1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <linux/nodemask.h> 57 #include <trace/events/block.h> 58 59 #include "md.h" 60 #include "raid5.h" 61 #include "raid0.h" 62 #include "bitmap.h" 63 64 #define cpu_to_group(cpu) cpu_to_node(cpu) 65 #define ANY_GROUP NUMA_NO_NODE 66 67 static bool devices_handle_discard_safely = false; 68 module_param(devices_handle_discard_safely, bool, 0644); 69 MODULE_PARM_DESC(devices_handle_discard_safely, 70 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 71 static struct workqueue_struct *raid5_wq; 72 /* 73 * Stripe cache 74 */ 75 76 #define NR_STRIPES 256 77 #define STRIPE_SIZE PAGE_SIZE 78 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 79 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 80 #define IO_THRESHOLD 1 81 #define BYPASS_THRESHOLD 1 82 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 83 #define HASH_MASK (NR_HASH - 1) 84 #define MAX_STRIPE_BATCH 8 85 86 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 87 { 88 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 89 return &conf->stripe_hashtbl[hash]; 90 } 91 92 static inline int stripe_hash_locks_hash(sector_t sect) 93 { 94 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 95 } 96 97 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 98 { 99 spin_lock_irq(conf->hash_locks + hash); 100 spin_lock(&conf->device_lock); 101 } 102 103 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 104 { 105 spin_unlock(&conf->device_lock); 106 spin_unlock_irq(conf->hash_locks + hash); 107 } 108 109 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 110 { 111 int i; 112 local_irq_disable(); 113 spin_lock(conf->hash_locks); 114 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 115 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 116 spin_lock(&conf->device_lock); 117 } 118 119 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 120 { 121 int i; 122 spin_unlock(&conf->device_lock); 123 for (i = NR_STRIPE_HASH_LOCKS; i; i--) 124 spin_unlock(conf->hash_locks + i - 1); 125 local_irq_enable(); 126 } 127 128 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 129 * order without overlap. There may be several bio's per stripe+device, and 130 * a bio could span several devices. 131 * When walking this list for a particular stripe+device, we must never proceed 132 * beyond a bio that extends past this device, as the next bio might no longer 133 * be valid. 134 * This function is used to determine the 'next' bio in the list, given the sector 135 * of the current stripe+device 136 */ 137 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 138 { 139 int sectors = bio_sectors(bio); 140 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS) 141 return bio->bi_next; 142 else 143 return NULL; 144 } 145 146 /* 147 * We maintain a biased count of active stripes in the bottom 16 bits of 148 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 149 */ 150 static inline int raid5_bi_processed_stripes(struct bio *bio) 151 { 152 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 153 return (atomic_read(segments) >> 16) & 0xffff; 154 } 155 156 static inline int raid5_dec_bi_active_stripes(struct bio *bio) 157 { 158 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 159 return atomic_sub_return(1, segments) & 0xffff; 160 } 161 162 static inline void raid5_inc_bi_active_stripes(struct bio *bio) 163 { 164 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 165 atomic_inc(segments); 166 } 167 168 static inline void raid5_set_bi_processed_stripes(struct bio *bio, 169 unsigned int cnt) 170 { 171 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 172 int old, new; 173 174 do { 175 old = atomic_read(segments); 176 new = (old & 0xffff) | (cnt << 16); 177 } while (atomic_cmpxchg(segments, old, new) != old); 178 } 179 180 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 181 { 182 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 183 atomic_set(segments, cnt); 184 } 185 186 /* Find first data disk in a raid6 stripe */ 187 static inline int raid6_d0(struct stripe_head *sh) 188 { 189 if (sh->ddf_layout) 190 /* ddf always start from first device */ 191 return 0; 192 /* md starts just after Q block */ 193 if (sh->qd_idx == sh->disks - 1) 194 return 0; 195 else 196 return sh->qd_idx + 1; 197 } 198 static inline int raid6_next_disk(int disk, int raid_disks) 199 { 200 disk++; 201 return (disk < raid_disks) ? disk : 0; 202 } 203 204 /* When walking through the disks in a raid5, starting at raid6_d0, 205 * We need to map each disk to a 'slot', where the data disks are slot 206 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 207 * is raid_disks-1. This help does that mapping. 208 */ 209 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 210 int *count, int syndrome_disks) 211 { 212 int slot = *count; 213 214 if (sh->ddf_layout) 215 (*count)++; 216 if (idx == sh->pd_idx) 217 return syndrome_disks; 218 if (idx == sh->qd_idx) 219 return syndrome_disks + 1; 220 if (!sh->ddf_layout) 221 (*count)++; 222 return slot; 223 } 224 225 static void return_io(struct bio *return_bi) 226 { 227 struct bio *bi = return_bi; 228 while (bi) { 229 230 return_bi = bi->bi_next; 231 bi->bi_next = NULL; 232 bi->bi_iter.bi_size = 0; 233 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 234 bi, 0); 235 bio_endio(bi, 0); 236 bi = return_bi; 237 } 238 } 239 240 static void print_raid5_conf (struct r5conf *conf); 241 242 static int stripe_operations_active(struct stripe_head *sh) 243 { 244 return sh->check_state || sh->reconstruct_state || 245 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 246 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 247 } 248 249 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 250 { 251 struct r5conf *conf = sh->raid_conf; 252 struct r5worker_group *group; 253 int thread_cnt; 254 int i, cpu = sh->cpu; 255 256 if (!cpu_online(cpu)) { 257 cpu = cpumask_any(cpu_online_mask); 258 sh->cpu = cpu; 259 } 260 261 if (list_empty(&sh->lru)) { 262 struct r5worker_group *group; 263 group = conf->worker_groups + cpu_to_group(cpu); 264 list_add_tail(&sh->lru, &group->handle_list); 265 group->stripes_cnt++; 266 sh->group = group; 267 } 268 269 if (conf->worker_cnt_per_group == 0) { 270 md_wakeup_thread(conf->mddev->thread); 271 return; 272 } 273 274 group = conf->worker_groups + cpu_to_group(sh->cpu); 275 276 group->workers[0].working = true; 277 /* at least one worker should run to avoid race */ 278 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 279 280 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 281 /* wakeup more workers */ 282 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 283 if (group->workers[i].working == false) { 284 group->workers[i].working = true; 285 queue_work_on(sh->cpu, raid5_wq, 286 &group->workers[i].work); 287 thread_cnt--; 288 } 289 } 290 } 291 292 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 293 struct list_head *temp_inactive_list) 294 { 295 BUG_ON(!list_empty(&sh->lru)); 296 BUG_ON(atomic_read(&conf->active_stripes)==0); 297 if (test_bit(STRIPE_HANDLE, &sh->state)) { 298 if (test_bit(STRIPE_DELAYED, &sh->state) && 299 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 300 list_add_tail(&sh->lru, &conf->delayed_list); 301 if (atomic_read(&conf->preread_active_stripes) 302 < IO_THRESHOLD) 303 md_wakeup_thread(conf->mddev->thread); 304 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 305 sh->bm_seq - conf->seq_write > 0) 306 list_add_tail(&sh->lru, &conf->bitmap_list); 307 else { 308 clear_bit(STRIPE_DELAYED, &sh->state); 309 clear_bit(STRIPE_BIT_DELAY, &sh->state); 310 if (conf->worker_cnt_per_group == 0) { 311 list_add_tail(&sh->lru, &conf->handle_list); 312 } else { 313 raid5_wakeup_stripe_thread(sh); 314 return; 315 } 316 } 317 md_wakeup_thread(conf->mddev->thread); 318 } else { 319 BUG_ON(stripe_operations_active(sh)); 320 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 321 if (atomic_dec_return(&conf->preread_active_stripes) 322 < IO_THRESHOLD) 323 md_wakeup_thread(conf->mddev->thread); 324 atomic_dec(&conf->active_stripes); 325 if (!test_bit(STRIPE_EXPANDING, &sh->state)) 326 list_add_tail(&sh->lru, temp_inactive_list); 327 } 328 } 329 330 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 331 struct list_head *temp_inactive_list) 332 { 333 if (atomic_dec_and_test(&sh->count)) 334 do_release_stripe(conf, sh, temp_inactive_list); 335 } 336 337 /* 338 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 339 * 340 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 341 * given time. Adding stripes only takes device lock, while deleting stripes 342 * only takes hash lock. 343 */ 344 static void release_inactive_stripe_list(struct r5conf *conf, 345 struct list_head *temp_inactive_list, 346 int hash) 347 { 348 int size; 349 bool do_wakeup = false; 350 unsigned long flags; 351 352 if (hash == NR_STRIPE_HASH_LOCKS) { 353 size = NR_STRIPE_HASH_LOCKS; 354 hash = NR_STRIPE_HASH_LOCKS - 1; 355 } else 356 size = 1; 357 while (size) { 358 struct list_head *list = &temp_inactive_list[size - 1]; 359 360 /* 361 * We don't hold any lock here yet, get_active_stripe() might 362 * remove stripes from the list 363 */ 364 if (!list_empty_careful(list)) { 365 spin_lock_irqsave(conf->hash_locks + hash, flags); 366 if (list_empty(conf->inactive_list + hash) && 367 !list_empty(list)) 368 atomic_dec(&conf->empty_inactive_list_nr); 369 list_splice_tail_init(list, conf->inactive_list + hash); 370 do_wakeup = true; 371 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 372 } 373 size--; 374 hash--; 375 } 376 377 if (do_wakeup) { 378 wake_up(&conf->wait_for_stripe); 379 if (conf->retry_read_aligned) 380 md_wakeup_thread(conf->mddev->thread); 381 } 382 } 383 384 /* should hold conf->device_lock already */ 385 static int release_stripe_list(struct r5conf *conf, 386 struct list_head *temp_inactive_list) 387 { 388 struct stripe_head *sh; 389 int count = 0; 390 struct llist_node *head; 391 392 head = llist_del_all(&conf->released_stripes); 393 head = llist_reverse_order(head); 394 while (head) { 395 int hash; 396 397 sh = llist_entry(head, struct stripe_head, release_list); 398 head = llist_next(head); 399 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 400 smp_mb(); 401 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 402 /* 403 * Don't worry the bit is set here, because if the bit is set 404 * again, the count is always > 1. This is true for 405 * STRIPE_ON_UNPLUG_LIST bit too. 406 */ 407 hash = sh->hash_lock_index; 408 __release_stripe(conf, sh, &temp_inactive_list[hash]); 409 count++; 410 } 411 412 return count; 413 } 414 415 static void release_stripe(struct stripe_head *sh) 416 { 417 struct r5conf *conf = sh->raid_conf; 418 unsigned long flags; 419 struct list_head list; 420 int hash; 421 bool wakeup; 422 423 /* Avoid release_list until the last reference. 424 */ 425 if (atomic_add_unless(&sh->count, -1, 1)) 426 return; 427 428 if (unlikely(!conf->mddev->thread) || 429 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 430 goto slow_path; 431 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 432 if (wakeup) 433 md_wakeup_thread(conf->mddev->thread); 434 return; 435 slow_path: 436 local_irq_save(flags); 437 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 438 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 439 INIT_LIST_HEAD(&list); 440 hash = sh->hash_lock_index; 441 do_release_stripe(conf, sh, &list); 442 spin_unlock(&conf->device_lock); 443 release_inactive_stripe_list(conf, &list, hash); 444 } 445 local_irq_restore(flags); 446 } 447 448 static inline void remove_hash(struct stripe_head *sh) 449 { 450 pr_debug("remove_hash(), stripe %llu\n", 451 (unsigned long long)sh->sector); 452 453 hlist_del_init(&sh->hash); 454 } 455 456 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 457 { 458 struct hlist_head *hp = stripe_hash(conf, sh->sector); 459 460 pr_debug("insert_hash(), stripe %llu\n", 461 (unsigned long long)sh->sector); 462 463 hlist_add_head(&sh->hash, hp); 464 } 465 466 /* find an idle stripe, make sure it is unhashed, and return it. */ 467 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 468 { 469 struct stripe_head *sh = NULL; 470 struct list_head *first; 471 472 if (list_empty(conf->inactive_list + hash)) 473 goto out; 474 first = (conf->inactive_list + hash)->next; 475 sh = list_entry(first, struct stripe_head, lru); 476 list_del_init(first); 477 remove_hash(sh); 478 atomic_inc(&conf->active_stripes); 479 BUG_ON(hash != sh->hash_lock_index); 480 if (list_empty(conf->inactive_list + hash)) 481 atomic_inc(&conf->empty_inactive_list_nr); 482 out: 483 return sh; 484 } 485 486 static void shrink_buffers(struct stripe_head *sh) 487 { 488 struct page *p; 489 int i; 490 int num = sh->raid_conf->pool_size; 491 492 for (i = 0; i < num ; i++) { 493 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 494 p = sh->dev[i].page; 495 if (!p) 496 continue; 497 sh->dev[i].page = NULL; 498 put_page(p); 499 } 500 } 501 502 static int grow_buffers(struct stripe_head *sh) 503 { 504 int i; 505 int num = sh->raid_conf->pool_size; 506 507 for (i = 0; i < num; i++) { 508 struct page *page; 509 510 if (!(page = alloc_page(GFP_KERNEL))) { 511 return 1; 512 } 513 sh->dev[i].page = page; 514 sh->dev[i].orig_page = page; 515 } 516 return 0; 517 } 518 519 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 520 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 521 struct stripe_head *sh); 522 523 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 524 { 525 struct r5conf *conf = sh->raid_conf; 526 int i, seq; 527 528 BUG_ON(atomic_read(&sh->count) != 0); 529 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 530 BUG_ON(stripe_operations_active(sh)); 531 532 pr_debug("init_stripe called, stripe %llu\n", 533 (unsigned long long)sector); 534 retry: 535 seq = read_seqcount_begin(&conf->gen_lock); 536 sh->generation = conf->generation - previous; 537 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 538 sh->sector = sector; 539 stripe_set_idx(sector, conf, previous, sh); 540 sh->state = 0; 541 542 for (i = sh->disks; i--; ) { 543 struct r5dev *dev = &sh->dev[i]; 544 545 if (dev->toread || dev->read || dev->towrite || dev->written || 546 test_bit(R5_LOCKED, &dev->flags)) { 547 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 548 (unsigned long long)sh->sector, i, dev->toread, 549 dev->read, dev->towrite, dev->written, 550 test_bit(R5_LOCKED, &dev->flags)); 551 WARN_ON(1); 552 } 553 dev->flags = 0; 554 raid5_build_block(sh, i, previous); 555 } 556 if (read_seqcount_retry(&conf->gen_lock, seq)) 557 goto retry; 558 insert_hash(conf, sh); 559 sh->cpu = smp_processor_id(); 560 } 561 562 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 563 short generation) 564 { 565 struct stripe_head *sh; 566 567 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 568 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 569 if (sh->sector == sector && sh->generation == generation) 570 return sh; 571 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 572 return NULL; 573 } 574 575 /* 576 * Need to check if array has failed when deciding whether to: 577 * - start an array 578 * - remove non-faulty devices 579 * - add a spare 580 * - allow a reshape 581 * This determination is simple when no reshape is happening. 582 * However if there is a reshape, we need to carefully check 583 * both the before and after sections. 584 * This is because some failed devices may only affect one 585 * of the two sections, and some non-in_sync devices may 586 * be insync in the section most affected by failed devices. 587 */ 588 static int calc_degraded(struct r5conf *conf) 589 { 590 int degraded, degraded2; 591 int i; 592 593 rcu_read_lock(); 594 degraded = 0; 595 for (i = 0; i < conf->previous_raid_disks; i++) { 596 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 597 if (rdev && test_bit(Faulty, &rdev->flags)) 598 rdev = rcu_dereference(conf->disks[i].replacement); 599 if (!rdev || test_bit(Faulty, &rdev->flags)) 600 degraded++; 601 else if (test_bit(In_sync, &rdev->flags)) 602 ; 603 else 604 /* not in-sync or faulty. 605 * If the reshape increases the number of devices, 606 * this is being recovered by the reshape, so 607 * this 'previous' section is not in_sync. 608 * If the number of devices is being reduced however, 609 * the device can only be part of the array if 610 * we are reverting a reshape, so this section will 611 * be in-sync. 612 */ 613 if (conf->raid_disks >= conf->previous_raid_disks) 614 degraded++; 615 } 616 rcu_read_unlock(); 617 if (conf->raid_disks == conf->previous_raid_disks) 618 return degraded; 619 rcu_read_lock(); 620 degraded2 = 0; 621 for (i = 0; i < conf->raid_disks; i++) { 622 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 623 if (rdev && test_bit(Faulty, &rdev->flags)) 624 rdev = rcu_dereference(conf->disks[i].replacement); 625 if (!rdev || test_bit(Faulty, &rdev->flags)) 626 degraded2++; 627 else if (test_bit(In_sync, &rdev->flags)) 628 ; 629 else 630 /* not in-sync or faulty. 631 * If reshape increases the number of devices, this 632 * section has already been recovered, else it 633 * almost certainly hasn't. 634 */ 635 if (conf->raid_disks <= conf->previous_raid_disks) 636 degraded2++; 637 } 638 rcu_read_unlock(); 639 if (degraded2 > degraded) 640 return degraded2; 641 return degraded; 642 } 643 644 static int has_failed(struct r5conf *conf) 645 { 646 int degraded; 647 648 if (conf->mddev->reshape_position == MaxSector) 649 return conf->mddev->degraded > conf->max_degraded; 650 651 degraded = calc_degraded(conf); 652 if (degraded > conf->max_degraded) 653 return 1; 654 return 0; 655 } 656 657 static struct stripe_head * 658 get_active_stripe(struct r5conf *conf, sector_t sector, 659 int previous, int noblock, int noquiesce) 660 { 661 struct stripe_head *sh; 662 int hash = stripe_hash_locks_hash(sector); 663 664 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 665 666 spin_lock_irq(conf->hash_locks + hash); 667 668 do { 669 wait_event_lock_irq(conf->wait_for_stripe, 670 conf->quiesce == 0 || noquiesce, 671 *(conf->hash_locks + hash)); 672 sh = __find_stripe(conf, sector, conf->generation - previous); 673 if (!sh) { 674 if (!conf->inactive_blocked) 675 sh = get_free_stripe(conf, hash); 676 if (noblock && sh == NULL) 677 break; 678 if (!sh) { 679 conf->inactive_blocked = 1; 680 wait_event_lock_irq( 681 conf->wait_for_stripe, 682 !list_empty(conf->inactive_list + hash) && 683 (atomic_read(&conf->active_stripes) 684 < (conf->max_nr_stripes * 3 / 4) 685 || !conf->inactive_blocked), 686 *(conf->hash_locks + hash)); 687 conf->inactive_blocked = 0; 688 } else { 689 init_stripe(sh, sector, previous); 690 atomic_inc(&sh->count); 691 } 692 } else if (!atomic_inc_not_zero(&sh->count)) { 693 spin_lock(&conf->device_lock); 694 if (!atomic_read(&sh->count)) { 695 if (!test_bit(STRIPE_HANDLE, &sh->state)) 696 atomic_inc(&conf->active_stripes); 697 BUG_ON(list_empty(&sh->lru) && 698 !test_bit(STRIPE_EXPANDING, &sh->state)); 699 list_del_init(&sh->lru); 700 if (sh->group) { 701 sh->group->stripes_cnt--; 702 sh->group = NULL; 703 } 704 } 705 atomic_inc(&sh->count); 706 spin_unlock(&conf->device_lock); 707 } 708 } while (sh == NULL); 709 710 spin_unlock_irq(conf->hash_locks + hash); 711 return sh; 712 } 713 714 /* Determine if 'data_offset' or 'new_data_offset' should be used 715 * in this stripe_head. 716 */ 717 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 718 { 719 sector_t progress = conf->reshape_progress; 720 /* Need a memory barrier to make sure we see the value 721 * of conf->generation, or ->data_offset that was set before 722 * reshape_progress was updated. 723 */ 724 smp_rmb(); 725 if (progress == MaxSector) 726 return 0; 727 if (sh->generation == conf->generation - 1) 728 return 0; 729 /* We are in a reshape, and this is a new-generation stripe, 730 * so use new_data_offset. 731 */ 732 return 1; 733 } 734 735 static void 736 raid5_end_read_request(struct bio *bi, int error); 737 static void 738 raid5_end_write_request(struct bio *bi, int error); 739 740 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 741 { 742 struct r5conf *conf = sh->raid_conf; 743 int i, disks = sh->disks; 744 745 might_sleep(); 746 747 for (i = disks; i--; ) { 748 int rw; 749 int replace_only = 0; 750 struct bio *bi, *rbi; 751 struct md_rdev *rdev, *rrdev = NULL; 752 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 753 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 754 rw = WRITE_FUA; 755 else 756 rw = WRITE; 757 if (test_bit(R5_Discard, &sh->dev[i].flags)) 758 rw |= REQ_DISCARD; 759 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 760 rw = READ; 761 else if (test_and_clear_bit(R5_WantReplace, 762 &sh->dev[i].flags)) { 763 rw = WRITE; 764 replace_only = 1; 765 } else 766 continue; 767 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 768 rw |= REQ_SYNC; 769 770 bi = &sh->dev[i].req; 771 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 772 773 rcu_read_lock(); 774 rrdev = rcu_dereference(conf->disks[i].replacement); 775 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 776 rdev = rcu_dereference(conf->disks[i].rdev); 777 if (!rdev) { 778 rdev = rrdev; 779 rrdev = NULL; 780 } 781 if (rw & WRITE) { 782 if (replace_only) 783 rdev = NULL; 784 if (rdev == rrdev) 785 /* We raced and saw duplicates */ 786 rrdev = NULL; 787 } else { 788 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev) 789 rdev = rrdev; 790 rrdev = NULL; 791 } 792 793 if (rdev && test_bit(Faulty, &rdev->flags)) 794 rdev = NULL; 795 if (rdev) 796 atomic_inc(&rdev->nr_pending); 797 if (rrdev && test_bit(Faulty, &rrdev->flags)) 798 rrdev = NULL; 799 if (rrdev) 800 atomic_inc(&rrdev->nr_pending); 801 rcu_read_unlock(); 802 803 /* We have already checked bad blocks for reads. Now 804 * need to check for writes. We never accept write errors 805 * on the replacement, so we don't to check rrdev. 806 */ 807 while ((rw & WRITE) && rdev && 808 test_bit(WriteErrorSeen, &rdev->flags)) { 809 sector_t first_bad; 810 int bad_sectors; 811 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 812 &first_bad, &bad_sectors); 813 if (!bad) 814 break; 815 816 if (bad < 0) { 817 set_bit(BlockedBadBlocks, &rdev->flags); 818 if (!conf->mddev->external && 819 conf->mddev->flags) { 820 /* It is very unlikely, but we might 821 * still need to write out the 822 * bad block log - better give it 823 * a chance*/ 824 md_check_recovery(conf->mddev); 825 } 826 /* 827 * Because md_wait_for_blocked_rdev 828 * will dec nr_pending, we must 829 * increment it first. 830 */ 831 atomic_inc(&rdev->nr_pending); 832 md_wait_for_blocked_rdev(rdev, conf->mddev); 833 } else { 834 /* Acknowledged bad block - skip the write */ 835 rdev_dec_pending(rdev, conf->mddev); 836 rdev = NULL; 837 } 838 } 839 840 if (rdev) { 841 if (s->syncing || s->expanding || s->expanded 842 || s->replacing) 843 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 844 845 set_bit(STRIPE_IO_STARTED, &sh->state); 846 847 bio_reset(bi); 848 bi->bi_bdev = rdev->bdev; 849 bi->bi_rw = rw; 850 bi->bi_end_io = (rw & WRITE) 851 ? raid5_end_write_request 852 : raid5_end_read_request; 853 bi->bi_private = sh; 854 855 pr_debug("%s: for %llu schedule op %ld on disc %d\n", 856 __func__, (unsigned long long)sh->sector, 857 bi->bi_rw, i); 858 atomic_inc(&sh->count); 859 if (use_new_offset(conf, sh)) 860 bi->bi_iter.bi_sector = (sh->sector 861 + rdev->new_data_offset); 862 else 863 bi->bi_iter.bi_sector = (sh->sector 864 + rdev->data_offset); 865 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 866 bi->bi_rw |= REQ_NOMERGE; 867 868 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 869 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 870 sh->dev[i].vec.bv_page = sh->dev[i].page; 871 bi->bi_vcnt = 1; 872 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 873 bi->bi_io_vec[0].bv_offset = 0; 874 bi->bi_iter.bi_size = STRIPE_SIZE; 875 /* 876 * If this is discard request, set bi_vcnt 0. We don't 877 * want to confuse SCSI because SCSI will replace payload 878 */ 879 if (rw & REQ_DISCARD) 880 bi->bi_vcnt = 0; 881 if (rrdev) 882 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 883 884 if (conf->mddev->gendisk) 885 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), 886 bi, disk_devt(conf->mddev->gendisk), 887 sh->dev[i].sector); 888 generic_make_request(bi); 889 } 890 if (rrdev) { 891 if (s->syncing || s->expanding || s->expanded 892 || s->replacing) 893 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 894 895 set_bit(STRIPE_IO_STARTED, &sh->state); 896 897 bio_reset(rbi); 898 rbi->bi_bdev = rrdev->bdev; 899 rbi->bi_rw = rw; 900 BUG_ON(!(rw & WRITE)); 901 rbi->bi_end_io = raid5_end_write_request; 902 rbi->bi_private = sh; 903 904 pr_debug("%s: for %llu schedule op %ld on " 905 "replacement disc %d\n", 906 __func__, (unsigned long long)sh->sector, 907 rbi->bi_rw, i); 908 atomic_inc(&sh->count); 909 if (use_new_offset(conf, sh)) 910 rbi->bi_iter.bi_sector = (sh->sector 911 + rrdev->new_data_offset); 912 else 913 rbi->bi_iter.bi_sector = (sh->sector 914 + rrdev->data_offset); 915 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 916 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 917 sh->dev[i].rvec.bv_page = sh->dev[i].page; 918 rbi->bi_vcnt = 1; 919 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 920 rbi->bi_io_vec[0].bv_offset = 0; 921 rbi->bi_iter.bi_size = STRIPE_SIZE; 922 /* 923 * If this is discard request, set bi_vcnt 0. We don't 924 * want to confuse SCSI because SCSI will replace payload 925 */ 926 if (rw & REQ_DISCARD) 927 rbi->bi_vcnt = 0; 928 if (conf->mddev->gendisk) 929 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), 930 rbi, disk_devt(conf->mddev->gendisk), 931 sh->dev[i].sector); 932 generic_make_request(rbi); 933 } 934 if (!rdev && !rrdev) { 935 if (rw & WRITE) 936 set_bit(STRIPE_DEGRADED, &sh->state); 937 pr_debug("skip op %ld on disc %d for sector %llu\n", 938 bi->bi_rw, i, (unsigned long long)sh->sector); 939 clear_bit(R5_LOCKED, &sh->dev[i].flags); 940 set_bit(STRIPE_HANDLE, &sh->state); 941 } 942 } 943 } 944 945 static struct dma_async_tx_descriptor * 946 async_copy_data(int frombio, struct bio *bio, struct page **page, 947 sector_t sector, struct dma_async_tx_descriptor *tx, 948 struct stripe_head *sh) 949 { 950 struct bio_vec bvl; 951 struct bvec_iter iter; 952 struct page *bio_page; 953 int page_offset; 954 struct async_submit_ctl submit; 955 enum async_tx_flags flags = 0; 956 957 if (bio->bi_iter.bi_sector >= sector) 958 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 959 else 960 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 961 962 if (frombio) 963 flags |= ASYNC_TX_FENCE; 964 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 965 966 bio_for_each_segment(bvl, bio, iter) { 967 int len = bvl.bv_len; 968 int clen; 969 int b_offset = 0; 970 971 if (page_offset < 0) { 972 b_offset = -page_offset; 973 page_offset += b_offset; 974 len -= b_offset; 975 } 976 977 if (len > 0 && page_offset + len > STRIPE_SIZE) 978 clen = STRIPE_SIZE - page_offset; 979 else 980 clen = len; 981 982 if (clen > 0) { 983 b_offset += bvl.bv_offset; 984 bio_page = bvl.bv_page; 985 if (frombio) { 986 if (sh->raid_conf->skip_copy && 987 b_offset == 0 && page_offset == 0 && 988 clen == STRIPE_SIZE) 989 *page = bio_page; 990 else 991 tx = async_memcpy(*page, bio_page, page_offset, 992 b_offset, clen, &submit); 993 } else 994 tx = async_memcpy(bio_page, *page, b_offset, 995 page_offset, clen, &submit); 996 } 997 /* chain the operations */ 998 submit.depend_tx = tx; 999 1000 if (clen < len) /* hit end of page */ 1001 break; 1002 page_offset += len; 1003 } 1004 1005 return tx; 1006 } 1007 1008 static void ops_complete_biofill(void *stripe_head_ref) 1009 { 1010 struct stripe_head *sh = stripe_head_ref; 1011 struct bio *return_bi = NULL; 1012 int i; 1013 1014 pr_debug("%s: stripe %llu\n", __func__, 1015 (unsigned long long)sh->sector); 1016 1017 /* clear completed biofills */ 1018 for (i = sh->disks; i--; ) { 1019 struct r5dev *dev = &sh->dev[i]; 1020 1021 /* acknowledge completion of a biofill operation */ 1022 /* and check if we need to reply to a read request, 1023 * new R5_Wantfill requests are held off until 1024 * !STRIPE_BIOFILL_RUN 1025 */ 1026 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1027 struct bio *rbi, *rbi2; 1028 1029 BUG_ON(!dev->read); 1030 rbi = dev->read; 1031 dev->read = NULL; 1032 while (rbi && rbi->bi_iter.bi_sector < 1033 dev->sector + STRIPE_SECTORS) { 1034 rbi2 = r5_next_bio(rbi, dev->sector); 1035 if (!raid5_dec_bi_active_stripes(rbi)) { 1036 rbi->bi_next = return_bi; 1037 return_bi = rbi; 1038 } 1039 rbi = rbi2; 1040 } 1041 } 1042 } 1043 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1044 1045 return_io(return_bi); 1046 1047 set_bit(STRIPE_HANDLE, &sh->state); 1048 release_stripe(sh); 1049 } 1050 1051 static void ops_run_biofill(struct stripe_head *sh) 1052 { 1053 struct dma_async_tx_descriptor *tx = NULL; 1054 struct async_submit_ctl submit; 1055 int i; 1056 1057 pr_debug("%s: stripe %llu\n", __func__, 1058 (unsigned long long)sh->sector); 1059 1060 for (i = sh->disks; i--; ) { 1061 struct r5dev *dev = &sh->dev[i]; 1062 if (test_bit(R5_Wantfill, &dev->flags)) { 1063 struct bio *rbi; 1064 spin_lock_irq(&sh->stripe_lock); 1065 dev->read = rbi = dev->toread; 1066 dev->toread = NULL; 1067 spin_unlock_irq(&sh->stripe_lock); 1068 while (rbi && rbi->bi_iter.bi_sector < 1069 dev->sector + STRIPE_SECTORS) { 1070 tx = async_copy_data(0, rbi, &dev->page, 1071 dev->sector, tx, sh); 1072 rbi = r5_next_bio(rbi, dev->sector); 1073 } 1074 } 1075 } 1076 1077 atomic_inc(&sh->count); 1078 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1079 async_trigger_callback(&submit); 1080 } 1081 1082 static void mark_target_uptodate(struct stripe_head *sh, int target) 1083 { 1084 struct r5dev *tgt; 1085 1086 if (target < 0) 1087 return; 1088 1089 tgt = &sh->dev[target]; 1090 set_bit(R5_UPTODATE, &tgt->flags); 1091 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1092 clear_bit(R5_Wantcompute, &tgt->flags); 1093 } 1094 1095 static void ops_complete_compute(void *stripe_head_ref) 1096 { 1097 struct stripe_head *sh = stripe_head_ref; 1098 1099 pr_debug("%s: stripe %llu\n", __func__, 1100 (unsigned long long)sh->sector); 1101 1102 /* mark the computed target(s) as uptodate */ 1103 mark_target_uptodate(sh, sh->ops.target); 1104 mark_target_uptodate(sh, sh->ops.target2); 1105 1106 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1107 if (sh->check_state == check_state_compute_run) 1108 sh->check_state = check_state_compute_result; 1109 set_bit(STRIPE_HANDLE, &sh->state); 1110 release_stripe(sh); 1111 } 1112 1113 /* return a pointer to the address conversion region of the scribble buffer */ 1114 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1115 struct raid5_percpu *percpu) 1116 { 1117 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2); 1118 } 1119 1120 static struct dma_async_tx_descriptor * 1121 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1122 { 1123 int disks = sh->disks; 1124 struct page **xor_srcs = percpu->scribble; 1125 int target = sh->ops.target; 1126 struct r5dev *tgt = &sh->dev[target]; 1127 struct page *xor_dest = tgt->page; 1128 int count = 0; 1129 struct dma_async_tx_descriptor *tx; 1130 struct async_submit_ctl submit; 1131 int i; 1132 1133 pr_debug("%s: stripe %llu block: %d\n", 1134 __func__, (unsigned long long)sh->sector, target); 1135 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1136 1137 for (i = disks; i--; ) 1138 if (i != target) 1139 xor_srcs[count++] = sh->dev[i].page; 1140 1141 atomic_inc(&sh->count); 1142 1143 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1144 ops_complete_compute, sh, to_addr_conv(sh, percpu)); 1145 if (unlikely(count == 1)) 1146 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1147 else 1148 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1149 1150 return tx; 1151 } 1152 1153 /* set_syndrome_sources - populate source buffers for gen_syndrome 1154 * @srcs - (struct page *) array of size sh->disks 1155 * @sh - stripe_head to parse 1156 * 1157 * Populates srcs in proper layout order for the stripe and returns the 1158 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1159 * destination buffer is recorded in srcs[count] and the Q destination 1160 * is recorded in srcs[count+1]]. 1161 */ 1162 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh) 1163 { 1164 int disks = sh->disks; 1165 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1166 int d0_idx = raid6_d0(sh); 1167 int count; 1168 int i; 1169 1170 for (i = 0; i < disks; i++) 1171 srcs[i] = NULL; 1172 1173 count = 0; 1174 i = d0_idx; 1175 do { 1176 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1177 1178 srcs[slot] = sh->dev[i].page; 1179 i = raid6_next_disk(i, disks); 1180 } while (i != d0_idx); 1181 1182 return syndrome_disks; 1183 } 1184 1185 static struct dma_async_tx_descriptor * 1186 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1187 { 1188 int disks = sh->disks; 1189 struct page **blocks = percpu->scribble; 1190 int target; 1191 int qd_idx = sh->qd_idx; 1192 struct dma_async_tx_descriptor *tx; 1193 struct async_submit_ctl submit; 1194 struct r5dev *tgt; 1195 struct page *dest; 1196 int i; 1197 int count; 1198 1199 if (sh->ops.target < 0) 1200 target = sh->ops.target2; 1201 else if (sh->ops.target2 < 0) 1202 target = sh->ops.target; 1203 else 1204 /* we should only have one valid target */ 1205 BUG(); 1206 BUG_ON(target < 0); 1207 pr_debug("%s: stripe %llu block: %d\n", 1208 __func__, (unsigned long long)sh->sector, target); 1209 1210 tgt = &sh->dev[target]; 1211 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1212 dest = tgt->page; 1213 1214 atomic_inc(&sh->count); 1215 1216 if (target == qd_idx) { 1217 count = set_syndrome_sources(blocks, sh); 1218 blocks[count] = NULL; /* regenerating p is not necessary */ 1219 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1220 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1221 ops_complete_compute, sh, 1222 to_addr_conv(sh, percpu)); 1223 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1224 } else { 1225 /* Compute any data- or p-drive using XOR */ 1226 count = 0; 1227 for (i = disks; i-- ; ) { 1228 if (i == target || i == qd_idx) 1229 continue; 1230 blocks[count++] = sh->dev[i].page; 1231 } 1232 1233 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1234 NULL, ops_complete_compute, sh, 1235 to_addr_conv(sh, percpu)); 1236 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1237 } 1238 1239 return tx; 1240 } 1241 1242 static struct dma_async_tx_descriptor * 1243 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1244 { 1245 int i, count, disks = sh->disks; 1246 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1247 int d0_idx = raid6_d0(sh); 1248 int faila = -1, failb = -1; 1249 int target = sh->ops.target; 1250 int target2 = sh->ops.target2; 1251 struct r5dev *tgt = &sh->dev[target]; 1252 struct r5dev *tgt2 = &sh->dev[target2]; 1253 struct dma_async_tx_descriptor *tx; 1254 struct page **blocks = percpu->scribble; 1255 struct async_submit_ctl submit; 1256 1257 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1258 __func__, (unsigned long long)sh->sector, target, target2); 1259 BUG_ON(target < 0 || target2 < 0); 1260 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1261 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1262 1263 /* we need to open-code set_syndrome_sources to handle the 1264 * slot number conversion for 'faila' and 'failb' 1265 */ 1266 for (i = 0; i < disks ; i++) 1267 blocks[i] = NULL; 1268 count = 0; 1269 i = d0_idx; 1270 do { 1271 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1272 1273 blocks[slot] = sh->dev[i].page; 1274 1275 if (i == target) 1276 faila = slot; 1277 if (i == target2) 1278 failb = slot; 1279 i = raid6_next_disk(i, disks); 1280 } while (i != d0_idx); 1281 1282 BUG_ON(faila == failb); 1283 if (failb < faila) 1284 swap(faila, failb); 1285 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1286 __func__, (unsigned long long)sh->sector, faila, failb); 1287 1288 atomic_inc(&sh->count); 1289 1290 if (failb == syndrome_disks+1) { 1291 /* Q disk is one of the missing disks */ 1292 if (faila == syndrome_disks) { 1293 /* Missing P+Q, just recompute */ 1294 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1295 ops_complete_compute, sh, 1296 to_addr_conv(sh, percpu)); 1297 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1298 STRIPE_SIZE, &submit); 1299 } else { 1300 struct page *dest; 1301 int data_target; 1302 int qd_idx = sh->qd_idx; 1303 1304 /* Missing D+Q: recompute D from P, then recompute Q */ 1305 if (target == qd_idx) 1306 data_target = target2; 1307 else 1308 data_target = target; 1309 1310 count = 0; 1311 for (i = disks; i-- ; ) { 1312 if (i == data_target || i == qd_idx) 1313 continue; 1314 blocks[count++] = sh->dev[i].page; 1315 } 1316 dest = sh->dev[data_target].page; 1317 init_async_submit(&submit, 1318 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1319 NULL, NULL, NULL, 1320 to_addr_conv(sh, percpu)); 1321 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1322 &submit); 1323 1324 count = set_syndrome_sources(blocks, sh); 1325 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1326 ops_complete_compute, sh, 1327 to_addr_conv(sh, percpu)); 1328 return async_gen_syndrome(blocks, 0, count+2, 1329 STRIPE_SIZE, &submit); 1330 } 1331 } else { 1332 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1333 ops_complete_compute, sh, 1334 to_addr_conv(sh, percpu)); 1335 if (failb == syndrome_disks) { 1336 /* We're missing D+P. */ 1337 return async_raid6_datap_recov(syndrome_disks+2, 1338 STRIPE_SIZE, faila, 1339 blocks, &submit); 1340 } else { 1341 /* We're missing D+D. */ 1342 return async_raid6_2data_recov(syndrome_disks+2, 1343 STRIPE_SIZE, faila, failb, 1344 blocks, &submit); 1345 } 1346 } 1347 } 1348 1349 static void ops_complete_prexor(void *stripe_head_ref) 1350 { 1351 struct stripe_head *sh = stripe_head_ref; 1352 1353 pr_debug("%s: stripe %llu\n", __func__, 1354 (unsigned long long)sh->sector); 1355 } 1356 1357 static struct dma_async_tx_descriptor * 1358 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu, 1359 struct dma_async_tx_descriptor *tx) 1360 { 1361 int disks = sh->disks; 1362 struct page **xor_srcs = percpu->scribble; 1363 int count = 0, pd_idx = sh->pd_idx, i; 1364 struct async_submit_ctl submit; 1365 1366 /* existing parity data subtracted */ 1367 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1368 1369 pr_debug("%s: stripe %llu\n", __func__, 1370 (unsigned long long)sh->sector); 1371 1372 for (i = disks; i--; ) { 1373 struct r5dev *dev = &sh->dev[i]; 1374 /* Only process blocks that are known to be uptodate */ 1375 if (test_bit(R5_Wantdrain, &dev->flags)) 1376 xor_srcs[count++] = dev->page; 1377 } 1378 1379 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1380 ops_complete_prexor, sh, to_addr_conv(sh, percpu)); 1381 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1382 1383 return tx; 1384 } 1385 1386 static struct dma_async_tx_descriptor * 1387 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1388 { 1389 int disks = sh->disks; 1390 int i; 1391 1392 pr_debug("%s: stripe %llu\n", __func__, 1393 (unsigned long long)sh->sector); 1394 1395 for (i = disks; i--; ) { 1396 struct r5dev *dev = &sh->dev[i]; 1397 struct bio *chosen; 1398 1399 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) { 1400 struct bio *wbi; 1401 1402 spin_lock_irq(&sh->stripe_lock); 1403 chosen = dev->towrite; 1404 dev->towrite = NULL; 1405 BUG_ON(dev->written); 1406 wbi = dev->written = chosen; 1407 spin_unlock_irq(&sh->stripe_lock); 1408 WARN_ON(dev->page != dev->orig_page); 1409 1410 while (wbi && wbi->bi_iter.bi_sector < 1411 dev->sector + STRIPE_SECTORS) { 1412 if (wbi->bi_rw & REQ_FUA) 1413 set_bit(R5_WantFUA, &dev->flags); 1414 if (wbi->bi_rw & REQ_SYNC) 1415 set_bit(R5_SyncIO, &dev->flags); 1416 if (wbi->bi_rw & REQ_DISCARD) 1417 set_bit(R5_Discard, &dev->flags); 1418 else { 1419 tx = async_copy_data(1, wbi, &dev->page, 1420 dev->sector, tx, sh); 1421 if (dev->page != dev->orig_page) { 1422 set_bit(R5_SkipCopy, &dev->flags); 1423 clear_bit(R5_UPTODATE, &dev->flags); 1424 clear_bit(R5_OVERWRITE, &dev->flags); 1425 } 1426 } 1427 wbi = r5_next_bio(wbi, dev->sector); 1428 } 1429 } 1430 } 1431 1432 return tx; 1433 } 1434 1435 static void ops_complete_reconstruct(void *stripe_head_ref) 1436 { 1437 struct stripe_head *sh = stripe_head_ref; 1438 int disks = sh->disks; 1439 int pd_idx = sh->pd_idx; 1440 int qd_idx = sh->qd_idx; 1441 int i; 1442 bool fua = false, sync = false, discard = false; 1443 1444 pr_debug("%s: stripe %llu\n", __func__, 1445 (unsigned long long)sh->sector); 1446 1447 for (i = disks; i--; ) { 1448 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1449 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1450 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1451 } 1452 1453 for (i = disks; i--; ) { 1454 struct r5dev *dev = &sh->dev[i]; 1455 1456 if (dev->written || i == pd_idx || i == qd_idx) { 1457 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) 1458 set_bit(R5_UPTODATE, &dev->flags); 1459 if (fua) 1460 set_bit(R5_WantFUA, &dev->flags); 1461 if (sync) 1462 set_bit(R5_SyncIO, &dev->flags); 1463 } 1464 } 1465 1466 if (sh->reconstruct_state == reconstruct_state_drain_run) 1467 sh->reconstruct_state = reconstruct_state_drain_result; 1468 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1469 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1470 else { 1471 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1472 sh->reconstruct_state = reconstruct_state_result; 1473 } 1474 1475 set_bit(STRIPE_HANDLE, &sh->state); 1476 release_stripe(sh); 1477 } 1478 1479 static void 1480 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1481 struct dma_async_tx_descriptor *tx) 1482 { 1483 int disks = sh->disks; 1484 struct page **xor_srcs = percpu->scribble; 1485 struct async_submit_ctl submit; 1486 int count = 0, pd_idx = sh->pd_idx, i; 1487 struct page *xor_dest; 1488 int prexor = 0; 1489 unsigned long flags; 1490 1491 pr_debug("%s: stripe %llu\n", __func__, 1492 (unsigned long long)sh->sector); 1493 1494 for (i = 0; i < sh->disks; i++) { 1495 if (pd_idx == i) 1496 continue; 1497 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1498 break; 1499 } 1500 if (i >= sh->disks) { 1501 atomic_inc(&sh->count); 1502 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1503 ops_complete_reconstruct(sh); 1504 return; 1505 } 1506 /* check if prexor is active which means only process blocks 1507 * that are part of a read-modify-write (written) 1508 */ 1509 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1510 prexor = 1; 1511 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1512 for (i = disks; i--; ) { 1513 struct r5dev *dev = &sh->dev[i]; 1514 if (dev->written) 1515 xor_srcs[count++] = dev->page; 1516 } 1517 } else { 1518 xor_dest = sh->dev[pd_idx].page; 1519 for (i = disks; i--; ) { 1520 struct r5dev *dev = &sh->dev[i]; 1521 if (i != pd_idx) 1522 xor_srcs[count++] = dev->page; 1523 } 1524 } 1525 1526 /* 1/ if we prexor'd then the dest is reused as a source 1527 * 2/ if we did not prexor then we are redoing the parity 1528 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1529 * for the synchronous xor case 1530 */ 1531 flags = ASYNC_TX_ACK | 1532 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1533 1534 atomic_inc(&sh->count); 1535 1536 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh, 1537 to_addr_conv(sh, percpu)); 1538 if (unlikely(count == 1)) 1539 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1540 else 1541 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1542 } 1543 1544 static void 1545 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1546 struct dma_async_tx_descriptor *tx) 1547 { 1548 struct async_submit_ctl submit; 1549 struct page **blocks = percpu->scribble; 1550 int count, i; 1551 1552 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1553 1554 for (i = 0; i < sh->disks; i++) { 1555 if (sh->pd_idx == i || sh->qd_idx == i) 1556 continue; 1557 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1558 break; 1559 } 1560 if (i >= sh->disks) { 1561 atomic_inc(&sh->count); 1562 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1563 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1564 ops_complete_reconstruct(sh); 1565 return; 1566 } 1567 1568 count = set_syndrome_sources(blocks, sh); 1569 1570 atomic_inc(&sh->count); 1571 1572 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct, 1573 sh, to_addr_conv(sh, percpu)); 1574 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1575 } 1576 1577 static void ops_complete_check(void *stripe_head_ref) 1578 { 1579 struct stripe_head *sh = stripe_head_ref; 1580 1581 pr_debug("%s: stripe %llu\n", __func__, 1582 (unsigned long long)sh->sector); 1583 1584 sh->check_state = check_state_check_result; 1585 set_bit(STRIPE_HANDLE, &sh->state); 1586 release_stripe(sh); 1587 } 1588 1589 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1590 { 1591 int disks = sh->disks; 1592 int pd_idx = sh->pd_idx; 1593 int qd_idx = sh->qd_idx; 1594 struct page *xor_dest; 1595 struct page **xor_srcs = percpu->scribble; 1596 struct dma_async_tx_descriptor *tx; 1597 struct async_submit_ctl submit; 1598 int count; 1599 int i; 1600 1601 pr_debug("%s: stripe %llu\n", __func__, 1602 (unsigned long long)sh->sector); 1603 1604 count = 0; 1605 xor_dest = sh->dev[pd_idx].page; 1606 xor_srcs[count++] = xor_dest; 1607 for (i = disks; i--; ) { 1608 if (i == pd_idx || i == qd_idx) 1609 continue; 1610 xor_srcs[count++] = sh->dev[i].page; 1611 } 1612 1613 init_async_submit(&submit, 0, NULL, NULL, NULL, 1614 to_addr_conv(sh, percpu)); 1615 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1616 &sh->ops.zero_sum_result, &submit); 1617 1618 atomic_inc(&sh->count); 1619 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1620 tx = async_trigger_callback(&submit); 1621 } 1622 1623 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1624 { 1625 struct page **srcs = percpu->scribble; 1626 struct async_submit_ctl submit; 1627 int count; 1628 1629 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1630 (unsigned long long)sh->sector, checkp); 1631 1632 count = set_syndrome_sources(srcs, sh); 1633 if (!checkp) 1634 srcs[count] = NULL; 1635 1636 atomic_inc(&sh->count); 1637 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1638 sh, to_addr_conv(sh, percpu)); 1639 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1640 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1641 } 1642 1643 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1644 { 1645 int overlap_clear = 0, i, disks = sh->disks; 1646 struct dma_async_tx_descriptor *tx = NULL; 1647 struct r5conf *conf = sh->raid_conf; 1648 int level = conf->level; 1649 struct raid5_percpu *percpu; 1650 unsigned long cpu; 1651 1652 cpu = get_cpu(); 1653 percpu = per_cpu_ptr(conf->percpu, cpu); 1654 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1655 ops_run_biofill(sh); 1656 overlap_clear++; 1657 } 1658 1659 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1660 if (level < 6) 1661 tx = ops_run_compute5(sh, percpu); 1662 else { 1663 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1664 tx = ops_run_compute6_1(sh, percpu); 1665 else 1666 tx = ops_run_compute6_2(sh, percpu); 1667 } 1668 /* terminate the chain if reconstruct is not set to be run */ 1669 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1670 async_tx_ack(tx); 1671 } 1672 1673 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) 1674 tx = ops_run_prexor(sh, percpu, tx); 1675 1676 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1677 tx = ops_run_biodrain(sh, tx); 1678 overlap_clear++; 1679 } 1680 1681 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1682 if (level < 6) 1683 ops_run_reconstruct5(sh, percpu, tx); 1684 else 1685 ops_run_reconstruct6(sh, percpu, tx); 1686 } 1687 1688 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1689 if (sh->check_state == check_state_run) 1690 ops_run_check_p(sh, percpu); 1691 else if (sh->check_state == check_state_run_q) 1692 ops_run_check_pq(sh, percpu, 0); 1693 else if (sh->check_state == check_state_run_pq) 1694 ops_run_check_pq(sh, percpu, 1); 1695 else 1696 BUG(); 1697 } 1698 1699 if (overlap_clear) 1700 for (i = disks; i--; ) { 1701 struct r5dev *dev = &sh->dev[i]; 1702 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1703 wake_up(&sh->raid_conf->wait_for_overlap); 1704 } 1705 put_cpu(); 1706 } 1707 1708 static int grow_one_stripe(struct r5conf *conf, int hash) 1709 { 1710 struct stripe_head *sh; 1711 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL); 1712 if (!sh) 1713 return 0; 1714 1715 sh->raid_conf = conf; 1716 1717 spin_lock_init(&sh->stripe_lock); 1718 1719 if (grow_buffers(sh)) { 1720 shrink_buffers(sh); 1721 kmem_cache_free(conf->slab_cache, sh); 1722 return 0; 1723 } 1724 sh->hash_lock_index = hash; 1725 /* we just created an active stripe so... */ 1726 atomic_set(&sh->count, 1); 1727 atomic_inc(&conf->active_stripes); 1728 INIT_LIST_HEAD(&sh->lru); 1729 release_stripe(sh); 1730 return 1; 1731 } 1732 1733 static int grow_stripes(struct r5conf *conf, int num) 1734 { 1735 struct kmem_cache *sc; 1736 int devs = max(conf->raid_disks, conf->previous_raid_disks); 1737 int hash; 1738 1739 if (conf->mddev->gendisk) 1740 sprintf(conf->cache_name[0], 1741 "raid%d-%s", conf->level, mdname(conf->mddev)); 1742 else 1743 sprintf(conf->cache_name[0], 1744 "raid%d-%p", conf->level, conf->mddev); 1745 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 1746 1747 conf->active_name = 0; 1748 sc = kmem_cache_create(conf->cache_name[conf->active_name], 1749 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 1750 0, 0, NULL); 1751 if (!sc) 1752 return 1; 1753 conf->slab_cache = sc; 1754 conf->pool_size = devs; 1755 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 1756 while (num--) { 1757 if (!grow_one_stripe(conf, hash)) 1758 return 1; 1759 conf->max_nr_stripes++; 1760 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS; 1761 } 1762 return 0; 1763 } 1764 1765 /** 1766 * scribble_len - return the required size of the scribble region 1767 * @num - total number of disks in the array 1768 * 1769 * The size must be enough to contain: 1770 * 1/ a struct page pointer for each device in the array +2 1771 * 2/ room to convert each entry in (1) to its corresponding dma 1772 * (dma_map_page()) or page (page_address()) address. 1773 * 1774 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 1775 * calculate over all devices (not just the data blocks), using zeros in place 1776 * of the P and Q blocks. 1777 */ 1778 static size_t scribble_len(int num) 1779 { 1780 size_t len; 1781 1782 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 1783 1784 return len; 1785 } 1786 1787 static int resize_stripes(struct r5conf *conf, int newsize) 1788 { 1789 /* Make all the stripes able to hold 'newsize' devices. 1790 * New slots in each stripe get 'page' set to a new page. 1791 * 1792 * This happens in stages: 1793 * 1/ create a new kmem_cache and allocate the required number of 1794 * stripe_heads. 1795 * 2/ gather all the old stripe_heads and transfer the pages across 1796 * to the new stripe_heads. This will have the side effect of 1797 * freezing the array as once all stripe_heads have been collected, 1798 * no IO will be possible. Old stripe heads are freed once their 1799 * pages have been transferred over, and the old kmem_cache is 1800 * freed when all stripes are done. 1801 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 1802 * we simple return a failre status - no need to clean anything up. 1803 * 4/ allocate new pages for the new slots in the new stripe_heads. 1804 * If this fails, we don't bother trying the shrink the 1805 * stripe_heads down again, we just leave them as they are. 1806 * As each stripe_head is processed the new one is released into 1807 * active service. 1808 * 1809 * Once step2 is started, we cannot afford to wait for a write, 1810 * so we use GFP_NOIO allocations. 1811 */ 1812 struct stripe_head *osh, *nsh; 1813 LIST_HEAD(newstripes); 1814 struct disk_info *ndisks; 1815 unsigned long cpu; 1816 int err; 1817 struct kmem_cache *sc; 1818 int i; 1819 int hash, cnt; 1820 1821 if (newsize <= conf->pool_size) 1822 return 0; /* never bother to shrink */ 1823 1824 err = md_allow_write(conf->mddev); 1825 if (err) 1826 return err; 1827 1828 /* Step 1 */ 1829 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 1830 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 1831 0, 0, NULL); 1832 if (!sc) 1833 return -ENOMEM; 1834 1835 for (i = conf->max_nr_stripes; i; i--) { 1836 nsh = kmem_cache_zalloc(sc, GFP_KERNEL); 1837 if (!nsh) 1838 break; 1839 1840 nsh->raid_conf = conf; 1841 spin_lock_init(&nsh->stripe_lock); 1842 1843 list_add(&nsh->lru, &newstripes); 1844 } 1845 if (i) { 1846 /* didn't get enough, give up */ 1847 while (!list_empty(&newstripes)) { 1848 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1849 list_del(&nsh->lru); 1850 kmem_cache_free(sc, nsh); 1851 } 1852 kmem_cache_destroy(sc); 1853 return -ENOMEM; 1854 } 1855 /* Step 2 - Must use GFP_NOIO now. 1856 * OK, we have enough stripes, start collecting inactive 1857 * stripes and copying them over 1858 */ 1859 hash = 0; 1860 cnt = 0; 1861 list_for_each_entry(nsh, &newstripes, lru) { 1862 lock_device_hash_lock(conf, hash); 1863 wait_event_cmd(conf->wait_for_stripe, 1864 !list_empty(conf->inactive_list + hash), 1865 unlock_device_hash_lock(conf, hash), 1866 lock_device_hash_lock(conf, hash)); 1867 osh = get_free_stripe(conf, hash); 1868 unlock_device_hash_lock(conf, hash); 1869 atomic_set(&nsh->count, 1); 1870 for(i=0; i<conf->pool_size; i++) { 1871 nsh->dev[i].page = osh->dev[i].page; 1872 nsh->dev[i].orig_page = osh->dev[i].page; 1873 } 1874 for( ; i<newsize; i++) 1875 nsh->dev[i].page = NULL; 1876 nsh->hash_lock_index = hash; 1877 kmem_cache_free(conf->slab_cache, osh); 1878 cnt++; 1879 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 1880 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 1881 hash++; 1882 cnt = 0; 1883 } 1884 } 1885 kmem_cache_destroy(conf->slab_cache); 1886 1887 /* Step 3. 1888 * At this point, we are holding all the stripes so the array 1889 * is completely stalled, so now is a good time to resize 1890 * conf->disks and the scribble region 1891 */ 1892 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 1893 if (ndisks) { 1894 for (i=0; i<conf->raid_disks; i++) 1895 ndisks[i] = conf->disks[i]; 1896 kfree(conf->disks); 1897 conf->disks = ndisks; 1898 } else 1899 err = -ENOMEM; 1900 1901 get_online_cpus(); 1902 conf->scribble_len = scribble_len(newsize); 1903 for_each_present_cpu(cpu) { 1904 struct raid5_percpu *percpu; 1905 void *scribble; 1906 1907 percpu = per_cpu_ptr(conf->percpu, cpu); 1908 scribble = kmalloc(conf->scribble_len, GFP_NOIO); 1909 1910 if (scribble) { 1911 kfree(percpu->scribble); 1912 percpu->scribble = scribble; 1913 } else { 1914 err = -ENOMEM; 1915 break; 1916 } 1917 } 1918 put_online_cpus(); 1919 1920 /* Step 4, return new stripes to service */ 1921 while(!list_empty(&newstripes)) { 1922 nsh = list_entry(newstripes.next, struct stripe_head, lru); 1923 list_del_init(&nsh->lru); 1924 1925 for (i=conf->raid_disks; i < newsize; i++) 1926 if (nsh->dev[i].page == NULL) { 1927 struct page *p = alloc_page(GFP_NOIO); 1928 nsh->dev[i].page = p; 1929 nsh->dev[i].orig_page = p; 1930 if (!p) 1931 err = -ENOMEM; 1932 } 1933 release_stripe(nsh); 1934 } 1935 /* critical section pass, GFP_NOIO no longer needed */ 1936 1937 conf->slab_cache = sc; 1938 conf->active_name = 1-conf->active_name; 1939 conf->pool_size = newsize; 1940 return err; 1941 } 1942 1943 static int drop_one_stripe(struct r5conf *conf, int hash) 1944 { 1945 struct stripe_head *sh; 1946 1947 spin_lock_irq(conf->hash_locks + hash); 1948 sh = get_free_stripe(conf, hash); 1949 spin_unlock_irq(conf->hash_locks + hash); 1950 if (!sh) 1951 return 0; 1952 BUG_ON(atomic_read(&sh->count)); 1953 shrink_buffers(sh); 1954 kmem_cache_free(conf->slab_cache, sh); 1955 atomic_dec(&conf->active_stripes); 1956 return 1; 1957 } 1958 1959 static void shrink_stripes(struct r5conf *conf) 1960 { 1961 int hash; 1962 for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++) 1963 while (drop_one_stripe(conf, hash)) 1964 ; 1965 1966 if (conf->slab_cache) 1967 kmem_cache_destroy(conf->slab_cache); 1968 conf->slab_cache = NULL; 1969 } 1970 1971 static void raid5_end_read_request(struct bio * bi, int error) 1972 { 1973 struct stripe_head *sh = bi->bi_private; 1974 struct r5conf *conf = sh->raid_conf; 1975 int disks = sh->disks, i; 1976 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 1977 char b[BDEVNAME_SIZE]; 1978 struct md_rdev *rdev = NULL; 1979 sector_t s; 1980 1981 for (i=0 ; i<disks; i++) 1982 if (bi == &sh->dev[i].req) 1983 break; 1984 1985 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n", 1986 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 1987 uptodate); 1988 if (i == disks) { 1989 BUG(); 1990 return; 1991 } 1992 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 1993 /* If replacement finished while this request was outstanding, 1994 * 'replacement' might be NULL already. 1995 * In that case it moved down to 'rdev'. 1996 * rdev is not removed until all requests are finished. 1997 */ 1998 rdev = conf->disks[i].replacement; 1999 if (!rdev) 2000 rdev = conf->disks[i].rdev; 2001 2002 if (use_new_offset(conf, sh)) 2003 s = sh->sector + rdev->new_data_offset; 2004 else 2005 s = sh->sector + rdev->data_offset; 2006 if (uptodate) { 2007 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2008 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2009 /* Note that this cannot happen on a 2010 * replacement device. We just fail those on 2011 * any error 2012 */ 2013 printk_ratelimited( 2014 KERN_INFO 2015 "md/raid:%s: read error corrected" 2016 " (%lu sectors at %llu on %s)\n", 2017 mdname(conf->mddev), STRIPE_SECTORS, 2018 (unsigned long long)s, 2019 bdevname(rdev->bdev, b)); 2020 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2021 clear_bit(R5_ReadError, &sh->dev[i].flags); 2022 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2023 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2024 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2025 2026 if (atomic_read(&rdev->read_errors)) 2027 atomic_set(&rdev->read_errors, 0); 2028 } else { 2029 const char *bdn = bdevname(rdev->bdev, b); 2030 int retry = 0; 2031 int set_bad = 0; 2032 2033 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2034 atomic_inc(&rdev->read_errors); 2035 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2036 printk_ratelimited( 2037 KERN_WARNING 2038 "md/raid:%s: read error on replacement device " 2039 "(sector %llu on %s).\n", 2040 mdname(conf->mddev), 2041 (unsigned long long)s, 2042 bdn); 2043 else if (conf->mddev->degraded >= conf->max_degraded) { 2044 set_bad = 1; 2045 printk_ratelimited( 2046 KERN_WARNING 2047 "md/raid:%s: read error not correctable " 2048 "(sector %llu on %s).\n", 2049 mdname(conf->mddev), 2050 (unsigned long long)s, 2051 bdn); 2052 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2053 /* Oh, no!!! */ 2054 set_bad = 1; 2055 printk_ratelimited( 2056 KERN_WARNING 2057 "md/raid:%s: read error NOT corrected!! " 2058 "(sector %llu on %s).\n", 2059 mdname(conf->mddev), 2060 (unsigned long long)s, 2061 bdn); 2062 } else if (atomic_read(&rdev->read_errors) 2063 > conf->max_nr_stripes) 2064 printk(KERN_WARNING 2065 "md/raid:%s: Too many read errors, failing device %s.\n", 2066 mdname(conf->mddev), bdn); 2067 else 2068 retry = 1; 2069 if (set_bad && test_bit(In_sync, &rdev->flags) 2070 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2071 retry = 1; 2072 if (retry) 2073 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2074 set_bit(R5_ReadError, &sh->dev[i].flags); 2075 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2076 } else 2077 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2078 else { 2079 clear_bit(R5_ReadError, &sh->dev[i].flags); 2080 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2081 if (!(set_bad 2082 && test_bit(In_sync, &rdev->flags) 2083 && rdev_set_badblocks( 2084 rdev, sh->sector, STRIPE_SECTORS, 0))) 2085 md_error(conf->mddev, rdev); 2086 } 2087 } 2088 rdev_dec_pending(rdev, conf->mddev); 2089 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2090 set_bit(STRIPE_HANDLE, &sh->state); 2091 release_stripe(sh); 2092 } 2093 2094 static void raid5_end_write_request(struct bio *bi, int error) 2095 { 2096 struct stripe_head *sh = bi->bi_private; 2097 struct r5conf *conf = sh->raid_conf; 2098 int disks = sh->disks, i; 2099 struct md_rdev *uninitialized_var(rdev); 2100 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 2101 sector_t first_bad; 2102 int bad_sectors; 2103 int replacement = 0; 2104 2105 for (i = 0 ; i < disks; i++) { 2106 if (bi == &sh->dev[i].req) { 2107 rdev = conf->disks[i].rdev; 2108 break; 2109 } 2110 if (bi == &sh->dev[i].rreq) { 2111 rdev = conf->disks[i].replacement; 2112 if (rdev) 2113 replacement = 1; 2114 else 2115 /* rdev was removed and 'replacement' 2116 * replaced it. rdev is not removed 2117 * until all requests are finished. 2118 */ 2119 rdev = conf->disks[i].rdev; 2120 break; 2121 } 2122 } 2123 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n", 2124 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2125 uptodate); 2126 if (i == disks) { 2127 BUG(); 2128 return; 2129 } 2130 2131 if (replacement) { 2132 if (!uptodate) 2133 md_error(conf->mddev, rdev); 2134 else if (is_badblock(rdev, sh->sector, 2135 STRIPE_SECTORS, 2136 &first_bad, &bad_sectors)) 2137 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2138 } else { 2139 if (!uptodate) { 2140 set_bit(STRIPE_DEGRADED, &sh->state); 2141 set_bit(WriteErrorSeen, &rdev->flags); 2142 set_bit(R5_WriteError, &sh->dev[i].flags); 2143 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2144 set_bit(MD_RECOVERY_NEEDED, 2145 &rdev->mddev->recovery); 2146 } else if (is_badblock(rdev, sh->sector, 2147 STRIPE_SECTORS, 2148 &first_bad, &bad_sectors)) { 2149 set_bit(R5_MadeGood, &sh->dev[i].flags); 2150 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2151 /* That was a successful write so make 2152 * sure it looks like we already did 2153 * a re-write. 2154 */ 2155 set_bit(R5_ReWrite, &sh->dev[i].flags); 2156 } 2157 } 2158 rdev_dec_pending(rdev, conf->mddev); 2159 2160 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2161 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2162 set_bit(STRIPE_HANDLE, &sh->state); 2163 release_stripe(sh); 2164 } 2165 2166 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous); 2167 2168 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 2169 { 2170 struct r5dev *dev = &sh->dev[i]; 2171 2172 bio_init(&dev->req); 2173 dev->req.bi_io_vec = &dev->vec; 2174 dev->req.bi_max_vecs = 1; 2175 dev->req.bi_private = sh; 2176 2177 bio_init(&dev->rreq); 2178 dev->rreq.bi_io_vec = &dev->rvec; 2179 dev->rreq.bi_max_vecs = 1; 2180 dev->rreq.bi_private = sh; 2181 2182 dev->flags = 0; 2183 dev->sector = compute_blocknr(sh, i, previous); 2184 } 2185 2186 static void error(struct mddev *mddev, struct md_rdev *rdev) 2187 { 2188 char b[BDEVNAME_SIZE]; 2189 struct r5conf *conf = mddev->private; 2190 unsigned long flags; 2191 pr_debug("raid456: error called\n"); 2192 2193 spin_lock_irqsave(&conf->device_lock, flags); 2194 clear_bit(In_sync, &rdev->flags); 2195 mddev->degraded = calc_degraded(conf); 2196 spin_unlock_irqrestore(&conf->device_lock, flags); 2197 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2198 2199 set_bit(Blocked, &rdev->flags); 2200 set_bit(Faulty, &rdev->flags); 2201 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2202 printk(KERN_ALERT 2203 "md/raid:%s: Disk failure on %s, disabling device.\n" 2204 "md/raid:%s: Operation continuing on %d devices.\n", 2205 mdname(mddev), 2206 bdevname(rdev->bdev, b), 2207 mdname(mddev), 2208 conf->raid_disks - mddev->degraded); 2209 } 2210 2211 /* 2212 * Input: a 'big' sector number, 2213 * Output: index of the data and parity disk, and the sector # in them. 2214 */ 2215 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2216 int previous, int *dd_idx, 2217 struct stripe_head *sh) 2218 { 2219 sector_t stripe, stripe2; 2220 sector_t chunk_number; 2221 unsigned int chunk_offset; 2222 int pd_idx, qd_idx; 2223 int ddf_layout = 0; 2224 sector_t new_sector; 2225 int algorithm = previous ? conf->prev_algo 2226 : conf->algorithm; 2227 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2228 : conf->chunk_sectors; 2229 int raid_disks = previous ? conf->previous_raid_disks 2230 : conf->raid_disks; 2231 int data_disks = raid_disks - conf->max_degraded; 2232 2233 /* First compute the information on this sector */ 2234 2235 /* 2236 * Compute the chunk number and the sector offset inside the chunk 2237 */ 2238 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2239 chunk_number = r_sector; 2240 2241 /* 2242 * Compute the stripe number 2243 */ 2244 stripe = chunk_number; 2245 *dd_idx = sector_div(stripe, data_disks); 2246 stripe2 = stripe; 2247 /* 2248 * Select the parity disk based on the user selected algorithm. 2249 */ 2250 pd_idx = qd_idx = -1; 2251 switch(conf->level) { 2252 case 4: 2253 pd_idx = data_disks; 2254 break; 2255 case 5: 2256 switch (algorithm) { 2257 case ALGORITHM_LEFT_ASYMMETRIC: 2258 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2259 if (*dd_idx >= pd_idx) 2260 (*dd_idx)++; 2261 break; 2262 case ALGORITHM_RIGHT_ASYMMETRIC: 2263 pd_idx = sector_div(stripe2, raid_disks); 2264 if (*dd_idx >= pd_idx) 2265 (*dd_idx)++; 2266 break; 2267 case ALGORITHM_LEFT_SYMMETRIC: 2268 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2269 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2270 break; 2271 case ALGORITHM_RIGHT_SYMMETRIC: 2272 pd_idx = sector_div(stripe2, raid_disks); 2273 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2274 break; 2275 case ALGORITHM_PARITY_0: 2276 pd_idx = 0; 2277 (*dd_idx)++; 2278 break; 2279 case ALGORITHM_PARITY_N: 2280 pd_idx = data_disks; 2281 break; 2282 default: 2283 BUG(); 2284 } 2285 break; 2286 case 6: 2287 2288 switch (algorithm) { 2289 case ALGORITHM_LEFT_ASYMMETRIC: 2290 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2291 qd_idx = pd_idx + 1; 2292 if (pd_idx == raid_disks-1) { 2293 (*dd_idx)++; /* Q D D D P */ 2294 qd_idx = 0; 2295 } else if (*dd_idx >= pd_idx) 2296 (*dd_idx) += 2; /* D D P Q D */ 2297 break; 2298 case ALGORITHM_RIGHT_ASYMMETRIC: 2299 pd_idx = sector_div(stripe2, raid_disks); 2300 qd_idx = pd_idx + 1; 2301 if (pd_idx == raid_disks-1) { 2302 (*dd_idx)++; /* Q D D D P */ 2303 qd_idx = 0; 2304 } else if (*dd_idx >= pd_idx) 2305 (*dd_idx) += 2; /* D D P Q D */ 2306 break; 2307 case ALGORITHM_LEFT_SYMMETRIC: 2308 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2309 qd_idx = (pd_idx + 1) % raid_disks; 2310 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2311 break; 2312 case ALGORITHM_RIGHT_SYMMETRIC: 2313 pd_idx = sector_div(stripe2, raid_disks); 2314 qd_idx = (pd_idx + 1) % raid_disks; 2315 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2316 break; 2317 2318 case ALGORITHM_PARITY_0: 2319 pd_idx = 0; 2320 qd_idx = 1; 2321 (*dd_idx) += 2; 2322 break; 2323 case ALGORITHM_PARITY_N: 2324 pd_idx = data_disks; 2325 qd_idx = data_disks + 1; 2326 break; 2327 2328 case ALGORITHM_ROTATING_ZERO_RESTART: 2329 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2330 * of blocks for computing Q is different. 2331 */ 2332 pd_idx = sector_div(stripe2, raid_disks); 2333 qd_idx = pd_idx + 1; 2334 if (pd_idx == raid_disks-1) { 2335 (*dd_idx)++; /* Q D D D P */ 2336 qd_idx = 0; 2337 } else if (*dd_idx >= pd_idx) 2338 (*dd_idx) += 2; /* D D P Q D */ 2339 ddf_layout = 1; 2340 break; 2341 2342 case ALGORITHM_ROTATING_N_RESTART: 2343 /* Same a left_asymmetric, by first stripe is 2344 * D D D P Q rather than 2345 * Q D D D P 2346 */ 2347 stripe2 += 1; 2348 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2349 qd_idx = pd_idx + 1; 2350 if (pd_idx == raid_disks-1) { 2351 (*dd_idx)++; /* Q D D D P */ 2352 qd_idx = 0; 2353 } else if (*dd_idx >= pd_idx) 2354 (*dd_idx) += 2; /* D D P Q D */ 2355 ddf_layout = 1; 2356 break; 2357 2358 case ALGORITHM_ROTATING_N_CONTINUE: 2359 /* Same as left_symmetric but Q is before P */ 2360 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2361 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2362 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2363 ddf_layout = 1; 2364 break; 2365 2366 case ALGORITHM_LEFT_ASYMMETRIC_6: 2367 /* RAID5 left_asymmetric, with Q on last device */ 2368 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2369 if (*dd_idx >= pd_idx) 2370 (*dd_idx)++; 2371 qd_idx = raid_disks - 1; 2372 break; 2373 2374 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2375 pd_idx = sector_div(stripe2, raid_disks-1); 2376 if (*dd_idx >= pd_idx) 2377 (*dd_idx)++; 2378 qd_idx = raid_disks - 1; 2379 break; 2380 2381 case ALGORITHM_LEFT_SYMMETRIC_6: 2382 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2383 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2384 qd_idx = raid_disks - 1; 2385 break; 2386 2387 case ALGORITHM_RIGHT_SYMMETRIC_6: 2388 pd_idx = sector_div(stripe2, raid_disks-1); 2389 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2390 qd_idx = raid_disks - 1; 2391 break; 2392 2393 case ALGORITHM_PARITY_0_6: 2394 pd_idx = 0; 2395 (*dd_idx)++; 2396 qd_idx = raid_disks - 1; 2397 break; 2398 2399 default: 2400 BUG(); 2401 } 2402 break; 2403 } 2404 2405 if (sh) { 2406 sh->pd_idx = pd_idx; 2407 sh->qd_idx = qd_idx; 2408 sh->ddf_layout = ddf_layout; 2409 } 2410 /* 2411 * Finally, compute the new sector number 2412 */ 2413 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2414 return new_sector; 2415 } 2416 2417 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous) 2418 { 2419 struct r5conf *conf = sh->raid_conf; 2420 int raid_disks = sh->disks; 2421 int data_disks = raid_disks - conf->max_degraded; 2422 sector_t new_sector = sh->sector, check; 2423 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2424 : conf->chunk_sectors; 2425 int algorithm = previous ? conf->prev_algo 2426 : conf->algorithm; 2427 sector_t stripe; 2428 int chunk_offset; 2429 sector_t chunk_number; 2430 int dummy1, dd_idx = i; 2431 sector_t r_sector; 2432 struct stripe_head sh2; 2433 2434 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2435 stripe = new_sector; 2436 2437 if (i == sh->pd_idx) 2438 return 0; 2439 switch(conf->level) { 2440 case 4: break; 2441 case 5: 2442 switch (algorithm) { 2443 case ALGORITHM_LEFT_ASYMMETRIC: 2444 case ALGORITHM_RIGHT_ASYMMETRIC: 2445 if (i > sh->pd_idx) 2446 i--; 2447 break; 2448 case ALGORITHM_LEFT_SYMMETRIC: 2449 case ALGORITHM_RIGHT_SYMMETRIC: 2450 if (i < sh->pd_idx) 2451 i += raid_disks; 2452 i -= (sh->pd_idx + 1); 2453 break; 2454 case ALGORITHM_PARITY_0: 2455 i -= 1; 2456 break; 2457 case ALGORITHM_PARITY_N: 2458 break; 2459 default: 2460 BUG(); 2461 } 2462 break; 2463 case 6: 2464 if (i == sh->qd_idx) 2465 return 0; /* It is the Q disk */ 2466 switch (algorithm) { 2467 case ALGORITHM_LEFT_ASYMMETRIC: 2468 case ALGORITHM_RIGHT_ASYMMETRIC: 2469 case ALGORITHM_ROTATING_ZERO_RESTART: 2470 case ALGORITHM_ROTATING_N_RESTART: 2471 if (sh->pd_idx == raid_disks-1) 2472 i--; /* Q D D D P */ 2473 else if (i > sh->pd_idx) 2474 i -= 2; /* D D P Q D */ 2475 break; 2476 case ALGORITHM_LEFT_SYMMETRIC: 2477 case ALGORITHM_RIGHT_SYMMETRIC: 2478 if (sh->pd_idx == raid_disks-1) 2479 i--; /* Q D D D P */ 2480 else { 2481 /* D D P Q D */ 2482 if (i < sh->pd_idx) 2483 i += raid_disks; 2484 i -= (sh->pd_idx + 2); 2485 } 2486 break; 2487 case ALGORITHM_PARITY_0: 2488 i -= 2; 2489 break; 2490 case ALGORITHM_PARITY_N: 2491 break; 2492 case ALGORITHM_ROTATING_N_CONTINUE: 2493 /* Like left_symmetric, but P is before Q */ 2494 if (sh->pd_idx == 0) 2495 i--; /* P D D D Q */ 2496 else { 2497 /* D D Q P D */ 2498 if (i < sh->pd_idx) 2499 i += raid_disks; 2500 i -= (sh->pd_idx + 1); 2501 } 2502 break; 2503 case ALGORITHM_LEFT_ASYMMETRIC_6: 2504 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2505 if (i > sh->pd_idx) 2506 i--; 2507 break; 2508 case ALGORITHM_LEFT_SYMMETRIC_6: 2509 case ALGORITHM_RIGHT_SYMMETRIC_6: 2510 if (i < sh->pd_idx) 2511 i += data_disks + 1; 2512 i -= (sh->pd_idx + 1); 2513 break; 2514 case ALGORITHM_PARITY_0_6: 2515 i -= 1; 2516 break; 2517 default: 2518 BUG(); 2519 } 2520 break; 2521 } 2522 2523 chunk_number = stripe * data_disks + i; 2524 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2525 2526 check = raid5_compute_sector(conf, r_sector, 2527 previous, &dummy1, &sh2); 2528 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2529 || sh2.qd_idx != sh->qd_idx) { 2530 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2531 mdname(conf->mddev)); 2532 return 0; 2533 } 2534 return r_sector; 2535 } 2536 2537 static void 2538 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2539 int rcw, int expand) 2540 { 2541 int i, pd_idx = sh->pd_idx, disks = sh->disks; 2542 struct r5conf *conf = sh->raid_conf; 2543 int level = conf->level; 2544 2545 if (rcw) { 2546 2547 for (i = disks; i--; ) { 2548 struct r5dev *dev = &sh->dev[i]; 2549 2550 if (dev->towrite) { 2551 set_bit(R5_LOCKED, &dev->flags); 2552 set_bit(R5_Wantdrain, &dev->flags); 2553 if (!expand) 2554 clear_bit(R5_UPTODATE, &dev->flags); 2555 s->locked++; 2556 } 2557 } 2558 /* if we are not expanding this is a proper write request, and 2559 * there will be bios with new data to be drained into the 2560 * stripe cache 2561 */ 2562 if (!expand) { 2563 if (!s->locked) 2564 /* False alarm, nothing to do */ 2565 return; 2566 sh->reconstruct_state = reconstruct_state_drain_run; 2567 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2568 } else 2569 sh->reconstruct_state = reconstruct_state_run; 2570 2571 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2572 2573 if (s->locked + conf->max_degraded == disks) 2574 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2575 atomic_inc(&conf->pending_full_writes); 2576 } else { 2577 BUG_ON(level == 6); 2578 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2579 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2580 2581 for (i = disks; i--; ) { 2582 struct r5dev *dev = &sh->dev[i]; 2583 if (i == pd_idx) 2584 continue; 2585 2586 if (dev->towrite && 2587 (test_bit(R5_UPTODATE, &dev->flags) || 2588 test_bit(R5_Wantcompute, &dev->flags))) { 2589 set_bit(R5_Wantdrain, &dev->flags); 2590 set_bit(R5_LOCKED, &dev->flags); 2591 clear_bit(R5_UPTODATE, &dev->flags); 2592 s->locked++; 2593 } 2594 } 2595 if (!s->locked) 2596 /* False alarm - nothing to do */ 2597 return; 2598 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2599 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2600 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2601 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2602 } 2603 2604 /* keep the parity disk(s) locked while asynchronous operations 2605 * are in flight 2606 */ 2607 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2608 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2609 s->locked++; 2610 2611 if (level == 6) { 2612 int qd_idx = sh->qd_idx; 2613 struct r5dev *dev = &sh->dev[qd_idx]; 2614 2615 set_bit(R5_LOCKED, &dev->flags); 2616 clear_bit(R5_UPTODATE, &dev->flags); 2617 s->locked++; 2618 } 2619 2620 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2621 __func__, (unsigned long long)sh->sector, 2622 s->locked, s->ops_request); 2623 } 2624 2625 /* 2626 * Each stripe/dev can have one or more bion attached. 2627 * toread/towrite point to the first in a chain. 2628 * The bi_next chain must be in order. 2629 */ 2630 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 2631 { 2632 struct bio **bip; 2633 struct r5conf *conf = sh->raid_conf; 2634 int firstwrite=0; 2635 2636 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2637 (unsigned long long)bi->bi_iter.bi_sector, 2638 (unsigned long long)sh->sector); 2639 2640 /* 2641 * If several bio share a stripe. The bio bi_phys_segments acts as a 2642 * reference count to avoid race. The reference count should already be 2643 * increased before this function is called (for example, in 2644 * make_request()), so other bio sharing this stripe will not free the 2645 * stripe. If a stripe is owned by one stripe, the stripe lock will 2646 * protect it. 2647 */ 2648 spin_lock_irq(&sh->stripe_lock); 2649 if (forwrite) { 2650 bip = &sh->dev[dd_idx].towrite; 2651 if (*bip == NULL) 2652 firstwrite = 1; 2653 } else 2654 bip = &sh->dev[dd_idx].toread; 2655 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 2656 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 2657 goto overlap; 2658 bip = & (*bip)->bi_next; 2659 } 2660 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 2661 goto overlap; 2662 2663 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 2664 if (*bip) 2665 bi->bi_next = *bip; 2666 *bip = bi; 2667 raid5_inc_bi_active_stripes(bi); 2668 2669 if (forwrite) { 2670 /* check if page is covered */ 2671 sector_t sector = sh->dev[dd_idx].sector; 2672 for (bi=sh->dev[dd_idx].towrite; 2673 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 2674 bi && bi->bi_iter.bi_sector <= sector; 2675 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 2676 if (bio_end_sector(bi) >= sector) 2677 sector = bio_end_sector(bi); 2678 } 2679 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 2680 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 2681 } 2682 2683 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 2684 (unsigned long long)(*bip)->bi_iter.bi_sector, 2685 (unsigned long long)sh->sector, dd_idx); 2686 spin_unlock_irq(&sh->stripe_lock); 2687 2688 if (conf->mddev->bitmap && firstwrite) { 2689 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 2690 STRIPE_SECTORS, 0); 2691 sh->bm_seq = conf->seq_flush+1; 2692 set_bit(STRIPE_BIT_DELAY, &sh->state); 2693 } 2694 return 1; 2695 2696 overlap: 2697 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 2698 spin_unlock_irq(&sh->stripe_lock); 2699 return 0; 2700 } 2701 2702 static void end_reshape(struct r5conf *conf); 2703 2704 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 2705 struct stripe_head *sh) 2706 { 2707 int sectors_per_chunk = 2708 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 2709 int dd_idx; 2710 int chunk_offset = sector_div(stripe, sectors_per_chunk); 2711 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 2712 2713 raid5_compute_sector(conf, 2714 stripe * (disks - conf->max_degraded) 2715 *sectors_per_chunk + chunk_offset, 2716 previous, 2717 &dd_idx, sh); 2718 } 2719 2720 static void 2721 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 2722 struct stripe_head_state *s, int disks, 2723 struct bio **return_bi) 2724 { 2725 int i; 2726 for (i = disks; i--; ) { 2727 struct bio *bi; 2728 int bitmap_end = 0; 2729 2730 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2731 struct md_rdev *rdev; 2732 rcu_read_lock(); 2733 rdev = rcu_dereference(conf->disks[i].rdev); 2734 if (rdev && test_bit(In_sync, &rdev->flags)) 2735 atomic_inc(&rdev->nr_pending); 2736 else 2737 rdev = NULL; 2738 rcu_read_unlock(); 2739 if (rdev) { 2740 if (!rdev_set_badblocks( 2741 rdev, 2742 sh->sector, 2743 STRIPE_SECTORS, 0)) 2744 md_error(conf->mddev, rdev); 2745 rdev_dec_pending(rdev, conf->mddev); 2746 } 2747 } 2748 spin_lock_irq(&sh->stripe_lock); 2749 /* fail all writes first */ 2750 bi = sh->dev[i].towrite; 2751 sh->dev[i].towrite = NULL; 2752 spin_unlock_irq(&sh->stripe_lock); 2753 if (bi) 2754 bitmap_end = 1; 2755 2756 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2757 wake_up(&conf->wait_for_overlap); 2758 2759 while (bi && bi->bi_iter.bi_sector < 2760 sh->dev[i].sector + STRIPE_SECTORS) { 2761 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 2762 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2763 if (!raid5_dec_bi_active_stripes(bi)) { 2764 md_write_end(conf->mddev); 2765 bi->bi_next = *return_bi; 2766 *return_bi = bi; 2767 } 2768 bi = nextbi; 2769 } 2770 if (bitmap_end) 2771 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2772 STRIPE_SECTORS, 0, 0); 2773 bitmap_end = 0; 2774 /* and fail all 'written' */ 2775 bi = sh->dev[i].written; 2776 sh->dev[i].written = NULL; 2777 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 2778 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 2779 sh->dev[i].page = sh->dev[i].orig_page; 2780 } 2781 2782 if (bi) bitmap_end = 1; 2783 while (bi && bi->bi_iter.bi_sector < 2784 sh->dev[i].sector + STRIPE_SECTORS) { 2785 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 2786 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2787 if (!raid5_dec_bi_active_stripes(bi)) { 2788 md_write_end(conf->mddev); 2789 bi->bi_next = *return_bi; 2790 *return_bi = bi; 2791 } 2792 bi = bi2; 2793 } 2794 2795 /* fail any reads if this device is non-operational and 2796 * the data has not reached the cache yet. 2797 */ 2798 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 2799 (!test_bit(R5_Insync, &sh->dev[i].flags) || 2800 test_bit(R5_ReadError, &sh->dev[i].flags))) { 2801 spin_lock_irq(&sh->stripe_lock); 2802 bi = sh->dev[i].toread; 2803 sh->dev[i].toread = NULL; 2804 spin_unlock_irq(&sh->stripe_lock); 2805 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 2806 wake_up(&conf->wait_for_overlap); 2807 while (bi && bi->bi_iter.bi_sector < 2808 sh->dev[i].sector + STRIPE_SECTORS) { 2809 struct bio *nextbi = 2810 r5_next_bio(bi, sh->dev[i].sector); 2811 clear_bit(BIO_UPTODATE, &bi->bi_flags); 2812 if (!raid5_dec_bi_active_stripes(bi)) { 2813 bi->bi_next = *return_bi; 2814 *return_bi = bi; 2815 } 2816 bi = nextbi; 2817 } 2818 } 2819 if (bitmap_end) 2820 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 2821 STRIPE_SECTORS, 0, 0); 2822 /* If we were in the middle of a write the parity block might 2823 * still be locked - so just clear all R5_LOCKED flags 2824 */ 2825 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2826 } 2827 2828 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 2829 if (atomic_dec_and_test(&conf->pending_full_writes)) 2830 md_wakeup_thread(conf->mddev->thread); 2831 } 2832 2833 static void 2834 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 2835 struct stripe_head_state *s) 2836 { 2837 int abort = 0; 2838 int i; 2839 2840 clear_bit(STRIPE_SYNCING, &sh->state); 2841 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 2842 wake_up(&conf->wait_for_overlap); 2843 s->syncing = 0; 2844 s->replacing = 0; 2845 /* There is nothing more to do for sync/check/repair. 2846 * Don't even need to abort as that is handled elsewhere 2847 * if needed, and not always wanted e.g. if there is a known 2848 * bad block here. 2849 * For recover/replace we need to record a bad block on all 2850 * non-sync devices, or abort the recovery 2851 */ 2852 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 2853 /* During recovery devices cannot be removed, so 2854 * locking and refcounting of rdevs is not needed 2855 */ 2856 for (i = 0; i < conf->raid_disks; i++) { 2857 struct md_rdev *rdev = conf->disks[i].rdev; 2858 if (rdev 2859 && !test_bit(Faulty, &rdev->flags) 2860 && !test_bit(In_sync, &rdev->flags) 2861 && !rdev_set_badblocks(rdev, sh->sector, 2862 STRIPE_SECTORS, 0)) 2863 abort = 1; 2864 rdev = conf->disks[i].replacement; 2865 if (rdev 2866 && !test_bit(Faulty, &rdev->flags) 2867 && !test_bit(In_sync, &rdev->flags) 2868 && !rdev_set_badblocks(rdev, sh->sector, 2869 STRIPE_SECTORS, 0)) 2870 abort = 1; 2871 } 2872 if (abort) 2873 conf->recovery_disabled = 2874 conf->mddev->recovery_disabled; 2875 } 2876 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 2877 } 2878 2879 static int want_replace(struct stripe_head *sh, int disk_idx) 2880 { 2881 struct md_rdev *rdev; 2882 int rv = 0; 2883 /* Doing recovery so rcu locking not required */ 2884 rdev = sh->raid_conf->disks[disk_idx].replacement; 2885 if (rdev 2886 && !test_bit(Faulty, &rdev->flags) 2887 && !test_bit(In_sync, &rdev->flags) 2888 && (rdev->recovery_offset <= sh->sector 2889 || rdev->mddev->recovery_cp <= sh->sector)) 2890 rv = 1; 2891 2892 return rv; 2893 } 2894 2895 /* fetch_block - checks the given member device to see if its data needs 2896 * to be read or computed to satisfy a request. 2897 * 2898 * Returns 1 when no more member devices need to be checked, otherwise returns 2899 * 0 to tell the loop in handle_stripe_fill to continue 2900 */ 2901 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 2902 int disk_idx, int disks) 2903 { 2904 struct r5dev *dev = &sh->dev[disk_idx]; 2905 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 2906 &sh->dev[s->failed_num[1]] }; 2907 2908 /* is the data in this block needed, and can we get it? */ 2909 if (!test_bit(R5_LOCKED, &dev->flags) && 2910 !test_bit(R5_UPTODATE, &dev->flags) && 2911 (dev->toread || 2912 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 2913 s->syncing || s->expanding || 2914 (s->replacing && want_replace(sh, disk_idx)) || 2915 (s->failed >= 1 && fdev[0]->toread) || 2916 (s->failed >= 2 && fdev[1]->toread) || 2917 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite && 2918 (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) && 2919 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) || 2920 ((sh->raid_conf->level == 6 || 2921 sh->sector >= sh->raid_conf->mddev->recovery_cp) 2922 && s->failed && s->to_write && 2923 (s->to_write - s->non_overwrite < 2924 sh->raid_conf->raid_disks - sh->raid_conf->max_degraded) && 2925 (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))))) { 2926 /* we would like to get this block, possibly by computing it, 2927 * otherwise read it if the backing disk is insync 2928 */ 2929 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 2930 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 2931 if ((s->uptodate == disks - 1) && 2932 (s->failed && (disk_idx == s->failed_num[0] || 2933 disk_idx == s->failed_num[1]))) { 2934 /* have disk failed, and we're requested to fetch it; 2935 * do compute it 2936 */ 2937 pr_debug("Computing stripe %llu block %d\n", 2938 (unsigned long long)sh->sector, disk_idx); 2939 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2940 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2941 set_bit(R5_Wantcompute, &dev->flags); 2942 sh->ops.target = disk_idx; 2943 sh->ops.target2 = -1; /* no 2nd target */ 2944 s->req_compute = 1; 2945 /* Careful: from this point on 'uptodate' is in the eye 2946 * of raid_run_ops which services 'compute' operations 2947 * before writes. R5_Wantcompute flags a block that will 2948 * be R5_UPTODATE by the time it is needed for a 2949 * subsequent operation. 2950 */ 2951 s->uptodate++; 2952 return 1; 2953 } else if (s->uptodate == disks-2 && s->failed >= 2) { 2954 /* Computing 2-failure is *very* expensive; only 2955 * do it if failed >= 2 2956 */ 2957 int other; 2958 for (other = disks; other--; ) { 2959 if (other == disk_idx) 2960 continue; 2961 if (!test_bit(R5_UPTODATE, 2962 &sh->dev[other].flags)) 2963 break; 2964 } 2965 BUG_ON(other < 0); 2966 pr_debug("Computing stripe %llu blocks %d,%d\n", 2967 (unsigned long long)sh->sector, 2968 disk_idx, other); 2969 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 2970 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 2971 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 2972 set_bit(R5_Wantcompute, &sh->dev[other].flags); 2973 sh->ops.target = disk_idx; 2974 sh->ops.target2 = other; 2975 s->uptodate += 2; 2976 s->req_compute = 1; 2977 return 1; 2978 } else if (test_bit(R5_Insync, &dev->flags)) { 2979 set_bit(R5_LOCKED, &dev->flags); 2980 set_bit(R5_Wantread, &dev->flags); 2981 s->locked++; 2982 pr_debug("Reading block %d (sync=%d)\n", 2983 disk_idx, s->syncing); 2984 } 2985 } 2986 2987 return 0; 2988 } 2989 2990 /** 2991 * handle_stripe_fill - read or compute data to satisfy pending requests. 2992 */ 2993 static void handle_stripe_fill(struct stripe_head *sh, 2994 struct stripe_head_state *s, 2995 int disks) 2996 { 2997 int i; 2998 2999 /* look for blocks to read/compute, skip this if a compute 3000 * is already in flight, or if the stripe contents are in the 3001 * midst of changing due to a write 3002 */ 3003 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3004 !sh->reconstruct_state) 3005 for (i = disks; i--; ) 3006 if (fetch_block(sh, s, i, disks)) 3007 break; 3008 set_bit(STRIPE_HANDLE, &sh->state); 3009 } 3010 3011 /* handle_stripe_clean_event 3012 * any written block on an uptodate or failed drive can be returned. 3013 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3014 * never LOCKED, so we don't need to test 'failed' directly. 3015 */ 3016 static void handle_stripe_clean_event(struct r5conf *conf, 3017 struct stripe_head *sh, int disks, struct bio **return_bi) 3018 { 3019 int i; 3020 struct r5dev *dev; 3021 int discard_pending = 0; 3022 3023 for (i = disks; i--; ) 3024 if (sh->dev[i].written) { 3025 dev = &sh->dev[i]; 3026 if (!test_bit(R5_LOCKED, &dev->flags) && 3027 (test_bit(R5_UPTODATE, &dev->flags) || 3028 test_bit(R5_Discard, &dev->flags) || 3029 test_bit(R5_SkipCopy, &dev->flags))) { 3030 /* We can return any write requests */ 3031 struct bio *wbi, *wbi2; 3032 pr_debug("Return write for disc %d\n", i); 3033 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3034 clear_bit(R5_UPTODATE, &dev->flags); 3035 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3036 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3037 dev->page = dev->orig_page; 3038 } 3039 wbi = dev->written; 3040 dev->written = NULL; 3041 while (wbi && wbi->bi_iter.bi_sector < 3042 dev->sector + STRIPE_SECTORS) { 3043 wbi2 = r5_next_bio(wbi, dev->sector); 3044 if (!raid5_dec_bi_active_stripes(wbi)) { 3045 md_write_end(conf->mddev); 3046 wbi->bi_next = *return_bi; 3047 *return_bi = wbi; 3048 } 3049 wbi = wbi2; 3050 } 3051 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3052 STRIPE_SECTORS, 3053 !test_bit(STRIPE_DEGRADED, &sh->state), 3054 0); 3055 } else if (test_bit(R5_Discard, &dev->flags)) 3056 discard_pending = 1; 3057 WARN_ON(test_bit(R5_SkipCopy, &dev->flags)); 3058 WARN_ON(dev->page != dev->orig_page); 3059 } 3060 if (!discard_pending && 3061 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3062 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3063 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3064 if (sh->qd_idx >= 0) { 3065 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3066 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3067 } 3068 /* now that discard is done we can proceed with any sync */ 3069 clear_bit(STRIPE_DISCARD, &sh->state); 3070 /* 3071 * SCSI discard will change some bio fields and the stripe has 3072 * no updated data, so remove it from hash list and the stripe 3073 * will be reinitialized 3074 */ 3075 spin_lock_irq(&conf->device_lock); 3076 remove_hash(sh); 3077 spin_unlock_irq(&conf->device_lock); 3078 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3079 set_bit(STRIPE_HANDLE, &sh->state); 3080 3081 } 3082 3083 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3084 if (atomic_dec_and_test(&conf->pending_full_writes)) 3085 md_wakeup_thread(conf->mddev->thread); 3086 } 3087 3088 static void handle_stripe_dirtying(struct r5conf *conf, 3089 struct stripe_head *sh, 3090 struct stripe_head_state *s, 3091 int disks) 3092 { 3093 int rmw = 0, rcw = 0, i; 3094 sector_t recovery_cp = conf->mddev->recovery_cp; 3095 3096 /* RAID6 requires 'rcw' in current implementation. 3097 * Otherwise, check whether resync is now happening or should start. 3098 * If yes, then the array is dirty (after unclean shutdown or 3099 * initial creation), so parity in some stripes might be inconsistent. 3100 * In this case, we need to always do reconstruct-write, to ensure 3101 * that in case of drive failure or read-error correction, we 3102 * generate correct data from the parity. 3103 */ 3104 if (conf->max_degraded == 2 || 3105 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) { 3106 /* Calculate the real rcw later - for now make it 3107 * look like rcw is cheaper 3108 */ 3109 rcw = 1; rmw = 2; 3110 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n", 3111 conf->max_degraded, (unsigned long long)recovery_cp, 3112 (unsigned long long)sh->sector); 3113 } else for (i = disks; i--; ) { 3114 /* would I have to read this buffer for read_modify_write */ 3115 struct r5dev *dev = &sh->dev[i]; 3116 if ((dev->towrite || i == sh->pd_idx) && 3117 !test_bit(R5_LOCKED, &dev->flags) && 3118 !(test_bit(R5_UPTODATE, &dev->flags) || 3119 test_bit(R5_Wantcompute, &dev->flags))) { 3120 if (test_bit(R5_Insync, &dev->flags)) 3121 rmw++; 3122 else 3123 rmw += 2*disks; /* cannot read it */ 3124 } 3125 /* Would I have to read this buffer for reconstruct_write */ 3126 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 3127 !test_bit(R5_LOCKED, &dev->flags) && 3128 !(test_bit(R5_UPTODATE, &dev->flags) || 3129 test_bit(R5_Wantcompute, &dev->flags))) { 3130 if (test_bit(R5_Insync, &dev->flags)) 3131 rcw++; 3132 else 3133 rcw += 2*disks; 3134 } 3135 } 3136 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 3137 (unsigned long long)sh->sector, rmw, rcw); 3138 set_bit(STRIPE_HANDLE, &sh->state); 3139 if (rmw < rcw && rmw > 0) { 3140 /* prefer read-modify-write, but need to get some data */ 3141 if (conf->mddev->queue) 3142 blk_add_trace_msg(conf->mddev->queue, 3143 "raid5 rmw %llu %d", 3144 (unsigned long long)sh->sector, rmw); 3145 for (i = disks; i--; ) { 3146 struct r5dev *dev = &sh->dev[i]; 3147 if ((dev->towrite || i == sh->pd_idx) && 3148 !test_bit(R5_LOCKED, &dev->flags) && 3149 !(test_bit(R5_UPTODATE, &dev->flags) || 3150 test_bit(R5_Wantcompute, &dev->flags)) && 3151 test_bit(R5_Insync, &dev->flags)) { 3152 if (test_bit(STRIPE_PREREAD_ACTIVE, 3153 &sh->state)) { 3154 pr_debug("Read_old block %d for r-m-w\n", 3155 i); 3156 set_bit(R5_LOCKED, &dev->flags); 3157 set_bit(R5_Wantread, &dev->flags); 3158 s->locked++; 3159 } else { 3160 set_bit(STRIPE_DELAYED, &sh->state); 3161 set_bit(STRIPE_HANDLE, &sh->state); 3162 } 3163 } 3164 } 3165 } 3166 if (rcw <= rmw && rcw > 0) { 3167 /* want reconstruct write, but need to get some data */ 3168 int qread =0; 3169 rcw = 0; 3170 for (i = disks; i--; ) { 3171 struct r5dev *dev = &sh->dev[i]; 3172 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3173 i != sh->pd_idx && i != sh->qd_idx && 3174 !test_bit(R5_LOCKED, &dev->flags) && 3175 !(test_bit(R5_UPTODATE, &dev->flags) || 3176 test_bit(R5_Wantcompute, &dev->flags))) { 3177 rcw++; 3178 if (test_bit(R5_Insync, &dev->flags) && 3179 test_bit(STRIPE_PREREAD_ACTIVE, 3180 &sh->state)) { 3181 pr_debug("Read_old block " 3182 "%d for Reconstruct\n", i); 3183 set_bit(R5_LOCKED, &dev->flags); 3184 set_bit(R5_Wantread, &dev->flags); 3185 s->locked++; 3186 qread++; 3187 } else { 3188 set_bit(STRIPE_DELAYED, &sh->state); 3189 set_bit(STRIPE_HANDLE, &sh->state); 3190 } 3191 } 3192 } 3193 if (rcw && conf->mddev->queue) 3194 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 3195 (unsigned long long)sh->sector, 3196 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 3197 } 3198 /* now if nothing is locked, and if we have enough data, 3199 * we can start a write request 3200 */ 3201 /* since handle_stripe can be called at any time we need to handle the 3202 * case where a compute block operation has been submitted and then a 3203 * subsequent call wants to start a write request. raid_run_ops only 3204 * handles the case where compute block and reconstruct are requested 3205 * simultaneously. If this is not the case then new writes need to be 3206 * held off until the compute completes. 3207 */ 3208 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 3209 (s->locked == 0 && (rcw == 0 || rmw == 0) && 3210 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 3211 schedule_reconstruction(sh, s, rcw == 0, 0); 3212 } 3213 3214 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 3215 struct stripe_head_state *s, int disks) 3216 { 3217 struct r5dev *dev = NULL; 3218 3219 set_bit(STRIPE_HANDLE, &sh->state); 3220 3221 switch (sh->check_state) { 3222 case check_state_idle: 3223 /* start a new check operation if there are no failures */ 3224 if (s->failed == 0) { 3225 BUG_ON(s->uptodate != disks); 3226 sh->check_state = check_state_run; 3227 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3228 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3229 s->uptodate--; 3230 break; 3231 } 3232 dev = &sh->dev[s->failed_num[0]]; 3233 /* fall through */ 3234 case check_state_compute_result: 3235 sh->check_state = check_state_idle; 3236 if (!dev) 3237 dev = &sh->dev[sh->pd_idx]; 3238 3239 /* check that a write has not made the stripe insync */ 3240 if (test_bit(STRIPE_INSYNC, &sh->state)) 3241 break; 3242 3243 /* either failed parity check, or recovery is happening */ 3244 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 3245 BUG_ON(s->uptodate != disks); 3246 3247 set_bit(R5_LOCKED, &dev->flags); 3248 s->locked++; 3249 set_bit(R5_Wantwrite, &dev->flags); 3250 3251 clear_bit(STRIPE_DEGRADED, &sh->state); 3252 set_bit(STRIPE_INSYNC, &sh->state); 3253 break; 3254 case check_state_run: 3255 break; /* we will be called again upon completion */ 3256 case check_state_check_result: 3257 sh->check_state = check_state_idle; 3258 3259 /* if a failure occurred during the check operation, leave 3260 * STRIPE_INSYNC not set and let the stripe be handled again 3261 */ 3262 if (s->failed) 3263 break; 3264 3265 /* handle a successful check operation, if parity is correct 3266 * we are done. Otherwise update the mismatch count and repair 3267 * parity if !MD_RECOVERY_CHECK 3268 */ 3269 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 3270 /* parity is correct (on disc, 3271 * not in buffer any more) 3272 */ 3273 set_bit(STRIPE_INSYNC, &sh->state); 3274 else { 3275 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3276 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3277 /* don't try to repair!! */ 3278 set_bit(STRIPE_INSYNC, &sh->state); 3279 else { 3280 sh->check_state = check_state_compute_run; 3281 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3282 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3283 set_bit(R5_Wantcompute, 3284 &sh->dev[sh->pd_idx].flags); 3285 sh->ops.target = sh->pd_idx; 3286 sh->ops.target2 = -1; 3287 s->uptodate++; 3288 } 3289 } 3290 break; 3291 case check_state_compute_run: 3292 break; 3293 default: 3294 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3295 __func__, sh->check_state, 3296 (unsigned long long) sh->sector); 3297 BUG(); 3298 } 3299 } 3300 3301 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3302 struct stripe_head_state *s, 3303 int disks) 3304 { 3305 int pd_idx = sh->pd_idx; 3306 int qd_idx = sh->qd_idx; 3307 struct r5dev *dev; 3308 3309 set_bit(STRIPE_HANDLE, &sh->state); 3310 3311 BUG_ON(s->failed > 2); 3312 3313 /* Want to check and possibly repair P and Q. 3314 * However there could be one 'failed' device, in which 3315 * case we can only check one of them, possibly using the 3316 * other to generate missing data 3317 */ 3318 3319 switch (sh->check_state) { 3320 case check_state_idle: 3321 /* start a new check operation if there are < 2 failures */ 3322 if (s->failed == s->q_failed) { 3323 /* The only possible failed device holds Q, so it 3324 * makes sense to check P (If anything else were failed, 3325 * we would have used P to recreate it). 3326 */ 3327 sh->check_state = check_state_run; 3328 } 3329 if (!s->q_failed && s->failed < 2) { 3330 /* Q is not failed, and we didn't use it to generate 3331 * anything, so it makes sense to check it 3332 */ 3333 if (sh->check_state == check_state_run) 3334 sh->check_state = check_state_run_pq; 3335 else 3336 sh->check_state = check_state_run_q; 3337 } 3338 3339 /* discard potentially stale zero_sum_result */ 3340 sh->ops.zero_sum_result = 0; 3341 3342 if (sh->check_state == check_state_run) { 3343 /* async_xor_zero_sum destroys the contents of P */ 3344 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3345 s->uptodate--; 3346 } 3347 if (sh->check_state >= check_state_run && 3348 sh->check_state <= check_state_run_pq) { 3349 /* async_syndrome_zero_sum preserves P and Q, so 3350 * no need to mark them !uptodate here 3351 */ 3352 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3353 break; 3354 } 3355 3356 /* we have 2-disk failure */ 3357 BUG_ON(s->failed != 2); 3358 /* fall through */ 3359 case check_state_compute_result: 3360 sh->check_state = check_state_idle; 3361 3362 /* check that a write has not made the stripe insync */ 3363 if (test_bit(STRIPE_INSYNC, &sh->state)) 3364 break; 3365 3366 /* now write out any block on a failed drive, 3367 * or P or Q if they were recomputed 3368 */ 3369 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3370 if (s->failed == 2) { 3371 dev = &sh->dev[s->failed_num[1]]; 3372 s->locked++; 3373 set_bit(R5_LOCKED, &dev->flags); 3374 set_bit(R5_Wantwrite, &dev->flags); 3375 } 3376 if (s->failed >= 1) { 3377 dev = &sh->dev[s->failed_num[0]]; 3378 s->locked++; 3379 set_bit(R5_LOCKED, &dev->flags); 3380 set_bit(R5_Wantwrite, &dev->flags); 3381 } 3382 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3383 dev = &sh->dev[pd_idx]; 3384 s->locked++; 3385 set_bit(R5_LOCKED, &dev->flags); 3386 set_bit(R5_Wantwrite, &dev->flags); 3387 } 3388 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3389 dev = &sh->dev[qd_idx]; 3390 s->locked++; 3391 set_bit(R5_LOCKED, &dev->flags); 3392 set_bit(R5_Wantwrite, &dev->flags); 3393 } 3394 clear_bit(STRIPE_DEGRADED, &sh->state); 3395 3396 set_bit(STRIPE_INSYNC, &sh->state); 3397 break; 3398 case check_state_run: 3399 case check_state_run_q: 3400 case check_state_run_pq: 3401 break; /* we will be called again upon completion */ 3402 case check_state_check_result: 3403 sh->check_state = check_state_idle; 3404 3405 /* handle a successful check operation, if parity is correct 3406 * we are done. Otherwise update the mismatch count and repair 3407 * parity if !MD_RECOVERY_CHECK 3408 */ 3409 if (sh->ops.zero_sum_result == 0) { 3410 /* both parities are correct */ 3411 if (!s->failed) 3412 set_bit(STRIPE_INSYNC, &sh->state); 3413 else { 3414 /* in contrast to the raid5 case we can validate 3415 * parity, but still have a failure to write 3416 * back 3417 */ 3418 sh->check_state = check_state_compute_result; 3419 /* Returning at this point means that we may go 3420 * off and bring p and/or q uptodate again so 3421 * we make sure to check zero_sum_result again 3422 * to verify if p or q need writeback 3423 */ 3424 } 3425 } else { 3426 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3427 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3428 /* don't try to repair!! */ 3429 set_bit(STRIPE_INSYNC, &sh->state); 3430 else { 3431 int *target = &sh->ops.target; 3432 3433 sh->ops.target = -1; 3434 sh->ops.target2 = -1; 3435 sh->check_state = check_state_compute_run; 3436 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3437 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3438 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3439 set_bit(R5_Wantcompute, 3440 &sh->dev[pd_idx].flags); 3441 *target = pd_idx; 3442 target = &sh->ops.target2; 3443 s->uptodate++; 3444 } 3445 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3446 set_bit(R5_Wantcompute, 3447 &sh->dev[qd_idx].flags); 3448 *target = qd_idx; 3449 s->uptodate++; 3450 } 3451 } 3452 } 3453 break; 3454 case check_state_compute_run: 3455 break; 3456 default: 3457 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3458 __func__, sh->check_state, 3459 (unsigned long long) sh->sector); 3460 BUG(); 3461 } 3462 } 3463 3464 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3465 { 3466 int i; 3467 3468 /* We have read all the blocks in this stripe and now we need to 3469 * copy some of them into a target stripe for expand. 3470 */ 3471 struct dma_async_tx_descriptor *tx = NULL; 3472 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3473 for (i = 0; i < sh->disks; i++) 3474 if (i != sh->pd_idx && i != sh->qd_idx) { 3475 int dd_idx, j; 3476 struct stripe_head *sh2; 3477 struct async_submit_ctl submit; 3478 3479 sector_t bn = compute_blocknr(sh, i, 1); 3480 sector_t s = raid5_compute_sector(conf, bn, 0, 3481 &dd_idx, NULL); 3482 sh2 = get_active_stripe(conf, s, 0, 1, 1); 3483 if (sh2 == NULL) 3484 /* so far only the early blocks of this stripe 3485 * have been requested. When later blocks 3486 * get requested, we will try again 3487 */ 3488 continue; 3489 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3490 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3491 /* must have already done this block */ 3492 release_stripe(sh2); 3493 continue; 3494 } 3495 3496 /* place all the copies on one channel */ 3497 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3498 tx = async_memcpy(sh2->dev[dd_idx].page, 3499 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3500 &submit); 3501 3502 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3503 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3504 for (j = 0; j < conf->raid_disks; j++) 3505 if (j != sh2->pd_idx && 3506 j != sh2->qd_idx && 3507 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 3508 break; 3509 if (j == conf->raid_disks) { 3510 set_bit(STRIPE_EXPAND_READY, &sh2->state); 3511 set_bit(STRIPE_HANDLE, &sh2->state); 3512 } 3513 release_stripe(sh2); 3514 3515 } 3516 /* done submitting copies, wait for them to complete */ 3517 async_tx_quiesce(&tx); 3518 } 3519 3520 /* 3521 * handle_stripe - do things to a stripe. 3522 * 3523 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 3524 * state of various bits to see what needs to be done. 3525 * Possible results: 3526 * return some read requests which now have data 3527 * return some write requests which are safely on storage 3528 * schedule a read on some buffers 3529 * schedule a write of some buffers 3530 * return confirmation of parity correctness 3531 * 3532 */ 3533 3534 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 3535 { 3536 struct r5conf *conf = sh->raid_conf; 3537 int disks = sh->disks; 3538 struct r5dev *dev; 3539 int i; 3540 int do_recovery = 0; 3541 3542 memset(s, 0, sizeof(*s)); 3543 3544 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3545 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state); 3546 s->failed_num[0] = -1; 3547 s->failed_num[1] = -1; 3548 3549 /* Now to look around and see what can be done */ 3550 rcu_read_lock(); 3551 for (i=disks; i--; ) { 3552 struct md_rdev *rdev; 3553 sector_t first_bad; 3554 int bad_sectors; 3555 int is_bad = 0; 3556 3557 dev = &sh->dev[i]; 3558 3559 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 3560 i, dev->flags, 3561 dev->toread, dev->towrite, dev->written); 3562 /* maybe we can reply to a read 3563 * 3564 * new wantfill requests are only permitted while 3565 * ops_complete_biofill is guaranteed to be inactive 3566 */ 3567 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 3568 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 3569 set_bit(R5_Wantfill, &dev->flags); 3570 3571 /* now count some things */ 3572 if (test_bit(R5_LOCKED, &dev->flags)) 3573 s->locked++; 3574 if (test_bit(R5_UPTODATE, &dev->flags)) 3575 s->uptodate++; 3576 if (test_bit(R5_Wantcompute, &dev->flags)) { 3577 s->compute++; 3578 BUG_ON(s->compute > 2); 3579 } 3580 3581 if (test_bit(R5_Wantfill, &dev->flags)) 3582 s->to_fill++; 3583 else if (dev->toread) 3584 s->to_read++; 3585 if (dev->towrite) { 3586 s->to_write++; 3587 if (!test_bit(R5_OVERWRITE, &dev->flags)) 3588 s->non_overwrite++; 3589 } 3590 if (dev->written) 3591 s->written++; 3592 /* Prefer to use the replacement for reads, but only 3593 * if it is recovered enough and has no bad blocks. 3594 */ 3595 rdev = rcu_dereference(conf->disks[i].replacement); 3596 if (rdev && !test_bit(Faulty, &rdev->flags) && 3597 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 3598 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3599 &first_bad, &bad_sectors)) 3600 set_bit(R5_ReadRepl, &dev->flags); 3601 else { 3602 if (rdev) 3603 set_bit(R5_NeedReplace, &dev->flags); 3604 rdev = rcu_dereference(conf->disks[i].rdev); 3605 clear_bit(R5_ReadRepl, &dev->flags); 3606 } 3607 if (rdev && test_bit(Faulty, &rdev->flags)) 3608 rdev = NULL; 3609 if (rdev) { 3610 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 3611 &first_bad, &bad_sectors); 3612 if (s->blocked_rdev == NULL 3613 && (test_bit(Blocked, &rdev->flags) 3614 || is_bad < 0)) { 3615 if (is_bad < 0) 3616 set_bit(BlockedBadBlocks, 3617 &rdev->flags); 3618 s->blocked_rdev = rdev; 3619 atomic_inc(&rdev->nr_pending); 3620 } 3621 } 3622 clear_bit(R5_Insync, &dev->flags); 3623 if (!rdev) 3624 /* Not in-sync */; 3625 else if (is_bad) { 3626 /* also not in-sync */ 3627 if (!test_bit(WriteErrorSeen, &rdev->flags) && 3628 test_bit(R5_UPTODATE, &dev->flags)) { 3629 /* treat as in-sync, but with a read error 3630 * which we can now try to correct 3631 */ 3632 set_bit(R5_Insync, &dev->flags); 3633 set_bit(R5_ReadError, &dev->flags); 3634 } 3635 } else if (test_bit(In_sync, &rdev->flags)) 3636 set_bit(R5_Insync, &dev->flags); 3637 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 3638 /* in sync if before recovery_offset */ 3639 set_bit(R5_Insync, &dev->flags); 3640 else if (test_bit(R5_UPTODATE, &dev->flags) && 3641 test_bit(R5_Expanded, &dev->flags)) 3642 /* If we've reshaped into here, we assume it is Insync. 3643 * We will shortly update recovery_offset to make 3644 * it official. 3645 */ 3646 set_bit(R5_Insync, &dev->flags); 3647 3648 if (test_bit(R5_WriteError, &dev->flags)) { 3649 /* This flag does not apply to '.replacement' 3650 * only to .rdev, so make sure to check that*/ 3651 struct md_rdev *rdev2 = rcu_dereference( 3652 conf->disks[i].rdev); 3653 if (rdev2 == rdev) 3654 clear_bit(R5_Insync, &dev->flags); 3655 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3656 s->handle_bad_blocks = 1; 3657 atomic_inc(&rdev2->nr_pending); 3658 } else 3659 clear_bit(R5_WriteError, &dev->flags); 3660 } 3661 if (test_bit(R5_MadeGood, &dev->flags)) { 3662 /* This flag does not apply to '.replacement' 3663 * only to .rdev, so make sure to check that*/ 3664 struct md_rdev *rdev2 = rcu_dereference( 3665 conf->disks[i].rdev); 3666 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3667 s->handle_bad_blocks = 1; 3668 atomic_inc(&rdev2->nr_pending); 3669 } else 3670 clear_bit(R5_MadeGood, &dev->flags); 3671 } 3672 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 3673 struct md_rdev *rdev2 = rcu_dereference( 3674 conf->disks[i].replacement); 3675 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 3676 s->handle_bad_blocks = 1; 3677 atomic_inc(&rdev2->nr_pending); 3678 } else 3679 clear_bit(R5_MadeGoodRepl, &dev->flags); 3680 } 3681 if (!test_bit(R5_Insync, &dev->flags)) { 3682 /* The ReadError flag will just be confusing now */ 3683 clear_bit(R5_ReadError, &dev->flags); 3684 clear_bit(R5_ReWrite, &dev->flags); 3685 } 3686 if (test_bit(R5_ReadError, &dev->flags)) 3687 clear_bit(R5_Insync, &dev->flags); 3688 if (!test_bit(R5_Insync, &dev->flags)) { 3689 if (s->failed < 2) 3690 s->failed_num[s->failed] = i; 3691 s->failed++; 3692 if (rdev && !test_bit(Faulty, &rdev->flags)) 3693 do_recovery = 1; 3694 } 3695 } 3696 if (test_bit(STRIPE_SYNCING, &sh->state)) { 3697 /* If there is a failed device being replaced, 3698 * we must be recovering. 3699 * else if we are after recovery_cp, we must be syncing 3700 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 3701 * else we can only be replacing 3702 * sync and recovery both need to read all devices, and so 3703 * use the same flag. 3704 */ 3705 if (do_recovery || 3706 sh->sector >= conf->mddev->recovery_cp || 3707 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 3708 s->syncing = 1; 3709 else 3710 s->replacing = 1; 3711 } 3712 rcu_read_unlock(); 3713 } 3714 3715 static void handle_stripe(struct stripe_head *sh) 3716 { 3717 struct stripe_head_state s; 3718 struct r5conf *conf = sh->raid_conf; 3719 int i; 3720 int prexor; 3721 int disks = sh->disks; 3722 struct r5dev *pdev, *qdev; 3723 3724 clear_bit(STRIPE_HANDLE, &sh->state); 3725 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 3726 /* already being handled, ensure it gets handled 3727 * again when current action finishes */ 3728 set_bit(STRIPE_HANDLE, &sh->state); 3729 return; 3730 } 3731 3732 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 3733 spin_lock(&sh->stripe_lock); 3734 /* Cannot process 'sync' concurrently with 'discard' */ 3735 if (!test_bit(STRIPE_DISCARD, &sh->state) && 3736 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 3737 set_bit(STRIPE_SYNCING, &sh->state); 3738 clear_bit(STRIPE_INSYNC, &sh->state); 3739 clear_bit(STRIPE_REPLACED, &sh->state); 3740 } 3741 spin_unlock(&sh->stripe_lock); 3742 } 3743 clear_bit(STRIPE_DELAYED, &sh->state); 3744 3745 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 3746 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 3747 (unsigned long long)sh->sector, sh->state, 3748 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 3749 sh->check_state, sh->reconstruct_state); 3750 3751 analyse_stripe(sh, &s); 3752 3753 if (s.handle_bad_blocks) { 3754 set_bit(STRIPE_HANDLE, &sh->state); 3755 goto finish; 3756 } 3757 3758 if (unlikely(s.blocked_rdev)) { 3759 if (s.syncing || s.expanding || s.expanded || 3760 s.replacing || s.to_write || s.written) { 3761 set_bit(STRIPE_HANDLE, &sh->state); 3762 goto finish; 3763 } 3764 /* There is nothing for the blocked_rdev to block */ 3765 rdev_dec_pending(s.blocked_rdev, conf->mddev); 3766 s.blocked_rdev = NULL; 3767 } 3768 3769 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 3770 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 3771 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 3772 } 3773 3774 pr_debug("locked=%d uptodate=%d to_read=%d" 3775 " to_write=%d failed=%d failed_num=%d,%d\n", 3776 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 3777 s.failed_num[0], s.failed_num[1]); 3778 /* check if the array has lost more than max_degraded devices and, 3779 * if so, some requests might need to be failed. 3780 */ 3781 if (s.failed > conf->max_degraded) { 3782 sh->check_state = 0; 3783 sh->reconstruct_state = 0; 3784 if (s.to_read+s.to_write+s.written) 3785 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 3786 if (s.syncing + s.replacing) 3787 handle_failed_sync(conf, sh, &s); 3788 } 3789 3790 /* Now we check to see if any write operations have recently 3791 * completed 3792 */ 3793 prexor = 0; 3794 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 3795 prexor = 1; 3796 if (sh->reconstruct_state == reconstruct_state_drain_result || 3797 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 3798 sh->reconstruct_state = reconstruct_state_idle; 3799 3800 /* All the 'written' buffers and the parity block are ready to 3801 * be written back to disk 3802 */ 3803 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 3804 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 3805 BUG_ON(sh->qd_idx >= 0 && 3806 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 3807 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 3808 for (i = disks; i--; ) { 3809 struct r5dev *dev = &sh->dev[i]; 3810 if (test_bit(R5_LOCKED, &dev->flags) && 3811 (i == sh->pd_idx || i == sh->qd_idx || 3812 dev->written)) { 3813 pr_debug("Writing block %d\n", i); 3814 set_bit(R5_Wantwrite, &dev->flags); 3815 if (prexor) 3816 continue; 3817 if (s.failed > 1) 3818 continue; 3819 if (!test_bit(R5_Insync, &dev->flags) || 3820 ((i == sh->pd_idx || i == sh->qd_idx) && 3821 s.failed == 0)) 3822 set_bit(STRIPE_INSYNC, &sh->state); 3823 } 3824 } 3825 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3826 s.dec_preread_active = 1; 3827 } 3828 3829 /* 3830 * might be able to return some write requests if the parity blocks 3831 * are safe, or on a failed drive 3832 */ 3833 pdev = &sh->dev[sh->pd_idx]; 3834 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 3835 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 3836 qdev = &sh->dev[sh->qd_idx]; 3837 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 3838 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 3839 || conf->level < 6; 3840 3841 if (s.written && 3842 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 3843 && !test_bit(R5_LOCKED, &pdev->flags) 3844 && (test_bit(R5_UPTODATE, &pdev->flags) || 3845 test_bit(R5_Discard, &pdev->flags))))) && 3846 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 3847 && !test_bit(R5_LOCKED, &qdev->flags) 3848 && (test_bit(R5_UPTODATE, &qdev->flags) || 3849 test_bit(R5_Discard, &qdev->flags)))))) 3850 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 3851 3852 /* Now we might consider reading some blocks, either to check/generate 3853 * parity, or to satisfy requests 3854 * or to load a block that is being partially written. 3855 */ 3856 if (s.to_read || s.non_overwrite 3857 || (conf->level == 6 && s.to_write && s.failed) 3858 || (s.syncing && (s.uptodate + s.compute < disks)) 3859 || s.replacing 3860 || s.expanding) 3861 handle_stripe_fill(sh, &s, disks); 3862 3863 /* Now to consider new write requests and what else, if anything 3864 * should be read. We do not handle new writes when: 3865 * 1/ A 'write' operation (copy+xor) is already in flight. 3866 * 2/ A 'check' operation is in flight, as it may clobber the parity 3867 * block. 3868 */ 3869 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 3870 handle_stripe_dirtying(conf, sh, &s, disks); 3871 3872 /* maybe we need to check and possibly fix the parity for this stripe 3873 * Any reads will already have been scheduled, so we just see if enough 3874 * data is available. The parity check is held off while parity 3875 * dependent operations are in flight. 3876 */ 3877 if (sh->check_state || 3878 (s.syncing && s.locked == 0 && 3879 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3880 !test_bit(STRIPE_INSYNC, &sh->state))) { 3881 if (conf->level == 6) 3882 handle_parity_checks6(conf, sh, &s, disks); 3883 else 3884 handle_parity_checks5(conf, sh, &s, disks); 3885 } 3886 3887 if ((s.replacing || s.syncing) && s.locked == 0 3888 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 3889 && !test_bit(STRIPE_REPLACED, &sh->state)) { 3890 /* Write out to replacement devices where possible */ 3891 for (i = 0; i < conf->raid_disks; i++) 3892 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 3893 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3894 set_bit(R5_WantReplace, &sh->dev[i].flags); 3895 set_bit(R5_LOCKED, &sh->dev[i].flags); 3896 s.locked++; 3897 } 3898 if (s.replacing) 3899 set_bit(STRIPE_INSYNC, &sh->state); 3900 set_bit(STRIPE_REPLACED, &sh->state); 3901 } 3902 if ((s.syncing || s.replacing) && s.locked == 0 && 3903 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 3904 test_bit(STRIPE_INSYNC, &sh->state)) { 3905 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3906 clear_bit(STRIPE_SYNCING, &sh->state); 3907 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3908 wake_up(&conf->wait_for_overlap); 3909 } 3910 3911 /* If the failed drives are just a ReadError, then we might need 3912 * to progress the repair/check process 3913 */ 3914 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 3915 for (i = 0; i < s.failed; i++) { 3916 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 3917 if (test_bit(R5_ReadError, &dev->flags) 3918 && !test_bit(R5_LOCKED, &dev->flags) 3919 && test_bit(R5_UPTODATE, &dev->flags) 3920 ) { 3921 if (!test_bit(R5_ReWrite, &dev->flags)) { 3922 set_bit(R5_Wantwrite, &dev->flags); 3923 set_bit(R5_ReWrite, &dev->flags); 3924 set_bit(R5_LOCKED, &dev->flags); 3925 s.locked++; 3926 } else { 3927 /* let's read it back */ 3928 set_bit(R5_Wantread, &dev->flags); 3929 set_bit(R5_LOCKED, &dev->flags); 3930 s.locked++; 3931 } 3932 } 3933 } 3934 3935 /* Finish reconstruct operations initiated by the expansion process */ 3936 if (sh->reconstruct_state == reconstruct_state_result) { 3937 struct stripe_head *sh_src 3938 = get_active_stripe(conf, sh->sector, 1, 1, 1); 3939 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 3940 /* sh cannot be written until sh_src has been read. 3941 * so arrange for sh to be delayed a little 3942 */ 3943 set_bit(STRIPE_DELAYED, &sh->state); 3944 set_bit(STRIPE_HANDLE, &sh->state); 3945 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 3946 &sh_src->state)) 3947 atomic_inc(&conf->preread_active_stripes); 3948 release_stripe(sh_src); 3949 goto finish; 3950 } 3951 if (sh_src) 3952 release_stripe(sh_src); 3953 3954 sh->reconstruct_state = reconstruct_state_idle; 3955 clear_bit(STRIPE_EXPANDING, &sh->state); 3956 for (i = conf->raid_disks; i--; ) { 3957 set_bit(R5_Wantwrite, &sh->dev[i].flags); 3958 set_bit(R5_LOCKED, &sh->dev[i].flags); 3959 s.locked++; 3960 } 3961 } 3962 3963 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 3964 !sh->reconstruct_state) { 3965 /* Need to write out all blocks after computing parity */ 3966 sh->disks = conf->raid_disks; 3967 stripe_set_idx(sh->sector, conf, 0, sh); 3968 schedule_reconstruction(sh, &s, 1, 1); 3969 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 3970 clear_bit(STRIPE_EXPAND_READY, &sh->state); 3971 atomic_dec(&conf->reshape_stripes); 3972 wake_up(&conf->wait_for_overlap); 3973 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 3974 } 3975 3976 if (s.expanding && s.locked == 0 && 3977 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 3978 handle_stripe_expansion(conf, sh); 3979 3980 finish: 3981 /* wait for this device to become unblocked */ 3982 if (unlikely(s.blocked_rdev)) { 3983 if (conf->mddev->external) 3984 md_wait_for_blocked_rdev(s.blocked_rdev, 3985 conf->mddev); 3986 else 3987 /* Internal metadata will immediately 3988 * be written by raid5d, so we don't 3989 * need to wait here. 3990 */ 3991 rdev_dec_pending(s.blocked_rdev, 3992 conf->mddev); 3993 } 3994 3995 if (s.handle_bad_blocks) 3996 for (i = disks; i--; ) { 3997 struct md_rdev *rdev; 3998 struct r5dev *dev = &sh->dev[i]; 3999 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 4000 /* We own a safe reference to the rdev */ 4001 rdev = conf->disks[i].rdev; 4002 if (!rdev_set_badblocks(rdev, sh->sector, 4003 STRIPE_SECTORS, 0)) 4004 md_error(conf->mddev, rdev); 4005 rdev_dec_pending(rdev, conf->mddev); 4006 } 4007 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 4008 rdev = conf->disks[i].rdev; 4009 rdev_clear_badblocks(rdev, sh->sector, 4010 STRIPE_SECTORS, 0); 4011 rdev_dec_pending(rdev, conf->mddev); 4012 } 4013 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 4014 rdev = conf->disks[i].replacement; 4015 if (!rdev) 4016 /* rdev have been moved down */ 4017 rdev = conf->disks[i].rdev; 4018 rdev_clear_badblocks(rdev, sh->sector, 4019 STRIPE_SECTORS, 0); 4020 rdev_dec_pending(rdev, conf->mddev); 4021 } 4022 } 4023 4024 if (s.ops_request) 4025 raid_run_ops(sh, s.ops_request); 4026 4027 ops_run_io(sh, &s); 4028 4029 if (s.dec_preread_active) { 4030 /* We delay this until after ops_run_io so that if make_request 4031 * is waiting on a flush, it won't continue until the writes 4032 * have actually been submitted. 4033 */ 4034 atomic_dec(&conf->preread_active_stripes); 4035 if (atomic_read(&conf->preread_active_stripes) < 4036 IO_THRESHOLD) 4037 md_wakeup_thread(conf->mddev->thread); 4038 } 4039 4040 return_io(s.return_bi); 4041 4042 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4043 } 4044 4045 static void raid5_activate_delayed(struct r5conf *conf) 4046 { 4047 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 4048 while (!list_empty(&conf->delayed_list)) { 4049 struct list_head *l = conf->delayed_list.next; 4050 struct stripe_head *sh; 4051 sh = list_entry(l, struct stripe_head, lru); 4052 list_del_init(l); 4053 clear_bit(STRIPE_DELAYED, &sh->state); 4054 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4055 atomic_inc(&conf->preread_active_stripes); 4056 list_add_tail(&sh->lru, &conf->hold_list); 4057 raid5_wakeup_stripe_thread(sh); 4058 } 4059 } 4060 } 4061 4062 static void activate_bit_delay(struct r5conf *conf, 4063 struct list_head *temp_inactive_list) 4064 { 4065 /* device_lock is held */ 4066 struct list_head head; 4067 list_add(&head, &conf->bitmap_list); 4068 list_del_init(&conf->bitmap_list); 4069 while (!list_empty(&head)) { 4070 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 4071 int hash; 4072 list_del_init(&sh->lru); 4073 atomic_inc(&sh->count); 4074 hash = sh->hash_lock_index; 4075 __release_stripe(conf, sh, &temp_inactive_list[hash]); 4076 } 4077 } 4078 4079 int md_raid5_congested(struct mddev *mddev, int bits) 4080 { 4081 struct r5conf *conf = mddev->private; 4082 4083 /* No difference between reads and writes. Just check 4084 * how busy the stripe_cache is 4085 */ 4086 4087 if (conf->inactive_blocked) 4088 return 1; 4089 if (conf->quiesce) 4090 return 1; 4091 if (atomic_read(&conf->empty_inactive_list_nr)) 4092 return 1; 4093 4094 return 0; 4095 } 4096 EXPORT_SYMBOL_GPL(md_raid5_congested); 4097 4098 static int raid5_congested(void *data, int bits) 4099 { 4100 struct mddev *mddev = data; 4101 4102 return mddev_congested(mddev, bits) || 4103 md_raid5_congested(mddev, bits); 4104 } 4105 4106 /* We want read requests to align with chunks where possible, 4107 * but write requests don't need to. 4108 */ 4109 static int raid5_mergeable_bvec(struct request_queue *q, 4110 struct bvec_merge_data *bvm, 4111 struct bio_vec *biovec) 4112 { 4113 struct mddev *mddev = q->queuedata; 4114 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 4115 int max; 4116 unsigned int chunk_sectors = mddev->chunk_sectors; 4117 unsigned int bio_sectors = bvm->bi_size >> 9; 4118 4119 if ((bvm->bi_rw & 1) == WRITE) 4120 return biovec->bv_len; /* always allow writes to be mergeable */ 4121 4122 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 4123 chunk_sectors = mddev->new_chunk_sectors; 4124 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 4125 if (max < 0) max = 0; 4126 if (max <= biovec->bv_len && bio_sectors == 0) 4127 return biovec->bv_len; 4128 else 4129 return max; 4130 } 4131 4132 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 4133 { 4134 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev); 4135 unsigned int chunk_sectors = mddev->chunk_sectors; 4136 unsigned int bio_sectors = bio_sectors(bio); 4137 4138 if (mddev->new_chunk_sectors < mddev->chunk_sectors) 4139 chunk_sectors = mddev->new_chunk_sectors; 4140 return chunk_sectors >= 4141 ((sector & (chunk_sectors - 1)) + bio_sectors); 4142 } 4143 4144 /* 4145 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 4146 * later sampled by raid5d. 4147 */ 4148 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 4149 { 4150 unsigned long flags; 4151 4152 spin_lock_irqsave(&conf->device_lock, flags); 4153 4154 bi->bi_next = conf->retry_read_aligned_list; 4155 conf->retry_read_aligned_list = bi; 4156 4157 spin_unlock_irqrestore(&conf->device_lock, flags); 4158 md_wakeup_thread(conf->mddev->thread); 4159 } 4160 4161 static struct bio *remove_bio_from_retry(struct r5conf *conf) 4162 { 4163 struct bio *bi; 4164 4165 bi = conf->retry_read_aligned; 4166 if (bi) { 4167 conf->retry_read_aligned = NULL; 4168 return bi; 4169 } 4170 bi = conf->retry_read_aligned_list; 4171 if(bi) { 4172 conf->retry_read_aligned_list = bi->bi_next; 4173 bi->bi_next = NULL; 4174 /* 4175 * this sets the active strip count to 1 and the processed 4176 * strip count to zero (upper 8 bits) 4177 */ 4178 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 4179 } 4180 4181 return bi; 4182 } 4183 4184 /* 4185 * The "raid5_align_endio" should check if the read succeeded and if it 4186 * did, call bio_endio on the original bio (having bio_put the new bio 4187 * first). 4188 * If the read failed.. 4189 */ 4190 static void raid5_align_endio(struct bio *bi, int error) 4191 { 4192 struct bio* raid_bi = bi->bi_private; 4193 struct mddev *mddev; 4194 struct r5conf *conf; 4195 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 4196 struct md_rdev *rdev; 4197 4198 bio_put(bi); 4199 4200 rdev = (void*)raid_bi->bi_next; 4201 raid_bi->bi_next = NULL; 4202 mddev = rdev->mddev; 4203 conf = mddev->private; 4204 4205 rdev_dec_pending(rdev, conf->mddev); 4206 4207 if (!error && uptodate) { 4208 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev), 4209 raid_bi, 0); 4210 bio_endio(raid_bi, 0); 4211 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4212 wake_up(&conf->wait_for_stripe); 4213 return; 4214 } 4215 4216 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 4217 4218 add_bio_to_retry(raid_bi, conf); 4219 } 4220 4221 static int bio_fits_rdev(struct bio *bi) 4222 { 4223 struct request_queue *q = bdev_get_queue(bi->bi_bdev); 4224 4225 if (bio_sectors(bi) > queue_max_sectors(q)) 4226 return 0; 4227 blk_recount_segments(q, bi); 4228 if (bi->bi_phys_segments > queue_max_segments(q)) 4229 return 0; 4230 4231 if (q->merge_bvec_fn) 4232 /* it's too hard to apply the merge_bvec_fn at this stage, 4233 * just just give up 4234 */ 4235 return 0; 4236 4237 return 1; 4238 } 4239 4240 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio) 4241 { 4242 struct r5conf *conf = mddev->private; 4243 int dd_idx; 4244 struct bio* align_bi; 4245 struct md_rdev *rdev; 4246 sector_t end_sector; 4247 4248 if (!in_chunk_boundary(mddev, raid_bio)) { 4249 pr_debug("chunk_aligned_read : non aligned\n"); 4250 return 0; 4251 } 4252 /* 4253 * use bio_clone_mddev to make a copy of the bio 4254 */ 4255 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 4256 if (!align_bi) 4257 return 0; 4258 /* 4259 * set bi_end_io to a new function, and set bi_private to the 4260 * original bio. 4261 */ 4262 align_bi->bi_end_io = raid5_align_endio; 4263 align_bi->bi_private = raid_bio; 4264 /* 4265 * compute position 4266 */ 4267 align_bi->bi_iter.bi_sector = 4268 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 4269 0, &dd_idx, NULL); 4270 4271 end_sector = bio_end_sector(align_bi); 4272 rcu_read_lock(); 4273 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 4274 if (!rdev || test_bit(Faulty, &rdev->flags) || 4275 rdev->recovery_offset < end_sector) { 4276 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 4277 if (rdev && 4278 (test_bit(Faulty, &rdev->flags) || 4279 !(test_bit(In_sync, &rdev->flags) || 4280 rdev->recovery_offset >= end_sector))) 4281 rdev = NULL; 4282 } 4283 if (rdev) { 4284 sector_t first_bad; 4285 int bad_sectors; 4286 4287 atomic_inc(&rdev->nr_pending); 4288 rcu_read_unlock(); 4289 raid_bio->bi_next = (void*)rdev; 4290 align_bi->bi_bdev = rdev->bdev; 4291 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags); 4292 4293 if (!bio_fits_rdev(align_bi) || 4294 is_badblock(rdev, align_bi->bi_iter.bi_sector, 4295 bio_sectors(align_bi), 4296 &first_bad, &bad_sectors)) { 4297 /* too big in some way, or has a known bad block */ 4298 bio_put(align_bi); 4299 rdev_dec_pending(rdev, mddev); 4300 return 0; 4301 } 4302 4303 /* No reshape active, so we can trust rdev->data_offset */ 4304 align_bi->bi_iter.bi_sector += rdev->data_offset; 4305 4306 spin_lock_irq(&conf->device_lock); 4307 wait_event_lock_irq(conf->wait_for_stripe, 4308 conf->quiesce == 0, 4309 conf->device_lock); 4310 atomic_inc(&conf->active_aligned_reads); 4311 spin_unlock_irq(&conf->device_lock); 4312 4313 if (mddev->gendisk) 4314 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), 4315 align_bi, disk_devt(mddev->gendisk), 4316 raid_bio->bi_iter.bi_sector); 4317 generic_make_request(align_bi); 4318 return 1; 4319 } else { 4320 rcu_read_unlock(); 4321 bio_put(align_bi); 4322 return 0; 4323 } 4324 } 4325 4326 /* __get_priority_stripe - get the next stripe to process 4327 * 4328 * Full stripe writes are allowed to pass preread active stripes up until 4329 * the bypass_threshold is exceeded. In general the bypass_count 4330 * increments when the handle_list is handled before the hold_list; however, it 4331 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 4332 * stripe with in flight i/o. The bypass_count will be reset when the 4333 * head of the hold_list has changed, i.e. the head was promoted to the 4334 * handle_list. 4335 */ 4336 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 4337 { 4338 struct stripe_head *sh = NULL, *tmp; 4339 struct list_head *handle_list = NULL; 4340 struct r5worker_group *wg = NULL; 4341 4342 if (conf->worker_cnt_per_group == 0) { 4343 handle_list = &conf->handle_list; 4344 } else if (group != ANY_GROUP) { 4345 handle_list = &conf->worker_groups[group].handle_list; 4346 wg = &conf->worker_groups[group]; 4347 } else { 4348 int i; 4349 for (i = 0; i < conf->group_cnt; i++) { 4350 handle_list = &conf->worker_groups[i].handle_list; 4351 wg = &conf->worker_groups[i]; 4352 if (!list_empty(handle_list)) 4353 break; 4354 } 4355 } 4356 4357 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 4358 __func__, 4359 list_empty(handle_list) ? "empty" : "busy", 4360 list_empty(&conf->hold_list) ? "empty" : "busy", 4361 atomic_read(&conf->pending_full_writes), conf->bypass_count); 4362 4363 if (!list_empty(handle_list)) { 4364 sh = list_entry(handle_list->next, typeof(*sh), lru); 4365 4366 if (list_empty(&conf->hold_list)) 4367 conf->bypass_count = 0; 4368 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 4369 if (conf->hold_list.next == conf->last_hold) 4370 conf->bypass_count++; 4371 else { 4372 conf->last_hold = conf->hold_list.next; 4373 conf->bypass_count -= conf->bypass_threshold; 4374 if (conf->bypass_count < 0) 4375 conf->bypass_count = 0; 4376 } 4377 } 4378 } else if (!list_empty(&conf->hold_list) && 4379 ((conf->bypass_threshold && 4380 conf->bypass_count > conf->bypass_threshold) || 4381 atomic_read(&conf->pending_full_writes) == 0)) { 4382 4383 list_for_each_entry(tmp, &conf->hold_list, lru) { 4384 if (conf->worker_cnt_per_group == 0 || 4385 group == ANY_GROUP || 4386 !cpu_online(tmp->cpu) || 4387 cpu_to_group(tmp->cpu) == group) { 4388 sh = tmp; 4389 break; 4390 } 4391 } 4392 4393 if (sh) { 4394 conf->bypass_count -= conf->bypass_threshold; 4395 if (conf->bypass_count < 0) 4396 conf->bypass_count = 0; 4397 } 4398 wg = NULL; 4399 } 4400 4401 if (!sh) 4402 return NULL; 4403 4404 if (wg) { 4405 wg->stripes_cnt--; 4406 sh->group = NULL; 4407 } 4408 list_del_init(&sh->lru); 4409 BUG_ON(atomic_inc_return(&sh->count) != 1); 4410 return sh; 4411 } 4412 4413 struct raid5_plug_cb { 4414 struct blk_plug_cb cb; 4415 struct list_head list; 4416 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 4417 }; 4418 4419 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 4420 { 4421 struct raid5_plug_cb *cb = container_of( 4422 blk_cb, struct raid5_plug_cb, cb); 4423 struct stripe_head *sh; 4424 struct mddev *mddev = cb->cb.data; 4425 struct r5conf *conf = mddev->private; 4426 int cnt = 0; 4427 int hash; 4428 4429 if (cb->list.next && !list_empty(&cb->list)) { 4430 spin_lock_irq(&conf->device_lock); 4431 while (!list_empty(&cb->list)) { 4432 sh = list_first_entry(&cb->list, struct stripe_head, lru); 4433 list_del_init(&sh->lru); 4434 /* 4435 * avoid race release_stripe_plug() sees 4436 * STRIPE_ON_UNPLUG_LIST clear but the stripe 4437 * is still in our list 4438 */ 4439 smp_mb__before_atomic(); 4440 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 4441 /* 4442 * STRIPE_ON_RELEASE_LIST could be set here. In that 4443 * case, the count is always > 1 here 4444 */ 4445 hash = sh->hash_lock_index; 4446 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 4447 cnt++; 4448 } 4449 spin_unlock_irq(&conf->device_lock); 4450 } 4451 release_inactive_stripe_list(conf, cb->temp_inactive_list, 4452 NR_STRIPE_HASH_LOCKS); 4453 if (mddev->queue) 4454 trace_block_unplug(mddev->queue, cnt, !from_schedule); 4455 kfree(cb); 4456 } 4457 4458 static void release_stripe_plug(struct mddev *mddev, 4459 struct stripe_head *sh) 4460 { 4461 struct blk_plug_cb *blk_cb = blk_check_plugged( 4462 raid5_unplug, mddev, 4463 sizeof(struct raid5_plug_cb)); 4464 struct raid5_plug_cb *cb; 4465 4466 if (!blk_cb) { 4467 release_stripe(sh); 4468 return; 4469 } 4470 4471 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 4472 4473 if (cb->list.next == NULL) { 4474 int i; 4475 INIT_LIST_HEAD(&cb->list); 4476 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 4477 INIT_LIST_HEAD(cb->temp_inactive_list + i); 4478 } 4479 4480 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 4481 list_add_tail(&sh->lru, &cb->list); 4482 else 4483 release_stripe(sh); 4484 } 4485 4486 static void make_discard_request(struct mddev *mddev, struct bio *bi) 4487 { 4488 struct r5conf *conf = mddev->private; 4489 sector_t logical_sector, last_sector; 4490 struct stripe_head *sh; 4491 int remaining; 4492 int stripe_sectors; 4493 4494 if (mddev->reshape_position != MaxSector) 4495 /* Skip discard while reshape is happening */ 4496 return; 4497 4498 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4499 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); 4500 4501 bi->bi_next = NULL; 4502 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4503 4504 stripe_sectors = conf->chunk_sectors * 4505 (conf->raid_disks - conf->max_degraded); 4506 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 4507 stripe_sectors); 4508 sector_div(last_sector, stripe_sectors); 4509 4510 logical_sector *= conf->chunk_sectors; 4511 last_sector *= conf->chunk_sectors; 4512 4513 for (; logical_sector < last_sector; 4514 logical_sector += STRIPE_SECTORS) { 4515 DEFINE_WAIT(w); 4516 int d; 4517 again: 4518 sh = get_active_stripe(conf, logical_sector, 0, 0, 0); 4519 prepare_to_wait(&conf->wait_for_overlap, &w, 4520 TASK_UNINTERRUPTIBLE); 4521 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 4522 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4523 release_stripe(sh); 4524 schedule(); 4525 goto again; 4526 } 4527 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 4528 spin_lock_irq(&sh->stripe_lock); 4529 for (d = 0; d < conf->raid_disks; d++) { 4530 if (d == sh->pd_idx || d == sh->qd_idx) 4531 continue; 4532 if (sh->dev[d].towrite || sh->dev[d].toread) { 4533 set_bit(R5_Overlap, &sh->dev[d].flags); 4534 spin_unlock_irq(&sh->stripe_lock); 4535 release_stripe(sh); 4536 schedule(); 4537 goto again; 4538 } 4539 } 4540 set_bit(STRIPE_DISCARD, &sh->state); 4541 finish_wait(&conf->wait_for_overlap, &w); 4542 for (d = 0; d < conf->raid_disks; d++) { 4543 if (d == sh->pd_idx || d == sh->qd_idx) 4544 continue; 4545 sh->dev[d].towrite = bi; 4546 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 4547 raid5_inc_bi_active_stripes(bi); 4548 } 4549 spin_unlock_irq(&sh->stripe_lock); 4550 if (conf->mddev->bitmap) { 4551 for (d = 0; 4552 d < conf->raid_disks - conf->max_degraded; 4553 d++) 4554 bitmap_startwrite(mddev->bitmap, 4555 sh->sector, 4556 STRIPE_SECTORS, 4557 0); 4558 sh->bm_seq = conf->seq_flush + 1; 4559 set_bit(STRIPE_BIT_DELAY, &sh->state); 4560 } 4561 4562 set_bit(STRIPE_HANDLE, &sh->state); 4563 clear_bit(STRIPE_DELAYED, &sh->state); 4564 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4565 atomic_inc(&conf->preread_active_stripes); 4566 release_stripe_plug(mddev, sh); 4567 } 4568 4569 remaining = raid5_dec_bi_active_stripes(bi); 4570 if (remaining == 0) { 4571 md_write_end(mddev); 4572 bio_endio(bi, 0); 4573 } 4574 } 4575 4576 static void make_request(struct mddev *mddev, struct bio * bi) 4577 { 4578 struct r5conf *conf = mddev->private; 4579 int dd_idx; 4580 sector_t new_sector; 4581 sector_t logical_sector, last_sector; 4582 struct stripe_head *sh; 4583 const int rw = bio_data_dir(bi); 4584 int remaining; 4585 DEFINE_WAIT(w); 4586 bool do_prepare; 4587 4588 if (unlikely(bi->bi_rw & REQ_FLUSH)) { 4589 md_flush_request(mddev, bi); 4590 return; 4591 } 4592 4593 md_write_start(mddev, bi); 4594 4595 if (rw == READ && 4596 mddev->reshape_position == MaxSector && 4597 chunk_aligned_read(mddev,bi)) 4598 return; 4599 4600 if (unlikely(bi->bi_rw & REQ_DISCARD)) { 4601 make_discard_request(mddev, bi); 4602 return; 4603 } 4604 4605 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4606 last_sector = bio_end_sector(bi); 4607 bi->bi_next = NULL; 4608 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 4609 4610 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 4611 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 4612 int previous; 4613 int seq; 4614 4615 do_prepare = false; 4616 retry: 4617 seq = read_seqcount_begin(&conf->gen_lock); 4618 previous = 0; 4619 if (do_prepare) 4620 prepare_to_wait(&conf->wait_for_overlap, &w, 4621 TASK_UNINTERRUPTIBLE); 4622 if (unlikely(conf->reshape_progress != MaxSector)) { 4623 /* spinlock is needed as reshape_progress may be 4624 * 64bit on a 32bit platform, and so it might be 4625 * possible to see a half-updated value 4626 * Of course reshape_progress could change after 4627 * the lock is dropped, so once we get a reference 4628 * to the stripe that we think it is, we will have 4629 * to check again. 4630 */ 4631 spin_lock_irq(&conf->device_lock); 4632 if (mddev->reshape_backwards 4633 ? logical_sector < conf->reshape_progress 4634 : logical_sector >= conf->reshape_progress) { 4635 previous = 1; 4636 } else { 4637 if (mddev->reshape_backwards 4638 ? logical_sector < conf->reshape_safe 4639 : logical_sector >= conf->reshape_safe) { 4640 spin_unlock_irq(&conf->device_lock); 4641 schedule(); 4642 do_prepare = true; 4643 goto retry; 4644 } 4645 } 4646 spin_unlock_irq(&conf->device_lock); 4647 } 4648 4649 new_sector = raid5_compute_sector(conf, logical_sector, 4650 previous, 4651 &dd_idx, NULL); 4652 pr_debug("raid456: make_request, sector %llu logical %llu\n", 4653 (unsigned long long)new_sector, 4654 (unsigned long long)logical_sector); 4655 4656 sh = get_active_stripe(conf, new_sector, previous, 4657 (bi->bi_rw&RWA_MASK), 0); 4658 if (sh) { 4659 if (unlikely(previous)) { 4660 /* expansion might have moved on while waiting for a 4661 * stripe, so we must do the range check again. 4662 * Expansion could still move past after this 4663 * test, but as we are holding a reference to 4664 * 'sh', we know that if that happens, 4665 * STRIPE_EXPANDING will get set and the expansion 4666 * won't proceed until we finish with the stripe. 4667 */ 4668 int must_retry = 0; 4669 spin_lock_irq(&conf->device_lock); 4670 if (mddev->reshape_backwards 4671 ? logical_sector >= conf->reshape_progress 4672 : logical_sector < conf->reshape_progress) 4673 /* mismatch, need to try again */ 4674 must_retry = 1; 4675 spin_unlock_irq(&conf->device_lock); 4676 if (must_retry) { 4677 release_stripe(sh); 4678 schedule(); 4679 do_prepare = true; 4680 goto retry; 4681 } 4682 } 4683 if (read_seqcount_retry(&conf->gen_lock, seq)) { 4684 /* Might have got the wrong stripe_head 4685 * by accident 4686 */ 4687 release_stripe(sh); 4688 goto retry; 4689 } 4690 4691 if (rw == WRITE && 4692 logical_sector >= mddev->suspend_lo && 4693 logical_sector < mddev->suspend_hi) { 4694 release_stripe(sh); 4695 /* As the suspend_* range is controlled by 4696 * userspace, we want an interruptible 4697 * wait. 4698 */ 4699 flush_signals(current); 4700 prepare_to_wait(&conf->wait_for_overlap, 4701 &w, TASK_INTERRUPTIBLE); 4702 if (logical_sector >= mddev->suspend_lo && 4703 logical_sector < mddev->suspend_hi) { 4704 schedule(); 4705 do_prepare = true; 4706 } 4707 goto retry; 4708 } 4709 4710 if (test_bit(STRIPE_EXPANDING, &sh->state) || 4711 !add_stripe_bio(sh, bi, dd_idx, rw)) { 4712 /* Stripe is busy expanding or 4713 * add failed due to overlap. Flush everything 4714 * and wait a while 4715 */ 4716 md_wakeup_thread(mddev->thread); 4717 release_stripe(sh); 4718 schedule(); 4719 do_prepare = true; 4720 goto retry; 4721 } 4722 set_bit(STRIPE_HANDLE, &sh->state); 4723 clear_bit(STRIPE_DELAYED, &sh->state); 4724 if ((bi->bi_rw & REQ_SYNC) && 4725 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4726 atomic_inc(&conf->preread_active_stripes); 4727 release_stripe_plug(mddev, sh); 4728 } else { 4729 /* cannot get stripe for read-ahead, just give-up */ 4730 clear_bit(BIO_UPTODATE, &bi->bi_flags); 4731 break; 4732 } 4733 } 4734 finish_wait(&conf->wait_for_overlap, &w); 4735 4736 remaining = raid5_dec_bi_active_stripes(bi); 4737 if (remaining == 0) { 4738 4739 if ( rw == WRITE ) 4740 md_write_end(mddev); 4741 4742 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 4743 bi, 0); 4744 bio_endio(bi, 0); 4745 } 4746 } 4747 4748 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 4749 4750 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 4751 { 4752 /* reshaping is quite different to recovery/resync so it is 4753 * handled quite separately ... here. 4754 * 4755 * On each call to sync_request, we gather one chunk worth of 4756 * destination stripes and flag them as expanding. 4757 * Then we find all the source stripes and request reads. 4758 * As the reads complete, handle_stripe will copy the data 4759 * into the destination stripe and release that stripe. 4760 */ 4761 struct r5conf *conf = mddev->private; 4762 struct stripe_head *sh; 4763 sector_t first_sector, last_sector; 4764 int raid_disks = conf->previous_raid_disks; 4765 int data_disks = raid_disks - conf->max_degraded; 4766 int new_data_disks = conf->raid_disks - conf->max_degraded; 4767 int i; 4768 int dd_idx; 4769 sector_t writepos, readpos, safepos; 4770 sector_t stripe_addr; 4771 int reshape_sectors; 4772 struct list_head stripes; 4773 4774 if (sector_nr == 0) { 4775 /* If restarting in the middle, skip the initial sectors */ 4776 if (mddev->reshape_backwards && 4777 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 4778 sector_nr = raid5_size(mddev, 0, 0) 4779 - conf->reshape_progress; 4780 } else if (!mddev->reshape_backwards && 4781 conf->reshape_progress > 0) 4782 sector_nr = conf->reshape_progress; 4783 sector_div(sector_nr, new_data_disks); 4784 if (sector_nr) { 4785 mddev->curr_resync_completed = sector_nr; 4786 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4787 *skipped = 1; 4788 return sector_nr; 4789 } 4790 } 4791 4792 /* We need to process a full chunk at a time. 4793 * If old and new chunk sizes differ, we need to process the 4794 * largest of these 4795 */ 4796 if (mddev->new_chunk_sectors > mddev->chunk_sectors) 4797 reshape_sectors = mddev->new_chunk_sectors; 4798 else 4799 reshape_sectors = mddev->chunk_sectors; 4800 4801 /* We update the metadata at least every 10 seconds, or when 4802 * the data about to be copied would over-write the source of 4803 * the data at the front of the range. i.e. one new_stripe 4804 * along from reshape_progress new_maps to after where 4805 * reshape_safe old_maps to 4806 */ 4807 writepos = conf->reshape_progress; 4808 sector_div(writepos, new_data_disks); 4809 readpos = conf->reshape_progress; 4810 sector_div(readpos, data_disks); 4811 safepos = conf->reshape_safe; 4812 sector_div(safepos, data_disks); 4813 if (mddev->reshape_backwards) { 4814 writepos -= min_t(sector_t, reshape_sectors, writepos); 4815 readpos += reshape_sectors; 4816 safepos += reshape_sectors; 4817 } else { 4818 writepos += reshape_sectors; 4819 readpos -= min_t(sector_t, reshape_sectors, readpos); 4820 safepos -= min_t(sector_t, reshape_sectors, safepos); 4821 } 4822 4823 /* Having calculated the 'writepos' possibly use it 4824 * to set 'stripe_addr' which is where we will write to. 4825 */ 4826 if (mddev->reshape_backwards) { 4827 BUG_ON(conf->reshape_progress == 0); 4828 stripe_addr = writepos; 4829 BUG_ON((mddev->dev_sectors & 4830 ~((sector_t)reshape_sectors - 1)) 4831 - reshape_sectors - stripe_addr 4832 != sector_nr); 4833 } else { 4834 BUG_ON(writepos != sector_nr + reshape_sectors); 4835 stripe_addr = sector_nr; 4836 } 4837 4838 /* 'writepos' is the most advanced device address we might write. 4839 * 'readpos' is the least advanced device address we might read. 4840 * 'safepos' is the least address recorded in the metadata as having 4841 * been reshaped. 4842 * If there is a min_offset_diff, these are adjusted either by 4843 * increasing the safepos/readpos if diff is negative, or 4844 * increasing writepos if diff is positive. 4845 * If 'readpos' is then behind 'writepos', there is no way that we can 4846 * ensure safety in the face of a crash - that must be done by userspace 4847 * making a backup of the data. So in that case there is no particular 4848 * rush to update metadata. 4849 * Otherwise if 'safepos' is behind 'writepos', then we really need to 4850 * update the metadata to advance 'safepos' to match 'readpos' so that 4851 * we can be safe in the event of a crash. 4852 * So we insist on updating metadata if safepos is behind writepos and 4853 * readpos is beyond writepos. 4854 * In any case, update the metadata every 10 seconds. 4855 * Maybe that number should be configurable, but I'm not sure it is 4856 * worth it.... maybe it could be a multiple of safemode_delay??? 4857 */ 4858 if (conf->min_offset_diff < 0) { 4859 safepos += -conf->min_offset_diff; 4860 readpos += -conf->min_offset_diff; 4861 } else 4862 writepos += conf->min_offset_diff; 4863 4864 if ((mddev->reshape_backwards 4865 ? (safepos > writepos && readpos < writepos) 4866 : (safepos < writepos && readpos > writepos)) || 4867 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4868 /* Cannot proceed until we've updated the superblock... */ 4869 wait_event(conf->wait_for_overlap, 4870 atomic_read(&conf->reshape_stripes)==0 4871 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4872 if (atomic_read(&conf->reshape_stripes) != 0) 4873 return 0; 4874 mddev->reshape_position = conf->reshape_progress; 4875 mddev->curr_resync_completed = sector_nr; 4876 conf->reshape_checkpoint = jiffies; 4877 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4878 md_wakeup_thread(mddev->thread); 4879 wait_event(mddev->sb_wait, mddev->flags == 0 || 4880 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4881 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4882 return 0; 4883 spin_lock_irq(&conf->device_lock); 4884 conf->reshape_safe = mddev->reshape_position; 4885 spin_unlock_irq(&conf->device_lock); 4886 wake_up(&conf->wait_for_overlap); 4887 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4888 } 4889 4890 INIT_LIST_HEAD(&stripes); 4891 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 4892 int j; 4893 int skipped_disk = 0; 4894 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 4895 set_bit(STRIPE_EXPANDING, &sh->state); 4896 atomic_inc(&conf->reshape_stripes); 4897 /* If any of this stripe is beyond the end of the old 4898 * array, then we need to zero those blocks 4899 */ 4900 for (j=sh->disks; j--;) { 4901 sector_t s; 4902 if (j == sh->pd_idx) 4903 continue; 4904 if (conf->level == 6 && 4905 j == sh->qd_idx) 4906 continue; 4907 s = compute_blocknr(sh, j, 0); 4908 if (s < raid5_size(mddev, 0, 0)) { 4909 skipped_disk = 1; 4910 continue; 4911 } 4912 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 4913 set_bit(R5_Expanded, &sh->dev[j].flags); 4914 set_bit(R5_UPTODATE, &sh->dev[j].flags); 4915 } 4916 if (!skipped_disk) { 4917 set_bit(STRIPE_EXPAND_READY, &sh->state); 4918 set_bit(STRIPE_HANDLE, &sh->state); 4919 } 4920 list_add(&sh->lru, &stripes); 4921 } 4922 spin_lock_irq(&conf->device_lock); 4923 if (mddev->reshape_backwards) 4924 conf->reshape_progress -= reshape_sectors * new_data_disks; 4925 else 4926 conf->reshape_progress += reshape_sectors * new_data_disks; 4927 spin_unlock_irq(&conf->device_lock); 4928 /* Ok, those stripe are ready. We can start scheduling 4929 * reads on the source stripes. 4930 * The source stripes are determined by mapping the first and last 4931 * block on the destination stripes. 4932 */ 4933 first_sector = 4934 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 4935 1, &dd_idx, NULL); 4936 last_sector = 4937 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 4938 * new_data_disks - 1), 4939 1, &dd_idx, NULL); 4940 if (last_sector >= mddev->dev_sectors) 4941 last_sector = mddev->dev_sectors - 1; 4942 while (first_sector <= last_sector) { 4943 sh = get_active_stripe(conf, first_sector, 1, 0, 1); 4944 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4945 set_bit(STRIPE_HANDLE, &sh->state); 4946 release_stripe(sh); 4947 first_sector += STRIPE_SECTORS; 4948 } 4949 /* Now that the sources are clearly marked, we can release 4950 * the destination stripes 4951 */ 4952 while (!list_empty(&stripes)) { 4953 sh = list_entry(stripes.next, struct stripe_head, lru); 4954 list_del_init(&sh->lru); 4955 release_stripe(sh); 4956 } 4957 /* If this takes us to the resync_max point where we have to pause, 4958 * then we need to write out the superblock. 4959 */ 4960 sector_nr += reshape_sectors; 4961 if ((sector_nr - mddev->curr_resync_completed) * 2 4962 >= mddev->resync_max - mddev->curr_resync_completed) { 4963 /* Cannot proceed until we've updated the superblock... */ 4964 wait_event(conf->wait_for_overlap, 4965 atomic_read(&conf->reshape_stripes) == 0 4966 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4967 if (atomic_read(&conf->reshape_stripes) != 0) 4968 goto ret; 4969 mddev->reshape_position = conf->reshape_progress; 4970 mddev->curr_resync_completed = sector_nr; 4971 conf->reshape_checkpoint = jiffies; 4972 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4973 md_wakeup_thread(mddev->thread); 4974 wait_event(mddev->sb_wait, 4975 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 4976 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4977 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4978 goto ret; 4979 spin_lock_irq(&conf->device_lock); 4980 conf->reshape_safe = mddev->reshape_position; 4981 spin_unlock_irq(&conf->device_lock); 4982 wake_up(&conf->wait_for_overlap); 4983 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4984 } 4985 ret: 4986 return reshape_sectors; 4987 } 4988 4989 /* FIXME go_faster isn't used */ 4990 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 4991 { 4992 struct r5conf *conf = mddev->private; 4993 struct stripe_head *sh; 4994 sector_t max_sector = mddev->dev_sectors; 4995 sector_t sync_blocks; 4996 int still_degraded = 0; 4997 int i; 4998 4999 if (sector_nr >= max_sector) { 5000 /* just being told to finish up .. nothing much to do */ 5001 5002 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 5003 end_reshape(conf); 5004 return 0; 5005 } 5006 5007 if (mddev->curr_resync < max_sector) /* aborted */ 5008 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 5009 &sync_blocks, 1); 5010 else /* completed sync */ 5011 conf->fullsync = 0; 5012 bitmap_close_sync(mddev->bitmap); 5013 5014 return 0; 5015 } 5016 5017 /* Allow raid5_quiesce to complete */ 5018 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 5019 5020 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5021 return reshape_request(mddev, sector_nr, skipped); 5022 5023 /* No need to check resync_max as we never do more than one 5024 * stripe, and as resync_max will always be on a chunk boundary, 5025 * if the check in md_do_sync didn't fire, there is no chance 5026 * of overstepping resync_max here 5027 */ 5028 5029 /* if there is too many failed drives and we are trying 5030 * to resync, then assert that we are finished, because there is 5031 * nothing we can do. 5032 */ 5033 if (mddev->degraded >= conf->max_degraded && 5034 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5035 sector_t rv = mddev->dev_sectors - sector_nr; 5036 *skipped = 1; 5037 return rv; 5038 } 5039 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 5040 !conf->fullsync && 5041 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 5042 sync_blocks >= STRIPE_SECTORS) { 5043 /* we can skip this block, and probably more */ 5044 sync_blocks /= STRIPE_SECTORS; 5045 *skipped = 1; 5046 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 5047 } 5048 5049 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 5050 5051 sh = get_active_stripe(conf, sector_nr, 0, 1, 0); 5052 if (sh == NULL) { 5053 sh = get_active_stripe(conf, sector_nr, 0, 0, 0); 5054 /* make sure we don't swamp the stripe cache if someone else 5055 * is trying to get access 5056 */ 5057 schedule_timeout_uninterruptible(1); 5058 } 5059 /* Need to check if array will still be degraded after recovery/resync 5060 * We don't need to check the 'failed' flag as when that gets set, 5061 * recovery aborts. 5062 */ 5063 for (i = 0; i < conf->raid_disks; i++) 5064 if (conf->disks[i].rdev == NULL) 5065 still_degraded = 1; 5066 5067 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 5068 5069 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 5070 set_bit(STRIPE_HANDLE, &sh->state); 5071 5072 release_stripe(sh); 5073 5074 return STRIPE_SECTORS; 5075 } 5076 5077 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 5078 { 5079 /* We may not be able to submit a whole bio at once as there 5080 * may not be enough stripe_heads available. 5081 * We cannot pre-allocate enough stripe_heads as we may need 5082 * more than exist in the cache (if we allow ever large chunks). 5083 * So we do one stripe head at a time and record in 5084 * ->bi_hw_segments how many have been done. 5085 * 5086 * We *know* that this entire raid_bio is in one chunk, so 5087 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 5088 */ 5089 struct stripe_head *sh; 5090 int dd_idx; 5091 sector_t sector, logical_sector, last_sector; 5092 int scnt = 0; 5093 int remaining; 5094 int handled = 0; 5095 5096 logical_sector = raid_bio->bi_iter.bi_sector & 5097 ~((sector_t)STRIPE_SECTORS-1); 5098 sector = raid5_compute_sector(conf, logical_sector, 5099 0, &dd_idx, NULL); 5100 last_sector = bio_end_sector(raid_bio); 5101 5102 for (; logical_sector < last_sector; 5103 logical_sector += STRIPE_SECTORS, 5104 sector += STRIPE_SECTORS, 5105 scnt++) { 5106 5107 if (scnt < raid5_bi_processed_stripes(raid_bio)) 5108 /* already done this stripe */ 5109 continue; 5110 5111 sh = get_active_stripe(conf, sector, 0, 1, 1); 5112 5113 if (!sh) { 5114 /* failed to get a stripe - must wait */ 5115 raid5_set_bi_processed_stripes(raid_bio, scnt); 5116 conf->retry_read_aligned = raid_bio; 5117 return handled; 5118 } 5119 5120 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) { 5121 release_stripe(sh); 5122 raid5_set_bi_processed_stripes(raid_bio, scnt); 5123 conf->retry_read_aligned = raid_bio; 5124 return handled; 5125 } 5126 5127 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 5128 handle_stripe(sh); 5129 release_stripe(sh); 5130 handled++; 5131 } 5132 remaining = raid5_dec_bi_active_stripes(raid_bio); 5133 if (remaining == 0) { 5134 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), 5135 raid_bio, 0); 5136 bio_endio(raid_bio, 0); 5137 } 5138 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5139 wake_up(&conf->wait_for_stripe); 5140 return handled; 5141 } 5142 5143 static int handle_active_stripes(struct r5conf *conf, int group, 5144 struct r5worker *worker, 5145 struct list_head *temp_inactive_list) 5146 { 5147 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 5148 int i, batch_size = 0, hash; 5149 bool release_inactive = false; 5150 5151 while (batch_size < MAX_STRIPE_BATCH && 5152 (sh = __get_priority_stripe(conf, group)) != NULL) 5153 batch[batch_size++] = sh; 5154 5155 if (batch_size == 0) { 5156 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5157 if (!list_empty(temp_inactive_list + i)) 5158 break; 5159 if (i == NR_STRIPE_HASH_LOCKS) 5160 return batch_size; 5161 release_inactive = true; 5162 } 5163 spin_unlock_irq(&conf->device_lock); 5164 5165 release_inactive_stripe_list(conf, temp_inactive_list, 5166 NR_STRIPE_HASH_LOCKS); 5167 5168 if (release_inactive) { 5169 spin_lock_irq(&conf->device_lock); 5170 return 0; 5171 } 5172 5173 for (i = 0; i < batch_size; i++) 5174 handle_stripe(batch[i]); 5175 5176 cond_resched(); 5177 5178 spin_lock_irq(&conf->device_lock); 5179 for (i = 0; i < batch_size; i++) { 5180 hash = batch[i]->hash_lock_index; 5181 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 5182 } 5183 return batch_size; 5184 } 5185 5186 static void raid5_do_work(struct work_struct *work) 5187 { 5188 struct r5worker *worker = container_of(work, struct r5worker, work); 5189 struct r5worker_group *group = worker->group; 5190 struct r5conf *conf = group->conf; 5191 int group_id = group - conf->worker_groups; 5192 int handled; 5193 struct blk_plug plug; 5194 5195 pr_debug("+++ raid5worker active\n"); 5196 5197 blk_start_plug(&plug); 5198 handled = 0; 5199 spin_lock_irq(&conf->device_lock); 5200 while (1) { 5201 int batch_size, released; 5202 5203 released = release_stripe_list(conf, worker->temp_inactive_list); 5204 5205 batch_size = handle_active_stripes(conf, group_id, worker, 5206 worker->temp_inactive_list); 5207 worker->working = false; 5208 if (!batch_size && !released) 5209 break; 5210 handled += batch_size; 5211 } 5212 pr_debug("%d stripes handled\n", handled); 5213 5214 spin_unlock_irq(&conf->device_lock); 5215 blk_finish_plug(&plug); 5216 5217 pr_debug("--- raid5worker inactive\n"); 5218 } 5219 5220 /* 5221 * This is our raid5 kernel thread. 5222 * 5223 * We scan the hash table for stripes which can be handled now. 5224 * During the scan, completed stripes are saved for us by the interrupt 5225 * handler, so that they will not have to wait for our next wakeup. 5226 */ 5227 static void raid5d(struct md_thread *thread) 5228 { 5229 struct mddev *mddev = thread->mddev; 5230 struct r5conf *conf = mddev->private; 5231 int handled; 5232 struct blk_plug plug; 5233 5234 pr_debug("+++ raid5d active\n"); 5235 5236 md_check_recovery(mddev); 5237 5238 blk_start_plug(&plug); 5239 handled = 0; 5240 spin_lock_irq(&conf->device_lock); 5241 while (1) { 5242 struct bio *bio; 5243 int batch_size, released; 5244 5245 released = release_stripe_list(conf, conf->temp_inactive_list); 5246 5247 if ( 5248 !list_empty(&conf->bitmap_list)) { 5249 /* Now is a good time to flush some bitmap updates */ 5250 conf->seq_flush++; 5251 spin_unlock_irq(&conf->device_lock); 5252 bitmap_unplug(mddev->bitmap); 5253 spin_lock_irq(&conf->device_lock); 5254 conf->seq_write = conf->seq_flush; 5255 activate_bit_delay(conf, conf->temp_inactive_list); 5256 } 5257 raid5_activate_delayed(conf); 5258 5259 while ((bio = remove_bio_from_retry(conf))) { 5260 int ok; 5261 spin_unlock_irq(&conf->device_lock); 5262 ok = retry_aligned_read(conf, bio); 5263 spin_lock_irq(&conf->device_lock); 5264 if (!ok) 5265 break; 5266 handled++; 5267 } 5268 5269 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 5270 conf->temp_inactive_list); 5271 if (!batch_size && !released) 5272 break; 5273 handled += batch_size; 5274 5275 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 5276 spin_unlock_irq(&conf->device_lock); 5277 md_check_recovery(mddev); 5278 spin_lock_irq(&conf->device_lock); 5279 } 5280 } 5281 pr_debug("%d stripes handled\n", handled); 5282 5283 spin_unlock_irq(&conf->device_lock); 5284 5285 async_tx_issue_pending_all(); 5286 blk_finish_plug(&plug); 5287 5288 pr_debug("--- raid5d inactive\n"); 5289 } 5290 5291 static ssize_t 5292 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 5293 { 5294 struct r5conf *conf = mddev->private; 5295 if (conf) 5296 return sprintf(page, "%d\n", conf->max_nr_stripes); 5297 else 5298 return 0; 5299 } 5300 5301 int 5302 raid5_set_cache_size(struct mddev *mddev, int size) 5303 { 5304 struct r5conf *conf = mddev->private; 5305 int err; 5306 int hash; 5307 5308 if (size <= 16 || size > 32768) 5309 return -EINVAL; 5310 hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS; 5311 while (size < conf->max_nr_stripes) { 5312 if (drop_one_stripe(conf, hash)) 5313 conf->max_nr_stripes--; 5314 else 5315 break; 5316 hash--; 5317 if (hash < 0) 5318 hash = NR_STRIPE_HASH_LOCKS - 1; 5319 } 5320 err = md_allow_write(mddev); 5321 if (err) 5322 return err; 5323 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 5324 while (size > conf->max_nr_stripes) { 5325 if (grow_one_stripe(conf, hash)) 5326 conf->max_nr_stripes++; 5327 else break; 5328 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS; 5329 } 5330 return 0; 5331 } 5332 EXPORT_SYMBOL(raid5_set_cache_size); 5333 5334 static ssize_t 5335 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 5336 { 5337 struct r5conf *conf = mddev->private; 5338 unsigned long new; 5339 int err; 5340 5341 if (len >= PAGE_SIZE) 5342 return -EINVAL; 5343 if (!conf) 5344 return -ENODEV; 5345 5346 if (kstrtoul(page, 10, &new)) 5347 return -EINVAL; 5348 err = raid5_set_cache_size(mddev, new); 5349 if (err) 5350 return err; 5351 return len; 5352 } 5353 5354 static struct md_sysfs_entry 5355 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 5356 raid5_show_stripe_cache_size, 5357 raid5_store_stripe_cache_size); 5358 5359 static ssize_t 5360 raid5_show_preread_threshold(struct mddev *mddev, char *page) 5361 { 5362 struct r5conf *conf = mddev->private; 5363 if (conf) 5364 return sprintf(page, "%d\n", conf->bypass_threshold); 5365 else 5366 return 0; 5367 } 5368 5369 static ssize_t 5370 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 5371 { 5372 struct r5conf *conf = mddev->private; 5373 unsigned long new; 5374 if (len >= PAGE_SIZE) 5375 return -EINVAL; 5376 if (!conf) 5377 return -ENODEV; 5378 5379 if (kstrtoul(page, 10, &new)) 5380 return -EINVAL; 5381 if (new > conf->max_nr_stripes) 5382 return -EINVAL; 5383 conf->bypass_threshold = new; 5384 return len; 5385 } 5386 5387 static struct md_sysfs_entry 5388 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 5389 S_IRUGO | S_IWUSR, 5390 raid5_show_preread_threshold, 5391 raid5_store_preread_threshold); 5392 5393 static ssize_t 5394 raid5_show_skip_copy(struct mddev *mddev, char *page) 5395 { 5396 struct r5conf *conf = mddev->private; 5397 if (conf) 5398 return sprintf(page, "%d\n", conf->skip_copy); 5399 else 5400 return 0; 5401 } 5402 5403 static ssize_t 5404 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 5405 { 5406 struct r5conf *conf = mddev->private; 5407 unsigned long new; 5408 if (len >= PAGE_SIZE) 5409 return -EINVAL; 5410 if (!conf) 5411 return -ENODEV; 5412 5413 if (kstrtoul(page, 10, &new)) 5414 return -EINVAL; 5415 new = !!new; 5416 if (new == conf->skip_copy) 5417 return len; 5418 5419 mddev_suspend(mddev); 5420 conf->skip_copy = new; 5421 if (new) 5422 mddev->queue->backing_dev_info.capabilities |= 5423 BDI_CAP_STABLE_WRITES; 5424 else 5425 mddev->queue->backing_dev_info.capabilities &= 5426 ~BDI_CAP_STABLE_WRITES; 5427 mddev_resume(mddev); 5428 return len; 5429 } 5430 5431 static struct md_sysfs_entry 5432 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 5433 raid5_show_skip_copy, 5434 raid5_store_skip_copy); 5435 5436 static ssize_t 5437 stripe_cache_active_show(struct mddev *mddev, char *page) 5438 { 5439 struct r5conf *conf = mddev->private; 5440 if (conf) 5441 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 5442 else 5443 return 0; 5444 } 5445 5446 static struct md_sysfs_entry 5447 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 5448 5449 static ssize_t 5450 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 5451 { 5452 struct r5conf *conf = mddev->private; 5453 if (conf) 5454 return sprintf(page, "%d\n", conf->worker_cnt_per_group); 5455 else 5456 return 0; 5457 } 5458 5459 static int alloc_thread_groups(struct r5conf *conf, int cnt, 5460 int *group_cnt, 5461 int *worker_cnt_per_group, 5462 struct r5worker_group **worker_groups); 5463 static ssize_t 5464 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 5465 { 5466 struct r5conf *conf = mddev->private; 5467 unsigned long new; 5468 int err; 5469 struct r5worker_group *new_groups, *old_groups; 5470 int group_cnt, worker_cnt_per_group; 5471 5472 if (len >= PAGE_SIZE) 5473 return -EINVAL; 5474 if (!conf) 5475 return -ENODEV; 5476 5477 if (kstrtoul(page, 10, &new)) 5478 return -EINVAL; 5479 5480 if (new == conf->worker_cnt_per_group) 5481 return len; 5482 5483 mddev_suspend(mddev); 5484 5485 old_groups = conf->worker_groups; 5486 if (old_groups) 5487 flush_workqueue(raid5_wq); 5488 5489 err = alloc_thread_groups(conf, new, 5490 &group_cnt, &worker_cnt_per_group, 5491 &new_groups); 5492 if (!err) { 5493 spin_lock_irq(&conf->device_lock); 5494 conf->group_cnt = group_cnt; 5495 conf->worker_cnt_per_group = worker_cnt_per_group; 5496 conf->worker_groups = new_groups; 5497 spin_unlock_irq(&conf->device_lock); 5498 5499 if (old_groups) 5500 kfree(old_groups[0].workers); 5501 kfree(old_groups); 5502 } 5503 5504 mddev_resume(mddev); 5505 5506 if (err) 5507 return err; 5508 return len; 5509 } 5510 5511 static struct md_sysfs_entry 5512 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 5513 raid5_show_group_thread_cnt, 5514 raid5_store_group_thread_cnt); 5515 5516 static struct attribute *raid5_attrs[] = { 5517 &raid5_stripecache_size.attr, 5518 &raid5_stripecache_active.attr, 5519 &raid5_preread_bypass_threshold.attr, 5520 &raid5_group_thread_cnt.attr, 5521 &raid5_skip_copy.attr, 5522 NULL, 5523 }; 5524 static struct attribute_group raid5_attrs_group = { 5525 .name = NULL, 5526 .attrs = raid5_attrs, 5527 }; 5528 5529 static int alloc_thread_groups(struct r5conf *conf, int cnt, 5530 int *group_cnt, 5531 int *worker_cnt_per_group, 5532 struct r5worker_group **worker_groups) 5533 { 5534 int i, j, k; 5535 ssize_t size; 5536 struct r5worker *workers; 5537 5538 *worker_cnt_per_group = cnt; 5539 if (cnt == 0) { 5540 *group_cnt = 0; 5541 *worker_groups = NULL; 5542 return 0; 5543 } 5544 *group_cnt = num_possible_nodes(); 5545 size = sizeof(struct r5worker) * cnt; 5546 workers = kzalloc(size * *group_cnt, GFP_NOIO); 5547 *worker_groups = kzalloc(sizeof(struct r5worker_group) * 5548 *group_cnt, GFP_NOIO); 5549 if (!*worker_groups || !workers) { 5550 kfree(workers); 5551 kfree(*worker_groups); 5552 return -ENOMEM; 5553 } 5554 5555 for (i = 0; i < *group_cnt; i++) { 5556 struct r5worker_group *group; 5557 5558 group = &(*worker_groups)[i]; 5559 INIT_LIST_HEAD(&group->handle_list); 5560 group->conf = conf; 5561 group->workers = workers + i * cnt; 5562 5563 for (j = 0; j < cnt; j++) { 5564 struct r5worker *worker = group->workers + j; 5565 worker->group = group; 5566 INIT_WORK(&worker->work, raid5_do_work); 5567 5568 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 5569 INIT_LIST_HEAD(worker->temp_inactive_list + k); 5570 } 5571 } 5572 5573 return 0; 5574 } 5575 5576 static void free_thread_groups(struct r5conf *conf) 5577 { 5578 if (conf->worker_groups) 5579 kfree(conf->worker_groups[0].workers); 5580 kfree(conf->worker_groups); 5581 conf->worker_groups = NULL; 5582 } 5583 5584 static sector_t 5585 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 5586 { 5587 struct r5conf *conf = mddev->private; 5588 5589 if (!sectors) 5590 sectors = mddev->dev_sectors; 5591 if (!raid_disks) 5592 /* size is defined by the smallest of previous and new size */ 5593 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 5594 5595 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 5596 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1); 5597 return sectors * (raid_disks - conf->max_degraded); 5598 } 5599 5600 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 5601 { 5602 safe_put_page(percpu->spare_page); 5603 kfree(percpu->scribble); 5604 percpu->spare_page = NULL; 5605 percpu->scribble = NULL; 5606 } 5607 5608 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 5609 { 5610 if (conf->level == 6 && !percpu->spare_page) 5611 percpu->spare_page = alloc_page(GFP_KERNEL); 5612 if (!percpu->scribble) 5613 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL); 5614 5615 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { 5616 free_scratch_buffer(conf, percpu); 5617 return -ENOMEM; 5618 } 5619 5620 return 0; 5621 } 5622 5623 static void raid5_free_percpu(struct r5conf *conf) 5624 { 5625 unsigned long cpu; 5626 5627 if (!conf->percpu) 5628 return; 5629 5630 #ifdef CONFIG_HOTPLUG_CPU 5631 unregister_cpu_notifier(&conf->cpu_notify); 5632 #endif 5633 5634 get_online_cpus(); 5635 for_each_possible_cpu(cpu) 5636 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 5637 put_online_cpus(); 5638 5639 free_percpu(conf->percpu); 5640 } 5641 5642 static void free_conf(struct r5conf *conf) 5643 { 5644 free_thread_groups(conf); 5645 shrink_stripes(conf); 5646 raid5_free_percpu(conf); 5647 kfree(conf->disks); 5648 kfree(conf->stripe_hashtbl); 5649 kfree(conf); 5650 } 5651 5652 #ifdef CONFIG_HOTPLUG_CPU 5653 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action, 5654 void *hcpu) 5655 { 5656 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify); 5657 long cpu = (long)hcpu; 5658 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 5659 5660 switch (action) { 5661 case CPU_UP_PREPARE: 5662 case CPU_UP_PREPARE_FROZEN: 5663 if (alloc_scratch_buffer(conf, percpu)) { 5664 pr_err("%s: failed memory allocation for cpu%ld\n", 5665 __func__, cpu); 5666 return notifier_from_errno(-ENOMEM); 5667 } 5668 break; 5669 case CPU_DEAD: 5670 case CPU_DEAD_FROZEN: 5671 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 5672 break; 5673 default: 5674 break; 5675 } 5676 return NOTIFY_OK; 5677 } 5678 #endif 5679 5680 static int raid5_alloc_percpu(struct r5conf *conf) 5681 { 5682 unsigned long cpu; 5683 int err = 0; 5684 5685 conf->percpu = alloc_percpu(struct raid5_percpu); 5686 if (!conf->percpu) 5687 return -ENOMEM; 5688 5689 #ifdef CONFIG_HOTPLUG_CPU 5690 conf->cpu_notify.notifier_call = raid456_cpu_notify; 5691 conf->cpu_notify.priority = 0; 5692 err = register_cpu_notifier(&conf->cpu_notify); 5693 if (err) 5694 return err; 5695 #endif 5696 5697 get_online_cpus(); 5698 for_each_present_cpu(cpu) { 5699 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 5700 if (err) { 5701 pr_err("%s: failed memory allocation for cpu%ld\n", 5702 __func__, cpu); 5703 break; 5704 } 5705 } 5706 put_online_cpus(); 5707 5708 return err; 5709 } 5710 5711 static struct r5conf *setup_conf(struct mddev *mddev) 5712 { 5713 struct r5conf *conf; 5714 int raid_disk, memory, max_disks; 5715 struct md_rdev *rdev; 5716 struct disk_info *disk; 5717 char pers_name[6]; 5718 int i; 5719 int group_cnt, worker_cnt_per_group; 5720 struct r5worker_group *new_group; 5721 5722 if (mddev->new_level != 5 5723 && mddev->new_level != 4 5724 && mddev->new_level != 6) { 5725 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 5726 mdname(mddev), mddev->new_level); 5727 return ERR_PTR(-EIO); 5728 } 5729 if ((mddev->new_level == 5 5730 && !algorithm_valid_raid5(mddev->new_layout)) || 5731 (mddev->new_level == 6 5732 && !algorithm_valid_raid6(mddev->new_layout))) { 5733 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 5734 mdname(mddev), mddev->new_layout); 5735 return ERR_PTR(-EIO); 5736 } 5737 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 5738 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 5739 mdname(mddev), mddev->raid_disks); 5740 return ERR_PTR(-EINVAL); 5741 } 5742 5743 if (!mddev->new_chunk_sectors || 5744 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 5745 !is_power_of_2(mddev->new_chunk_sectors)) { 5746 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 5747 mdname(mddev), mddev->new_chunk_sectors << 9); 5748 return ERR_PTR(-EINVAL); 5749 } 5750 5751 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 5752 if (conf == NULL) 5753 goto abort; 5754 /* Don't enable multi-threading by default*/ 5755 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 5756 &new_group)) { 5757 conf->group_cnt = group_cnt; 5758 conf->worker_cnt_per_group = worker_cnt_per_group; 5759 conf->worker_groups = new_group; 5760 } else 5761 goto abort; 5762 spin_lock_init(&conf->device_lock); 5763 seqcount_init(&conf->gen_lock); 5764 init_waitqueue_head(&conf->wait_for_stripe); 5765 init_waitqueue_head(&conf->wait_for_overlap); 5766 INIT_LIST_HEAD(&conf->handle_list); 5767 INIT_LIST_HEAD(&conf->hold_list); 5768 INIT_LIST_HEAD(&conf->delayed_list); 5769 INIT_LIST_HEAD(&conf->bitmap_list); 5770 init_llist_head(&conf->released_stripes); 5771 atomic_set(&conf->active_stripes, 0); 5772 atomic_set(&conf->preread_active_stripes, 0); 5773 atomic_set(&conf->active_aligned_reads, 0); 5774 conf->bypass_threshold = BYPASS_THRESHOLD; 5775 conf->recovery_disabled = mddev->recovery_disabled - 1; 5776 5777 conf->raid_disks = mddev->raid_disks; 5778 if (mddev->reshape_position == MaxSector) 5779 conf->previous_raid_disks = mddev->raid_disks; 5780 else 5781 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 5782 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 5783 conf->scribble_len = scribble_len(max_disks); 5784 5785 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 5786 GFP_KERNEL); 5787 if (!conf->disks) 5788 goto abort; 5789 5790 conf->mddev = mddev; 5791 5792 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 5793 goto abort; 5794 5795 /* We init hash_locks[0] separately to that it can be used 5796 * as the reference lock in the spin_lock_nest_lock() call 5797 * in lock_all_device_hash_locks_irq in order to convince 5798 * lockdep that we know what we are doing. 5799 */ 5800 spin_lock_init(conf->hash_locks); 5801 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 5802 spin_lock_init(conf->hash_locks + i); 5803 5804 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5805 INIT_LIST_HEAD(conf->inactive_list + i); 5806 5807 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5808 INIT_LIST_HEAD(conf->temp_inactive_list + i); 5809 5810 conf->level = mddev->new_level; 5811 if (raid5_alloc_percpu(conf) != 0) 5812 goto abort; 5813 5814 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 5815 5816 rdev_for_each(rdev, mddev) { 5817 raid_disk = rdev->raid_disk; 5818 if (raid_disk >= max_disks 5819 || raid_disk < 0) 5820 continue; 5821 disk = conf->disks + raid_disk; 5822 5823 if (test_bit(Replacement, &rdev->flags)) { 5824 if (disk->replacement) 5825 goto abort; 5826 disk->replacement = rdev; 5827 } else { 5828 if (disk->rdev) 5829 goto abort; 5830 disk->rdev = rdev; 5831 } 5832 5833 if (test_bit(In_sync, &rdev->flags)) { 5834 char b[BDEVNAME_SIZE]; 5835 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 5836 " disk %d\n", 5837 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 5838 } else if (rdev->saved_raid_disk != raid_disk) 5839 /* Cannot rely on bitmap to complete recovery */ 5840 conf->fullsync = 1; 5841 } 5842 5843 conf->chunk_sectors = mddev->new_chunk_sectors; 5844 conf->level = mddev->new_level; 5845 if (conf->level == 6) 5846 conf->max_degraded = 2; 5847 else 5848 conf->max_degraded = 1; 5849 conf->algorithm = mddev->new_layout; 5850 conf->reshape_progress = mddev->reshape_position; 5851 if (conf->reshape_progress != MaxSector) { 5852 conf->prev_chunk_sectors = mddev->chunk_sectors; 5853 conf->prev_algo = mddev->layout; 5854 } 5855 5856 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 5857 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 5858 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 5859 if (grow_stripes(conf, NR_STRIPES)) { 5860 printk(KERN_ERR 5861 "md/raid:%s: couldn't allocate %dkB for buffers\n", 5862 mdname(mddev), memory); 5863 goto abort; 5864 } else 5865 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 5866 mdname(mddev), memory); 5867 5868 sprintf(pers_name, "raid%d", mddev->new_level); 5869 conf->thread = md_register_thread(raid5d, mddev, pers_name); 5870 if (!conf->thread) { 5871 printk(KERN_ERR 5872 "md/raid:%s: couldn't allocate thread.\n", 5873 mdname(mddev)); 5874 goto abort; 5875 } 5876 5877 return conf; 5878 5879 abort: 5880 if (conf) { 5881 free_conf(conf); 5882 return ERR_PTR(-EIO); 5883 } else 5884 return ERR_PTR(-ENOMEM); 5885 } 5886 5887 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 5888 { 5889 switch (algo) { 5890 case ALGORITHM_PARITY_0: 5891 if (raid_disk < max_degraded) 5892 return 1; 5893 break; 5894 case ALGORITHM_PARITY_N: 5895 if (raid_disk >= raid_disks - max_degraded) 5896 return 1; 5897 break; 5898 case ALGORITHM_PARITY_0_6: 5899 if (raid_disk == 0 || 5900 raid_disk == raid_disks - 1) 5901 return 1; 5902 break; 5903 case ALGORITHM_LEFT_ASYMMETRIC_6: 5904 case ALGORITHM_RIGHT_ASYMMETRIC_6: 5905 case ALGORITHM_LEFT_SYMMETRIC_6: 5906 case ALGORITHM_RIGHT_SYMMETRIC_6: 5907 if (raid_disk == raid_disks - 1) 5908 return 1; 5909 } 5910 return 0; 5911 } 5912 5913 static int run(struct mddev *mddev) 5914 { 5915 struct r5conf *conf; 5916 int working_disks = 0; 5917 int dirty_parity_disks = 0; 5918 struct md_rdev *rdev; 5919 sector_t reshape_offset = 0; 5920 int i; 5921 long long min_offset_diff = 0; 5922 int first = 1; 5923 5924 if (mddev->recovery_cp != MaxSector) 5925 printk(KERN_NOTICE "md/raid:%s: not clean" 5926 " -- starting background reconstruction\n", 5927 mdname(mddev)); 5928 5929 rdev_for_each(rdev, mddev) { 5930 long long diff; 5931 if (rdev->raid_disk < 0) 5932 continue; 5933 diff = (rdev->new_data_offset - rdev->data_offset); 5934 if (first) { 5935 min_offset_diff = diff; 5936 first = 0; 5937 } else if (mddev->reshape_backwards && 5938 diff < min_offset_diff) 5939 min_offset_diff = diff; 5940 else if (!mddev->reshape_backwards && 5941 diff > min_offset_diff) 5942 min_offset_diff = diff; 5943 } 5944 5945 if (mddev->reshape_position != MaxSector) { 5946 /* Check that we can continue the reshape. 5947 * Difficulties arise if the stripe we would write to 5948 * next is at or after the stripe we would read from next. 5949 * For a reshape that changes the number of devices, this 5950 * is only possible for a very short time, and mdadm makes 5951 * sure that time appears to have past before assembling 5952 * the array. So we fail if that time hasn't passed. 5953 * For a reshape that keeps the number of devices the same 5954 * mdadm must be monitoring the reshape can keeping the 5955 * critical areas read-only and backed up. It will start 5956 * the array in read-only mode, so we check for that. 5957 */ 5958 sector_t here_new, here_old; 5959 int old_disks; 5960 int max_degraded = (mddev->level == 6 ? 2 : 1); 5961 5962 if (mddev->new_level != mddev->level) { 5963 printk(KERN_ERR "md/raid:%s: unsupported reshape " 5964 "required - aborting.\n", 5965 mdname(mddev)); 5966 return -EINVAL; 5967 } 5968 old_disks = mddev->raid_disks - mddev->delta_disks; 5969 /* reshape_position must be on a new-stripe boundary, and one 5970 * further up in new geometry must map after here in old 5971 * geometry. 5972 */ 5973 here_new = mddev->reshape_position; 5974 if (sector_div(here_new, mddev->new_chunk_sectors * 5975 (mddev->raid_disks - max_degraded))) { 5976 printk(KERN_ERR "md/raid:%s: reshape_position not " 5977 "on a stripe boundary\n", mdname(mddev)); 5978 return -EINVAL; 5979 } 5980 reshape_offset = here_new * mddev->new_chunk_sectors; 5981 /* here_new is the stripe we will write to */ 5982 here_old = mddev->reshape_position; 5983 sector_div(here_old, mddev->chunk_sectors * 5984 (old_disks-max_degraded)); 5985 /* here_old is the first stripe that we might need to read 5986 * from */ 5987 if (mddev->delta_disks == 0) { 5988 if ((here_new * mddev->new_chunk_sectors != 5989 here_old * mddev->chunk_sectors)) { 5990 printk(KERN_ERR "md/raid:%s: reshape position is" 5991 " confused - aborting\n", mdname(mddev)); 5992 return -EINVAL; 5993 } 5994 /* We cannot be sure it is safe to start an in-place 5995 * reshape. It is only safe if user-space is monitoring 5996 * and taking constant backups. 5997 * mdadm always starts a situation like this in 5998 * readonly mode so it can take control before 5999 * allowing any writes. So just check for that. 6000 */ 6001 if (abs(min_offset_diff) >= mddev->chunk_sectors && 6002 abs(min_offset_diff) >= mddev->new_chunk_sectors) 6003 /* not really in-place - so OK */; 6004 else if (mddev->ro == 0) { 6005 printk(KERN_ERR "md/raid:%s: in-place reshape " 6006 "must be started in read-only mode " 6007 "- aborting\n", 6008 mdname(mddev)); 6009 return -EINVAL; 6010 } 6011 } else if (mddev->reshape_backwards 6012 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <= 6013 here_old * mddev->chunk_sectors) 6014 : (here_new * mddev->new_chunk_sectors >= 6015 here_old * mddev->chunk_sectors + (-min_offset_diff))) { 6016 /* Reading from the same stripe as writing to - bad */ 6017 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 6018 "auto-recovery - aborting.\n", 6019 mdname(mddev)); 6020 return -EINVAL; 6021 } 6022 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 6023 mdname(mddev)); 6024 /* OK, we should be able to continue; */ 6025 } else { 6026 BUG_ON(mddev->level != mddev->new_level); 6027 BUG_ON(mddev->layout != mddev->new_layout); 6028 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 6029 BUG_ON(mddev->delta_disks != 0); 6030 } 6031 6032 if (mddev->private == NULL) 6033 conf = setup_conf(mddev); 6034 else 6035 conf = mddev->private; 6036 6037 if (IS_ERR(conf)) 6038 return PTR_ERR(conf); 6039 6040 conf->min_offset_diff = min_offset_diff; 6041 mddev->thread = conf->thread; 6042 conf->thread = NULL; 6043 mddev->private = conf; 6044 6045 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 6046 i++) { 6047 rdev = conf->disks[i].rdev; 6048 if (!rdev && conf->disks[i].replacement) { 6049 /* The replacement is all we have yet */ 6050 rdev = conf->disks[i].replacement; 6051 conf->disks[i].replacement = NULL; 6052 clear_bit(Replacement, &rdev->flags); 6053 conf->disks[i].rdev = rdev; 6054 } 6055 if (!rdev) 6056 continue; 6057 if (conf->disks[i].replacement && 6058 conf->reshape_progress != MaxSector) { 6059 /* replacements and reshape simply do not mix. */ 6060 printk(KERN_ERR "md: cannot handle concurrent " 6061 "replacement and reshape.\n"); 6062 goto abort; 6063 } 6064 if (test_bit(In_sync, &rdev->flags)) { 6065 working_disks++; 6066 continue; 6067 } 6068 /* This disc is not fully in-sync. However if it 6069 * just stored parity (beyond the recovery_offset), 6070 * when we don't need to be concerned about the 6071 * array being dirty. 6072 * When reshape goes 'backwards', we never have 6073 * partially completed devices, so we only need 6074 * to worry about reshape going forwards. 6075 */ 6076 /* Hack because v0.91 doesn't store recovery_offset properly. */ 6077 if (mddev->major_version == 0 && 6078 mddev->minor_version > 90) 6079 rdev->recovery_offset = reshape_offset; 6080 6081 if (rdev->recovery_offset < reshape_offset) { 6082 /* We need to check old and new layout */ 6083 if (!only_parity(rdev->raid_disk, 6084 conf->algorithm, 6085 conf->raid_disks, 6086 conf->max_degraded)) 6087 continue; 6088 } 6089 if (!only_parity(rdev->raid_disk, 6090 conf->prev_algo, 6091 conf->previous_raid_disks, 6092 conf->max_degraded)) 6093 continue; 6094 dirty_parity_disks++; 6095 } 6096 6097 /* 6098 * 0 for a fully functional array, 1 or 2 for a degraded array. 6099 */ 6100 mddev->degraded = calc_degraded(conf); 6101 6102 if (has_failed(conf)) { 6103 printk(KERN_ERR "md/raid:%s: not enough operational devices" 6104 " (%d/%d failed)\n", 6105 mdname(mddev), mddev->degraded, conf->raid_disks); 6106 goto abort; 6107 } 6108 6109 /* device size must be a multiple of chunk size */ 6110 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 6111 mddev->resync_max_sectors = mddev->dev_sectors; 6112 6113 if (mddev->degraded > dirty_parity_disks && 6114 mddev->recovery_cp != MaxSector) { 6115 if (mddev->ok_start_degraded) 6116 printk(KERN_WARNING 6117 "md/raid:%s: starting dirty degraded array" 6118 " - data corruption possible.\n", 6119 mdname(mddev)); 6120 else { 6121 printk(KERN_ERR 6122 "md/raid:%s: cannot start dirty degraded array.\n", 6123 mdname(mddev)); 6124 goto abort; 6125 } 6126 } 6127 6128 if (mddev->degraded == 0) 6129 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 6130 " devices, algorithm %d\n", mdname(mddev), conf->level, 6131 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 6132 mddev->new_layout); 6133 else 6134 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 6135 " out of %d devices, algorithm %d\n", 6136 mdname(mddev), conf->level, 6137 mddev->raid_disks - mddev->degraded, 6138 mddev->raid_disks, mddev->new_layout); 6139 6140 print_raid5_conf(conf); 6141 6142 if (conf->reshape_progress != MaxSector) { 6143 conf->reshape_safe = conf->reshape_progress; 6144 atomic_set(&conf->reshape_stripes, 0); 6145 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6146 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6147 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6148 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6149 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6150 "reshape"); 6151 } 6152 6153 /* Ok, everything is just fine now */ 6154 if (mddev->to_remove == &raid5_attrs_group) 6155 mddev->to_remove = NULL; 6156 else if (mddev->kobj.sd && 6157 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 6158 printk(KERN_WARNING 6159 "raid5: failed to create sysfs attributes for %s\n", 6160 mdname(mddev)); 6161 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6162 6163 if (mddev->queue) { 6164 int chunk_size; 6165 bool discard_supported = true; 6166 /* read-ahead size must cover two whole stripes, which 6167 * is 2 * (datadisks) * chunksize where 'n' is the 6168 * number of raid devices 6169 */ 6170 int data_disks = conf->previous_raid_disks - conf->max_degraded; 6171 int stripe = data_disks * 6172 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 6173 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6174 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6175 6176 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec); 6177 6178 mddev->queue->backing_dev_info.congested_data = mddev; 6179 mddev->queue->backing_dev_info.congested_fn = raid5_congested; 6180 6181 chunk_size = mddev->chunk_sectors << 9; 6182 blk_queue_io_min(mddev->queue, chunk_size); 6183 blk_queue_io_opt(mddev->queue, chunk_size * 6184 (conf->raid_disks - conf->max_degraded)); 6185 mddev->queue->limits.raid_partial_stripes_expensive = 1; 6186 /* 6187 * We can only discard a whole stripe. It doesn't make sense to 6188 * discard data disk but write parity disk 6189 */ 6190 stripe = stripe * PAGE_SIZE; 6191 /* Round up to power of 2, as discard handling 6192 * currently assumes that */ 6193 while ((stripe-1) & stripe) 6194 stripe = (stripe | (stripe-1)) + 1; 6195 mddev->queue->limits.discard_alignment = stripe; 6196 mddev->queue->limits.discard_granularity = stripe; 6197 /* 6198 * unaligned part of discard request will be ignored, so can't 6199 * guarantee discard_zeroes_data 6200 */ 6201 mddev->queue->limits.discard_zeroes_data = 0; 6202 6203 blk_queue_max_write_same_sectors(mddev->queue, 0); 6204 6205 rdev_for_each(rdev, mddev) { 6206 disk_stack_limits(mddev->gendisk, rdev->bdev, 6207 rdev->data_offset << 9); 6208 disk_stack_limits(mddev->gendisk, rdev->bdev, 6209 rdev->new_data_offset << 9); 6210 /* 6211 * discard_zeroes_data is required, otherwise data 6212 * could be lost. Consider a scenario: discard a stripe 6213 * (the stripe could be inconsistent if 6214 * discard_zeroes_data is 0); write one disk of the 6215 * stripe (the stripe could be inconsistent again 6216 * depending on which disks are used to calculate 6217 * parity); the disk is broken; The stripe data of this 6218 * disk is lost. 6219 */ 6220 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || 6221 !bdev_get_queue(rdev->bdev)-> 6222 limits.discard_zeroes_data) 6223 discard_supported = false; 6224 /* Unfortunately, discard_zeroes_data is not currently 6225 * a guarantee - just a hint. So we only allow DISCARD 6226 * if the sysadmin has confirmed that only safe devices 6227 * are in use by setting a module parameter. 6228 */ 6229 if (!devices_handle_discard_safely) { 6230 if (discard_supported) { 6231 pr_info("md/raid456: discard support disabled due to uncertainty.\n"); 6232 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n"); 6233 } 6234 discard_supported = false; 6235 } 6236 } 6237 6238 if (discard_supported && 6239 mddev->queue->limits.max_discard_sectors >= stripe && 6240 mddev->queue->limits.discard_granularity >= stripe) 6241 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 6242 mddev->queue); 6243 else 6244 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 6245 mddev->queue); 6246 } 6247 6248 return 0; 6249 abort: 6250 md_unregister_thread(&mddev->thread); 6251 print_raid5_conf(conf); 6252 free_conf(conf); 6253 mddev->private = NULL; 6254 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 6255 return -EIO; 6256 } 6257 6258 static int stop(struct mddev *mddev) 6259 { 6260 struct r5conf *conf = mddev->private; 6261 6262 md_unregister_thread(&mddev->thread); 6263 if (mddev->queue) 6264 mddev->queue->backing_dev_info.congested_fn = NULL; 6265 free_conf(conf); 6266 mddev->private = NULL; 6267 mddev->to_remove = &raid5_attrs_group; 6268 return 0; 6269 } 6270 6271 static void status(struct seq_file *seq, struct mddev *mddev) 6272 { 6273 struct r5conf *conf = mddev->private; 6274 int i; 6275 6276 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 6277 mddev->chunk_sectors / 2, mddev->layout); 6278 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 6279 for (i = 0; i < conf->raid_disks; i++) 6280 seq_printf (seq, "%s", 6281 conf->disks[i].rdev && 6282 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_"); 6283 seq_printf (seq, "]"); 6284 } 6285 6286 static void print_raid5_conf (struct r5conf *conf) 6287 { 6288 int i; 6289 struct disk_info *tmp; 6290 6291 printk(KERN_DEBUG "RAID conf printout:\n"); 6292 if (!conf) { 6293 printk("(conf==NULL)\n"); 6294 return; 6295 } 6296 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 6297 conf->raid_disks, 6298 conf->raid_disks - conf->mddev->degraded); 6299 6300 for (i = 0; i < conf->raid_disks; i++) { 6301 char b[BDEVNAME_SIZE]; 6302 tmp = conf->disks + i; 6303 if (tmp->rdev) 6304 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 6305 i, !test_bit(Faulty, &tmp->rdev->flags), 6306 bdevname(tmp->rdev->bdev, b)); 6307 } 6308 } 6309 6310 static int raid5_spare_active(struct mddev *mddev) 6311 { 6312 int i; 6313 struct r5conf *conf = mddev->private; 6314 struct disk_info *tmp; 6315 int count = 0; 6316 unsigned long flags; 6317 6318 for (i = 0; i < conf->raid_disks; i++) { 6319 tmp = conf->disks + i; 6320 if (tmp->replacement 6321 && tmp->replacement->recovery_offset == MaxSector 6322 && !test_bit(Faulty, &tmp->replacement->flags) 6323 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 6324 /* Replacement has just become active. */ 6325 if (!tmp->rdev 6326 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 6327 count++; 6328 if (tmp->rdev) { 6329 /* Replaced device not technically faulty, 6330 * but we need to be sure it gets removed 6331 * and never re-added. 6332 */ 6333 set_bit(Faulty, &tmp->rdev->flags); 6334 sysfs_notify_dirent_safe( 6335 tmp->rdev->sysfs_state); 6336 } 6337 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 6338 } else if (tmp->rdev 6339 && tmp->rdev->recovery_offset == MaxSector 6340 && !test_bit(Faulty, &tmp->rdev->flags) 6341 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 6342 count++; 6343 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 6344 } 6345 } 6346 spin_lock_irqsave(&conf->device_lock, flags); 6347 mddev->degraded = calc_degraded(conf); 6348 spin_unlock_irqrestore(&conf->device_lock, flags); 6349 print_raid5_conf(conf); 6350 return count; 6351 } 6352 6353 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 6354 { 6355 struct r5conf *conf = mddev->private; 6356 int err = 0; 6357 int number = rdev->raid_disk; 6358 struct md_rdev **rdevp; 6359 struct disk_info *p = conf->disks + number; 6360 6361 print_raid5_conf(conf); 6362 if (rdev == p->rdev) 6363 rdevp = &p->rdev; 6364 else if (rdev == p->replacement) 6365 rdevp = &p->replacement; 6366 else 6367 return 0; 6368 6369 if (number >= conf->raid_disks && 6370 conf->reshape_progress == MaxSector) 6371 clear_bit(In_sync, &rdev->flags); 6372 6373 if (test_bit(In_sync, &rdev->flags) || 6374 atomic_read(&rdev->nr_pending)) { 6375 err = -EBUSY; 6376 goto abort; 6377 } 6378 /* Only remove non-faulty devices if recovery 6379 * isn't possible. 6380 */ 6381 if (!test_bit(Faulty, &rdev->flags) && 6382 mddev->recovery_disabled != conf->recovery_disabled && 6383 !has_failed(conf) && 6384 (!p->replacement || p->replacement == rdev) && 6385 number < conf->raid_disks) { 6386 err = -EBUSY; 6387 goto abort; 6388 } 6389 *rdevp = NULL; 6390 synchronize_rcu(); 6391 if (atomic_read(&rdev->nr_pending)) { 6392 /* lost the race, try later */ 6393 err = -EBUSY; 6394 *rdevp = rdev; 6395 } else if (p->replacement) { 6396 /* We must have just cleared 'rdev' */ 6397 p->rdev = p->replacement; 6398 clear_bit(Replacement, &p->replacement->flags); 6399 smp_mb(); /* Make sure other CPUs may see both as identical 6400 * but will never see neither - if they are careful 6401 */ 6402 p->replacement = NULL; 6403 clear_bit(WantReplacement, &rdev->flags); 6404 } else 6405 /* We might have just removed the Replacement as faulty- 6406 * clear the bit just in case 6407 */ 6408 clear_bit(WantReplacement, &rdev->flags); 6409 abort: 6410 6411 print_raid5_conf(conf); 6412 return err; 6413 } 6414 6415 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 6416 { 6417 struct r5conf *conf = mddev->private; 6418 int err = -EEXIST; 6419 int disk; 6420 struct disk_info *p; 6421 int first = 0; 6422 int last = conf->raid_disks - 1; 6423 6424 if (mddev->recovery_disabled == conf->recovery_disabled) 6425 return -EBUSY; 6426 6427 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 6428 /* no point adding a device */ 6429 return -EINVAL; 6430 6431 if (rdev->raid_disk >= 0) 6432 first = last = rdev->raid_disk; 6433 6434 /* 6435 * find the disk ... but prefer rdev->saved_raid_disk 6436 * if possible. 6437 */ 6438 if (rdev->saved_raid_disk >= 0 && 6439 rdev->saved_raid_disk >= first && 6440 conf->disks[rdev->saved_raid_disk].rdev == NULL) 6441 first = rdev->saved_raid_disk; 6442 6443 for (disk = first; disk <= last; disk++) { 6444 p = conf->disks + disk; 6445 if (p->rdev == NULL) { 6446 clear_bit(In_sync, &rdev->flags); 6447 rdev->raid_disk = disk; 6448 err = 0; 6449 if (rdev->saved_raid_disk != disk) 6450 conf->fullsync = 1; 6451 rcu_assign_pointer(p->rdev, rdev); 6452 goto out; 6453 } 6454 } 6455 for (disk = first; disk <= last; disk++) { 6456 p = conf->disks + disk; 6457 if (test_bit(WantReplacement, &p->rdev->flags) && 6458 p->replacement == NULL) { 6459 clear_bit(In_sync, &rdev->flags); 6460 set_bit(Replacement, &rdev->flags); 6461 rdev->raid_disk = disk; 6462 err = 0; 6463 conf->fullsync = 1; 6464 rcu_assign_pointer(p->replacement, rdev); 6465 break; 6466 } 6467 } 6468 out: 6469 print_raid5_conf(conf); 6470 return err; 6471 } 6472 6473 static int raid5_resize(struct mddev *mddev, sector_t sectors) 6474 { 6475 /* no resync is happening, and there is enough space 6476 * on all devices, so we can resize. 6477 * We need to make sure resync covers any new space. 6478 * If the array is shrinking we should possibly wait until 6479 * any io in the removed space completes, but it hardly seems 6480 * worth it. 6481 */ 6482 sector_t newsize; 6483 sectors &= ~((sector_t)mddev->chunk_sectors - 1); 6484 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 6485 if (mddev->external_size && 6486 mddev->array_sectors > newsize) 6487 return -EINVAL; 6488 if (mddev->bitmap) { 6489 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 6490 if (ret) 6491 return ret; 6492 } 6493 md_set_array_sectors(mddev, newsize); 6494 set_capacity(mddev->gendisk, mddev->array_sectors); 6495 revalidate_disk(mddev->gendisk); 6496 if (sectors > mddev->dev_sectors && 6497 mddev->recovery_cp > mddev->dev_sectors) { 6498 mddev->recovery_cp = mddev->dev_sectors; 6499 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6500 } 6501 mddev->dev_sectors = sectors; 6502 mddev->resync_max_sectors = sectors; 6503 return 0; 6504 } 6505 6506 static int check_stripe_cache(struct mddev *mddev) 6507 { 6508 /* Can only proceed if there are plenty of stripe_heads. 6509 * We need a minimum of one full stripe,, and for sensible progress 6510 * it is best to have about 4 times that. 6511 * If we require 4 times, then the default 256 4K stripe_heads will 6512 * allow for chunk sizes up to 256K, which is probably OK. 6513 * If the chunk size is greater, user-space should request more 6514 * stripe_heads first. 6515 */ 6516 struct r5conf *conf = mddev->private; 6517 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 6518 > conf->max_nr_stripes || 6519 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 6520 > conf->max_nr_stripes) { 6521 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 6522 mdname(mddev), 6523 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 6524 / STRIPE_SIZE)*4); 6525 return 0; 6526 } 6527 return 1; 6528 } 6529 6530 static int check_reshape(struct mddev *mddev) 6531 { 6532 struct r5conf *conf = mddev->private; 6533 6534 if (mddev->delta_disks == 0 && 6535 mddev->new_layout == mddev->layout && 6536 mddev->new_chunk_sectors == mddev->chunk_sectors) 6537 return 0; /* nothing to do */ 6538 if (has_failed(conf)) 6539 return -EINVAL; 6540 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 6541 /* We might be able to shrink, but the devices must 6542 * be made bigger first. 6543 * For raid6, 4 is the minimum size. 6544 * Otherwise 2 is the minimum 6545 */ 6546 int min = 2; 6547 if (mddev->level == 6) 6548 min = 4; 6549 if (mddev->raid_disks + mddev->delta_disks < min) 6550 return -EINVAL; 6551 } 6552 6553 if (!check_stripe_cache(mddev)) 6554 return -ENOSPC; 6555 6556 return resize_stripes(conf, (conf->previous_raid_disks 6557 + mddev->delta_disks)); 6558 } 6559 6560 static int raid5_start_reshape(struct mddev *mddev) 6561 { 6562 struct r5conf *conf = mddev->private; 6563 struct md_rdev *rdev; 6564 int spares = 0; 6565 unsigned long flags; 6566 6567 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6568 return -EBUSY; 6569 6570 if (!check_stripe_cache(mddev)) 6571 return -ENOSPC; 6572 6573 if (has_failed(conf)) 6574 return -EINVAL; 6575 6576 rdev_for_each(rdev, mddev) { 6577 if (!test_bit(In_sync, &rdev->flags) 6578 && !test_bit(Faulty, &rdev->flags)) 6579 spares++; 6580 } 6581 6582 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 6583 /* Not enough devices even to make a degraded array 6584 * of that size 6585 */ 6586 return -EINVAL; 6587 6588 /* Refuse to reduce size of the array. Any reductions in 6589 * array size must be through explicit setting of array_size 6590 * attribute. 6591 */ 6592 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 6593 < mddev->array_sectors) { 6594 printk(KERN_ERR "md/raid:%s: array size must be reduced " 6595 "before number of disks\n", mdname(mddev)); 6596 return -EINVAL; 6597 } 6598 6599 atomic_set(&conf->reshape_stripes, 0); 6600 spin_lock_irq(&conf->device_lock); 6601 write_seqcount_begin(&conf->gen_lock); 6602 conf->previous_raid_disks = conf->raid_disks; 6603 conf->raid_disks += mddev->delta_disks; 6604 conf->prev_chunk_sectors = conf->chunk_sectors; 6605 conf->chunk_sectors = mddev->new_chunk_sectors; 6606 conf->prev_algo = conf->algorithm; 6607 conf->algorithm = mddev->new_layout; 6608 conf->generation++; 6609 /* Code that selects data_offset needs to see the generation update 6610 * if reshape_progress has been set - so a memory barrier needed. 6611 */ 6612 smp_mb(); 6613 if (mddev->reshape_backwards) 6614 conf->reshape_progress = raid5_size(mddev, 0, 0); 6615 else 6616 conf->reshape_progress = 0; 6617 conf->reshape_safe = conf->reshape_progress; 6618 write_seqcount_end(&conf->gen_lock); 6619 spin_unlock_irq(&conf->device_lock); 6620 6621 /* Now make sure any requests that proceeded on the assumption 6622 * the reshape wasn't running - like Discard or Read - have 6623 * completed. 6624 */ 6625 mddev_suspend(mddev); 6626 mddev_resume(mddev); 6627 6628 /* Add some new drives, as many as will fit. 6629 * We know there are enough to make the newly sized array work. 6630 * Don't add devices if we are reducing the number of 6631 * devices in the array. This is because it is not possible 6632 * to correctly record the "partially reconstructed" state of 6633 * such devices during the reshape and confusion could result. 6634 */ 6635 if (mddev->delta_disks >= 0) { 6636 rdev_for_each(rdev, mddev) 6637 if (rdev->raid_disk < 0 && 6638 !test_bit(Faulty, &rdev->flags)) { 6639 if (raid5_add_disk(mddev, rdev) == 0) { 6640 if (rdev->raid_disk 6641 >= conf->previous_raid_disks) 6642 set_bit(In_sync, &rdev->flags); 6643 else 6644 rdev->recovery_offset = 0; 6645 6646 if (sysfs_link_rdev(mddev, rdev)) 6647 /* Failure here is OK */; 6648 } 6649 } else if (rdev->raid_disk >= conf->previous_raid_disks 6650 && !test_bit(Faulty, &rdev->flags)) { 6651 /* This is a spare that was manually added */ 6652 set_bit(In_sync, &rdev->flags); 6653 } 6654 6655 /* When a reshape changes the number of devices, 6656 * ->degraded is measured against the larger of the 6657 * pre and post number of devices. 6658 */ 6659 spin_lock_irqsave(&conf->device_lock, flags); 6660 mddev->degraded = calc_degraded(conf); 6661 spin_unlock_irqrestore(&conf->device_lock, flags); 6662 } 6663 mddev->raid_disks = conf->raid_disks; 6664 mddev->reshape_position = conf->reshape_progress; 6665 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6666 6667 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6668 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6669 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6670 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6671 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6672 "reshape"); 6673 if (!mddev->sync_thread) { 6674 mddev->recovery = 0; 6675 spin_lock_irq(&conf->device_lock); 6676 write_seqcount_begin(&conf->gen_lock); 6677 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 6678 mddev->new_chunk_sectors = 6679 conf->chunk_sectors = conf->prev_chunk_sectors; 6680 mddev->new_layout = conf->algorithm = conf->prev_algo; 6681 rdev_for_each(rdev, mddev) 6682 rdev->new_data_offset = rdev->data_offset; 6683 smp_wmb(); 6684 conf->generation --; 6685 conf->reshape_progress = MaxSector; 6686 mddev->reshape_position = MaxSector; 6687 write_seqcount_end(&conf->gen_lock); 6688 spin_unlock_irq(&conf->device_lock); 6689 return -EAGAIN; 6690 } 6691 conf->reshape_checkpoint = jiffies; 6692 md_wakeup_thread(mddev->sync_thread); 6693 md_new_event(mddev); 6694 return 0; 6695 } 6696 6697 /* This is called from the reshape thread and should make any 6698 * changes needed in 'conf' 6699 */ 6700 static void end_reshape(struct r5conf *conf) 6701 { 6702 6703 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 6704 struct md_rdev *rdev; 6705 6706 spin_lock_irq(&conf->device_lock); 6707 conf->previous_raid_disks = conf->raid_disks; 6708 rdev_for_each(rdev, conf->mddev) 6709 rdev->data_offset = rdev->new_data_offset; 6710 smp_wmb(); 6711 conf->reshape_progress = MaxSector; 6712 spin_unlock_irq(&conf->device_lock); 6713 wake_up(&conf->wait_for_overlap); 6714 6715 /* read-ahead size must cover two whole stripes, which is 6716 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 6717 */ 6718 if (conf->mddev->queue) { 6719 int data_disks = conf->raid_disks - conf->max_degraded; 6720 int stripe = data_disks * ((conf->chunk_sectors << 9) 6721 / PAGE_SIZE); 6722 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6723 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6724 } 6725 } 6726 } 6727 6728 /* This is called from the raid5d thread with mddev_lock held. 6729 * It makes config changes to the device. 6730 */ 6731 static void raid5_finish_reshape(struct mddev *mddev) 6732 { 6733 struct r5conf *conf = mddev->private; 6734 6735 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6736 6737 if (mddev->delta_disks > 0) { 6738 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6739 set_capacity(mddev->gendisk, mddev->array_sectors); 6740 revalidate_disk(mddev->gendisk); 6741 } else { 6742 int d; 6743 spin_lock_irq(&conf->device_lock); 6744 mddev->degraded = calc_degraded(conf); 6745 spin_unlock_irq(&conf->device_lock); 6746 for (d = conf->raid_disks ; 6747 d < conf->raid_disks - mddev->delta_disks; 6748 d++) { 6749 struct md_rdev *rdev = conf->disks[d].rdev; 6750 if (rdev) 6751 clear_bit(In_sync, &rdev->flags); 6752 rdev = conf->disks[d].replacement; 6753 if (rdev) 6754 clear_bit(In_sync, &rdev->flags); 6755 } 6756 } 6757 mddev->layout = conf->algorithm; 6758 mddev->chunk_sectors = conf->chunk_sectors; 6759 mddev->reshape_position = MaxSector; 6760 mddev->delta_disks = 0; 6761 mddev->reshape_backwards = 0; 6762 } 6763 } 6764 6765 static void raid5_quiesce(struct mddev *mddev, int state) 6766 { 6767 struct r5conf *conf = mddev->private; 6768 6769 switch(state) { 6770 case 2: /* resume for a suspend */ 6771 wake_up(&conf->wait_for_overlap); 6772 break; 6773 6774 case 1: /* stop all writes */ 6775 lock_all_device_hash_locks_irq(conf); 6776 /* '2' tells resync/reshape to pause so that all 6777 * active stripes can drain 6778 */ 6779 conf->quiesce = 2; 6780 wait_event_cmd(conf->wait_for_stripe, 6781 atomic_read(&conf->active_stripes) == 0 && 6782 atomic_read(&conf->active_aligned_reads) == 0, 6783 unlock_all_device_hash_locks_irq(conf), 6784 lock_all_device_hash_locks_irq(conf)); 6785 conf->quiesce = 1; 6786 unlock_all_device_hash_locks_irq(conf); 6787 /* allow reshape to continue */ 6788 wake_up(&conf->wait_for_overlap); 6789 break; 6790 6791 case 0: /* re-enable writes */ 6792 lock_all_device_hash_locks_irq(conf); 6793 conf->quiesce = 0; 6794 wake_up(&conf->wait_for_stripe); 6795 wake_up(&conf->wait_for_overlap); 6796 unlock_all_device_hash_locks_irq(conf); 6797 break; 6798 } 6799 } 6800 6801 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 6802 { 6803 struct r0conf *raid0_conf = mddev->private; 6804 sector_t sectors; 6805 6806 /* for raid0 takeover only one zone is supported */ 6807 if (raid0_conf->nr_strip_zones > 1) { 6808 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 6809 mdname(mddev)); 6810 return ERR_PTR(-EINVAL); 6811 } 6812 6813 sectors = raid0_conf->strip_zone[0].zone_end; 6814 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 6815 mddev->dev_sectors = sectors; 6816 mddev->new_level = level; 6817 mddev->new_layout = ALGORITHM_PARITY_N; 6818 mddev->new_chunk_sectors = mddev->chunk_sectors; 6819 mddev->raid_disks += 1; 6820 mddev->delta_disks = 1; 6821 /* make sure it will be not marked as dirty */ 6822 mddev->recovery_cp = MaxSector; 6823 6824 return setup_conf(mddev); 6825 } 6826 6827 static void *raid5_takeover_raid1(struct mddev *mddev) 6828 { 6829 int chunksect; 6830 6831 if (mddev->raid_disks != 2 || 6832 mddev->degraded > 1) 6833 return ERR_PTR(-EINVAL); 6834 6835 /* Should check if there are write-behind devices? */ 6836 6837 chunksect = 64*2; /* 64K by default */ 6838 6839 /* The array must be an exact multiple of chunksize */ 6840 while (chunksect && (mddev->array_sectors & (chunksect-1))) 6841 chunksect >>= 1; 6842 6843 if ((chunksect<<9) < STRIPE_SIZE) 6844 /* array size does not allow a suitable chunk size */ 6845 return ERR_PTR(-EINVAL); 6846 6847 mddev->new_level = 5; 6848 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 6849 mddev->new_chunk_sectors = chunksect; 6850 6851 return setup_conf(mddev); 6852 } 6853 6854 static void *raid5_takeover_raid6(struct mddev *mddev) 6855 { 6856 int new_layout; 6857 6858 switch (mddev->layout) { 6859 case ALGORITHM_LEFT_ASYMMETRIC_6: 6860 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 6861 break; 6862 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6863 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 6864 break; 6865 case ALGORITHM_LEFT_SYMMETRIC_6: 6866 new_layout = ALGORITHM_LEFT_SYMMETRIC; 6867 break; 6868 case ALGORITHM_RIGHT_SYMMETRIC_6: 6869 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 6870 break; 6871 case ALGORITHM_PARITY_0_6: 6872 new_layout = ALGORITHM_PARITY_0; 6873 break; 6874 case ALGORITHM_PARITY_N: 6875 new_layout = ALGORITHM_PARITY_N; 6876 break; 6877 default: 6878 return ERR_PTR(-EINVAL); 6879 } 6880 mddev->new_level = 5; 6881 mddev->new_layout = new_layout; 6882 mddev->delta_disks = -1; 6883 mddev->raid_disks -= 1; 6884 return setup_conf(mddev); 6885 } 6886 6887 static int raid5_check_reshape(struct mddev *mddev) 6888 { 6889 /* For a 2-drive array, the layout and chunk size can be changed 6890 * immediately as not restriping is needed. 6891 * For larger arrays we record the new value - after validation 6892 * to be used by a reshape pass. 6893 */ 6894 struct r5conf *conf = mddev->private; 6895 int new_chunk = mddev->new_chunk_sectors; 6896 6897 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 6898 return -EINVAL; 6899 if (new_chunk > 0) { 6900 if (!is_power_of_2(new_chunk)) 6901 return -EINVAL; 6902 if (new_chunk < (PAGE_SIZE>>9)) 6903 return -EINVAL; 6904 if (mddev->array_sectors & (new_chunk-1)) 6905 /* not factor of array size */ 6906 return -EINVAL; 6907 } 6908 6909 /* They look valid */ 6910 6911 if (mddev->raid_disks == 2) { 6912 /* can make the change immediately */ 6913 if (mddev->new_layout >= 0) { 6914 conf->algorithm = mddev->new_layout; 6915 mddev->layout = mddev->new_layout; 6916 } 6917 if (new_chunk > 0) { 6918 conf->chunk_sectors = new_chunk ; 6919 mddev->chunk_sectors = new_chunk; 6920 } 6921 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6922 md_wakeup_thread(mddev->thread); 6923 } 6924 return check_reshape(mddev); 6925 } 6926 6927 static int raid6_check_reshape(struct mddev *mddev) 6928 { 6929 int new_chunk = mddev->new_chunk_sectors; 6930 6931 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 6932 return -EINVAL; 6933 if (new_chunk > 0) { 6934 if (!is_power_of_2(new_chunk)) 6935 return -EINVAL; 6936 if (new_chunk < (PAGE_SIZE >> 9)) 6937 return -EINVAL; 6938 if (mddev->array_sectors & (new_chunk-1)) 6939 /* not factor of array size */ 6940 return -EINVAL; 6941 } 6942 6943 /* They look valid */ 6944 return check_reshape(mddev); 6945 } 6946 6947 static void *raid5_takeover(struct mddev *mddev) 6948 { 6949 /* raid5 can take over: 6950 * raid0 - if there is only one strip zone - make it a raid4 layout 6951 * raid1 - if there are two drives. We need to know the chunk size 6952 * raid4 - trivial - just use a raid4 layout. 6953 * raid6 - Providing it is a *_6 layout 6954 */ 6955 if (mddev->level == 0) 6956 return raid45_takeover_raid0(mddev, 5); 6957 if (mddev->level == 1) 6958 return raid5_takeover_raid1(mddev); 6959 if (mddev->level == 4) { 6960 mddev->new_layout = ALGORITHM_PARITY_N; 6961 mddev->new_level = 5; 6962 return setup_conf(mddev); 6963 } 6964 if (mddev->level == 6) 6965 return raid5_takeover_raid6(mddev); 6966 6967 return ERR_PTR(-EINVAL); 6968 } 6969 6970 static void *raid4_takeover(struct mddev *mddev) 6971 { 6972 /* raid4 can take over: 6973 * raid0 - if there is only one strip zone 6974 * raid5 - if layout is right 6975 */ 6976 if (mddev->level == 0) 6977 return raid45_takeover_raid0(mddev, 4); 6978 if (mddev->level == 5 && 6979 mddev->layout == ALGORITHM_PARITY_N) { 6980 mddev->new_layout = 0; 6981 mddev->new_level = 4; 6982 return setup_conf(mddev); 6983 } 6984 return ERR_PTR(-EINVAL); 6985 } 6986 6987 static struct md_personality raid5_personality; 6988 6989 static void *raid6_takeover(struct mddev *mddev) 6990 { 6991 /* Currently can only take over a raid5. We map the 6992 * personality to an equivalent raid6 personality 6993 * with the Q block at the end. 6994 */ 6995 int new_layout; 6996 6997 if (mddev->pers != &raid5_personality) 6998 return ERR_PTR(-EINVAL); 6999 if (mddev->degraded > 1) 7000 return ERR_PTR(-EINVAL); 7001 if (mddev->raid_disks > 253) 7002 return ERR_PTR(-EINVAL); 7003 if (mddev->raid_disks < 3) 7004 return ERR_PTR(-EINVAL); 7005 7006 switch (mddev->layout) { 7007 case ALGORITHM_LEFT_ASYMMETRIC: 7008 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 7009 break; 7010 case ALGORITHM_RIGHT_ASYMMETRIC: 7011 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 7012 break; 7013 case ALGORITHM_LEFT_SYMMETRIC: 7014 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 7015 break; 7016 case ALGORITHM_RIGHT_SYMMETRIC: 7017 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 7018 break; 7019 case ALGORITHM_PARITY_0: 7020 new_layout = ALGORITHM_PARITY_0_6; 7021 break; 7022 case ALGORITHM_PARITY_N: 7023 new_layout = ALGORITHM_PARITY_N; 7024 break; 7025 default: 7026 return ERR_PTR(-EINVAL); 7027 } 7028 mddev->new_level = 6; 7029 mddev->new_layout = new_layout; 7030 mddev->delta_disks = 1; 7031 mddev->raid_disks += 1; 7032 return setup_conf(mddev); 7033 } 7034 7035 static struct md_personality raid6_personality = 7036 { 7037 .name = "raid6", 7038 .level = 6, 7039 .owner = THIS_MODULE, 7040 .make_request = make_request, 7041 .run = run, 7042 .stop = stop, 7043 .status = status, 7044 .error_handler = error, 7045 .hot_add_disk = raid5_add_disk, 7046 .hot_remove_disk= raid5_remove_disk, 7047 .spare_active = raid5_spare_active, 7048 .sync_request = sync_request, 7049 .resize = raid5_resize, 7050 .size = raid5_size, 7051 .check_reshape = raid6_check_reshape, 7052 .start_reshape = raid5_start_reshape, 7053 .finish_reshape = raid5_finish_reshape, 7054 .quiesce = raid5_quiesce, 7055 .takeover = raid6_takeover, 7056 }; 7057 static struct md_personality raid5_personality = 7058 { 7059 .name = "raid5", 7060 .level = 5, 7061 .owner = THIS_MODULE, 7062 .make_request = make_request, 7063 .run = run, 7064 .stop = stop, 7065 .status = status, 7066 .error_handler = error, 7067 .hot_add_disk = raid5_add_disk, 7068 .hot_remove_disk= raid5_remove_disk, 7069 .spare_active = raid5_spare_active, 7070 .sync_request = sync_request, 7071 .resize = raid5_resize, 7072 .size = raid5_size, 7073 .check_reshape = raid5_check_reshape, 7074 .start_reshape = raid5_start_reshape, 7075 .finish_reshape = raid5_finish_reshape, 7076 .quiesce = raid5_quiesce, 7077 .takeover = raid5_takeover, 7078 }; 7079 7080 static struct md_personality raid4_personality = 7081 { 7082 .name = "raid4", 7083 .level = 4, 7084 .owner = THIS_MODULE, 7085 .make_request = make_request, 7086 .run = run, 7087 .stop = stop, 7088 .status = status, 7089 .error_handler = error, 7090 .hot_add_disk = raid5_add_disk, 7091 .hot_remove_disk= raid5_remove_disk, 7092 .spare_active = raid5_spare_active, 7093 .sync_request = sync_request, 7094 .resize = raid5_resize, 7095 .size = raid5_size, 7096 .check_reshape = raid5_check_reshape, 7097 .start_reshape = raid5_start_reshape, 7098 .finish_reshape = raid5_finish_reshape, 7099 .quiesce = raid5_quiesce, 7100 .takeover = raid4_takeover, 7101 }; 7102 7103 static int __init raid5_init(void) 7104 { 7105 raid5_wq = alloc_workqueue("raid5wq", 7106 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 7107 if (!raid5_wq) 7108 return -ENOMEM; 7109 register_md_personality(&raid6_personality); 7110 register_md_personality(&raid5_personality); 7111 register_md_personality(&raid4_personality); 7112 return 0; 7113 } 7114 7115 static void raid5_exit(void) 7116 { 7117 unregister_md_personality(&raid6_personality); 7118 unregister_md_personality(&raid5_personality); 7119 unregister_md_personality(&raid4_personality); 7120 destroy_workqueue(raid5_wq); 7121 } 7122 7123 module_init(raid5_init); 7124 module_exit(raid5_exit); 7125 MODULE_LICENSE("GPL"); 7126 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 7127 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 7128 MODULE_ALIAS("md-raid5"); 7129 MODULE_ALIAS("md-raid4"); 7130 MODULE_ALIAS("md-level-5"); 7131 MODULE_ALIAS("md-level-4"); 7132 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 7133 MODULE_ALIAS("md-raid6"); 7134 MODULE_ALIAS("md-level-6"); 7135 7136 /* This used to be two separate modules, they were: */ 7137 MODULE_ALIAS("raid5"); 7138 MODULE_ALIAS("raid6"); 7139