xref: /openbmc/linux/drivers/md/raid5.c (revision 384740dc)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53 
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56 
57 /*
58  * Stripe cache
59  */
60 
61 #define NR_STRIPES		256
62 #define STRIPE_SIZE		PAGE_SIZE
63 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
65 #define	IO_THRESHOLD		1
66 #define BYPASS_THRESHOLD	1
67 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK		(NR_HASH - 1)
69 
70 #define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71 
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73  * order without overlap.  There may be several bio's per stripe+device, and
74  * a bio could span several devices.
75  * When walking this list for a particular stripe+device, we must never proceed
76  * beyond a bio that extends past this device, as the next bio might no longer
77  * be valid.
78  * This macro is used to determine the 'next' bio in the list, given the sector
79  * of the current stripe+device
80  */
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 /*
83  * The following can be used to debug the driver
84  */
85 #define RAID5_PARANOIA	1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
91 
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
96 
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98 
99 #if !RAID6_USE_EMPTY_ZERO_PAGE
100 /* In .bss so it's zeroed */
101 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
102 #endif
103 
104 /*
105  * We maintain a biased count of active stripes in the bottom 16 bits of
106  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
107  */
108 static inline int raid5_bi_phys_segments(struct bio *bio)
109 {
110 	return bio->bi_phys_segments & 0xffff;
111 }
112 
113 static inline int raid5_bi_hw_segments(struct bio *bio)
114 {
115 	return (bio->bi_phys_segments >> 16) & 0xffff;
116 }
117 
118 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
119 {
120 	--bio->bi_phys_segments;
121 	return raid5_bi_phys_segments(bio);
122 }
123 
124 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
125 {
126 	unsigned short val = raid5_bi_hw_segments(bio);
127 
128 	--val;
129 	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
130 	return val;
131 }
132 
133 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
134 {
135 	bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
136 }
137 
138 static inline int raid6_next_disk(int disk, int raid_disks)
139 {
140 	disk++;
141 	return (disk < raid_disks) ? disk : 0;
142 }
143 
144 static void return_io(struct bio *return_bi)
145 {
146 	struct bio *bi = return_bi;
147 	while (bi) {
148 
149 		return_bi = bi->bi_next;
150 		bi->bi_next = NULL;
151 		bi->bi_size = 0;
152 		bio_endio(bi, 0);
153 		bi = return_bi;
154 	}
155 }
156 
157 static void print_raid5_conf (raid5_conf_t *conf);
158 
159 static int stripe_operations_active(struct stripe_head *sh)
160 {
161 	return sh->check_state || sh->reconstruct_state ||
162 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
163 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
164 }
165 
166 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
167 {
168 	if (atomic_dec_and_test(&sh->count)) {
169 		BUG_ON(!list_empty(&sh->lru));
170 		BUG_ON(atomic_read(&conf->active_stripes)==0);
171 		if (test_bit(STRIPE_HANDLE, &sh->state)) {
172 			if (test_bit(STRIPE_DELAYED, &sh->state)) {
173 				list_add_tail(&sh->lru, &conf->delayed_list);
174 				blk_plug_device(conf->mddev->queue);
175 			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
176 				   sh->bm_seq - conf->seq_write > 0) {
177 				list_add_tail(&sh->lru, &conf->bitmap_list);
178 				blk_plug_device(conf->mddev->queue);
179 			} else {
180 				clear_bit(STRIPE_BIT_DELAY, &sh->state);
181 				list_add_tail(&sh->lru, &conf->handle_list);
182 			}
183 			md_wakeup_thread(conf->mddev->thread);
184 		} else {
185 			BUG_ON(stripe_operations_active(sh));
186 			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
187 				atomic_dec(&conf->preread_active_stripes);
188 				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
189 					md_wakeup_thread(conf->mddev->thread);
190 			}
191 			atomic_dec(&conf->active_stripes);
192 			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
193 				list_add_tail(&sh->lru, &conf->inactive_list);
194 				wake_up(&conf->wait_for_stripe);
195 				if (conf->retry_read_aligned)
196 					md_wakeup_thread(conf->mddev->thread);
197 			}
198 		}
199 	}
200 }
201 static void release_stripe(struct stripe_head *sh)
202 {
203 	raid5_conf_t *conf = sh->raid_conf;
204 	unsigned long flags;
205 
206 	spin_lock_irqsave(&conf->device_lock, flags);
207 	__release_stripe(conf, sh);
208 	spin_unlock_irqrestore(&conf->device_lock, flags);
209 }
210 
211 static inline void remove_hash(struct stripe_head *sh)
212 {
213 	pr_debug("remove_hash(), stripe %llu\n",
214 		(unsigned long long)sh->sector);
215 
216 	hlist_del_init(&sh->hash);
217 }
218 
219 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
220 {
221 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
222 
223 	pr_debug("insert_hash(), stripe %llu\n",
224 		(unsigned long long)sh->sector);
225 
226 	CHECK_DEVLOCK();
227 	hlist_add_head(&sh->hash, hp);
228 }
229 
230 
231 /* find an idle stripe, make sure it is unhashed, and return it. */
232 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
233 {
234 	struct stripe_head *sh = NULL;
235 	struct list_head *first;
236 
237 	CHECK_DEVLOCK();
238 	if (list_empty(&conf->inactive_list))
239 		goto out;
240 	first = conf->inactive_list.next;
241 	sh = list_entry(first, struct stripe_head, lru);
242 	list_del_init(first);
243 	remove_hash(sh);
244 	atomic_inc(&conf->active_stripes);
245 out:
246 	return sh;
247 }
248 
249 static void shrink_buffers(struct stripe_head *sh, int num)
250 {
251 	struct page *p;
252 	int i;
253 
254 	for (i=0; i<num ; i++) {
255 		p = sh->dev[i].page;
256 		if (!p)
257 			continue;
258 		sh->dev[i].page = NULL;
259 		put_page(p);
260 	}
261 }
262 
263 static int grow_buffers(struct stripe_head *sh, int num)
264 {
265 	int i;
266 
267 	for (i=0; i<num; i++) {
268 		struct page *page;
269 
270 		if (!(page = alloc_page(GFP_KERNEL))) {
271 			return 1;
272 		}
273 		sh->dev[i].page = page;
274 	}
275 	return 0;
276 }
277 
278 static void raid5_build_block (struct stripe_head *sh, int i);
279 
280 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
281 {
282 	raid5_conf_t *conf = sh->raid_conf;
283 	int i;
284 
285 	BUG_ON(atomic_read(&sh->count) != 0);
286 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
287 	BUG_ON(stripe_operations_active(sh));
288 
289 	CHECK_DEVLOCK();
290 	pr_debug("init_stripe called, stripe %llu\n",
291 		(unsigned long long)sh->sector);
292 
293 	remove_hash(sh);
294 
295 	sh->sector = sector;
296 	sh->pd_idx = pd_idx;
297 	sh->state = 0;
298 
299 	sh->disks = disks;
300 
301 	for (i = sh->disks; i--; ) {
302 		struct r5dev *dev = &sh->dev[i];
303 
304 		if (dev->toread || dev->read || dev->towrite || dev->written ||
305 		    test_bit(R5_LOCKED, &dev->flags)) {
306 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
307 			       (unsigned long long)sh->sector, i, dev->toread,
308 			       dev->read, dev->towrite, dev->written,
309 			       test_bit(R5_LOCKED, &dev->flags));
310 			BUG();
311 		}
312 		dev->flags = 0;
313 		raid5_build_block(sh, i);
314 	}
315 	insert_hash(conf, sh);
316 }
317 
318 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
319 {
320 	struct stripe_head *sh;
321 	struct hlist_node *hn;
322 
323 	CHECK_DEVLOCK();
324 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
325 	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
326 		if (sh->sector == sector && sh->disks == disks)
327 			return sh;
328 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
329 	return NULL;
330 }
331 
332 static void unplug_slaves(mddev_t *mddev);
333 static void raid5_unplug_device(struct request_queue *q);
334 
335 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
336 					     int pd_idx, int noblock)
337 {
338 	struct stripe_head *sh;
339 
340 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
341 
342 	spin_lock_irq(&conf->device_lock);
343 
344 	do {
345 		wait_event_lock_irq(conf->wait_for_stripe,
346 				    conf->quiesce == 0,
347 				    conf->device_lock, /* nothing */);
348 		sh = __find_stripe(conf, sector, disks);
349 		if (!sh) {
350 			if (!conf->inactive_blocked)
351 				sh = get_free_stripe(conf);
352 			if (noblock && sh == NULL)
353 				break;
354 			if (!sh) {
355 				conf->inactive_blocked = 1;
356 				wait_event_lock_irq(conf->wait_for_stripe,
357 						    !list_empty(&conf->inactive_list) &&
358 						    (atomic_read(&conf->active_stripes)
359 						     < (conf->max_nr_stripes *3/4)
360 						     || !conf->inactive_blocked),
361 						    conf->device_lock,
362 						    raid5_unplug_device(conf->mddev->queue)
363 					);
364 				conf->inactive_blocked = 0;
365 			} else
366 				init_stripe(sh, sector, pd_idx, disks);
367 		} else {
368 			if (atomic_read(&sh->count)) {
369 			  BUG_ON(!list_empty(&sh->lru));
370 			} else {
371 				if (!test_bit(STRIPE_HANDLE, &sh->state))
372 					atomic_inc(&conf->active_stripes);
373 				if (list_empty(&sh->lru) &&
374 				    !test_bit(STRIPE_EXPANDING, &sh->state))
375 					BUG();
376 				list_del_init(&sh->lru);
377 			}
378 		}
379 	} while (sh == NULL);
380 
381 	if (sh)
382 		atomic_inc(&sh->count);
383 
384 	spin_unlock_irq(&conf->device_lock);
385 	return sh;
386 }
387 
388 static void
389 raid5_end_read_request(struct bio *bi, int error);
390 static void
391 raid5_end_write_request(struct bio *bi, int error);
392 
393 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
394 {
395 	raid5_conf_t *conf = sh->raid_conf;
396 	int i, disks = sh->disks;
397 
398 	might_sleep();
399 
400 	for (i = disks; i--; ) {
401 		int rw;
402 		struct bio *bi;
403 		mdk_rdev_t *rdev;
404 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
405 			rw = WRITE;
406 		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
407 			rw = READ;
408 		else
409 			continue;
410 
411 		bi = &sh->dev[i].req;
412 
413 		bi->bi_rw = rw;
414 		if (rw == WRITE)
415 			bi->bi_end_io = raid5_end_write_request;
416 		else
417 			bi->bi_end_io = raid5_end_read_request;
418 
419 		rcu_read_lock();
420 		rdev = rcu_dereference(conf->disks[i].rdev);
421 		if (rdev && test_bit(Faulty, &rdev->flags))
422 			rdev = NULL;
423 		if (rdev)
424 			atomic_inc(&rdev->nr_pending);
425 		rcu_read_unlock();
426 
427 		if (rdev) {
428 			if (s->syncing || s->expanding || s->expanded)
429 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
430 
431 			set_bit(STRIPE_IO_STARTED, &sh->state);
432 
433 			bi->bi_bdev = rdev->bdev;
434 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
435 				__func__, (unsigned long long)sh->sector,
436 				bi->bi_rw, i);
437 			atomic_inc(&sh->count);
438 			bi->bi_sector = sh->sector + rdev->data_offset;
439 			bi->bi_flags = 1 << BIO_UPTODATE;
440 			bi->bi_vcnt = 1;
441 			bi->bi_max_vecs = 1;
442 			bi->bi_idx = 0;
443 			bi->bi_io_vec = &sh->dev[i].vec;
444 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
445 			bi->bi_io_vec[0].bv_offset = 0;
446 			bi->bi_size = STRIPE_SIZE;
447 			bi->bi_next = NULL;
448 			if (rw == WRITE &&
449 			    test_bit(R5_ReWrite, &sh->dev[i].flags))
450 				atomic_add(STRIPE_SECTORS,
451 					&rdev->corrected_errors);
452 			generic_make_request(bi);
453 		} else {
454 			if (rw == WRITE)
455 				set_bit(STRIPE_DEGRADED, &sh->state);
456 			pr_debug("skip op %ld on disc %d for sector %llu\n",
457 				bi->bi_rw, i, (unsigned long long)sh->sector);
458 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
459 			set_bit(STRIPE_HANDLE, &sh->state);
460 		}
461 	}
462 }
463 
464 static struct dma_async_tx_descriptor *
465 async_copy_data(int frombio, struct bio *bio, struct page *page,
466 	sector_t sector, struct dma_async_tx_descriptor *tx)
467 {
468 	struct bio_vec *bvl;
469 	struct page *bio_page;
470 	int i;
471 	int page_offset;
472 
473 	if (bio->bi_sector >= sector)
474 		page_offset = (signed)(bio->bi_sector - sector) * 512;
475 	else
476 		page_offset = (signed)(sector - bio->bi_sector) * -512;
477 	bio_for_each_segment(bvl, bio, i) {
478 		int len = bio_iovec_idx(bio, i)->bv_len;
479 		int clen;
480 		int b_offset = 0;
481 
482 		if (page_offset < 0) {
483 			b_offset = -page_offset;
484 			page_offset += b_offset;
485 			len -= b_offset;
486 		}
487 
488 		if (len > 0 && page_offset + len > STRIPE_SIZE)
489 			clen = STRIPE_SIZE - page_offset;
490 		else
491 			clen = len;
492 
493 		if (clen > 0) {
494 			b_offset += bio_iovec_idx(bio, i)->bv_offset;
495 			bio_page = bio_iovec_idx(bio, i)->bv_page;
496 			if (frombio)
497 				tx = async_memcpy(page, bio_page, page_offset,
498 					b_offset, clen,
499 					ASYNC_TX_DEP_ACK,
500 					tx, NULL, NULL);
501 			else
502 				tx = async_memcpy(bio_page, page, b_offset,
503 					page_offset, clen,
504 					ASYNC_TX_DEP_ACK,
505 					tx, NULL, NULL);
506 		}
507 		if (clen < len) /* hit end of page */
508 			break;
509 		page_offset +=  len;
510 	}
511 
512 	return tx;
513 }
514 
515 static void ops_complete_biofill(void *stripe_head_ref)
516 {
517 	struct stripe_head *sh = stripe_head_ref;
518 	struct bio *return_bi = NULL;
519 	raid5_conf_t *conf = sh->raid_conf;
520 	int i;
521 
522 	pr_debug("%s: stripe %llu\n", __func__,
523 		(unsigned long long)sh->sector);
524 
525 	/* clear completed biofills */
526 	spin_lock_irq(&conf->device_lock);
527 	for (i = sh->disks; i--; ) {
528 		struct r5dev *dev = &sh->dev[i];
529 
530 		/* acknowledge completion of a biofill operation */
531 		/* and check if we need to reply to a read request,
532 		 * new R5_Wantfill requests are held off until
533 		 * !STRIPE_BIOFILL_RUN
534 		 */
535 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
536 			struct bio *rbi, *rbi2;
537 
538 			BUG_ON(!dev->read);
539 			rbi = dev->read;
540 			dev->read = NULL;
541 			while (rbi && rbi->bi_sector <
542 				dev->sector + STRIPE_SECTORS) {
543 				rbi2 = r5_next_bio(rbi, dev->sector);
544 				if (!raid5_dec_bi_phys_segments(rbi)) {
545 					rbi->bi_next = return_bi;
546 					return_bi = rbi;
547 				}
548 				rbi = rbi2;
549 			}
550 		}
551 	}
552 	spin_unlock_irq(&conf->device_lock);
553 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
554 
555 	return_io(return_bi);
556 
557 	set_bit(STRIPE_HANDLE, &sh->state);
558 	release_stripe(sh);
559 }
560 
561 static void ops_run_biofill(struct stripe_head *sh)
562 {
563 	struct dma_async_tx_descriptor *tx = NULL;
564 	raid5_conf_t *conf = sh->raid_conf;
565 	int i;
566 
567 	pr_debug("%s: stripe %llu\n", __func__,
568 		(unsigned long long)sh->sector);
569 
570 	for (i = sh->disks; i--; ) {
571 		struct r5dev *dev = &sh->dev[i];
572 		if (test_bit(R5_Wantfill, &dev->flags)) {
573 			struct bio *rbi;
574 			spin_lock_irq(&conf->device_lock);
575 			dev->read = rbi = dev->toread;
576 			dev->toread = NULL;
577 			spin_unlock_irq(&conf->device_lock);
578 			while (rbi && rbi->bi_sector <
579 				dev->sector + STRIPE_SECTORS) {
580 				tx = async_copy_data(0, rbi, dev->page,
581 					dev->sector, tx);
582 				rbi = r5_next_bio(rbi, dev->sector);
583 			}
584 		}
585 	}
586 
587 	atomic_inc(&sh->count);
588 	async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
589 		ops_complete_biofill, sh);
590 }
591 
592 static void ops_complete_compute5(void *stripe_head_ref)
593 {
594 	struct stripe_head *sh = stripe_head_ref;
595 	int target = sh->ops.target;
596 	struct r5dev *tgt = &sh->dev[target];
597 
598 	pr_debug("%s: stripe %llu\n", __func__,
599 		(unsigned long long)sh->sector);
600 
601 	set_bit(R5_UPTODATE, &tgt->flags);
602 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
603 	clear_bit(R5_Wantcompute, &tgt->flags);
604 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
605 	if (sh->check_state == check_state_compute_run)
606 		sh->check_state = check_state_compute_result;
607 	set_bit(STRIPE_HANDLE, &sh->state);
608 	release_stripe(sh);
609 }
610 
611 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
612 {
613 	/* kernel stack size limits the total number of disks */
614 	int disks = sh->disks;
615 	struct page *xor_srcs[disks];
616 	int target = sh->ops.target;
617 	struct r5dev *tgt = &sh->dev[target];
618 	struct page *xor_dest = tgt->page;
619 	int count = 0;
620 	struct dma_async_tx_descriptor *tx;
621 	int i;
622 
623 	pr_debug("%s: stripe %llu block: %d\n",
624 		__func__, (unsigned long long)sh->sector, target);
625 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
626 
627 	for (i = disks; i--; )
628 		if (i != target)
629 			xor_srcs[count++] = sh->dev[i].page;
630 
631 	atomic_inc(&sh->count);
632 
633 	if (unlikely(count == 1))
634 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
635 			0, NULL, ops_complete_compute5, sh);
636 	else
637 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
638 			ASYNC_TX_XOR_ZERO_DST, NULL,
639 			ops_complete_compute5, sh);
640 
641 	return tx;
642 }
643 
644 static void ops_complete_prexor(void *stripe_head_ref)
645 {
646 	struct stripe_head *sh = stripe_head_ref;
647 
648 	pr_debug("%s: stripe %llu\n", __func__,
649 		(unsigned long long)sh->sector);
650 }
651 
652 static struct dma_async_tx_descriptor *
653 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
654 {
655 	/* kernel stack size limits the total number of disks */
656 	int disks = sh->disks;
657 	struct page *xor_srcs[disks];
658 	int count = 0, pd_idx = sh->pd_idx, i;
659 
660 	/* existing parity data subtracted */
661 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
662 
663 	pr_debug("%s: stripe %llu\n", __func__,
664 		(unsigned long long)sh->sector);
665 
666 	for (i = disks; i--; ) {
667 		struct r5dev *dev = &sh->dev[i];
668 		/* Only process blocks that are known to be uptodate */
669 		if (test_bit(R5_Wantdrain, &dev->flags))
670 			xor_srcs[count++] = dev->page;
671 	}
672 
673 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
674 		ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
675 		ops_complete_prexor, sh);
676 
677 	return tx;
678 }
679 
680 static struct dma_async_tx_descriptor *
681 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
682 {
683 	int disks = sh->disks;
684 	int i;
685 
686 	pr_debug("%s: stripe %llu\n", __func__,
687 		(unsigned long long)sh->sector);
688 
689 	for (i = disks; i--; ) {
690 		struct r5dev *dev = &sh->dev[i];
691 		struct bio *chosen;
692 
693 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
694 			struct bio *wbi;
695 
696 			spin_lock(&sh->lock);
697 			chosen = dev->towrite;
698 			dev->towrite = NULL;
699 			BUG_ON(dev->written);
700 			wbi = dev->written = chosen;
701 			spin_unlock(&sh->lock);
702 
703 			while (wbi && wbi->bi_sector <
704 				dev->sector + STRIPE_SECTORS) {
705 				tx = async_copy_data(1, wbi, dev->page,
706 					dev->sector, tx);
707 				wbi = r5_next_bio(wbi, dev->sector);
708 			}
709 		}
710 	}
711 
712 	return tx;
713 }
714 
715 static void ops_complete_postxor(void *stripe_head_ref)
716 {
717 	struct stripe_head *sh = stripe_head_ref;
718 	int disks = sh->disks, i, pd_idx = sh->pd_idx;
719 
720 	pr_debug("%s: stripe %llu\n", __func__,
721 		(unsigned long long)sh->sector);
722 
723 	for (i = disks; i--; ) {
724 		struct r5dev *dev = &sh->dev[i];
725 		if (dev->written || i == pd_idx)
726 			set_bit(R5_UPTODATE, &dev->flags);
727 	}
728 
729 	if (sh->reconstruct_state == reconstruct_state_drain_run)
730 		sh->reconstruct_state = reconstruct_state_drain_result;
731 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
732 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
733 	else {
734 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
735 		sh->reconstruct_state = reconstruct_state_result;
736 	}
737 
738 	set_bit(STRIPE_HANDLE, &sh->state);
739 	release_stripe(sh);
740 }
741 
742 static void
743 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
744 {
745 	/* kernel stack size limits the total number of disks */
746 	int disks = sh->disks;
747 	struct page *xor_srcs[disks];
748 
749 	int count = 0, pd_idx = sh->pd_idx, i;
750 	struct page *xor_dest;
751 	int prexor = 0;
752 	unsigned long flags;
753 
754 	pr_debug("%s: stripe %llu\n", __func__,
755 		(unsigned long long)sh->sector);
756 
757 	/* check if prexor is active which means only process blocks
758 	 * that are part of a read-modify-write (written)
759 	 */
760 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
761 		prexor = 1;
762 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
763 		for (i = disks; i--; ) {
764 			struct r5dev *dev = &sh->dev[i];
765 			if (dev->written)
766 				xor_srcs[count++] = dev->page;
767 		}
768 	} else {
769 		xor_dest = sh->dev[pd_idx].page;
770 		for (i = disks; i--; ) {
771 			struct r5dev *dev = &sh->dev[i];
772 			if (i != pd_idx)
773 				xor_srcs[count++] = dev->page;
774 		}
775 	}
776 
777 	/* 1/ if we prexor'd then the dest is reused as a source
778 	 * 2/ if we did not prexor then we are redoing the parity
779 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
780 	 * for the synchronous xor case
781 	 */
782 	flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
783 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
784 
785 	atomic_inc(&sh->count);
786 
787 	if (unlikely(count == 1)) {
788 		flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
789 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
790 			flags, tx, ops_complete_postxor, sh);
791 	} else
792 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
793 			flags, tx, ops_complete_postxor, sh);
794 }
795 
796 static void ops_complete_check(void *stripe_head_ref)
797 {
798 	struct stripe_head *sh = stripe_head_ref;
799 
800 	pr_debug("%s: stripe %llu\n", __func__,
801 		(unsigned long long)sh->sector);
802 
803 	sh->check_state = check_state_check_result;
804 	set_bit(STRIPE_HANDLE, &sh->state);
805 	release_stripe(sh);
806 }
807 
808 static void ops_run_check(struct stripe_head *sh)
809 {
810 	/* kernel stack size limits the total number of disks */
811 	int disks = sh->disks;
812 	struct page *xor_srcs[disks];
813 	struct dma_async_tx_descriptor *tx;
814 
815 	int count = 0, pd_idx = sh->pd_idx, i;
816 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
817 
818 	pr_debug("%s: stripe %llu\n", __func__,
819 		(unsigned long long)sh->sector);
820 
821 	for (i = disks; i--; ) {
822 		struct r5dev *dev = &sh->dev[i];
823 		if (i != pd_idx)
824 			xor_srcs[count++] = dev->page;
825 	}
826 
827 	tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
828 		&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
829 
830 	atomic_inc(&sh->count);
831 	tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
832 		ops_complete_check, sh);
833 }
834 
835 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
836 {
837 	int overlap_clear = 0, i, disks = sh->disks;
838 	struct dma_async_tx_descriptor *tx = NULL;
839 
840 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
841 		ops_run_biofill(sh);
842 		overlap_clear++;
843 	}
844 
845 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
846 		tx = ops_run_compute5(sh);
847 		/* terminate the chain if postxor is not set to be run */
848 		if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
849 			async_tx_ack(tx);
850 	}
851 
852 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
853 		tx = ops_run_prexor(sh, tx);
854 
855 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
856 		tx = ops_run_biodrain(sh, tx);
857 		overlap_clear++;
858 	}
859 
860 	if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
861 		ops_run_postxor(sh, tx);
862 
863 	if (test_bit(STRIPE_OP_CHECK, &ops_request))
864 		ops_run_check(sh);
865 
866 	if (overlap_clear)
867 		for (i = disks; i--; ) {
868 			struct r5dev *dev = &sh->dev[i];
869 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
870 				wake_up(&sh->raid_conf->wait_for_overlap);
871 		}
872 }
873 
874 static int grow_one_stripe(raid5_conf_t *conf)
875 {
876 	struct stripe_head *sh;
877 	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
878 	if (!sh)
879 		return 0;
880 	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
881 	sh->raid_conf = conf;
882 	spin_lock_init(&sh->lock);
883 
884 	if (grow_buffers(sh, conf->raid_disks)) {
885 		shrink_buffers(sh, conf->raid_disks);
886 		kmem_cache_free(conf->slab_cache, sh);
887 		return 0;
888 	}
889 	sh->disks = conf->raid_disks;
890 	/* we just created an active stripe so... */
891 	atomic_set(&sh->count, 1);
892 	atomic_inc(&conf->active_stripes);
893 	INIT_LIST_HEAD(&sh->lru);
894 	release_stripe(sh);
895 	return 1;
896 }
897 
898 static int grow_stripes(raid5_conf_t *conf, int num)
899 {
900 	struct kmem_cache *sc;
901 	int devs = conf->raid_disks;
902 
903 	sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
904 	sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
905 	conf->active_name = 0;
906 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
907 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
908 			       0, 0, NULL);
909 	if (!sc)
910 		return 1;
911 	conf->slab_cache = sc;
912 	conf->pool_size = devs;
913 	while (num--)
914 		if (!grow_one_stripe(conf))
915 			return 1;
916 	return 0;
917 }
918 
919 #ifdef CONFIG_MD_RAID5_RESHAPE
920 static int resize_stripes(raid5_conf_t *conf, int newsize)
921 {
922 	/* Make all the stripes able to hold 'newsize' devices.
923 	 * New slots in each stripe get 'page' set to a new page.
924 	 *
925 	 * This happens in stages:
926 	 * 1/ create a new kmem_cache and allocate the required number of
927 	 *    stripe_heads.
928 	 * 2/ gather all the old stripe_heads and tranfer the pages across
929 	 *    to the new stripe_heads.  This will have the side effect of
930 	 *    freezing the array as once all stripe_heads have been collected,
931 	 *    no IO will be possible.  Old stripe heads are freed once their
932 	 *    pages have been transferred over, and the old kmem_cache is
933 	 *    freed when all stripes are done.
934 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
935 	 *    we simple return a failre status - no need to clean anything up.
936 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
937 	 *    If this fails, we don't bother trying the shrink the
938 	 *    stripe_heads down again, we just leave them as they are.
939 	 *    As each stripe_head is processed the new one is released into
940 	 *    active service.
941 	 *
942 	 * Once step2 is started, we cannot afford to wait for a write,
943 	 * so we use GFP_NOIO allocations.
944 	 */
945 	struct stripe_head *osh, *nsh;
946 	LIST_HEAD(newstripes);
947 	struct disk_info *ndisks;
948 	int err;
949 	struct kmem_cache *sc;
950 	int i;
951 
952 	if (newsize <= conf->pool_size)
953 		return 0; /* never bother to shrink */
954 
955 	err = md_allow_write(conf->mddev);
956 	if (err)
957 		return err;
958 
959 	/* Step 1 */
960 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
961 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
962 			       0, 0, NULL);
963 	if (!sc)
964 		return -ENOMEM;
965 
966 	for (i = conf->max_nr_stripes; i; i--) {
967 		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
968 		if (!nsh)
969 			break;
970 
971 		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
972 
973 		nsh->raid_conf = conf;
974 		spin_lock_init(&nsh->lock);
975 
976 		list_add(&nsh->lru, &newstripes);
977 	}
978 	if (i) {
979 		/* didn't get enough, give up */
980 		while (!list_empty(&newstripes)) {
981 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
982 			list_del(&nsh->lru);
983 			kmem_cache_free(sc, nsh);
984 		}
985 		kmem_cache_destroy(sc);
986 		return -ENOMEM;
987 	}
988 	/* Step 2 - Must use GFP_NOIO now.
989 	 * OK, we have enough stripes, start collecting inactive
990 	 * stripes and copying them over
991 	 */
992 	list_for_each_entry(nsh, &newstripes, lru) {
993 		spin_lock_irq(&conf->device_lock);
994 		wait_event_lock_irq(conf->wait_for_stripe,
995 				    !list_empty(&conf->inactive_list),
996 				    conf->device_lock,
997 				    unplug_slaves(conf->mddev)
998 			);
999 		osh = get_free_stripe(conf);
1000 		spin_unlock_irq(&conf->device_lock);
1001 		atomic_set(&nsh->count, 1);
1002 		for(i=0; i<conf->pool_size; i++)
1003 			nsh->dev[i].page = osh->dev[i].page;
1004 		for( ; i<newsize; i++)
1005 			nsh->dev[i].page = NULL;
1006 		kmem_cache_free(conf->slab_cache, osh);
1007 	}
1008 	kmem_cache_destroy(conf->slab_cache);
1009 
1010 	/* Step 3.
1011 	 * At this point, we are holding all the stripes so the array
1012 	 * is completely stalled, so now is a good time to resize
1013 	 * conf->disks.
1014 	 */
1015 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1016 	if (ndisks) {
1017 		for (i=0; i<conf->raid_disks; i++)
1018 			ndisks[i] = conf->disks[i];
1019 		kfree(conf->disks);
1020 		conf->disks = ndisks;
1021 	} else
1022 		err = -ENOMEM;
1023 
1024 	/* Step 4, return new stripes to service */
1025 	while(!list_empty(&newstripes)) {
1026 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1027 		list_del_init(&nsh->lru);
1028 		for (i=conf->raid_disks; i < newsize; i++)
1029 			if (nsh->dev[i].page == NULL) {
1030 				struct page *p = alloc_page(GFP_NOIO);
1031 				nsh->dev[i].page = p;
1032 				if (!p)
1033 					err = -ENOMEM;
1034 			}
1035 		release_stripe(nsh);
1036 	}
1037 	/* critical section pass, GFP_NOIO no longer needed */
1038 
1039 	conf->slab_cache = sc;
1040 	conf->active_name = 1-conf->active_name;
1041 	conf->pool_size = newsize;
1042 	return err;
1043 }
1044 #endif
1045 
1046 static int drop_one_stripe(raid5_conf_t *conf)
1047 {
1048 	struct stripe_head *sh;
1049 
1050 	spin_lock_irq(&conf->device_lock);
1051 	sh = get_free_stripe(conf);
1052 	spin_unlock_irq(&conf->device_lock);
1053 	if (!sh)
1054 		return 0;
1055 	BUG_ON(atomic_read(&sh->count));
1056 	shrink_buffers(sh, conf->pool_size);
1057 	kmem_cache_free(conf->slab_cache, sh);
1058 	atomic_dec(&conf->active_stripes);
1059 	return 1;
1060 }
1061 
1062 static void shrink_stripes(raid5_conf_t *conf)
1063 {
1064 	while (drop_one_stripe(conf))
1065 		;
1066 
1067 	if (conf->slab_cache)
1068 		kmem_cache_destroy(conf->slab_cache);
1069 	conf->slab_cache = NULL;
1070 }
1071 
1072 static void raid5_end_read_request(struct bio * bi, int error)
1073 {
1074  	struct stripe_head *sh = bi->bi_private;
1075 	raid5_conf_t *conf = sh->raid_conf;
1076 	int disks = sh->disks, i;
1077 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1078 	char b[BDEVNAME_SIZE];
1079 	mdk_rdev_t *rdev;
1080 
1081 
1082 	for (i=0 ; i<disks; i++)
1083 		if (bi == &sh->dev[i].req)
1084 			break;
1085 
1086 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1087 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1088 		uptodate);
1089 	if (i == disks) {
1090 		BUG();
1091 		return;
1092 	}
1093 
1094 	if (uptodate) {
1095 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1096 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1097 			rdev = conf->disks[i].rdev;
1098 			printk_rl(KERN_INFO "raid5:%s: read error corrected"
1099 				  " (%lu sectors at %llu on %s)\n",
1100 				  mdname(conf->mddev), STRIPE_SECTORS,
1101 				  (unsigned long long)(sh->sector
1102 						       + rdev->data_offset),
1103 				  bdevname(rdev->bdev, b));
1104 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1105 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1106 		}
1107 		if (atomic_read(&conf->disks[i].rdev->read_errors))
1108 			atomic_set(&conf->disks[i].rdev->read_errors, 0);
1109 	} else {
1110 		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1111 		int retry = 0;
1112 		rdev = conf->disks[i].rdev;
1113 
1114 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1115 		atomic_inc(&rdev->read_errors);
1116 		if (conf->mddev->degraded)
1117 			printk_rl(KERN_WARNING
1118 				  "raid5:%s: read error not correctable "
1119 				  "(sector %llu on %s).\n",
1120 				  mdname(conf->mddev),
1121 				  (unsigned long long)(sh->sector
1122 						       + rdev->data_offset),
1123 				  bdn);
1124 		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1125 			/* Oh, no!!! */
1126 			printk_rl(KERN_WARNING
1127 				  "raid5:%s: read error NOT corrected!! "
1128 				  "(sector %llu on %s).\n",
1129 				  mdname(conf->mddev),
1130 				  (unsigned long long)(sh->sector
1131 						       + rdev->data_offset),
1132 				  bdn);
1133 		else if (atomic_read(&rdev->read_errors)
1134 			 > conf->max_nr_stripes)
1135 			printk(KERN_WARNING
1136 			       "raid5:%s: Too many read errors, failing device %s.\n",
1137 			       mdname(conf->mddev), bdn);
1138 		else
1139 			retry = 1;
1140 		if (retry)
1141 			set_bit(R5_ReadError, &sh->dev[i].flags);
1142 		else {
1143 			clear_bit(R5_ReadError, &sh->dev[i].flags);
1144 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1145 			md_error(conf->mddev, rdev);
1146 		}
1147 	}
1148 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1149 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1150 	set_bit(STRIPE_HANDLE, &sh->state);
1151 	release_stripe(sh);
1152 }
1153 
1154 static void raid5_end_write_request (struct bio *bi, int error)
1155 {
1156  	struct stripe_head *sh = bi->bi_private;
1157 	raid5_conf_t *conf = sh->raid_conf;
1158 	int disks = sh->disks, i;
1159 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1160 
1161 	for (i=0 ; i<disks; i++)
1162 		if (bi == &sh->dev[i].req)
1163 			break;
1164 
1165 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1166 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1167 		uptodate);
1168 	if (i == disks) {
1169 		BUG();
1170 		return;
1171 	}
1172 
1173 	if (!uptodate)
1174 		md_error(conf->mddev, conf->disks[i].rdev);
1175 
1176 	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1177 
1178 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1179 	set_bit(STRIPE_HANDLE, &sh->state);
1180 	release_stripe(sh);
1181 }
1182 
1183 
1184 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1185 
1186 static void raid5_build_block (struct stripe_head *sh, int i)
1187 {
1188 	struct r5dev *dev = &sh->dev[i];
1189 
1190 	bio_init(&dev->req);
1191 	dev->req.bi_io_vec = &dev->vec;
1192 	dev->req.bi_vcnt++;
1193 	dev->req.bi_max_vecs++;
1194 	dev->vec.bv_page = dev->page;
1195 	dev->vec.bv_len = STRIPE_SIZE;
1196 	dev->vec.bv_offset = 0;
1197 
1198 	dev->req.bi_sector = sh->sector;
1199 	dev->req.bi_private = sh;
1200 
1201 	dev->flags = 0;
1202 	dev->sector = compute_blocknr(sh, i);
1203 }
1204 
1205 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1206 {
1207 	char b[BDEVNAME_SIZE];
1208 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1209 	pr_debug("raid5: error called\n");
1210 
1211 	if (!test_bit(Faulty, &rdev->flags)) {
1212 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1213 		if (test_and_clear_bit(In_sync, &rdev->flags)) {
1214 			unsigned long flags;
1215 			spin_lock_irqsave(&conf->device_lock, flags);
1216 			mddev->degraded++;
1217 			spin_unlock_irqrestore(&conf->device_lock, flags);
1218 			/*
1219 			 * if recovery was running, make sure it aborts.
1220 			 */
1221 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1222 		}
1223 		set_bit(Faulty, &rdev->flags);
1224 		printk (KERN_ALERT
1225 			"raid5: Disk failure on %s, disabling device.\n"
1226 			"raid5: Operation continuing on %d devices.\n",
1227 			bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1228 	}
1229 }
1230 
1231 /*
1232  * Input: a 'big' sector number,
1233  * Output: index of the data and parity disk, and the sector # in them.
1234  */
1235 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1236 			unsigned int data_disks, unsigned int * dd_idx,
1237 			unsigned int * pd_idx, raid5_conf_t *conf)
1238 {
1239 	long stripe;
1240 	unsigned long chunk_number;
1241 	unsigned int chunk_offset;
1242 	sector_t new_sector;
1243 	int sectors_per_chunk = conf->chunk_size >> 9;
1244 
1245 	/* First compute the information on this sector */
1246 
1247 	/*
1248 	 * Compute the chunk number and the sector offset inside the chunk
1249 	 */
1250 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1251 	chunk_number = r_sector;
1252 	BUG_ON(r_sector != chunk_number);
1253 
1254 	/*
1255 	 * Compute the stripe number
1256 	 */
1257 	stripe = chunk_number / data_disks;
1258 
1259 	/*
1260 	 * Compute the data disk and parity disk indexes inside the stripe
1261 	 */
1262 	*dd_idx = chunk_number % data_disks;
1263 
1264 	/*
1265 	 * Select the parity disk based on the user selected algorithm.
1266 	 */
1267 	switch(conf->level) {
1268 	case 4:
1269 		*pd_idx = data_disks;
1270 		break;
1271 	case 5:
1272 		switch (conf->algorithm) {
1273 		case ALGORITHM_LEFT_ASYMMETRIC:
1274 			*pd_idx = data_disks - stripe % raid_disks;
1275 			if (*dd_idx >= *pd_idx)
1276 				(*dd_idx)++;
1277 			break;
1278 		case ALGORITHM_RIGHT_ASYMMETRIC:
1279 			*pd_idx = stripe % raid_disks;
1280 			if (*dd_idx >= *pd_idx)
1281 				(*dd_idx)++;
1282 			break;
1283 		case ALGORITHM_LEFT_SYMMETRIC:
1284 			*pd_idx = data_disks - stripe % raid_disks;
1285 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1286 			break;
1287 		case ALGORITHM_RIGHT_SYMMETRIC:
1288 			*pd_idx = stripe % raid_disks;
1289 			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1290 			break;
1291 		default:
1292 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1293 				conf->algorithm);
1294 		}
1295 		break;
1296 	case 6:
1297 
1298 		/**** FIX THIS ****/
1299 		switch (conf->algorithm) {
1300 		case ALGORITHM_LEFT_ASYMMETRIC:
1301 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
1302 			if (*pd_idx == raid_disks-1)
1303 				(*dd_idx)++; 	/* Q D D D P */
1304 			else if (*dd_idx >= *pd_idx)
1305 				(*dd_idx) += 2; /* D D P Q D */
1306 			break;
1307 		case ALGORITHM_RIGHT_ASYMMETRIC:
1308 			*pd_idx = stripe % raid_disks;
1309 			if (*pd_idx == raid_disks-1)
1310 				(*dd_idx)++; 	/* Q D D D P */
1311 			else if (*dd_idx >= *pd_idx)
1312 				(*dd_idx) += 2; /* D D P Q D */
1313 			break;
1314 		case ALGORITHM_LEFT_SYMMETRIC:
1315 			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
1316 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1317 			break;
1318 		case ALGORITHM_RIGHT_SYMMETRIC:
1319 			*pd_idx = stripe % raid_disks;
1320 			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1321 			break;
1322 		default:
1323 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1324 				conf->algorithm);
1325 		}
1326 		break;
1327 	}
1328 
1329 	/*
1330 	 * Finally, compute the new sector number
1331 	 */
1332 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1333 	return new_sector;
1334 }
1335 
1336 
1337 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1338 {
1339 	raid5_conf_t *conf = sh->raid_conf;
1340 	int raid_disks = sh->disks;
1341 	int data_disks = raid_disks - conf->max_degraded;
1342 	sector_t new_sector = sh->sector, check;
1343 	int sectors_per_chunk = conf->chunk_size >> 9;
1344 	sector_t stripe;
1345 	int chunk_offset;
1346 	int chunk_number, dummy1, dummy2, dd_idx = i;
1347 	sector_t r_sector;
1348 
1349 
1350 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1351 	stripe = new_sector;
1352 	BUG_ON(new_sector != stripe);
1353 
1354 	if (i == sh->pd_idx)
1355 		return 0;
1356 	switch(conf->level) {
1357 	case 4: break;
1358 	case 5:
1359 		switch (conf->algorithm) {
1360 		case ALGORITHM_LEFT_ASYMMETRIC:
1361 		case ALGORITHM_RIGHT_ASYMMETRIC:
1362 			if (i > sh->pd_idx)
1363 				i--;
1364 			break;
1365 		case ALGORITHM_LEFT_SYMMETRIC:
1366 		case ALGORITHM_RIGHT_SYMMETRIC:
1367 			if (i < sh->pd_idx)
1368 				i += raid_disks;
1369 			i -= (sh->pd_idx + 1);
1370 			break;
1371 		default:
1372 			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1373 			       conf->algorithm);
1374 		}
1375 		break;
1376 	case 6:
1377 		if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1378 			return 0; /* It is the Q disk */
1379 		switch (conf->algorithm) {
1380 		case ALGORITHM_LEFT_ASYMMETRIC:
1381 		case ALGORITHM_RIGHT_ASYMMETRIC:
1382 		  	if (sh->pd_idx == raid_disks-1)
1383 				i--; 	/* Q D D D P */
1384 			else if (i > sh->pd_idx)
1385 				i -= 2; /* D D P Q D */
1386 			break;
1387 		case ALGORITHM_LEFT_SYMMETRIC:
1388 		case ALGORITHM_RIGHT_SYMMETRIC:
1389 			if (sh->pd_idx == raid_disks-1)
1390 				i--; /* Q D D D P */
1391 			else {
1392 				/* D D P Q D */
1393 				if (i < sh->pd_idx)
1394 					i += raid_disks;
1395 				i -= (sh->pd_idx + 2);
1396 			}
1397 			break;
1398 		default:
1399 			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1400 				conf->algorithm);
1401 		}
1402 		break;
1403 	}
1404 
1405 	chunk_number = stripe * data_disks + i;
1406 	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1407 
1408 	check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1409 	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1410 		printk(KERN_ERR "compute_blocknr: map not correct\n");
1411 		return 0;
1412 	}
1413 	return r_sector;
1414 }
1415 
1416 
1417 
1418 /*
1419  * Copy data between a page in the stripe cache, and one or more bion
1420  * The page could align with the middle of the bio, or there could be
1421  * several bion, each with several bio_vecs, which cover part of the page
1422  * Multiple bion are linked together on bi_next.  There may be extras
1423  * at the end of this list.  We ignore them.
1424  */
1425 static void copy_data(int frombio, struct bio *bio,
1426 		     struct page *page,
1427 		     sector_t sector)
1428 {
1429 	char *pa = page_address(page);
1430 	struct bio_vec *bvl;
1431 	int i;
1432 	int page_offset;
1433 
1434 	if (bio->bi_sector >= sector)
1435 		page_offset = (signed)(bio->bi_sector - sector) * 512;
1436 	else
1437 		page_offset = (signed)(sector - bio->bi_sector) * -512;
1438 	bio_for_each_segment(bvl, bio, i) {
1439 		int len = bio_iovec_idx(bio,i)->bv_len;
1440 		int clen;
1441 		int b_offset = 0;
1442 
1443 		if (page_offset < 0) {
1444 			b_offset = -page_offset;
1445 			page_offset += b_offset;
1446 			len -= b_offset;
1447 		}
1448 
1449 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1450 			clen = STRIPE_SIZE - page_offset;
1451 		else clen = len;
1452 
1453 		if (clen > 0) {
1454 			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1455 			if (frombio)
1456 				memcpy(pa+page_offset, ba+b_offset, clen);
1457 			else
1458 				memcpy(ba+b_offset, pa+page_offset, clen);
1459 			__bio_kunmap_atomic(ba, KM_USER0);
1460 		}
1461 		if (clen < len) /* hit end of page */
1462 			break;
1463 		page_offset +=  len;
1464 	}
1465 }
1466 
1467 #define check_xor()	do {						  \
1468 				if (count == MAX_XOR_BLOCKS) {		  \
1469 				xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1470 				count = 0;				  \
1471 			   }						  \
1472 			} while(0)
1473 
1474 static void compute_parity6(struct stripe_head *sh, int method)
1475 {
1476 	raid6_conf_t *conf = sh->raid_conf;
1477 	int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1478 	struct bio *chosen;
1479 	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1480 	void *ptrs[disks];
1481 
1482 	qd_idx = raid6_next_disk(pd_idx, disks);
1483 	d0_idx = raid6_next_disk(qd_idx, disks);
1484 
1485 	pr_debug("compute_parity, stripe %llu, method %d\n",
1486 		(unsigned long long)sh->sector, method);
1487 
1488 	switch(method) {
1489 	case READ_MODIFY_WRITE:
1490 		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
1491 	case RECONSTRUCT_WRITE:
1492 		for (i= disks; i-- ;)
1493 			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1494 				chosen = sh->dev[i].towrite;
1495 				sh->dev[i].towrite = NULL;
1496 
1497 				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1498 					wake_up(&conf->wait_for_overlap);
1499 
1500 				BUG_ON(sh->dev[i].written);
1501 				sh->dev[i].written = chosen;
1502 			}
1503 		break;
1504 	case CHECK_PARITY:
1505 		BUG();		/* Not implemented yet */
1506 	}
1507 
1508 	for (i = disks; i--;)
1509 		if (sh->dev[i].written) {
1510 			sector_t sector = sh->dev[i].sector;
1511 			struct bio *wbi = sh->dev[i].written;
1512 			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1513 				copy_data(1, wbi, sh->dev[i].page, sector);
1514 				wbi = r5_next_bio(wbi, sector);
1515 			}
1516 
1517 			set_bit(R5_LOCKED, &sh->dev[i].flags);
1518 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1519 		}
1520 
1521 //	switch(method) {
1522 //	case RECONSTRUCT_WRITE:
1523 //	case CHECK_PARITY:
1524 //	case UPDATE_PARITY:
1525 		/* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1526 		/* FIX: Is this ordering of drives even remotely optimal? */
1527 		count = 0;
1528 		i = d0_idx;
1529 		do {
1530 			ptrs[count++] = page_address(sh->dev[i].page);
1531 			if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1532 				printk("block %d/%d not uptodate on parity calc\n", i,count);
1533 			i = raid6_next_disk(i, disks);
1534 		} while ( i != d0_idx );
1535 //		break;
1536 //	}
1537 
1538 	raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1539 
1540 	switch(method) {
1541 	case RECONSTRUCT_WRITE:
1542 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1543 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1544 		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1545 		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1546 		break;
1547 	case UPDATE_PARITY:
1548 		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1549 		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1550 		break;
1551 	}
1552 }
1553 
1554 
1555 /* Compute one missing block */
1556 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1557 {
1558 	int i, count, disks = sh->disks;
1559 	void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1560 	int pd_idx = sh->pd_idx;
1561 	int qd_idx = raid6_next_disk(pd_idx, disks);
1562 
1563 	pr_debug("compute_block_1, stripe %llu, idx %d\n",
1564 		(unsigned long long)sh->sector, dd_idx);
1565 
1566 	if ( dd_idx == qd_idx ) {
1567 		/* We're actually computing the Q drive */
1568 		compute_parity6(sh, UPDATE_PARITY);
1569 	} else {
1570 		dest = page_address(sh->dev[dd_idx].page);
1571 		if (!nozero) memset(dest, 0, STRIPE_SIZE);
1572 		count = 0;
1573 		for (i = disks ; i--; ) {
1574 			if (i == dd_idx || i == qd_idx)
1575 				continue;
1576 			p = page_address(sh->dev[i].page);
1577 			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1578 				ptr[count++] = p;
1579 			else
1580 				printk("compute_block() %d, stripe %llu, %d"
1581 				       " not present\n", dd_idx,
1582 				       (unsigned long long)sh->sector, i);
1583 
1584 			check_xor();
1585 		}
1586 		if (count)
1587 			xor_blocks(count, STRIPE_SIZE, dest, ptr);
1588 		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1589 		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1590 	}
1591 }
1592 
1593 /* Compute two missing blocks */
1594 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1595 {
1596 	int i, count, disks = sh->disks;
1597 	int pd_idx = sh->pd_idx;
1598 	int qd_idx = raid6_next_disk(pd_idx, disks);
1599 	int d0_idx = raid6_next_disk(qd_idx, disks);
1600 	int faila, failb;
1601 
1602 	/* faila and failb are disk numbers relative to d0_idx */
1603 	/* pd_idx become disks-2 and qd_idx become disks-1 */
1604 	faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1605 	failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1606 
1607 	BUG_ON(faila == failb);
1608 	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1609 
1610 	pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1611 	       (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1612 
1613 	if ( failb == disks-1 ) {
1614 		/* Q disk is one of the missing disks */
1615 		if ( faila == disks-2 ) {
1616 			/* Missing P+Q, just recompute */
1617 			compute_parity6(sh, UPDATE_PARITY);
1618 			return;
1619 		} else {
1620 			/* We're missing D+Q; recompute D from P */
1621 			compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1622 			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1623 			return;
1624 		}
1625 	}
1626 
1627 	/* We're missing D+P or D+D; build pointer table */
1628 	{
1629 		/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1630 		void *ptrs[disks];
1631 
1632 		count = 0;
1633 		i = d0_idx;
1634 		do {
1635 			ptrs[count++] = page_address(sh->dev[i].page);
1636 			i = raid6_next_disk(i, disks);
1637 			if (i != dd_idx1 && i != dd_idx2 &&
1638 			    !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1639 				printk("compute_2 with missing block %d/%d\n", count, i);
1640 		} while ( i != d0_idx );
1641 
1642 		if ( failb == disks-2 ) {
1643 			/* We're missing D+P. */
1644 			raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1645 		} else {
1646 			/* We're missing D+D. */
1647 			raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1648 		}
1649 
1650 		/* Both the above update both missing blocks */
1651 		set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1652 		set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1653 	}
1654 }
1655 
1656 static void
1657 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1658 			 int rcw, int expand)
1659 {
1660 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
1661 
1662 	if (rcw) {
1663 		/* if we are not expanding this is a proper write request, and
1664 		 * there will be bios with new data to be drained into the
1665 		 * stripe cache
1666 		 */
1667 		if (!expand) {
1668 			sh->reconstruct_state = reconstruct_state_drain_run;
1669 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1670 		} else
1671 			sh->reconstruct_state = reconstruct_state_run;
1672 
1673 		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1674 
1675 		for (i = disks; i--; ) {
1676 			struct r5dev *dev = &sh->dev[i];
1677 
1678 			if (dev->towrite) {
1679 				set_bit(R5_LOCKED, &dev->flags);
1680 				set_bit(R5_Wantdrain, &dev->flags);
1681 				if (!expand)
1682 					clear_bit(R5_UPTODATE, &dev->flags);
1683 				s->locked++;
1684 			}
1685 		}
1686 		if (s->locked + 1 == disks)
1687 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1688 				atomic_inc(&sh->raid_conf->pending_full_writes);
1689 	} else {
1690 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1691 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1692 
1693 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1694 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1695 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1696 		set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1697 
1698 		for (i = disks; i--; ) {
1699 			struct r5dev *dev = &sh->dev[i];
1700 			if (i == pd_idx)
1701 				continue;
1702 
1703 			if (dev->towrite &&
1704 			    (test_bit(R5_UPTODATE, &dev->flags) ||
1705 			     test_bit(R5_Wantcompute, &dev->flags))) {
1706 				set_bit(R5_Wantdrain, &dev->flags);
1707 				set_bit(R5_LOCKED, &dev->flags);
1708 				clear_bit(R5_UPTODATE, &dev->flags);
1709 				s->locked++;
1710 			}
1711 		}
1712 	}
1713 
1714 	/* keep the parity disk locked while asynchronous operations
1715 	 * are in flight
1716 	 */
1717 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1718 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1719 	s->locked++;
1720 
1721 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1722 		__func__, (unsigned long long)sh->sector,
1723 		s->locked, s->ops_request);
1724 }
1725 
1726 /*
1727  * Each stripe/dev can have one or more bion attached.
1728  * toread/towrite point to the first in a chain.
1729  * The bi_next chain must be in order.
1730  */
1731 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1732 {
1733 	struct bio **bip;
1734 	raid5_conf_t *conf = sh->raid_conf;
1735 	int firstwrite=0;
1736 
1737 	pr_debug("adding bh b#%llu to stripe s#%llu\n",
1738 		(unsigned long long)bi->bi_sector,
1739 		(unsigned long long)sh->sector);
1740 
1741 
1742 	spin_lock(&sh->lock);
1743 	spin_lock_irq(&conf->device_lock);
1744 	if (forwrite) {
1745 		bip = &sh->dev[dd_idx].towrite;
1746 		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1747 			firstwrite = 1;
1748 	} else
1749 		bip = &sh->dev[dd_idx].toread;
1750 	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1751 		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1752 			goto overlap;
1753 		bip = & (*bip)->bi_next;
1754 	}
1755 	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1756 		goto overlap;
1757 
1758 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1759 	if (*bip)
1760 		bi->bi_next = *bip;
1761 	*bip = bi;
1762 	bi->bi_phys_segments++;
1763 	spin_unlock_irq(&conf->device_lock);
1764 	spin_unlock(&sh->lock);
1765 
1766 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1767 		(unsigned long long)bi->bi_sector,
1768 		(unsigned long long)sh->sector, dd_idx);
1769 
1770 	if (conf->mddev->bitmap && firstwrite) {
1771 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1772 				  STRIPE_SECTORS, 0);
1773 		sh->bm_seq = conf->seq_flush+1;
1774 		set_bit(STRIPE_BIT_DELAY, &sh->state);
1775 	}
1776 
1777 	if (forwrite) {
1778 		/* check if page is covered */
1779 		sector_t sector = sh->dev[dd_idx].sector;
1780 		for (bi=sh->dev[dd_idx].towrite;
1781 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1782 			     bi && bi->bi_sector <= sector;
1783 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1784 			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1785 				sector = bi->bi_sector + (bi->bi_size>>9);
1786 		}
1787 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1788 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1789 	}
1790 	return 1;
1791 
1792  overlap:
1793 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1794 	spin_unlock_irq(&conf->device_lock);
1795 	spin_unlock(&sh->lock);
1796 	return 0;
1797 }
1798 
1799 static void end_reshape(raid5_conf_t *conf);
1800 
1801 static int page_is_zero(struct page *p)
1802 {
1803 	char *a = page_address(p);
1804 	return ((*(u32*)a) == 0 &&
1805 		memcmp(a, a+4, STRIPE_SIZE-4)==0);
1806 }
1807 
1808 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1809 {
1810 	int sectors_per_chunk = conf->chunk_size >> 9;
1811 	int pd_idx, dd_idx;
1812 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
1813 
1814 	raid5_compute_sector(stripe * (disks - conf->max_degraded)
1815 			     *sectors_per_chunk + chunk_offset,
1816 			     disks, disks - conf->max_degraded,
1817 			     &dd_idx, &pd_idx, conf);
1818 	return pd_idx;
1819 }
1820 
1821 static void
1822 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
1823 				struct stripe_head_state *s, int disks,
1824 				struct bio **return_bi)
1825 {
1826 	int i;
1827 	for (i = disks; i--; ) {
1828 		struct bio *bi;
1829 		int bitmap_end = 0;
1830 
1831 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1832 			mdk_rdev_t *rdev;
1833 			rcu_read_lock();
1834 			rdev = rcu_dereference(conf->disks[i].rdev);
1835 			if (rdev && test_bit(In_sync, &rdev->flags))
1836 				/* multiple read failures in one stripe */
1837 				md_error(conf->mddev, rdev);
1838 			rcu_read_unlock();
1839 		}
1840 		spin_lock_irq(&conf->device_lock);
1841 		/* fail all writes first */
1842 		bi = sh->dev[i].towrite;
1843 		sh->dev[i].towrite = NULL;
1844 		if (bi) {
1845 			s->to_write--;
1846 			bitmap_end = 1;
1847 		}
1848 
1849 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1850 			wake_up(&conf->wait_for_overlap);
1851 
1852 		while (bi && bi->bi_sector <
1853 			sh->dev[i].sector + STRIPE_SECTORS) {
1854 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1855 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1856 			if (!raid5_dec_bi_phys_segments(bi)) {
1857 				md_write_end(conf->mddev);
1858 				bi->bi_next = *return_bi;
1859 				*return_bi = bi;
1860 			}
1861 			bi = nextbi;
1862 		}
1863 		/* and fail all 'written' */
1864 		bi = sh->dev[i].written;
1865 		sh->dev[i].written = NULL;
1866 		if (bi) bitmap_end = 1;
1867 		while (bi && bi->bi_sector <
1868 		       sh->dev[i].sector + STRIPE_SECTORS) {
1869 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1870 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
1871 			if (!raid5_dec_bi_phys_segments(bi)) {
1872 				md_write_end(conf->mddev);
1873 				bi->bi_next = *return_bi;
1874 				*return_bi = bi;
1875 			}
1876 			bi = bi2;
1877 		}
1878 
1879 		/* fail any reads if this device is non-operational and
1880 		 * the data has not reached the cache yet.
1881 		 */
1882 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1883 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1884 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
1885 			bi = sh->dev[i].toread;
1886 			sh->dev[i].toread = NULL;
1887 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1888 				wake_up(&conf->wait_for_overlap);
1889 			if (bi) s->to_read--;
1890 			while (bi && bi->bi_sector <
1891 			       sh->dev[i].sector + STRIPE_SECTORS) {
1892 				struct bio *nextbi =
1893 					r5_next_bio(bi, sh->dev[i].sector);
1894 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1895 				if (!raid5_dec_bi_phys_segments(bi)) {
1896 					bi->bi_next = *return_bi;
1897 					*return_bi = bi;
1898 				}
1899 				bi = nextbi;
1900 			}
1901 		}
1902 		spin_unlock_irq(&conf->device_lock);
1903 		if (bitmap_end)
1904 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1905 					STRIPE_SECTORS, 0, 0);
1906 	}
1907 
1908 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1909 		if (atomic_dec_and_test(&conf->pending_full_writes))
1910 			md_wakeup_thread(conf->mddev->thread);
1911 }
1912 
1913 /* fetch_block5 - checks the given member device to see if its data needs
1914  * to be read or computed to satisfy a request.
1915  *
1916  * Returns 1 when no more member devices need to be checked, otherwise returns
1917  * 0 to tell the loop in handle_stripe_fill5 to continue
1918  */
1919 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
1920 			int disk_idx, int disks)
1921 {
1922 	struct r5dev *dev = &sh->dev[disk_idx];
1923 	struct r5dev *failed_dev = &sh->dev[s->failed_num];
1924 
1925 	/* is the data in this block needed, and can we get it? */
1926 	if (!test_bit(R5_LOCKED, &dev->flags) &&
1927 	    !test_bit(R5_UPTODATE, &dev->flags) &&
1928 	    (dev->toread ||
1929 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1930 	     s->syncing || s->expanding ||
1931 	     (s->failed &&
1932 	      (failed_dev->toread ||
1933 	       (failed_dev->towrite &&
1934 		!test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
1935 		/* We would like to get this block, possibly by computing it,
1936 		 * otherwise read it if the backing disk is insync
1937 		 */
1938 		if ((s->uptodate == disks - 1) &&
1939 		    (s->failed && disk_idx == s->failed_num)) {
1940 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
1941 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
1942 			set_bit(R5_Wantcompute, &dev->flags);
1943 			sh->ops.target = disk_idx;
1944 			s->req_compute = 1;
1945 			/* Careful: from this point on 'uptodate' is in the eye
1946 			 * of raid5_run_ops which services 'compute' operations
1947 			 * before writes. R5_Wantcompute flags a block that will
1948 			 * be R5_UPTODATE by the time it is needed for a
1949 			 * subsequent operation.
1950 			 */
1951 			s->uptodate++;
1952 			return 1; /* uptodate + compute == disks */
1953 		} else if (test_bit(R5_Insync, &dev->flags)) {
1954 			set_bit(R5_LOCKED, &dev->flags);
1955 			set_bit(R5_Wantread, &dev->flags);
1956 			s->locked++;
1957 			pr_debug("Reading block %d (sync=%d)\n", disk_idx,
1958 				s->syncing);
1959 		}
1960 	}
1961 
1962 	return 0;
1963 }
1964 
1965 /**
1966  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
1967  */
1968 static void handle_stripe_fill5(struct stripe_head *sh,
1969 			struct stripe_head_state *s, int disks)
1970 {
1971 	int i;
1972 
1973 	/* look for blocks to read/compute, skip this if a compute
1974 	 * is already in flight, or if the stripe contents are in the
1975 	 * midst of changing due to a write
1976 	 */
1977 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1978 	    !sh->reconstruct_state)
1979 		for (i = disks; i--; )
1980 			if (fetch_block5(sh, s, i, disks))
1981 				break;
1982 	set_bit(STRIPE_HANDLE, &sh->state);
1983 }
1984 
1985 static void handle_stripe_fill6(struct stripe_head *sh,
1986 			struct stripe_head_state *s, struct r6_state *r6s,
1987 			int disks)
1988 {
1989 	int i;
1990 	for (i = disks; i--; ) {
1991 		struct r5dev *dev = &sh->dev[i];
1992 		if (!test_bit(R5_LOCKED, &dev->flags) &&
1993 		    !test_bit(R5_UPTODATE, &dev->flags) &&
1994 		    (dev->toread || (dev->towrite &&
1995 		     !test_bit(R5_OVERWRITE, &dev->flags)) ||
1996 		     s->syncing || s->expanding ||
1997 		     (s->failed >= 1 &&
1998 		      (sh->dev[r6s->failed_num[0]].toread ||
1999 		       s->to_write)) ||
2000 		     (s->failed >= 2 &&
2001 		      (sh->dev[r6s->failed_num[1]].toread ||
2002 		       s->to_write)))) {
2003 			/* we would like to get this block, possibly
2004 			 * by computing it, but we might not be able to
2005 			 */
2006 			if ((s->uptodate == disks - 1) &&
2007 			    (s->failed && (i == r6s->failed_num[0] ||
2008 					   i == r6s->failed_num[1]))) {
2009 				pr_debug("Computing stripe %llu block %d\n",
2010 				       (unsigned long long)sh->sector, i);
2011 				compute_block_1(sh, i, 0);
2012 				s->uptodate++;
2013 			} else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2014 				/* Computing 2-failure is *very* expensive; only
2015 				 * do it if failed >= 2
2016 				 */
2017 				int other;
2018 				for (other = disks; other--; ) {
2019 					if (other == i)
2020 						continue;
2021 					if (!test_bit(R5_UPTODATE,
2022 					      &sh->dev[other].flags))
2023 						break;
2024 				}
2025 				BUG_ON(other < 0);
2026 				pr_debug("Computing stripe %llu blocks %d,%d\n",
2027 				       (unsigned long long)sh->sector,
2028 				       i, other);
2029 				compute_block_2(sh, i, other);
2030 				s->uptodate += 2;
2031 			} else if (test_bit(R5_Insync, &dev->flags)) {
2032 				set_bit(R5_LOCKED, &dev->flags);
2033 				set_bit(R5_Wantread, &dev->flags);
2034 				s->locked++;
2035 				pr_debug("Reading block %d (sync=%d)\n",
2036 					i, s->syncing);
2037 			}
2038 		}
2039 	}
2040 	set_bit(STRIPE_HANDLE, &sh->state);
2041 }
2042 
2043 
2044 /* handle_stripe_clean_event
2045  * any written block on an uptodate or failed drive can be returned.
2046  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2047  * never LOCKED, so we don't need to test 'failed' directly.
2048  */
2049 static void handle_stripe_clean_event(raid5_conf_t *conf,
2050 	struct stripe_head *sh, int disks, struct bio **return_bi)
2051 {
2052 	int i;
2053 	struct r5dev *dev;
2054 
2055 	for (i = disks; i--; )
2056 		if (sh->dev[i].written) {
2057 			dev = &sh->dev[i];
2058 			if (!test_bit(R5_LOCKED, &dev->flags) &&
2059 				test_bit(R5_UPTODATE, &dev->flags)) {
2060 				/* We can return any write requests */
2061 				struct bio *wbi, *wbi2;
2062 				int bitmap_end = 0;
2063 				pr_debug("Return write for disc %d\n", i);
2064 				spin_lock_irq(&conf->device_lock);
2065 				wbi = dev->written;
2066 				dev->written = NULL;
2067 				while (wbi && wbi->bi_sector <
2068 					dev->sector + STRIPE_SECTORS) {
2069 					wbi2 = r5_next_bio(wbi, dev->sector);
2070 					if (!raid5_dec_bi_phys_segments(wbi)) {
2071 						md_write_end(conf->mddev);
2072 						wbi->bi_next = *return_bi;
2073 						*return_bi = wbi;
2074 					}
2075 					wbi = wbi2;
2076 				}
2077 				if (dev->towrite == NULL)
2078 					bitmap_end = 1;
2079 				spin_unlock_irq(&conf->device_lock);
2080 				if (bitmap_end)
2081 					bitmap_endwrite(conf->mddev->bitmap,
2082 							sh->sector,
2083 							STRIPE_SECTORS,
2084 					 !test_bit(STRIPE_DEGRADED, &sh->state),
2085 							0);
2086 			}
2087 		}
2088 
2089 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2090 		if (atomic_dec_and_test(&conf->pending_full_writes))
2091 			md_wakeup_thread(conf->mddev->thread);
2092 }
2093 
2094 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2095 		struct stripe_head *sh,	struct stripe_head_state *s, int disks)
2096 {
2097 	int rmw = 0, rcw = 0, i;
2098 	for (i = disks; i--; ) {
2099 		/* would I have to read this buffer for read_modify_write */
2100 		struct r5dev *dev = &sh->dev[i];
2101 		if ((dev->towrite || i == sh->pd_idx) &&
2102 		    !test_bit(R5_LOCKED, &dev->flags) &&
2103 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2104 		      test_bit(R5_Wantcompute, &dev->flags))) {
2105 			if (test_bit(R5_Insync, &dev->flags))
2106 				rmw++;
2107 			else
2108 				rmw += 2*disks;  /* cannot read it */
2109 		}
2110 		/* Would I have to read this buffer for reconstruct_write */
2111 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2112 		    !test_bit(R5_LOCKED, &dev->flags) &&
2113 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2114 		    test_bit(R5_Wantcompute, &dev->flags))) {
2115 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2116 			else
2117 				rcw += 2*disks;
2118 		}
2119 	}
2120 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2121 		(unsigned long long)sh->sector, rmw, rcw);
2122 	set_bit(STRIPE_HANDLE, &sh->state);
2123 	if (rmw < rcw && rmw > 0)
2124 		/* prefer read-modify-write, but need to get some data */
2125 		for (i = disks; i--; ) {
2126 			struct r5dev *dev = &sh->dev[i];
2127 			if ((dev->towrite || i == sh->pd_idx) &&
2128 			    !test_bit(R5_LOCKED, &dev->flags) &&
2129 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2130 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2131 			    test_bit(R5_Insync, &dev->flags)) {
2132 				if (
2133 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2134 					pr_debug("Read_old block "
2135 						"%d for r-m-w\n", i);
2136 					set_bit(R5_LOCKED, &dev->flags);
2137 					set_bit(R5_Wantread, &dev->flags);
2138 					s->locked++;
2139 				} else {
2140 					set_bit(STRIPE_DELAYED, &sh->state);
2141 					set_bit(STRIPE_HANDLE, &sh->state);
2142 				}
2143 			}
2144 		}
2145 	if (rcw <= rmw && rcw > 0)
2146 		/* want reconstruct write, but need to get some data */
2147 		for (i = disks; i--; ) {
2148 			struct r5dev *dev = &sh->dev[i];
2149 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2150 			    i != sh->pd_idx &&
2151 			    !test_bit(R5_LOCKED, &dev->flags) &&
2152 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2153 			    test_bit(R5_Wantcompute, &dev->flags)) &&
2154 			    test_bit(R5_Insync, &dev->flags)) {
2155 				if (
2156 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2157 					pr_debug("Read_old block "
2158 						"%d for Reconstruct\n", i);
2159 					set_bit(R5_LOCKED, &dev->flags);
2160 					set_bit(R5_Wantread, &dev->flags);
2161 					s->locked++;
2162 				} else {
2163 					set_bit(STRIPE_DELAYED, &sh->state);
2164 					set_bit(STRIPE_HANDLE, &sh->state);
2165 				}
2166 			}
2167 		}
2168 	/* now if nothing is locked, and if we have enough data,
2169 	 * we can start a write request
2170 	 */
2171 	/* since handle_stripe can be called at any time we need to handle the
2172 	 * case where a compute block operation has been submitted and then a
2173 	 * subsequent call wants to start a write request.  raid5_run_ops only
2174 	 * handles the case where compute block and postxor are requested
2175 	 * simultaneously.  If this is not the case then new writes need to be
2176 	 * held off until the compute completes.
2177 	 */
2178 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2179 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2180 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2181 		schedule_reconstruction5(sh, s, rcw == 0, 0);
2182 }
2183 
2184 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2185 		struct stripe_head *sh,	struct stripe_head_state *s,
2186 		struct r6_state *r6s, int disks)
2187 {
2188 	int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2189 	int qd_idx = r6s->qd_idx;
2190 	for (i = disks; i--; ) {
2191 		struct r5dev *dev = &sh->dev[i];
2192 		/* Would I have to read this buffer for reconstruct_write */
2193 		if (!test_bit(R5_OVERWRITE, &dev->flags)
2194 		    && i != pd_idx && i != qd_idx
2195 		    && (!test_bit(R5_LOCKED, &dev->flags)
2196 			    ) &&
2197 		    !test_bit(R5_UPTODATE, &dev->flags)) {
2198 			if (test_bit(R5_Insync, &dev->flags)) rcw++;
2199 			else {
2200 				pr_debug("raid6: must_compute: "
2201 					"disk %d flags=%#lx\n", i, dev->flags);
2202 				must_compute++;
2203 			}
2204 		}
2205 	}
2206 	pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2207 	       (unsigned long long)sh->sector, rcw, must_compute);
2208 	set_bit(STRIPE_HANDLE, &sh->state);
2209 
2210 	if (rcw > 0)
2211 		/* want reconstruct write, but need to get some data */
2212 		for (i = disks; i--; ) {
2213 			struct r5dev *dev = &sh->dev[i];
2214 			if (!test_bit(R5_OVERWRITE, &dev->flags)
2215 			    && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2216 			    && !test_bit(R5_LOCKED, &dev->flags) &&
2217 			    !test_bit(R5_UPTODATE, &dev->flags) &&
2218 			    test_bit(R5_Insync, &dev->flags)) {
2219 				if (
2220 				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2221 					pr_debug("Read_old stripe %llu "
2222 						"block %d for Reconstruct\n",
2223 					     (unsigned long long)sh->sector, i);
2224 					set_bit(R5_LOCKED, &dev->flags);
2225 					set_bit(R5_Wantread, &dev->flags);
2226 					s->locked++;
2227 				} else {
2228 					pr_debug("Request delayed stripe %llu "
2229 						"block %d for Reconstruct\n",
2230 					     (unsigned long long)sh->sector, i);
2231 					set_bit(STRIPE_DELAYED, &sh->state);
2232 					set_bit(STRIPE_HANDLE, &sh->state);
2233 				}
2234 			}
2235 		}
2236 	/* now if nothing is locked, and if we have enough data, we can start a
2237 	 * write request
2238 	 */
2239 	if (s->locked == 0 && rcw == 0 &&
2240 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2241 		if (must_compute > 0) {
2242 			/* We have failed blocks and need to compute them */
2243 			switch (s->failed) {
2244 			case 0:
2245 				BUG();
2246 			case 1:
2247 				compute_block_1(sh, r6s->failed_num[0], 0);
2248 				break;
2249 			case 2:
2250 				compute_block_2(sh, r6s->failed_num[0],
2251 						r6s->failed_num[1]);
2252 				break;
2253 			default: /* This request should have been failed? */
2254 				BUG();
2255 			}
2256 		}
2257 
2258 		pr_debug("Computing parity for stripe %llu\n",
2259 			(unsigned long long)sh->sector);
2260 		compute_parity6(sh, RECONSTRUCT_WRITE);
2261 		/* now every locked buffer is ready to be written */
2262 		for (i = disks; i--; )
2263 			if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2264 				pr_debug("Writing stripe %llu block %d\n",
2265 				       (unsigned long long)sh->sector, i);
2266 				s->locked++;
2267 				set_bit(R5_Wantwrite, &sh->dev[i].flags);
2268 			}
2269 		if (s->locked == disks)
2270 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2271 				atomic_inc(&conf->pending_full_writes);
2272 		/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2273 		set_bit(STRIPE_INSYNC, &sh->state);
2274 
2275 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2276 			atomic_dec(&conf->preread_active_stripes);
2277 			if (atomic_read(&conf->preread_active_stripes) <
2278 			    IO_THRESHOLD)
2279 				md_wakeup_thread(conf->mddev->thread);
2280 		}
2281 	}
2282 }
2283 
2284 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2285 				struct stripe_head_state *s, int disks)
2286 {
2287 	struct r5dev *dev = NULL;
2288 
2289 	set_bit(STRIPE_HANDLE, &sh->state);
2290 
2291 	switch (sh->check_state) {
2292 	case check_state_idle:
2293 		/* start a new check operation if there are no failures */
2294 		if (s->failed == 0) {
2295 			BUG_ON(s->uptodate != disks);
2296 			sh->check_state = check_state_run;
2297 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2298 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2299 			s->uptodate--;
2300 			break;
2301 		}
2302 		dev = &sh->dev[s->failed_num];
2303 		/* fall through */
2304 	case check_state_compute_result:
2305 		sh->check_state = check_state_idle;
2306 		if (!dev)
2307 			dev = &sh->dev[sh->pd_idx];
2308 
2309 		/* check that a write has not made the stripe insync */
2310 		if (test_bit(STRIPE_INSYNC, &sh->state))
2311 			break;
2312 
2313 		/* either failed parity check, or recovery is happening */
2314 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2315 		BUG_ON(s->uptodate != disks);
2316 
2317 		set_bit(R5_LOCKED, &dev->flags);
2318 		s->locked++;
2319 		set_bit(R5_Wantwrite, &dev->flags);
2320 
2321 		clear_bit(STRIPE_DEGRADED, &sh->state);
2322 		set_bit(STRIPE_INSYNC, &sh->state);
2323 		break;
2324 	case check_state_run:
2325 		break; /* we will be called again upon completion */
2326 	case check_state_check_result:
2327 		sh->check_state = check_state_idle;
2328 
2329 		/* if a failure occurred during the check operation, leave
2330 		 * STRIPE_INSYNC not set and let the stripe be handled again
2331 		 */
2332 		if (s->failed)
2333 			break;
2334 
2335 		/* handle a successful check operation, if parity is correct
2336 		 * we are done.  Otherwise update the mismatch count and repair
2337 		 * parity if !MD_RECOVERY_CHECK
2338 		 */
2339 		if (sh->ops.zero_sum_result == 0)
2340 			/* parity is correct (on disc,
2341 			 * not in buffer any more)
2342 			 */
2343 			set_bit(STRIPE_INSYNC, &sh->state);
2344 		else {
2345 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2346 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2347 				/* don't try to repair!! */
2348 				set_bit(STRIPE_INSYNC, &sh->state);
2349 			else {
2350 				sh->check_state = check_state_compute_run;
2351 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2352 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2353 				set_bit(R5_Wantcompute,
2354 					&sh->dev[sh->pd_idx].flags);
2355 				sh->ops.target = sh->pd_idx;
2356 				s->uptodate++;
2357 			}
2358 		}
2359 		break;
2360 	case check_state_compute_run:
2361 		break;
2362 	default:
2363 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2364 		       __func__, sh->check_state,
2365 		       (unsigned long long) sh->sector);
2366 		BUG();
2367 	}
2368 }
2369 
2370 
2371 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2372 				struct stripe_head_state *s,
2373 				struct r6_state *r6s, struct page *tmp_page,
2374 				int disks)
2375 {
2376 	int update_p = 0, update_q = 0;
2377 	struct r5dev *dev;
2378 	int pd_idx = sh->pd_idx;
2379 	int qd_idx = r6s->qd_idx;
2380 
2381 	set_bit(STRIPE_HANDLE, &sh->state);
2382 
2383 	BUG_ON(s->failed > 2);
2384 	BUG_ON(s->uptodate < disks);
2385 	/* Want to check and possibly repair P and Q.
2386 	 * However there could be one 'failed' device, in which
2387 	 * case we can only check one of them, possibly using the
2388 	 * other to generate missing data
2389 	 */
2390 
2391 	/* If !tmp_page, we cannot do the calculations,
2392 	 * but as we have set STRIPE_HANDLE, we will soon be called
2393 	 * by stripe_handle with a tmp_page - just wait until then.
2394 	 */
2395 	if (tmp_page) {
2396 		if (s->failed == r6s->q_failed) {
2397 			/* The only possible failed device holds 'Q', so it
2398 			 * makes sense to check P (If anything else were failed,
2399 			 * we would have used P to recreate it).
2400 			 */
2401 			compute_block_1(sh, pd_idx, 1);
2402 			if (!page_is_zero(sh->dev[pd_idx].page)) {
2403 				compute_block_1(sh, pd_idx, 0);
2404 				update_p = 1;
2405 			}
2406 		}
2407 		if (!r6s->q_failed && s->failed < 2) {
2408 			/* q is not failed, and we didn't use it to generate
2409 			 * anything, so it makes sense to check it
2410 			 */
2411 			memcpy(page_address(tmp_page),
2412 			       page_address(sh->dev[qd_idx].page),
2413 			       STRIPE_SIZE);
2414 			compute_parity6(sh, UPDATE_PARITY);
2415 			if (memcmp(page_address(tmp_page),
2416 				   page_address(sh->dev[qd_idx].page),
2417 				   STRIPE_SIZE) != 0) {
2418 				clear_bit(STRIPE_INSYNC, &sh->state);
2419 				update_q = 1;
2420 			}
2421 		}
2422 		if (update_p || update_q) {
2423 			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2424 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2425 				/* don't try to repair!! */
2426 				update_p = update_q = 0;
2427 		}
2428 
2429 		/* now write out any block on a failed drive,
2430 		 * or P or Q if they need it
2431 		 */
2432 
2433 		if (s->failed == 2) {
2434 			dev = &sh->dev[r6s->failed_num[1]];
2435 			s->locked++;
2436 			set_bit(R5_LOCKED, &dev->flags);
2437 			set_bit(R5_Wantwrite, &dev->flags);
2438 		}
2439 		if (s->failed >= 1) {
2440 			dev = &sh->dev[r6s->failed_num[0]];
2441 			s->locked++;
2442 			set_bit(R5_LOCKED, &dev->flags);
2443 			set_bit(R5_Wantwrite, &dev->flags);
2444 		}
2445 
2446 		if (update_p) {
2447 			dev = &sh->dev[pd_idx];
2448 			s->locked++;
2449 			set_bit(R5_LOCKED, &dev->flags);
2450 			set_bit(R5_Wantwrite, &dev->flags);
2451 		}
2452 		if (update_q) {
2453 			dev = &sh->dev[qd_idx];
2454 			s->locked++;
2455 			set_bit(R5_LOCKED, &dev->flags);
2456 			set_bit(R5_Wantwrite, &dev->flags);
2457 		}
2458 		clear_bit(STRIPE_DEGRADED, &sh->state);
2459 
2460 		set_bit(STRIPE_INSYNC, &sh->state);
2461 	}
2462 }
2463 
2464 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2465 				struct r6_state *r6s)
2466 {
2467 	int i;
2468 
2469 	/* We have read all the blocks in this stripe and now we need to
2470 	 * copy some of them into a target stripe for expand.
2471 	 */
2472 	struct dma_async_tx_descriptor *tx = NULL;
2473 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2474 	for (i = 0; i < sh->disks; i++)
2475 		if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2476 			int dd_idx, pd_idx, j;
2477 			struct stripe_head *sh2;
2478 
2479 			sector_t bn = compute_blocknr(sh, i);
2480 			sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2481 						conf->raid_disks -
2482 						conf->max_degraded, &dd_idx,
2483 						&pd_idx, conf);
2484 			sh2 = get_active_stripe(conf, s, conf->raid_disks,
2485 						pd_idx, 1);
2486 			if (sh2 == NULL)
2487 				/* so far only the early blocks of this stripe
2488 				 * have been requested.  When later blocks
2489 				 * get requested, we will try again
2490 				 */
2491 				continue;
2492 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2493 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2494 				/* must have already done this block */
2495 				release_stripe(sh2);
2496 				continue;
2497 			}
2498 
2499 			/* place all the copies on one channel */
2500 			tx = async_memcpy(sh2->dev[dd_idx].page,
2501 				sh->dev[i].page, 0, 0, STRIPE_SIZE,
2502 				ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2503 
2504 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2505 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2506 			for (j = 0; j < conf->raid_disks; j++)
2507 				if (j != sh2->pd_idx &&
2508 				    (!r6s || j != raid6_next_disk(sh2->pd_idx,
2509 								 sh2->disks)) &&
2510 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2511 					break;
2512 			if (j == conf->raid_disks) {
2513 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2514 				set_bit(STRIPE_HANDLE, &sh2->state);
2515 			}
2516 			release_stripe(sh2);
2517 
2518 		}
2519 	/* done submitting copies, wait for them to complete */
2520 	if (tx) {
2521 		async_tx_ack(tx);
2522 		dma_wait_for_async_tx(tx);
2523 	}
2524 }
2525 
2526 
2527 /*
2528  * handle_stripe - do things to a stripe.
2529  *
2530  * We lock the stripe and then examine the state of various bits
2531  * to see what needs to be done.
2532  * Possible results:
2533  *    return some read request which now have data
2534  *    return some write requests which are safely on disc
2535  *    schedule a read on some buffers
2536  *    schedule a write of some buffers
2537  *    return confirmation of parity correctness
2538  *
2539  * buffers are taken off read_list or write_list, and bh_cache buffers
2540  * get BH_Lock set before the stripe lock is released.
2541  *
2542  */
2543 
2544 static bool handle_stripe5(struct stripe_head *sh)
2545 {
2546 	raid5_conf_t *conf = sh->raid_conf;
2547 	int disks = sh->disks, i;
2548 	struct bio *return_bi = NULL;
2549 	struct stripe_head_state s;
2550 	struct r5dev *dev;
2551 	mdk_rdev_t *blocked_rdev = NULL;
2552 	int prexor;
2553 
2554 	memset(&s, 0, sizeof(s));
2555 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2556 		 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2557 		 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2558 		 sh->reconstruct_state);
2559 
2560 	spin_lock(&sh->lock);
2561 	clear_bit(STRIPE_HANDLE, &sh->state);
2562 	clear_bit(STRIPE_DELAYED, &sh->state);
2563 
2564 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2565 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2566 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2567 
2568 	/* Now to look around and see what can be done */
2569 	rcu_read_lock();
2570 	for (i=disks; i--; ) {
2571 		mdk_rdev_t *rdev;
2572 		struct r5dev *dev = &sh->dev[i];
2573 		clear_bit(R5_Insync, &dev->flags);
2574 
2575 		pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2576 			"written %p\n",	i, dev->flags, dev->toread, dev->read,
2577 			dev->towrite, dev->written);
2578 
2579 		/* maybe we can request a biofill operation
2580 		 *
2581 		 * new wantfill requests are only permitted while
2582 		 * ops_complete_biofill is guaranteed to be inactive
2583 		 */
2584 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2585 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2586 			set_bit(R5_Wantfill, &dev->flags);
2587 
2588 		/* now count some things */
2589 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2590 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2591 		if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2592 
2593 		if (test_bit(R5_Wantfill, &dev->flags))
2594 			s.to_fill++;
2595 		else if (dev->toread)
2596 			s.to_read++;
2597 		if (dev->towrite) {
2598 			s.to_write++;
2599 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2600 				s.non_overwrite++;
2601 		}
2602 		if (dev->written)
2603 			s.written++;
2604 		rdev = rcu_dereference(conf->disks[i].rdev);
2605 		if (blocked_rdev == NULL &&
2606 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2607 			blocked_rdev = rdev;
2608 			atomic_inc(&rdev->nr_pending);
2609 		}
2610 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2611 			/* The ReadError flag will just be confusing now */
2612 			clear_bit(R5_ReadError, &dev->flags);
2613 			clear_bit(R5_ReWrite, &dev->flags);
2614 		}
2615 		if (!rdev || !test_bit(In_sync, &rdev->flags)
2616 		    || test_bit(R5_ReadError, &dev->flags)) {
2617 			s.failed++;
2618 			s.failed_num = i;
2619 		} else
2620 			set_bit(R5_Insync, &dev->flags);
2621 	}
2622 	rcu_read_unlock();
2623 
2624 	if (unlikely(blocked_rdev)) {
2625 		if (s.syncing || s.expanding || s.expanded ||
2626 		    s.to_write || s.written) {
2627 			set_bit(STRIPE_HANDLE, &sh->state);
2628 			goto unlock;
2629 		}
2630 		/* There is nothing for the blocked_rdev to block */
2631 		rdev_dec_pending(blocked_rdev, conf->mddev);
2632 		blocked_rdev = NULL;
2633 	}
2634 
2635 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2636 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2637 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2638 	}
2639 
2640 	pr_debug("locked=%d uptodate=%d to_read=%d"
2641 		" to_write=%d failed=%d failed_num=%d\n",
2642 		s.locked, s.uptodate, s.to_read, s.to_write,
2643 		s.failed, s.failed_num);
2644 	/* check if the array has lost two devices and, if so, some requests might
2645 	 * need to be failed
2646 	 */
2647 	if (s.failed > 1 && s.to_read+s.to_write+s.written)
2648 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2649 	if (s.failed > 1 && s.syncing) {
2650 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2651 		clear_bit(STRIPE_SYNCING, &sh->state);
2652 		s.syncing = 0;
2653 	}
2654 
2655 	/* might be able to return some write requests if the parity block
2656 	 * is safe, or on a failed drive
2657 	 */
2658 	dev = &sh->dev[sh->pd_idx];
2659 	if ( s.written &&
2660 	     ((test_bit(R5_Insync, &dev->flags) &&
2661 	       !test_bit(R5_LOCKED, &dev->flags) &&
2662 	       test_bit(R5_UPTODATE, &dev->flags)) ||
2663 	       (s.failed == 1 && s.failed_num == sh->pd_idx)))
2664 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
2665 
2666 	/* Now we might consider reading some blocks, either to check/generate
2667 	 * parity, or to satisfy requests
2668 	 * or to load a block that is being partially written.
2669 	 */
2670 	if (s.to_read || s.non_overwrite ||
2671 	    (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2672 		handle_stripe_fill5(sh, &s, disks);
2673 
2674 	/* Now we check to see if any write operations have recently
2675 	 * completed
2676 	 */
2677 	prexor = 0;
2678 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2679 		prexor = 1;
2680 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
2681 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2682 		sh->reconstruct_state = reconstruct_state_idle;
2683 
2684 		/* All the 'written' buffers and the parity block are ready to
2685 		 * be written back to disk
2686 		 */
2687 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2688 		for (i = disks; i--; ) {
2689 			dev = &sh->dev[i];
2690 			if (test_bit(R5_LOCKED, &dev->flags) &&
2691 				(i == sh->pd_idx || dev->written)) {
2692 				pr_debug("Writing block %d\n", i);
2693 				set_bit(R5_Wantwrite, &dev->flags);
2694 				if (prexor)
2695 					continue;
2696 				if (!test_bit(R5_Insync, &dev->flags) ||
2697 				    (i == sh->pd_idx && s.failed == 0))
2698 					set_bit(STRIPE_INSYNC, &sh->state);
2699 			}
2700 		}
2701 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2702 			atomic_dec(&conf->preread_active_stripes);
2703 			if (atomic_read(&conf->preread_active_stripes) <
2704 				IO_THRESHOLD)
2705 				md_wakeup_thread(conf->mddev->thread);
2706 		}
2707 	}
2708 
2709 	/* Now to consider new write requests and what else, if anything
2710 	 * should be read.  We do not handle new writes when:
2711 	 * 1/ A 'write' operation (copy+xor) is already in flight.
2712 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
2713 	 *    block.
2714 	 */
2715 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2716 		handle_stripe_dirtying5(conf, sh, &s, disks);
2717 
2718 	/* maybe we need to check and possibly fix the parity for this stripe
2719 	 * Any reads will already have been scheduled, so we just see if enough
2720 	 * data is available.  The parity check is held off while parity
2721 	 * dependent operations are in flight.
2722 	 */
2723 	if (sh->check_state ||
2724 	    (s.syncing && s.locked == 0 &&
2725 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2726 	     !test_bit(STRIPE_INSYNC, &sh->state)))
2727 		handle_parity_checks5(conf, sh, &s, disks);
2728 
2729 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2730 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2731 		clear_bit(STRIPE_SYNCING, &sh->state);
2732 	}
2733 
2734 	/* If the failed drive is just a ReadError, then we might need to progress
2735 	 * the repair/check process
2736 	 */
2737 	if (s.failed == 1 && !conf->mddev->ro &&
2738 	    test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2739 	    && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2740 	    && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2741 		) {
2742 		dev = &sh->dev[s.failed_num];
2743 		if (!test_bit(R5_ReWrite, &dev->flags)) {
2744 			set_bit(R5_Wantwrite, &dev->flags);
2745 			set_bit(R5_ReWrite, &dev->flags);
2746 			set_bit(R5_LOCKED, &dev->flags);
2747 			s.locked++;
2748 		} else {
2749 			/* let's read it back */
2750 			set_bit(R5_Wantread, &dev->flags);
2751 			set_bit(R5_LOCKED, &dev->flags);
2752 			s.locked++;
2753 		}
2754 	}
2755 
2756 	/* Finish reconstruct operations initiated by the expansion process */
2757 	if (sh->reconstruct_state == reconstruct_state_result) {
2758 		sh->reconstruct_state = reconstruct_state_idle;
2759 		clear_bit(STRIPE_EXPANDING, &sh->state);
2760 		for (i = conf->raid_disks; i--; ) {
2761 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
2762 			set_bit(R5_LOCKED, &sh->dev[i].flags);
2763 			s.locked++;
2764 		}
2765 	}
2766 
2767 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2768 	    !sh->reconstruct_state) {
2769 		/* Need to write out all blocks after computing parity */
2770 		sh->disks = conf->raid_disks;
2771 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2772 			conf->raid_disks);
2773 		schedule_reconstruction5(sh, &s, 1, 1);
2774 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2775 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2776 		atomic_dec(&conf->reshape_stripes);
2777 		wake_up(&conf->wait_for_overlap);
2778 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2779 	}
2780 
2781 	if (s.expanding && s.locked == 0 &&
2782 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2783 		handle_stripe_expansion(conf, sh, NULL);
2784 
2785  unlock:
2786 	spin_unlock(&sh->lock);
2787 
2788 	/* wait for this device to become unblocked */
2789 	if (unlikely(blocked_rdev))
2790 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2791 
2792 	if (s.ops_request)
2793 		raid5_run_ops(sh, s.ops_request);
2794 
2795 	ops_run_io(sh, &s);
2796 
2797 	return_io(return_bi);
2798 
2799 	return blocked_rdev == NULL;
2800 }
2801 
2802 static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2803 {
2804 	raid6_conf_t *conf = sh->raid_conf;
2805 	int disks = sh->disks;
2806 	struct bio *return_bi = NULL;
2807 	int i, pd_idx = sh->pd_idx;
2808 	struct stripe_head_state s;
2809 	struct r6_state r6s;
2810 	struct r5dev *dev, *pdev, *qdev;
2811 	mdk_rdev_t *blocked_rdev = NULL;
2812 
2813 	r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2814 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2815 		"pd_idx=%d, qd_idx=%d\n",
2816 	       (unsigned long long)sh->sector, sh->state,
2817 	       atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2818 	memset(&s, 0, sizeof(s));
2819 
2820 	spin_lock(&sh->lock);
2821 	clear_bit(STRIPE_HANDLE, &sh->state);
2822 	clear_bit(STRIPE_DELAYED, &sh->state);
2823 
2824 	s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2825 	s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2826 	s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2827 	/* Now to look around and see what can be done */
2828 
2829 	rcu_read_lock();
2830 	for (i=disks; i--; ) {
2831 		mdk_rdev_t *rdev;
2832 		dev = &sh->dev[i];
2833 		clear_bit(R5_Insync, &dev->flags);
2834 
2835 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2836 			i, dev->flags, dev->toread, dev->towrite, dev->written);
2837 		/* maybe we can reply to a read */
2838 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2839 			struct bio *rbi, *rbi2;
2840 			pr_debug("Return read for disc %d\n", i);
2841 			spin_lock_irq(&conf->device_lock);
2842 			rbi = dev->toread;
2843 			dev->toread = NULL;
2844 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2845 				wake_up(&conf->wait_for_overlap);
2846 			spin_unlock_irq(&conf->device_lock);
2847 			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2848 				copy_data(0, rbi, dev->page, dev->sector);
2849 				rbi2 = r5_next_bio(rbi, dev->sector);
2850 				spin_lock_irq(&conf->device_lock);
2851 				if (!raid5_dec_bi_phys_segments(rbi)) {
2852 					rbi->bi_next = return_bi;
2853 					return_bi = rbi;
2854 				}
2855 				spin_unlock_irq(&conf->device_lock);
2856 				rbi = rbi2;
2857 			}
2858 		}
2859 
2860 		/* now count some things */
2861 		if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2862 		if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2863 
2864 
2865 		if (dev->toread)
2866 			s.to_read++;
2867 		if (dev->towrite) {
2868 			s.to_write++;
2869 			if (!test_bit(R5_OVERWRITE, &dev->flags))
2870 				s.non_overwrite++;
2871 		}
2872 		if (dev->written)
2873 			s.written++;
2874 		rdev = rcu_dereference(conf->disks[i].rdev);
2875 		if (blocked_rdev == NULL &&
2876 		    rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2877 			blocked_rdev = rdev;
2878 			atomic_inc(&rdev->nr_pending);
2879 		}
2880 		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2881 			/* The ReadError flag will just be confusing now */
2882 			clear_bit(R5_ReadError, &dev->flags);
2883 			clear_bit(R5_ReWrite, &dev->flags);
2884 		}
2885 		if (!rdev || !test_bit(In_sync, &rdev->flags)
2886 		    || test_bit(R5_ReadError, &dev->flags)) {
2887 			if (s.failed < 2)
2888 				r6s.failed_num[s.failed] = i;
2889 			s.failed++;
2890 		} else
2891 			set_bit(R5_Insync, &dev->flags);
2892 	}
2893 	rcu_read_unlock();
2894 
2895 	if (unlikely(blocked_rdev)) {
2896 		if (s.syncing || s.expanding || s.expanded ||
2897 		    s.to_write || s.written) {
2898 			set_bit(STRIPE_HANDLE, &sh->state);
2899 			goto unlock;
2900 		}
2901 		/* There is nothing for the blocked_rdev to block */
2902 		rdev_dec_pending(blocked_rdev, conf->mddev);
2903 		blocked_rdev = NULL;
2904 	}
2905 
2906 	pr_debug("locked=%d uptodate=%d to_read=%d"
2907 	       " to_write=%d failed=%d failed_num=%d,%d\n",
2908 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2909 	       r6s.failed_num[0], r6s.failed_num[1]);
2910 	/* check if the array has lost >2 devices and, if so, some requests
2911 	 * might need to be failed
2912 	 */
2913 	if (s.failed > 2 && s.to_read+s.to_write+s.written)
2914 		handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2915 	if (s.failed > 2 && s.syncing) {
2916 		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2917 		clear_bit(STRIPE_SYNCING, &sh->state);
2918 		s.syncing = 0;
2919 	}
2920 
2921 	/*
2922 	 * might be able to return some write requests if the parity blocks
2923 	 * are safe, or on a failed drive
2924 	 */
2925 	pdev = &sh->dev[pd_idx];
2926 	r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2927 		|| (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2928 	qdev = &sh->dev[r6s.qd_idx];
2929 	r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2930 		|| (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2931 
2932 	if ( s.written &&
2933 	     ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2934 			     && !test_bit(R5_LOCKED, &pdev->flags)
2935 			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2936 	     ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
2937 			     && !test_bit(R5_LOCKED, &qdev->flags)
2938 			     && test_bit(R5_UPTODATE, &qdev->flags)))))
2939 		handle_stripe_clean_event(conf, sh, disks, &return_bi);
2940 
2941 	/* Now we might consider reading some blocks, either to check/generate
2942 	 * parity, or to satisfy requests
2943 	 * or to load a block that is being partially written.
2944 	 */
2945 	if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
2946 	    (s.syncing && (s.uptodate < disks)) || s.expanding)
2947 		handle_stripe_fill6(sh, &s, &r6s, disks);
2948 
2949 	/* now to consider writing and what else, if anything should be read */
2950 	if (s.to_write)
2951 		handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
2952 
2953 	/* maybe we need to check and possibly fix the parity for this stripe
2954 	 * Any reads will already have been scheduled, so we just see if enough
2955 	 * data is available
2956 	 */
2957 	if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
2958 		handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
2959 
2960 	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2961 		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2962 		clear_bit(STRIPE_SYNCING, &sh->state);
2963 	}
2964 
2965 	/* If the failed drives are just a ReadError, then we might need
2966 	 * to progress the repair/check process
2967 	 */
2968 	if (s.failed <= 2 && !conf->mddev->ro)
2969 		for (i = 0; i < s.failed; i++) {
2970 			dev = &sh->dev[r6s.failed_num[i]];
2971 			if (test_bit(R5_ReadError, &dev->flags)
2972 			    && !test_bit(R5_LOCKED, &dev->flags)
2973 			    && test_bit(R5_UPTODATE, &dev->flags)
2974 				) {
2975 				if (!test_bit(R5_ReWrite, &dev->flags)) {
2976 					set_bit(R5_Wantwrite, &dev->flags);
2977 					set_bit(R5_ReWrite, &dev->flags);
2978 					set_bit(R5_LOCKED, &dev->flags);
2979 				} else {
2980 					/* let's read it back */
2981 					set_bit(R5_Wantread, &dev->flags);
2982 					set_bit(R5_LOCKED, &dev->flags);
2983 				}
2984 			}
2985 		}
2986 
2987 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
2988 		/* Need to write out all blocks after computing P&Q */
2989 		sh->disks = conf->raid_disks;
2990 		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2991 					     conf->raid_disks);
2992 		compute_parity6(sh, RECONSTRUCT_WRITE);
2993 		for (i = conf->raid_disks ; i-- ;  ) {
2994 			set_bit(R5_LOCKED, &sh->dev[i].flags);
2995 			s.locked++;
2996 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
2997 		}
2998 		clear_bit(STRIPE_EXPANDING, &sh->state);
2999 	} else if (s.expanded) {
3000 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3001 		atomic_dec(&conf->reshape_stripes);
3002 		wake_up(&conf->wait_for_overlap);
3003 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3004 	}
3005 
3006 	if (s.expanding && s.locked == 0 &&
3007 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3008 		handle_stripe_expansion(conf, sh, &r6s);
3009 
3010  unlock:
3011 	spin_unlock(&sh->lock);
3012 
3013 	/* wait for this device to become unblocked */
3014 	if (unlikely(blocked_rdev))
3015 		md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3016 
3017 	ops_run_io(sh, &s);
3018 
3019 	return_io(return_bi);
3020 
3021 	return blocked_rdev == NULL;
3022 }
3023 
3024 /* returns true if the stripe was handled */
3025 static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3026 {
3027 	if (sh->raid_conf->level == 6)
3028 		return handle_stripe6(sh, tmp_page);
3029 	else
3030 		return handle_stripe5(sh);
3031 }
3032 
3033 
3034 
3035 static void raid5_activate_delayed(raid5_conf_t *conf)
3036 {
3037 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3038 		while (!list_empty(&conf->delayed_list)) {
3039 			struct list_head *l = conf->delayed_list.next;
3040 			struct stripe_head *sh;
3041 			sh = list_entry(l, struct stripe_head, lru);
3042 			list_del_init(l);
3043 			clear_bit(STRIPE_DELAYED, &sh->state);
3044 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3045 				atomic_inc(&conf->preread_active_stripes);
3046 			list_add_tail(&sh->lru, &conf->hold_list);
3047 		}
3048 	} else
3049 		blk_plug_device(conf->mddev->queue);
3050 }
3051 
3052 static void activate_bit_delay(raid5_conf_t *conf)
3053 {
3054 	/* device_lock is held */
3055 	struct list_head head;
3056 	list_add(&head, &conf->bitmap_list);
3057 	list_del_init(&conf->bitmap_list);
3058 	while (!list_empty(&head)) {
3059 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3060 		list_del_init(&sh->lru);
3061 		atomic_inc(&sh->count);
3062 		__release_stripe(conf, sh);
3063 	}
3064 }
3065 
3066 static void unplug_slaves(mddev_t *mddev)
3067 {
3068 	raid5_conf_t *conf = mddev_to_conf(mddev);
3069 	int i;
3070 
3071 	rcu_read_lock();
3072 	for (i=0; i<mddev->raid_disks; i++) {
3073 		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3074 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3075 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3076 
3077 			atomic_inc(&rdev->nr_pending);
3078 			rcu_read_unlock();
3079 
3080 			blk_unplug(r_queue);
3081 
3082 			rdev_dec_pending(rdev, mddev);
3083 			rcu_read_lock();
3084 		}
3085 	}
3086 	rcu_read_unlock();
3087 }
3088 
3089 static void raid5_unplug_device(struct request_queue *q)
3090 {
3091 	mddev_t *mddev = q->queuedata;
3092 	raid5_conf_t *conf = mddev_to_conf(mddev);
3093 	unsigned long flags;
3094 
3095 	spin_lock_irqsave(&conf->device_lock, flags);
3096 
3097 	if (blk_remove_plug(q)) {
3098 		conf->seq_flush++;
3099 		raid5_activate_delayed(conf);
3100 	}
3101 	md_wakeup_thread(mddev->thread);
3102 
3103 	spin_unlock_irqrestore(&conf->device_lock, flags);
3104 
3105 	unplug_slaves(mddev);
3106 }
3107 
3108 static int raid5_congested(void *data, int bits)
3109 {
3110 	mddev_t *mddev = data;
3111 	raid5_conf_t *conf = mddev_to_conf(mddev);
3112 
3113 	/* No difference between reads and writes.  Just check
3114 	 * how busy the stripe_cache is
3115 	 */
3116 	if (conf->inactive_blocked)
3117 		return 1;
3118 	if (conf->quiesce)
3119 		return 1;
3120 	if (list_empty_careful(&conf->inactive_list))
3121 		return 1;
3122 
3123 	return 0;
3124 }
3125 
3126 /* We want read requests to align with chunks where possible,
3127  * but write requests don't need to.
3128  */
3129 static int raid5_mergeable_bvec(struct request_queue *q,
3130 				struct bvec_merge_data *bvm,
3131 				struct bio_vec *biovec)
3132 {
3133 	mddev_t *mddev = q->queuedata;
3134 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3135 	int max;
3136 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3137 	unsigned int bio_sectors = bvm->bi_size >> 9;
3138 
3139 	if ((bvm->bi_rw & 1) == WRITE)
3140 		return biovec->bv_len; /* always allow writes to be mergeable */
3141 
3142 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3143 	if (max < 0) max = 0;
3144 	if (max <= biovec->bv_len && bio_sectors == 0)
3145 		return biovec->bv_len;
3146 	else
3147 		return max;
3148 }
3149 
3150 
3151 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3152 {
3153 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3154 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
3155 	unsigned int bio_sectors = bio->bi_size >> 9;
3156 
3157 	return  chunk_sectors >=
3158 		((sector & (chunk_sectors - 1)) + bio_sectors);
3159 }
3160 
3161 /*
3162  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3163  *  later sampled by raid5d.
3164  */
3165 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3166 {
3167 	unsigned long flags;
3168 
3169 	spin_lock_irqsave(&conf->device_lock, flags);
3170 
3171 	bi->bi_next = conf->retry_read_aligned_list;
3172 	conf->retry_read_aligned_list = bi;
3173 
3174 	spin_unlock_irqrestore(&conf->device_lock, flags);
3175 	md_wakeup_thread(conf->mddev->thread);
3176 }
3177 
3178 
3179 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3180 {
3181 	struct bio *bi;
3182 
3183 	bi = conf->retry_read_aligned;
3184 	if (bi) {
3185 		conf->retry_read_aligned = NULL;
3186 		return bi;
3187 	}
3188 	bi = conf->retry_read_aligned_list;
3189 	if(bi) {
3190 		conf->retry_read_aligned_list = bi->bi_next;
3191 		bi->bi_next = NULL;
3192 		/*
3193 		 * this sets the active strip count to 1 and the processed
3194 		 * strip count to zero (upper 8 bits)
3195 		 */
3196 		bi->bi_phys_segments = 1; /* biased count of active stripes */
3197 	}
3198 
3199 	return bi;
3200 }
3201 
3202 
3203 /*
3204  *  The "raid5_align_endio" should check if the read succeeded and if it
3205  *  did, call bio_endio on the original bio (having bio_put the new bio
3206  *  first).
3207  *  If the read failed..
3208  */
3209 static void raid5_align_endio(struct bio *bi, int error)
3210 {
3211 	struct bio* raid_bi  = bi->bi_private;
3212 	mddev_t *mddev;
3213 	raid5_conf_t *conf;
3214 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3215 	mdk_rdev_t *rdev;
3216 
3217 	bio_put(bi);
3218 
3219 	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3220 	conf = mddev_to_conf(mddev);
3221 	rdev = (void*)raid_bi->bi_next;
3222 	raid_bi->bi_next = NULL;
3223 
3224 	rdev_dec_pending(rdev, conf->mddev);
3225 
3226 	if (!error && uptodate) {
3227 		bio_endio(raid_bi, 0);
3228 		if (atomic_dec_and_test(&conf->active_aligned_reads))
3229 			wake_up(&conf->wait_for_stripe);
3230 		return;
3231 	}
3232 
3233 
3234 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3235 
3236 	add_bio_to_retry(raid_bi, conf);
3237 }
3238 
3239 static int bio_fits_rdev(struct bio *bi)
3240 {
3241 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3242 
3243 	if ((bi->bi_size>>9) > q->max_sectors)
3244 		return 0;
3245 	blk_recount_segments(q, bi);
3246 	if (bi->bi_phys_segments > q->max_phys_segments)
3247 		return 0;
3248 
3249 	if (q->merge_bvec_fn)
3250 		/* it's too hard to apply the merge_bvec_fn at this stage,
3251 		 * just just give up
3252 		 */
3253 		return 0;
3254 
3255 	return 1;
3256 }
3257 
3258 
3259 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3260 {
3261 	mddev_t *mddev = q->queuedata;
3262 	raid5_conf_t *conf = mddev_to_conf(mddev);
3263 	const unsigned int raid_disks = conf->raid_disks;
3264 	const unsigned int data_disks = raid_disks - conf->max_degraded;
3265 	unsigned int dd_idx, pd_idx;
3266 	struct bio* align_bi;
3267 	mdk_rdev_t *rdev;
3268 
3269 	if (!in_chunk_boundary(mddev, raid_bio)) {
3270 		pr_debug("chunk_aligned_read : non aligned\n");
3271 		return 0;
3272 	}
3273 	/*
3274  	 * use bio_clone to make a copy of the bio
3275 	 */
3276 	align_bi = bio_clone(raid_bio, GFP_NOIO);
3277 	if (!align_bi)
3278 		return 0;
3279 	/*
3280 	 *   set bi_end_io to a new function, and set bi_private to the
3281 	 *     original bio.
3282 	 */
3283 	align_bi->bi_end_io  = raid5_align_endio;
3284 	align_bi->bi_private = raid_bio;
3285 	/*
3286 	 *	compute position
3287 	 */
3288 	align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3289 					raid_disks,
3290 					data_disks,
3291 					&dd_idx,
3292 					&pd_idx,
3293 					conf);
3294 
3295 	rcu_read_lock();
3296 	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3297 	if (rdev && test_bit(In_sync, &rdev->flags)) {
3298 		atomic_inc(&rdev->nr_pending);
3299 		rcu_read_unlock();
3300 		raid_bio->bi_next = (void*)rdev;
3301 		align_bi->bi_bdev =  rdev->bdev;
3302 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3303 		align_bi->bi_sector += rdev->data_offset;
3304 
3305 		if (!bio_fits_rdev(align_bi)) {
3306 			/* too big in some way */
3307 			bio_put(align_bi);
3308 			rdev_dec_pending(rdev, mddev);
3309 			return 0;
3310 		}
3311 
3312 		spin_lock_irq(&conf->device_lock);
3313 		wait_event_lock_irq(conf->wait_for_stripe,
3314 				    conf->quiesce == 0,
3315 				    conf->device_lock, /* nothing */);
3316 		atomic_inc(&conf->active_aligned_reads);
3317 		spin_unlock_irq(&conf->device_lock);
3318 
3319 		generic_make_request(align_bi);
3320 		return 1;
3321 	} else {
3322 		rcu_read_unlock();
3323 		bio_put(align_bi);
3324 		return 0;
3325 	}
3326 }
3327 
3328 /* __get_priority_stripe - get the next stripe to process
3329  *
3330  * Full stripe writes are allowed to pass preread active stripes up until
3331  * the bypass_threshold is exceeded.  In general the bypass_count
3332  * increments when the handle_list is handled before the hold_list; however, it
3333  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3334  * stripe with in flight i/o.  The bypass_count will be reset when the
3335  * head of the hold_list has changed, i.e. the head was promoted to the
3336  * handle_list.
3337  */
3338 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3339 {
3340 	struct stripe_head *sh;
3341 
3342 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3343 		  __func__,
3344 		  list_empty(&conf->handle_list) ? "empty" : "busy",
3345 		  list_empty(&conf->hold_list) ? "empty" : "busy",
3346 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3347 
3348 	if (!list_empty(&conf->handle_list)) {
3349 		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3350 
3351 		if (list_empty(&conf->hold_list))
3352 			conf->bypass_count = 0;
3353 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3354 			if (conf->hold_list.next == conf->last_hold)
3355 				conf->bypass_count++;
3356 			else {
3357 				conf->last_hold = conf->hold_list.next;
3358 				conf->bypass_count -= conf->bypass_threshold;
3359 				if (conf->bypass_count < 0)
3360 					conf->bypass_count = 0;
3361 			}
3362 		}
3363 	} else if (!list_empty(&conf->hold_list) &&
3364 		   ((conf->bypass_threshold &&
3365 		     conf->bypass_count > conf->bypass_threshold) ||
3366 		    atomic_read(&conf->pending_full_writes) == 0)) {
3367 		sh = list_entry(conf->hold_list.next,
3368 				typeof(*sh), lru);
3369 		conf->bypass_count -= conf->bypass_threshold;
3370 		if (conf->bypass_count < 0)
3371 			conf->bypass_count = 0;
3372 	} else
3373 		return NULL;
3374 
3375 	list_del_init(&sh->lru);
3376 	atomic_inc(&sh->count);
3377 	BUG_ON(atomic_read(&sh->count) != 1);
3378 	return sh;
3379 }
3380 
3381 static int make_request(struct request_queue *q, struct bio * bi)
3382 {
3383 	mddev_t *mddev = q->queuedata;
3384 	raid5_conf_t *conf = mddev_to_conf(mddev);
3385 	unsigned int dd_idx, pd_idx;
3386 	sector_t new_sector;
3387 	sector_t logical_sector, last_sector;
3388 	struct stripe_head *sh;
3389 	const int rw = bio_data_dir(bi);
3390 	int cpu, remaining;
3391 
3392 	if (unlikely(bio_barrier(bi))) {
3393 		bio_endio(bi, -EOPNOTSUPP);
3394 		return 0;
3395 	}
3396 
3397 	md_write_start(mddev, bi);
3398 
3399 	cpu = part_stat_lock();
3400 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3401 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3402 		      bio_sectors(bi));
3403 	part_stat_unlock();
3404 
3405 	if (rw == READ &&
3406 	     mddev->reshape_position == MaxSector &&
3407 	     chunk_aligned_read(q,bi))
3408             	return 0;
3409 
3410 	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3411 	last_sector = bi->bi_sector + (bi->bi_size>>9);
3412 	bi->bi_next = NULL;
3413 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3414 
3415 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3416 		DEFINE_WAIT(w);
3417 		int disks, data_disks;
3418 
3419 	retry:
3420 		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3421 		if (likely(conf->expand_progress == MaxSector))
3422 			disks = conf->raid_disks;
3423 		else {
3424 			/* spinlock is needed as expand_progress may be
3425 			 * 64bit on a 32bit platform, and so it might be
3426 			 * possible to see a half-updated value
3427 			 * Ofcourse expand_progress could change after
3428 			 * the lock is dropped, so once we get a reference
3429 			 * to the stripe that we think it is, we will have
3430 			 * to check again.
3431 			 */
3432 			spin_lock_irq(&conf->device_lock);
3433 			disks = conf->raid_disks;
3434 			if (logical_sector >= conf->expand_progress)
3435 				disks = conf->previous_raid_disks;
3436 			else {
3437 				if (logical_sector >= conf->expand_lo) {
3438 					spin_unlock_irq(&conf->device_lock);
3439 					schedule();
3440 					goto retry;
3441 				}
3442 			}
3443 			spin_unlock_irq(&conf->device_lock);
3444 		}
3445 		data_disks = disks - conf->max_degraded;
3446 
3447  		new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3448 						  &dd_idx, &pd_idx, conf);
3449 		pr_debug("raid5: make_request, sector %llu logical %llu\n",
3450 			(unsigned long long)new_sector,
3451 			(unsigned long long)logical_sector);
3452 
3453 		sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3454 		if (sh) {
3455 			if (unlikely(conf->expand_progress != MaxSector)) {
3456 				/* expansion might have moved on while waiting for a
3457 				 * stripe, so we must do the range check again.
3458 				 * Expansion could still move past after this
3459 				 * test, but as we are holding a reference to
3460 				 * 'sh', we know that if that happens,
3461 				 *  STRIPE_EXPANDING will get set and the expansion
3462 				 * won't proceed until we finish with the stripe.
3463 				 */
3464 				int must_retry = 0;
3465 				spin_lock_irq(&conf->device_lock);
3466 				if (logical_sector <  conf->expand_progress &&
3467 				    disks == conf->previous_raid_disks)
3468 					/* mismatch, need to try again */
3469 					must_retry = 1;
3470 				spin_unlock_irq(&conf->device_lock);
3471 				if (must_retry) {
3472 					release_stripe(sh);
3473 					goto retry;
3474 				}
3475 			}
3476 			/* FIXME what if we get a false positive because these
3477 			 * are being updated.
3478 			 */
3479 			if (logical_sector >= mddev->suspend_lo &&
3480 			    logical_sector < mddev->suspend_hi) {
3481 				release_stripe(sh);
3482 				schedule();
3483 				goto retry;
3484 			}
3485 
3486 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3487 			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3488 				/* Stripe is busy expanding or
3489 				 * add failed due to overlap.  Flush everything
3490 				 * and wait a while
3491 				 */
3492 				raid5_unplug_device(mddev->queue);
3493 				release_stripe(sh);
3494 				schedule();
3495 				goto retry;
3496 			}
3497 			finish_wait(&conf->wait_for_overlap, &w);
3498 			set_bit(STRIPE_HANDLE, &sh->state);
3499 			clear_bit(STRIPE_DELAYED, &sh->state);
3500 			release_stripe(sh);
3501 		} else {
3502 			/* cannot get stripe for read-ahead, just give-up */
3503 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3504 			finish_wait(&conf->wait_for_overlap, &w);
3505 			break;
3506 		}
3507 
3508 	}
3509 	spin_lock_irq(&conf->device_lock);
3510 	remaining = raid5_dec_bi_phys_segments(bi);
3511 	spin_unlock_irq(&conf->device_lock);
3512 	if (remaining == 0) {
3513 
3514 		if ( rw == WRITE )
3515 			md_write_end(mddev);
3516 
3517 		bio_endio(bi, 0);
3518 	}
3519 	return 0;
3520 }
3521 
3522 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3523 {
3524 	/* reshaping is quite different to recovery/resync so it is
3525 	 * handled quite separately ... here.
3526 	 *
3527 	 * On each call to sync_request, we gather one chunk worth of
3528 	 * destination stripes and flag them as expanding.
3529 	 * Then we find all the source stripes and request reads.
3530 	 * As the reads complete, handle_stripe will copy the data
3531 	 * into the destination stripe and release that stripe.
3532 	 */
3533 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3534 	struct stripe_head *sh;
3535 	int pd_idx;
3536 	sector_t first_sector, last_sector;
3537 	int raid_disks = conf->previous_raid_disks;
3538 	int data_disks = raid_disks - conf->max_degraded;
3539 	int new_data_disks = conf->raid_disks - conf->max_degraded;
3540 	int i;
3541 	int dd_idx;
3542 	sector_t writepos, safepos, gap;
3543 
3544 	if (sector_nr == 0 &&
3545 	    conf->expand_progress != 0) {
3546 		/* restarting in the middle, skip the initial sectors */
3547 		sector_nr = conf->expand_progress;
3548 		sector_div(sector_nr, new_data_disks);
3549 		*skipped = 1;
3550 		return sector_nr;
3551 	}
3552 
3553 	/* we update the metadata when there is more than 3Meg
3554 	 * in the block range (that is rather arbitrary, should
3555 	 * probably be time based) or when the data about to be
3556 	 * copied would over-write the source of the data at
3557 	 * the front of the range.
3558 	 * i.e. one new_stripe forward from expand_progress new_maps
3559 	 * to after where expand_lo old_maps to
3560 	 */
3561 	writepos = conf->expand_progress +
3562 		conf->chunk_size/512*(new_data_disks);
3563 	sector_div(writepos, new_data_disks);
3564 	safepos = conf->expand_lo;
3565 	sector_div(safepos, data_disks);
3566 	gap = conf->expand_progress - conf->expand_lo;
3567 
3568 	if (writepos >= safepos ||
3569 	    gap > (new_data_disks)*3000*2 /*3Meg*/) {
3570 		/* Cannot proceed until we've updated the superblock... */
3571 		wait_event(conf->wait_for_overlap,
3572 			   atomic_read(&conf->reshape_stripes)==0);
3573 		mddev->reshape_position = conf->expand_progress;
3574 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3575 		md_wakeup_thread(mddev->thread);
3576 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3577 			   kthread_should_stop());
3578 		spin_lock_irq(&conf->device_lock);
3579 		conf->expand_lo = mddev->reshape_position;
3580 		spin_unlock_irq(&conf->device_lock);
3581 		wake_up(&conf->wait_for_overlap);
3582 	}
3583 
3584 	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3585 		int j;
3586 		int skipped = 0;
3587 		pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3588 		sh = get_active_stripe(conf, sector_nr+i,
3589 				       conf->raid_disks, pd_idx, 0);
3590 		set_bit(STRIPE_EXPANDING, &sh->state);
3591 		atomic_inc(&conf->reshape_stripes);
3592 		/* If any of this stripe is beyond the end of the old
3593 		 * array, then we need to zero those blocks
3594 		 */
3595 		for (j=sh->disks; j--;) {
3596 			sector_t s;
3597 			if (j == sh->pd_idx)
3598 				continue;
3599 			if (conf->level == 6 &&
3600 			    j == raid6_next_disk(sh->pd_idx, sh->disks))
3601 				continue;
3602 			s = compute_blocknr(sh, j);
3603 			if (s < mddev->array_sectors) {
3604 				skipped = 1;
3605 				continue;
3606 			}
3607 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3608 			set_bit(R5_Expanded, &sh->dev[j].flags);
3609 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
3610 		}
3611 		if (!skipped) {
3612 			set_bit(STRIPE_EXPAND_READY, &sh->state);
3613 			set_bit(STRIPE_HANDLE, &sh->state);
3614 		}
3615 		release_stripe(sh);
3616 	}
3617 	spin_lock_irq(&conf->device_lock);
3618 	conf->expand_progress = (sector_nr + i) * new_data_disks;
3619 	spin_unlock_irq(&conf->device_lock);
3620 	/* Ok, those stripe are ready. We can start scheduling
3621 	 * reads on the source stripes.
3622 	 * The source stripes are determined by mapping the first and last
3623 	 * block on the destination stripes.
3624 	 */
3625 	first_sector =
3626 		raid5_compute_sector(sector_nr*(new_data_disks),
3627 				     raid_disks, data_disks,
3628 				     &dd_idx, &pd_idx, conf);
3629 	last_sector =
3630 		raid5_compute_sector((sector_nr+conf->chunk_size/512)
3631 				     *(new_data_disks) -1,
3632 				     raid_disks, data_disks,
3633 				     &dd_idx, &pd_idx, conf);
3634 	if (last_sector >= (mddev->size<<1))
3635 		last_sector = (mddev->size<<1)-1;
3636 	while (first_sector <= last_sector) {
3637 		pd_idx = stripe_to_pdidx(first_sector, conf,
3638 					 conf->previous_raid_disks);
3639 		sh = get_active_stripe(conf, first_sector,
3640 				       conf->previous_raid_disks, pd_idx, 0);
3641 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3642 		set_bit(STRIPE_HANDLE, &sh->state);
3643 		release_stripe(sh);
3644 		first_sector += STRIPE_SECTORS;
3645 	}
3646 	/* If this takes us to the resync_max point where we have to pause,
3647 	 * then we need to write out the superblock.
3648 	 */
3649 	sector_nr += conf->chunk_size>>9;
3650 	if (sector_nr >= mddev->resync_max) {
3651 		/* Cannot proceed until we've updated the superblock... */
3652 		wait_event(conf->wait_for_overlap,
3653 			   atomic_read(&conf->reshape_stripes) == 0);
3654 		mddev->reshape_position = conf->expand_progress;
3655 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3656 		md_wakeup_thread(mddev->thread);
3657 		wait_event(mddev->sb_wait,
3658 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3659 			   || kthread_should_stop());
3660 		spin_lock_irq(&conf->device_lock);
3661 		conf->expand_lo = mddev->reshape_position;
3662 		spin_unlock_irq(&conf->device_lock);
3663 		wake_up(&conf->wait_for_overlap);
3664 	}
3665 	return conf->chunk_size>>9;
3666 }
3667 
3668 /* FIXME go_faster isn't used */
3669 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3670 {
3671 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3672 	struct stripe_head *sh;
3673 	int pd_idx;
3674 	int raid_disks = conf->raid_disks;
3675 	sector_t max_sector = mddev->size << 1;
3676 	int sync_blocks;
3677 	int still_degraded = 0;
3678 	int i;
3679 
3680 	if (sector_nr >= max_sector) {
3681 		/* just being told to finish up .. nothing much to do */
3682 		unplug_slaves(mddev);
3683 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3684 			end_reshape(conf);
3685 			return 0;
3686 		}
3687 
3688 		if (mddev->curr_resync < max_sector) /* aborted */
3689 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3690 					&sync_blocks, 1);
3691 		else /* completed sync */
3692 			conf->fullsync = 0;
3693 		bitmap_close_sync(mddev->bitmap);
3694 
3695 		return 0;
3696 	}
3697 
3698 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3699 		return reshape_request(mddev, sector_nr, skipped);
3700 
3701 	/* No need to check resync_max as we never do more than one
3702 	 * stripe, and as resync_max will always be on a chunk boundary,
3703 	 * if the check in md_do_sync didn't fire, there is no chance
3704 	 * of overstepping resync_max here
3705 	 */
3706 
3707 	/* if there is too many failed drives and we are trying
3708 	 * to resync, then assert that we are finished, because there is
3709 	 * nothing we can do.
3710 	 */
3711 	if (mddev->degraded >= conf->max_degraded &&
3712 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3713 		sector_t rv = (mddev->size << 1) - sector_nr;
3714 		*skipped = 1;
3715 		return rv;
3716 	}
3717 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3718 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3719 	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3720 		/* we can skip this block, and probably more */
3721 		sync_blocks /= STRIPE_SECTORS;
3722 		*skipped = 1;
3723 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3724 	}
3725 
3726 
3727 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3728 
3729 	pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3730 	sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3731 	if (sh == NULL) {
3732 		sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3733 		/* make sure we don't swamp the stripe cache if someone else
3734 		 * is trying to get access
3735 		 */
3736 		schedule_timeout_uninterruptible(1);
3737 	}
3738 	/* Need to check if array will still be degraded after recovery/resync
3739 	 * We don't need to check the 'failed' flag as when that gets set,
3740 	 * recovery aborts.
3741 	 */
3742 	for (i=0; i<mddev->raid_disks; i++)
3743 		if (conf->disks[i].rdev == NULL)
3744 			still_degraded = 1;
3745 
3746 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3747 
3748 	spin_lock(&sh->lock);
3749 	set_bit(STRIPE_SYNCING, &sh->state);
3750 	clear_bit(STRIPE_INSYNC, &sh->state);
3751 	spin_unlock(&sh->lock);
3752 
3753 	/* wait for any blocked device to be handled */
3754 	while(unlikely(!handle_stripe(sh, NULL)))
3755 		;
3756 	release_stripe(sh);
3757 
3758 	return STRIPE_SECTORS;
3759 }
3760 
3761 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3762 {
3763 	/* We may not be able to submit a whole bio at once as there
3764 	 * may not be enough stripe_heads available.
3765 	 * We cannot pre-allocate enough stripe_heads as we may need
3766 	 * more than exist in the cache (if we allow ever large chunks).
3767 	 * So we do one stripe head at a time and record in
3768 	 * ->bi_hw_segments how many have been done.
3769 	 *
3770 	 * We *know* that this entire raid_bio is in one chunk, so
3771 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3772 	 */
3773 	struct stripe_head *sh;
3774 	int dd_idx, pd_idx;
3775 	sector_t sector, logical_sector, last_sector;
3776 	int scnt = 0;
3777 	int remaining;
3778 	int handled = 0;
3779 
3780 	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3781 	sector = raid5_compute_sector(	logical_sector,
3782 					conf->raid_disks,
3783 					conf->raid_disks - conf->max_degraded,
3784 					&dd_idx,
3785 					&pd_idx,
3786 					conf);
3787 	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3788 
3789 	for (; logical_sector < last_sector;
3790 	     logical_sector += STRIPE_SECTORS,
3791 		     sector += STRIPE_SECTORS,
3792 		     scnt++) {
3793 
3794 		if (scnt < raid5_bi_hw_segments(raid_bio))
3795 			/* already done this stripe */
3796 			continue;
3797 
3798 		sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3799 
3800 		if (!sh) {
3801 			/* failed to get a stripe - must wait */
3802 			raid5_set_bi_hw_segments(raid_bio, scnt);
3803 			conf->retry_read_aligned = raid_bio;
3804 			return handled;
3805 		}
3806 
3807 		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3808 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3809 			release_stripe(sh);
3810 			raid5_set_bi_hw_segments(raid_bio, scnt);
3811 			conf->retry_read_aligned = raid_bio;
3812 			return handled;
3813 		}
3814 
3815 		handle_stripe(sh, NULL);
3816 		release_stripe(sh);
3817 		handled++;
3818 	}
3819 	spin_lock_irq(&conf->device_lock);
3820 	remaining = raid5_dec_bi_phys_segments(raid_bio);
3821 	spin_unlock_irq(&conf->device_lock);
3822 	if (remaining == 0)
3823 		bio_endio(raid_bio, 0);
3824 	if (atomic_dec_and_test(&conf->active_aligned_reads))
3825 		wake_up(&conf->wait_for_stripe);
3826 	return handled;
3827 }
3828 
3829 
3830 
3831 /*
3832  * This is our raid5 kernel thread.
3833  *
3834  * We scan the hash table for stripes which can be handled now.
3835  * During the scan, completed stripes are saved for us by the interrupt
3836  * handler, so that they will not have to wait for our next wakeup.
3837  */
3838 static void raid5d(mddev_t *mddev)
3839 {
3840 	struct stripe_head *sh;
3841 	raid5_conf_t *conf = mddev_to_conf(mddev);
3842 	int handled;
3843 
3844 	pr_debug("+++ raid5d active\n");
3845 
3846 	md_check_recovery(mddev);
3847 
3848 	handled = 0;
3849 	spin_lock_irq(&conf->device_lock);
3850 	while (1) {
3851 		struct bio *bio;
3852 
3853 		if (conf->seq_flush != conf->seq_write) {
3854 			int seq = conf->seq_flush;
3855 			spin_unlock_irq(&conf->device_lock);
3856 			bitmap_unplug(mddev->bitmap);
3857 			spin_lock_irq(&conf->device_lock);
3858 			conf->seq_write = seq;
3859 			activate_bit_delay(conf);
3860 		}
3861 
3862 		while ((bio = remove_bio_from_retry(conf))) {
3863 			int ok;
3864 			spin_unlock_irq(&conf->device_lock);
3865 			ok = retry_aligned_read(conf, bio);
3866 			spin_lock_irq(&conf->device_lock);
3867 			if (!ok)
3868 				break;
3869 			handled++;
3870 		}
3871 
3872 		sh = __get_priority_stripe(conf);
3873 
3874 		if (!sh)
3875 			break;
3876 		spin_unlock_irq(&conf->device_lock);
3877 
3878 		handled++;
3879 		handle_stripe(sh, conf->spare_page);
3880 		release_stripe(sh);
3881 
3882 		spin_lock_irq(&conf->device_lock);
3883 	}
3884 	pr_debug("%d stripes handled\n", handled);
3885 
3886 	spin_unlock_irq(&conf->device_lock);
3887 
3888 	async_tx_issue_pending_all();
3889 	unplug_slaves(mddev);
3890 
3891 	pr_debug("--- raid5d inactive\n");
3892 }
3893 
3894 static ssize_t
3895 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3896 {
3897 	raid5_conf_t *conf = mddev_to_conf(mddev);
3898 	if (conf)
3899 		return sprintf(page, "%d\n", conf->max_nr_stripes);
3900 	else
3901 		return 0;
3902 }
3903 
3904 static ssize_t
3905 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3906 {
3907 	raid5_conf_t *conf = mddev_to_conf(mddev);
3908 	unsigned long new;
3909 	int err;
3910 
3911 	if (len >= PAGE_SIZE)
3912 		return -EINVAL;
3913 	if (!conf)
3914 		return -ENODEV;
3915 
3916 	if (strict_strtoul(page, 10, &new))
3917 		return -EINVAL;
3918 	if (new <= 16 || new > 32768)
3919 		return -EINVAL;
3920 	while (new < conf->max_nr_stripes) {
3921 		if (drop_one_stripe(conf))
3922 			conf->max_nr_stripes--;
3923 		else
3924 			break;
3925 	}
3926 	err = md_allow_write(mddev);
3927 	if (err)
3928 		return err;
3929 	while (new > conf->max_nr_stripes) {
3930 		if (grow_one_stripe(conf))
3931 			conf->max_nr_stripes++;
3932 		else break;
3933 	}
3934 	return len;
3935 }
3936 
3937 static struct md_sysfs_entry
3938 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3939 				raid5_show_stripe_cache_size,
3940 				raid5_store_stripe_cache_size);
3941 
3942 static ssize_t
3943 raid5_show_preread_threshold(mddev_t *mddev, char *page)
3944 {
3945 	raid5_conf_t *conf = mddev_to_conf(mddev);
3946 	if (conf)
3947 		return sprintf(page, "%d\n", conf->bypass_threshold);
3948 	else
3949 		return 0;
3950 }
3951 
3952 static ssize_t
3953 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
3954 {
3955 	raid5_conf_t *conf = mddev_to_conf(mddev);
3956 	unsigned long new;
3957 	if (len >= PAGE_SIZE)
3958 		return -EINVAL;
3959 	if (!conf)
3960 		return -ENODEV;
3961 
3962 	if (strict_strtoul(page, 10, &new))
3963 		return -EINVAL;
3964 	if (new > conf->max_nr_stripes)
3965 		return -EINVAL;
3966 	conf->bypass_threshold = new;
3967 	return len;
3968 }
3969 
3970 static struct md_sysfs_entry
3971 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
3972 					S_IRUGO | S_IWUSR,
3973 					raid5_show_preread_threshold,
3974 					raid5_store_preread_threshold);
3975 
3976 static ssize_t
3977 stripe_cache_active_show(mddev_t *mddev, char *page)
3978 {
3979 	raid5_conf_t *conf = mddev_to_conf(mddev);
3980 	if (conf)
3981 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3982 	else
3983 		return 0;
3984 }
3985 
3986 static struct md_sysfs_entry
3987 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3988 
3989 static struct attribute *raid5_attrs[] =  {
3990 	&raid5_stripecache_size.attr,
3991 	&raid5_stripecache_active.attr,
3992 	&raid5_preread_bypass_threshold.attr,
3993 	NULL,
3994 };
3995 static struct attribute_group raid5_attrs_group = {
3996 	.name = NULL,
3997 	.attrs = raid5_attrs,
3998 };
3999 
4000 static int run(mddev_t *mddev)
4001 {
4002 	raid5_conf_t *conf;
4003 	int raid_disk, memory;
4004 	mdk_rdev_t *rdev;
4005 	struct disk_info *disk;
4006 	struct list_head *tmp;
4007 	int working_disks = 0;
4008 
4009 	if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4010 		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4011 		       mdname(mddev), mddev->level);
4012 		return -EIO;
4013 	}
4014 
4015 	if (mddev->reshape_position != MaxSector) {
4016 		/* Check that we can continue the reshape.
4017 		 * Currently only disks can change, it must
4018 		 * increase, and we must be past the point where
4019 		 * a stripe over-writes itself
4020 		 */
4021 		sector_t here_new, here_old;
4022 		int old_disks;
4023 		int max_degraded = (mddev->level == 5 ? 1 : 2);
4024 
4025 		if (mddev->new_level != mddev->level ||
4026 		    mddev->new_layout != mddev->layout ||
4027 		    mddev->new_chunk != mddev->chunk_size) {
4028 			printk(KERN_ERR "raid5: %s: unsupported reshape "
4029 			       "required - aborting.\n",
4030 			       mdname(mddev));
4031 			return -EINVAL;
4032 		}
4033 		if (mddev->delta_disks <= 0) {
4034 			printk(KERN_ERR "raid5: %s: unsupported reshape "
4035 			       "(reduce disks) required - aborting.\n",
4036 			       mdname(mddev));
4037 			return -EINVAL;
4038 		}
4039 		old_disks = mddev->raid_disks - mddev->delta_disks;
4040 		/* reshape_position must be on a new-stripe boundary, and one
4041 		 * further up in new geometry must map after here in old
4042 		 * geometry.
4043 		 */
4044 		here_new = mddev->reshape_position;
4045 		if (sector_div(here_new, (mddev->chunk_size>>9)*
4046 			       (mddev->raid_disks - max_degraded))) {
4047 			printk(KERN_ERR "raid5: reshape_position not "
4048 			       "on a stripe boundary\n");
4049 			return -EINVAL;
4050 		}
4051 		/* here_new is the stripe we will write to */
4052 		here_old = mddev->reshape_position;
4053 		sector_div(here_old, (mddev->chunk_size>>9)*
4054 			   (old_disks-max_degraded));
4055 		/* here_old is the first stripe that we might need to read
4056 		 * from */
4057 		if (here_new >= here_old) {
4058 			/* Reading from the same stripe as writing to - bad */
4059 			printk(KERN_ERR "raid5: reshape_position too early for "
4060 			       "auto-recovery - aborting.\n");
4061 			return -EINVAL;
4062 		}
4063 		printk(KERN_INFO "raid5: reshape will continue\n");
4064 		/* OK, we should be able to continue; */
4065 	}
4066 
4067 
4068 	mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4069 	if ((conf = mddev->private) == NULL)
4070 		goto abort;
4071 	if (mddev->reshape_position == MaxSector) {
4072 		conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4073 	} else {
4074 		conf->raid_disks = mddev->raid_disks;
4075 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4076 	}
4077 
4078 	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4079 			      GFP_KERNEL);
4080 	if (!conf->disks)
4081 		goto abort;
4082 
4083 	conf->mddev = mddev;
4084 
4085 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4086 		goto abort;
4087 
4088 	if (mddev->level == 6) {
4089 		conf->spare_page = alloc_page(GFP_KERNEL);
4090 		if (!conf->spare_page)
4091 			goto abort;
4092 	}
4093 	spin_lock_init(&conf->device_lock);
4094 	mddev->queue->queue_lock = &conf->device_lock;
4095 	init_waitqueue_head(&conf->wait_for_stripe);
4096 	init_waitqueue_head(&conf->wait_for_overlap);
4097 	INIT_LIST_HEAD(&conf->handle_list);
4098 	INIT_LIST_HEAD(&conf->hold_list);
4099 	INIT_LIST_HEAD(&conf->delayed_list);
4100 	INIT_LIST_HEAD(&conf->bitmap_list);
4101 	INIT_LIST_HEAD(&conf->inactive_list);
4102 	atomic_set(&conf->active_stripes, 0);
4103 	atomic_set(&conf->preread_active_stripes, 0);
4104 	atomic_set(&conf->active_aligned_reads, 0);
4105 	conf->bypass_threshold = BYPASS_THRESHOLD;
4106 
4107 	pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4108 
4109 	rdev_for_each(rdev, tmp, mddev) {
4110 		raid_disk = rdev->raid_disk;
4111 		if (raid_disk >= conf->raid_disks
4112 		    || raid_disk < 0)
4113 			continue;
4114 		disk = conf->disks + raid_disk;
4115 
4116 		disk->rdev = rdev;
4117 
4118 		if (test_bit(In_sync, &rdev->flags)) {
4119 			char b[BDEVNAME_SIZE];
4120 			printk(KERN_INFO "raid5: device %s operational as raid"
4121 				" disk %d\n", bdevname(rdev->bdev,b),
4122 				raid_disk);
4123 			working_disks++;
4124 		} else
4125 			/* Cannot rely on bitmap to complete recovery */
4126 			conf->fullsync = 1;
4127 	}
4128 
4129 	/*
4130 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4131 	 */
4132 	mddev->degraded = conf->raid_disks - working_disks;
4133 	conf->mddev = mddev;
4134 	conf->chunk_size = mddev->chunk_size;
4135 	conf->level = mddev->level;
4136 	if (conf->level == 6)
4137 		conf->max_degraded = 2;
4138 	else
4139 		conf->max_degraded = 1;
4140 	conf->algorithm = mddev->layout;
4141 	conf->max_nr_stripes = NR_STRIPES;
4142 	conf->expand_progress = mddev->reshape_position;
4143 
4144 	/* device size must be a multiple of chunk size */
4145 	mddev->size &= ~(mddev->chunk_size/1024 -1);
4146 	mddev->resync_max_sectors = mddev->size << 1;
4147 
4148 	if (conf->level == 6 && conf->raid_disks < 4) {
4149 		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4150 		       mdname(mddev), conf->raid_disks);
4151 		goto abort;
4152 	}
4153 	if (!conf->chunk_size || conf->chunk_size % 4) {
4154 		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4155 			conf->chunk_size, mdname(mddev));
4156 		goto abort;
4157 	}
4158 	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4159 		printk(KERN_ERR
4160 			"raid5: unsupported parity algorithm %d for %s\n",
4161 			conf->algorithm, mdname(mddev));
4162 		goto abort;
4163 	}
4164 	if (mddev->degraded > conf->max_degraded) {
4165 		printk(KERN_ERR "raid5: not enough operational devices for %s"
4166 			" (%d/%d failed)\n",
4167 			mdname(mddev), mddev->degraded, conf->raid_disks);
4168 		goto abort;
4169 	}
4170 
4171 	if (mddev->degraded > 0 &&
4172 	    mddev->recovery_cp != MaxSector) {
4173 		if (mddev->ok_start_degraded)
4174 			printk(KERN_WARNING
4175 			       "raid5: starting dirty degraded array: %s"
4176 			       "- data corruption possible.\n",
4177 			       mdname(mddev));
4178 		else {
4179 			printk(KERN_ERR
4180 			       "raid5: cannot start dirty degraded array for %s\n",
4181 			       mdname(mddev));
4182 			goto abort;
4183 		}
4184 	}
4185 
4186 	{
4187 		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4188 		if (!mddev->thread) {
4189 			printk(KERN_ERR
4190 				"raid5: couldn't allocate thread for %s\n",
4191 				mdname(mddev));
4192 			goto abort;
4193 		}
4194 	}
4195 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4196 		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4197 	if (grow_stripes(conf, conf->max_nr_stripes)) {
4198 		printk(KERN_ERR
4199 			"raid5: couldn't allocate %dkB for buffers\n", memory);
4200 		shrink_stripes(conf);
4201 		md_unregister_thread(mddev->thread);
4202 		goto abort;
4203 	} else
4204 		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4205 			memory, mdname(mddev));
4206 
4207 	if (mddev->degraded == 0)
4208 		printk("raid5: raid level %d set %s active with %d out of %d"
4209 			" devices, algorithm %d\n", conf->level, mdname(mddev),
4210 			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4211 			conf->algorithm);
4212 	else
4213 		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4214 			" out of %d devices, algorithm %d\n", conf->level,
4215 			mdname(mddev), mddev->raid_disks - mddev->degraded,
4216 			mddev->raid_disks, conf->algorithm);
4217 
4218 	print_raid5_conf(conf);
4219 
4220 	if (conf->expand_progress != MaxSector) {
4221 		printk("...ok start reshape thread\n");
4222 		conf->expand_lo = conf->expand_progress;
4223 		atomic_set(&conf->reshape_stripes, 0);
4224 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4225 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4226 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4227 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4228 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4229 							"%s_reshape");
4230 	}
4231 
4232 	/* read-ahead size must cover two whole stripes, which is
4233 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4234 	 */
4235 	{
4236 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
4237 		int stripe = data_disks *
4238 			(mddev->chunk_size / PAGE_SIZE);
4239 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4240 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4241 	}
4242 
4243 	/* Ok, everything is just fine now */
4244 	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4245 		printk(KERN_WARNING
4246 		       "raid5: failed to create sysfs attributes for %s\n",
4247 		       mdname(mddev));
4248 
4249 	mddev->queue->unplug_fn = raid5_unplug_device;
4250 	mddev->queue->backing_dev_info.congested_data = mddev;
4251 	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4252 
4253 	mddev->array_sectors = 2 * mddev->size * (conf->previous_raid_disks -
4254 					    conf->max_degraded);
4255 
4256 	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4257 
4258 	return 0;
4259 abort:
4260 	if (conf) {
4261 		print_raid5_conf(conf);
4262 		safe_put_page(conf->spare_page);
4263 		kfree(conf->disks);
4264 		kfree(conf->stripe_hashtbl);
4265 		kfree(conf);
4266 	}
4267 	mddev->private = NULL;
4268 	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4269 	return -EIO;
4270 }
4271 
4272 
4273 
4274 static int stop(mddev_t *mddev)
4275 {
4276 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4277 
4278 	md_unregister_thread(mddev->thread);
4279 	mddev->thread = NULL;
4280 	shrink_stripes(conf);
4281 	kfree(conf->stripe_hashtbl);
4282 	mddev->queue->backing_dev_info.congested_fn = NULL;
4283 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4284 	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4285 	kfree(conf->disks);
4286 	kfree(conf);
4287 	mddev->private = NULL;
4288 	return 0;
4289 }
4290 
4291 #ifdef DEBUG
4292 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4293 {
4294 	int i;
4295 
4296 	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4297 		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4298 	seq_printf(seq, "sh %llu,  count %d.\n",
4299 		   (unsigned long long)sh->sector, atomic_read(&sh->count));
4300 	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4301 	for (i = 0; i < sh->disks; i++) {
4302 		seq_printf(seq, "(cache%d: %p %ld) ",
4303 			   i, sh->dev[i].page, sh->dev[i].flags);
4304 	}
4305 	seq_printf(seq, "\n");
4306 }
4307 
4308 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4309 {
4310 	struct stripe_head *sh;
4311 	struct hlist_node *hn;
4312 	int i;
4313 
4314 	spin_lock_irq(&conf->device_lock);
4315 	for (i = 0; i < NR_HASH; i++) {
4316 		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4317 			if (sh->raid_conf != conf)
4318 				continue;
4319 			print_sh(seq, sh);
4320 		}
4321 	}
4322 	spin_unlock_irq(&conf->device_lock);
4323 }
4324 #endif
4325 
4326 static void status (struct seq_file *seq, mddev_t *mddev)
4327 {
4328 	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4329 	int i;
4330 
4331 	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4332 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4333 	for (i = 0; i < conf->raid_disks; i++)
4334 		seq_printf (seq, "%s",
4335 			       conf->disks[i].rdev &&
4336 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4337 	seq_printf (seq, "]");
4338 #ifdef DEBUG
4339 	seq_printf (seq, "\n");
4340 	printall(seq, conf);
4341 #endif
4342 }
4343 
4344 static void print_raid5_conf (raid5_conf_t *conf)
4345 {
4346 	int i;
4347 	struct disk_info *tmp;
4348 
4349 	printk("RAID5 conf printout:\n");
4350 	if (!conf) {
4351 		printk("(conf==NULL)\n");
4352 		return;
4353 	}
4354 	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4355 		 conf->raid_disks - conf->mddev->degraded);
4356 
4357 	for (i = 0; i < conf->raid_disks; i++) {
4358 		char b[BDEVNAME_SIZE];
4359 		tmp = conf->disks + i;
4360 		if (tmp->rdev)
4361 		printk(" disk %d, o:%d, dev:%s\n",
4362 			i, !test_bit(Faulty, &tmp->rdev->flags),
4363 			bdevname(tmp->rdev->bdev,b));
4364 	}
4365 }
4366 
4367 static int raid5_spare_active(mddev_t *mddev)
4368 {
4369 	int i;
4370 	raid5_conf_t *conf = mddev->private;
4371 	struct disk_info *tmp;
4372 
4373 	for (i = 0; i < conf->raid_disks; i++) {
4374 		tmp = conf->disks + i;
4375 		if (tmp->rdev
4376 		    && !test_bit(Faulty, &tmp->rdev->flags)
4377 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4378 			unsigned long flags;
4379 			spin_lock_irqsave(&conf->device_lock, flags);
4380 			mddev->degraded--;
4381 			spin_unlock_irqrestore(&conf->device_lock, flags);
4382 		}
4383 	}
4384 	print_raid5_conf(conf);
4385 	return 0;
4386 }
4387 
4388 static int raid5_remove_disk(mddev_t *mddev, int number)
4389 {
4390 	raid5_conf_t *conf = mddev->private;
4391 	int err = 0;
4392 	mdk_rdev_t *rdev;
4393 	struct disk_info *p = conf->disks + number;
4394 
4395 	print_raid5_conf(conf);
4396 	rdev = p->rdev;
4397 	if (rdev) {
4398 		if (test_bit(In_sync, &rdev->flags) ||
4399 		    atomic_read(&rdev->nr_pending)) {
4400 			err = -EBUSY;
4401 			goto abort;
4402 		}
4403 		/* Only remove non-faulty devices if recovery
4404 		 * isn't possible.
4405 		 */
4406 		if (!test_bit(Faulty, &rdev->flags) &&
4407 		    mddev->degraded <= conf->max_degraded) {
4408 			err = -EBUSY;
4409 			goto abort;
4410 		}
4411 		p->rdev = NULL;
4412 		synchronize_rcu();
4413 		if (atomic_read(&rdev->nr_pending)) {
4414 			/* lost the race, try later */
4415 			err = -EBUSY;
4416 			p->rdev = rdev;
4417 		}
4418 	}
4419 abort:
4420 
4421 	print_raid5_conf(conf);
4422 	return err;
4423 }
4424 
4425 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4426 {
4427 	raid5_conf_t *conf = mddev->private;
4428 	int err = -EEXIST;
4429 	int disk;
4430 	struct disk_info *p;
4431 	int first = 0;
4432 	int last = conf->raid_disks - 1;
4433 
4434 	if (mddev->degraded > conf->max_degraded)
4435 		/* no point adding a device */
4436 		return -EINVAL;
4437 
4438 	if (rdev->raid_disk >= 0)
4439 		first = last = rdev->raid_disk;
4440 
4441 	/*
4442 	 * find the disk ... but prefer rdev->saved_raid_disk
4443 	 * if possible.
4444 	 */
4445 	if (rdev->saved_raid_disk >= 0 &&
4446 	    rdev->saved_raid_disk >= first &&
4447 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
4448 		disk = rdev->saved_raid_disk;
4449 	else
4450 		disk = first;
4451 	for ( ; disk <= last ; disk++)
4452 		if ((p=conf->disks + disk)->rdev == NULL) {
4453 			clear_bit(In_sync, &rdev->flags);
4454 			rdev->raid_disk = disk;
4455 			err = 0;
4456 			if (rdev->saved_raid_disk != disk)
4457 				conf->fullsync = 1;
4458 			rcu_assign_pointer(p->rdev, rdev);
4459 			break;
4460 		}
4461 	print_raid5_conf(conf);
4462 	return err;
4463 }
4464 
4465 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4466 {
4467 	/* no resync is happening, and there is enough space
4468 	 * on all devices, so we can resize.
4469 	 * We need to make sure resync covers any new space.
4470 	 * If the array is shrinking we should possibly wait until
4471 	 * any io in the removed space completes, but it hardly seems
4472 	 * worth it.
4473 	 */
4474 	raid5_conf_t *conf = mddev_to_conf(mddev);
4475 
4476 	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4477 	mddev->array_sectors = sectors * (mddev->raid_disks
4478 					  - conf->max_degraded);
4479 	set_capacity(mddev->gendisk, mddev->array_sectors);
4480 	mddev->changed = 1;
4481 	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
4482 		mddev->recovery_cp = mddev->size << 1;
4483 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4484 	}
4485 	mddev->size = sectors /2;
4486 	mddev->resync_max_sectors = sectors;
4487 	return 0;
4488 }
4489 
4490 #ifdef CONFIG_MD_RAID5_RESHAPE
4491 static int raid5_check_reshape(mddev_t *mddev)
4492 {
4493 	raid5_conf_t *conf = mddev_to_conf(mddev);
4494 	int err;
4495 
4496 	if (mddev->delta_disks < 0 ||
4497 	    mddev->new_level != mddev->level)
4498 		return -EINVAL; /* Cannot shrink array or change level yet */
4499 	if (mddev->delta_disks == 0)
4500 		return 0; /* nothing to do */
4501 	if (mddev->bitmap)
4502 		/* Cannot grow a bitmap yet */
4503 		return -EBUSY;
4504 
4505 	/* Can only proceed if there are plenty of stripe_heads.
4506 	 * We need a minimum of one full stripe,, and for sensible progress
4507 	 * it is best to have about 4 times that.
4508 	 * If we require 4 times, then the default 256 4K stripe_heads will
4509 	 * allow for chunk sizes up to 256K, which is probably OK.
4510 	 * If the chunk size is greater, user-space should request more
4511 	 * stripe_heads first.
4512 	 */
4513 	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4514 	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4515 		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4516 		       (mddev->chunk_size / STRIPE_SIZE)*4);
4517 		return -ENOSPC;
4518 	}
4519 
4520 	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4521 	if (err)
4522 		return err;
4523 
4524 	if (mddev->degraded > conf->max_degraded)
4525 		return -EINVAL;
4526 	/* looks like we might be able to manage this */
4527 	return 0;
4528 }
4529 
4530 static int raid5_start_reshape(mddev_t *mddev)
4531 {
4532 	raid5_conf_t *conf = mddev_to_conf(mddev);
4533 	mdk_rdev_t *rdev;
4534 	struct list_head *rtmp;
4535 	int spares = 0;
4536 	int added_devices = 0;
4537 	unsigned long flags;
4538 
4539 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4540 		return -EBUSY;
4541 
4542 	rdev_for_each(rdev, rtmp, mddev)
4543 		if (rdev->raid_disk < 0 &&
4544 		    !test_bit(Faulty, &rdev->flags))
4545 			spares++;
4546 
4547 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4548 		/* Not enough devices even to make a degraded array
4549 		 * of that size
4550 		 */
4551 		return -EINVAL;
4552 
4553 	atomic_set(&conf->reshape_stripes, 0);
4554 	spin_lock_irq(&conf->device_lock);
4555 	conf->previous_raid_disks = conf->raid_disks;
4556 	conf->raid_disks += mddev->delta_disks;
4557 	conf->expand_progress = 0;
4558 	conf->expand_lo = 0;
4559 	spin_unlock_irq(&conf->device_lock);
4560 
4561 	/* Add some new drives, as many as will fit.
4562 	 * We know there are enough to make the newly sized array work.
4563 	 */
4564 	rdev_for_each(rdev, rtmp, mddev)
4565 		if (rdev->raid_disk < 0 &&
4566 		    !test_bit(Faulty, &rdev->flags)) {
4567 			if (raid5_add_disk(mddev, rdev) == 0) {
4568 				char nm[20];
4569 				set_bit(In_sync, &rdev->flags);
4570 				added_devices++;
4571 				rdev->recovery_offset = 0;
4572 				sprintf(nm, "rd%d", rdev->raid_disk);
4573 				if (sysfs_create_link(&mddev->kobj,
4574 						      &rdev->kobj, nm))
4575 					printk(KERN_WARNING
4576 					       "raid5: failed to create "
4577 					       " link %s for %s\n",
4578 					       nm, mdname(mddev));
4579 			} else
4580 				break;
4581 		}
4582 
4583 	spin_lock_irqsave(&conf->device_lock, flags);
4584 	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4585 	spin_unlock_irqrestore(&conf->device_lock, flags);
4586 	mddev->raid_disks = conf->raid_disks;
4587 	mddev->reshape_position = 0;
4588 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4589 
4590 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4591 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4592 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4593 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4594 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4595 						"%s_reshape");
4596 	if (!mddev->sync_thread) {
4597 		mddev->recovery = 0;
4598 		spin_lock_irq(&conf->device_lock);
4599 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4600 		conf->expand_progress = MaxSector;
4601 		spin_unlock_irq(&conf->device_lock);
4602 		return -EAGAIN;
4603 	}
4604 	md_wakeup_thread(mddev->sync_thread);
4605 	md_new_event(mddev);
4606 	return 0;
4607 }
4608 #endif
4609 
4610 static void end_reshape(raid5_conf_t *conf)
4611 {
4612 	struct block_device *bdev;
4613 
4614 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4615 		conf->mddev->array_sectors = 2 * conf->mddev->size *
4616 			(conf->raid_disks - conf->max_degraded);
4617 		set_capacity(conf->mddev->gendisk, conf->mddev->array_sectors);
4618 		conf->mddev->changed = 1;
4619 
4620 		bdev = bdget_disk(conf->mddev->gendisk, 0);
4621 		if (bdev) {
4622 			mutex_lock(&bdev->bd_inode->i_mutex);
4623 			i_size_write(bdev->bd_inode,
4624 				     (loff_t)conf->mddev->array_sectors << 9);
4625 			mutex_unlock(&bdev->bd_inode->i_mutex);
4626 			bdput(bdev);
4627 		}
4628 		spin_lock_irq(&conf->device_lock);
4629 		conf->expand_progress = MaxSector;
4630 		spin_unlock_irq(&conf->device_lock);
4631 		conf->mddev->reshape_position = MaxSector;
4632 
4633 		/* read-ahead size must cover two whole stripes, which is
4634 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4635 		 */
4636 		{
4637 			int data_disks = conf->previous_raid_disks - conf->max_degraded;
4638 			int stripe = data_disks *
4639 				(conf->mddev->chunk_size / PAGE_SIZE);
4640 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4641 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4642 		}
4643 	}
4644 }
4645 
4646 static void raid5_quiesce(mddev_t *mddev, int state)
4647 {
4648 	raid5_conf_t *conf = mddev_to_conf(mddev);
4649 
4650 	switch(state) {
4651 	case 2: /* resume for a suspend */
4652 		wake_up(&conf->wait_for_overlap);
4653 		break;
4654 
4655 	case 1: /* stop all writes */
4656 		spin_lock_irq(&conf->device_lock);
4657 		conf->quiesce = 1;
4658 		wait_event_lock_irq(conf->wait_for_stripe,
4659 				    atomic_read(&conf->active_stripes) == 0 &&
4660 				    atomic_read(&conf->active_aligned_reads) == 0,
4661 				    conf->device_lock, /* nothing */);
4662 		spin_unlock_irq(&conf->device_lock);
4663 		break;
4664 
4665 	case 0: /* re-enable writes */
4666 		spin_lock_irq(&conf->device_lock);
4667 		conf->quiesce = 0;
4668 		wake_up(&conf->wait_for_stripe);
4669 		wake_up(&conf->wait_for_overlap);
4670 		spin_unlock_irq(&conf->device_lock);
4671 		break;
4672 	}
4673 }
4674 
4675 static struct mdk_personality raid6_personality =
4676 {
4677 	.name		= "raid6",
4678 	.level		= 6,
4679 	.owner		= THIS_MODULE,
4680 	.make_request	= make_request,
4681 	.run		= run,
4682 	.stop		= stop,
4683 	.status		= status,
4684 	.error_handler	= error,
4685 	.hot_add_disk	= raid5_add_disk,
4686 	.hot_remove_disk= raid5_remove_disk,
4687 	.spare_active	= raid5_spare_active,
4688 	.sync_request	= sync_request,
4689 	.resize		= raid5_resize,
4690 #ifdef CONFIG_MD_RAID5_RESHAPE
4691 	.check_reshape	= raid5_check_reshape,
4692 	.start_reshape  = raid5_start_reshape,
4693 #endif
4694 	.quiesce	= raid5_quiesce,
4695 };
4696 static struct mdk_personality raid5_personality =
4697 {
4698 	.name		= "raid5",
4699 	.level		= 5,
4700 	.owner		= THIS_MODULE,
4701 	.make_request	= make_request,
4702 	.run		= run,
4703 	.stop		= stop,
4704 	.status		= status,
4705 	.error_handler	= error,
4706 	.hot_add_disk	= raid5_add_disk,
4707 	.hot_remove_disk= raid5_remove_disk,
4708 	.spare_active	= raid5_spare_active,
4709 	.sync_request	= sync_request,
4710 	.resize		= raid5_resize,
4711 #ifdef CONFIG_MD_RAID5_RESHAPE
4712 	.check_reshape	= raid5_check_reshape,
4713 	.start_reshape  = raid5_start_reshape,
4714 #endif
4715 	.quiesce	= raid5_quiesce,
4716 };
4717 
4718 static struct mdk_personality raid4_personality =
4719 {
4720 	.name		= "raid4",
4721 	.level		= 4,
4722 	.owner		= THIS_MODULE,
4723 	.make_request	= make_request,
4724 	.run		= run,
4725 	.stop		= stop,
4726 	.status		= status,
4727 	.error_handler	= error,
4728 	.hot_add_disk	= raid5_add_disk,
4729 	.hot_remove_disk= raid5_remove_disk,
4730 	.spare_active	= raid5_spare_active,
4731 	.sync_request	= sync_request,
4732 	.resize		= raid5_resize,
4733 #ifdef CONFIG_MD_RAID5_RESHAPE
4734 	.check_reshape	= raid5_check_reshape,
4735 	.start_reshape  = raid5_start_reshape,
4736 #endif
4737 	.quiesce	= raid5_quiesce,
4738 };
4739 
4740 static int __init raid5_init(void)
4741 {
4742 	int e;
4743 
4744 	e = raid6_select_algo();
4745 	if ( e )
4746 		return e;
4747 	register_md_personality(&raid6_personality);
4748 	register_md_personality(&raid5_personality);
4749 	register_md_personality(&raid4_personality);
4750 	return 0;
4751 }
4752 
4753 static void raid5_exit(void)
4754 {
4755 	unregister_md_personality(&raid6_personality);
4756 	unregister_md_personality(&raid5_personality);
4757 	unregister_md_personality(&raid4_personality);
4758 }
4759 
4760 module_init(raid5_init);
4761 module_exit(raid5_exit);
4762 MODULE_LICENSE("GPL");
4763 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4764 MODULE_ALIAS("md-raid5");
4765 MODULE_ALIAS("md-raid4");
4766 MODULE_ALIAS("md-level-5");
4767 MODULE_ALIAS("md-level-4");
4768 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4769 MODULE_ALIAS("md-raid6");
4770 MODULE_ALIAS("md-level-6");
4771 
4772 /* This used to be two separate modules, they were: */
4773 MODULE_ALIAS("raid5");
4774 MODULE_ALIAS("raid6");
4775