xref: /openbmc/linux/drivers/md/raid5.c (revision 26ba4e57)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid5.c : Multiple Devices driver for Linux
4  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5  *	   Copyright (C) 1999, 2000 Ingo Molnar
6  *	   Copyright (C) 2002, 2003 H. Peter Anvin
7  *
8  * RAID-4/5/6 management functions.
9  * Thanks to Penguin Computing for making the RAID-6 development possible
10  * by donating a test server!
11  */
12 
13 /*
14  * BITMAP UNPLUGGING:
15  *
16  * The sequencing for updating the bitmap reliably is a little
17  * subtle (and I got it wrong the first time) so it deserves some
18  * explanation.
19  *
20  * We group bitmap updates into batches.  Each batch has a number.
21  * We may write out several batches at once, but that isn't very important.
22  * conf->seq_write is the number of the last batch successfully written.
23  * conf->seq_flush is the number of the last batch that was closed to
24  *    new additions.
25  * When we discover that we will need to write to any block in a stripe
26  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27  * the number of the batch it will be in. This is seq_flush+1.
28  * When we are ready to do a write, if that batch hasn't been written yet,
29  *   we plug the array and queue the stripe for later.
30  * When an unplug happens, we increment bm_flush, thus closing the current
31  *   batch.
32  * When we notice that bm_flush > bm_write, we write out all pending updates
33  * to the bitmap, and advance bm_write to where bm_flush was.
34  * This may occasionally write a bit out twice, but is sure never to
35  * miss any bits.
36  */
37 
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49 
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52 
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58 
59 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
60 
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63 
64 static bool devices_handle_discard_safely = false;
65 module_param(devices_handle_discard_safely, bool, 0644);
66 MODULE_PARM_DESC(devices_handle_discard_safely,
67 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68 static struct workqueue_struct *raid5_wq;
69 
70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
71 {
72 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
73 	return &conf->stripe_hashtbl[hash];
74 }
75 
76 static inline int stripe_hash_locks_hash(sector_t sect)
77 {
78 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
79 }
80 
81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82 {
83 	spin_lock_irq(conf->hash_locks + hash);
84 	spin_lock(&conf->device_lock);
85 }
86 
87 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
88 {
89 	spin_unlock(&conf->device_lock);
90 	spin_unlock_irq(conf->hash_locks + hash);
91 }
92 
93 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
94 {
95 	int i;
96 	spin_lock_irq(conf->hash_locks);
97 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99 	spin_lock(&conf->device_lock);
100 }
101 
102 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
103 {
104 	int i;
105 	spin_unlock(&conf->device_lock);
106 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107 		spin_unlock(conf->hash_locks + i);
108 	spin_unlock_irq(conf->hash_locks);
109 }
110 
111 /* Find first data disk in a raid6 stripe */
112 static inline int raid6_d0(struct stripe_head *sh)
113 {
114 	if (sh->ddf_layout)
115 		/* ddf always start from first device */
116 		return 0;
117 	/* md starts just after Q block */
118 	if (sh->qd_idx == sh->disks - 1)
119 		return 0;
120 	else
121 		return sh->qd_idx + 1;
122 }
123 static inline int raid6_next_disk(int disk, int raid_disks)
124 {
125 	disk++;
126 	return (disk < raid_disks) ? disk : 0;
127 }
128 
129 /* When walking through the disks in a raid5, starting at raid6_d0,
130  * We need to map each disk to a 'slot', where the data disks are slot
131  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132  * is raid_disks-1.  This help does that mapping.
133  */
134 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135 			     int *count, int syndrome_disks)
136 {
137 	int slot = *count;
138 
139 	if (sh->ddf_layout)
140 		(*count)++;
141 	if (idx == sh->pd_idx)
142 		return syndrome_disks;
143 	if (idx == sh->qd_idx)
144 		return syndrome_disks + 1;
145 	if (!sh->ddf_layout)
146 		(*count)++;
147 	return slot;
148 }
149 
150 static void print_raid5_conf (struct r5conf *conf);
151 
152 static int stripe_operations_active(struct stripe_head *sh)
153 {
154 	return sh->check_state || sh->reconstruct_state ||
155 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
157 }
158 
159 static bool stripe_is_lowprio(struct stripe_head *sh)
160 {
161 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
164 }
165 
166 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
167 {
168 	struct r5conf *conf = sh->raid_conf;
169 	struct r5worker_group *group;
170 	int thread_cnt;
171 	int i, cpu = sh->cpu;
172 
173 	if (!cpu_online(cpu)) {
174 		cpu = cpumask_any(cpu_online_mask);
175 		sh->cpu = cpu;
176 	}
177 
178 	if (list_empty(&sh->lru)) {
179 		struct r5worker_group *group;
180 		group = conf->worker_groups + cpu_to_group(cpu);
181 		if (stripe_is_lowprio(sh))
182 			list_add_tail(&sh->lru, &group->loprio_list);
183 		else
184 			list_add_tail(&sh->lru, &group->handle_list);
185 		group->stripes_cnt++;
186 		sh->group = group;
187 	}
188 
189 	if (conf->worker_cnt_per_group == 0) {
190 		md_wakeup_thread(conf->mddev->thread);
191 		return;
192 	}
193 
194 	group = conf->worker_groups + cpu_to_group(sh->cpu);
195 
196 	group->workers[0].working = true;
197 	/* at least one worker should run to avoid race */
198 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
199 
200 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201 	/* wakeup more workers */
202 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203 		if (group->workers[i].working == false) {
204 			group->workers[i].working = true;
205 			queue_work_on(sh->cpu, raid5_wq,
206 				      &group->workers[i].work);
207 			thread_cnt--;
208 		}
209 	}
210 }
211 
212 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213 			      struct list_head *temp_inactive_list)
214 {
215 	int i;
216 	int injournal = 0;	/* number of date pages with R5_InJournal */
217 
218 	BUG_ON(!list_empty(&sh->lru));
219 	BUG_ON(atomic_read(&conf->active_stripes)==0);
220 
221 	if (r5c_is_writeback(conf->log))
222 		for (i = sh->disks; i--; )
223 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
224 				injournal++;
225 	/*
226 	 * In the following cases, the stripe cannot be released to cached
227 	 * lists. Therefore, we make the stripe write out and set
228 	 * STRIPE_HANDLE:
229 	 *   1. when quiesce in r5c write back;
230 	 *   2. when resync is requested fot the stripe.
231 	 */
232 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
234 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
235 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236 			r5c_make_stripe_write_out(sh);
237 		set_bit(STRIPE_HANDLE, &sh->state);
238 	}
239 
240 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
241 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
242 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
243 			list_add_tail(&sh->lru, &conf->delayed_list);
244 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
245 			   sh->bm_seq - conf->seq_write > 0)
246 			list_add_tail(&sh->lru, &conf->bitmap_list);
247 		else {
248 			clear_bit(STRIPE_DELAYED, &sh->state);
249 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
250 			if (conf->worker_cnt_per_group == 0) {
251 				if (stripe_is_lowprio(sh))
252 					list_add_tail(&sh->lru,
253 							&conf->loprio_list);
254 				else
255 					list_add_tail(&sh->lru,
256 							&conf->handle_list);
257 			} else {
258 				raid5_wakeup_stripe_thread(sh);
259 				return;
260 			}
261 		}
262 		md_wakeup_thread(conf->mddev->thread);
263 	} else {
264 		BUG_ON(stripe_operations_active(sh));
265 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266 			if (atomic_dec_return(&conf->preread_active_stripes)
267 			    < IO_THRESHOLD)
268 				md_wakeup_thread(conf->mddev->thread);
269 		atomic_dec(&conf->active_stripes);
270 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271 			if (!r5c_is_writeback(conf->log))
272 				list_add_tail(&sh->lru, temp_inactive_list);
273 			else {
274 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
275 				if (injournal == 0)
276 					list_add_tail(&sh->lru, temp_inactive_list);
277 				else if (injournal == conf->raid_disks - conf->max_degraded) {
278 					/* full stripe */
279 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280 						atomic_inc(&conf->r5c_cached_full_stripes);
281 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282 						atomic_dec(&conf->r5c_cached_partial_stripes);
283 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
284 					r5c_check_cached_full_stripe(conf);
285 				} else
286 					/*
287 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 					 * r5c_try_caching_write(). No need to
289 					 * set it again.
290 					 */
291 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
292 			}
293 		}
294 	}
295 }
296 
297 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298 			     struct list_head *temp_inactive_list)
299 {
300 	if (atomic_dec_and_test(&sh->count))
301 		do_release_stripe(conf, sh, temp_inactive_list);
302 }
303 
304 /*
305  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
306  *
307  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308  * given time. Adding stripes only takes device lock, while deleting stripes
309  * only takes hash lock.
310  */
311 static void release_inactive_stripe_list(struct r5conf *conf,
312 					 struct list_head *temp_inactive_list,
313 					 int hash)
314 {
315 	int size;
316 	bool do_wakeup = false;
317 	unsigned long flags;
318 
319 	if (hash == NR_STRIPE_HASH_LOCKS) {
320 		size = NR_STRIPE_HASH_LOCKS;
321 		hash = NR_STRIPE_HASH_LOCKS - 1;
322 	} else
323 		size = 1;
324 	while (size) {
325 		struct list_head *list = &temp_inactive_list[size - 1];
326 
327 		/*
328 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
329 		 * remove stripes from the list
330 		 */
331 		if (!list_empty_careful(list)) {
332 			spin_lock_irqsave(conf->hash_locks + hash, flags);
333 			if (list_empty(conf->inactive_list + hash) &&
334 			    !list_empty(list))
335 				atomic_dec(&conf->empty_inactive_list_nr);
336 			list_splice_tail_init(list, conf->inactive_list + hash);
337 			do_wakeup = true;
338 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
339 		}
340 		size--;
341 		hash--;
342 	}
343 
344 	if (do_wakeup) {
345 		wake_up(&conf->wait_for_stripe);
346 		if (atomic_read(&conf->active_stripes) == 0)
347 			wake_up(&conf->wait_for_quiescent);
348 		if (conf->retry_read_aligned)
349 			md_wakeup_thread(conf->mddev->thread);
350 	}
351 }
352 
353 /* should hold conf->device_lock already */
354 static int release_stripe_list(struct r5conf *conf,
355 			       struct list_head *temp_inactive_list)
356 {
357 	struct stripe_head *sh, *t;
358 	int count = 0;
359 	struct llist_node *head;
360 
361 	head = llist_del_all(&conf->released_stripes);
362 	head = llist_reverse_order(head);
363 	llist_for_each_entry_safe(sh, t, head, release_list) {
364 		int hash;
365 
366 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367 		smp_mb();
368 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
369 		/*
370 		 * Don't worry the bit is set here, because if the bit is set
371 		 * again, the count is always > 1. This is true for
372 		 * STRIPE_ON_UNPLUG_LIST bit too.
373 		 */
374 		hash = sh->hash_lock_index;
375 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
376 		count++;
377 	}
378 
379 	return count;
380 }
381 
382 void raid5_release_stripe(struct stripe_head *sh)
383 {
384 	struct r5conf *conf = sh->raid_conf;
385 	unsigned long flags;
386 	struct list_head list;
387 	int hash;
388 	bool wakeup;
389 
390 	/* Avoid release_list until the last reference.
391 	 */
392 	if (atomic_add_unless(&sh->count, -1, 1))
393 		return;
394 
395 	if (unlikely(!conf->mddev->thread) ||
396 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
397 		goto slow_path;
398 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
399 	if (wakeup)
400 		md_wakeup_thread(conf->mddev->thread);
401 	return;
402 slow_path:
403 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
405 		INIT_LIST_HEAD(&list);
406 		hash = sh->hash_lock_index;
407 		do_release_stripe(conf, sh, &list);
408 		spin_unlock_irqrestore(&conf->device_lock, flags);
409 		release_inactive_stripe_list(conf, &list, hash);
410 	}
411 }
412 
413 static inline void remove_hash(struct stripe_head *sh)
414 {
415 	pr_debug("remove_hash(), stripe %llu\n",
416 		(unsigned long long)sh->sector);
417 
418 	hlist_del_init(&sh->hash);
419 }
420 
421 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
422 {
423 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
424 
425 	pr_debug("insert_hash(), stripe %llu\n",
426 		(unsigned long long)sh->sector);
427 
428 	hlist_add_head(&sh->hash, hp);
429 }
430 
431 /* find an idle stripe, make sure it is unhashed, and return it. */
432 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
433 {
434 	struct stripe_head *sh = NULL;
435 	struct list_head *first;
436 
437 	if (list_empty(conf->inactive_list + hash))
438 		goto out;
439 	first = (conf->inactive_list + hash)->next;
440 	sh = list_entry(first, struct stripe_head, lru);
441 	list_del_init(first);
442 	remove_hash(sh);
443 	atomic_inc(&conf->active_stripes);
444 	BUG_ON(hash != sh->hash_lock_index);
445 	if (list_empty(conf->inactive_list + hash))
446 		atomic_inc(&conf->empty_inactive_list_nr);
447 out:
448 	return sh;
449 }
450 
451 static void shrink_buffers(struct stripe_head *sh)
452 {
453 	struct page *p;
454 	int i;
455 	int num = sh->raid_conf->pool_size;
456 
457 	for (i = 0; i < num ; i++) {
458 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
459 		p = sh->dev[i].page;
460 		if (!p)
461 			continue;
462 		sh->dev[i].page = NULL;
463 		put_page(p);
464 	}
465 }
466 
467 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
468 {
469 	int i;
470 	int num = sh->raid_conf->pool_size;
471 
472 	for (i = 0; i < num; i++) {
473 		struct page *page;
474 
475 		if (!(page = alloc_page(gfp))) {
476 			return 1;
477 		}
478 		sh->dev[i].page = page;
479 		sh->dev[i].orig_page = page;
480 	}
481 
482 	return 0;
483 }
484 
485 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
486 			    struct stripe_head *sh);
487 
488 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
489 {
490 	struct r5conf *conf = sh->raid_conf;
491 	int i, seq;
492 
493 	BUG_ON(atomic_read(&sh->count) != 0);
494 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
495 	BUG_ON(stripe_operations_active(sh));
496 	BUG_ON(sh->batch_head);
497 
498 	pr_debug("init_stripe called, stripe %llu\n",
499 		(unsigned long long)sector);
500 retry:
501 	seq = read_seqcount_begin(&conf->gen_lock);
502 	sh->generation = conf->generation - previous;
503 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
504 	sh->sector = sector;
505 	stripe_set_idx(sector, conf, previous, sh);
506 	sh->state = 0;
507 
508 	for (i = sh->disks; i--; ) {
509 		struct r5dev *dev = &sh->dev[i];
510 
511 		if (dev->toread || dev->read || dev->towrite || dev->written ||
512 		    test_bit(R5_LOCKED, &dev->flags)) {
513 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
514 			       (unsigned long long)sh->sector, i, dev->toread,
515 			       dev->read, dev->towrite, dev->written,
516 			       test_bit(R5_LOCKED, &dev->flags));
517 			WARN_ON(1);
518 		}
519 		dev->flags = 0;
520 		dev->sector = raid5_compute_blocknr(sh, i, previous);
521 	}
522 	if (read_seqcount_retry(&conf->gen_lock, seq))
523 		goto retry;
524 	sh->overwrite_disks = 0;
525 	insert_hash(conf, sh);
526 	sh->cpu = smp_processor_id();
527 	set_bit(STRIPE_BATCH_READY, &sh->state);
528 }
529 
530 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
531 					 short generation)
532 {
533 	struct stripe_head *sh;
534 
535 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
536 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
537 		if (sh->sector == sector && sh->generation == generation)
538 			return sh;
539 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
540 	return NULL;
541 }
542 
543 /*
544  * Need to check if array has failed when deciding whether to:
545  *  - start an array
546  *  - remove non-faulty devices
547  *  - add a spare
548  *  - allow a reshape
549  * This determination is simple when no reshape is happening.
550  * However if there is a reshape, we need to carefully check
551  * both the before and after sections.
552  * This is because some failed devices may only affect one
553  * of the two sections, and some non-in_sync devices may
554  * be insync in the section most affected by failed devices.
555  */
556 int raid5_calc_degraded(struct r5conf *conf)
557 {
558 	int degraded, degraded2;
559 	int i;
560 
561 	rcu_read_lock();
562 	degraded = 0;
563 	for (i = 0; i < conf->previous_raid_disks; i++) {
564 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
565 		if (rdev && test_bit(Faulty, &rdev->flags))
566 			rdev = rcu_dereference(conf->disks[i].replacement);
567 		if (!rdev || test_bit(Faulty, &rdev->flags))
568 			degraded++;
569 		else if (test_bit(In_sync, &rdev->flags))
570 			;
571 		else
572 			/* not in-sync or faulty.
573 			 * If the reshape increases the number of devices,
574 			 * this is being recovered by the reshape, so
575 			 * this 'previous' section is not in_sync.
576 			 * If the number of devices is being reduced however,
577 			 * the device can only be part of the array if
578 			 * we are reverting a reshape, so this section will
579 			 * be in-sync.
580 			 */
581 			if (conf->raid_disks >= conf->previous_raid_disks)
582 				degraded++;
583 	}
584 	rcu_read_unlock();
585 	if (conf->raid_disks == conf->previous_raid_disks)
586 		return degraded;
587 	rcu_read_lock();
588 	degraded2 = 0;
589 	for (i = 0; i < conf->raid_disks; i++) {
590 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
591 		if (rdev && test_bit(Faulty, &rdev->flags))
592 			rdev = rcu_dereference(conf->disks[i].replacement);
593 		if (!rdev || test_bit(Faulty, &rdev->flags))
594 			degraded2++;
595 		else if (test_bit(In_sync, &rdev->flags))
596 			;
597 		else
598 			/* not in-sync or faulty.
599 			 * If reshape increases the number of devices, this
600 			 * section has already been recovered, else it
601 			 * almost certainly hasn't.
602 			 */
603 			if (conf->raid_disks <= conf->previous_raid_disks)
604 				degraded2++;
605 	}
606 	rcu_read_unlock();
607 	if (degraded2 > degraded)
608 		return degraded2;
609 	return degraded;
610 }
611 
612 static int has_failed(struct r5conf *conf)
613 {
614 	int degraded;
615 
616 	if (conf->mddev->reshape_position == MaxSector)
617 		return conf->mddev->degraded > conf->max_degraded;
618 
619 	degraded = raid5_calc_degraded(conf);
620 	if (degraded > conf->max_degraded)
621 		return 1;
622 	return 0;
623 }
624 
625 struct stripe_head *
626 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
627 			int previous, int noblock, int noquiesce)
628 {
629 	struct stripe_head *sh;
630 	int hash = stripe_hash_locks_hash(sector);
631 	int inc_empty_inactive_list_flag;
632 
633 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
634 
635 	spin_lock_irq(conf->hash_locks + hash);
636 
637 	do {
638 		wait_event_lock_irq(conf->wait_for_quiescent,
639 				    conf->quiesce == 0 || noquiesce,
640 				    *(conf->hash_locks + hash));
641 		sh = __find_stripe(conf, sector, conf->generation - previous);
642 		if (!sh) {
643 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
644 				sh = get_free_stripe(conf, hash);
645 				if (!sh && !test_bit(R5_DID_ALLOC,
646 						     &conf->cache_state))
647 					set_bit(R5_ALLOC_MORE,
648 						&conf->cache_state);
649 			}
650 			if (noblock && sh == NULL)
651 				break;
652 
653 			r5c_check_stripe_cache_usage(conf);
654 			if (!sh) {
655 				set_bit(R5_INACTIVE_BLOCKED,
656 					&conf->cache_state);
657 				r5l_wake_reclaim(conf->log, 0);
658 				wait_event_lock_irq(
659 					conf->wait_for_stripe,
660 					!list_empty(conf->inactive_list + hash) &&
661 					(atomic_read(&conf->active_stripes)
662 					 < (conf->max_nr_stripes * 3 / 4)
663 					 || !test_bit(R5_INACTIVE_BLOCKED,
664 						      &conf->cache_state)),
665 					*(conf->hash_locks + hash));
666 				clear_bit(R5_INACTIVE_BLOCKED,
667 					  &conf->cache_state);
668 			} else {
669 				init_stripe(sh, sector, previous);
670 				atomic_inc(&sh->count);
671 			}
672 		} else if (!atomic_inc_not_zero(&sh->count)) {
673 			spin_lock(&conf->device_lock);
674 			if (!atomic_read(&sh->count)) {
675 				if (!test_bit(STRIPE_HANDLE, &sh->state))
676 					atomic_inc(&conf->active_stripes);
677 				BUG_ON(list_empty(&sh->lru) &&
678 				       !test_bit(STRIPE_EXPANDING, &sh->state));
679 				inc_empty_inactive_list_flag = 0;
680 				if (!list_empty(conf->inactive_list + hash))
681 					inc_empty_inactive_list_flag = 1;
682 				list_del_init(&sh->lru);
683 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
684 					atomic_inc(&conf->empty_inactive_list_nr);
685 				if (sh->group) {
686 					sh->group->stripes_cnt--;
687 					sh->group = NULL;
688 				}
689 			}
690 			atomic_inc(&sh->count);
691 			spin_unlock(&conf->device_lock);
692 		}
693 	} while (sh == NULL);
694 
695 	spin_unlock_irq(conf->hash_locks + hash);
696 	return sh;
697 }
698 
699 static bool is_full_stripe_write(struct stripe_head *sh)
700 {
701 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
702 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
703 }
704 
705 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
706 		__acquires(&sh1->stripe_lock)
707 		__acquires(&sh2->stripe_lock)
708 {
709 	if (sh1 > sh2) {
710 		spin_lock_irq(&sh2->stripe_lock);
711 		spin_lock_nested(&sh1->stripe_lock, 1);
712 	} else {
713 		spin_lock_irq(&sh1->stripe_lock);
714 		spin_lock_nested(&sh2->stripe_lock, 1);
715 	}
716 }
717 
718 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
719 		__releases(&sh1->stripe_lock)
720 		__releases(&sh2->stripe_lock)
721 {
722 	spin_unlock(&sh1->stripe_lock);
723 	spin_unlock_irq(&sh2->stripe_lock);
724 }
725 
726 /* Only freshly new full stripe normal write stripe can be added to a batch list */
727 static bool stripe_can_batch(struct stripe_head *sh)
728 {
729 	struct r5conf *conf = sh->raid_conf;
730 
731 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
732 		return false;
733 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
734 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
735 		is_full_stripe_write(sh);
736 }
737 
738 /* we only do back search */
739 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
740 {
741 	struct stripe_head *head;
742 	sector_t head_sector, tmp_sec;
743 	int hash;
744 	int dd_idx;
745 	int inc_empty_inactive_list_flag;
746 
747 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
748 	tmp_sec = sh->sector;
749 	if (!sector_div(tmp_sec, conf->chunk_sectors))
750 		return;
751 	head_sector = sh->sector - STRIPE_SECTORS;
752 
753 	hash = stripe_hash_locks_hash(head_sector);
754 	spin_lock_irq(conf->hash_locks + hash);
755 	head = __find_stripe(conf, head_sector, conf->generation);
756 	if (head && !atomic_inc_not_zero(&head->count)) {
757 		spin_lock(&conf->device_lock);
758 		if (!atomic_read(&head->count)) {
759 			if (!test_bit(STRIPE_HANDLE, &head->state))
760 				atomic_inc(&conf->active_stripes);
761 			BUG_ON(list_empty(&head->lru) &&
762 			       !test_bit(STRIPE_EXPANDING, &head->state));
763 			inc_empty_inactive_list_flag = 0;
764 			if (!list_empty(conf->inactive_list + hash))
765 				inc_empty_inactive_list_flag = 1;
766 			list_del_init(&head->lru);
767 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
768 				atomic_inc(&conf->empty_inactive_list_nr);
769 			if (head->group) {
770 				head->group->stripes_cnt--;
771 				head->group = NULL;
772 			}
773 		}
774 		atomic_inc(&head->count);
775 		spin_unlock(&conf->device_lock);
776 	}
777 	spin_unlock_irq(conf->hash_locks + hash);
778 
779 	if (!head)
780 		return;
781 	if (!stripe_can_batch(head))
782 		goto out;
783 
784 	lock_two_stripes(head, sh);
785 	/* clear_batch_ready clear the flag */
786 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
787 		goto unlock_out;
788 
789 	if (sh->batch_head)
790 		goto unlock_out;
791 
792 	dd_idx = 0;
793 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
794 		dd_idx++;
795 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
797 		goto unlock_out;
798 
799 	if (head->batch_head) {
800 		spin_lock(&head->batch_head->batch_lock);
801 		/* This batch list is already running */
802 		if (!stripe_can_batch(head)) {
803 			spin_unlock(&head->batch_head->batch_lock);
804 			goto unlock_out;
805 		}
806 		/*
807 		 * We must assign batch_head of this stripe within the
808 		 * batch_lock, otherwise clear_batch_ready of batch head
809 		 * stripe could clear BATCH_READY bit of this stripe and
810 		 * this stripe->batch_head doesn't get assigned, which
811 		 * could confuse clear_batch_ready for this stripe
812 		 */
813 		sh->batch_head = head->batch_head;
814 
815 		/*
816 		 * at this point, head's BATCH_READY could be cleared, but we
817 		 * can still add the stripe to batch list
818 		 */
819 		list_add(&sh->batch_list, &head->batch_list);
820 		spin_unlock(&head->batch_head->batch_lock);
821 	} else {
822 		head->batch_head = head;
823 		sh->batch_head = head->batch_head;
824 		spin_lock(&head->batch_lock);
825 		list_add_tail(&sh->batch_list, &head->batch_list);
826 		spin_unlock(&head->batch_lock);
827 	}
828 
829 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
830 		if (atomic_dec_return(&conf->preread_active_stripes)
831 		    < IO_THRESHOLD)
832 			md_wakeup_thread(conf->mddev->thread);
833 
834 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
835 		int seq = sh->bm_seq;
836 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
837 		    sh->batch_head->bm_seq > seq)
838 			seq = sh->batch_head->bm_seq;
839 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
840 		sh->batch_head->bm_seq = seq;
841 	}
842 
843 	atomic_inc(&sh->count);
844 unlock_out:
845 	unlock_two_stripes(head, sh);
846 out:
847 	raid5_release_stripe(head);
848 }
849 
850 /* Determine if 'data_offset' or 'new_data_offset' should be used
851  * in this stripe_head.
852  */
853 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
854 {
855 	sector_t progress = conf->reshape_progress;
856 	/* Need a memory barrier to make sure we see the value
857 	 * of conf->generation, or ->data_offset that was set before
858 	 * reshape_progress was updated.
859 	 */
860 	smp_rmb();
861 	if (progress == MaxSector)
862 		return 0;
863 	if (sh->generation == conf->generation - 1)
864 		return 0;
865 	/* We are in a reshape, and this is a new-generation stripe,
866 	 * so use new_data_offset.
867 	 */
868 	return 1;
869 }
870 
871 static void dispatch_bio_list(struct bio_list *tmp)
872 {
873 	struct bio *bio;
874 
875 	while ((bio = bio_list_pop(tmp)))
876 		generic_make_request(bio);
877 }
878 
879 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
880 {
881 	const struct r5pending_data *da = list_entry(a,
882 				struct r5pending_data, sibling);
883 	const struct r5pending_data *db = list_entry(b,
884 				struct r5pending_data, sibling);
885 	if (da->sector > db->sector)
886 		return 1;
887 	if (da->sector < db->sector)
888 		return -1;
889 	return 0;
890 }
891 
892 static void dispatch_defer_bios(struct r5conf *conf, int target,
893 				struct bio_list *list)
894 {
895 	struct r5pending_data *data;
896 	struct list_head *first, *next = NULL;
897 	int cnt = 0;
898 
899 	if (conf->pending_data_cnt == 0)
900 		return;
901 
902 	list_sort(NULL, &conf->pending_list, cmp_stripe);
903 
904 	first = conf->pending_list.next;
905 
906 	/* temporarily move the head */
907 	if (conf->next_pending_data)
908 		list_move_tail(&conf->pending_list,
909 				&conf->next_pending_data->sibling);
910 
911 	while (!list_empty(&conf->pending_list)) {
912 		data = list_first_entry(&conf->pending_list,
913 			struct r5pending_data, sibling);
914 		if (&data->sibling == first)
915 			first = data->sibling.next;
916 		next = data->sibling.next;
917 
918 		bio_list_merge(list, &data->bios);
919 		list_move(&data->sibling, &conf->free_list);
920 		cnt++;
921 		if (cnt >= target)
922 			break;
923 	}
924 	conf->pending_data_cnt -= cnt;
925 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
926 
927 	if (next != &conf->pending_list)
928 		conf->next_pending_data = list_entry(next,
929 				struct r5pending_data, sibling);
930 	else
931 		conf->next_pending_data = NULL;
932 	/* list isn't empty */
933 	if (first != &conf->pending_list)
934 		list_move_tail(&conf->pending_list, first);
935 }
936 
937 static void flush_deferred_bios(struct r5conf *conf)
938 {
939 	struct bio_list tmp = BIO_EMPTY_LIST;
940 
941 	if (conf->pending_data_cnt == 0)
942 		return;
943 
944 	spin_lock(&conf->pending_bios_lock);
945 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
946 	BUG_ON(conf->pending_data_cnt != 0);
947 	spin_unlock(&conf->pending_bios_lock);
948 
949 	dispatch_bio_list(&tmp);
950 }
951 
952 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
953 				struct bio_list *bios)
954 {
955 	struct bio_list tmp = BIO_EMPTY_LIST;
956 	struct r5pending_data *ent;
957 
958 	spin_lock(&conf->pending_bios_lock);
959 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
960 							sibling);
961 	list_move_tail(&ent->sibling, &conf->pending_list);
962 	ent->sector = sector;
963 	bio_list_init(&ent->bios);
964 	bio_list_merge(&ent->bios, bios);
965 	conf->pending_data_cnt++;
966 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
967 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
968 
969 	spin_unlock(&conf->pending_bios_lock);
970 
971 	dispatch_bio_list(&tmp);
972 }
973 
974 static void
975 raid5_end_read_request(struct bio *bi);
976 static void
977 raid5_end_write_request(struct bio *bi);
978 
979 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
980 {
981 	struct r5conf *conf = sh->raid_conf;
982 	int i, disks = sh->disks;
983 	struct stripe_head *head_sh = sh;
984 	struct bio_list pending_bios = BIO_EMPTY_LIST;
985 	bool should_defer;
986 
987 	might_sleep();
988 
989 	if (log_stripe(sh, s) == 0)
990 		return;
991 
992 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
993 
994 	for (i = disks; i--; ) {
995 		int op, op_flags = 0;
996 		int replace_only = 0;
997 		struct bio *bi, *rbi;
998 		struct md_rdev *rdev, *rrdev = NULL;
999 
1000 		sh = head_sh;
1001 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1002 			op = REQ_OP_WRITE;
1003 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1004 				op_flags = REQ_FUA;
1005 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1006 				op = REQ_OP_DISCARD;
1007 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1008 			op = REQ_OP_READ;
1009 		else if (test_and_clear_bit(R5_WantReplace,
1010 					    &sh->dev[i].flags)) {
1011 			op = REQ_OP_WRITE;
1012 			replace_only = 1;
1013 		} else
1014 			continue;
1015 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1016 			op_flags |= REQ_SYNC;
1017 
1018 again:
1019 		bi = &sh->dev[i].req;
1020 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
1021 
1022 		rcu_read_lock();
1023 		rrdev = rcu_dereference(conf->disks[i].replacement);
1024 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1025 		rdev = rcu_dereference(conf->disks[i].rdev);
1026 		if (!rdev) {
1027 			rdev = rrdev;
1028 			rrdev = NULL;
1029 		}
1030 		if (op_is_write(op)) {
1031 			if (replace_only)
1032 				rdev = NULL;
1033 			if (rdev == rrdev)
1034 				/* We raced and saw duplicates */
1035 				rrdev = NULL;
1036 		} else {
1037 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1038 				rdev = rrdev;
1039 			rrdev = NULL;
1040 		}
1041 
1042 		if (rdev && test_bit(Faulty, &rdev->flags))
1043 			rdev = NULL;
1044 		if (rdev)
1045 			atomic_inc(&rdev->nr_pending);
1046 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1047 			rrdev = NULL;
1048 		if (rrdev)
1049 			atomic_inc(&rrdev->nr_pending);
1050 		rcu_read_unlock();
1051 
1052 		/* We have already checked bad blocks for reads.  Now
1053 		 * need to check for writes.  We never accept write errors
1054 		 * on the replacement, so we don't to check rrdev.
1055 		 */
1056 		while (op_is_write(op) && rdev &&
1057 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1058 			sector_t first_bad;
1059 			int bad_sectors;
1060 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1061 					      &first_bad, &bad_sectors);
1062 			if (!bad)
1063 				break;
1064 
1065 			if (bad < 0) {
1066 				set_bit(BlockedBadBlocks, &rdev->flags);
1067 				if (!conf->mddev->external &&
1068 				    conf->mddev->sb_flags) {
1069 					/* It is very unlikely, but we might
1070 					 * still need to write out the
1071 					 * bad block log - better give it
1072 					 * a chance*/
1073 					md_check_recovery(conf->mddev);
1074 				}
1075 				/*
1076 				 * Because md_wait_for_blocked_rdev
1077 				 * will dec nr_pending, we must
1078 				 * increment it first.
1079 				 */
1080 				atomic_inc(&rdev->nr_pending);
1081 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1082 			} else {
1083 				/* Acknowledged bad block - skip the write */
1084 				rdev_dec_pending(rdev, conf->mddev);
1085 				rdev = NULL;
1086 			}
1087 		}
1088 
1089 		if (rdev) {
1090 			if (s->syncing || s->expanding || s->expanded
1091 			    || s->replacing)
1092 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1093 
1094 			set_bit(STRIPE_IO_STARTED, &sh->state);
1095 
1096 			bio_set_dev(bi, rdev->bdev);
1097 			bio_set_op_attrs(bi, op, op_flags);
1098 			bi->bi_end_io = op_is_write(op)
1099 				? raid5_end_write_request
1100 				: raid5_end_read_request;
1101 			bi->bi_private = sh;
1102 
1103 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1104 				__func__, (unsigned long long)sh->sector,
1105 				bi->bi_opf, i);
1106 			atomic_inc(&sh->count);
1107 			if (sh != head_sh)
1108 				atomic_inc(&head_sh->count);
1109 			if (use_new_offset(conf, sh))
1110 				bi->bi_iter.bi_sector = (sh->sector
1111 						 + rdev->new_data_offset);
1112 			else
1113 				bi->bi_iter.bi_sector = (sh->sector
1114 						 + rdev->data_offset);
1115 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1116 				bi->bi_opf |= REQ_NOMERGE;
1117 
1118 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1119 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1120 
1121 			if (!op_is_write(op) &&
1122 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1123 				/*
1124 				 * issuing read for a page in journal, this
1125 				 * must be preparing for prexor in rmw; read
1126 				 * the data into orig_page
1127 				 */
1128 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1129 			else
1130 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1131 			bi->bi_vcnt = 1;
1132 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1133 			bi->bi_io_vec[0].bv_offset = 0;
1134 			bi->bi_iter.bi_size = STRIPE_SIZE;
1135 			bi->bi_write_hint = sh->dev[i].write_hint;
1136 			if (!rrdev)
1137 				sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1138 			/*
1139 			 * If this is discard request, set bi_vcnt 0. We don't
1140 			 * want to confuse SCSI because SCSI will replace payload
1141 			 */
1142 			if (op == REQ_OP_DISCARD)
1143 				bi->bi_vcnt = 0;
1144 			if (rrdev)
1145 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1146 
1147 			if (conf->mddev->gendisk)
1148 				trace_block_bio_remap(bi->bi_disk->queue,
1149 						      bi, disk_devt(conf->mddev->gendisk),
1150 						      sh->dev[i].sector);
1151 			if (should_defer && op_is_write(op))
1152 				bio_list_add(&pending_bios, bi);
1153 			else
1154 				generic_make_request(bi);
1155 		}
1156 		if (rrdev) {
1157 			if (s->syncing || s->expanding || s->expanded
1158 			    || s->replacing)
1159 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1160 
1161 			set_bit(STRIPE_IO_STARTED, &sh->state);
1162 
1163 			bio_set_dev(rbi, rrdev->bdev);
1164 			bio_set_op_attrs(rbi, op, op_flags);
1165 			BUG_ON(!op_is_write(op));
1166 			rbi->bi_end_io = raid5_end_write_request;
1167 			rbi->bi_private = sh;
1168 
1169 			pr_debug("%s: for %llu schedule op %d on "
1170 				 "replacement disc %d\n",
1171 				__func__, (unsigned long long)sh->sector,
1172 				rbi->bi_opf, i);
1173 			atomic_inc(&sh->count);
1174 			if (sh != head_sh)
1175 				atomic_inc(&head_sh->count);
1176 			if (use_new_offset(conf, sh))
1177 				rbi->bi_iter.bi_sector = (sh->sector
1178 						  + rrdev->new_data_offset);
1179 			else
1180 				rbi->bi_iter.bi_sector = (sh->sector
1181 						  + rrdev->data_offset);
1182 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1185 			rbi->bi_vcnt = 1;
1186 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1187 			rbi->bi_io_vec[0].bv_offset = 0;
1188 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1189 			rbi->bi_write_hint = sh->dev[i].write_hint;
1190 			sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1191 			/*
1192 			 * If this is discard request, set bi_vcnt 0. We don't
1193 			 * want to confuse SCSI because SCSI will replace payload
1194 			 */
1195 			if (op == REQ_OP_DISCARD)
1196 				rbi->bi_vcnt = 0;
1197 			if (conf->mddev->gendisk)
1198 				trace_block_bio_remap(rbi->bi_disk->queue,
1199 						      rbi, disk_devt(conf->mddev->gendisk),
1200 						      sh->dev[i].sector);
1201 			if (should_defer && op_is_write(op))
1202 				bio_list_add(&pending_bios, rbi);
1203 			else
1204 				generic_make_request(rbi);
1205 		}
1206 		if (!rdev && !rrdev) {
1207 			if (op_is_write(op))
1208 				set_bit(STRIPE_DEGRADED, &sh->state);
1209 			pr_debug("skip op %d on disc %d for sector %llu\n",
1210 				bi->bi_opf, i, (unsigned long long)sh->sector);
1211 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1212 			set_bit(STRIPE_HANDLE, &sh->state);
1213 		}
1214 
1215 		if (!head_sh->batch_head)
1216 			continue;
1217 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1218 				      batch_list);
1219 		if (sh != head_sh)
1220 			goto again;
1221 	}
1222 
1223 	if (should_defer && !bio_list_empty(&pending_bios))
1224 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1225 }
1226 
1227 static struct dma_async_tx_descriptor *
1228 async_copy_data(int frombio, struct bio *bio, struct page **page,
1229 	sector_t sector, struct dma_async_tx_descriptor *tx,
1230 	struct stripe_head *sh, int no_skipcopy)
1231 {
1232 	struct bio_vec bvl;
1233 	struct bvec_iter iter;
1234 	struct page *bio_page;
1235 	int page_offset;
1236 	struct async_submit_ctl submit;
1237 	enum async_tx_flags flags = 0;
1238 
1239 	if (bio->bi_iter.bi_sector >= sector)
1240 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1241 	else
1242 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1243 
1244 	if (frombio)
1245 		flags |= ASYNC_TX_FENCE;
1246 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1247 
1248 	bio_for_each_segment(bvl, bio, iter) {
1249 		int len = bvl.bv_len;
1250 		int clen;
1251 		int b_offset = 0;
1252 
1253 		if (page_offset < 0) {
1254 			b_offset = -page_offset;
1255 			page_offset += b_offset;
1256 			len -= b_offset;
1257 		}
1258 
1259 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1260 			clen = STRIPE_SIZE - page_offset;
1261 		else
1262 			clen = len;
1263 
1264 		if (clen > 0) {
1265 			b_offset += bvl.bv_offset;
1266 			bio_page = bvl.bv_page;
1267 			if (frombio) {
1268 				if (sh->raid_conf->skip_copy &&
1269 				    b_offset == 0 && page_offset == 0 &&
1270 				    clen == STRIPE_SIZE &&
1271 				    !no_skipcopy)
1272 					*page = bio_page;
1273 				else
1274 					tx = async_memcpy(*page, bio_page, page_offset,
1275 						  b_offset, clen, &submit);
1276 			} else
1277 				tx = async_memcpy(bio_page, *page, b_offset,
1278 						  page_offset, clen, &submit);
1279 		}
1280 		/* chain the operations */
1281 		submit.depend_tx = tx;
1282 
1283 		if (clen < len) /* hit end of page */
1284 			break;
1285 		page_offset +=  len;
1286 	}
1287 
1288 	return tx;
1289 }
1290 
1291 static void ops_complete_biofill(void *stripe_head_ref)
1292 {
1293 	struct stripe_head *sh = stripe_head_ref;
1294 	int i;
1295 
1296 	pr_debug("%s: stripe %llu\n", __func__,
1297 		(unsigned long long)sh->sector);
1298 
1299 	/* clear completed biofills */
1300 	for (i = sh->disks; i--; ) {
1301 		struct r5dev *dev = &sh->dev[i];
1302 
1303 		/* acknowledge completion of a biofill operation */
1304 		/* and check if we need to reply to a read request,
1305 		 * new R5_Wantfill requests are held off until
1306 		 * !STRIPE_BIOFILL_RUN
1307 		 */
1308 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1309 			struct bio *rbi, *rbi2;
1310 
1311 			BUG_ON(!dev->read);
1312 			rbi = dev->read;
1313 			dev->read = NULL;
1314 			while (rbi && rbi->bi_iter.bi_sector <
1315 				dev->sector + STRIPE_SECTORS) {
1316 				rbi2 = r5_next_bio(rbi, dev->sector);
1317 				bio_endio(rbi);
1318 				rbi = rbi2;
1319 			}
1320 		}
1321 	}
1322 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1323 
1324 	set_bit(STRIPE_HANDLE, &sh->state);
1325 	raid5_release_stripe(sh);
1326 }
1327 
1328 static void ops_run_biofill(struct stripe_head *sh)
1329 {
1330 	struct dma_async_tx_descriptor *tx = NULL;
1331 	struct async_submit_ctl submit;
1332 	int i;
1333 
1334 	BUG_ON(sh->batch_head);
1335 	pr_debug("%s: stripe %llu\n", __func__,
1336 		(unsigned long long)sh->sector);
1337 
1338 	for (i = sh->disks; i--; ) {
1339 		struct r5dev *dev = &sh->dev[i];
1340 		if (test_bit(R5_Wantfill, &dev->flags)) {
1341 			struct bio *rbi;
1342 			spin_lock_irq(&sh->stripe_lock);
1343 			dev->read = rbi = dev->toread;
1344 			dev->toread = NULL;
1345 			spin_unlock_irq(&sh->stripe_lock);
1346 			while (rbi && rbi->bi_iter.bi_sector <
1347 				dev->sector + STRIPE_SECTORS) {
1348 				tx = async_copy_data(0, rbi, &dev->page,
1349 						     dev->sector, tx, sh, 0);
1350 				rbi = r5_next_bio(rbi, dev->sector);
1351 			}
1352 		}
1353 	}
1354 
1355 	atomic_inc(&sh->count);
1356 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1357 	async_trigger_callback(&submit);
1358 }
1359 
1360 static void mark_target_uptodate(struct stripe_head *sh, int target)
1361 {
1362 	struct r5dev *tgt;
1363 
1364 	if (target < 0)
1365 		return;
1366 
1367 	tgt = &sh->dev[target];
1368 	set_bit(R5_UPTODATE, &tgt->flags);
1369 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1370 	clear_bit(R5_Wantcompute, &tgt->flags);
1371 }
1372 
1373 static void ops_complete_compute(void *stripe_head_ref)
1374 {
1375 	struct stripe_head *sh = stripe_head_ref;
1376 
1377 	pr_debug("%s: stripe %llu\n", __func__,
1378 		(unsigned long long)sh->sector);
1379 
1380 	/* mark the computed target(s) as uptodate */
1381 	mark_target_uptodate(sh, sh->ops.target);
1382 	mark_target_uptodate(sh, sh->ops.target2);
1383 
1384 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1385 	if (sh->check_state == check_state_compute_run)
1386 		sh->check_state = check_state_compute_result;
1387 	set_bit(STRIPE_HANDLE, &sh->state);
1388 	raid5_release_stripe(sh);
1389 }
1390 
1391 /* return a pointer to the address conversion region of the scribble buffer */
1392 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1393 {
1394 	return percpu->scribble + i * percpu->scribble_obj_size;
1395 }
1396 
1397 /* return a pointer to the address conversion region of the scribble buffer */
1398 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1399 				 struct raid5_percpu *percpu, int i)
1400 {
1401 	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1402 }
1403 
1404 static struct dma_async_tx_descriptor *
1405 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1406 {
1407 	int disks = sh->disks;
1408 	struct page **xor_srcs = to_addr_page(percpu, 0);
1409 	int target = sh->ops.target;
1410 	struct r5dev *tgt = &sh->dev[target];
1411 	struct page *xor_dest = tgt->page;
1412 	int count = 0;
1413 	struct dma_async_tx_descriptor *tx;
1414 	struct async_submit_ctl submit;
1415 	int i;
1416 
1417 	BUG_ON(sh->batch_head);
1418 
1419 	pr_debug("%s: stripe %llu block: %d\n",
1420 		__func__, (unsigned long long)sh->sector, target);
1421 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1422 
1423 	for (i = disks; i--; )
1424 		if (i != target)
1425 			xor_srcs[count++] = sh->dev[i].page;
1426 
1427 	atomic_inc(&sh->count);
1428 
1429 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1430 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1431 	if (unlikely(count == 1))
1432 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1433 	else
1434 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1435 
1436 	return tx;
1437 }
1438 
1439 /* set_syndrome_sources - populate source buffers for gen_syndrome
1440  * @srcs - (struct page *) array of size sh->disks
1441  * @sh - stripe_head to parse
1442  *
1443  * Populates srcs in proper layout order for the stripe and returns the
1444  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1445  * destination buffer is recorded in srcs[count] and the Q destination
1446  * is recorded in srcs[count+1]].
1447  */
1448 static int set_syndrome_sources(struct page **srcs,
1449 				struct stripe_head *sh,
1450 				int srctype)
1451 {
1452 	int disks = sh->disks;
1453 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1454 	int d0_idx = raid6_d0(sh);
1455 	int count;
1456 	int i;
1457 
1458 	for (i = 0; i < disks; i++)
1459 		srcs[i] = NULL;
1460 
1461 	count = 0;
1462 	i = d0_idx;
1463 	do {
1464 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1465 		struct r5dev *dev = &sh->dev[i];
1466 
1467 		if (i == sh->qd_idx || i == sh->pd_idx ||
1468 		    (srctype == SYNDROME_SRC_ALL) ||
1469 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1470 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1471 		      test_bit(R5_InJournal, &dev->flags))) ||
1472 		    (srctype == SYNDROME_SRC_WRITTEN &&
1473 		     (dev->written ||
1474 		      test_bit(R5_InJournal, &dev->flags)))) {
1475 			if (test_bit(R5_InJournal, &dev->flags))
1476 				srcs[slot] = sh->dev[i].orig_page;
1477 			else
1478 				srcs[slot] = sh->dev[i].page;
1479 		}
1480 		i = raid6_next_disk(i, disks);
1481 	} while (i != d0_idx);
1482 
1483 	return syndrome_disks;
1484 }
1485 
1486 static struct dma_async_tx_descriptor *
1487 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1488 {
1489 	int disks = sh->disks;
1490 	struct page **blocks = to_addr_page(percpu, 0);
1491 	int target;
1492 	int qd_idx = sh->qd_idx;
1493 	struct dma_async_tx_descriptor *tx;
1494 	struct async_submit_ctl submit;
1495 	struct r5dev *tgt;
1496 	struct page *dest;
1497 	int i;
1498 	int count;
1499 
1500 	BUG_ON(sh->batch_head);
1501 	if (sh->ops.target < 0)
1502 		target = sh->ops.target2;
1503 	else if (sh->ops.target2 < 0)
1504 		target = sh->ops.target;
1505 	else
1506 		/* we should only have one valid target */
1507 		BUG();
1508 	BUG_ON(target < 0);
1509 	pr_debug("%s: stripe %llu block: %d\n",
1510 		__func__, (unsigned long long)sh->sector, target);
1511 
1512 	tgt = &sh->dev[target];
1513 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1514 	dest = tgt->page;
1515 
1516 	atomic_inc(&sh->count);
1517 
1518 	if (target == qd_idx) {
1519 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520 		blocks[count] = NULL; /* regenerating p is not necessary */
1521 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1522 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1523 				  ops_complete_compute, sh,
1524 				  to_addr_conv(sh, percpu, 0));
1525 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1526 	} else {
1527 		/* Compute any data- or p-drive using XOR */
1528 		count = 0;
1529 		for (i = disks; i-- ; ) {
1530 			if (i == target || i == qd_idx)
1531 				continue;
1532 			blocks[count++] = sh->dev[i].page;
1533 		}
1534 
1535 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1536 				  NULL, ops_complete_compute, sh,
1537 				  to_addr_conv(sh, percpu, 0));
1538 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1539 	}
1540 
1541 	return tx;
1542 }
1543 
1544 static struct dma_async_tx_descriptor *
1545 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1546 {
1547 	int i, count, disks = sh->disks;
1548 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1549 	int d0_idx = raid6_d0(sh);
1550 	int faila = -1, failb = -1;
1551 	int target = sh->ops.target;
1552 	int target2 = sh->ops.target2;
1553 	struct r5dev *tgt = &sh->dev[target];
1554 	struct r5dev *tgt2 = &sh->dev[target2];
1555 	struct dma_async_tx_descriptor *tx;
1556 	struct page **blocks = to_addr_page(percpu, 0);
1557 	struct async_submit_ctl submit;
1558 
1559 	BUG_ON(sh->batch_head);
1560 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1561 		 __func__, (unsigned long long)sh->sector, target, target2);
1562 	BUG_ON(target < 0 || target2 < 0);
1563 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1564 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1565 
1566 	/* we need to open-code set_syndrome_sources to handle the
1567 	 * slot number conversion for 'faila' and 'failb'
1568 	 */
1569 	for (i = 0; i < disks ; i++)
1570 		blocks[i] = NULL;
1571 	count = 0;
1572 	i = d0_idx;
1573 	do {
1574 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1575 
1576 		blocks[slot] = sh->dev[i].page;
1577 
1578 		if (i == target)
1579 			faila = slot;
1580 		if (i == target2)
1581 			failb = slot;
1582 		i = raid6_next_disk(i, disks);
1583 	} while (i != d0_idx);
1584 
1585 	BUG_ON(faila == failb);
1586 	if (failb < faila)
1587 		swap(faila, failb);
1588 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1589 		 __func__, (unsigned long long)sh->sector, faila, failb);
1590 
1591 	atomic_inc(&sh->count);
1592 
1593 	if (failb == syndrome_disks+1) {
1594 		/* Q disk is one of the missing disks */
1595 		if (faila == syndrome_disks) {
1596 			/* Missing P+Q, just recompute */
1597 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1598 					  ops_complete_compute, sh,
1599 					  to_addr_conv(sh, percpu, 0));
1600 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1601 						  STRIPE_SIZE, &submit);
1602 		} else {
1603 			struct page *dest;
1604 			int data_target;
1605 			int qd_idx = sh->qd_idx;
1606 
1607 			/* Missing D+Q: recompute D from P, then recompute Q */
1608 			if (target == qd_idx)
1609 				data_target = target2;
1610 			else
1611 				data_target = target;
1612 
1613 			count = 0;
1614 			for (i = disks; i-- ; ) {
1615 				if (i == data_target || i == qd_idx)
1616 					continue;
1617 				blocks[count++] = sh->dev[i].page;
1618 			}
1619 			dest = sh->dev[data_target].page;
1620 			init_async_submit(&submit,
1621 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1622 					  NULL, NULL, NULL,
1623 					  to_addr_conv(sh, percpu, 0));
1624 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1625 				       &submit);
1626 
1627 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1628 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1629 					  ops_complete_compute, sh,
1630 					  to_addr_conv(sh, percpu, 0));
1631 			return async_gen_syndrome(blocks, 0, count+2,
1632 						  STRIPE_SIZE, &submit);
1633 		}
1634 	} else {
1635 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1636 				  ops_complete_compute, sh,
1637 				  to_addr_conv(sh, percpu, 0));
1638 		if (failb == syndrome_disks) {
1639 			/* We're missing D+P. */
1640 			return async_raid6_datap_recov(syndrome_disks+2,
1641 						       STRIPE_SIZE, faila,
1642 						       blocks, &submit);
1643 		} else {
1644 			/* We're missing D+D. */
1645 			return async_raid6_2data_recov(syndrome_disks+2,
1646 						       STRIPE_SIZE, faila, failb,
1647 						       blocks, &submit);
1648 		}
1649 	}
1650 }
1651 
1652 static void ops_complete_prexor(void *stripe_head_ref)
1653 {
1654 	struct stripe_head *sh = stripe_head_ref;
1655 
1656 	pr_debug("%s: stripe %llu\n", __func__,
1657 		(unsigned long long)sh->sector);
1658 
1659 	if (r5c_is_writeback(sh->raid_conf->log))
1660 		/*
1661 		 * raid5-cache write back uses orig_page during prexor.
1662 		 * After prexor, it is time to free orig_page
1663 		 */
1664 		r5c_release_extra_page(sh);
1665 }
1666 
1667 static struct dma_async_tx_descriptor *
1668 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1669 		struct dma_async_tx_descriptor *tx)
1670 {
1671 	int disks = sh->disks;
1672 	struct page **xor_srcs = to_addr_page(percpu, 0);
1673 	int count = 0, pd_idx = sh->pd_idx, i;
1674 	struct async_submit_ctl submit;
1675 
1676 	/* existing parity data subtracted */
1677 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1678 
1679 	BUG_ON(sh->batch_head);
1680 	pr_debug("%s: stripe %llu\n", __func__,
1681 		(unsigned long long)sh->sector);
1682 
1683 	for (i = disks; i--; ) {
1684 		struct r5dev *dev = &sh->dev[i];
1685 		/* Only process blocks that are known to be uptodate */
1686 		if (test_bit(R5_InJournal, &dev->flags))
1687 			xor_srcs[count++] = dev->orig_page;
1688 		else if (test_bit(R5_Wantdrain, &dev->flags))
1689 			xor_srcs[count++] = dev->page;
1690 	}
1691 
1692 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1693 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1694 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1695 
1696 	return tx;
1697 }
1698 
1699 static struct dma_async_tx_descriptor *
1700 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1701 		struct dma_async_tx_descriptor *tx)
1702 {
1703 	struct page **blocks = to_addr_page(percpu, 0);
1704 	int count;
1705 	struct async_submit_ctl submit;
1706 
1707 	pr_debug("%s: stripe %llu\n", __func__,
1708 		(unsigned long long)sh->sector);
1709 
1710 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1711 
1712 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1713 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1714 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1715 
1716 	return tx;
1717 }
1718 
1719 static struct dma_async_tx_descriptor *
1720 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1721 {
1722 	struct r5conf *conf = sh->raid_conf;
1723 	int disks = sh->disks;
1724 	int i;
1725 	struct stripe_head *head_sh = sh;
1726 
1727 	pr_debug("%s: stripe %llu\n", __func__,
1728 		(unsigned long long)sh->sector);
1729 
1730 	for (i = disks; i--; ) {
1731 		struct r5dev *dev;
1732 		struct bio *chosen;
1733 
1734 		sh = head_sh;
1735 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1736 			struct bio *wbi;
1737 
1738 again:
1739 			dev = &sh->dev[i];
1740 			/*
1741 			 * clear R5_InJournal, so when rewriting a page in
1742 			 * journal, it is not skipped by r5l_log_stripe()
1743 			 */
1744 			clear_bit(R5_InJournal, &dev->flags);
1745 			spin_lock_irq(&sh->stripe_lock);
1746 			chosen = dev->towrite;
1747 			dev->towrite = NULL;
1748 			sh->overwrite_disks = 0;
1749 			BUG_ON(dev->written);
1750 			wbi = dev->written = chosen;
1751 			spin_unlock_irq(&sh->stripe_lock);
1752 			WARN_ON(dev->page != dev->orig_page);
1753 
1754 			while (wbi && wbi->bi_iter.bi_sector <
1755 				dev->sector + STRIPE_SECTORS) {
1756 				if (wbi->bi_opf & REQ_FUA)
1757 					set_bit(R5_WantFUA, &dev->flags);
1758 				if (wbi->bi_opf & REQ_SYNC)
1759 					set_bit(R5_SyncIO, &dev->flags);
1760 				if (bio_op(wbi) == REQ_OP_DISCARD)
1761 					set_bit(R5_Discard, &dev->flags);
1762 				else {
1763 					tx = async_copy_data(1, wbi, &dev->page,
1764 							     dev->sector, tx, sh,
1765 							     r5c_is_writeback(conf->log));
1766 					if (dev->page != dev->orig_page &&
1767 					    !r5c_is_writeback(conf->log)) {
1768 						set_bit(R5_SkipCopy, &dev->flags);
1769 						clear_bit(R5_UPTODATE, &dev->flags);
1770 						clear_bit(R5_OVERWRITE, &dev->flags);
1771 					}
1772 				}
1773 				wbi = r5_next_bio(wbi, dev->sector);
1774 			}
1775 
1776 			if (head_sh->batch_head) {
1777 				sh = list_first_entry(&sh->batch_list,
1778 						      struct stripe_head,
1779 						      batch_list);
1780 				if (sh == head_sh)
1781 					continue;
1782 				goto again;
1783 			}
1784 		}
1785 	}
1786 
1787 	return tx;
1788 }
1789 
1790 static void ops_complete_reconstruct(void *stripe_head_ref)
1791 {
1792 	struct stripe_head *sh = stripe_head_ref;
1793 	int disks = sh->disks;
1794 	int pd_idx = sh->pd_idx;
1795 	int qd_idx = sh->qd_idx;
1796 	int i;
1797 	bool fua = false, sync = false, discard = false;
1798 
1799 	pr_debug("%s: stripe %llu\n", __func__,
1800 		(unsigned long long)sh->sector);
1801 
1802 	for (i = disks; i--; ) {
1803 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1804 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1805 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1806 	}
1807 
1808 	for (i = disks; i--; ) {
1809 		struct r5dev *dev = &sh->dev[i];
1810 
1811 		if (dev->written || i == pd_idx || i == qd_idx) {
1812 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1813 				set_bit(R5_UPTODATE, &dev->flags);
1814 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1815 					set_bit(R5_Expanded, &dev->flags);
1816 			}
1817 			if (fua)
1818 				set_bit(R5_WantFUA, &dev->flags);
1819 			if (sync)
1820 				set_bit(R5_SyncIO, &dev->flags);
1821 		}
1822 	}
1823 
1824 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1825 		sh->reconstruct_state = reconstruct_state_drain_result;
1826 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1827 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1828 	else {
1829 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1830 		sh->reconstruct_state = reconstruct_state_result;
1831 	}
1832 
1833 	set_bit(STRIPE_HANDLE, &sh->state);
1834 	raid5_release_stripe(sh);
1835 }
1836 
1837 static void
1838 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1839 		     struct dma_async_tx_descriptor *tx)
1840 {
1841 	int disks = sh->disks;
1842 	struct page **xor_srcs;
1843 	struct async_submit_ctl submit;
1844 	int count, pd_idx = sh->pd_idx, i;
1845 	struct page *xor_dest;
1846 	int prexor = 0;
1847 	unsigned long flags;
1848 	int j = 0;
1849 	struct stripe_head *head_sh = sh;
1850 	int last_stripe;
1851 
1852 	pr_debug("%s: stripe %llu\n", __func__,
1853 		(unsigned long long)sh->sector);
1854 
1855 	for (i = 0; i < sh->disks; i++) {
1856 		if (pd_idx == i)
1857 			continue;
1858 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1859 			break;
1860 	}
1861 	if (i >= sh->disks) {
1862 		atomic_inc(&sh->count);
1863 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1864 		ops_complete_reconstruct(sh);
1865 		return;
1866 	}
1867 again:
1868 	count = 0;
1869 	xor_srcs = to_addr_page(percpu, j);
1870 	/* check if prexor is active which means only process blocks
1871 	 * that are part of a read-modify-write (written)
1872 	 */
1873 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1874 		prexor = 1;
1875 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1876 		for (i = disks; i--; ) {
1877 			struct r5dev *dev = &sh->dev[i];
1878 			if (head_sh->dev[i].written ||
1879 			    test_bit(R5_InJournal, &head_sh->dev[i].flags))
1880 				xor_srcs[count++] = dev->page;
1881 		}
1882 	} else {
1883 		xor_dest = sh->dev[pd_idx].page;
1884 		for (i = disks; i--; ) {
1885 			struct r5dev *dev = &sh->dev[i];
1886 			if (i != pd_idx)
1887 				xor_srcs[count++] = dev->page;
1888 		}
1889 	}
1890 
1891 	/* 1/ if we prexor'd then the dest is reused as a source
1892 	 * 2/ if we did not prexor then we are redoing the parity
1893 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1894 	 * for the synchronous xor case
1895 	 */
1896 	last_stripe = !head_sh->batch_head ||
1897 		list_first_entry(&sh->batch_list,
1898 				 struct stripe_head, batch_list) == head_sh;
1899 	if (last_stripe) {
1900 		flags = ASYNC_TX_ACK |
1901 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1902 
1903 		atomic_inc(&head_sh->count);
1904 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1905 				  to_addr_conv(sh, percpu, j));
1906 	} else {
1907 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1908 		init_async_submit(&submit, flags, tx, NULL, NULL,
1909 				  to_addr_conv(sh, percpu, j));
1910 	}
1911 
1912 	if (unlikely(count == 1))
1913 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1914 	else
1915 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1916 	if (!last_stripe) {
1917 		j++;
1918 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1919 				      batch_list);
1920 		goto again;
1921 	}
1922 }
1923 
1924 static void
1925 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1926 		     struct dma_async_tx_descriptor *tx)
1927 {
1928 	struct async_submit_ctl submit;
1929 	struct page **blocks;
1930 	int count, i, j = 0;
1931 	struct stripe_head *head_sh = sh;
1932 	int last_stripe;
1933 	int synflags;
1934 	unsigned long txflags;
1935 
1936 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1937 
1938 	for (i = 0; i < sh->disks; i++) {
1939 		if (sh->pd_idx == i || sh->qd_idx == i)
1940 			continue;
1941 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1942 			break;
1943 	}
1944 	if (i >= sh->disks) {
1945 		atomic_inc(&sh->count);
1946 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1947 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1948 		ops_complete_reconstruct(sh);
1949 		return;
1950 	}
1951 
1952 again:
1953 	blocks = to_addr_page(percpu, j);
1954 
1955 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1956 		synflags = SYNDROME_SRC_WRITTEN;
1957 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1958 	} else {
1959 		synflags = SYNDROME_SRC_ALL;
1960 		txflags = ASYNC_TX_ACK;
1961 	}
1962 
1963 	count = set_syndrome_sources(blocks, sh, synflags);
1964 	last_stripe = !head_sh->batch_head ||
1965 		list_first_entry(&sh->batch_list,
1966 				 struct stripe_head, batch_list) == head_sh;
1967 
1968 	if (last_stripe) {
1969 		atomic_inc(&head_sh->count);
1970 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1971 				  head_sh, to_addr_conv(sh, percpu, j));
1972 	} else
1973 		init_async_submit(&submit, 0, tx, NULL, NULL,
1974 				  to_addr_conv(sh, percpu, j));
1975 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1976 	if (!last_stripe) {
1977 		j++;
1978 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1979 				      batch_list);
1980 		goto again;
1981 	}
1982 }
1983 
1984 static void ops_complete_check(void *stripe_head_ref)
1985 {
1986 	struct stripe_head *sh = stripe_head_ref;
1987 
1988 	pr_debug("%s: stripe %llu\n", __func__,
1989 		(unsigned long long)sh->sector);
1990 
1991 	sh->check_state = check_state_check_result;
1992 	set_bit(STRIPE_HANDLE, &sh->state);
1993 	raid5_release_stripe(sh);
1994 }
1995 
1996 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1997 {
1998 	int disks = sh->disks;
1999 	int pd_idx = sh->pd_idx;
2000 	int qd_idx = sh->qd_idx;
2001 	struct page *xor_dest;
2002 	struct page **xor_srcs = to_addr_page(percpu, 0);
2003 	struct dma_async_tx_descriptor *tx;
2004 	struct async_submit_ctl submit;
2005 	int count;
2006 	int i;
2007 
2008 	pr_debug("%s: stripe %llu\n", __func__,
2009 		(unsigned long long)sh->sector);
2010 
2011 	BUG_ON(sh->batch_head);
2012 	count = 0;
2013 	xor_dest = sh->dev[pd_idx].page;
2014 	xor_srcs[count++] = xor_dest;
2015 	for (i = disks; i--; ) {
2016 		if (i == pd_idx || i == qd_idx)
2017 			continue;
2018 		xor_srcs[count++] = sh->dev[i].page;
2019 	}
2020 
2021 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2022 			  to_addr_conv(sh, percpu, 0));
2023 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2024 			   &sh->ops.zero_sum_result, &submit);
2025 
2026 	atomic_inc(&sh->count);
2027 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2028 	tx = async_trigger_callback(&submit);
2029 }
2030 
2031 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2032 {
2033 	struct page **srcs = to_addr_page(percpu, 0);
2034 	struct async_submit_ctl submit;
2035 	int count;
2036 
2037 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2038 		(unsigned long long)sh->sector, checkp);
2039 
2040 	BUG_ON(sh->batch_head);
2041 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2042 	if (!checkp)
2043 		srcs[count] = NULL;
2044 
2045 	atomic_inc(&sh->count);
2046 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2047 			  sh, to_addr_conv(sh, percpu, 0));
2048 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2049 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2050 }
2051 
2052 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2053 {
2054 	int overlap_clear = 0, i, disks = sh->disks;
2055 	struct dma_async_tx_descriptor *tx = NULL;
2056 	struct r5conf *conf = sh->raid_conf;
2057 	int level = conf->level;
2058 	struct raid5_percpu *percpu;
2059 	unsigned long cpu;
2060 
2061 	cpu = get_cpu();
2062 	percpu = per_cpu_ptr(conf->percpu, cpu);
2063 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2064 		ops_run_biofill(sh);
2065 		overlap_clear++;
2066 	}
2067 
2068 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2069 		if (level < 6)
2070 			tx = ops_run_compute5(sh, percpu);
2071 		else {
2072 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2073 				tx = ops_run_compute6_1(sh, percpu);
2074 			else
2075 				tx = ops_run_compute6_2(sh, percpu);
2076 		}
2077 		/* terminate the chain if reconstruct is not set to be run */
2078 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2079 			async_tx_ack(tx);
2080 	}
2081 
2082 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2083 		if (level < 6)
2084 			tx = ops_run_prexor5(sh, percpu, tx);
2085 		else
2086 			tx = ops_run_prexor6(sh, percpu, tx);
2087 	}
2088 
2089 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2090 		tx = ops_run_partial_parity(sh, percpu, tx);
2091 
2092 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2093 		tx = ops_run_biodrain(sh, tx);
2094 		overlap_clear++;
2095 	}
2096 
2097 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2098 		if (level < 6)
2099 			ops_run_reconstruct5(sh, percpu, tx);
2100 		else
2101 			ops_run_reconstruct6(sh, percpu, tx);
2102 	}
2103 
2104 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2105 		if (sh->check_state == check_state_run)
2106 			ops_run_check_p(sh, percpu);
2107 		else if (sh->check_state == check_state_run_q)
2108 			ops_run_check_pq(sh, percpu, 0);
2109 		else if (sh->check_state == check_state_run_pq)
2110 			ops_run_check_pq(sh, percpu, 1);
2111 		else
2112 			BUG();
2113 	}
2114 
2115 	if (overlap_clear && !sh->batch_head)
2116 		for (i = disks; i--; ) {
2117 			struct r5dev *dev = &sh->dev[i];
2118 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2119 				wake_up(&sh->raid_conf->wait_for_overlap);
2120 		}
2121 	put_cpu();
2122 }
2123 
2124 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2125 {
2126 	if (sh->ppl_page)
2127 		__free_page(sh->ppl_page);
2128 	kmem_cache_free(sc, sh);
2129 }
2130 
2131 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2132 	int disks, struct r5conf *conf)
2133 {
2134 	struct stripe_head *sh;
2135 	int i;
2136 
2137 	sh = kmem_cache_zalloc(sc, gfp);
2138 	if (sh) {
2139 		spin_lock_init(&sh->stripe_lock);
2140 		spin_lock_init(&sh->batch_lock);
2141 		INIT_LIST_HEAD(&sh->batch_list);
2142 		INIT_LIST_HEAD(&sh->lru);
2143 		INIT_LIST_HEAD(&sh->r5c);
2144 		INIT_LIST_HEAD(&sh->log_list);
2145 		atomic_set(&sh->count, 1);
2146 		sh->raid_conf = conf;
2147 		sh->log_start = MaxSector;
2148 		for (i = 0; i < disks; i++) {
2149 			struct r5dev *dev = &sh->dev[i];
2150 
2151 			bio_init(&dev->req, &dev->vec, 1);
2152 			bio_init(&dev->rreq, &dev->rvec, 1);
2153 		}
2154 
2155 		if (raid5_has_ppl(conf)) {
2156 			sh->ppl_page = alloc_page(gfp);
2157 			if (!sh->ppl_page) {
2158 				free_stripe(sc, sh);
2159 				sh = NULL;
2160 			}
2161 		}
2162 	}
2163 	return sh;
2164 }
2165 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2166 {
2167 	struct stripe_head *sh;
2168 
2169 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2170 	if (!sh)
2171 		return 0;
2172 
2173 	if (grow_buffers(sh, gfp)) {
2174 		shrink_buffers(sh);
2175 		free_stripe(conf->slab_cache, sh);
2176 		return 0;
2177 	}
2178 	sh->hash_lock_index =
2179 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2180 	/* we just created an active stripe so... */
2181 	atomic_inc(&conf->active_stripes);
2182 
2183 	raid5_release_stripe(sh);
2184 	conf->max_nr_stripes++;
2185 	return 1;
2186 }
2187 
2188 static int grow_stripes(struct r5conf *conf, int num)
2189 {
2190 	struct kmem_cache *sc;
2191 	size_t namelen = sizeof(conf->cache_name[0]);
2192 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2193 
2194 	if (conf->mddev->gendisk)
2195 		snprintf(conf->cache_name[0], namelen,
2196 			"raid%d-%s", conf->level, mdname(conf->mddev));
2197 	else
2198 		snprintf(conf->cache_name[0], namelen,
2199 			"raid%d-%p", conf->level, conf->mddev);
2200 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2201 
2202 	conf->active_name = 0;
2203 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2204 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2205 			       0, 0, NULL);
2206 	if (!sc)
2207 		return 1;
2208 	conf->slab_cache = sc;
2209 	conf->pool_size = devs;
2210 	while (num--)
2211 		if (!grow_one_stripe(conf, GFP_KERNEL))
2212 			return 1;
2213 
2214 	return 0;
2215 }
2216 
2217 /**
2218  * scribble_len - return the required size of the scribble region
2219  * @num - total number of disks in the array
2220  *
2221  * The size must be enough to contain:
2222  * 1/ a struct page pointer for each device in the array +2
2223  * 2/ room to convert each entry in (1) to its corresponding dma
2224  *    (dma_map_page()) or page (page_address()) address.
2225  *
2226  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2227  * calculate over all devices (not just the data blocks), using zeros in place
2228  * of the P and Q blocks.
2229  */
2230 static int scribble_alloc(struct raid5_percpu *percpu,
2231 			  int num, int cnt, gfp_t flags)
2232 {
2233 	size_t obj_size =
2234 		sizeof(struct page *) * (num+2) +
2235 		sizeof(addr_conv_t) * (num+2);
2236 	void *scribble;
2237 
2238 	scribble = kvmalloc_array(cnt, obj_size, flags);
2239 	if (!scribble)
2240 		return -ENOMEM;
2241 
2242 	kvfree(percpu->scribble);
2243 
2244 	percpu->scribble = scribble;
2245 	percpu->scribble_obj_size = obj_size;
2246 	return 0;
2247 }
2248 
2249 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2250 {
2251 	unsigned long cpu;
2252 	int err = 0;
2253 
2254 	/*
2255 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2256 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2257 	 * should equal to new_disks and new_sectors
2258 	 */
2259 	if (conf->scribble_disks >= new_disks &&
2260 	    conf->scribble_sectors >= new_sectors)
2261 		return 0;
2262 	mddev_suspend(conf->mddev);
2263 	get_online_cpus();
2264 
2265 	for_each_present_cpu(cpu) {
2266 		struct raid5_percpu *percpu;
2267 
2268 		percpu = per_cpu_ptr(conf->percpu, cpu);
2269 		err = scribble_alloc(percpu, new_disks,
2270 				     new_sectors / STRIPE_SECTORS,
2271 				     GFP_NOIO);
2272 		if (err)
2273 			break;
2274 	}
2275 
2276 	put_online_cpus();
2277 	mddev_resume(conf->mddev);
2278 	if (!err) {
2279 		conf->scribble_disks = new_disks;
2280 		conf->scribble_sectors = new_sectors;
2281 	}
2282 	return err;
2283 }
2284 
2285 static int resize_stripes(struct r5conf *conf, int newsize)
2286 {
2287 	/* Make all the stripes able to hold 'newsize' devices.
2288 	 * New slots in each stripe get 'page' set to a new page.
2289 	 *
2290 	 * This happens in stages:
2291 	 * 1/ create a new kmem_cache and allocate the required number of
2292 	 *    stripe_heads.
2293 	 * 2/ gather all the old stripe_heads and transfer the pages across
2294 	 *    to the new stripe_heads.  This will have the side effect of
2295 	 *    freezing the array as once all stripe_heads have been collected,
2296 	 *    no IO will be possible.  Old stripe heads are freed once their
2297 	 *    pages have been transferred over, and the old kmem_cache is
2298 	 *    freed when all stripes are done.
2299 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2300 	 *    we simple return a failure status - no need to clean anything up.
2301 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2302 	 *    If this fails, we don't bother trying the shrink the
2303 	 *    stripe_heads down again, we just leave them as they are.
2304 	 *    As each stripe_head is processed the new one is released into
2305 	 *    active service.
2306 	 *
2307 	 * Once step2 is started, we cannot afford to wait for a write,
2308 	 * so we use GFP_NOIO allocations.
2309 	 */
2310 	struct stripe_head *osh, *nsh;
2311 	LIST_HEAD(newstripes);
2312 	struct disk_info *ndisks;
2313 	int err = 0;
2314 	struct kmem_cache *sc;
2315 	int i;
2316 	int hash, cnt;
2317 
2318 	md_allow_write(conf->mddev);
2319 
2320 	/* Step 1 */
2321 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2322 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2323 			       0, 0, NULL);
2324 	if (!sc)
2325 		return -ENOMEM;
2326 
2327 	/* Need to ensure auto-resizing doesn't interfere */
2328 	mutex_lock(&conf->cache_size_mutex);
2329 
2330 	for (i = conf->max_nr_stripes; i; i--) {
2331 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2332 		if (!nsh)
2333 			break;
2334 
2335 		list_add(&nsh->lru, &newstripes);
2336 	}
2337 	if (i) {
2338 		/* didn't get enough, give up */
2339 		while (!list_empty(&newstripes)) {
2340 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2341 			list_del(&nsh->lru);
2342 			free_stripe(sc, nsh);
2343 		}
2344 		kmem_cache_destroy(sc);
2345 		mutex_unlock(&conf->cache_size_mutex);
2346 		return -ENOMEM;
2347 	}
2348 	/* Step 2 - Must use GFP_NOIO now.
2349 	 * OK, we have enough stripes, start collecting inactive
2350 	 * stripes and copying them over
2351 	 */
2352 	hash = 0;
2353 	cnt = 0;
2354 	list_for_each_entry(nsh, &newstripes, lru) {
2355 		lock_device_hash_lock(conf, hash);
2356 		wait_event_cmd(conf->wait_for_stripe,
2357 				    !list_empty(conf->inactive_list + hash),
2358 				    unlock_device_hash_lock(conf, hash),
2359 				    lock_device_hash_lock(conf, hash));
2360 		osh = get_free_stripe(conf, hash);
2361 		unlock_device_hash_lock(conf, hash);
2362 
2363 		for(i=0; i<conf->pool_size; i++) {
2364 			nsh->dev[i].page = osh->dev[i].page;
2365 			nsh->dev[i].orig_page = osh->dev[i].page;
2366 		}
2367 		nsh->hash_lock_index = hash;
2368 		free_stripe(conf->slab_cache, osh);
2369 		cnt++;
2370 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2371 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2372 			hash++;
2373 			cnt = 0;
2374 		}
2375 	}
2376 	kmem_cache_destroy(conf->slab_cache);
2377 
2378 	/* Step 3.
2379 	 * At this point, we are holding all the stripes so the array
2380 	 * is completely stalled, so now is a good time to resize
2381 	 * conf->disks and the scribble region
2382 	 */
2383 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2384 	if (ndisks) {
2385 		for (i = 0; i < conf->pool_size; i++)
2386 			ndisks[i] = conf->disks[i];
2387 
2388 		for (i = conf->pool_size; i < newsize; i++) {
2389 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2390 			if (!ndisks[i].extra_page)
2391 				err = -ENOMEM;
2392 		}
2393 
2394 		if (err) {
2395 			for (i = conf->pool_size; i < newsize; i++)
2396 				if (ndisks[i].extra_page)
2397 					put_page(ndisks[i].extra_page);
2398 			kfree(ndisks);
2399 		} else {
2400 			kfree(conf->disks);
2401 			conf->disks = ndisks;
2402 		}
2403 	} else
2404 		err = -ENOMEM;
2405 
2406 	mutex_unlock(&conf->cache_size_mutex);
2407 
2408 	conf->slab_cache = sc;
2409 	conf->active_name = 1-conf->active_name;
2410 
2411 	/* Step 4, return new stripes to service */
2412 	while(!list_empty(&newstripes)) {
2413 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2414 		list_del_init(&nsh->lru);
2415 
2416 		for (i=conf->raid_disks; i < newsize; i++)
2417 			if (nsh->dev[i].page == NULL) {
2418 				struct page *p = alloc_page(GFP_NOIO);
2419 				nsh->dev[i].page = p;
2420 				nsh->dev[i].orig_page = p;
2421 				if (!p)
2422 					err = -ENOMEM;
2423 			}
2424 		raid5_release_stripe(nsh);
2425 	}
2426 	/* critical section pass, GFP_NOIO no longer needed */
2427 
2428 	if (!err)
2429 		conf->pool_size = newsize;
2430 	return err;
2431 }
2432 
2433 static int drop_one_stripe(struct r5conf *conf)
2434 {
2435 	struct stripe_head *sh;
2436 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2437 
2438 	spin_lock_irq(conf->hash_locks + hash);
2439 	sh = get_free_stripe(conf, hash);
2440 	spin_unlock_irq(conf->hash_locks + hash);
2441 	if (!sh)
2442 		return 0;
2443 	BUG_ON(atomic_read(&sh->count));
2444 	shrink_buffers(sh);
2445 	free_stripe(conf->slab_cache, sh);
2446 	atomic_dec(&conf->active_stripes);
2447 	conf->max_nr_stripes--;
2448 	return 1;
2449 }
2450 
2451 static void shrink_stripes(struct r5conf *conf)
2452 {
2453 	while (conf->max_nr_stripes &&
2454 	       drop_one_stripe(conf))
2455 		;
2456 
2457 	kmem_cache_destroy(conf->slab_cache);
2458 	conf->slab_cache = NULL;
2459 }
2460 
2461 static void raid5_end_read_request(struct bio * bi)
2462 {
2463 	struct stripe_head *sh = bi->bi_private;
2464 	struct r5conf *conf = sh->raid_conf;
2465 	int disks = sh->disks, i;
2466 	char b[BDEVNAME_SIZE];
2467 	struct md_rdev *rdev = NULL;
2468 	sector_t s;
2469 
2470 	for (i=0 ; i<disks; i++)
2471 		if (bi == &sh->dev[i].req)
2472 			break;
2473 
2474 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2475 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2476 		bi->bi_status);
2477 	if (i == disks) {
2478 		bio_reset(bi);
2479 		BUG();
2480 		return;
2481 	}
2482 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2483 		/* If replacement finished while this request was outstanding,
2484 		 * 'replacement' might be NULL already.
2485 		 * In that case it moved down to 'rdev'.
2486 		 * rdev is not removed until all requests are finished.
2487 		 */
2488 		rdev = conf->disks[i].replacement;
2489 	if (!rdev)
2490 		rdev = conf->disks[i].rdev;
2491 
2492 	if (use_new_offset(conf, sh))
2493 		s = sh->sector + rdev->new_data_offset;
2494 	else
2495 		s = sh->sector + rdev->data_offset;
2496 	if (!bi->bi_status) {
2497 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2498 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2499 			/* Note that this cannot happen on a
2500 			 * replacement device.  We just fail those on
2501 			 * any error
2502 			 */
2503 			pr_info_ratelimited(
2504 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2505 				mdname(conf->mddev), STRIPE_SECTORS,
2506 				(unsigned long long)s,
2507 				bdevname(rdev->bdev, b));
2508 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2509 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2510 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2511 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2512 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2513 
2514 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2515 			/*
2516 			 * end read for a page in journal, this
2517 			 * must be preparing for prexor in rmw
2518 			 */
2519 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2520 
2521 		if (atomic_read(&rdev->read_errors))
2522 			atomic_set(&rdev->read_errors, 0);
2523 	} else {
2524 		const char *bdn = bdevname(rdev->bdev, b);
2525 		int retry = 0;
2526 		int set_bad = 0;
2527 
2528 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2529 		if (!(bi->bi_status == BLK_STS_PROTECTION))
2530 			atomic_inc(&rdev->read_errors);
2531 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2532 			pr_warn_ratelimited(
2533 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2534 				mdname(conf->mddev),
2535 				(unsigned long long)s,
2536 				bdn);
2537 		else if (conf->mddev->degraded >= conf->max_degraded) {
2538 			set_bad = 1;
2539 			pr_warn_ratelimited(
2540 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2541 				mdname(conf->mddev),
2542 				(unsigned long long)s,
2543 				bdn);
2544 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2545 			/* Oh, no!!! */
2546 			set_bad = 1;
2547 			pr_warn_ratelimited(
2548 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2549 				mdname(conf->mddev),
2550 				(unsigned long long)s,
2551 				bdn);
2552 		} else if (atomic_read(&rdev->read_errors)
2553 			 > conf->max_nr_stripes) {
2554 			if (!test_bit(Faulty, &rdev->flags)) {
2555 				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2556 				    mdname(conf->mddev),
2557 				    atomic_read(&rdev->read_errors),
2558 				    conf->max_nr_stripes);
2559 				pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2560 				    mdname(conf->mddev), bdn);
2561 			}
2562 		} else
2563 			retry = 1;
2564 		if (set_bad && test_bit(In_sync, &rdev->flags)
2565 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2566 			retry = 1;
2567 		if (retry)
2568 			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2569 				set_bit(R5_ReadError, &sh->dev[i].flags);
2570 			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2571 				set_bit(R5_ReadError, &sh->dev[i].flags);
2572 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2573 			} else
2574 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2575 		else {
2576 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2577 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2578 			if (!(set_bad
2579 			      && test_bit(In_sync, &rdev->flags)
2580 			      && rdev_set_badblocks(
2581 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2582 				md_error(conf->mddev, rdev);
2583 		}
2584 	}
2585 	rdev_dec_pending(rdev, conf->mddev);
2586 	bio_reset(bi);
2587 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2588 	set_bit(STRIPE_HANDLE, &sh->state);
2589 	raid5_release_stripe(sh);
2590 }
2591 
2592 static void raid5_end_write_request(struct bio *bi)
2593 {
2594 	struct stripe_head *sh = bi->bi_private;
2595 	struct r5conf *conf = sh->raid_conf;
2596 	int disks = sh->disks, i;
2597 	struct md_rdev *uninitialized_var(rdev);
2598 	sector_t first_bad;
2599 	int bad_sectors;
2600 	int replacement = 0;
2601 
2602 	for (i = 0 ; i < disks; i++) {
2603 		if (bi == &sh->dev[i].req) {
2604 			rdev = conf->disks[i].rdev;
2605 			break;
2606 		}
2607 		if (bi == &sh->dev[i].rreq) {
2608 			rdev = conf->disks[i].replacement;
2609 			if (rdev)
2610 				replacement = 1;
2611 			else
2612 				/* rdev was removed and 'replacement'
2613 				 * replaced it.  rdev is not removed
2614 				 * until all requests are finished.
2615 				 */
2616 				rdev = conf->disks[i].rdev;
2617 			break;
2618 		}
2619 	}
2620 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2621 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2622 		bi->bi_status);
2623 	if (i == disks) {
2624 		bio_reset(bi);
2625 		BUG();
2626 		return;
2627 	}
2628 
2629 	if (replacement) {
2630 		if (bi->bi_status)
2631 			md_error(conf->mddev, rdev);
2632 		else if (is_badblock(rdev, sh->sector,
2633 				     STRIPE_SECTORS,
2634 				     &first_bad, &bad_sectors))
2635 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2636 	} else {
2637 		if (bi->bi_status) {
2638 			set_bit(STRIPE_DEGRADED, &sh->state);
2639 			set_bit(WriteErrorSeen, &rdev->flags);
2640 			set_bit(R5_WriteError, &sh->dev[i].flags);
2641 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2642 				set_bit(MD_RECOVERY_NEEDED,
2643 					&rdev->mddev->recovery);
2644 		} else if (is_badblock(rdev, sh->sector,
2645 				       STRIPE_SECTORS,
2646 				       &first_bad, &bad_sectors)) {
2647 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2648 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2649 				/* That was a successful write so make
2650 				 * sure it looks like we already did
2651 				 * a re-write.
2652 				 */
2653 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2654 		}
2655 	}
2656 	rdev_dec_pending(rdev, conf->mddev);
2657 
2658 	if (sh->batch_head && bi->bi_status && !replacement)
2659 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2660 
2661 	bio_reset(bi);
2662 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2663 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2664 	set_bit(STRIPE_HANDLE, &sh->state);
2665 	raid5_release_stripe(sh);
2666 
2667 	if (sh->batch_head && sh != sh->batch_head)
2668 		raid5_release_stripe(sh->batch_head);
2669 }
2670 
2671 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2672 {
2673 	char b[BDEVNAME_SIZE];
2674 	struct r5conf *conf = mddev->private;
2675 	unsigned long flags;
2676 	pr_debug("raid456: error called\n");
2677 
2678 	spin_lock_irqsave(&conf->device_lock, flags);
2679 
2680 	if (test_bit(In_sync, &rdev->flags) &&
2681 	    mddev->degraded == conf->max_degraded) {
2682 		/*
2683 		 * Don't allow to achieve failed state
2684 		 * Don't try to recover this device
2685 		 */
2686 		conf->recovery_disabled = mddev->recovery_disabled;
2687 		spin_unlock_irqrestore(&conf->device_lock, flags);
2688 		return;
2689 	}
2690 
2691 	set_bit(Faulty, &rdev->flags);
2692 	clear_bit(In_sync, &rdev->flags);
2693 	mddev->degraded = raid5_calc_degraded(conf);
2694 	spin_unlock_irqrestore(&conf->device_lock, flags);
2695 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2696 
2697 	set_bit(Blocked, &rdev->flags);
2698 	set_mask_bits(&mddev->sb_flags, 0,
2699 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2700 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2701 		"md/raid:%s: Operation continuing on %d devices.\n",
2702 		mdname(mddev),
2703 		bdevname(rdev->bdev, b),
2704 		mdname(mddev),
2705 		conf->raid_disks - mddev->degraded);
2706 	r5c_update_on_rdev_error(mddev, rdev);
2707 }
2708 
2709 /*
2710  * Input: a 'big' sector number,
2711  * Output: index of the data and parity disk, and the sector # in them.
2712  */
2713 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2714 			      int previous, int *dd_idx,
2715 			      struct stripe_head *sh)
2716 {
2717 	sector_t stripe, stripe2;
2718 	sector_t chunk_number;
2719 	unsigned int chunk_offset;
2720 	int pd_idx, qd_idx;
2721 	int ddf_layout = 0;
2722 	sector_t new_sector;
2723 	int algorithm = previous ? conf->prev_algo
2724 				 : conf->algorithm;
2725 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2726 					 : conf->chunk_sectors;
2727 	int raid_disks = previous ? conf->previous_raid_disks
2728 				  : conf->raid_disks;
2729 	int data_disks = raid_disks - conf->max_degraded;
2730 
2731 	/* First compute the information on this sector */
2732 
2733 	/*
2734 	 * Compute the chunk number and the sector offset inside the chunk
2735 	 */
2736 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2737 	chunk_number = r_sector;
2738 
2739 	/*
2740 	 * Compute the stripe number
2741 	 */
2742 	stripe = chunk_number;
2743 	*dd_idx = sector_div(stripe, data_disks);
2744 	stripe2 = stripe;
2745 	/*
2746 	 * Select the parity disk based on the user selected algorithm.
2747 	 */
2748 	pd_idx = qd_idx = -1;
2749 	switch(conf->level) {
2750 	case 4:
2751 		pd_idx = data_disks;
2752 		break;
2753 	case 5:
2754 		switch (algorithm) {
2755 		case ALGORITHM_LEFT_ASYMMETRIC:
2756 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2757 			if (*dd_idx >= pd_idx)
2758 				(*dd_idx)++;
2759 			break;
2760 		case ALGORITHM_RIGHT_ASYMMETRIC:
2761 			pd_idx = sector_div(stripe2, raid_disks);
2762 			if (*dd_idx >= pd_idx)
2763 				(*dd_idx)++;
2764 			break;
2765 		case ALGORITHM_LEFT_SYMMETRIC:
2766 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2767 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2768 			break;
2769 		case ALGORITHM_RIGHT_SYMMETRIC:
2770 			pd_idx = sector_div(stripe2, raid_disks);
2771 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2772 			break;
2773 		case ALGORITHM_PARITY_0:
2774 			pd_idx = 0;
2775 			(*dd_idx)++;
2776 			break;
2777 		case ALGORITHM_PARITY_N:
2778 			pd_idx = data_disks;
2779 			break;
2780 		default:
2781 			BUG();
2782 		}
2783 		break;
2784 	case 6:
2785 
2786 		switch (algorithm) {
2787 		case ALGORITHM_LEFT_ASYMMETRIC:
2788 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2789 			qd_idx = pd_idx + 1;
2790 			if (pd_idx == raid_disks-1) {
2791 				(*dd_idx)++;	/* Q D D D P */
2792 				qd_idx = 0;
2793 			} else if (*dd_idx >= pd_idx)
2794 				(*dd_idx) += 2; /* D D P Q D */
2795 			break;
2796 		case ALGORITHM_RIGHT_ASYMMETRIC:
2797 			pd_idx = sector_div(stripe2, raid_disks);
2798 			qd_idx = pd_idx + 1;
2799 			if (pd_idx == raid_disks-1) {
2800 				(*dd_idx)++;	/* Q D D D P */
2801 				qd_idx = 0;
2802 			} else if (*dd_idx >= pd_idx)
2803 				(*dd_idx) += 2; /* D D P Q D */
2804 			break;
2805 		case ALGORITHM_LEFT_SYMMETRIC:
2806 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2807 			qd_idx = (pd_idx + 1) % raid_disks;
2808 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2809 			break;
2810 		case ALGORITHM_RIGHT_SYMMETRIC:
2811 			pd_idx = sector_div(stripe2, raid_disks);
2812 			qd_idx = (pd_idx + 1) % raid_disks;
2813 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2814 			break;
2815 
2816 		case ALGORITHM_PARITY_0:
2817 			pd_idx = 0;
2818 			qd_idx = 1;
2819 			(*dd_idx) += 2;
2820 			break;
2821 		case ALGORITHM_PARITY_N:
2822 			pd_idx = data_disks;
2823 			qd_idx = data_disks + 1;
2824 			break;
2825 
2826 		case ALGORITHM_ROTATING_ZERO_RESTART:
2827 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2828 			 * of blocks for computing Q is different.
2829 			 */
2830 			pd_idx = sector_div(stripe2, raid_disks);
2831 			qd_idx = pd_idx + 1;
2832 			if (pd_idx == raid_disks-1) {
2833 				(*dd_idx)++;	/* Q D D D P */
2834 				qd_idx = 0;
2835 			} else if (*dd_idx >= pd_idx)
2836 				(*dd_idx) += 2; /* D D P Q D */
2837 			ddf_layout = 1;
2838 			break;
2839 
2840 		case ALGORITHM_ROTATING_N_RESTART:
2841 			/* Same a left_asymmetric, by first stripe is
2842 			 * D D D P Q  rather than
2843 			 * Q D D D P
2844 			 */
2845 			stripe2 += 1;
2846 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2847 			qd_idx = pd_idx + 1;
2848 			if (pd_idx == raid_disks-1) {
2849 				(*dd_idx)++;	/* Q D D D P */
2850 				qd_idx = 0;
2851 			} else if (*dd_idx >= pd_idx)
2852 				(*dd_idx) += 2; /* D D P Q D */
2853 			ddf_layout = 1;
2854 			break;
2855 
2856 		case ALGORITHM_ROTATING_N_CONTINUE:
2857 			/* Same as left_symmetric but Q is before P */
2858 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2859 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2860 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2861 			ddf_layout = 1;
2862 			break;
2863 
2864 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2865 			/* RAID5 left_asymmetric, with Q on last device */
2866 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2867 			if (*dd_idx >= pd_idx)
2868 				(*dd_idx)++;
2869 			qd_idx = raid_disks - 1;
2870 			break;
2871 
2872 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2873 			pd_idx = sector_div(stripe2, raid_disks-1);
2874 			if (*dd_idx >= pd_idx)
2875 				(*dd_idx)++;
2876 			qd_idx = raid_disks - 1;
2877 			break;
2878 
2879 		case ALGORITHM_LEFT_SYMMETRIC_6:
2880 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2881 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2882 			qd_idx = raid_disks - 1;
2883 			break;
2884 
2885 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2886 			pd_idx = sector_div(stripe2, raid_disks-1);
2887 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2888 			qd_idx = raid_disks - 1;
2889 			break;
2890 
2891 		case ALGORITHM_PARITY_0_6:
2892 			pd_idx = 0;
2893 			(*dd_idx)++;
2894 			qd_idx = raid_disks - 1;
2895 			break;
2896 
2897 		default:
2898 			BUG();
2899 		}
2900 		break;
2901 	}
2902 
2903 	if (sh) {
2904 		sh->pd_idx = pd_idx;
2905 		sh->qd_idx = qd_idx;
2906 		sh->ddf_layout = ddf_layout;
2907 	}
2908 	/*
2909 	 * Finally, compute the new sector number
2910 	 */
2911 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2912 	return new_sector;
2913 }
2914 
2915 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2916 {
2917 	struct r5conf *conf = sh->raid_conf;
2918 	int raid_disks = sh->disks;
2919 	int data_disks = raid_disks - conf->max_degraded;
2920 	sector_t new_sector = sh->sector, check;
2921 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2922 					 : conf->chunk_sectors;
2923 	int algorithm = previous ? conf->prev_algo
2924 				 : conf->algorithm;
2925 	sector_t stripe;
2926 	int chunk_offset;
2927 	sector_t chunk_number;
2928 	int dummy1, dd_idx = i;
2929 	sector_t r_sector;
2930 	struct stripe_head sh2;
2931 
2932 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2933 	stripe = new_sector;
2934 
2935 	if (i == sh->pd_idx)
2936 		return 0;
2937 	switch(conf->level) {
2938 	case 4: break;
2939 	case 5:
2940 		switch (algorithm) {
2941 		case ALGORITHM_LEFT_ASYMMETRIC:
2942 		case ALGORITHM_RIGHT_ASYMMETRIC:
2943 			if (i > sh->pd_idx)
2944 				i--;
2945 			break;
2946 		case ALGORITHM_LEFT_SYMMETRIC:
2947 		case ALGORITHM_RIGHT_SYMMETRIC:
2948 			if (i < sh->pd_idx)
2949 				i += raid_disks;
2950 			i -= (sh->pd_idx + 1);
2951 			break;
2952 		case ALGORITHM_PARITY_0:
2953 			i -= 1;
2954 			break;
2955 		case ALGORITHM_PARITY_N:
2956 			break;
2957 		default:
2958 			BUG();
2959 		}
2960 		break;
2961 	case 6:
2962 		if (i == sh->qd_idx)
2963 			return 0; /* It is the Q disk */
2964 		switch (algorithm) {
2965 		case ALGORITHM_LEFT_ASYMMETRIC:
2966 		case ALGORITHM_RIGHT_ASYMMETRIC:
2967 		case ALGORITHM_ROTATING_ZERO_RESTART:
2968 		case ALGORITHM_ROTATING_N_RESTART:
2969 			if (sh->pd_idx == raid_disks-1)
2970 				i--;	/* Q D D D P */
2971 			else if (i > sh->pd_idx)
2972 				i -= 2; /* D D P Q D */
2973 			break;
2974 		case ALGORITHM_LEFT_SYMMETRIC:
2975 		case ALGORITHM_RIGHT_SYMMETRIC:
2976 			if (sh->pd_idx == raid_disks-1)
2977 				i--; /* Q D D D P */
2978 			else {
2979 				/* D D P Q D */
2980 				if (i < sh->pd_idx)
2981 					i += raid_disks;
2982 				i -= (sh->pd_idx + 2);
2983 			}
2984 			break;
2985 		case ALGORITHM_PARITY_0:
2986 			i -= 2;
2987 			break;
2988 		case ALGORITHM_PARITY_N:
2989 			break;
2990 		case ALGORITHM_ROTATING_N_CONTINUE:
2991 			/* Like left_symmetric, but P is before Q */
2992 			if (sh->pd_idx == 0)
2993 				i--;	/* P D D D Q */
2994 			else {
2995 				/* D D Q P D */
2996 				if (i < sh->pd_idx)
2997 					i += raid_disks;
2998 				i -= (sh->pd_idx + 1);
2999 			}
3000 			break;
3001 		case ALGORITHM_LEFT_ASYMMETRIC_6:
3002 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3003 			if (i > sh->pd_idx)
3004 				i--;
3005 			break;
3006 		case ALGORITHM_LEFT_SYMMETRIC_6:
3007 		case ALGORITHM_RIGHT_SYMMETRIC_6:
3008 			if (i < sh->pd_idx)
3009 				i += data_disks + 1;
3010 			i -= (sh->pd_idx + 1);
3011 			break;
3012 		case ALGORITHM_PARITY_0_6:
3013 			i -= 1;
3014 			break;
3015 		default:
3016 			BUG();
3017 		}
3018 		break;
3019 	}
3020 
3021 	chunk_number = stripe * data_disks + i;
3022 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3023 
3024 	check = raid5_compute_sector(conf, r_sector,
3025 				     previous, &dummy1, &sh2);
3026 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3027 		|| sh2.qd_idx != sh->qd_idx) {
3028 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3029 			mdname(conf->mddev));
3030 		return 0;
3031 	}
3032 	return r_sector;
3033 }
3034 
3035 /*
3036  * There are cases where we want handle_stripe_dirtying() and
3037  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3038  *
3039  * This function checks whether we want to delay the towrite. Specifically,
3040  * we delay the towrite when:
3041  *
3042  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3043  *      stripe has data in journal (for other devices).
3044  *
3045  *      In this case, when reading data for the non-overwrite dev, it is
3046  *      necessary to handle complex rmw of write back cache (prexor with
3047  *      orig_page, and xor with page). To keep read path simple, we would
3048  *      like to flush data in journal to RAID disks first, so complex rmw
3049  *      is handled in the write patch (handle_stripe_dirtying).
3050  *
3051  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3052  *
3053  *      It is important to be able to flush all stripes in raid5-cache.
3054  *      Therefore, we need reserve some space on the journal device for
3055  *      these flushes. If flush operation includes pending writes to the
3056  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3057  *      for the flush out. If we exclude these pending writes from flush
3058  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3059  *      Therefore, excluding pending writes in these cases enables more
3060  *      efficient use of the journal device.
3061  *
3062  *      Note: To make sure the stripe makes progress, we only delay
3063  *      towrite for stripes with data already in journal (injournal > 0).
3064  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3065  *      no_space_stripes list.
3066  *
3067  *   3. during journal failure
3068  *      In journal failure, we try to flush all cached data to raid disks
3069  *      based on data in stripe cache. The array is read-only to upper
3070  *      layers, so we would skip all pending writes.
3071  *
3072  */
3073 static inline bool delay_towrite(struct r5conf *conf,
3074 				 struct r5dev *dev,
3075 				 struct stripe_head_state *s)
3076 {
3077 	/* case 1 above */
3078 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3079 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3080 		return true;
3081 	/* case 2 above */
3082 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3083 	    s->injournal > 0)
3084 		return true;
3085 	/* case 3 above */
3086 	if (s->log_failed && s->injournal)
3087 		return true;
3088 	return false;
3089 }
3090 
3091 static void
3092 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3093 			 int rcw, int expand)
3094 {
3095 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3096 	struct r5conf *conf = sh->raid_conf;
3097 	int level = conf->level;
3098 
3099 	if (rcw) {
3100 		/*
3101 		 * In some cases, handle_stripe_dirtying initially decided to
3102 		 * run rmw and allocates extra page for prexor. However, rcw is
3103 		 * cheaper later on. We need to free the extra page now,
3104 		 * because we won't be able to do that in ops_complete_prexor().
3105 		 */
3106 		r5c_release_extra_page(sh);
3107 
3108 		for (i = disks; i--; ) {
3109 			struct r5dev *dev = &sh->dev[i];
3110 
3111 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3112 				set_bit(R5_LOCKED, &dev->flags);
3113 				set_bit(R5_Wantdrain, &dev->flags);
3114 				if (!expand)
3115 					clear_bit(R5_UPTODATE, &dev->flags);
3116 				s->locked++;
3117 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3118 				set_bit(R5_LOCKED, &dev->flags);
3119 				s->locked++;
3120 			}
3121 		}
3122 		/* if we are not expanding this is a proper write request, and
3123 		 * there will be bios with new data to be drained into the
3124 		 * stripe cache
3125 		 */
3126 		if (!expand) {
3127 			if (!s->locked)
3128 				/* False alarm, nothing to do */
3129 				return;
3130 			sh->reconstruct_state = reconstruct_state_drain_run;
3131 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3132 		} else
3133 			sh->reconstruct_state = reconstruct_state_run;
3134 
3135 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3136 
3137 		if (s->locked + conf->max_degraded == disks)
3138 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3139 				atomic_inc(&conf->pending_full_writes);
3140 	} else {
3141 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3142 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3143 		BUG_ON(level == 6 &&
3144 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3145 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3146 
3147 		for (i = disks; i--; ) {
3148 			struct r5dev *dev = &sh->dev[i];
3149 			if (i == pd_idx || i == qd_idx)
3150 				continue;
3151 
3152 			if (dev->towrite &&
3153 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3154 			     test_bit(R5_Wantcompute, &dev->flags))) {
3155 				set_bit(R5_Wantdrain, &dev->flags);
3156 				set_bit(R5_LOCKED, &dev->flags);
3157 				clear_bit(R5_UPTODATE, &dev->flags);
3158 				s->locked++;
3159 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3160 				set_bit(R5_LOCKED, &dev->flags);
3161 				s->locked++;
3162 			}
3163 		}
3164 		if (!s->locked)
3165 			/* False alarm - nothing to do */
3166 			return;
3167 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3168 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3169 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3170 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3171 	}
3172 
3173 	/* keep the parity disk(s) locked while asynchronous operations
3174 	 * are in flight
3175 	 */
3176 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3177 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3178 	s->locked++;
3179 
3180 	if (level == 6) {
3181 		int qd_idx = sh->qd_idx;
3182 		struct r5dev *dev = &sh->dev[qd_idx];
3183 
3184 		set_bit(R5_LOCKED, &dev->flags);
3185 		clear_bit(R5_UPTODATE, &dev->flags);
3186 		s->locked++;
3187 	}
3188 
3189 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3190 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3191 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3192 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3193 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3194 
3195 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3196 		__func__, (unsigned long long)sh->sector,
3197 		s->locked, s->ops_request);
3198 }
3199 
3200 /*
3201  * Each stripe/dev can have one or more bion attached.
3202  * toread/towrite point to the first in a chain.
3203  * The bi_next chain must be in order.
3204  */
3205 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3206 			  int forwrite, int previous)
3207 {
3208 	struct bio **bip;
3209 	struct r5conf *conf = sh->raid_conf;
3210 	int firstwrite=0;
3211 
3212 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3213 		(unsigned long long)bi->bi_iter.bi_sector,
3214 		(unsigned long long)sh->sector);
3215 
3216 	spin_lock_irq(&sh->stripe_lock);
3217 	sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3218 	/* Don't allow new IO added to stripes in batch list */
3219 	if (sh->batch_head)
3220 		goto overlap;
3221 	if (forwrite) {
3222 		bip = &sh->dev[dd_idx].towrite;
3223 		if (*bip == NULL)
3224 			firstwrite = 1;
3225 	} else
3226 		bip = &sh->dev[dd_idx].toread;
3227 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3228 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3229 			goto overlap;
3230 		bip = & (*bip)->bi_next;
3231 	}
3232 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3233 		goto overlap;
3234 
3235 	if (forwrite && raid5_has_ppl(conf)) {
3236 		/*
3237 		 * With PPL only writes to consecutive data chunks within a
3238 		 * stripe are allowed because for a single stripe_head we can
3239 		 * only have one PPL entry at a time, which describes one data
3240 		 * range. Not really an overlap, but wait_for_overlap can be
3241 		 * used to handle this.
3242 		 */
3243 		sector_t sector;
3244 		sector_t first = 0;
3245 		sector_t last = 0;
3246 		int count = 0;
3247 		int i;
3248 
3249 		for (i = 0; i < sh->disks; i++) {
3250 			if (i != sh->pd_idx &&
3251 			    (i == dd_idx || sh->dev[i].towrite)) {
3252 				sector = sh->dev[i].sector;
3253 				if (count == 0 || sector < first)
3254 					first = sector;
3255 				if (sector > last)
3256 					last = sector;
3257 				count++;
3258 			}
3259 		}
3260 
3261 		if (first + conf->chunk_sectors * (count - 1) != last)
3262 			goto overlap;
3263 	}
3264 
3265 	if (!forwrite || previous)
3266 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3267 
3268 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3269 	if (*bip)
3270 		bi->bi_next = *bip;
3271 	*bip = bi;
3272 	bio_inc_remaining(bi);
3273 	md_write_inc(conf->mddev, bi);
3274 
3275 	if (forwrite) {
3276 		/* check if page is covered */
3277 		sector_t sector = sh->dev[dd_idx].sector;
3278 		for (bi=sh->dev[dd_idx].towrite;
3279 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3280 			     bi && bi->bi_iter.bi_sector <= sector;
3281 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3282 			if (bio_end_sector(bi) >= sector)
3283 				sector = bio_end_sector(bi);
3284 		}
3285 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3286 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3287 				sh->overwrite_disks++;
3288 	}
3289 
3290 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3291 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3292 		(unsigned long long)sh->sector, dd_idx);
3293 
3294 	if (conf->mddev->bitmap && firstwrite) {
3295 		/* Cannot hold spinlock over bitmap_startwrite,
3296 		 * but must ensure this isn't added to a batch until
3297 		 * we have added to the bitmap and set bm_seq.
3298 		 * So set STRIPE_BITMAP_PENDING to prevent
3299 		 * batching.
3300 		 * If multiple add_stripe_bio() calls race here they
3301 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3302 		 * to complete "bitmap_startwrite" gets to set
3303 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3304 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3305 		 * any more.
3306 		 */
3307 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3308 		spin_unlock_irq(&sh->stripe_lock);
3309 		md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3310 				     STRIPE_SECTORS, 0);
3311 		spin_lock_irq(&sh->stripe_lock);
3312 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3313 		if (!sh->batch_head) {
3314 			sh->bm_seq = conf->seq_flush+1;
3315 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3316 		}
3317 	}
3318 	spin_unlock_irq(&sh->stripe_lock);
3319 
3320 	if (stripe_can_batch(sh))
3321 		stripe_add_to_batch_list(conf, sh);
3322 	return 1;
3323 
3324  overlap:
3325 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3326 	spin_unlock_irq(&sh->stripe_lock);
3327 	return 0;
3328 }
3329 
3330 static void end_reshape(struct r5conf *conf);
3331 
3332 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3333 			    struct stripe_head *sh)
3334 {
3335 	int sectors_per_chunk =
3336 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3337 	int dd_idx;
3338 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3339 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3340 
3341 	raid5_compute_sector(conf,
3342 			     stripe * (disks - conf->max_degraded)
3343 			     *sectors_per_chunk + chunk_offset,
3344 			     previous,
3345 			     &dd_idx, sh);
3346 }
3347 
3348 static void
3349 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3350 		     struct stripe_head_state *s, int disks)
3351 {
3352 	int i;
3353 	BUG_ON(sh->batch_head);
3354 	for (i = disks; i--; ) {
3355 		struct bio *bi;
3356 		int bitmap_end = 0;
3357 
3358 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3359 			struct md_rdev *rdev;
3360 			rcu_read_lock();
3361 			rdev = rcu_dereference(conf->disks[i].rdev);
3362 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3363 			    !test_bit(Faulty, &rdev->flags))
3364 				atomic_inc(&rdev->nr_pending);
3365 			else
3366 				rdev = NULL;
3367 			rcu_read_unlock();
3368 			if (rdev) {
3369 				if (!rdev_set_badblocks(
3370 					    rdev,
3371 					    sh->sector,
3372 					    STRIPE_SECTORS, 0))
3373 					md_error(conf->mddev, rdev);
3374 				rdev_dec_pending(rdev, conf->mddev);
3375 			}
3376 		}
3377 		spin_lock_irq(&sh->stripe_lock);
3378 		/* fail all writes first */
3379 		bi = sh->dev[i].towrite;
3380 		sh->dev[i].towrite = NULL;
3381 		sh->overwrite_disks = 0;
3382 		spin_unlock_irq(&sh->stripe_lock);
3383 		if (bi)
3384 			bitmap_end = 1;
3385 
3386 		log_stripe_write_finished(sh);
3387 
3388 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3389 			wake_up(&conf->wait_for_overlap);
3390 
3391 		while (bi && bi->bi_iter.bi_sector <
3392 			sh->dev[i].sector + STRIPE_SECTORS) {
3393 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3394 
3395 			md_write_end(conf->mddev);
3396 			bio_io_error(bi);
3397 			bi = nextbi;
3398 		}
3399 		if (bitmap_end)
3400 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3401 					   STRIPE_SECTORS, 0, 0);
3402 		bitmap_end = 0;
3403 		/* and fail all 'written' */
3404 		bi = sh->dev[i].written;
3405 		sh->dev[i].written = NULL;
3406 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3407 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3408 			sh->dev[i].page = sh->dev[i].orig_page;
3409 		}
3410 
3411 		if (bi) bitmap_end = 1;
3412 		while (bi && bi->bi_iter.bi_sector <
3413 		       sh->dev[i].sector + STRIPE_SECTORS) {
3414 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3415 
3416 			md_write_end(conf->mddev);
3417 			bio_io_error(bi);
3418 			bi = bi2;
3419 		}
3420 
3421 		/* fail any reads if this device is non-operational and
3422 		 * the data has not reached the cache yet.
3423 		 */
3424 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3425 		    s->failed > conf->max_degraded &&
3426 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3427 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3428 			spin_lock_irq(&sh->stripe_lock);
3429 			bi = sh->dev[i].toread;
3430 			sh->dev[i].toread = NULL;
3431 			spin_unlock_irq(&sh->stripe_lock);
3432 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3433 				wake_up(&conf->wait_for_overlap);
3434 			if (bi)
3435 				s->to_read--;
3436 			while (bi && bi->bi_iter.bi_sector <
3437 			       sh->dev[i].sector + STRIPE_SECTORS) {
3438 				struct bio *nextbi =
3439 					r5_next_bio(bi, sh->dev[i].sector);
3440 
3441 				bio_io_error(bi);
3442 				bi = nextbi;
3443 			}
3444 		}
3445 		if (bitmap_end)
3446 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3447 					   STRIPE_SECTORS, 0, 0);
3448 		/* If we were in the middle of a write the parity block might
3449 		 * still be locked - so just clear all R5_LOCKED flags
3450 		 */
3451 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3452 	}
3453 	s->to_write = 0;
3454 	s->written = 0;
3455 
3456 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3457 		if (atomic_dec_and_test(&conf->pending_full_writes))
3458 			md_wakeup_thread(conf->mddev->thread);
3459 }
3460 
3461 static void
3462 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3463 		   struct stripe_head_state *s)
3464 {
3465 	int abort = 0;
3466 	int i;
3467 
3468 	BUG_ON(sh->batch_head);
3469 	clear_bit(STRIPE_SYNCING, &sh->state);
3470 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3471 		wake_up(&conf->wait_for_overlap);
3472 	s->syncing = 0;
3473 	s->replacing = 0;
3474 	/* There is nothing more to do for sync/check/repair.
3475 	 * Don't even need to abort as that is handled elsewhere
3476 	 * if needed, and not always wanted e.g. if there is a known
3477 	 * bad block here.
3478 	 * For recover/replace we need to record a bad block on all
3479 	 * non-sync devices, or abort the recovery
3480 	 */
3481 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3482 		/* During recovery devices cannot be removed, so
3483 		 * locking and refcounting of rdevs is not needed
3484 		 */
3485 		rcu_read_lock();
3486 		for (i = 0; i < conf->raid_disks; i++) {
3487 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3488 			if (rdev
3489 			    && !test_bit(Faulty, &rdev->flags)
3490 			    && !test_bit(In_sync, &rdev->flags)
3491 			    && !rdev_set_badblocks(rdev, sh->sector,
3492 						   STRIPE_SECTORS, 0))
3493 				abort = 1;
3494 			rdev = rcu_dereference(conf->disks[i].replacement);
3495 			if (rdev
3496 			    && !test_bit(Faulty, &rdev->flags)
3497 			    && !test_bit(In_sync, &rdev->flags)
3498 			    && !rdev_set_badblocks(rdev, sh->sector,
3499 						   STRIPE_SECTORS, 0))
3500 				abort = 1;
3501 		}
3502 		rcu_read_unlock();
3503 		if (abort)
3504 			conf->recovery_disabled =
3505 				conf->mddev->recovery_disabled;
3506 	}
3507 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3508 }
3509 
3510 static int want_replace(struct stripe_head *sh, int disk_idx)
3511 {
3512 	struct md_rdev *rdev;
3513 	int rv = 0;
3514 
3515 	rcu_read_lock();
3516 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3517 	if (rdev
3518 	    && !test_bit(Faulty, &rdev->flags)
3519 	    && !test_bit(In_sync, &rdev->flags)
3520 	    && (rdev->recovery_offset <= sh->sector
3521 		|| rdev->mddev->recovery_cp <= sh->sector))
3522 		rv = 1;
3523 	rcu_read_unlock();
3524 	return rv;
3525 }
3526 
3527 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3528 			   int disk_idx, int disks)
3529 {
3530 	struct r5dev *dev = &sh->dev[disk_idx];
3531 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3532 				  &sh->dev[s->failed_num[1]] };
3533 	int i;
3534 
3535 
3536 	if (test_bit(R5_LOCKED, &dev->flags) ||
3537 	    test_bit(R5_UPTODATE, &dev->flags))
3538 		/* No point reading this as we already have it or have
3539 		 * decided to get it.
3540 		 */
3541 		return 0;
3542 
3543 	if (dev->toread ||
3544 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3545 		/* We need this block to directly satisfy a request */
3546 		return 1;
3547 
3548 	if (s->syncing || s->expanding ||
3549 	    (s->replacing && want_replace(sh, disk_idx)))
3550 		/* When syncing, or expanding we read everything.
3551 		 * When replacing, we need the replaced block.
3552 		 */
3553 		return 1;
3554 
3555 	if ((s->failed >= 1 && fdev[0]->toread) ||
3556 	    (s->failed >= 2 && fdev[1]->toread))
3557 		/* If we want to read from a failed device, then
3558 		 * we need to actually read every other device.
3559 		 */
3560 		return 1;
3561 
3562 	/* Sometimes neither read-modify-write nor reconstruct-write
3563 	 * cycles can work.  In those cases we read every block we
3564 	 * can.  Then the parity-update is certain to have enough to
3565 	 * work with.
3566 	 * This can only be a problem when we need to write something,
3567 	 * and some device has failed.  If either of those tests
3568 	 * fail we need look no further.
3569 	 */
3570 	if (!s->failed || !s->to_write)
3571 		return 0;
3572 
3573 	if (test_bit(R5_Insync, &dev->flags) &&
3574 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3575 		/* Pre-reads at not permitted until after short delay
3576 		 * to gather multiple requests.  However if this
3577 		 * device is no Insync, the block could only be computed
3578 		 * and there is no need to delay that.
3579 		 */
3580 		return 0;
3581 
3582 	for (i = 0; i < s->failed && i < 2; i++) {
3583 		if (fdev[i]->towrite &&
3584 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3585 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3586 			/* If we have a partial write to a failed
3587 			 * device, then we will need to reconstruct
3588 			 * the content of that device, so all other
3589 			 * devices must be read.
3590 			 */
3591 			return 1;
3592 	}
3593 
3594 	/* If we are forced to do a reconstruct-write, either because
3595 	 * the current RAID6 implementation only supports that, or
3596 	 * because parity cannot be trusted and we are currently
3597 	 * recovering it, there is extra need to be careful.
3598 	 * If one of the devices that we would need to read, because
3599 	 * it is not being overwritten (and maybe not written at all)
3600 	 * is missing/faulty, then we need to read everything we can.
3601 	 */
3602 	if (sh->raid_conf->level != 6 &&
3603 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3604 		/* reconstruct-write isn't being forced */
3605 		return 0;
3606 	for (i = 0; i < s->failed && i < 2; i++) {
3607 		if (s->failed_num[i] != sh->pd_idx &&
3608 		    s->failed_num[i] != sh->qd_idx &&
3609 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3610 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3611 			return 1;
3612 	}
3613 
3614 	return 0;
3615 }
3616 
3617 /* fetch_block - checks the given member device to see if its data needs
3618  * to be read or computed to satisfy a request.
3619  *
3620  * Returns 1 when no more member devices need to be checked, otherwise returns
3621  * 0 to tell the loop in handle_stripe_fill to continue
3622  */
3623 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3624 		       int disk_idx, int disks)
3625 {
3626 	struct r5dev *dev = &sh->dev[disk_idx];
3627 
3628 	/* is the data in this block needed, and can we get it? */
3629 	if (need_this_block(sh, s, disk_idx, disks)) {
3630 		/* we would like to get this block, possibly by computing it,
3631 		 * otherwise read it if the backing disk is insync
3632 		 */
3633 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3634 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3635 		BUG_ON(sh->batch_head);
3636 
3637 		/*
3638 		 * In the raid6 case if the only non-uptodate disk is P
3639 		 * then we already trusted P to compute the other failed
3640 		 * drives. It is safe to compute rather than re-read P.
3641 		 * In other cases we only compute blocks from failed
3642 		 * devices, otherwise check/repair might fail to detect
3643 		 * a real inconsistency.
3644 		 */
3645 
3646 		if ((s->uptodate == disks - 1) &&
3647 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3648 		    (s->failed && (disk_idx == s->failed_num[0] ||
3649 				   disk_idx == s->failed_num[1])))) {
3650 			/* have disk failed, and we're requested to fetch it;
3651 			 * do compute it
3652 			 */
3653 			pr_debug("Computing stripe %llu block %d\n",
3654 			       (unsigned long long)sh->sector, disk_idx);
3655 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3656 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3657 			set_bit(R5_Wantcompute, &dev->flags);
3658 			sh->ops.target = disk_idx;
3659 			sh->ops.target2 = -1; /* no 2nd target */
3660 			s->req_compute = 1;
3661 			/* Careful: from this point on 'uptodate' is in the eye
3662 			 * of raid_run_ops which services 'compute' operations
3663 			 * before writes. R5_Wantcompute flags a block that will
3664 			 * be R5_UPTODATE by the time it is needed for a
3665 			 * subsequent operation.
3666 			 */
3667 			s->uptodate++;
3668 			return 1;
3669 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3670 			/* Computing 2-failure is *very* expensive; only
3671 			 * do it if failed >= 2
3672 			 */
3673 			int other;
3674 			for (other = disks; other--; ) {
3675 				if (other == disk_idx)
3676 					continue;
3677 				if (!test_bit(R5_UPTODATE,
3678 				      &sh->dev[other].flags))
3679 					break;
3680 			}
3681 			BUG_ON(other < 0);
3682 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3683 			       (unsigned long long)sh->sector,
3684 			       disk_idx, other);
3685 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3686 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3687 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3688 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3689 			sh->ops.target = disk_idx;
3690 			sh->ops.target2 = other;
3691 			s->uptodate += 2;
3692 			s->req_compute = 1;
3693 			return 1;
3694 		} else if (test_bit(R5_Insync, &dev->flags)) {
3695 			set_bit(R5_LOCKED, &dev->flags);
3696 			set_bit(R5_Wantread, &dev->flags);
3697 			s->locked++;
3698 			pr_debug("Reading block %d (sync=%d)\n",
3699 				disk_idx, s->syncing);
3700 		}
3701 	}
3702 
3703 	return 0;
3704 }
3705 
3706 /**
3707  * handle_stripe_fill - read or compute data to satisfy pending requests.
3708  */
3709 static void handle_stripe_fill(struct stripe_head *sh,
3710 			       struct stripe_head_state *s,
3711 			       int disks)
3712 {
3713 	int i;
3714 
3715 	/* look for blocks to read/compute, skip this if a compute
3716 	 * is already in flight, or if the stripe contents are in the
3717 	 * midst of changing due to a write
3718 	 */
3719 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3720 	    !sh->reconstruct_state) {
3721 
3722 		/*
3723 		 * For degraded stripe with data in journal, do not handle
3724 		 * read requests yet, instead, flush the stripe to raid
3725 		 * disks first, this avoids handling complex rmw of write
3726 		 * back cache (prexor with orig_page, and then xor with
3727 		 * page) in the read path
3728 		 */
3729 		if (s->injournal && s->failed) {
3730 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3731 				r5c_make_stripe_write_out(sh);
3732 			goto out;
3733 		}
3734 
3735 		for (i = disks; i--; )
3736 			if (fetch_block(sh, s, i, disks))
3737 				break;
3738 	}
3739 out:
3740 	set_bit(STRIPE_HANDLE, &sh->state);
3741 }
3742 
3743 static void break_stripe_batch_list(struct stripe_head *head_sh,
3744 				    unsigned long handle_flags);
3745 /* handle_stripe_clean_event
3746  * any written block on an uptodate or failed drive can be returned.
3747  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3748  * never LOCKED, so we don't need to test 'failed' directly.
3749  */
3750 static void handle_stripe_clean_event(struct r5conf *conf,
3751 	struct stripe_head *sh, int disks)
3752 {
3753 	int i;
3754 	struct r5dev *dev;
3755 	int discard_pending = 0;
3756 	struct stripe_head *head_sh = sh;
3757 	bool do_endio = false;
3758 
3759 	for (i = disks; i--; )
3760 		if (sh->dev[i].written) {
3761 			dev = &sh->dev[i];
3762 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3763 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3764 			     test_bit(R5_Discard, &dev->flags) ||
3765 			     test_bit(R5_SkipCopy, &dev->flags))) {
3766 				/* We can return any write requests */
3767 				struct bio *wbi, *wbi2;
3768 				pr_debug("Return write for disc %d\n", i);
3769 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3770 					clear_bit(R5_UPTODATE, &dev->flags);
3771 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3772 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3773 				}
3774 				do_endio = true;
3775 
3776 returnbi:
3777 				dev->page = dev->orig_page;
3778 				wbi = dev->written;
3779 				dev->written = NULL;
3780 				while (wbi && wbi->bi_iter.bi_sector <
3781 					dev->sector + STRIPE_SECTORS) {
3782 					wbi2 = r5_next_bio(wbi, dev->sector);
3783 					md_write_end(conf->mddev);
3784 					bio_endio(wbi);
3785 					wbi = wbi2;
3786 				}
3787 				md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3788 						   STRIPE_SECTORS,
3789 						   !test_bit(STRIPE_DEGRADED, &sh->state),
3790 						   0);
3791 				if (head_sh->batch_head) {
3792 					sh = list_first_entry(&sh->batch_list,
3793 							      struct stripe_head,
3794 							      batch_list);
3795 					if (sh != head_sh) {
3796 						dev = &sh->dev[i];
3797 						goto returnbi;
3798 					}
3799 				}
3800 				sh = head_sh;
3801 				dev = &sh->dev[i];
3802 			} else if (test_bit(R5_Discard, &dev->flags))
3803 				discard_pending = 1;
3804 		}
3805 
3806 	log_stripe_write_finished(sh);
3807 
3808 	if (!discard_pending &&
3809 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3810 		int hash;
3811 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3812 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3813 		if (sh->qd_idx >= 0) {
3814 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3815 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3816 		}
3817 		/* now that discard is done we can proceed with any sync */
3818 		clear_bit(STRIPE_DISCARD, &sh->state);
3819 		/*
3820 		 * SCSI discard will change some bio fields and the stripe has
3821 		 * no updated data, so remove it from hash list and the stripe
3822 		 * will be reinitialized
3823 		 */
3824 unhash:
3825 		hash = sh->hash_lock_index;
3826 		spin_lock_irq(conf->hash_locks + hash);
3827 		remove_hash(sh);
3828 		spin_unlock_irq(conf->hash_locks + hash);
3829 		if (head_sh->batch_head) {
3830 			sh = list_first_entry(&sh->batch_list,
3831 					      struct stripe_head, batch_list);
3832 			if (sh != head_sh)
3833 					goto unhash;
3834 		}
3835 		sh = head_sh;
3836 
3837 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3838 			set_bit(STRIPE_HANDLE, &sh->state);
3839 
3840 	}
3841 
3842 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3843 		if (atomic_dec_and_test(&conf->pending_full_writes))
3844 			md_wakeup_thread(conf->mddev->thread);
3845 
3846 	if (head_sh->batch_head && do_endio)
3847 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3848 }
3849 
3850 /*
3851  * For RMW in write back cache, we need extra page in prexor to store the
3852  * old data. This page is stored in dev->orig_page.
3853  *
3854  * This function checks whether we have data for prexor. The exact logic
3855  * is:
3856  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3857  */
3858 static inline bool uptodate_for_rmw(struct r5dev *dev)
3859 {
3860 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
3861 		(!test_bit(R5_InJournal, &dev->flags) ||
3862 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3863 }
3864 
3865 static int handle_stripe_dirtying(struct r5conf *conf,
3866 				  struct stripe_head *sh,
3867 				  struct stripe_head_state *s,
3868 				  int disks)
3869 {
3870 	int rmw = 0, rcw = 0, i;
3871 	sector_t recovery_cp = conf->mddev->recovery_cp;
3872 
3873 	/* Check whether resync is now happening or should start.
3874 	 * If yes, then the array is dirty (after unclean shutdown or
3875 	 * initial creation), so parity in some stripes might be inconsistent.
3876 	 * In this case, we need to always do reconstruct-write, to ensure
3877 	 * that in case of drive failure or read-error correction, we
3878 	 * generate correct data from the parity.
3879 	 */
3880 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3881 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3882 	     s->failed == 0)) {
3883 		/* Calculate the real rcw later - for now make it
3884 		 * look like rcw is cheaper
3885 		 */
3886 		rcw = 1; rmw = 2;
3887 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3888 			 conf->rmw_level, (unsigned long long)recovery_cp,
3889 			 (unsigned long long)sh->sector);
3890 	} else for (i = disks; i--; ) {
3891 		/* would I have to read this buffer for read_modify_write */
3892 		struct r5dev *dev = &sh->dev[i];
3893 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3894 		     i == sh->pd_idx || i == sh->qd_idx ||
3895 		     test_bit(R5_InJournal, &dev->flags)) &&
3896 		    !test_bit(R5_LOCKED, &dev->flags) &&
3897 		    !(uptodate_for_rmw(dev) ||
3898 		      test_bit(R5_Wantcompute, &dev->flags))) {
3899 			if (test_bit(R5_Insync, &dev->flags))
3900 				rmw++;
3901 			else
3902 				rmw += 2*disks;  /* cannot read it */
3903 		}
3904 		/* Would I have to read this buffer for reconstruct_write */
3905 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3906 		    i != sh->pd_idx && i != sh->qd_idx &&
3907 		    !test_bit(R5_LOCKED, &dev->flags) &&
3908 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3909 		      test_bit(R5_Wantcompute, &dev->flags))) {
3910 			if (test_bit(R5_Insync, &dev->flags))
3911 				rcw++;
3912 			else
3913 				rcw += 2*disks;
3914 		}
3915 	}
3916 
3917 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3918 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3919 	set_bit(STRIPE_HANDLE, &sh->state);
3920 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3921 		/* prefer read-modify-write, but need to get some data */
3922 		if (conf->mddev->queue)
3923 			blk_add_trace_msg(conf->mddev->queue,
3924 					  "raid5 rmw %llu %d",
3925 					  (unsigned long long)sh->sector, rmw);
3926 		for (i = disks; i--; ) {
3927 			struct r5dev *dev = &sh->dev[i];
3928 			if (test_bit(R5_InJournal, &dev->flags) &&
3929 			    dev->page == dev->orig_page &&
3930 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3931 				/* alloc page for prexor */
3932 				struct page *p = alloc_page(GFP_NOIO);
3933 
3934 				if (p) {
3935 					dev->orig_page = p;
3936 					continue;
3937 				}
3938 
3939 				/*
3940 				 * alloc_page() failed, try use
3941 				 * disk_info->extra_page
3942 				 */
3943 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3944 						      &conf->cache_state)) {
3945 					r5c_use_extra_page(sh);
3946 					break;
3947 				}
3948 
3949 				/* extra_page in use, add to delayed_list */
3950 				set_bit(STRIPE_DELAYED, &sh->state);
3951 				s->waiting_extra_page = 1;
3952 				return -EAGAIN;
3953 			}
3954 		}
3955 
3956 		for (i = disks; i--; ) {
3957 			struct r5dev *dev = &sh->dev[i];
3958 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3959 			     i == sh->pd_idx || i == sh->qd_idx ||
3960 			     test_bit(R5_InJournal, &dev->flags)) &&
3961 			    !test_bit(R5_LOCKED, &dev->flags) &&
3962 			    !(uptodate_for_rmw(dev) ||
3963 			      test_bit(R5_Wantcompute, &dev->flags)) &&
3964 			    test_bit(R5_Insync, &dev->flags)) {
3965 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3966 					     &sh->state)) {
3967 					pr_debug("Read_old block %d for r-m-w\n",
3968 						 i);
3969 					set_bit(R5_LOCKED, &dev->flags);
3970 					set_bit(R5_Wantread, &dev->flags);
3971 					s->locked++;
3972 				} else {
3973 					set_bit(STRIPE_DELAYED, &sh->state);
3974 					set_bit(STRIPE_HANDLE, &sh->state);
3975 				}
3976 			}
3977 		}
3978 	}
3979 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3980 		/* want reconstruct write, but need to get some data */
3981 		int qread =0;
3982 		rcw = 0;
3983 		for (i = disks; i--; ) {
3984 			struct r5dev *dev = &sh->dev[i];
3985 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3986 			    i != sh->pd_idx && i != sh->qd_idx &&
3987 			    !test_bit(R5_LOCKED, &dev->flags) &&
3988 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3989 			      test_bit(R5_Wantcompute, &dev->flags))) {
3990 				rcw++;
3991 				if (test_bit(R5_Insync, &dev->flags) &&
3992 				    test_bit(STRIPE_PREREAD_ACTIVE,
3993 					     &sh->state)) {
3994 					pr_debug("Read_old block "
3995 						"%d for Reconstruct\n", i);
3996 					set_bit(R5_LOCKED, &dev->flags);
3997 					set_bit(R5_Wantread, &dev->flags);
3998 					s->locked++;
3999 					qread++;
4000 				} else {
4001 					set_bit(STRIPE_DELAYED, &sh->state);
4002 					set_bit(STRIPE_HANDLE, &sh->state);
4003 				}
4004 			}
4005 		}
4006 		if (rcw && conf->mddev->queue)
4007 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4008 					  (unsigned long long)sh->sector,
4009 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4010 	}
4011 
4012 	if (rcw > disks && rmw > disks &&
4013 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4014 		set_bit(STRIPE_DELAYED, &sh->state);
4015 
4016 	/* now if nothing is locked, and if we have enough data,
4017 	 * we can start a write request
4018 	 */
4019 	/* since handle_stripe can be called at any time we need to handle the
4020 	 * case where a compute block operation has been submitted and then a
4021 	 * subsequent call wants to start a write request.  raid_run_ops only
4022 	 * handles the case where compute block and reconstruct are requested
4023 	 * simultaneously.  If this is not the case then new writes need to be
4024 	 * held off until the compute completes.
4025 	 */
4026 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4027 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4028 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4029 		schedule_reconstruction(sh, s, rcw == 0, 0);
4030 	return 0;
4031 }
4032 
4033 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4034 				struct stripe_head_state *s, int disks)
4035 {
4036 	struct r5dev *dev = NULL;
4037 
4038 	BUG_ON(sh->batch_head);
4039 	set_bit(STRIPE_HANDLE, &sh->state);
4040 
4041 	switch (sh->check_state) {
4042 	case check_state_idle:
4043 		/* start a new check operation if there are no failures */
4044 		if (s->failed == 0) {
4045 			BUG_ON(s->uptodate != disks);
4046 			sh->check_state = check_state_run;
4047 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4048 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4049 			s->uptodate--;
4050 			break;
4051 		}
4052 		dev = &sh->dev[s->failed_num[0]];
4053 		/* fall through */
4054 	case check_state_compute_result:
4055 		sh->check_state = check_state_idle;
4056 		if (!dev)
4057 			dev = &sh->dev[sh->pd_idx];
4058 
4059 		/* check that a write has not made the stripe insync */
4060 		if (test_bit(STRIPE_INSYNC, &sh->state))
4061 			break;
4062 
4063 		/* either failed parity check, or recovery is happening */
4064 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4065 		BUG_ON(s->uptodate != disks);
4066 
4067 		set_bit(R5_LOCKED, &dev->flags);
4068 		s->locked++;
4069 		set_bit(R5_Wantwrite, &dev->flags);
4070 
4071 		clear_bit(STRIPE_DEGRADED, &sh->state);
4072 		set_bit(STRIPE_INSYNC, &sh->state);
4073 		break;
4074 	case check_state_run:
4075 		break; /* we will be called again upon completion */
4076 	case check_state_check_result:
4077 		sh->check_state = check_state_idle;
4078 
4079 		/* if a failure occurred during the check operation, leave
4080 		 * STRIPE_INSYNC not set and let the stripe be handled again
4081 		 */
4082 		if (s->failed)
4083 			break;
4084 
4085 		/* handle a successful check operation, if parity is correct
4086 		 * we are done.  Otherwise update the mismatch count and repair
4087 		 * parity if !MD_RECOVERY_CHECK
4088 		 */
4089 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4090 			/* parity is correct (on disc,
4091 			 * not in buffer any more)
4092 			 */
4093 			set_bit(STRIPE_INSYNC, &sh->state);
4094 		else {
4095 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4096 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4097 				/* don't try to repair!! */
4098 				set_bit(STRIPE_INSYNC, &sh->state);
4099 				pr_warn_ratelimited("%s: mismatch sector in range "
4100 						    "%llu-%llu\n", mdname(conf->mddev),
4101 						    (unsigned long long) sh->sector,
4102 						    (unsigned long long) sh->sector +
4103 						    STRIPE_SECTORS);
4104 			} else {
4105 				sh->check_state = check_state_compute_run;
4106 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4107 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4108 				set_bit(R5_Wantcompute,
4109 					&sh->dev[sh->pd_idx].flags);
4110 				sh->ops.target = sh->pd_idx;
4111 				sh->ops.target2 = -1;
4112 				s->uptodate++;
4113 			}
4114 		}
4115 		break;
4116 	case check_state_compute_run:
4117 		break;
4118 	default:
4119 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4120 		       __func__, sh->check_state,
4121 		       (unsigned long long) sh->sector);
4122 		BUG();
4123 	}
4124 }
4125 
4126 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4127 				  struct stripe_head_state *s,
4128 				  int disks)
4129 {
4130 	int pd_idx = sh->pd_idx;
4131 	int qd_idx = sh->qd_idx;
4132 	struct r5dev *dev;
4133 
4134 	BUG_ON(sh->batch_head);
4135 	set_bit(STRIPE_HANDLE, &sh->state);
4136 
4137 	BUG_ON(s->failed > 2);
4138 
4139 	/* Want to check and possibly repair P and Q.
4140 	 * However there could be one 'failed' device, in which
4141 	 * case we can only check one of them, possibly using the
4142 	 * other to generate missing data
4143 	 */
4144 
4145 	switch (sh->check_state) {
4146 	case check_state_idle:
4147 		/* start a new check operation if there are < 2 failures */
4148 		if (s->failed == s->q_failed) {
4149 			/* The only possible failed device holds Q, so it
4150 			 * makes sense to check P (If anything else were failed,
4151 			 * we would have used P to recreate it).
4152 			 */
4153 			sh->check_state = check_state_run;
4154 		}
4155 		if (!s->q_failed && s->failed < 2) {
4156 			/* Q is not failed, and we didn't use it to generate
4157 			 * anything, so it makes sense to check it
4158 			 */
4159 			if (sh->check_state == check_state_run)
4160 				sh->check_state = check_state_run_pq;
4161 			else
4162 				sh->check_state = check_state_run_q;
4163 		}
4164 
4165 		/* discard potentially stale zero_sum_result */
4166 		sh->ops.zero_sum_result = 0;
4167 
4168 		if (sh->check_state == check_state_run) {
4169 			/* async_xor_zero_sum destroys the contents of P */
4170 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4171 			s->uptodate--;
4172 		}
4173 		if (sh->check_state >= check_state_run &&
4174 		    sh->check_state <= check_state_run_pq) {
4175 			/* async_syndrome_zero_sum preserves P and Q, so
4176 			 * no need to mark them !uptodate here
4177 			 */
4178 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4179 			break;
4180 		}
4181 
4182 		/* we have 2-disk failure */
4183 		BUG_ON(s->failed != 2);
4184 		/* fall through */
4185 	case check_state_compute_result:
4186 		sh->check_state = check_state_idle;
4187 
4188 		/* check that a write has not made the stripe insync */
4189 		if (test_bit(STRIPE_INSYNC, &sh->state))
4190 			break;
4191 
4192 		/* now write out any block on a failed drive,
4193 		 * or P or Q if they were recomputed
4194 		 */
4195 		dev = NULL;
4196 		if (s->failed == 2) {
4197 			dev = &sh->dev[s->failed_num[1]];
4198 			s->locked++;
4199 			set_bit(R5_LOCKED, &dev->flags);
4200 			set_bit(R5_Wantwrite, &dev->flags);
4201 		}
4202 		if (s->failed >= 1) {
4203 			dev = &sh->dev[s->failed_num[0]];
4204 			s->locked++;
4205 			set_bit(R5_LOCKED, &dev->flags);
4206 			set_bit(R5_Wantwrite, &dev->flags);
4207 		}
4208 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4209 			dev = &sh->dev[pd_idx];
4210 			s->locked++;
4211 			set_bit(R5_LOCKED, &dev->flags);
4212 			set_bit(R5_Wantwrite, &dev->flags);
4213 		}
4214 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4215 			dev = &sh->dev[qd_idx];
4216 			s->locked++;
4217 			set_bit(R5_LOCKED, &dev->flags);
4218 			set_bit(R5_Wantwrite, &dev->flags);
4219 		}
4220 		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4221 			      "%s: disk%td not up to date\n",
4222 			      mdname(conf->mddev),
4223 			      dev - (struct r5dev *) &sh->dev)) {
4224 			clear_bit(R5_LOCKED, &dev->flags);
4225 			clear_bit(R5_Wantwrite, &dev->flags);
4226 			s->locked--;
4227 		}
4228 		clear_bit(STRIPE_DEGRADED, &sh->state);
4229 
4230 		set_bit(STRIPE_INSYNC, &sh->state);
4231 		break;
4232 	case check_state_run:
4233 	case check_state_run_q:
4234 	case check_state_run_pq:
4235 		break; /* we will be called again upon completion */
4236 	case check_state_check_result:
4237 		sh->check_state = check_state_idle;
4238 
4239 		/* handle a successful check operation, if parity is correct
4240 		 * we are done.  Otherwise update the mismatch count and repair
4241 		 * parity if !MD_RECOVERY_CHECK
4242 		 */
4243 		if (sh->ops.zero_sum_result == 0) {
4244 			/* both parities are correct */
4245 			if (!s->failed)
4246 				set_bit(STRIPE_INSYNC, &sh->state);
4247 			else {
4248 				/* in contrast to the raid5 case we can validate
4249 				 * parity, but still have a failure to write
4250 				 * back
4251 				 */
4252 				sh->check_state = check_state_compute_result;
4253 				/* Returning at this point means that we may go
4254 				 * off and bring p and/or q uptodate again so
4255 				 * we make sure to check zero_sum_result again
4256 				 * to verify if p or q need writeback
4257 				 */
4258 			}
4259 		} else {
4260 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4261 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4262 				/* don't try to repair!! */
4263 				set_bit(STRIPE_INSYNC, &sh->state);
4264 				pr_warn_ratelimited("%s: mismatch sector in range "
4265 						    "%llu-%llu\n", mdname(conf->mddev),
4266 						    (unsigned long long) sh->sector,
4267 						    (unsigned long long) sh->sector +
4268 						    STRIPE_SECTORS);
4269 			} else {
4270 				int *target = &sh->ops.target;
4271 
4272 				sh->ops.target = -1;
4273 				sh->ops.target2 = -1;
4274 				sh->check_state = check_state_compute_run;
4275 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4276 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4277 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4278 					set_bit(R5_Wantcompute,
4279 						&sh->dev[pd_idx].flags);
4280 					*target = pd_idx;
4281 					target = &sh->ops.target2;
4282 					s->uptodate++;
4283 				}
4284 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4285 					set_bit(R5_Wantcompute,
4286 						&sh->dev[qd_idx].flags);
4287 					*target = qd_idx;
4288 					s->uptodate++;
4289 				}
4290 			}
4291 		}
4292 		break;
4293 	case check_state_compute_run:
4294 		break;
4295 	default:
4296 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4297 			__func__, sh->check_state,
4298 			(unsigned long long) sh->sector);
4299 		BUG();
4300 	}
4301 }
4302 
4303 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4304 {
4305 	int i;
4306 
4307 	/* We have read all the blocks in this stripe and now we need to
4308 	 * copy some of them into a target stripe for expand.
4309 	 */
4310 	struct dma_async_tx_descriptor *tx = NULL;
4311 	BUG_ON(sh->batch_head);
4312 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4313 	for (i = 0; i < sh->disks; i++)
4314 		if (i != sh->pd_idx && i != sh->qd_idx) {
4315 			int dd_idx, j;
4316 			struct stripe_head *sh2;
4317 			struct async_submit_ctl submit;
4318 
4319 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4320 			sector_t s = raid5_compute_sector(conf, bn, 0,
4321 							  &dd_idx, NULL);
4322 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4323 			if (sh2 == NULL)
4324 				/* so far only the early blocks of this stripe
4325 				 * have been requested.  When later blocks
4326 				 * get requested, we will try again
4327 				 */
4328 				continue;
4329 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4330 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4331 				/* must have already done this block */
4332 				raid5_release_stripe(sh2);
4333 				continue;
4334 			}
4335 
4336 			/* place all the copies on one channel */
4337 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4338 			tx = async_memcpy(sh2->dev[dd_idx].page,
4339 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
4340 					  &submit);
4341 
4342 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4343 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4344 			for (j = 0; j < conf->raid_disks; j++)
4345 				if (j != sh2->pd_idx &&
4346 				    j != sh2->qd_idx &&
4347 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4348 					break;
4349 			if (j == conf->raid_disks) {
4350 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4351 				set_bit(STRIPE_HANDLE, &sh2->state);
4352 			}
4353 			raid5_release_stripe(sh2);
4354 
4355 		}
4356 	/* done submitting copies, wait for them to complete */
4357 	async_tx_quiesce(&tx);
4358 }
4359 
4360 /*
4361  * handle_stripe - do things to a stripe.
4362  *
4363  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4364  * state of various bits to see what needs to be done.
4365  * Possible results:
4366  *    return some read requests which now have data
4367  *    return some write requests which are safely on storage
4368  *    schedule a read on some buffers
4369  *    schedule a write of some buffers
4370  *    return confirmation of parity correctness
4371  *
4372  */
4373 
4374 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4375 {
4376 	struct r5conf *conf = sh->raid_conf;
4377 	int disks = sh->disks;
4378 	struct r5dev *dev;
4379 	int i;
4380 	int do_recovery = 0;
4381 
4382 	memset(s, 0, sizeof(*s));
4383 
4384 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4385 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4386 	s->failed_num[0] = -1;
4387 	s->failed_num[1] = -1;
4388 	s->log_failed = r5l_log_disk_error(conf);
4389 
4390 	/* Now to look around and see what can be done */
4391 	rcu_read_lock();
4392 	for (i=disks; i--; ) {
4393 		struct md_rdev *rdev;
4394 		sector_t first_bad;
4395 		int bad_sectors;
4396 		int is_bad = 0;
4397 
4398 		dev = &sh->dev[i];
4399 
4400 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4401 			 i, dev->flags,
4402 			 dev->toread, dev->towrite, dev->written);
4403 		/* maybe we can reply to a read
4404 		 *
4405 		 * new wantfill requests are only permitted while
4406 		 * ops_complete_biofill is guaranteed to be inactive
4407 		 */
4408 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4409 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4410 			set_bit(R5_Wantfill, &dev->flags);
4411 
4412 		/* now count some things */
4413 		if (test_bit(R5_LOCKED, &dev->flags))
4414 			s->locked++;
4415 		if (test_bit(R5_UPTODATE, &dev->flags))
4416 			s->uptodate++;
4417 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4418 			s->compute++;
4419 			BUG_ON(s->compute > 2);
4420 		}
4421 
4422 		if (test_bit(R5_Wantfill, &dev->flags))
4423 			s->to_fill++;
4424 		else if (dev->toread)
4425 			s->to_read++;
4426 		if (dev->towrite) {
4427 			s->to_write++;
4428 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4429 				s->non_overwrite++;
4430 		}
4431 		if (dev->written)
4432 			s->written++;
4433 		/* Prefer to use the replacement for reads, but only
4434 		 * if it is recovered enough and has no bad blocks.
4435 		 */
4436 		rdev = rcu_dereference(conf->disks[i].replacement);
4437 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4438 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4439 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4440 				 &first_bad, &bad_sectors))
4441 			set_bit(R5_ReadRepl, &dev->flags);
4442 		else {
4443 			if (rdev && !test_bit(Faulty, &rdev->flags))
4444 				set_bit(R5_NeedReplace, &dev->flags);
4445 			else
4446 				clear_bit(R5_NeedReplace, &dev->flags);
4447 			rdev = rcu_dereference(conf->disks[i].rdev);
4448 			clear_bit(R5_ReadRepl, &dev->flags);
4449 		}
4450 		if (rdev && test_bit(Faulty, &rdev->flags))
4451 			rdev = NULL;
4452 		if (rdev) {
4453 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4454 					     &first_bad, &bad_sectors);
4455 			if (s->blocked_rdev == NULL
4456 			    && (test_bit(Blocked, &rdev->flags)
4457 				|| is_bad < 0)) {
4458 				if (is_bad < 0)
4459 					set_bit(BlockedBadBlocks,
4460 						&rdev->flags);
4461 				s->blocked_rdev = rdev;
4462 				atomic_inc(&rdev->nr_pending);
4463 			}
4464 		}
4465 		clear_bit(R5_Insync, &dev->flags);
4466 		if (!rdev)
4467 			/* Not in-sync */;
4468 		else if (is_bad) {
4469 			/* also not in-sync */
4470 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4471 			    test_bit(R5_UPTODATE, &dev->flags)) {
4472 				/* treat as in-sync, but with a read error
4473 				 * which we can now try to correct
4474 				 */
4475 				set_bit(R5_Insync, &dev->flags);
4476 				set_bit(R5_ReadError, &dev->flags);
4477 			}
4478 		} else if (test_bit(In_sync, &rdev->flags))
4479 			set_bit(R5_Insync, &dev->flags);
4480 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4481 			/* in sync if before recovery_offset */
4482 			set_bit(R5_Insync, &dev->flags);
4483 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4484 			 test_bit(R5_Expanded, &dev->flags))
4485 			/* If we've reshaped into here, we assume it is Insync.
4486 			 * We will shortly update recovery_offset to make
4487 			 * it official.
4488 			 */
4489 			set_bit(R5_Insync, &dev->flags);
4490 
4491 		if (test_bit(R5_WriteError, &dev->flags)) {
4492 			/* This flag does not apply to '.replacement'
4493 			 * only to .rdev, so make sure to check that*/
4494 			struct md_rdev *rdev2 = rcu_dereference(
4495 				conf->disks[i].rdev);
4496 			if (rdev2 == rdev)
4497 				clear_bit(R5_Insync, &dev->flags);
4498 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4499 				s->handle_bad_blocks = 1;
4500 				atomic_inc(&rdev2->nr_pending);
4501 			} else
4502 				clear_bit(R5_WriteError, &dev->flags);
4503 		}
4504 		if (test_bit(R5_MadeGood, &dev->flags)) {
4505 			/* This flag does not apply to '.replacement'
4506 			 * only to .rdev, so make sure to check that*/
4507 			struct md_rdev *rdev2 = rcu_dereference(
4508 				conf->disks[i].rdev);
4509 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4510 				s->handle_bad_blocks = 1;
4511 				atomic_inc(&rdev2->nr_pending);
4512 			} else
4513 				clear_bit(R5_MadeGood, &dev->flags);
4514 		}
4515 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4516 			struct md_rdev *rdev2 = rcu_dereference(
4517 				conf->disks[i].replacement);
4518 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4519 				s->handle_bad_blocks = 1;
4520 				atomic_inc(&rdev2->nr_pending);
4521 			} else
4522 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4523 		}
4524 		if (!test_bit(R5_Insync, &dev->flags)) {
4525 			/* The ReadError flag will just be confusing now */
4526 			clear_bit(R5_ReadError, &dev->flags);
4527 			clear_bit(R5_ReWrite, &dev->flags);
4528 		}
4529 		if (test_bit(R5_ReadError, &dev->flags))
4530 			clear_bit(R5_Insync, &dev->flags);
4531 		if (!test_bit(R5_Insync, &dev->flags)) {
4532 			if (s->failed < 2)
4533 				s->failed_num[s->failed] = i;
4534 			s->failed++;
4535 			if (rdev && !test_bit(Faulty, &rdev->flags))
4536 				do_recovery = 1;
4537 			else if (!rdev) {
4538 				rdev = rcu_dereference(
4539 				    conf->disks[i].replacement);
4540 				if (rdev && !test_bit(Faulty, &rdev->flags))
4541 					do_recovery = 1;
4542 			}
4543 		}
4544 
4545 		if (test_bit(R5_InJournal, &dev->flags))
4546 			s->injournal++;
4547 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4548 			s->just_cached++;
4549 	}
4550 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4551 		/* If there is a failed device being replaced,
4552 		 *     we must be recovering.
4553 		 * else if we are after recovery_cp, we must be syncing
4554 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4555 		 * else we can only be replacing
4556 		 * sync and recovery both need to read all devices, and so
4557 		 * use the same flag.
4558 		 */
4559 		if (do_recovery ||
4560 		    sh->sector >= conf->mddev->recovery_cp ||
4561 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4562 			s->syncing = 1;
4563 		else
4564 			s->replacing = 1;
4565 	}
4566 	rcu_read_unlock();
4567 }
4568 
4569 static int clear_batch_ready(struct stripe_head *sh)
4570 {
4571 	/* Return '1' if this is a member of batch, or
4572 	 * '0' if it is a lone stripe or a head which can now be
4573 	 * handled.
4574 	 */
4575 	struct stripe_head *tmp;
4576 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4577 		return (sh->batch_head && sh->batch_head != sh);
4578 	spin_lock(&sh->stripe_lock);
4579 	if (!sh->batch_head) {
4580 		spin_unlock(&sh->stripe_lock);
4581 		return 0;
4582 	}
4583 
4584 	/*
4585 	 * this stripe could be added to a batch list before we check
4586 	 * BATCH_READY, skips it
4587 	 */
4588 	if (sh->batch_head != sh) {
4589 		spin_unlock(&sh->stripe_lock);
4590 		return 1;
4591 	}
4592 	spin_lock(&sh->batch_lock);
4593 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4594 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4595 	spin_unlock(&sh->batch_lock);
4596 	spin_unlock(&sh->stripe_lock);
4597 
4598 	/*
4599 	 * BATCH_READY is cleared, no new stripes can be added.
4600 	 * batch_list can be accessed without lock
4601 	 */
4602 	return 0;
4603 }
4604 
4605 static void break_stripe_batch_list(struct stripe_head *head_sh,
4606 				    unsigned long handle_flags)
4607 {
4608 	struct stripe_head *sh, *next;
4609 	int i;
4610 	int do_wakeup = 0;
4611 
4612 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4613 
4614 		list_del_init(&sh->batch_list);
4615 
4616 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4617 					  (1 << STRIPE_SYNCING) |
4618 					  (1 << STRIPE_REPLACED) |
4619 					  (1 << STRIPE_DELAYED) |
4620 					  (1 << STRIPE_BIT_DELAY) |
4621 					  (1 << STRIPE_FULL_WRITE) |
4622 					  (1 << STRIPE_BIOFILL_RUN) |
4623 					  (1 << STRIPE_COMPUTE_RUN)  |
4624 					  (1 << STRIPE_DISCARD) |
4625 					  (1 << STRIPE_BATCH_READY) |
4626 					  (1 << STRIPE_BATCH_ERR) |
4627 					  (1 << STRIPE_BITMAP_PENDING)),
4628 			"stripe state: %lx\n", sh->state);
4629 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4630 					      (1 << STRIPE_REPLACED)),
4631 			"head stripe state: %lx\n", head_sh->state);
4632 
4633 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4634 					    (1 << STRIPE_PREREAD_ACTIVE) |
4635 					    (1 << STRIPE_DEGRADED) |
4636 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4637 			      head_sh->state & (1 << STRIPE_INSYNC));
4638 
4639 		sh->check_state = head_sh->check_state;
4640 		sh->reconstruct_state = head_sh->reconstruct_state;
4641 		spin_lock_irq(&sh->stripe_lock);
4642 		sh->batch_head = NULL;
4643 		spin_unlock_irq(&sh->stripe_lock);
4644 		for (i = 0; i < sh->disks; i++) {
4645 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4646 				do_wakeup = 1;
4647 			sh->dev[i].flags = head_sh->dev[i].flags &
4648 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4649 		}
4650 		if (handle_flags == 0 ||
4651 		    sh->state & handle_flags)
4652 			set_bit(STRIPE_HANDLE, &sh->state);
4653 		raid5_release_stripe(sh);
4654 	}
4655 	spin_lock_irq(&head_sh->stripe_lock);
4656 	head_sh->batch_head = NULL;
4657 	spin_unlock_irq(&head_sh->stripe_lock);
4658 	for (i = 0; i < head_sh->disks; i++)
4659 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4660 			do_wakeup = 1;
4661 	if (head_sh->state & handle_flags)
4662 		set_bit(STRIPE_HANDLE, &head_sh->state);
4663 
4664 	if (do_wakeup)
4665 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4666 }
4667 
4668 static void handle_stripe(struct stripe_head *sh)
4669 {
4670 	struct stripe_head_state s;
4671 	struct r5conf *conf = sh->raid_conf;
4672 	int i;
4673 	int prexor;
4674 	int disks = sh->disks;
4675 	struct r5dev *pdev, *qdev;
4676 
4677 	clear_bit(STRIPE_HANDLE, &sh->state);
4678 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4679 		/* already being handled, ensure it gets handled
4680 		 * again when current action finishes */
4681 		set_bit(STRIPE_HANDLE, &sh->state);
4682 		return;
4683 	}
4684 
4685 	if (clear_batch_ready(sh) ) {
4686 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4687 		return;
4688 	}
4689 
4690 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4691 		break_stripe_batch_list(sh, 0);
4692 
4693 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4694 		spin_lock(&sh->stripe_lock);
4695 		/*
4696 		 * Cannot process 'sync' concurrently with 'discard'.
4697 		 * Flush data in r5cache before 'sync'.
4698 		 */
4699 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4700 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4701 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4702 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4703 			set_bit(STRIPE_SYNCING, &sh->state);
4704 			clear_bit(STRIPE_INSYNC, &sh->state);
4705 			clear_bit(STRIPE_REPLACED, &sh->state);
4706 		}
4707 		spin_unlock(&sh->stripe_lock);
4708 	}
4709 	clear_bit(STRIPE_DELAYED, &sh->state);
4710 
4711 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4712 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4713 	       (unsigned long long)sh->sector, sh->state,
4714 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4715 	       sh->check_state, sh->reconstruct_state);
4716 
4717 	analyse_stripe(sh, &s);
4718 
4719 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4720 		goto finish;
4721 
4722 	if (s.handle_bad_blocks ||
4723 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4724 		set_bit(STRIPE_HANDLE, &sh->state);
4725 		goto finish;
4726 	}
4727 
4728 	if (unlikely(s.blocked_rdev)) {
4729 		if (s.syncing || s.expanding || s.expanded ||
4730 		    s.replacing || s.to_write || s.written) {
4731 			set_bit(STRIPE_HANDLE, &sh->state);
4732 			goto finish;
4733 		}
4734 		/* There is nothing for the blocked_rdev to block */
4735 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4736 		s.blocked_rdev = NULL;
4737 	}
4738 
4739 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4740 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4741 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4742 	}
4743 
4744 	pr_debug("locked=%d uptodate=%d to_read=%d"
4745 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4746 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4747 	       s.failed_num[0], s.failed_num[1]);
4748 	/*
4749 	 * check if the array has lost more than max_degraded devices and,
4750 	 * if so, some requests might need to be failed.
4751 	 *
4752 	 * When journal device failed (log_failed), we will only process
4753 	 * the stripe if there is data need write to raid disks
4754 	 */
4755 	if (s.failed > conf->max_degraded ||
4756 	    (s.log_failed && s.injournal == 0)) {
4757 		sh->check_state = 0;
4758 		sh->reconstruct_state = 0;
4759 		break_stripe_batch_list(sh, 0);
4760 		if (s.to_read+s.to_write+s.written)
4761 			handle_failed_stripe(conf, sh, &s, disks);
4762 		if (s.syncing + s.replacing)
4763 			handle_failed_sync(conf, sh, &s);
4764 	}
4765 
4766 	/* Now we check to see if any write operations have recently
4767 	 * completed
4768 	 */
4769 	prexor = 0;
4770 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4771 		prexor = 1;
4772 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4773 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4774 		sh->reconstruct_state = reconstruct_state_idle;
4775 
4776 		/* All the 'written' buffers and the parity block are ready to
4777 		 * be written back to disk
4778 		 */
4779 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4780 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4781 		BUG_ON(sh->qd_idx >= 0 &&
4782 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4783 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4784 		for (i = disks; i--; ) {
4785 			struct r5dev *dev = &sh->dev[i];
4786 			if (test_bit(R5_LOCKED, &dev->flags) &&
4787 				(i == sh->pd_idx || i == sh->qd_idx ||
4788 				 dev->written || test_bit(R5_InJournal,
4789 							  &dev->flags))) {
4790 				pr_debug("Writing block %d\n", i);
4791 				set_bit(R5_Wantwrite, &dev->flags);
4792 				if (prexor)
4793 					continue;
4794 				if (s.failed > 1)
4795 					continue;
4796 				if (!test_bit(R5_Insync, &dev->flags) ||
4797 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4798 				     s.failed == 0))
4799 					set_bit(STRIPE_INSYNC, &sh->state);
4800 			}
4801 		}
4802 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4803 			s.dec_preread_active = 1;
4804 	}
4805 
4806 	/*
4807 	 * might be able to return some write requests if the parity blocks
4808 	 * are safe, or on a failed drive
4809 	 */
4810 	pdev = &sh->dev[sh->pd_idx];
4811 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4812 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4813 	qdev = &sh->dev[sh->qd_idx];
4814 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4815 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4816 		|| conf->level < 6;
4817 
4818 	if (s.written &&
4819 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4820 			     && !test_bit(R5_LOCKED, &pdev->flags)
4821 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4822 				 test_bit(R5_Discard, &pdev->flags))))) &&
4823 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4824 			     && !test_bit(R5_LOCKED, &qdev->flags)
4825 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4826 				 test_bit(R5_Discard, &qdev->flags))))))
4827 		handle_stripe_clean_event(conf, sh, disks);
4828 
4829 	if (s.just_cached)
4830 		r5c_handle_cached_data_endio(conf, sh, disks);
4831 	log_stripe_write_finished(sh);
4832 
4833 	/* Now we might consider reading some blocks, either to check/generate
4834 	 * parity, or to satisfy requests
4835 	 * or to load a block that is being partially written.
4836 	 */
4837 	if (s.to_read || s.non_overwrite
4838 	    || (conf->level == 6 && s.to_write && s.failed)
4839 	    || (s.syncing && (s.uptodate + s.compute < disks))
4840 	    || s.replacing
4841 	    || s.expanding)
4842 		handle_stripe_fill(sh, &s, disks);
4843 
4844 	/*
4845 	 * When the stripe finishes full journal write cycle (write to journal
4846 	 * and raid disk), this is the clean up procedure so it is ready for
4847 	 * next operation.
4848 	 */
4849 	r5c_finish_stripe_write_out(conf, sh, &s);
4850 
4851 	/*
4852 	 * Now to consider new write requests, cache write back and what else,
4853 	 * if anything should be read.  We do not handle new writes when:
4854 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4855 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4856 	 *    block.
4857 	 * 3/ A r5c cache log write is in flight.
4858 	 */
4859 
4860 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4861 		if (!r5c_is_writeback(conf->log)) {
4862 			if (s.to_write)
4863 				handle_stripe_dirtying(conf, sh, &s, disks);
4864 		} else { /* write back cache */
4865 			int ret = 0;
4866 
4867 			/* First, try handle writes in caching phase */
4868 			if (s.to_write)
4869 				ret = r5c_try_caching_write(conf, sh, &s,
4870 							    disks);
4871 			/*
4872 			 * If caching phase failed: ret == -EAGAIN
4873 			 *    OR
4874 			 * stripe under reclaim: !caching && injournal
4875 			 *
4876 			 * fall back to handle_stripe_dirtying()
4877 			 */
4878 			if (ret == -EAGAIN ||
4879 			    /* stripe under reclaim: !caching && injournal */
4880 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4881 			     s.injournal > 0)) {
4882 				ret = handle_stripe_dirtying(conf, sh, &s,
4883 							     disks);
4884 				if (ret == -EAGAIN)
4885 					goto finish;
4886 			}
4887 		}
4888 	}
4889 
4890 	/* maybe we need to check and possibly fix the parity for this stripe
4891 	 * Any reads will already have been scheduled, so we just see if enough
4892 	 * data is available.  The parity check is held off while parity
4893 	 * dependent operations are in flight.
4894 	 */
4895 	if (sh->check_state ||
4896 	    (s.syncing && s.locked == 0 &&
4897 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4898 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4899 		if (conf->level == 6)
4900 			handle_parity_checks6(conf, sh, &s, disks);
4901 		else
4902 			handle_parity_checks5(conf, sh, &s, disks);
4903 	}
4904 
4905 	if ((s.replacing || s.syncing) && s.locked == 0
4906 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4907 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4908 		/* Write out to replacement devices where possible */
4909 		for (i = 0; i < conf->raid_disks; i++)
4910 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4911 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4912 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4913 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4914 				s.locked++;
4915 			}
4916 		if (s.replacing)
4917 			set_bit(STRIPE_INSYNC, &sh->state);
4918 		set_bit(STRIPE_REPLACED, &sh->state);
4919 	}
4920 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4921 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4922 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4923 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4924 		clear_bit(STRIPE_SYNCING, &sh->state);
4925 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4926 			wake_up(&conf->wait_for_overlap);
4927 	}
4928 
4929 	/* If the failed drives are just a ReadError, then we might need
4930 	 * to progress the repair/check process
4931 	 */
4932 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4933 		for (i = 0; i < s.failed; i++) {
4934 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4935 			if (test_bit(R5_ReadError, &dev->flags)
4936 			    && !test_bit(R5_LOCKED, &dev->flags)
4937 			    && test_bit(R5_UPTODATE, &dev->flags)
4938 				) {
4939 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4940 					set_bit(R5_Wantwrite, &dev->flags);
4941 					set_bit(R5_ReWrite, &dev->flags);
4942 					set_bit(R5_LOCKED, &dev->flags);
4943 					s.locked++;
4944 				} else {
4945 					/* let's read it back */
4946 					set_bit(R5_Wantread, &dev->flags);
4947 					set_bit(R5_LOCKED, &dev->flags);
4948 					s.locked++;
4949 				}
4950 			}
4951 		}
4952 
4953 	/* Finish reconstruct operations initiated by the expansion process */
4954 	if (sh->reconstruct_state == reconstruct_state_result) {
4955 		struct stripe_head *sh_src
4956 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4957 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4958 			/* sh cannot be written until sh_src has been read.
4959 			 * so arrange for sh to be delayed a little
4960 			 */
4961 			set_bit(STRIPE_DELAYED, &sh->state);
4962 			set_bit(STRIPE_HANDLE, &sh->state);
4963 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4964 					      &sh_src->state))
4965 				atomic_inc(&conf->preread_active_stripes);
4966 			raid5_release_stripe(sh_src);
4967 			goto finish;
4968 		}
4969 		if (sh_src)
4970 			raid5_release_stripe(sh_src);
4971 
4972 		sh->reconstruct_state = reconstruct_state_idle;
4973 		clear_bit(STRIPE_EXPANDING, &sh->state);
4974 		for (i = conf->raid_disks; i--; ) {
4975 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4976 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4977 			s.locked++;
4978 		}
4979 	}
4980 
4981 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4982 	    !sh->reconstruct_state) {
4983 		/* Need to write out all blocks after computing parity */
4984 		sh->disks = conf->raid_disks;
4985 		stripe_set_idx(sh->sector, conf, 0, sh);
4986 		schedule_reconstruction(sh, &s, 1, 1);
4987 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4988 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4989 		atomic_dec(&conf->reshape_stripes);
4990 		wake_up(&conf->wait_for_overlap);
4991 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4992 	}
4993 
4994 	if (s.expanding && s.locked == 0 &&
4995 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4996 		handle_stripe_expansion(conf, sh);
4997 
4998 finish:
4999 	/* wait for this device to become unblocked */
5000 	if (unlikely(s.blocked_rdev)) {
5001 		if (conf->mddev->external)
5002 			md_wait_for_blocked_rdev(s.blocked_rdev,
5003 						 conf->mddev);
5004 		else
5005 			/* Internal metadata will immediately
5006 			 * be written by raid5d, so we don't
5007 			 * need to wait here.
5008 			 */
5009 			rdev_dec_pending(s.blocked_rdev,
5010 					 conf->mddev);
5011 	}
5012 
5013 	if (s.handle_bad_blocks)
5014 		for (i = disks; i--; ) {
5015 			struct md_rdev *rdev;
5016 			struct r5dev *dev = &sh->dev[i];
5017 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5018 				/* We own a safe reference to the rdev */
5019 				rdev = conf->disks[i].rdev;
5020 				if (!rdev_set_badblocks(rdev, sh->sector,
5021 							STRIPE_SECTORS, 0))
5022 					md_error(conf->mddev, rdev);
5023 				rdev_dec_pending(rdev, conf->mddev);
5024 			}
5025 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5026 				rdev = conf->disks[i].rdev;
5027 				rdev_clear_badblocks(rdev, sh->sector,
5028 						     STRIPE_SECTORS, 0);
5029 				rdev_dec_pending(rdev, conf->mddev);
5030 			}
5031 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5032 				rdev = conf->disks[i].replacement;
5033 				if (!rdev)
5034 					/* rdev have been moved down */
5035 					rdev = conf->disks[i].rdev;
5036 				rdev_clear_badblocks(rdev, sh->sector,
5037 						     STRIPE_SECTORS, 0);
5038 				rdev_dec_pending(rdev, conf->mddev);
5039 			}
5040 		}
5041 
5042 	if (s.ops_request)
5043 		raid_run_ops(sh, s.ops_request);
5044 
5045 	ops_run_io(sh, &s);
5046 
5047 	if (s.dec_preread_active) {
5048 		/* We delay this until after ops_run_io so that if make_request
5049 		 * is waiting on a flush, it won't continue until the writes
5050 		 * have actually been submitted.
5051 		 */
5052 		atomic_dec(&conf->preread_active_stripes);
5053 		if (atomic_read(&conf->preread_active_stripes) <
5054 		    IO_THRESHOLD)
5055 			md_wakeup_thread(conf->mddev->thread);
5056 	}
5057 
5058 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5059 }
5060 
5061 static void raid5_activate_delayed(struct r5conf *conf)
5062 {
5063 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5064 		while (!list_empty(&conf->delayed_list)) {
5065 			struct list_head *l = conf->delayed_list.next;
5066 			struct stripe_head *sh;
5067 			sh = list_entry(l, struct stripe_head, lru);
5068 			list_del_init(l);
5069 			clear_bit(STRIPE_DELAYED, &sh->state);
5070 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5071 				atomic_inc(&conf->preread_active_stripes);
5072 			list_add_tail(&sh->lru, &conf->hold_list);
5073 			raid5_wakeup_stripe_thread(sh);
5074 		}
5075 	}
5076 }
5077 
5078 static void activate_bit_delay(struct r5conf *conf,
5079 	struct list_head *temp_inactive_list)
5080 {
5081 	/* device_lock is held */
5082 	struct list_head head;
5083 	list_add(&head, &conf->bitmap_list);
5084 	list_del_init(&conf->bitmap_list);
5085 	while (!list_empty(&head)) {
5086 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5087 		int hash;
5088 		list_del_init(&sh->lru);
5089 		atomic_inc(&sh->count);
5090 		hash = sh->hash_lock_index;
5091 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5092 	}
5093 }
5094 
5095 static int raid5_congested(struct mddev *mddev, int bits)
5096 {
5097 	struct r5conf *conf = mddev->private;
5098 
5099 	/* No difference between reads and writes.  Just check
5100 	 * how busy the stripe_cache is
5101 	 */
5102 
5103 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5104 		return 1;
5105 
5106 	/* Also checks whether there is pressure on r5cache log space */
5107 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5108 		return 1;
5109 	if (conf->quiesce)
5110 		return 1;
5111 	if (atomic_read(&conf->empty_inactive_list_nr))
5112 		return 1;
5113 
5114 	return 0;
5115 }
5116 
5117 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5118 {
5119 	struct r5conf *conf = mddev->private;
5120 	sector_t sector = bio->bi_iter.bi_sector;
5121 	unsigned int chunk_sectors;
5122 	unsigned int bio_sectors = bio_sectors(bio);
5123 
5124 	WARN_ON_ONCE(bio->bi_partno);
5125 
5126 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5127 	return  chunk_sectors >=
5128 		((sector & (chunk_sectors - 1)) + bio_sectors);
5129 }
5130 
5131 /*
5132  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5133  *  later sampled by raid5d.
5134  */
5135 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5136 {
5137 	unsigned long flags;
5138 
5139 	spin_lock_irqsave(&conf->device_lock, flags);
5140 
5141 	bi->bi_next = conf->retry_read_aligned_list;
5142 	conf->retry_read_aligned_list = bi;
5143 
5144 	spin_unlock_irqrestore(&conf->device_lock, flags);
5145 	md_wakeup_thread(conf->mddev->thread);
5146 }
5147 
5148 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5149 					 unsigned int *offset)
5150 {
5151 	struct bio *bi;
5152 
5153 	bi = conf->retry_read_aligned;
5154 	if (bi) {
5155 		*offset = conf->retry_read_offset;
5156 		conf->retry_read_aligned = NULL;
5157 		return bi;
5158 	}
5159 	bi = conf->retry_read_aligned_list;
5160 	if(bi) {
5161 		conf->retry_read_aligned_list = bi->bi_next;
5162 		bi->bi_next = NULL;
5163 		*offset = 0;
5164 	}
5165 
5166 	return bi;
5167 }
5168 
5169 /*
5170  *  The "raid5_align_endio" should check if the read succeeded and if it
5171  *  did, call bio_endio on the original bio (having bio_put the new bio
5172  *  first).
5173  *  If the read failed..
5174  */
5175 static void raid5_align_endio(struct bio *bi)
5176 {
5177 	struct bio* raid_bi  = bi->bi_private;
5178 	struct mddev *mddev;
5179 	struct r5conf *conf;
5180 	struct md_rdev *rdev;
5181 	blk_status_t error = bi->bi_status;
5182 
5183 	bio_put(bi);
5184 
5185 	rdev = (void*)raid_bi->bi_next;
5186 	raid_bi->bi_next = NULL;
5187 	mddev = rdev->mddev;
5188 	conf = mddev->private;
5189 
5190 	rdev_dec_pending(rdev, conf->mddev);
5191 
5192 	if (!error) {
5193 		bio_endio(raid_bi);
5194 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5195 			wake_up(&conf->wait_for_quiescent);
5196 		return;
5197 	}
5198 
5199 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5200 
5201 	add_bio_to_retry(raid_bi, conf);
5202 }
5203 
5204 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5205 {
5206 	struct r5conf *conf = mddev->private;
5207 	int dd_idx;
5208 	struct bio* align_bi;
5209 	struct md_rdev *rdev;
5210 	sector_t end_sector;
5211 
5212 	if (!in_chunk_boundary(mddev, raid_bio)) {
5213 		pr_debug("%s: non aligned\n", __func__);
5214 		return 0;
5215 	}
5216 	/*
5217 	 * use bio_clone_fast to make a copy of the bio
5218 	 */
5219 	align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5220 	if (!align_bi)
5221 		return 0;
5222 	/*
5223 	 *   set bi_end_io to a new function, and set bi_private to the
5224 	 *     original bio.
5225 	 */
5226 	align_bi->bi_end_io  = raid5_align_endio;
5227 	align_bi->bi_private = raid_bio;
5228 	/*
5229 	 *	compute position
5230 	 */
5231 	align_bi->bi_iter.bi_sector =
5232 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5233 				     0, &dd_idx, NULL);
5234 
5235 	end_sector = bio_end_sector(align_bi);
5236 	rcu_read_lock();
5237 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5238 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5239 	    rdev->recovery_offset < end_sector) {
5240 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5241 		if (rdev &&
5242 		    (test_bit(Faulty, &rdev->flags) ||
5243 		    !(test_bit(In_sync, &rdev->flags) ||
5244 		      rdev->recovery_offset >= end_sector)))
5245 			rdev = NULL;
5246 	}
5247 
5248 	if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5249 		rcu_read_unlock();
5250 		bio_put(align_bi);
5251 		return 0;
5252 	}
5253 
5254 	if (rdev) {
5255 		sector_t first_bad;
5256 		int bad_sectors;
5257 
5258 		atomic_inc(&rdev->nr_pending);
5259 		rcu_read_unlock();
5260 		raid_bio->bi_next = (void*)rdev;
5261 		bio_set_dev(align_bi, rdev->bdev);
5262 
5263 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5264 				bio_sectors(align_bi),
5265 				&first_bad, &bad_sectors)) {
5266 			bio_put(align_bi);
5267 			rdev_dec_pending(rdev, mddev);
5268 			return 0;
5269 		}
5270 
5271 		/* No reshape active, so we can trust rdev->data_offset */
5272 		align_bi->bi_iter.bi_sector += rdev->data_offset;
5273 
5274 		spin_lock_irq(&conf->device_lock);
5275 		wait_event_lock_irq(conf->wait_for_quiescent,
5276 				    conf->quiesce == 0,
5277 				    conf->device_lock);
5278 		atomic_inc(&conf->active_aligned_reads);
5279 		spin_unlock_irq(&conf->device_lock);
5280 
5281 		if (mddev->gendisk)
5282 			trace_block_bio_remap(align_bi->bi_disk->queue,
5283 					      align_bi, disk_devt(mddev->gendisk),
5284 					      raid_bio->bi_iter.bi_sector);
5285 		generic_make_request(align_bi);
5286 		return 1;
5287 	} else {
5288 		rcu_read_unlock();
5289 		bio_put(align_bi);
5290 		return 0;
5291 	}
5292 }
5293 
5294 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5295 {
5296 	struct bio *split;
5297 	sector_t sector = raid_bio->bi_iter.bi_sector;
5298 	unsigned chunk_sects = mddev->chunk_sectors;
5299 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5300 
5301 	if (sectors < bio_sectors(raid_bio)) {
5302 		struct r5conf *conf = mddev->private;
5303 		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5304 		bio_chain(split, raid_bio);
5305 		generic_make_request(raid_bio);
5306 		raid_bio = split;
5307 	}
5308 
5309 	if (!raid5_read_one_chunk(mddev, raid_bio))
5310 		return raid_bio;
5311 
5312 	return NULL;
5313 }
5314 
5315 /* __get_priority_stripe - get the next stripe to process
5316  *
5317  * Full stripe writes are allowed to pass preread active stripes up until
5318  * the bypass_threshold is exceeded.  In general the bypass_count
5319  * increments when the handle_list is handled before the hold_list; however, it
5320  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5321  * stripe with in flight i/o.  The bypass_count will be reset when the
5322  * head of the hold_list has changed, i.e. the head was promoted to the
5323  * handle_list.
5324  */
5325 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5326 {
5327 	struct stripe_head *sh, *tmp;
5328 	struct list_head *handle_list = NULL;
5329 	struct r5worker_group *wg;
5330 	bool second_try = !r5c_is_writeback(conf->log) &&
5331 		!r5l_log_disk_error(conf);
5332 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5333 		r5l_log_disk_error(conf);
5334 
5335 again:
5336 	wg = NULL;
5337 	sh = NULL;
5338 	if (conf->worker_cnt_per_group == 0) {
5339 		handle_list = try_loprio ? &conf->loprio_list :
5340 					&conf->handle_list;
5341 	} else if (group != ANY_GROUP) {
5342 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5343 				&conf->worker_groups[group].handle_list;
5344 		wg = &conf->worker_groups[group];
5345 	} else {
5346 		int i;
5347 		for (i = 0; i < conf->group_cnt; i++) {
5348 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5349 				&conf->worker_groups[i].handle_list;
5350 			wg = &conf->worker_groups[i];
5351 			if (!list_empty(handle_list))
5352 				break;
5353 		}
5354 	}
5355 
5356 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5357 		  __func__,
5358 		  list_empty(handle_list) ? "empty" : "busy",
5359 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5360 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5361 
5362 	if (!list_empty(handle_list)) {
5363 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5364 
5365 		if (list_empty(&conf->hold_list))
5366 			conf->bypass_count = 0;
5367 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5368 			if (conf->hold_list.next == conf->last_hold)
5369 				conf->bypass_count++;
5370 			else {
5371 				conf->last_hold = conf->hold_list.next;
5372 				conf->bypass_count -= conf->bypass_threshold;
5373 				if (conf->bypass_count < 0)
5374 					conf->bypass_count = 0;
5375 			}
5376 		}
5377 	} else if (!list_empty(&conf->hold_list) &&
5378 		   ((conf->bypass_threshold &&
5379 		     conf->bypass_count > conf->bypass_threshold) ||
5380 		    atomic_read(&conf->pending_full_writes) == 0)) {
5381 
5382 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5383 			if (conf->worker_cnt_per_group == 0 ||
5384 			    group == ANY_GROUP ||
5385 			    !cpu_online(tmp->cpu) ||
5386 			    cpu_to_group(tmp->cpu) == group) {
5387 				sh = tmp;
5388 				break;
5389 			}
5390 		}
5391 
5392 		if (sh) {
5393 			conf->bypass_count -= conf->bypass_threshold;
5394 			if (conf->bypass_count < 0)
5395 				conf->bypass_count = 0;
5396 		}
5397 		wg = NULL;
5398 	}
5399 
5400 	if (!sh) {
5401 		if (second_try)
5402 			return NULL;
5403 		second_try = true;
5404 		try_loprio = !try_loprio;
5405 		goto again;
5406 	}
5407 
5408 	if (wg) {
5409 		wg->stripes_cnt--;
5410 		sh->group = NULL;
5411 	}
5412 	list_del_init(&sh->lru);
5413 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5414 	return sh;
5415 }
5416 
5417 struct raid5_plug_cb {
5418 	struct blk_plug_cb	cb;
5419 	struct list_head	list;
5420 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5421 };
5422 
5423 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5424 {
5425 	struct raid5_plug_cb *cb = container_of(
5426 		blk_cb, struct raid5_plug_cb, cb);
5427 	struct stripe_head *sh;
5428 	struct mddev *mddev = cb->cb.data;
5429 	struct r5conf *conf = mddev->private;
5430 	int cnt = 0;
5431 	int hash;
5432 
5433 	if (cb->list.next && !list_empty(&cb->list)) {
5434 		spin_lock_irq(&conf->device_lock);
5435 		while (!list_empty(&cb->list)) {
5436 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5437 			list_del_init(&sh->lru);
5438 			/*
5439 			 * avoid race release_stripe_plug() sees
5440 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5441 			 * is still in our list
5442 			 */
5443 			smp_mb__before_atomic();
5444 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5445 			/*
5446 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5447 			 * case, the count is always > 1 here
5448 			 */
5449 			hash = sh->hash_lock_index;
5450 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5451 			cnt++;
5452 		}
5453 		spin_unlock_irq(&conf->device_lock);
5454 	}
5455 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5456 				     NR_STRIPE_HASH_LOCKS);
5457 	if (mddev->queue)
5458 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5459 	kfree(cb);
5460 }
5461 
5462 static void release_stripe_plug(struct mddev *mddev,
5463 				struct stripe_head *sh)
5464 {
5465 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5466 		raid5_unplug, mddev,
5467 		sizeof(struct raid5_plug_cb));
5468 	struct raid5_plug_cb *cb;
5469 
5470 	if (!blk_cb) {
5471 		raid5_release_stripe(sh);
5472 		return;
5473 	}
5474 
5475 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5476 
5477 	if (cb->list.next == NULL) {
5478 		int i;
5479 		INIT_LIST_HEAD(&cb->list);
5480 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5481 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5482 	}
5483 
5484 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5485 		list_add_tail(&sh->lru, &cb->list);
5486 	else
5487 		raid5_release_stripe(sh);
5488 }
5489 
5490 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5491 {
5492 	struct r5conf *conf = mddev->private;
5493 	sector_t logical_sector, last_sector;
5494 	struct stripe_head *sh;
5495 	int stripe_sectors;
5496 
5497 	if (mddev->reshape_position != MaxSector)
5498 		/* Skip discard while reshape is happening */
5499 		return;
5500 
5501 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5502 	last_sector = bio_end_sector(bi);
5503 
5504 	bi->bi_next = NULL;
5505 
5506 	stripe_sectors = conf->chunk_sectors *
5507 		(conf->raid_disks - conf->max_degraded);
5508 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5509 					       stripe_sectors);
5510 	sector_div(last_sector, stripe_sectors);
5511 
5512 	logical_sector *= conf->chunk_sectors;
5513 	last_sector *= conf->chunk_sectors;
5514 
5515 	for (; logical_sector < last_sector;
5516 	     logical_sector += STRIPE_SECTORS) {
5517 		DEFINE_WAIT(w);
5518 		int d;
5519 	again:
5520 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5521 		prepare_to_wait(&conf->wait_for_overlap, &w,
5522 				TASK_UNINTERRUPTIBLE);
5523 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5524 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5525 			raid5_release_stripe(sh);
5526 			schedule();
5527 			goto again;
5528 		}
5529 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5530 		spin_lock_irq(&sh->stripe_lock);
5531 		for (d = 0; d < conf->raid_disks; d++) {
5532 			if (d == sh->pd_idx || d == sh->qd_idx)
5533 				continue;
5534 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5535 				set_bit(R5_Overlap, &sh->dev[d].flags);
5536 				spin_unlock_irq(&sh->stripe_lock);
5537 				raid5_release_stripe(sh);
5538 				schedule();
5539 				goto again;
5540 			}
5541 		}
5542 		set_bit(STRIPE_DISCARD, &sh->state);
5543 		finish_wait(&conf->wait_for_overlap, &w);
5544 		sh->overwrite_disks = 0;
5545 		for (d = 0; d < conf->raid_disks; d++) {
5546 			if (d == sh->pd_idx || d == sh->qd_idx)
5547 				continue;
5548 			sh->dev[d].towrite = bi;
5549 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5550 			bio_inc_remaining(bi);
5551 			md_write_inc(mddev, bi);
5552 			sh->overwrite_disks++;
5553 		}
5554 		spin_unlock_irq(&sh->stripe_lock);
5555 		if (conf->mddev->bitmap) {
5556 			for (d = 0;
5557 			     d < conf->raid_disks - conf->max_degraded;
5558 			     d++)
5559 				md_bitmap_startwrite(mddev->bitmap,
5560 						     sh->sector,
5561 						     STRIPE_SECTORS,
5562 						     0);
5563 			sh->bm_seq = conf->seq_flush + 1;
5564 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5565 		}
5566 
5567 		set_bit(STRIPE_HANDLE, &sh->state);
5568 		clear_bit(STRIPE_DELAYED, &sh->state);
5569 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5570 			atomic_inc(&conf->preread_active_stripes);
5571 		release_stripe_plug(mddev, sh);
5572 	}
5573 
5574 	bio_endio(bi);
5575 }
5576 
5577 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5578 {
5579 	struct r5conf *conf = mddev->private;
5580 	int dd_idx;
5581 	sector_t new_sector;
5582 	sector_t logical_sector, last_sector;
5583 	struct stripe_head *sh;
5584 	const int rw = bio_data_dir(bi);
5585 	DEFINE_WAIT(w);
5586 	bool do_prepare;
5587 	bool do_flush = false;
5588 
5589 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5590 		int ret = log_handle_flush_request(conf, bi);
5591 
5592 		if (ret == 0)
5593 			return true;
5594 		if (ret == -ENODEV) {
5595 			md_flush_request(mddev, bi);
5596 			return true;
5597 		}
5598 		/* ret == -EAGAIN, fallback */
5599 		/*
5600 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5601 		 * we need to flush journal device
5602 		 */
5603 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5604 	}
5605 
5606 	if (!md_write_start(mddev, bi))
5607 		return false;
5608 	/*
5609 	 * If array is degraded, better not do chunk aligned read because
5610 	 * later we might have to read it again in order to reconstruct
5611 	 * data on failed drives.
5612 	 */
5613 	if (rw == READ && mddev->degraded == 0 &&
5614 	    mddev->reshape_position == MaxSector) {
5615 		bi = chunk_aligned_read(mddev, bi);
5616 		if (!bi)
5617 			return true;
5618 	}
5619 
5620 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5621 		make_discard_request(mddev, bi);
5622 		md_write_end(mddev);
5623 		return true;
5624 	}
5625 
5626 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5627 	last_sector = bio_end_sector(bi);
5628 	bi->bi_next = NULL;
5629 
5630 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5631 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5632 		int previous;
5633 		int seq;
5634 
5635 		do_prepare = false;
5636 	retry:
5637 		seq = read_seqcount_begin(&conf->gen_lock);
5638 		previous = 0;
5639 		if (do_prepare)
5640 			prepare_to_wait(&conf->wait_for_overlap, &w,
5641 				TASK_UNINTERRUPTIBLE);
5642 		if (unlikely(conf->reshape_progress != MaxSector)) {
5643 			/* spinlock is needed as reshape_progress may be
5644 			 * 64bit on a 32bit platform, and so it might be
5645 			 * possible to see a half-updated value
5646 			 * Of course reshape_progress could change after
5647 			 * the lock is dropped, so once we get a reference
5648 			 * to the stripe that we think it is, we will have
5649 			 * to check again.
5650 			 */
5651 			spin_lock_irq(&conf->device_lock);
5652 			if (mddev->reshape_backwards
5653 			    ? logical_sector < conf->reshape_progress
5654 			    : logical_sector >= conf->reshape_progress) {
5655 				previous = 1;
5656 			} else {
5657 				if (mddev->reshape_backwards
5658 				    ? logical_sector < conf->reshape_safe
5659 				    : logical_sector >= conf->reshape_safe) {
5660 					spin_unlock_irq(&conf->device_lock);
5661 					schedule();
5662 					do_prepare = true;
5663 					goto retry;
5664 				}
5665 			}
5666 			spin_unlock_irq(&conf->device_lock);
5667 		}
5668 
5669 		new_sector = raid5_compute_sector(conf, logical_sector,
5670 						  previous,
5671 						  &dd_idx, NULL);
5672 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5673 			(unsigned long long)new_sector,
5674 			(unsigned long long)logical_sector);
5675 
5676 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5677 				       (bi->bi_opf & REQ_RAHEAD), 0);
5678 		if (sh) {
5679 			if (unlikely(previous)) {
5680 				/* expansion might have moved on while waiting for a
5681 				 * stripe, so we must do the range check again.
5682 				 * Expansion could still move past after this
5683 				 * test, but as we are holding a reference to
5684 				 * 'sh', we know that if that happens,
5685 				 *  STRIPE_EXPANDING will get set and the expansion
5686 				 * won't proceed until we finish with the stripe.
5687 				 */
5688 				int must_retry = 0;
5689 				spin_lock_irq(&conf->device_lock);
5690 				if (mddev->reshape_backwards
5691 				    ? logical_sector >= conf->reshape_progress
5692 				    : logical_sector < conf->reshape_progress)
5693 					/* mismatch, need to try again */
5694 					must_retry = 1;
5695 				spin_unlock_irq(&conf->device_lock);
5696 				if (must_retry) {
5697 					raid5_release_stripe(sh);
5698 					schedule();
5699 					do_prepare = true;
5700 					goto retry;
5701 				}
5702 			}
5703 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5704 				/* Might have got the wrong stripe_head
5705 				 * by accident
5706 				 */
5707 				raid5_release_stripe(sh);
5708 				goto retry;
5709 			}
5710 
5711 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5712 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5713 				/* Stripe is busy expanding or
5714 				 * add failed due to overlap.  Flush everything
5715 				 * and wait a while
5716 				 */
5717 				md_wakeup_thread(mddev->thread);
5718 				raid5_release_stripe(sh);
5719 				schedule();
5720 				do_prepare = true;
5721 				goto retry;
5722 			}
5723 			if (do_flush) {
5724 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5725 				/* we only need flush for one stripe */
5726 				do_flush = false;
5727 			}
5728 
5729 			if (!sh->batch_head)
5730 				set_bit(STRIPE_HANDLE, &sh->state);
5731 			clear_bit(STRIPE_DELAYED, &sh->state);
5732 			if ((!sh->batch_head || sh == sh->batch_head) &&
5733 			    (bi->bi_opf & REQ_SYNC) &&
5734 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5735 				atomic_inc(&conf->preread_active_stripes);
5736 			release_stripe_plug(mddev, sh);
5737 		} else {
5738 			/* cannot get stripe for read-ahead, just give-up */
5739 			bi->bi_status = BLK_STS_IOERR;
5740 			break;
5741 		}
5742 	}
5743 	finish_wait(&conf->wait_for_overlap, &w);
5744 
5745 	if (rw == WRITE)
5746 		md_write_end(mddev);
5747 	bio_endio(bi);
5748 	return true;
5749 }
5750 
5751 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5752 
5753 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5754 {
5755 	/* reshaping is quite different to recovery/resync so it is
5756 	 * handled quite separately ... here.
5757 	 *
5758 	 * On each call to sync_request, we gather one chunk worth of
5759 	 * destination stripes and flag them as expanding.
5760 	 * Then we find all the source stripes and request reads.
5761 	 * As the reads complete, handle_stripe will copy the data
5762 	 * into the destination stripe and release that stripe.
5763 	 */
5764 	struct r5conf *conf = mddev->private;
5765 	struct stripe_head *sh;
5766 	struct md_rdev *rdev;
5767 	sector_t first_sector, last_sector;
5768 	int raid_disks = conf->previous_raid_disks;
5769 	int data_disks = raid_disks - conf->max_degraded;
5770 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5771 	int i;
5772 	int dd_idx;
5773 	sector_t writepos, readpos, safepos;
5774 	sector_t stripe_addr;
5775 	int reshape_sectors;
5776 	struct list_head stripes;
5777 	sector_t retn;
5778 
5779 	if (sector_nr == 0) {
5780 		/* If restarting in the middle, skip the initial sectors */
5781 		if (mddev->reshape_backwards &&
5782 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5783 			sector_nr = raid5_size(mddev, 0, 0)
5784 				- conf->reshape_progress;
5785 		} else if (mddev->reshape_backwards &&
5786 			   conf->reshape_progress == MaxSector) {
5787 			/* shouldn't happen, but just in case, finish up.*/
5788 			sector_nr = MaxSector;
5789 		} else if (!mddev->reshape_backwards &&
5790 			   conf->reshape_progress > 0)
5791 			sector_nr = conf->reshape_progress;
5792 		sector_div(sector_nr, new_data_disks);
5793 		if (sector_nr) {
5794 			mddev->curr_resync_completed = sector_nr;
5795 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5796 			*skipped = 1;
5797 			retn = sector_nr;
5798 			goto finish;
5799 		}
5800 	}
5801 
5802 	/* We need to process a full chunk at a time.
5803 	 * If old and new chunk sizes differ, we need to process the
5804 	 * largest of these
5805 	 */
5806 
5807 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5808 
5809 	/* We update the metadata at least every 10 seconds, or when
5810 	 * the data about to be copied would over-write the source of
5811 	 * the data at the front of the range.  i.e. one new_stripe
5812 	 * along from reshape_progress new_maps to after where
5813 	 * reshape_safe old_maps to
5814 	 */
5815 	writepos = conf->reshape_progress;
5816 	sector_div(writepos, new_data_disks);
5817 	readpos = conf->reshape_progress;
5818 	sector_div(readpos, data_disks);
5819 	safepos = conf->reshape_safe;
5820 	sector_div(safepos, data_disks);
5821 	if (mddev->reshape_backwards) {
5822 		BUG_ON(writepos < reshape_sectors);
5823 		writepos -= reshape_sectors;
5824 		readpos += reshape_sectors;
5825 		safepos += reshape_sectors;
5826 	} else {
5827 		writepos += reshape_sectors;
5828 		/* readpos and safepos are worst-case calculations.
5829 		 * A negative number is overly pessimistic, and causes
5830 		 * obvious problems for unsigned storage.  So clip to 0.
5831 		 */
5832 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5833 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5834 	}
5835 
5836 	/* Having calculated the 'writepos' possibly use it
5837 	 * to set 'stripe_addr' which is where we will write to.
5838 	 */
5839 	if (mddev->reshape_backwards) {
5840 		BUG_ON(conf->reshape_progress == 0);
5841 		stripe_addr = writepos;
5842 		BUG_ON((mddev->dev_sectors &
5843 			~((sector_t)reshape_sectors - 1))
5844 		       - reshape_sectors - stripe_addr
5845 		       != sector_nr);
5846 	} else {
5847 		BUG_ON(writepos != sector_nr + reshape_sectors);
5848 		stripe_addr = sector_nr;
5849 	}
5850 
5851 	/* 'writepos' is the most advanced device address we might write.
5852 	 * 'readpos' is the least advanced device address we might read.
5853 	 * 'safepos' is the least address recorded in the metadata as having
5854 	 *     been reshaped.
5855 	 * If there is a min_offset_diff, these are adjusted either by
5856 	 * increasing the safepos/readpos if diff is negative, or
5857 	 * increasing writepos if diff is positive.
5858 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5859 	 * ensure safety in the face of a crash - that must be done by userspace
5860 	 * making a backup of the data.  So in that case there is no particular
5861 	 * rush to update metadata.
5862 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5863 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5864 	 * we can be safe in the event of a crash.
5865 	 * So we insist on updating metadata if safepos is behind writepos and
5866 	 * readpos is beyond writepos.
5867 	 * In any case, update the metadata every 10 seconds.
5868 	 * Maybe that number should be configurable, but I'm not sure it is
5869 	 * worth it.... maybe it could be a multiple of safemode_delay???
5870 	 */
5871 	if (conf->min_offset_diff < 0) {
5872 		safepos += -conf->min_offset_diff;
5873 		readpos += -conf->min_offset_diff;
5874 	} else
5875 		writepos += conf->min_offset_diff;
5876 
5877 	if ((mddev->reshape_backwards
5878 	     ? (safepos > writepos && readpos < writepos)
5879 	     : (safepos < writepos && readpos > writepos)) ||
5880 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5881 		/* Cannot proceed until we've updated the superblock... */
5882 		wait_event(conf->wait_for_overlap,
5883 			   atomic_read(&conf->reshape_stripes)==0
5884 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5885 		if (atomic_read(&conf->reshape_stripes) != 0)
5886 			return 0;
5887 		mddev->reshape_position = conf->reshape_progress;
5888 		mddev->curr_resync_completed = sector_nr;
5889 		if (!mddev->reshape_backwards)
5890 			/* Can update recovery_offset */
5891 			rdev_for_each(rdev, mddev)
5892 				if (rdev->raid_disk >= 0 &&
5893 				    !test_bit(Journal, &rdev->flags) &&
5894 				    !test_bit(In_sync, &rdev->flags) &&
5895 				    rdev->recovery_offset < sector_nr)
5896 					rdev->recovery_offset = sector_nr;
5897 
5898 		conf->reshape_checkpoint = jiffies;
5899 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5900 		md_wakeup_thread(mddev->thread);
5901 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5902 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5903 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5904 			return 0;
5905 		spin_lock_irq(&conf->device_lock);
5906 		conf->reshape_safe = mddev->reshape_position;
5907 		spin_unlock_irq(&conf->device_lock);
5908 		wake_up(&conf->wait_for_overlap);
5909 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5910 	}
5911 
5912 	INIT_LIST_HEAD(&stripes);
5913 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5914 		int j;
5915 		int skipped_disk = 0;
5916 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5917 		set_bit(STRIPE_EXPANDING, &sh->state);
5918 		atomic_inc(&conf->reshape_stripes);
5919 		/* If any of this stripe is beyond the end of the old
5920 		 * array, then we need to zero those blocks
5921 		 */
5922 		for (j=sh->disks; j--;) {
5923 			sector_t s;
5924 			if (j == sh->pd_idx)
5925 				continue;
5926 			if (conf->level == 6 &&
5927 			    j == sh->qd_idx)
5928 				continue;
5929 			s = raid5_compute_blocknr(sh, j, 0);
5930 			if (s < raid5_size(mddev, 0, 0)) {
5931 				skipped_disk = 1;
5932 				continue;
5933 			}
5934 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5935 			set_bit(R5_Expanded, &sh->dev[j].flags);
5936 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5937 		}
5938 		if (!skipped_disk) {
5939 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5940 			set_bit(STRIPE_HANDLE, &sh->state);
5941 		}
5942 		list_add(&sh->lru, &stripes);
5943 	}
5944 	spin_lock_irq(&conf->device_lock);
5945 	if (mddev->reshape_backwards)
5946 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5947 	else
5948 		conf->reshape_progress += reshape_sectors * new_data_disks;
5949 	spin_unlock_irq(&conf->device_lock);
5950 	/* Ok, those stripe are ready. We can start scheduling
5951 	 * reads on the source stripes.
5952 	 * The source stripes are determined by mapping the first and last
5953 	 * block on the destination stripes.
5954 	 */
5955 	first_sector =
5956 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5957 				     1, &dd_idx, NULL);
5958 	last_sector =
5959 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5960 					    * new_data_disks - 1),
5961 				     1, &dd_idx, NULL);
5962 	if (last_sector >= mddev->dev_sectors)
5963 		last_sector = mddev->dev_sectors - 1;
5964 	while (first_sector <= last_sector) {
5965 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5966 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5967 		set_bit(STRIPE_HANDLE, &sh->state);
5968 		raid5_release_stripe(sh);
5969 		first_sector += STRIPE_SECTORS;
5970 	}
5971 	/* Now that the sources are clearly marked, we can release
5972 	 * the destination stripes
5973 	 */
5974 	while (!list_empty(&stripes)) {
5975 		sh = list_entry(stripes.next, struct stripe_head, lru);
5976 		list_del_init(&sh->lru);
5977 		raid5_release_stripe(sh);
5978 	}
5979 	/* If this takes us to the resync_max point where we have to pause,
5980 	 * then we need to write out the superblock.
5981 	 */
5982 	sector_nr += reshape_sectors;
5983 	retn = reshape_sectors;
5984 finish:
5985 	if (mddev->curr_resync_completed > mddev->resync_max ||
5986 	    (sector_nr - mddev->curr_resync_completed) * 2
5987 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5988 		/* Cannot proceed until we've updated the superblock... */
5989 		wait_event(conf->wait_for_overlap,
5990 			   atomic_read(&conf->reshape_stripes) == 0
5991 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5992 		if (atomic_read(&conf->reshape_stripes) != 0)
5993 			goto ret;
5994 		mddev->reshape_position = conf->reshape_progress;
5995 		mddev->curr_resync_completed = sector_nr;
5996 		if (!mddev->reshape_backwards)
5997 			/* Can update recovery_offset */
5998 			rdev_for_each(rdev, mddev)
5999 				if (rdev->raid_disk >= 0 &&
6000 				    !test_bit(Journal, &rdev->flags) &&
6001 				    !test_bit(In_sync, &rdev->flags) &&
6002 				    rdev->recovery_offset < sector_nr)
6003 					rdev->recovery_offset = sector_nr;
6004 		conf->reshape_checkpoint = jiffies;
6005 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6006 		md_wakeup_thread(mddev->thread);
6007 		wait_event(mddev->sb_wait,
6008 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6009 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6010 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6011 			goto ret;
6012 		spin_lock_irq(&conf->device_lock);
6013 		conf->reshape_safe = mddev->reshape_position;
6014 		spin_unlock_irq(&conf->device_lock);
6015 		wake_up(&conf->wait_for_overlap);
6016 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6017 	}
6018 ret:
6019 	return retn;
6020 }
6021 
6022 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6023 					  int *skipped)
6024 {
6025 	struct r5conf *conf = mddev->private;
6026 	struct stripe_head *sh;
6027 	sector_t max_sector = mddev->dev_sectors;
6028 	sector_t sync_blocks;
6029 	int still_degraded = 0;
6030 	int i;
6031 
6032 	if (sector_nr >= max_sector) {
6033 		/* just being told to finish up .. nothing much to do */
6034 
6035 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6036 			end_reshape(conf);
6037 			return 0;
6038 		}
6039 
6040 		if (mddev->curr_resync < max_sector) /* aborted */
6041 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6042 					   &sync_blocks, 1);
6043 		else /* completed sync */
6044 			conf->fullsync = 0;
6045 		md_bitmap_close_sync(mddev->bitmap);
6046 
6047 		return 0;
6048 	}
6049 
6050 	/* Allow raid5_quiesce to complete */
6051 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6052 
6053 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6054 		return reshape_request(mddev, sector_nr, skipped);
6055 
6056 	/* No need to check resync_max as we never do more than one
6057 	 * stripe, and as resync_max will always be on a chunk boundary,
6058 	 * if the check in md_do_sync didn't fire, there is no chance
6059 	 * of overstepping resync_max here
6060 	 */
6061 
6062 	/* if there is too many failed drives and we are trying
6063 	 * to resync, then assert that we are finished, because there is
6064 	 * nothing we can do.
6065 	 */
6066 	if (mddev->degraded >= conf->max_degraded &&
6067 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6068 		sector_t rv = mddev->dev_sectors - sector_nr;
6069 		*skipped = 1;
6070 		return rv;
6071 	}
6072 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6073 	    !conf->fullsync &&
6074 	    !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6075 	    sync_blocks >= STRIPE_SECTORS) {
6076 		/* we can skip this block, and probably more */
6077 		sync_blocks /= STRIPE_SECTORS;
6078 		*skipped = 1;
6079 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6080 	}
6081 
6082 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6083 
6084 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6085 	if (sh == NULL) {
6086 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6087 		/* make sure we don't swamp the stripe cache if someone else
6088 		 * is trying to get access
6089 		 */
6090 		schedule_timeout_uninterruptible(1);
6091 	}
6092 	/* Need to check if array will still be degraded after recovery/resync
6093 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6094 	 * one drive while leaving another faulty drive in array.
6095 	 */
6096 	rcu_read_lock();
6097 	for (i = 0; i < conf->raid_disks; i++) {
6098 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6099 
6100 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6101 			still_degraded = 1;
6102 	}
6103 	rcu_read_unlock();
6104 
6105 	md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6106 
6107 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6108 	set_bit(STRIPE_HANDLE, &sh->state);
6109 
6110 	raid5_release_stripe(sh);
6111 
6112 	return STRIPE_SECTORS;
6113 }
6114 
6115 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6116 			       unsigned int offset)
6117 {
6118 	/* We may not be able to submit a whole bio at once as there
6119 	 * may not be enough stripe_heads available.
6120 	 * We cannot pre-allocate enough stripe_heads as we may need
6121 	 * more than exist in the cache (if we allow ever large chunks).
6122 	 * So we do one stripe head at a time and record in
6123 	 * ->bi_hw_segments how many have been done.
6124 	 *
6125 	 * We *know* that this entire raid_bio is in one chunk, so
6126 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6127 	 */
6128 	struct stripe_head *sh;
6129 	int dd_idx;
6130 	sector_t sector, logical_sector, last_sector;
6131 	int scnt = 0;
6132 	int handled = 0;
6133 
6134 	logical_sector = raid_bio->bi_iter.bi_sector &
6135 		~((sector_t)STRIPE_SECTORS-1);
6136 	sector = raid5_compute_sector(conf, logical_sector,
6137 				      0, &dd_idx, NULL);
6138 	last_sector = bio_end_sector(raid_bio);
6139 
6140 	for (; logical_sector < last_sector;
6141 	     logical_sector += STRIPE_SECTORS,
6142 		     sector += STRIPE_SECTORS,
6143 		     scnt++) {
6144 
6145 		if (scnt < offset)
6146 			/* already done this stripe */
6147 			continue;
6148 
6149 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6150 
6151 		if (!sh) {
6152 			/* failed to get a stripe - must wait */
6153 			conf->retry_read_aligned = raid_bio;
6154 			conf->retry_read_offset = scnt;
6155 			return handled;
6156 		}
6157 
6158 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6159 			raid5_release_stripe(sh);
6160 			conf->retry_read_aligned = raid_bio;
6161 			conf->retry_read_offset = scnt;
6162 			return handled;
6163 		}
6164 
6165 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6166 		handle_stripe(sh);
6167 		raid5_release_stripe(sh);
6168 		handled++;
6169 	}
6170 
6171 	bio_endio(raid_bio);
6172 
6173 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6174 		wake_up(&conf->wait_for_quiescent);
6175 	return handled;
6176 }
6177 
6178 static int handle_active_stripes(struct r5conf *conf, int group,
6179 				 struct r5worker *worker,
6180 				 struct list_head *temp_inactive_list)
6181 		__releases(&conf->device_lock)
6182 		__acquires(&conf->device_lock)
6183 {
6184 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6185 	int i, batch_size = 0, hash;
6186 	bool release_inactive = false;
6187 
6188 	while (batch_size < MAX_STRIPE_BATCH &&
6189 			(sh = __get_priority_stripe(conf, group)) != NULL)
6190 		batch[batch_size++] = sh;
6191 
6192 	if (batch_size == 0) {
6193 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6194 			if (!list_empty(temp_inactive_list + i))
6195 				break;
6196 		if (i == NR_STRIPE_HASH_LOCKS) {
6197 			spin_unlock_irq(&conf->device_lock);
6198 			log_flush_stripe_to_raid(conf);
6199 			spin_lock_irq(&conf->device_lock);
6200 			return batch_size;
6201 		}
6202 		release_inactive = true;
6203 	}
6204 	spin_unlock_irq(&conf->device_lock);
6205 
6206 	release_inactive_stripe_list(conf, temp_inactive_list,
6207 				     NR_STRIPE_HASH_LOCKS);
6208 
6209 	r5l_flush_stripe_to_raid(conf->log);
6210 	if (release_inactive) {
6211 		spin_lock_irq(&conf->device_lock);
6212 		return 0;
6213 	}
6214 
6215 	for (i = 0; i < batch_size; i++)
6216 		handle_stripe(batch[i]);
6217 	log_write_stripe_run(conf);
6218 
6219 	cond_resched();
6220 
6221 	spin_lock_irq(&conf->device_lock);
6222 	for (i = 0; i < batch_size; i++) {
6223 		hash = batch[i]->hash_lock_index;
6224 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6225 	}
6226 	return batch_size;
6227 }
6228 
6229 static void raid5_do_work(struct work_struct *work)
6230 {
6231 	struct r5worker *worker = container_of(work, struct r5worker, work);
6232 	struct r5worker_group *group = worker->group;
6233 	struct r5conf *conf = group->conf;
6234 	struct mddev *mddev = conf->mddev;
6235 	int group_id = group - conf->worker_groups;
6236 	int handled;
6237 	struct blk_plug plug;
6238 
6239 	pr_debug("+++ raid5worker active\n");
6240 
6241 	blk_start_plug(&plug);
6242 	handled = 0;
6243 	spin_lock_irq(&conf->device_lock);
6244 	while (1) {
6245 		int batch_size, released;
6246 
6247 		released = release_stripe_list(conf, worker->temp_inactive_list);
6248 
6249 		batch_size = handle_active_stripes(conf, group_id, worker,
6250 						   worker->temp_inactive_list);
6251 		worker->working = false;
6252 		if (!batch_size && !released)
6253 			break;
6254 		handled += batch_size;
6255 		wait_event_lock_irq(mddev->sb_wait,
6256 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6257 			conf->device_lock);
6258 	}
6259 	pr_debug("%d stripes handled\n", handled);
6260 
6261 	spin_unlock_irq(&conf->device_lock);
6262 
6263 	flush_deferred_bios(conf);
6264 
6265 	r5l_flush_stripe_to_raid(conf->log);
6266 
6267 	async_tx_issue_pending_all();
6268 	blk_finish_plug(&plug);
6269 
6270 	pr_debug("--- raid5worker inactive\n");
6271 }
6272 
6273 /*
6274  * This is our raid5 kernel thread.
6275  *
6276  * We scan the hash table for stripes which can be handled now.
6277  * During the scan, completed stripes are saved for us by the interrupt
6278  * handler, so that they will not have to wait for our next wakeup.
6279  */
6280 static void raid5d(struct md_thread *thread)
6281 {
6282 	struct mddev *mddev = thread->mddev;
6283 	struct r5conf *conf = mddev->private;
6284 	int handled;
6285 	struct blk_plug plug;
6286 
6287 	pr_debug("+++ raid5d active\n");
6288 
6289 	md_check_recovery(mddev);
6290 
6291 	blk_start_plug(&plug);
6292 	handled = 0;
6293 	spin_lock_irq(&conf->device_lock);
6294 	while (1) {
6295 		struct bio *bio;
6296 		int batch_size, released;
6297 		unsigned int offset;
6298 
6299 		released = release_stripe_list(conf, conf->temp_inactive_list);
6300 		if (released)
6301 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6302 
6303 		if (
6304 		    !list_empty(&conf->bitmap_list)) {
6305 			/* Now is a good time to flush some bitmap updates */
6306 			conf->seq_flush++;
6307 			spin_unlock_irq(&conf->device_lock);
6308 			md_bitmap_unplug(mddev->bitmap);
6309 			spin_lock_irq(&conf->device_lock);
6310 			conf->seq_write = conf->seq_flush;
6311 			activate_bit_delay(conf, conf->temp_inactive_list);
6312 		}
6313 		raid5_activate_delayed(conf);
6314 
6315 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6316 			int ok;
6317 			spin_unlock_irq(&conf->device_lock);
6318 			ok = retry_aligned_read(conf, bio, offset);
6319 			spin_lock_irq(&conf->device_lock);
6320 			if (!ok)
6321 				break;
6322 			handled++;
6323 		}
6324 
6325 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6326 						   conf->temp_inactive_list);
6327 		if (!batch_size && !released)
6328 			break;
6329 		handled += batch_size;
6330 
6331 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6332 			spin_unlock_irq(&conf->device_lock);
6333 			md_check_recovery(mddev);
6334 			spin_lock_irq(&conf->device_lock);
6335 		}
6336 	}
6337 	pr_debug("%d stripes handled\n", handled);
6338 
6339 	spin_unlock_irq(&conf->device_lock);
6340 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6341 	    mutex_trylock(&conf->cache_size_mutex)) {
6342 		grow_one_stripe(conf, __GFP_NOWARN);
6343 		/* Set flag even if allocation failed.  This helps
6344 		 * slow down allocation requests when mem is short
6345 		 */
6346 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6347 		mutex_unlock(&conf->cache_size_mutex);
6348 	}
6349 
6350 	flush_deferred_bios(conf);
6351 
6352 	r5l_flush_stripe_to_raid(conf->log);
6353 
6354 	async_tx_issue_pending_all();
6355 	blk_finish_plug(&plug);
6356 
6357 	pr_debug("--- raid5d inactive\n");
6358 }
6359 
6360 static ssize_t
6361 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6362 {
6363 	struct r5conf *conf;
6364 	int ret = 0;
6365 	spin_lock(&mddev->lock);
6366 	conf = mddev->private;
6367 	if (conf)
6368 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6369 	spin_unlock(&mddev->lock);
6370 	return ret;
6371 }
6372 
6373 int
6374 raid5_set_cache_size(struct mddev *mddev, int size)
6375 {
6376 	int result = 0;
6377 	struct r5conf *conf = mddev->private;
6378 
6379 	if (size <= 16 || size > 32768)
6380 		return -EINVAL;
6381 
6382 	conf->min_nr_stripes = size;
6383 	mutex_lock(&conf->cache_size_mutex);
6384 	while (size < conf->max_nr_stripes &&
6385 	       drop_one_stripe(conf))
6386 		;
6387 	mutex_unlock(&conf->cache_size_mutex);
6388 
6389 	md_allow_write(mddev);
6390 
6391 	mutex_lock(&conf->cache_size_mutex);
6392 	while (size > conf->max_nr_stripes)
6393 		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6394 			conf->min_nr_stripes = conf->max_nr_stripes;
6395 			result = -ENOMEM;
6396 			break;
6397 		}
6398 	mutex_unlock(&conf->cache_size_mutex);
6399 
6400 	return result;
6401 }
6402 EXPORT_SYMBOL(raid5_set_cache_size);
6403 
6404 static ssize_t
6405 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6406 {
6407 	struct r5conf *conf;
6408 	unsigned long new;
6409 	int err;
6410 
6411 	if (len >= PAGE_SIZE)
6412 		return -EINVAL;
6413 	if (kstrtoul(page, 10, &new))
6414 		return -EINVAL;
6415 	err = mddev_lock(mddev);
6416 	if (err)
6417 		return err;
6418 	conf = mddev->private;
6419 	if (!conf)
6420 		err = -ENODEV;
6421 	else
6422 		err = raid5_set_cache_size(mddev, new);
6423 	mddev_unlock(mddev);
6424 
6425 	return err ?: len;
6426 }
6427 
6428 static struct md_sysfs_entry
6429 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6430 				raid5_show_stripe_cache_size,
6431 				raid5_store_stripe_cache_size);
6432 
6433 static ssize_t
6434 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6435 {
6436 	struct r5conf *conf = mddev->private;
6437 	if (conf)
6438 		return sprintf(page, "%d\n", conf->rmw_level);
6439 	else
6440 		return 0;
6441 }
6442 
6443 static ssize_t
6444 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6445 {
6446 	struct r5conf *conf = mddev->private;
6447 	unsigned long new;
6448 
6449 	if (!conf)
6450 		return -ENODEV;
6451 
6452 	if (len >= PAGE_SIZE)
6453 		return -EINVAL;
6454 
6455 	if (kstrtoul(page, 10, &new))
6456 		return -EINVAL;
6457 
6458 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6459 		return -EINVAL;
6460 
6461 	if (new != PARITY_DISABLE_RMW &&
6462 	    new != PARITY_ENABLE_RMW &&
6463 	    new != PARITY_PREFER_RMW)
6464 		return -EINVAL;
6465 
6466 	conf->rmw_level = new;
6467 	return len;
6468 }
6469 
6470 static struct md_sysfs_entry
6471 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6472 			 raid5_show_rmw_level,
6473 			 raid5_store_rmw_level);
6474 
6475 
6476 static ssize_t
6477 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6478 {
6479 	struct r5conf *conf;
6480 	int ret = 0;
6481 	spin_lock(&mddev->lock);
6482 	conf = mddev->private;
6483 	if (conf)
6484 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6485 	spin_unlock(&mddev->lock);
6486 	return ret;
6487 }
6488 
6489 static ssize_t
6490 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6491 {
6492 	struct r5conf *conf;
6493 	unsigned long new;
6494 	int err;
6495 
6496 	if (len >= PAGE_SIZE)
6497 		return -EINVAL;
6498 	if (kstrtoul(page, 10, &new))
6499 		return -EINVAL;
6500 
6501 	err = mddev_lock(mddev);
6502 	if (err)
6503 		return err;
6504 	conf = mddev->private;
6505 	if (!conf)
6506 		err = -ENODEV;
6507 	else if (new > conf->min_nr_stripes)
6508 		err = -EINVAL;
6509 	else
6510 		conf->bypass_threshold = new;
6511 	mddev_unlock(mddev);
6512 	return err ?: len;
6513 }
6514 
6515 static struct md_sysfs_entry
6516 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6517 					S_IRUGO | S_IWUSR,
6518 					raid5_show_preread_threshold,
6519 					raid5_store_preread_threshold);
6520 
6521 static ssize_t
6522 raid5_show_skip_copy(struct mddev *mddev, char *page)
6523 {
6524 	struct r5conf *conf;
6525 	int ret = 0;
6526 	spin_lock(&mddev->lock);
6527 	conf = mddev->private;
6528 	if (conf)
6529 		ret = sprintf(page, "%d\n", conf->skip_copy);
6530 	spin_unlock(&mddev->lock);
6531 	return ret;
6532 }
6533 
6534 static ssize_t
6535 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6536 {
6537 	struct r5conf *conf;
6538 	unsigned long new;
6539 	int err;
6540 
6541 	if (len >= PAGE_SIZE)
6542 		return -EINVAL;
6543 	if (kstrtoul(page, 10, &new))
6544 		return -EINVAL;
6545 	new = !!new;
6546 
6547 	err = mddev_lock(mddev);
6548 	if (err)
6549 		return err;
6550 	conf = mddev->private;
6551 	if (!conf)
6552 		err = -ENODEV;
6553 	else if (new != conf->skip_copy) {
6554 		mddev_suspend(mddev);
6555 		conf->skip_copy = new;
6556 		if (new)
6557 			mddev->queue->backing_dev_info->capabilities |=
6558 				BDI_CAP_STABLE_WRITES;
6559 		else
6560 			mddev->queue->backing_dev_info->capabilities &=
6561 				~BDI_CAP_STABLE_WRITES;
6562 		mddev_resume(mddev);
6563 	}
6564 	mddev_unlock(mddev);
6565 	return err ?: len;
6566 }
6567 
6568 static struct md_sysfs_entry
6569 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6570 					raid5_show_skip_copy,
6571 					raid5_store_skip_copy);
6572 
6573 static ssize_t
6574 stripe_cache_active_show(struct mddev *mddev, char *page)
6575 {
6576 	struct r5conf *conf = mddev->private;
6577 	if (conf)
6578 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6579 	else
6580 		return 0;
6581 }
6582 
6583 static struct md_sysfs_entry
6584 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6585 
6586 static ssize_t
6587 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6588 {
6589 	struct r5conf *conf;
6590 	int ret = 0;
6591 	spin_lock(&mddev->lock);
6592 	conf = mddev->private;
6593 	if (conf)
6594 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6595 	spin_unlock(&mddev->lock);
6596 	return ret;
6597 }
6598 
6599 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6600 			       int *group_cnt,
6601 			       int *worker_cnt_per_group,
6602 			       struct r5worker_group **worker_groups);
6603 static ssize_t
6604 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6605 {
6606 	struct r5conf *conf;
6607 	unsigned int new;
6608 	int err;
6609 	struct r5worker_group *new_groups, *old_groups;
6610 	int group_cnt, worker_cnt_per_group;
6611 
6612 	if (len >= PAGE_SIZE)
6613 		return -EINVAL;
6614 	if (kstrtouint(page, 10, &new))
6615 		return -EINVAL;
6616 	/* 8192 should be big enough */
6617 	if (new > 8192)
6618 		return -EINVAL;
6619 
6620 	err = mddev_lock(mddev);
6621 	if (err)
6622 		return err;
6623 	conf = mddev->private;
6624 	if (!conf)
6625 		err = -ENODEV;
6626 	else if (new != conf->worker_cnt_per_group) {
6627 		mddev_suspend(mddev);
6628 
6629 		old_groups = conf->worker_groups;
6630 		if (old_groups)
6631 			flush_workqueue(raid5_wq);
6632 
6633 		err = alloc_thread_groups(conf, new,
6634 					  &group_cnt, &worker_cnt_per_group,
6635 					  &new_groups);
6636 		if (!err) {
6637 			spin_lock_irq(&conf->device_lock);
6638 			conf->group_cnt = group_cnt;
6639 			conf->worker_cnt_per_group = worker_cnt_per_group;
6640 			conf->worker_groups = new_groups;
6641 			spin_unlock_irq(&conf->device_lock);
6642 
6643 			if (old_groups)
6644 				kfree(old_groups[0].workers);
6645 			kfree(old_groups);
6646 		}
6647 		mddev_resume(mddev);
6648 	}
6649 	mddev_unlock(mddev);
6650 
6651 	return err ?: len;
6652 }
6653 
6654 static struct md_sysfs_entry
6655 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6656 				raid5_show_group_thread_cnt,
6657 				raid5_store_group_thread_cnt);
6658 
6659 static struct attribute *raid5_attrs[] =  {
6660 	&raid5_stripecache_size.attr,
6661 	&raid5_stripecache_active.attr,
6662 	&raid5_preread_bypass_threshold.attr,
6663 	&raid5_group_thread_cnt.attr,
6664 	&raid5_skip_copy.attr,
6665 	&raid5_rmw_level.attr,
6666 	&r5c_journal_mode.attr,
6667 	&ppl_write_hint.attr,
6668 	NULL,
6669 };
6670 static struct attribute_group raid5_attrs_group = {
6671 	.name = NULL,
6672 	.attrs = raid5_attrs,
6673 };
6674 
6675 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6676 			       int *group_cnt,
6677 			       int *worker_cnt_per_group,
6678 			       struct r5worker_group **worker_groups)
6679 {
6680 	int i, j, k;
6681 	ssize_t size;
6682 	struct r5worker *workers;
6683 
6684 	*worker_cnt_per_group = cnt;
6685 	if (cnt == 0) {
6686 		*group_cnt = 0;
6687 		*worker_groups = NULL;
6688 		return 0;
6689 	}
6690 	*group_cnt = num_possible_nodes();
6691 	size = sizeof(struct r5worker) * cnt;
6692 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
6693 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6694 				 GFP_NOIO);
6695 	if (!*worker_groups || !workers) {
6696 		kfree(workers);
6697 		kfree(*worker_groups);
6698 		return -ENOMEM;
6699 	}
6700 
6701 	for (i = 0; i < *group_cnt; i++) {
6702 		struct r5worker_group *group;
6703 
6704 		group = &(*worker_groups)[i];
6705 		INIT_LIST_HEAD(&group->handle_list);
6706 		INIT_LIST_HEAD(&group->loprio_list);
6707 		group->conf = conf;
6708 		group->workers = workers + i * cnt;
6709 
6710 		for (j = 0; j < cnt; j++) {
6711 			struct r5worker *worker = group->workers + j;
6712 			worker->group = group;
6713 			INIT_WORK(&worker->work, raid5_do_work);
6714 
6715 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6716 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6717 		}
6718 	}
6719 
6720 	return 0;
6721 }
6722 
6723 static void free_thread_groups(struct r5conf *conf)
6724 {
6725 	if (conf->worker_groups)
6726 		kfree(conf->worker_groups[0].workers);
6727 	kfree(conf->worker_groups);
6728 	conf->worker_groups = NULL;
6729 }
6730 
6731 static sector_t
6732 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6733 {
6734 	struct r5conf *conf = mddev->private;
6735 
6736 	if (!sectors)
6737 		sectors = mddev->dev_sectors;
6738 	if (!raid_disks)
6739 		/* size is defined by the smallest of previous and new size */
6740 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6741 
6742 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6743 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6744 	return sectors * (raid_disks - conf->max_degraded);
6745 }
6746 
6747 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6748 {
6749 	safe_put_page(percpu->spare_page);
6750 	percpu->spare_page = NULL;
6751 	kvfree(percpu->scribble);
6752 	percpu->scribble = NULL;
6753 }
6754 
6755 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6756 {
6757 	if (conf->level == 6 && !percpu->spare_page) {
6758 		percpu->spare_page = alloc_page(GFP_KERNEL);
6759 		if (!percpu->spare_page)
6760 			return -ENOMEM;
6761 	}
6762 
6763 	if (scribble_alloc(percpu,
6764 			   max(conf->raid_disks,
6765 			       conf->previous_raid_disks),
6766 			   max(conf->chunk_sectors,
6767 			       conf->prev_chunk_sectors)
6768 			   / STRIPE_SECTORS,
6769 			   GFP_KERNEL)) {
6770 		free_scratch_buffer(conf, percpu);
6771 		return -ENOMEM;
6772 	}
6773 
6774 	return 0;
6775 }
6776 
6777 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6778 {
6779 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6780 
6781 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6782 	return 0;
6783 }
6784 
6785 static void raid5_free_percpu(struct r5conf *conf)
6786 {
6787 	if (!conf->percpu)
6788 		return;
6789 
6790 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6791 	free_percpu(conf->percpu);
6792 }
6793 
6794 static void free_conf(struct r5conf *conf)
6795 {
6796 	int i;
6797 
6798 	log_exit(conf);
6799 
6800 	unregister_shrinker(&conf->shrinker);
6801 	free_thread_groups(conf);
6802 	shrink_stripes(conf);
6803 	raid5_free_percpu(conf);
6804 	for (i = 0; i < conf->pool_size; i++)
6805 		if (conf->disks[i].extra_page)
6806 			put_page(conf->disks[i].extra_page);
6807 	kfree(conf->disks);
6808 	bioset_exit(&conf->bio_split);
6809 	kfree(conf->stripe_hashtbl);
6810 	kfree(conf->pending_data);
6811 	kfree(conf);
6812 }
6813 
6814 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6815 {
6816 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6817 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6818 
6819 	if (alloc_scratch_buffer(conf, percpu)) {
6820 		pr_warn("%s: failed memory allocation for cpu%u\n",
6821 			__func__, cpu);
6822 		return -ENOMEM;
6823 	}
6824 	return 0;
6825 }
6826 
6827 static int raid5_alloc_percpu(struct r5conf *conf)
6828 {
6829 	int err = 0;
6830 
6831 	conf->percpu = alloc_percpu(struct raid5_percpu);
6832 	if (!conf->percpu)
6833 		return -ENOMEM;
6834 
6835 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6836 	if (!err) {
6837 		conf->scribble_disks = max(conf->raid_disks,
6838 			conf->previous_raid_disks);
6839 		conf->scribble_sectors = max(conf->chunk_sectors,
6840 			conf->prev_chunk_sectors);
6841 	}
6842 	return err;
6843 }
6844 
6845 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6846 				      struct shrink_control *sc)
6847 {
6848 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6849 	unsigned long ret = SHRINK_STOP;
6850 
6851 	if (mutex_trylock(&conf->cache_size_mutex)) {
6852 		ret= 0;
6853 		while (ret < sc->nr_to_scan &&
6854 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6855 			if (drop_one_stripe(conf) == 0) {
6856 				ret = SHRINK_STOP;
6857 				break;
6858 			}
6859 			ret++;
6860 		}
6861 		mutex_unlock(&conf->cache_size_mutex);
6862 	}
6863 	return ret;
6864 }
6865 
6866 static unsigned long raid5_cache_count(struct shrinker *shrink,
6867 				       struct shrink_control *sc)
6868 {
6869 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6870 
6871 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6872 		/* unlikely, but not impossible */
6873 		return 0;
6874 	return conf->max_nr_stripes - conf->min_nr_stripes;
6875 }
6876 
6877 static struct r5conf *setup_conf(struct mddev *mddev)
6878 {
6879 	struct r5conf *conf;
6880 	int raid_disk, memory, max_disks;
6881 	struct md_rdev *rdev;
6882 	struct disk_info *disk;
6883 	char pers_name[6];
6884 	int i;
6885 	int group_cnt, worker_cnt_per_group;
6886 	struct r5worker_group *new_group;
6887 	int ret;
6888 
6889 	if (mddev->new_level != 5
6890 	    && mddev->new_level != 4
6891 	    && mddev->new_level != 6) {
6892 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6893 			mdname(mddev), mddev->new_level);
6894 		return ERR_PTR(-EIO);
6895 	}
6896 	if ((mddev->new_level == 5
6897 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6898 	    (mddev->new_level == 6
6899 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6900 		pr_warn("md/raid:%s: layout %d not supported\n",
6901 			mdname(mddev), mddev->new_layout);
6902 		return ERR_PTR(-EIO);
6903 	}
6904 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6905 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6906 			mdname(mddev), mddev->raid_disks);
6907 		return ERR_PTR(-EINVAL);
6908 	}
6909 
6910 	if (!mddev->new_chunk_sectors ||
6911 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6912 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6913 		pr_warn("md/raid:%s: invalid chunk size %d\n",
6914 			mdname(mddev), mddev->new_chunk_sectors << 9);
6915 		return ERR_PTR(-EINVAL);
6916 	}
6917 
6918 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6919 	if (conf == NULL)
6920 		goto abort;
6921 	INIT_LIST_HEAD(&conf->free_list);
6922 	INIT_LIST_HEAD(&conf->pending_list);
6923 	conf->pending_data = kcalloc(PENDING_IO_MAX,
6924 				     sizeof(struct r5pending_data),
6925 				     GFP_KERNEL);
6926 	if (!conf->pending_data)
6927 		goto abort;
6928 	for (i = 0; i < PENDING_IO_MAX; i++)
6929 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
6930 	/* Don't enable multi-threading by default*/
6931 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6932 				 &new_group)) {
6933 		conf->group_cnt = group_cnt;
6934 		conf->worker_cnt_per_group = worker_cnt_per_group;
6935 		conf->worker_groups = new_group;
6936 	} else
6937 		goto abort;
6938 	spin_lock_init(&conf->device_lock);
6939 	seqcount_init(&conf->gen_lock);
6940 	mutex_init(&conf->cache_size_mutex);
6941 	init_waitqueue_head(&conf->wait_for_quiescent);
6942 	init_waitqueue_head(&conf->wait_for_stripe);
6943 	init_waitqueue_head(&conf->wait_for_overlap);
6944 	INIT_LIST_HEAD(&conf->handle_list);
6945 	INIT_LIST_HEAD(&conf->loprio_list);
6946 	INIT_LIST_HEAD(&conf->hold_list);
6947 	INIT_LIST_HEAD(&conf->delayed_list);
6948 	INIT_LIST_HEAD(&conf->bitmap_list);
6949 	init_llist_head(&conf->released_stripes);
6950 	atomic_set(&conf->active_stripes, 0);
6951 	atomic_set(&conf->preread_active_stripes, 0);
6952 	atomic_set(&conf->active_aligned_reads, 0);
6953 	spin_lock_init(&conf->pending_bios_lock);
6954 	conf->batch_bio_dispatch = true;
6955 	rdev_for_each(rdev, mddev) {
6956 		if (test_bit(Journal, &rdev->flags))
6957 			continue;
6958 		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6959 			conf->batch_bio_dispatch = false;
6960 			break;
6961 		}
6962 	}
6963 
6964 	conf->bypass_threshold = BYPASS_THRESHOLD;
6965 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6966 
6967 	conf->raid_disks = mddev->raid_disks;
6968 	if (mddev->reshape_position == MaxSector)
6969 		conf->previous_raid_disks = mddev->raid_disks;
6970 	else
6971 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6972 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6973 
6974 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6975 			      GFP_KERNEL);
6976 
6977 	if (!conf->disks)
6978 		goto abort;
6979 
6980 	for (i = 0; i < max_disks; i++) {
6981 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6982 		if (!conf->disks[i].extra_page)
6983 			goto abort;
6984 	}
6985 
6986 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6987 	if (ret)
6988 		goto abort;
6989 	conf->mddev = mddev;
6990 
6991 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6992 		goto abort;
6993 
6994 	/* We init hash_locks[0] separately to that it can be used
6995 	 * as the reference lock in the spin_lock_nest_lock() call
6996 	 * in lock_all_device_hash_locks_irq in order to convince
6997 	 * lockdep that we know what we are doing.
6998 	 */
6999 	spin_lock_init(conf->hash_locks);
7000 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7001 		spin_lock_init(conf->hash_locks + i);
7002 
7003 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7004 		INIT_LIST_HEAD(conf->inactive_list + i);
7005 
7006 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7007 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7008 
7009 	atomic_set(&conf->r5c_cached_full_stripes, 0);
7010 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7011 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7012 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7013 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7014 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7015 
7016 	conf->level = mddev->new_level;
7017 	conf->chunk_sectors = mddev->new_chunk_sectors;
7018 	if (raid5_alloc_percpu(conf) != 0)
7019 		goto abort;
7020 
7021 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7022 
7023 	rdev_for_each(rdev, mddev) {
7024 		raid_disk = rdev->raid_disk;
7025 		if (raid_disk >= max_disks
7026 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7027 			continue;
7028 		disk = conf->disks + raid_disk;
7029 
7030 		if (test_bit(Replacement, &rdev->flags)) {
7031 			if (disk->replacement)
7032 				goto abort;
7033 			disk->replacement = rdev;
7034 		} else {
7035 			if (disk->rdev)
7036 				goto abort;
7037 			disk->rdev = rdev;
7038 		}
7039 
7040 		if (test_bit(In_sync, &rdev->flags)) {
7041 			char b[BDEVNAME_SIZE];
7042 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7043 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7044 		} else if (rdev->saved_raid_disk != raid_disk)
7045 			/* Cannot rely on bitmap to complete recovery */
7046 			conf->fullsync = 1;
7047 	}
7048 
7049 	conf->level = mddev->new_level;
7050 	if (conf->level == 6) {
7051 		conf->max_degraded = 2;
7052 		if (raid6_call.xor_syndrome)
7053 			conf->rmw_level = PARITY_ENABLE_RMW;
7054 		else
7055 			conf->rmw_level = PARITY_DISABLE_RMW;
7056 	} else {
7057 		conf->max_degraded = 1;
7058 		conf->rmw_level = PARITY_ENABLE_RMW;
7059 	}
7060 	conf->algorithm = mddev->new_layout;
7061 	conf->reshape_progress = mddev->reshape_position;
7062 	if (conf->reshape_progress != MaxSector) {
7063 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7064 		conf->prev_algo = mddev->layout;
7065 	} else {
7066 		conf->prev_chunk_sectors = conf->chunk_sectors;
7067 		conf->prev_algo = conf->algorithm;
7068 	}
7069 
7070 	conf->min_nr_stripes = NR_STRIPES;
7071 	if (mddev->reshape_position != MaxSector) {
7072 		int stripes = max_t(int,
7073 			((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7074 			((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7075 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7076 		if (conf->min_nr_stripes != NR_STRIPES)
7077 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7078 				mdname(mddev), conf->min_nr_stripes);
7079 	}
7080 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7081 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7082 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7083 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7084 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7085 			mdname(mddev), memory);
7086 		goto abort;
7087 	} else
7088 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7089 	/*
7090 	 * Losing a stripe head costs more than the time to refill it,
7091 	 * it reduces the queue depth and so can hurt throughput.
7092 	 * So set it rather large, scaled by number of devices.
7093 	 */
7094 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7095 	conf->shrinker.scan_objects = raid5_cache_scan;
7096 	conf->shrinker.count_objects = raid5_cache_count;
7097 	conf->shrinker.batch = 128;
7098 	conf->shrinker.flags = 0;
7099 	if (register_shrinker(&conf->shrinker)) {
7100 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7101 			mdname(mddev));
7102 		goto abort;
7103 	}
7104 
7105 	sprintf(pers_name, "raid%d", mddev->new_level);
7106 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7107 	if (!conf->thread) {
7108 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7109 			mdname(mddev));
7110 		goto abort;
7111 	}
7112 
7113 	return conf;
7114 
7115  abort:
7116 	if (conf) {
7117 		free_conf(conf);
7118 		return ERR_PTR(-EIO);
7119 	} else
7120 		return ERR_PTR(-ENOMEM);
7121 }
7122 
7123 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7124 {
7125 	switch (algo) {
7126 	case ALGORITHM_PARITY_0:
7127 		if (raid_disk < max_degraded)
7128 			return 1;
7129 		break;
7130 	case ALGORITHM_PARITY_N:
7131 		if (raid_disk >= raid_disks - max_degraded)
7132 			return 1;
7133 		break;
7134 	case ALGORITHM_PARITY_0_6:
7135 		if (raid_disk == 0 ||
7136 		    raid_disk == raid_disks - 1)
7137 			return 1;
7138 		break;
7139 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7140 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7141 	case ALGORITHM_LEFT_SYMMETRIC_6:
7142 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7143 		if (raid_disk == raid_disks - 1)
7144 			return 1;
7145 	}
7146 	return 0;
7147 }
7148 
7149 static int raid5_run(struct mddev *mddev)
7150 {
7151 	struct r5conf *conf;
7152 	int working_disks = 0;
7153 	int dirty_parity_disks = 0;
7154 	struct md_rdev *rdev;
7155 	struct md_rdev *journal_dev = NULL;
7156 	sector_t reshape_offset = 0;
7157 	int i;
7158 	long long min_offset_diff = 0;
7159 	int first = 1;
7160 
7161 	if (mddev_init_writes_pending(mddev) < 0)
7162 		return -ENOMEM;
7163 
7164 	if (mddev->recovery_cp != MaxSector)
7165 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7166 			  mdname(mddev));
7167 
7168 	rdev_for_each(rdev, mddev) {
7169 		long long diff;
7170 
7171 		if (test_bit(Journal, &rdev->flags)) {
7172 			journal_dev = rdev;
7173 			continue;
7174 		}
7175 		if (rdev->raid_disk < 0)
7176 			continue;
7177 		diff = (rdev->new_data_offset - rdev->data_offset);
7178 		if (first) {
7179 			min_offset_diff = diff;
7180 			first = 0;
7181 		} else if (mddev->reshape_backwards &&
7182 			 diff < min_offset_diff)
7183 			min_offset_diff = diff;
7184 		else if (!mddev->reshape_backwards &&
7185 			 diff > min_offset_diff)
7186 			min_offset_diff = diff;
7187 	}
7188 
7189 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7190 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7191 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7192 			  mdname(mddev));
7193 		return -EINVAL;
7194 	}
7195 
7196 	if (mddev->reshape_position != MaxSector) {
7197 		/* Check that we can continue the reshape.
7198 		 * Difficulties arise if the stripe we would write to
7199 		 * next is at or after the stripe we would read from next.
7200 		 * For a reshape that changes the number of devices, this
7201 		 * is only possible for a very short time, and mdadm makes
7202 		 * sure that time appears to have past before assembling
7203 		 * the array.  So we fail if that time hasn't passed.
7204 		 * For a reshape that keeps the number of devices the same
7205 		 * mdadm must be monitoring the reshape can keeping the
7206 		 * critical areas read-only and backed up.  It will start
7207 		 * the array in read-only mode, so we check for that.
7208 		 */
7209 		sector_t here_new, here_old;
7210 		int old_disks;
7211 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7212 		int chunk_sectors;
7213 		int new_data_disks;
7214 
7215 		if (journal_dev) {
7216 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7217 				mdname(mddev));
7218 			return -EINVAL;
7219 		}
7220 
7221 		if (mddev->new_level != mddev->level) {
7222 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7223 				mdname(mddev));
7224 			return -EINVAL;
7225 		}
7226 		old_disks = mddev->raid_disks - mddev->delta_disks;
7227 		/* reshape_position must be on a new-stripe boundary, and one
7228 		 * further up in new geometry must map after here in old
7229 		 * geometry.
7230 		 * If the chunk sizes are different, then as we perform reshape
7231 		 * in units of the largest of the two, reshape_position needs
7232 		 * be a multiple of the largest chunk size times new data disks.
7233 		 */
7234 		here_new = mddev->reshape_position;
7235 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7236 		new_data_disks = mddev->raid_disks - max_degraded;
7237 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7238 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7239 				mdname(mddev));
7240 			return -EINVAL;
7241 		}
7242 		reshape_offset = here_new * chunk_sectors;
7243 		/* here_new is the stripe we will write to */
7244 		here_old = mddev->reshape_position;
7245 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7246 		/* here_old is the first stripe that we might need to read
7247 		 * from */
7248 		if (mddev->delta_disks == 0) {
7249 			/* We cannot be sure it is safe to start an in-place
7250 			 * reshape.  It is only safe if user-space is monitoring
7251 			 * and taking constant backups.
7252 			 * mdadm always starts a situation like this in
7253 			 * readonly mode so it can take control before
7254 			 * allowing any writes.  So just check for that.
7255 			 */
7256 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7257 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7258 				/* not really in-place - so OK */;
7259 			else if (mddev->ro == 0) {
7260 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7261 					mdname(mddev));
7262 				return -EINVAL;
7263 			}
7264 		} else if (mddev->reshape_backwards
7265 		    ? (here_new * chunk_sectors + min_offset_diff <=
7266 		       here_old * chunk_sectors)
7267 		    : (here_new * chunk_sectors >=
7268 		       here_old * chunk_sectors + (-min_offset_diff))) {
7269 			/* Reading from the same stripe as writing to - bad */
7270 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7271 				mdname(mddev));
7272 			return -EINVAL;
7273 		}
7274 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7275 		/* OK, we should be able to continue; */
7276 	} else {
7277 		BUG_ON(mddev->level != mddev->new_level);
7278 		BUG_ON(mddev->layout != mddev->new_layout);
7279 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7280 		BUG_ON(mddev->delta_disks != 0);
7281 	}
7282 
7283 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7284 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7285 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7286 			mdname(mddev));
7287 		clear_bit(MD_HAS_PPL, &mddev->flags);
7288 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7289 	}
7290 
7291 	if (mddev->private == NULL)
7292 		conf = setup_conf(mddev);
7293 	else
7294 		conf = mddev->private;
7295 
7296 	if (IS_ERR(conf))
7297 		return PTR_ERR(conf);
7298 
7299 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7300 		if (!journal_dev) {
7301 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7302 				mdname(mddev));
7303 			mddev->ro = 1;
7304 			set_disk_ro(mddev->gendisk, 1);
7305 		} else if (mddev->recovery_cp == MaxSector)
7306 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7307 	}
7308 
7309 	conf->min_offset_diff = min_offset_diff;
7310 	mddev->thread = conf->thread;
7311 	conf->thread = NULL;
7312 	mddev->private = conf;
7313 
7314 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7315 	     i++) {
7316 		rdev = conf->disks[i].rdev;
7317 		if (!rdev && conf->disks[i].replacement) {
7318 			/* The replacement is all we have yet */
7319 			rdev = conf->disks[i].replacement;
7320 			conf->disks[i].replacement = NULL;
7321 			clear_bit(Replacement, &rdev->flags);
7322 			conf->disks[i].rdev = rdev;
7323 		}
7324 		if (!rdev)
7325 			continue;
7326 		if (conf->disks[i].replacement &&
7327 		    conf->reshape_progress != MaxSector) {
7328 			/* replacements and reshape simply do not mix. */
7329 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7330 			goto abort;
7331 		}
7332 		if (test_bit(In_sync, &rdev->flags)) {
7333 			working_disks++;
7334 			continue;
7335 		}
7336 		/* This disc is not fully in-sync.  However if it
7337 		 * just stored parity (beyond the recovery_offset),
7338 		 * when we don't need to be concerned about the
7339 		 * array being dirty.
7340 		 * When reshape goes 'backwards', we never have
7341 		 * partially completed devices, so we only need
7342 		 * to worry about reshape going forwards.
7343 		 */
7344 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7345 		if (mddev->major_version == 0 &&
7346 		    mddev->minor_version > 90)
7347 			rdev->recovery_offset = reshape_offset;
7348 
7349 		if (rdev->recovery_offset < reshape_offset) {
7350 			/* We need to check old and new layout */
7351 			if (!only_parity(rdev->raid_disk,
7352 					 conf->algorithm,
7353 					 conf->raid_disks,
7354 					 conf->max_degraded))
7355 				continue;
7356 		}
7357 		if (!only_parity(rdev->raid_disk,
7358 				 conf->prev_algo,
7359 				 conf->previous_raid_disks,
7360 				 conf->max_degraded))
7361 			continue;
7362 		dirty_parity_disks++;
7363 	}
7364 
7365 	/*
7366 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7367 	 */
7368 	mddev->degraded = raid5_calc_degraded(conf);
7369 
7370 	if (has_failed(conf)) {
7371 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7372 			mdname(mddev), mddev->degraded, conf->raid_disks);
7373 		goto abort;
7374 	}
7375 
7376 	/* device size must be a multiple of chunk size */
7377 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7378 	mddev->resync_max_sectors = mddev->dev_sectors;
7379 
7380 	if (mddev->degraded > dirty_parity_disks &&
7381 	    mddev->recovery_cp != MaxSector) {
7382 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7383 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7384 				mdname(mddev));
7385 		else if (mddev->ok_start_degraded)
7386 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7387 				mdname(mddev));
7388 		else {
7389 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7390 				mdname(mddev));
7391 			goto abort;
7392 		}
7393 	}
7394 
7395 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7396 		mdname(mddev), conf->level,
7397 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7398 		mddev->new_layout);
7399 
7400 	print_raid5_conf(conf);
7401 
7402 	if (conf->reshape_progress != MaxSector) {
7403 		conf->reshape_safe = conf->reshape_progress;
7404 		atomic_set(&conf->reshape_stripes, 0);
7405 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7406 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7407 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7408 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7409 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7410 							"reshape");
7411 		if (!mddev->sync_thread)
7412 			goto abort;
7413 	}
7414 
7415 	/* Ok, everything is just fine now */
7416 	if (mddev->to_remove == &raid5_attrs_group)
7417 		mddev->to_remove = NULL;
7418 	else if (mddev->kobj.sd &&
7419 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7420 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7421 			mdname(mddev));
7422 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7423 
7424 	if (mddev->queue) {
7425 		int chunk_size;
7426 		/* read-ahead size must cover two whole stripes, which
7427 		 * is 2 * (datadisks) * chunksize where 'n' is the
7428 		 * number of raid devices
7429 		 */
7430 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7431 		int stripe = data_disks *
7432 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7433 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7434 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7435 
7436 		chunk_size = mddev->chunk_sectors << 9;
7437 		blk_queue_io_min(mddev->queue, chunk_size);
7438 		blk_queue_io_opt(mddev->queue, chunk_size *
7439 				 (conf->raid_disks - conf->max_degraded));
7440 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7441 		/*
7442 		 * We can only discard a whole stripe. It doesn't make sense to
7443 		 * discard data disk but write parity disk
7444 		 */
7445 		stripe = stripe * PAGE_SIZE;
7446 		/* Round up to power of 2, as discard handling
7447 		 * currently assumes that */
7448 		while ((stripe-1) & stripe)
7449 			stripe = (stripe | (stripe-1)) + 1;
7450 		mddev->queue->limits.discard_alignment = stripe;
7451 		mddev->queue->limits.discard_granularity = stripe;
7452 
7453 		blk_queue_max_write_same_sectors(mddev->queue, 0);
7454 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7455 
7456 		rdev_for_each(rdev, mddev) {
7457 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7458 					  rdev->data_offset << 9);
7459 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7460 					  rdev->new_data_offset << 9);
7461 		}
7462 
7463 		/*
7464 		 * zeroing is required, otherwise data
7465 		 * could be lost. Consider a scenario: discard a stripe
7466 		 * (the stripe could be inconsistent if
7467 		 * discard_zeroes_data is 0); write one disk of the
7468 		 * stripe (the stripe could be inconsistent again
7469 		 * depending on which disks are used to calculate
7470 		 * parity); the disk is broken; The stripe data of this
7471 		 * disk is lost.
7472 		 *
7473 		 * We only allow DISCARD if the sysadmin has confirmed that
7474 		 * only safe devices are in use by setting a module parameter.
7475 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7476 		 * requests, as that is required to be safe.
7477 		 */
7478 		if (devices_handle_discard_safely &&
7479 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7480 		    mddev->queue->limits.discard_granularity >= stripe)
7481 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7482 						mddev->queue);
7483 		else
7484 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7485 						mddev->queue);
7486 
7487 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7488 	}
7489 
7490 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7491 		goto abort;
7492 
7493 	return 0;
7494 abort:
7495 	md_unregister_thread(&mddev->thread);
7496 	print_raid5_conf(conf);
7497 	free_conf(conf);
7498 	mddev->private = NULL;
7499 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7500 	return -EIO;
7501 }
7502 
7503 static void raid5_free(struct mddev *mddev, void *priv)
7504 {
7505 	struct r5conf *conf = priv;
7506 
7507 	free_conf(conf);
7508 	mddev->to_remove = &raid5_attrs_group;
7509 }
7510 
7511 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7512 {
7513 	struct r5conf *conf = mddev->private;
7514 	int i;
7515 
7516 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7517 		conf->chunk_sectors / 2, mddev->layout);
7518 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7519 	rcu_read_lock();
7520 	for (i = 0; i < conf->raid_disks; i++) {
7521 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7522 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7523 	}
7524 	rcu_read_unlock();
7525 	seq_printf (seq, "]");
7526 }
7527 
7528 static void print_raid5_conf (struct r5conf *conf)
7529 {
7530 	int i;
7531 	struct disk_info *tmp;
7532 
7533 	pr_debug("RAID conf printout:\n");
7534 	if (!conf) {
7535 		pr_debug("(conf==NULL)\n");
7536 		return;
7537 	}
7538 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7539 	       conf->raid_disks,
7540 	       conf->raid_disks - conf->mddev->degraded);
7541 
7542 	for (i = 0; i < conf->raid_disks; i++) {
7543 		char b[BDEVNAME_SIZE];
7544 		tmp = conf->disks + i;
7545 		if (tmp->rdev)
7546 			pr_debug(" disk %d, o:%d, dev:%s\n",
7547 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7548 			       bdevname(tmp->rdev->bdev, b));
7549 	}
7550 }
7551 
7552 static int raid5_spare_active(struct mddev *mddev)
7553 {
7554 	int i;
7555 	struct r5conf *conf = mddev->private;
7556 	struct disk_info *tmp;
7557 	int count = 0;
7558 	unsigned long flags;
7559 
7560 	for (i = 0; i < conf->raid_disks; i++) {
7561 		tmp = conf->disks + i;
7562 		if (tmp->replacement
7563 		    && tmp->replacement->recovery_offset == MaxSector
7564 		    && !test_bit(Faulty, &tmp->replacement->flags)
7565 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7566 			/* Replacement has just become active. */
7567 			if (!tmp->rdev
7568 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7569 				count++;
7570 			if (tmp->rdev) {
7571 				/* Replaced device not technically faulty,
7572 				 * but we need to be sure it gets removed
7573 				 * and never re-added.
7574 				 */
7575 				set_bit(Faulty, &tmp->rdev->flags);
7576 				sysfs_notify_dirent_safe(
7577 					tmp->rdev->sysfs_state);
7578 			}
7579 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7580 		} else if (tmp->rdev
7581 		    && tmp->rdev->recovery_offset == MaxSector
7582 		    && !test_bit(Faulty, &tmp->rdev->flags)
7583 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7584 			count++;
7585 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7586 		}
7587 	}
7588 	spin_lock_irqsave(&conf->device_lock, flags);
7589 	mddev->degraded = raid5_calc_degraded(conf);
7590 	spin_unlock_irqrestore(&conf->device_lock, flags);
7591 	print_raid5_conf(conf);
7592 	return count;
7593 }
7594 
7595 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7596 {
7597 	struct r5conf *conf = mddev->private;
7598 	int err = 0;
7599 	int number = rdev->raid_disk;
7600 	struct md_rdev **rdevp;
7601 	struct disk_info *p = conf->disks + number;
7602 
7603 	print_raid5_conf(conf);
7604 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7605 		/*
7606 		 * we can't wait pending write here, as this is called in
7607 		 * raid5d, wait will deadlock.
7608 		 * neilb: there is no locking about new writes here,
7609 		 * so this cannot be safe.
7610 		 */
7611 		if (atomic_read(&conf->active_stripes) ||
7612 		    atomic_read(&conf->r5c_cached_full_stripes) ||
7613 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
7614 			return -EBUSY;
7615 		}
7616 		log_exit(conf);
7617 		return 0;
7618 	}
7619 	if (rdev == p->rdev)
7620 		rdevp = &p->rdev;
7621 	else if (rdev == p->replacement)
7622 		rdevp = &p->replacement;
7623 	else
7624 		return 0;
7625 
7626 	if (number >= conf->raid_disks &&
7627 	    conf->reshape_progress == MaxSector)
7628 		clear_bit(In_sync, &rdev->flags);
7629 
7630 	if (test_bit(In_sync, &rdev->flags) ||
7631 	    atomic_read(&rdev->nr_pending)) {
7632 		err = -EBUSY;
7633 		goto abort;
7634 	}
7635 	/* Only remove non-faulty devices if recovery
7636 	 * isn't possible.
7637 	 */
7638 	if (!test_bit(Faulty, &rdev->flags) &&
7639 	    mddev->recovery_disabled != conf->recovery_disabled &&
7640 	    !has_failed(conf) &&
7641 	    (!p->replacement || p->replacement == rdev) &&
7642 	    number < conf->raid_disks) {
7643 		err = -EBUSY;
7644 		goto abort;
7645 	}
7646 	*rdevp = NULL;
7647 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7648 		synchronize_rcu();
7649 		if (atomic_read(&rdev->nr_pending)) {
7650 			/* lost the race, try later */
7651 			err = -EBUSY;
7652 			*rdevp = rdev;
7653 		}
7654 	}
7655 	if (!err) {
7656 		err = log_modify(conf, rdev, false);
7657 		if (err)
7658 			goto abort;
7659 	}
7660 	if (p->replacement) {
7661 		/* We must have just cleared 'rdev' */
7662 		p->rdev = p->replacement;
7663 		clear_bit(Replacement, &p->replacement->flags);
7664 		smp_mb(); /* Make sure other CPUs may see both as identical
7665 			   * but will never see neither - if they are careful
7666 			   */
7667 		p->replacement = NULL;
7668 
7669 		if (!err)
7670 			err = log_modify(conf, p->rdev, true);
7671 	}
7672 
7673 	clear_bit(WantReplacement, &rdev->flags);
7674 abort:
7675 
7676 	print_raid5_conf(conf);
7677 	return err;
7678 }
7679 
7680 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7681 {
7682 	struct r5conf *conf = mddev->private;
7683 	int ret, err = -EEXIST;
7684 	int disk;
7685 	struct disk_info *p;
7686 	int first = 0;
7687 	int last = conf->raid_disks - 1;
7688 
7689 	if (test_bit(Journal, &rdev->flags)) {
7690 		if (conf->log)
7691 			return -EBUSY;
7692 
7693 		rdev->raid_disk = 0;
7694 		/*
7695 		 * The array is in readonly mode if journal is missing, so no
7696 		 * write requests running. We should be safe
7697 		 */
7698 		ret = log_init(conf, rdev, false);
7699 		if (ret)
7700 			return ret;
7701 
7702 		ret = r5l_start(conf->log);
7703 		if (ret)
7704 			return ret;
7705 
7706 		return 0;
7707 	}
7708 	if (mddev->recovery_disabled == conf->recovery_disabled)
7709 		return -EBUSY;
7710 
7711 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7712 		/* no point adding a device */
7713 		return -EINVAL;
7714 
7715 	if (rdev->raid_disk >= 0)
7716 		first = last = rdev->raid_disk;
7717 
7718 	/*
7719 	 * find the disk ... but prefer rdev->saved_raid_disk
7720 	 * if possible.
7721 	 */
7722 	if (rdev->saved_raid_disk >= 0 &&
7723 	    rdev->saved_raid_disk >= first &&
7724 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7725 		first = rdev->saved_raid_disk;
7726 
7727 	for (disk = first; disk <= last; disk++) {
7728 		p = conf->disks + disk;
7729 		if (p->rdev == NULL) {
7730 			clear_bit(In_sync, &rdev->flags);
7731 			rdev->raid_disk = disk;
7732 			if (rdev->saved_raid_disk != disk)
7733 				conf->fullsync = 1;
7734 			rcu_assign_pointer(p->rdev, rdev);
7735 
7736 			err = log_modify(conf, rdev, true);
7737 
7738 			goto out;
7739 		}
7740 	}
7741 	for (disk = first; disk <= last; disk++) {
7742 		p = conf->disks + disk;
7743 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7744 		    p->replacement == NULL) {
7745 			clear_bit(In_sync, &rdev->flags);
7746 			set_bit(Replacement, &rdev->flags);
7747 			rdev->raid_disk = disk;
7748 			err = 0;
7749 			conf->fullsync = 1;
7750 			rcu_assign_pointer(p->replacement, rdev);
7751 			break;
7752 		}
7753 	}
7754 out:
7755 	print_raid5_conf(conf);
7756 	return err;
7757 }
7758 
7759 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7760 {
7761 	/* no resync is happening, and there is enough space
7762 	 * on all devices, so we can resize.
7763 	 * We need to make sure resync covers any new space.
7764 	 * If the array is shrinking we should possibly wait until
7765 	 * any io in the removed space completes, but it hardly seems
7766 	 * worth it.
7767 	 */
7768 	sector_t newsize;
7769 	struct r5conf *conf = mddev->private;
7770 
7771 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
7772 		return -EINVAL;
7773 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7774 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7775 	if (mddev->external_size &&
7776 	    mddev->array_sectors > newsize)
7777 		return -EINVAL;
7778 	if (mddev->bitmap) {
7779 		int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7780 		if (ret)
7781 			return ret;
7782 	}
7783 	md_set_array_sectors(mddev, newsize);
7784 	if (sectors > mddev->dev_sectors &&
7785 	    mddev->recovery_cp > mddev->dev_sectors) {
7786 		mddev->recovery_cp = mddev->dev_sectors;
7787 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7788 	}
7789 	mddev->dev_sectors = sectors;
7790 	mddev->resync_max_sectors = sectors;
7791 	return 0;
7792 }
7793 
7794 static int check_stripe_cache(struct mddev *mddev)
7795 {
7796 	/* Can only proceed if there are plenty of stripe_heads.
7797 	 * We need a minimum of one full stripe,, and for sensible progress
7798 	 * it is best to have about 4 times that.
7799 	 * If we require 4 times, then the default 256 4K stripe_heads will
7800 	 * allow for chunk sizes up to 256K, which is probably OK.
7801 	 * If the chunk size is greater, user-space should request more
7802 	 * stripe_heads first.
7803 	 */
7804 	struct r5conf *conf = mddev->private;
7805 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7806 	    > conf->min_nr_stripes ||
7807 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7808 	    > conf->min_nr_stripes) {
7809 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7810 			mdname(mddev),
7811 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7812 			 / STRIPE_SIZE)*4);
7813 		return 0;
7814 	}
7815 	return 1;
7816 }
7817 
7818 static int check_reshape(struct mddev *mddev)
7819 {
7820 	struct r5conf *conf = mddev->private;
7821 
7822 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
7823 		return -EINVAL;
7824 	if (mddev->delta_disks == 0 &&
7825 	    mddev->new_layout == mddev->layout &&
7826 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7827 		return 0; /* nothing to do */
7828 	if (has_failed(conf))
7829 		return -EINVAL;
7830 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7831 		/* We might be able to shrink, but the devices must
7832 		 * be made bigger first.
7833 		 * For raid6, 4 is the minimum size.
7834 		 * Otherwise 2 is the minimum
7835 		 */
7836 		int min = 2;
7837 		if (mddev->level == 6)
7838 			min = 4;
7839 		if (mddev->raid_disks + mddev->delta_disks < min)
7840 			return -EINVAL;
7841 	}
7842 
7843 	if (!check_stripe_cache(mddev))
7844 		return -ENOSPC;
7845 
7846 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7847 	    mddev->delta_disks > 0)
7848 		if (resize_chunks(conf,
7849 				  conf->previous_raid_disks
7850 				  + max(0, mddev->delta_disks),
7851 				  max(mddev->new_chunk_sectors,
7852 				      mddev->chunk_sectors)
7853 			    ) < 0)
7854 			return -ENOMEM;
7855 
7856 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7857 		return 0; /* never bother to shrink */
7858 	return resize_stripes(conf, (conf->previous_raid_disks
7859 				     + mddev->delta_disks));
7860 }
7861 
7862 static int raid5_start_reshape(struct mddev *mddev)
7863 {
7864 	struct r5conf *conf = mddev->private;
7865 	struct md_rdev *rdev;
7866 	int spares = 0;
7867 	unsigned long flags;
7868 
7869 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7870 		return -EBUSY;
7871 
7872 	if (!check_stripe_cache(mddev))
7873 		return -ENOSPC;
7874 
7875 	if (has_failed(conf))
7876 		return -EINVAL;
7877 
7878 	rdev_for_each(rdev, mddev) {
7879 		if (!test_bit(In_sync, &rdev->flags)
7880 		    && !test_bit(Faulty, &rdev->flags))
7881 			spares++;
7882 	}
7883 
7884 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7885 		/* Not enough devices even to make a degraded array
7886 		 * of that size
7887 		 */
7888 		return -EINVAL;
7889 
7890 	/* Refuse to reduce size of the array.  Any reductions in
7891 	 * array size must be through explicit setting of array_size
7892 	 * attribute.
7893 	 */
7894 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7895 	    < mddev->array_sectors) {
7896 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7897 			mdname(mddev));
7898 		return -EINVAL;
7899 	}
7900 
7901 	atomic_set(&conf->reshape_stripes, 0);
7902 	spin_lock_irq(&conf->device_lock);
7903 	write_seqcount_begin(&conf->gen_lock);
7904 	conf->previous_raid_disks = conf->raid_disks;
7905 	conf->raid_disks += mddev->delta_disks;
7906 	conf->prev_chunk_sectors = conf->chunk_sectors;
7907 	conf->chunk_sectors = mddev->new_chunk_sectors;
7908 	conf->prev_algo = conf->algorithm;
7909 	conf->algorithm = mddev->new_layout;
7910 	conf->generation++;
7911 	/* Code that selects data_offset needs to see the generation update
7912 	 * if reshape_progress has been set - so a memory barrier needed.
7913 	 */
7914 	smp_mb();
7915 	if (mddev->reshape_backwards)
7916 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7917 	else
7918 		conf->reshape_progress = 0;
7919 	conf->reshape_safe = conf->reshape_progress;
7920 	write_seqcount_end(&conf->gen_lock);
7921 	spin_unlock_irq(&conf->device_lock);
7922 
7923 	/* Now make sure any requests that proceeded on the assumption
7924 	 * the reshape wasn't running - like Discard or Read - have
7925 	 * completed.
7926 	 */
7927 	mddev_suspend(mddev);
7928 	mddev_resume(mddev);
7929 
7930 	/* Add some new drives, as many as will fit.
7931 	 * We know there are enough to make the newly sized array work.
7932 	 * Don't add devices if we are reducing the number of
7933 	 * devices in the array.  This is because it is not possible
7934 	 * to correctly record the "partially reconstructed" state of
7935 	 * such devices during the reshape and confusion could result.
7936 	 */
7937 	if (mddev->delta_disks >= 0) {
7938 		rdev_for_each(rdev, mddev)
7939 			if (rdev->raid_disk < 0 &&
7940 			    !test_bit(Faulty, &rdev->flags)) {
7941 				if (raid5_add_disk(mddev, rdev) == 0) {
7942 					if (rdev->raid_disk
7943 					    >= conf->previous_raid_disks)
7944 						set_bit(In_sync, &rdev->flags);
7945 					else
7946 						rdev->recovery_offset = 0;
7947 
7948 					if (sysfs_link_rdev(mddev, rdev))
7949 						/* Failure here is OK */;
7950 				}
7951 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7952 				   && !test_bit(Faulty, &rdev->flags)) {
7953 				/* This is a spare that was manually added */
7954 				set_bit(In_sync, &rdev->flags);
7955 			}
7956 
7957 		/* When a reshape changes the number of devices,
7958 		 * ->degraded is measured against the larger of the
7959 		 * pre and post number of devices.
7960 		 */
7961 		spin_lock_irqsave(&conf->device_lock, flags);
7962 		mddev->degraded = raid5_calc_degraded(conf);
7963 		spin_unlock_irqrestore(&conf->device_lock, flags);
7964 	}
7965 	mddev->raid_disks = conf->raid_disks;
7966 	mddev->reshape_position = conf->reshape_progress;
7967 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7968 
7969 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7970 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7971 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7972 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7973 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7974 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7975 						"reshape");
7976 	if (!mddev->sync_thread) {
7977 		mddev->recovery = 0;
7978 		spin_lock_irq(&conf->device_lock);
7979 		write_seqcount_begin(&conf->gen_lock);
7980 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7981 		mddev->new_chunk_sectors =
7982 			conf->chunk_sectors = conf->prev_chunk_sectors;
7983 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7984 		rdev_for_each(rdev, mddev)
7985 			rdev->new_data_offset = rdev->data_offset;
7986 		smp_wmb();
7987 		conf->generation --;
7988 		conf->reshape_progress = MaxSector;
7989 		mddev->reshape_position = MaxSector;
7990 		write_seqcount_end(&conf->gen_lock);
7991 		spin_unlock_irq(&conf->device_lock);
7992 		return -EAGAIN;
7993 	}
7994 	conf->reshape_checkpoint = jiffies;
7995 	md_wakeup_thread(mddev->sync_thread);
7996 	md_new_event(mddev);
7997 	return 0;
7998 }
7999 
8000 /* This is called from the reshape thread and should make any
8001  * changes needed in 'conf'
8002  */
8003 static void end_reshape(struct r5conf *conf)
8004 {
8005 
8006 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8007 		struct md_rdev *rdev;
8008 
8009 		spin_lock_irq(&conf->device_lock);
8010 		conf->previous_raid_disks = conf->raid_disks;
8011 		md_finish_reshape(conf->mddev);
8012 		smp_wmb();
8013 		conf->reshape_progress = MaxSector;
8014 		conf->mddev->reshape_position = MaxSector;
8015 		rdev_for_each(rdev, conf->mddev)
8016 			if (rdev->raid_disk >= 0 &&
8017 			    !test_bit(Journal, &rdev->flags) &&
8018 			    !test_bit(In_sync, &rdev->flags))
8019 				rdev->recovery_offset = MaxSector;
8020 		spin_unlock_irq(&conf->device_lock);
8021 		wake_up(&conf->wait_for_overlap);
8022 
8023 		/* read-ahead size must cover two whole stripes, which is
8024 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8025 		 */
8026 		if (conf->mddev->queue) {
8027 			int data_disks = conf->raid_disks - conf->max_degraded;
8028 			int stripe = data_disks * ((conf->chunk_sectors << 9)
8029 						   / PAGE_SIZE);
8030 			if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8031 				conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8032 		}
8033 	}
8034 }
8035 
8036 /* This is called from the raid5d thread with mddev_lock held.
8037  * It makes config changes to the device.
8038  */
8039 static void raid5_finish_reshape(struct mddev *mddev)
8040 {
8041 	struct r5conf *conf = mddev->private;
8042 
8043 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8044 
8045 		if (mddev->delta_disks <= 0) {
8046 			int d;
8047 			spin_lock_irq(&conf->device_lock);
8048 			mddev->degraded = raid5_calc_degraded(conf);
8049 			spin_unlock_irq(&conf->device_lock);
8050 			for (d = conf->raid_disks ;
8051 			     d < conf->raid_disks - mddev->delta_disks;
8052 			     d++) {
8053 				struct md_rdev *rdev = conf->disks[d].rdev;
8054 				if (rdev)
8055 					clear_bit(In_sync, &rdev->flags);
8056 				rdev = conf->disks[d].replacement;
8057 				if (rdev)
8058 					clear_bit(In_sync, &rdev->flags);
8059 			}
8060 		}
8061 		mddev->layout = conf->algorithm;
8062 		mddev->chunk_sectors = conf->chunk_sectors;
8063 		mddev->reshape_position = MaxSector;
8064 		mddev->delta_disks = 0;
8065 		mddev->reshape_backwards = 0;
8066 	}
8067 }
8068 
8069 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8070 {
8071 	struct r5conf *conf = mddev->private;
8072 
8073 	if (quiesce) {
8074 		/* stop all writes */
8075 		lock_all_device_hash_locks_irq(conf);
8076 		/* '2' tells resync/reshape to pause so that all
8077 		 * active stripes can drain
8078 		 */
8079 		r5c_flush_cache(conf, INT_MAX);
8080 		conf->quiesce = 2;
8081 		wait_event_cmd(conf->wait_for_quiescent,
8082 				    atomic_read(&conf->active_stripes) == 0 &&
8083 				    atomic_read(&conf->active_aligned_reads) == 0,
8084 				    unlock_all_device_hash_locks_irq(conf),
8085 				    lock_all_device_hash_locks_irq(conf));
8086 		conf->quiesce = 1;
8087 		unlock_all_device_hash_locks_irq(conf);
8088 		/* allow reshape to continue */
8089 		wake_up(&conf->wait_for_overlap);
8090 	} else {
8091 		/* re-enable writes */
8092 		lock_all_device_hash_locks_irq(conf);
8093 		conf->quiesce = 0;
8094 		wake_up(&conf->wait_for_quiescent);
8095 		wake_up(&conf->wait_for_overlap);
8096 		unlock_all_device_hash_locks_irq(conf);
8097 	}
8098 	log_quiesce(conf, quiesce);
8099 }
8100 
8101 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8102 {
8103 	struct r0conf *raid0_conf = mddev->private;
8104 	sector_t sectors;
8105 
8106 	/* for raid0 takeover only one zone is supported */
8107 	if (raid0_conf->nr_strip_zones > 1) {
8108 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8109 			mdname(mddev));
8110 		return ERR_PTR(-EINVAL);
8111 	}
8112 
8113 	sectors = raid0_conf->strip_zone[0].zone_end;
8114 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8115 	mddev->dev_sectors = sectors;
8116 	mddev->new_level = level;
8117 	mddev->new_layout = ALGORITHM_PARITY_N;
8118 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8119 	mddev->raid_disks += 1;
8120 	mddev->delta_disks = 1;
8121 	/* make sure it will be not marked as dirty */
8122 	mddev->recovery_cp = MaxSector;
8123 
8124 	return setup_conf(mddev);
8125 }
8126 
8127 static void *raid5_takeover_raid1(struct mddev *mddev)
8128 {
8129 	int chunksect;
8130 	void *ret;
8131 
8132 	if (mddev->raid_disks != 2 ||
8133 	    mddev->degraded > 1)
8134 		return ERR_PTR(-EINVAL);
8135 
8136 	/* Should check if there are write-behind devices? */
8137 
8138 	chunksect = 64*2; /* 64K by default */
8139 
8140 	/* The array must be an exact multiple of chunksize */
8141 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8142 		chunksect >>= 1;
8143 
8144 	if ((chunksect<<9) < STRIPE_SIZE)
8145 		/* array size does not allow a suitable chunk size */
8146 		return ERR_PTR(-EINVAL);
8147 
8148 	mddev->new_level = 5;
8149 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8150 	mddev->new_chunk_sectors = chunksect;
8151 
8152 	ret = setup_conf(mddev);
8153 	if (!IS_ERR(ret))
8154 		mddev_clear_unsupported_flags(mddev,
8155 			UNSUPPORTED_MDDEV_FLAGS);
8156 	return ret;
8157 }
8158 
8159 static void *raid5_takeover_raid6(struct mddev *mddev)
8160 {
8161 	int new_layout;
8162 
8163 	switch (mddev->layout) {
8164 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8165 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8166 		break;
8167 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8168 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8169 		break;
8170 	case ALGORITHM_LEFT_SYMMETRIC_6:
8171 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8172 		break;
8173 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8174 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8175 		break;
8176 	case ALGORITHM_PARITY_0_6:
8177 		new_layout = ALGORITHM_PARITY_0;
8178 		break;
8179 	case ALGORITHM_PARITY_N:
8180 		new_layout = ALGORITHM_PARITY_N;
8181 		break;
8182 	default:
8183 		return ERR_PTR(-EINVAL);
8184 	}
8185 	mddev->new_level = 5;
8186 	mddev->new_layout = new_layout;
8187 	mddev->delta_disks = -1;
8188 	mddev->raid_disks -= 1;
8189 	return setup_conf(mddev);
8190 }
8191 
8192 static int raid5_check_reshape(struct mddev *mddev)
8193 {
8194 	/* For a 2-drive array, the layout and chunk size can be changed
8195 	 * immediately as not restriping is needed.
8196 	 * For larger arrays we record the new value - after validation
8197 	 * to be used by a reshape pass.
8198 	 */
8199 	struct r5conf *conf = mddev->private;
8200 	int new_chunk = mddev->new_chunk_sectors;
8201 
8202 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8203 		return -EINVAL;
8204 	if (new_chunk > 0) {
8205 		if (!is_power_of_2(new_chunk))
8206 			return -EINVAL;
8207 		if (new_chunk < (PAGE_SIZE>>9))
8208 			return -EINVAL;
8209 		if (mddev->array_sectors & (new_chunk-1))
8210 			/* not factor of array size */
8211 			return -EINVAL;
8212 	}
8213 
8214 	/* They look valid */
8215 
8216 	if (mddev->raid_disks == 2) {
8217 		/* can make the change immediately */
8218 		if (mddev->new_layout >= 0) {
8219 			conf->algorithm = mddev->new_layout;
8220 			mddev->layout = mddev->new_layout;
8221 		}
8222 		if (new_chunk > 0) {
8223 			conf->chunk_sectors = new_chunk ;
8224 			mddev->chunk_sectors = new_chunk;
8225 		}
8226 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8227 		md_wakeup_thread(mddev->thread);
8228 	}
8229 	return check_reshape(mddev);
8230 }
8231 
8232 static int raid6_check_reshape(struct mddev *mddev)
8233 {
8234 	int new_chunk = mddev->new_chunk_sectors;
8235 
8236 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8237 		return -EINVAL;
8238 	if (new_chunk > 0) {
8239 		if (!is_power_of_2(new_chunk))
8240 			return -EINVAL;
8241 		if (new_chunk < (PAGE_SIZE >> 9))
8242 			return -EINVAL;
8243 		if (mddev->array_sectors & (new_chunk-1))
8244 			/* not factor of array size */
8245 			return -EINVAL;
8246 	}
8247 
8248 	/* They look valid */
8249 	return check_reshape(mddev);
8250 }
8251 
8252 static void *raid5_takeover(struct mddev *mddev)
8253 {
8254 	/* raid5 can take over:
8255 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8256 	 *  raid1 - if there are two drives.  We need to know the chunk size
8257 	 *  raid4 - trivial - just use a raid4 layout.
8258 	 *  raid6 - Providing it is a *_6 layout
8259 	 */
8260 	if (mddev->level == 0)
8261 		return raid45_takeover_raid0(mddev, 5);
8262 	if (mddev->level == 1)
8263 		return raid5_takeover_raid1(mddev);
8264 	if (mddev->level == 4) {
8265 		mddev->new_layout = ALGORITHM_PARITY_N;
8266 		mddev->new_level = 5;
8267 		return setup_conf(mddev);
8268 	}
8269 	if (mddev->level == 6)
8270 		return raid5_takeover_raid6(mddev);
8271 
8272 	return ERR_PTR(-EINVAL);
8273 }
8274 
8275 static void *raid4_takeover(struct mddev *mddev)
8276 {
8277 	/* raid4 can take over:
8278 	 *  raid0 - if there is only one strip zone
8279 	 *  raid5 - if layout is right
8280 	 */
8281 	if (mddev->level == 0)
8282 		return raid45_takeover_raid0(mddev, 4);
8283 	if (mddev->level == 5 &&
8284 	    mddev->layout == ALGORITHM_PARITY_N) {
8285 		mddev->new_layout = 0;
8286 		mddev->new_level = 4;
8287 		return setup_conf(mddev);
8288 	}
8289 	return ERR_PTR(-EINVAL);
8290 }
8291 
8292 static struct md_personality raid5_personality;
8293 
8294 static void *raid6_takeover(struct mddev *mddev)
8295 {
8296 	/* Currently can only take over a raid5.  We map the
8297 	 * personality to an equivalent raid6 personality
8298 	 * with the Q block at the end.
8299 	 */
8300 	int new_layout;
8301 
8302 	if (mddev->pers != &raid5_personality)
8303 		return ERR_PTR(-EINVAL);
8304 	if (mddev->degraded > 1)
8305 		return ERR_PTR(-EINVAL);
8306 	if (mddev->raid_disks > 253)
8307 		return ERR_PTR(-EINVAL);
8308 	if (mddev->raid_disks < 3)
8309 		return ERR_PTR(-EINVAL);
8310 
8311 	switch (mddev->layout) {
8312 	case ALGORITHM_LEFT_ASYMMETRIC:
8313 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8314 		break;
8315 	case ALGORITHM_RIGHT_ASYMMETRIC:
8316 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8317 		break;
8318 	case ALGORITHM_LEFT_SYMMETRIC:
8319 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8320 		break;
8321 	case ALGORITHM_RIGHT_SYMMETRIC:
8322 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8323 		break;
8324 	case ALGORITHM_PARITY_0:
8325 		new_layout = ALGORITHM_PARITY_0_6;
8326 		break;
8327 	case ALGORITHM_PARITY_N:
8328 		new_layout = ALGORITHM_PARITY_N;
8329 		break;
8330 	default:
8331 		return ERR_PTR(-EINVAL);
8332 	}
8333 	mddev->new_level = 6;
8334 	mddev->new_layout = new_layout;
8335 	mddev->delta_disks = 1;
8336 	mddev->raid_disks += 1;
8337 	return setup_conf(mddev);
8338 }
8339 
8340 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8341 {
8342 	struct r5conf *conf;
8343 	int err;
8344 
8345 	err = mddev_lock(mddev);
8346 	if (err)
8347 		return err;
8348 	conf = mddev->private;
8349 	if (!conf) {
8350 		mddev_unlock(mddev);
8351 		return -ENODEV;
8352 	}
8353 
8354 	if (strncmp(buf, "ppl", 3) == 0) {
8355 		/* ppl only works with RAID 5 */
8356 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8357 			err = log_init(conf, NULL, true);
8358 			if (!err) {
8359 				err = resize_stripes(conf, conf->pool_size);
8360 				if (err)
8361 					log_exit(conf);
8362 			}
8363 		} else
8364 			err = -EINVAL;
8365 	} else if (strncmp(buf, "resync", 6) == 0) {
8366 		if (raid5_has_ppl(conf)) {
8367 			mddev_suspend(mddev);
8368 			log_exit(conf);
8369 			mddev_resume(mddev);
8370 			err = resize_stripes(conf, conf->pool_size);
8371 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8372 			   r5l_log_disk_error(conf)) {
8373 			bool journal_dev_exists = false;
8374 			struct md_rdev *rdev;
8375 
8376 			rdev_for_each(rdev, mddev)
8377 				if (test_bit(Journal, &rdev->flags)) {
8378 					journal_dev_exists = true;
8379 					break;
8380 				}
8381 
8382 			if (!journal_dev_exists) {
8383 				mddev_suspend(mddev);
8384 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8385 				mddev_resume(mddev);
8386 			} else  /* need remove journal device first */
8387 				err = -EBUSY;
8388 		} else
8389 			err = -EINVAL;
8390 	} else {
8391 		err = -EINVAL;
8392 	}
8393 
8394 	if (!err)
8395 		md_update_sb(mddev, 1);
8396 
8397 	mddev_unlock(mddev);
8398 
8399 	return err;
8400 }
8401 
8402 static int raid5_start(struct mddev *mddev)
8403 {
8404 	struct r5conf *conf = mddev->private;
8405 
8406 	return r5l_start(conf->log);
8407 }
8408 
8409 static struct md_personality raid6_personality =
8410 {
8411 	.name		= "raid6",
8412 	.level		= 6,
8413 	.owner		= THIS_MODULE,
8414 	.make_request	= raid5_make_request,
8415 	.run		= raid5_run,
8416 	.start		= raid5_start,
8417 	.free		= raid5_free,
8418 	.status		= raid5_status,
8419 	.error_handler	= raid5_error,
8420 	.hot_add_disk	= raid5_add_disk,
8421 	.hot_remove_disk= raid5_remove_disk,
8422 	.spare_active	= raid5_spare_active,
8423 	.sync_request	= raid5_sync_request,
8424 	.resize		= raid5_resize,
8425 	.size		= raid5_size,
8426 	.check_reshape	= raid6_check_reshape,
8427 	.start_reshape  = raid5_start_reshape,
8428 	.finish_reshape = raid5_finish_reshape,
8429 	.quiesce	= raid5_quiesce,
8430 	.takeover	= raid6_takeover,
8431 	.congested	= raid5_congested,
8432 	.change_consistency_policy = raid5_change_consistency_policy,
8433 };
8434 static struct md_personality raid5_personality =
8435 {
8436 	.name		= "raid5",
8437 	.level		= 5,
8438 	.owner		= THIS_MODULE,
8439 	.make_request	= raid5_make_request,
8440 	.run		= raid5_run,
8441 	.start		= raid5_start,
8442 	.free		= raid5_free,
8443 	.status		= raid5_status,
8444 	.error_handler	= raid5_error,
8445 	.hot_add_disk	= raid5_add_disk,
8446 	.hot_remove_disk= raid5_remove_disk,
8447 	.spare_active	= raid5_spare_active,
8448 	.sync_request	= raid5_sync_request,
8449 	.resize		= raid5_resize,
8450 	.size		= raid5_size,
8451 	.check_reshape	= raid5_check_reshape,
8452 	.start_reshape  = raid5_start_reshape,
8453 	.finish_reshape = raid5_finish_reshape,
8454 	.quiesce	= raid5_quiesce,
8455 	.takeover	= raid5_takeover,
8456 	.congested	= raid5_congested,
8457 	.change_consistency_policy = raid5_change_consistency_policy,
8458 };
8459 
8460 static struct md_personality raid4_personality =
8461 {
8462 	.name		= "raid4",
8463 	.level		= 4,
8464 	.owner		= THIS_MODULE,
8465 	.make_request	= raid5_make_request,
8466 	.run		= raid5_run,
8467 	.start		= raid5_start,
8468 	.free		= raid5_free,
8469 	.status		= raid5_status,
8470 	.error_handler	= raid5_error,
8471 	.hot_add_disk	= raid5_add_disk,
8472 	.hot_remove_disk= raid5_remove_disk,
8473 	.spare_active	= raid5_spare_active,
8474 	.sync_request	= raid5_sync_request,
8475 	.resize		= raid5_resize,
8476 	.size		= raid5_size,
8477 	.check_reshape	= raid5_check_reshape,
8478 	.start_reshape  = raid5_start_reshape,
8479 	.finish_reshape = raid5_finish_reshape,
8480 	.quiesce	= raid5_quiesce,
8481 	.takeover	= raid4_takeover,
8482 	.congested	= raid5_congested,
8483 	.change_consistency_policy = raid5_change_consistency_policy,
8484 };
8485 
8486 static int __init raid5_init(void)
8487 {
8488 	int ret;
8489 
8490 	raid5_wq = alloc_workqueue("raid5wq",
8491 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8492 	if (!raid5_wq)
8493 		return -ENOMEM;
8494 
8495 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8496 				      "md/raid5:prepare",
8497 				      raid456_cpu_up_prepare,
8498 				      raid456_cpu_dead);
8499 	if (ret) {
8500 		destroy_workqueue(raid5_wq);
8501 		return ret;
8502 	}
8503 	register_md_personality(&raid6_personality);
8504 	register_md_personality(&raid5_personality);
8505 	register_md_personality(&raid4_personality);
8506 	return 0;
8507 }
8508 
8509 static void raid5_exit(void)
8510 {
8511 	unregister_md_personality(&raid6_personality);
8512 	unregister_md_personality(&raid5_personality);
8513 	unregister_md_personality(&raid4_personality);
8514 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8515 	destroy_workqueue(raid5_wq);
8516 }
8517 
8518 module_init(raid5_init);
8519 module_exit(raid5_exit);
8520 MODULE_LICENSE("GPL");
8521 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8522 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8523 MODULE_ALIAS("md-raid5");
8524 MODULE_ALIAS("md-raid4");
8525 MODULE_ALIAS("md-level-5");
8526 MODULE_ALIAS("md-level-4");
8527 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8528 MODULE_ALIAS("md-raid6");
8529 MODULE_ALIAS("md-level-6");
8530 
8531 /* This used to be two separate modules, they were: */
8532 MODULE_ALIAS("raid5");
8533 MODULE_ALIAS("raid6");
8534