
5971 		if (!rdev)
5972 			continue;
5973 		if (conf->disks[i].replacement &&
5974 		    conf->reshape_progress != MaxSector) {
5975 			/* replacements and reshape simply do not mix. */
5976 			printk(KERN_ERR "md: cannot handle concurrent "
5977 			       "replacement and reshape.\n");
5978 			goto abort;
5979 		}
5980 		if (test_bit(In_sync, &rdev->flags)) {
5981 			working_disks++;
5982 			continue;
5983 		}
5984 		/* This disc is not fully in-sync.  However if it
5985 		 * just stored parity (beyond the recovery_offset),
5986 		 * when we don't need to be concerned about the
5987 		 * array being dirty.
5988 		 * When reshape goes 'backwards', we never have
5989 		 * partially completed devices, so we only need
5990 		 * to worry about reshape going forwards.
5991 		 */
5992 		/* Hack because v0.91 doesn't store recovery_offset properly. */
5993 		if (mddev->major_version == 0 &&
5994 		    mddev->minor_version > 90)
5995 			rdev->recovery_offset = reshape_offset;
5996 
5997 		if (rdev->recovery_offset < reshape_offset) {
5998 			/* We need to check old and new layout */
5999 			if (!only_parity(rdev->raid_disk,
6000 					 conf->algorithm,
6001 					 conf->raid_disks,
6002 					 conf->max_degraded))
6003 				continue;
6004 		}
6005 		if (!only_parity(rdev->raid_disk,
6006 				 conf->prev_algo,
6007 				 conf->previous_raid_disks,
6008 				 conf->max_degraded))
6009 			continue;
6010 		dirty_parity_disks++;
6011 	}
6012 
6013 	/*
6014 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6015 	 */
6016 	mddev->degraded = calc_degraded(conf);
6017 
6018 	if (has_failed(conf)) {
6019 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6020 			" (%d/%d failed)\n",
6021 			mdname(mddev), mddev->degraded, conf->raid_disks);
6022 		goto abort;
6023 	}
6024 
6025 	/* device size must be a multiple of chunk size */
6026 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6027 	mddev->resync_max_sectors = mddev->dev_sectors;
6028 
6029 	if (mddev->degraded > dirty_parity_disks &&
6030 	    mddev->recovery_cp != MaxSector) {
6031 		if (mddev->ok_start_degraded)
6032 			printk(KERN_WARNING
6033 			       "md/raid:%s: starting dirty degraded array"
6034 			       " - data corruption possible.\n",
6035 			       mdname(mddev));
6036 		else {
6037 			printk(KERN_ERR
6038 			       "md/raid:%s: cannot start dirty degraded array.\n",
6039 			       mdname(mddev));
6040 			goto abort;
6041 		}
6042 	}
6043 
6044 	if (mddev->degraded == 0)
6045 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6046 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6047 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6048 		       mddev->new_layout);
6049 	else
6050 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6051 		       " out of %d devices, algorithm %d\n",
6052 		       mdname(mddev), conf->level,
6053 		       mddev->raid_disks - mddev->degraded,
6054 		       mddev->raid_disks, mddev->new_layout);
6055 
6056 	print_raid5_conf(conf);
6057 
6058 	if (conf->reshape_progress != MaxSector) {
6059 		conf->reshape_safe = conf->reshape_progress;
6060 		atomic_set(&conf->reshape_stripes, 0);
6061 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6062 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6063 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6064 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6065 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6066 							"reshape");
6067 	}
6068 
6069 
6070 	/* Ok, everything is just fine now */
6071 	if (mddev->to_remove == &raid5_attrs_group)
6072 		mddev->to_remove = NULL;
6073 	else if (mddev->kobj.sd &&
6074 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6075 		printk(KERN_WARNING
6076 		       "raid5: failed to create sysfs attributes for %s\n",
6077 		       mdname(mddev));
6078 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6079 
6080 	if (mddev->queue) {
6081 		int chunk_size;
6082 		bool discard_supported = true;
6083 		/* read-ahead size must cover two whole stripes, which
6084 		 * is 2 * (datadisks) * chunksize where 'n' is the
6085 		 * number of raid devices
6086 		 */
6087 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6088 		int stripe = data_disks *
6089 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6090 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6091 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6092 
6093 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6094 
6095 		mddev->queue->backing_dev_info.congested_data = mddev;
6096 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6097 
6098 		chunk_size = mddev->chunk_sectors << 9;
6099 		blk_queue_io_min(mddev->queue, chunk_size);
6100 		blk_queue_io_opt(mddev->queue, chunk_size *
6101 				 (conf->raid_disks - conf->max_degraded));
6102 		/*
6103 		 * We can only discard a whole stripe. It doesn't make sense to
6104 		 * discard data disk but write parity disk
6105 		 */
6106 		stripe = stripe * PAGE_SIZE;
6107 		/* Round up to power of 2, as discard handling
6108 		 * currently assumes that */
6109 		while ((stripe-1) & stripe)
6110 			stripe = (stripe | (stripe-1)) + 1;
6111 		mddev->queue->limits.discard_alignment = stripe;
6112 		mddev->queue->limits.discard_granularity = stripe;
6113 		/*
6114 		 * unaligned part of discard request will be ignored, so can't
6115 		 * guarantee discard_zerors_data
6116 		 */
6117 		mddev->queue->limits.discard_zeroes_data = 0;
6118 
6119 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6120 
6121 		rdev_for_each(rdev, mddev) {
6122 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6123 					  rdev->data_offset << 9);
6124 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6125 					  rdev->new_data_offset << 9);
6126 			/*
6127 			 * discard_zeroes_data is required, otherwise data
6128 			 * could be lost. Consider a scenario: discard a stripe
6129 			 * (the stripe could be inconsistent if
6130 			 * discard_zeroes_data is 0); write one disk of the
6131 			 * stripe (the stripe could be inconsistent again
6132 			 * depending on which disks are used to calculate
6133 			 * parity); the disk is broken; The stripe data of this
6134 			 * disk is lost.
6135 			 */
6136 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6137 			    !bdev_get_queue(rdev->bdev)->
6138 						limits.discard_zeroes_data)
6139 				discard_supported = false;
6140 		}
6141 
6142 		if (discard_supported &&
6143 		   mddev->queue->limits.max_discard_sectors >= stripe &&
6144 		   mddev->queue->limits.discard_granularity >= stripe)
6145 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6146 						mddev->queue);
6147 		else
6148 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6149 						mddev->queue);
6150 	}
6151 
6152 	return 0;
6153 abort:
6154 	md_unregister_thread(&mddev->thread);
6155 	print_raid5_conf(conf);
6156 	free_conf(conf);
6157 	mddev->private = NULL;
6158 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6159 	return -EIO;
6160 }
6161 
6162 static int stop(struct mddev *mddev)
6163 {
6164 	struct r5conf *conf = mddev->private;
6165 
6166 	md_unregister_thread(&mddev->thread);
6167 	if (mddev->queue)
6168 		mddev->queue->backing_dev_info.congested_fn = NULL;
6169 	free_conf(conf);
6170 	mddev->private = NULL;
6171 	mddev->to_remove = &raid5_attrs_group;
6172 	return 0;
6173 }
6174 
6175 static void status(struct seq_file *seq, struct mddev *mddev)
6176 {
6177 	struct r5conf *conf = mddev->private;
6178 	int i;
6179 
6180 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6181 		mddev->chunk_sectors / 2, mddev->layout);
6182 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6183 	for (i = 0; i < conf->raid_disks; i++)
6184 		seq_printf (seq, "%s",
6185 			       conf->disks[i].rdev &&
6186 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6187 	seq_printf (seq, "]");
6188 }
6189 
6190 static void print_raid5_conf (struct r5conf *conf)
6191 {
6192 	int i;
6193 	struct disk_info *tmp;
6194 
6195 	printk(KERN_DEBUG "RAID conf printout:\n");
6196 	if (!conf) {
6197 		printk("(conf==NULL)\n");
6198 		return;
6199 	}
6200 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6201 	       conf->raid_disks,
6202 	       conf->raid_disks - conf->mddev->degraded);
6203 
6204 	for (i = 0; i < conf->raid_disks; i++) {
6205 		char b[BDEVNAME_SIZE];
6206 		tmp = conf->disks + i;
6207 		if (tmp->rdev)
6208 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6209 			       i, !test_bit(Faulty, &tmp->rdev->flags),
6210 			       bdevname(tmp->rdev->bdev, b));
6211 	}
6212 }
6213 
6214 static int raid5_spare_active(struct mddev *mddev)
6215 {
6216 	int i;
6217 	struct r5conf *conf = mddev->private;
6218 	struct disk_info *tmp;
6219 	int count = 0;
6220 	unsigned long flags;
6221 
6222 	for (i = 0; i < conf->raid_disks; i++) {
6223 		tmp = conf->disks + i;
6224 		if (tmp->replacement
6225 		    && tmp->replacement->recovery_offset == MaxSector
6226 		    && !test_bit(Faulty, &tmp->replacement->flags)
6227 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6228 			/* Replacement has just become active. */
6229 			if (!tmp->rdev
6230 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6231 				count++;
6232 			if (tmp->rdev) {
6233 				/* Replaced device not technically faulty,
6234 				 * but we need to be sure it gets removed
6235 				 * and never re-added.
6236 				 */
6237 				set_bit(Faulty, &tmp->rdev->flags);
6238 				sysfs_notify_dirent_safe(
6239 					tmp->rdev->sysfs_state);
6240 			}
6241 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6242 		} else if (tmp->rdev
6243 		    && tmp->rdev->recovery_offset == MaxSector
6244 		    && !test_bit(Faulty, &tmp->rdev->flags)
6245 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6246 			count++;
6247 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6248 		}
6249 	}
6250 	spin_lock_irqsave(&conf->device_lock, flags);
6251 	mddev->degraded = calc_degraded(conf);
6252 	spin_unlock_irqrestore(&conf->device_lock, flags);
6253 	print_raid5_conf(conf);
6254 	return count;
6255 }
6256 
6257 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6258 {
6259 	struct r5conf *conf = mddev->private;
6260 	int err = 0;
6261 	int number = rdev->raid_disk;
6262 	struct md_rdev **rdevp;
6263 	struct disk_info *p = conf->disks + number;
6264 
6265 	print_raid5_conf(conf);
6266 	if (rdev == p->rdev)
6267 		rdevp = &p->rdev;
6268 	else if (rdev == p->replacement)
6269 		rdevp = &p->replacement;
6270 	else
6271 		return 0;
6272 
6273 	if (number >= conf->raid_disks &&
6274 	    conf->reshape_progress == MaxSector)
6275 		clear_bit(In_sync, &rdev->flags);
6276 
6277 	if (test_bit(In_sync, &rdev->flags) ||
6278 	    atomic_read(&rdev->nr_pending)) {
6279 		err = -EBUSY;
6280 		goto abort;
6281 	}
6282 	/* Only remove non-faulty devices if recovery
6283 	 * isn't possible.
6284 	 */
6285 	if (!test_bit(Faulty, &rdev->flags) &&
6286 	    mddev->recovery_disabled != conf->recovery_disabled &&
6287 	    !has_failed(conf) &&
6288 	    (!p->replacement || p->replacement == rdev) &&
6289 	    number < conf->raid_disks) {
6290 		err = -EBUSY;
6291 		goto abort;
6292 	}
6293 	*rdevp = NULL;
6294 	synchronize_rcu();
6295 	if (atomic_read(&rdev->nr_pending)) {
6296 		/* lost the race, try later */
6297 		err = -EBUSY;
6298 		*rdevp = rdev;
6299 	} else if (p->replacement) {
6300 		/* We must have just cleared 'rdev' */
6301 		p->rdev = p->replacement;
6302 		clear_bit(Replacement, &p->replacement->flags);
6303 		smp_mb(); /* Make sure other CPUs may see both as identical
6304 			   * but will never see neither - if they are careful
6305 			   */
6306 		p->replacement = NULL;
6307 		clear_bit(WantReplacement, &rdev->flags);
6308 	} else
6309 		/* We might have just removed the Replacement as faulty-
6310 		 * clear the bit just in case
6311 		 */
6312 		clear_bit(WantReplacement, &rdev->flags);
6313 abort:
6314 
6315 	print_raid5_conf(conf);
6316 	return err;
6317 }
6318 
6319 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6320 {
6321 	struct r5conf *conf = mddev->private;
6322 	int err = -EEXIST;
6323 	int disk;
6324 	struct disk_info *p;
6325 	int first = 0;
6326 	int last = conf->raid_disks - 1;
6327 
6328 	if (mddev->recovery_disabled == conf->recovery_disabled)
6329 		return -EBUSY;
6330 
6331 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
6332 		/* no point adding a device */
6333 		return -EINVAL;
6334 
6335 	if (rdev->raid_disk >= 0)
6336 		first = last = rdev->raid_disk;
6337 
6338 	/*
6339 	 * find the disk ... but prefer rdev->saved_raid_disk
6340 	 * if possible.
6341 	 */
6342 	if (rdev->saved_raid_disk >= 0 &&
6343 	    rdev->saved_raid_disk >= first &&
6344 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
6345 		first = rdev->saved_raid_disk;
6346 
6347 	for (disk = first; disk <= last; disk++) {
6348 		p = conf->disks + disk;
6349 		if (p->rdev == NULL) {
6350 			clear_bit(In_sync, &rdev->flags);
6351 			rdev->raid_disk = disk;
6352 			err = 0;
6353 			if (rdev->saved_raid_disk != disk)
6354 				conf->fullsync = 1;
6355 			rcu_assign_pointer(p->rdev, rdev);
6356 			goto out;
6357 		}
6358 	}
6359 	for (disk = first; disk <= last; disk++) {
6360 		p = conf->disks + disk;
6361 		if (test_bit(WantReplacement, &p->rdev->flags) &&
6362 		    p->replacement == NULL) {
6363 			clear_bit(In_sync, &rdev->flags);
6364 			set_bit(Replacement, &rdev->flags);
6365 			rdev->raid_disk = disk;
6366 			err = 0;
6367 			conf->fullsync = 1;
6368 			rcu_assign_pointer(p->replacement, rdev);
6369 			break;
6370 		}
6371 	}
6372 out:
6373 	print_raid5_conf(conf);
6374 	return err;
6375 }
6376 
6377 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6378 {
6379 	/* no resync is happening, and there is enough space
6380 	 * on all devices, so we can resize.
6381 	 * We need to make sure resync covers any new space.
6382 	 * If the array is shrinking we should possibly wait until
6383 	 * any io in the removed space completes, but it hardly seems
6384 	 * worth it.
6385 	 */
6386 	sector_t newsize;
6387 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6388 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6389 	if (mddev->external_size &&
6390 	    mddev->array_sectors > newsize)
6391 		return -EINVAL;
6392 	if (mddev->bitmap) {
6393 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6394 		if (ret)
6395 			return ret;
6396 	}
6397 	md_set_array_sectors(mddev, newsize);
6398 	set_capacity(mddev->gendisk, mddev->array_sectors);
6399 	revalidate_disk(mddev->gendisk);
6400 	if (sectors > mddev->dev_sectors &&
6401 	    mddev->recovery_cp > mddev->dev_sectors) {
6402 		mddev->recovery_cp = mddev->dev_sectors;
6403 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6404 	}
6405 	mddev->dev_sectors = sectors;
6406 	mddev->resync_max_sectors = sectors;
6407 	return 0;
6408 }
6409 
6410 static int check_stripe_cache(struct mddev *mddev)
6411 {
6412 	/* Can only proceed if there are plenty of stripe_heads.
6413 	 * We need a minimum of one full stripe,, and for sensible progress
6414 	 * it is best to have about 4 times that.
6415 	 * If we require 4 times, then the default 256 4K stripe_heads will
6416 	 * allow for chunk sizes up to 256K, which is probably OK.
6417 	 * If the chunk size is greater, user-space should request more
6418 	 * stripe_heads first.
6419 	 */
6420 	struct r5conf *conf = mddev->private;
6421 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6422 	    > conf->max_nr_stripes ||
6423 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6424 	    > conf->max_nr_stripes) {
6425 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6426 		       mdname(mddev),
6427 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6428 			/ STRIPE_SIZE)*4);
6429 		return 0;
6430 	}
6431 	return 1;
6432 }
6433 
6434 static int check_reshape(struct mddev *mddev)
6435 {
6436 	struct r5conf *conf = mddev->private;
6437 
6438 	if (mddev->delta_disks == 0 &&
6439 	    mddev->new_layout == mddev->layout &&
6440 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
6441 		return 0; /* nothing to do */
6442 	if (has_failed(conf))
6443 		return -EINVAL;
6444 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6445 		/* We might be able to shrink, but the devices must
6446 		 * be made bigger first.
6447 		 * For raid6, 4 is the minimum size.
6448 		 * Otherwise 2 is the minimum
6449 		 */
6450 		int min = 2;
6451 		if (mddev->level == 6)
6452 			min = 4;
6453 		if (mddev->raid_disks + mddev->delta_disks < min)
6454 			return -EINVAL;
6455 	}
6456 
6457 	if (!check_stripe_cache(mddev))
6458 		return -ENOSPC;
6459 
6460 	return resize_stripes(conf, (conf->previous_raid_disks
6461 				     + mddev->delta_disks));
6462 }
6463 
6464 static int raid5_start_reshape(struct mddev *mddev)
6465 {
6466 	struct r5conf *conf = mddev->private;
6467 	struct md_rdev *rdev;
6468 	int spares = 0;
6469 	unsigned long flags;
6470 
6471 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6472 		return -EBUSY;
6473 
6474 	if (!check_stripe_cache(mddev))
6475 		return -ENOSPC;
6476 
6477 	if (has_failed(conf))
6478 		return -EINVAL;
6479 
6480 	rdev_for_each(rdev, mddev) {
6481 		if (!test_bit(In_sync, &rdev->flags)
6482 		    && !test_bit(Faulty, &rdev->flags))
6483 			spares++;
6484 	}
6485 
6486 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6487 		/* Not enough devices even to make a degraded array
6488 		 * of that size
6489 		 */
6490 		return -EINVAL;
6491 
6492 	/* Refuse to reduce size of the array.  Any reductions in
6493 	 * array size must be through explicit setting of array_size
6494 	 * attribute.
6495 	 */
6496 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6497 	    < mddev->array_sectors) {
6498 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
6499 		       "before number of disks\n", mdname(mddev));
6500 		return -EINVAL;
6501 	}
6502 
6503 	atomic_set(&conf->reshape_stripes, 0);
6504 	spin_lock_irq(&conf->device_lock);
6505 	write_seqcount_begin(&conf->gen_lock);
6506 	conf->previous_raid_disks = conf->raid_disks;
6507 	conf->raid_disks += mddev->delta_disks;
6508 	conf->prev_chunk_sectors = conf->chunk_sectors;
6509 	conf->chunk_sectors = mddev->new_chunk_sectors;
6510 	conf->prev_algo = conf->algorithm;
6511 	conf->algorithm = mddev->new_layout;
6512 	conf->generation++;
6513 	/* Code that selects data_offset needs to see the generation update
6514 	 * if reshape_progress has been set - so a memory barrier needed.
6515 	 */
6516 	smp_mb();
6517 	if (mddev->reshape_backwards)
6518 		conf->reshape_progress = raid5_size(mddev, 0, 0);
6519 	else
6520 		conf->reshape_progress = 0;
6521 	conf->reshape_safe = conf->reshape_progress;
6522 	write_seqcount_end(&conf->gen_lock);
6523 	spin_unlock_irq(&conf->device_lock);
6524 
6525 	/* Now make sure any requests that proceeded on the assumption
6526 	 * the reshape wasn't running - like Discard or Read - have
6527 	 * completed.
6528 	 */
6529 	mddev_suspend(mddev);
6530 	mddev_resume(mddev);
6531 
6532 	/* Add some new drives, as many as will fit.
6533 	 * We know there are enough to make the newly sized array work.
6534 	 * Don't add devices if we are reducing the number of
6535 	 * devices in the array.  This is because it is not possible
6536 	 * to correctly record the "partially reconstructed" state of
6537 	 * such devices during the reshape and confusion could result.
6538 	 */
6539 	if (mddev->delta_disks >= 0) {
6540 		rdev_for_each(rdev, mddev)
6541 			if (rdev->raid_disk < 0 &&
6542 			    !test_bit(Faulty, &rdev->flags)) {
6543 				if (raid5_add_disk(mddev, rdev) == 0) {
6544 					if (rdev->raid_disk
6545 					    >= conf->previous_raid_disks)
6546 						set_bit(In_sync, &rdev->flags);
6547 					else
6548 						rdev->recovery_offset = 0;
6549 
6550 					if (sysfs_link_rdev(mddev, rdev))
6551 						/* Failure here is OK */;
6552 				}
6553 			} else if (rdev->raid_disk >= conf->previous_raid_disks
6554 				   && !test_bit(Faulty, &rdev->flags)) {
6555 				/* This is a spare that was manually added */
6556 				set_bit(In_sync, &rdev->flags);
6557 			}
6558 
6559 		/* When a reshape changes the number of devices,
6560 		 * ->degraded is measured against the larger of the
6561 		 * pre and post number of devices.
6562 		 */
6563 		spin_lock_irqsave(&conf->device_lock, flags);
6564 		mddev->degraded = calc_degraded(conf);
6565 		spin_unlock_irqrestore(&conf->device_lock, flags);
6566 	}
6567 	mddev->raid_disks = conf->raid_disks;
6568 	mddev->reshape_position = conf->reshape_progress;
6569 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6570 
6571 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6572 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6573 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6574 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6575 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6576 						"reshape");
6577 	if (!mddev->sync_thread) {
6578 		mddev->recovery = 0;
6579 		spin_lock_irq(&conf->device_lock);
6580 		write_seqcount_begin(&conf->gen_lock);
6581 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6582 		mddev->new_chunk_sectors =
6583 			conf->chunk_sectors = conf->prev_chunk_sectors;
6584 		mddev->new_layout = conf->algorithm = conf->prev_algo;
6585 		rdev_for_each(rdev, mddev)
6586 			rdev->new_data_offset = rdev->data_offset;
6587 		smp_wmb();
6588 		conf->generation --;
6589 		conf->reshape_progress = MaxSector;
6590 		mddev->reshape_position = MaxSector;
6591 		write_seqcount_end(&conf->gen_lock);
6592 		spin_unlock_irq(&conf->device_lock);
6593 		return -EAGAIN;
6594 	}
6595 	conf->reshape_checkpoint = jiffies;
6596 	md_wakeup_thread(mddev->sync_thread);
6597 	md_new_event(mddev);
6598 	return 0;
6599 }
6600 
6601 /* This is called from the reshape thread and should make any
6602  * changes needed in 'conf'
6603  */
6604 static void end_reshape(struct r5conf *conf)
6605 {
6606 
6607 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6608 		struct md_rdev *rdev;
6609 
6610 		spin_lock_irq(&conf->device_lock);
6611 		conf->previous_raid_disks = conf->raid_disks;
6612 		rdev_for_each(rdev, conf->mddev)
6613 			rdev->data_offset = rdev->new_data_offset;
6614 		smp_wmb();
6615 		conf->reshape_progress = MaxSector;
6616 		spin_unlock_irq(&conf->device_lock);
6617 		wake_up(&conf->wait_for_overlap);
6618 
6619 		/* read-ahead size must cover two whole stripes, which is
6620 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6621 		 */
6622 		if (conf->mddev->queue) {
6623 			int data_disks = conf->raid_disks - conf->max_degraded;
6624 			int stripe = data_disks * ((conf->chunk_sectors << 9)
6625 						   / PAGE_SIZE);
6626 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6627 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6628 		}
6629 	}
6630 }
6631 
6632 /* This is called from the raid5d thread with mddev_lock held.
6633  * It makes config changes to the device.
6634  */
6635 static void raid5_finish_reshape(struct mddev *mddev)
6636 {
6637 	struct r5conf *conf = mddev->private;
6638 
6639 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6640 
6641 		if (mddev->delta_disks > 0) {
6642 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6643 			set_capacity(mddev->gendisk, mddev->array_sectors);
6644 			revalidate_disk(mddev->gendisk);
6645 		} else {
6646 			int d;
6647 			spin_lock_irq(&conf->device_lock);
6648 			mddev->degraded = calc_degraded(conf);
6649 			spin_unlock_irq(&conf->device_lock);
6650 			for (d = conf->raid_disks ;
6651 			     d < conf->raid_disks - mddev->delta_disks;
6652 			     d++) {
6653 				struct md_rdev *rdev = conf->disks[d].rdev;
6654 				if (rdev)
6655 					clear_bit(In_sync, &rdev->flags);
6656 				rdev = conf->disks[d].replacement;
6657 				if (rdev)
6658 					clear_bit(In_sync, &rdev->flags);
6659 			}
6660 		}
6661 		mddev->layout = conf->algorithm;
6662 		mddev->chunk_sectors = conf->chunk_sectors;
6663 		mddev->reshape_position = MaxSector;
6664 		mddev->delta_disks = 0;
6665 		mddev->reshape_backwards = 0;
6666 	}
6667 }
6668 
6669 static void raid5_quiesce(struct mddev *mddev, int state)
6670 {
6671 	struct r5conf *conf = mddev->private;
6672 
6673 	switch(state) {
6674 	case 2: /* resume for a suspend */
6675 		wake_up(&conf->wait_for_overlap);
6676 		break;
6677 
6678 	case 1: /* stop all writes */
6679 		lock_all_device_hash_locks_irq(conf);
6680 		/* '2' tells resync/reshape to pause so that all
6681 		 * active stripes can drain
6682 		 */
6683 		conf->quiesce = 2;
6684 		wait_event_cmd(conf->wait_for_stripe,
6685 				    atomic_read(&conf->active_stripes) == 0 &&
6686 				    atomic_read(&conf->active_aligned_reads) == 0,
6687 				    unlock_all_device_hash_locks_irq(conf),
6688 				    lock_all_device_hash_locks_irq(conf));
6689 		conf->quiesce = 1;
6690 		unlock_all_device_hash_locks_irq(conf);
6691 		/* allow reshape to continue */
6692 		wake_up(&conf->wait_for_overlap);
6693 		break;
6694 
6695 	case 0: /* re-enable writes */
6696 		lock_all_device_hash_locks_irq(conf);
6697 		conf->quiesce = 0;
6698 		wake_up(&conf->wait_for_stripe);
6699 		wake_up(&conf->wait_for_overlap);
6700 		unlock_all_device_hash_locks_irq(conf);
6701 		break;
6702 	}
6703 }
6704 
6705 
6706 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6707 {
6708 	struct r0conf *raid0_conf = mddev->private;
6709 	sector_t sectors;
6710 
6711 	/* for raid0 takeover only one zone is supported */
6712 	if (raid0_conf->nr_strip_zones > 1) {
6713 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6714 		       mdname(mddev));
6715 		return ERR_PTR(-EINVAL);
6716 	}
6717 
6718 	sectors = raid0_conf->strip_zone[0].zone_end;
6719 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6720 	mddev->dev_sectors = sectors;
6721 	mddev->new_level = level;
6722 	mddev->new_layout = ALGORITHM_PARITY_N;
6723 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6724 	mddev->raid_disks += 1;
6725 	mddev->delta_disks = 1;
6726 	/* make sure it will be not marked as dirty */
6727 	mddev->recovery_cp = MaxSector;
6728 
6729 	return setup_conf(mddev);
6730 }
6731 
6732 
6733 static void *raid5_takeover_raid1(struct mddev *mddev)
6734 {
6735 	int chunksect;
6736 
6737 	if (mddev->raid_disks != 2 ||
6738 	    mddev->degraded > 1)
6739 		return ERR_PTR(-EINVAL);
6740 
6741 	/* Should check if there are write-behind devices? */
6742 
6743 	chunksect = 64*2; /* 64K by default */
6744 
6745 	/* The array must be an exact multiple of chunksize */
6746 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
6747 		chunksect >>= 1;
6748 
6749 	if ((chunksect<<9) < STRIPE_SIZE)
6750 		/* array size does not allow a suitable chunk size */
6751 		return ERR_PTR(-EINVAL);
6752 
6753 	mddev->new_level = 5;
6754 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6755 	mddev->new_chunk_sectors = chunksect;
6756 
6757 	return setup_conf(mddev);
6758 }
6759 
6760 static void *raid5_takeover_raid6(struct mddev *mddev)
6761 {
6762 	int new_layout;
6763 
6764 	switch (mddev->layout) {
6765 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6766 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6767 		break;
6768 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6769 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6770 		break;
6771 	case ALGORITHM_LEFT_SYMMETRIC_6:
6772 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
6773 		break;
6774 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6775 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6776 		break;
6777 	case ALGORITHM_PARITY_0_6:
6778 		new_layout = ALGORITHM_PARITY_0;
6779 		break;
6780 	case ALGORITHM_PARITY_N:
6781 		new_layout = ALGORITHM_PARITY_N;
6782 		break;
6783 	default:
6784 		return ERR_PTR(-EINVAL);
6785 	}
6786 	mddev->new_level = 5;
6787 	mddev->new_layout = new_layout;
6788 	mddev->delta_disks = -1;
6789 	mddev->raid_disks -= 1;
6790 	return setup_conf(mddev);
6791 }
6792 
6793 
6794 static int raid5_check_reshape(struct mddev *mddev)
6795 {
6796 	/* For a 2-drive array, the layout and chunk size can be changed
6797 	 * immediately as not restriping is needed.
6798 	 * For larger arrays we record the new value - after validation
6799 	 * to be used by a reshape pass.
6800 	 */
6801 	struct r5conf *conf = mddev->private;
6802 	int new_chunk = mddev->new_chunk_sectors;
6803 
6804 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6805 		return -EINVAL;
6806 	if (new_chunk > 0) {
6807 		if (!is_power_of_2(new_chunk))
6808 			return -EINVAL;
6809 		if (new_chunk < (PAGE_SIZE>>9))
6810 			return -EINVAL;
6811 		if (mddev->array_sectors & (new_chunk-1))
6812 			/* not factor of array size */
6813 			return -EINVAL;
6814 	}
6815 
6816 	/* They look valid */
6817 
6818 	if (mddev->raid_disks == 2) {
6819 		/* can make the change immediately */
6820 		if (mddev->new_layout >= 0) {
6821 			conf->algorithm = mddev->new_layout;
6822 			mddev->layout = mddev->new_layout;
6823 		}
6824 		if (new_chunk > 0) {
6825 			conf->chunk_sectors = new_chunk ;
6826 			mddev->chunk_sectors = new_chunk;
6827 		}
6828 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6829 		md_wakeup_thread(mddev->thread);
6830 	}
6831 	return check_reshape(mddev);
6832 }
6833 
6834 static int raid6_check_reshape(struct mddev *mddev)
6835 {
6836 	int new_chunk = mddev->new_chunk_sectors;
6837 
6838 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6839 		return -EINVAL;
6840 	if (new_chunk > 0) {
6841 		if (!is_power_of_2(new_chunk))
6842 			return -EINVAL;
6843 		if (new_chunk < (PAGE_SIZE >> 9))
6844 			return -EINVAL;
6845 		if (mddev->array_sectors & (new_chunk-1))
6846 			/* not factor of array size */
6847 			return -EINVAL;
6848 	}
6849 
6850 	/* They look valid */
6851 	return check_reshape(mddev);
6852 }
6853 
6854 static void *raid5_takeover(struct mddev *mddev)
6855 {
6856 	/* raid5 can take over:
6857 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6858 	 *  raid1 - if there are two drives.  We need to know the chunk size
6859 	 *  raid4 - trivial - just use a raid4 layout.
6860 	 *  raid6 - Providing it is a *_6 layout
6861 	 */
6862 	if (mddev->level == 0)
6863 		return raid45_takeover_raid0(mddev, 5);
6864 	if (mddev->level == 1)
6865 		return raid5_takeover_raid1(mddev);
6866 	if (mddev->level == 4) {
6867 		mddev->new_layout = ALGORITHM_PARITY_N;
6868 		mddev->new_level = 5;
6869 		return setup_conf(mddev);
6870 	}
6871 	if (mddev->level == 6)
6872 		return raid5_takeover_raid6(mddev);
6873 
6874 	return ERR_PTR(-EINVAL);
6875 }
6876 
6877 static void *raid4_takeover(struct mddev *mddev)
6878 {
6879 	/* raid4 can take over:
6880 	 *  raid0 - if there is only one strip zone
6881 	 *  raid5 - if layout is right
6882 	 */
6883 	if (mddev->level == 0)
6884 		return raid45_takeover_raid0(mddev, 4);
6885 	if (mddev->level == 5 &&
6886 	    mddev->layout == ALGORITHM_PARITY_N) {
6887 		mddev->new_layout = 0;
6888 		mddev->new_level = 4;
6889 		return setup_conf(mddev);
6890 	}
6891 	return ERR_PTR(-EINVAL);
6892 }
6893 
6894 static struct md_personality raid5_personality;
6895 
6896 static void *raid6_takeover(struct mddev *mddev)
6897 {
6898 	/* Currently can only take over a raid5.  We map the
6899 	 * personality to an equivalent raid6 personality
6900 	 * with the Q block at the end.
6901 	 */
6902 	int new_layout;
6903 
6904 	if (mddev->pers != &raid5_personality)
6905 		return ERR_PTR(-EINVAL);
6906 	if (mddev->degraded > 1)
6907 		return ERR_PTR(-EINVAL);
6908 	if (mddev->raid_disks > 253)
6909 		return ERR_PTR(-EINVAL);
6910 	if (mddev->raid_disks < 3)
6911 		return ERR_PTR(-EINVAL);
6912 
6913 	switch (mddev->layout) {
6914 	case ALGORITHM_LEFT_ASYMMETRIC:
6915 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6916 		break;
6917 	case ALGORITHM_RIGHT_ASYMMETRIC:
6918 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6919 		break;
6920 	case ALGORITHM_LEFT_SYMMETRIC:
6921 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6922 		break;
6923 	case ALGORITHM_RIGHT_SYMMETRIC:
6924 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6925 		break;
6926 	case ALGORITHM_PARITY_0:
6927 		new_layout = ALGORITHM_PARITY_0_6;
6928 		break;
6929 	case ALGORITHM_PARITY_N:
6930 		new_layout = ALGORITHM_PARITY_N;
6931 		break;
6932 	default:
6933 		return ERR_PTR(-EINVAL);
6934 	}
6935 	mddev->new_level = 6;
6936 	mddev->new_layout = new_layout;
6937 	mddev->delta_disks = 1;
6938 	mddev->raid_disks += 1;
6939 	return setup_conf(mddev);
6940 }
6941 
6942 
6943 static struct md_personality raid6_personality =
6944 {
6945 	.name		= "raid6",
6946 	.level		= 6,
6947 	.owner		= THIS_MODULE,
6948 	.make_request	= make_request,
6949 	.run		= run,
6950 	.stop		= stop,
6951 	.status		= status,
6952 	.error_handler	= error,
6953 	.hot_add_disk	= raid5_add_disk,
6954 	.hot_remove_disk= raid5_remove_disk,
6955 	.spare_active	= raid5_spare_active,
6956 	.sync_request	= sync_request,
6957 	.resize		= raid5_resize,
6958 	.size		= raid5_size,
6959 	.check_reshape	= raid6_check_reshape,
6960 	.start_reshape  = raid5_start_reshape,
6961 	.finish_reshape = raid5_finish_reshape,
6962 	.quiesce	= raid5_quiesce,
6963 	.takeover	= raid6_takeover,
6964 };
6965 static struct md_personality raid5_personality =
6966 {
6967 	.name		= "raid5",
6968 	.level		= 5,
6969 	.owner		= THIS_MODULE,
6970 	.make_request	= make_request,
6971 	.run		= run,
6972 	.stop		= stop,
6973 	.status		= status,
6974 	.error_handler	= error,
6975 	.hot_add_disk	= raid5_add_disk,
6976 	.hot_remove_disk= raid5_remove_disk,
6977 	.spare_active	= raid5_spare_active,
6978 	.sync_request	= sync_request,
6979 	.resize		= raid5_resize,
6980 	.size		= raid5_size,
6981 	.check_reshape	= raid5_check_reshape,
6982 	.start_reshape  = raid5_start_reshape,
6983 	.finish_reshape = raid5_finish_reshape,
6984 	.quiesce	= raid5_quiesce,
6985 	.takeover	= raid5_takeover,
6986 };
6987 
6988 static struct md_personality raid4_personality =
6989 {
6990 	.name		= "raid4",
6991 	.level		= 4,
6992 	.owner		= THIS_MODULE,
6993 	.make_request	= make_request,
6994 	.run		= run,
6995 	.stop		= stop,
6996 	.status		= status,
6997 	.error_handler	= error,
6998 	.hot_add_disk	= raid5_add_disk,
6999 	.hot_remove_disk= raid5_remove_disk,
7000 	.spare_active	= raid5_spare_active,
7001 	.sync_request	= sync_request,
7002 	.resize		= raid5_resize,
7003 	.size		= raid5_size,
7004 	.check_reshape	= raid5_check_reshape,
7005 	.start_reshape  = raid5_start_reshape,
7006 	.finish_reshape = raid5_finish_reshape,
7007 	.quiesce	= raid5_quiesce,
7008 	.takeover	= raid4_takeover,
7009 };
7010 
7011 static int __init raid5_init(void)
7012 {
7013 	raid5_wq = alloc_workqueue("raid5wq",
7014 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7015 	if (!raid5_wq)
7016 		return -ENOMEM;
7017 	register_md_personality(&raid6_personality);
7018 	register_md_personality(&raid5_personality);
7019 	register_md_personality(&raid4_personality);
7020 	return 0;
7021 }
7022 
7023 static void raid5_exit(void)
7024 {
7025 	unregister_md_personality(&raid6_personality);
7026 	unregister_md_personality(&raid5_personality);
7027 	unregister_md_personality(&raid4_personality);
7028 	destroy_workqueue(raid5_wq);
7029 }
7030 
7031 module_init(raid5_init);
7032 module_exit(raid5_exit);
7033 MODULE_LICENSE("GPL");
7034 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7035 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7036 MODULE_ALIAS("md-raid5");
7037 MODULE_ALIAS("md-raid4");
7038 MODULE_ALIAS("md-level-5");
7039 MODULE_ALIAS("md-level-4");
7040 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7041 MODULE_ALIAS("md-raid6");
7042 MODULE_ALIAS("md-level-6");
7043 
7044 /* This used to be two separate modules, they were: */
7045 MODULE_ALIAS("raid5");
7046 MODULE_ALIAS("raid6");
7047