xref: /openbmc/linux/drivers/md/raid5.c (revision 275876e2)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58 
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63 
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66 
67 static struct workqueue_struct *raid5_wq;
68 /*
69  * Stripe cache
70  */
71 
72 #define NR_STRIPES		256
73 #define STRIPE_SIZE		PAGE_SIZE
74 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
76 #define	IO_THRESHOLD		1
77 #define BYPASS_THRESHOLD	1
78 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK		(NR_HASH - 1)
80 #define MAX_STRIPE_BATCH	8
81 
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85 	return &conf->stripe_hashtbl[hash];
86 }
87 
88 static inline int stripe_hash_locks_hash(sector_t sect)
89 {
90 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91 }
92 
93 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
94 {
95 	spin_lock_irq(conf->hash_locks + hash);
96 	spin_lock(&conf->device_lock);
97 }
98 
99 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
100 {
101 	spin_unlock(&conf->device_lock);
102 	spin_unlock_irq(conf->hash_locks + hash);
103 }
104 
105 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106 {
107 	int i;
108 	local_irq_disable();
109 	spin_lock(conf->hash_locks);
110 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112 	spin_lock(&conf->device_lock);
113 }
114 
115 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
116 {
117 	int i;
118 	spin_unlock(&conf->device_lock);
119 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120 		spin_unlock(conf->hash_locks + i - 1);
121 	local_irq_enable();
122 }
123 
124 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
125  * order without overlap.  There may be several bio's per stripe+device, and
126  * a bio could span several devices.
127  * When walking this list for a particular stripe+device, we must never proceed
128  * beyond a bio that extends past this device, as the next bio might no longer
129  * be valid.
130  * This function is used to determine the 'next' bio in the list, given the sector
131  * of the current stripe+device
132  */
133 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
134 {
135 	int sectors = bio_sectors(bio);
136 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
137 		return bio->bi_next;
138 	else
139 		return NULL;
140 }
141 
142 /*
143  * We maintain a biased count of active stripes in the bottom 16 bits of
144  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
145  */
146 static inline int raid5_bi_processed_stripes(struct bio *bio)
147 {
148 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149 	return (atomic_read(segments) >> 16) & 0xffff;
150 }
151 
152 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
153 {
154 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155 	return atomic_sub_return(1, segments) & 0xffff;
156 }
157 
158 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
159 {
160 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161 	atomic_inc(segments);
162 }
163 
164 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165 	unsigned int cnt)
166 {
167 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168 	int old, new;
169 
170 	do {
171 		old = atomic_read(segments);
172 		new = (old & 0xffff) | (cnt << 16);
173 	} while (atomic_cmpxchg(segments, old, new) != old);
174 }
175 
176 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
177 {
178 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179 	atomic_set(segments, cnt);
180 }
181 
182 /* Find first data disk in a raid6 stripe */
183 static inline int raid6_d0(struct stripe_head *sh)
184 {
185 	if (sh->ddf_layout)
186 		/* ddf always start from first device */
187 		return 0;
188 	/* md starts just after Q block */
189 	if (sh->qd_idx == sh->disks - 1)
190 		return 0;
191 	else
192 		return sh->qd_idx + 1;
193 }
194 static inline int raid6_next_disk(int disk, int raid_disks)
195 {
196 	disk++;
197 	return (disk < raid_disks) ? disk : 0;
198 }
199 
200 /* When walking through the disks in a raid5, starting at raid6_d0,
201  * We need to map each disk to a 'slot', where the data disks are slot
202  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203  * is raid_disks-1.  This help does that mapping.
204  */
205 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206 			     int *count, int syndrome_disks)
207 {
208 	int slot = *count;
209 
210 	if (sh->ddf_layout)
211 		(*count)++;
212 	if (idx == sh->pd_idx)
213 		return syndrome_disks;
214 	if (idx == sh->qd_idx)
215 		return syndrome_disks + 1;
216 	if (!sh->ddf_layout)
217 		(*count)++;
218 	return slot;
219 }
220 
221 static void return_io(struct bio *return_bi)
222 {
223 	struct bio *bi = return_bi;
224 	while (bi) {
225 
226 		return_bi = bi->bi_next;
227 		bi->bi_next = NULL;
228 		bi->bi_iter.bi_size = 0;
229 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230 					 bi, 0);
231 		bio_endio(bi, 0);
232 		bi = return_bi;
233 	}
234 }
235 
236 static void print_raid5_conf (struct r5conf *conf);
237 
238 static int stripe_operations_active(struct stripe_head *sh)
239 {
240 	return sh->check_state || sh->reconstruct_state ||
241 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243 }
244 
245 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246 {
247 	struct r5conf *conf = sh->raid_conf;
248 	struct r5worker_group *group;
249 	int thread_cnt;
250 	int i, cpu = sh->cpu;
251 
252 	if (!cpu_online(cpu)) {
253 		cpu = cpumask_any(cpu_online_mask);
254 		sh->cpu = cpu;
255 	}
256 
257 	if (list_empty(&sh->lru)) {
258 		struct r5worker_group *group;
259 		group = conf->worker_groups + cpu_to_group(cpu);
260 		list_add_tail(&sh->lru, &group->handle_list);
261 		group->stripes_cnt++;
262 		sh->group = group;
263 	}
264 
265 	if (conf->worker_cnt_per_group == 0) {
266 		md_wakeup_thread(conf->mddev->thread);
267 		return;
268 	}
269 
270 	group = conf->worker_groups + cpu_to_group(sh->cpu);
271 
272 	group->workers[0].working = true;
273 	/* at least one worker should run to avoid race */
274 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275 
276 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277 	/* wakeup more workers */
278 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279 		if (group->workers[i].working == false) {
280 			group->workers[i].working = true;
281 			queue_work_on(sh->cpu, raid5_wq,
282 				      &group->workers[i].work);
283 			thread_cnt--;
284 		}
285 	}
286 }
287 
288 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289 			      struct list_head *temp_inactive_list)
290 {
291 	BUG_ON(!list_empty(&sh->lru));
292 	BUG_ON(atomic_read(&conf->active_stripes)==0);
293 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
294 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
295 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
296 			list_add_tail(&sh->lru, &conf->delayed_list);
297 			if (atomic_read(&conf->preread_active_stripes)
298 			    < IO_THRESHOLD)
299 				md_wakeup_thread(conf->mddev->thread);
300 		} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
301 			   sh->bm_seq - conf->seq_write > 0)
302 			list_add_tail(&sh->lru, &conf->bitmap_list);
303 		else {
304 			clear_bit(STRIPE_DELAYED, &sh->state);
305 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
306 			if (conf->worker_cnt_per_group == 0) {
307 				list_add_tail(&sh->lru, &conf->handle_list);
308 			} else {
309 				raid5_wakeup_stripe_thread(sh);
310 				return;
311 			}
312 		}
313 		md_wakeup_thread(conf->mddev->thread);
314 	} else {
315 		BUG_ON(stripe_operations_active(sh));
316 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
317 			if (atomic_dec_return(&conf->preread_active_stripes)
318 			    < IO_THRESHOLD)
319 				md_wakeup_thread(conf->mddev->thread);
320 		atomic_dec(&conf->active_stripes);
321 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
322 			list_add_tail(&sh->lru, temp_inactive_list);
323 	}
324 }
325 
326 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
327 			     struct list_head *temp_inactive_list)
328 {
329 	if (atomic_dec_and_test(&sh->count))
330 		do_release_stripe(conf, sh, temp_inactive_list);
331 }
332 
333 /*
334  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
335  *
336  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
337  * given time. Adding stripes only takes device lock, while deleting stripes
338  * only takes hash lock.
339  */
340 static void release_inactive_stripe_list(struct r5conf *conf,
341 					 struct list_head *temp_inactive_list,
342 					 int hash)
343 {
344 	int size;
345 	bool do_wakeup = false;
346 	unsigned long flags;
347 
348 	if (hash == NR_STRIPE_HASH_LOCKS) {
349 		size = NR_STRIPE_HASH_LOCKS;
350 		hash = NR_STRIPE_HASH_LOCKS - 1;
351 	} else
352 		size = 1;
353 	while (size) {
354 		struct list_head *list = &temp_inactive_list[size - 1];
355 
356 		/*
357 		 * We don't hold any lock here yet, get_active_stripe() might
358 		 * remove stripes from the list
359 		 */
360 		if (!list_empty_careful(list)) {
361 			spin_lock_irqsave(conf->hash_locks + hash, flags);
362 			if (list_empty(conf->inactive_list + hash) &&
363 			    !list_empty(list))
364 				atomic_dec(&conf->empty_inactive_list_nr);
365 			list_splice_tail_init(list, conf->inactive_list + hash);
366 			do_wakeup = true;
367 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
368 		}
369 		size--;
370 		hash--;
371 	}
372 
373 	if (do_wakeup) {
374 		wake_up(&conf->wait_for_stripe);
375 		if (conf->retry_read_aligned)
376 			md_wakeup_thread(conf->mddev->thread);
377 	}
378 }
379 
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf *conf,
382 			       struct list_head *temp_inactive_list)
383 {
384 	struct stripe_head *sh;
385 	int count = 0;
386 	struct llist_node *head;
387 
388 	head = llist_del_all(&conf->released_stripes);
389 	head = llist_reverse_order(head);
390 	while (head) {
391 		int hash;
392 
393 		sh = llist_entry(head, struct stripe_head, release_list);
394 		head = llist_next(head);
395 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396 		smp_mb();
397 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398 		/*
399 		 * Don't worry the bit is set here, because if the bit is set
400 		 * again, the count is always > 1. This is true for
401 		 * STRIPE_ON_UNPLUG_LIST bit too.
402 		 */
403 		hash = sh->hash_lock_index;
404 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
405 		count++;
406 	}
407 
408 	return count;
409 }
410 
411 static void release_stripe(struct stripe_head *sh)
412 {
413 	struct r5conf *conf = sh->raid_conf;
414 	unsigned long flags;
415 	struct list_head list;
416 	int hash;
417 	bool wakeup;
418 
419 	/* Avoid release_list until the last reference.
420 	 */
421 	if (atomic_add_unless(&sh->count, -1, 1))
422 		return;
423 
424 	if (unlikely(!conf->mddev->thread) ||
425 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
426 		goto slow_path;
427 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428 	if (wakeup)
429 		md_wakeup_thread(conf->mddev->thread);
430 	return;
431 slow_path:
432 	local_irq_save(flags);
433 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
435 		INIT_LIST_HEAD(&list);
436 		hash = sh->hash_lock_index;
437 		do_release_stripe(conf, sh, &list);
438 		spin_unlock(&conf->device_lock);
439 		release_inactive_stripe_list(conf, &list, hash);
440 	}
441 	local_irq_restore(flags);
442 }
443 
444 static inline void remove_hash(struct stripe_head *sh)
445 {
446 	pr_debug("remove_hash(), stripe %llu\n",
447 		(unsigned long long)sh->sector);
448 
449 	hlist_del_init(&sh->hash);
450 }
451 
452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
453 {
454 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
455 
456 	pr_debug("insert_hash(), stripe %llu\n",
457 		(unsigned long long)sh->sector);
458 
459 	hlist_add_head(&sh->hash, hp);
460 }
461 
462 
463 /* find an idle stripe, make sure it is unhashed, and return it. */
464 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
465 {
466 	struct stripe_head *sh = NULL;
467 	struct list_head *first;
468 
469 	if (list_empty(conf->inactive_list + hash))
470 		goto out;
471 	first = (conf->inactive_list + hash)->next;
472 	sh = list_entry(first, struct stripe_head, lru);
473 	list_del_init(first);
474 	remove_hash(sh);
475 	atomic_inc(&conf->active_stripes);
476 	BUG_ON(hash != sh->hash_lock_index);
477 	if (list_empty(conf->inactive_list + hash))
478 		atomic_inc(&conf->empty_inactive_list_nr);
479 out:
480 	return sh;
481 }
482 
483 static void shrink_buffers(struct stripe_head *sh)
484 {
485 	struct page *p;
486 	int i;
487 	int num = sh->raid_conf->pool_size;
488 
489 	for (i = 0; i < num ; i++) {
490 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
491 		p = sh->dev[i].page;
492 		if (!p)
493 			continue;
494 		sh->dev[i].page = NULL;
495 		put_page(p);
496 	}
497 }
498 
499 static int grow_buffers(struct stripe_head *sh)
500 {
501 	int i;
502 	int num = sh->raid_conf->pool_size;
503 
504 	for (i = 0; i < num; i++) {
505 		struct page *page;
506 
507 		if (!(page = alloc_page(GFP_KERNEL))) {
508 			return 1;
509 		}
510 		sh->dev[i].page = page;
511 		sh->dev[i].orig_page = page;
512 	}
513 	return 0;
514 }
515 
516 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
517 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
518 			    struct stripe_head *sh);
519 
520 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
521 {
522 	struct r5conf *conf = sh->raid_conf;
523 	int i, seq;
524 
525 	BUG_ON(atomic_read(&sh->count) != 0);
526 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
527 	BUG_ON(stripe_operations_active(sh));
528 
529 	pr_debug("init_stripe called, stripe %llu\n",
530 		(unsigned long long)sh->sector);
531 
532 	remove_hash(sh);
533 retry:
534 	seq = read_seqcount_begin(&conf->gen_lock);
535 	sh->generation = conf->generation - previous;
536 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537 	sh->sector = sector;
538 	stripe_set_idx(sector, conf, previous, sh);
539 	sh->state = 0;
540 
541 
542 	for (i = sh->disks; i--; ) {
543 		struct r5dev *dev = &sh->dev[i];
544 
545 		if (dev->toread || dev->read || dev->towrite || dev->written ||
546 		    test_bit(R5_LOCKED, &dev->flags)) {
547 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
548 			       (unsigned long long)sh->sector, i, dev->toread,
549 			       dev->read, dev->towrite, dev->written,
550 			       test_bit(R5_LOCKED, &dev->flags));
551 			WARN_ON(1);
552 		}
553 		dev->flags = 0;
554 		raid5_build_block(sh, i, previous);
555 	}
556 	if (read_seqcount_retry(&conf->gen_lock, seq))
557 		goto retry;
558 	insert_hash(conf, sh);
559 	sh->cpu = smp_processor_id();
560 }
561 
562 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
563 					 short generation)
564 {
565 	struct stripe_head *sh;
566 
567 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
568 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
569 		if (sh->sector == sector && sh->generation == generation)
570 			return sh;
571 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
572 	return NULL;
573 }
574 
575 /*
576  * Need to check if array has failed when deciding whether to:
577  *  - start an array
578  *  - remove non-faulty devices
579  *  - add a spare
580  *  - allow a reshape
581  * This determination is simple when no reshape is happening.
582  * However if there is a reshape, we need to carefully check
583  * both the before and after sections.
584  * This is because some failed devices may only affect one
585  * of the two sections, and some non-in_sync devices may
586  * be insync in the section most affected by failed devices.
587  */
588 static int calc_degraded(struct r5conf *conf)
589 {
590 	int degraded, degraded2;
591 	int i;
592 
593 	rcu_read_lock();
594 	degraded = 0;
595 	for (i = 0; i < conf->previous_raid_disks; i++) {
596 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
597 		if (rdev && test_bit(Faulty, &rdev->flags))
598 			rdev = rcu_dereference(conf->disks[i].replacement);
599 		if (!rdev || test_bit(Faulty, &rdev->flags))
600 			degraded++;
601 		else if (test_bit(In_sync, &rdev->flags))
602 			;
603 		else
604 			/* not in-sync or faulty.
605 			 * If the reshape increases the number of devices,
606 			 * this is being recovered by the reshape, so
607 			 * this 'previous' section is not in_sync.
608 			 * If the number of devices is being reduced however,
609 			 * the device can only be part of the array if
610 			 * we are reverting a reshape, so this section will
611 			 * be in-sync.
612 			 */
613 			if (conf->raid_disks >= conf->previous_raid_disks)
614 				degraded++;
615 	}
616 	rcu_read_unlock();
617 	if (conf->raid_disks == conf->previous_raid_disks)
618 		return degraded;
619 	rcu_read_lock();
620 	degraded2 = 0;
621 	for (i = 0; i < conf->raid_disks; i++) {
622 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
623 		if (rdev && test_bit(Faulty, &rdev->flags))
624 			rdev = rcu_dereference(conf->disks[i].replacement);
625 		if (!rdev || test_bit(Faulty, &rdev->flags))
626 			degraded2++;
627 		else if (test_bit(In_sync, &rdev->flags))
628 			;
629 		else
630 			/* not in-sync or faulty.
631 			 * If reshape increases the number of devices, this
632 			 * section has already been recovered, else it
633 			 * almost certainly hasn't.
634 			 */
635 			if (conf->raid_disks <= conf->previous_raid_disks)
636 				degraded2++;
637 	}
638 	rcu_read_unlock();
639 	if (degraded2 > degraded)
640 		return degraded2;
641 	return degraded;
642 }
643 
644 static int has_failed(struct r5conf *conf)
645 {
646 	int degraded;
647 
648 	if (conf->mddev->reshape_position == MaxSector)
649 		return conf->mddev->degraded > conf->max_degraded;
650 
651 	degraded = calc_degraded(conf);
652 	if (degraded > conf->max_degraded)
653 		return 1;
654 	return 0;
655 }
656 
657 static struct stripe_head *
658 get_active_stripe(struct r5conf *conf, sector_t sector,
659 		  int previous, int noblock, int noquiesce)
660 {
661 	struct stripe_head *sh;
662 	int hash = stripe_hash_locks_hash(sector);
663 
664 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
665 
666 	spin_lock_irq(conf->hash_locks + hash);
667 
668 	do {
669 		wait_event_lock_irq(conf->wait_for_stripe,
670 				    conf->quiesce == 0 || noquiesce,
671 				    *(conf->hash_locks + hash));
672 		sh = __find_stripe(conf, sector, conf->generation - previous);
673 		if (!sh) {
674 			if (!conf->inactive_blocked)
675 				sh = get_free_stripe(conf, hash);
676 			if (noblock && sh == NULL)
677 				break;
678 			if (!sh) {
679 				conf->inactive_blocked = 1;
680 				wait_event_lock_irq(
681 					conf->wait_for_stripe,
682 					!list_empty(conf->inactive_list + hash) &&
683 					(atomic_read(&conf->active_stripes)
684 					 < (conf->max_nr_stripes * 3 / 4)
685 					 || !conf->inactive_blocked),
686 					*(conf->hash_locks + hash));
687 				conf->inactive_blocked = 0;
688 			} else {
689 				init_stripe(sh, sector, previous);
690 				atomic_inc(&sh->count);
691 			}
692 		} else if (!atomic_inc_not_zero(&sh->count)) {
693 			spin_lock(&conf->device_lock);
694 			if (!atomic_read(&sh->count)) {
695 				if (!test_bit(STRIPE_HANDLE, &sh->state))
696 					atomic_inc(&conf->active_stripes);
697 				BUG_ON(list_empty(&sh->lru) &&
698 				       !test_bit(STRIPE_EXPANDING, &sh->state));
699 				list_del_init(&sh->lru);
700 				if (sh->group) {
701 					sh->group->stripes_cnt--;
702 					sh->group = NULL;
703 				}
704 			}
705 			atomic_inc(&sh->count);
706 			spin_unlock(&conf->device_lock);
707 		}
708 	} while (sh == NULL);
709 
710 	spin_unlock_irq(conf->hash_locks + hash);
711 	return sh;
712 }
713 
714 /* Determine if 'data_offset' or 'new_data_offset' should be used
715  * in this stripe_head.
716  */
717 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
718 {
719 	sector_t progress = conf->reshape_progress;
720 	/* Need a memory barrier to make sure we see the value
721 	 * of conf->generation, or ->data_offset that was set before
722 	 * reshape_progress was updated.
723 	 */
724 	smp_rmb();
725 	if (progress == MaxSector)
726 		return 0;
727 	if (sh->generation == conf->generation - 1)
728 		return 0;
729 	/* We are in a reshape, and this is a new-generation stripe,
730 	 * so use new_data_offset.
731 	 */
732 	return 1;
733 }
734 
735 static void
736 raid5_end_read_request(struct bio *bi, int error);
737 static void
738 raid5_end_write_request(struct bio *bi, int error);
739 
740 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
741 {
742 	struct r5conf *conf = sh->raid_conf;
743 	int i, disks = sh->disks;
744 
745 	might_sleep();
746 
747 	for (i = disks; i--; ) {
748 		int rw;
749 		int replace_only = 0;
750 		struct bio *bi, *rbi;
751 		struct md_rdev *rdev, *rrdev = NULL;
752 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
753 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
754 				rw = WRITE_FUA;
755 			else
756 				rw = WRITE;
757 			if (test_bit(R5_Discard, &sh->dev[i].flags))
758 				rw |= REQ_DISCARD;
759 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
760 			rw = READ;
761 		else if (test_and_clear_bit(R5_WantReplace,
762 					    &sh->dev[i].flags)) {
763 			rw = WRITE;
764 			replace_only = 1;
765 		} else
766 			continue;
767 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
768 			rw |= REQ_SYNC;
769 
770 		bi = &sh->dev[i].req;
771 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
772 
773 		rcu_read_lock();
774 		rrdev = rcu_dereference(conf->disks[i].replacement);
775 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
776 		rdev = rcu_dereference(conf->disks[i].rdev);
777 		if (!rdev) {
778 			rdev = rrdev;
779 			rrdev = NULL;
780 		}
781 		if (rw & WRITE) {
782 			if (replace_only)
783 				rdev = NULL;
784 			if (rdev == rrdev)
785 				/* We raced and saw duplicates */
786 				rrdev = NULL;
787 		} else {
788 			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
789 				rdev = rrdev;
790 			rrdev = NULL;
791 		}
792 
793 		if (rdev && test_bit(Faulty, &rdev->flags))
794 			rdev = NULL;
795 		if (rdev)
796 			atomic_inc(&rdev->nr_pending);
797 		if (rrdev && test_bit(Faulty, &rrdev->flags))
798 			rrdev = NULL;
799 		if (rrdev)
800 			atomic_inc(&rrdev->nr_pending);
801 		rcu_read_unlock();
802 
803 		/* We have already checked bad blocks for reads.  Now
804 		 * need to check for writes.  We never accept write errors
805 		 * on the replacement, so we don't to check rrdev.
806 		 */
807 		while ((rw & WRITE) && rdev &&
808 		       test_bit(WriteErrorSeen, &rdev->flags)) {
809 			sector_t first_bad;
810 			int bad_sectors;
811 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
812 					      &first_bad, &bad_sectors);
813 			if (!bad)
814 				break;
815 
816 			if (bad < 0) {
817 				set_bit(BlockedBadBlocks, &rdev->flags);
818 				if (!conf->mddev->external &&
819 				    conf->mddev->flags) {
820 					/* It is very unlikely, but we might
821 					 * still need to write out the
822 					 * bad block log - better give it
823 					 * a chance*/
824 					md_check_recovery(conf->mddev);
825 				}
826 				/*
827 				 * Because md_wait_for_blocked_rdev
828 				 * will dec nr_pending, we must
829 				 * increment it first.
830 				 */
831 				atomic_inc(&rdev->nr_pending);
832 				md_wait_for_blocked_rdev(rdev, conf->mddev);
833 			} else {
834 				/* Acknowledged bad block - skip the write */
835 				rdev_dec_pending(rdev, conf->mddev);
836 				rdev = NULL;
837 			}
838 		}
839 
840 		if (rdev) {
841 			if (s->syncing || s->expanding || s->expanded
842 			    || s->replacing)
843 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
844 
845 			set_bit(STRIPE_IO_STARTED, &sh->state);
846 
847 			bio_reset(bi);
848 			bi->bi_bdev = rdev->bdev;
849 			bi->bi_rw = rw;
850 			bi->bi_end_io = (rw & WRITE)
851 				? raid5_end_write_request
852 				: raid5_end_read_request;
853 			bi->bi_private = sh;
854 
855 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
856 				__func__, (unsigned long long)sh->sector,
857 				bi->bi_rw, i);
858 			atomic_inc(&sh->count);
859 			if (use_new_offset(conf, sh))
860 				bi->bi_iter.bi_sector = (sh->sector
861 						 + rdev->new_data_offset);
862 			else
863 				bi->bi_iter.bi_sector = (sh->sector
864 						 + rdev->data_offset);
865 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
866 				bi->bi_rw |= REQ_NOMERGE;
867 
868 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
869 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
870 			sh->dev[i].vec.bv_page = sh->dev[i].page;
871 			bi->bi_vcnt = 1;
872 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
873 			bi->bi_io_vec[0].bv_offset = 0;
874 			bi->bi_iter.bi_size = STRIPE_SIZE;
875 			/*
876 			 * If this is discard request, set bi_vcnt 0. We don't
877 			 * want to confuse SCSI because SCSI will replace payload
878 			 */
879 			if (rw & REQ_DISCARD)
880 				bi->bi_vcnt = 0;
881 			if (rrdev)
882 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
883 
884 			if (conf->mddev->gendisk)
885 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
886 						      bi, disk_devt(conf->mddev->gendisk),
887 						      sh->dev[i].sector);
888 			generic_make_request(bi);
889 		}
890 		if (rrdev) {
891 			if (s->syncing || s->expanding || s->expanded
892 			    || s->replacing)
893 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
894 
895 			set_bit(STRIPE_IO_STARTED, &sh->state);
896 
897 			bio_reset(rbi);
898 			rbi->bi_bdev = rrdev->bdev;
899 			rbi->bi_rw = rw;
900 			BUG_ON(!(rw & WRITE));
901 			rbi->bi_end_io = raid5_end_write_request;
902 			rbi->bi_private = sh;
903 
904 			pr_debug("%s: for %llu schedule op %ld on "
905 				 "replacement disc %d\n",
906 				__func__, (unsigned long long)sh->sector,
907 				rbi->bi_rw, i);
908 			atomic_inc(&sh->count);
909 			if (use_new_offset(conf, sh))
910 				rbi->bi_iter.bi_sector = (sh->sector
911 						  + rrdev->new_data_offset);
912 			else
913 				rbi->bi_iter.bi_sector = (sh->sector
914 						  + rrdev->data_offset);
915 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
916 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
917 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
918 			rbi->bi_vcnt = 1;
919 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
920 			rbi->bi_io_vec[0].bv_offset = 0;
921 			rbi->bi_iter.bi_size = STRIPE_SIZE;
922 			/*
923 			 * If this is discard request, set bi_vcnt 0. We don't
924 			 * want to confuse SCSI because SCSI will replace payload
925 			 */
926 			if (rw & REQ_DISCARD)
927 				rbi->bi_vcnt = 0;
928 			if (conf->mddev->gendisk)
929 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
930 						      rbi, disk_devt(conf->mddev->gendisk),
931 						      sh->dev[i].sector);
932 			generic_make_request(rbi);
933 		}
934 		if (!rdev && !rrdev) {
935 			if (rw & WRITE)
936 				set_bit(STRIPE_DEGRADED, &sh->state);
937 			pr_debug("skip op %ld on disc %d for sector %llu\n",
938 				bi->bi_rw, i, (unsigned long long)sh->sector);
939 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
940 			set_bit(STRIPE_HANDLE, &sh->state);
941 		}
942 	}
943 }
944 
945 static struct dma_async_tx_descriptor *
946 async_copy_data(int frombio, struct bio *bio, struct page **page,
947 	sector_t sector, struct dma_async_tx_descriptor *tx,
948 	struct stripe_head *sh)
949 {
950 	struct bio_vec bvl;
951 	struct bvec_iter iter;
952 	struct page *bio_page;
953 	int page_offset;
954 	struct async_submit_ctl submit;
955 	enum async_tx_flags flags = 0;
956 
957 	if (bio->bi_iter.bi_sector >= sector)
958 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
959 	else
960 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
961 
962 	if (frombio)
963 		flags |= ASYNC_TX_FENCE;
964 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
965 
966 	bio_for_each_segment(bvl, bio, iter) {
967 		int len = bvl.bv_len;
968 		int clen;
969 		int b_offset = 0;
970 
971 		if (page_offset < 0) {
972 			b_offset = -page_offset;
973 			page_offset += b_offset;
974 			len -= b_offset;
975 		}
976 
977 		if (len > 0 && page_offset + len > STRIPE_SIZE)
978 			clen = STRIPE_SIZE - page_offset;
979 		else
980 			clen = len;
981 
982 		if (clen > 0) {
983 			b_offset += bvl.bv_offset;
984 			bio_page = bvl.bv_page;
985 			if (frombio) {
986 				if (sh->raid_conf->skip_copy &&
987 				    b_offset == 0 && page_offset == 0 &&
988 				    clen == STRIPE_SIZE)
989 					*page = bio_page;
990 				else
991 					tx = async_memcpy(*page, bio_page, page_offset,
992 						  b_offset, clen, &submit);
993 			} else
994 				tx = async_memcpy(bio_page, *page, b_offset,
995 						  page_offset, clen, &submit);
996 		}
997 		/* chain the operations */
998 		submit.depend_tx = tx;
999 
1000 		if (clen < len) /* hit end of page */
1001 			break;
1002 		page_offset +=  len;
1003 	}
1004 
1005 	return tx;
1006 }
1007 
1008 static void ops_complete_biofill(void *stripe_head_ref)
1009 {
1010 	struct stripe_head *sh = stripe_head_ref;
1011 	struct bio *return_bi = NULL;
1012 	int i;
1013 
1014 	pr_debug("%s: stripe %llu\n", __func__,
1015 		(unsigned long long)sh->sector);
1016 
1017 	/* clear completed biofills */
1018 	for (i = sh->disks; i--; ) {
1019 		struct r5dev *dev = &sh->dev[i];
1020 
1021 		/* acknowledge completion of a biofill operation */
1022 		/* and check if we need to reply to a read request,
1023 		 * new R5_Wantfill requests are held off until
1024 		 * !STRIPE_BIOFILL_RUN
1025 		 */
1026 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1027 			struct bio *rbi, *rbi2;
1028 
1029 			BUG_ON(!dev->read);
1030 			rbi = dev->read;
1031 			dev->read = NULL;
1032 			while (rbi && rbi->bi_iter.bi_sector <
1033 				dev->sector + STRIPE_SECTORS) {
1034 				rbi2 = r5_next_bio(rbi, dev->sector);
1035 				if (!raid5_dec_bi_active_stripes(rbi)) {
1036 					rbi->bi_next = return_bi;
1037 					return_bi = rbi;
1038 				}
1039 				rbi = rbi2;
1040 			}
1041 		}
1042 	}
1043 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1044 
1045 	return_io(return_bi);
1046 
1047 	set_bit(STRIPE_HANDLE, &sh->state);
1048 	release_stripe(sh);
1049 }
1050 
1051 static void ops_run_biofill(struct stripe_head *sh)
1052 {
1053 	struct dma_async_tx_descriptor *tx = NULL;
1054 	struct async_submit_ctl submit;
1055 	int i;
1056 
1057 	pr_debug("%s: stripe %llu\n", __func__,
1058 		(unsigned long long)sh->sector);
1059 
1060 	for (i = sh->disks; i--; ) {
1061 		struct r5dev *dev = &sh->dev[i];
1062 		if (test_bit(R5_Wantfill, &dev->flags)) {
1063 			struct bio *rbi;
1064 			spin_lock_irq(&sh->stripe_lock);
1065 			dev->read = rbi = dev->toread;
1066 			dev->toread = NULL;
1067 			spin_unlock_irq(&sh->stripe_lock);
1068 			while (rbi && rbi->bi_iter.bi_sector <
1069 				dev->sector + STRIPE_SECTORS) {
1070 				tx = async_copy_data(0, rbi, &dev->page,
1071 					dev->sector, tx, sh);
1072 				rbi = r5_next_bio(rbi, dev->sector);
1073 			}
1074 		}
1075 	}
1076 
1077 	atomic_inc(&sh->count);
1078 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1079 	async_trigger_callback(&submit);
1080 }
1081 
1082 static void mark_target_uptodate(struct stripe_head *sh, int target)
1083 {
1084 	struct r5dev *tgt;
1085 
1086 	if (target < 0)
1087 		return;
1088 
1089 	tgt = &sh->dev[target];
1090 	set_bit(R5_UPTODATE, &tgt->flags);
1091 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1092 	clear_bit(R5_Wantcompute, &tgt->flags);
1093 }
1094 
1095 static void ops_complete_compute(void *stripe_head_ref)
1096 {
1097 	struct stripe_head *sh = stripe_head_ref;
1098 
1099 	pr_debug("%s: stripe %llu\n", __func__,
1100 		(unsigned long long)sh->sector);
1101 
1102 	/* mark the computed target(s) as uptodate */
1103 	mark_target_uptodate(sh, sh->ops.target);
1104 	mark_target_uptodate(sh, sh->ops.target2);
1105 
1106 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1107 	if (sh->check_state == check_state_compute_run)
1108 		sh->check_state = check_state_compute_result;
1109 	set_bit(STRIPE_HANDLE, &sh->state);
1110 	release_stripe(sh);
1111 }
1112 
1113 /* return a pointer to the address conversion region of the scribble buffer */
1114 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1115 				 struct raid5_percpu *percpu)
1116 {
1117 	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1118 }
1119 
1120 static struct dma_async_tx_descriptor *
1121 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1122 {
1123 	int disks = sh->disks;
1124 	struct page **xor_srcs = percpu->scribble;
1125 	int target = sh->ops.target;
1126 	struct r5dev *tgt = &sh->dev[target];
1127 	struct page *xor_dest = tgt->page;
1128 	int count = 0;
1129 	struct dma_async_tx_descriptor *tx;
1130 	struct async_submit_ctl submit;
1131 	int i;
1132 
1133 	pr_debug("%s: stripe %llu block: %d\n",
1134 		__func__, (unsigned long long)sh->sector, target);
1135 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1136 
1137 	for (i = disks; i--; )
1138 		if (i != target)
1139 			xor_srcs[count++] = sh->dev[i].page;
1140 
1141 	atomic_inc(&sh->count);
1142 
1143 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1144 			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
1145 	if (unlikely(count == 1))
1146 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1147 	else
1148 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1149 
1150 	return tx;
1151 }
1152 
1153 /* set_syndrome_sources - populate source buffers for gen_syndrome
1154  * @srcs - (struct page *) array of size sh->disks
1155  * @sh - stripe_head to parse
1156  *
1157  * Populates srcs in proper layout order for the stripe and returns the
1158  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1159  * destination buffer is recorded in srcs[count] and the Q destination
1160  * is recorded in srcs[count+1]].
1161  */
1162 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1163 {
1164 	int disks = sh->disks;
1165 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1166 	int d0_idx = raid6_d0(sh);
1167 	int count;
1168 	int i;
1169 
1170 	for (i = 0; i < disks; i++)
1171 		srcs[i] = NULL;
1172 
1173 	count = 0;
1174 	i = d0_idx;
1175 	do {
1176 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1177 
1178 		srcs[slot] = sh->dev[i].page;
1179 		i = raid6_next_disk(i, disks);
1180 	} while (i != d0_idx);
1181 
1182 	return syndrome_disks;
1183 }
1184 
1185 static struct dma_async_tx_descriptor *
1186 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1187 {
1188 	int disks = sh->disks;
1189 	struct page **blocks = percpu->scribble;
1190 	int target;
1191 	int qd_idx = sh->qd_idx;
1192 	struct dma_async_tx_descriptor *tx;
1193 	struct async_submit_ctl submit;
1194 	struct r5dev *tgt;
1195 	struct page *dest;
1196 	int i;
1197 	int count;
1198 
1199 	if (sh->ops.target < 0)
1200 		target = sh->ops.target2;
1201 	else if (sh->ops.target2 < 0)
1202 		target = sh->ops.target;
1203 	else
1204 		/* we should only have one valid target */
1205 		BUG();
1206 	BUG_ON(target < 0);
1207 	pr_debug("%s: stripe %llu block: %d\n",
1208 		__func__, (unsigned long long)sh->sector, target);
1209 
1210 	tgt = &sh->dev[target];
1211 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1212 	dest = tgt->page;
1213 
1214 	atomic_inc(&sh->count);
1215 
1216 	if (target == qd_idx) {
1217 		count = set_syndrome_sources(blocks, sh);
1218 		blocks[count] = NULL; /* regenerating p is not necessary */
1219 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1220 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1221 				  ops_complete_compute, sh,
1222 				  to_addr_conv(sh, percpu));
1223 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1224 	} else {
1225 		/* Compute any data- or p-drive using XOR */
1226 		count = 0;
1227 		for (i = disks; i-- ; ) {
1228 			if (i == target || i == qd_idx)
1229 				continue;
1230 			blocks[count++] = sh->dev[i].page;
1231 		}
1232 
1233 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1234 				  NULL, ops_complete_compute, sh,
1235 				  to_addr_conv(sh, percpu));
1236 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1237 	}
1238 
1239 	return tx;
1240 }
1241 
1242 static struct dma_async_tx_descriptor *
1243 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1244 {
1245 	int i, count, disks = sh->disks;
1246 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1247 	int d0_idx = raid6_d0(sh);
1248 	int faila = -1, failb = -1;
1249 	int target = sh->ops.target;
1250 	int target2 = sh->ops.target2;
1251 	struct r5dev *tgt = &sh->dev[target];
1252 	struct r5dev *tgt2 = &sh->dev[target2];
1253 	struct dma_async_tx_descriptor *tx;
1254 	struct page **blocks = percpu->scribble;
1255 	struct async_submit_ctl submit;
1256 
1257 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1258 		 __func__, (unsigned long long)sh->sector, target, target2);
1259 	BUG_ON(target < 0 || target2 < 0);
1260 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1261 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1262 
1263 	/* we need to open-code set_syndrome_sources to handle the
1264 	 * slot number conversion for 'faila' and 'failb'
1265 	 */
1266 	for (i = 0; i < disks ; i++)
1267 		blocks[i] = NULL;
1268 	count = 0;
1269 	i = d0_idx;
1270 	do {
1271 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1272 
1273 		blocks[slot] = sh->dev[i].page;
1274 
1275 		if (i == target)
1276 			faila = slot;
1277 		if (i == target2)
1278 			failb = slot;
1279 		i = raid6_next_disk(i, disks);
1280 	} while (i != d0_idx);
1281 
1282 	BUG_ON(faila == failb);
1283 	if (failb < faila)
1284 		swap(faila, failb);
1285 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1286 		 __func__, (unsigned long long)sh->sector, faila, failb);
1287 
1288 	atomic_inc(&sh->count);
1289 
1290 	if (failb == syndrome_disks+1) {
1291 		/* Q disk is one of the missing disks */
1292 		if (faila == syndrome_disks) {
1293 			/* Missing P+Q, just recompute */
1294 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1295 					  ops_complete_compute, sh,
1296 					  to_addr_conv(sh, percpu));
1297 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1298 						  STRIPE_SIZE, &submit);
1299 		} else {
1300 			struct page *dest;
1301 			int data_target;
1302 			int qd_idx = sh->qd_idx;
1303 
1304 			/* Missing D+Q: recompute D from P, then recompute Q */
1305 			if (target == qd_idx)
1306 				data_target = target2;
1307 			else
1308 				data_target = target;
1309 
1310 			count = 0;
1311 			for (i = disks; i-- ; ) {
1312 				if (i == data_target || i == qd_idx)
1313 					continue;
1314 				blocks[count++] = sh->dev[i].page;
1315 			}
1316 			dest = sh->dev[data_target].page;
1317 			init_async_submit(&submit,
1318 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1319 					  NULL, NULL, NULL,
1320 					  to_addr_conv(sh, percpu));
1321 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1322 				       &submit);
1323 
1324 			count = set_syndrome_sources(blocks, sh);
1325 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1326 					  ops_complete_compute, sh,
1327 					  to_addr_conv(sh, percpu));
1328 			return async_gen_syndrome(blocks, 0, count+2,
1329 						  STRIPE_SIZE, &submit);
1330 		}
1331 	} else {
1332 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1333 				  ops_complete_compute, sh,
1334 				  to_addr_conv(sh, percpu));
1335 		if (failb == syndrome_disks) {
1336 			/* We're missing D+P. */
1337 			return async_raid6_datap_recov(syndrome_disks+2,
1338 						       STRIPE_SIZE, faila,
1339 						       blocks, &submit);
1340 		} else {
1341 			/* We're missing D+D. */
1342 			return async_raid6_2data_recov(syndrome_disks+2,
1343 						       STRIPE_SIZE, faila, failb,
1344 						       blocks, &submit);
1345 		}
1346 	}
1347 }
1348 
1349 
1350 static void ops_complete_prexor(void *stripe_head_ref)
1351 {
1352 	struct stripe_head *sh = stripe_head_ref;
1353 
1354 	pr_debug("%s: stripe %llu\n", __func__,
1355 		(unsigned long long)sh->sector);
1356 }
1357 
1358 static struct dma_async_tx_descriptor *
1359 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1360 	       struct dma_async_tx_descriptor *tx)
1361 {
1362 	int disks = sh->disks;
1363 	struct page **xor_srcs = percpu->scribble;
1364 	int count = 0, pd_idx = sh->pd_idx, i;
1365 	struct async_submit_ctl submit;
1366 
1367 	/* existing parity data subtracted */
1368 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1369 
1370 	pr_debug("%s: stripe %llu\n", __func__,
1371 		(unsigned long long)sh->sector);
1372 
1373 	for (i = disks; i--; ) {
1374 		struct r5dev *dev = &sh->dev[i];
1375 		/* Only process blocks that are known to be uptodate */
1376 		if (test_bit(R5_Wantdrain, &dev->flags))
1377 			xor_srcs[count++] = dev->page;
1378 	}
1379 
1380 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1381 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1382 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1383 
1384 	return tx;
1385 }
1386 
1387 static struct dma_async_tx_descriptor *
1388 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1389 {
1390 	int disks = sh->disks;
1391 	int i;
1392 
1393 	pr_debug("%s: stripe %llu\n", __func__,
1394 		(unsigned long long)sh->sector);
1395 
1396 	for (i = disks; i--; ) {
1397 		struct r5dev *dev = &sh->dev[i];
1398 		struct bio *chosen;
1399 
1400 		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1401 			struct bio *wbi;
1402 
1403 			spin_lock_irq(&sh->stripe_lock);
1404 			chosen = dev->towrite;
1405 			dev->towrite = NULL;
1406 			BUG_ON(dev->written);
1407 			wbi = dev->written = chosen;
1408 			spin_unlock_irq(&sh->stripe_lock);
1409 			WARN_ON(dev->page != dev->orig_page);
1410 
1411 			while (wbi && wbi->bi_iter.bi_sector <
1412 				dev->sector + STRIPE_SECTORS) {
1413 				if (wbi->bi_rw & REQ_FUA)
1414 					set_bit(R5_WantFUA, &dev->flags);
1415 				if (wbi->bi_rw & REQ_SYNC)
1416 					set_bit(R5_SyncIO, &dev->flags);
1417 				if (wbi->bi_rw & REQ_DISCARD)
1418 					set_bit(R5_Discard, &dev->flags);
1419 				else {
1420 					tx = async_copy_data(1, wbi, &dev->page,
1421 						dev->sector, tx, sh);
1422 					if (dev->page != dev->orig_page) {
1423 						set_bit(R5_SkipCopy, &dev->flags);
1424 						clear_bit(R5_UPTODATE, &dev->flags);
1425 						clear_bit(R5_OVERWRITE, &dev->flags);
1426 					}
1427 				}
1428 				wbi = r5_next_bio(wbi, dev->sector);
1429 			}
1430 		}
1431 	}
1432 
1433 	return tx;
1434 }
1435 
1436 static void ops_complete_reconstruct(void *stripe_head_ref)
1437 {
1438 	struct stripe_head *sh = stripe_head_ref;
1439 	int disks = sh->disks;
1440 	int pd_idx = sh->pd_idx;
1441 	int qd_idx = sh->qd_idx;
1442 	int i;
1443 	bool fua = false, sync = false, discard = false;
1444 
1445 	pr_debug("%s: stripe %llu\n", __func__,
1446 		(unsigned long long)sh->sector);
1447 
1448 	for (i = disks; i--; ) {
1449 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1450 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1451 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1452 	}
1453 
1454 	for (i = disks; i--; ) {
1455 		struct r5dev *dev = &sh->dev[i];
1456 
1457 		if (dev->written || i == pd_idx || i == qd_idx) {
1458 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1459 				set_bit(R5_UPTODATE, &dev->flags);
1460 			if (fua)
1461 				set_bit(R5_WantFUA, &dev->flags);
1462 			if (sync)
1463 				set_bit(R5_SyncIO, &dev->flags);
1464 		}
1465 	}
1466 
1467 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1468 		sh->reconstruct_state = reconstruct_state_drain_result;
1469 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1470 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1471 	else {
1472 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1473 		sh->reconstruct_state = reconstruct_state_result;
1474 	}
1475 
1476 	set_bit(STRIPE_HANDLE, &sh->state);
1477 	release_stripe(sh);
1478 }
1479 
1480 static void
1481 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1482 		     struct dma_async_tx_descriptor *tx)
1483 {
1484 	int disks = sh->disks;
1485 	struct page **xor_srcs = percpu->scribble;
1486 	struct async_submit_ctl submit;
1487 	int count = 0, pd_idx = sh->pd_idx, i;
1488 	struct page *xor_dest;
1489 	int prexor = 0;
1490 	unsigned long flags;
1491 
1492 	pr_debug("%s: stripe %llu\n", __func__,
1493 		(unsigned long long)sh->sector);
1494 
1495 	for (i = 0; i < sh->disks; i++) {
1496 		if (pd_idx == i)
1497 			continue;
1498 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1499 			break;
1500 	}
1501 	if (i >= sh->disks) {
1502 		atomic_inc(&sh->count);
1503 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1504 		ops_complete_reconstruct(sh);
1505 		return;
1506 	}
1507 	/* check if prexor is active which means only process blocks
1508 	 * that are part of a read-modify-write (written)
1509 	 */
1510 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1511 		prexor = 1;
1512 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1513 		for (i = disks; i--; ) {
1514 			struct r5dev *dev = &sh->dev[i];
1515 			if (dev->written)
1516 				xor_srcs[count++] = dev->page;
1517 		}
1518 	} else {
1519 		xor_dest = sh->dev[pd_idx].page;
1520 		for (i = disks; i--; ) {
1521 			struct r5dev *dev = &sh->dev[i];
1522 			if (i != pd_idx)
1523 				xor_srcs[count++] = dev->page;
1524 		}
1525 	}
1526 
1527 	/* 1/ if we prexor'd then the dest is reused as a source
1528 	 * 2/ if we did not prexor then we are redoing the parity
1529 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1530 	 * for the synchronous xor case
1531 	 */
1532 	flags = ASYNC_TX_ACK |
1533 		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1534 
1535 	atomic_inc(&sh->count);
1536 
1537 	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1538 			  to_addr_conv(sh, percpu));
1539 	if (unlikely(count == 1))
1540 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1541 	else
1542 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1543 }
1544 
1545 static void
1546 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1547 		     struct dma_async_tx_descriptor *tx)
1548 {
1549 	struct async_submit_ctl submit;
1550 	struct page **blocks = percpu->scribble;
1551 	int count, i;
1552 
1553 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1554 
1555 	for (i = 0; i < sh->disks; i++) {
1556 		if (sh->pd_idx == i || sh->qd_idx == i)
1557 			continue;
1558 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1559 			break;
1560 	}
1561 	if (i >= sh->disks) {
1562 		atomic_inc(&sh->count);
1563 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1564 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1565 		ops_complete_reconstruct(sh);
1566 		return;
1567 	}
1568 
1569 	count = set_syndrome_sources(blocks, sh);
1570 
1571 	atomic_inc(&sh->count);
1572 
1573 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1574 			  sh, to_addr_conv(sh, percpu));
1575 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1576 }
1577 
1578 static void ops_complete_check(void *stripe_head_ref)
1579 {
1580 	struct stripe_head *sh = stripe_head_ref;
1581 
1582 	pr_debug("%s: stripe %llu\n", __func__,
1583 		(unsigned long long)sh->sector);
1584 
1585 	sh->check_state = check_state_check_result;
1586 	set_bit(STRIPE_HANDLE, &sh->state);
1587 	release_stripe(sh);
1588 }
1589 
1590 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1591 {
1592 	int disks = sh->disks;
1593 	int pd_idx = sh->pd_idx;
1594 	int qd_idx = sh->qd_idx;
1595 	struct page *xor_dest;
1596 	struct page **xor_srcs = percpu->scribble;
1597 	struct dma_async_tx_descriptor *tx;
1598 	struct async_submit_ctl submit;
1599 	int count;
1600 	int i;
1601 
1602 	pr_debug("%s: stripe %llu\n", __func__,
1603 		(unsigned long long)sh->sector);
1604 
1605 	count = 0;
1606 	xor_dest = sh->dev[pd_idx].page;
1607 	xor_srcs[count++] = xor_dest;
1608 	for (i = disks; i--; ) {
1609 		if (i == pd_idx || i == qd_idx)
1610 			continue;
1611 		xor_srcs[count++] = sh->dev[i].page;
1612 	}
1613 
1614 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1615 			  to_addr_conv(sh, percpu));
1616 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1617 			   &sh->ops.zero_sum_result, &submit);
1618 
1619 	atomic_inc(&sh->count);
1620 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1621 	tx = async_trigger_callback(&submit);
1622 }
1623 
1624 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1625 {
1626 	struct page **srcs = percpu->scribble;
1627 	struct async_submit_ctl submit;
1628 	int count;
1629 
1630 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1631 		(unsigned long long)sh->sector, checkp);
1632 
1633 	count = set_syndrome_sources(srcs, sh);
1634 	if (!checkp)
1635 		srcs[count] = NULL;
1636 
1637 	atomic_inc(&sh->count);
1638 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1639 			  sh, to_addr_conv(sh, percpu));
1640 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1641 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1642 }
1643 
1644 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1645 {
1646 	int overlap_clear = 0, i, disks = sh->disks;
1647 	struct dma_async_tx_descriptor *tx = NULL;
1648 	struct r5conf *conf = sh->raid_conf;
1649 	int level = conf->level;
1650 	struct raid5_percpu *percpu;
1651 	unsigned long cpu;
1652 
1653 	cpu = get_cpu();
1654 	percpu = per_cpu_ptr(conf->percpu, cpu);
1655 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1656 		ops_run_biofill(sh);
1657 		overlap_clear++;
1658 	}
1659 
1660 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1661 		if (level < 6)
1662 			tx = ops_run_compute5(sh, percpu);
1663 		else {
1664 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1665 				tx = ops_run_compute6_1(sh, percpu);
1666 			else
1667 				tx = ops_run_compute6_2(sh, percpu);
1668 		}
1669 		/* terminate the chain if reconstruct is not set to be run */
1670 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1671 			async_tx_ack(tx);
1672 	}
1673 
1674 	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1675 		tx = ops_run_prexor(sh, percpu, tx);
1676 
1677 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1678 		tx = ops_run_biodrain(sh, tx);
1679 		overlap_clear++;
1680 	}
1681 
1682 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1683 		if (level < 6)
1684 			ops_run_reconstruct5(sh, percpu, tx);
1685 		else
1686 			ops_run_reconstruct6(sh, percpu, tx);
1687 	}
1688 
1689 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1690 		if (sh->check_state == check_state_run)
1691 			ops_run_check_p(sh, percpu);
1692 		else if (sh->check_state == check_state_run_q)
1693 			ops_run_check_pq(sh, percpu, 0);
1694 		else if (sh->check_state == check_state_run_pq)
1695 			ops_run_check_pq(sh, percpu, 1);
1696 		else
1697 			BUG();
1698 	}
1699 
1700 	if (overlap_clear)
1701 		for (i = disks; i--; ) {
1702 			struct r5dev *dev = &sh->dev[i];
1703 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1704 				wake_up(&sh->raid_conf->wait_for_overlap);
1705 		}
1706 	put_cpu();
1707 }
1708 
1709 static int grow_one_stripe(struct r5conf *conf, int hash)
1710 {
1711 	struct stripe_head *sh;
1712 	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1713 	if (!sh)
1714 		return 0;
1715 
1716 	sh->raid_conf = conf;
1717 
1718 	spin_lock_init(&sh->stripe_lock);
1719 
1720 	if (grow_buffers(sh)) {
1721 		shrink_buffers(sh);
1722 		kmem_cache_free(conf->slab_cache, sh);
1723 		return 0;
1724 	}
1725 	sh->hash_lock_index = hash;
1726 	/* we just created an active stripe so... */
1727 	atomic_set(&sh->count, 1);
1728 	atomic_inc(&conf->active_stripes);
1729 	INIT_LIST_HEAD(&sh->lru);
1730 	release_stripe(sh);
1731 	return 1;
1732 }
1733 
1734 static int grow_stripes(struct r5conf *conf, int num)
1735 {
1736 	struct kmem_cache *sc;
1737 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1738 	int hash;
1739 
1740 	if (conf->mddev->gendisk)
1741 		sprintf(conf->cache_name[0],
1742 			"raid%d-%s", conf->level, mdname(conf->mddev));
1743 	else
1744 		sprintf(conf->cache_name[0],
1745 			"raid%d-%p", conf->level, conf->mddev);
1746 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1747 
1748 	conf->active_name = 0;
1749 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1750 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1751 			       0, 0, NULL);
1752 	if (!sc)
1753 		return 1;
1754 	conf->slab_cache = sc;
1755 	conf->pool_size = devs;
1756 	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1757 	while (num--) {
1758 		if (!grow_one_stripe(conf, hash))
1759 			return 1;
1760 		conf->max_nr_stripes++;
1761 		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1762 	}
1763 	return 0;
1764 }
1765 
1766 /**
1767  * scribble_len - return the required size of the scribble region
1768  * @num - total number of disks in the array
1769  *
1770  * The size must be enough to contain:
1771  * 1/ a struct page pointer for each device in the array +2
1772  * 2/ room to convert each entry in (1) to its corresponding dma
1773  *    (dma_map_page()) or page (page_address()) address.
1774  *
1775  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1776  * calculate over all devices (not just the data blocks), using zeros in place
1777  * of the P and Q blocks.
1778  */
1779 static size_t scribble_len(int num)
1780 {
1781 	size_t len;
1782 
1783 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1784 
1785 	return len;
1786 }
1787 
1788 static int resize_stripes(struct r5conf *conf, int newsize)
1789 {
1790 	/* Make all the stripes able to hold 'newsize' devices.
1791 	 * New slots in each stripe get 'page' set to a new page.
1792 	 *
1793 	 * This happens in stages:
1794 	 * 1/ create a new kmem_cache and allocate the required number of
1795 	 *    stripe_heads.
1796 	 * 2/ gather all the old stripe_heads and transfer the pages across
1797 	 *    to the new stripe_heads.  This will have the side effect of
1798 	 *    freezing the array as once all stripe_heads have been collected,
1799 	 *    no IO will be possible.  Old stripe heads are freed once their
1800 	 *    pages have been transferred over, and the old kmem_cache is
1801 	 *    freed when all stripes are done.
1802 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1803 	 *    we simple return a failre status - no need to clean anything up.
1804 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1805 	 *    If this fails, we don't bother trying the shrink the
1806 	 *    stripe_heads down again, we just leave them as they are.
1807 	 *    As each stripe_head is processed the new one is released into
1808 	 *    active service.
1809 	 *
1810 	 * Once step2 is started, we cannot afford to wait for a write,
1811 	 * so we use GFP_NOIO allocations.
1812 	 */
1813 	struct stripe_head *osh, *nsh;
1814 	LIST_HEAD(newstripes);
1815 	struct disk_info *ndisks;
1816 	unsigned long cpu;
1817 	int err;
1818 	struct kmem_cache *sc;
1819 	int i;
1820 	int hash, cnt;
1821 
1822 	if (newsize <= conf->pool_size)
1823 		return 0; /* never bother to shrink */
1824 
1825 	err = md_allow_write(conf->mddev);
1826 	if (err)
1827 		return err;
1828 
1829 	/* Step 1 */
1830 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1831 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1832 			       0, 0, NULL);
1833 	if (!sc)
1834 		return -ENOMEM;
1835 
1836 	for (i = conf->max_nr_stripes; i; i--) {
1837 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1838 		if (!nsh)
1839 			break;
1840 
1841 		nsh->raid_conf = conf;
1842 		spin_lock_init(&nsh->stripe_lock);
1843 
1844 		list_add(&nsh->lru, &newstripes);
1845 	}
1846 	if (i) {
1847 		/* didn't get enough, give up */
1848 		while (!list_empty(&newstripes)) {
1849 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1850 			list_del(&nsh->lru);
1851 			kmem_cache_free(sc, nsh);
1852 		}
1853 		kmem_cache_destroy(sc);
1854 		return -ENOMEM;
1855 	}
1856 	/* Step 2 - Must use GFP_NOIO now.
1857 	 * OK, we have enough stripes, start collecting inactive
1858 	 * stripes and copying them over
1859 	 */
1860 	hash = 0;
1861 	cnt = 0;
1862 	list_for_each_entry(nsh, &newstripes, lru) {
1863 		lock_device_hash_lock(conf, hash);
1864 		wait_event_cmd(conf->wait_for_stripe,
1865 				    !list_empty(conf->inactive_list + hash),
1866 				    unlock_device_hash_lock(conf, hash),
1867 				    lock_device_hash_lock(conf, hash));
1868 		osh = get_free_stripe(conf, hash);
1869 		unlock_device_hash_lock(conf, hash);
1870 		atomic_set(&nsh->count, 1);
1871 		for(i=0; i<conf->pool_size; i++) {
1872 			nsh->dev[i].page = osh->dev[i].page;
1873 			nsh->dev[i].orig_page = osh->dev[i].page;
1874 		}
1875 		for( ; i<newsize; i++)
1876 			nsh->dev[i].page = NULL;
1877 		nsh->hash_lock_index = hash;
1878 		kmem_cache_free(conf->slab_cache, osh);
1879 		cnt++;
1880 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1881 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1882 			hash++;
1883 			cnt = 0;
1884 		}
1885 	}
1886 	kmem_cache_destroy(conf->slab_cache);
1887 
1888 	/* Step 3.
1889 	 * At this point, we are holding all the stripes so the array
1890 	 * is completely stalled, so now is a good time to resize
1891 	 * conf->disks and the scribble region
1892 	 */
1893 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1894 	if (ndisks) {
1895 		for (i=0; i<conf->raid_disks; i++)
1896 			ndisks[i] = conf->disks[i];
1897 		kfree(conf->disks);
1898 		conf->disks = ndisks;
1899 	} else
1900 		err = -ENOMEM;
1901 
1902 	get_online_cpus();
1903 	conf->scribble_len = scribble_len(newsize);
1904 	for_each_present_cpu(cpu) {
1905 		struct raid5_percpu *percpu;
1906 		void *scribble;
1907 
1908 		percpu = per_cpu_ptr(conf->percpu, cpu);
1909 		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1910 
1911 		if (scribble) {
1912 			kfree(percpu->scribble);
1913 			percpu->scribble = scribble;
1914 		} else {
1915 			err = -ENOMEM;
1916 			break;
1917 		}
1918 	}
1919 	put_online_cpus();
1920 
1921 	/* Step 4, return new stripes to service */
1922 	while(!list_empty(&newstripes)) {
1923 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1924 		list_del_init(&nsh->lru);
1925 
1926 		for (i=conf->raid_disks; i < newsize; i++)
1927 			if (nsh->dev[i].page == NULL) {
1928 				struct page *p = alloc_page(GFP_NOIO);
1929 				nsh->dev[i].page = p;
1930 				nsh->dev[i].orig_page = p;
1931 				if (!p)
1932 					err = -ENOMEM;
1933 			}
1934 		release_stripe(nsh);
1935 	}
1936 	/* critical section pass, GFP_NOIO no longer needed */
1937 
1938 	conf->slab_cache = sc;
1939 	conf->active_name = 1-conf->active_name;
1940 	conf->pool_size = newsize;
1941 	return err;
1942 }
1943 
1944 static int drop_one_stripe(struct r5conf *conf, int hash)
1945 {
1946 	struct stripe_head *sh;
1947 
1948 	spin_lock_irq(conf->hash_locks + hash);
1949 	sh = get_free_stripe(conf, hash);
1950 	spin_unlock_irq(conf->hash_locks + hash);
1951 	if (!sh)
1952 		return 0;
1953 	BUG_ON(atomic_read(&sh->count));
1954 	shrink_buffers(sh);
1955 	kmem_cache_free(conf->slab_cache, sh);
1956 	atomic_dec(&conf->active_stripes);
1957 	return 1;
1958 }
1959 
1960 static void shrink_stripes(struct r5conf *conf)
1961 {
1962 	int hash;
1963 	for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1964 		while (drop_one_stripe(conf, hash))
1965 			;
1966 
1967 	if (conf->slab_cache)
1968 		kmem_cache_destroy(conf->slab_cache);
1969 	conf->slab_cache = NULL;
1970 }
1971 
1972 static void raid5_end_read_request(struct bio * bi, int error)
1973 {
1974 	struct stripe_head *sh = bi->bi_private;
1975 	struct r5conf *conf = sh->raid_conf;
1976 	int disks = sh->disks, i;
1977 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1978 	char b[BDEVNAME_SIZE];
1979 	struct md_rdev *rdev = NULL;
1980 	sector_t s;
1981 
1982 	for (i=0 ; i<disks; i++)
1983 		if (bi == &sh->dev[i].req)
1984 			break;
1985 
1986 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1987 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1988 		uptodate);
1989 	if (i == disks) {
1990 		BUG();
1991 		return;
1992 	}
1993 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1994 		/* If replacement finished while this request was outstanding,
1995 		 * 'replacement' might be NULL already.
1996 		 * In that case it moved down to 'rdev'.
1997 		 * rdev is not removed until all requests are finished.
1998 		 */
1999 		rdev = conf->disks[i].replacement;
2000 	if (!rdev)
2001 		rdev = conf->disks[i].rdev;
2002 
2003 	if (use_new_offset(conf, sh))
2004 		s = sh->sector + rdev->new_data_offset;
2005 	else
2006 		s = sh->sector + rdev->data_offset;
2007 	if (uptodate) {
2008 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2009 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2010 			/* Note that this cannot happen on a
2011 			 * replacement device.  We just fail those on
2012 			 * any error
2013 			 */
2014 			printk_ratelimited(
2015 				KERN_INFO
2016 				"md/raid:%s: read error corrected"
2017 				" (%lu sectors at %llu on %s)\n",
2018 				mdname(conf->mddev), STRIPE_SECTORS,
2019 				(unsigned long long)s,
2020 				bdevname(rdev->bdev, b));
2021 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2022 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2023 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2024 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2025 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2026 
2027 		if (atomic_read(&rdev->read_errors))
2028 			atomic_set(&rdev->read_errors, 0);
2029 	} else {
2030 		const char *bdn = bdevname(rdev->bdev, b);
2031 		int retry = 0;
2032 		int set_bad = 0;
2033 
2034 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2035 		atomic_inc(&rdev->read_errors);
2036 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2037 			printk_ratelimited(
2038 				KERN_WARNING
2039 				"md/raid:%s: read error on replacement device "
2040 				"(sector %llu on %s).\n",
2041 				mdname(conf->mddev),
2042 				(unsigned long long)s,
2043 				bdn);
2044 		else if (conf->mddev->degraded >= conf->max_degraded) {
2045 			set_bad = 1;
2046 			printk_ratelimited(
2047 				KERN_WARNING
2048 				"md/raid:%s: read error not correctable "
2049 				"(sector %llu on %s).\n",
2050 				mdname(conf->mddev),
2051 				(unsigned long long)s,
2052 				bdn);
2053 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2054 			/* Oh, no!!! */
2055 			set_bad = 1;
2056 			printk_ratelimited(
2057 				KERN_WARNING
2058 				"md/raid:%s: read error NOT corrected!! "
2059 				"(sector %llu on %s).\n",
2060 				mdname(conf->mddev),
2061 				(unsigned long long)s,
2062 				bdn);
2063 		} else if (atomic_read(&rdev->read_errors)
2064 			 > conf->max_nr_stripes)
2065 			printk(KERN_WARNING
2066 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2067 			       mdname(conf->mddev), bdn);
2068 		else
2069 			retry = 1;
2070 		if (set_bad && test_bit(In_sync, &rdev->flags)
2071 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2072 			retry = 1;
2073 		if (retry)
2074 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2075 				set_bit(R5_ReadError, &sh->dev[i].flags);
2076 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2077 			} else
2078 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2079 		else {
2080 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2081 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2082 			if (!(set_bad
2083 			      && test_bit(In_sync, &rdev->flags)
2084 			      && rdev_set_badblocks(
2085 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2086 				md_error(conf->mddev, rdev);
2087 		}
2088 	}
2089 	rdev_dec_pending(rdev, conf->mddev);
2090 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2091 	set_bit(STRIPE_HANDLE, &sh->state);
2092 	release_stripe(sh);
2093 }
2094 
2095 static void raid5_end_write_request(struct bio *bi, int error)
2096 {
2097 	struct stripe_head *sh = bi->bi_private;
2098 	struct r5conf *conf = sh->raid_conf;
2099 	int disks = sh->disks, i;
2100 	struct md_rdev *uninitialized_var(rdev);
2101 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2102 	sector_t first_bad;
2103 	int bad_sectors;
2104 	int replacement = 0;
2105 
2106 	for (i = 0 ; i < disks; i++) {
2107 		if (bi == &sh->dev[i].req) {
2108 			rdev = conf->disks[i].rdev;
2109 			break;
2110 		}
2111 		if (bi == &sh->dev[i].rreq) {
2112 			rdev = conf->disks[i].replacement;
2113 			if (rdev)
2114 				replacement = 1;
2115 			else
2116 				/* rdev was removed and 'replacement'
2117 				 * replaced it.  rdev is not removed
2118 				 * until all requests are finished.
2119 				 */
2120 				rdev = conf->disks[i].rdev;
2121 			break;
2122 		}
2123 	}
2124 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2125 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2126 		uptodate);
2127 	if (i == disks) {
2128 		BUG();
2129 		return;
2130 	}
2131 
2132 	if (replacement) {
2133 		if (!uptodate)
2134 			md_error(conf->mddev, rdev);
2135 		else if (is_badblock(rdev, sh->sector,
2136 				     STRIPE_SECTORS,
2137 				     &first_bad, &bad_sectors))
2138 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2139 	} else {
2140 		if (!uptodate) {
2141 			set_bit(STRIPE_DEGRADED, &sh->state);
2142 			set_bit(WriteErrorSeen, &rdev->flags);
2143 			set_bit(R5_WriteError, &sh->dev[i].flags);
2144 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2145 				set_bit(MD_RECOVERY_NEEDED,
2146 					&rdev->mddev->recovery);
2147 		} else if (is_badblock(rdev, sh->sector,
2148 				       STRIPE_SECTORS,
2149 				       &first_bad, &bad_sectors)) {
2150 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2151 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2152 				/* That was a successful write so make
2153 				 * sure it looks like we already did
2154 				 * a re-write.
2155 				 */
2156 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2157 		}
2158 	}
2159 	rdev_dec_pending(rdev, conf->mddev);
2160 
2161 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2162 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2163 	set_bit(STRIPE_HANDLE, &sh->state);
2164 	release_stripe(sh);
2165 }
2166 
2167 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2168 
2169 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2170 {
2171 	struct r5dev *dev = &sh->dev[i];
2172 
2173 	bio_init(&dev->req);
2174 	dev->req.bi_io_vec = &dev->vec;
2175 	dev->req.bi_max_vecs = 1;
2176 	dev->req.bi_private = sh;
2177 
2178 	bio_init(&dev->rreq);
2179 	dev->rreq.bi_io_vec = &dev->rvec;
2180 	dev->rreq.bi_max_vecs = 1;
2181 	dev->rreq.bi_private = sh;
2182 
2183 	dev->flags = 0;
2184 	dev->sector = compute_blocknr(sh, i, previous);
2185 }
2186 
2187 static void error(struct mddev *mddev, struct md_rdev *rdev)
2188 {
2189 	char b[BDEVNAME_SIZE];
2190 	struct r5conf *conf = mddev->private;
2191 	unsigned long flags;
2192 	pr_debug("raid456: error called\n");
2193 
2194 	spin_lock_irqsave(&conf->device_lock, flags);
2195 	clear_bit(In_sync, &rdev->flags);
2196 	mddev->degraded = calc_degraded(conf);
2197 	spin_unlock_irqrestore(&conf->device_lock, flags);
2198 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2199 
2200 	set_bit(Blocked, &rdev->flags);
2201 	set_bit(Faulty, &rdev->flags);
2202 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2203 	printk(KERN_ALERT
2204 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2205 	       "md/raid:%s: Operation continuing on %d devices.\n",
2206 	       mdname(mddev),
2207 	       bdevname(rdev->bdev, b),
2208 	       mdname(mddev),
2209 	       conf->raid_disks - mddev->degraded);
2210 }
2211 
2212 /*
2213  * Input: a 'big' sector number,
2214  * Output: index of the data and parity disk, and the sector # in them.
2215  */
2216 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2217 				     int previous, int *dd_idx,
2218 				     struct stripe_head *sh)
2219 {
2220 	sector_t stripe, stripe2;
2221 	sector_t chunk_number;
2222 	unsigned int chunk_offset;
2223 	int pd_idx, qd_idx;
2224 	int ddf_layout = 0;
2225 	sector_t new_sector;
2226 	int algorithm = previous ? conf->prev_algo
2227 				 : conf->algorithm;
2228 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2229 					 : conf->chunk_sectors;
2230 	int raid_disks = previous ? conf->previous_raid_disks
2231 				  : conf->raid_disks;
2232 	int data_disks = raid_disks - conf->max_degraded;
2233 
2234 	/* First compute the information on this sector */
2235 
2236 	/*
2237 	 * Compute the chunk number and the sector offset inside the chunk
2238 	 */
2239 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2240 	chunk_number = r_sector;
2241 
2242 	/*
2243 	 * Compute the stripe number
2244 	 */
2245 	stripe = chunk_number;
2246 	*dd_idx = sector_div(stripe, data_disks);
2247 	stripe2 = stripe;
2248 	/*
2249 	 * Select the parity disk based on the user selected algorithm.
2250 	 */
2251 	pd_idx = qd_idx = -1;
2252 	switch(conf->level) {
2253 	case 4:
2254 		pd_idx = data_disks;
2255 		break;
2256 	case 5:
2257 		switch (algorithm) {
2258 		case ALGORITHM_LEFT_ASYMMETRIC:
2259 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2260 			if (*dd_idx >= pd_idx)
2261 				(*dd_idx)++;
2262 			break;
2263 		case ALGORITHM_RIGHT_ASYMMETRIC:
2264 			pd_idx = sector_div(stripe2, raid_disks);
2265 			if (*dd_idx >= pd_idx)
2266 				(*dd_idx)++;
2267 			break;
2268 		case ALGORITHM_LEFT_SYMMETRIC:
2269 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2270 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2271 			break;
2272 		case ALGORITHM_RIGHT_SYMMETRIC:
2273 			pd_idx = sector_div(stripe2, raid_disks);
2274 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2275 			break;
2276 		case ALGORITHM_PARITY_0:
2277 			pd_idx = 0;
2278 			(*dd_idx)++;
2279 			break;
2280 		case ALGORITHM_PARITY_N:
2281 			pd_idx = data_disks;
2282 			break;
2283 		default:
2284 			BUG();
2285 		}
2286 		break;
2287 	case 6:
2288 
2289 		switch (algorithm) {
2290 		case ALGORITHM_LEFT_ASYMMETRIC:
2291 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2292 			qd_idx = pd_idx + 1;
2293 			if (pd_idx == raid_disks-1) {
2294 				(*dd_idx)++;	/* Q D D D P */
2295 				qd_idx = 0;
2296 			} else if (*dd_idx >= pd_idx)
2297 				(*dd_idx) += 2; /* D D P Q D */
2298 			break;
2299 		case ALGORITHM_RIGHT_ASYMMETRIC:
2300 			pd_idx = sector_div(stripe2, raid_disks);
2301 			qd_idx = pd_idx + 1;
2302 			if (pd_idx == raid_disks-1) {
2303 				(*dd_idx)++;	/* Q D D D P */
2304 				qd_idx = 0;
2305 			} else if (*dd_idx >= pd_idx)
2306 				(*dd_idx) += 2; /* D D P Q D */
2307 			break;
2308 		case ALGORITHM_LEFT_SYMMETRIC:
2309 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2310 			qd_idx = (pd_idx + 1) % raid_disks;
2311 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2312 			break;
2313 		case ALGORITHM_RIGHT_SYMMETRIC:
2314 			pd_idx = sector_div(stripe2, raid_disks);
2315 			qd_idx = (pd_idx + 1) % raid_disks;
2316 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2317 			break;
2318 
2319 		case ALGORITHM_PARITY_0:
2320 			pd_idx = 0;
2321 			qd_idx = 1;
2322 			(*dd_idx) += 2;
2323 			break;
2324 		case ALGORITHM_PARITY_N:
2325 			pd_idx = data_disks;
2326 			qd_idx = data_disks + 1;
2327 			break;
2328 
2329 		case ALGORITHM_ROTATING_ZERO_RESTART:
2330 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2331 			 * of blocks for computing Q is different.
2332 			 */
2333 			pd_idx = sector_div(stripe2, raid_disks);
2334 			qd_idx = pd_idx + 1;
2335 			if (pd_idx == raid_disks-1) {
2336 				(*dd_idx)++;	/* Q D D D P */
2337 				qd_idx = 0;
2338 			} else if (*dd_idx >= pd_idx)
2339 				(*dd_idx) += 2; /* D D P Q D */
2340 			ddf_layout = 1;
2341 			break;
2342 
2343 		case ALGORITHM_ROTATING_N_RESTART:
2344 			/* Same a left_asymmetric, by first stripe is
2345 			 * D D D P Q  rather than
2346 			 * Q D D D P
2347 			 */
2348 			stripe2 += 1;
2349 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2350 			qd_idx = pd_idx + 1;
2351 			if (pd_idx == raid_disks-1) {
2352 				(*dd_idx)++;	/* Q D D D P */
2353 				qd_idx = 0;
2354 			} else if (*dd_idx >= pd_idx)
2355 				(*dd_idx) += 2; /* D D P Q D */
2356 			ddf_layout = 1;
2357 			break;
2358 
2359 		case ALGORITHM_ROTATING_N_CONTINUE:
2360 			/* Same as left_symmetric but Q is before P */
2361 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2362 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2363 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2364 			ddf_layout = 1;
2365 			break;
2366 
2367 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2368 			/* RAID5 left_asymmetric, with Q on last device */
2369 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2370 			if (*dd_idx >= pd_idx)
2371 				(*dd_idx)++;
2372 			qd_idx = raid_disks - 1;
2373 			break;
2374 
2375 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2376 			pd_idx = sector_div(stripe2, raid_disks-1);
2377 			if (*dd_idx >= pd_idx)
2378 				(*dd_idx)++;
2379 			qd_idx = raid_disks - 1;
2380 			break;
2381 
2382 		case ALGORITHM_LEFT_SYMMETRIC_6:
2383 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2384 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2385 			qd_idx = raid_disks - 1;
2386 			break;
2387 
2388 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2389 			pd_idx = sector_div(stripe2, raid_disks-1);
2390 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2391 			qd_idx = raid_disks - 1;
2392 			break;
2393 
2394 		case ALGORITHM_PARITY_0_6:
2395 			pd_idx = 0;
2396 			(*dd_idx)++;
2397 			qd_idx = raid_disks - 1;
2398 			break;
2399 
2400 		default:
2401 			BUG();
2402 		}
2403 		break;
2404 	}
2405 
2406 	if (sh) {
2407 		sh->pd_idx = pd_idx;
2408 		sh->qd_idx = qd_idx;
2409 		sh->ddf_layout = ddf_layout;
2410 	}
2411 	/*
2412 	 * Finally, compute the new sector number
2413 	 */
2414 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2415 	return new_sector;
2416 }
2417 
2418 
2419 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2420 {
2421 	struct r5conf *conf = sh->raid_conf;
2422 	int raid_disks = sh->disks;
2423 	int data_disks = raid_disks - conf->max_degraded;
2424 	sector_t new_sector = sh->sector, check;
2425 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2426 					 : conf->chunk_sectors;
2427 	int algorithm = previous ? conf->prev_algo
2428 				 : conf->algorithm;
2429 	sector_t stripe;
2430 	int chunk_offset;
2431 	sector_t chunk_number;
2432 	int dummy1, dd_idx = i;
2433 	sector_t r_sector;
2434 	struct stripe_head sh2;
2435 
2436 
2437 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2438 	stripe = new_sector;
2439 
2440 	if (i == sh->pd_idx)
2441 		return 0;
2442 	switch(conf->level) {
2443 	case 4: break;
2444 	case 5:
2445 		switch (algorithm) {
2446 		case ALGORITHM_LEFT_ASYMMETRIC:
2447 		case ALGORITHM_RIGHT_ASYMMETRIC:
2448 			if (i > sh->pd_idx)
2449 				i--;
2450 			break;
2451 		case ALGORITHM_LEFT_SYMMETRIC:
2452 		case ALGORITHM_RIGHT_SYMMETRIC:
2453 			if (i < sh->pd_idx)
2454 				i += raid_disks;
2455 			i -= (sh->pd_idx + 1);
2456 			break;
2457 		case ALGORITHM_PARITY_0:
2458 			i -= 1;
2459 			break;
2460 		case ALGORITHM_PARITY_N:
2461 			break;
2462 		default:
2463 			BUG();
2464 		}
2465 		break;
2466 	case 6:
2467 		if (i == sh->qd_idx)
2468 			return 0; /* It is the Q disk */
2469 		switch (algorithm) {
2470 		case ALGORITHM_LEFT_ASYMMETRIC:
2471 		case ALGORITHM_RIGHT_ASYMMETRIC:
2472 		case ALGORITHM_ROTATING_ZERO_RESTART:
2473 		case ALGORITHM_ROTATING_N_RESTART:
2474 			if (sh->pd_idx == raid_disks-1)
2475 				i--;	/* Q D D D P */
2476 			else if (i > sh->pd_idx)
2477 				i -= 2; /* D D P Q D */
2478 			break;
2479 		case ALGORITHM_LEFT_SYMMETRIC:
2480 		case ALGORITHM_RIGHT_SYMMETRIC:
2481 			if (sh->pd_idx == raid_disks-1)
2482 				i--; /* Q D D D P */
2483 			else {
2484 				/* D D P Q D */
2485 				if (i < sh->pd_idx)
2486 					i += raid_disks;
2487 				i -= (sh->pd_idx + 2);
2488 			}
2489 			break;
2490 		case ALGORITHM_PARITY_0:
2491 			i -= 2;
2492 			break;
2493 		case ALGORITHM_PARITY_N:
2494 			break;
2495 		case ALGORITHM_ROTATING_N_CONTINUE:
2496 			/* Like left_symmetric, but P is before Q */
2497 			if (sh->pd_idx == 0)
2498 				i--;	/* P D D D Q */
2499 			else {
2500 				/* D D Q P D */
2501 				if (i < sh->pd_idx)
2502 					i += raid_disks;
2503 				i -= (sh->pd_idx + 1);
2504 			}
2505 			break;
2506 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2507 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2508 			if (i > sh->pd_idx)
2509 				i--;
2510 			break;
2511 		case ALGORITHM_LEFT_SYMMETRIC_6:
2512 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2513 			if (i < sh->pd_idx)
2514 				i += data_disks + 1;
2515 			i -= (sh->pd_idx + 1);
2516 			break;
2517 		case ALGORITHM_PARITY_0_6:
2518 			i -= 1;
2519 			break;
2520 		default:
2521 			BUG();
2522 		}
2523 		break;
2524 	}
2525 
2526 	chunk_number = stripe * data_disks + i;
2527 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2528 
2529 	check = raid5_compute_sector(conf, r_sector,
2530 				     previous, &dummy1, &sh2);
2531 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2532 		|| sh2.qd_idx != sh->qd_idx) {
2533 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2534 		       mdname(conf->mddev));
2535 		return 0;
2536 	}
2537 	return r_sector;
2538 }
2539 
2540 
2541 static void
2542 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2543 			 int rcw, int expand)
2544 {
2545 	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2546 	struct r5conf *conf = sh->raid_conf;
2547 	int level = conf->level;
2548 
2549 	if (rcw) {
2550 
2551 		for (i = disks; i--; ) {
2552 			struct r5dev *dev = &sh->dev[i];
2553 
2554 			if (dev->towrite) {
2555 				set_bit(R5_LOCKED, &dev->flags);
2556 				set_bit(R5_Wantdrain, &dev->flags);
2557 				if (!expand)
2558 					clear_bit(R5_UPTODATE, &dev->flags);
2559 				s->locked++;
2560 			}
2561 		}
2562 		/* if we are not expanding this is a proper write request, and
2563 		 * there will be bios with new data to be drained into the
2564 		 * stripe cache
2565 		 */
2566 		if (!expand) {
2567 			if (!s->locked)
2568 				/* False alarm, nothing to do */
2569 				return;
2570 			sh->reconstruct_state = reconstruct_state_drain_run;
2571 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2572 		} else
2573 			sh->reconstruct_state = reconstruct_state_run;
2574 
2575 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2576 
2577 		if (s->locked + conf->max_degraded == disks)
2578 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2579 				atomic_inc(&conf->pending_full_writes);
2580 	} else {
2581 		BUG_ON(level == 6);
2582 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2583 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2584 
2585 		for (i = disks; i--; ) {
2586 			struct r5dev *dev = &sh->dev[i];
2587 			if (i == pd_idx)
2588 				continue;
2589 
2590 			if (dev->towrite &&
2591 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2592 			     test_bit(R5_Wantcompute, &dev->flags))) {
2593 				set_bit(R5_Wantdrain, &dev->flags);
2594 				set_bit(R5_LOCKED, &dev->flags);
2595 				clear_bit(R5_UPTODATE, &dev->flags);
2596 				s->locked++;
2597 			}
2598 		}
2599 		if (!s->locked)
2600 			/* False alarm - nothing to do */
2601 			return;
2602 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2603 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2604 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2605 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2606 	}
2607 
2608 	/* keep the parity disk(s) locked while asynchronous operations
2609 	 * are in flight
2610 	 */
2611 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2612 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2613 	s->locked++;
2614 
2615 	if (level == 6) {
2616 		int qd_idx = sh->qd_idx;
2617 		struct r5dev *dev = &sh->dev[qd_idx];
2618 
2619 		set_bit(R5_LOCKED, &dev->flags);
2620 		clear_bit(R5_UPTODATE, &dev->flags);
2621 		s->locked++;
2622 	}
2623 
2624 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2625 		__func__, (unsigned long long)sh->sector,
2626 		s->locked, s->ops_request);
2627 }
2628 
2629 /*
2630  * Each stripe/dev can have one or more bion attached.
2631  * toread/towrite point to the first in a chain.
2632  * The bi_next chain must be in order.
2633  */
2634 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2635 {
2636 	struct bio **bip;
2637 	struct r5conf *conf = sh->raid_conf;
2638 	int firstwrite=0;
2639 
2640 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2641 		(unsigned long long)bi->bi_iter.bi_sector,
2642 		(unsigned long long)sh->sector);
2643 
2644 	/*
2645 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2646 	 * reference count to avoid race. The reference count should already be
2647 	 * increased before this function is called (for example, in
2648 	 * make_request()), so other bio sharing this stripe will not free the
2649 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2650 	 * protect it.
2651 	 */
2652 	spin_lock_irq(&sh->stripe_lock);
2653 	if (forwrite) {
2654 		bip = &sh->dev[dd_idx].towrite;
2655 		if (*bip == NULL)
2656 			firstwrite = 1;
2657 	} else
2658 		bip = &sh->dev[dd_idx].toread;
2659 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2660 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2661 			goto overlap;
2662 		bip = & (*bip)->bi_next;
2663 	}
2664 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2665 		goto overlap;
2666 
2667 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2668 	if (*bip)
2669 		bi->bi_next = *bip;
2670 	*bip = bi;
2671 	raid5_inc_bi_active_stripes(bi);
2672 
2673 	if (forwrite) {
2674 		/* check if page is covered */
2675 		sector_t sector = sh->dev[dd_idx].sector;
2676 		for (bi=sh->dev[dd_idx].towrite;
2677 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2678 			     bi && bi->bi_iter.bi_sector <= sector;
2679 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2680 			if (bio_end_sector(bi) >= sector)
2681 				sector = bio_end_sector(bi);
2682 		}
2683 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2684 			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2685 	}
2686 
2687 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2688 		(unsigned long long)(*bip)->bi_iter.bi_sector,
2689 		(unsigned long long)sh->sector, dd_idx);
2690 	spin_unlock_irq(&sh->stripe_lock);
2691 
2692 	if (conf->mddev->bitmap && firstwrite) {
2693 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2694 				  STRIPE_SECTORS, 0);
2695 		sh->bm_seq = conf->seq_flush+1;
2696 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2697 	}
2698 	return 1;
2699 
2700  overlap:
2701 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2702 	spin_unlock_irq(&sh->stripe_lock);
2703 	return 0;
2704 }
2705 
2706 static void end_reshape(struct r5conf *conf);
2707 
2708 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2709 			    struct stripe_head *sh)
2710 {
2711 	int sectors_per_chunk =
2712 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2713 	int dd_idx;
2714 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2715 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2716 
2717 	raid5_compute_sector(conf,
2718 			     stripe * (disks - conf->max_degraded)
2719 			     *sectors_per_chunk + chunk_offset,
2720 			     previous,
2721 			     &dd_idx, sh);
2722 }
2723 
2724 static void
2725 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2726 				struct stripe_head_state *s, int disks,
2727 				struct bio **return_bi)
2728 {
2729 	int i;
2730 	for (i = disks; i--; ) {
2731 		struct bio *bi;
2732 		int bitmap_end = 0;
2733 
2734 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2735 			struct md_rdev *rdev;
2736 			rcu_read_lock();
2737 			rdev = rcu_dereference(conf->disks[i].rdev);
2738 			if (rdev && test_bit(In_sync, &rdev->flags))
2739 				atomic_inc(&rdev->nr_pending);
2740 			else
2741 				rdev = NULL;
2742 			rcu_read_unlock();
2743 			if (rdev) {
2744 				if (!rdev_set_badblocks(
2745 					    rdev,
2746 					    sh->sector,
2747 					    STRIPE_SECTORS, 0))
2748 					md_error(conf->mddev, rdev);
2749 				rdev_dec_pending(rdev, conf->mddev);
2750 			}
2751 		}
2752 		spin_lock_irq(&sh->stripe_lock);
2753 		/* fail all writes first */
2754 		bi = sh->dev[i].towrite;
2755 		sh->dev[i].towrite = NULL;
2756 		spin_unlock_irq(&sh->stripe_lock);
2757 		if (bi)
2758 			bitmap_end = 1;
2759 
2760 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2761 			wake_up(&conf->wait_for_overlap);
2762 
2763 		while (bi && bi->bi_iter.bi_sector <
2764 			sh->dev[i].sector + STRIPE_SECTORS) {
2765 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2766 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2767 			if (!raid5_dec_bi_active_stripes(bi)) {
2768 				md_write_end(conf->mddev);
2769 				bi->bi_next = *return_bi;
2770 				*return_bi = bi;
2771 			}
2772 			bi = nextbi;
2773 		}
2774 		if (bitmap_end)
2775 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2776 				STRIPE_SECTORS, 0, 0);
2777 		bitmap_end = 0;
2778 		/* and fail all 'written' */
2779 		bi = sh->dev[i].written;
2780 		sh->dev[i].written = NULL;
2781 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
2782 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
2783 			sh->dev[i].page = sh->dev[i].orig_page;
2784 		}
2785 
2786 		if (bi) bitmap_end = 1;
2787 		while (bi && bi->bi_iter.bi_sector <
2788 		       sh->dev[i].sector + STRIPE_SECTORS) {
2789 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2790 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2791 			if (!raid5_dec_bi_active_stripes(bi)) {
2792 				md_write_end(conf->mddev);
2793 				bi->bi_next = *return_bi;
2794 				*return_bi = bi;
2795 			}
2796 			bi = bi2;
2797 		}
2798 
2799 		/* fail any reads if this device is non-operational and
2800 		 * the data has not reached the cache yet.
2801 		 */
2802 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2803 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2804 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
2805 			spin_lock_irq(&sh->stripe_lock);
2806 			bi = sh->dev[i].toread;
2807 			sh->dev[i].toread = NULL;
2808 			spin_unlock_irq(&sh->stripe_lock);
2809 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2810 				wake_up(&conf->wait_for_overlap);
2811 			while (bi && bi->bi_iter.bi_sector <
2812 			       sh->dev[i].sector + STRIPE_SECTORS) {
2813 				struct bio *nextbi =
2814 					r5_next_bio(bi, sh->dev[i].sector);
2815 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2816 				if (!raid5_dec_bi_active_stripes(bi)) {
2817 					bi->bi_next = *return_bi;
2818 					*return_bi = bi;
2819 				}
2820 				bi = nextbi;
2821 			}
2822 		}
2823 		if (bitmap_end)
2824 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2825 					STRIPE_SECTORS, 0, 0);
2826 		/* If we were in the middle of a write the parity block might
2827 		 * still be locked - so just clear all R5_LOCKED flags
2828 		 */
2829 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2830 	}
2831 
2832 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2833 		if (atomic_dec_and_test(&conf->pending_full_writes))
2834 			md_wakeup_thread(conf->mddev->thread);
2835 }
2836 
2837 static void
2838 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2839 		   struct stripe_head_state *s)
2840 {
2841 	int abort = 0;
2842 	int i;
2843 
2844 	clear_bit(STRIPE_SYNCING, &sh->state);
2845 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2846 		wake_up(&conf->wait_for_overlap);
2847 	s->syncing = 0;
2848 	s->replacing = 0;
2849 	/* There is nothing more to do for sync/check/repair.
2850 	 * Don't even need to abort as that is handled elsewhere
2851 	 * if needed, and not always wanted e.g. if there is a known
2852 	 * bad block here.
2853 	 * For recover/replace we need to record a bad block on all
2854 	 * non-sync devices, or abort the recovery
2855 	 */
2856 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2857 		/* During recovery devices cannot be removed, so
2858 		 * locking and refcounting of rdevs is not needed
2859 		 */
2860 		for (i = 0; i < conf->raid_disks; i++) {
2861 			struct md_rdev *rdev = conf->disks[i].rdev;
2862 			if (rdev
2863 			    && !test_bit(Faulty, &rdev->flags)
2864 			    && !test_bit(In_sync, &rdev->flags)
2865 			    && !rdev_set_badblocks(rdev, sh->sector,
2866 						   STRIPE_SECTORS, 0))
2867 				abort = 1;
2868 			rdev = conf->disks[i].replacement;
2869 			if (rdev
2870 			    && !test_bit(Faulty, &rdev->flags)
2871 			    && !test_bit(In_sync, &rdev->flags)
2872 			    && !rdev_set_badblocks(rdev, sh->sector,
2873 						   STRIPE_SECTORS, 0))
2874 				abort = 1;
2875 		}
2876 		if (abort)
2877 			conf->recovery_disabled =
2878 				conf->mddev->recovery_disabled;
2879 	}
2880 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2881 }
2882 
2883 static int want_replace(struct stripe_head *sh, int disk_idx)
2884 {
2885 	struct md_rdev *rdev;
2886 	int rv = 0;
2887 	/* Doing recovery so rcu locking not required */
2888 	rdev = sh->raid_conf->disks[disk_idx].replacement;
2889 	if (rdev
2890 	    && !test_bit(Faulty, &rdev->flags)
2891 	    && !test_bit(In_sync, &rdev->flags)
2892 	    && (rdev->recovery_offset <= sh->sector
2893 		|| rdev->mddev->recovery_cp <= sh->sector))
2894 		rv = 1;
2895 
2896 	return rv;
2897 }
2898 
2899 /* fetch_block - checks the given member device to see if its data needs
2900  * to be read or computed to satisfy a request.
2901  *
2902  * Returns 1 when no more member devices need to be checked, otherwise returns
2903  * 0 to tell the loop in handle_stripe_fill to continue
2904  */
2905 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2906 		       int disk_idx, int disks)
2907 {
2908 	struct r5dev *dev = &sh->dev[disk_idx];
2909 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2910 				  &sh->dev[s->failed_num[1]] };
2911 
2912 	/* is the data in this block needed, and can we get it? */
2913 	if (!test_bit(R5_LOCKED, &dev->flags) &&
2914 	    !test_bit(R5_UPTODATE, &dev->flags) &&
2915 	    (dev->toread ||
2916 	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2917 	     s->syncing || s->expanding ||
2918 	     (s->replacing && want_replace(sh, disk_idx)) ||
2919 	     (s->failed >= 1 && fdev[0]->toread) ||
2920 	     (s->failed >= 2 && fdev[1]->toread) ||
2921 	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2922 	      (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) &&
2923 	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2924 	     (sh->raid_conf->level == 6 && s->failed && s->to_write &&
2925 	      s->to_write < sh->raid_conf->raid_disks - 2 &&
2926 	      (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))))) {
2927 		/* we would like to get this block, possibly by computing it,
2928 		 * otherwise read it if the backing disk is insync
2929 		 */
2930 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2931 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
2932 		if ((s->uptodate == disks - 1) &&
2933 		    (s->failed && (disk_idx == s->failed_num[0] ||
2934 				   disk_idx == s->failed_num[1]))) {
2935 			/* have disk failed, and we're requested to fetch it;
2936 			 * do compute it
2937 			 */
2938 			pr_debug("Computing stripe %llu block %d\n",
2939 			       (unsigned long long)sh->sector, disk_idx);
2940 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2941 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2942 			set_bit(R5_Wantcompute, &dev->flags);
2943 			sh->ops.target = disk_idx;
2944 			sh->ops.target2 = -1; /* no 2nd target */
2945 			s->req_compute = 1;
2946 			/* Careful: from this point on 'uptodate' is in the eye
2947 			 * of raid_run_ops which services 'compute' operations
2948 			 * before writes. R5_Wantcompute flags a block that will
2949 			 * be R5_UPTODATE by the time it is needed for a
2950 			 * subsequent operation.
2951 			 */
2952 			s->uptodate++;
2953 			return 1;
2954 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2955 			/* Computing 2-failure is *very* expensive; only
2956 			 * do it if failed >= 2
2957 			 */
2958 			int other;
2959 			for (other = disks; other--; ) {
2960 				if (other == disk_idx)
2961 					continue;
2962 				if (!test_bit(R5_UPTODATE,
2963 				      &sh->dev[other].flags))
2964 					break;
2965 			}
2966 			BUG_ON(other < 0);
2967 			pr_debug("Computing stripe %llu blocks %d,%d\n",
2968 			       (unsigned long long)sh->sector,
2969 			       disk_idx, other);
2970 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2971 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2972 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2973 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2974 			sh->ops.target = disk_idx;
2975 			sh->ops.target2 = other;
2976 			s->uptodate += 2;
2977 			s->req_compute = 1;
2978 			return 1;
2979 		} else if (test_bit(R5_Insync, &dev->flags)) {
2980 			set_bit(R5_LOCKED, &dev->flags);
2981 			set_bit(R5_Wantread, &dev->flags);
2982 			s->locked++;
2983 			pr_debug("Reading block %d (sync=%d)\n",
2984 				disk_idx, s->syncing);
2985 		}
2986 	}
2987 
2988 	return 0;
2989 }
2990 
2991 /**
2992  * handle_stripe_fill - read or compute data to satisfy pending requests.
2993  */
2994 static void handle_stripe_fill(struct stripe_head *sh,
2995 			       struct stripe_head_state *s,
2996 			       int disks)
2997 {
2998 	int i;
2999 
3000 	/* look for blocks to read/compute, skip this if a compute
3001 	 * is already in flight, or if the stripe contents are in the
3002 	 * midst of changing due to a write
3003 	 */
3004 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3005 	    !sh->reconstruct_state)
3006 		for (i = disks; i--; )
3007 			if (fetch_block(sh, s, i, disks))
3008 				break;
3009 	set_bit(STRIPE_HANDLE, &sh->state);
3010 }
3011 
3012 
3013 /* handle_stripe_clean_event
3014  * any written block on an uptodate or failed drive can be returned.
3015  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3016  * never LOCKED, so we don't need to test 'failed' directly.
3017  */
3018 static void handle_stripe_clean_event(struct r5conf *conf,
3019 	struct stripe_head *sh, int disks, struct bio **return_bi)
3020 {
3021 	int i;
3022 	struct r5dev *dev;
3023 	int discard_pending = 0;
3024 
3025 	for (i = disks; i--; )
3026 		if (sh->dev[i].written) {
3027 			dev = &sh->dev[i];
3028 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3029 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3030 			     test_bit(R5_Discard, &dev->flags) ||
3031 			     test_bit(R5_SkipCopy, &dev->flags))) {
3032 				/* We can return any write requests */
3033 				struct bio *wbi, *wbi2;
3034 				pr_debug("Return write for disc %d\n", i);
3035 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3036 					clear_bit(R5_UPTODATE, &dev->flags);
3037 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3038 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3039 					dev->page = dev->orig_page;
3040 				}
3041 				wbi = dev->written;
3042 				dev->written = NULL;
3043 				while (wbi && wbi->bi_iter.bi_sector <
3044 					dev->sector + STRIPE_SECTORS) {
3045 					wbi2 = r5_next_bio(wbi, dev->sector);
3046 					if (!raid5_dec_bi_active_stripes(wbi)) {
3047 						md_write_end(conf->mddev);
3048 						wbi->bi_next = *return_bi;
3049 						*return_bi = wbi;
3050 					}
3051 					wbi = wbi2;
3052 				}
3053 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3054 						STRIPE_SECTORS,
3055 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3056 						0);
3057 			} else if (test_bit(R5_Discard, &dev->flags))
3058 				discard_pending = 1;
3059 			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3060 			WARN_ON(dev->page != dev->orig_page);
3061 		}
3062 	if (!discard_pending &&
3063 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3064 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3065 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3066 		if (sh->qd_idx >= 0) {
3067 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3068 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3069 		}
3070 		/* now that discard is done we can proceed with any sync */
3071 		clear_bit(STRIPE_DISCARD, &sh->state);
3072 		/*
3073 		 * SCSI discard will change some bio fields and the stripe has
3074 		 * no updated data, so remove it from hash list and the stripe
3075 		 * will be reinitialized
3076 		 */
3077 		spin_lock_irq(&conf->device_lock);
3078 		remove_hash(sh);
3079 		spin_unlock_irq(&conf->device_lock);
3080 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3081 			set_bit(STRIPE_HANDLE, &sh->state);
3082 
3083 	}
3084 
3085 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3086 		if (atomic_dec_and_test(&conf->pending_full_writes))
3087 			md_wakeup_thread(conf->mddev->thread);
3088 }
3089 
3090 static void handle_stripe_dirtying(struct r5conf *conf,
3091 				   struct stripe_head *sh,
3092 				   struct stripe_head_state *s,
3093 				   int disks)
3094 {
3095 	int rmw = 0, rcw = 0, i;
3096 	sector_t recovery_cp = conf->mddev->recovery_cp;
3097 
3098 	/* RAID6 requires 'rcw' in current implementation.
3099 	 * Otherwise, check whether resync is now happening or should start.
3100 	 * If yes, then the array is dirty (after unclean shutdown or
3101 	 * initial creation), so parity in some stripes might be inconsistent.
3102 	 * In this case, we need to always do reconstruct-write, to ensure
3103 	 * that in case of drive failure or read-error correction, we
3104 	 * generate correct data from the parity.
3105 	 */
3106 	if (conf->max_degraded == 2 ||
3107 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3108 		/* Calculate the real rcw later - for now make it
3109 		 * look like rcw is cheaper
3110 		 */
3111 		rcw = 1; rmw = 2;
3112 		pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3113 			 conf->max_degraded, (unsigned long long)recovery_cp,
3114 			 (unsigned long long)sh->sector);
3115 	} else for (i = disks; i--; ) {
3116 		/* would I have to read this buffer for read_modify_write */
3117 		struct r5dev *dev = &sh->dev[i];
3118 		if ((dev->towrite || i == sh->pd_idx) &&
3119 		    !test_bit(R5_LOCKED, &dev->flags) &&
3120 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3121 		      test_bit(R5_Wantcompute, &dev->flags))) {
3122 			if (test_bit(R5_Insync, &dev->flags))
3123 				rmw++;
3124 			else
3125 				rmw += 2*disks;  /* cannot read it */
3126 		}
3127 		/* Would I have to read this buffer for reconstruct_write */
3128 		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3129 		    !test_bit(R5_LOCKED, &dev->flags) &&
3130 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3131 		    test_bit(R5_Wantcompute, &dev->flags))) {
3132 			if (test_bit(R5_Insync, &dev->flags))
3133 				rcw++;
3134 			else
3135 				rcw += 2*disks;
3136 		}
3137 	}
3138 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3139 		(unsigned long long)sh->sector, rmw, rcw);
3140 	set_bit(STRIPE_HANDLE, &sh->state);
3141 	if (rmw < rcw && rmw > 0) {
3142 		/* prefer read-modify-write, but need to get some data */
3143 		if (conf->mddev->queue)
3144 			blk_add_trace_msg(conf->mddev->queue,
3145 					  "raid5 rmw %llu %d",
3146 					  (unsigned long long)sh->sector, rmw);
3147 		for (i = disks; i--; ) {
3148 			struct r5dev *dev = &sh->dev[i];
3149 			if ((dev->towrite || i == sh->pd_idx) &&
3150 			    !test_bit(R5_LOCKED, &dev->flags) &&
3151 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3152 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3153 			    test_bit(R5_Insync, &dev->flags)) {
3154 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3155 					     &sh->state)) {
3156 					pr_debug("Read_old block %d for r-m-w\n",
3157 						 i);
3158 					set_bit(R5_LOCKED, &dev->flags);
3159 					set_bit(R5_Wantread, &dev->flags);
3160 					s->locked++;
3161 				} else {
3162 					set_bit(STRIPE_DELAYED, &sh->state);
3163 					set_bit(STRIPE_HANDLE, &sh->state);
3164 				}
3165 			}
3166 		}
3167 	}
3168 	if (rcw <= rmw && rcw > 0) {
3169 		/* want reconstruct write, but need to get some data */
3170 		int qread =0;
3171 		rcw = 0;
3172 		for (i = disks; i--; ) {
3173 			struct r5dev *dev = &sh->dev[i];
3174 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3175 			    i != sh->pd_idx && i != sh->qd_idx &&
3176 			    !test_bit(R5_LOCKED, &dev->flags) &&
3177 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3178 			      test_bit(R5_Wantcompute, &dev->flags))) {
3179 				rcw++;
3180 				if (test_bit(R5_Insync, &dev->flags) &&
3181 				    test_bit(STRIPE_PREREAD_ACTIVE,
3182 					     &sh->state)) {
3183 					pr_debug("Read_old block "
3184 						"%d for Reconstruct\n", i);
3185 					set_bit(R5_LOCKED, &dev->flags);
3186 					set_bit(R5_Wantread, &dev->flags);
3187 					s->locked++;
3188 					qread++;
3189 				} else {
3190 					set_bit(STRIPE_DELAYED, &sh->state);
3191 					set_bit(STRIPE_HANDLE, &sh->state);
3192 				}
3193 			}
3194 		}
3195 		if (rcw && conf->mddev->queue)
3196 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3197 					  (unsigned long long)sh->sector,
3198 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3199 	}
3200 	/* now if nothing is locked, and if we have enough data,
3201 	 * we can start a write request
3202 	 */
3203 	/* since handle_stripe can be called at any time we need to handle the
3204 	 * case where a compute block operation has been submitted and then a
3205 	 * subsequent call wants to start a write request.  raid_run_ops only
3206 	 * handles the case where compute block and reconstruct are requested
3207 	 * simultaneously.  If this is not the case then new writes need to be
3208 	 * held off until the compute completes.
3209 	 */
3210 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3211 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3212 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3213 		schedule_reconstruction(sh, s, rcw == 0, 0);
3214 }
3215 
3216 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3217 				struct stripe_head_state *s, int disks)
3218 {
3219 	struct r5dev *dev = NULL;
3220 
3221 	set_bit(STRIPE_HANDLE, &sh->state);
3222 
3223 	switch (sh->check_state) {
3224 	case check_state_idle:
3225 		/* start a new check operation if there are no failures */
3226 		if (s->failed == 0) {
3227 			BUG_ON(s->uptodate != disks);
3228 			sh->check_state = check_state_run;
3229 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3230 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3231 			s->uptodate--;
3232 			break;
3233 		}
3234 		dev = &sh->dev[s->failed_num[0]];
3235 		/* fall through */
3236 	case check_state_compute_result:
3237 		sh->check_state = check_state_idle;
3238 		if (!dev)
3239 			dev = &sh->dev[sh->pd_idx];
3240 
3241 		/* check that a write has not made the stripe insync */
3242 		if (test_bit(STRIPE_INSYNC, &sh->state))
3243 			break;
3244 
3245 		/* either failed parity check, or recovery is happening */
3246 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3247 		BUG_ON(s->uptodate != disks);
3248 
3249 		set_bit(R5_LOCKED, &dev->flags);
3250 		s->locked++;
3251 		set_bit(R5_Wantwrite, &dev->flags);
3252 
3253 		clear_bit(STRIPE_DEGRADED, &sh->state);
3254 		set_bit(STRIPE_INSYNC, &sh->state);
3255 		break;
3256 	case check_state_run:
3257 		break; /* we will be called again upon completion */
3258 	case check_state_check_result:
3259 		sh->check_state = check_state_idle;
3260 
3261 		/* if a failure occurred during the check operation, leave
3262 		 * STRIPE_INSYNC not set and let the stripe be handled again
3263 		 */
3264 		if (s->failed)
3265 			break;
3266 
3267 		/* handle a successful check operation, if parity is correct
3268 		 * we are done.  Otherwise update the mismatch count and repair
3269 		 * parity if !MD_RECOVERY_CHECK
3270 		 */
3271 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3272 			/* parity is correct (on disc,
3273 			 * not in buffer any more)
3274 			 */
3275 			set_bit(STRIPE_INSYNC, &sh->state);
3276 		else {
3277 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3278 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3279 				/* don't try to repair!! */
3280 				set_bit(STRIPE_INSYNC, &sh->state);
3281 			else {
3282 				sh->check_state = check_state_compute_run;
3283 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3284 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3285 				set_bit(R5_Wantcompute,
3286 					&sh->dev[sh->pd_idx].flags);
3287 				sh->ops.target = sh->pd_idx;
3288 				sh->ops.target2 = -1;
3289 				s->uptodate++;
3290 			}
3291 		}
3292 		break;
3293 	case check_state_compute_run:
3294 		break;
3295 	default:
3296 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3297 		       __func__, sh->check_state,
3298 		       (unsigned long long) sh->sector);
3299 		BUG();
3300 	}
3301 }
3302 
3303 
3304 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3305 				  struct stripe_head_state *s,
3306 				  int disks)
3307 {
3308 	int pd_idx = sh->pd_idx;
3309 	int qd_idx = sh->qd_idx;
3310 	struct r5dev *dev;
3311 
3312 	set_bit(STRIPE_HANDLE, &sh->state);
3313 
3314 	BUG_ON(s->failed > 2);
3315 
3316 	/* Want to check and possibly repair P and Q.
3317 	 * However there could be one 'failed' device, in which
3318 	 * case we can only check one of them, possibly using the
3319 	 * other to generate missing data
3320 	 */
3321 
3322 	switch (sh->check_state) {
3323 	case check_state_idle:
3324 		/* start a new check operation if there are < 2 failures */
3325 		if (s->failed == s->q_failed) {
3326 			/* The only possible failed device holds Q, so it
3327 			 * makes sense to check P (If anything else were failed,
3328 			 * we would have used P to recreate it).
3329 			 */
3330 			sh->check_state = check_state_run;
3331 		}
3332 		if (!s->q_failed && s->failed < 2) {
3333 			/* Q is not failed, and we didn't use it to generate
3334 			 * anything, so it makes sense to check it
3335 			 */
3336 			if (sh->check_state == check_state_run)
3337 				sh->check_state = check_state_run_pq;
3338 			else
3339 				sh->check_state = check_state_run_q;
3340 		}
3341 
3342 		/* discard potentially stale zero_sum_result */
3343 		sh->ops.zero_sum_result = 0;
3344 
3345 		if (sh->check_state == check_state_run) {
3346 			/* async_xor_zero_sum destroys the contents of P */
3347 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3348 			s->uptodate--;
3349 		}
3350 		if (sh->check_state >= check_state_run &&
3351 		    sh->check_state <= check_state_run_pq) {
3352 			/* async_syndrome_zero_sum preserves P and Q, so
3353 			 * no need to mark them !uptodate here
3354 			 */
3355 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3356 			break;
3357 		}
3358 
3359 		/* we have 2-disk failure */
3360 		BUG_ON(s->failed != 2);
3361 		/* fall through */
3362 	case check_state_compute_result:
3363 		sh->check_state = check_state_idle;
3364 
3365 		/* check that a write has not made the stripe insync */
3366 		if (test_bit(STRIPE_INSYNC, &sh->state))
3367 			break;
3368 
3369 		/* now write out any block on a failed drive,
3370 		 * or P or Q if they were recomputed
3371 		 */
3372 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3373 		if (s->failed == 2) {
3374 			dev = &sh->dev[s->failed_num[1]];
3375 			s->locked++;
3376 			set_bit(R5_LOCKED, &dev->flags);
3377 			set_bit(R5_Wantwrite, &dev->flags);
3378 		}
3379 		if (s->failed >= 1) {
3380 			dev = &sh->dev[s->failed_num[0]];
3381 			s->locked++;
3382 			set_bit(R5_LOCKED, &dev->flags);
3383 			set_bit(R5_Wantwrite, &dev->flags);
3384 		}
3385 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3386 			dev = &sh->dev[pd_idx];
3387 			s->locked++;
3388 			set_bit(R5_LOCKED, &dev->flags);
3389 			set_bit(R5_Wantwrite, &dev->flags);
3390 		}
3391 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3392 			dev = &sh->dev[qd_idx];
3393 			s->locked++;
3394 			set_bit(R5_LOCKED, &dev->flags);
3395 			set_bit(R5_Wantwrite, &dev->flags);
3396 		}
3397 		clear_bit(STRIPE_DEGRADED, &sh->state);
3398 
3399 		set_bit(STRIPE_INSYNC, &sh->state);
3400 		break;
3401 	case check_state_run:
3402 	case check_state_run_q:
3403 	case check_state_run_pq:
3404 		break; /* we will be called again upon completion */
3405 	case check_state_check_result:
3406 		sh->check_state = check_state_idle;
3407 
3408 		/* handle a successful check operation, if parity is correct
3409 		 * we are done.  Otherwise update the mismatch count and repair
3410 		 * parity if !MD_RECOVERY_CHECK
3411 		 */
3412 		if (sh->ops.zero_sum_result == 0) {
3413 			/* both parities are correct */
3414 			if (!s->failed)
3415 				set_bit(STRIPE_INSYNC, &sh->state);
3416 			else {
3417 				/* in contrast to the raid5 case we can validate
3418 				 * parity, but still have a failure to write
3419 				 * back
3420 				 */
3421 				sh->check_state = check_state_compute_result;
3422 				/* Returning at this point means that we may go
3423 				 * off and bring p and/or q uptodate again so
3424 				 * we make sure to check zero_sum_result again
3425 				 * to verify if p or q need writeback
3426 				 */
3427 			}
3428 		} else {
3429 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3430 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3431 				/* don't try to repair!! */
3432 				set_bit(STRIPE_INSYNC, &sh->state);
3433 			else {
3434 				int *target = &sh->ops.target;
3435 
3436 				sh->ops.target = -1;
3437 				sh->ops.target2 = -1;
3438 				sh->check_state = check_state_compute_run;
3439 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3440 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3441 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3442 					set_bit(R5_Wantcompute,
3443 						&sh->dev[pd_idx].flags);
3444 					*target = pd_idx;
3445 					target = &sh->ops.target2;
3446 					s->uptodate++;
3447 				}
3448 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3449 					set_bit(R5_Wantcompute,
3450 						&sh->dev[qd_idx].flags);
3451 					*target = qd_idx;
3452 					s->uptodate++;
3453 				}
3454 			}
3455 		}
3456 		break;
3457 	case check_state_compute_run:
3458 		break;
3459 	default:
3460 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3461 		       __func__, sh->check_state,
3462 		       (unsigned long long) sh->sector);
3463 		BUG();
3464 	}
3465 }
3466 
3467 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3468 {
3469 	int i;
3470 
3471 	/* We have read all the blocks in this stripe and now we need to
3472 	 * copy some of them into a target stripe for expand.
3473 	 */
3474 	struct dma_async_tx_descriptor *tx = NULL;
3475 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3476 	for (i = 0; i < sh->disks; i++)
3477 		if (i != sh->pd_idx && i != sh->qd_idx) {
3478 			int dd_idx, j;
3479 			struct stripe_head *sh2;
3480 			struct async_submit_ctl submit;
3481 
3482 			sector_t bn = compute_blocknr(sh, i, 1);
3483 			sector_t s = raid5_compute_sector(conf, bn, 0,
3484 							  &dd_idx, NULL);
3485 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3486 			if (sh2 == NULL)
3487 				/* so far only the early blocks of this stripe
3488 				 * have been requested.  When later blocks
3489 				 * get requested, we will try again
3490 				 */
3491 				continue;
3492 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3493 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3494 				/* must have already done this block */
3495 				release_stripe(sh2);
3496 				continue;
3497 			}
3498 
3499 			/* place all the copies on one channel */
3500 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3501 			tx = async_memcpy(sh2->dev[dd_idx].page,
3502 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3503 					  &submit);
3504 
3505 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3506 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3507 			for (j = 0; j < conf->raid_disks; j++)
3508 				if (j != sh2->pd_idx &&
3509 				    j != sh2->qd_idx &&
3510 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3511 					break;
3512 			if (j == conf->raid_disks) {
3513 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3514 				set_bit(STRIPE_HANDLE, &sh2->state);
3515 			}
3516 			release_stripe(sh2);
3517 
3518 		}
3519 	/* done submitting copies, wait for them to complete */
3520 	async_tx_quiesce(&tx);
3521 }
3522 
3523 /*
3524  * handle_stripe - do things to a stripe.
3525  *
3526  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3527  * state of various bits to see what needs to be done.
3528  * Possible results:
3529  *    return some read requests which now have data
3530  *    return some write requests which are safely on storage
3531  *    schedule a read on some buffers
3532  *    schedule a write of some buffers
3533  *    return confirmation of parity correctness
3534  *
3535  */
3536 
3537 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3538 {
3539 	struct r5conf *conf = sh->raid_conf;
3540 	int disks = sh->disks;
3541 	struct r5dev *dev;
3542 	int i;
3543 	int do_recovery = 0;
3544 
3545 	memset(s, 0, sizeof(*s));
3546 
3547 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3548 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3549 	s->failed_num[0] = -1;
3550 	s->failed_num[1] = -1;
3551 
3552 	/* Now to look around and see what can be done */
3553 	rcu_read_lock();
3554 	for (i=disks; i--; ) {
3555 		struct md_rdev *rdev;
3556 		sector_t first_bad;
3557 		int bad_sectors;
3558 		int is_bad = 0;
3559 
3560 		dev = &sh->dev[i];
3561 
3562 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3563 			 i, dev->flags,
3564 			 dev->toread, dev->towrite, dev->written);
3565 		/* maybe we can reply to a read
3566 		 *
3567 		 * new wantfill requests are only permitted while
3568 		 * ops_complete_biofill is guaranteed to be inactive
3569 		 */
3570 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3571 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3572 			set_bit(R5_Wantfill, &dev->flags);
3573 
3574 		/* now count some things */
3575 		if (test_bit(R5_LOCKED, &dev->flags))
3576 			s->locked++;
3577 		if (test_bit(R5_UPTODATE, &dev->flags))
3578 			s->uptodate++;
3579 		if (test_bit(R5_Wantcompute, &dev->flags)) {
3580 			s->compute++;
3581 			BUG_ON(s->compute > 2);
3582 		}
3583 
3584 		if (test_bit(R5_Wantfill, &dev->flags))
3585 			s->to_fill++;
3586 		else if (dev->toread)
3587 			s->to_read++;
3588 		if (dev->towrite) {
3589 			s->to_write++;
3590 			if (!test_bit(R5_OVERWRITE, &dev->flags))
3591 				s->non_overwrite++;
3592 		}
3593 		if (dev->written)
3594 			s->written++;
3595 		/* Prefer to use the replacement for reads, but only
3596 		 * if it is recovered enough and has no bad blocks.
3597 		 */
3598 		rdev = rcu_dereference(conf->disks[i].replacement);
3599 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
3600 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3601 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3602 				 &first_bad, &bad_sectors))
3603 			set_bit(R5_ReadRepl, &dev->flags);
3604 		else {
3605 			if (rdev)
3606 				set_bit(R5_NeedReplace, &dev->flags);
3607 			rdev = rcu_dereference(conf->disks[i].rdev);
3608 			clear_bit(R5_ReadRepl, &dev->flags);
3609 		}
3610 		if (rdev && test_bit(Faulty, &rdev->flags))
3611 			rdev = NULL;
3612 		if (rdev) {
3613 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3614 					     &first_bad, &bad_sectors);
3615 			if (s->blocked_rdev == NULL
3616 			    && (test_bit(Blocked, &rdev->flags)
3617 				|| is_bad < 0)) {
3618 				if (is_bad < 0)
3619 					set_bit(BlockedBadBlocks,
3620 						&rdev->flags);
3621 				s->blocked_rdev = rdev;
3622 				atomic_inc(&rdev->nr_pending);
3623 			}
3624 		}
3625 		clear_bit(R5_Insync, &dev->flags);
3626 		if (!rdev)
3627 			/* Not in-sync */;
3628 		else if (is_bad) {
3629 			/* also not in-sync */
3630 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3631 			    test_bit(R5_UPTODATE, &dev->flags)) {
3632 				/* treat as in-sync, but with a read error
3633 				 * which we can now try to correct
3634 				 */
3635 				set_bit(R5_Insync, &dev->flags);
3636 				set_bit(R5_ReadError, &dev->flags);
3637 			}
3638 		} else if (test_bit(In_sync, &rdev->flags))
3639 			set_bit(R5_Insync, &dev->flags);
3640 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3641 			/* in sync if before recovery_offset */
3642 			set_bit(R5_Insync, &dev->flags);
3643 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
3644 			 test_bit(R5_Expanded, &dev->flags))
3645 			/* If we've reshaped into here, we assume it is Insync.
3646 			 * We will shortly update recovery_offset to make
3647 			 * it official.
3648 			 */
3649 			set_bit(R5_Insync, &dev->flags);
3650 
3651 		if (test_bit(R5_WriteError, &dev->flags)) {
3652 			/* This flag does not apply to '.replacement'
3653 			 * only to .rdev, so make sure to check that*/
3654 			struct md_rdev *rdev2 = rcu_dereference(
3655 				conf->disks[i].rdev);
3656 			if (rdev2 == rdev)
3657 				clear_bit(R5_Insync, &dev->flags);
3658 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3659 				s->handle_bad_blocks = 1;
3660 				atomic_inc(&rdev2->nr_pending);
3661 			} else
3662 				clear_bit(R5_WriteError, &dev->flags);
3663 		}
3664 		if (test_bit(R5_MadeGood, &dev->flags)) {
3665 			/* This flag does not apply to '.replacement'
3666 			 * only to .rdev, so make sure to check that*/
3667 			struct md_rdev *rdev2 = rcu_dereference(
3668 				conf->disks[i].rdev);
3669 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3670 				s->handle_bad_blocks = 1;
3671 				atomic_inc(&rdev2->nr_pending);
3672 			} else
3673 				clear_bit(R5_MadeGood, &dev->flags);
3674 		}
3675 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3676 			struct md_rdev *rdev2 = rcu_dereference(
3677 				conf->disks[i].replacement);
3678 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3679 				s->handle_bad_blocks = 1;
3680 				atomic_inc(&rdev2->nr_pending);
3681 			} else
3682 				clear_bit(R5_MadeGoodRepl, &dev->flags);
3683 		}
3684 		if (!test_bit(R5_Insync, &dev->flags)) {
3685 			/* The ReadError flag will just be confusing now */
3686 			clear_bit(R5_ReadError, &dev->flags);
3687 			clear_bit(R5_ReWrite, &dev->flags);
3688 		}
3689 		if (test_bit(R5_ReadError, &dev->flags))
3690 			clear_bit(R5_Insync, &dev->flags);
3691 		if (!test_bit(R5_Insync, &dev->flags)) {
3692 			if (s->failed < 2)
3693 				s->failed_num[s->failed] = i;
3694 			s->failed++;
3695 			if (rdev && !test_bit(Faulty, &rdev->flags))
3696 				do_recovery = 1;
3697 		}
3698 	}
3699 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
3700 		/* If there is a failed device being replaced,
3701 		 *     we must be recovering.
3702 		 * else if we are after recovery_cp, we must be syncing
3703 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3704 		 * else we can only be replacing
3705 		 * sync and recovery both need to read all devices, and so
3706 		 * use the same flag.
3707 		 */
3708 		if (do_recovery ||
3709 		    sh->sector >= conf->mddev->recovery_cp ||
3710 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3711 			s->syncing = 1;
3712 		else
3713 			s->replacing = 1;
3714 	}
3715 	rcu_read_unlock();
3716 }
3717 
3718 static void handle_stripe(struct stripe_head *sh)
3719 {
3720 	struct stripe_head_state s;
3721 	struct r5conf *conf = sh->raid_conf;
3722 	int i;
3723 	int prexor;
3724 	int disks = sh->disks;
3725 	struct r5dev *pdev, *qdev;
3726 
3727 	clear_bit(STRIPE_HANDLE, &sh->state);
3728 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3729 		/* already being handled, ensure it gets handled
3730 		 * again when current action finishes */
3731 		set_bit(STRIPE_HANDLE, &sh->state);
3732 		return;
3733 	}
3734 
3735 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3736 		spin_lock(&sh->stripe_lock);
3737 		/* Cannot process 'sync' concurrently with 'discard' */
3738 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3739 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3740 			set_bit(STRIPE_SYNCING, &sh->state);
3741 			clear_bit(STRIPE_INSYNC, &sh->state);
3742 			clear_bit(STRIPE_REPLACED, &sh->state);
3743 		}
3744 		spin_unlock(&sh->stripe_lock);
3745 	}
3746 	clear_bit(STRIPE_DELAYED, &sh->state);
3747 
3748 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3749 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3750 	       (unsigned long long)sh->sector, sh->state,
3751 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3752 	       sh->check_state, sh->reconstruct_state);
3753 
3754 	analyse_stripe(sh, &s);
3755 
3756 	if (s.handle_bad_blocks) {
3757 		set_bit(STRIPE_HANDLE, &sh->state);
3758 		goto finish;
3759 	}
3760 
3761 	if (unlikely(s.blocked_rdev)) {
3762 		if (s.syncing || s.expanding || s.expanded ||
3763 		    s.replacing || s.to_write || s.written) {
3764 			set_bit(STRIPE_HANDLE, &sh->state);
3765 			goto finish;
3766 		}
3767 		/* There is nothing for the blocked_rdev to block */
3768 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3769 		s.blocked_rdev = NULL;
3770 	}
3771 
3772 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3773 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3774 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3775 	}
3776 
3777 	pr_debug("locked=%d uptodate=%d to_read=%d"
3778 	       " to_write=%d failed=%d failed_num=%d,%d\n",
3779 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3780 	       s.failed_num[0], s.failed_num[1]);
3781 	/* check if the array has lost more than max_degraded devices and,
3782 	 * if so, some requests might need to be failed.
3783 	 */
3784 	if (s.failed > conf->max_degraded) {
3785 		sh->check_state = 0;
3786 		sh->reconstruct_state = 0;
3787 		if (s.to_read+s.to_write+s.written)
3788 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3789 		if (s.syncing + s.replacing)
3790 			handle_failed_sync(conf, sh, &s);
3791 	}
3792 
3793 	/* Now we check to see if any write operations have recently
3794 	 * completed
3795 	 */
3796 	prexor = 0;
3797 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3798 		prexor = 1;
3799 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3800 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3801 		sh->reconstruct_state = reconstruct_state_idle;
3802 
3803 		/* All the 'written' buffers and the parity block are ready to
3804 		 * be written back to disk
3805 		 */
3806 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3807 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3808 		BUG_ON(sh->qd_idx >= 0 &&
3809 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3810 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3811 		for (i = disks; i--; ) {
3812 			struct r5dev *dev = &sh->dev[i];
3813 			if (test_bit(R5_LOCKED, &dev->flags) &&
3814 				(i == sh->pd_idx || i == sh->qd_idx ||
3815 				 dev->written)) {
3816 				pr_debug("Writing block %d\n", i);
3817 				set_bit(R5_Wantwrite, &dev->flags);
3818 				if (prexor)
3819 					continue;
3820 				if (!test_bit(R5_Insync, &dev->flags) ||
3821 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3822 				     s.failed == 0))
3823 					set_bit(STRIPE_INSYNC, &sh->state);
3824 			}
3825 		}
3826 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3827 			s.dec_preread_active = 1;
3828 	}
3829 
3830 	/*
3831 	 * might be able to return some write requests if the parity blocks
3832 	 * are safe, or on a failed drive
3833 	 */
3834 	pdev = &sh->dev[sh->pd_idx];
3835 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3836 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3837 	qdev = &sh->dev[sh->qd_idx];
3838 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3839 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3840 		|| conf->level < 6;
3841 
3842 	if (s.written &&
3843 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3844 			     && !test_bit(R5_LOCKED, &pdev->flags)
3845 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
3846 				 test_bit(R5_Discard, &pdev->flags))))) &&
3847 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3848 			     && !test_bit(R5_LOCKED, &qdev->flags)
3849 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
3850 				 test_bit(R5_Discard, &qdev->flags))))))
3851 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3852 
3853 	/* Now we might consider reading some blocks, either to check/generate
3854 	 * parity, or to satisfy requests
3855 	 * or to load a block that is being partially written.
3856 	 */
3857 	if (s.to_read || s.non_overwrite
3858 	    || (conf->level == 6 && s.to_write && s.failed)
3859 	    || (s.syncing && (s.uptodate + s.compute < disks))
3860 	    || s.replacing
3861 	    || s.expanding)
3862 		handle_stripe_fill(sh, &s, disks);
3863 
3864 	/* Now to consider new write requests and what else, if anything
3865 	 * should be read.  We do not handle new writes when:
3866 	 * 1/ A 'write' operation (copy+xor) is already in flight.
3867 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3868 	 *    block.
3869 	 */
3870 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3871 		handle_stripe_dirtying(conf, sh, &s, disks);
3872 
3873 	/* maybe we need to check and possibly fix the parity for this stripe
3874 	 * Any reads will already have been scheduled, so we just see if enough
3875 	 * data is available.  The parity check is held off while parity
3876 	 * dependent operations are in flight.
3877 	 */
3878 	if (sh->check_state ||
3879 	    (s.syncing && s.locked == 0 &&
3880 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3881 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3882 		if (conf->level == 6)
3883 			handle_parity_checks6(conf, sh, &s, disks);
3884 		else
3885 			handle_parity_checks5(conf, sh, &s, disks);
3886 	}
3887 
3888 	if ((s.replacing || s.syncing) && s.locked == 0
3889 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3890 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
3891 		/* Write out to replacement devices where possible */
3892 		for (i = 0; i < conf->raid_disks; i++)
3893 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3894 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3895 				set_bit(R5_WantReplace, &sh->dev[i].flags);
3896 				set_bit(R5_LOCKED, &sh->dev[i].flags);
3897 				s.locked++;
3898 			}
3899 		if (s.replacing)
3900 			set_bit(STRIPE_INSYNC, &sh->state);
3901 		set_bit(STRIPE_REPLACED, &sh->state);
3902 	}
3903 	if ((s.syncing || s.replacing) && s.locked == 0 &&
3904 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3905 	    test_bit(STRIPE_INSYNC, &sh->state)) {
3906 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3907 		clear_bit(STRIPE_SYNCING, &sh->state);
3908 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3909 			wake_up(&conf->wait_for_overlap);
3910 	}
3911 
3912 	/* If the failed drives are just a ReadError, then we might need
3913 	 * to progress the repair/check process
3914 	 */
3915 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3916 		for (i = 0; i < s.failed; i++) {
3917 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3918 			if (test_bit(R5_ReadError, &dev->flags)
3919 			    && !test_bit(R5_LOCKED, &dev->flags)
3920 			    && test_bit(R5_UPTODATE, &dev->flags)
3921 				) {
3922 				if (!test_bit(R5_ReWrite, &dev->flags)) {
3923 					set_bit(R5_Wantwrite, &dev->flags);
3924 					set_bit(R5_ReWrite, &dev->flags);
3925 					set_bit(R5_LOCKED, &dev->flags);
3926 					s.locked++;
3927 				} else {
3928 					/* let's read it back */
3929 					set_bit(R5_Wantread, &dev->flags);
3930 					set_bit(R5_LOCKED, &dev->flags);
3931 					s.locked++;
3932 				}
3933 			}
3934 		}
3935 
3936 
3937 	/* Finish reconstruct operations initiated by the expansion process */
3938 	if (sh->reconstruct_state == reconstruct_state_result) {
3939 		struct stripe_head *sh_src
3940 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3941 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3942 			/* sh cannot be written until sh_src has been read.
3943 			 * so arrange for sh to be delayed a little
3944 			 */
3945 			set_bit(STRIPE_DELAYED, &sh->state);
3946 			set_bit(STRIPE_HANDLE, &sh->state);
3947 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3948 					      &sh_src->state))
3949 				atomic_inc(&conf->preread_active_stripes);
3950 			release_stripe(sh_src);
3951 			goto finish;
3952 		}
3953 		if (sh_src)
3954 			release_stripe(sh_src);
3955 
3956 		sh->reconstruct_state = reconstruct_state_idle;
3957 		clear_bit(STRIPE_EXPANDING, &sh->state);
3958 		for (i = conf->raid_disks; i--; ) {
3959 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3960 			set_bit(R5_LOCKED, &sh->dev[i].flags);
3961 			s.locked++;
3962 		}
3963 	}
3964 
3965 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3966 	    !sh->reconstruct_state) {
3967 		/* Need to write out all blocks after computing parity */
3968 		sh->disks = conf->raid_disks;
3969 		stripe_set_idx(sh->sector, conf, 0, sh);
3970 		schedule_reconstruction(sh, &s, 1, 1);
3971 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3972 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3973 		atomic_dec(&conf->reshape_stripes);
3974 		wake_up(&conf->wait_for_overlap);
3975 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3976 	}
3977 
3978 	if (s.expanding && s.locked == 0 &&
3979 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3980 		handle_stripe_expansion(conf, sh);
3981 
3982 finish:
3983 	/* wait for this device to become unblocked */
3984 	if (unlikely(s.blocked_rdev)) {
3985 		if (conf->mddev->external)
3986 			md_wait_for_blocked_rdev(s.blocked_rdev,
3987 						 conf->mddev);
3988 		else
3989 			/* Internal metadata will immediately
3990 			 * be written by raid5d, so we don't
3991 			 * need to wait here.
3992 			 */
3993 			rdev_dec_pending(s.blocked_rdev,
3994 					 conf->mddev);
3995 	}
3996 
3997 	if (s.handle_bad_blocks)
3998 		for (i = disks; i--; ) {
3999 			struct md_rdev *rdev;
4000 			struct r5dev *dev = &sh->dev[i];
4001 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4002 				/* We own a safe reference to the rdev */
4003 				rdev = conf->disks[i].rdev;
4004 				if (!rdev_set_badblocks(rdev, sh->sector,
4005 							STRIPE_SECTORS, 0))
4006 					md_error(conf->mddev, rdev);
4007 				rdev_dec_pending(rdev, conf->mddev);
4008 			}
4009 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4010 				rdev = conf->disks[i].rdev;
4011 				rdev_clear_badblocks(rdev, sh->sector,
4012 						     STRIPE_SECTORS, 0);
4013 				rdev_dec_pending(rdev, conf->mddev);
4014 			}
4015 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4016 				rdev = conf->disks[i].replacement;
4017 				if (!rdev)
4018 					/* rdev have been moved down */
4019 					rdev = conf->disks[i].rdev;
4020 				rdev_clear_badblocks(rdev, sh->sector,
4021 						     STRIPE_SECTORS, 0);
4022 				rdev_dec_pending(rdev, conf->mddev);
4023 			}
4024 		}
4025 
4026 	if (s.ops_request)
4027 		raid_run_ops(sh, s.ops_request);
4028 
4029 	ops_run_io(sh, &s);
4030 
4031 	if (s.dec_preread_active) {
4032 		/* We delay this until after ops_run_io so that if make_request
4033 		 * is waiting on a flush, it won't continue until the writes
4034 		 * have actually been submitted.
4035 		 */
4036 		atomic_dec(&conf->preread_active_stripes);
4037 		if (atomic_read(&conf->preread_active_stripes) <
4038 		    IO_THRESHOLD)
4039 			md_wakeup_thread(conf->mddev->thread);
4040 	}
4041 
4042 	return_io(s.return_bi);
4043 
4044 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4045 }
4046 
4047 static void raid5_activate_delayed(struct r5conf *conf)
4048 {
4049 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4050 		while (!list_empty(&conf->delayed_list)) {
4051 			struct list_head *l = conf->delayed_list.next;
4052 			struct stripe_head *sh;
4053 			sh = list_entry(l, struct stripe_head, lru);
4054 			list_del_init(l);
4055 			clear_bit(STRIPE_DELAYED, &sh->state);
4056 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4057 				atomic_inc(&conf->preread_active_stripes);
4058 			list_add_tail(&sh->lru, &conf->hold_list);
4059 			raid5_wakeup_stripe_thread(sh);
4060 		}
4061 	}
4062 }
4063 
4064 static void activate_bit_delay(struct r5conf *conf,
4065 	struct list_head *temp_inactive_list)
4066 {
4067 	/* device_lock is held */
4068 	struct list_head head;
4069 	list_add(&head, &conf->bitmap_list);
4070 	list_del_init(&conf->bitmap_list);
4071 	while (!list_empty(&head)) {
4072 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4073 		int hash;
4074 		list_del_init(&sh->lru);
4075 		atomic_inc(&sh->count);
4076 		hash = sh->hash_lock_index;
4077 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4078 	}
4079 }
4080 
4081 int md_raid5_congested(struct mddev *mddev, int bits)
4082 {
4083 	struct r5conf *conf = mddev->private;
4084 
4085 	/* No difference between reads and writes.  Just check
4086 	 * how busy the stripe_cache is
4087 	 */
4088 
4089 	if (conf->inactive_blocked)
4090 		return 1;
4091 	if (conf->quiesce)
4092 		return 1;
4093 	if (atomic_read(&conf->empty_inactive_list_nr))
4094 		return 1;
4095 
4096 	return 0;
4097 }
4098 EXPORT_SYMBOL_GPL(md_raid5_congested);
4099 
4100 static int raid5_congested(void *data, int bits)
4101 {
4102 	struct mddev *mddev = data;
4103 
4104 	return mddev_congested(mddev, bits) ||
4105 		md_raid5_congested(mddev, bits);
4106 }
4107 
4108 /* We want read requests to align with chunks where possible,
4109  * but write requests don't need to.
4110  */
4111 static int raid5_mergeable_bvec(struct request_queue *q,
4112 				struct bvec_merge_data *bvm,
4113 				struct bio_vec *biovec)
4114 {
4115 	struct mddev *mddev = q->queuedata;
4116 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4117 	int max;
4118 	unsigned int chunk_sectors = mddev->chunk_sectors;
4119 	unsigned int bio_sectors = bvm->bi_size >> 9;
4120 
4121 	if ((bvm->bi_rw & 1) == WRITE)
4122 		return biovec->bv_len; /* always allow writes to be mergeable */
4123 
4124 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4125 		chunk_sectors = mddev->new_chunk_sectors;
4126 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4127 	if (max < 0) max = 0;
4128 	if (max <= biovec->bv_len && bio_sectors == 0)
4129 		return biovec->bv_len;
4130 	else
4131 		return max;
4132 }
4133 
4134 
4135 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4136 {
4137 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4138 	unsigned int chunk_sectors = mddev->chunk_sectors;
4139 	unsigned int bio_sectors = bio_sectors(bio);
4140 
4141 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4142 		chunk_sectors = mddev->new_chunk_sectors;
4143 	return  chunk_sectors >=
4144 		((sector & (chunk_sectors - 1)) + bio_sectors);
4145 }
4146 
4147 /*
4148  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4149  *  later sampled by raid5d.
4150  */
4151 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4152 {
4153 	unsigned long flags;
4154 
4155 	spin_lock_irqsave(&conf->device_lock, flags);
4156 
4157 	bi->bi_next = conf->retry_read_aligned_list;
4158 	conf->retry_read_aligned_list = bi;
4159 
4160 	spin_unlock_irqrestore(&conf->device_lock, flags);
4161 	md_wakeup_thread(conf->mddev->thread);
4162 }
4163 
4164 
4165 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4166 {
4167 	struct bio *bi;
4168 
4169 	bi = conf->retry_read_aligned;
4170 	if (bi) {
4171 		conf->retry_read_aligned = NULL;
4172 		return bi;
4173 	}
4174 	bi = conf->retry_read_aligned_list;
4175 	if(bi) {
4176 		conf->retry_read_aligned_list = bi->bi_next;
4177 		bi->bi_next = NULL;
4178 		/*
4179 		 * this sets the active strip count to 1 and the processed
4180 		 * strip count to zero (upper 8 bits)
4181 		 */
4182 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4183 	}
4184 
4185 	return bi;
4186 }
4187 
4188 
4189 /*
4190  *  The "raid5_align_endio" should check if the read succeeded and if it
4191  *  did, call bio_endio on the original bio (having bio_put the new bio
4192  *  first).
4193  *  If the read failed..
4194  */
4195 static void raid5_align_endio(struct bio *bi, int error)
4196 {
4197 	struct bio* raid_bi  = bi->bi_private;
4198 	struct mddev *mddev;
4199 	struct r5conf *conf;
4200 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4201 	struct md_rdev *rdev;
4202 
4203 	bio_put(bi);
4204 
4205 	rdev = (void*)raid_bi->bi_next;
4206 	raid_bi->bi_next = NULL;
4207 	mddev = rdev->mddev;
4208 	conf = mddev->private;
4209 
4210 	rdev_dec_pending(rdev, conf->mddev);
4211 
4212 	if (!error && uptodate) {
4213 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4214 					 raid_bi, 0);
4215 		bio_endio(raid_bi, 0);
4216 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4217 			wake_up(&conf->wait_for_stripe);
4218 		return;
4219 	}
4220 
4221 
4222 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4223 
4224 	add_bio_to_retry(raid_bi, conf);
4225 }
4226 
4227 static int bio_fits_rdev(struct bio *bi)
4228 {
4229 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4230 
4231 	if (bio_sectors(bi) > queue_max_sectors(q))
4232 		return 0;
4233 	blk_recount_segments(q, bi);
4234 	if (bi->bi_phys_segments > queue_max_segments(q))
4235 		return 0;
4236 
4237 	if (q->merge_bvec_fn)
4238 		/* it's too hard to apply the merge_bvec_fn at this stage,
4239 		 * just just give up
4240 		 */
4241 		return 0;
4242 
4243 	return 1;
4244 }
4245 
4246 
4247 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4248 {
4249 	struct r5conf *conf = mddev->private;
4250 	int dd_idx;
4251 	struct bio* align_bi;
4252 	struct md_rdev *rdev;
4253 	sector_t end_sector;
4254 
4255 	if (!in_chunk_boundary(mddev, raid_bio)) {
4256 		pr_debug("chunk_aligned_read : non aligned\n");
4257 		return 0;
4258 	}
4259 	/*
4260 	 * use bio_clone_mddev to make a copy of the bio
4261 	 */
4262 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4263 	if (!align_bi)
4264 		return 0;
4265 	/*
4266 	 *   set bi_end_io to a new function, and set bi_private to the
4267 	 *     original bio.
4268 	 */
4269 	align_bi->bi_end_io  = raid5_align_endio;
4270 	align_bi->bi_private = raid_bio;
4271 	/*
4272 	 *	compute position
4273 	 */
4274 	align_bi->bi_iter.bi_sector =
4275 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4276 				     0, &dd_idx, NULL);
4277 
4278 	end_sector = bio_end_sector(align_bi);
4279 	rcu_read_lock();
4280 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4281 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4282 	    rdev->recovery_offset < end_sector) {
4283 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4284 		if (rdev &&
4285 		    (test_bit(Faulty, &rdev->flags) ||
4286 		    !(test_bit(In_sync, &rdev->flags) ||
4287 		      rdev->recovery_offset >= end_sector)))
4288 			rdev = NULL;
4289 	}
4290 	if (rdev) {
4291 		sector_t first_bad;
4292 		int bad_sectors;
4293 
4294 		atomic_inc(&rdev->nr_pending);
4295 		rcu_read_unlock();
4296 		raid_bio->bi_next = (void*)rdev;
4297 		align_bi->bi_bdev =  rdev->bdev;
4298 		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4299 
4300 		if (!bio_fits_rdev(align_bi) ||
4301 		    is_badblock(rdev, align_bi->bi_iter.bi_sector,
4302 				bio_sectors(align_bi),
4303 				&first_bad, &bad_sectors)) {
4304 			/* too big in some way, or has a known bad block */
4305 			bio_put(align_bi);
4306 			rdev_dec_pending(rdev, mddev);
4307 			return 0;
4308 		}
4309 
4310 		/* No reshape active, so we can trust rdev->data_offset */
4311 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4312 
4313 		spin_lock_irq(&conf->device_lock);
4314 		wait_event_lock_irq(conf->wait_for_stripe,
4315 				    conf->quiesce == 0,
4316 				    conf->device_lock);
4317 		atomic_inc(&conf->active_aligned_reads);
4318 		spin_unlock_irq(&conf->device_lock);
4319 
4320 		if (mddev->gendisk)
4321 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4322 					      align_bi, disk_devt(mddev->gendisk),
4323 					      raid_bio->bi_iter.bi_sector);
4324 		generic_make_request(align_bi);
4325 		return 1;
4326 	} else {
4327 		rcu_read_unlock();
4328 		bio_put(align_bi);
4329 		return 0;
4330 	}
4331 }
4332 
4333 /* __get_priority_stripe - get the next stripe to process
4334  *
4335  * Full stripe writes are allowed to pass preread active stripes up until
4336  * the bypass_threshold is exceeded.  In general the bypass_count
4337  * increments when the handle_list is handled before the hold_list; however, it
4338  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4339  * stripe with in flight i/o.  The bypass_count will be reset when the
4340  * head of the hold_list has changed, i.e. the head was promoted to the
4341  * handle_list.
4342  */
4343 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4344 {
4345 	struct stripe_head *sh = NULL, *tmp;
4346 	struct list_head *handle_list = NULL;
4347 	struct r5worker_group *wg = NULL;
4348 
4349 	if (conf->worker_cnt_per_group == 0) {
4350 		handle_list = &conf->handle_list;
4351 	} else if (group != ANY_GROUP) {
4352 		handle_list = &conf->worker_groups[group].handle_list;
4353 		wg = &conf->worker_groups[group];
4354 	} else {
4355 		int i;
4356 		for (i = 0; i < conf->group_cnt; i++) {
4357 			handle_list = &conf->worker_groups[i].handle_list;
4358 			wg = &conf->worker_groups[i];
4359 			if (!list_empty(handle_list))
4360 				break;
4361 		}
4362 	}
4363 
4364 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4365 		  __func__,
4366 		  list_empty(handle_list) ? "empty" : "busy",
4367 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4368 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4369 
4370 	if (!list_empty(handle_list)) {
4371 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4372 
4373 		if (list_empty(&conf->hold_list))
4374 			conf->bypass_count = 0;
4375 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4376 			if (conf->hold_list.next == conf->last_hold)
4377 				conf->bypass_count++;
4378 			else {
4379 				conf->last_hold = conf->hold_list.next;
4380 				conf->bypass_count -= conf->bypass_threshold;
4381 				if (conf->bypass_count < 0)
4382 					conf->bypass_count = 0;
4383 			}
4384 		}
4385 	} else if (!list_empty(&conf->hold_list) &&
4386 		   ((conf->bypass_threshold &&
4387 		     conf->bypass_count > conf->bypass_threshold) ||
4388 		    atomic_read(&conf->pending_full_writes) == 0)) {
4389 
4390 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4391 			if (conf->worker_cnt_per_group == 0 ||
4392 			    group == ANY_GROUP ||
4393 			    !cpu_online(tmp->cpu) ||
4394 			    cpu_to_group(tmp->cpu) == group) {
4395 				sh = tmp;
4396 				break;
4397 			}
4398 		}
4399 
4400 		if (sh) {
4401 			conf->bypass_count -= conf->bypass_threshold;
4402 			if (conf->bypass_count < 0)
4403 				conf->bypass_count = 0;
4404 		}
4405 		wg = NULL;
4406 	}
4407 
4408 	if (!sh)
4409 		return NULL;
4410 
4411 	if (wg) {
4412 		wg->stripes_cnt--;
4413 		sh->group = NULL;
4414 	}
4415 	list_del_init(&sh->lru);
4416 	BUG_ON(atomic_inc_return(&sh->count) != 1);
4417 	return sh;
4418 }
4419 
4420 struct raid5_plug_cb {
4421 	struct blk_plug_cb	cb;
4422 	struct list_head	list;
4423 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4424 };
4425 
4426 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4427 {
4428 	struct raid5_plug_cb *cb = container_of(
4429 		blk_cb, struct raid5_plug_cb, cb);
4430 	struct stripe_head *sh;
4431 	struct mddev *mddev = cb->cb.data;
4432 	struct r5conf *conf = mddev->private;
4433 	int cnt = 0;
4434 	int hash;
4435 
4436 	if (cb->list.next && !list_empty(&cb->list)) {
4437 		spin_lock_irq(&conf->device_lock);
4438 		while (!list_empty(&cb->list)) {
4439 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4440 			list_del_init(&sh->lru);
4441 			/*
4442 			 * avoid race release_stripe_plug() sees
4443 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4444 			 * is still in our list
4445 			 */
4446 			smp_mb__before_atomic();
4447 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4448 			/*
4449 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
4450 			 * case, the count is always > 1 here
4451 			 */
4452 			hash = sh->hash_lock_index;
4453 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4454 			cnt++;
4455 		}
4456 		spin_unlock_irq(&conf->device_lock);
4457 	}
4458 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
4459 				     NR_STRIPE_HASH_LOCKS);
4460 	if (mddev->queue)
4461 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4462 	kfree(cb);
4463 }
4464 
4465 static void release_stripe_plug(struct mddev *mddev,
4466 				struct stripe_head *sh)
4467 {
4468 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4469 		raid5_unplug, mddev,
4470 		sizeof(struct raid5_plug_cb));
4471 	struct raid5_plug_cb *cb;
4472 
4473 	if (!blk_cb) {
4474 		release_stripe(sh);
4475 		return;
4476 	}
4477 
4478 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4479 
4480 	if (cb->list.next == NULL) {
4481 		int i;
4482 		INIT_LIST_HEAD(&cb->list);
4483 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4484 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
4485 	}
4486 
4487 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4488 		list_add_tail(&sh->lru, &cb->list);
4489 	else
4490 		release_stripe(sh);
4491 }
4492 
4493 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4494 {
4495 	struct r5conf *conf = mddev->private;
4496 	sector_t logical_sector, last_sector;
4497 	struct stripe_head *sh;
4498 	int remaining;
4499 	int stripe_sectors;
4500 
4501 	if (mddev->reshape_position != MaxSector)
4502 		/* Skip discard while reshape is happening */
4503 		return;
4504 
4505 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4506 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4507 
4508 	bi->bi_next = NULL;
4509 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4510 
4511 	stripe_sectors = conf->chunk_sectors *
4512 		(conf->raid_disks - conf->max_degraded);
4513 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4514 					       stripe_sectors);
4515 	sector_div(last_sector, stripe_sectors);
4516 
4517 	logical_sector *= conf->chunk_sectors;
4518 	last_sector *= conf->chunk_sectors;
4519 
4520 	for (; logical_sector < last_sector;
4521 	     logical_sector += STRIPE_SECTORS) {
4522 		DEFINE_WAIT(w);
4523 		int d;
4524 	again:
4525 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4526 		prepare_to_wait(&conf->wait_for_overlap, &w,
4527 				TASK_UNINTERRUPTIBLE);
4528 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4529 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
4530 			release_stripe(sh);
4531 			schedule();
4532 			goto again;
4533 		}
4534 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4535 		spin_lock_irq(&sh->stripe_lock);
4536 		for (d = 0; d < conf->raid_disks; d++) {
4537 			if (d == sh->pd_idx || d == sh->qd_idx)
4538 				continue;
4539 			if (sh->dev[d].towrite || sh->dev[d].toread) {
4540 				set_bit(R5_Overlap, &sh->dev[d].flags);
4541 				spin_unlock_irq(&sh->stripe_lock);
4542 				release_stripe(sh);
4543 				schedule();
4544 				goto again;
4545 			}
4546 		}
4547 		set_bit(STRIPE_DISCARD, &sh->state);
4548 		finish_wait(&conf->wait_for_overlap, &w);
4549 		for (d = 0; d < conf->raid_disks; d++) {
4550 			if (d == sh->pd_idx || d == sh->qd_idx)
4551 				continue;
4552 			sh->dev[d].towrite = bi;
4553 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4554 			raid5_inc_bi_active_stripes(bi);
4555 		}
4556 		spin_unlock_irq(&sh->stripe_lock);
4557 		if (conf->mddev->bitmap) {
4558 			for (d = 0;
4559 			     d < conf->raid_disks - conf->max_degraded;
4560 			     d++)
4561 				bitmap_startwrite(mddev->bitmap,
4562 						  sh->sector,
4563 						  STRIPE_SECTORS,
4564 						  0);
4565 			sh->bm_seq = conf->seq_flush + 1;
4566 			set_bit(STRIPE_BIT_DELAY, &sh->state);
4567 		}
4568 
4569 		set_bit(STRIPE_HANDLE, &sh->state);
4570 		clear_bit(STRIPE_DELAYED, &sh->state);
4571 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4572 			atomic_inc(&conf->preread_active_stripes);
4573 		release_stripe_plug(mddev, sh);
4574 	}
4575 
4576 	remaining = raid5_dec_bi_active_stripes(bi);
4577 	if (remaining == 0) {
4578 		md_write_end(mddev);
4579 		bio_endio(bi, 0);
4580 	}
4581 }
4582 
4583 static void make_request(struct mddev *mddev, struct bio * bi)
4584 {
4585 	struct r5conf *conf = mddev->private;
4586 	int dd_idx;
4587 	sector_t new_sector;
4588 	sector_t logical_sector, last_sector;
4589 	struct stripe_head *sh;
4590 	const int rw = bio_data_dir(bi);
4591 	int remaining;
4592 	DEFINE_WAIT(w);
4593 	bool do_prepare;
4594 
4595 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4596 		md_flush_request(mddev, bi);
4597 		return;
4598 	}
4599 
4600 	md_write_start(mddev, bi);
4601 
4602 	if (rw == READ &&
4603 	     mddev->reshape_position == MaxSector &&
4604 	     chunk_aligned_read(mddev,bi))
4605 		return;
4606 
4607 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4608 		make_discard_request(mddev, bi);
4609 		return;
4610 	}
4611 
4612 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4613 	last_sector = bio_end_sector(bi);
4614 	bi->bi_next = NULL;
4615 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
4616 
4617 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4618 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4619 		int previous;
4620 		int seq;
4621 
4622 		do_prepare = false;
4623 	retry:
4624 		seq = read_seqcount_begin(&conf->gen_lock);
4625 		previous = 0;
4626 		if (do_prepare)
4627 			prepare_to_wait(&conf->wait_for_overlap, &w,
4628 				TASK_UNINTERRUPTIBLE);
4629 		if (unlikely(conf->reshape_progress != MaxSector)) {
4630 			/* spinlock is needed as reshape_progress may be
4631 			 * 64bit on a 32bit platform, and so it might be
4632 			 * possible to see a half-updated value
4633 			 * Of course reshape_progress could change after
4634 			 * the lock is dropped, so once we get a reference
4635 			 * to the stripe that we think it is, we will have
4636 			 * to check again.
4637 			 */
4638 			spin_lock_irq(&conf->device_lock);
4639 			if (mddev->reshape_backwards
4640 			    ? logical_sector < conf->reshape_progress
4641 			    : logical_sector >= conf->reshape_progress) {
4642 				previous = 1;
4643 			} else {
4644 				if (mddev->reshape_backwards
4645 				    ? logical_sector < conf->reshape_safe
4646 				    : logical_sector >= conf->reshape_safe) {
4647 					spin_unlock_irq(&conf->device_lock);
4648 					schedule();
4649 					do_prepare = true;
4650 					goto retry;
4651 				}
4652 			}
4653 			spin_unlock_irq(&conf->device_lock);
4654 		}
4655 
4656 		new_sector = raid5_compute_sector(conf, logical_sector,
4657 						  previous,
4658 						  &dd_idx, NULL);
4659 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
4660 			(unsigned long long)new_sector,
4661 			(unsigned long long)logical_sector);
4662 
4663 		sh = get_active_stripe(conf, new_sector, previous,
4664 				       (bi->bi_rw&RWA_MASK), 0);
4665 		if (sh) {
4666 			if (unlikely(previous)) {
4667 				/* expansion might have moved on while waiting for a
4668 				 * stripe, so we must do the range check again.
4669 				 * Expansion could still move past after this
4670 				 * test, but as we are holding a reference to
4671 				 * 'sh', we know that if that happens,
4672 				 *  STRIPE_EXPANDING will get set and the expansion
4673 				 * won't proceed until we finish with the stripe.
4674 				 */
4675 				int must_retry = 0;
4676 				spin_lock_irq(&conf->device_lock);
4677 				if (mddev->reshape_backwards
4678 				    ? logical_sector >= conf->reshape_progress
4679 				    : logical_sector < conf->reshape_progress)
4680 					/* mismatch, need to try again */
4681 					must_retry = 1;
4682 				spin_unlock_irq(&conf->device_lock);
4683 				if (must_retry) {
4684 					release_stripe(sh);
4685 					schedule();
4686 					do_prepare = true;
4687 					goto retry;
4688 				}
4689 			}
4690 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
4691 				/* Might have got the wrong stripe_head
4692 				 * by accident
4693 				 */
4694 				release_stripe(sh);
4695 				goto retry;
4696 			}
4697 
4698 			if (rw == WRITE &&
4699 			    logical_sector >= mddev->suspend_lo &&
4700 			    logical_sector < mddev->suspend_hi) {
4701 				release_stripe(sh);
4702 				/* As the suspend_* range is controlled by
4703 				 * userspace, we want an interruptible
4704 				 * wait.
4705 				 */
4706 				flush_signals(current);
4707 				prepare_to_wait(&conf->wait_for_overlap,
4708 						&w, TASK_INTERRUPTIBLE);
4709 				if (logical_sector >= mddev->suspend_lo &&
4710 				    logical_sector < mddev->suspend_hi) {
4711 					schedule();
4712 					do_prepare = true;
4713 				}
4714 				goto retry;
4715 			}
4716 
4717 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4718 			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
4719 				/* Stripe is busy expanding or
4720 				 * add failed due to overlap.  Flush everything
4721 				 * and wait a while
4722 				 */
4723 				md_wakeup_thread(mddev->thread);
4724 				release_stripe(sh);
4725 				schedule();
4726 				do_prepare = true;
4727 				goto retry;
4728 			}
4729 			set_bit(STRIPE_HANDLE, &sh->state);
4730 			clear_bit(STRIPE_DELAYED, &sh->state);
4731 			if ((bi->bi_rw & REQ_SYNC) &&
4732 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4733 				atomic_inc(&conf->preread_active_stripes);
4734 			release_stripe_plug(mddev, sh);
4735 		} else {
4736 			/* cannot get stripe for read-ahead, just give-up */
4737 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
4738 			break;
4739 		}
4740 	}
4741 	finish_wait(&conf->wait_for_overlap, &w);
4742 
4743 	remaining = raid5_dec_bi_active_stripes(bi);
4744 	if (remaining == 0) {
4745 
4746 		if ( rw == WRITE )
4747 			md_write_end(mddev);
4748 
4749 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4750 					 bi, 0);
4751 		bio_endio(bi, 0);
4752 	}
4753 }
4754 
4755 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4756 
4757 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4758 {
4759 	/* reshaping is quite different to recovery/resync so it is
4760 	 * handled quite separately ... here.
4761 	 *
4762 	 * On each call to sync_request, we gather one chunk worth of
4763 	 * destination stripes and flag them as expanding.
4764 	 * Then we find all the source stripes and request reads.
4765 	 * As the reads complete, handle_stripe will copy the data
4766 	 * into the destination stripe and release that stripe.
4767 	 */
4768 	struct r5conf *conf = mddev->private;
4769 	struct stripe_head *sh;
4770 	sector_t first_sector, last_sector;
4771 	int raid_disks = conf->previous_raid_disks;
4772 	int data_disks = raid_disks - conf->max_degraded;
4773 	int new_data_disks = conf->raid_disks - conf->max_degraded;
4774 	int i;
4775 	int dd_idx;
4776 	sector_t writepos, readpos, safepos;
4777 	sector_t stripe_addr;
4778 	int reshape_sectors;
4779 	struct list_head stripes;
4780 
4781 	if (sector_nr == 0) {
4782 		/* If restarting in the middle, skip the initial sectors */
4783 		if (mddev->reshape_backwards &&
4784 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4785 			sector_nr = raid5_size(mddev, 0, 0)
4786 				- conf->reshape_progress;
4787 		} else if (!mddev->reshape_backwards &&
4788 			   conf->reshape_progress > 0)
4789 			sector_nr = conf->reshape_progress;
4790 		sector_div(sector_nr, new_data_disks);
4791 		if (sector_nr) {
4792 			mddev->curr_resync_completed = sector_nr;
4793 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4794 			*skipped = 1;
4795 			return sector_nr;
4796 		}
4797 	}
4798 
4799 	/* We need to process a full chunk at a time.
4800 	 * If old and new chunk sizes differ, we need to process the
4801 	 * largest of these
4802 	 */
4803 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4804 		reshape_sectors = mddev->new_chunk_sectors;
4805 	else
4806 		reshape_sectors = mddev->chunk_sectors;
4807 
4808 	/* We update the metadata at least every 10 seconds, or when
4809 	 * the data about to be copied would over-write the source of
4810 	 * the data at the front of the range.  i.e. one new_stripe
4811 	 * along from reshape_progress new_maps to after where
4812 	 * reshape_safe old_maps to
4813 	 */
4814 	writepos = conf->reshape_progress;
4815 	sector_div(writepos, new_data_disks);
4816 	readpos = conf->reshape_progress;
4817 	sector_div(readpos, data_disks);
4818 	safepos = conf->reshape_safe;
4819 	sector_div(safepos, data_disks);
4820 	if (mddev->reshape_backwards) {
4821 		writepos -= min_t(sector_t, reshape_sectors, writepos);
4822 		readpos += reshape_sectors;
4823 		safepos += reshape_sectors;
4824 	} else {
4825 		writepos += reshape_sectors;
4826 		readpos -= min_t(sector_t, reshape_sectors, readpos);
4827 		safepos -= min_t(sector_t, reshape_sectors, safepos);
4828 	}
4829 
4830 	/* Having calculated the 'writepos' possibly use it
4831 	 * to set 'stripe_addr' which is where we will write to.
4832 	 */
4833 	if (mddev->reshape_backwards) {
4834 		BUG_ON(conf->reshape_progress == 0);
4835 		stripe_addr = writepos;
4836 		BUG_ON((mddev->dev_sectors &
4837 			~((sector_t)reshape_sectors - 1))
4838 		       - reshape_sectors - stripe_addr
4839 		       != sector_nr);
4840 	} else {
4841 		BUG_ON(writepos != sector_nr + reshape_sectors);
4842 		stripe_addr = sector_nr;
4843 	}
4844 
4845 	/* 'writepos' is the most advanced device address we might write.
4846 	 * 'readpos' is the least advanced device address we might read.
4847 	 * 'safepos' is the least address recorded in the metadata as having
4848 	 *     been reshaped.
4849 	 * If there is a min_offset_diff, these are adjusted either by
4850 	 * increasing the safepos/readpos if diff is negative, or
4851 	 * increasing writepos if diff is positive.
4852 	 * If 'readpos' is then behind 'writepos', there is no way that we can
4853 	 * ensure safety in the face of a crash - that must be done by userspace
4854 	 * making a backup of the data.  So in that case there is no particular
4855 	 * rush to update metadata.
4856 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4857 	 * update the metadata to advance 'safepos' to match 'readpos' so that
4858 	 * we can be safe in the event of a crash.
4859 	 * So we insist on updating metadata if safepos is behind writepos and
4860 	 * readpos is beyond writepos.
4861 	 * In any case, update the metadata every 10 seconds.
4862 	 * Maybe that number should be configurable, but I'm not sure it is
4863 	 * worth it.... maybe it could be a multiple of safemode_delay???
4864 	 */
4865 	if (conf->min_offset_diff < 0) {
4866 		safepos += -conf->min_offset_diff;
4867 		readpos += -conf->min_offset_diff;
4868 	} else
4869 		writepos += conf->min_offset_diff;
4870 
4871 	if ((mddev->reshape_backwards
4872 	     ? (safepos > writepos && readpos < writepos)
4873 	     : (safepos < writepos && readpos > writepos)) ||
4874 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4875 		/* Cannot proceed until we've updated the superblock... */
4876 		wait_event(conf->wait_for_overlap,
4877 			   atomic_read(&conf->reshape_stripes)==0
4878 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4879 		if (atomic_read(&conf->reshape_stripes) != 0)
4880 			return 0;
4881 		mddev->reshape_position = conf->reshape_progress;
4882 		mddev->curr_resync_completed = sector_nr;
4883 		conf->reshape_checkpoint = jiffies;
4884 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4885 		md_wakeup_thread(mddev->thread);
4886 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4887 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4888 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4889 			return 0;
4890 		spin_lock_irq(&conf->device_lock);
4891 		conf->reshape_safe = mddev->reshape_position;
4892 		spin_unlock_irq(&conf->device_lock);
4893 		wake_up(&conf->wait_for_overlap);
4894 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4895 	}
4896 
4897 	INIT_LIST_HEAD(&stripes);
4898 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4899 		int j;
4900 		int skipped_disk = 0;
4901 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4902 		set_bit(STRIPE_EXPANDING, &sh->state);
4903 		atomic_inc(&conf->reshape_stripes);
4904 		/* If any of this stripe is beyond the end of the old
4905 		 * array, then we need to zero those blocks
4906 		 */
4907 		for (j=sh->disks; j--;) {
4908 			sector_t s;
4909 			if (j == sh->pd_idx)
4910 				continue;
4911 			if (conf->level == 6 &&
4912 			    j == sh->qd_idx)
4913 				continue;
4914 			s = compute_blocknr(sh, j, 0);
4915 			if (s < raid5_size(mddev, 0, 0)) {
4916 				skipped_disk = 1;
4917 				continue;
4918 			}
4919 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4920 			set_bit(R5_Expanded, &sh->dev[j].flags);
4921 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4922 		}
4923 		if (!skipped_disk) {
4924 			set_bit(STRIPE_EXPAND_READY, &sh->state);
4925 			set_bit(STRIPE_HANDLE, &sh->state);
4926 		}
4927 		list_add(&sh->lru, &stripes);
4928 	}
4929 	spin_lock_irq(&conf->device_lock);
4930 	if (mddev->reshape_backwards)
4931 		conf->reshape_progress -= reshape_sectors * new_data_disks;
4932 	else
4933 		conf->reshape_progress += reshape_sectors * new_data_disks;
4934 	spin_unlock_irq(&conf->device_lock);
4935 	/* Ok, those stripe are ready. We can start scheduling
4936 	 * reads on the source stripes.
4937 	 * The source stripes are determined by mapping the first and last
4938 	 * block on the destination stripes.
4939 	 */
4940 	first_sector =
4941 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4942 				     1, &dd_idx, NULL);
4943 	last_sector =
4944 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4945 					    * new_data_disks - 1),
4946 				     1, &dd_idx, NULL);
4947 	if (last_sector >= mddev->dev_sectors)
4948 		last_sector = mddev->dev_sectors - 1;
4949 	while (first_sector <= last_sector) {
4950 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4951 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4952 		set_bit(STRIPE_HANDLE, &sh->state);
4953 		release_stripe(sh);
4954 		first_sector += STRIPE_SECTORS;
4955 	}
4956 	/* Now that the sources are clearly marked, we can release
4957 	 * the destination stripes
4958 	 */
4959 	while (!list_empty(&stripes)) {
4960 		sh = list_entry(stripes.next, struct stripe_head, lru);
4961 		list_del_init(&sh->lru);
4962 		release_stripe(sh);
4963 	}
4964 	/* If this takes us to the resync_max point where we have to pause,
4965 	 * then we need to write out the superblock.
4966 	 */
4967 	sector_nr += reshape_sectors;
4968 	if ((sector_nr - mddev->curr_resync_completed) * 2
4969 	    >= mddev->resync_max - mddev->curr_resync_completed) {
4970 		/* Cannot proceed until we've updated the superblock... */
4971 		wait_event(conf->wait_for_overlap,
4972 			   atomic_read(&conf->reshape_stripes) == 0
4973 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4974 		if (atomic_read(&conf->reshape_stripes) != 0)
4975 			goto ret;
4976 		mddev->reshape_position = conf->reshape_progress;
4977 		mddev->curr_resync_completed = sector_nr;
4978 		conf->reshape_checkpoint = jiffies;
4979 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4980 		md_wakeup_thread(mddev->thread);
4981 		wait_event(mddev->sb_wait,
4982 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4983 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4984 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4985 			goto ret;
4986 		spin_lock_irq(&conf->device_lock);
4987 		conf->reshape_safe = mddev->reshape_position;
4988 		spin_unlock_irq(&conf->device_lock);
4989 		wake_up(&conf->wait_for_overlap);
4990 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4991 	}
4992 ret:
4993 	return reshape_sectors;
4994 }
4995 
4996 /* FIXME go_faster isn't used */
4997 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4998 {
4999 	struct r5conf *conf = mddev->private;
5000 	struct stripe_head *sh;
5001 	sector_t max_sector = mddev->dev_sectors;
5002 	sector_t sync_blocks;
5003 	int still_degraded = 0;
5004 	int i;
5005 
5006 	if (sector_nr >= max_sector) {
5007 		/* just being told to finish up .. nothing much to do */
5008 
5009 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5010 			end_reshape(conf);
5011 			return 0;
5012 		}
5013 
5014 		if (mddev->curr_resync < max_sector) /* aborted */
5015 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5016 					&sync_blocks, 1);
5017 		else /* completed sync */
5018 			conf->fullsync = 0;
5019 		bitmap_close_sync(mddev->bitmap);
5020 
5021 		return 0;
5022 	}
5023 
5024 	/* Allow raid5_quiesce to complete */
5025 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5026 
5027 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5028 		return reshape_request(mddev, sector_nr, skipped);
5029 
5030 	/* No need to check resync_max as we never do more than one
5031 	 * stripe, and as resync_max will always be on a chunk boundary,
5032 	 * if the check in md_do_sync didn't fire, there is no chance
5033 	 * of overstepping resync_max here
5034 	 */
5035 
5036 	/* if there is too many failed drives and we are trying
5037 	 * to resync, then assert that we are finished, because there is
5038 	 * nothing we can do.
5039 	 */
5040 	if (mddev->degraded >= conf->max_degraded &&
5041 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5042 		sector_t rv = mddev->dev_sectors - sector_nr;
5043 		*skipped = 1;
5044 		return rv;
5045 	}
5046 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5047 	    !conf->fullsync &&
5048 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5049 	    sync_blocks >= STRIPE_SECTORS) {
5050 		/* we can skip this block, and probably more */
5051 		sync_blocks /= STRIPE_SECTORS;
5052 		*skipped = 1;
5053 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5054 	}
5055 
5056 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5057 
5058 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5059 	if (sh == NULL) {
5060 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5061 		/* make sure we don't swamp the stripe cache if someone else
5062 		 * is trying to get access
5063 		 */
5064 		schedule_timeout_uninterruptible(1);
5065 	}
5066 	/* Need to check if array will still be degraded after recovery/resync
5067 	 * We don't need to check the 'failed' flag as when that gets set,
5068 	 * recovery aborts.
5069 	 */
5070 	for (i = 0; i < conf->raid_disks; i++)
5071 		if (conf->disks[i].rdev == NULL)
5072 			still_degraded = 1;
5073 
5074 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5075 
5076 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5077 	set_bit(STRIPE_HANDLE, &sh->state);
5078 
5079 	release_stripe(sh);
5080 
5081 	return STRIPE_SECTORS;
5082 }
5083 
5084 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5085 {
5086 	/* We may not be able to submit a whole bio at once as there
5087 	 * may not be enough stripe_heads available.
5088 	 * We cannot pre-allocate enough stripe_heads as we may need
5089 	 * more than exist in the cache (if we allow ever large chunks).
5090 	 * So we do one stripe head at a time and record in
5091 	 * ->bi_hw_segments how many have been done.
5092 	 *
5093 	 * We *know* that this entire raid_bio is in one chunk, so
5094 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5095 	 */
5096 	struct stripe_head *sh;
5097 	int dd_idx;
5098 	sector_t sector, logical_sector, last_sector;
5099 	int scnt = 0;
5100 	int remaining;
5101 	int handled = 0;
5102 
5103 	logical_sector = raid_bio->bi_iter.bi_sector &
5104 		~((sector_t)STRIPE_SECTORS-1);
5105 	sector = raid5_compute_sector(conf, logical_sector,
5106 				      0, &dd_idx, NULL);
5107 	last_sector = bio_end_sector(raid_bio);
5108 
5109 	for (; logical_sector < last_sector;
5110 	     logical_sector += STRIPE_SECTORS,
5111 		     sector += STRIPE_SECTORS,
5112 		     scnt++) {
5113 
5114 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5115 			/* already done this stripe */
5116 			continue;
5117 
5118 		sh = get_active_stripe(conf, sector, 0, 1, 1);
5119 
5120 		if (!sh) {
5121 			/* failed to get a stripe - must wait */
5122 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5123 			conf->retry_read_aligned = raid_bio;
5124 			return handled;
5125 		}
5126 
5127 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5128 			release_stripe(sh);
5129 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5130 			conf->retry_read_aligned = raid_bio;
5131 			return handled;
5132 		}
5133 
5134 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5135 		handle_stripe(sh);
5136 		release_stripe(sh);
5137 		handled++;
5138 	}
5139 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5140 	if (remaining == 0) {
5141 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5142 					 raid_bio, 0);
5143 		bio_endio(raid_bio, 0);
5144 	}
5145 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5146 		wake_up(&conf->wait_for_stripe);
5147 	return handled;
5148 }
5149 
5150 static int handle_active_stripes(struct r5conf *conf, int group,
5151 				 struct r5worker *worker,
5152 				 struct list_head *temp_inactive_list)
5153 {
5154 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5155 	int i, batch_size = 0, hash;
5156 	bool release_inactive = false;
5157 
5158 	while (batch_size < MAX_STRIPE_BATCH &&
5159 			(sh = __get_priority_stripe(conf, group)) != NULL)
5160 		batch[batch_size++] = sh;
5161 
5162 	if (batch_size == 0) {
5163 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5164 			if (!list_empty(temp_inactive_list + i))
5165 				break;
5166 		if (i == NR_STRIPE_HASH_LOCKS)
5167 			return batch_size;
5168 		release_inactive = true;
5169 	}
5170 	spin_unlock_irq(&conf->device_lock);
5171 
5172 	release_inactive_stripe_list(conf, temp_inactive_list,
5173 				     NR_STRIPE_HASH_LOCKS);
5174 
5175 	if (release_inactive) {
5176 		spin_lock_irq(&conf->device_lock);
5177 		return 0;
5178 	}
5179 
5180 	for (i = 0; i < batch_size; i++)
5181 		handle_stripe(batch[i]);
5182 
5183 	cond_resched();
5184 
5185 	spin_lock_irq(&conf->device_lock);
5186 	for (i = 0; i < batch_size; i++) {
5187 		hash = batch[i]->hash_lock_index;
5188 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5189 	}
5190 	return batch_size;
5191 }
5192 
5193 static void raid5_do_work(struct work_struct *work)
5194 {
5195 	struct r5worker *worker = container_of(work, struct r5worker, work);
5196 	struct r5worker_group *group = worker->group;
5197 	struct r5conf *conf = group->conf;
5198 	int group_id = group - conf->worker_groups;
5199 	int handled;
5200 	struct blk_plug plug;
5201 
5202 	pr_debug("+++ raid5worker active\n");
5203 
5204 	blk_start_plug(&plug);
5205 	handled = 0;
5206 	spin_lock_irq(&conf->device_lock);
5207 	while (1) {
5208 		int batch_size, released;
5209 
5210 		released = release_stripe_list(conf, worker->temp_inactive_list);
5211 
5212 		batch_size = handle_active_stripes(conf, group_id, worker,
5213 						   worker->temp_inactive_list);
5214 		worker->working = false;
5215 		if (!batch_size && !released)
5216 			break;
5217 		handled += batch_size;
5218 	}
5219 	pr_debug("%d stripes handled\n", handled);
5220 
5221 	spin_unlock_irq(&conf->device_lock);
5222 	blk_finish_plug(&plug);
5223 
5224 	pr_debug("--- raid5worker inactive\n");
5225 }
5226 
5227 /*
5228  * This is our raid5 kernel thread.
5229  *
5230  * We scan the hash table for stripes which can be handled now.
5231  * During the scan, completed stripes are saved for us by the interrupt
5232  * handler, so that they will not have to wait for our next wakeup.
5233  */
5234 static void raid5d(struct md_thread *thread)
5235 {
5236 	struct mddev *mddev = thread->mddev;
5237 	struct r5conf *conf = mddev->private;
5238 	int handled;
5239 	struct blk_plug plug;
5240 
5241 	pr_debug("+++ raid5d active\n");
5242 
5243 	md_check_recovery(mddev);
5244 
5245 	blk_start_plug(&plug);
5246 	handled = 0;
5247 	spin_lock_irq(&conf->device_lock);
5248 	while (1) {
5249 		struct bio *bio;
5250 		int batch_size, released;
5251 
5252 		released = release_stripe_list(conf, conf->temp_inactive_list);
5253 
5254 		if (
5255 		    !list_empty(&conf->bitmap_list)) {
5256 			/* Now is a good time to flush some bitmap updates */
5257 			conf->seq_flush++;
5258 			spin_unlock_irq(&conf->device_lock);
5259 			bitmap_unplug(mddev->bitmap);
5260 			spin_lock_irq(&conf->device_lock);
5261 			conf->seq_write = conf->seq_flush;
5262 			activate_bit_delay(conf, conf->temp_inactive_list);
5263 		}
5264 		raid5_activate_delayed(conf);
5265 
5266 		while ((bio = remove_bio_from_retry(conf))) {
5267 			int ok;
5268 			spin_unlock_irq(&conf->device_lock);
5269 			ok = retry_aligned_read(conf, bio);
5270 			spin_lock_irq(&conf->device_lock);
5271 			if (!ok)
5272 				break;
5273 			handled++;
5274 		}
5275 
5276 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5277 						   conf->temp_inactive_list);
5278 		if (!batch_size && !released)
5279 			break;
5280 		handled += batch_size;
5281 
5282 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5283 			spin_unlock_irq(&conf->device_lock);
5284 			md_check_recovery(mddev);
5285 			spin_lock_irq(&conf->device_lock);
5286 		}
5287 	}
5288 	pr_debug("%d stripes handled\n", handled);
5289 
5290 	spin_unlock_irq(&conf->device_lock);
5291 
5292 	async_tx_issue_pending_all();
5293 	blk_finish_plug(&plug);
5294 
5295 	pr_debug("--- raid5d inactive\n");
5296 }
5297 
5298 static ssize_t
5299 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5300 {
5301 	struct r5conf *conf = mddev->private;
5302 	if (conf)
5303 		return sprintf(page, "%d\n", conf->max_nr_stripes);
5304 	else
5305 		return 0;
5306 }
5307 
5308 int
5309 raid5_set_cache_size(struct mddev *mddev, int size)
5310 {
5311 	struct r5conf *conf = mddev->private;
5312 	int err;
5313 	int hash;
5314 
5315 	if (size <= 16 || size > 32768)
5316 		return -EINVAL;
5317 	hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5318 	while (size < conf->max_nr_stripes) {
5319 		if (drop_one_stripe(conf, hash))
5320 			conf->max_nr_stripes--;
5321 		else
5322 			break;
5323 		hash--;
5324 		if (hash < 0)
5325 			hash = NR_STRIPE_HASH_LOCKS - 1;
5326 	}
5327 	err = md_allow_write(mddev);
5328 	if (err)
5329 		return err;
5330 	hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5331 	while (size > conf->max_nr_stripes) {
5332 		if (grow_one_stripe(conf, hash))
5333 			conf->max_nr_stripes++;
5334 		else break;
5335 		hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5336 	}
5337 	return 0;
5338 }
5339 EXPORT_SYMBOL(raid5_set_cache_size);
5340 
5341 static ssize_t
5342 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5343 {
5344 	struct r5conf *conf = mddev->private;
5345 	unsigned long new;
5346 	int err;
5347 
5348 	if (len >= PAGE_SIZE)
5349 		return -EINVAL;
5350 	if (!conf)
5351 		return -ENODEV;
5352 
5353 	if (kstrtoul(page, 10, &new))
5354 		return -EINVAL;
5355 	err = raid5_set_cache_size(mddev, new);
5356 	if (err)
5357 		return err;
5358 	return len;
5359 }
5360 
5361 static struct md_sysfs_entry
5362 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5363 				raid5_show_stripe_cache_size,
5364 				raid5_store_stripe_cache_size);
5365 
5366 static ssize_t
5367 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5368 {
5369 	struct r5conf *conf = mddev->private;
5370 	if (conf)
5371 		return sprintf(page, "%d\n", conf->bypass_threshold);
5372 	else
5373 		return 0;
5374 }
5375 
5376 static ssize_t
5377 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5378 {
5379 	struct r5conf *conf = mddev->private;
5380 	unsigned long new;
5381 	if (len >= PAGE_SIZE)
5382 		return -EINVAL;
5383 	if (!conf)
5384 		return -ENODEV;
5385 
5386 	if (kstrtoul(page, 10, &new))
5387 		return -EINVAL;
5388 	if (new > conf->max_nr_stripes)
5389 		return -EINVAL;
5390 	conf->bypass_threshold = new;
5391 	return len;
5392 }
5393 
5394 static struct md_sysfs_entry
5395 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5396 					S_IRUGO | S_IWUSR,
5397 					raid5_show_preread_threshold,
5398 					raid5_store_preread_threshold);
5399 
5400 static ssize_t
5401 raid5_show_skip_copy(struct mddev *mddev, char *page)
5402 {
5403 	struct r5conf *conf = mddev->private;
5404 	if (conf)
5405 		return sprintf(page, "%d\n", conf->skip_copy);
5406 	else
5407 		return 0;
5408 }
5409 
5410 static ssize_t
5411 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5412 {
5413 	struct r5conf *conf = mddev->private;
5414 	unsigned long new;
5415 	if (len >= PAGE_SIZE)
5416 		return -EINVAL;
5417 	if (!conf)
5418 		return -ENODEV;
5419 
5420 	if (kstrtoul(page, 10, &new))
5421 		return -EINVAL;
5422 	new = !!new;
5423 	if (new == conf->skip_copy)
5424 		return len;
5425 
5426 	mddev_suspend(mddev);
5427 	conf->skip_copy = new;
5428 	if (new)
5429 		mddev->queue->backing_dev_info.capabilities |=
5430 						BDI_CAP_STABLE_WRITES;
5431 	else
5432 		mddev->queue->backing_dev_info.capabilities &=
5433 						~BDI_CAP_STABLE_WRITES;
5434 	mddev_resume(mddev);
5435 	return len;
5436 }
5437 
5438 static struct md_sysfs_entry
5439 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5440 					raid5_show_skip_copy,
5441 					raid5_store_skip_copy);
5442 
5443 
5444 static ssize_t
5445 stripe_cache_active_show(struct mddev *mddev, char *page)
5446 {
5447 	struct r5conf *conf = mddev->private;
5448 	if (conf)
5449 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5450 	else
5451 		return 0;
5452 }
5453 
5454 static struct md_sysfs_entry
5455 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5456 
5457 static ssize_t
5458 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5459 {
5460 	struct r5conf *conf = mddev->private;
5461 	if (conf)
5462 		return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5463 	else
5464 		return 0;
5465 }
5466 
5467 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5468 			       int *group_cnt,
5469 			       int *worker_cnt_per_group,
5470 			       struct r5worker_group **worker_groups);
5471 static ssize_t
5472 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5473 {
5474 	struct r5conf *conf = mddev->private;
5475 	unsigned long new;
5476 	int err;
5477 	struct r5worker_group *new_groups, *old_groups;
5478 	int group_cnt, worker_cnt_per_group;
5479 
5480 	if (len >= PAGE_SIZE)
5481 		return -EINVAL;
5482 	if (!conf)
5483 		return -ENODEV;
5484 
5485 	if (kstrtoul(page, 10, &new))
5486 		return -EINVAL;
5487 
5488 	if (new == conf->worker_cnt_per_group)
5489 		return len;
5490 
5491 	mddev_suspend(mddev);
5492 
5493 	old_groups = conf->worker_groups;
5494 	if (old_groups)
5495 		flush_workqueue(raid5_wq);
5496 
5497 	err = alloc_thread_groups(conf, new,
5498 				  &group_cnt, &worker_cnt_per_group,
5499 				  &new_groups);
5500 	if (!err) {
5501 		spin_lock_irq(&conf->device_lock);
5502 		conf->group_cnt = group_cnt;
5503 		conf->worker_cnt_per_group = worker_cnt_per_group;
5504 		conf->worker_groups = new_groups;
5505 		spin_unlock_irq(&conf->device_lock);
5506 
5507 		if (old_groups)
5508 			kfree(old_groups[0].workers);
5509 		kfree(old_groups);
5510 	}
5511 
5512 	mddev_resume(mddev);
5513 
5514 	if (err)
5515 		return err;
5516 	return len;
5517 }
5518 
5519 static struct md_sysfs_entry
5520 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5521 				raid5_show_group_thread_cnt,
5522 				raid5_store_group_thread_cnt);
5523 
5524 static struct attribute *raid5_attrs[] =  {
5525 	&raid5_stripecache_size.attr,
5526 	&raid5_stripecache_active.attr,
5527 	&raid5_preread_bypass_threshold.attr,
5528 	&raid5_group_thread_cnt.attr,
5529 	&raid5_skip_copy.attr,
5530 	NULL,
5531 };
5532 static struct attribute_group raid5_attrs_group = {
5533 	.name = NULL,
5534 	.attrs = raid5_attrs,
5535 };
5536 
5537 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5538 			       int *group_cnt,
5539 			       int *worker_cnt_per_group,
5540 			       struct r5worker_group **worker_groups)
5541 {
5542 	int i, j, k;
5543 	ssize_t size;
5544 	struct r5worker *workers;
5545 
5546 	*worker_cnt_per_group = cnt;
5547 	if (cnt == 0) {
5548 		*group_cnt = 0;
5549 		*worker_groups = NULL;
5550 		return 0;
5551 	}
5552 	*group_cnt = num_possible_nodes();
5553 	size = sizeof(struct r5worker) * cnt;
5554 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
5555 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
5556 				*group_cnt, GFP_NOIO);
5557 	if (!*worker_groups || !workers) {
5558 		kfree(workers);
5559 		kfree(*worker_groups);
5560 		return -ENOMEM;
5561 	}
5562 
5563 	for (i = 0; i < *group_cnt; i++) {
5564 		struct r5worker_group *group;
5565 
5566 		group = &(*worker_groups)[i];
5567 		INIT_LIST_HEAD(&group->handle_list);
5568 		group->conf = conf;
5569 		group->workers = workers + i * cnt;
5570 
5571 		for (j = 0; j < cnt; j++) {
5572 			struct r5worker *worker = group->workers + j;
5573 			worker->group = group;
5574 			INIT_WORK(&worker->work, raid5_do_work);
5575 
5576 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5577 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
5578 		}
5579 	}
5580 
5581 	return 0;
5582 }
5583 
5584 static void free_thread_groups(struct r5conf *conf)
5585 {
5586 	if (conf->worker_groups)
5587 		kfree(conf->worker_groups[0].workers);
5588 	kfree(conf->worker_groups);
5589 	conf->worker_groups = NULL;
5590 }
5591 
5592 static sector_t
5593 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5594 {
5595 	struct r5conf *conf = mddev->private;
5596 
5597 	if (!sectors)
5598 		sectors = mddev->dev_sectors;
5599 	if (!raid_disks)
5600 		/* size is defined by the smallest of previous and new size */
5601 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5602 
5603 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5604 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5605 	return sectors * (raid_disks - conf->max_degraded);
5606 }
5607 
5608 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5609 {
5610 	safe_put_page(percpu->spare_page);
5611 	kfree(percpu->scribble);
5612 	percpu->spare_page = NULL;
5613 	percpu->scribble = NULL;
5614 }
5615 
5616 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5617 {
5618 	if (conf->level == 6 && !percpu->spare_page)
5619 		percpu->spare_page = alloc_page(GFP_KERNEL);
5620 	if (!percpu->scribble)
5621 		percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5622 
5623 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5624 		free_scratch_buffer(conf, percpu);
5625 		return -ENOMEM;
5626 	}
5627 
5628 	return 0;
5629 }
5630 
5631 static void raid5_free_percpu(struct r5conf *conf)
5632 {
5633 	unsigned long cpu;
5634 
5635 	if (!conf->percpu)
5636 		return;
5637 
5638 #ifdef CONFIG_HOTPLUG_CPU
5639 	unregister_cpu_notifier(&conf->cpu_notify);
5640 #endif
5641 
5642 	get_online_cpus();
5643 	for_each_possible_cpu(cpu)
5644 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5645 	put_online_cpus();
5646 
5647 	free_percpu(conf->percpu);
5648 }
5649 
5650 static void free_conf(struct r5conf *conf)
5651 {
5652 	free_thread_groups(conf);
5653 	shrink_stripes(conf);
5654 	raid5_free_percpu(conf);
5655 	kfree(conf->disks);
5656 	kfree(conf->stripe_hashtbl);
5657 	kfree(conf);
5658 }
5659 
5660 #ifdef CONFIG_HOTPLUG_CPU
5661 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5662 			      void *hcpu)
5663 {
5664 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5665 	long cpu = (long)hcpu;
5666 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5667 
5668 	switch (action) {
5669 	case CPU_UP_PREPARE:
5670 	case CPU_UP_PREPARE_FROZEN:
5671 		if (alloc_scratch_buffer(conf, percpu)) {
5672 			pr_err("%s: failed memory allocation for cpu%ld\n",
5673 			       __func__, cpu);
5674 			return notifier_from_errno(-ENOMEM);
5675 		}
5676 		break;
5677 	case CPU_DEAD:
5678 	case CPU_DEAD_FROZEN:
5679 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5680 		break;
5681 	default:
5682 		break;
5683 	}
5684 	return NOTIFY_OK;
5685 }
5686 #endif
5687 
5688 static int raid5_alloc_percpu(struct r5conf *conf)
5689 {
5690 	unsigned long cpu;
5691 	int err = 0;
5692 
5693 	conf->percpu = alloc_percpu(struct raid5_percpu);
5694 	if (!conf->percpu)
5695 		return -ENOMEM;
5696 
5697 #ifdef CONFIG_HOTPLUG_CPU
5698 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
5699 	conf->cpu_notify.priority = 0;
5700 	err = register_cpu_notifier(&conf->cpu_notify);
5701 	if (err)
5702 		return err;
5703 #endif
5704 
5705 	get_online_cpus();
5706 	for_each_present_cpu(cpu) {
5707 		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5708 		if (err) {
5709 			pr_err("%s: failed memory allocation for cpu%ld\n",
5710 			       __func__, cpu);
5711 			break;
5712 		}
5713 	}
5714 	put_online_cpus();
5715 
5716 	return err;
5717 }
5718 
5719 static struct r5conf *setup_conf(struct mddev *mddev)
5720 {
5721 	struct r5conf *conf;
5722 	int raid_disk, memory, max_disks;
5723 	struct md_rdev *rdev;
5724 	struct disk_info *disk;
5725 	char pers_name[6];
5726 	int i;
5727 	int group_cnt, worker_cnt_per_group;
5728 	struct r5worker_group *new_group;
5729 
5730 	if (mddev->new_level != 5
5731 	    && mddev->new_level != 4
5732 	    && mddev->new_level != 6) {
5733 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5734 		       mdname(mddev), mddev->new_level);
5735 		return ERR_PTR(-EIO);
5736 	}
5737 	if ((mddev->new_level == 5
5738 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
5739 	    (mddev->new_level == 6
5740 	     && !algorithm_valid_raid6(mddev->new_layout))) {
5741 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5742 		       mdname(mddev), mddev->new_layout);
5743 		return ERR_PTR(-EIO);
5744 	}
5745 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5746 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5747 		       mdname(mddev), mddev->raid_disks);
5748 		return ERR_PTR(-EINVAL);
5749 	}
5750 
5751 	if (!mddev->new_chunk_sectors ||
5752 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5753 	    !is_power_of_2(mddev->new_chunk_sectors)) {
5754 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5755 		       mdname(mddev), mddev->new_chunk_sectors << 9);
5756 		return ERR_PTR(-EINVAL);
5757 	}
5758 
5759 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5760 	if (conf == NULL)
5761 		goto abort;
5762 	/* Don't enable multi-threading by default*/
5763 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5764 				 &new_group)) {
5765 		conf->group_cnt = group_cnt;
5766 		conf->worker_cnt_per_group = worker_cnt_per_group;
5767 		conf->worker_groups = new_group;
5768 	} else
5769 		goto abort;
5770 	spin_lock_init(&conf->device_lock);
5771 	seqcount_init(&conf->gen_lock);
5772 	init_waitqueue_head(&conf->wait_for_stripe);
5773 	init_waitqueue_head(&conf->wait_for_overlap);
5774 	INIT_LIST_HEAD(&conf->handle_list);
5775 	INIT_LIST_HEAD(&conf->hold_list);
5776 	INIT_LIST_HEAD(&conf->delayed_list);
5777 	INIT_LIST_HEAD(&conf->bitmap_list);
5778 	init_llist_head(&conf->released_stripes);
5779 	atomic_set(&conf->active_stripes, 0);
5780 	atomic_set(&conf->preread_active_stripes, 0);
5781 	atomic_set(&conf->active_aligned_reads, 0);
5782 	conf->bypass_threshold = BYPASS_THRESHOLD;
5783 	conf->recovery_disabled = mddev->recovery_disabled - 1;
5784 
5785 	conf->raid_disks = mddev->raid_disks;
5786 	if (mddev->reshape_position == MaxSector)
5787 		conf->previous_raid_disks = mddev->raid_disks;
5788 	else
5789 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5790 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5791 	conf->scribble_len = scribble_len(max_disks);
5792 
5793 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5794 			      GFP_KERNEL);
5795 	if (!conf->disks)
5796 		goto abort;
5797 
5798 	conf->mddev = mddev;
5799 
5800 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5801 		goto abort;
5802 
5803 	/* We init hash_locks[0] separately to that it can be used
5804 	 * as the reference lock in the spin_lock_nest_lock() call
5805 	 * in lock_all_device_hash_locks_irq in order to convince
5806 	 * lockdep that we know what we are doing.
5807 	 */
5808 	spin_lock_init(conf->hash_locks);
5809 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5810 		spin_lock_init(conf->hash_locks + i);
5811 
5812 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5813 		INIT_LIST_HEAD(conf->inactive_list + i);
5814 
5815 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5816 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
5817 
5818 	conf->level = mddev->new_level;
5819 	if (raid5_alloc_percpu(conf) != 0)
5820 		goto abort;
5821 
5822 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5823 
5824 	rdev_for_each(rdev, mddev) {
5825 		raid_disk = rdev->raid_disk;
5826 		if (raid_disk >= max_disks
5827 		    || raid_disk < 0)
5828 			continue;
5829 		disk = conf->disks + raid_disk;
5830 
5831 		if (test_bit(Replacement, &rdev->flags)) {
5832 			if (disk->replacement)
5833 				goto abort;
5834 			disk->replacement = rdev;
5835 		} else {
5836 			if (disk->rdev)
5837 				goto abort;
5838 			disk->rdev = rdev;
5839 		}
5840 
5841 		if (test_bit(In_sync, &rdev->flags)) {
5842 			char b[BDEVNAME_SIZE];
5843 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5844 			       " disk %d\n",
5845 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5846 		} else if (rdev->saved_raid_disk != raid_disk)
5847 			/* Cannot rely on bitmap to complete recovery */
5848 			conf->fullsync = 1;
5849 	}
5850 
5851 	conf->chunk_sectors = mddev->new_chunk_sectors;
5852 	conf->level = mddev->new_level;
5853 	if (conf->level == 6)
5854 		conf->max_degraded = 2;
5855 	else
5856 		conf->max_degraded = 1;
5857 	conf->algorithm = mddev->new_layout;
5858 	conf->reshape_progress = mddev->reshape_position;
5859 	if (conf->reshape_progress != MaxSector) {
5860 		conf->prev_chunk_sectors = mddev->chunk_sectors;
5861 		conf->prev_algo = mddev->layout;
5862 	}
5863 
5864 	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5865 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5866 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5867 	if (grow_stripes(conf, NR_STRIPES)) {
5868 		printk(KERN_ERR
5869 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
5870 		       mdname(mddev), memory);
5871 		goto abort;
5872 	} else
5873 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5874 		       mdname(mddev), memory);
5875 
5876 	sprintf(pers_name, "raid%d", mddev->new_level);
5877 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
5878 	if (!conf->thread) {
5879 		printk(KERN_ERR
5880 		       "md/raid:%s: couldn't allocate thread.\n",
5881 		       mdname(mddev));
5882 		goto abort;
5883 	}
5884 
5885 	return conf;
5886 
5887  abort:
5888 	if (conf) {
5889 		free_conf(conf);
5890 		return ERR_PTR(-EIO);
5891 	} else
5892 		return ERR_PTR(-ENOMEM);
5893 }
5894 
5895 
5896 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5897 {
5898 	switch (algo) {
5899 	case ALGORITHM_PARITY_0:
5900 		if (raid_disk < max_degraded)
5901 			return 1;
5902 		break;
5903 	case ALGORITHM_PARITY_N:
5904 		if (raid_disk >= raid_disks - max_degraded)
5905 			return 1;
5906 		break;
5907 	case ALGORITHM_PARITY_0_6:
5908 		if (raid_disk == 0 ||
5909 		    raid_disk == raid_disks - 1)
5910 			return 1;
5911 		break;
5912 	case ALGORITHM_LEFT_ASYMMETRIC_6:
5913 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5914 	case ALGORITHM_LEFT_SYMMETRIC_6:
5915 	case ALGORITHM_RIGHT_SYMMETRIC_6:
5916 		if (raid_disk == raid_disks - 1)
5917 			return 1;
5918 	}
5919 	return 0;
5920 }
5921 
5922 static int run(struct mddev *mddev)
5923 {
5924 	struct r5conf *conf;
5925 	int working_disks = 0;
5926 	int dirty_parity_disks = 0;
5927 	struct md_rdev *rdev;
5928 	sector_t reshape_offset = 0;
5929 	int i;
5930 	long long min_offset_diff = 0;
5931 	int first = 1;
5932 
5933 	if (mddev->recovery_cp != MaxSector)
5934 		printk(KERN_NOTICE "md/raid:%s: not clean"
5935 		       " -- starting background reconstruction\n",
5936 		       mdname(mddev));
5937 
5938 	rdev_for_each(rdev, mddev) {
5939 		long long diff;
5940 		if (rdev->raid_disk < 0)
5941 			continue;
5942 		diff = (rdev->new_data_offset - rdev->data_offset);
5943 		if (first) {
5944 			min_offset_diff = diff;
5945 			first = 0;
5946 		} else if (mddev->reshape_backwards &&
5947 			 diff < min_offset_diff)
5948 			min_offset_diff = diff;
5949 		else if (!mddev->reshape_backwards &&
5950 			 diff > min_offset_diff)
5951 			min_offset_diff = diff;
5952 	}
5953 
5954 	if (mddev->reshape_position != MaxSector) {
5955 		/* Check that we can continue the reshape.
5956 		 * Difficulties arise if the stripe we would write to
5957 		 * next is at or after the stripe we would read from next.
5958 		 * For a reshape that changes the number of devices, this
5959 		 * is only possible for a very short time, and mdadm makes
5960 		 * sure that time appears to have past before assembling
5961 		 * the array.  So we fail if that time hasn't passed.
5962 		 * For a reshape that keeps the number of devices the same
5963 		 * mdadm must be monitoring the reshape can keeping the
5964 		 * critical areas read-only and backed up.  It will start
5965 		 * the array in read-only mode, so we check for that.
5966 		 */
5967 		sector_t here_new, here_old;
5968 		int old_disks;
5969 		int max_degraded = (mddev->level == 6 ? 2 : 1);
5970 
5971 		if (mddev->new_level != mddev->level) {
5972 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
5973 			       "required - aborting.\n",
5974 			       mdname(mddev));
5975 			return -EINVAL;
5976 		}
5977 		old_disks = mddev->raid_disks - mddev->delta_disks;
5978 		/* reshape_position must be on a new-stripe boundary, and one
5979 		 * further up in new geometry must map after here in old
5980 		 * geometry.
5981 		 */
5982 		here_new = mddev->reshape_position;
5983 		if (sector_div(here_new, mddev->new_chunk_sectors *
5984 			       (mddev->raid_disks - max_degraded))) {
5985 			printk(KERN_ERR "md/raid:%s: reshape_position not "
5986 			       "on a stripe boundary\n", mdname(mddev));
5987 			return -EINVAL;
5988 		}
5989 		reshape_offset = here_new * mddev->new_chunk_sectors;
5990 		/* here_new is the stripe we will write to */
5991 		here_old = mddev->reshape_position;
5992 		sector_div(here_old, mddev->chunk_sectors *
5993 			   (old_disks-max_degraded));
5994 		/* here_old is the first stripe that we might need to read
5995 		 * from */
5996 		if (mddev->delta_disks == 0) {
5997 			if ((here_new * mddev->new_chunk_sectors !=
5998 			     here_old * mddev->chunk_sectors)) {
5999 				printk(KERN_ERR "md/raid:%s: reshape position is"
6000 				       " confused - aborting\n", mdname(mddev));
6001 				return -EINVAL;
6002 			}
6003 			/* We cannot be sure it is safe to start an in-place
6004 			 * reshape.  It is only safe if user-space is monitoring
6005 			 * and taking constant backups.
6006 			 * mdadm always starts a situation like this in
6007 			 * readonly mode so it can take control before
6008 			 * allowing any writes.  So just check for that.
6009 			 */
6010 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6011 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6012 				/* not really in-place - so OK */;
6013 			else if (mddev->ro == 0) {
6014 				printk(KERN_ERR "md/raid:%s: in-place reshape "
6015 				       "must be started in read-only mode "
6016 				       "- aborting\n",
6017 				       mdname(mddev));
6018 				return -EINVAL;
6019 			}
6020 		} else if (mddev->reshape_backwards
6021 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6022 		       here_old * mddev->chunk_sectors)
6023 		    : (here_new * mddev->new_chunk_sectors >=
6024 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6025 			/* Reading from the same stripe as writing to - bad */
6026 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6027 			       "auto-recovery - aborting.\n",
6028 			       mdname(mddev));
6029 			return -EINVAL;
6030 		}
6031 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6032 		       mdname(mddev));
6033 		/* OK, we should be able to continue; */
6034 	} else {
6035 		BUG_ON(mddev->level != mddev->new_level);
6036 		BUG_ON(mddev->layout != mddev->new_layout);
6037 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6038 		BUG_ON(mddev->delta_disks != 0);
6039 	}
6040 
6041 	if (mddev->private == NULL)
6042 		conf = setup_conf(mddev);
6043 	else
6044 		conf = mddev->private;
6045 
6046 	if (IS_ERR(conf))
6047 		return PTR_ERR(conf);
6048 
6049 	conf->min_offset_diff = min_offset_diff;
6050 	mddev->thread = conf->thread;
6051 	conf->thread = NULL;
6052 	mddev->private = conf;
6053 
6054 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6055 	     i++) {
6056 		rdev = conf->disks[i].rdev;
6057 		if (!rdev && conf->disks[i].replacement) {
6058 			/* The replacement is all we have yet */
6059 			rdev = conf->disks[i].replacement;
6060 			conf->disks[i].replacement = NULL;
6061 			clear_bit(Replacement, &rdev->flags);
6062 			conf->disks[i].rdev = rdev;
6063 		}
6064 		if (!rdev)
6065 			continue;
6066 		if (conf->disks[i].replacement &&
6067 		    conf->reshape_progress != MaxSector) {
6068 			/* replacements and reshape simply do not mix. */
6069 			printk(KERN_ERR "md: cannot handle concurrent "
6070 			       "replacement and reshape.\n");
6071 			goto abort;
6072 		}
6073 		if (test_bit(In_sync, &rdev->flags)) {
6074 			working_disks++;
6075 			continue;
6076 		}
6077 		/* This disc is not fully in-sync.  However if it
6078 		 * just stored parity (beyond the recovery_offset),
6079 		 * when we don't need to be concerned about the
6080 		 * array being dirty.
6081 		 * When reshape goes 'backwards', we never have
6082 		 * partially completed devices, so we only need
6083 		 * to worry about reshape going forwards.
6084 		 */
6085 		/* Hack because v0.91 doesn't store recovery_offset properly. */
6086 		if (mddev->major_version == 0 &&
6087 		    mddev->minor_version > 90)
6088 			rdev->recovery_offset = reshape_offset;
6089 
6090 		if (rdev->recovery_offset < reshape_offset) {
6091 			/* We need to check old and new layout */
6092 			if (!only_parity(rdev->raid_disk,
6093 					 conf->algorithm,
6094 					 conf->raid_disks,
6095 					 conf->max_degraded))
6096 				continue;
6097 		}
6098 		if (!only_parity(rdev->raid_disk,
6099 				 conf->prev_algo,
6100 				 conf->previous_raid_disks,
6101 				 conf->max_degraded))
6102 			continue;
6103 		dirty_parity_disks++;
6104 	}
6105 
6106 	/*
6107 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6108 	 */
6109 	mddev->degraded = calc_degraded(conf);
6110 
6111 	if (has_failed(conf)) {
6112 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6113 			" (%d/%d failed)\n",
6114 			mdname(mddev), mddev->degraded, conf->raid_disks);
6115 		goto abort;
6116 	}
6117 
6118 	/* device size must be a multiple of chunk size */
6119 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6120 	mddev->resync_max_sectors = mddev->dev_sectors;
6121 
6122 	if (mddev->degraded > dirty_parity_disks &&
6123 	    mddev->recovery_cp != MaxSector) {
6124 		if (mddev->ok_start_degraded)
6125 			printk(KERN_WARNING
6126 			       "md/raid:%s: starting dirty degraded array"
6127 			       " - data corruption possible.\n",
6128 			       mdname(mddev));
6129 		else {
6130 			printk(KERN_ERR
6131 			       "md/raid:%s: cannot start dirty degraded array.\n",
6132 			       mdname(mddev));
6133 			goto abort;
6134 		}
6135 	}
6136 
6137 	if (mddev->degraded == 0)
6138 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6139 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6140 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6141 		       mddev->new_layout);
6142 	else
6143 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6144 		       " out of %d devices, algorithm %d\n",
6145 		       mdname(mddev), conf->level,
6146 		       mddev->raid_disks - mddev->degraded,
6147 		       mddev->raid_disks, mddev->new_layout);
6148 
6149 	print_raid5_conf(conf);
6150 
6151 	if (conf->reshape_progress != MaxSector) {
6152 		conf->reshape_safe = conf->reshape_progress;
6153 		atomic_set(&conf->reshape_stripes, 0);
6154 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6155 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6156 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6157 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6158 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6159 							"reshape");
6160 	}
6161 
6162 
6163 	/* Ok, everything is just fine now */
6164 	if (mddev->to_remove == &raid5_attrs_group)
6165 		mddev->to_remove = NULL;
6166 	else if (mddev->kobj.sd &&
6167 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6168 		printk(KERN_WARNING
6169 		       "raid5: failed to create sysfs attributes for %s\n",
6170 		       mdname(mddev));
6171 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6172 
6173 	if (mddev->queue) {
6174 		int chunk_size;
6175 		bool discard_supported = true;
6176 		/* read-ahead size must cover two whole stripes, which
6177 		 * is 2 * (datadisks) * chunksize where 'n' is the
6178 		 * number of raid devices
6179 		 */
6180 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6181 		int stripe = data_disks *
6182 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6183 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6184 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6185 
6186 		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6187 
6188 		mddev->queue->backing_dev_info.congested_data = mddev;
6189 		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6190 
6191 		chunk_size = mddev->chunk_sectors << 9;
6192 		blk_queue_io_min(mddev->queue, chunk_size);
6193 		blk_queue_io_opt(mddev->queue, chunk_size *
6194 				 (conf->raid_disks - conf->max_degraded));
6195 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6196 		/*
6197 		 * We can only discard a whole stripe. It doesn't make sense to
6198 		 * discard data disk but write parity disk
6199 		 */
6200 		stripe = stripe * PAGE_SIZE;
6201 		/* Round up to power of 2, as discard handling
6202 		 * currently assumes that */
6203 		while ((stripe-1) & stripe)
6204 			stripe = (stripe | (stripe-1)) + 1;
6205 		mddev->queue->limits.discard_alignment = stripe;
6206 		mddev->queue->limits.discard_granularity = stripe;
6207 		/*
6208 		 * unaligned part of discard request will be ignored, so can't
6209 		 * guarantee discard_zerors_data
6210 		 */
6211 		mddev->queue->limits.discard_zeroes_data = 0;
6212 
6213 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6214 
6215 		rdev_for_each(rdev, mddev) {
6216 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6217 					  rdev->data_offset << 9);
6218 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6219 					  rdev->new_data_offset << 9);
6220 			/*
6221 			 * discard_zeroes_data is required, otherwise data
6222 			 * could be lost. Consider a scenario: discard a stripe
6223 			 * (the stripe could be inconsistent if
6224 			 * discard_zeroes_data is 0); write one disk of the
6225 			 * stripe (the stripe could be inconsistent again
6226 			 * depending on which disks are used to calculate
6227 			 * parity); the disk is broken; The stripe data of this
6228 			 * disk is lost.
6229 			 */
6230 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6231 			    !bdev_get_queue(rdev->bdev)->
6232 						limits.discard_zeroes_data)
6233 				discard_supported = false;
6234 		}
6235 
6236 		if (discard_supported &&
6237 		   mddev->queue->limits.max_discard_sectors >= stripe &&
6238 		   mddev->queue->limits.discard_granularity >= stripe)
6239 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6240 						mddev->queue);
6241 		else
6242 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6243 						mddev->queue);
6244 	}
6245 
6246 	return 0;
6247 abort:
6248 	md_unregister_thread(&mddev->thread);
6249 	print_raid5_conf(conf);
6250 	free_conf(conf);
6251 	mddev->private = NULL;
6252 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6253 	return -EIO;
6254 }
6255 
6256 static int stop(struct mddev *mddev)
6257 {
6258 	struct r5conf *conf = mddev->private;
6259 
6260 	md_unregister_thread(&mddev->thread);
6261 	if (mddev->queue)
6262 		mddev->queue->backing_dev_info.congested_fn = NULL;
6263 	free_conf(conf);
6264 	mddev->private = NULL;
6265 	mddev->to_remove = &raid5_attrs_group;
6266 	return 0;
6267 }
6268 
6269 static void status(struct seq_file *seq, struct mddev *mddev)
6270 {
6271 	struct r5conf *conf = mddev->private;
6272 	int i;
6273 
6274 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6275 		mddev->chunk_sectors / 2, mddev->layout);
6276 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6277 	for (i = 0; i < conf->raid_disks; i++)
6278 		seq_printf (seq, "%s",
6279 			       conf->disks[i].rdev &&
6280 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6281 	seq_printf (seq, "]");
6282 }
6283 
6284 static void print_raid5_conf (struct r5conf *conf)
6285 {
6286 	int i;
6287 	struct disk_info *tmp;
6288 
6289 	printk(KERN_DEBUG "RAID conf printout:\n");
6290 	if (!conf) {
6291 		printk("(conf==NULL)\n");
6292 		return;
6293 	}
6294 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6295 	       conf->raid_disks,
6296 	       conf->raid_disks - conf->mddev->degraded);
6297 
6298 	for (i = 0; i < conf->raid_disks; i++) {
6299 		char b[BDEVNAME_SIZE];
6300 		tmp = conf->disks + i;
6301 		if (tmp->rdev)
6302 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6303 			       i, !test_bit(Faulty, &tmp->rdev->flags),
6304 			       bdevname(tmp->rdev->bdev, b));
6305 	}
6306 }
6307 
6308 static int raid5_spare_active(struct mddev *mddev)
6309 {
6310 	int i;
6311 	struct r5conf *conf = mddev->private;
6312 	struct disk_info *tmp;
6313 	int count = 0;
6314 	unsigned long flags;
6315 
6316 	for (i = 0; i < conf->raid_disks; i++) {
6317 		tmp = conf->disks + i;
6318 		if (tmp->replacement
6319 		    && tmp->replacement->recovery_offset == MaxSector
6320 		    && !test_bit(Faulty, &tmp->replacement->flags)
6321 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6322 			/* Replacement has just become active. */
6323 			if (!tmp->rdev
6324 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6325 				count++;
6326 			if (tmp->rdev) {
6327 				/* Replaced device not technically faulty,
6328 				 * but we need to be sure it gets removed
6329 				 * and never re-added.
6330 				 */
6331 				set_bit(Faulty, &tmp->rdev->flags);
6332 				sysfs_notify_dirent_safe(
6333 					tmp->rdev->sysfs_state);
6334 			}
6335 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6336 		} else if (tmp->rdev
6337 		    && tmp->rdev->recovery_offset == MaxSector
6338 		    && !test_bit(Faulty, &tmp->rdev->flags)
6339 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6340 			count++;
6341 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6342 		}
6343 	}
6344 	spin_lock_irqsave(&conf->device_lock, flags);
6345 	mddev->degraded = calc_degraded(conf);
6346 	spin_unlock_irqrestore(&conf->device_lock, flags);
6347 	print_raid5_conf(conf);
6348 	return count;
6349 }
6350 
6351 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6352 {
6353 	struct r5conf *conf = mddev->private;
6354 	int err = 0;
6355 	int number = rdev->raid_disk;
6356 	struct md_rdev **rdevp;
6357 	struct disk_info *p = conf->disks + number;
6358 
6359 	print_raid5_conf(conf);
6360 	if (rdev == p->rdev)
6361 		rdevp = &p->rdev;
6362 	else if (rdev == p->replacement)
6363 		rdevp = &p->replacement;
6364 	else
6365 		return 0;
6366 
6367 	if (number >= conf->raid_disks &&
6368 	    conf->reshape_progress == MaxSector)
6369 		clear_bit(In_sync, &rdev->flags);
6370 
6371 	if (test_bit(In_sync, &rdev->flags) ||
6372 	    atomic_read(&rdev->nr_pending)) {
6373 		err = -EBUSY;
6374 		goto abort;
6375 	}
6376 	/* Only remove non-faulty devices if recovery
6377 	 * isn't possible.
6378 	 */
6379 	if (!test_bit(Faulty, &rdev->flags) &&
6380 	    mddev->recovery_disabled != conf->recovery_disabled &&
6381 	    !has_failed(conf) &&
6382 	    (!p->replacement || p->replacement == rdev) &&
6383 	    number < conf->raid_disks) {
6384 		err = -EBUSY;
6385 		goto abort;
6386 	}
6387 	*rdevp = NULL;
6388 	synchronize_rcu();
6389 	if (atomic_read(&rdev->nr_pending)) {
6390 		/* lost the race, try later */
6391 		err = -EBUSY;
6392 		*rdevp = rdev;
6393 	} else if (p->replacement) {
6394 		/* We must have just cleared 'rdev' */
6395 		p->rdev = p->replacement;
6396 		clear_bit(Replacement, &p->replacement->flags);
6397 		smp_mb(); /* Make sure other CPUs may see both as identical
6398 			   * but will never see neither - if they are careful
6399 			   */
6400 		p->replacement = NULL;
6401 		clear_bit(WantReplacement, &rdev->flags);
6402 	} else
6403 		/* We might have just removed the Replacement as faulty-
6404 		 * clear the bit just in case
6405 		 */
6406 		clear_bit(WantReplacement, &rdev->flags);
6407 abort:
6408 
6409 	print_raid5_conf(conf);
6410 	return err;
6411 }
6412 
6413 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6414 {
6415 	struct r5conf *conf = mddev->private;
6416 	int err = -EEXIST;
6417 	int disk;
6418 	struct disk_info *p;
6419 	int first = 0;
6420 	int last = conf->raid_disks - 1;
6421 
6422 	if (mddev->recovery_disabled == conf->recovery_disabled)
6423 		return -EBUSY;
6424 
6425 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
6426 		/* no point adding a device */
6427 		return -EINVAL;
6428 
6429 	if (rdev->raid_disk >= 0)
6430 		first = last = rdev->raid_disk;
6431 
6432 	/*
6433 	 * find the disk ... but prefer rdev->saved_raid_disk
6434 	 * if possible.
6435 	 */
6436 	if (rdev->saved_raid_disk >= 0 &&
6437 	    rdev->saved_raid_disk >= first &&
6438 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
6439 		first = rdev->saved_raid_disk;
6440 
6441 	for (disk = first; disk <= last; disk++) {
6442 		p = conf->disks + disk;
6443 		if (p->rdev == NULL) {
6444 			clear_bit(In_sync, &rdev->flags);
6445 			rdev->raid_disk = disk;
6446 			err = 0;
6447 			if (rdev->saved_raid_disk != disk)
6448 				conf->fullsync = 1;
6449 			rcu_assign_pointer(p->rdev, rdev);
6450 			goto out;
6451 		}
6452 	}
6453 	for (disk = first; disk <= last; disk++) {
6454 		p = conf->disks + disk;
6455 		if (test_bit(WantReplacement, &p->rdev->flags) &&
6456 		    p->replacement == NULL) {
6457 			clear_bit(In_sync, &rdev->flags);
6458 			set_bit(Replacement, &rdev->flags);
6459 			rdev->raid_disk = disk;
6460 			err = 0;
6461 			conf->fullsync = 1;
6462 			rcu_assign_pointer(p->replacement, rdev);
6463 			break;
6464 		}
6465 	}
6466 out:
6467 	print_raid5_conf(conf);
6468 	return err;
6469 }
6470 
6471 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6472 {
6473 	/* no resync is happening, and there is enough space
6474 	 * on all devices, so we can resize.
6475 	 * We need to make sure resync covers any new space.
6476 	 * If the array is shrinking we should possibly wait until
6477 	 * any io in the removed space completes, but it hardly seems
6478 	 * worth it.
6479 	 */
6480 	sector_t newsize;
6481 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6482 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6483 	if (mddev->external_size &&
6484 	    mddev->array_sectors > newsize)
6485 		return -EINVAL;
6486 	if (mddev->bitmap) {
6487 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6488 		if (ret)
6489 			return ret;
6490 	}
6491 	md_set_array_sectors(mddev, newsize);
6492 	set_capacity(mddev->gendisk, mddev->array_sectors);
6493 	revalidate_disk(mddev->gendisk);
6494 	if (sectors > mddev->dev_sectors &&
6495 	    mddev->recovery_cp > mddev->dev_sectors) {
6496 		mddev->recovery_cp = mddev->dev_sectors;
6497 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6498 	}
6499 	mddev->dev_sectors = sectors;
6500 	mddev->resync_max_sectors = sectors;
6501 	return 0;
6502 }
6503 
6504 static int check_stripe_cache(struct mddev *mddev)
6505 {
6506 	/* Can only proceed if there are plenty of stripe_heads.
6507 	 * We need a minimum of one full stripe,, and for sensible progress
6508 	 * it is best to have about 4 times that.
6509 	 * If we require 4 times, then the default 256 4K stripe_heads will
6510 	 * allow for chunk sizes up to 256K, which is probably OK.
6511 	 * If the chunk size is greater, user-space should request more
6512 	 * stripe_heads first.
6513 	 */
6514 	struct r5conf *conf = mddev->private;
6515 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6516 	    > conf->max_nr_stripes ||
6517 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6518 	    > conf->max_nr_stripes) {
6519 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6520 		       mdname(mddev),
6521 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6522 			/ STRIPE_SIZE)*4);
6523 		return 0;
6524 	}
6525 	return 1;
6526 }
6527 
6528 static int check_reshape(struct mddev *mddev)
6529 {
6530 	struct r5conf *conf = mddev->private;
6531 
6532 	if (mddev->delta_disks == 0 &&
6533 	    mddev->new_layout == mddev->layout &&
6534 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
6535 		return 0; /* nothing to do */
6536 	if (has_failed(conf))
6537 		return -EINVAL;
6538 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6539 		/* We might be able to shrink, but the devices must
6540 		 * be made bigger first.
6541 		 * For raid6, 4 is the minimum size.
6542 		 * Otherwise 2 is the minimum
6543 		 */
6544 		int min = 2;
6545 		if (mddev->level == 6)
6546 			min = 4;
6547 		if (mddev->raid_disks + mddev->delta_disks < min)
6548 			return -EINVAL;
6549 	}
6550 
6551 	if (!check_stripe_cache(mddev))
6552 		return -ENOSPC;
6553 
6554 	return resize_stripes(conf, (conf->previous_raid_disks
6555 				     + mddev->delta_disks));
6556 }
6557 
6558 static int raid5_start_reshape(struct mddev *mddev)
6559 {
6560 	struct r5conf *conf = mddev->private;
6561 	struct md_rdev *rdev;
6562 	int spares = 0;
6563 	unsigned long flags;
6564 
6565 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6566 		return -EBUSY;
6567 
6568 	if (!check_stripe_cache(mddev))
6569 		return -ENOSPC;
6570 
6571 	if (has_failed(conf))
6572 		return -EINVAL;
6573 
6574 	rdev_for_each(rdev, mddev) {
6575 		if (!test_bit(In_sync, &rdev->flags)
6576 		    && !test_bit(Faulty, &rdev->flags))
6577 			spares++;
6578 	}
6579 
6580 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6581 		/* Not enough devices even to make a degraded array
6582 		 * of that size
6583 		 */
6584 		return -EINVAL;
6585 
6586 	/* Refuse to reduce size of the array.  Any reductions in
6587 	 * array size must be through explicit setting of array_size
6588 	 * attribute.
6589 	 */
6590 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6591 	    < mddev->array_sectors) {
6592 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
6593 		       "before number of disks\n", mdname(mddev));
6594 		return -EINVAL;
6595 	}
6596 
6597 	atomic_set(&conf->reshape_stripes, 0);
6598 	spin_lock_irq(&conf->device_lock);
6599 	write_seqcount_begin(&conf->gen_lock);
6600 	conf->previous_raid_disks = conf->raid_disks;
6601 	conf->raid_disks += mddev->delta_disks;
6602 	conf->prev_chunk_sectors = conf->chunk_sectors;
6603 	conf->chunk_sectors = mddev->new_chunk_sectors;
6604 	conf->prev_algo = conf->algorithm;
6605 	conf->algorithm = mddev->new_layout;
6606 	conf->generation++;
6607 	/* Code that selects data_offset needs to see the generation update
6608 	 * if reshape_progress has been set - so a memory barrier needed.
6609 	 */
6610 	smp_mb();
6611 	if (mddev->reshape_backwards)
6612 		conf->reshape_progress = raid5_size(mddev, 0, 0);
6613 	else
6614 		conf->reshape_progress = 0;
6615 	conf->reshape_safe = conf->reshape_progress;
6616 	write_seqcount_end(&conf->gen_lock);
6617 	spin_unlock_irq(&conf->device_lock);
6618 
6619 	/* Now make sure any requests that proceeded on the assumption
6620 	 * the reshape wasn't running - like Discard or Read - have
6621 	 * completed.
6622 	 */
6623 	mddev_suspend(mddev);
6624 	mddev_resume(mddev);
6625 
6626 	/* Add some new drives, as many as will fit.
6627 	 * We know there are enough to make the newly sized array work.
6628 	 * Don't add devices if we are reducing the number of
6629 	 * devices in the array.  This is because it is not possible
6630 	 * to correctly record the "partially reconstructed" state of
6631 	 * such devices during the reshape and confusion could result.
6632 	 */
6633 	if (mddev->delta_disks >= 0) {
6634 		rdev_for_each(rdev, mddev)
6635 			if (rdev->raid_disk < 0 &&
6636 			    !test_bit(Faulty, &rdev->flags)) {
6637 				if (raid5_add_disk(mddev, rdev) == 0) {
6638 					if (rdev->raid_disk
6639 					    >= conf->previous_raid_disks)
6640 						set_bit(In_sync, &rdev->flags);
6641 					else
6642 						rdev->recovery_offset = 0;
6643 
6644 					if (sysfs_link_rdev(mddev, rdev))
6645 						/* Failure here is OK */;
6646 				}
6647 			} else if (rdev->raid_disk >= conf->previous_raid_disks
6648 				   && !test_bit(Faulty, &rdev->flags)) {
6649 				/* This is a spare that was manually added */
6650 				set_bit(In_sync, &rdev->flags);
6651 			}
6652 
6653 		/* When a reshape changes the number of devices,
6654 		 * ->degraded is measured against the larger of the
6655 		 * pre and post number of devices.
6656 		 */
6657 		spin_lock_irqsave(&conf->device_lock, flags);
6658 		mddev->degraded = calc_degraded(conf);
6659 		spin_unlock_irqrestore(&conf->device_lock, flags);
6660 	}
6661 	mddev->raid_disks = conf->raid_disks;
6662 	mddev->reshape_position = conf->reshape_progress;
6663 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6664 
6665 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6666 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6667 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6668 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6669 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6670 						"reshape");
6671 	if (!mddev->sync_thread) {
6672 		mddev->recovery = 0;
6673 		spin_lock_irq(&conf->device_lock);
6674 		write_seqcount_begin(&conf->gen_lock);
6675 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6676 		mddev->new_chunk_sectors =
6677 			conf->chunk_sectors = conf->prev_chunk_sectors;
6678 		mddev->new_layout = conf->algorithm = conf->prev_algo;
6679 		rdev_for_each(rdev, mddev)
6680 			rdev->new_data_offset = rdev->data_offset;
6681 		smp_wmb();
6682 		conf->generation --;
6683 		conf->reshape_progress = MaxSector;
6684 		mddev->reshape_position = MaxSector;
6685 		write_seqcount_end(&conf->gen_lock);
6686 		spin_unlock_irq(&conf->device_lock);
6687 		return -EAGAIN;
6688 	}
6689 	conf->reshape_checkpoint = jiffies;
6690 	md_wakeup_thread(mddev->sync_thread);
6691 	md_new_event(mddev);
6692 	return 0;
6693 }
6694 
6695 /* This is called from the reshape thread and should make any
6696  * changes needed in 'conf'
6697  */
6698 static void end_reshape(struct r5conf *conf)
6699 {
6700 
6701 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6702 		struct md_rdev *rdev;
6703 
6704 		spin_lock_irq(&conf->device_lock);
6705 		conf->previous_raid_disks = conf->raid_disks;
6706 		rdev_for_each(rdev, conf->mddev)
6707 			rdev->data_offset = rdev->new_data_offset;
6708 		smp_wmb();
6709 		conf->reshape_progress = MaxSector;
6710 		spin_unlock_irq(&conf->device_lock);
6711 		wake_up(&conf->wait_for_overlap);
6712 
6713 		/* read-ahead size must cover two whole stripes, which is
6714 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6715 		 */
6716 		if (conf->mddev->queue) {
6717 			int data_disks = conf->raid_disks - conf->max_degraded;
6718 			int stripe = data_disks * ((conf->chunk_sectors << 9)
6719 						   / PAGE_SIZE);
6720 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6721 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6722 		}
6723 	}
6724 }
6725 
6726 /* This is called from the raid5d thread with mddev_lock held.
6727  * It makes config changes to the device.
6728  */
6729 static void raid5_finish_reshape(struct mddev *mddev)
6730 {
6731 	struct r5conf *conf = mddev->private;
6732 
6733 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6734 
6735 		if (mddev->delta_disks > 0) {
6736 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6737 			set_capacity(mddev->gendisk, mddev->array_sectors);
6738 			revalidate_disk(mddev->gendisk);
6739 		} else {
6740 			int d;
6741 			spin_lock_irq(&conf->device_lock);
6742 			mddev->degraded = calc_degraded(conf);
6743 			spin_unlock_irq(&conf->device_lock);
6744 			for (d = conf->raid_disks ;
6745 			     d < conf->raid_disks - mddev->delta_disks;
6746 			     d++) {
6747 				struct md_rdev *rdev = conf->disks[d].rdev;
6748 				if (rdev)
6749 					clear_bit(In_sync, &rdev->flags);
6750 				rdev = conf->disks[d].replacement;
6751 				if (rdev)
6752 					clear_bit(In_sync, &rdev->flags);
6753 			}
6754 		}
6755 		mddev->layout = conf->algorithm;
6756 		mddev->chunk_sectors = conf->chunk_sectors;
6757 		mddev->reshape_position = MaxSector;
6758 		mddev->delta_disks = 0;
6759 		mddev->reshape_backwards = 0;
6760 	}
6761 }
6762 
6763 static void raid5_quiesce(struct mddev *mddev, int state)
6764 {
6765 	struct r5conf *conf = mddev->private;
6766 
6767 	switch(state) {
6768 	case 2: /* resume for a suspend */
6769 		wake_up(&conf->wait_for_overlap);
6770 		break;
6771 
6772 	case 1: /* stop all writes */
6773 		lock_all_device_hash_locks_irq(conf);
6774 		/* '2' tells resync/reshape to pause so that all
6775 		 * active stripes can drain
6776 		 */
6777 		conf->quiesce = 2;
6778 		wait_event_cmd(conf->wait_for_stripe,
6779 				    atomic_read(&conf->active_stripes) == 0 &&
6780 				    atomic_read(&conf->active_aligned_reads) == 0,
6781 				    unlock_all_device_hash_locks_irq(conf),
6782 				    lock_all_device_hash_locks_irq(conf));
6783 		conf->quiesce = 1;
6784 		unlock_all_device_hash_locks_irq(conf);
6785 		/* allow reshape to continue */
6786 		wake_up(&conf->wait_for_overlap);
6787 		break;
6788 
6789 	case 0: /* re-enable writes */
6790 		lock_all_device_hash_locks_irq(conf);
6791 		conf->quiesce = 0;
6792 		wake_up(&conf->wait_for_stripe);
6793 		wake_up(&conf->wait_for_overlap);
6794 		unlock_all_device_hash_locks_irq(conf);
6795 		break;
6796 	}
6797 }
6798 
6799 
6800 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6801 {
6802 	struct r0conf *raid0_conf = mddev->private;
6803 	sector_t sectors;
6804 
6805 	/* for raid0 takeover only one zone is supported */
6806 	if (raid0_conf->nr_strip_zones > 1) {
6807 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6808 		       mdname(mddev));
6809 		return ERR_PTR(-EINVAL);
6810 	}
6811 
6812 	sectors = raid0_conf->strip_zone[0].zone_end;
6813 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6814 	mddev->dev_sectors = sectors;
6815 	mddev->new_level = level;
6816 	mddev->new_layout = ALGORITHM_PARITY_N;
6817 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6818 	mddev->raid_disks += 1;
6819 	mddev->delta_disks = 1;
6820 	/* make sure it will be not marked as dirty */
6821 	mddev->recovery_cp = MaxSector;
6822 
6823 	return setup_conf(mddev);
6824 }
6825 
6826 
6827 static void *raid5_takeover_raid1(struct mddev *mddev)
6828 {
6829 	int chunksect;
6830 
6831 	if (mddev->raid_disks != 2 ||
6832 	    mddev->degraded > 1)
6833 		return ERR_PTR(-EINVAL);
6834 
6835 	/* Should check if there are write-behind devices? */
6836 
6837 	chunksect = 64*2; /* 64K by default */
6838 
6839 	/* The array must be an exact multiple of chunksize */
6840 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
6841 		chunksect >>= 1;
6842 
6843 	if ((chunksect<<9) < STRIPE_SIZE)
6844 		/* array size does not allow a suitable chunk size */
6845 		return ERR_PTR(-EINVAL);
6846 
6847 	mddev->new_level = 5;
6848 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6849 	mddev->new_chunk_sectors = chunksect;
6850 
6851 	return setup_conf(mddev);
6852 }
6853 
6854 static void *raid5_takeover_raid6(struct mddev *mddev)
6855 {
6856 	int new_layout;
6857 
6858 	switch (mddev->layout) {
6859 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6860 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6861 		break;
6862 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6863 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6864 		break;
6865 	case ALGORITHM_LEFT_SYMMETRIC_6:
6866 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
6867 		break;
6868 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6869 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6870 		break;
6871 	case ALGORITHM_PARITY_0_6:
6872 		new_layout = ALGORITHM_PARITY_0;
6873 		break;
6874 	case ALGORITHM_PARITY_N:
6875 		new_layout = ALGORITHM_PARITY_N;
6876 		break;
6877 	default:
6878 		return ERR_PTR(-EINVAL);
6879 	}
6880 	mddev->new_level = 5;
6881 	mddev->new_layout = new_layout;
6882 	mddev->delta_disks = -1;
6883 	mddev->raid_disks -= 1;
6884 	return setup_conf(mddev);
6885 }
6886 
6887 
6888 static int raid5_check_reshape(struct mddev *mddev)
6889 {
6890 	/* For a 2-drive array, the layout and chunk size can be changed
6891 	 * immediately as not restriping is needed.
6892 	 * For larger arrays we record the new value - after validation
6893 	 * to be used by a reshape pass.
6894 	 */
6895 	struct r5conf *conf = mddev->private;
6896 	int new_chunk = mddev->new_chunk_sectors;
6897 
6898 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6899 		return -EINVAL;
6900 	if (new_chunk > 0) {
6901 		if (!is_power_of_2(new_chunk))
6902 			return -EINVAL;
6903 		if (new_chunk < (PAGE_SIZE>>9))
6904 			return -EINVAL;
6905 		if (mddev->array_sectors & (new_chunk-1))
6906 			/* not factor of array size */
6907 			return -EINVAL;
6908 	}
6909 
6910 	/* They look valid */
6911 
6912 	if (mddev->raid_disks == 2) {
6913 		/* can make the change immediately */
6914 		if (mddev->new_layout >= 0) {
6915 			conf->algorithm = mddev->new_layout;
6916 			mddev->layout = mddev->new_layout;
6917 		}
6918 		if (new_chunk > 0) {
6919 			conf->chunk_sectors = new_chunk ;
6920 			mddev->chunk_sectors = new_chunk;
6921 		}
6922 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
6923 		md_wakeup_thread(mddev->thread);
6924 	}
6925 	return check_reshape(mddev);
6926 }
6927 
6928 static int raid6_check_reshape(struct mddev *mddev)
6929 {
6930 	int new_chunk = mddev->new_chunk_sectors;
6931 
6932 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6933 		return -EINVAL;
6934 	if (new_chunk > 0) {
6935 		if (!is_power_of_2(new_chunk))
6936 			return -EINVAL;
6937 		if (new_chunk < (PAGE_SIZE >> 9))
6938 			return -EINVAL;
6939 		if (mddev->array_sectors & (new_chunk-1))
6940 			/* not factor of array size */
6941 			return -EINVAL;
6942 	}
6943 
6944 	/* They look valid */
6945 	return check_reshape(mddev);
6946 }
6947 
6948 static void *raid5_takeover(struct mddev *mddev)
6949 {
6950 	/* raid5 can take over:
6951 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
6952 	 *  raid1 - if there are two drives.  We need to know the chunk size
6953 	 *  raid4 - trivial - just use a raid4 layout.
6954 	 *  raid6 - Providing it is a *_6 layout
6955 	 */
6956 	if (mddev->level == 0)
6957 		return raid45_takeover_raid0(mddev, 5);
6958 	if (mddev->level == 1)
6959 		return raid5_takeover_raid1(mddev);
6960 	if (mddev->level == 4) {
6961 		mddev->new_layout = ALGORITHM_PARITY_N;
6962 		mddev->new_level = 5;
6963 		return setup_conf(mddev);
6964 	}
6965 	if (mddev->level == 6)
6966 		return raid5_takeover_raid6(mddev);
6967 
6968 	return ERR_PTR(-EINVAL);
6969 }
6970 
6971 static void *raid4_takeover(struct mddev *mddev)
6972 {
6973 	/* raid4 can take over:
6974 	 *  raid0 - if there is only one strip zone
6975 	 *  raid5 - if layout is right
6976 	 */
6977 	if (mddev->level == 0)
6978 		return raid45_takeover_raid0(mddev, 4);
6979 	if (mddev->level == 5 &&
6980 	    mddev->layout == ALGORITHM_PARITY_N) {
6981 		mddev->new_layout = 0;
6982 		mddev->new_level = 4;
6983 		return setup_conf(mddev);
6984 	}
6985 	return ERR_PTR(-EINVAL);
6986 }
6987 
6988 static struct md_personality raid5_personality;
6989 
6990 static void *raid6_takeover(struct mddev *mddev)
6991 {
6992 	/* Currently can only take over a raid5.  We map the
6993 	 * personality to an equivalent raid6 personality
6994 	 * with the Q block at the end.
6995 	 */
6996 	int new_layout;
6997 
6998 	if (mddev->pers != &raid5_personality)
6999 		return ERR_PTR(-EINVAL);
7000 	if (mddev->degraded > 1)
7001 		return ERR_PTR(-EINVAL);
7002 	if (mddev->raid_disks > 253)
7003 		return ERR_PTR(-EINVAL);
7004 	if (mddev->raid_disks < 3)
7005 		return ERR_PTR(-EINVAL);
7006 
7007 	switch (mddev->layout) {
7008 	case ALGORITHM_LEFT_ASYMMETRIC:
7009 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7010 		break;
7011 	case ALGORITHM_RIGHT_ASYMMETRIC:
7012 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7013 		break;
7014 	case ALGORITHM_LEFT_SYMMETRIC:
7015 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7016 		break;
7017 	case ALGORITHM_RIGHT_SYMMETRIC:
7018 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7019 		break;
7020 	case ALGORITHM_PARITY_0:
7021 		new_layout = ALGORITHM_PARITY_0_6;
7022 		break;
7023 	case ALGORITHM_PARITY_N:
7024 		new_layout = ALGORITHM_PARITY_N;
7025 		break;
7026 	default:
7027 		return ERR_PTR(-EINVAL);
7028 	}
7029 	mddev->new_level = 6;
7030 	mddev->new_layout = new_layout;
7031 	mddev->delta_disks = 1;
7032 	mddev->raid_disks += 1;
7033 	return setup_conf(mddev);
7034 }
7035 
7036 
7037 static struct md_personality raid6_personality =
7038 {
7039 	.name		= "raid6",
7040 	.level		= 6,
7041 	.owner		= THIS_MODULE,
7042 	.make_request	= make_request,
7043 	.run		= run,
7044 	.stop		= stop,
7045 	.status		= status,
7046 	.error_handler	= error,
7047 	.hot_add_disk	= raid5_add_disk,
7048 	.hot_remove_disk= raid5_remove_disk,
7049 	.spare_active	= raid5_spare_active,
7050 	.sync_request	= sync_request,
7051 	.resize		= raid5_resize,
7052 	.size		= raid5_size,
7053 	.check_reshape	= raid6_check_reshape,
7054 	.start_reshape  = raid5_start_reshape,
7055 	.finish_reshape = raid5_finish_reshape,
7056 	.quiesce	= raid5_quiesce,
7057 	.takeover	= raid6_takeover,
7058 };
7059 static struct md_personality raid5_personality =
7060 {
7061 	.name		= "raid5",
7062 	.level		= 5,
7063 	.owner		= THIS_MODULE,
7064 	.make_request	= make_request,
7065 	.run		= run,
7066 	.stop		= stop,
7067 	.status		= status,
7068 	.error_handler	= error,
7069 	.hot_add_disk	= raid5_add_disk,
7070 	.hot_remove_disk= raid5_remove_disk,
7071 	.spare_active	= raid5_spare_active,
7072 	.sync_request	= sync_request,
7073 	.resize		= raid5_resize,
7074 	.size		= raid5_size,
7075 	.check_reshape	= raid5_check_reshape,
7076 	.start_reshape  = raid5_start_reshape,
7077 	.finish_reshape = raid5_finish_reshape,
7078 	.quiesce	= raid5_quiesce,
7079 	.takeover	= raid5_takeover,
7080 };
7081 
7082 static struct md_personality raid4_personality =
7083 {
7084 	.name		= "raid4",
7085 	.level		= 4,
7086 	.owner		= THIS_MODULE,
7087 	.make_request	= make_request,
7088 	.run		= run,
7089 	.stop		= stop,
7090 	.status		= status,
7091 	.error_handler	= error,
7092 	.hot_add_disk	= raid5_add_disk,
7093 	.hot_remove_disk= raid5_remove_disk,
7094 	.spare_active	= raid5_spare_active,
7095 	.sync_request	= sync_request,
7096 	.resize		= raid5_resize,
7097 	.size		= raid5_size,
7098 	.check_reshape	= raid5_check_reshape,
7099 	.start_reshape  = raid5_start_reshape,
7100 	.finish_reshape = raid5_finish_reshape,
7101 	.quiesce	= raid5_quiesce,
7102 	.takeover	= raid4_takeover,
7103 };
7104 
7105 static int __init raid5_init(void)
7106 {
7107 	raid5_wq = alloc_workqueue("raid5wq",
7108 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7109 	if (!raid5_wq)
7110 		return -ENOMEM;
7111 	register_md_personality(&raid6_personality);
7112 	register_md_personality(&raid5_personality);
7113 	register_md_personality(&raid4_personality);
7114 	return 0;
7115 }
7116 
7117 static void raid5_exit(void)
7118 {
7119 	unregister_md_personality(&raid6_personality);
7120 	unregister_md_personality(&raid5_personality);
7121 	unregister_md_personality(&raid4_personality);
7122 	destroy_workqueue(raid5_wq);
7123 }
7124 
7125 module_init(raid5_init);
7126 module_exit(raid5_exit);
7127 MODULE_LICENSE("GPL");
7128 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7129 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7130 MODULE_ALIAS("md-raid5");
7131 MODULE_ALIAS("md-raid4");
7132 MODULE_ALIAS("md-level-5");
7133 MODULE_ALIAS("md-level-4");
7134 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7135 MODULE_ALIAS("md-raid6");
7136 MODULE_ALIAS("md-level-6");
7137 
7138 /* This used to be two separate modules, they were: */
7139 MODULE_ALIAS("raid5");
7140 MODULE_ALIAS("raid6");
7141