1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid5.c : Multiple Devices driver for Linux 4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 5 * Copyright (C) 1999, 2000 Ingo Molnar 6 * Copyright (C) 2002, 2003 H. Peter Anvin 7 * 8 * RAID-4/5/6 management functions. 9 * Thanks to Penguin Computing for making the RAID-6 development possible 10 * by donating a test server! 11 */ 12 13 /* 14 * BITMAP UNPLUGGING: 15 * 16 * The sequencing for updating the bitmap reliably is a little 17 * subtle (and I got it wrong the first time) so it deserves some 18 * explanation. 19 * 20 * We group bitmap updates into batches. Each batch has a number. 21 * We may write out several batches at once, but that isn't very important. 22 * conf->seq_write is the number of the last batch successfully written. 23 * conf->seq_flush is the number of the last batch that was closed to 24 * new additions. 25 * When we discover that we will need to write to any block in a stripe 26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 27 * the number of the batch it will be in. This is seq_flush+1. 28 * When we are ready to do a write, if that batch hasn't been written yet, 29 * we plug the array and queue the stripe for later. 30 * When an unplug happens, we increment bm_flush, thus closing the current 31 * batch. 32 * When we notice that bm_flush > bm_write, we write out all pending updates 33 * to the bitmap, and advance bm_write to where bm_flush was. 34 * This may occasionally write a bit out twice, but is sure never to 35 * miss any bits. 36 */ 37 38 #include <linux/blkdev.h> 39 #include <linux/kthread.h> 40 #include <linux/raid/pq.h> 41 #include <linux/async_tx.h> 42 #include <linux/module.h> 43 #include <linux/async.h> 44 #include <linux/seq_file.h> 45 #include <linux/cpu.h> 46 #include <linux/slab.h> 47 #include <linux/ratelimit.h> 48 #include <linux/nodemask.h> 49 50 #include <trace/events/block.h> 51 #include <linux/list_sort.h> 52 53 #include "md.h" 54 #include "raid5.h" 55 #include "raid0.h" 56 #include "md-bitmap.h" 57 #include "raid5-log.h" 58 59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 60 61 #define cpu_to_group(cpu) cpu_to_node(cpu) 62 #define ANY_GROUP NUMA_NO_NODE 63 64 static bool devices_handle_discard_safely = false; 65 module_param(devices_handle_discard_safely, bool, 0644); 66 MODULE_PARM_DESC(devices_handle_discard_safely, 67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 68 static struct workqueue_struct *raid5_wq; 69 70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 71 { 72 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 73 return &conf->stripe_hashtbl[hash]; 74 } 75 76 static inline int stripe_hash_locks_hash(sector_t sect) 77 { 78 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 79 } 80 81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 82 { 83 spin_lock_irq(conf->hash_locks + hash); 84 spin_lock(&conf->device_lock); 85 } 86 87 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 88 { 89 spin_unlock(&conf->device_lock); 90 spin_unlock_irq(conf->hash_locks + hash); 91 } 92 93 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 94 { 95 int i; 96 spin_lock_irq(conf->hash_locks); 97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 99 spin_lock(&conf->device_lock); 100 } 101 102 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 103 { 104 int i; 105 spin_unlock(&conf->device_lock); 106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 107 spin_unlock(conf->hash_locks + i); 108 spin_unlock_irq(conf->hash_locks); 109 } 110 111 /* Find first data disk in a raid6 stripe */ 112 static inline int raid6_d0(struct stripe_head *sh) 113 { 114 if (sh->ddf_layout) 115 /* ddf always start from first device */ 116 return 0; 117 /* md starts just after Q block */ 118 if (sh->qd_idx == sh->disks - 1) 119 return 0; 120 else 121 return sh->qd_idx + 1; 122 } 123 static inline int raid6_next_disk(int disk, int raid_disks) 124 { 125 disk++; 126 return (disk < raid_disks) ? disk : 0; 127 } 128 129 /* When walking through the disks in a raid5, starting at raid6_d0, 130 * We need to map each disk to a 'slot', where the data disks are slot 131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 132 * is raid_disks-1. This help does that mapping. 133 */ 134 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 135 int *count, int syndrome_disks) 136 { 137 int slot = *count; 138 139 if (sh->ddf_layout) 140 (*count)++; 141 if (idx == sh->pd_idx) 142 return syndrome_disks; 143 if (idx == sh->qd_idx) 144 return syndrome_disks + 1; 145 if (!sh->ddf_layout) 146 (*count)++; 147 return slot; 148 } 149 150 static void print_raid5_conf (struct r5conf *conf); 151 152 static int stripe_operations_active(struct stripe_head *sh) 153 { 154 return sh->check_state || sh->reconstruct_state || 155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 156 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 157 } 158 159 static bool stripe_is_lowprio(struct stripe_head *sh) 160 { 161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 163 !test_bit(STRIPE_R5C_CACHING, &sh->state); 164 } 165 166 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 167 { 168 struct r5conf *conf = sh->raid_conf; 169 struct r5worker_group *group; 170 int thread_cnt; 171 int i, cpu = sh->cpu; 172 173 if (!cpu_online(cpu)) { 174 cpu = cpumask_any(cpu_online_mask); 175 sh->cpu = cpu; 176 } 177 178 if (list_empty(&sh->lru)) { 179 struct r5worker_group *group; 180 group = conf->worker_groups + cpu_to_group(cpu); 181 if (stripe_is_lowprio(sh)) 182 list_add_tail(&sh->lru, &group->loprio_list); 183 else 184 list_add_tail(&sh->lru, &group->handle_list); 185 group->stripes_cnt++; 186 sh->group = group; 187 } 188 189 if (conf->worker_cnt_per_group == 0) { 190 md_wakeup_thread(conf->mddev->thread); 191 return; 192 } 193 194 group = conf->worker_groups + cpu_to_group(sh->cpu); 195 196 group->workers[0].working = true; 197 /* at least one worker should run to avoid race */ 198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 199 200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 201 /* wakeup more workers */ 202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 203 if (group->workers[i].working == false) { 204 group->workers[i].working = true; 205 queue_work_on(sh->cpu, raid5_wq, 206 &group->workers[i].work); 207 thread_cnt--; 208 } 209 } 210 } 211 212 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 213 struct list_head *temp_inactive_list) 214 { 215 int i; 216 int injournal = 0; /* number of date pages with R5_InJournal */ 217 218 BUG_ON(!list_empty(&sh->lru)); 219 BUG_ON(atomic_read(&conf->active_stripes)==0); 220 221 if (r5c_is_writeback(conf->log)) 222 for (i = sh->disks; i--; ) 223 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 224 injournal++; 225 /* 226 * In the following cases, the stripe cannot be released to cached 227 * lists. Therefore, we make the stripe write out and set 228 * STRIPE_HANDLE: 229 * 1. when quiesce in r5c write back; 230 * 2. when resync is requested fot the stripe. 231 */ 232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 233 (conf->quiesce && r5c_is_writeback(conf->log) && 234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 235 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 236 r5c_make_stripe_write_out(sh); 237 set_bit(STRIPE_HANDLE, &sh->state); 238 } 239 240 if (test_bit(STRIPE_HANDLE, &sh->state)) { 241 if (test_bit(STRIPE_DELAYED, &sh->state) && 242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 243 list_add_tail(&sh->lru, &conf->delayed_list); 244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 245 sh->bm_seq - conf->seq_write > 0) 246 list_add_tail(&sh->lru, &conf->bitmap_list); 247 else { 248 clear_bit(STRIPE_DELAYED, &sh->state); 249 clear_bit(STRIPE_BIT_DELAY, &sh->state); 250 if (conf->worker_cnt_per_group == 0) { 251 if (stripe_is_lowprio(sh)) 252 list_add_tail(&sh->lru, 253 &conf->loprio_list); 254 else 255 list_add_tail(&sh->lru, 256 &conf->handle_list); 257 } else { 258 raid5_wakeup_stripe_thread(sh); 259 return; 260 } 261 } 262 md_wakeup_thread(conf->mddev->thread); 263 } else { 264 BUG_ON(stripe_operations_active(sh)); 265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 266 if (atomic_dec_return(&conf->preread_active_stripes) 267 < IO_THRESHOLD) 268 md_wakeup_thread(conf->mddev->thread); 269 atomic_dec(&conf->active_stripes); 270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 271 if (!r5c_is_writeback(conf->log)) 272 list_add_tail(&sh->lru, temp_inactive_list); 273 else { 274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 275 if (injournal == 0) 276 list_add_tail(&sh->lru, temp_inactive_list); 277 else if (injournal == conf->raid_disks - conf->max_degraded) { 278 /* full stripe */ 279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 280 atomic_inc(&conf->r5c_cached_full_stripes); 281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 282 atomic_dec(&conf->r5c_cached_partial_stripes); 283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 284 r5c_check_cached_full_stripe(conf); 285 } else 286 /* 287 * STRIPE_R5C_PARTIAL_STRIPE is set in 288 * r5c_try_caching_write(). No need to 289 * set it again. 290 */ 291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 292 } 293 } 294 } 295 } 296 297 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 298 struct list_head *temp_inactive_list) 299 { 300 if (atomic_dec_and_test(&sh->count)) 301 do_release_stripe(conf, sh, temp_inactive_list); 302 } 303 304 /* 305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 306 * 307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 308 * given time. Adding stripes only takes device lock, while deleting stripes 309 * only takes hash lock. 310 */ 311 static void release_inactive_stripe_list(struct r5conf *conf, 312 struct list_head *temp_inactive_list, 313 int hash) 314 { 315 int size; 316 bool do_wakeup = false; 317 unsigned long flags; 318 319 if (hash == NR_STRIPE_HASH_LOCKS) { 320 size = NR_STRIPE_HASH_LOCKS; 321 hash = NR_STRIPE_HASH_LOCKS - 1; 322 } else 323 size = 1; 324 while (size) { 325 struct list_head *list = &temp_inactive_list[size - 1]; 326 327 /* 328 * We don't hold any lock here yet, raid5_get_active_stripe() might 329 * remove stripes from the list 330 */ 331 if (!list_empty_careful(list)) { 332 spin_lock_irqsave(conf->hash_locks + hash, flags); 333 if (list_empty(conf->inactive_list + hash) && 334 !list_empty(list)) 335 atomic_dec(&conf->empty_inactive_list_nr); 336 list_splice_tail_init(list, conf->inactive_list + hash); 337 do_wakeup = true; 338 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 339 } 340 size--; 341 hash--; 342 } 343 344 if (do_wakeup) { 345 wake_up(&conf->wait_for_stripe); 346 if (atomic_read(&conf->active_stripes) == 0) 347 wake_up(&conf->wait_for_quiescent); 348 if (conf->retry_read_aligned) 349 md_wakeup_thread(conf->mddev->thread); 350 } 351 } 352 353 /* should hold conf->device_lock already */ 354 static int release_stripe_list(struct r5conf *conf, 355 struct list_head *temp_inactive_list) 356 { 357 struct stripe_head *sh, *t; 358 int count = 0; 359 struct llist_node *head; 360 361 head = llist_del_all(&conf->released_stripes); 362 head = llist_reverse_order(head); 363 llist_for_each_entry_safe(sh, t, head, release_list) { 364 int hash; 365 366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 367 smp_mb(); 368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 369 /* 370 * Don't worry the bit is set here, because if the bit is set 371 * again, the count is always > 1. This is true for 372 * STRIPE_ON_UNPLUG_LIST bit too. 373 */ 374 hash = sh->hash_lock_index; 375 __release_stripe(conf, sh, &temp_inactive_list[hash]); 376 count++; 377 } 378 379 return count; 380 } 381 382 void raid5_release_stripe(struct stripe_head *sh) 383 { 384 struct r5conf *conf = sh->raid_conf; 385 unsigned long flags; 386 struct list_head list; 387 int hash; 388 bool wakeup; 389 390 /* Avoid release_list until the last reference. 391 */ 392 if (atomic_add_unless(&sh->count, -1, 1)) 393 return; 394 395 if (unlikely(!conf->mddev->thread) || 396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 397 goto slow_path; 398 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 399 if (wakeup) 400 md_wakeup_thread(conf->mddev->thread); 401 return; 402 slow_path: 403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 405 INIT_LIST_HEAD(&list); 406 hash = sh->hash_lock_index; 407 do_release_stripe(conf, sh, &list); 408 spin_unlock_irqrestore(&conf->device_lock, flags); 409 release_inactive_stripe_list(conf, &list, hash); 410 } 411 } 412 413 static inline void remove_hash(struct stripe_head *sh) 414 { 415 pr_debug("remove_hash(), stripe %llu\n", 416 (unsigned long long)sh->sector); 417 418 hlist_del_init(&sh->hash); 419 } 420 421 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 422 { 423 struct hlist_head *hp = stripe_hash(conf, sh->sector); 424 425 pr_debug("insert_hash(), stripe %llu\n", 426 (unsigned long long)sh->sector); 427 428 hlist_add_head(&sh->hash, hp); 429 } 430 431 /* find an idle stripe, make sure it is unhashed, and return it. */ 432 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 433 { 434 struct stripe_head *sh = NULL; 435 struct list_head *first; 436 437 if (list_empty(conf->inactive_list + hash)) 438 goto out; 439 first = (conf->inactive_list + hash)->next; 440 sh = list_entry(first, struct stripe_head, lru); 441 list_del_init(first); 442 remove_hash(sh); 443 atomic_inc(&conf->active_stripes); 444 BUG_ON(hash != sh->hash_lock_index); 445 if (list_empty(conf->inactive_list + hash)) 446 atomic_inc(&conf->empty_inactive_list_nr); 447 out: 448 return sh; 449 } 450 451 static void shrink_buffers(struct stripe_head *sh) 452 { 453 struct page *p; 454 int i; 455 int num = sh->raid_conf->pool_size; 456 457 for (i = 0; i < num ; i++) { 458 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 459 p = sh->dev[i].page; 460 if (!p) 461 continue; 462 sh->dev[i].page = NULL; 463 put_page(p); 464 } 465 } 466 467 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 468 { 469 int i; 470 int num = sh->raid_conf->pool_size; 471 472 for (i = 0; i < num; i++) { 473 struct page *page; 474 475 if (!(page = alloc_page(gfp))) { 476 return 1; 477 } 478 sh->dev[i].page = page; 479 sh->dev[i].orig_page = page; 480 } 481 482 return 0; 483 } 484 485 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 486 struct stripe_head *sh); 487 488 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 489 { 490 struct r5conf *conf = sh->raid_conf; 491 int i, seq; 492 493 BUG_ON(atomic_read(&sh->count) != 0); 494 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 495 BUG_ON(stripe_operations_active(sh)); 496 BUG_ON(sh->batch_head); 497 498 pr_debug("init_stripe called, stripe %llu\n", 499 (unsigned long long)sector); 500 retry: 501 seq = read_seqcount_begin(&conf->gen_lock); 502 sh->generation = conf->generation - previous; 503 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 504 sh->sector = sector; 505 stripe_set_idx(sector, conf, previous, sh); 506 sh->state = 0; 507 508 for (i = sh->disks; i--; ) { 509 struct r5dev *dev = &sh->dev[i]; 510 511 if (dev->toread || dev->read || dev->towrite || dev->written || 512 test_bit(R5_LOCKED, &dev->flags)) { 513 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 514 (unsigned long long)sh->sector, i, dev->toread, 515 dev->read, dev->towrite, dev->written, 516 test_bit(R5_LOCKED, &dev->flags)); 517 WARN_ON(1); 518 } 519 dev->flags = 0; 520 dev->sector = raid5_compute_blocknr(sh, i, previous); 521 } 522 if (read_seqcount_retry(&conf->gen_lock, seq)) 523 goto retry; 524 sh->overwrite_disks = 0; 525 insert_hash(conf, sh); 526 sh->cpu = smp_processor_id(); 527 set_bit(STRIPE_BATCH_READY, &sh->state); 528 } 529 530 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 531 short generation) 532 { 533 struct stripe_head *sh; 534 535 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 536 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 537 if (sh->sector == sector && sh->generation == generation) 538 return sh; 539 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 540 return NULL; 541 } 542 543 /* 544 * Need to check if array has failed when deciding whether to: 545 * - start an array 546 * - remove non-faulty devices 547 * - add a spare 548 * - allow a reshape 549 * This determination is simple when no reshape is happening. 550 * However if there is a reshape, we need to carefully check 551 * both the before and after sections. 552 * This is because some failed devices may only affect one 553 * of the two sections, and some non-in_sync devices may 554 * be insync in the section most affected by failed devices. 555 */ 556 int raid5_calc_degraded(struct r5conf *conf) 557 { 558 int degraded, degraded2; 559 int i; 560 561 rcu_read_lock(); 562 degraded = 0; 563 for (i = 0; i < conf->previous_raid_disks; i++) { 564 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 565 if (rdev && test_bit(Faulty, &rdev->flags)) 566 rdev = rcu_dereference(conf->disks[i].replacement); 567 if (!rdev || test_bit(Faulty, &rdev->flags)) 568 degraded++; 569 else if (test_bit(In_sync, &rdev->flags)) 570 ; 571 else 572 /* not in-sync or faulty. 573 * If the reshape increases the number of devices, 574 * this is being recovered by the reshape, so 575 * this 'previous' section is not in_sync. 576 * If the number of devices is being reduced however, 577 * the device can only be part of the array if 578 * we are reverting a reshape, so this section will 579 * be in-sync. 580 */ 581 if (conf->raid_disks >= conf->previous_raid_disks) 582 degraded++; 583 } 584 rcu_read_unlock(); 585 if (conf->raid_disks == conf->previous_raid_disks) 586 return degraded; 587 rcu_read_lock(); 588 degraded2 = 0; 589 for (i = 0; i < conf->raid_disks; i++) { 590 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 591 if (rdev && test_bit(Faulty, &rdev->flags)) 592 rdev = rcu_dereference(conf->disks[i].replacement); 593 if (!rdev || test_bit(Faulty, &rdev->flags)) 594 degraded2++; 595 else if (test_bit(In_sync, &rdev->flags)) 596 ; 597 else 598 /* not in-sync or faulty. 599 * If reshape increases the number of devices, this 600 * section has already been recovered, else it 601 * almost certainly hasn't. 602 */ 603 if (conf->raid_disks <= conf->previous_raid_disks) 604 degraded2++; 605 } 606 rcu_read_unlock(); 607 if (degraded2 > degraded) 608 return degraded2; 609 return degraded; 610 } 611 612 static int has_failed(struct r5conf *conf) 613 { 614 int degraded; 615 616 if (conf->mddev->reshape_position == MaxSector) 617 return conf->mddev->degraded > conf->max_degraded; 618 619 degraded = raid5_calc_degraded(conf); 620 if (degraded > conf->max_degraded) 621 return 1; 622 return 0; 623 } 624 625 struct stripe_head * 626 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 627 int previous, int noblock, int noquiesce) 628 { 629 struct stripe_head *sh; 630 int hash = stripe_hash_locks_hash(sector); 631 int inc_empty_inactive_list_flag; 632 633 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 634 635 spin_lock_irq(conf->hash_locks + hash); 636 637 do { 638 wait_event_lock_irq(conf->wait_for_quiescent, 639 conf->quiesce == 0 || noquiesce, 640 *(conf->hash_locks + hash)); 641 sh = __find_stripe(conf, sector, conf->generation - previous); 642 if (!sh) { 643 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 644 sh = get_free_stripe(conf, hash); 645 if (!sh && !test_bit(R5_DID_ALLOC, 646 &conf->cache_state)) 647 set_bit(R5_ALLOC_MORE, 648 &conf->cache_state); 649 } 650 if (noblock && sh == NULL) 651 break; 652 653 r5c_check_stripe_cache_usage(conf); 654 if (!sh) { 655 set_bit(R5_INACTIVE_BLOCKED, 656 &conf->cache_state); 657 r5l_wake_reclaim(conf->log, 0); 658 wait_event_lock_irq( 659 conf->wait_for_stripe, 660 !list_empty(conf->inactive_list + hash) && 661 (atomic_read(&conf->active_stripes) 662 < (conf->max_nr_stripes * 3 / 4) 663 || !test_bit(R5_INACTIVE_BLOCKED, 664 &conf->cache_state)), 665 *(conf->hash_locks + hash)); 666 clear_bit(R5_INACTIVE_BLOCKED, 667 &conf->cache_state); 668 } else { 669 init_stripe(sh, sector, previous); 670 atomic_inc(&sh->count); 671 } 672 } else if (!atomic_inc_not_zero(&sh->count)) { 673 spin_lock(&conf->device_lock); 674 if (!atomic_read(&sh->count)) { 675 if (!test_bit(STRIPE_HANDLE, &sh->state)) 676 atomic_inc(&conf->active_stripes); 677 BUG_ON(list_empty(&sh->lru) && 678 !test_bit(STRIPE_EXPANDING, &sh->state)); 679 inc_empty_inactive_list_flag = 0; 680 if (!list_empty(conf->inactive_list + hash)) 681 inc_empty_inactive_list_flag = 1; 682 list_del_init(&sh->lru); 683 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 684 atomic_inc(&conf->empty_inactive_list_nr); 685 if (sh->group) { 686 sh->group->stripes_cnt--; 687 sh->group = NULL; 688 } 689 } 690 atomic_inc(&sh->count); 691 spin_unlock(&conf->device_lock); 692 } 693 } while (sh == NULL); 694 695 spin_unlock_irq(conf->hash_locks + hash); 696 return sh; 697 } 698 699 static bool is_full_stripe_write(struct stripe_head *sh) 700 { 701 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 702 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 703 } 704 705 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 706 __acquires(&sh1->stripe_lock) 707 __acquires(&sh2->stripe_lock) 708 { 709 if (sh1 > sh2) { 710 spin_lock_irq(&sh2->stripe_lock); 711 spin_lock_nested(&sh1->stripe_lock, 1); 712 } else { 713 spin_lock_irq(&sh1->stripe_lock); 714 spin_lock_nested(&sh2->stripe_lock, 1); 715 } 716 } 717 718 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 719 __releases(&sh1->stripe_lock) 720 __releases(&sh2->stripe_lock) 721 { 722 spin_unlock(&sh1->stripe_lock); 723 spin_unlock_irq(&sh2->stripe_lock); 724 } 725 726 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 727 static bool stripe_can_batch(struct stripe_head *sh) 728 { 729 struct r5conf *conf = sh->raid_conf; 730 731 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 732 return false; 733 return test_bit(STRIPE_BATCH_READY, &sh->state) && 734 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 735 is_full_stripe_write(sh); 736 } 737 738 /* we only do back search */ 739 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 740 { 741 struct stripe_head *head; 742 sector_t head_sector, tmp_sec; 743 int hash; 744 int dd_idx; 745 int inc_empty_inactive_list_flag; 746 747 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 748 tmp_sec = sh->sector; 749 if (!sector_div(tmp_sec, conf->chunk_sectors)) 750 return; 751 head_sector = sh->sector - STRIPE_SECTORS; 752 753 hash = stripe_hash_locks_hash(head_sector); 754 spin_lock_irq(conf->hash_locks + hash); 755 head = __find_stripe(conf, head_sector, conf->generation); 756 if (head && !atomic_inc_not_zero(&head->count)) { 757 spin_lock(&conf->device_lock); 758 if (!atomic_read(&head->count)) { 759 if (!test_bit(STRIPE_HANDLE, &head->state)) 760 atomic_inc(&conf->active_stripes); 761 BUG_ON(list_empty(&head->lru) && 762 !test_bit(STRIPE_EXPANDING, &head->state)); 763 inc_empty_inactive_list_flag = 0; 764 if (!list_empty(conf->inactive_list + hash)) 765 inc_empty_inactive_list_flag = 1; 766 list_del_init(&head->lru); 767 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 768 atomic_inc(&conf->empty_inactive_list_nr); 769 if (head->group) { 770 head->group->stripes_cnt--; 771 head->group = NULL; 772 } 773 } 774 atomic_inc(&head->count); 775 spin_unlock(&conf->device_lock); 776 } 777 spin_unlock_irq(conf->hash_locks + hash); 778 779 if (!head) 780 return; 781 if (!stripe_can_batch(head)) 782 goto out; 783 784 lock_two_stripes(head, sh); 785 /* clear_batch_ready clear the flag */ 786 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 787 goto unlock_out; 788 789 if (sh->batch_head) 790 goto unlock_out; 791 792 dd_idx = 0; 793 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 794 dd_idx++; 795 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 796 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 797 goto unlock_out; 798 799 if (head->batch_head) { 800 spin_lock(&head->batch_head->batch_lock); 801 /* This batch list is already running */ 802 if (!stripe_can_batch(head)) { 803 spin_unlock(&head->batch_head->batch_lock); 804 goto unlock_out; 805 } 806 /* 807 * We must assign batch_head of this stripe within the 808 * batch_lock, otherwise clear_batch_ready of batch head 809 * stripe could clear BATCH_READY bit of this stripe and 810 * this stripe->batch_head doesn't get assigned, which 811 * could confuse clear_batch_ready for this stripe 812 */ 813 sh->batch_head = head->batch_head; 814 815 /* 816 * at this point, head's BATCH_READY could be cleared, but we 817 * can still add the stripe to batch list 818 */ 819 list_add(&sh->batch_list, &head->batch_list); 820 spin_unlock(&head->batch_head->batch_lock); 821 } else { 822 head->batch_head = head; 823 sh->batch_head = head->batch_head; 824 spin_lock(&head->batch_lock); 825 list_add_tail(&sh->batch_list, &head->batch_list); 826 spin_unlock(&head->batch_lock); 827 } 828 829 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 830 if (atomic_dec_return(&conf->preread_active_stripes) 831 < IO_THRESHOLD) 832 md_wakeup_thread(conf->mddev->thread); 833 834 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 835 int seq = sh->bm_seq; 836 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 837 sh->batch_head->bm_seq > seq) 838 seq = sh->batch_head->bm_seq; 839 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 840 sh->batch_head->bm_seq = seq; 841 } 842 843 atomic_inc(&sh->count); 844 unlock_out: 845 unlock_two_stripes(head, sh); 846 out: 847 raid5_release_stripe(head); 848 } 849 850 /* Determine if 'data_offset' or 'new_data_offset' should be used 851 * in this stripe_head. 852 */ 853 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 854 { 855 sector_t progress = conf->reshape_progress; 856 /* Need a memory barrier to make sure we see the value 857 * of conf->generation, or ->data_offset that was set before 858 * reshape_progress was updated. 859 */ 860 smp_rmb(); 861 if (progress == MaxSector) 862 return 0; 863 if (sh->generation == conf->generation - 1) 864 return 0; 865 /* We are in a reshape, and this is a new-generation stripe, 866 * so use new_data_offset. 867 */ 868 return 1; 869 } 870 871 static void dispatch_bio_list(struct bio_list *tmp) 872 { 873 struct bio *bio; 874 875 while ((bio = bio_list_pop(tmp))) 876 submit_bio_noacct(bio); 877 } 878 879 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b) 880 { 881 const struct r5pending_data *da = list_entry(a, 882 struct r5pending_data, sibling); 883 const struct r5pending_data *db = list_entry(b, 884 struct r5pending_data, sibling); 885 if (da->sector > db->sector) 886 return 1; 887 if (da->sector < db->sector) 888 return -1; 889 return 0; 890 } 891 892 static void dispatch_defer_bios(struct r5conf *conf, int target, 893 struct bio_list *list) 894 { 895 struct r5pending_data *data; 896 struct list_head *first, *next = NULL; 897 int cnt = 0; 898 899 if (conf->pending_data_cnt == 0) 900 return; 901 902 list_sort(NULL, &conf->pending_list, cmp_stripe); 903 904 first = conf->pending_list.next; 905 906 /* temporarily move the head */ 907 if (conf->next_pending_data) 908 list_move_tail(&conf->pending_list, 909 &conf->next_pending_data->sibling); 910 911 while (!list_empty(&conf->pending_list)) { 912 data = list_first_entry(&conf->pending_list, 913 struct r5pending_data, sibling); 914 if (&data->sibling == first) 915 first = data->sibling.next; 916 next = data->sibling.next; 917 918 bio_list_merge(list, &data->bios); 919 list_move(&data->sibling, &conf->free_list); 920 cnt++; 921 if (cnt >= target) 922 break; 923 } 924 conf->pending_data_cnt -= cnt; 925 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 926 927 if (next != &conf->pending_list) 928 conf->next_pending_data = list_entry(next, 929 struct r5pending_data, sibling); 930 else 931 conf->next_pending_data = NULL; 932 /* list isn't empty */ 933 if (first != &conf->pending_list) 934 list_move_tail(&conf->pending_list, first); 935 } 936 937 static void flush_deferred_bios(struct r5conf *conf) 938 { 939 struct bio_list tmp = BIO_EMPTY_LIST; 940 941 if (conf->pending_data_cnt == 0) 942 return; 943 944 spin_lock(&conf->pending_bios_lock); 945 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 946 BUG_ON(conf->pending_data_cnt != 0); 947 spin_unlock(&conf->pending_bios_lock); 948 949 dispatch_bio_list(&tmp); 950 } 951 952 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 953 struct bio_list *bios) 954 { 955 struct bio_list tmp = BIO_EMPTY_LIST; 956 struct r5pending_data *ent; 957 958 spin_lock(&conf->pending_bios_lock); 959 ent = list_first_entry(&conf->free_list, struct r5pending_data, 960 sibling); 961 list_move_tail(&ent->sibling, &conf->pending_list); 962 ent->sector = sector; 963 bio_list_init(&ent->bios); 964 bio_list_merge(&ent->bios, bios); 965 conf->pending_data_cnt++; 966 if (conf->pending_data_cnt >= PENDING_IO_MAX) 967 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 968 969 spin_unlock(&conf->pending_bios_lock); 970 971 dispatch_bio_list(&tmp); 972 } 973 974 static void 975 raid5_end_read_request(struct bio *bi); 976 static void 977 raid5_end_write_request(struct bio *bi); 978 979 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 980 { 981 struct r5conf *conf = sh->raid_conf; 982 int i, disks = sh->disks; 983 struct stripe_head *head_sh = sh; 984 struct bio_list pending_bios = BIO_EMPTY_LIST; 985 bool should_defer; 986 987 might_sleep(); 988 989 if (log_stripe(sh, s) == 0) 990 return; 991 992 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 993 994 for (i = disks; i--; ) { 995 int op, op_flags = 0; 996 int replace_only = 0; 997 struct bio *bi, *rbi; 998 struct md_rdev *rdev, *rrdev = NULL; 999 1000 sh = head_sh; 1001 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1002 op = REQ_OP_WRITE; 1003 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1004 op_flags = REQ_FUA; 1005 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1006 op = REQ_OP_DISCARD; 1007 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1008 op = REQ_OP_READ; 1009 else if (test_and_clear_bit(R5_WantReplace, 1010 &sh->dev[i].flags)) { 1011 op = REQ_OP_WRITE; 1012 replace_only = 1; 1013 } else 1014 continue; 1015 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1016 op_flags |= REQ_SYNC; 1017 1018 again: 1019 bi = &sh->dev[i].req; 1020 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 1021 1022 rcu_read_lock(); 1023 rrdev = rcu_dereference(conf->disks[i].replacement); 1024 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 1025 rdev = rcu_dereference(conf->disks[i].rdev); 1026 if (!rdev) { 1027 rdev = rrdev; 1028 rrdev = NULL; 1029 } 1030 if (op_is_write(op)) { 1031 if (replace_only) 1032 rdev = NULL; 1033 if (rdev == rrdev) 1034 /* We raced and saw duplicates */ 1035 rrdev = NULL; 1036 } else { 1037 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1038 rdev = rrdev; 1039 rrdev = NULL; 1040 } 1041 1042 if (rdev && test_bit(Faulty, &rdev->flags)) 1043 rdev = NULL; 1044 if (rdev) 1045 atomic_inc(&rdev->nr_pending); 1046 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1047 rrdev = NULL; 1048 if (rrdev) 1049 atomic_inc(&rrdev->nr_pending); 1050 rcu_read_unlock(); 1051 1052 /* We have already checked bad blocks for reads. Now 1053 * need to check for writes. We never accept write errors 1054 * on the replacement, so we don't to check rrdev. 1055 */ 1056 while (op_is_write(op) && rdev && 1057 test_bit(WriteErrorSeen, &rdev->flags)) { 1058 sector_t first_bad; 1059 int bad_sectors; 1060 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 1061 &first_bad, &bad_sectors); 1062 if (!bad) 1063 break; 1064 1065 if (bad < 0) { 1066 set_bit(BlockedBadBlocks, &rdev->flags); 1067 if (!conf->mddev->external && 1068 conf->mddev->sb_flags) { 1069 /* It is very unlikely, but we might 1070 * still need to write out the 1071 * bad block log - better give it 1072 * a chance*/ 1073 md_check_recovery(conf->mddev); 1074 } 1075 /* 1076 * Because md_wait_for_blocked_rdev 1077 * will dec nr_pending, we must 1078 * increment it first. 1079 */ 1080 atomic_inc(&rdev->nr_pending); 1081 md_wait_for_blocked_rdev(rdev, conf->mddev); 1082 } else { 1083 /* Acknowledged bad block - skip the write */ 1084 rdev_dec_pending(rdev, conf->mddev); 1085 rdev = NULL; 1086 } 1087 } 1088 1089 if (rdev) { 1090 if (s->syncing || s->expanding || s->expanded 1091 || s->replacing) 1092 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 1093 1094 set_bit(STRIPE_IO_STARTED, &sh->state); 1095 1096 bio_set_dev(bi, rdev->bdev); 1097 bio_set_op_attrs(bi, op, op_flags); 1098 bi->bi_end_io = op_is_write(op) 1099 ? raid5_end_write_request 1100 : raid5_end_read_request; 1101 bi->bi_private = sh; 1102 1103 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1104 __func__, (unsigned long long)sh->sector, 1105 bi->bi_opf, i); 1106 atomic_inc(&sh->count); 1107 if (sh != head_sh) 1108 atomic_inc(&head_sh->count); 1109 if (use_new_offset(conf, sh)) 1110 bi->bi_iter.bi_sector = (sh->sector 1111 + rdev->new_data_offset); 1112 else 1113 bi->bi_iter.bi_sector = (sh->sector 1114 + rdev->data_offset); 1115 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1116 bi->bi_opf |= REQ_NOMERGE; 1117 1118 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1119 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1120 1121 if (!op_is_write(op) && 1122 test_bit(R5_InJournal, &sh->dev[i].flags)) 1123 /* 1124 * issuing read for a page in journal, this 1125 * must be preparing for prexor in rmw; read 1126 * the data into orig_page 1127 */ 1128 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1129 else 1130 sh->dev[i].vec.bv_page = sh->dev[i].page; 1131 bi->bi_vcnt = 1; 1132 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1133 bi->bi_io_vec[0].bv_offset = 0; 1134 bi->bi_iter.bi_size = STRIPE_SIZE; 1135 bi->bi_write_hint = sh->dev[i].write_hint; 1136 if (!rrdev) 1137 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET; 1138 /* 1139 * If this is discard request, set bi_vcnt 0. We don't 1140 * want to confuse SCSI because SCSI will replace payload 1141 */ 1142 if (op == REQ_OP_DISCARD) 1143 bi->bi_vcnt = 0; 1144 if (rrdev) 1145 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1146 1147 if (conf->mddev->gendisk) 1148 trace_block_bio_remap(bi->bi_disk->queue, 1149 bi, disk_devt(conf->mddev->gendisk), 1150 sh->dev[i].sector); 1151 if (should_defer && op_is_write(op)) 1152 bio_list_add(&pending_bios, bi); 1153 else 1154 submit_bio_noacct(bi); 1155 } 1156 if (rrdev) { 1157 if (s->syncing || s->expanding || s->expanded 1158 || s->replacing) 1159 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 1160 1161 set_bit(STRIPE_IO_STARTED, &sh->state); 1162 1163 bio_set_dev(rbi, rrdev->bdev); 1164 bio_set_op_attrs(rbi, op, op_flags); 1165 BUG_ON(!op_is_write(op)); 1166 rbi->bi_end_io = raid5_end_write_request; 1167 rbi->bi_private = sh; 1168 1169 pr_debug("%s: for %llu schedule op %d on " 1170 "replacement disc %d\n", 1171 __func__, (unsigned long long)sh->sector, 1172 rbi->bi_opf, i); 1173 atomic_inc(&sh->count); 1174 if (sh != head_sh) 1175 atomic_inc(&head_sh->count); 1176 if (use_new_offset(conf, sh)) 1177 rbi->bi_iter.bi_sector = (sh->sector 1178 + rrdev->new_data_offset); 1179 else 1180 rbi->bi_iter.bi_sector = (sh->sector 1181 + rrdev->data_offset); 1182 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1183 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1184 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1185 rbi->bi_vcnt = 1; 1186 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1187 rbi->bi_io_vec[0].bv_offset = 0; 1188 rbi->bi_iter.bi_size = STRIPE_SIZE; 1189 rbi->bi_write_hint = sh->dev[i].write_hint; 1190 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET; 1191 /* 1192 * If this is discard request, set bi_vcnt 0. We don't 1193 * want to confuse SCSI because SCSI will replace payload 1194 */ 1195 if (op == REQ_OP_DISCARD) 1196 rbi->bi_vcnt = 0; 1197 if (conf->mddev->gendisk) 1198 trace_block_bio_remap(rbi->bi_disk->queue, 1199 rbi, disk_devt(conf->mddev->gendisk), 1200 sh->dev[i].sector); 1201 if (should_defer && op_is_write(op)) 1202 bio_list_add(&pending_bios, rbi); 1203 else 1204 submit_bio_noacct(rbi); 1205 } 1206 if (!rdev && !rrdev) { 1207 if (op_is_write(op)) 1208 set_bit(STRIPE_DEGRADED, &sh->state); 1209 pr_debug("skip op %d on disc %d for sector %llu\n", 1210 bi->bi_opf, i, (unsigned long long)sh->sector); 1211 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1212 set_bit(STRIPE_HANDLE, &sh->state); 1213 } 1214 1215 if (!head_sh->batch_head) 1216 continue; 1217 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1218 batch_list); 1219 if (sh != head_sh) 1220 goto again; 1221 } 1222 1223 if (should_defer && !bio_list_empty(&pending_bios)) 1224 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1225 } 1226 1227 static struct dma_async_tx_descriptor * 1228 async_copy_data(int frombio, struct bio *bio, struct page **page, 1229 sector_t sector, struct dma_async_tx_descriptor *tx, 1230 struct stripe_head *sh, int no_skipcopy) 1231 { 1232 struct bio_vec bvl; 1233 struct bvec_iter iter; 1234 struct page *bio_page; 1235 int page_offset; 1236 struct async_submit_ctl submit; 1237 enum async_tx_flags flags = 0; 1238 1239 if (bio->bi_iter.bi_sector >= sector) 1240 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1241 else 1242 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1243 1244 if (frombio) 1245 flags |= ASYNC_TX_FENCE; 1246 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1247 1248 bio_for_each_segment(bvl, bio, iter) { 1249 int len = bvl.bv_len; 1250 int clen; 1251 int b_offset = 0; 1252 1253 if (page_offset < 0) { 1254 b_offset = -page_offset; 1255 page_offset += b_offset; 1256 len -= b_offset; 1257 } 1258 1259 if (len > 0 && page_offset + len > STRIPE_SIZE) 1260 clen = STRIPE_SIZE - page_offset; 1261 else 1262 clen = len; 1263 1264 if (clen > 0) { 1265 b_offset += bvl.bv_offset; 1266 bio_page = bvl.bv_page; 1267 if (frombio) { 1268 if (sh->raid_conf->skip_copy && 1269 b_offset == 0 && page_offset == 0 && 1270 clen == STRIPE_SIZE && 1271 !no_skipcopy) 1272 *page = bio_page; 1273 else 1274 tx = async_memcpy(*page, bio_page, page_offset, 1275 b_offset, clen, &submit); 1276 } else 1277 tx = async_memcpy(bio_page, *page, b_offset, 1278 page_offset, clen, &submit); 1279 } 1280 /* chain the operations */ 1281 submit.depend_tx = tx; 1282 1283 if (clen < len) /* hit end of page */ 1284 break; 1285 page_offset += len; 1286 } 1287 1288 return tx; 1289 } 1290 1291 static void ops_complete_biofill(void *stripe_head_ref) 1292 { 1293 struct stripe_head *sh = stripe_head_ref; 1294 int i; 1295 1296 pr_debug("%s: stripe %llu\n", __func__, 1297 (unsigned long long)sh->sector); 1298 1299 /* clear completed biofills */ 1300 for (i = sh->disks; i--; ) { 1301 struct r5dev *dev = &sh->dev[i]; 1302 1303 /* acknowledge completion of a biofill operation */ 1304 /* and check if we need to reply to a read request, 1305 * new R5_Wantfill requests are held off until 1306 * !STRIPE_BIOFILL_RUN 1307 */ 1308 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1309 struct bio *rbi, *rbi2; 1310 1311 BUG_ON(!dev->read); 1312 rbi = dev->read; 1313 dev->read = NULL; 1314 while (rbi && rbi->bi_iter.bi_sector < 1315 dev->sector + STRIPE_SECTORS) { 1316 rbi2 = r5_next_bio(rbi, dev->sector); 1317 bio_endio(rbi); 1318 rbi = rbi2; 1319 } 1320 } 1321 } 1322 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1323 1324 set_bit(STRIPE_HANDLE, &sh->state); 1325 raid5_release_stripe(sh); 1326 } 1327 1328 static void ops_run_biofill(struct stripe_head *sh) 1329 { 1330 struct dma_async_tx_descriptor *tx = NULL; 1331 struct async_submit_ctl submit; 1332 int i; 1333 1334 BUG_ON(sh->batch_head); 1335 pr_debug("%s: stripe %llu\n", __func__, 1336 (unsigned long long)sh->sector); 1337 1338 for (i = sh->disks; i--; ) { 1339 struct r5dev *dev = &sh->dev[i]; 1340 if (test_bit(R5_Wantfill, &dev->flags)) { 1341 struct bio *rbi; 1342 spin_lock_irq(&sh->stripe_lock); 1343 dev->read = rbi = dev->toread; 1344 dev->toread = NULL; 1345 spin_unlock_irq(&sh->stripe_lock); 1346 while (rbi && rbi->bi_iter.bi_sector < 1347 dev->sector + STRIPE_SECTORS) { 1348 tx = async_copy_data(0, rbi, &dev->page, 1349 dev->sector, tx, sh, 0); 1350 rbi = r5_next_bio(rbi, dev->sector); 1351 } 1352 } 1353 } 1354 1355 atomic_inc(&sh->count); 1356 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1357 async_trigger_callback(&submit); 1358 } 1359 1360 static void mark_target_uptodate(struct stripe_head *sh, int target) 1361 { 1362 struct r5dev *tgt; 1363 1364 if (target < 0) 1365 return; 1366 1367 tgt = &sh->dev[target]; 1368 set_bit(R5_UPTODATE, &tgt->flags); 1369 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1370 clear_bit(R5_Wantcompute, &tgt->flags); 1371 } 1372 1373 static void ops_complete_compute(void *stripe_head_ref) 1374 { 1375 struct stripe_head *sh = stripe_head_ref; 1376 1377 pr_debug("%s: stripe %llu\n", __func__, 1378 (unsigned long long)sh->sector); 1379 1380 /* mark the computed target(s) as uptodate */ 1381 mark_target_uptodate(sh, sh->ops.target); 1382 mark_target_uptodate(sh, sh->ops.target2); 1383 1384 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1385 if (sh->check_state == check_state_compute_run) 1386 sh->check_state = check_state_compute_result; 1387 set_bit(STRIPE_HANDLE, &sh->state); 1388 raid5_release_stripe(sh); 1389 } 1390 1391 /* return a pointer to the address conversion region of the scribble buffer */ 1392 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1393 { 1394 return percpu->scribble + i * percpu->scribble_obj_size; 1395 } 1396 1397 /* return a pointer to the address conversion region of the scribble buffer */ 1398 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1399 struct raid5_percpu *percpu, int i) 1400 { 1401 return (void *) (to_addr_page(percpu, i) + sh->disks + 2); 1402 } 1403 1404 static struct dma_async_tx_descriptor * 1405 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1406 { 1407 int disks = sh->disks; 1408 struct page **xor_srcs = to_addr_page(percpu, 0); 1409 int target = sh->ops.target; 1410 struct r5dev *tgt = &sh->dev[target]; 1411 struct page *xor_dest = tgt->page; 1412 int count = 0; 1413 struct dma_async_tx_descriptor *tx; 1414 struct async_submit_ctl submit; 1415 int i; 1416 1417 BUG_ON(sh->batch_head); 1418 1419 pr_debug("%s: stripe %llu block: %d\n", 1420 __func__, (unsigned long long)sh->sector, target); 1421 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1422 1423 for (i = disks; i--; ) 1424 if (i != target) 1425 xor_srcs[count++] = sh->dev[i].page; 1426 1427 atomic_inc(&sh->count); 1428 1429 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1430 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1431 if (unlikely(count == 1)) 1432 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1433 else 1434 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1435 1436 return tx; 1437 } 1438 1439 /* set_syndrome_sources - populate source buffers for gen_syndrome 1440 * @srcs - (struct page *) array of size sh->disks 1441 * @sh - stripe_head to parse 1442 * 1443 * Populates srcs in proper layout order for the stripe and returns the 1444 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1445 * destination buffer is recorded in srcs[count] and the Q destination 1446 * is recorded in srcs[count+1]]. 1447 */ 1448 static int set_syndrome_sources(struct page **srcs, 1449 struct stripe_head *sh, 1450 int srctype) 1451 { 1452 int disks = sh->disks; 1453 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1454 int d0_idx = raid6_d0(sh); 1455 int count; 1456 int i; 1457 1458 for (i = 0; i < disks; i++) 1459 srcs[i] = NULL; 1460 1461 count = 0; 1462 i = d0_idx; 1463 do { 1464 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1465 struct r5dev *dev = &sh->dev[i]; 1466 1467 if (i == sh->qd_idx || i == sh->pd_idx || 1468 (srctype == SYNDROME_SRC_ALL) || 1469 (srctype == SYNDROME_SRC_WANT_DRAIN && 1470 (test_bit(R5_Wantdrain, &dev->flags) || 1471 test_bit(R5_InJournal, &dev->flags))) || 1472 (srctype == SYNDROME_SRC_WRITTEN && 1473 (dev->written || 1474 test_bit(R5_InJournal, &dev->flags)))) { 1475 if (test_bit(R5_InJournal, &dev->flags)) 1476 srcs[slot] = sh->dev[i].orig_page; 1477 else 1478 srcs[slot] = sh->dev[i].page; 1479 } 1480 i = raid6_next_disk(i, disks); 1481 } while (i != d0_idx); 1482 1483 return syndrome_disks; 1484 } 1485 1486 static struct dma_async_tx_descriptor * 1487 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1488 { 1489 int disks = sh->disks; 1490 struct page **blocks = to_addr_page(percpu, 0); 1491 int target; 1492 int qd_idx = sh->qd_idx; 1493 struct dma_async_tx_descriptor *tx; 1494 struct async_submit_ctl submit; 1495 struct r5dev *tgt; 1496 struct page *dest; 1497 int i; 1498 int count; 1499 1500 BUG_ON(sh->batch_head); 1501 if (sh->ops.target < 0) 1502 target = sh->ops.target2; 1503 else if (sh->ops.target2 < 0) 1504 target = sh->ops.target; 1505 else 1506 /* we should only have one valid target */ 1507 BUG(); 1508 BUG_ON(target < 0); 1509 pr_debug("%s: stripe %llu block: %d\n", 1510 __func__, (unsigned long long)sh->sector, target); 1511 1512 tgt = &sh->dev[target]; 1513 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1514 dest = tgt->page; 1515 1516 atomic_inc(&sh->count); 1517 1518 if (target == qd_idx) { 1519 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1520 blocks[count] = NULL; /* regenerating p is not necessary */ 1521 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1522 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1523 ops_complete_compute, sh, 1524 to_addr_conv(sh, percpu, 0)); 1525 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1526 } else { 1527 /* Compute any data- or p-drive using XOR */ 1528 count = 0; 1529 for (i = disks; i-- ; ) { 1530 if (i == target || i == qd_idx) 1531 continue; 1532 blocks[count++] = sh->dev[i].page; 1533 } 1534 1535 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1536 NULL, ops_complete_compute, sh, 1537 to_addr_conv(sh, percpu, 0)); 1538 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1539 } 1540 1541 return tx; 1542 } 1543 1544 static struct dma_async_tx_descriptor * 1545 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1546 { 1547 int i, count, disks = sh->disks; 1548 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1549 int d0_idx = raid6_d0(sh); 1550 int faila = -1, failb = -1; 1551 int target = sh->ops.target; 1552 int target2 = sh->ops.target2; 1553 struct r5dev *tgt = &sh->dev[target]; 1554 struct r5dev *tgt2 = &sh->dev[target2]; 1555 struct dma_async_tx_descriptor *tx; 1556 struct page **blocks = to_addr_page(percpu, 0); 1557 struct async_submit_ctl submit; 1558 1559 BUG_ON(sh->batch_head); 1560 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1561 __func__, (unsigned long long)sh->sector, target, target2); 1562 BUG_ON(target < 0 || target2 < 0); 1563 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1564 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1565 1566 /* we need to open-code set_syndrome_sources to handle the 1567 * slot number conversion for 'faila' and 'failb' 1568 */ 1569 for (i = 0; i < disks ; i++) 1570 blocks[i] = NULL; 1571 count = 0; 1572 i = d0_idx; 1573 do { 1574 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1575 1576 blocks[slot] = sh->dev[i].page; 1577 1578 if (i == target) 1579 faila = slot; 1580 if (i == target2) 1581 failb = slot; 1582 i = raid6_next_disk(i, disks); 1583 } while (i != d0_idx); 1584 1585 BUG_ON(faila == failb); 1586 if (failb < faila) 1587 swap(faila, failb); 1588 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1589 __func__, (unsigned long long)sh->sector, faila, failb); 1590 1591 atomic_inc(&sh->count); 1592 1593 if (failb == syndrome_disks+1) { 1594 /* Q disk is one of the missing disks */ 1595 if (faila == syndrome_disks) { 1596 /* Missing P+Q, just recompute */ 1597 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1598 ops_complete_compute, sh, 1599 to_addr_conv(sh, percpu, 0)); 1600 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1601 STRIPE_SIZE, &submit); 1602 } else { 1603 struct page *dest; 1604 int data_target; 1605 int qd_idx = sh->qd_idx; 1606 1607 /* Missing D+Q: recompute D from P, then recompute Q */ 1608 if (target == qd_idx) 1609 data_target = target2; 1610 else 1611 data_target = target; 1612 1613 count = 0; 1614 for (i = disks; i-- ; ) { 1615 if (i == data_target || i == qd_idx) 1616 continue; 1617 blocks[count++] = sh->dev[i].page; 1618 } 1619 dest = sh->dev[data_target].page; 1620 init_async_submit(&submit, 1621 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1622 NULL, NULL, NULL, 1623 to_addr_conv(sh, percpu, 0)); 1624 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1625 &submit); 1626 1627 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1628 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1629 ops_complete_compute, sh, 1630 to_addr_conv(sh, percpu, 0)); 1631 return async_gen_syndrome(blocks, 0, count+2, 1632 STRIPE_SIZE, &submit); 1633 } 1634 } else { 1635 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1636 ops_complete_compute, sh, 1637 to_addr_conv(sh, percpu, 0)); 1638 if (failb == syndrome_disks) { 1639 /* We're missing D+P. */ 1640 return async_raid6_datap_recov(syndrome_disks+2, 1641 STRIPE_SIZE, faila, 1642 blocks, &submit); 1643 } else { 1644 /* We're missing D+D. */ 1645 return async_raid6_2data_recov(syndrome_disks+2, 1646 STRIPE_SIZE, faila, failb, 1647 blocks, &submit); 1648 } 1649 } 1650 } 1651 1652 static void ops_complete_prexor(void *stripe_head_ref) 1653 { 1654 struct stripe_head *sh = stripe_head_ref; 1655 1656 pr_debug("%s: stripe %llu\n", __func__, 1657 (unsigned long long)sh->sector); 1658 1659 if (r5c_is_writeback(sh->raid_conf->log)) 1660 /* 1661 * raid5-cache write back uses orig_page during prexor. 1662 * After prexor, it is time to free orig_page 1663 */ 1664 r5c_release_extra_page(sh); 1665 } 1666 1667 static struct dma_async_tx_descriptor * 1668 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1669 struct dma_async_tx_descriptor *tx) 1670 { 1671 int disks = sh->disks; 1672 struct page **xor_srcs = to_addr_page(percpu, 0); 1673 int count = 0, pd_idx = sh->pd_idx, i; 1674 struct async_submit_ctl submit; 1675 1676 /* existing parity data subtracted */ 1677 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1678 1679 BUG_ON(sh->batch_head); 1680 pr_debug("%s: stripe %llu\n", __func__, 1681 (unsigned long long)sh->sector); 1682 1683 for (i = disks; i--; ) { 1684 struct r5dev *dev = &sh->dev[i]; 1685 /* Only process blocks that are known to be uptodate */ 1686 if (test_bit(R5_InJournal, &dev->flags)) 1687 xor_srcs[count++] = dev->orig_page; 1688 else if (test_bit(R5_Wantdrain, &dev->flags)) 1689 xor_srcs[count++] = dev->page; 1690 } 1691 1692 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1693 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1694 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1695 1696 return tx; 1697 } 1698 1699 static struct dma_async_tx_descriptor * 1700 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1701 struct dma_async_tx_descriptor *tx) 1702 { 1703 struct page **blocks = to_addr_page(percpu, 0); 1704 int count; 1705 struct async_submit_ctl submit; 1706 1707 pr_debug("%s: stripe %llu\n", __func__, 1708 (unsigned long long)sh->sector); 1709 1710 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); 1711 1712 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1713 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1714 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1715 1716 return tx; 1717 } 1718 1719 static struct dma_async_tx_descriptor * 1720 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1721 { 1722 struct r5conf *conf = sh->raid_conf; 1723 int disks = sh->disks; 1724 int i; 1725 struct stripe_head *head_sh = sh; 1726 1727 pr_debug("%s: stripe %llu\n", __func__, 1728 (unsigned long long)sh->sector); 1729 1730 for (i = disks; i--; ) { 1731 struct r5dev *dev; 1732 struct bio *chosen; 1733 1734 sh = head_sh; 1735 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1736 struct bio *wbi; 1737 1738 again: 1739 dev = &sh->dev[i]; 1740 /* 1741 * clear R5_InJournal, so when rewriting a page in 1742 * journal, it is not skipped by r5l_log_stripe() 1743 */ 1744 clear_bit(R5_InJournal, &dev->flags); 1745 spin_lock_irq(&sh->stripe_lock); 1746 chosen = dev->towrite; 1747 dev->towrite = NULL; 1748 sh->overwrite_disks = 0; 1749 BUG_ON(dev->written); 1750 wbi = dev->written = chosen; 1751 spin_unlock_irq(&sh->stripe_lock); 1752 WARN_ON(dev->page != dev->orig_page); 1753 1754 while (wbi && wbi->bi_iter.bi_sector < 1755 dev->sector + STRIPE_SECTORS) { 1756 if (wbi->bi_opf & REQ_FUA) 1757 set_bit(R5_WantFUA, &dev->flags); 1758 if (wbi->bi_opf & REQ_SYNC) 1759 set_bit(R5_SyncIO, &dev->flags); 1760 if (bio_op(wbi) == REQ_OP_DISCARD) 1761 set_bit(R5_Discard, &dev->flags); 1762 else { 1763 tx = async_copy_data(1, wbi, &dev->page, 1764 dev->sector, tx, sh, 1765 r5c_is_writeback(conf->log)); 1766 if (dev->page != dev->orig_page && 1767 !r5c_is_writeback(conf->log)) { 1768 set_bit(R5_SkipCopy, &dev->flags); 1769 clear_bit(R5_UPTODATE, &dev->flags); 1770 clear_bit(R5_OVERWRITE, &dev->flags); 1771 } 1772 } 1773 wbi = r5_next_bio(wbi, dev->sector); 1774 } 1775 1776 if (head_sh->batch_head) { 1777 sh = list_first_entry(&sh->batch_list, 1778 struct stripe_head, 1779 batch_list); 1780 if (sh == head_sh) 1781 continue; 1782 goto again; 1783 } 1784 } 1785 } 1786 1787 return tx; 1788 } 1789 1790 static void ops_complete_reconstruct(void *stripe_head_ref) 1791 { 1792 struct stripe_head *sh = stripe_head_ref; 1793 int disks = sh->disks; 1794 int pd_idx = sh->pd_idx; 1795 int qd_idx = sh->qd_idx; 1796 int i; 1797 bool fua = false, sync = false, discard = false; 1798 1799 pr_debug("%s: stripe %llu\n", __func__, 1800 (unsigned long long)sh->sector); 1801 1802 for (i = disks; i--; ) { 1803 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1804 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1805 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1806 } 1807 1808 for (i = disks; i--; ) { 1809 struct r5dev *dev = &sh->dev[i]; 1810 1811 if (dev->written || i == pd_idx || i == qd_idx) { 1812 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 1813 set_bit(R5_UPTODATE, &dev->flags); 1814 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 1815 set_bit(R5_Expanded, &dev->flags); 1816 } 1817 if (fua) 1818 set_bit(R5_WantFUA, &dev->flags); 1819 if (sync) 1820 set_bit(R5_SyncIO, &dev->flags); 1821 } 1822 } 1823 1824 if (sh->reconstruct_state == reconstruct_state_drain_run) 1825 sh->reconstruct_state = reconstruct_state_drain_result; 1826 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1827 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1828 else { 1829 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1830 sh->reconstruct_state = reconstruct_state_result; 1831 } 1832 1833 set_bit(STRIPE_HANDLE, &sh->state); 1834 raid5_release_stripe(sh); 1835 } 1836 1837 static void 1838 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1839 struct dma_async_tx_descriptor *tx) 1840 { 1841 int disks = sh->disks; 1842 struct page **xor_srcs; 1843 struct async_submit_ctl submit; 1844 int count, pd_idx = sh->pd_idx, i; 1845 struct page *xor_dest; 1846 int prexor = 0; 1847 unsigned long flags; 1848 int j = 0; 1849 struct stripe_head *head_sh = sh; 1850 int last_stripe; 1851 1852 pr_debug("%s: stripe %llu\n", __func__, 1853 (unsigned long long)sh->sector); 1854 1855 for (i = 0; i < sh->disks; i++) { 1856 if (pd_idx == i) 1857 continue; 1858 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1859 break; 1860 } 1861 if (i >= sh->disks) { 1862 atomic_inc(&sh->count); 1863 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1864 ops_complete_reconstruct(sh); 1865 return; 1866 } 1867 again: 1868 count = 0; 1869 xor_srcs = to_addr_page(percpu, j); 1870 /* check if prexor is active which means only process blocks 1871 * that are part of a read-modify-write (written) 1872 */ 1873 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1874 prexor = 1; 1875 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1876 for (i = disks; i--; ) { 1877 struct r5dev *dev = &sh->dev[i]; 1878 if (head_sh->dev[i].written || 1879 test_bit(R5_InJournal, &head_sh->dev[i].flags)) 1880 xor_srcs[count++] = dev->page; 1881 } 1882 } else { 1883 xor_dest = sh->dev[pd_idx].page; 1884 for (i = disks; i--; ) { 1885 struct r5dev *dev = &sh->dev[i]; 1886 if (i != pd_idx) 1887 xor_srcs[count++] = dev->page; 1888 } 1889 } 1890 1891 /* 1/ if we prexor'd then the dest is reused as a source 1892 * 2/ if we did not prexor then we are redoing the parity 1893 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1894 * for the synchronous xor case 1895 */ 1896 last_stripe = !head_sh->batch_head || 1897 list_first_entry(&sh->batch_list, 1898 struct stripe_head, batch_list) == head_sh; 1899 if (last_stripe) { 1900 flags = ASYNC_TX_ACK | 1901 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1902 1903 atomic_inc(&head_sh->count); 1904 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 1905 to_addr_conv(sh, percpu, j)); 1906 } else { 1907 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 1908 init_async_submit(&submit, flags, tx, NULL, NULL, 1909 to_addr_conv(sh, percpu, j)); 1910 } 1911 1912 if (unlikely(count == 1)) 1913 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1914 else 1915 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1916 if (!last_stripe) { 1917 j++; 1918 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1919 batch_list); 1920 goto again; 1921 } 1922 } 1923 1924 static void 1925 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1926 struct dma_async_tx_descriptor *tx) 1927 { 1928 struct async_submit_ctl submit; 1929 struct page **blocks; 1930 int count, i, j = 0; 1931 struct stripe_head *head_sh = sh; 1932 int last_stripe; 1933 int synflags; 1934 unsigned long txflags; 1935 1936 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1937 1938 for (i = 0; i < sh->disks; i++) { 1939 if (sh->pd_idx == i || sh->qd_idx == i) 1940 continue; 1941 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1942 break; 1943 } 1944 if (i >= sh->disks) { 1945 atomic_inc(&sh->count); 1946 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1947 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1948 ops_complete_reconstruct(sh); 1949 return; 1950 } 1951 1952 again: 1953 blocks = to_addr_page(percpu, j); 1954 1955 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1956 synflags = SYNDROME_SRC_WRITTEN; 1957 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 1958 } else { 1959 synflags = SYNDROME_SRC_ALL; 1960 txflags = ASYNC_TX_ACK; 1961 } 1962 1963 count = set_syndrome_sources(blocks, sh, synflags); 1964 last_stripe = !head_sh->batch_head || 1965 list_first_entry(&sh->batch_list, 1966 struct stripe_head, batch_list) == head_sh; 1967 1968 if (last_stripe) { 1969 atomic_inc(&head_sh->count); 1970 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 1971 head_sh, to_addr_conv(sh, percpu, j)); 1972 } else 1973 init_async_submit(&submit, 0, tx, NULL, NULL, 1974 to_addr_conv(sh, percpu, j)); 1975 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1976 if (!last_stripe) { 1977 j++; 1978 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1979 batch_list); 1980 goto again; 1981 } 1982 } 1983 1984 static void ops_complete_check(void *stripe_head_ref) 1985 { 1986 struct stripe_head *sh = stripe_head_ref; 1987 1988 pr_debug("%s: stripe %llu\n", __func__, 1989 (unsigned long long)sh->sector); 1990 1991 sh->check_state = check_state_check_result; 1992 set_bit(STRIPE_HANDLE, &sh->state); 1993 raid5_release_stripe(sh); 1994 } 1995 1996 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1997 { 1998 int disks = sh->disks; 1999 int pd_idx = sh->pd_idx; 2000 int qd_idx = sh->qd_idx; 2001 struct page *xor_dest; 2002 struct page **xor_srcs = to_addr_page(percpu, 0); 2003 struct dma_async_tx_descriptor *tx; 2004 struct async_submit_ctl submit; 2005 int count; 2006 int i; 2007 2008 pr_debug("%s: stripe %llu\n", __func__, 2009 (unsigned long long)sh->sector); 2010 2011 BUG_ON(sh->batch_head); 2012 count = 0; 2013 xor_dest = sh->dev[pd_idx].page; 2014 xor_srcs[count++] = xor_dest; 2015 for (i = disks; i--; ) { 2016 if (i == pd_idx || i == qd_idx) 2017 continue; 2018 xor_srcs[count++] = sh->dev[i].page; 2019 } 2020 2021 init_async_submit(&submit, 0, NULL, NULL, NULL, 2022 to_addr_conv(sh, percpu, 0)); 2023 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 2024 &sh->ops.zero_sum_result, &submit); 2025 2026 atomic_inc(&sh->count); 2027 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2028 tx = async_trigger_callback(&submit); 2029 } 2030 2031 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2032 { 2033 struct page **srcs = to_addr_page(percpu, 0); 2034 struct async_submit_ctl submit; 2035 int count; 2036 2037 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2038 (unsigned long long)sh->sector, checkp); 2039 2040 BUG_ON(sh->batch_head); 2041 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); 2042 if (!checkp) 2043 srcs[count] = NULL; 2044 2045 atomic_inc(&sh->count); 2046 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2047 sh, to_addr_conv(sh, percpu, 0)); 2048 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 2049 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 2050 } 2051 2052 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2053 { 2054 int overlap_clear = 0, i, disks = sh->disks; 2055 struct dma_async_tx_descriptor *tx = NULL; 2056 struct r5conf *conf = sh->raid_conf; 2057 int level = conf->level; 2058 struct raid5_percpu *percpu; 2059 unsigned long cpu; 2060 2061 cpu = get_cpu(); 2062 percpu = per_cpu_ptr(conf->percpu, cpu); 2063 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2064 ops_run_biofill(sh); 2065 overlap_clear++; 2066 } 2067 2068 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2069 if (level < 6) 2070 tx = ops_run_compute5(sh, percpu); 2071 else { 2072 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2073 tx = ops_run_compute6_1(sh, percpu); 2074 else 2075 tx = ops_run_compute6_2(sh, percpu); 2076 } 2077 /* terminate the chain if reconstruct is not set to be run */ 2078 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2079 async_tx_ack(tx); 2080 } 2081 2082 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2083 if (level < 6) 2084 tx = ops_run_prexor5(sh, percpu, tx); 2085 else 2086 tx = ops_run_prexor6(sh, percpu, tx); 2087 } 2088 2089 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2090 tx = ops_run_partial_parity(sh, percpu, tx); 2091 2092 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2093 tx = ops_run_biodrain(sh, tx); 2094 overlap_clear++; 2095 } 2096 2097 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2098 if (level < 6) 2099 ops_run_reconstruct5(sh, percpu, tx); 2100 else 2101 ops_run_reconstruct6(sh, percpu, tx); 2102 } 2103 2104 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2105 if (sh->check_state == check_state_run) 2106 ops_run_check_p(sh, percpu); 2107 else if (sh->check_state == check_state_run_q) 2108 ops_run_check_pq(sh, percpu, 0); 2109 else if (sh->check_state == check_state_run_pq) 2110 ops_run_check_pq(sh, percpu, 1); 2111 else 2112 BUG(); 2113 } 2114 2115 if (overlap_clear && !sh->batch_head) 2116 for (i = disks; i--; ) { 2117 struct r5dev *dev = &sh->dev[i]; 2118 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2119 wake_up(&sh->raid_conf->wait_for_overlap); 2120 } 2121 put_cpu(); 2122 } 2123 2124 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2125 { 2126 if (sh->ppl_page) 2127 __free_page(sh->ppl_page); 2128 kmem_cache_free(sc, sh); 2129 } 2130 2131 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2132 int disks, struct r5conf *conf) 2133 { 2134 struct stripe_head *sh; 2135 int i; 2136 2137 sh = kmem_cache_zalloc(sc, gfp); 2138 if (sh) { 2139 spin_lock_init(&sh->stripe_lock); 2140 spin_lock_init(&sh->batch_lock); 2141 INIT_LIST_HEAD(&sh->batch_list); 2142 INIT_LIST_HEAD(&sh->lru); 2143 INIT_LIST_HEAD(&sh->r5c); 2144 INIT_LIST_HEAD(&sh->log_list); 2145 atomic_set(&sh->count, 1); 2146 sh->raid_conf = conf; 2147 sh->log_start = MaxSector; 2148 for (i = 0; i < disks; i++) { 2149 struct r5dev *dev = &sh->dev[i]; 2150 2151 bio_init(&dev->req, &dev->vec, 1); 2152 bio_init(&dev->rreq, &dev->rvec, 1); 2153 } 2154 2155 if (raid5_has_ppl(conf)) { 2156 sh->ppl_page = alloc_page(gfp); 2157 if (!sh->ppl_page) { 2158 free_stripe(sc, sh); 2159 sh = NULL; 2160 } 2161 } 2162 } 2163 return sh; 2164 } 2165 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2166 { 2167 struct stripe_head *sh; 2168 2169 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2170 if (!sh) 2171 return 0; 2172 2173 if (grow_buffers(sh, gfp)) { 2174 shrink_buffers(sh); 2175 free_stripe(conf->slab_cache, sh); 2176 return 0; 2177 } 2178 sh->hash_lock_index = 2179 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2180 /* we just created an active stripe so... */ 2181 atomic_inc(&conf->active_stripes); 2182 2183 raid5_release_stripe(sh); 2184 conf->max_nr_stripes++; 2185 return 1; 2186 } 2187 2188 static int grow_stripes(struct r5conf *conf, int num) 2189 { 2190 struct kmem_cache *sc; 2191 size_t namelen = sizeof(conf->cache_name[0]); 2192 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2193 2194 if (conf->mddev->gendisk) 2195 snprintf(conf->cache_name[0], namelen, 2196 "raid%d-%s", conf->level, mdname(conf->mddev)); 2197 else 2198 snprintf(conf->cache_name[0], namelen, 2199 "raid%d-%p", conf->level, conf->mddev); 2200 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2201 2202 conf->active_name = 0; 2203 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2204 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2205 0, 0, NULL); 2206 if (!sc) 2207 return 1; 2208 conf->slab_cache = sc; 2209 conf->pool_size = devs; 2210 while (num--) 2211 if (!grow_one_stripe(conf, GFP_KERNEL)) 2212 return 1; 2213 2214 return 0; 2215 } 2216 2217 /** 2218 * scribble_alloc - allocate percpu scribble buffer for required size 2219 * of the scribble region 2220 * @percpu - from for_each_present_cpu() of the caller 2221 * @num - total number of disks in the array 2222 * @cnt - scribble objs count for required size of the scribble region 2223 * 2224 * The scribble buffer size must be enough to contain: 2225 * 1/ a struct page pointer for each device in the array +2 2226 * 2/ room to convert each entry in (1) to its corresponding dma 2227 * (dma_map_page()) or page (page_address()) address. 2228 * 2229 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2230 * calculate over all devices (not just the data blocks), using zeros in place 2231 * of the P and Q blocks. 2232 */ 2233 static int scribble_alloc(struct raid5_percpu *percpu, 2234 int num, int cnt) 2235 { 2236 size_t obj_size = 2237 sizeof(struct page *) * (num+2) + 2238 sizeof(addr_conv_t) * (num+2); 2239 void *scribble; 2240 2241 /* 2242 * If here is in raid array suspend context, it is in memalloc noio 2243 * context as well, there is no potential recursive memory reclaim 2244 * I/Os with the GFP_KERNEL flag. 2245 */ 2246 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL); 2247 if (!scribble) 2248 return -ENOMEM; 2249 2250 kvfree(percpu->scribble); 2251 2252 percpu->scribble = scribble; 2253 percpu->scribble_obj_size = obj_size; 2254 return 0; 2255 } 2256 2257 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2258 { 2259 unsigned long cpu; 2260 int err = 0; 2261 2262 /* 2263 * Never shrink. And mddev_suspend() could deadlock if this is called 2264 * from raid5d. In that case, scribble_disks and scribble_sectors 2265 * should equal to new_disks and new_sectors 2266 */ 2267 if (conf->scribble_disks >= new_disks && 2268 conf->scribble_sectors >= new_sectors) 2269 return 0; 2270 mddev_suspend(conf->mddev); 2271 get_online_cpus(); 2272 2273 for_each_present_cpu(cpu) { 2274 struct raid5_percpu *percpu; 2275 2276 percpu = per_cpu_ptr(conf->percpu, cpu); 2277 err = scribble_alloc(percpu, new_disks, 2278 new_sectors / STRIPE_SECTORS); 2279 if (err) 2280 break; 2281 } 2282 2283 put_online_cpus(); 2284 mddev_resume(conf->mddev); 2285 if (!err) { 2286 conf->scribble_disks = new_disks; 2287 conf->scribble_sectors = new_sectors; 2288 } 2289 return err; 2290 } 2291 2292 static int resize_stripes(struct r5conf *conf, int newsize) 2293 { 2294 /* Make all the stripes able to hold 'newsize' devices. 2295 * New slots in each stripe get 'page' set to a new page. 2296 * 2297 * This happens in stages: 2298 * 1/ create a new kmem_cache and allocate the required number of 2299 * stripe_heads. 2300 * 2/ gather all the old stripe_heads and transfer the pages across 2301 * to the new stripe_heads. This will have the side effect of 2302 * freezing the array as once all stripe_heads have been collected, 2303 * no IO will be possible. Old stripe heads are freed once their 2304 * pages have been transferred over, and the old kmem_cache is 2305 * freed when all stripes are done. 2306 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2307 * we simple return a failure status - no need to clean anything up. 2308 * 4/ allocate new pages for the new slots in the new stripe_heads. 2309 * If this fails, we don't bother trying the shrink the 2310 * stripe_heads down again, we just leave them as they are. 2311 * As each stripe_head is processed the new one is released into 2312 * active service. 2313 * 2314 * Once step2 is started, we cannot afford to wait for a write, 2315 * so we use GFP_NOIO allocations. 2316 */ 2317 struct stripe_head *osh, *nsh; 2318 LIST_HEAD(newstripes); 2319 struct disk_info *ndisks; 2320 int err = 0; 2321 struct kmem_cache *sc; 2322 int i; 2323 int hash, cnt; 2324 2325 md_allow_write(conf->mddev); 2326 2327 /* Step 1 */ 2328 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2329 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2330 0, 0, NULL); 2331 if (!sc) 2332 return -ENOMEM; 2333 2334 /* Need to ensure auto-resizing doesn't interfere */ 2335 mutex_lock(&conf->cache_size_mutex); 2336 2337 for (i = conf->max_nr_stripes; i; i--) { 2338 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2339 if (!nsh) 2340 break; 2341 2342 list_add(&nsh->lru, &newstripes); 2343 } 2344 if (i) { 2345 /* didn't get enough, give up */ 2346 while (!list_empty(&newstripes)) { 2347 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2348 list_del(&nsh->lru); 2349 free_stripe(sc, nsh); 2350 } 2351 kmem_cache_destroy(sc); 2352 mutex_unlock(&conf->cache_size_mutex); 2353 return -ENOMEM; 2354 } 2355 /* Step 2 - Must use GFP_NOIO now. 2356 * OK, we have enough stripes, start collecting inactive 2357 * stripes and copying them over 2358 */ 2359 hash = 0; 2360 cnt = 0; 2361 list_for_each_entry(nsh, &newstripes, lru) { 2362 lock_device_hash_lock(conf, hash); 2363 wait_event_cmd(conf->wait_for_stripe, 2364 !list_empty(conf->inactive_list + hash), 2365 unlock_device_hash_lock(conf, hash), 2366 lock_device_hash_lock(conf, hash)); 2367 osh = get_free_stripe(conf, hash); 2368 unlock_device_hash_lock(conf, hash); 2369 2370 for(i=0; i<conf->pool_size; i++) { 2371 nsh->dev[i].page = osh->dev[i].page; 2372 nsh->dev[i].orig_page = osh->dev[i].page; 2373 } 2374 nsh->hash_lock_index = hash; 2375 free_stripe(conf->slab_cache, osh); 2376 cnt++; 2377 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2378 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2379 hash++; 2380 cnt = 0; 2381 } 2382 } 2383 kmem_cache_destroy(conf->slab_cache); 2384 2385 /* Step 3. 2386 * At this point, we are holding all the stripes so the array 2387 * is completely stalled, so now is a good time to resize 2388 * conf->disks and the scribble region 2389 */ 2390 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2391 if (ndisks) { 2392 for (i = 0; i < conf->pool_size; i++) 2393 ndisks[i] = conf->disks[i]; 2394 2395 for (i = conf->pool_size; i < newsize; i++) { 2396 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2397 if (!ndisks[i].extra_page) 2398 err = -ENOMEM; 2399 } 2400 2401 if (err) { 2402 for (i = conf->pool_size; i < newsize; i++) 2403 if (ndisks[i].extra_page) 2404 put_page(ndisks[i].extra_page); 2405 kfree(ndisks); 2406 } else { 2407 kfree(conf->disks); 2408 conf->disks = ndisks; 2409 } 2410 } else 2411 err = -ENOMEM; 2412 2413 mutex_unlock(&conf->cache_size_mutex); 2414 2415 conf->slab_cache = sc; 2416 conf->active_name = 1-conf->active_name; 2417 2418 /* Step 4, return new stripes to service */ 2419 while(!list_empty(&newstripes)) { 2420 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2421 list_del_init(&nsh->lru); 2422 2423 for (i=conf->raid_disks; i < newsize; i++) 2424 if (nsh->dev[i].page == NULL) { 2425 struct page *p = alloc_page(GFP_NOIO); 2426 nsh->dev[i].page = p; 2427 nsh->dev[i].orig_page = p; 2428 if (!p) 2429 err = -ENOMEM; 2430 } 2431 raid5_release_stripe(nsh); 2432 } 2433 /* critical section pass, GFP_NOIO no longer needed */ 2434 2435 if (!err) 2436 conf->pool_size = newsize; 2437 return err; 2438 } 2439 2440 static int drop_one_stripe(struct r5conf *conf) 2441 { 2442 struct stripe_head *sh; 2443 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2444 2445 spin_lock_irq(conf->hash_locks + hash); 2446 sh = get_free_stripe(conf, hash); 2447 spin_unlock_irq(conf->hash_locks + hash); 2448 if (!sh) 2449 return 0; 2450 BUG_ON(atomic_read(&sh->count)); 2451 shrink_buffers(sh); 2452 free_stripe(conf->slab_cache, sh); 2453 atomic_dec(&conf->active_stripes); 2454 conf->max_nr_stripes--; 2455 return 1; 2456 } 2457 2458 static void shrink_stripes(struct r5conf *conf) 2459 { 2460 while (conf->max_nr_stripes && 2461 drop_one_stripe(conf)) 2462 ; 2463 2464 kmem_cache_destroy(conf->slab_cache); 2465 conf->slab_cache = NULL; 2466 } 2467 2468 static void raid5_end_read_request(struct bio * bi) 2469 { 2470 struct stripe_head *sh = bi->bi_private; 2471 struct r5conf *conf = sh->raid_conf; 2472 int disks = sh->disks, i; 2473 char b[BDEVNAME_SIZE]; 2474 struct md_rdev *rdev = NULL; 2475 sector_t s; 2476 2477 for (i=0 ; i<disks; i++) 2478 if (bi == &sh->dev[i].req) 2479 break; 2480 2481 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2482 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2483 bi->bi_status); 2484 if (i == disks) { 2485 bio_reset(bi); 2486 BUG(); 2487 return; 2488 } 2489 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2490 /* If replacement finished while this request was outstanding, 2491 * 'replacement' might be NULL already. 2492 * In that case it moved down to 'rdev'. 2493 * rdev is not removed until all requests are finished. 2494 */ 2495 rdev = conf->disks[i].replacement; 2496 if (!rdev) 2497 rdev = conf->disks[i].rdev; 2498 2499 if (use_new_offset(conf, sh)) 2500 s = sh->sector + rdev->new_data_offset; 2501 else 2502 s = sh->sector + rdev->data_offset; 2503 if (!bi->bi_status) { 2504 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2505 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2506 /* Note that this cannot happen on a 2507 * replacement device. We just fail those on 2508 * any error 2509 */ 2510 pr_info_ratelimited( 2511 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n", 2512 mdname(conf->mddev), STRIPE_SECTORS, 2513 (unsigned long long)s, 2514 bdevname(rdev->bdev, b)); 2515 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2516 clear_bit(R5_ReadError, &sh->dev[i].flags); 2517 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2518 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2519 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2520 2521 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2522 /* 2523 * end read for a page in journal, this 2524 * must be preparing for prexor in rmw 2525 */ 2526 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2527 2528 if (atomic_read(&rdev->read_errors)) 2529 atomic_set(&rdev->read_errors, 0); 2530 } else { 2531 const char *bdn = bdevname(rdev->bdev, b); 2532 int retry = 0; 2533 int set_bad = 0; 2534 2535 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2536 if (!(bi->bi_status == BLK_STS_PROTECTION)) 2537 atomic_inc(&rdev->read_errors); 2538 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2539 pr_warn_ratelimited( 2540 "md/raid:%s: read error on replacement device (sector %llu on %s).\n", 2541 mdname(conf->mddev), 2542 (unsigned long long)s, 2543 bdn); 2544 else if (conf->mddev->degraded >= conf->max_degraded) { 2545 set_bad = 1; 2546 pr_warn_ratelimited( 2547 "md/raid:%s: read error not correctable (sector %llu on %s).\n", 2548 mdname(conf->mddev), 2549 (unsigned long long)s, 2550 bdn); 2551 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2552 /* Oh, no!!! */ 2553 set_bad = 1; 2554 pr_warn_ratelimited( 2555 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n", 2556 mdname(conf->mddev), 2557 (unsigned long long)s, 2558 bdn); 2559 } else if (atomic_read(&rdev->read_errors) 2560 > conf->max_nr_stripes) { 2561 if (!test_bit(Faulty, &rdev->flags)) { 2562 pr_warn("md/raid:%s: %d read_errors > %d stripes\n", 2563 mdname(conf->mddev), 2564 atomic_read(&rdev->read_errors), 2565 conf->max_nr_stripes); 2566 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n", 2567 mdname(conf->mddev), bdn); 2568 } 2569 } else 2570 retry = 1; 2571 if (set_bad && test_bit(In_sync, &rdev->flags) 2572 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2573 retry = 1; 2574 if (retry) 2575 if (sh->qd_idx >= 0 && sh->pd_idx == i) 2576 set_bit(R5_ReadError, &sh->dev[i].flags); 2577 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2578 set_bit(R5_ReadError, &sh->dev[i].flags); 2579 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2580 } else 2581 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2582 else { 2583 clear_bit(R5_ReadError, &sh->dev[i].flags); 2584 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2585 if (!(set_bad 2586 && test_bit(In_sync, &rdev->flags) 2587 && rdev_set_badblocks( 2588 rdev, sh->sector, STRIPE_SECTORS, 0))) 2589 md_error(conf->mddev, rdev); 2590 } 2591 } 2592 rdev_dec_pending(rdev, conf->mddev); 2593 bio_reset(bi); 2594 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2595 set_bit(STRIPE_HANDLE, &sh->state); 2596 raid5_release_stripe(sh); 2597 } 2598 2599 static void raid5_end_write_request(struct bio *bi) 2600 { 2601 struct stripe_head *sh = bi->bi_private; 2602 struct r5conf *conf = sh->raid_conf; 2603 int disks = sh->disks, i; 2604 struct md_rdev *rdev; 2605 sector_t first_bad; 2606 int bad_sectors; 2607 int replacement = 0; 2608 2609 for (i = 0 ; i < disks; i++) { 2610 if (bi == &sh->dev[i].req) { 2611 rdev = conf->disks[i].rdev; 2612 break; 2613 } 2614 if (bi == &sh->dev[i].rreq) { 2615 rdev = conf->disks[i].replacement; 2616 if (rdev) 2617 replacement = 1; 2618 else 2619 /* rdev was removed and 'replacement' 2620 * replaced it. rdev is not removed 2621 * until all requests are finished. 2622 */ 2623 rdev = conf->disks[i].rdev; 2624 break; 2625 } 2626 } 2627 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2628 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2629 bi->bi_status); 2630 if (i == disks) { 2631 bio_reset(bi); 2632 BUG(); 2633 return; 2634 } 2635 2636 if (replacement) { 2637 if (bi->bi_status) 2638 md_error(conf->mddev, rdev); 2639 else if (is_badblock(rdev, sh->sector, 2640 STRIPE_SECTORS, 2641 &first_bad, &bad_sectors)) 2642 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2643 } else { 2644 if (bi->bi_status) { 2645 set_bit(STRIPE_DEGRADED, &sh->state); 2646 set_bit(WriteErrorSeen, &rdev->flags); 2647 set_bit(R5_WriteError, &sh->dev[i].flags); 2648 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2649 set_bit(MD_RECOVERY_NEEDED, 2650 &rdev->mddev->recovery); 2651 } else if (is_badblock(rdev, sh->sector, 2652 STRIPE_SECTORS, 2653 &first_bad, &bad_sectors)) { 2654 set_bit(R5_MadeGood, &sh->dev[i].flags); 2655 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2656 /* That was a successful write so make 2657 * sure it looks like we already did 2658 * a re-write. 2659 */ 2660 set_bit(R5_ReWrite, &sh->dev[i].flags); 2661 } 2662 } 2663 rdev_dec_pending(rdev, conf->mddev); 2664 2665 if (sh->batch_head && bi->bi_status && !replacement) 2666 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2667 2668 bio_reset(bi); 2669 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2670 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2671 set_bit(STRIPE_HANDLE, &sh->state); 2672 raid5_release_stripe(sh); 2673 2674 if (sh->batch_head && sh != sh->batch_head) 2675 raid5_release_stripe(sh->batch_head); 2676 } 2677 2678 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2679 { 2680 char b[BDEVNAME_SIZE]; 2681 struct r5conf *conf = mddev->private; 2682 unsigned long flags; 2683 pr_debug("raid456: error called\n"); 2684 2685 spin_lock_irqsave(&conf->device_lock, flags); 2686 2687 if (test_bit(In_sync, &rdev->flags) && 2688 mddev->degraded == conf->max_degraded) { 2689 /* 2690 * Don't allow to achieve failed state 2691 * Don't try to recover this device 2692 */ 2693 conf->recovery_disabled = mddev->recovery_disabled; 2694 spin_unlock_irqrestore(&conf->device_lock, flags); 2695 return; 2696 } 2697 2698 set_bit(Faulty, &rdev->flags); 2699 clear_bit(In_sync, &rdev->flags); 2700 mddev->degraded = raid5_calc_degraded(conf); 2701 spin_unlock_irqrestore(&conf->device_lock, flags); 2702 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2703 2704 set_bit(Blocked, &rdev->flags); 2705 set_mask_bits(&mddev->sb_flags, 0, 2706 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2707 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n" 2708 "md/raid:%s: Operation continuing on %d devices.\n", 2709 mdname(mddev), 2710 bdevname(rdev->bdev, b), 2711 mdname(mddev), 2712 conf->raid_disks - mddev->degraded); 2713 r5c_update_on_rdev_error(mddev, rdev); 2714 } 2715 2716 /* 2717 * Input: a 'big' sector number, 2718 * Output: index of the data and parity disk, and the sector # in them. 2719 */ 2720 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2721 int previous, int *dd_idx, 2722 struct stripe_head *sh) 2723 { 2724 sector_t stripe, stripe2; 2725 sector_t chunk_number; 2726 unsigned int chunk_offset; 2727 int pd_idx, qd_idx; 2728 int ddf_layout = 0; 2729 sector_t new_sector; 2730 int algorithm = previous ? conf->prev_algo 2731 : conf->algorithm; 2732 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2733 : conf->chunk_sectors; 2734 int raid_disks = previous ? conf->previous_raid_disks 2735 : conf->raid_disks; 2736 int data_disks = raid_disks - conf->max_degraded; 2737 2738 /* First compute the information on this sector */ 2739 2740 /* 2741 * Compute the chunk number and the sector offset inside the chunk 2742 */ 2743 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2744 chunk_number = r_sector; 2745 2746 /* 2747 * Compute the stripe number 2748 */ 2749 stripe = chunk_number; 2750 *dd_idx = sector_div(stripe, data_disks); 2751 stripe2 = stripe; 2752 /* 2753 * Select the parity disk based on the user selected algorithm. 2754 */ 2755 pd_idx = qd_idx = -1; 2756 switch(conf->level) { 2757 case 4: 2758 pd_idx = data_disks; 2759 break; 2760 case 5: 2761 switch (algorithm) { 2762 case ALGORITHM_LEFT_ASYMMETRIC: 2763 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2764 if (*dd_idx >= pd_idx) 2765 (*dd_idx)++; 2766 break; 2767 case ALGORITHM_RIGHT_ASYMMETRIC: 2768 pd_idx = sector_div(stripe2, raid_disks); 2769 if (*dd_idx >= pd_idx) 2770 (*dd_idx)++; 2771 break; 2772 case ALGORITHM_LEFT_SYMMETRIC: 2773 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2774 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2775 break; 2776 case ALGORITHM_RIGHT_SYMMETRIC: 2777 pd_idx = sector_div(stripe2, raid_disks); 2778 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2779 break; 2780 case ALGORITHM_PARITY_0: 2781 pd_idx = 0; 2782 (*dd_idx)++; 2783 break; 2784 case ALGORITHM_PARITY_N: 2785 pd_idx = data_disks; 2786 break; 2787 default: 2788 BUG(); 2789 } 2790 break; 2791 case 6: 2792 2793 switch (algorithm) { 2794 case ALGORITHM_LEFT_ASYMMETRIC: 2795 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2796 qd_idx = pd_idx + 1; 2797 if (pd_idx == raid_disks-1) { 2798 (*dd_idx)++; /* Q D D D P */ 2799 qd_idx = 0; 2800 } else if (*dd_idx >= pd_idx) 2801 (*dd_idx) += 2; /* D D P Q D */ 2802 break; 2803 case ALGORITHM_RIGHT_ASYMMETRIC: 2804 pd_idx = sector_div(stripe2, raid_disks); 2805 qd_idx = pd_idx + 1; 2806 if (pd_idx == raid_disks-1) { 2807 (*dd_idx)++; /* Q D D D P */ 2808 qd_idx = 0; 2809 } else if (*dd_idx >= pd_idx) 2810 (*dd_idx) += 2; /* D D P Q D */ 2811 break; 2812 case ALGORITHM_LEFT_SYMMETRIC: 2813 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2814 qd_idx = (pd_idx + 1) % raid_disks; 2815 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2816 break; 2817 case ALGORITHM_RIGHT_SYMMETRIC: 2818 pd_idx = sector_div(stripe2, raid_disks); 2819 qd_idx = (pd_idx + 1) % raid_disks; 2820 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2821 break; 2822 2823 case ALGORITHM_PARITY_0: 2824 pd_idx = 0; 2825 qd_idx = 1; 2826 (*dd_idx) += 2; 2827 break; 2828 case ALGORITHM_PARITY_N: 2829 pd_idx = data_disks; 2830 qd_idx = data_disks + 1; 2831 break; 2832 2833 case ALGORITHM_ROTATING_ZERO_RESTART: 2834 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2835 * of blocks for computing Q is different. 2836 */ 2837 pd_idx = sector_div(stripe2, raid_disks); 2838 qd_idx = pd_idx + 1; 2839 if (pd_idx == raid_disks-1) { 2840 (*dd_idx)++; /* Q D D D P */ 2841 qd_idx = 0; 2842 } else if (*dd_idx >= pd_idx) 2843 (*dd_idx) += 2; /* D D P Q D */ 2844 ddf_layout = 1; 2845 break; 2846 2847 case ALGORITHM_ROTATING_N_RESTART: 2848 /* Same a left_asymmetric, by first stripe is 2849 * D D D P Q rather than 2850 * Q D D D P 2851 */ 2852 stripe2 += 1; 2853 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2854 qd_idx = pd_idx + 1; 2855 if (pd_idx == raid_disks-1) { 2856 (*dd_idx)++; /* Q D D D P */ 2857 qd_idx = 0; 2858 } else if (*dd_idx >= pd_idx) 2859 (*dd_idx) += 2; /* D D P Q D */ 2860 ddf_layout = 1; 2861 break; 2862 2863 case ALGORITHM_ROTATING_N_CONTINUE: 2864 /* Same as left_symmetric but Q is before P */ 2865 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2866 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2867 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2868 ddf_layout = 1; 2869 break; 2870 2871 case ALGORITHM_LEFT_ASYMMETRIC_6: 2872 /* RAID5 left_asymmetric, with Q on last device */ 2873 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2874 if (*dd_idx >= pd_idx) 2875 (*dd_idx)++; 2876 qd_idx = raid_disks - 1; 2877 break; 2878 2879 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2880 pd_idx = sector_div(stripe2, raid_disks-1); 2881 if (*dd_idx >= pd_idx) 2882 (*dd_idx)++; 2883 qd_idx = raid_disks - 1; 2884 break; 2885 2886 case ALGORITHM_LEFT_SYMMETRIC_6: 2887 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2888 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2889 qd_idx = raid_disks - 1; 2890 break; 2891 2892 case ALGORITHM_RIGHT_SYMMETRIC_6: 2893 pd_idx = sector_div(stripe2, raid_disks-1); 2894 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2895 qd_idx = raid_disks - 1; 2896 break; 2897 2898 case ALGORITHM_PARITY_0_6: 2899 pd_idx = 0; 2900 (*dd_idx)++; 2901 qd_idx = raid_disks - 1; 2902 break; 2903 2904 default: 2905 BUG(); 2906 } 2907 break; 2908 } 2909 2910 if (sh) { 2911 sh->pd_idx = pd_idx; 2912 sh->qd_idx = qd_idx; 2913 sh->ddf_layout = ddf_layout; 2914 } 2915 /* 2916 * Finally, compute the new sector number 2917 */ 2918 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2919 return new_sector; 2920 } 2921 2922 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 2923 { 2924 struct r5conf *conf = sh->raid_conf; 2925 int raid_disks = sh->disks; 2926 int data_disks = raid_disks - conf->max_degraded; 2927 sector_t new_sector = sh->sector, check; 2928 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2929 : conf->chunk_sectors; 2930 int algorithm = previous ? conf->prev_algo 2931 : conf->algorithm; 2932 sector_t stripe; 2933 int chunk_offset; 2934 sector_t chunk_number; 2935 int dummy1, dd_idx = i; 2936 sector_t r_sector; 2937 struct stripe_head sh2; 2938 2939 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2940 stripe = new_sector; 2941 2942 if (i == sh->pd_idx) 2943 return 0; 2944 switch(conf->level) { 2945 case 4: break; 2946 case 5: 2947 switch (algorithm) { 2948 case ALGORITHM_LEFT_ASYMMETRIC: 2949 case ALGORITHM_RIGHT_ASYMMETRIC: 2950 if (i > sh->pd_idx) 2951 i--; 2952 break; 2953 case ALGORITHM_LEFT_SYMMETRIC: 2954 case ALGORITHM_RIGHT_SYMMETRIC: 2955 if (i < sh->pd_idx) 2956 i += raid_disks; 2957 i -= (sh->pd_idx + 1); 2958 break; 2959 case ALGORITHM_PARITY_0: 2960 i -= 1; 2961 break; 2962 case ALGORITHM_PARITY_N: 2963 break; 2964 default: 2965 BUG(); 2966 } 2967 break; 2968 case 6: 2969 if (i == sh->qd_idx) 2970 return 0; /* It is the Q disk */ 2971 switch (algorithm) { 2972 case ALGORITHM_LEFT_ASYMMETRIC: 2973 case ALGORITHM_RIGHT_ASYMMETRIC: 2974 case ALGORITHM_ROTATING_ZERO_RESTART: 2975 case ALGORITHM_ROTATING_N_RESTART: 2976 if (sh->pd_idx == raid_disks-1) 2977 i--; /* Q D D D P */ 2978 else if (i > sh->pd_idx) 2979 i -= 2; /* D D P Q D */ 2980 break; 2981 case ALGORITHM_LEFT_SYMMETRIC: 2982 case ALGORITHM_RIGHT_SYMMETRIC: 2983 if (sh->pd_idx == raid_disks-1) 2984 i--; /* Q D D D P */ 2985 else { 2986 /* D D P Q D */ 2987 if (i < sh->pd_idx) 2988 i += raid_disks; 2989 i -= (sh->pd_idx + 2); 2990 } 2991 break; 2992 case ALGORITHM_PARITY_0: 2993 i -= 2; 2994 break; 2995 case ALGORITHM_PARITY_N: 2996 break; 2997 case ALGORITHM_ROTATING_N_CONTINUE: 2998 /* Like left_symmetric, but P is before Q */ 2999 if (sh->pd_idx == 0) 3000 i--; /* P D D D Q */ 3001 else { 3002 /* D D Q P D */ 3003 if (i < sh->pd_idx) 3004 i += raid_disks; 3005 i -= (sh->pd_idx + 1); 3006 } 3007 break; 3008 case ALGORITHM_LEFT_ASYMMETRIC_6: 3009 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3010 if (i > sh->pd_idx) 3011 i--; 3012 break; 3013 case ALGORITHM_LEFT_SYMMETRIC_6: 3014 case ALGORITHM_RIGHT_SYMMETRIC_6: 3015 if (i < sh->pd_idx) 3016 i += data_disks + 1; 3017 i -= (sh->pd_idx + 1); 3018 break; 3019 case ALGORITHM_PARITY_0_6: 3020 i -= 1; 3021 break; 3022 default: 3023 BUG(); 3024 } 3025 break; 3026 } 3027 3028 chunk_number = stripe * data_disks + i; 3029 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3030 3031 check = raid5_compute_sector(conf, r_sector, 3032 previous, &dummy1, &sh2); 3033 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3034 || sh2.qd_idx != sh->qd_idx) { 3035 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3036 mdname(conf->mddev)); 3037 return 0; 3038 } 3039 return r_sector; 3040 } 3041 3042 /* 3043 * There are cases where we want handle_stripe_dirtying() and 3044 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3045 * 3046 * This function checks whether we want to delay the towrite. Specifically, 3047 * we delay the towrite when: 3048 * 3049 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3050 * stripe has data in journal (for other devices). 3051 * 3052 * In this case, when reading data for the non-overwrite dev, it is 3053 * necessary to handle complex rmw of write back cache (prexor with 3054 * orig_page, and xor with page). To keep read path simple, we would 3055 * like to flush data in journal to RAID disks first, so complex rmw 3056 * is handled in the write patch (handle_stripe_dirtying). 3057 * 3058 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3059 * 3060 * It is important to be able to flush all stripes in raid5-cache. 3061 * Therefore, we need reserve some space on the journal device for 3062 * these flushes. If flush operation includes pending writes to the 3063 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3064 * for the flush out. If we exclude these pending writes from flush 3065 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3066 * Therefore, excluding pending writes in these cases enables more 3067 * efficient use of the journal device. 3068 * 3069 * Note: To make sure the stripe makes progress, we only delay 3070 * towrite for stripes with data already in journal (injournal > 0). 3071 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3072 * no_space_stripes list. 3073 * 3074 * 3. during journal failure 3075 * In journal failure, we try to flush all cached data to raid disks 3076 * based on data in stripe cache. The array is read-only to upper 3077 * layers, so we would skip all pending writes. 3078 * 3079 */ 3080 static inline bool delay_towrite(struct r5conf *conf, 3081 struct r5dev *dev, 3082 struct stripe_head_state *s) 3083 { 3084 /* case 1 above */ 3085 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3086 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3087 return true; 3088 /* case 2 above */ 3089 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3090 s->injournal > 0) 3091 return true; 3092 /* case 3 above */ 3093 if (s->log_failed && s->injournal) 3094 return true; 3095 return false; 3096 } 3097 3098 static void 3099 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3100 int rcw, int expand) 3101 { 3102 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3103 struct r5conf *conf = sh->raid_conf; 3104 int level = conf->level; 3105 3106 if (rcw) { 3107 /* 3108 * In some cases, handle_stripe_dirtying initially decided to 3109 * run rmw and allocates extra page for prexor. However, rcw is 3110 * cheaper later on. We need to free the extra page now, 3111 * because we won't be able to do that in ops_complete_prexor(). 3112 */ 3113 r5c_release_extra_page(sh); 3114 3115 for (i = disks; i--; ) { 3116 struct r5dev *dev = &sh->dev[i]; 3117 3118 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3119 set_bit(R5_LOCKED, &dev->flags); 3120 set_bit(R5_Wantdrain, &dev->flags); 3121 if (!expand) 3122 clear_bit(R5_UPTODATE, &dev->flags); 3123 s->locked++; 3124 } else if (test_bit(R5_InJournal, &dev->flags)) { 3125 set_bit(R5_LOCKED, &dev->flags); 3126 s->locked++; 3127 } 3128 } 3129 /* if we are not expanding this is a proper write request, and 3130 * there will be bios with new data to be drained into the 3131 * stripe cache 3132 */ 3133 if (!expand) { 3134 if (!s->locked) 3135 /* False alarm, nothing to do */ 3136 return; 3137 sh->reconstruct_state = reconstruct_state_drain_run; 3138 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3139 } else 3140 sh->reconstruct_state = reconstruct_state_run; 3141 3142 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3143 3144 if (s->locked + conf->max_degraded == disks) 3145 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3146 atomic_inc(&conf->pending_full_writes); 3147 } else { 3148 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3149 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3150 BUG_ON(level == 6 && 3151 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3152 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3153 3154 for (i = disks; i--; ) { 3155 struct r5dev *dev = &sh->dev[i]; 3156 if (i == pd_idx || i == qd_idx) 3157 continue; 3158 3159 if (dev->towrite && 3160 (test_bit(R5_UPTODATE, &dev->flags) || 3161 test_bit(R5_Wantcompute, &dev->flags))) { 3162 set_bit(R5_Wantdrain, &dev->flags); 3163 set_bit(R5_LOCKED, &dev->flags); 3164 clear_bit(R5_UPTODATE, &dev->flags); 3165 s->locked++; 3166 } else if (test_bit(R5_InJournal, &dev->flags)) { 3167 set_bit(R5_LOCKED, &dev->flags); 3168 s->locked++; 3169 } 3170 } 3171 if (!s->locked) 3172 /* False alarm - nothing to do */ 3173 return; 3174 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3175 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3176 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3177 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3178 } 3179 3180 /* keep the parity disk(s) locked while asynchronous operations 3181 * are in flight 3182 */ 3183 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3184 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3185 s->locked++; 3186 3187 if (level == 6) { 3188 int qd_idx = sh->qd_idx; 3189 struct r5dev *dev = &sh->dev[qd_idx]; 3190 3191 set_bit(R5_LOCKED, &dev->flags); 3192 clear_bit(R5_UPTODATE, &dev->flags); 3193 s->locked++; 3194 } 3195 3196 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3197 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3198 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3199 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3200 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3201 3202 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3203 __func__, (unsigned long long)sh->sector, 3204 s->locked, s->ops_request); 3205 } 3206 3207 /* 3208 * Each stripe/dev can have one or more bion attached. 3209 * toread/towrite point to the first in a chain. 3210 * The bi_next chain must be in order. 3211 */ 3212 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 3213 int forwrite, int previous) 3214 { 3215 struct bio **bip; 3216 struct r5conf *conf = sh->raid_conf; 3217 int firstwrite=0; 3218 3219 pr_debug("adding bi b#%llu to stripe s#%llu\n", 3220 (unsigned long long)bi->bi_iter.bi_sector, 3221 (unsigned long long)sh->sector); 3222 3223 spin_lock_irq(&sh->stripe_lock); 3224 sh->dev[dd_idx].write_hint = bi->bi_write_hint; 3225 /* Don't allow new IO added to stripes in batch list */ 3226 if (sh->batch_head) 3227 goto overlap; 3228 if (forwrite) { 3229 bip = &sh->dev[dd_idx].towrite; 3230 if (*bip == NULL) 3231 firstwrite = 1; 3232 } else 3233 bip = &sh->dev[dd_idx].toread; 3234 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3235 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3236 goto overlap; 3237 bip = & (*bip)->bi_next; 3238 } 3239 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3240 goto overlap; 3241 3242 if (forwrite && raid5_has_ppl(conf)) { 3243 /* 3244 * With PPL only writes to consecutive data chunks within a 3245 * stripe are allowed because for a single stripe_head we can 3246 * only have one PPL entry at a time, which describes one data 3247 * range. Not really an overlap, but wait_for_overlap can be 3248 * used to handle this. 3249 */ 3250 sector_t sector; 3251 sector_t first = 0; 3252 sector_t last = 0; 3253 int count = 0; 3254 int i; 3255 3256 for (i = 0; i < sh->disks; i++) { 3257 if (i != sh->pd_idx && 3258 (i == dd_idx || sh->dev[i].towrite)) { 3259 sector = sh->dev[i].sector; 3260 if (count == 0 || sector < first) 3261 first = sector; 3262 if (sector > last) 3263 last = sector; 3264 count++; 3265 } 3266 } 3267 3268 if (first + conf->chunk_sectors * (count - 1) != last) 3269 goto overlap; 3270 } 3271 3272 if (!forwrite || previous) 3273 clear_bit(STRIPE_BATCH_READY, &sh->state); 3274 3275 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3276 if (*bip) 3277 bi->bi_next = *bip; 3278 *bip = bi; 3279 bio_inc_remaining(bi); 3280 md_write_inc(conf->mddev, bi); 3281 3282 if (forwrite) { 3283 /* check if page is covered */ 3284 sector_t sector = sh->dev[dd_idx].sector; 3285 for (bi=sh->dev[dd_idx].towrite; 3286 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 3287 bi && bi->bi_iter.bi_sector <= sector; 3288 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 3289 if (bio_end_sector(bi) >= sector) 3290 sector = bio_end_sector(bi); 3291 } 3292 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 3293 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3294 sh->overwrite_disks++; 3295 } 3296 3297 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3298 (unsigned long long)(*bip)->bi_iter.bi_sector, 3299 (unsigned long long)sh->sector, dd_idx); 3300 3301 if (conf->mddev->bitmap && firstwrite) { 3302 /* Cannot hold spinlock over bitmap_startwrite, 3303 * but must ensure this isn't added to a batch until 3304 * we have added to the bitmap and set bm_seq. 3305 * So set STRIPE_BITMAP_PENDING to prevent 3306 * batching. 3307 * If multiple add_stripe_bio() calls race here they 3308 * much all set STRIPE_BITMAP_PENDING. So only the first one 3309 * to complete "bitmap_startwrite" gets to set 3310 * STRIPE_BIT_DELAY. This is important as once a stripe 3311 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3312 * any more. 3313 */ 3314 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3315 spin_unlock_irq(&sh->stripe_lock); 3316 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3317 STRIPE_SECTORS, 0); 3318 spin_lock_irq(&sh->stripe_lock); 3319 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3320 if (!sh->batch_head) { 3321 sh->bm_seq = conf->seq_flush+1; 3322 set_bit(STRIPE_BIT_DELAY, &sh->state); 3323 } 3324 } 3325 spin_unlock_irq(&sh->stripe_lock); 3326 3327 if (stripe_can_batch(sh)) 3328 stripe_add_to_batch_list(conf, sh); 3329 return 1; 3330 3331 overlap: 3332 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3333 spin_unlock_irq(&sh->stripe_lock); 3334 return 0; 3335 } 3336 3337 static void end_reshape(struct r5conf *conf); 3338 3339 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3340 struct stripe_head *sh) 3341 { 3342 int sectors_per_chunk = 3343 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3344 int dd_idx; 3345 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3346 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3347 3348 raid5_compute_sector(conf, 3349 stripe * (disks - conf->max_degraded) 3350 *sectors_per_chunk + chunk_offset, 3351 previous, 3352 &dd_idx, sh); 3353 } 3354 3355 static void 3356 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3357 struct stripe_head_state *s, int disks) 3358 { 3359 int i; 3360 BUG_ON(sh->batch_head); 3361 for (i = disks; i--; ) { 3362 struct bio *bi; 3363 int bitmap_end = 0; 3364 3365 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3366 struct md_rdev *rdev; 3367 rcu_read_lock(); 3368 rdev = rcu_dereference(conf->disks[i].rdev); 3369 if (rdev && test_bit(In_sync, &rdev->flags) && 3370 !test_bit(Faulty, &rdev->flags)) 3371 atomic_inc(&rdev->nr_pending); 3372 else 3373 rdev = NULL; 3374 rcu_read_unlock(); 3375 if (rdev) { 3376 if (!rdev_set_badblocks( 3377 rdev, 3378 sh->sector, 3379 STRIPE_SECTORS, 0)) 3380 md_error(conf->mddev, rdev); 3381 rdev_dec_pending(rdev, conf->mddev); 3382 } 3383 } 3384 spin_lock_irq(&sh->stripe_lock); 3385 /* fail all writes first */ 3386 bi = sh->dev[i].towrite; 3387 sh->dev[i].towrite = NULL; 3388 sh->overwrite_disks = 0; 3389 spin_unlock_irq(&sh->stripe_lock); 3390 if (bi) 3391 bitmap_end = 1; 3392 3393 log_stripe_write_finished(sh); 3394 3395 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3396 wake_up(&conf->wait_for_overlap); 3397 3398 while (bi && bi->bi_iter.bi_sector < 3399 sh->dev[i].sector + STRIPE_SECTORS) { 3400 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 3401 3402 md_write_end(conf->mddev); 3403 bio_io_error(bi); 3404 bi = nextbi; 3405 } 3406 if (bitmap_end) 3407 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3408 STRIPE_SECTORS, 0, 0); 3409 bitmap_end = 0; 3410 /* and fail all 'written' */ 3411 bi = sh->dev[i].written; 3412 sh->dev[i].written = NULL; 3413 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3414 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3415 sh->dev[i].page = sh->dev[i].orig_page; 3416 } 3417 3418 if (bi) bitmap_end = 1; 3419 while (bi && bi->bi_iter.bi_sector < 3420 sh->dev[i].sector + STRIPE_SECTORS) { 3421 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 3422 3423 md_write_end(conf->mddev); 3424 bio_io_error(bi); 3425 bi = bi2; 3426 } 3427 3428 /* fail any reads if this device is non-operational and 3429 * the data has not reached the cache yet. 3430 */ 3431 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3432 s->failed > conf->max_degraded && 3433 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3434 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3435 spin_lock_irq(&sh->stripe_lock); 3436 bi = sh->dev[i].toread; 3437 sh->dev[i].toread = NULL; 3438 spin_unlock_irq(&sh->stripe_lock); 3439 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3440 wake_up(&conf->wait_for_overlap); 3441 if (bi) 3442 s->to_read--; 3443 while (bi && bi->bi_iter.bi_sector < 3444 sh->dev[i].sector + STRIPE_SECTORS) { 3445 struct bio *nextbi = 3446 r5_next_bio(bi, sh->dev[i].sector); 3447 3448 bio_io_error(bi); 3449 bi = nextbi; 3450 } 3451 } 3452 if (bitmap_end) 3453 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3454 STRIPE_SECTORS, 0, 0); 3455 /* If we were in the middle of a write the parity block might 3456 * still be locked - so just clear all R5_LOCKED flags 3457 */ 3458 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3459 } 3460 s->to_write = 0; 3461 s->written = 0; 3462 3463 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3464 if (atomic_dec_and_test(&conf->pending_full_writes)) 3465 md_wakeup_thread(conf->mddev->thread); 3466 } 3467 3468 static void 3469 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3470 struct stripe_head_state *s) 3471 { 3472 int abort = 0; 3473 int i; 3474 3475 BUG_ON(sh->batch_head); 3476 clear_bit(STRIPE_SYNCING, &sh->state); 3477 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3478 wake_up(&conf->wait_for_overlap); 3479 s->syncing = 0; 3480 s->replacing = 0; 3481 /* There is nothing more to do for sync/check/repair. 3482 * Don't even need to abort as that is handled elsewhere 3483 * if needed, and not always wanted e.g. if there is a known 3484 * bad block here. 3485 * For recover/replace we need to record a bad block on all 3486 * non-sync devices, or abort the recovery 3487 */ 3488 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3489 /* During recovery devices cannot be removed, so 3490 * locking and refcounting of rdevs is not needed 3491 */ 3492 rcu_read_lock(); 3493 for (i = 0; i < conf->raid_disks; i++) { 3494 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3495 if (rdev 3496 && !test_bit(Faulty, &rdev->flags) 3497 && !test_bit(In_sync, &rdev->flags) 3498 && !rdev_set_badblocks(rdev, sh->sector, 3499 STRIPE_SECTORS, 0)) 3500 abort = 1; 3501 rdev = rcu_dereference(conf->disks[i].replacement); 3502 if (rdev 3503 && !test_bit(Faulty, &rdev->flags) 3504 && !test_bit(In_sync, &rdev->flags) 3505 && !rdev_set_badblocks(rdev, sh->sector, 3506 STRIPE_SECTORS, 0)) 3507 abort = 1; 3508 } 3509 rcu_read_unlock(); 3510 if (abort) 3511 conf->recovery_disabled = 3512 conf->mddev->recovery_disabled; 3513 } 3514 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 3515 } 3516 3517 static int want_replace(struct stripe_head *sh, int disk_idx) 3518 { 3519 struct md_rdev *rdev; 3520 int rv = 0; 3521 3522 rcu_read_lock(); 3523 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3524 if (rdev 3525 && !test_bit(Faulty, &rdev->flags) 3526 && !test_bit(In_sync, &rdev->flags) 3527 && (rdev->recovery_offset <= sh->sector 3528 || rdev->mddev->recovery_cp <= sh->sector)) 3529 rv = 1; 3530 rcu_read_unlock(); 3531 return rv; 3532 } 3533 3534 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3535 int disk_idx, int disks) 3536 { 3537 struct r5dev *dev = &sh->dev[disk_idx]; 3538 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3539 &sh->dev[s->failed_num[1]] }; 3540 int i; 3541 3542 3543 if (test_bit(R5_LOCKED, &dev->flags) || 3544 test_bit(R5_UPTODATE, &dev->flags)) 3545 /* No point reading this as we already have it or have 3546 * decided to get it. 3547 */ 3548 return 0; 3549 3550 if (dev->toread || 3551 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3552 /* We need this block to directly satisfy a request */ 3553 return 1; 3554 3555 if (s->syncing || s->expanding || 3556 (s->replacing && want_replace(sh, disk_idx))) 3557 /* When syncing, or expanding we read everything. 3558 * When replacing, we need the replaced block. 3559 */ 3560 return 1; 3561 3562 if ((s->failed >= 1 && fdev[0]->toread) || 3563 (s->failed >= 2 && fdev[1]->toread)) 3564 /* If we want to read from a failed device, then 3565 * we need to actually read every other device. 3566 */ 3567 return 1; 3568 3569 /* Sometimes neither read-modify-write nor reconstruct-write 3570 * cycles can work. In those cases we read every block we 3571 * can. Then the parity-update is certain to have enough to 3572 * work with. 3573 * This can only be a problem when we need to write something, 3574 * and some device has failed. If either of those tests 3575 * fail we need look no further. 3576 */ 3577 if (!s->failed || !s->to_write) 3578 return 0; 3579 3580 if (test_bit(R5_Insync, &dev->flags) && 3581 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3582 /* Pre-reads at not permitted until after short delay 3583 * to gather multiple requests. However if this 3584 * device is no Insync, the block could only be computed 3585 * and there is no need to delay that. 3586 */ 3587 return 0; 3588 3589 for (i = 0; i < s->failed && i < 2; i++) { 3590 if (fdev[i]->towrite && 3591 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3592 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3593 /* If we have a partial write to a failed 3594 * device, then we will need to reconstruct 3595 * the content of that device, so all other 3596 * devices must be read. 3597 */ 3598 return 1; 3599 } 3600 3601 /* If we are forced to do a reconstruct-write, either because 3602 * the current RAID6 implementation only supports that, or 3603 * because parity cannot be trusted and we are currently 3604 * recovering it, there is extra need to be careful. 3605 * If one of the devices that we would need to read, because 3606 * it is not being overwritten (and maybe not written at all) 3607 * is missing/faulty, then we need to read everything we can. 3608 */ 3609 if (sh->raid_conf->level != 6 && 3610 sh->sector < sh->raid_conf->mddev->recovery_cp) 3611 /* reconstruct-write isn't being forced */ 3612 return 0; 3613 for (i = 0; i < s->failed && i < 2; i++) { 3614 if (s->failed_num[i] != sh->pd_idx && 3615 s->failed_num[i] != sh->qd_idx && 3616 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3617 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3618 return 1; 3619 } 3620 3621 return 0; 3622 } 3623 3624 /* fetch_block - checks the given member device to see if its data needs 3625 * to be read or computed to satisfy a request. 3626 * 3627 * Returns 1 when no more member devices need to be checked, otherwise returns 3628 * 0 to tell the loop in handle_stripe_fill to continue 3629 */ 3630 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3631 int disk_idx, int disks) 3632 { 3633 struct r5dev *dev = &sh->dev[disk_idx]; 3634 3635 /* is the data in this block needed, and can we get it? */ 3636 if (need_this_block(sh, s, disk_idx, disks)) { 3637 /* we would like to get this block, possibly by computing it, 3638 * otherwise read it if the backing disk is insync 3639 */ 3640 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3641 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3642 BUG_ON(sh->batch_head); 3643 3644 /* 3645 * In the raid6 case if the only non-uptodate disk is P 3646 * then we already trusted P to compute the other failed 3647 * drives. It is safe to compute rather than re-read P. 3648 * In other cases we only compute blocks from failed 3649 * devices, otherwise check/repair might fail to detect 3650 * a real inconsistency. 3651 */ 3652 3653 if ((s->uptodate == disks - 1) && 3654 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3655 (s->failed && (disk_idx == s->failed_num[0] || 3656 disk_idx == s->failed_num[1])))) { 3657 /* have disk failed, and we're requested to fetch it; 3658 * do compute it 3659 */ 3660 pr_debug("Computing stripe %llu block %d\n", 3661 (unsigned long long)sh->sector, disk_idx); 3662 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3663 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3664 set_bit(R5_Wantcompute, &dev->flags); 3665 sh->ops.target = disk_idx; 3666 sh->ops.target2 = -1; /* no 2nd target */ 3667 s->req_compute = 1; 3668 /* Careful: from this point on 'uptodate' is in the eye 3669 * of raid_run_ops which services 'compute' operations 3670 * before writes. R5_Wantcompute flags a block that will 3671 * be R5_UPTODATE by the time it is needed for a 3672 * subsequent operation. 3673 */ 3674 s->uptodate++; 3675 return 1; 3676 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3677 /* Computing 2-failure is *very* expensive; only 3678 * do it if failed >= 2 3679 */ 3680 int other; 3681 for (other = disks; other--; ) { 3682 if (other == disk_idx) 3683 continue; 3684 if (!test_bit(R5_UPTODATE, 3685 &sh->dev[other].flags)) 3686 break; 3687 } 3688 BUG_ON(other < 0); 3689 pr_debug("Computing stripe %llu blocks %d,%d\n", 3690 (unsigned long long)sh->sector, 3691 disk_idx, other); 3692 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3693 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3694 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3695 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3696 sh->ops.target = disk_idx; 3697 sh->ops.target2 = other; 3698 s->uptodate += 2; 3699 s->req_compute = 1; 3700 return 1; 3701 } else if (test_bit(R5_Insync, &dev->flags)) { 3702 set_bit(R5_LOCKED, &dev->flags); 3703 set_bit(R5_Wantread, &dev->flags); 3704 s->locked++; 3705 pr_debug("Reading block %d (sync=%d)\n", 3706 disk_idx, s->syncing); 3707 } 3708 } 3709 3710 return 0; 3711 } 3712 3713 /** 3714 * handle_stripe_fill - read or compute data to satisfy pending requests. 3715 */ 3716 static void handle_stripe_fill(struct stripe_head *sh, 3717 struct stripe_head_state *s, 3718 int disks) 3719 { 3720 int i; 3721 3722 /* look for blocks to read/compute, skip this if a compute 3723 * is already in flight, or if the stripe contents are in the 3724 * midst of changing due to a write 3725 */ 3726 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3727 !sh->reconstruct_state) { 3728 3729 /* 3730 * For degraded stripe with data in journal, do not handle 3731 * read requests yet, instead, flush the stripe to raid 3732 * disks first, this avoids handling complex rmw of write 3733 * back cache (prexor with orig_page, and then xor with 3734 * page) in the read path 3735 */ 3736 if (s->injournal && s->failed) { 3737 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 3738 r5c_make_stripe_write_out(sh); 3739 goto out; 3740 } 3741 3742 for (i = disks; i--; ) 3743 if (fetch_block(sh, s, i, disks)) 3744 break; 3745 } 3746 out: 3747 set_bit(STRIPE_HANDLE, &sh->state); 3748 } 3749 3750 static void break_stripe_batch_list(struct stripe_head *head_sh, 3751 unsigned long handle_flags); 3752 /* handle_stripe_clean_event 3753 * any written block on an uptodate or failed drive can be returned. 3754 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3755 * never LOCKED, so we don't need to test 'failed' directly. 3756 */ 3757 static void handle_stripe_clean_event(struct r5conf *conf, 3758 struct stripe_head *sh, int disks) 3759 { 3760 int i; 3761 struct r5dev *dev; 3762 int discard_pending = 0; 3763 struct stripe_head *head_sh = sh; 3764 bool do_endio = false; 3765 3766 for (i = disks; i--; ) 3767 if (sh->dev[i].written) { 3768 dev = &sh->dev[i]; 3769 if (!test_bit(R5_LOCKED, &dev->flags) && 3770 (test_bit(R5_UPTODATE, &dev->flags) || 3771 test_bit(R5_Discard, &dev->flags) || 3772 test_bit(R5_SkipCopy, &dev->flags))) { 3773 /* We can return any write requests */ 3774 struct bio *wbi, *wbi2; 3775 pr_debug("Return write for disc %d\n", i); 3776 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3777 clear_bit(R5_UPTODATE, &dev->flags); 3778 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3779 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3780 } 3781 do_endio = true; 3782 3783 returnbi: 3784 dev->page = dev->orig_page; 3785 wbi = dev->written; 3786 dev->written = NULL; 3787 while (wbi && wbi->bi_iter.bi_sector < 3788 dev->sector + STRIPE_SECTORS) { 3789 wbi2 = r5_next_bio(wbi, dev->sector); 3790 md_write_end(conf->mddev); 3791 bio_endio(wbi); 3792 wbi = wbi2; 3793 } 3794 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3795 STRIPE_SECTORS, 3796 !test_bit(STRIPE_DEGRADED, &sh->state), 3797 0); 3798 if (head_sh->batch_head) { 3799 sh = list_first_entry(&sh->batch_list, 3800 struct stripe_head, 3801 batch_list); 3802 if (sh != head_sh) { 3803 dev = &sh->dev[i]; 3804 goto returnbi; 3805 } 3806 } 3807 sh = head_sh; 3808 dev = &sh->dev[i]; 3809 } else if (test_bit(R5_Discard, &dev->flags)) 3810 discard_pending = 1; 3811 } 3812 3813 log_stripe_write_finished(sh); 3814 3815 if (!discard_pending && 3816 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3817 int hash; 3818 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3819 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3820 if (sh->qd_idx >= 0) { 3821 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3822 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3823 } 3824 /* now that discard is done we can proceed with any sync */ 3825 clear_bit(STRIPE_DISCARD, &sh->state); 3826 /* 3827 * SCSI discard will change some bio fields and the stripe has 3828 * no updated data, so remove it from hash list and the stripe 3829 * will be reinitialized 3830 */ 3831 unhash: 3832 hash = sh->hash_lock_index; 3833 spin_lock_irq(conf->hash_locks + hash); 3834 remove_hash(sh); 3835 spin_unlock_irq(conf->hash_locks + hash); 3836 if (head_sh->batch_head) { 3837 sh = list_first_entry(&sh->batch_list, 3838 struct stripe_head, batch_list); 3839 if (sh != head_sh) 3840 goto unhash; 3841 } 3842 sh = head_sh; 3843 3844 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3845 set_bit(STRIPE_HANDLE, &sh->state); 3846 3847 } 3848 3849 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3850 if (atomic_dec_and_test(&conf->pending_full_writes)) 3851 md_wakeup_thread(conf->mddev->thread); 3852 3853 if (head_sh->batch_head && do_endio) 3854 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 3855 } 3856 3857 /* 3858 * For RMW in write back cache, we need extra page in prexor to store the 3859 * old data. This page is stored in dev->orig_page. 3860 * 3861 * This function checks whether we have data for prexor. The exact logic 3862 * is: 3863 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 3864 */ 3865 static inline bool uptodate_for_rmw(struct r5dev *dev) 3866 { 3867 return (test_bit(R5_UPTODATE, &dev->flags)) && 3868 (!test_bit(R5_InJournal, &dev->flags) || 3869 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 3870 } 3871 3872 static int handle_stripe_dirtying(struct r5conf *conf, 3873 struct stripe_head *sh, 3874 struct stripe_head_state *s, 3875 int disks) 3876 { 3877 int rmw = 0, rcw = 0, i; 3878 sector_t recovery_cp = conf->mddev->recovery_cp; 3879 3880 /* Check whether resync is now happening or should start. 3881 * If yes, then the array is dirty (after unclean shutdown or 3882 * initial creation), so parity in some stripes might be inconsistent. 3883 * In this case, we need to always do reconstruct-write, to ensure 3884 * that in case of drive failure or read-error correction, we 3885 * generate correct data from the parity. 3886 */ 3887 if (conf->rmw_level == PARITY_DISABLE_RMW || 3888 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 3889 s->failed == 0)) { 3890 /* Calculate the real rcw later - for now make it 3891 * look like rcw is cheaper 3892 */ 3893 rcw = 1; rmw = 2; 3894 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 3895 conf->rmw_level, (unsigned long long)recovery_cp, 3896 (unsigned long long)sh->sector); 3897 } else for (i = disks; i--; ) { 3898 /* would I have to read this buffer for read_modify_write */ 3899 struct r5dev *dev = &sh->dev[i]; 3900 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 3901 i == sh->pd_idx || i == sh->qd_idx || 3902 test_bit(R5_InJournal, &dev->flags)) && 3903 !test_bit(R5_LOCKED, &dev->flags) && 3904 !(uptodate_for_rmw(dev) || 3905 test_bit(R5_Wantcompute, &dev->flags))) { 3906 if (test_bit(R5_Insync, &dev->flags)) 3907 rmw++; 3908 else 3909 rmw += 2*disks; /* cannot read it */ 3910 } 3911 /* Would I have to read this buffer for reconstruct_write */ 3912 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3913 i != sh->pd_idx && i != sh->qd_idx && 3914 !test_bit(R5_LOCKED, &dev->flags) && 3915 !(test_bit(R5_UPTODATE, &dev->flags) || 3916 test_bit(R5_Wantcompute, &dev->flags))) { 3917 if (test_bit(R5_Insync, &dev->flags)) 3918 rcw++; 3919 else 3920 rcw += 2*disks; 3921 } 3922 } 3923 3924 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 3925 (unsigned long long)sh->sector, sh->state, rmw, rcw); 3926 set_bit(STRIPE_HANDLE, &sh->state); 3927 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 3928 /* prefer read-modify-write, but need to get some data */ 3929 if (conf->mddev->queue) 3930 blk_add_trace_msg(conf->mddev->queue, 3931 "raid5 rmw %llu %d", 3932 (unsigned long long)sh->sector, rmw); 3933 for (i = disks; i--; ) { 3934 struct r5dev *dev = &sh->dev[i]; 3935 if (test_bit(R5_InJournal, &dev->flags) && 3936 dev->page == dev->orig_page && 3937 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 3938 /* alloc page for prexor */ 3939 struct page *p = alloc_page(GFP_NOIO); 3940 3941 if (p) { 3942 dev->orig_page = p; 3943 continue; 3944 } 3945 3946 /* 3947 * alloc_page() failed, try use 3948 * disk_info->extra_page 3949 */ 3950 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 3951 &conf->cache_state)) { 3952 r5c_use_extra_page(sh); 3953 break; 3954 } 3955 3956 /* extra_page in use, add to delayed_list */ 3957 set_bit(STRIPE_DELAYED, &sh->state); 3958 s->waiting_extra_page = 1; 3959 return -EAGAIN; 3960 } 3961 } 3962 3963 for (i = disks; i--; ) { 3964 struct r5dev *dev = &sh->dev[i]; 3965 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 3966 i == sh->pd_idx || i == sh->qd_idx || 3967 test_bit(R5_InJournal, &dev->flags)) && 3968 !test_bit(R5_LOCKED, &dev->flags) && 3969 !(uptodate_for_rmw(dev) || 3970 test_bit(R5_Wantcompute, &dev->flags)) && 3971 test_bit(R5_Insync, &dev->flags)) { 3972 if (test_bit(STRIPE_PREREAD_ACTIVE, 3973 &sh->state)) { 3974 pr_debug("Read_old block %d for r-m-w\n", 3975 i); 3976 set_bit(R5_LOCKED, &dev->flags); 3977 set_bit(R5_Wantread, &dev->flags); 3978 s->locked++; 3979 } else { 3980 set_bit(STRIPE_DELAYED, &sh->state); 3981 set_bit(STRIPE_HANDLE, &sh->state); 3982 } 3983 } 3984 } 3985 } 3986 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 3987 /* want reconstruct write, but need to get some data */ 3988 int qread =0; 3989 rcw = 0; 3990 for (i = disks; i--; ) { 3991 struct r5dev *dev = &sh->dev[i]; 3992 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3993 i != sh->pd_idx && i != sh->qd_idx && 3994 !test_bit(R5_LOCKED, &dev->flags) && 3995 !(test_bit(R5_UPTODATE, &dev->flags) || 3996 test_bit(R5_Wantcompute, &dev->flags))) { 3997 rcw++; 3998 if (test_bit(R5_Insync, &dev->flags) && 3999 test_bit(STRIPE_PREREAD_ACTIVE, 4000 &sh->state)) { 4001 pr_debug("Read_old block " 4002 "%d for Reconstruct\n", i); 4003 set_bit(R5_LOCKED, &dev->flags); 4004 set_bit(R5_Wantread, &dev->flags); 4005 s->locked++; 4006 qread++; 4007 } else { 4008 set_bit(STRIPE_DELAYED, &sh->state); 4009 set_bit(STRIPE_HANDLE, &sh->state); 4010 } 4011 } 4012 } 4013 if (rcw && conf->mddev->queue) 4014 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 4015 (unsigned long long)sh->sector, 4016 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 4017 } 4018 4019 if (rcw > disks && rmw > disks && 4020 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4021 set_bit(STRIPE_DELAYED, &sh->state); 4022 4023 /* now if nothing is locked, and if we have enough data, 4024 * we can start a write request 4025 */ 4026 /* since handle_stripe can be called at any time we need to handle the 4027 * case where a compute block operation has been submitted and then a 4028 * subsequent call wants to start a write request. raid_run_ops only 4029 * handles the case where compute block and reconstruct are requested 4030 * simultaneously. If this is not the case then new writes need to be 4031 * held off until the compute completes. 4032 */ 4033 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4034 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4035 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4036 schedule_reconstruction(sh, s, rcw == 0, 0); 4037 return 0; 4038 } 4039 4040 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4041 struct stripe_head_state *s, int disks) 4042 { 4043 struct r5dev *dev = NULL; 4044 4045 BUG_ON(sh->batch_head); 4046 set_bit(STRIPE_HANDLE, &sh->state); 4047 4048 switch (sh->check_state) { 4049 case check_state_idle: 4050 /* start a new check operation if there are no failures */ 4051 if (s->failed == 0) { 4052 BUG_ON(s->uptodate != disks); 4053 sh->check_state = check_state_run; 4054 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4055 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4056 s->uptodate--; 4057 break; 4058 } 4059 dev = &sh->dev[s->failed_num[0]]; 4060 /* fall through */ 4061 case check_state_compute_result: 4062 sh->check_state = check_state_idle; 4063 if (!dev) 4064 dev = &sh->dev[sh->pd_idx]; 4065 4066 /* check that a write has not made the stripe insync */ 4067 if (test_bit(STRIPE_INSYNC, &sh->state)) 4068 break; 4069 4070 /* either failed parity check, or recovery is happening */ 4071 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4072 BUG_ON(s->uptodate != disks); 4073 4074 set_bit(R5_LOCKED, &dev->flags); 4075 s->locked++; 4076 set_bit(R5_Wantwrite, &dev->flags); 4077 4078 clear_bit(STRIPE_DEGRADED, &sh->state); 4079 set_bit(STRIPE_INSYNC, &sh->state); 4080 break; 4081 case check_state_run: 4082 break; /* we will be called again upon completion */ 4083 case check_state_check_result: 4084 sh->check_state = check_state_idle; 4085 4086 /* if a failure occurred during the check operation, leave 4087 * STRIPE_INSYNC not set and let the stripe be handled again 4088 */ 4089 if (s->failed) 4090 break; 4091 4092 /* handle a successful check operation, if parity is correct 4093 * we are done. Otherwise update the mismatch count and repair 4094 * parity if !MD_RECOVERY_CHECK 4095 */ 4096 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4097 /* parity is correct (on disc, 4098 * not in buffer any more) 4099 */ 4100 set_bit(STRIPE_INSYNC, &sh->state); 4101 else { 4102 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 4103 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4104 /* don't try to repair!! */ 4105 set_bit(STRIPE_INSYNC, &sh->state); 4106 pr_warn_ratelimited("%s: mismatch sector in range " 4107 "%llu-%llu\n", mdname(conf->mddev), 4108 (unsigned long long) sh->sector, 4109 (unsigned long long) sh->sector + 4110 STRIPE_SECTORS); 4111 } else { 4112 sh->check_state = check_state_compute_run; 4113 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4114 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4115 set_bit(R5_Wantcompute, 4116 &sh->dev[sh->pd_idx].flags); 4117 sh->ops.target = sh->pd_idx; 4118 sh->ops.target2 = -1; 4119 s->uptodate++; 4120 } 4121 } 4122 break; 4123 case check_state_compute_run: 4124 break; 4125 default: 4126 pr_err("%s: unknown check_state: %d sector: %llu\n", 4127 __func__, sh->check_state, 4128 (unsigned long long) sh->sector); 4129 BUG(); 4130 } 4131 } 4132 4133 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4134 struct stripe_head_state *s, 4135 int disks) 4136 { 4137 int pd_idx = sh->pd_idx; 4138 int qd_idx = sh->qd_idx; 4139 struct r5dev *dev; 4140 4141 BUG_ON(sh->batch_head); 4142 set_bit(STRIPE_HANDLE, &sh->state); 4143 4144 BUG_ON(s->failed > 2); 4145 4146 /* Want to check and possibly repair P and Q. 4147 * However there could be one 'failed' device, in which 4148 * case we can only check one of them, possibly using the 4149 * other to generate missing data 4150 */ 4151 4152 switch (sh->check_state) { 4153 case check_state_idle: 4154 /* start a new check operation if there are < 2 failures */ 4155 if (s->failed == s->q_failed) { 4156 /* The only possible failed device holds Q, so it 4157 * makes sense to check P (If anything else were failed, 4158 * we would have used P to recreate it). 4159 */ 4160 sh->check_state = check_state_run; 4161 } 4162 if (!s->q_failed && s->failed < 2) { 4163 /* Q is not failed, and we didn't use it to generate 4164 * anything, so it makes sense to check it 4165 */ 4166 if (sh->check_state == check_state_run) 4167 sh->check_state = check_state_run_pq; 4168 else 4169 sh->check_state = check_state_run_q; 4170 } 4171 4172 /* discard potentially stale zero_sum_result */ 4173 sh->ops.zero_sum_result = 0; 4174 4175 if (sh->check_state == check_state_run) { 4176 /* async_xor_zero_sum destroys the contents of P */ 4177 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4178 s->uptodate--; 4179 } 4180 if (sh->check_state >= check_state_run && 4181 sh->check_state <= check_state_run_pq) { 4182 /* async_syndrome_zero_sum preserves P and Q, so 4183 * no need to mark them !uptodate here 4184 */ 4185 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4186 break; 4187 } 4188 4189 /* we have 2-disk failure */ 4190 BUG_ON(s->failed != 2); 4191 /* fall through */ 4192 case check_state_compute_result: 4193 sh->check_state = check_state_idle; 4194 4195 /* check that a write has not made the stripe insync */ 4196 if (test_bit(STRIPE_INSYNC, &sh->state)) 4197 break; 4198 4199 /* now write out any block on a failed drive, 4200 * or P or Q if they were recomputed 4201 */ 4202 dev = NULL; 4203 if (s->failed == 2) { 4204 dev = &sh->dev[s->failed_num[1]]; 4205 s->locked++; 4206 set_bit(R5_LOCKED, &dev->flags); 4207 set_bit(R5_Wantwrite, &dev->flags); 4208 } 4209 if (s->failed >= 1) { 4210 dev = &sh->dev[s->failed_num[0]]; 4211 s->locked++; 4212 set_bit(R5_LOCKED, &dev->flags); 4213 set_bit(R5_Wantwrite, &dev->flags); 4214 } 4215 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4216 dev = &sh->dev[pd_idx]; 4217 s->locked++; 4218 set_bit(R5_LOCKED, &dev->flags); 4219 set_bit(R5_Wantwrite, &dev->flags); 4220 } 4221 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4222 dev = &sh->dev[qd_idx]; 4223 s->locked++; 4224 set_bit(R5_LOCKED, &dev->flags); 4225 set_bit(R5_Wantwrite, &dev->flags); 4226 } 4227 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), 4228 "%s: disk%td not up to date\n", 4229 mdname(conf->mddev), 4230 dev - (struct r5dev *) &sh->dev)) { 4231 clear_bit(R5_LOCKED, &dev->flags); 4232 clear_bit(R5_Wantwrite, &dev->flags); 4233 s->locked--; 4234 } 4235 clear_bit(STRIPE_DEGRADED, &sh->state); 4236 4237 set_bit(STRIPE_INSYNC, &sh->state); 4238 break; 4239 case check_state_run: 4240 case check_state_run_q: 4241 case check_state_run_pq: 4242 break; /* we will be called again upon completion */ 4243 case check_state_check_result: 4244 sh->check_state = check_state_idle; 4245 4246 /* handle a successful check operation, if parity is correct 4247 * we are done. Otherwise update the mismatch count and repair 4248 * parity if !MD_RECOVERY_CHECK 4249 */ 4250 if (sh->ops.zero_sum_result == 0) { 4251 /* both parities are correct */ 4252 if (!s->failed) 4253 set_bit(STRIPE_INSYNC, &sh->state); 4254 else { 4255 /* in contrast to the raid5 case we can validate 4256 * parity, but still have a failure to write 4257 * back 4258 */ 4259 sh->check_state = check_state_compute_result; 4260 /* Returning at this point means that we may go 4261 * off and bring p and/or q uptodate again so 4262 * we make sure to check zero_sum_result again 4263 * to verify if p or q need writeback 4264 */ 4265 } 4266 } else { 4267 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 4268 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4269 /* don't try to repair!! */ 4270 set_bit(STRIPE_INSYNC, &sh->state); 4271 pr_warn_ratelimited("%s: mismatch sector in range " 4272 "%llu-%llu\n", mdname(conf->mddev), 4273 (unsigned long long) sh->sector, 4274 (unsigned long long) sh->sector + 4275 STRIPE_SECTORS); 4276 } else { 4277 int *target = &sh->ops.target; 4278 4279 sh->ops.target = -1; 4280 sh->ops.target2 = -1; 4281 sh->check_state = check_state_compute_run; 4282 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4283 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4284 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4285 set_bit(R5_Wantcompute, 4286 &sh->dev[pd_idx].flags); 4287 *target = pd_idx; 4288 target = &sh->ops.target2; 4289 s->uptodate++; 4290 } 4291 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4292 set_bit(R5_Wantcompute, 4293 &sh->dev[qd_idx].flags); 4294 *target = qd_idx; 4295 s->uptodate++; 4296 } 4297 } 4298 } 4299 break; 4300 case check_state_compute_run: 4301 break; 4302 default: 4303 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4304 __func__, sh->check_state, 4305 (unsigned long long) sh->sector); 4306 BUG(); 4307 } 4308 } 4309 4310 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4311 { 4312 int i; 4313 4314 /* We have read all the blocks in this stripe and now we need to 4315 * copy some of them into a target stripe for expand. 4316 */ 4317 struct dma_async_tx_descriptor *tx = NULL; 4318 BUG_ON(sh->batch_head); 4319 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4320 for (i = 0; i < sh->disks; i++) 4321 if (i != sh->pd_idx && i != sh->qd_idx) { 4322 int dd_idx, j; 4323 struct stripe_head *sh2; 4324 struct async_submit_ctl submit; 4325 4326 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4327 sector_t s = raid5_compute_sector(conf, bn, 0, 4328 &dd_idx, NULL); 4329 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 4330 if (sh2 == NULL) 4331 /* so far only the early blocks of this stripe 4332 * have been requested. When later blocks 4333 * get requested, we will try again 4334 */ 4335 continue; 4336 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4337 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4338 /* must have already done this block */ 4339 raid5_release_stripe(sh2); 4340 continue; 4341 } 4342 4343 /* place all the copies on one channel */ 4344 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4345 tx = async_memcpy(sh2->dev[dd_idx].page, 4346 sh->dev[i].page, 0, 0, STRIPE_SIZE, 4347 &submit); 4348 4349 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4350 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4351 for (j = 0; j < conf->raid_disks; j++) 4352 if (j != sh2->pd_idx && 4353 j != sh2->qd_idx && 4354 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4355 break; 4356 if (j == conf->raid_disks) { 4357 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4358 set_bit(STRIPE_HANDLE, &sh2->state); 4359 } 4360 raid5_release_stripe(sh2); 4361 4362 } 4363 /* done submitting copies, wait for them to complete */ 4364 async_tx_quiesce(&tx); 4365 } 4366 4367 /* 4368 * handle_stripe - do things to a stripe. 4369 * 4370 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4371 * state of various bits to see what needs to be done. 4372 * Possible results: 4373 * return some read requests which now have data 4374 * return some write requests which are safely on storage 4375 * schedule a read on some buffers 4376 * schedule a write of some buffers 4377 * return confirmation of parity correctness 4378 * 4379 */ 4380 4381 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4382 { 4383 struct r5conf *conf = sh->raid_conf; 4384 int disks = sh->disks; 4385 struct r5dev *dev; 4386 int i; 4387 int do_recovery = 0; 4388 4389 memset(s, 0, sizeof(*s)); 4390 4391 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4392 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4393 s->failed_num[0] = -1; 4394 s->failed_num[1] = -1; 4395 s->log_failed = r5l_log_disk_error(conf); 4396 4397 /* Now to look around and see what can be done */ 4398 rcu_read_lock(); 4399 for (i=disks; i--; ) { 4400 struct md_rdev *rdev; 4401 sector_t first_bad; 4402 int bad_sectors; 4403 int is_bad = 0; 4404 4405 dev = &sh->dev[i]; 4406 4407 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4408 i, dev->flags, 4409 dev->toread, dev->towrite, dev->written); 4410 /* maybe we can reply to a read 4411 * 4412 * new wantfill requests are only permitted while 4413 * ops_complete_biofill is guaranteed to be inactive 4414 */ 4415 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4416 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4417 set_bit(R5_Wantfill, &dev->flags); 4418 4419 /* now count some things */ 4420 if (test_bit(R5_LOCKED, &dev->flags)) 4421 s->locked++; 4422 if (test_bit(R5_UPTODATE, &dev->flags)) 4423 s->uptodate++; 4424 if (test_bit(R5_Wantcompute, &dev->flags)) { 4425 s->compute++; 4426 BUG_ON(s->compute > 2); 4427 } 4428 4429 if (test_bit(R5_Wantfill, &dev->flags)) 4430 s->to_fill++; 4431 else if (dev->toread) 4432 s->to_read++; 4433 if (dev->towrite) { 4434 s->to_write++; 4435 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4436 s->non_overwrite++; 4437 } 4438 if (dev->written) 4439 s->written++; 4440 /* Prefer to use the replacement for reads, but only 4441 * if it is recovered enough and has no bad blocks. 4442 */ 4443 rdev = rcu_dereference(conf->disks[i].replacement); 4444 if (rdev && !test_bit(Faulty, &rdev->flags) && 4445 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 4446 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4447 &first_bad, &bad_sectors)) 4448 set_bit(R5_ReadRepl, &dev->flags); 4449 else { 4450 if (rdev && !test_bit(Faulty, &rdev->flags)) 4451 set_bit(R5_NeedReplace, &dev->flags); 4452 else 4453 clear_bit(R5_NeedReplace, &dev->flags); 4454 rdev = rcu_dereference(conf->disks[i].rdev); 4455 clear_bit(R5_ReadRepl, &dev->flags); 4456 } 4457 if (rdev && test_bit(Faulty, &rdev->flags)) 4458 rdev = NULL; 4459 if (rdev) { 4460 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4461 &first_bad, &bad_sectors); 4462 if (s->blocked_rdev == NULL 4463 && (test_bit(Blocked, &rdev->flags) 4464 || is_bad < 0)) { 4465 if (is_bad < 0) 4466 set_bit(BlockedBadBlocks, 4467 &rdev->flags); 4468 s->blocked_rdev = rdev; 4469 atomic_inc(&rdev->nr_pending); 4470 } 4471 } 4472 clear_bit(R5_Insync, &dev->flags); 4473 if (!rdev) 4474 /* Not in-sync */; 4475 else if (is_bad) { 4476 /* also not in-sync */ 4477 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4478 test_bit(R5_UPTODATE, &dev->flags)) { 4479 /* treat as in-sync, but with a read error 4480 * which we can now try to correct 4481 */ 4482 set_bit(R5_Insync, &dev->flags); 4483 set_bit(R5_ReadError, &dev->flags); 4484 } 4485 } else if (test_bit(In_sync, &rdev->flags)) 4486 set_bit(R5_Insync, &dev->flags); 4487 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 4488 /* in sync if before recovery_offset */ 4489 set_bit(R5_Insync, &dev->flags); 4490 else if (test_bit(R5_UPTODATE, &dev->flags) && 4491 test_bit(R5_Expanded, &dev->flags)) 4492 /* If we've reshaped into here, we assume it is Insync. 4493 * We will shortly update recovery_offset to make 4494 * it official. 4495 */ 4496 set_bit(R5_Insync, &dev->flags); 4497 4498 if (test_bit(R5_WriteError, &dev->flags)) { 4499 /* This flag does not apply to '.replacement' 4500 * only to .rdev, so make sure to check that*/ 4501 struct md_rdev *rdev2 = rcu_dereference( 4502 conf->disks[i].rdev); 4503 if (rdev2 == rdev) 4504 clear_bit(R5_Insync, &dev->flags); 4505 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4506 s->handle_bad_blocks = 1; 4507 atomic_inc(&rdev2->nr_pending); 4508 } else 4509 clear_bit(R5_WriteError, &dev->flags); 4510 } 4511 if (test_bit(R5_MadeGood, &dev->flags)) { 4512 /* This flag does not apply to '.replacement' 4513 * only to .rdev, so make sure to check that*/ 4514 struct md_rdev *rdev2 = rcu_dereference( 4515 conf->disks[i].rdev); 4516 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4517 s->handle_bad_blocks = 1; 4518 atomic_inc(&rdev2->nr_pending); 4519 } else 4520 clear_bit(R5_MadeGood, &dev->flags); 4521 } 4522 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4523 struct md_rdev *rdev2 = rcu_dereference( 4524 conf->disks[i].replacement); 4525 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4526 s->handle_bad_blocks = 1; 4527 atomic_inc(&rdev2->nr_pending); 4528 } else 4529 clear_bit(R5_MadeGoodRepl, &dev->flags); 4530 } 4531 if (!test_bit(R5_Insync, &dev->flags)) { 4532 /* The ReadError flag will just be confusing now */ 4533 clear_bit(R5_ReadError, &dev->flags); 4534 clear_bit(R5_ReWrite, &dev->flags); 4535 } 4536 if (test_bit(R5_ReadError, &dev->flags)) 4537 clear_bit(R5_Insync, &dev->flags); 4538 if (!test_bit(R5_Insync, &dev->flags)) { 4539 if (s->failed < 2) 4540 s->failed_num[s->failed] = i; 4541 s->failed++; 4542 if (rdev && !test_bit(Faulty, &rdev->flags)) 4543 do_recovery = 1; 4544 else if (!rdev) { 4545 rdev = rcu_dereference( 4546 conf->disks[i].replacement); 4547 if (rdev && !test_bit(Faulty, &rdev->flags)) 4548 do_recovery = 1; 4549 } 4550 } 4551 4552 if (test_bit(R5_InJournal, &dev->flags)) 4553 s->injournal++; 4554 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4555 s->just_cached++; 4556 } 4557 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4558 /* If there is a failed device being replaced, 4559 * we must be recovering. 4560 * else if we are after recovery_cp, we must be syncing 4561 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4562 * else we can only be replacing 4563 * sync and recovery both need to read all devices, and so 4564 * use the same flag. 4565 */ 4566 if (do_recovery || 4567 sh->sector >= conf->mddev->recovery_cp || 4568 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4569 s->syncing = 1; 4570 else 4571 s->replacing = 1; 4572 } 4573 rcu_read_unlock(); 4574 } 4575 4576 static int clear_batch_ready(struct stripe_head *sh) 4577 { 4578 /* Return '1' if this is a member of batch, or 4579 * '0' if it is a lone stripe or a head which can now be 4580 * handled. 4581 */ 4582 struct stripe_head *tmp; 4583 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4584 return (sh->batch_head && sh->batch_head != sh); 4585 spin_lock(&sh->stripe_lock); 4586 if (!sh->batch_head) { 4587 spin_unlock(&sh->stripe_lock); 4588 return 0; 4589 } 4590 4591 /* 4592 * this stripe could be added to a batch list before we check 4593 * BATCH_READY, skips it 4594 */ 4595 if (sh->batch_head != sh) { 4596 spin_unlock(&sh->stripe_lock); 4597 return 1; 4598 } 4599 spin_lock(&sh->batch_lock); 4600 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4601 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4602 spin_unlock(&sh->batch_lock); 4603 spin_unlock(&sh->stripe_lock); 4604 4605 /* 4606 * BATCH_READY is cleared, no new stripes can be added. 4607 * batch_list can be accessed without lock 4608 */ 4609 return 0; 4610 } 4611 4612 static void break_stripe_batch_list(struct stripe_head *head_sh, 4613 unsigned long handle_flags) 4614 { 4615 struct stripe_head *sh, *next; 4616 int i; 4617 int do_wakeup = 0; 4618 4619 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4620 4621 list_del_init(&sh->batch_list); 4622 4623 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4624 (1 << STRIPE_SYNCING) | 4625 (1 << STRIPE_REPLACED) | 4626 (1 << STRIPE_DELAYED) | 4627 (1 << STRIPE_BIT_DELAY) | 4628 (1 << STRIPE_FULL_WRITE) | 4629 (1 << STRIPE_BIOFILL_RUN) | 4630 (1 << STRIPE_COMPUTE_RUN) | 4631 (1 << STRIPE_DISCARD) | 4632 (1 << STRIPE_BATCH_READY) | 4633 (1 << STRIPE_BATCH_ERR) | 4634 (1 << STRIPE_BITMAP_PENDING)), 4635 "stripe state: %lx\n", sh->state); 4636 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4637 (1 << STRIPE_REPLACED)), 4638 "head stripe state: %lx\n", head_sh->state); 4639 4640 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4641 (1 << STRIPE_PREREAD_ACTIVE) | 4642 (1 << STRIPE_DEGRADED) | 4643 (1 << STRIPE_ON_UNPLUG_LIST)), 4644 head_sh->state & (1 << STRIPE_INSYNC)); 4645 4646 sh->check_state = head_sh->check_state; 4647 sh->reconstruct_state = head_sh->reconstruct_state; 4648 spin_lock_irq(&sh->stripe_lock); 4649 sh->batch_head = NULL; 4650 spin_unlock_irq(&sh->stripe_lock); 4651 for (i = 0; i < sh->disks; i++) { 4652 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4653 do_wakeup = 1; 4654 sh->dev[i].flags = head_sh->dev[i].flags & 4655 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4656 } 4657 if (handle_flags == 0 || 4658 sh->state & handle_flags) 4659 set_bit(STRIPE_HANDLE, &sh->state); 4660 raid5_release_stripe(sh); 4661 } 4662 spin_lock_irq(&head_sh->stripe_lock); 4663 head_sh->batch_head = NULL; 4664 spin_unlock_irq(&head_sh->stripe_lock); 4665 for (i = 0; i < head_sh->disks; i++) 4666 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4667 do_wakeup = 1; 4668 if (head_sh->state & handle_flags) 4669 set_bit(STRIPE_HANDLE, &head_sh->state); 4670 4671 if (do_wakeup) 4672 wake_up(&head_sh->raid_conf->wait_for_overlap); 4673 } 4674 4675 static void handle_stripe(struct stripe_head *sh) 4676 { 4677 struct stripe_head_state s; 4678 struct r5conf *conf = sh->raid_conf; 4679 int i; 4680 int prexor; 4681 int disks = sh->disks; 4682 struct r5dev *pdev, *qdev; 4683 4684 clear_bit(STRIPE_HANDLE, &sh->state); 4685 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4686 /* already being handled, ensure it gets handled 4687 * again when current action finishes */ 4688 set_bit(STRIPE_HANDLE, &sh->state); 4689 return; 4690 } 4691 4692 if (clear_batch_ready(sh) ) { 4693 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4694 return; 4695 } 4696 4697 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4698 break_stripe_batch_list(sh, 0); 4699 4700 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4701 spin_lock(&sh->stripe_lock); 4702 /* 4703 * Cannot process 'sync' concurrently with 'discard'. 4704 * Flush data in r5cache before 'sync'. 4705 */ 4706 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 4707 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 4708 !test_bit(STRIPE_DISCARD, &sh->state) && 4709 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4710 set_bit(STRIPE_SYNCING, &sh->state); 4711 clear_bit(STRIPE_INSYNC, &sh->state); 4712 clear_bit(STRIPE_REPLACED, &sh->state); 4713 } 4714 spin_unlock(&sh->stripe_lock); 4715 } 4716 clear_bit(STRIPE_DELAYED, &sh->state); 4717 4718 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4719 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4720 (unsigned long long)sh->sector, sh->state, 4721 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4722 sh->check_state, sh->reconstruct_state); 4723 4724 analyse_stripe(sh, &s); 4725 4726 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4727 goto finish; 4728 4729 if (s.handle_bad_blocks || 4730 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 4731 set_bit(STRIPE_HANDLE, &sh->state); 4732 goto finish; 4733 } 4734 4735 if (unlikely(s.blocked_rdev)) { 4736 if (s.syncing || s.expanding || s.expanded || 4737 s.replacing || s.to_write || s.written) { 4738 set_bit(STRIPE_HANDLE, &sh->state); 4739 goto finish; 4740 } 4741 /* There is nothing for the blocked_rdev to block */ 4742 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4743 s.blocked_rdev = NULL; 4744 } 4745 4746 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4747 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4748 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4749 } 4750 4751 pr_debug("locked=%d uptodate=%d to_read=%d" 4752 " to_write=%d failed=%d failed_num=%d,%d\n", 4753 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4754 s.failed_num[0], s.failed_num[1]); 4755 /* 4756 * check if the array has lost more than max_degraded devices and, 4757 * if so, some requests might need to be failed. 4758 * 4759 * When journal device failed (log_failed), we will only process 4760 * the stripe if there is data need write to raid disks 4761 */ 4762 if (s.failed > conf->max_degraded || 4763 (s.log_failed && s.injournal == 0)) { 4764 sh->check_state = 0; 4765 sh->reconstruct_state = 0; 4766 break_stripe_batch_list(sh, 0); 4767 if (s.to_read+s.to_write+s.written) 4768 handle_failed_stripe(conf, sh, &s, disks); 4769 if (s.syncing + s.replacing) 4770 handle_failed_sync(conf, sh, &s); 4771 } 4772 4773 /* Now we check to see if any write operations have recently 4774 * completed 4775 */ 4776 prexor = 0; 4777 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4778 prexor = 1; 4779 if (sh->reconstruct_state == reconstruct_state_drain_result || 4780 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4781 sh->reconstruct_state = reconstruct_state_idle; 4782 4783 /* All the 'written' buffers and the parity block are ready to 4784 * be written back to disk 4785 */ 4786 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4787 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4788 BUG_ON(sh->qd_idx >= 0 && 4789 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4790 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4791 for (i = disks; i--; ) { 4792 struct r5dev *dev = &sh->dev[i]; 4793 if (test_bit(R5_LOCKED, &dev->flags) && 4794 (i == sh->pd_idx || i == sh->qd_idx || 4795 dev->written || test_bit(R5_InJournal, 4796 &dev->flags))) { 4797 pr_debug("Writing block %d\n", i); 4798 set_bit(R5_Wantwrite, &dev->flags); 4799 if (prexor) 4800 continue; 4801 if (s.failed > 1) 4802 continue; 4803 if (!test_bit(R5_Insync, &dev->flags) || 4804 ((i == sh->pd_idx || i == sh->qd_idx) && 4805 s.failed == 0)) 4806 set_bit(STRIPE_INSYNC, &sh->state); 4807 } 4808 } 4809 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4810 s.dec_preread_active = 1; 4811 } 4812 4813 /* 4814 * might be able to return some write requests if the parity blocks 4815 * are safe, or on a failed drive 4816 */ 4817 pdev = &sh->dev[sh->pd_idx]; 4818 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 4819 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 4820 qdev = &sh->dev[sh->qd_idx]; 4821 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 4822 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 4823 || conf->level < 6; 4824 4825 if (s.written && 4826 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 4827 && !test_bit(R5_LOCKED, &pdev->flags) 4828 && (test_bit(R5_UPTODATE, &pdev->flags) || 4829 test_bit(R5_Discard, &pdev->flags))))) && 4830 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 4831 && !test_bit(R5_LOCKED, &qdev->flags) 4832 && (test_bit(R5_UPTODATE, &qdev->flags) || 4833 test_bit(R5_Discard, &qdev->flags)))))) 4834 handle_stripe_clean_event(conf, sh, disks); 4835 4836 if (s.just_cached) 4837 r5c_handle_cached_data_endio(conf, sh, disks); 4838 log_stripe_write_finished(sh); 4839 4840 /* Now we might consider reading some blocks, either to check/generate 4841 * parity, or to satisfy requests 4842 * or to load a block that is being partially written. 4843 */ 4844 if (s.to_read || s.non_overwrite 4845 || (conf->level == 6 && s.to_write && s.failed) 4846 || (s.syncing && (s.uptodate + s.compute < disks)) 4847 || s.replacing 4848 || s.expanding) 4849 handle_stripe_fill(sh, &s, disks); 4850 4851 /* 4852 * When the stripe finishes full journal write cycle (write to journal 4853 * and raid disk), this is the clean up procedure so it is ready for 4854 * next operation. 4855 */ 4856 r5c_finish_stripe_write_out(conf, sh, &s); 4857 4858 /* 4859 * Now to consider new write requests, cache write back and what else, 4860 * if anything should be read. We do not handle new writes when: 4861 * 1/ A 'write' operation (copy+xor) is already in flight. 4862 * 2/ A 'check' operation is in flight, as it may clobber the parity 4863 * block. 4864 * 3/ A r5c cache log write is in flight. 4865 */ 4866 4867 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 4868 if (!r5c_is_writeback(conf->log)) { 4869 if (s.to_write) 4870 handle_stripe_dirtying(conf, sh, &s, disks); 4871 } else { /* write back cache */ 4872 int ret = 0; 4873 4874 /* First, try handle writes in caching phase */ 4875 if (s.to_write) 4876 ret = r5c_try_caching_write(conf, sh, &s, 4877 disks); 4878 /* 4879 * If caching phase failed: ret == -EAGAIN 4880 * OR 4881 * stripe under reclaim: !caching && injournal 4882 * 4883 * fall back to handle_stripe_dirtying() 4884 */ 4885 if (ret == -EAGAIN || 4886 /* stripe under reclaim: !caching && injournal */ 4887 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 4888 s.injournal > 0)) { 4889 ret = handle_stripe_dirtying(conf, sh, &s, 4890 disks); 4891 if (ret == -EAGAIN) 4892 goto finish; 4893 } 4894 } 4895 } 4896 4897 /* maybe we need to check and possibly fix the parity for this stripe 4898 * Any reads will already have been scheduled, so we just see if enough 4899 * data is available. The parity check is held off while parity 4900 * dependent operations are in flight. 4901 */ 4902 if (sh->check_state || 4903 (s.syncing && s.locked == 0 && 4904 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4905 !test_bit(STRIPE_INSYNC, &sh->state))) { 4906 if (conf->level == 6) 4907 handle_parity_checks6(conf, sh, &s, disks); 4908 else 4909 handle_parity_checks5(conf, sh, &s, disks); 4910 } 4911 4912 if ((s.replacing || s.syncing) && s.locked == 0 4913 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 4914 && !test_bit(STRIPE_REPLACED, &sh->state)) { 4915 /* Write out to replacement devices where possible */ 4916 for (i = 0; i < conf->raid_disks; i++) 4917 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 4918 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 4919 set_bit(R5_WantReplace, &sh->dev[i].flags); 4920 set_bit(R5_LOCKED, &sh->dev[i].flags); 4921 s.locked++; 4922 } 4923 if (s.replacing) 4924 set_bit(STRIPE_INSYNC, &sh->state); 4925 set_bit(STRIPE_REPLACED, &sh->state); 4926 } 4927 if ((s.syncing || s.replacing) && s.locked == 0 && 4928 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4929 test_bit(STRIPE_INSYNC, &sh->state)) { 4930 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4931 clear_bit(STRIPE_SYNCING, &sh->state); 4932 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 4933 wake_up(&conf->wait_for_overlap); 4934 } 4935 4936 /* If the failed drives are just a ReadError, then we might need 4937 * to progress the repair/check process 4938 */ 4939 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 4940 for (i = 0; i < s.failed; i++) { 4941 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 4942 if (test_bit(R5_ReadError, &dev->flags) 4943 && !test_bit(R5_LOCKED, &dev->flags) 4944 && test_bit(R5_UPTODATE, &dev->flags) 4945 ) { 4946 if (!test_bit(R5_ReWrite, &dev->flags)) { 4947 set_bit(R5_Wantwrite, &dev->flags); 4948 set_bit(R5_ReWrite, &dev->flags); 4949 set_bit(R5_LOCKED, &dev->flags); 4950 s.locked++; 4951 } else { 4952 /* let's read it back */ 4953 set_bit(R5_Wantread, &dev->flags); 4954 set_bit(R5_LOCKED, &dev->flags); 4955 s.locked++; 4956 } 4957 } 4958 } 4959 4960 /* Finish reconstruct operations initiated by the expansion process */ 4961 if (sh->reconstruct_state == reconstruct_state_result) { 4962 struct stripe_head *sh_src 4963 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 4964 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 4965 /* sh cannot be written until sh_src has been read. 4966 * so arrange for sh to be delayed a little 4967 */ 4968 set_bit(STRIPE_DELAYED, &sh->state); 4969 set_bit(STRIPE_HANDLE, &sh->state); 4970 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 4971 &sh_src->state)) 4972 atomic_inc(&conf->preread_active_stripes); 4973 raid5_release_stripe(sh_src); 4974 goto finish; 4975 } 4976 if (sh_src) 4977 raid5_release_stripe(sh_src); 4978 4979 sh->reconstruct_state = reconstruct_state_idle; 4980 clear_bit(STRIPE_EXPANDING, &sh->state); 4981 for (i = conf->raid_disks; i--; ) { 4982 set_bit(R5_Wantwrite, &sh->dev[i].flags); 4983 set_bit(R5_LOCKED, &sh->dev[i].flags); 4984 s.locked++; 4985 } 4986 } 4987 4988 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 4989 !sh->reconstruct_state) { 4990 /* Need to write out all blocks after computing parity */ 4991 sh->disks = conf->raid_disks; 4992 stripe_set_idx(sh->sector, conf, 0, sh); 4993 schedule_reconstruction(sh, &s, 1, 1); 4994 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 4995 clear_bit(STRIPE_EXPAND_READY, &sh->state); 4996 atomic_dec(&conf->reshape_stripes); 4997 wake_up(&conf->wait_for_overlap); 4998 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4999 } 5000 5001 if (s.expanding && s.locked == 0 && 5002 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 5003 handle_stripe_expansion(conf, sh); 5004 5005 finish: 5006 /* wait for this device to become unblocked */ 5007 if (unlikely(s.blocked_rdev)) { 5008 if (conf->mddev->external) 5009 md_wait_for_blocked_rdev(s.blocked_rdev, 5010 conf->mddev); 5011 else 5012 /* Internal metadata will immediately 5013 * be written by raid5d, so we don't 5014 * need to wait here. 5015 */ 5016 rdev_dec_pending(s.blocked_rdev, 5017 conf->mddev); 5018 } 5019 5020 if (s.handle_bad_blocks) 5021 for (i = disks; i--; ) { 5022 struct md_rdev *rdev; 5023 struct r5dev *dev = &sh->dev[i]; 5024 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5025 /* We own a safe reference to the rdev */ 5026 rdev = conf->disks[i].rdev; 5027 if (!rdev_set_badblocks(rdev, sh->sector, 5028 STRIPE_SECTORS, 0)) 5029 md_error(conf->mddev, rdev); 5030 rdev_dec_pending(rdev, conf->mddev); 5031 } 5032 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5033 rdev = conf->disks[i].rdev; 5034 rdev_clear_badblocks(rdev, sh->sector, 5035 STRIPE_SECTORS, 0); 5036 rdev_dec_pending(rdev, conf->mddev); 5037 } 5038 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5039 rdev = conf->disks[i].replacement; 5040 if (!rdev) 5041 /* rdev have been moved down */ 5042 rdev = conf->disks[i].rdev; 5043 rdev_clear_badblocks(rdev, sh->sector, 5044 STRIPE_SECTORS, 0); 5045 rdev_dec_pending(rdev, conf->mddev); 5046 } 5047 } 5048 5049 if (s.ops_request) 5050 raid_run_ops(sh, s.ops_request); 5051 5052 ops_run_io(sh, &s); 5053 5054 if (s.dec_preread_active) { 5055 /* We delay this until after ops_run_io so that if make_request 5056 * is waiting on a flush, it won't continue until the writes 5057 * have actually been submitted. 5058 */ 5059 atomic_dec(&conf->preread_active_stripes); 5060 if (atomic_read(&conf->preread_active_stripes) < 5061 IO_THRESHOLD) 5062 md_wakeup_thread(conf->mddev->thread); 5063 } 5064 5065 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5066 } 5067 5068 static void raid5_activate_delayed(struct r5conf *conf) 5069 { 5070 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5071 while (!list_empty(&conf->delayed_list)) { 5072 struct list_head *l = conf->delayed_list.next; 5073 struct stripe_head *sh; 5074 sh = list_entry(l, struct stripe_head, lru); 5075 list_del_init(l); 5076 clear_bit(STRIPE_DELAYED, &sh->state); 5077 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5078 atomic_inc(&conf->preread_active_stripes); 5079 list_add_tail(&sh->lru, &conf->hold_list); 5080 raid5_wakeup_stripe_thread(sh); 5081 } 5082 } 5083 } 5084 5085 static void activate_bit_delay(struct r5conf *conf, 5086 struct list_head *temp_inactive_list) 5087 { 5088 /* device_lock is held */ 5089 struct list_head head; 5090 list_add(&head, &conf->bitmap_list); 5091 list_del_init(&conf->bitmap_list); 5092 while (!list_empty(&head)) { 5093 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5094 int hash; 5095 list_del_init(&sh->lru); 5096 atomic_inc(&sh->count); 5097 hash = sh->hash_lock_index; 5098 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5099 } 5100 } 5101 5102 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5103 { 5104 struct r5conf *conf = mddev->private; 5105 sector_t sector = bio->bi_iter.bi_sector; 5106 unsigned int chunk_sectors; 5107 unsigned int bio_sectors = bio_sectors(bio); 5108 5109 WARN_ON_ONCE(bio->bi_partno); 5110 5111 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5112 return chunk_sectors >= 5113 ((sector & (chunk_sectors - 1)) + bio_sectors); 5114 } 5115 5116 /* 5117 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5118 * later sampled by raid5d. 5119 */ 5120 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5121 { 5122 unsigned long flags; 5123 5124 spin_lock_irqsave(&conf->device_lock, flags); 5125 5126 bi->bi_next = conf->retry_read_aligned_list; 5127 conf->retry_read_aligned_list = bi; 5128 5129 spin_unlock_irqrestore(&conf->device_lock, flags); 5130 md_wakeup_thread(conf->mddev->thread); 5131 } 5132 5133 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5134 unsigned int *offset) 5135 { 5136 struct bio *bi; 5137 5138 bi = conf->retry_read_aligned; 5139 if (bi) { 5140 *offset = conf->retry_read_offset; 5141 conf->retry_read_aligned = NULL; 5142 return bi; 5143 } 5144 bi = conf->retry_read_aligned_list; 5145 if(bi) { 5146 conf->retry_read_aligned_list = bi->bi_next; 5147 bi->bi_next = NULL; 5148 *offset = 0; 5149 } 5150 5151 return bi; 5152 } 5153 5154 /* 5155 * The "raid5_align_endio" should check if the read succeeded and if it 5156 * did, call bio_endio on the original bio (having bio_put the new bio 5157 * first). 5158 * If the read failed.. 5159 */ 5160 static void raid5_align_endio(struct bio *bi) 5161 { 5162 struct bio* raid_bi = bi->bi_private; 5163 struct mddev *mddev; 5164 struct r5conf *conf; 5165 struct md_rdev *rdev; 5166 blk_status_t error = bi->bi_status; 5167 5168 bio_put(bi); 5169 5170 rdev = (void*)raid_bi->bi_next; 5171 raid_bi->bi_next = NULL; 5172 mddev = rdev->mddev; 5173 conf = mddev->private; 5174 5175 rdev_dec_pending(rdev, conf->mddev); 5176 5177 if (!error) { 5178 bio_endio(raid_bi); 5179 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5180 wake_up(&conf->wait_for_quiescent); 5181 return; 5182 } 5183 5184 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5185 5186 add_bio_to_retry(raid_bi, conf); 5187 } 5188 5189 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5190 { 5191 struct r5conf *conf = mddev->private; 5192 int dd_idx; 5193 struct bio* align_bi; 5194 struct md_rdev *rdev; 5195 sector_t end_sector; 5196 5197 if (!in_chunk_boundary(mddev, raid_bio)) { 5198 pr_debug("%s: non aligned\n", __func__); 5199 return 0; 5200 } 5201 /* 5202 * use bio_clone_fast to make a copy of the bio 5203 */ 5204 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set); 5205 if (!align_bi) 5206 return 0; 5207 /* 5208 * set bi_end_io to a new function, and set bi_private to the 5209 * original bio. 5210 */ 5211 align_bi->bi_end_io = raid5_align_endio; 5212 align_bi->bi_private = raid_bio; 5213 /* 5214 * compute position 5215 */ 5216 align_bi->bi_iter.bi_sector = 5217 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 5218 0, &dd_idx, NULL); 5219 5220 end_sector = bio_end_sector(align_bi); 5221 rcu_read_lock(); 5222 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 5223 if (!rdev || test_bit(Faulty, &rdev->flags) || 5224 rdev->recovery_offset < end_sector) { 5225 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 5226 if (rdev && 5227 (test_bit(Faulty, &rdev->flags) || 5228 !(test_bit(In_sync, &rdev->flags) || 5229 rdev->recovery_offset >= end_sector))) 5230 rdev = NULL; 5231 } 5232 5233 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) { 5234 rcu_read_unlock(); 5235 bio_put(align_bi); 5236 return 0; 5237 } 5238 5239 if (rdev) { 5240 sector_t first_bad; 5241 int bad_sectors; 5242 5243 atomic_inc(&rdev->nr_pending); 5244 rcu_read_unlock(); 5245 raid_bio->bi_next = (void*)rdev; 5246 bio_set_dev(align_bi, rdev->bdev); 5247 5248 if (is_badblock(rdev, align_bi->bi_iter.bi_sector, 5249 bio_sectors(align_bi), 5250 &first_bad, &bad_sectors)) { 5251 bio_put(align_bi); 5252 rdev_dec_pending(rdev, mddev); 5253 return 0; 5254 } 5255 5256 /* No reshape active, so we can trust rdev->data_offset */ 5257 align_bi->bi_iter.bi_sector += rdev->data_offset; 5258 5259 spin_lock_irq(&conf->device_lock); 5260 wait_event_lock_irq(conf->wait_for_quiescent, 5261 conf->quiesce == 0, 5262 conf->device_lock); 5263 atomic_inc(&conf->active_aligned_reads); 5264 spin_unlock_irq(&conf->device_lock); 5265 5266 if (mddev->gendisk) 5267 trace_block_bio_remap(align_bi->bi_disk->queue, 5268 align_bi, disk_devt(mddev->gendisk), 5269 raid_bio->bi_iter.bi_sector); 5270 submit_bio_noacct(align_bi); 5271 return 1; 5272 } else { 5273 rcu_read_unlock(); 5274 bio_put(align_bi); 5275 return 0; 5276 } 5277 } 5278 5279 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5280 { 5281 struct bio *split; 5282 sector_t sector = raid_bio->bi_iter.bi_sector; 5283 unsigned chunk_sects = mddev->chunk_sectors; 5284 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5285 5286 if (sectors < bio_sectors(raid_bio)) { 5287 struct r5conf *conf = mddev->private; 5288 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5289 bio_chain(split, raid_bio); 5290 submit_bio_noacct(raid_bio); 5291 raid_bio = split; 5292 } 5293 5294 if (!raid5_read_one_chunk(mddev, raid_bio)) 5295 return raid_bio; 5296 5297 return NULL; 5298 } 5299 5300 /* __get_priority_stripe - get the next stripe to process 5301 * 5302 * Full stripe writes are allowed to pass preread active stripes up until 5303 * the bypass_threshold is exceeded. In general the bypass_count 5304 * increments when the handle_list is handled before the hold_list; however, it 5305 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5306 * stripe with in flight i/o. The bypass_count will be reset when the 5307 * head of the hold_list has changed, i.e. the head was promoted to the 5308 * handle_list. 5309 */ 5310 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5311 { 5312 struct stripe_head *sh, *tmp; 5313 struct list_head *handle_list = NULL; 5314 struct r5worker_group *wg; 5315 bool second_try = !r5c_is_writeback(conf->log) && 5316 !r5l_log_disk_error(conf); 5317 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5318 r5l_log_disk_error(conf); 5319 5320 again: 5321 wg = NULL; 5322 sh = NULL; 5323 if (conf->worker_cnt_per_group == 0) { 5324 handle_list = try_loprio ? &conf->loprio_list : 5325 &conf->handle_list; 5326 } else if (group != ANY_GROUP) { 5327 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5328 &conf->worker_groups[group].handle_list; 5329 wg = &conf->worker_groups[group]; 5330 } else { 5331 int i; 5332 for (i = 0; i < conf->group_cnt; i++) { 5333 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5334 &conf->worker_groups[i].handle_list; 5335 wg = &conf->worker_groups[i]; 5336 if (!list_empty(handle_list)) 5337 break; 5338 } 5339 } 5340 5341 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5342 __func__, 5343 list_empty(handle_list) ? "empty" : "busy", 5344 list_empty(&conf->hold_list) ? "empty" : "busy", 5345 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5346 5347 if (!list_empty(handle_list)) { 5348 sh = list_entry(handle_list->next, typeof(*sh), lru); 5349 5350 if (list_empty(&conf->hold_list)) 5351 conf->bypass_count = 0; 5352 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5353 if (conf->hold_list.next == conf->last_hold) 5354 conf->bypass_count++; 5355 else { 5356 conf->last_hold = conf->hold_list.next; 5357 conf->bypass_count -= conf->bypass_threshold; 5358 if (conf->bypass_count < 0) 5359 conf->bypass_count = 0; 5360 } 5361 } 5362 } else if (!list_empty(&conf->hold_list) && 5363 ((conf->bypass_threshold && 5364 conf->bypass_count > conf->bypass_threshold) || 5365 atomic_read(&conf->pending_full_writes) == 0)) { 5366 5367 list_for_each_entry(tmp, &conf->hold_list, lru) { 5368 if (conf->worker_cnt_per_group == 0 || 5369 group == ANY_GROUP || 5370 !cpu_online(tmp->cpu) || 5371 cpu_to_group(tmp->cpu) == group) { 5372 sh = tmp; 5373 break; 5374 } 5375 } 5376 5377 if (sh) { 5378 conf->bypass_count -= conf->bypass_threshold; 5379 if (conf->bypass_count < 0) 5380 conf->bypass_count = 0; 5381 } 5382 wg = NULL; 5383 } 5384 5385 if (!sh) { 5386 if (second_try) 5387 return NULL; 5388 second_try = true; 5389 try_loprio = !try_loprio; 5390 goto again; 5391 } 5392 5393 if (wg) { 5394 wg->stripes_cnt--; 5395 sh->group = NULL; 5396 } 5397 list_del_init(&sh->lru); 5398 BUG_ON(atomic_inc_return(&sh->count) != 1); 5399 return sh; 5400 } 5401 5402 struct raid5_plug_cb { 5403 struct blk_plug_cb cb; 5404 struct list_head list; 5405 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5406 }; 5407 5408 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5409 { 5410 struct raid5_plug_cb *cb = container_of( 5411 blk_cb, struct raid5_plug_cb, cb); 5412 struct stripe_head *sh; 5413 struct mddev *mddev = cb->cb.data; 5414 struct r5conf *conf = mddev->private; 5415 int cnt = 0; 5416 int hash; 5417 5418 if (cb->list.next && !list_empty(&cb->list)) { 5419 spin_lock_irq(&conf->device_lock); 5420 while (!list_empty(&cb->list)) { 5421 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5422 list_del_init(&sh->lru); 5423 /* 5424 * avoid race release_stripe_plug() sees 5425 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5426 * is still in our list 5427 */ 5428 smp_mb__before_atomic(); 5429 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5430 /* 5431 * STRIPE_ON_RELEASE_LIST could be set here. In that 5432 * case, the count is always > 1 here 5433 */ 5434 hash = sh->hash_lock_index; 5435 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5436 cnt++; 5437 } 5438 spin_unlock_irq(&conf->device_lock); 5439 } 5440 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5441 NR_STRIPE_HASH_LOCKS); 5442 if (mddev->queue) 5443 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5444 kfree(cb); 5445 } 5446 5447 static void release_stripe_plug(struct mddev *mddev, 5448 struct stripe_head *sh) 5449 { 5450 struct blk_plug_cb *blk_cb = blk_check_plugged( 5451 raid5_unplug, mddev, 5452 sizeof(struct raid5_plug_cb)); 5453 struct raid5_plug_cb *cb; 5454 5455 if (!blk_cb) { 5456 raid5_release_stripe(sh); 5457 return; 5458 } 5459 5460 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5461 5462 if (cb->list.next == NULL) { 5463 int i; 5464 INIT_LIST_HEAD(&cb->list); 5465 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5466 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5467 } 5468 5469 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5470 list_add_tail(&sh->lru, &cb->list); 5471 else 5472 raid5_release_stripe(sh); 5473 } 5474 5475 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5476 { 5477 struct r5conf *conf = mddev->private; 5478 sector_t logical_sector, last_sector; 5479 struct stripe_head *sh; 5480 int stripe_sectors; 5481 5482 if (mddev->reshape_position != MaxSector) 5483 /* Skip discard while reshape is happening */ 5484 return; 5485 5486 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5487 last_sector = bio_end_sector(bi); 5488 5489 bi->bi_next = NULL; 5490 5491 stripe_sectors = conf->chunk_sectors * 5492 (conf->raid_disks - conf->max_degraded); 5493 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5494 stripe_sectors); 5495 sector_div(last_sector, stripe_sectors); 5496 5497 logical_sector *= conf->chunk_sectors; 5498 last_sector *= conf->chunk_sectors; 5499 5500 for (; logical_sector < last_sector; 5501 logical_sector += STRIPE_SECTORS) { 5502 DEFINE_WAIT(w); 5503 int d; 5504 again: 5505 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5506 prepare_to_wait(&conf->wait_for_overlap, &w, 5507 TASK_UNINTERRUPTIBLE); 5508 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5509 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5510 raid5_release_stripe(sh); 5511 schedule(); 5512 goto again; 5513 } 5514 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5515 spin_lock_irq(&sh->stripe_lock); 5516 for (d = 0; d < conf->raid_disks; d++) { 5517 if (d == sh->pd_idx || d == sh->qd_idx) 5518 continue; 5519 if (sh->dev[d].towrite || sh->dev[d].toread) { 5520 set_bit(R5_Overlap, &sh->dev[d].flags); 5521 spin_unlock_irq(&sh->stripe_lock); 5522 raid5_release_stripe(sh); 5523 schedule(); 5524 goto again; 5525 } 5526 } 5527 set_bit(STRIPE_DISCARD, &sh->state); 5528 finish_wait(&conf->wait_for_overlap, &w); 5529 sh->overwrite_disks = 0; 5530 for (d = 0; d < conf->raid_disks; d++) { 5531 if (d == sh->pd_idx || d == sh->qd_idx) 5532 continue; 5533 sh->dev[d].towrite = bi; 5534 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5535 bio_inc_remaining(bi); 5536 md_write_inc(mddev, bi); 5537 sh->overwrite_disks++; 5538 } 5539 spin_unlock_irq(&sh->stripe_lock); 5540 if (conf->mddev->bitmap) { 5541 for (d = 0; 5542 d < conf->raid_disks - conf->max_degraded; 5543 d++) 5544 md_bitmap_startwrite(mddev->bitmap, 5545 sh->sector, 5546 STRIPE_SECTORS, 5547 0); 5548 sh->bm_seq = conf->seq_flush + 1; 5549 set_bit(STRIPE_BIT_DELAY, &sh->state); 5550 } 5551 5552 set_bit(STRIPE_HANDLE, &sh->state); 5553 clear_bit(STRIPE_DELAYED, &sh->state); 5554 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5555 atomic_inc(&conf->preread_active_stripes); 5556 release_stripe_plug(mddev, sh); 5557 } 5558 5559 bio_endio(bi); 5560 } 5561 5562 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 5563 { 5564 struct r5conf *conf = mddev->private; 5565 int dd_idx; 5566 sector_t new_sector; 5567 sector_t logical_sector, last_sector; 5568 struct stripe_head *sh; 5569 const int rw = bio_data_dir(bi); 5570 DEFINE_WAIT(w); 5571 bool do_prepare; 5572 bool do_flush = false; 5573 5574 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 5575 int ret = log_handle_flush_request(conf, bi); 5576 5577 if (ret == 0) 5578 return true; 5579 if (ret == -ENODEV) { 5580 if (md_flush_request(mddev, bi)) 5581 return true; 5582 } 5583 /* ret == -EAGAIN, fallback */ 5584 /* 5585 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 5586 * we need to flush journal device 5587 */ 5588 do_flush = bi->bi_opf & REQ_PREFLUSH; 5589 } 5590 5591 if (!md_write_start(mddev, bi)) 5592 return false; 5593 /* 5594 * If array is degraded, better not do chunk aligned read because 5595 * later we might have to read it again in order to reconstruct 5596 * data on failed drives. 5597 */ 5598 if (rw == READ && mddev->degraded == 0 && 5599 mddev->reshape_position == MaxSector) { 5600 bi = chunk_aligned_read(mddev, bi); 5601 if (!bi) 5602 return true; 5603 } 5604 5605 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 5606 make_discard_request(mddev, bi); 5607 md_write_end(mddev); 5608 return true; 5609 } 5610 5611 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5612 last_sector = bio_end_sector(bi); 5613 bi->bi_next = NULL; 5614 5615 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5616 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 5617 int previous; 5618 int seq; 5619 5620 do_prepare = false; 5621 retry: 5622 seq = read_seqcount_begin(&conf->gen_lock); 5623 previous = 0; 5624 if (do_prepare) 5625 prepare_to_wait(&conf->wait_for_overlap, &w, 5626 TASK_UNINTERRUPTIBLE); 5627 if (unlikely(conf->reshape_progress != MaxSector)) { 5628 /* spinlock is needed as reshape_progress may be 5629 * 64bit on a 32bit platform, and so it might be 5630 * possible to see a half-updated value 5631 * Of course reshape_progress could change after 5632 * the lock is dropped, so once we get a reference 5633 * to the stripe that we think it is, we will have 5634 * to check again. 5635 */ 5636 spin_lock_irq(&conf->device_lock); 5637 if (mddev->reshape_backwards 5638 ? logical_sector < conf->reshape_progress 5639 : logical_sector >= conf->reshape_progress) { 5640 previous = 1; 5641 } else { 5642 if (mddev->reshape_backwards 5643 ? logical_sector < conf->reshape_safe 5644 : logical_sector >= conf->reshape_safe) { 5645 spin_unlock_irq(&conf->device_lock); 5646 schedule(); 5647 do_prepare = true; 5648 goto retry; 5649 } 5650 } 5651 spin_unlock_irq(&conf->device_lock); 5652 } 5653 5654 new_sector = raid5_compute_sector(conf, logical_sector, 5655 previous, 5656 &dd_idx, NULL); 5657 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5658 (unsigned long long)new_sector, 5659 (unsigned long long)logical_sector); 5660 5661 sh = raid5_get_active_stripe(conf, new_sector, previous, 5662 (bi->bi_opf & REQ_RAHEAD), 0); 5663 if (sh) { 5664 if (unlikely(previous)) { 5665 /* expansion might have moved on while waiting for a 5666 * stripe, so we must do the range check again. 5667 * Expansion could still move past after this 5668 * test, but as we are holding a reference to 5669 * 'sh', we know that if that happens, 5670 * STRIPE_EXPANDING will get set and the expansion 5671 * won't proceed until we finish with the stripe. 5672 */ 5673 int must_retry = 0; 5674 spin_lock_irq(&conf->device_lock); 5675 if (mddev->reshape_backwards 5676 ? logical_sector >= conf->reshape_progress 5677 : logical_sector < conf->reshape_progress) 5678 /* mismatch, need to try again */ 5679 must_retry = 1; 5680 spin_unlock_irq(&conf->device_lock); 5681 if (must_retry) { 5682 raid5_release_stripe(sh); 5683 schedule(); 5684 do_prepare = true; 5685 goto retry; 5686 } 5687 } 5688 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5689 /* Might have got the wrong stripe_head 5690 * by accident 5691 */ 5692 raid5_release_stripe(sh); 5693 goto retry; 5694 } 5695 5696 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5697 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5698 /* Stripe is busy expanding or 5699 * add failed due to overlap. Flush everything 5700 * and wait a while 5701 */ 5702 md_wakeup_thread(mddev->thread); 5703 raid5_release_stripe(sh); 5704 schedule(); 5705 do_prepare = true; 5706 goto retry; 5707 } 5708 if (do_flush) { 5709 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 5710 /* we only need flush for one stripe */ 5711 do_flush = false; 5712 } 5713 5714 if (!sh->batch_head || sh == sh->batch_head) 5715 set_bit(STRIPE_HANDLE, &sh->state); 5716 clear_bit(STRIPE_DELAYED, &sh->state); 5717 if ((!sh->batch_head || sh == sh->batch_head) && 5718 (bi->bi_opf & REQ_SYNC) && 5719 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5720 atomic_inc(&conf->preread_active_stripes); 5721 release_stripe_plug(mddev, sh); 5722 } else { 5723 /* cannot get stripe for read-ahead, just give-up */ 5724 bi->bi_status = BLK_STS_IOERR; 5725 break; 5726 } 5727 } 5728 finish_wait(&conf->wait_for_overlap, &w); 5729 5730 if (rw == WRITE) 5731 md_write_end(mddev); 5732 bio_endio(bi); 5733 return true; 5734 } 5735 5736 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5737 5738 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5739 { 5740 /* reshaping is quite different to recovery/resync so it is 5741 * handled quite separately ... here. 5742 * 5743 * On each call to sync_request, we gather one chunk worth of 5744 * destination stripes and flag them as expanding. 5745 * Then we find all the source stripes and request reads. 5746 * As the reads complete, handle_stripe will copy the data 5747 * into the destination stripe and release that stripe. 5748 */ 5749 struct r5conf *conf = mddev->private; 5750 struct stripe_head *sh; 5751 struct md_rdev *rdev; 5752 sector_t first_sector, last_sector; 5753 int raid_disks = conf->previous_raid_disks; 5754 int data_disks = raid_disks - conf->max_degraded; 5755 int new_data_disks = conf->raid_disks - conf->max_degraded; 5756 int i; 5757 int dd_idx; 5758 sector_t writepos, readpos, safepos; 5759 sector_t stripe_addr; 5760 int reshape_sectors; 5761 struct list_head stripes; 5762 sector_t retn; 5763 5764 if (sector_nr == 0) { 5765 /* If restarting in the middle, skip the initial sectors */ 5766 if (mddev->reshape_backwards && 5767 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5768 sector_nr = raid5_size(mddev, 0, 0) 5769 - conf->reshape_progress; 5770 } else if (mddev->reshape_backwards && 5771 conf->reshape_progress == MaxSector) { 5772 /* shouldn't happen, but just in case, finish up.*/ 5773 sector_nr = MaxSector; 5774 } else if (!mddev->reshape_backwards && 5775 conf->reshape_progress > 0) 5776 sector_nr = conf->reshape_progress; 5777 sector_div(sector_nr, new_data_disks); 5778 if (sector_nr) { 5779 mddev->curr_resync_completed = sector_nr; 5780 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5781 *skipped = 1; 5782 retn = sector_nr; 5783 goto finish; 5784 } 5785 } 5786 5787 /* We need to process a full chunk at a time. 5788 * If old and new chunk sizes differ, we need to process the 5789 * largest of these 5790 */ 5791 5792 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 5793 5794 /* We update the metadata at least every 10 seconds, or when 5795 * the data about to be copied would over-write the source of 5796 * the data at the front of the range. i.e. one new_stripe 5797 * along from reshape_progress new_maps to after where 5798 * reshape_safe old_maps to 5799 */ 5800 writepos = conf->reshape_progress; 5801 sector_div(writepos, new_data_disks); 5802 readpos = conf->reshape_progress; 5803 sector_div(readpos, data_disks); 5804 safepos = conf->reshape_safe; 5805 sector_div(safepos, data_disks); 5806 if (mddev->reshape_backwards) { 5807 BUG_ON(writepos < reshape_sectors); 5808 writepos -= reshape_sectors; 5809 readpos += reshape_sectors; 5810 safepos += reshape_sectors; 5811 } else { 5812 writepos += reshape_sectors; 5813 /* readpos and safepos are worst-case calculations. 5814 * A negative number is overly pessimistic, and causes 5815 * obvious problems for unsigned storage. So clip to 0. 5816 */ 5817 readpos -= min_t(sector_t, reshape_sectors, readpos); 5818 safepos -= min_t(sector_t, reshape_sectors, safepos); 5819 } 5820 5821 /* Having calculated the 'writepos' possibly use it 5822 * to set 'stripe_addr' which is where we will write to. 5823 */ 5824 if (mddev->reshape_backwards) { 5825 BUG_ON(conf->reshape_progress == 0); 5826 stripe_addr = writepos; 5827 BUG_ON((mddev->dev_sectors & 5828 ~((sector_t)reshape_sectors - 1)) 5829 - reshape_sectors - stripe_addr 5830 != sector_nr); 5831 } else { 5832 BUG_ON(writepos != sector_nr + reshape_sectors); 5833 stripe_addr = sector_nr; 5834 } 5835 5836 /* 'writepos' is the most advanced device address we might write. 5837 * 'readpos' is the least advanced device address we might read. 5838 * 'safepos' is the least address recorded in the metadata as having 5839 * been reshaped. 5840 * If there is a min_offset_diff, these are adjusted either by 5841 * increasing the safepos/readpos if diff is negative, or 5842 * increasing writepos if diff is positive. 5843 * If 'readpos' is then behind 'writepos', there is no way that we can 5844 * ensure safety in the face of a crash - that must be done by userspace 5845 * making a backup of the data. So in that case there is no particular 5846 * rush to update metadata. 5847 * Otherwise if 'safepos' is behind 'writepos', then we really need to 5848 * update the metadata to advance 'safepos' to match 'readpos' so that 5849 * we can be safe in the event of a crash. 5850 * So we insist on updating metadata if safepos is behind writepos and 5851 * readpos is beyond writepos. 5852 * In any case, update the metadata every 10 seconds. 5853 * Maybe that number should be configurable, but I'm not sure it is 5854 * worth it.... maybe it could be a multiple of safemode_delay??? 5855 */ 5856 if (conf->min_offset_diff < 0) { 5857 safepos += -conf->min_offset_diff; 5858 readpos += -conf->min_offset_diff; 5859 } else 5860 writepos += conf->min_offset_diff; 5861 5862 if ((mddev->reshape_backwards 5863 ? (safepos > writepos && readpos < writepos) 5864 : (safepos < writepos && readpos > writepos)) || 5865 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 5866 /* Cannot proceed until we've updated the superblock... */ 5867 wait_event(conf->wait_for_overlap, 5868 atomic_read(&conf->reshape_stripes)==0 5869 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5870 if (atomic_read(&conf->reshape_stripes) != 0) 5871 return 0; 5872 mddev->reshape_position = conf->reshape_progress; 5873 mddev->curr_resync_completed = sector_nr; 5874 if (!mddev->reshape_backwards) 5875 /* Can update recovery_offset */ 5876 rdev_for_each(rdev, mddev) 5877 if (rdev->raid_disk >= 0 && 5878 !test_bit(Journal, &rdev->flags) && 5879 !test_bit(In_sync, &rdev->flags) && 5880 rdev->recovery_offset < sector_nr) 5881 rdev->recovery_offset = sector_nr; 5882 5883 conf->reshape_checkpoint = jiffies; 5884 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 5885 md_wakeup_thread(mddev->thread); 5886 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 5887 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5888 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5889 return 0; 5890 spin_lock_irq(&conf->device_lock); 5891 conf->reshape_safe = mddev->reshape_position; 5892 spin_unlock_irq(&conf->device_lock); 5893 wake_up(&conf->wait_for_overlap); 5894 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5895 } 5896 5897 INIT_LIST_HEAD(&stripes); 5898 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 5899 int j; 5900 int skipped_disk = 0; 5901 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 5902 set_bit(STRIPE_EXPANDING, &sh->state); 5903 atomic_inc(&conf->reshape_stripes); 5904 /* If any of this stripe is beyond the end of the old 5905 * array, then we need to zero those blocks 5906 */ 5907 for (j=sh->disks; j--;) { 5908 sector_t s; 5909 if (j == sh->pd_idx) 5910 continue; 5911 if (conf->level == 6 && 5912 j == sh->qd_idx) 5913 continue; 5914 s = raid5_compute_blocknr(sh, j, 0); 5915 if (s < raid5_size(mddev, 0, 0)) { 5916 skipped_disk = 1; 5917 continue; 5918 } 5919 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 5920 set_bit(R5_Expanded, &sh->dev[j].flags); 5921 set_bit(R5_UPTODATE, &sh->dev[j].flags); 5922 } 5923 if (!skipped_disk) { 5924 set_bit(STRIPE_EXPAND_READY, &sh->state); 5925 set_bit(STRIPE_HANDLE, &sh->state); 5926 } 5927 list_add(&sh->lru, &stripes); 5928 } 5929 spin_lock_irq(&conf->device_lock); 5930 if (mddev->reshape_backwards) 5931 conf->reshape_progress -= reshape_sectors * new_data_disks; 5932 else 5933 conf->reshape_progress += reshape_sectors * new_data_disks; 5934 spin_unlock_irq(&conf->device_lock); 5935 /* Ok, those stripe are ready. We can start scheduling 5936 * reads on the source stripes. 5937 * The source stripes are determined by mapping the first and last 5938 * block on the destination stripes. 5939 */ 5940 first_sector = 5941 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 5942 1, &dd_idx, NULL); 5943 last_sector = 5944 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 5945 * new_data_disks - 1), 5946 1, &dd_idx, NULL); 5947 if (last_sector >= mddev->dev_sectors) 5948 last_sector = mddev->dev_sectors - 1; 5949 while (first_sector <= last_sector) { 5950 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 5951 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 5952 set_bit(STRIPE_HANDLE, &sh->state); 5953 raid5_release_stripe(sh); 5954 first_sector += STRIPE_SECTORS; 5955 } 5956 /* Now that the sources are clearly marked, we can release 5957 * the destination stripes 5958 */ 5959 while (!list_empty(&stripes)) { 5960 sh = list_entry(stripes.next, struct stripe_head, lru); 5961 list_del_init(&sh->lru); 5962 raid5_release_stripe(sh); 5963 } 5964 /* If this takes us to the resync_max point where we have to pause, 5965 * then we need to write out the superblock. 5966 */ 5967 sector_nr += reshape_sectors; 5968 retn = reshape_sectors; 5969 finish: 5970 if (mddev->curr_resync_completed > mddev->resync_max || 5971 (sector_nr - mddev->curr_resync_completed) * 2 5972 >= mddev->resync_max - mddev->curr_resync_completed) { 5973 /* Cannot proceed until we've updated the superblock... */ 5974 wait_event(conf->wait_for_overlap, 5975 atomic_read(&conf->reshape_stripes) == 0 5976 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5977 if (atomic_read(&conf->reshape_stripes) != 0) 5978 goto ret; 5979 mddev->reshape_position = conf->reshape_progress; 5980 mddev->curr_resync_completed = sector_nr; 5981 if (!mddev->reshape_backwards) 5982 /* Can update recovery_offset */ 5983 rdev_for_each(rdev, mddev) 5984 if (rdev->raid_disk >= 0 && 5985 !test_bit(Journal, &rdev->flags) && 5986 !test_bit(In_sync, &rdev->flags) && 5987 rdev->recovery_offset < sector_nr) 5988 rdev->recovery_offset = sector_nr; 5989 conf->reshape_checkpoint = jiffies; 5990 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 5991 md_wakeup_thread(mddev->thread); 5992 wait_event(mddev->sb_wait, 5993 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 5994 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5995 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5996 goto ret; 5997 spin_lock_irq(&conf->device_lock); 5998 conf->reshape_safe = mddev->reshape_position; 5999 spin_unlock_irq(&conf->device_lock); 6000 wake_up(&conf->wait_for_overlap); 6001 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6002 } 6003 ret: 6004 return retn; 6005 } 6006 6007 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6008 int *skipped) 6009 { 6010 struct r5conf *conf = mddev->private; 6011 struct stripe_head *sh; 6012 sector_t max_sector = mddev->dev_sectors; 6013 sector_t sync_blocks; 6014 int still_degraded = 0; 6015 int i; 6016 6017 if (sector_nr >= max_sector) { 6018 /* just being told to finish up .. nothing much to do */ 6019 6020 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6021 end_reshape(conf); 6022 return 0; 6023 } 6024 6025 if (mddev->curr_resync < max_sector) /* aborted */ 6026 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6027 &sync_blocks, 1); 6028 else /* completed sync */ 6029 conf->fullsync = 0; 6030 md_bitmap_close_sync(mddev->bitmap); 6031 6032 return 0; 6033 } 6034 6035 /* Allow raid5_quiesce to complete */ 6036 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6037 6038 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6039 return reshape_request(mddev, sector_nr, skipped); 6040 6041 /* No need to check resync_max as we never do more than one 6042 * stripe, and as resync_max will always be on a chunk boundary, 6043 * if the check in md_do_sync didn't fire, there is no chance 6044 * of overstepping resync_max here 6045 */ 6046 6047 /* if there is too many failed drives and we are trying 6048 * to resync, then assert that we are finished, because there is 6049 * nothing we can do. 6050 */ 6051 if (mddev->degraded >= conf->max_degraded && 6052 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6053 sector_t rv = mddev->dev_sectors - sector_nr; 6054 *skipped = 1; 6055 return rv; 6056 } 6057 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6058 !conf->fullsync && 6059 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6060 sync_blocks >= STRIPE_SECTORS) { 6061 /* we can skip this block, and probably more */ 6062 sync_blocks /= STRIPE_SECTORS; 6063 *skipped = 1; 6064 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 6065 } 6066 6067 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6068 6069 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 6070 if (sh == NULL) { 6071 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 6072 /* make sure we don't swamp the stripe cache if someone else 6073 * is trying to get access 6074 */ 6075 schedule_timeout_uninterruptible(1); 6076 } 6077 /* Need to check if array will still be degraded after recovery/resync 6078 * Note in case of > 1 drive failures it's possible we're rebuilding 6079 * one drive while leaving another faulty drive in array. 6080 */ 6081 rcu_read_lock(); 6082 for (i = 0; i < conf->raid_disks; i++) { 6083 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); 6084 6085 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6086 still_degraded = 1; 6087 } 6088 rcu_read_unlock(); 6089 6090 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6091 6092 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6093 set_bit(STRIPE_HANDLE, &sh->state); 6094 6095 raid5_release_stripe(sh); 6096 6097 return STRIPE_SECTORS; 6098 } 6099 6100 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6101 unsigned int offset) 6102 { 6103 /* We may not be able to submit a whole bio at once as there 6104 * may not be enough stripe_heads available. 6105 * We cannot pre-allocate enough stripe_heads as we may need 6106 * more than exist in the cache (if we allow ever large chunks). 6107 * So we do one stripe head at a time and record in 6108 * ->bi_hw_segments how many have been done. 6109 * 6110 * We *know* that this entire raid_bio is in one chunk, so 6111 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6112 */ 6113 struct stripe_head *sh; 6114 int dd_idx; 6115 sector_t sector, logical_sector, last_sector; 6116 int scnt = 0; 6117 int handled = 0; 6118 6119 logical_sector = raid_bio->bi_iter.bi_sector & 6120 ~((sector_t)STRIPE_SECTORS-1); 6121 sector = raid5_compute_sector(conf, logical_sector, 6122 0, &dd_idx, NULL); 6123 last_sector = bio_end_sector(raid_bio); 6124 6125 for (; logical_sector < last_sector; 6126 logical_sector += STRIPE_SECTORS, 6127 sector += STRIPE_SECTORS, 6128 scnt++) { 6129 6130 if (scnt < offset) 6131 /* already done this stripe */ 6132 continue; 6133 6134 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 6135 6136 if (!sh) { 6137 /* failed to get a stripe - must wait */ 6138 conf->retry_read_aligned = raid_bio; 6139 conf->retry_read_offset = scnt; 6140 return handled; 6141 } 6142 6143 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6144 raid5_release_stripe(sh); 6145 conf->retry_read_aligned = raid_bio; 6146 conf->retry_read_offset = scnt; 6147 return handled; 6148 } 6149 6150 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6151 handle_stripe(sh); 6152 raid5_release_stripe(sh); 6153 handled++; 6154 } 6155 6156 bio_endio(raid_bio); 6157 6158 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6159 wake_up(&conf->wait_for_quiescent); 6160 return handled; 6161 } 6162 6163 static int handle_active_stripes(struct r5conf *conf, int group, 6164 struct r5worker *worker, 6165 struct list_head *temp_inactive_list) 6166 __releases(&conf->device_lock) 6167 __acquires(&conf->device_lock) 6168 { 6169 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6170 int i, batch_size = 0, hash; 6171 bool release_inactive = false; 6172 6173 while (batch_size < MAX_STRIPE_BATCH && 6174 (sh = __get_priority_stripe(conf, group)) != NULL) 6175 batch[batch_size++] = sh; 6176 6177 if (batch_size == 0) { 6178 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6179 if (!list_empty(temp_inactive_list + i)) 6180 break; 6181 if (i == NR_STRIPE_HASH_LOCKS) { 6182 spin_unlock_irq(&conf->device_lock); 6183 log_flush_stripe_to_raid(conf); 6184 spin_lock_irq(&conf->device_lock); 6185 return batch_size; 6186 } 6187 release_inactive = true; 6188 } 6189 spin_unlock_irq(&conf->device_lock); 6190 6191 release_inactive_stripe_list(conf, temp_inactive_list, 6192 NR_STRIPE_HASH_LOCKS); 6193 6194 r5l_flush_stripe_to_raid(conf->log); 6195 if (release_inactive) { 6196 spin_lock_irq(&conf->device_lock); 6197 return 0; 6198 } 6199 6200 for (i = 0; i < batch_size; i++) 6201 handle_stripe(batch[i]); 6202 log_write_stripe_run(conf); 6203 6204 cond_resched(); 6205 6206 spin_lock_irq(&conf->device_lock); 6207 for (i = 0; i < batch_size; i++) { 6208 hash = batch[i]->hash_lock_index; 6209 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6210 } 6211 return batch_size; 6212 } 6213 6214 static void raid5_do_work(struct work_struct *work) 6215 { 6216 struct r5worker *worker = container_of(work, struct r5worker, work); 6217 struct r5worker_group *group = worker->group; 6218 struct r5conf *conf = group->conf; 6219 struct mddev *mddev = conf->mddev; 6220 int group_id = group - conf->worker_groups; 6221 int handled; 6222 struct blk_plug plug; 6223 6224 pr_debug("+++ raid5worker active\n"); 6225 6226 blk_start_plug(&plug); 6227 handled = 0; 6228 spin_lock_irq(&conf->device_lock); 6229 while (1) { 6230 int batch_size, released; 6231 6232 released = release_stripe_list(conf, worker->temp_inactive_list); 6233 6234 batch_size = handle_active_stripes(conf, group_id, worker, 6235 worker->temp_inactive_list); 6236 worker->working = false; 6237 if (!batch_size && !released) 6238 break; 6239 handled += batch_size; 6240 wait_event_lock_irq(mddev->sb_wait, 6241 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6242 conf->device_lock); 6243 } 6244 pr_debug("%d stripes handled\n", handled); 6245 6246 spin_unlock_irq(&conf->device_lock); 6247 6248 flush_deferred_bios(conf); 6249 6250 r5l_flush_stripe_to_raid(conf->log); 6251 6252 async_tx_issue_pending_all(); 6253 blk_finish_plug(&plug); 6254 6255 pr_debug("--- raid5worker inactive\n"); 6256 } 6257 6258 /* 6259 * This is our raid5 kernel thread. 6260 * 6261 * We scan the hash table for stripes which can be handled now. 6262 * During the scan, completed stripes are saved for us by the interrupt 6263 * handler, so that they will not have to wait for our next wakeup. 6264 */ 6265 static void raid5d(struct md_thread *thread) 6266 { 6267 struct mddev *mddev = thread->mddev; 6268 struct r5conf *conf = mddev->private; 6269 int handled; 6270 struct blk_plug plug; 6271 6272 pr_debug("+++ raid5d active\n"); 6273 6274 md_check_recovery(mddev); 6275 6276 blk_start_plug(&plug); 6277 handled = 0; 6278 spin_lock_irq(&conf->device_lock); 6279 while (1) { 6280 struct bio *bio; 6281 int batch_size, released; 6282 unsigned int offset; 6283 6284 released = release_stripe_list(conf, conf->temp_inactive_list); 6285 if (released) 6286 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6287 6288 if ( 6289 !list_empty(&conf->bitmap_list)) { 6290 /* Now is a good time to flush some bitmap updates */ 6291 conf->seq_flush++; 6292 spin_unlock_irq(&conf->device_lock); 6293 md_bitmap_unplug(mddev->bitmap); 6294 spin_lock_irq(&conf->device_lock); 6295 conf->seq_write = conf->seq_flush; 6296 activate_bit_delay(conf, conf->temp_inactive_list); 6297 } 6298 raid5_activate_delayed(conf); 6299 6300 while ((bio = remove_bio_from_retry(conf, &offset))) { 6301 int ok; 6302 spin_unlock_irq(&conf->device_lock); 6303 ok = retry_aligned_read(conf, bio, offset); 6304 spin_lock_irq(&conf->device_lock); 6305 if (!ok) 6306 break; 6307 handled++; 6308 } 6309 6310 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6311 conf->temp_inactive_list); 6312 if (!batch_size && !released) 6313 break; 6314 handled += batch_size; 6315 6316 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6317 spin_unlock_irq(&conf->device_lock); 6318 md_check_recovery(mddev); 6319 spin_lock_irq(&conf->device_lock); 6320 } 6321 } 6322 pr_debug("%d stripes handled\n", handled); 6323 6324 spin_unlock_irq(&conf->device_lock); 6325 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6326 mutex_trylock(&conf->cache_size_mutex)) { 6327 grow_one_stripe(conf, __GFP_NOWARN); 6328 /* Set flag even if allocation failed. This helps 6329 * slow down allocation requests when mem is short 6330 */ 6331 set_bit(R5_DID_ALLOC, &conf->cache_state); 6332 mutex_unlock(&conf->cache_size_mutex); 6333 } 6334 6335 flush_deferred_bios(conf); 6336 6337 r5l_flush_stripe_to_raid(conf->log); 6338 6339 async_tx_issue_pending_all(); 6340 blk_finish_plug(&plug); 6341 6342 pr_debug("--- raid5d inactive\n"); 6343 } 6344 6345 static ssize_t 6346 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6347 { 6348 struct r5conf *conf; 6349 int ret = 0; 6350 spin_lock(&mddev->lock); 6351 conf = mddev->private; 6352 if (conf) 6353 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6354 spin_unlock(&mddev->lock); 6355 return ret; 6356 } 6357 6358 int 6359 raid5_set_cache_size(struct mddev *mddev, int size) 6360 { 6361 int result = 0; 6362 struct r5conf *conf = mddev->private; 6363 6364 if (size <= 16 || size > 32768) 6365 return -EINVAL; 6366 6367 conf->min_nr_stripes = size; 6368 mutex_lock(&conf->cache_size_mutex); 6369 while (size < conf->max_nr_stripes && 6370 drop_one_stripe(conf)) 6371 ; 6372 mutex_unlock(&conf->cache_size_mutex); 6373 6374 md_allow_write(mddev); 6375 6376 mutex_lock(&conf->cache_size_mutex); 6377 while (size > conf->max_nr_stripes) 6378 if (!grow_one_stripe(conf, GFP_KERNEL)) { 6379 conf->min_nr_stripes = conf->max_nr_stripes; 6380 result = -ENOMEM; 6381 break; 6382 } 6383 mutex_unlock(&conf->cache_size_mutex); 6384 6385 return result; 6386 } 6387 EXPORT_SYMBOL(raid5_set_cache_size); 6388 6389 static ssize_t 6390 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6391 { 6392 struct r5conf *conf; 6393 unsigned long new; 6394 int err; 6395 6396 if (len >= PAGE_SIZE) 6397 return -EINVAL; 6398 if (kstrtoul(page, 10, &new)) 6399 return -EINVAL; 6400 err = mddev_lock(mddev); 6401 if (err) 6402 return err; 6403 conf = mddev->private; 6404 if (!conf) 6405 err = -ENODEV; 6406 else 6407 err = raid5_set_cache_size(mddev, new); 6408 mddev_unlock(mddev); 6409 6410 return err ?: len; 6411 } 6412 6413 static struct md_sysfs_entry 6414 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6415 raid5_show_stripe_cache_size, 6416 raid5_store_stripe_cache_size); 6417 6418 static ssize_t 6419 raid5_show_rmw_level(struct mddev *mddev, char *page) 6420 { 6421 struct r5conf *conf = mddev->private; 6422 if (conf) 6423 return sprintf(page, "%d\n", conf->rmw_level); 6424 else 6425 return 0; 6426 } 6427 6428 static ssize_t 6429 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6430 { 6431 struct r5conf *conf = mddev->private; 6432 unsigned long new; 6433 6434 if (!conf) 6435 return -ENODEV; 6436 6437 if (len >= PAGE_SIZE) 6438 return -EINVAL; 6439 6440 if (kstrtoul(page, 10, &new)) 6441 return -EINVAL; 6442 6443 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6444 return -EINVAL; 6445 6446 if (new != PARITY_DISABLE_RMW && 6447 new != PARITY_ENABLE_RMW && 6448 new != PARITY_PREFER_RMW) 6449 return -EINVAL; 6450 6451 conf->rmw_level = new; 6452 return len; 6453 } 6454 6455 static struct md_sysfs_entry 6456 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6457 raid5_show_rmw_level, 6458 raid5_store_rmw_level); 6459 6460 6461 static ssize_t 6462 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6463 { 6464 struct r5conf *conf; 6465 int ret = 0; 6466 spin_lock(&mddev->lock); 6467 conf = mddev->private; 6468 if (conf) 6469 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6470 spin_unlock(&mddev->lock); 6471 return ret; 6472 } 6473 6474 static ssize_t 6475 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6476 { 6477 struct r5conf *conf; 6478 unsigned long new; 6479 int err; 6480 6481 if (len >= PAGE_SIZE) 6482 return -EINVAL; 6483 if (kstrtoul(page, 10, &new)) 6484 return -EINVAL; 6485 6486 err = mddev_lock(mddev); 6487 if (err) 6488 return err; 6489 conf = mddev->private; 6490 if (!conf) 6491 err = -ENODEV; 6492 else if (new > conf->min_nr_stripes) 6493 err = -EINVAL; 6494 else 6495 conf->bypass_threshold = new; 6496 mddev_unlock(mddev); 6497 return err ?: len; 6498 } 6499 6500 static struct md_sysfs_entry 6501 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6502 S_IRUGO | S_IWUSR, 6503 raid5_show_preread_threshold, 6504 raid5_store_preread_threshold); 6505 6506 static ssize_t 6507 raid5_show_skip_copy(struct mddev *mddev, char *page) 6508 { 6509 struct r5conf *conf; 6510 int ret = 0; 6511 spin_lock(&mddev->lock); 6512 conf = mddev->private; 6513 if (conf) 6514 ret = sprintf(page, "%d\n", conf->skip_copy); 6515 spin_unlock(&mddev->lock); 6516 return ret; 6517 } 6518 6519 static ssize_t 6520 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6521 { 6522 struct r5conf *conf; 6523 unsigned long new; 6524 int err; 6525 6526 if (len >= PAGE_SIZE) 6527 return -EINVAL; 6528 if (kstrtoul(page, 10, &new)) 6529 return -EINVAL; 6530 new = !!new; 6531 6532 err = mddev_lock(mddev); 6533 if (err) 6534 return err; 6535 conf = mddev->private; 6536 if (!conf) 6537 err = -ENODEV; 6538 else if (new != conf->skip_copy) { 6539 mddev_suspend(mddev); 6540 conf->skip_copy = new; 6541 if (new) 6542 mddev->queue->backing_dev_info->capabilities |= 6543 BDI_CAP_STABLE_WRITES; 6544 else 6545 mddev->queue->backing_dev_info->capabilities &= 6546 ~BDI_CAP_STABLE_WRITES; 6547 mddev_resume(mddev); 6548 } 6549 mddev_unlock(mddev); 6550 return err ?: len; 6551 } 6552 6553 static struct md_sysfs_entry 6554 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6555 raid5_show_skip_copy, 6556 raid5_store_skip_copy); 6557 6558 static ssize_t 6559 stripe_cache_active_show(struct mddev *mddev, char *page) 6560 { 6561 struct r5conf *conf = mddev->private; 6562 if (conf) 6563 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6564 else 6565 return 0; 6566 } 6567 6568 static struct md_sysfs_entry 6569 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6570 6571 static ssize_t 6572 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6573 { 6574 struct r5conf *conf; 6575 int ret = 0; 6576 spin_lock(&mddev->lock); 6577 conf = mddev->private; 6578 if (conf) 6579 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6580 spin_unlock(&mddev->lock); 6581 return ret; 6582 } 6583 6584 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6585 int *group_cnt, 6586 struct r5worker_group **worker_groups); 6587 static ssize_t 6588 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6589 { 6590 struct r5conf *conf; 6591 unsigned int new; 6592 int err; 6593 struct r5worker_group *new_groups, *old_groups; 6594 int group_cnt; 6595 6596 if (len >= PAGE_SIZE) 6597 return -EINVAL; 6598 if (kstrtouint(page, 10, &new)) 6599 return -EINVAL; 6600 /* 8192 should be big enough */ 6601 if (new > 8192) 6602 return -EINVAL; 6603 6604 err = mddev_lock(mddev); 6605 if (err) 6606 return err; 6607 conf = mddev->private; 6608 if (!conf) 6609 err = -ENODEV; 6610 else if (new != conf->worker_cnt_per_group) { 6611 mddev_suspend(mddev); 6612 6613 old_groups = conf->worker_groups; 6614 if (old_groups) 6615 flush_workqueue(raid5_wq); 6616 6617 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups); 6618 if (!err) { 6619 spin_lock_irq(&conf->device_lock); 6620 conf->group_cnt = group_cnt; 6621 conf->worker_cnt_per_group = new; 6622 conf->worker_groups = new_groups; 6623 spin_unlock_irq(&conf->device_lock); 6624 6625 if (old_groups) 6626 kfree(old_groups[0].workers); 6627 kfree(old_groups); 6628 } 6629 mddev_resume(mddev); 6630 } 6631 mddev_unlock(mddev); 6632 6633 return err ?: len; 6634 } 6635 6636 static struct md_sysfs_entry 6637 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6638 raid5_show_group_thread_cnt, 6639 raid5_store_group_thread_cnt); 6640 6641 static struct attribute *raid5_attrs[] = { 6642 &raid5_stripecache_size.attr, 6643 &raid5_stripecache_active.attr, 6644 &raid5_preread_bypass_threshold.attr, 6645 &raid5_group_thread_cnt.attr, 6646 &raid5_skip_copy.attr, 6647 &raid5_rmw_level.attr, 6648 &r5c_journal_mode.attr, 6649 &ppl_write_hint.attr, 6650 NULL, 6651 }; 6652 static struct attribute_group raid5_attrs_group = { 6653 .name = NULL, 6654 .attrs = raid5_attrs, 6655 }; 6656 6657 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt, 6658 struct r5worker_group **worker_groups) 6659 { 6660 int i, j, k; 6661 ssize_t size; 6662 struct r5worker *workers; 6663 6664 if (cnt == 0) { 6665 *group_cnt = 0; 6666 *worker_groups = NULL; 6667 return 0; 6668 } 6669 *group_cnt = num_possible_nodes(); 6670 size = sizeof(struct r5worker) * cnt; 6671 workers = kcalloc(size, *group_cnt, GFP_NOIO); 6672 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 6673 GFP_NOIO); 6674 if (!*worker_groups || !workers) { 6675 kfree(workers); 6676 kfree(*worker_groups); 6677 return -ENOMEM; 6678 } 6679 6680 for (i = 0; i < *group_cnt; i++) { 6681 struct r5worker_group *group; 6682 6683 group = &(*worker_groups)[i]; 6684 INIT_LIST_HEAD(&group->handle_list); 6685 INIT_LIST_HEAD(&group->loprio_list); 6686 group->conf = conf; 6687 group->workers = workers + i * cnt; 6688 6689 for (j = 0; j < cnt; j++) { 6690 struct r5worker *worker = group->workers + j; 6691 worker->group = group; 6692 INIT_WORK(&worker->work, raid5_do_work); 6693 6694 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6695 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6696 } 6697 } 6698 6699 return 0; 6700 } 6701 6702 static void free_thread_groups(struct r5conf *conf) 6703 { 6704 if (conf->worker_groups) 6705 kfree(conf->worker_groups[0].workers); 6706 kfree(conf->worker_groups); 6707 conf->worker_groups = NULL; 6708 } 6709 6710 static sector_t 6711 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 6712 { 6713 struct r5conf *conf = mddev->private; 6714 6715 if (!sectors) 6716 sectors = mddev->dev_sectors; 6717 if (!raid_disks) 6718 /* size is defined by the smallest of previous and new size */ 6719 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 6720 6721 sectors &= ~((sector_t)conf->chunk_sectors - 1); 6722 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 6723 return sectors * (raid_disks - conf->max_degraded); 6724 } 6725 6726 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6727 { 6728 safe_put_page(percpu->spare_page); 6729 percpu->spare_page = NULL; 6730 kvfree(percpu->scribble); 6731 percpu->scribble = NULL; 6732 } 6733 6734 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6735 { 6736 if (conf->level == 6 && !percpu->spare_page) { 6737 percpu->spare_page = alloc_page(GFP_KERNEL); 6738 if (!percpu->spare_page) 6739 return -ENOMEM; 6740 } 6741 6742 if (scribble_alloc(percpu, 6743 max(conf->raid_disks, 6744 conf->previous_raid_disks), 6745 max(conf->chunk_sectors, 6746 conf->prev_chunk_sectors) 6747 / STRIPE_SECTORS)) { 6748 free_scratch_buffer(conf, percpu); 6749 return -ENOMEM; 6750 } 6751 6752 return 0; 6753 } 6754 6755 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 6756 { 6757 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 6758 6759 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6760 return 0; 6761 } 6762 6763 static void raid5_free_percpu(struct r5conf *conf) 6764 { 6765 if (!conf->percpu) 6766 return; 6767 6768 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 6769 free_percpu(conf->percpu); 6770 } 6771 6772 static void free_conf(struct r5conf *conf) 6773 { 6774 int i; 6775 6776 log_exit(conf); 6777 6778 unregister_shrinker(&conf->shrinker); 6779 free_thread_groups(conf); 6780 shrink_stripes(conf); 6781 raid5_free_percpu(conf); 6782 for (i = 0; i < conf->pool_size; i++) 6783 if (conf->disks[i].extra_page) 6784 put_page(conf->disks[i].extra_page); 6785 kfree(conf->disks); 6786 bioset_exit(&conf->bio_split); 6787 kfree(conf->stripe_hashtbl); 6788 kfree(conf->pending_data); 6789 kfree(conf); 6790 } 6791 6792 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 6793 { 6794 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 6795 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 6796 6797 if (alloc_scratch_buffer(conf, percpu)) { 6798 pr_warn("%s: failed memory allocation for cpu%u\n", 6799 __func__, cpu); 6800 return -ENOMEM; 6801 } 6802 return 0; 6803 } 6804 6805 static int raid5_alloc_percpu(struct r5conf *conf) 6806 { 6807 int err = 0; 6808 6809 conf->percpu = alloc_percpu(struct raid5_percpu); 6810 if (!conf->percpu) 6811 return -ENOMEM; 6812 6813 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 6814 if (!err) { 6815 conf->scribble_disks = max(conf->raid_disks, 6816 conf->previous_raid_disks); 6817 conf->scribble_sectors = max(conf->chunk_sectors, 6818 conf->prev_chunk_sectors); 6819 } 6820 return err; 6821 } 6822 6823 static unsigned long raid5_cache_scan(struct shrinker *shrink, 6824 struct shrink_control *sc) 6825 { 6826 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6827 unsigned long ret = SHRINK_STOP; 6828 6829 if (mutex_trylock(&conf->cache_size_mutex)) { 6830 ret= 0; 6831 while (ret < sc->nr_to_scan && 6832 conf->max_nr_stripes > conf->min_nr_stripes) { 6833 if (drop_one_stripe(conf) == 0) { 6834 ret = SHRINK_STOP; 6835 break; 6836 } 6837 ret++; 6838 } 6839 mutex_unlock(&conf->cache_size_mutex); 6840 } 6841 return ret; 6842 } 6843 6844 static unsigned long raid5_cache_count(struct shrinker *shrink, 6845 struct shrink_control *sc) 6846 { 6847 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6848 6849 if (conf->max_nr_stripes < conf->min_nr_stripes) 6850 /* unlikely, but not impossible */ 6851 return 0; 6852 return conf->max_nr_stripes - conf->min_nr_stripes; 6853 } 6854 6855 static struct r5conf *setup_conf(struct mddev *mddev) 6856 { 6857 struct r5conf *conf; 6858 int raid_disk, memory, max_disks; 6859 struct md_rdev *rdev; 6860 struct disk_info *disk; 6861 char pers_name[6]; 6862 int i; 6863 int group_cnt; 6864 struct r5worker_group *new_group; 6865 int ret; 6866 6867 if (mddev->new_level != 5 6868 && mddev->new_level != 4 6869 && mddev->new_level != 6) { 6870 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 6871 mdname(mddev), mddev->new_level); 6872 return ERR_PTR(-EIO); 6873 } 6874 if ((mddev->new_level == 5 6875 && !algorithm_valid_raid5(mddev->new_layout)) || 6876 (mddev->new_level == 6 6877 && !algorithm_valid_raid6(mddev->new_layout))) { 6878 pr_warn("md/raid:%s: layout %d not supported\n", 6879 mdname(mddev), mddev->new_layout); 6880 return ERR_PTR(-EIO); 6881 } 6882 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 6883 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 6884 mdname(mddev), mddev->raid_disks); 6885 return ERR_PTR(-EINVAL); 6886 } 6887 6888 if (!mddev->new_chunk_sectors || 6889 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 6890 !is_power_of_2(mddev->new_chunk_sectors)) { 6891 pr_warn("md/raid:%s: invalid chunk size %d\n", 6892 mdname(mddev), mddev->new_chunk_sectors << 9); 6893 return ERR_PTR(-EINVAL); 6894 } 6895 6896 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 6897 if (conf == NULL) 6898 goto abort; 6899 INIT_LIST_HEAD(&conf->free_list); 6900 INIT_LIST_HEAD(&conf->pending_list); 6901 conf->pending_data = kcalloc(PENDING_IO_MAX, 6902 sizeof(struct r5pending_data), 6903 GFP_KERNEL); 6904 if (!conf->pending_data) 6905 goto abort; 6906 for (i = 0; i < PENDING_IO_MAX; i++) 6907 list_add(&conf->pending_data[i].sibling, &conf->free_list); 6908 /* Don't enable multi-threading by default*/ 6909 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) { 6910 conf->group_cnt = group_cnt; 6911 conf->worker_cnt_per_group = 0; 6912 conf->worker_groups = new_group; 6913 } else 6914 goto abort; 6915 spin_lock_init(&conf->device_lock); 6916 seqcount_init(&conf->gen_lock); 6917 mutex_init(&conf->cache_size_mutex); 6918 init_waitqueue_head(&conf->wait_for_quiescent); 6919 init_waitqueue_head(&conf->wait_for_stripe); 6920 init_waitqueue_head(&conf->wait_for_overlap); 6921 INIT_LIST_HEAD(&conf->handle_list); 6922 INIT_LIST_HEAD(&conf->loprio_list); 6923 INIT_LIST_HEAD(&conf->hold_list); 6924 INIT_LIST_HEAD(&conf->delayed_list); 6925 INIT_LIST_HEAD(&conf->bitmap_list); 6926 init_llist_head(&conf->released_stripes); 6927 atomic_set(&conf->active_stripes, 0); 6928 atomic_set(&conf->preread_active_stripes, 0); 6929 atomic_set(&conf->active_aligned_reads, 0); 6930 spin_lock_init(&conf->pending_bios_lock); 6931 conf->batch_bio_dispatch = true; 6932 rdev_for_each(rdev, mddev) { 6933 if (test_bit(Journal, &rdev->flags)) 6934 continue; 6935 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 6936 conf->batch_bio_dispatch = false; 6937 break; 6938 } 6939 } 6940 6941 conf->bypass_threshold = BYPASS_THRESHOLD; 6942 conf->recovery_disabled = mddev->recovery_disabled - 1; 6943 6944 conf->raid_disks = mddev->raid_disks; 6945 if (mddev->reshape_position == MaxSector) 6946 conf->previous_raid_disks = mddev->raid_disks; 6947 else 6948 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 6949 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 6950 6951 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 6952 GFP_KERNEL); 6953 6954 if (!conf->disks) 6955 goto abort; 6956 6957 for (i = 0; i < max_disks; i++) { 6958 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 6959 if (!conf->disks[i].extra_page) 6960 goto abort; 6961 } 6962 6963 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 6964 if (ret) 6965 goto abort; 6966 conf->mddev = mddev; 6967 6968 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 6969 goto abort; 6970 6971 /* We init hash_locks[0] separately to that it can be used 6972 * as the reference lock in the spin_lock_nest_lock() call 6973 * in lock_all_device_hash_locks_irq in order to convince 6974 * lockdep that we know what we are doing. 6975 */ 6976 spin_lock_init(conf->hash_locks); 6977 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 6978 spin_lock_init(conf->hash_locks + i); 6979 6980 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6981 INIT_LIST_HEAD(conf->inactive_list + i); 6982 6983 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6984 INIT_LIST_HEAD(conf->temp_inactive_list + i); 6985 6986 atomic_set(&conf->r5c_cached_full_stripes, 0); 6987 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 6988 atomic_set(&conf->r5c_cached_partial_stripes, 0); 6989 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 6990 atomic_set(&conf->r5c_flushing_full_stripes, 0); 6991 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 6992 6993 conf->level = mddev->new_level; 6994 conf->chunk_sectors = mddev->new_chunk_sectors; 6995 if (raid5_alloc_percpu(conf) != 0) 6996 goto abort; 6997 6998 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 6999 7000 rdev_for_each(rdev, mddev) { 7001 raid_disk = rdev->raid_disk; 7002 if (raid_disk >= max_disks 7003 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7004 continue; 7005 disk = conf->disks + raid_disk; 7006 7007 if (test_bit(Replacement, &rdev->flags)) { 7008 if (disk->replacement) 7009 goto abort; 7010 disk->replacement = rdev; 7011 } else { 7012 if (disk->rdev) 7013 goto abort; 7014 disk->rdev = rdev; 7015 } 7016 7017 if (test_bit(In_sync, &rdev->flags)) { 7018 char b[BDEVNAME_SIZE]; 7019 pr_info("md/raid:%s: device %s operational as raid disk %d\n", 7020 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 7021 } else if (rdev->saved_raid_disk != raid_disk) 7022 /* Cannot rely on bitmap to complete recovery */ 7023 conf->fullsync = 1; 7024 } 7025 7026 conf->level = mddev->new_level; 7027 if (conf->level == 6) { 7028 conf->max_degraded = 2; 7029 if (raid6_call.xor_syndrome) 7030 conf->rmw_level = PARITY_ENABLE_RMW; 7031 else 7032 conf->rmw_level = PARITY_DISABLE_RMW; 7033 } else { 7034 conf->max_degraded = 1; 7035 conf->rmw_level = PARITY_ENABLE_RMW; 7036 } 7037 conf->algorithm = mddev->new_layout; 7038 conf->reshape_progress = mddev->reshape_position; 7039 if (conf->reshape_progress != MaxSector) { 7040 conf->prev_chunk_sectors = mddev->chunk_sectors; 7041 conf->prev_algo = mddev->layout; 7042 } else { 7043 conf->prev_chunk_sectors = conf->chunk_sectors; 7044 conf->prev_algo = conf->algorithm; 7045 } 7046 7047 conf->min_nr_stripes = NR_STRIPES; 7048 if (mddev->reshape_position != MaxSector) { 7049 int stripes = max_t(int, 7050 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4, 7051 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4); 7052 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7053 if (conf->min_nr_stripes != NR_STRIPES) 7054 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7055 mdname(mddev), conf->min_nr_stripes); 7056 } 7057 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7058 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7059 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7060 if (grow_stripes(conf, conf->min_nr_stripes)) { 7061 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7062 mdname(mddev), memory); 7063 goto abort; 7064 } else 7065 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7066 /* 7067 * Losing a stripe head costs more than the time to refill it, 7068 * it reduces the queue depth and so can hurt throughput. 7069 * So set it rather large, scaled by number of devices. 7070 */ 7071 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7072 conf->shrinker.scan_objects = raid5_cache_scan; 7073 conf->shrinker.count_objects = raid5_cache_count; 7074 conf->shrinker.batch = 128; 7075 conf->shrinker.flags = 0; 7076 if (register_shrinker(&conf->shrinker)) { 7077 pr_warn("md/raid:%s: couldn't register shrinker.\n", 7078 mdname(mddev)); 7079 goto abort; 7080 } 7081 7082 sprintf(pers_name, "raid%d", mddev->new_level); 7083 conf->thread = md_register_thread(raid5d, mddev, pers_name); 7084 if (!conf->thread) { 7085 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7086 mdname(mddev)); 7087 goto abort; 7088 } 7089 7090 return conf; 7091 7092 abort: 7093 if (conf) { 7094 free_conf(conf); 7095 return ERR_PTR(-EIO); 7096 } else 7097 return ERR_PTR(-ENOMEM); 7098 } 7099 7100 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7101 { 7102 switch (algo) { 7103 case ALGORITHM_PARITY_0: 7104 if (raid_disk < max_degraded) 7105 return 1; 7106 break; 7107 case ALGORITHM_PARITY_N: 7108 if (raid_disk >= raid_disks - max_degraded) 7109 return 1; 7110 break; 7111 case ALGORITHM_PARITY_0_6: 7112 if (raid_disk == 0 || 7113 raid_disk == raid_disks - 1) 7114 return 1; 7115 break; 7116 case ALGORITHM_LEFT_ASYMMETRIC_6: 7117 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7118 case ALGORITHM_LEFT_SYMMETRIC_6: 7119 case ALGORITHM_RIGHT_SYMMETRIC_6: 7120 if (raid_disk == raid_disks - 1) 7121 return 1; 7122 } 7123 return 0; 7124 } 7125 7126 static int raid5_run(struct mddev *mddev) 7127 { 7128 struct r5conf *conf; 7129 int working_disks = 0; 7130 int dirty_parity_disks = 0; 7131 struct md_rdev *rdev; 7132 struct md_rdev *journal_dev = NULL; 7133 sector_t reshape_offset = 0; 7134 int i; 7135 long long min_offset_diff = 0; 7136 int first = 1; 7137 7138 if (mddev_init_writes_pending(mddev) < 0) 7139 return -ENOMEM; 7140 7141 if (mddev->recovery_cp != MaxSector) 7142 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7143 mdname(mddev)); 7144 7145 rdev_for_each(rdev, mddev) { 7146 long long diff; 7147 7148 if (test_bit(Journal, &rdev->flags)) { 7149 journal_dev = rdev; 7150 continue; 7151 } 7152 if (rdev->raid_disk < 0) 7153 continue; 7154 diff = (rdev->new_data_offset - rdev->data_offset); 7155 if (first) { 7156 min_offset_diff = diff; 7157 first = 0; 7158 } else if (mddev->reshape_backwards && 7159 diff < min_offset_diff) 7160 min_offset_diff = diff; 7161 else if (!mddev->reshape_backwards && 7162 diff > min_offset_diff) 7163 min_offset_diff = diff; 7164 } 7165 7166 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7167 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7168 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7169 mdname(mddev)); 7170 return -EINVAL; 7171 } 7172 7173 if (mddev->reshape_position != MaxSector) { 7174 /* Check that we can continue the reshape. 7175 * Difficulties arise if the stripe we would write to 7176 * next is at or after the stripe we would read from next. 7177 * For a reshape that changes the number of devices, this 7178 * is only possible for a very short time, and mdadm makes 7179 * sure that time appears to have past before assembling 7180 * the array. So we fail if that time hasn't passed. 7181 * For a reshape that keeps the number of devices the same 7182 * mdadm must be monitoring the reshape can keeping the 7183 * critical areas read-only and backed up. It will start 7184 * the array in read-only mode, so we check for that. 7185 */ 7186 sector_t here_new, here_old; 7187 int old_disks; 7188 int max_degraded = (mddev->level == 6 ? 2 : 1); 7189 int chunk_sectors; 7190 int new_data_disks; 7191 7192 if (journal_dev) { 7193 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7194 mdname(mddev)); 7195 return -EINVAL; 7196 } 7197 7198 if (mddev->new_level != mddev->level) { 7199 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7200 mdname(mddev)); 7201 return -EINVAL; 7202 } 7203 old_disks = mddev->raid_disks - mddev->delta_disks; 7204 /* reshape_position must be on a new-stripe boundary, and one 7205 * further up in new geometry must map after here in old 7206 * geometry. 7207 * If the chunk sizes are different, then as we perform reshape 7208 * in units of the largest of the two, reshape_position needs 7209 * be a multiple of the largest chunk size times new data disks. 7210 */ 7211 here_new = mddev->reshape_position; 7212 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7213 new_data_disks = mddev->raid_disks - max_degraded; 7214 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7215 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7216 mdname(mddev)); 7217 return -EINVAL; 7218 } 7219 reshape_offset = here_new * chunk_sectors; 7220 /* here_new is the stripe we will write to */ 7221 here_old = mddev->reshape_position; 7222 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7223 /* here_old is the first stripe that we might need to read 7224 * from */ 7225 if (mddev->delta_disks == 0) { 7226 /* We cannot be sure it is safe to start an in-place 7227 * reshape. It is only safe if user-space is monitoring 7228 * and taking constant backups. 7229 * mdadm always starts a situation like this in 7230 * readonly mode so it can take control before 7231 * allowing any writes. So just check for that. 7232 */ 7233 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7234 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7235 /* not really in-place - so OK */; 7236 else if (mddev->ro == 0) { 7237 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7238 mdname(mddev)); 7239 return -EINVAL; 7240 } 7241 } else if (mddev->reshape_backwards 7242 ? (here_new * chunk_sectors + min_offset_diff <= 7243 here_old * chunk_sectors) 7244 : (here_new * chunk_sectors >= 7245 here_old * chunk_sectors + (-min_offset_diff))) { 7246 /* Reading from the same stripe as writing to - bad */ 7247 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7248 mdname(mddev)); 7249 return -EINVAL; 7250 } 7251 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7252 /* OK, we should be able to continue; */ 7253 } else { 7254 BUG_ON(mddev->level != mddev->new_level); 7255 BUG_ON(mddev->layout != mddev->new_layout); 7256 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7257 BUG_ON(mddev->delta_disks != 0); 7258 } 7259 7260 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7261 test_bit(MD_HAS_PPL, &mddev->flags)) { 7262 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7263 mdname(mddev)); 7264 clear_bit(MD_HAS_PPL, &mddev->flags); 7265 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7266 } 7267 7268 if (mddev->private == NULL) 7269 conf = setup_conf(mddev); 7270 else 7271 conf = mddev->private; 7272 7273 if (IS_ERR(conf)) 7274 return PTR_ERR(conf); 7275 7276 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7277 if (!journal_dev) { 7278 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7279 mdname(mddev)); 7280 mddev->ro = 1; 7281 set_disk_ro(mddev->gendisk, 1); 7282 } else if (mddev->recovery_cp == MaxSector) 7283 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7284 } 7285 7286 conf->min_offset_diff = min_offset_diff; 7287 mddev->thread = conf->thread; 7288 conf->thread = NULL; 7289 mddev->private = conf; 7290 7291 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7292 i++) { 7293 rdev = conf->disks[i].rdev; 7294 if (!rdev && conf->disks[i].replacement) { 7295 /* The replacement is all we have yet */ 7296 rdev = conf->disks[i].replacement; 7297 conf->disks[i].replacement = NULL; 7298 clear_bit(Replacement, &rdev->flags); 7299 conf->disks[i].rdev = rdev; 7300 } 7301 if (!rdev) 7302 continue; 7303 if (conf->disks[i].replacement && 7304 conf->reshape_progress != MaxSector) { 7305 /* replacements and reshape simply do not mix. */ 7306 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7307 goto abort; 7308 } 7309 if (test_bit(In_sync, &rdev->flags)) { 7310 working_disks++; 7311 continue; 7312 } 7313 /* This disc is not fully in-sync. However if it 7314 * just stored parity (beyond the recovery_offset), 7315 * when we don't need to be concerned about the 7316 * array being dirty. 7317 * When reshape goes 'backwards', we never have 7318 * partially completed devices, so we only need 7319 * to worry about reshape going forwards. 7320 */ 7321 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7322 if (mddev->major_version == 0 && 7323 mddev->minor_version > 90) 7324 rdev->recovery_offset = reshape_offset; 7325 7326 if (rdev->recovery_offset < reshape_offset) { 7327 /* We need to check old and new layout */ 7328 if (!only_parity(rdev->raid_disk, 7329 conf->algorithm, 7330 conf->raid_disks, 7331 conf->max_degraded)) 7332 continue; 7333 } 7334 if (!only_parity(rdev->raid_disk, 7335 conf->prev_algo, 7336 conf->previous_raid_disks, 7337 conf->max_degraded)) 7338 continue; 7339 dirty_parity_disks++; 7340 } 7341 7342 /* 7343 * 0 for a fully functional array, 1 or 2 for a degraded array. 7344 */ 7345 mddev->degraded = raid5_calc_degraded(conf); 7346 7347 if (has_failed(conf)) { 7348 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7349 mdname(mddev), mddev->degraded, conf->raid_disks); 7350 goto abort; 7351 } 7352 7353 /* device size must be a multiple of chunk size */ 7354 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 7355 mddev->resync_max_sectors = mddev->dev_sectors; 7356 7357 if (mddev->degraded > dirty_parity_disks && 7358 mddev->recovery_cp != MaxSector) { 7359 if (test_bit(MD_HAS_PPL, &mddev->flags)) 7360 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 7361 mdname(mddev)); 7362 else if (mddev->ok_start_degraded) 7363 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 7364 mdname(mddev)); 7365 else { 7366 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 7367 mdname(mddev)); 7368 goto abort; 7369 } 7370 } 7371 7372 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 7373 mdname(mddev), conf->level, 7374 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 7375 mddev->new_layout); 7376 7377 print_raid5_conf(conf); 7378 7379 if (conf->reshape_progress != MaxSector) { 7380 conf->reshape_safe = conf->reshape_progress; 7381 atomic_set(&conf->reshape_stripes, 0); 7382 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7383 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7384 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7385 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7386 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7387 "reshape"); 7388 if (!mddev->sync_thread) 7389 goto abort; 7390 } 7391 7392 /* Ok, everything is just fine now */ 7393 if (mddev->to_remove == &raid5_attrs_group) 7394 mddev->to_remove = NULL; 7395 else if (mddev->kobj.sd && 7396 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 7397 pr_warn("raid5: failed to create sysfs attributes for %s\n", 7398 mdname(mddev)); 7399 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7400 7401 if (mddev->queue) { 7402 int chunk_size; 7403 /* read-ahead size must cover two whole stripes, which 7404 * is 2 * (datadisks) * chunksize where 'n' is the 7405 * number of raid devices 7406 */ 7407 int data_disks = conf->previous_raid_disks - conf->max_degraded; 7408 int stripe = data_disks * 7409 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 7410 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 7411 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 7412 7413 chunk_size = mddev->chunk_sectors << 9; 7414 blk_queue_io_min(mddev->queue, chunk_size); 7415 blk_queue_io_opt(mddev->queue, chunk_size * 7416 (conf->raid_disks - conf->max_degraded)); 7417 mddev->queue->limits.raid_partial_stripes_expensive = 1; 7418 /* 7419 * We can only discard a whole stripe. It doesn't make sense to 7420 * discard data disk but write parity disk 7421 */ 7422 stripe = stripe * PAGE_SIZE; 7423 /* Round up to power of 2, as discard handling 7424 * currently assumes that */ 7425 while ((stripe-1) & stripe) 7426 stripe = (stripe | (stripe-1)) + 1; 7427 mddev->queue->limits.discard_alignment = stripe; 7428 mddev->queue->limits.discard_granularity = stripe; 7429 7430 blk_queue_max_write_same_sectors(mddev->queue, 0); 7431 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 7432 7433 rdev_for_each(rdev, mddev) { 7434 disk_stack_limits(mddev->gendisk, rdev->bdev, 7435 rdev->data_offset << 9); 7436 disk_stack_limits(mddev->gendisk, rdev->bdev, 7437 rdev->new_data_offset << 9); 7438 } 7439 7440 /* 7441 * zeroing is required, otherwise data 7442 * could be lost. Consider a scenario: discard a stripe 7443 * (the stripe could be inconsistent if 7444 * discard_zeroes_data is 0); write one disk of the 7445 * stripe (the stripe could be inconsistent again 7446 * depending on which disks are used to calculate 7447 * parity); the disk is broken; The stripe data of this 7448 * disk is lost. 7449 * 7450 * We only allow DISCARD if the sysadmin has confirmed that 7451 * only safe devices are in use by setting a module parameter. 7452 * A better idea might be to turn DISCARD into WRITE_ZEROES 7453 * requests, as that is required to be safe. 7454 */ 7455 if (devices_handle_discard_safely && 7456 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && 7457 mddev->queue->limits.discard_granularity >= stripe) 7458 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 7459 mddev->queue); 7460 else 7461 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 7462 mddev->queue); 7463 7464 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX); 7465 } 7466 7467 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 7468 goto abort; 7469 7470 return 0; 7471 abort: 7472 md_unregister_thread(&mddev->thread); 7473 print_raid5_conf(conf); 7474 free_conf(conf); 7475 mddev->private = NULL; 7476 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7477 return -EIO; 7478 } 7479 7480 static void raid5_free(struct mddev *mddev, void *priv) 7481 { 7482 struct r5conf *conf = priv; 7483 7484 free_conf(conf); 7485 mddev->to_remove = &raid5_attrs_group; 7486 } 7487 7488 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7489 { 7490 struct r5conf *conf = mddev->private; 7491 int i; 7492 7493 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7494 conf->chunk_sectors / 2, mddev->layout); 7495 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7496 rcu_read_lock(); 7497 for (i = 0; i < conf->raid_disks; i++) { 7498 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 7499 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 7500 } 7501 rcu_read_unlock(); 7502 seq_printf (seq, "]"); 7503 } 7504 7505 static void print_raid5_conf (struct r5conf *conf) 7506 { 7507 int i; 7508 struct disk_info *tmp; 7509 7510 pr_debug("RAID conf printout:\n"); 7511 if (!conf) { 7512 pr_debug("(conf==NULL)\n"); 7513 return; 7514 } 7515 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 7516 conf->raid_disks, 7517 conf->raid_disks - conf->mddev->degraded); 7518 7519 for (i = 0; i < conf->raid_disks; i++) { 7520 char b[BDEVNAME_SIZE]; 7521 tmp = conf->disks + i; 7522 if (tmp->rdev) 7523 pr_debug(" disk %d, o:%d, dev:%s\n", 7524 i, !test_bit(Faulty, &tmp->rdev->flags), 7525 bdevname(tmp->rdev->bdev, b)); 7526 } 7527 } 7528 7529 static int raid5_spare_active(struct mddev *mddev) 7530 { 7531 int i; 7532 struct r5conf *conf = mddev->private; 7533 struct disk_info *tmp; 7534 int count = 0; 7535 unsigned long flags; 7536 7537 for (i = 0; i < conf->raid_disks; i++) { 7538 tmp = conf->disks + i; 7539 if (tmp->replacement 7540 && tmp->replacement->recovery_offset == MaxSector 7541 && !test_bit(Faulty, &tmp->replacement->flags) 7542 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7543 /* Replacement has just become active. */ 7544 if (!tmp->rdev 7545 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7546 count++; 7547 if (tmp->rdev) { 7548 /* Replaced device not technically faulty, 7549 * but we need to be sure it gets removed 7550 * and never re-added. 7551 */ 7552 set_bit(Faulty, &tmp->rdev->flags); 7553 sysfs_notify_dirent_safe( 7554 tmp->rdev->sysfs_state); 7555 } 7556 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7557 } else if (tmp->rdev 7558 && tmp->rdev->recovery_offset == MaxSector 7559 && !test_bit(Faulty, &tmp->rdev->flags) 7560 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7561 count++; 7562 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7563 } 7564 } 7565 spin_lock_irqsave(&conf->device_lock, flags); 7566 mddev->degraded = raid5_calc_degraded(conf); 7567 spin_unlock_irqrestore(&conf->device_lock, flags); 7568 print_raid5_conf(conf); 7569 return count; 7570 } 7571 7572 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7573 { 7574 struct r5conf *conf = mddev->private; 7575 int err = 0; 7576 int number = rdev->raid_disk; 7577 struct md_rdev **rdevp; 7578 struct disk_info *p = conf->disks + number; 7579 7580 print_raid5_conf(conf); 7581 if (test_bit(Journal, &rdev->flags) && conf->log) { 7582 /* 7583 * we can't wait pending write here, as this is called in 7584 * raid5d, wait will deadlock. 7585 * neilb: there is no locking about new writes here, 7586 * so this cannot be safe. 7587 */ 7588 if (atomic_read(&conf->active_stripes) || 7589 atomic_read(&conf->r5c_cached_full_stripes) || 7590 atomic_read(&conf->r5c_cached_partial_stripes)) { 7591 return -EBUSY; 7592 } 7593 log_exit(conf); 7594 return 0; 7595 } 7596 if (rdev == p->rdev) 7597 rdevp = &p->rdev; 7598 else if (rdev == p->replacement) 7599 rdevp = &p->replacement; 7600 else 7601 return 0; 7602 7603 if (number >= conf->raid_disks && 7604 conf->reshape_progress == MaxSector) 7605 clear_bit(In_sync, &rdev->flags); 7606 7607 if (test_bit(In_sync, &rdev->flags) || 7608 atomic_read(&rdev->nr_pending)) { 7609 err = -EBUSY; 7610 goto abort; 7611 } 7612 /* Only remove non-faulty devices if recovery 7613 * isn't possible. 7614 */ 7615 if (!test_bit(Faulty, &rdev->flags) && 7616 mddev->recovery_disabled != conf->recovery_disabled && 7617 !has_failed(conf) && 7618 (!p->replacement || p->replacement == rdev) && 7619 number < conf->raid_disks) { 7620 err = -EBUSY; 7621 goto abort; 7622 } 7623 *rdevp = NULL; 7624 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 7625 synchronize_rcu(); 7626 if (atomic_read(&rdev->nr_pending)) { 7627 /* lost the race, try later */ 7628 err = -EBUSY; 7629 *rdevp = rdev; 7630 } 7631 } 7632 if (!err) { 7633 err = log_modify(conf, rdev, false); 7634 if (err) 7635 goto abort; 7636 } 7637 if (p->replacement) { 7638 /* We must have just cleared 'rdev' */ 7639 p->rdev = p->replacement; 7640 clear_bit(Replacement, &p->replacement->flags); 7641 smp_mb(); /* Make sure other CPUs may see both as identical 7642 * but will never see neither - if they are careful 7643 */ 7644 p->replacement = NULL; 7645 7646 if (!err) 7647 err = log_modify(conf, p->rdev, true); 7648 } 7649 7650 clear_bit(WantReplacement, &rdev->flags); 7651 abort: 7652 7653 print_raid5_conf(conf); 7654 return err; 7655 } 7656 7657 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7658 { 7659 struct r5conf *conf = mddev->private; 7660 int ret, err = -EEXIST; 7661 int disk; 7662 struct disk_info *p; 7663 int first = 0; 7664 int last = conf->raid_disks - 1; 7665 7666 if (test_bit(Journal, &rdev->flags)) { 7667 if (conf->log) 7668 return -EBUSY; 7669 7670 rdev->raid_disk = 0; 7671 /* 7672 * The array is in readonly mode if journal is missing, so no 7673 * write requests running. We should be safe 7674 */ 7675 ret = log_init(conf, rdev, false); 7676 if (ret) 7677 return ret; 7678 7679 ret = r5l_start(conf->log); 7680 if (ret) 7681 return ret; 7682 7683 return 0; 7684 } 7685 if (mddev->recovery_disabled == conf->recovery_disabled) 7686 return -EBUSY; 7687 7688 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7689 /* no point adding a device */ 7690 return -EINVAL; 7691 7692 if (rdev->raid_disk >= 0) 7693 first = last = rdev->raid_disk; 7694 7695 /* 7696 * find the disk ... but prefer rdev->saved_raid_disk 7697 * if possible. 7698 */ 7699 if (rdev->saved_raid_disk >= 0 && 7700 rdev->saved_raid_disk >= first && 7701 conf->disks[rdev->saved_raid_disk].rdev == NULL) 7702 first = rdev->saved_raid_disk; 7703 7704 for (disk = first; disk <= last; disk++) { 7705 p = conf->disks + disk; 7706 if (p->rdev == NULL) { 7707 clear_bit(In_sync, &rdev->flags); 7708 rdev->raid_disk = disk; 7709 if (rdev->saved_raid_disk != disk) 7710 conf->fullsync = 1; 7711 rcu_assign_pointer(p->rdev, rdev); 7712 7713 err = log_modify(conf, rdev, true); 7714 7715 goto out; 7716 } 7717 } 7718 for (disk = first; disk <= last; disk++) { 7719 p = conf->disks + disk; 7720 if (test_bit(WantReplacement, &p->rdev->flags) && 7721 p->replacement == NULL) { 7722 clear_bit(In_sync, &rdev->flags); 7723 set_bit(Replacement, &rdev->flags); 7724 rdev->raid_disk = disk; 7725 err = 0; 7726 conf->fullsync = 1; 7727 rcu_assign_pointer(p->replacement, rdev); 7728 break; 7729 } 7730 } 7731 out: 7732 print_raid5_conf(conf); 7733 return err; 7734 } 7735 7736 static int raid5_resize(struct mddev *mddev, sector_t sectors) 7737 { 7738 /* no resync is happening, and there is enough space 7739 * on all devices, so we can resize. 7740 * We need to make sure resync covers any new space. 7741 * If the array is shrinking we should possibly wait until 7742 * any io in the removed space completes, but it hardly seems 7743 * worth it. 7744 */ 7745 sector_t newsize; 7746 struct r5conf *conf = mddev->private; 7747 7748 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 7749 return -EINVAL; 7750 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7751 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 7752 if (mddev->external_size && 7753 mddev->array_sectors > newsize) 7754 return -EINVAL; 7755 if (mddev->bitmap) { 7756 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0); 7757 if (ret) 7758 return ret; 7759 } 7760 md_set_array_sectors(mddev, newsize); 7761 if (sectors > mddev->dev_sectors && 7762 mddev->recovery_cp > mddev->dev_sectors) { 7763 mddev->recovery_cp = mddev->dev_sectors; 7764 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7765 } 7766 mddev->dev_sectors = sectors; 7767 mddev->resync_max_sectors = sectors; 7768 return 0; 7769 } 7770 7771 static int check_stripe_cache(struct mddev *mddev) 7772 { 7773 /* Can only proceed if there are plenty of stripe_heads. 7774 * We need a minimum of one full stripe,, and for sensible progress 7775 * it is best to have about 4 times that. 7776 * If we require 4 times, then the default 256 4K stripe_heads will 7777 * allow for chunk sizes up to 256K, which is probably OK. 7778 * If the chunk size is greater, user-space should request more 7779 * stripe_heads first. 7780 */ 7781 struct r5conf *conf = mddev->private; 7782 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 7783 > conf->min_nr_stripes || 7784 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 7785 > conf->min_nr_stripes) { 7786 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 7787 mdname(mddev), 7788 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 7789 / STRIPE_SIZE)*4); 7790 return 0; 7791 } 7792 return 1; 7793 } 7794 7795 static int check_reshape(struct mddev *mddev) 7796 { 7797 struct r5conf *conf = mddev->private; 7798 7799 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 7800 return -EINVAL; 7801 if (mddev->delta_disks == 0 && 7802 mddev->new_layout == mddev->layout && 7803 mddev->new_chunk_sectors == mddev->chunk_sectors) 7804 return 0; /* nothing to do */ 7805 if (has_failed(conf)) 7806 return -EINVAL; 7807 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 7808 /* We might be able to shrink, but the devices must 7809 * be made bigger first. 7810 * For raid6, 4 is the minimum size. 7811 * Otherwise 2 is the minimum 7812 */ 7813 int min = 2; 7814 if (mddev->level == 6) 7815 min = 4; 7816 if (mddev->raid_disks + mddev->delta_disks < min) 7817 return -EINVAL; 7818 } 7819 7820 if (!check_stripe_cache(mddev)) 7821 return -ENOSPC; 7822 7823 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 7824 mddev->delta_disks > 0) 7825 if (resize_chunks(conf, 7826 conf->previous_raid_disks 7827 + max(0, mddev->delta_disks), 7828 max(mddev->new_chunk_sectors, 7829 mddev->chunk_sectors) 7830 ) < 0) 7831 return -ENOMEM; 7832 7833 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 7834 return 0; /* never bother to shrink */ 7835 return resize_stripes(conf, (conf->previous_raid_disks 7836 + mddev->delta_disks)); 7837 } 7838 7839 static int raid5_start_reshape(struct mddev *mddev) 7840 { 7841 struct r5conf *conf = mddev->private; 7842 struct md_rdev *rdev; 7843 int spares = 0; 7844 unsigned long flags; 7845 7846 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 7847 return -EBUSY; 7848 7849 if (!check_stripe_cache(mddev)) 7850 return -ENOSPC; 7851 7852 if (has_failed(conf)) 7853 return -EINVAL; 7854 7855 rdev_for_each(rdev, mddev) { 7856 if (!test_bit(In_sync, &rdev->flags) 7857 && !test_bit(Faulty, &rdev->flags)) 7858 spares++; 7859 } 7860 7861 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 7862 /* Not enough devices even to make a degraded array 7863 * of that size 7864 */ 7865 return -EINVAL; 7866 7867 /* Refuse to reduce size of the array. Any reductions in 7868 * array size must be through explicit setting of array_size 7869 * attribute. 7870 */ 7871 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 7872 < mddev->array_sectors) { 7873 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 7874 mdname(mddev)); 7875 return -EINVAL; 7876 } 7877 7878 atomic_set(&conf->reshape_stripes, 0); 7879 spin_lock_irq(&conf->device_lock); 7880 write_seqcount_begin(&conf->gen_lock); 7881 conf->previous_raid_disks = conf->raid_disks; 7882 conf->raid_disks += mddev->delta_disks; 7883 conf->prev_chunk_sectors = conf->chunk_sectors; 7884 conf->chunk_sectors = mddev->new_chunk_sectors; 7885 conf->prev_algo = conf->algorithm; 7886 conf->algorithm = mddev->new_layout; 7887 conf->generation++; 7888 /* Code that selects data_offset needs to see the generation update 7889 * if reshape_progress has been set - so a memory barrier needed. 7890 */ 7891 smp_mb(); 7892 if (mddev->reshape_backwards) 7893 conf->reshape_progress = raid5_size(mddev, 0, 0); 7894 else 7895 conf->reshape_progress = 0; 7896 conf->reshape_safe = conf->reshape_progress; 7897 write_seqcount_end(&conf->gen_lock); 7898 spin_unlock_irq(&conf->device_lock); 7899 7900 /* Now make sure any requests that proceeded on the assumption 7901 * the reshape wasn't running - like Discard or Read - have 7902 * completed. 7903 */ 7904 mddev_suspend(mddev); 7905 mddev_resume(mddev); 7906 7907 /* Add some new drives, as many as will fit. 7908 * We know there are enough to make the newly sized array work. 7909 * Don't add devices if we are reducing the number of 7910 * devices in the array. This is because it is not possible 7911 * to correctly record the "partially reconstructed" state of 7912 * such devices during the reshape and confusion could result. 7913 */ 7914 if (mddev->delta_disks >= 0) { 7915 rdev_for_each(rdev, mddev) 7916 if (rdev->raid_disk < 0 && 7917 !test_bit(Faulty, &rdev->flags)) { 7918 if (raid5_add_disk(mddev, rdev) == 0) { 7919 if (rdev->raid_disk 7920 >= conf->previous_raid_disks) 7921 set_bit(In_sync, &rdev->flags); 7922 else 7923 rdev->recovery_offset = 0; 7924 7925 if (sysfs_link_rdev(mddev, rdev)) 7926 /* Failure here is OK */; 7927 } 7928 } else if (rdev->raid_disk >= conf->previous_raid_disks 7929 && !test_bit(Faulty, &rdev->flags)) { 7930 /* This is a spare that was manually added */ 7931 set_bit(In_sync, &rdev->flags); 7932 } 7933 7934 /* When a reshape changes the number of devices, 7935 * ->degraded is measured against the larger of the 7936 * pre and post number of devices. 7937 */ 7938 spin_lock_irqsave(&conf->device_lock, flags); 7939 mddev->degraded = raid5_calc_degraded(conf); 7940 spin_unlock_irqrestore(&conf->device_lock, flags); 7941 } 7942 mddev->raid_disks = conf->raid_disks; 7943 mddev->reshape_position = conf->reshape_progress; 7944 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7945 7946 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7947 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7948 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7949 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7950 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7951 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7952 "reshape"); 7953 if (!mddev->sync_thread) { 7954 mddev->recovery = 0; 7955 spin_lock_irq(&conf->device_lock); 7956 write_seqcount_begin(&conf->gen_lock); 7957 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 7958 mddev->new_chunk_sectors = 7959 conf->chunk_sectors = conf->prev_chunk_sectors; 7960 mddev->new_layout = conf->algorithm = conf->prev_algo; 7961 rdev_for_each(rdev, mddev) 7962 rdev->new_data_offset = rdev->data_offset; 7963 smp_wmb(); 7964 conf->generation --; 7965 conf->reshape_progress = MaxSector; 7966 mddev->reshape_position = MaxSector; 7967 write_seqcount_end(&conf->gen_lock); 7968 spin_unlock_irq(&conf->device_lock); 7969 return -EAGAIN; 7970 } 7971 conf->reshape_checkpoint = jiffies; 7972 md_wakeup_thread(mddev->sync_thread); 7973 md_new_event(mddev); 7974 return 0; 7975 } 7976 7977 /* This is called from the reshape thread and should make any 7978 * changes needed in 'conf' 7979 */ 7980 static void end_reshape(struct r5conf *conf) 7981 { 7982 7983 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 7984 struct md_rdev *rdev; 7985 7986 spin_lock_irq(&conf->device_lock); 7987 conf->previous_raid_disks = conf->raid_disks; 7988 md_finish_reshape(conf->mddev); 7989 smp_wmb(); 7990 conf->reshape_progress = MaxSector; 7991 conf->mddev->reshape_position = MaxSector; 7992 rdev_for_each(rdev, conf->mddev) 7993 if (rdev->raid_disk >= 0 && 7994 !test_bit(Journal, &rdev->flags) && 7995 !test_bit(In_sync, &rdev->flags)) 7996 rdev->recovery_offset = MaxSector; 7997 spin_unlock_irq(&conf->device_lock); 7998 wake_up(&conf->wait_for_overlap); 7999 8000 /* read-ahead size must cover two whole stripes, which is 8001 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 8002 */ 8003 if (conf->mddev->queue) { 8004 int data_disks = conf->raid_disks - conf->max_degraded; 8005 int stripe = data_disks * ((conf->chunk_sectors << 9) 8006 / PAGE_SIZE); 8007 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 8008 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 8009 } 8010 } 8011 } 8012 8013 /* This is called from the raid5d thread with mddev_lock held. 8014 * It makes config changes to the device. 8015 */ 8016 static void raid5_finish_reshape(struct mddev *mddev) 8017 { 8018 struct r5conf *conf = mddev->private; 8019 8020 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8021 8022 if (mddev->delta_disks <= 0) { 8023 int d; 8024 spin_lock_irq(&conf->device_lock); 8025 mddev->degraded = raid5_calc_degraded(conf); 8026 spin_unlock_irq(&conf->device_lock); 8027 for (d = conf->raid_disks ; 8028 d < conf->raid_disks - mddev->delta_disks; 8029 d++) { 8030 struct md_rdev *rdev = conf->disks[d].rdev; 8031 if (rdev) 8032 clear_bit(In_sync, &rdev->flags); 8033 rdev = conf->disks[d].replacement; 8034 if (rdev) 8035 clear_bit(In_sync, &rdev->flags); 8036 } 8037 } 8038 mddev->layout = conf->algorithm; 8039 mddev->chunk_sectors = conf->chunk_sectors; 8040 mddev->reshape_position = MaxSector; 8041 mddev->delta_disks = 0; 8042 mddev->reshape_backwards = 0; 8043 } 8044 } 8045 8046 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8047 { 8048 struct r5conf *conf = mddev->private; 8049 8050 if (quiesce) { 8051 /* stop all writes */ 8052 lock_all_device_hash_locks_irq(conf); 8053 /* '2' tells resync/reshape to pause so that all 8054 * active stripes can drain 8055 */ 8056 r5c_flush_cache(conf, INT_MAX); 8057 conf->quiesce = 2; 8058 wait_event_cmd(conf->wait_for_quiescent, 8059 atomic_read(&conf->active_stripes) == 0 && 8060 atomic_read(&conf->active_aligned_reads) == 0, 8061 unlock_all_device_hash_locks_irq(conf), 8062 lock_all_device_hash_locks_irq(conf)); 8063 conf->quiesce = 1; 8064 unlock_all_device_hash_locks_irq(conf); 8065 /* allow reshape to continue */ 8066 wake_up(&conf->wait_for_overlap); 8067 } else { 8068 /* re-enable writes */ 8069 lock_all_device_hash_locks_irq(conf); 8070 conf->quiesce = 0; 8071 wake_up(&conf->wait_for_quiescent); 8072 wake_up(&conf->wait_for_overlap); 8073 unlock_all_device_hash_locks_irq(conf); 8074 } 8075 log_quiesce(conf, quiesce); 8076 } 8077 8078 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8079 { 8080 struct r0conf *raid0_conf = mddev->private; 8081 sector_t sectors; 8082 8083 /* for raid0 takeover only one zone is supported */ 8084 if (raid0_conf->nr_strip_zones > 1) { 8085 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8086 mdname(mddev)); 8087 return ERR_PTR(-EINVAL); 8088 } 8089 8090 sectors = raid0_conf->strip_zone[0].zone_end; 8091 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8092 mddev->dev_sectors = sectors; 8093 mddev->new_level = level; 8094 mddev->new_layout = ALGORITHM_PARITY_N; 8095 mddev->new_chunk_sectors = mddev->chunk_sectors; 8096 mddev->raid_disks += 1; 8097 mddev->delta_disks = 1; 8098 /* make sure it will be not marked as dirty */ 8099 mddev->recovery_cp = MaxSector; 8100 8101 return setup_conf(mddev); 8102 } 8103 8104 static void *raid5_takeover_raid1(struct mddev *mddev) 8105 { 8106 int chunksect; 8107 void *ret; 8108 8109 if (mddev->raid_disks != 2 || 8110 mddev->degraded > 1) 8111 return ERR_PTR(-EINVAL); 8112 8113 /* Should check if there are write-behind devices? */ 8114 8115 chunksect = 64*2; /* 64K by default */ 8116 8117 /* The array must be an exact multiple of chunksize */ 8118 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8119 chunksect >>= 1; 8120 8121 if ((chunksect<<9) < STRIPE_SIZE) 8122 /* array size does not allow a suitable chunk size */ 8123 return ERR_PTR(-EINVAL); 8124 8125 mddev->new_level = 5; 8126 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8127 mddev->new_chunk_sectors = chunksect; 8128 8129 ret = setup_conf(mddev); 8130 if (!IS_ERR(ret)) 8131 mddev_clear_unsupported_flags(mddev, 8132 UNSUPPORTED_MDDEV_FLAGS); 8133 return ret; 8134 } 8135 8136 static void *raid5_takeover_raid6(struct mddev *mddev) 8137 { 8138 int new_layout; 8139 8140 switch (mddev->layout) { 8141 case ALGORITHM_LEFT_ASYMMETRIC_6: 8142 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8143 break; 8144 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8145 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8146 break; 8147 case ALGORITHM_LEFT_SYMMETRIC_6: 8148 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8149 break; 8150 case ALGORITHM_RIGHT_SYMMETRIC_6: 8151 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8152 break; 8153 case ALGORITHM_PARITY_0_6: 8154 new_layout = ALGORITHM_PARITY_0; 8155 break; 8156 case ALGORITHM_PARITY_N: 8157 new_layout = ALGORITHM_PARITY_N; 8158 break; 8159 default: 8160 return ERR_PTR(-EINVAL); 8161 } 8162 mddev->new_level = 5; 8163 mddev->new_layout = new_layout; 8164 mddev->delta_disks = -1; 8165 mddev->raid_disks -= 1; 8166 return setup_conf(mddev); 8167 } 8168 8169 static int raid5_check_reshape(struct mddev *mddev) 8170 { 8171 /* For a 2-drive array, the layout and chunk size can be changed 8172 * immediately as not restriping is needed. 8173 * For larger arrays we record the new value - after validation 8174 * to be used by a reshape pass. 8175 */ 8176 struct r5conf *conf = mddev->private; 8177 int new_chunk = mddev->new_chunk_sectors; 8178 8179 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8180 return -EINVAL; 8181 if (new_chunk > 0) { 8182 if (!is_power_of_2(new_chunk)) 8183 return -EINVAL; 8184 if (new_chunk < (PAGE_SIZE>>9)) 8185 return -EINVAL; 8186 if (mddev->array_sectors & (new_chunk-1)) 8187 /* not factor of array size */ 8188 return -EINVAL; 8189 } 8190 8191 /* They look valid */ 8192 8193 if (mddev->raid_disks == 2) { 8194 /* can make the change immediately */ 8195 if (mddev->new_layout >= 0) { 8196 conf->algorithm = mddev->new_layout; 8197 mddev->layout = mddev->new_layout; 8198 } 8199 if (new_chunk > 0) { 8200 conf->chunk_sectors = new_chunk ; 8201 mddev->chunk_sectors = new_chunk; 8202 } 8203 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8204 md_wakeup_thread(mddev->thread); 8205 } 8206 return check_reshape(mddev); 8207 } 8208 8209 static int raid6_check_reshape(struct mddev *mddev) 8210 { 8211 int new_chunk = mddev->new_chunk_sectors; 8212 8213 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8214 return -EINVAL; 8215 if (new_chunk > 0) { 8216 if (!is_power_of_2(new_chunk)) 8217 return -EINVAL; 8218 if (new_chunk < (PAGE_SIZE >> 9)) 8219 return -EINVAL; 8220 if (mddev->array_sectors & (new_chunk-1)) 8221 /* not factor of array size */ 8222 return -EINVAL; 8223 } 8224 8225 /* They look valid */ 8226 return check_reshape(mddev); 8227 } 8228 8229 static void *raid5_takeover(struct mddev *mddev) 8230 { 8231 /* raid5 can take over: 8232 * raid0 - if there is only one strip zone - make it a raid4 layout 8233 * raid1 - if there are two drives. We need to know the chunk size 8234 * raid4 - trivial - just use a raid4 layout. 8235 * raid6 - Providing it is a *_6 layout 8236 */ 8237 if (mddev->level == 0) 8238 return raid45_takeover_raid0(mddev, 5); 8239 if (mddev->level == 1) 8240 return raid5_takeover_raid1(mddev); 8241 if (mddev->level == 4) { 8242 mddev->new_layout = ALGORITHM_PARITY_N; 8243 mddev->new_level = 5; 8244 return setup_conf(mddev); 8245 } 8246 if (mddev->level == 6) 8247 return raid5_takeover_raid6(mddev); 8248 8249 return ERR_PTR(-EINVAL); 8250 } 8251 8252 static void *raid4_takeover(struct mddev *mddev) 8253 { 8254 /* raid4 can take over: 8255 * raid0 - if there is only one strip zone 8256 * raid5 - if layout is right 8257 */ 8258 if (mddev->level == 0) 8259 return raid45_takeover_raid0(mddev, 4); 8260 if (mddev->level == 5 && 8261 mddev->layout == ALGORITHM_PARITY_N) { 8262 mddev->new_layout = 0; 8263 mddev->new_level = 4; 8264 return setup_conf(mddev); 8265 } 8266 return ERR_PTR(-EINVAL); 8267 } 8268 8269 static struct md_personality raid5_personality; 8270 8271 static void *raid6_takeover(struct mddev *mddev) 8272 { 8273 /* Currently can only take over a raid5. We map the 8274 * personality to an equivalent raid6 personality 8275 * with the Q block at the end. 8276 */ 8277 int new_layout; 8278 8279 if (mddev->pers != &raid5_personality) 8280 return ERR_PTR(-EINVAL); 8281 if (mddev->degraded > 1) 8282 return ERR_PTR(-EINVAL); 8283 if (mddev->raid_disks > 253) 8284 return ERR_PTR(-EINVAL); 8285 if (mddev->raid_disks < 3) 8286 return ERR_PTR(-EINVAL); 8287 8288 switch (mddev->layout) { 8289 case ALGORITHM_LEFT_ASYMMETRIC: 8290 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8291 break; 8292 case ALGORITHM_RIGHT_ASYMMETRIC: 8293 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8294 break; 8295 case ALGORITHM_LEFT_SYMMETRIC: 8296 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8297 break; 8298 case ALGORITHM_RIGHT_SYMMETRIC: 8299 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8300 break; 8301 case ALGORITHM_PARITY_0: 8302 new_layout = ALGORITHM_PARITY_0_6; 8303 break; 8304 case ALGORITHM_PARITY_N: 8305 new_layout = ALGORITHM_PARITY_N; 8306 break; 8307 default: 8308 return ERR_PTR(-EINVAL); 8309 } 8310 mddev->new_level = 6; 8311 mddev->new_layout = new_layout; 8312 mddev->delta_disks = 1; 8313 mddev->raid_disks += 1; 8314 return setup_conf(mddev); 8315 } 8316 8317 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8318 { 8319 struct r5conf *conf; 8320 int err; 8321 8322 err = mddev_lock(mddev); 8323 if (err) 8324 return err; 8325 conf = mddev->private; 8326 if (!conf) { 8327 mddev_unlock(mddev); 8328 return -ENODEV; 8329 } 8330 8331 if (strncmp(buf, "ppl", 3) == 0) { 8332 /* ppl only works with RAID 5 */ 8333 if (!raid5_has_ppl(conf) && conf->level == 5) { 8334 err = log_init(conf, NULL, true); 8335 if (!err) { 8336 err = resize_stripes(conf, conf->pool_size); 8337 if (err) 8338 log_exit(conf); 8339 } 8340 } else 8341 err = -EINVAL; 8342 } else if (strncmp(buf, "resync", 6) == 0) { 8343 if (raid5_has_ppl(conf)) { 8344 mddev_suspend(mddev); 8345 log_exit(conf); 8346 mddev_resume(mddev); 8347 err = resize_stripes(conf, conf->pool_size); 8348 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 8349 r5l_log_disk_error(conf)) { 8350 bool journal_dev_exists = false; 8351 struct md_rdev *rdev; 8352 8353 rdev_for_each(rdev, mddev) 8354 if (test_bit(Journal, &rdev->flags)) { 8355 journal_dev_exists = true; 8356 break; 8357 } 8358 8359 if (!journal_dev_exists) { 8360 mddev_suspend(mddev); 8361 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 8362 mddev_resume(mddev); 8363 } else /* need remove journal device first */ 8364 err = -EBUSY; 8365 } else 8366 err = -EINVAL; 8367 } else { 8368 err = -EINVAL; 8369 } 8370 8371 if (!err) 8372 md_update_sb(mddev, 1); 8373 8374 mddev_unlock(mddev); 8375 8376 return err; 8377 } 8378 8379 static int raid5_start(struct mddev *mddev) 8380 { 8381 struct r5conf *conf = mddev->private; 8382 8383 return r5l_start(conf->log); 8384 } 8385 8386 static struct md_personality raid6_personality = 8387 { 8388 .name = "raid6", 8389 .level = 6, 8390 .owner = THIS_MODULE, 8391 .make_request = raid5_make_request, 8392 .run = raid5_run, 8393 .start = raid5_start, 8394 .free = raid5_free, 8395 .status = raid5_status, 8396 .error_handler = raid5_error, 8397 .hot_add_disk = raid5_add_disk, 8398 .hot_remove_disk= raid5_remove_disk, 8399 .spare_active = raid5_spare_active, 8400 .sync_request = raid5_sync_request, 8401 .resize = raid5_resize, 8402 .size = raid5_size, 8403 .check_reshape = raid6_check_reshape, 8404 .start_reshape = raid5_start_reshape, 8405 .finish_reshape = raid5_finish_reshape, 8406 .quiesce = raid5_quiesce, 8407 .takeover = raid6_takeover, 8408 .change_consistency_policy = raid5_change_consistency_policy, 8409 }; 8410 static struct md_personality raid5_personality = 8411 { 8412 .name = "raid5", 8413 .level = 5, 8414 .owner = THIS_MODULE, 8415 .make_request = raid5_make_request, 8416 .run = raid5_run, 8417 .start = raid5_start, 8418 .free = raid5_free, 8419 .status = raid5_status, 8420 .error_handler = raid5_error, 8421 .hot_add_disk = raid5_add_disk, 8422 .hot_remove_disk= raid5_remove_disk, 8423 .spare_active = raid5_spare_active, 8424 .sync_request = raid5_sync_request, 8425 .resize = raid5_resize, 8426 .size = raid5_size, 8427 .check_reshape = raid5_check_reshape, 8428 .start_reshape = raid5_start_reshape, 8429 .finish_reshape = raid5_finish_reshape, 8430 .quiesce = raid5_quiesce, 8431 .takeover = raid5_takeover, 8432 .change_consistency_policy = raid5_change_consistency_policy, 8433 }; 8434 8435 static struct md_personality raid4_personality = 8436 { 8437 .name = "raid4", 8438 .level = 4, 8439 .owner = THIS_MODULE, 8440 .make_request = raid5_make_request, 8441 .run = raid5_run, 8442 .start = raid5_start, 8443 .free = raid5_free, 8444 .status = raid5_status, 8445 .error_handler = raid5_error, 8446 .hot_add_disk = raid5_add_disk, 8447 .hot_remove_disk= raid5_remove_disk, 8448 .spare_active = raid5_spare_active, 8449 .sync_request = raid5_sync_request, 8450 .resize = raid5_resize, 8451 .size = raid5_size, 8452 .check_reshape = raid5_check_reshape, 8453 .start_reshape = raid5_start_reshape, 8454 .finish_reshape = raid5_finish_reshape, 8455 .quiesce = raid5_quiesce, 8456 .takeover = raid4_takeover, 8457 .change_consistency_policy = raid5_change_consistency_policy, 8458 }; 8459 8460 static int __init raid5_init(void) 8461 { 8462 int ret; 8463 8464 raid5_wq = alloc_workqueue("raid5wq", 8465 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 8466 if (!raid5_wq) 8467 return -ENOMEM; 8468 8469 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 8470 "md/raid5:prepare", 8471 raid456_cpu_up_prepare, 8472 raid456_cpu_dead); 8473 if (ret) { 8474 destroy_workqueue(raid5_wq); 8475 return ret; 8476 } 8477 register_md_personality(&raid6_personality); 8478 register_md_personality(&raid5_personality); 8479 register_md_personality(&raid4_personality); 8480 return 0; 8481 } 8482 8483 static void raid5_exit(void) 8484 { 8485 unregister_md_personality(&raid6_personality); 8486 unregister_md_personality(&raid5_personality); 8487 unregister_md_personality(&raid4_personality); 8488 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 8489 destroy_workqueue(raid5_wq); 8490 } 8491 8492 module_init(raid5_init); 8493 module_exit(raid5_exit); 8494 MODULE_LICENSE("GPL"); 8495 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 8496 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 8497 MODULE_ALIAS("md-raid5"); 8498 MODULE_ALIAS("md-raid4"); 8499 MODULE_ALIAS("md-level-5"); 8500 MODULE_ALIAS("md-level-4"); 8501 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 8502 MODULE_ALIAS("md-raid6"); 8503 MODULE_ALIAS("md-level-6"); 8504 8505 /* This used to be two separate modules, they were: */ 8506 MODULE_ALIAS("raid5"); 8507 MODULE_ALIAS("raid6"); 8508