1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid5.c : Multiple Devices driver for Linux 4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 5 * Copyright (C) 1999, 2000 Ingo Molnar 6 * Copyright (C) 2002, 2003 H. Peter Anvin 7 * 8 * RAID-4/5/6 management functions. 9 * Thanks to Penguin Computing for making the RAID-6 development possible 10 * by donating a test server! 11 */ 12 13 /* 14 * BITMAP UNPLUGGING: 15 * 16 * The sequencing for updating the bitmap reliably is a little 17 * subtle (and I got it wrong the first time) so it deserves some 18 * explanation. 19 * 20 * We group bitmap updates into batches. Each batch has a number. 21 * We may write out several batches at once, but that isn't very important. 22 * conf->seq_write is the number of the last batch successfully written. 23 * conf->seq_flush is the number of the last batch that was closed to 24 * new additions. 25 * When we discover that we will need to write to any block in a stripe 26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 27 * the number of the batch it will be in. This is seq_flush+1. 28 * When we are ready to do a write, if that batch hasn't been written yet, 29 * we plug the array and queue the stripe for later. 30 * When an unplug happens, we increment bm_flush, thus closing the current 31 * batch. 32 * When we notice that bm_flush > bm_write, we write out all pending updates 33 * to the bitmap, and advance bm_write to where bm_flush was. 34 * This may occasionally write a bit out twice, but is sure never to 35 * miss any bits. 36 */ 37 38 #include <linux/blkdev.h> 39 #include <linux/delay.h> 40 #include <linux/kthread.h> 41 #include <linux/raid/pq.h> 42 #include <linux/async_tx.h> 43 #include <linux/module.h> 44 #include <linux/async.h> 45 #include <linux/seq_file.h> 46 #include <linux/cpu.h> 47 #include <linux/slab.h> 48 #include <linux/ratelimit.h> 49 #include <linux/nodemask.h> 50 51 #include <trace/events/block.h> 52 #include <linux/list_sort.h> 53 54 #include "md.h" 55 #include "raid5.h" 56 #include "raid0.h" 57 #include "md-bitmap.h" 58 #include "raid5-log.h" 59 60 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 61 62 #define cpu_to_group(cpu) cpu_to_node(cpu) 63 #define ANY_GROUP NUMA_NO_NODE 64 65 #define RAID5_MAX_REQ_STRIPES 256 66 67 static bool devices_handle_discard_safely = false; 68 module_param(devices_handle_discard_safely, bool, 0644); 69 MODULE_PARM_DESC(devices_handle_discard_safely, 70 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 71 static struct workqueue_struct *raid5_wq; 72 73 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 74 { 75 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK; 76 return &conf->stripe_hashtbl[hash]; 77 } 78 79 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect) 80 { 81 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK; 82 } 83 84 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 85 __acquires(&conf->device_lock) 86 { 87 spin_lock_irq(conf->hash_locks + hash); 88 spin_lock(&conf->device_lock); 89 } 90 91 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 92 __releases(&conf->device_lock) 93 { 94 spin_unlock(&conf->device_lock); 95 spin_unlock_irq(conf->hash_locks + hash); 96 } 97 98 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 99 __acquires(&conf->device_lock) 100 { 101 int i; 102 spin_lock_irq(conf->hash_locks); 103 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 104 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 105 spin_lock(&conf->device_lock); 106 } 107 108 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 109 __releases(&conf->device_lock) 110 { 111 int i; 112 spin_unlock(&conf->device_lock); 113 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 114 spin_unlock(conf->hash_locks + i); 115 spin_unlock_irq(conf->hash_locks); 116 } 117 118 /* Find first data disk in a raid6 stripe */ 119 static inline int raid6_d0(struct stripe_head *sh) 120 { 121 if (sh->ddf_layout) 122 /* ddf always start from first device */ 123 return 0; 124 /* md starts just after Q block */ 125 if (sh->qd_idx == sh->disks - 1) 126 return 0; 127 else 128 return sh->qd_idx + 1; 129 } 130 static inline int raid6_next_disk(int disk, int raid_disks) 131 { 132 disk++; 133 return (disk < raid_disks) ? disk : 0; 134 } 135 136 /* When walking through the disks in a raid5, starting at raid6_d0, 137 * We need to map each disk to a 'slot', where the data disks are slot 138 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 139 * is raid_disks-1. This help does that mapping. 140 */ 141 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 142 int *count, int syndrome_disks) 143 { 144 int slot = *count; 145 146 if (sh->ddf_layout) 147 (*count)++; 148 if (idx == sh->pd_idx) 149 return syndrome_disks; 150 if (idx == sh->qd_idx) 151 return syndrome_disks + 1; 152 if (!sh->ddf_layout) 153 (*count)++; 154 return slot; 155 } 156 157 static void print_raid5_conf (struct r5conf *conf); 158 159 static int stripe_operations_active(struct stripe_head *sh) 160 { 161 return sh->check_state || sh->reconstruct_state || 162 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 163 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 164 } 165 166 static bool stripe_is_lowprio(struct stripe_head *sh) 167 { 168 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 169 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 170 !test_bit(STRIPE_R5C_CACHING, &sh->state); 171 } 172 173 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 174 __must_hold(&sh->raid_conf->device_lock) 175 { 176 struct r5conf *conf = sh->raid_conf; 177 struct r5worker_group *group; 178 int thread_cnt; 179 int i, cpu = sh->cpu; 180 181 if (!cpu_online(cpu)) { 182 cpu = cpumask_any(cpu_online_mask); 183 sh->cpu = cpu; 184 } 185 186 if (list_empty(&sh->lru)) { 187 struct r5worker_group *group; 188 group = conf->worker_groups + cpu_to_group(cpu); 189 if (stripe_is_lowprio(sh)) 190 list_add_tail(&sh->lru, &group->loprio_list); 191 else 192 list_add_tail(&sh->lru, &group->handle_list); 193 group->stripes_cnt++; 194 sh->group = group; 195 } 196 197 if (conf->worker_cnt_per_group == 0) { 198 md_wakeup_thread(conf->mddev->thread); 199 return; 200 } 201 202 group = conf->worker_groups + cpu_to_group(sh->cpu); 203 204 group->workers[0].working = true; 205 /* at least one worker should run to avoid race */ 206 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 207 208 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 209 /* wakeup more workers */ 210 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 211 if (group->workers[i].working == false) { 212 group->workers[i].working = true; 213 queue_work_on(sh->cpu, raid5_wq, 214 &group->workers[i].work); 215 thread_cnt--; 216 } 217 } 218 } 219 220 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 221 struct list_head *temp_inactive_list) 222 __must_hold(&conf->device_lock) 223 { 224 int i; 225 int injournal = 0; /* number of date pages with R5_InJournal */ 226 227 BUG_ON(!list_empty(&sh->lru)); 228 BUG_ON(atomic_read(&conf->active_stripes)==0); 229 230 if (r5c_is_writeback(conf->log)) 231 for (i = sh->disks; i--; ) 232 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 233 injournal++; 234 /* 235 * In the following cases, the stripe cannot be released to cached 236 * lists. Therefore, we make the stripe write out and set 237 * STRIPE_HANDLE: 238 * 1. when quiesce in r5c write back; 239 * 2. when resync is requested fot the stripe. 240 */ 241 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 242 (conf->quiesce && r5c_is_writeback(conf->log) && 243 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 244 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 245 r5c_make_stripe_write_out(sh); 246 set_bit(STRIPE_HANDLE, &sh->state); 247 } 248 249 if (test_bit(STRIPE_HANDLE, &sh->state)) { 250 if (test_bit(STRIPE_DELAYED, &sh->state) && 251 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 252 list_add_tail(&sh->lru, &conf->delayed_list); 253 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 254 sh->bm_seq - conf->seq_write > 0) 255 list_add_tail(&sh->lru, &conf->bitmap_list); 256 else { 257 clear_bit(STRIPE_DELAYED, &sh->state); 258 clear_bit(STRIPE_BIT_DELAY, &sh->state); 259 if (conf->worker_cnt_per_group == 0) { 260 if (stripe_is_lowprio(sh)) 261 list_add_tail(&sh->lru, 262 &conf->loprio_list); 263 else 264 list_add_tail(&sh->lru, 265 &conf->handle_list); 266 } else { 267 raid5_wakeup_stripe_thread(sh); 268 return; 269 } 270 } 271 md_wakeup_thread(conf->mddev->thread); 272 } else { 273 BUG_ON(stripe_operations_active(sh)); 274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 275 if (atomic_dec_return(&conf->preread_active_stripes) 276 < IO_THRESHOLD) 277 md_wakeup_thread(conf->mddev->thread); 278 atomic_dec(&conf->active_stripes); 279 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 280 if (!r5c_is_writeback(conf->log)) 281 list_add_tail(&sh->lru, temp_inactive_list); 282 else { 283 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 284 if (injournal == 0) 285 list_add_tail(&sh->lru, temp_inactive_list); 286 else if (injournal == conf->raid_disks - conf->max_degraded) { 287 /* full stripe */ 288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 289 atomic_inc(&conf->r5c_cached_full_stripes); 290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 291 atomic_dec(&conf->r5c_cached_partial_stripes); 292 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 293 r5c_check_cached_full_stripe(conf); 294 } else 295 /* 296 * STRIPE_R5C_PARTIAL_STRIPE is set in 297 * r5c_try_caching_write(). No need to 298 * set it again. 299 */ 300 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 301 } 302 } 303 } 304 } 305 306 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 307 struct list_head *temp_inactive_list) 308 __must_hold(&conf->device_lock) 309 { 310 if (atomic_dec_and_test(&sh->count)) 311 do_release_stripe(conf, sh, temp_inactive_list); 312 } 313 314 /* 315 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 316 * 317 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 318 * given time. Adding stripes only takes device lock, while deleting stripes 319 * only takes hash lock. 320 */ 321 static void release_inactive_stripe_list(struct r5conf *conf, 322 struct list_head *temp_inactive_list, 323 int hash) 324 { 325 int size; 326 bool do_wakeup = false; 327 unsigned long flags; 328 329 if (hash == NR_STRIPE_HASH_LOCKS) { 330 size = NR_STRIPE_HASH_LOCKS; 331 hash = NR_STRIPE_HASH_LOCKS - 1; 332 } else 333 size = 1; 334 while (size) { 335 struct list_head *list = &temp_inactive_list[size - 1]; 336 337 /* 338 * We don't hold any lock here yet, raid5_get_active_stripe() might 339 * remove stripes from the list 340 */ 341 if (!list_empty_careful(list)) { 342 spin_lock_irqsave(conf->hash_locks + hash, flags); 343 if (list_empty(conf->inactive_list + hash) && 344 !list_empty(list)) 345 atomic_dec(&conf->empty_inactive_list_nr); 346 list_splice_tail_init(list, conf->inactive_list + hash); 347 do_wakeup = true; 348 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 349 } 350 size--; 351 hash--; 352 } 353 354 if (do_wakeup) { 355 wake_up(&conf->wait_for_stripe); 356 if (atomic_read(&conf->active_stripes) == 0) 357 wake_up(&conf->wait_for_quiescent); 358 if (conf->retry_read_aligned) 359 md_wakeup_thread(conf->mddev->thread); 360 } 361 } 362 363 static int release_stripe_list(struct r5conf *conf, 364 struct list_head *temp_inactive_list) 365 __must_hold(&conf->device_lock) 366 { 367 struct stripe_head *sh, *t; 368 int count = 0; 369 struct llist_node *head; 370 371 head = llist_del_all(&conf->released_stripes); 372 head = llist_reverse_order(head); 373 llist_for_each_entry_safe(sh, t, head, release_list) { 374 int hash; 375 376 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 377 smp_mb(); 378 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 379 /* 380 * Don't worry the bit is set here, because if the bit is set 381 * again, the count is always > 1. This is true for 382 * STRIPE_ON_UNPLUG_LIST bit too. 383 */ 384 hash = sh->hash_lock_index; 385 __release_stripe(conf, sh, &temp_inactive_list[hash]); 386 count++; 387 } 388 389 return count; 390 } 391 392 void raid5_release_stripe(struct stripe_head *sh) 393 { 394 struct r5conf *conf = sh->raid_conf; 395 unsigned long flags; 396 struct list_head list; 397 int hash; 398 bool wakeup; 399 400 /* Avoid release_list until the last reference. 401 */ 402 if (atomic_add_unless(&sh->count, -1, 1)) 403 return; 404 405 if (unlikely(!conf->mddev->thread) || 406 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 407 goto slow_path; 408 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 409 if (wakeup) 410 md_wakeup_thread(conf->mddev->thread); 411 return; 412 slow_path: 413 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 414 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 415 INIT_LIST_HEAD(&list); 416 hash = sh->hash_lock_index; 417 do_release_stripe(conf, sh, &list); 418 spin_unlock_irqrestore(&conf->device_lock, flags); 419 release_inactive_stripe_list(conf, &list, hash); 420 } 421 } 422 423 static inline void remove_hash(struct stripe_head *sh) 424 { 425 pr_debug("remove_hash(), stripe %llu\n", 426 (unsigned long long)sh->sector); 427 428 hlist_del_init(&sh->hash); 429 } 430 431 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 432 { 433 struct hlist_head *hp = stripe_hash(conf, sh->sector); 434 435 pr_debug("insert_hash(), stripe %llu\n", 436 (unsigned long long)sh->sector); 437 438 hlist_add_head(&sh->hash, hp); 439 } 440 441 /* find an idle stripe, make sure it is unhashed, and return it. */ 442 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 443 { 444 struct stripe_head *sh = NULL; 445 struct list_head *first; 446 447 if (list_empty(conf->inactive_list + hash)) 448 goto out; 449 first = (conf->inactive_list + hash)->next; 450 sh = list_entry(first, struct stripe_head, lru); 451 list_del_init(first); 452 remove_hash(sh); 453 atomic_inc(&conf->active_stripes); 454 BUG_ON(hash != sh->hash_lock_index); 455 if (list_empty(conf->inactive_list + hash)) 456 atomic_inc(&conf->empty_inactive_list_nr); 457 out: 458 return sh; 459 } 460 461 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 462 static void free_stripe_pages(struct stripe_head *sh) 463 { 464 int i; 465 struct page *p; 466 467 /* Have not allocate page pool */ 468 if (!sh->pages) 469 return; 470 471 for (i = 0; i < sh->nr_pages; i++) { 472 p = sh->pages[i]; 473 if (p) 474 put_page(p); 475 sh->pages[i] = NULL; 476 } 477 } 478 479 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp) 480 { 481 int i; 482 struct page *p; 483 484 for (i = 0; i < sh->nr_pages; i++) { 485 /* The page have allocated. */ 486 if (sh->pages[i]) 487 continue; 488 489 p = alloc_page(gfp); 490 if (!p) { 491 free_stripe_pages(sh); 492 return -ENOMEM; 493 } 494 sh->pages[i] = p; 495 } 496 return 0; 497 } 498 499 static int 500 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks) 501 { 502 int nr_pages, cnt; 503 504 if (sh->pages) 505 return 0; 506 507 /* Each of the sh->dev[i] need one conf->stripe_size */ 508 cnt = PAGE_SIZE / conf->stripe_size; 509 nr_pages = (disks + cnt - 1) / cnt; 510 511 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 512 if (!sh->pages) 513 return -ENOMEM; 514 sh->nr_pages = nr_pages; 515 sh->stripes_per_page = cnt; 516 return 0; 517 } 518 #endif 519 520 static void shrink_buffers(struct stripe_head *sh) 521 { 522 int i; 523 int num = sh->raid_conf->pool_size; 524 525 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 526 for (i = 0; i < num ; i++) { 527 struct page *p; 528 529 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 530 p = sh->dev[i].page; 531 if (!p) 532 continue; 533 sh->dev[i].page = NULL; 534 put_page(p); 535 } 536 #else 537 for (i = 0; i < num; i++) 538 sh->dev[i].page = NULL; 539 free_stripe_pages(sh); /* Free pages */ 540 #endif 541 } 542 543 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 544 { 545 int i; 546 int num = sh->raid_conf->pool_size; 547 548 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 549 for (i = 0; i < num; i++) { 550 struct page *page; 551 552 if (!(page = alloc_page(gfp))) { 553 return 1; 554 } 555 sh->dev[i].page = page; 556 sh->dev[i].orig_page = page; 557 sh->dev[i].offset = 0; 558 } 559 #else 560 if (alloc_stripe_pages(sh, gfp)) 561 return -ENOMEM; 562 563 for (i = 0; i < num; i++) { 564 sh->dev[i].page = raid5_get_dev_page(sh, i); 565 sh->dev[i].orig_page = sh->dev[i].page; 566 sh->dev[i].offset = raid5_get_page_offset(sh, i); 567 } 568 #endif 569 return 0; 570 } 571 572 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 573 struct stripe_head *sh); 574 575 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 576 { 577 struct r5conf *conf = sh->raid_conf; 578 int i, seq; 579 580 BUG_ON(atomic_read(&sh->count) != 0); 581 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 582 BUG_ON(stripe_operations_active(sh)); 583 BUG_ON(sh->batch_head); 584 585 pr_debug("init_stripe called, stripe %llu\n", 586 (unsigned long long)sector); 587 retry: 588 seq = read_seqcount_begin(&conf->gen_lock); 589 sh->generation = conf->generation - previous; 590 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 591 sh->sector = sector; 592 stripe_set_idx(sector, conf, previous, sh); 593 sh->state = 0; 594 595 for (i = sh->disks; i--; ) { 596 struct r5dev *dev = &sh->dev[i]; 597 598 if (dev->toread || dev->read || dev->towrite || dev->written || 599 test_bit(R5_LOCKED, &dev->flags)) { 600 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 601 (unsigned long long)sh->sector, i, dev->toread, 602 dev->read, dev->towrite, dev->written, 603 test_bit(R5_LOCKED, &dev->flags)); 604 WARN_ON(1); 605 } 606 dev->flags = 0; 607 dev->sector = raid5_compute_blocknr(sh, i, previous); 608 } 609 if (read_seqcount_retry(&conf->gen_lock, seq)) 610 goto retry; 611 sh->overwrite_disks = 0; 612 insert_hash(conf, sh); 613 sh->cpu = smp_processor_id(); 614 set_bit(STRIPE_BATCH_READY, &sh->state); 615 } 616 617 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 618 short generation) 619 { 620 struct stripe_head *sh; 621 622 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 623 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 624 if (sh->sector == sector && sh->generation == generation) 625 return sh; 626 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 627 return NULL; 628 } 629 630 static struct stripe_head *find_get_stripe(struct r5conf *conf, 631 sector_t sector, short generation, int hash) 632 { 633 int inc_empty_inactive_list_flag; 634 struct stripe_head *sh; 635 636 sh = __find_stripe(conf, sector, generation); 637 if (!sh) 638 return NULL; 639 640 if (atomic_inc_not_zero(&sh->count)) 641 return sh; 642 643 /* 644 * Slow path. The reference count is zero which means the stripe must 645 * be on a list (sh->lru). Must remove the stripe from the list that 646 * references it with the device_lock held. 647 */ 648 649 spin_lock(&conf->device_lock); 650 if (!atomic_read(&sh->count)) { 651 if (!test_bit(STRIPE_HANDLE, &sh->state)) 652 atomic_inc(&conf->active_stripes); 653 BUG_ON(list_empty(&sh->lru) && 654 !test_bit(STRIPE_EXPANDING, &sh->state)); 655 inc_empty_inactive_list_flag = 0; 656 if (!list_empty(conf->inactive_list + hash)) 657 inc_empty_inactive_list_flag = 1; 658 list_del_init(&sh->lru); 659 if (list_empty(conf->inactive_list + hash) && 660 inc_empty_inactive_list_flag) 661 atomic_inc(&conf->empty_inactive_list_nr); 662 if (sh->group) { 663 sh->group->stripes_cnt--; 664 sh->group = NULL; 665 } 666 } 667 atomic_inc(&sh->count); 668 spin_unlock(&conf->device_lock); 669 670 return sh; 671 } 672 673 /* 674 * Need to check if array has failed when deciding whether to: 675 * - start an array 676 * - remove non-faulty devices 677 * - add a spare 678 * - allow a reshape 679 * This determination is simple when no reshape is happening. 680 * However if there is a reshape, we need to carefully check 681 * both the before and after sections. 682 * This is because some failed devices may only affect one 683 * of the two sections, and some non-in_sync devices may 684 * be insync in the section most affected by failed devices. 685 * 686 * Most calls to this function hold &conf->device_lock. Calls 687 * in raid5_run() do not require the lock as no other threads 688 * have been started yet. 689 */ 690 int raid5_calc_degraded(struct r5conf *conf) 691 { 692 int degraded, degraded2; 693 int i; 694 695 rcu_read_lock(); 696 degraded = 0; 697 for (i = 0; i < conf->previous_raid_disks; i++) { 698 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 699 if (rdev && test_bit(Faulty, &rdev->flags)) 700 rdev = rcu_dereference(conf->disks[i].replacement); 701 if (!rdev || test_bit(Faulty, &rdev->flags)) 702 degraded++; 703 else if (test_bit(In_sync, &rdev->flags)) 704 ; 705 else 706 /* not in-sync or faulty. 707 * If the reshape increases the number of devices, 708 * this is being recovered by the reshape, so 709 * this 'previous' section is not in_sync. 710 * If the number of devices is being reduced however, 711 * the device can only be part of the array if 712 * we are reverting a reshape, so this section will 713 * be in-sync. 714 */ 715 if (conf->raid_disks >= conf->previous_raid_disks) 716 degraded++; 717 } 718 rcu_read_unlock(); 719 if (conf->raid_disks == conf->previous_raid_disks) 720 return degraded; 721 rcu_read_lock(); 722 degraded2 = 0; 723 for (i = 0; i < conf->raid_disks; i++) { 724 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 725 if (rdev && test_bit(Faulty, &rdev->flags)) 726 rdev = rcu_dereference(conf->disks[i].replacement); 727 if (!rdev || test_bit(Faulty, &rdev->flags)) 728 degraded2++; 729 else if (test_bit(In_sync, &rdev->flags)) 730 ; 731 else 732 /* not in-sync or faulty. 733 * If reshape increases the number of devices, this 734 * section has already been recovered, else it 735 * almost certainly hasn't. 736 */ 737 if (conf->raid_disks <= conf->previous_raid_disks) 738 degraded2++; 739 } 740 rcu_read_unlock(); 741 if (degraded2 > degraded) 742 return degraded2; 743 return degraded; 744 } 745 746 static bool has_failed(struct r5conf *conf) 747 { 748 int degraded = conf->mddev->degraded; 749 750 if (test_bit(MD_BROKEN, &conf->mddev->flags)) 751 return true; 752 753 if (conf->mddev->reshape_position != MaxSector) 754 degraded = raid5_calc_degraded(conf); 755 756 return degraded > conf->max_degraded; 757 } 758 759 enum stripe_result { 760 STRIPE_SUCCESS = 0, 761 STRIPE_RETRY, 762 STRIPE_SCHEDULE_AND_RETRY, 763 STRIPE_FAIL, 764 }; 765 766 struct stripe_request_ctx { 767 /* a reference to the last stripe_head for batching */ 768 struct stripe_head *batch_last; 769 770 /* first sector in the request */ 771 sector_t first_sector; 772 773 /* last sector in the request */ 774 sector_t last_sector; 775 776 /* 777 * bitmap to track stripe sectors that have been added to stripes 778 * add one to account for unaligned requests 779 */ 780 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1); 781 782 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */ 783 bool do_flush; 784 }; 785 786 /* 787 * Block until another thread clears R5_INACTIVE_BLOCKED or 788 * there are fewer than 3/4 the maximum number of active stripes 789 * and there is an inactive stripe available. 790 */ 791 static bool is_inactive_blocked(struct r5conf *conf, int hash) 792 { 793 if (list_empty(conf->inactive_list + hash)) 794 return false; 795 796 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 797 return true; 798 799 return (atomic_read(&conf->active_stripes) < 800 (conf->max_nr_stripes * 3 / 4)); 801 } 802 803 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf, 804 struct stripe_request_ctx *ctx, sector_t sector, 805 unsigned int flags) 806 { 807 struct stripe_head *sh; 808 int hash = stripe_hash_locks_hash(conf, sector); 809 int previous = !!(flags & R5_GAS_PREVIOUS); 810 811 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 812 813 spin_lock_irq(conf->hash_locks + hash); 814 815 for (;;) { 816 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) { 817 /* 818 * Must release the reference to batch_last before 819 * waiting, on quiesce, otherwise the batch_last will 820 * hold a reference to a stripe and raid5_quiesce() 821 * will deadlock waiting for active_stripes to go to 822 * zero. 823 */ 824 if (ctx && ctx->batch_last) { 825 raid5_release_stripe(ctx->batch_last); 826 ctx->batch_last = NULL; 827 } 828 829 wait_event_lock_irq(conf->wait_for_quiescent, 830 !conf->quiesce, 831 *(conf->hash_locks + hash)); 832 } 833 834 sh = find_get_stripe(conf, sector, conf->generation - previous, 835 hash); 836 if (sh) 837 break; 838 839 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 840 sh = get_free_stripe(conf, hash); 841 if (sh) { 842 r5c_check_stripe_cache_usage(conf); 843 init_stripe(sh, sector, previous); 844 atomic_inc(&sh->count); 845 break; 846 } 847 848 if (!test_bit(R5_DID_ALLOC, &conf->cache_state)) 849 set_bit(R5_ALLOC_MORE, &conf->cache_state); 850 } 851 852 if (flags & R5_GAS_NOBLOCK) 853 break; 854 855 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 856 r5l_wake_reclaim(conf->log, 0); 857 wait_event_lock_irq(conf->wait_for_stripe, 858 is_inactive_blocked(conf, hash), 859 *(conf->hash_locks + hash)); 860 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 861 } 862 863 spin_unlock_irq(conf->hash_locks + hash); 864 return sh; 865 } 866 867 static bool is_full_stripe_write(struct stripe_head *sh) 868 { 869 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 870 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 871 } 872 873 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 874 __acquires(&sh1->stripe_lock) 875 __acquires(&sh2->stripe_lock) 876 { 877 if (sh1 > sh2) { 878 spin_lock_irq(&sh2->stripe_lock); 879 spin_lock_nested(&sh1->stripe_lock, 1); 880 } else { 881 spin_lock_irq(&sh1->stripe_lock); 882 spin_lock_nested(&sh2->stripe_lock, 1); 883 } 884 } 885 886 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 887 __releases(&sh1->stripe_lock) 888 __releases(&sh2->stripe_lock) 889 { 890 spin_unlock(&sh1->stripe_lock); 891 spin_unlock_irq(&sh2->stripe_lock); 892 } 893 894 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 895 static bool stripe_can_batch(struct stripe_head *sh) 896 { 897 struct r5conf *conf = sh->raid_conf; 898 899 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 900 return false; 901 return test_bit(STRIPE_BATCH_READY, &sh->state) && 902 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 903 is_full_stripe_write(sh); 904 } 905 906 /* we only do back search */ 907 static void stripe_add_to_batch_list(struct r5conf *conf, 908 struct stripe_head *sh, struct stripe_head *last_sh) 909 { 910 struct stripe_head *head; 911 sector_t head_sector, tmp_sec; 912 int hash; 913 int dd_idx; 914 915 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 916 tmp_sec = sh->sector; 917 if (!sector_div(tmp_sec, conf->chunk_sectors)) 918 return; 919 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf); 920 921 if (last_sh && head_sector == last_sh->sector) { 922 head = last_sh; 923 atomic_inc(&head->count); 924 } else { 925 hash = stripe_hash_locks_hash(conf, head_sector); 926 spin_lock_irq(conf->hash_locks + hash); 927 head = find_get_stripe(conf, head_sector, conf->generation, 928 hash); 929 spin_unlock_irq(conf->hash_locks + hash); 930 if (!head) 931 return; 932 if (!stripe_can_batch(head)) 933 goto out; 934 } 935 936 lock_two_stripes(head, sh); 937 /* clear_batch_ready clear the flag */ 938 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 939 goto unlock_out; 940 941 if (sh->batch_head) 942 goto unlock_out; 943 944 dd_idx = 0; 945 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 946 dd_idx++; 947 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 948 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 949 goto unlock_out; 950 951 if (head->batch_head) { 952 spin_lock(&head->batch_head->batch_lock); 953 /* This batch list is already running */ 954 if (!stripe_can_batch(head)) { 955 spin_unlock(&head->batch_head->batch_lock); 956 goto unlock_out; 957 } 958 /* 959 * We must assign batch_head of this stripe within the 960 * batch_lock, otherwise clear_batch_ready of batch head 961 * stripe could clear BATCH_READY bit of this stripe and 962 * this stripe->batch_head doesn't get assigned, which 963 * could confuse clear_batch_ready for this stripe 964 */ 965 sh->batch_head = head->batch_head; 966 967 /* 968 * at this point, head's BATCH_READY could be cleared, but we 969 * can still add the stripe to batch list 970 */ 971 list_add(&sh->batch_list, &head->batch_list); 972 spin_unlock(&head->batch_head->batch_lock); 973 } else { 974 head->batch_head = head; 975 sh->batch_head = head->batch_head; 976 spin_lock(&head->batch_lock); 977 list_add_tail(&sh->batch_list, &head->batch_list); 978 spin_unlock(&head->batch_lock); 979 } 980 981 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 982 if (atomic_dec_return(&conf->preread_active_stripes) 983 < IO_THRESHOLD) 984 md_wakeup_thread(conf->mddev->thread); 985 986 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 987 int seq = sh->bm_seq; 988 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 989 sh->batch_head->bm_seq > seq) 990 seq = sh->batch_head->bm_seq; 991 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 992 sh->batch_head->bm_seq = seq; 993 } 994 995 atomic_inc(&sh->count); 996 unlock_out: 997 unlock_two_stripes(head, sh); 998 out: 999 raid5_release_stripe(head); 1000 } 1001 1002 /* Determine if 'data_offset' or 'new_data_offset' should be used 1003 * in this stripe_head. 1004 */ 1005 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 1006 { 1007 sector_t progress = conf->reshape_progress; 1008 /* Need a memory barrier to make sure we see the value 1009 * of conf->generation, or ->data_offset that was set before 1010 * reshape_progress was updated. 1011 */ 1012 smp_rmb(); 1013 if (progress == MaxSector) 1014 return 0; 1015 if (sh->generation == conf->generation - 1) 1016 return 0; 1017 /* We are in a reshape, and this is a new-generation stripe, 1018 * so use new_data_offset. 1019 */ 1020 return 1; 1021 } 1022 1023 static void dispatch_bio_list(struct bio_list *tmp) 1024 { 1025 struct bio *bio; 1026 1027 while ((bio = bio_list_pop(tmp))) 1028 submit_bio_noacct(bio); 1029 } 1030 1031 static int cmp_stripe(void *priv, const struct list_head *a, 1032 const struct list_head *b) 1033 { 1034 const struct r5pending_data *da = list_entry(a, 1035 struct r5pending_data, sibling); 1036 const struct r5pending_data *db = list_entry(b, 1037 struct r5pending_data, sibling); 1038 if (da->sector > db->sector) 1039 return 1; 1040 if (da->sector < db->sector) 1041 return -1; 1042 return 0; 1043 } 1044 1045 static void dispatch_defer_bios(struct r5conf *conf, int target, 1046 struct bio_list *list) 1047 { 1048 struct r5pending_data *data; 1049 struct list_head *first, *next = NULL; 1050 int cnt = 0; 1051 1052 if (conf->pending_data_cnt == 0) 1053 return; 1054 1055 list_sort(NULL, &conf->pending_list, cmp_stripe); 1056 1057 first = conf->pending_list.next; 1058 1059 /* temporarily move the head */ 1060 if (conf->next_pending_data) 1061 list_move_tail(&conf->pending_list, 1062 &conf->next_pending_data->sibling); 1063 1064 while (!list_empty(&conf->pending_list)) { 1065 data = list_first_entry(&conf->pending_list, 1066 struct r5pending_data, sibling); 1067 if (&data->sibling == first) 1068 first = data->sibling.next; 1069 next = data->sibling.next; 1070 1071 bio_list_merge(list, &data->bios); 1072 list_move(&data->sibling, &conf->free_list); 1073 cnt++; 1074 if (cnt >= target) 1075 break; 1076 } 1077 conf->pending_data_cnt -= cnt; 1078 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 1079 1080 if (next != &conf->pending_list) 1081 conf->next_pending_data = list_entry(next, 1082 struct r5pending_data, sibling); 1083 else 1084 conf->next_pending_data = NULL; 1085 /* list isn't empty */ 1086 if (first != &conf->pending_list) 1087 list_move_tail(&conf->pending_list, first); 1088 } 1089 1090 static void flush_deferred_bios(struct r5conf *conf) 1091 { 1092 struct bio_list tmp = BIO_EMPTY_LIST; 1093 1094 if (conf->pending_data_cnt == 0) 1095 return; 1096 1097 spin_lock(&conf->pending_bios_lock); 1098 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 1099 BUG_ON(conf->pending_data_cnt != 0); 1100 spin_unlock(&conf->pending_bios_lock); 1101 1102 dispatch_bio_list(&tmp); 1103 } 1104 1105 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 1106 struct bio_list *bios) 1107 { 1108 struct bio_list tmp = BIO_EMPTY_LIST; 1109 struct r5pending_data *ent; 1110 1111 spin_lock(&conf->pending_bios_lock); 1112 ent = list_first_entry(&conf->free_list, struct r5pending_data, 1113 sibling); 1114 list_move_tail(&ent->sibling, &conf->pending_list); 1115 ent->sector = sector; 1116 bio_list_init(&ent->bios); 1117 bio_list_merge(&ent->bios, bios); 1118 conf->pending_data_cnt++; 1119 if (conf->pending_data_cnt >= PENDING_IO_MAX) 1120 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 1121 1122 spin_unlock(&conf->pending_bios_lock); 1123 1124 dispatch_bio_list(&tmp); 1125 } 1126 1127 static void 1128 raid5_end_read_request(struct bio *bi); 1129 static void 1130 raid5_end_write_request(struct bio *bi); 1131 1132 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 1133 { 1134 struct r5conf *conf = sh->raid_conf; 1135 int i, disks = sh->disks; 1136 struct stripe_head *head_sh = sh; 1137 struct bio_list pending_bios = BIO_EMPTY_LIST; 1138 struct r5dev *dev; 1139 bool should_defer; 1140 1141 might_sleep(); 1142 1143 if (log_stripe(sh, s) == 0) 1144 return; 1145 1146 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 1147 1148 for (i = disks; i--; ) { 1149 enum req_op op; 1150 blk_opf_t op_flags = 0; 1151 int replace_only = 0; 1152 struct bio *bi, *rbi; 1153 struct md_rdev *rdev, *rrdev = NULL; 1154 1155 sh = head_sh; 1156 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1157 op = REQ_OP_WRITE; 1158 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1159 op_flags = REQ_FUA; 1160 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1161 op = REQ_OP_DISCARD; 1162 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1163 op = REQ_OP_READ; 1164 else if (test_and_clear_bit(R5_WantReplace, 1165 &sh->dev[i].flags)) { 1166 op = REQ_OP_WRITE; 1167 replace_only = 1; 1168 } else 1169 continue; 1170 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1171 op_flags |= REQ_SYNC; 1172 1173 again: 1174 dev = &sh->dev[i]; 1175 bi = &dev->req; 1176 rbi = &dev->rreq; /* For writing to replacement */ 1177 1178 rcu_read_lock(); 1179 rrdev = rcu_dereference(conf->disks[i].replacement); 1180 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 1181 rdev = rcu_dereference(conf->disks[i].rdev); 1182 if (!rdev) { 1183 rdev = rrdev; 1184 rrdev = NULL; 1185 } 1186 if (op_is_write(op)) { 1187 if (replace_only) 1188 rdev = NULL; 1189 if (rdev == rrdev) 1190 /* We raced and saw duplicates */ 1191 rrdev = NULL; 1192 } else { 1193 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1194 rdev = rrdev; 1195 rrdev = NULL; 1196 } 1197 1198 if (rdev && test_bit(Faulty, &rdev->flags)) 1199 rdev = NULL; 1200 if (rdev) 1201 atomic_inc(&rdev->nr_pending); 1202 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1203 rrdev = NULL; 1204 if (rrdev) 1205 atomic_inc(&rrdev->nr_pending); 1206 rcu_read_unlock(); 1207 1208 /* We have already checked bad blocks for reads. Now 1209 * need to check for writes. We never accept write errors 1210 * on the replacement, so we don't to check rrdev. 1211 */ 1212 while (op_is_write(op) && rdev && 1213 test_bit(WriteErrorSeen, &rdev->flags)) { 1214 sector_t first_bad; 1215 int bad_sectors; 1216 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 1217 &first_bad, &bad_sectors); 1218 if (!bad) 1219 break; 1220 1221 if (bad < 0) { 1222 set_bit(BlockedBadBlocks, &rdev->flags); 1223 if (!conf->mddev->external && 1224 conf->mddev->sb_flags) { 1225 /* It is very unlikely, but we might 1226 * still need to write out the 1227 * bad block log - better give it 1228 * a chance*/ 1229 md_check_recovery(conf->mddev); 1230 } 1231 /* 1232 * Because md_wait_for_blocked_rdev 1233 * will dec nr_pending, we must 1234 * increment it first. 1235 */ 1236 atomic_inc(&rdev->nr_pending); 1237 md_wait_for_blocked_rdev(rdev, conf->mddev); 1238 } else { 1239 /* Acknowledged bad block - skip the write */ 1240 rdev_dec_pending(rdev, conf->mddev); 1241 rdev = NULL; 1242 } 1243 } 1244 1245 if (rdev) { 1246 if (s->syncing || s->expanding || s->expanded 1247 || s->replacing) 1248 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1249 1250 set_bit(STRIPE_IO_STARTED, &sh->state); 1251 1252 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags); 1253 bi->bi_end_io = op_is_write(op) 1254 ? raid5_end_write_request 1255 : raid5_end_read_request; 1256 bi->bi_private = sh; 1257 1258 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1259 __func__, (unsigned long long)sh->sector, 1260 bi->bi_opf, i); 1261 atomic_inc(&sh->count); 1262 if (sh != head_sh) 1263 atomic_inc(&head_sh->count); 1264 if (use_new_offset(conf, sh)) 1265 bi->bi_iter.bi_sector = (sh->sector 1266 + rdev->new_data_offset); 1267 else 1268 bi->bi_iter.bi_sector = (sh->sector 1269 + rdev->data_offset); 1270 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1271 bi->bi_opf |= REQ_NOMERGE; 1272 1273 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1274 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1275 1276 if (!op_is_write(op) && 1277 test_bit(R5_InJournal, &sh->dev[i].flags)) 1278 /* 1279 * issuing read for a page in journal, this 1280 * must be preparing for prexor in rmw; read 1281 * the data into orig_page 1282 */ 1283 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1284 else 1285 sh->dev[i].vec.bv_page = sh->dev[i].page; 1286 bi->bi_vcnt = 1; 1287 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1288 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1289 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1290 /* 1291 * If this is discard request, set bi_vcnt 0. We don't 1292 * want to confuse SCSI because SCSI will replace payload 1293 */ 1294 if (op == REQ_OP_DISCARD) 1295 bi->bi_vcnt = 0; 1296 if (rrdev) 1297 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1298 1299 if (conf->mddev->gendisk) 1300 trace_block_bio_remap(bi, 1301 disk_devt(conf->mddev->gendisk), 1302 sh->dev[i].sector); 1303 if (should_defer && op_is_write(op)) 1304 bio_list_add(&pending_bios, bi); 1305 else 1306 submit_bio_noacct(bi); 1307 } 1308 if (rrdev) { 1309 if (s->syncing || s->expanding || s->expanded 1310 || s->replacing) 1311 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1312 1313 set_bit(STRIPE_IO_STARTED, &sh->state); 1314 1315 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags); 1316 BUG_ON(!op_is_write(op)); 1317 rbi->bi_end_io = raid5_end_write_request; 1318 rbi->bi_private = sh; 1319 1320 pr_debug("%s: for %llu schedule op %d on " 1321 "replacement disc %d\n", 1322 __func__, (unsigned long long)sh->sector, 1323 rbi->bi_opf, i); 1324 atomic_inc(&sh->count); 1325 if (sh != head_sh) 1326 atomic_inc(&head_sh->count); 1327 if (use_new_offset(conf, sh)) 1328 rbi->bi_iter.bi_sector = (sh->sector 1329 + rrdev->new_data_offset); 1330 else 1331 rbi->bi_iter.bi_sector = (sh->sector 1332 + rrdev->data_offset); 1333 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1334 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1335 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1336 rbi->bi_vcnt = 1; 1337 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1338 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1339 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1340 /* 1341 * If this is discard request, set bi_vcnt 0. We don't 1342 * want to confuse SCSI because SCSI will replace payload 1343 */ 1344 if (op == REQ_OP_DISCARD) 1345 rbi->bi_vcnt = 0; 1346 if (conf->mddev->gendisk) 1347 trace_block_bio_remap(rbi, 1348 disk_devt(conf->mddev->gendisk), 1349 sh->dev[i].sector); 1350 if (should_defer && op_is_write(op)) 1351 bio_list_add(&pending_bios, rbi); 1352 else 1353 submit_bio_noacct(rbi); 1354 } 1355 if (!rdev && !rrdev) { 1356 if (op_is_write(op)) 1357 set_bit(STRIPE_DEGRADED, &sh->state); 1358 pr_debug("skip op %d on disc %d for sector %llu\n", 1359 bi->bi_opf, i, (unsigned long long)sh->sector); 1360 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1361 set_bit(STRIPE_HANDLE, &sh->state); 1362 } 1363 1364 if (!head_sh->batch_head) 1365 continue; 1366 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1367 batch_list); 1368 if (sh != head_sh) 1369 goto again; 1370 } 1371 1372 if (should_defer && !bio_list_empty(&pending_bios)) 1373 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1374 } 1375 1376 static struct dma_async_tx_descriptor * 1377 async_copy_data(int frombio, struct bio *bio, struct page **page, 1378 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx, 1379 struct stripe_head *sh, int no_skipcopy) 1380 { 1381 struct bio_vec bvl; 1382 struct bvec_iter iter; 1383 struct page *bio_page; 1384 int page_offset; 1385 struct async_submit_ctl submit; 1386 enum async_tx_flags flags = 0; 1387 struct r5conf *conf = sh->raid_conf; 1388 1389 if (bio->bi_iter.bi_sector >= sector) 1390 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1391 else 1392 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1393 1394 if (frombio) 1395 flags |= ASYNC_TX_FENCE; 1396 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1397 1398 bio_for_each_segment(bvl, bio, iter) { 1399 int len = bvl.bv_len; 1400 int clen; 1401 int b_offset = 0; 1402 1403 if (page_offset < 0) { 1404 b_offset = -page_offset; 1405 page_offset += b_offset; 1406 len -= b_offset; 1407 } 1408 1409 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf)) 1410 clen = RAID5_STRIPE_SIZE(conf) - page_offset; 1411 else 1412 clen = len; 1413 1414 if (clen > 0) { 1415 b_offset += bvl.bv_offset; 1416 bio_page = bvl.bv_page; 1417 if (frombio) { 1418 if (conf->skip_copy && 1419 b_offset == 0 && page_offset == 0 && 1420 clen == RAID5_STRIPE_SIZE(conf) && 1421 !no_skipcopy) 1422 *page = bio_page; 1423 else 1424 tx = async_memcpy(*page, bio_page, page_offset + poff, 1425 b_offset, clen, &submit); 1426 } else 1427 tx = async_memcpy(bio_page, *page, b_offset, 1428 page_offset + poff, clen, &submit); 1429 } 1430 /* chain the operations */ 1431 submit.depend_tx = tx; 1432 1433 if (clen < len) /* hit end of page */ 1434 break; 1435 page_offset += len; 1436 } 1437 1438 return tx; 1439 } 1440 1441 static void ops_complete_biofill(void *stripe_head_ref) 1442 { 1443 struct stripe_head *sh = stripe_head_ref; 1444 int i; 1445 struct r5conf *conf = sh->raid_conf; 1446 1447 pr_debug("%s: stripe %llu\n", __func__, 1448 (unsigned long long)sh->sector); 1449 1450 /* clear completed biofills */ 1451 for (i = sh->disks; i--; ) { 1452 struct r5dev *dev = &sh->dev[i]; 1453 1454 /* acknowledge completion of a biofill operation */ 1455 /* and check if we need to reply to a read request, 1456 * new R5_Wantfill requests are held off until 1457 * !STRIPE_BIOFILL_RUN 1458 */ 1459 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1460 struct bio *rbi, *rbi2; 1461 1462 BUG_ON(!dev->read); 1463 rbi = dev->read; 1464 dev->read = NULL; 1465 while (rbi && rbi->bi_iter.bi_sector < 1466 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1467 rbi2 = r5_next_bio(conf, rbi, dev->sector); 1468 bio_endio(rbi); 1469 rbi = rbi2; 1470 } 1471 } 1472 } 1473 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1474 1475 set_bit(STRIPE_HANDLE, &sh->state); 1476 raid5_release_stripe(sh); 1477 } 1478 1479 static void ops_run_biofill(struct stripe_head *sh) 1480 { 1481 struct dma_async_tx_descriptor *tx = NULL; 1482 struct async_submit_ctl submit; 1483 int i; 1484 struct r5conf *conf = sh->raid_conf; 1485 1486 BUG_ON(sh->batch_head); 1487 pr_debug("%s: stripe %llu\n", __func__, 1488 (unsigned long long)sh->sector); 1489 1490 for (i = sh->disks; i--; ) { 1491 struct r5dev *dev = &sh->dev[i]; 1492 if (test_bit(R5_Wantfill, &dev->flags)) { 1493 struct bio *rbi; 1494 spin_lock_irq(&sh->stripe_lock); 1495 dev->read = rbi = dev->toread; 1496 dev->toread = NULL; 1497 spin_unlock_irq(&sh->stripe_lock); 1498 while (rbi && rbi->bi_iter.bi_sector < 1499 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1500 tx = async_copy_data(0, rbi, &dev->page, 1501 dev->offset, 1502 dev->sector, tx, sh, 0); 1503 rbi = r5_next_bio(conf, rbi, dev->sector); 1504 } 1505 } 1506 } 1507 1508 atomic_inc(&sh->count); 1509 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1510 async_trigger_callback(&submit); 1511 } 1512 1513 static void mark_target_uptodate(struct stripe_head *sh, int target) 1514 { 1515 struct r5dev *tgt; 1516 1517 if (target < 0) 1518 return; 1519 1520 tgt = &sh->dev[target]; 1521 set_bit(R5_UPTODATE, &tgt->flags); 1522 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1523 clear_bit(R5_Wantcompute, &tgt->flags); 1524 } 1525 1526 static void ops_complete_compute(void *stripe_head_ref) 1527 { 1528 struct stripe_head *sh = stripe_head_ref; 1529 1530 pr_debug("%s: stripe %llu\n", __func__, 1531 (unsigned long long)sh->sector); 1532 1533 /* mark the computed target(s) as uptodate */ 1534 mark_target_uptodate(sh, sh->ops.target); 1535 mark_target_uptodate(sh, sh->ops.target2); 1536 1537 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1538 if (sh->check_state == check_state_compute_run) 1539 sh->check_state = check_state_compute_result; 1540 set_bit(STRIPE_HANDLE, &sh->state); 1541 raid5_release_stripe(sh); 1542 } 1543 1544 /* return a pointer to the address conversion region of the scribble buffer */ 1545 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1546 { 1547 return percpu->scribble + i * percpu->scribble_obj_size; 1548 } 1549 1550 /* return a pointer to the address conversion region of the scribble buffer */ 1551 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1552 struct raid5_percpu *percpu, int i) 1553 { 1554 return (void *) (to_addr_page(percpu, i) + sh->disks + 2); 1555 } 1556 1557 /* 1558 * Return a pointer to record offset address. 1559 */ 1560 static unsigned int * 1561 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu) 1562 { 1563 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2); 1564 } 1565 1566 static struct dma_async_tx_descriptor * 1567 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1568 { 1569 int disks = sh->disks; 1570 struct page **xor_srcs = to_addr_page(percpu, 0); 1571 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1572 int target = sh->ops.target; 1573 struct r5dev *tgt = &sh->dev[target]; 1574 struct page *xor_dest = tgt->page; 1575 unsigned int off_dest = tgt->offset; 1576 int count = 0; 1577 struct dma_async_tx_descriptor *tx; 1578 struct async_submit_ctl submit; 1579 int i; 1580 1581 BUG_ON(sh->batch_head); 1582 1583 pr_debug("%s: stripe %llu block: %d\n", 1584 __func__, (unsigned long long)sh->sector, target); 1585 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1586 1587 for (i = disks; i--; ) { 1588 if (i != target) { 1589 off_srcs[count] = sh->dev[i].offset; 1590 xor_srcs[count++] = sh->dev[i].page; 1591 } 1592 } 1593 1594 atomic_inc(&sh->count); 1595 1596 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1597 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1598 if (unlikely(count == 1)) 1599 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 1600 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1601 else 1602 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1603 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1604 1605 return tx; 1606 } 1607 1608 /* set_syndrome_sources - populate source buffers for gen_syndrome 1609 * @srcs - (struct page *) array of size sh->disks 1610 * @offs - (unsigned int) array of offset for each page 1611 * @sh - stripe_head to parse 1612 * 1613 * Populates srcs in proper layout order for the stripe and returns the 1614 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1615 * destination buffer is recorded in srcs[count] and the Q destination 1616 * is recorded in srcs[count+1]]. 1617 */ 1618 static int set_syndrome_sources(struct page **srcs, 1619 unsigned int *offs, 1620 struct stripe_head *sh, 1621 int srctype) 1622 { 1623 int disks = sh->disks; 1624 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1625 int d0_idx = raid6_d0(sh); 1626 int count; 1627 int i; 1628 1629 for (i = 0; i < disks; i++) 1630 srcs[i] = NULL; 1631 1632 count = 0; 1633 i = d0_idx; 1634 do { 1635 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1636 struct r5dev *dev = &sh->dev[i]; 1637 1638 if (i == sh->qd_idx || i == sh->pd_idx || 1639 (srctype == SYNDROME_SRC_ALL) || 1640 (srctype == SYNDROME_SRC_WANT_DRAIN && 1641 (test_bit(R5_Wantdrain, &dev->flags) || 1642 test_bit(R5_InJournal, &dev->flags))) || 1643 (srctype == SYNDROME_SRC_WRITTEN && 1644 (dev->written || 1645 test_bit(R5_InJournal, &dev->flags)))) { 1646 if (test_bit(R5_InJournal, &dev->flags)) 1647 srcs[slot] = sh->dev[i].orig_page; 1648 else 1649 srcs[slot] = sh->dev[i].page; 1650 /* 1651 * For R5_InJournal, PAGE_SIZE must be 4KB and will 1652 * not shared page. In that case, dev[i].offset 1653 * is 0. 1654 */ 1655 offs[slot] = sh->dev[i].offset; 1656 } 1657 i = raid6_next_disk(i, disks); 1658 } while (i != d0_idx); 1659 1660 return syndrome_disks; 1661 } 1662 1663 static struct dma_async_tx_descriptor * 1664 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1665 { 1666 int disks = sh->disks; 1667 struct page **blocks = to_addr_page(percpu, 0); 1668 unsigned int *offs = to_addr_offs(sh, percpu); 1669 int target; 1670 int qd_idx = sh->qd_idx; 1671 struct dma_async_tx_descriptor *tx; 1672 struct async_submit_ctl submit; 1673 struct r5dev *tgt; 1674 struct page *dest; 1675 unsigned int dest_off; 1676 int i; 1677 int count; 1678 1679 BUG_ON(sh->batch_head); 1680 if (sh->ops.target < 0) 1681 target = sh->ops.target2; 1682 else if (sh->ops.target2 < 0) 1683 target = sh->ops.target; 1684 else 1685 /* we should only have one valid target */ 1686 BUG(); 1687 BUG_ON(target < 0); 1688 pr_debug("%s: stripe %llu block: %d\n", 1689 __func__, (unsigned long long)sh->sector, target); 1690 1691 tgt = &sh->dev[target]; 1692 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1693 dest = tgt->page; 1694 dest_off = tgt->offset; 1695 1696 atomic_inc(&sh->count); 1697 1698 if (target == qd_idx) { 1699 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1700 blocks[count] = NULL; /* regenerating p is not necessary */ 1701 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1702 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1703 ops_complete_compute, sh, 1704 to_addr_conv(sh, percpu, 0)); 1705 tx = async_gen_syndrome(blocks, offs, count+2, 1706 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1707 } else { 1708 /* Compute any data- or p-drive using XOR */ 1709 count = 0; 1710 for (i = disks; i-- ; ) { 1711 if (i == target || i == qd_idx) 1712 continue; 1713 offs[count] = sh->dev[i].offset; 1714 blocks[count++] = sh->dev[i].page; 1715 } 1716 1717 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1718 NULL, ops_complete_compute, sh, 1719 to_addr_conv(sh, percpu, 0)); 1720 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1721 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1722 } 1723 1724 return tx; 1725 } 1726 1727 static struct dma_async_tx_descriptor * 1728 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1729 { 1730 int i, count, disks = sh->disks; 1731 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1732 int d0_idx = raid6_d0(sh); 1733 int faila = -1, failb = -1; 1734 int target = sh->ops.target; 1735 int target2 = sh->ops.target2; 1736 struct r5dev *tgt = &sh->dev[target]; 1737 struct r5dev *tgt2 = &sh->dev[target2]; 1738 struct dma_async_tx_descriptor *tx; 1739 struct page **blocks = to_addr_page(percpu, 0); 1740 unsigned int *offs = to_addr_offs(sh, percpu); 1741 struct async_submit_ctl submit; 1742 1743 BUG_ON(sh->batch_head); 1744 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1745 __func__, (unsigned long long)sh->sector, target, target2); 1746 BUG_ON(target < 0 || target2 < 0); 1747 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1748 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1749 1750 /* we need to open-code set_syndrome_sources to handle the 1751 * slot number conversion for 'faila' and 'failb' 1752 */ 1753 for (i = 0; i < disks ; i++) { 1754 offs[i] = 0; 1755 blocks[i] = NULL; 1756 } 1757 count = 0; 1758 i = d0_idx; 1759 do { 1760 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1761 1762 offs[slot] = sh->dev[i].offset; 1763 blocks[slot] = sh->dev[i].page; 1764 1765 if (i == target) 1766 faila = slot; 1767 if (i == target2) 1768 failb = slot; 1769 i = raid6_next_disk(i, disks); 1770 } while (i != d0_idx); 1771 1772 BUG_ON(faila == failb); 1773 if (failb < faila) 1774 swap(faila, failb); 1775 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1776 __func__, (unsigned long long)sh->sector, faila, failb); 1777 1778 atomic_inc(&sh->count); 1779 1780 if (failb == syndrome_disks+1) { 1781 /* Q disk is one of the missing disks */ 1782 if (faila == syndrome_disks) { 1783 /* Missing P+Q, just recompute */ 1784 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1785 ops_complete_compute, sh, 1786 to_addr_conv(sh, percpu, 0)); 1787 return async_gen_syndrome(blocks, offs, syndrome_disks+2, 1788 RAID5_STRIPE_SIZE(sh->raid_conf), 1789 &submit); 1790 } else { 1791 struct page *dest; 1792 unsigned int dest_off; 1793 int data_target; 1794 int qd_idx = sh->qd_idx; 1795 1796 /* Missing D+Q: recompute D from P, then recompute Q */ 1797 if (target == qd_idx) 1798 data_target = target2; 1799 else 1800 data_target = target; 1801 1802 count = 0; 1803 for (i = disks; i-- ; ) { 1804 if (i == data_target || i == qd_idx) 1805 continue; 1806 offs[count] = sh->dev[i].offset; 1807 blocks[count++] = sh->dev[i].page; 1808 } 1809 dest = sh->dev[data_target].page; 1810 dest_off = sh->dev[data_target].offset; 1811 init_async_submit(&submit, 1812 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1813 NULL, NULL, NULL, 1814 to_addr_conv(sh, percpu, 0)); 1815 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1816 RAID5_STRIPE_SIZE(sh->raid_conf), 1817 &submit); 1818 1819 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1820 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1821 ops_complete_compute, sh, 1822 to_addr_conv(sh, percpu, 0)); 1823 return async_gen_syndrome(blocks, offs, count+2, 1824 RAID5_STRIPE_SIZE(sh->raid_conf), 1825 &submit); 1826 } 1827 } else { 1828 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1829 ops_complete_compute, sh, 1830 to_addr_conv(sh, percpu, 0)); 1831 if (failb == syndrome_disks) { 1832 /* We're missing D+P. */ 1833 return async_raid6_datap_recov(syndrome_disks+2, 1834 RAID5_STRIPE_SIZE(sh->raid_conf), 1835 faila, 1836 blocks, offs, &submit); 1837 } else { 1838 /* We're missing D+D. */ 1839 return async_raid6_2data_recov(syndrome_disks+2, 1840 RAID5_STRIPE_SIZE(sh->raid_conf), 1841 faila, failb, 1842 blocks, offs, &submit); 1843 } 1844 } 1845 } 1846 1847 static void ops_complete_prexor(void *stripe_head_ref) 1848 { 1849 struct stripe_head *sh = stripe_head_ref; 1850 1851 pr_debug("%s: stripe %llu\n", __func__, 1852 (unsigned long long)sh->sector); 1853 1854 if (r5c_is_writeback(sh->raid_conf->log)) 1855 /* 1856 * raid5-cache write back uses orig_page during prexor. 1857 * After prexor, it is time to free orig_page 1858 */ 1859 r5c_release_extra_page(sh); 1860 } 1861 1862 static struct dma_async_tx_descriptor * 1863 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1864 struct dma_async_tx_descriptor *tx) 1865 { 1866 int disks = sh->disks; 1867 struct page **xor_srcs = to_addr_page(percpu, 0); 1868 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1869 int count = 0, pd_idx = sh->pd_idx, i; 1870 struct async_submit_ctl submit; 1871 1872 /* existing parity data subtracted */ 1873 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 1874 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1875 1876 BUG_ON(sh->batch_head); 1877 pr_debug("%s: stripe %llu\n", __func__, 1878 (unsigned long long)sh->sector); 1879 1880 for (i = disks; i--; ) { 1881 struct r5dev *dev = &sh->dev[i]; 1882 /* Only process blocks that are known to be uptodate */ 1883 if (test_bit(R5_InJournal, &dev->flags)) { 1884 /* 1885 * For this case, PAGE_SIZE must be equal to 4KB and 1886 * page offset is zero. 1887 */ 1888 off_srcs[count] = dev->offset; 1889 xor_srcs[count++] = dev->orig_page; 1890 } else if (test_bit(R5_Wantdrain, &dev->flags)) { 1891 off_srcs[count] = dev->offset; 1892 xor_srcs[count++] = dev->page; 1893 } 1894 } 1895 1896 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1897 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1898 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1899 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1900 1901 return tx; 1902 } 1903 1904 static struct dma_async_tx_descriptor * 1905 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1906 struct dma_async_tx_descriptor *tx) 1907 { 1908 struct page **blocks = to_addr_page(percpu, 0); 1909 unsigned int *offs = to_addr_offs(sh, percpu); 1910 int count; 1911 struct async_submit_ctl submit; 1912 1913 pr_debug("%s: stripe %llu\n", __func__, 1914 (unsigned long long)sh->sector); 1915 1916 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN); 1917 1918 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1919 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1920 tx = async_gen_syndrome(blocks, offs, count+2, 1921 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1922 1923 return tx; 1924 } 1925 1926 static struct dma_async_tx_descriptor * 1927 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1928 { 1929 struct r5conf *conf = sh->raid_conf; 1930 int disks = sh->disks; 1931 int i; 1932 struct stripe_head *head_sh = sh; 1933 1934 pr_debug("%s: stripe %llu\n", __func__, 1935 (unsigned long long)sh->sector); 1936 1937 for (i = disks; i--; ) { 1938 struct r5dev *dev; 1939 struct bio *chosen; 1940 1941 sh = head_sh; 1942 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1943 struct bio *wbi; 1944 1945 again: 1946 dev = &sh->dev[i]; 1947 /* 1948 * clear R5_InJournal, so when rewriting a page in 1949 * journal, it is not skipped by r5l_log_stripe() 1950 */ 1951 clear_bit(R5_InJournal, &dev->flags); 1952 spin_lock_irq(&sh->stripe_lock); 1953 chosen = dev->towrite; 1954 dev->towrite = NULL; 1955 sh->overwrite_disks = 0; 1956 BUG_ON(dev->written); 1957 wbi = dev->written = chosen; 1958 spin_unlock_irq(&sh->stripe_lock); 1959 WARN_ON(dev->page != dev->orig_page); 1960 1961 while (wbi && wbi->bi_iter.bi_sector < 1962 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1963 if (wbi->bi_opf & REQ_FUA) 1964 set_bit(R5_WantFUA, &dev->flags); 1965 if (wbi->bi_opf & REQ_SYNC) 1966 set_bit(R5_SyncIO, &dev->flags); 1967 if (bio_op(wbi) == REQ_OP_DISCARD) 1968 set_bit(R5_Discard, &dev->flags); 1969 else { 1970 tx = async_copy_data(1, wbi, &dev->page, 1971 dev->offset, 1972 dev->sector, tx, sh, 1973 r5c_is_writeback(conf->log)); 1974 if (dev->page != dev->orig_page && 1975 !r5c_is_writeback(conf->log)) { 1976 set_bit(R5_SkipCopy, &dev->flags); 1977 clear_bit(R5_UPTODATE, &dev->flags); 1978 clear_bit(R5_OVERWRITE, &dev->flags); 1979 } 1980 } 1981 wbi = r5_next_bio(conf, wbi, dev->sector); 1982 } 1983 1984 if (head_sh->batch_head) { 1985 sh = list_first_entry(&sh->batch_list, 1986 struct stripe_head, 1987 batch_list); 1988 if (sh == head_sh) 1989 continue; 1990 goto again; 1991 } 1992 } 1993 } 1994 1995 return tx; 1996 } 1997 1998 static void ops_complete_reconstruct(void *stripe_head_ref) 1999 { 2000 struct stripe_head *sh = stripe_head_ref; 2001 int disks = sh->disks; 2002 int pd_idx = sh->pd_idx; 2003 int qd_idx = sh->qd_idx; 2004 int i; 2005 bool fua = false, sync = false, discard = false; 2006 2007 pr_debug("%s: stripe %llu\n", __func__, 2008 (unsigned long long)sh->sector); 2009 2010 for (i = disks; i--; ) { 2011 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 2012 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 2013 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 2014 } 2015 2016 for (i = disks; i--; ) { 2017 struct r5dev *dev = &sh->dev[i]; 2018 2019 if (dev->written || i == pd_idx || i == qd_idx) { 2020 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 2021 set_bit(R5_UPTODATE, &dev->flags); 2022 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 2023 set_bit(R5_Expanded, &dev->flags); 2024 } 2025 if (fua) 2026 set_bit(R5_WantFUA, &dev->flags); 2027 if (sync) 2028 set_bit(R5_SyncIO, &dev->flags); 2029 } 2030 } 2031 2032 if (sh->reconstruct_state == reconstruct_state_drain_run) 2033 sh->reconstruct_state = reconstruct_state_drain_result; 2034 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 2035 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 2036 else { 2037 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 2038 sh->reconstruct_state = reconstruct_state_result; 2039 } 2040 2041 set_bit(STRIPE_HANDLE, &sh->state); 2042 raid5_release_stripe(sh); 2043 } 2044 2045 static void 2046 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 2047 struct dma_async_tx_descriptor *tx) 2048 { 2049 int disks = sh->disks; 2050 struct page **xor_srcs; 2051 unsigned int *off_srcs; 2052 struct async_submit_ctl submit; 2053 int count, pd_idx = sh->pd_idx, i; 2054 struct page *xor_dest; 2055 unsigned int off_dest; 2056 int prexor = 0; 2057 unsigned long flags; 2058 int j = 0; 2059 struct stripe_head *head_sh = sh; 2060 int last_stripe; 2061 2062 pr_debug("%s: stripe %llu\n", __func__, 2063 (unsigned long long)sh->sector); 2064 2065 for (i = 0; i < sh->disks; i++) { 2066 if (pd_idx == i) 2067 continue; 2068 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2069 break; 2070 } 2071 if (i >= sh->disks) { 2072 atomic_inc(&sh->count); 2073 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 2074 ops_complete_reconstruct(sh); 2075 return; 2076 } 2077 again: 2078 count = 0; 2079 xor_srcs = to_addr_page(percpu, j); 2080 off_srcs = to_addr_offs(sh, percpu); 2081 /* check if prexor is active which means only process blocks 2082 * that are part of a read-modify-write (written) 2083 */ 2084 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2085 prexor = 1; 2086 off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 2087 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 2088 for (i = disks; i--; ) { 2089 struct r5dev *dev = &sh->dev[i]; 2090 if (head_sh->dev[i].written || 2091 test_bit(R5_InJournal, &head_sh->dev[i].flags)) { 2092 off_srcs[count] = dev->offset; 2093 xor_srcs[count++] = dev->page; 2094 } 2095 } 2096 } else { 2097 xor_dest = sh->dev[pd_idx].page; 2098 off_dest = sh->dev[pd_idx].offset; 2099 for (i = disks; i--; ) { 2100 struct r5dev *dev = &sh->dev[i]; 2101 if (i != pd_idx) { 2102 off_srcs[count] = dev->offset; 2103 xor_srcs[count++] = dev->page; 2104 } 2105 } 2106 } 2107 2108 /* 1/ if we prexor'd then the dest is reused as a source 2109 * 2/ if we did not prexor then we are redoing the parity 2110 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 2111 * for the synchronous xor case 2112 */ 2113 last_stripe = !head_sh->batch_head || 2114 list_first_entry(&sh->batch_list, 2115 struct stripe_head, batch_list) == head_sh; 2116 if (last_stripe) { 2117 flags = ASYNC_TX_ACK | 2118 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 2119 2120 atomic_inc(&head_sh->count); 2121 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 2122 to_addr_conv(sh, percpu, j)); 2123 } else { 2124 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 2125 init_async_submit(&submit, flags, tx, NULL, NULL, 2126 to_addr_conv(sh, percpu, j)); 2127 } 2128 2129 if (unlikely(count == 1)) 2130 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 2131 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2132 else 2133 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2134 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2135 if (!last_stripe) { 2136 j++; 2137 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2138 batch_list); 2139 goto again; 2140 } 2141 } 2142 2143 static void 2144 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 2145 struct dma_async_tx_descriptor *tx) 2146 { 2147 struct async_submit_ctl submit; 2148 struct page **blocks; 2149 unsigned int *offs; 2150 int count, i, j = 0; 2151 struct stripe_head *head_sh = sh; 2152 int last_stripe; 2153 int synflags; 2154 unsigned long txflags; 2155 2156 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 2157 2158 for (i = 0; i < sh->disks; i++) { 2159 if (sh->pd_idx == i || sh->qd_idx == i) 2160 continue; 2161 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2162 break; 2163 } 2164 if (i >= sh->disks) { 2165 atomic_inc(&sh->count); 2166 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2167 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2168 ops_complete_reconstruct(sh); 2169 return; 2170 } 2171 2172 again: 2173 blocks = to_addr_page(percpu, j); 2174 offs = to_addr_offs(sh, percpu); 2175 2176 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2177 synflags = SYNDROME_SRC_WRITTEN; 2178 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 2179 } else { 2180 synflags = SYNDROME_SRC_ALL; 2181 txflags = ASYNC_TX_ACK; 2182 } 2183 2184 count = set_syndrome_sources(blocks, offs, sh, synflags); 2185 last_stripe = !head_sh->batch_head || 2186 list_first_entry(&sh->batch_list, 2187 struct stripe_head, batch_list) == head_sh; 2188 2189 if (last_stripe) { 2190 atomic_inc(&head_sh->count); 2191 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 2192 head_sh, to_addr_conv(sh, percpu, j)); 2193 } else 2194 init_async_submit(&submit, 0, tx, NULL, NULL, 2195 to_addr_conv(sh, percpu, j)); 2196 tx = async_gen_syndrome(blocks, offs, count+2, 2197 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2198 if (!last_stripe) { 2199 j++; 2200 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2201 batch_list); 2202 goto again; 2203 } 2204 } 2205 2206 static void ops_complete_check(void *stripe_head_ref) 2207 { 2208 struct stripe_head *sh = stripe_head_ref; 2209 2210 pr_debug("%s: stripe %llu\n", __func__, 2211 (unsigned long long)sh->sector); 2212 2213 sh->check_state = check_state_check_result; 2214 set_bit(STRIPE_HANDLE, &sh->state); 2215 raid5_release_stripe(sh); 2216 } 2217 2218 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 2219 { 2220 int disks = sh->disks; 2221 int pd_idx = sh->pd_idx; 2222 int qd_idx = sh->qd_idx; 2223 struct page *xor_dest; 2224 unsigned int off_dest; 2225 struct page **xor_srcs = to_addr_page(percpu, 0); 2226 unsigned int *off_srcs = to_addr_offs(sh, percpu); 2227 struct dma_async_tx_descriptor *tx; 2228 struct async_submit_ctl submit; 2229 int count; 2230 int i; 2231 2232 pr_debug("%s: stripe %llu\n", __func__, 2233 (unsigned long long)sh->sector); 2234 2235 BUG_ON(sh->batch_head); 2236 count = 0; 2237 xor_dest = sh->dev[pd_idx].page; 2238 off_dest = sh->dev[pd_idx].offset; 2239 off_srcs[count] = off_dest; 2240 xor_srcs[count++] = xor_dest; 2241 for (i = disks; i--; ) { 2242 if (i == pd_idx || i == qd_idx) 2243 continue; 2244 off_srcs[count] = sh->dev[i].offset; 2245 xor_srcs[count++] = sh->dev[i].page; 2246 } 2247 2248 init_async_submit(&submit, 0, NULL, NULL, NULL, 2249 to_addr_conv(sh, percpu, 0)); 2250 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2251 RAID5_STRIPE_SIZE(sh->raid_conf), 2252 &sh->ops.zero_sum_result, &submit); 2253 2254 atomic_inc(&sh->count); 2255 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2256 tx = async_trigger_callback(&submit); 2257 } 2258 2259 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2260 { 2261 struct page **srcs = to_addr_page(percpu, 0); 2262 unsigned int *offs = to_addr_offs(sh, percpu); 2263 struct async_submit_ctl submit; 2264 int count; 2265 2266 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2267 (unsigned long long)sh->sector, checkp); 2268 2269 BUG_ON(sh->batch_head); 2270 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL); 2271 if (!checkp) 2272 srcs[count] = NULL; 2273 2274 atomic_inc(&sh->count); 2275 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2276 sh, to_addr_conv(sh, percpu, 0)); 2277 async_syndrome_val(srcs, offs, count+2, 2278 RAID5_STRIPE_SIZE(sh->raid_conf), 2279 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit); 2280 } 2281 2282 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2283 { 2284 int overlap_clear = 0, i, disks = sh->disks; 2285 struct dma_async_tx_descriptor *tx = NULL; 2286 struct r5conf *conf = sh->raid_conf; 2287 int level = conf->level; 2288 struct raid5_percpu *percpu; 2289 2290 local_lock(&conf->percpu->lock); 2291 percpu = this_cpu_ptr(conf->percpu); 2292 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2293 ops_run_biofill(sh); 2294 overlap_clear++; 2295 } 2296 2297 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2298 if (level < 6) 2299 tx = ops_run_compute5(sh, percpu); 2300 else { 2301 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2302 tx = ops_run_compute6_1(sh, percpu); 2303 else 2304 tx = ops_run_compute6_2(sh, percpu); 2305 } 2306 /* terminate the chain if reconstruct is not set to be run */ 2307 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2308 async_tx_ack(tx); 2309 } 2310 2311 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2312 if (level < 6) 2313 tx = ops_run_prexor5(sh, percpu, tx); 2314 else 2315 tx = ops_run_prexor6(sh, percpu, tx); 2316 } 2317 2318 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2319 tx = ops_run_partial_parity(sh, percpu, tx); 2320 2321 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2322 tx = ops_run_biodrain(sh, tx); 2323 overlap_clear++; 2324 } 2325 2326 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2327 if (level < 6) 2328 ops_run_reconstruct5(sh, percpu, tx); 2329 else 2330 ops_run_reconstruct6(sh, percpu, tx); 2331 } 2332 2333 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2334 if (sh->check_state == check_state_run) 2335 ops_run_check_p(sh, percpu); 2336 else if (sh->check_state == check_state_run_q) 2337 ops_run_check_pq(sh, percpu, 0); 2338 else if (sh->check_state == check_state_run_pq) 2339 ops_run_check_pq(sh, percpu, 1); 2340 else 2341 BUG(); 2342 } 2343 2344 if (overlap_clear && !sh->batch_head) { 2345 for (i = disks; i--; ) { 2346 struct r5dev *dev = &sh->dev[i]; 2347 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2348 wake_up(&sh->raid_conf->wait_for_overlap); 2349 } 2350 } 2351 local_unlock(&conf->percpu->lock); 2352 } 2353 2354 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2355 { 2356 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2357 kfree(sh->pages); 2358 #endif 2359 if (sh->ppl_page) 2360 __free_page(sh->ppl_page); 2361 kmem_cache_free(sc, sh); 2362 } 2363 2364 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2365 int disks, struct r5conf *conf) 2366 { 2367 struct stripe_head *sh; 2368 2369 sh = kmem_cache_zalloc(sc, gfp); 2370 if (sh) { 2371 spin_lock_init(&sh->stripe_lock); 2372 spin_lock_init(&sh->batch_lock); 2373 INIT_LIST_HEAD(&sh->batch_list); 2374 INIT_LIST_HEAD(&sh->lru); 2375 INIT_LIST_HEAD(&sh->r5c); 2376 INIT_LIST_HEAD(&sh->log_list); 2377 atomic_set(&sh->count, 1); 2378 sh->raid_conf = conf; 2379 sh->log_start = MaxSector; 2380 2381 if (raid5_has_ppl(conf)) { 2382 sh->ppl_page = alloc_page(gfp); 2383 if (!sh->ppl_page) { 2384 free_stripe(sc, sh); 2385 return NULL; 2386 } 2387 } 2388 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2389 if (init_stripe_shared_pages(sh, conf, disks)) { 2390 free_stripe(sc, sh); 2391 return NULL; 2392 } 2393 #endif 2394 } 2395 return sh; 2396 } 2397 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2398 { 2399 struct stripe_head *sh; 2400 2401 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2402 if (!sh) 2403 return 0; 2404 2405 if (grow_buffers(sh, gfp)) { 2406 shrink_buffers(sh); 2407 free_stripe(conf->slab_cache, sh); 2408 return 0; 2409 } 2410 sh->hash_lock_index = 2411 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2412 /* we just created an active stripe so... */ 2413 atomic_inc(&conf->active_stripes); 2414 2415 raid5_release_stripe(sh); 2416 conf->max_nr_stripes++; 2417 return 1; 2418 } 2419 2420 static int grow_stripes(struct r5conf *conf, int num) 2421 { 2422 struct kmem_cache *sc; 2423 size_t namelen = sizeof(conf->cache_name[0]); 2424 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2425 2426 if (conf->mddev->gendisk) 2427 snprintf(conf->cache_name[0], namelen, 2428 "raid%d-%s", conf->level, mdname(conf->mddev)); 2429 else 2430 snprintf(conf->cache_name[0], namelen, 2431 "raid%d-%p", conf->level, conf->mddev); 2432 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2433 2434 conf->active_name = 0; 2435 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2436 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2437 0, 0, NULL); 2438 if (!sc) 2439 return 1; 2440 conf->slab_cache = sc; 2441 conf->pool_size = devs; 2442 while (num--) 2443 if (!grow_one_stripe(conf, GFP_KERNEL)) 2444 return 1; 2445 2446 return 0; 2447 } 2448 2449 /** 2450 * scribble_alloc - allocate percpu scribble buffer for required size 2451 * of the scribble region 2452 * @percpu: from for_each_present_cpu() of the caller 2453 * @num: total number of disks in the array 2454 * @cnt: scribble objs count for required size of the scribble region 2455 * 2456 * The scribble buffer size must be enough to contain: 2457 * 1/ a struct page pointer for each device in the array +2 2458 * 2/ room to convert each entry in (1) to its corresponding dma 2459 * (dma_map_page()) or page (page_address()) address. 2460 * 2461 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2462 * calculate over all devices (not just the data blocks), using zeros in place 2463 * of the P and Q blocks. 2464 */ 2465 static int scribble_alloc(struct raid5_percpu *percpu, 2466 int num, int cnt) 2467 { 2468 size_t obj_size = 2469 sizeof(struct page *) * (num + 2) + 2470 sizeof(addr_conv_t) * (num + 2) + 2471 sizeof(unsigned int) * (num + 2); 2472 void *scribble; 2473 2474 /* 2475 * If here is in raid array suspend context, it is in memalloc noio 2476 * context as well, there is no potential recursive memory reclaim 2477 * I/Os with the GFP_KERNEL flag. 2478 */ 2479 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL); 2480 if (!scribble) 2481 return -ENOMEM; 2482 2483 kvfree(percpu->scribble); 2484 2485 percpu->scribble = scribble; 2486 percpu->scribble_obj_size = obj_size; 2487 return 0; 2488 } 2489 2490 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2491 { 2492 unsigned long cpu; 2493 int err = 0; 2494 2495 /* 2496 * Never shrink. And mddev_suspend() could deadlock if this is called 2497 * from raid5d. In that case, scribble_disks and scribble_sectors 2498 * should equal to new_disks and new_sectors 2499 */ 2500 if (conf->scribble_disks >= new_disks && 2501 conf->scribble_sectors >= new_sectors) 2502 return 0; 2503 mddev_suspend(conf->mddev); 2504 cpus_read_lock(); 2505 2506 for_each_present_cpu(cpu) { 2507 struct raid5_percpu *percpu; 2508 2509 percpu = per_cpu_ptr(conf->percpu, cpu); 2510 err = scribble_alloc(percpu, new_disks, 2511 new_sectors / RAID5_STRIPE_SECTORS(conf)); 2512 if (err) 2513 break; 2514 } 2515 2516 cpus_read_unlock(); 2517 mddev_resume(conf->mddev); 2518 if (!err) { 2519 conf->scribble_disks = new_disks; 2520 conf->scribble_sectors = new_sectors; 2521 } 2522 return err; 2523 } 2524 2525 static int resize_stripes(struct r5conf *conf, int newsize) 2526 { 2527 /* Make all the stripes able to hold 'newsize' devices. 2528 * New slots in each stripe get 'page' set to a new page. 2529 * 2530 * This happens in stages: 2531 * 1/ create a new kmem_cache and allocate the required number of 2532 * stripe_heads. 2533 * 2/ gather all the old stripe_heads and transfer the pages across 2534 * to the new stripe_heads. This will have the side effect of 2535 * freezing the array as once all stripe_heads have been collected, 2536 * no IO will be possible. Old stripe heads are freed once their 2537 * pages have been transferred over, and the old kmem_cache is 2538 * freed when all stripes are done. 2539 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2540 * we simple return a failure status - no need to clean anything up. 2541 * 4/ allocate new pages for the new slots in the new stripe_heads. 2542 * If this fails, we don't bother trying the shrink the 2543 * stripe_heads down again, we just leave them as they are. 2544 * As each stripe_head is processed the new one is released into 2545 * active service. 2546 * 2547 * Once step2 is started, we cannot afford to wait for a write, 2548 * so we use GFP_NOIO allocations. 2549 */ 2550 struct stripe_head *osh, *nsh; 2551 LIST_HEAD(newstripes); 2552 struct disk_info *ndisks; 2553 int err = 0; 2554 struct kmem_cache *sc; 2555 int i; 2556 int hash, cnt; 2557 2558 md_allow_write(conf->mddev); 2559 2560 /* Step 1 */ 2561 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2562 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2563 0, 0, NULL); 2564 if (!sc) 2565 return -ENOMEM; 2566 2567 /* Need to ensure auto-resizing doesn't interfere */ 2568 mutex_lock(&conf->cache_size_mutex); 2569 2570 for (i = conf->max_nr_stripes; i; i--) { 2571 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2572 if (!nsh) 2573 break; 2574 2575 list_add(&nsh->lru, &newstripes); 2576 } 2577 if (i) { 2578 /* didn't get enough, give up */ 2579 while (!list_empty(&newstripes)) { 2580 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2581 list_del(&nsh->lru); 2582 free_stripe(sc, nsh); 2583 } 2584 kmem_cache_destroy(sc); 2585 mutex_unlock(&conf->cache_size_mutex); 2586 return -ENOMEM; 2587 } 2588 /* Step 2 - Must use GFP_NOIO now. 2589 * OK, we have enough stripes, start collecting inactive 2590 * stripes and copying them over 2591 */ 2592 hash = 0; 2593 cnt = 0; 2594 list_for_each_entry(nsh, &newstripes, lru) { 2595 lock_device_hash_lock(conf, hash); 2596 wait_event_cmd(conf->wait_for_stripe, 2597 !list_empty(conf->inactive_list + hash), 2598 unlock_device_hash_lock(conf, hash), 2599 lock_device_hash_lock(conf, hash)); 2600 osh = get_free_stripe(conf, hash); 2601 unlock_device_hash_lock(conf, hash); 2602 2603 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2604 for (i = 0; i < osh->nr_pages; i++) { 2605 nsh->pages[i] = osh->pages[i]; 2606 osh->pages[i] = NULL; 2607 } 2608 #endif 2609 for(i=0; i<conf->pool_size; i++) { 2610 nsh->dev[i].page = osh->dev[i].page; 2611 nsh->dev[i].orig_page = osh->dev[i].page; 2612 nsh->dev[i].offset = osh->dev[i].offset; 2613 } 2614 nsh->hash_lock_index = hash; 2615 free_stripe(conf->slab_cache, osh); 2616 cnt++; 2617 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2618 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2619 hash++; 2620 cnt = 0; 2621 } 2622 } 2623 kmem_cache_destroy(conf->slab_cache); 2624 2625 /* Step 3. 2626 * At this point, we are holding all the stripes so the array 2627 * is completely stalled, so now is a good time to resize 2628 * conf->disks and the scribble region 2629 */ 2630 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2631 if (ndisks) { 2632 for (i = 0; i < conf->pool_size; i++) 2633 ndisks[i] = conf->disks[i]; 2634 2635 for (i = conf->pool_size; i < newsize; i++) { 2636 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2637 if (!ndisks[i].extra_page) 2638 err = -ENOMEM; 2639 } 2640 2641 if (err) { 2642 for (i = conf->pool_size; i < newsize; i++) 2643 if (ndisks[i].extra_page) 2644 put_page(ndisks[i].extra_page); 2645 kfree(ndisks); 2646 } else { 2647 kfree(conf->disks); 2648 conf->disks = ndisks; 2649 } 2650 } else 2651 err = -ENOMEM; 2652 2653 conf->slab_cache = sc; 2654 conf->active_name = 1-conf->active_name; 2655 2656 /* Step 4, return new stripes to service */ 2657 while(!list_empty(&newstripes)) { 2658 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2659 list_del_init(&nsh->lru); 2660 2661 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2662 for (i = 0; i < nsh->nr_pages; i++) { 2663 if (nsh->pages[i]) 2664 continue; 2665 nsh->pages[i] = alloc_page(GFP_NOIO); 2666 if (!nsh->pages[i]) 2667 err = -ENOMEM; 2668 } 2669 2670 for (i = conf->raid_disks; i < newsize; i++) { 2671 if (nsh->dev[i].page) 2672 continue; 2673 nsh->dev[i].page = raid5_get_dev_page(nsh, i); 2674 nsh->dev[i].orig_page = nsh->dev[i].page; 2675 nsh->dev[i].offset = raid5_get_page_offset(nsh, i); 2676 } 2677 #else 2678 for (i=conf->raid_disks; i < newsize; i++) 2679 if (nsh->dev[i].page == NULL) { 2680 struct page *p = alloc_page(GFP_NOIO); 2681 nsh->dev[i].page = p; 2682 nsh->dev[i].orig_page = p; 2683 nsh->dev[i].offset = 0; 2684 if (!p) 2685 err = -ENOMEM; 2686 } 2687 #endif 2688 raid5_release_stripe(nsh); 2689 } 2690 /* critical section pass, GFP_NOIO no longer needed */ 2691 2692 if (!err) 2693 conf->pool_size = newsize; 2694 mutex_unlock(&conf->cache_size_mutex); 2695 2696 return err; 2697 } 2698 2699 static int drop_one_stripe(struct r5conf *conf) 2700 { 2701 struct stripe_head *sh; 2702 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2703 2704 spin_lock_irq(conf->hash_locks + hash); 2705 sh = get_free_stripe(conf, hash); 2706 spin_unlock_irq(conf->hash_locks + hash); 2707 if (!sh) 2708 return 0; 2709 BUG_ON(atomic_read(&sh->count)); 2710 shrink_buffers(sh); 2711 free_stripe(conf->slab_cache, sh); 2712 atomic_dec(&conf->active_stripes); 2713 conf->max_nr_stripes--; 2714 return 1; 2715 } 2716 2717 static void shrink_stripes(struct r5conf *conf) 2718 { 2719 while (conf->max_nr_stripes && 2720 drop_one_stripe(conf)) 2721 ; 2722 2723 kmem_cache_destroy(conf->slab_cache); 2724 conf->slab_cache = NULL; 2725 } 2726 2727 /* 2728 * This helper wraps rcu_dereference_protected() and can be used when 2729 * it is known that the nr_pending of the rdev is elevated. 2730 */ 2731 static struct md_rdev *rdev_pend_deref(struct md_rdev __rcu *rdev) 2732 { 2733 return rcu_dereference_protected(rdev, 2734 atomic_read(&rcu_access_pointer(rdev)->nr_pending)); 2735 } 2736 2737 /* 2738 * This helper wraps rcu_dereference_protected() and should be used 2739 * when it is known that the mddev_lock() is held. This is safe 2740 * seeing raid5_remove_disk() has the same lock held. 2741 */ 2742 static struct md_rdev *rdev_mdlock_deref(struct mddev *mddev, 2743 struct md_rdev __rcu *rdev) 2744 { 2745 return rcu_dereference_protected(rdev, 2746 lockdep_is_held(&mddev->reconfig_mutex)); 2747 } 2748 2749 static void raid5_end_read_request(struct bio * bi) 2750 { 2751 struct stripe_head *sh = bi->bi_private; 2752 struct r5conf *conf = sh->raid_conf; 2753 int disks = sh->disks, i; 2754 struct md_rdev *rdev = NULL; 2755 sector_t s; 2756 2757 for (i=0 ; i<disks; i++) 2758 if (bi == &sh->dev[i].req) 2759 break; 2760 2761 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2762 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2763 bi->bi_status); 2764 if (i == disks) { 2765 BUG(); 2766 return; 2767 } 2768 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2769 /* If replacement finished while this request was outstanding, 2770 * 'replacement' might be NULL already. 2771 * In that case it moved down to 'rdev'. 2772 * rdev is not removed until all requests are finished. 2773 */ 2774 rdev = rdev_pend_deref(conf->disks[i].replacement); 2775 if (!rdev) 2776 rdev = rdev_pend_deref(conf->disks[i].rdev); 2777 2778 if (use_new_offset(conf, sh)) 2779 s = sh->sector + rdev->new_data_offset; 2780 else 2781 s = sh->sector + rdev->data_offset; 2782 if (!bi->bi_status) { 2783 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2784 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2785 /* Note that this cannot happen on a 2786 * replacement device. We just fail those on 2787 * any error 2788 */ 2789 pr_info_ratelimited( 2790 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n", 2791 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf), 2792 (unsigned long long)s, 2793 rdev->bdev); 2794 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors); 2795 clear_bit(R5_ReadError, &sh->dev[i].flags); 2796 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2797 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2798 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2799 2800 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2801 /* 2802 * end read for a page in journal, this 2803 * must be preparing for prexor in rmw 2804 */ 2805 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2806 2807 if (atomic_read(&rdev->read_errors)) 2808 atomic_set(&rdev->read_errors, 0); 2809 } else { 2810 int retry = 0; 2811 int set_bad = 0; 2812 2813 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2814 if (!(bi->bi_status == BLK_STS_PROTECTION)) 2815 atomic_inc(&rdev->read_errors); 2816 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2817 pr_warn_ratelimited( 2818 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n", 2819 mdname(conf->mddev), 2820 (unsigned long long)s, 2821 rdev->bdev); 2822 else if (conf->mddev->degraded >= conf->max_degraded) { 2823 set_bad = 1; 2824 pr_warn_ratelimited( 2825 "md/raid:%s: read error not correctable (sector %llu on %pg).\n", 2826 mdname(conf->mddev), 2827 (unsigned long long)s, 2828 rdev->bdev); 2829 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2830 /* Oh, no!!! */ 2831 set_bad = 1; 2832 pr_warn_ratelimited( 2833 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n", 2834 mdname(conf->mddev), 2835 (unsigned long long)s, 2836 rdev->bdev); 2837 } else if (atomic_read(&rdev->read_errors) 2838 > conf->max_nr_stripes) { 2839 if (!test_bit(Faulty, &rdev->flags)) { 2840 pr_warn("md/raid:%s: %d read_errors > %d stripes\n", 2841 mdname(conf->mddev), 2842 atomic_read(&rdev->read_errors), 2843 conf->max_nr_stripes); 2844 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n", 2845 mdname(conf->mddev), rdev->bdev); 2846 } 2847 } else 2848 retry = 1; 2849 if (set_bad && test_bit(In_sync, &rdev->flags) 2850 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2851 retry = 1; 2852 if (retry) 2853 if (sh->qd_idx >= 0 && sh->pd_idx == i) 2854 set_bit(R5_ReadError, &sh->dev[i].flags); 2855 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2856 set_bit(R5_ReadError, &sh->dev[i].flags); 2857 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2858 } else 2859 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2860 else { 2861 clear_bit(R5_ReadError, &sh->dev[i].flags); 2862 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2863 if (!(set_bad 2864 && test_bit(In_sync, &rdev->flags) 2865 && rdev_set_badblocks( 2866 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0))) 2867 md_error(conf->mddev, rdev); 2868 } 2869 } 2870 rdev_dec_pending(rdev, conf->mddev); 2871 bio_uninit(bi); 2872 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2873 set_bit(STRIPE_HANDLE, &sh->state); 2874 raid5_release_stripe(sh); 2875 } 2876 2877 static void raid5_end_write_request(struct bio *bi) 2878 { 2879 struct stripe_head *sh = bi->bi_private; 2880 struct r5conf *conf = sh->raid_conf; 2881 int disks = sh->disks, i; 2882 struct md_rdev *rdev; 2883 sector_t first_bad; 2884 int bad_sectors; 2885 int replacement = 0; 2886 2887 for (i = 0 ; i < disks; i++) { 2888 if (bi == &sh->dev[i].req) { 2889 rdev = rdev_pend_deref(conf->disks[i].rdev); 2890 break; 2891 } 2892 if (bi == &sh->dev[i].rreq) { 2893 rdev = rdev_pend_deref(conf->disks[i].replacement); 2894 if (rdev) 2895 replacement = 1; 2896 else 2897 /* rdev was removed and 'replacement' 2898 * replaced it. rdev is not removed 2899 * until all requests are finished. 2900 */ 2901 rdev = rdev_pend_deref(conf->disks[i].rdev); 2902 break; 2903 } 2904 } 2905 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2906 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2907 bi->bi_status); 2908 if (i == disks) { 2909 BUG(); 2910 return; 2911 } 2912 2913 if (replacement) { 2914 if (bi->bi_status) 2915 md_error(conf->mddev, rdev); 2916 else if (is_badblock(rdev, sh->sector, 2917 RAID5_STRIPE_SECTORS(conf), 2918 &first_bad, &bad_sectors)) 2919 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2920 } else { 2921 if (bi->bi_status) { 2922 set_bit(STRIPE_DEGRADED, &sh->state); 2923 set_bit(WriteErrorSeen, &rdev->flags); 2924 set_bit(R5_WriteError, &sh->dev[i].flags); 2925 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2926 set_bit(MD_RECOVERY_NEEDED, 2927 &rdev->mddev->recovery); 2928 } else if (is_badblock(rdev, sh->sector, 2929 RAID5_STRIPE_SECTORS(conf), 2930 &first_bad, &bad_sectors)) { 2931 set_bit(R5_MadeGood, &sh->dev[i].flags); 2932 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2933 /* That was a successful write so make 2934 * sure it looks like we already did 2935 * a re-write. 2936 */ 2937 set_bit(R5_ReWrite, &sh->dev[i].flags); 2938 } 2939 } 2940 rdev_dec_pending(rdev, conf->mddev); 2941 2942 if (sh->batch_head && bi->bi_status && !replacement) 2943 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2944 2945 bio_uninit(bi); 2946 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2947 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2948 set_bit(STRIPE_HANDLE, &sh->state); 2949 2950 if (sh->batch_head && sh != sh->batch_head) 2951 raid5_release_stripe(sh->batch_head); 2952 raid5_release_stripe(sh); 2953 } 2954 2955 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2956 { 2957 struct r5conf *conf = mddev->private; 2958 unsigned long flags; 2959 pr_debug("raid456: error called\n"); 2960 2961 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n", 2962 mdname(mddev), rdev->bdev); 2963 2964 spin_lock_irqsave(&conf->device_lock, flags); 2965 set_bit(Faulty, &rdev->flags); 2966 clear_bit(In_sync, &rdev->flags); 2967 mddev->degraded = raid5_calc_degraded(conf); 2968 2969 if (has_failed(conf)) { 2970 set_bit(MD_BROKEN, &conf->mddev->flags); 2971 conf->recovery_disabled = mddev->recovery_disabled; 2972 2973 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n", 2974 mdname(mddev), mddev->degraded, conf->raid_disks); 2975 } else { 2976 pr_crit("md/raid:%s: Operation continuing on %d devices.\n", 2977 mdname(mddev), conf->raid_disks - mddev->degraded); 2978 } 2979 2980 spin_unlock_irqrestore(&conf->device_lock, flags); 2981 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2982 2983 set_bit(Blocked, &rdev->flags); 2984 set_mask_bits(&mddev->sb_flags, 0, 2985 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2986 r5c_update_on_rdev_error(mddev, rdev); 2987 } 2988 2989 /* 2990 * Input: a 'big' sector number, 2991 * Output: index of the data and parity disk, and the sector # in them. 2992 */ 2993 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2994 int previous, int *dd_idx, 2995 struct stripe_head *sh) 2996 { 2997 sector_t stripe, stripe2; 2998 sector_t chunk_number; 2999 unsigned int chunk_offset; 3000 int pd_idx, qd_idx; 3001 int ddf_layout = 0; 3002 sector_t new_sector; 3003 int algorithm = previous ? conf->prev_algo 3004 : conf->algorithm; 3005 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3006 : conf->chunk_sectors; 3007 int raid_disks = previous ? conf->previous_raid_disks 3008 : conf->raid_disks; 3009 int data_disks = raid_disks - conf->max_degraded; 3010 3011 /* First compute the information on this sector */ 3012 3013 /* 3014 * Compute the chunk number and the sector offset inside the chunk 3015 */ 3016 chunk_offset = sector_div(r_sector, sectors_per_chunk); 3017 chunk_number = r_sector; 3018 3019 /* 3020 * Compute the stripe number 3021 */ 3022 stripe = chunk_number; 3023 *dd_idx = sector_div(stripe, data_disks); 3024 stripe2 = stripe; 3025 /* 3026 * Select the parity disk based on the user selected algorithm. 3027 */ 3028 pd_idx = qd_idx = -1; 3029 switch(conf->level) { 3030 case 4: 3031 pd_idx = data_disks; 3032 break; 3033 case 5: 3034 switch (algorithm) { 3035 case ALGORITHM_LEFT_ASYMMETRIC: 3036 pd_idx = data_disks - sector_div(stripe2, raid_disks); 3037 if (*dd_idx >= pd_idx) 3038 (*dd_idx)++; 3039 break; 3040 case ALGORITHM_RIGHT_ASYMMETRIC: 3041 pd_idx = sector_div(stripe2, raid_disks); 3042 if (*dd_idx >= pd_idx) 3043 (*dd_idx)++; 3044 break; 3045 case ALGORITHM_LEFT_SYMMETRIC: 3046 pd_idx = data_disks - sector_div(stripe2, raid_disks); 3047 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3048 break; 3049 case ALGORITHM_RIGHT_SYMMETRIC: 3050 pd_idx = sector_div(stripe2, raid_disks); 3051 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3052 break; 3053 case ALGORITHM_PARITY_0: 3054 pd_idx = 0; 3055 (*dd_idx)++; 3056 break; 3057 case ALGORITHM_PARITY_N: 3058 pd_idx = data_disks; 3059 break; 3060 default: 3061 BUG(); 3062 } 3063 break; 3064 case 6: 3065 3066 switch (algorithm) { 3067 case ALGORITHM_LEFT_ASYMMETRIC: 3068 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3069 qd_idx = pd_idx + 1; 3070 if (pd_idx == raid_disks-1) { 3071 (*dd_idx)++; /* Q D D D P */ 3072 qd_idx = 0; 3073 } else if (*dd_idx >= pd_idx) 3074 (*dd_idx) += 2; /* D D P Q D */ 3075 break; 3076 case ALGORITHM_RIGHT_ASYMMETRIC: 3077 pd_idx = sector_div(stripe2, raid_disks); 3078 qd_idx = pd_idx + 1; 3079 if (pd_idx == raid_disks-1) { 3080 (*dd_idx)++; /* Q D D D P */ 3081 qd_idx = 0; 3082 } else if (*dd_idx >= pd_idx) 3083 (*dd_idx) += 2; /* D D P Q D */ 3084 break; 3085 case ALGORITHM_LEFT_SYMMETRIC: 3086 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3087 qd_idx = (pd_idx + 1) % raid_disks; 3088 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3089 break; 3090 case ALGORITHM_RIGHT_SYMMETRIC: 3091 pd_idx = sector_div(stripe2, raid_disks); 3092 qd_idx = (pd_idx + 1) % raid_disks; 3093 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3094 break; 3095 3096 case ALGORITHM_PARITY_0: 3097 pd_idx = 0; 3098 qd_idx = 1; 3099 (*dd_idx) += 2; 3100 break; 3101 case ALGORITHM_PARITY_N: 3102 pd_idx = data_disks; 3103 qd_idx = data_disks + 1; 3104 break; 3105 3106 case ALGORITHM_ROTATING_ZERO_RESTART: 3107 /* Exactly the same as RIGHT_ASYMMETRIC, but or 3108 * of blocks for computing Q is different. 3109 */ 3110 pd_idx = sector_div(stripe2, raid_disks); 3111 qd_idx = pd_idx + 1; 3112 if (pd_idx == raid_disks-1) { 3113 (*dd_idx)++; /* Q D D D P */ 3114 qd_idx = 0; 3115 } else if (*dd_idx >= pd_idx) 3116 (*dd_idx) += 2; /* D D P Q D */ 3117 ddf_layout = 1; 3118 break; 3119 3120 case ALGORITHM_ROTATING_N_RESTART: 3121 /* Same a left_asymmetric, by first stripe is 3122 * D D D P Q rather than 3123 * Q D D D P 3124 */ 3125 stripe2 += 1; 3126 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3127 qd_idx = pd_idx + 1; 3128 if (pd_idx == raid_disks-1) { 3129 (*dd_idx)++; /* Q D D D P */ 3130 qd_idx = 0; 3131 } else if (*dd_idx >= pd_idx) 3132 (*dd_idx) += 2; /* D D P Q D */ 3133 ddf_layout = 1; 3134 break; 3135 3136 case ALGORITHM_ROTATING_N_CONTINUE: 3137 /* Same as left_symmetric but Q is before P */ 3138 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3139 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 3140 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3141 ddf_layout = 1; 3142 break; 3143 3144 case ALGORITHM_LEFT_ASYMMETRIC_6: 3145 /* RAID5 left_asymmetric, with Q on last device */ 3146 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3147 if (*dd_idx >= pd_idx) 3148 (*dd_idx)++; 3149 qd_idx = raid_disks - 1; 3150 break; 3151 3152 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3153 pd_idx = sector_div(stripe2, raid_disks-1); 3154 if (*dd_idx >= pd_idx) 3155 (*dd_idx)++; 3156 qd_idx = raid_disks - 1; 3157 break; 3158 3159 case ALGORITHM_LEFT_SYMMETRIC_6: 3160 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3161 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3162 qd_idx = raid_disks - 1; 3163 break; 3164 3165 case ALGORITHM_RIGHT_SYMMETRIC_6: 3166 pd_idx = sector_div(stripe2, raid_disks-1); 3167 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3168 qd_idx = raid_disks - 1; 3169 break; 3170 3171 case ALGORITHM_PARITY_0_6: 3172 pd_idx = 0; 3173 (*dd_idx)++; 3174 qd_idx = raid_disks - 1; 3175 break; 3176 3177 default: 3178 BUG(); 3179 } 3180 break; 3181 } 3182 3183 if (sh) { 3184 sh->pd_idx = pd_idx; 3185 sh->qd_idx = qd_idx; 3186 sh->ddf_layout = ddf_layout; 3187 } 3188 /* 3189 * Finally, compute the new sector number 3190 */ 3191 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 3192 return new_sector; 3193 } 3194 3195 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 3196 { 3197 struct r5conf *conf = sh->raid_conf; 3198 int raid_disks = sh->disks; 3199 int data_disks = raid_disks - conf->max_degraded; 3200 sector_t new_sector = sh->sector, check; 3201 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3202 : conf->chunk_sectors; 3203 int algorithm = previous ? conf->prev_algo 3204 : conf->algorithm; 3205 sector_t stripe; 3206 int chunk_offset; 3207 sector_t chunk_number; 3208 int dummy1, dd_idx = i; 3209 sector_t r_sector; 3210 struct stripe_head sh2; 3211 3212 chunk_offset = sector_div(new_sector, sectors_per_chunk); 3213 stripe = new_sector; 3214 3215 if (i == sh->pd_idx) 3216 return 0; 3217 switch(conf->level) { 3218 case 4: break; 3219 case 5: 3220 switch (algorithm) { 3221 case ALGORITHM_LEFT_ASYMMETRIC: 3222 case ALGORITHM_RIGHT_ASYMMETRIC: 3223 if (i > sh->pd_idx) 3224 i--; 3225 break; 3226 case ALGORITHM_LEFT_SYMMETRIC: 3227 case ALGORITHM_RIGHT_SYMMETRIC: 3228 if (i < sh->pd_idx) 3229 i += raid_disks; 3230 i -= (sh->pd_idx + 1); 3231 break; 3232 case ALGORITHM_PARITY_0: 3233 i -= 1; 3234 break; 3235 case ALGORITHM_PARITY_N: 3236 break; 3237 default: 3238 BUG(); 3239 } 3240 break; 3241 case 6: 3242 if (i == sh->qd_idx) 3243 return 0; /* It is the Q disk */ 3244 switch (algorithm) { 3245 case ALGORITHM_LEFT_ASYMMETRIC: 3246 case ALGORITHM_RIGHT_ASYMMETRIC: 3247 case ALGORITHM_ROTATING_ZERO_RESTART: 3248 case ALGORITHM_ROTATING_N_RESTART: 3249 if (sh->pd_idx == raid_disks-1) 3250 i--; /* Q D D D P */ 3251 else if (i > sh->pd_idx) 3252 i -= 2; /* D D P Q D */ 3253 break; 3254 case ALGORITHM_LEFT_SYMMETRIC: 3255 case ALGORITHM_RIGHT_SYMMETRIC: 3256 if (sh->pd_idx == raid_disks-1) 3257 i--; /* Q D D D P */ 3258 else { 3259 /* D D P Q D */ 3260 if (i < sh->pd_idx) 3261 i += raid_disks; 3262 i -= (sh->pd_idx + 2); 3263 } 3264 break; 3265 case ALGORITHM_PARITY_0: 3266 i -= 2; 3267 break; 3268 case ALGORITHM_PARITY_N: 3269 break; 3270 case ALGORITHM_ROTATING_N_CONTINUE: 3271 /* Like left_symmetric, but P is before Q */ 3272 if (sh->pd_idx == 0) 3273 i--; /* P D D D Q */ 3274 else { 3275 /* D D Q P D */ 3276 if (i < sh->pd_idx) 3277 i += raid_disks; 3278 i -= (sh->pd_idx + 1); 3279 } 3280 break; 3281 case ALGORITHM_LEFT_ASYMMETRIC_6: 3282 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3283 if (i > sh->pd_idx) 3284 i--; 3285 break; 3286 case ALGORITHM_LEFT_SYMMETRIC_6: 3287 case ALGORITHM_RIGHT_SYMMETRIC_6: 3288 if (i < sh->pd_idx) 3289 i += data_disks + 1; 3290 i -= (sh->pd_idx + 1); 3291 break; 3292 case ALGORITHM_PARITY_0_6: 3293 i -= 1; 3294 break; 3295 default: 3296 BUG(); 3297 } 3298 break; 3299 } 3300 3301 chunk_number = stripe * data_disks + i; 3302 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3303 3304 check = raid5_compute_sector(conf, r_sector, 3305 previous, &dummy1, &sh2); 3306 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3307 || sh2.qd_idx != sh->qd_idx) { 3308 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3309 mdname(conf->mddev)); 3310 return 0; 3311 } 3312 return r_sector; 3313 } 3314 3315 /* 3316 * There are cases where we want handle_stripe_dirtying() and 3317 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3318 * 3319 * This function checks whether we want to delay the towrite. Specifically, 3320 * we delay the towrite when: 3321 * 3322 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3323 * stripe has data in journal (for other devices). 3324 * 3325 * In this case, when reading data for the non-overwrite dev, it is 3326 * necessary to handle complex rmw of write back cache (prexor with 3327 * orig_page, and xor with page). To keep read path simple, we would 3328 * like to flush data in journal to RAID disks first, so complex rmw 3329 * is handled in the write patch (handle_stripe_dirtying). 3330 * 3331 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3332 * 3333 * It is important to be able to flush all stripes in raid5-cache. 3334 * Therefore, we need reserve some space on the journal device for 3335 * these flushes. If flush operation includes pending writes to the 3336 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3337 * for the flush out. If we exclude these pending writes from flush 3338 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3339 * Therefore, excluding pending writes in these cases enables more 3340 * efficient use of the journal device. 3341 * 3342 * Note: To make sure the stripe makes progress, we only delay 3343 * towrite for stripes with data already in journal (injournal > 0). 3344 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3345 * no_space_stripes list. 3346 * 3347 * 3. during journal failure 3348 * In journal failure, we try to flush all cached data to raid disks 3349 * based on data in stripe cache. The array is read-only to upper 3350 * layers, so we would skip all pending writes. 3351 * 3352 */ 3353 static inline bool delay_towrite(struct r5conf *conf, 3354 struct r5dev *dev, 3355 struct stripe_head_state *s) 3356 { 3357 /* case 1 above */ 3358 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3359 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3360 return true; 3361 /* case 2 above */ 3362 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3363 s->injournal > 0) 3364 return true; 3365 /* case 3 above */ 3366 if (s->log_failed && s->injournal) 3367 return true; 3368 return false; 3369 } 3370 3371 static void 3372 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3373 int rcw, int expand) 3374 { 3375 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3376 struct r5conf *conf = sh->raid_conf; 3377 int level = conf->level; 3378 3379 if (rcw) { 3380 /* 3381 * In some cases, handle_stripe_dirtying initially decided to 3382 * run rmw and allocates extra page for prexor. However, rcw is 3383 * cheaper later on. We need to free the extra page now, 3384 * because we won't be able to do that in ops_complete_prexor(). 3385 */ 3386 r5c_release_extra_page(sh); 3387 3388 for (i = disks; i--; ) { 3389 struct r5dev *dev = &sh->dev[i]; 3390 3391 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3392 set_bit(R5_LOCKED, &dev->flags); 3393 set_bit(R5_Wantdrain, &dev->flags); 3394 if (!expand) 3395 clear_bit(R5_UPTODATE, &dev->flags); 3396 s->locked++; 3397 } else if (test_bit(R5_InJournal, &dev->flags)) { 3398 set_bit(R5_LOCKED, &dev->flags); 3399 s->locked++; 3400 } 3401 } 3402 /* if we are not expanding this is a proper write request, and 3403 * there will be bios with new data to be drained into the 3404 * stripe cache 3405 */ 3406 if (!expand) { 3407 if (!s->locked) 3408 /* False alarm, nothing to do */ 3409 return; 3410 sh->reconstruct_state = reconstruct_state_drain_run; 3411 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3412 } else 3413 sh->reconstruct_state = reconstruct_state_run; 3414 3415 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3416 3417 if (s->locked + conf->max_degraded == disks) 3418 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3419 atomic_inc(&conf->pending_full_writes); 3420 } else { 3421 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3422 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3423 BUG_ON(level == 6 && 3424 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3425 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3426 3427 for (i = disks; i--; ) { 3428 struct r5dev *dev = &sh->dev[i]; 3429 if (i == pd_idx || i == qd_idx) 3430 continue; 3431 3432 if (dev->towrite && 3433 (test_bit(R5_UPTODATE, &dev->flags) || 3434 test_bit(R5_Wantcompute, &dev->flags))) { 3435 set_bit(R5_Wantdrain, &dev->flags); 3436 set_bit(R5_LOCKED, &dev->flags); 3437 clear_bit(R5_UPTODATE, &dev->flags); 3438 s->locked++; 3439 } else if (test_bit(R5_InJournal, &dev->flags)) { 3440 set_bit(R5_LOCKED, &dev->flags); 3441 s->locked++; 3442 } 3443 } 3444 if (!s->locked) 3445 /* False alarm - nothing to do */ 3446 return; 3447 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3448 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3449 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3450 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3451 } 3452 3453 /* keep the parity disk(s) locked while asynchronous operations 3454 * are in flight 3455 */ 3456 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3457 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3458 s->locked++; 3459 3460 if (level == 6) { 3461 int qd_idx = sh->qd_idx; 3462 struct r5dev *dev = &sh->dev[qd_idx]; 3463 3464 set_bit(R5_LOCKED, &dev->flags); 3465 clear_bit(R5_UPTODATE, &dev->flags); 3466 s->locked++; 3467 } 3468 3469 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3470 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3471 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3472 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3473 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3474 3475 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3476 __func__, (unsigned long long)sh->sector, 3477 s->locked, s->ops_request); 3478 } 3479 3480 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi, 3481 int dd_idx, int forwrite) 3482 { 3483 struct r5conf *conf = sh->raid_conf; 3484 struct bio **bip; 3485 3486 pr_debug("checking bi b#%llu to stripe s#%llu\n", 3487 bi->bi_iter.bi_sector, sh->sector); 3488 3489 /* Don't allow new IO added to stripes in batch list */ 3490 if (sh->batch_head) 3491 return true; 3492 3493 if (forwrite) 3494 bip = &sh->dev[dd_idx].towrite; 3495 else 3496 bip = &sh->dev[dd_idx].toread; 3497 3498 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3499 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3500 return true; 3501 bip = &(*bip)->bi_next; 3502 } 3503 3504 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3505 return true; 3506 3507 if (forwrite && raid5_has_ppl(conf)) { 3508 /* 3509 * With PPL only writes to consecutive data chunks within a 3510 * stripe are allowed because for a single stripe_head we can 3511 * only have one PPL entry at a time, which describes one data 3512 * range. Not really an overlap, but wait_for_overlap can be 3513 * used to handle this. 3514 */ 3515 sector_t sector; 3516 sector_t first = 0; 3517 sector_t last = 0; 3518 int count = 0; 3519 int i; 3520 3521 for (i = 0; i < sh->disks; i++) { 3522 if (i != sh->pd_idx && 3523 (i == dd_idx || sh->dev[i].towrite)) { 3524 sector = sh->dev[i].sector; 3525 if (count == 0 || sector < first) 3526 first = sector; 3527 if (sector > last) 3528 last = sector; 3529 count++; 3530 } 3531 } 3532 3533 if (first + conf->chunk_sectors * (count - 1) != last) 3534 return true; 3535 } 3536 3537 return false; 3538 } 3539 3540 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3541 int dd_idx, int forwrite, int previous) 3542 { 3543 struct r5conf *conf = sh->raid_conf; 3544 struct bio **bip; 3545 int firstwrite = 0; 3546 3547 if (forwrite) { 3548 bip = &sh->dev[dd_idx].towrite; 3549 if (!*bip) 3550 firstwrite = 1; 3551 } else { 3552 bip = &sh->dev[dd_idx].toread; 3553 } 3554 3555 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) 3556 bip = &(*bip)->bi_next; 3557 3558 if (!forwrite || previous) 3559 clear_bit(STRIPE_BATCH_READY, &sh->state); 3560 3561 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3562 if (*bip) 3563 bi->bi_next = *bip; 3564 *bip = bi; 3565 bio_inc_remaining(bi); 3566 md_write_inc(conf->mddev, bi); 3567 3568 if (forwrite) { 3569 /* check if page is covered */ 3570 sector_t sector = sh->dev[dd_idx].sector; 3571 for (bi=sh->dev[dd_idx].towrite; 3572 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) && 3573 bi && bi->bi_iter.bi_sector <= sector; 3574 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) { 3575 if (bio_end_sector(bi) >= sector) 3576 sector = bio_end_sector(bi); 3577 } 3578 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf)) 3579 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3580 sh->overwrite_disks++; 3581 } 3582 3583 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n", 3584 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx, 3585 sh->dev[dd_idx].sector); 3586 3587 if (conf->mddev->bitmap && firstwrite) { 3588 /* Cannot hold spinlock over bitmap_startwrite, 3589 * but must ensure this isn't added to a batch until 3590 * we have added to the bitmap and set bm_seq. 3591 * So set STRIPE_BITMAP_PENDING to prevent 3592 * batching. 3593 * If multiple __add_stripe_bio() calls race here they 3594 * much all set STRIPE_BITMAP_PENDING. So only the first one 3595 * to complete "bitmap_startwrite" gets to set 3596 * STRIPE_BIT_DELAY. This is important as once a stripe 3597 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3598 * any more. 3599 */ 3600 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3601 spin_unlock_irq(&sh->stripe_lock); 3602 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3603 RAID5_STRIPE_SECTORS(conf), 0); 3604 spin_lock_irq(&sh->stripe_lock); 3605 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3606 if (!sh->batch_head) { 3607 sh->bm_seq = conf->seq_flush+1; 3608 set_bit(STRIPE_BIT_DELAY, &sh->state); 3609 } 3610 } 3611 } 3612 3613 /* 3614 * Each stripe/dev can have one or more bios attached. 3615 * toread/towrite point to the first in a chain. 3616 * The bi_next chain must be in order. 3617 */ 3618 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3619 int dd_idx, int forwrite, int previous) 3620 { 3621 spin_lock_irq(&sh->stripe_lock); 3622 3623 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 3624 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3625 spin_unlock_irq(&sh->stripe_lock); 3626 return false; 3627 } 3628 3629 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 3630 spin_unlock_irq(&sh->stripe_lock); 3631 return true; 3632 } 3633 3634 static void end_reshape(struct r5conf *conf); 3635 3636 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3637 struct stripe_head *sh) 3638 { 3639 int sectors_per_chunk = 3640 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3641 int dd_idx; 3642 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3643 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3644 3645 raid5_compute_sector(conf, 3646 stripe * (disks - conf->max_degraded) 3647 *sectors_per_chunk + chunk_offset, 3648 previous, 3649 &dd_idx, sh); 3650 } 3651 3652 static void 3653 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3654 struct stripe_head_state *s, int disks) 3655 { 3656 int i; 3657 BUG_ON(sh->batch_head); 3658 for (i = disks; i--; ) { 3659 struct bio *bi; 3660 int bitmap_end = 0; 3661 3662 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3663 struct md_rdev *rdev; 3664 rcu_read_lock(); 3665 rdev = rcu_dereference(conf->disks[i].rdev); 3666 if (rdev && test_bit(In_sync, &rdev->flags) && 3667 !test_bit(Faulty, &rdev->flags)) 3668 atomic_inc(&rdev->nr_pending); 3669 else 3670 rdev = NULL; 3671 rcu_read_unlock(); 3672 if (rdev) { 3673 if (!rdev_set_badblocks( 3674 rdev, 3675 sh->sector, 3676 RAID5_STRIPE_SECTORS(conf), 0)) 3677 md_error(conf->mddev, rdev); 3678 rdev_dec_pending(rdev, conf->mddev); 3679 } 3680 } 3681 spin_lock_irq(&sh->stripe_lock); 3682 /* fail all writes first */ 3683 bi = sh->dev[i].towrite; 3684 sh->dev[i].towrite = NULL; 3685 sh->overwrite_disks = 0; 3686 spin_unlock_irq(&sh->stripe_lock); 3687 if (bi) 3688 bitmap_end = 1; 3689 3690 log_stripe_write_finished(sh); 3691 3692 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3693 wake_up(&conf->wait_for_overlap); 3694 3695 while (bi && bi->bi_iter.bi_sector < 3696 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3697 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector); 3698 3699 md_write_end(conf->mddev); 3700 bio_io_error(bi); 3701 bi = nextbi; 3702 } 3703 if (bitmap_end) 3704 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3705 RAID5_STRIPE_SECTORS(conf), 0, 0); 3706 bitmap_end = 0; 3707 /* and fail all 'written' */ 3708 bi = sh->dev[i].written; 3709 sh->dev[i].written = NULL; 3710 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3711 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3712 sh->dev[i].page = sh->dev[i].orig_page; 3713 } 3714 3715 if (bi) bitmap_end = 1; 3716 while (bi && bi->bi_iter.bi_sector < 3717 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3718 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector); 3719 3720 md_write_end(conf->mddev); 3721 bio_io_error(bi); 3722 bi = bi2; 3723 } 3724 3725 /* fail any reads if this device is non-operational and 3726 * the data has not reached the cache yet. 3727 */ 3728 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3729 s->failed > conf->max_degraded && 3730 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3731 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3732 spin_lock_irq(&sh->stripe_lock); 3733 bi = sh->dev[i].toread; 3734 sh->dev[i].toread = NULL; 3735 spin_unlock_irq(&sh->stripe_lock); 3736 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3737 wake_up(&conf->wait_for_overlap); 3738 if (bi) 3739 s->to_read--; 3740 while (bi && bi->bi_iter.bi_sector < 3741 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3742 struct bio *nextbi = 3743 r5_next_bio(conf, bi, sh->dev[i].sector); 3744 3745 bio_io_error(bi); 3746 bi = nextbi; 3747 } 3748 } 3749 if (bitmap_end) 3750 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3751 RAID5_STRIPE_SECTORS(conf), 0, 0); 3752 /* If we were in the middle of a write the parity block might 3753 * still be locked - so just clear all R5_LOCKED flags 3754 */ 3755 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3756 } 3757 s->to_write = 0; 3758 s->written = 0; 3759 3760 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3761 if (atomic_dec_and_test(&conf->pending_full_writes)) 3762 md_wakeup_thread(conf->mddev->thread); 3763 } 3764 3765 static void 3766 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3767 struct stripe_head_state *s) 3768 { 3769 int abort = 0; 3770 int i; 3771 3772 BUG_ON(sh->batch_head); 3773 clear_bit(STRIPE_SYNCING, &sh->state); 3774 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3775 wake_up(&conf->wait_for_overlap); 3776 s->syncing = 0; 3777 s->replacing = 0; 3778 /* There is nothing more to do for sync/check/repair. 3779 * Don't even need to abort as that is handled elsewhere 3780 * if needed, and not always wanted e.g. if there is a known 3781 * bad block here. 3782 * For recover/replace we need to record a bad block on all 3783 * non-sync devices, or abort the recovery 3784 */ 3785 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3786 /* During recovery devices cannot be removed, so 3787 * locking and refcounting of rdevs is not needed 3788 */ 3789 rcu_read_lock(); 3790 for (i = 0; i < conf->raid_disks; i++) { 3791 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3792 if (rdev 3793 && !test_bit(Faulty, &rdev->flags) 3794 && !test_bit(In_sync, &rdev->flags) 3795 && !rdev_set_badblocks(rdev, sh->sector, 3796 RAID5_STRIPE_SECTORS(conf), 0)) 3797 abort = 1; 3798 rdev = rcu_dereference(conf->disks[i].replacement); 3799 if (rdev 3800 && !test_bit(Faulty, &rdev->flags) 3801 && !test_bit(In_sync, &rdev->flags) 3802 && !rdev_set_badblocks(rdev, sh->sector, 3803 RAID5_STRIPE_SECTORS(conf), 0)) 3804 abort = 1; 3805 } 3806 rcu_read_unlock(); 3807 if (abort) 3808 conf->recovery_disabled = 3809 conf->mddev->recovery_disabled; 3810 } 3811 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort); 3812 } 3813 3814 static int want_replace(struct stripe_head *sh, int disk_idx) 3815 { 3816 struct md_rdev *rdev; 3817 int rv = 0; 3818 3819 rcu_read_lock(); 3820 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3821 if (rdev 3822 && !test_bit(Faulty, &rdev->flags) 3823 && !test_bit(In_sync, &rdev->flags) 3824 && (rdev->recovery_offset <= sh->sector 3825 || rdev->mddev->recovery_cp <= sh->sector)) 3826 rv = 1; 3827 rcu_read_unlock(); 3828 return rv; 3829 } 3830 3831 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3832 int disk_idx, int disks) 3833 { 3834 struct r5dev *dev = &sh->dev[disk_idx]; 3835 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3836 &sh->dev[s->failed_num[1]] }; 3837 int i; 3838 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW); 3839 3840 3841 if (test_bit(R5_LOCKED, &dev->flags) || 3842 test_bit(R5_UPTODATE, &dev->flags)) 3843 /* No point reading this as we already have it or have 3844 * decided to get it. 3845 */ 3846 return 0; 3847 3848 if (dev->toread || 3849 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3850 /* We need this block to directly satisfy a request */ 3851 return 1; 3852 3853 if (s->syncing || s->expanding || 3854 (s->replacing && want_replace(sh, disk_idx))) 3855 /* When syncing, or expanding we read everything. 3856 * When replacing, we need the replaced block. 3857 */ 3858 return 1; 3859 3860 if ((s->failed >= 1 && fdev[0]->toread) || 3861 (s->failed >= 2 && fdev[1]->toread)) 3862 /* If we want to read from a failed device, then 3863 * we need to actually read every other device. 3864 */ 3865 return 1; 3866 3867 /* Sometimes neither read-modify-write nor reconstruct-write 3868 * cycles can work. In those cases we read every block we 3869 * can. Then the parity-update is certain to have enough to 3870 * work with. 3871 * This can only be a problem when we need to write something, 3872 * and some device has failed. If either of those tests 3873 * fail we need look no further. 3874 */ 3875 if (!s->failed || !s->to_write) 3876 return 0; 3877 3878 if (test_bit(R5_Insync, &dev->flags) && 3879 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3880 /* Pre-reads at not permitted until after short delay 3881 * to gather multiple requests. However if this 3882 * device is no Insync, the block could only be computed 3883 * and there is no need to delay that. 3884 */ 3885 return 0; 3886 3887 for (i = 0; i < s->failed && i < 2; i++) { 3888 if (fdev[i]->towrite && 3889 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3890 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3891 /* If we have a partial write to a failed 3892 * device, then we will need to reconstruct 3893 * the content of that device, so all other 3894 * devices must be read. 3895 */ 3896 return 1; 3897 3898 if (s->failed >= 2 && 3899 (fdev[i]->towrite || 3900 s->failed_num[i] == sh->pd_idx || 3901 s->failed_num[i] == sh->qd_idx) && 3902 !test_bit(R5_UPTODATE, &fdev[i]->flags)) 3903 /* In max degraded raid6, If the failed disk is P, Q, 3904 * or we want to read the failed disk, we need to do 3905 * reconstruct-write. 3906 */ 3907 force_rcw = true; 3908 } 3909 3910 /* If we are forced to do a reconstruct-write, because parity 3911 * cannot be trusted and we are currently recovering it, there 3912 * is extra need to be careful. 3913 * If one of the devices that we would need to read, because 3914 * it is not being overwritten (and maybe not written at all) 3915 * is missing/faulty, then we need to read everything we can. 3916 */ 3917 if (!force_rcw && 3918 sh->sector < sh->raid_conf->mddev->recovery_cp) 3919 /* reconstruct-write isn't being forced */ 3920 return 0; 3921 for (i = 0; i < s->failed && i < 2; i++) { 3922 if (s->failed_num[i] != sh->pd_idx && 3923 s->failed_num[i] != sh->qd_idx && 3924 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3925 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3926 return 1; 3927 } 3928 3929 return 0; 3930 } 3931 3932 /* fetch_block - checks the given member device to see if its data needs 3933 * to be read or computed to satisfy a request. 3934 * 3935 * Returns 1 when no more member devices need to be checked, otherwise returns 3936 * 0 to tell the loop in handle_stripe_fill to continue 3937 */ 3938 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3939 int disk_idx, int disks) 3940 { 3941 struct r5dev *dev = &sh->dev[disk_idx]; 3942 3943 /* is the data in this block needed, and can we get it? */ 3944 if (need_this_block(sh, s, disk_idx, disks)) { 3945 /* we would like to get this block, possibly by computing it, 3946 * otherwise read it if the backing disk is insync 3947 */ 3948 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3949 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3950 BUG_ON(sh->batch_head); 3951 3952 /* 3953 * In the raid6 case if the only non-uptodate disk is P 3954 * then we already trusted P to compute the other failed 3955 * drives. It is safe to compute rather than re-read P. 3956 * In other cases we only compute blocks from failed 3957 * devices, otherwise check/repair might fail to detect 3958 * a real inconsistency. 3959 */ 3960 3961 if ((s->uptodate == disks - 1) && 3962 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3963 (s->failed && (disk_idx == s->failed_num[0] || 3964 disk_idx == s->failed_num[1])))) { 3965 /* have disk failed, and we're requested to fetch it; 3966 * do compute it 3967 */ 3968 pr_debug("Computing stripe %llu block %d\n", 3969 (unsigned long long)sh->sector, disk_idx); 3970 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3971 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3972 set_bit(R5_Wantcompute, &dev->flags); 3973 sh->ops.target = disk_idx; 3974 sh->ops.target2 = -1; /* no 2nd target */ 3975 s->req_compute = 1; 3976 /* Careful: from this point on 'uptodate' is in the eye 3977 * of raid_run_ops which services 'compute' operations 3978 * before writes. R5_Wantcompute flags a block that will 3979 * be R5_UPTODATE by the time it is needed for a 3980 * subsequent operation. 3981 */ 3982 s->uptodate++; 3983 return 1; 3984 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3985 /* Computing 2-failure is *very* expensive; only 3986 * do it if failed >= 2 3987 */ 3988 int other; 3989 for (other = disks; other--; ) { 3990 if (other == disk_idx) 3991 continue; 3992 if (!test_bit(R5_UPTODATE, 3993 &sh->dev[other].flags)) 3994 break; 3995 } 3996 BUG_ON(other < 0); 3997 pr_debug("Computing stripe %llu blocks %d,%d\n", 3998 (unsigned long long)sh->sector, 3999 disk_idx, other); 4000 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4001 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4002 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 4003 set_bit(R5_Wantcompute, &sh->dev[other].flags); 4004 sh->ops.target = disk_idx; 4005 sh->ops.target2 = other; 4006 s->uptodate += 2; 4007 s->req_compute = 1; 4008 return 1; 4009 } else if (test_bit(R5_Insync, &dev->flags)) { 4010 set_bit(R5_LOCKED, &dev->flags); 4011 set_bit(R5_Wantread, &dev->flags); 4012 s->locked++; 4013 pr_debug("Reading block %d (sync=%d)\n", 4014 disk_idx, s->syncing); 4015 } 4016 } 4017 4018 return 0; 4019 } 4020 4021 /* 4022 * handle_stripe_fill - read or compute data to satisfy pending requests. 4023 */ 4024 static void handle_stripe_fill(struct stripe_head *sh, 4025 struct stripe_head_state *s, 4026 int disks) 4027 { 4028 int i; 4029 4030 /* look for blocks to read/compute, skip this if a compute 4031 * is already in flight, or if the stripe contents are in the 4032 * midst of changing due to a write 4033 */ 4034 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 4035 !sh->reconstruct_state) { 4036 4037 /* 4038 * For degraded stripe with data in journal, do not handle 4039 * read requests yet, instead, flush the stripe to raid 4040 * disks first, this avoids handling complex rmw of write 4041 * back cache (prexor with orig_page, and then xor with 4042 * page) in the read path 4043 */ 4044 if (s->to_read && s->injournal && s->failed) { 4045 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 4046 r5c_make_stripe_write_out(sh); 4047 goto out; 4048 } 4049 4050 for (i = disks; i--; ) 4051 if (fetch_block(sh, s, i, disks)) 4052 break; 4053 } 4054 out: 4055 set_bit(STRIPE_HANDLE, &sh->state); 4056 } 4057 4058 static void break_stripe_batch_list(struct stripe_head *head_sh, 4059 unsigned long handle_flags); 4060 /* handle_stripe_clean_event 4061 * any written block on an uptodate or failed drive can be returned. 4062 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 4063 * never LOCKED, so we don't need to test 'failed' directly. 4064 */ 4065 static void handle_stripe_clean_event(struct r5conf *conf, 4066 struct stripe_head *sh, int disks) 4067 { 4068 int i; 4069 struct r5dev *dev; 4070 int discard_pending = 0; 4071 struct stripe_head *head_sh = sh; 4072 bool do_endio = false; 4073 4074 for (i = disks; i--; ) 4075 if (sh->dev[i].written) { 4076 dev = &sh->dev[i]; 4077 if (!test_bit(R5_LOCKED, &dev->flags) && 4078 (test_bit(R5_UPTODATE, &dev->flags) || 4079 test_bit(R5_Discard, &dev->flags) || 4080 test_bit(R5_SkipCopy, &dev->flags))) { 4081 /* We can return any write requests */ 4082 struct bio *wbi, *wbi2; 4083 pr_debug("Return write for disc %d\n", i); 4084 if (test_and_clear_bit(R5_Discard, &dev->flags)) 4085 clear_bit(R5_UPTODATE, &dev->flags); 4086 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 4087 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 4088 } 4089 do_endio = true; 4090 4091 returnbi: 4092 dev->page = dev->orig_page; 4093 wbi = dev->written; 4094 dev->written = NULL; 4095 while (wbi && wbi->bi_iter.bi_sector < 4096 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 4097 wbi2 = r5_next_bio(conf, wbi, dev->sector); 4098 md_write_end(conf->mddev); 4099 bio_endio(wbi); 4100 wbi = wbi2; 4101 } 4102 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 4103 RAID5_STRIPE_SECTORS(conf), 4104 !test_bit(STRIPE_DEGRADED, &sh->state), 4105 0); 4106 if (head_sh->batch_head) { 4107 sh = list_first_entry(&sh->batch_list, 4108 struct stripe_head, 4109 batch_list); 4110 if (sh != head_sh) { 4111 dev = &sh->dev[i]; 4112 goto returnbi; 4113 } 4114 } 4115 sh = head_sh; 4116 dev = &sh->dev[i]; 4117 } else if (test_bit(R5_Discard, &dev->flags)) 4118 discard_pending = 1; 4119 } 4120 4121 log_stripe_write_finished(sh); 4122 4123 if (!discard_pending && 4124 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 4125 int hash; 4126 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 4127 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4128 if (sh->qd_idx >= 0) { 4129 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 4130 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 4131 } 4132 /* now that discard is done we can proceed with any sync */ 4133 clear_bit(STRIPE_DISCARD, &sh->state); 4134 /* 4135 * SCSI discard will change some bio fields and the stripe has 4136 * no updated data, so remove it from hash list and the stripe 4137 * will be reinitialized 4138 */ 4139 unhash: 4140 hash = sh->hash_lock_index; 4141 spin_lock_irq(conf->hash_locks + hash); 4142 remove_hash(sh); 4143 spin_unlock_irq(conf->hash_locks + hash); 4144 if (head_sh->batch_head) { 4145 sh = list_first_entry(&sh->batch_list, 4146 struct stripe_head, batch_list); 4147 if (sh != head_sh) 4148 goto unhash; 4149 } 4150 sh = head_sh; 4151 4152 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 4153 set_bit(STRIPE_HANDLE, &sh->state); 4154 4155 } 4156 4157 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 4158 if (atomic_dec_and_test(&conf->pending_full_writes)) 4159 md_wakeup_thread(conf->mddev->thread); 4160 4161 if (head_sh->batch_head && do_endio) 4162 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 4163 } 4164 4165 /* 4166 * For RMW in write back cache, we need extra page in prexor to store the 4167 * old data. This page is stored in dev->orig_page. 4168 * 4169 * This function checks whether we have data for prexor. The exact logic 4170 * is: 4171 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 4172 */ 4173 static inline bool uptodate_for_rmw(struct r5dev *dev) 4174 { 4175 return (test_bit(R5_UPTODATE, &dev->flags)) && 4176 (!test_bit(R5_InJournal, &dev->flags) || 4177 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 4178 } 4179 4180 static int handle_stripe_dirtying(struct r5conf *conf, 4181 struct stripe_head *sh, 4182 struct stripe_head_state *s, 4183 int disks) 4184 { 4185 int rmw = 0, rcw = 0, i; 4186 sector_t recovery_cp = conf->mddev->recovery_cp; 4187 4188 /* Check whether resync is now happening or should start. 4189 * If yes, then the array is dirty (after unclean shutdown or 4190 * initial creation), so parity in some stripes might be inconsistent. 4191 * In this case, we need to always do reconstruct-write, to ensure 4192 * that in case of drive failure or read-error correction, we 4193 * generate correct data from the parity. 4194 */ 4195 if (conf->rmw_level == PARITY_DISABLE_RMW || 4196 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 4197 s->failed == 0)) { 4198 /* Calculate the real rcw later - for now make it 4199 * look like rcw is cheaper 4200 */ 4201 rcw = 1; rmw = 2; 4202 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 4203 conf->rmw_level, (unsigned long long)recovery_cp, 4204 (unsigned long long)sh->sector); 4205 } else for (i = disks; i--; ) { 4206 /* would I have to read this buffer for read_modify_write */ 4207 struct r5dev *dev = &sh->dev[i]; 4208 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4209 i == sh->pd_idx || i == sh->qd_idx || 4210 test_bit(R5_InJournal, &dev->flags)) && 4211 !test_bit(R5_LOCKED, &dev->flags) && 4212 !(uptodate_for_rmw(dev) || 4213 test_bit(R5_Wantcompute, &dev->flags))) { 4214 if (test_bit(R5_Insync, &dev->flags)) 4215 rmw++; 4216 else 4217 rmw += 2*disks; /* cannot read it */ 4218 } 4219 /* Would I have to read this buffer for reconstruct_write */ 4220 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4221 i != sh->pd_idx && i != sh->qd_idx && 4222 !test_bit(R5_LOCKED, &dev->flags) && 4223 !(test_bit(R5_UPTODATE, &dev->flags) || 4224 test_bit(R5_Wantcompute, &dev->flags))) { 4225 if (test_bit(R5_Insync, &dev->flags)) 4226 rcw++; 4227 else 4228 rcw += 2*disks; 4229 } 4230 } 4231 4232 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 4233 (unsigned long long)sh->sector, sh->state, rmw, rcw); 4234 set_bit(STRIPE_HANDLE, &sh->state); 4235 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 4236 /* prefer read-modify-write, but need to get some data */ 4237 if (conf->mddev->queue) 4238 blk_add_trace_msg(conf->mddev->queue, 4239 "raid5 rmw %llu %d", 4240 (unsigned long long)sh->sector, rmw); 4241 for (i = disks; i--; ) { 4242 struct r5dev *dev = &sh->dev[i]; 4243 if (test_bit(R5_InJournal, &dev->flags) && 4244 dev->page == dev->orig_page && 4245 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 4246 /* alloc page for prexor */ 4247 struct page *p = alloc_page(GFP_NOIO); 4248 4249 if (p) { 4250 dev->orig_page = p; 4251 continue; 4252 } 4253 4254 /* 4255 * alloc_page() failed, try use 4256 * disk_info->extra_page 4257 */ 4258 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 4259 &conf->cache_state)) { 4260 r5c_use_extra_page(sh); 4261 break; 4262 } 4263 4264 /* extra_page in use, add to delayed_list */ 4265 set_bit(STRIPE_DELAYED, &sh->state); 4266 s->waiting_extra_page = 1; 4267 return -EAGAIN; 4268 } 4269 } 4270 4271 for (i = disks; i--; ) { 4272 struct r5dev *dev = &sh->dev[i]; 4273 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4274 i == sh->pd_idx || i == sh->qd_idx || 4275 test_bit(R5_InJournal, &dev->flags)) && 4276 !test_bit(R5_LOCKED, &dev->flags) && 4277 !(uptodate_for_rmw(dev) || 4278 test_bit(R5_Wantcompute, &dev->flags)) && 4279 test_bit(R5_Insync, &dev->flags)) { 4280 if (test_bit(STRIPE_PREREAD_ACTIVE, 4281 &sh->state)) { 4282 pr_debug("Read_old block %d for r-m-w\n", 4283 i); 4284 set_bit(R5_LOCKED, &dev->flags); 4285 set_bit(R5_Wantread, &dev->flags); 4286 s->locked++; 4287 } else 4288 set_bit(STRIPE_DELAYED, &sh->state); 4289 } 4290 } 4291 } 4292 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 4293 /* want reconstruct write, but need to get some data */ 4294 int qread =0; 4295 rcw = 0; 4296 for (i = disks; i--; ) { 4297 struct r5dev *dev = &sh->dev[i]; 4298 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4299 i != sh->pd_idx && i != sh->qd_idx && 4300 !test_bit(R5_LOCKED, &dev->flags) && 4301 !(test_bit(R5_UPTODATE, &dev->flags) || 4302 test_bit(R5_Wantcompute, &dev->flags))) { 4303 rcw++; 4304 if (test_bit(R5_Insync, &dev->flags) && 4305 test_bit(STRIPE_PREREAD_ACTIVE, 4306 &sh->state)) { 4307 pr_debug("Read_old block " 4308 "%d for Reconstruct\n", i); 4309 set_bit(R5_LOCKED, &dev->flags); 4310 set_bit(R5_Wantread, &dev->flags); 4311 s->locked++; 4312 qread++; 4313 } else 4314 set_bit(STRIPE_DELAYED, &sh->state); 4315 } 4316 } 4317 if (rcw && conf->mddev->queue) 4318 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 4319 (unsigned long long)sh->sector, 4320 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 4321 } 4322 4323 if (rcw > disks && rmw > disks && 4324 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4325 set_bit(STRIPE_DELAYED, &sh->state); 4326 4327 /* now if nothing is locked, and if we have enough data, 4328 * we can start a write request 4329 */ 4330 /* since handle_stripe can be called at any time we need to handle the 4331 * case where a compute block operation has been submitted and then a 4332 * subsequent call wants to start a write request. raid_run_ops only 4333 * handles the case where compute block and reconstruct are requested 4334 * simultaneously. If this is not the case then new writes need to be 4335 * held off until the compute completes. 4336 */ 4337 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4338 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4339 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4340 schedule_reconstruction(sh, s, rcw == 0, 0); 4341 return 0; 4342 } 4343 4344 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4345 struct stripe_head_state *s, int disks) 4346 { 4347 struct r5dev *dev = NULL; 4348 4349 BUG_ON(sh->batch_head); 4350 set_bit(STRIPE_HANDLE, &sh->state); 4351 4352 switch (sh->check_state) { 4353 case check_state_idle: 4354 /* start a new check operation if there are no failures */ 4355 if (s->failed == 0) { 4356 BUG_ON(s->uptodate != disks); 4357 sh->check_state = check_state_run; 4358 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4359 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4360 s->uptodate--; 4361 break; 4362 } 4363 dev = &sh->dev[s->failed_num[0]]; 4364 fallthrough; 4365 case check_state_compute_result: 4366 sh->check_state = check_state_idle; 4367 if (!dev) 4368 dev = &sh->dev[sh->pd_idx]; 4369 4370 /* check that a write has not made the stripe insync */ 4371 if (test_bit(STRIPE_INSYNC, &sh->state)) 4372 break; 4373 4374 /* either failed parity check, or recovery is happening */ 4375 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4376 BUG_ON(s->uptodate != disks); 4377 4378 set_bit(R5_LOCKED, &dev->flags); 4379 s->locked++; 4380 set_bit(R5_Wantwrite, &dev->flags); 4381 4382 clear_bit(STRIPE_DEGRADED, &sh->state); 4383 set_bit(STRIPE_INSYNC, &sh->state); 4384 break; 4385 case check_state_run: 4386 break; /* we will be called again upon completion */ 4387 case check_state_check_result: 4388 sh->check_state = check_state_idle; 4389 4390 /* if a failure occurred during the check operation, leave 4391 * STRIPE_INSYNC not set and let the stripe be handled again 4392 */ 4393 if (s->failed) 4394 break; 4395 4396 /* handle a successful check operation, if parity is correct 4397 * we are done. Otherwise update the mismatch count and repair 4398 * parity if !MD_RECOVERY_CHECK 4399 */ 4400 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4401 /* parity is correct (on disc, 4402 * not in buffer any more) 4403 */ 4404 set_bit(STRIPE_INSYNC, &sh->state); 4405 else { 4406 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4407 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4408 /* don't try to repair!! */ 4409 set_bit(STRIPE_INSYNC, &sh->state); 4410 pr_warn_ratelimited("%s: mismatch sector in range " 4411 "%llu-%llu\n", mdname(conf->mddev), 4412 (unsigned long long) sh->sector, 4413 (unsigned long long) sh->sector + 4414 RAID5_STRIPE_SECTORS(conf)); 4415 } else { 4416 sh->check_state = check_state_compute_run; 4417 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4418 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4419 set_bit(R5_Wantcompute, 4420 &sh->dev[sh->pd_idx].flags); 4421 sh->ops.target = sh->pd_idx; 4422 sh->ops.target2 = -1; 4423 s->uptodate++; 4424 } 4425 } 4426 break; 4427 case check_state_compute_run: 4428 break; 4429 default: 4430 pr_err("%s: unknown check_state: %d sector: %llu\n", 4431 __func__, sh->check_state, 4432 (unsigned long long) sh->sector); 4433 BUG(); 4434 } 4435 } 4436 4437 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4438 struct stripe_head_state *s, 4439 int disks) 4440 { 4441 int pd_idx = sh->pd_idx; 4442 int qd_idx = sh->qd_idx; 4443 struct r5dev *dev; 4444 4445 BUG_ON(sh->batch_head); 4446 set_bit(STRIPE_HANDLE, &sh->state); 4447 4448 BUG_ON(s->failed > 2); 4449 4450 /* Want to check and possibly repair P and Q. 4451 * However there could be one 'failed' device, in which 4452 * case we can only check one of them, possibly using the 4453 * other to generate missing data 4454 */ 4455 4456 switch (sh->check_state) { 4457 case check_state_idle: 4458 /* start a new check operation if there are < 2 failures */ 4459 if (s->failed == s->q_failed) { 4460 /* The only possible failed device holds Q, so it 4461 * makes sense to check P (If anything else were failed, 4462 * we would have used P to recreate it). 4463 */ 4464 sh->check_state = check_state_run; 4465 } 4466 if (!s->q_failed && s->failed < 2) { 4467 /* Q is not failed, and we didn't use it to generate 4468 * anything, so it makes sense to check it 4469 */ 4470 if (sh->check_state == check_state_run) 4471 sh->check_state = check_state_run_pq; 4472 else 4473 sh->check_state = check_state_run_q; 4474 } 4475 4476 /* discard potentially stale zero_sum_result */ 4477 sh->ops.zero_sum_result = 0; 4478 4479 if (sh->check_state == check_state_run) { 4480 /* async_xor_zero_sum destroys the contents of P */ 4481 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4482 s->uptodate--; 4483 } 4484 if (sh->check_state >= check_state_run && 4485 sh->check_state <= check_state_run_pq) { 4486 /* async_syndrome_zero_sum preserves P and Q, so 4487 * no need to mark them !uptodate here 4488 */ 4489 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4490 break; 4491 } 4492 4493 /* we have 2-disk failure */ 4494 BUG_ON(s->failed != 2); 4495 fallthrough; 4496 case check_state_compute_result: 4497 sh->check_state = check_state_idle; 4498 4499 /* check that a write has not made the stripe insync */ 4500 if (test_bit(STRIPE_INSYNC, &sh->state)) 4501 break; 4502 4503 /* now write out any block on a failed drive, 4504 * or P or Q if they were recomputed 4505 */ 4506 dev = NULL; 4507 if (s->failed == 2) { 4508 dev = &sh->dev[s->failed_num[1]]; 4509 s->locked++; 4510 set_bit(R5_LOCKED, &dev->flags); 4511 set_bit(R5_Wantwrite, &dev->flags); 4512 } 4513 if (s->failed >= 1) { 4514 dev = &sh->dev[s->failed_num[0]]; 4515 s->locked++; 4516 set_bit(R5_LOCKED, &dev->flags); 4517 set_bit(R5_Wantwrite, &dev->flags); 4518 } 4519 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4520 dev = &sh->dev[pd_idx]; 4521 s->locked++; 4522 set_bit(R5_LOCKED, &dev->flags); 4523 set_bit(R5_Wantwrite, &dev->flags); 4524 } 4525 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4526 dev = &sh->dev[qd_idx]; 4527 s->locked++; 4528 set_bit(R5_LOCKED, &dev->flags); 4529 set_bit(R5_Wantwrite, &dev->flags); 4530 } 4531 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), 4532 "%s: disk%td not up to date\n", 4533 mdname(conf->mddev), 4534 dev - (struct r5dev *) &sh->dev)) { 4535 clear_bit(R5_LOCKED, &dev->flags); 4536 clear_bit(R5_Wantwrite, &dev->flags); 4537 s->locked--; 4538 } 4539 clear_bit(STRIPE_DEGRADED, &sh->state); 4540 4541 set_bit(STRIPE_INSYNC, &sh->state); 4542 break; 4543 case check_state_run: 4544 case check_state_run_q: 4545 case check_state_run_pq: 4546 break; /* we will be called again upon completion */ 4547 case check_state_check_result: 4548 sh->check_state = check_state_idle; 4549 4550 /* handle a successful check operation, if parity is correct 4551 * we are done. Otherwise update the mismatch count and repair 4552 * parity if !MD_RECOVERY_CHECK 4553 */ 4554 if (sh->ops.zero_sum_result == 0) { 4555 /* both parities are correct */ 4556 if (!s->failed) 4557 set_bit(STRIPE_INSYNC, &sh->state); 4558 else { 4559 /* in contrast to the raid5 case we can validate 4560 * parity, but still have a failure to write 4561 * back 4562 */ 4563 sh->check_state = check_state_compute_result; 4564 /* Returning at this point means that we may go 4565 * off and bring p and/or q uptodate again so 4566 * we make sure to check zero_sum_result again 4567 * to verify if p or q need writeback 4568 */ 4569 } 4570 } else { 4571 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4572 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4573 /* don't try to repair!! */ 4574 set_bit(STRIPE_INSYNC, &sh->state); 4575 pr_warn_ratelimited("%s: mismatch sector in range " 4576 "%llu-%llu\n", mdname(conf->mddev), 4577 (unsigned long long) sh->sector, 4578 (unsigned long long) sh->sector + 4579 RAID5_STRIPE_SECTORS(conf)); 4580 } else { 4581 int *target = &sh->ops.target; 4582 4583 sh->ops.target = -1; 4584 sh->ops.target2 = -1; 4585 sh->check_state = check_state_compute_run; 4586 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4587 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4588 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4589 set_bit(R5_Wantcompute, 4590 &sh->dev[pd_idx].flags); 4591 *target = pd_idx; 4592 target = &sh->ops.target2; 4593 s->uptodate++; 4594 } 4595 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4596 set_bit(R5_Wantcompute, 4597 &sh->dev[qd_idx].flags); 4598 *target = qd_idx; 4599 s->uptodate++; 4600 } 4601 } 4602 } 4603 break; 4604 case check_state_compute_run: 4605 break; 4606 default: 4607 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4608 __func__, sh->check_state, 4609 (unsigned long long) sh->sector); 4610 BUG(); 4611 } 4612 } 4613 4614 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4615 { 4616 int i; 4617 4618 /* We have read all the blocks in this stripe and now we need to 4619 * copy some of them into a target stripe for expand. 4620 */ 4621 struct dma_async_tx_descriptor *tx = NULL; 4622 BUG_ON(sh->batch_head); 4623 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4624 for (i = 0; i < sh->disks; i++) 4625 if (i != sh->pd_idx && i != sh->qd_idx) { 4626 int dd_idx, j; 4627 struct stripe_head *sh2; 4628 struct async_submit_ctl submit; 4629 4630 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4631 sector_t s = raid5_compute_sector(conf, bn, 0, 4632 &dd_idx, NULL); 4633 sh2 = raid5_get_active_stripe(conf, NULL, s, 4634 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 4635 if (sh2 == NULL) 4636 /* so far only the early blocks of this stripe 4637 * have been requested. When later blocks 4638 * get requested, we will try again 4639 */ 4640 continue; 4641 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4642 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4643 /* must have already done this block */ 4644 raid5_release_stripe(sh2); 4645 continue; 4646 } 4647 4648 /* place all the copies on one channel */ 4649 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4650 tx = async_memcpy(sh2->dev[dd_idx].page, 4651 sh->dev[i].page, sh2->dev[dd_idx].offset, 4652 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf), 4653 &submit); 4654 4655 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4656 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4657 for (j = 0; j < conf->raid_disks; j++) 4658 if (j != sh2->pd_idx && 4659 j != sh2->qd_idx && 4660 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4661 break; 4662 if (j == conf->raid_disks) { 4663 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4664 set_bit(STRIPE_HANDLE, &sh2->state); 4665 } 4666 raid5_release_stripe(sh2); 4667 4668 } 4669 /* done submitting copies, wait for them to complete */ 4670 async_tx_quiesce(&tx); 4671 } 4672 4673 /* 4674 * handle_stripe - do things to a stripe. 4675 * 4676 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4677 * state of various bits to see what needs to be done. 4678 * Possible results: 4679 * return some read requests which now have data 4680 * return some write requests which are safely on storage 4681 * schedule a read on some buffers 4682 * schedule a write of some buffers 4683 * return confirmation of parity correctness 4684 * 4685 */ 4686 4687 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4688 { 4689 struct r5conf *conf = sh->raid_conf; 4690 int disks = sh->disks; 4691 struct r5dev *dev; 4692 int i; 4693 int do_recovery = 0; 4694 4695 memset(s, 0, sizeof(*s)); 4696 4697 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4698 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4699 s->failed_num[0] = -1; 4700 s->failed_num[1] = -1; 4701 s->log_failed = r5l_log_disk_error(conf); 4702 4703 /* Now to look around and see what can be done */ 4704 rcu_read_lock(); 4705 for (i=disks; i--; ) { 4706 struct md_rdev *rdev; 4707 sector_t first_bad; 4708 int bad_sectors; 4709 int is_bad = 0; 4710 4711 dev = &sh->dev[i]; 4712 4713 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4714 i, dev->flags, 4715 dev->toread, dev->towrite, dev->written); 4716 /* maybe we can reply to a read 4717 * 4718 * new wantfill requests are only permitted while 4719 * ops_complete_biofill is guaranteed to be inactive 4720 */ 4721 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4722 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4723 set_bit(R5_Wantfill, &dev->flags); 4724 4725 /* now count some things */ 4726 if (test_bit(R5_LOCKED, &dev->flags)) 4727 s->locked++; 4728 if (test_bit(R5_UPTODATE, &dev->flags)) 4729 s->uptodate++; 4730 if (test_bit(R5_Wantcompute, &dev->flags)) { 4731 s->compute++; 4732 BUG_ON(s->compute > 2); 4733 } 4734 4735 if (test_bit(R5_Wantfill, &dev->flags)) 4736 s->to_fill++; 4737 else if (dev->toread) 4738 s->to_read++; 4739 if (dev->towrite) { 4740 s->to_write++; 4741 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4742 s->non_overwrite++; 4743 } 4744 if (dev->written) 4745 s->written++; 4746 /* Prefer to use the replacement for reads, but only 4747 * if it is recovered enough and has no bad blocks. 4748 */ 4749 rdev = rcu_dereference(conf->disks[i].replacement); 4750 if (rdev && !test_bit(Faulty, &rdev->flags) && 4751 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) && 4752 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4753 &first_bad, &bad_sectors)) 4754 set_bit(R5_ReadRepl, &dev->flags); 4755 else { 4756 if (rdev && !test_bit(Faulty, &rdev->flags)) 4757 set_bit(R5_NeedReplace, &dev->flags); 4758 else 4759 clear_bit(R5_NeedReplace, &dev->flags); 4760 rdev = rcu_dereference(conf->disks[i].rdev); 4761 clear_bit(R5_ReadRepl, &dev->flags); 4762 } 4763 if (rdev && test_bit(Faulty, &rdev->flags)) 4764 rdev = NULL; 4765 if (rdev) { 4766 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4767 &first_bad, &bad_sectors); 4768 if (s->blocked_rdev == NULL 4769 && (test_bit(Blocked, &rdev->flags) 4770 || is_bad < 0)) { 4771 if (is_bad < 0) 4772 set_bit(BlockedBadBlocks, 4773 &rdev->flags); 4774 s->blocked_rdev = rdev; 4775 atomic_inc(&rdev->nr_pending); 4776 } 4777 } 4778 clear_bit(R5_Insync, &dev->flags); 4779 if (!rdev) 4780 /* Not in-sync */; 4781 else if (is_bad) { 4782 /* also not in-sync */ 4783 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4784 test_bit(R5_UPTODATE, &dev->flags)) { 4785 /* treat as in-sync, but with a read error 4786 * which we can now try to correct 4787 */ 4788 set_bit(R5_Insync, &dev->flags); 4789 set_bit(R5_ReadError, &dev->flags); 4790 } 4791 } else if (test_bit(In_sync, &rdev->flags)) 4792 set_bit(R5_Insync, &dev->flags); 4793 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset) 4794 /* in sync if before recovery_offset */ 4795 set_bit(R5_Insync, &dev->flags); 4796 else if (test_bit(R5_UPTODATE, &dev->flags) && 4797 test_bit(R5_Expanded, &dev->flags)) 4798 /* If we've reshaped into here, we assume it is Insync. 4799 * We will shortly update recovery_offset to make 4800 * it official. 4801 */ 4802 set_bit(R5_Insync, &dev->flags); 4803 4804 if (test_bit(R5_WriteError, &dev->flags)) { 4805 /* This flag does not apply to '.replacement' 4806 * only to .rdev, so make sure to check that*/ 4807 struct md_rdev *rdev2 = rcu_dereference( 4808 conf->disks[i].rdev); 4809 if (rdev2 == rdev) 4810 clear_bit(R5_Insync, &dev->flags); 4811 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4812 s->handle_bad_blocks = 1; 4813 atomic_inc(&rdev2->nr_pending); 4814 } else 4815 clear_bit(R5_WriteError, &dev->flags); 4816 } 4817 if (test_bit(R5_MadeGood, &dev->flags)) { 4818 /* This flag does not apply to '.replacement' 4819 * only to .rdev, so make sure to check that*/ 4820 struct md_rdev *rdev2 = rcu_dereference( 4821 conf->disks[i].rdev); 4822 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4823 s->handle_bad_blocks = 1; 4824 atomic_inc(&rdev2->nr_pending); 4825 } else 4826 clear_bit(R5_MadeGood, &dev->flags); 4827 } 4828 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4829 struct md_rdev *rdev2 = rcu_dereference( 4830 conf->disks[i].replacement); 4831 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4832 s->handle_bad_blocks = 1; 4833 atomic_inc(&rdev2->nr_pending); 4834 } else 4835 clear_bit(R5_MadeGoodRepl, &dev->flags); 4836 } 4837 if (!test_bit(R5_Insync, &dev->flags)) { 4838 /* The ReadError flag will just be confusing now */ 4839 clear_bit(R5_ReadError, &dev->flags); 4840 clear_bit(R5_ReWrite, &dev->flags); 4841 } 4842 if (test_bit(R5_ReadError, &dev->flags)) 4843 clear_bit(R5_Insync, &dev->flags); 4844 if (!test_bit(R5_Insync, &dev->flags)) { 4845 if (s->failed < 2) 4846 s->failed_num[s->failed] = i; 4847 s->failed++; 4848 if (rdev && !test_bit(Faulty, &rdev->flags)) 4849 do_recovery = 1; 4850 else if (!rdev) { 4851 rdev = rcu_dereference( 4852 conf->disks[i].replacement); 4853 if (rdev && !test_bit(Faulty, &rdev->flags)) 4854 do_recovery = 1; 4855 } 4856 } 4857 4858 if (test_bit(R5_InJournal, &dev->flags)) 4859 s->injournal++; 4860 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4861 s->just_cached++; 4862 } 4863 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4864 /* If there is a failed device being replaced, 4865 * we must be recovering. 4866 * else if we are after recovery_cp, we must be syncing 4867 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4868 * else we can only be replacing 4869 * sync and recovery both need to read all devices, and so 4870 * use the same flag. 4871 */ 4872 if (do_recovery || 4873 sh->sector >= conf->mddev->recovery_cp || 4874 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4875 s->syncing = 1; 4876 else 4877 s->replacing = 1; 4878 } 4879 rcu_read_unlock(); 4880 } 4881 4882 /* 4883 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or 4884 * a head which can now be handled. 4885 */ 4886 static int clear_batch_ready(struct stripe_head *sh) 4887 { 4888 struct stripe_head *tmp; 4889 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4890 return (sh->batch_head && sh->batch_head != sh); 4891 spin_lock(&sh->stripe_lock); 4892 if (!sh->batch_head) { 4893 spin_unlock(&sh->stripe_lock); 4894 return 0; 4895 } 4896 4897 /* 4898 * this stripe could be added to a batch list before we check 4899 * BATCH_READY, skips it 4900 */ 4901 if (sh->batch_head != sh) { 4902 spin_unlock(&sh->stripe_lock); 4903 return 1; 4904 } 4905 spin_lock(&sh->batch_lock); 4906 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4907 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4908 spin_unlock(&sh->batch_lock); 4909 spin_unlock(&sh->stripe_lock); 4910 4911 /* 4912 * BATCH_READY is cleared, no new stripes can be added. 4913 * batch_list can be accessed without lock 4914 */ 4915 return 0; 4916 } 4917 4918 static void break_stripe_batch_list(struct stripe_head *head_sh, 4919 unsigned long handle_flags) 4920 { 4921 struct stripe_head *sh, *next; 4922 int i; 4923 int do_wakeup = 0; 4924 4925 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4926 4927 list_del_init(&sh->batch_list); 4928 4929 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4930 (1 << STRIPE_SYNCING) | 4931 (1 << STRIPE_REPLACED) | 4932 (1 << STRIPE_DELAYED) | 4933 (1 << STRIPE_BIT_DELAY) | 4934 (1 << STRIPE_FULL_WRITE) | 4935 (1 << STRIPE_BIOFILL_RUN) | 4936 (1 << STRIPE_COMPUTE_RUN) | 4937 (1 << STRIPE_DISCARD) | 4938 (1 << STRIPE_BATCH_READY) | 4939 (1 << STRIPE_BATCH_ERR) | 4940 (1 << STRIPE_BITMAP_PENDING)), 4941 "stripe state: %lx\n", sh->state); 4942 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4943 (1 << STRIPE_REPLACED)), 4944 "head stripe state: %lx\n", head_sh->state); 4945 4946 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4947 (1 << STRIPE_PREREAD_ACTIVE) | 4948 (1 << STRIPE_DEGRADED) | 4949 (1 << STRIPE_ON_UNPLUG_LIST)), 4950 head_sh->state & (1 << STRIPE_INSYNC)); 4951 4952 sh->check_state = head_sh->check_state; 4953 sh->reconstruct_state = head_sh->reconstruct_state; 4954 spin_lock_irq(&sh->stripe_lock); 4955 sh->batch_head = NULL; 4956 spin_unlock_irq(&sh->stripe_lock); 4957 for (i = 0; i < sh->disks; i++) { 4958 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4959 do_wakeup = 1; 4960 sh->dev[i].flags = head_sh->dev[i].flags & 4961 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4962 } 4963 if (handle_flags == 0 || 4964 sh->state & handle_flags) 4965 set_bit(STRIPE_HANDLE, &sh->state); 4966 raid5_release_stripe(sh); 4967 } 4968 spin_lock_irq(&head_sh->stripe_lock); 4969 head_sh->batch_head = NULL; 4970 spin_unlock_irq(&head_sh->stripe_lock); 4971 for (i = 0; i < head_sh->disks; i++) 4972 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4973 do_wakeup = 1; 4974 if (head_sh->state & handle_flags) 4975 set_bit(STRIPE_HANDLE, &head_sh->state); 4976 4977 if (do_wakeup) 4978 wake_up(&head_sh->raid_conf->wait_for_overlap); 4979 } 4980 4981 static void handle_stripe(struct stripe_head *sh) 4982 { 4983 struct stripe_head_state s; 4984 struct r5conf *conf = sh->raid_conf; 4985 int i; 4986 int prexor; 4987 int disks = sh->disks; 4988 struct r5dev *pdev, *qdev; 4989 4990 clear_bit(STRIPE_HANDLE, &sh->state); 4991 4992 /* 4993 * handle_stripe should not continue handle the batched stripe, only 4994 * the head of batch list or lone stripe can continue. Otherwise we 4995 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE 4996 * is set for the batched stripe. 4997 */ 4998 if (clear_batch_ready(sh)) 4999 return; 5000 5001 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 5002 /* already being handled, ensure it gets handled 5003 * again when current action finishes */ 5004 set_bit(STRIPE_HANDLE, &sh->state); 5005 return; 5006 } 5007 5008 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 5009 break_stripe_batch_list(sh, 0); 5010 5011 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 5012 spin_lock(&sh->stripe_lock); 5013 /* 5014 * Cannot process 'sync' concurrently with 'discard'. 5015 * Flush data in r5cache before 'sync'. 5016 */ 5017 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 5018 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 5019 !test_bit(STRIPE_DISCARD, &sh->state) && 5020 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 5021 set_bit(STRIPE_SYNCING, &sh->state); 5022 clear_bit(STRIPE_INSYNC, &sh->state); 5023 clear_bit(STRIPE_REPLACED, &sh->state); 5024 } 5025 spin_unlock(&sh->stripe_lock); 5026 } 5027 clear_bit(STRIPE_DELAYED, &sh->state); 5028 5029 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 5030 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 5031 (unsigned long long)sh->sector, sh->state, 5032 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 5033 sh->check_state, sh->reconstruct_state); 5034 5035 analyse_stripe(sh, &s); 5036 5037 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 5038 goto finish; 5039 5040 if (s.handle_bad_blocks || 5041 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 5042 set_bit(STRIPE_HANDLE, &sh->state); 5043 goto finish; 5044 } 5045 5046 if (unlikely(s.blocked_rdev)) { 5047 if (s.syncing || s.expanding || s.expanded || 5048 s.replacing || s.to_write || s.written) { 5049 set_bit(STRIPE_HANDLE, &sh->state); 5050 goto finish; 5051 } 5052 /* There is nothing for the blocked_rdev to block */ 5053 rdev_dec_pending(s.blocked_rdev, conf->mddev); 5054 s.blocked_rdev = NULL; 5055 } 5056 5057 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 5058 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 5059 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 5060 } 5061 5062 pr_debug("locked=%d uptodate=%d to_read=%d" 5063 " to_write=%d failed=%d failed_num=%d,%d\n", 5064 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 5065 s.failed_num[0], s.failed_num[1]); 5066 /* 5067 * check if the array has lost more than max_degraded devices and, 5068 * if so, some requests might need to be failed. 5069 * 5070 * When journal device failed (log_failed), we will only process 5071 * the stripe if there is data need write to raid disks 5072 */ 5073 if (s.failed > conf->max_degraded || 5074 (s.log_failed && s.injournal == 0)) { 5075 sh->check_state = 0; 5076 sh->reconstruct_state = 0; 5077 break_stripe_batch_list(sh, 0); 5078 if (s.to_read+s.to_write+s.written) 5079 handle_failed_stripe(conf, sh, &s, disks); 5080 if (s.syncing + s.replacing) 5081 handle_failed_sync(conf, sh, &s); 5082 } 5083 5084 /* Now we check to see if any write operations have recently 5085 * completed 5086 */ 5087 prexor = 0; 5088 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 5089 prexor = 1; 5090 if (sh->reconstruct_state == reconstruct_state_drain_result || 5091 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 5092 sh->reconstruct_state = reconstruct_state_idle; 5093 5094 /* All the 'written' buffers and the parity block are ready to 5095 * be written back to disk 5096 */ 5097 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 5098 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 5099 BUG_ON(sh->qd_idx >= 0 && 5100 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 5101 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 5102 for (i = disks; i--; ) { 5103 struct r5dev *dev = &sh->dev[i]; 5104 if (test_bit(R5_LOCKED, &dev->flags) && 5105 (i == sh->pd_idx || i == sh->qd_idx || 5106 dev->written || test_bit(R5_InJournal, 5107 &dev->flags))) { 5108 pr_debug("Writing block %d\n", i); 5109 set_bit(R5_Wantwrite, &dev->flags); 5110 if (prexor) 5111 continue; 5112 if (s.failed > 1) 5113 continue; 5114 if (!test_bit(R5_Insync, &dev->flags) || 5115 ((i == sh->pd_idx || i == sh->qd_idx) && 5116 s.failed == 0)) 5117 set_bit(STRIPE_INSYNC, &sh->state); 5118 } 5119 } 5120 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5121 s.dec_preread_active = 1; 5122 } 5123 5124 /* 5125 * might be able to return some write requests if the parity blocks 5126 * are safe, or on a failed drive 5127 */ 5128 pdev = &sh->dev[sh->pd_idx]; 5129 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 5130 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 5131 qdev = &sh->dev[sh->qd_idx]; 5132 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 5133 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 5134 || conf->level < 6; 5135 5136 if (s.written && 5137 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 5138 && !test_bit(R5_LOCKED, &pdev->flags) 5139 && (test_bit(R5_UPTODATE, &pdev->flags) || 5140 test_bit(R5_Discard, &pdev->flags))))) && 5141 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 5142 && !test_bit(R5_LOCKED, &qdev->flags) 5143 && (test_bit(R5_UPTODATE, &qdev->flags) || 5144 test_bit(R5_Discard, &qdev->flags)))))) 5145 handle_stripe_clean_event(conf, sh, disks); 5146 5147 if (s.just_cached) 5148 r5c_handle_cached_data_endio(conf, sh, disks); 5149 log_stripe_write_finished(sh); 5150 5151 /* Now we might consider reading some blocks, either to check/generate 5152 * parity, or to satisfy requests 5153 * or to load a block that is being partially written. 5154 */ 5155 if (s.to_read || s.non_overwrite 5156 || (s.to_write && s.failed) 5157 || (s.syncing && (s.uptodate + s.compute < disks)) 5158 || s.replacing 5159 || s.expanding) 5160 handle_stripe_fill(sh, &s, disks); 5161 5162 /* 5163 * When the stripe finishes full journal write cycle (write to journal 5164 * and raid disk), this is the clean up procedure so it is ready for 5165 * next operation. 5166 */ 5167 r5c_finish_stripe_write_out(conf, sh, &s); 5168 5169 /* 5170 * Now to consider new write requests, cache write back and what else, 5171 * if anything should be read. We do not handle new writes when: 5172 * 1/ A 'write' operation (copy+xor) is already in flight. 5173 * 2/ A 'check' operation is in flight, as it may clobber the parity 5174 * block. 5175 * 3/ A r5c cache log write is in flight. 5176 */ 5177 5178 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 5179 if (!r5c_is_writeback(conf->log)) { 5180 if (s.to_write) 5181 handle_stripe_dirtying(conf, sh, &s, disks); 5182 } else { /* write back cache */ 5183 int ret = 0; 5184 5185 /* First, try handle writes in caching phase */ 5186 if (s.to_write) 5187 ret = r5c_try_caching_write(conf, sh, &s, 5188 disks); 5189 /* 5190 * If caching phase failed: ret == -EAGAIN 5191 * OR 5192 * stripe under reclaim: !caching && injournal 5193 * 5194 * fall back to handle_stripe_dirtying() 5195 */ 5196 if (ret == -EAGAIN || 5197 /* stripe under reclaim: !caching && injournal */ 5198 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 5199 s.injournal > 0)) { 5200 ret = handle_stripe_dirtying(conf, sh, &s, 5201 disks); 5202 if (ret == -EAGAIN) 5203 goto finish; 5204 } 5205 } 5206 } 5207 5208 /* maybe we need to check and possibly fix the parity for this stripe 5209 * Any reads will already have been scheduled, so we just see if enough 5210 * data is available. The parity check is held off while parity 5211 * dependent operations are in flight. 5212 */ 5213 if (sh->check_state || 5214 (s.syncing && s.locked == 0 && 5215 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5216 !test_bit(STRIPE_INSYNC, &sh->state))) { 5217 if (conf->level == 6) 5218 handle_parity_checks6(conf, sh, &s, disks); 5219 else 5220 handle_parity_checks5(conf, sh, &s, disks); 5221 } 5222 5223 if ((s.replacing || s.syncing) && s.locked == 0 5224 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 5225 && !test_bit(STRIPE_REPLACED, &sh->state)) { 5226 /* Write out to replacement devices where possible */ 5227 for (i = 0; i < conf->raid_disks; i++) 5228 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 5229 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 5230 set_bit(R5_WantReplace, &sh->dev[i].flags); 5231 set_bit(R5_LOCKED, &sh->dev[i].flags); 5232 s.locked++; 5233 } 5234 if (s.replacing) 5235 set_bit(STRIPE_INSYNC, &sh->state); 5236 set_bit(STRIPE_REPLACED, &sh->state); 5237 } 5238 if ((s.syncing || s.replacing) && s.locked == 0 && 5239 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5240 test_bit(STRIPE_INSYNC, &sh->state)) { 5241 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5242 clear_bit(STRIPE_SYNCING, &sh->state); 5243 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 5244 wake_up(&conf->wait_for_overlap); 5245 } 5246 5247 /* If the failed drives are just a ReadError, then we might need 5248 * to progress the repair/check process 5249 */ 5250 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 5251 for (i = 0; i < s.failed; i++) { 5252 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 5253 if (test_bit(R5_ReadError, &dev->flags) 5254 && !test_bit(R5_LOCKED, &dev->flags) 5255 && test_bit(R5_UPTODATE, &dev->flags) 5256 ) { 5257 if (!test_bit(R5_ReWrite, &dev->flags)) { 5258 set_bit(R5_Wantwrite, &dev->flags); 5259 set_bit(R5_ReWrite, &dev->flags); 5260 } else 5261 /* let's read it back */ 5262 set_bit(R5_Wantread, &dev->flags); 5263 set_bit(R5_LOCKED, &dev->flags); 5264 s.locked++; 5265 } 5266 } 5267 5268 /* Finish reconstruct operations initiated by the expansion process */ 5269 if (sh->reconstruct_state == reconstruct_state_result) { 5270 struct stripe_head *sh_src 5271 = raid5_get_active_stripe(conf, NULL, sh->sector, 5272 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK | 5273 R5_GAS_NOQUIESCE); 5274 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 5275 /* sh cannot be written until sh_src has been read. 5276 * so arrange for sh to be delayed a little 5277 */ 5278 set_bit(STRIPE_DELAYED, &sh->state); 5279 set_bit(STRIPE_HANDLE, &sh->state); 5280 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 5281 &sh_src->state)) 5282 atomic_inc(&conf->preread_active_stripes); 5283 raid5_release_stripe(sh_src); 5284 goto finish; 5285 } 5286 if (sh_src) 5287 raid5_release_stripe(sh_src); 5288 5289 sh->reconstruct_state = reconstruct_state_idle; 5290 clear_bit(STRIPE_EXPANDING, &sh->state); 5291 for (i = conf->raid_disks; i--; ) { 5292 set_bit(R5_Wantwrite, &sh->dev[i].flags); 5293 set_bit(R5_LOCKED, &sh->dev[i].flags); 5294 s.locked++; 5295 } 5296 } 5297 5298 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 5299 !sh->reconstruct_state) { 5300 /* Need to write out all blocks after computing parity */ 5301 sh->disks = conf->raid_disks; 5302 stripe_set_idx(sh->sector, conf, 0, sh); 5303 schedule_reconstruction(sh, &s, 1, 1); 5304 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 5305 clear_bit(STRIPE_EXPAND_READY, &sh->state); 5306 atomic_dec(&conf->reshape_stripes); 5307 wake_up(&conf->wait_for_overlap); 5308 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5309 } 5310 5311 if (s.expanding && s.locked == 0 && 5312 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 5313 handle_stripe_expansion(conf, sh); 5314 5315 finish: 5316 /* wait for this device to become unblocked */ 5317 if (unlikely(s.blocked_rdev)) { 5318 if (conf->mddev->external) 5319 md_wait_for_blocked_rdev(s.blocked_rdev, 5320 conf->mddev); 5321 else 5322 /* Internal metadata will immediately 5323 * be written by raid5d, so we don't 5324 * need to wait here. 5325 */ 5326 rdev_dec_pending(s.blocked_rdev, 5327 conf->mddev); 5328 } 5329 5330 if (s.handle_bad_blocks) 5331 for (i = disks; i--; ) { 5332 struct md_rdev *rdev; 5333 struct r5dev *dev = &sh->dev[i]; 5334 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5335 /* We own a safe reference to the rdev */ 5336 rdev = rdev_pend_deref(conf->disks[i].rdev); 5337 if (!rdev_set_badblocks(rdev, sh->sector, 5338 RAID5_STRIPE_SECTORS(conf), 0)) 5339 md_error(conf->mddev, rdev); 5340 rdev_dec_pending(rdev, conf->mddev); 5341 } 5342 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5343 rdev = rdev_pend_deref(conf->disks[i].rdev); 5344 rdev_clear_badblocks(rdev, sh->sector, 5345 RAID5_STRIPE_SECTORS(conf), 0); 5346 rdev_dec_pending(rdev, conf->mddev); 5347 } 5348 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5349 rdev = rdev_pend_deref(conf->disks[i].replacement); 5350 if (!rdev) 5351 /* rdev have been moved down */ 5352 rdev = rdev_pend_deref(conf->disks[i].rdev); 5353 rdev_clear_badblocks(rdev, sh->sector, 5354 RAID5_STRIPE_SECTORS(conf), 0); 5355 rdev_dec_pending(rdev, conf->mddev); 5356 } 5357 } 5358 5359 if (s.ops_request) 5360 raid_run_ops(sh, s.ops_request); 5361 5362 ops_run_io(sh, &s); 5363 5364 if (s.dec_preread_active) { 5365 /* We delay this until after ops_run_io so that if make_request 5366 * is waiting on a flush, it won't continue until the writes 5367 * have actually been submitted. 5368 */ 5369 atomic_dec(&conf->preread_active_stripes); 5370 if (atomic_read(&conf->preread_active_stripes) < 5371 IO_THRESHOLD) 5372 md_wakeup_thread(conf->mddev->thread); 5373 } 5374 5375 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5376 } 5377 5378 static void raid5_activate_delayed(struct r5conf *conf) 5379 __must_hold(&conf->device_lock) 5380 { 5381 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5382 while (!list_empty(&conf->delayed_list)) { 5383 struct list_head *l = conf->delayed_list.next; 5384 struct stripe_head *sh; 5385 sh = list_entry(l, struct stripe_head, lru); 5386 list_del_init(l); 5387 clear_bit(STRIPE_DELAYED, &sh->state); 5388 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5389 atomic_inc(&conf->preread_active_stripes); 5390 list_add_tail(&sh->lru, &conf->hold_list); 5391 raid5_wakeup_stripe_thread(sh); 5392 } 5393 } 5394 } 5395 5396 static void activate_bit_delay(struct r5conf *conf, 5397 struct list_head *temp_inactive_list) 5398 __must_hold(&conf->device_lock) 5399 { 5400 struct list_head head; 5401 list_add(&head, &conf->bitmap_list); 5402 list_del_init(&conf->bitmap_list); 5403 while (!list_empty(&head)) { 5404 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5405 int hash; 5406 list_del_init(&sh->lru); 5407 atomic_inc(&sh->count); 5408 hash = sh->hash_lock_index; 5409 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5410 } 5411 } 5412 5413 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5414 { 5415 struct r5conf *conf = mddev->private; 5416 sector_t sector = bio->bi_iter.bi_sector; 5417 unsigned int chunk_sectors; 5418 unsigned int bio_sectors = bio_sectors(bio); 5419 5420 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5421 return chunk_sectors >= 5422 ((sector & (chunk_sectors - 1)) + bio_sectors); 5423 } 5424 5425 /* 5426 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5427 * later sampled by raid5d. 5428 */ 5429 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5430 { 5431 unsigned long flags; 5432 5433 spin_lock_irqsave(&conf->device_lock, flags); 5434 5435 bi->bi_next = conf->retry_read_aligned_list; 5436 conf->retry_read_aligned_list = bi; 5437 5438 spin_unlock_irqrestore(&conf->device_lock, flags); 5439 md_wakeup_thread(conf->mddev->thread); 5440 } 5441 5442 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5443 unsigned int *offset) 5444 { 5445 struct bio *bi; 5446 5447 bi = conf->retry_read_aligned; 5448 if (bi) { 5449 *offset = conf->retry_read_offset; 5450 conf->retry_read_aligned = NULL; 5451 return bi; 5452 } 5453 bi = conf->retry_read_aligned_list; 5454 if(bi) { 5455 conf->retry_read_aligned_list = bi->bi_next; 5456 bi->bi_next = NULL; 5457 *offset = 0; 5458 } 5459 5460 return bi; 5461 } 5462 5463 /* 5464 * The "raid5_align_endio" should check if the read succeeded and if it 5465 * did, call bio_endio on the original bio (having bio_put the new bio 5466 * first). 5467 * If the read failed.. 5468 */ 5469 static void raid5_align_endio(struct bio *bi) 5470 { 5471 struct md_io_acct *md_io_acct = bi->bi_private; 5472 struct bio *raid_bi = md_io_acct->orig_bio; 5473 struct mddev *mddev; 5474 struct r5conf *conf; 5475 struct md_rdev *rdev; 5476 blk_status_t error = bi->bi_status; 5477 unsigned long start_time = md_io_acct->start_time; 5478 5479 bio_put(bi); 5480 5481 rdev = (void*)raid_bi->bi_next; 5482 raid_bi->bi_next = NULL; 5483 mddev = rdev->mddev; 5484 conf = mddev->private; 5485 5486 rdev_dec_pending(rdev, conf->mddev); 5487 5488 if (!error) { 5489 if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue)) 5490 bio_end_io_acct(raid_bi, start_time); 5491 bio_endio(raid_bi); 5492 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5493 wake_up(&conf->wait_for_quiescent); 5494 return; 5495 } 5496 5497 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5498 5499 add_bio_to_retry(raid_bi, conf); 5500 } 5501 5502 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5503 { 5504 struct r5conf *conf = mddev->private; 5505 struct bio *align_bio; 5506 struct md_rdev *rdev; 5507 sector_t sector, end_sector, first_bad; 5508 int bad_sectors, dd_idx; 5509 struct md_io_acct *md_io_acct; 5510 bool did_inc; 5511 5512 if (!in_chunk_boundary(mddev, raid_bio)) { 5513 pr_debug("%s: non aligned\n", __func__); 5514 return 0; 5515 } 5516 5517 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0, 5518 &dd_idx, NULL); 5519 end_sector = bio_end_sector(raid_bio); 5520 5521 rcu_read_lock(); 5522 if (r5c_big_stripe_cached(conf, sector)) 5523 goto out_rcu_unlock; 5524 5525 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 5526 if (!rdev || test_bit(Faulty, &rdev->flags) || 5527 rdev->recovery_offset < end_sector) { 5528 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 5529 if (!rdev) 5530 goto out_rcu_unlock; 5531 if (test_bit(Faulty, &rdev->flags) || 5532 !(test_bit(In_sync, &rdev->flags) || 5533 rdev->recovery_offset >= end_sector)) 5534 goto out_rcu_unlock; 5535 } 5536 5537 atomic_inc(&rdev->nr_pending); 5538 rcu_read_unlock(); 5539 5540 if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad, 5541 &bad_sectors)) { 5542 rdev_dec_pending(rdev, mddev); 5543 return 0; 5544 } 5545 5546 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO, 5547 &mddev->io_acct_set); 5548 md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone); 5549 raid_bio->bi_next = (void *)rdev; 5550 if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue)) 5551 md_io_acct->start_time = bio_start_io_acct(raid_bio); 5552 md_io_acct->orig_bio = raid_bio; 5553 5554 align_bio->bi_end_io = raid5_align_endio; 5555 align_bio->bi_private = md_io_acct; 5556 align_bio->bi_iter.bi_sector = sector; 5557 5558 /* No reshape active, so we can trust rdev->data_offset */ 5559 align_bio->bi_iter.bi_sector += rdev->data_offset; 5560 5561 did_inc = false; 5562 if (conf->quiesce == 0) { 5563 atomic_inc(&conf->active_aligned_reads); 5564 did_inc = true; 5565 } 5566 /* need a memory barrier to detect the race with raid5_quiesce() */ 5567 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) { 5568 /* quiesce is in progress, so we need to undo io activation and wait 5569 * for it to finish 5570 */ 5571 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads)) 5572 wake_up(&conf->wait_for_quiescent); 5573 spin_lock_irq(&conf->device_lock); 5574 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0, 5575 conf->device_lock); 5576 atomic_inc(&conf->active_aligned_reads); 5577 spin_unlock_irq(&conf->device_lock); 5578 } 5579 5580 if (mddev->gendisk) 5581 trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk), 5582 raid_bio->bi_iter.bi_sector); 5583 submit_bio_noacct(align_bio); 5584 return 1; 5585 5586 out_rcu_unlock: 5587 rcu_read_unlock(); 5588 return 0; 5589 } 5590 5591 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5592 { 5593 struct bio *split; 5594 sector_t sector = raid_bio->bi_iter.bi_sector; 5595 unsigned chunk_sects = mddev->chunk_sectors; 5596 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5597 5598 if (sectors < bio_sectors(raid_bio)) { 5599 struct r5conf *conf = mddev->private; 5600 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5601 bio_chain(split, raid_bio); 5602 submit_bio_noacct(raid_bio); 5603 raid_bio = split; 5604 } 5605 5606 if (!raid5_read_one_chunk(mddev, raid_bio)) 5607 return raid_bio; 5608 5609 return NULL; 5610 } 5611 5612 /* __get_priority_stripe - get the next stripe to process 5613 * 5614 * Full stripe writes are allowed to pass preread active stripes up until 5615 * the bypass_threshold is exceeded. In general the bypass_count 5616 * increments when the handle_list is handled before the hold_list; however, it 5617 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5618 * stripe with in flight i/o. The bypass_count will be reset when the 5619 * head of the hold_list has changed, i.e. the head was promoted to the 5620 * handle_list. 5621 */ 5622 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5623 __must_hold(&conf->device_lock) 5624 { 5625 struct stripe_head *sh, *tmp; 5626 struct list_head *handle_list = NULL; 5627 struct r5worker_group *wg; 5628 bool second_try = !r5c_is_writeback(conf->log) && 5629 !r5l_log_disk_error(conf); 5630 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5631 r5l_log_disk_error(conf); 5632 5633 again: 5634 wg = NULL; 5635 sh = NULL; 5636 if (conf->worker_cnt_per_group == 0) { 5637 handle_list = try_loprio ? &conf->loprio_list : 5638 &conf->handle_list; 5639 } else if (group != ANY_GROUP) { 5640 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5641 &conf->worker_groups[group].handle_list; 5642 wg = &conf->worker_groups[group]; 5643 } else { 5644 int i; 5645 for (i = 0; i < conf->group_cnt; i++) { 5646 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5647 &conf->worker_groups[i].handle_list; 5648 wg = &conf->worker_groups[i]; 5649 if (!list_empty(handle_list)) 5650 break; 5651 } 5652 } 5653 5654 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5655 __func__, 5656 list_empty(handle_list) ? "empty" : "busy", 5657 list_empty(&conf->hold_list) ? "empty" : "busy", 5658 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5659 5660 if (!list_empty(handle_list)) { 5661 sh = list_entry(handle_list->next, typeof(*sh), lru); 5662 5663 if (list_empty(&conf->hold_list)) 5664 conf->bypass_count = 0; 5665 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5666 if (conf->hold_list.next == conf->last_hold) 5667 conf->bypass_count++; 5668 else { 5669 conf->last_hold = conf->hold_list.next; 5670 conf->bypass_count -= conf->bypass_threshold; 5671 if (conf->bypass_count < 0) 5672 conf->bypass_count = 0; 5673 } 5674 } 5675 } else if (!list_empty(&conf->hold_list) && 5676 ((conf->bypass_threshold && 5677 conf->bypass_count > conf->bypass_threshold) || 5678 atomic_read(&conf->pending_full_writes) == 0)) { 5679 5680 list_for_each_entry(tmp, &conf->hold_list, lru) { 5681 if (conf->worker_cnt_per_group == 0 || 5682 group == ANY_GROUP || 5683 !cpu_online(tmp->cpu) || 5684 cpu_to_group(tmp->cpu) == group) { 5685 sh = tmp; 5686 break; 5687 } 5688 } 5689 5690 if (sh) { 5691 conf->bypass_count -= conf->bypass_threshold; 5692 if (conf->bypass_count < 0) 5693 conf->bypass_count = 0; 5694 } 5695 wg = NULL; 5696 } 5697 5698 if (!sh) { 5699 if (second_try) 5700 return NULL; 5701 second_try = true; 5702 try_loprio = !try_loprio; 5703 goto again; 5704 } 5705 5706 if (wg) { 5707 wg->stripes_cnt--; 5708 sh->group = NULL; 5709 } 5710 list_del_init(&sh->lru); 5711 BUG_ON(atomic_inc_return(&sh->count) != 1); 5712 return sh; 5713 } 5714 5715 struct raid5_plug_cb { 5716 struct blk_plug_cb cb; 5717 struct list_head list; 5718 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5719 }; 5720 5721 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5722 { 5723 struct raid5_plug_cb *cb = container_of( 5724 blk_cb, struct raid5_plug_cb, cb); 5725 struct stripe_head *sh; 5726 struct mddev *mddev = cb->cb.data; 5727 struct r5conf *conf = mddev->private; 5728 int cnt = 0; 5729 int hash; 5730 5731 if (cb->list.next && !list_empty(&cb->list)) { 5732 spin_lock_irq(&conf->device_lock); 5733 while (!list_empty(&cb->list)) { 5734 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5735 list_del_init(&sh->lru); 5736 /* 5737 * avoid race release_stripe_plug() sees 5738 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5739 * is still in our list 5740 */ 5741 smp_mb__before_atomic(); 5742 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5743 /* 5744 * STRIPE_ON_RELEASE_LIST could be set here. In that 5745 * case, the count is always > 1 here 5746 */ 5747 hash = sh->hash_lock_index; 5748 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5749 cnt++; 5750 } 5751 spin_unlock_irq(&conf->device_lock); 5752 } 5753 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5754 NR_STRIPE_HASH_LOCKS); 5755 if (mddev->queue) 5756 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5757 kfree(cb); 5758 } 5759 5760 static void release_stripe_plug(struct mddev *mddev, 5761 struct stripe_head *sh) 5762 { 5763 struct blk_plug_cb *blk_cb = blk_check_plugged( 5764 raid5_unplug, mddev, 5765 sizeof(struct raid5_plug_cb)); 5766 struct raid5_plug_cb *cb; 5767 5768 if (!blk_cb) { 5769 raid5_release_stripe(sh); 5770 return; 5771 } 5772 5773 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5774 5775 if (cb->list.next == NULL) { 5776 int i; 5777 INIT_LIST_HEAD(&cb->list); 5778 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5779 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5780 } 5781 5782 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5783 list_add_tail(&sh->lru, &cb->list); 5784 else 5785 raid5_release_stripe(sh); 5786 } 5787 5788 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5789 { 5790 struct r5conf *conf = mddev->private; 5791 sector_t logical_sector, last_sector; 5792 struct stripe_head *sh; 5793 int stripe_sectors; 5794 5795 /* We need to handle this when io_uring supports discard/trim */ 5796 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT)) 5797 return; 5798 5799 if (mddev->reshape_position != MaxSector) 5800 /* Skip discard while reshape is happening */ 5801 return; 5802 5803 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5804 last_sector = bio_end_sector(bi); 5805 5806 bi->bi_next = NULL; 5807 5808 stripe_sectors = conf->chunk_sectors * 5809 (conf->raid_disks - conf->max_degraded); 5810 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5811 stripe_sectors); 5812 sector_div(last_sector, stripe_sectors); 5813 5814 logical_sector *= conf->chunk_sectors; 5815 last_sector *= conf->chunk_sectors; 5816 5817 for (; logical_sector < last_sector; 5818 logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5819 DEFINE_WAIT(w); 5820 int d; 5821 again: 5822 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0); 5823 prepare_to_wait(&conf->wait_for_overlap, &w, 5824 TASK_UNINTERRUPTIBLE); 5825 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5826 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5827 raid5_release_stripe(sh); 5828 schedule(); 5829 goto again; 5830 } 5831 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5832 spin_lock_irq(&sh->stripe_lock); 5833 for (d = 0; d < conf->raid_disks; d++) { 5834 if (d == sh->pd_idx || d == sh->qd_idx) 5835 continue; 5836 if (sh->dev[d].towrite || sh->dev[d].toread) { 5837 set_bit(R5_Overlap, &sh->dev[d].flags); 5838 spin_unlock_irq(&sh->stripe_lock); 5839 raid5_release_stripe(sh); 5840 schedule(); 5841 goto again; 5842 } 5843 } 5844 set_bit(STRIPE_DISCARD, &sh->state); 5845 finish_wait(&conf->wait_for_overlap, &w); 5846 sh->overwrite_disks = 0; 5847 for (d = 0; d < conf->raid_disks; d++) { 5848 if (d == sh->pd_idx || d == sh->qd_idx) 5849 continue; 5850 sh->dev[d].towrite = bi; 5851 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5852 bio_inc_remaining(bi); 5853 md_write_inc(mddev, bi); 5854 sh->overwrite_disks++; 5855 } 5856 spin_unlock_irq(&sh->stripe_lock); 5857 if (conf->mddev->bitmap) { 5858 for (d = 0; 5859 d < conf->raid_disks - conf->max_degraded; 5860 d++) 5861 md_bitmap_startwrite(mddev->bitmap, 5862 sh->sector, 5863 RAID5_STRIPE_SECTORS(conf), 5864 0); 5865 sh->bm_seq = conf->seq_flush + 1; 5866 set_bit(STRIPE_BIT_DELAY, &sh->state); 5867 } 5868 5869 set_bit(STRIPE_HANDLE, &sh->state); 5870 clear_bit(STRIPE_DELAYED, &sh->state); 5871 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5872 atomic_inc(&conf->preread_active_stripes); 5873 release_stripe_plug(mddev, sh); 5874 } 5875 5876 bio_endio(bi); 5877 } 5878 5879 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector, 5880 sector_t reshape_sector) 5881 { 5882 return mddev->reshape_backwards ? sector < reshape_sector : 5883 sector >= reshape_sector; 5884 } 5885 5886 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min, 5887 sector_t max, sector_t reshape_sector) 5888 { 5889 return mddev->reshape_backwards ? max < reshape_sector : 5890 min >= reshape_sector; 5891 } 5892 5893 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf, 5894 struct stripe_head *sh) 5895 { 5896 sector_t max_sector = 0, min_sector = MaxSector; 5897 bool ret = false; 5898 int dd_idx; 5899 5900 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5901 if (dd_idx == sh->pd_idx) 5902 continue; 5903 5904 min_sector = min(min_sector, sh->dev[dd_idx].sector); 5905 max_sector = min(max_sector, sh->dev[dd_idx].sector); 5906 } 5907 5908 spin_lock_irq(&conf->device_lock); 5909 5910 if (!range_ahead_of_reshape(mddev, min_sector, max_sector, 5911 conf->reshape_progress)) 5912 /* mismatch, need to try again */ 5913 ret = true; 5914 5915 spin_unlock_irq(&conf->device_lock); 5916 5917 return ret; 5918 } 5919 5920 static int add_all_stripe_bios(struct r5conf *conf, 5921 struct stripe_request_ctx *ctx, struct stripe_head *sh, 5922 struct bio *bi, int forwrite, int previous) 5923 { 5924 int dd_idx; 5925 int ret = 1; 5926 5927 spin_lock_irq(&sh->stripe_lock); 5928 5929 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5930 struct r5dev *dev = &sh->dev[dd_idx]; 5931 5932 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5933 continue; 5934 5935 if (dev->sector < ctx->first_sector || 5936 dev->sector >= ctx->last_sector) 5937 continue; 5938 5939 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 5940 set_bit(R5_Overlap, &dev->flags); 5941 ret = 0; 5942 continue; 5943 } 5944 } 5945 5946 if (!ret) 5947 goto out; 5948 5949 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5950 struct r5dev *dev = &sh->dev[dd_idx]; 5951 5952 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5953 continue; 5954 5955 if (dev->sector < ctx->first_sector || 5956 dev->sector >= ctx->last_sector) 5957 continue; 5958 5959 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 5960 clear_bit((dev->sector - ctx->first_sector) >> 5961 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do); 5962 } 5963 5964 out: 5965 spin_unlock_irq(&sh->stripe_lock); 5966 return ret; 5967 } 5968 5969 static enum stripe_result make_stripe_request(struct mddev *mddev, 5970 struct r5conf *conf, struct stripe_request_ctx *ctx, 5971 sector_t logical_sector, struct bio *bi) 5972 { 5973 const int rw = bio_data_dir(bi); 5974 enum stripe_result ret; 5975 struct stripe_head *sh; 5976 sector_t new_sector; 5977 int previous = 0, flags = 0; 5978 int seq, dd_idx; 5979 5980 seq = read_seqcount_begin(&conf->gen_lock); 5981 5982 if (unlikely(conf->reshape_progress != MaxSector)) { 5983 /* 5984 * Spinlock is needed as reshape_progress may be 5985 * 64bit on a 32bit platform, and so it might be 5986 * possible to see a half-updated value 5987 * Of course reshape_progress could change after 5988 * the lock is dropped, so once we get a reference 5989 * to the stripe that we think it is, we will have 5990 * to check again. 5991 */ 5992 spin_lock_irq(&conf->device_lock); 5993 if (ahead_of_reshape(mddev, logical_sector, 5994 conf->reshape_progress)) { 5995 previous = 1; 5996 } else { 5997 if (ahead_of_reshape(mddev, logical_sector, 5998 conf->reshape_safe)) { 5999 spin_unlock_irq(&conf->device_lock); 6000 return STRIPE_SCHEDULE_AND_RETRY; 6001 } 6002 } 6003 spin_unlock_irq(&conf->device_lock); 6004 } 6005 6006 new_sector = raid5_compute_sector(conf, logical_sector, previous, 6007 &dd_idx, NULL); 6008 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__, 6009 new_sector, logical_sector); 6010 6011 if (previous) 6012 flags |= R5_GAS_PREVIOUS; 6013 if (bi->bi_opf & REQ_RAHEAD) 6014 flags |= R5_GAS_NOBLOCK; 6015 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags); 6016 if (unlikely(!sh)) { 6017 /* cannot get stripe, just give-up */ 6018 bi->bi_status = BLK_STS_IOERR; 6019 return STRIPE_FAIL; 6020 } 6021 6022 if (unlikely(previous) && 6023 stripe_ahead_of_reshape(mddev, conf, sh)) { 6024 /* 6025 * Expansion moved on while waiting for a stripe. 6026 * Expansion could still move past after this 6027 * test, but as we are holding a reference to 6028 * 'sh', we know that if that happens, 6029 * STRIPE_EXPANDING will get set and the expansion 6030 * won't proceed until we finish with the stripe. 6031 */ 6032 ret = STRIPE_SCHEDULE_AND_RETRY; 6033 goto out_release; 6034 } 6035 6036 if (read_seqcount_retry(&conf->gen_lock, seq)) { 6037 /* Might have got the wrong stripe_head by accident */ 6038 ret = STRIPE_RETRY; 6039 goto out_release; 6040 } 6041 6042 if (test_bit(STRIPE_EXPANDING, &sh->state) || 6043 !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) { 6044 /* 6045 * Stripe is busy expanding or add failed due to 6046 * overlap. Flush everything and wait a while. 6047 */ 6048 md_wakeup_thread(mddev->thread); 6049 ret = STRIPE_SCHEDULE_AND_RETRY; 6050 goto out_release; 6051 } 6052 6053 if (stripe_can_batch(sh)) { 6054 stripe_add_to_batch_list(conf, sh, ctx->batch_last); 6055 if (ctx->batch_last) 6056 raid5_release_stripe(ctx->batch_last); 6057 atomic_inc(&sh->count); 6058 ctx->batch_last = sh; 6059 } 6060 6061 if (ctx->do_flush) { 6062 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 6063 /* we only need flush for one stripe */ 6064 ctx->do_flush = false; 6065 } 6066 6067 set_bit(STRIPE_HANDLE, &sh->state); 6068 clear_bit(STRIPE_DELAYED, &sh->state); 6069 if ((!sh->batch_head || sh == sh->batch_head) && 6070 (bi->bi_opf & REQ_SYNC) && 6071 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 6072 atomic_inc(&conf->preread_active_stripes); 6073 6074 release_stripe_plug(mddev, sh); 6075 return STRIPE_SUCCESS; 6076 6077 out_release: 6078 raid5_release_stripe(sh); 6079 return ret; 6080 } 6081 6082 /* 6083 * If the bio covers multiple data disks, find sector within the bio that has 6084 * the lowest chunk offset in the first chunk. 6085 */ 6086 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf, 6087 struct bio *bi) 6088 { 6089 int sectors_per_chunk = conf->chunk_sectors; 6090 int raid_disks = conf->raid_disks; 6091 int dd_idx; 6092 struct stripe_head sh; 6093 unsigned int chunk_offset; 6094 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6095 sector_t sector; 6096 6097 /* We pass in fake stripe_head to get back parity disk numbers */ 6098 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh); 6099 chunk_offset = sector_div(sector, sectors_per_chunk); 6100 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi)) 6101 return r_sector; 6102 /* 6103 * Bio crosses to the next data disk. Check whether it's in the same 6104 * chunk. 6105 */ 6106 dd_idx++; 6107 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx) 6108 dd_idx++; 6109 if (dd_idx >= raid_disks) 6110 return r_sector; 6111 return r_sector + sectors_per_chunk - chunk_offset; 6112 } 6113 6114 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 6115 { 6116 DEFINE_WAIT_FUNC(wait, woken_wake_function); 6117 struct r5conf *conf = mddev->private; 6118 sector_t logical_sector; 6119 struct stripe_request_ctx ctx = {}; 6120 const int rw = bio_data_dir(bi); 6121 enum stripe_result res; 6122 int s, stripe_cnt; 6123 6124 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 6125 int ret = log_handle_flush_request(conf, bi); 6126 6127 if (ret == 0) 6128 return true; 6129 if (ret == -ENODEV) { 6130 if (md_flush_request(mddev, bi)) 6131 return true; 6132 } 6133 /* ret == -EAGAIN, fallback */ 6134 /* 6135 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 6136 * we need to flush journal device 6137 */ 6138 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH; 6139 } 6140 6141 if (!md_write_start(mddev, bi)) 6142 return false; 6143 /* 6144 * If array is degraded, better not do chunk aligned read because 6145 * later we might have to read it again in order to reconstruct 6146 * data on failed drives. 6147 */ 6148 if (rw == READ && mddev->degraded == 0 && 6149 mddev->reshape_position == MaxSector) { 6150 bi = chunk_aligned_read(mddev, bi); 6151 if (!bi) 6152 return true; 6153 } 6154 6155 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 6156 make_discard_request(mddev, bi); 6157 md_write_end(mddev); 6158 return true; 6159 } 6160 6161 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6162 ctx.first_sector = logical_sector; 6163 ctx.last_sector = bio_end_sector(bi); 6164 bi->bi_next = NULL; 6165 6166 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector, 6167 RAID5_STRIPE_SECTORS(conf)); 6168 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt); 6169 6170 pr_debug("raid456: %s, logical %llu to %llu\n", __func__, 6171 bi->bi_iter.bi_sector, ctx.last_sector); 6172 6173 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */ 6174 if ((bi->bi_opf & REQ_NOWAIT) && 6175 (conf->reshape_progress != MaxSector) && 6176 !ahead_of_reshape(mddev, logical_sector, conf->reshape_progress) && 6177 ahead_of_reshape(mddev, logical_sector, conf->reshape_safe)) { 6178 bio_wouldblock_error(bi); 6179 if (rw == WRITE) 6180 md_write_end(mddev); 6181 return true; 6182 } 6183 md_account_bio(mddev, &bi); 6184 6185 /* 6186 * Lets start with the stripe with the lowest chunk offset in the first 6187 * chunk. That has the best chances of creating IOs adjacent to 6188 * previous IOs in case of sequential IO and thus creates the most 6189 * sequential IO pattern. We don't bother with the optimization when 6190 * reshaping as the performance benefit is not worth the complexity. 6191 */ 6192 if (likely(conf->reshape_progress == MaxSector)) 6193 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi); 6194 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf); 6195 6196 add_wait_queue(&conf->wait_for_overlap, &wait); 6197 while (1) { 6198 res = make_stripe_request(mddev, conf, &ctx, logical_sector, 6199 bi); 6200 if (res == STRIPE_FAIL) 6201 break; 6202 6203 if (res == STRIPE_RETRY) 6204 continue; 6205 6206 if (res == STRIPE_SCHEDULE_AND_RETRY) { 6207 /* 6208 * Must release the reference to batch_last before 6209 * scheduling and waiting for work to be done, 6210 * otherwise the batch_last stripe head could prevent 6211 * raid5_activate_delayed() from making progress 6212 * and thus deadlocking. 6213 */ 6214 if (ctx.batch_last) { 6215 raid5_release_stripe(ctx.batch_last); 6216 ctx.batch_last = NULL; 6217 } 6218 6219 wait_woken(&wait, TASK_UNINTERRUPTIBLE, 6220 MAX_SCHEDULE_TIMEOUT); 6221 continue; 6222 } 6223 6224 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s); 6225 if (s == stripe_cnt) 6226 break; 6227 6228 logical_sector = ctx.first_sector + 6229 (s << RAID5_STRIPE_SHIFT(conf)); 6230 } 6231 remove_wait_queue(&conf->wait_for_overlap, &wait); 6232 6233 if (ctx.batch_last) 6234 raid5_release_stripe(ctx.batch_last); 6235 6236 if (rw == WRITE) 6237 md_write_end(mddev); 6238 bio_endio(bi); 6239 return true; 6240 } 6241 6242 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 6243 6244 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 6245 { 6246 /* reshaping is quite different to recovery/resync so it is 6247 * handled quite separately ... here. 6248 * 6249 * On each call to sync_request, we gather one chunk worth of 6250 * destination stripes and flag them as expanding. 6251 * Then we find all the source stripes and request reads. 6252 * As the reads complete, handle_stripe will copy the data 6253 * into the destination stripe and release that stripe. 6254 */ 6255 struct r5conf *conf = mddev->private; 6256 struct stripe_head *sh; 6257 struct md_rdev *rdev; 6258 sector_t first_sector, last_sector; 6259 int raid_disks = conf->previous_raid_disks; 6260 int data_disks = raid_disks - conf->max_degraded; 6261 int new_data_disks = conf->raid_disks - conf->max_degraded; 6262 int i; 6263 int dd_idx; 6264 sector_t writepos, readpos, safepos; 6265 sector_t stripe_addr; 6266 int reshape_sectors; 6267 struct list_head stripes; 6268 sector_t retn; 6269 6270 if (sector_nr == 0) { 6271 /* If restarting in the middle, skip the initial sectors */ 6272 if (mddev->reshape_backwards && 6273 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 6274 sector_nr = raid5_size(mddev, 0, 0) 6275 - conf->reshape_progress; 6276 } else if (mddev->reshape_backwards && 6277 conf->reshape_progress == MaxSector) { 6278 /* shouldn't happen, but just in case, finish up.*/ 6279 sector_nr = MaxSector; 6280 } else if (!mddev->reshape_backwards && 6281 conf->reshape_progress > 0) 6282 sector_nr = conf->reshape_progress; 6283 sector_div(sector_nr, new_data_disks); 6284 if (sector_nr) { 6285 mddev->curr_resync_completed = sector_nr; 6286 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6287 *skipped = 1; 6288 retn = sector_nr; 6289 goto finish; 6290 } 6291 } 6292 6293 /* We need to process a full chunk at a time. 6294 * If old and new chunk sizes differ, we need to process the 6295 * largest of these 6296 */ 6297 6298 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 6299 6300 /* We update the metadata at least every 10 seconds, or when 6301 * the data about to be copied would over-write the source of 6302 * the data at the front of the range. i.e. one new_stripe 6303 * along from reshape_progress new_maps to after where 6304 * reshape_safe old_maps to 6305 */ 6306 writepos = conf->reshape_progress; 6307 sector_div(writepos, new_data_disks); 6308 readpos = conf->reshape_progress; 6309 sector_div(readpos, data_disks); 6310 safepos = conf->reshape_safe; 6311 sector_div(safepos, data_disks); 6312 if (mddev->reshape_backwards) { 6313 BUG_ON(writepos < reshape_sectors); 6314 writepos -= reshape_sectors; 6315 readpos += reshape_sectors; 6316 safepos += reshape_sectors; 6317 } else { 6318 writepos += reshape_sectors; 6319 /* readpos and safepos are worst-case calculations. 6320 * A negative number is overly pessimistic, and causes 6321 * obvious problems for unsigned storage. So clip to 0. 6322 */ 6323 readpos -= min_t(sector_t, reshape_sectors, readpos); 6324 safepos -= min_t(sector_t, reshape_sectors, safepos); 6325 } 6326 6327 /* Having calculated the 'writepos' possibly use it 6328 * to set 'stripe_addr' which is where we will write to. 6329 */ 6330 if (mddev->reshape_backwards) { 6331 BUG_ON(conf->reshape_progress == 0); 6332 stripe_addr = writepos; 6333 BUG_ON((mddev->dev_sectors & 6334 ~((sector_t)reshape_sectors - 1)) 6335 - reshape_sectors - stripe_addr 6336 != sector_nr); 6337 } else { 6338 BUG_ON(writepos != sector_nr + reshape_sectors); 6339 stripe_addr = sector_nr; 6340 } 6341 6342 /* 'writepos' is the most advanced device address we might write. 6343 * 'readpos' is the least advanced device address we might read. 6344 * 'safepos' is the least address recorded in the metadata as having 6345 * been reshaped. 6346 * If there is a min_offset_diff, these are adjusted either by 6347 * increasing the safepos/readpos if diff is negative, or 6348 * increasing writepos if diff is positive. 6349 * If 'readpos' is then behind 'writepos', there is no way that we can 6350 * ensure safety in the face of a crash - that must be done by userspace 6351 * making a backup of the data. So in that case there is no particular 6352 * rush to update metadata. 6353 * Otherwise if 'safepos' is behind 'writepos', then we really need to 6354 * update the metadata to advance 'safepos' to match 'readpos' so that 6355 * we can be safe in the event of a crash. 6356 * So we insist on updating metadata if safepos is behind writepos and 6357 * readpos is beyond writepos. 6358 * In any case, update the metadata every 10 seconds. 6359 * Maybe that number should be configurable, but I'm not sure it is 6360 * worth it.... maybe it could be a multiple of safemode_delay??? 6361 */ 6362 if (conf->min_offset_diff < 0) { 6363 safepos += -conf->min_offset_diff; 6364 readpos += -conf->min_offset_diff; 6365 } else 6366 writepos += conf->min_offset_diff; 6367 6368 if ((mddev->reshape_backwards 6369 ? (safepos > writepos && readpos < writepos) 6370 : (safepos < writepos && readpos > writepos)) || 6371 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 6372 /* Cannot proceed until we've updated the superblock... */ 6373 wait_event(conf->wait_for_overlap, 6374 atomic_read(&conf->reshape_stripes)==0 6375 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6376 if (atomic_read(&conf->reshape_stripes) != 0) 6377 return 0; 6378 mddev->reshape_position = conf->reshape_progress; 6379 mddev->curr_resync_completed = sector_nr; 6380 if (!mddev->reshape_backwards) 6381 /* Can update recovery_offset */ 6382 rdev_for_each(rdev, mddev) 6383 if (rdev->raid_disk >= 0 && 6384 !test_bit(Journal, &rdev->flags) && 6385 !test_bit(In_sync, &rdev->flags) && 6386 rdev->recovery_offset < sector_nr) 6387 rdev->recovery_offset = sector_nr; 6388 6389 conf->reshape_checkpoint = jiffies; 6390 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6391 md_wakeup_thread(mddev->thread); 6392 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 6393 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6394 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6395 return 0; 6396 spin_lock_irq(&conf->device_lock); 6397 conf->reshape_safe = mddev->reshape_position; 6398 spin_unlock_irq(&conf->device_lock); 6399 wake_up(&conf->wait_for_overlap); 6400 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6401 } 6402 6403 INIT_LIST_HEAD(&stripes); 6404 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) { 6405 int j; 6406 int skipped_disk = 0; 6407 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i, 6408 R5_GAS_NOQUIESCE); 6409 set_bit(STRIPE_EXPANDING, &sh->state); 6410 atomic_inc(&conf->reshape_stripes); 6411 /* If any of this stripe is beyond the end of the old 6412 * array, then we need to zero those blocks 6413 */ 6414 for (j=sh->disks; j--;) { 6415 sector_t s; 6416 if (j == sh->pd_idx) 6417 continue; 6418 if (conf->level == 6 && 6419 j == sh->qd_idx) 6420 continue; 6421 s = raid5_compute_blocknr(sh, j, 0); 6422 if (s < raid5_size(mddev, 0, 0)) { 6423 skipped_disk = 1; 6424 continue; 6425 } 6426 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf)); 6427 set_bit(R5_Expanded, &sh->dev[j].flags); 6428 set_bit(R5_UPTODATE, &sh->dev[j].flags); 6429 } 6430 if (!skipped_disk) { 6431 set_bit(STRIPE_EXPAND_READY, &sh->state); 6432 set_bit(STRIPE_HANDLE, &sh->state); 6433 } 6434 list_add(&sh->lru, &stripes); 6435 } 6436 spin_lock_irq(&conf->device_lock); 6437 if (mddev->reshape_backwards) 6438 conf->reshape_progress -= reshape_sectors * new_data_disks; 6439 else 6440 conf->reshape_progress += reshape_sectors * new_data_disks; 6441 spin_unlock_irq(&conf->device_lock); 6442 /* Ok, those stripe are ready. We can start scheduling 6443 * reads on the source stripes. 6444 * The source stripes are determined by mapping the first and last 6445 * block on the destination stripes. 6446 */ 6447 first_sector = 6448 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 6449 1, &dd_idx, NULL); 6450 last_sector = 6451 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 6452 * new_data_disks - 1), 6453 1, &dd_idx, NULL); 6454 if (last_sector >= mddev->dev_sectors) 6455 last_sector = mddev->dev_sectors - 1; 6456 while (first_sector <= last_sector) { 6457 sh = raid5_get_active_stripe(conf, NULL, first_sector, 6458 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE); 6459 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 6460 set_bit(STRIPE_HANDLE, &sh->state); 6461 raid5_release_stripe(sh); 6462 first_sector += RAID5_STRIPE_SECTORS(conf); 6463 } 6464 /* Now that the sources are clearly marked, we can release 6465 * the destination stripes 6466 */ 6467 while (!list_empty(&stripes)) { 6468 sh = list_entry(stripes.next, struct stripe_head, lru); 6469 list_del_init(&sh->lru); 6470 raid5_release_stripe(sh); 6471 } 6472 /* If this takes us to the resync_max point where we have to pause, 6473 * then we need to write out the superblock. 6474 */ 6475 sector_nr += reshape_sectors; 6476 retn = reshape_sectors; 6477 finish: 6478 if (mddev->curr_resync_completed > mddev->resync_max || 6479 (sector_nr - mddev->curr_resync_completed) * 2 6480 >= mddev->resync_max - mddev->curr_resync_completed) { 6481 /* Cannot proceed until we've updated the superblock... */ 6482 wait_event(conf->wait_for_overlap, 6483 atomic_read(&conf->reshape_stripes) == 0 6484 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6485 if (atomic_read(&conf->reshape_stripes) != 0) 6486 goto ret; 6487 mddev->reshape_position = conf->reshape_progress; 6488 mddev->curr_resync_completed = sector_nr; 6489 if (!mddev->reshape_backwards) 6490 /* Can update recovery_offset */ 6491 rdev_for_each(rdev, mddev) 6492 if (rdev->raid_disk >= 0 && 6493 !test_bit(Journal, &rdev->flags) && 6494 !test_bit(In_sync, &rdev->flags) && 6495 rdev->recovery_offset < sector_nr) 6496 rdev->recovery_offset = sector_nr; 6497 conf->reshape_checkpoint = jiffies; 6498 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6499 md_wakeup_thread(mddev->thread); 6500 wait_event(mddev->sb_wait, 6501 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 6502 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6503 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6504 goto ret; 6505 spin_lock_irq(&conf->device_lock); 6506 conf->reshape_safe = mddev->reshape_position; 6507 spin_unlock_irq(&conf->device_lock); 6508 wake_up(&conf->wait_for_overlap); 6509 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6510 } 6511 ret: 6512 return retn; 6513 } 6514 6515 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6516 int *skipped) 6517 { 6518 struct r5conf *conf = mddev->private; 6519 struct stripe_head *sh; 6520 sector_t max_sector = mddev->dev_sectors; 6521 sector_t sync_blocks; 6522 int still_degraded = 0; 6523 int i; 6524 6525 if (sector_nr >= max_sector) { 6526 /* just being told to finish up .. nothing much to do */ 6527 6528 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6529 end_reshape(conf); 6530 return 0; 6531 } 6532 6533 if (mddev->curr_resync < max_sector) /* aborted */ 6534 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6535 &sync_blocks, 1); 6536 else /* completed sync */ 6537 conf->fullsync = 0; 6538 md_bitmap_close_sync(mddev->bitmap); 6539 6540 return 0; 6541 } 6542 6543 /* Allow raid5_quiesce to complete */ 6544 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6545 6546 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6547 return reshape_request(mddev, sector_nr, skipped); 6548 6549 /* No need to check resync_max as we never do more than one 6550 * stripe, and as resync_max will always be on a chunk boundary, 6551 * if the check in md_do_sync didn't fire, there is no chance 6552 * of overstepping resync_max here 6553 */ 6554 6555 /* if there is too many failed drives and we are trying 6556 * to resync, then assert that we are finished, because there is 6557 * nothing we can do. 6558 */ 6559 if (mddev->degraded >= conf->max_degraded && 6560 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6561 sector_t rv = mddev->dev_sectors - sector_nr; 6562 *skipped = 1; 6563 return rv; 6564 } 6565 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6566 !conf->fullsync && 6567 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6568 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) { 6569 /* we can skip this block, and probably more */ 6570 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf)); 6571 *skipped = 1; 6572 /* keep things rounded to whole stripes */ 6573 return sync_blocks * RAID5_STRIPE_SECTORS(conf); 6574 } 6575 6576 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6577 6578 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 6579 R5_GAS_NOBLOCK); 6580 if (sh == NULL) { 6581 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0); 6582 /* make sure we don't swamp the stripe cache if someone else 6583 * is trying to get access 6584 */ 6585 schedule_timeout_uninterruptible(1); 6586 } 6587 /* Need to check if array will still be degraded after recovery/resync 6588 * Note in case of > 1 drive failures it's possible we're rebuilding 6589 * one drive while leaving another faulty drive in array. 6590 */ 6591 rcu_read_lock(); 6592 for (i = 0; i < conf->raid_disks; i++) { 6593 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 6594 6595 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6596 still_degraded = 1; 6597 } 6598 rcu_read_unlock(); 6599 6600 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6601 6602 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6603 set_bit(STRIPE_HANDLE, &sh->state); 6604 6605 raid5_release_stripe(sh); 6606 6607 return RAID5_STRIPE_SECTORS(conf); 6608 } 6609 6610 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6611 unsigned int offset) 6612 { 6613 /* We may not be able to submit a whole bio at once as there 6614 * may not be enough stripe_heads available. 6615 * We cannot pre-allocate enough stripe_heads as we may need 6616 * more than exist in the cache (if we allow ever large chunks). 6617 * So we do one stripe head at a time and record in 6618 * ->bi_hw_segments how many have been done. 6619 * 6620 * We *know* that this entire raid_bio is in one chunk, so 6621 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6622 */ 6623 struct stripe_head *sh; 6624 int dd_idx; 6625 sector_t sector, logical_sector, last_sector; 6626 int scnt = 0; 6627 int handled = 0; 6628 6629 logical_sector = raid_bio->bi_iter.bi_sector & 6630 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6631 sector = raid5_compute_sector(conf, logical_sector, 6632 0, &dd_idx, NULL); 6633 last_sector = bio_end_sector(raid_bio); 6634 6635 for (; logical_sector < last_sector; 6636 logical_sector += RAID5_STRIPE_SECTORS(conf), 6637 sector += RAID5_STRIPE_SECTORS(conf), 6638 scnt++) { 6639 6640 if (scnt < offset) 6641 /* already done this stripe */ 6642 continue; 6643 6644 sh = raid5_get_active_stripe(conf, NULL, sector, 6645 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 6646 if (!sh) { 6647 /* failed to get a stripe - must wait */ 6648 conf->retry_read_aligned = raid_bio; 6649 conf->retry_read_offset = scnt; 6650 return handled; 6651 } 6652 6653 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6654 raid5_release_stripe(sh); 6655 conf->retry_read_aligned = raid_bio; 6656 conf->retry_read_offset = scnt; 6657 return handled; 6658 } 6659 6660 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6661 handle_stripe(sh); 6662 raid5_release_stripe(sh); 6663 handled++; 6664 } 6665 6666 bio_endio(raid_bio); 6667 6668 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6669 wake_up(&conf->wait_for_quiescent); 6670 return handled; 6671 } 6672 6673 static int handle_active_stripes(struct r5conf *conf, int group, 6674 struct r5worker *worker, 6675 struct list_head *temp_inactive_list) 6676 __must_hold(&conf->device_lock) 6677 { 6678 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6679 int i, batch_size = 0, hash; 6680 bool release_inactive = false; 6681 6682 while (batch_size < MAX_STRIPE_BATCH && 6683 (sh = __get_priority_stripe(conf, group)) != NULL) 6684 batch[batch_size++] = sh; 6685 6686 if (batch_size == 0) { 6687 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6688 if (!list_empty(temp_inactive_list + i)) 6689 break; 6690 if (i == NR_STRIPE_HASH_LOCKS) { 6691 spin_unlock_irq(&conf->device_lock); 6692 log_flush_stripe_to_raid(conf); 6693 spin_lock_irq(&conf->device_lock); 6694 return batch_size; 6695 } 6696 release_inactive = true; 6697 } 6698 spin_unlock_irq(&conf->device_lock); 6699 6700 release_inactive_stripe_list(conf, temp_inactive_list, 6701 NR_STRIPE_HASH_LOCKS); 6702 6703 r5l_flush_stripe_to_raid(conf->log); 6704 if (release_inactive) { 6705 spin_lock_irq(&conf->device_lock); 6706 return 0; 6707 } 6708 6709 for (i = 0; i < batch_size; i++) 6710 handle_stripe(batch[i]); 6711 log_write_stripe_run(conf); 6712 6713 cond_resched(); 6714 6715 spin_lock_irq(&conf->device_lock); 6716 for (i = 0; i < batch_size; i++) { 6717 hash = batch[i]->hash_lock_index; 6718 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6719 } 6720 return batch_size; 6721 } 6722 6723 static void raid5_do_work(struct work_struct *work) 6724 { 6725 struct r5worker *worker = container_of(work, struct r5worker, work); 6726 struct r5worker_group *group = worker->group; 6727 struct r5conf *conf = group->conf; 6728 struct mddev *mddev = conf->mddev; 6729 int group_id = group - conf->worker_groups; 6730 int handled; 6731 struct blk_plug plug; 6732 6733 pr_debug("+++ raid5worker active\n"); 6734 6735 blk_start_plug(&plug); 6736 handled = 0; 6737 spin_lock_irq(&conf->device_lock); 6738 while (1) { 6739 int batch_size, released; 6740 6741 released = release_stripe_list(conf, worker->temp_inactive_list); 6742 6743 batch_size = handle_active_stripes(conf, group_id, worker, 6744 worker->temp_inactive_list); 6745 worker->working = false; 6746 if (!batch_size && !released) 6747 break; 6748 handled += batch_size; 6749 wait_event_lock_irq(mddev->sb_wait, 6750 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6751 conf->device_lock); 6752 } 6753 pr_debug("%d stripes handled\n", handled); 6754 6755 spin_unlock_irq(&conf->device_lock); 6756 6757 flush_deferred_bios(conf); 6758 6759 r5l_flush_stripe_to_raid(conf->log); 6760 6761 async_tx_issue_pending_all(); 6762 blk_finish_plug(&plug); 6763 6764 pr_debug("--- raid5worker inactive\n"); 6765 } 6766 6767 /* 6768 * This is our raid5 kernel thread. 6769 * 6770 * We scan the hash table for stripes which can be handled now. 6771 * During the scan, completed stripes are saved for us by the interrupt 6772 * handler, so that they will not have to wait for our next wakeup. 6773 */ 6774 static void raid5d(struct md_thread *thread) 6775 { 6776 struct mddev *mddev = thread->mddev; 6777 struct r5conf *conf = mddev->private; 6778 int handled; 6779 struct blk_plug plug; 6780 6781 pr_debug("+++ raid5d active\n"); 6782 6783 md_check_recovery(mddev); 6784 6785 blk_start_plug(&plug); 6786 handled = 0; 6787 spin_lock_irq(&conf->device_lock); 6788 while (1) { 6789 struct bio *bio; 6790 int batch_size, released; 6791 unsigned int offset; 6792 6793 released = release_stripe_list(conf, conf->temp_inactive_list); 6794 if (released) 6795 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6796 6797 if ( 6798 !list_empty(&conf->bitmap_list)) { 6799 /* Now is a good time to flush some bitmap updates */ 6800 conf->seq_flush++; 6801 spin_unlock_irq(&conf->device_lock); 6802 md_bitmap_unplug(mddev->bitmap); 6803 spin_lock_irq(&conf->device_lock); 6804 conf->seq_write = conf->seq_flush; 6805 activate_bit_delay(conf, conf->temp_inactive_list); 6806 } 6807 raid5_activate_delayed(conf); 6808 6809 while ((bio = remove_bio_from_retry(conf, &offset))) { 6810 int ok; 6811 spin_unlock_irq(&conf->device_lock); 6812 ok = retry_aligned_read(conf, bio, offset); 6813 spin_lock_irq(&conf->device_lock); 6814 if (!ok) 6815 break; 6816 handled++; 6817 } 6818 6819 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6820 conf->temp_inactive_list); 6821 if (!batch_size && !released) 6822 break; 6823 handled += batch_size; 6824 6825 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6826 spin_unlock_irq(&conf->device_lock); 6827 md_check_recovery(mddev); 6828 spin_lock_irq(&conf->device_lock); 6829 6830 /* 6831 * Waiting on MD_SB_CHANGE_PENDING below may deadlock 6832 * seeing md_check_recovery() is needed to clear 6833 * the flag when using mdmon. 6834 */ 6835 continue; 6836 } 6837 6838 wait_event_lock_irq(mddev->sb_wait, 6839 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6840 conf->device_lock); 6841 } 6842 pr_debug("%d stripes handled\n", handled); 6843 6844 spin_unlock_irq(&conf->device_lock); 6845 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6846 mutex_trylock(&conf->cache_size_mutex)) { 6847 grow_one_stripe(conf, __GFP_NOWARN); 6848 /* Set flag even if allocation failed. This helps 6849 * slow down allocation requests when mem is short 6850 */ 6851 set_bit(R5_DID_ALLOC, &conf->cache_state); 6852 mutex_unlock(&conf->cache_size_mutex); 6853 } 6854 6855 flush_deferred_bios(conf); 6856 6857 r5l_flush_stripe_to_raid(conf->log); 6858 6859 async_tx_issue_pending_all(); 6860 blk_finish_plug(&plug); 6861 6862 pr_debug("--- raid5d inactive\n"); 6863 } 6864 6865 static ssize_t 6866 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6867 { 6868 struct r5conf *conf; 6869 int ret = 0; 6870 spin_lock(&mddev->lock); 6871 conf = mddev->private; 6872 if (conf) 6873 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6874 spin_unlock(&mddev->lock); 6875 return ret; 6876 } 6877 6878 int 6879 raid5_set_cache_size(struct mddev *mddev, int size) 6880 { 6881 int result = 0; 6882 struct r5conf *conf = mddev->private; 6883 6884 if (size <= 16 || size > 32768) 6885 return -EINVAL; 6886 6887 conf->min_nr_stripes = size; 6888 mutex_lock(&conf->cache_size_mutex); 6889 while (size < conf->max_nr_stripes && 6890 drop_one_stripe(conf)) 6891 ; 6892 mutex_unlock(&conf->cache_size_mutex); 6893 6894 md_allow_write(mddev); 6895 6896 mutex_lock(&conf->cache_size_mutex); 6897 while (size > conf->max_nr_stripes) 6898 if (!grow_one_stripe(conf, GFP_KERNEL)) { 6899 conf->min_nr_stripes = conf->max_nr_stripes; 6900 result = -ENOMEM; 6901 break; 6902 } 6903 mutex_unlock(&conf->cache_size_mutex); 6904 6905 return result; 6906 } 6907 EXPORT_SYMBOL(raid5_set_cache_size); 6908 6909 static ssize_t 6910 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6911 { 6912 struct r5conf *conf; 6913 unsigned long new; 6914 int err; 6915 6916 if (len >= PAGE_SIZE) 6917 return -EINVAL; 6918 if (kstrtoul(page, 10, &new)) 6919 return -EINVAL; 6920 err = mddev_lock(mddev); 6921 if (err) 6922 return err; 6923 conf = mddev->private; 6924 if (!conf) 6925 err = -ENODEV; 6926 else 6927 err = raid5_set_cache_size(mddev, new); 6928 mddev_unlock(mddev); 6929 6930 return err ?: len; 6931 } 6932 6933 static struct md_sysfs_entry 6934 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6935 raid5_show_stripe_cache_size, 6936 raid5_store_stripe_cache_size); 6937 6938 static ssize_t 6939 raid5_show_rmw_level(struct mddev *mddev, char *page) 6940 { 6941 struct r5conf *conf = mddev->private; 6942 if (conf) 6943 return sprintf(page, "%d\n", conf->rmw_level); 6944 else 6945 return 0; 6946 } 6947 6948 static ssize_t 6949 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6950 { 6951 struct r5conf *conf = mddev->private; 6952 unsigned long new; 6953 6954 if (!conf) 6955 return -ENODEV; 6956 6957 if (len >= PAGE_SIZE) 6958 return -EINVAL; 6959 6960 if (kstrtoul(page, 10, &new)) 6961 return -EINVAL; 6962 6963 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6964 return -EINVAL; 6965 6966 if (new != PARITY_DISABLE_RMW && 6967 new != PARITY_ENABLE_RMW && 6968 new != PARITY_PREFER_RMW) 6969 return -EINVAL; 6970 6971 conf->rmw_level = new; 6972 return len; 6973 } 6974 6975 static struct md_sysfs_entry 6976 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6977 raid5_show_rmw_level, 6978 raid5_store_rmw_level); 6979 6980 static ssize_t 6981 raid5_show_stripe_size(struct mddev *mddev, char *page) 6982 { 6983 struct r5conf *conf; 6984 int ret = 0; 6985 6986 spin_lock(&mddev->lock); 6987 conf = mddev->private; 6988 if (conf) 6989 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf)); 6990 spin_unlock(&mddev->lock); 6991 return ret; 6992 } 6993 6994 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 6995 static ssize_t 6996 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len) 6997 { 6998 struct r5conf *conf; 6999 unsigned long new; 7000 int err; 7001 int size; 7002 7003 if (len >= PAGE_SIZE) 7004 return -EINVAL; 7005 if (kstrtoul(page, 10, &new)) 7006 return -EINVAL; 7007 7008 /* 7009 * The value should not be bigger than PAGE_SIZE. It requires to 7010 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power 7011 * of two. 7012 */ 7013 if (new % DEFAULT_STRIPE_SIZE != 0 || 7014 new > PAGE_SIZE || new == 0 || 7015 new != roundup_pow_of_two(new)) 7016 return -EINVAL; 7017 7018 err = mddev_lock(mddev); 7019 if (err) 7020 return err; 7021 7022 conf = mddev->private; 7023 if (!conf) { 7024 err = -ENODEV; 7025 goto out_unlock; 7026 } 7027 7028 if (new == conf->stripe_size) 7029 goto out_unlock; 7030 7031 pr_debug("md/raid: change stripe_size from %lu to %lu\n", 7032 conf->stripe_size, new); 7033 7034 if (mddev->sync_thread || 7035 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7036 mddev->reshape_position != MaxSector || 7037 mddev->sysfs_active) { 7038 err = -EBUSY; 7039 goto out_unlock; 7040 } 7041 7042 mddev_suspend(mddev); 7043 mutex_lock(&conf->cache_size_mutex); 7044 size = conf->max_nr_stripes; 7045 7046 shrink_stripes(conf); 7047 7048 conf->stripe_size = new; 7049 conf->stripe_shift = ilog2(new) - 9; 7050 conf->stripe_sectors = new >> 9; 7051 if (grow_stripes(conf, size)) { 7052 pr_warn("md/raid:%s: couldn't allocate buffers\n", 7053 mdname(mddev)); 7054 err = -ENOMEM; 7055 } 7056 mutex_unlock(&conf->cache_size_mutex); 7057 mddev_resume(mddev); 7058 7059 out_unlock: 7060 mddev_unlock(mddev); 7061 return err ?: len; 7062 } 7063 7064 static struct md_sysfs_entry 7065 raid5_stripe_size = __ATTR(stripe_size, 0644, 7066 raid5_show_stripe_size, 7067 raid5_store_stripe_size); 7068 #else 7069 static struct md_sysfs_entry 7070 raid5_stripe_size = __ATTR(stripe_size, 0444, 7071 raid5_show_stripe_size, 7072 NULL); 7073 #endif 7074 7075 static ssize_t 7076 raid5_show_preread_threshold(struct mddev *mddev, char *page) 7077 { 7078 struct r5conf *conf; 7079 int ret = 0; 7080 spin_lock(&mddev->lock); 7081 conf = mddev->private; 7082 if (conf) 7083 ret = sprintf(page, "%d\n", conf->bypass_threshold); 7084 spin_unlock(&mddev->lock); 7085 return ret; 7086 } 7087 7088 static ssize_t 7089 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 7090 { 7091 struct r5conf *conf; 7092 unsigned long new; 7093 int err; 7094 7095 if (len >= PAGE_SIZE) 7096 return -EINVAL; 7097 if (kstrtoul(page, 10, &new)) 7098 return -EINVAL; 7099 7100 err = mddev_lock(mddev); 7101 if (err) 7102 return err; 7103 conf = mddev->private; 7104 if (!conf) 7105 err = -ENODEV; 7106 else if (new > conf->min_nr_stripes) 7107 err = -EINVAL; 7108 else 7109 conf->bypass_threshold = new; 7110 mddev_unlock(mddev); 7111 return err ?: len; 7112 } 7113 7114 static struct md_sysfs_entry 7115 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 7116 S_IRUGO | S_IWUSR, 7117 raid5_show_preread_threshold, 7118 raid5_store_preread_threshold); 7119 7120 static ssize_t 7121 raid5_show_skip_copy(struct mddev *mddev, char *page) 7122 { 7123 struct r5conf *conf; 7124 int ret = 0; 7125 spin_lock(&mddev->lock); 7126 conf = mddev->private; 7127 if (conf) 7128 ret = sprintf(page, "%d\n", conf->skip_copy); 7129 spin_unlock(&mddev->lock); 7130 return ret; 7131 } 7132 7133 static ssize_t 7134 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 7135 { 7136 struct r5conf *conf; 7137 unsigned long new; 7138 int err; 7139 7140 if (len >= PAGE_SIZE) 7141 return -EINVAL; 7142 if (kstrtoul(page, 10, &new)) 7143 return -EINVAL; 7144 new = !!new; 7145 7146 err = mddev_lock(mddev); 7147 if (err) 7148 return err; 7149 conf = mddev->private; 7150 if (!conf) 7151 err = -ENODEV; 7152 else if (new != conf->skip_copy) { 7153 struct request_queue *q = mddev->queue; 7154 7155 mddev_suspend(mddev); 7156 conf->skip_copy = new; 7157 if (new) 7158 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 7159 else 7160 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 7161 mddev_resume(mddev); 7162 } 7163 mddev_unlock(mddev); 7164 return err ?: len; 7165 } 7166 7167 static struct md_sysfs_entry 7168 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 7169 raid5_show_skip_copy, 7170 raid5_store_skip_copy); 7171 7172 static ssize_t 7173 stripe_cache_active_show(struct mddev *mddev, char *page) 7174 { 7175 struct r5conf *conf = mddev->private; 7176 if (conf) 7177 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 7178 else 7179 return 0; 7180 } 7181 7182 static struct md_sysfs_entry 7183 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 7184 7185 static ssize_t 7186 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 7187 { 7188 struct r5conf *conf; 7189 int ret = 0; 7190 spin_lock(&mddev->lock); 7191 conf = mddev->private; 7192 if (conf) 7193 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 7194 spin_unlock(&mddev->lock); 7195 return ret; 7196 } 7197 7198 static int alloc_thread_groups(struct r5conf *conf, int cnt, 7199 int *group_cnt, 7200 struct r5worker_group **worker_groups); 7201 static ssize_t 7202 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 7203 { 7204 struct r5conf *conf; 7205 unsigned int new; 7206 int err; 7207 struct r5worker_group *new_groups, *old_groups; 7208 int group_cnt; 7209 7210 if (len >= PAGE_SIZE) 7211 return -EINVAL; 7212 if (kstrtouint(page, 10, &new)) 7213 return -EINVAL; 7214 /* 8192 should be big enough */ 7215 if (new > 8192) 7216 return -EINVAL; 7217 7218 err = mddev_lock(mddev); 7219 if (err) 7220 return err; 7221 conf = mddev->private; 7222 if (!conf) 7223 err = -ENODEV; 7224 else if (new != conf->worker_cnt_per_group) { 7225 mddev_suspend(mddev); 7226 7227 old_groups = conf->worker_groups; 7228 if (old_groups) 7229 flush_workqueue(raid5_wq); 7230 7231 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups); 7232 if (!err) { 7233 spin_lock_irq(&conf->device_lock); 7234 conf->group_cnt = group_cnt; 7235 conf->worker_cnt_per_group = new; 7236 conf->worker_groups = new_groups; 7237 spin_unlock_irq(&conf->device_lock); 7238 7239 if (old_groups) 7240 kfree(old_groups[0].workers); 7241 kfree(old_groups); 7242 } 7243 mddev_resume(mddev); 7244 } 7245 mddev_unlock(mddev); 7246 7247 return err ?: len; 7248 } 7249 7250 static struct md_sysfs_entry 7251 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 7252 raid5_show_group_thread_cnt, 7253 raid5_store_group_thread_cnt); 7254 7255 static struct attribute *raid5_attrs[] = { 7256 &raid5_stripecache_size.attr, 7257 &raid5_stripecache_active.attr, 7258 &raid5_preread_bypass_threshold.attr, 7259 &raid5_group_thread_cnt.attr, 7260 &raid5_skip_copy.attr, 7261 &raid5_rmw_level.attr, 7262 &raid5_stripe_size.attr, 7263 &r5c_journal_mode.attr, 7264 &ppl_write_hint.attr, 7265 NULL, 7266 }; 7267 static const struct attribute_group raid5_attrs_group = { 7268 .name = NULL, 7269 .attrs = raid5_attrs, 7270 }; 7271 7272 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt, 7273 struct r5worker_group **worker_groups) 7274 { 7275 int i, j, k; 7276 ssize_t size; 7277 struct r5worker *workers; 7278 7279 if (cnt == 0) { 7280 *group_cnt = 0; 7281 *worker_groups = NULL; 7282 return 0; 7283 } 7284 *group_cnt = num_possible_nodes(); 7285 size = sizeof(struct r5worker) * cnt; 7286 workers = kcalloc(size, *group_cnt, GFP_NOIO); 7287 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 7288 GFP_NOIO); 7289 if (!*worker_groups || !workers) { 7290 kfree(workers); 7291 kfree(*worker_groups); 7292 return -ENOMEM; 7293 } 7294 7295 for (i = 0; i < *group_cnt; i++) { 7296 struct r5worker_group *group; 7297 7298 group = &(*worker_groups)[i]; 7299 INIT_LIST_HEAD(&group->handle_list); 7300 INIT_LIST_HEAD(&group->loprio_list); 7301 group->conf = conf; 7302 group->workers = workers + i * cnt; 7303 7304 for (j = 0; j < cnt; j++) { 7305 struct r5worker *worker = group->workers + j; 7306 worker->group = group; 7307 INIT_WORK(&worker->work, raid5_do_work); 7308 7309 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 7310 INIT_LIST_HEAD(worker->temp_inactive_list + k); 7311 } 7312 } 7313 7314 return 0; 7315 } 7316 7317 static void free_thread_groups(struct r5conf *conf) 7318 { 7319 if (conf->worker_groups) 7320 kfree(conf->worker_groups[0].workers); 7321 kfree(conf->worker_groups); 7322 conf->worker_groups = NULL; 7323 } 7324 7325 static sector_t 7326 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 7327 { 7328 struct r5conf *conf = mddev->private; 7329 7330 if (!sectors) 7331 sectors = mddev->dev_sectors; 7332 if (!raid_disks) 7333 /* size is defined by the smallest of previous and new size */ 7334 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 7335 7336 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7337 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 7338 return sectors * (raid_disks - conf->max_degraded); 7339 } 7340 7341 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7342 { 7343 safe_put_page(percpu->spare_page); 7344 percpu->spare_page = NULL; 7345 kvfree(percpu->scribble); 7346 percpu->scribble = NULL; 7347 } 7348 7349 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7350 { 7351 if (conf->level == 6 && !percpu->spare_page) { 7352 percpu->spare_page = alloc_page(GFP_KERNEL); 7353 if (!percpu->spare_page) 7354 return -ENOMEM; 7355 } 7356 7357 if (scribble_alloc(percpu, 7358 max(conf->raid_disks, 7359 conf->previous_raid_disks), 7360 max(conf->chunk_sectors, 7361 conf->prev_chunk_sectors) 7362 / RAID5_STRIPE_SECTORS(conf))) { 7363 free_scratch_buffer(conf, percpu); 7364 return -ENOMEM; 7365 } 7366 7367 local_lock_init(&percpu->lock); 7368 return 0; 7369 } 7370 7371 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 7372 { 7373 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7374 7375 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 7376 return 0; 7377 } 7378 7379 static void raid5_free_percpu(struct r5conf *conf) 7380 { 7381 if (!conf->percpu) 7382 return; 7383 7384 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7385 free_percpu(conf->percpu); 7386 } 7387 7388 static void free_conf(struct r5conf *conf) 7389 { 7390 int i; 7391 7392 log_exit(conf); 7393 7394 unregister_shrinker(&conf->shrinker); 7395 free_thread_groups(conf); 7396 shrink_stripes(conf); 7397 raid5_free_percpu(conf); 7398 for (i = 0; i < conf->pool_size; i++) 7399 if (conf->disks[i].extra_page) 7400 put_page(conf->disks[i].extra_page); 7401 kfree(conf->disks); 7402 bioset_exit(&conf->bio_split); 7403 kfree(conf->stripe_hashtbl); 7404 kfree(conf->pending_data); 7405 kfree(conf); 7406 } 7407 7408 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 7409 { 7410 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7411 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 7412 7413 if (alloc_scratch_buffer(conf, percpu)) { 7414 pr_warn("%s: failed memory allocation for cpu%u\n", 7415 __func__, cpu); 7416 return -ENOMEM; 7417 } 7418 return 0; 7419 } 7420 7421 static int raid5_alloc_percpu(struct r5conf *conf) 7422 { 7423 int err = 0; 7424 7425 conf->percpu = alloc_percpu(struct raid5_percpu); 7426 if (!conf->percpu) 7427 return -ENOMEM; 7428 7429 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7430 if (!err) { 7431 conf->scribble_disks = max(conf->raid_disks, 7432 conf->previous_raid_disks); 7433 conf->scribble_sectors = max(conf->chunk_sectors, 7434 conf->prev_chunk_sectors); 7435 } 7436 return err; 7437 } 7438 7439 static unsigned long raid5_cache_scan(struct shrinker *shrink, 7440 struct shrink_control *sc) 7441 { 7442 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 7443 unsigned long ret = SHRINK_STOP; 7444 7445 if (mutex_trylock(&conf->cache_size_mutex)) { 7446 ret= 0; 7447 while (ret < sc->nr_to_scan && 7448 conf->max_nr_stripes > conf->min_nr_stripes) { 7449 if (drop_one_stripe(conf) == 0) { 7450 ret = SHRINK_STOP; 7451 break; 7452 } 7453 ret++; 7454 } 7455 mutex_unlock(&conf->cache_size_mutex); 7456 } 7457 return ret; 7458 } 7459 7460 static unsigned long raid5_cache_count(struct shrinker *shrink, 7461 struct shrink_control *sc) 7462 { 7463 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 7464 7465 if (conf->max_nr_stripes < conf->min_nr_stripes) 7466 /* unlikely, but not impossible */ 7467 return 0; 7468 return conf->max_nr_stripes - conf->min_nr_stripes; 7469 } 7470 7471 static struct r5conf *setup_conf(struct mddev *mddev) 7472 { 7473 struct r5conf *conf; 7474 int raid_disk, memory, max_disks; 7475 struct md_rdev *rdev; 7476 struct disk_info *disk; 7477 char pers_name[6]; 7478 int i; 7479 int group_cnt; 7480 struct r5worker_group *new_group; 7481 int ret = -ENOMEM; 7482 7483 if (mddev->new_level != 5 7484 && mddev->new_level != 4 7485 && mddev->new_level != 6) { 7486 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 7487 mdname(mddev), mddev->new_level); 7488 return ERR_PTR(-EIO); 7489 } 7490 if ((mddev->new_level == 5 7491 && !algorithm_valid_raid5(mddev->new_layout)) || 7492 (mddev->new_level == 6 7493 && !algorithm_valid_raid6(mddev->new_layout))) { 7494 pr_warn("md/raid:%s: layout %d not supported\n", 7495 mdname(mddev), mddev->new_layout); 7496 return ERR_PTR(-EIO); 7497 } 7498 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 7499 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 7500 mdname(mddev), mddev->raid_disks); 7501 return ERR_PTR(-EINVAL); 7502 } 7503 7504 if (!mddev->new_chunk_sectors || 7505 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 7506 !is_power_of_2(mddev->new_chunk_sectors)) { 7507 pr_warn("md/raid:%s: invalid chunk size %d\n", 7508 mdname(mddev), mddev->new_chunk_sectors << 9); 7509 return ERR_PTR(-EINVAL); 7510 } 7511 7512 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 7513 if (conf == NULL) 7514 goto abort; 7515 7516 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 7517 conf->stripe_size = DEFAULT_STRIPE_SIZE; 7518 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9; 7519 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9; 7520 #endif 7521 INIT_LIST_HEAD(&conf->free_list); 7522 INIT_LIST_HEAD(&conf->pending_list); 7523 conf->pending_data = kcalloc(PENDING_IO_MAX, 7524 sizeof(struct r5pending_data), 7525 GFP_KERNEL); 7526 if (!conf->pending_data) 7527 goto abort; 7528 for (i = 0; i < PENDING_IO_MAX; i++) 7529 list_add(&conf->pending_data[i].sibling, &conf->free_list); 7530 /* Don't enable multi-threading by default*/ 7531 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) { 7532 conf->group_cnt = group_cnt; 7533 conf->worker_cnt_per_group = 0; 7534 conf->worker_groups = new_group; 7535 } else 7536 goto abort; 7537 spin_lock_init(&conf->device_lock); 7538 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock); 7539 mutex_init(&conf->cache_size_mutex); 7540 7541 init_waitqueue_head(&conf->wait_for_quiescent); 7542 init_waitqueue_head(&conf->wait_for_stripe); 7543 init_waitqueue_head(&conf->wait_for_overlap); 7544 INIT_LIST_HEAD(&conf->handle_list); 7545 INIT_LIST_HEAD(&conf->loprio_list); 7546 INIT_LIST_HEAD(&conf->hold_list); 7547 INIT_LIST_HEAD(&conf->delayed_list); 7548 INIT_LIST_HEAD(&conf->bitmap_list); 7549 init_llist_head(&conf->released_stripes); 7550 atomic_set(&conf->active_stripes, 0); 7551 atomic_set(&conf->preread_active_stripes, 0); 7552 atomic_set(&conf->active_aligned_reads, 0); 7553 spin_lock_init(&conf->pending_bios_lock); 7554 conf->batch_bio_dispatch = true; 7555 rdev_for_each(rdev, mddev) { 7556 if (test_bit(Journal, &rdev->flags)) 7557 continue; 7558 if (bdev_nonrot(rdev->bdev)) { 7559 conf->batch_bio_dispatch = false; 7560 break; 7561 } 7562 } 7563 7564 conf->bypass_threshold = BYPASS_THRESHOLD; 7565 conf->recovery_disabled = mddev->recovery_disabled - 1; 7566 7567 conf->raid_disks = mddev->raid_disks; 7568 if (mddev->reshape_position == MaxSector) 7569 conf->previous_raid_disks = mddev->raid_disks; 7570 else 7571 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 7572 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 7573 7574 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 7575 GFP_KERNEL); 7576 7577 if (!conf->disks) 7578 goto abort; 7579 7580 for (i = 0; i < max_disks; i++) { 7581 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 7582 if (!conf->disks[i].extra_page) 7583 goto abort; 7584 } 7585 7586 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 7587 if (ret) 7588 goto abort; 7589 conf->mddev = mddev; 7590 7591 ret = -ENOMEM; 7592 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL); 7593 if (!conf->stripe_hashtbl) 7594 goto abort; 7595 7596 /* We init hash_locks[0] separately to that it can be used 7597 * as the reference lock in the spin_lock_nest_lock() call 7598 * in lock_all_device_hash_locks_irq in order to convince 7599 * lockdep that we know what we are doing. 7600 */ 7601 spin_lock_init(conf->hash_locks); 7602 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 7603 spin_lock_init(conf->hash_locks + i); 7604 7605 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7606 INIT_LIST_HEAD(conf->inactive_list + i); 7607 7608 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7609 INIT_LIST_HEAD(conf->temp_inactive_list + i); 7610 7611 atomic_set(&conf->r5c_cached_full_stripes, 0); 7612 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 7613 atomic_set(&conf->r5c_cached_partial_stripes, 0); 7614 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 7615 atomic_set(&conf->r5c_flushing_full_stripes, 0); 7616 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 7617 7618 conf->level = mddev->new_level; 7619 conf->chunk_sectors = mddev->new_chunk_sectors; 7620 ret = raid5_alloc_percpu(conf); 7621 if (ret) 7622 goto abort; 7623 7624 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 7625 7626 ret = -EIO; 7627 rdev_for_each(rdev, mddev) { 7628 raid_disk = rdev->raid_disk; 7629 if (raid_disk >= max_disks 7630 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7631 continue; 7632 disk = conf->disks + raid_disk; 7633 7634 if (test_bit(Replacement, &rdev->flags)) { 7635 if (disk->replacement) 7636 goto abort; 7637 RCU_INIT_POINTER(disk->replacement, rdev); 7638 } else { 7639 if (disk->rdev) 7640 goto abort; 7641 RCU_INIT_POINTER(disk->rdev, rdev); 7642 } 7643 7644 if (test_bit(In_sync, &rdev->flags)) { 7645 pr_info("md/raid:%s: device %pg operational as raid disk %d\n", 7646 mdname(mddev), rdev->bdev, raid_disk); 7647 } else if (rdev->saved_raid_disk != raid_disk) 7648 /* Cannot rely on bitmap to complete recovery */ 7649 conf->fullsync = 1; 7650 } 7651 7652 conf->level = mddev->new_level; 7653 if (conf->level == 6) { 7654 conf->max_degraded = 2; 7655 if (raid6_call.xor_syndrome) 7656 conf->rmw_level = PARITY_ENABLE_RMW; 7657 else 7658 conf->rmw_level = PARITY_DISABLE_RMW; 7659 } else { 7660 conf->max_degraded = 1; 7661 conf->rmw_level = PARITY_ENABLE_RMW; 7662 } 7663 conf->algorithm = mddev->new_layout; 7664 conf->reshape_progress = mddev->reshape_position; 7665 if (conf->reshape_progress != MaxSector) { 7666 conf->prev_chunk_sectors = mddev->chunk_sectors; 7667 conf->prev_algo = mddev->layout; 7668 } else { 7669 conf->prev_chunk_sectors = conf->chunk_sectors; 7670 conf->prev_algo = conf->algorithm; 7671 } 7672 7673 conf->min_nr_stripes = NR_STRIPES; 7674 if (mddev->reshape_position != MaxSector) { 7675 int stripes = max_t(int, 7676 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4, 7677 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4); 7678 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7679 if (conf->min_nr_stripes != NR_STRIPES) 7680 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7681 mdname(mddev), conf->min_nr_stripes); 7682 } 7683 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7684 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7685 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7686 if (grow_stripes(conf, conf->min_nr_stripes)) { 7687 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7688 mdname(mddev), memory); 7689 ret = -ENOMEM; 7690 goto abort; 7691 } else 7692 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7693 /* 7694 * Losing a stripe head costs more than the time to refill it, 7695 * it reduces the queue depth and so can hurt throughput. 7696 * So set it rather large, scaled by number of devices. 7697 */ 7698 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7699 conf->shrinker.scan_objects = raid5_cache_scan; 7700 conf->shrinker.count_objects = raid5_cache_count; 7701 conf->shrinker.batch = 128; 7702 conf->shrinker.flags = 0; 7703 ret = register_shrinker(&conf->shrinker, "md-raid5:%s", mdname(mddev)); 7704 if (ret) { 7705 pr_warn("md/raid:%s: couldn't register shrinker.\n", 7706 mdname(mddev)); 7707 goto abort; 7708 } 7709 7710 sprintf(pers_name, "raid%d", mddev->new_level); 7711 conf->thread = md_register_thread(raid5d, mddev, pers_name); 7712 if (!conf->thread) { 7713 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7714 mdname(mddev)); 7715 ret = -ENOMEM; 7716 goto abort; 7717 } 7718 7719 return conf; 7720 7721 abort: 7722 if (conf) 7723 free_conf(conf); 7724 return ERR_PTR(ret); 7725 } 7726 7727 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7728 { 7729 switch (algo) { 7730 case ALGORITHM_PARITY_0: 7731 if (raid_disk < max_degraded) 7732 return 1; 7733 break; 7734 case ALGORITHM_PARITY_N: 7735 if (raid_disk >= raid_disks - max_degraded) 7736 return 1; 7737 break; 7738 case ALGORITHM_PARITY_0_6: 7739 if (raid_disk == 0 || 7740 raid_disk == raid_disks - 1) 7741 return 1; 7742 break; 7743 case ALGORITHM_LEFT_ASYMMETRIC_6: 7744 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7745 case ALGORITHM_LEFT_SYMMETRIC_6: 7746 case ALGORITHM_RIGHT_SYMMETRIC_6: 7747 if (raid_disk == raid_disks - 1) 7748 return 1; 7749 } 7750 return 0; 7751 } 7752 7753 static void raid5_set_io_opt(struct r5conf *conf) 7754 { 7755 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) * 7756 (conf->raid_disks - conf->max_degraded)); 7757 } 7758 7759 static int raid5_run(struct mddev *mddev) 7760 { 7761 struct r5conf *conf; 7762 int dirty_parity_disks = 0; 7763 struct md_rdev *rdev; 7764 struct md_rdev *journal_dev = NULL; 7765 sector_t reshape_offset = 0; 7766 int i, ret = 0; 7767 long long min_offset_diff = 0; 7768 int first = 1; 7769 7770 if (acct_bioset_init(mddev)) { 7771 pr_err("md/raid456:%s: alloc acct bioset failed.\n", mdname(mddev)); 7772 return -ENOMEM; 7773 } 7774 7775 if (mddev_init_writes_pending(mddev) < 0) { 7776 ret = -ENOMEM; 7777 goto exit_acct_set; 7778 } 7779 7780 if (mddev->recovery_cp != MaxSector) 7781 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7782 mdname(mddev)); 7783 7784 rdev_for_each(rdev, mddev) { 7785 long long diff; 7786 7787 if (test_bit(Journal, &rdev->flags)) { 7788 journal_dev = rdev; 7789 continue; 7790 } 7791 if (rdev->raid_disk < 0) 7792 continue; 7793 diff = (rdev->new_data_offset - rdev->data_offset); 7794 if (first) { 7795 min_offset_diff = diff; 7796 first = 0; 7797 } else if (mddev->reshape_backwards && 7798 diff < min_offset_diff) 7799 min_offset_diff = diff; 7800 else if (!mddev->reshape_backwards && 7801 diff > min_offset_diff) 7802 min_offset_diff = diff; 7803 } 7804 7805 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7806 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7807 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7808 mdname(mddev)); 7809 ret = -EINVAL; 7810 goto exit_acct_set; 7811 } 7812 7813 if (mddev->reshape_position != MaxSector) { 7814 /* Check that we can continue the reshape. 7815 * Difficulties arise if the stripe we would write to 7816 * next is at or after the stripe we would read from next. 7817 * For a reshape that changes the number of devices, this 7818 * is only possible for a very short time, and mdadm makes 7819 * sure that time appears to have past before assembling 7820 * the array. So we fail if that time hasn't passed. 7821 * For a reshape that keeps the number of devices the same 7822 * mdadm must be monitoring the reshape can keeping the 7823 * critical areas read-only and backed up. It will start 7824 * the array in read-only mode, so we check for that. 7825 */ 7826 sector_t here_new, here_old; 7827 int old_disks; 7828 int max_degraded = (mddev->level == 6 ? 2 : 1); 7829 int chunk_sectors; 7830 int new_data_disks; 7831 7832 if (journal_dev) { 7833 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7834 mdname(mddev)); 7835 ret = -EINVAL; 7836 goto exit_acct_set; 7837 } 7838 7839 if (mddev->new_level != mddev->level) { 7840 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7841 mdname(mddev)); 7842 ret = -EINVAL; 7843 goto exit_acct_set; 7844 } 7845 old_disks = mddev->raid_disks - mddev->delta_disks; 7846 /* reshape_position must be on a new-stripe boundary, and one 7847 * further up in new geometry must map after here in old 7848 * geometry. 7849 * If the chunk sizes are different, then as we perform reshape 7850 * in units of the largest of the two, reshape_position needs 7851 * be a multiple of the largest chunk size times new data disks. 7852 */ 7853 here_new = mddev->reshape_position; 7854 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7855 new_data_disks = mddev->raid_disks - max_degraded; 7856 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7857 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7858 mdname(mddev)); 7859 ret = -EINVAL; 7860 goto exit_acct_set; 7861 } 7862 reshape_offset = here_new * chunk_sectors; 7863 /* here_new is the stripe we will write to */ 7864 here_old = mddev->reshape_position; 7865 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7866 /* here_old is the first stripe that we might need to read 7867 * from */ 7868 if (mddev->delta_disks == 0) { 7869 /* We cannot be sure it is safe to start an in-place 7870 * reshape. It is only safe if user-space is monitoring 7871 * and taking constant backups. 7872 * mdadm always starts a situation like this in 7873 * readonly mode so it can take control before 7874 * allowing any writes. So just check for that. 7875 */ 7876 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7877 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7878 /* not really in-place - so OK */; 7879 else if (mddev->ro == 0) { 7880 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7881 mdname(mddev)); 7882 ret = -EINVAL; 7883 goto exit_acct_set; 7884 } 7885 } else if (mddev->reshape_backwards 7886 ? (here_new * chunk_sectors + min_offset_diff <= 7887 here_old * chunk_sectors) 7888 : (here_new * chunk_sectors >= 7889 here_old * chunk_sectors + (-min_offset_diff))) { 7890 /* Reading from the same stripe as writing to - bad */ 7891 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7892 mdname(mddev)); 7893 ret = -EINVAL; 7894 goto exit_acct_set; 7895 } 7896 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7897 /* OK, we should be able to continue; */ 7898 } else { 7899 BUG_ON(mddev->level != mddev->new_level); 7900 BUG_ON(mddev->layout != mddev->new_layout); 7901 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7902 BUG_ON(mddev->delta_disks != 0); 7903 } 7904 7905 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7906 test_bit(MD_HAS_PPL, &mddev->flags)) { 7907 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7908 mdname(mddev)); 7909 clear_bit(MD_HAS_PPL, &mddev->flags); 7910 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7911 } 7912 7913 if (mddev->private == NULL) 7914 conf = setup_conf(mddev); 7915 else 7916 conf = mddev->private; 7917 7918 if (IS_ERR(conf)) { 7919 ret = PTR_ERR(conf); 7920 goto exit_acct_set; 7921 } 7922 7923 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7924 if (!journal_dev) { 7925 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7926 mdname(mddev)); 7927 mddev->ro = 1; 7928 set_disk_ro(mddev->gendisk, 1); 7929 } else if (mddev->recovery_cp == MaxSector) 7930 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7931 } 7932 7933 conf->min_offset_diff = min_offset_diff; 7934 mddev->thread = conf->thread; 7935 conf->thread = NULL; 7936 mddev->private = conf; 7937 7938 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7939 i++) { 7940 rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev); 7941 if (!rdev && conf->disks[i].replacement) { 7942 /* The replacement is all we have yet */ 7943 rdev = rdev_mdlock_deref(mddev, 7944 conf->disks[i].replacement); 7945 conf->disks[i].replacement = NULL; 7946 clear_bit(Replacement, &rdev->flags); 7947 rcu_assign_pointer(conf->disks[i].rdev, rdev); 7948 } 7949 if (!rdev) 7950 continue; 7951 if (rcu_access_pointer(conf->disks[i].replacement) && 7952 conf->reshape_progress != MaxSector) { 7953 /* replacements and reshape simply do not mix. */ 7954 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7955 goto abort; 7956 } 7957 if (test_bit(In_sync, &rdev->flags)) 7958 continue; 7959 /* This disc is not fully in-sync. However if it 7960 * just stored parity (beyond the recovery_offset), 7961 * when we don't need to be concerned about the 7962 * array being dirty. 7963 * When reshape goes 'backwards', we never have 7964 * partially completed devices, so we only need 7965 * to worry about reshape going forwards. 7966 */ 7967 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7968 if (mddev->major_version == 0 && 7969 mddev->minor_version > 90) 7970 rdev->recovery_offset = reshape_offset; 7971 7972 if (rdev->recovery_offset < reshape_offset) { 7973 /* We need to check old and new layout */ 7974 if (!only_parity(rdev->raid_disk, 7975 conf->algorithm, 7976 conf->raid_disks, 7977 conf->max_degraded)) 7978 continue; 7979 } 7980 if (!only_parity(rdev->raid_disk, 7981 conf->prev_algo, 7982 conf->previous_raid_disks, 7983 conf->max_degraded)) 7984 continue; 7985 dirty_parity_disks++; 7986 } 7987 7988 /* 7989 * 0 for a fully functional array, 1 or 2 for a degraded array. 7990 */ 7991 mddev->degraded = raid5_calc_degraded(conf); 7992 7993 if (has_failed(conf)) { 7994 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7995 mdname(mddev), mddev->degraded, conf->raid_disks); 7996 goto abort; 7997 } 7998 7999 /* device size must be a multiple of chunk size */ 8000 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1); 8001 mddev->resync_max_sectors = mddev->dev_sectors; 8002 8003 if (mddev->degraded > dirty_parity_disks && 8004 mddev->recovery_cp != MaxSector) { 8005 if (test_bit(MD_HAS_PPL, &mddev->flags)) 8006 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 8007 mdname(mddev)); 8008 else if (mddev->ok_start_degraded) 8009 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 8010 mdname(mddev)); 8011 else { 8012 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 8013 mdname(mddev)); 8014 goto abort; 8015 } 8016 } 8017 8018 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 8019 mdname(mddev), conf->level, 8020 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 8021 mddev->new_layout); 8022 8023 print_raid5_conf(conf); 8024 8025 if (conf->reshape_progress != MaxSector) { 8026 conf->reshape_safe = conf->reshape_progress; 8027 atomic_set(&conf->reshape_stripes, 0); 8028 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8029 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8030 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8031 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8032 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 8033 "reshape"); 8034 if (!mddev->sync_thread) 8035 goto abort; 8036 } 8037 8038 /* Ok, everything is just fine now */ 8039 if (mddev->to_remove == &raid5_attrs_group) 8040 mddev->to_remove = NULL; 8041 else if (mddev->kobj.sd && 8042 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 8043 pr_warn("raid5: failed to create sysfs attributes for %s\n", 8044 mdname(mddev)); 8045 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 8046 8047 if (mddev->queue) { 8048 int chunk_size; 8049 /* read-ahead size must cover two whole stripes, which 8050 * is 2 * (datadisks) * chunksize where 'n' is the 8051 * number of raid devices 8052 */ 8053 int data_disks = conf->previous_raid_disks - conf->max_degraded; 8054 int stripe = data_disks * 8055 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 8056 8057 chunk_size = mddev->chunk_sectors << 9; 8058 blk_queue_io_min(mddev->queue, chunk_size); 8059 raid5_set_io_opt(conf); 8060 mddev->queue->limits.raid_partial_stripes_expensive = 1; 8061 /* 8062 * We can only discard a whole stripe. It doesn't make sense to 8063 * discard data disk but write parity disk 8064 */ 8065 stripe = stripe * PAGE_SIZE; 8066 stripe = roundup_pow_of_two(stripe); 8067 mddev->queue->limits.discard_granularity = stripe; 8068 8069 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 8070 8071 rdev_for_each(rdev, mddev) { 8072 disk_stack_limits(mddev->gendisk, rdev->bdev, 8073 rdev->data_offset << 9); 8074 disk_stack_limits(mddev->gendisk, rdev->bdev, 8075 rdev->new_data_offset << 9); 8076 } 8077 8078 /* 8079 * zeroing is required, otherwise data 8080 * could be lost. Consider a scenario: discard a stripe 8081 * (the stripe could be inconsistent if 8082 * discard_zeroes_data is 0); write one disk of the 8083 * stripe (the stripe could be inconsistent again 8084 * depending on which disks are used to calculate 8085 * parity); the disk is broken; The stripe data of this 8086 * disk is lost. 8087 * 8088 * We only allow DISCARD if the sysadmin has confirmed that 8089 * only safe devices are in use by setting a module parameter. 8090 * A better idea might be to turn DISCARD into WRITE_ZEROES 8091 * requests, as that is required to be safe. 8092 */ 8093 if (!devices_handle_discard_safely || 8094 mddev->queue->limits.max_discard_sectors < (stripe >> 9) || 8095 mddev->queue->limits.discard_granularity < stripe) 8096 blk_queue_max_discard_sectors(mddev->queue, 0); 8097 8098 /* 8099 * Requests require having a bitmap for each stripe. 8100 * Limit the max sectors based on this. 8101 */ 8102 blk_queue_max_hw_sectors(mddev->queue, 8103 RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf)); 8104 8105 /* No restrictions on the number of segments in the request */ 8106 blk_queue_max_segments(mddev->queue, USHRT_MAX); 8107 } 8108 8109 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 8110 goto abort; 8111 8112 return 0; 8113 abort: 8114 md_unregister_thread(&mddev->thread); 8115 print_raid5_conf(conf); 8116 free_conf(conf); 8117 mddev->private = NULL; 8118 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 8119 ret = -EIO; 8120 exit_acct_set: 8121 acct_bioset_exit(mddev); 8122 return ret; 8123 } 8124 8125 static void raid5_free(struct mddev *mddev, void *priv) 8126 { 8127 struct r5conf *conf = priv; 8128 8129 free_conf(conf); 8130 acct_bioset_exit(mddev); 8131 mddev->to_remove = &raid5_attrs_group; 8132 } 8133 8134 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 8135 { 8136 struct r5conf *conf = mddev->private; 8137 int i; 8138 8139 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 8140 conf->chunk_sectors / 2, mddev->layout); 8141 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 8142 rcu_read_lock(); 8143 for (i = 0; i < conf->raid_disks; i++) { 8144 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 8145 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 8146 } 8147 rcu_read_unlock(); 8148 seq_printf (seq, "]"); 8149 } 8150 8151 static void print_raid5_conf (struct r5conf *conf) 8152 { 8153 struct md_rdev *rdev; 8154 int i; 8155 8156 pr_debug("RAID conf printout:\n"); 8157 if (!conf) { 8158 pr_debug("(conf==NULL)\n"); 8159 return; 8160 } 8161 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 8162 conf->raid_disks, 8163 conf->raid_disks - conf->mddev->degraded); 8164 8165 rcu_read_lock(); 8166 for (i = 0; i < conf->raid_disks; i++) { 8167 rdev = rcu_dereference(conf->disks[i].rdev); 8168 if (rdev) 8169 pr_debug(" disk %d, o:%d, dev:%pg\n", 8170 i, !test_bit(Faulty, &rdev->flags), 8171 rdev->bdev); 8172 } 8173 rcu_read_unlock(); 8174 } 8175 8176 static int raid5_spare_active(struct mddev *mddev) 8177 { 8178 int i; 8179 struct r5conf *conf = mddev->private; 8180 struct md_rdev *rdev, *replacement; 8181 int count = 0; 8182 unsigned long flags; 8183 8184 for (i = 0; i < conf->raid_disks; i++) { 8185 rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev); 8186 replacement = rdev_mdlock_deref(mddev, 8187 conf->disks[i].replacement); 8188 if (replacement 8189 && replacement->recovery_offset == MaxSector 8190 && !test_bit(Faulty, &replacement->flags) 8191 && !test_and_set_bit(In_sync, &replacement->flags)) { 8192 /* Replacement has just become active. */ 8193 if (!rdev 8194 || !test_and_clear_bit(In_sync, &rdev->flags)) 8195 count++; 8196 if (rdev) { 8197 /* Replaced device not technically faulty, 8198 * but we need to be sure it gets removed 8199 * and never re-added. 8200 */ 8201 set_bit(Faulty, &rdev->flags); 8202 sysfs_notify_dirent_safe( 8203 rdev->sysfs_state); 8204 } 8205 sysfs_notify_dirent_safe(replacement->sysfs_state); 8206 } else if (rdev 8207 && rdev->recovery_offset == MaxSector 8208 && !test_bit(Faulty, &rdev->flags) 8209 && !test_and_set_bit(In_sync, &rdev->flags)) { 8210 count++; 8211 sysfs_notify_dirent_safe(rdev->sysfs_state); 8212 } 8213 } 8214 spin_lock_irqsave(&conf->device_lock, flags); 8215 mddev->degraded = raid5_calc_degraded(conf); 8216 spin_unlock_irqrestore(&conf->device_lock, flags); 8217 print_raid5_conf(conf); 8218 return count; 8219 } 8220 8221 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 8222 { 8223 struct r5conf *conf = mddev->private; 8224 int err = 0; 8225 int number = rdev->raid_disk; 8226 struct md_rdev __rcu **rdevp; 8227 struct disk_info *p; 8228 struct md_rdev *tmp; 8229 8230 print_raid5_conf(conf); 8231 if (test_bit(Journal, &rdev->flags) && conf->log) { 8232 /* 8233 * we can't wait pending write here, as this is called in 8234 * raid5d, wait will deadlock. 8235 * neilb: there is no locking about new writes here, 8236 * so this cannot be safe. 8237 */ 8238 if (atomic_read(&conf->active_stripes) || 8239 atomic_read(&conf->r5c_cached_full_stripes) || 8240 atomic_read(&conf->r5c_cached_partial_stripes)) { 8241 return -EBUSY; 8242 } 8243 log_exit(conf); 8244 return 0; 8245 } 8246 if (unlikely(number >= conf->pool_size)) 8247 return 0; 8248 p = conf->disks + number; 8249 if (rdev == rcu_access_pointer(p->rdev)) 8250 rdevp = &p->rdev; 8251 else if (rdev == rcu_access_pointer(p->replacement)) 8252 rdevp = &p->replacement; 8253 else 8254 return 0; 8255 8256 if (number >= conf->raid_disks && 8257 conf->reshape_progress == MaxSector) 8258 clear_bit(In_sync, &rdev->flags); 8259 8260 if (test_bit(In_sync, &rdev->flags) || 8261 atomic_read(&rdev->nr_pending)) { 8262 err = -EBUSY; 8263 goto abort; 8264 } 8265 /* Only remove non-faulty devices if recovery 8266 * isn't possible. 8267 */ 8268 if (!test_bit(Faulty, &rdev->flags) && 8269 mddev->recovery_disabled != conf->recovery_disabled && 8270 !has_failed(conf) && 8271 (!rcu_access_pointer(p->replacement) || 8272 rcu_access_pointer(p->replacement) == rdev) && 8273 number < conf->raid_disks) { 8274 err = -EBUSY; 8275 goto abort; 8276 } 8277 *rdevp = NULL; 8278 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 8279 lockdep_assert_held(&mddev->reconfig_mutex); 8280 synchronize_rcu(); 8281 if (atomic_read(&rdev->nr_pending)) { 8282 /* lost the race, try later */ 8283 err = -EBUSY; 8284 rcu_assign_pointer(*rdevp, rdev); 8285 } 8286 } 8287 if (!err) { 8288 err = log_modify(conf, rdev, false); 8289 if (err) 8290 goto abort; 8291 } 8292 8293 tmp = rcu_access_pointer(p->replacement); 8294 if (tmp) { 8295 /* We must have just cleared 'rdev' */ 8296 rcu_assign_pointer(p->rdev, tmp); 8297 clear_bit(Replacement, &tmp->flags); 8298 smp_mb(); /* Make sure other CPUs may see both as identical 8299 * but will never see neither - if they are careful 8300 */ 8301 rcu_assign_pointer(p->replacement, NULL); 8302 8303 if (!err) 8304 err = log_modify(conf, tmp, true); 8305 } 8306 8307 clear_bit(WantReplacement, &rdev->flags); 8308 abort: 8309 8310 print_raid5_conf(conf); 8311 return err; 8312 } 8313 8314 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 8315 { 8316 struct r5conf *conf = mddev->private; 8317 int ret, err = -EEXIST; 8318 int disk; 8319 struct disk_info *p; 8320 struct md_rdev *tmp; 8321 int first = 0; 8322 int last = conf->raid_disks - 1; 8323 8324 if (test_bit(Journal, &rdev->flags)) { 8325 if (conf->log) 8326 return -EBUSY; 8327 8328 rdev->raid_disk = 0; 8329 /* 8330 * The array is in readonly mode if journal is missing, so no 8331 * write requests running. We should be safe 8332 */ 8333 ret = log_init(conf, rdev, false); 8334 if (ret) 8335 return ret; 8336 8337 ret = r5l_start(conf->log); 8338 if (ret) 8339 return ret; 8340 8341 return 0; 8342 } 8343 if (mddev->recovery_disabled == conf->recovery_disabled) 8344 return -EBUSY; 8345 8346 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 8347 /* no point adding a device */ 8348 return -EINVAL; 8349 8350 if (rdev->raid_disk >= 0) 8351 first = last = rdev->raid_disk; 8352 8353 /* 8354 * find the disk ... but prefer rdev->saved_raid_disk 8355 * if possible. 8356 */ 8357 if (rdev->saved_raid_disk >= first && 8358 rdev->saved_raid_disk <= last && 8359 conf->disks[rdev->saved_raid_disk].rdev == NULL) 8360 first = rdev->saved_raid_disk; 8361 8362 for (disk = first; disk <= last; disk++) { 8363 p = conf->disks + disk; 8364 if (p->rdev == NULL) { 8365 clear_bit(In_sync, &rdev->flags); 8366 rdev->raid_disk = disk; 8367 if (rdev->saved_raid_disk != disk) 8368 conf->fullsync = 1; 8369 rcu_assign_pointer(p->rdev, rdev); 8370 8371 err = log_modify(conf, rdev, true); 8372 8373 goto out; 8374 } 8375 } 8376 for (disk = first; disk <= last; disk++) { 8377 p = conf->disks + disk; 8378 tmp = rdev_mdlock_deref(mddev, p->rdev); 8379 if (test_bit(WantReplacement, &tmp->flags) && 8380 p->replacement == NULL) { 8381 clear_bit(In_sync, &rdev->flags); 8382 set_bit(Replacement, &rdev->flags); 8383 rdev->raid_disk = disk; 8384 err = 0; 8385 conf->fullsync = 1; 8386 rcu_assign_pointer(p->replacement, rdev); 8387 break; 8388 } 8389 } 8390 out: 8391 print_raid5_conf(conf); 8392 return err; 8393 } 8394 8395 static int raid5_resize(struct mddev *mddev, sector_t sectors) 8396 { 8397 /* no resync is happening, and there is enough space 8398 * on all devices, so we can resize. 8399 * We need to make sure resync covers any new space. 8400 * If the array is shrinking we should possibly wait until 8401 * any io in the removed space completes, but it hardly seems 8402 * worth it. 8403 */ 8404 sector_t newsize; 8405 struct r5conf *conf = mddev->private; 8406 8407 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8408 return -EINVAL; 8409 sectors &= ~((sector_t)conf->chunk_sectors - 1); 8410 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 8411 if (mddev->external_size && 8412 mddev->array_sectors > newsize) 8413 return -EINVAL; 8414 if (mddev->bitmap) { 8415 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0); 8416 if (ret) 8417 return ret; 8418 } 8419 md_set_array_sectors(mddev, newsize); 8420 if (sectors > mddev->dev_sectors && 8421 mddev->recovery_cp > mddev->dev_sectors) { 8422 mddev->recovery_cp = mddev->dev_sectors; 8423 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8424 } 8425 mddev->dev_sectors = sectors; 8426 mddev->resync_max_sectors = sectors; 8427 return 0; 8428 } 8429 8430 static int check_stripe_cache(struct mddev *mddev) 8431 { 8432 /* Can only proceed if there are plenty of stripe_heads. 8433 * We need a minimum of one full stripe,, and for sensible progress 8434 * it is best to have about 4 times that. 8435 * If we require 4 times, then the default 256 4K stripe_heads will 8436 * allow for chunk sizes up to 256K, which is probably OK. 8437 * If the chunk size is greater, user-space should request more 8438 * stripe_heads first. 8439 */ 8440 struct r5conf *conf = mddev->private; 8441 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8442 > conf->min_nr_stripes || 8443 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8444 > conf->min_nr_stripes) { 8445 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 8446 mdname(mddev), 8447 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 8448 / RAID5_STRIPE_SIZE(conf))*4); 8449 return 0; 8450 } 8451 return 1; 8452 } 8453 8454 static int check_reshape(struct mddev *mddev) 8455 { 8456 struct r5conf *conf = mddev->private; 8457 8458 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8459 return -EINVAL; 8460 if (mddev->delta_disks == 0 && 8461 mddev->new_layout == mddev->layout && 8462 mddev->new_chunk_sectors == mddev->chunk_sectors) 8463 return 0; /* nothing to do */ 8464 if (has_failed(conf)) 8465 return -EINVAL; 8466 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 8467 /* We might be able to shrink, but the devices must 8468 * be made bigger first. 8469 * For raid6, 4 is the minimum size. 8470 * Otherwise 2 is the minimum 8471 */ 8472 int min = 2; 8473 if (mddev->level == 6) 8474 min = 4; 8475 if (mddev->raid_disks + mddev->delta_disks < min) 8476 return -EINVAL; 8477 } 8478 8479 if (!check_stripe_cache(mddev)) 8480 return -ENOSPC; 8481 8482 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 8483 mddev->delta_disks > 0) 8484 if (resize_chunks(conf, 8485 conf->previous_raid_disks 8486 + max(0, mddev->delta_disks), 8487 max(mddev->new_chunk_sectors, 8488 mddev->chunk_sectors) 8489 ) < 0) 8490 return -ENOMEM; 8491 8492 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 8493 return 0; /* never bother to shrink */ 8494 return resize_stripes(conf, (conf->previous_raid_disks 8495 + mddev->delta_disks)); 8496 } 8497 8498 static int raid5_start_reshape(struct mddev *mddev) 8499 { 8500 struct r5conf *conf = mddev->private; 8501 struct md_rdev *rdev; 8502 int spares = 0; 8503 unsigned long flags; 8504 8505 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8506 return -EBUSY; 8507 8508 if (!check_stripe_cache(mddev)) 8509 return -ENOSPC; 8510 8511 if (has_failed(conf)) 8512 return -EINVAL; 8513 8514 rdev_for_each(rdev, mddev) { 8515 if (!test_bit(In_sync, &rdev->flags) 8516 && !test_bit(Faulty, &rdev->flags)) 8517 spares++; 8518 } 8519 8520 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 8521 /* Not enough devices even to make a degraded array 8522 * of that size 8523 */ 8524 return -EINVAL; 8525 8526 /* Refuse to reduce size of the array. Any reductions in 8527 * array size must be through explicit setting of array_size 8528 * attribute. 8529 */ 8530 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 8531 < mddev->array_sectors) { 8532 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 8533 mdname(mddev)); 8534 return -EINVAL; 8535 } 8536 8537 atomic_set(&conf->reshape_stripes, 0); 8538 spin_lock_irq(&conf->device_lock); 8539 write_seqcount_begin(&conf->gen_lock); 8540 conf->previous_raid_disks = conf->raid_disks; 8541 conf->raid_disks += mddev->delta_disks; 8542 conf->prev_chunk_sectors = conf->chunk_sectors; 8543 conf->chunk_sectors = mddev->new_chunk_sectors; 8544 conf->prev_algo = conf->algorithm; 8545 conf->algorithm = mddev->new_layout; 8546 conf->generation++; 8547 /* Code that selects data_offset needs to see the generation update 8548 * if reshape_progress has been set - so a memory barrier needed. 8549 */ 8550 smp_mb(); 8551 if (mddev->reshape_backwards) 8552 conf->reshape_progress = raid5_size(mddev, 0, 0); 8553 else 8554 conf->reshape_progress = 0; 8555 conf->reshape_safe = conf->reshape_progress; 8556 write_seqcount_end(&conf->gen_lock); 8557 spin_unlock_irq(&conf->device_lock); 8558 8559 /* Now make sure any requests that proceeded on the assumption 8560 * the reshape wasn't running - like Discard or Read - have 8561 * completed. 8562 */ 8563 mddev_suspend(mddev); 8564 mddev_resume(mddev); 8565 8566 /* Add some new drives, as many as will fit. 8567 * We know there are enough to make the newly sized array work. 8568 * Don't add devices if we are reducing the number of 8569 * devices in the array. This is because it is not possible 8570 * to correctly record the "partially reconstructed" state of 8571 * such devices during the reshape and confusion could result. 8572 */ 8573 if (mddev->delta_disks >= 0) { 8574 rdev_for_each(rdev, mddev) 8575 if (rdev->raid_disk < 0 && 8576 !test_bit(Faulty, &rdev->flags)) { 8577 if (raid5_add_disk(mddev, rdev) == 0) { 8578 if (rdev->raid_disk 8579 >= conf->previous_raid_disks) 8580 set_bit(In_sync, &rdev->flags); 8581 else 8582 rdev->recovery_offset = 0; 8583 8584 /* Failure here is OK */ 8585 sysfs_link_rdev(mddev, rdev); 8586 } 8587 } else if (rdev->raid_disk >= conf->previous_raid_disks 8588 && !test_bit(Faulty, &rdev->flags)) { 8589 /* This is a spare that was manually added */ 8590 set_bit(In_sync, &rdev->flags); 8591 } 8592 8593 /* When a reshape changes the number of devices, 8594 * ->degraded is measured against the larger of the 8595 * pre and post number of devices. 8596 */ 8597 spin_lock_irqsave(&conf->device_lock, flags); 8598 mddev->degraded = raid5_calc_degraded(conf); 8599 spin_unlock_irqrestore(&conf->device_lock, flags); 8600 } 8601 mddev->raid_disks = conf->raid_disks; 8602 mddev->reshape_position = conf->reshape_progress; 8603 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8604 8605 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8606 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8607 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8608 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8609 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8610 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 8611 "reshape"); 8612 if (!mddev->sync_thread) { 8613 mddev->recovery = 0; 8614 spin_lock_irq(&conf->device_lock); 8615 write_seqcount_begin(&conf->gen_lock); 8616 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 8617 mddev->new_chunk_sectors = 8618 conf->chunk_sectors = conf->prev_chunk_sectors; 8619 mddev->new_layout = conf->algorithm = conf->prev_algo; 8620 rdev_for_each(rdev, mddev) 8621 rdev->new_data_offset = rdev->data_offset; 8622 smp_wmb(); 8623 conf->generation --; 8624 conf->reshape_progress = MaxSector; 8625 mddev->reshape_position = MaxSector; 8626 write_seqcount_end(&conf->gen_lock); 8627 spin_unlock_irq(&conf->device_lock); 8628 return -EAGAIN; 8629 } 8630 conf->reshape_checkpoint = jiffies; 8631 md_wakeup_thread(mddev->sync_thread); 8632 md_new_event(); 8633 return 0; 8634 } 8635 8636 /* This is called from the reshape thread and should make any 8637 * changes needed in 'conf' 8638 */ 8639 static void end_reshape(struct r5conf *conf) 8640 { 8641 8642 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 8643 struct md_rdev *rdev; 8644 8645 spin_lock_irq(&conf->device_lock); 8646 conf->previous_raid_disks = conf->raid_disks; 8647 md_finish_reshape(conf->mddev); 8648 smp_wmb(); 8649 conf->reshape_progress = MaxSector; 8650 conf->mddev->reshape_position = MaxSector; 8651 rdev_for_each(rdev, conf->mddev) 8652 if (rdev->raid_disk >= 0 && 8653 !test_bit(Journal, &rdev->flags) && 8654 !test_bit(In_sync, &rdev->flags)) 8655 rdev->recovery_offset = MaxSector; 8656 spin_unlock_irq(&conf->device_lock); 8657 wake_up(&conf->wait_for_overlap); 8658 8659 if (conf->mddev->queue) 8660 raid5_set_io_opt(conf); 8661 } 8662 } 8663 8664 /* This is called from the raid5d thread with mddev_lock held. 8665 * It makes config changes to the device. 8666 */ 8667 static void raid5_finish_reshape(struct mddev *mddev) 8668 { 8669 struct r5conf *conf = mddev->private; 8670 struct md_rdev *rdev; 8671 8672 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8673 8674 if (mddev->delta_disks <= 0) { 8675 int d; 8676 spin_lock_irq(&conf->device_lock); 8677 mddev->degraded = raid5_calc_degraded(conf); 8678 spin_unlock_irq(&conf->device_lock); 8679 for (d = conf->raid_disks ; 8680 d < conf->raid_disks - mddev->delta_disks; 8681 d++) { 8682 rdev = rdev_mdlock_deref(mddev, 8683 conf->disks[d].rdev); 8684 if (rdev) 8685 clear_bit(In_sync, &rdev->flags); 8686 rdev = rdev_mdlock_deref(mddev, 8687 conf->disks[d].replacement); 8688 if (rdev) 8689 clear_bit(In_sync, &rdev->flags); 8690 } 8691 } 8692 mddev->layout = conf->algorithm; 8693 mddev->chunk_sectors = conf->chunk_sectors; 8694 mddev->reshape_position = MaxSector; 8695 mddev->delta_disks = 0; 8696 mddev->reshape_backwards = 0; 8697 } 8698 } 8699 8700 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8701 { 8702 struct r5conf *conf = mddev->private; 8703 8704 if (quiesce) { 8705 /* stop all writes */ 8706 lock_all_device_hash_locks_irq(conf); 8707 /* '2' tells resync/reshape to pause so that all 8708 * active stripes can drain 8709 */ 8710 r5c_flush_cache(conf, INT_MAX); 8711 /* need a memory barrier to make sure read_one_chunk() sees 8712 * quiesce started and reverts to slow (locked) path. 8713 */ 8714 smp_store_release(&conf->quiesce, 2); 8715 wait_event_cmd(conf->wait_for_quiescent, 8716 atomic_read(&conf->active_stripes) == 0 && 8717 atomic_read(&conf->active_aligned_reads) == 0, 8718 unlock_all_device_hash_locks_irq(conf), 8719 lock_all_device_hash_locks_irq(conf)); 8720 conf->quiesce = 1; 8721 unlock_all_device_hash_locks_irq(conf); 8722 /* allow reshape to continue */ 8723 wake_up(&conf->wait_for_overlap); 8724 } else { 8725 /* re-enable writes */ 8726 lock_all_device_hash_locks_irq(conf); 8727 conf->quiesce = 0; 8728 wake_up(&conf->wait_for_quiescent); 8729 wake_up(&conf->wait_for_overlap); 8730 unlock_all_device_hash_locks_irq(conf); 8731 } 8732 log_quiesce(conf, quiesce); 8733 } 8734 8735 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8736 { 8737 struct r0conf *raid0_conf = mddev->private; 8738 sector_t sectors; 8739 8740 /* for raid0 takeover only one zone is supported */ 8741 if (raid0_conf->nr_strip_zones > 1) { 8742 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8743 mdname(mddev)); 8744 return ERR_PTR(-EINVAL); 8745 } 8746 8747 sectors = raid0_conf->strip_zone[0].zone_end; 8748 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8749 mddev->dev_sectors = sectors; 8750 mddev->new_level = level; 8751 mddev->new_layout = ALGORITHM_PARITY_N; 8752 mddev->new_chunk_sectors = mddev->chunk_sectors; 8753 mddev->raid_disks += 1; 8754 mddev->delta_disks = 1; 8755 /* make sure it will be not marked as dirty */ 8756 mddev->recovery_cp = MaxSector; 8757 8758 return setup_conf(mddev); 8759 } 8760 8761 static void *raid5_takeover_raid1(struct mddev *mddev) 8762 { 8763 int chunksect; 8764 void *ret; 8765 8766 if (mddev->raid_disks != 2 || 8767 mddev->degraded > 1) 8768 return ERR_PTR(-EINVAL); 8769 8770 /* Should check if there are write-behind devices? */ 8771 8772 chunksect = 64*2; /* 64K by default */ 8773 8774 /* The array must be an exact multiple of chunksize */ 8775 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8776 chunksect >>= 1; 8777 8778 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private)) 8779 /* array size does not allow a suitable chunk size */ 8780 return ERR_PTR(-EINVAL); 8781 8782 mddev->new_level = 5; 8783 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8784 mddev->new_chunk_sectors = chunksect; 8785 8786 ret = setup_conf(mddev); 8787 if (!IS_ERR(ret)) 8788 mddev_clear_unsupported_flags(mddev, 8789 UNSUPPORTED_MDDEV_FLAGS); 8790 return ret; 8791 } 8792 8793 static void *raid5_takeover_raid6(struct mddev *mddev) 8794 { 8795 int new_layout; 8796 8797 switch (mddev->layout) { 8798 case ALGORITHM_LEFT_ASYMMETRIC_6: 8799 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8800 break; 8801 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8802 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8803 break; 8804 case ALGORITHM_LEFT_SYMMETRIC_6: 8805 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8806 break; 8807 case ALGORITHM_RIGHT_SYMMETRIC_6: 8808 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8809 break; 8810 case ALGORITHM_PARITY_0_6: 8811 new_layout = ALGORITHM_PARITY_0; 8812 break; 8813 case ALGORITHM_PARITY_N: 8814 new_layout = ALGORITHM_PARITY_N; 8815 break; 8816 default: 8817 return ERR_PTR(-EINVAL); 8818 } 8819 mddev->new_level = 5; 8820 mddev->new_layout = new_layout; 8821 mddev->delta_disks = -1; 8822 mddev->raid_disks -= 1; 8823 return setup_conf(mddev); 8824 } 8825 8826 static int raid5_check_reshape(struct mddev *mddev) 8827 { 8828 /* For a 2-drive array, the layout and chunk size can be changed 8829 * immediately as not restriping is needed. 8830 * For larger arrays we record the new value - after validation 8831 * to be used by a reshape pass. 8832 */ 8833 struct r5conf *conf = mddev->private; 8834 int new_chunk = mddev->new_chunk_sectors; 8835 8836 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8837 return -EINVAL; 8838 if (new_chunk > 0) { 8839 if (!is_power_of_2(new_chunk)) 8840 return -EINVAL; 8841 if (new_chunk < (PAGE_SIZE>>9)) 8842 return -EINVAL; 8843 if (mddev->array_sectors & (new_chunk-1)) 8844 /* not factor of array size */ 8845 return -EINVAL; 8846 } 8847 8848 /* They look valid */ 8849 8850 if (mddev->raid_disks == 2) { 8851 /* can make the change immediately */ 8852 if (mddev->new_layout >= 0) { 8853 conf->algorithm = mddev->new_layout; 8854 mddev->layout = mddev->new_layout; 8855 } 8856 if (new_chunk > 0) { 8857 conf->chunk_sectors = new_chunk ; 8858 mddev->chunk_sectors = new_chunk; 8859 } 8860 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8861 md_wakeup_thread(mddev->thread); 8862 } 8863 return check_reshape(mddev); 8864 } 8865 8866 static int raid6_check_reshape(struct mddev *mddev) 8867 { 8868 int new_chunk = mddev->new_chunk_sectors; 8869 8870 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8871 return -EINVAL; 8872 if (new_chunk > 0) { 8873 if (!is_power_of_2(new_chunk)) 8874 return -EINVAL; 8875 if (new_chunk < (PAGE_SIZE >> 9)) 8876 return -EINVAL; 8877 if (mddev->array_sectors & (new_chunk-1)) 8878 /* not factor of array size */ 8879 return -EINVAL; 8880 } 8881 8882 /* They look valid */ 8883 return check_reshape(mddev); 8884 } 8885 8886 static void *raid5_takeover(struct mddev *mddev) 8887 { 8888 /* raid5 can take over: 8889 * raid0 - if there is only one strip zone - make it a raid4 layout 8890 * raid1 - if there are two drives. We need to know the chunk size 8891 * raid4 - trivial - just use a raid4 layout. 8892 * raid6 - Providing it is a *_6 layout 8893 */ 8894 if (mddev->level == 0) 8895 return raid45_takeover_raid0(mddev, 5); 8896 if (mddev->level == 1) 8897 return raid5_takeover_raid1(mddev); 8898 if (mddev->level == 4) { 8899 mddev->new_layout = ALGORITHM_PARITY_N; 8900 mddev->new_level = 5; 8901 return setup_conf(mddev); 8902 } 8903 if (mddev->level == 6) 8904 return raid5_takeover_raid6(mddev); 8905 8906 return ERR_PTR(-EINVAL); 8907 } 8908 8909 static void *raid4_takeover(struct mddev *mddev) 8910 { 8911 /* raid4 can take over: 8912 * raid0 - if there is only one strip zone 8913 * raid5 - if layout is right 8914 */ 8915 if (mddev->level == 0) 8916 return raid45_takeover_raid0(mddev, 4); 8917 if (mddev->level == 5 && 8918 mddev->layout == ALGORITHM_PARITY_N) { 8919 mddev->new_layout = 0; 8920 mddev->new_level = 4; 8921 return setup_conf(mddev); 8922 } 8923 return ERR_PTR(-EINVAL); 8924 } 8925 8926 static struct md_personality raid5_personality; 8927 8928 static void *raid6_takeover(struct mddev *mddev) 8929 { 8930 /* Currently can only take over a raid5. We map the 8931 * personality to an equivalent raid6 personality 8932 * with the Q block at the end. 8933 */ 8934 int new_layout; 8935 8936 if (mddev->pers != &raid5_personality) 8937 return ERR_PTR(-EINVAL); 8938 if (mddev->degraded > 1) 8939 return ERR_PTR(-EINVAL); 8940 if (mddev->raid_disks > 253) 8941 return ERR_PTR(-EINVAL); 8942 if (mddev->raid_disks < 3) 8943 return ERR_PTR(-EINVAL); 8944 8945 switch (mddev->layout) { 8946 case ALGORITHM_LEFT_ASYMMETRIC: 8947 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8948 break; 8949 case ALGORITHM_RIGHT_ASYMMETRIC: 8950 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8951 break; 8952 case ALGORITHM_LEFT_SYMMETRIC: 8953 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8954 break; 8955 case ALGORITHM_RIGHT_SYMMETRIC: 8956 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8957 break; 8958 case ALGORITHM_PARITY_0: 8959 new_layout = ALGORITHM_PARITY_0_6; 8960 break; 8961 case ALGORITHM_PARITY_N: 8962 new_layout = ALGORITHM_PARITY_N; 8963 break; 8964 default: 8965 return ERR_PTR(-EINVAL); 8966 } 8967 mddev->new_level = 6; 8968 mddev->new_layout = new_layout; 8969 mddev->delta_disks = 1; 8970 mddev->raid_disks += 1; 8971 return setup_conf(mddev); 8972 } 8973 8974 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8975 { 8976 struct r5conf *conf; 8977 int err; 8978 8979 err = mddev_lock(mddev); 8980 if (err) 8981 return err; 8982 conf = mddev->private; 8983 if (!conf) { 8984 mddev_unlock(mddev); 8985 return -ENODEV; 8986 } 8987 8988 if (strncmp(buf, "ppl", 3) == 0) { 8989 /* ppl only works with RAID 5 */ 8990 if (!raid5_has_ppl(conf) && conf->level == 5) { 8991 err = log_init(conf, NULL, true); 8992 if (!err) { 8993 err = resize_stripes(conf, conf->pool_size); 8994 if (err) { 8995 mddev_suspend(mddev); 8996 log_exit(conf); 8997 mddev_resume(mddev); 8998 } 8999 } 9000 } else 9001 err = -EINVAL; 9002 } else if (strncmp(buf, "resync", 6) == 0) { 9003 if (raid5_has_ppl(conf)) { 9004 mddev_suspend(mddev); 9005 log_exit(conf); 9006 mddev_resume(mddev); 9007 err = resize_stripes(conf, conf->pool_size); 9008 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 9009 r5l_log_disk_error(conf)) { 9010 bool journal_dev_exists = false; 9011 struct md_rdev *rdev; 9012 9013 rdev_for_each(rdev, mddev) 9014 if (test_bit(Journal, &rdev->flags)) { 9015 journal_dev_exists = true; 9016 break; 9017 } 9018 9019 if (!journal_dev_exists) { 9020 mddev_suspend(mddev); 9021 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 9022 mddev_resume(mddev); 9023 } else /* need remove journal device first */ 9024 err = -EBUSY; 9025 } else 9026 err = -EINVAL; 9027 } else { 9028 err = -EINVAL; 9029 } 9030 9031 if (!err) 9032 md_update_sb(mddev, 1); 9033 9034 mddev_unlock(mddev); 9035 9036 return err; 9037 } 9038 9039 static int raid5_start(struct mddev *mddev) 9040 { 9041 struct r5conf *conf = mddev->private; 9042 9043 return r5l_start(conf->log); 9044 } 9045 9046 static struct md_personality raid6_personality = 9047 { 9048 .name = "raid6", 9049 .level = 6, 9050 .owner = THIS_MODULE, 9051 .make_request = raid5_make_request, 9052 .run = raid5_run, 9053 .start = raid5_start, 9054 .free = raid5_free, 9055 .status = raid5_status, 9056 .error_handler = raid5_error, 9057 .hot_add_disk = raid5_add_disk, 9058 .hot_remove_disk= raid5_remove_disk, 9059 .spare_active = raid5_spare_active, 9060 .sync_request = raid5_sync_request, 9061 .resize = raid5_resize, 9062 .size = raid5_size, 9063 .check_reshape = raid6_check_reshape, 9064 .start_reshape = raid5_start_reshape, 9065 .finish_reshape = raid5_finish_reshape, 9066 .quiesce = raid5_quiesce, 9067 .takeover = raid6_takeover, 9068 .change_consistency_policy = raid5_change_consistency_policy, 9069 }; 9070 static struct md_personality raid5_personality = 9071 { 9072 .name = "raid5", 9073 .level = 5, 9074 .owner = THIS_MODULE, 9075 .make_request = raid5_make_request, 9076 .run = raid5_run, 9077 .start = raid5_start, 9078 .free = raid5_free, 9079 .status = raid5_status, 9080 .error_handler = raid5_error, 9081 .hot_add_disk = raid5_add_disk, 9082 .hot_remove_disk= raid5_remove_disk, 9083 .spare_active = raid5_spare_active, 9084 .sync_request = raid5_sync_request, 9085 .resize = raid5_resize, 9086 .size = raid5_size, 9087 .check_reshape = raid5_check_reshape, 9088 .start_reshape = raid5_start_reshape, 9089 .finish_reshape = raid5_finish_reshape, 9090 .quiesce = raid5_quiesce, 9091 .takeover = raid5_takeover, 9092 .change_consistency_policy = raid5_change_consistency_policy, 9093 }; 9094 9095 static struct md_personality raid4_personality = 9096 { 9097 .name = "raid4", 9098 .level = 4, 9099 .owner = THIS_MODULE, 9100 .make_request = raid5_make_request, 9101 .run = raid5_run, 9102 .start = raid5_start, 9103 .free = raid5_free, 9104 .status = raid5_status, 9105 .error_handler = raid5_error, 9106 .hot_add_disk = raid5_add_disk, 9107 .hot_remove_disk= raid5_remove_disk, 9108 .spare_active = raid5_spare_active, 9109 .sync_request = raid5_sync_request, 9110 .resize = raid5_resize, 9111 .size = raid5_size, 9112 .check_reshape = raid5_check_reshape, 9113 .start_reshape = raid5_start_reshape, 9114 .finish_reshape = raid5_finish_reshape, 9115 .quiesce = raid5_quiesce, 9116 .takeover = raid4_takeover, 9117 .change_consistency_policy = raid5_change_consistency_policy, 9118 }; 9119 9120 static int __init raid5_init(void) 9121 { 9122 int ret; 9123 9124 raid5_wq = alloc_workqueue("raid5wq", 9125 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 9126 if (!raid5_wq) 9127 return -ENOMEM; 9128 9129 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 9130 "md/raid5:prepare", 9131 raid456_cpu_up_prepare, 9132 raid456_cpu_dead); 9133 if (ret) { 9134 destroy_workqueue(raid5_wq); 9135 return ret; 9136 } 9137 register_md_personality(&raid6_personality); 9138 register_md_personality(&raid5_personality); 9139 register_md_personality(&raid4_personality); 9140 return 0; 9141 } 9142 9143 static void raid5_exit(void) 9144 { 9145 unregister_md_personality(&raid6_personality); 9146 unregister_md_personality(&raid5_personality); 9147 unregister_md_personality(&raid4_personality); 9148 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 9149 destroy_workqueue(raid5_wq); 9150 } 9151 9152 module_init(raid5_init); 9153 module_exit(raid5_exit); 9154 MODULE_LICENSE("GPL"); 9155 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 9156 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 9157 MODULE_ALIAS("md-raid5"); 9158 MODULE_ALIAS("md-raid4"); 9159 MODULE_ALIAS("md-level-5"); 9160 MODULE_ALIAS("md-level-4"); 9161 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 9162 MODULE_ALIAS("md-raid6"); 9163 MODULE_ALIAS("md-level-6"); 9164 9165 /* This used to be two separate modules, they were: */ 9166 MODULE_ALIAS("raid5"); 9167 MODULE_ALIAS("raid6"); 9168