xref: /openbmc/linux/drivers/md/raid5.c (revision 2359ccdd)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 
59 #include <trace/events/block.h>
60 #include <linux/list_sort.h>
61 
62 #include "md.h"
63 #include "raid5.h"
64 #include "raid0.h"
65 #include "md-bitmap.h"
66 #include "raid5-log.h"
67 
68 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
69 
70 #define cpu_to_group(cpu) cpu_to_node(cpu)
71 #define ANY_GROUP NUMA_NO_NODE
72 
73 static bool devices_handle_discard_safely = false;
74 module_param(devices_handle_discard_safely, bool, 0644);
75 MODULE_PARM_DESC(devices_handle_discard_safely,
76 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
77 static struct workqueue_struct *raid5_wq;
78 
79 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
80 {
81 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
82 	return &conf->stripe_hashtbl[hash];
83 }
84 
85 static inline int stripe_hash_locks_hash(sector_t sect)
86 {
87 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
88 }
89 
90 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
91 {
92 	spin_lock_irq(conf->hash_locks + hash);
93 	spin_lock(&conf->device_lock);
94 }
95 
96 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
97 {
98 	spin_unlock(&conf->device_lock);
99 	spin_unlock_irq(conf->hash_locks + hash);
100 }
101 
102 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
103 {
104 	int i;
105 	spin_lock_irq(conf->hash_locks);
106 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
107 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
108 	spin_lock(&conf->device_lock);
109 }
110 
111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
112 {
113 	int i;
114 	spin_unlock(&conf->device_lock);
115 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
116 		spin_unlock(conf->hash_locks + i);
117 	spin_unlock_irq(conf->hash_locks);
118 }
119 
120 /* Find first data disk in a raid6 stripe */
121 static inline int raid6_d0(struct stripe_head *sh)
122 {
123 	if (sh->ddf_layout)
124 		/* ddf always start from first device */
125 		return 0;
126 	/* md starts just after Q block */
127 	if (sh->qd_idx == sh->disks - 1)
128 		return 0;
129 	else
130 		return sh->qd_idx + 1;
131 }
132 static inline int raid6_next_disk(int disk, int raid_disks)
133 {
134 	disk++;
135 	return (disk < raid_disks) ? disk : 0;
136 }
137 
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139  * We need to map each disk to a 'slot', where the data disks are slot
140  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141  * is raid_disks-1.  This help does that mapping.
142  */
143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144 			     int *count, int syndrome_disks)
145 {
146 	int slot = *count;
147 
148 	if (sh->ddf_layout)
149 		(*count)++;
150 	if (idx == sh->pd_idx)
151 		return syndrome_disks;
152 	if (idx == sh->qd_idx)
153 		return syndrome_disks + 1;
154 	if (!sh->ddf_layout)
155 		(*count)++;
156 	return slot;
157 }
158 
159 static void print_raid5_conf (struct r5conf *conf);
160 
161 static int stripe_operations_active(struct stripe_head *sh)
162 {
163 	return sh->check_state || sh->reconstruct_state ||
164 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
165 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
166 }
167 
168 static bool stripe_is_lowprio(struct stripe_head *sh)
169 {
170 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
171 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
172 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
173 }
174 
175 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
176 {
177 	struct r5conf *conf = sh->raid_conf;
178 	struct r5worker_group *group;
179 	int thread_cnt;
180 	int i, cpu = sh->cpu;
181 
182 	if (!cpu_online(cpu)) {
183 		cpu = cpumask_any(cpu_online_mask);
184 		sh->cpu = cpu;
185 	}
186 
187 	if (list_empty(&sh->lru)) {
188 		struct r5worker_group *group;
189 		group = conf->worker_groups + cpu_to_group(cpu);
190 		if (stripe_is_lowprio(sh))
191 			list_add_tail(&sh->lru, &group->loprio_list);
192 		else
193 			list_add_tail(&sh->lru, &group->handle_list);
194 		group->stripes_cnt++;
195 		sh->group = group;
196 	}
197 
198 	if (conf->worker_cnt_per_group == 0) {
199 		md_wakeup_thread(conf->mddev->thread);
200 		return;
201 	}
202 
203 	group = conf->worker_groups + cpu_to_group(sh->cpu);
204 
205 	group->workers[0].working = true;
206 	/* at least one worker should run to avoid race */
207 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208 
209 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 	/* wakeup more workers */
211 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 		if (group->workers[i].working == false) {
213 			group->workers[i].working = true;
214 			queue_work_on(sh->cpu, raid5_wq,
215 				      &group->workers[i].work);
216 			thread_cnt--;
217 		}
218 	}
219 }
220 
221 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 			      struct list_head *temp_inactive_list)
223 {
224 	int i;
225 	int injournal = 0;	/* number of date pages with R5_InJournal */
226 
227 	BUG_ON(!list_empty(&sh->lru));
228 	BUG_ON(atomic_read(&conf->active_stripes)==0);
229 
230 	if (r5c_is_writeback(conf->log))
231 		for (i = sh->disks; i--; )
232 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
233 				injournal++;
234 	/*
235 	 * In the following cases, the stripe cannot be released to cached
236 	 * lists. Therefore, we make the stripe write out and set
237 	 * STRIPE_HANDLE:
238 	 *   1. when quiesce in r5c write back;
239 	 *   2. when resync is requested fot the stripe.
240 	 */
241 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
242 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
243 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
244 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
245 			r5c_make_stripe_write_out(sh);
246 		set_bit(STRIPE_HANDLE, &sh->state);
247 	}
248 
249 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
250 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
251 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
252 			list_add_tail(&sh->lru, &conf->delayed_list);
253 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
254 			   sh->bm_seq - conf->seq_write > 0)
255 			list_add_tail(&sh->lru, &conf->bitmap_list);
256 		else {
257 			clear_bit(STRIPE_DELAYED, &sh->state);
258 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
259 			if (conf->worker_cnt_per_group == 0) {
260 				if (stripe_is_lowprio(sh))
261 					list_add_tail(&sh->lru,
262 							&conf->loprio_list);
263 				else
264 					list_add_tail(&sh->lru,
265 							&conf->handle_list);
266 			} else {
267 				raid5_wakeup_stripe_thread(sh);
268 				return;
269 			}
270 		}
271 		md_wakeup_thread(conf->mddev->thread);
272 	} else {
273 		BUG_ON(stripe_operations_active(sh));
274 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
275 			if (atomic_dec_return(&conf->preread_active_stripes)
276 			    < IO_THRESHOLD)
277 				md_wakeup_thread(conf->mddev->thread);
278 		atomic_dec(&conf->active_stripes);
279 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
280 			if (!r5c_is_writeback(conf->log))
281 				list_add_tail(&sh->lru, temp_inactive_list);
282 			else {
283 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
284 				if (injournal == 0)
285 					list_add_tail(&sh->lru, temp_inactive_list);
286 				else if (injournal == conf->raid_disks - conf->max_degraded) {
287 					/* full stripe */
288 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
289 						atomic_inc(&conf->r5c_cached_full_stripes);
290 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
291 						atomic_dec(&conf->r5c_cached_partial_stripes);
292 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
293 					r5c_check_cached_full_stripe(conf);
294 				} else
295 					/*
296 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
297 					 * r5c_try_caching_write(). No need to
298 					 * set it again.
299 					 */
300 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
301 			}
302 		}
303 	}
304 }
305 
306 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
307 			     struct list_head *temp_inactive_list)
308 {
309 	if (atomic_dec_and_test(&sh->count))
310 		do_release_stripe(conf, sh, temp_inactive_list);
311 }
312 
313 /*
314  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
315  *
316  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
317  * given time. Adding stripes only takes device lock, while deleting stripes
318  * only takes hash lock.
319  */
320 static void release_inactive_stripe_list(struct r5conf *conf,
321 					 struct list_head *temp_inactive_list,
322 					 int hash)
323 {
324 	int size;
325 	bool do_wakeup = false;
326 	unsigned long flags;
327 
328 	if (hash == NR_STRIPE_HASH_LOCKS) {
329 		size = NR_STRIPE_HASH_LOCKS;
330 		hash = NR_STRIPE_HASH_LOCKS - 1;
331 	} else
332 		size = 1;
333 	while (size) {
334 		struct list_head *list = &temp_inactive_list[size - 1];
335 
336 		/*
337 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
338 		 * remove stripes from the list
339 		 */
340 		if (!list_empty_careful(list)) {
341 			spin_lock_irqsave(conf->hash_locks + hash, flags);
342 			if (list_empty(conf->inactive_list + hash) &&
343 			    !list_empty(list))
344 				atomic_dec(&conf->empty_inactive_list_nr);
345 			list_splice_tail_init(list, conf->inactive_list + hash);
346 			do_wakeup = true;
347 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
348 		}
349 		size--;
350 		hash--;
351 	}
352 
353 	if (do_wakeup) {
354 		wake_up(&conf->wait_for_stripe);
355 		if (atomic_read(&conf->active_stripes) == 0)
356 			wake_up(&conf->wait_for_quiescent);
357 		if (conf->retry_read_aligned)
358 			md_wakeup_thread(conf->mddev->thread);
359 	}
360 }
361 
362 /* should hold conf->device_lock already */
363 static int release_stripe_list(struct r5conf *conf,
364 			       struct list_head *temp_inactive_list)
365 {
366 	struct stripe_head *sh, *t;
367 	int count = 0;
368 	struct llist_node *head;
369 
370 	head = llist_del_all(&conf->released_stripes);
371 	head = llist_reverse_order(head);
372 	llist_for_each_entry_safe(sh, t, head, release_list) {
373 		int hash;
374 
375 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
376 		smp_mb();
377 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
378 		/*
379 		 * Don't worry the bit is set here, because if the bit is set
380 		 * again, the count is always > 1. This is true for
381 		 * STRIPE_ON_UNPLUG_LIST bit too.
382 		 */
383 		hash = sh->hash_lock_index;
384 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
385 		count++;
386 	}
387 
388 	return count;
389 }
390 
391 void raid5_release_stripe(struct stripe_head *sh)
392 {
393 	struct r5conf *conf = sh->raid_conf;
394 	unsigned long flags;
395 	struct list_head list;
396 	int hash;
397 	bool wakeup;
398 
399 	/* Avoid release_list until the last reference.
400 	 */
401 	if (atomic_add_unless(&sh->count, -1, 1))
402 		return;
403 
404 	if (unlikely(!conf->mddev->thread) ||
405 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
406 		goto slow_path;
407 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
408 	if (wakeup)
409 		md_wakeup_thread(conf->mddev->thread);
410 	return;
411 slow_path:
412 	local_irq_save(flags);
413 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
414 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
415 		INIT_LIST_HEAD(&list);
416 		hash = sh->hash_lock_index;
417 		do_release_stripe(conf, sh, &list);
418 		spin_unlock(&conf->device_lock);
419 		release_inactive_stripe_list(conf, &list, hash);
420 	}
421 	local_irq_restore(flags);
422 }
423 
424 static inline void remove_hash(struct stripe_head *sh)
425 {
426 	pr_debug("remove_hash(), stripe %llu\n",
427 		(unsigned long long)sh->sector);
428 
429 	hlist_del_init(&sh->hash);
430 }
431 
432 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
433 {
434 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
435 
436 	pr_debug("insert_hash(), stripe %llu\n",
437 		(unsigned long long)sh->sector);
438 
439 	hlist_add_head(&sh->hash, hp);
440 }
441 
442 /* find an idle stripe, make sure it is unhashed, and return it. */
443 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
444 {
445 	struct stripe_head *sh = NULL;
446 	struct list_head *first;
447 
448 	if (list_empty(conf->inactive_list + hash))
449 		goto out;
450 	first = (conf->inactive_list + hash)->next;
451 	sh = list_entry(first, struct stripe_head, lru);
452 	list_del_init(first);
453 	remove_hash(sh);
454 	atomic_inc(&conf->active_stripes);
455 	BUG_ON(hash != sh->hash_lock_index);
456 	if (list_empty(conf->inactive_list + hash))
457 		atomic_inc(&conf->empty_inactive_list_nr);
458 out:
459 	return sh;
460 }
461 
462 static void shrink_buffers(struct stripe_head *sh)
463 {
464 	struct page *p;
465 	int i;
466 	int num = sh->raid_conf->pool_size;
467 
468 	for (i = 0; i < num ; i++) {
469 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
470 		p = sh->dev[i].page;
471 		if (!p)
472 			continue;
473 		sh->dev[i].page = NULL;
474 		put_page(p);
475 	}
476 }
477 
478 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
479 {
480 	int i;
481 	int num = sh->raid_conf->pool_size;
482 
483 	for (i = 0; i < num; i++) {
484 		struct page *page;
485 
486 		if (!(page = alloc_page(gfp))) {
487 			return 1;
488 		}
489 		sh->dev[i].page = page;
490 		sh->dev[i].orig_page = page;
491 	}
492 
493 	return 0;
494 }
495 
496 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
497 			    struct stripe_head *sh);
498 
499 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
500 {
501 	struct r5conf *conf = sh->raid_conf;
502 	int i, seq;
503 
504 	BUG_ON(atomic_read(&sh->count) != 0);
505 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
506 	BUG_ON(stripe_operations_active(sh));
507 	BUG_ON(sh->batch_head);
508 
509 	pr_debug("init_stripe called, stripe %llu\n",
510 		(unsigned long long)sector);
511 retry:
512 	seq = read_seqcount_begin(&conf->gen_lock);
513 	sh->generation = conf->generation - previous;
514 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
515 	sh->sector = sector;
516 	stripe_set_idx(sector, conf, previous, sh);
517 	sh->state = 0;
518 
519 	for (i = sh->disks; i--; ) {
520 		struct r5dev *dev = &sh->dev[i];
521 
522 		if (dev->toread || dev->read || dev->towrite || dev->written ||
523 		    test_bit(R5_LOCKED, &dev->flags)) {
524 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
525 			       (unsigned long long)sh->sector, i, dev->toread,
526 			       dev->read, dev->towrite, dev->written,
527 			       test_bit(R5_LOCKED, &dev->flags));
528 			WARN_ON(1);
529 		}
530 		dev->flags = 0;
531 		dev->sector = raid5_compute_blocknr(sh, i, previous);
532 	}
533 	if (read_seqcount_retry(&conf->gen_lock, seq))
534 		goto retry;
535 	sh->overwrite_disks = 0;
536 	insert_hash(conf, sh);
537 	sh->cpu = smp_processor_id();
538 	set_bit(STRIPE_BATCH_READY, &sh->state);
539 }
540 
541 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
542 					 short generation)
543 {
544 	struct stripe_head *sh;
545 
546 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
547 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
548 		if (sh->sector == sector && sh->generation == generation)
549 			return sh;
550 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
551 	return NULL;
552 }
553 
554 /*
555  * Need to check if array has failed when deciding whether to:
556  *  - start an array
557  *  - remove non-faulty devices
558  *  - add a spare
559  *  - allow a reshape
560  * This determination is simple when no reshape is happening.
561  * However if there is a reshape, we need to carefully check
562  * both the before and after sections.
563  * This is because some failed devices may only affect one
564  * of the two sections, and some non-in_sync devices may
565  * be insync in the section most affected by failed devices.
566  */
567 int raid5_calc_degraded(struct r5conf *conf)
568 {
569 	int degraded, degraded2;
570 	int i;
571 
572 	rcu_read_lock();
573 	degraded = 0;
574 	for (i = 0; i < conf->previous_raid_disks; i++) {
575 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
576 		if (rdev && test_bit(Faulty, &rdev->flags))
577 			rdev = rcu_dereference(conf->disks[i].replacement);
578 		if (!rdev || test_bit(Faulty, &rdev->flags))
579 			degraded++;
580 		else if (test_bit(In_sync, &rdev->flags))
581 			;
582 		else
583 			/* not in-sync or faulty.
584 			 * If the reshape increases the number of devices,
585 			 * this is being recovered by the reshape, so
586 			 * this 'previous' section is not in_sync.
587 			 * If the number of devices is being reduced however,
588 			 * the device can only be part of the array if
589 			 * we are reverting a reshape, so this section will
590 			 * be in-sync.
591 			 */
592 			if (conf->raid_disks >= conf->previous_raid_disks)
593 				degraded++;
594 	}
595 	rcu_read_unlock();
596 	if (conf->raid_disks == conf->previous_raid_disks)
597 		return degraded;
598 	rcu_read_lock();
599 	degraded2 = 0;
600 	for (i = 0; i < conf->raid_disks; i++) {
601 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
602 		if (rdev && test_bit(Faulty, &rdev->flags))
603 			rdev = rcu_dereference(conf->disks[i].replacement);
604 		if (!rdev || test_bit(Faulty, &rdev->flags))
605 			degraded2++;
606 		else if (test_bit(In_sync, &rdev->flags))
607 			;
608 		else
609 			/* not in-sync or faulty.
610 			 * If reshape increases the number of devices, this
611 			 * section has already been recovered, else it
612 			 * almost certainly hasn't.
613 			 */
614 			if (conf->raid_disks <= conf->previous_raid_disks)
615 				degraded2++;
616 	}
617 	rcu_read_unlock();
618 	if (degraded2 > degraded)
619 		return degraded2;
620 	return degraded;
621 }
622 
623 static int has_failed(struct r5conf *conf)
624 {
625 	int degraded;
626 
627 	if (conf->mddev->reshape_position == MaxSector)
628 		return conf->mddev->degraded > conf->max_degraded;
629 
630 	degraded = raid5_calc_degraded(conf);
631 	if (degraded > conf->max_degraded)
632 		return 1;
633 	return 0;
634 }
635 
636 struct stripe_head *
637 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
638 			int previous, int noblock, int noquiesce)
639 {
640 	struct stripe_head *sh;
641 	int hash = stripe_hash_locks_hash(sector);
642 	int inc_empty_inactive_list_flag;
643 
644 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
645 
646 	spin_lock_irq(conf->hash_locks + hash);
647 
648 	do {
649 		wait_event_lock_irq(conf->wait_for_quiescent,
650 				    conf->quiesce == 0 || noquiesce,
651 				    *(conf->hash_locks + hash));
652 		sh = __find_stripe(conf, sector, conf->generation - previous);
653 		if (!sh) {
654 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
655 				sh = get_free_stripe(conf, hash);
656 				if (!sh && !test_bit(R5_DID_ALLOC,
657 						     &conf->cache_state))
658 					set_bit(R5_ALLOC_MORE,
659 						&conf->cache_state);
660 			}
661 			if (noblock && sh == NULL)
662 				break;
663 
664 			r5c_check_stripe_cache_usage(conf);
665 			if (!sh) {
666 				set_bit(R5_INACTIVE_BLOCKED,
667 					&conf->cache_state);
668 				r5l_wake_reclaim(conf->log, 0);
669 				wait_event_lock_irq(
670 					conf->wait_for_stripe,
671 					!list_empty(conf->inactive_list + hash) &&
672 					(atomic_read(&conf->active_stripes)
673 					 < (conf->max_nr_stripes * 3 / 4)
674 					 || !test_bit(R5_INACTIVE_BLOCKED,
675 						      &conf->cache_state)),
676 					*(conf->hash_locks + hash));
677 				clear_bit(R5_INACTIVE_BLOCKED,
678 					  &conf->cache_state);
679 			} else {
680 				init_stripe(sh, sector, previous);
681 				atomic_inc(&sh->count);
682 			}
683 		} else if (!atomic_inc_not_zero(&sh->count)) {
684 			spin_lock(&conf->device_lock);
685 			if (!atomic_read(&sh->count)) {
686 				if (!test_bit(STRIPE_HANDLE, &sh->state))
687 					atomic_inc(&conf->active_stripes);
688 				BUG_ON(list_empty(&sh->lru) &&
689 				       !test_bit(STRIPE_EXPANDING, &sh->state));
690 				inc_empty_inactive_list_flag = 0;
691 				if (!list_empty(conf->inactive_list + hash))
692 					inc_empty_inactive_list_flag = 1;
693 				list_del_init(&sh->lru);
694 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
695 					atomic_inc(&conf->empty_inactive_list_nr);
696 				if (sh->group) {
697 					sh->group->stripes_cnt--;
698 					sh->group = NULL;
699 				}
700 			}
701 			atomic_inc(&sh->count);
702 			spin_unlock(&conf->device_lock);
703 		}
704 	} while (sh == NULL);
705 
706 	spin_unlock_irq(conf->hash_locks + hash);
707 	return sh;
708 }
709 
710 static bool is_full_stripe_write(struct stripe_head *sh)
711 {
712 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
713 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
714 }
715 
716 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
717 {
718 	if (sh1 > sh2) {
719 		spin_lock_irq(&sh2->stripe_lock);
720 		spin_lock_nested(&sh1->stripe_lock, 1);
721 	} else {
722 		spin_lock_irq(&sh1->stripe_lock);
723 		spin_lock_nested(&sh2->stripe_lock, 1);
724 	}
725 }
726 
727 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
728 {
729 	spin_unlock(&sh1->stripe_lock);
730 	spin_unlock_irq(&sh2->stripe_lock);
731 }
732 
733 /* Only freshly new full stripe normal write stripe can be added to a batch list */
734 static bool stripe_can_batch(struct stripe_head *sh)
735 {
736 	struct r5conf *conf = sh->raid_conf;
737 
738 	if (conf->log || raid5_has_ppl(conf))
739 		return false;
740 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
741 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
742 		is_full_stripe_write(sh);
743 }
744 
745 /* we only do back search */
746 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
747 {
748 	struct stripe_head *head;
749 	sector_t head_sector, tmp_sec;
750 	int hash;
751 	int dd_idx;
752 	int inc_empty_inactive_list_flag;
753 
754 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
755 	tmp_sec = sh->sector;
756 	if (!sector_div(tmp_sec, conf->chunk_sectors))
757 		return;
758 	head_sector = sh->sector - STRIPE_SECTORS;
759 
760 	hash = stripe_hash_locks_hash(head_sector);
761 	spin_lock_irq(conf->hash_locks + hash);
762 	head = __find_stripe(conf, head_sector, conf->generation);
763 	if (head && !atomic_inc_not_zero(&head->count)) {
764 		spin_lock(&conf->device_lock);
765 		if (!atomic_read(&head->count)) {
766 			if (!test_bit(STRIPE_HANDLE, &head->state))
767 				atomic_inc(&conf->active_stripes);
768 			BUG_ON(list_empty(&head->lru) &&
769 			       !test_bit(STRIPE_EXPANDING, &head->state));
770 			inc_empty_inactive_list_flag = 0;
771 			if (!list_empty(conf->inactive_list + hash))
772 				inc_empty_inactive_list_flag = 1;
773 			list_del_init(&head->lru);
774 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
775 				atomic_inc(&conf->empty_inactive_list_nr);
776 			if (head->group) {
777 				head->group->stripes_cnt--;
778 				head->group = NULL;
779 			}
780 		}
781 		atomic_inc(&head->count);
782 		spin_unlock(&conf->device_lock);
783 	}
784 	spin_unlock_irq(conf->hash_locks + hash);
785 
786 	if (!head)
787 		return;
788 	if (!stripe_can_batch(head))
789 		goto out;
790 
791 	lock_two_stripes(head, sh);
792 	/* clear_batch_ready clear the flag */
793 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
794 		goto unlock_out;
795 
796 	if (sh->batch_head)
797 		goto unlock_out;
798 
799 	dd_idx = 0;
800 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
801 		dd_idx++;
802 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
803 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
804 		goto unlock_out;
805 
806 	if (head->batch_head) {
807 		spin_lock(&head->batch_head->batch_lock);
808 		/* This batch list is already running */
809 		if (!stripe_can_batch(head)) {
810 			spin_unlock(&head->batch_head->batch_lock);
811 			goto unlock_out;
812 		}
813 		/*
814 		 * We must assign batch_head of this stripe within the
815 		 * batch_lock, otherwise clear_batch_ready of batch head
816 		 * stripe could clear BATCH_READY bit of this stripe and
817 		 * this stripe->batch_head doesn't get assigned, which
818 		 * could confuse clear_batch_ready for this stripe
819 		 */
820 		sh->batch_head = head->batch_head;
821 
822 		/*
823 		 * at this point, head's BATCH_READY could be cleared, but we
824 		 * can still add the stripe to batch list
825 		 */
826 		list_add(&sh->batch_list, &head->batch_list);
827 		spin_unlock(&head->batch_head->batch_lock);
828 	} else {
829 		head->batch_head = head;
830 		sh->batch_head = head->batch_head;
831 		spin_lock(&head->batch_lock);
832 		list_add_tail(&sh->batch_list, &head->batch_list);
833 		spin_unlock(&head->batch_lock);
834 	}
835 
836 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
837 		if (atomic_dec_return(&conf->preread_active_stripes)
838 		    < IO_THRESHOLD)
839 			md_wakeup_thread(conf->mddev->thread);
840 
841 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
842 		int seq = sh->bm_seq;
843 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
844 		    sh->batch_head->bm_seq > seq)
845 			seq = sh->batch_head->bm_seq;
846 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
847 		sh->batch_head->bm_seq = seq;
848 	}
849 
850 	atomic_inc(&sh->count);
851 unlock_out:
852 	unlock_two_stripes(head, sh);
853 out:
854 	raid5_release_stripe(head);
855 }
856 
857 /* Determine if 'data_offset' or 'new_data_offset' should be used
858  * in this stripe_head.
859  */
860 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
861 {
862 	sector_t progress = conf->reshape_progress;
863 	/* Need a memory barrier to make sure we see the value
864 	 * of conf->generation, or ->data_offset that was set before
865 	 * reshape_progress was updated.
866 	 */
867 	smp_rmb();
868 	if (progress == MaxSector)
869 		return 0;
870 	if (sh->generation == conf->generation - 1)
871 		return 0;
872 	/* We are in a reshape, and this is a new-generation stripe,
873 	 * so use new_data_offset.
874 	 */
875 	return 1;
876 }
877 
878 static void dispatch_bio_list(struct bio_list *tmp)
879 {
880 	struct bio *bio;
881 
882 	while ((bio = bio_list_pop(tmp)))
883 		generic_make_request(bio);
884 }
885 
886 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
887 {
888 	const struct r5pending_data *da = list_entry(a,
889 				struct r5pending_data, sibling);
890 	const struct r5pending_data *db = list_entry(b,
891 				struct r5pending_data, sibling);
892 	if (da->sector > db->sector)
893 		return 1;
894 	if (da->sector < db->sector)
895 		return -1;
896 	return 0;
897 }
898 
899 static void dispatch_defer_bios(struct r5conf *conf, int target,
900 				struct bio_list *list)
901 {
902 	struct r5pending_data *data;
903 	struct list_head *first, *next = NULL;
904 	int cnt = 0;
905 
906 	if (conf->pending_data_cnt == 0)
907 		return;
908 
909 	list_sort(NULL, &conf->pending_list, cmp_stripe);
910 
911 	first = conf->pending_list.next;
912 
913 	/* temporarily move the head */
914 	if (conf->next_pending_data)
915 		list_move_tail(&conf->pending_list,
916 				&conf->next_pending_data->sibling);
917 
918 	while (!list_empty(&conf->pending_list)) {
919 		data = list_first_entry(&conf->pending_list,
920 			struct r5pending_data, sibling);
921 		if (&data->sibling == first)
922 			first = data->sibling.next;
923 		next = data->sibling.next;
924 
925 		bio_list_merge(list, &data->bios);
926 		list_move(&data->sibling, &conf->free_list);
927 		cnt++;
928 		if (cnt >= target)
929 			break;
930 	}
931 	conf->pending_data_cnt -= cnt;
932 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
933 
934 	if (next != &conf->pending_list)
935 		conf->next_pending_data = list_entry(next,
936 				struct r5pending_data, sibling);
937 	else
938 		conf->next_pending_data = NULL;
939 	/* list isn't empty */
940 	if (first != &conf->pending_list)
941 		list_move_tail(&conf->pending_list, first);
942 }
943 
944 static void flush_deferred_bios(struct r5conf *conf)
945 {
946 	struct bio_list tmp = BIO_EMPTY_LIST;
947 
948 	if (conf->pending_data_cnt == 0)
949 		return;
950 
951 	spin_lock(&conf->pending_bios_lock);
952 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
953 	BUG_ON(conf->pending_data_cnt != 0);
954 	spin_unlock(&conf->pending_bios_lock);
955 
956 	dispatch_bio_list(&tmp);
957 }
958 
959 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
960 				struct bio_list *bios)
961 {
962 	struct bio_list tmp = BIO_EMPTY_LIST;
963 	struct r5pending_data *ent;
964 
965 	spin_lock(&conf->pending_bios_lock);
966 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
967 							sibling);
968 	list_move_tail(&ent->sibling, &conf->pending_list);
969 	ent->sector = sector;
970 	bio_list_init(&ent->bios);
971 	bio_list_merge(&ent->bios, bios);
972 	conf->pending_data_cnt++;
973 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
974 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
975 
976 	spin_unlock(&conf->pending_bios_lock);
977 
978 	dispatch_bio_list(&tmp);
979 }
980 
981 static void
982 raid5_end_read_request(struct bio *bi);
983 static void
984 raid5_end_write_request(struct bio *bi);
985 
986 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
987 {
988 	struct r5conf *conf = sh->raid_conf;
989 	int i, disks = sh->disks;
990 	struct stripe_head *head_sh = sh;
991 	struct bio_list pending_bios = BIO_EMPTY_LIST;
992 	bool should_defer;
993 
994 	might_sleep();
995 
996 	if (log_stripe(sh, s) == 0)
997 		return;
998 
999 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1000 
1001 	for (i = disks; i--; ) {
1002 		int op, op_flags = 0;
1003 		int replace_only = 0;
1004 		struct bio *bi, *rbi;
1005 		struct md_rdev *rdev, *rrdev = NULL;
1006 
1007 		sh = head_sh;
1008 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1009 			op = REQ_OP_WRITE;
1010 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1011 				op_flags = REQ_FUA;
1012 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1013 				op = REQ_OP_DISCARD;
1014 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1015 			op = REQ_OP_READ;
1016 		else if (test_and_clear_bit(R5_WantReplace,
1017 					    &sh->dev[i].flags)) {
1018 			op = REQ_OP_WRITE;
1019 			replace_only = 1;
1020 		} else
1021 			continue;
1022 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1023 			op_flags |= REQ_SYNC;
1024 
1025 again:
1026 		bi = &sh->dev[i].req;
1027 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
1028 
1029 		rcu_read_lock();
1030 		rrdev = rcu_dereference(conf->disks[i].replacement);
1031 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1032 		rdev = rcu_dereference(conf->disks[i].rdev);
1033 		if (!rdev) {
1034 			rdev = rrdev;
1035 			rrdev = NULL;
1036 		}
1037 		if (op_is_write(op)) {
1038 			if (replace_only)
1039 				rdev = NULL;
1040 			if (rdev == rrdev)
1041 				/* We raced and saw duplicates */
1042 				rrdev = NULL;
1043 		} else {
1044 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1045 				rdev = rrdev;
1046 			rrdev = NULL;
1047 		}
1048 
1049 		if (rdev && test_bit(Faulty, &rdev->flags))
1050 			rdev = NULL;
1051 		if (rdev)
1052 			atomic_inc(&rdev->nr_pending);
1053 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1054 			rrdev = NULL;
1055 		if (rrdev)
1056 			atomic_inc(&rrdev->nr_pending);
1057 		rcu_read_unlock();
1058 
1059 		/* We have already checked bad blocks for reads.  Now
1060 		 * need to check for writes.  We never accept write errors
1061 		 * on the replacement, so we don't to check rrdev.
1062 		 */
1063 		while (op_is_write(op) && rdev &&
1064 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1065 			sector_t first_bad;
1066 			int bad_sectors;
1067 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1068 					      &first_bad, &bad_sectors);
1069 			if (!bad)
1070 				break;
1071 
1072 			if (bad < 0) {
1073 				set_bit(BlockedBadBlocks, &rdev->flags);
1074 				if (!conf->mddev->external &&
1075 				    conf->mddev->sb_flags) {
1076 					/* It is very unlikely, but we might
1077 					 * still need to write out the
1078 					 * bad block log - better give it
1079 					 * a chance*/
1080 					md_check_recovery(conf->mddev);
1081 				}
1082 				/*
1083 				 * Because md_wait_for_blocked_rdev
1084 				 * will dec nr_pending, we must
1085 				 * increment it first.
1086 				 */
1087 				atomic_inc(&rdev->nr_pending);
1088 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1089 			} else {
1090 				/* Acknowledged bad block - skip the write */
1091 				rdev_dec_pending(rdev, conf->mddev);
1092 				rdev = NULL;
1093 			}
1094 		}
1095 
1096 		if (rdev) {
1097 			if (s->syncing || s->expanding || s->expanded
1098 			    || s->replacing)
1099 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1100 
1101 			set_bit(STRIPE_IO_STARTED, &sh->state);
1102 
1103 			bio_set_dev(bi, rdev->bdev);
1104 			bio_set_op_attrs(bi, op, op_flags);
1105 			bi->bi_end_io = op_is_write(op)
1106 				? raid5_end_write_request
1107 				: raid5_end_read_request;
1108 			bi->bi_private = sh;
1109 
1110 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1111 				__func__, (unsigned long long)sh->sector,
1112 				bi->bi_opf, i);
1113 			atomic_inc(&sh->count);
1114 			if (sh != head_sh)
1115 				atomic_inc(&head_sh->count);
1116 			if (use_new_offset(conf, sh))
1117 				bi->bi_iter.bi_sector = (sh->sector
1118 						 + rdev->new_data_offset);
1119 			else
1120 				bi->bi_iter.bi_sector = (sh->sector
1121 						 + rdev->data_offset);
1122 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1123 				bi->bi_opf |= REQ_NOMERGE;
1124 
1125 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1126 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1127 
1128 			if (!op_is_write(op) &&
1129 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1130 				/*
1131 				 * issuing read for a page in journal, this
1132 				 * must be preparing for prexor in rmw; read
1133 				 * the data into orig_page
1134 				 */
1135 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1136 			else
1137 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1138 			bi->bi_vcnt = 1;
1139 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1140 			bi->bi_io_vec[0].bv_offset = 0;
1141 			bi->bi_iter.bi_size = STRIPE_SIZE;
1142 			/*
1143 			 * If this is discard request, set bi_vcnt 0. We don't
1144 			 * want to confuse SCSI because SCSI will replace payload
1145 			 */
1146 			if (op == REQ_OP_DISCARD)
1147 				bi->bi_vcnt = 0;
1148 			if (rrdev)
1149 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1150 
1151 			if (conf->mddev->gendisk)
1152 				trace_block_bio_remap(bi->bi_disk->queue,
1153 						      bi, disk_devt(conf->mddev->gendisk),
1154 						      sh->dev[i].sector);
1155 			if (should_defer && op_is_write(op))
1156 				bio_list_add(&pending_bios, bi);
1157 			else
1158 				generic_make_request(bi);
1159 		}
1160 		if (rrdev) {
1161 			if (s->syncing || s->expanding || s->expanded
1162 			    || s->replacing)
1163 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1164 
1165 			set_bit(STRIPE_IO_STARTED, &sh->state);
1166 
1167 			bio_set_dev(rbi, rrdev->bdev);
1168 			bio_set_op_attrs(rbi, op, op_flags);
1169 			BUG_ON(!op_is_write(op));
1170 			rbi->bi_end_io = raid5_end_write_request;
1171 			rbi->bi_private = sh;
1172 
1173 			pr_debug("%s: for %llu schedule op %d on "
1174 				 "replacement disc %d\n",
1175 				__func__, (unsigned long long)sh->sector,
1176 				rbi->bi_opf, i);
1177 			atomic_inc(&sh->count);
1178 			if (sh != head_sh)
1179 				atomic_inc(&head_sh->count);
1180 			if (use_new_offset(conf, sh))
1181 				rbi->bi_iter.bi_sector = (sh->sector
1182 						  + rrdev->new_data_offset);
1183 			else
1184 				rbi->bi_iter.bi_sector = (sh->sector
1185 						  + rrdev->data_offset);
1186 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1187 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1188 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1189 			rbi->bi_vcnt = 1;
1190 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1191 			rbi->bi_io_vec[0].bv_offset = 0;
1192 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1193 			/*
1194 			 * If this is discard request, set bi_vcnt 0. We don't
1195 			 * want to confuse SCSI because SCSI will replace payload
1196 			 */
1197 			if (op == REQ_OP_DISCARD)
1198 				rbi->bi_vcnt = 0;
1199 			if (conf->mddev->gendisk)
1200 				trace_block_bio_remap(rbi->bi_disk->queue,
1201 						      rbi, disk_devt(conf->mddev->gendisk),
1202 						      sh->dev[i].sector);
1203 			if (should_defer && op_is_write(op))
1204 				bio_list_add(&pending_bios, rbi);
1205 			else
1206 				generic_make_request(rbi);
1207 		}
1208 		if (!rdev && !rrdev) {
1209 			if (op_is_write(op))
1210 				set_bit(STRIPE_DEGRADED, &sh->state);
1211 			pr_debug("skip op %d on disc %d for sector %llu\n",
1212 				bi->bi_opf, i, (unsigned long long)sh->sector);
1213 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1214 			set_bit(STRIPE_HANDLE, &sh->state);
1215 		}
1216 
1217 		if (!head_sh->batch_head)
1218 			continue;
1219 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1220 				      batch_list);
1221 		if (sh != head_sh)
1222 			goto again;
1223 	}
1224 
1225 	if (should_defer && !bio_list_empty(&pending_bios))
1226 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1227 }
1228 
1229 static struct dma_async_tx_descriptor *
1230 async_copy_data(int frombio, struct bio *bio, struct page **page,
1231 	sector_t sector, struct dma_async_tx_descriptor *tx,
1232 	struct stripe_head *sh, int no_skipcopy)
1233 {
1234 	struct bio_vec bvl;
1235 	struct bvec_iter iter;
1236 	struct page *bio_page;
1237 	int page_offset;
1238 	struct async_submit_ctl submit;
1239 	enum async_tx_flags flags = 0;
1240 
1241 	if (bio->bi_iter.bi_sector >= sector)
1242 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1243 	else
1244 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1245 
1246 	if (frombio)
1247 		flags |= ASYNC_TX_FENCE;
1248 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1249 
1250 	bio_for_each_segment(bvl, bio, iter) {
1251 		int len = bvl.bv_len;
1252 		int clen;
1253 		int b_offset = 0;
1254 
1255 		if (page_offset < 0) {
1256 			b_offset = -page_offset;
1257 			page_offset += b_offset;
1258 			len -= b_offset;
1259 		}
1260 
1261 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1262 			clen = STRIPE_SIZE - page_offset;
1263 		else
1264 			clen = len;
1265 
1266 		if (clen > 0) {
1267 			b_offset += bvl.bv_offset;
1268 			bio_page = bvl.bv_page;
1269 			if (frombio) {
1270 				if (sh->raid_conf->skip_copy &&
1271 				    b_offset == 0 && page_offset == 0 &&
1272 				    clen == STRIPE_SIZE &&
1273 				    !no_skipcopy)
1274 					*page = bio_page;
1275 				else
1276 					tx = async_memcpy(*page, bio_page, page_offset,
1277 						  b_offset, clen, &submit);
1278 			} else
1279 				tx = async_memcpy(bio_page, *page, b_offset,
1280 						  page_offset, clen, &submit);
1281 		}
1282 		/* chain the operations */
1283 		submit.depend_tx = tx;
1284 
1285 		if (clen < len) /* hit end of page */
1286 			break;
1287 		page_offset +=  len;
1288 	}
1289 
1290 	return tx;
1291 }
1292 
1293 static void ops_complete_biofill(void *stripe_head_ref)
1294 {
1295 	struct stripe_head *sh = stripe_head_ref;
1296 	int i;
1297 
1298 	pr_debug("%s: stripe %llu\n", __func__,
1299 		(unsigned long long)sh->sector);
1300 
1301 	/* clear completed biofills */
1302 	for (i = sh->disks; i--; ) {
1303 		struct r5dev *dev = &sh->dev[i];
1304 
1305 		/* acknowledge completion of a biofill operation */
1306 		/* and check if we need to reply to a read request,
1307 		 * new R5_Wantfill requests are held off until
1308 		 * !STRIPE_BIOFILL_RUN
1309 		 */
1310 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1311 			struct bio *rbi, *rbi2;
1312 
1313 			BUG_ON(!dev->read);
1314 			rbi = dev->read;
1315 			dev->read = NULL;
1316 			while (rbi && rbi->bi_iter.bi_sector <
1317 				dev->sector + STRIPE_SECTORS) {
1318 				rbi2 = r5_next_bio(rbi, dev->sector);
1319 				bio_endio(rbi);
1320 				rbi = rbi2;
1321 			}
1322 		}
1323 	}
1324 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1325 
1326 	set_bit(STRIPE_HANDLE, &sh->state);
1327 	raid5_release_stripe(sh);
1328 }
1329 
1330 static void ops_run_biofill(struct stripe_head *sh)
1331 {
1332 	struct dma_async_tx_descriptor *tx = NULL;
1333 	struct async_submit_ctl submit;
1334 	int i;
1335 
1336 	BUG_ON(sh->batch_head);
1337 	pr_debug("%s: stripe %llu\n", __func__,
1338 		(unsigned long long)sh->sector);
1339 
1340 	for (i = sh->disks; i--; ) {
1341 		struct r5dev *dev = &sh->dev[i];
1342 		if (test_bit(R5_Wantfill, &dev->flags)) {
1343 			struct bio *rbi;
1344 			spin_lock_irq(&sh->stripe_lock);
1345 			dev->read = rbi = dev->toread;
1346 			dev->toread = NULL;
1347 			spin_unlock_irq(&sh->stripe_lock);
1348 			while (rbi && rbi->bi_iter.bi_sector <
1349 				dev->sector + STRIPE_SECTORS) {
1350 				tx = async_copy_data(0, rbi, &dev->page,
1351 						     dev->sector, tx, sh, 0);
1352 				rbi = r5_next_bio(rbi, dev->sector);
1353 			}
1354 		}
1355 	}
1356 
1357 	atomic_inc(&sh->count);
1358 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1359 	async_trigger_callback(&submit);
1360 }
1361 
1362 static void mark_target_uptodate(struct stripe_head *sh, int target)
1363 {
1364 	struct r5dev *tgt;
1365 
1366 	if (target < 0)
1367 		return;
1368 
1369 	tgt = &sh->dev[target];
1370 	set_bit(R5_UPTODATE, &tgt->flags);
1371 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1372 	clear_bit(R5_Wantcompute, &tgt->flags);
1373 }
1374 
1375 static void ops_complete_compute(void *stripe_head_ref)
1376 {
1377 	struct stripe_head *sh = stripe_head_ref;
1378 
1379 	pr_debug("%s: stripe %llu\n", __func__,
1380 		(unsigned long long)sh->sector);
1381 
1382 	/* mark the computed target(s) as uptodate */
1383 	mark_target_uptodate(sh, sh->ops.target);
1384 	mark_target_uptodate(sh, sh->ops.target2);
1385 
1386 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1387 	if (sh->check_state == check_state_compute_run)
1388 		sh->check_state = check_state_compute_result;
1389 	set_bit(STRIPE_HANDLE, &sh->state);
1390 	raid5_release_stripe(sh);
1391 }
1392 
1393 /* return a pointer to the address conversion region of the scribble buffer */
1394 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1395 				 struct raid5_percpu *percpu, int i)
1396 {
1397 	void *addr;
1398 
1399 	addr = flex_array_get(percpu->scribble, i);
1400 	return addr + sizeof(struct page *) * (sh->disks + 2);
1401 }
1402 
1403 /* return a pointer to the address conversion region of the scribble buffer */
1404 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1405 {
1406 	void *addr;
1407 
1408 	addr = flex_array_get(percpu->scribble, i);
1409 	return addr;
1410 }
1411 
1412 static struct dma_async_tx_descriptor *
1413 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1414 {
1415 	int disks = sh->disks;
1416 	struct page **xor_srcs = to_addr_page(percpu, 0);
1417 	int target = sh->ops.target;
1418 	struct r5dev *tgt = &sh->dev[target];
1419 	struct page *xor_dest = tgt->page;
1420 	int count = 0;
1421 	struct dma_async_tx_descriptor *tx;
1422 	struct async_submit_ctl submit;
1423 	int i;
1424 
1425 	BUG_ON(sh->batch_head);
1426 
1427 	pr_debug("%s: stripe %llu block: %d\n",
1428 		__func__, (unsigned long long)sh->sector, target);
1429 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1430 
1431 	for (i = disks; i--; )
1432 		if (i != target)
1433 			xor_srcs[count++] = sh->dev[i].page;
1434 
1435 	atomic_inc(&sh->count);
1436 
1437 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1438 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1439 	if (unlikely(count == 1))
1440 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1441 	else
1442 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1443 
1444 	return tx;
1445 }
1446 
1447 /* set_syndrome_sources - populate source buffers for gen_syndrome
1448  * @srcs - (struct page *) array of size sh->disks
1449  * @sh - stripe_head to parse
1450  *
1451  * Populates srcs in proper layout order for the stripe and returns the
1452  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1453  * destination buffer is recorded in srcs[count] and the Q destination
1454  * is recorded in srcs[count+1]].
1455  */
1456 static int set_syndrome_sources(struct page **srcs,
1457 				struct stripe_head *sh,
1458 				int srctype)
1459 {
1460 	int disks = sh->disks;
1461 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1462 	int d0_idx = raid6_d0(sh);
1463 	int count;
1464 	int i;
1465 
1466 	for (i = 0; i < disks; i++)
1467 		srcs[i] = NULL;
1468 
1469 	count = 0;
1470 	i = d0_idx;
1471 	do {
1472 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1473 		struct r5dev *dev = &sh->dev[i];
1474 
1475 		if (i == sh->qd_idx || i == sh->pd_idx ||
1476 		    (srctype == SYNDROME_SRC_ALL) ||
1477 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1478 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1479 		      test_bit(R5_InJournal, &dev->flags))) ||
1480 		    (srctype == SYNDROME_SRC_WRITTEN &&
1481 		     (dev->written ||
1482 		      test_bit(R5_InJournal, &dev->flags)))) {
1483 			if (test_bit(R5_InJournal, &dev->flags))
1484 				srcs[slot] = sh->dev[i].orig_page;
1485 			else
1486 				srcs[slot] = sh->dev[i].page;
1487 		}
1488 		i = raid6_next_disk(i, disks);
1489 	} while (i != d0_idx);
1490 
1491 	return syndrome_disks;
1492 }
1493 
1494 static struct dma_async_tx_descriptor *
1495 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1496 {
1497 	int disks = sh->disks;
1498 	struct page **blocks = to_addr_page(percpu, 0);
1499 	int target;
1500 	int qd_idx = sh->qd_idx;
1501 	struct dma_async_tx_descriptor *tx;
1502 	struct async_submit_ctl submit;
1503 	struct r5dev *tgt;
1504 	struct page *dest;
1505 	int i;
1506 	int count;
1507 
1508 	BUG_ON(sh->batch_head);
1509 	if (sh->ops.target < 0)
1510 		target = sh->ops.target2;
1511 	else if (sh->ops.target2 < 0)
1512 		target = sh->ops.target;
1513 	else
1514 		/* we should only have one valid target */
1515 		BUG();
1516 	BUG_ON(target < 0);
1517 	pr_debug("%s: stripe %llu block: %d\n",
1518 		__func__, (unsigned long long)sh->sector, target);
1519 
1520 	tgt = &sh->dev[target];
1521 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1522 	dest = tgt->page;
1523 
1524 	atomic_inc(&sh->count);
1525 
1526 	if (target == qd_idx) {
1527 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1528 		blocks[count] = NULL; /* regenerating p is not necessary */
1529 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1530 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1531 				  ops_complete_compute, sh,
1532 				  to_addr_conv(sh, percpu, 0));
1533 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1534 	} else {
1535 		/* Compute any data- or p-drive using XOR */
1536 		count = 0;
1537 		for (i = disks; i-- ; ) {
1538 			if (i == target || i == qd_idx)
1539 				continue;
1540 			blocks[count++] = sh->dev[i].page;
1541 		}
1542 
1543 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1544 				  NULL, ops_complete_compute, sh,
1545 				  to_addr_conv(sh, percpu, 0));
1546 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1547 	}
1548 
1549 	return tx;
1550 }
1551 
1552 static struct dma_async_tx_descriptor *
1553 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1554 {
1555 	int i, count, disks = sh->disks;
1556 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1557 	int d0_idx = raid6_d0(sh);
1558 	int faila = -1, failb = -1;
1559 	int target = sh->ops.target;
1560 	int target2 = sh->ops.target2;
1561 	struct r5dev *tgt = &sh->dev[target];
1562 	struct r5dev *tgt2 = &sh->dev[target2];
1563 	struct dma_async_tx_descriptor *tx;
1564 	struct page **blocks = to_addr_page(percpu, 0);
1565 	struct async_submit_ctl submit;
1566 
1567 	BUG_ON(sh->batch_head);
1568 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1569 		 __func__, (unsigned long long)sh->sector, target, target2);
1570 	BUG_ON(target < 0 || target2 < 0);
1571 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1572 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1573 
1574 	/* we need to open-code set_syndrome_sources to handle the
1575 	 * slot number conversion for 'faila' and 'failb'
1576 	 */
1577 	for (i = 0; i < disks ; i++)
1578 		blocks[i] = NULL;
1579 	count = 0;
1580 	i = d0_idx;
1581 	do {
1582 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1583 
1584 		blocks[slot] = sh->dev[i].page;
1585 
1586 		if (i == target)
1587 			faila = slot;
1588 		if (i == target2)
1589 			failb = slot;
1590 		i = raid6_next_disk(i, disks);
1591 	} while (i != d0_idx);
1592 
1593 	BUG_ON(faila == failb);
1594 	if (failb < faila)
1595 		swap(faila, failb);
1596 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1597 		 __func__, (unsigned long long)sh->sector, faila, failb);
1598 
1599 	atomic_inc(&sh->count);
1600 
1601 	if (failb == syndrome_disks+1) {
1602 		/* Q disk is one of the missing disks */
1603 		if (faila == syndrome_disks) {
1604 			/* Missing P+Q, just recompute */
1605 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1606 					  ops_complete_compute, sh,
1607 					  to_addr_conv(sh, percpu, 0));
1608 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1609 						  STRIPE_SIZE, &submit);
1610 		} else {
1611 			struct page *dest;
1612 			int data_target;
1613 			int qd_idx = sh->qd_idx;
1614 
1615 			/* Missing D+Q: recompute D from P, then recompute Q */
1616 			if (target == qd_idx)
1617 				data_target = target2;
1618 			else
1619 				data_target = target;
1620 
1621 			count = 0;
1622 			for (i = disks; i-- ; ) {
1623 				if (i == data_target || i == qd_idx)
1624 					continue;
1625 				blocks[count++] = sh->dev[i].page;
1626 			}
1627 			dest = sh->dev[data_target].page;
1628 			init_async_submit(&submit,
1629 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1630 					  NULL, NULL, NULL,
1631 					  to_addr_conv(sh, percpu, 0));
1632 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1633 				       &submit);
1634 
1635 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1636 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1637 					  ops_complete_compute, sh,
1638 					  to_addr_conv(sh, percpu, 0));
1639 			return async_gen_syndrome(blocks, 0, count+2,
1640 						  STRIPE_SIZE, &submit);
1641 		}
1642 	} else {
1643 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1644 				  ops_complete_compute, sh,
1645 				  to_addr_conv(sh, percpu, 0));
1646 		if (failb == syndrome_disks) {
1647 			/* We're missing D+P. */
1648 			return async_raid6_datap_recov(syndrome_disks+2,
1649 						       STRIPE_SIZE, faila,
1650 						       blocks, &submit);
1651 		} else {
1652 			/* We're missing D+D. */
1653 			return async_raid6_2data_recov(syndrome_disks+2,
1654 						       STRIPE_SIZE, faila, failb,
1655 						       blocks, &submit);
1656 		}
1657 	}
1658 }
1659 
1660 static void ops_complete_prexor(void *stripe_head_ref)
1661 {
1662 	struct stripe_head *sh = stripe_head_ref;
1663 
1664 	pr_debug("%s: stripe %llu\n", __func__,
1665 		(unsigned long long)sh->sector);
1666 
1667 	if (r5c_is_writeback(sh->raid_conf->log))
1668 		/*
1669 		 * raid5-cache write back uses orig_page during prexor.
1670 		 * After prexor, it is time to free orig_page
1671 		 */
1672 		r5c_release_extra_page(sh);
1673 }
1674 
1675 static struct dma_async_tx_descriptor *
1676 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1677 		struct dma_async_tx_descriptor *tx)
1678 {
1679 	int disks = sh->disks;
1680 	struct page **xor_srcs = to_addr_page(percpu, 0);
1681 	int count = 0, pd_idx = sh->pd_idx, i;
1682 	struct async_submit_ctl submit;
1683 
1684 	/* existing parity data subtracted */
1685 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1686 
1687 	BUG_ON(sh->batch_head);
1688 	pr_debug("%s: stripe %llu\n", __func__,
1689 		(unsigned long long)sh->sector);
1690 
1691 	for (i = disks; i--; ) {
1692 		struct r5dev *dev = &sh->dev[i];
1693 		/* Only process blocks that are known to be uptodate */
1694 		if (test_bit(R5_InJournal, &dev->flags))
1695 			xor_srcs[count++] = dev->orig_page;
1696 		else if (test_bit(R5_Wantdrain, &dev->flags))
1697 			xor_srcs[count++] = dev->page;
1698 	}
1699 
1700 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1701 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1702 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1703 
1704 	return tx;
1705 }
1706 
1707 static struct dma_async_tx_descriptor *
1708 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1709 		struct dma_async_tx_descriptor *tx)
1710 {
1711 	struct page **blocks = to_addr_page(percpu, 0);
1712 	int count;
1713 	struct async_submit_ctl submit;
1714 
1715 	pr_debug("%s: stripe %llu\n", __func__,
1716 		(unsigned long long)sh->sector);
1717 
1718 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1719 
1720 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1721 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1722 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1723 
1724 	return tx;
1725 }
1726 
1727 static struct dma_async_tx_descriptor *
1728 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1729 {
1730 	struct r5conf *conf = sh->raid_conf;
1731 	int disks = sh->disks;
1732 	int i;
1733 	struct stripe_head *head_sh = sh;
1734 
1735 	pr_debug("%s: stripe %llu\n", __func__,
1736 		(unsigned long long)sh->sector);
1737 
1738 	for (i = disks; i--; ) {
1739 		struct r5dev *dev;
1740 		struct bio *chosen;
1741 
1742 		sh = head_sh;
1743 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1744 			struct bio *wbi;
1745 
1746 again:
1747 			dev = &sh->dev[i];
1748 			/*
1749 			 * clear R5_InJournal, so when rewriting a page in
1750 			 * journal, it is not skipped by r5l_log_stripe()
1751 			 */
1752 			clear_bit(R5_InJournal, &dev->flags);
1753 			spin_lock_irq(&sh->stripe_lock);
1754 			chosen = dev->towrite;
1755 			dev->towrite = NULL;
1756 			sh->overwrite_disks = 0;
1757 			BUG_ON(dev->written);
1758 			wbi = dev->written = chosen;
1759 			spin_unlock_irq(&sh->stripe_lock);
1760 			WARN_ON(dev->page != dev->orig_page);
1761 
1762 			while (wbi && wbi->bi_iter.bi_sector <
1763 				dev->sector + STRIPE_SECTORS) {
1764 				if (wbi->bi_opf & REQ_FUA)
1765 					set_bit(R5_WantFUA, &dev->flags);
1766 				if (wbi->bi_opf & REQ_SYNC)
1767 					set_bit(R5_SyncIO, &dev->flags);
1768 				if (bio_op(wbi) == REQ_OP_DISCARD)
1769 					set_bit(R5_Discard, &dev->flags);
1770 				else {
1771 					tx = async_copy_data(1, wbi, &dev->page,
1772 							     dev->sector, tx, sh,
1773 							     r5c_is_writeback(conf->log));
1774 					if (dev->page != dev->orig_page &&
1775 					    !r5c_is_writeback(conf->log)) {
1776 						set_bit(R5_SkipCopy, &dev->flags);
1777 						clear_bit(R5_UPTODATE, &dev->flags);
1778 						clear_bit(R5_OVERWRITE, &dev->flags);
1779 					}
1780 				}
1781 				wbi = r5_next_bio(wbi, dev->sector);
1782 			}
1783 
1784 			if (head_sh->batch_head) {
1785 				sh = list_first_entry(&sh->batch_list,
1786 						      struct stripe_head,
1787 						      batch_list);
1788 				if (sh == head_sh)
1789 					continue;
1790 				goto again;
1791 			}
1792 		}
1793 	}
1794 
1795 	return tx;
1796 }
1797 
1798 static void ops_complete_reconstruct(void *stripe_head_ref)
1799 {
1800 	struct stripe_head *sh = stripe_head_ref;
1801 	int disks = sh->disks;
1802 	int pd_idx = sh->pd_idx;
1803 	int qd_idx = sh->qd_idx;
1804 	int i;
1805 	bool fua = false, sync = false, discard = false;
1806 
1807 	pr_debug("%s: stripe %llu\n", __func__,
1808 		(unsigned long long)sh->sector);
1809 
1810 	for (i = disks; i--; ) {
1811 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1812 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1813 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1814 	}
1815 
1816 	for (i = disks; i--; ) {
1817 		struct r5dev *dev = &sh->dev[i];
1818 
1819 		if (dev->written || i == pd_idx || i == qd_idx) {
1820 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1821 				set_bit(R5_UPTODATE, &dev->flags);
1822 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1823 					set_bit(R5_Expanded, &dev->flags);
1824 			}
1825 			if (fua)
1826 				set_bit(R5_WantFUA, &dev->flags);
1827 			if (sync)
1828 				set_bit(R5_SyncIO, &dev->flags);
1829 		}
1830 	}
1831 
1832 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1833 		sh->reconstruct_state = reconstruct_state_drain_result;
1834 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1835 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1836 	else {
1837 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1838 		sh->reconstruct_state = reconstruct_state_result;
1839 	}
1840 
1841 	set_bit(STRIPE_HANDLE, &sh->state);
1842 	raid5_release_stripe(sh);
1843 }
1844 
1845 static void
1846 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1847 		     struct dma_async_tx_descriptor *tx)
1848 {
1849 	int disks = sh->disks;
1850 	struct page **xor_srcs;
1851 	struct async_submit_ctl submit;
1852 	int count, pd_idx = sh->pd_idx, i;
1853 	struct page *xor_dest;
1854 	int prexor = 0;
1855 	unsigned long flags;
1856 	int j = 0;
1857 	struct stripe_head *head_sh = sh;
1858 	int last_stripe;
1859 
1860 	pr_debug("%s: stripe %llu\n", __func__,
1861 		(unsigned long long)sh->sector);
1862 
1863 	for (i = 0; i < sh->disks; i++) {
1864 		if (pd_idx == i)
1865 			continue;
1866 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1867 			break;
1868 	}
1869 	if (i >= sh->disks) {
1870 		atomic_inc(&sh->count);
1871 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1872 		ops_complete_reconstruct(sh);
1873 		return;
1874 	}
1875 again:
1876 	count = 0;
1877 	xor_srcs = to_addr_page(percpu, j);
1878 	/* check if prexor is active which means only process blocks
1879 	 * that are part of a read-modify-write (written)
1880 	 */
1881 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1882 		prexor = 1;
1883 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1884 		for (i = disks; i--; ) {
1885 			struct r5dev *dev = &sh->dev[i];
1886 			if (head_sh->dev[i].written ||
1887 			    test_bit(R5_InJournal, &head_sh->dev[i].flags))
1888 				xor_srcs[count++] = dev->page;
1889 		}
1890 	} else {
1891 		xor_dest = sh->dev[pd_idx].page;
1892 		for (i = disks; i--; ) {
1893 			struct r5dev *dev = &sh->dev[i];
1894 			if (i != pd_idx)
1895 				xor_srcs[count++] = dev->page;
1896 		}
1897 	}
1898 
1899 	/* 1/ if we prexor'd then the dest is reused as a source
1900 	 * 2/ if we did not prexor then we are redoing the parity
1901 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1902 	 * for the synchronous xor case
1903 	 */
1904 	last_stripe = !head_sh->batch_head ||
1905 		list_first_entry(&sh->batch_list,
1906 				 struct stripe_head, batch_list) == head_sh;
1907 	if (last_stripe) {
1908 		flags = ASYNC_TX_ACK |
1909 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1910 
1911 		atomic_inc(&head_sh->count);
1912 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1913 				  to_addr_conv(sh, percpu, j));
1914 	} else {
1915 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1916 		init_async_submit(&submit, flags, tx, NULL, NULL,
1917 				  to_addr_conv(sh, percpu, j));
1918 	}
1919 
1920 	if (unlikely(count == 1))
1921 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1922 	else
1923 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1924 	if (!last_stripe) {
1925 		j++;
1926 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1927 				      batch_list);
1928 		goto again;
1929 	}
1930 }
1931 
1932 static void
1933 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1934 		     struct dma_async_tx_descriptor *tx)
1935 {
1936 	struct async_submit_ctl submit;
1937 	struct page **blocks;
1938 	int count, i, j = 0;
1939 	struct stripe_head *head_sh = sh;
1940 	int last_stripe;
1941 	int synflags;
1942 	unsigned long txflags;
1943 
1944 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1945 
1946 	for (i = 0; i < sh->disks; i++) {
1947 		if (sh->pd_idx == i || sh->qd_idx == i)
1948 			continue;
1949 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1950 			break;
1951 	}
1952 	if (i >= sh->disks) {
1953 		atomic_inc(&sh->count);
1954 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1955 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1956 		ops_complete_reconstruct(sh);
1957 		return;
1958 	}
1959 
1960 again:
1961 	blocks = to_addr_page(percpu, j);
1962 
1963 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1964 		synflags = SYNDROME_SRC_WRITTEN;
1965 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1966 	} else {
1967 		synflags = SYNDROME_SRC_ALL;
1968 		txflags = ASYNC_TX_ACK;
1969 	}
1970 
1971 	count = set_syndrome_sources(blocks, sh, synflags);
1972 	last_stripe = !head_sh->batch_head ||
1973 		list_first_entry(&sh->batch_list,
1974 				 struct stripe_head, batch_list) == head_sh;
1975 
1976 	if (last_stripe) {
1977 		atomic_inc(&head_sh->count);
1978 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1979 				  head_sh, to_addr_conv(sh, percpu, j));
1980 	} else
1981 		init_async_submit(&submit, 0, tx, NULL, NULL,
1982 				  to_addr_conv(sh, percpu, j));
1983 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1984 	if (!last_stripe) {
1985 		j++;
1986 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1987 				      batch_list);
1988 		goto again;
1989 	}
1990 }
1991 
1992 static void ops_complete_check(void *stripe_head_ref)
1993 {
1994 	struct stripe_head *sh = stripe_head_ref;
1995 
1996 	pr_debug("%s: stripe %llu\n", __func__,
1997 		(unsigned long long)sh->sector);
1998 
1999 	sh->check_state = check_state_check_result;
2000 	set_bit(STRIPE_HANDLE, &sh->state);
2001 	raid5_release_stripe(sh);
2002 }
2003 
2004 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2005 {
2006 	int disks = sh->disks;
2007 	int pd_idx = sh->pd_idx;
2008 	int qd_idx = sh->qd_idx;
2009 	struct page *xor_dest;
2010 	struct page **xor_srcs = to_addr_page(percpu, 0);
2011 	struct dma_async_tx_descriptor *tx;
2012 	struct async_submit_ctl submit;
2013 	int count;
2014 	int i;
2015 
2016 	pr_debug("%s: stripe %llu\n", __func__,
2017 		(unsigned long long)sh->sector);
2018 
2019 	BUG_ON(sh->batch_head);
2020 	count = 0;
2021 	xor_dest = sh->dev[pd_idx].page;
2022 	xor_srcs[count++] = xor_dest;
2023 	for (i = disks; i--; ) {
2024 		if (i == pd_idx || i == qd_idx)
2025 			continue;
2026 		xor_srcs[count++] = sh->dev[i].page;
2027 	}
2028 
2029 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2030 			  to_addr_conv(sh, percpu, 0));
2031 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2032 			   &sh->ops.zero_sum_result, &submit);
2033 
2034 	atomic_inc(&sh->count);
2035 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2036 	tx = async_trigger_callback(&submit);
2037 }
2038 
2039 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2040 {
2041 	struct page **srcs = to_addr_page(percpu, 0);
2042 	struct async_submit_ctl submit;
2043 	int count;
2044 
2045 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2046 		(unsigned long long)sh->sector, checkp);
2047 
2048 	BUG_ON(sh->batch_head);
2049 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2050 	if (!checkp)
2051 		srcs[count] = NULL;
2052 
2053 	atomic_inc(&sh->count);
2054 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2055 			  sh, to_addr_conv(sh, percpu, 0));
2056 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2057 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2058 }
2059 
2060 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2061 {
2062 	int overlap_clear = 0, i, disks = sh->disks;
2063 	struct dma_async_tx_descriptor *tx = NULL;
2064 	struct r5conf *conf = sh->raid_conf;
2065 	int level = conf->level;
2066 	struct raid5_percpu *percpu;
2067 	unsigned long cpu;
2068 
2069 	cpu = get_cpu();
2070 	percpu = per_cpu_ptr(conf->percpu, cpu);
2071 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2072 		ops_run_biofill(sh);
2073 		overlap_clear++;
2074 	}
2075 
2076 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2077 		if (level < 6)
2078 			tx = ops_run_compute5(sh, percpu);
2079 		else {
2080 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2081 				tx = ops_run_compute6_1(sh, percpu);
2082 			else
2083 				tx = ops_run_compute6_2(sh, percpu);
2084 		}
2085 		/* terminate the chain if reconstruct is not set to be run */
2086 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2087 			async_tx_ack(tx);
2088 	}
2089 
2090 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2091 		if (level < 6)
2092 			tx = ops_run_prexor5(sh, percpu, tx);
2093 		else
2094 			tx = ops_run_prexor6(sh, percpu, tx);
2095 	}
2096 
2097 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2098 		tx = ops_run_partial_parity(sh, percpu, tx);
2099 
2100 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2101 		tx = ops_run_biodrain(sh, tx);
2102 		overlap_clear++;
2103 	}
2104 
2105 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2106 		if (level < 6)
2107 			ops_run_reconstruct5(sh, percpu, tx);
2108 		else
2109 			ops_run_reconstruct6(sh, percpu, tx);
2110 	}
2111 
2112 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2113 		if (sh->check_state == check_state_run)
2114 			ops_run_check_p(sh, percpu);
2115 		else if (sh->check_state == check_state_run_q)
2116 			ops_run_check_pq(sh, percpu, 0);
2117 		else if (sh->check_state == check_state_run_pq)
2118 			ops_run_check_pq(sh, percpu, 1);
2119 		else
2120 			BUG();
2121 	}
2122 
2123 	if (overlap_clear && !sh->batch_head)
2124 		for (i = disks; i--; ) {
2125 			struct r5dev *dev = &sh->dev[i];
2126 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2127 				wake_up(&sh->raid_conf->wait_for_overlap);
2128 		}
2129 	put_cpu();
2130 }
2131 
2132 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2133 {
2134 	if (sh->ppl_page)
2135 		__free_page(sh->ppl_page);
2136 	kmem_cache_free(sc, sh);
2137 }
2138 
2139 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2140 	int disks, struct r5conf *conf)
2141 {
2142 	struct stripe_head *sh;
2143 	int i;
2144 
2145 	sh = kmem_cache_zalloc(sc, gfp);
2146 	if (sh) {
2147 		spin_lock_init(&sh->stripe_lock);
2148 		spin_lock_init(&sh->batch_lock);
2149 		INIT_LIST_HEAD(&sh->batch_list);
2150 		INIT_LIST_HEAD(&sh->lru);
2151 		INIT_LIST_HEAD(&sh->r5c);
2152 		INIT_LIST_HEAD(&sh->log_list);
2153 		atomic_set(&sh->count, 1);
2154 		sh->raid_conf = conf;
2155 		sh->log_start = MaxSector;
2156 		for (i = 0; i < disks; i++) {
2157 			struct r5dev *dev = &sh->dev[i];
2158 
2159 			bio_init(&dev->req, &dev->vec, 1);
2160 			bio_init(&dev->rreq, &dev->rvec, 1);
2161 		}
2162 
2163 		if (raid5_has_ppl(conf)) {
2164 			sh->ppl_page = alloc_page(gfp);
2165 			if (!sh->ppl_page) {
2166 				free_stripe(sc, sh);
2167 				sh = NULL;
2168 			}
2169 		}
2170 	}
2171 	return sh;
2172 }
2173 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2174 {
2175 	struct stripe_head *sh;
2176 
2177 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2178 	if (!sh)
2179 		return 0;
2180 
2181 	if (grow_buffers(sh, gfp)) {
2182 		shrink_buffers(sh);
2183 		free_stripe(conf->slab_cache, sh);
2184 		return 0;
2185 	}
2186 	sh->hash_lock_index =
2187 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2188 	/* we just created an active stripe so... */
2189 	atomic_inc(&conf->active_stripes);
2190 
2191 	raid5_release_stripe(sh);
2192 	conf->max_nr_stripes++;
2193 	return 1;
2194 }
2195 
2196 static int grow_stripes(struct r5conf *conf, int num)
2197 {
2198 	struct kmem_cache *sc;
2199 	size_t namelen = sizeof(conf->cache_name[0]);
2200 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2201 
2202 	if (conf->mddev->gendisk)
2203 		snprintf(conf->cache_name[0], namelen,
2204 			"raid%d-%s", conf->level, mdname(conf->mddev));
2205 	else
2206 		snprintf(conf->cache_name[0], namelen,
2207 			"raid%d-%p", conf->level, conf->mddev);
2208 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2209 
2210 	conf->active_name = 0;
2211 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2212 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2213 			       0, 0, NULL);
2214 	if (!sc)
2215 		return 1;
2216 	conf->slab_cache = sc;
2217 	conf->pool_size = devs;
2218 	while (num--)
2219 		if (!grow_one_stripe(conf, GFP_KERNEL))
2220 			return 1;
2221 
2222 	return 0;
2223 }
2224 
2225 /**
2226  * scribble_len - return the required size of the scribble region
2227  * @num - total number of disks in the array
2228  *
2229  * The size must be enough to contain:
2230  * 1/ a struct page pointer for each device in the array +2
2231  * 2/ room to convert each entry in (1) to its corresponding dma
2232  *    (dma_map_page()) or page (page_address()) address.
2233  *
2234  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2235  * calculate over all devices (not just the data blocks), using zeros in place
2236  * of the P and Q blocks.
2237  */
2238 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2239 {
2240 	struct flex_array *ret;
2241 	size_t len;
2242 
2243 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2244 	ret = flex_array_alloc(len, cnt, flags);
2245 	if (!ret)
2246 		return NULL;
2247 	/* always prealloc all elements, so no locking is required */
2248 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2249 		flex_array_free(ret);
2250 		return NULL;
2251 	}
2252 	return ret;
2253 }
2254 
2255 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2256 {
2257 	unsigned long cpu;
2258 	int err = 0;
2259 
2260 	/*
2261 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2262 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2263 	 * should equal to new_disks and new_sectors
2264 	 */
2265 	if (conf->scribble_disks >= new_disks &&
2266 	    conf->scribble_sectors >= new_sectors)
2267 		return 0;
2268 	mddev_suspend(conf->mddev);
2269 	get_online_cpus();
2270 	for_each_present_cpu(cpu) {
2271 		struct raid5_percpu *percpu;
2272 		struct flex_array *scribble;
2273 
2274 		percpu = per_cpu_ptr(conf->percpu, cpu);
2275 		scribble = scribble_alloc(new_disks,
2276 					  new_sectors / STRIPE_SECTORS,
2277 					  GFP_NOIO);
2278 
2279 		if (scribble) {
2280 			flex_array_free(percpu->scribble);
2281 			percpu->scribble = scribble;
2282 		} else {
2283 			err = -ENOMEM;
2284 			break;
2285 		}
2286 	}
2287 	put_online_cpus();
2288 	mddev_resume(conf->mddev);
2289 	if (!err) {
2290 		conf->scribble_disks = new_disks;
2291 		conf->scribble_sectors = new_sectors;
2292 	}
2293 	return err;
2294 }
2295 
2296 static int resize_stripes(struct r5conf *conf, int newsize)
2297 {
2298 	/* Make all the stripes able to hold 'newsize' devices.
2299 	 * New slots in each stripe get 'page' set to a new page.
2300 	 *
2301 	 * This happens in stages:
2302 	 * 1/ create a new kmem_cache and allocate the required number of
2303 	 *    stripe_heads.
2304 	 * 2/ gather all the old stripe_heads and transfer the pages across
2305 	 *    to the new stripe_heads.  This will have the side effect of
2306 	 *    freezing the array as once all stripe_heads have been collected,
2307 	 *    no IO will be possible.  Old stripe heads are freed once their
2308 	 *    pages have been transferred over, and the old kmem_cache is
2309 	 *    freed when all stripes are done.
2310 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2311 	 *    we simple return a failure status - no need to clean anything up.
2312 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2313 	 *    If this fails, we don't bother trying the shrink the
2314 	 *    stripe_heads down again, we just leave them as they are.
2315 	 *    As each stripe_head is processed the new one is released into
2316 	 *    active service.
2317 	 *
2318 	 * Once step2 is started, we cannot afford to wait for a write,
2319 	 * so we use GFP_NOIO allocations.
2320 	 */
2321 	struct stripe_head *osh, *nsh;
2322 	LIST_HEAD(newstripes);
2323 	struct disk_info *ndisks;
2324 	int err = 0;
2325 	struct kmem_cache *sc;
2326 	int i;
2327 	int hash, cnt;
2328 
2329 	md_allow_write(conf->mddev);
2330 
2331 	/* Step 1 */
2332 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2333 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2334 			       0, 0, NULL);
2335 	if (!sc)
2336 		return -ENOMEM;
2337 
2338 	/* Need to ensure auto-resizing doesn't interfere */
2339 	mutex_lock(&conf->cache_size_mutex);
2340 
2341 	for (i = conf->max_nr_stripes; i; i--) {
2342 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2343 		if (!nsh)
2344 			break;
2345 
2346 		list_add(&nsh->lru, &newstripes);
2347 	}
2348 	if (i) {
2349 		/* didn't get enough, give up */
2350 		while (!list_empty(&newstripes)) {
2351 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2352 			list_del(&nsh->lru);
2353 			free_stripe(sc, nsh);
2354 		}
2355 		kmem_cache_destroy(sc);
2356 		mutex_unlock(&conf->cache_size_mutex);
2357 		return -ENOMEM;
2358 	}
2359 	/* Step 2 - Must use GFP_NOIO now.
2360 	 * OK, we have enough stripes, start collecting inactive
2361 	 * stripes and copying them over
2362 	 */
2363 	hash = 0;
2364 	cnt = 0;
2365 	list_for_each_entry(nsh, &newstripes, lru) {
2366 		lock_device_hash_lock(conf, hash);
2367 		wait_event_cmd(conf->wait_for_stripe,
2368 				    !list_empty(conf->inactive_list + hash),
2369 				    unlock_device_hash_lock(conf, hash),
2370 				    lock_device_hash_lock(conf, hash));
2371 		osh = get_free_stripe(conf, hash);
2372 		unlock_device_hash_lock(conf, hash);
2373 
2374 		for(i=0; i<conf->pool_size; i++) {
2375 			nsh->dev[i].page = osh->dev[i].page;
2376 			nsh->dev[i].orig_page = osh->dev[i].page;
2377 		}
2378 		nsh->hash_lock_index = hash;
2379 		free_stripe(conf->slab_cache, osh);
2380 		cnt++;
2381 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2382 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2383 			hash++;
2384 			cnt = 0;
2385 		}
2386 	}
2387 	kmem_cache_destroy(conf->slab_cache);
2388 
2389 	/* Step 3.
2390 	 * At this point, we are holding all the stripes so the array
2391 	 * is completely stalled, so now is a good time to resize
2392 	 * conf->disks and the scribble region
2393 	 */
2394 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2395 	if (ndisks) {
2396 		for (i = 0; i < conf->pool_size; i++)
2397 			ndisks[i] = conf->disks[i];
2398 
2399 		for (i = conf->pool_size; i < newsize; i++) {
2400 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2401 			if (!ndisks[i].extra_page)
2402 				err = -ENOMEM;
2403 		}
2404 
2405 		if (err) {
2406 			for (i = conf->pool_size; i < newsize; i++)
2407 				if (ndisks[i].extra_page)
2408 					put_page(ndisks[i].extra_page);
2409 			kfree(ndisks);
2410 		} else {
2411 			kfree(conf->disks);
2412 			conf->disks = ndisks;
2413 		}
2414 	} else
2415 		err = -ENOMEM;
2416 
2417 	mutex_unlock(&conf->cache_size_mutex);
2418 
2419 	conf->slab_cache = sc;
2420 	conf->active_name = 1-conf->active_name;
2421 
2422 	/* Step 4, return new stripes to service */
2423 	while(!list_empty(&newstripes)) {
2424 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2425 		list_del_init(&nsh->lru);
2426 
2427 		for (i=conf->raid_disks; i < newsize; i++)
2428 			if (nsh->dev[i].page == NULL) {
2429 				struct page *p = alloc_page(GFP_NOIO);
2430 				nsh->dev[i].page = p;
2431 				nsh->dev[i].orig_page = p;
2432 				if (!p)
2433 					err = -ENOMEM;
2434 			}
2435 		raid5_release_stripe(nsh);
2436 	}
2437 	/* critical section pass, GFP_NOIO no longer needed */
2438 
2439 	if (!err)
2440 		conf->pool_size = newsize;
2441 	return err;
2442 }
2443 
2444 static int drop_one_stripe(struct r5conf *conf)
2445 {
2446 	struct stripe_head *sh;
2447 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2448 
2449 	spin_lock_irq(conf->hash_locks + hash);
2450 	sh = get_free_stripe(conf, hash);
2451 	spin_unlock_irq(conf->hash_locks + hash);
2452 	if (!sh)
2453 		return 0;
2454 	BUG_ON(atomic_read(&sh->count));
2455 	shrink_buffers(sh);
2456 	free_stripe(conf->slab_cache, sh);
2457 	atomic_dec(&conf->active_stripes);
2458 	conf->max_nr_stripes--;
2459 	return 1;
2460 }
2461 
2462 static void shrink_stripes(struct r5conf *conf)
2463 {
2464 	while (conf->max_nr_stripes &&
2465 	       drop_one_stripe(conf))
2466 		;
2467 
2468 	kmem_cache_destroy(conf->slab_cache);
2469 	conf->slab_cache = NULL;
2470 }
2471 
2472 static void raid5_end_read_request(struct bio * bi)
2473 {
2474 	struct stripe_head *sh = bi->bi_private;
2475 	struct r5conf *conf = sh->raid_conf;
2476 	int disks = sh->disks, i;
2477 	char b[BDEVNAME_SIZE];
2478 	struct md_rdev *rdev = NULL;
2479 	sector_t s;
2480 
2481 	for (i=0 ; i<disks; i++)
2482 		if (bi == &sh->dev[i].req)
2483 			break;
2484 
2485 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2486 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2487 		bi->bi_status);
2488 	if (i == disks) {
2489 		bio_reset(bi);
2490 		BUG();
2491 		return;
2492 	}
2493 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2494 		/* If replacement finished while this request was outstanding,
2495 		 * 'replacement' might be NULL already.
2496 		 * In that case it moved down to 'rdev'.
2497 		 * rdev is not removed until all requests are finished.
2498 		 */
2499 		rdev = conf->disks[i].replacement;
2500 	if (!rdev)
2501 		rdev = conf->disks[i].rdev;
2502 
2503 	if (use_new_offset(conf, sh))
2504 		s = sh->sector + rdev->new_data_offset;
2505 	else
2506 		s = sh->sector + rdev->data_offset;
2507 	if (!bi->bi_status) {
2508 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2509 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2510 			/* Note that this cannot happen on a
2511 			 * replacement device.  We just fail those on
2512 			 * any error
2513 			 */
2514 			pr_info_ratelimited(
2515 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2516 				mdname(conf->mddev), STRIPE_SECTORS,
2517 				(unsigned long long)s,
2518 				bdevname(rdev->bdev, b));
2519 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2520 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2521 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2522 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2523 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2524 
2525 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2526 			/*
2527 			 * end read for a page in journal, this
2528 			 * must be preparing for prexor in rmw
2529 			 */
2530 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2531 
2532 		if (atomic_read(&rdev->read_errors))
2533 			atomic_set(&rdev->read_errors, 0);
2534 	} else {
2535 		const char *bdn = bdevname(rdev->bdev, b);
2536 		int retry = 0;
2537 		int set_bad = 0;
2538 
2539 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2540 		atomic_inc(&rdev->read_errors);
2541 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2542 			pr_warn_ratelimited(
2543 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2544 				mdname(conf->mddev),
2545 				(unsigned long long)s,
2546 				bdn);
2547 		else if (conf->mddev->degraded >= conf->max_degraded) {
2548 			set_bad = 1;
2549 			pr_warn_ratelimited(
2550 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2551 				mdname(conf->mddev),
2552 				(unsigned long long)s,
2553 				bdn);
2554 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2555 			/* Oh, no!!! */
2556 			set_bad = 1;
2557 			pr_warn_ratelimited(
2558 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2559 				mdname(conf->mddev),
2560 				(unsigned long long)s,
2561 				bdn);
2562 		} else if (atomic_read(&rdev->read_errors)
2563 			 > conf->max_nr_stripes)
2564 			pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2565 			       mdname(conf->mddev), bdn);
2566 		else
2567 			retry = 1;
2568 		if (set_bad && test_bit(In_sync, &rdev->flags)
2569 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2570 			retry = 1;
2571 		if (retry)
2572 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2573 				set_bit(R5_ReadError, &sh->dev[i].flags);
2574 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2575 			} else
2576 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2577 		else {
2578 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2579 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2580 			if (!(set_bad
2581 			      && test_bit(In_sync, &rdev->flags)
2582 			      && rdev_set_badblocks(
2583 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2584 				md_error(conf->mddev, rdev);
2585 		}
2586 	}
2587 	rdev_dec_pending(rdev, conf->mddev);
2588 	bio_reset(bi);
2589 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2590 	set_bit(STRIPE_HANDLE, &sh->state);
2591 	raid5_release_stripe(sh);
2592 }
2593 
2594 static void raid5_end_write_request(struct bio *bi)
2595 {
2596 	struct stripe_head *sh = bi->bi_private;
2597 	struct r5conf *conf = sh->raid_conf;
2598 	int disks = sh->disks, i;
2599 	struct md_rdev *uninitialized_var(rdev);
2600 	sector_t first_bad;
2601 	int bad_sectors;
2602 	int replacement = 0;
2603 
2604 	for (i = 0 ; i < disks; i++) {
2605 		if (bi == &sh->dev[i].req) {
2606 			rdev = conf->disks[i].rdev;
2607 			break;
2608 		}
2609 		if (bi == &sh->dev[i].rreq) {
2610 			rdev = conf->disks[i].replacement;
2611 			if (rdev)
2612 				replacement = 1;
2613 			else
2614 				/* rdev was removed and 'replacement'
2615 				 * replaced it.  rdev is not removed
2616 				 * until all requests are finished.
2617 				 */
2618 				rdev = conf->disks[i].rdev;
2619 			break;
2620 		}
2621 	}
2622 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2623 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2624 		bi->bi_status);
2625 	if (i == disks) {
2626 		bio_reset(bi);
2627 		BUG();
2628 		return;
2629 	}
2630 
2631 	if (replacement) {
2632 		if (bi->bi_status)
2633 			md_error(conf->mddev, rdev);
2634 		else if (is_badblock(rdev, sh->sector,
2635 				     STRIPE_SECTORS,
2636 				     &first_bad, &bad_sectors))
2637 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2638 	} else {
2639 		if (bi->bi_status) {
2640 			set_bit(STRIPE_DEGRADED, &sh->state);
2641 			set_bit(WriteErrorSeen, &rdev->flags);
2642 			set_bit(R5_WriteError, &sh->dev[i].flags);
2643 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2644 				set_bit(MD_RECOVERY_NEEDED,
2645 					&rdev->mddev->recovery);
2646 		} else if (is_badblock(rdev, sh->sector,
2647 				       STRIPE_SECTORS,
2648 				       &first_bad, &bad_sectors)) {
2649 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2650 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2651 				/* That was a successful write so make
2652 				 * sure it looks like we already did
2653 				 * a re-write.
2654 				 */
2655 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2656 		}
2657 	}
2658 	rdev_dec_pending(rdev, conf->mddev);
2659 
2660 	if (sh->batch_head && bi->bi_status && !replacement)
2661 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2662 
2663 	bio_reset(bi);
2664 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2665 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2666 	set_bit(STRIPE_HANDLE, &sh->state);
2667 	raid5_release_stripe(sh);
2668 
2669 	if (sh->batch_head && sh != sh->batch_head)
2670 		raid5_release_stripe(sh->batch_head);
2671 }
2672 
2673 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2674 {
2675 	char b[BDEVNAME_SIZE];
2676 	struct r5conf *conf = mddev->private;
2677 	unsigned long flags;
2678 	pr_debug("raid456: error called\n");
2679 
2680 	spin_lock_irqsave(&conf->device_lock, flags);
2681 	set_bit(Faulty, &rdev->flags);
2682 	clear_bit(In_sync, &rdev->flags);
2683 	mddev->degraded = raid5_calc_degraded(conf);
2684 	spin_unlock_irqrestore(&conf->device_lock, flags);
2685 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2686 
2687 	set_bit(Blocked, &rdev->flags);
2688 	set_mask_bits(&mddev->sb_flags, 0,
2689 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2690 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2691 		"md/raid:%s: Operation continuing on %d devices.\n",
2692 		mdname(mddev),
2693 		bdevname(rdev->bdev, b),
2694 		mdname(mddev),
2695 		conf->raid_disks - mddev->degraded);
2696 	r5c_update_on_rdev_error(mddev, rdev);
2697 }
2698 
2699 /*
2700  * Input: a 'big' sector number,
2701  * Output: index of the data and parity disk, and the sector # in them.
2702  */
2703 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2704 			      int previous, int *dd_idx,
2705 			      struct stripe_head *sh)
2706 {
2707 	sector_t stripe, stripe2;
2708 	sector_t chunk_number;
2709 	unsigned int chunk_offset;
2710 	int pd_idx, qd_idx;
2711 	int ddf_layout = 0;
2712 	sector_t new_sector;
2713 	int algorithm = previous ? conf->prev_algo
2714 				 : conf->algorithm;
2715 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2716 					 : conf->chunk_sectors;
2717 	int raid_disks = previous ? conf->previous_raid_disks
2718 				  : conf->raid_disks;
2719 	int data_disks = raid_disks - conf->max_degraded;
2720 
2721 	/* First compute the information on this sector */
2722 
2723 	/*
2724 	 * Compute the chunk number and the sector offset inside the chunk
2725 	 */
2726 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2727 	chunk_number = r_sector;
2728 
2729 	/*
2730 	 * Compute the stripe number
2731 	 */
2732 	stripe = chunk_number;
2733 	*dd_idx = sector_div(stripe, data_disks);
2734 	stripe2 = stripe;
2735 	/*
2736 	 * Select the parity disk based on the user selected algorithm.
2737 	 */
2738 	pd_idx = qd_idx = -1;
2739 	switch(conf->level) {
2740 	case 4:
2741 		pd_idx = data_disks;
2742 		break;
2743 	case 5:
2744 		switch (algorithm) {
2745 		case ALGORITHM_LEFT_ASYMMETRIC:
2746 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2747 			if (*dd_idx >= pd_idx)
2748 				(*dd_idx)++;
2749 			break;
2750 		case ALGORITHM_RIGHT_ASYMMETRIC:
2751 			pd_idx = sector_div(stripe2, raid_disks);
2752 			if (*dd_idx >= pd_idx)
2753 				(*dd_idx)++;
2754 			break;
2755 		case ALGORITHM_LEFT_SYMMETRIC:
2756 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2757 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2758 			break;
2759 		case ALGORITHM_RIGHT_SYMMETRIC:
2760 			pd_idx = sector_div(stripe2, raid_disks);
2761 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2762 			break;
2763 		case ALGORITHM_PARITY_0:
2764 			pd_idx = 0;
2765 			(*dd_idx)++;
2766 			break;
2767 		case ALGORITHM_PARITY_N:
2768 			pd_idx = data_disks;
2769 			break;
2770 		default:
2771 			BUG();
2772 		}
2773 		break;
2774 	case 6:
2775 
2776 		switch (algorithm) {
2777 		case ALGORITHM_LEFT_ASYMMETRIC:
2778 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2779 			qd_idx = pd_idx + 1;
2780 			if (pd_idx == raid_disks-1) {
2781 				(*dd_idx)++;	/* Q D D D P */
2782 				qd_idx = 0;
2783 			} else if (*dd_idx >= pd_idx)
2784 				(*dd_idx) += 2; /* D D P Q D */
2785 			break;
2786 		case ALGORITHM_RIGHT_ASYMMETRIC:
2787 			pd_idx = sector_div(stripe2, raid_disks);
2788 			qd_idx = pd_idx + 1;
2789 			if (pd_idx == raid_disks-1) {
2790 				(*dd_idx)++;	/* Q D D D P */
2791 				qd_idx = 0;
2792 			} else if (*dd_idx >= pd_idx)
2793 				(*dd_idx) += 2; /* D D P Q D */
2794 			break;
2795 		case ALGORITHM_LEFT_SYMMETRIC:
2796 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2797 			qd_idx = (pd_idx + 1) % raid_disks;
2798 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2799 			break;
2800 		case ALGORITHM_RIGHT_SYMMETRIC:
2801 			pd_idx = sector_div(stripe2, raid_disks);
2802 			qd_idx = (pd_idx + 1) % raid_disks;
2803 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2804 			break;
2805 
2806 		case ALGORITHM_PARITY_0:
2807 			pd_idx = 0;
2808 			qd_idx = 1;
2809 			(*dd_idx) += 2;
2810 			break;
2811 		case ALGORITHM_PARITY_N:
2812 			pd_idx = data_disks;
2813 			qd_idx = data_disks + 1;
2814 			break;
2815 
2816 		case ALGORITHM_ROTATING_ZERO_RESTART:
2817 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2818 			 * of blocks for computing Q is different.
2819 			 */
2820 			pd_idx = sector_div(stripe2, raid_disks);
2821 			qd_idx = pd_idx + 1;
2822 			if (pd_idx == raid_disks-1) {
2823 				(*dd_idx)++;	/* Q D D D P */
2824 				qd_idx = 0;
2825 			} else if (*dd_idx >= pd_idx)
2826 				(*dd_idx) += 2; /* D D P Q D */
2827 			ddf_layout = 1;
2828 			break;
2829 
2830 		case ALGORITHM_ROTATING_N_RESTART:
2831 			/* Same a left_asymmetric, by first stripe is
2832 			 * D D D P Q  rather than
2833 			 * Q D D D P
2834 			 */
2835 			stripe2 += 1;
2836 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2837 			qd_idx = pd_idx + 1;
2838 			if (pd_idx == raid_disks-1) {
2839 				(*dd_idx)++;	/* Q D D D P */
2840 				qd_idx = 0;
2841 			} else if (*dd_idx >= pd_idx)
2842 				(*dd_idx) += 2; /* D D P Q D */
2843 			ddf_layout = 1;
2844 			break;
2845 
2846 		case ALGORITHM_ROTATING_N_CONTINUE:
2847 			/* Same as left_symmetric but Q is before P */
2848 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2849 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2850 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2851 			ddf_layout = 1;
2852 			break;
2853 
2854 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2855 			/* RAID5 left_asymmetric, with Q on last device */
2856 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2857 			if (*dd_idx >= pd_idx)
2858 				(*dd_idx)++;
2859 			qd_idx = raid_disks - 1;
2860 			break;
2861 
2862 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2863 			pd_idx = sector_div(stripe2, raid_disks-1);
2864 			if (*dd_idx >= pd_idx)
2865 				(*dd_idx)++;
2866 			qd_idx = raid_disks - 1;
2867 			break;
2868 
2869 		case ALGORITHM_LEFT_SYMMETRIC_6:
2870 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2871 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2872 			qd_idx = raid_disks - 1;
2873 			break;
2874 
2875 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2876 			pd_idx = sector_div(stripe2, raid_disks-1);
2877 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2878 			qd_idx = raid_disks - 1;
2879 			break;
2880 
2881 		case ALGORITHM_PARITY_0_6:
2882 			pd_idx = 0;
2883 			(*dd_idx)++;
2884 			qd_idx = raid_disks - 1;
2885 			break;
2886 
2887 		default:
2888 			BUG();
2889 		}
2890 		break;
2891 	}
2892 
2893 	if (sh) {
2894 		sh->pd_idx = pd_idx;
2895 		sh->qd_idx = qd_idx;
2896 		sh->ddf_layout = ddf_layout;
2897 	}
2898 	/*
2899 	 * Finally, compute the new sector number
2900 	 */
2901 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2902 	return new_sector;
2903 }
2904 
2905 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2906 {
2907 	struct r5conf *conf = sh->raid_conf;
2908 	int raid_disks = sh->disks;
2909 	int data_disks = raid_disks - conf->max_degraded;
2910 	sector_t new_sector = sh->sector, check;
2911 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2912 					 : conf->chunk_sectors;
2913 	int algorithm = previous ? conf->prev_algo
2914 				 : conf->algorithm;
2915 	sector_t stripe;
2916 	int chunk_offset;
2917 	sector_t chunk_number;
2918 	int dummy1, dd_idx = i;
2919 	sector_t r_sector;
2920 	struct stripe_head sh2;
2921 
2922 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2923 	stripe = new_sector;
2924 
2925 	if (i == sh->pd_idx)
2926 		return 0;
2927 	switch(conf->level) {
2928 	case 4: break;
2929 	case 5:
2930 		switch (algorithm) {
2931 		case ALGORITHM_LEFT_ASYMMETRIC:
2932 		case ALGORITHM_RIGHT_ASYMMETRIC:
2933 			if (i > sh->pd_idx)
2934 				i--;
2935 			break;
2936 		case ALGORITHM_LEFT_SYMMETRIC:
2937 		case ALGORITHM_RIGHT_SYMMETRIC:
2938 			if (i < sh->pd_idx)
2939 				i += raid_disks;
2940 			i -= (sh->pd_idx + 1);
2941 			break;
2942 		case ALGORITHM_PARITY_0:
2943 			i -= 1;
2944 			break;
2945 		case ALGORITHM_PARITY_N:
2946 			break;
2947 		default:
2948 			BUG();
2949 		}
2950 		break;
2951 	case 6:
2952 		if (i == sh->qd_idx)
2953 			return 0; /* It is the Q disk */
2954 		switch (algorithm) {
2955 		case ALGORITHM_LEFT_ASYMMETRIC:
2956 		case ALGORITHM_RIGHT_ASYMMETRIC:
2957 		case ALGORITHM_ROTATING_ZERO_RESTART:
2958 		case ALGORITHM_ROTATING_N_RESTART:
2959 			if (sh->pd_idx == raid_disks-1)
2960 				i--;	/* Q D D D P */
2961 			else if (i > sh->pd_idx)
2962 				i -= 2; /* D D P Q D */
2963 			break;
2964 		case ALGORITHM_LEFT_SYMMETRIC:
2965 		case ALGORITHM_RIGHT_SYMMETRIC:
2966 			if (sh->pd_idx == raid_disks-1)
2967 				i--; /* Q D D D P */
2968 			else {
2969 				/* D D P Q D */
2970 				if (i < sh->pd_idx)
2971 					i += raid_disks;
2972 				i -= (sh->pd_idx + 2);
2973 			}
2974 			break;
2975 		case ALGORITHM_PARITY_0:
2976 			i -= 2;
2977 			break;
2978 		case ALGORITHM_PARITY_N:
2979 			break;
2980 		case ALGORITHM_ROTATING_N_CONTINUE:
2981 			/* Like left_symmetric, but P is before Q */
2982 			if (sh->pd_idx == 0)
2983 				i--;	/* P D D D Q */
2984 			else {
2985 				/* D D Q P D */
2986 				if (i < sh->pd_idx)
2987 					i += raid_disks;
2988 				i -= (sh->pd_idx + 1);
2989 			}
2990 			break;
2991 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2992 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2993 			if (i > sh->pd_idx)
2994 				i--;
2995 			break;
2996 		case ALGORITHM_LEFT_SYMMETRIC_6:
2997 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2998 			if (i < sh->pd_idx)
2999 				i += data_disks + 1;
3000 			i -= (sh->pd_idx + 1);
3001 			break;
3002 		case ALGORITHM_PARITY_0_6:
3003 			i -= 1;
3004 			break;
3005 		default:
3006 			BUG();
3007 		}
3008 		break;
3009 	}
3010 
3011 	chunk_number = stripe * data_disks + i;
3012 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3013 
3014 	check = raid5_compute_sector(conf, r_sector,
3015 				     previous, &dummy1, &sh2);
3016 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3017 		|| sh2.qd_idx != sh->qd_idx) {
3018 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3019 			mdname(conf->mddev));
3020 		return 0;
3021 	}
3022 	return r_sector;
3023 }
3024 
3025 /*
3026  * There are cases where we want handle_stripe_dirtying() and
3027  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3028  *
3029  * This function checks whether we want to delay the towrite. Specifically,
3030  * we delay the towrite when:
3031  *
3032  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3033  *      stripe has data in journal (for other devices).
3034  *
3035  *      In this case, when reading data for the non-overwrite dev, it is
3036  *      necessary to handle complex rmw of write back cache (prexor with
3037  *      orig_page, and xor with page). To keep read path simple, we would
3038  *      like to flush data in journal to RAID disks first, so complex rmw
3039  *      is handled in the write patch (handle_stripe_dirtying).
3040  *
3041  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3042  *
3043  *      It is important to be able to flush all stripes in raid5-cache.
3044  *      Therefore, we need reserve some space on the journal device for
3045  *      these flushes. If flush operation includes pending writes to the
3046  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3047  *      for the flush out. If we exclude these pending writes from flush
3048  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3049  *      Therefore, excluding pending writes in these cases enables more
3050  *      efficient use of the journal device.
3051  *
3052  *      Note: To make sure the stripe makes progress, we only delay
3053  *      towrite for stripes with data already in journal (injournal > 0).
3054  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3055  *      no_space_stripes list.
3056  *
3057  *   3. during journal failure
3058  *      In journal failure, we try to flush all cached data to raid disks
3059  *      based on data in stripe cache. The array is read-only to upper
3060  *      layers, so we would skip all pending writes.
3061  *
3062  */
3063 static inline bool delay_towrite(struct r5conf *conf,
3064 				 struct r5dev *dev,
3065 				 struct stripe_head_state *s)
3066 {
3067 	/* case 1 above */
3068 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3069 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3070 		return true;
3071 	/* case 2 above */
3072 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3073 	    s->injournal > 0)
3074 		return true;
3075 	/* case 3 above */
3076 	if (s->log_failed && s->injournal)
3077 		return true;
3078 	return false;
3079 }
3080 
3081 static void
3082 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3083 			 int rcw, int expand)
3084 {
3085 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3086 	struct r5conf *conf = sh->raid_conf;
3087 	int level = conf->level;
3088 
3089 	if (rcw) {
3090 		/*
3091 		 * In some cases, handle_stripe_dirtying initially decided to
3092 		 * run rmw and allocates extra page for prexor. However, rcw is
3093 		 * cheaper later on. We need to free the extra page now,
3094 		 * because we won't be able to do that in ops_complete_prexor().
3095 		 */
3096 		r5c_release_extra_page(sh);
3097 
3098 		for (i = disks; i--; ) {
3099 			struct r5dev *dev = &sh->dev[i];
3100 
3101 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3102 				set_bit(R5_LOCKED, &dev->flags);
3103 				set_bit(R5_Wantdrain, &dev->flags);
3104 				if (!expand)
3105 					clear_bit(R5_UPTODATE, &dev->flags);
3106 				s->locked++;
3107 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3108 				set_bit(R5_LOCKED, &dev->flags);
3109 				s->locked++;
3110 			}
3111 		}
3112 		/* if we are not expanding this is a proper write request, and
3113 		 * there will be bios with new data to be drained into the
3114 		 * stripe cache
3115 		 */
3116 		if (!expand) {
3117 			if (!s->locked)
3118 				/* False alarm, nothing to do */
3119 				return;
3120 			sh->reconstruct_state = reconstruct_state_drain_run;
3121 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3122 		} else
3123 			sh->reconstruct_state = reconstruct_state_run;
3124 
3125 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3126 
3127 		if (s->locked + conf->max_degraded == disks)
3128 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3129 				atomic_inc(&conf->pending_full_writes);
3130 	} else {
3131 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3132 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3133 		BUG_ON(level == 6 &&
3134 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3135 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3136 
3137 		for (i = disks; i--; ) {
3138 			struct r5dev *dev = &sh->dev[i];
3139 			if (i == pd_idx || i == qd_idx)
3140 				continue;
3141 
3142 			if (dev->towrite &&
3143 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3144 			     test_bit(R5_Wantcompute, &dev->flags))) {
3145 				set_bit(R5_Wantdrain, &dev->flags);
3146 				set_bit(R5_LOCKED, &dev->flags);
3147 				clear_bit(R5_UPTODATE, &dev->flags);
3148 				s->locked++;
3149 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3150 				set_bit(R5_LOCKED, &dev->flags);
3151 				s->locked++;
3152 			}
3153 		}
3154 		if (!s->locked)
3155 			/* False alarm - nothing to do */
3156 			return;
3157 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3158 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3159 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3160 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3161 	}
3162 
3163 	/* keep the parity disk(s) locked while asynchronous operations
3164 	 * are in flight
3165 	 */
3166 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3167 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3168 	s->locked++;
3169 
3170 	if (level == 6) {
3171 		int qd_idx = sh->qd_idx;
3172 		struct r5dev *dev = &sh->dev[qd_idx];
3173 
3174 		set_bit(R5_LOCKED, &dev->flags);
3175 		clear_bit(R5_UPTODATE, &dev->flags);
3176 		s->locked++;
3177 	}
3178 
3179 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3180 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3181 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3182 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3183 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3184 
3185 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3186 		__func__, (unsigned long long)sh->sector,
3187 		s->locked, s->ops_request);
3188 }
3189 
3190 /*
3191  * Each stripe/dev can have one or more bion attached.
3192  * toread/towrite point to the first in a chain.
3193  * The bi_next chain must be in order.
3194  */
3195 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3196 			  int forwrite, int previous)
3197 {
3198 	struct bio **bip;
3199 	struct r5conf *conf = sh->raid_conf;
3200 	int firstwrite=0;
3201 
3202 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3203 		(unsigned long long)bi->bi_iter.bi_sector,
3204 		(unsigned long long)sh->sector);
3205 
3206 	spin_lock_irq(&sh->stripe_lock);
3207 	/* Don't allow new IO added to stripes in batch list */
3208 	if (sh->batch_head)
3209 		goto overlap;
3210 	if (forwrite) {
3211 		bip = &sh->dev[dd_idx].towrite;
3212 		if (*bip == NULL)
3213 			firstwrite = 1;
3214 	} else
3215 		bip = &sh->dev[dd_idx].toread;
3216 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3217 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3218 			goto overlap;
3219 		bip = & (*bip)->bi_next;
3220 	}
3221 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3222 		goto overlap;
3223 
3224 	if (forwrite && raid5_has_ppl(conf)) {
3225 		/*
3226 		 * With PPL only writes to consecutive data chunks within a
3227 		 * stripe are allowed because for a single stripe_head we can
3228 		 * only have one PPL entry at a time, which describes one data
3229 		 * range. Not really an overlap, but wait_for_overlap can be
3230 		 * used to handle this.
3231 		 */
3232 		sector_t sector;
3233 		sector_t first = 0;
3234 		sector_t last = 0;
3235 		int count = 0;
3236 		int i;
3237 
3238 		for (i = 0; i < sh->disks; i++) {
3239 			if (i != sh->pd_idx &&
3240 			    (i == dd_idx || sh->dev[i].towrite)) {
3241 				sector = sh->dev[i].sector;
3242 				if (count == 0 || sector < first)
3243 					first = sector;
3244 				if (sector > last)
3245 					last = sector;
3246 				count++;
3247 			}
3248 		}
3249 
3250 		if (first + conf->chunk_sectors * (count - 1) != last)
3251 			goto overlap;
3252 	}
3253 
3254 	if (!forwrite || previous)
3255 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3256 
3257 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3258 	if (*bip)
3259 		bi->bi_next = *bip;
3260 	*bip = bi;
3261 	bio_inc_remaining(bi);
3262 	md_write_inc(conf->mddev, bi);
3263 
3264 	if (forwrite) {
3265 		/* check if page is covered */
3266 		sector_t sector = sh->dev[dd_idx].sector;
3267 		for (bi=sh->dev[dd_idx].towrite;
3268 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3269 			     bi && bi->bi_iter.bi_sector <= sector;
3270 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3271 			if (bio_end_sector(bi) >= sector)
3272 				sector = bio_end_sector(bi);
3273 		}
3274 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3275 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3276 				sh->overwrite_disks++;
3277 	}
3278 
3279 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3280 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3281 		(unsigned long long)sh->sector, dd_idx);
3282 
3283 	if (conf->mddev->bitmap && firstwrite) {
3284 		/* Cannot hold spinlock over bitmap_startwrite,
3285 		 * but must ensure this isn't added to a batch until
3286 		 * we have added to the bitmap and set bm_seq.
3287 		 * So set STRIPE_BITMAP_PENDING to prevent
3288 		 * batching.
3289 		 * If multiple add_stripe_bio() calls race here they
3290 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3291 		 * to complete "bitmap_startwrite" gets to set
3292 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3293 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3294 		 * any more.
3295 		 */
3296 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3297 		spin_unlock_irq(&sh->stripe_lock);
3298 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3299 				  STRIPE_SECTORS, 0);
3300 		spin_lock_irq(&sh->stripe_lock);
3301 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3302 		if (!sh->batch_head) {
3303 			sh->bm_seq = conf->seq_flush+1;
3304 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3305 		}
3306 	}
3307 	spin_unlock_irq(&sh->stripe_lock);
3308 
3309 	if (stripe_can_batch(sh))
3310 		stripe_add_to_batch_list(conf, sh);
3311 	return 1;
3312 
3313  overlap:
3314 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3315 	spin_unlock_irq(&sh->stripe_lock);
3316 	return 0;
3317 }
3318 
3319 static void end_reshape(struct r5conf *conf);
3320 
3321 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3322 			    struct stripe_head *sh)
3323 {
3324 	int sectors_per_chunk =
3325 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3326 	int dd_idx;
3327 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3328 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3329 
3330 	raid5_compute_sector(conf,
3331 			     stripe * (disks - conf->max_degraded)
3332 			     *sectors_per_chunk + chunk_offset,
3333 			     previous,
3334 			     &dd_idx, sh);
3335 }
3336 
3337 static void
3338 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3339 		     struct stripe_head_state *s, int disks)
3340 {
3341 	int i;
3342 	BUG_ON(sh->batch_head);
3343 	for (i = disks; i--; ) {
3344 		struct bio *bi;
3345 		int bitmap_end = 0;
3346 
3347 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3348 			struct md_rdev *rdev;
3349 			rcu_read_lock();
3350 			rdev = rcu_dereference(conf->disks[i].rdev);
3351 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3352 			    !test_bit(Faulty, &rdev->flags))
3353 				atomic_inc(&rdev->nr_pending);
3354 			else
3355 				rdev = NULL;
3356 			rcu_read_unlock();
3357 			if (rdev) {
3358 				if (!rdev_set_badblocks(
3359 					    rdev,
3360 					    sh->sector,
3361 					    STRIPE_SECTORS, 0))
3362 					md_error(conf->mddev, rdev);
3363 				rdev_dec_pending(rdev, conf->mddev);
3364 			}
3365 		}
3366 		spin_lock_irq(&sh->stripe_lock);
3367 		/* fail all writes first */
3368 		bi = sh->dev[i].towrite;
3369 		sh->dev[i].towrite = NULL;
3370 		sh->overwrite_disks = 0;
3371 		spin_unlock_irq(&sh->stripe_lock);
3372 		if (bi)
3373 			bitmap_end = 1;
3374 
3375 		log_stripe_write_finished(sh);
3376 
3377 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3378 			wake_up(&conf->wait_for_overlap);
3379 
3380 		while (bi && bi->bi_iter.bi_sector <
3381 			sh->dev[i].sector + STRIPE_SECTORS) {
3382 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3383 
3384 			md_write_end(conf->mddev);
3385 			bio_io_error(bi);
3386 			bi = nextbi;
3387 		}
3388 		if (bitmap_end)
3389 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3390 				STRIPE_SECTORS, 0, 0);
3391 		bitmap_end = 0;
3392 		/* and fail all 'written' */
3393 		bi = sh->dev[i].written;
3394 		sh->dev[i].written = NULL;
3395 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3396 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3397 			sh->dev[i].page = sh->dev[i].orig_page;
3398 		}
3399 
3400 		if (bi) bitmap_end = 1;
3401 		while (bi && bi->bi_iter.bi_sector <
3402 		       sh->dev[i].sector + STRIPE_SECTORS) {
3403 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3404 
3405 			md_write_end(conf->mddev);
3406 			bio_io_error(bi);
3407 			bi = bi2;
3408 		}
3409 
3410 		/* fail any reads if this device is non-operational and
3411 		 * the data has not reached the cache yet.
3412 		 */
3413 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3414 		    s->failed > conf->max_degraded &&
3415 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3416 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3417 			spin_lock_irq(&sh->stripe_lock);
3418 			bi = sh->dev[i].toread;
3419 			sh->dev[i].toread = NULL;
3420 			spin_unlock_irq(&sh->stripe_lock);
3421 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3422 				wake_up(&conf->wait_for_overlap);
3423 			if (bi)
3424 				s->to_read--;
3425 			while (bi && bi->bi_iter.bi_sector <
3426 			       sh->dev[i].sector + STRIPE_SECTORS) {
3427 				struct bio *nextbi =
3428 					r5_next_bio(bi, sh->dev[i].sector);
3429 
3430 				bio_io_error(bi);
3431 				bi = nextbi;
3432 			}
3433 		}
3434 		if (bitmap_end)
3435 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3436 					STRIPE_SECTORS, 0, 0);
3437 		/* If we were in the middle of a write the parity block might
3438 		 * still be locked - so just clear all R5_LOCKED flags
3439 		 */
3440 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3441 	}
3442 	s->to_write = 0;
3443 	s->written = 0;
3444 
3445 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3446 		if (atomic_dec_and_test(&conf->pending_full_writes))
3447 			md_wakeup_thread(conf->mddev->thread);
3448 }
3449 
3450 static void
3451 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3452 		   struct stripe_head_state *s)
3453 {
3454 	int abort = 0;
3455 	int i;
3456 
3457 	BUG_ON(sh->batch_head);
3458 	clear_bit(STRIPE_SYNCING, &sh->state);
3459 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3460 		wake_up(&conf->wait_for_overlap);
3461 	s->syncing = 0;
3462 	s->replacing = 0;
3463 	/* There is nothing more to do for sync/check/repair.
3464 	 * Don't even need to abort as that is handled elsewhere
3465 	 * if needed, and not always wanted e.g. if there is a known
3466 	 * bad block here.
3467 	 * For recover/replace we need to record a bad block on all
3468 	 * non-sync devices, or abort the recovery
3469 	 */
3470 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3471 		/* During recovery devices cannot be removed, so
3472 		 * locking and refcounting of rdevs is not needed
3473 		 */
3474 		rcu_read_lock();
3475 		for (i = 0; i < conf->raid_disks; i++) {
3476 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3477 			if (rdev
3478 			    && !test_bit(Faulty, &rdev->flags)
3479 			    && !test_bit(In_sync, &rdev->flags)
3480 			    && !rdev_set_badblocks(rdev, sh->sector,
3481 						   STRIPE_SECTORS, 0))
3482 				abort = 1;
3483 			rdev = rcu_dereference(conf->disks[i].replacement);
3484 			if (rdev
3485 			    && !test_bit(Faulty, &rdev->flags)
3486 			    && !test_bit(In_sync, &rdev->flags)
3487 			    && !rdev_set_badblocks(rdev, sh->sector,
3488 						   STRIPE_SECTORS, 0))
3489 				abort = 1;
3490 		}
3491 		rcu_read_unlock();
3492 		if (abort)
3493 			conf->recovery_disabled =
3494 				conf->mddev->recovery_disabled;
3495 	}
3496 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3497 }
3498 
3499 static int want_replace(struct stripe_head *sh, int disk_idx)
3500 {
3501 	struct md_rdev *rdev;
3502 	int rv = 0;
3503 
3504 	rcu_read_lock();
3505 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3506 	if (rdev
3507 	    && !test_bit(Faulty, &rdev->flags)
3508 	    && !test_bit(In_sync, &rdev->flags)
3509 	    && (rdev->recovery_offset <= sh->sector
3510 		|| rdev->mddev->recovery_cp <= sh->sector))
3511 		rv = 1;
3512 	rcu_read_unlock();
3513 	return rv;
3514 }
3515 
3516 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3517 			   int disk_idx, int disks)
3518 {
3519 	struct r5dev *dev = &sh->dev[disk_idx];
3520 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3521 				  &sh->dev[s->failed_num[1]] };
3522 	int i;
3523 
3524 
3525 	if (test_bit(R5_LOCKED, &dev->flags) ||
3526 	    test_bit(R5_UPTODATE, &dev->flags))
3527 		/* No point reading this as we already have it or have
3528 		 * decided to get it.
3529 		 */
3530 		return 0;
3531 
3532 	if (dev->toread ||
3533 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3534 		/* We need this block to directly satisfy a request */
3535 		return 1;
3536 
3537 	if (s->syncing || s->expanding ||
3538 	    (s->replacing && want_replace(sh, disk_idx)))
3539 		/* When syncing, or expanding we read everything.
3540 		 * When replacing, we need the replaced block.
3541 		 */
3542 		return 1;
3543 
3544 	if ((s->failed >= 1 && fdev[0]->toread) ||
3545 	    (s->failed >= 2 && fdev[1]->toread))
3546 		/* If we want to read from a failed device, then
3547 		 * we need to actually read every other device.
3548 		 */
3549 		return 1;
3550 
3551 	/* Sometimes neither read-modify-write nor reconstruct-write
3552 	 * cycles can work.  In those cases we read every block we
3553 	 * can.  Then the parity-update is certain to have enough to
3554 	 * work with.
3555 	 * This can only be a problem when we need to write something,
3556 	 * and some device has failed.  If either of those tests
3557 	 * fail we need look no further.
3558 	 */
3559 	if (!s->failed || !s->to_write)
3560 		return 0;
3561 
3562 	if (test_bit(R5_Insync, &dev->flags) &&
3563 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3564 		/* Pre-reads at not permitted until after short delay
3565 		 * to gather multiple requests.  However if this
3566 		 * device is no Insync, the block could only be computed
3567 		 * and there is no need to delay that.
3568 		 */
3569 		return 0;
3570 
3571 	for (i = 0; i < s->failed && i < 2; i++) {
3572 		if (fdev[i]->towrite &&
3573 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3574 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3575 			/* If we have a partial write to a failed
3576 			 * device, then we will need to reconstruct
3577 			 * the content of that device, so all other
3578 			 * devices must be read.
3579 			 */
3580 			return 1;
3581 	}
3582 
3583 	/* If we are forced to do a reconstruct-write, either because
3584 	 * the current RAID6 implementation only supports that, or
3585 	 * because parity cannot be trusted and we are currently
3586 	 * recovering it, there is extra need to be careful.
3587 	 * If one of the devices that we would need to read, because
3588 	 * it is not being overwritten (and maybe not written at all)
3589 	 * is missing/faulty, then we need to read everything we can.
3590 	 */
3591 	if (sh->raid_conf->level != 6 &&
3592 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3593 		/* reconstruct-write isn't being forced */
3594 		return 0;
3595 	for (i = 0; i < s->failed && i < 2; i++) {
3596 		if (s->failed_num[i] != sh->pd_idx &&
3597 		    s->failed_num[i] != sh->qd_idx &&
3598 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3599 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3600 			return 1;
3601 	}
3602 
3603 	return 0;
3604 }
3605 
3606 /* fetch_block - checks the given member device to see if its data needs
3607  * to be read or computed to satisfy a request.
3608  *
3609  * Returns 1 when no more member devices need to be checked, otherwise returns
3610  * 0 to tell the loop in handle_stripe_fill to continue
3611  */
3612 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3613 		       int disk_idx, int disks)
3614 {
3615 	struct r5dev *dev = &sh->dev[disk_idx];
3616 
3617 	/* is the data in this block needed, and can we get it? */
3618 	if (need_this_block(sh, s, disk_idx, disks)) {
3619 		/* we would like to get this block, possibly by computing it,
3620 		 * otherwise read it if the backing disk is insync
3621 		 */
3622 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3623 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3624 		BUG_ON(sh->batch_head);
3625 
3626 		/*
3627 		 * In the raid6 case if the only non-uptodate disk is P
3628 		 * then we already trusted P to compute the other failed
3629 		 * drives. It is safe to compute rather than re-read P.
3630 		 * In other cases we only compute blocks from failed
3631 		 * devices, otherwise check/repair might fail to detect
3632 		 * a real inconsistency.
3633 		 */
3634 
3635 		if ((s->uptodate == disks - 1) &&
3636 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3637 		    (s->failed && (disk_idx == s->failed_num[0] ||
3638 				   disk_idx == s->failed_num[1])))) {
3639 			/* have disk failed, and we're requested to fetch it;
3640 			 * do compute it
3641 			 */
3642 			pr_debug("Computing stripe %llu block %d\n",
3643 			       (unsigned long long)sh->sector, disk_idx);
3644 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3645 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3646 			set_bit(R5_Wantcompute, &dev->flags);
3647 			sh->ops.target = disk_idx;
3648 			sh->ops.target2 = -1; /* no 2nd target */
3649 			s->req_compute = 1;
3650 			/* Careful: from this point on 'uptodate' is in the eye
3651 			 * of raid_run_ops which services 'compute' operations
3652 			 * before writes. R5_Wantcompute flags a block that will
3653 			 * be R5_UPTODATE by the time it is needed for a
3654 			 * subsequent operation.
3655 			 */
3656 			s->uptodate++;
3657 			return 1;
3658 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3659 			/* Computing 2-failure is *very* expensive; only
3660 			 * do it if failed >= 2
3661 			 */
3662 			int other;
3663 			for (other = disks; other--; ) {
3664 				if (other == disk_idx)
3665 					continue;
3666 				if (!test_bit(R5_UPTODATE,
3667 				      &sh->dev[other].flags))
3668 					break;
3669 			}
3670 			BUG_ON(other < 0);
3671 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3672 			       (unsigned long long)sh->sector,
3673 			       disk_idx, other);
3674 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3675 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3676 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3677 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3678 			sh->ops.target = disk_idx;
3679 			sh->ops.target2 = other;
3680 			s->uptodate += 2;
3681 			s->req_compute = 1;
3682 			return 1;
3683 		} else if (test_bit(R5_Insync, &dev->flags)) {
3684 			set_bit(R5_LOCKED, &dev->flags);
3685 			set_bit(R5_Wantread, &dev->flags);
3686 			s->locked++;
3687 			pr_debug("Reading block %d (sync=%d)\n",
3688 				disk_idx, s->syncing);
3689 		}
3690 	}
3691 
3692 	return 0;
3693 }
3694 
3695 /**
3696  * handle_stripe_fill - read or compute data to satisfy pending requests.
3697  */
3698 static void handle_stripe_fill(struct stripe_head *sh,
3699 			       struct stripe_head_state *s,
3700 			       int disks)
3701 {
3702 	int i;
3703 
3704 	/* look for blocks to read/compute, skip this if a compute
3705 	 * is already in flight, or if the stripe contents are in the
3706 	 * midst of changing due to a write
3707 	 */
3708 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3709 	    !sh->reconstruct_state) {
3710 
3711 		/*
3712 		 * For degraded stripe with data in journal, do not handle
3713 		 * read requests yet, instead, flush the stripe to raid
3714 		 * disks first, this avoids handling complex rmw of write
3715 		 * back cache (prexor with orig_page, and then xor with
3716 		 * page) in the read path
3717 		 */
3718 		if (s->injournal && s->failed) {
3719 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3720 				r5c_make_stripe_write_out(sh);
3721 			goto out;
3722 		}
3723 
3724 		for (i = disks; i--; )
3725 			if (fetch_block(sh, s, i, disks))
3726 				break;
3727 	}
3728 out:
3729 	set_bit(STRIPE_HANDLE, &sh->state);
3730 }
3731 
3732 static void break_stripe_batch_list(struct stripe_head *head_sh,
3733 				    unsigned long handle_flags);
3734 /* handle_stripe_clean_event
3735  * any written block on an uptodate or failed drive can be returned.
3736  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3737  * never LOCKED, so we don't need to test 'failed' directly.
3738  */
3739 static void handle_stripe_clean_event(struct r5conf *conf,
3740 	struct stripe_head *sh, int disks)
3741 {
3742 	int i;
3743 	struct r5dev *dev;
3744 	int discard_pending = 0;
3745 	struct stripe_head *head_sh = sh;
3746 	bool do_endio = false;
3747 
3748 	for (i = disks; i--; )
3749 		if (sh->dev[i].written) {
3750 			dev = &sh->dev[i];
3751 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3752 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3753 			     test_bit(R5_Discard, &dev->flags) ||
3754 			     test_bit(R5_SkipCopy, &dev->flags))) {
3755 				/* We can return any write requests */
3756 				struct bio *wbi, *wbi2;
3757 				pr_debug("Return write for disc %d\n", i);
3758 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3759 					clear_bit(R5_UPTODATE, &dev->flags);
3760 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3761 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3762 				}
3763 				do_endio = true;
3764 
3765 returnbi:
3766 				dev->page = dev->orig_page;
3767 				wbi = dev->written;
3768 				dev->written = NULL;
3769 				while (wbi && wbi->bi_iter.bi_sector <
3770 					dev->sector + STRIPE_SECTORS) {
3771 					wbi2 = r5_next_bio(wbi, dev->sector);
3772 					md_write_end(conf->mddev);
3773 					bio_endio(wbi);
3774 					wbi = wbi2;
3775 				}
3776 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3777 						STRIPE_SECTORS,
3778 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3779 						0);
3780 				if (head_sh->batch_head) {
3781 					sh = list_first_entry(&sh->batch_list,
3782 							      struct stripe_head,
3783 							      batch_list);
3784 					if (sh != head_sh) {
3785 						dev = &sh->dev[i];
3786 						goto returnbi;
3787 					}
3788 				}
3789 				sh = head_sh;
3790 				dev = &sh->dev[i];
3791 			} else if (test_bit(R5_Discard, &dev->flags))
3792 				discard_pending = 1;
3793 		}
3794 
3795 	log_stripe_write_finished(sh);
3796 
3797 	if (!discard_pending &&
3798 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3799 		int hash;
3800 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3801 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3802 		if (sh->qd_idx >= 0) {
3803 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3804 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3805 		}
3806 		/* now that discard is done we can proceed with any sync */
3807 		clear_bit(STRIPE_DISCARD, &sh->state);
3808 		/*
3809 		 * SCSI discard will change some bio fields and the stripe has
3810 		 * no updated data, so remove it from hash list and the stripe
3811 		 * will be reinitialized
3812 		 */
3813 unhash:
3814 		hash = sh->hash_lock_index;
3815 		spin_lock_irq(conf->hash_locks + hash);
3816 		remove_hash(sh);
3817 		spin_unlock_irq(conf->hash_locks + hash);
3818 		if (head_sh->batch_head) {
3819 			sh = list_first_entry(&sh->batch_list,
3820 					      struct stripe_head, batch_list);
3821 			if (sh != head_sh)
3822 					goto unhash;
3823 		}
3824 		sh = head_sh;
3825 
3826 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3827 			set_bit(STRIPE_HANDLE, &sh->state);
3828 
3829 	}
3830 
3831 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3832 		if (atomic_dec_and_test(&conf->pending_full_writes))
3833 			md_wakeup_thread(conf->mddev->thread);
3834 
3835 	if (head_sh->batch_head && do_endio)
3836 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3837 }
3838 
3839 /*
3840  * For RMW in write back cache, we need extra page in prexor to store the
3841  * old data. This page is stored in dev->orig_page.
3842  *
3843  * This function checks whether we have data for prexor. The exact logic
3844  * is:
3845  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3846  */
3847 static inline bool uptodate_for_rmw(struct r5dev *dev)
3848 {
3849 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
3850 		(!test_bit(R5_InJournal, &dev->flags) ||
3851 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3852 }
3853 
3854 static int handle_stripe_dirtying(struct r5conf *conf,
3855 				  struct stripe_head *sh,
3856 				  struct stripe_head_state *s,
3857 				  int disks)
3858 {
3859 	int rmw = 0, rcw = 0, i;
3860 	sector_t recovery_cp = conf->mddev->recovery_cp;
3861 
3862 	/* Check whether resync is now happening or should start.
3863 	 * If yes, then the array is dirty (after unclean shutdown or
3864 	 * initial creation), so parity in some stripes might be inconsistent.
3865 	 * In this case, we need to always do reconstruct-write, to ensure
3866 	 * that in case of drive failure or read-error correction, we
3867 	 * generate correct data from the parity.
3868 	 */
3869 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3870 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3871 	     s->failed == 0)) {
3872 		/* Calculate the real rcw later - for now make it
3873 		 * look like rcw is cheaper
3874 		 */
3875 		rcw = 1; rmw = 2;
3876 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3877 			 conf->rmw_level, (unsigned long long)recovery_cp,
3878 			 (unsigned long long)sh->sector);
3879 	} else for (i = disks; i--; ) {
3880 		/* would I have to read this buffer for read_modify_write */
3881 		struct r5dev *dev = &sh->dev[i];
3882 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3883 		     i == sh->pd_idx || i == sh->qd_idx ||
3884 		     test_bit(R5_InJournal, &dev->flags)) &&
3885 		    !test_bit(R5_LOCKED, &dev->flags) &&
3886 		    !(uptodate_for_rmw(dev) ||
3887 		      test_bit(R5_Wantcompute, &dev->flags))) {
3888 			if (test_bit(R5_Insync, &dev->flags))
3889 				rmw++;
3890 			else
3891 				rmw += 2*disks;  /* cannot read it */
3892 		}
3893 		/* Would I have to read this buffer for reconstruct_write */
3894 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3895 		    i != sh->pd_idx && i != sh->qd_idx &&
3896 		    !test_bit(R5_LOCKED, &dev->flags) &&
3897 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3898 		      test_bit(R5_Wantcompute, &dev->flags))) {
3899 			if (test_bit(R5_Insync, &dev->flags))
3900 				rcw++;
3901 			else
3902 				rcw += 2*disks;
3903 		}
3904 	}
3905 
3906 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3907 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3908 	set_bit(STRIPE_HANDLE, &sh->state);
3909 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3910 		/* prefer read-modify-write, but need to get some data */
3911 		if (conf->mddev->queue)
3912 			blk_add_trace_msg(conf->mddev->queue,
3913 					  "raid5 rmw %llu %d",
3914 					  (unsigned long long)sh->sector, rmw);
3915 		for (i = disks; i--; ) {
3916 			struct r5dev *dev = &sh->dev[i];
3917 			if (test_bit(R5_InJournal, &dev->flags) &&
3918 			    dev->page == dev->orig_page &&
3919 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3920 				/* alloc page for prexor */
3921 				struct page *p = alloc_page(GFP_NOIO);
3922 
3923 				if (p) {
3924 					dev->orig_page = p;
3925 					continue;
3926 				}
3927 
3928 				/*
3929 				 * alloc_page() failed, try use
3930 				 * disk_info->extra_page
3931 				 */
3932 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3933 						      &conf->cache_state)) {
3934 					r5c_use_extra_page(sh);
3935 					break;
3936 				}
3937 
3938 				/* extra_page in use, add to delayed_list */
3939 				set_bit(STRIPE_DELAYED, &sh->state);
3940 				s->waiting_extra_page = 1;
3941 				return -EAGAIN;
3942 			}
3943 		}
3944 
3945 		for (i = disks; i--; ) {
3946 			struct r5dev *dev = &sh->dev[i];
3947 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3948 			     i == sh->pd_idx || i == sh->qd_idx ||
3949 			     test_bit(R5_InJournal, &dev->flags)) &&
3950 			    !test_bit(R5_LOCKED, &dev->flags) &&
3951 			    !(uptodate_for_rmw(dev) ||
3952 			      test_bit(R5_Wantcompute, &dev->flags)) &&
3953 			    test_bit(R5_Insync, &dev->flags)) {
3954 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3955 					     &sh->state)) {
3956 					pr_debug("Read_old block %d for r-m-w\n",
3957 						 i);
3958 					set_bit(R5_LOCKED, &dev->flags);
3959 					set_bit(R5_Wantread, &dev->flags);
3960 					s->locked++;
3961 				} else {
3962 					set_bit(STRIPE_DELAYED, &sh->state);
3963 					set_bit(STRIPE_HANDLE, &sh->state);
3964 				}
3965 			}
3966 		}
3967 	}
3968 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3969 		/* want reconstruct write, but need to get some data */
3970 		int qread =0;
3971 		rcw = 0;
3972 		for (i = disks; i--; ) {
3973 			struct r5dev *dev = &sh->dev[i];
3974 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3975 			    i != sh->pd_idx && i != sh->qd_idx &&
3976 			    !test_bit(R5_LOCKED, &dev->flags) &&
3977 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3978 			      test_bit(R5_Wantcompute, &dev->flags))) {
3979 				rcw++;
3980 				if (test_bit(R5_Insync, &dev->flags) &&
3981 				    test_bit(STRIPE_PREREAD_ACTIVE,
3982 					     &sh->state)) {
3983 					pr_debug("Read_old block "
3984 						"%d for Reconstruct\n", i);
3985 					set_bit(R5_LOCKED, &dev->flags);
3986 					set_bit(R5_Wantread, &dev->flags);
3987 					s->locked++;
3988 					qread++;
3989 				} else {
3990 					set_bit(STRIPE_DELAYED, &sh->state);
3991 					set_bit(STRIPE_HANDLE, &sh->state);
3992 				}
3993 			}
3994 		}
3995 		if (rcw && conf->mddev->queue)
3996 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3997 					  (unsigned long long)sh->sector,
3998 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3999 	}
4000 
4001 	if (rcw > disks && rmw > disks &&
4002 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4003 		set_bit(STRIPE_DELAYED, &sh->state);
4004 
4005 	/* now if nothing is locked, and if we have enough data,
4006 	 * we can start a write request
4007 	 */
4008 	/* since handle_stripe can be called at any time we need to handle the
4009 	 * case where a compute block operation has been submitted and then a
4010 	 * subsequent call wants to start a write request.  raid_run_ops only
4011 	 * handles the case where compute block and reconstruct are requested
4012 	 * simultaneously.  If this is not the case then new writes need to be
4013 	 * held off until the compute completes.
4014 	 */
4015 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4016 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4017 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4018 		schedule_reconstruction(sh, s, rcw == 0, 0);
4019 	return 0;
4020 }
4021 
4022 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4023 				struct stripe_head_state *s, int disks)
4024 {
4025 	struct r5dev *dev = NULL;
4026 
4027 	BUG_ON(sh->batch_head);
4028 	set_bit(STRIPE_HANDLE, &sh->state);
4029 
4030 	switch (sh->check_state) {
4031 	case check_state_idle:
4032 		/* start a new check operation if there are no failures */
4033 		if (s->failed == 0) {
4034 			BUG_ON(s->uptodate != disks);
4035 			sh->check_state = check_state_run;
4036 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4037 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4038 			s->uptodate--;
4039 			break;
4040 		}
4041 		dev = &sh->dev[s->failed_num[0]];
4042 		/* fall through */
4043 	case check_state_compute_result:
4044 		sh->check_state = check_state_idle;
4045 		if (!dev)
4046 			dev = &sh->dev[sh->pd_idx];
4047 
4048 		/* check that a write has not made the stripe insync */
4049 		if (test_bit(STRIPE_INSYNC, &sh->state))
4050 			break;
4051 
4052 		/* either failed parity check, or recovery is happening */
4053 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4054 		BUG_ON(s->uptodate != disks);
4055 
4056 		set_bit(R5_LOCKED, &dev->flags);
4057 		s->locked++;
4058 		set_bit(R5_Wantwrite, &dev->flags);
4059 
4060 		clear_bit(STRIPE_DEGRADED, &sh->state);
4061 		set_bit(STRIPE_INSYNC, &sh->state);
4062 		break;
4063 	case check_state_run:
4064 		break; /* we will be called again upon completion */
4065 	case check_state_check_result:
4066 		sh->check_state = check_state_idle;
4067 
4068 		/* if a failure occurred during the check operation, leave
4069 		 * STRIPE_INSYNC not set and let the stripe be handled again
4070 		 */
4071 		if (s->failed)
4072 			break;
4073 
4074 		/* handle a successful check operation, if parity is correct
4075 		 * we are done.  Otherwise update the mismatch count and repair
4076 		 * parity if !MD_RECOVERY_CHECK
4077 		 */
4078 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4079 			/* parity is correct (on disc,
4080 			 * not in buffer any more)
4081 			 */
4082 			set_bit(STRIPE_INSYNC, &sh->state);
4083 		else {
4084 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4085 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4086 				/* don't try to repair!! */
4087 				set_bit(STRIPE_INSYNC, &sh->state);
4088 				pr_warn_ratelimited("%s: mismatch sector in range "
4089 						    "%llu-%llu\n", mdname(conf->mddev),
4090 						    (unsigned long long) sh->sector,
4091 						    (unsigned long long) sh->sector +
4092 						    STRIPE_SECTORS);
4093 			} else {
4094 				sh->check_state = check_state_compute_run;
4095 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4096 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4097 				set_bit(R5_Wantcompute,
4098 					&sh->dev[sh->pd_idx].flags);
4099 				sh->ops.target = sh->pd_idx;
4100 				sh->ops.target2 = -1;
4101 				s->uptodate++;
4102 			}
4103 		}
4104 		break;
4105 	case check_state_compute_run:
4106 		break;
4107 	default:
4108 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4109 		       __func__, sh->check_state,
4110 		       (unsigned long long) sh->sector);
4111 		BUG();
4112 	}
4113 }
4114 
4115 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4116 				  struct stripe_head_state *s,
4117 				  int disks)
4118 {
4119 	int pd_idx = sh->pd_idx;
4120 	int qd_idx = sh->qd_idx;
4121 	struct r5dev *dev;
4122 
4123 	BUG_ON(sh->batch_head);
4124 	set_bit(STRIPE_HANDLE, &sh->state);
4125 
4126 	BUG_ON(s->failed > 2);
4127 
4128 	/* Want to check and possibly repair P and Q.
4129 	 * However there could be one 'failed' device, in which
4130 	 * case we can only check one of them, possibly using the
4131 	 * other to generate missing data
4132 	 */
4133 
4134 	switch (sh->check_state) {
4135 	case check_state_idle:
4136 		/* start a new check operation if there are < 2 failures */
4137 		if (s->failed == s->q_failed) {
4138 			/* The only possible failed device holds Q, so it
4139 			 * makes sense to check P (If anything else were failed,
4140 			 * we would have used P to recreate it).
4141 			 */
4142 			sh->check_state = check_state_run;
4143 		}
4144 		if (!s->q_failed && s->failed < 2) {
4145 			/* Q is not failed, and we didn't use it to generate
4146 			 * anything, so it makes sense to check it
4147 			 */
4148 			if (sh->check_state == check_state_run)
4149 				sh->check_state = check_state_run_pq;
4150 			else
4151 				sh->check_state = check_state_run_q;
4152 		}
4153 
4154 		/* discard potentially stale zero_sum_result */
4155 		sh->ops.zero_sum_result = 0;
4156 
4157 		if (sh->check_state == check_state_run) {
4158 			/* async_xor_zero_sum destroys the contents of P */
4159 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4160 			s->uptodate--;
4161 		}
4162 		if (sh->check_state >= check_state_run &&
4163 		    sh->check_state <= check_state_run_pq) {
4164 			/* async_syndrome_zero_sum preserves P and Q, so
4165 			 * no need to mark them !uptodate here
4166 			 */
4167 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4168 			break;
4169 		}
4170 
4171 		/* we have 2-disk failure */
4172 		BUG_ON(s->failed != 2);
4173 		/* fall through */
4174 	case check_state_compute_result:
4175 		sh->check_state = check_state_idle;
4176 
4177 		/* check that a write has not made the stripe insync */
4178 		if (test_bit(STRIPE_INSYNC, &sh->state))
4179 			break;
4180 
4181 		/* now write out any block on a failed drive,
4182 		 * or P or Q if they were recomputed
4183 		 */
4184 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4185 		if (s->failed == 2) {
4186 			dev = &sh->dev[s->failed_num[1]];
4187 			s->locked++;
4188 			set_bit(R5_LOCKED, &dev->flags);
4189 			set_bit(R5_Wantwrite, &dev->flags);
4190 		}
4191 		if (s->failed >= 1) {
4192 			dev = &sh->dev[s->failed_num[0]];
4193 			s->locked++;
4194 			set_bit(R5_LOCKED, &dev->flags);
4195 			set_bit(R5_Wantwrite, &dev->flags);
4196 		}
4197 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4198 			dev = &sh->dev[pd_idx];
4199 			s->locked++;
4200 			set_bit(R5_LOCKED, &dev->flags);
4201 			set_bit(R5_Wantwrite, &dev->flags);
4202 		}
4203 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4204 			dev = &sh->dev[qd_idx];
4205 			s->locked++;
4206 			set_bit(R5_LOCKED, &dev->flags);
4207 			set_bit(R5_Wantwrite, &dev->flags);
4208 		}
4209 		clear_bit(STRIPE_DEGRADED, &sh->state);
4210 
4211 		set_bit(STRIPE_INSYNC, &sh->state);
4212 		break;
4213 	case check_state_run:
4214 	case check_state_run_q:
4215 	case check_state_run_pq:
4216 		break; /* we will be called again upon completion */
4217 	case check_state_check_result:
4218 		sh->check_state = check_state_idle;
4219 
4220 		/* handle a successful check operation, if parity is correct
4221 		 * we are done.  Otherwise update the mismatch count and repair
4222 		 * parity if !MD_RECOVERY_CHECK
4223 		 */
4224 		if (sh->ops.zero_sum_result == 0) {
4225 			/* both parities are correct */
4226 			if (!s->failed)
4227 				set_bit(STRIPE_INSYNC, &sh->state);
4228 			else {
4229 				/* in contrast to the raid5 case we can validate
4230 				 * parity, but still have a failure to write
4231 				 * back
4232 				 */
4233 				sh->check_state = check_state_compute_result;
4234 				/* Returning at this point means that we may go
4235 				 * off and bring p and/or q uptodate again so
4236 				 * we make sure to check zero_sum_result again
4237 				 * to verify if p or q need writeback
4238 				 */
4239 			}
4240 		} else {
4241 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4242 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4243 				/* don't try to repair!! */
4244 				set_bit(STRIPE_INSYNC, &sh->state);
4245 				pr_warn_ratelimited("%s: mismatch sector in range "
4246 						    "%llu-%llu\n", mdname(conf->mddev),
4247 						    (unsigned long long) sh->sector,
4248 						    (unsigned long long) sh->sector +
4249 						    STRIPE_SECTORS);
4250 			} else {
4251 				int *target = &sh->ops.target;
4252 
4253 				sh->ops.target = -1;
4254 				sh->ops.target2 = -1;
4255 				sh->check_state = check_state_compute_run;
4256 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4257 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4258 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4259 					set_bit(R5_Wantcompute,
4260 						&sh->dev[pd_idx].flags);
4261 					*target = pd_idx;
4262 					target = &sh->ops.target2;
4263 					s->uptodate++;
4264 				}
4265 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4266 					set_bit(R5_Wantcompute,
4267 						&sh->dev[qd_idx].flags);
4268 					*target = qd_idx;
4269 					s->uptodate++;
4270 				}
4271 			}
4272 		}
4273 		break;
4274 	case check_state_compute_run:
4275 		break;
4276 	default:
4277 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4278 			__func__, sh->check_state,
4279 			(unsigned long long) sh->sector);
4280 		BUG();
4281 	}
4282 }
4283 
4284 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4285 {
4286 	int i;
4287 
4288 	/* We have read all the blocks in this stripe and now we need to
4289 	 * copy some of them into a target stripe for expand.
4290 	 */
4291 	struct dma_async_tx_descriptor *tx = NULL;
4292 	BUG_ON(sh->batch_head);
4293 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4294 	for (i = 0; i < sh->disks; i++)
4295 		if (i != sh->pd_idx && i != sh->qd_idx) {
4296 			int dd_idx, j;
4297 			struct stripe_head *sh2;
4298 			struct async_submit_ctl submit;
4299 
4300 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4301 			sector_t s = raid5_compute_sector(conf, bn, 0,
4302 							  &dd_idx, NULL);
4303 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4304 			if (sh2 == NULL)
4305 				/* so far only the early blocks of this stripe
4306 				 * have been requested.  When later blocks
4307 				 * get requested, we will try again
4308 				 */
4309 				continue;
4310 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4311 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4312 				/* must have already done this block */
4313 				raid5_release_stripe(sh2);
4314 				continue;
4315 			}
4316 
4317 			/* place all the copies on one channel */
4318 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4319 			tx = async_memcpy(sh2->dev[dd_idx].page,
4320 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
4321 					  &submit);
4322 
4323 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4324 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4325 			for (j = 0; j < conf->raid_disks; j++)
4326 				if (j != sh2->pd_idx &&
4327 				    j != sh2->qd_idx &&
4328 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4329 					break;
4330 			if (j == conf->raid_disks) {
4331 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4332 				set_bit(STRIPE_HANDLE, &sh2->state);
4333 			}
4334 			raid5_release_stripe(sh2);
4335 
4336 		}
4337 	/* done submitting copies, wait for them to complete */
4338 	async_tx_quiesce(&tx);
4339 }
4340 
4341 /*
4342  * handle_stripe - do things to a stripe.
4343  *
4344  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4345  * state of various bits to see what needs to be done.
4346  * Possible results:
4347  *    return some read requests which now have data
4348  *    return some write requests which are safely on storage
4349  *    schedule a read on some buffers
4350  *    schedule a write of some buffers
4351  *    return confirmation of parity correctness
4352  *
4353  */
4354 
4355 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4356 {
4357 	struct r5conf *conf = sh->raid_conf;
4358 	int disks = sh->disks;
4359 	struct r5dev *dev;
4360 	int i;
4361 	int do_recovery = 0;
4362 
4363 	memset(s, 0, sizeof(*s));
4364 
4365 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4366 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4367 	s->failed_num[0] = -1;
4368 	s->failed_num[1] = -1;
4369 	s->log_failed = r5l_log_disk_error(conf);
4370 
4371 	/* Now to look around and see what can be done */
4372 	rcu_read_lock();
4373 	for (i=disks; i--; ) {
4374 		struct md_rdev *rdev;
4375 		sector_t first_bad;
4376 		int bad_sectors;
4377 		int is_bad = 0;
4378 
4379 		dev = &sh->dev[i];
4380 
4381 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4382 			 i, dev->flags,
4383 			 dev->toread, dev->towrite, dev->written);
4384 		/* maybe we can reply to a read
4385 		 *
4386 		 * new wantfill requests are only permitted while
4387 		 * ops_complete_biofill is guaranteed to be inactive
4388 		 */
4389 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4390 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4391 			set_bit(R5_Wantfill, &dev->flags);
4392 
4393 		/* now count some things */
4394 		if (test_bit(R5_LOCKED, &dev->flags))
4395 			s->locked++;
4396 		if (test_bit(R5_UPTODATE, &dev->flags))
4397 			s->uptodate++;
4398 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4399 			s->compute++;
4400 			BUG_ON(s->compute > 2);
4401 		}
4402 
4403 		if (test_bit(R5_Wantfill, &dev->flags))
4404 			s->to_fill++;
4405 		else if (dev->toread)
4406 			s->to_read++;
4407 		if (dev->towrite) {
4408 			s->to_write++;
4409 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4410 				s->non_overwrite++;
4411 		}
4412 		if (dev->written)
4413 			s->written++;
4414 		/* Prefer to use the replacement for reads, but only
4415 		 * if it is recovered enough and has no bad blocks.
4416 		 */
4417 		rdev = rcu_dereference(conf->disks[i].replacement);
4418 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4419 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4420 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4421 				 &first_bad, &bad_sectors))
4422 			set_bit(R5_ReadRepl, &dev->flags);
4423 		else {
4424 			if (rdev && !test_bit(Faulty, &rdev->flags))
4425 				set_bit(R5_NeedReplace, &dev->flags);
4426 			else
4427 				clear_bit(R5_NeedReplace, &dev->flags);
4428 			rdev = rcu_dereference(conf->disks[i].rdev);
4429 			clear_bit(R5_ReadRepl, &dev->flags);
4430 		}
4431 		if (rdev && test_bit(Faulty, &rdev->flags))
4432 			rdev = NULL;
4433 		if (rdev) {
4434 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4435 					     &first_bad, &bad_sectors);
4436 			if (s->blocked_rdev == NULL
4437 			    && (test_bit(Blocked, &rdev->flags)
4438 				|| is_bad < 0)) {
4439 				if (is_bad < 0)
4440 					set_bit(BlockedBadBlocks,
4441 						&rdev->flags);
4442 				s->blocked_rdev = rdev;
4443 				atomic_inc(&rdev->nr_pending);
4444 			}
4445 		}
4446 		clear_bit(R5_Insync, &dev->flags);
4447 		if (!rdev)
4448 			/* Not in-sync */;
4449 		else if (is_bad) {
4450 			/* also not in-sync */
4451 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4452 			    test_bit(R5_UPTODATE, &dev->flags)) {
4453 				/* treat as in-sync, but with a read error
4454 				 * which we can now try to correct
4455 				 */
4456 				set_bit(R5_Insync, &dev->flags);
4457 				set_bit(R5_ReadError, &dev->flags);
4458 			}
4459 		} else if (test_bit(In_sync, &rdev->flags))
4460 			set_bit(R5_Insync, &dev->flags);
4461 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4462 			/* in sync if before recovery_offset */
4463 			set_bit(R5_Insync, &dev->flags);
4464 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4465 			 test_bit(R5_Expanded, &dev->flags))
4466 			/* If we've reshaped into here, we assume it is Insync.
4467 			 * We will shortly update recovery_offset to make
4468 			 * it official.
4469 			 */
4470 			set_bit(R5_Insync, &dev->flags);
4471 
4472 		if (test_bit(R5_WriteError, &dev->flags)) {
4473 			/* This flag does not apply to '.replacement'
4474 			 * only to .rdev, so make sure to check that*/
4475 			struct md_rdev *rdev2 = rcu_dereference(
4476 				conf->disks[i].rdev);
4477 			if (rdev2 == rdev)
4478 				clear_bit(R5_Insync, &dev->flags);
4479 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4480 				s->handle_bad_blocks = 1;
4481 				atomic_inc(&rdev2->nr_pending);
4482 			} else
4483 				clear_bit(R5_WriteError, &dev->flags);
4484 		}
4485 		if (test_bit(R5_MadeGood, &dev->flags)) {
4486 			/* This flag does not apply to '.replacement'
4487 			 * only to .rdev, so make sure to check that*/
4488 			struct md_rdev *rdev2 = rcu_dereference(
4489 				conf->disks[i].rdev);
4490 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4491 				s->handle_bad_blocks = 1;
4492 				atomic_inc(&rdev2->nr_pending);
4493 			} else
4494 				clear_bit(R5_MadeGood, &dev->flags);
4495 		}
4496 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4497 			struct md_rdev *rdev2 = rcu_dereference(
4498 				conf->disks[i].replacement);
4499 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4500 				s->handle_bad_blocks = 1;
4501 				atomic_inc(&rdev2->nr_pending);
4502 			} else
4503 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4504 		}
4505 		if (!test_bit(R5_Insync, &dev->flags)) {
4506 			/* The ReadError flag will just be confusing now */
4507 			clear_bit(R5_ReadError, &dev->flags);
4508 			clear_bit(R5_ReWrite, &dev->flags);
4509 		}
4510 		if (test_bit(R5_ReadError, &dev->flags))
4511 			clear_bit(R5_Insync, &dev->flags);
4512 		if (!test_bit(R5_Insync, &dev->flags)) {
4513 			if (s->failed < 2)
4514 				s->failed_num[s->failed] = i;
4515 			s->failed++;
4516 			if (rdev && !test_bit(Faulty, &rdev->flags))
4517 				do_recovery = 1;
4518 		}
4519 
4520 		if (test_bit(R5_InJournal, &dev->flags))
4521 			s->injournal++;
4522 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4523 			s->just_cached++;
4524 	}
4525 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4526 		/* If there is a failed device being replaced,
4527 		 *     we must be recovering.
4528 		 * else if we are after recovery_cp, we must be syncing
4529 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4530 		 * else we can only be replacing
4531 		 * sync and recovery both need to read all devices, and so
4532 		 * use the same flag.
4533 		 */
4534 		if (do_recovery ||
4535 		    sh->sector >= conf->mddev->recovery_cp ||
4536 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4537 			s->syncing = 1;
4538 		else
4539 			s->replacing = 1;
4540 	}
4541 	rcu_read_unlock();
4542 }
4543 
4544 static int clear_batch_ready(struct stripe_head *sh)
4545 {
4546 	/* Return '1' if this is a member of batch, or
4547 	 * '0' if it is a lone stripe or a head which can now be
4548 	 * handled.
4549 	 */
4550 	struct stripe_head *tmp;
4551 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4552 		return (sh->batch_head && sh->batch_head != sh);
4553 	spin_lock(&sh->stripe_lock);
4554 	if (!sh->batch_head) {
4555 		spin_unlock(&sh->stripe_lock);
4556 		return 0;
4557 	}
4558 
4559 	/*
4560 	 * this stripe could be added to a batch list before we check
4561 	 * BATCH_READY, skips it
4562 	 */
4563 	if (sh->batch_head != sh) {
4564 		spin_unlock(&sh->stripe_lock);
4565 		return 1;
4566 	}
4567 	spin_lock(&sh->batch_lock);
4568 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4569 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4570 	spin_unlock(&sh->batch_lock);
4571 	spin_unlock(&sh->stripe_lock);
4572 
4573 	/*
4574 	 * BATCH_READY is cleared, no new stripes can be added.
4575 	 * batch_list can be accessed without lock
4576 	 */
4577 	return 0;
4578 }
4579 
4580 static void break_stripe_batch_list(struct stripe_head *head_sh,
4581 				    unsigned long handle_flags)
4582 {
4583 	struct stripe_head *sh, *next;
4584 	int i;
4585 	int do_wakeup = 0;
4586 
4587 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4588 
4589 		list_del_init(&sh->batch_list);
4590 
4591 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4592 					  (1 << STRIPE_SYNCING) |
4593 					  (1 << STRIPE_REPLACED) |
4594 					  (1 << STRIPE_DELAYED) |
4595 					  (1 << STRIPE_BIT_DELAY) |
4596 					  (1 << STRIPE_FULL_WRITE) |
4597 					  (1 << STRIPE_BIOFILL_RUN) |
4598 					  (1 << STRIPE_COMPUTE_RUN)  |
4599 					  (1 << STRIPE_OPS_REQ_PENDING) |
4600 					  (1 << STRIPE_DISCARD) |
4601 					  (1 << STRIPE_BATCH_READY) |
4602 					  (1 << STRIPE_BATCH_ERR) |
4603 					  (1 << STRIPE_BITMAP_PENDING)),
4604 			"stripe state: %lx\n", sh->state);
4605 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4606 					      (1 << STRIPE_REPLACED)),
4607 			"head stripe state: %lx\n", head_sh->state);
4608 
4609 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4610 					    (1 << STRIPE_PREREAD_ACTIVE) |
4611 					    (1 << STRIPE_DEGRADED) |
4612 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4613 			      head_sh->state & (1 << STRIPE_INSYNC));
4614 
4615 		sh->check_state = head_sh->check_state;
4616 		sh->reconstruct_state = head_sh->reconstruct_state;
4617 		for (i = 0; i < sh->disks; i++) {
4618 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4619 				do_wakeup = 1;
4620 			sh->dev[i].flags = head_sh->dev[i].flags &
4621 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4622 		}
4623 		spin_lock_irq(&sh->stripe_lock);
4624 		sh->batch_head = NULL;
4625 		spin_unlock_irq(&sh->stripe_lock);
4626 		if (handle_flags == 0 ||
4627 		    sh->state & handle_flags)
4628 			set_bit(STRIPE_HANDLE, &sh->state);
4629 		raid5_release_stripe(sh);
4630 	}
4631 	spin_lock_irq(&head_sh->stripe_lock);
4632 	head_sh->batch_head = NULL;
4633 	spin_unlock_irq(&head_sh->stripe_lock);
4634 	for (i = 0; i < head_sh->disks; i++)
4635 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4636 			do_wakeup = 1;
4637 	if (head_sh->state & handle_flags)
4638 		set_bit(STRIPE_HANDLE, &head_sh->state);
4639 
4640 	if (do_wakeup)
4641 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4642 }
4643 
4644 static void handle_stripe(struct stripe_head *sh)
4645 {
4646 	struct stripe_head_state s;
4647 	struct r5conf *conf = sh->raid_conf;
4648 	int i;
4649 	int prexor;
4650 	int disks = sh->disks;
4651 	struct r5dev *pdev, *qdev;
4652 
4653 	clear_bit(STRIPE_HANDLE, &sh->state);
4654 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4655 		/* already being handled, ensure it gets handled
4656 		 * again when current action finishes */
4657 		set_bit(STRIPE_HANDLE, &sh->state);
4658 		return;
4659 	}
4660 
4661 	if (clear_batch_ready(sh) ) {
4662 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4663 		return;
4664 	}
4665 
4666 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4667 		break_stripe_batch_list(sh, 0);
4668 
4669 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4670 		spin_lock(&sh->stripe_lock);
4671 		/*
4672 		 * Cannot process 'sync' concurrently with 'discard'.
4673 		 * Flush data in r5cache before 'sync'.
4674 		 */
4675 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4676 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4677 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4678 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4679 			set_bit(STRIPE_SYNCING, &sh->state);
4680 			clear_bit(STRIPE_INSYNC, &sh->state);
4681 			clear_bit(STRIPE_REPLACED, &sh->state);
4682 		}
4683 		spin_unlock(&sh->stripe_lock);
4684 	}
4685 	clear_bit(STRIPE_DELAYED, &sh->state);
4686 
4687 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4688 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4689 	       (unsigned long long)sh->sector, sh->state,
4690 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4691 	       sh->check_state, sh->reconstruct_state);
4692 
4693 	analyse_stripe(sh, &s);
4694 
4695 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4696 		goto finish;
4697 
4698 	if (s.handle_bad_blocks ||
4699 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4700 		set_bit(STRIPE_HANDLE, &sh->state);
4701 		goto finish;
4702 	}
4703 
4704 	if (unlikely(s.blocked_rdev)) {
4705 		if (s.syncing || s.expanding || s.expanded ||
4706 		    s.replacing || s.to_write || s.written) {
4707 			set_bit(STRIPE_HANDLE, &sh->state);
4708 			goto finish;
4709 		}
4710 		/* There is nothing for the blocked_rdev to block */
4711 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4712 		s.blocked_rdev = NULL;
4713 	}
4714 
4715 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4716 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4717 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4718 	}
4719 
4720 	pr_debug("locked=%d uptodate=%d to_read=%d"
4721 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4722 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4723 	       s.failed_num[0], s.failed_num[1]);
4724 	/*
4725 	 * check if the array has lost more than max_degraded devices and,
4726 	 * if so, some requests might need to be failed.
4727 	 *
4728 	 * When journal device failed (log_failed), we will only process
4729 	 * the stripe if there is data need write to raid disks
4730 	 */
4731 	if (s.failed > conf->max_degraded ||
4732 	    (s.log_failed && s.injournal == 0)) {
4733 		sh->check_state = 0;
4734 		sh->reconstruct_state = 0;
4735 		break_stripe_batch_list(sh, 0);
4736 		if (s.to_read+s.to_write+s.written)
4737 			handle_failed_stripe(conf, sh, &s, disks);
4738 		if (s.syncing + s.replacing)
4739 			handle_failed_sync(conf, sh, &s);
4740 	}
4741 
4742 	/* Now we check to see if any write operations have recently
4743 	 * completed
4744 	 */
4745 	prexor = 0;
4746 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4747 		prexor = 1;
4748 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4749 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4750 		sh->reconstruct_state = reconstruct_state_idle;
4751 
4752 		/* All the 'written' buffers and the parity block are ready to
4753 		 * be written back to disk
4754 		 */
4755 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4756 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4757 		BUG_ON(sh->qd_idx >= 0 &&
4758 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4759 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4760 		for (i = disks; i--; ) {
4761 			struct r5dev *dev = &sh->dev[i];
4762 			if (test_bit(R5_LOCKED, &dev->flags) &&
4763 				(i == sh->pd_idx || i == sh->qd_idx ||
4764 				 dev->written || test_bit(R5_InJournal,
4765 							  &dev->flags))) {
4766 				pr_debug("Writing block %d\n", i);
4767 				set_bit(R5_Wantwrite, &dev->flags);
4768 				if (prexor)
4769 					continue;
4770 				if (s.failed > 1)
4771 					continue;
4772 				if (!test_bit(R5_Insync, &dev->flags) ||
4773 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4774 				     s.failed == 0))
4775 					set_bit(STRIPE_INSYNC, &sh->state);
4776 			}
4777 		}
4778 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4779 			s.dec_preread_active = 1;
4780 	}
4781 
4782 	/*
4783 	 * might be able to return some write requests if the parity blocks
4784 	 * are safe, or on a failed drive
4785 	 */
4786 	pdev = &sh->dev[sh->pd_idx];
4787 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4788 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4789 	qdev = &sh->dev[sh->qd_idx];
4790 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4791 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4792 		|| conf->level < 6;
4793 
4794 	if (s.written &&
4795 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4796 			     && !test_bit(R5_LOCKED, &pdev->flags)
4797 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4798 				 test_bit(R5_Discard, &pdev->flags))))) &&
4799 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4800 			     && !test_bit(R5_LOCKED, &qdev->flags)
4801 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4802 				 test_bit(R5_Discard, &qdev->flags))))))
4803 		handle_stripe_clean_event(conf, sh, disks);
4804 
4805 	if (s.just_cached)
4806 		r5c_handle_cached_data_endio(conf, sh, disks);
4807 	log_stripe_write_finished(sh);
4808 
4809 	/* Now we might consider reading some blocks, either to check/generate
4810 	 * parity, or to satisfy requests
4811 	 * or to load a block that is being partially written.
4812 	 */
4813 	if (s.to_read || s.non_overwrite
4814 	    || (conf->level == 6 && s.to_write && s.failed)
4815 	    || (s.syncing && (s.uptodate + s.compute < disks))
4816 	    || s.replacing
4817 	    || s.expanding)
4818 		handle_stripe_fill(sh, &s, disks);
4819 
4820 	/*
4821 	 * When the stripe finishes full journal write cycle (write to journal
4822 	 * and raid disk), this is the clean up procedure so it is ready for
4823 	 * next operation.
4824 	 */
4825 	r5c_finish_stripe_write_out(conf, sh, &s);
4826 
4827 	/*
4828 	 * Now to consider new write requests, cache write back and what else,
4829 	 * if anything should be read.  We do not handle new writes when:
4830 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4831 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4832 	 *    block.
4833 	 * 3/ A r5c cache log write is in flight.
4834 	 */
4835 
4836 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4837 		if (!r5c_is_writeback(conf->log)) {
4838 			if (s.to_write)
4839 				handle_stripe_dirtying(conf, sh, &s, disks);
4840 		} else { /* write back cache */
4841 			int ret = 0;
4842 
4843 			/* First, try handle writes in caching phase */
4844 			if (s.to_write)
4845 				ret = r5c_try_caching_write(conf, sh, &s,
4846 							    disks);
4847 			/*
4848 			 * If caching phase failed: ret == -EAGAIN
4849 			 *    OR
4850 			 * stripe under reclaim: !caching && injournal
4851 			 *
4852 			 * fall back to handle_stripe_dirtying()
4853 			 */
4854 			if (ret == -EAGAIN ||
4855 			    /* stripe under reclaim: !caching && injournal */
4856 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4857 			     s.injournal > 0)) {
4858 				ret = handle_stripe_dirtying(conf, sh, &s,
4859 							     disks);
4860 				if (ret == -EAGAIN)
4861 					goto finish;
4862 			}
4863 		}
4864 	}
4865 
4866 	/* maybe we need to check and possibly fix the parity for this stripe
4867 	 * Any reads will already have been scheduled, so we just see if enough
4868 	 * data is available.  The parity check is held off while parity
4869 	 * dependent operations are in flight.
4870 	 */
4871 	if (sh->check_state ||
4872 	    (s.syncing && s.locked == 0 &&
4873 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4874 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4875 		if (conf->level == 6)
4876 			handle_parity_checks6(conf, sh, &s, disks);
4877 		else
4878 			handle_parity_checks5(conf, sh, &s, disks);
4879 	}
4880 
4881 	if ((s.replacing || s.syncing) && s.locked == 0
4882 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4883 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4884 		/* Write out to replacement devices where possible */
4885 		for (i = 0; i < conf->raid_disks; i++)
4886 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4887 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4888 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4889 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4890 				s.locked++;
4891 			}
4892 		if (s.replacing)
4893 			set_bit(STRIPE_INSYNC, &sh->state);
4894 		set_bit(STRIPE_REPLACED, &sh->state);
4895 	}
4896 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4897 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4898 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4899 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4900 		clear_bit(STRIPE_SYNCING, &sh->state);
4901 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4902 			wake_up(&conf->wait_for_overlap);
4903 	}
4904 
4905 	/* If the failed drives are just a ReadError, then we might need
4906 	 * to progress the repair/check process
4907 	 */
4908 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4909 		for (i = 0; i < s.failed; i++) {
4910 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4911 			if (test_bit(R5_ReadError, &dev->flags)
4912 			    && !test_bit(R5_LOCKED, &dev->flags)
4913 			    && test_bit(R5_UPTODATE, &dev->flags)
4914 				) {
4915 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4916 					set_bit(R5_Wantwrite, &dev->flags);
4917 					set_bit(R5_ReWrite, &dev->flags);
4918 					set_bit(R5_LOCKED, &dev->flags);
4919 					s.locked++;
4920 				} else {
4921 					/* let's read it back */
4922 					set_bit(R5_Wantread, &dev->flags);
4923 					set_bit(R5_LOCKED, &dev->flags);
4924 					s.locked++;
4925 				}
4926 			}
4927 		}
4928 
4929 	/* Finish reconstruct operations initiated by the expansion process */
4930 	if (sh->reconstruct_state == reconstruct_state_result) {
4931 		struct stripe_head *sh_src
4932 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4933 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4934 			/* sh cannot be written until sh_src has been read.
4935 			 * so arrange for sh to be delayed a little
4936 			 */
4937 			set_bit(STRIPE_DELAYED, &sh->state);
4938 			set_bit(STRIPE_HANDLE, &sh->state);
4939 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4940 					      &sh_src->state))
4941 				atomic_inc(&conf->preread_active_stripes);
4942 			raid5_release_stripe(sh_src);
4943 			goto finish;
4944 		}
4945 		if (sh_src)
4946 			raid5_release_stripe(sh_src);
4947 
4948 		sh->reconstruct_state = reconstruct_state_idle;
4949 		clear_bit(STRIPE_EXPANDING, &sh->state);
4950 		for (i = conf->raid_disks; i--; ) {
4951 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4952 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4953 			s.locked++;
4954 		}
4955 	}
4956 
4957 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4958 	    !sh->reconstruct_state) {
4959 		/* Need to write out all blocks after computing parity */
4960 		sh->disks = conf->raid_disks;
4961 		stripe_set_idx(sh->sector, conf, 0, sh);
4962 		schedule_reconstruction(sh, &s, 1, 1);
4963 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4964 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4965 		atomic_dec(&conf->reshape_stripes);
4966 		wake_up(&conf->wait_for_overlap);
4967 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4968 	}
4969 
4970 	if (s.expanding && s.locked == 0 &&
4971 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4972 		handle_stripe_expansion(conf, sh);
4973 
4974 finish:
4975 	/* wait for this device to become unblocked */
4976 	if (unlikely(s.blocked_rdev)) {
4977 		if (conf->mddev->external)
4978 			md_wait_for_blocked_rdev(s.blocked_rdev,
4979 						 conf->mddev);
4980 		else
4981 			/* Internal metadata will immediately
4982 			 * be written by raid5d, so we don't
4983 			 * need to wait here.
4984 			 */
4985 			rdev_dec_pending(s.blocked_rdev,
4986 					 conf->mddev);
4987 	}
4988 
4989 	if (s.handle_bad_blocks)
4990 		for (i = disks; i--; ) {
4991 			struct md_rdev *rdev;
4992 			struct r5dev *dev = &sh->dev[i];
4993 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4994 				/* We own a safe reference to the rdev */
4995 				rdev = conf->disks[i].rdev;
4996 				if (!rdev_set_badblocks(rdev, sh->sector,
4997 							STRIPE_SECTORS, 0))
4998 					md_error(conf->mddev, rdev);
4999 				rdev_dec_pending(rdev, conf->mddev);
5000 			}
5001 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5002 				rdev = conf->disks[i].rdev;
5003 				rdev_clear_badblocks(rdev, sh->sector,
5004 						     STRIPE_SECTORS, 0);
5005 				rdev_dec_pending(rdev, conf->mddev);
5006 			}
5007 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5008 				rdev = conf->disks[i].replacement;
5009 				if (!rdev)
5010 					/* rdev have been moved down */
5011 					rdev = conf->disks[i].rdev;
5012 				rdev_clear_badblocks(rdev, sh->sector,
5013 						     STRIPE_SECTORS, 0);
5014 				rdev_dec_pending(rdev, conf->mddev);
5015 			}
5016 		}
5017 
5018 	if (s.ops_request)
5019 		raid_run_ops(sh, s.ops_request);
5020 
5021 	ops_run_io(sh, &s);
5022 
5023 	if (s.dec_preread_active) {
5024 		/* We delay this until after ops_run_io so that if make_request
5025 		 * is waiting on a flush, it won't continue until the writes
5026 		 * have actually been submitted.
5027 		 */
5028 		atomic_dec(&conf->preread_active_stripes);
5029 		if (atomic_read(&conf->preread_active_stripes) <
5030 		    IO_THRESHOLD)
5031 			md_wakeup_thread(conf->mddev->thread);
5032 	}
5033 
5034 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5035 }
5036 
5037 static void raid5_activate_delayed(struct r5conf *conf)
5038 {
5039 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5040 		while (!list_empty(&conf->delayed_list)) {
5041 			struct list_head *l = conf->delayed_list.next;
5042 			struct stripe_head *sh;
5043 			sh = list_entry(l, struct stripe_head, lru);
5044 			list_del_init(l);
5045 			clear_bit(STRIPE_DELAYED, &sh->state);
5046 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5047 				atomic_inc(&conf->preread_active_stripes);
5048 			list_add_tail(&sh->lru, &conf->hold_list);
5049 			raid5_wakeup_stripe_thread(sh);
5050 		}
5051 	}
5052 }
5053 
5054 static void activate_bit_delay(struct r5conf *conf,
5055 	struct list_head *temp_inactive_list)
5056 {
5057 	/* device_lock is held */
5058 	struct list_head head;
5059 	list_add(&head, &conf->bitmap_list);
5060 	list_del_init(&conf->bitmap_list);
5061 	while (!list_empty(&head)) {
5062 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5063 		int hash;
5064 		list_del_init(&sh->lru);
5065 		atomic_inc(&sh->count);
5066 		hash = sh->hash_lock_index;
5067 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5068 	}
5069 }
5070 
5071 static int raid5_congested(struct mddev *mddev, int bits)
5072 {
5073 	struct r5conf *conf = mddev->private;
5074 
5075 	/* No difference between reads and writes.  Just check
5076 	 * how busy the stripe_cache is
5077 	 */
5078 
5079 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5080 		return 1;
5081 
5082 	/* Also checks whether there is pressure on r5cache log space */
5083 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5084 		return 1;
5085 	if (conf->quiesce)
5086 		return 1;
5087 	if (atomic_read(&conf->empty_inactive_list_nr))
5088 		return 1;
5089 
5090 	return 0;
5091 }
5092 
5093 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5094 {
5095 	struct r5conf *conf = mddev->private;
5096 	sector_t sector = bio->bi_iter.bi_sector;
5097 	unsigned int chunk_sectors;
5098 	unsigned int bio_sectors = bio_sectors(bio);
5099 
5100 	WARN_ON_ONCE(bio->bi_partno);
5101 
5102 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5103 	return  chunk_sectors >=
5104 		((sector & (chunk_sectors - 1)) + bio_sectors);
5105 }
5106 
5107 /*
5108  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5109  *  later sampled by raid5d.
5110  */
5111 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5112 {
5113 	unsigned long flags;
5114 
5115 	spin_lock_irqsave(&conf->device_lock, flags);
5116 
5117 	bi->bi_next = conf->retry_read_aligned_list;
5118 	conf->retry_read_aligned_list = bi;
5119 
5120 	spin_unlock_irqrestore(&conf->device_lock, flags);
5121 	md_wakeup_thread(conf->mddev->thread);
5122 }
5123 
5124 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5125 					 unsigned int *offset)
5126 {
5127 	struct bio *bi;
5128 
5129 	bi = conf->retry_read_aligned;
5130 	if (bi) {
5131 		*offset = conf->retry_read_offset;
5132 		conf->retry_read_aligned = NULL;
5133 		return bi;
5134 	}
5135 	bi = conf->retry_read_aligned_list;
5136 	if(bi) {
5137 		conf->retry_read_aligned_list = bi->bi_next;
5138 		bi->bi_next = NULL;
5139 		*offset = 0;
5140 	}
5141 
5142 	return bi;
5143 }
5144 
5145 /*
5146  *  The "raid5_align_endio" should check if the read succeeded and if it
5147  *  did, call bio_endio on the original bio (having bio_put the new bio
5148  *  first).
5149  *  If the read failed..
5150  */
5151 static void raid5_align_endio(struct bio *bi)
5152 {
5153 	struct bio* raid_bi  = bi->bi_private;
5154 	struct mddev *mddev;
5155 	struct r5conf *conf;
5156 	struct md_rdev *rdev;
5157 	blk_status_t error = bi->bi_status;
5158 
5159 	bio_put(bi);
5160 
5161 	rdev = (void*)raid_bi->bi_next;
5162 	raid_bi->bi_next = NULL;
5163 	mddev = rdev->mddev;
5164 	conf = mddev->private;
5165 
5166 	rdev_dec_pending(rdev, conf->mddev);
5167 
5168 	if (!error) {
5169 		bio_endio(raid_bi);
5170 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5171 			wake_up(&conf->wait_for_quiescent);
5172 		return;
5173 	}
5174 
5175 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5176 
5177 	add_bio_to_retry(raid_bi, conf);
5178 }
5179 
5180 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5181 {
5182 	struct r5conf *conf = mddev->private;
5183 	int dd_idx;
5184 	struct bio* align_bi;
5185 	struct md_rdev *rdev;
5186 	sector_t end_sector;
5187 
5188 	if (!in_chunk_boundary(mddev, raid_bio)) {
5189 		pr_debug("%s: non aligned\n", __func__);
5190 		return 0;
5191 	}
5192 	/*
5193 	 * use bio_clone_fast to make a copy of the bio
5194 	 */
5195 	align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5196 	if (!align_bi)
5197 		return 0;
5198 	/*
5199 	 *   set bi_end_io to a new function, and set bi_private to the
5200 	 *     original bio.
5201 	 */
5202 	align_bi->bi_end_io  = raid5_align_endio;
5203 	align_bi->bi_private = raid_bio;
5204 	/*
5205 	 *	compute position
5206 	 */
5207 	align_bi->bi_iter.bi_sector =
5208 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5209 				     0, &dd_idx, NULL);
5210 
5211 	end_sector = bio_end_sector(align_bi);
5212 	rcu_read_lock();
5213 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5214 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5215 	    rdev->recovery_offset < end_sector) {
5216 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5217 		if (rdev &&
5218 		    (test_bit(Faulty, &rdev->flags) ||
5219 		    !(test_bit(In_sync, &rdev->flags) ||
5220 		      rdev->recovery_offset >= end_sector)))
5221 			rdev = NULL;
5222 	}
5223 
5224 	if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5225 		rcu_read_unlock();
5226 		bio_put(align_bi);
5227 		return 0;
5228 	}
5229 
5230 	if (rdev) {
5231 		sector_t first_bad;
5232 		int bad_sectors;
5233 
5234 		atomic_inc(&rdev->nr_pending);
5235 		rcu_read_unlock();
5236 		raid_bio->bi_next = (void*)rdev;
5237 		bio_set_dev(align_bi, rdev->bdev);
5238 		bio_clear_flag(align_bi, BIO_SEG_VALID);
5239 
5240 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5241 				bio_sectors(align_bi),
5242 				&first_bad, &bad_sectors)) {
5243 			bio_put(align_bi);
5244 			rdev_dec_pending(rdev, mddev);
5245 			return 0;
5246 		}
5247 
5248 		/* No reshape active, so we can trust rdev->data_offset */
5249 		align_bi->bi_iter.bi_sector += rdev->data_offset;
5250 
5251 		spin_lock_irq(&conf->device_lock);
5252 		wait_event_lock_irq(conf->wait_for_quiescent,
5253 				    conf->quiesce == 0,
5254 				    conf->device_lock);
5255 		atomic_inc(&conf->active_aligned_reads);
5256 		spin_unlock_irq(&conf->device_lock);
5257 
5258 		if (mddev->gendisk)
5259 			trace_block_bio_remap(align_bi->bi_disk->queue,
5260 					      align_bi, disk_devt(mddev->gendisk),
5261 					      raid_bio->bi_iter.bi_sector);
5262 		generic_make_request(align_bi);
5263 		return 1;
5264 	} else {
5265 		rcu_read_unlock();
5266 		bio_put(align_bi);
5267 		return 0;
5268 	}
5269 }
5270 
5271 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5272 {
5273 	struct bio *split;
5274 	sector_t sector = raid_bio->bi_iter.bi_sector;
5275 	unsigned chunk_sects = mddev->chunk_sectors;
5276 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5277 
5278 	if (sectors < bio_sectors(raid_bio)) {
5279 		struct r5conf *conf = mddev->private;
5280 		split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5281 		bio_chain(split, raid_bio);
5282 		generic_make_request(raid_bio);
5283 		raid_bio = split;
5284 	}
5285 
5286 	if (!raid5_read_one_chunk(mddev, raid_bio))
5287 		return raid_bio;
5288 
5289 	return NULL;
5290 }
5291 
5292 /* __get_priority_stripe - get the next stripe to process
5293  *
5294  * Full stripe writes are allowed to pass preread active stripes up until
5295  * the bypass_threshold is exceeded.  In general the bypass_count
5296  * increments when the handle_list is handled before the hold_list; however, it
5297  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5298  * stripe with in flight i/o.  The bypass_count will be reset when the
5299  * head of the hold_list has changed, i.e. the head was promoted to the
5300  * handle_list.
5301  */
5302 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5303 {
5304 	struct stripe_head *sh, *tmp;
5305 	struct list_head *handle_list = NULL;
5306 	struct r5worker_group *wg;
5307 	bool second_try = !r5c_is_writeback(conf->log) &&
5308 		!r5l_log_disk_error(conf);
5309 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5310 		r5l_log_disk_error(conf);
5311 
5312 again:
5313 	wg = NULL;
5314 	sh = NULL;
5315 	if (conf->worker_cnt_per_group == 0) {
5316 		handle_list = try_loprio ? &conf->loprio_list :
5317 					&conf->handle_list;
5318 	} else if (group != ANY_GROUP) {
5319 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5320 				&conf->worker_groups[group].handle_list;
5321 		wg = &conf->worker_groups[group];
5322 	} else {
5323 		int i;
5324 		for (i = 0; i < conf->group_cnt; i++) {
5325 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5326 				&conf->worker_groups[i].handle_list;
5327 			wg = &conf->worker_groups[i];
5328 			if (!list_empty(handle_list))
5329 				break;
5330 		}
5331 	}
5332 
5333 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5334 		  __func__,
5335 		  list_empty(handle_list) ? "empty" : "busy",
5336 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5337 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5338 
5339 	if (!list_empty(handle_list)) {
5340 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5341 
5342 		if (list_empty(&conf->hold_list))
5343 			conf->bypass_count = 0;
5344 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5345 			if (conf->hold_list.next == conf->last_hold)
5346 				conf->bypass_count++;
5347 			else {
5348 				conf->last_hold = conf->hold_list.next;
5349 				conf->bypass_count -= conf->bypass_threshold;
5350 				if (conf->bypass_count < 0)
5351 					conf->bypass_count = 0;
5352 			}
5353 		}
5354 	} else if (!list_empty(&conf->hold_list) &&
5355 		   ((conf->bypass_threshold &&
5356 		     conf->bypass_count > conf->bypass_threshold) ||
5357 		    atomic_read(&conf->pending_full_writes) == 0)) {
5358 
5359 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5360 			if (conf->worker_cnt_per_group == 0 ||
5361 			    group == ANY_GROUP ||
5362 			    !cpu_online(tmp->cpu) ||
5363 			    cpu_to_group(tmp->cpu) == group) {
5364 				sh = tmp;
5365 				break;
5366 			}
5367 		}
5368 
5369 		if (sh) {
5370 			conf->bypass_count -= conf->bypass_threshold;
5371 			if (conf->bypass_count < 0)
5372 				conf->bypass_count = 0;
5373 		}
5374 		wg = NULL;
5375 	}
5376 
5377 	if (!sh) {
5378 		if (second_try)
5379 			return NULL;
5380 		second_try = true;
5381 		try_loprio = !try_loprio;
5382 		goto again;
5383 	}
5384 
5385 	if (wg) {
5386 		wg->stripes_cnt--;
5387 		sh->group = NULL;
5388 	}
5389 	list_del_init(&sh->lru);
5390 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5391 	return sh;
5392 }
5393 
5394 struct raid5_plug_cb {
5395 	struct blk_plug_cb	cb;
5396 	struct list_head	list;
5397 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5398 };
5399 
5400 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5401 {
5402 	struct raid5_plug_cb *cb = container_of(
5403 		blk_cb, struct raid5_plug_cb, cb);
5404 	struct stripe_head *sh;
5405 	struct mddev *mddev = cb->cb.data;
5406 	struct r5conf *conf = mddev->private;
5407 	int cnt = 0;
5408 	int hash;
5409 
5410 	if (cb->list.next && !list_empty(&cb->list)) {
5411 		spin_lock_irq(&conf->device_lock);
5412 		while (!list_empty(&cb->list)) {
5413 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5414 			list_del_init(&sh->lru);
5415 			/*
5416 			 * avoid race release_stripe_plug() sees
5417 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5418 			 * is still in our list
5419 			 */
5420 			smp_mb__before_atomic();
5421 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5422 			/*
5423 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5424 			 * case, the count is always > 1 here
5425 			 */
5426 			hash = sh->hash_lock_index;
5427 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5428 			cnt++;
5429 		}
5430 		spin_unlock_irq(&conf->device_lock);
5431 	}
5432 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5433 				     NR_STRIPE_HASH_LOCKS);
5434 	if (mddev->queue)
5435 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5436 	kfree(cb);
5437 }
5438 
5439 static void release_stripe_plug(struct mddev *mddev,
5440 				struct stripe_head *sh)
5441 {
5442 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5443 		raid5_unplug, mddev,
5444 		sizeof(struct raid5_plug_cb));
5445 	struct raid5_plug_cb *cb;
5446 
5447 	if (!blk_cb) {
5448 		raid5_release_stripe(sh);
5449 		return;
5450 	}
5451 
5452 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5453 
5454 	if (cb->list.next == NULL) {
5455 		int i;
5456 		INIT_LIST_HEAD(&cb->list);
5457 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5458 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5459 	}
5460 
5461 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5462 		list_add_tail(&sh->lru, &cb->list);
5463 	else
5464 		raid5_release_stripe(sh);
5465 }
5466 
5467 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5468 {
5469 	struct r5conf *conf = mddev->private;
5470 	sector_t logical_sector, last_sector;
5471 	struct stripe_head *sh;
5472 	int stripe_sectors;
5473 
5474 	if (mddev->reshape_position != MaxSector)
5475 		/* Skip discard while reshape is happening */
5476 		return;
5477 
5478 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5479 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5480 
5481 	bi->bi_next = NULL;
5482 
5483 	stripe_sectors = conf->chunk_sectors *
5484 		(conf->raid_disks - conf->max_degraded);
5485 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5486 					       stripe_sectors);
5487 	sector_div(last_sector, stripe_sectors);
5488 
5489 	logical_sector *= conf->chunk_sectors;
5490 	last_sector *= conf->chunk_sectors;
5491 
5492 	for (; logical_sector < last_sector;
5493 	     logical_sector += STRIPE_SECTORS) {
5494 		DEFINE_WAIT(w);
5495 		int d;
5496 	again:
5497 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5498 		prepare_to_wait(&conf->wait_for_overlap, &w,
5499 				TASK_UNINTERRUPTIBLE);
5500 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5501 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5502 			raid5_release_stripe(sh);
5503 			schedule();
5504 			goto again;
5505 		}
5506 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5507 		spin_lock_irq(&sh->stripe_lock);
5508 		for (d = 0; d < conf->raid_disks; d++) {
5509 			if (d == sh->pd_idx || d == sh->qd_idx)
5510 				continue;
5511 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5512 				set_bit(R5_Overlap, &sh->dev[d].flags);
5513 				spin_unlock_irq(&sh->stripe_lock);
5514 				raid5_release_stripe(sh);
5515 				schedule();
5516 				goto again;
5517 			}
5518 		}
5519 		set_bit(STRIPE_DISCARD, &sh->state);
5520 		finish_wait(&conf->wait_for_overlap, &w);
5521 		sh->overwrite_disks = 0;
5522 		for (d = 0; d < conf->raid_disks; d++) {
5523 			if (d == sh->pd_idx || d == sh->qd_idx)
5524 				continue;
5525 			sh->dev[d].towrite = bi;
5526 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5527 			bio_inc_remaining(bi);
5528 			md_write_inc(mddev, bi);
5529 			sh->overwrite_disks++;
5530 		}
5531 		spin_unlock_irq(&sh->stripe_lock);
5532 		if (conf->mddev->bitmap) {
5533 			for (d = 0;
5534 			     d < conf->raid_disks - conf->max_degraded;
5535 			     d++)
5536 				bitmap_startwrite(mddev->bitmap,
5537 						  sh->sector,
5538 						  STRIPE_SECTORS,
5539 						  0);
5540 			sh->bm_seq = conf->seq_flush + 1;
5541 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5542 		}
5543 
5544 		set_bit(STRIPE_HANDLE, &sh->state);
5545 		clear_bit(STRIPE_DELAYED, &sh->state);
5546 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5547 			atomic_inc(&conf->preread_active_stripes);
5548 		release_stripe_plug(mddev, sh);
5549 	}
5550 
5551 	bio_endio(bi);
5552 }
5553 
5554 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5555 {
5556 	struct r5conf *conf = mddev->private;
5557 	int dd_idx;
5558 	sector_t new_sector;
5559 	sector_t logical_sector, last_sector;
5560 	struct stripe_head *sh;
5561 	const int rw = bio_data_dir(bi);
5562 	DEFINE_WAIT(w);
5563 	bool do_prepare;
5564 	bool do_flush = false;
5565 
5566 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5567 		int ret = log_handle_flush_request(conf, bi);
5568 
5569 		if (ret == 0)
5570 			return true;
5571 		if (ret == -ENODEV) {
5572 			md_flush_request(mddev, bi);
5573 			return true;
5574 		}
5575 		/* ret == -EAGAIN, fallback */
5576 		/*
5577 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5578 		 * we need to flush journal device
5579 		 */
5580 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5581 	}
5582 
5583 	if (!md_write_start(mddev, bi))
5584 		return false;
5585 	/*
5586 	 * If array is degraded, better not do chunk aligned read because
5587 	 * later we might have to read it again in order to reconstruct
5588 	 * data on failed drives.
5589 	 */
5590 	if (rw == READ && mddev->degraded == 0 &&
5591 	    mddev->reshape_position == MaxSector) {
5592 		bi = chunk_aligned_read(mddev, bi);
5593 		if (!bi)
5594 			return true;
5595 	}
5596 
5597 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5598 		make_discard_request(mddev, bi);
5599 		md_write_end(mddev);
5600 		return true;
5601 	}
5602 
5603 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5604 	last_sector = bio_end_sector(bi);
5605 	bi->bi_next = NULL;
5606 
5607 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5608 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5609 		int previous;
5610 		int seq;
5611 
5612 		do_prepare = false;
5613 	retry:
5614 		seq = read_seqcount_begin(&conf->gen_lock);
5615 		previous = 0;
5616 		if (do_prepare)
5617 			prepare_to_wait(&conf->wait_for_overlap, &w,
5618 				TASK_UNINTERRUPTIBLE);
5619 		if (unlikely(conf->reshape_progress != MaxSector)) {
5620 			/* spinlock is needed as reshape_progress may be
5621 			 * 64bit on a 32bit platform, and so it might be
5622 			 * possible to see a half-updated value
5623 			 * Of course reshape_progress could change after
5624 			 * the lock is dropped, so once we get a reference
5625 			 * to the stripe that we think it is, we will have
5626 			 * to check again.
5627 			 */
5628 			spin_lock_irq(&conf->device_lock);
5629 			if (mddev->reshape_backwards
5630 			    ? logical_sector < conf->reshape_progress
5631 			    : logical_sector >= conf->reshape_progress) {
5632 				previous = 1;
5633 			} else {
5634 				if (mddev->reshape_backwards
5635 				    ? logical_sector < conf->reshape_safe
5636 				    : logical_sector >= conf->reshape_safe) {
5637 					spin_unlock_irq(&conf->device_lock);
5638 					schedule();
5639 					do_prepare = true;
5640 					goto retry;
5641 				}
5642 			}
5643 			spin_unlock_irq(&conf->device_lock);
5644 		}
5645 
5646 		new_sector = raid5_compute_sector(conf, logical_sector,
5647 						  previous,
5648 						  &dd_idx, NULL);
5649 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5650 			(unsigned long long)new_sector,
5651 			(unsigned long long)logical_sector);
5652 
5653 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5654 				       (bi->bi_opf & REQ_RAHEAD), 0);
5655 		if (sh) {
5656 			if (unlikely(previous)) {
5657 				/* expansion might have moved on while waiting for a
5658 				 * stripe, so we must do the range check again.
5659 				 * Expansion could still move past after this
5660 				 * test, but as we are holding a reference to
5661 				 * 'sh', we know that if that happens,
5662 				 *  STRIPE_EXPANDING will get set and the expansion
5663 				 * won't proceed until we finish with the stripe.
5664 				 */
5665 				int must_retry = 0;
5666 				spin_lock_irq(&conf->device_lock);
5667 				if (mddev->reshape_backwards
5668 				    ? logical_sector >= conf->reshape_progress
5669 				    : logical_sector < conf->reshape_progress)
5670 					/* mismatch, need to try again */
5671 					must_retry = 1;
5672 				spin_unlock_irq(&conf->device_lock);
5673 				if (must_retry) {
5674 					raid5_release_stripe(sh);
5675 					schedule();
5676 					do_prepare = true;
5677 					goto retry;
5678 				}
5679 			}
5680 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5681 				/* Might have got the wrong stripe_head
5682 				 * by accident
5683 				 */
5684 				raid5_release_stripe(sh);
5685 				goto retry;
5686 			}
5687 
5688 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5689 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5690 				/* Stripe is busy expanding or
5691 				 * add failed due to overlap.  Flush everything
5692 				 * and wait a while
5693 				 */
5694 				md_wakeup_thread(mddev->thread);
5695 				raid5_release_stripe(sh);
5696 				schedule();
5697 				do_prepare = true;
5698 				goto retry;
5699 			}
5700 			if (do_flush) {
5701 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5702 				/* we only need flush for one stripe */
5703 				do_flush = false;
5704 			}
5705 
5706 			set_bit(STRIPE_HANDLE, &sh->state);
5707 			clear_bit(STRIPE_DELAYED, &sh->state);
5708 			if ((!sh->batch_head || sh == sh->batch_head) &&
5709 			    (bi->bi_opf & REQ_SYNC) &&
5710 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5711 				atomic_inc(&conf->preread_active_stripes);
5712 			release_stripe_plug(mddev, sh);
5713 		} else {
5714 			/* cannot get stripe for read-ahead, just give-up */
5715 			bi->bi_status = BLK_STS_IOERR;
5716 			break;
5717 		}
5718 	}
5719 	finish_wait(&conf->wait_for_overlap, &w);
5720 
5721 	if (rw == WRITE)
5722 		md_write_end(mddev);
5723 	bio_endio(bi);
5724 	return true;
5725 }
5726 
5727 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5728 
5729 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5730 {
5731 	/* reshaping is quite different to recovery/resync so it is
5732 	 * handled quite separately ... here.
5733 	 *
5734 	 * On each call to sync_request, we gather one chunk worth of
5735 	 * destination stripes and flag them as expanding.
5736 	 * Then we find all the source stripes and request reads.
5737 	 * As the reads complete, handle_stripe will copy the data
5738 	 * into the destination stripe and release that stripe.
5739 	 */
5740 	struct r5conf *conf = mddev->private;
5741 	struct stripe_head *sh;
5742 	struct md_rdev *rdev;
5743 	sector_t first_sector, last_sector;
5744 	int raid_disks = conf->previous_raid_disks;
5745 	int data_disks = raid_disks - conf->max_degraded;
5746 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5747 	int i;
5748 	int dd_idx;
5749 	sector_t writepos, readpos, safepos;
5750 	sector_t stripe_addr;
5751 	int reshape_sectors;
5752 	struct list_head stripes;
5753 	sector_t retn;
5754 
5755 	if (sector_nr == 0) {
5756 		/* If restarting in the middle, skip the initial sectors */
5757 		if (mddev->reshape_backwards &&
5758 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5759 			sector_nr = raid5_size(mddev, 0, 0)
5760 				- conf->reshape_progress;
5761 		} else if (mddev->reshape_backwards &&
5762 			   conf->reshape_progress == MaxSector) {
5763 			/* shouldn't happen, but just in case, finish up.*/
5764 			sector_nr = MaxSector;
5765 		} else if (!mddev->reshape_backwards &&
5766 			   conf->reshape_progress > 0)
5767 			sector_nr = conf->reshape_progress;
5768 		sector_div(sector_nr, new_data_disks);
5769 		if (sector_nr) {
5770 			mddev->curr_resync_completed = sector_nr;
5771 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5772 			*skipped = 1;
5773 			retn = sector_nr;
5774 			goto finish;
5775 		}
5776 	}
5777 
5778 	/* We need to process a full chunk at a time.
5779 	 * If old and new chunk sizes differ, we need to process the
5780 	 * largest of these
5781 	 */
5782 
5783 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5784 
5785 	/* We update the metadata at least every 10 seconds, or when
5786 	 * the data about to be copied would over-write the source of
5787 	 * the data at the front of the range.  i.e. one new_stripe
5788 	 * along from reshape_progress new_maps to after where
5789 	 * reshape_safe old_maps to
5790 	 */
5791 	writepos = conf->reshape_progress;
5792 	sector_div(writepos, new_data_disks);
5793 	readpos = conf->reshape_progress;
5794 	sector_div(readpos, data_disks);
5795 	safepos = conf->reshape_safe;
5796 	sector_div(safepos, data_disks);
5797 	if (mddev->reshape_backwards) {
5798 		BUG_ON(writepos < reshape_sectors);
5799 		writepos -= reshape_sectors;
5800 		readpos += reshape_sectors;
5801 		safepos += reshape_sectors;
5802 	} else {
5803 		writepos += reshape_sectors;
5804 		/* readpos and safepos are worst-case calculations.
5805 		 * A negative number is overly pessimistic, and causes
5806 		 * obvious problems for unsigned storage.  So clip to 0.
5807 		 */
5808 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5809 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5810 	}
5811 
5812 	/* Having calculated the 'writepos' possibly use it
5813 	 * to set 'stripe_addr' which is where we will write to.
5814 	 */
5815 	if (mddev->reshape_backwards) {
5816 		BUG_ON(conf->reshape_progress == 0);
5817 		stripe_addr = writepos;
5818 		BUG_ON((mddev->dev_sectors &
5819 			~((sector_t)reshape_sectors - 1))
5820 		       - reshape_sectors - stripe_addr
5821 		       != sector_nr);
5822 	} else {
5823 		BUG_ON(writepos != sector_nr + reshape_sectors);
5824 		stripe_addr = sector_nr;
5825 	}
5826 
5827 	/* 'writepos' is the most advanced device address we might write.
5828 	 * 'readpos' is the least advanced device address we might read.
5829 	 * 'safepos' is the least address recorded in the metadata as having
5830 	 *     been reshaped.
5831 	 * If there is a min_offset_diff, these are adjusted either by
5832 	 * increasing the safepos/readpos if diff is negative, or
5833 	 * increasing writepos if diff is positive.
5834 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5835 	 * ensure safety in the face of a crash - that must be done by userspace
5836 	 * making a backup of the data.  So in that case there is no particular
5837 	 * rush to update metadata.
5838 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5839 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5840 	 * we can be safe in the event of a crash.
5841 	 * So we insist on updating metadata if safepos is behind writepos and
5842 	 * readpos is beyond writepos.
5843 	 * In any case, update the metadata every 10 seconds.
5844 	 * Maybe that number should be configurable, but I'm not sure it is
5845 	 * worth it.... maybe it could be a multiple of safemode_delay???
5846 	 */
5847 	if (conf->min_offset_diff < 0) {
5848 		safepos += -conf->min_offset_diff;
5849 		readpos += -conf->min_offset_diff;
5850 	} else
5851 		writepos += conf->min_offset_diff;
5852 
5853 	if ((mddev->reshape_backwards
5854 	     ? (safepos > writepos && readpos < writepos)
5855 	     : (safepos < writepos && readpos > writepos)) ||
5856 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5857 		/* Cannot proceed until we've updated the superblock... */
5858 		wait_event(conf->wait_for_overlap,
5859 			   atomic_read(&conf->reshape_stripes)==0
5860 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5861 		if (atomic_read(&conf->reshape_stripes) != 0)
5862 			return 0;
5863 		mddev->reshape_position = conf->reshape_progress;
5864 		mddev->curr_resync_completed = sector_nr;
5865 		if (!mddev->reshape_backwards)
5866 			/* Can update recovery_offset */
5867 			rdev_for_each(rdev, mddev)
5868 				if (rdev->raid_disk >= 0 &&
5869 				    !test_bit(Journal, &rdev->flags) &&
5870 				    !test_bit(In_sync, &rdev->flags) &&
5871 				    rdev->recovery_offset < sector_nr)
5872 					rdev->recovery_offset = sector_nr;
5873 
5874 		conf->reshape_checkpoint = jiffies;
5875 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5876 		md_wakeup_thread(mddev->thread);
5877 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5878 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5879 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5880 			return 0;
5881 		spin_lock_irq(&conf->device_lock);
5882 		conf->reshape_safe = mddev->reshape_position;
5883 		spin_unlock_irq(&conf->device_lock);
5884 		wake_up(&conf->wait_for_overlap);
5885 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5886 	}
5887 
5888 	INIT_LIST_HEAD(&stripes);
5889 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5890 		int j;
5891 		int skipped_disk = 0;
5892 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5893 		set_bit(STRIPE_EXPANDING, &sh->state);
5894 		atomic_inc(&conf->reshape_stripes);
5895 		/* If any of this stripe is beyond the end of the old
5896 		 * array, then we need to zero those blocks
5897 		 */
5898 		for (j=sh->disks; j--;) {
5899 			sector_t s;
5900 			if (j == sh->pd_idx)
5901 				continue;
5902 			if (conf->level == 6 &&
5903 			    j == sh->qd_idx)
5904 				continue;
5905 			s = raid5_compute_blocknr(sh, j, 0);
5906 			if (s < raid5_size(mddev, 0, 0)) {
5907 				skipped_disk = 1;
5908 				continue;
5909 			}
5910 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5911 			set_bit(R5_Expanded, &sh->dev[j].flags);
5912 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5913 		}
5914 		if (!skipped_disk) {
5915 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5916 			set_bit(STRIPE_HANDLE, &sh->state);
5917 		}
5918 		list_add(&sh->lru, &stripes);
5919 	}
5920 	spin_lock_irq(&conf->device_lock);
5921 	if (mddev->reshape_backwards)
5922 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5923 	else
5924 		conf->reshape_progress += reshape_sectors * new_data_disks;
5925 	spin_unlock_irq(&conf->device_lock);
5926 	/* Ok, those stripe are ready. We can start scheduling
5927 	 * reads on the source stripes.
5928 	 * The source stripes are determined by mapping the first and last
5929 	 * block on the destination stripes.
5930 	 */
5931 	first_sector =
5932 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5933 				     1, &dd_idx, NULL);
5934 	last_sector =
5935 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5936 					    * new_data_disks - 1),
5937 				     1, &dd_idx, NULL);
5938 	if (last_sector >= mddev->dev_sectors)
5939 		last_sector = mddev->dev_sectors - 1;
5940 	while (first_sector <= last_sector) {
5941 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5942 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5943 		set_bit(STRIPE_HANDLE, &sh->state);
5944 		raid5_release_stripe(sh);
5945 		first_sector += STRIPE_SECTORS;
5946 	}
5947 	/* Now that the sources are clearly marked, we can release
5948 	 * the destination stripes
5949 	 */
5950 	while (!list_empty(&stripes)) {
5951 		sh = list_entry(stripes.next, struct stripe_head, lru);
5952 		list_del_init(&sh->lru);
5953 		raid5_release_stripe(sh);
5954 	}
5955 	/* If this takes us to the resync_max point where we have to pause,
5956 	 * then we need to write out the superblock.
5957 	 */
5958 	sector_nr += reshape_sectors;
5959 	retn = reshape_sectors;
5960 finish:
5961 	if (mddev->curr_resync_completed > mddev->resync_max ||
5962 	    (sector_nr - mddev->curr_resync_completed) * 2
5963 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5964 		/* Cannot proceed until we've updated the superblock... */
5965 		wait_event(conf->wait_for_overlap,
5966 			   atomic_read(&conf->reshape_stripes) == 0
5967 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5968 		if (atomic_read(&conf->reshape_stripes) != 0)
5969 			goto ret;
5970 		mddev->reshape_position = conf->reshape_progress;
5971 		mddev->curr_resync_completed = sector_nr;
5972 		if (!mddev->reshape_backwards)
5973 			/* Can update recovery_offset */
5974 			rdev_for_each(rdev, mddev)
5975 				if (rdev->raid_disk >= 0 &&
5976 				    !test_bit(Journal, &rdev->flags) &&
5977 				    !test_bit(In_sync, &rdev->flags) &&
5978 				    rdev->recovery_offset < sector_nr)
5979 					rdev->recovery_offset = sector_nr;
5980 		conf->reshape_checkpoint = jiffies;
5981 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5982 		md_wakeup_thread(mddev->thread);
5983 		wait_event(mddev->sb_wait,
5984 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5985 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5986 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5987 			goto ret;
5988 		spin_lock_irq(&conf->device_lock);
5989 		conf->reshape_safe = mddev->reshape_position;
5990 		spin_unlock_irq(&conf->device_lock);
5991 		wake_up(&conf->wait_for_overlap);
5992 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5993 	}
5994 ret:
5995 	return retn;
5996 }
5997 
5998 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5999 					  int *skipped)
6000 {
6001 	struct r5conf *conf = mddev->private;
6002 	struct stripe_head *sh;
6003 	sector_t max_sector = mddev->dev_sectors;
6004 	sector_t sync_blocks;
6005 	int still_degraded = 0;
6006 	int i;
6007 
6008 	if (sector_nr >= max_sector) {
6009 		/* just being told to finish up .. nothing much to do */
6010 
6011 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6012 			end_reshape(conf);
6013 			return 0;
6014 		}
6015 
6016 		if (mddev->curr_resync < max_sector) /* aborted */
6017 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6018 					&sync_blocks, 1);
6019 		else /* completed sync */
6020 			conf->fullsync = 0;
6021 		bitmap_close_sync(mddev->bitmap);
6022 
6023 		return 0;
6024 	}
6025 
6026 	/* Allow raid5_quiesce to complete */
6027 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6028 
6029 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6030 		return reshape_request(mddev, sector_nr, skipped);
6031 
6032 	/* No need to check resync_max as we never do more than one
6033 	 * stripe, and as resync_max will always be on a chunk boundary,
6034 	 * if the check in md_do_sync didn't fire, there is no chance
6035 	 * of overstepping resync_max here
6036 	 */
6037 
6038 	/* if there is too many failed drives and we are trying
6039 	 * to resync, then assert that we are finished, because there is
6040 	 * nothing we can do.
6041 	 */
6042 	if (mddev->degraded >= conf->max_degraded &&
6043 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6044 		sector_t rv = mddev->dev_sectors - sector_nr;
6045 		*skipped = 1;
6046 		return rv;
6047 	}
6048 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6049 	    !conf->fullsync &&
6050 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6051 	    sync_blocks >= STRIPE_SECTORS) {
6052 		/* we can skip this block, and probably more */
6053 		sync_blocks /= STRIPE_SECTORS;
6054 		*skipped = 1;
6055 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6056 	}
6057 
6058 	bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6059 
6060 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6061 	if (sh == NULL) {
6062 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6063 		/* make sure we don't swamp the stripe cache if someone else
6064 		 * is trying to get access
6065 		 */
6066 		schedule_timeout_uninterruptible(1);
6067 	}
6068 	/* Need to check if array will still be degraded after recovery/resync
6069 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6070 	 * one drive while leaving another faulty drive in array.
6071 	 */
6072 	rcu_read_lock();
6073 	for (i = 0; i < conf->raid_disks; i++) {
6074 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6075 
6076 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6077 			still_degraded = 1;
6078 	}
6079 	rcu_read_unlock();
6080 
6081 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6082 
6083 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6084 	set_bit(STRIPE_HANDLE, &sh->state);
6085 
6086 	raid5_release_stripe(sh);
6087 
6088 	return STRIPE_SECTORS;
6089 }
6090 
6091 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6092 			       unsigned int offset)
6093 {
6094 	/* We may not be able to submit a whole bio at once as there
6095 	 * may not be enough stripe_heads available.
6096 	 * We cannot pre-allocate enough stripe_heads as we may need
6097 	 * more than exist in the cache (if we allow ever large chunks).
6098 	 * So we do one stripe head at a time and record in
6099 	 * ->bi_hw_segments how many have been done.
6100 	 *
6101 	 * We *know* that this entire raid_bio is in one chunk, so
6102 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6103 	 */
6104 	struct stripe_head *sh;
6105 	int dd_idx;
6106 	sector_t sector, logical_sector, last_sector;
6107 	int scnt = 0;
6108 	int handled = 0;
6109 
6110 	logical_sector = raid_bio->bi_iter.bi_sector &
6111 		~((sector_t)STRIPE_SECTORS-1);
6112 	sector = raid5_compute_sector(conf, logical_sector,
6113 				      0, &dd_idx, NULL);
6114 	last_sector = bio_end_sector(raid_bio);
6115 
6116 	for (; logical_sector < last_sector;
6117 	     logical_sector += STRIPE_SECTORS,
6118 		     sector += STRIPE_SECTORS,
6119 		     scnt++) {
6120 
6121 		if (scnt < offset)
6122 			/* already done this stripe */
6123 			continue;
6124 
6125 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6126 
6127 		if (!sh) {
6128 			/* failed to get a stripe - must wait */
6129 			conf->retry_read_aligned = raid_bio;
6130 			conf->retry_read_offset = scnt;
6131 			return handled;
6132 		}
6133 
6134 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6135 			raid5_release_stripe(sh);
6136 			conf->retry_read_aligned = raid_bio;
6137 			conf->retry_read_offset = scnt;
6138 			return handled;
6139 		}
6140 
6141 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6142 		handle_stripe(sh);
6143 		raid5_release_stripe(sh);
6144 		handled++;
6145 	}
6146 
6147 	bio_endio(raid_bio);
6148 
6149 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6150 		wake_up(&conf->wait_for_quiescent);
6151 	return handled;
6152 }
6153 
6154 static int handle_active_stripes(struct r5conf *conf, int group,
6155 				 struct r5worker *worker,
6156 				 struct list_head *temp_inactive_list)
6157 {
6158 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6159 	int i, batch_size = 0, hash;
6160 	bool release_inactive = false;
6161 
6162 	while (batch_size < MAX_STRIPE_BATCH &&
6163 			(sh = __get_priority_stripe(conf, group)) != NULL)
6164 		batch[batch_size++] = sh;
6165 
6166 	if (batch_size == 0) {
6167 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6168 			if (!list_empty(temp_inactive_list + i))
6169 				break;
6170 		if (i == NR_STRIPE_HASH_LOCKS) {
6171 			spin_unlock_irq(&conf->device_lock);
6172 			log_flush_stripe_to_raid(conf);
6173 			spin_lock_irq(&conf->device_lock);
6174 			return batch_size;
6175 		}
6176 		release_inactive = true;
6177 	}
6178 	spin_unlock_irq(&conf->device_lock);
6179 
6180 	release_inactive_stripe_list(conf, temp_inactive_list,
6181 				     NR_STRIPE_HASH_LOCKS);
6182 
6183 	r5l_flush_stripe_to_raid(conf->log);
6184 	if (release_inactive) {
6185 		spin_lock_irq(&conf->device_lock);
6186 		return 0;
6187 	}
6188 
6189 	for (i = 0; i < batch_size; i++)
6190 		handle_stripe(batch[i]);
6191 	log_write_stripe_run(conf);
6192 
6193 	cond_resched();
6194 
6195 	spin_lock_irq(&conf->device_lock);
6196 	for (i = 0; i < batch_size; i++) {
6197 		hash = batch[i]->hash_lock_index;
6198 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6199 	}
6200 	return batch_size;
6201 }
6202 
6203 static void raid5_do_work(struct work_struct *work)
6204 {
6205 	struct r5worker *worker = container_of(work, struct r5worker, work);
6206 	struct r5worker_group *group = worker->group;
6207 	struct r5conf *conf = group->conf;
6208 	struct mddev *mddev = conf->mddev;
6209 	int group_id = group - conf->worker_groups;
6210 	int handled;
6211 	struct blk_plug plug;
6212 
6213 	pr_debug("+++ raid5worker active\n");
6214 
6215 	blk_start_plug(&plug);
6216 	handled = 0;
6217 	spin_lock_irq(&conf->device_lock);
6218 	while (1) {
6219 		int batch_size, released;
6220 
6221 		released = release_stripe_list(conf, worker->temp_inactive_list);
6222 
6223 		batch_size = handle_active_stripes(conf, group_id, worker,
6224 						   worker->temp_inactive_list);
6225 		worker->working = false;
6226 		if (!batch_size && !released)
6227 			break;
6228 		handled += batch_size;
6229 		wait_event_lock_irq(mddev->sb_wait,
6230 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6231 			conf->device_lock);
6232 	}
6233 	pr_debug("%d stripes handled\n", handled);
6234 
6235 	spin_unlock_irq(&conf->device_lock);
6236 
6237 	flush_deferred_bios(conf);
6238 
6239 	r5l_flush_stripe_to_raid(conf->log);
6240 
6241 	async_tx_issue_pending_all();
6242 	blk_finish_plug(&plug);
6243 
6244 	pr_debug("--- raid5worker inactive\n");
6245 }
6246 
6247 /*
6248  * This is our raid5 kernel thread.
6249  *
6250  * We scan the hash table for stripes which can be handled now.
6251  * During the scan, completed stripes are saved for us by the interrupt
6252  * handler, so that they will not have to wait for our next wakeup.
6253  */
6254 static void raid5d(struct md_thread *thread)
6255 {
6256 	struct mddev *mddev = thread->mddev;
6257 	struct r5conf *conf = mddev->private;
6258 	int handled;
6259 	struct blk_plug plug;
6260 
6261 	pr_debug("+++ raid5d active\n");
6262 
6263 	md_check_recovery(mddev);
6264 
6265 	blk_start_plug(&plug);
6266 	handled = 0;
6267 	spin_lock_irq(&conf->device_lock);
6268 	while (1) {
6269 		struct bio *bio;
6270 		int batch_size, released;
6271 		unsigned int offset;
6272 
6273 		released = release_stripe_list(conf, conf->temp_inactive_list);
6274 		if (released)
6275 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6276 
6277 		if (
6278 		    !list_empty(&conf->bitmap_list)) {
6279 			/* Now is a good time to flush some bitmap updates */
6280 			conf->seq_flush++;
6281 			spin_unlock_irq(&conf->device_lock);
6282 			bitmap_unplug(mddev->bitmap);
6283 			spin_lock_irq(&conf->device_lock);
6284 			conf->seq_write = conf->seq_flush;
6285 			activate_bit_delay(conf, conf->temp_inactive_list);
6286 		}
6287 		raid5_activate_delayed(conf);
6288 
6289 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6290 			int ok;
6291 			spin_unlock_irq(&conf->device_lock);
6292 			ok = retry_aligned_read(conf, bio, offset);
6293 			spin_lock_irq(&conf->device_lock);
6294 			if (!ok)
6295 				break;
6296 			handled++;
6297 		}
6298 
6299 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6300 						   conf->temp_inactive_list);
6301 		if (!batch_size && !released)
6302 			break;
6303 		handled += batch_size;
6304 
6305 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6306 			spin_unlock_irq(&conf->device_lock);
6307 			md_check_recovery(mddev);
6308 			spin_lock_irq(&conf->device_lock);
6309 		}
6310 	}
6311 	pr_debug("%d stripes handled\n", handled);
6312 
6313 	spin_unlock_irq(&conf->device_lock);
6314 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6315 	    mutex_trylock(&conf->cache_size_mutex)) {
6316 		grow_one_stripe(conf, __GFP_NOWARN);
6317 		/* Set flag even if allocation failed.  This helps
6318 		 * slow down allocation requests when mem is short
6319 		 */
6320 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6321 		mutex_unlock(&conf->cache_size_mutex);
6322 	}
6323 
6324 	flush_deferred_bios(conf);
6325 
6326 	r5l_flush_stripe_to_raid(conf->log);
6327 
6328 	async_tx_issue_pending_all();
6329 	blk_finish_plug(&plug);
6330 
6331 	pr_debug("--- raid5d inactive\n");
6332 }
6333 
6334 static ssize_t
6335 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6336 {
6337 	struct r5conf *conf;
6338 	int ret = 0;
6339 	spin_lock(&mddev->lock);
6340 	conf = mddev->private;
6341 	if (conf)
6342 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6343 	spin_unlock(&mddev->lock);
6344 	return ret;
6345 }
6346 
6347 int
6348 raid5_set_cache_size(struct mddev *mddev, int size)
6349 {
6350 	struct r5conf *conf = mddev->private;
6351 
6352 	if (size <= 16 || size > 32768)
6353 		return -EINVAL;
6354 
6355 	conf->min_nr_stripes = size;
6356 	mutex_lock(&conf->cache_size_mutex);
6357 	while (size < conf->max_nr_stripes &&
6358 	       drop_one_stripe(conf))
6359 		;
6360 	mutex_unlock(&conf->cache_size_mutex);
6361 
6362 	md_allow_write(mddev);
6363 
6364 	mutex_lock(&conf->cache_size_mutex);
6365 	while (size > conf->max_nr_stripes)
6366 		if (!grow_one_stripe(conf, GFP_KERNEL))
6367 			break;
6368 	mutex_unlock(&conf->cache_size_mutex);
6369 
6370 	return 0;
6371 }
6372 EXPORT_SYMBOL(raid5_set_cache_size);
6373 
6374 static ssize_t
6375 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6376 {
6377 	struct r5conf *conf;
6378 	unsigned long new;
6379 	int err;
6380 
6381 	if (len >= PAGE_SIZE)
6382 		return -EINVAL;
6383 	if (kstrtoul(page, 10, &new))
6384 		return -EINVAL;
6385 	err = mddev_lock(mddev);
6386 	if (err)
6387 		return err;
6388 	conf = mddev->private;
6389 	if (!conf)
6390 		err = -ENODEV;
6391 	else
6392 		err = raid5_set_cache_size(mddev, new);
6393 	mddev_unlock(mddev);
6394 
6395 	return err ?: len;
6396 }
6397 
6398 static struct md_sysfs_entry
6399 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6400 				raid5_show_stripe_cache_size,
6401 				raid5_store_stripe_cache_size);
6402 
6403 static ssize_t
6404 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6405 {
6406 	struct r5conf *conf = mddev->private;
6407 	if (conf)
6408 		return sprintf(page, "%d\n", conf->rmw_level);
6409 	else
6410 		return 0;
6411 }
6412 
6413 static ssize_t
6414 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6415 {
6416 	struct r5conf *conf = mddev->private;
6417 	unsigned long new;
6418 
6419 	if (!conf)
6420 		return -ENODEV;
6421 
6422 	if (len >= PAGE_SIZE)
6423 		return -EINVAL;
6424 
6425 	if (kstrtoul(page, 10, &new))
6426 		return -EINVAL;
6427 
6428 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6429 		return -EINVAL;
6430 
6431 	if (new != PARITY_DISABLE_RMW &&
6432 	    new != PARITY_ENABLE_RMW &&
6433 	    new != PARITY_PREFER_RMW)
6434 		return -EINVAL;
6435 
6436 	conf->rmw_level = new;
6437 	return len;
6438 }
6439 
6440 static struct md_sysfs_entry
6441 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6442 			 raid5_show_rmw_level,
6443 			 raid5_store_rmw_level);
6444 
6445 
6446 static ssize_t
6447 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6448 {
6449 	struct r5conf *conf;
6450 	int ret = 0;
6451 	spin_lock(&mddev->lock);
6452 	conf = mddev->private;
6453 	if (conf)
6454 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6455 	spin_unlock(&mddev->lock);
6456 	return ret;
6457 }
6458 
6459 static ssize_t
6460 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6461 {
6462 	struct r5conf *conf;
6463 	unsigned long new;
6464 	int err;
6465 
6466 	if (len >= PAGE_SIZE)
6467 		return -EINVAL;
6468 	if (kstrtoul(page, 10, &new))
6469 		return -EINVAL;
6470 
6471 	err = mddev_lock(mddev);
6472 	if (err)
6473 		return err;
6474 	conf = mddev->private;
6475 	if (!conf)
6476 		err = -ENODEV;
6477 	else if (new > conf->min_nr_stripes)
6478 		err = -EINVAL;
6479 	else
6480 		conf->bypass_threshold = new;
6481 	mddev_unlock(mddev);
6482 	return err ?: len;
6483 }
6484 
6485 static struct md_sysfs_entry
6486 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6487 					S_IRUGO | S_IWUSR,
6488 					raid5_show_preread_threshold,
6489 					raid5_store_preread_threshold);
6490 
6491 static ssize_t
6492 raid5_show_skip_copy(struct mddev *mddev, char *page)
6493 {
6494 	struct r5conf *conf;
6495 	int ret = 0;
6496 	spin_lock(&mddev->lock);
6497 	conf = mddev->private;
6498 	if (conf)
6499 		ret = sprintf(page, "%d\n", conf->skip_copy);
6500 	spin_unlock(&mddev->lock);
6501 	return ret;
6502 }
6503 
6504 static ssize_t
6505 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6506 {
6507 	struct r5conf *conf;
6508 	unsigned long new;
6509 	int err;
6510 
6511 	if (len >= PAGE_SIZE)
6512 		return -EINVAL;
6513 	if (kstrtoul(page, 10, &new))
6514 		return -EINVAL;
6515 	new = !!new;
6516 
6517 	err = mddev_lock(mddev);
6518 	if (err)
6519 		return err;
6520 	conf = mddev->private;
6521 	if (!conf)
6522 		err = -ENODEV;
6523 	else if (new != conf->skip_copy) {
6524 		mddev_suspend(mddev);
6525 		conf->skip_copy = new;
6526 		if (new)
6527 			mddev->queue->backing_dev_info->capabilities |=
6528 				BDI_CAP_STABLE_WRITES;
6529 		else
6530 			mddev->queue->backing_dev_info->capabilities &=
6531 				~BDI_CAP_STABLE_WRITES;
6532 		mddev_resume(mddev);
6533 	}
6534 	mddev_unlock(mddev);
6535 	return err ?: len;
6536 }
6537 
6538 static struct md_sysfs_entry
6539 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6540 					raid5_show_skip_copy,
6541 					raid5_store_skip_copy);
6542 
6543 static ssize_t
6544 stripe_cache_active_show(struct mddev *mddev, char *page)
6545 {
6546 	struct r5conf *conf = mddev->private;
6547 	if (conf)
6548 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6549 	else
6550 		return 0;
6551 }
6552 
6553 static struct md_sysfs_entry
6554 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6555 
6556 static ssize_t
6557 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6558 {
6559 	struct r5conf *conf;
6560 	int ret = 0;
6561 	spin_lock(&mddev->lock);
6562 	conf = mddev->private;
6563 	if (conf)
6564 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6565 	spin_unlock(&mddev->lock);
6566 	return ret;
6567 }
6568 
6569 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6570 			       int *group_cnt,
6571 			       int *worker_cnt_per_group,
6572 			       struct r5worker_group **worker_groups);
6573 static ssize_t
6574 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6575 {
6576 	struct r5conf *conf;
6577 	unsigned int new;
6578 	int err;
6579 	struct r5worker_group *new_groups, *old_groups;
6580 	int group_cnt, worker_cnt_per_group;
6581 
6582 	if (len >= PAGE_SIZE)
6583 		return -EINVAL;
6584 	if (kstrtouint(page, 10, &new))
6585 		return -EINVAL;
6586 	/* 8192 should be big enough */
6587 	if (new > 8192)
6588 		return -EINVAL;
6589 
6590 	err = mddev_lock(mddev);
6591 	if (err)
6592 		return err;
6593 	conf = mddev->private;
6594 	if (!conf)
6595 		err = -ENODEV;
6596 	else if (new != conf->worker_cnt_per_group) {
6597 		mddev_suspend(mddev);
6598 
6599 		old_groups = conf->worker_groups;
6600 		if (old_groups)
6601 			flush_workqueue(raid5_wq);
6602 
6603 		err = alloc_thread_groups(conf, new,
6604 					  &group_cnt, &worker_cnt_per_group,
6605 					  &new_groups);
6606 		if (!err) {
6607 			spin_lock_irq(&conf->device_lock);
6608 			conf->group_cnt = group_cnt;
6609 			conf->worker_cnt_per_group = worker_cnt_per_group;
6610 			conf->worker_groups = new_groups;
6611 			spin_unlock_irq(&conf->device_lock);
6612 
6613 			if (old_groups)
6614 				kfree(old_groups[0].workers);
6615 			kfree(old_groups);
6616 		}
6617 		mddev_resume(mddev);
6618 	}
6619 	mddev_unlock(mddev);
6620 
6621 	return err ?: len;
6622 }
6623 
6624 static struct md_sysfs_entry
6625 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6626 				raid5_show_group_thread_cnt,
6627 				raid5_store_group_thread_cnt);
6628 
6629 static struct attribute *raid5_attrs[] =  {
6630 	&raid5_stripecache_size.attr,
6631 	&raid5_stripecache_active.attr,
6632 	&raid5_preread_bypass_threshold.attr,
6633 	&raid5_group_thread_cnt.attr,
6634 	&raid5_skip_copy.attr,
6635 	&raid5_rmw_level.attr,
6636 	&r5c_journal_mode.attr,
6637 	NULL,
6638 };
6639 static struct attribute_group raid5_attrs_group = {
6640 	.name = NULL,
6641 	.attrs = raid5_attrs,
6642 };
6643 
6644 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6645 			       int *group_cnt,
6646 			       int *worker_cnt_per_group,
6647 			       struct r5worker_group **worker_groups)
6648 {
6649 	int i, j, k;
6650 	ssize_t size;
6651 	struct r5worker *workers;
6652 
6653 	*worker_cnt_per_group = cnt;
6654 	if (cnt == 0) {
6655 		*group_cnt = 0;
6656 		*worker_groups = NULL;
6657 		return 0;
6658 	}
6659 	*group_cnt = num_possible_nodes();
6660 	size = sizeof(struct r5worker) * cnt;
6661 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6662 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6663 				*group_cnt, GFP_NOIO);
6664 	if (!*worker_groups || !workers) {
6665 		kfree(workers);
6666 		kfree(*worker_groups);
6667 		return -ENOMEM;
6668 	}
6669 
6670 	for (i = 0; i < *group_cnt; i++) {
6671 		struct r5worker_group *group;
6672 
6673 		group = &(*worker_groups)[i];
6674 		INIT_LIST_HEAD(&group->handle_list);
6675 		INIT_LIST_HEAD(&group->loprio_list);
6676 		group->conf = conf;
6677 		group->workers = workers + i * cnt;
6678 
6679 		for (j = 0; j < cnt; j++) {
6680 			struct r5worker *worker = group->workers + j;
6681 			worker->group = group;
6682 			INIT_WORK(&worker->work, raid5_do_work);
6683 
6684 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6685 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6686 		}
6687 	}
6688 
6689 	return 0;
6690 }
6691 
6692 static void free_thread_groups(struct r5conf *conf)
6693 {
6694 	if (conf->worker_groups)
6695 		kfree(conf->worker_groups[0].workers);
6696 	kfree(conf->worker_groups);
6697 	conf->worker_groups = NULL;
6698 }
6699 
6700 static sector_t
6701 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6702 {
6703 	struct r5conf *conf = mddev->private;
6704 
6705 	if (!sectors)
6706 		sectors = mddev->dev_sectors;
6707 	if (!raid_disks)
6708 		/* size is defined by the smallest of previous and new size */
6709 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6710 
6711 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6712 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6713 	return sectors * (raid_disks - conf->max_degraded);
6714 }
6715 
6716 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6717 {
6718 	safe_put_page(percpu->spare_page);
6719 	if (percpu->scribble)
6720 		flex_array_free(percpu->scribble);
6721 	percpu->spare_page = NULL;
6722 	percpu->scribble = NULL;
6723 }
6724 
6725 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6726 {
6727 	if (conf->level == 6 && !percpu->spare_page)
6728 		percpu->spare_page = alloc_page(GFP_KERNEL);
6729 	if (!percpu->scribble)
6730 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6731 						      conf->previous_raid_disks),
6732 						  max(conf->chunk_sectors,
6733 						      conf->prev_chunk_sectors)
6734 						   / STRIPE_SECTORS,
6735 						  GFP_KERNEL);
6736 
6737 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6738 		free_scratch_buffer(conf, percpu);
6739 		return -ENOMEM;
6740 	}
6741 
6742 	return 0;
6743 }
6744 
6745 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6746 {
6747 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6748 
6749 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6750 	return 0;
6751 }
6752 
6753 static void raid5_free_percpu(struct r5conf *conf)
6754 {
6755 	if (!conf->percpu)
6756 		return;
6757 
6758 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6759 	free_percpu(conf->percpu);
6760 }
6761 
6762 static void free_conf(struct r5conf *conf)
6763 {
6764 	int i;
6765 
6766 	log_exit(conf);
6767 
6768 	unregister_shrinker(&conf->shrinker);
6769 	free_thread_groups(conf);
6770 	shrink_stripes(conf);
6771 	raid5_free_percpu(conf);
6772 	for (i = 0; i < conf->pool_size; i++)
6773 		if (conf->disks[i].extra_page)
6774 			put_page(conf->disks[i].extra_page);
6775 	kfree(conf->disks);
6776 	if (conf->bio_split)
6777 		bioset_free(conf->bio_split);
6778 	kfree(conf->stripe_hashtbl);
6779 	kfree(conf->pending_data);
6780 	kfree(conf);
6781 }
6782 
6783 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6784 {
6785 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6786 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6787 
6788 	if (alloc_scratch_buffer(conf, percpu)) {
6789 		pr_warn("%s: failed memory allocation for cpu%u\n",
6790 			__func__, cpu);
6791 		return -ENOMEM;
6792 	}
6793 	return 0;
6794 }
6795 
6796 static int raid5_alloc_percpu(struct r5conf *conf)
6797 {
6798 	int err = 0;
6799 
6800 	conf->percpu = alloc_percpu(struct raid5_percpu);
6801 	if (!conf->percpu)
6802 		return -ENOMEM;
6803 
6804 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6805 	if (!err) {
6806 		conf->scribble_disks = max(conf->raid_disks,
6807 			conf->previous_raid_disks);
6808 		conf->scribble_sectors = max(conf->chunk_sectors,
6809 			conf->prev_chunk_sectors);
6810 	}
6811 	return err;
6812 }
6813 
6814 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6815 				      struct shrink_control *sc)
6816 {
6817 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6818 	unsigned long ret = SHRINK_STOP;
6819 
6820 	if (mutex_trylock(&conf->cache_size_mutex)) {
6821 		ret= 0;
6822 		while (ret < sc->nr_to_scan &&
6823 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6824 			if (drop_one_stripe(conf) == 0) {
6825 				ret = SHRINK_STOP;
6826 				break;
6827 			}
6828 			ret++;
6829 		}
6830 		mutex_unlock(&conf->cache_size_mutex);
6831 	}
6832 	return ret;
6833 }
6834 
6835 static unsigned long raid5_cache_count(struct shrinker *shrink,
6836 				       struct shrink_control *sc)
6837 {
6838 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6839 
6840 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6841 		/* unlikely, but not impossible */
6842 		return 0;
6843 	return conf->max_nr_stripes - conf->min_nr_stripes;
6844 }
6845 
6846 static struct r5conf *setup_conf(struct mddev *mddev)
6847 {
6848 	struct r5conf *conf;
6849 	int raid_disk, memory, max_disks;
6850 	struct md_rdev *rdev;
6851 	struct disk_info *disk;
6852 	char pers_name[6];
6853 	int i;
6854 	int group_cnt, worker_cnt_per_group;
6855 	struct r5worker_group *new_group;
6856 
6857 	if (mddev->new_level != 5
6858 	    && mddev->new_level != 4
6859 	    && mddev->new_level != 6) {
6860 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6861 			mdname(mddev), mddev->new_level);
6862 		return ERR_PTR(-EIO);
6863 	}
6864 	if ((mddev->new_level == 5
6865 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6866 	    (mddev->new_level == 6
6867 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6868 		pr_warn("md/raid:%s: layout %d not supported\n",
6869 			mdname(mddev), mddev->new_layout);
6870 		return ERR_PTR(-EIO);
6871 	}
6872 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6873 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6874 			mdname(mddev), mddev->raid_disks);
6875 		return ERR_PTR(-EINVAL);
6876 	}
6877 
6878 	if (!mddev->new_chunk_sectors ||
6879 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6880 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6881 		pr_warn("md/raid:%s: invalid chunk size %d\n",
6882 			mdname(mddev), mddev->new_chunk_sectors << 9);
6883 		return ERR_PTR(-EINVAL);
6884 	}
6885 
6886 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6887 	if (conf == NULL)
6888 		goto abort;
6889 	INIT_LIST_HEAD(&conf->free_list);
6890 	INIT_LIST_HEAD(&conf->pending_list);
6891 	conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6892 		PENDING_IO_MAX, GFP_KERNEL);
6893 	if (!conf->pending_data)
6894 		goto abort;
6895 	for (i = 0; i < PENDING_IO_MAX; i++)
6896 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
6897 	/* Don't enable multi-threading by default*/
6898 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6899 				 &new_group)) {
6900 		conf->group_cnt = group_cnt;
6901 		conf->worker_cnt_per_group = worker_cnt_per_group;
6902 		conf->worker_groups = new_group;
6903 	} else
6904 		goto abort;
6905 	spin_lock_init(&conf->device_lock);
6906 	seqcount_init(&conf->gen_lock);
6907 	mutex_init(&conf->cache_size_mutex);
6908 	init_waitqueue_head(&conf->wait_for_quiescent);
6909 	init_waitqueue_head(&conf->wait_for_stripe);
6910 	init_waitqueue_head(&conf->wait_for_overlap);
6911 	INIT_LIST_HEAD(&conf->handle_list);
6912 	INIT_LIST_HEAD(&conf->loprio_list);
6913 	INIT_LIST_HEAD(&conf->hold_list);
6914 	INIT_LIST_HEAD(&conf->delayed_list);
6915 	INIT_LIST_HEAD(&conf->bitmap_list);
6916 	init_llist_head(&conf->released_stripes);
6917 	atomic_set(&conf->active_stripes, 0);
6918 	atomic_set(&conf->preread_active_stripes, 0);
6919 	atomic_set(&conf->active_aligned_reads, 0);
6920 	spin_lock_init(&conf->pending_bios_lock);
6921 	conf->batch_bio_dispatch = true;
6922 	rdev_for_each(rdev, mddev) {
6923 		if (test_bit(Journal, &rdev->flags))
6924 			continue;
6925 		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6926 			conf->batch_bio_dispatch = false;
6927 			break;
6928 		}
6929 	}
6930 
6931 	conf->bypass_threshold = BYPASS_THRESHOLD;
6932 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6933 
6934 	conf->raid_disks = mddev->raid_disks;
6935 	if (mddev->reshape_position == MaxSector)
6936 		conf->previous_raid_disks = mddev->raid_disks;
6937 	else
6938 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6939 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6940 
6941 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6942 			      GFP_KERNEL);
6943 
6944 	if (!conf->disks)
6945 		goto abort;
6946 
6947 	for (i = 0; i < max_disks; i++) {
6948 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6949 		if (!conf->disks[i].extra_page)
6950 			goto abort;
6951 	}
6952 
6953 	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
6954 	if (!conf->bio_split)
6955 		goto abort;
6956 	conf->mddev = mddev;
6957 
6958 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6959 		goto abort;
6960 
6961 	/* We init hash_locks[0] separately to that it can be used
6962 	 * as the reference lock in the spin_lock_nest_lock() call
6963 	 * in lock_all_device_hash_locks_irq in order to convince
6964 	 * lockdep that we know what we are doing.
6965 	 */
6966 	spin_lock_init(conf->hash_locks);
6967 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6968 		spin_lock_init(conf->hash_locks + i);
6969 
6970 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6971 		INIT_LIST_HEAD(conf->inactive_list + i);
6972 
6973 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6974 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6975 
6976 	atomic_set(&conf->r5c_cached_full_stripes, 0);
6977 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6978 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
6979 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6980 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
6981 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6982 
6983 	conf->level = mddev->new_level;
6984 	conf->chunk_sectors = mddev->new_chunk_sectors;
6985 	if (raid5_alloc_percpu(conf) != 0)
6986 		goto abort;
6987 
6988 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6989 
6990 	rdev_for_each(rdev, mddev) {
6991 		raid_disk = rdev->raid_disk;
6992 		if (raid_disk >= max_disks
6993 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6994 			continue;
6995 		disk = conf->disks + raid_disk;
6996 
6997 		if (test_bit(Replacement, &rdev->flags)) {
6998 			if (disk->replacement)
6999 				goto abort;
7000 			disk->replacement = rdev;
7001 		} else {
7002 			if (disk->rdev)
7003 				goto abort;
7004 			disk->rdev = rdev;
7005 		}
7006 
7007 		if (test_bit(In_sync, &rdev->flags)) {
7008 			char b[BDEVNAME_SIZE];
7009 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7010 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7011 		} else if (rdev->saved_raid_disk != raid_disk)
7012 			/* Cannot rely on bitmap to complete recovery */
7013 			conf->fullsync = 1;
7014 	}
7015 
7016 	conf->level = mddev->new_level;
7017 	if (conf->level == 6) {
7018 		conf->max_degraded = 2;
7019 		if (raid6_call.xor_syndrome)
7020 			conf->rmw_level = PARITY_ENABLE_RMW;
7021 		else
7022 			conf->rmw_level = PARITY_DISABLE_RMW;
7023 	} else {
7024 		conf->max_degraded = 1;
7025 		conf->rmw_level = PARITY_ENABLE_RMW;
7026 	}
7027 	conf->algorithm = mddev->new_layout;
7028 	conf->reshape_progress = mddev->reshape_position;
7029 	if (conf->reshape_progress != MaxSector) {
7030 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7031 		conf->prev_algo = mddev->layout;
7032 	} else {
7033 		conf->prev_chunk_sectors = conf->chunk_sectors;
7034 		conf->prev_algo = conf->algorithm;
7035 	}
7036 
7037 	conf->min_nr_stripes = NR_STRIPES;
7038 	if (mddev->reshape_position != MaxSector) {
7039 		int stripes = max_t(int,
7040 			((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7041 			((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7042 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7043 		if (conf->min_nr_stripes != NR_STRIPES)
7044 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7045 				mdname(mddev), conf->min_nr_stripes);
7046 	}
7047 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7048 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7049 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7050 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7051 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7052 			mdname(mddev), memory);
7053 		goto abort;
7054 	} else
7055 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7056 	/*
7057 	 * Losing a stripe head costs more than the time to refill it,
7058 	 * it reduces the queue depth and so can hurt throughput.
7059 	 * So set it rather large, scaled by number of devices.
7060 	 */
7061 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7062 	conf->shrinker.scan_objects = raid5_cache_scan;
7063 	conf->shrinker.count_objects = raid5_cache_count;
7064 	conf->shrinker.batch = 128;
7065 	conf->shrinker.flags = 0;
7066 	if (register_shrinker(&conf->shrinker)) {
7067 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7068 			mdname(mddev));
7069 		goto abort;
7070 	}
7071 
7072 	sprintf(pers_name, "raid%d", mddev->new_level);
7073 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7074 	if (!conf->thread) {
7075 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7076 			mdname(mddev));
7077 		goto abort;
7078 	}
7079 
7080 	return conf;
7081 
7082  abort:
7083 	if (conf) {
7084 		free_conf(conf);
7085 		return ERR_PTR(-EIO);
7086 	} else
7087 		return ERR_PTR(-ENOMEM);
7088 }
7089 
7090 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7091 {
7092 	switch (algo) {
7093 	case ALGORITHM_PARITY_0:
7094 		if (raid_disk < max_degraded)
7095 			return 1;
7096 		break;
7097 	case ALGORITHM_PARITY_N:
7098 		if (raid_disk >= raid_disks - max_degraded)
7099 			return 1;
7100 		break;
7101 	case ALGORITHM_PARITY_0_6:
7102 		if (raid_disk == 0 ||
7103 		    raid_disk == raid_disks - 1)
7104 			return 1;
7105 		break;
7106 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7107 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7108 	case ALGORITHM_LEFT_SYMMETRIC_6:
7109 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7110 		if (raid_disk == raid_disks - 1)
7111 			return 1;
7112 	}
7113 	return 0;
7114 }
7115 
7116 static int raid5_run(struct mddev *mddev)
7117 {
7118 	struct r5conf *conf;
7119 	int working_disks = 0;
7120 	int dirty_parity_disks = 0;
7121 	struct md_rdev *rdev;
7122 	struct md_rdev *journal_dev = NULL;
7123 	sector_t reshape_offset = 0;
7124 	int i;
7125 	long long min_offset_diff = 0;
7126 	int first = 1;
7127 
7128 	if (mddev_init_writes_pending(mddev) < 0)
7129 		return -ENOMEM;
7130 
7131 	if (mddev->recovery_cp != MaxSector)
7132 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7133 			  mdname(mddev));
7134 
7135 	rdev_for_each(rdev, mddev) {
7136 		long long diff;
7137 
7138 		if (test_bit(Journal, &rdev->flags)) {
7139 			journal_dev = rdev;
7140 			continue;
7141 		}
7142 		if (rdev->raid_disk < 0)
7143 			continue;
7144 		diff = (rdev->new_data_offset - rdev->data_offset);
7145 		if (first) {
7146 			min_offset_diff = diff;
7147 			first = 0;
7148 		} else if (mddev->reshape_backwards &&
7149 			 diff < min_offset_diff)
7150 			min_offset_diff = diff;
7151 		else if (!mddev->reshape_backwards &&
7152 			 diff > min_offset_diff)
7153 			min_offset_diff = diff;
7154 	}
7155 
7156 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7157 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7158 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7159 			  mdname(mddev));
7160 		return -EINVAL;
7161 	}
7162 
7163 	if (mddev->reshape_position != MaxSector) {
7164 		/* Check that we can continue the reshape.
7165 		 * Difficulties arise if the stripe we would write to
7166 		 * next is at or after the stripe we would read from next.
7167 		 * For a reshape that changes the number of devices, this
7168 		 * is only possible for a very short time, and mdadm makes
7169 		 * sure that time appears to have past before assembling
7170 		 * the array.  So we fail if that time hasn't passed.
7171 		 * For a reshape that keeps the number of devices the same
7172 		 * mdadm must be monitoring the reshape can keeping the
7173 		 * critical areas read-only and backed up.  It will start
7174 		 * the array in read-only mode, so we check for that.
7175 		 */
7176 		sector_t here_new, here_old;
7177 		int old_disks;
7178 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7179 		int chunk_sectors;
7180 		int new_data_disks;
7181 
7182 		if (journal_dev) {
7183 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7184 				mdname(mddev));
7185 			return -EINVAL;
7186 		}
7187 
7188 		if (mddev->new_level != mddev->level) {
7189 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7190 				mdname(mddev));
7191 			return -EINVAL;
7192 		}
7193 		old_disks = mddev->raid_disks - mddev->delta_disks;
7194 		/* reshape_position must be on a new-stripe boundary, and one
7195 		 * further up in new geometry must map after here in old
7196 		 * geometry.
7197 		 * If the chunk sizes are different, then as we perform reshape
7198 		 * in units of the largest of the two, reshape_position needs
7199 		 * be a multiple of the largest chunk size times new data disks.
7200 		 */
7201 		here_new = mddev->reshape_position;
7202 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7203 		new_data_disks = mddev->raid_disks - max_degraded;
7204 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7205 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7206 				mdname(mddev));
7207 			return -EINVAL;
7208 		}
7209 		reshape_offset = here_new * chunk_sectors;
7210 		/* here_new is the stripe we will write to */
7211 		here_old = mddev->reshape_position;
7212 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7213 		/* here_old is the first stripe that we might need to read
7214 		 * from */
7215 		if (mddev->delta_disks == 0) {
7216 			/* We cannot be sure it is safe to start an in-place
7217 			 * reshape.  It is only safe if user-space is monitoring
7218 			 * and taking constant backups.
7219 			 * mdadm always starts a situation like this in
7220 			 * readonly mode so it can take control before
7221 			 * allowing any writes.  So just check for that.
7222 			 */
7223 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7224 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7225 				/* not really in-place - so OK */;
7226 			else if (mddev->ro == 0) {
7227 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7228 					mdname(mddev));
7229 				return -EINVAL;
7230 			}
7231 		} else if (mddev->reshape_backwards
7232 		    ? (here_new * chunk_sectors + min_offset_diff <=
7233 		       here_old * chunk_sectors)
7234 		    : (here_new * chunk_sectors >=
7235 		       here_old * chunk_sectors + (-min_offset_diff))) {
7236 			/* Reading from the same stripe as writing to - bad */
7237 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7238 				mdname(mddev));
7239 			return -EINVAL;
7240 		}
7241 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7242 		/* OK, we should be able to continue; */
7243 	} else {
7244 		BUG_ON(mddev->level != mddev->new_level);
7245 		BUG_ON(mddev->layout != mddev->new_layout);
7246 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7247 		BUG_ON(mddev->delta_disks != 0);
7248 	}
7249 
7250 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7251 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7252 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7253 			mdname(mddev));
7254 		clear_bit(MD_HAS_PPL, &mddev->flags);
7255 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7256 	}
7257 
7258 	if (mddev->private == NULL)
7259 		conf = setup_conf(mddev);
7260 	else
7261 		conf = mddev->private;
7262 
7263 	if (IS_ERR(conf))
7264 		return PTR_ERR(conf);
7265 
7266 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7267 		if (!journal_dev) {
7268 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7269 				mdname(mddev));
7270 			mddev->ro = 1;
7271 			set_disk_ro(mddev->gendisk, 1);
7272 		} else if (mddev->recovery_cp == MaxSector)
7273 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7274 	}
7275 
7276 	conf->min_offset_diff = min_offset_diff;
7277 	mddev->thread = conf->thread;
7278 	conf->thread = NULL;
7279 	mddev->private = conf;
7280 
7281 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7282 	     i++) {
7283 		rdev = conf->disks[i].rdev;
7284 		if (!rdev && conf->disks[i].replacement) {
7285 			/* The replacement is all we have yet */
7286 			rdev = conf->disks[i].replacement;
7287 			conf->disks[i].replacement = NULL;
7288 			clear_bit(Replacement, &rdev->flags);
7289 			conf->disks[i].rdev = rdev;
7290 		}
7291 		if (!rdev)
7292 			continue;
7293 		if (conf->disks[i].replacement &&
7294 		    conf->reshape_progress != MaxSector) {
7295 			/* replacements and reshape simply do not mix. */
7296 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7297 			goto abort;
7298 		}
7299 		if (test_bit(In_sync, &rdev->flags)) {
7300 			working_disks++;
7301 			continue;
7302 		}
7303 		/* This disc is not fully in-sync.  However if it
7304 		 * just stored parity (beyond the recovery_offset),
7305 		 * when we don't need to be concerned about the
7306 		 * array being dirty.
7307 		 * When reshape goes 'backwards', we never have
7308 		 * partially completed devices, so we only need
7309 		 * to worry about reshape going forwards.
7310 		 */
7311 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7312 		if (mddev->major_version == 0 &&
7313 		    mddev->minor_version > 90)
7314 			rdev->recovery_offset = reshape_offset;
7315 
7316 		if (rdev->recovery_offset < reshape_offset) {
7317 			/* We need to check old and new layout */
7318 			if (!only_parity(rdev->raid_disk,
7319 					 conf->algorithm,
7320 					 conf->raid_disks,
7321 					 conf->max_degraded))
7322 				continue;
7323 		}
7324 		if (!only_parity(rdev->raid_disk,
7325 				 conf->prev_algo,
7326 				 conf->previous_raid_disks,
7327 				 conf->max_degraded))
7328 			continue;
7329 		dirty_parity_disks++;
7330 	}
7331 
7332 	/*
7333 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7334 	 */
7335 	mddev->degraded = raid5_calc_degraded(conf);
7336 
7337 	if (has_failed(conf)) {
7338 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7339 			mdname(mddev), mddev->degraded, conf->raid_disks);
7340 		goto abort;
7341 	}
7342 
7343 	/* device size must be a multiple of chunk size */
7344 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7345 	mddev->resync_max_sectors = mddev->dev_sectors;
7346 
7347 	if (mddev->degraded > dirty_parity_disks &&
7348 	    mddev->recovery_cp != MaxSector) {
7349 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7350 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7351 				mdname(mddev));
7352 		else if (mddev->ok_start_degraded)
7353 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7354 				mdname(mddev));
7355 		else {
7356 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7357 				mdname(mddev));
7358 			goto abort;
7359 		}
7360 	}
7361 
7362 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7363 		mdname(mddev), conf->level,
7364 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7365 		mddev->new_layout);
7366 
7367 	print_raid5_conf(conf);
7368 
7369 	if (conf->reshape_progress != MaxSector) {
7370 		conf->reshape_safe = conf->reshape_progress;
7371 		atomic_set(&conf->reshape_stripes, 0);
7372 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7373 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7374 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7375 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7376 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7377 							"reshape");
7378 	}
7379 
7380 	/* Ok, everything is just fine now */
7381 	if (mddev->to_remove == &raid5_attrs_group)
7382 		mddev->to_remove = NULL;
7383 	else if (mddev->kobj.sd &&
7384 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7385 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7386 			mdname(mddev));
7387 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7388 
7389 	if (mddev->queue) {
7390 		int chunk_size;
7391 		/* read-ahead size must cover two whole stripes, which
7392 		 * is 2 * (datadisks) * chunksize where 'n' is the
7393 		 * number of raid devices
7394 		 */
7395 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7396 		int stripe = data_disks *
7397 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7398 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7399 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7400 
7401 		chunk_size = mddev->chunk_sectors << 9;
7402 		blk_queue_io_min(mddev->queue, chunk_size);
7403 		blk_queue_io_opt(mddev->queue, chunk_size *
7404 				 (conf->raid_disks - conf->max_degraded));
7405 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7406 		/*
7407 		 * We can only discard a whole stripe. It doesn't make sense to
7408 		 * discard data disk but write parity disk
7409 		 */
7410 		stripe = stripe * PAGE_SIZE;
7411 		/* Round up to power of 2, as discard handling
7412 		 * currently assumes that */
7413 		while ((stripe-1) & stripe)
7414 			stripe = (stripe | (stripe-1)) + 1;
7415 		mddev->queue->limits.discard_alignment = stripe;
7416 		mddev->queue->limits.discard_granularity = stripe;
7417 
7418 		blk_queue_max_write_same_sectors(mddev->queue, 0);
7419 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7420 
7421 		rdev_for_each(rdev, mddev) {
7422 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7423 					  rdev->data_offset << 9);
7424 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7425 					  rdev->new_data_offset << 9);
7426 		}
7427 
7428 		/*
7429 		 * zeroing is required, otherwise data
7430 		 * could be lost. Consider a scenario: discard a stripe
7431 		 * (the stripe could be inconsistent if
7432 		 * discard_zeroes_data is 0); write one disk of the
7433 		 * stripe (the stripe could be inconsistent again
7434 		 * depending on which disks are used to calculate
7435 		 * parity); the disk is broken; The stripe data of this
7436 		 * disk is lost.
7437 		 *
7438 		 * We only allow DISCARD if the sysadmin has confirmed that
7439 		 * only safe devices are in use by setting a module parameter.
7440 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7441 		 * requests, as that is required to be safe.
7442 		 */
7443 		if (devices_handle_discard_safely &&
7444 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7445 		    mddev->queue->limits.discard_granularity >= stripe)
7446 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7447 						mddev->queue);
7448 		else
7449 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7450 						mddev->queue);
7451 
7452 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7453 	}
7454 
7455 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7456 		goto abort;
7457 
7458 	return 0;
7459 abort:
7460 	md_unregister_thread(&mddev->thread);
7461 	print_raid5_conf(conf);
7462 	free_conf(conf);
7463 	mddev->private = NULL;
7464 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7465 	return -EIO;
7466 }
7467 
7468 static void raid5_free(struct mddev *mddev, void *priv)
7469 {
7470 	struct r5conf *conf = priv;
7471 
7472 	free_conf(conf);
7473 	mddev->to_remove = &raid5_attrs_group;
7474 }
7475 
7476 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7477 {
7478 	struct r5conf *conf = mddev->private;
7479 	int i;
7480 
7481 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7482 		conf->chunk_sectors / 2, mddev->layout);
7483 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7484 	rcu_read_lock();
7485 	for (i = 0; i < conf->raid_disks; i++) {
7486 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7487 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7488 	}
7489 	rcu_read_unlock();
7490 	seq_printf (seq, "]");
7491 }
7492 
7493 static void print_raid5_conf (struct r5conf *conf)
7494 {
7495 	int i;
7496 	struct disk_info *tmp;
7497 
7498 	pr_debug("RAID conf printout:\n");
7499 	if (!conf) {
7500 		pr_debug("(conf==NULL)\n");
7501 		return;
7502 	}
7503 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7504 	       conf->raid_disks,
7505 	       conf->raid_disks - conf->mddev->degraded);
7506 
7507 	for (i = 0; i < conf->raid_disks; i++) {
7508 		char b[BDEVNAME_SIZE];
7509 		tmp = conf->disks + i;
7510 		if (tmp->rdev)
7511 			pr_debug(" disk %d, o:%d, dev:%s\n",
7512 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7513 			       bdevname(tmp->rdev->bdev, b));
7514 	}
7515 }
7516 
7517 static int raid5_spare_active(struct mddev *mddev)
7518 {
7519 	int i;
7520 	struct r5conf *conf = mddev->private;
7521 	struct disk_info *tmp;
7522 	int count = 0;
7523 	unsigned long flags;
7524 
7525 	for (i = 0; i < conf->raid_disks; i++) {
7526 		tmp = conf->disks + i;
7527 		if (tmp->replacement
7528 		    && tmp->replacement->recovery_offset == MaxSector
7529 		    && !test_bit(Faulty, &tmp->replacement->flags)
7530 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7531 			/* Replacement has just become active. */
7532 			if (!tmp->rdev
7533 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7534 				count++;
7535 			if (tmp->rdev) {
7536 				/* Replaced device not technically faulty,
7537 				 * but we need to be sure it gets removed
7538 				 * and never re-added.
7539 				 */
7540 				set_bit(Faulty, &tmp->rdev->flags);
7541 				sysfs_notify_dirent_safe(
7542 					tmp->rdev->sysfs_state);
7543 			}
7544 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7545 		} else if (tmp->rdev
7546 		    && tmp->rdev->recovery_offset == MaxSector
7547 		    && !test_bit(Faulty, &tmp->rdev->flags)
7548 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7549 			count++;
7550 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7551 		}
7552 	}
7553 	spin_lock_irqsave(&conf->device_lock, flags);
7554 	mddev->degraded = raid5_calc_degraded(conf);
7555 	spin_unlock_irqrestore(&conf->device_lock, flags);
7556 	print_raid5_conf(conf);
7557 	return count;
7558 }
7559 
7560 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7561 {
7562 	struct r5conf *conf = mddev->private;
7563 	int err = 0;
7564 	int number = rdev->raid_disk;
7565 	struct md_rdev **rdevp;
7566 	struct disk_info *p = conf->disks + number;
7567 
7568 	print_raid5_conf(conf);
7569 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7570 		/*
7571 		 * we can't wait pending write here, as this is called in
7572 		 * raid5d, wait will deadlock.
7573 		 * neilb: there is no locking about new writes here,
7574 		 * so this cannot be safe.
7575 		 */
7576 		if (atomic_read(&conf->active_stripes) ||
7577 		    atomic_read(&conf->r5c_cached_full_stripes) ||
7578 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
7579 			return -EBUSY;
7580 		}
7581 		log_exit(conf);
7582 		return 0;
7583 	}
7584 	if (rdev == p->rdev)
7585 		rdevp = &p->rdev;
7586 	else if (rdev == p->replacement)
7587 		rdevp = &p->replacement;
7588 	else
7589 		return 0;
7590 
7591 	if (number >= conf->raid_disks &&
7592 	    conf->reshape_progress == MaxSector)
7593 		clear_bit(In_sync, &rdev->flags);
7594 
7595 	if (test_bit(In_sync, &rdev->flags) ||
7596 	    atomic_read(&rdev->nr_pending)) {
7597 		err = -EBUSY;
7598 		goto abort;
7599 	}
7600 	/* Only remove non-faulty devices if recovery
7601 	 * isn't possible.
7602 	 */
7603 	if (!test_bit(Faulty, &rdev->flags) &&
7604 	    mddev->recovery_disabled != conf->recovery_disabled &&
7605 	    !has_failed(conf) &&
7606 	    (!p->replacement || p->replacement == rdev) &&
7607 	    number < conf->raid_disks) {
7608 		err = -EBUSY;
7609 		goto abort;
7610 	}
7611 	*rdevp = NULL;
7612 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7613 		synchronize_rcu();
7614 		if (atomic_read(&rdev->nr_pending)) {
7615 			/* lost the race, try later */
7616 			err = -EBUSY;
7617 			*rdevp = rdev;
7618 		}
7619 	}
7620 	if (!err) {
7621 		err = log_modify(conf, rdev, false);
7622 		if (err)
7623 			goto abort;
7624 	}
7625 	if (p->replacement) {
7626 		/* We must have just cleared 'rdev' */
7627 		p->rdev = p->replacement;
7628 		clear_bit(Replacement, &p->replacement->flags);
7629 		smp_mb(); /* Make sure other CPUs may see both as identical
7630 			   * but will never see neither - if they are careful
7631 			   */
7632 		p->replacement = NULL;
7633 
7634 		if (!err)
7635 			err = log_modify(conf, p->rdev, true);
7636 	}
7637 
7638 	clear_bit(WantReplacement, &rdev->flags);
7639 abort:
7640 
7641 	print_raid5_conf(conf);
7642 	return err;
7643 }
7644 
7645 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7646 {
7647 	struct r5conf *conf = mddev->private;
7648 	int err = -EEXIST;
7649 	int disk;
7650 	struct disk_info *p;
7651 	int first = 0;
7652 	int last = conf->raid_disks - 1;
7653 
7654 	if (test_bit(Journal, &rdev->flags)) {
7655 		if (conf->log)
7656 			return -EBUSY;
7657 
7658 		rdev->raid_disk = 0;
7659 		/*
7660 		 * The array is in readonly mode if journal is missing, so no
7661 		 * write requests running. We should be safe
7662 		 */
7663 		log_init(conf, rdev, false);
7664 		return 0;
7665 	}
7666 	if (mddev->recovery_disabled == conf->recovery_disabled)
7667 		return -EBUSY;
7668 
7669 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7670 		/* no point adding a device */
7671 		return -EINVAL;
7672 
7673 	if (rdev->raid_disk >= 0)
7674 		first = last = rdev->raid_disk;
7675 
7676 	/*
7677 	 * find the disk ... but prefer rdev->saved_raid_disk
7678 	 * if possible.
7679 	 */
7680 	if (rdev->saved_raid_disk >= 0 &&
7681 	    rdev->saved_raid_disk >= first &&
7682 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7683 		first = rdev->saved_raid_disk;
7684 
7685 	for (disk = first; disk <= last; disk++) {
7686 		p = conf->disks + disk;
7687 		if (p->rdev == NULL) {
7688 			clear_bit(In_sync, &rdev->flags);
7689 			rdev->raid_disk = disk;
7690 			if (rdev->saved_raid_disk != disk)
7691 				conf->fullsync = 1;
7692 			rcu_assign_pointer(p->rdev, rdev);
7693 
7694 			err = log_modify(conf, rdev, true);
7695 
7696 			goto out;
7697 		}
7698 	}
7699 	for (disk = first; disk <= last; disk++) {
7700 		p = conf->disks + disk;
7701 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7702 		    p->replacement == NULL) {
7703 			clear_bit(In_sync, &rdev->flags);
7704 			set_bit(Replacement, &rdev->flags);
7705 			rdev->raid_disk = disk;
7706 			err = 0;
7707 			conf->fullsync = 1;
7708 			rcu_assign_pointer(p->replacement, rdev);
7709 			break;
7710 		}
7711 	}
7712 out:
7713 	print_raid5_conf(conf);
7714 	return err;
7715 }
7716 
7717 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7718 {
7719 	/* no resync is happening, and there is enough space
7720 	 * on all devices, so we can resize.
7721 	 * We need to make sure resync covers any new space.
7722 	 * If the array is shrinking we should possibly wait until
7723 	 * any io in the removed space completes, but it hardly seems
7724 	 * worth it.
7725 	 */
7726 	sector_t newsize;
7727 	struct r5conf *conf = mddev->private;
7728 
7729 	if (conf->log || raid5_has_ppl(conf))
7730 		return -EINVAL;
7731 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7732 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7733 	if (mddev->external_size &&
7734 	    mddev->array_sectors > newsize)
7735 		return -EINVAL;
7736 	if (mddev->bitmap) {
7737 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7738 		if (ret)
7739 			return ret;
7740 	}
7741 	md_set_array_sectors(mddev, newsize);
7742 	if (sectors > mddev->dev_sectors &&
7743 	    mddev->recovery_cp > mddev->dev_sectors) {
7744 		mddev->recovery_cp = mddev->dev_sectors;
7745 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7746 	}
7747 	mddev->dev_sectors = sectors;
7748 	mddev->resync_max_sectors = sectors;
7749 	return 0;
7750 }
7751 
7752 static int check_stripe_cache(struct mddev *mddev)
7753 {
7754 	/* Can only proceed if there are plenty of stripe_heads.
7755 	 * We need a minimum of one full stripe,, and for sensible progress
7756 	 * it is best to have about 4 times that.
7757 	 * If we require 4 times, then the default 256 4K stripe_heads will
7758 	 * allow for chunk sizes up to 256K, which is probably OK.
7759 	 * If the chunk size is greater, user-space should request more
7760 	 * stripe_heads first.
7761 	 */
7762 	struct r5conf *conf = mddev->private;
7763 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7764 	    > conf->min_nr_stripes ||
7765 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7766 	    > conf->min_nr_stripes) {
7767 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7768 			mdname(mddev),
7769 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7770 			 / STRIPE_SIZE)*4);
7771 		return 0;
7772 	}
7773 	return 1;
7774 }
7775 
7776 static int check_reshape(struct mddev *mddev)
7777 {
7778 	struct r5conf *conf = mddev->private;
7779 
7780 	if (conf->log || raid5_has_ppl(conf))
7781 		return -EINVAL;
7782 	if (mddev->delta_disks == 0 &&
7783 	    mddev->new_layout == mddev->layout &&
7784 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7785 		return 0; /* nothing to do */
7786 	if (has_failed(conf))
7787 		return -EINVAL;
7788 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7789 		/* We might be able to shrink, but the devices must
7790 		 * be made bigger first.
7791 		 * For raid6, 4 is the minimum size.
7792 		 * Otherwise 2 is the minimum
7793 		 */
7794 		int min = 2;
7795 		if (mddev->level == 6)
7796 			min = 4;
7797 		if (mddev->raid_disks + mddev->delta_disks < min)
7798 			return -EINVAL;
7799 	}
7800 
7801 	if (!check_stripe_cache(mddev))
7802 		return -ENOSPC;
7803 
7804 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7805 	    mddev->delta_disks > 0)
7806 		if (resize_chunks(conf,
7807 				  conf->previous_raid_disks
7808 				  + max(0, mddev->delta_disks),
7809 				  max(mddev->new_chunk_sectors,
7810 				      mddev->chunk_sectors)
7811 			    ) < 0)
7812 			return -ENOMEM;
7813 
7814 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7815 		return 0; /* never bother to shrink */
7816 	return resize_stripes(conf, (conf->previous_raid_disks
7817 				     + mddev->delta_disks));
7818 }
7819 
7820 static int raid5_start_reshape(struct mddev *mddev)
7821 {
7822 	struct r5conf *conf = mddev->private;
7823 	struct md_rdev *rdev;
7824 	int spares = 0;
7825 	unsigned long flags;
7826 
7827 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7828 		return -EBUSY;
7829 
7830 	if (!check_stripe_cache(mddev))
7831 		return -ENOSPC;
7832 
7833 	if (has_failed(conf))
7834 		return -EINVAL;
7835 
7836 	rdev_for_each(rdev, mddev) {
7837 		if (!test_bit(In_sync, &rdev->flags)
7838 		    && !test_bit(Faulty, &rdev->flags))
7839 			spares++;
7840 	}
7841 
7842 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7843 		/* Not enough devices even to make a degraded array
7844 		 * of that size
7845 		 */
7846 		return -EINVAL;
7847 
7848 	/* Refuse to reduce size of the array.  Any reductions in
7849 	 * array size must be through explicit setting of array_size
7850 	 * attribute.
7851 	 */
7852 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7853 	    < mddev->array_sectors) {
7854 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7855 			mdname(mddev));
7856 		return -EINVAL;
7857 	}
7858 
7859 	atomic_set(&conf->reshape_stripes, 0);
7860 	spin_lock_irq(&conf->device_lock);
7861 	write_seqcount_begin(&conf->gen_lock);
7862 	conf->previous_raid_disks = conf->raid_disks;
7863 	conf->raid_disks += mddev->delta_disks;
7864 	conf->prev_chunk_sectors = conf->chunk_sectors;
7865 	conf->chunk_sectors = mddev->new_chunk_sectors;
7866 	conf->prev_algo = conf->algorithm;
7867 	conf->algorithm = mddev->new_layout;
7868 	conf->generation++;
7869 	/* Code that selects data_offset needs to see the generation update
7870 	 * if reshape_progress has been set - so a memory barrier needed.
7871 	 */
7872 	smp_mb();
7873 	if (mddev->reshape_backwards)
7874 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7875 	else
7876 		conf->reshape_progress = 0;
7877 	conf->reshape_safe = conf->reshape_progress;
7878 	write_seqcount_end(&conf->gen_lock);
7879 	spin_unlock_irq(&conf->device_lock);
7880 
7881 	/* Now make sure any requests that proceeded on the assumption
7882 	 * the reshape wasn't running - like Discard or Read - have
7883 	 * completed.
7884 	 */
7885 	mddev_suspend(mddev);
7886 	mddev_resume(mddev);
7887 
7888 	/* Add some new drives, as many as will fit.
7889 	 * We know there are enough to make the newly sized array work.
7890 	 * Don't add devices if we are reducing the number of
7891 	 * devices in the array.  This is because it is not possible
7892 	 * to correctly record the "partially reconstructed" state of
7893 	 * such devices during the reshape and confusion could result.
7894 	 */
7895 	if (mddev->delta_disks >= 0) {
7896 		rdev_for_each(rdev, mddev)
7897 			if (rdev->raid_disk < 0 &&
7898 			    !test_bit(Faulty, &rdev->flags)) {
7899 				if (raid5_add_disk(mddev, rdev) == 0) {
7900 					if (rdev->raid_disk
7901 					    >= conf->previous_raid_disks)
7902 						set_bit(In_sync, &rdev->flags);
7903 					else
7904 						rdev->recovery_offset = 0;
7905 
7906 					if (sysfs_link_rdev(mddev, rdev))
7907 						/* Failure here is OK */;
7908 				}
7909 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7910 				   && !test_bit(Faulty, &rdev->flags)) {
7911 				/* This is a spare that was manually added */
7912 				set_bit(In_sync, &rdev->flags);
7913 			}
7914 
7915 		/* When a reshape changes the number of devices,
7916 		 * ->degraded is measured against the larger of the
7917 		 * pre and post number of devices.
7918 		 */
7919 		spin_lock_irqsave(&conf->device_lock, flags);
7920 		mddev->degraded = raid5_calc_degraded(conf);
7921 		spin_unlock_irqrestore(&conf->device_lock, flags);
7922 	}
7923 	mddev->raid_disks = conf->raid_disks;
7924 	mddev->reshape_position = conf->reshape_progress;
7925 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7926 
7927 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7928 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7929 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7930 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7931 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7932 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7933 						"reshape");
7934 	if (!mddev->sync_thread) {
7935 		mddev->recovery = 0;
7936 		spin_lock_irq(&conf->device_lock);
7937 		write_seqcount_begin(&conf->gen_lock);
7938 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7939 		mddev->new_chunk_sectors =
7940 			conf->chunk_sectors = conf->prev_chunk_sectors;
7941 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7942 		rdev_for_each(rdev, mddev)
7943 			rdev->new_data_offset = rdev->data_offset;
7944 		smp_wmb();
7945 		conf->generation --;
7946 		conf->reshape_progress = MaxSector;
7947 		mddev->reshape_position = MaxSector;
7948 		write_seqcount_end(&conf->gen_lock);
7949 		spin_unlock_irq(&conf->device_lock);
7950 		return -EAGAIN;
7951 	}
7952 	conf->reshape_checkpoint = jiffies;
7953 	md_wakeup_thread(mddev->sync_thread);
7954 	md_new_event(mddev);
7955 	return 0;
7956 }
7957 
7958 /* This is called from the reshape thread and should make any
7959  * changes needed in 'conf'
7960  */
7961 static void end_reshape(struct r5conf *conf)
7962 {
7963 
7964 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7965 		struct md_rdev *rdev;
7966 
7967 		spin_lock_irq(&conf->device_lock);
7968 		conf->previous_raid_disks = conf->raid_disks;
7969 		md_finish_reshape(conf->mddev);
7970 		smp_wmb();
7971 		conf->reshape_progress = MaxSector;
7972 		conf->mddev->reshape_position = MaxSector;
7973 		rdev_for_each(rdev, conf->mddev)
7974 			if (rdev->raid_disk >= 0 &&
7975 			    !test_bit(Journal, &rdev->flags) &&
7976 			    !test_bit(In_sync, &rdev->flags))
7977 				rdev->recovery_offset = MaxSector;
7978 		spin_unlock_irq(&conf->device_lock);
7979 		wake_up(&conf->wait_for_overlap);
7980 
7981 		/* read-ahead size must cover two whole stripes, which is
7982 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7983 		 */
7984 		if (conf->mddev->queue) {
7985 			int data_disks = conf->raid_disks - conf->max_degraded;
7986 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7987 						   / PAGE_SIZE);
7988 			if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7989 				conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7990 		}
7991 	}
7992 }
7993 
7994 /* This is called from the raid5d thread with mddev_lock held.
7995  * It makes config changes to the device.
7996  */
7997 static void raid5_finish_reshape(struct mddev *mddev)
7998 {
7999 	struct r5conf *conf = mddev->private;
8000 
8001 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8002 
8003 		if (mddev->delta_disks <= 0) {
8004 			int d;
8005 			spin_lock_irq(&conf->device_lock);
8006 			mddev->degraded = raid5_calc_degraded(conf);
8007 			spin_unlock_irq(&conf->device_lock);
8008 			for (d = conf->raid_disks ;
8009 			     d < conf->raid_disks - mddev->delta_disks;
8010 			     d++) {
8011 				struct md_rdev *rdev = conf->disks[d].rdev;
8012 				if (rdev)
8013 					clear_bit(In_sync, &rdev->flags);
8014 				rdev = conf->disks[d].replacement;
8015 				if (rdev)
8016 					clear_bit(In_sync, &rdev->flags);
8017 			}
8018 		}
8019 		mddev->layout = conf->algorithm;
8020 		mddev->chunk_sectors = conf->chunk_sectors;
8021 		mddev->reshape_position = MaxSector;
8022 		mddev->delta_disks = 0;
8023 		mddev->reshape_backwards = 0;
8024 	}
8025 }
8026 
8027 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8028 {
8029 	struct r5conf *conf = mddev->private;
8030 
8031 	if (quiesce) {
8032 		/* stop all writes */
8033 		lock_all_device_hash_locks_irq(conf);
8034 		/* '2' tells resync/reshape to pause so that all
8035 		 * active stripes can drain
8036 		 */
8037 		r5c_flush_cache(conf, INT_MAX);
8038 		conf->quiesce = 2;
8039 		wait_event_cmd(conf->wait_for_quiescent,
8040 				    atomic_read(&conf->active_stripes) == 0 &&
8041 				    atomic_read(&conf->active_aligned_reads) == 0,
8042 				    unlock_all_device_hash_locks_irq(conf),
8043 				    lock_all_device_hash_locks_irq(conf));
8044 		conf->quiesce = 1;
8045 		unlock_all_device_hash_locks_irq(conf);
8046 		/* allow reshape to continue */
8047 		wake_up(&conf->wait_for_overlap);
8048 	} else {
8049 		/* re-enable writes */
8050 		lock_all_device_hash_locks_irq(conf);
8051 		conf->quiesce = 0;
8052 		wake_up(&conf->wait_for_quiescent);
8053 		wake_up(&conf->wait_for_overlap);
8054 		unlock_all_device_hash_locks_irq(conf);
8055 	}
8056 	log_quiesce(conf, quiesce);
8057 }
8058 
8059 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8060 {
8061 	struct r0conf *raid0_conf = mddev->private;
8062 	sector_t sectors;
8063 
8064 	/* for raid0 takeover only one zone is supported */
8065 	if (raid0_conf->nr_strip_zones > 1) {
8066 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8067 			mdname(mddev));
8068 		return ERR_PTR(-EINVAL);
8069 	}
8070 
8071 	sectors = raid0_conf->strip_zone[0].zone_end;
8072 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8073 	mddev->dev_sectors = sectors;
8074 	mddev->new_level = level;
8075 	mddev->new_layout = ALGORITHM_PARITY_N;
8076 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8077 	mddev->raid_disks += 1;
8078 	mddev->delta_disks = 1;
8079 	/* make sure it will be not marked as dirty */
8080 	mddev->recovery_cp = MaxSector;
8081 
8082 	return setup_conf(mddev);
8083 }
8084 
8085 static void *raid5_takeover_raid1(struct mddev *mddev)
8086 {
8087 	int chunksect;
8088 	void *ret;
8089 
8090 	if (mddev->raid_disks != 2 ||
8091 	    mddev->degraded > 1)
8092 		return ERR_PTR(-EINVAL);
8093 
8094 	/* Should check if there are write-behind devices? */
8095 
8096 	chunksect = 64*2; /* 64K by default */
8097 
8098 	/* The array must be an exact multiple of chunksize */
8099 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8100 		chunksect >>= 1;
8101 
8102 	if ((chunksect<<9) < STRIPE_SIZE)
8103 		/* array size does not allow a suitable chunk size */
8104 		return ERR_PTR(-EINVAL);
8105 
8106 	mddev->new_level = 5;
8107 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8108 	mddev->new_chunk_sectors = chunksect;
8109 
8110 	ret = setup_conf(mddev);
8111 	if (!IS_ERR(ret))
8112 		mddev_clear_unsupported_flags(mddev,
8113 			UNSUPPORTED_MDDEV_FLAGS);
8114 	return ret;
8115 }
8116 
8117 static void *raid5_takeover_raid6(struct mddev *mddev)
8118 {
8119 	int new_layout;
8120 
8121 	switch (mddev->layout) {
8122 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8123 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8124 		break;
8125 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8126 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8127 		break;
8128 	case ALGORITHM_LEFT_SYMMETRIC_6:
8129 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8130 		break;
8131 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8132 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8133 		break;
8134 	case ALGORITHM_PARITY_0_6:
8135 		new_layout = ALGORITHM_PARITY_0;
8136 		break;
8137 	case ALGORITHM_PARITY_N:
8138 		new_layout = ALGORITHM_PARITY_N;
8139 		break;
8140 	default:
8141 		return ERR_PTR(-EINVAL);
8142 	}
8143 	mddev->new_level = 5;
8144 	mddev->new_layout = new_layout;
8145 	mddev->delta_disks = -1;
8146 	mddev->raid_disks -= 1;
8147 	return setup_conf(mddev);
8148 }
8149 
8150 static int raid5_check_reshape(struct mddev *mddev)
8151 {
8152 	/* For a 2-drive array, the layout and chunk size can be changed
8153 	 * immediately as not restriping is needed.
8154 	 * For larger arrays we record the new value - after validation
8155 	 * to be used by a reshape pass.
8156 	 */
8157 	struct r5conf *conf = mddev->private;
8158 	int new_chunk = mddev->new_chunk_sectors;
8159 
8160 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8161 		return -EINVAL;
8162 	if (new_chunk > 0) {
8163 		if (!is_power_of_2(new_chunk))
8164 			return -EINVAL;
8165 		if (new_chunk < (PAGE_SIZE>>9))
8166 			return -EINVAL;
8167 		if (mddev->array_sectors & (new_chunk-1))
8168 			/* not factor of array size */
8169 			return -EINVAL;
8170 	}
8171 
8172 	/* They look valid */
8173 
8174 	if (mddev->raid_disks == 2) {
8175 		/* can make the change immediately */
8176 		if (mddev->new_layout >= 0) {
8177 			conf->algorithm = mddev->new_layout;
8178 			mddev->layout = mddev->new_layout;
8179 		}
8180 		if (new_chunk > 0) {
8181 			conf->chunk_sectors = new_chunk ;
8182 			mddev->chunk_sectors = new_chunk;
8183 		}
8184 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8185 		md_wakeup_thread(mddev->thread);
8186 	}
8187 	return check_reshape(mddev);
8188 }
8189 
8190 static int raid6_check_reshape(struct mddev *mddev)
8191 {
8192 	int new_chunk = mddev->new_chunk_sectors;
8193 
8194 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8195 		return -EINVAL;
8196 	if (new_chunk > 0) {
8197 		if (!is_power_of_2(new_chunk))
8198 			return -EINVAL;
8199 		if (new_chunk < (PAGE_SIZE >> 9))
8200 			return -EINVAL;
8201 		if (mddev->array_sectors & (new_chunk-1))
8202 			/* not factor of array size */
8203 			return -EINVAL;
8204 	}
8205 
8206 	/* They look valid */
8207 	return check_reshape(mddev);
8208 }
8209 
8210 static void *raid5_takeover(struct mddev *mddev)
8211 {
8212 	/* raid5 can take over:
8213 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8214 	 *  raid1 - if there are two drives.  We need to know the chunk size
8215 	 *  raid4 - trivial - just use a raid4 layout.
8216 	 *  raid6 - Providing it is a *_6 layout
8217 	 */
8218 	if (mddev->level == 0)
8219 		return raid45_takeover_raid0(mddev, 5);
8220 	if (mddev->level == 1)
8221 		return raid5_takeover_raid1(mddev);
8222 	if (mddev->level == 4) {
8223 		mddev->new_layout = ALGORITHM_PARITY_N;
8224 		mddev->new_level = 5;
8225 		return setup_conf(mddev);
8226 	}
8227 	if (mddev->level == 6)
8228 		return raid5_takeover_raid6(mddev);
8229 
8230 	return ERR_PTR(-EINVAL);
8231 }
8232 
8233 static void *raid4_takeover(struct mddev *mddev)
8234 {
8235 	/* raid4 can take over:
8236 	 *  raid0 - if there is only one strip zone
8237 	 *  raid5 - if layout is right
8238 	 */
8239 	if (mddev->level == 0)
8240 		return raid45_takeover_raid0(mddev, 4);
8241 	if (mddev->level == 5 &&
8242 	    mddev->layout == ALGORITHM_PARITY_N) {
8243 		mddev->new_layout = 0;
8244 		mddev->new_level = 4;
8245 		return setup_conf(mddev);
8246 	}
8247 	return ERR_PTR(-EINVAL);
8248 }
8249 
8250 static struct md_personality raid5_personality;
8251 
8252 static void *raid6_takeover(struct mddev *mddev)
8253 {
8254 	/* Currently can only take over a raid5.  We map the
8255 	 * personality to an equivalent raid6 personality
8256 	 * with the Q block at the end.
8257 	 */
8258 	int new_layout;
8259 
8260 	if (mddev->pers != &raid5_personality)
8261 		return ERR_PTR(-EINVAL);
8262 	if (mddev->degraded > 1)
8263 		return ERR_PTR(-EINVAL);
8264 	if (mddev->raid_disks > 253)
8265 		return ERR_PTR(-EINVAL);
8266 	if (mddev->raid_disks < 3)
8267 		return ERR_PTR(-EINVAL);
8268 
8269 	switch (mddev->layout) {
8270 	case ALGORITHM_LEFT_ASYMMETRIC:
8271 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8272 		break;
8273 	case ALGORITHM_RIGHT_ASYMMETRIC:
8274 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8275 		break;
8276 	case ALGORITHM_LEFT_SYMMETRIC:
8277 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8278 		break;
8279 	case ALGORITHM_RIGHT_SYMMETRIC:
8280 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8281 		break;
8282 	case ALGORITHM_PARITY_0:
8283 		new_layout = ALGORITHM_PARITY_0_6;
8284 		break;
8285 	case ALGORITHM_PARITY_N:
8286 		new_layout = ALGORITHM_PARITY_N;
8287 		break;
8288 	default:
8289 		return ERR_PTR(-EINVAL);
8290 	}
8291 	mddev->new_level = 6;
8292 	mddev->new_layout = new_layout;
8293 	mddev->delta_disks = 1;
8294 	mddev->raid_disks += 1;
8295 	return setup_conf(mddev);
8296 }
8297 
8298 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8299 {
8300 	struct r5conf *conf;
8301 	int err;
8302 
8303 	err = mddev_lock(mddev);
8304 	if (err)
8305 		return err;
8306 	conf = mddev->private;
8307 	if (!conf) {
8308 		mddev_unlock(mddev);
8309 		return -ENODEV;
8310 	}
8311 
8312 	if (strncmp(buf, "ppl", 3) == 0) {
8313 		/* ppl only works with RAID 5 */
8314 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8315 			err = log_init(conf, NULL, true);
8316 			if (!err) {
8317 				err = resize_stripes(conf, conf->pool_size);
8318 				if (err)
8319 					log_exit(conf);
8320 			}
8321 		} else
8322 			err = -EINVAL;
8323 	} else if (strncmp(buf, "resync", 6) == 0) {
8324 		if (raid5_has_ppl(conf)) {
8325 			mddev_suspend(mddev);
8326 			log_exit(conf);
8327 			mddev_resume(mddev);
8328 			err = resize_stripes(conf, conf->pool_size);
8329 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8330 			   r5l_log_disk_error(conf)) {
8331 			bool journal_dev_exists = false;
8332 			struct md_rdev *rdev;
8333 
8334 			rdev_for_each(rdev, mddev)
8335 				if (test_bit(Journal, &rdev->flags)) {
8336 					journal_dev_exists = true;
8337 					break;
8338 				}
8339 
8340 			if (!journal_dev_exists) {
8341 				mddev_suspend(mddev);
8342 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8343 				mddev_resume(mddev);
8344 			} else  /* need remove journal device first */
8345 				err = -EBUSY;
8346 		} else
8347 			err = -EINVAL;
8348 	} else {
8349 		err = -EINVAL;
8350 	}
8351 
8352 	if (!err)
8353 		md_update_sb(mddev, 1);
8354 
8355 	mddev_unlock(mddev);
8356 
8357 	return err;
8358 }
8359 
8360 static int raid5_start(struct mddev *mddev)
8361 {
8362 	struct r5conf *conf = mddev->private;
8363 
8364 	return r5l_start(conf->log);
8365 }
8366 
8367 static struct md_personality raid6_personality =
8368 {
8369 	.name		= "raid6",
8370 	.level		= 6,
8371 	.owner		= THIS_MODULE,
8372 	.make_request	= raid5_make_request,
8373 	.run		= raid5_run,
8374 	.start		= raid5_start,
8375 	.free		= raid5_free,
8376 	.status		= raid5_status,
8377 	.error_handler	= raid5_error,
8378 	.hot_add_disk	= raid5_add_disk,
8379 	.hot_remove_disk= raid5_remove_disk,
8380 	.spare_active	= raid5_spare_active,
8381 	.sync_request	= raid5_sync_request,
8382 	.resize		= raid5_resize,
8383 	.size		= raid5_size,
8384 	.check_reshape	= raid6_check_reshape,
8385 	.start_reshape  = raid5_start_reshape,
8386 	.finish_reshape = raid5_finish_reshape,
8387 	.quiesce	= raid5_quiesce,
8388 	.takeover	= raid6_takeover,
8389 	.congested	= raid5_congested,
8390 	.change_consistency_policy = raid5_change_consistency_policy,
8391 };
8392 static struct md_personality raid5_personality =
8393 {
8394 	.name		= "raid5",
8395 	.level		= 5,
8396 	.owner		= THIS_MODULE,
8397 	.make_request	= raid5_make_request,
8398 	.run		= raid5_run,
8399 	.start		= raid5_start,
8400 	.free		= raid5_free,
8401 	.status		= raid5_status,
8402 	.error_handler	= raid5_error,
8403 	.hot_add_disk	= raid5_add_disk,
8404 	.hot_remove_disk= raid5_remove_disk,
8405 	.spare_active	= raid5_spare_active,
8406 	.sync_request	= raid5_sync_request,
8407 	.resize		= raid5_resize,
8408 	.size		= raid5_size,
8409 	.check_reshape	= raid5_check_reshape,
8410 	.start_reshape  = raid5_start_reshape,
8411 	.finish_reshape = raid5_finish_reshape,
8412 	.quiesce	= raid5_quiesce,
8413 	.takeover	= raid5_takeover,
8414 	.congested	= raid5_congested,
8415 	.change_consistency_policy = raid5_change_consistency_policy,
8416 };
8417 
8418 static struct md_personality raid4_personality =
8419 {
8420 	.name		= "raid4",
8421 	.level		= 4,
8422 	.owner		= THIS_MODULE,
8423 	.make_request	= raid5_make_request,
8424 	.run		= raid5_run,
8425 	.start		= raid5_start,
8426 	.free		= raid5_free,
8427 	.status		= raid5_status,
8428 	.error_handler	= raid5_error,
8429 	.hot_add_disk	= raid5_add_disk,
8430 	.hot_remove_disk= raid5_remove_disk,
8431 	.spare_active	= raid5_spare_active,
8432 	.sync_request	= raid5_sync_request,
8433 	.resize		= raid5_resize,
8434 	.size		= raid5_size,
8435 	.check_reshape	= raid5_check_reshape,
8436 	.start_reshape  = raid5_start_reshape,
8437 	.finish_reshape = raid5_finish_reshape,
8438 	.quiesce	= raid5_quiesce,
8439 	.takeover	= raid4_takeover,
8440 	.congested	= raid5_congested,
8441 	.change_consistency_policy = raid5_change_consistency_policy,
8442 };
8443 
8444 static int __init raid5_init(void)
8445 {
8446 	int ret;
8447 
8448 	raid5_wq = alloc_workqueue("raid5wq",
8449 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8450 	if (!raid5_wq)
8451 		return -ENOMEM;
8452 
8453 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8454 				      "md/raid5:prepare",
8455 				      raid456_cpu_up_prepare,
8456 				      raid456_cpu_dead);
8457 	if (ret) {
8458 		destroy_workqueue(raid5_wq);
8459 		return ret;
8460 	}
8461 	register_md_personality(&raid6_personality);
8462 	register_md_personality(&raid5_personality);
8463 	register_md_personality(&raid4_personality);
8464 	return 0;
8465 }
8466 
8467 static void raid5_exit(void)
8468 {
8469 	unregister_md_personality(&raid6_personality);
8470 	unregister_md_personality(&raid5_personality);
8471 	unregister_md_personality(&raid4_personality);
8472 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8473 	destroy_workqueue(raid5_wq);
8474 }
8475 
8476 module_init(raid5_init);
8477 module_exit(raid5_exit);
8478 MODULE_LICENSE("GPL");
8479 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8480 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8481 MODULE_ALIAS("md-raid5");
8482 MODULE_ALIAS("md-raid4");
8483 MODULE_ALIAS("md-level-5");
8484 MODULE_ALIAS("md-level-4");
8485 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8486 MODULE_ALIAS("md-raid6");
8487 MODULE_ALIAS("md-level-6");
8488 
8489 /* This used to be two separate modules, they were: */
8490 MODULE_ALIAS("raid5");
8491 MODULE_ALIAS("raid6");
8492