xref: /openbmc/linux/drivers/md/raid5.c (revision 239480ab)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <linux/sched/signal.h>
59 
60 #include <trace/events/block.h>
61 #include <linux/list_sort.h>
62 
63 #include "md.h"
64 #include "raid5.h"
65 #include "raid0.h"
66 #include "bitmap.h"
67 #include "raid5-log.h"
68 
69 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
70 
71 #define cpu_to_group(cpu) cpu_to_node(cpu)
72 #define ANY_GROUP NUMA_NO_NODE
73 
74 static bool devices_handle_discard_safely = false;
75 module_param(devices_handle_discard_safely, bool, 0644);
76 MODULE_PARM_DESC(devices_handle_discard_safely,
77 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
78 static struct workqueue_struct *raid5_wq;
79 
80 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
81 {
82 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
83 	return &conf->stripe_hashtbl[hash];
84 }
85 
86 static inline int stripe_hash_locks_hash(sector_t sect)
87 {
88 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
89 }
90 
91 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
92 {
93 	spin_lock_irq(conf->hash_locks + hash);
94 	spin_lock(&conf->device_lock);
95 }
96 
97 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
98 {
99 	spin_unlock(&conf->device_lock);
100 	spin_unlock_irq(conf->hash_locks + hash);
101 }
102 
103 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
104 {
105 	int i;
106 	local_irq_disable();
107 	spin_lock(conf->hash_locks);
108 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
109 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
110 	spin_lock(&conf->device_lock);
111 }
112 
113 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
114 {
115 	int i;
116 	spin_unlock(&conf->device_lock);
117 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
118 		spin_unlock(conf->hash_locks + i - 1);
119 	local_irq_enable();
120 }
121 
122 /* Find first data disk in a raid6 stripe */
123 static inline int raid6_d0(struct stripe_head *sh)
124 {
125 	if (sh->ddf_layout)
126 		/* ddf always start from first device */
127 		return 0;
128 	/* md starts just after Q block */
129 	if (sh->qd_idx == sh->disks - 1)
130 		return 0;
131 	else
132 		return sh->qd_idx + 1;
133 }
134 static inline int raid6_next_disk(int disk, int raid_disks)
135 {
136 	disk++;
137 	return (disk < raid_disks) ? disk : 0;
138 }
139 
140 /* When walking through the disks in a raid5, starting at raid6_d0,
141  * We need to map each disk to a 'slot', where the data disks are slot
142  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
143  * is raid_disks-1.  This help does that mapping.
144  */
145 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
146 			     int *count, int syndrome_disks)
147 {
148 	int slot = *count;
149 
150 	if (sh->ddf_layout)
151 		(*count)++;
152 	if (idx == sh->pd_idx)
153 		return syndrome_disks;
154 	if (idx == sh->qd_idx)
155 		return syndrome_disks + 1;
156 	if (!sh->ddf_layout)
157 		(*count)++;
158 	return slot;
159 }
160 
161 static void print_raid5_conf (struct r5conf *conf);
162 
163 static int stripe_operations_active(struct stripe_head *sh)
164 {
165 	return sh->check_state || sh->reconstruct_state ||
166 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
167 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
168 }
169 
170 static bool stripe_is_lowprio(struct stripe_head *sh)
171 {
172 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
173 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
174 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
175 }
176 
177 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
178 {
179 	struct r5conf *conf = sh->raid_conf;
180 	struct r5worker_group *group;
181 	int thread_cnt;
182 	int i, cpu = sh->cpu;
183 
184 	if (!cpu_online(cpu)) {
185 		cpu = cpumask_any(cpu_online_mask);
186 		sh->cpu = cpu;
187 	}
188 
189 	if (list_empty(&sh->lru)) {
190 		struct r5worker_group *group;
191 		group = conf->worker_groups + cpu_to_group(cpu);
192 		if (stripe_is_lowprio(sh))
193 			list_add_tail(&sh->lru, &group->loprio_list);
194 		else
195 			list_add_tail(&sh->lru, &group->handle_list);
196 		group->stripes_cnt++;
197 		sh->group = group;
198 	}
199 
200 	if (conf->worker_cnt_per_group == 0) {
201 		md_wakeup_thread(conf->mddev->thread);
202 		return;
203 	}
204 
205 	group = conf->worker_groups + cpu_to_group(sh->cpu);
206 
207 	group->workers[0].working = true;
208 	/* at least one worker should run to avoid race */
209 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
210 
211 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
212 	/* wakeup more workers */
213 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
214 		if (group->workers[i].working == false) {
215 			group->workers[i].working = true;
216 			queue_work_on(sh->cpu, raid5_wq,
217 				      &group->workers[i].work);
218 			thread_cnt--;
219 		}
220 	}
221 }
222 
223 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
224 			      struct list_head *temp_inactive_list)
225 {
226 	int i;
227 	int injournal = 0;	/* number of date pages with R5_InJournal */
228 
229 	BUG_ON(!list_empty(&sh->lru));
230 	BUG_ON(atomic_read(&conf->active_stripes)==0);
231 
232 	if (r5c_is_writeback(conf->log))
233 		for (i = sh->disks; i--; )
234 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
235 				injournal++;
236 	/*
237 	 * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with
238 	 * data in journal, so they are not released to cached lists
239 	 */
240 	if (conf->quiesce && r5c_is_writeback(conf->log) &&
241 	    !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0) {
242 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
243 			r5c_make_stripe_write_out(sh);
244 		set_bit(STRIPE_HANDLE, &sh->state);
245 	}
246 
247 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
248 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
249 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
250 			list_add_tail(&sh->lru, &conf->delayed_list);
251 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
252 			   sh->bm_seq - conf->seq_write > 0)
253 			list_add_tail(&sh->lru, &conf->bitmap_list);
254 		else {
255 			clear_bit(STRIPE_DELAYED, &sh->state);
256 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
257 			if (conf->worker_cnt_per_group == 0) {
258 				if (stripe_is_lowprio(sh))
259 					list_add_tail(&sh->lru,
260 							&conf->loprio_list);
261 				else
262 					list_add_tail(&sh->lru,
263 							&conf->handle_list);
264 			} else {
265 				raid5_wakeup_stripe_thread(sh);
266 				return;
267 			}
268 		}
269 		md_wakeup_thread(conf->mddev->thread);
270 	} else {
271 		BUG_ON(stripe_operations_active(sh));
272 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
273 			if (atomic_dec_return(&conf->preread_active_stripes)
274 			    < IO_THRESHOLD)
275 				md_wakeup_thread(conf->mddev->thread);
276 		atomic_dec(&conf->active_stripes);
277 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
278 			if (!r5c_is_writeback(conf->log))
279 				list_add_tail(&sh->lru, temp_inactive_list);
280 			else {
281 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
282 				if (injournal == 0)
283 					list_add_tail(&sh->lru, temp_inactive_list);
284 				else if (injournal == conf->raid_disks - conf->max_degraded) {
285 					/* full stripe */
286 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
287 						atomic_inc(&conf->r5c_cached_full_stripes);
288 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
289 						atomic_dec(&conf->r5c_cached_partial_stripes);
290 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
291 					r5c_check_cached_full_stripe(conf);
292 				} else
293 					/*
294 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
295 					 * r5c_try_caching_write(). No need to
296 					 * set it again.
297 					 */
298 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
299 			}
300 		}
301 	}
302 }
303 
304 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
305 			     struct list_head *temp_inactive_list)
306 {
307 	if (atomic_dec_and_test(&sh->count))
308 		do_release_stripe(conf, sh, temp_inactive_list);
309 }
310 
311 /*
312  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
313  *
314  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
315  * given time. Adding stripes only takes device lock, while deleting stripes
316  * only takes hash lock.
317  */
318 static void release_inactive_stripe_list(struct r5conf *conf,
319 					 struct list_head *temp_inactive_list,
320 					 int hash)
321 {
322 	int size;
323 	bool do_wakeup = false;
324 	unsigned long flags;
325 
326 	if (hash == NR_STRIPE_HASH_LOCKS) {
327 		size = NR_STRIPE_HASH_LOCKS;
328 		hash = NR_STRIPE_HASH_LOCKS - 1;
329 	} else
330 		size = 1;
331 	while (size) {
332 		struct list_head *list = &temp_inactive_list[size - 1];
333 
334 		/*
335 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
336 		 * remove stripes from the list
337 		 */
338 		if (!list_empty_careful(list)) {
339 			spin_lock_irqsave(conf->hash_locks + hash, flags);
340 			if (list_empty(conf->inactive_list + hash) &&
341 			    !list_empty(list))
342 				atomic_dec(&conf->empty_inactive_list_nr);
343 			list_splice_tail_init(list, conf->inactive_list + hash);
344 			do_wakeup = true;
345 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
346 		}
347 		size--;
348 		hash--;
349 	}
350 
351 	if (do_wakeup) {
352 		wake_up(&conf->wait_for_stripe);
353 		if (atomic_read(&conf->active_stripes) == 0)
354 			wake_up(&conf->wait_for_quiescent);
355 		if (conf->retry_read_aligned)
356 			md_wakeup_thread(conf->mddev->thread);
357 	}
358 }
359 
360 /* should hold conf->device_lock already */
361 static int release_stripe_list(struct r5conf *conf,
362 			       struct list_head *temp_inactive_list)
363 {
364 	struct stripe_head *sh, *t;
365 	int count = 0;
366 	struct llist_node *head;
367 
368 	head = llist_del_all(&conf->released_stripes);
369 	head = llist_reverse_order(head);
370 	llist_for_each_entry_safe(sh, t, head, release_list) {
371 		int hash;
372 
373 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
374 		smp_mb();
375 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
376 		/*
377 		 * Don't worry the bit is set here, because if the bit is set
378 		 * again, the count is always > 1. This is true for
379 		 * STRIPE_ON_UNPLUG_LIST bit too.
380 		 */
381 		hash = sh->hash_lock_index;
382 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
383 		count++;
384 	}
385 
386 	return count;
387 }
388 
389 void raid5_release_stripe(struct stripe_head *sh)
390 {
391 	struct r5conf *conf = sh->raid_conf;
392 	unsigned long flags;
393 	struct list_head list;
394 	int hash;
395 	bool wakeup;
396 
397 	/* Avoid release_list until the last reference.
398 	 */
399 	if (atomic_add_unless(&sh->count, -1, 1))
400 		return;
401 
402 	if (unlikely(!conf->mddev->thread) ||
403 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
404 		goto slow_path;
405 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
406 	if (wakeup)
407 		md_wakeup_thread(conf->mddev->thread);
408 	return;
409 slow_path:
410 	local_irq_save(flags);
411 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
412 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
413 		INIT_LIST_HEAD(&list);
414 		hash = sh->hash_lock_index;
415 		do_release_stripe(conf, sh, &list);
416 		spin_unlock(&conf->device_lock);
417 		release_inactive_stripe_list(conf, &list, hash);
418 	}
419 	local_irq_restore(flags);
420 }
421 
422 static inline void remove_hash(struct stripe_head *sh)
423 {
424 	pr_debug("remove_hash(), stripe %llu\n",
425 		(unsigned long long)sh->sector);
426 
427 	hlist_del_init(&sh->hash);
428 }
429 
430 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
431 {
432 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
433 
434 	pr_debug("insert_hash(), stripe %llu\n",
435 		(unsigned long long)sh->sector);
436 
437 	hlist_add_head(&sh->hash, hp);
438 }
439 
440 /* find an idle stripe, make sure it is unhashed, and return it. */
441 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
442 {
443 	struct stripe_head *sh = NULL;
444 	struct list_head *first;
445 
446 	if (list_empty(conf->inactive_list + hash))
447 		goto out;
448 	first = (conf->inactive_list + hash)->next;
449 	sh = list_entry(first, struct stripe_head, lru);
450 	list_del_init(first);
451 	remove_hash(sh);
452 	atomic_inc(&conf->active_stripes);
453 	BUG_ON(hash != sh->hash_lock_index);
454 	if (list_empty(conf->inactive_list + hash))
455 		atomic_inc(&conf->empty_inactive_list_nr);
456 out:
457 	return sh;
458 }
459 
460 static void shrink_buffers(struct stripe_head *sh)
461 {
462 	struct page *p;
463 	int i;
464 	int num = sh->raid_conf->pool_size;
465 
466 	for (i = 0; i < num ; i++) {
467 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
468 		p = sh->dev[i].page;
469 		if (!p)
470 			continue;
471 		sh->dev[i].page = NULL;
472 		put_page(p);
473 	}
474 }
475 
476 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
477 {
478 	int i;
479 	int num = sh->raid_conf->pool_size;
480 
481 	for (i = 0; i < num; i++) {
482 		struct page *page;
483 
484 		if (!(page = alloc_page(gfp))) {
485 			return 1;
486 		}
487 		sh->dev[i].page = page;
488 		sh->dev[i].orig_page = page;
489 	}
490 
491 	return 0;
492 }
493 
494 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
495 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
496 			    struct stripe_head *sh);
497 
498 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
499 {
500 	struct r5conf *conf = sh->raid_conf;
501 	int i, seq;
502 
503 	BUG_ON(atomic_read(&sh->count) != 0);
504 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
505 	BUG_ON(stripe_operations_active(sh));
506 	BUG_ON(sh->batch_head);
507 
508 	pr_debug("init_stripe called, stripe %llu\n",
509 		(unsigned long long)sector);
510 retry:
511 	seq = read_seqcount_begin(&conf->gen_lock);
512 	sh->generation = conf->generation - previous;
513 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
514 	sh->sector = sector;
515 	stripe_set_idx(sector, conf, previous, sh);
516 	sh->state = 0;
517 
518 	for (i = sh->disks; i--; ) {
519 		struct r5dev *dev = &sh->dev[i];
520 
521 		if (dev->toread || dev->read || dev->towrite || dev->written ||
522 		    test_bit(R5_LOCKED, &dev->flags)) {
523 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
524 			       (unsigned long long)sh->sector, i, dev->toread,
525 			       dev->read, dev->towrite, dev->written,
526 			       test_bit(R5_LOCKED, &dev->flags));
527 			WARN_ON(1);
528 		}
529 		dev->flags = 0;
530 		raid5_build_block(sh, i, previous);
531 	}
532 	if (read_seqcount_retry(&conf->gen_lock, seq))
533 		goto retry;
534 	sh->overwrite_disks = 0;
535 	insert_hash(conf, sh);
536 	sh->cpu = smp_processor_id();
537 	set_bit(STRIPE_BATCH_READY, &sh->state);
538 }
539 
540 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
541 					 short generation)
542 {
543 	struct stripe_head *sh;
544 
545 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
546 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
547 		if (sh->sector == sector && sh->generation == generation)
548 			return sh;
549 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
550 	return NULL;
551 }
552 
553 /*
554  * Need to check if array has failed when deciding whether to:
555  *  - start an array
556  *  - remove non-faulty devices
557  *  - add a spare
558  *  - allow a reshape
559  * This determination is simple when no reshape is happening.
560  * However if there is a reshape, we need to carefully check
561  * both the before and after sections.
562  * This is because some failed devices may only affect one
563  * of the two sections, and some non-in_sync devices may
564  * be insync in the section most affected by failed devices.
565  */
566 int raid5_calc_degraded(struct r5conf *conf)
567 {
568 	int degraded, degraded2;
569 	int i;
570 
571 	rcu_read_lock();
572 	degraded = 0;
573 	for (i = 0; i < conf->previous_raid_disks; i++) {
574 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
575 		if (rdev && test_bit(Faulty, &rdev->flags))
576 			rdev = rcu_dereference(conf->disks[i].replacement);
577 		if (!rdev || test_bit(Faulty, &rdev->flags))
578 			degraded++;
579 		else if (test_bit(In_sync, &rdev->flags))
580 			;
581 		else
582 			/* not in-sync or faulty.
583 			 * If the reshape increases the number of devices,
584 			 * this is being recovered by the reshape, so
585 			 * this 'previous' section is not in_sync.
586 			 * If the number of devices is being reduced however,
587 			 * the device can only be part of the array if
588 			 * we are reverting a reshape, so this section will
589 			 * be in-sync.
590 			 */
591 			if (conf->raid_disks >= conf->previous_raid_disks)
592 				degraded++;
593 	}
594 	rcu_read_unlock();
595 	if (conf->raid_disks == conf->previous_raid_disks)
596 		return degraded;
597 	rcu_read_lock();
598 	degraded2 = 0;
599 	for (i = 0; i < conf->raid_disks; i++) {
600 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
601 		if (rdev && test_bit(Faulty, &rdev->flags))
602 			rdev = rcu_dereference(conf->disks[i].replacement);
603 		if (!rdev || test_bit(Faulty, &rdev->flags))
604 			degraded2++;
605 		else if (test_bit(In_sync, &rdev->flags))
606 			;
607 		else
608 			/* not in-sync or faulty.
609 			 * If reshape increases the number of devices, this
610 			 * section has already been recovered, else it
611 			 * almost certainly hasn't.
612 			 */
613 			if (conf->raid_disks <= conf->previous_raid_disks)
614 				degraded2++;
615 	}
616 	rcu_read_unlock();
617 	if (degraded2 > degraded)
618 		return degraded2;
619 	return degraded;
620 }
621 
622 static int has_failed(struct r5conf *conf)
623 {
624 	int degraded;
625 
626 	if (conf->mddev->reshape_position == MaxSector)
627 		return conf->mddev->degraded > conf->max_degraded;
628 
629 	degraded = raid5_calc_degraded(conf);
630 	if (degraded > conf->max_degraded)
631 		return 1;
632 	return 0;
633 }
634 
635 struct stripe_head *
636 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
637 			int previous, int noblock, int noquiesce)
638 {
639 	struct stripe_head *sh;
640 	int hash = stripe_hash_locks_hash(sector);
641 	int inc_empty_inactive_list_flag;
642 
643 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
644 
645 	spin_lock_irq(conf->hash_locks + hash);
646 
647 	do {
648 		wait_event_lock_irq(conf->wait_for_quiescent,
649 				    conf->quiesce == 0 || noquiesce,
650 				    *(conf->hash_locks + hash));
651 		sh = __find_stripe(conf, sector, conf->generation - previous);
652 		if (!sh) {
653 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
654 				sh = get_free_stripe(conf, hash);
655 				if (!sh && !test_bit(R5_DID_ALLOC,
656 						     &conf->cache_state))
657 					set_bit(R5_ALLOC_MORE,
658 						&conf->cache_state);
659 			}
660 			if (noblock && sh == NULL)
661 				break;
662 
663 			r5c_check_stripe_cache_usage(conf);
664 			if (!sh) {
665 				set_bit(R5_INACTIVE_BLOCKED,
666 					&conf->cache_state);
667 				r5l_wake_reclaim(conf->log, 0);
668 				wait_event_lock_irq(
669 					conf->wait_for_stripe,
670 					!list_empty(conf->inactive_list + hash) &&
671 					(atomic_read(&conf->active_stripes)
672 					 < (conf->max_nr_stripes * 3 / 4)
673 					 || !test_bit(R5_INACTIVE_BLOCKED,
674 						      &conf->cache_state)),
675 					*(conf->hash_locks + hash));
676 				clear_bit(R5_INACTIVE_BLOCKED,
677 					  &conf->cache_state);
678 			} else {
679 				init_stripe(sh, sector, previous);
680 				atomic_inc(&sh->count);
681 			}
682 		} else if (!atomic_inc_not_zero(&sh->count)) {
683 			spin_lock(&conf->device_lock);
684 			if (!atomic_read(&sh->count)) {
685 				if (!test_bit(STRIPE_HANDLE, &sh->state))
686 					atomic_inc(&conf->active_stripes);
687 				BUG_ON(list_empty(&sh->lru) &&
688 				       !test_bit(STRIPE_EXPANDING, &sh->state));
689 				inc_empty_inactive_list_flag = 0;
690 				if (!list_empty(conf->inactive_list + hash))
691 					inc_empty_inactive_list_flag = 1;
692 				list_del_init(&sh->lru);
693 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
694 					atomic_inc(&conf->empty_inactive_list_nr);
695 				if (sh->group) {
696 					sh->group->stripes_cnt--;
697 					sh->group = NULL;
698 				}
699 			}
700 			atomic_inc(&sh->count);
701 			spin_unlock(&conf->device_lock);
702 		}
703 	} while (sh == NULL);
704 
705 	spin_unlock_irq(conf->hash_locks + hash);
706 	return sh;
707 }
708 
709 static bool is_full_stripe_write(struct stripe_head *sh)
710 {
711 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
712 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
713 }
714 
715 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
716 {
717 	local_irq_disable();
718 	if (sh1 > sh2) {
719 		spin_lock(&sh2->stripe_lock);
720 		spin_lock_nested(&sh1->stripe_lock, 1);
721 	} else {
722 		spin_lock(&sh1->stripe_lock);
723 		spin_lock_nested(&sh2->stripe_lock, 1);
724 	}
725 }
726 
727 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
728 {
729 	spin_unlock(&sh1->stripe_lock);
730 	spin_unlock(&sh2->stripe_lock);
731 	local_irq_enable();
732 }
733 
734 /* Only freshly new full stripe normal write stripe can be added to a batch list */
735 static bool stripe_can_batch(struct stripe_head *sh)
736 {
737 	struct r5conf *conf = sh->raid_conf;
738 
739 	if (conf->log || raid5_has_ppl(conf))
740 		return false;
741 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
742 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
743 		is_full_stripe_write(sh);
744 }
745 
746 /* we only do back search */
747 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
748 {
749 	struct stripe_head *head;
750 	sector_t head_sector, tmp_sec;
751 	int hash;
752 	int dd_idx;
753 	int inc_empty_inactive_list_flag;
754 
755 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
756 	tmp_sec = sh->sector;
757 	if (!sector_div(tmp_sec, conf->chunk_sectors))
758 		return;
759 	head_sector = sh->sector - STRIPE_SECTORS;
760 
761 	hash = stripe_hash_locks_hash(head_sector);
762 	spin_lock_irq(conf->hash_locks + hash);
763 	head = __find_stripe(conf, head_sector, conf->generation);
764 	if (head && !atomic_inc_not_zero(&head->count)) {
765 		spin_lock(&conf->device_lock);
766 		if (!atomic_read(&head->count)) {
767 			if (!test_bit(STRIPE_HANDLE, &head->state))
768 				atomic_inc(&conf->active_stripes);
769 			BUG_ON(list_empty(&head->lru) &&
770 			       !test_bit(STRIPE_EXPANDING, &head->state));
771 			inc_empty_inactive_list_flag = 0;
772 			if (!list_empty(conf->inactive_list + hash))
773 				inc_empty_inactive_list_flag = 1;
774 			list_del_init(&head->lru);
775 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
776 				atomic_inc(&conf->empty_inactive_list_nr);
777 			if (head->group) {
778 				head->group->stripes_cnt--;
779 				head->group = NULL;
780 			}
781 		}
782 		atomic_inc(&head->count);
783 		spin_unlock(&conf->device_lock);
784 	}
785 	spin_unlock_irq(conf->hash_locks + hash);
786 
787 	if (!head)
788 		return;
789 	if (!stripe_can_batch(head))
790 		goto out;
791 
792 	lock_two_stripes(head, sh);
793 	/* clear_batch_ready clear the flag */
794 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
795 		goto unlock_out;
796 
797 	if (sh->batch_head)
798 		goto unlock_out;
799 
800 	dd_idx = 0;
801 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
802 		dd_idx++;
803 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
804 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
805 		goto unlock_out;
806 
807 	if (head->batch_head) {
808 		spin_lock(&head->batch_head->batch_lock);
809 		/* This batch list is already running */
810 		if (!stripe_can_batch(head)) {
811 			spin_unlock(&head->batch_head->batch_lock);
812 			goto unlock_out;
813 		}
814 
815 		/*
816 		 * at this point, head's BATCH_READY could be cleared, but we
817 		 * can still add the stripe to batch list
818 		 */
819 		list_add(&sh->batch_list, &head->batch_list);
820 		spin_unlock(&head->batch_head->batch_lock);
821 
822 		sh->batch_head = head->batch_head;
823 	} else {
824 		head->batch_head = head;
825 		sh->batch_head = head->batch_head;
826 		spin_lock(&head->batch_lock);
827 		list_add_tail(&sh->batch_list, &head->batch_list);
828 		spin_unlock(&head->batch_lock);
829 	}
830 
831 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
832 		if (atomic_dec_return(&conf->preread_active_stripes)
833 		    < IO_THRESHOLD)
834 			md_wakeup_thread(conf->mddev->thread);
835 
836 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
837 		int seq = sh->bm_seq;
838 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
839 		    sh->batch_head->bm_seq > seq)
840 			seq = sh->batch_head->bm_seq;
841 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
842 		sh->batch_head->bm_seq = seq;
843 	}
844 
845 	atomic_inc(&sh->count);
846 unlock_out:
847 	unlock_two_stripes(head, sh);
848 out:
849 	raid5_release_stripe(head);
850 }
851 
852 /* Determine if 'data_offset' or 'new_data_offset' should be used
853  * in this stripe_head.
854  */
855 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
856 {
857 	sector_t progress = conf->reshape_progress;
858 	/* Need a memory barrier to make sure we see the value
859 	 * of conf->generation, or ->data_offset that was set before
860 	 * reshape_progress was updated.
861 	 */
862 	smp_rmb();
863 	if (progress == MaxSector)
864 		return 0;
865 	if (sh->generation == conf->generation - 1)
866 		return 0;
867 	/* We are in a reshape, and this is a new-generation stripe,
868 	 * so use new_data_offset.
869 	 */
870 	return 1;
871 }
872 
873 static void dispatch_bio_list(struct bio_list *tmp)
874 {
875 	struct bio *bio;
876 
877 	while ((bio = bio_list_pop(tmp)))
878 		generic_make_request(bio);
879 }
880 
881 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
882 {
883 	const struct r5pending_data *da = list_entry(a,
884 				struct r5pending_data, sibling);
885 	const struct r5pending_data *db = list_entry(b,
886 				struct r5pending_data, sibling);
887 	if (da->sector > db->sector)
888 		return 1;
889 	if (da->sector < db->sector)
890 		return -1;
891 	return 0;
892 }
893 
894 static void dispatch_defer_bios(struct r5conf *conf, int target,
895 				struct bio_list *list)
896 {
897 	struct r5pending_data *data;
898 	struct list_head *first, *next = NULL;
899 	int cnt = 0;
900 
901 	if (conf->pending_data_cnt == 0)
902 		return;
903 
904 	list_sort(NULL, &conf->pending_list, cmp_stripe);
905 
906 	first = conf->pending_list.next;
907 
908 	/* temporarily move the head */
909 	if (conf->next_pending_data)
910 		list_move_tail(&conf->pending_list,
911 				&conf->next_pending_data->sibling);
912 
913 	while (!list_empty(&conf->pending_list)) {
914 		data = list_first_entry(&conf->pending_list,
915 			struct r5pending_data, sibling);
916 		if (&data->sibling == first)
917 			first = data->sibling.next;
918 		next = data->sibling.next;
919 
920 		bio_list_merge(list, &data->bios);
921 		list_move(&data->sibling, &conf->free_list);
922 		cnt++;
923 		if (cnt >= target)
924 			break;
925 	}
926 	conf->pending_data_cnt -= cnt;
927 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
928 
929 	if (next != &conf->pending_list)
930 		conf->next_pending_data = list_entry(next,
931 				struct r5pending_data, sibling);
932 	else
933 		conf->next_pending_data = NULL;
934 	/* list isn't empty */
935 	if (first != &conf->pending_list)
936 		list_move_tail(&conf->pending_list, first);
937 }
938 
939 static void flush_deferred_bios(struct r5conf *conf)
940 {
941 	struct bio_list tmp = BIO_EMPTY_LIST;
942 
943 	if (conf->pending_data_cnt == 0)
944 		return;
945 
946 	spin_lock(&conf->pending_bios_lock);
947 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
948 	BUG_ON(conf->pending_data_cnt != 0);
949 	spin_unlock(&conf->pending_bios_lock);
950 
951 	dispatch_bio_list(&tmp);
952 }
953 
954 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
955 				struct bio_list *bios)
956 {
957 	struct bio_list tmp = BIO_EMPTY_LIST;
958 	struct r5pending_data *ent;
959 
960 	spin_lock(&conf->pending_bios_lock);
961 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
962 							sibling);
963 	list_move_tail(&ent->sibling, &conf->pending_list);
964 	ent->sector = sector;
965 	bio_list_init(&ent->bios);
966 	bio_list_merge(&ent->bios, bios);
967 	conf->pending_data_cnt++;
968 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
969 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
970 
971 	spin_unlock(&conf->pending_bios_lock);
972 
973 	dispatch_bio_list(&tmp);
974 }
975 
976 static void
977 raid5_end_read_request(struct bio *bi);
978 static void
979 raid5_end_write_request(struct bio *bi);
980 
981 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
982 {
983 	struct r5conf *conf = sh->raid_conf;
984 	int i, disks = sh->disks;
985 	struct stripe_head *head_sh = sh;
986 	struct bio_list pending_bios = BIO_EMPTY_LIST;
987 	bool should_defer;
988 
989 	might_sleep();
990 
991 	if (log_stripe(sh, s) == 0)
992 		return;
993 
994 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
995 
996 	for (i = disks; i--; ) {
997 		int op, op_flags = 0;
998 		int replace_only = 0;
999 		struct bio *bi, *rbi;
1000 		struct md_rdev *rdev, *rrdev = NULL;
1001 
1002 		sh = head_sh;
1003 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1004 			op = REQ_OP_WRITE;
1005 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1006 				op_flags = REQ_FUA;
1007 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1008 				op = REQ_OP_DISCARD;
1009 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1010 			op = REQ_OP_READ;
1011 		else if (test_and_clear_bit(R5_WantReplace,
1012 					    &sh->dev[i].flags)) {
1013 			op = REQ_OP_WRITE;
1014 			replace_only = 1;
1015 		} else
1016 			continue;
1017 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1018 			op_flags |= REQ_SYNC;
1019 
1020 again:
1021 		bi = &sh->dev[i].req;
1022 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
1023 
1024 		rcu_read_lock();
1025 		rrdev = rcu_dereference(conf->disks[i].replacement);
1026 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1027 		rdev = rcu_dereference(conf->disks[i].rdev);
1028 		if (!rdev) {
1029 			rdev = rrdev;
1030 			rrdev = NULL;
1031 		}
1032 		if (op_is_write(op)) {
1033 			if (replace_only)
1034 				rdev = NULL;
1035 			if (rdev == rrdev)
1036 				/* We raced and saw duplicates */
1037 				rrdev = NULL;
1038 		} else {
1039 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1040 				rdev = rrdev;
1041 			rrdev = NULL;
1042 		}
1043 
1044 		if (rdev && test_bit(Faulty, &rdev->flags))
1045 			rdev = NULL;
1046 		if (rdev)
1047 			atomic_inc(&rdev->nr_pending);
1048 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1049 			rrdev = NULL;
1050 		if (rrdev)
1051 			atomic_inc(&rrdev->nr_pending);
1052 		rcu_read_unlock();
1053 
1054 		/* We have already checked bad blocks for reads.  Now
1055 		 * need to check for writes.  We never accept write errors
1056 		 * on the replacement, so we don't to check rrdev.
1057 		 */
1058 		while (op_is_write(op) && rdev &&
1059 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1060 			sector_t first_bad;
1061 			int bad_sectors;
1062 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1063 					      &first_bad, &bad_sectors);
1064 			if (!bad)
1065 				break;
1066 
1067 			if (bad < 0) {
1068 				set_bit(BlockedBadBlocks, &rdev->flags);
1069 				if (!conf->mddev->external &&
1070 				    conf->mddev->sb_flags) {
1071 					/* It is very unlikely, but we might
1072 					 * still need to write out the
1073 					 * bad block log - better give it
1074 					 * a chance*/
1075 					md_check_recovery(conf->mddev);
1076 				}
1077 				/*
1078 				 * Because md_wait_for_blocked_rdev
1079 				 * will dec nr_pending, we must
1080 				 * increment it first.
1081 				 */
1082 				atomic_inc(&rdev->nr_pending);
1083 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1084 			} else {
1085 				/* Acknowledged bad block - skip the write */
1086 				rdev_dec_pending(rdev, conf->mddev);
1087 				rdev = NULL;
1088 			}
1089 		}
1090 
1091 		if (rdev) {
1092 			if (s->syncing || s->expanding || s->expanded
1093 			    || s->replacing)
1094 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1095 
1096 			set_bit(STRIPE_IO_STARTED, &sh->state);
1097 
1098 			bi->bi_bdev = rdev->bdev;
1099 			bio_set_op_attrs(bi, op, op_flags);
1100 			bi->bi_end_io = op_is_write(op)
1101 				? raid5_end_write_request
1102 				: raid5_end_read_request;
1103 			bi->bi_private = sh;
1104 
1105 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1106 				__func__, (unsigned long long)sh->sector,
1107 				bi->bi_opf, i);
1108 			atomic_inc(&sh->count);
1109 			if (sh != head_sh)
1110 				atomic_inc(&head_sh->count);
1111 			if (use_new_offset(conf, sh))
1112 				bi->bi_iter.bi_sector = (sh->sector
1113 						 + rdev->new_data_offset);
1114 			else
1115 				bi->bi_iter.bi_sector = (sh->sector
1116 						 + rdev->data_offset);
1117 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1118 				bi->bi_opf |= REQ_NOMERGE;
1119 
1120 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1121 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1122 
1123 			if (!op_is_write(op) &&
1124 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1125 				/*
1126 				 * issuing read for a page in journal, this
1127 				 * must be preparing for prexor in rmw; read
1128 				 * the data into orig_page
1129 				 */
1130 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1131 			else
1132 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1133 			bi->bi_vcnt = 1;
1134 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1135 			bi->bi_io_vec[0].bv_offset = 0;
1136 			bi->bi_iter.bi_size = STRIPE_SIZE;
1137 			/*
1138 			 * If this is discard request, set bi_vcnt 0. We don't
1139 			 * want to confuse SCSI because SCSI will replace payload
1140 			 */
1141 			if (op == REQ_OP_DISCARD)
1142 				bi->bi_vcnt = 0;
1143 			if (rrdev)
1144 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1145 
1146 			if (conf->mddev->gendisk)
1147 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1148 						      bi, disk_devt(conf->mddev->gendisk),
1149 						      sh->dev[i].sector);
1150 			if (should_defer && op_is_write(op))
1151 				bio_list_add(&pending_bios, bi);
1152 			else
1153 				generic_make_request(bi);
1154 		}
1155 		if (rrdev) {
1156 			if (s->syncing || s->expanding || s->expanded
1157 			    || s->replacing)
1158 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1159 
1160 			set_bit(STRIPE_IO_STARTED, &sh->state);
1161 
1162 			rbi->bi_bdev = rrdev->bdev;
1163 			bio_set_op_attrs(rbi, op, op_flags);
1164 			BUG_ON(!op_is_write(op));
1165 			rbi->bi_end_io = raid5_end_write_request;
1166 			rbi->bi_private = sh;
1167 
1168 			pr_debug("%s: for %llu schedule op %d on "
1169 				 "replacement disc %d\n",
1170 				__func__, (unsigned long long)sh->sector,
1171 				rbi->bi_opf, i);
1172 			atomic_inc(&sh->count);
1173 			if (sh != head_sh)
1174 				atomic_inc(&head_sh->count);
1175 			if (use_new_offset(conf, sh))
1176 				rbi->bi_iter.bi_sector = (sh->sector
1177 						  + rrdev->new_data_offset);
1178 			else
1179 				rbi->bi_iter.bi_sector = (sh->sector
1180 						  + rrdev->data_offset);
1181 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1182 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1183 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1184 			rbi->bi_vcnt = 1;
1185 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1186 			rbi->bi_io_vec[0].bv_offset = 0;
1187 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1188 			/*
1189 			 * If this is discard request, set bi_vcnt 0. We don't
1190 			 * want to confuse SCSI because SCSI will replace payload
1191 			 */
1192 			if (op == REQ_OP_DISCARD)
1193 				rbi->bi_vcnt = 0;
1194 			if (conf->mddev->gendisk)
1195 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1196 						      rbi, disk_devt(conf->mddev->gendisk),
1197 						      sh->dev[i].sector);
1198 			if (should_defer && op_is_write(op))
1199 				bio_list_add(&pending_bios, rbi);
1200 			else
1201 				generic_make_request(rbi);
1202 		}
1203 		if (!rdev && !rrdev) {
1204 			if (op_is_write(op))
1205 				set_bit(STRIPE_DEGRADED, &sh->state);
1206 			pr_debug("skip op %d on disc %d for sector %llu\n",
1207 				bi->bi_opf, i, (unsigned long long)sh->sector);
1208 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1209 			set_bit(STRIPE_HANDLE, &sh->state);
1210 		}
1211 
1212 		if (!head_sh->batch_head)
1213 			continue;
1214 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1215 				      batch_list);
1216 		if (sh != head_sh)
1217 			goto again;
1218 	}
1219 
1220 	if (should_defer && !bio_list_empty(&pending_bios))
1221 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1222 }
1223 
1224 static struct dma_async_tx_descriptor *
1225 async_copy_data(int frombio, struct bio *bio, struct page **page,
1226 	sector_t sector, struct dma_async_tx_descriptor *tx,
1227 	struct stripe_head *sh, int no_skipcopy)
1228 {
1229 	struct bio_vec bvl;
1230 	struct bvec_iter iter;
1231 	struct page *bio_page;
1232 	int page_offset;
1233 	struct async_submit_ctl submit;
1234 	enum async_tx_flags flags = 0;
1235 
1236 	if (bio->bi_iter.bi_sector >= sector)
1237 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1238 	else
1239 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1240 
1241 	if (frombio)
1242 		flags |= ASYNC_TX_FENCE;
1243 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1244 
1245 	bio_for_each_segment(bvl, bio, iter) {
1246 		int len = bvl.bv_len;
1247 		int clen;
1248 		int b_offset = 0;
1249 
1250 		if (page_offset < 0) {
1251 			b_offset = -page_offset;
1252 			page_offset += b_offset;
1253 			len -= b_offset;
1254 		}
1255 
1256 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1257 			clen = STRIPE_SIZE - page_offset;
1258 		else
1259 			clen = len;
1260 
1261 		if (clen > 0) {
1262 			b_offset += bvl.bv_offset;
1263 			bio_page = bvl.bv_page;
1264 			if (frombio) {
1265 				if (sh->raid_conf->skip_copy &&
1266 				    b_offset == 0 && page_offset == 0 &&
1267 				    clen == STRIPE_SIZE &&
1268 				    !no_skipcopy)
1269 					*page = bio_page;
1270 				else
1271 					tx = async_memcpy(*page, bio_page, page_offset,
1272 						  b_offset, clen, &submit);
1273 			} else
1274 				tx = async_memcpy(bio_page, *page, b_offset,
1275 						  page_offset, clen, &submit);
1276 		}
1277 		/* chain the operations */
1278 		submit.depend_tx = tx;
1279 
1280 		if (clen < len) /* hit end of page */
1281 			break;
1282 		page_offset +=  len;
1283 	}
1284 
1285 	return tx;
1286 }
1287 
1288 static void ops_complete_biofill(void *stripe_head_ref)
1289 {
1290 	struct stripe_head *sh = stripe_head_ref;
1291 	int i;
1292 
1293 	pr_debug("%s: stripe %llu\n", __func__,
1294 		(unsigned long long)sh->sector);
1295 
1296 	/* clear completed biofills */
1297 	for (i = sh->disks; i--; ) {
1298 		struct r5dev *dev = &sh->dev[i];
1299 
1300 		/* acknowledge completion of a biofill operation */
1301 		/* and check if we need to reply to a read request,
1302 		 * new R5_Wantfill requests are held off until
1303 		 * !STRIPE_BIOFILL_RUN
1304 		 */
1305 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1306 			struct bio *rbi, *rbi2;
1307 
1308 			BUG_ON(!dev->read);
1309 			rbi = dev->read;
1310 			dev->read = NULL;
1311 			while (rbi && rbi->bi_iter.bi_sector <
1312 				dev->sector + STRIPE_SECTORS) {
1313 				rbi2 = r5_next_bio(rbi, dev->sector);
1314 				bio_endio(rbi);
1315 				rbi = rbi2;
1316 			}
1317 		}
1318 	}
1319 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1320 
1321 	set_bit(STRIPE_HANDLE, &sh->state);
1322 	raid5_release_stripe(sh);
1323 }
1324 
1325 static void ops_run_biofill(struct stripe_head *sh)
1326 {
1327 	struct dma_async_tx_descriptor *tx = NULL;
1328 	struct async_submit_ctl submit;
1329 	int i;
1330 
1331 	BUG_ON(sh->batch_head);
1332 	pr_debug("%s: stripe %llu\n", __func__,
1333 		(unsigned long long)sh->sector);
1334 
1335 	for (i = sh->disks; i--; ) {
1336 		struct r5dev *dev = &sh->dev[i];
1337 		if (test_bit(R5_Wantfill, &dev->flags)) {
1338 			struct bio *rbi;
1339 			spin_lock_irq(&sh->stripe_lock);
1340 			dev->read = rbi = dev->toread;
1341 			dev->toread = NULL;
1342 			spin_unlock_irq(&sh->stripe_lock);
1343 			while (rbi && rbi->bi_iter.bi_sector <
1344 				dev->sector + STRIPE_SECTORS) {
1345 				tx = async_copy_data(0, rbi, &dev->page,
1346 						     dev->sector, tx, sh, 0);
1347 				rbi = r5_next_bio(rbi, dev->sector);
1348 			}
1349 		}
1350 	}
1351 
1352 	atomic_inc(&sh->count);
1353 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1354 	async_trigger_callback(&submit);
1355 }
1356 
1357 static void mark_target_uptodate(struct stripe_head *sh, int target)
1358 {
1359 	struct r5dev *tgt;
1360 
1361 	if (target < 0)
1362 		return;
1363 
1364 	tgt = &sh->dev[target];
1365 	set_bit(R5_UPTODATE, &tgt->flags);
1366 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1367 	clear_bit(R5_Wantcompute, &tgt->flags);
1368 }
1369 
1370 static void ops_complete_compute(void *stripe_head_ref)
1371 {
1372 	struct stripe_head *sh = stripe_head_ref;
1373 
1374 	pr_debug("%s: stripe %llu\n", __func__,
1375 		(unsigned long long)sh->sector);
1376 
1377 	/* mark the computed target(s) as uptodate */
1378 	mark_target_uptodate(sh, sh->ops.target);
1379 	mark_target_uptodate(sh, sh->ops.target2);
1380 
1381 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1382 	if (sh->check_state == check_state_compute_run)
1383 		sh->check_state = check_state_compute_result;
1384 	set_bit(STRIPE_HANDLE, &sh->state);
1385 	raid5_release_stripe(sh);
1386 }
1387 
1388 /* return a pointer to the address conversion region of the scribble buffer */
1389 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1390 				 struct raid5_percpu *percpu, int i)
1391 {
1392 	void *addr;
1393 
1394 	addr = flex_array_get(percpu->scribble, i);
1395 	return addr + sizeof(struct page *) * (sh->disks + 2);
1396 }
1397 
1398 /* return a pointer to the address conversion region of the scribble buffer */
1399 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1400 {
1401 	void *addr;
1402 
1403 	addr = flex_array_get(percpu->scribble, i);
1404 	return addr;
1405 }
1406 
1407 static struct dma_async_tx_descriptor *
1408 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1409 {
1410 	int disks = sh->disks;
1411 	struct page **xor_srcs = to_addr_page(percpu, 0);
1412 	int target = sh->ops.target;
1413 	struct r5dev *tgt = &sh->dev[target];
1414 	struct page *xor_dest = tgt->page;
1415 	int count = 0;
1416 	struct dma_async_tx_descriptor *tx;
1417 	struct async_submit_ctl submit;
1418 	int i;
1419 
1420 	BUG_ON(sh->batch_head);
1421 
1422 	pr_debug("%s: stripe %llu block: %d\n",
1423 		__func__, (unsigned long long)sh->sector, target);
1424 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1425 
1426 	for (i = disks; i--; )
1427 		if (i != target)
1428 			xor_srcs[count++] = sh->dev[i].page;
1429 
1430 	atomic_inc(&sh->count);
1431 
1432 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1433 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1434 	if (unlikely(count == 1))
1435 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1436 	else
1437 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1438 
1439 	return tx;
1440 }
1441 
1442 /* set_syndrome_sources - populate source buffers for gen_syndrome
1443  * @srcs - (struct page *) array of size sh->disks
1444  * @sh - stripe_head to parse
1445  *
1446  * Populates srcs in proper layout order for the stripe and returns the
1447  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1448  * destination buffer is recorded in srcs[count] and the Q destination
1449  * is recorded in srcs[count+1]].
1450  */
1451 static int set_syndrome_sources(struct page **srcs,
1452 				struct stripe_head *sh,
1453 				int srctype)
1454 {
1455 	int disks = sh->disks;
1456 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1457 	int d0_idx = raid6_d0(sh);
1458 	int count;
1459 	int i;
1460 
1461 	for (i = 0; i < disks; i++)
1462 		srcs[i] = NULL;
1463 
1464 	count = 0;
1465 	i = d0_idx;
1466 	do {
1467 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1468 		struct r5dev *dev = &sh->dev[i];
1469 
1470 		if (i == sh->qd_idx || i == sh->pd_idx ||
1471 		    (srctype == SYNDROME_SRC_ALL) ||
1472 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1473 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1474 		      test_bit(R5_InJournal, &dev->flags))) ||
1475 		    (srctype == SYNDROME_SRC_WRITTEN &&
1476 		     (dev->written ||
1477 		      test_bit(R5_InJournal, &dev->flags)))) {
1478 			if (test_bit(R5_InJournal, &dev->flags))
1479 				srcs[slot] = sh->dev[i].orig_page;
1480 			else
1481 				srcs[slot] = sh->dev[i].page;
1482 		}
1483 		i = raid6_next_disk(i, disks);
1484 	} while (i != d0_idx);
1485 
1486 	return syndrome_disks;
1487 }
1488 
1489 static struct dma_async_tx_descriptor *
1490 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1491 {
1492 	int disks = sh->disks;
1493 	struct page **blocks = to_addr_page(percpu, 0);
1494 	int target;
1495 	int qd_idx = sh->qd_idx;
1496 	struct dma_async_tx_descriptor *tx;
1497 	struct async_submit_ctl submit;
1498 	struct r5dev *tgt;
1499 	struct page *dest;
1500 	int i;
1501 	int count;
1502 
1503 	BUG_ON(sh->batch_head);
1504 	if (sh->ops.target < 0)
1505 		target = sh->ops.target2;
1506 	else if (sh->ops.target2 < 0)
1507 		target = sh->ops.target;
1508 	else
1509 		/* we should only have one valid target */
1510 		BUG();
1511 	BUG_ON(target < 0);
1512 	pr_debug("%s: stripe %llu block: %d\n",
1513 		__func__, (unsigned long long)sh->sector, target);
1514 
1515 	tgt = &sh->dev[target];
1516 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1517 	dest = tgt->page;
1518 
1519 	atomic_inc(&sh->count);
1520 
1521 	if (target == qd_idx) {
1522 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1523 		blocks[count] = NULL; /* regenerating p is not necessary */
1524 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1525 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1526 				  ops_complete_compute, sh,
1527 				  to_addr_conv(sh, percpu, 0));
1528 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1529 	} else {
1530 		/* Compute any data- or p-drive using XOR */
1531 		count = 0;
1532 		for (i = disks; i-- ; ) {
1533 			if (i == target || i == qd_idx)
1534 				continue;
1535 			blocks[count++] = sh->dev[i].page;
1536 		}
1537 
1538 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1539 				  NULL, ops_complete_compute, sh,
1540 				  to_addr_conv(sh, percpu, 0));
1541 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1542 	}
1543 
1544 	return tx;
1545 }
1546 
1547 static struct dma_async_tx_descriptor *
1548 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1549 {
1550 	int i, count, disks = sh->disks;
1551 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1552 	int d0_idx = raid6_d0(sh);
1553 	int faila = -1, failb = -1;
1554 	int target = sh->ops.target;
1555 	int target2 = sh->ops.target2;
1556 	struct r5dev *tgt = &sh->dev[target];
1557 	struct r5dev *tgt2 = &sh->dev[target2];
1558 	struct dma_async_tx_descriptor *tx;
1559 	struct page **blocks = to_addr_page(percpu, 0);
1560 	struct async_submit_ctl submit;
1561 
1562 	BUG_ON(sh->batch_head);
1563 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1564 		 __func__, (unsigned long long)sh->sector, target, target2);
1565 	BUG_ON(target < 0 || target2 < 0);
1566 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1567 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1568 
1569 	/* we need to open-code set_syndrome_sources to handle the
1570 	 * slot number conversion for 'faila' and 'failb'
1571 	 */
1572 	for (i = 0; i < disks ; i++)
1573 		blocks[i] = NULL;
1574 	count = 0;
1575 	i = d0_idx;
1576 	do {
1577 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1578 
1579 		blocks[slot] = sh->dev[i].page;
1580 
1581 		if (i == target)
1582 			faila = slot;
1583 		if (i == target2)
1584 			failb = slot;
1585 		i = raid6_next_disk(i, disks);
1586 	} while (i != d0_idx);
1587 
1588 	BUG_ON(faila == failb);
1589 	if (failb < faila)
1590 		swap(faila, failb);
1591 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1592 		 __func__, (unsigned long long)sh->sector, faila, failb);
1593 
1594 	atomic_inc(&sh->count);
1595 
1596 	if (failb == syndrome_disks+1) {
1597 		/* Q disk is one of the missing disks */
1598 		if (faila == syndrome_disks) {
1599 			/* Missing P+Q, just recompute */
1600 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1601 					  ops_complete_compute, sh,
1602 					  to_addr_conv(sh, percpu, 0));
1603 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1604 						  STRIPE_SIZE, &submit);
1605 		} else {
1606 			struct page *dest;
1607 			int data_target;
1608 			int qd_idx = sh->qd_idx;
1609 
1610 			/* Missing D+Q: recompute D from P, then recompute Q */
1611 			if (target == qd_idx)
1612 				data_target = target2;
1613 			else
1614 				data_target = target;
1615 
1616 			count = 0;
1617 			for (i = disks; i-- ; ) {
1618 				if (i == data_target || i == qd_idx)
1619 					continue;
1620 				blocks[count++] = sh->dev[i].page;
1621 			}
1622 			dest = sh->dev[data_target].page;
1623 			init_async_submit(&submit,
1624 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1625 					  NULL, NULL, NULL,
1626 					  to_addr_conv(sh, percpu, 0));
1627 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1628 				       &submit);
1629 
1630 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1631 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1632 					  ops_complete_compute, sh,
1633 					  to_addr_conv(sh, percpu, 0));
1634 			return async_gen_syndrome(blocks, 0, count+2,
1635 						  STRIPE_SIZE, &submit);
1636 		}
1637 	} else {
1638 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1639 				  ops_complete_compute, sh,
1640 				  to_addr_conv(sh, percpu, 0));
1641 		if (failb == syndrome_disks) {
1642 			/* We're missing D+P. */
1643 			return async_raid6_datap_recov(syndrome_disks+2,
1644 						       STRIPE_SIZE, faila,
1645 						       blocks, &submit);
1646 		} else {
1647 			/* We're missing D+D. */
1648 			return async_raid6_2data_recov(syndrome_disks+2,
1649 						       STRIPE_SIZE, faila, failb,
1650 						       blocks, &submit);
1651 		}
1652 	}
1653 }
1654 
1655 static void ops_complete_prexor(void *stripe_head_ref)
1656 {
1657 	struct stripe_head *sh = stripe_head_ref;
1658 
1659 	pr_debug("%s: stripe %llu\n", __func__,
1660 		(unsigned long long)sh->sector);
1661 
1662 	if (r5c_is_writeback(sh->raid_conf->log))
1663 		/*
1664 		 * raid5-cache write back uses orig_page during prexor.
1665 		 * After prexor, it is time to free orig_page
1666 		 */
1667 		r5c_release_extra_page(sh);
1668 }
1669 
1670 static struct dma_async_tx_descriptor *
1671 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1672 		struct dma_async_tx_descriptor *tx)
1673 {
1674 	int disks = sh->disks;
1675 	struct page **xor_srcs = to_addr_page(percpu, 0);
1676 	int count = 0, pd_idx = sh->pd_idx, i;
1677 	struct async_submit_ctl submit;
1678 
1679 	/* existing parity data subtracted */
1680 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1681 
1682 	BUG_ON(sh->batch_head);
1683 	pr_debug("%s: stripe %llu\n", __func__,
1684 		(unsigned long long)sh->sector);
1685 
1686 	for (i = disks; i--; ) {
1687 		struct r5dev *dev = &sh->dev[i];
1688 		/* Only process blocks that are known to be uptodate */
1689 		if (test_bit(R5_InJournal, &dev->flags))
1690 			xor_srcs[count++] = dev->orig_page;
1691 		else if (test_bit(R5_Wantdrain, &dev->flags))
1692 			xor_srcs[count++] = dev->page;
1693 	}
1694 
1695 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1696 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1697 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1698 
1699 	return tx;
1700 }
1701 
1702 static struct dma_async_tx_descriptor *
1703 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1704 		struct dma_async_tx_descriptor *tx)
1705 {
1706 	struct page **blocks = to_addr_page(percpu, 0);
1707 	int count;
1708 	struct async_submit_ctl submit;
1709 
1710 	pr_debug("%s: stripe %llu\n", __func__,
1711 		(unsigned long long)sh->sector);
1712 
1713 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1714 
1715 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1716 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1717 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1718 
1719 	return tx;
1720 }
1721 
1722 static struct dma_async_tx_descriptor *
1723 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1724 {
1725 	struct r5conf *conf = sh->raid_conf;
1726 	int disks = sh->disks;
1727 	int i;
1728 	struct stripe_head *head_sh = sh;
1729 
1730 	pr_debug("%s: stripe %llu\n", __func__,
1731 		(unsigned long long)sh->sector);
1732 
1733 	for (i = disks; i--; ) {
1734 		struct r5dev *dev;
1735 		struct bio *chosen;
1736 
1737 		sh = head_sh;
1738 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1739 			struct bio *wbi;
1740 
1741 again:
1742 			dev = &sh->dev[i];
1743 			/*
1744 			 * clear R5_InJournal, so when rewriting a page in
1745 			 * journal, it is not skipped by r5l_log_stripe()
1746 			 */
1747 			clear_bit(R5_InJournal, &dev->flags);
1748 			spin_lock_irq(&sh->stripe_lock);
1749 			chosen = dev->towrite;
1750 			dev->towrite = NULL;
1751 			sh->overwrite_disks = 0;
1752 			BUG_ON(dev->written);
1753 			wbi = dev->written = chosen;
1754 			spin_unlock_irq(&sh->stripe_lock);
1755 			WARN_ON(dev->page != dev->orig_page);
1756 
1757 			while (wbi && wbi->bi_iter.bi_sector <
1758 				dev->sector + STRIPE_SECTORS) {
1759 				if (wbi->bi_opf & REQ_FUA)
1760 					set_bit(R5_WantFUA, &dev->flags);
1761 				if (wbi->bi_opf & REQ_SYNC)
1762 					set_bit(R5_SyncIO, &dev->flags);
1763 				if (bio_op(wbi) == REQ_OP_DISCARD)
1764 					set_bit(R5_Discard, &dev->flags);
1765 				else {
1766 					tx = async_copy_data(1, wbi, &dev->page,
1767 							     dev->sector, tx, sh,
1768 							     r5c_is_writeback(conf->log));
1769 					if (dev->page != dev->orig_page &&
1770 					    !r5c_is_writeback(conf->log)) {
1771 						set_bit(R5_SkipCopy, &dev->flags);
1772 						clear_bit(R5_UPTODATE, &dev->flags);
1773 						clear_bit(R5_OVERWRITE, &dev->flags);
1774 					}
1775 				}
1776 				wbi = r5_next_bio(wbi, dev->sector);
1777 			}
1778 
1779 			if (head_sh->batch_head) {
1780 				sh = list_first_entry(&sh->batch_list,
1781 						      struct stripe_head,
1782 						      batch_list);
1783 				if (sh == head_sh)
1784 					continue;
1785 				goto again;
1786 			}
1787 		}
1788 	}
1789 
1790 	return tx;
1791 }
1792 
1793 static void ops_complete_reconstruct(void *stripe_head_ref)
1794 {
1795 	struct stripe_head *sh = stripe_head_ref;
1796 	int disks = sh->disks;
1797 	int pd_idx = sh->pd_idx;
1798 	int qd_idx = sh->qd_idx;
1799 	int i;
1800 	bool fua = false, sync = false, discard = false;
1801 
1802 	pr_debug("%s: stripe %llu\n", __func__,
1803 		(unsigned long long)sh->sector);
1804 
1805 	for (i = disks; i--; ) {
1806 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1807 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1808 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1809 	}
1810 
1811 	for (i = disks; i--; ) {
1812 		struct r5dev *dev = &sh->dev[i];
1813 
1814 		if (dev->written || i == pd_idx || i == qd_idx) {
1815 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1816 				set_bit(R5_UPTODATE, &dev->flags);
1817 			if (fua)
1818 				set_bit(R5_WantFUA, &dev->flags);
1819 			if (sync)
1820 				set_bit(R5_SyncIO, &dev->flags);
1821 		}
1822 	}
1823 
1824 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1825 		sh->reconstruct_state = reconstruct_state_drain_result;
1826 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1827 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1828 	else {
1829 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1830 		sh->reconstruct_state = reconstruct_state_result;
1831 	}
1832 
1833 	set_bit(STRIPE_HANDLE, &sh->state);
1834 	raid5_release_stripe(sh);
1835 }
1836 
1837 static void
1838 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1839 		     struct dma_async_tx_descriptor *tx)
1840 {
1841 	int disks = sh->disks;
1842 	struct page **xor_srcs;
1843 	struct async_submit_ctl submit;
1844 	int count, pd_idx = sh->pd_idx, i;
1845 	struct page *xor_dest;
1846 	int prexor = 0;
1847 	unsigned long flags;
1848 	int j = 0;
1849 	struct stripe_head *head_sh = sh;
1850 	int last_stripe;
1851 
1852 	pr_debug("%s: stripe %llu\n", __func__,
1853 		(unsigned long long)sh->sector);
1854 
1855 	for (i = 0; i < sh->disks; i++) {
1856 		if (pd_idx == i)
1857 			continue;
1858 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1859 			break;
1860 	}
1861 	if (i >= sh->disks) {
1862 		atomic_inc(&sh->count);
1863 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1864 		ops_complete_reconstruct(sh);
1865 		return;
1866 	}
1867 again:
1868 	count = 0;
1869 	xor_srcs = to_addr_page(percpu, j);
1870 	/* check if prexor is active which means only process blocks
1871 	 * that are part of a read-modify-write (written)
1872 	 */
1873 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1874 		prexor = 1;
1875 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1876 		for (i = disks; i--; ) {
1877 			struct r5dev *dev = &sh->dev[i];
1878 			if (head_sh->dev[i].written ||
1879 			    test_bit(R5_InJournal, &head_sh->dev[i].flags))
1880 				xor_srcs[count++] = dev->page;
1881 		}
1882 	} else {
1883 		xor_dest = sh->dev[pd_idx].page;
1884 		for (i = disks; i--; ) {
1885 			struct r5dev *dev = &sh->dev[i];
1886 			if (i != pd_idx)
1887 				xor_srcs[count++] = dev->page;
1888 		}
1889 	}
1890 
1891 	/* 1/ if we prexor'd then the dest is reused as a source
1892 	 * 2/ if we did not prexor then we are redoing the parity
1893 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1894 	 * for the synchronous xor case
1895 	 */
1896 	last_stripe = !head_sh->batch_head ||
1897 		list_first_entry(&sh->batch_list,
1898 				 struct stripe_head, batch_list) == head_sh;
1899 	if (last_stripe) {
1900 		flags = ASYNC_TX_ACK |
1901 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1902 
1903 		atomic_inc(&head_sh->count);
1904 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1905 				  to_addr_conv(sh, percpu, j));
1906 	} else {
1907 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1908 		init_async_submit(&submit, flags, tx, NULL, NULL,
1909 				  to_addr_conv(sh, percpu, j));
1910 	}
1911 
1912 	if (unlikely(count == 1))
1913 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1914 	else
1915 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1916 	if (!last_stripe) {
1917 		j++;
1918 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1919 				      batch_list);
1920 		goto again;
1921 	}
1922 }
1923 
1924 static void
1925 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1926 		     struct dma_async_tx_descriptor *tx)
1927 {
1928 	struct async_submit_ctl submit;
1929 	struct page **blocks;
1930 	int count, i, j = 0;
1931 	struct stripe_head *head_sh = sh;
1932 	int last_stripe;
1933 	int synflags;
1934 	unsigned long txflags;
1935 
1936 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1937 
1938 	for (i = 0; i < sh->disks; i++) {
1939 		if (sh->pd_idx == i || sh->qd_idx == i)
1940 			continue;
1941 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1942 			break;
1943 	}
1944 	if (i >= sh->disks) {
1945 		atomic_inc(&sh->count);
1946 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1947 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1948 		ops_complete_reconstruct(sh);
1949 		return;
1950 	}
1951 
1952 again:
1953 	blocks = to_addr_page(percpu, j);
1954 
1955 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1956 		synflags = SYNDROME_SRC_WRITTEN;
1957 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1958 	} else {
1959 		synflags = SYNDROME_SRC_ALL;
1960 		txflags = ASYNC_TX_ACK;
1961 	}
1962 
1963 	count = set_syndrome_sources(blocks, sh, synflags);
1964 	last_stripe = !head_sh->batch_head ||
1965 		list_first_entry(&sh->batch_list,
1966 				 struct stripe_head, batch_list) == head_sh;
1967 
1968 	if (last_stripe) {
1969 		atomic_inc(&head_sh->count);
1970 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1971 				  head_sh, to_addr_conv(sh, percpu, j));
1972 	} else
1973 		init_async_submit(&submit, 0, tx, NULL, NULL,
1974 				  to_addr_conv(sh, percpu, j));
1975 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1976 	if (!last_stripe) {
1977 		j++;
1978 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1979 				      batch_list);
1980 		goto again;
1981 	}
1982 }
1983 
1984 static void ops_complete_check(void *stripe_head_ref)
1985 {
1986 	struct stripe_head *sh = stripe_head_ref;
1987 
1988 	pr_debug("%s: stripe %llu\n", __func__,
1989 		(unsigned long long)sh->sector);
1990 
1991 	sh->check_state = check_state_check_result;
1992 	set_bit(STRIPE_HANDLE, &sh->state);
1993 	raid5_release_stripe(sh);
1994 }
1995 
1996 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1997 {
1998 	int disks = sh->disks;
1999 	int pd_idx = sh->pd_idx;
2000 	int qd_idx = sh->qd_idx;
2001 	struct page *xor_dest;
2002 	struct page **xor_srcs = to_addr_page(percpu, 0);
2003 	struct dma_async_tx_descriptor *tx;
2004 	struct async_submit_ctl submit;
2005 	int count;
2006 	int i;
2007 
2008 	pr_debug("%s: stripe %llu\n", __func__,
2009 		(unsigned long long)sh->sector);
2010 
2011 	BUG_ON(sh->batch_head);
2012 	count = 0;
2013 	xor_dest = sh->dev[pd_idx].page;
2014 	xor_srcs[count++] = xor_dest;
2015 	for (i = disks; i--; ) {
2016 		if (i == pd_idx || i == qd_idx)
2017 			continue;
2018 		xor_srcs[count++] = sh->dev[i].page;
2019 	}
2020 
2021 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2022 			  to_addr_conv(sh, percpu, 0));
2023 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2024 			   &sh->ops.zero_sum_result, &submit);
2025 
2026 	atomic_inc(&sh->count);
2027 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2028 	tx = async_trigger_callback(&submit);
2029 }
2030 
2031 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2032 {
2033 	struct page **srcs = to_addr_page(percpu, 0);
2034 	struct async_submit_ctl submit;
2035 	int count;
2036 
2037 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2038 		(unsigned long long)sh->sector, checkp);
2039 
2040 	BUG_ON(sh->batch_head);
2041 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2042 	if (!checkp)
2043 		srcs[count] = NULL;
2044 
2045 	atomic_inc(&sh->count);
2046 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2047 			  sh, to_addr_conv(sh, percpu, 0));
2048 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2049 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2050 }
2051 
2052 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2053 {
2054 	int overlap_clear = 0, i, disks = sh->disks;
2055 	struct dma_async_tx_descriptor *tx = NULL;
2056 	struct r5conf *conf = sh->raid_conf;
2057 	int level = conf->level;
2058 	struct raid5_percpu *percpu;
2059 	unsigned long cpu;
2060 
2061 	cpu = get_cpu();
2062 	percpu = per_cpu_ptr(conf->percpu, cpu);
2063 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2064 		ops_run_biofill(sh);
2065 		overlap_clear++;
2066 	}
2067 
2068 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2069 		if (level < 6)
2070 			tx = ops_run_compute5(sh, percpu);
2071 		else {
2072 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2073 				tx = ops_run_compute6_1(sh, percpu);
2074 			else
2075 				tx = ops_run_compute6_2(sh, percpu);
2076 		}
2077 		/* terminate the chain if reconstruct is not set to be run */
2078 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2079 			async_tx_ack(tx);
2080 	}
2081 
2082 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2083 		if (level < 6)
2084 			tx = ops_run_prexor5(sh, percpu, tx);
2085 		else
2086 			tx = ops_run_prexor6(sh, percpu, tx);
2087 	}
2088 
2089 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2090 		tx = ops_run_partial_parity(sh, percpu, tx);
2091 
2092 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2093 		tx = ops_run_biodrain(sh, tx);
2094 		overlap_clear++;
2095 	}
2096 
2097 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2098 		if (level < 6)
2099 			ops_run_reconstruct5(sh, percpu, tx);
2100 		else
2101 			ops_run_reconstruct6(sh, percpu, tx);
2102 	}
2103 
2104 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2105 		if (sh->check_state == check_state_run)
2106 			ops_run_check_p(sh, percpu);
2107 		else if (sh->check_state == check_state_run_q)
2108 			ops_run_check_pq(sh, percpu, 0);
2109 		else if (sh->check_state == check_state_run_pq)
2110 			ops_run_check_pq(sh, percpu, 1);
2111 		else
2112 			BUG();
2113 	}
2114 
2115 	if (overlap_clear && !sh->batch_head)
2116 		for (i = disks; i--; ) {
2117 			struct r5dev *dev = &sh->dev[i];
2118 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2119 				wake_up(&sh->raid_conf->wait_for_overlap);
2120 		}
2121 	put_cpu();
2122 }
2123 
2124 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2125 {
2126 	if (sh->ppl_page)
2127 		__free_page(sh->ppl_page);
2128 	kmem_cache_free(sc, sh);
2129 }
2130 
2131 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2132 	int disks, struct r5conf *conf)
2133 {
2134 	struct stripe_head *sh;
2135 	int i;
2136 
2137 	sh = kmem_cache_zalloc(sc, gfp);
2138 	if (sh) {
2139 		spin_lock_init(&sh->stripe_lock);
2140 		spin_lock_init(&sh->batch_lock);
2141 		INIT_LIST_HEAD(&sh->batch_list);
2142 		INIT_LIST_HEAD(&sh->lru);
2143 		INIT_LIST_HEAD(&sh->r5c);
2144 		INIT_LIST_HEAD(&sh->log_list);
2145 		atomic_set(&sh->count, 1);
2146 		sh->raid_conf = conf;
2147 		sh->log_start = MaxSector;
2148 		for (i = 0; i < disks; i++) {
2149 			struct r5dev *dev = &sh->dev[i];
2150 
2151 			bio_init(&dev->req, &dev->vec, 1);
2152 			bio_init(&dev->rreq, &dev->rvec, 1);
2153 		}
2154 
2155 		if (raid5_has_ppl(conf)) {
2156 			sh->ppl_page = alloc_page(gfp);
2157 			if (!sh->ppl_page) {
2158 				free_stripe(sc, sh);
2159 				sh = NULL;
2160 			}
2161 		}
2162 	}
2163 	return sh;
2164 }
2165 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2166 {
2167 	struct stripe_head *sh;
2168 
2169 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2170 	if (!sh)
2171 		return 0;
2172 
2173 	if (grow_buffers(sh, gfp)) {
2174 		shrink_buffers(sh);
2175 		free_stripe(conf->slab_cache, sh);
2176 		return 0;
2177 	}
2178 	sh->hash_lock_index =
2179 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2180 	/* we just created an active stripe so... */
2181 	atomic_inc(&conf->active_stripes);
2182 
2183 	raid5_release_stripe(sh);
2184 	conf->max_nr_stripes++;
2185 	return 1;
2186 }
2187 
2188 static int grow_stripes(struct r5conf *conf, int num)
2189 {
2190 	struct kmem_cache *sc;
2191 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2192 
2193 	if (conf->mddev->gendisk)
2194 		sprintf(conf->cache_name[0],
2195 			"raid%d-%s", conf->level, mdname(conf->mddev));
2196 	else
2197 		sprintf(conf->cache_name[0],
2198 			"raid%d-%p", conf->level, conf->mddev);
2199 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2200 
2201 	conf->active_name = 0;
2202 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2203 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2204 			       0, 0, NULL);
2205 	if (!sc)
2206 		return 1;
2207 	conf->slab_cache = sc;
2208 	conf->pool_size = devs;
2209 	while (num--)
2210 		if (!grow_one_stripe(conf, GFP_KERNEL))
2211 			return 1;
2212 
2213 	return 0;
2214 }
2215 
2216 /**
2217  * scribble_len - return the required size of the scribble region
2218  * @num - total number of disks in the array
2219  *
2220  * The size must be enough to contain:
2221  * 1/ a struct page pointer for each device in the array +2
2222  * 2/ room to convert each entry in (1) to its corresponding dma
2223  *    (dma_map_page()) or page (page_address()) address.
2224  *
2225  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2226  * calculate over all devices (not just the data blocks), using zeros in place
2227  * of the P and Q blocks.
2228  */
2229 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2230 {
2231 	struct flex_array *ret;
2232 	size_t len;
2233 
2234 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2235 	ret = flex_array_alloc(len, cnt, flags);
2236 	if (!ret)
2237 		return NULL;
2238 	/* always prealloc all elements, so no locking is required */
2239 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2240 		flex_array_free(ret);
2241 		return NULL;
2242 	}
2243 	return ret;
2244 }
2245 
2246 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2247 {
2248 	unsigned long cpu;
2249 	int err = 0;
2250 
2251 	/*
2252 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2253 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2254 	 * should equal to new_disks and new_sectors
2255 	 */
2256 	if (conf->scribble_disks >= new_disks &&
2257 	    conf->scribble_sectors >= new_sectors)
2258 		return 0;
2259 	mddev_suspend(conf->mddev);
2260 	get_online_cpus();
2261 	for_each_present_cpu(cpu) {
2262 		struct raid5_percpu *percpu;
2263 		struct flex_array *scribble;
2264 
2265 		percpu = per_cpu_ptr(conf->percpu, cpu);
2266 		scribble = scribble_alloc(new_disks,
2267 					  new_sectors / STRIPE_SECTORS,
2268 					  GFP_NOIO);
2269 
2270 		if (scribble) {
2271 			flex_array_free(percpu->scribble);
2272 			percpu->scribble = scribble;
2273 		} else {
2274 			err = -ENOMEM;
2275 			break;
2276 		}
2277 	}
2278 	put_online_cpus();
2279 	mddev_resume(conf->mddev);
2280 	if (!err) {
2281 		conf->scribble_disks = new_disks;
2282 		conf->scribble_sectors = new_sectors;
2283 	}
2284 	return err;
2285 }
2286 
2287 static int resize_stripes(struct r5conf *conf, int newsize)
2288 {
2289 	/* Make all the stripes able to hold 'newsize' devices.
2290 	 * New slots in each stripe get 'page' set to a new page.
2291 	 *
2292 	 * This happens in stages:
2293 	 * 1/ create a new kmem_cache and allocate the required number of
2294 	 *    stripe_heads.
2295 	 * 2/ gather all the old stripe_heads and transfer the pages across
2296 	 *    to the new stripe_heads.  This will have the side effect of
2297 	 *    freezing the array as once all stripe_heads have been collected,
2298 	 *    no IO will be possible.  Old stripe heads are freed once their
2299 	 *    pages have been transferred over, and the old kmem_cache is
2300 	 *    freed when all stripes are done.
2301 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2302 	 *    we simple return a failure status - no need to clean anything up.
2303 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2304 	 *    If this fails, we don't bother trying the shrink the
2305 	 *    stripe_heads down again, we just leave them as they are.
2306 	 *    As each stripe_head is processed the new one is released into
2307 	 *    active service.
2308 	 *
2309 	 * Once step2 is started, we cannot afford to wait for a write,
2310 	 * so we use GFP_NOIO allocations.
2311 	 */
2312 	struct stripe_head *osh, *nsh;
2313 	LIST_HEAD(newstripes);
2314 	struct disk_info *ndisks;
2315 	int err;
2316 	struct kmem_cache *sc;
2317 	int i;
2318 	int hash, cnt;
2319 
2320 	err = md_allow_write(conf->mddev);
2321 	if (err)
2322 		return err;
2323 
2324 	/* Step 1 */
2325 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2326 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2327 			       0, 0, NULL);
2328 	if (!sc)
2329 		return -ENOMEM;
2330 
2331 	/* Need to ensure auto-resizing doesn't interfere */
2332 	mutex_lock(&conf->cache_size_mutex);
2333 
2334 	for (i = conf->max_nr_stripes; i; i--) {
2335 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2336 		if (!nsh)
2337 			break;
2338 
2339 		list_add(&nsh->lru, &newstripes);
2340 	}
2341 	if (i) {
2342 		/* didn't get enough, give up */
2343 		while (!list_empty(&newstripes)) {
2344 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2345 			list_del(&nsh->lru);
2346 			free_stripe(sc, nsh);
2347 		}
2348 		kmem_cache_destroy(sc);
2349 		mutex_unlock(&conf->cache_size_mutex);
2350 		return -ENOMEM;
2351 	}
2352 	/* Step 2 - Must use GFP_NOIO now.
2353 	 * OK, we have enough stripes, start collecting inactive
2354 	 * stripes and copying them over
2355 	 */
2356 	hash = 0;
2357 	cnt = 0;
2358 	list_for_each_entry(nsh, &newstripes, lru) {
2359 		lock_device_hash_lock(conf, hash);
2360 		wait_event_cmd(conf->wait_for_stripe,
2361 				    !list_empty(conf->inactive_list + hash),
2362 				    unlock_device_hash_lock(conf, hash),
2363 				    lock_device_hash_lock(conf, hash));
2364 		osh = get_free_stripe(conf, hash);
2365 		unlock_device_hash_lock(conf, hash);
2366 
2367 		for(i=0; i<conf->pool_size; i++) {
2368 			nsh->dev[i].page = osh->dev[i].page;
2369 			nsh->dev[i].orig_page = osh->dev[i].page;
2370 		}
2371 		nsh->hash_lock_index = hash;
2372 		free_stripe(conf->slab_cache, osh);
2373 		cnt++;
2374 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2375 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2376 			hash++;
2377 			cnt = 0;
2378 		}
2379 	}
2380 	kmem_cache_destroy(conf->slab_cache);
2381 
2382 	/* Step 3.
2383 	 * At this point, we are holding all the stripes so the array
2384 	 * is completely stalled, so now is a good time to resize
2385 	 * conf->disks and the scribble region
2386 	 */
2387 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2388 	if (ndisks) {
2389 		for (i = 0; i < conf->pool_size; i++)
2390 			ndisks[i] = conf->disks[i];
2391 
2392 		for (i = conf->pool_size; i < newsize; i++) {
2393 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2394 			if (!ndisks[i].extra_page)
2395 				err = -ENOMEM;
2396 		}
2397 
2398 		if (err) {
2399 			for (i = conf->pool_size; i < newsize; i++)
2400 				if (ndisks[i].extra_page)
2401 					put_page(ndisks[i].extra_page);
2402 			kfree(ndisks);
2403 		} else {
2404 			kfree(conf->disks);
2405 			conf->disks = ndisks;
2406 		}
2407 	} else
2408 		err = -ENOMEM;
2409 
2410 	mutex_unlock(&conf->cache_size_mutex);
2411 
2412 	conf->slab_cache = sc;
2413 	conf->active_name = 1-conf->active_name;
2414 
2415 	/* Step 4, return new stripes to service */
2416 	while(!list_empty(&newstripes)) {
2417 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2418 		list_del_init(&nsh->lru);
2419 
2420 		for (i=conf->raid_disks; i < newsize; i++)
2421 			if (nsh->dev[i].page == NULL) {
2422 				struct page *p = alloc_page(GFP_NOIO);
2423 				nsh->dev[i].page = p;
2424 				nsh->dev[i].orig_page = p;
2425 				if (!p)
2426 					err = -ENOMEM;
2427 			}
2428 		raid5_release_stripe(nsh);
2429 	}
2430 	/* critical section pass, GFP_NOIO no longer needed */
2431 
2432 	if (!err)
2433 		conf->pool_size = newsize;
2434 	return err;
2435 }
2436 
2437 static int drop_one_stripe(struct r5conf *conf)
2438 {
2439 	struct stripe_head *sh;
2440 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2441 
2442 	spin_lock_irq(conf->hash_locks + hash);
2443 	sh = get_free_stripe(conf, hash);
2444 	spin_unlock_irq(conf->hash_locks + hash);
2445 	if (!sh)
2446 		return 0;
2447 	BUG_ON(atomic_read(&sh->count));
2448 	shrink_buffers(sh);
2449 	free_stripe(conf->slab_cache, sh);
2450 	atomic_dec(&conf->active_stripes);
2451 	conf->max_nr_stripes--;
2452 	return 1;
2453 }
2454 
2455 static void shrink_stripes(struct r5conf *conf)
2456 {
2457 	while (conf->max_nr_stripes &&
2458 	       drop_one_stripe(conf))
2459 		;
2460 
2461 	kmem_cache_destroy(conf->slab_cache);
2462 	conf->slab_cache = NULL;
2463 }
2464 
2465 static void raid5_end_read_request(struct bio * bi)
2466 {
2467 	struct stripe_head *sh = bi->bi_private;
2468 	struct r5conf *conf = sh->raid_conf;
2469 	int disks = sh->disks, i;
2470 	char b[BDEVNAME_SIZE];
2471 	struct md_rdev *rdev = NULL;
2472 	sector_t s;
2473 
2474 	for (i=0 ; i<disks; i++)
2475 		if (bi == &sh->dev[i].req)
2476 			break;
2477 
2478 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2479 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2480 		bi->bi_error);
2481 	if (i == disks) {
2482 		bio_reset(bi);
2483 		BUG();
2484 		return;
2485 	}
2486 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2487 		/* If replacement finished while this request was outstanding,
2488 		 * 'replacement' might be NULL already.
2489 		 * In that case it moved down to 'rdev'.
2490 		 * rdev is not removed until all requests are finished.
2491 		 */
2492 		rdev = conf->disks[i].replacement;
2493 	if (!rdev)
2494 		rdev = conf->disks[i].rdev;
2495 
2496 	if (use_new_offset(conf, sh))
2497 		s = sh->sector + rdev->new_data_offset;
2498 	else
2499 		s = sh->sector + rdev->data_offset;
2500 	if (!bi->bi_error) {
2501 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2502 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2503 			/* Note that this cannot happen on a
2504 			 * replacement device.  We just fail those on
2505 			 * any error
2506 			 */
2507 			pr_info_ratelimited(
2508 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2509 				mdname(conf->mddev), STRIPE_SECTORS,
2510 				(unsigned long long)s,
2511 				bdevname(rdev->bdev, b));
2512 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2513 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2514 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2515 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2516 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2517 
2518 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2519 			/*
2520 			 * end read for a page in journal, this
2521 			 * must be preparing for prexor in rmw
2522 			 */
2523 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2524 
2525 		if (atomic_read(&rdev->read_errors))
2526 			atomic_set(&rdev->read_errors, 0);
2527 	} else {
2528 		const char *bdn = bdevname(rdev->bdev, b);
2529 		int retry = 0;
2530 		int set_bad = 0;
2531 
2532 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2533 		atomic_inc(&rdev->read_errors);
2534 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2535 			pr_warn_ratelimited(
2536 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2537 				mdname(conf->mddev),
2538 				(unsigned long long)s,
2539 				bdn);
2540 		else if (conf->mddev->degraded >= conf->max_degraded) {
2541 			set_bad = 1;
2542 			pr_warn_ratelimited(
2543 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2544 				mdname(conf->mddev),
2545 				(unsigned long long)s,
2546 				bdn);
2547 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2548 			/* Oh, no!!! */
2549 			set_bad = 1;
2550 			pr_warn_ratelimited(
2551 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2552 				mdname(conf->mddev),
2553 				(unsigned long long)s,
2554 				bdn);
2555 		} else if (atomic_read(&rdev->read_errors)
2556 			 > conf->max_nr_stripes)
2557 			pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2558 			       mdname(conf->mddev), bdn);
2559 		else
2560 			retry = 1;
2561 		if (set_bad && test_bit(In_sync, &rdev->flags)
2562 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2563 			retry = 1;
2564 		if (retry)
2565 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2566 				set_bit(R5_ReadError, &sh->dev[i].flags);
2567 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2568 			} else
2569 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2570 		else {
2571 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2572 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2573 			if (!(set_bad
2574 			      && test_bit(In_sync, &rdev->flags)
2575 			      && rdev_set_badblocks(
2576 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2577 				md_error(conf->mddev, rdev);
2578 		}
2579 	}
2580 	rdev_dec_pending(rdev, conf->mddev);
2581 	bio_reset(bi);
2582 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2583 	set_bit(STRIPE_HANDLE, &sh->state);
2584 	raid5_release_stripe(sh);
2585 }
2586 
2587 static void raid5_end_write_request(struct bio *bi)
2588 {
2589 	struct stripe_head *sh = bi->bi_private;
2590 	struct r5conf *conf = sh->raid_conf;
2591 	int disks = sh->disks, i;
2592 	struct md_rdev *uninitialized_var(rdev);
2593 	sector_t first_bad;
2594 	int bad_sectors;
2595 	int replacement = 0;
2596 
2597 	for (i = 0 ; i < disks; i++) {
2598 		if (bi == &sh->dev[i].req) {
2599 			rdev = conf->disks[i].rdev;
2600 			break;
2601 		}
2602 		if (bi == &sh->dev[i].rreq) {
2603 			rdev = conf->disks[i].replacement;
2604 			if (rdev)
2605 				replacement = 1;
2606 			else
2607 				/* rdev was removed and 'replacement'
2608 				 * replaced it.  rdev is not removed
2609 				 * until all requests are finished.
2610 				 */
2611 				rdev = conf->disks[i].rdev;
2612 			break;
2613 		}
2614 	}
2615 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2616 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2617 		bi->bi_error);
2618 	if (i == disks) {
2619 		bio_reset(bi);
2620 		BUG();
2621 		return;
2622 	}
2623 
2624 	if (replacement) {
2625 		if (bi->bi_error)
2626 			md_error(conf->mddev, rdev);
2627 		else if (is_badblock(rdev, sh->sector,
2628 				     STRIPE_SECTORS,
2629 				     &first_bad, &bad_sectors))
2630 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2631 	} else {
2632 		if (bi->bi_error) {
2633 			set_bit(STRIPE_DEGRADED, &sh->state);
2634 			set_bit(WriteErrorSeen, &rdev->flags);
2635 			set_bit(R5_WriteError, &sh->dev[i].flags);
2636 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2637 				set_bit(MD_RECOVERY_NEEDED,
2638 					&rdev->mddev->recovery);
2639 		} else if (is_badblock(rdev, sh->sector,
2640 				       STRIPE_SECTORS,
2641 				       &first_bad, &bad_sectors)) {
2642 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2643 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2644 				/* That was a successful write so make
2645 				 * sure it looks like we already did
2646 				 * a re-write.
2647 				 */
2648 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2649 		}
2650 	}
2651 	rdev_dec_pending(rdev, conf->mddev);
2652 
2653 	if (sh->batch_head && bi->bi_error && !replacement)
2654 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2655 
2656 	bio_reset(bi);
2657 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2658 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2659 	set_bit(STRIPE_HANDLE, &sh->state);
2660 	raid5_release_stripe(sh);
2661 
2662 	if (sh->batch_head && sh != sh->batch_head)
2663 		raid5_release_stripe(sh->batch_head);
2664 }
2665 
2666 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2667 {
2668 	struct r5dev *dev = &sh->dev[i];
2669 
2670 	dev->flags = 0;
2671 	dev->sector = raid5_compute_blocknr(sh, i, previous);
2672 }
2673 
2674 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2675 {
2676 	char b[BDEVNAME_SIZE];
2677 	struct r5conf *conf = mddev->private;
2678 	unsigned long flags;
2679 	pr_debug("raid456: error called\n");
2680 
2681 	spin_lock_irqsave(&conf->device_lock, flags);
2682 	clear_bit(In_sync, &rdev->flags);
2683 	mddev->degraded = raid5_calc_degraded(conf);
2684 	spin_unlock_irqrestore(&conf->device_lock, flags);
2685 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2686 
2687 	set_bit(Blocked, &rdev->flags);
2688 	set_bit(Faulty, &rdev->flags);
2689 	set_mask_bits(&mddev->sb_flags, 0,
2690 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2691 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2692 		"md/raid:%s: Operation continuing on %d devices.\n",
2693 		mdname(mddev),
2694 		bdevname(rdev->bdev, b),
2695 		mdname(mddev),
2696 		conf->raid_disks - mddev->degraded);
2697 	r5c_update_on_rdev_error(mddev);
2698 }
2699 
2700 /*
2701  * Input: a 'big' sector number,
2702  * Output: index of the data and parity disk, and the sector # in them.
2703  */
2704 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2705 			      int previous, int *dd_idx,
2706 			      struct stripe_head *sh)
2707 {
2708 	sector_t stripe, stripe2;
2709 	sector_t chunk_number;
2710 	unsigned int chunk_offset;
2711 	int pd_idx, qd_idx;
2712 	int ddf_layout = 0;
2713 	sector_t new_sector;
2714 	int algorithm = previous ? conf->prev_algo
2715 				 : conf->algorithm;
2716 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2717 					 : conf->chunk_sectors;
2718 	int raid_disks = previous ? conf->previous_raid_disks
2719 				  : conf->raid_disks;
2720 	int data_disks = raid_disks - conf->max_degraded;
2721 
2722 	/* First compute the information on this sector */
2723 
2724 	/*
2725 	 * Compute the chunk number and the sector offset inside the chunk
2726 	 */
2727 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2728 	chunk_number = r_sector;
2729 
2730 	/*
2731 	 * Compute the stripe number
2732 	 */
2733 	stripe = chunk_number;
2734 	*dd_idx = sector_div(stripe, data_disks);
2735 	stripe2 = stripe;
2736 	/*
2737 	 * Select the parity disk based on the user selected algorithm.
2738 	 */
2739 	pd_idx = qd_idx = -1;
2740 	switch(conf->level) {
2741 	case 4:
2742 		pd_idx = data_disks;
2743 		break;
2744 	case 5:
2745 		switch (algorithm) {
2746 		case ALGORITHM_LEFT_ASYMMETRIC:
2747 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2748 			if (*dd_idx >= pd_idx)
2749 				(*dd_idx)++;
2750 			break;
2751 		case ALGORITHM_RIGHT_ASYMMETRIC:
2752 			pd_idx = sector_div(stripe2, raid_disks);
2753 			if (*dd_idx >= pd_idx)
2754 				(*dd_idx)++;
2755 			break;
2756 		case ALGORITHM_LEFT_SYMMETRIC:
2757 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2758 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2759 			break;
2760 		case ALGORITHM_RIGHT_SYMMETRIC:
2761 			pd_idx = sector_div(stripe2, raid_disks);
2762 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2763 			break;
2764 		case ALGORITHM_PARITY_0:
2765 			pd_idx = 0;
2766 			(*dd_idx)++;
2767 			break;
2768 		case ALGORITHM_PARITY_N:
2769 			pd_idx = data_disks;
2770 			break;
2771 		default:
2772 			BUG();
2773 		}
2774 		break;
2775 	case 6:
2776 
2777 		switch (algorithm) {
2778 		case ALGORITHM_LEFT_ASYMMETRIC:
2779 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2780 			qd_idx = pd_idx + 1;
2781 			if (pd_idx == raid_disks-1) {
2782 				(*dd_idx)++;	/* Q D D D P */
2783 				qd_idx = 0;
2784 			} else if (*dd_idx >= pd_idx)
2785 				(*dd_idx) += 2; /* D D P Q D */
2786 			break;
2787 		case ALGORITHM_RIGHT_ASYMMETRIC:
2788 			pd_idx = sector_div(stripe2, raid_disks);
2789 			qd_idx = pd_idx + 1;
2790 			if (pd_idx == raid_disks-1) {
2791 				(*dd_idx)++;	/* Q D D D P */
2792 				qd_idx = 0;
2793 			} else if (*dd_idx >= pd_idx)
2794 				(*dd_idx) += 2; /* D D P Q D */
2795 			break;
2796 		case ALGORITHM_LEFT_SYMMETRIC:
2797 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2798 			qd_idx = (pd_idx + 1) % raid_disks;
2799 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2800 			break;
2801 		case ALGORITHM_RIGHT_SYMMETRIC:
2802 			pd_idx = sector_div(stripe2, raid_disks);
2803 			qd_idx = (pd_idx + 1) % raid_disks;
2804 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2805 			break;
2806 
2807 		case ALGORITHM_PARITY_0:
2808 			pd_idx = 0;
2809 			qd_idx = 1;
2810 			(*dd_idx) += 2;
2811 			break;
2812 		case ALGORITHM_PARITY_N:
2813 			pd_idx = data_disks;
2814 			qd_idx = data_disks + 1;
2815 			break;
2816 
2817 		case ALGORITHM_ROTATING_ZERO_RESTART:
2818 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2819 			 * of blocks for computing Q is different.
2820 			 */
2821 			pd_idx = sector_div(stripe2, raid_disks);
2822 			qd_idx = pd_idx + 1;
2823 			if (pd_idx == raid_disks-1) {
2824 				(*dd_idx)++;	/* Q D D D P */
2825 				qd_idx = 0;
2826 			} else if (*dd_idx >= pd_idx)
2827 				(*dd_idx) += 2; /* D D P Q D */
2828 			ddf_layout = 1;
2829 			break;
2830 
2831 		case ALGORITHM_ROTATING_N_RESTART:
2832 			/* Same a left_asymmetric, by first stripe is
2833 			 * D D D P Q  rather than
2834 			 * Q D D D P
2835 			 */
2836 			stripe2 += 1;
2837 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2838 			qd_idx = pd_idx + 1;
2839 			if (pd_idx == raid_disks-1) {
2840 				(*dd_idx)++;	/* Q D D D P */
2841 				qd_idx = 0;
2842 			} else if (*dd_idx >= pd_idx)
2843 				(*dd_idx) += 2; /* D D P Q D */
2844 			ddf_layout = 1;
2845 			break;
2846 
2847 		case ALGORITHM_ROTATING_N_CONTINUE:
2848 			/* Same as left_symmetric but Q is before P */
2849 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2850 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2851 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2852 			ddf_layout = 1;
2853 			break;
2854 
2855 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2856 			/* RAID5 left_asymmetric, with Q on last device */
2857 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2858 			if (*dd_idx >= pd_idx)
2859 				(*dd_idx)++;
2860 			qd_idx = raid_disks - 1;
2861 			break;
2862 
2863 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2864 			pd_idx = sector_div(stripe2, raid_disks-1);
2865 			if (*dd_idx >= pd_idx)
2866 				(*dd_idx)++;
2867 			qd_idx = raid_disks - 1;
2868 			break;
2869 
2870 		case ALGORITHM_LEFT_SYMMETRIC_6:
2871 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2872 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2873 			qd_idx = raid_disks - 1;
2874 			break;
2875 
2876 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2877 			pd_idx = sector_div(stripe2, raid_disks-1);
2878 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2879 			qd_idx = raid_disks - 1;
2880 			break;
2881 
2882 		case ALGORITHM_PARITY_0_6:
2883 			pd_idx = 0;
2884 			(*dd_idx)++;
2885 			qd_idx = raid_disks - 1;
2886 			break;
2887 
2888 		default:
2889 			BUG();
2890 		}
2891 		break;
2892 	}
2893 
2894 	if (sh) {
2895 		sh->pd_idx = pd_idx;
2896 		sh->qd_idx = qd_idx;
2897 		sh->ddf_layout = ddf_layout;
2898 	}
2899 	/*
2900 	 * Finally, compute the new sector number
2901 	 */
2902 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2903 	return new_sector;
2904 }
2905 
2906 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2907 {
2908 	struct r5conf *conf = sh->raid_conf;
2909 	int raid_disks = sh->disks;
2910 	int data_disks = raid_disks - conf->max_degraded;
2911 	sector_t new_sector = sh->sector, check;
2912 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2913 					 : conf->chunk_sectors;
2914 	int algorithm = previous ? conf->prev_algo
2915 				 : conf->algorithm;
2916 	sector_t stripe;
2917 	int chunk_offset;
2918 	sector_t chunk_number;
2919 	int dummy1, dd_idx = i;
2920 	sector_t r_sector;
2921 	struct stripe_head sh2;
2922 
2923 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2924 	stripe = new_sector;
2925 
2926 	if (i == sh->pd_idx)
2927 		return 0;
2928 	switch(conf->level) {
2929 	case 4: break;
2930 	case 5:
2931 		switch (algorithm) {
2932 		case ALGORITHM_LEFT_ASYMMETRIC:
2933 		case ALGORITHM_RIGHT_ASYMMETRIC:
2934 			if (i > sh->pd_idx)
2935 				i--;
2936 			break;
2937 		case ALGORITHM_LEFT_SYMMETRIC:
2938 		case ALGORITHM_RIGHT_SYMMETRIC:
2939 			if (i < sh->pd_idx)
2940 				i += raid_disks;
2941 			i -= (sh->pd_idx + 1);
2942 			break;
2943 		case ALGORITHM_PARITY_0:
2944 			i -= 1;
2945 			break;
2946 		case ALGORITHM_PARITY_N:
2947 			break;
2948 		default:
2949 			BUG();
2950 		}
2951 		break;
2952 	case 6:
2953 		if (i == sh->qd_idx)
2954 			return 0; /* It is the Q disk */
2955 		switch (algorithm) {
2956 		case ALGORITHM_LEFT_ASYMMETRIC:
2957 		case ALGORITHM_RIGHT_ASYMMETRIC:
2958 		case ALGORITHM_ROTATING_ZERO_RESTART:
2959 		case ALGORITHM_ROTATING_N_RESTART:
2960 			if (sh->pd_idx == raid_disks-1)
2961 				i--;	/* Q D D D P */
2962 			else if (i > sh->pd_idx)
2963 				i -= 2; /* D D P Q D */
2964 			break;
2965 		case ALGORITHM_LEFT_SYMMETRIC:
2966 		case ALGORITHM_RIGHT_SYMMETRIC:
2967 			if (sh->pd_idx == raid_disks-1)
2968 				i--; /* Q D D D P */
2969 			else {
2970 				/* D D P Q D */
2971 				if (i < sh->pd_idx)
2972 					i += raid_disks;
2973 				i -= (sh->pd_idx + 2);
2974 			}
2975 			break;
2976 		case ALGORITHM_PARITY_0:
2977 			i -= 2;
2978 			break;
2979 		case ALGORITHM_PARITY_N:
2980 			break;
2981 		case ALGORITHM_ROTATING_N_CONTINUE:
2982 			/* Like left_symmetric, but P is before Q */
2983 			if (sh->pd_idx == 0)
2984 				i--;	/* P D D D Q */
2985 			else {
2986 				/* D D Q P D */
2987 				if (i < sh->pd_idx)
2988 					i += raid_disks;
2989 				i -= (sh->pd_idx + 1);
2990 			}
2991 			break;
2992 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2993 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2994 			if (i > sh->pd_idx)
2995 				i--;
2996 			break;
2997 		case ALGORITHM_LEFT_SYMMETRIC_6:
2998 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2999 			if (i < sh->pd_idx)
3000 				i += data_disks + 1;
3001 			i -= (sh->pd_idx + 1);
3002 			break;
3003 		case ALGORITHM_PARITY_0_6:
3004 			i -= 1;
3005 			break;
3006 		default:
3007 			BUG();
3008 		}
3009 		break;
3010 	}
3011 
3012 	chunk_number = stripe * data_disks + i;
3013 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3014 
3015 	check = raid5_compute_sector(conf, r_sector,
3016 				     previous, &dummy1, &sh2);
3017 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3018 		|| sh2.qd_idx != sh->qd_idx) {
3019 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3020 			mdname(conf->mddev));
3021 		return 0;
3022 	}
3023 	return r_sector;
3024 }
3025 
3026 /*
3027  * There are cases where we want handle_stripe_dirtying() and
3028  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3029  *
3030  * This function checks whether we want to delay the towrite. Specifically,
3031  * we delay the towrite when:
3032  *
3033  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3034  *      stripe has data in journal (for other devices).
3035  *
3036  *      In this case, when reading data for the non-overwrite dev, it is
3037  *      necessary to handle complex rmw of write back cache (prexor with
3038  *      orig_page, and xor with page). To keep read path simple, we would
3039  *      like to flush data in journal to RAID disks first, so complex rmw
3040  *      is handled in the write patch (handle_stripe_dirtying).
3041  *
3042  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3043  *
3044  *      It is important to be able to flush all stripes in raid5-cache.
3045  *      Therefore, we need reserve some space on the journal device for
3046  *      these flushes. If flush operation includes pending writes to the
3047  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3048  *      for the flush out. If we exclude these pending writes from flush
3049  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3050  *      Therefore, excluding pending writes in these cases enables more
3051  *      efficient use of the journal device.
3052  *
3053  *      Note: To make sure the stripe makes progress, we only delay
3054  *      towrite for stripes with data already in journal (injournal > 0).
3055  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3056  *      no_space_stripes list.
3057  *
3058  */
3059 static inline bool delay_towrite(struct r5conf *conf,
3060 				 struct r5dev *dev,
3061 				 struct stripe_head_state *s)
3062 {
3063 	/* case 1 above */
3064 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3065 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3066 		return true;
3067 	/* case 2 above */
3068 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3069 	    s->injournal > 0)
3070 		return true;
3071 	return false;
3072 }
3073 
3074 static void
3075 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3076 			 int rcw, int expand)
3077 {
3078 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3079 	struct r5conf *conf = sh->raid_conf;
3080 	int level = conf->level;
3081 
3082 	if (rcw) {
3083 		/*
3084 		 * In some cases, handle_stripe_dirtying initially decided to
3085 		 * run rmw and allocates extra page for prexor. However, rcw is
3086 		 * cheaper later on. We need to free the extra page now,
3087 		 * because we won't be able to do that in ops_complete_prexor().
3088 		 */
3089 		r5c_release_extra_page(sh);
3090 
3091 		for (i = disks; i--; ) {
3092 			struct r5dev *dev = &sh->dev[i];
3093 
3094 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3095 				set_bit(R5_LOCKED, &dev->flags);
3096 				set_bit(R5_Wantdrain, &dev->flags);
3097 				if (!expand)
3098 					clear_bit(R5_UPTODATE, &dev->flags);
3099 				s->locked++;
3100 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3101 				set_bit(R5_LOCKED, &dev->flags);
3102 				s->locked++;
3103 			}
3104 		}
3105 		/* if we are not expanding this is a proper write request, and
3106 		 * there will be bios with new data to be drained into the
3107 		 * stripe cache
3108 		 */
3109 		if (!expand) {
3110 			if (!s->locked)
3111 				/* False alarm, nothing to do */
3112 				return;
3113 			sh->reconstruct_state = reconstruct_state_drain_run;
3114 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3115 		} else
3116 			sh->reconstruct_state = reconstruct_state_run;
3117 
3118 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3119 
3120 		if (s->locked + conf->max_degraded == disks)
3121 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3122 				atomic_inc(&conf->pending_full_writes);
3123 	} else {
3124 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3125 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3126 		BUG_ON(level == 6 &&
3127 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3128 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3129 
3130 		for (i = disks; i--; ) {
3131 			struct r5dev *dev = &sh->dev[i];
3132 			if (i == pd_idx || i == qd_idx)
3133 				continue;
3134 
3135 			if (dev->towrite &&
3136 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3137 			     test_bit(R5_Wantcompute, &dev->flags))) {
3138 				set_bit(R5_Wantdrain, &dev->flags);
3139 				set_bit(R5_LOCKED, &dev->flags);
3140 				clear_bit(R5_UPTODATE, &dev->flags);
3141 				s->locked++;
3142 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3143 				set_bit(R5_LOCKED, &dev->flags);
3144 				s->locked++;
3145 			}
3146 		}
3147 		if (!s->locked)
3148 			/* False alarm - nothing to do */
3149 			return;
3150 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3151 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3152 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3153 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3154 	}
3155 
3156 	/* keep the parity disk(s) locked while asynchronous operations
3157 	 * are in flight
3158 	 */
3159 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3160 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3161 	s->locked++;
3162 
3163 	if (level == 6) {
3164 		int qd_idx = sh->qd_idx;
3165 		struct r5dev *dev = &sh->dev[qd_idx];
3166 
3167 		set_bit(R5_LOCKED, &dev->flags);
3168 		clear_bit(R5_UPTODATE, &dev->flags);
3169 		s->locked++;
3170 	}
3171 
3172 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3173 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3174 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3175 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3176 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3177 
3178 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3179 		__func__, (unsigned long long)sh->sector,
3180 		s->locked, s->ops_request);
3181 }
3182 
3183 /*
3184  * Each stripe/dev can have one or more bion attached.
3185  * toread/towrite point to the first in a chain.
3186  * The bi_next chain must be in order.
3187  */
3188 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3189 			  int forwrite, int previous)
3190 {
3191 	struct bio **bip;
3192 	struct r5conf *conf = sh->raid_conf;
3193 	int firstwrite=0;
3194 
3195 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3196 		(unsigned long long)bi->bi_iter.bi_sector,
3197 		(unsigned long long)sh->sector);
3198 
3199 	spin_lock_irq(&sh->stripe_lock);
3200 	/* Don't allow new IO added to stripes in batch list */
3201 	if (sh->batch_head)
3202 		goto overlap;
3203 	if (forwrite) {
3204 		bip = &sh->dev[dd_idx].towrite;
3205 		if (*bip == NULL)
3206 			firstwrite = 1;
3207 	} else
3208 		bip = &sh->dev[dd_idx].toread;
3209 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3210 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3211 			goto overlap;
3212 		bip = & (*bip)->bi_next;
3213 	}
3214 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3215 		goto overlap;
3216 
3217 	if (forwrite && raid5_has_ppl(conf)) {
3218 		/*
3219 		 * With PPL only writes to consecutive data chunks within a
3220 		 * stripe are allowed because for a single stripe_head we can
3221 		 * only have one PPL entry at a time, which describes one data
3222 		 * range. Not really an overlap, but wait_for_overlap can be
3223 		 * used to handle this.
3224 		 */
3225 		sector_t sector;
3226 		sector_t first = 0;
3227 		sector_t last = 0;
3228 		int count = 0;
3229 		int i;
3230 
3231 		for (i = 0; i < sh->disks; i++) {
3232 			if (i != sh->pd_idx &&
3233 			    (i == dd_idx || sh->dev[i].towrite)) {
3234 				sector = sh->dev[i].sector;
3235 				if (count == 0 || sector < first)
3236 					first = sector;
3237 				if (sector > last)
3238 					last = sector;
3239 				count++;
3240 			}
3241 		}
3242 
3243 		if (first + conf->chunk_sectors * (count - 1) != last)
3244 			goto overlap;
3245 	}
3246 
3247 	if (!forwrite || previous)
3248 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3249 
3250 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3251 	if (*bip)
3252 		bi->bi_next = *bip;
3253 	*bip = bi;
3254 	bio_inc_remaining(bi);
3255 	md_write_inc(conf->mddev, bi);
3256 
3257 	if (forwrite) {
3258 		/* check if page is covered */
3259 		sector_t sector = sh->dev[dd_idx].sector;
3260 		for (bi=sh->dev[dd_idx].towrite;
3261 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3262 			     bi && bi->bi_iter.bi_sector <= sector;
3263 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3264 			if (bio_end_sector(bi) >= sector)
3265 				sector = bio_end_sector(bi);
3266 		}
3267 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3268 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3269 				sh->overwrite_disks++;
3270 	}
3271 
3272 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3273 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3274 		(unsigned long long)sh->sector, dd_idx);
3275 
3276 	if (conf->mddev->bitmap && firstwrite) {
3277 		/* Cannot hold spinlock over bitmap_startwrite,
3278 		 * but must ensure this isn't added to a batch until
3279 		 * we have added to the bitmap and set bm_seq.
3280 		 * So set STRIPE_BITMAP_PENDING to prevent
3281 		 * batching.
3282 		 * If multiple add_stripe_bio() calls race here they
3283 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3284 		 * to complete "bitmap_startwrite" gets to set
3285 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3286 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3287 		 * any more.
3288 		 */
3289 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3290 		spin_unlock_irq(&sh->stripe_lock);
3291 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3292 				  STRIPE_SECTORS, 0);
3293 		spin_lock_irq(&sh->stripe_lock);
3294 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3295 		if (!sh->batch_head) {
3296 			sh->bm_seq = conf->seq_flush+1;
3297 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3298 		}
3299 	}
3300 	spin_unlock_irq(&sh->stripe_lock);
3301 
3302 	if (stripe_can_batch(sh))
3303 		stripe_add_to_batch_list(conf, sh);
3304 	return 1;
3305 
3306  overlap:
3307 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3308 	spin_unlock_irq(&sh->stripe_lock);
3309 	return 0;
3310 }
3311 
3312 static void end_reshape(struct r5conf *conf);
3313 
3314 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3315 			    struct stripe_head *sh)
3316 {
3317 	int sectors_per_chunk =
3318 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3319 	int dd_idx;
3320 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3321 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3322 
3323 	raid5_compute_sector(conf,
3324 			     stripe * (disks - conf->max_degraded)
3325 			     *sectors_per_chunk + chunk_offset,
3326 			     previous,
3327 			     &dd_idx, sh);
3328 }
3329 
3330 static void
3331 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3332 		     struct stripe_head_state *s, int disks)
3333 {
3334 	int i;
3335 	BUG_ON(sh->batch_head);
3336 	for (i = disks; i--; ) {
3337 		struct bio *bi;
3338 		int bitmap_end = 0;
3339 
3340 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3341 			struct md_rdev *rdev;
3342 			rcu_read_lock();
3343 			rdev = rcu_dereference(conf->disks[i].rdev);
3344 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3345 			    !test_bit(Faulty, &rdev->flags))
3346 				atomic_inc(&rdev->nr_pending);
3347 			else
3348 				rdev = NULL;
3349 			rcu_read_unlock();
3350 			if (rdev) {
3351 				if (!rdev_set_badblocks(
3352 					    rdev,
3353 					    sh->sector,
3354 					    STRIPE_SECTORS, 0))
3355 					md_error(conf->mddev, rdev);
3356 				rdev_dec_pending(rdev, conf->mddev);
3357 			}
3358 		}
3359 		spin_lock_irq(&sh->stripe_lock);
3360 		/* fail all writes first */
3361 		bi = sh->dev[i].towrite;
3362 		sh->dev[i].towrite = NULL;
3363 		sh->overwrite_disks = 0;
3364 		spin_unlock_irq(&sh->stripe_lock);
3365 		if (bi)
3366 			bitmap_end = 1;
3367 
3368 		log_stripe_write_finished(sh);
3369 
3370 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3371 			wake_up(&conf->wait_for_overlap);
3372 
3373 		while (bi && bi->bi_iter.bi_sector <
3374 			sh->dev[i].sector + STRIPE_SECTORS) {
3375 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3376 
3377 			bi->bi_error = -EIO;
3378 			md_write_end(conf->mddev);
3379 			bio_endio(bi);
3380 			bi = nextbi;
3381 		}
3382 		if (bitmap_end)
3383 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3384 				STRIPE_SECTORS, 0, 0);
3385 		bitmap_end = 0;
3386 		/* and fail all 'written' */
3387 		bi = sh->dev[i].written;
3388 		sh->dev[i].written = NULL;
3389 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3390 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3391 			sh->dev[i].page = sh->dev[i].orig_page;
3392 		}
3393 
3394 		if (bi) bitmap_end = 1;
3395 		while (bi && bi->bi_iter.bi_sector <
3396 		       sh->dev[i].sector + STRIPE_SECTORS) {
3397 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3398 
3399 			bi->bi_error = -EIO;
3400 			md_write_end(conf->mddev);
3401 			bio_endio(bi);
3402 			bi = bi2;
3403 		}
3404 
3405 		/* fail any reads if this device is non-operational and
3406 		 * the data has not reached the cache yet.
3407 		 */
3408 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3409 		    s->failed > conf->max_degraded &&
3410 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3411 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3412 			spin_lock_irq(&sh->stripe_lock);
3413 			bi = sh->dev[i].toread;
3414 			sh->dev[i].toread = NULL;
3415 			spin_unlock_irq(&sh->stripe_lock);
3416 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3417 				wake_up(&conf->wait_for_overlap);
3418 			if (bi)
3419 				s->to_read--;
3420 			while (bi && bi->bi_iter.bi_sector <
3421 			       sh->dev[i].sector + STRIPE_SECTORS) {
3422 				struct bio *nextbi =
3423 					r5_next_bio(bi, sh->dev[i].sector);
3424 
3425 				bi->bi_error = -EIO;
3426 				bio_endio(bi);
3427 				bi = nextbi;
3428 			}
3429 		}
3430 		if (bitmap_end)
3431 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3432 					STRIPE_SECTORS, 0, 0);
3433 		/* If we were in the middle of a write the parity block might
3434 		 * still be locked - so just clear all R5_LOCKED flags
3435 		 */
3436 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3437 	}
3438 	s->to_write = 0;
3439 	s->written = 0;
3440 
3441 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3442 		if (atomic_dec_and_test(&conf->pending_full_writes))
3443 			md_wakeup_thread(conf->mddev->thread);
3444 }
3445 
3446 static void
3447 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3448 		   struct stripe_head_state *s)
3449 {
3450 	int abort = 0;
3451 	int i;
3452 
3453 	BUG_ON(sh->batch_head);
3454 	clear_bit(STRIPE_SYNCING, &sh->state);
3455 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3456 		wake_up(&conf->wait_for_overlap);
3457 	s->syncing = 0;
3458 	s->replacing = 0;
3459 	/* There is nothing more to do for sync/check/repair.
3460 	 * Don't even need to abort as that is handled elsewhere
3461 	 * if needed, and not always wanted e.g. if there is a known
3462 	 * bad block here.
3463 	 * For recover/replace we need to record a bad block on all
3464 	 * non-sync devices, or abort the recovery
3465 	 */
3466 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3467 		/* During recovery devices cannot be removed, so
3468 		 * locking and refcounting of rdevs is not needed
3469 		 */
3470 		rcu_read_lock();
3471 		for (i = 0; i < conf->raid_disks; i++) {
3472 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3473 			if (rdev
3474 			    && !test_bit(Faulty, &rdev->flags)
3475 			    && !test_bit(In_sync, &rdev->flags)
3476 			    && !rdev_set_badblocks(rdev, sh->sector,
3477 						   STRIPE_SECTORS, 0))
3478 				abort = 1;
3479 			rdev = rcu_dereference(conf->disks[i].replacement);
3480 			if (rdev
3481 			    && !test_bit(Faulty, &rdev->flags)
3482 			    && !test_bit(In_sync, &rdev->flags)
3483 			    && !rdev_set_badblocks(rdev, sh->sector,
3484 						   STRIPE_SECTORS, 0))
3485 				abort = 1;
3486 		}
3487 		rcu_read_unlock();
3488 		if (abort)
3489 			conf->recovery_disabled =
3490 				conf->mddev->recovery_disabled;
3491 	}
3492 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3493 }
3494 
3495 static int want_replace(struct stripe_head *sh, int disk_idx)
3496 {
3497 	struct md_rdev *rdev;
3498 	int rv = 0;
3499 
3500 	rcu_read_lock();
3501 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3502 	if (rdev
3503 	    && !test_bit(Faulty, &rdev->flags)
3504 	    && !test_bit(In_sync, &rdev->flags)
3505 	    && (rdev->recovery_offset <= sh->sector
3506 		|| rdev->mddev->recovery_cp <= sh->sector))
3507 		rv = 1;
3508 	rcu_read_unlock();
3509 	return rv;
3510 }
3511 
3512 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3513 			   int disk_idx, int disks)
3514 {
3515 	struct r5dev *dev = &sh->dev[disk_idx];
3516 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3517 				  &sh->dev[s->failed_num[1]] };
3518 	int i;
3519 
3520 
3521 	if (test_bit(R5_LOCKED, &dev->flags) ||
3522 	    test_bit(R5_UPTODATE, &dev->flags))
3523 		/* No point reading this as we already have it or have
3524 		 * decided to get it.
3525 		 */
3526 		return 0;
3527 
3528 	if (dev->toread ||
3529 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3530 		/* We need this block to directly satisfy a request */
3531 		return 1;
3532 
3533 	if (s->syncing || s->expanding ||
3534 	    (s->replacing && want_replace(sh, disk_idx)))
3535 		/* When syncing, or expanding we read everything.
3536 		 * When replacing, we need the replaced block.
3537 		 */
3538 		return 1;
3539 
3540 	if ((s->failed >= 1 && fdev[0]->toread) ||
3541 	    (s->failed >= 2 && fdev[1]->toread))
3542 		/* If we want to read from a failed device, then
3543 		 * we need to actually read every other device.
3544 		 */
3545 		return 1;
3546 
3547 	/* Sometimes neither read-modify-write nor reconstruct-write
3548 	 * cycles can work.  In those cases we read every block we
3549 	 * can.  Then the parity-update is certain to have enough to
3550 	 * work with.
3551 	 * This can only be a problem when we need to write something,
3552 	 * and some device has failed.  If either of those tests
3553 	 * fail we need look no further.
3554 	 */
3555 	if (!s->failed || !s->to_write)
3556 		return 0;
3557 
3558 	if (test_bit(R5_Insync, &dev->flags) &&
3559 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3560 		/* Pre-reads at not permitted until after short delay
3561 		 * to gather multiple requests.  However if this
3562 		 * device is no Insync, the block could only be computed
3563 		 * and there is no need to delay that.
3564 		 */
3565 		return 0;
3566 
3567 	for (i = 0; i < s->failed && i < 2; i++) {
3568 		if (fdev[i]->towrite &&
3569 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3570 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3571 			/* If we have a partial write to a failed
3572 			 * device, then we will need to reconstruct
3573 			 * the content of that device, so all other
3574 			 * devices must be read.
3575 			 */
3576 			return 1;
3577 	}
3578 
3579 	/* If we are forced to do a reconstruct-write, either because
3580 	 * the current RAID6 implementation only supports that, or
3581 	 * because parity cannot be trusted and we are currently
3582 	 * recovering it, there is extra need to be careful.
3583 	 * If one of the devices that we would need to read, because
3584 	 * it is not being overwritten (and maybe not written at all)
3585 	 * is missing/faulty, then we need to read everything we can.
3586 	 */
3587 	if (sh->raid_conf->level != 6 &&
3588 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3589 		/* reconstruct-write isn't being forced */
3590 		return 0;
3591 	for (i = 0; i < s->failed && i < 2; i++) {
3592 		if (s->failed_num[i] != sh->pd_idx &&
3593 		    s->failed_num[i] != sh->qd_idx &&
3594 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3595 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3596 			return 1;
3597 	}
3598 
3599 	return 0;
3600 }
3601 
3602 /* fetch_block - checks the given member device to see if its data needs
3603  * to be read or computed to satisfy a request.
3604  *
3605  * Returns 1 when no more member devices need to be checked, otherwise returns
3606  * 0 to tell the loop in handle_stripe_fill to continue
3607  */
3608 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3609 		       int disk_idx, int disks)
3610 {
3611 	struct r5dev *dev = &sh->dev[disk_idx];
3612 
3613 	/* is the data in this block needed, and can we get it? */
3614 	if (need_this_block(sh, s, disk_idx, disks)) {
3615 		/* we would like to get this block, possibly by computing it,
3616 		 * otherwise read it if the backing disk is insync
3617 		 */
3618 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3619 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3620 		BUG_ON(sh->batch_head);
3621 
3622 		/*
3623 		 * In the raid6 case if the only non-uptodate disk is P
3624 		 * then we already trusted P to compute the other failed
3625 		 * drives. It is safe to compute rather than re-read P.
3626 		 * In other cases we only compute blocks from failed
3627 		 * devices, otherwise check/repair might fail to detect
3628 		 * a real inconsistency.
3629 		 */
3630 
3631 		if ((s->uptodate == disks - 1) &&
3632 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3633 		    (s->failed && (disk_idx == s->failed_num[0] ||
3634 				   disk_idx == s->failed_num[1])))) {
3635 			/* have disk failed, and we're requested to fetch it;
3636 			 * do compute it
3637 			 */
3638 			pr_debug("Computing stripe %llu block %d\n",
3639 			       (unsigned long long)sh->sector, disk_idx);
3640 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3641 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3642 			set_bit(R5_Wantcompute, &dev->flags);
3643 			sh->ops.target = disk_idx;
3644 			sh->ops.target2 = -1; /* no 2nd target */
3645 			s->req_compute = 1;
3646 			/* Careful: from this point on 'uptodate' is in the eye
3647 			 * of raid_run_ops which services 'compute' operations
3648 			 * before writes. R5_Wantcompute flags a block that will
3649 			 * be R5_UPTODATE by the time it is needed for a
3650 			 * subsequent operation.
3651 			 */
3652 			s->uptodate++;
3653 			return 1;
3654 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3655 			/* Computing 2-failure is *very* expensive; only
3656 			 * do it if failed >= 2
3657 			 */
3658 			int other;
3659 			for (other = disks; other--; ) {
3660 				if (other == disk_idx)
3661 					continue;
3662 				if (!test_bit(R5_UPTODATE,
3663 				      &sh->dev[other].flags))
3664 					break;
3665 			}
3666 			BUG_ON(other < 0);
3667 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3668 			       (unsigned long long)sh->sector,
3669 			       disk_idx, other);
3670 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3671 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3672 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3673 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3674 			sh->ops.target = disk_idx;
3675 			sh->ops.target2 = other;
3676 			s->uptodate += 2;
3677 			s->req_compute = 1;
3678 			return 1;
3679 		} else if (test_bit(R5_Insync, &dev->flags)) {
3680 			set_bit(R5_LOCKED, &dev->flags);
3681 			set_bit(R5_Wantread, &dev->flags);
3682 			s->locked++;
3683 			pr_debug("Reading block %d (sync=%d)\n",
3684 				disk_idx, s->syncing);
3685 		}
3686 	}
3687 
3688 	return 0;
3689 }
3690 
3691 /**
3692  * handle_stripe_fill - read or compute data to satisfy pending requests.
3693  */
3694 static void handle_stripe_fill(struct stripe_head *sh,
3695 			       struct stripe_head_state *s,
3696 			       int disks)
3697 {
3698 	int i;
3699 
3700 	/* look for blocks to read/compute, skip this if a compute
3701 	 * is already in flight, or if the stripe contents are in the
3702 	 * midst of changing due to a write
3703 	 */
3704 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3705 	    !sh->reconstruct_state) {
3706 
3707 		/*
3708 		 * For degraded stripe with data in journal, do not handle
3709 		 * read requests yet, instead, flush the stripe to raid
3710 		 * disks first, this avoids handling complex rmw of write
3711 		 * back cache (prexor with orig_page, and then xor with
3712 		 * page) in the read path
3713 		 */
3714 		if (s->injournal && s->failed) {
3715 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3716 				r5c_make_stripe_write_out(sh);
3717 			goto out;
3718 		}
3719 
3720 		for (i = disks; i--; )
3721 			if (fetch_block(sh, s, i, disks))
3722 				break;
3723 	}
3724 out:
3725 	set_bit(STRIPE_HANDLE, &sh->state);
3726 }
3727 
3728 static void break_stripe_batch_list(struct stripe_head *head_sh,
3729 				    unsigned long handle_flags);
3730 /* handle_stripe_clean_event
3731  * any written block on an uptodate or failed drive can be returned.
3732  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3733  * never LOCKED, so we don't need to test 'failed' directly.
3734  */
3735 static void handle_stripe_clean_event(struct r5conf *conf,
3736 	struct stripe_head *sh, int disks)
3737 {
3738 	int i;
3739 	struct r5dev *dev;
3740 	int discard_pending = 0;
3741 	struct stripe_head *head_sh = sh;
3742 	bool do_endio = false;
3743 
3744 	for (i = disks; i--; )
3745 		if (sh->dev[i].written) {
3746 			dev = &sh->dev[i];
3747 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3748 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3749 			     test_bit(R5_Discard, &dev->flags) ||
3750 			     test_bit(R5_SkipCopy, &dev->flags))) {
3751 				/* We can return any write requests */
3752 				struct bio *wbi, *wbi2;
3753 				pr_debug("Return write for disc %d\n", i);
3754 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3755 					clear_bit(R5_UPTODATE, &dev->flags);
3756 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3757 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3758 				}
3759 				do_endio = true;
3760 
3761 returnbi:
3762 				dev->page = dev->orig_page;
3763 				wbi = dev->written;
3764 				dev->written = NULL;
3765 				while (wbi && wbi->bi_iter.bi_sector <
3766 					dev->sector + STRIPE_SECTORS) {
3767 					wbi2 = r5_next_bio(wbi, dev->sector);
3768 					md_write_end(conf->mddev);
3769 					bio_endio(wbi);
3770 					wbi = wbi2;
3771 				}
3772 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3773 						STRIPE_SECTORS,
3774 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3775 						0);
3776 				if (head_sh->batch_head) {
3777 					sh = list_first_entry(&sh->batch_list,
3778 							      struct stripe_head,
3779 							      batch_list);
3780 					if (sh != head_sh) {
3781 						dev = &sh->dev[i];
3782 						goto returnbi;
3783 					}
3784 				}
3785 				sh = head_sh;
3786 				dev = &sh->dev[i];
3787 			} else if (test_bit(R5_Discard, &dev->flags))
3788 				discard_pending = 1;
3789 		}
3790 
3791 	log_stripe_write_finished(sh);
3792 
3793 	if (!discard_pending &&
3794 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3795 		int hash;
3796 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3797 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3798 		if (sh->qd_idx >= 0) {
3799 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3800 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3801 		}
3802 		/* now that discard is done we can proceed with any sync */
3803 		clear_bit(STRIPE_DISCARD, &sh->state);
3804 		/*
3805 		 * SCSI discard will change some bio fields and the stripe has
3806 		 * no updated data, so remove it from hash list and the stripe
3807 		 * will be reinitialized
3808 		 */
3809 unhash:
3810 		hash = sh->hash_lock_index;
3811 		spin_lock_irq(conf->hash_locks + hash);
3812 		remove_hash(sh);
3813 		spin_unlock_irq(conf->hash_locks + hash);
3814 		if (head_sh->batch_head) {
3815 			sh = list_first_entry(&sh->batch_list,
3816 					      struct stripe_head, batch_list);
3817 			if (sh != head_sh)
3818 					goto unhash;
3819 		}
3820 		sh = head_sh;
3821 
3822 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3823 			set_bit(STRIPE_HANDLE, &sh->state);
3824 
3825 	}
3826 
3827 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3828 		if (atomic_dec_and_test(&conf->pending_full_writes))
3829 			md_wakeup_thread(conf->mddev->thread);
3830 
3831 	if (head_sh->batch_head && do_endio)
3832 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3833 }
3834 
3835 /*
3836  * For RMW in write back cache, we need extra page in prexor to store the
3837  * old data. This page is stored in dev->orig_page.
3838  *
3839  * This function checks whether we have data for prexor. The exact logic
3840  * is:
3841  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3842  */
3843 static inline bool uptodate_for_rmw(struct r5dev *dev)
3844 {
3845 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
3846 		(!test_bit(R5_InJournal, &dev->flags) ||
3847 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3848 }
3849 
3850 static int handle_stripe_dirtying(struct r5conf *conf,
3851 				  struct stripe_head *sh,
3852 				  struct stripe_head_state *s,
3853 				  int disks)
3854 {
3855 	int rmw = 0, rcw = 0, i;
3856 	sector_t recovery_cp = conf->mddev->recovery_cp;
3857 
3858 	/* Check whether resync is now happening or should start.
3859 	 * If yes, then the array is dirty (after unclean shutdown or
3860 	 * initial creation), so parity in some stripes might be inconsistent.
3861 	 * In this case, we need to always do reconstruct-write, to ensure
3862 	 * that in case of drive failure or read-error correction, we
3863 	 * generate correct data from the parity.
3864 	 */
3865 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3866 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3867 	     s->failed == 0)) {
3868 		/* Calculate the real rcw later - for now make it
3869 		 * look like rcw is cheaper
3870 		 */
3871 		rcw = 1; rmw = 2;
3872 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3873 			 conf->rmw_level, (unsigned long long)recovery_cp,
3874 			 (unsigned long long)sh->sector);
3875 	} else for (i = disks; i--; ) {
3876 		/* would I have to read this buffer for read_modify_write */
3877 		struct r5dev *dev = &sh->dev[i];
3878 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3879 		     i == sh->pd_idx || i == sh->qd_idx ||
3880 		     test_bit(R5_InJournal, &dev->flags)) &&
3881 		    !test_bit(R5_LOCKED, &dev->flags) &&
3882 		    !(uptodate_for_rmw(dev) ||
3883 		      test_bit(R5_Wantcompute, &dev->flags))) {
3884 			if (test_bit(R5_Insync, &dev->flags))
3885 				rmw++;
3886 			else
3887 				rmw += 2*disks;  /* cannot read it */
3888 		}
3889 		/* Would I have to read this buffer for reconstruct_write */
3890 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3891 		    i != sh->pd_idx && i != sh->qd_idx &&
3892 		    !test_bit(R5_LOCKED, &dev->flags) &&
3893 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3894 		      test_bit(R5_Wantcompute, &dev->flags))) {
3895 			if (test_bit(R5_Insync, &dev->flags))
3896 				rcw++;
3897 			else
3898 				rcw += 2*disks;
3899 		}
3900 	}
3901 
3902 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3903 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3904 	set_bit(STRIPE_HANDLE, &sh->state);
3905 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3906 		/* prefer read-modify-write, but need to get some data */
3907 		if (conf->mddev->queue)
3908 			blk_add_trace_msg(conf->mddev->queue,
3909 					  "raid5 rmw %llu %d",
3910 					  (unsigned long long)sh->sector, rmw);
3911 		for (i = disks; i--; ) {
3912 			struct r5dev *dev = &sh->dev[i];
3913 			if (test_bit(R5_InJournal, &dev->flags) &&
3914 			    dev->page == dev->orig_page &&
3915 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3916 				/* alloc page for prexor */
3917 				struct page *p = alloc_page(GFP_NOIO);
3918 
3919 				if (p) {
3920 					dev->orig_page = p;
3921 					continue;
3922 				}
3923 
3924 				/*
3925 				 * alloc_page() failed, try use
3926 				 * disk_info->extra_page
3927 				 */
3928 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3929 						      &conf->cache_state)) {
3930 					r5c_use_extra_page(sh);
3931 					break;
3932 				}
3933 
3934 				/* extra_page in use, add to delayed_list */
3935 				set_bit(STRIPE_DELAYED, &sh->state);
3936 				s->waiting_extra_page = 1;
3937 				return -EAGAIN;
3938 			}
3939 		}
3940 
3941 		for (i = disks; i--; ) {
3942 			struct r5dev *dev = &sh->dev[i];
3943 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3944 			     i == sh->pd_idx || i == sh->qd_idx ||
3945 			     test_bit(R5_InJournal, &dev->flags)) &&
3946 			    !test_bit(R5_LOCKED, &dev->flags) &&
3947 			    !(uptodate_for_rmw(dev) ||
3948 			      test_bit(R5_Wantcompute, &dev->flags)) &&
3949 			    test_bit(R5_Insync, &dev->flags)) {
3950 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3951 					     &sh->state)) {
3952 					pr_debug("Read_old block %d for r-m-w\n",
3953 						 i);
3954 					set_bit(R5_LOCKED, &dev->flags);
3955 					set_bit(R5_Wantread, &dev->flags);
3956 					s->locked++;
3957 				} else {
3958 					set_bit(STRIPE_DELAYED, &sh->state);
3959 					set_bit(STRIPE_HANDLE, &sh->state);
3960 				}
3961 			}
3962 		}
3963 	}
3964 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3965 		/* want reconstruct write, but need to get some data */
3966 		int qread =0;
3967 		rcw = 0;
3968 		for (i = disks; i--; ) {
3969 			struct r5dev *dev = &sh->dev[i];
3970 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3971 			    i != sh->pd_idx && i != sh->qd_idx &&
3972 			    !test_bit(R5_LOCKED, &dev->flags) &&
3973 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3974 			      test_bit(R5_Wantcompute, &dev->flags))) {
3975 				rcw++;
3976 				if (test_bit(R5_Insync, &dev->flags) &&
3977 				    test_bit(STRIPE_PREREAD_ACTIVE,
3978 					     &sh->state)) {
3979 					pr_debug("Read_old block "
3980 						"%d for Reconstruct\n", i);
3981 					set_bit(R5_LOCKED, &dev->flags);
3982 					set_bit(R5_Wantread, &dev->flags);
3983 					s->locked++;
3984 					qread++;
3985 				} else {
3986 					set_bit(STRIPE_DELAYED, &sh->state);
3987 					set_bit(STRIPE_HANDLE, &sh->state);
3988 				}
3989 			}
3990 		}
3991 		if (rcw && conf->mddev->queue)
3992 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3993 					  (unsigned long long)sh->sector,
3994 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3995 	}
3996 
3997 	if (rcw > disks && rmw > disks &&
3998 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3999 		set_bit(STRIPE_DELAYED, &sh->state);
4000 
4001 	/* now if nothing is locked, and if we have enough data,
4002 	 * we can start a write request
4003 	 */
4004 	/* since handle_stripe can be called at any time we need to handle the
4005 	 * case where a compute block operation has been submitted and then a
4006 	 * subsequent call wants to start a write request.  raid_run_ops only
4007 	 * handles the case where compute block and reconstruct are requested
4008 	 * simultaneously.  If this is not the case then new writes need to be
4009 	 * held off until the compute completes.
4010 	 */
4011 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4012 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4013 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4014 		schedule_reconstruction(sh, s, rcw == 0, 0);
4015 	return 0;
4016 }
4017 
4018 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4019 				struct stripe_head_state *s, int disks)
4020 {
4021 	struct r5dev *dev = NULL;
4022 
4023 	BUG_ON(sh->batch_head);
4024 	set_bit(STRIPE_HANDLE, &sh->state);
4025 
4026 	switch (sh->check_state) {
4027 	case check_state_idle:
4028 		/* start a new check operation if there are no failures */
4029 		if (s->failed == 0) {
4030 			BUG_ON(s->uptodate != disks);
4031 			sh->check_state = check_state_run;
4032 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4033 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4034 			s->uptodate--;
4035 			break;
4036 		}
4037 		dev = &sh->dev[s->failed_num[0]];
4038 		/* fall through */
4039 	case check_state_compute_result:
4040 		sh->check_state = check_state_idle;
4041 		if (!dev)
4042 			dev = &sh->dev[sh->pd_idx];
4043 
4044 		/* check that a write has not made the stripe insync */
4045 		if (test_bit(STRIPE_INSYNC, &sh->state))
4046 			break;
4047 
4048 		/* either failed parity check, or recovery is happening */
4049 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4050 		BUG_ON(s->uptodate != disks);
4051 
4052 		set_bit(R5_LOCKED, &dev->flags);
4053 		s->locked++;
4054 		set_bit(R5_Wantwrite, &dev->flags);
4055 
4056 		clear_bit(STRIPE_DEGRADED, &sh->state);
4057 		set_bit(STRIPE_INSYNC, &sh->state);
4058 		break;
4059 	case check_state_run:
4060 		break; /* we will be called again upon completion */
4061 	case check_state_check_result:
4062 		sh->check_state = check_state_idle;
4063 
4064 		/* if a failure occurred during the check operation, leave
4065 		 * STRIPE_INSYNC not set and let the stripe be handled again
4066 		 */
4067 		if (s->failed)
4068 			break;
4069 
4070 		/* handle a successful check operation, if parity is correct
4071 		 * we are done.  Otherwise update the mismatch count and repair
4072 		 * parity if !MD_RECOVERY_CHECK
4073 		 */
4074 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4075 			/* parity is correct (on disc,
4076 			 * not in buffer any more)
4077 			 */
4078 			set_bit(STRIPE_INSYNC, &sh->state);
4079 		else {
4080 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4081 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4082 				/* don't try to repair!! */
4083 				set_bit(STRIPE_INSYNC, &sh->state);
4084 			else {
4085 				sh->check_state = check_state_compute_run;
4086 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4087 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4088 				set_bit(R5_Wantcompute,
4089 					&sh->dev[sh->pd_idx].flags);
4090 				sh->ops.target = sh->pd_idx;
4091 				sh->ops.target2 = -1;
4092 				s->uptodate++;
4093 			}
4094 		}
4095 		break;
4096 	case check_state_compute_run:
4097 		break;
4098 	default:
4099 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4100 		       __func__, sh->check_state,
4101 		       (unsigned long long) sh->sector);
4102 		BUG();
4103 	}
4104 }
4105 
4106 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4107 				  struct stripe_head_state *s,
4108 				  int disks)
4109 {
4110 	int pd_idx = sh->pd_idx;
4111 	int qd_idx = sh->qd_idx;
4112 	struct r5dev *dev;
4113 
4114 	BUG_ON(sh->batch_head);
4115 	set_bit(STRIPE_HANDLE, &sh->state);
4116 
4117 	BUG_ON(s->failed > 2);
4118 
4119 	/* Want to check and possibly repair P and Q.
4120 	 * However there could be one 'failed' device, in which
4121 	 * case we can only check one of them, possibly using the
4122 	 * other to generate missing data
4123 	 */
4124 
4125 	switch (sh->check_state) {
4126 	case check_state_idle:
4127 		/* start a new check operation if there are < 2 failures */
4128 		if (s->failed == s->q_failed) {
4129 			/* The only possible failed device holds Q, so it
4130 			 * makes sense to check P (If anything else were failed,
4131 			 * we would have used P to recreate it).
4132 			 */
4133 			sh->check_state = check_state_run;
4134 		}
4135 		if (!s->q_failed && s->failed < 2) {
4136 			/* Q is not failed, and we didn't use it to generate
4137 			 * anything, so it makes sense to check it
4138 			 */
4139 			if (sh->check_state == check_state_run)
4140 				sh->check_state = check_state_run_pq;
4141 			else
4142 				sh->check_state = check_state_run_q;
4143 		}
4144 
4145 		/* discard potentially stale zero_sum_result */
4146 		sh->ops.zero_sum_result = 0;
4147 
4148 		if (sh->check_state == check_state_run) {
4149 			/* async_xor_zero_sum destroys the contents of P */
4150 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4151 			s->uptodate--;
4152 		}
4153 		if (sh->check_state >= check_state_run &&
4154 		    sh->check_state <= check_state_run_pq) {
4155 			/* async_syndrome_zero_sum preserves P and Q, so
4156 			 * no need to mark them !uptodate here
4157 			 */
4158 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4159 			break;
4160 		}
4161 
4162 		/* we have 2-disk failure */
4163 		BUG_ON(s->failed != 2);
4164 		/* fall through */
4165 	case check_state_compute_result:
4166 		sh->check_state = check_state_idle;
4167 
4168 		/* check that a write has not made the stripe insync */
4169 		if (test_bit(STRIPE_INSYNC, &sh->state))
4170 			break;
4171 
4172 		/* now write out any block on a failed drive,
4173 		 * or P or Q if they were recomputed
4174 		 */
4175 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4176 		if (s->failed == 2) {
4177 			dev = &sh->dev[s->failed_num[1]];
4178 			s->locked++;
4179 			set_bit(R5_LOCKED, &dev->flags);
4180 			set_bit(R5_Wantwrite, &dev->flags);
4181 		}
4182 		if (s->failed >= 1) {
4183 			dev = &sh->dev[s->failed_num[0]];
4184 			s->locked++;
4185 			set_bit(R5_LOCKED, &dev->flags);
4186 			set_bit(R5_Wantwrite, &dev->flags);
4187 		}
4188 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4189 			dev = &sh->dev[pd_idx];
4190 			s->locked++;
4191 			set_bit(R5_LOCKED, &dev->flags);
4192 			set_bit(R5_Wantwrite, &dev->flags);
4193 		}
4194 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4195 			dev = &sh->dev[qd_idx];
4196 			s->locked++;
4197 			set_bit(R5_LOCKED, &dev->flags);
4198 			set_bit(R5_Wantwrite, &dev->flags);
4199 		}
4200 		clear_bit(STRIPE_DEGRADED, &sh->state);
4201 
4202 		set_bit(STRIPE_INSYNC, &sh->state);
4203 		break;
4204 	case check_state_run:
4205 	case check_state_run_q:
4206 	case check_state_run_pq:
4207 		break; /* we will be called again upon completion */
4208 	case check_state_check_result:
4209 		sh->check_state = check_state_idle;
4210 
4211 		/* handle a successful check operation, if parity is correct
4212 		 * we are done.  Otherwise update the mismatch count and repair
4213 		 * parity if !MD_RECOVERY_CHECK
4214 		 */
4215 		if (sh->ops.zero_sum_result == 0) {
4216 			/* both parities are correct */
4217 			if (!s->failed)
4218 				set_bit(STRIPE_INSYNC, &sh->state);
4219 			else {
4220 				/* in contrast to the raid5 case we can validate
4221 				 * parity, but still have a failure to write
4222 				 * back
4223 				 */
4224 				sh->check_state = check_state_compute_result;
4225 				/* Returning at this point means that we may go
4226 				 * off and bring p and/or q uptodate again so
4227 				 * we make sure to check zero_sum_result again
4228 				 * to verify if p or q need writeback
4229 				 */
4230 			}
4231 		} else {
4232 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4233 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4234 				/* don't try to repair!! */
4235 				set_bit(STRIPE_INSYNC, &sh->state);
4236 			else {
4237 				int *target = &sh->ops.target;
4238 
4239 				sh->ops.target = -1;
4240 				sh->ops.target2 = -1;
4241 				sh->check_state = check_state_compute_run;
4242 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4243 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4244 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4245 					set_bit(R5_Wantcompute,
4246 						&sh->dev[pd_idx].flags);
4247 					*target = pd_idx;
4248 					target = &sh->ops.target2;
4249 					s->uptodate++;
4250 				}
4251 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4252 					set_bit(R5_Wantcompute,
4253 						&sh->dev[qd_idx].flags);
4254 					*target = qd_idx;
4255 					s->uptodate++;
4256 				}
4257 			}
4258 		}
4259 		break;
4260 	case check_state_compute_run:
4261 		break;
4262 	default:
4263 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4264 			__func__, sh->check_state,
4265 			(unsigned long long) sh->sector);
4266 		BUG();
4267 	}
4268 }
4269 
4270 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4271 {
4272 	int i;
4273 
4274 	/* We have read all the blocks in this stripe and now we need to
4275 	 * copy some of them into a target stripe for expand.
4276 	 */
4277 	struct dma_async_tx_descriptor *tx = NULL;
4278 	BUG_ON(sh->batch_head);
4279 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4280 	for (i = 0; i < sh->disks; i++)
4281 		if (i != sh->pd_idx && i != sh->qd_idx) {
4282 			int dd_idx, j;
4283 			struct stripe_head *sh2;
4284 			struct async_submit_ctl submit;
4285 
4286 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4287 			sector_t s = raid5_compute_sector(conf, bn, 0,
4288 							  &dd_idx, NULL);
4289 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4290 			if (sh2 == NULL)
4291 				/* so far only the early blocks of this stripe
4292 				 * have been requested.  When later blocks
4293 				 * get requested, we will try again
4294 				 */
4295 				continue;
4296 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4297 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4298 				/* must have already done this block */
4299 				raid5_release_stripe(sh2);
4300 				continue;
4301 			}
4302 
4303 			/* place all the copies on one channel */
4304 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4305 			tx = async_memcpy(sh2->dev[dd_idx].page,
4306 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
4307 					  &submit);
4308 
4309 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4310 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4311 			for (j = 0; j < conf->raid_disks; j++)
4312 				if (j != sh2->pd_idx &&
4313 				    j != sh2->qd_idx &&
4314 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4315 					break;
4316 			if (j == conf->raid_disks) {
4317 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4318 				set_bit(STRIPE_HANDLE, &sh2->state);
4319 			}
4320 			raid5_release_stripe(sh2);
4321 
4322 		}
4323 	/* done submitting copies, wait for them to complete */
4324 	async_tx_quiesce(&tx);
4325 }
4326 
4327 /*
4328  * handle_stripe - do things to a stripe.
4329  *
4330  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4331  * state of various bits to see what needs to be done.
4332  * Possible results:
4333  *    return some read requests which now have data
4334  *    return some write requests which are safely on storage
4335  *    schedule a read on some buffers
4336  *    schedule a write of some buffers
4337  *    return confirmation of parity correctness
4338  *
4339  */
4340 
4341 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4342 {
4343 	struct r5conf *conf = sh->raid_conf;
4344 	int disks = sh->disks;
4345 	struct r5dev *dev;
4346 	int i;
4347 	int do_recovery = 0;
4348 
4349 	memset(s, 0, sizeof(*s));
4350 
4351 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4352 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4353 	s->failed_num[0] = -1;
4354 	s->failed_num[1] = -1;
4355 	s->log_failed = r5l_log_disk_error(conf);
4356 
4357 	/* Now to look around and see what can be done */
4358 	rcu_read_lock();
4359 	for (i=disks; i--; ) {
4360 		struct md_rdev *rdev;
4361 		sector_t first_bad;
4362 		int bad_sectors;
4363 		int is_bad = 0;
4364 
4365 		dev = &sh->dev[i];
4366 
4367 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4368 			 i, dev->flags,
4369 			 dev->toread, dev->towrite, dev->written);
4370 		/* maybe we can reply to a read
4371 		 *
4372 		 * new wantfill requests are only permitted while
4373 		 * ops_complete_biofill is guaranteed to be inactive
4374 		 */
4375 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4376 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4377 			set_bit(R5_Wantfill, &dev->flags);
4378 
4379 		/* now count some things */
4380 		if (test_bit(R5_LOCKED, &dev->flags))
4381 			s->locked++;
4382 		if (test_bit(R5_UPTODATE, &dev->flags))
4383 			s->uptodate++;
4384 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4385 			s->compute++;
4386 			BUG_ON(s->compute > 2);
4387 		}
4388 
4389 		if (test_bit(R5_Wantfill, &dev->flags))
4390 			s->to_fill++;
4391 		else if (dev->toread)
4392 			s->to_read++;
4393 		if (dev->towrite) {
4394 			s->to_write++;
4395 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4396 				s->non_overwrite++;
4397 		}
4398 		if (dev->written)
4399 			s->written++;
4400 		/* Prefer to use the replacement for reads, but only
4401 		 * if it is recovered enough and has no bad blocks.
4402 		 */
4403 		rdev = rcu_dereference(conf->disks[i].replacement);
4404 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4405 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4406 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4407 				 &first_bad, &bad_sectors))
4408 			set_bit(R5_ReadRepl, &dev->flags);
4409 		else {
4410 			if (rdev && !test_bit(Faulty, &rdev->flags))
4411 				set_bit(R5_NeedReplace, &dev->flags);
4412 			else
4413 				clear_bit(R5_NeedReplace, &dev->flags);
4414 			rdev = rcu_dereference(conf->disks[i].rdev);
4415 			clear_bit(R5_ReadRepl, &dev->flags);
4416 		}
4417 		if (rdev && test_bit(Faulty, &rdev->flags))
4418 			rdev = NULL;
4419 		if (rdev) {
4420 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4421 					     &first_bad, &bad_sectors);
4422 			if (s->blocked_rdev == NULL
4423 			    && (test_bit(Blocked, &rdev->flags)
4424 				|| is_bad < 0)) {
4425 				if (is_bad < 0)
4426 					set_bit(BlockedBadBlocks,
4427 						&rdev->flags);
4428 				s->blocked_rdev = rdev;
4429 				atomic_inc(&rdev->nr_pending);
4430 			}
4431 		}
4432 		clear_bit(R5_Insync, &dev->flags);
4433 		if (!rdev)
4434 			/* Not in-sync */;
4435 		else if (is_bad) {
4436 			/* also not in-sync */
4437 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4438 			    test_bit(R5_UPTODATE, &dev->flags)) {
4439 				/* treat as in-sync, but with a read error
4440 				 * which we can now try to correct
4441 				 */
4442 				set_bit(R5_Insync, &dev->flags);
4443 				set_bit(R5_ReadError, &dev->flags);
4444 			}
4445 		} else if (test_bit(In_sync, &rdev->flags))
4446 			set_bit(R5_Insync, &dev->flags);
4447 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4448 			/* in sync if before recovery_offset */
4449 			set_bit(R5_Insync, &dev->flags);
4450 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4451 			 test_bit(R5_Expanded, &dev->flags))
4452 			/* If we've reshaped into here, we assume it is Insync.
4453 			 * We will shortly update recovery_offset to make
4454 			 * it official.
4455 			 */
4456 			set_bit(R5_Insync, &dev->flags);
4457 
4458 		if (test_bit(R5_WriteError, &dev->flags)) {
4459 			/* This flag does not apply to '.replacement'
4460 			 * only to .rdev, so make sure to check that*/
4461 			struct md_rdev *rdev2 = rcu_dereference(
4462 				conf->disks[i].rdev);
4463 			if (rdev2 == rdev)
4464 				clear_bit(R5_Insync, &dev->flags);
4465 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4466 				s->handle_bad_blocks = 1;
4467 				atomic_inc(&rdev2->nr_pending);
4468 			} else
4469 				clear_bit(R5_WriteError, &dev->flags);
4470 		}
4471 		if (test_bit(R5_MadeGood, &dev->flags)) {
4472 			/* This flag does not apply to '.replacement'
4473 			 * only to .rdev, so make sure to check that*/
4474 			struct md_rdev *rdev2 = rcu_dereference(
4475 				conf->disks[i].rdev);
4476 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4477 				s->handle_bad_blocks = 1;
4478 				atomic_inc(&rdev2->nr_pending);
4479 			} else
4480 				clear_bit(R5_MadeGood, &dev->flags);
4481 		}
4482 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4483 			struct md_rdev *rdev2 = rcu_dereference(
4484 				conf->disks[i].replacement);
4485 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4486 				s->handle_bad_blocks = 1;
4487 				atomic_inc(&rdev2->nr_pending);
4488 			} else
4489 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4490 		}
4491 		if (!test_bit(R5_Insync, &dev->flags)) {
4492 			/* The ReadError flag will just be confusing now */
4493 			clear_bit(R5_ReadError, &dev->flags);
4494 			clear_bit(R5_ReWrite, &dev->flags);
4495 		}
4496 		if (test_bit(R5_ReadError, &dev->flags))
4497 			clear_bit(R5_Insync, &dev->flags);
4498 		if (!test_bit(R5_Insync, &dev->flags)) {
4499 			if (s->failed < 2)
4500 				s->failed_num[s->failed] = i;
4501 			s->failed++;
4502 			if (rdev && !test_bit(Faulty, &rdev->flags))
4503 				do_recovery = 1;
4504 		}
4505 
4506 		if (test_bit(R5_InJournal, &dev->flags))
4507 			s->injournal++;
4508 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4509 			s->just_cached++;
4510 	}
4511 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4512 		/* If there is a failed device being replaced,
4513 		 *     we must be recovering.
4514 		 * else if we are after recovery_cp, we must be syncing
4515 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4516 		 * else we can only be replacing
4517 		 * sync and recovery both need to read all devices, and so
4518 		 * use the same flag.
4519 		 */
4520 		if (do_recovery ||
4521 		    sh->sector >= conf->mddev->recovery_cp ||
4522 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4523 			s->syncing = 1;
4524 		else
4525 			s->replacing = 1;
4526 	}
4527 	rcu_read_unlock();
4528 }
4529 
4530 static int clear_batch_ready(struct stripe_head *sh)
4531 {
4532 	/* Return '1' if this is a member of batch, or
4533 	 * '0' if it is a lone stripe or a head which can now be
4534 	 * handled.
4535 	 */
4536 	struct stripe_head *tmp;
4537 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4538 		return (sh->batch_head && sh->batch_head != sh);
4539 	spin_lock(&sh->stripe_lock);
4540 	if (!sh->batch_head) {
4541 		spin_unlock(&sh->stripe_lock);
4542 		return 0;
4543 	}
4544 
4545 	/*
4546 	 * this stripe could be added to a batch list before we check
4547 	 * BATCH_READY, skips it
4548 	 */
4549 	if (sh->batch_head != sh) {
4550 		spin_unlock(&sh->stripe_lock);
4551 		return 1;
4552 	}
4553 	spin_lock(&sh->batch_lock);
4554 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4555 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4556 	spin_unlock(&sh->batch_lock);
4557 	spin_unlock(&sh->stripe_lock);
4558 
4559 	/*
4560 	 * BATCH_READY is cleared, no new stripes can be added.
4561 	 * batch_list can be accessed without lock
4562 	 */
4563 	return 0;
4564 }
4565 
4566 static void break_stripe_batch_list(struct stripe_head *head_sh,
4567 				    unsigned long handle_flags)
4568 {
4569 	struct stripe_head *sh, *next;
4570 	int i;
4571 	int do_wakeup = 0;
4572 
4573 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4574 
4575 		list_del_init(&sh->batch_list);
4576 
4577 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4578 					  (1 << STRIPE_SYNCING) |
4579 					  (1 << STRIPE_REPLACED) |
4580 					  (1 << STRIPE_DELAYED) |
4581 					  (1 << STRIPE_BIT_DELAY) |
4582 					  (1 << STRIPE_FULL_WRITE) |
4583 					  (1 << STRIPE_BIOFILL_RUN) |
4584 					  (1 << STRIPE_COMPUTE_RUN)  |
4585 					  (1 << STRIPE_OPS_REQ_PENDING) |
4586 					  (1 << STRIPE_DISCARD) |
4587 					  (1 << STRIPE_BATCH_READY) |
4588 					  (1 << STRIPE_BATCH_ERR) |
4589 					  (1 << STRIPE_BITMAP_PENDING)),
4590 			"stripe state: %lx\n", sh->state);
4591 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4592 					      (1 << STRIPE_REPLACED)),
4593 			"head stripe state: %lx\n", head_sh->state);
4594 
4595 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4596 					    (1 << STRIPE_PREREAD_ACTIVE) |
4597 					    (1 << STRIPE_DEGRADED)),
4598 			      head_sh->state & (1 << STRIPE_INSYNC));
4599 
4600 		sh->check_state = head_sh->check_state;
4601 		sh->reconstruct_state = head_sh->reconstruct_state;
4602 		for (i = 0; i < sh->disks; i++) {
4603 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4604 				do_wakeup = 1;
4605 			sh->dev[i].flags = head_sh->dev[i].flags &
4606 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4607 		}
4608 		spin_lock_irq(&sh->stripe_lock);
4609 		sh->batch_head = NULL;
4610 		spin_unlock_irq(&sh->stripe_lock);
4611 		if (handle_flags == 0 ||
4612 		    sh->state & handle_flags)
4613 			set_bit(STRIPE_HANDLE, &sh->state);
4614 		raid5_release_stripe(sh);
4615 	}
4616 	spin_lock_irq(&head_sh->stripe_lock);
4617 	head_sh->batch_head = NULL;
4618 	spin_unlock_irq(&head_sh->stripe_lock);
4619 	for (i = 0; i < head_sh->disks; i++)
4620 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4621 			do_wakeup = 1;
4622 	if (head_sh->state & handle_flags)
4623 		set_bit(STRIPE_HANDLE, &head_sh->state);
4624 
4625 	if (do_wakeup)
4626 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4627 }
4628 
4629 static void handle_stripe(struct stripe_head *sh)
4630 {
4631 	struct stripe_head_state s;
4632 	struct r5conf *conf = sh->raid_conf;
4633 	int i;
4634 	int prexor;
4635 	int disks = sh->disks;
4636 	struct r5dev *pdev, *qdev;
4637 
4638 	clear_bit(STRIPE_HANDLE, &sh->state);
4639 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4640 		/* already being handled, ensure it gets handled
4641 		 * again when current action finishes */
4642 		set_bit(STRIPE_HANDLE, &sh->state);
4643 		return;
4644 	}
4645 
4646 	if (clear_batch_ready(sh) ) {
4647 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4648 		return;
4649 	}
4650 
4651 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4652 		break_stripe_batch_list(sh, 0);
4653 
4654 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4655 		spin_lock(&sh->stripe_lock);
4656 		/* Cannot process 'sync' concurrently with 'discard' */
4657 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4658 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4659 			set_bit(STRIPE_SYNCING, &sh->state);
4660 			clear_bit(STRIPE_INSYNC, &sh->state);
4661 			clear_bit(STRIPE_REPLACED, &sh->state);
4662 		}
4663 		spin_unlock(&sh->stripe_lock);
4664 	}
4665 	clear_bit(STRIPE_DELAYED, &sh->state);
4666 
4667 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4668 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4669 	       (unsigned long long)sh->sector, sh->state,
4670 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4671 	       sh->check_state, sh->reconstruct_state);
4672 
4673 	analyse_stripe(sh, &s);
4674 
4675 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4676 		goto finish;
4677 
4678 	if (s.handle_bad_blocks ||
4679 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4680 		set_bit(STRIPE_HANDLE, &sh->state);
4681 		goto finish;
4682 	}
4683 
4684 	if (unlikely(s.blocked_rdev)) {
4685 		if (s.syncing || s.expanding || s.expanded ||
4686 		    s.replacing || s.to_write || s.written) {
4687 			set_bit(STRIPE_HANDLE, &sh->state);
4688 			goto finish;
4689 		}
4690 		/* There is nothing for the blocked_rdev to block */
4691 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4692 		s.blocked_rdev = NULL;
4693 	}
4694 
4695 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4696 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4697 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4698 	}
4699 
4700 	pr_debug("locked=%d uptodate=%d to_read=%d"
4701 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4702 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4703 	       s.failed_num[0], s.failed_num[1]);
4704 	/* check if the array has lost more than max_degraded devices and,
4705 	 * if so, some requests might need to be failed.
4706 	 */
4707 	if (s.failed > conf->max_degraded || s.log_failed) {
4708 		sh->check_state = 0;
4709 		sh->reconstruct_state = 0;
4710 		break_stripe_batch_list(sh, 0);
4711 		if (s.to_read+s.to_write+s.written)
4712 			handle_failed_stripe(conf, sh, &s, disks);
4713 		if (s.syncing + s.replacing)
4714 			handle_failed_sync(conf, sh, &s);
4715 	}
4716 
4717 	/* Now we check to see if any write operations have recently
4718 	 * completed
4719 	 */
4720 	prexor = 0;
4721 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4722 		prexor = 1;
4723 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4724 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4725 		sh->reconstruct_state = reconstruct_state_idle;
4726 
4727 		/* All the 'written' buffers and the parity block are ready to
4728 		 * be written back to disk
4729 		 */
4730 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4731 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4732 		BUG_ON(sh->qd_idx >= 0 &&
4733 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4734 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4735 		for (i = disks; i--; ) {
4736 			struct r5dev *dev = &sh->dev[i];
4737 			if (test_bit(R5_LOCKED, &dev->flags) &&
4738 				(i == sh->pd_idx || i == sh->qd_idx ||
4739 				 dev->written || test_bit(R5_InJournal,
4740 							  &dev->flags))) {
4741 				pr_debug("Writing block %d\n", i);
4742 				set_bit(R5_Wantwrite, &dev->flags);
4743 				if (prexor)
4744 					continue;
4745 				if (s.failed > 1)
4746 					continue;
4747 				if (!test_bit(R5_Insync, &dev->flags) ||
4748 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4749 				     s.failed == 0))
4750 					set_bit(STRIPE_INSYNC, &sh->state);
4751 			}
4752 		}
4753 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4754 			s.dec_preread_active = 1;
4755 	}
4756 
4757 	/*
4758 	 * might be able to return some write requests if the parity blocks
4759 	 * are safe, or on a failed drive
4760 	 */
4761 	pdev = &sh->dev[sh->pd_idx];
4762 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4763 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4764 	qdev = &sh->dev[sh->qd_idx];
4765 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4766 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4767 		|| conf->level < 6;
4768 
4769 	if (s.written &&
4770 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4771 			     && !test_bit(R5_LOCKED, &pdev->flags)
4772 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4773 				 test_bit(R5_Discard, &pdev->flags))))) &&
4774 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4775 			     && !test_bit(R5_LOCKED, &qdev->flags)
4776 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4777 				 test_bit(R5_Discard, &qdev->flags))))))
4778 		handle_stripe_clean_event(conf, sh, disks);
4779 
4780 	if (s.just_cached)
4781 		r5c_handle_cached_data_endio(conf, sh, disks);
4782 	log_stripe_write_finished(sh);
4783 
4784 	/* Now we might consider reading some blocks, either to check/generate
4785 	 * parity, or to satisfy requests
4786 	 * or to load a block that is being partially written.
4787 	 */
4788 	if (s.to_read || s.non_overwrite
4789 	    || (conf->level == 6 && s.to_write && s.failed)
4790 	    || (s.syncing && (s.uptodate + s.compute < disks))
4791 	    || s.replacing
4792 	    || s.expanding)
4793 		handle_stripe_fill(sh, &s, disks);
4794 
4795 	/*
4796 	 * When the stripe finishes full journal write cycle (write to journal
4797 	 * and raid disk), this is the clean up procedure so it is ready for
4798 	 * next operation.
4799 	 */
4800 	r5c_finish_stripe_write_out(conf, sh, &s);
4801 
4802 	/*
4803 	 * Now to consider new write requests, cache write back and what else,
4804 	 * if anything should be read.  We do not handle new writes when:
4805 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4806 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4807 	 *    block.
4808 	 * 3/ A r5c cache log write is in flight.
4809 	 */
4810 
4811 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4812 		if (!r5c_is_writeback(conf->log)) {
4813 			if (s.to_write)
4814 				handle_stripe_dirtying(conf, sh, &s, disks);
4815 		} else { /* write back cache */
4816 			int ret = 0;
4817 
4818 			/* First, try handle writes in caching phase */
4819 			if (s.to_write)
4820 				ret = r5c_try_caching_write(conf, sh, &s,
4821 							    disks);
4822 			/*
4823 			 * If caching phase failed: ret == -EAGAIN
4824 			 *    OR
4825 			 * stripe under reclaim: !caching && injournal
4826 			 *
4827 			 * fall back to handle_stripe_dirtying()
4828 			 */
4829 			if (ret == -EAGAIN ||
4830 			    /* stripe under reclaim: !caching && injournal */
4831 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4832 			     s.injournal > 0)) {
4833 				ret = handle_stripe_dirtying(conf, sh, &s,
4834 							     disks);
4835 				if (ret == -EAGAIN)
4836 					goto finish;
4837 			}
4838 		}
4839 	}
4840 
4841 	/* maybe we need to check and possibly fix the parity for this stripe
4842 	 * Any reads will already have been scheduled, so we just see if enough
4843 	 * data is available.  The parity check is held off while parity
4844 	 * dependent operations are in flight.
4845 	 */
4846 	if (sh->check_state ||
4847 	    (s.syncing && s.locked == 0 &&
4848 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4849 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4850 		if (conf->level == 6)
4851 			handle_parity_checks6(conf, sh, &s, disks);
4852 		else
4853 			handle_parity_checks5(conf, sh, &s, disks);
4854 	}
4855 
4856 	if ((s.replacing || s.syncing) && s.locked == 0
4857 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4858 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4859 		/* Write out to replacement devices where possible */
4860 		for (i = 0; i < conf->raid_disks; i++)
4861 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4862 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4863 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4864 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4865 				s.locked++;
4866 			}
4867 		if (s.replacing)
4868 			set_bit(STRIPE_INSYNC, &sh->state);
4869 		set_bit(STRIPE_REPLACED, &sh->state);
4870 	}
4871 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4872 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4873 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4874 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4875 		clear_bit(STRIPE_SYNCING, &sh->state);
4876 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4877 			wake_up(&conf->wait_for_overlap);
4878 	}
4879 
4880 	/* If the failed drives are just a ReadError, then we might need
4881 	 * to progress the repair/check process
4882 	 */
4883 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4884 		for (i = 0; i < s.failed; i++) {
4885 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4886 			if (test_bit(R5_ReadError, &dev->flags)
4887 			    && !test_bit(R5_LOCKED, &dev->flags)
4888 			    && test_bit(R5_UPTODATE, &dev->flags)
4889 				) {
4890 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4891 					set_bit(R5_Wantwrite, &dev->flags);
4892 					set_bit(R5_ReWrite, &dev->flags);
4893 					set_bit(R5_LOCKED, &dev->flags);
4894 					s.locked++;
4895 				} else {
4896 					/* let's read it back */
4897 					set_bit(R5_Wantread, &dev->flags);
4898 					set_bit(R5_LOCKED, &dev->flags);
4899 					s.locked++;
4900 				}
4901 			}
4902 		}
4903 
4904 	/* Finish reconstruct operations initiated by the expansion process */
4905 	if (sh->reconstruct_state == reconstruct_state_result) {
4906 		struct stripe_head *sh_src
4907 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4908 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4909 			/* sh cannot be written until sh_src has been read.
4910 			 * so arrange for sh to be delayed a little
4911 			 */
4912 			set_bit(STRIPE_DELAYED, &sh->state);
4913 			set_bit(STRIPE_HANDLE, &sh->state);
4914 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4915 					      &sh_src->state))
4916 				atomic_inc(&conf->preread_active_stripes);
4917 			raid5_release_stripe(sh_src);
4918 			goto finish;
4919 		}
4920 		if (sh_src)
4921 			raid5_release_stripe(sh_src);
4922 
4923 		sh->reconstruct_state = reconstruct_state_idle;
4924 		clear_bit(STRIPE_EXPANDING, &sh->state);
4925 		for (i = conf->raid_disks; i--; ) {
4926 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4927 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4928 			s.locked++;
4929 		}
4930 	}
4931 
4932 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4933 	    !sh->reconstruct_state) {
4934 		/* Need to write out all blocks after computing parity */
4935 		sh->disks = conf->raid_disks;
4936 		stripe_set_idx(sh->sector, conf, 0, sh);
4937 		schedule_reconstruction(sh, &s, 1, 1);
4938 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4939 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4940 		atomic_dec(&conf->reshape_stripes);
4941 		wake_up(&conf->wait_for_overlap);
4942 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4943 	}
4944 
4945 	if (s.expanding && s.locked == 0 &&
4946 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4947 		handle_stripe_expansion(conf, sh);
4948 
4949 finish:
4950 	/* wait for this device to become unblocked */
4951 	if (unlikely(s.blocked_rdev)) {
4952 		if (conf->mddev->external)
4953 			md_wait_for_blocked_rdev(s.blocked_rdev,
4954 						 conf->mddev);
4955 		else
4956 			/* Internal metadata will immediately
4957 			 * be written by raid5d, so we don't
4958 			 * need to wait here.
4959 			 */
4960 			rdev_dec_pending(s.blocked_rdev,
4961 					 conf->mddev);
4962 	}
4963 
4964 	if (s.handle_bad_blocks)
4965 		for (i = disks; i--; ) {
4966 			struct md_rdev *rdev;
4967 			struct r5dev *dev = &sh->dev[i];
4968 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4969 				/* We own a safe reference to the rdev */
4970 				rdev = conf->disks[i].rdev;
4971 				if (!rdev_set_badblocks(rdev, sh->sector,
4972 							STRIPE_SECTORS, 0))
4973 					md_error(conf->mddev, rdev);
4974 				rdev_dec_pending(rdev, conf->mddev);
4975 			}
4976 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4977 				rdev = conf->disks[i].rdev;
4978 				rdev_clear_badblocks(rdev, sh->sector,
4979 						     STRIPE_SECTORS, 0);
4980 				rdev_dec_pending(rdev, conf->mddev);
4981 			}
4982 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4983 				rdev = conf->disks[i].replacement;
4984 				if (!rdev)
4985 					/* rdev have been moved down */
4986 					rdev = conf->disks[i].rdev;
4987 				rdev_clear_badblocks(rdev, sh->sector,
4988 						     STRIPE_SECTORS, 0);
4989 				rdev_dec_pending(rdev, conf->mddev);
4990 			}
4991 		}
4992 
4993 	if (s.ops_request)
4994 		raid_run_ops(sh, s.ops_request);
4995 
4996 	ops_run_io(sh, &s);
4997 
4998 	if (s.dec_preread_active) {
4999 		/* We delay this until after ops_run_io so that if make_request
5000 		 * is waiting on a flush, it won't continue until the writes
5001 		 * have actually been submitted.
5002 		 */
5003 		atomic_dec(&conf->preread_active_stripes);
5004 		if (atomic_read(&conf->preread_active_stripes) <
5005 		    IO_THRESHOLD)
5006 			md_wakeup_thread(conf->mddev->thread);
5007 	}
5008 
5009 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5010 }
5011 
5012 static void raid5_activate_delayed(struct r5conf *conf)
5013 {
5014 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5015 		while (!list_empty(&conf->delayed_list)) {
5016 			struct list_head *l = conf->delayed_list.next;
5017 			struct stripe_head *sh;
5018 			sh = list_entry(l, struct stripe_head, lru);
5019 			list_del_init(l);
5020 			clear_bit(STRIPE_DELAYED, &sh->state);
5021 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5022 				atomic_inc(&conf->preread_active_stripes);
5023 			list_add_tail(&sh->lru, &conf->hold_list);
5024 			raid5_wakeup_stripe_thread(sh);
5025 		}
5026 	}
5027 }
5028 
5029 static void activate_bit_delay(struct r5conf *conf,
5030 	struct list_head *temp_inactive_list)
5031 {
5032 	/* device_lock is held */
5033 	struct list_head head;
5034 	list_add(&head, &conf->bitmap_list);
5035 	list_del_init(&conf->bitmap_list);
5036 	while (!list_empty(&head)) {
5037 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5038 		int hash;
5039 		list_del_init(&sh->lru);
5040 		atomic_inc(&sh->count);
5041 		hash = sh->hash_lock_index;
5042 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5043 	}
5044 }
5045 
5046 static int raid5_congested(struct mddev *mddev, int bits)
5047 {
5048 	struct r5conf *conf = mddev->private;
5049 
5050 	/* No difference between reads and writes.  Just check
5051 	 * how busy the stripe_cache is
5052 	 */
5053 
5054 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5055 		return 1;
5056 
5057 	/* Also checks whether there is pressure on r5cache log space */
5058 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5059 		return 1;
5060 	if (conf->quiesce)
5061 		return 1;
5062 	if (atomic_read(&conf->empty_inactive_list_nr))
5063 		return 1;
5064 
5065 	return 0;
5066 }
5067 
5068 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5069 {
5070 	struct r5conf *conf = mddev->private;
5071 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
5072 	unsigned int chunk_sectors;
5073 	unsigned int bio_sectors = bio_sectors(bio);
5074 
5075 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5076 	return  chunk_sectors >=
5077 		((sector & (chunk_sectors - 1)) + bio_sectors);
5078 }
5079 
5080 /*
5081  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5082  *  later sampled by raid5d.
5083  */
5084 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5085 {
5086 	unsigned long flags;
5087 
5088 	spin_lock_irqsave(&conf->device_lock, flags);
5089 
5090 	bi->bi_next = conf->retry_read_aligned_list;
5091 	conf->retry_read_aligned_list = bi;
5092 
5093 	spin_unlock_irqrestore(&conf->device_lock, flags);
5094 	md_wakeup_thread(conf->mddev->thread);
5095 }
5096 
5097 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5098 					 unsigned int *offset)
5099 {
5100 	struct bio *bi;
5101 
5102 	bi = conf->retry_read_aligned;
5103 	if (bi) {
5104 		*offset = conf->retry_read_offset;
5105 		conf->retry_read_aligned = NULL;
5106 		return bi;
5107 	}
5108 	bi = conf->retry_read_aligned_list;
5109 	if(bi) {
5110 		conf->retry_read_aligned_list = bi->bi_next;
5111 		bi->bi_next = NULL;
5112 		*offset = 0;
5113 	}
5114 
5115 	return bi;
5116 }
5117 
5118 /*
5119  *  The "raid5_align_endio" should check if the read succeeded and if it
5120  *  did, call bio_endio on the original bio (having bio_put the new bio
5121  *  first).
5122  *  If the read failed..
5123  */
5124 static void raid5_align_endio(struct bio *bi)
5125 {
5126 	struct bio* raid_bi  = bi->bi_private;
5127 	struct mddev *mddev;
5128 	struct r5conf *conf;
5129 	struct md_rdev *rdev;
5130 	int error = bi->bi_error;
5131 
5132 	bio_put(bi);
5133 
5134 	rdev = (void*)raid_bi->bi_next;
5135 	raid_bi->bi_next = NULL;
5136 	mddev = rdev->mddev;
5137 	conf = mddev->private;
5138 
5139 	rdev_dec_pending(rdev, conf->mddev);
5140 
5141 	if (!error) {
5142 		bio_endio(raid_bi);
5143 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5144 			wake_up(&conf->wait_for_quiescent);
5145 		return;
5146 	}
5147 
5148 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5149 
5150 	add_bio_to_retry(raid_bi, conf);
5151 }
5152 
5153 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5154 {
5155 	struct r5conf *conf = mddev->private;
5156 	int dd_idx;
5157 	struct bio* align_bi;
5158 	struct md_rdev *rdev;
5159 	sector_t end_sector;
5160 
5161 	if (!in_chunk_boundary(mddev, raid_bio)) {
5162 		pr_debug("%s: non aligned\n", __func__);
5163 		return 0;
5164 	}
5165 	/*
5166 	 * use bio_clone_fast to make a copy of the bio
5167 	 */
5168 	align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5169 	if (!align_bi)
5170 		return 0;
5171 	/*
5172 	 *   set bi_end_io to a new function, and set bi_private to the
5173 	 *     original bio.
5174 	 */
5175 	align_bi->bi_end_io  = raid5_align_endio;
5176 	align_bi->bi_private = raid_bio;
5177 	/*
5178 	 *	compute position
5179 	 */
5180 	align_bi->bi_iter.bi_sector =
5181 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5182 				     0, &dd_idx, NULL);
5183 
5184 	end_sector = bio_end_sector(align_bi);
5185 	rcu_read_lock();
5186 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5187 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5188 	    rdev->recovery_offset < end_sector) {
5189 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5190 		if (rdev &&
5191 		    (test_bit(Faulty, &rdev->flags) ||
5192 		    !(test_bit(In_sync, &rdev->flags) ||
5193 		      rdev->recovery_offset >= end_sector)))
5194 			rdev = NULL;
5195 	}
5196 
5197 	if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5198 		rcu_read_unlock();
5199 		bio_put(align_bi);
5200 		return 0;
5201 	}
5202 
5203 	if (rdev) {
5204 		sector_t first_bad;
5205 		int bad_sectors;
5206 
5207 		atomic_inc(&rdev->nr_pending);
5208 		rcu_read_unlock();
5209 		raid_bio->bi_next = (void*)rdev;
5210 		align_bi->bi_bdev =  rdev->bdev;
5211 		bio_clear_flag(align_bi, BIO_SEG_VALID);
5212 
5213 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5214 				bio_sectors(align_bi),
5215 				&first_bad, &bad_sectors)) {
5216 			bio_put(align_bi);
5217 			rdev_dec_pending(rdev, mddev);
5218 			return 0;
5219 		}
5220 
5221 		/* No reshape active, so we can trust rdev->data_offset */
5222 		align_bi->bi_iter.bi_sector += rdev->data_offset;
5223 
5224 		spin_lock_irq(&conf->device_lock);
5225 		wait_event_lock_irq(conf->wait_for_quiescent,
5226 				    conf->quiesce == 0,
5227 				    conf->device_lock);
5228 		atomic_inc(&conf->active_aligned_reads);
5229 		spin_unlock_irq(&conf->device_lock);
5230 
5231 		if (mddev->gendisk)
5232 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5233 					      align_bi, disk_devt(mddev->gendisk),
5234 					      raid_bio->bi_iter.bi_sector);
5235 		generic_make_request(align_bi);
5236 		return 1;
5237 	} else {
5238 		rcu_read_unlock();
5239 		bio_put(align_bi);
5240 		return 0;
5241 	}
5242 }
5243 
5244 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5245 {
5246 	struct bio *split;
5247 	sector_t sector = raid_bio->bi_iter.bi_sector;
5248 	unsigned chunk_sects = mddev->chunk_sectors;
5249 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5250 
5251 	if (sectors < bio_sectors(raid_bio)) {
5252 		struct r5conf *conf = mddev->private;
5253 		split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5254 		bio_chain(split, raid_bio);
5255 		generic_make_request(raid_bio);
5256 		raid_bio = split;
5257 	}
5258 
5259 	if (!raid5_read_one_chunk(mddev, raid_bio))
5260 		return raid_bio;
5261 
5262 	return NULL;
5263 }
5264 
5265 /* __get_priority_stripe - get the next stripe to process
5266  *
5267  * Full stripe writes are allowed to pass preread active stripes up until
5268  * the bypass_threshold is exceeded.  In general the bypass_count
5269  * increments when the handle_list is handled before the hold_list; however, it
5270  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5271  * stripe with in flight i/o.  The bypass_count will be reset when the
5272  * head of the hold_list has changed, i.e. the head was promoted to the
5273  * handle_list.
5274  */
5275 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5276 {
5277 	struct stripe_head *sh, *tmp;
5278 	struct list_head *handle_list = NULL;
5279 	struct r5worker_group *wg;
5280 	bool second_try = !r5c_is_writeback(conf->log);
5281 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state);
5282 
5283 again:
5284 	wg = NULL;
5285 	sh = NULL;
5286 	if (conf->worker_cnt_per_group == 0) {
5287 		handle_list = try_loprio ? &conf->loprio_list :
5288 					&conf->handle_list;
5289 	} else if (group != ANY_GROUP) {
5290 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5291 				&conf->worker_groups[group].handle_list;
5292 		wg = &conf->worker_groups[group];
5293 	} else {
5294 		int i;
5295 		for (i = 0; i < conf->group_cnt; i++) {
5296 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5297 				&conf->worker_groups[i].handle_list;
5298 			wg = &conf->worker_groups[i];
5299 			if (!list_empty(handle_list))
5300 				break;
5301 		}
5302 	}
5303 
5304 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5305 		  __func__,
5306 		  list_empty(handle_list) ? "empty" : "busy",
5307 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5308 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5309 
5310 	if (!list_empty(handle_list)) {
5311 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5312 
5313 		if (list_empty(&conf->hold_list))
5314 			conf->bypass_count = 0;
5315 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5316 			if (conf->hold_list.next == conf->last_hold)
5317 				conf->bypass_count++;
5318 			else {
5319 				conf->last_hold = conf->hold_list.next;
5320 				conf->bypass_count -= conf->bypass_threshold;
5321 				if (conf->bypass_count < 0)
5322 					conf->bypass_count = 0;
5323 			}
5324 		}
5325 	} else if (!list_empty(&conf->hold_list) &&
5326 		   ((conf->bypass_threshold &&
5327 		     conf->bypass_count > conf->bypass_threshold) ||
5328 		    atomic_read(&conf->pending_full_writes) == 0)) {
5329 
5330 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5331 			if (conf->worker_cnt_per_group == 0 ||
5332 			    group == ANY_GROUP ||
5333 			    !cpu_online(tmp->cpu) ||
5334 			    cpu_to_group(tmp->cpu) == group) {
5335 				sh = tmp;
5336 				break;
5337 			}
5338 		}
5339 
5340 		if (sh) {
5341 			conf->bypass_count -= conf->bypass_threshold;
5342 			if (conf->bypass_count < 0)
5343 				conf->bypass_count = 0;
5344 		}
5345 		wg = NULL;
5346 	}
5347 
5348 	if (!sh) {
5349 		if (second_try)
5350 			return NULL;
5351 		second_try = true;
5352 		try_loprio = !try_loprio;
5353 		goto again;
5354 	}
5355 
5356 	if (wg) {
5357 		wg->stripes_cnt--;
5358 		sh->group = NULL;
5359 	}
5360 	list_del_init(&sh->lru);
5361 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5362 	return sh;
5363 }
5364 
5365 struct raid5_plug_cb {
5366 	struct blk_plug_cb	cb;
5367 	struct list_head	list;
5368 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5369 };
5370 
5371 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5372 {
5373 	struct raid5_plug_cb *cb = container_of(
5374 		blk_cb, struct raid5_plug_cb, cb);
5375 	struct stripe_head *sh;
5376 	struct mddev *mddev = cb->cb.data;
5377 	struct r5conf *conf = mddev->private;
5378 	int cnt = 0;
5379 	int hash;
5380 
5381 	if (cb->list.next && !list_empty(&cb->list)) {
5382 		spin_lock_irq(&conf->device_lock);
5383 		while (!list_empty(&cb->list)) {
5384 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5385 			list_del_init(&sh->lru);
5386 			/*
5387 			 * avoid race release_stripe_plug() sees
5388 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5389 			 * is still in our list
5390 			 */
5391 			smp_mb__before_atomic();
5392 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5393 			/*
5394 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5395 			 * case, the count is always > 1 here
5396 			 */
5397 			hash = sh->hash_lock_index;
5398 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5399 			cnt++;
5400 		}
5401 		spin_unlock_irq(&conf->device_lock);
5402 	}
5403 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5404 				     NR_STRIPE_HASH_LOCKS);
5405 	if (mddev->queue)
5406 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5407 	kfree(cb);
5408 }
5409 
5410 static void release_stripe_plug(struct mddev *mddev,
5411 				struct stripe_head *sh)
5412 {
5413 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5414 		raid5_unplug, mddev,
5415 		sizeof(struct raid5_plug_cb));
5416 	struct raid5_plug_cb *cb;
5417 
5418 	if (!blk_cb) {
5419 		raid5_release_stripe(sh);
5420 		return;
5421 	}
5422 
5423 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5424 
5425 	if (cb->list.next == NULL) {
5426 		int i;
5427 		INIT_LIST_HEAD(&cb->list);
5428 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5429 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5430 	}
5431 
5432 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5433 		list_add_tail(&sh->lru, &cb->list);
5434 	else
5435 		raid5_release_stripe(sh);
5436 }
5437 
5438 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5439 {
5440 	struct r5conf *conf = mddev->private;
5441 	sector_t logical_sector, last_sector;
5442 	struct stripe_head *sh;
5443 	int stripe_sectors;
5444 
5445 	if (mddev->reshape_position != MaxSector)
5446 		/* Skip discard while reshape is happening */
5447 		return;
5448 
5449 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5450 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5451 
5452 	bi->bi_next = NULL;
5453 	md_write_start(mddev, bi);
5454 
5455 	stripe_sectors = conf->chunk_sectors *
5456 		(conf->raid_disks - conf->max_degraded);
5457 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5458 					       stripe_sectors);
5459 	sector_div(last_sector, stripe_sectors);
5460 
5461 	logical_sector *= conf->chunk_sectors;
5462 	last_sector *= conf->chunk_sectors;
5463 
5464 	for (; logical_sector < last_sector;
5465 	     logical_sector += STRIPE_SECTORS) {
5466 		DEFINE_WAIT(w);
5467 		int d;
5468 	again:
5469 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5470 		prepare_to_wait(&conf->wait_for_overlap, &w,
5471 				TASK_UNINTERRUPTIBLE);
5472 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5473 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5474 			raid5_release_stripe(sh);
5475 			schedule();
5476 			goto again;
5477 		}
5478 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5479 		spin_lock_irq(&sh->stripe_lock);
5480 		for (d = 0; d < conf->raid_disks; d++) {
5481 			if (d == sh->pd_idx || d == sh->qd_idx)
5482 				continue;
5483 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5484 				set_bit(R5_Overlap, &sh->dev[d].flags);
5485 				spin_unlock_irq(&sh->stripe_lock);
5486 				raid5_release_stripe(sh);
5487 				schedule();
5488 				goto again;
5489 			}
5490 		}
5491 		set_bit(STRIPE_DISCARD, &sh->state);
5492 		finish_wait(&conf->wait_for_overlap, &w);
5493 		sh->overwrite_disks = 0;
5494 		for (d = 0; d < conf->raid_disks; d++) {
5495 			if (d == sh->pd_idx || d == sh->qd_idx)
5496 				continue;
5497 			sh->dev[d].towrite = bi;
5498 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5499 			bio_inc_remaining(bi);
5500 			md_write_inc(mddev, bi);
5501 			sh->overwrite_disks++;
5502 		}
5503 		spin_unlock_irq(&sh->stripe_lock);
5504 		if (conf->mddev->bitmap) {
5505 			for (d = 0;
5506 			     d < conf->raid_disks - conf->max_degraded;
5507 			     d++)
5508 				bitmap_startwrite(mddev->bitmap,
5509 						  sh->sector,
5510 						  STRIPE_SECTORS,
5511 						  0);
5512 			sh->bm_seq = conf->seq_flush + 1;
5513 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5514 		}
5515 
5516 		set_bit(STRIPE_HANDLE, &sh->state);
5517 		clear_bit(STRIPE_DELAYED, &sh->state);
5518 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5519 			atomic_inc(&conf->preread_active_stripes);
5520 		release_stripe_plug(mddev, sh);
5521 	}
5522 
5523 	md_write_end(mddev);
5524 	bio_endio(bi);
5525 }
5526 
5527 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5528 {
5529 	struct r5conf *conf = mddev->private;
5530 	int dd_idx;
5531 	sector_t new_sector;
5532 	sector_t logical_sector, last_sector;
5533 	struct stripe_head *sh;
5534 	const int rw = bio_data_dir(bi);
5535 	DEFINE_WAIT(w);
5536 	bool do_prepare;
5537 	bool do_flush = false;
5538 
5539 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5540 		int ret = r5l_handle_flush_request(conf->log, bi);
5541 
5542 		if (ret == 0)
5543 			return;
5544 		if (ret == -ENODEV) {
5545 			md_flush_request(mddev, bi);
5546 			return;
5547 		}
5548 		/* ret == -EAGAIN, fallback */
5549 		/*
5550 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5551 		 * we need to flush journal device
5552 		 */
5553 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5554 	}
5555 
5556 	/*
5557 	 * If array is degraded, better not do chunk aligned read because
5558 	 * later we might have to read it again in order to reconstruct
5559 	 * data on failed drives.
5560 	 */
5561 	if (rw == READ && mddev->degraded == 0 &&
5562 	    mddev->reshape_position == MaxSector) {
5563 		bi = chunk_aligned_read(mddev, bi);
5564 		if (!bi)
5565 			return;
5566 	}
5567 
5568 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5569 		make_discard_request(mddev, bi);
5570 		return;
5571 	}
5572 
5573 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5574 	last_sector = bio_end_sector(bi);
5575 	bi->bi_next = NULL;
5576 	md_write_start(mddev, bi);
5577 
5578 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5579 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5580 		int previous;
5581 		int seq;
5582 
5583 		do_prepare = false;
5584 	retry:
5585 		seq = read_seqcount_begin(&conf->gen_lock);
5586 		previous = 0;
5587 		if (do_prepare)
5588 			prepare_to_wait(&conf->wait_for_overlap, &w,
5589 				TASK_UNINTERRUPTIBLE);
5590 		if (unlikely(conf->reshape_progress != MaxSector)) {
5591 			/* spinlock is needed as reshape_progress may be
5592 			 * 64bit on a 32bit platform, and so it might be
5593 			 * possible to see a half-updated value
5594 			 * Of course reshape_progress could change after
5595 			 * the lock is dropped, so once we get a reference
5596 			 * to the stripe that we think it is, we will have
5597 			 * to check again.
5598 			 */
5599 			spin_lock_irq(&conf->device_lock);
5600 			if (mddev->reshape_backwards
5601 			    ? logical_sector < conf->reshape_progress
5602 			    : logical_sector >= conf->reshape_progress) {
5603 				previous = 1;
5604 			} else {
5605 				if (mddev->reshape_backwards
5606 				    ? logical_sector < conf->reshape_safe
5607 				    : logical_sector >= conf->reshape_safe) {
5608 					spin_unlock_irq(&conf->device_lock);
5609 					schedule();
5610 					do_prepare = true;
5611 					goto retry;
5612 				}
5613 			}
5614 			spin_unlock_irq(&conf->device_lock);
5615 		}
5616 
5617 		new_sector = raid5_compute_sector(conf, logical_sector,
5618 						  previous,
5619 						  &dd_idx, NULL);
5620 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5621 			(unsigned long long)new_sector,
5622 			(unsigned long long)logical_sector);
5623 
5624 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5625 				       (bi->bi_opf & REQ_RAHEAD), 0);
5626 		if (sh) {
5627 			if (unlikely(previous)) {
5628 				/* expansion might have moved on while waiting for a
5629 				 * stripe, so we must do the range check again.
5630 				 * Expansion could still move past after this
5631 				 * test, but as we are holding a reference to
5632 				 * 'sh', we know that if that happens,
5633 				 *  STRIPE_EXPANDING will get set and the expansion
5634 				 * won't proceed until we finish with the stripe.
5635 				 */
5636 				int must_retry = 0;
5637 				spin_lock_irq(&conf->device_lock);
5638 				if (mddev->reshape_backwards
5639 				    ? logical_sector >= conf->reshape_progress
5640 				    : logical_sector < conf->reshape_progress)
5641 					/* mismatch, need to try again */
5642 					must_retry = 1;
5643 				spin_unlock_irq(&conf->device_lock);
5644 				if (must_retry) {
5645 					raid5_release_stripe(sh);
5646 					schedule();
5647 					do_prepare = true;
5648 					goto retry;
5649 				}
5650 			}
5651 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5652 				/* Might have got the wrong stripe_head
5653 				 * by accident
5654 				 */
5655 				raid5_release_stripe(sh);
5656 				goto retry;
5657 			}
5658 
5659 			if (rw == WRITE &&
5660 			    logical_sector >= mddev->suspend_lo &&
5661 			    logical_sector < mddev->suspend_hi) {
5662 				raid5_release_stripe(sh);
5663 				/* As the suspend_* range is controlled by
5664 				 * userspace, we want an interruptible
5665 				 * wait.
5666 				 */
5667 				flush_signals(current);
5668 				prepare_to_wait(&conf->wait_for_overlap,
5669 						&w, TASK_INTERRUPTIBLE);
5670 				if (logical_sector >= mddev->suspend_lo &&
5671 				    logical_sector < mddev->suspend_hi) {
5672 					schedule();
5673 					do_prepare = true;
5674 				}
5675 				goto retry;
5676 			}
5677 
5678 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5679 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5680 				/* Stripe is busy expanding or
5681 				 * add failed due to overlap.  Flush everything
5682 				 * and wait a while
5683 				 */
5684 				md_wakeup_thread(mddev->thread);
5685 				raid5_release_stripe(sh);
5686 				schedule();
5687 				do_prepare = true;
5688 				goto retry;
5689 			}
5690 			if (do_flush) {
5691 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5692 				/* we only need flush for one stripe */
5693 				do_flush = false;
5694 			}
5695 
5696 			set_bit(STRIPE_HANDLE, &sh->state);
5697 			clear_bit(STRIPE_DELAYED, &sh->state);
5698 			if ((!sh->batch_head || sh == sh->batch_head) &&
5699 			    (bi->bi_opf & REQ_SYNC) &&
5700 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5701 				atomic_inc(&conf->preread_active_stripes);
5702 			release_stripe_plug(mddev, sh);
5703 		} else {
5704 			/* cannot get stripe for read-ahead, just give-up */
5705 			bi->bi_error = -EIO;
5706 			break;
5707 		}
5708 	}
5709 	finish_wait(&conf->wait_for_overlap, &w);
5710 
5711 	if (rw == WRITE)
5712 		md_write_end(mddev);
5713 	bio_endio(bi);
5714 }
5715 
5716 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5717 
5718 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5719 {
5720 	/* reshaping is quite different to recovery/resync so it is
5721 	 * handled quite separately ... here.
5722 	 *
5723 	 * On each call to sync_request, we gather one chunk worth of
5724 	 * destination stripes and flag them as expanding.
5725 	 * Then we find all the source stripes and request reads.
5726 	 * As the reads complete, handle_stripe will copy the data
5727 	 * into the destination stripe and release that stripe.
5728 	 */
5729 	struct r5conf *conf = mddev->private;
5730 	struct stripe_head *sh;
5731 	sector_t first_sector, last_sector;
5732 	int raid_disks = conf->previous_raid_disks;
5733 	int data_disks = raid_disks - conf->max_degraded;
5734 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5735 	int i;
5736 	int dd_idx;
5737 	sector_t writepos, readpos, safepos;
5738 	sector_t stripe_addr;
5739 	int reshape_sectors;
5740 	struct list_head stripes;
5741 	sector_t retn;
5742 
5743 	if (sector_nr == 0) {
5744 		/* If restarting in the middle, skip the initial sectors */
5745 		if (mddev->reshape_backwards &&
5746 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5747 			sector_nr = raid5_size(mddev, 0, 0)
5748 				- conf->reshape_progress;
5749 		} else if (mddev->reshape_backwards &&
5750 			   conf->reshape_progress == MaxSector) {
5751 			/* shouldn't happen, but just in case, finish up.*/
5752 			sector_nr = MaxSector;
5753 		} else if (!mddev->reshape_backwards &&
5754 			   conf->reshape_progress > 0)
5755 			sector_nr = conf->reshape_progress;
5756 		sector_div(sector_nr, new_data_disks);
5757 		if (sector_nr) {
5758 			mddev->curr_resync_completed = sector_nr;
5759 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5760 			*skipped = 1;
5761 			retn = sector_nr;
5762 			goto finish;
5763 		}
5764 	}
5765 
5766 	/* We need to process a full chunk at a time.
5767 	 * If old and new chunk sizes differ, we need to process the
5768 	 * largest of these
5769 	 */
5770 
5771 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5772 
5773 	/* We update the metadata at least every 10 seconds, or when
5774 	 * the data about to be copied would over-write the source of
5775 	 * the data at the front of the range.  i.e. one new_stripe
5776 	 * along from reshape_progress new_maps to after where
5777 	 * reshape_safe old_maps to
5778 	 */
5779 	writepos = conf->reshape_progress;
5780 	sector_div(writepos, new_data_disks);
5781 	readpos = conf->reshape_progress;
5782 	sector_div(readpos, data_disks);
5783 	safepos = conf->reshape_safe;
5784 	sector_div(safepos, data_disks);
5785 	if (mddev->reshape_backwards) {
5786 		BUG_ON(writepos < reshape_sectors);
5787 		writepos -= reshape_sectors;
5788 		readpos += reshape_sectors;
5789 		safepos += reshape_sectors;
5790 	} else {
5791 		writepos += reshape_sectors;
5792 		/* readpos and safepos are worst-case calculations.
5793 		 * A negative number is overly pessimistic, and causes
5794 		 * obvious problems for unsigned storage.  So clip to 0.
5795 		 */
5796 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5797 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5798 	}
5799 
5800 	/* Having calculated the 'writepos' possibly use it
5801 	 * to set 'stripe_addr' which is where we will write to.
5802 	 */
5803 	if (mddev->reshape_backwards) {
5804 		BUG_ON(conf->reshape_progress == 0);
5805 		stripe_addr = writepos;
5806 		BUG_ON((mddev->dev_sectors &
5807 			~((sector_t)reshape_sectors - 1))
5808 		       - reshape_sectors - stripe_addr
5809 		       != sector_nr);
5810 	} else {
5811 		BUG_ON(writepos != sector_nr + reshape_sectors);
5812 		stripe_addr = sector_nr;
5813 	}
5814 
5815 	/* 'writepos' is the most advanced device address we might write.
5816 	 * 'readpos' is the least advanced device address we might read.
5817 	 * 'safepos' is the least address recorded in the metadata as having
5818 	 *     been reshaped.
5819 	 * If there is a min_offset_diff, these are adjusted either by
5820 	 * increasing the safepos/readpos if diff is negative, or
5821 	 * increasing writepos if diff is positive.
5822 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5823 	 * ensure safety in the face of a crash - that must be done by userspace
5824 	 * making a backup of the data.  So in that case there is no particular
5825 	 * rush to update metadata.
5826 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5827 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5828 	 * we can be safe in the event of a crash.
5829 	 * So we insist on updating metadata if safepos is behind writepos and
5830 	 * readpos is beyond writepos.
5831 	 * In any case, update the metadata every 10 seconds.
5832 	 * Maybe that number should be configurable, but I'm not sure it is
5833 	 * worth it.... maybe it could be a multiple of safemode_delay???
5834 	 */
5835 	if (conf->min_offset_diff < 0) {
5836 		safepos += -conf->min_offset_diff;
5837 		readpos += -conf->min_offset_diff;
5838 	} else
5839 		writepos += conf->min_offset_diff;
5840 
5841 	if ((mddev->reshape_backwards
5842 	     ? (safepos > writepos && readpos < writepos)
5843 	     : (safepos < writepos && readpos > writepos)) ||
5844 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5845 		/* Cannot proceed until we've updated the superblock... */
5846 		wait_event(conf->wait_for_overlap,
5847 			   atomic_read(&conf->reshape_stripes)==0
5848 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5849 		if (atomic_read(&conf->reshape_stripes) != 0)
5850 			return 0;
5851 		mddev->reshape_position = conf->reshape_progress;
5852 		mddev->curr_resync_completed = sector_nr;
5853 		conf->reshape_checkpoint = jiffies;
5854 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5855 		md_wakeup_thread(mddev->thread);
5856 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5857 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5858 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5859 			return 0;
5860 		spin_lock_irq(&conf->device_lock);
5861 		conf->reshape_safe = mddev->reshape_position;
5862 		spin_unlock_irq(&conf->device_lock);
5863 		wake_up(&conf->wait_for_overlap);
5864 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5865 	}
5866 
5867 	INIT_LIST_HEAD(&stripes);
5868 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5869 		int j;
5870 		int skipped_disk = 0;
5871 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5872 		set_bit(STRIPE_EXPANDING, &sh->state);
5873 		atomic_inc(&conf->reshape_stripes);
5874 		/* If any of this stripe is beyond the end of the old
5875 		 * array, then we need to zero those blocks
5876 		 */
5877 		for (j=sh->disks; j--;) {
5878 			sector_t s;
5879 			if (j == sh->pd_idx)
5880 				continue;
5881 			if (conf->level == 6 &&
5882 			    j == sh->qd_idx)
5883 				continue;
5884 			s = raid5_compute_blocknr(sh, j, 0);
5885 			if (s < raid5_size(mddev, 0, 0)) {
5886 				skipped_disk = 1;
5887 				continue;
5888 			}
5889 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5890 			set_bit(R5_Expanded, &sh->dev[j].flags);
5891 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5892 		}
5893 		if (!skipped_disk) {
5894 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5895 			set_bit(STRIPE_HANDLE, &sh->state);
5896 		}
5897 		list_add(&sh->lru, &stripes);
5898 	}
5899 	spin_lock_irq(&conf->device_lock);
5900 	if (mddev->reshape_backwards)
5901 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5902 	else
5903 		conf->reshape_progress += reshape_sectors * new_data_disks;
5904 	spin_unlock_irq(&conf->device_lock);
5905 	/* Ok, those stripe are ready. We can start scheduling
5906 	 * reads on the source stripes.
5907 	 * The source stripes are determined by mapping the first and last
5908 	 * block on the destination stripes.
5909 	 */
5910 	first_sector =
5911 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5912 				     1, &dd_idx, NULL);
5913 	last_sector =
5914 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5915 					    * new_data_disks - 1),
5916 				     1, &dd_idx, NULL);
5917 	if (last_sector >= mddev->dev_sectors)
5918 		last_sector = mddev->dev_sectors - 1;
5919 	while (first_sector <= last_sector) {
5920 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5921 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5922 		set_bit(STRIPE_HANDLE, &sh->state);
5923 		raid5_release_stripe(sh);
5924 		first_sector += STRIPE_SECTORS;
5925 	}
5926 	/* Now that the sources are clearly marked, we can release
5927 	 * the destination stripes
5928 	 */
5929 	while (!list_empty(&stripes)) {
5930 		sh = list_entry(stripes.next, struct stripe_head, lru);
5931 		list_del_init(&sh->lru);
5932 		raid5_release_stripe(sh);
5933 	}
5934 	/* If this takes us to the resync_max point where we have to pause,
5935 	 * then we need to write out the superblock.
5936 	 */
5937 	sector_nr += reshape_sectors;
5938 	retn = reshape_sectors;
5939 finish:
5940 	if (mddev->curr_resync_completed > mddev->resync_max ||
5941 	    (sector_nr - mddev->curr_resync_completed) * 2
5942 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5943 		/* Cannot proceed until we've updated the superblock... */
5944 		wait_event(conf->wait_for_overlap,
5945 			   atomic_read(&conf->reshape_stripes) == 0
5946 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5947 		if (atomic_read(&conf->reshape_stripes) != 0)
5948 			goto ret;
5949 		mddev->reshape_position = conf->reshape_progress;
5950 		mddev->curr_resync_completed = sector_nr;
5951 		conf->reshape_checkpoint = jiffies;
5952 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5953 		md_wakeup_thread(mddev->thread);
5954 		wait_event(mddev->sb_wait,
5955 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5956 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5957 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5958 			goto ret;
5959 		spin_lock_irq(&conf->device_lock);
5960 		conf->reshape_safe = mddev->reshape_position;
5961 		spin_unlock_irq(&conf->device_lock);
5962 		wake_up(&conf->wait_for_overlap);
5963 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5964 	}
5965 ret:
5966 	return retn;
5967 }
5968 
5969 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5970 					  int *skipped)
5971 {
5972 	struct r5conf *conf = mddev->private;
5973 	struct stripe_head *sh;
5974 	sector_t max_sector = mddev->dev_sectors;
5975 	sector_t sync_blocks;
5976 	int still_degraded = 0;
5977 	int i;
5978 
5979 	if (sector_nr >= max_sector) {
5980 		/* just being told to finish up .. nothing much to do */
5981 
5982 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5983 			end_reshape(conf);
5984 			return 0;
5985 		}
5986 
5987 		if (mddev->curr_resync < max_sector) /* aborted */
5988 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5989 					&sync_blocks, 1);
5990 		else /* completed sync */
5991 			conf->fullsync = 0;
5992 		bitmap_close_sync(mddev->bitmap);
5993 
5994 		return 0;
5995 	}
5996 
5997 	/* Allow raid5_quiesce to complete */
5998 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5999 
6000 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6001 		return reshape_request(mddev, sector_nr, skipped);
6002 
6003 	/* No need to check resync_max as we never do more than one
6004 	 * stripe, and as resync_max will always be on a chunk boundary,
6005 	 * if the check in md_do_sync didn't fire, there is no chance
6006 	 * of overstepping resync_max here
6007 	 */
6008 
6009 	/* if there is too many failed drives and we are trying
6010 	 * to resync, then assert that we are finished, because there is
6011 	 * nothing we can do.
6012 	 */
6013 	if (mddev->degraded >= conf->max_degraded &&
6014 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6015 		sector_t rv = mddev->dev_sectors - sector_nr;
6016 		*skipped = 1;
6017 		return rv;
6018 	}
6019 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6020 	    !conf->fullsync &&
6021 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6022 	    sync_blocks >= STRIPE_SECTORS) {
6023 		/* we can skip this block, and probably more */
6024 		sync_blocks /= STRIPE_SECTORS;
6025 		*skipped = 1;
6026 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6027 	}
6028 
6029 	bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6030 
6031 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6032 	if (sh == NULL) {
6033 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6034 		/* make sure we don't swamp the stripe cache if someone else
6035 		 * is trying to get access
6036 		 */
6037 		schedule_timeout_uninterruptible(1);
6038 	}
6039 	/* Need to check if array will still be degraded after recovery/resync
6040 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6041 	 * one drive while leaving another faulty drive in array.
6042 	 */
6043 	rcu_read_lock();
6044 	for (i = 0; i < conf->raid_disks; i++) {
6045 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
6046 
6047 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6048 			still_degraded = 1;
6049 	}
6050 	rcu_read_unlock();
6051 
6052 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6053 
6054 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6055 	set_bit(STRIPE_HANDLE, &sh->state);
6056 
6057 	raid5_release_stripe(sh);
6058 
6059 	return STRIPE_SECTORS;
6060 }
6061 
6062 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6063 			       unsigned int offset)
6064 {
6065 	/* We may not be able to submit a whole bio at once as there
6066 	 * may not be enough stripe_heads available.
6067 	 * We cannot pre-allocate enough stripe_heads as we may need
6068 	 * more than exist in the cache (if we allow ever large chunks).
6069 	 * So we do one stripe head at a time and record in
6070 	 * ->bi_hw_segments how many have been done.
6071 	 *
6072 	 * We *know* that this entire raid_bio is in one chunk, so
6073 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6074 	 */
6075 	struct stripe_head *sh;
6076 	int dd_idx;
6077 	sector_t sector, logical_sector, last_sector;
6078 	int scnt = 0;
6079 	int handled = 0;
6080 
6081 	logical_sector = raid_bio->bi_iter.bi_sector &
6082 		~((sector_t)STRIPE_SECTORS-1);
6083 	sector = raid5_compute_sector(conf, logical_sector,
6084 				      0, &dd_idx, NULL);
6085 	last_sector = bio_end_sector(raid_bio);
6086 
6087 	for (; logical_sector < last_sector;
6088 	     logical_sector += STRIPE_SECTORS,
6089 		     sector += STRIPE_SECTORS,
6090 		     scnt++) {
6091 
6092 		if (scnt < offset)
6093 			/* already done this stripe */
6094 			continue;
6095 
6096 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6097 
6098 		if (!sh) {
6099 			/* failed to get a stripe - must wait */
6100 			conf->retry_read_aligned = raid_bio;
6101 			conf->retry_read_offset = scnt;
6102 			return handled;
6103 		}
6104 
6105 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6106 			raid5_release_stripe(sh);
6107 			conf->retry_read_aligned = raid_bio;
6108 			conf->retry_read_offset = scnt;
6109 			return handled;
6110 		}
6111 
6112 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6113 		handle_stripe(sh);
6114 		raid5_release_stripe(sh);
6115 		handled++;
6116 	}
6117 
6118 	bio_endio(raid_bio);
6119 
6120 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6121 		wake_up(&conf->wait_for_quiescent);
6122 	return handled;
6123 }
6124 
6125 static int handle_active_stripes(struct r5conf *conf, int group,
6126 				 struct r5worker *worker,
6127 				 struct list_head *temp_inactive_list)
6128 {
6129 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6130 	int i, batch_size = 0, hash;
6131 	bool release_inactive = false;
6132 
6133 	while (batch_size < MAX_STRIPE_BATCH &&
6134 			(sh = __get_priority_stripe(conf, group)) != NULL)
6135 		batch[batch_size++] = sh;
6136 
6137 	if (batch_size == 0) {
6138 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6139 			if (!list_empty(temp_inactive_list + i))
6140 				break;
6141 		if (i == NR_STRIPE_HASH_LOCKS) {
6142 			spin_unlock_irq(&conf->device_lock);
6143 			r5l_flush_stripe_to_raid(conf->log);
6144 			spin_lock_irq(&conf->device_lock);
6145 			return batch_size;
6146 		}
6147 		release_inactive = true;
6148 	}
6149 	spin_unlock_irq(&conf->device_lock);
6150 
6151 	release_inactive_stripe_list(conf, temp_inactive_list,
6152 				     NR_STRIPE_HASH_LOCKS);
6153 
6154 	r5l_flush_stripe_to_raid(conf->log);
6155 	if (release_inactive) {
6156 		spin_lock_irq(&conf->device_lock);
6157 		return 0;
6158 	}
6159 
6160 	for (i = 0; i < batch_size; i++)
6161 		handle_stripe(batch[i]);
6162 	log_write_stripe_run(conf);
6163 
6164 	cond_resched();
6165 
6166 	spin_lock_irq(&conf->device_lock);
6167 	for (i = 0; i < batch_size; i++) {
6168 		hash = batch[i]->hash_lock_index;
6169 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6170 	}
6171 	return batch_size;
6172 }
6173 
6174 static void raid5_do_work(struct work_struct *work)
6175 {
6176 	struct r5worker *worker = container_of(work, struct r5worker, work);
6177 	struct r5worker_group *group = worker->group;
6178 	struct r5conf *conf = group->conf;
6179 	struct mddev *mddev = conf->mddev;
6180 	int group_id = group - conf->worker_groups;
6181 	int handled;
6182 	struct blk_plug plug;
6183 
6184 	pr_debug("+++ raid5worker active\n");
6185 
6186 	blk_start_plug(&plug);
6187 	handled = 0;
6188 	spin_lock_irq(&conf->device_lock);
6189 	while (1) {
6190 		int batch_size, released;
6191 
6192 		released = release_stripe_list(conf, worker->temp_inactive_list);
6193 
6194 		batch_size = handle_active_stripes(conf, group_id, worker,
6195 						   worker->temp_inactive_list);
6196 		worker->working = false;
6197 		if (!batch_size && !released)
6198 			break;
6199 		handled += batch_size;
6200 		wait_event_lock_irq(mddev->sb_wait,
6201 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6202 			conf->device_lock);
6203 	}
6204 	pr_debug("%d stripes handled\n", handled);
6205 
6206 	spin_unlock_irq(&conf->device_lock);
6207 	blk_finish_plug(&plug);
6208 
6209 	pr_debug("--- raid5worker inactive\n");
6210 }
6211 
6212 /*
6213  * This is our raid5 kernel thread.
6214  *
6215  * We scan the hash table for stripes which can be handled now.
6216  * During the scan, completed stripes are saved for us by the interrupt
6217  * handler, so that they will not have to wait for our next wakeup.
6218  */
6219 static void raid5d(struct md_thread *thread)
6220 {
6221 	struct mddev *mddev = thread->mddev;
6222 	struct r5conf *conf = mddev->private;
6223 	int handled;
6224 	struct blk_plug plug;
6225 
6226 	pr_debug("+++ raid5d active\n");
6227 
6228 	md_check_recovery(mddev);
6229 
6230 	blk_start_plug(&plug);
6231 	handled = 0;
6232 	spin_lock_irq(&conf->device_lock);
6233 	while (1) {
6234 		struct bio *bio;
6235 		int batch_size, released;
6236 		unsigned int offset;
6237 
6238 		released = release_stripe_list(conf, conf->temp_inactive_list);
6239 		if (released)
6240 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6241 
6242 		if (
6243 		    !list_empty(&conf->bitmap_list)) {
6244 			/* Now is a good time to flush some bitmap updates */
6245 			conf->seq_flush++;
6246 			spin_unlock_irq(&conf->device_lock);
6247 			bitmap_unplug(mddev->bitmap);
6248 			spin_lock_irq(&conf->device_lock);
6249 			conf->seq_write = conf->seq_flush;
6250 			activate_bit_delay(conf, conf->temp_inactive_list);
6251 		}
6252 		raid5_activate_delayed(conf);
6253 
6254 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6255 			int ok;
6256 			spin_unlock_irq(&conf->device_lock);
6257 			ok = retry_aligned_read(conf, bio, offset);
6258 			spin_lock_irq(&conf->device_lock);
6259 			if (!ok)
6260 				break;
6261 			handled++;
6262 		}
6263 
6264 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6265 						   conf->temp_inactive_list);
6266 		if (!batch_size && !released)
6267 			break;
6268 		handled += batch_size;
6269 
6270 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6271 			spin_unlock_irq(&conf->device_lock);
6272 			md_check_recovery(mddev);
6273 			spin_lock_irq(&conf->device_lock);
6274 		}
6275 	}
6276 	pr_debug("%d stripes handled\n", handled);
6277 
6278 	spin_unlock_irq(&conf->device_lock);
6279 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6280 	    mutex_trylock(&conf->cache_size_mutex)) {
6281 		grow_one_stripe(conf, __GFP_NOWARN);
6282 		/* Set flag even if allocation failed.  This helps
6283 		 * slow down allocation requests when mem is short
6284 		 */
6285 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6286 		mutex_unlock(&conf->cache_size_mutex);
6287 	}
6288 
6289 	flush_deferred_bios(conf);
6290 
6291 	r5l_flush_stripe_to_raid(conf->log);
6292 
6293 	async_tx_issue_pending_all();
6294 	blk_finish_plug(&plug);
6295 
6296 	pr_debug("--- raid5d inactive\n");
6297 }
6298 
6299 static ssize_t
6300 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6301 {
6302 	struct r5conf *conf;
6303 	int ret = 0;
6304 	spin_lock(&mddev->lock);
6305 	conf = mddev->private;
6306 	if (conf)
6307 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6308 	spin_unlock(&mddev->lock);
6309 	return ret;
6310 }
6311 
6312 int
6313 raid5_set_cache_size(struct mddev *mddev, int size)
6314 {
6315 	struct r5conf *conf = mddev->private;
6316 	int err;
6317 
6318 	if (size <= 16 || size > 32768)
6319 		return -EINVAL;
6320 
6321 	conf->min_nr_stripes = size;
6322 	mutex_lock(&conf->cache_size_mutex);
6323 	while (size < conf->max_nr_stripes &&
6324 	       drop_one_stripe(conf))
6325 		;
6326 	mutex_unlock(&conf->cache_size_mutex);
6327 
6328 
6329 	err = md_allow_write(mddev);
6330 	if (err)
6331 		return err;
6332 
6333 	mutex_lock(&conf->cache_size_mutex);
6334 	while (size > conf->max_nr_stripes)
6335 		if (!grow_one_stripe(conf, GFP_KERNEL))
6336 			break;
6337 	mutex_unlock(&conf->cache_size_mutex);
6338 
6339 	return 0;
6340 }
6341 EXPORT_SYMBOL(raid5_set_cache_size);
6342 
6343 static ssize_t
6344 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6345 {
6346 	struct r5conf *conf;
6347 	unsigned long new;
6348 	int err;
6349 
6350 	if (len >= PAGE_SIZE)
6351 		return -EINVAL;
6352 	if (kstrtoul(page, 10, &new))
6353 		return -EINVAL;
6354 	err = mddev_lock(mddev);
6355 	if (err)
6356 		return err;
6357 	conf = mddev->private;
6358 	if (!conf)
6359 		err = -ENODEV;
6360 	else
6361 		err = raid5_set_cache_size(mddev, new);
6362 	mddev_unlock(mddev);
6363 
6364 	return err ?: len;
6365 }
6366 
6367 static struct md_sysfs_entry
6368 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6369 				raid5_show_stripe_cache_size,
6370 				raid5_store_stripe_cache_size);
6371 
6372 static ssize_t
6373 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6374 {
6375 	struct r5conf *conf = mddev->private;
6376 	if (conf)
6377 		return sprintf(page, "%d\n", conf->rmw_level);
6378 	else
6379 		return 0;
6380 }
6381 
6382 static ssize_t
6383 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6384 {
6385 	struct r5conf *conf = mddev->private;
6386 	unsigned long new;
6387 
6388 	if (!conf)
6389 		return -ENODEV;
6390 
6391 	if (len >= PAGE_SIZE)
6392 		return -EINVAL;
6393 
6394 	if (kstrtoul(page, 10, &new))
6395 		return -EINVAL;
6396 
6397 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6398 		return -EINVAL;
6399 
6400 	if (new != PARITY_DISABLE_RMW &&
6401 	    new != PARITY_ENABLE_RMW &&
6402 	    new != PARITY_PREFER_RMW)
6403 		return -EINVAL;
6404 
6405 	conf->rmw_level = new;
6406 	return len;
6407 }
6408 
6409 static struct md_sysfs_entry
6410 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6411 			 raid5_show_rmw_level,
6412 			 raid5_store_rmw_level);
6413 
6414 
6415 static ssize_t
6416 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6417 {
6418 	struct r5conf *conf;
6419 	int ret = 0;
6420 	spin_lock(&mddev->lock);
6421 	conf = mddev->private;
6422 	if (conf)
6423 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6424 	spin_unlock(&mddev->lock);
6425 	return ret;
6426 }
6427 
6428 static ssize_t
6429 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6430 {
6431 	struct r5conf *conf;
6432 	unsigned long new;
6433 	int err;
6434 
6435 	if (len >= PAGE_SIZE)
6436 		return -EINVAL;
6437 	if (kstrtoul(page, 10, &new))
6438 		return -EINVAL;
6439 
6440 	err = mddev_lock(mddev);
6441 	if (err)
6442 		return err;
6443 	conf = mddev->private;
6444 	if (!conf)
6445 		err = -ENODEV;
6446 	else if (new > conf->min_nr_stripes)
6447 		err = -EINVAL;
6448 	else
6449 		conf->bypass_threshold = new;
6450 	mddev_unlock(mddev);
6451 	return err ?: len;
6452 }
6453 
6454 static struct md_sysfs_entry
6455 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6456 					S_IRUGO | S_IWUSR,
6457 					raid5_show_preread_threshold,
6458 					raid5_store_preread_threshold);
6459 
6460 static ssize_t
6461 raid5_show_skip_copy(struct mddev *mddev, char *page)
6462 {
6463 	struct r5conf *conf;
6464 	int ret = 0;
6465 	spin_lock(&mddev->lock);
6466 	conf = mddev->private;
6467 	if (conf)
6468 		ret = sprintf(page, "%d\n", conf->skip_copy);
6469 	spin_unlock(&mddev->lock);
6470 	return ret;
6471 }
6472 
6473 static ssize_t
6474 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6475 {
6476 	struct r5conf *conf;
6477 	unsigned long new;
6478 	int err;
6479 
6480 	if (len >= PAGE_SIZE)
6481 		return -EINVAL;
6482 	if (kstrtoul(page, 10, &new))
6483 		return -EINVAL;
6484 	new = !!new;
6485 
6486 	err = mddev_lock(mddev);
6487 	if (err)
6488 		return err;
6489 	conf = mddev->private;
6490 	if (!conf)
6491 		err = -ENODEV;
6492 	else if (new != conf->skip_copy) {
6493 		mddev_suspend(mddev);
6494 		conf->skip_copy = new;
6495 		if (new)
6496 			mddev->queue->backing_dev_info->capabilities |=
6497 				BDI_CAP_STABLE_WRITES;
6498 		else
6499 			mddev->queue->backing_dev_info->capabilities &=
6500 				~BDI_CAP_STABLE_WRITES;
6501 		mddev_resume(mddev);
6502 	}
6503 	mddev_unlock(mddev);
6504 	return err ?: len;
6505 }
6506 
6507 static struct md_sysfs_entry
6508 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6509 					raid5_show_skip_copy,
6510 					raid5_store_skip_copy);
6511 
6512 static ssize_t
6513 stripe_cache_active_show(struct mddev *mddev, char *page)
6514 {
6515 	struct r5conf *conf = mddev->private;
6516 	if (conf)
6517 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6518 	else
6519 		return 0;
6520 }
6521 
6522 static struct md_sysfs_entry
6523 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6524 
6525 static ssize_t
6526 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6527 {
6528 	struct r5conf *conf;
6529 	int ret = 0;
6530 	spin_lock(&mddev->lock);
6531 	conf = mddev->private;
6532 	if (conf)
6533 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6534 	spin_unlock(&mddev->lock);
6535 	return ret;
6536 }
6537 
6538 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6539 			       int *group_cnt,
6540 			       int *worker_cnt_per_group,
6541 			       struct r5worker_group **worker_groups);
6542 static ssize_t
6543 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6544 {
6545 	struct r5conf *conf;
6546 	unsigned long new;
6547 	int err;
6548 	struct r5worker_group *new_groups, *old_groups;
6549 	int group_cnt, worker_cnt_per_group;
6550 
6551 	if (len >= PAGE_SIZE)
6552 		return -EINVAL;
6553 	if (kstrtoul(page, 10, &new))
6554 		return -EINVAL;
6555 
6556 	err = mddev_lock(mddev);
6557 	if (err)
6558 		return err;
6559 	conf = mddev->private;
6560 	if (!conf)
6561 		err = -ENODEV;
6562 	else if (new != conf->worker_cnt_per_group) {
6563 		mddev_suspend(mddev);
6564 
6565 		old_groups = conf->worker_groups;
6566 		if (old_groups)
6567 			flush_workqueue(raid5_wq);
6568 
6569 		err = alloc_thread_groups(conf, new,
6570 					  &group_cnt, &worker_cnt_per_group,
6571 					  &new_groups);
6572 		if (!err) {
6573 			spin_lock_irq(&conf->device_lock);
6574 			conf->group_cnt = group_cnt;
6575 			conf->worker_cnt_per_group = worker_cnt_per_group;
6576 			conf->worker_groups = new_groups;
6577 			spin_unlock_irq(&conf->device_lock);
6578 
6579 			if (old_groups)
6580 				kfree(old_groups[0].workers);
6581 			kfree(old_groups);
6582 		}
6583 		mddev_resume(mddev);
6584 	}
6585 	mddev_unlock(mddev);
6586 
6587 	return err ?: len;
6588 }
6589 
6590 static struct md_sysfs_entry
6591 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6592 				raid5_show_group_thread_cnt,
6593 				raid5_store_group_thread_cnt);
6594 
6595 static struct attribute *raid5_attrs[] =  {
6596 	&raid5_stripecache_size.attr,
6597 	&raid5_stripecache_active.attr,
6598 	&raid5_preread_bypass_threshold.attr,
6599 	&raid5_group_thread_cnt.attr,
6600 	&raid5_skip_copy.attr,
6601 	&raid5_rmw_level.attr,
6602 	&r5c_journal_mode.attr,
6603 	NULL,
6604 };
6605 static struct attribute_group raid5_attrs_group = {
6606 	.name = NULL,
6607 	.attrs = raid5_attrs,
6608 };
6609 
6610 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6611 			       int *group_cnt,
6612 			       int *worker_cnt_per_group,
6613 			       struct r5worker_group **worker_groups)
6614 {
6615 	int i, j, k;
6616 	ssize_t size;
6617 	struct r5worker *workers;
6618 
6619 	*worker_cnt_per_group = cnt;
6620 	if (cnt == 0) {
6621 		*group_cnt = 0;
6622 		*worker_groups = NULL;
6623 		return 0;
6624 	}
6625 	*group_cnt = num_possible_nodes();
6626 	size = sizeof(struct r5worker) * cnt;
6627 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6628 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6629 				*group_cnt, GFP_NOIO);
6630 	if (!*worker_groups || !workers) {
6631 		kfree(workers);
6632 		kfree(*worker_groups);
6633 		return -ENOMEM;
6634 	}
6635 
6636 	for (i = 0; i < *group_cnt; i++) {
6637 		struct r5worker_group *group;
6638 
6639 		group = &(*worker_groups)[i];
6640 		INIT_LIST_HEAD(&group->handle_list);
6641 		INIT_LIST_HEAD(&group->loprio_list);
6642 		group->conf = conf;
6643 		group->workers = workers + i * cnt;
6644 
6645 		for (j = 0; j < cnt; j++) {
6646 			struct r5worker *worker = group->workers + j;
6647 			worker->group = group;
6648 			INIT_WORK(&worker->work, raid5_do_work);
6649 
6650 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6651 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6652 		}
6653 	}
6654 
6655 	return 0;
6656 }
6657 
6658 static void free_thread_groups(struct r5conf *conf)
6659 {
6660 	if (conf->worker_groups)
6661 		kfree(conf->worker_groups[0].workers);
6662 	kfree(conf->worker_groups);
6663 	conf->worker_groups = NULL;
6664 }
6665 
6666 static sector_t
6667 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6668 {
6669 	struct r5conf *conf = mddev->private;
6670 
6671 	if (!sectors)
6672 		sectors = mddev->dev_sectors;
6673 	if (!raid_disks)
6674 		/* size is defined by the smallest of previous and new size */
6675 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6676 
6677 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6678 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6679 	return sectors * (raid_disks - conf->max_degraded);
6680 }
6681 
6682 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6683 {
6684 	safe_put_page(percpu->spare_page);
6685 	if (percpu->scribble)
6686 		flex_array_free(percpu->scribble);
6687 	percpu->spare_page = NULL;
6688 	percpu->scribble = NULL;
6689 }
6690 
6691 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6692 {
6693 	if (conf->level == 6 && !percpu->spare_page)
6694 		percpu->spare_page = alloc_page(GFP_KERNEL);
6695 	if (!percpu->scribble)
6696 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6697 						      conf->previous_raid_disks),
6698 						  max(conf->chunk_sectors,
6699 						      conf->prev_chunk_sectors)
6700 						   / STRIPE_SECTORS,
6701 						  GFP_KERNEL);
6702 
6703 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6704 		free_scratch_buffer(conf, percpu);
6705 		return -ENOMEM;
6706 	}
6707 
6708 	return 0;
6709 }
6710 
6711 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6712 {
6713 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6714 
6715 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6716 	return 0;
6717 }
6718 
6719 static void raid5_free_percpu(struct r5conf *conf)
6720 {
6721 	if (!conf->percpu)
6722 		return;
6723 
6724 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6725 	free_percpu(conf->percpu);
6726 }
6727 
6728 static void free_conf(struct r5conf *conf)
6729 {
6730 	int i;
6731 
6732 	log_exit(conf);
6733 
6734 	if (conf->shrinker.nr_deferred)
6735 		unregister_shrinker(&conf->shrinker);
6736 
6737 	free_thread_groups(conf);
6738 	shrink_stripes(conf);
6739 	raid5_free_percpu(conf);
6740 	for (i = 0; i < conf->pool_size; i++)
6741 		if (conf->disks[i].extra_page)
6742 			put_page(conf->disks[i].extra_page);
6743 	kfree(conf->disks);
6744 	if (conf->bio_split)
6745 		bioset_free(conf->bio_split);
6746 	kfree(conf->stripe_hashtbl);
6747 	kfree(conf->pending_data);
6748 	kfree(conf);
6749 }
6750 
6751 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6752 {
6753 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6754 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6755 
6756 	if (alloc_scratch_buffer(conf, percpu)) {
6757 		pr_warn("%s: failed memory allocation for cpu%u\n",
6758 			__func__, cpu);
6759 		return -ENOMEM;
6760 	}
6761 	return 0;
6762 }
6763 
6764 static int raid5_alloc_percpu(struct r5conf *conf)
6765 {
6766 	int err = 0;
6767 
6768 	conf->percpu = alloc_percpu(struct raid5_percpu);
6769 	if (!conf->percpu)
6770 		return -ENOMEM;
6771 
6772 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6773 	if (!err) {
6774 		conf->scribble_disks = max(conf->raid_disks,
6775 			conf->previous_raid_disks);
6776 		conf->scribble_sectors = max(conf->chunk_sectors,
6777 			conf->prev_chunk_sectors);
6778 	}
6779 	return err;
6780 }
6781 
6782 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6783 				      struct shrink_control *sc)
6784 {
6785 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6786 	unsigned long ret = SHRINK_STOP;
6787 
6788 	if (mutex_trylock(&conf->cache_size_mutex)) {
6789 		ret= 0;
6790 		while (ret < sc->nr_to_scan &&
6791 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6792 			if (drop_one_stripe(conf) == 0) {
6793 				ret = SHRINK_STOP;
6794 				break;
6795 			}
6796 			ret++;
6797 		}
6798 		mutex_unlock(&conf->cache_size_mutex);
6799 	}
6800 	return ret;
6801 }
6802 
6803 static unsigned long raid5_cache_count(struct shrinker *shrink,
6804 				       struct shrink_control *sc)
6805 {
6806 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6807 
6808 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6809 		/* unlikely, but not impossible */
6810 		return 0;
6811 	return conf->max_nr_stripes - conf->min_nr_stripes;
6812 }
6813 
6814 static struct r5conf *setup_conf(struct mddev *mddev)
6815 {
6816 	struct r5conf *conf;
6817 	int raid_disk, memory, max_disks;
6818 	struct md_rdev *rdev;
6819 	struct disk_info *disk;
6820 	char pers_name[6];
6821 	int i;
6822 	int group_cnt, worker_cnt_per_group;
6823 	struct r5worker_group *new_group;
6824 
6825 	if (mddev->new_level != 5
6826 	    && mddev->new_level != 4
6827 	    && mddev->new_level != 6) {
6828 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6829 			mdname(mddev), mddev->new_level);
6830 		return ERR_PTR(-EIO);
6831 	}
6832 	if ((mddev->new_level == 5
6833 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6834 	    (mddev->new_level == 6
6835 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6836 		pr_warn("md/raid:%s: layout %d not supported\n",
6837 			mdname(mddev), mddev->new_layout);
6838 		return ERR_PTR(-EIO);
6839 	}
6840 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6841 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6842 			mdname(mddev), mddev->raid_disks);
6843 		return ERR_PTR(-EINVAL);
6844 	}
6845 
6846 	if (!mddev->new_chunk_sectors ||
6847 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6848 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6849 		pr_warn("md/raid:%s: invalid chunk size %d\n",
6850 			mdname(mddev), mddev->new_chunk_sectors << 9);
6851 		return ERR_PTR(-EINVAL);
6852 	}
6853 
6854 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6855 	if (conf == NULL)
6856 		goto abort;
6857 	INIT_LIST_HEAD(&conf->free_list);
6858 	INIT_LIST_HEAD(&conf->pending_list);
6859 	conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6860 		PENDING_IO_MAX, GFP_KERNEL);
6861 	if (!conf->pending_data)
6862 		goto abort;
6863 	for (i = 0; i < PENDING_IO_MAX; i++)
6864 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
6865 	/* Don't enable multi-threading by default*/
6866 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6867 				 &new_group)) {
6868 		conf->group_cnt = group_cnt;
6869 		conf->worker_cnt_per_group = worker_cnt_per_group;
6870 		conf->worker_groups = new_group;
6871 	} else
6872 		goto abort;
6873 	spin_lock_init(&conf->device_lock);
6874 	seqcount_init(&conf->gen_lock);
6875 	mutex_init(&conf->cache_size_mutex);
6876 	init_waitqueue_head(&conf->wait_for_quiescent);
6877 	init_waitqueue_head(&conf->wait_for_stripe);
6878 	init_waitqueue_head(&conf->wait_for_overlap);
6879 	INIT_LIST_HEAD(&conf->handle_list);
6880 	INIT_LIST_HEAD(&conf->loprio_list);
6881 	INIT_LIST_HEAD(&conf->hold_list);
6882 	INIT_LIST_HEAD(&conf->delayed_list);
6883 	INIT_LIST_HEAD(&conf->bitmap_list);
6884 	init_llist_head(&conf->released_stripes);
6885 	atomic_set(&conf->active_stripes, 0);
6886 	atomic_set(&conf->preread_active_stripes, 0);
6887 	atomic_set(&conf->active_aligned_reads, 0);
6888 	spin_lock_init(&conf->pending_bios_lock);
6889 	conf->batch_bio_dispatch = true;
6890 	rdev_for_each(rdev, mddev) {
6891 		if (test_bit(Journal, &rdev->flags))
6892 			continue;
6893 		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6894 			conf->batch_bio_dispatch = false;
6895 			break;
6896 		}
6897 	}
6898 
6899 	conf->bypass_threshold = BYPASS_THRESHOLD;
6900 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6901 
6902 	conf->raid_disks = mddev->raid_disks;
6903 	if (mddev->reshape_position == MaxSector)
6904 		conf->previous_raid_disks = mddev->raid_disks;
6905 	else
6906 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6907 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6908 
6909 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6910 			      GFP_KERNEL);
6911 
6912 	if (!conf->disks)
6913 		goto abort;
6914 
6915 	for (i = 0; i < max_disks; i++) {
6916 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6917 		if (!conf->disks[i].extra_page)
6918 			goto abort;
6919 	}
6920 
6921 	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0);
6922 	if (!conf->bio_split)
6923 		goto abort;
6924 	conf->mddev = mddev;
6925 
6926 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6927 		goto abort;
6928 
6929 	/* We init hash_locks[0] separately to that it can be used
6930 	 * as the reference lock in the spin_lock_nest_lock() call
6931 	 * in lock_all_device_hash_locks_irq in order to convince
6932 	 * lockdep that we know what we are doing.
6933 	 */
6934 	spin_lock_init(conf->hash_locks);
6935 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6936 		spin_lock_init(conf->hash_locks + i);
6937 
6938 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6939 		INIT_LIST_HEAD(conf->inactive_list + i);
6940 
6941 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6942 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6943 
6944 	atomic_set(&conf->r5c_cached_full_stripes, 0);
6945 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6946 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
6947 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6948 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
6949 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6950 
6951 	conf->level = mddev->new_level;
6952 	conf->chunk_sectors = mddev->new_chunk_sectors;
6953 	if (raid5_alloc_percpu(conf) != 0)
6954 		goto abort;
6955 
6956 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6957 
6958 	rdev_for_each(rdev, mddev) {
6959 		raid_disk = rdev->raid_disk;
6960 		if (raid_disk >= max_disks
6961 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6962 			continue;
6963 		disk = conf->disks + raid_disk;
6964 
6965 		if (test_bit(Replacement, &rdev->flags)) {
6966 			if (disk->replacement)
6967 				goto abort;
6968 			disk->replacement = rdev;
6969 		} else {
6970 			if (disk->rdev)
6971 				goto abort;
6972 			disk->rdev = rdev;
6973 		}
6974 
6975 		if (test_bit(In_sync, &rdev->flags)) {
6976 			char b[BDEVNAME_SIZE];
6977 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
6978 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6979 		} else if (rdev->saved_raid_disk != raid_disk)
6980 			/* Cannot rely on bitmap to complete recovery */
6981 			conf->fullsync = 1;
6982 	}
6983 
6984 	conf->level = mddev->new_level;
6985 	if (conf->level == 6) {
6986 		conf->max_degraded = 2;
6987 		if (raid6_call.xor_syndrome)
6988 			conf->rmw_level = PARITY_ENABLE_RMW;
6989 		else
6990 			conf->rmw_level = PARITY_DISABLE_RMW;
6991 	} else {
6992 		conf->max_degraded = 1;
6993 		conf->rmw_level = PARITY_ENABLE_RMW;
6994 	}
6995 	conf->algorithm = mddev->new_layout;
6996 	conf->reshape_progress = mddev->reshape_position;
6997 	if (conf->reshape_progress != MaxSector) {
6998 		conf->prev_chunk_sectors = mddev->chunk_sectors;
6999 		conf->prev_algo = mddev->layout;
7000 	} else {
7001 		conf->prev_chunk_sectors = conf->chunk_sectors;
7002 		conf->prev_algo = conf->algorithm;
7003 	}
7004 
7005 	conf->min_nr_stripes = NR_STRIPES;
7006 	if (mddev->reshape_position != MaxSector) {
7007 		int stripes = max_t(int,
7008 			((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7009 			((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7010 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7011 		if (conf->min_nr_stripes != NR_STRIPES)
7012 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7013 				mdname(mddev), conf->min_nr_stripes);
7014 	}
7015 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7016 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7017 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7018 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7019 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7020 			mdname(mddev), memory);
7021 		goto abort;
7022 	} else
7023 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7024 	/*
7025 	 * Losing a stripe head costs more than the time to refill it,
7026 	 * it reduces the queue depth and so can hurt throughput.
7027 	 * So set it rather large, scaled by number of devices.
7028 	 */
7029 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7030 	conf->shrinker.scan_objects = raid5_cache_scan;
7031 	conf->shrinker.count_objects = raid5_cache_count;
7032 	conf->shrinker.batch = 128;
7033 	conf->shrinker.flags = 0;
7034 	if (register_shrinker(&conf->shrinker)) {
7035 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7036 			mdname(mddev));
7037 		goto abort;
7038 	}
7039 
7040 	sprintf(pers_name, "raid%d", mddev->new_level);
7041 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7042 	if (!conf->thread) {
7043 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7044 			mdname(mddev));
7045 		goto abort;
7046 	}
7047 
7048 	return conf;
7049 
7050  abort:
7051 	if (conf) {
7052 		free_conf(conf);
7053 		return ERR_PTR(-EIO);
7054 	} else
7055 		return ERR_PTR(-ENOMEM);
7056 }
7057 
7058 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7059 {
7060 	switch (algo) {
7061 	case ALGORITHM_PARITY_0:
7062 		if (raid_disk < max_degraded)
7063 			return 1;
7064 		break;
7065 	case ALGORITHM_PARITY_N:
7066 		if (raid_disk >= raid_disks - max_degraded)
7067 			return 1;
7068 		break;
7069 	case ALGORITHM_PARITY_0_6:
7070 		if (raid_disk == 0 ||
7071 		    raid_disk == raid_disks - 1)
7072 			return 1;
7073 		break;
7074 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7075 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7076 	case ALGORITHM_LEFT_SYMMETRIC_6:
7077 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7078 		if (raid_disk == raid_disks - 1)
7079 			return 1;
7080 	}
7081 	return 0;
7082 }
7083 
7084 static int raid5_run(struct mddev *mddev)
7085 {
7086 	struct r5conf *conf;
7087 	int working_disks = 0;
7088 	int dirty_parity_disks = 0;
7089 	struct md_rdev *rdev;
7090 	struct md_rdev *journal_dev = NULL;
7091 	sector_t reshape_offset = 0;
7092 	int i;
7093 	long long min_offset_diff = 0;
7094 	int first = 1;
7095 
7096 	if (mddev->recovery_cp != MaxSector)
7097 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7098 			  mdname(mddev));
7099 
7100 	rdev_for_each(rdev, mddev) {
7101 		long long diff;
7102 
7103 		if (test_bit(Journal, &rdev->flags)) {
7104 			journal_dev = rdev;
7105 			continue;
7106 		}
7107 		if (rdev->raid_disk < 0)
7108 			continue;
7109 		diff = (rdev->new_data_offset - rdev->data_offset);
7110 		if (first) {
7111 			min_offset_diff = diff;
7112 			first = 0;
7113 		} else if (mddev->reshape_backwards &&
7114 			 diff < min_offset_diff)
7115 			min_offset_diff = diff;
7116 		else if (!mddev->reshape_backwards &&
7117 			 diff > min_offset_diff)
7118 			min_offset_diff = diff;
7119 	}
7120 
7121 	if (mddev->reshape_position != MaxSector) {
7122 		/* Check that we can continue the reshape.
7123 		 * Difficulties arise if the stripe we would write to
7124 		 * next is at or after the stripe we would read from next.
7125 		 * For a reshape that changes the number of devices, this
7126 		 * is only possible for a very short time, and mdadm makes
7127 		 * sure that time appears to have past before assembling
7128 		 * the array.  So we fail if that time hasn't passed.
7129 		 * For a reshape that keeps the number of devices the same
7130 		 * mdadm must be monitoring the reshape can keeping the
7131 		 * critical areas read-only and backed up.  It will start
7132 		 * the array in read-only mode, so we check for that.
7133 		 */
7134 		sector_t here_new, here_old;
7135 		int old_disks;
7136 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7137 		int chunk_sectors;
7138 		int new_data_disks;
7139 
7140 		if (journal_dev) {
7141 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7142 				mdname(mddev));
7143 			return -EINVAL;
7144 		}
7145 
7146 		if (mddev->new_level != mddev->level) {
7147 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7148 				mdname(mddev));
7149 			return -EINVAL;
7150 		}
7151 		old_disks = mddev->raid_disks - mddev->delta_disks;
7152 		/* reshape_position must be on a new-stripe boundary, and one
7153 		 * further up in new geometry must map after here in old
7154 		 * geometry.
7155 		 * If the chunk sizes are different, then as we perform reshape
7156 		 * in units of the largest of the two, reshape_position needs
7157 		 * be a multiple of the largest chunk size times new data disks.
7158 		 */
7159 		here_new = mddev->reshape_position;
7160 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7161 		new_data_disks = mddev->raid_disks - max_degraded;
7162 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7163 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7164 				mdname(mddev));
7165 			return -EINVAL;
7166 		}
7167 		reshape_offset = here_new * chunk_sectors;
7168 		/* here_new is the stripe we will write to */
7169 		here_old = mddev->reshape_position;
7170 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7171 		/* here_old is the first stripe that we might need to read
7172 		 * from */
7173 		if (mddev->delta_disks == 0) {
7174 			/* We cannot be sure it is safe to start an in-place
7175 			 * reshape.  It is only safe if user-space is monitoring
7176 			 * and taking constant backups.
7177 			 * mdadm always starts a situation like this in
7178 			 * readonly mode so it can take control before
7179 			 * allowing any writes.  So just check for that.
7180 			 */
7181 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7182 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7183 				/* not really in-place - so OK */;
7184 			else if (mddev->ro == 0) {
7185 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7186 					mdname(mddev));
7187 				return -EINVAL;
7188 			}
7189 		} else if (mddev->reshape_backwards
7190 		    ? (here_new * chunk_sectors + min_offset_diff <=
7191 		       here_old * chunk_sectors)
7192 		    : (here_new * chunk_sectors >=
7193 		       here_old * chunk_sectors + (-min_offset_diff))) {
7194 			/* Reading from the same stripe as writing to - bad */
7195 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7196 				mdname(mddev));
7197 			return -EINVAL;
7198 		}
7199 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7200 		/* OK, we should be able to continue; */
7201 	} else {
7202 		BUG_ON(mddev->level != mddev->new_level);
7203 		BUG_ON(mddev->layout != mddev->new_layout);
7204 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7205 		BUG_ON(mddev->delta_disks != 0);
7206 	}
7207 
7208 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7209 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7210 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7211 			mdname(mddev));
7212 		clear_bit(MD_HAS_PPL, &mddev->flags);
7213 	}
7214 
7215 	if (mddev->private == NULL)
7216 		conf = setup_conf(mddev);
7217 	else
7218 		conf = mddev->private;
7219 
7220 	if (IS_ERR(conf))
7221 		return PTR_ERR(conf);
7222 
7223 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7224 		if (!journal_dev) {
7225 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7226 				mdname(mddev));
7227 			mddev->ro = 1;
7228 			set_disk_ro(mddev->gendisk, 1);
7229 		} else if (mddev->recovery_cp == MaxSector)
7230 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7231 	}
7232 
7233 	conf->min_offset_diff = min_offset_diff;
7234 	mddev->thread = conf->thread;
7235 	conf->thread = NULL;
7236 	mddev->private = conf;
7237 
7238 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7239 	     i++) {
7240 		rdev = conf->disks[i].rdev;
7241 		if (!rdev && conf->disks[i].replacement) {
7242 			/* The replacement is all we have yet */
7243 			rdev = conf->disks[i].replacement;
7244 			conf->disks[i].replacement = NULL;
7245 			clear_bit(Replacement, &rdev->flags);
7246 			conf->disks[i].rdev = rdev;
7247 		}
7248 		if (!rdev)
7249 			continue;
7250 		if (conf->disks[i].replacement &&
7251 		    conf->reshape_progress != MaxSector) {
7252 			/* replacements and reshape simply do not mix. */
7253 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7254 			goto abort;
7255 		}
7256 		if (test_bit(In_sync, &rdev->flags)) {
7257 			working_disks++;
7258 			continue;
7259 		}
7260 		/* This disc is not fully in-sync.  However if it
7261 		 * just stored parity (beyond the recovery_offset),
7262 		 * when we don't need to be concerned about the
7263 		 * array being dirty.
7264 		 * When reshape goes 'backwards', we never have
7265 		 * partially completed devices, so we only need
7266 		 * to worry about reshape going forwards.
7267 		 */
7268 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7269 		if (mddev->major_version == 0 &&
7270 		    mddev->minor_version > 90)
7271 			rdev->recovery_offset = reshape_offset;
7272 
7273 		if (rdev->recovery_offset < reshape_offset) {
7274 			/* We need to check old and new layout */
7275 			if (!only_parity(rdev->raid_disk,
7276 					 conf->algorithm,
7277 					 conf->raid_disks,
7278 					 conf->max_degraded))
7279 				continue;
7280 		}
7281 		if (!only_parity(rdev->raid_disk,
7282 				 conf->prev_algo,
7283 				 conf->previous_raid_disks,
7284 				 conf->max_degraded))
7285 			continue;
7286 		dirty_parity_disks++;
7287 	}
7288 
7289 	/*
7290 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7291 	 */
7292 	mddev->degraded = raid5_calc_degraded(conf);
7293 
7294 	if (has_failed(conf)) {
7295 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7296 			mdname(mddev), mddev->degraded, conf->raid_disks);
7297 		goto abort;
7298 	}
7299 
7300 	/* device size must be a multiple of chunk size */
7301 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7302 	mddev->resync_max_sectors = mddev->dev_sectors;
7303 
7304 	if (mddev->degraded > dirty_parity_disks &&
7305 	    mddev->recovery_cp != MaxSector) {
7306 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7307 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7308 				mdname(mddev));
7309 		else if (mddev->ok_start_degraded)
7310 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7311 				mdname(mddev));
7312 		else {
7313 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7314 				mdname(mddev));
7315 			goto abort;
7316 		}
7317 	}
7318 
7319 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7320 		mdname(mddev), conf->level,
7321 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7322 		mddev->new_layout);
7323 
7324 	print_raid5_conf(conf);
7325 
7326 	if (conf->reshape_progress != MaxSector) {
7327 		conf->reshape_safe = conf->reshape_progress;
7328 		atomic_set(&conf->reshape_stripes, 0);
7329 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7330 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7331 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7332 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7333 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7334 							"reshape");
7335 	}
7336 
7337 	/* Ok, everything is just fine now */
7338 	if (mddev->to_remove == &raid5_attrs_group)
7339 		mddev->to_remove = NULL;
7340 	else if (mddev->kobj.sd &&
7341 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7342 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7343 			mdname(mddev));
7344 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7345 
7346 	if (mddev->queue) {
7347 		int chunk_size;
7348 		/* read-ahead size must cover two whole stripes, which
7349 		 * is 2 * (datadisks) * chunksize where 'n' is the
7350 		 * number of raid devices
7351 		 */
7352 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7353 		int stripe = data_disks *
7354 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7355 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7356 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7357 
7358 		chunk_size = mddev->chunk_sectors << 9;
7359 		blk_queue_io_min(mddev->queue, chunk_size);
7360 		blk_queue_io_opt(mddev->queue, chunk_size *
7361 				 (conf->raid_disks - conf->max_degraded));
7362 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7363 		/*
7364 		 * We can only discard a whole stripe. It doesn't make sense to
7365 		 * discard data disk but write parity disk
7366 		 */
7367 		stripe = stripe * PAGE_SIZE;
7368 		/* Round up to power of 2, as discard handling
7369 		 * currently assumes that */
7370 		while ((stripe-1) & stripe)
7371 			stripe = (stripe | (stripe-1)) + 1;
7372 		mddev->queue->limits.discard_alignment = stripe;
7373 		mddev->queue->limits.discard_granularity = stripe;
7374 
7375 		blk_queue_max_write_same_sectors(mddev->queue, 0);
7376 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7377 
7378 		rdev_for_each(rdev, mddev) {
7379 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7380 					  rdev->data_offset << 9);
7381 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7382 					  rdev->new_data_offset << 9);
7383 		}
7384 
7385 		/*
7386 		 * zeroing is required, otherwise data
7387 		 * could be lost. Consider a scenario: discard a stripe
7388 		 * (the stripe could be inconsistent if
7389 		 * discard_zeroes_data is 0); write one disk of the
7390 		 * stripe (the stripe could be inconsistent again
7391 		 * depending on which disks are used to calculate
7392 		 * parity); the disk is broken; The stripe data of this
7393 		 * disk is lost.
7394 		 *
7395 		 * We only allow DISCARD if the sysadmin has confirmed that
7396 		 * only safe devices are in use by setting a module parameter.
7397 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7398 		 * requests, as that is required to be safe.
7399 		 */
7400 		if (devices_handle_discard_safely &&
7401 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7402 		    mddev->queue->limits.discard_granularity >= stripe)
7403 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7404 						mddev->queue);
7405 		else
7406 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7407 						mddev->queue);
7408 
7409 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7410 	}
7411 
7412 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7413 		goto abort;
7414 
7415 	return 0;
7416 abort:
7417 	md_unregister_thread(&mddev->thread);
7418 	print_raid5_conf(conf);
7419 	free_conf(conf);
7420 	mddev->private = NULL;
7421 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7422 	return -EIO;
7423 }
7424 
7425 static void raid5_free(struct mddev *mddev, void *priv)
7426 {
7427 	struct r5conf *conf = priv;
7428 
7429 	free_conf(conf);
7430 	mddev->to_remove = &raid5_attrs_group;
7431 }
7432 
7433 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7434 {
7435 	struct r5conf *conf = mddev->private;
7436 	int i;
7437 
7438 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7439 		conf->chunk_sectors / 2, mddev->layout);
7440 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7441 	rcu_read_lock();
7442 	for (i = 0; i < conf->raid_disks; i++) {
7443 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7444 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7445 	}
7446 	rcu_read_unlock();
7447 	seq_printf (seq, "]");
7448 }
7449 
7450 static void print_raid5_conf (struct r5conf *conf)
7451 {
7452 	int i;
7453 	struct disk_info *tmp;
7454 
7455 	pr_debug("RAID conf printout:\n");
7456 	if (!conf) {
7457 		pr_debug("(conf==NULL)\n");
7458 		return;
7459 	}
7460 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7461 	       conf->raid_disks,
7462 	       conf->raid_disks - conf->mddev->degraded);
7463 
7464 	for (i = 0; i < conf->raid_disks; i++) {
7465 		char b[BDEVNAME_SIZE];
7466 		tmp = conf->disks + i;
7467 		if (tmp->rdev)
7468 			pr_debug(" disk %d, o:%d, dev:%s\n",
7469 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7470 			       bdevname(tmp->rdev->bdev, b));
7471 	}
7472 }
7473 
7474 static int raid5_spare_active(struct mddev *mddev)
7475 {
7476 	int i;
7477 	struct r5conf *conf = mddev->private;
7478 	struct disk_info *tmp;
7479 	int count = 0;
7480 	unsigned long flags;
7481 
7482 	for (i = 0; i < conf->raid_disks; i++) {
7483 		tmp = conf->disks + i;
7484 		if (tmp->replacement
7485 		    && tmp->replacement->recovery_offset == MaxSector
7486 		    && !test_bit(Faulty, &tmp->replacement->flags)
7487 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7488 			/* Replacement has just become active. */
7489 			if (!tmp->rdev
7490 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7491 				count++;
7492 			if (tmp->rdev) {
7493 				/* Replaced device not technically faulty,
7494 				 * but we need to be sure it gets removed
7495 				 * and never re-added.
7496 				 */
7497 				set_bit(Faulty, &tmp->rdev->flags);
7498 				sysfs_notify_dirent_safe(
7499 					tmp->rdev->sysfs_state);
7500 			}
7501 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7502 		} else if (tmp->rdev
7503 		    && tmp->rdev->recovery_offset == MaxSector
7504 		    && !test_bit(Faulty, &tmp->rdev->flags)
7505 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7506 			count++;
7507 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7508 		}
7509 	}
7510 	spin_lock_irqsave(&conf->device_lock, flags);
7511 	mddev->degraded = raid5_calc_degraded(conf);
7512 	spin_unlock_irqrestore(&conf->device_lock, flags);
7513 	print_raid5_conf(conf);
7514 	return count;
7515 }
7516 
7517 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7518 {
7519 	struct r5conf *conf = mddev->private;
7520 	int err = 0;
7521 	int number = rdev->raid_disk;
7522 	struct md_rdev **rdevp;
7523 	struct disk_info *p = conf->disks + number;
7524 
7525 	print_raid5_conf(conf);
7526 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7527 		/*
7528 		 * we can't wait pending write here, as this is called in
7529 		 * raid5d, wait will deadlock.
7530 		 * neilb: there is no locking about new writes here,
7531 		 * so this cannot be safe.
7532 		 */
7533 		if (atomic_read(&conf->active_stripes)) {
7534 			return -EBUSY;
7535 		}
7536 		log_exit(conf);
7537 		return 0;
7538 	}
7539 	if (rdev == p->rdev)
7540 		rdevp = &p->rdev;
7541 	else if (rdev == p->replacement)
7542 		rdevp = &p->replacement;
7543 	else
7544 		return 0;
7545 
7546 	if (number >= conf->raid_disks &&
7547 	    conf->reshape_progress == MaxSector)
7548 		clear_bit(In_sync, &rdev->flags);
7549 
7550 	if (test_bit(In_sync, &rdev->flags) ||
7551 	    atomic_read(&rdev->nr_pending)) {
7552 		err = -EBUSY;
7553 		goto abort;
7554 	}
7555 	/* Only remove non-faulty devices if recovery
7556 	 * isn't possible.
7557 	 */
7558 	if (!test_bit(Faulty, &rdev->flags) &&
7559 	    mddev->recovery_disabled != conf->recovery_disabled &&
7560 	    !has_failed(conf) &&
7561 	    (!p->replacement || p->replacement == rdev) &&
7562 	    number < conf->raid_disks) {
7563 		err = -EBUSY;
7564 		goto abort;
7565 	}
7566 	*rdevp = NULL;
7567 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7568 		synchronize_rcu();
7569 		if (atomic_read(&rdev->nr_pending)) {
7570 			/* lost the race, try later */
7571 			err = -EBUSY;
7572 			*rdevp = rdev;
7573 		}
7574 	}
7575 	if (!err) {
7576 		err = log_modify(conf, rdev, false);
7577 		if (err)
7578 			goto abort;
7579 	}
7580 	if (p->replacement) {
7581 		/* We must have just cleared 'rdev' */
7582 		p->rdev = p->replacement;
7583 		clear_bit(Replacement, &p->replacement->flags);
7584 		smp_mb(); /* Make sure other CPUs may see both as identical
7585 			   * but will never see neither - if they are careful
7586 			   */
7587 		p->replacement = NULL;
7588 
7589 		if (!err)
7590 			err = log_modify(conf, p->rdev, true);
7591 	}
7592 
7593 	clear_bit(WantReplacement, &rdev->flags);
7594 abort:
7595 
7596 	print_raid5_conf(conf);
7597 	return err;
7598 }
7599 
7600 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7601 {
7602 	struct r5conf *conf = mddev->private;
7603 	int err = -EEXIST;
7604 	int disk;
7605 	struct disk_info *p;
7606 	int first = 0;
7607 	int last = conf->raid_disks - 1;
7608 
7609 	if (test_bit(Journal, &rdev->flags)) {
7610 		if (conf->log)
7611 			return -EBUSY;
7612 
7613 		rdev->raid_disk = 0;
7614 		/*
7615 		 * The array is in readonly mode if journal is missing, so no
7616 		 * write requests running. We should be safe
7617 		 */
7618 		log_init(conf, rdev, false);
7619 		return 0;
7620 	}
7621 	if (mddev->recovery_disabled == conf->recovery_disabled)
7622 		return -EBUSY;
7623 
7624 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7625 		/* no point adding a device */
7626 		return -EINVAL;
7627 
7628 	if (rdev->raid_disk >= 0)
7629 		first = last = rdev->raid_disk;
7630 
7631 	/*
7632 	 * find the disk ... but prefer rdev->saved_raid_disk
7633 	 * if possible.
7634 	 */
7635 	if (rdev->saved_raid_disk >= 0 &&
7636 	    rdev->saved_raid_disk >= first &&
7637 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7638 		first = rdev->saved_raid_disk;
7639 
7640 	for (disk = first; disk <= last; disk++) {
7641 		p = conf->disks + disk;
7642 		if (p->rdev == NULL) {
7643 			clear_bit(In_sync, &rdev->flags);
7644 			rdev->raid_disk = disk;
7645 			if (rdev->saved_raid_disk != disk)
7646 				conf->fullsync = 1;
7647 			rcu_assign_pointer(p->rdev, rdev);
7648 
7649 			err = log_modify(conf, rdev, true);
7650 
7651 			goto out;
7652 		}
7653 	}
7654 	for (disk = first; disk <= last; disk++) {
7655 		p = conf->disks + disk;
7656 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7657 		    p->replacement == NULL) {
7658 			clear_bit(In_sync, &rdev->flags);
7659 			set_bit(Replacement, &rdev->flags);
7660 			rdev->raid_disk = disk;
7661 			err = 0;
7662 			conf->fullsync = 1;
7663 			rcu_assign_pointer(p->replacement, rdev);
7664 			break;
7665 		}
7666 	}
7667 out:
7668 	print_raid5_conf(conf);
7669 	return err;
7670 }
7671 
7672 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7673 {
7674 	/* no resync is happening, and there is enough space
7675 	 * on all devices, so we can resize.
7676 	 * We need to make sure resync covers any new space.
7677 	 * If the array is shrinking we should possibly wait until
7678 	 * any io in the removed space completes, but it hardly seems
7679 	 * worth it.
7680 	 */
7681 	sector_t newsize;
7682 	struct r5conf *conf = mddev->private;
7683 
7684 	if (conf->log || raid5_has_ppl(conf))
7685 		return -EINVAL;
7686 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7687 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7688 	if (mddev->external_size &&
7689 	    mddev->array_sectors > newsize)
7690 		return -EINVAL;
7691 	if (mddev->bitmap) {
7692 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7693 		if (ret)
7694 			return ret;
7695 	}
7696 	md_set_array_sectors(mddev, newsize);
7697 	if (sectors > mddev->dev_sectors &&
7698 	    mddev->recovery_cp > mddev->dev_sectors) {
7699 		mddev->recovery_cp = mddev->dev_sectors;
7700 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7701 	}
7702 	mddev->dev_sectors = sectors;
7703 	mddev->resync_max_sectors = sectors;
7704 	return 0;
7705 }
7706 
7707 static int check_stripe_cache(struct mddev *mddev)
7708 {
7709 	/* Can only proceed if there are plenty of stripe_heads.
7710 	 * We need a minimum of one full stripe,, and for sensible progress
7711 	 * it is best to have about 4 times that.
7712 	 * If we require 4 times, then the default 256 4K stripe_heads will
7713 	 * allow for chunk sizes up to 256K, which is probably OK.
7714 	 * If the chunk size is greater, user-space should request more
7715 	 * stripe_heads first.
7716 	 */
7717 	struct r5conf *conf = mddev->private;
7718 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7719 	    > conf->min_nr_stripes ||
7720 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7721 	    > conf->min_nr_stripes) {
7722 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7723 			mdname(mddev),
7724 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7725 			 / STRIPE_SIZE)*4);
7726 		return 0;
7727 	}
7728 	return 1;
7729 }
7730 
7731 static int check_reshape(struct mddev *mddev)
7732 {
7733 	struct r5conf *conf = mddev->private;
7734 
7735 	if (conf->log || raid5_has_ppl(conf))
7736 		return -EINVAL;
7737 	if (mddev->delta_disks == 0 &&
7738 	    mddev->new_layout == mddev->layout &&
7739 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7740 		return 0; /* nothing to do */
7741 	if (has_failed(conf))
7742 		return -EINVAL;
7743 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7744 		/* We might be able to shrink, but the devices must
7745 		 * be made bigger first.
7746 		 * For raid6, 4 is the minimum size.
7747 		 * Otherwise 2 is the minimum
7748 		 */
7749 		int min = 2;
7750 		if (mddev->level == 6)
7751 			min = 4;
7752 		if (mddev->raid_disks + mddev->delta_disks < min)
7753 			return -EINVAL;
7754 	}
7755 
7756 	if (!check_stripe_cache(mddev))
7757 		return -ENOSPC;
7758 
7759 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7760 	    mddev->delta_disks > 0)
7761 		if (resize_chunks(conf,
7762 				  conf->previous_raid_disks
7763 				  + max(0, mddev->delta_disks),
7764 				  max(mddev->new_chunk_sectors,
7765 				      mddev->chunk_sectors)
7766 			    ) < 0)
7767 			return -ENOMEM;
7768 
7769 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7770 		return 0; /* never bother to shrink */
7771 	return resize_stripes(conf, (conf->previous_raid_disks
7772 				     + mddev->delta_disks));
7773 }
7774 
7775 static int raid5_start_reshape(struct mddev *mddev)
7776 {
7777 	struct r5conf *conf = mddev->private;
7778 	struct md_rdev *rdev;
7779 	int spares = 0;
7780 	unsigned long flags;
7781 
7782 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7783 		return -EBUSY;
7784 
7785 	if (!check_stripe_cache(mddev))
7786 		return -ENOSPC;
7787 
7788 	if (has_failed(conf))
7789 		return -EINVAL;
7790 
7791 	rdev_for_each(rdev, mddev) {
7792 		if (!test_bit(In_sync, &rdev->flags)
7793 		    && !test_bit(Faulty, &rdev->flags))
7794 			spares++;
7795 	}
7796 
7797 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7798 		/* Not enough devices even to make a degraded array
7799 		 * of that size
7800 		 */
7801 		return -EINVAL;
7802 
7803 	/* Refuse to reduce size of the array.  Any reductions in
7804 	 * array size must be through explicit setting of array_size
7805 	 * attribute.
7806 	 */
7807 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7808 	    < mddev->array_sectors) {
7809 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7810 			mdname(mddev));
7811 		return -EINVAL;
7812 	}
7813 
7814 	atomic_set(&conf->reshape_stripes, 0);
7815 	spin_lock_irq(&conf->device_lock);
7816 	write_seqcount_begin(&conf->gen_lock);
7817 	conf->previous_raid_disks = conf->raid_disks;
7818 	conf->raid_disks += mddev->delta_disks;
7819 	conf->prev_chunk_sectors = conf->chunk_sectors;
7820 	conf->chunk_sectors = mddev->new_chunk_sectors;
7821 	conf->prev_algo = conf->algorithm;
7822 	conf->algorithm = mddev->new_layout;
7823 	conf->generation++;
7824 	/* Code that selects data_offset needs to see the generation update
7825 	 * if reshape_progress has been set - so a memory barrier needed.
7826 	 */
7827 	smp_mb();
7828 	if (mddev->reshape_backwards)
7829 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7830 	else
7831 		conf->reshape_progress = 0;
7832 	conf->reshape_safe = conf->reshape_progress;
7833 	write_seqcount_end(&conf->gen_lock);
7834 	spin_unlock_irq(&conf->device_lock);
7835 
7836 	/* Now make sure any requests that proceeded on the assumption
7837 	 * the reshape wasn't running - like Discard or Read - have
7838 	 * completed.
7839 	 */
7840 	mddev_suspend(mddev);
7841 	mddev_resume(mddev);
7842 
7843 	/* Add some new drives, as many as will fit.
7844 	 * We know there are enough to make the newly sized array work.
7845 	 * Don't add devices if we are reducing the number of
7846 	 * devices in the array.  This is because it is not possible
7847 	 * to correctly record the "partially reconstructed" state of
7848 	 * such devices during the reshape and confusion could result.
7849 	 */
7850 	if (mddev->delta_disks >= 0) {
7851 		rdev_for_each(rdev, mddev)
7852 			if (rdev->raid_disk < 0 &&
7853 			    !test_bit(Faulty, &rdev->flags)) {
7854 				if (raid5_add_disk(mddev, rdev) == 0) {
7855 					if (rdev->raid_disk
7856 					    >= conf->previous_raid_disks)
7857 						set_bit(In_sync, &rdev->flags);
7858 					else
7859 						rdev->recovery_offset = 0;
7860 
7861 					if (sysfs_link_rdev(mddev, rdev))
7862 						/* Failure here is OK */;
7863 				}
7864 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7865 				   && !test_bit(Faulty, &rdev->flags)) {
7866 				/* This is a spare that was manually added */
7867 				set_bit(In_sync, &rdev->flags);
7868 			}
7869 
7870 		/* When a reshape changes the number of devices,
7871 		 * ->degraded is measured against the larger of the
7872 		 * pre and post number of devices.
7873 		 */
7874 		spin_lock_irqsave(&conf->device_lock, flags);
7875 		mddev->degraded = raid5_calc_degraded(conf);
7876 		spin_unlock_irqrestore(&conf->device_lock, flags);
7877 	}
7878 	mddev->raid_disks = conf->raid_disks;
7879 	mddev->reshape_position = conf->reshape_progress;
7880 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7881 
7882 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7883 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7884 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7885 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7886 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7887 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7888 						"reshape");
7889 	if (!mddev->sync_thread) {
7890 		mddev->recovery = 0;
7891 		spin_lock_irq(&conf->device_lock);
7892 		write_seqcount_begin(&conf->gen_lock);
7893 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7894 		mddev->new_chunk_sectors =
7895 			conf->chunk_sectors = conf->prev_chunk_sectors;
7896 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7897 		rdev_for_each(rdev, mddev)
7898 			rdev->new_data_offset = rdev->data_offset;
7899 		smp_wmb();
7900 		conf->generation --;
7901 		conf->reshape_progress = MaxSector;
7902 		mddev->reshape_position = MaxSector;
7903 		write_seqcount_end(&conf->gen_lock);
7904 		spin_unlock_irq(&conf->device_lock);
7905 		return -EAGAIN;
7906 	}
7907 	conf->reshape_checkpoint = jiffies;
7908 	md_wakeup_thread(mddev->sync_thread);
7909 	md_new_event(mddev);
7910 	return 0;
7911 }
7912 
7913 /* This is called from the reshape thread and should make any
7914  * changes needed in 'conf'
7915  */
7916 static void end_reshape(struct r5conf *conf)
7917 {
7918 
7919 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7920 		struct md_rdev *rdev;
7921 
7922 		spin_lock_irq(&conf->device_lock);
7923 		conf->previous_raid_disks = conf->raid_disks;
7924 		rdev_for_each(rdev, conf->mddev)
7925 			rdev->data_offset = rdev->new_data_offset;
7926 		smp_wmb();
7927 		conf->reshape_progress = MaxSector;
7928 		conf->mddev->reshape_position = MaxSector;
7929 		spin_unlock_irq(&conf->device_lock);
7930 		wake_up(&conf->wait_for_overlap);
7931 
7932 		/* read-ahead size must cover two whole stripes, which is
7933 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7934 		 */
7935 		if (conf->mddev->queue) {
7936 			int data_disks = conf->raid_disks - conf->max_degraded;
7937 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7938 						   / PAGE_SIZE);
7939 			if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7940 				conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7941 		}
7942 	}
7943 }
7944 
7945 /* This is called from the raid5d thread with mddev_lock held.
7946  * It makes config changes to the device.
7947  */
7948 static void raid5_finish_reshape(struct mddev *mddev)
7949 {
7950 	struct r5conf *conf = mddev->private;
7951 
7952 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7953 
7954 		if (mddev->delta_disks > 0) {
7955 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7956 			if (mddev->queue) {
7957 				set_capacity(mddev->gendisk, mddev->array_sectors);
7958 				revalidate_disk(mddev->gendisk);
7959 			}
7960 		} else {
7961 			int d;
7962 			spin_lock_irq(&conf->device_lock);
7963 			mddev->degraded = raid5_calc_degraded(conf);
7964 			spin_unlock_irq(&conf->device_lock);
7965 			for (d = conf->raid_disks ;
7966 			     d < conf->raid_disks - mddev->delta_disks;
7967 			     d++) {
7968 				struct md_rdev *rdev = conf->disks[d].rdev;
7969 				if (rdev)
7970 					clear_bit(In_sync, &rdev->flags);
7971 				rdev = conf->disks[d].replacement;
7972 				if (rdev)
7973 					clear_bit(In_sync, &rdev->flags);
7974 			}
7975 		}
7976 		mddev->layout = conf->algorithm;
7977 		mddev->chunk_sectors = conf->chunk_sectors;
7978 		mddev->reshape_position = MaxSector;
7979 		mddev->delta_disks = 0;
7980 		mddev->reshape_backwards = 0;
7981 	}
7982 }
7983 
7984 static void raid5_quiesce(struct mddev *mddev, int state)
7985 {
7986 	struct r5conf *conf = mddev->private;
7987 
7988 	switch(state) {
7989 	case 2: /* resume for a suspend */
7990 		wake_up(&conf->wait_for_overlap);
7991 		break;
7992 
7993 	case 1: /* stop all writes */
7994 		lock_all_device_hash_locks_irq(conf);
7995 		/* '2' tells resync/reshape to pause so that all
7996 		 * active stripes can drain
7997 		 */
7998 		r5c_flush_cache(conf, INT_MAX);
7999 		conf->quiesce = 2;
8000 		wait_event_cmd(conf->wait_for_quiescent,
8001 				    atomic_read(&conf->active_stripes) == 0 &&
8002 				    atomic_read(&conf->active_aligned_reads) == 0,
8003 				    unlock_all_device_hash_locks_irq(conf),
8004 				    lock_all_device_hash_locks_irq(conf));
8005 		conf->quiesce = 1;
8006 		unlock_all_device_hash_locks_irq(conf);
8007 		/* allow reshape to continue */
8008 		wake_up(&conf->wait_for_overlap);
8009 		break;
8010 
8011 	case 0: /* re-enable writes */
8012 		lock_all_device_hash_locks_irq(conf);
8013 		conf->quiesce = 0;
8014 		wake_up(&conf->wait_for_quiescent);
8015 		wake_up(&conf->wait_for_overlap);
8016 		unlock_all_device_hash_locks_irq(conf);
8017 		break;
8018 	}
8019 	r5l_quiesce(conf->log, state);
8020 }
8021 
8022 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8023 {
8024 	struct r0conf *raid0_conf = mddev->private;
8025 	sector_t sectors;
8026 
8027 	/* for raid0 takeover only one zone is supported */
8028 	if (raid0_conf->nr_strip_zones > 1) {
8029 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8030 			mdname(mddev));
8031 		return ERR_PTR(-EINVAL);
8032 	}
8033 
8034 	sectors = raid0_conf->strip_zone[0].zone_end;
8035 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8036 	mddev->dev_sectors = sectors;
8037 	mddev->new_level = level;
8038 	mddev->new_layout = ALGORITHM_PARITY_N;
8039 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8040 	mddev->raid_disks += 1;
8041 	mddev->delta_disks = 1;
8042 	/* make sure it will be not marked as dirty */
8043 	mddev->recovery_cp = MaxSector;
8044 
8045 	return setup_conf(mddev);
8046 }
8047 
8048 static void *raid5_takeover_raid1(struct mddev *mddev)
8049 {
8050 	int chunksect;
8051 	void *ret;
8052 
8053 	if (mddev->raid_disks != 2 ||
8054 	    mddev->degraded > 1)
8055 		return ERR_PTR(-EINVAL);
8056 
8057 	/* Should check if there are write-behind devices? */
8058 
8059 	chunksect = 64*2; /* 64K by default */
8060 
8061 	/* The array must be an exact multiple of chunksize */
8062 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8063 		chunksect >>= 1;
8064 
8065 	if ((chunksect<<9) < STRIPE_SIZE)
8066 		/* array size does not allow a suitable chunk size */
8067 		return ERR_PTR(-EINVAL);
8068 
8069 	mddev->new_level = 5;
8070 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8071 	mddev->new_chunk_sectors = chunksect;
8072 
8073 	ret = setup_conf(mddev);
8074 	if (!IS_ERR(ret))
8075 		mddev_clear_unsupported_flags(mddev,
8076 			UNSUPPORTED_MDDEV_FLAGS);
8077 	return ret;
8078 }
8079 
8080 static void *raid5_takeover_raid6(struct mddev *mddev)
8081 {
8082 	int new_layout;
8083 
8084 	switch (mddev->layout) {
8085 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8086 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8087 		break;
8088 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8089 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8090 		break;
8091 	case ALGORITHM_LEFT_SYMMETRIC_6:
8092 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8093 		break;
8094 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8095 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8096 		break;
8097 	case ALGORITHM_PARITY_0_6:
8098 		new_layout = ALGORITHM_PARITY_0;
8099 		break;
8100 	case ALGORITHM_PARITY_N:
8101 		new_layout = ALGORITHM_PARITY_N;
8102 		break;
8103 	default:
8104 		return ERR_PTR(-EINVAL);
8105 	}
8106 	mddev->new_level = 5;
8107 	mddev->new_layout = new_layout;
8108 	mddev->delta_disks = -1;
8109 	mddev->raid_disks -= 1;
8110 	return setup_conf(mddev);
8111 }
8112 
8113 static int raid5_check_reshape(struct mddev *mddev)
8114 {
8115 	/* For a 2-drive array, the layout and chunk size can be changed
8116 	 * immediately as not restriping is needed.
8117 	 * For larger arrays we record the new value - after validation
8118 	 * to be used by a reshape pass.
8119 	 */
8120 	struct r5conf *conf = mddev->private;
8121 	int new_chunk = mddev->new_chunk_sectors;
8122 
8123 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8124 		return -EINVAL;
8125 	if (new_chunk > 0) {
8126 		if (!is_power_of_2(new_chunk))
8127 			return -EINVAL;
8128 		if (new_chunk < (PAGE_SIZE>>9))
8129 			return -EINVAL;
8130 		if (mddev->array_sectors & (new_chunk-1))
8131 			/* not factor of array size */
8132 			return -EINVAL;
8133 	}
8134 
8135 	/* They look valid */
8136 
8137 	if (mddev->raid_disks == 2) {
8138 		/* can make the change immediately */
8139 		if (mddev->new_layout >= 0) {
8140 			conf->algorithm = mddev->new_layout;
8141 			mddev->layout = mddev->new_layout;
8142 		}
8143 		if (new_chunk > 0) {
8144 			conf->chunk_sectors = new_chunk ;
8145 			mddev->chunk_sectors = new_chunk;
8146 		}
8147 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8148 		md_wakeup_thread(mddev->thread);
8149 	}
8150 	return check_reshape(mddev);
8151 }
8152 
8153 static int raid6_check_reshape(struct mddev *mddev)
8154 {
8155 	int new_chunk = mddev->new_chunk_sectors;
8156 
8157 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8158 		return -EINVAL;
8159 	if (new_chunk > 0) {
8160 		if (!is_power_of_2(new_chunk))
8161 			return -EINVAL;
8162 		if (new_chunk < (PAGE_SIZE >> 9))
8163 			return -EINVAL;
8164 		if (mddev->array_sectors & (new_chunk-1))
8165 			/* not factor of array size */
8166 			return -EINVAL;
8167 	}
8168 
8169 	/* They look valid */
8170 	return check_reshape(mddev);
8171 }
8172 
8173 static void *raid5_takeover(struct mddev *mddev)
8174 {
8175 	/* raid5 can take over:
8176 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8177 	 *  raid1 - if there are two drives.  We need to know the chunk size
8178 	 *  raid4 - trivial - just use a raid4 layout.
8179 	 *  raid6 - Providing it is a *_6 layout
8180 	 */
8181 	if (mddev->level == 0)
8182 		return raid45_takeover_raid0(mddev, 5);
8183 	if (mddev->level == 1)
8184 		return raid5_takeover_raid1(mddev);
8185 	if (mddev->level == 4) {
8186 		mddev->new_layout = ALGORITHM_PARITY_N;
8187 		mddev->new_level = 5;
8188 		return setup_conf(mddev);
8189 	}
8190 	if (mddev->level == 6)
8191 		return raid5_takeover_raid6(mddev);
8192 
8193 	return ERR_PTR(-EINVAL);
8194 }
8195 
8196 static void *raid4_takeover(struct mddev *mddev)
8197 {
8198 	/* raid4 can take over:
8199 	 *  raid0 - if there is only one strip zone
8200 	 *  raid5 - if layout is right
8201 	 */
8202 	if (mddev->level == 0)
8203 		return raid45_takeover_raid0(mddev, 4);
8204 	if (mddev->level == 5 &&
8205 	    mddev->layout == ALGORITHM_PARITY_N) {
8206 		mddev->new_layout = 0;
8207 		mddev->new_level = 4;
8208 		return setup_conf(mddev);
8209 	}
8210 	return ERR_PTR(-EINVAL);
8211 }
8212 
8213 static struct md_personality raid5_personality;
8214 
8215 static void *raid6_takeover(struct mddev *mddev)
8216 {
8217 	/* Currently can only take over a raid5.  We map the
8218 	 * personality to an equivalent raid6 personality
8219 	 * with the Q block at the end.
8220 	 */
8221 	int new_layout;
8222 
8223 	if (mddev->pers != &raid5_personality)
8224 		return ERR_PTR(-EINVAL);
8225 	if (mddev->degraded > 1)
8226 		return ERR_PTR(-EINVAL);
8227 	if (mddev->raid_disks > 253)
8228 		return ERR_PTR(-EINVAL);
8229 	if (mddev->raid_disks < 3)
8230 		return ERR_PTR(-EINVAL);
8231 
8232 	switch (mddev->layout) {
8233 	case ALGORITHM_LEFT_ASYMMETRIC:
8234 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8235 		break;
8236 	case ALGORITHM_RIGHT_ASYMMETRIC:
8237 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8238 		break;
8239 	case ALGORITHM_LEFT_SYMMETRIC:
8240 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8241 		break;
8242 	case ALGORITHM_RIGHT_SYMMETRIC:
8243 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8244 		break;
8245 	case ALGORITHM_PARITY_0:
8246 		new_layout = ALGORITHM_PARITY_0_6;
8247 		break;
8248 	case ALGORITHM_PARITY_N:
8249 		new_layout = ALGORITHM_PARITY_N;
8250 		break;
8251 	default:
8252 		return ERR_PTR(-EINVAL);
8253 	}
8254 	mddev->new_level = 6;
8255 	mddev->new_layout = new_layout;
8256 	mddev->delta_disks = 1;
8257 	mddev->raid_disks += 1;
8258 	return setup_conf(mddev);
8259 }
8260 
8261 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8262 {
8263 	struct r5conf *conf;
8264 	int err;
8265 
8266 	err = mddev_lock(mddev);
8267 	if (err)
8268 		return err;
8269 	conf = mddev->private;
8270 	if (!conf) {
8271 		mddev_unlock(mddev);
8272 		return -ENODEV;
8273 	}
8274 
8275 	if (strncmp(buf, "ppl", 3) == 0) {
8276 		/* ppl only works with RAID 5 */
8277 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8278 			err = log_init(conf, NULL, true);
8279 			if (!err) {
8280 				err = resize_stripes(conf, conf->pool_size);
8281 				if (err)
8282 					log_exit(conf);
8283 			}
8284 		} else
8285 			err = -EINVAL;
8286 	} else if (strncmp(buf, "resync", 6) == 0) {
8287 		if (raid5_has_ppl(conf)) {
8288 			mddev_suspend(mddev);
8289 			log_exit(conf);
8290 			mddev_resume(mddev);
8291 			err = resize_stripes(conf, conf->pool_size);
8292 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8293 			   r5l_log_disk_error(conf)) {
8294 			bool journal_dev_exists = false;
8295 			struct md_rdev *rdev;
8296 
8297 			rdev_for_each(rdev, mddev)
8298 				if (test_bit(Journal, &rdev->flags)) {
8299 					journal_dev_exists = true;
8300 					break;
8301 				}
8302 
8303 			if (!journal_dev_exists) {
8304 				mddev_suspend(mddev);
8305 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8306 				mddev_resume(mddev);
8307 			} else  /* need remove journal device first */
8308 				err = -EBUSY;
8309 		} else
8310 			err = -EINVAL;
8311 	} else {
8312 		err = -EINVAL;
8313 	}
8314 
8315 	if (!err)
8316 		md_update_sb(mddev, 1);
8317 
8318 	mddev_unlock(mddev);
8319 
8320 	return err;
8321 }
8322 
8323 static struct md_personality raid6_personality =
8324 {
8325 	.name		= "raid6",
8326 	.level		= 6,
8327 	.owner		= THIS_MODULE,
8328 	.make_request	= raid5_make_request,
8329 	.run		= raid5_run,
8330 	.free		= raid5_free,
8331 	.status		= raid5_status,
8332 	.error_handler	= raid5_error,
8333 	.hot_add_disk	= raid5_add_disk,
8334 	.hot_remove_disk= raid5_remove_disk,
8335 	.spare_active	= raid5_spare_active,
8336 	.sync_request	= raid5_sync_request,
8337 	.resize		= raid5_resize,
8338 	.size		= raid5_size,
8339 	.check_reshape	= raid6_check_reshape,
8340 	.start_reshape  = raid5_start_reshape,
8341 	.finish_reshape = raid5_finish_reshape,
8342 	.quiesce	= raid5_quiesce,
8343 	.takeover	= raid6_takeover,
8344 	.congested	= raid5_congested,
8345 	.change_consistency_policy = raid5_change_consistency_policy,
8346 };
8347 static struct md_personality raid5_personality =
8348 {
8349 	.name		= "raid5",
8350 	.level		= 5,
8351 	.owner		= THIS_MODULE,
8352 	.make_request	= raid5_make_request,
8353 	.run		= raid5_run,
8354 	.free		= raid5_free,
8355 	.status		= raid5_status,
8356 	.error_handler	= raid5_error,
8357 	.hot_add_disk	= raid5_add_disk,
8358 	.hot_remove_disk= raid5_remove_disk,
8359 	.spare_active	= raid5_spare_active,
8360 	.sync_request	= raid5_sync_request,
8361 	.resize		= raid5_resize,
8362 	.size		= raid5_size,
8363 	.check_reshape	= raid5_check_reshape,
8364 	.start_reshape  = raid5_start_reshape,
8365 	.finish_reshape = raid5_finish_reshape,
8366 	.quiesce	= raid5_quiesce,
8367 	.takeover	= raid5_takeover,
8368 	.congested	= raid5_congested,
8369 	.change_consistency_policy = raid5_change_consistency_policy,
8370 };
8371 
8372 static struct md_personality raid4_personality =
8373 {
8374 	.name		= "raid4",
8375 	.level		= 4,
8376 	.owner		= THIS_MODULE,
8377 	.make_request	= raid5_make_request,
8378 	.run		= raid5_run,
8379 	.free		= raid5_free,
8380 	.status		= raid5_status,
8381 	.error_handler	= raid5_error,
8382 	.hot_add_disk	= raid5_add_disk,
8383 	.hot_remove_disk= raid5_remove_disk,
8384 	.spare_active	= raid5_spare_active,
8385 	.sync_request	= raid5_sync_request,
8386 	.resize		= raid5_resize,
8387 	.size		= raid5_size,
8388 	.check_reshape	= raid5_check_reshape,
8389 	.start_reshape  = raid5_start_reshape,
8390 	.finish_reshape = raid5_finish_reshape,
8391 	.quiesce	= raid5_quiesce,
8392 	.takeover	= raid4_takeover,
8393 	.congested	= raid5_congested,
8394 	.change_consistency_policy = raid5_change_consistency_policy,
8395 };
8396 
8397 static int __init raid5_init(void)
8398 {
8399 	int ret;
8400 
8401 	raid5_wq = alloc_workqueue("raid5wq",
8402 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8403 	if (!raid5_wq)
8404 		return -ENOMEM;
8405 
8406 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8407 				      "md/raid5:prepare",
8408 				      raid456_cpu_up_prepare,
8409 				      raid456_cpu_dead);
8410 	if (ret) {
8411 		destroy_workqueue(raid5_wq);
8412 		return ret;
8413 	}
8414 	register_md_personality(&raid6_personality);
8415 	register_md_personality(&raid5_personality);
8416 	register_md_personality(&raid4_personality);
8417 	return 0;
8418 }
8419 
8420 static void raid5_exit(void)
8421 {
8422 	unregister_md_personality(&raid6_personality);
8423 	unregister_md_personality(&raid5_personality);
8424 	unregister_md_personality(&raid4_personality);
8425 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8426 	destroy_workqueue(raid5_wq);
8427 }
8428 
8429 module_init(raid5_init);
8430 module_exit(raid5_exit);
8431 MODULE_LICENSE("GPL");
8432 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8433 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8434 MODULE_ALIAS("md-raid5");
8435 MODULE_ALIAS("md-raid4");
8436 MODULE_ALIAS("md-level-5");
8437 MODULE_ALIAS("md-level-4");
8438 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8439 MODULE_ALIAS("md-raid6");
8440 MODULE_ALIAS("md-level-6");
8441 
8442 /* This used to be two separate modules, they were: */
8443 MODULE_ALIAS("raid5");
8444 MODULE_ALIAS("raid6");
8445