xref: /openbmc/linux/drivers/md/raid5.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid5.c : Multiple Devices driver for Linux
4  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5  *	   Copyright (C) 1999, 2000 Ingo Molnar
6  *	   Copyright (C) 2002, 2003 H. Peter Anvin
7  *
8  * RAID-4/5/6 management functions.
9  * Thanks to Penguin Computing for making the RAID-6 development possible
10  * by donating a test server!
11  */
12 
13 /*
14  * BITMAP UNPLUGGING:
15  *
16  * The sequencing for updating the bitmap reliably is a little
17  * subtle (and I got it wrong the first time) so it deserves some
18  * explanation.
19  *
20  * We group bitmap updates into batches.  Each batch has a number.
21  * We may write out several batches at once, but that isn't very important.
22  * conf->seq_write is the number of the last batch successfully written.
23  * conf->seq_flush is the number of the last batch that was closed to
24  *    new additions.
25  * When we discover that we will need to write to any block in a stripe
26  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27  * the number of the batch it will be in. This is seq_flush+1.
28  * When we are ready to do a write, if that batch hasn't been written yet,
29  *   we plug the array and queue the stripe for later.
30  * When an unplug happens, we increment bm_flush, thus closing the current
31  *   batch.
32  * When we notice that bm_flush > bm_write, we write out all pending updates
33  * to the bitmap, and advance bm_write to where bm_flush was.
34  * This may occasionally write a bit out twice, but is sure never to
35  * miss any bits.
36  */
37 
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49 
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52 
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58 
59 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
60 
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63 
64 static bool devices_handle_discard_safely = false;
65 module_param(devices_handle_discard_safely, bool, 0644);
66 MODULE_PARM_DESC(devices_handle_discard_safely,
67 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68 static struct workqueue_struct *raid5_wq;
69 
70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
71 {
72 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
73 	return &conf->stripe_hashtbl[hash];
74 }
75 
76 static inline int stripe_hash_locks_hash(sector_t sect)
77 {
78 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
79 }
80 
81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82 {
83 	spin_lock_irq(conf->hash_locks + hash);
84 	spin_lock(&conf->device_lock);
85 }
86 
87 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
88 {
89 	spin_unlock(&conf->device_lock);
90 	spin_unlock_irq(conf->hash_locks + hash);
91 }
92 
93 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
94 {
95 	int i;
96 	spin_lock_irq(conf->hash_locks);
97 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99 	spin_lock(&conf->device_lock);
100 }
101 
102 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
103 {
104 	int i;
105 	spin_unlock(&conf->device_lock);
106 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107 		spin_unlock(conf->hash_locks + i);
108 	spin_unlock_irq(conf->hash_locks);
109 }
110 
111 /* Find first data disk in a raid6 stripe */
112 static inline int raid6_d0(struct stripe_head *sh)
113 {
114 	if (sh->ddf_layout)
115 		/* ddf always start from first device */
116 		return 0;
117 	/* md starts just after Q block */
118 	if (sh->qd_idx == sh->disks - 1)
119 		return 0;
120 	else
121 		return sh->qd_idx + 1;
122 }
123 static inline int raid6_next_disk(int disk, int raid_disks)
124 {
125 	disk++;
126 	return (disk < raid_disks) ? disk : 0;
127 }
128 
129 /* When walking through the disks in a raid5, starting at raid6_d0,
130  * We need to map each disk to a 'slot', where the data disks are slot
131  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132  * is raid_disks-1.  This help does that mapping.
133  */
134 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135 			     int *count, int syndrome_disks)
136 {
137 	int slot = *count;
138 
139 	if (sh->ddf_layout)
140 		(*count)++;
141 	if (idx == sh->pd_idx)
142 		return syndrome_disks;
143 	if (idx == sh->qd_idx)
144 		return syndrome_disks + 1;
145 	if (!sh->ddf_layout)
146 		(*count)++;
147 	return slot;
148 }
149 
150 static void print_raid5_conf (struct r5conf *conf);
151 
152 static int stripe_operations_active(struct stripe_head *sh)
153 {
154 	return sh->check_state || sh->reconstruct_state ||
155 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
157 }
158 
159 static bool stripe_is_lowprio(struct stripe_head *sh)
160 {
161 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
164 }
165 
166 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
167 {
168 	struct r5conf *conf = sh->raid_conf;
169 	struct r5worker_group *group;
170 	int thread_cnt;
171 	int i, cpu = sh->cpu;
172 
173 	if (!cpu_online(cpu)) {
174 		cpu = cpumask_any(cpu_online_mask);
175 		sh->cpu = cpu;
176 	}
177 
178 	if (list_empty(&sh->lru)) {
179 		struct r5worker_group *group;
180 		group = conf->worker_groups + cpu_to_group(cpu);
181 		if (stripe_is_lowprio(sh))
182 			list_add_tail(&sh->lru, &group->loprio_list);
183 		else
184 			list_add_tail(&sh->lru, &group->handle_list);
185 		group->stripes_cnt++;
186 		sh->group = group;
187 	}
188 
189 	if (conf->worker_cnt_per_group == 0) {
190 		md_wakeup_thread(conf->mddev->thread);
191 		return;
192 	}
193 
194 	group = conf->worker_groups + cpu_to_group(sh->cpu);
195 
196 	group->workers[0].working = true;
197 	/* at least one worker should run to avoid race */
198 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
199 
200 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201 	/* wakeup more workers */
202 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203 		if (group->workers[i].working == false) {
204 			group->workers[i].working = true;
205 			queue_work_on(sh->cpu, raid5_wq,
206 				      &group->workers[i].work);
207 			thread_cnt--;
208 		}
209 	}
210 }
211 
212 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213 			      struct list_head *temp_inactive_list)
214 {
215 	int i;
216 	int injournal = 0;	/* number of date pages with R5_InJournal */
217 
218 	BUG_ON(!list_empty(&sh->lru));
219 	BUG_ON(atomic_read(&conf->active_stripes)==0);
220 
221 	if (r5c_is_writeback(conf->log))
222 		for (i = sh->disks; i--; )
223 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
224 				injournal++;
225 	/*
226 	 * In the following cases, the stripe cannot be released to cached
227 	 * lists. Therefore, we make the stripe write out and set
228 	 * STRIPE_HANDLE:
229 	 *   1. when quiesce in r5c write back;
230 	 *   2. when resync is requested fot the stripe.
231 	 */
232 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
234 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
235 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236 			r5c_make_stripe_write_out(sh);
237 		set_bit(STRIPE_HANDLE, &sh->state);
238 	}
239 
240 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
241 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
242 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
243 			list_add_tail(&sh->lru, &conf->delayed_list);
244 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
245 			   sh->bm_seq - conf->seq_write > 0)
246 			list_add_tail(&sh->lru, &conf->bitmap_list);
247 		else {
248 			clear_bit(STRIPE_DELAYED, &sh->state);
249 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
250 			if (conf->worker_cnt_per_group == 0) {
251 				if (stripe_is_lowprio(sh))
252 					list_add_tail(&sh->lru,
253 							&conf->loprio_list);
254 				else
255 					list_add_tail(&sh->lru,
256 							&conf->handle_list);
257 			} else {
258 				raid5_wakeup_stripe_thread(sh);
259 				return;
260 			}
261 		}
262 		md_wakeup_thread(conf->mddev->thread);
263 	} else {
264 		BUG_ON(stripe_operations_active(sh));
265 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266 			if (atomic_dec_return(&conf->preread_active_stripes)
267 			    < IO_THRESHOLD)
268 				md_wakeup_thread(conf->mddev->thread);
269 		atomic_dec(&conf->active_stripes);
270 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271 			if (!r5c_is_writeback(conf->log))
272 				list_add_tail(&sh->lru, temp_inactive_list);
273 			else {
274 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
275 				if (injournal == 0)
276 					list_add_tail(&sh->lru, temp_inactive_list);
277 				else if (injournal == conf->raid_disks - conf->max_degraded) {
278 					/* full stripe */
279 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280 						atomic_inc(&conf->r5c_cached_full_stripes);
281 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282 						atomic_dec(&conf->r5c_cached_partial_stripes);
283 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
284 					r5c_check_cached_full_stripe(conf);
285 				} else
286 					/*
287 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 					 * r5c_try_caching_write(). No need to
289 					 * set it again.
290 					 */
291 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
292 			}
293 		}
294 	}
295 }
296 
297 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298 			     struct list_head *temp_inactive_list)
299 {
300 	if (atomic_dec_and_test(&sh->count))
301 		do_release_stripe(conf, sh, temp_inactive_list);
302 }
303 
304 /*
305  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
306  *
307  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308  * given time. Adding stripes only takes device lock, while deleting stripes
309  * only takes hash lock.
310  */
311 static void release_inactive_stripe_list(struct r5conf *conf,
312 					 struct list_head *temp_inactive_list,
313 					 int hash)
314 {
315 	int size;
316 	bool do_wakeup = false;
317 	unsigned long flags;
318 
319 	if (hash == NR_STRIPE_HASH_LOCKS) {
320 		size = NR_STRIPE_HASH_LOCKS;
321 		hash = NR_STRIPE_HASH_LOCKS - 1;
322 	} else
323 		size = 1;
324 	while (size) {
325 		struct list_head *list = &temp_inactive_list[size - 1];
326 
327 		/*
328 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
329 		 * remove stripes from the list
330 		 */
331 		if (!list_empty_careful(list)) {
332 			spin_lock_irqsave(conf->hash_locks + hash, flags);
333 			if (list_empty(conf->inactive_list + hash) &&
334 			    !list_empty(list))
335 				atomic_dec(&conf->empty_inactive_list_nr);
336 			list_splice_tail_init(list, conf->inactive_list + hash);
337 			do_wakeup = true;
338 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
339 		}
340 		size--;
341 		hash--;
342 	}
343 
344 	if (do_wakeup) {
345 		wake_up(&conf->wait_for_stripe);
346 		if (atomic_read(&conf->active_stripes) == 0)
347 			wake_up(&conf->wait_for_quiescent);
348 		if (conf->retry_read_aligned)
349 			md_wakeup_thread(conf->mddev->thread);
350 	}
351 }
352 
353 /* should hold conf->device_lock already */
354 static int release_stripe_list(struct r5conf *conf,
355 			       struct list_head *temp_inactive_list)
356 {
357 	struct stripe_head *sh, *t;
358 	int count = 0;
359 	struct llist_node *head;
360 
361 	head = llist_del_all(&conf->released_stripes);
362 	head = llist_reverse_order(head);
363 	llist_for_each_entry_safe(sh, t, head, release_list) {
364 		int hash;
365 
366 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367 		smp_mb();
368 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
369 		/*
370 		 * Don't worry the bit is set here, because if the bit is set
371 		 * again, the count is always > 1. This is true for
372 		 * STRIPE_ON_UNPLUG_LIST bit too.
373 		 */
374 		hash = sh->hash_lock_index;
375 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
376 		count++;
377 	}
378 
379 	return count;
380 }
381 
382 void raid5_release_stripe(struct stripe_head *sh)
383 {
384 	struct r5conf *conf = sh->raid_conf;
385 	unsigned long flags;
386 	struct list_head list;
387 	int hash;
388 	bool wakeup;
389 
390 	/* Avoid release_list until the last reference.
391 	 */
392 	if (atomic_add_unless(&sh->count, -1, 1))
393 		return;
394 
395 	if (unlikely(!conf->mddev->thread) ||
396 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
397 		goto slow_path;
398 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
399 	if (wakeup)
400 		md_wakeup_thread(conf->mddev->thread);
401 	return;
402 slow_path:
403 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
405 		INIT_LIST_HEAD(&list);
406 		hash = sh->hash_lock_index;
407 		do_release_stripe(conf, sh, &list);
408 		spin_unlock_irqrestore(&conf->device_lock, flags);
409 		release_inactive_stripe_list(conf, &list, hash);
410 	}
411 }
412 
413 static inline void remove_hash(struct stripe_head *sh)
414 {
415 	pr_debug("remove_hash(), stripe %llu\n",
416 		(unsigned long long)sh->sector);
417 
418 	hlist_del_init(&sh->hash);
419 }
420 
421 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
422 {
423 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
424 
425 	pr_debug("insert_hash(), stripe %llu\n",
426 		(unsigned long long)sh->sector);
427 
428 	hlist_add_head(&sh->hash, hp);
429 }
430 
431 /* find an idle stripe, make sure it is unhashed, and return it. */
432 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
433 {
434 	struct stripe_head *sh = NULL;
435 	struct list_head *first;
436 
437 	if (list_empty(conf->inactive_list + hash))
438 		goto out;
439 	first = (conf->inactive_list + hash)->next;
440 	sh = list_entry(first, struct stripe_head, lru);
441 	list_del_init(first);
442 	remove_hash(sh);
443 	atomic_inc(&conf->active_stripes);
444 	BUG_ON(hash != sh->hash_lock_index);
445 	if (list_empty(conf->inactive_list + hash))
446 		atomic_inc(&conf->empty_inactive_list_nr);
447 out:
448 	return sh;
449 }
450 
451 static void shrink_buffers(struct stripe_head *sh)
452 {
453 	struct page *p;
454 	int i;
455 	int num = sh->raid_conf->pool_size;
456 
457 	for (i = 0; i < num ; i++) {
458 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
459 		p = sh->dev[i].page;
460 		if (!p)
461 			continue;
462 		sh->dev[i].page = NULL;
463 		put_page(p);
464 	}
465 }
466 
467 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
468 {
469 	int i;
470 	int num = sh->raid_conf->pool_size;
471 
472 	for (i = 0; i < num; i++) {
473 		struct page *page;
474 
475 		if (!(page = alloc_page(gfp))) {
476 			return 1;
477 		}
478 		sh->dev[i].page = page;
479 		sh->dev[i].orig_page = page;
480 	}
481 
482 	return 0;
483 }
484 
485 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
486 			    struct stripe_head *sh);
487 
488 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
489 {
490 	struct r5conf *conf = sh->raid_conf;
491 	int i, seq;
492 
493 	BUG_ON(atomic_read(&sh->count) != 0);
494 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
495 	BUG_ON(stripe_operations_active(sh));
496 	BUG_ON(sh->batch_head);
497 
498 	pr_debug("init_stripe called, stripe %llu\n",
499 		(unsigned long long)sector);
500 retry:
501 	seq = read_seqcount_begin(&conf->gen_lock);
502 	sh->generation = conf->generation - previous;
503 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
504 	sh->sector = sector;
505 	stripe_set_idx(sector, conf, previous, sh);
506 	sh->state = 0;
507 
508 	for (i = sh->disks; i--; ) {
509 		struct r5dev *dev = &sh->dev[i];
510 
511 		if (dev->toread || dev->read || dev->towrite || dev->written ||
512 		    test_bit(R5_LOCKED, &dev->flags)) {
513 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
514 			       (unsigned long long)sh->sector, i, dev->toread,
515 			       dev->read, dev->towrite, dev->written,
516 			       test_bit(R5_LOCKED, &dev->flags));
517 			WARN_ON(1);
518 		}
519 		dev->flags = 0;
520 		dev->sector = raid5_compute_blocknr(sh, i, previous);
521 	}
522 	if (read_seqcount_retry(&conf->gen_lock, seq))
523 		goto retry;
524 	sh->overwrite_disks = 0;
525 	insert_hash(conf, sh);
526 	sh->cpu = smp_processor_id();
527 	set_bit(STRIPE_BATCH_READY, &sh->state);
528 }
529 
530 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
531 					 short generation)
532 {
533 	struct stripe_head *sh;
534 
535 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
536 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
537 		if (sh->sector == sector && sh->generation == generation)
538 			return sh;
539 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
540 	return NULL;
541 }
542 
543 /*
544  * Need to check if array has failed when deciding whether to:
545  *  - start an array
546  *  - remove non-faulty devices
547  *  - add a spare
548  *  - allow a reshape
549  * This determination is simple when no reshape is happening.
550  * However if there is a reshape, we need to carefully check
551  * both the before and after sections.
552  * This is because some failed devices may only affect one
553  * of the two sections, and some non-in_sync devices may
554  * be insync in the section most affected by failed devices.
555  */
556 int raid5_calc_degraded(struct r5conf *conf)
557 {
558 	int degraded, degraded2;
559 	int i;
560 
561 	rcu_read_lock();
562 	degraded = 0;
563 	for (i = 0; i < conf->previous_raid_disks; i++) {
564 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
565 		if (rdev && test_bit(Faulty, &rdev->flags))
566 			rdev = rcu_dereference(conf->disks[i].replacement);
567 		if (!rdev || test_bit(Faulty, &rdev->flags))
568 			degraded++;
569 		else if (test_bit(In_sync, &rdev->flags))
570 			;
571 		else
572 			/* not in-sync or faulty.
573 			 * If the reshape increases the number of devices,
574 			 * this is being recovered by the reshape, so
575 			 * this 'previous' section is not in_sync.
576 			 * If the number of devices is being reduced however,
577 			 * the device can only be part of the array if
578 			 * we are reverting a reshape, so this section will
579 			 * be in-sync.
580 			 */
581 			if (conf->raid_disks >= conf->previous_raid_disks)
582 				degraded++;
583 	}
584 	rcu_read_unlock();
585 	if (conf->raid_disks == conf->previous_raid_disks)
586 		return degraded;
587 	rcu_read_lock();
588 	degraded2 = 0;
589 	for (i = 0; i < conf->raid_disks; i++) {
590 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
591 		if (rdev && test_bit(Faulty, &rdev->flags))
592 			rdev = rcu_dereference(conf->disks[i].replacement);
593 		if (!rdev || test_bit(Faulty, &rdev->flags))
594 			degraded2++;
595 		else if (test_bit(In_sync, &rdev->flags))
596 			;
597 		else
598 			/* not in-sync or faulty.
599 			 * If reshape increases the number of devices, this
600 			 * section has already been recovered, else it
601 			 * almost certainly hasn't.
602 			 */
603 			if (conf->raid_disks <= conf->previous_raid_disks)
604 				degraded2++;
605 	}
606 	rcu_read_unlock();
607 	if (degraded2 > degraded)
608 		return degraded2;
609 	return degraded;
610 }
611 
612 static int has_failed(struct r5conf *conf)
613 {
614 	int degraded;
615 
616 	if (conf->mddev->reshape_position == MaxSector)
617 		return conf->mddev->degraded > conf->max_degraded;
618 
619 	degraded = raid5_calc_degraded(conf);
620 	if (degraded > conf->max_degraded)
621 		return 1;
622 	return 0;
623 }
624 
625 struct stripe_head *
626 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
627 			int previous, int noblock, int noquiesce)
628 {
629 	struct stripe_head *sh;
630 	int hash = stripe_hash_locks_hash(sector);
631 	int inc_empty_inactive_list_flag;
632 
633 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
634 
635 	spin_lock_irq(conf->hash_locks + hash);
636 
637 	do {
638 		wait_event_lock_irq(conf->wait_for_quiescent,
639 				    conf->quiesce == 0 || noquiesce,
640 				    *(conf->hash_locks + hash));
641 		sh = __find_stripe(conf, sector, conf->generation - previous);
642 		if (!sh) {
643 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
644 				sh = get_free_stripe(conf, hash);
645 				if (!sh && !test_bit(R5_DID_ALLOC,
646 						     &conf->cache_state))
647 					set_bit(R5_ALLOC_MORE,
648 						&conf->cache_state);
649 			}
650 			if (noblock && sh == NULL)
651 				break;
652 
653 			r5c_check_stripe_cache_usage(conf);
654 			if (!sh) {
655 				set_bit(R5_INACTIVE_BLOCKED,
656 					&conf->cache_state);
657 				r5l_wake_reclaim(conf->log, 0);
658 				wait_event_lock_irq(
659 					conf->wait_for_stripe,
660 					!list_empty(conf->inactive_list + hash) &&
661 					(atomic_read(&conf->active_stripes)
662 					 < (conf->max_nr_stripes * 3 / 4)
663 					 || !test_bit(R5_INACTIVE_BLOCKED,
664 						      &conf->cache_state)),
665 					*(conf->hash_locks + hash));
666 				clear_bit(R5_INACTIVE_BLOCKED,
667 					  &conf->cache_state);
668 			} else {
669 				init_stripe(sh, sector, previous);
670 				atomic_inc(&sh->count);
671 			}
672 		} else if (!atomic_inc_not_zero(&sh->count)) {
673 			spin_lock(&conf->device_lock);
674 			if (!atomic_read(&sh->count)) {
675 				if (!test_bit(STRIPE_HANDLE, &sh->state))
676 					atomic_inc(&conf->active_stripes);
677 				BUG_ON(list_empty(&sh->lru) &&
678 				       !test_bit(STRIPE_EXPANDING, &sh->state));
679 				inc_empty_inactive_list_flag = 0;
680 				if (!list_empty(conf->inactive_list + hash))
681 					inc_empty_inactive_list_flag = 1;
682 				list_del_init(&sh->lru);
683 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
684 					atomic_inc(&conf->empty_inactive_list_nr);
685 				if (sh->group) {
686 					sh->group->stripes_cnt--;
687 					sh->group = NULL;
688 				}
689 			}
690 			atomic_inc(&sh->count);
691 			spin_unlock(&conf->device_lock);
692 		}
693 	} while (sh == NULL);
694 
695 	spin_unlock_irq(conf->hash_locks + hash);
696 	return sh;
697 }
698 
699 static bool is_full_stripe_write(struct stripe_head *sh)
700 {
701 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
702 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
703 }
704 
705 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
706 		__acquires(&sh1->stripe_lock)
707 		__acquires(&sh2->stripe_lock)
708 {
709 	if (sh1 > sh2) {
710 		spin_lock_irq(&sh2->stripe_lock);
711 		spin_lock_nested(&sh1->stripe_lock, 1);
712 	} else {
713 		spin_lock_irq(&sh1->stripe_lock);
714 		spin_lock_nested(&sh2->stripe_lock, 1);
715 	}
716 }
717 
718 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
719 		__releases(&sh1->stripe_lock)
720 		__releases(&sh2->stripe_lock)
721 {
722 	spin_unlock(&sh1->stripe_lock);
723 	spin_unlock_irq(&sh2->stripe_lock);
724 }
725 
726 /* Only freshly new full stripe normal write stripe can be added to a batch list */
727 static bool stripe_can_batch(struct stripe_head *sh)
728 {
729 	struct r5conf *conf = sh->raid_conf;
730 
731 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
732 		return false;
733 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
734 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
735 		is_full_stripe_write(sh);
736 }
737 
738 /* we only do back search */
739 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
740 {
741 	struct stripe_head *head;
742 	sector_t head_sector, tmp_sec;
743 	int hash;
744 	int dd_idx;
745 	int inc_empty_inactive_list_flag;
746 
747 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
748 	tmp_sec = sh->sector;
749 	if (!sector_div(tmp_sec, conf->chunk_sectors))
750 		return;
751 	head_sector = sh->sector - STRIPE_SECTORS;
752 
753 	hash = stripe_hash_locks_hash(head_sector);
754 	spin_lock_irq(conf->hash_locks + hash);
755 	head = __find_stripe(conf, head_sector, conf->generation);
756 	if (head && !atomic_inc_not_zero(&head->count)) {
757 		spin_lock(&conf->device_lock);
758 		if (!atomic_read(&head->count)) {
759 			if (!test_bit(STRIPE_HANDLE, &head->state))
760 				atomic_inc(&conf->active_stripes);
761 			BUG_ON(list_empty(&head->lru) &&
762 			       !test_bit(STRIPE_EXPANDING, &head->state));
763 			inc_empty_inactive_list_flag = 0;
764 			if (!list_empty(conf->inactive_list + hash))
765 				inc_empty_inactive_list_flag = 1;
766 			list_del_init(&head->lru);
767 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
768 				atomic_inc(&conf->empty_inactive_list_nr);
769 			if (head->group) {
770 				head->group->stripes_cnt--;
771 				head->group = NULL;
772 			}
773 		}
774 		atomic_inc(&head->count);
775 		spin_unlock(&conf->device_lock);
776 	}
777 	spin_unlock_irq(conf->hash_locks + hash);
778 
779 	if (!head)
780 		return;
781 	if (!stripe_can_batch(head))
782 		goto out;
783 
784 	lock_two_stripes(head, sh);
785 	/* clear_batch_ready clear the flag */
786 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
787 		goto unlock_out;
788 
789 	if (sh->batch_head)
790 		goto unlock_out;
791 
792 	dd_idx = 0;
793 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
794 		dd_idx++;
795 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
797 		goto unlock_out;
798 
799 	if (head->batch_head) {
800 		spin_lock(&head->batch_head->batch_lock);
801 		/* This batch list is already running */
802 		if (!stripe_can_batch(head)) {
803 			spin_unlock(&head->batch_head->batch_lock);
804 			goto unlock_out;
805 		}
806 		/*
807 		 * We must assign batch_head of this stripe within the
808 		 * batch_lock, otherwise clear_batch_ready of batch head
809 		 * stripe could clear BATCH_READY bit of this stripe and
810 		 * this stripe->batch_head doesn't get assigned, which
811 		 * could confuse clear_batch_ready for this stripe
812 		 */
813 		sh->batch_head = head->batch_head;
814 
815 		/*
816 		 * at this point, head's BATCH_READY could be cleared, but we
817 		 * can still add the stripe to batch list
818 		 */
819 		list_add(&sh->batch_list, &head->batch_list);
820 		spin_unlock(&head->batch_head->batch_lock);
821 	} else {
822 		head->batch_head = head;
823 		sh->batch_head = head->batch_head;
824 		spin_lock(&head->batch_lock);
825 		list_add_tail(&sh->batch_list, &head->batch_list);
826 		spin_unlock(&head->batch_lock);
827 	}
828 
829 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
830 		if (atomic_dec_return(&conf->preread_active_stripes)
831 		    < IO_THRESHOLD)
832 			md_wakeup_thread(conf->mddev->thread);
833 
834 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
835 		int seq = sh->bm_seq;
836 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
837 		    sh->batch_head->bm_seq > seq)
838 			seq = sh->batch_head->bm_seq;
839 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
840 		sh->batch_head->bm_seq = seq;
841 	}
842 
843 	atomic_inc(&sh->count);
844 unlock_out:
845 	unlock_two_stripes(head, sh);
846 out:
847 	raid5_release_stripe(head);
848 }
849 
850 /* Determine if 'data_offset' or 'new_data_offset' should be used
851  * in this stripe_head.
852  */
853 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
854 {
855 	sector_t progress = conf->reshape_progress;
856 	/* Need a memory barrier to make sure we see the value
857 	 * of conf->generation, or ->data_offset that was set before
858 	 * reshape_progress was updated.
859 	 */
860 	smp_rmb();
861 	if (progress == MaxSector)
862 		return 0;
863 	if (sh->generation == conf->generation - 1)
864 		return 0;
865 	/* We are in a reshape, and this is a new-generation stripe,
866 	 * so use new_data_offset.
867 	 */
868 	return 1;
869 }
870 
871 static void dispatch_bio_list(struct bio_list *tmp)
872 {
873 	struct bio *bio;
874 
875 	while ((bio = bio_list_pop(tmp)))
876 		generic_make_request(bio);
877 }
878 
879 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
880 {
881 	const struct r5pending_data *da = list_entry(a,
882 				struct r5pending_data, sibling);
883 	const struct r5pending_data *db = list_entry(b,
884 				struct r5pending_data, sibling);
885 	if (da->sector > db->sector)
886 		return 1;
887 	if (da->sector < db->sector)
888 		return -1;
889 	return 0;
890 }
891 
892 static void dispatch_defer_bios(struct r5conf *conf, int target,
893 				struct bio_list *list)
894 {
895 	struct r5pending_data *data;
896 	struct list_head *first, *next = NULL;
897 	int cnt = 0;
898 
899 	if (conf->pending_data_cnt == 0)
900 		return;
901 
902 	list_sort(NULL, &conf->pending_list, cmp_stripe);
903 
904 	first = conf->pending_list.next;
905 
906 	/* temporarily move the head */
907 	if (conf->next_pending_data)
908 		list_move_tail(&conf->pending_list,
909 				&conf->next_pending_data->sibling);
910 
911 	while (!list_empty(&conf->pending_list)) {
912 		data = list_first_entry(&conf->pending_list,
913 			struct r5pending_data, sibling);
914 		if (&data->sibling == first)
915 			first = data->sibling.next;
916 		next = data->sibling.next;
917 
918 		bio_list_merge(list, &data->bios);
919 		list_move(&data->sibling, &conf->free_list);
920 		cnt++;
921 		if (cnt >= target)
922 			break;
923 	}
924 	conf->pending_data_cnt -= cnt;
925 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
926 
927 	if (next != &conf->pending_list)
928 		conf->next_pending_data = list_entry(next,
929 				struct r5pending_data, sibling);
930 	else
931 		conf->next_pending_data = NULL;
932 	/* list isn't empty */
933 	if (first != &conf->pending_list)
934 		list_move_tail(&conf->pending_list, first);
935 }
936 
937 static void flush_deferred_bios(struct r5conf *conf)
938 {
939 	struct bio_list tmp = BIO_EMPTY_LIST;
940 
941 	if (conf->pending_data_cnt == 0)
942 		return;
943 
944 	spin_lock(&conf->pending_bios_lock);
945 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
946 	BUG_ON(conf->pending_data_cnt != 0);
947 	spin_unlock(&conf->pending_bios_lock);
948 
949 	dispatch_bio_list(&tmp);
950 }
951 
952 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
953 				struct bio_list *bios)
954 {
955 	struct bio_list tmp = BIO_EMPTY_LIST;
956 	struct r5pending_data *ent;
957 
958 	spin_lock(&conf->pending_bios_lock);
959 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
960 							sibling);
961 	list_move_tail(&ent->sibling, &conf->pending_list);
962 	ent->sector = sector;
963 	bio_list_init(&ent->bios);
964 	bio_list_merge(&ent->bios, bios);
965 	conf->pending_data_cnt++;
966 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
967 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
968 
969 	spin_unlock(&conf->pending_bios_lock);
970 
971 	dispatch_bio_list(&tmp);
972 }
973 
974 static void
975 raid5_end_read_request(struct bio *bi);
976 static void
977 raid5_end_write_request(struct bio *bi);
978 
979 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
980 {
981 	struct r5conf *conf = sh->raid_conf;
982 	int i, disks = sh->disks;
983 	struct stripe_head *head_sh = sh;
984 	struct bio_list pending_bios = BIO_EMPTY_LIST;
985 	bool should_defer;
986 
987 	might_sleep();
988 
989 	if (log_stripe(sh, s) == 0)
990 		return;
991 
992 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
993 
994 	for (i = disks; i--; ) {
995 		int op, op_flags = 0;
996 		int replace_only = 0;
997 		struct bio *bi, *rbi;
998 		struct md_rdev *rdev, *rrdev = NULL;
999 
1000 		sh = head_sh;
1001 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1002 			op = REQ_OP_WRITE;
1003 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1004 				op_flags = REQ_FUA;
1005 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1006 				op = REQ_OP_DISCARD;
1007 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1008 			op = REQ_OP_READ;
1009 		else if (test_and_clear_bit(R5_WantReplace,
1010 					    &sh->dev[i].flags)) {
1011 			op = REQ_OP_WRITE;
1012 			replace_only = 1;
1013 		} else
1014 			continue;
1015 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1016 			op_flags |= REQ_SYNC;
1017 
1018 again:
1019 		bi = &sh->dev[i].req;
1020 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
1021 
1022 		rcu_read_lock();
1023 		rrdev = rcu_dereference(conf->disks[i].replacement);
1024 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1025 		rdev = rcu_dereference(conf->disks[i].rdev);
1026 		if (!rdev) {
1027 			rdev = rrdev;
1028 			rrdev = NULL;
1029 		}
1030 		if (op_is_write(op)) {
1031 			if (replace_only)
1032 				rdev = NULL;
1033 			if (rdev == rrdev)
1034 				/* We raced and saw duplicates */
1035 				rrdev = NULL;
1036 		} else {
1037 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1038 				rdev = rrdev;
1039 			rrdev = NULL;
1040 		}
1041 
1042 		if (rdev && test_bit(Faulty, &rdev->flags))
1043 			rdev = NULL;
1044 		if (rdev)
1045 			atomic_inc(&rdev->nr_pending);
1046 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1047 			rrdev = NULL;
1048 		if (rrdev)
1049 			atomic_inc(&rrdev->nr_pending);
1050 		rcu_read_unlock();
1051 
1052 		/* We have already checked bad blocks for reads.  Now
1053 		 * need to check for writes.  We never accept write errors
1054 		 * on the replacement, so we don't to check rrdev.
1055 		 */
1056 		while (op_is_write(op) && rdev &&
1057 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1058 			sector_t first_bad;
1059 			int bad_sectors;
1060 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1061 					      &first_bad, &bad_sectors);
1062 			if (!bad)
1063 				break;
1064 
1065 			if (bad < 0) {
1066 				set_bit(BlockedBadBlocks, &rdev->flags);
1067 				if (!conf->mddev->external &&
1068 				    conf->mddev->sb_flags) {
1069 					/* It is very unlikely, but we might
1070 					 * still need to write out the
1071 					 * bad block log - better give it
1072 					 * a chance*/
1073 					md_check_recovery(conf->mddev);
1074 				}
1075 				/*
1076 				 * Because md_wait_for_blocked_rdev
1077 				 * will dec nr_pending, we must
1078 				 * increment it first.
1079 				 */
1080 				atomic_inc(&rdev->nr_pending);
1081 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1082 			} else {
1083 				/* Acknowledged bad block - skip the write */
1084 				rdev_dec_pending(rdev, conf->mddev);
1085 				rdev = NULL;
1086 			}
1087 		}
1088 
1089 		if (rdev) {
1090 			if (s->syncing || s->expanding || s->expanded
1091 			    || s->replacing)
1092 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1093 
1094 			set_bit(STRIPE_IO_STARTED, &sh->state);
1095 
1096 			bio_set_dev(bi, rdev->bdev);
1097 			bio_set_op_attrs(bi, op, op_flags);
1098 			bi->bi_end_io = op_is_write(op)
1099 				? raid5_end_write_request
1100 				: raid5_end_read_request;
1101 			bi->bi_private = sh;
1102 
1103 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1104 				__func__, (unsigned long long)sh->sector,
1105 				bi->bi_opf, i);
1106 			atomic_inc(&sh->count);
1107 			if (sh != head_sh)
1108 				atomic_inc(&head_sh->count);
1109 			if (use_new_offset(conf, sh))
1110 				bi->bi_iter.bi_sector = (sh->sector
1111 						 + rdev->new_data_offset);
1112 			else
1113 				bi->bi_iter.bi_sector = (sh->sector
1114 						 + rdev->data_offset);
1115 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1116 				bi->bi_opf |= REQ_NOMERGE;
1117 
1118 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1119 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1120 
1121 			if (!op_is_write(op) &&
1122 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1123 				/*
1124 				 * issuing read for a page in journal, this
1125 				 * must be preparing for prexor in rmw; read
1126 				 * the data into orig_page
1127 				 */
1128 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1129 			else
1130 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1131 			bi->bi_vcnt = 1;
1132 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1133 			bi->bi_io_vec[0].bv_offset = 0;
1134 			bi->bi_iter.bi_size = STRIPE_SIZE;
1135 			bi->bi_write_hint = sh->dev[i].write_hint;
1136 			if (!rrdev)
1137 				sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1138 			/*
1139 			 * If this is discard request, set bi_vcnt 0. We don't
1140 			 * want to confuse SCSI because SCSI will replace payload
1141 			 */
1142 			if (op == REQ_OP_DISCARD)
1143 				bi->bi_vcnt = 0;
1144 			if (rrdev)
1145 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1146 
1147 			if (conf->mddev->gendisk)
1148 				trace_block_bio_remap(bi->bi_disk->queue,
1149 						      bi, disk_devt(conf->mddev->gendisk),
1150 						      sh->dev[i].sector);
1151 			if (should_defer && op_is_write(op))
1152 				bio_list_add(&pending_bios, bi);
1153 			else
1154 				generic_make_request(bi);
1155 		}
1156 		if (rrdev) {
1157 			if (s->syncing || s->expanding || s->expanded
1158 			    || s->replacing)
1159 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1160 
1161 			set_bit(STRIPE_IO_STARTED, &sh->state);
1162 
1163 			bio_set_dev(rbi, rrdev->bdev);
1164 			bio_set_op_attrs(rbi, op, op_flags);
1165 			BUG_ON(!op_is_write(op));
1166 			rbi->bi_end_io = raid5_end_write_request;
1167 			rbi->bi_private = sh;
1168 
1169 			pr_debug("%s: for %llu schedule op %d on "
1170 				 "replacement disc %d\n",
1171 				__func__, (unsigned long long)sh->sector,
1172 				rbi->bi_opf, i);
1173 			atomic_inc(&sh->count);
1174 			if (sh != head_sh)
1175 				atomic_inc(&head_sh->count);
1176 			if (use_new_offset(conf, sh))
1177 				rbi->bi_iter.bi_sector = (sh->sector
1178 						  + rrdev->new_data_offset);
1179 			else
1180 				rbi->bi_iter.bi_sector = (sh->sector
1181 						  + rrdev->data_offset);
1182 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1185 			rbi->bi_vcnt = 1;
1186 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1187 			rbi->bi_io_vec[0].bv_offset = 0;
1188 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1189 			rbi->bi_write_hint = sh->dev[i].write_hint;
1190 			sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1191 			/*
1192 			 * If this is discard request, set bi_vcnt 0. We don't
1193 			 * want to confuse SCSI because SCSI will replace payload
1194 			 */
1195 			if (op == REQ_OP_DISCARD)
1196 				rbi->bi_vcnt = 0;
1197 			if (conf->mddev->gendisk)
1198 				trace_block_bio_remap(rbi->bi_disk->queue,
1199 						      rbi, disk_devt(conf->mddev->gendisk),
1200 						      sh->dev[i].sector);
1201 			if (should_defer && op_is_write(op))
1202 				bio_list_add(&pending_bios, rbi);
1203 			else
1204 				generic_make_request(rbi);
1205 		}
1206 		if (!rdev && !rrdev) {
1207 			if (op_is_write(op))
1208 				set_bit(STRIPE_DEGRADED, &sh->state);
1209 			pr_debug("skip op %d on disc %d for sector %llu\n",
1210 				bi->bi_opf, i, (unsigned long long)sh->sector);
1211 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1212 			set_bit(STRIPE_HANDLE, &sh->state);
1213 		}
1214 
1215 		if (!head_sh->batch_head)
1216 			continue;
1217 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1218 				      batch_list);
1219 		if (sh != head_sh)
1220 			goto again;
1221 	}
1222 
1223 	if (should_defer && !bio_list_empty(&pending_bios))
1224 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1225 }
1226 
1227 static struct dma_async_tx_descriptor *
1228 async_copy_data(int frombio, struct bio *bio, struct page **page,
1229 	sector_t sector, struct dma_async_tx_descriptor *tx,
1230 	struct stripe_head *sh, int no_skipcopy)
1231 {
1232 	struct bio_vec bvl;
1233 	struct bvec_iter iter;
1234 	struct page *bio_page;
1235 	int page_offset;
1236 	struct async_submit_ctl submit;
1237 	enum async_tx_flags flags = 0;
1238 
1239 	if (bio->bi_iter.bi_sector >= sector)
1240 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1241 	else
1242 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1243 
1244 	if (frombio)
1245 		flags |= ASYNC_TX_FENCE;
1246 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1247 
1248 	bio_for_each_segment(bvl, bio, iter) {
1249 		int len = bvl.bv_len;
1250 		int clen;
1251 		int b_offset = 0;
1252 
1253 		if (page_offset < 0) {
1254 			b_offset = -page_offset;
1255 			page_offset += b_offset;
1256 			len -= b_offset;
1257 		}
1258 
1259 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1260 			clen = STRIPE_SIZE - page_offset;
1261 		else
1262 			clen = len;
1263 
1264 		if (clen > 0) {
1265 			b_offset += bvl.bv_offset;
1266 			bio_page = bvl.bv_page;
1267 			if (frombio) {
1268 				if (sh->raid_conf->skip_copy &&
1269 				    b_offset == 0 && page_offset == 0 &&
1270 				    clen == STRIPE_SIZE &&
1271 				    !no_skipcopy)
1272 					*page = bio_page;
1273 				else
1274 					tx = async_memcpy(*page, bio_page, page_offset,
1275 						  b_offset, clen, &submit);
1276 			} else
1277 				tx = async_memcpy(bio_page, *page, b_offset,
1278 						  page_offset, clen, &submit);
1279 		}
1280 		/* chain the operations */
1281 		submit.depend_tx = tx;
1282 
1283 		if (clen < len) /* hit end of page */
1284 			break;
1285 		page_offset +=  len;
1286 	}
1287 
1288 	return tx;
1289 }
1290 
1291 static void ops_complete_biofill(void *stripe_head_ref)
1292 {
1293 	struct stripe_head *sh = stripe_head_ref;
1294 	int i;
1295 
1296 	pr_debug("%s: stripe %llu\n", __func__,
1297 		(unsigned long long)sh->sector);
1298 
1299 	/* clear completed biofills */
1300 	for (i = sh->disks; i--; ) {
1301 		struct r5dev *dev = &sh->dev[i];
1302 
1303 		/* acknowledge completion of a biofill operation */
1304 		/* and check if we need to reply to a read request,
1305 		 * new R5_Wantfill requests are held off until
1306 		 * !STRIPE_BIOFILL_RUN
1307 		 */
1308 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1309 			struct bio *rbi, *rbi2;
1310 
1311 			BUG_ON(!dev->read);
1312 			rbi = dev->read;
1313 			dev->read = NULL;
1314 			while (rbi && rbi->bi_iter.bi_sector <
1315 				dev->sector + STRIPE_SECTORS) {
1316 				rbi2 = r5_next_bio(rbi, dev->sector);
1317 				bio_endio(rbi);
1318 				rbi = rbi2;
1319 			}
1320 		}
1321 	}
1322 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1323 
1324 	set_bit(STRIPE_HANDLE, &sh->state);
1325 	raid5_release_stripe(sh);
1326 }
1327 
1328 static void ops_run_biofill(struct stripe_head *sh)
1329 {
1330 	struct dma_async_tx_descriptor *tx = NULL;
1331 	struct async_submit_ctl submit;
1332 	int i;
1333 
1334 	BUG_ON(sh->batch_head);
1335 	pr_debug("%s: stripe %llu\n", __func__,
1336 		(unsigned long long)sh->sector);
1337 
1338 	for (i = sh->disks; i--; ) {
1339 		struct r5dev *dev = &sh->dev[i];
1340 		if (test_bit(R5_Wantfill, &dev->flags)) {
1341 			struct bio *rbi;
1342 			spin_lock_irq(&sh->stripe_lock);
1343 			dev->read = rbi = dev->toread;
1344 			dev->toread = NULL;
1345 			spin_unlock_irq(&sh->stripe_lock);
1346 			while (rbi && rbi->bi_iter.bi_sector <
1347 				dev->sector + STRIPE_SECTORS) {
1348 				tx = async_copy_data(0, rbi, &dev->page,
1349 						     dev->sector, tx, sh, 0);
1350 				rbi = r5_next_bio(rbi, dev->sector);
1351 			}
1352 		}
1353 	}
1354 
1355 	atomic_inc(&sh->count);
1356 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1357 	async_trigger_callback(&submit);
1358 }
1359 
1360 static void mark_target_uptodate(struct stripe_head *sh, int target)
1361 {
1362 	struct r5dev *tgt;
1363 
1364 	if (target < 0)
1365 		return;
1366 
1367 	tgt = &sh->dev[target];
1368 	set_bit(R5_UPTODATE, &tgt->flags);
1369 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1370 	clear_bit(R5_Wantcompute, &tgt->flags);
1371 }
1372 
1373 static void ops_complete_compute(void *stripe_head_ref)
1374 {
1375 	struct stripe_head *sh = stripe_head_ref;
1376 
1377 	pr_debug("%s: stripe %llu\n", __func__,
1378 		(unsigned long long)sh->sector);
1379 
1380 	/* mark the computed target(s) as uptodate */
1381 	mark_target_uptodate(sh, sh->ops.target);
1382 	mark_target_uptodate(sh, sh->ops.target2);
1383 
1384 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1385 	if (sh->check_state == check_state_compute_run)
1386 		sh->check_state = check_state_compute_result;
1387 	set_bit(STRIPE_HANDLE, &sh->state);
1388 	raid5_release_stripe(sh);
1389 }
1390 
1391 /* return a pointer to the address conversion region of the scribble buffer */
1392 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1393 {
1394 	return percpu->scribble + i * percpu->scribble_obj_size;
1395 }
1396 
1397 /* return a pointer to the address conversion region of the scribble buffer */
1398 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1399 				 struct raid5_percpu *percpu, int i)
1400 {
1401 	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1402 }
1403 
1404 static struct dma_async_tx_descriptor *
1405 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1406 {
1407 	int disks = sh->disks;
1408 	struct page **xor_srcs = to_addr_page(percpu, 0);
1409 	int target = sh->ops.target;
1410 	struct r5dev *tgt = &sh->dev[target];
1411 	struct page *xor_dest = tgt->page;
1412 	int count = 0;
1413 	struct dma_async_tx_descriptor *tx;
1414 	struct async_submit_ctl submit;
1415 	int i;
1416 
1417 	BUG_ON(sh->batch_head);
1418 
1419 	pr_debug("%s: stripe %llu block: %d\n",
1420 		__func__, (unsigned long long)sh->sector, target);
1421 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1422 
1423 	for (i = disks; i--; )
1424 		if (i != target)
1425 			xor_srcs[count++] = sh->dev[i].page;
1426 
1427 	atomic_inc(&sh->count);
1428 
1429 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1430 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1431 	if (unlikely(count == 1))
1432 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1433 	else
1434 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1435 
1436 	return tx;
1437 }
1438 
1439 /* set_syndrome_sources - populate source buffers for gen_syndrome
1440  * @srcs - (struct page *) array of size sh->disks
1441  * @sh - stripe_head to parse
1442  *
1443  * Populates srcs in proper layout order for the stripe and returns the
1444  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1445  * destination buffer is recorded in srcs[count] and the Q destination
1446  * is recorded in srcs[count+1]].
1447  */
1448 static int set_syndrome_sources(struct page **srcs,
1449 				struct stripe_head *sh,
1450 				int srctype)
1451 {
1452 	int disks = sh->disks;
1453 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1454 	int d0_idx = raid6_d0(sh);
1455 	int count;
1456 	int i;
1457 
1458 	for (i = 0; i < disks; i++)
1459 		srcs[i] = NULL;
1460 
1461 	count = 0;
1462 	i = d0_idx;
1463 	do {
1464 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1465 		struct r5dev *dev = &sh->dev[i];
1466 
1467 		if (i == sh->qd_idx || i == sh->pd_idx ||
1468 		    (srctype == SYNDROME_SRC_ALL) ||
1469 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1470 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1471 		      test_bit(R5_InJournal, &dev->flags))) ||
1472 		    (srctype == SYNDROME_SRC_WRITTEN &&
1473 		     (dev->written ||
1474 		      test_bit(R5_InJournal, &dev->flags)))) {
1475 			if (test_bit(R5_InJournal, &dev->flags))
1476 				srcs[slot] = sh->dev[i].orig_page;
1477 			else
1478 				srcs[slot] = sh->dev[i].page;
1479 		}
1480 		i = raid6_next_disk(i, disks);
1481 	} while (i != d0_idx);
1482 
1483 	return syndrome_disks;
1484 }
1485 
1486 static struct dma_async_tx_descriptor *
1487 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1488 {
1489 	int disks = sh->disks;
1490 	struct page **blocks = to_addr_page(percpu, 0);
1491 	int target;
1492 	int qd_idx = sh->qd_idx;
1493 	struct dma_async_tx_descriptor *tx;
1494 	struct async_submit_ctl submit;
1495 	struct r5dev *tgt;
1496 	struct page *dest;
1497 	int i;
1498 	int count;
1499 
1500 	BUG_ON(sh->batch_head);
1501 	if (sh->ops.target < 0)
1502 		target = sh->ops.target2;
1503 	else if (sh->ops.target2 < 0)
1504 		target = sh->ops.target;
1505 	else
1506 		/* we should only have one valid target */
1507 		BUG();
1508 	BUG_ON(target < 0);
1509 	pr_debug("%s: stripe %llu block: %d\n",
1510 		__func__, (unsigned long long)sh->sector, target);
1511 
1512 	tgt = &sh->dev[target];
1513 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1514 	dest = tgt->page;
1515 
1516 	atomic_inc(&sh->count);
1517 
1518 	if (target == qd_idx) {
1519 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520 		blocks[count] = NULL; /* regenerating p is not necessary */
1521 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1522 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1523 				  ops_complete_compute, sh,
1524 				  to_addr_conv(sh, percpu, 0));
1525 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1526 	} else {
1527 		/* Compute any data- or p-drive using XOR */
1528 		count = 0;
1529 		for (i = disks; i-- ; ) {
1530 			if (i == target || i == qd_idx)
1531 				continue;
1532 			blocks[count++] = sh->dev[i].page;
1533 		}
1534 
1535 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1536 				  NULL, ops_complete_compute, sh,
1537 				  to_addr_conv(sh, percpu, 0));
1538 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1539 	}
1540 
1541 	return tx;
1542 }
1543 
1544 static struct dma_async_tx_descriptor *
1545 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1546 {
1547 	int i, count, disks = sh->disks;
1548 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1549 	int d0_idx = raid6_d0(sh);
1550 	int faila = -1, failb = -1;
1551 	int target = sh->ops.target;
1552 	int target2 = sh->ops.target2;
1553 	struct r5dev *tgt = &sh->dev[target];
1554 	struct r5dev *tgt2 = &sh->dev[target2];
1555 	struct dma_async_tx_descriptor *tx;
1556 	struct page **blocks = to_addr_page(percpu, 0);
1557 	struct async_submit_ctl submit;
1558 
1559 	BUG_ON(sh->batch_head);
1560 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1561 		 __func__, (unsigned long long)sh->sector, target, target2);
1562 	BUG_ON(target < 0 || target2 < 0);
1563 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1564 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1565 
1566 	/* we need to open-code set_syndrome_sources to handle the
1567 	 * slot number conversion for 'faila' and 'failb'
1568 	 */
1569 	for (i = 0; i < disks ; i++)
1570 		blocks[i] = NULL;
1571 	count = 0;
1572 	i = d0_idx;
1573 	do {
1574 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1575 
1576 		blocks[slot] = sh->dev[i].page;
1577 
1578 		if (i == target)
1579 			faila = slot;
1580 		if (i == target2)
1581 			failb = slot;
1582 		i = raid6_next_disk(i, disks);
1583 	} while (i != d0_idx);
1584 
1585 	BUG_ON(faila == failb);
1586 	if (failb < faila)
1587 		swap(faila, failb);
1588 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1589 		 __func__, (unsigned long long)sh->sector, faila, failb);
1590 
1591 	atomic_inc(&sh->count);
1592 
1593 	if (failb == syndrome_disks+1) {
1594 		/* Q disk is one of the missing disks */
1595 		if (faila == syndrome_disks) {
1596 			/* Missing P+Q, just recompute */
1597 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1598 					  ops_complete_compute, sh,
1599 					  to_addr_conv(sh, percpu, 0));
1600 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1601 						  STRIPE_SIZE, &submit);
1602 		} else {
1603 			struct page *dest;
1604 			int data_target;
1605 			int qd_idx = sh->qd_idx;
1606 
1607 			/* Missing D+Q: recompute D from P, then recompute Q */
1608 			if (target == qd_idx)
1609 				data_target = target2;
1610 			else
1611 				data_target = target;
1612 
1613 			count = 0;
1614 			for (i = disks; i-- ; ) {
1615 				if (i == data_target || i == qd_idx)
1616 					continue;
1617 				blocks[count++] = sh->dev[i].page;
1618 			}
1619 			dest = sh->dev[data_target].page;
1620 			init_async_submit(&submit,
1621 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1622 					  NULL, NULL, NULL,
1623 					  to_addr_conv(sh, percpu, 0));
1624 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1625 				       &submit);
1626 
1627 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1628 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1629 					  ops_complete_compute, sh,
1630 					  to_addr_conv(sh, percpu, 0));
1631 			return async_gen_syndrome(blocks, 0, count+2,
1632 						  STRIPE_SIZE, &submit);
1633 		}
1634 	} else {
1635 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1636 				  ops_complete_compute, sh,
1637 				  to_addr_conv(sh, percpu, 0));
1638 		if (failb == syndrome_disks) {
1639 			/* We're missing D+P. */
1640 			return async_raid6_datap_recov(syndrome_disks+2,
1641 						       STRIPE_SIZE, faila,
1642 						       blocks, &submit);
1643 		} else {
1644 			/* We're missing D+D. */
1645 			return async_raid6_2data_recov(syndrome_disks+2,
1646 						       STRIPE_SIZE, faila, failb,
1647 						       blocks, &submit);
1648 		}
1649 	}
1650 }
1651 
1652 static void ops_complete_prexor(void *stripe_head_ref)
1653 {
1654 	struct stripe_head *sh = stripe_head_ref;
1655 
1656 	pr_debug("%s: stripe %llu\n", __func__,
1657 		(unsigned long long)sh->sector);
1658 
1659 	if (r5c_is_writeback(sh->raid_conf->log))
1660 		/*
1661 		 * raid5-cache write back uses orig_page during prexor.
1662 		 * After prexor, it is time to free orig_page
1663 		 */
1664 		r5c_release_extra_page(sh);
1665 }
1666 
1667 static struct dma_async_tx_descriptor *
1668 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1669 		struct dma_async_tx_descriptor *tx)
1670 {
1671 	int disks = sh->disks;
1672 	struct page **xor_srcs = to_addr_page(percpu, 0);
1673 	int count = 0, pd_idx = sh->pd_idx, i;
1674 	struct async_submit_ctl submit;
1675 
1676 	/* existing parity data subtracted */
1677 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1678 
1679 	BUG_ON(sh->batch_head);
1680 	pr_debug("%s: stripe %llu\n", __func__,
1681 		(unsigned long long)sh->sector);
1682 
1683 	for (i = disks; i--; ) {
1684 		struct r5dev *dev = &sh->dev[i];
1685 		/* Only process blocks that are known to be uptodate */
1686 		if (test_bit(R5_InJournal, &dev->flags))
1687 			xor_srcs[count++] = dev->orig_page;
1688 		else if (test_bit(R5_Wantdrain, &dev->flags))
1689 			xor_srcs[count++] = dev->page;
1690 	}
1691 
1692 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1693 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1694 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1695 
1696 	return tx;
1697 }
1698 
1699 static struct dma_async_tx_descriptor *
1700 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1701 		struct dma_async_tx_descriptor *tx)
1702 {
1703 	struct page **blocks = to_addr_page(percpu, 0);
1704 	int count;
1705 	struct async_submit_ctl submit;
1706 
1707 	pr_debug("%s: stripe %llu\n", __func__,
1708 		(unsigned long long)sh->sector);
1709 
1710 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1711 
1712 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1713 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1714 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1715 
1716 	return tx;
1717 }
1718 
1719 static struct dma_async_tx_descriptor *
1720 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1721 {
1722 	struct r5conf *conf = sh->raid_conf;
1723 	int disks = sh->disks;
1724 	int i;
1725 	struct stripe_head *head_sh = sh;
1726 
1727 	pr_debug("%s: stripe %llu\n", __func__,
1728 		(unsigned long long)sh->sector);
1729 
1730 	for (i = disks; i--; ) {
1731 		struct r5dev *dev;
1732 		struct bio *chosen;
1733 
1734 		sh = head_sh;
1735 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1736 			struct bio *wbi;
1737 
1738 again:
1739 			dev = &sh->dev[i];
1740 			/*
1741 			 * clear R5_InJournal, so when rewriting a page in
1742 			 * journal, it is not skipped by r5l_log_stripe()
1743 			 */
1744 			clear_bit(R5_InJournal, &dev->flags);
1745 			spin_lock_irq(&sh->stripe_lock);
1746 			chosen = dev->towrite;
1747 			dev->towrite = NULL;
1748 			sh->overwrite_disks = 0;
1749 			BUG_ON(dev->written);
1750 			wbi = dev->written = chosen;
1751 			spin_unlock_irq(&sh->stripe_lock);
1752 			WARN_ON(dev->page != dev->orig_page);
1753 
1754 			while (wbi && wbi->bi_iter.bi_sector <
1755 				dev->sector + STRIPE_SECTORS) {
1756 				if (wbi->bi_opf & REQ_FUA)
1757 					set_bit(R5_WantFUA, &dev->flags);
1758 				if (wbi->bi_opf & REQ_SYNC)
1759 					set_bit(R5_SyncIO, &dev->flags);
1760 				if (bio_op(wbi) == REQ_OP_DISCARD)
1761 					set_bit(R5_Discard, &dev->flags);
1762 				else {
1763 					tx = async_copy_data(1, wbi, &dev->page,
1764 							     dev->sector, tx, sh,
1765 							     r5c_is_writeback(conf->log));
1766 					if (dev->page != dev->orig_page &&
1767 					    !r5c_is_writeback(conf->log)) {
1768 						set_bit(R5_SkipCopy, &dev->flags);
1769 						clear_bit(R5_UPTODATE, &dev->flags);
1770 						clear_bit(R5_OVERWRITE, &dev->flags);
1771 					}
1772 				}
1773 				wbi = r5_next_bio(wbi, dev->sector);
1774 			}
1775 
1776 			if (head_sh->batch_head) {
1777 				sh = list_first_entry(&sh->batch_list,
1778 						      struct stripe_head,
1779 						      batch_list);
1780 				if (sh == head_sh)
1781 					continue;
1782 				goto again;
1783 			}
1784 		}
1785 	}
1786 
1787 	return tx;
1788 }
1789 
1790 static void ops_complete_reconstruct(void *stripe_head_ref)
1791 {
1792 	struct stripe_head *sh = stripe_head_ref;
1793 	int disks = sh->disks;
1794 	int pd_idx = sh->pd_idx;
1795 	int qd_idx = sh->qd_idx;
1796 	int i;
1797 	bool fua = false, sync = false, discard = false;
1798 
1799 	pr_debug("%s: stripe %llu\n", __func__,
1800 		(unsigned long long)sh->sector);
1801 
1802 	for (i = disks; i--; ) {
1803 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1804 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1805 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1806 	}
1807 
1808 	for (i = disks; i--; ) {
1809 		struct r5dev *dev = &sh->dev[i];
1810 
1811 		if (dev->written || i == pd_idx || i == qd_idx) {
1812 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1813 				set_bit(R5_UPTODATE, &dev->flags);
1814 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1815 					set_bit(R5_Expanded, &dev->flags);
1816 			}
1817 			if (fua)
1818 				set_bit(R5_WantFUA, &dev->flags);
1819 			if (sync)
1820 				set_bit(R5_SyncIO, &dev->flags);
1821 		}
1822 	}
1823 
1824 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1825 		sh->reconstruct_state = reconstruct_state_drain_result;
1826 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1827 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1828 	else {
1829 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1830 		sh->reconstruct_state = reconstruct_state_result;
1831 	}
1832 
1833 	set_bit(STRIPE_HANDLE, &sh->state);
1834 	raid5_release_stripe(sh);
1835 }
1836 
1837 static void
1838 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1839 		     struct dma_async_tx_descriptor *tx)
1840 {
1841 	int disks = sh->disks;
1842 	struct page **xor_srcs;
1843 	struct async_submit_ctl submit;
1844 	int count, pd_idx = sh->pd_idx, i;
1845 	struct page *xor_dest;
1846 	int prexor = 0;
1847 	unsigned long flags;
1848 	int j = 0;
1849 	struct stripe_head *head_sh = sh;
1850 	int last_stripe;
1851 
1852 	pr_debug("%s: stripe %llu\n", __func__,
1853 		(unsigned long long)sh->sector);
1854 
1855 	for (i = 0; i < sh->disks; i++) {
1856 		if (pd_idx == i)
1857 			continue;
1858 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1859 			break;
1860 	}
1861 	if (i >= sh->disks) {
1862 		atomic_inc(&sh->count);
1863 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1864 		ops_complete_reconstruct(sh);
1865 		return;
1866 	}
1867 again:
1868 	count = 0;
1869 	xor_srcs = to_addr_page(percpu, j);
1870 	/* check if prexor is active which means only process blocks
1871 	 * that are part of a read-modify-write (written)
1872 	 */
1873 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1874 		prexor = 1;
1875 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1876 		for (i = disks; i--; ) {
1877 			struct r5dev *dev = &sh->dev[i];
1878 			if (head_sh->dev[i].written ||
1879 			    test_bit(R5_InJournal, &head_sh->dev[i].flags))
1880 				xor_srcs[count++] = dev->page;
1881 		}
1882 	} else {
1883 		xor_dest = sh->dev[pd_idx].page;
1884 		for (i = disks; i--; ) {
1885 			struct r5dev *dev = &sh->dev[i];
1886 			if (i != pd_idx)
1887 				xor_srcs[count++] = dev->page;
1888 		}
1889 	}
1890 
1891 	/* 1/ if we prexor'd then the dest is reused as a source
1892 	 * 2/ if we did not prexor then we are redoing the parity
1893 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1894 	 * for the synchronous xor case
1895 	 */
1896 	last_stripe = !head_sh->batch_head ||
1897 		list_first_entry(&sh->batch_list,
1898 				 struct stripe_head, batch_list) == head_sh;
1899 	if (last_stripe) {
1900 		flags = ASYNC_TX_ACK |
1901 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1902 
1903 		atomic_inc(&head_sh->count);
1904 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1905 				  to_addr_conv(sh, percpu, j));
1906 	} else {
1907 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1908 		init_async_submit(&submit, flags, tx, NULL, NULL,
1909 				  to_addr_conv(sh, percpu, j));
1910 	}
1911 
1912 	if (unlikely(count == 1))
1913 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1914 	else
1915 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1916 	if (!last_stripe) {
1917 		j++;
1918 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1919 				      batch_list);
1920 		goto again;
1921 	}
1922 }
1923 
1924 static void
1925 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1926 		     struct dma_async_tx_descriptor *tx)
1927 {
1928 	struct async_submit_ctl submit;
1929 	struct page **blocks;
1930 	int count, i, j = 0;
1931 	struct stripe_head *head_sh = sh;
1932 	int last_stripe;
1933 	int synflags;
1934 	unsigned long txflags;
1935 
1936 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1937 
1938 	for (i = 0; i < sh->disks; i++) {
1939 		if (sh->pd_idx == i || sh->qd_idx == i)
1940 			continue;
1941 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1942 			break;
1943 	}
1944 	if (i >= sh->disks) {
1945 		atomic_inc(&sh->count);
1946 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1947 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1948 		ops_complete_reconstruct(sh);
1949 		return;
1950 	}
1951 
1952 again:
1953 	blocks = to_addr_page(percpu, j);
1954 
1955 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1956 		synflags = SYNDROME_SRC_WRITTEN;
1957 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1958 	} else {
1959 		synflags = SYNDROME_SRC_ALL;
1960 		txflags = ASYNC_TX_ACK;
1961 	}
1962 
1963 	count = set_syndrome_sources(blocks, sh, synflags);
1964 	last_stripe = !head_sh->batch_head ||
1965 		list_first_entry(&sh->batch_list,
1966 				 struct stripe_head, batch_list) == head_sh;
1967 
1968 	if (last_stripe) {
1969 		atomic_inc(&head_sh->count);
1970 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1971 				  head_sh, to_addr_conv(sh, percpu, j));
1972 	} else
1973 		init_async_submit(&submit, 0, tx, NULL, NULL,
1974 				  to_addr_conv(sh, percpu, j));
1975 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1976 	if (!last_stripe) {
1977 		j++;
1978 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1979 				      batch_list);
1980 		goto again;
1981 	}
1982 }
1983 
1984 static void ops_complete_check(void *stripe_head_ref)
1985 {
1986 	struct stripe_head *sh = stripe_head_ref;
1987 
1988 	pr_debug("%s: stripe %llu\n", __func__,
1989 		(unsigned long long)sh->sector);
1990 
1991 	sh->check_state = check_state_check_result;
1992 	set_bit(STRIPE_HANDLE, &sh->state);
1993 	raid5_release_stripe(sh);
1994 }
1995 
1996 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1997 {
1998 	int disks = sh->disks;
1999 	int pd_idx = sh->pd_idx;
2000 	int qd_idx = sh->qd_idx;
2001 	struct page *xor_dest;
2002 	struct page **xor_srcs = to_addr_page(percpu, 0);
2003 	struct dma_async_tx_descriptor *tx;
2004 	struct async_submit_ctl submit;
2005 	int count;
2006 	int i;
2007 
2008 	pr_debug("%s: stripe %llu\n", __func__,
2009 		(unsigned long long)sh->sector);
2010 
2011 	BUG_ON(sh->batch_head);
2012 	count = 0;
2013 	xor_dest = sh->dev[pd_idx].page;
2014 	xor_srcs[count++] = xor_dest;
2015 	for (i = disks; i--; ) {
2016 		if (i == pd_idx || i == qd_idx)
2017 			continue;
2018 		xor_srcs[count++] = sh->dev[i].page;
2019 	}
2020 
2021 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2022 			  to_addr_conv(sh, percpu, 0));
2023 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2024 			   &sh->ops.zero_sum_result, &submit);
2025 
2026 	atomic_inc(&sh->count);
2027 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2028 	tx = async_trigger_callback(&submit);
2029 }
2030 
2031 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2032 {
2033 	struct page **srcs = to_addr_page(percpu, 0);
2034 	struct async_submit_ctl submit;
2035 	int count;
2036 
2037 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2038 		(unsigned long long)sh->sector, checkp);
2039 
2040 	BUG_ON(sh->batch_head);
2041 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2042 	if (!checkp)
2043 		srcs[count] = NULL;
2044 
2045 	atomic_inc(&sh->count);
2046 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2047 			  sh, to_addr_conv(sh, percpu, 0));
2048 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2049 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2050 }
2051 
2052 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2053 {
2054 	int overlap_clear = 0, i, disks = sh->disks;
2055 	struct dma_async_tx_descriptor *tx = NULL;
2056 	struct r5conf *conf = sh->raid_conf;
2057 	int level = conf->level;
2058 	struct raid5_percpu *percpu;
2059 	unsigned long cpu;
2060 
2061 	cpu = get_cpu();
2062 	percpu = per_cpu_ptr(conf->percpu, cpu);
2063 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2064 		ops_run_biofill(sh);
2065 		overlap_clear++;
2066 	}
2067 
2068 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2069 		if (level < 6)
2070 			tx = ops_run_compute5(sh, percpu);
2071 		else {
2072 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2073 				tx = ops_run_compute6_1(sh, percpu);
2074 			else
2075 				tx = ops_run_compute6_2(sh, percpu);
2076 		}
2077 		/* terminate the chain if reconstruct is not set to be run */
2078 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2079 			async_tx_ack(tx);
2080 	}
2081 
2082 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2083 		if (level < 6)
2084 			tx = ops_run_prexor5(sh, percpu, tx);
2085 		else
2086 			tx = ops_run_prexor6(sh, percpu, tx);
2087 	}
2088 
2089 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2090 		tx = ops_run_partial_parity(sh, percpu, tx);
2091 
2092 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2093 		tx = ops_run_biodrain(sh, tx);
2094 		overlap_clear++;
2095 	}
2096 
2097 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2098 		if (level < 6)
2099 			ops_run_reconstruct5(sh, percpu, tx);
2100 		else
2101 			ops_run_reconstruct6(sh, percpu, tx);
2102 	}
2103 
2104 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2105 		if (sh->check_state == check_state_run)
2106 			ops_run_check_p(sh, percpu);
2107 		else if (sh->check_state == check_state_run_q)
2108 			ops_run_check_pq(sh, percpu, 0);
2109 		else if (sh->check_state == check_state_run_pq)
2110 			ops_run_check_pq(sh, percpu, 1);
2111 		else
2112 			BUG();
2113 	}
2114 
2115 	if (overlap_clear && !sh->batch_head)
2116 		for (i = disks; i--; ) {
2117 			struct r5dev *dev = &sh->dev[i];
2118 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2119 				wake_up(&sh->raid_conf->wait_for_overlap);
2120 		}
2121 	put_cpu();
2122 }
2123 
2124 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2125 {
2126 	if (sh->ppl_page)
2127 		__free_page(sh->ppl_page);
2128 	kmem_cache_free(sc, sh);
2129 }
2130 
2131 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2132 	int disks, struct r5conf *conf)
2133 {
2134 	struct stripe_head *sh;
2135 	int i;
2136 
2137 	sh = kmem_cache_zalloc(sc, gfp);
2138 	if (sh) {
2139 		spin_lock_init(&sh->stripe_lock);
2140 		spin_lock_init(&sh->batch_lock);
2141 		INIT_LIST_HEAD(&sh->batch_list);
2142 		INIT_LIST_HEAD(&sh->lru);
2143 		INIT_LIST_HEAD(&sh->r5c);
2144 		INIT_LIST_HEAD(&sh->log_list);
2145 		atomic_set(&sh->count, 1);
2146 		sh->raid_conf = conf;
2147 		sh->log_start = MaxSector;
2148 		for (i = 0; i < disks; i++) {
2149 			struct r5dev *dev = &sh->dev[i];
2150 
2151 			bio_init(&dev->req, &dev->vec, 1);
2152 			bio_init(&dev->rreq, &dev->rvec, 1);
2153 		}
2154 
2155 		if (raid5_has_ppl(conf)) {
2156 			sh->ppl_page = alloc_page(gfp);
2157 			if (!sh->ppl_page) {
2158 				free_stripe(sc, sh);
2159 				sh = NULL;
2160 			}
2161 		}
2162 	}
2163 	return sh;
2164 }
2165 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2166 {
2167 	struct stripe_head *sh;
2168 
2169 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2170 	if (!sh)
2171 		return 0;
2172 
2173 	if (grow_buffers(sh, gfp)) {
2174 		shrink_buffers(sh);
2175 		free_stripe(conf->slab_cache, sh);
2176 		return 0;
2177 	}
2178 	sh->hash_lock_index =
2179 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2180 	/* we just created an active stripe so... */
2181 	atomic_inc(&conf->active_stripes);
2182 
2183 	raid5_release_stripe(sh);
2184 	conf->max_nr_stripes++;
2185 	return 1;
2186 }
2187 
2188 static int grow_stripes(struct r5conf *conf, int num)
2189 {
2190 	struct kmem_cache *sc;
2191 	size_t namelen = sizeof(conf->cache_name[0]);
2192 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2193 
2194 	if (conf->mddev->gendisk)
2195 		snprintf(conf->cache_name[0], namelen,
2196 			"raid%d-%s", conf->level, mdname(conf->mddev));
2197 	else
2198 		snprintf(conf->cache_name[0], namelen,
2199 			"raid%d-%p", conf->level, conf->mddev);
2200 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2201 
2202 	conf->active_name = 0;
2203 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2204 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2205 			       0, 0, NULL);
2206 	if (!sc)
2207 		return 1;
2208 	conf->slab_cache = sc;
2209 	conf->pool_size = devs;
2210 	while (num--)
2211 		if (!grow_one_stripe(conf, GFP_KERNEL))
2212 			return 1;
2213 
2214 	return 0;
2215 }
2216 
2217 /**
2218  * scribble_alloc - allocate percpu scribble buffer for required size
2219  *		    of the scribble region
2220  * @percpu - from for_each_present_cpu() of the caller
2221  * @num - total number of disks in the array
2222  * @cnt - scribble objs count for required size of the scribble region
2223  *
2224  * The scribble buffer size must be enough to contain:
2225  * 1/ a struct page pointer for each device in the array +2
2226  * 2/ room to convert each entry in (1) to its corresponding dma
2227  *    (dma_map_page()) or page (page_address()) address.
2228  *
2229  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2230  * calculate over all devices (not just the data blocks), using zeros in place
2231  * of the P and Q blocks.
2232  */
2233 static int scribble_alloc(struct raid5_percpu *percpu,
2234 			  int num, int cnt)
2235 {
2236 	size_t obj_size =
2237 		sizeof(struct page *) * (num+2) +
2238 		sizeof(addr_conv_t) * (num+2);
2239 	void *scribble;
2240 
2241 	/*
2242 	 * If here is in raid array suspend context, it is in memalloc noio
2243 	 * context as well, there is no potential recursive memory reclaim
2244 	 * I/Os with the GFP_KERNEL flag.
2245 	 */
2246 	scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2247 	if (!scribble)
2248 		return -ENOMEM;
2249 
2250 	kvfree(percpu->scribble);
2251 
2252 	percpu->scribble = scribble;
2253 	percpu->scribble_obj_size = obj_size;
2254 	return 0;
2255 }
2256 
2257 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2258 {
2259 	unsigned long cpu;
2260 	int err = 0;
2261 
2262 	/*
2263 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2264 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2265 	 * should equal to new_disks and new_sectors
2266 	 */
2267 	if (conf->scribble_disks >= new_disks &&
2268 	    conf->scribble_sectors >= new_sectors)
2269 		return 0;
2270 	mddev_suspend(conf->mddev);
2271 	get_online_cpus();
2272 
2273 	for_each_present_cpu(cpu) {
2274 		struct raid5_percpu *percpu;
2275 
2276 		percpu = per_cpu_ptr(conf->percpu, cpu);
2277 		err = scribble_alloc(percpu, new_disks,
2278 				     new_sectors / STRIPE_SECTORS);
2279 		if (err)
2280 			break;
2281 	}
2282 
2283 	put_online_cpus();
2284 	mddev_resume(conf->mddev);
2285 	if (!err) {
2286 		conf->scribble_disks = new_disks;
2287 		conf->scribble_sectors = new_sectors;
2288 	}
2289 	return err;
2290 }
2291 
2292 static int resize_stripes(struct r5conf *conf, int newsize)
2293 {
2294 	/* Make all the stripes able to hold 'newsize' devices.
2295 	 * New slots in each stripe get 'page' set to a new page.
2296 	 *
2297 	 * This happens in stages:
2298 	 * 1/ create a new kmem_cache and allocate the required number of
2299 	 *    stripe_heads.
2300 	 * 2/ gather all the old stripe_heads and transfer the pages across
2301 	 *    to the new stripe_heads.  This will have the side effect of
2302 	 *    freezing the array as once all stripe_heads have been collected,
2303 	 *    no IO will be possible.  Old stripe heads are freed once their
2304 	 *    pages have been transferred over, and the old kmem_cache is
2305 	 *    freed when all stripes are done.
2306 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2307 	 *    we simple return a failure status - no need to clean anything up.
2308 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2309 	 *    If this fails, we don't bother trying the shrink the
2310 	 *    stripe_heads down again, we just leave them as they are.
2311 	 *    As each stripe_head is processed the new one is released into
2312 	 *    active service.
2313 	 *
2314 	 * Once step2 is started, we cannot afford to wait for a write,
2315 	 * so we use GFP_NOIO allocations.
2316 	 */
2317 	struct stripe_head *osh, *nsh;
2318 	LIST_HEAD(newstripes);
2319 	struct disk_info *ndisks;
2320 	int err = 0;
2321 	struct kmem_cache *sc;
2322 	int i;
2323 	int hash, cnt;
2324 
2325 	md_allow_write(conf->mddev);
2326 
2327 	/* Step 1 */
2328 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2329 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2330 			       0, 0, NULL);
2331 	if (!sc)
2332 		return -ENOMEM;
2333 
2334 	/* Need to ensure auto-resizing doesn't interfere */
2335 	mutex_lock(&conf->cache_size_mutex);
2336 
2337 	for (i = conf->max_nr_stripes; i; i--) {
2338 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2339 		if (!nsh)
2340 			break;
2341 
2342 		list_add(&nsh->lru, &newstripes);
2343 	}
2344 	if (i) {
2345 		/* didn't get enough, give up */
2346 		while (!list_empty(&newstripes)) {
2347 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2348 			list_del(&nsh->lru);
2349 			free_stripe(sc, nsh);
2350 		}
2351 		kmem_cache_destroy(sc);
2352 		mutex_unlock(&conf->cache_size_mutex);
2353 		return -ENOMEM;
2354 	}
2355 	/* Step 2 - Must use GFP_NOIO now.
2356 	 * OK, we have enough stripes, start collecting inactive
2357 	 * stripes and copying them over
2358 	 */
2359 	hash = 0;
2360 	cnt = 0;
2361 	list_for_each_entry(nsh, &newstripes, lru) {
2362 		lock_device_hash_lock(conf, hash);
2363 		wait_event_cmd(conf->wait_for_stripe,
2364 				    !list_empty(conf->inactive_list + hash),
2365 				    unlock_device_hash_lock(conf, hash),
2366 				    lock_device_hash_lock(conf, hash));
2367 		osh = get_free_stripe(conf, hash);
2368 		unlock_device_hash_lock(conf, hash);
2369 
2370 		for(i=0; i<conf->pool_size; i++) {
2371 			nsh->dev[i].page = osh->dev[i].page;
2372 			nsh->dev[i].orig_page = osh->dev[i].page;
2373 		}
2374 		nsh->hash_lock_index = hash;
2375 		free_stripe(conf->slab_cache, osh);
2376 		cnt++;
2377 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2378 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2379 			hash++;
2380 			cnt = 0;
2381 		}
2382 	}
2383 	kmem_cache_destroy(conf->slab_cache);
2384 
2385 	/* Step 3.
2386 	 * At this point, we are holding all the stripes so the array
2387 	 * is completely stalled, so now is a good time to resize
2388 	 * conf->disks and the scribble region
2389 	 */
2390 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2391 	if (ndisks) {
2392 		for (i = 0; i < conf->pool_size; i++)
2393 			ndisks[i] = conf->disks[i];
2394 
2395 		for (i = conf->pool_size; i < newsize; i++) {
2396 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2397 			if (!ndisks[i].extra_page)
2398 				err = -ENOMEM;
2399 		}
2400 
2401 		if (err) {
2402 			for (i = conf->pool_size; i < newsize; i++)
2403 				if (ndisks[i].extra_page)
2404 					put_page(ndisks[i].extra_page);
2405 			kfree(ndisks);
2406 		} else {
2407 			kfree(conf->disks);
2408 			conf->disks = ndisks;
2409 		}
2410 	} else
2411 		err = -ENOMEM;
2412 
2413 	mutex_unlock(&conf->cache_size_mutex);
2414 
2415 	conf->slab_cache = sc;
2416 	conf->active_name = 1-conf->active_name;
2417 
2418 	/* Step 4, return new stripes to service */
2419 	while(!list_empty(&newstripes)) {
2420 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2421 		list_del_init(&nsh->lru);
2422 
2423 		for (i=conf->raid_disks; i < newsize; i++)
2424 			if (nsh->dev[i].page == NULL) {
2425 				struct page *p = alloc_page(GFP_NOIO);
2426 				nsh->dev[i].page = p;
2427 				nsh->dev[i].orig_page = p;
2428 				if (!p)
2429 					err = -ENOMEM;
2430 			}
2431 		raid5_release_stripe(nsh);
2432 	}
2433 	/* critical section pass, GFP_NOIO no longer needed */
2434 
2435 	if (!err)
2436 		conf->pool_size = newsize;
2437 	return err;
2438 }
2439 
2440 static int drop_one_stripe(struct r5conf *conf)
2441 {
2442 	struct stripe_head *sh;
2443 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2444 
2445 	spin_lock_irq(conf->hash_locks + hash);
2446 	sh = get_free_stripe(conf, hash);
2447 	spin_unlock_irq(conf->hash_locks + hash);
2448 	if (!sh)
2449 		return 0;
2450 	BUG_ON(atomic_read(&sh->count));
2451 	shrink_buffers(sh);
2452 	free_stripe(conf->slab_cache, sh);
2453 	atomic_dec(&conf->active_stripes);
2454 	conf->max_nr_stripes--;
2455 	return 1;
2456 }
2457 
2458 static void shrink_stripes(struct r5conf *conf)
2459 {
2460 	while (conf->max_nr_stripes &&
2461 	       drop_one_stripe(conf))
2462 		;
2463 
2464 	kmem_cache_destroy(conf->slab_cache);
2465 	conf->slab_cache = NULL;
2466 }
2467 
2468 static void raid5_end_read_request(struct bio * bi)
2469 {
2470 	struct stripe_head *sh = bi->bi_private;
2471 	struct r5conf *conf = sh->raid_conf;
2472 	int disks = sh->disks, i;
2473 	char b[BDEVNAME_SIZE];
2474 	struct md_rdev *rdev = NULL;
2475 	sector_t s;
2476 
2477 	for (i=0 ; i<disks; i++)
2478 		if (bi == &sh->dev[i].req)
2479 			break;
2480 
2481 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2482 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2483 		bi->bi_status);
2484 	if (i == disks) {
2485 		bio_reset(bi);
2486 		BUG();
2487 		return;
2488 	}
2489 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2490 		/* If replacement finished while this request was outstanding,
2491 		 * 'replacement' might be NULL already.
2492 		 * In that case it moved down to 'rdev'.
2493 		 * rdev is not removed until all requests are finished.
2494 		 */
2495 		rdev = conf->disks[i].replacement;
2496 	if (!rdev)
2497 		rdev = conf->disks[i].rdev;
2498 
2499 	if (use_new_offset(conf, sh))
2500 		s = sh->sector + rdev->new_data_offset;
2501 	else
2502 		s = sh->sector + rdev->data_offset;
2503 	if (!bi->bi_status) {
2504 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2505 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2506 			/* Note that this cannot happen on a
2507 			 * replacement device.  We just fail those on
2508 			 * any error
2509 			 */
2510 			pr_info_ratelimited(
2511 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2512 				mdname(conf->mddev), STRIPE_SECTORS,
2513 				(unsigned long long)s,
2514 				bdevname(rdev->bdev, b));
2515 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2516 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2517 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2518 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2519 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2520 
2521 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2522 			/*
2523 			 * end read for a page in journal, this
2524 			 * must be preparing for prexor in rmw
2525 			 */
2526 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2527 
2528 		if (atomic_read(&rdev->read_errors))
2529 			atomic_set(&rdev->read_errors, 0);
2530 	} else {
2531 		const char *bdn = bdevname(rdev->bdev, b);
2532 		int retry = 0;
2533 		int set_bad = 0;
2534 
2535 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2536 		if (!(bi->bi_status == BLK_STS_PROTECTION))
2537 			atomic_inc(&rdev->read_errors);
2538 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2539 			pr_warn_ratelimited(
2540 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2541 				mdname(conf->mddev),
2542 				(unsigned long long)s,
2543 				bdn);
2544 		else if (conf->mddev->degraded >= conf->max_degraded) {
2545 			set_bad = 1;
2546 			pr_warn_ratelimited(
2547 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2548 				mdname(conf->mddev),
2549 				(unsigned long long)s,
2550 				bdn);
2551 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2552 			/* Oh, no!!! */
2553 			set_bad = 1;
2554 			pr_warn_ratelimited(
2555 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2556 				mdname(conf->mddev),
2557 				(unsigned long long)s,
2558 				bdn);
2559 		} else if (atomic_read(&rdev->read_errors)
2560 			 > conf->max_nr_stripes) {
2561 			if (!test_bit(Faulty, &rdev->flags)) {
2562 				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2563 				    mdname(conf->mddev),
2564 				    atomic_read(&rdev->read_errors),
2565 				    conf->max_nr_stripes);
2566 				pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2567 				    mdname(conf->mddev), bdn);
2568 			}
2569 		} else
2570 			retry = 1;
2571 		if (set_bad && test_bit(In_sync, &rdev->flags)
2572 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2573 			retry = 1;
2574 		if (retry)
2575 			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2576 				set_bit(R5_ReadError, &sh->dev[i].flags);
2577 			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2578 				set_bit(R5_ReadError, &sh->dev[i].flags);
2579 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2580 			} else
2581 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2582 		else {
2583 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2584 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2585 			if (!(set_bad
2586 			      && test_bit(In_sync, &rdev->flags)
2587 			      && rdev_set_badblocks(
2588 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2589 				md_error(conf->mddev, rdev);
2590 		}
2591 	}
2592 	rdev_dec_pending(rdev, conf->mddev);
2593 	bio_reset(bi);
2594 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2595 	set_bit(STRIPE_HANDLE, &sh->state);
2596 	raid5_release_stripe(sh);
2597 }
2598 
2599 static void raid5_end_write_request(struct bio *bi)
2600 {
2601 	struct stripe_head *sh = bi->bi_private;
2602 	struct r5conf *conf = sh->raid_conf;
2603 	int disks = sh->disks, i;
2604 	struct md_rdev *uninitialized_var(rdev);
2605 	sector_t first_bad;
2606 	int bad_sectors;
2607 	int replacement = 0;
2608 
2609 	for (i = 0 ; i < disks; i++) {
2610 		if (bi == &sh->dev[i].req) {
2611 			rdev = conf->disks[i].rdev;
2612 			break;
2613 		}
2614 		if (bi == &sh->dev[i].rreq) {
2615 			rdev = conf->disks[i].replacement;
2616 			if (rdev)
2617 				replacement = 1;
2618 			else
2619 				/* rdev was removed and 'replacement'
2620 				 * replaced it.  rdev is not removed
2621 				 * until all requests are finished.
2622 				 */
2623 				rdev = conf->disks[i].rdev;
2624 			break;
2625 		}
2626 	}
2627 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2628 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2629 		bi->bi_status);
2630 	if (i == disks) {
2631 		bio_reset(bi);
2632 		BUG();
2633 		return;
2634 	}
2635 
2636 	if (replacement) {
2637 		if (bi->bi_status)
2638 			md_error(conf->mddev, rdev);
2639 		else if (is_badblock(rdev, sh->sector,
2640 				     STRIPE_SECTORS,
2641 				     &first_bad, &bad_sectors))
2642 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2643 	} else {
2644 		if (bi->bi_status) {
2645 			set_bit(STRIPE_DEGRADED, &sh->state);
2646 			set_bit(WriteErrorSeen, &rdev->flags);
2647 			set_bit(R5_WriteError, &sh->dev[i].flags);
2648 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2649 				set_bit(MD_RECOVERY_NEEDED,
2650 					&rdev->mddev->recovery);
2651 		} else if (is_badblock(rdev, sh->sector,
2652 				       STRIPE_SECTORS,
2653 				       &first_bad, &bad_sectors)) {
2654 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2655 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2656 				/* That was a successful write so make
2657 				 * sure it looks like we already did
2658 				 * a re-write.
2659 				 */
2660 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2661 		}
2662 	}
2663 	rdev_dec_pending(rdev, conf->mddev);
2664 
2665 	if (sh->batch_head && bi->bi_status && !replacement)
2666 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2667 
2668 	bio_reset(bi);
2669 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2670 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2671 	set_bit(STRIPE_HANDLE, &sh->state);
2672 	raid5_release_stripe(sh);
2673 
2674 	if (sh->batch_head && sh != sh->batch_head)
2675 		raid5_release_stripe(sh->batch_head);
2676 }
2677 
2678 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2679 {
2680 	char b[BDEVNAME_SIZE];
2681 	struct r5conf *conf = mddev->private;
2682 	unsigned long flags;
2683 	pr_debug("raid456: error called\n");
2684 
2685 	spin_lock_irqsave(&conf->device_lock, flags);
2686 
2687 	if (test_bit(In_sync, &rdev->flags) &&
2688 	    mddev->degraded == conf->max_degraded) {
2689 		/*
2690 		 * Don't allow to achieve failed state
2691 		 * Don't try to recover this device
2692 		 */
2693 		conf->recovery_disabled = mddev->recovery_disabled;
2694 		spin_unlock_irqrestore(&conf->device_lock, flags);
2695 		return;
2696 	}
2697 
2698 	set_bit(Faulty, &rdev->flags);
2699 	clear_bit(In_sync, &rdev->flags);
2700 	mddev->degraded = raid5_calc_degraded(conf);
2701 	spin_unlock_irqrestore(&conf->device_lock, flags);
2702 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2703 
2704 	set_bit(Blocked, &rdev->flags);
2705 	set_mask_bits(&mddev->sb_flags, 0,
2706 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2707 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2708 		"md/raid:%s: Operation continuing on %d devices.\n",
2709 		mdname(mddev),
2710 		bdevname(rdev->bdev, b),
2711 		mdname(mddev),
2712 		conf->raid_disks - mddev->degraded);
2713 	r5c_update_on_rdev_error(mddev, rdev);
2714 }
2715 
2716 /*
2717  * Input: a 'big' sector number,
2718  * Output: index of the data and parity disk, and the sector # in them.
2719  */
2720 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2721 			      int previous, int *dd_idx,
2722 			      struct stripe_head *sh)
2723 {
2724 	sector_t stripe, stripe2;
2725 	sector_t chunk_number;
2726 	unsigned int chunk_offset;
2727 	int pd_idx, qd_idx;
2728 	int ddf_layout = 0;
2729 	sector_t new_sector;
2730 	int algorithm = previous ? conf->prev_algo
2731 				 : conf->algorithm;
2732 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2733 					 : conf->chunk_sectors;
2734 	int raid_disks = previous ? conf->previous_raid_disks
2735 				  : conf->raid_disks;
2736 	int data_disks = raid_disks - conf->max_degraded;
2737 
2738 	/* First compute the information on this sector */
2739 
2740 	/*
2741 	 * Compute the chunk number and the sector offset inside the chunk
2742 	 */
2743 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2744 	chunk_number = r_sector;
2745 
2746 	/*
2747 	 * Compute the stripe number
2748 	 */
2749 	stripe = chunk_number;
2750 	*dd_idx = sector_div(stripe, data_disks);
2751 	stripe2 = stripe;
2752 	/*
2753 	 * Select the parity disk based on the user selected algorithm.
2754 	 */
2755 	pd_idx = qd_idx = -1;
2756 	switch(conf->level) {
2757 	case 4:
2758 		pd_idx = data_disks;
2759 		break;
2760 	case 5:
2761 		switch (algorithm) {
2762 		case ALGORITHM_LEFT_ASYMMETRIC:
2763 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2764 			if (*dd_idx >= pd_idx)
2765 				(*dd_idx)++;
2766 			break;
2767 		case ALGORITHM_RIGHT_ASYMMETRIC:
2768 			pd_idx = sector_div(stripe2, raid_disks);
2769 			if (*dd_idx >= pd_idx)
2770 				(*dd_idx)++;
2771 			break;
2772 		case ALGORITHM_LEFT_SYMMETRIC:
2773 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2774 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2775 			break;
2776 		case ALGORITHM_RIGHT_SYMMETRIC:
2777 			pd_idx = sector_div(stripe2, raid_disks);
2778 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2779 			break;
2780 		case ALGORITHM_PARITY_0:
2781 			pd_idx = 0;
2782 			(*dd_idx)++;
2783 			break;
2784 		case ALGORITHM_PARITY_N:
2785 			pd_idx = data_disks;
2786 			break;
2787 		default:
2788 			BUG();
2789 		}
2790 		break;
2791 	case 6:
2792 
2793 		switch (algorithm) {
2794 		case ALGORITHM_LEFT_ASYMMETRIC:
2795 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2796 			qd_idx = pd_idx + 1;
2797 			if (pd_idx == raid_disks-1) {
2798 				(*dd_idx)++;	/* Q D D D P */
2799 				qd_idx = 0;
2800 			} else if (*dd_idx >= pd_idx)
2801 				(*dd_idx) += 2; /* D D P Q D */
2802 			break;
2803 		case ALGORITHM_RIGHT_ASYMMETRIC:
2804 			pd_idx = sector_div(stripe2, raid_disks);
2805 			qd_idx = pd_idx + 1;
2806 			if (pd_idx == raid_disks-1) {
2807 				(*dd_idx)++;	/* Q D D D P */
2808 				qd_idx = 0;
2809 			} else if (*dd_idx >= pd_idx)
2810 				(*dd_idx) += 2; /* D D P Q D */
2811 			break;
2812 		case ALGORITHM_LEFT_SYMMETRIC:
2813 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2814 			qd_idx = (pd_idx + 1) % raid_disks;
2815 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2816 			break;
2817 		case ALGORITHM_RIGHT_SYMMETRIC:
2818 			pd_idx = sector_div(stripe2, raid_disks);
2819 			qd_idx = (pd_idx + 1) % raid_disks;
2820 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2821 			break;
2822 
2823 		case ALGORITHM_PARITY_0:
2824 			pd_idx = 0;
2825 			qd_idx = 1;
2826 			(*dd_idx) += 2;
2827 			break;
2828 		case ALGORITHM_PARITY_N:
2829 			pd_idx = data_disks;
2830 			qd_idx = data_disks + 1;
2831 			break;
2832 
2833 		case ALGORITHM_ROTATING_ZERO_RESTART:
2834 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2835 			 * of blocks for computing Q is different.
2836 			 */
2837 			pd_idx = sector_div(stripe2, raid_disks);
2838 			qd_idx = pd_idx + 1;
2839 			if (pd_idx == raid_disks-1) {
2840 				(*dd_idx)++;	/* Q D D D P */
2841 				qd_idx = 0;
2842 			} else if (*dd_idx >= pd_idx)
2843 				(*dd_idx) += 2; /* D D P Q D */
2844 			ddf_layout = 1;
2845 			break;
2846 
2847 		case ALGORITHM_ROTATING_N_RESTART:
2848 			/* Same a left_asymmetric, by first stripe is
2849 			 * D D D P Q  rather than
2850 			 * Q D D D P
2851 			 */
2852 			stripe2 += 1;
2853 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2854 			qd_idx = pd_idx + 1;
2855 			if (pd_idx == raid_disks-1) {
2856 				(*dd_idx)++;	/* Q D D D P */
2857 				qd_idx = 0;
2858 			} else if (*dd_idx >= pd_idx)
2859 				(*dd_idx) += 2; /* D D P Q D */
2860 			ddf_layout = 1;
2861 			break;
2862 
2863 		case ALGORITHM_ROTATING_N_CONTINUE:
2864 			/* Same as left_symmetric but Q is before P */
2865 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2866 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2867 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2868 			ddf_layout = 1;
2869 			break;
2870 
2871 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2872 			/* RAID5 left_asymmetric, with Q on last device */
2873 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2874 			if (*dd_idx >= pd_idx)
2875 				(*dd_idx)++;
2876 			qd_idx = raid_disks - 1;
2877 			break;
2878 
2879 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2880 			pd_idx = sector_div(stripe2, raid_disks-1);
2881 			if (*dd_idx >= pd_idx)
2882 				(*dd_idx)++;
2883 			qd_idx = raid_disks - 1;
2884 			break;
2885 
2886 		case ALGORITHM_LEFT_SYMMETRIC_6:
2887 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2888 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2889 			qd_idx = raid_disks - 1;
2890 			break;
2891 
2892 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2893 			pd_idx = sector_div(stripe2, raid_disks-1);
2894 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2895 			qd_idx = raid_disks - 1;
2896 			break;
2897 
2898 		case ALGORITHM_PARITY_0_6:
2899 			pd_idx = 0;
2900 			(*dd_idx)++;
2901 			qd_idx = raid_disks - 1;
2902 			break;
2903 
2904 		default:
2905 			BUG();
2906 		}
2907 		break;
2908 	}
2909 
2910 	if (sh) {
2911 		sh->pd_idx = pd_idx;
2912 		sh->qd_idx = qd_idx;
2913 		sh->ddf_layout = ddf_layout;
2914 	}
2915 	/*
2916 	 * Finally, compute the new sector number
2917 	 */
2918 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2919 	return new_sector;
2920 }
2921 
2922 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2923 {
2924 	struct r5conf *conf = sh->raid_conf;
2925 	int raid_disks = sh->disks;
2926 	int data_disks = raid_disks - conf->max_degraded;
2927 	sector_t new_sector = sh->sector, check;
2928 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2929 					 : conf->chunk_sectors;
2930 	int algorithm = previous ? conf->prev_algo
2931 				 : conf->algorithm;
2932 	sector_t stripe;
2933 	int chunk_offset;
2934 	sector_t chunk_number;
2935 	int dummy1, dd_idx = i;
2936 	sector_t r_sector;
2937 	struct stripe_head sh2;
2938 
2939 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2940 	stripe = new_sector;
2941 
2942 	if (i == sh->pd_idx)
2943 		return 0;
2944 	switch(conf->level) {
2945 	case 4: break;
2946 	case 5:
2947 		switch (algorithm) {
2948 		case ALGORITHM_LEFT_ASYMMETRIC:
2949 		case ALGORITHM_RIGHT_ASYMMETRIC:
2950 			if (i > sh->pd_idx)
2951 				i--;
2952 			break;
2953 		case ALGORITHM_LEFT_SYMMETRIC:
2954 		case ALGORITHM_RIGHT_SYMMETRIC:
2955 			if (i < sh->pd_idx)
2956 				i += raid_disks;
2957 			i -= (sh->pd_idx + 1);
2958 			break;
2959 		case ALGORITHM_PARITY_0:
2960 			i -= 1;
2961 			break;
2962 		case ALGORITHM_PARITY_N:
2963 			break;
2964 		default:
2965 			BUG();
2966 		}
2967 		break;
2968 	case 6:
2969 		if (i == sh->qd_idx)
2970 			return 0; /* It is the Q disk */
2971 		switch (algorithm) {
2972 		case ALGORITHM_LEFT_ASYMMETRIC:
2973 		case ALGORITHM_RIGHT_ASYMMETRIC:
2974 		case ALGORITHM_ROTATING_ZERO_RESTART:
2975 		case ALGORITHM_ROTATING_N_RESTART:
2976 			if (sh->pd_idx == raid_disks-1)
2977 				i--;	/* Q D D D P */
2978 			else if (i > sh->pd_idx)
2979 				i -= 2; /* D D P Q D */
2980 			break;
2981 		case ALGORITHM_LEFT_SYMMETRIC:
2982 		case ALGORITHM_RIGHT_SYMMETRIC:
2983 			if (sh->pd_idx == raid_disks-1)
2984 				i--; /* Q D D D P */
2985 			else {
2986 				/* D D P Q D */
2987 				if (i < sh->pd_idx)
2988 					i += raid_disks;
2989 				i -= (sh->pd_idx + 2);
2990 			}
2991 			break;
2992 		case ALGORITHM_PARITY_0:
2993 			i -= 2;
2994 			break;
2995 		case ALGORITHM_PARITY_N:
2996 			break;
2997 		case ALGORITHM_ROTATING_N_CONTINUE:
2998 			/* Like left_symmetric, but P is before Q */
2999 			if (sh->pd_idx == 0)
3000 				i--;	/* P D D D Q */
3001 			else {
3002 				/* D D Q P D */
3003 				if (i < sh->pd_idx)
3004 					i += raid_disks;
3005 				i -= (sh->pd_idx + 1);
3006 			}
3007 			break;
3008 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3009 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3010 			if (i > sh->pd_idx)
3011 				i--;
3012 			break;
3013 		case ALGORITHM_LEFT_SYMMETRIC_6:
3014 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3015 			if (i < sh->pd_idx)
3016 				i += data_disks + 1;
3017 			i -= (sh->pd_idx + 1);
3018 			break;
3019 		case ALGORITHM_PARITY_0_6:
3020 			i -= 1;
3021 			break;
3022 		default:
3023 			BUG();
3024 		}
3025 		break;
3026 	}
3027 
3028 	chunk_number = stripe * data_disks + i;
3029 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3030 
3031 	check = raid5_compute_sector(conf, r_sector,
3032 				     previous, &dummy1, &sh2);
3033 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3034 		|| sh2.qd_idx != sh->qd_idx) {
3035 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3036 			mdname(conf->mddev));
3037 		return 0;
3038 	}
3039 	return r_sector;
3040 }
3041 
3042 /*
3043  * There are cases where we want handle_stripe_dirtying() and
3044  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3045  *
3046  * This function checks whether we want to delay the towrite. Specifically,
3047  * we delay the towrite when:
3048  *
3049  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3050  *      stripe has data in journal (for other devices).
3051  *
3052  *      In this case, when reading data for the non-overwrite dev, it is
3053  *      necessary to handle complex rmw of write back cache (prexor with
3054  *      orig_page, and xor with page). To keep read path simple, we would
3055  *      like to flush data in journal to RAID disks first, so complex rmw
3056  *      is handled in the write patch (handle_stripe_dirtying).
3057  *
3058  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3059  *
3060  *      It is important to be able to flush all stripes in raid5-cache.
3061  *      Therefore, we need reserve some space on the journal device for
3062  *      these flushes. If flush operation includes pending writes to the
3063  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3064  *      for the flush out. If we exclude these pending writes from flush
3065  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3066  *      Therefore, excluding pending writes in these cases enables more
3067  *      efficient use of the journal device.
3068  *
3069  *      Note: To make sure the stripe makes progress, we only delay
3070  *      towrite for stripes with data already in journal (injournal > 0).
3071  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3072  *      no_space_stripes list.
3073  *
3074  *   3. during journal failure
3075  *      In journal failure, we try to flush all cached data to raid disks
3076  *      based on data in stripe cache. The array is read-only to upper
3077  *      layers, so we would skip all pending writes.
3078  *
3079  */
3080 static inline bool delay_towrite(struct r5conf *conf,
3081 				 struct r5dev *dev,
3082 				 struct stripe_head_state *s)
3083 {
3084 	/* case 1 above */
3085 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3086 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3087 		return true;
3088 	/* case 2 above */
3089 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3090 	    s->injournal > 0)
3091 		return true;
3092 	/* case 3 above */
3093 	if (s->log_failed && s->injournal)
3094 		return true;
3095 	return false;
3096 }
3097 
3098 static void
3099 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3100 			 int rcw, int expand)
3101 {
3102 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3103 	struct r5conf *conf = sh->raid_conf;
3104 	int level = conf->level;
3105 
3106 	if (rcw) {
3107 		/*
3108 		 * In some cases, handle_stripe_dirtying initially decided to
3109 		 * run rmw and allocates extra page for prexor. However, rcw is
3110 		 * cheaper later on. We need to free the extra page now,
3111 		 * because we won't be able to do that in ops_complete_prexor().
3112 		 */
3113 		r5c_release_extra_page(sh);
3114 
3115 		for (i = disks; i--; ) {
3116 			struct r5dev *dev = &sh->dev[i];
3117 
3118 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3119 				set_bit(R5_LOCKED, &dev->flags);
3120 				set_bit(R5_Wantdrain, &dev->flags);
3121 				if (!expand)
3122 					clear_bit(R5_UPTODATE, &dev->flags);
3123 				s->locked++;
3124 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3125 				set_bit(R5_LOCKED, &dev->flags);
3126 				s->locked++;
3127 			}
3128 		}
3129 		/* if we are not expanding this is a proper write request, and
3130 		 * there will be bios with new data to be drained into the
3131 		 * stripe cache
3132 		 */
3133 		if (!expand) {
3134 			if (!s->locked)
3135 				/* False alarm, nothing to do */
3136 				return;
3137 			sh->reconstruct_state = reconstruct_state_drain_run;
3138 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3139 		} else
3140 			sh->reconstruct_state = reconstruct_state_run;
3141 
3142 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3143 
3144 		if (s->locked + conf->max_degraded == disks)
3145 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3146 				atomic_inc(&conf->pending_full_writes);
3147 	} else {
3148 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3149 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3150 		BUG_ON(level == 6 &&
3151 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3152 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3153 
3154 		for (i = disks; i--; ) {
3155 			struct r5dev *dev = &sh->dev[i];
3156 			if (i == pd_idx || i == qd_idx)
3157 				continue;
3158 
3159 			if (dev->towrite &&
3160 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3161 			     test_bit(R5_Wantcompute, &dev->flags))) {
3162 				set_bit(R5_Wantdrain, &dev->flags);
3163 				set_bit(R5_LOCKED, &dev->flags);
3164 				clear_bit(R5_UPTODATE, &dev->flags);
3165 				s->locked++;
3166 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3167 				set_bit(R5_LOCKED, &dev->flags);
3168 				s->locked++;
3169 			}
3170 		}
3171 		if (!s->locked)
3172 			/* False alarm - nothing to do */
3173 			return;
3174 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3175 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3176 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3177 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3178 	}
3179 
3180 	/* keep the parity disk(s) locked while asynchronous operations
3181 	 * are in flight
3182 	 */
3183 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3184 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3185 	s->locked++;
3186 
3187 	if (level == 6) {
3188 		int qd_idx = sh->qd_idx;
3189 		struct r5dev *dev = &sh->dev[qd_idx];
3190 
3191 		set_bit(R5_LOCKED, &dev->flags);
3192 		clear_bit(R5_UPTODATE, &dev->flags);
3193 		s->locked++;
3194 	}
3195 
3196 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3197 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3198 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3199 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3200 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3201 
3202 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3203 		__func__, (unsigned long long)sh->sector,
3204 		s->locked, s->ops_request);
3205 }
3206 
3207 /*
3208  * Each stripe/dev can have one or more bion attached.
3209  * toread/towrite point to the first in a chain.
3210  * The bi_next chain must be in order.
3211  */
3212 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3213 			  int forwrite, int previous)
3214 {
3215 	struct bio **bip;
3216 	struct r5conf *conf = sh->raid_conf;
3217 	int firstwrite=0;
3218 
3219 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3220 		(unsigned long long)bi->bi_iter.bi_sector,
3221 		(unsigned long long)sh->sector);
3222 
3223 	spin_lock_irq(&sh->stripe_lock);
3224 	sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3225 	/* Don't allow new IO added to stripes in batch list */
3226 	if (sh->batch_head)
3227 		goto overlap;
3228 	if (forwrite) {
3229 		bip = &sh->dev[dd_idx].towrite;
3230 		if (*bip == NULL)
3231 			firstwrite = 1;
3232 	} else
3233 		bip = &sh->dev[dd_idx].toread;
3234 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3235 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3236 			goto overlap;
3237 		bip = & (*bip)->bi_next;
3238 	}
3239 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3240 		goto overlap;
3241 
3242 	if (forwrite && raid5_has_ppl(conf)) {
3243 		/*
3244 		 * With PPL only writes to consecutive data chunks within a
3245 		 * stripe are allowed because for a single stripe_head we can
3246 		 * only have one PPL entry at a time, which describes one data
3247 		 * range. Not really an overlap, but wait_for_overlap can be
3248 		 * used to handle this.
3249 		 */
3250 		sector_t sector;
3251 		sector_t first = 0;
3252 		sector_t last = 0;
3253 		int count = 0;
3254 		int i;
3255 
3256 		for (i = 0; i < sh->disks; i++) {
3257 			if (i != sh->pd_idx &&
3258 			    (i == dd_idx || sh->dev[i].towrite)) {
3259 				sector = sh->dev[i].sector;
3260 				if (count == 0 || sector < first)
3261 					first = sector;
3262 				if (sector > last)
3263 					last = sector;
3264 				count++;
3265 			}
3266 		}
3267 
3268 		if (first + conf->chunk_sectors * (count - 1) != last)
3269 			goto overlap;
3270 	}
3271 
3272 	if (!forwrite || previous)
3273 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3274 
3275 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3276 	if (*bip)
3277 		bi->bi_next = *bip;
3278 	*bip = bi;
3279 	bio_inc_remaining(bi);
3280 	md_write_inc(conf->mddev, bi);
3281 
3282 	if (forwrite) {
3283 		/* check if page is covered */
3284 		sector_t sector = sh->dev[dd_idx].sector;
3285 		for (bi=sh->dev[dd_idx].towrite;
3286 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3287 			     bi && bi->bi_iter.bi_sector <= sector;
3288 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3289 			if (bio_end_sector(bi) >= sector)
3290 				sector = bio_end_sector(bi);
3291 		}
3292 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3293 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3294 				sh->overwrite_disks++;
3295 	}
3296 
3297 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3298 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3299 		(unsigned long long)sh->sector, dd_idx);
3300 
3301 	if (conf->mddev->bitmap && firstwrite) {
3302 		/* Cannot hold spinlock over bitmap_startwrite,
3303 		 * but must ensure this isn't added to a batch until
3304 		 * we have added to the bitmap and set bm_seq.
3305 		 * So set STRIPE_BITMAP_PENDING to prevent
3306 		 * batching.
3307 		 * If multiple add_stripe_bio() calls race here they
3308 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3309 		 * to complete "bitmap_startwrite" gets to set
3310 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3311 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3312 		 * any more.
3313 		 */
3314 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3315 		spin_unlock_irq(&sh->stripe_lock);
3316 		md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3317 				     STRIPE_SECTORS, 0);
3318 		spin_lock_irq(&sh->stripe_lock);
3319 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3320 		if (!sh->batch_head) {
3321 			sh->bm_seq = conf->seq_flush+1;
3322 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3323 		}
3324 	}
3325 	spin_unlock_irq(&sh->stripe_lock);
3326 
3327 	if (stripe_can_batch(sh))
3328 		stripe_add_to_batch_list(conf, sh);
3329 	return 1;
3330 
3331  overlap:
3332 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3333 	spin_unlock_irq(&sh->stripe_lock);
3334 	return 0;
3335 }
3336 
3337 static void end_reshape(struct r5conf *conf);
3338 
3339 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3340 			    struct stripe_head *sh)
3341 {
3342 	int sectors_per_chunk =
3343 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3344 	int dd_idx;
3345 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3346 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3347 
3348 	raid5_compute_sector(conf,
3349 			     stripe * (disks - conf->max_degraded)
3350 			     *sectors_per_chunk + chunk_offset,
3351 			     previous,
3352 			     &dd_idx, sh);
3353 }
3354 
3355 static void
3356 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3357 		     struct stripe_head_state *s, int disks)
3358 {
3359 	int i;
3360 	BUG_ON(sh->batch_head);
3361 	for (i = disks; i--; ) {
3362 		struct bio *bi;
3363 		int bitmap_end = 0;
3364 
3365 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3366 			struct md_rdev *rdev;
3367 			rcu_read_lock();
3368 			rdev = rcu_dereference(conf->disks[i].rdev);
3369 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3370 			    !test_bit(Faulty, &rdev->flags))
3371 				atomic_inc(&rdev->nr_pending);
3372 			else
3373 				rdev = NULL;
3374 			rcu_read_unlock();
3375 			if (rdev) {
3376 				if (!rdev_set_badblocks(
3377 					    rdev,
3378 					    sh->sector,
3379 					    STRIPE_SECTORS, 0))
3380 					md_error(conf->mddev, rdev);
3381 				rdev_dec_pending(rdev, conf->mddev);
3382 			}
3383 		}
3384 		spin_lock_irq(&sh->stripe_lock);
3385 		/* fail all writes first */
3386 		bi = sh->dev[i].towrite;
3387 		sh->dev[i].towrite = NULL;
3388 		sh->overwrite_disks = 0;
3389 		spin_unlock_irq(&sh->stripe_lock);
3390 		if (bi)
3391 			bitmap_end = 1;
3392 
3393 		log_stripe_write_finished(sh);
3394 
3395 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3396 			wake_up(&conf->wait_for_overlap);
3397 
3398 		while (bi && bi->bi_iter.bi_sector <
3399 			sh->dev[i].sector + STRIPE_SECTORS) {
3400 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3401 
3402 			md_write_end(conf->mddev);
3403 			bio_io_error(bi);
3404 			bi = nextbi;
3405 		}
3406 		if (bitmap_end)
3407 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3408 					   STRIPE_SECTORS, 0, 0);
3409 		bitmap_end = 0;
3410 		/* and fail all 'written' */
3411 		bi = sh->dev[i].written;
3412 		sh->dev[i].written = NULL;
3413 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3414 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3415 			sh->dev[i].page = sh->dev[i].orig_page;
3416 		}
3417 
3418 		if (bi) bitmap_end = 1;
3419 		while (bi && bi->bi_iter.bi_sector <
3420 		       sh->dev[i].sector + STRIPE_SECTORS) {
3421 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3422 
3423 			md_write_end(conf->mddev);
3424 			bio_io_error(bi);
3425 			bi = bi2;
3426 		}
3427 
3428 		/* fail any reads if this device is non-operational and
3429 		 * the data has not reached the cache yet.
3430 		 */
3431 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3432 		    s->failed > conf->max_degraded &&
3433 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3434 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3435 			spin_lock_irq(&sh->stripe_lock);
3436 			bi = sh->dev[i].toread;
3437 			sh->dev[i].toread = NULL;
3438 			spin_unlock_irq(&sh->stripe_lock);
3439 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3440 				wake_up(&conf->wait_for_overlap);
3441 			if (bi)
3442 				s->to_read--;
3443 			while (bi && bi->bi_iter.bi_sector <
3444 			       sh->dev[i].sector + STRIPE_SECTORS) {
3445 				struct bio *nextbi =
3446 					r5_next_bio(bi, sh->dev[i].sector);
3447 
3448 				bio_io_error(bi);
3449 				bi = nextbi;
3450 			}
3451 		}
3452 		if (bitmap_end)
3453 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3454 					   STRIPE_SECTORS, 0, 0);
3455 		/* If we were in the middle of a write the parity block might
3456 		 * still be locked - so just clear all R5_LOCKED flags
3457 		 */
3458 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3459 	}
3460 	s->to_write = 0;
3461 	s->written = 0;
3462 
3463 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3464 		if (atomic_dec_and_test(&conf->pending_full_writes))
3465 			md_wakeup_thread(conf->mddev->thread);
3466 }
3467 
3468 static void
3469 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3470 		   struct stripe_head_state *s)
3471 {
3472 	int abort = 0;
3473 	int i;
3474 
3475 	BUG_ON(sh->batch_head);
3476 	clear_bit(STRIPE_SYNCING, &sh->state);
3477 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3478 		wake_up(&conf->wait_for_overlap);
3479 	s->syncing = 0;
3480 	s->replacing = 0;
3481 	/* There is nothing more to do for sync/check/repair.
3482 	 * Don't even need to abort as that is handled elsewhere
3483 	 * if needed, and not always wanted e.g. if there is a known
3484 	 * bad block here.
3485 	 * For recover/replace we need to record a bad block on all
3486 	 * non-sync devices, or abort the recovery
3487 	 */
3488 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3489 		/* During recovery devices cannot be removed, so
3490 		 * locking and refcounting of rdevs is not needed
3491 		 */
3492 		rcu_read_lock();
3493 		for (i = 0; i < conf->raid_disks; i++) {
3494 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3495 			if (rdev
3496 			    && !test_bit(Faulty, &rdev->flags)
3497 			    && !test_bit(In_sync, &rdev->flags)
3498 			    && !rdev_set_badblocks(rdev, sh->sector,
3499 						   STRIPE_SECTORS, 0))
3500 				abort = 1;
3501 			rdev = rcu_dereference(conf->disks[i].replacement);
3502 			if (rdev
3503 			    && !test_bit(Faulty, &rdev->flags)
3504 			    && !test_bit(In_sync, &rdev->flags)
3505 			    && !rdev_set_badblocks(rdev, sh->sector,
3506 						   STRIPE_SECTORS, 0))
3507 				abort = 1;
3508 		}
3509 		rcu_read_unlock();
3510 		if (abort)
3511 			conf->recovery_disabled =
3512 				conf->mddev->recovery_disabled;
3513 	}
3514 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3515 }
3516 
3517 static int want_replace(struct stripe_head *sh, int disk_idx)
3518 {
3519 	struct md_rdev *rdev;
3520 	int rv = 0;
3521 
3522 	rcu_read_lock();
3523 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3524 	if (rdev
3525 	    && !test_bit(Faulty, &rdev->flags)
3526 	    && !test_bit(In_sync, &rdev->flags)
3527 	    && (rdev->recovery_offset <= sh->sector
3528 		|| rdev->mddev->recovery_cp <= sh->sector))
3529 		rv = 1;
3530 	rcu_read_unlock();
3531 	return rv;
3532 }
3533 
3534 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3535 			   int disk_idx, int disks)
3536 {
3537 	struct r5dev *dev = &sh->dev[disk_idx];
3538 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3539 				  &sh->dev[s->failed_num[1]] };
3540 	int i;
3541 
3542 
3543 	if (test_bit(R5_LOCKED, &dev->flags) ||
3544 	    test_bit(R5_UPTODATE, &dev->flags))
3545 		/* No point reading this as we already have it or have
3546 		 * decided to get it.
3547 		 */
3548 		return 0;
3549 
3550 	if (dev->toread ||
3551 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3552 		/* We need this block to directly satisfy a request */
3553 		return 1;
3554 
3555 	if (s->syncing || s->expanding ||
3556 	    (s->replacing && want_replace(sh, disk_idx)))
3557 		/* When syncing, or expanding we read everything.
3558 		 * When replacing, we need the replaced block.
3559 		 */
3560 		return 1;
3561 
3562 	if ((s->failed >= 1 && fdev[0]->toread) ||
3563 	    (s->failed >= 2 && fdev[1]->toread))
3564 		/* If we want to read from a failed device, then
3565 		 * we need to actually read every other device.
3566 		 */
3567 		return 1;
3568 
3569 	/* Sometimes neither read-modify-write nor reconstruct-write
3570 	 * cycles can work.  In those cases we read every block we
3571 	 * can.  Then the parity-update is certain to have enough to
3572 	 * work with.
3573 	 * This can only be a problem when we need to write something,
3574 	 * and some device has failed.  If either of those tests
3575 	 * fail we need look no further.
3576 	 */
3577 	if (!s->failed || !s->to_write)
3578 		return 0;
3579 
3580 	if (test_bit(R5_Insync, &dev->flags) &&
3581 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3582 		/* Pre-reads at not permitted until after short delay
3583 		 * to gather multiple requests.  However if this
3584 		 * device is no Insync, the block could only be computed
3585 		 * and there is no need to delay that.
3586 		 */
3587 		return 0;
3588 
3589 	for (i = 0; i < s->failed && i < 2; i++) {
3590 		if (fdev[i]->towrite &&
3591 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3592 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3593 			/* If we have a partial write to a failed
3594 			 * device, then we will need to reconstruct
3595 			 * the content of that device, so all other
3596 			 * devices must be read.
3597 			 */
3598 			return 1;
3599 	}
3600 
3601 	/* If we are forced to do a reconstruct-write, either because
3602 	 * the current RAID6 implementation only supports that, or
3603 	 * because parity cannot be trusted and we are currently
3604 	 * recovering it, there is extra need to be careful.
3605 	 * If one of the devices that we would need to read, because
3606 	 * it is not being overwritten (and maybe not written at all)
3607 	 * is missing/faulty, then we need to read everything we can.
3608 	 */
3609 	if (sh->raid_conf->level != 6 &&
3610 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3611 		/* reconstruct-write isn't being forced */
3612 		return 0;
3613 	for (i = 0; i < s->failed && i < 2; i++) {
3614 		if (s->failed_num[i] != sh->pd_idx &&
3615 		    s->failed_num[i] != sh->qd_idx &&
3616 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3617 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3618 			return 1;
3619 	}
3620 
3621 	return 0;
3622 }
3623 
3624 /* fetch_block - checks the given member device to see if its data needs
3625  * to be read or computed to satisfy a request.
3626  *
3627  * Returns 1 when no more member devices need to be checked, otherwise returns
3628  * 0 to tell the loop in handle_stripe_fill to continue
3629  */
3630 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3631 		       int disk_idx, int disks)
3632 {
3633 	struct r5dev *dev = &sh->dev[disk_idx];
3634 
3635 	/* is the data in this block needed, and can we get it? */
3636 	if (need_this_block(sh, s, disk_idx, disks)) {
3637 		/* we would like to get this block, possibly by computing it,
3638 		 * otherwise read it if the backing disk is insync
3639 		 */
3640 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3641 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3642 		BUG_ON(sh->batch_head);
3643 
3644 		/*
3645 		 * In the raid6 case if the only non-uptodate disk is P
3646 		 * then we already trusted P to compute the other failed
3647 		 * drives. It is safe to compute rather than re-read P.
3648 		 * In other cases we only compute blocks from failed
3649 		 * devices, otherwise check/repair might fail to detect
3650 		 * a real inconsistency.
3651 		 */
3652 
3653 		if ((s->uptodate == disks - 1) &&
3654 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3655 		    (s->failed && (disk_idx == s->failed_num[0] ||
3656 				   disk_idx == s->failed_num[1])))) {
3657 			/* have disk failed, and we're requested to fetch it;
3658 			 * do compute it
3659 			 */
3660 			pr_debug("Computing stripe %llu block %d\n",
3661 			       (unsigned long long)sh->sector, disk_idx);
3662 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3663 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3664 			set_bit(R5_Wantcompute, &dev->flags);
3665 			sh->ops.target = disk_idx;
3666 			sh->ops.target2 = -1; /* no 2nd target */
3667 			s->req_compute = 1;
3668 			/* Careful: from this point on 'uptodate' is in the eye
3669 			 * of raid_run_ops which services 'compute' operations
3670 			 * before writes. R5_Wantcompute flags a block that will
3671 			 * be R5_UPTODATE by the time it is needed for a
3672 			 * subsequent operation.
3673 			 */
3674 			s->uptodate++;
3675 			return 1;
3676 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3677 			/* Computing 2-failure is *very* expensive; only
3678 			 * do it if failed >= 2
3679 			 */
3680 			int other;
3681 			for (other = disks; other--; ) {
3682 				if (other == disk_idx)
3683 					continue;
3684 				if (!test_bit(R5_UPTODATE,
3685 				      &sh->dev[other].flags))
3686 					break;
3687 			}
3688 			BUG_ON(other < 0);
3689 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3690 			       (unsigned long long)sh->sector,
3691 			       disk_idx, other);
3692 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3693 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3694 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3695 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3696 			sh->ops.target = disk_idx;
3697 			sh->ops.target2 = other;
3698 			s->uptodate += 2;
3699 			s->req_compute = 1;
3700 			return 1;
3701 		} else if (test_bit(R5_Insync, &dev->flags)) {
3702 			set_bit(R5_LOCKED, &dev->flags);
3703 			set_bit(R5_Wantread, &dev->flags);
3704 			s->locked++;
3705 			pr_debug("Reading block %d (sync=%d)\n",
3706 				disk_idx, s->syncing);
3707 		}
3708 	}
3709 
3710 	return 0;
3711 }
3712 
3713 /**
3714  * handle_stripe_fill - read or compute data to satisfy pending requests.
3715  */
3716 static void handle_stripe_fill(struct stripe_head *sh,
3717 			       struct stripe_head_state *s,
3718 			       int disks)
3719 {
3720 	int i;
3721 
3722 	/* look for blocks to read/compute, skip this if a compute
3723 	 * is already in flight, or if the stripe contents are in the
3724 	 * midst of changing due to a write
3725 	 */
3726 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3727 	    !sh->reconstruct_state) {
3728 
3729 		/*
3730 		 * For degraded stripe with data in journal, do not handle
3731 		 * read requests yet, instead, flush the stripe to raid
3732 		 * disks first, this avoids handling complex rmw of write
3733 		 * back cache (prexor with orig_page, and then xor with
3734 		 * page) in the read path
3735 		 */
3736 		if (s->injournal && s->failed) {
3737 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3738 				r5c_make_stripe_write_out(sh);
3739 			goto out;
3740 		}
3741 
3742 		for (i = disks; i--; )
3743 			if (fetch_block(sh, s, i, disks))
3744 				break;
3745 	}
3746 out:
3747 	set_bit(STRIPE_HANDLE, &sh->state);
3748 }
3749 
3750 static void break_stripe_batch_list(struct stripe_head *head_sh,
3751 				    unsigned long handle_flags);
3752 /* handle_stripe_clean_event
3753  * any written block on an uptodate or failed drive can be returned.
3754  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3755  * never LOCKED, so we don't need to test 'failed' directly.
3756  */
3757 static void handle_stripe_clean_event(struct r5conf *conf,
3758 	struct stripe_head *sh, int disks)
3759 {
3760 	int i;
3761 	struct r5dev *dev;
3762 	int discard_pending = 0;
3763 	struct stripe_head *head_sh = sh;
3764 	bool do_endio = false;
3765 
3766 	for (i = disks; i--; )
3767 		if (sh->dev[i].written) {
3768 			dev = &sh->dev[i];
3769 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3770 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3771 			     test_bit(R5_Discard, &dev->flags) ||
3772 			     test_bit(R5_SkipCopy, &dev->flags))) {
3773 				/* We can return any write requests */
3774 				struct bio *wbi, *wbi2;
3775 				pr_debug("Return write for disc %d\n", i);
3776 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3777 					clear_bit(R5_UPTODATE, &dev->flags);
3778 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3779 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3780 				}
3781 				do_endio = true;
3782 
3783 returnbi:
3784 				dev->page = dev->orig_page;
3785 				wbi = dev->written;
3786 				dev->written = NULL;
3787 				while (wbi && wbi->bi_iter.bi_sector <
3788 					dev->sector + STRIPE_SECTORS) {
3789 					wbi2 = r5_next_bio(wbi, dev->sector);
3790 					md_write_end(conf->mddev);
3791 					bio_endio(wbi);
3792 					wbi = wbi2;
3793 				}
3794 				md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3795 						   STRIPE_SECTORS,
3796 						   !test_bit(STRIPE_DEGRADED, &sh->state),
3797 						   0);
3798 				if (head_sh->batch_head) {
3799 					sh = list_first_entry(&sh->batch_list,
3800 							      struct stripe_head,
3801 							      batch_list);
3802 					if (sh != head_sh) {
3803 						dev = &sh->dev[i];
3804 						goto returnbi;
3805 					}
3806 				}
3807 				sh = head_sh;
3808 				dev = &sh->dev[i];
3809 			} else if (test_bit(R5_Discard, &dev->flags))
3810 				discard_pending = 1;
3811 		}
3812 
3813 	log_stripe_write_finished(sh);
3814 
3815 	if (!discard_pending &&
3816 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3817 		int hash;
3818 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3819 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3820 		if (sh->qd_idx >= 0) {
3821 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3822 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3823 		}
3824 		/* now that discard is done we can proceed with any sync */
3825 		clear_bit(STRIPE_DISCARD, &sh->state);
3826 		/*
3827 		 * SCSI discard will change some bio fields and the stripe has
3828 		 * no updated data, so remove it from hash list and the stripe
3829 		 * will be reinitialized
3830 		 */
3831 unhash:
3832 		hash = sh->hash_lock_index;
3833 		spin_lock_irq(conf->hash_locks + hash);
3834 		remove_hash(sh);
3835 		spin_unlock_irq(conf->hash_locks + hash);
3836 		if (head_sh->batch_head) {
3837 			sh = list_first_entry(&sh->batch_list,
3838 					      struct stripe_head, batch_list);
3839 			if (sh != head_sh)
3840 					goto unhash;
3841 		}
3842 		sh = head_sh;
3843 
3844 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3845 			set_bit(STRIPE_HANDLE, &sh->state);
3846 
3847 	}
3848 
3849 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3850 		if (atomic_dec_and_test(&conf->pending_full_writes))
3851 			md_wakeup_thread(conf->mddev->thread);
3852 
3853 	if (head_sh->batch_head && do_endio)
3854 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3855 }
3856 
3857 /*
3858  * For RMW in write back cache, we need extra page in prexor to store the
3859  * old data. This page is stored in dev->orig_page.
3860  *
3861  * This function checks whether we have data for prexor. The exact logic
3862  * is:
3863  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3864  */
3865 static inline bool uptodate_for_rmw(struct r5dev *dev)
3866 {
3867 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
3868 		(!test_bit(R5_InJournal, &dev->flags) ||
3869 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3870 }
3871 
3872 static int handle_stripe_dirtying(struct r5conf *conf,
3873 				  struct stripe_head *sh,
3874 				  struct stripe_head_state *s,
3875 				  int disks)
3876 {
3877 	int rmw = 0, rcw = 0, i;
3878 	sector_t recovery_cp = conf->mddev->recovery_cp;
3879 
3880 	/* Check whether resync is now happening or should start.
3881 	 * If yes, then the array is dirty (after unclean shutdown or
3882 	 * initial creation), so parity in some stripes might be inconsistent.
3883 	 * In this case, we need to always do reconstruct-write, to ensure
3884 	 * that in case of drive failure or read-error correction, we
3885 	 * generate correct data from the parity.
3886 	 */
3887 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3888 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3889 	     s->failed == 0)) {
3890 		/* Calculate the real rcw later - for now make it
3891 		 * look like rcw is cheaper
3892 		 */
3893 		rcw = 1; rmw = 2;
3894 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3895 			 conf->rmw_level, (unsigned long long)recovery_cp,
3896 			 (unsigned long long)sh->sector);
3897 	} else for (i = disks; i--; ) {
3898 		/* would I have to read this buffer for read_modify_write */
3899 		struct r5dev *dev = &sh->dev[i];
3900 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3901 		     i == sh->pd_idx || i == sh->qd_idx ||
3902 		     test_bit(R5_InJournal, &dev->flags)) &&
3903 		    !test_bit(R5_LOCKED, &dev->flags) &&
3904 		    !(uptodate_for_rmw(dev) ||
3905 		      test_bit(R5_Wantcompute, &dev->flags))) {
3906 			if (test_bit(R5_Insync, &dev->flags))
3907 				rmw++;
3908 			else
3909 				rmw += 2*disks;  /* cannot read it */
3910 		}
3911 		/* Would I have to read this buffer for reconstruct_write */
3912 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3913 		    i != sh->pd_idx && i != sh->qd_idx &&
3914 		    !test_bit(R5_LOCKED, &dev->flags) &&
3915 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3916 		      test_bit(R5_Wantcompute, &dev->flags))) {
3917 			if (test_bit(R5_Insync, &dev->flags))
3918 				rcw++;
3919 			else
3920 				rcw += 2*disks;
3921 		}
3922 	}
3923 
3924 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3925 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3926 	set_bit(STRIPE_HANDLE, &sh->state);
3927 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3928 		/* prefer read-modify-write, but need to get some data */
3929 		if (conf->mddev->queue)
3930 			blk_add_trace_msg(conf->mddev->queue,
3931 					  "raid5 rmw %llu %d",
3932 					  (unsigned long long)sh->sector, rmw);
3933 		for (i = disks; i--; ) {
3934 			struct r5dev *dev = &sh->dev[i];
3935 			if (test_bit(R5_InJournal, &dev->flags) &&
3936 			    dev->page == dev->orig_page &&
3937 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3938 				/* alloc page for prexor */
3939 				struct page *p = alloc_page(GFP_NOIO);
3940 
3941 				if (p) {
3942 					dev->orig_page = p;
3943 					continue;
3944 				}
3945 
3946 				/*
3947 				 * alloc_page() failed, try use
3948 				 * disk_info->extra_page
3949 				 */
3950 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3951 						      &conf->cache_state)) {
3952 					r5c_use_extra_page(sh);
3953 					break;
3954 				}
3955 
3956 				/* extra_page in use, add to delayed_list */
3957 				set_bit(STRIPE_DELAYED, &sh->state);
3958 				s->waiting_extra_page = 1;
3959 				return -EAGAIN;
3960 			}
3961 		}
3962 
3963 		for (i = disks; i--; ) {
3964 			struct r5dev *dev = &sh->dev[i];
3965 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3966 			     i == sh->pd_idx || i == sh->qd_idx ||
3967 			     test_bit(R5_InJournal, &dev->flags)) &&
3968 			    !test_bit(R5_LOCKED, &dev->flags) &&
3969 			    !(uptodate_for_rmw(dev) ||
3970 			      test_bit(R5_Wantcompute, &dev->flags)) &&
3971 			    test_bit(R5_Insync, &dev->flags)) {
3972 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3973 					     &sh->state)) {
3974 					pr_debug("Read_old block %d for r-m-w\n",
3975 						 i);
3976 					set_bit(R5_LOCKED, &dev->flags);
3977 					set_bit(R5_Wantread, &dev->flags);
3978 					s->locked++;
3979 				} else {
3980 					set_bit(STRIPE_DELAYED, &sh->state);
3981 					set_bit(STRIPE_HANDLE, &sh->state);
3982 				}
3983 			}
3984 		}
3985 	}
3986 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3987 		/* want reconstruct write, but need to get some data */
3988 		int qread =0;
3989 		rcw = 0;
3990 		for (i = disks; i--; ) {
3991 			struct r5dev *dev = &sh->dev[i];
3992 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3993 			    i != sh->pd_idx && i != sh->qd_idx &&
3994 			    !test_bit(R5_LOCKED, &dev->flags) &&
3995 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3996 			      test_bit(R5_Wantcompute, &dev->flags))) {
3997 				rcw++;
3998 				if (test_bit(R5_Insync, &dev->flags) &&
3999 				    test_bit(STRIPE_PREREAD_ACTIVE,
4000 					     &sh->state)) {
4001 					pr_debug("Read_old block "
4002 						"%d for Reconstruct\n", i);
4003 					set_bit(R5_LOCKED, &dev->flags);
4004 					set_bit(R5_Wantread, &dev->flags);
4005 					s->locked++;
4006 					qread++;
4007 				} else {
4008 					set_bit(STRIPE_DELAYED, &sh->state);
4009 					set_bit(STRIPE_HANDLE, &sh->state);
4010 				}
4011 			}
4012 		}
4013 		if (rcw && conf->mddev->queue)
4014 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4015 					  (unsigned long long)sh->sector,
4016 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4017 	}
4018 
4019 	if (rcw > disks && rmw > disks &&
4020 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4021 		set_bit(STRIPE_DELAYED, &sh->state);
4022 
4023 	/* now if nothing is locked, and if we have enough data,
4024 	 * we can start a write request
4025 	 */
4026 	/* since handle_stripe can be called at any time we need to handle the
4027 	 * case where a compute block operation has been submitted and then a
4028 	 * subsequent call wants to start a write request.  raid_run_ops only
4029 	 * handles the case where compute block and reconstruct are requested
4030 	 * simultaneously.  If this is not the case then new writes need to be
4031 	 * held off until the compute completes.
4032 	 */
4033 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4034 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4035 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4036 		schedule_reconstruction(sh, s, rcw == 0, 0);
4037 	return 0;
4038 }
4039 
4040 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4041 				struct stripe_head_state *s, int disks)
4042 {
4043 	struct r5dev *dev = NULL;
4044 
4045 	BUG_ON(sh->batch_head);
4046 	set_bit(STRIPE_HANDLE, &sh->state);
4047 
4048 	switch (sh->check_state) {
4049 	case check_state_idle:
4050 		/* start a new check operation if there are no failures */
4051 		if (s->failed == 0) {
4052 			BUG_ON(s->uptodate != disks);
4053 			sh->check_state = check_state_run;
4054 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4055 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4056 			s->uptodate--;
4057 			break;
4058 		}
4059 		dev = &sh->dev[s->failed_num[0]];
4060 		/* fall through */
4061 	case check_state_compute_result:
4062 		sh->check_state = check_state_idle;
4063 		if (!dev)
4064 			dev = &sh->dev[sh->pd_idx];
4065 
4066 		/* check that a write has not made the stripe insync */
4067 		if (test_bit(STRIPE_INSYNC, &sh->state))
4068 			break;
4069 
4070 		/* either failed parity check, or recovery is happening */
4071 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4072 		BUG_ON(s->uptodate != disks);
4073 
4074 		set_bit(R5_LOCKED, &dev->flags);
4075 		s->locked++;
4076 		set_bit(R5_Wantwrite, &dev->flags);
4077 
4078 		clear_bit(STRIPE_DEGRADED, &sh->state);
4079 		set_bit(STRIPE_INSYNC, &sh->state);
4080 		break;
4081 	case check_state_run:
4082 		break; /* we will be called again upon completion */
4083 	case check_state_check_result:
4084 		sh->check_state = check_state_idle;
4085 
4086 		/* if a failure occurred during the check operation, leave
4087 		 * STRIPE_INSYNC not set and let the stripe be handled again
4088 		 */
4089 		if (s->failed)
4090 			break;
4091 
4092 		/* handle a successful check operation, if parity is correct
4093 		 * we are done.  Otherwise update the mismatch count and repair
4094 		 * parity if !MD_RECOVERY_CHECK
4095 		 */
4096 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4097 			/* parity is correct (on disc,
4098 			 * not in buffer any more)
4099 			 */
4100 			set_bit(STRIPE_INSYNC, &sh->state);
4101 		else {
4102 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4103 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4104 				/* don't try to repair!! */
4105 				set_bit(STRIPE_INSYNC, &sh->state);
4106 				pr_warn_ratelimited("%s: mismatch sector in range "
4107 						    "%llu-%llu\n", mdname(conf->mddev),
4108 						    (unsigned long long) sh->sector,
4109 						    (unsigned long long) sh->sector +
4110 						    STRIPE_SECTORS);
4111 			} else {
4112 				sh->check_state = check_state_compute_run;
4113 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4114 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4115 				set_bit(R5_Wantcompute,
4116 					&sh->dev[sh->pd_idx].flags);
4117 				sh->ops.target = sh->pd_idx;
4118 				sh->ops.target2 = -1;
4119 				s->uptodate++;
4120 			}
4121 		}
4122 		break;
4123 	case check_state_compute_run:
4124 		break;
4125 	default:
4126 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4127 		       __func__, sh->check_state,
4128 		       (unsigned long long) sh->sector);
4129 		BUG();
4130 	}
4131 }
4132 
4133 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4134 				  struct stripe_head_state *s,
4135 				  int disks)
4136 {
4137 	int pd_idx = sh->pd_idx;
4138 	int qd_idx = sh->qd_idx;
4139 	struct r5dev *dev;
4140 
4141 	BUG_ON(sh->batch_head);
4142 	set_bit(STRIPE_HANDLE, &sh->state);
4143 
4144 	BUG_ON(s->failed > 2);
4145 
4146 	/* Want to check and possibly repair P and Q.
4147 	 * However there could be one 'failed' device, in which
4148 	 * case we can only check one of them, possibly using the
4149 	 * other to generate missing data
4150 	 */
4151 
4152 	switch (sh->check_state) {
4153 	case check_state_idle:
4154 		/* start a new check operation if there are < 2 failures */
4155 		if (s->failed == s->q_failed) {
4156 			/* The only possible failed device holds Q, so it
4157 			 * makes sense to check P (If anything else were failed,
4158 			 * we would have used P to recreate it).
4159 			 */
4160 			sh->check_state = check_state_run;
4161 		}
4162 		if (!s->q_failed && s->failed < 2) {
4163 			/* Q is not failed, and we didn't use it to generate
4164 			 * anything, so it makes sense to check it
4165 			 */
4166 			if (sh->check_state == check_state_run)
4167 				sh->check_state = check_state_run_pq;
4168 			else
4169 				sh->check_state = check_state_run_q;
4170 		}
4171 
4172 		/* discard potentially stale zero_sum_result */
4173 		sh->ops.zero_sum_result = 0;
4174 
4175 		if (sh->check_state == check_state_run) {
4176 			/* async_xor_zero_sum destroys the contents of P */
4177 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4178 			s->uptodate--;
4179 		}
4180 		if (sh->check_state >= check_state_run &&
4181 		    sh->check_state <= check_state_run_pq) {
4182 			/* async_syndrome_zero_sum preserves P and Q, so
4183 			 * no need to mark them !uptodate here
4184 			 */
4185 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4186 			break;
4187 		}
4188 
4189 		/* we have 2-disk failure */
4190 		BUG_ON(s->failed != 2);
4191 		/* fall through */
4192 	case check_state_compute_result:
4193 		sh->check_state = check_state_idle;
4194 
4195 		/* check that a write has not made the stripe insync */
4196 		if (test_bit(STRIPE_INSYNC, &sh->state))
4197 			break;
4198 
4199 		/* now write out any block on a failed drive,
4200 		 * or P or Q if they were recomputed
4201 		 */
4202 		dev = NULL;
4203 		if (s->failed == 2) {
4204 			dev = &sh->dev[s->failed_num[1]];
4205 			s->locked++;
4206 			set_bit(R5_LOCKED, &dev->flags);
4207 			set_bit(R5_Wantwrite, &dev->flags);
4208 		}
4209 		if (s->failed >= 1) {
4210 			dev = &sh->dev[s->failed_num[0]];
4211 			s->locked++;
4212 			set_bit(R5_LOCKED, &dev->flags);
4213 			set_bit(R5_Wantwrite, &dev->flags);
4214 		}
4215 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4216 			dev = &sh->dev[pd_idx];
4217 			s->locked++;
4218 			set_bit(R5_LOCKED, &dev->flags);
4219 			set_bit(R5_Wantwrite, &dev->flags);
4220 		}
4221 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4222 			dev = &sh->dev[qd_idx];
4223 			s->locked++;
4224 			set_bit(R5_LOCKED, &dev->flags);
4225 			set_bit(R5_Wantwrite, &dev->flags);
4226 		}
4227 		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4228 			      "%s: disk%td not up to date\n",
4229 			      mdname(conf->mddev),
4230 			      dev - (struct r5dev *) &sh->dev)) {
4231 			clear_bit(R5_LOCKED, &dev->flags);
4232 			clear_bit(R5_Wantwrite, &dev->flags);
4233 			s->locked--;
4234 		}
4235 		clear_bit(STRIPE_DEGRADED, &sh->state);
4236 
4237 		set_bit(STRIPE_INSYNC, &sh->state);
4238 		break;
4239 	case check_state_run:
4240 	case check_state_run_q:
4241 	case check_state_run_pq:
4242 		break; /* we will be called again upon completion */
4243 	case check_state_check_result:
4244 		sh->check_state = check_state_idle;
4245 
4246 		/* handle a successful check operation, if parity is correct
4247 		 * we are done.  Otherwise update the mismatch count and repair
4248 		 * parity if !MD_RECOVERY_CHECK
4249 		 */
4250 		if (sh->ops.zero_sum_result == 0) {
4251 			/* both parities are correct */
4252 			if (!s->failed)
4253 				set_bit(STRIPE_INSYNC, &sh->state);
4254 			else {
4255 				/* in contrast to the raid5 case we can validate
4256 				 * parity, but still have a failure to write
4257 				 * back
4258 				 */
4259 				sh->check_state = check_state_compute_result;
4260 				/* Returning at this point means that we may go
4261 				 * off and bring p and/or q uptodate again so
4262 				 * we make sure to check zero_sum_result again
4263 				 * to verify if p or q need writeback
4264 				 */
4265 			}
4266 		} else {
4267 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4268 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4269 				/* don't try to repair!! */
4270 				set_bit(STRIPE_INSYNC, &sh->state);
4271 				pr_warn_ratelimited("%s: mismatch sector in range "
4272 						    "%llu-%llu\n", mdname(conf->mddev),
4273 						    (unsigned long long) sh->sector,
4274 						    (unsigned long long) sh->sector +
4275 						    STRIPE_SECTORS);
4276 			} else {
4277 				int *target = &sh->ops.target;
4278 
4279 				sh->ops.target = -1;
4280 				sh->ops.target2 = -1;
4281 				sh->check_state = check_state_compute_run;
4282 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4283 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4284 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4285 					set_bit(R5_Wantcompute,
4286 						&sh->dev[pd_idx].flags);
4287 					*target = pd_idx;
4288 					target = &sh->ops.target2;
4289 					s->uptodate++;
4290 				}
4291 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4292 					set_bit(R5_Wantcompute,
4293 						&sh->dev[qd_idx].flags);
4294 					*target = qd_idx;
4295 					s->uptodate++;
4296 				}
4297 			}
4298 		}
4299 		break;
4300 	case check_state_compute_run:
4301 		break;
4302 	default:
4303 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4304 			__func__, sh->check_state,
4305 			(unsigned long long) sh->sector);
4306 		BUG();
4307 	}
4308 }
4309 
4310 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4311 {
4312 	int i;
4313 
4314 	/* We have read all the blocks in this stripe and now we need to
4315 	 * copy some of them into a target stripe for expand.
4316 	 */
4317 	struct dma_async_tx_descriptor *tx = NULL;
4318 	BUG_ON(sh->batch_head);
4319 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4320 	for (i = 0; i < sh->disks; i++)
4321 		if (i != sh->pd_idx && i != sh->qd_idx) {
4322 			int dd_idx, j;
4323 			struct stripe_head *sh2;
4324 			struct async_submit_ctl submit;
4325 
4326 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4327 			sector_t s = raid5_compute_sector(conf, bn, 0,
4328 							  &dd_idx, NULL);
4329 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4330 			if (sh2 == NULL)
4331 				/* so far only the early blocks of this stripe
4332 				 * have been requested.  When later blocks
4333 				 * get requested, we will try again
4334 				 */
4335 				continue;
4336 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4337 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4338 				/* must have already done this block */
4339 				raid5_release_stripe(sh2);
4340 				continue;
4341 			}
4342 
4343 			/* place all the copies on one channel */
4344 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4345 			tx = async_memcpy(sh2->dev[dd_idx].page,
4346 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
4347 					  &submit);
4348 
4349 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4350 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4351 			for (j = 0; j < conf->raid_disks; j++)
4352 				if (j != sh2->pd_idx &&
4353 				    j != sh2->qd_idx &&
4354 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4355 					break;
4356 			if (j == conf->raid_disks) {
4357 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4358 				set_bit(STRIPE_HANDLE, &sh2->state);
4359 			}
4360 			raid5_release_stripe(sh2);
4361 
4362 		}
4363 	/* done submitting copies, wait for them to complete */
4364 	async_tx_quiesce(&tx);
4365 }
4366 
4367 /*
4368  * handle_stripe - do things to a stripe.
4369  *
4370  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4371  * state of various bits to see what needs to be done.
4372  * Possible results:
4373  *    return some read requests which now have data
4374  *    return some write requests which are safely on storage
4375  *    schedule a read on some buffers
4376  *    schedule a write of some buffers
4377  *    return confirmation of parity correctness
4378  *
4379  */
4380 
4381 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4382 {
4383 	struct r5conf *conf = sh->raid_conf;
4384 	int disks = sh->disks;
4385 	struct r5dev *dev;
4386 	int i;
4387 	int do_recovery = 0;
4388 
4389 	memset(s, 0, sizeof(*s));
4390 
4391 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4392 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4393 	s->failed_num[0] = -1;
4394 	s->failed_num[1] = -1;
4395 	s->log_failed = r5l_log_disk_error(conf);
4396 
4397 	/* Now to look around and see what can be done */
4398 	rcu_read_lock();
4399 	for (i=disks; i--; ) {
4400 		struct md_rdev *rdev;
4401 		sector_t first_bad;
4402 		int bad_sectors;
4403 		int is_bad = 0;
4404 
4405 		dev = &sh->dev[i];
4406 
4407 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4408 			 i, dev->flags,
4409 			 dev->toread, dev->towrite, dev->written);
4410 		/* maybe we can reply to a read
4411 		 *
4412 		 * new wantfill requests are only permitted while
4413 		 * ops_complete_biofill is guaranteed to be inactive
4414 		 */
4415 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4416 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4417 			set_bit(R5_Wantfill, &dev->flags);
4418 
4419 		/* now count some things */
4420 		if (test_bit(R5_LOCKED, &dev->flags))
4421 			s->locked++;
4422 		if (test_bit(R5_UPTODATE, &dev->flags))
4423 			s->uptodate++;
4424 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4425 			s->compute++;
4426 			BUG_ON(s->compute > 2);
4427 		}
4428 
4429 		if (test_bit(R5_Wantfill, &dev->flags))
4430 			s->to_fill++;
4431 		else if (dev->toread)
4432 			s->to_read++;
4433 		if (dev->towrite) {
4434 			s->to_write++;
4435 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4436 				s->non_overwrite++;
4437 		}
4438 		if (dev->written)
4439 			s->written++;
4440 		/* Prefer to use the replacement for reads, but only
4441 		 * if it is recovered enough and has no bad blocks.
4442 		 */
4443 		rdev = rcu_dereference(conf->disks[i].replacement);
4444 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4445 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4446 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4447 				 &first_bad, &bad_sectors))
4448 			set_bit(R5_ReadRepl, &dev->flags);
4449 		else {
4450 			if (rdev && !test_bit(Faulty, &rdev->flags))
4451 				set_bit(R5_NeedReplace, &dev->flags);
4452 			else
4453 				clear_bit(R5_NeedReplace, &dev->flags);
4454 			rdev = rcu_dereference(conf->disks[i].rdev);
4455 			clear_bit(R5_ReadRepl, &dev->flags);
4456 		}
4457 		if (rdev && test_bit(Faulty, &rdev->flags))
4458 			rdev = NULL;
4459 		if (rdev) {
4460 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4461 					     &first_bad, &bad_sectors);
4462 			if (s->blocked_rdev == NULL
4463 			    && (test_bit(Blocked, &rdev->flags)
4464 				|| is_bad < 0)) {
4465 				if (is_bad < 0)
4466 					set_bit(BlockedBadBlocks,
4467 						&rdev->flags);
4468 				s->blocked_rdev = rdev;
4469 				atomic_inc(&rdev->nr_pending);
4470 			}
4471 		}
4472 		clear_bit(R5_Insync, &dev->flags);
4473 		if (!rdev)
4474 			/* Not in-sync */;
4475 		else if (is_bad) {
4476 			/* also not in-sync */
4477 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4478 			    test_bit(R5_UPTODATE, &dev->flags)) {
4479 				/* treat as in-sync, but with a read error
4480 				 * which we can now try to correct
4481 				 */
4482 				set_bit(R5_Insync, &dev->flags);
4483 				set_bit(R5_ReadError, &dev->flags);
4484 			}
4485 		} else if (test_bit(In_sync, &rdev->flags))
4486 			set_bit(R5_Insync, &dev->flags);
4487 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4488 			/* in sync if before recovery_offset */
4489 			set_bit(R5_Insync, &dev->flags);
4490 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4491 			 test_bit(R5_Expanded, &dev->flags))
4492 			/* If we've reshaped into here, we assume it is Insync.
4493 			 * We will shortly update recovery_offset to make
4494 			 * it official.
4495 			 */
4496 			set_bit(R5_Insync, &dev->flags);
4497 
4498 		if (test_bit(R5_WriteError, &dev->flags)) {
4499 			/* This flag does not apply to '.replacement'
4500 			 * only to .rdev, so make sure to check that*/
4501 			struct md_rdev *rdev2 = rcu_dereference(
4502 				conf->disks[i].rdev);
4503 			if (rdev2 == rdev)
4504 				clear_bit(R5_Insync, &dev->flags);
4505 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4506 				s->handle_bad_blocks = 1;
4507 				atomic_inc(&rdev2->nr_pending);
4508 			} else
4509 				clear_bit(R5_WriteError, &dev->flags);
4510 		}
4511 		if (test_bit(R5_MadeGood, &dev->flags)) {
4512 			/* This flag does not apply to '.replacement'
4513 			 * only to .rdev, so make sure to check that*/
4514 			struct md_rdev *rdev2 = rcu_dereference(
4515 				conf->disks[i].rdev);
4516 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4517 				s->handle_bad_blocks = 1;
4518 				atomic_inc(&rdev2->nr_pending);
4519 			} else
4520 				clear_bit(R5_MadeGood, &dev->flags);
4521 		}
4522 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4523 			struct md_rdev *rdev2 = rcu_dereference(
4524 				conf->disks[i].replacement);
4525 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4526 				s->handle_bad_blocks = 1;
4527 				atomic_inc(&rdev2->nr_pending);
4528 			} else
4529 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4530 		}
4531 		if (!test_bit(R5_Insync, &dev->flags)) {
4532 			/* The ReadError flag will just be confusing now */
4533 			clear_bit(R5_ReadError, &dev->flags);
4534 			clear_bit(R5_ReWrite, &dev->flags);
4535 		}
4536 		if (test_bit(R5_ReadError, &dev->flags))
4537 			clear_bit(R5_Insync, &dev->flags);
4538 		if (!test_bit(R5_Insync, &dev->flags)) {
4539 			if (s->failed < 2)
4540 				s->failed_num[s->failed] = i;
4541 			s->failed++;
4542 			if (rdev && !test_bit(Faulty, &rdev->flags))
4543 				do_recovery = 1;
4544 			else if (!rdev) {
4545 				rdev = rcu_dereference(
4546 				    conf->disks[i].replacement);
4547 				if (rdev && !test_bit(Faulty, &rdev->flags))
4548 					do_recovery = 1;
4549 			}
4550 		}
4551 
4552 		if (test_bit(R5_InJournal, &dev->flags))
4553 			s->injournal++;
4554 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4555 			s->just_cached++;
4556 	}
4557 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4558 		/* If there is a failed device being replaced,
4559 		 *     we must be recovering.
4560 		 * else if we are after recovery_cp, we must be syncing
4561 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4562 		 * else we can only be replacing
4563 		 * sync and recovery both need to read all devices, and so
4564 		 * use the same flag.
4565 		 */
4566 		if (do_recovery ||
4567 		    sh->sector >= conf->mddev->recovery_cp ||
4568 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4569 			s->syncing = 1;
4570 		else
4571 			s->replacing = 1;
4572 	}
4573 	rcu_read_unlock();
4574 }
4575 
4576 static int clear_batch_ready(struct stripe_head *sh)
4577 {
4578 	/* Return '1' if this is a member of batch, or
4579 	 * '0' if it is a lone stripe or a head which can now be
4580 	 * handled.
4581 	 */
4582 	struct stripe_head *tmp;
4583 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4584 		return (sh->batch_head && sh->batch_head != sh);
4585 	spin_lock(&sh->stripe_lock);
4586 	if (!sh->batch_head) {
4587 		spin_unlock(&sh->stripe_lock);
4588 		return 0;
4589 	}
4590 
4591 	/*
4592 	 * this stripe could be added to a batch list before we check
4593 	 * BATCH_READY, skips it
4594 	 */
4595 	if (sh->batch_head != sh) {
4596 		spin_unlock(&sh->stripe_lock);
4597 		return 1;
4598 	}
4599 	spin_lock(&sh->batch_lock);
4600 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4601 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4602 	spin_unlock(&sh->batch_lock);
4603 	spin_unlock(&sh->stripe_lock);
4604 
4605 	/*
4606 	 * BATCH_READY is cleared, no new stripes can be added.
4607 	 * batch_list can be accessed without lock
4608 	 */
4609 	return 0;
4610 }
4611 
4612 static void break_stripe_batch_list(struct stripe_head *head_sh,
4613 				    unsigned long handle_flags)
4614 {
4615 	struct stripe_head *sh, *next;
4616 	int i;
4617 	int do_wakeup = 0;
4618 
4619 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4620 
4621 		list_del_init(&sh->batch_list);
4622 
4623 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4624 					  (1 << STRIPE_SYNCING) |
4625 					  (1 << STRIPE_REPLACED) |
4626 					  (1 << STRIPE_DELAYED) |
4627 					  (1 << STRIPE_BIT_DELAY) |
4628 					  (1 << STRIPE_FULL_WRITE) |
4629 					  (1 << STRIPE_BIOFILL_RUN) |
4630 					  (1 << STRIPE_COMPUTE_RUN)  |
4631 					  (1 << STRIPE_DISCARD) |
4632 					  (1 << STRIPE_BATCH_READY) |
4633 					  (1 << STRIPE_BATCH_ERR) |
4634 					  (1 << STRIPE_BITMAP_PENDING)),
4635 			"stripe state: %lx\n", sh->state);
4636 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4637 					      (1 << STRIPE_REPLACED)),
4638 			"head stripe state: %lx\n", head_sh->state);
4639 
4640 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4641 					    (1 << STRIPE_PREREAD_ACTIVE) |
4642 					    (1 << STRIPE_DEGRADED) |
4643 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4644 			      head_sh->state & (1 << STRIPE_INSYNC));
4645 
4646 		sh->check_state = head_sh->check_state;
4647 		sh->reconstruct_state = head_sh->reconstruct_state;
4648 		spin_lock_irq(&sh->stripe_lock);
4649 		sh->batch_head = NULL;
4650 		spin_unlock_irq(&sh->stripe_lock);
4651 		for (i = 0; i < sh->disks; i++) {
4652 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4653 				do_wakeup = 1;
4654 			sh->dev[i].flags = head_sh->dev[i].flags &
4655 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4656 		}
4657 		if (handle_flags == 0 ||
4658 		    sh->state & handle_flags)
4659 			set_bit(STRIPE_HANDLE, &sh->state);
4660 		raid5_release_stripe(sh);
4661 	}
4662 	spin_lock_irq(&head_sh->stripe_lock);
4663 	head_sh->batch_head = NULL;
4664 	spin_unlock_irq(&head_sh->stripe_lock);
4665 	for (i = 0; i < head_sh->disks; i++)
4666 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4667 			do_wakeup = 1;
4668 	if (head_sh->state & handle_flags)
4669 		set_bit(STRIPE_HANDLE, &head_sh->state);
4670 
4671 	if (do_wakeup)
4672 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4673 }
4674 
4675 static void handle_stripe(struct stripe_head *sh)
4676 {
4677 	struct stripe_head_state s;
4678 	struct r5conf *conf = sh->raid_conf;
4679 	int i;
4680 	int prexor;
4681 	int disks = sh->disks;
4682 	struct r5dev *pdev, *qdev;
4683 
4684 	clear_bit(STRIPE_HANDLE, &sh->state);
4685 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4686 		/* already being handled, ensure it gets handled
4687 		 * again when current action finishes */
4688 		set_bit(STRIPE_HANDLE, &sh->state);
4689 		return;
4690 	}
4691 
4692 	if (clear_batch_ready(sh) ) {
4693 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4694 		return;
4695 	}
4696 
4697 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4698 		break_stripe_batch_list(sh, 0);
4699 
4700 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4701 		spin_lock(&sh->stripe_lock);
4702 		/*
4703 		 * Cannot process 'sync' concurrently with 'discard'.
4704 		 * Flush data in r5cache before 'sync'.
4705 		 */
4706 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4707 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4708 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4709 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4710 			set_bit(STRIPE_SYNCING, &sh->state);
4711 			clear_bit(STRIPE_INSYNC, &sh->state);
4712 			clear_bit(STRIPE_REPLACED, &sh->state);
4713 		}
4714 		spin_unlock(&sh->stripe_lock);
4715 	}
4716 	clear_bit(STRIPE_DELAYED, &sh->state);
4717 
4718 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4719 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4720 	       (unsigned long long)sh->sector, sh->state,
4721 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4722 	       sh->check_state, sh->reconstruct_state);
4723 
4724 	analyse_stripe(sh, &s);
4725 
4726 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4727 		goto finish;
4728 
4729 	if (s.handle_bad_blocks ||
4730 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4731 		set_bit(STRIPE_HANDLE, &sh->state);
4732 		goto finish;
4733 	}
4734 
4735 	if (unlikely(s.blocked_rdev)) {
4736 		if (s.syncing || s.expanding || s.expanded ||
4737 		    s.replacing || s.to_write || s.written) {
4738 			set_bit(STRIPE_HANDLE, &sh->state);
4739 			goto finish;
4740 		}
4741 		/* There is nothing for the blocked_rdev to block */
4742 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4743 		s.blocked_rdev = NULL;
4744 	}
4745 
4746 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4747 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4748 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4749 	}
4750 
4751 	pr_debug("locked=%d uptodate=%d to_read=%d"
4752 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4753 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4754 	       s.failed_num[0], s.failed_num[1]);
4755 	/*
4756 	 * check if the array has lost more than max_degraded devices and,
4757 	 * if so, some requests might need to be failed.
4758 	 *
4759 	 * When journal device failed (log_failed), we will only process
4760 	 * the stripe if there is data need write to raid disks
4761 	 */
4762 	if (s.failed > conf->max_degraded ||
4763 	    (s.log_failed && s.injournal == 0)) {
4764 		sh->check_state = 0;
4765 		sh->reconstruct_state = 0;
4766 		break_stripe_batch_list(sh, 0);
4767 		if (s.to_read+s.to_write+s.written)
4768 			handle_failed_stripe(conf, sh, &s, disks);
4769 		if (s.syncing + s.replacing)
4770 			handle_failed_sync(conf, sh, &s);
4771 	}
4772 
4773 	/* Now we check to see if any write operations have recently
4774 	 * completed
4775 	 */
4776 	prexor = 0;
4777 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4778 		prexor = 1;
4779 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4780 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4781 		sh->reconstruct_state = reconstruct_state_idle;
4782 
4783 		/* All the 'written' buffers and the parity block are ready to
4784 		 * be written back to disk
4785 		 */
4786 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4787 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4788 		BUG_ON(sh->qd_idx >= 0 &&
4789 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4790 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4791 		for (i = disks; i--; ) {
4792 			struct r5dev *dev = &sh->dev[i];
4793 			if (test_bit(R5_LOCKED, &dev->flags) &&
4794 				(i == sh->pd_idx || i == sh->qd_idx ||
4795 				 dev->written || test_bit(R5_InJournal,
4796 							  &dev->flags))) {
4797 				pr_debug("Writing block %d\n", i);
4798 				set_bit(R5_Wantwrite, &dev->flags);
4799 				if (prexor)
4800 					continue;
4801 				if (s.failed > 1)
4802 					continue;
4803 				if (!test_bit(R5_Insync, &dev->flags) ||
4804 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4805 				     s.failed == 0))
4806 					set_bit(STRIPE_INSYNC, &sh->state);
4807 			}
4808 		}
4809 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4810 			s.dec_preread_active = 1;
4811 	}
4812 
4813 	/*
4814 	 * might be able to return some write requests if the parity blocks
4815 	 * are safe, or on a failed drive
4816 	 */
4817 	pdev = &sh->dev[sh->pd_idx];
4818 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4819 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4820 	qdev = &sh->dev[sh->qd_idx];
4821 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4822 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4823 		|| conf->level < 6;
4824 
4825 	if (s.written &&
4826 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4827 			     && !test_bit(R5_LOCKED, &pdev->flags)
4828 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4829 				 test_bit(R5_Discard, &pdev->flags))))) &&
4830 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4831 			     && !test_bit(R5_LOCKED, &qdev->flags)
4832 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4833 				 test_bit(R5_Discard, &qdev->flags))))))
4834 		handle_stripe_clean_event(conf, sh, disks);
4835 
4836 	if (s.just_cached)
4837 		r5c_handle_cached_data_endio(conf, sh, disks);
4838 	log_stripe_write_finished(sh);
4839 
4840 	/* Now we might consider reading some blocks, either to check/generate
4841 	 * parity, or to satisfy requests
4842 	 * or to load a block that is being partially written.
4843 	 */
4844 	if (s.to_read || s.non_overwrite
4845 	    || (conf->level == 6 && s.to_write && s.failed)
4846 	    || (s.syncing && (s.uptodate + s.compute < disks))
4847 	    || s.replacing
4848 	    || s.expanding)
4849 		handle_stripe_fill(sh, &s, disks);
4850 
4851 	/*
4852 	 * When the stripe finishes full journal write cycle (write to journal
4853 	 * and raid disk), this is the clean up procedure so it is ready for
4854 	 * next operation.
4855 	 */
4856 	r5c_finish_stripe_write_out(conf, sh, &s);
4857 
4858 	/*
4859 	 * Now to consider new write requests, cache write back and what else,
4860 	 * if anything should be read.  We do not handle new writes when:
4861 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4862 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4863 	 *    block.
4864 	 * 3/ A r5c cache log write is in flight.
4865 	 */
4866 
4867 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4868 		if (!r5c_is_writeback(conf->log)) {
4869 			if (s.to_write)
4870 				handle_stripe_dirtying(conf, sh, &s, disks);
4871 		} else { /* write back cache */
4872 			int ret = 0;
4873 
4874 			/* First, try handle writes in caching phase */
4875 			if (s.to_write)
4876 				ret = r5c_try_caching_write(conf, sh, &s,
4877 							    disks);
4878 			/*
4879 			 * If caching phase failed: ret == -EAGAIN
4880 			 *    OR
4881 			 * stripe under reclaim: !caching && injournal
4882 			 *
4883 			 * fall back to handle_stripe_dirtying()
4884 			 */
4885 			if (ret == -EAGAIN ||
4886 			    /* stripe under reclaim: !caching && injournal */
4887 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4888 			     s.injournal > 0)) {
4889 				ret = handle_stripe_dirtying(conf, sh, &s,
4890 							     disks);
4891 				if (ret == -EAGAIN)
4892 					goto finish;
4893 			}
4894 		}
4895 	}
4896 
4897 	/* maybe we need to check and possibly fix the parity for this stripe
4898 	 * Any reads will already have been scheduled, so we just see if enough
4899 	 * data is available.  The parity check is held off while parity
4900 	 * dependent operations are in flight.
4901 	 */
4902 	if (sh->check_state ||
4903 	    (s.syncing && s.locked == 0 &&
4904 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4905 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4906 		if (conf->level == 6)
4907 			handle_parity_checks6(conf, sh, &s, disks);
4908 		else
4909 			handle_parity_checks5(conf, sh, &s, disks);
4910 	}
4911 
4912 	if ((s.replacing || s.syncing) && s.locked == 0
4913 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4914 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4915 		/* Write out to replacement devices where possible */
4916 		for (i = 0; i < conf->raid_disks; i++)
4917 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4918 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4919 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4920 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4921 				s.locked++;
4922 			}
4923 		if (s.replacing)
4924 			set_bit(STRIPE_INSYNC, &sh->state);
4925 		set_bit(STRIPE_REPLACED, &sh->state);
4926 	}
4927 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4928 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4929 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4930 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4931 		clear_bit(STRIPE_SYNCING, &sh->state);
4932 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4933 			wake_up(&conf->wait_for_overlap);
4934 	}
4935 
4936 	/* If the failed drives are just a ReadError, then we might need
4937 	 * to progress the repair/check process
4938 	 */
4939 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4940 		for (i = 0; i < s.failed; i++) {
4941 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4942 			if (test_bit(R5_ReadError, &dev->flags)
4943 			    && !test_bit(R5_LOCKED, &dev->flags)
4944 			    && test_bit(R5_UPTODATE, &dev->flags)
4945 				) {
4946 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4947 					set_bit(R5_Wantwrite, &dev->flags);
4948 					set_bit(R5_ReWrite, &dev->flags);
4949 					set_bit(R5_LOCKED, &dev->flags);
4950 					s.locked++;
4951 				} else {
4952 					/* let's read it back */
4953 					set_bit(R5_Wantread, &dev->flags);
4954 					set_bit(R5_LOCKED, &dev->flags);
4955 					s.locked++;
4956 				}
4957 			}
4958 		}
4959 
4960 	/* Finish reconstruct operations initiated by the expansion process */
4961 	if (sh->reconstruct_state == reconstruct_state_result) {
4962 		struct stripe_head *sh_src
4963 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4964 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4965 			/* sh cannot be written until sh_src has been read.
4966 			 * so arrange for sh to be delayed a little
4967 			 */
4968 			set_bit(STRIPE_DELAYED, &sh->state);
4969 			set_bit(STRIPE_HANDLE, &sh->state);
4970 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4971 					      &sh_src->state))
4972 				atomic_inc(&conf->preread_active_stripes);
4973 			raid5_release_stripe(sh_src);
4974 			goto finish;
4975 		}
4976 		if (sh_src)
4977 			raid5_release_stripe(sh_src);
4978 
4979 		sh->reconstruct_state = reconstruct_state_idle;
4980 		clear_bit(STRIPE_EXPANDING, &sh->state);
4981 		for (i = conf->raid_disks; i--; ) {
4982 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4983 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4984 			s.locked++;
4985 		}
4986 	}
4987 
4988 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4989 	    !sh->reconstruct_state) {
4990 		/* Need to write out all blocks after computing parity */
4991 		sh->disks = conf->raid_disks;
4992 		stripe_set_idx(sh->sector, conf, 0, sh);
4993 		schedule_reconstruction(sh, &s, 1, 1);
4994 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4995 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4996 		atomic_dec(&conf->reshape_stripes);
4997 		wake_up(&conf->wait_for_overlap);
4998 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4999 	}
5000 
5001 	if (s.expanding && s.locked == 0 &&
5002 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5003 		handle_stripe_expansion(conf, sh);
5004 
5005 finish:
5006 	/* wait for this device to become unblocked */
5007 	if (unlikely(s.blocked_rdev)) {
5008 		if (conf->mddev->external)
5009 			md_wait_for_blocked_rdev(s.blocked_rdev,
5010 						 conf->mddev);
5011 		else
5012 			/* Internal metadata will immediately
5013 			 * be written by raid5d, so we don't
5014 			 * need to wait here.
5015 			 */
5016 			rdev_dec_pending(s.blocked_rdev,
5017 					 conf->mddev);
5018 	}
5019 
5020 	if (s.handle_bad_blocks)
5021 		for (i = disks; i--; ) {
5022 			struct md_rdev *rdev;
5023 			struct r5dev *dev = &sh->dev[i];
5024 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5025 				/* We own a safe reference to the rdev */
5026 				rdev = conf->disks[i].rdev;
5027 				if (!rdev_set_badblocks(rdev, sh->sector,
5028 							STRIPE_SECTORS, 0))
5029 					md_error(conf->mddev, rdev);
5030 				rdev_dec_pending(rdev, conf->mddev);
5031 			}
5032 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5033 				rdev = conf->disks[i].rdev;
5034 				rdev_clear_badblocks(rdev, sh->sector,
5035 						     STRIPE_SECTORS, 0);
5036 				rdev_dec_pending(rdev, conf->mddev);
5037 			}
5038 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5039 				rdev = conf->disks[i].replacement;
5040 				if (!rdev)
5041 					/* rdev have been moved down */
5042 					rdev = conf->disks[i].rdev;
5043 				rdev_clear_badblocks(rdev, sh->sector,
5044 						     STRIPE_SECTORS, 0);
5045 				rdev_dec_pending(rdev, conf->mddev);
5046 			}
5047 		}
5048 
5049 	if (s.ops_request)
5050 		raid_run_ops(sh, s.ops_request);
5051 
5052 	ops_run_io(sh, &s);
5053 
5054 	if (s.dec_preread_active) {
5055 		/* We delay this until after ops_run_io so that if make_request
5056 		 * is waiting on a flush, it won't continue until the writes
5057 		 * have actually been submitted.
5058 		 */
5059 		atomic_dec(&conf->preread_active_stripes);
5060 		if (atomic_read(&conf->preread_active_stripes) <
5061 		    IO_THRESHOLD)
5062 			md_wakeup_thread(conf->mddev->thread);
5063 	}
5064 
5065 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5066 }
5067 
5068 static void raid5_activate_delayed(struct r5conf *conf)
5069 {
5070 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5071 		while (!list_empty(&conf->delayed_list)) {
5072 			struct list_head *l = conf->delayed_list.next;
5073 			struct stripe_head *sh;
5074 			sh = list_entry(l, struct stripe_head, lru);
5075 			list_del_init(l);
5076 			clear_bit(STRIPE_DELAYED, &sh->state);
5077 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5078 				atomic_inc(&conf->preread_active_stripes);
5079 			list_add_tail(&sh->lru, &conf->hold_list);
5080 			raid5_wakeup_stripe_thread(sh);
5081 		}
5082 	}
5083 }
5084 
5085 static void activate_bit_delay(struct r5conf *conf,
5086 	struct list_head *temp_inactive_list)
5087 {
5088 	/* device_lock is held */
5089 	struct list_head head;
5090 	list_add(&head, &conf->bitmap_list);
5091 	list_del_init(&conf->bitmap_list);
5092 	while (!list_empty(&head)) {
5093 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5094 		int hash;
5095 		list_del_init(&sh->lru);
5096 		atomic_inc(&sh->count);
5097 		hash = sh->hash_lock_index;
5098 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5099 	}
5100 }
5101 
5102 static int raid5_congested(struct mddev *mddev, int bits)
5103 {
5104 	struct r5conf *conf = mddev->private;
5105 
5106 	/* No difference between reads and writes.  Just check
5107 	 * how busy the stripe_cache is
5108 	 */
5109 
5110 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5111 		return 1;
5112 
5113 	/* Also checks whether there is pressure on r5cache log space */
5114 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5115 		return 1;
5116 	if (conf->quiesce)
5117 		return 1;
5118 	if (atomic_read(&conf->empty_inactive_list_nr))
5119 		return 1;
5120 
5121 	return 0;
5122 }
5123 
5124 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5125 {
5126 	struct r5conf *conf = mddev->private;
5127 	sector_t sector = bio->bi_iter.bi_sector;
5128 	unsigned int chunk_sectors;
5129 	unsigned int bio_sectors = bio_sectors(bio);
5130 
5131 	WARN_ON_ONCE(bio->bi_partno);
5132 
5133 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5134 	return  chunk_sectors >=
5135 		((sector & (chunk_sectors - 1)) + bio_sectors);
5136 }
5137 
5138 /*
5139  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5140  *  later sampled by raid5d.
5141  */
5142 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5143 {
5144 	unsigned long flags;
5145 
5146 	spin_lock_irqsave(&conf->device_lock, flags);
5147 
5148 	bi->bi_next = conf->retry_read_aligned_list;
5149 	conf->retry_read_aligned_list = bi;
5150 
5151 	spin_unlock_irqrestore(&conf->device_lock, flags);
5152 	md_wakeup_thread(conf->mddev->thread);
5153 }
5154 
5155 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5156 					 unsigned int *offset)
5157 {
5158 	struct bio *bi;
5159 
5160 	bi = conf->retry_read_aligned;
5161 	if (bi) {
5162 		*offset = conf->retry_read_offset;
5163 		conf->retry_read_aligned = NULL;
5164 		return bi;
5165 	}
5166 	bi = conf->retry_read_aligned_list;
5167 	if(bi) {
5168 		conf->retry_read_aligned_list = bi->bi_next;
5169 		bi->bi_next = NULL;
5170 		*offset = 0;
5171 	}
5172 
5173 	return bi;
5174 }
5175 
5176 /*
5177  *  The "raid5_align_endio" should check if the read succeeded and if it
5178  *  did, call bio_endio on the original bio (having bio_put the new bio
5179  *  first).
5180  *  If the read failed..
5181  */
5182 static void raid5_align_endio(struct bio *bi)
5183 {
5184 	struct bio* raid_bi  = bi->bi_private;
5185 	struct mddev *mddev;
5186 	struct r5conf *conf;
5187 	struct md_rdev *rdev;
5188 	blk_status_t error = bi->bi_status;
5189 
5190 	bio_put(bi);
5191 
5192 	rdev = (void*)raid_bi->bi_next;
5193 	raid_bi->bi_next = NULL;
5194 	mddev = rdev->mddev;
5195 	conf = mddev->private;
5196 
5197 	rdev_dec_pending(rdev, conf->mddev);
5198 
5199 	if (!error) {
5200 		bio_endio(raid_bi);
5201 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5202 			wake_up(&conf->wait_for_quiescent);
5203 		return;
5204 	}
5205 
5206 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5207 
5208 	add_bio_to_retry(raid_bi, conf);
5209 }
5210 
5211 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5212 {
5213 	struct r5conf *conf = mddev->private;
5214 	int dd_idx;
5215 	struct bio* align_bi;
5216 	struct md_rdev *rdev;
5217 	sector_t end_sector;
5218 
5219 	if (!in_chunk_boundary(mddev, raid_bio)) {
5220 		pr_debug("%s: non aligned\n", __func__);
5221 		return 0;
5222 	}
5223 	/*
5224 	 * use bio_clone_fast to make a copy of the bio
5225 	 */
5226 	align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5227 	if (!align_bi)
5228 		return 0;
5229 	/*
5230 	 *   set bi_end_io to a new function, and set bi_private to the
5231 	 *     original bio.
5232 	 */
5233 	align_bi->bi_end_io  = raid5_align_endio;
5234 	align_bi->bi_private = raid_bio;
5235 	/*
5236 	 *	compute position
5237 	 */
5238 	align_bi->bi_iter.bi_sector =
5239 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5240 				     0, &dd_idx, NULL);
5241 
5242 	end_sector = bio_end_sector(align_bi);
5243 	rcu_read_lock();
5244 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5245 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5246 	    rdev->recovery_offset < end_sector) {
5247 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5248 		if (rdev &&
5249 		    (test_bit(Faulty, &rdev->flags) ||
5250 		    !(test_bit(In_sync, &rdev->flags) ||
5251 		      rdev->recovery_offset >= end_sector)))
5252 			rdev = NULL;
5253 	}
5254 
5255 	if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5256 		rcu_read_unlock();
5257 		bio_put(align_bi);
5258 		return 0;
5259 	}
5260 
5261 	if (rdev) {
5262 		sector_t first_bad;
5263 		int bad_sectors;
5264 
5265 		atomic_inc(&rdev->nr_pending);
5266 		rcu_read_unlock();
5267 		raid_bio->bi_next = (void*)rdev;
5268 		bio_set_dev(align_bi, rdev->bdev);
5269 
5270 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5271 				bio_sectors(align_bi),
5272 				&first_bad, &bad_sectors)) {
5273 			bio_put(align_bi);
5274 			rdev_dec_pending(rdev, mddev);
5275 			return 0;
5276 		}
5277 
5278 		/* No reshape active, so we can trust rdev->data_offset */
5279 		align_bi->bi_iter.bi_sector += rdev->data_offset;
5280 
5281 		spin_lock_irq(&conf->device_lock);
5282 		wait_event_lock_irq(conf->wait_for_quiescent,
5283 				    conf->quiesce == 0,
5284 				    conf->device_lock);
5285 		atomic_inc(&conf->active_aligned_reads);
5286 		spin_unlock_irq(&conf->device_lock);
5287 
5288 		if (mddev->gendisk)
5289 			trace_block_bio_remap(align_bi->bi_disk->queue,
5290 					      align_bi, disk_devt(mddev->gendisk),
5291 					      raid_bio->bi_iter.bi_sector);
5292 		generic_make_request(align_bi);
5293 		return 1;
5294 	} else {
5295 		rcu_read_unlock();
5296 		bio_put(align_bi);
5297 		return 0;
5298 	}
5299 }
5300 
5301 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5302 {
5303 	struct bio *split;
5304 	sector_t sector = raid_bio->bi_iter.bi_sector;
5305 	unsigned chunk_sects = mddev->chunk_sectors;
5306 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5307 
5308 	if (sectors < bio_sectors(raid_bio)) {
5309 		struct r5conf *conf = mddev->private;
5310 		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5311 		bio_chain(split, raid_bio);
5312 		generic_make_request(raid_bio);
5313 		raid_bio = split;
5314 	}
5315 
5316 	if (!raid5_read_one_chunk(mddev, raid_bio))
5317 		return raid_bio;
5318 
5319 	return NULL;
5320 }
5321 
5322 /* __get_priority_stripe - get the next stripe to process
5323  *
5324  * Full stripe writes are allowed to pass preread active stripes up until
5325  * the bypass_threshold is exceeded.  In general the bypass_count
5326  * increments when the handle_list is handled before the hold_list; however, it
5327  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5328  * stripe with in flight i/o.  The bypass_count will be reset when the
5329  * head of the hold_list has changed, i.e. the head was promoted to the
5330  * handle_list.
5331  */
5332 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5333 {
5334 	struct stripe_head *sh, *tmp;
5335 	struct list_head *handle_list = NULL;
5336 	struct r5worker_group *wg;
5337 	bool second_try = !r5c_is_writeback(conf->log) &&
5338 		!r5l_log_disk_error(conf);
5339 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5340 		r5l_log_disk_error(conf);
5341 
5342 again:
5343 	wg = NULL;
5344 	sh = NULL;
5345 	if (conf->worker_cnt_per_group == 0) {
5346 		handle_list = try_loprio ? &conf->loprio_list :
5347 					&conf->handle_list;
5348 	} else if (group != ANY_GROUP) {
5349 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5350 				&conf->worker_groups[group].handle_list;
5351 		wg = &conf->worker_groups[group];
5352 	} else {
5353 		int i;
5354 		for (i = 0; i < conf->group_cnt; i++) {
5355 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5356 				&conf->worker_groups[i].handle_list;
5357 			wg = &conf->worker_groups[i];
5358 			if (!list_empty(handle_list))
5359 				break;
5360 		}
5361 	}
5362 
5363 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5364 		  __func__,
5365 		  list_empty(handle_list) ? "empty" : "busy",
5366 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5367 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5368 
5369 	if (!list_empty(handle_list)) {
5370 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5371 
5372 		if (list_empty(&conf->hold_list))
5373 			conf->bypass_count = 0;
5374 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5375 			if (conf->hold_list.next == conf->last_hold)
5376 				conf->bypass_count++;
5377 			else {
5378 				conf->last_hold = conf->hold_list.next;
5379 				conf->bypass_count -= conf->bypass_threshold;
5380 				if (conf->bypass_count < 0)
5381 					conf->bypass_count = 0;
5382 			}
5383 		}
5384 	} else if (!list_empty(&conf->hold_list) &&
5385 		   ((conf->bypass_threshold &&
5386 		     conf->bypass_count > conf->bypass_threshold) ||
5387 		    atomic_read(&conf->pending_full_writes) == 0)) {
5388 
5389 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5390 			if (conf->worker_cnt_per_group == 0 ||
5391 			    group == ANY_GROUP ||
5392 			    !cpu_online(tmp->cpu) ||
5393 			    cpu_to_group(tmp->cpu) == group) {
5394 				sh = tmp;
5395 				break;
5396 			}
5397 		}
5398 
5399 		if (sh) {
5400 			conf->bypass_count -= conf->bypass_threshold;
5401 			if (conf->bypass_count < 0)
5402 				conf->bypass_count = 0;
5403 		}
5404 		wg = NULL;
5405 	}
5406 
5407 	if (!sh) {
5408 		if (second_try)
5409 			return NULL;
5410 		second_try = true;
5411 		try_loprio = !try_loprio;
5412 		goto again;
5413 	}
5414 
5415 	if (wg) {
5416 		wg->stripes_cnt--;
5417 		sh->group = NULL;
5418 	}
5419 	list_del_init(&sh->lru);
5420 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5421 	return sh;
5422 }
5423 
5424 struct raid5_plug_cb {
5425 	struct blk_plug_cb	cb;
5426 	struct list_head	list;
5427 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5428 };
5429 
5430 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5431 {
5432 	struct raid5_plug_cb *cb = container_of(
5433 		blk_cb, struct raid5_plug_cb, cb);
5434 	struct stripe_head *sh;
5435 	struct mddev *mddev = cb->cb.data;
5436 	struct r5conf *conf = mddev->private;
5437 	int cnt = 0;
5438 	int hash;
5439 
5440 	if (cb->list.next && !list_empty(&cb->list)) {
5441 		spin_lock_irq(&conf->device_lock);
5442 		while (!list_empty(&cb->list)) {
5443 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5444 			list_del_init(&sh->lru);
5445 			/*
5446 			 * avoid race release_stripe_plug() sees
5447 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5448 			 * is still in our list
5449 			 */
5450 			smp_mb__before_atomic();
5451 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5452 			/*
5453 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5454 			 * case, the count is always > 1 here
5455 			 */
5456 			hash = sh->hash_lock_index;
5457 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5458 			cnt++;
5459 		}
5460 		spin_unlock_irq(&conf->device_lock);
5461 	}
5462 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5463 				     NR_STRIPE_HASH_LOCKS);
5464 	if (mddev->queue)
5465 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5466 	kfree(cb);
5467 }
5468 
5469 static void release_stripe_plug(struct mddev *mddev,
5470 				struct stripe_head *sh)
5471 {
5472 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5473 		raid5_unplug, mddev,
5474 		sizeof(struct raid5_plug_cb));
5475 	struct raid5_plug_cb *cb;
5476 
5477 	if (!blk_cb) {
5478 		raid5_release_stripe(sh);
5479 		return;
5480 	}
5481 
5482 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5483 
5484 	if (cb->list.next == NULL) {
5485 		int i;
5486 		INIT_LIST_HEAD(&cb->list);
5487 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5488 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5489 	}
5490 
5491 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5492 		list_add_tail(&sh->lru, &cb->list);
5493 	else
5494 		raid5_release_stripe(sh);
5495 }
5496 
5497 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5498 {
5499 	struct r5conf *conf = mddev->private;
5500 	sector_t logical_sector, last_sector;
5501 	struct stripe_head *sh;
5502 	int stripe_sectors;
5503 
5504 	if (mddev->reshape_position != MaxSector)
5505 		/* Skip discard while reshape is happening */
5506 		return;
5507 
5508 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5509 	last_sector = bio_end_sector(bi);
5510 
5511 	bi->bi_next = NULL;
5512 
5513 	stripe_sectors = conf->chunk_sectors *
5514 		(conf->raid_disks - conf->max_degraded);
5515 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5516 					       stripe_sectors);
5517 	sector_div(last_sector, stripe_sectors);
5518 
5519 	logical_sector *= conf->chunk_sectors;
5520 	last_sector *= conf->chunk_sectors;
5521 
5522 	for (; logical_sector < last_sector;
5523 	     logical_sector += STRIPE_SECTORS) {
5524 		DEFINE_WAIT(w);
5525 		int d;
5526 	again:
5527 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5528 		prepare_to_wait(&conf->wait_for_overlap, &w,
5529 				TASK_UNINTERRUPTIBLE);
5530 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5531 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5532 			raid5_release_stripe(sh);
5533 			schedule();
5534 			goto again;
5535 		}
5536 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5537 		spin_lock_irq(&sh->stripe_lock);
5538 		for (d = 0; d < conf->raid_disks; d++) {
5539 			if (d == sh->pd_idx || d == sh->qd_idx)
5540 				continue;
5541 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5542 				set_bit(R5_Overlap, &sh->dev[d].flags);
5543 				spin_unlock_irq(&sh->stripe_lock);
5544 				raid5_release_stripe(sh);
5545 				schedule();
5546 				goto again;
5547 			}
5548 		}
5549 		set_bit(STRIPE_DISCARD, &sh->state);
5550 		finish_wait(&conf->wait_for_overlap, &w);
5551 		sh->overwrite_disks = 0;
5552 		for (d = 0; d < conf->raid_disks; d++) {
5553 			if (d == sh->pd_idx || d == sh->qd_idx)
5554 				continue;
5555 			sh->dev[d].towrite = bi;
5556 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5557 			bio_inc_remaining(bi);
5558 			md_write_inc(mddev, bi);
5559 			sh->overwrite_disks++;
5560 		}
5561 		spin_unlock_irq(&sh->stripe_lock);
5562 		if (conf->mddev->bitmap) {
5563 			for (d = 0;
5564 			     d < conf->raid_disks - conf->max_degraded;
5565 			     d++)
5566 				md_bitmap_startwrite(mddev->bitmap,
5567 						     sh->sector,
5568 						     STRIPE_SECTORS,
5569 						     0);
5570 			sh->bm_seq = conf->seq_flush + 1;
5571 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5572 		}
5573 
5574 		set_bit(STRIPE_HANDLE, &sh->state);
5575 		clear_bit(STRIPE_DELAYED, &sh->state);
5576 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5577 			atomic_inc(&conf->preread_active_stripes);
5578 		release_stripe_plug(mddev, sh);
5579 	}
5580 
5581 	bio_endio(bi);
5582 }
5583 
5584 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5585 {
5586 	struct r5conf *conf = mddev->private;
5587 	int dd_idx;
5588 	sector_t new_sector;
5589 	sector_t logical_sector, last_sector;
5590 	struct stripe_head *sh;
5591 	const int rw = bio_data_dir(bi);
5592 	DEFINE_WAIT(w);
5593 	bool do_prepare;
5594 	bool do_flush = false;
5595 
5596 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5597 		int ret = log_handle_flush_request(conf, bi);
5598 
5599 		if (ret == 0)
5600 			return true;
5601 		if (ret == -ENODEV) {
5602 			if (md_flush_request(mddev, bi))
5603 				return true;
5604 		}
5605 		/* ret == -EAGAIN, fallback */
5606 		/*
5607 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5608 		 * we need to flush journal device
5609 		 */
5610 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5611 	}
5612 
5613 	if (!md_write_start(mddev, bi))
5614 		return false;
5615 	/*
5616 	 * If array is degraded, better not do chunk aligned read because
5617 	 * later we might have to read it again in order to reconstruct
5618 	 * data on failed drives.
5619 	 */
5620 	if (rw == READ && mddev->degraded == 0 &&
5621 	    mddev->reshape_position == MaxSector) {
5622 		bi = chunk_aligned_read(mddev, bi);
5623 		if (!bi)
5624 			return true;
5625 	}
5626 
5627 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5628 		make_discard_request(mddev, bi);
5629 		md_write_end(mddev);
5630 		return true;
5631 	}
5632 
5633 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5634 	last_sector = bio_end_sector(bi);
5635 	bi->bi_next = NULL;
5636 
5637 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5638 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5639 		int previous;
5640 		int seq;
5641 
5642 		do_prepare = false;
5643 	retry:
5644 		seq = read_seqcount_begin(&conf->gen_lock);
5645 		previous = 0;
5646 		if (do_prepare)
5647 			prepare_to_wait(&conf->wait_for_overlap, &w,
5648 				TASK_UNINTERRUPTIBLE);
5649 		if (unlikely(conf->reshape_progress != MaxSector)) {
5650 			/* spinlock is needed as reshape_progress may be
5651 			 * 64bit on a 32bit platform, and so it might be
5652 			 * possible to see a half-updated value
5653 			 * Of course reshape_progress could change after
5654 			 * the lock is dropped, so once we get a reference
5655 			 * to the stripe that we think it is, we will have
5656 			 * to check again.
5657 			 */
5658 			spin_lock_irq(&conf->device_lock);
5659 			if (mddev->reshape_backwards
5660 			    ? logical_sector < conf->reshape_progress
5661 			    : logical_sector >= conf->reshape_progress) {
5662 				previous = 1;
5663 			} else {
5664 				if (mddev->reshape_backwards
5665 				    ? logical_sector < conf->reshape_safe
5666 				    : logical_sector >= conf->reshape_safe) {
5667 					spin_unlock_irq(&conf->device_lock);
5668 					schedule();
5669 					do_prepare = true;
5670 					goto retry;
5671 				}
5672 			}
5673 			spin_unlock_irq(&conf->device_lock);
5674 		}
5675 
5676 		new_sector = raid5_compute_sector(conf, logical_sector,
5677 						  previous,
5678 						  &dd_idx, NULL);
5679 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5680 			(unsigned long long)new_sector,
5681 			(unsigned long long)logical_sector);
5682 
5683 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5684 				       (bi->bi_opf & REQ_RAHEAD), 0);
5685 		if (sh) {
5686 			if (unlikely(previous)) {
5687 				/* expansion might have moved on while waiting for a
5688 				 * stripe, so we must do the range check again.
5689 				 * Expansion could still move past after this
5690 				 * test, but as we are holding a reference to
5691 				 * 'sh', we know that if that happens,
5692 				 *  STRIPE_EXPANDING will get set and the expansion
5693 				 * won't proceed until we finish with the stripe.
5694 				 */
5695 				int must_retry = 0;
5696 				spin_lock_irq(&conf->device_lock);
5697 				if (mddev->reshape_backwards
5698 				    ? logical_sector >= conf->reshape_progress
5699 				    : logical_sector < conf->reshape_progress)
5700 					/* mismatch, need to try again */
5701 					must_retry = 1;
5702 				spin_unlock_irq(&conf->device_lock);
5703 				if (must_retry) {
5704 					raid5_release_stripe(sh);
5705 					schedule();
5706 					do_prepare = true;
5707 					goto retry;
5708 				}
5709 			}
5710 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5711 				/* Might have got the wrong stripe_head
5712 				 * by accident
5713 				 */
5714 				raid5_release_stripe(sh);
5715 				goto retry;
5716 			}
5717 
5718 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5719 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5720 				/* Stripe is busy expanding or
5721 				 * add failed due to overlap.  Flush everything
5722 				 * and wait a while
5723 				 */
5724 				md_wakeup_thread(mddev->thread);
5725 				raid5_release_stripe(sh);
5726 				schedule();
5727 				do_prepare = true;
5728 				goto retry;
5729 			}
5730 			if (do_flush) {
5731 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5732 				/* we only need flush for one stripe */
5733 				do_flush = false;
5734 			}
5735 
5736 			if (!sh->batch_head || sh == sh->batch_head)
5737 				set_bit(STRIPE_HANDLE, &sh->state);
5738 			clear_bit(STRIPE_DELAYED, &sh->state);
5739 			if ((!sh->batch_head || sh == sh->batch_head) &&
5740 			    (bi->bi_opf & REQ_SYNC) &&
5741 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5742 				atomic_inc(&conf->preread_active_stripes);
5743 			release_stripe_plug(mddev, sh);
5744 		} else {
5745 			/* cannot get stripe for read-ahead, just give-up */
5746 			bi->bi_status = BLK_STS_IOERR;
5747 			break;
5748 		}
5749 	}
5750 	finish_wait(&conf->wait_for_overlap, &w);
5751 
5752 	if (rw == WRITE)
5753 		md_write_end(mddev);
5754 	bio_endio(bi);
5755 	return true;
5756 }
5757 
5758 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5759 
5760 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5761 {
5762 	/* reshaping is quite different to recovery/resync so it is
5763 	 * handled quite separately ... here.
5764 	 *
5765 	 * On each call to sync_request, we gather one chunk worth of
5766 	 * destination stripes and flag them as expanding.
5767 	 * Then we find all the source stripes and request reads.
5768 	 * As the reads complete, handle_stripe will copy the data
5769 	 * into the destination stripe and release that stripe.
5770 	 */
5771 	struct r5conf *conf = mddev->private;
5772 	struct stripe_head *sh;
5773 	struct md_rdev *rdev;
5774 	sector_t first_sector, last_sector;
5775 	int raid_disks = conf->previous_raid_disks;
5776 	int data_disks = raid_disks - conf->max_degraded;
5777 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5778 	int i;
5779 	int dd_idx;
5780 	sector_t writepos, readpos, safepos;
5781 	sector_t stripe_addr;
5782 	int reshape_sectors;
5783 	struct list_head stripes;
5784 	sector_t retn;
5785 
5786 	if (sector_nr == 0) {
5787 		/* If restarting in the middle, skip the initial sectors */
5788 		if (mddev->reshape_backwards &&
5789 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5790 			sector_nr = raid5_size(mddev, 0, 0)
5791 				- conf->reshape_progress;
5792 		} else if (mddev->reshape_backwards &&
5793 			   conf->reshape_progress == MaxSector) {
5794 			/* shouldn't happen, but just in case, finish up.*/
5795 			sector_nr = MaxSector;
5796 		} else if (!mddev->reshape_backwards &&
5797 			   conf->reshape_progress > 0)
5798 			sector_nr = conf->reshape_progress;
5799 		sector_div(sector_nr, new_data_disks);
5800 		if (sector_nr) {
5801 			mddev->curr_resync_completed = sector_nr;
5802 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5803 			*skipped = 1;
5804 			retn = sector_nr;
5805 			goto finish;
5806 		}
5807 	}
5808 
5809 	/* We need to process a full chunk at a time.
5810 	 * If old and new chunk sizes differ, we need to process the
5811 	 * largest of these
5812 	 */
5813 
5814 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5815 
5816 	/* We update the metadata at least every 10 seconds, or when
5817 	 * the data about to be copied would over-write the source of
5818 	 * the data at the front of the range.  i.e. one new_stripe
5819 	 * along from reshape_progress new_maps to after where
5820 	 * reshape_safe old_maps to
5821 	 */
5822 	writepos = conf->reshape_progress;
5823 	sector_div(writepos, new_data_disks);
5824 	readpos = conf->reshape_progress;
5825 	sector_div(readpos, data_disks);
5826 	safepos = conf->reshape_safe;
5827 	sector_div(safepos, data_disks);
5828 	if (mddev->reshape_backwards) {
5829 		BUG_ON(writepos < reshape_sectors);
5830 		writepos -= reshape_sectors;
5831 		readpos += reshape_sectors;
5832 		safepos += reshape_sectors;
5833 	} else {
5834 		writepos += reshape_sectors;
5835 		/* readpos and safepos are worst-case calculations.
5836 		 * A negative number is overly pessimistic, and causes
5837 		 * obvious problems for unsigned storage.  So clip to 0.
5838 		 */
5839 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5840 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5841 	}
5842 
5843 	/* Having calculated the 'writepos' possibly use it
5844 	 * to set 'stripe_addr' which is where we will write to.
5845 	 */
5846 	if (mddev->reshape_backwards) {
5847 		BUG_ON(conf->reshape_progress == 0);
5848 		stripe_addr = writepos;
5849 		BUG_ON((mddev->dev_sectors &
5850 			~((sector_t)reshape_sectors - 1))
5851 		       - reshape_sectors - stripe_addr
5852 		       != sector_nr);
5853 	} else {
5854 		BUG_ON(writepos != sector_nr + reshape_sectors);
5855 		stripe_addr = sector_nr;
5856 	}
5857 
5858 	/* 'writepos' is the most advanced device address we might write.
5859 	 * 'readpos' is the least advanced device address we might read.
5860 	 * 'safepos' is the least address recorded in the metadata as having
5861 	 *     been reshaped.
5862 	 * If there is a min_offset_diff, these are adjusted either by
5863 	 * increasing the safepos/readpos if diff is negative, or
5864 	 * increasing writepos if diff is positive.
5865 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5866 	 * ensure safety in the face of a crash - that must be done by userspace
5867 	 * making a backup of the data.  So in that case there is no particular
5868 	 * rush to update metadata.
5869 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5870 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5871 	 * we can be safe in the event of a crash.
5872 	 * So we insist on updating metadata if safepos is behind writepos and
5873 	 * readpos is beyond writepos.
5874 	 * In any case, update the metadata every 10 seconds.
5875 	 * Maybe that number should be configurable, but I'm not sure it is
5876 	 * worth it.... maybe it could be a multiple of safemode_delay???
5877 	 */
5878 	if (conf->min_offset_diff < 0) {
5879 		safepos += -conf->min_offset_diff;
5880 		readpos += -conf->min_offset_diff;
5881 	} else
5882 		writepos += conf->min_offset_diff;
5883 
5884 	if ((mddev->reshape_backwards
5885 	     ? (safepos > writepos && readpos < writepos)
5886 	     : (safepos < writepos && readpos > writepos)) ||
5887 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5888 		/* Cannot proceed until we've updated the superblock... */
5889 		wait_event(conf->wait_for_overlap,
5890 			   atomic_read(&conf->reshape_stripes)==0
5891 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5892 		if (atomic_read(&conf->reshape_stripes) != 0)
5893 			return 0;
5894 		mddev->reshape_position = conf->reshape_progress;
5895 		mddev->curr_resync_completed = sector_nr;
5896 		if (!mddev->reshape_backwards)
5897 			/* Can update recovery_offset */
5898 			rdev_for_each(rdev, mddev)
5899 				if (rdev->raid_disk >= 0 &&
5900 				    !test_bit(Journal, &rdev->flags) &&
5901 				    !test_bit(In_sync, &rdev->flags) &&
5902 				    rdev->recovery_offset < sector_nr)
5903 					rdev->recovery_offset = sector_nr;
5904 
5905 		conf->reshape_checkpoint = jiffies;
5906 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5907 		md_wakeup_thread(mddev->thread);
5908 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5909 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5910 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5911 			return 0;
5912 		spin_lock_irq(&conf->device_lock);
5913 		conf->reshape_safe = mddev->reshape_position;
5914 		spin_unlock_irq(&conf->device_lock);
5915 		wake_up(&conf->wait_for_overlap);
5916 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5917 	}
5918 
5919 	INIT_LIST_HEAD(&stripes);
5920 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5921 		int j;
5922 		int skipped_disk = 0;
5923 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5924 		set_bit(STRIPE_EXPANDING, &sh->state);
5925 		atomic_inc(&conf->reshape_stripes);
5926 		/* If any of this stripe is beyond the end of the old
5927 		 * array, then we need to zero those blocks
5928 		 */
5929 		for (j=sh->disks; j--;) {
5930 			sector_t s;
5931 			if (j == sh->pd_idx)
5932 				continue;
5933 			if (conf->level == 6 &&
5934 			    j == sh->qd_idx)
5935 				continue;
5936 			s = raid5_compute_blocknr(sh, j, 0);
5937 			if (s < raid5_size(mddev, 0, 0)) {
5938 				skipped_disk = 1;
5939 				continue;
5940 			}
5941 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5942 			set_bit(R5_Expanded, &sh->dev[j].flags);
5943 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5944 		}
5945 		if (!skipped_disk) {
5946 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5947 			set_bit(STRIPE_HANDLE, &sh->state);
5948 		}
5949 		list_add(&sh->lru, &stripes);
5950 	}
5951 	spin_lock_irq(&conf->device_lock);
5952 	if (mddev->reshape_backwards)
5953 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5954 	else
5955 		conf->reshape_progress += reshape_sectors * new_data_disks;
5956 	spin_unlock_irq(&conf->device_lock);
5957 	/* Ok, those stripe are ready. We can start scheduling
5958 	 * reads on the source stripes.
5959 	 * The source stripes are determined by mapping the first and last
5960 	 * block on the destination stripes.
5961 	 */
5962 	first_sector =
5963 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5964 				     1, &dd_idx, NULL);
5965 	last_sector =
5966 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5967 					    * new_data_disks - 1),
5968 				     1, &dd_idx, NULL);
5969 	if (last_sector >= mddev->dev_sectors)
5970 		last_sector = mddev->dev_sectors - 1;
5971 	while (first_sector <= last_sector) {
5972 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5973 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5974 		set_bit(STRIPE_HANDLE, &sh->state);
5975 		raid5_release_stripe(sh);
5976 		first_sector += STRIPE_SECTORS;
5977 	}
5978 	/* Now that the sources are clearly marked, we can release
5979 	 * the destination stripes
5980 	 */
5981 	while (!list_empty(&stripes)) {
5982 		sh = list_entry(stripes.next, struct stripe_head, lru);
5983 		list_del_init(&sh->lru);
5984 		raid5_release_stripe(sh);
5985 	}
5986 	/* If this takes us to the resync_max point where we have to pause,
5987 	 * then we need to write out the superblock.
5988 	 */
5989 	sector_nr += reshape_sectors;
5990 	retn = reshape_sectors;
5991 finish:
5992 	if (mddev->curr_resync_completed > mddev->resync_max ||
5993 	    (sector_nr - mddev->curr_resync_completed) * 2
5994 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5995 		/* Cannot proceed until we've updated the superblock... */
5996 		wait_event(conf->wait_for_overlap,
5997 			   atomic_read(&conf->reshape_stripes) == 0
5998 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5999 		if (atomic_read(&conf->reshape_stripes) != 0)
6000 			goto ret;
6001 		mddev->reshape_position = conf->reshape_progress;
6002 		mddev->curr_resync_completed = sector_nr;
6003 		if (!mddev->reshape_backwards)
6004 			/* Can update recovery_offset */
6005 			rdev_for_each(rdev, mddev)
6006 				if (rdev->raid_disk >= 0 &&
6007 				    !test_bit(Journal, &rdev->flags) &&
6008 				    !test_bit(In_sync, &rdev->flags) &&
6009 				    rdev->recovery_offset < sector_nr)
6010 					rdev->recovery_offset = sector_nr;
6011 		conf->reshape_checkpoint = jiffies;
6012 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6013 		md_wakeup_thread(mddev->thread);
6014 		wait_event(mddev->sb_wait,
6015 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6016 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6017 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6018 			goto ret;
6019 		spin_lock_irq(&conf->device_lock);
6020 		conf->reshape_safe = mddev->reshape_position;
6021 		spin_unlock_irq(&conf->device_lock);
6022 		wake_up(&conf->wait_for_overlap);
6023 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6024 	}
6025 ret:
6026 	return retn;
6027 }
6028 
6029 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6030 					  int *skipped)
6031 {
6032 	struct r5conf *conf = mddev->private;
6033 	struct stripe_head *sh;
6034 	sector_t max_sector = mddev->dev_sectors;
6035 	sector_t sync_blocks;
6036 	int still_degraded = 0;
6037 	int i;
6038 
6039 	if (sector_nr >= max_sector) {
6040 		/* just being told to finish up .. nothing much to do */
6041 
6042 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6043 			end_reshape(conf);
6044 			return 0;
6045 		}
6046 
6047 		if (mddev->curr_resync < max_sector) /* aborted */
6048 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6049 					   &sync_blocks, 1);
6050 		else /* completed sync */
6051 			conf->fullsync = 0;
6052 		md_bitmap_close_sync(mddev->bitmap);
6053 
6054 		return 0;
6055 	}
6056 
6057 	/* Allow raid5_quiesce to complete */
6058 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6059 
6060 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6061 		return reshape_request(mddev, sector_nr, skipped);
6062 
6063 	/* No need to check resync_max as we never do more than one
6064 	 * stripe, and as resync_max will always be on a chunk boundary,
6065 	 * if the check in md_do_sync didn't fire, there is no chance
6066 	 * of overstepping resync_max here
6067 	 */
6068 
6069 	/* if there is too many failed drives and we are trying
6070 	 * to resync, then assert that we are finished, because there is
6071 	 * nothing we can do.
6072 	 */
6073 	if (mddev->degraded >= conf->max_degraded &&
6074 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6075 		sector_t rv = mddev->dev_sectors - sector_nr;
6076 		*skipped = 1;
6077 		return rv;
6078 	}
6079 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6080 	    !conf->fullsync &&
6081 	    !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6082 	    sync_blocks >= STRIPE_SECTORS) {
6083 		/* we can skip this block, and probably more */
6084 		sync_blocks /= STRIPE_SECTORS;
6085 		*skipped = 1;
6086 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6087 	}
6088 
6089 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6090 
6091 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6092 	if (sh == NULL) {
6093 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6094 		/* make sure we don't swamp the stripe cache if someone else
6095 		 * is trying to get access
6096 		 */
6097 		schedule_timeout_uninterruptible(1);
6098 	}
6099 	/* Need to check if array will still be degraded after recovery/resync
6100 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6101 	 * one drive while leaving another faulty drive in array.
6102 	 */
6103 	rcu_read_lock();
6104 	for (i = 0; i < conf->raid_disks; i++) {
6105 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6106 
6107 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6108 			still_degraded = 1;
6109 	}
6110 	rcu_read_unlock();
6111 
6112 	md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6113 
6114 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6115 	set_bit(STRIPE_HANDLE, &sh->state);
6116 
6117 	raid5_release_stripe(sh);
6118 
6119 	return STRIPE_SECTORS;
6120 }
6121 
6122 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6123 			       unsigned int offset)
6124 {
6125 	/* We may not be able to submit a whole bio at once as there
6126 	 * may not be enough stripe_heads available.
6127 	 * We cannot pre-allocate enough stripe_heads as we may need
6128 	 * more than exist in the cache (if we allow ever large chunks).
6129 	 * So we do one stripe head at a time and record in
6130 	 * ->bi_hw_segments how many have been done.
6131 	 *
6132 	 * We *know* that this entire raid_bio is in one chunk, so
6133 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6134 	 */
6135 	struct stripe_head *sh;
6136 	int dd_idx;
6137 	sector_t sector, logical_sector, last_sector;
6138 	int scnt = 0;
6139 	int handled = 0;
6140 
6141 	logical_sector = raid_bio->bi_iter.bi_sector &
6142 		~((sector_t)STRIPE_SECTORS-1);
6143 	sector = raid5_compute_sector(conf, logical_sector,
6144 				      0, &dd_idx, NULL);
6145 	last_sector = bio_end_sector(raid_bio);
6146 
6147 	for (; logical_sector < last_sector;
6148 	     logical_sector += STRIPE_SECTORS,
6149 		     sector += STRIPE_SECTORS,
6150 		     scnt++) {
6151 
6152 		if (scnt < offset)
6153 			/* already done this stripe */
6154 			continue;
6155 
6156 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6157 
6158 		if (!sh) {
6159 			/* failed to get a stripe - must wait */
6160 			conf->retry_read_aligned = raid_bio;
6161 			conf->retry_read_offset = scnt;
6162 			return handled;
6163 		}
6164 
6165 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6166 			raid5_release_stripe(sh);
6167 			conf->retry_read_aligned = raid_bio;
6168 			conf->retry_read_offset = scnt;
6169 			return handled;
6170 		}
6171 
6172 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6173 		handle_stripe(sh);
6174 		raid5_release_stripe(sh);
6175 		handled++;
6176 	}
6177 
6178 	bio_endio(raid_bio);
6179 
6180 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6181 		wake_up(&conf->wait_for_quiescent);
6182 	return handled;
6183 }
6184 
6185 static int handle_active_stripes(struct r5conf *conf, int group,
6186 				 struct r5worker *worker,
6187 				 struct list_head *temp_inactive_list)
6188 		__releases(&conf->device_lock)
6189 		__acquires(&conf->device_lock)
6190 {
6191 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6192 	int i, batch_size = 0, hash;
6193 	bool release_inactive = false;
6194 
6195 	while (batch_size < MAX_STRIPE_BATCH &&
6196 			(sh = __get_priority_stripe(conf, group)) != NULL)
6197 		batch[batch_size++] = sh;
6198 
6199 	if (batch_size == 0) {
6200 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6201 			if (!list_empty(temp_inactive_list + i))
6202 				break;
6203 		if (i == NR_STRIPE_HASH_LOCKS) {
6204 			spin_unlock_irq(&conf->device_lock);
6205 			log_flush_stripe_to_raid(conf);
6206 			spin_lock_irq(&conf->device_lock);
6207 			return batch_size;
6208 		}
6209 		release_inactive = true;
6210 	}
6211 	spin_unlock_irq(&conf->device_lock);
6212 
6213 	release_inactive_stripe_list(conf, temp_inactive_list,
6214 				     NR_STRIPE_HASH_LOCKS);
6215 
6216 	r5l_flush_stripe_to_raid(conf->log);
6217 	if (release_inactive) {
6218 		spin_lock_irq(&conf->device_lock);
6219 		return 0;
6220 	}
6221 
6222 	for (i = 0; i < batch_size; i++)
6223 		handle_stripe(batch[i]);
6224 	log_write_stripe_run(conf);
6225 
6226 	cond_resched();
6227 
6228 	spin_lock_irq(&conf->device_lock);
6229 	for (i = 0; i < batch_size; i++) {
6230 		hash = batch[i]->hash_lock_index;
6231 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6232 	}
6233 	return batch_size;
6234 }
6235 
6236 static void raid5_do_work(struct work_struct *work)
6237 {
6238 	struct r5worker *worker = container_of(work, struct r5worker, work);
6239 	struct r5worker_group *group = worker->group;
6240 	struct r5conf *conf = group->conf;
6241 	struct mddev *mddev = conf->mddev;
6242 	int group_id = group - conf->worker_groups;
6243 	int handled;
6244 	struct blk_plug plug;
6245 
6246 	pr_debug("+++ raid5worker active\n");
6247 
6248 	blk_start_plug(&plug);
6249 	handled = 0;
6250 	spin_lock_irq(&conf->device_lock);
6251 	while (1) {
6252 		int batch_size, released;
6253 
6254 		released = release_stripe_list(conf, worker->temp_inactive_list);
6255 
6256 		batch_size = handle_active_stripes(conf, group_id, worker,
6257 						   worker->temp_inactive_list);
6258 		worker->working = false;
6259 		if (!batch_size && !released)
6260 			break;
6261 		handled += batch_size;
6262 		wait_event_lock_irq(mddev->sb_wait,
6263 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6264 			conf->device_lock);
6265 	}
6266 	pr_debug("%d stripes handled\n", handled);
6267 
6268 	spin_unlock_irq(&conf->device_lock);
6269 
6270 	flush_deferred_bios(conf);
6271 
6272 	r5l_flush_stripe_to_raid(conf->log);
6273 
6274 	async_tx_issue_pending_all();
6275 	blk_finish_plug(&plug);
6276 
6277 	pr_debug("--- raid5worker inactive\n");
6278 }
6279 
6280 /*
6281  * This is our raid5 kernel thread.
6282  *
6283  * We scan the hash table for stripes which can be handled now.
6284  * During the scan, completed stripes are saved for us by the interrupt
6285  * handler, so that they will not have to wait for our next wakeup.
6286  */
6287 static void raid5d(struct md_thread *thread)
6288 {
6289 	struct mddev *mddev = thread->mddev;
6290 	struct r5conf *conf = mddev->private;
6291 	int handled;
6292 	struct blk_plug plug;
6293 
6294 	pr_debug("+++ raid5d active\n");
6295 
6296 	md_check_recovery(mddev);
6297 
6298 	blk_start_plug(&plug);
6299 	handled = 0;
6300 	spin_lock_irq(&conf->device_lock);
6301 	while (1) {
6302 		struct bio *bio;
6303 		int batch_size, released;
6304 		unsigned int offset;
6305 
6306 		released = release_stripe_list(conf, conf->temp_inactive_list);
6307 		if (released)
6308 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6309 
6310 		if (
6311 		    !list_empty(&conf->bitmap_list)) {
6312 			/* Now is a good time to flush some bitmap updates */
6313 			conf->seq_flush++;
6314 			spin_unlock_irq(&conf->device_lock);
6315 			md_bitmap_unplug(mddev->bitmap);
6316 			spin_lock_irq(&conf->device_lock);
6317 			conf->seq_write = conf->seq_flush;
6318 			activate_bit_delay(conf, conf->temp_inactive_list);
6319 		}
6320 		raid5_activate_delayed(conf);
6321 
6322 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6323 			int ok;
6324 			spin_unlock_irq(&conf->device_lock);
6325 			ok = retry_aligned_read(conf, bio, offset);
6326 			spin_lock_irq(&conf->device_lock);
6327 			if (!ok)
6328 				break;
6329 			handled++;
6330 		}
6331 
6332 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6333 						   conf->temp_inactive_list);
6334 		if (!batch_size && !released)
6335 			break;
6336 		handled += batch_size;
6337 
6338 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6339 			spin_unlock_irq(&conf->device_lock);
6340 			md_check_recovery(mddev);
6341 			spin_lock_irq(&conf->device_lock);
6342 		}
6343 	}
6344 	pr_debug("%d stripes handled\n", handled);
6345 
6346 	spin_unlock_irq(&conf->device_lock);
6347 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6348 	    mutex_trylock(&conf->cache_size_mutex)) {
6349 		grow_one_stripe(conf, __GFP_NOWARN);
6350 		/* Set flag even if allocation failed.  This helps
6351 		 * slow down allocation requests when mem is short
6352 		 */
6353 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6354 		mutex_unlock(&conf->cache_size_mutex);
6355 	}
6356 
6357 	flush_deferred_bios(conf);
6358 
6359 	r5l_flush_stripe_to_raid(conf->log);
6360 
6361 	async_tx_issue_pending_all();
6362 	blk_finish_plug(&plug);
6363 
6364 	pr_debug("--- raid5d inactive\n");
6365 }
6366 
6367 static ssize_t
6368 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6369 {
6370 	struct r5conf *conf;
6371 	int ret = 0;
6372 	spin_lock(&mddev->lock);
6373 	conf = mddev->private;
6374 	if (conf)
6375 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6376 	spin_unlock(&mddev->lock);
6377 	return ret;
6378 }
6379 
6380 int
6381 raid5_set_cache_size(struct mddev *mddev, int size)
6382 {
6383 	int result = 0;
6384 	struct r5conf *conf = mddev->private;
6385 
6386 	if (size <= 16 || size > 32768)
6387 		return -EINVAL;
6388 
6389 	conf->min_nr_stripes = size;
6390 	mutex_lock(&conf->cache_size_mutex);
6391 	while (size < conf->max_nr_stripes &&
6392 	       drop_one_stripe(conf))
6393 		;
6394 	mutex_unlock(&conf->cache_size_mutex);
6395 
6396 	md_allow_write(mddev);
6397 
6398 	mutex_lock(&conf->cache_size_mutex);
6399 	while (size > conf->max_nr_stripes)
6400 		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6401 			conf->min_nr_stripes = conf->max_nr_stripes;
6402 			result = -ENOMEM;
6403 			break;
6404 		}
6405 	mutex_unlock(&conf->cache_size_mutex);
6406 
6407 	return result;
6408 }
6409 EXPORT_SYMBOL(raid5_set_cache_size);
6410 
6411 static ssize_t
6412 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6413 {
6414 	struct r5conf *conf;
6415 	unsigned long new;
6416 	int err;
6417 
6418 	if (len >= PAGE_SIZE)
6419 		return -EINVAL;
6420 	if (kstrtoul(page, 10, &new))
6421 		return -EINVAL;
6422 	err = mddev_lock(mddev);
6423 	if (err)
6424 		return err;
6425 	conf = mddev->private;
6426 	if (!conf)
6427 		err = -ENODEV;
6428 	else
6429 		err = raid5_set_cache_size(mddev, new);
6430 	mddev_unlock(mddev);
6431 
6432 	return err ?: len;
6433 }
6434 
6435 static struct md_sysfs_entry
6436 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6437 				raid5_show_stripe_cache_size,
6438 				raid5_store_stripe_cache_size);
6439 
6440 static ssize_t
6441 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6442 {
6443 	struct r5conf *conf = mddev->private;
6444 	if (conf)
6445 		return sprintf(page, "%d\n", conf->rmw_level);
6446 	else
6447 		return 0;
6448 }
6449 
6450 static ssize_t
6451 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6452 {
6453 	struct r5conf *conf = mddev->private;
6454 	unsigned long new;
6455 
6456 	if (!conf)
6457 		return -ENODEV;
6458 
6459 	if (len >= PAGE_SIZE)
6460 		return -EINVAL;
6461 
6462 	if (kstrtoul(page, 10, &new))
6463 		return -EINVAL;
6464 
6465 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6466 		return -EINVAL;
6467 
6468 	if (new != PARITY_DISABLE_RMW &&
6469 	    new != PARITY_ENABLE_RMW &&
6470 	    new != PARITY_PREFER_RMW)
6471 		return -EINVAL;
6472 
6473 	conf->rmw_level = new;
6474 	return len;
6475 }
6476 
6477 static struct md_sysfs_entry
6478 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6479 			 raid5_show_rmw_level,
6480 			 raid5_store_rmw_level);
6481 
6482 
6483 static ssize_t
6484 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6485 {
6486 	struct r5conf *conf;
6487 	int ret = 0;
6488 	spin_lock(&mddev->lock);
6489 	conf = mddev->private;
6490 	if (conf)
6491 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6492 	spin_unlock(&mddev->lock);
6493 	return ret;
6494 }
6495 
6496 static ssize_t
6497 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6498 {
6499 	struct r5conf *conf;
6500 	unsigned long new;
6501 	int err;
6502 
6503 	if (len >= PAGE_SIZE)
6504 		return -EINVAL;
6505 	if (kstrtoul(page, 10, &new))
6506 		return -EINVAL;
6507 
6508 	err = mddev_lock(mddev);
6509 	if (err)
6510 		return err;
6511 	conf = mddev->private;
6512 	if (!conf)
6513 		err = -ENODEV;
6514 	else if (new > conf->min_nr_stripes)
6515 		err = -EINVAL;
6516 	else
6517 		conf->bypass_threshold = new;
6518 	mddev_unlock(mddev);
6519 	return err ?: len;
6520 }
6521 
6522 static struct md_sysfs_entry
6523 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6524 					S_IRUGO | S_IWUSR,
6525 					raid5_show_preread_threshold,
6526 					raid5_store_preread_threshold);
6527 
6528 static ssize_t
6529 raid5_show_skip_copy(struct mddev *mddev, char *page)
6530 {
6531 	struct r5conf *conf;
6532 	int ret = 0;
6533 	spin_lock(&mddev->lock);
6534 	conf = mddev->private;
6535 	if (conf)
6536 		ret = sprintf(page, "%d\n", conf->skip_copy);
6537 	spin_unlock(&mddev->lock);
6538 	return ret;
6539 }
6540 
6541 static ssize_t
6542 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6543 {
6544 	struct r5conf *conf;
6545 	unsigned long new;
6546 	int err;
6547 
6548 	if (len >= PAGE_SIZE)
6549 		return -EINVAL;
6550 	if (kstrtoul(page, 10, &new))
6551 		return -EINVAL;
6552 	new = !!new;
6553 
6554 	err = mddev_lock(mddev);
6555 	if (err)
6556 		return err;
6557 	conf = mddev->private;
6558 	if (!conf)
6559 		err = -ENODEV;
6560 	else if (new != conf->skip_copy) {
6561 		mddev_suspend(mddev);
6562 		conf->skip_copy = new;
6563 		if (new)
6564 			mddev->queue->backing_dev_info->capabilities |=
6565 				BDI_CAP_STABLE_WRITES;
6566 		else
6567 			mddev->queue->backing_dev_info->capabilities &=
6568 				~BDI_CAP_STABLE_WRITES;
6569 		mddev_resume(mddev);
6570 	}
6571 	mddev_unlock(mddev);
6572 	return err ?: len;
6573 }
6574 
6575 static struct md_sysfs_entry
6576 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6577 					raid5_show_skip_copy,
6578 					raid5_store_skip_copy);
6579 
6580 static ssize_t
6581 stripe_cache_active_show(struct mddev *mddev, char *page)
6582 {
6583 	struct r5conf *conf = mddev->private;
6584 	if (conf)
6585 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6586 	else
6587 		return 0;
6588 }
6589 
6590 static struct md_sysfs_entry
6591 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6592 
6593 static ssize_t
6594 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6595 {
6596 	struct r5conf *conf;
6597 	int ret = 0;
6598 	spin_lock(&mddev->lock);
6599 	conf = mddev->private;
6600 	if (conf)
6601 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6602 	spin_unlock(&mddev->lock);
6603 	return ret;
6604 }
6605 
6606 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6607 			       int *group_cnt,
6608 			       struct r5worker_group **worker_groups);
6609 static ssize_t
6610 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6611 {
6612 	struct r5conf *conf;
6613 	unsigned int new;
6614 	int err;
6615 	struct r5worker_group *new_groups, *old_groups;
6616 	int group_cnt;
6617 
6618 	if (len >= PAGE_SIZE)
6619 		return -EINVAL;
6620 	if (kstrtouint(page, 10, &new))
6621 		return -EINVAL;
6622 	/* 8192 should be big enough */
6623 	if (new > 8192)
6624 		return -EINVAL;
6625 
6626 	err = mddev_lock(mddev);
6627 	if (err)
6628 		return err;
6629 	conf = mddev->private;
6630 	if (!conf)
6631 		err = -ENODEV;
6632 	else if (new != conf->worker_cnt_per_group) {
6633 		mddev_suspend(mddev);
6634 
6635 		old_groups = conf->worker_groups;
6636 		if (old_groups)
6637 			flush_workqueue(raid5_wq);
6638 
6639 		err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6640 		if (!err) {
6641 			spin_lock_irq(&conf->device_lock);
6642 			conf->group_cnt = group_cnt;
6643 			conf->worker_cnt_per_group = new;
6644 			conf->worker_groups = new_groups;
6645 			spin_unlock_irq(&conf->device_lock);
6646 
6647 			if (old_groups)
6648 				kfree(old_groups[0].workers);
6649 			kfree(old_groups);
6650 		}
6651 		mddev_resume(mddev);
6652 	}
6653 	mddev_unlock(mddev);
6654 
6655 	return err ?: len;
6656 }
6657 
6658 static struct md_sysfs_entry
6659 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6660 				raid5_show_group_thread_cnt,
6661 				raid5_store_group_thread_cnt);
6662 
6663 static struct attribute *raid5_attrs[] =  {
6664 	&raid5_stripecache_size.attr,
6665 	&raid5_stripecache_active.attr,
6666 	&raid5_preread_bypass_threshold.attr,
6667 	&raid5_group_thread_cnt.attr,
6668 	&raid5_skip_copy.attr,
6669 	&raid5_rmw_level.attr,
6670 	&r5c_journal_mode.attr,
6671 	&ppl_write_hint.attr,
6672 	NULL,
6673 };
6674 static struct attribute_group raid5_attrs_group = {
6675 	.name = NULL,
6676 	.attrs = raid5_attrs,
6677 };
6678 
6679 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
6680 			       struct r5worker_group **worker_groups)
6681 {
6682 	int i, j, k;
6683 	ssize_t size;
6684 	struct r5worker *workers;
6685 
6686 	if (cnt == 0) {
6687 		*group_cnt = 0;
6688 		*worker_groups = NULL;
6689 		return 0;
6690 	}
6691 	*group_cnt = num_possible_nodes();
6692 	size = sizeof(struct r5worker) * cnt;
6693 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
6694 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6695 				 GFP_NOIO);
6696 	if (!*worker_groups || !workers) {
6697 		kfree(workers);
6698 		kfree(*worker_groups);
6699 		return -ENOMEM;
6700 	}
6701 
6702 	for (i = 0; i < *group_cnt; i++) {
6703 		struct r5worker_group *group;
6704 
6705 		group = &(*worker_groups)[i];
6706 		INIT_LIST_HEAD(&group->handle_list);
6707 		INIT_LIST_HEAD(&group->loprio_list);
6708 		group->conf = conf;
6709 		group->workers = workers + i * cnt;
6710 
6711 		for (j = 0; j < cnt; j++) {
6712 			struct r5worker *worker = group->workers + j;
6713 			worker->group = group;
6714 			INIT_WORK(&worker->work, raid5_do_work);
6715 
6716 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6717 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6718 		}
6719 	}
6720 
6721 	return 0;
6722 }
6723 
6724 static void free_thread_groups(struct r5conf *conf)
6725 {
6726 	if (conf->worker_groups)
6727 		kfree(conf->worker_groups[0].workers);
6728 	kfree(conf->worker_groups);
6729 	conf->worker_groups = NULL;
6730 }
6731 
6732 static sector_t
6733 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6734 {
6735 	struct r5conf *conf = mddev->private;
6736 
6737 	if (!sectors)
6738 		sectors = mddev->dev_sectors;
6739 	if (!raid_disks)
6740 		/* size is defined by the smallest of previous and new size */
6741 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6742 
6743 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6744 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6745 	return sectors * (raid_disks - conf->max_degraded);
6746 }
6747 
6748 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6749 {
6750 	safe_put_page(percpu->spare_page);
6751 	percpu->spare_page = NULL;
6752 	kvfree(percpu->scribble);
6753 	percpu->scribble = NULL;
6754 }
6755 
6756 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6757 {
6758 	if (conf->level == 6 && !percpu->spare_page) {
6759 		percpu->spare_page = alloc_page(GFP_KERNEL);
6760 		if (!percpu->spare_page)
6761 			return -ENOMEM;
6762 	}
6763 
6764 	if (scribble_alloc(percpu,
6765 			   max(conf->raid_disks,
6766 			       conf->previous_raid_disks),
6767 			   max(conf->chunk_sectors,
6768 			       conf->prev_chunk_sectors)
6769 			   / STRIPE_SECTORS)) {
6770 		free_scratch_buffer(conf, percpu);
6771 		return -ENOMEM;
6772 	}
6773 
6774 	return 0;
6775 }
6776 
6777 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6778 {
6779 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6780 
6781 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6782 	return 0;
6783 }
6784 
6785 static void raid5_free_percpu(struct r5conf *conf)
6786 {
6787 	if (!conf->percpu)
6788 		return;
6789 
6790 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6791 	free_percpu(conf->percpu);
6792 }
6793 
6794 static void free_conf(struct r5conf *conf)
6795 {
6796 	int i;
6797 
6798 	log_exit(conf);
6799 
6800 	unregister_shrinker(&conf->shrinker);
6801 	free_thread_groups(conf);
6802 	shrink_stripes(conf);
6803 	raid5_free_percpu(conf);
6804 	for (i = 0; i < conf->pool_size; i++)
6805 		if (conf->disks[i].extra_page)
6806 			put_page(conf->disks[i].extra_page);
6807 	kfree(conf->disks);
6808 	bioset_exit(&conf->bio_split);
6809 	kfree(conf->stripe_hashtbl);
6810 	kfree(conf->pending_data);
6811 	kfree(conf);
6812 }
6813 
6814 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6815 {
6816 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6817 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6818 
6819 	if (alloc_scratch_buffer(conf, percpu)) {
6820 		pr_warn("%s: failed memory allocation for cpu%u\n",
6821 			__func__, cpu);
6822 		return -ENOMEM;
6823 	}
6824 	return 0;
6825 }
6826 
6827 static int raid5_alloc_percpu(struct r5conf *conf)
6828 {
6829 	int err = 0;
6830 
6831 	conf->percpu = alloc_percpu(struct raid5_percpu);
6832 	if (!conf->percpu)
6833 		return -ENOMEM;
6834 
6835 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6836 	if (!err) {
6837 		conf->scribble_disks = max(conf->raid_disks,
6838 			conf->previous_raid_disks);
6839 		conf->scribble_sectors = max(conf->chunk_sectors,
6840 			conf->prev_chunk_sectors);
6841 	}
6842 	return err;
6843 }
6844 
6845 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6846 				      struct shrink_control *sc)
6847 {
6848 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6849 	unsigned long ret = SHRINK_STOP;
6850 
6851 	if (mutex_trylock(&conf->cache_size_mutex)) {
6852 		ret= 0;
6853 		while (ret < sc->nr_to_scan &&
6854 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6855 			if (drop_one_stripe(conf) == 0) {
6856 				ret = SHRINK_STOP;
6857 				break;
6858 			}
6859 			ret++;
6860 		}
6861 		mutex_unlock(&conf->cache_size_mutex);
6862 	}
6863 	return ret;
6864 }
6865 
6866 static unsigned long raid5_cache_count(struct shrinker *shrink,
6867 				       struct shrink_control *sc)
6868 {
6869 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6870 
6871 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6872 		/* unlikely, but not impossible */
6873 		return 0;
6874 	return conf->max_nr_stripes - conf->min_nr_stripes;
6875 }
6876 
6877 static struct r5conf *setup_conf(struct mddev *mddev)
6878 {
6879 	struct r5conf *conf;
6880 	int raid_disk, memory, max_disks;
6881 	struct md_rdev *rdev;
6882 	struct disk_info *disk;
6883 	char pers_name[6];
6884 	int i;
6885 	int group_cnt;
6886 	struct r5worker_group *new_group;
6887 	int ret;
6888 
6889 	if (mddev->new_level != 5
6890 	    && mddev->new_level != 4
6891 	    && mddev->new_level != 6) {
6892 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6893 			mdname(mddev), mddev->new_level);
6894 		return ERR_PTR(-EIO);
6895 	}
6896 	if ((mddev->new_level == 5
6897 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6898 	    (mddev->new_level == 6
6899 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6900 		pr_warn("md/raid:%s: layout %d not supported\n",
6901 			mdname(mddev), mddev->new_layout);
6902 		return ERR_PTR(-EIO);
6903 	}
6904 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6905 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6906 			mdname(mddev), mddev->raid_disks);
6907 		return ERR_PTR(-EINVAL);
6908 	}
6909 
6910 	if (!mddev->new_chunk_sectors ||
6911 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6912 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6913 		pr_warn("md/raid:%s: invalid chunk size %d\n",
6914 			mdname(mddev), mddev->new_chunk_sectors << 9);
6915 		return ERR_PTR(-EINVAL);
6916 	}
6917 
6918 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6919 	if (conf == NULL)
6920 		goto abort;
6921 	INIT_LIST_HEAD(&conf->free_list);
6922 	INIT_LIST_HEAD(&conf->pending_list);
6923 	conf->pending_data = kcalloc(PENDING_IO_MAX,
6924 				     sizeof(struct r5pending_data),
6925 				     GFP_KERNEL);
6926 	if (!conf->pending_data)
6927 		goto abort;
6928 	for (i = 0; i < PENDING_IO_MAX; i++)
6929 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
6930 	/* Don't enable multi-threading by default*/
6931 	if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
6932 		conf->group_cnt = group_cnt;
6933 		conf->worker_cnt_per_group = 0;
6934 		conf->worker_groups = new_group;
6935 	} else
6936 		goto abort;
6937 	spin_lock_init(&conf->device_lock);
6938 	seqcount_init(&conf->gen_lock);
6939 	mutex_init(&conf->cache_size_mutex);
6940 	init_waitqueue_head(&conf->wait_for_quiescent);
6941 	init_waitqueue_head(&conf->wait_for_stripe);
6942 	init_waitqueue_head(&conf->wait_for_overlap);
6943 	INIT_LIST_HEAD(&conf->handle_list);
6944 	INIT_LIST_HEAD(&conf->loprio_list);
6945 	INIT_LIST_HEAD(&conf->hold_list);
6946 	INIT_LIST_HEAD(&conf->delayed_list);
6947 	INIT_LIST_HEAD(&conf->bitmap_list);
6948 	init_llist_head(&conf->released_stripes);
6949 	atomic_set(&conf->active_stripes, 0);
6950 	atomic_set(&conf->preread_active_stripes, 0);
6951 	atomic_set(&conf->active_aligned_reads, 0);
6952 	spin_lock_init(&conf->pending_bios_lock);
6953 	conf->batch_bio_dispatch = true;
6954 	rdev_for_each(rdev, mddev) {
6955 		if (test_bit(Journal, &rdev->flags))
6956 			continue;
6957 		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6958 			conf->batch_bio_dispatch = false;
6959 			break;
6960 		}
6961 	}
6962 
6963 	conf->bypass_threshold = BYPASS_THRESHOLD;
6964 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6965 
6966 	conf->raid_disks = mddev->raid_disks;
6967 	if (mddev->reshape_position == MaxSector)
6968 		conf->previous_raid_disks = mddev->raid_disks;
6969 	else
6970 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6971 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6972 
6973 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6974 			      GFP_KERNEL);
6975 
6976 	if (!conf->disks)
6977 		goto abort;
6978 
6979 	for (i = 0; i < max_disks; i++) {
6980 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6981 		if (!conf->disks[i].extra_page)
6982 			goto abort;
6983 	}
6984 
6985 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6986 	if (ret)
6987 		goto abort;
6988 	conf->mddev = mddev;
6989 
6990 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6991 		goto abort;
6992 
6993 	/* We init hash_locks[0] separately to that it can be used
6994 	 * as the reference lock in the spin_lock_nest_lock() call
6995 	 * in lock_all_device_hash_locks_irq in order to convince
6996 	 * lockdep that we know what we are doing.
6997 	 */
6998 	spin_lock_init(conf->hash_locks);
6999 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7000 		spin_lock_init(conf->hash_locks + i);
7001 
7002 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7003 		INIT_LIST_HEAD(conf->inactive_list + i);
7004 
7005 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7006 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7007 
7008 	atomic_set(&conf->r5c_cached_full_stripes, 0);
7009 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7010 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7011 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7012 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7013 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7014 
7015 	conf->level = mddev->new_level;
7016 	conf->chunk_sectors = mddev->new_chunk_sectors;
7017 	if (raid5_alloc_percpu(conf) != 0)
7018 		goto abort;
7019 
7020 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7021 
7022 	rdev_for_each(rdev, mddev) {
7023 		raid_disk = rdev->raid_disk;
7024 		if (raid_disk >= max_disks
7025 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7026 			continue;
7027 		disk = conf->disks + raid_disk;
7028 
7029 		if (test_bit(Replacement, &rdev->flags)) {
7030 			if (disk->replacement)
7031 				goto abort;
7032 			disk->replacement = rdev;
7033 		} else {
7034 			if (disk->rdev)
7035 				goto abort;
7036 			disk->rdev = rdev;
7037 		}
7038 
7039 		if (test_bit(In_sync, &rdev->flags)) {
7040 			char b[BDEVNAME_SIZE];
7041 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7042 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7043 		} else if (rdev->saved_raid_disk != raid_disk)
7044 			/* Cannot rely on bitmap to complete recovery */
7045 			conf->fullsync = 1;
7046 	}
7047 
7048 	conf->level = mddev->new_level;
7049 	if (conf->level == 6) {
7050 		conf->max_degraded = 2;
7051 		if (raid6_call.xor_syndrome)
7052 			conf->rmw_level = PARITY_ENABLE_RMW;
7053 		else
7054 			conf->rmw_level = PARITY_DISABLE_RMW;
7055 	} else {
7056 		conf->max_degraded = 1;
7057 		conf->rmw_level = PARITY_ENABLE_RMW;
7058 	}
7059 	conf->algorithm = mddev->new_layout;
7060 	conf->reshape_progress = mddev->reshape_position;
7061 	if (conf->reshape_progress != MaxSector) {
7062 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7063 		conf->prev_algo = mddev->layout;
7064 	} else {
7065 		conf->prev_chunk_sectors = conf->chunk_sectors;
7066 		conf->prev_algo = conf->algorithm;
7067 	}
7068 
7069 	conf->min_nr_stripes = NR_STRIPES;
7070 	if (mddev->reshape_position != MaxSector) {
7071 		int stripes = max_t(int,
7072 			((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7073 			((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7074 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7075 		if (conf->min_nr_stripes != NR_STRIPES)
7076 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7077 				mdname(mddev), conf->min_nr_stripes);
7078 	}
7079 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7080 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7081 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7082 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7083 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7084 			mdname(mddev), memory);
7085 		goto abort;
7086 	} else
7087 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7088 	/*
7089 	 * Losing a stripe head costs more than the time to refill it,
7090 	 * it reduces the queue depth and so can hurt throughput.
7091 	 * So set it rather large, scaled by number of devices.
7092 	 */
7093 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7094 	conf->shrinker.scan_objects = raid5_cache_scan;
7095 	conf->shrinker.count_objects = raid5_cache_count;
7096 	conf->shrinker.batch = 128;
7097 	conf->shrinker.flags = 0;
7098 	if (register_shrinker(&conf->shrinker)) {
7099 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7100 			mdname(mddev));
7101 		goto abort;
7102 	}
7103 
7104 	sprintf(pers_name, "raid%d", mddev->new_level);
7105 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7106 	if (!conf->thread) {
7107 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7108 			mdname(mddev));
7109 		goto abort;
7110 	}
7111 
7112 	return conf;
7113 
7114  abort:
7115 	if (conf) {
7116 		free_conf(conf);
7117 		return ERR_PTR(-EIO);
7118 	} else
7119 		return ERR_PTR(-ENOMEM);
7120 }
7121 
7122 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7123 {
7124 	switch (algo) {
7125 	case ALGORITHM_PARITY_0:
7126 		if (raid_disk < max_degraded)
7127 			return 1;
7128 		break;
7129 	case ALGORITHM_PARITY_N:
7130 		if (raid_disk >= raid_disks - max_degraded)
7131 			return 1;
7132 		break;
7133 	case ALGORITHM_PARITY_0_6:
7134 		if (raid_disk == 0 ||
7135 		    raid_disk == raid_disks - 1)
7136 			return 1;
7137 		break;
7138 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7139 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7140 	case ALGORITHM_LEFT_SYMMETRIC_6:
7141 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7142 		if (raid_disk == raid_disks - 1)
7143 			return 1;
7144 	}
7145 	return 0;
7146 }
7147 
7148 static int raid5_run(struct mddev *mddev)
7149 {
7150 	struct r5conf *conf;
7151 	int working_disks = 0;
7152 	int dirty_parity_disks = 0;
7153 	struct md_rdev *rdev;
7154 	struct md_rdev *journal_dev = NULL;
7155 	sector_t reshape_offset = 0;
7156 	int i;
7157 	long long min_offset_diff = 0;
7158 	int first = 1;
7159 
7160 	if (mddev_init_writes_pending(mddev) < 0)
7161 		return -ENOMEM;
7162 
7163 	if (mddev->recovery_cp != MaxSector)
7164 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7165 			  mdname(mddev));
7166 
7167 	rdev_for_each(rdev, mddev) {
7168 		long long diff;
7169 
7170 		if (test_bit(Journal, &rdev->flags)) {
7171 			journal_dev = rdev;
7172 			continue;
7173 		}
7174 		if (rdev->raid_disk < 0)
7175 			continue;
7176 		diff = (rdev->new_data_offset - rdev->data_offset);
7177 		if (first) {
7178 			min_offset_diff = diff;
7179 			first = 0;
7180 		} else if (mddev->reshape_backwards &&
7181 			 diff < min_offset_diff)
7182 			min_offset_diff = diff;
7183 		else if (!mddev->reshape_backwards &&
7184 			 diff > min_offset_diff)
7185 			min_offset_diff = diff;
7186 	}
7187 
7188 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7189 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7190 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7191 			  mdname(mddev));
7192 		return -EINVAL;
7193 	}
7194 
7195 	if (mddev->reshape_position != MaxSector) {
7196 		/* Check that we can continue the reshape.
7197 		 * Difficulties arise if the stripe we would write to
7198 		 * next is at or after the stripe we would read from next.
7199 		 * For a reshape that changes the number of devices, this
7200 		 * is only possible for a very short time, and mdadm makes
7201 		 * sure that time appears to have past before assembling
7202 		 * the array.  So we fail if that time hasn't passed.
7203 		 * For a reshape that keeps the number of devices the same
7204 		 * mdadm must be monitoring the reshape can keeping the
7205 		 * critical areas read-only and backed up.  It will start
7206 		 * the array in read-only mode, so we check for that.
7207 		 */
7208 		sector_t here_new, here_old;
7209 		int old_disks;
7210 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7211 		int chunk_sectors;
7212 		int new_data_disks;
7213 
7214 		if (journal_dev) {
7215 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7216 				mdname(mddev));
7217 			return -EINVAL;
7218 		}
7219 
7220 		if (mddev->new_level != mddev->level) {
7221 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7222 				mdname(mddev));
7223 			return -EINVAL;
7224 		}
7225 		old_disks = mddev->raid_disks - mddev->delta_disks;
7226 		/* reshape_position must be on a new-stripe boundary, and one
7227 		 * further up in new geometry must map after here in old
7228 		 * geometry.
7229 		 * If the chunk sizes are different, then as we perform reshape
7230 		 * in units of the largest of the two, reshape_position needs
7231 		 * be a multiple of the largest chunk size times new data disks.
7232 		 */
7233 		here_new = mddev->reshape_position;
7234 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7235 		new_data_disks = mddev->raid_disks - max_degraded;
7236 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7237 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7238 				mdname(mddev));
7239 			return -EINVAL;
7240 		}
7241 		reshape_offset = here_new * chunk_sectors;
7242 		/* here_new is the stripe we will write to */
7243 		here_old = mddev->reshape_position;
7244 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7245 		/* here_old is the first stripe that we might need to read
7246 		 * from */
7247 		if (mddev->delta_disks == 0) {
7248 			/* We cannot be sure it is safe to start an in-place
7249 			 * reshape.  It is only safe if user-space is monitoring
7250 			 * and taking constant backups.
7251 			 * mdadm always starts a situation like this in
7252 			 * readonly mode so it can take control before
7253 			 * allowing any writes.  So just check for that.
7254 			 */
7255 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7256 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7257 				/* not really in-place - so OK */;
7258 			else if (mddev->ro == 0) {
7259 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7260 					mdname(mddev));
7261 				return -EINVAL;
7262 			}
7263 		} else if (mddev->reshape_backwards
7264 		    ? (here_new * chunk_sectors + min_offset_diff <=
7265 		       here_old * chunk_sectors)
7266 		    : (here_new * chunk_sectors >=
7267 		       here_old * chunk_sectors + (-min_offset_diff))) {
7268 			/* Reading from the same stripe as writing to - bad */
7269 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7270 				mdname(mddev));
7271 			return -EINVAL;
7272 		}
7273 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7274 		/* OK, we should be able to continue; */
7275 	} else {
7276 		BUG_ON(mddev->level != mddev->new_level);
7277 		BUG_ON(mddev->layout != mddev->new_layout);
7278 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7279 		BUG_ON(mddev->delta_disks != 0);
7280 	}
7281 
7282 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7283 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7284 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7285 			mdname(mddev));
7286 		clear_bit(MD_HAS_PPL, &mddev->flags);
7287 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7288 	}
7289 
7290 	if (mddev->private == NULL)
7291 		conf = setup_conf(mddev);
7292 	else
7293 		conf = mddev->private;
7294 
7295 	if (IS_ERR(conf))
7296 		return PTR_ERR(conf);
7297 
7298 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7299 		if (!journal_dev) {
7300 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7301 				mdname(mddev));
7302 			mddev->ro = 1;
7303 			set_disk_ro(mddev->gendisk, 1);
7304 		} else if (mddev->recovery_cp == MaxSector)
7305 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7306 	}
7307 
7308 	conf->min_offset_diff = min_offset_diff;
7309 	mddev->thread = conf->thread;
7310 	conf->thread = NULL;
7311 	mddev->private = conf;
7312 
7313 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7314 	     i++) {
7315 		rdev = conf->disks[i].rdev;
7316 		if (!rdev && conf->disks[i].replacement) {
7317 			/* The replacement is all we have yet */
7318 			rdev = conf->disks[i].replacement;
7319 			conf->disks[i].replacement = NULL;
7320 			clear_bit(Replacement, &rdev->flags);
7321 			conf->disks[i].rdev = rdev;
7322 		}
7323 		if (!rdev)
7324 			continue;
7325 		if (conf->disks[i].replacement &&
7326 		    conf->reshape_progress != MaxSector) {
7327 			/* replacements and reshape simply do not mix. */
7328 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7329 			goto abort;
7330 		}
7331 		if (test_bit(In_sync, &rdev->flags)) {
7332 			working_disks++;
7333 			continue;
7334 		}
7335 		/* This disc is not fully in-sync.  However if it
7336 		 * just stored parity (beyond the recovery_offset),
7337 		 * when we don't need to be concerned about the
7338 		 * array being dirty.
7339 		 * When reshape goes 'backwards', we never have
7340 		 * partially completed devices, so we only need
7341 		 * to worry about reshape going forwards.
7342 		 */
7343 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7344 		if (mddev->major_version == 0 &&
7345 		    mddev->minor_version > 90)
7346 			rdev->recovery_offset = reshape_offset;
7347 
7348 		if (rdev->recovery_offset < reshape_offset) {
7349 			/* We need to check old and new layout */
7350 			if (!only_parity(rdev->raid_disk,
7351 					 conf->algorithm,
7352 					 conf->raid_disks,
7353 					 conf->max_degraded))
7354 				continue;
7355 		}
7356 		if (!only_parity(rdev->raid_disk,
7357 				 conf->prev_algo,
7358 				 conf->previous_raid_disks,
7359 				 conf->max_degraded))
7360 			continue;
7361 		dirty_parity_disks++;
7362 	}
7363 
7364 	/*
7365 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7366 	 */
7367 	mddev->degraded = raid5_calc_degraded(conf);
7368 
7369 	if (has_failed(conf)) {
7370 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7371 			mdname(mddev), mddev->degraded, conf->raid_disks);
7372 		goto abort;
7373 	}
7374 
7375 	/* device size must be a multiple of chunk size */
7376 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7377 	mddev->resync_max_sectors = mddev->dev_sectors;
7378 
7379 	if (mddev->degraded > dirty_parity_disks &&
7380 	    mddev->recovery_cp != MaxSector) {
7381 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7382 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7383 				mdname(mddev));
7384 		else if (mddev->ok_start_degraded)
7385 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7386 				mdname(mddev));
7387 		else {
7388 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7389 				mdname(mddev));
7390 			goto abort;
7391 		}
7392 	}
7393 
7394 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7395 		mdname(mddev), conf->level,
7396 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7397 		mddev->new_layout);
7398 
7399 	print_raid5_conf(conf);
7400 
7401 	if (conf->reshape_progress != MaxSector) {
7402 		conf->reshape_safe = conf->reshape_progress;
7403 		atomic_set(&conf->reshape_stripes, 0);
7404 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7405 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7406 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7407 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7408 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7409 							"reshape");
7410 		if (!mddev->sync_thread)
7411 			goto abort;
7412 	}
7413 
7414 	/* Ok, everything is just fine now */
7415 	if (mddev->to_remove == &raid5_attrs_group)
7416 		mddev->to_remove = NULL;
7417 	else if (mddev->kobj.sd &&
7418 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7419 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7420 			mdname(mddev));
7421 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7422 
7423 	if (mddev->queue) {
7424 		int chunk_size;
7425 		/* read-ahead size must cover two whole stripes, which
7426 		 * is 2 * (datadisks) * chunksize where 'n' is the
7427 		 * number of raid devices
7428 		 */
7429 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7430 		int stripe = data_disks *
7431 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7432 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7433 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7434 
7435 		chunk_size = mddev->chunk_sectors << 9;
7436 		blk_queue_io_min(mddev->queue, chunk_size);
7437 		blk_queue_io_opt(mddev->queue, chunk_size *
7438 				 (conf->raid_disks - conf->max_degraded));
7439 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7440 		/*
7441 		 * We can only discard a whole stripe. It doesn't make sense to
7442 		 * discard data disk but write parity disk
7443 		 */
7444 		stripe = stripe * PAGE_SIZE;
7445 		/* Round up to power of 2, as discard handling
7446 		 * currently assumes that */
7447 		while ((stripe-1) & stripe)
7448 			stripe = (stripe | (stripe-1)) + 1;
7449 		mddev->queue->limits.discard_alignment = stripe;
7450 		mddev->queue->limits.discard_granularity = stripe;
7451 
7452 		blk_queue_max_write_same_sectors(mddev->queue, 0);
7453 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7454 
7455 		rdev_for_each(rdev, mddev) {
7456 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7457 					  rdev->data_offset << 9);
7458 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7459 					  rdev->new_data_offset << 9);
7460 		}
7461 
7462 		/*
7463 		 * zeroing is required, otherwise data
7464 		 * could be lost. Consider a scenario: discard a stripe
7465 		 * (the stripe could be inconsistent if
7466 		 * discard_zeroes_data is 0); write one disk of the
7467 		 * stripe (the stripe could be inconsistent again
7468 		 * depending on which disks are used to calculate
7469 		 * parity); the disk is broken; The stripe data of this
7470 		 * disk is lost.
7471 		 *
7472 		 * We only allow DISCARD if the sysadmin has confirmed that
7473 		 * only safe devices are in use by setting a module parameter.
7474 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7475 		 * requests, as that is required to be safe.
7476 		 */
7477 		if (devices_handle_discard_safely &&
7478 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7479 		    mddev->queue->limits.discard_granularity >= stripe)
7480 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7481 						mddev->queue);
7482 		else
7483 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7484 						mddev->queue);
7485 
7486 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7487 	}
7488 
7489 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7490 		goto abort;
7491 
7492 	return 0;
7493 abort:
7494 	md_unregister_thread(&mddev->thread);
7495 	print_raid5_conf(conf);
7496 	free_conf(conf);
7497 	mddev->private = NULL;
7498 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7499 	return -EIO;
7500 }
7501 
7502 static void raid5_free(struct mddev *mddev, void *priv)
7503 {
7504 	struct r5conf *conf = priv;
7505 
7506 	free_conf(conf);
7507 	mddev->to_remove = &raid5_attrs_group;
7508 }
7509 
7510 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7511 {
7512 	struct r5conf *conf = mddev->private;
7513 	int i;
7514 
7515 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7516 		conf->chunk_sectors / 2, mddev->layout);
7517 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7518 	rcu_read_lock();
7519 	for (i = 0; i < conf->raid_disks; i++) {
7520 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7521 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7522 	}
7523 	rcu_read_unlock();
7524 	seq_printf (seq, "]");
7525 }
7526 
7527 static void print_raid5_conf (struct r5conf *conf)
7528 {
7529 	int i;
7530 	struct disk_info *tmp;
7531 
7532 	pr_debug("RAID conf printout:\n");
7533 	if (!conf) {
7534 		pr_debug("(conf==NULL)\n");
7535 		return;
7536 	}
7537 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7538 	       conf->raid_disks,
7539 	       conf->raid_disks - conf->mddev->degraded);
7540 
7541 	for (i = 0; i < conf->raid_disks; i++) {
7542 		char b[BDEVNAME_SIZE];
7543 		tmp = conf->disks + i;
7544 		if (tmp->rdev)
7545 			pr_debug(" disk %d, o:%d, dev:%s\n",
7546 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7547 			       bdevname(tmp->rdev->bdev, b));
7548 	}
7549 }
7550 
7551 static int raid5_spare_active(struct mddev *mddev)
7552 {
7553 	int i;
7554 	struct r5conf *conf = mddev->private;
7555 	struct disk_info *tmp;
7556 	int count = 0;
7557 	unsigned long flags;
7558 
7559 	for (i = 0; i < conf->raid_disks; i++) {
7560 		tmp = conf->disks + i;
7561 		if (tmp->replacement
7562 		    && tmp->replacement->recovery_offset == MaxSector
7563 		    && !test_bit(Faulty, &tmp->replacement->flags)
7564 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7565 			/* Replacement has just become active. */
7566 			if (!tmp->rdev
7567 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7568 				count++;
7569 			if (tmp->rdev) {
7570 				/* Replaced device not technically faulty,
7571 				 * but we need to be sure it gets removed
7572 				 * and never re-added.
7573 				 */
7574 				set_bit(Faulty, &tmp->rdev->flags);
7575 				sysfs_notify_dirent_safe(
7576 					tmp->rdev->sysfs_state);
7577 			}
7578 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7579 		} else if (tmp->rdev
7580 		    && tmp->rdev->recovery_offset == MaxSector
7581 		    && !test_bit(Faulty, &tmp->rdev->flags)
7582 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7583 			count++;
7584 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7585 		}
7586 	}
7587 	spin_lock_irqsave(&conf->device_lock, flags);
7588 	mddev->degraded = raid5_calc_degraded(conf);
7589 	spin_unlock_irqrestore(&conf->device_lock, flags);
7590 	print_raid5_conf(conf);
7591 	return count;
7592 }
7593 
7594 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7595 {
7596 	struct r5conf *conf = mddev->private;
7597 	int err = 0;
7598 	int number = rdev->raid_disk;
7599 	struct md_rdev **rdevp;
7600 	struct disk_info *p = conf->disks + number;
7601 
7602 	print_raid5_conf(conf);
7603 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7604 		/*
7605 		 * we can't wait pending write here, as this is called in
7606 		 * raid5d, wait will deadlock.
7607 		 * neilb: there is no locking about new writes here,
7608 		 * so this cannot be safe.
7609 		 */
7610 		if (atomic_read(&conf->active_stripes) ||
7611 		    atomic_read(&conf->r5c_cached_full_stripes) ||
7612 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
7613 			return -EBUSY;
7614 		}
7615 		log_exit(conf);
7616 		return 0;
7617 	}
7618 	if (rdev == p->rdev)
7619 		rdevp = &p->rdev;
7620 	else if (rdev == p->replacement)
7621 		rdevp = &p->replacement;
7622 	else
7623 		return 0;
7624 
7625 	if (number >= conf->raid_disks &&
7626 	    conf->reshape_progress == MaxSector)
7627 		clear_bit(In_sync, &rdev->flags);
7628 
7629 	if (test_bit(In_sync, &rdev->flags) ||
7630 	    atomic_read(&rdev->nr_pending)) {
7631 		err = -EBUSY;
7632 		goto abort;
7633 	}
7634 	/* Only remove non-faulty devices if recovery
7635 	 * isn't possible.
7636 	 */
7637 	if (!test_bit(Faulty, &rdev->flags) &&
7638 	    mddev->recovery_disabled != conf->recovery_disabled &&
7639 	    !has_failed(conf) &&
7640 	    (!p->replacement || p->replacement == rdev) &&
7641 	    number < conf->raid_disks) {
7642 		err = -EBUSY;
7643 		goto abort;
7644 	}
7645 	*rdevp = NULL;
7646 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7647 		synchronize_rcu();
7648 		if (atomic_read(&rdev->nr_pending)) {
7649 			/* lost the race, try later */
7650 			err = -EBUSY;
7651 			*rdevp = rdev;
7652 		}
7653 	}
7654 	if (!err) {
7655 		err = log_modify(conf, rdev, false);
7656 		if (err)
7657 			goto abort;
7658 	}
7659 	if (p->replacement) {
7660 		/* We must have just cleared 'rdev' */
7661 		p->rdev = p->replacement;
7662 		clear_bit(Replacement, &p->replacement->flags);
7663 		smp_mb(); /* Make sure other CPUs may see both as identical
7664 			   * but will never see neither - if they are careful
7665 			   */
7666 		p->replacement = NULL;
7667 
7668 		if (!err)
7669 			err = log_modify(conf, p->rdev, true);
7670 	}
7671 
7672 	clear_bit(WantReplacement, &rdev->flags);
7673 abort:
7674 
7675 	print_raid5_conf(conf);
7676 	return err;
7677 }
7678 
7679 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7680 {
7681 	struct r5conf *conf = mddev->private;
7682 	int ret, err = -EEXIST;
7683 	int disk;
7684 	struct disk_info *p;
7685 	int first = 0;
7686 	int last = conf->raid_disks - 1;
7687 
7688 	if (test_bit(Journal, &rdev->flags)) {
7689 		if (conf->log)
7690 			return -EBUSY;
7691 
7692 		rdev->raid_disk = 0;
7693 		/*
7694 		 * The array is in readonly mode if journal is missing, so no
7695 		 * write requests running. We should be safe
7696 		 */
7697 		ret = log_init(conf, rdev, false);
7698 		if (ret)
7699 			return ret;
7700 
7701 		ret = r5l_start(conf->log);
7702 		if (ret)
7703 			return ret;
7704 
7705 		return 0;
7706 	}
7707 	if (mddev->recovery_disabled == conf->recovery_disabled)
7708 		return -EBUSY;
7709 
7710 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7711 		/* no point adding a device */
7712 		return -EINVAL;
7713 
7714 	if (rdev->raid_disk >= 0)
7715 		first = last = rdev->raid_disk;
7716 
7717 	/*
7718 	 * find the disk ... but prefer rdev->saved_raid_disk
7719 	 * if possible.
7720 	 */
7721 	if (rdev->saved_raid_disk >= 0 &&
7722 	    rdev->saved_raid_disk >= first &&
7723 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7724 		first = rdev->saved_raid_disk;
7725 
7726 	for (disk = first; disk <= last; disk++) {
7727 		p = conf->disks + disk;
7728 		if (p->rdev == NULL) {
7729 			clear_bit(In_sync, &rdev->flags);
7730 			rdev->raid_disk = disk;
7731 			if (rdev->saved_raid_disk != disk)
7732 				conf->fullsync = 1;
7733 			rcu_assign_pointer(p->rdev, rdev);
7734 
7735 			err = log_modify(conf, rdev, true);
7736 
7737 			goto out;
7738 		}
7739 	}
7740 	for (disk = first; disk <= last; disk++) {
7741 		p = conf->disks + disk;
7742 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7743 		    p->replacement == NULL) {
7744 			clear_bit(In_sync, &rdev->flags);
7745 			set_bit(Replacement, &rdev->flags);
7746 			rdev->raid_disk = disk;
7747 			err = 0;
7748 			conf->fullsync = 1;
7749 			rcu_assign_pointer(p->replacement, rdev);
7750 			break;
7751 		}
7752 	}
7753 out:
7754 	print_raid5_conf(conf);
7755 	return err;
7756 }
7757 
7758 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7759 {
7760 	/* no resync is happening, and there is enough space
7761 	 * on all devices, so we can resize.
7762 	 * We need to make sure resync covers any new space.
7763 	 * If the array is shrinking we should possibly wait until
7764 	 * any io in the removed space completes, but it hardly seems
7765 	 * worth it.
7766 	 */
7767 	sector_t newsize;
7768 	struct r5conf *conf = mddev->private;
7769 
7770 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
7771 		return -EINVAL;
7772 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7773 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7774 	if (mddev->external_size &&
7775 	    mddev->array_sectors > newsize)
7776 		return -EINVAL;
7777 	if (mddev->bitmap) {
7778 		int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7779 		if (ret)
7780 			return ret;
7781 	}
7782 	md_set_array_sectors(mddev, newsize);
7783 	if (sectors > mddev->dev_sectors &&
7784 	    mddev->recovery_cp > mddev->dev_sectors) {
7785 		mddev->recovery_cp = mddev->dev_sectors;
7786 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7787 	}
7788 	mddev->dev_sectors = sectors;
7789 	mddev->resync_max_sectors = sectors;
7790 	return 0;
7791 }
7792 
7793 static int check_stripe_cache(struct mddev *mddev)
7794 {
7795 	/* Can only proceed if there are plenty of stripe_heads.
7796 	 * We need a minimum of one full stripe,, and for sensible progress
7797 	 * it is best to have about 4 times that.
7798 	 * If we require 4 times, then the default 256 4K stripe_heads will
7799 	 * allow for chunk sizes up to 256K, which is probably OK.
7800 	 * If the chunk size is greater, user-space should request more
7801 	 * stripe_heads first.
7802 	 */
7803 	struct r5conf *conf = mddev->private;
7804 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7805 	    > conf->min_nr_stripes ||
7806 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7807 	    > conf->min_nr_stripes) {
7808 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7809 			mdname(mddev),
7810 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7811 			 / STRIPE_SIZE)*4);
7812 		return 0;
7813 	}
7814 	return 1;
7815 }
7816 
7817 static int check_reshape(struct mddev *mddev)
7818 {
7819 	struct r5conf *conf = mddev->private;
7820 
7821 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
7822 		return -EINVAL;
7823 	if (mddev->delta_disks == 0 &&
7824 	    mddev->new_layout == mddev->layout &&
7825 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7826 		return 0; /* nothing to do */
7827 	if (has_failed(conf))
7828 		return -EINVAL;
7829 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7830 		/* We might be able to shrink, but the devices must
7831 		 * be made bigger first.
7832 		 * For raid6, 4 is the minimum size.
7833 		 * Otherwise 2 is the minimum
7834 		 */
7835 		int min = 2;
7836 		if (mddev->level == 6)
7837 			min = 4;
7838 		if (mddev->raid_disks + mddev->delta_disks < min)
7839 			return -EINVAL;
7840 	}
7841 
7842 	if (!check_stripe_cache(mddev))
7843 		return -ENOSPC;
7844 
7845 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7846 	    mddev->delta_disks > 0)
7847 		if (resize_chunks(conf,
7848 				  conf->previous_raid_disks
7849 				  + max(0, mddev->delta_disks),
7850 				  max(mddev->new_chunk_sectors,
7851 				      mddev->chunk_sectors)
7852 			    ) < 0)
7853 			return -ENOMEM;
7854 
7855 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7856 		return 0; /* never bother to shrink */
7857 	return resize_stripes(conf, (conf->previous_raid_disks
7858 				     + mddev->delta_disks));
7859 }
7860 
7861 static int raid5_start_reshape(struct mddev *mddev)
7862 {
7863 	struct r5conf *conf = mddev->private;
7864 	struct md_rdev *rdev;
7865 	int spares = 0;
7866 	unsigned long flags;
7867 
7868 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7869 		return -EBUSY;
7870 
7871 	if (!check_stripe_cache(mddev))
7872 		return -ENOSPC;
7873 
7874 	if (has_failed(conf))
7875 		return -EINVAL;
7876 
7877 	rdev_for_each(rdev, mddev) {
7878 		if (!test_bit(In_sync, &rdev->flags)
7879 		    && !test_bit(Faulty, &rdev->flags))
7880 			spares++;
7881 	}
7882 
7883 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7884 		/* Not enough devices even to make a degraded array
7885 		 * of that size
7886 		 */
7887 		return -EINVAL;
7888 
7889 	/* Refuse to reduce size of the array.  Any reductions in
7890 	 * array size must be through explicit setting of array_size
7891 	 * attribute.
7892 	 */
7893 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7894 	    < mddev->array_sectors) {
7895 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7896 			mdname(mddev));
7897 		return -EINVAL;
7898 	}
7899 
7900 	atomic_set(&conf->reshape_stripes, 0);
7901 	spin_lock_irq(&conf->device_lock);
7902 	write_seqcount_begin(&conf->gen_lock);
7903 	conf->previous_raid_disks = conf->raid_disks;
7904 	conf->raid_disks += mddev->delta_disks;
7905 	conf->prev_chunk_sectors = conf->chunk_sectors;
7906 	conf->chunk_sectors = mddev->new_chunk_sectors;
7907 	conf->prev_algo = conf->algorithm;
7908 	conf->algorithm = mddev->new_layout;
7909 	conf->generation++;
7910 	/* Code that selects data_offset needs to see the generation update
7911 	 * if reshape_progress has been set - so a memory barrier needed.
7912 	 */
7913 	smp_mb();
7914 	if (mddev->reshape_backwards)
7915 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7916 	else
7917 		conf->reshape_progress = 0;
7918 	conf->reshape_safe = conf->reshape_progress;
7919 	write_seqcount_end(&conf->gen_lock);
7920 	spin_unlock_irq(&conf->device_lock);
7921 
7922 	/* Now make sure any requests that proceeded on the assumption
7923 	 * the reshape wasn't running - like Discard or Read - have
7924 	 * completed.
7925 	 */
7926 	mddev_suspend(mddev);
7927 	mddev_resume(mddev);
7928 
7929 	/* Add some new drives, as many as will fit.
7930 	 * We know there are enough to make the newly sized array work.
7931 	 * Don't add devices if we are reducing the number of
7932 	 * devices in the array.  This is because it is not possible
7933 	 * to correctly record the "partially reconstructed" state of
7934 	 * such devices during the reshape and confusion could result.
7935 	 */
7936 	if (mddev->delta_disks >= 0) {
7937 		rdev_for_each(rdev, mddev)
7938 			if (rdev->raid_disk < 0 &&
7939 			    !test_bit(Faulty, &rdev->flags)) {
7940 				if (raid5_add_disk(mddev, rdev) == 0) {
7941 					if (rdev->raid_disk
7942 					    >= conf->previous_raid_disks)
7943 						set_bit(In_sync, &rdev->flags);
7944 					else
7945 						rdev->recovery_offset = 0;
7946 
7947 					if (sysfs_link_rdev(mddev, rdev))
7948 						/* Failure here is OK */;
7949 				}
7950 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7951 				   && !test_bit(Faulty, &rdev->flags)) {
7952 				/* This is a spare that was manually added */
7953 				set_bit(In_sync, &rdev->flags);
7954 			}
7955 
7956 		/* When a reshape changes the number of devices,
7957 		 * ->degraded is measured against the larger of the
7958 		 * pre and post number of devices.
7959 		 */
7960 		spin_lock_irqsave(&conf->device_lock, flags);
7961 		mddev->degraded = raid5_calc_degraded(conf);
7962 		spin_unlock_irqrestore(&conf->device_lock, flags);
7963 	}
7964 	mddev->raid_disks = conf->raid_disks;
7965 	mddev->reshape_position = conf->reshape_progress;
7966 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7967 
7968 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7969 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7970 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7971 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7972 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7973 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7974 						"reshape");
7975 	if (!mddev->sync_thread) {
7976 		mddev->recovery = 0;
7977 		spin_lock_irq(&conf->device_lock);
7978 		write_seqcount_begin(&conf->gen_lock);
7979 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7980 		mddev->new_chunk_sectors =
7981 			conf->chunk_sectors = conf->prev_chunk_sectors;
7982 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7983 		rdev_for_each(rdev, mddev)
7984 			rdev->new_data_offset = rdev->data_offset;
7985 		smp_wmb();
7986 		conf->generation --;
7987 		conf->reshape_progress = MaxSector;
7988 		mddev->reshape_position = MaxSector;
7989 		write_seqcount_end(&conf->gen_lock);
7990 		spin_unlock_irq(&conf->device_lock);
7991 		return -EAGAIN;
7992 	}
7993 	conf->reshape_checkpoint = jiffies;
7994 	md_wakeup_thread(mddev->sync_thread);
7995 	md_new_event(mddev);
7996 	return 0;
7997 }
7998 
7999 /* This is called from the reshape thread and should make any
8000  * changes needed in 'conf'
8001  */
8002 static void end_reshape(struct r5conf *conf)
8003 {
8004 
8005 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8006 		struct md_rdev *rdev;
8007 
8008 		spin_lock_irq(&conf->device_lock);
8009 		conf->previous_raid_disks = conf->raid_disks;
8010 		md_finish_reshape(conf->mddev);
8011 		smp_wmb();
8012 		conf->reshape_progress = MaxSector;
8013 		conf->mddev->reshape_position = MaxSector;
8014 		rdev_for_each(rdev, conf->mddev)
8015 			if (rdev->raid_disk >= 0 &&
8016 			    !test_bit(Journal, &rdev->flags) &&
8017 			    !test_bit(In_sync, &rdev->flags))
8018 				rdev->recovery_offset = MaxSector;
8019 		spin_unlock_irq(&conf->device_lock);
8020 		wake_up(&conf->wait_for_overlap);
8021 
8022 		/* read-ahead size must cover two whole stripes, which is
8023 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8024 		 */
8025 		if (conf->mddev->queue) {
8026 			int data_disks = conf->raid_disks - conf->max_degraded;
8027 			int stripe = data_disks * ((conf->chunk_sectors << 9)
8028 						   / PAGE_SIZE);
8029 			if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8030 				conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8031 		}
8032 	}
8033 }
8034 
8035 /* This is called from the raid5d thread with mddev_lock held.
8036  * It makes config changes to the device.
8037  */
8038 static void raid5_finish_reshape(struct mddev *mddev)
8039 {
8040 	struct r5conf *conf = mddev->private;
8041 
8042 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8043 
8044 		if (mddev->delta_disks <= 0) {
8045 			int d;
8046 			spin_lock_irq(&conf->device_lock);
8047 			mddev->degraded = raid5_calc_degraded(conf);
8048 			spin_unlock_irq(&conf->device_lock);
8049 			for (d = conf->raid_disks ;
8050 			     d < conf->raid_disks - mddev->delta_disks;
8051 			     d++) {
8052 				struct md_rdev *rdev = conf->disks[d].rdev;
8053 				if (rdev)
8054 					clear_bit(In_sync, &rdev->flags);
8055 				rdev = conf->disks[d].replacement;
8056 				if (rdev)
8057 					clear_bit(In_sync, &rdev->flags);
8058 			}
8059 		}
8060 		mddev->layout = conf->algorithm;
8061 		mddev->chunk_sectors = conf->chunk_sectors;
8062 		mddev->reshape_position = MaxSector;
8063 		mddev->delta_disks = 0;
8064 		mddev->reshape_backwards = 0;
8065 	}
8066 }
8067 
8068 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8069 {
8070 	struct r5conf *conf = mddev->private;
8071 
8072 	if (quiesce) {
8073 		/* stop all writes */
8074 		lock_all_device_hash_locks_irq(conf);
8075 		/* '2' tells resync/reshape to pause so that all
8076 		 * active stripes can drain
8077 		 */
8078 		r5c_flush_cache(conf, INT_MAX);
8079 		conf->quiesce = 2;
8080 		wait_event_cmd(conf->wait_for_quiescent,
8081 				    atomic_read(&conf->active_stripes) == 0 &&
8082 				    atomic_read(&conf->active_aligned_reads) == 0,
8083 				    unlock_all_device_hash_locks_irq(conf),
8084 				    lock_all_device_hash_locks_irq(conf));
8085 		conf->quiesce = 1;
8086 		unlock_all_device_hash_locks_irq(conf);
8087 		/* allow reshape to continue */
8088 		wake_up(&conf->wait_for_overlap);
8089 	} else {
8090 		/* re-enable writes */
8091 		lock_all_device_hash_locks_irq(conf);
8092 		conf->quiesce = 0;
8093 		wake_up(&conf->wait_for_quiescent);
8094 		wake_up(&conf->wait_for_overlap);
8095 		unlock_all_device_hash_locks_irq(conf);
8096 	}
8097 	log_quiesce(conf, quiesce);
8098 }
8099 
8100 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8101 {
8102 	struct r0conf *raid0_conf = mddev->private;
8103 	sector_t sectors;
8104 
8105 	/* for raid0 takeover only one zone is supported */
8106 	if (raid0_conf->nr_strip_zones > 1) {
8107 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8108 			mdname(mddev));
8109 		return ERR_PTR(-EINVAL);
8110 	}
8111 
8112 	sectors = raid0_conf->strip_zone[0].zone_end;
8113 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8114 	mddev->dev_sectors = sectors;
8115 	mddev->new_level = level;
8116 	mddev->new_layout = ALGORITHM_PARITY_N;
8117 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8118 	mddev->raid_disks += 1;
8119 	mddev->delta_disks = 1;
8120 	/* make sure it will be not marked as dirty */
8121 	mddev->recovery_cp = MaxSector;
8122 
8123 	return setup_conf(mddev);
8124 }
8125 
8126 static void *raid5_takeover_raid1(struct mddev *mddev)
8127 {
8128 	int chunksect;
8129 	void *ret;
8130 
8131 	if (mddev->raid_disks != 2 ||
8132 	    mddev->degraded > 1)
8133 		return ERR_PTR(-EINVAL);
8134 
8135 	/* Should check if there are write-behind devices? */
8136 
8137 	chunksect = 64*2; /* 64K by default */
8138 
8139 	/* The array must be an exact multiple of chunksize */
8140 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8141 		chunksect >>= 1;
8142 
8143 	if ((chunksect<<9) < STRIPE_SIZE)
8144 		/* array size does not allow a suitable chunk size */
8145 		return ERR_PTR(-EINVAL);
8146 
8147 	mddev->new_level = 5;
8148 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8149 	mddev->new_chunk_sectors = chunksect;
8150 
8151 	ret = setup_conf(mddev);
8152 	if (!IS_ERR(ret))
8153 		mddev_clear_unsupported_flags(mddev,
8154 			UNSUPPORTED_MDDEV_FLAGS);
8155 	return ret;
8156 }
8157 
8158 static void *raid5_takeover_raid6(struct mddev *mddev)
8159 {
8160 	int new_layout;
8161 
8162 	switch (mddev->layout) {
8163 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8164 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8165 		break;
8166 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8167 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8168 		break;
8169 	case ALGORITHM_LEFT_SYMMETRIC_6:
8170 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8171 		break;
8172 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8173 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8174 		break;
8175 	case ALGORITHM_PARITY_0_6:
8176 		new_layout = ALGORITHM_PARITY_0;
8177 		break;
8178 	case ALGORITHM_PARITY_N:
8179 		new_layout = ALGORITHM_PARITY_N;
8180 		break;
8181 	default:
8182 		return ERR_PTR(-EINVAL);
8183 	}
8184 	mddev->new_level = 5;
8185 	mddev->new_layout = new_layout;
8186 	mddev->delta_disks = -1;
8187 	mddev->raid_disks -= 1;
8188 	return setup_conf(mddev);
8189 }
8190 
8191 static int raid5_check_reshape(struct mddev *mddev)
8192 {
8193 	/* For a 2-drive array, the layout and chunk size can be changed
8194 	 * immediately as not restriping is needed.
8195 	 * For larger arrays we record the new value - after validation
8196 	 * to be used by a reshape pass.
8197 	 */
8198 	struct r5conf *conf = mddev->private;
8199 	int new_chunk = mddev->new_chunk_sectors;
8200 
8201 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8202 		return -EINVAL;
8203 	if (new_chunk > 0) {
8204 		if (!is_power_of_2(new_chunk))
8205 			return -EINVAL;
8206 		if (new_chunk < (PAGE_SIZE>>9))
8207 			return -EINVAL;
8208 		if (mddev->array_sectors & (new_chunk-1))
8209 			/* not factor of array size */
8210 			return -EINVAL;
8211 	}
8212 
8213 	/* They look valid */
8214 
8215 	if (mddev->raid_disks == 2) {
8216 		/* can make the change immediately */
8217 		if (mddev->new_layout >= 0) {
8218 			conf->algorithm = mddev->new_layout;
8219 			mddev->layout = mddev->new_layout;
8220 		}
8221 		if (new_chunk > 0) {
8222 			conf->chunk_sectors = new_chunk ;
8223 			mddev->chunk_sectors = new_chunk;
8224 		}
8225 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8226 		md_wakeup_thread(mddev->thread);
8227 	}
8228 	return check_reshape(mddev);
8229 }
8230 
8231 static int raid6_check_reshape(struct mddev *mddev)
8232 {
8233 	int new_chunk = mddev->new_chunk_sectors;
8234 
8235 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8236 		return -EINVAL;
8237 	if (new_chunk > 0) {
8238 		if (!is_power_of_2(new_chunk))
8239 			return -EINVAL;
8240 		if (new_chunk < (PAGE_SIZE >> 9))
8241 			return -EINVAL;
8242 		if (mddev->array_sectors & (new_chunk-1))
8243 			/* not factor of array size */
8244 			return -EINVAL;
8245 	}
8246 
8247 	/* They look valid */
8248 	return check_reshape(mddev);
8249 }
8250 
8251 static void *raid5_takeover(struct mddev *mddev)
8252 {
8253 	/* raid5 can take over:
8254 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8255 	 *  raid1 - if there are two drives.  We need to know the chunk size
8256 	 *  raid4 - trivial - just use a raid4 layout.
8257 	 *  raid6 - Providing it is a *_6 layout
8258 	 */
8259 	if (mddev->level == 0)
8260 		return raid45_takeover_raid0(mddev, 5);
8261 	if (mddev->level == 1)
8262 		return raid5_takeover_raid1(mddev);
8263 	if (mddev->level == 4) {
8264 		mddev->new_layout = ALGORITHM_PARITY_N;
8265 		mddev->new_level = 5;
8266 		return setup_conf(mddev);
8267 	}
8268 	if (mddev->level == 6)
8269 		return raid5_takeover_raid6(mddev);
8270 
8271 	return ERR_PTR(-EINVAL);
8272 }
8273 
8274 static void *raid4_takeover(struct mddev *mddev)
8275 {
8276 	/* raid4 can take over:
8277 	 *  raid0 - if there is only one strip zone
8278 	 *  raid5 - if layout is right
8279 	 */
8280 	if (mddev->level == 0)
8281 		return raid45_takeover_raid0(mddev, 4);
8282 	if (mddev->level == 5 &&
8283 	    mddev->layout == ALGORITHM_PARITY_N) {
8284 		mddev->new_layout = 0;
8285 		mddev->new_level = 4;
8286 		return setup_conf(mddev);
8287 	}
8288 	return ERR_PTR(-EINVAL);
8289 }
8290 
8291 static struct md_personality raid5_personality;
8292 
8293 static void *raid6_takeover(struct mddev *mddev)
8294 {
8295 	/* Currently can only take over a raid5.  We map the
8296 	 * personality to an equivalent raid6 personality
8297 	 * with the Q block at the end.
8298 	 */
8299 	int new_layout;
8300 
8301 	if (mddev->pers != &raid5_personality)
8302 		return ERR_PTR(-EINVAL);
8303 	if (mddev->degraded > 1)
8304 		return ERR_PTR(-EINVAL);
8305 	if (mddev->raid_disks > 253)
8306 		return ERR_PTR(-EINVAL);
8307 	if (mddev->raid_disks < 3)
8308 		return ERR_PTR(-EINVAL);
8309 
8310 	switch (mddev->layout) {
8311 	case ALGORITHM_LEFT_ASYMMETRIC:
8312 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8313 		break;
8314 	case ALGORITHM_RIGHT_ASYMMETRIC:
8315 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8316 		break;
8317 	case ALGORITHM_LEFT_SYMMETRIC:
8318 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8319 		break;
8320 	case ALGORITHM_RIGHT_SYMMETRIC:
8321 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8322 		break;
8323 	case ALGORITHM_PARITY_0:
8324 		new_layout = ALGORITHM_PARITY_0_6;
8325 		break;
8326 	case ALGORITHM_PARITY_N:
8327 		new_layout = ALGORITHM_PARITY_N;
8328 		break;
8329 	default:
8330 		return ERR_PTR(-EINVAL);
8331 	}
8332 	mddev->new_level = 6;
8333 	mddev->new_layout = new_layout;
8334 	mddev->delta_disks = 1;
8335 	mddev->raid_disks += 1;
8336 	return setup_conf(mddev);
8337 }
8338 
8339 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8340 {
8341 	struct r5conf *conf;
8342 	int err;
8343 
8344 	err = mddev_lock(mddev);
8345 	if (err)
8346 		return err;
8347 	conf = mddev->private;
8348 	if (!conf) {
8349 		mddev_unlock(mddev);
8350 		return -ENODEV;
8351 	}
8352 
8353 	if (strncmp(buf, "ppl", 3) == 0) {
8354 		/* ppl only works with RAID 5 */
8355 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8356 			err = log_init(conf, NULL, true);
8357 			if (!err) {
8358 				err = resize_stripes(conf, conf->pool_size);
8359 				if (err)
8360 					log_exit(conf);
8361 			}
8362 		} else
8363 			err = -EINVAL;
8364 	} else if (strncmp(buf, "resync", 6) == 0) {
8365 		if (raid5_has_ppl(conf)) {
8366 			mddev_suspend(mddev);
8367 			log_exit(conf);
8368 			mddev_resume(mddev);
8369 			err = resize_stripes(conf, conf->pool_size);
8370 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8371 			   r5l_log_disk_error(conf)) {
8372 			bool journal_dev_exists = false;
8373 			struct md_rdev *rdev;
8374 
8375 			rdev_for_each(rdev, mddev)
8376 				if (test_bit(Journal, &rdev->flags)) {
8377 					journal_dev_exists = true;
8378 					break;
8379 				}
8380 
8381 			if (!journal_dev_exists) {
8382 				mddev_suspend(mddev);
8383 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8384 				mddev_resume(mddev);
8385 			} else  /* need remove journal device first */
8386 				err = -EBUSY;
8387 		} else
8388 			err = -EINVAL;
8389 	} else {
8390 		err = -EINVAL;
8391 	}
8392 
8393 	if (!err)
8394 		md_update_sb(mddev, 1);
8395 
8396 	mddev_unlock(mddev);
8397 
8398 	return err;
8399 }
8400 
8401 static int raid5_start(struct mddev *mddev)
8402 {
8403 	struct r5conf *conf = mddev->private;
8404 
8405 	return r5l_start(conf->log);
8406 }
8407 
8408 static struct md_personality raid6_personality =
8409 {
8410 	.name		= "raid6",
8411 	.level		= 6,
8412 	.owner		= THIS_MODULE,
8413 	.make_request	= raid5_make_request,
8414 	.run		= raid5_run,
8415 	.start		= raid5_start,
8416 	.free		= raid5_free,
8417 	.status		= raid5_status,
8418 	.error_handler	= raid5_error,
8419 	.hot_add_disk	= raid5_add_disk,
8420 	.hot_remove_disk= raid5_remove_disk,
8421 	.spare_active	= raid5_spare_active,
8422 	.sync_request	= raid5_sync_request,
8423 	.resize		= raid5_resize,
8424 	.size		= raid5_size,
8425 	.check_reshape	= raid6_check_reshape,
8426 	.start_reshape  = raid5_start_reshape,
8427 	.finish_reshape = raid5_finish_reshape,
8428 	.quiesce	= raid5_quiesce,
8429 	.takeover	= raid6_takeover,
8430 	.congested	= raid5_congested,
8431 	.change_consistency_policy = raid5_change_consistency_policy,
8432 };
8433 static struct md_personality raid5_personality =
8434 {
8435 	.name		= "raid5",
8436 	.level		= 5,
8437 	.owner		= THIS_MODULE,
8438 	.make_request	= raid5_make_request,
8439 	.run		= raid5_run,
8440 	.start		= raid5_start,
8441 	.free		= raid5_free,
8442 	.status		= raid5_status,
8443 	.error_handler	= raid5_error,
8444 	.hot_add_disk	= raid5_add_disk,
8445 	.hot_remove_disk= raid5_remove_disk,
8446 	.spare_active	= raid5_spare_active,
8447 	.sync_request	= raid5_sync_request,
8448 	.resize		= raid5_resize,
8449 	.size		= raid5_size,
8450 	.check_reshape	= raid5_check_reshape,
8451 	.start_reshape  = raid5_start_reshape,
8452 	.finish_reshape = raid5_finish_reshape,
8453 	.quiesce	= raid5_quiesce,
8454 	.takeover	= raid5_takeover,
8455 	.congested	= raid5_congested,
8456 	.change_consistency_policy = raid5_change_consistency_policy,
8457 };
8458 
8459 static struct md_personality raid4_personality =
8460 {
8461 	.name		= "raid4",
8462 	.level		= 4,
8463 	.owner		= THIS_MODULE,
8464 	.make_request	= raid5_make_request,
8465 	.run		= raid5_run,
8466 	.start		= raid5_start,
8467 	.free		= raid5_free,
8468 	.status		= raid5_status,
8469 	.error_handler	= raid5_error,
8470 	.hot_add_disk	= raid5_add_disk,
8471 	.hot_remove_disk= raid5_remove_disk,
8472 	.spare_active	= raid5_spare_active,
8473 	.sync_request	= raid5_sync_request,
8474 	.resize		= raid5_resize,
8475 	.size		= raid5_size,
8476 	.check_reshape	= raid5_check_reshape,
8477 	.start_reshape  = raid5_start_reshape,
8478 	.finish_reshape = raid5_finish_reshape,
8479 	.quiesce	= raid5_quiesce,
8480 	.takeover	= raid4_takeover,
8481 	.congested	= raid5_congested,
8482 	.change_consistency_policy = raid5_change_consistency_policy,
8483 };
8484 
8485 static int __init raid5_init(void)
8486 {
8487 	int ret;
8488 
8489 	raid5_wq = alloc_workqueue("raid5wq",
8490 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8491 	if (!raid5_wq)
8492 		return -ENOMEM;
8493 
8494 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8495 				      "md/raid5:prepare",
8496 				      raid456_cpu_up_prepare,
8497 				      raid456_cpu_dead);
8498 	if (ret) {
8499 		destroy_workqueue(raid5_wq);
8500 		return ret;
8501 	}
8502 	register_md_personality(&raid6_personality);
8503 	register_md_personality(&raid5_personality);
8504 	register_md_personality(&raid4_personality);
8505 	return 0;
8506 }
8507 
8508 static void raid5_exit(void)
8509 {
8510 	unregister_md_personality(&raid6_personality);
8511 	unregister_md_personality(&raid5_personality);
8512 	unregister_md_personality(&raid4_personality);
8513 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8514 	destroy_workqueue(raid5_wq);
8515 }
8516 
8517 module_init(raid5_init);
8518 module_exit(raid5_exit);
8519 MODULE_LICENSE("GPL");
8520 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8521 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8522 MODULE_ALIAS("md-raid5");
8523 MODULE_ALIAS("md-raid4");
8524 MODULE_ALIAS("md-level-5");
8525 MODULE_ALIAS("md-level-4");
8526 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8527 MODULE_ALIAS("md-raid6");
8528 MODULE_ALIAS("md-level-6");
8529 
8530 /* This used to be two separate modules, they were: */
8531 MODULE_ALIAS("raid5");
8532 MODULE_ALIAS("raid6");
8533