1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <linux/nodemask.h> 57 #include <linux/flex_array.h> 58 #include <linux/sched/signal.h> 59 60 #include <trace/events/block.h> 61 62 #include "md.h" 63 #include "raid5.h" 64 #include "raid0.h" 65 #include "bitmap.h" 66 67 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 68 69 #define cpu_to_group(cpu) cpu_to_node(cpu) 70 #define ANY_GROUP NUMA_NO_NODE 71 72 static bool devices_handle_discard_safely = false; 73 module_param(devices_handle_discard_safely, bool, 0644); 74 MODULE_PARM_DESC(devices_handle_discard_safely, 75 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 76 static struct workqueue_struct *raid5_wq; 77 78 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 79 { 80 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 81 return &conf->stripe_hashtbl[hash]; 82 } 83 84 static inline int stripe_hash_locks_hash(sector_t sect) 85 { 86 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 87 } 88 89 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 90 { 91 spin_lock_irq(conf->hash_locks + hash); 92 spin_lock(&conf->device_lock); 93 } 94 95 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 96 { 97 spin_unlock(&conf->device_lock); 98 spin_unlock_irq(conf->hash_locks + hash); 99 } 100 101 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 102 { 103 int i; 104 local_irq_disable(); 105 spin_lock(conf->hash_locks); 106 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 107 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 108 spin_lock(&conf->device_lock); 109 } 110 111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 112 { 113 int i; 114 spin_unlock(&conf->device_lock); 115 for (i = NR_STRIPE_HASH_LOCKS; i; i--) 116 spin_unlock(conf->hash_locks + i - 1); 117 local_irq_enable(); 118 } 119 120 /* Find first data disk in a raid6 stripe */ 121 static inline int raid6_d0(struct stripe_head *sh) 122 { 123 if (sh->ddf_layout) 124 /* ddf always start from first device */ 125 return 0; 126 /* md starts just after Q block */ 127 if (sh->qd_idx == sh->disks - 1) 128 return 0; 129 else 130 return sh->qd_idx + 1; 131 } 132 static inline int raid6_next_disk(int disk, int raid_disks) 133 { 134 disk++; 135 return (disk < raid_disks) ? disk : 0; 136 } 137 138 /* When walking through the disks in a raid5, starting at raid6_d0, 139 * We need to map each disk to a 'slot', where the data disks are slot 140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 141 * is raid_disks-1. This help does that mapping. 142 */ 143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 144 int *count, int syndrome_disks) 145 { 146 int slot = *count; 147 148 if (sh->ddf_layout) 149 (*count)++; 150 if (idx == sh->pd_idx) 151 return syndrome_disks; 152 if (idx == sh->qd_idx) 153 return syndrome_disks + 1; 154 if (!sh->ddf_layout) 155 (*count)++; 156 return slot; 157 } 158 159 static void return_io(struct bio_list *return_bi) 160 { 161 struct bio *bi; 162 while ((bi = bio_list_pop(return_bi)) != NULL) { 163 bi->bi_iter.bi_size = 0; 164 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 165 bi, 0); 166 bio_endio(bi); 167 } 168 } 169 170 static void print_raid5_conf (struct r5conf *conf); 171 172 static int stripe_operations_active(struct stripe_head *sh) 173 { 174 return sh->check_state || sh->reconstruct_state || 175 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 176 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 177 } 178 179 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 180 { 181 struct r5conf *conf = sh->raid_conf; 182 struct r5worker_group *group; 183 int thread_cnt; 184 int i, cpu = sh->cpu; 185 186 if (!cpu_online(cpu)) { 187 cpu = cpumask_any(cpu_online_mask); 188 sh->cpu = cpu; 189 } 190 191 if (list_empty(&sh->lru)) { 192 struct r5worker_group *group; 193 group = conf->worker_groups + cpu_to_group(cpu); 194 list_add_tail(&sh->lru, &group->handle_list); 195 group->stripes_cnt++; 196 sh->group = group; 197 } 198 199 if (conf->worker_cnt_per_group == 0) { 200 md_wakeup_thread(conf->mddev->thread); 201 return; 202 } 203 204 group = conf->worker_groups + cpu_to_group(sh->cpu); 205 206 group->workers[0].working = true; 207 /* at least one worker should run to avoid race */ 208 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 209 210 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 211 /* wakeup more workers */ 212 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 213 if (group->workers[i].working == false) { 214 group->workers[i].working = true; 215 queue_work_on(sh->cpu, raid5_wq, 216 &group->workers[i].work); 217 thread_cnt--; 218 } 219 } 220 } 221 222 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 223 struct list_head *temp_inactive_list) 224 { 225 int i; 226 int injournal = 0; /* number of date pages with R5_InJournal */ 227 228 BUG_ON(!list_empty(&sh->lru)); 229 BUG_ON(atomic_read(&conf->active_stripes)==0); 230 231 if (r5c_is_writeback(conf->log)) 232 for (i = sh->disks; i--; ) 233 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 234 injournal++; 235 /* 236 * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with 237 * data in journal, so they are not released to cached lists 238 */ 239 if (conf->quiesce && r5c_is_writeback(conf->log) && 240 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0) { 241 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 242 r5c_make_stripe_write_out(sh); 243 set_bit(STRIPE_HANDLE, &sh->state); 244 } 245 246 if (test_bit(STRIPE_HANDLE, &sh->state)) { 247 if (test_bit(STRIPE_DELAYED, &sh->state) && 248 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 249 list_add_tail(&sh->lru, &conf->delayed_list); 250 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 251 sh->bm_seq - conf->seq_write > 0) 252 list_add_tail(&sh->lru, &conf->bitmap_list); 253 else { 254 clear_bit(STRIPE_DELAYED, &sh->state); 255 clear_bit(STRIPE_BIT_DELAY, &sh->state); 256 if (conf->worker_cnt_per_group == 0) { 257 list_add_tail(&sh->lru, &conf->handle_list); 258 } else { 259 raid5_wakeup_stripe_thread(sh); 260 return; 261 } 262 } 263 md_wakeup_thread(conf->mddev->thread); 264 } else { 265 BUG_ON(stripe_operations_active(sh)); 266 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 267 if (atomic_dec_return(&conf->preread_active_stripes) 268 < IO_THRESHOLD) 269 md_wakeup_thread(conf->mddev->thread); 270 atomic_dec(&conf->active_stripes); 271 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 272 if (!r5c_is_writeback(conf->log)) 273 list_add_tail(&sh->lru, temp_inactive_list); 274 else { 275 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 276 if (injournal == 0) 277 list_add_tail(&sh->lru, temp_inactive_list); 278 else if (injournal == conf->raid_disks - conf->max_degraded) { 279 /* full stripe */ 280 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 281 atomic_inc(&conf->r5c_cached_full_stripes); 282 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 283 atomic_dec(&conf->r5c_cached_partial_stripes); 284 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 285 r5c_check_cached_full_stripe(conf); 286 } else 287 /* 288 * STRIPE_R5C_PARTIAL_STRIPE is set in 289 * r5c_try_caching_write(). No need to 290 * set it again. 291 */ 292 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 293 } 294 } 295 } 296 } 297 298 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 299 struct list_head *temp_inactive_list) 300 { 301 if (atomic_dec_and_test(&sh->count)) 302 do_release_stripe(conf, sh, temp_inactive_list); 303 } 304 305 /* 306 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 307 * 308 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 309 * given time. Adding stripes only takes device lock, while deleting stripes 310 * only takes hash lock. 311 */ 312 static void release_inactive_stripe_list(struct r5conf *conf, 313 struct list_head *temp_inactive_list, 314 int hash) 315 { 316 int size; 317 bool do_wakeup = false; 318 unsigned long flags; 319 320 if (hash == NR_STRIPE_HASH_LOCKS) { 321 size = NR_STRIPE_HASH_LOCKS; 322 hash = NR_STRIPE_HASH_LOCKS - 1; 323 } else 324 size = 1; 325 while (size) { 326 struct list_head *list = &temp_inactive_list[size - 1]; 327 328 /* 329 * We don't hold any lock here yet, raid5_get_active_stripe() might 330 * remove stripes from the list 331 */ 332 if (!list_empty_careful(list)) { 333 spin_lock_irqsave(conf->hash_locks + hash, flags); 334 if (list_empty(conf->inactive_list + hash) && 335 !list_empty(list)) 336 atomic_dec(&conf->empty_inactive_list_nr); 337 list_splice_tail_init(list, conf->inactive_list + hash); 338 do_wakeup = true; 339 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 340 } 341 size--; 342 hash--; 343 } 344 345 if (do_wakeup) { 346 wake_up(&conf->wait_for_stripe); 347 if (atomic_read(&conf->active_stripes) == 0) 348 wake_up(&conf->wait_for_quiescent); 349 if (conf->retry_read_aligned) 350 md_wakeup_thread(conf->mddev->thread); 351 } 352 } 353 354 /* should hold conf->device_lock already */ 355 static int release_stripe_list(struct r5conf *conf, 356 struct list_head *temp_inactive_list) 357 { 358 struct stripe_head *sh, *t; 359 int count = 0; 360 struct llist_node *head; 361 362 head = llist_del_all(&conf->released_stripes); 363 head = llist_reverse_order(head); 364 llist_for_each_entry_safe(sh, t, head, release_list) { 365 int hash; 366 367 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 368 smp_mb(); 369 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 370 /* 371 * Don't worry the bit is set here, because if the bit is set 372 * again, the count is always > 1. This is true for 373 * STRIPE_ON_UNPLUG_LIST bit too. 374 */ 375 hash = sh->hash_lock_index; 376 __release_stripe(conf, sh, &temp_inactive_list[hash]); 377 count++; 378 } 379 380 return count; 381 } 382 383 void raid5_release_stripe(struct stripe_head *sh) 384 { 385 struct r5conf *conf = sh->raid_conf; 386 unsigned long flags; 387 struct list_head list; 388 int hash; 389 bool wakeup; 390 391 /* Avoid release_list until the last reference. 392 */ 393 if (atomic_add_unless(&sh->count, -1, 1)) 394 return; 395 396 if (unlikely(!conf->mddev->thread) || 397 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 398 goto slow_path; 399 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 400 if (wakeup) 401 md_wakeup_thread(conf->mddev->thread); 402 return; 403 slow_path: 404 local_irq_save(flags); 405 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 406 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 407 INIT_LIST_HEAD(&list); 408 hash = sh->hash_lock_index; 409 do_release_stripe(conf, sh, &list); 410 spin_unlock(&conf->device_lock); 411 release_inactive_stripe_list(conf, &list, hash); 412 } 413 local_irq_restore(flags); 414 } 415 416 static inline void remove_hash(struct stripe_head *sh) 417 { 418 pr_debug("remove_hash(), stripe %llu\n", 419 (unsigned long long)sh->sector); 420 421 hlist_del_init(&sh->hash); 422 } 423 424 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 425 { 426 struct hlist_head *hp = stripe_hash(conf, sh->sector); 427 428 pr_debug("insert_hash(), stripe %llu\n", 429 (unsigned long long)sh->sector); 430 431 hlist_add_head(&sh->hash, hp); 432 } 433 434 /* find an idle stripe, make sure it is unhashed, and return it. */ 435 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 436 { 437 struct stripe_head *sh = NULL; 438 struct list_head *first; 439 440 if (list_empty(conf->inactive_list + hash)) 441 goto out; 442 first = (conf->inactive_list + hash)->next; 443 sh = list_entry(first, struct stripe_head, lru); 444 list_del_init(first); 445 remove_hash(sh); 446 atomic_inc(&conf->active_stripes); 447 BUG_ON(hash != sh->hash_lock_index); 448 if (list_empty(conf->inactive_list + hash)) 449 atomic_inc(&conf->empty_inactive_list_nr); 450 out: 451 return sh; 452 } 453 454 static void shrink_buffers(struct stripe_head *sh) 455 { 456 struct page *p; 457 int i; 458 int num = sh->raid_conf->pool_size; 459 460 for (i = 0; i < num ; i++) { 461 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 462 p = sh->dev[i].page; 463 if (!p) 464 continue; 465 sh->dev[i].page = NULL; 466 put_page(p); 467 } 468 } 469 470 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 471 { 472 int i; 473 int num = sh->raid_conf->pool_size; 474 475 for (i = 0; i < num; i++) { 476 struct page *page; 477 478 if (!(page = alloc_page(gfp))) { 479 return 1; 480 } 481 sh->dev[i].page = page; 482 sh->dev[i].orig_page = page; 483 } 484 return 0; 485 } 486 487 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 488 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 489 struct stripe_head *sh); 490 491 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 492 { 493 struct r5conf *conf = sh->raid_conf; 494 int i, seq; 495 496 BUG_ON(atomic_read(&sh->count) != 0); 497 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 498 BUG_ON(stripe_operations_active(sh)); 499 BUG_ON(sh->batch_head); 500 501 pr_debug("init_stripe called, stripe %llu\n", 502 (unsigned long long)sector); 503 retry: 504 seq = read_seqcount_begin(&conf->gen_lock); 505 sh->generation = conf->generation - previous; 506 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 507 sh->sector = sector; 508 stripe_set_idx(sector, conf, previous, sh); 509 sh->state = 0; 510 511 for (i = sh->disks; i--; ) { 512 struct r5dev *dev = &sh->dev[i]; 513 514 if (dev->toread || dev->read || dev->towrite || dev->written || 515 test_bit(R5_LOCKED, &dev->flags)) { 516 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 517 (unsigned long long)sh->sector, i, dev->toread, 518 dev->read, dev->towrite, dev->written, 519 test_bit(R5_LOCKED, &dev->flags)); 520 WARN_ON(1); 521 } 522 dev->flags = 0; 523 raid5_build_block(sh, i, previous); 524 } 525 if (read_seqcount_retry(&conf->gen_lock, seq)) 526 goto retry; 527 sh->overwrite_disks = 0; 528 insert_hash(conf, sh); 529 sh->cpu = smp_processor_id(); 530 set_bit(STRIPE_BATCH_READY, &sh->state); 531 } 532 533 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 534 short generation) 535 { 536 struct stripe_head *sh; 537 538 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 539 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 540 if (sh->sector == sector && sh->generation == generation) 541 return sh; 542 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 543 return NULL; 544 } 545 546 /* 547 * Need to check if array has failed when deciding whether to: 548 * - start an array 549 * - remove non-faulty devices 550 * - add a spare 551 * - allow a reshape 552 * This determination is simple when no reshape is happening. 553 * However if there is a reshape, we need to carefully check 554 * both the before and after sections. 555 * This is because some failed devices may only affect one 556 * of the two sections, and some non-in_sync devices may 557 * be insync in the section most affected by failed devices. 558 */ 559 int raid5_calc_degraded(struct r5conf *conf) 560 { 561 int degraded, degraded2; 562 int i; 563 564 rcu_read_lock(); 565 degraded = 0; 566 for (i = 0; i < conf->previous_raid_disks; i++) { 567 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 568 if (rdev && test_bit(Faulty, &rdev->flags)) 569 rdev = rcu_dereference(conf->disks[i].replacement); 570 if (!rdev || test_bit(Faulty, &rdev->flags)) 571 degraded++; 572 else if (test_bit(In_sync, &rdev->flags)) 573 ; 574 else 575 /* not in-sync or faulty. 576 * If the reshape increases the number of devices, 577 * this is being recovered by the reshape, so 578 * this 'previous' section is not in_sync. 579 * If the number of devices is being reduced however, 580 * the device can only be part of the array if 581 * we are reverting a reshape, so this section will 582 * be in-sync. 583 */ 584 if (conf->raid_disks >= conf->previous_raid_disks) 585 degraded++; 586 } 587 rcu_read_unlock(); 588 if (conf->raid_disks == conf->previous_raid_disks) 589 return degraded; 590 rcu_read_lock(); 591 degraded2 = 0; 592 for (i = 0; i < conf->raid_disks; i++) { 593 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 594 if (rdev && test_bit(Faulty, &rdev->flags)) 595 rdev = rcu_dereference(conf->disks[i].replacement); 596 if (!rdev || test_bit(Faulty, &rdev->flags)) 597 degraded2++; 598 else if (test_bit(In_sync, &rdev->flags)) 599 ; 600 else 601 /* not in-sync or faulty. 602 * If reshape increases the number of devices, this 603 * section has already been recovered, else it 604 * almost certainly hasn't. 605 */ 606 if (conf->raid_disks <= conf->previous_raid_disks) 607 degraded2++; 608 } 609 rcu_read_unlock(); 610 if (degraded2 > degraded) 611 return degraded2; 612 return degraded; 613 } 614 615 static int has_failed(struct r5conf *conf) 616 { 617 int degraded; 618 619 if (conf->mddev->reshape_position == MaxSector) 620 return conf->mddev->degraded > conf->max_degraded; 621 622 degraded = raid5_calc_degraded(conf); 623 if (degraded > conf->max_degraded) 624 return 1; 625 return 0; 626 } 627 628 struct stripe_head * 629 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 630 int previous, int noblock, int noquiesce) 631 { 632 struct stripe_head *sh; 633 int hash = stripe_hash_locks_hash(sector); 634 int inc_empty_inactive_list_flag; 635 636 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 637 638 spin_lock_irq(conf->hash_locks + hash); 639 640 do { 641 wait_event_lock_irq(conf->wait_for_quiescent, 642 conf->quiesce == 0 || noquiesce, 643 *(conf->hash_locks + hash)); 644 sh = __find_stripe(conf, sector, conf->generation - previous); 645 if (!sh) { 646 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 647 sh = get_free_stripe(conf, hash); 648 if (!sh && !test_bit(R5_DID_ALLOC, 649 &conf->cache_state)) 650 set_bit(R5_ALLOC_MORE, 651 &conf->cache_state); 652 } 653 if (noblock && sh == NULL) 654 break; 655 656 r5c_check_stripe_cache_usage(conf); 657 if (!sh) { 658 set_bit(R5_INACTIVE_BLOCKED, 659 &conf->cache_state); 660 r5l_wake_reclaim(conf->log, 0); 661 wait_event_lock_irq( 662 conf->wait_for_stripe, 663 !list_empty(conf->inactive_list + hash) && 664 (atomic_read(&conf->active_stripes) 665 < (conf->max_nr_stripes * 3 / 4) 666 || !test_bit(R5_INACTIVE_BLOCKED, 667 &conf->cache_state)), 668 *(conf->hash_locks + hash)); 669 clear_bit(R5_INACTIVE_BLOCKED, 670 &conf->cache_state); 671 } else { 672 init_stripe(sh, sector, previous); 673 atomic_inc(&sh->count); 674 } 675 } else if (!atomic_inc_not_zero(&sh->count)) { 676 spin_lock(&conf->device_lock); 677 if (!atomic_read(&sh->count)) { 678 if (!test_bit(STRIPE_HANDLE, &sh->state)) 679 atomic_inc(&conf->active_stripes); 680 BUG_ON(list_empty(&sh->lru) && 681 !test_bit(STRIPE_EXPANDING, &sh->state)); 682 inc_empty_inactive_list_flag = 0; 683 if (!list_empty(conf->inactive_list + hash)) 684 inc_empty_inactive_list_flag = 1; 685 list_del_init(&sh->lru); 686 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 687 atomic_inc(&conf->empty_inactive_list_nr); 688 if (sh->group) { 689 sh->group->stripes_cnt--; 690 sh->group = NULL; 691 } 692 } 693 atomic_inc(&sh->count); 694 spin_unlock(&conf->device_lock); 695 } 696 } while (sh == NULL); 697 698 spin_unlock_irq(conf->hash_locks + hash); 699 return sh; 700 } 701 702 static bool is_full_stripe_write(struct stripe_head *sh) 703 { 704 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 705 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 706 } 707 708 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 709 { 710 local_irq_disable(); 711 if (sh1 > sh2) { 712 spin_lock(&sh2->stripe_lock); 713 spin_lock_nested(&sh1->stripe_lock, 1); 714 } else { 715 spin_lock(&sh1->stripe_lock); 716 spin_lock_nested(&sh2->stripe_lock, 1); 717 } 718 } 719 720 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 721 { 722 spin_unlock(&sh1->stripe_lock); 723 spin_unlock(&sh2->stripe_lock); 724 local_irq_enable(); 725 } 726 727 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 728 static bool stripe_can_batch(struct stripe_head *sh) 729 { 730 struct r5conf *conf = sh->raid_conf; 731 732 if (conf->log) 733 return false; 734 return test_bit(STRIPE_BATCH_READY, &sh->state) && 735 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 736 is_full_stripe_write(sh); 737 } 738 739 /* we only do back search */ 740 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 741 { 742 struct stripe_head *head; 743 sector_t head_sector, tmp_sec; 744 int hash; 745 int dd_idx; 746 int inc_empty_inactive_list_flag; 747 748 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 749 tmp_sec = sh->sector; 750 if (!sector_div(tmp_sec, conf->chunk_sectors)) 751 return; 752 head_sector = sh->sector - STRIPE_SECTORS; 753 754 hash = stripe_hash_locks_hash(head_sector); 755 spin_lock_irq(conf->hash_locks + hash); 756 head = __find_stripe(conf, head_sector, conf->generation); 757 if (head && !atomic_inc_not_zero(&head->count)) { 758 spin_lock(&conf->device_lock); 759 if (!atomic_read(&head->count)) { 760 if (!test_bit(STRIPE_HANDLE, &head->state)) 761 atomic_inc(&conf->active_stripes); 762 BUG_ON(list_empty(&head->lru) && 763 !test_bit(STRIPE_EXPANDING, &head->state)); 764 inc_empty_inactive_list_flag = 0; 765 if (!list_empty(conf->inactive_list + hash)) 766 inc_empty_inactive_list_flag = 1; 767 list_del_init(&head->lru); 768 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 769 atomic_inc(&conf->empty_inactive_list_nr); 770 if (head->group) { 771 head->group->stripes_cnt--; 772 head->group = NULL; 773 } 774 } 775 atomic_inc(&head->count); 776 spin_unlock(&conf->device_lock); 777 } 778 spin_unlock_irq(conf->hash_locks + hash); 779 780 if (!head) 781 return; 782 if (!stripe_can_batch(head)) 783 goto out; 784 785 lock_two_stripes(head, sh); 786 /* clear_batch_ready clear the flag */ 787 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 788 goto unlock_out; 789 790 if (sh->batch_head) 791 goto unlock_out; 792 793 dd_idx = 0; 794 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 795 dd_idx++; 796 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 797 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 798 goto unlock_out; 799 800 if (head->batch_head) { 801 spin_lock(&head->batch_head->batch_lock); 802 /* This batch list is already running */ 803 if (!stripe_can_batch(head)) { 804 spin_unlock(&head->batch_head->batch_lock); 805 goto unlock_out; 806 } 807 808 /* 809 * at this point, head's BATCH_READY could be cleared, but we 810 * can still add the stripe to batch list 811 */ 812 list_add(&sh->batch_list, &head->batch_list); 813 spin_unlock(&head->batch_head->batch_lock); 814 815 sh->batch_head = head->batch_head; 816 } else { 817 head->batch_head = head; 818 sh->batch_head = head->batch_head; 819 spin_lock(&head->batch_lock); 820 list_add_tail(&sh->batch_list, &head->batch_list); 821 spin_unlock(&head->batch_lock); 822 } 823 824 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 825 if (atomic_dec_return(&conf->preread_active_stripes) 826 < IO_THRESHOLD) 827 md_wakeup_thread(conf->mddev->thread); 828 829 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 830 int seq = sh->bm_seq; 831 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 832 sh->batch_head->bm_seq > seq) 833 seq = sh->batch_head->bm_seq; 834 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 835 sh->batch_head->bm_seq = seq; 836 } 837 838 atomic_inc(&sh->count); 839 unlock_out: 840 unlock_two_stripes(head, sh); 841 out: 842 raid5_release_stripe(head); 843 } 844 845 /* Determine if 'data_offset' or 'new_data_offset' should be used 846 * in this stripe_head. 847 */ 848 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 849 { 850 sector_t progress = conf->reshape_progress; 851 /* Need a memory barrier to make sure we see the value 852 * of conf->generation, or ->data_offset that was set before 853 * reshape_progress was updated. 854 */ 855 smp_rmb(); 856 if (progress == MaxSector) 857 return 0; 858 if (sh->generation == conf->generation - 1) 859 return 0; 860 /* We are in a reshape, and this is a new-generation stripe, 861 * so use new_data_offset. 862 */ 863 return 1; 864 } 865 866 static void flush_deferred_bios(struct r5conf *conf) 867 { 868 struct bio_list tmp; 869 struct bio *bio; 870 871 if (!conf->batch_bio_dispatch || !conf->group_cnt) 872 return; 873 874 bio_list_init(&tmp); 875 spin_lock(&conf->pending_bios_lock); 876 bio_list_merge(&tmp, &conf->pending_bios); 877 bio_list_init(&conf->pending_bios); 878 spin_unlock(&conf->pending_bios_lock); 879 880 while ((bio = bio_list_pop(&tmp))) 881 generic_make_request(bio); 882 } 883 884 static void defer_bio_issue(struct r5conf *conf, struct bio *bio) 885 { 886 /* 887 * change group_cnt will drain all bios, so this is safe 888 * 889 * A read generally means a read-modify-write, which usually means a 890 * randwrite, so we don't delay it 891 */ 892 if (!conf->batch_bio_dispatch || !conf->group_cnt || 893 bio_op(bio) == REQ_OP_READ) { 894 generic_make_request(bio); 895 return; 896 } 897 spin_lock(&conf->pending_bios_lock); 898 bio_list_add(&conf->pending_bios, bio); 899 spin_unlock(&conf->pending_bios_lock); 900 md_wakeup_thread(conf->mddev->thread); 901 } 902 903 static void 904 raid5_end_read_request(struct bio *bi); 905 static void 906 raid5_end_write_request(struct bio *bi); 907 908 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 909 { 910 struct r5conf *conf = sh->raid_conf; 911 int i, disks = sh->disks; 912 struct stripe_head *head_sh = sh; 913 914 might_sleep(); 915 916 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) { 917 /* writing out phase */ 918 if (s->waiting_extra_page) 919 return; 920 if (r5l_write_stripe(conf->log, sh) == 0) 921 return; 922 } else { /* caching phase */ 923 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) { 924 r5c_cache_data(conf->log, sh, s); 925 return; 926 } 927 } 928 929 for (i = disks; i--; ) { 930 int op, op_flags = 0; 931 int replace_only = 0; 932 struct bio *bi, *rbi; 933 struct md_rdev *rdev, *rrdev = NULL; 934 935 sh = head_sh; 936 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 937 op = REQ_OP_WRITE; 938 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 939 op_flags = REQ_FUA; 940 if (test_bit(R5_Discard, &sh->dev[i].flags)) 941 op = REQ_OP_DISCARD; 942 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 943 op = REQ_OP_READ; 944 else if (test_and_clear_bit(R5_WantReplace, 945 &sh->dev[i].flags)) { 946 op = REQ_OP_WRITE; 947 replace_only = 1; 948 } else 949 continue; 950 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 951 op_flags |= REQ_SYNC; 952 953 again: 954 bi = &sh->dev[i].req; 955 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 956 957 rcu_read_lock(); 958 rrdev = rcu_dereference(conf->disks[i].replacement); 959 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 960 rdev = rcu_dereference(conf->disks[i].rdev); 961 if (!rdev) { 962 rdev = rrdev; 963 rrdev = NULL; 964 } 965 if (op_is_write(op)) { 966 if (replace_only) 967 rdev = NULL; 968 if (rdev == rrdev) 969 /* We raced and saw duplicates */ 970 rrdev = NULL; 971 } else { 972 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 973 rdev = rrdev; 974 rrdev = NULL; 975 } 976 977 if (rdev && test_bit(Faulty, &rdev->flags)) 978 rdev = NULL; 979 if (rdev) 980 atomic_inc(&rdev->nr_pending); 981 if (rrdev && test_bit(Faulty, &rrdev->flags)) 982 rrdev = NULL; 983 if (rrdev) 984 atomic_inc(&rrdev->nr_pending); 985 rcu_read_unlock(); 986 987 /* We have already checked bad blocks for reads. Now 988 * need to check for writes. We never accept write errors 989 * on the replacement, so we don't to check rrdev. 990 */ 991 while (op_is_write(op) && rdev && 992 test_bit(WriteErrorSeen, &rdev->flags)) { 993 sector_t first_bad; 994 int bad_sectors; 995 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 996 &first_bad, &bad_sectors); 997 if (!bad) 998 break; 999 1000 if (bad < 0) { 1001 set_bit(BlockedBadBlocks, &rdev->flags); 1002 if (!conf->mddev->external && 1003 conf->mddev->sb_flags) { 1004 /* It is very unlikely, but we might 1005 * still need to write out the 1006 * bad block log - better give it 1007 * a chance*/ 1008 md_check_recovery(conf->mddev); 1009 } 1010 /* 1011 * Because md_wait_for_blocked_rdev 1012 * will dec nr_pending, we must 1013 * increment it first. 1014 */ 1015 atomic_inc(&rdev->nr_pending); 1016 md_wait_for_blocked_rdev(rdev, conf->mddev); 1017 } else { 1018 /* Acknowledged bad block - skip the write */ 1019 rdev_dec_pending(rdev, conf->mddev); 1020 rdev = NULL; 1021 } 1022 } 1023 1024 if (rdev) { 1025 if (s->syncing || s->expanding || s->expanded 1026 || s->replacing) 1027 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 1028 1029 set_bit(STRIPE_IO_STARTED, &sh->state); 1030 1031 bi->bi_bdev = rdev->bdev; 1032 bio_set_op_attrs(bi, op, op_flags); 1033 bi->bi_end_io = op_is_write(op) 1034 ? raid5_end_write_request 1035 : raid5_end_read_request; 1036 bi->bi_private = sh; 1037 1038 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1039 __func__, (unsigned long long)sh->sector, 1040 bi->bi_opf, i); 1041 atomic_inc(&sh->count); 1042 if (sh != head_sh) 1043 atomic_inc(&head_sh->count); 1044 if (use_new_offset(conf, sh)) 1045 bi->bi_iter.bi_sector = (sh->sector 1046 + rdev->new_data_offset); 1047 else 1048 bi->bi_iter.bi_sector = (sh->sector 1049 + rdev->data_offset); 1050 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1051 bi->bi_opf |= REQ_NOMERGE; 1052 1053 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1054 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1055 1056 if (!op_is_write(op) && 1057 test_bit(R5_InJournal, &sh->dev[i].flags)) 1058 /* 1059 * issuing read for a page in journal, this 1060 * must be preparing for prexor in rmw; read 1061 * the data into orig_page 1062 */ 1063 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1064 else 1065 sh->dev[i].vec.bv_page = sh->dev[i].page; 1066 bi->bi_vcnt = 1; 1067 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1068 bi->bi_io_vec[0].bv_offset = 0; 1069 bi->bi_iter.bi_size = STRIPE_SIZE; 1070 /* 1071 * If this is discard request, set bi_vcnt 0. We don't 1072 * want to confuse SCSI because SCSI will replace payload 1073 */ 1074 if (op == REQ_OP_DISCARD) 1075 bi->bi_vcnt = 0; 1076 if (rrdev) 1077 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1078 1079 if (conf->mddev->gendisk) 1080 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), 1081 bi, disk_devt(conf->mddev->gendisk), 1082 sh->dev[i].sector); 1083 defer_bio_issue(conf, bi); 1084 } 1085 if (rrdev) { 1086 if (s->syncing || s->expanding || s->expanded 1087 || s->replacing) 1088 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 1089 1090 set_bit(STRIPE_IO_STARTED, &sh->state); 1091 1092 rbi->bi_bdev = rrdev->bdev; 1093 bio_set_op_attrs(rbi, op, op_flags); 1094 BUG_ON(!op_is_write(op)); 1095 rbi->bi_end_io = raid5_end_write_request; 1096 rbi->bi_private = sh; 1097 1098 pr_debug("%s: for %llu schedule op %d on " 1099 "replacement disc %d\n", 1100 __func__, (unsigned long long)sh->sector, 1101 rbi->bi_opf, i); 1102 atomic_inc(&sh->count); 1103 if (sh != head_sh) 1104 atomic_inc(&head_sh->count); 1105 if (use_new_offset(conf, sh)) 1106 rbi->bi_iter.bi_sector = (sh->sector 1107 + rrdev->new_data_offset); 1108 else 1109 rbi->bi_iter.bi_sector = (sh->sector 1110 + rrdev->data_offset); 1111 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1112 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1113 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1114 rbi->bi_vcnt = 1; 1115 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1116 rbi->bi_io_vec[0].bv_offset = 0; 1117 rbi->bi_iter.bi_size = STRIPE_SIZE; 1118 /* 1119 * If this is discard request, set bi_vcnt 0. We don't 1120 * want to confuse SCSI because SCSI will replace payload 1121 */ 1122 if (op == REQ_OP_DISCARD) 1123 rbi->bi_vcnt = 0; 1124 if (conf->mddev->gendisk) 1125 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), 1126 rbi, disk_devt(conf->mddev->gendisk), 1127 sh->dev[i].sector); 1128 defer_bio_issue(conf, rbi); 1129 } 1130 if (!rdev && !rrdev) { 1131 if (op_is_write(op)) 1132 set_bit(STRIPE_DEGRADED, &sh->state); 1133 pr_debug("skip op %d on disc %d for sector %llu\n", 1134 bi->bi_opf, i, (unsigned long long)sh->sector); 1135 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1136 set_bit(STRIPE_HANDLE, &sh->state); 1137 } 1138 1139 if (!head_sh->batch_head) 1140 continue; 1141 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1142 batch_list); 1143 if (sh != head_sh) 1144 goto again; 1145 } 1146 } 1147 1148 static struct dma_async_tx_descriptor * 1149 async_copy_data(int frombio, struct bio *bio, struct page **page, 1150 sector_t sector, struct dma_async_tx_descriptor *tx, 1151 struct stripe_head *sh, int no_skipcopy) 1152 { 1153 struct bio_vec bvl; 1154 struct bvec_iter iter; 1155 struct page *bio_page; 1156 int page_offset; 1157 struct async_submit_ctl submit; 1158 enum async_tx_flags flags = 0; 1159 1160 if (bio->bi_iter.bi_sector >= sector) 1161 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1162 else 1163 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1164 1165 if (frombio) 1166 flags |= ASYNC_TX_FENCE; 1167 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1168 1169 bio_for_each_segment(bvl, bio, iter) { 1170 int len = bvl.bv_len; 1171 int clen; 1172 int b_offset = 0; 1173 1174 if (page_offset < 0) { 1175 b_offset = -page_offset; 1176 page_offset += b_offset; 1177 len -= b_offset; 1178 } 1179 1180 if (len > 0 && page_offset + len > STRIPE_SIZE) 1181 clen = STRIPE_SIZE - page_offset; 1182 else 1183 clen = len; 1184 1185 if (clen > 0) { 1186 b_offset += bvl.bv_offset; 1187 bio_page = bvl.bv_page; 1188 if (frombio) { 1189 if (sh->raid_conf->skip_copy && 1190 b_offset == 0 && page_offset == 0 && 1191 clen == STRIPE_SIZE && 1192 !no_skipcopy) 1193 *page = bio_page; 1194 else 1195 tx = async_memcpy(*page, bio_page, page_offset, 1196 b_offset, clen, &submit); 1197 } else 1198 tx = async_memcpy(bio_page, *page, b_offset, 1199 page_offset, clen, &submit); 1200 } 1201 /* chain the operations */ 1202 submit.depend_tx = tx; 1203 1204 if (clen < len) /* hit end of page */ 1205 break; 1206 page_offset += len; 1207 } 1208 1209 return tx; 1210 } 1211 1212 static void ops_complete_biofill(void *stripe_head_ref) 1213 { 1214 struct stripe_head *sh = stripe_head_ref; 1215 struct bio_list return_bi = BIO_EMPTY_LIST; 1216 int i; 1217 1218 pr_debug("%s: stripe %llu\n", __func__, 1219 (unsigned long long)sh->sector); 1220 1221 /* clear completed biofills */ 1222 for (i = sh->disks; i--; ) { 1223 struct r5dev *dev = &sh->dev[i]; 1224 1225 /* acknowledge completion of a biofill operation */ 1226 /* and check if we need to reply to a read request, 1227 * new R5_Wantfill requests are held off until 1228 * !STRIPE_BIOFILL_RUN 1229 */ 1230 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1231 struct bio *rbi, *rbi2; 1232 1233 BUG_ON(!dev->read); 1234 rbi = dev->read; 1235 dev->read = NULL; 1236 while (rbi && rbi->bi_iter.bi_sector < 1237 dev->sector + STRIPE_SECTORS) { 1238 rbi2 = r5_next_bio(rbi, dev->sector); 1239 if (!raid5_dec_bi_active_stripes(rbi)) 1240 bio_list_add(&return_bi, rbi); 1241 rbi = rbi2; 1242 } 1243 } 1244 } 1245 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1246 1247 return_io(&return_bi); 1248 1249 set_bit(STRIPE_HANDLE, &sh->state); 1250 raid5_release_stripe(sh); 1251 } 1252 1253 static void ops_run_biofill(struct stripe_head *sh) 1254 { 1255 struct dma_async_tx_descriptor *tx = NULL; 1256 struct async_submit_ctl submit; 1257 int i; 1258 1259 BUG_ON(sh->batch_head); 1260 pr_debug("%s: stripe %llu\n", __func__, 1261 (unsigned long long)sh->sector); 1262 1263 for (i = sh->disks; i--; ) { 1264 struct r5dev *dev = &sh->dev[i]; 1265 if (test_bit(R5_Wantfill, &dev->flags)) { 1266 struct bio *rbi; 1267 spin_lock_irq(&sh->stripe_lock); 1268 dev->read = rbi = dev->toread; 1269 dev->toread = NULL; 1270 spin_unlock_irq(&sh->stripe_lock); 1271 while (rbi && rbi->bi_iter.bi_sector < 1272 dev->sector + STRIPE_SECTORS) { 1273 tx = async_copy_data(0, rbi, &dev->page, 1274 dev->sector, tx, sh, 0); 1275 rbi = r5_next_bio(rbi, dev->sector); 1276 } 1277 } 1278 } 1279 1280 atomic_inc(&sh->count); 1281 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1282 async_trigger_callback(&submit); 1283 } 1284 1285 static void mark_target_uptodate(struct stripe_head *sh, int target) 1286 { 1287 struct r5dev *tgt; 1288 1289 if (target < 0) 1290 return; 1291 1292 tgt = &sh->dev[target]; 1293 set_bit(R5_UPTODATE, &tgt->flags); 1294 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1295 clear_bit(R5_Wantcompute, &tgt->flags); 1296 } 1297 1298 static void ops_complete_compute(void *stripe_head_ref) 1299 { 1300 struct stripe_head *sh = stripe_head_ref; 1301 1302 pr_debug("%s: stripe %llu\n", __func__, 1303 (unsigned long long)sh->sector); 1304 1305 /* mark the computed target(s) as uptodate */ 1306 mark_target_uptodate(sh, sh->ops.target); 1307 mark_target_uptodate(sh, sh->ops.target2); 1308 1309 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1310 if (sh->check_state == check_state_compute_run) 1311 sh->check_state = check_state_compute_result; 1312 set_bit(STRIPE_HANDLE, &sh->state); 1313 raid5_release_stripe(sh); 1314 } 1315 1316 /* return a pointer to the address conversion region of the scribble buffer */ 1317 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1318 struct raid5_percpu *percpu, int i) 1319 { 1320 void *addr; 1321 1322 addr = flex_array_get(percpu->scribble, i); 1323 return addr + sizeof(struct page *) * (sh->disks + 2); 1324 } 1325 1326 /* return a pointer to the address conversion region of the scribble buffer */ 1327 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1328 { 1329 void *addr; 1330 1331 addr = flex_array_get(percpu->scribble, i); 1332 return addr; 1333 } 1334 1335 static struct dma_async_tx_descriptor * 1336 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1337 { 1338 int disks = sh->disks; 1339 struct page **xor_srcs = to_addr_page(percpu, 0); 1340 int target = sh->ops.target; 1341 struct r5dev *tgt = &sh->dev[target]; 1342 struct page *xor_dest = tgt->page; 1343 int count = 0; 1344 struct dma_async_tx_descriptor *tx; 1345 struct async_submit_ctl submit; 1346 int i; 1347 1348 BUG_ON(sh->batch_head); 1349 1350 pr_debug("%s: stripe %llu block: %d\n", 1351 __func__, (unsigned long long)sh->sector, target); 1352 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1353 1354 for (i = disks; i--; ) 1355 if (i != target) 1356 xor_srcs[count++] = sh->dev[i].page; 1357 1358 atomic_inc(&sh->count); 1359 1360 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1361 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1362 if (unlikely(count == 1)) 1363 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1364 else 1365 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1366 1367 return tx; 1368 } 1369 1370 /* set_syndrome_sources - populate source buffers for gen_syndrome 1371 * @srcs - (struct page *) array of size sh->disks 1372 * @sh - stripe_head to parse 1373 * 1374 * Populates srcs in proper layout order for the stripe and returns the 1375 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1376 * destination buffer is recorded in srcs[count] and the Q destination 1377 * is recorded in srcs[count+1]]. 1378 */ 1379 static int set_syndrome_sources(struct page **srcs, 1380 struct stripe_head *sh, 1381 int srctype) 1382 { 1383 int disks = sh->disks; 1384 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1385 int d0_idx = raid6_d0(sh); 1386 int count; 1387 int i; 1388 1389 for (i = 0; i < disks; i++) 1390 srcs[i] = NULL; 1391 1392 count = 0; 1393 i = d0_idx; 1394 do { 1395 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1396 struct r5dev *dev = &sh->dev[i]; 1397 1398 if (i == sh->qd_idx || i == sh->pd_idx || 1399 (srctype == SYNDROME_SRC_ALL) || 1400 (srctype == SYNDROME_SRC_WANT_DRAIN && 1401 (test_bit(R5_Wantdrain, &dev->flags) || 1402 test_bit(R5_InJournal, &dev->flags))) || 1403 (srctype == SYNDROME_SRC_WRITTEN && 1404 (dev->written || 1405 test_bit(R5_InJournal, &dev->flags)))) { 1406 if (test_bit(R5_InJournal, &dev->flags)) 1407 srcs[slot] = sh->dev[i].orig_page; 1408 else 1409 srcs[slot] = sh->dev[i].page; 1410 } 1411 i = raid6_next_disk(i, disks); 1412 } while (i != d0_idx); 1413 1414 return syndrome_disks; 1415 } 1416 1417 static struct dma_async_tx_descriptor * 1418 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1419 { 1420 int disks = sh->disks; 1421 struct page **blocks = to_addr_page(percpu, 0); 1422 int target; 1423 int qd_idx = sh->qd_idx; 1424 struct dma_async_tx_descriptor *tx; 1425 struct async_submit_ctl submit; 1426 struct r5dev *tgt; 1427 struct page *dest; 1428 int i; 1429 int count; 1430 1431 BUG_ON(sh->batch_head); 1432 if (sh->ops.target < 0) 1433 target = sh->ops.target2; 1434 else if (sh->ops.target2 < 0) 1435 target = sh->ops.target; 1436 else 1437 /* we should only have one valid target */ 1438 BUG(); 1439 BUG_ON(target < 0); 1440 pr_debug("%s: stripe %llu block: %d\n", 1441 __func__, (unsigned long long)sh->sector, target); 1442 1443 tgt = &sh->dev[target]; 1444 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1445 dest = tgt->page; 1446 1447 atomic_inc(&sh->count); 1448 1449 if (target == qd_idx) { 1450 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1451 blocks[count] = NULL; /* regenerating p is not necessary */ 1452 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1453 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1454 ops_complete_compute, sh, 1455 to_addr_conv(sh, percpu, 0)); 1456 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1457 } else { 1458 /* Compute any data- or p-drive using XOR */ 1459 count = 0; 1460 for (i = disks; i-- ; ) { 1461 if (i == target || i == qd_idx) 1462 continue; 1463 blocks[count++] = sh->dev[i].page; 1464 } 1465 1466 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1467 NULL, ops_complete_compute, sh, 1468 to_addr_conv(sh, percpu, 0)); 1469 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1470 } 1471 1472 return tx; 1473 } 1474 1475 static struct dma_async_tx_descriptor * 1476 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1477 { 1478 int i, count, disks = sh->disks; 1479 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1480 int d0_idx = raid6_d0(sh); 1481 int faila = -1, failb = -1; 1482 int target = sh->ops.target; 1483 int target2 = sh->ops.target2; 1484 struct r5dev *tgt = &sh->dev[target]; 1485 struct r5dev *tgt2 = &sh->dev[target2]; 1486 struct dma_async_tx_descriptor *tx; 1487 struct page **blocks = to_addr_page(percpu, 0); 1488 struct async_submit_ctl submit; 1489 1490 BUG_ON(sh->batch_head); 1491 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1492 __func__, (unsigned long long)sh->sector, target, target2); 1493 BUG_ON(target < 0 || target2 < 0); 1494 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1495 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1496 1497 /* we need to open-code set_syndrome_sources to handle the 1498 * slot number conversion for 'faila' and 'failb' 1499 */ 1500 for (i = 0; i < disks ; i++) 1501 blocks[i] = NULL; 1502 count = 0; 1503 i = d0_idx; 1504 do { 1505 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1506 1507 blocks[slot] = sh->dev[i].page; 1508 1509 if (i == target) 1510 faila = slot; 1511 if (i == target2) 1512 failb = slot; 1513 i = raid6_next_disk(i, disks); 1514 } while (i != d0_idx); 1515 1516 BUG_ON(faila == failb); 1517 if (failb < faila) 1518 swap(faila, failb); 1519 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1520 __func__, (unsigned long long)sh->sector, faila, failb); 1521 1522 atomic_inc(&sh->count); 1523 1524 if (failb == syndrome_disks+1) { 1525 /* Q disk is one of the missing disks */ 1526 if (faila == syndrome_disks) { 1527 /* Missing P+Q, just recompute */ 1528 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1529 ops_complete_compute, sh, 1530 to_addr_conv(sh, percpu, 0)); 1531 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1532 STRIPE_SIZE, &submit); 1533 } else { 1534 struct page *dest; 1535 int data_target; 1536 int qd_idx = sh->qd_idx; 1537 1538 /* Missing D+Q: recompute D from P, then recompute Q */ 1539 if (target == qd_idx) 1540 data_target = target2; 1541 else 1542 data_target = target; 1543 1544 count = 0; 1545 for (i = disks; i-- ; ) { 1546 if (i == data_target || i == qd_idx) 1547 continue; 1548 blocks[count++] = sh->dev[i].page; 1549 } 1550 dest = sh->dev[data_target].page; 1551 init_async_submit(&submit, 1552 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1553 NULL, NULL, NULL, 1554 to_addr_conv(sh, percpu, 0)); 1555 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1556 &submit); 1557 1558 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1559 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1560 ops_complete_compute, sh, 1561 to_addr_conv(sh, percpu, 0)); 1562 return async_gen_syndrome(blocks, 0, count+2, 1563 STRIPE_SIZE, &submit); 1564 } 1565 } else { 1566 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1567 ops_complete_compute, sh, 1568 to_addr_conv(sh, percpu, 0)); 1569 if (failb == syndrome_disks) { 1570 /* We're missing D+P. */ 1571 return async_raid6_datap_recov(syndrome_disks+2, 1572 STRIPE_SIZE, faila, 1573 blocks, &submit); 1574 } else { 1575 /* We're missing D+D. */ 1576 return async_raid6_2data_recov(syndrome_disks+2, 1577 STRIPE_SIZE, faila, failb, 1578 blocks, &submit); 1579 } 1580 } 1581 } 1582 1583 static void ops_complete_prexor(void *stripe_head_ref) 1584 { 1585 struct stripe_head *sh = stripe_head_ref; 1586 1587 pr_debug("%s: stripe %llu\n", __func__, 1588 (unsigned long long)sh->sector); 1589 1590 if (r5c_is_writeback(sh->raid_conf->log)) 1591 /* 1592 * raid5-cache write back uses orig_page during prexor. 1593 * After prexor, it is time to free orig_page 1594 */ 1595 r5c_release_extra_page(sh); 1596 } 1597 1598 static struct dma_async_tx_descriptor * 1599 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1600 struct dma_async_tx_descriptor *tx) 1601 { 1602 int disks = sh->disks; 1603 struct page **xor_srcs = to_addr_page(percpu, 0); 1604 int count = 0, pd_idx = sh->pd_idx, i; 1605 struct async_submit_ctl submit; 1606 1607 /* existing parity data subtracted */ 1608 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1609 1610 BUG_ON(sh->batch_head); 1611 pr_debug("%s: stripe %llu\n", __func__, 1612 (unsigned long long)sh->sector); 1613 1614 for (i = disks; i--; ) { 1615 struct r5dev *dev = &sh->dev[i]; 1616 /* Only process blocks that are known to be uptodate */ 1617 if (test_bit(R5_InJournal, &dev->flags)) 1618 xor_srcs[count++] = dev->orig_page; 1619 else if (test_bit(R5_Wantdrain, &dev->flags)) 1620 xor_srcs[count++] = dev->page; 1621 } 1622 1623 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1624 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1625 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1626 1627 return tx; 1628 } 1629 1630 static struct dma_async_tx_descriptor * 1631 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1632 struct dma_async_tx_descriptor *tx) 1633 { 1634 struct page **blocks = to_addr_page(percpu, 0); 1635 int count; 1636 struct async_submit_ctl submit; 1637 1638 pr_debug("%s: stripe %llu\n", __func__, 1639 (unsigned long long)sh->sector); 1640 1641 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); 1642 1643 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1644 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1645 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1646 1647 return tx; 1648 } 1649 1650 static struct dma_async_tx_descriptor * 1651 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1652 { 1653 struct r5conf *conf = sh->raid_conf; 1654 int disks = sh->disks; 1655 int i; 1656 struct stripe_head *head_sh = sh; 1657 1658 pr_debug("%s: stripe %llu\n", __func__, 1659 (unsigned long long)sh->sector); 1660 1661 for (i = disks; i--; ) { 1662 struct r5dev *dev; 1663 struct bio *chosen; 1664 1665 sh = head_sh; 1666 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1667 struct bio *wbi; 1668 1669 again: 1670 dev = &sh->dev[i]; 1671 /* 1672 * clear R5_InJournal, so when rewriting a page in 1673 * journal, it is not skipped by r5l_log_stripe() 1674 */ 1675 clear_bit(R5_InJournal, &dev->flags); 1676 spin_lock_irq(&sh->stripe_lock); 1677 chosen = dev->towrite; 1678 dev->towrite = NULL; 1679 sh->overwrite_disks = 0; 1680 BUG_ON(dev->written); 1681 wbi = dev->written = chosen; 1682 spin_unlock_irq(&sh->stripe_lock); 1683 WARN_ON(dev->page != dev->orig_page); 1684 1685 while (wbi && wbi->bi_iter.bi_sector < 1686 dev->sector + STRIPE_SECTORS) { 1687 if (wbi->bi_opf & REQ_FUA) 1688 set_bit(R5_WantFUA, &dev->flags); 1689 if (wbi->bi_opf & REQ_SYNC) 1690 set_bit(R5_SyncIO, &dev->flags); 1691 if (bio_op(wbi) == REQ_OP_DISCARD) 1692 set_bit(R5_Discard, &dev->flags); 1693 else { 1694 tx = async_copy_data(1, wbi, &dev->page, 1695 dev->sector, tx, sh, 1696 r5c_is_writeback(conf->log)); 1697 if (dev->page != dev->orig_page && 1698 !r5c_is_writeback(conf->log)) { 1699 set_bit(R5_SkipCopy, &dev->flags); 1700 clear_bit(R5_UPTODATE, &dev->flags); 1701 clear_bit(R5_OVERWRITE, &dev->flags); 1702 } 1703 } 1704 wbi = r5_next_bio(wbi, dev->sector); 1705 } 1706 1707 if (head_sh->batch_head) { 1708 sh = list_first_entry(&sh->batch_list, 1709 struct stripe_head, 1710 batch_list); 1711 if (sh == head_sh) 1712 continue; 1713 goto again; 1714 } 1715 } 1716 } 1717 1718 return tx; 1719 } 1720 1721 static void ops_complete_reconstruct(void *stripe_head_ref) 1722 { 1723 struct stripe_head *sh = stripe_head_ref; 1724 int disks = sh->disks; 1725 int pd_idx = sh->pd_idx; 1726 int qd_idx = sh->qd_idx; 1727 int i; 1728 bool fua = false, sync = false, discard = false; 1729 1730 pr_debug("%s: stripe %llu\n", __func__, 1731 (unsigned long long)sh->sector); 1732 1733 for (i = disks; i--; ) { 1734 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1735 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1736 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1737 } 1738 1739 for (i = disks; i--; ) { 1740 struct r5dev *dev = &sh->dev[i]; 1741 1742 if (dev->written || i == pd_idx || i == qd_idx) { 1743 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) 1744 set_bit(R5_UPTODATE, &dev->flags); 1745 if (fua) 1746 set_bit(R5_WantFUA, &dev->flags); 1747 if (sync) 1748 set_bit(R5_SyncIO, &dev->flags); 1749 } 1750 } 1751 1752 if (sh->reconstruct_state == reconstruct_state_drain_run) 1753 sh->reconstruct_state = reconstruct_state_drain_result; 1754 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1755 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1756 else { 1757 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1758 sh->reconstruct_state = reconstruct_state_result; 1759 } 1760 1761 set_bit(STRIPE_HANDLE, &sh->state); 1762 raid5_release_stripe(sh); 1763 } 1764 1765 static void 1766 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1767 struct dma_async_tx_descriptor *tx) 1768 { 1769 int disks = sh->disks; 1770 struct page **xor_srcs; 1771 struct async_submit_ctl submit; 1772 int count, pd_idx = sh->pd_idx, i; 1773 struct page *xor_dest; 1774 int prexor = 0; 1775 unsigned long flags; 1776 int j = 0; 1777 struct stripe_head *head_sh = sh; 1778 int last_stripe; 1779 1780 pr_debug("%s: stripe %llu\n", __func__, 1781 (unsigned long long)sh->sector); 1782 1783 for (i = 0; i < sh->disks; i++) { 1784 if (pd_idx == i) 1785 continue; 1786 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1787 break; 1788 } 1789 if (i >= sh->disks) { 1790 atomic_inc(&sh->count); 1791 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1792 ops_complete_reconstruct(sh); 1793 return; 1794 } 1795 again: 1796 count = 0; 1797 xor_srcs = to_addr_page(percpu, j); 1798 /* check if prexor is active which means only process blocks 1799 * that are part of a read-modify-write (written) 1800 */ 1801 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1802 prexor = 1; 1803 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1804 for (i = disks; i--; ) { 1805 struct r5dev *dev = &sh->dev[i]; 1806 if (head_sh->dev[i].written || 1807 test_bit(R5_InJournal, &head_sh->dev[i].flags)) 1808 xor_srcs[count++] = dev->page; 1809 } 1810 } else { 1811 xor_dest = sh->dev[pd_idx].page; 1812 for (i = disks; i--; ) { 1813 struct r5dev *dev = &sh->dev[i]; 1814 if (i != pd_idx) 1815 xor_srcs[count++] = dev->page; 1816 } 1817 } 1818 1819 /* 1/ if we prexor'd then the dest is reused as a source 1820 * 2/ if we did not prexor then we are redoing the parity 1821 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1822 * for the synchronous xor case 1823 */ 1824 last_stripe = !head_sh->batch_head || 1825 list_first_entry(&sh->batch_list, 1826 struct stripe_head, batch_list) == head_sh; 1827 if (last_stripe) { 1828 flags = ASYNC_TX_ACK | 1829 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1830 1831 atomic_inc(&head_sh->count); 1832 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 1833 to_addr_conv(sh, percpu, j)); 1834 } else { 1835 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 1836 init_async_submit(&submit, flags, tx, NULL, NULL, 1837 to_addr_conv(sh, percpu, j)); 1838 } 1839 1840 if (unlikely(count == 1)) 1841 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1842 else 1843 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1844 if (!last_stripe) { 1845 j++; 1846 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1847 batch_list); 1848 goto again; 1849 } 1850 } 1851 1852 static void 1853 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1854 struct dma_async_tx_descriptor *tx) 1855 { 1856 struct async_submit_ctl submit; 1857 struct page **blocks; 1858 int count, i, j = 0; 1859 struct stripe_head *head_sh = sh; 1860 int last_stripe; 1861 int synflags; 1862 unsigned long txflags; 1863 1864 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1865 1866 for (i = 0; i < sh->disks; i++) { 1867 if (sh->pd_idx == i || sh->qd_idx == i) 1868 continue; 1869 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1870 break; 1871 } 1872 if (i >= sh->disks) { 1873 atomic_inc(&sh->count); 1874 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1875 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1876 ops_complete_reconstruct(sh); 1877 return; 1878 } 1879 1880 again: 1881 blocks = to_addr_page(percpu, j); 1882 1883 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1884 synflags = SYNDROME_SRC_WRITTEN; 1885 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 1886 } else { 1887 synflags = SYNDROME_SRC_ALL; 1888 txflags = ASYNC_TX_ACK; 1889 } 1890 1891 count = set_syndrome_sources(blocks, sh, synflags); 1892 last_stripe = !head_sh->batch_head || 1893 list_first_entry(&sh->batch_list, 1894 struct stripe_head, batch_list) == head_sh; 1895 1896 if (last_stripe) { 1897 atomic_inc(&head_sh->count); 1898 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 1899 head_sh, to_addr_conv(sh, percpu, j)); 1900 } else 1901 init_async_submit(&submit, 0, tx, NULL, NULL, 1902 to_addr_conv(sh, percpu, j)); 1903 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1904 if (!last_stripe) { 1905 j++; 1906 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1907 batch_list); 1908 goto again; 1909 } 1910 } 1911 1912 static void ops_complete_check(void *stripe_head_ref) 1913 { 1914 struct stripe_head *sh = stripe_head_ref; 1915 1916 pr_debug("%s: stripe %llu\n", __func__, 1917 (unsigned long long)sh->sector); 1918 1919 sh->check_state = check_state_check_result; 1920 set_bit(STRIPE_HANDLE, &sh->state); 1921 raid5_release_stripe(sh); 1922 } 1923 1924 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1925 { 1926 int disks = sh->disks; 1927 int pd_idx = sh->pd_idx; 1928 int qd_idx = sh->qd_idx; 1929 struct page *xor_dest; 1930 struct page **xor_srcs = to_addr_page(percpu, 0); 1931 struct dma_async_tx_descriptor *tx; 1932 struct async_submit_ctl submit; 1933 int count; 1934 int i; 1935 1936 pr_debug("%s: stripe %llu\n", __func__, 1937 (unsigned long long)sh->sector); 1938 1939 BUG_ON(sh->batch_head); 1940 count = 0; 1941 xor_dest = sh->dev[pd_idx].page; 1942 xor_srcs[count++] = xor_dest; 1943 for (i = disks; i--; ) { 1944 if (i == pd_idx || i == qd_idx) 1945 continue; 1946 xor_srcs[count++] = sh->dev[i].page; 1947 } 1948 1949 init_async_submit(&submit, 0, NULL, NULL, NULL, 1950 to_addr_conv(sh, percpu, 0)); 1951 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1952 &sh->ops.zero_sum_result, &submit); 1953 1954 atomic_inc(&sh->count); 1955 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1956 tx = async_trigger_callback(&submit); 1957 } 1958 1959 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1960 { 1961 struct page **srcs = to_addr_page(percpu, 0); 1962 struct async_submit_ctl submit; 1963 int count; 1964 1965 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1966 (unsigned long long)sh->sector, checkp); 1967 1968 BUG_ON(sh->batch_head); 1969 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); 1970 if (!checkp) 1971 srcs[count] = NULL; 1972 1973 atomic_inc(&sh->count); 1974 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1975 sh, to_addr_conv(sh, percpu, 0)); 1976 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1977 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1978 } 1979 1980 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1981 { 1982 int overlap_clear = 0, i, disks = sh->disks; 1983 struct dma_async_tx_descriptor *tx = NULL; 1984 struct r5conf *conf = sh->raid_conf; 1985 int level = conf->level; 1986 struct raid5_percpu *percpu; 1987 unsigned long cpu; 1988 1989 cpu = get_cpu(); 1990 percpu = per_cpu_ptr(conf->percpu, cpu); 1991 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1992 ops_run_biofill(sh); 1993 overlap_clear++; 1994 } 1995 1996 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1997 if (level < 6) 1998 tx = ops_run_compute5(sh, percpu); 1999 else { 2000 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2001 tx = ops_run_compute6_1(sh, percpu); 2002 else 2003 tx = ops_run_compute6_2(sh, percpu); 2004 } 2005 /* terminate the chain if reconstruct is not set to be run */ 2006 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2007 async_tx_ack(tx); 2008 } 2009 2010 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2011 if (level < 6) 2012 tx = ops_run_prexor5(sh, percpu, tx); 2013 else 2014 tx = ops_run_prexor6(sh, percpu, tx); 2015 } 2016 2017 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2018 tx = ops_run_biodrain(sh, tx); 2019 overlap_clear++; 2020 } 2021 2022 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2023 if (level < 6) 2024 ops_run_reconstruct5(sh, percpu, tx); 2025 else 2026 ops_run_reconstruct6(sh, percpu, tx); 2027 } 2028 2029 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2030 if (sh->check_state == check_state_run) 2031 ops_run_check_p(sh, percpu); 2032 else if (sh->check_state == check_state_run_q) 2033 ops_run_check_pq(sh, percpu, 0); 2034 else if (sh->check_state == check_state_run_pq) 2035 ops_run_check_pq(sh, percpu, 1); 2036 else 2037 BUG(); 2038 } 2039 2040 if (overlap_clear && !sh->batch_head) 2041 for (i = disks; i--; ) { 2042 struct r5dev *dev = &sh->dev[i]; 2043 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2044 wake_up(&sh->raid_conf->wait_for_overlap); 2045 } 2046 put_cpu(); 2047 } 2048 2049 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2050 int disks) 2051 { 2052 struct stripe_head *sh; 2053 int i; 2054 2055 sh = kmem_cache_zalloc(sc, gfp); 2056 if (sh) { 2057 spin_lock_init(&sh->stripe_lock); 2058 spin_lock_init(&sh->batch_lock); 2059 INIT_LIST_HEAD(&sh->batch_list); 2060 INIT_LIST_HEAD(&sh->lru); 2061 INIT_LIST_HEAD(&sh->r5c); 2062 INIT_LIST_HEAD(&sh->log_list); 2063 atomic_set(&sh->count, 1); 2064 sh->log_start = MaxSector; 2065 for (i = 0; i < disks; i++) { 2066 struct r5dev *dev = &sh->dev[i]; 2067 2068 bio_init(&dev->req, &dev->vec, 1); 2069 bio_init(&dev->rreq, &dev->rvec, 1); 2070 } 2071 } 2072 return sh; 2073 } 2074 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2075 { 2076 struct stripe_head *sh; 2077 2078 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size); 2079 if (!sh) 2080 return 0; 2081 2082 sh->raid_conf = conf; 2083 2084 if (grow_buffers(sh, gfp)) { 2085 shrink_buffers(sh); 2086 kmem_cache_free(conf->slab_cache, sh); 2087 return 0; 2088 } 2089 sh->hash_lock_index = 2090 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2091 /* we just created an active stripe so... */ 2092 atomic_inc(&conf->active_stripes); 2093 2094 raid5_release_stripe(sh); 2095 conf->max_nr_stripes++; 2096 return 1; 2097 } 2098 2099 static int grow_stripes(struct r5conf *conf, int num) 2100 { 2101 struct kmem_cache *sc; 2102 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2103 2104 if (conf->mddev->gendisk) 2105 sprintf(conf->cache_name[0], 2106 "raid%d-%s", conf->level, mdname(conf->mddev)); 2107 else 2108 sprintf(conf->cache_name[0], 2109 "raid%d-%p", conf->level, conf->mddev); 2110 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 2111 2112 conf->active_name = 0; 2113 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2114 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2115 0, 0, NULL); 2116 if (!sc) 2117 return 1; 2118 conf->slab_cache = sc; 2119 conf->pool_size = devs; 2120 while (num--) 2121 if (!grow_one_stripe(conf, GFP_KERNEL)) 2122 return 1; 2123 2124 return 0; 2125 } 2126 2127 /** 2128 * scribble_len - return the required size of the scribble region 2129 * @num - total number of disks in the array 2130 * 2131 * The size must be enough to contain: 2132 * 1/ a struct page pointer for each device in the array +2 2133 * 2/ room to convert each entry in (1) to its corresponding dma 2134 * (dma_map_page()) or page (page_address()) address. 2135 * 2136 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2137 * calculate over all devices (not just the data blocks), using zeros in place 2138 * of the P and Q blocks. 2139 */ 2140 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags) 2141 { 2142 struct flex_array *ret; 2143 size_t len; 2144 2145 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 2146 ret = flex_array_alloc(len, cnt, flags); 2147 if (!ret) 2148 return NULL; 2149 /* always prealloc all elements, so no locking is required */ 2150 if (flex_array_prealloc(ret, 0, cnt, flags)) { 2151 flex_array_free(ret); 2152 return NULL; 2153 } 2154 return ret; 2155 } 2156 2157 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2158 { 2159 unsigned long cpu; 2160 int err = 0; 2161 2162 /* 2163 * Never shrink. And mddev_suspend() could deadlock if this is called 2164 * from raid5d. In that case, scribble_disks and scribble_sectors 2165 * should equal to new_disks and new_sectors 2166 */ 2167 if (conf->scribble_disks >= new_disks && 2168 conf->scribble_sectors >= new_sectors) 2169 return 0; 2170 mddev_suspend(conf->mddev); 2171 get_online_cpus(); 2172 for_each_present_cpu(cpu) { 2173 struct raid5_percpu *percpu; 2174 struct flex_array *scribble; 2175 2176 percpu = per_cpu_ptr(conf->percpu, cpu); 2177 scribble = scribble_alloc(new_disks, 2178 new_sectors / STRIPE_SECTORS, 2179 GFP_NOIO); 2180 2181 if (scribble) { 2182 flex_array_free(percpu->scribble); 2183 percpu->scribble = scribble; 2184 } else { 2185 err = -ENOMEM; 2186 break; 2187 } 2188 } 2189 put_online_cpus(); 2190 mddev_resume(conf->mddev); 2191 if (!err) { 2192 conf->scribble_disks = new_disks; 2193 conf->scribble_sectors = new_sectors; 2194 } 2195 return err; 2196 } 2197 2198 static int resize_stripes(struct r5conf *conf, int newsize) 2199 { 2200 /* Make all the stripes able to hold 'newsize' devices. 2201 * New slots in each stripe get 'page' set to a new page. 2202 * 2203 * This happens in stages: 2204 * 1/ create a new kmem_cache and allocate the required number of 2205 * stripe_heads. 2206 * 2/ gather all the old stripe_heads and transfer the pages across 2207 * to the new stripe_heads. This will have the side effect of 2208 * freezing the array as once all stripe_heads have been collected, 2209 * no IO will be possible. Old stripe heads are freed once their 2210 * pages have been transferred over, and the old kmem_cache is 2211 * freed when all stripes are done. 2212 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2213 * we simple return a failre status - no need to clean anything up. 2214 * 4/ allocate new pages for the new slots in the new stripe_heads. 2215 * If this fails, we don't bother trying the shrink the 2216 * stripe_heads down again, we just leave them as they are. 2217 * As each stripe_head is processed the new one is released into 2218 * active service. 2219 * 2220 * Once step2 is started, we cannot afford to wait for a write, 2221 * so we use GFP_NOIO allocations. 2222 */ 2223 struct stripe_head *osh, *nsh; 2224 LIST_HEAD(newstripes); 2225 struct disk_info *ndisks; 2226 int err; 2227 struct kmem_cache *sc; 2228 int i; 2229 int hash, cnt; 2230 2231 if (newsize <= conf->pool_size) 2232 return 0; /* never bother to shrink */ 2233 2234 err = md_allow_write(conf->mddev); 2235 if (err) 2236 return err; 2237 2238 /* Step 1 */ 2239 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2240 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2241 0, 0, NULL); 2242 if (!sc) 2243 return -ENOMEM; 2244 2245 /* Need to ensure auto-resizing doesn't interfere */ 2246 mutex_lock(&conf->cache_size_mutex); 2247 2248 for (i = conf->max_nr_stripes; i; i--) { 2249 nsh = alloc_stripe(sc, GFP_KERNEL, newsize); 2250 if (!nsh) 2251 break; 2252 2253 nsh->raid_conf = conf; 2254 list_add(&nsh->lru, &newstripes); 2255 } 2256 if (i) { 2257 /* didn't get enough, give up */ 2258 while (!list_empty(&newstripes)) { 2259 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2260 list_del(&nsh->lru); 2261 kmem_cache_free(sc, nsh); 2262 } 2263 kmem_cache_destroy(sc); 2264 mutex_unlock(&conf->cache_size_mutex); 2265 return -ENOMEM; 2266 } 2267 /* Step 2 - Must use GFP_NOIO now. 2268 * OK, we have enough stripes, start collecting inactive 2269 * stripes and copying them over 2270 */ 2271 hash = 0; 2272 cnt = 0; 2273 list_for_each_entry(nsh, &newstripes, lru) { 2274 lock_device_hash_lock(conf, hash); 2275 wait_event_cmd(conf->wait_for_stripe, 2276 !list_empty(conf->inactive_list + hash), 2277 unlock_device_hash_lock(conf, hash), 2278 lock_device_hash_lock(conf, hash)); 2279 osh = get_free_stripe(conf, hash); 2280 unlock_device_hash_lock(conf, hash); 2281 2282 for(i=0; i<conf->pool_size; i++) { 2283 nsh->dev[i].page = osh->dev[i].page; 2284 nsh->dev[i].orig_page = osh->dev[i].page; 2285 } 2286 nsh->hash_lock_index = hash; 2287 kmem_cache_free(conf->slab_cache, osh); 2288 cnt++; 2289 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2290 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2291 hash++; 2292 cnt = 0; 2293 } 2294 } 2295 kmem_cache_destroy(conf->slab_cache); 2296 2297 /* Step 3. 2298 * At this point, we are holding all the stripes so the array 2299 * is completely stalled, so now is a good time to resize 2300 * conf->disks and the scribble region 2301 */ 2302 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 2303 if (ndisks) { 2304 for (i = 0; i < conf->pool_size; i++) 2305 ndisks[i] = conf->disks[i]; 2306 2307 for (i = conf->pool_size; i < newsize; i++) { 2308 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2309 if (!ndisks[i].extra_page) 2310 err = -ENOMEM; 2311 } 2312 2313 if (err) { 2314 for (i = conf->pool_size; i < newsize; i++) 2315 if (ndisks[i].extra_page) 2316 put_page(ndisks[i].extra_page); 2317 kfree(ndisks); 2318 } else { 2319 kfree(conf->disks); 2320 conf->disks = ndisks; 2321 } 2322 } else 2323 err = -ENOMEM; 2324 2325 mutex_unlock(&conf->cache_size_mutex); 2326 /* Step 4, return new stripes to service */ 2327 while(!list_empty(&newstripes)) { 2328 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2329 list_del_init(&nsh->lru); 2330 2331 for (i=conf->raid_disks; i < newsize; i++) 2332 if (nsh->dev[i].page == NULL) { 2333 struct page *p = alloc_page(GFP_NOIO); 2334 nsh->dev[i].page = p; 2335 nsh->dev[i].orig_page = p; 2336 if (!p) 2337 err = -ENOMEM; 2338 } 2339 raid5_release_stripe(nsh); 2340 } 2341 /* critical section pass, GFP_NOIO no longer needed */ 2342 2343 conf->slab_cache = sc; 2344 conf->active_name = 1-conf->active_name; 2345 if (!err) 2346 conf->pool_size = newsize; 2347 return err; 2348 } 2349 2350 static int drop_one_stripe(struct r5conf *conf) 2351 { 2352 struct stripe_head *sh; 2353 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2354 2355 spin_lock_irq(conf->hash_locks + hash); 2356 sh = get_free_stripe(conf, hash); 2357 spin_unlock_irq(conf->hash_locks + hash); 2358 if (!sh) 2359 return 0; 2360 BUG_ON(atomic_read(&sh->count)); 2361 shrink_buffers(sh); 2362 kmem_cache_free(conf->slab_cache, sh); 2363 atomic_dec(&conf->active_stripes); 2364 conf->max_nr_stripes--; 2365 return 1; 2366 } 2367 2368 static void shrink_stripes(struct r5conf *conf) 2369 { 2370 while (conf->max_nr_stripes && 2371 drop_one_stripe(conf)) 2372 ; 2373 2374 kmem_cache_destroy(conf->slab_cache); 2375 conf->slab_cache = NULL; 2376 } 2377 2378 static void raid5_end_read_request(struct bio * bi) 2379 { 2380 struct stripe_head *sh = bi->bi_private; 2381 struct r5conf *conf = sh->raid_conf; 2382 int disks = sh->disks, i; 2383 char b[BDEVNAME_SIZE]; 2384 struct md_rdev *rdev = NULL; 2385 sector_t s; 2386 2387 for (i=0 ; i<disks; i++) 2388 if (bi == &sh->dev[i].req) 2389 break; 2390 2391 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2392 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2393 bi->bi_error); 2394 if (i == disks) { 2395 bio_reset(bi); 2396 BUG(); 2397 return; 2398 } 2399 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2400 /* If replacement finished while this request was outstanding, 2401 * 'replacement' might be NULL already. 2402 * In that case it moved down to 'rdev'. 2403 * rdev is not removed until all requests are finished. 2404 */ 2405 rdev = conf->disks[i].replacement; 2406 if (!rdev) 2407 rdev = conf->disks[i].rdev; 2408 2409 if (use_new_offset(conf, sh)) 2410 s = sh->sector + rdev->new_data_offset; 2411 else 2412 s = sh->sector + rdev->data_offset; 2413 if (!bi->bi_error) { 2414 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2415 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2416 /* Note that this cannot happen on a 2417 * replacement device. We just fail those on 2418 * any error 2419 */ 2420 pr_info_ratelimited( 2421 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n", 2422 mdname(conf->mddev), STRIPE_SECTORS, 2423 (unsigned long long)s, 2424 bdevname(rdev->bdev, b)); 2425 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2426 clear_bit(R5_ReadError, &sh->dev[i].flags); 2427 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2428 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2429 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2430 2431 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2432 /* 2433 * end read for a page in journal, this 2434 * must be preparing for prexor in rmw 2435 */ 2436 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2437 2438 if (atomic_read(&rdev->read_errors)) 2439 atomic_set(&rdev->read_errors, 0); 2440 } else { 2441 const char *bdn = bdevname(rdev->bdev, b); 2442 int retry = 0; 2443 int set_bad = 0; 2444 2445 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2446 atomic_inc(&rdev->read_errors); 2447 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2448 pr_warn_ratelimited( 2449 "md/raid:%s: read error on replacement device (sector %llu on %s).\n", 2450 mdname(conf->mddev), 2451 (unsigned long long)s, 2452 bdn); 2453 else if (conf->mddev->degraded >= conf->max_degraded) { 2454 set_bad = 1; 2455 pr_warn_ratelimited( 2456 "md/raid:%s: read error not correctable (sector %llu on %s).\n", 2457 mdname(conf->mddev), 2458 (unsigned long long)s, 2459 bdn); 2460 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2461 /* Oh, no!!! */ 2462 set_bad = 1; 2463 pr_warn_ratelimited( 2464 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n", 2465 mdname(conf->mddev), 2466 (unsigned long long)s, 2467 bdn); 2468 } else if (atomic_read(&rdev->read_errors) 2469 > conf->max_nr_stripes) 2470 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n", 2471 mdname(conf->mddev), bdn); 2472 else 2473 retry = 1; 2474 if (set_bad && test_bit(In_sync, &rdev->flags) 2475 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2476 retry = 1; 2477 if (retry) 2478 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2479 set_bit(R5_ReadError, &sh->dev[i].flags); 2480 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2481 } else 2482 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2483 else { 2484 clear_bit(R5_ReadError, &sh->dev[i].flags); 2485 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2486 if (!(set_bad 2487 && test_bit(In_sync, &rdev->flags) 2488 && rdev_set_badblocks( 2489 rdev, sh->sector, STRIPE_SECTORS, 0))) 2490 md_error(conf->mddev, rdev); 2491 } 2492 } 2493 rdev_dec_pending(rdev, conf->mddev); 2494 bio_reset(bi); 2495 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2496 set_bit(STRIPE_HANDLE, &sh->state); 2497 raid5_release_stripe(sh); 2498 } 2499 2500 static void raid5_end_write_request(struct bio *bi) 2501 { 2502 struct stripe_head *sh = bi->bi_private; 2503 struct r5conf *conf = sh->raid_conf; 2504 int disks = sh->disks, i; 2505 struct md_rdev *uninitialized_var(rdev); 2506 sector_t first_bad; 2507 int bad_sectors; 2508 int replacement = 0; 2509 2510 for (i = 0 ; i < disks; i++) { 2511 if (bi == &sh->dev[i].req) { 2512 rdev = conf->disks[i].rdev; 2513 break; 2514 } 2515 if (bi == &sh->dev[i].rreq) { 2516 rdev = conf->disks[i].replacement; 2517 if (rdev) 2518 replacement = 1; 2519 else 2520 /* rdev was removed and 'replacement' 2521 * replaced it. rdev is not removed 2522 * until all requests are finished. 2523 */ 2524 rdev = conf->disks[i].rdev; 2525 break; 2526 } 2527 } 2528 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2529 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2530 bi->bi_error); 2531 if (i == disks) { 2532 bio_reset(bi); 2533 BUG(); 2534 return; 2535 } 2536 2537 if (replacement) { 2538 if (bi->bi_error) 2539 md_error(conf->mddev, rdev); 2540 else if (is_badblock(rdev, sh->sector, 2541 STRIPE_SECTORS, 2542 &first_bad, &bad_sectors)) 2543 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2544 } else { 2545 if (bi->bi_error) { 2546 set_bit(STRIPE_DEGRADED, &sh->state); 2547 set_bit(WriteErrorSeen, &rdev->flags); 2548 set_bit(R5_WriteError, &sh->dev[i].flags); 2549 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2550 set_bit(MD_RECOVERY_NEEDED, 2551 &rdev->mddev->recovery); 2552 } else if (is_badblock(rdev, sh->sector, 2553 STRIPE_SECTORS, 2554 &first_bad, &bad_sectors)) { 2555 set_bit(R5_MadeGood, &sh->dev[i].flags); 2556 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2557 /* That was a successful write so make 2558 * sure it looks like we already did 2559 * a re-write. 2560 */ 2561 set_bit(R5_ReWrite, &sh->dev[i].flags); 2562 } 2563 } 2564 rdev_dec_pending(rdev, conf->mddev); 2565 2566 if (sh->batch_head && bi->bi_error && !replacement) 2567 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2568 2569 bio_reset(bi); 2570 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2571 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2572 set_bit(STRIPE_HANDLE, &sh->state); 2573 raid5_release_stripe(sh); 2574 2575 if (sh->batch_head && sh != sh->batch_head) 2576 raid5_release_stripe(sh->batch_head); 2577 } 2578 2579 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 2580 { 2581 struct r5dev *dev = &sh->dev[i]; 2582 2583 dev->flags = 0; 2584 dev->sector = raid5_compute_blocknr(sh, i, previous); 2585 } 2586 2587 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2588 { 2589 char b[BDEVNAME_SIZE]; 2590 struct r5conf *conf = mddev->private; 2591 unsigned long flags; 2592 pr_debug("raid456: error called\n"); 2593 2594 spin_lock_irqsave(&conf->device_lock, flags); 2595 clear_bit(In_sync, &rdev->flags); 2596 mddev->degraded = raid5_calc_degraded(conf); 2597 spin_unlock_irqrestore(&conf->device_lock, flags); 2598 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2599 2600 set_bit(Blocked, &rdev->flags); 2601 set_bit(Faulty, &rdev->flags); 2602 set_mask_bits(&mddev->sb_flags, 0, 2603 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2604 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n" 2605 "md/raid:%s: Operation continuing on %d devices.\n", 2606 mdname(mddev), 2607 bdevname(rdev->bdev, b), 2608 mdname(mddev), 2609 conf->raid_disks - mddev->degraded); 2610 r5c_update_on_rdev_error(mddev); 2611 } 2612 2613 /* 2614 * Input: a 'big' sector number, 2615 * Output: index of the data and parity disk, and the sector # in them. 2616 */ 2617 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2618 int previous, int *dd_idx, 2619 struct stripe_head *sh) 2620 { 2621 sector_t stripe, stripe2; 2622 sector_t chunk_number; 2623 unsigned int chunk_offset; 2624 int pd_idx, qd_idx; 2625 int ddf_layout = 0; 2626 sector_t new_sector; 2627 int algorithm = previous ? conf->prev_algo 2628 : conf->algorithm; 2629 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2630 : conf->chunk_sectors; 2631 int raid_disks = previous ? conf->previous_raid_disks 2632 : conf->raid_disks; 2633 int data_disks = raid_disks - conf->max_degraded; 2634 2635 /* First compute the information on this sector */ 2636 2637 /* 2638 * Compute the chunk number and the sector offset inside the chunk 2639 */ 2640 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2641 chunk_number = r_sector; 2642 2643 /* 2644 * Compute the stripe number 2645 */ 2646 stripe = chunk_number; 2647 *dd_idx = sector_div(stripe, data_disks); 2648 stripe2 = stripe; 2649 /* 2650 * Select the parity disk based on the user selected algorithm. 2651 */ 2652 pd_idx = qd_idx = -1; 2653 switch(conf->level) { 2654 case 4: 2655 pd_idx = data_disks; 2656 break; 2657 case 5: 2658 switch (algorithm) { 2659 case ALGORITHM_LEFT_ASYMMETRIC: 2660 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2661 if (*dd_idx >= pd_idx) 2662 (*dd_idx)++; 2663 break; 2664 case ALGORITHM_RIGHT_ASYMMETRIC: 2665 pd_idx = sector_div(stripe2, raid_disks); 2666 if (*dd_idx >= pd_idx) 2667 (*dd_idx)++; 2668 break; 2669 case ALGORITHM_LEFT_SYMMETRIC: 2670 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2671 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2672 break; 2673 case ALGORITHM_RIGHT_SYMMETRIC: 2674 pd_idx = sector_div(stripe2, raid_disks); 2675 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2676 break; 2677 case ALGORITHM_PARITY_0: 2678 pd_idx = 0; 2679 (*dd_idx)++; 2680 break; 2681 case ALGORITHM_PARITY_N: 2682 pd_idx = data_disks; 2683 break; 2684 default: 2685 BUG(); 2686 } 2687 break; 2688 case 6: 2689 2690 switch (algorithm) { 2691 case ALGORITHM_LEFT_ASYMMETRIC: 2692 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2693 qd_idx = pd_idx + 1; 2694 if (pd_idx == raid_disks-1) { 2695 (*dd_idx)++; /* Q D D D P */ 2696 qd_idx = 0; 2697 } else if (*dd_idx >= pd_idx) 2698 (*dd_idx) += 2; /* D D P Q D */ 2699 break; 2700 case ALGORITHM_RIGHT_ASYMMETRIC: 2701 pd_idx = sector_div(stripe2, raid_disks); 2702 qd_idx = pd_idx + 1; 2703 if (pd_idx == raid_disks-1) { 2704 (*dd_idx)++; /* Q D D D P */ 2705 qd_idx = 0; 2706 } else if (*dd_idx >= pd_idx) 2707 (*dd_idx) += 2; /* D D P Q D */ 2708 break; 2709 case ALGORITHM_LEFT_SYMMETRIC: 2710 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2711 qd_idx = (pd_idx + 1) % raid_disks; 2712 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2713 break; 2714 case ALGORITHM_RIGHT_SYMMETRIC: 2715 pd_idx = sector_div(stripe2, raid_disks); 2716 qd_idx = (pd_idx + 1) % raid_disks; 2717 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2718 break; 2719 2720 case ALGORITHM_PARITY_0: 2721 pd_idx = 0; 2722 qd_idx = 1; 2723 (*dd_idx) += 2; 2724 break; 2725 case ALGORITHM_PARITY_N: 2726 pd_idx = data_disks; 2727 qd_idx = data_disks + 1; 2728 break; 2729 2730 case ALGORITHM_ROTATING_ZERO_RESTART: 2731 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2732 * of blocks for computing Q is different. 2733 */ 2734 pd_idx = sector_div(stripe2, raid_disks); 2735 qd_idx = pd_idx + 1; 2736 if (pd_idx == raid_disks-1) { 2737 (*dd_idx)++; /* Q D D D P */ 2738 qd_idx = 0; 2739 } else if (*dd_idx >= pd_idx) 2740 (*dd_idx) += 2; /* D D P Q D */ 2741 ddf_layout = 1; 2742 break; 2743 2744 case ALGORITHM_ROTATING_N_RESTART: 2745 /* Same a left_asymmetric, by first stripe is 2746 * D D D P Q rather than 2747 * Q D D D P 2748 */ 2749 stripe2 += 1; 2750 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2751 qd_idx = pd_idx + 1; 2752 if (pd_idx == raid_disks-1) { 2753 (*dd_idx)++; /* Q D D D P */ 2754 qd_idx = 0; 2755 } else if (*dd_idx >= pd_idx) 2756 (*dd_idx) += 2; /* D D P Q D */ 2757 ddf_layout = 1; 2758 break; 2759 2760 case ALGORITHM_ROTATING_N_CONTINUE: 2761 /* Same as left_symmetric but Q is before P */ 2762 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2763 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2764 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2765 ddf_layout = 1; 2766 break; 2767 2768 case ALGORITHM_LEFT_ASYMMETRIC_6: 2769 /* RAID5 left_asymmetric, with Q on last device */ 2770 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2771 if (*dd_idx >= pd_idx) 2772 (*dd_idx)++; 2773 qd_idx = raid_disks - 1; 2774 break; 2775 2776 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2777 pd_idx = sector_div(stripe2, raid_disks-1); 2778 if (*dd_idx >= pd_idx) 2779 (*dd_idx)++; 2780 qd_idx = raid_disks - 1; 2781 break; 2782 2783 case ALGORITHM_LEFT_SYMMETRIC_6: 2784 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2785 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2786 qd_idx = raid_disks - 1; 2787 break; 2788 2789 case ALGORITHM_RIGHT_SYMMETRIC_6: 2790 pd_idx = sector_div(stripe2, raid_disks-1); 2791 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2792 qd_idx = raid_disks - 1; 2793 break; 2794 2795 case ALGORITHM_PARITY_0_6: 2796 pd_idx = 0; 2797 (*dd_idx)++; 2798 qd_idx = raid_disks - 1; 2799 break; 2800 2801 default: 2802 BUG(); 2803 } 2804 break; 2805 } 2806 2807 if (sh) { 2808 sh->pd_idx = pd_idx; 2809 sh->qd_idx = qd_idx; 2810 sh->ddf_layout = ddf_layout; 2811 } 2812 /* 2813 * Finally, compute the new sector number 2814 */ 2815 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2816 return new_sector; 2817 } 2818 2819 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 2820 { 2821 struct r5conf *conf = sh->raid_conf; 2822 int raid_disks = sh->disks; 2823 int data_disks = raid_disks - conf->max_degraded; 2824 sector_t new_sector = sh->sector, check; 2825 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2826 : conf->chunk_sectors; 2827 int algorithm = previous ? conf->prev_algo 2828 : conf->algorithm; 2829 sector_t stripe; 2830 int chunk_offset; 2831 sector_t chunk_number; 2832 int dummy1, dd_idx = i; 2833 sector_t r_sector; 2834 struct stripe_head sh2; 2835 2836 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2837 stripe = new_sector; 2838 2839 if (i == sh->pd_idx) 2840 return 0; 2841 switch(conf->level) { 2842 case 4: break; 2843 case 5: 2844 switch (algorithm) { 2845 case ALGORITHM_LEFT_ASYMMETRIC: 2846 case ALGORITHM_RIGHT_ASYMMETRIC: 2847 if (i > sh->pd_idx) 2848 i--; 2849 break; 2850 case ALGORITHM_LEFT_SYMMETRIC: 2851 case ALGORITHM_RIGHT_SYMMETRIC: 2852 if (i < sh->pd_idx) 2853 i += raid_disks; 2854 i -= (sh->pd_idx + 1); 2855 break; 2856 case ALGORITHM_PARITY_0: 2857 i -= 1; 2858 break; 2859 case ALGORITHM_PARITY_N: 2860 break; 2861 default: 2862 BUG(); 2863 } 2864 break; 2865 case 6: 2866 if (i == sh->qd_idx) 2867 return 0; /* It is the Q disk */ 2868 switch (algorithm) { 2869 case ALGORITHM_LEFT_ASYMMETRIC: 2870 case ALGORITHM_RIGHT_ASYMMETRIC: 2871 case ALGORITHM_ROTATING_ZERO_RESTART: 2872 case ALGORITHM_ROTATING_N_RESTART: 2873 if (sh->pd_idx == raid_disks-1) 2874 i--; /* Q D D D P */ 2875 else if (i > sh->pd_idx) 2876 i -= 2; /* D D P Q D */ 2877 break; 2878 case ALGORITHM_LEFT_SYMMETRIC: 2879 case ALGORITHM_RIGHT_SYMMETRIC: 2880 if (sh->pd_idx == raid_disks-1) 2881 i--; /* Q D D D P */ 2882 else { 2883 /* D D P Q D */ 2884 if (i < sh->pd_idx) 2885 i += raid_disks; 2886 i -= (sh->pd_idx + 2); 2887 } 2888 break; 2889 case ALGORITHM_PARITY_0: 2890 i -= 2; 2891 break; 2892 case ALGORITHM_PARITY_N: 2893 break; 2894 case ALGORITHM_ROTATING_N_CONTINUE: 2895 /* Like left_symmetric, but P is before Q */ 2896 if (sh->pd_idx == 0) 2897 i--; /* P D D D Q */ 2898 else { 2899 /* D D Q P D */ 2900 if (i < sh->pd_idx) 2901 i += raid_disks; 2902 i -= (sh->pd_idx + 1); 2903 } 2904 break; 2905 case ALGORITHM_LEFT_ASYMMETRIC_6: 2906 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2907 if (i > sh->pd_idx) 2908 i--; 2909 break; 2910 case ALGORITHM_LEFT_SYMMETRIC_6: 2911 case ALGORITHM_RIGHT_SYMMETRIC_6: 2912 if (i < sh->pd_idx) 2913 i += data_disks + 1; 2914 i -= (sh->pd_idx + 1); 2915 break; 2916 case ALGORITHM_PARITY_0_6: 2917 i -= 1; 2918 break; 2919 default: 2920 BUG(); 2921 } 2922 break; 2923 } 2924 2925 chunk_number = stripe * data_disks + i; 2926 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2927 2928 check = raid5_compute_sector(conf, r_sector, 2929 previous, &dummy1, &sh2); 2930 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2931 || sh2.qd_idx != sh->qd_idx) { 2932 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 2933 mdname(conf->mddev)); 2934 return 0; 2935 } 2936 return r_sector; 2937 } 2938 2939 /* 2940 * There are cases where we want handle_stripe_dirtying() and 2941 * schedule_reconstruction() to delay towrite to some dev of a stripe. 2942 * 2943 * This function checks whether we want to delay the towrite. Specifically, 2944 * we delay the towrite when: 2945 * 2946 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 2947 * stripe has data in journal (for other devices). 2948 * 2949 * In this case, when reading data for the non-overwrite dev, it is 2950 * necessary to handle complex rmw of write back cache (prexor with 2951 * orig_page, and xor with page). To keep read path simple, we would 2952 * like to flush data in journal to RAID disks first, so complex rmw 2953 * is handled in the write patch (handle_stripe_dirtying). 2954 * 2955 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 2956 * 2957 * It is important to be able to flush all stripes in raid5-cache. 2958 * Therefore, we need reserve some space on the journal device for 2959 * these flushes. If flush operation includes pending writes to the 2960 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 2961 * for the flush out. If we exclude these pending writes from flush 2962 * operation, we only need (conf->max_degraded + 1) pages per stripe. 2963 * Therefore, excluding pending writes in these cases enables more 2964 * efficient use of the journal device. 2965 * 2966 * Note: To make sure the stripe makes progress, we only delay 2967 * towrite for stripes with data already in journal (injournal > 0). 2968 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 2969 * no_space_stripes list. 2970 * 2971 */ 2972 static inline bool delay_towrite(struct r5conf *conf, 2973 struct r5dev *dev, 2974 struct stripe_head_state *s) 2975 { 2976 /* case 1 above */ 2977 if (!test_bit(R5_OVERWRITE, &dev->flags) && 2978 !test_bit(R5_Insync, &dev->flags) && s->injournal) 2979 return true; 2980 /* case 2 above */ 2981 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 2982 s->injournal > 0) 2983 return true; 2984 return false; 2985 } 2986 2987 static void 2988 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2989 int rcw, int expand) 2990 { 2991 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 2992 struct r5conf *conf = sh->raid_conf; 2993 int level = conf->level; 2994 2995 if (rcw) { 2996 /* 2997 * In some cases, handle_stripe_dirtying initially decided to 2998 * run rmw and allocates extra page for prexor. However, rcw is 2999 * cheaper later on. We need to free the extra page now, 3000 * because we won't be able to do that in ops_complete_prexor(). 3001 */ 3002 r5c_release_extra_page(sh); 3003 3004 for (i = disks; i--; ) { 3005 struct r5dev *dev = &sh->dev[i]; 3006 3007 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3008 set_bit(R5_LOCKED, &dev->flags); 3009 set_bit(R5_Wantdrain, &dev->flags); 3010 if (!expand) 3011 clear_bit(R5_UPTODATE, &dev->flags); 3012 s->locked++; 3013 } else if (test_bit(R5_InJournal, &dev->flags)) { 3014 set_bit(R5_LOCKED, &dev->flags); 3015 s->locked++; 3016 } 3017 } 3018 /* if we are not expanding this is a proper write request, and 3019 * there will be bios with new data to be drained into the 3020 * stripe cache 3021 */ 3022 if (!expand) { 3023 if (!s->locked) 3024 /* False alarm, nothing to do */ 3025 return; 3026 sh->reconstruct_state = reconstruct_state_drain_run; 3027 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3028 } else 3029 sh->reconstruct_state = reconstruct_state_run; 3030 3031 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3032 3033 if (s->locked + conf->max_degraded == disks) 3034 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3035 atomic_inc(&conf->pending_full_writes); 3036 } else { 3037 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3038 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3039 BUG_ON(level == 6 && 3040 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3041 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3042 3043 for (i = disks; i--; ) { 3044 struct r5dev *dev = &sh->dev[i]; 3045 if (i == pd_idx || i == qd_idx) 3046 continue; 3047 3048 if (dev->towrite && 3049 (test_bit(R5_UPTODATE, &dev->flags) || 3050 test_bit(R5_Wantcompute, &dev->flags))) { 3051 set_bit(R5_Wantdrain, &dev->flags); 3052 set_bit(R5_LOCKED, &dev->flags); 3053 clear_bit(R5_UPTODATE, &dev->flags); 3054 s->locked++; 3055 } else if (test_bit(R5_InJournal, &dev->flags)) { 3056 set_bit(R5_LOCKED, &dev->flags); 3057 s->locked++; 3058 } 3059 } 3060 if (!s->locked) 3061 /* False alarm - nothing to do */ 3062 return; 3063 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3064 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3065 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3066 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3067 } 3068 3069 /* keep the parity disk(s) locked while asynchronous operations 3070 * are in flight 3071 */ 3072 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3073 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3074 s->locked++; 3075 3076 if (level == 6) { 3077 int qd_idx = sh->qd_idx; 3078 struct r5dev *dev = &sh->dev[qd_idx]; 3079 3080 set_bit(R5_LOCKED, &dev->flags); 3081 clear_bit(R5_UPTODATE, &dev->flags); 3082 s->locked++; 3083 } 3084 3085 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3086 __func__, (unsigned long long)sh->sector, 3087 s->locked, s->ops_request); 3088 } 3089 3090 /* 3091 * Each stripe/dev can have one or more bion attached. 3092 * toread/towrite point to the first in a chain. 3093 * The bi_next chain must be in order. 3094 */ 3095 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 3096 int forwrite, int previous) 3097 { 3098 struct bio **bip; 3099 struct r5conf *conf = sh->raid_conf; 3100 int firstwrite=0; 3101 3102 pr_debug("adding bi b#%llu to stripe s#%llu\n", 3103 (unsigned long long)bi->bi_iter.bi_sector, 3104 (unsigned long long)sh->sector); 3105 3106 /* 3107 * If several bio share a stripe. The bio bi_phys_segments acts as a 3108 * reference count to avoid race. The reference count should already be 3109 * increased before this function is called (for example, in 3110 * raid5_make_request()), so other bio sharing this stripe will not free the 3111 * stripe. If a stripe is owned by one stripe, the stripe lock will 3112 * protect it. 3113 */ 3114 spin_lock_irq(&sh->stripe_lock); 3115 /* Don't allow new IO added to stripes in batch list */ 3116 if (sh->batch_head) 3117 goto overlap; 3118 if (forwrite) { 3119 bip = &sh->dev[dd_idx].towrite; 3120 if (*bip == NULL) 3121 firstwrite = 1; 3122 } else 3123 bip = &sh->dev[dd_idx].toread; 3124 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3125 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3126 goto overlap; 3127 bip = & (*bip)->bi_next; 3128 } 3129 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3130 goto overlap; 3131 3132 if (!forwrite || previous) 3133 clear_bit(STRIPE_BATCH_READY, &sh->state); 3134 3135 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3136 if (*bip) 3137 bi->bi_next = *bip; 3138 *bip = bi; 3139 raid5_inc_bi_active_stripes(bi); 3140 3141 if (forwrite) { 3142 /* check if page is covered */ 3143 sector_t sector = sh->dev[dd_idx].sector; 3144 for (bi=sh->dev[dd_idx].towrite; 3145 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 3146 bi && bi->bi_iter.bi_sector <= sector; 3147 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 3148 if (bio_end_sector(bi) >= sector) 3149 sector = bio_end_sector(bi); 3150 } 3151 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 3152 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3153 sh->overwrite_disks++; 3154 } 3155 3156 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3157 (unsigned long long)(*bip)->bi_iter.bi_sector, 3158 (unsigned long long)sh->sector, dd_idx); 3159 3160 if (conf->mddev->bitmap && firstwrite) { 3161 /* Cannot hold spinlock over bitmap_startwrite, 3162 * but must ensure this isn't added to a batch until 3163 * we have added to the bitmap and set bm_seq. 3164 * So set STRIPE_BITMAP_PENDING to prevent 3165 * batching. 3166 * If multiple add_stripe_bio() calls race here they 3167 * much all set STRIPE_BITMAP_PENDING. So only the first one 3168 * to complete "bitmap_startwrite" gets to set 3169 * STRIPE_BIT_DELAY. This is important as once a stripe 3170 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3171 * any more. 3172 */ 3173 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3174 spin_unlock_irq(&sh->stripe_lock); 3175 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3176 STRIPE_SECTORS, 0); 3177 spin_lock_irq(&sh->stripe_lock); 3178 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3179 if (!sh->batch_head) { 3180 sh->bm_seq = conf->seq_flush+1; 3181 set_bit(STRIPE_BIT_DELAY, &sh->state); 3182 } 3183 } 3184 spin_unlock_irq(&sh->stripe_lock); 3185 3186 if (stripe_can_batch(sh)) 3187 stripe_add_to_batch_list(conf, sh); 3188 return 1; 3189 3190 overlap: 3191 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3192 spin_unlock_irq(&sh->stripe_lock); 3193 return 0; 3194 } 3195 3196 static void end_reshape(struct r5conf *conf); 3197 3198 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3199 struct stripe_head *sh) 3200 { 3201 int sectors_per_chunk = 3202 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3203 int dd_idx; 3204 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3205 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3206 3207 raid5_compute_sector(conf, 3208 stripe * (disks - conf->max_degraded) 3209 *sectors_per_chunk + chunk_offset, 3210 previous, 3211 &dd_idx, sh); 3212 } 3213 3214 static void 3215 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3216 struct stripe_head_state *s, int disks, 3217 struct bio_list *return_bi) 3218 { 3219 int i; 3220 BUG_ON(sh->batch_head); 3221 for (i = disks; i--; ) { 3222 struct bio *bi; 3223 int bitmap_end = 0; 3224 3225 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3226 struct md_rdev *rdev; 3227 rcu_read_lock(); 3228 rdev = rcu_dereference(conf->disks[i].rdev); 3229 if (rdev && test_bit(In_sync, &rdev->flags) && 3230 !test_bit(Faulty, &rdev->flags)) 3231 atomic_inc(&rdev->nr_pending); 3232 else 3233 rdev = NULL; 3234 rcu_read_unlock(); 3235 if (rdev) { 3236 if (!rdev_set_badblocks( 3237 rdev, 3238 sh->sector, 3239 STRIPE_SECTORS, 0)) 3240 md_error(conf->mddev, rdev); 3241 rdev_dec_pending(rdev, conf->mddev); 3242 } 3243 } 3244 spin_lock_irq(&sh->stripe_lock); 3245 /* fail all writes first */ 3246 bi = sh->dev[i].towrite; 3247 sh->dev[i].towrite = NULL; 3248 sh->overwrite_disks = 0; 3249 spin_unlock_irq(&sh->stripe_lock); 3250 if (bi) 3251 bitmap_end = 1; 3252 3253 r5l_stripe_write_finished(sh); 3254 3255 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3256 wake_up(&conf->wait_for_overlap); 3257 3258 while (bi && bi->bi_iter.bi_sector < 3259 sh->dev[i].sector + STRIPE_SECTORS) { 3260 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 3261 3262 bi->bi_error = -EIO; 3263 if (!raid5_dec_bi_active_stripes(bi)) { 3264 md_write_end(conf->mddev); 3265 bio_list_add(return_bi, bi); 3266 } 3267 bi = nextbi; 3268 } 3269 if (bitmap_end) 3270 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3271 STRIPE_SECTORS, 0, 0); 3272 bitmap_end = 0; 3273 /* and fail all 'written' */ 3274 bi = sh->dev[i].written; 3275 sh->dev[i].written = NULL; 3276 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3277 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3278 sh->dev[i].page = sh->dev[i].orig_page; 3279 } 3280 3281 if (bi) bitmap_end = 1; 3282 while (bi && bi->bi_iter.bi_sector < 3283 sh->dev[i].sector + STRIPE_SECTORS) { 3284 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 3285 3286 bi->bi_error = -EIO; 3287 if (!raid5_dec_bi_active_stripes(bi)) { 3288 md_write_end(conf->mddev); 3289 bio_list_add(return_bi, bi); 3290 } 3291 bi = bi2; 3292 } 3293 3294 /* fail any reads if this device is non-operational and 3295 * the data has not reached the cache yet. 3296 */ 3297 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3298 s->failed > conf->max_degraded && 3299 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3300 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3301 spin_lock_irq(&sh->stripe_lock); 3302 bi = sh->dev[i].toread; 3303 sh->dev[i].toread = NULL; 3304 spin_unlock_irq(&sh->stripe_lock); 3305 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3306 wake_up(&conf->wait_for_overlap); 3307 if (bi) 3308 s->to_read--; 3309 while (bi && bi->bi_iter.bi_sector < 3310 sh->dev[i].sector + STRIPE_SECTORS) { 3311 struct bio *nextbi = 3312 r5_next_bio(bi, sh->dev[i].sector); 3313 3314 bi->bi_error = -EIO; 3315 if (!raid5_dec_bi_active_stripes(bi)) 3316 bio_list_add(return_bi, bi); 3317 bi = nextbi; 3318 } 3319 } 3320 if (bitmap_end) 3321 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3322 STRIPE_SECTORS, 0, 0); 3323 /* If we were in the middle of a write the parity block might 3324 * still be locked - so just clear all R5_LOCKED flags 3325 */ 3326 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3327 } 3328 s->to_write = 0; 3329 s->written = 0; 3330 3331 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3332 if (atomic_dec_and_test(&conf->pending_full_writes)) 3333 md_wakeup_thread(conf->mddev->thread); 3334 } 3335 3336 static void 3337 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3338 struct stripe_head_state *s) 3339 { 3340 int abort = 0; 3341 int i; 3342 3343 BUG_ON(sh->batch_head); 3344 clear_bit(STRIPE_SYNCING, &sh->state); 3345 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3346 wake_up(&conf->wait_for_overlap); 3347 s->syncing = 0; 3348 s->replacing = 0; 3349 /* There is nothing more to do for sync/check/repair. 3350 * Don't even need to abort as that is handled elsewhere 3351 * if needed, and not always wanted e.g. if there is a known 3352 * bad block here. 3353 * For recover/replace we need to record a bad block on all 3354 * non-sync devices, or abort the recovery 3355 */ 3356 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3357 /* During recovery devices cannot be removed, so 3358 * locking and refcounting of rdevs is not needed 3359 */ 3360 rcu_read_lock(); 3361 for (i = 0; i < conf->raid_disks; i++) { 3362 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3363 if (rdev 3364 && !test_bit(Faulty, &rdev->flags) 3365 && !test_bit(In_sync, &rdev->flags) 3366 && !rdev_set_badblocks(rdev, sh->sector, 3367 STRIPE_SECTORS, 0)) 3368 abort = 1; 3369 rdev = rcu_dereference(conf->disks[i].replacement); 3370 if (rdev 3371 && !test_bit(Faulty, &rdev->flags) 3372 && !test_bit(In_sync, &rdev->flags) 3373 && !rdev_set_badblocks(rdev, sh->sector, 3374 STRIPE_SECTORS, 0)) 3375 abort = 1; 3376 } 3377 rcu_read_unlock(); 3378 if (abort) 3379 conf->recovery_disabled = 3380 conf->mddev->recovery_disabled; 3381 } 3382 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 3383 } 3384 3385 static int want_replace(struct stripe_head *sh, int disk_idx) 3386 { 3387 struct md_rdev *rdev; 3388 int rv = 0; 3389 3390 rcu_read_lock(); 3391 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3392 if (rdev 3393 && !test_bit(Faulty, &rdev->flags) 3394 && !test_bit(In_sync, &rdev->flags) 3395 && (rdev->recovery_offset <= sh->sector 3396 || rdev->mddev->recovery_cp <= sh->sector)) 3397 rv = 1; 3398 rcu_read_unlock(); 3399 return rv; 3400 } 3401 3402 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3403 int disk_idx, int disks) 3404 { 3405 struct r5dev *dev = &sh->dev[disk_idx]; 3406 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3407 &sh->dev[s->failed_num[1]] }; 3408 int i; 3409 3410 3411 if (test_bit(R5_LOCKED, &dev->flags) || 3412 test_bit(R5_UPTODATE, &dev->flags)) 3413 /* No point reading this as we already have it or have 3414 * decided to get it. 3415 */ 3416 return 0; 3417 3418 if (dev->toread || 3419 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3420 /* We need this block to directly satisfy a request */ 3421 return 1; 3422 3423 if (s->syncing || s->expanding || 3424 (s->replacing && want_replace(sh, disk_idx))) 3425 /* When syncing, or expanding we read everything. 3426 * When replacing, we need the replaced block. 3427 */ 3428 return 1; 3429 3430 if ((s->failed >= 1 && fdev[0]->toread) || 3431 (s->failed >= 2 && fdev[1]->toread)) 3432 /* If we want to read from a failed device, then 3433 * we need to actually read every other device. 3434 */ 3435 return 1; 3436 3437 /* Sometimes neither read-modify-write nor reconstruct-write 3438 * cycles can work. In those cases we read every block we 3439 * can. Then the parity-update is certain to have enough to 3440 * work with. 3441 * This can only be a problem when we need to write something, 3442 * and some device has failed. If either of those tests 3443 * fail we need look no further. 3444 */ 3445 if (!s->failed || !s->to_write) 3446 return 0; 3447 3448 if (test_bit(R5_Insync, &dev->flags) && 3449 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3450 /* Pre-reads at not permitted until after short delay 3451 * to gather multiple requests. However if this 3452 * device is no Insync, the block could only be be computed 3453 * and there is no need to delay that. 3454 */ 3455 return 0; 3456 3457 for (i = 0; i < s->failed && i < 2; i++) { 3458 if (fdev[i]->towrite && 3459 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3460 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3461 /* If we have a partial write to a failed 3462 * device, then we will need to reconstruct 3463 * the content of that device, so all other 3464 * devices must be read. 3465 */ 3466 return 1; 3467 } 3468 3469 /* If we are forced to do a reconstruct-write, either because 3470 * the current RAID6 implementation only supports that, or 3471 * or because parity cannot be trusted and we are currently 3472 * recovering it, there is extra need to be careful. 3473 * If one of the devices that we would need to read, because 3474 * it is not being overwritten (and maybe not written at all) 3475 * is missing/faulty, then we need to read everything we can. 3476 */ 3477 if (sh->raid_conf->level != 6 && 3478 sh->sector < sh->raid_conf->mddev->recovery_cp) 3479 /* reconstruct-write isn't being forced */ 3480 return 0; 3481 for (i = 0; i < s->failed && i < 2; i++) { 3482 if (s->failed_num[i] != sh->pd_idx && 3483 s->failed_num[i] != sh->qd_idx && 3484 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3485 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3486 return 1; 3487 } 3488 3489 return 0; 3490 } 3491 3492 /* fetch_block - checks the given member device to see if its data needs 3493 * to be read or computed to satisfy a request. 3494 * 3495 * Returns 1 when no more member devices need to be checked, otherwise returns 3496 * 0 to tell the loop in handle_stripe_fill to continue 3497 */ 3498 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3499 int disk_idx, int disks) 3500 { 3501 struct r5dev *dev = &sh->dev[disk_idx]; 3502 3503 /* is the data in this block needed, and can we get it? */ 3504 if (need_this_block(sh, s, disk_idx, disks)) { 3505 /* we would like to get this block, possibly by computing it, 3506 * otherwise read it if the backing disk is insync 3507 */ 3508 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3509 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3510 BUG_ON(sh->batch_head); 3511 if ((s->uptodate == disks - 1) && 3512 (s->failed && (disk_idx == s->failed_num[0] || 3513 disk_idx == s->failed_num[1]))) { 3514 /* have disk failed, and we're requested to fetch it; 3515 * do compute it 3516 */ 3517 pr_debug("Computing stripe %llu block %d\n", 3518 (unsigned long long)sh->sector, disk_idx); 3519 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3520 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3521 set_bit(R5_Wantcompute, &dev->flags); 3522 sh->ops.target = disk_idx; 3523 sh->ops.target2 = -1; /* no 2nd target */ 3524 s->req_compute = 1; 3525 /* Careful: from this point on 'uptodate' is in the eye 3526 * of raid_run_ops which services 'compute' operations 3527 * before writes. R5_Wantcompute flags a block that will 3528 * be R5_UPTODATE by the time it is needed for a 3529 * subsequent operation. 3530 */ 3531 s->uptodate++; 3532 return 1; 3533 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3534 /* Computing 2-failure is *very* expensive; only 3535 * do it if failed >= 2 3536 */ 3537 int other; 3538 for (other = disks; other--; ) { 3539 if (other == disk_idx) 3540 continue; 3541 if (!test_bit(R5_UPTODATE, 3542 &sh->dev[other].flags)) 3543 break; 3544 } 3545 BUG_ON(other < 0); 3546 pr_debug("Computing stripe %llu blocks %d,%d\n", 3547 (unsigned long long)sh->sector, 3548 disk_idx, other); 3549 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3550 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3551 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3552 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3553 sh->ops.target = disk_idx; 3554 sh->ops.target2 = other; 3555 s->uptodate += 2; 3556 s->req_compute = 1; 3557 return 1; 3558 } else if (test_bit(R5_Insync, &dev->flags)) { 3559 set_bit(R5_LOCKED, &dev->flags); 3560 set_bit(R5_Wantread, &dev->flags); 3561 s->locked++; 3562 pr_debug("Reading block %d (sync=%d)\n", 3563 disk_idx, s->syncing); 3564 } 3565 } 3566 3567 return 0; 3568 } 3569 3570 /** 3571 * handle_stripe_fill - read or compute data to satisfy pending requests. 3572 */ 3573 static void handle_stripe_fill(struct stripe_head *sh, 3574 struct stripe_head_state *s, 3575 int disks) 3576 { 3577 int i; 3578 3579 /* look for blocks to read/compute, skip this if a compute 3580 * is already in flight, or if the stripe contents are in the 3581 * midst of changing due to a write 3582 */ 3583 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3584 !sh->reconstruct_state) { 3585 3586 /* 3587 * For degraded stripe with data in journal, do not handle 3588 * read requests yet, instead, flush the stripe to raid 3589 * disks first, this avoids handling complex rmw of write 3590 * back cache (prexor with orig_page, and then xor with 3591 * page) in the read path 3592 */ 3593 if (s->injournal && s->failed) { 3594 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 3595 r5c_make_stripe_write_out(sh); 3596 goto out; 3597 } 3598 3599 for (i = disks; i--; ) 3600 if (fetch_block(sh, s, i, disks)) 3601 break; 3602 } 3603 out: 3604 set_bit(STRIPE_HANDLE, &sh->state); 3605 } 3606 3607 static void break_stripe_batch_list(struct stripe_head *head_sh, 3608 unsigned long handle_flags); 3609 /* handle_stripe_clean_event 3610 * any written block on an uptodate or failed drive can be returned. 3611 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3612 * never LOCKED, so we don't need to test 'failed' directly. 3613 */ 3614 static void handle_stripe_clean_event(struct r5conf *conf, 3615 struct stripe_head *sh, int disks, struct bio_list *return_bi) 3616 { 3617 int i; 3618 struct r5dev *dev; 3619 int discard_pending = 0; 3620 struct stripe_head *head_sh = sh; 3621 bool do_endio = false; 3622 3623 for (i = disks; i--; ) 3624 if (sh->dev[i].written) { 3625 dev = &sh->dev[i]; 3626 if (!test_bit(R5_LOCKED, &dev->flags) && 3627 (test_bit(R5_UPTODATE, &dev->flags) || 3628 test_bit(R5_Discard, &dev->flags) || 3629 test_bit(R5_SkipCopy, &dev->flags))) { 3630 /* We can return any write requests */ 3631 struct bio *wbi, *wbi2; 3632 pr_debug("Return write for disc %d\n", i); 3633 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3634 clear_bit(R5_UPTODATE, &dev->flags); 3635 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3636 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3637 } 3638 do_endio = true; 3639 3640 returnbi: 3641 dev->page = dev->orig_page; 3642 wbi = dev->written; 3643 dev->written = NULL; 3644 while (wbi && wbi->bi_iter.bi_sector < 3645 dev->sector + STRIPE_SECTORS) { 3646 wbi2 = r5_next_bio(wbi, dev->sector); 3647 if (!raid5_dec_bi_active_stripes(wbi)) { 3648 md_write_end(conf->mddev); 3649 bio_list_add(return_bi, wbi); 3650 } 3651 wbi = wbi2; 3652 } 3653 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3654 STRIPE_SECTORS, 3655 !test_bit(STRIPE_DEGRADED, &sh->state), 3656 0); 3657 if (head_sh->batch_head) { 3658 sh = list_first_entry(&sh->batch_list, 3659 struct stripe_head, 3660 batch_list); 3661 if (sh != head_sh) { 3662 dev = &sh->dev[i]; 3663 goto returnbi; 3664 } 3665 } 3666 sh = head_sh; 3667 dev = &sh->dev[i]; 3668 } else if (test_bit(R5_Discard, &dev->flags)) 3669 discard_pending = 1; 3670 } 3671 3672 r5l_stripe_write_finished(sh); 3673 3674 if (!discard_pending && 3675 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3676 int hash; 3677 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3678 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3679 if (sh->qd_idx >= 0) { 3680 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3681 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3682 } 3683 /* now that discard is done we can proceed with any sync */ 3684 clear_bit(STRIPE_DISCARD, &sh->state); 3685 /* 3686 * SCSI discard will change some bio fields and the stripe has 3687 * no updated data, so remove it from hash list and the stripe 3688 * will be reinitialized 3689 */ 3690 unhash: 3691 hash = sh->hash_lock_index; 3692 spin_lock_irq(conf->hash_locks + hash); 3693 remove_hash(sh); 3694 spin_unlock_irq(conf->hash_locks + hash); 3695 if (head_sh->batch_head) { 3696 sh = list_first_entry(&sh->batch_list, 3697 struct stripe_head, batch_list); 3698 if (sh != head_sh) 3699 goto unhash; 3700 } 3701 sh = head_sh; 3702 3703 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3704 set_bit(STRIPE_HANDLE, &sh->state); 3705 3706 } 3707 3708 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3709 if (atomic_dec_and_test(&conf->pending_full_writes)) 3710 md_wakeup_thread(conf->mddev->thread); 3711 3712 if (head_sh->batch_head && do_endio) 3713 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 3714 } 3715 3716 /* 3717 * For RMW in write back cache, we need extra page in prexor to store the 3718 * old data. This page is stored in dev->orig_page. 3719 * 3720 * This function checks whether we have data for prexor. The exact logic 3721 * is: 3722 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 3723 */ 3724 static inline bool uptodate_for_rmw(struct r5dev *dev) 3725 { 3726 return (test_bit(R5_UPTODATE, &dev->flags)) && 3727 (!test_bit(R5_InJournal, &dev->flags) || 3728 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 3729 } 3730 3731 static int handle_stripe_dirtying(struct r5conf *conf, 3732 struct stripe_head *sh, 3733 struct stripe_head_state *s, 3734 int disks) 3735 { 3736 int rmw = 0, rcw = 0, i; 3737 sector_t recovery_cp = conf->mddev->recovery_cp; 3738 3739 /* Check whether resync is now happening or should start. 3740 * If yes, then the array is dirty (after unclean shutdown or 3741 * initial creation), so parity in some stripes might be inconsistent. 3742 * In this case, we need to always do reconstruct-write, to ensure 3743 * that in case of drive failure or read-error correction, we 3744 * generate correct data from the parity. 3745 */ 3746 if (conf->rmw_level == PARITY_DISABLE_RMW || 3747 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 3748 s->failed == 0)) { 3749 /* Calculate the real rcw later - for now make it 3750 * look like rcw is cheaper 3751 */ 3752 rcw = 1; rmw = 2; 3753 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 3754 conf->rmw_level, (unsigned long long)recovery_cp, 3755 (unsigned long long)sh->sector); 3756 } else for (i = disks; i--; ) { 3757 /* would I have to read this buffer for read_modify_write */ 3758 struct r5dev *dev = &sh->dev[i]; 3759 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 3760 i == sh->pd_idx || i == sh->qd_idx || 3761 test_bit(R5_InJournal, &dev->flags)) && 3762 !test_bit(R5_LOCKED, &dev->flags) && 3763 !(uptodate_for_rmw(dev) || 3764 test_bit(R5_Wantcompute, &dev->flags))) { 3765 if (test_bit(R5_Insync, &dev->flags)) 3766 rmw++; 3767 else 3768 rmw += 2*disks; /* cannot read it */ 3769 } 3770 /* Would I have to read this buffer for reconstruct_write */ 3771 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3772 i != sh->pd_idx && i != sh->qd_idx && 3773 !test_bit(R5_LOCKED, &dev->flags) && 3774 !(test_bit(R5_UPTODATE, &dev->flags) || 3775 test_bit(R5_Wantcompute, &dev->flags))) { 3776 if (test_bit(R5_Insync, &dev->flags)) 3777 rcw++; 3778 else 3779 rcw += 2*disks; 3780 } 3781 } 3782 3783 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 3784 (unsigned long long)sh->sector, sh->state, rmw, rcw); 3785 set_bit(STRIPE_HANDLE, &sh->state); 3786 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 3787 /* prefer read-modify-write, but need to get some data */ 3788 if (conf->mddev->queue) 3789 blk_add_trace_msg(conf->mddev->queue, 3790 "raid5 rmw %llu %d", 3791 (unsigned long long)sh->sector, rmw); 3792 for (i = disks; i--; ) { 3793 struct r5dev *dev = &sh->dev[i]; 3794 if (test_bit(R5_InJournal, &dev->flags) && 3795 dev->page == dev->orig_page && 3796 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 3797 /* alloc page for prexor */ 3798 struct page *p = alloc_page(GFP_NOIO); 3799 3800 if (p) { 3801 dev->orig_page = p; 3802 continue; 3803 } 3804 3805 /* 3806 * alloc_page() failed, try use 3807 * disk_info->extra_page 3808 */ 3809 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 3810 &conf->cache_state)) { 3811 r5c_use_extra_page(sh); 3812 break; 3813 } 3814 3815 /* extra_page in use, add to delayed_list */ 3816 set_bit(STRIPE_DELAYED, &sh->state); 3817 s->waiting_extra_page = 1; 3818 return -EAGAIN; 3819 } 3820 } 3821 3822 for (i = disks; i--; ) { 3823 struct r5dev *dev = &sh->dev[i]; 3824 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 3825 i == sh->pd_idx || i == sh->qd_idx || 3826 test_bit(R5_InJournal, &dev->flags)) && 3827 !test_bit(R5_LOCKED, &dev->flags) && 3828 !(uptodate_for_rmw(dev) || 3829 test_bit(R5_Wantcompute, &dev->flags)) && 3830 test_bit(R5_Insync, &dev->flags)) { 3831 if (test_bit(STRIPE_PREREAD_ACTIVE, 3832 &sh->state)) { 3833 pr_debug("Read_old block %d for r-m-w\n", 3834 i); 3835 set_bit(R5_LOCKED, &dev->flags); 3836 set_bit(R5_Wantread, &dev->flags); 3837 s->locked++; 3838 } else { 3839 set_bit(STRIPE_DELAYED, &sh->state); 3840 set_bit(STRIPE_HANDLE, &sh->state); 3841 } 3842 } 3843 } 3844 } 3845 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 3846 /* want reconstruct write, but need to get some data */ 3847 int qread =0; 3848 rcw = 0; 3849 for (i = disks; i--; ) { 3850 struct r5dev *dev = &sh->dev[i]; 3851 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3852 i != sh->pd_idx && i != sh->qd_idx && 3853 !test_bit(R5_LOCKED, &dev->flags) && 3854 !(test_bit(R5_UPTODATE, &dev->flags) || 3855 test_bit(R5_Wantcompute, &dev->flags))) { 3856 rcw++; 3857 if (test_bit(R5_Insync, &dev->flags) && 3858 test_bit(STRIPE_PREREAD_ACTIVE, 3859 &sh->state)) { 3860 pr_debug("Read_old block " 3861 "%d for Reconstruct\n", i); 3862 set_bit(R5_LOCKED, &dev->flags); 3863 set_bit(R5_Wantread, &dev->flags); 3864 s->locked++; 3865 qread++; 3866 } else { 3867 set_bit(STRIPE_DELAYED, &sh->state); 3868 set_bit(STRIPE_HANDLE, &sh->state); 3869 } 3870 } 3871 } 3872 if (rcw && conf->mddev->queue) 3873 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 3874 (unsigned long long)sh->sector, 3875 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 3876 } 3877 3878 if (rcw > disks && rmw > disks && 3879 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3880 set_bit(STRIPE_DELAYED, &sh->state); 3881 3882 /* now if nothing is locked, and if we have enough data, 3883 * we can start a write request 3884 */ 3885 /* since handle_stripe can be called at any time we need to handle the 3886 * case where a compute block operation has been submitted and then a 3887 * subsequent call wants to start a write request. raid_run_ops only 3888 * handles the case where compute block and reconstruct are requested 3889 * simultaneously. If this is not the case then new writes need to be 3890 * held off until the compute completes. 3891 */ 3892 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 3893 (s->locked == 0 && (rcw == 0 || rmw == 0) && 3894 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 3895 schedule_reconstruction(sh, s, rcw == 0, 0); 3896 return 0; 3897 } 3898 3899 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 3900 struct stripe_head_state *s, int disks) 3901 { 3902 struct r5dev *dev = NULL; 3903 3904 BUG_ON(sh->batch_head); 3905 set_bit(STRIPE_HANDLE, &sh->state); 3906 3907 switch (sh->check_state) { 3908 case check_state_idle: 3909 /* start a new check operation if there are no failures */ 3910 if (s->failed == 0) { 3911 BUG_ON(s->uptodate != disks); 3912 sh->check_state = check_state_run; 3913 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3914 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3915 s->uptodate--; 3916 break; 3917 } 3918 dev = &sh->dev[s->failed_num[0]]; 3919 /* fall through */ 3920 case check_state_compute_result: 3921 sh->check_state = check_state_idle; 3922 if (!dev) 3923 dev = &sh->dev[sh->pd_idx]; 3924 3925 /* check that a write has not made the stripe insync */ 3926 if (test_bit(STRIPE_INSYNC, &sh->state)) 3927 break; 3928 3929 /* either failed parity check, or recovery is happening */ 3930 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 3931 BUG_ON(s->uptodate != disks); 3932 3933 set_bit(R5_LOCKED, &dev->flags); 3934 s->locked++; 3935 set_bit(R5_Wantwrite, &dev->flags); 3936 3937 clear_bit(STRIPE_DEGRADED, &sh->state); 3938 set_bit(STRIPE_INSYNC, &sh->state); 3939 break; 3940 case check_state_run: 3941 break; /* we will be called again upon completion */ 3942 case check_state_check_result: 3943 sh->check_state = check_state_idle; 3944 3945 /* if a failure occurred during the check operation, leave 3946 * STRIPE_INSYNC not set and let the stripe be handled again 3947 */ 3948 if (s->failed) 3949 break; 3950 3951 /* handle a successful check operation, if parity is correct 3952 * we are done. Otherwise update the mismatch count and repair 3953 * parity if !MD_RECOVERY_CHECK 3954 */ 3955 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 3956 /* parity is correct (on disc, 3957 * not in buffer any more) 3958 */ 3959 set_bit(STRIPE_INSYNC, &sh->state); 3960 else { 3961 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3962 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3963 /* don't try to repair!! */ 3964 set_bit(STRIPE_INSYNC, &sh->state); 3965 else { 3966 sh->check_state = check_state_compute_run; 3967 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3968 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3969 set_bit(R5_Wantcompute, 3970 &sh->dev[sh->pd_idx].flags); 3971 sh->ops.target = sh->pd_idx; 3972 sh->ops.target2 = -1; 3973 s->uptodate++; 3974 } 3975 } 3976 break; 3977 case check_state_compute_run: 3978 break; 3979 default: 3980 pr_err("%s: unknown check_state: %d sector: %llu\n", 3981 __func__, sh->check_state, 3982 (unsigned long long) sh->sector); 3983 BUG(); 3984 } 3985 } 3986 3987 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3988 struct stripe_head_state *s, 3989 int disks) 3990 { 3991 int pd_idx = sh->pd_idx; 3992 int qd_idx = sh->qd_idx; 3993 struct r5dev *dev; 3994 3995 BUG_ON(sh->batch_head); 3996 set_bit(STRIPE_HANDLE, &sh->state); 3997 3998 BUG_ON(s->failed > 2); 3999 4000 /* Want to check and possibly repair P and Q. 4001 * However there could be one 'failed' device, in which 4002 * case we can only check one of them, possibly using the 4003 * other to generate missing data 4004 */ 4005 4006 switch (sh->check_state) { 4007 case check_state_idle: 4008 /* start a new check operation if there are < 2 failures */ 4009 if (s->failed == s->q_failed) { 4010 /* The only possible failed device holds Q, so it 4011 * makes sense to check P (If anything else were failed, 4012 * we would have used P to recreate it). 4013 */ 4014 sh->check_state = check_state_run; 4015 } 4016 if (!s->q_failed && s->failed < 2) { 4017 /* Q is not failed, and we didn't use it to generate 4018 * anything, so it makes sense to check it 4019 */ 4020 if (sh->check_state == check_state_run) 4021 sh->check_state = check_state_run_pq; 4022 else 4023 sh->check_state = check_state_run_q; 4024 } 4025 4026 /* discard potentially stale zero_sum_result */ 4027 sh->ops.zero_sum_result = 0; 4028 4029 if (sh->check_state == check_state_run) { 4030 /* async_xor_zero_sum destroys the contents of P */ 4031 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4032 s->uptodate--; 4033 } 4034 if (sh->check_state >= check_state_run && 4035 sh->check_state <= check_state_run_pq) { 4036 /* async_syndrome_zero_sum preserves P and Q, so 4037 * no need to mark them !uptodate here 4038 */ 4039 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4040 break; 4041 } 4042 4043 /* we have 2-disk failure */ 4044 BUG_ON(s->failed != 2); 4045 /* fall through */ 4046 case check_state_compute_result: 4047 sh->check_state = check_state_idle; 4048 4049 /* check that a write has not made the stripe insync */ 4050 if (test_bit(STRIPE_INSYNC, &sh->state)) 4051 break; 4052 4053 /* now write out any block on a failed drive, 4054 * or P or Q if they were recomputed 4055 */ 4056 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 4057 if (s->failed == 2) { 4058 dev = &sh->dev[s->failed_num[1]]; 4059 s->locked++; 4060 set_bit(R5_LOCKED, &dev->flags); 4061 set_bit(R5_Wantwrite, &dev->flags); 4062 } 4063 if (s->failed >= 1) { 4064 dev = &sh->dev[s->failed_num[0]]; 4065 s->locked++; 4066 set_bit(R5_LOCKED, &dev->flags); 4067 set_bit(R5_Wantwrite, &dev->flags); 4068 } 4069 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4070 dev = &sh->dev[pd_idx]; 4071 s->locked++; 4072 set_bit(R5_LOCKED, &dev->flags); 4073 set_bit(R5_Wantwrite, &dev->flags); 4074 } 4075 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4076 dev = &sh->dev[qd_idx]; 4077 s->locked++; 4078 set_bit(R5_LOCKED, &dev->flags); 4079 set_bit(R5_Wantwrite, &dev->flags); 4080 } 4081 clear_bit(STRIPE_DEGRADED, &sh->state); 4082 4083 set_bit(STRIPE_INSYNC, &sh->state); 4084 break; 4085 case check_state_run: 4086 case check_state_run_q: 4087 case check_state_run_pq: 4088 break; /* we will be called again upon completion */ 4089 case check_state_check_result: 4090 sh->check_state = check_state_idle; 4091 4092 /* handle a successful check operation, if parity is correct 4093 * we are done. Otherwise update the mismatch count and repair 4094 * parity if !MD_RECOVERY_CHECK 4095 */ 4096 if (sh->ops.zero_sum_result == 0) { 4097 /* both parities are correct */ 4098 if (!s->failed) 4099 set_bit(STRIPE_INSYNC, &sh->state); 4100 else { 4101 /* in contrast to the raid5 case we can validate 4102 * parity, but still have a failure to write 4103 * back 4104 */ 4105 sh->check_state = check_state_compute_result; 4106 /* Returning at this point means that we may go 4107 * off and bring p and/or q uptodate again so 4108 * we make sure to check zero_sum_result again 4109 * to verify if p or q need writeback 4110 */ 4111 } 4112 } else { 4113 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 4114 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 4115 /* don't try to repair!! */ 4116 set_bit(STRIPE_INSYNC, &sh->state); 4117 else { 4118 int *target = &sh->ops.target; 4119 4120 sh->ops.target = -1; 4121 sh->ops.target2 = -1; 4122 sh->check_state = check_state_compute_run; 4123 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4124 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4125 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4126 set_bit(R5_Wantcompute, 4127 &sh->dev[pd_idx].flags); 4128 *target = pd_idx; 4129 target = &sh->ops.target2; 4130 s->uptodate++; 4131 } 4132 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4133 set_bit(R5_Wantcompute, 4134 &sh->dev[qd_idx].flags); 4135 *target = qd_idx; 4136 s->uptodate++; 4137 } 4138 } 4139 } 4140 break; 4141 case check_state_compute_run: 4142 break; 4143 default: 4144 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4145 __func__, sh->check_state, 4146 (unsigned long long) sh->sector); 4147 BUG(); 4148 } 4149 } 4150 4151 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4152 { 4153 int i; 4154 4155 /* We have read all the blocks in this stripe and now we need to 4156 * copy some of them into a target stripe for expand. 4157 */ 4158 struct dma_async_tx_descriptor *tx = NULL; 4159 BUG_ON(sh->batch_head); 4160 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4161 for (i = 0; i < sh->disks; i++) 4162 if (i != sh->pd_idx && i != sh->qd_idx) { 4163 int dd_idx, j; 4164 struct stripe_head *sh2; 4165 struct async_submit_ctl submit; 4166 4167 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4168 sector_t s = raid5_compute_sector(conf, bn, 0, 4169 &dd_idx, NULL); 4170 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 4171 if (sh2 == NULL) 4172 /* so far only the early blocks of this stripe 4173 * have been requested. When later blocks 4174 * get requested, we will try again 4175 */ 4176 continue; 4177 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4178 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4179 /* must have already done this block */ 4180 raid5_release_stripe(sh2); 4181 continue; 4182 } 4183 4184 /* place all the copies on one channel */ 4185 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4186 tx = async_memcpy(sh2->dev[dd_idx].page, 4187 sh->dev[i].page, 0, 0, STRIPE_SIZE, 4188 &submit); 4189 4190 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4191 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4192 for (j = 0; j < conf->raid_disks; j++) 4193 if (j != sh2->pd_idx && 4194 j != sh2->qd_idx && 4195 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4196 break; 4197 if (j == conf->raid_disks) { 4198 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4199 set_bit(STRIPE_HANDLE, &sh2->state); 4200 } 4201 raid5_release_stripe(sh2); 4202 4203 } 4204 /* done submitting copies, wait for them to complete */ 4205 async_tx_quiesce(&tx); 4206 } 4207 4208 /* 4209 * handle_stripe - do things to a stripe. 4210 * 4211 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4212 * state of various bits to see what needs to be done. 4213 * Possible results: 4214 * return some read requests which now have data 4215 * return some write requests which are safely on storage 4216 * schedule a read on some buffers 4217 * schedule a write of some buffers 4218 * return confirmation of parity correctness 4219 * 4220 */ 4221 4222 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4223 { 4224 struct r5conf *conf = sh->raid_conf; 4225 int disks = sh->disks; 4226 struct r5dev *dev; 4227 int i; 4228 int do_recovery = 0; 4229 4230 memset(s, 0, sizeof(*s)); 4231 4232 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4233 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4234 s->failed_num[0] = -1; 4235 s->failed_num[1] = -1; 4236 s->log_failed = r5l_log_disk_error(conf); 4237 4238 /* Now to look around and see what can be done */ 4239 rcu_read_lock(); 4240 for (i=disks; i--; ) { 4241 struct md_rdev *rdev; 4242 sector_t first_bad; 4243 int bad_sectors; 4244 int is_bad = 0; 4245 4246 dev = &sh->dev[i]; 4247 4248 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4249 i, dev->flags, 4250 dev->toread, dev->towrite, dev->written); 4251 /* maybe we can reply to a read 4252 * 4253 * new wantfill requests are only permitted while 4254 * ops_complete_biofill is guaranteed to be inactive 4255 */ 4256 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4257 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4258 set_bit(R5_Wantfill, &dev->flags); 4259 4260 /* now count some things */ 4261 if (test_bit(R5_LOCKED, &dev->flags)) 4262 s->locked++; 4263 if (test_bit(R5_UPTODATE, &dev->flags)) 4264 s->uptodate++; 4265 if (test_bit(R5_Wantcompute, &dev->flags)) { 4266 s->compute++; 4267 BUG_ON(s->compute > 2); 4268 } 4269 4270 if (test_bit(R5_Wantfill, &dev->flags)) 4271 s->to_fill++; 4272 else if (dev->toread) 4273 s->to_read++; 4274 if (dev->towrite) { 4275 s->to_write++; 4276 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4277 s->non_overwrite++; 4278 } 4279 if (dev->written) 4280 s->written++; 4281 /* Prefer to use the replacement for reads, but only 4282 * if it is recovered enough and has no bad blocks. 4283 */ 4284 rdev = rcu_dereference(conf->disks[i].replacement); 4285 if (rdev && !test_bit(Faulty, &rdev->flags) && 4286 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 4287 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4288 &first_bad, &bad_sectors)) 4289 set_bit(R5_ReadRepl, &dev->flags); 4290 else { 4291 if (rdev && !test_bit(Faulty, &rdev->flags)) 4292 set_bit(R5_NeedReplace, &dev->flags); 4293 else 4294 clear_bit(R5_NeedReplace, &dev->flags); 4295 rdev = rcu_dereference(conf->disks[i].rdev); 4296 clear_bit(R5_ReadRepl, &dev->flags); 4297 } 4298 if (rdev && test_bit(Faulty, &rdev->flags)) 4299 rdev = NULL; 4300 if (rdev) { 4301 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4302 &first_bad, &bad_sectors); 4303 if (s->blocked_rdev == NULL 4304 && (test_bit(Blocked, &rdev->flags) 4305 || is_bad < 0)) { 4306 if (is_bad < 0) 4307 set_bit(BlockedBadBlocks, 4308 &rdev->flags); 4309 s->blocked_rdev = rdev; 4310 atomic_inc(&rdev->nr_pending); 4311 } 4312 } 4313 clear_bit(R5_Insync, &dev->flags); 4314 if (!rdev) 4315 /* Not in-sync */; 4316 else if (is_bad) { 4317 /* also not in-sync */ 4318 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4319 test_bit(R5_UPTODATE, &dev->flags)) { 4320 /* treat as in-sync, but with a read error 4321 * which we can now try to correct 4322 */ 4323 set_bit(R5_Insync, &dev->flags); 4324 set_bit(R5_ReadError, &dev->flags); 4325 } 4326 } else if (test_bit(In_sync, &rdev->flags)) 4327 set_bit(R5_Insync, &dev->flags); 4328 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 4329 /* in sync if before recovery_offset */ 4330 set_bit(R5_Insync, &dev->flags); 4331 else if (test_bit(R5_UPTODATE, &dev->flags) && 4332 test_bit(R5_Expanded, &dev->flags)) 4333 /* If we've reshaped into here, we assume it is Insync. 4334 * We will shortly update recovery_offset to make 4335 * it official. 4336 */ 4337 set_bit(R5_Insync, &dev->flags); 4338 4339 if (test_bit(R5_WriteError, &dev->flags)) { 4340 /* This flag does not apply to '.replacement' 4341 * only to .rdev, so make sure to check that*/ 4342 struct md_rdev *rdev2 = rcu_dereference( 4343 conf->disks[i].rdev); 4344 if (rdev2 == rdev) 4345 clear_bit(R5_Insync, &dev->flags); 4346 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4347 s->handle_bad_blocks = 1; 4348 atomic_inc(&rdev2->nr_pending); 4349 } else 4350 clear_bit(R5_WriteError, &dev->flags); 4351 } 4352 if (test_bit(R5_MadeGood, &dev->flags)) { 4353 /* This flag does not apply to '.replacement' 4354 * only to .rdev, so make sure to check that*/ 4355 struct md_rdev *rdev2 = rcu_dereference( 4356 conf->disks[i].rdev); 4357 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4358 s->handle_bad_blocks = 1; 4359 atomic_inc(&rdev2->nr_pending); 4360 } else 4361 clear_bit(R5_MadeGood, &dev->flags); 4362 } 4363 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4364 struct md_rdev *rdev2 = rcu_dereference( 4365 conf->disks[i].replacement); 4366 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4367 s->handle_bad_blocks = 1; 4368 atomic_inc(&rdev2->nr_pending); 4369 } else 4370 clear_bit(R5_MadeGoodRepl, &dev->flags); 4371 } 4372 if (!test_bit(R5_Insync, &dev->flags)) { 4373 /* The ReadError flag will just be confusing now */ 4374 clear_bit(R5_ReadError, &dev->flags); 4375 clear_bit(R5_ReWrite, &dev->flags); 4376 } 4377 if (test_bit(R5_ReadError, &dev->flags)) 4378 clear_bit(R5_Insync, &dev->flags); 4379 if (!test_bit(R5_Insync, &dev->flags)) { 4380 if (s->failed < 2) 4381 s->failed_num[s->failed] = i; 4382 s->failed++; 4383 if (rdev && !test_bit(Faulty, &rdev->flags)) 4384 do_recovery = 1; 4385 } 4386 4387 if (test_bit(R5_InJournal, &dev->flags)) 4388 s->injournal++; 4389 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4390 s->just_cached++; 4391 } 4392 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4393 /* If there is a failed device being replaced, 4394 * we must be recovering. 4395 * else if we are after recovery_cp, we must be syncing 4396 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4397 * else we can only be replacing 4398 * sync and recovery both need to read all devices, and so 4399 * use the same flag. 4400 */ 4401 if (do_recovery || 4402 sh->sector >= conf->mddev->recovery_cp || 4403 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4404 s->syncing = 1; 4405 else 4406 s->replacing = 1; 4407 } 4408 rcu_read_unlock(); 4409 } 4410 4411 static int clear_batch_ready(struct stripe_head *sh) 4412 { 4413 /* Return '1' if this is a member of batch, or 4414 * '0' if it is a lone stripe or a head which can now be 4415 * handled. 4416 */ 4417 struct stripe_head *tmp; 4418 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4419 return (sh->batch_head && sh->batch_head != sh); 4420 spin_lock(&sh->stripe_lock); 4421 if (!sh->batch_head) { 4422 spin_unlock(&sh->stripe_lock); 4423 return 0; 4424 } 4425 4426 /* 4427 * this stripe could be added to a batch list before we check 4428 * BATCH_READY, skips it 4429 */ 4430 if (sh->batch_head != sh) { 4431 spin_unlock(&sh->stripe_lock); 4432 return 1; 4433 } 4434 spin_lock(&sh->batch_lock); 4435 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4436 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4437 spin_unlock(&sh->batch_lock); 4438 spin_unlock(&sh->stripe_lock); 4439 4440 /* 4441 * BATCH_READY is cleared, no new stripes can be added. 4442 * batch_list can be accessed without lock 4443 */ 4444 return 0; 4445 } 4446 4447 static void break_stripe_batch_list(struct stripe_head *head_sh, 4448 unsigned long handle_flags) 4449 { 4450 struct stripe_head *sh, *next; 4451 int i; 4452 int do_wakeup = 0; 4453 4454 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4455 4456 list_del_init(&sh->batch_list); 4457 4458 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4459 (1 << STRIPE_SYNCING) | 4460 (1 << STRIPE_REPLACED) | 4461 (1 << STRIPE_DELAYED) | 4462 (1 << STRIPE_BIT_DELAY) | 4463 (1 << STRIPE_FULL_WRITE) | 4464 (1 << STRIPE_BIOFILL_RUN) | 4465 (1 << STRIPE_COMPUTE_RUN) | 4466 (1 << STRIPE_OPS_REQ_PENDING) | 4467 (1 << STRIPE_DISCARD) | 4468 (1 << STRIPE_BATCH_READY) | 4469 (1 << STRIPE_BATCH_ERR) | 4470 (1 << STRIPE_BITMAP_PENDING)), 4471 "stripe state: %lx\n", sh->state); 4472 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4473 (1 << STRIPE_REPLACED)), 4474 "head stripe state: %lx\n", head_sh->state); 4475 4476 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4477 (1 << STRIPE_PREREAD_ACTIVE) | 4478 (1 << STRIPE_DEGRADED)), 4479 head_sh->state & (1 << STRIPE_INSYNC)); 4480 4481 sh->check_state = head_sh->check_state; 4482 sh->reconstruct_state = head_sh->reconstruct_state; 4483 for (i = 0; i < sh->disks; i++) { 4484 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4485 do_wakeup = 1; 4486 sh->dev[i].flags = head_sh->dev[i].flags & 4487 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4488 } 4489 spin_lock_irq(&sh->stripe_lock); 4490 sh->batch_head = NULL; 4491 spin_unlock_irq(&sh->stripe_lock); 4492 if (handle_flags == 0 || 4493 sh->state & handle_flags) 4494 set_bit(STRIPE_HANDLE, &sh->state); 4495 raid5_release_stripe(sh); 4496 } 4497 spin_lock_irq(&head_sh->stripe_lock); 4498 head_sh->batch_head = NULL; 4499 spin_unlock_irq(&head_sh->stripe_lock); 4500 for (i = 0; i < head_sh->disks; i++) 4501 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4502 do_wakeup = 1; 4503 if (head_sh->state & handle_flags) 4504 set_bit(STRIPE_HANDLE, &head_sh->state); 4505 4506 if (do_wakeup) 4507 wake_up(&head_sh->raid_conf->wait_for_overlap); 4508 } 4509 4510 static void handle_stripe(struct stripe_head *sh) 4511 { 4512 struct stripe_head_state s; 4513 struct r5conf *conf = sh->raid_conf; 4514 int i; 4515 int prexor; 4516 int disks = sh->disks; 4517 struct r5dev *pdev, *qdev; 4518 4519 clear_bit(STRIPE_HANDLE, &sh->state); 4520 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4521 /* already being handled, ensure it gets handled 4522 * again when current action finishes */ 4523 set_bit(STRIPE_HANDLE, &sh->state); 4524 return; 4525 } 4526 4527 if (clear_batch_ready(sh) ) { 4528 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4529 return; 4530 } 4531 4532 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4533 break_stripe_batch_list(sh, 0); 4534 4535 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4536 spin_lock(&sh->stripe_lock); 4537 /* Cannot process 'sync' concurrently with 'discard' */ 4538 if (!test_bit(STRIPE_DISCARD, &sh->state) && 4539 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4540 set_bit(STRIPE_SYNCING, &sh->state); 4541 clear_bit(STRIPE_INSYNC, &sh->state); 4542 clear_bit(STRIPE_REPLACED, &sh->state); 4543 } 4544 spin_unlock(&sh->stripe_lock); 4545 } 4546 clear_bit(STRIPE_DELAYED, &sh->state); 4547 4548 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4549 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4550 (unsigned long long)sh->sector, sh->state, 4551 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4552 sh->check_state, sh->reconstruct_state); 4553 4554 analyse_stripe(sh, &s); 4555 4556 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4557 goto finish; 4558 4559 if (s.handle_bad_blocks) { 4560 set_bit(STRIPE_HANDLE, &sh->state); 4561 goto finish; 4562 } 4563 4564 if (unlikely(s.blocked_rdev)) { 4565 if (s.syncing || s.expanding || s.expanded || 4566 s.replacing || s.to_write || s.written) { 4567 set_bit(STRIPE_HANDLE, &sh->state); 4568 goto finish; 4569 } 4570 /* There is nothing for the blocked_rdev to block */ 4571 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4572 s.blocked_rdev = NULL; 4573 } 4574 4575 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4576 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4577 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4578 } 4579 4580 pr_debug("locked=%d uptodate=%d to_read=%d" 4581 " to_write=%d failed=%d failed_num=%d,%d\n", 4582 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4583 s.failed_num[0], s.failed_num[1]); 4584 /* check if the array has lost more than max_degraded devices and, 4585 * if so, some requests might need to be failed. 4586 */ 4587 if (s.failed > conf->max_degraded || s.log_failed) { 4588 sh->check_state = 0; 4589 sh->reconstruct_state = 0; 4590 break_stripe_batch_list(sh, 0); 4591 if (s.to_read+s.to_write+s.written) 4592 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 4593 if (s.syncing + s.replacing) 4594 handle_failed_sync(conf, sh, &s); 4595 } 4596 4597 /* Now we check to see if any write operations have recently 4598 * completed 4599 */ 4600 prexor = 0; 4601 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4602 prexor = 1; 4603 if (sh->reconstruct_state == reconstruct_state_drain_result || 4604 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4605 sh->reconstruct_state = reconstruct_state_idle; 4606 4607 /* All the 'written' buffers and the parity block are ready to 4608 * be written back to disk 4609 */ 4610 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4611 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4612 BUG_ON(sh->qd_idx >= 0 && 4613 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4614 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4615 for (i = disks; i--; ) { 4616 struct r5dev *dev = &sh->dev[i]; 4617 if (test_bit(R5_LOCKED, &dev->flags) && 4618 (i == sh->pd_idx || i == sh->qd_idx || 4619 dev->written || test_bit(R5_InJournal, 4620 &dev->flags))) { 4621 pr_debug("Writing block %d\n", i); 4622 set_bit(R5_Wantwrite, &dev->flags); 4623 if (prexor) 4624 continue; 4625 if (s.failed > 1) 4626 continue; 4627 if (!test_bit(R5_Insync, &dev->flags) || 4628 ((i == sh->pd_idx || i == sh->qd_idx) && 4629 s.failed == 0)) 4630 set_bit(STRIPE_INSYNC, &sh->state); 4631 } 4632 } 4633 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4634 s.dec_preread_active = 1; 4635 } 4636 4637 /* 4638 * might be able to return some write requests if the parity blocks 4639 * are safe, or on a failed drive 4640 */ 4641 pdev = &sh->dev[sh->pd_idx]; 4642 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 4643 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 4644 qdev = &sh->dev[sh->qd_idx]; 4645 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 4646 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 4647 || conf->level < 6; 4648 4649 if (s.written && 4650 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 4651 && !test_bit(R5_LOCKED, &pdev->flags) 4652 && (test_bit(R5_UPTODATE, &pdev->flags) || 4653 test_bit(R5_Discard, &pdev->flags))))) && 4654 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 4655 && !test_bit(R5_LOCKED, &qdev->flags) 4656 && (test_bit(R5_UPTODATE, &qdev->flags) || 4657 test_bit(R5_Discard, &qdev->flags)))))) 4658 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 4659 4660 if (s.just_cached) 4661 r5c_handle_cached_data_endio(conf, sh, disks, &s.return_bi); 4662 r5l_stripe_write_finished(sh); 4663 4664 /* Now we might consider reading some blocks, either to check/generate 4665 * parity, or to satisfy requests 4666 * or to load a block that is being partially written. 4667 */ 4668 if (s.to_read || s.non_overwrite 4669 || (conf->level == 6 && s.to_write && s.failed) 4670 || (s.syncing && (s.uptodate + s.compute < disks)) 4671 || s.replacing 4672 || s.expanding) 4673 handle_stripe_fill(sh, &s, disks); 4674 4675 /* 4676 * When the stripe finishes full journal write cycle (write to journal 4677 * and raid disk), this is the clean up procedure so it is ready for 4678 * next operation. 4679 */ 4680 r5c_finish_stripe_write_out(conf, sh, &s); 4681 4682 /* 4683 * Now to consider new write requests, cache write back and what else, 4684 * if anything should be read. We do not handle new writes when: 4685 * 1/ A 'write' operation (copy+xor) is already in flight. 4686 * 2/ A 'check' operation is in flight, as it may clobber the parity 4687 * block. 4688 * 3/ A r5c cache log write is in flight. 4689 */ 4690 4691 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 4692 if (!r5c_is_writeback(conf->log)) { 4693 if (s.to_write) 4694 handle_stripe_dirtying(conf, sh, &s, disks); 4695 } else { /* write back cache */ 4696 int ret = 0; 4697 4698 /* First, try handle writes in caching phase */ 4699 if (s.to_write) 4700 ret = r5c_try_caching_write(conf, sh, &s, 4701 disks); 4702 /* 4703 * If caching phase failed: ret == -EAGAIN 4704 * OR 4705 * stripe under reclaim: !caching && injournal 4706 * 4707 * fall back to handle_stripe_dirtying() 4708 */ 4709 if (ret == -EAGAIN || 4710 /* stripe under reclaim: !caching && injournal */ 4711 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 4712 s.injournal > 0)) { 4713 ret = handle_stripe_dirtying(conf, sh, &s, 4714 disks); 4715 if (ret == -EAGAIN) 4716 goto finish; 4717 } 4718 } 4719 } 4720 4721 /* maybe we need to check and possibly fix the parity for this stripe 4722 * Any reads will already have been scheduled, so we just see if enough 4723 * data is available. The parity check is held off while parity 4724 * dependent operations are in flight. 4725 */ 4726 if (sh->check_state || 4727 (s.syncing && s.locked == 0 && 4728 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4729 !test_bit(STRIPE_INSYNC, &sh->state))) { 4730 if (conf->level == 6) 4731 handle_parity_checks6(conf, sh, &s, disks); 4732 else 4733 handle_parity_checks5(conf, sh, &s, disks); 4734 } 4735 4736 if ((s.replacing || s.syncing) && s.locked == 0 4737 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 4738 && !test_bit(STRIPE_REPLACED, &sh->state)) { 4739 /* Write out to replacement devices where possible */ 4740 for (i = 0; i < conf->raid_disks; i++) 4741 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 4742 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 4743 set_bit(R5_WantReplace, &sh->dev[i].flags); 4744 set_bit(R5_LOCKED, &sh->dev[i].flags); 4745 s.locked++; 4746 } 4747 if (s.replacing) 4748 set_bit(STRIPE_INSYNC, &sh->state); 4749 set_bit(STRIPE_REPLACED, &sh->state); 4750 } 4751 if ((s.syncing || s.replacing) && s.locked == 0 && 4752 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4753 test_bit(STRIPE_INSYNC, &sh->state)) { 4754 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4755 clear_bit(STRIPE_SYNCING, &sh->state); 4756 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 4757 wake_up(&conf->wait_for_overlap); 4758 } 4759 4760 /* If the failed drives are just a ReadError, then we might need 4761 * to progress the repair/check process 4762 */ 4763 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 4764 for (i = 0; i < s.failed; i++) { 4765 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 4766 if (test_bit(R5_ReadError, &dev->flags) 4767 && !test_bit(R5_LOCKED, &dev->flags) 4768 && test_bit(R5_UPTODATE, &dev->flags) 4769 ) { 4770 if (!test_bit(R5_ReWrite, &dev->flags)) { 4771 set_bit(R5_Wantwrite, &dev->flags); 4772 set_bit(R5_ReWrite, &dev->flags); 4773 set_bit(R5_LOCKED, &dev->flags); 4774 s.locked++; 4775 } else { 4776 /* let's read it back */ 4777 set_bit(R5_Wantread, &dev->flags); 4778 set_bit(R5_LOCKED, &dev->flags); 4779 s.locked++; 4780 } 4781 } 4782 } 4783 4784 /* Finish reconstruct operations initiated by the expansion process */ 4785 if (sh->reconstruct_state == reconstruct_state_result) { 4786 struct stripe_head *sh_src 4787 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 4788 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 4789 /* sh cannot be written until sh_src has been read. 4790 * so arrange for sh to be delayed a little 4791 */ 4792 set_bit(STRIPE_DELAYED, &sh->state); 4793 set_bit(STRIPE_HANDLE, &sh->state); 4794 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 4795 &sh_src->state)) 4796 atomic_inc(&conf->preread_active_stripes); 4797 raid5_release_stripe(sh_src); 4798 goto finish; 4799 } 4800 if (sh_src) 4801 raid5_release_stripe(sh_src); 4802 4803 sh->reconstruct_state = reconstruct_state_idle; 4804 clear_bit(STRIPE_EXPANDING, &sh->state); 4805 for (i = conf->raid_disks; i--; ) { 4806 set_bit(R5_Wantwrite, &sh->dev[i].flags); 4807 set_bit(R5_LOCKED, &sh->dev[i].flags); 4808 s.locked++; 4809 } 4810 } 4811 4812 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 4813 !sh->reconstruct_state) { 4814 /* Need to write out all blocks after computing parity */ 4815 sh->disks = conf->raid_disks; 4816 stripe_set_idx(sh->sector, conf, 0, sh); 4817 schedule_reconstruction(sh, &s, 1, 1); 4818 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 4819 clear_bit(STRIPE_EXPAND_READY, &sh->state); 4820 atomic_dec(&conf->reshape_stripes); 4821 wake_up(&conf->wait_for_overlap); 4822 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4823 } 4824 4825 if (s.expanding && s.locked == 0 && 4826 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 4827 handle_stripe_expansion(conf, sh); 4828 4829 finish: 4830 /* wait for this device to become unblocked */ 4831 if (unlikely(s.blocked_rdev)) { 4832 if (conf->mddev->external) 4833 md_wait_for_blocked_rdev(s.blocked_rdev, 4834 conf->mddev); 4835 else 4836 /* Internal metadata will immediately 4837 * be written by raid5d, so we don't 4838 * need to wait here. 4839 */ 4840 rdev_dec_pending(s.blocked_rdev, 4841 conf->mddev); 4842 } 4843 4844 if (s.handle_bad_blocks) 4845 for (i = disks; i--; ) { 4846 struct md_rdev *rdev; 4847 struct r5dev *dev = &sh->dev[i]; 4848 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 4849 /* We own a safe reference to the rdev */ 4850 rdev = conf->disks[i].rdev; 4851 if (!rdev_set_badblocks(rdev, sh->sector, 4852 STRIPE_SECTORS, 0)) 4853 md_error(conf->mddev, rdev); 4854 rdev_dec_pending(rdev, conf->mddev); 4855 } 4856 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 4857 rdev = conf->disks[i].rdev; 4858 rdev_clear_badblocks(rdev, sh->sector, 4859 STRIPE_SECTORS, 0); 4860 rdev_dec_pending(rdev, conf->mddev); 4861 } 4862 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 4863 rdev = conf->disks[i].replacement; 4864 if (!rdev) 4865 /* rdev have been moved down */ 4866 rdev = conf->disks[i].rdev; 4867 rdev_clear_badblocks(rdev, sh->sector, 4868 STRIPE_SECTORS, 0); 4869 rdev_dec_pending(rdev, conf->mddev); 4870 } 4871 } 4872 4873 if (s.ops_request) 4874 raid_run_ops(sh, s.ops_request); 4875 4876 ops_run_io(sh, &s); 4877 4878 if (s.dec_preread_active) { 4879 /* We delay this until after ops_run_io so that if make_request 4880 * is waiting on a flush, it won't continue until the writes 4881 * have actually been submitted. 4882 */ 4883 atomic_dec(&conf->preread_active_stripes); 4884 if (atomic_read(&conf->preread_active_stripes) < 4885 IO_THRESHOLD) 4886 md_wakeup_thread(conf->mddev->thread); 4887 } 4888 4889 if (!bio_list_empty(&s.return_bi)) { 4890 if (test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 4891 spin_lock_irq(&conf->device_lock); 4892 bio_list_merge(&conf->return_bi, &s.return_bi); 4893 spin_unlock_irq(&conf->device_lock); 4894 md_wakeup_thread(conf->mddev->thread); 4895 } else 4896 return_io(&s.return_bi); 4897 } 4898 4899 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4900 } 4901 4902 static void raid5_activate_delayed(struct r5conf *conf) 4903 { 4904 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 4905 while (!list_empty(&conf->delayed_list)) { 4906 struct list_head *l = conf->delayed_list.next; 4907 struct stripe_head *sh; 4908 sh = list_entry(l, struct stripe_head, lru); 4909 list_del_init(l); 4910 clear_bit(STRIPE_DELAYED, &sh->state); 4911 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4912 atomic_inc(&conf->preread_active_stripes); 4913 list_add_tail(&sh->lru, &conf->hold_list); 4914 raid5_wakeup_stripe_thread(sh); 4915 } 4916 } 4917 } 4918 4919 static void activate_bit_delay(struct r5conf *conf, 4920 struct list_head *temp_inactive_list) 4921 { 4922 /* device_lock is held */ 4923 struct list_head head; 4924 list_add(&head, &conf->bitmap_list); 4925 list_del_init(&conf->bitmap_list); 4926 while (!list_empty(&head)) { 4927 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 4928 int hash; 4929 list_del_init(&sh->lru); 4930 atomic_inc(&sh->count); 4931 hash = sh->hash_lock_index; 4932 __release_stripe(conf, sh, &temp_inactive_list[hash]); 4933 } 4934 } 4935 4936 static int raid5_congested(struct mddev *mddev, int bits) 4937 { 4938 struct r5conf *conf = mddev->private; 4939 4940 /* No difference between reads and writes. Just check 4941 * how busy the stripe_cache is 4942 */ 4943 4944 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 4945 return 1; 4946 4947 /* Also checks whether there is pressure on r5cache log space */ 4948 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) 4949 return 1; 4950 if (conf->quiesce) 4951 return 1; 4952 if (atomic_read(&conf->empty_inactive_list_nr)) 4953 return 1; 4954 4955 return 0; 4956 } 4957 4958 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 4959 { 4960 struct r5conf *conf = mddev->private; 4961 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev); 4962 unsigned int chunk_sectors; 4963 unsigned int bio_sectors = bio_sectors(bio); 4964 4965 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 4966 return chunk_sectors >= 4967 ((sector & (chunk_sectors - 1)) + bio_sectors); 4968 } 4969 4970 /* 4971 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 4972 * later sampled by raid5d. 4973 */ 4974 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 4975 { 4976 unsigned long flags; 4977 4978 spin_lock_irqsave(&conf->device_lock, flags); 4979 4980 bi->bi_next = conf->retry_read_aligned_list; 4981 conf->retry_read_aligned_list = bi; 4982 4983 spin_unlock_irqrestore(&conf->device_lock, flags); 4984 md_wakeup_thread(conf->mddev->thread); 4985 } 4986 4987 static struct bio *remove_bio_from_retry(struct r5conf *conf) 4988 { 4989 struct bio *bi; 4990 4991 bi = conf->retry_read_aligned; 4992 if (bi) { 4993 conf->retry_read_aligned = NULL; 4994 return bi; 4995 } 4996 bi = conf->retry_read_aligned_list; 4997 if(bi) { 4998 conf->retry_read_aligned_list = bi->bi_next; 4999 bi->bi_next = NULL; 5000 /* 5001 * this sets the active strip count to 1 and the processed 5002 * strip count to zero (upper 8 bits) 5003 */ 5004 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 5005 } 5006 5007 return bi; 5008 } 5009 5010 /* 5011 * The "raid5_align_endio" should check if the read succeeded and if it 5012 * did, call bio_endio on the original bio (having bio_put the new bio 5013 * first). 5014 * If the read failed.. 5015 */ 5016 static void raid5_align_endio(struct bio *bi) 5017 { 5018 struct bio* raid_bi = bi->bi_private; 5019 struct mddev *mddev; 5020 struct r5conf *conf; 5021 struct md_rdev *rdev; 5022 int error = bi->bi_error; 5023 5024 bio_put(bi); 5025 5026 rdev = (void*)raid_bi->bi_next; 5027 raid_bi->bi_next = NULL; 5028 mddev = rdev->mddev; 5029 conf = mddev->private; 5030 5031 rdev_dec_pending(rdev, conf->mddev); 5032 5033 if (!error) { 5034 bio_endio(raid_bi); 5035 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5036 wake_up(&conf->wait_for_quiescent); 5037 return; 5038 } 5039 5040 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5041 5042 add_bio_to_retry(raid_bi, conf); 5043 } 5044 5045 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5046 { 5047 struct r5conf *conf = mddev->private; 5048 int dd_idx; 5049 struct bio* align_bi; 5050 struct md_rdev *rdev; 5051 sector_t end_sector; 5052 5053 if (!in_chunk_boundary(mddev, raid_bio)) { 5054 pr_debug("%s: non aligned\n", __func__); 5055 return 0; 5056 } 5057 /* 5058 * use bio_clone_fast to make a copy of the bio 5059 */ 5060 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set); 5061 if (!align_bi) 5062 return 0; 5063 /* 5064 * set bi_end_io to a new function, and set bi_private to the 5065 * original bio. 5066 */ 5067 align_bi->bi_end_io = raid5_align_endio; 5068 align_bi->bi_private = raid_bio; 5069 /* 5070 * compute position 5071 */ 5072 align_bi->bi_iter.bi_sector = 5073 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 5074 0, &dd_idx, NULL); 5075 5076 end_sector = bio_end_sector(align_bi); 5077 rcu_read_lock(); 5078 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 5079 if (!rdev || test_bit(Faulty, &rdev->flags) || 5080 rdev->recovery_offset < end_sector) { 5081 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 5082 if (rdev && 5083 (test_bit(Faulty, &rdev->flags) || 5084 !(test_bit(In_sync, &rdev->flags) || 5085 rdev->recovery_offset >= end_sector))) 5086 rdev = NULL; 5087 } 5088 5089 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) { 5090 rcu_read_unlock(); 5091 bio_put(align_bi); 5092 return 0; 5093 } 5094 5095 if (rdev) { 5096 sector_t first_bad; 5097 int bad_sectors; 5098 5099 atomic_inc(&rdev->nr_pending); 5100 rcu_read_unlock(); 5101 raid_bio->bi_next = (void*)rdev; 5102 align_bi->bi_bdev = rdev->bdev; 5103 bio_clear_flag(align_bi, BIO_SEG_VALID); 5104 5105 if (is_badblock(rdev, align_bi->bi_iter.bi_sector, 5106 bio_sectors(align_bi), 5107 &first_bad, &bad_sectors)) { 5108 bio_put(align_bi); 5109 rdev_dec_pending(rdev, mddev); 5110 return 0; 5111 } 5112 5113 /* No reshape active, so we can trust rdev->data_offset */ 5114 align_bi->bi_iter.bi_sector += rdev->data_offset; 5115 5116 spin_lock_irq(&conf->device_lock); 5117 wait_event_lock_irq(conf->wait_for_quiescent, 5118 conf->quiesce == 0, 5119 conf->device_lock); 5120 atomic_inc(&conf->active_aligned_reads); 5121 spin_unlock_irq(&conf->device_lock); 5122 5123 if (mddev->gendisk) 5124 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), 5125 align_bi, disk_devt(mddev->gendisk), 5126 raid_bio->bi_iter.bi_sector); 5127 generic_make_request(align_bi); 5128 return 1; 5129 } else { 5130 rcu_read_unlock(); 5131 bio_put(align_bi); 5132 return 0; 5133 } 5134 } 5135 5136 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5137 { 5138 struct bio *split; 5139 5140 do { 5141 sector_t sector = raid_bio->bi_iter.bi_sector; 5142 unsigned chunk_sects = mddev->chunk_sectors; 5143 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5144 5145 if (sectors < bio_sectors(raid_bio)) { 5146 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set); 5147 bio_chain(split, raid_bio); 5148 } else 5149 split = raid_bio; 5150 5151 if (!raid5_read_one_chunk(mddev, split)) { 5152 if (split != raid_bio) 5153 generic_make_request(raid_bio); 5154 return split; 5155 } 5156 } while (split != raid_bio); 5157 5158 return NULL; 5159 } 5160 5161 /* __get_priority_stripe - get the next stripe to process 5162 * 5163 * Full stripe writes are allowed to pass preread active stripes up until 5164 * the bypass_threshold is exceeded. In general the bypass_count 5165 * increments when the handle_list is handled before the hold_list; however, it 5166 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5167 * stripe with in flight i/o. The bypass_count will be reset when the 5168 * head of the hold_list has changed, i.e. the head was promoted to the 5169 * handle_list. 5170 */ 5171 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5172 { 5173 struct stripe_head *sh = NULL, *tmp; 5174 struct list_head *handle_list = NULL; 5175 struct r5worker_group *wg = NULL; 5176 5177 if (conf->worker_cnt_per_group == 0) { 5178 handle_list = &conf->handle_list; 5179 } else if (group != ANY_GROUP) { 5180 handle_list = &conf->worker_groups[group].handle_list; 5181 wg = &conf->worker_groups[group]; 5182 } else { 5183 int i; 5184 for (i = 0; i < conf->group_cnt; i++) { 5185 handle_list = &conf->worker_groups[i].handle_list; 5186 wg = &conf->worker_groups[i]; 5187 if (!list_empty(handle_list)) 5188 break; 5189 } 5190 } 5191 5192 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5193 __func__, 5194 list_empty(handle_list) ? "empty" : "busy", 5195 list_empty(&conf->hold_list) ? "empty" : "busy", 5196 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5197 5198 if (!list_empty(handle_list)) { 5199 sh = list_entry(handle_list->next, typeof(*sh), lru); 5200 5201 if (list_empty(&conf->hold_list)) 5202 conf->bypass_count = 0; 5203 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5204 if (conf->hold_list.next == conf->last_hold) 5205 conf->bypass_count++; 5206 else { 5207 conf->last_hold = conf->hold_list.next; 5208 conf->bypass_count -= conf->bypass_threshold; 5209 if (conf->bypass_count < 0) 5210 conf->bypass_count = 0; 5211 } 5212 } 5213 } else if (!list_empty(&conf->hold_list) && 5214 ((conf->bypass_threshold && 5215 conf->bypass_count > conf->bypass_threshold) || 5216 atomic_read(&conf->pending_full_writes) == 0)) { 5217 5218 list_for_each_entry(tmp, &conf->hold_list, lru) { 5219 if (conf->worker_cnt_per_group == 0 || 5220 group == ANY_GROUP || 5221 !cpu_online(tmp->cpu) || 5222 cpu_to_group(tmp->cpu) == group) { 5223 sh = tmp; 5224 break; 5225 } 5226 } 5227 5228 if (sh) { 5229 conf->bypass_count -= conf->bypass_threshold; 5230 if (conf->bypass_count < 0) 5231 conf->bypass_count = 0; 5232 } 5233 wg = NULL; 5234 } 5235 5236 if (!sh) 5237 return NULL; 5238 5239 if (wg) { 5240 wg->stripes_cnt--; 5241 sh->group = NULL; 5242 } 5243 list_del_init(&sh->lru); 5244 BUG_ON(atomic_inc_return(&sh->count) != 1); 5245 return sh; 5246 } 5247 5248 struct raid5_plug_cb { 5249 struct blk_plug_cb cb; 5250 struct list_head list; 5251 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5252 }; 5253 5254 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5255 { 5256 struct raid5_plug_cb *cb = container_of( 5257 blk_cb, struct raid5_plug_cb, cb); 5258 struct stripe_head *sh; 5259 struct mddev *mddev = cb->cb.data; 5260 struct r5conf *conf = mddev->private; 5261 int cnt = 0; 5262 int hash; 5263 5264 if (cb->list.next && !list_empty(&cb->list)) { 5265 spin_lock_irq(&conf->device_lock); 5266 while (!list_empty(&cb->list)) { 5267 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5268 list_del_init(&sh->lru); 5269 /* 5270 * avoid race release_stripe_plug() sees 5271 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5272 * is still in our list 5273 */ 5274 smp_mb__before_atomic(); 5275 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5276 /* 5277 * STRIPE_ON_RELEASE_LIST could be set here. In that 5278 * case, the count is always > 1 here 5279 */ 5280 hash = sh->hash_lock_index; 5281 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5282 cnt++; 5283 } 5284 spin_unlock_irq(&conf->device_lock); 5285 } 5286 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5287 NR_STRIPE_HASH_LOCKS); 5288 if (mddev->queue) 5289 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5290 kfree(cb); 5291 } 5292 5293 static void release_stripe_plug(struct mddev *mddev, 5294 struct stripe_head *sh) 5295 { 5296 struct blk_plug_cb *blk_cb = blk_check_plugged( 5297 raid5_unplug, mddev, 5298 sizeof(struct raid5_plug_cb)); 5299 struct raid5_plug_cb *cb; 5300 5301 if (!blk_cb) { 5302 raid5_release_stripe(sh); 5303 return; 5304 } 5305 5306 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5307 5308 if (cb->list.next == NULL) { 5309 int i; 5310 INIT_LIST_HEAD(&cb->list); 5311 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5312 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5313 } 5314 5315 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5316 list_add_tail(&sh->lru, &cb->list); 5317 else 5318 raid5_release_stripe(sh); 5319 } 5320 5321 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5322 { 5323 struct r5conf *conf = mddev->private; 5324 sector_t logical_sector, last_sector; 5325 struct stripe_head *sh; 5326 int remaining; 5327 int stripe_sectors; 5328 5329 if (mddev->reshape_position != MaxSector) 5330 /* Skip discard while reshape is happening */ 5331 return; 5332 5333 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5334 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); 5335 5336 bi->bi_next = NULL; 5337 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5338 5339 stripe_sectors = conf->chunk_sectors * 5340 (conf->raid_disks - conf->max_degraded); 5341 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5342 stripe_sectors); 5343 sector_div(last_sector, stripe_sectors); 5344 5345 logical_sector *= conf->chunk_sectors; 5346 last_sector *= conf->chunk_sectors; 5347 5348 for (; logical_sector < last_sector; 5349 logical_sector += STRIPE_SECTORS) { 5350 DEFINE_WAIT(w); 5351 int d; 5352 again: 5353 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5354 prepare_to_wait(&conf->wait_for_overlap, &w, 5355 TASK_UNINTERRUPTIBLE); 5356 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5357 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5358 raid5_release_stripe(sh); 5359 schedule(); 5360 goto again; 5361 } 5362 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5363 spin_lock_irq(&sh->stripe_lock); 5364 for (d = 0; d < conf->raid_disks; d++) { 5365 if (d == sh->pd_idx || d == sh->qd_idx) 5366 continue; 5367 if (sh->dev[d].towrite || sh->dev[d].toread) { 5368 set_bit(R5_Overlap, &sh->dev[d].flags); 5369 spin_unlock_irq(&sh->stripe_lock); 5370 raid5_release_stripe(sh); 5371 schedule(); 5372 goto again; 5373 } 5374 } 5375 set_bit(STRIPE_DISCARD, &sh->state); 5376 finish_wait(&conf->wait_for_overlap, &w); 5377 sh->overwrite_disks = 0; 5378 for (d = 0; d < conf->raid_disks; d++) { 5379 if (d == sh->pd_idx || d == sh->qd_idx) 5380 continue; 5381 sh->dev[d].towrite = bi; 5382 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5383 raid5_inc_bi_active_stripes(bi); 5384 sh->overwrite_disks++; 5385 } 5386 spin_unlock_irq(&sh->stripe_lock); 5387 if (conf->mddev->bitmap) { 5388 for (d = 0; 5389 d < conf->raid_disks - conf->max_degraded; 5390 d++) 5391 bitmap_startwrite(mddev->bitmap, 5392 sh->sector, 5393 STRIPE_SECTORS, 5394 0); 5395 sh->bm_seq = conf->seq_flush + 1; 5396 set_bit(STRIPE_BIT_DELAY, &sh->state); 5397 } 5398 5399 set_bit(STRIPE_HANDLE, &sh->state); 5400 clear_bit(STRIPE_DELAYED, &sh->state); 5401 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5402 atomic_inc(&conf->preread_active_stripes); 5403 release_stripe_plug(mddev, sh); 5404 } 5405 5406 remaining = raid5_dec_bi_active_stripes(bi); 5407 if (remaining == 0) { 5408 md_write_end(mddev); 5409 bio_endio(bi); 5410 } 5411 } 5412 5413 static void raid5_make_request(struct mddev *mddev, struct bio * bi) 5414 { 5415 struct r5conf *conf = mddev->private; 5416 int dd_idx; 5417 sector_t new_sector; 5418 sector_t logical_sector, last_sector; 5419 struct stripe_head *sh; 5420 const int rw = bio_data_dir(bi); 5421 int remaining; 5422 DEFINE_WAIT(w); 5423 bool do_prepare; 5424 bool do_flush = false; 5425 5426 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 5427 int ret = r5l_handle_flush_request(conf->log, bi); 5428 5429 if (ret == 0) 5430 return; 5431 if (ret == -ENODEV) { 5432 md_flush_request(mddev, bi); 5433 return; 5434 } 5435 /* ret == -EAGAIN, fallback */ 5436 /* 5437 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 5438 * we need to flush journal device 5439 */ 5440 do_flush = bi->bi_opf & REQ_PREFLUSH; 5441 } 5442 5443 md_write_start(mddev, bi); 5444 5445 /* 5446 * If array is degraded, better not do chunk aligned read because 5447 * later we might have to read it again in order to reconstruct 5448 * data on failed drives. 5449 */ 5450 if (rw == READ && mddev->degraded == 0 && 5451 mddev->reshape_position == MaxSector) { 5452 bi = chunk_aligned_read(mddev, bi); 5453 if (!bi) 5454 return; 5455 } 5456 5457 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 5458 make_discard_request(mddev, bi); 5459 return; 5460 } 5461 5462 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5463 last_sector = bio_end_sector(bi); 5464 bi->bi_next = NULL; 5465 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5466 5467 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5468 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 5469 int previous; 5470 int seq; 5471 5472 do_prepare = false; 5473 retry: 5474 seq = read_seqcount_begin(&conf->gen_lock); 5475 previous = 0; 5476 if (do_prepare) 5477 prepare_to_wait(&conf->wait_for_overlap, &w, 5478 TASK_UNINTERRUPTIBLE); 5479 if (unlikely(conf->reshape_progress != MaxSector)) { 5480 /* spinlock is needed as reshape_progress may be 5481 * 64bit on a 32bit platform, and so it might be 5482 * possible to see a half-updated value 5483 * Of course reshape_progress could change after 5484 * the lock is dropped, so once we get a reference 5485 * to the stripe that we think it is, we will have 5486 * to check again. 5487 */ 5488 spin_lock_irq(&conf->device_lock); 5489 if (mddev->reshape_backwards 5490 ? logical_sector < conf->reshape_progress 5491 : logical_sector >= conf->reshape_progress) { 5492 previous = 1; 5493 } else { 5494 if (mddev->reshape_backwards 5495 ? logical_sector < conf->reshape_safe 5496 : logical_sector >= conf->reshape_safe) { 5497 spin_unlock_irq(&conf->device_lock); 5498 schedule(); 5499 do_prepare = true; 5500 goto retry; 5501 } 5502 } 5503 spin_unlock_irq(&conf->device_lock); 5504 } 5505 5506 new_sector = raid5_compute_sector(conf, logical_sector, 5507 previous, 5508 &dd_idx, NULL); 5509 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5510 (unsigned long long)new_sector, 5511 (unsigned long long)logical_sector); 5512 5513 sh = raid5_get_active_stripe(conf, new_sector, previous, 5514 (bi->bi_opf & REQ_RAHEAD), 0); 5515 if (sh) { 5516 if (unlikely(previous)) { 5517 /* expansion might have moved on while waiting for a 5518 * stripe, so we must do the range check again. 5519 * Expansion could still move past after this 5520 * test, but as we are holding a reference to 5521 * 'sh', we know that if that happens, 5522 * STRIPE_EXPANDING will get set and the expansion 5523 * won't proceed until we finish with the stripe. 5524 */ 5525 int must_retry = 0; 5526 spin_lock_irq(&conf->device_lock); 5527 if (mddev->reshape_backwards 5528 ? logical_sector >= conf->reshape_progress 5529 : logical_sector < conf->reshape_progress) 5530 /* mismatch, need to try again */ 5531 must_retry = 1; 5532 spin_unlock_irq(&conf->device_lock); 5533 if (must_retry) { 5534 raid5_release_stripe(sh); 5535 schedule(); 5536 do_prepare = true; 5537 goto retry; 5538 } 5539 } 5540 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5541 /* Might have got the wrong stripe_head 5542 * by accident 5543 */ 5544 raid5_release_stripe(sh); 5545 goto retry; 5546 } 5547 5548 if (rw == WRITE && 5549 logical_sector >= mddev->suspend_lo && 5550 logical_sector < mddev->suspend_hi) { 5551 raid5_release_stripe(sh); 5552 /* As the suspend_* range is controlled by 5553 * userspace, we want an interruptible 5554 * wait. 5555 */ 5556 flush_signals(current); 5557 prepare_to_wait(&conf->wait_for_overlap, 5558 &w, TASK_INTERRUPTIBLE); 5559 if (logical_sector >= mddev->suspend_lo && 5560 logical_sector < mddev->suspend_hi) { 5561 schedule(); 5562 do_prepare = true; 5563 } 5564 goto retry; 5565 } 5566 5567 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5568 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5569 /* Stripe is busy expanding or 5570 * add failed due to overlap. Flush everything 5571 * and wait a while 5572 */ 5573 md_wakeup_thread(mddev->thread); 5574 raid5_release_stripe(sh); 5575 schedule(); 5576 do_prepare = true; 5577 goto retry; 5578 } 5579 if (do_flush) { 5580 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 5581 /* we only need flush for one stripe */ 5582 do_flush = false; 5583 } 5584 5585 set_bit(STRIPE_HANDLE, &sh->state); 5586 clear_bit(STRIPE_DELAYED, &sh->state); 5587 if ((!sh->batch_head || sh == sh->batch_head) && 5588 (bi->bi_opf & REQ_SYNC) && 5589 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5590 atomic_inc(&conf->preread_active_stripes); 5591 release_stripe_plug(mddev, sh); 5592 } else { 5593 /* cannot get stripe for read-ahead, just give-up */ 5594 bi->bi_error = -EIO; 5595 break; 5596 } 5597 } 5598 finish_wait(&conf->wait_for_overlap, &w); 5599 5600 remaining = raid5_dec_bi_active_stripes(bi); 5601 if (remaining == 0) { 5602 5603 if ( rw == WRITE ) 5604 md_write_end(mddev); 5605 5606 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 5607 bi, 0); 5608 bio_endio(bi); 5609 } 5610 } 5611 5612 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5613 5614 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5615 { 5616 /* reshaping is quite different to recovery/resync so it is 5617 * handled quite separately ... here. 5618 * 5619 * On each call to sync_request, we gather one chunk worth of 5620 * destination stripes and flag them as expanding. 5621 * Then we find all the source stripes and request reads. 5622 * As the reads complete, handle_stripe will copy the data 5623 * into the destination stripe and release that stripe. 5624 */ 5625 struct r5conf *conf = mddev->private; 5626 struct stripe_head *sh; 5627 sector_t first_sector, last_sector; 5628 int raid_disks = conf->previous_raid_disks; 5629 int data_disks = raid_disks - conf->max_degraded; 5630 int new_data_disks = conf->raid_disks - conf->max_degraded; 5631 int i; 5632 int dd_idx; 5633 sector_t writepos, readpos, safepos; 5634 sector_t stripe_addr; 5635 int reshape_sectors; 5636 struct list_head stripes; 5637 sector_t retn; 5638 5639 if (sector_nr == 0) { 5640 /* If restarting in the middle, skip the initial sectors */ 5641 if (mddev->reshape_backwards && 5642 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5643 sector_nr = raid5_size(mddev, 0, 0) 5644 - conf->reshape_progress; 5645 } else if (mddev->reshape_backwards && 5646 conf->reshape_progress == MaxSector) { 5647 /* shouldn't happen, but just in case, finish up.*/ 5648 sector_nr = MaxSector; 5649 } else if (!mddev->reshape_backwards && 5650 conf->reshape_progress > 0) 5651 sector_nr = conf->reshape_progress; 5652 sector_div(sector_nr, new_data_disks); 5653 if (sector_nr) { 5654 mddev->curr_resync_completed = sector_nr; 5655 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5656 *skipped = 1; 5657 retn = sector_nr; 5658 goto finish; 5659 } 5660 } 5661 5662 /* We need to process a full chunk at a time. 5663 * If old and new chunk sizes differ, we need to process the 5664 * largest of these 5665 */ 5666 5667 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 5668 5669 /* We update the metadata at least every 10 seconds, or when 5670 * the data about to be copied would over-write the source of 5671 * the data at the front of the range. i.e. one new_stripe 5672 * along from reshape_progress new_maps to after where 5673 * reshape_safe old_maps to 5674 */ 5675 writepos = conf->reshape_progress; 5676 sector_div(writepos, new_data_disks); 5677 readpos = conf->reshape_progress; 5678 sector_div(readpos, data_disks); 5679 safepos = conf->reshape_safe; 5680 sector_div(safepos, data_disks); 5681 if (mddev->reshape_backwards) { 5682 BUG_ON(writepos < reshape_sectors); 5683 writepos -= reshape_sectors; 5684 readpos += reshape_sectors; 5685 safepos += reshape_sectors; 5686 } else { 5687 writepos += reshape_sectors; 5688 /* readpos and safepos are worst-case calculations. 5689 * A negative number is overly pessimistic, and causes 5690 * obvious problems for unsigned storage. So clip to 0. 5691 */ 5692 readpos -= min_t(sector_t, reshape_sectors, readpos); 5693 safepos -= min_t(sector_t, reshape_sectors, safepos); 5694 } 5695 5696 /* Having calculated the 'writepos' possibly use it 5697 * to set 'stripe_addr' which is where we will write to. 5698 */ 5699 if (mddev->reshape_backwards) { 5700 BUG_ON(conf->reshape_progress == 0); 5701 stripe_addr = writepos; 5702 BUG_ON((mddev->dev_sectors & 5703 ~((sector_t)reshape_sectors - 1)) 5704 - reshape_sectors - stripe_addr 5705 != sector_nr); 5706 } else { 5707 BUG_ON(writepos != sector_nr + reshape_sectors); 5708 stripe_addr = sector_nr; 5709 } 5710 5711 /* 'writepos' is the most advanced device address we might write. 5712 * 'readpos' is the least advanced device address we might read. 5713 * 'safepos' is the least address recorded in the metadata as having 5714 * been reshaped. 5715 * If there is a min_offset_diff, these are adjusted either by 5716 * increasing the safepos/readpos if diff is negative, or 5717 * increasing writepos if diff is positive. 5718 * If 'readpos' is then behind 'writepos', there is no way that we can 5719 * ensure safety in the face of a crash - that must be done by userspace 5720 * making a backup of the data. So in that case there is no particular 5721 * rush to update metadata. 5722 * Otherwise if 'safepos' is behind 'writepos', then we really need to 5723 * update the metadata to advance 'safepos' to match 'readpos' so that 5724 * we can be safe in the event of a crash. 5725 * So we insist on updating metadata if safepos is behind writepos and 5726 * readpos is beyond writepos. 5727 * In any case, update the metadata every 10 seconds. 5728 * Maybe that number should be configurable, but I'm not sure it is 5729 * worth it.... maybe it could be a multiple of safemode_delay??? 5730 */ 5731 if (conf->min_offset_diff < 0) { 5732 safepos += -conf->min_offset_diff; 5733 readpos += -conf->min_offset_diff; 5734 } else 5735 writepos += conf->min_offset_diff; 5736 5737 if ((mddev->reshape_backwards 5738 ? (safepos > writepos && readpos < writepos) 5739 : (safepos < writepos && readpos > writepos)) || 5740 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 5741 /* Cannot proceed until we've updated the superblock... */ 5742 wait_event(conf->wait_for_overlap, 5743 atomic_read(&conf->reshape_stripes)==0 5744 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5745 if (atomic_read(&conf->reshape_stripes) != 0) 5746 return 0; 5747 mddev->reshape_position = conf->reshape_progress; 5748 mddev->curr_resync_completed = sector_nr; 5749 conf->reshape_checkpoint = jiffies; 5750 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 5751 md_wakeup_thread(mddev->thread); 5752 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 5753 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5754 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5755 return 0; 5756 spin_lock_irq(&conf->device_lock); 5757 conf->reshape_safe = mddev->reshape_position; 5758 spin_unlock_irq(&conf->device_lock); 5759 wake_up(&conf->wait_for_overlap); 5760 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5761 } 5762 5763 INIT_LIST_HEAD(&stripes); 5764 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 5765 int j; 5766 int skipped_disk = 0; 5767 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 5768 set_bit(STRIPE_EXPANDING, &sh->state); 5769 atomic_inc(&conf->reshape_stripes); 5770 /* If any of this stripe is beyond the end of the old 5771 * array, then we need to zero those blocks 5772 */ 5773 for (j=sh->disks; j--;) { 5774 sector_t s; 5775 if (j == sh->pd_idx) 5776 continue; 5777 if (conf->level == 6 && 5778 j == sh->qd_idx) 5779 continue; 5780 s = raid5_compute_blocknr(sh, j, 0); 5781 if (s < raid5_size(mddev, 0, 0)) { 5782 skipped_disk = 1; 5783 continue; 5784 } 5785 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 5786 set_bit(R5_Expanded, &sh->dev[j].flags); 5787 set_bit(R5_UPTODATE, &sh->dev[j].flags); 5788 } 5789 if (!skipped_disk) { 5790 set_bit(STRIPE_EXPAND_READY, &sh->state); 5791 set_bit(STRIPE_HANDLE, &sh->state); 5792 } 5793 list_add(&sh->lru, &stripes); 5794 } 5795 spin_lock_irq(&conf->device_lock); 5796 if (mddev->reshape_backwards) 5797 conf->reshape_progress -= reshape_sectors * new_data_disks; 5798 else 5799 conf->reshape_progress += reshape_sectors * new_data_disks; 5800 spin_unlock_irq(&conf->device_lock); 5801 /* Ok, those stripe are ready. We can start scheduling 5802 * reads on the source stripes. 5803 * The source stripes are determined by mapping the first and last 5804 * block on the destination stripes. 5805 */ 5806 first_sector = 5807 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 5808 1, &dd_idx, NULL); 5809 last_sector = 5810 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 5811 * new_data_disks - 1), 5812 1, &dd_idx, NULL); 5813 if (last_sector >= mddev->dev_sectors) 5814 last_sector = mddev->dev_sectors - 1; 5815 while (first_sector <= last_sector) { 5816 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 5817 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 5818 set_bit(STRIPE_HANDLE, &sh->state); 5819 raid5_release_stripe(sh); 5820 first_sector += STRIPE_SECTORS; 5821 } 5822 /* Now that the sources are clearly marked, we can release 5823 * the destination stripes 5824 */ 5825 while (!list_empty(&stripes)) { 5826 sh = list_entry(stripes.next, struct stripe_head, lru); 5827 list_del_init(&sh->lru); 5828 raid5_release_stripe(sh); 5829 } 5830 /* If this takes us to the resync_max point where we have to pause, 5831 * then we need to write out the superblock. 5832 */ 5833 sector_nr += reshape_sectors; 5834 retn = reshape_sectors; 5835 finish: 5836 if (mddev->curr_resync_completed > mddev->resync_max || 5837 (sector_nr - mddev->curr_resync_completed) * 2 5838 >= mddev->resync_max - mddev->curr_resync_completed) { 5839 /* Cannot proceed until we've updated the superblock... */ 5840 wait_event(conf->wait_for_overlap, 5841 atomic_read(&conf->reshape_stripes) == 0 5842 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5843 if (atomic_read(&conf->reshape_stripes) != 0) 5844 goto ret; 5845 mddev->reshape_position = conf->reshape_progress; 5846 mddev->curr_resync_completed = sector_nr; 5847 conf->reshape_checkpoint = jiffies; 5848 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 5849 md_wakeup_thread(mddev->thread); 5850 wait_event(mddev->sb_wait, 5851 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 5852 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5853 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5854 goto ret; 5855 spin_lock_irq(&conf->device_lock); 5856 conf->reshape_safe = mddev->reshape_position; 5857 spin_unlock_irq(&conf->device_lock); 5858 wake_up(&conf->wait_for_overlap); 5859 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5860 } 5861 ret: 5862 return retn; 5863 } 5864 5865 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 5866 int *skipped) 5867 { 5868 struct r5conf *conf = mddev->private; 5869 struct stripe_head *sh; 5870 sector_t max_sector = mddev->dev_sectors; 5871 sector_t sync_blocks; 5872 int still_degraded = 0; 5873 int i; 5874 5875 if (sector_nr >= max_sector) { 5876 /* just being told to finish up .. nothing much to do */ 5877 5878 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 5879 end_reshape(conf); 5880 return 0; 5881 } 5882 5883 if (mddev->curr_resync < max_sector) /* aborted */ 5884 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 5885 &sync_blocks, 1); 5886 else /* completed sync */ 5887 conf->fullsync = 0; 5888 bitmap_close_sync(mddev->bitmap); 5889 5890 return 0; 5891 } 5892 5893 /* Allow raid5_quiesce to complete */ 5894 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 5895 5896 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5897 return reshape_request(mddev, sector_nr, skipped); 5898 5899 /* No need to check resync_max as we never do more than one 5900 * stripe, and as resync_max will always be on a chunk boundary, 5901 * if the check in md_do_sync didn't fire, there is no chance 5902 * of overstepping resync_max here 5903 */ 5904 5905 /* if there is too many failed drives and we are trying 5906 * to resync, then assert that we are finished, because there is 5907 * nothing we can do. 5908 */ 5909 if (mddev->degraded >= conf->max_degraded && 5910 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5911 sector_t rv = mddev->dev_sectors - sector_nr; 5912 *skipped = 1; 5913 return rv; 5914 } 5915 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 5916 !conf->fullsync && 5917 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 5918 sync_blocks >= STRIPE_SECTORS) { 5919 /* we can skip this block, and probably more */ 5920 sync_blocks /= STRIPE_SECTORS; 5921 *skipped = 1; 5922 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 5923 } 5924 5925 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 5926 5927 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 5928 if (sh == NULL) { 5929 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 5930 /* make sure we don't swamp the stripe cache if someone else 5931 * is trying to get access 5932 */ 5933 schedule_timeout_uninterruptible(1); 5934 } 5935 /* Need to check if array will still be degraded after recovery/resync 5936 * Note in case of > 1 drive failures it's possible we're rebuilding 5937 * one drive while leaving another faulty drive in array. 5938 */ 5939 rcu_read_lock(); 5940 for (i = 0; i < conf->raid_disks; i++) { 5941 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev); 5942 5943 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 5944 still_degraded = 1; 5945 } 5946 rcu_read_unlock(); 5947 5948 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 5949 5950 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 5951 set_bit(STRIPE_HANDLE, &sh->state); 5952 5953 raid5_release_stripe(sh); 5954 5955 return STRIPE_SECTORS; 5956 } 5957 5958 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 5959 { 5960 /* We may not be able to submit a whole bio at once as there 5961 * may not be enough stripe_heads available. 5962 * We cannot pre-allocate enough stripe_heads as we may need 5963 * more than exist in the cache (if we allow ever large chunks). 5964 * So we do one stripe head at a time and record in 5965 * ->bi_hw_segments how many have been done. 5966 * 5967 * We *know* that this entire raid_bio is in one chunk, so 5968 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 5969 */ 5970 struct stripe_head *sh; 5971 int dd_idx; 5972 sector_t sector, logical_sector, last_sector; 5973 int scnt = 0; 5974 int remaining; 5975 int handled = 0; 5976 5977 logical_sector = raid_bio->bi_iter.bi_sector & 5978 ~((sector_t)STRIPE_SECTORS-1); 5979 sector = raid5_compute_sector(conf, logical_sector, 5980 0, &dd_idx, NULL); 5981 last_sector = bio_end_sector(raid_bio); 5982 5983 for (; logical_sector < last_sector; 5984 logical_sector += STRIPE_SECTORS, 5985 sector += STRIPE_SECTORS, 5986 scnt++) { 5987 5988 if (scnt < raid5_bi_processed_stripes(raid_bio)) 5989 /* already done this stripe */ 5990 continue; 5991 5992 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 5993 5994 if (!sh) { 5995 /* failed to get a stripe - must wait */ 5996 raid5_set_bi_processed_stripes(raid_bio, scnt); 5997 conf->retry_read_aligned = raid_bio; 5998 return handled; 5999 } 6000 6001 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6002 raid5_release_stripe(sh); 6003 raid5_set_bi_processed_stripes(raid_bio, scnt); 6004 conf->retry_read_aligned = raid_bio; 6005 return handled; 6006 } 6007 6008 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6009 handle_stripe(sh); 6010 raid5_release_stripe(sh); 6011 handled++; 6012 } 6013 remaining = raid5_dec_bi_active_stripes(raid_bio); 6014 if (remaining == 0) { 6015 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), 6016 raid_bio, 0); 6017 bio_endio(raid_bio); 6018 } 6019 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6020 wake_up(&conf->wait_for_quiescent); 6021 return handled; 6022 } 6023 6024 static int handle_active_stripes(struct r5conf *conf, int group, 6025 struct r5worker *worker, 6026 struct list_head *temp_inactive_list) 6027 { 6028 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6029 int i, batch_size = 0, hash; 6030 bool release_inactive = false; 6031 6032 while (batch_size < MAX_STRIPE_BATCH && 6033 (sh = __get_priority_stripe(conf, group)) != NULL) 6034 batch[batch_size++] = sh; 6035 6036 if (batch_size == 0) { 6037 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6038 if (!list_empty(temp_inactive_list + i)) 6039 break; 6040 if (i == NR_STRIPE_HASH_LOCKS) { 6041 spin_unlock_irq(&conf->device_lock); 6042 r5l_flush_stripe_to_raid(conf->log); 6043 spin_lock_irq(&conf->device_lock); 6044 return batch_size; 6045 } 6046 release_inactive = true; 6047 } 6048 spin_unlock_irq(&conf->device_lock); 6049 6050 release_inactive_stripe_list(conf, temp_inactive_list, 6051 NR_STRIPE_HASH_LOCKS); 6052 6053 r5l_flush_stripe_to_raid(conf->log); 6054 if (release_inactive) { 6055 spin_lock_irq(&conf->device_lock); 6056 return 0; 6057 } 6058 6059 for (i = 0; i < batch_size; i++) 6060 handle_stripe(batch[i]); 6061 r5l_write_stripe_run(conf->log); 6062 6063 cond_resched(); 6064 6065 spin_lock_irq(&conf->device_lock); 6066 for (i = 0; i < batch_size; i++) { 6067 hash = batch[i]->hash_lock_index; 6068 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6069 } 6070 return batch_size; 6071 } 6072 6073 static void raid5_do_work(struct work_struct *work) 6074 { 6075 struct r5worker *worker = container_of(work, struct r5worker, work); 6076 struct r5worker_group *group = worker->group; 6077 struct r5conf *conf = group->conf; 6078 int group_id = group - conf->worker_groups; 6079 int handled; 6080 struct blk_plug plug; 6081 6082 pr_debug("+++ raid5worker active\n"); 6083 6084 blk_start_plug(&plug); 6085 handled = 0; 6086 spin_lock_irq(&conf->device_lock); 6087 while (1) { 6088 int batch_size, released; 6089 6090 released = release_stripe_list(conf, worker->temp_inactive_list); 6091 6092 batch_size = handle_active_stripes(conf, group_id, worker, 6093 worker->temp_inactive_list); 6094 worker->working = false; 6095 if (!batch_size && !released) 6096 break; 6097 handled += batch_size; 6098 } 6099 pr_debug("%d stripes handled\n", handled); 6100 6101 spin_unlock_irq(&conf->device_lock); 6102 blk_finish_plug(&plug); 6103 6104 pr_debug("--- raid5worker inactive\n"); 6105 } 6106 6107 /* 6108 * This is our raid5 kernel thread. 6109 * 6110 * We scan the hash table for stripes which can be handled now. 6111 * During the scan, completed stripes are saved for us by the interrupt 6112 * handler, so that they will not have to wait for our next wakeup. 6113 */ 6114 static void raid5d(struct md_thread *thread) 6115 { 6116 struct mddev *mddev = thread->mddev; 6117 struct r5conf *conf = mddev->private; 6118 int handled; 6119 struct blk_plug plug; 6120 6121 pr_debug("+++ raid5d active\n"); 6122 6123 md_check_recovery(mddev); 6124 6125 if (!bio_list_empty(&conf->return_bi) && 6126 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 6127 struct bio_list tmp = BIO_EMPTY_LIST; 6128 spin_lock_irq(&conf->device_lock); 6129 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 6130 bio_list_merge(&tmp, &conf->return_bi); 6131 bio_list_init(&conf->return_bi); 6132 } 6133 spin_unlock_irq(&conf->device_lock); 6134 return_io(&tmp); 6135 } 6136 6137 blk_start_plug(&plug); 6138 handled = 0; 6139 spin_lock_irq(&conf->device_lock); 6140 while (1) { 6141 struct bio *bio; 6142 int batch_size, released; 6143 6144 released = release_stripe_list(conf, conf->temp_inactive_list); 6145 if (released) 6146 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6147 6148 if ( 6149 !list_empty(&conf->bitmap_list)) { 6150 /* Now is a good time to flush some bitmap updates */ 6151 conf->seq_flush++; 6152 spin_unlock_irq(&conf->device_lock); 6153 bitmap_unplug(mddev->bitmap); 6154 spin_lock_irq(&conf->device_lock); 6155 conf->seq_write = conf->seq_flush; 6156 activate_bit_delay(conf, conf->temp_inactive_list); 6157 } 6158 raid5_activate_delayed(conf); 6159 6160 while ((bio = remove_bio_from_retry(conf))) { 6161 int ok; 6162 spin_unlock_irq(&conf->device_lock); 6163 ok = retry_aligned_read(conf, bio); 6164 spin_lock_irq(&conf->device_lock); 6165 if (!ok) 6166 break; 6167 handled++; 6168 } 6169 6170 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6171 conf->temp_inactive_list); 6172 if (!batch_size && !released) 6173 break; 6174 handled += batch_size; 6175 6176 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6177 spin_unlock_irq(&conf->device_lock); 6178 md_check_recovery(mddev); 6179 spin_lock_irq(&conf->device_lock); 6180 } 6181 } 6182 pr_debug("%d stripes handled\n", handled); 6183 6184 spin_unlock_irq(&conf->device_lock); 6185 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6186 mutex_trylock(&conf->cache_size_mutex)) { 6187 grow_one_stripe(conf, __GFP_NOWARN); 6188 /* Set flag even if allocation failed. This helps 6189 * slow down allocation requests when mem is short 6190 */ 6191 set_bit(R5_DID_ALLOC, &conf->cache_state); 6192 mutex_unlock(&conf->cache_size_mutex); 6193 } 6194 6195 flush_deferred_bios(conf); 6196 6197 r5l_flush_stripe_to_raid(conf->log); 6198 6199 async_tx_issue_pending_all(); 6200 blk_finish_plug(&plug); 6201 6202 pr_debug("--- raid5d inactive\n"); 6203 } 6204 6205 static ssize_t 6206 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6207 { 6208 struct r5conf *conf; 6209 int ret = 0; 6210 spin_lock(&mddev->lock); 6211 conf = mddev->private; 6212 if (conf) 6213 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6214 spin_unlock(&mddev->lock); 6215 return ret; 6216 } 6217 6218 int 6219 raid5_set_cache_size(struct mddev *mddev, int size) 6220 { 6221 struct r5conf *conf = mddev->private; 6222 int err; 6223 6224 if (size <= 16 || size > 32768) 6225 return -EINVAL; 6226 6227 conf->min_nr_stripes = size; 6228 mutex_lock(&conf->cache_size_mutex); 6229 while (size < conf->max_nr_stripes && 6230 drop_one_stripe(conf)) 6231 ; 6232 mutex_unlock(&conf->cache_size_mutex); 6233 6234 6235 err = md_allow_write(mddev); 6236 if (err) 6237 return err; 6238 6239 mutex_lock(&conf->cache_size_mutex); 6240 while (size > conf->max_nr_stripes) 6241 if (!grow_one_stripe(conf, GFP_KERNEL)) 6242 break; 6243 mutex_unlock(&conf->cache_size_mutex); 6244 6245 return 0; 6246 } 6247 EXPORT_SYMBOL(raid5_set_cache_size); 6248 6249 static ssize_t 6250 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6251 { 6252 struct r5conf *conf; 6253 unsigned long new; 6254 int err; 6255 6256 if (len >= PAGE_SIZE) 6257 return -EINVAL; 6258 if (kstrtoul(page, 10, &new)) 6259 return -EINVAL; 6260 err = mddev_lock(mddev); 6261 if (err) 6262 return err; 6263 conf = mddev->private; 6264 if (!conf) 6265 err = -ENODEV; 6266 else 6267 err = raid5_set_cache_size(mddev, new); 6268 mddev_unlock(mddev); 6269 6270 return err ?: len; 6271 } 6272 6273 static struct md_sysfs_entry 6274 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6275 raid5_show_stripe_cache_size, 6276 raid5_store_stripe_cache_size); 6277 6278 static ssize_t 6279 raid5_show_rmw_level(struct mddev *mddev, char *page) 6280 { 6281 struct r5conf *conf = mddev->private; 6282 if (conf) 6283 return sprintf(page, "%d\n", conf->rmw_level); 6284 else 6285 return 0; 6286 } 6287 6288 static ssize_t 6289 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6290 { 6291 struct r5conf *conf = mddev->private; 6292 unsigned long new; 6293 6294 if (!conf) 6295 return -ENODEV; 6296 6297 if (len >= PAGE_SIZE) 6298 return -EINVAL; 6299 6300 if (kstrtoul(page, 10, &new)) 6301 return -EINVAL; 6302 6303 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6304 return -EINVAL; 6305 6306 if (new != PARITY_DISABLE_RMW && 6307 new != PARITY_ENABLE_RMW && 6308 new != PARITY_PREFER_RMW) 6309 return -EINVAL; 6310 6311 conf->rmw_level = new; 6312 return len; 6313 } 6314 6315 static struct md_sysfs_entry 6316 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6317 raid5_show_rmw_level, 6318 raid5_store_rmw_level); 6319 6320 6321 static ssize_t 6322 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6323 { 6324 struct r5conf *conf; 6325 int ret = 0; 6326 spin_lock(&mddev->lock); 6327 conf = mddev->private; 6328 if (conf) 6329 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6330 spin_unlock(&mddev->lock); 6331 return ret; 6332 } 6333 6334 static ssize_t 6335 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6336 { 6337 struct r5conf *conf; 6338 unsigned long new; 6339 int err; 6340 6341 if (len >= PAGE_SIZE) 6342 return -EINVAL; 6343 if (kstrtoul(page, 10, &new)) 6344 return -EINVAL; 6345 6346 err = mddev_lock(mddev); 6347 if (err) 6348 return err; 6349 conf = mddev->private; 6350 if (!conf) 6351 err = -ENODEV; 6352 else if (new > conf->min_nr_stripes) 6353 err = -EINVAL; 6354 else 6355 conf->bypass_threshold = new; 6356 mddev_unlock(mddev); 6357 return err ?: len; 6358 } 6359 6360 static struct md_sysfs_entry 6361 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6362 S_IRUGO | S_IWUSR, 6363 raid5_show_preread_threshold, 6364 raid5_store_preread_threshold); 6365 6366 static ssize_t 6367 raid5_show_skip_copy(struct mddev *mddev, char *page) 6368 { 6369 struct r5conf *conf; 6370 int ret = 0; 6371 spin_lock(&mddev->lock); 6372 conf = mddev->private; 6373 if (conf) 6374 ret = sprintf(page, "%d\n", conf->skip_copy); 6375 spin_unlock(&mddev->lock); 6376 return ret; 6377 } 6378 6379 static ssize_t 6380 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6381 { 6382 struct r5conf *conf; 6383 unsigned long new; 6384 int err; 6385 6386 if (len >= PAGE_SIZE) 6387 return -EINVAL; 6388 if (kstrtoul(page, 10, &new)) 6389 return -EINVAL; 6390 new = !!new; 6391 6392 err = mddev_lock(mddev); 6393 if (err) 6394 return err; 6395 conf = mddev->private; 6396 if (!conf) 6397 err = -ENODEV; 6398 else if (new != conf->skip_copy) { 6399 mddev_suspend(mddev); 6400 conf->skip_copy = new; 6401 if (new) 6402 mddev->queue->backing_dev_info->capabilities |= 6403 BDI_CAP_STABLE_WRITES; 6404 else 6405 mddev->queue->backing_dev_info->capabilities &= 6406 ~BDI_CAP_STABLE_WRITES; 6407 mddev_resume(mddev); 6408 } 6409 mddev_unlock(mddev); 6410 return err ?: len; 6411 } 6412 6413 static struct md_sysfs_entry 6414 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6415 raid5_show_skip_copy, 6416 raid5_store_skip_copy); 6417 6418 static ssize_t 6419 stripe_cache_active_show(struct mddev *mddev, char *page) 6420 { 6421 struct r5conf *conf = mddev->private; 6422 if (conf) 6423 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6424 else 6425 return 0; 6426 } 6427 6428 static struct md_sysfs_entry 6429 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6430 6431 static ssize_t 6432 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6433 { 6434 struct r5conf *conf; 6435 int ret = 0; 6436 spin_lock(&mddev->lock); 6437 conf = mddev->private; 6438 if (conf) 6439 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6440 spin_unlock(&mddev->lock); 6441 return ret; 6442 } 6443 6444 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6445 int *group_cnt, 6446 int *worker_cnt_per_group, 6447 struct r5worker_group **worker_groups); 6448 static ssize_t 6449 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6450 { 6451 struct r5conf *conf; 6452 unsigned long new; 6453 int err; 6454 struct r5worker_group *new_groups, *old_groups; 6455 int group_cnt, worker_cnt_per_group; 6456 6457 if (len >= PAGE_SIZE) 6458 return -EINVAL; 6459 if (kstrtoul(page, 10, &new)) 6460 return -EINVAL; 6461 6462 err = mddev_lock(mddev); 6463 if (err) 6464 return err; 6465 conf = mddev->private; 6466 if (!conf) 6467 err = -ENODEV; 6468 else if (new != conf->worker_cnt_per_group) { 6469 mddev_suspend(mddev); 6470 6471 old_groups = conf->worker_groups; 6472 if (old_groups) 6473 flush_workqueue(raid5_wq); 6474 6475 err = alloc_thread_groups(conf, new, 6476 &group_cnt, &worker_cnt_per_group, 6477 &new_groups); 6478 if (!err) { 6479 spin_lock_irq(&conf->device_lock); 6480 conf->group_cnt = group_cnt; 6481 conf->worker_cnt_per_group = worker_cnt_per_group; 6482 conf->worker_groups = new_groups; 6483 spin_unlock_irq(&conf->device_lock); 6484 6485 if (old_groups) 6486 kfree(old_groups[0].workers); 6487 kfree(old_groups); 6488 } 6489 mddev_resume(mddev); 6490 } 6491 mddev_unlock(mddev); 6492 6493 return err ?: len; 6494 } 6495 6496 static struct md_sysfs_entry 6497 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6498 raid5_show_group_thread_cnt, 6499 raid5_store_group_thread_cnt); 6500 6501 static struct attribute *raid5_attrs[] = { 6502 &raid5_stripecache_size.attr, 6503 &raid5_stripecache_active.attr, 6504 &raid5_preread_bypass_threshold.attr, 6505 &raid5_group_thread_cnt.attr, 6506 &raid5_skip_copy.attr, 6507 &raid5_rmw_level.attr, 6508 &r5c_journal_mode.attr, 6509 NULL, 6510 }; 6511 static struct attribute_group raid5_attrs_group = { 6512 .name = NULL, 6513 .attrs = raid5_attrs, 6514 }; 6515 6516 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6517 int *group_cnt, 6518 int *worker_cnt_per_group, 6519 struct r5worker_group **worker_groups) 6520 { 6521 int i, j, k; 6522 ssize_t size; 6523 struct r5worker *workers; 6524 6525 *worker_cnt_per_group = cnt; 6526 if (cnt == 0) { 6527 *group_cnt = 0; 6528 *worker_groups = NULL; 6529 return 0; 6530 } 6531 *group_cnt = num_possible_nodes(); 6532 size = sizeof(struct r5worker) * cnt; 6533 workers = kzalloc(size * *group_cnt, GFP_NOIO); 6534 *worker_groups = kzalloc(sizeof(struct r5worker_group) * 6535 *group_cnt, GFP_NOIO); 6536 if (!*worker_groups || !workers) { 6537 kfree(workers); 6538 kfree(*worker_groups); 6539 return -ENOMEM; 6540 } 6541 6542 for (i = 0; i < *group_cnt; i++) { 6543 struct r5worker_group *group; 6544 6545 group = &(*worker_groups)[i]; 6546 INIT_LIST_HEAD(&group->handle_list); 6547 group->conf = conf; 6548 group->workers = workers + i * cnt; 6549 6550 for (j = 0; j < cnt; j++) { 6551 struct r5worker *worker = group->workers + j; 6552 worker->group = group; 6553 INIT_WORK(&worker->work, raid5_do_work); 6554 6555 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6556 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6557 } 6558 } 6559 6560 return 0; 6561 } 6562 6563 static void free_thread_groups(struct r5conf *conf) 6564 { 6565 if (conf->worker_groups) 6566 kfree(conf->worker_groups[0].workers); 6567 kfree(conf->worker_groups); 6568 conf->worker_groups = NULL; 6569 } 6570 6571 static sector_t 6572 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 6573 { 6574 struct r5conf *conf = mddev->private; 6575 6576 if (!sectors) 6577 sectors = mddev->dev_sectors; 6578 if (!raid_disks) 6579 /* size is defined by the smallest of previous and new size */ 6580 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 6581 6582 sectors &= ~((sector_t)conf->chunk_sectors - 1); 6583 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 6584 return sectors * (raid_disks - conf->max_degraded); 6585 } 6586 6587 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6588 { 6589 safe_put_page(percpu->spare_page); 6590 if (percpu->scribble) 6591 flex_array_free(percpu->scribble); 6592 percpu->spare_page = NULL; 6593 percpu->scribble = NULL; 6594 } 6595 6596 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6597 { 6598 if (conf->level == 6 && !percpu->spare_page) 6599 percpu->spare_page = alloc_page(GFP_KERNEL); 6600 if (!percpu->scribble) 6601 percpu->scribble = scribble_alloc(max(conf->raid_disks, 6602 conf->previous_raid_disks), 6603 max(conf->chunk_sectors, 6604 conf->prev_chunk_sectors) 6605 / STRIPE_SECTORS, 6606 GFP_KERNEL); 6607 6608 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { 6609 free_scratch_buffer(conf, percpu); 6610 return -ENOMEM; 6611 } 6612 6613 return 0; 6614 } 6615 6616 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 6617 { 6618 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 6619 6620 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6621 return 0; 6622 } 6623 6624 static void raid5_free_percpu(struct r5conf *conf) 6625 { 6626 if (!conf->percpu) 6627 return; 6628 6629 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 6630 free_percpu(conf->percpu); 6631 } 6632 6633 static void free_conf(struct r5conf *conf) 6634 { 6635 int i; 6636 6637 if (conf->log) 6638 r5l_exit_log(conf->log); 6639 if (conf->shrinker.nr_deferred) 6640 unregister_shrinker(&conf->shrinker); 6641 6642 free_thread_groups(conf); 6643 shrink_stripes(conf); 6644 raid5_free_percpu(conf); 6645 for (i = 0; i < conf->pool_size; i++) 6646 if (conf->disks[i].extra_page) 6647 put_page(conf->disks[i].extra_page); 6648 kfree(conf->disks); 6649 kfree(conf->stripe_hashtbl); 6650 kfree(conf); 6651 } 6652 6653 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 6654 { 6655 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 6656 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 6657 6658 if (alloc_scratch_buffer(conf, percpu)) { 6659 pr_warn("%s: failed memory allocation for cpu%u\n", 6660 __func__, cpu); 6661 return -ENOMEM; 6662 } 6663 return 0; 6664 } 6665 6666 static int raid5_alloc_percpu(struct r5conf *conf) 6667 { 6668 int err = 0; 6669 6670 conf->percpu = alloc_percpu(struct raid5_percpu); 6671 if (!conf->percpu) 6672 return -ENOMEM; 6673 6674 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 6675 if (!err) { 6676 conf->scribble_disks = max(conf->raid_disks, 6677 conf->previous_raid_disks); 6678 conf->scribble_sectors = max(conf->chunk_sectors, 6679 conf->prev_chunk_sectors); 6680 } 6681 return err; 6682 } 6683 6684 static unsigned long raid5_cache_scan(struct shrinker *shrink, 6685 struct shrink_control *sc) 6686 { 6687 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6688 unsigned long ret = SHRINK_STOP; 6689 6690 if (mutex_trylock(&conf->cache_size_mutex)) { 6691 ret= 0; 6692 while (ret < sc->nr_to_scan && 6693 conf->max_nr_stripes > conf->min_nr_stripes) { 6694 if (drop_one_stripe(conf) == 0) { 6695 ret = SHRINK_STOP; 6696 break; 6697 } 6698 ret++; 6699 } 6700 mutex_unlock(&conf->cache_size_mutex); 6701 } 6702 return ret; 6703 } 6704 6705 static unsigned long raid5_cache_count(struct shrinker *shrink, 6706 struct shrink_control *sc) 6707 { 6708 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6709 6710 if (conf->max_nr_stripes < conf->min_nr_stripes) 6711 /* unlikely, but not impossible */ 6712 return 0; 6713 return conf->max_nr_stripes - conf->min_nr_stripes; 6714 } 6715 6716 static struct r5conf *setup_conf(struct mddev *mddev) 6717 { 6718 struct r5conf *conf; 6719 int raid_disk, memory, max_disks; 6720 struct md_rdev *rdev; 6721 struct disk_info *disk; 6722 char pers_name[6]; 6723 int i; 6724 int group_cnt, worker_cnt_per_group; 6725 struct r5worker_group *new_group; 6726 6727 if (mddev->new_level != 5 6728 && mddev->new_level != 4 6729 && mddev->new_level != 6) { 6730 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 6731 mdname(mddev), mddev->new_level); 6732 return ERR_PTR(-EIO); 6733 } 6734 if ((mddev->new_level == 5 6735 && !algorithm_valid_raid5(mddev->new_layout)) || 6736 (mddev->new_level == 6 6737 && !algorithm_valid_raid6(mddev->new_layout))) { 6738 pr_warn("md/raid:%s: layout %d not supported\n", 6739 mdname(mddev), mddev->new_layout); 6740 return ERR_PTR(-EIO); 6741 } 6742 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 6743 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 6744 mdname(mddev), mddev->raid_disks); 6745 return ERR_PTR(-EINVAL); 6746 } 6747 6748 if (!mddev->new_chunk_sectors || 6749 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 6750 !is_power_of_2(mddev->new_chunk_sectors)) { 6751 pr_warn("md/raid:%s: invalid chunk size %d\n", 6752 mdname(mddev), mddev->new_chunk_sectors << 9); 6753 return ERR_PTR(-EINVAL); 6754 } 6755 6756 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 6757 if (conf == NULL) 6758 goto abort; 6759 /* Don't enable multi-threading by default*/ 6760 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 6761 &new_group)) { 6762 conf->group_cnt = group_cnt; 6763 conf->worker_cnt_per_group = worker_cnt_per_group; 6764 conf->worker_groups = new_group; 6765 } else 6766 goto abort; 6767 spin_lock_init(&conf->device_lock); 6768 seqcount_init(&conf->gen_lock); 6769 mutex_init(&conf->cache_size_mutex); 6770 init_waitqueue_head(&conf->wait_for_quiescent); 6771 init_waitqueue_head(&conf->wait_for_stripe); 6772 init_waitqueue_head(&conf->wait_for_overlap); 6773 INIT_LIST_HEAD(&conf->handle_list); 6774 INIT_LIST_HEAD(&conf->hold_list); 6775 INIT_LIST_HEAD(&conf->delayed_list); 6776 INIT_LIST_HEAD(&conf->bitmap_list); 6777 bio_list_init(&conf->return_bi); 6778 init_llist_head(&conf->released_stripes); 6779 atomic_set(&conf->active_stripes, 0); 6780 atomic_set(&conf->preread_active_stripes, 0); 6781 atomic_set(&conf->active_aligned_reads, 0); 6782 bio_list_init(&conf->pending_bios); 6783 spin_lock_init(&conf->pending_bios_lock); 6784 conf->batch_bio_dispatch = true; 6785 rdev_for_each(rdev, mddev) { 6786 if (test_bit(Journal, &rdev->flags)) 6787 continue; 6788 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 6789 conf->batch_bio_dispatch = false; 6790 break; 6791 } 6792 } 6793 6794 conf->bypass_threshold = BYPASS_THRESHOLD; 6795 conf->recovery_disabled = mddev->recovery_disabled - 1; 6796 6797 conf->raid_disks = mddev->raid_disks; 6798 if (mddev->reshape_position == MaxSector) 6799 conf->previous_raid_disks = mddev->raid_disks; 6800 else 6801 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 6802 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 6803 6804 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 6805 GFP_KERNEL); 6806 6807 if (!conf->disks) 6808 goto abort; 6809 6810 for (i = 0; i < max_disks; i++) { 6811 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 6812 if (!conf->disks[i].extra_page) 6813 goto abort; 6814 } 6815 6816 conf->mddev = mddev; 6817 6818 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 6819 goto abort; 6820 6821 /* We init hash_locks[0] separately to that it can be used 6822 * as the reference lock in the spin_lock_nest_lock() call 6823 * in lock_all_device_hash_locks_irq in order to convince 6824 * lockdep that we know what we are doing. 6825 */ 6826 spin_lock_init(conf->hash_locks); 6827 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 6828 spin_lock_init(conf->hash_locks + i); 6829 6830 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6831 INIT_LIST_HEAD(conf->inactive_list + i); 6832 6833 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6834 INIT_LIST_HEAD(conf->temp_inactive_list + i); 6835 6836 atomic_set(&conf->r5c_cached_full_stripes, 0); 6837 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 6838 atomic_set(&conf->r5c_cached_partial_stripes, 0); 6839 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 6840 atomic_set(&conf->r5c_flushing_full_stripes, 0); 6841 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 6842 6843 conf->level = mddev->new_level; 6844 conf->chunk_sectors = mddev->new_chunk_sectors; 6845 if (raid5_alloc_percpu(conf) != 0) 6846 goto abort; 6847 6848 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 6849 6850 rdev_for_each(rdev, mddev) { 6851 raid_disk = rdev->raid_disk; 6852 if (raid_disk >= max_disks 6853 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 6854 continue; 6855 disk = conf->disks + raid_disk; 6856 6857 if (test_bit(Replacement, &rdev->flags)) { 6858 if (disk->replacement) 6859 goto abort; 6860 disk->replacement = rdev; 6861 } else { 6862 if (disk->rdev) 6863 goto abort; 6864 disk->rdev = rdev; 6865 } 6866 6867 if (test_bit(In_sync, &rdev->flags)) { 6868 char b[BDEVNAME_SIZE]; 6869 pr_info("md/raid:%s: device %s operational as raid disk %d\n", 6870 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 6871 } else if (rdev->saved_raid_disk != raid_disk) 6872 /* Cannot rely on bitmap to complete recovery */ 6873 conf->fullsync = 1; 6874 } 6875 6876 conf->level = mddev->new_level; 6877 if (conf->level == 6) { 6878 conf->max_degraded = 2; 6879 if (raid6_call.xor_syndrome) 6880 conf->rmw_level = PARITY_ENABLE_RMW; 6881 else 6882 conf->rmw_level = PARITY_DISABLE_RMW; 6883 } else { 6884 conf->max_degraded = 1; 6885 conf->rmw_level = PARITY_ENABLE_RMW; 6886 } 6887 conf->algorithm = mddev->new_layout; 6888 conf->reshape_progress = mddev->reshape_position; 6889 if (conf->reshape_progress != MaxSector) { 6890 conf->prev_chunk_sectors = mddev->chunk_sectors; 6891 conf->prev_algo = mddev->layout; 6892 } else { 6893 conf->prev_chunk_sectors = conf->chunk_sectors; 6894 conf->prev_algo = conf->algorithm; 6895 } 6896 6897 conf->min_nr_stripes = NR_STRIPES; 6898 if (mddev->reshape_position != MaxSector) { 6899 int stripes = max_t(int, 6900 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4, 6901 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4); 6902 conf->min_nr_stripes = max(NR_STRIPES, stripes); 6903 if (conf->min_nr_stripes != NR_STRIPES) 6904 pr_info("md/raid:%s: force stripe size %d for reshape\n", 6905 mdname(mddev), conf->min_nr_stripes); 6906 } 6907 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 6908 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 6909 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 6910 if (grow_stripes(conf, conf->min_nr_stripes)) { 6911 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 6912 mdname(mddev), memory); 6913 goto abort; 6914 } else 6915 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 6916 /* 6917 * Losing a stripe head costs more than the time to refill it, 6918 * it reduces the queue depth and so can hurt throughput. 6919 * So set it rather large, scaled by number of devices. 6920 */ 6921 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 6922 conf->shrinker.scan_objects = raid5_cache_scan; 6923 conf->shrinker.count_objects = raid5_cache_count; 6924 conf->shrinker.batch = 128; 6925 conf->shrinker.flags = 0; 6926 if (register_shrinker(&conf->shrinker)) { 6927 pr_warn("md/raid:%s: couldn't register shrinker.\n", 6928 mdname(mddev)); 6929 goto abort; 6930 } 6931 6932 sprintf(pers_name, "raid%d", mddev->new_level); 6933 conf->thread = md_register_thread(raid5d, mddev, pers_name); 6934 if (!conf->thread) { 6935 pr_warn("md/raid:%s: couldn't allocate thread.\n", 6936 mdname(mddev)); 6937 goto abort; 6938 } 6939 6940 return conf; 6941 6942 abort: 6943 if (conf) { 6944 free_conf(conf); 6945 return ERR_PTR(-EIO); 6946 } else 6947 return ERR_PTR(-ENOMEM); 6948 } 6949 6950 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 6951 { 6952 switch (algo) { 6953 case ALGORITHM_PARITY_0: 6954 if (raid_disk < max_degraded) 6955 return 1; 6956 break; 6957 case ALGORITHM_PARITY_N: 6958 if (raid_disk >= raid_disks - max_degraded) 6959 return 1; 6960 break; 6961 case ALGORITHM_PARITY_0_6: 6962 if (raid_disk == 0 || 6963 raid_disk == raid_disks - 1) 6964 return 1; 6965 break; 6966 case ALGORITHM_LEFT_ASYMMETRIC_6: 6967 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6968 case ALGORITHM_LEFT_SYMMETRIC_6: 6969 case ALGORITHM_RIGHT_SYMMETRIC_6: 6970 if (raid_disk == raid_disks - 1) 6971 return 1; 6972 } 6973 return 0; 6974 } 6975 6976 static int raid5_run(struct mddev *mddev) 6977 { 6978 struct r5conf *conf; 6979 int working_disks = 0; 6980 int dirty_parity_disks = 0; 6981 struct md_rdev *rdev; 6982 struct md_rdev *journal_dev = NULL; 6983 sector_t reshape_offset = 0; 6984 int i; 6985 long long min_offset_diff = 0; 6986 int first = 1; 6987 6988 if (mddev->recovery_cp != MaxSector) 6989 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 6990 mdname(mddev)); 6991 6992 rdev_for_each(rdev, mddev) { 6993 long long diff; 6994 6995 if (test_bit(Journal, &rdev->flags)) { 6996 journal_dev = rdev; 6997 continue; 6998 } 6999 if (rdev->raid_disk < 0) 7000 continue; 7001 diff = (rdev->new_data_offset - rdev->data_offset); 7002 if (first) { 7003 min_offset_diff = diff; 7004 first = 0; 7005 } else if (mddev->reshape_backwards && 7006 diff < min_offset_diff) 7007 min_offset_diff = diff; 7008 else if (!mddev->reshape_backwards && 7009 diff > min_offset_diff) 7010 min_offset_diff = diff; 7011 } 7012 7013 if (mddev->reshape_position != MaxSector) { 7014 /* Check that we can continue the reshape. 7015 * Difficulties arise if the stripe we would write to 7016 * next is at or after the stripe we would read from next. 7017 * For a reshape that changes the number of devices, this 7018 * is only possible for a very short time, and mdadm makes 7019 * sure that time appears to have past before assembling 7020 * the array. So we fail if that time hasn't passed. 7021 * For a reshape that keeps the number of devices the same 7022 * mdadm must be monitoring the reshape can keeping the 7023 * critical areas read-only and backed up. It will start 7024 * the array in read-only mode, so we check for that. 7025 */ 7026 sector_t here_new, here_old; 7027 int old_disks; 7028 int max_degraded = (mddev->level == 6 ? 2 : 1); 7029 int chunk_sectors; 7030 int new_data_disks; 7031 7032 if (journal_dev) { 7033 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7034 mdname(mddev)); 7035 return -EINVAL; 7036 } 7037 7038 if (mddev->new_level != mddev->level) { 7039 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7040 mdname(mddev)); 7041 return -EINVAL; 7042 } 7043 old_disks = mddev->raid_disks - mddev->delta_disks; 7044 /* reshape_position must be on a new-stripe boundary, and one 7045 * further up in new geometry must map after here in old 7046 * geometry. 7047 * If the chunk sizes are different, then as we perform reshape 7048 * in units of the largest of the two, reshape_position needs 7049 * be a multiple of the largest chunk size times new data disks. 7050 */ 7051 here_new = mddev->reshape_position; 7052 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7053 new_data_disks = mddev->raid_disks - max_degraded; 7054 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7055 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7056 mdname(mddev)); 7057 return -EINVAL; 7058 } 7059 reshape_offset = here_new * chunk_sectors; 7060 /* here_new is the stripe we will write to */ 7061 here_old = mddev->reshape_position; 7062 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7063 /* here_old is the first stripe that we might need to read 7064 * from */ 7065 if (mddev->delta_disks == 0) { 7066 /* We cannot be sure it is safe to start an in-place 7067 * reshape. It is only safe if user-space is monitoring 7068 * and taking constant backups. 7069 * mdadm always starts a situation like this in 7070 * readonly mode so it can take control before 7071 * allowing any writes. So just check for that. 7072 */ 7073 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7074 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7075 /* not really in-place - so OK */; 7076 else if (mddev->ro == 0) { 7077 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7078 mdname(mddev)); 7079 return -EINVAL; 7080 } 7081 } else if (mddev->reshape_backwards 7082 ? (here_new * chunk_sectors + min_offset_diff <= 7083 here_old * chunk_sectors) 7084 : (here_new * chunk_sectors >= 7085 here_old * chunk_sectors + (-min_offset_diff))) { 7086 /* Reading from the same stripe as writing to - bad */ 7087 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7088 mdname(mddev)); 7089 return -EINVAL; 7090 } 7091 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7092 /* OK, we should be able to continue; */ 7093 } else { 7094 BUG_ON(mddev->level != mddev->new_level); 7095 BUG_ON(mddev->layout != mddev->new_layout); 7096 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7097 BUG_ON(mddev->delta_disks != 0); 7098 } 7099 7100 if (mddev->private == NULL) 7101 conf = setup_conf(mddev); 7102 else 7103 conf = mddev->private; 7104 7105 if (IS_ERR(conf)) 7106 return PTR_ERR(conf); 7107 7108 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7109 if (!journal_dev) { 7110 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7111 mdname(mddev)); 7112 mddev->ro = 1; 7113 set_disk_ro(mddev->gendisk, 1); 7114 } else if (mddev->recovery_cp == MaxSector) 7115 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7116 } 7117 7118 conf->min_offset_diff = min_offset_diff; 7119 mddev->thread = conf->thread; 7120 conf->thread = NULL; 7121 mddev->private = conf; 7122 7123 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7124 i++) { 7125 rdev = conf->disks[i].rdev; 7126 if (!rdev && conf->disks[i].replacement) { 7127 /* The replacement is all we have yet */ 7128 rdev = conf->disks[i].replacement; 7129 conf->disks[i].replacement = NULL; 7130 clear_bit(Replacement, &rdev->flags); 7131 conf->disks[i].rdev = rdev; 7132 } 7133 if (!rdev) 7134 continue; 7135 if (conf->disks[i].replacement && 7136 conf->reshape_progress != MaxSector) { 7137 /* replacements and reshape simply do not mix. */ 7138 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7139 goto abort; 7140 } 7141 if (test_bit(In_sync, &rdev->flags)) { 7142 working_disks++; 7143 continue; 7144 } 7145 /* This disc is not fully in-sync. However if it 7146 * just stored parity (beyond the recovery_offset), 7147 * when we don't need to be concerned about the 7148 * array being dirty. 7149 * When reshape goes 'backwards', we never have 7150 * partially completed devices, so we only need 7151 * to worry about reshape going forwards. 7152 */ 7153 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7154 if (mddev->major_version == 0 && 7155 mddev->minor_version > 90) 7156 rdev->recovery_offset = reshape_offset; 7157 7158 if (rdev->recovery_offset < reshape_offset) { 7159 /* We need to check old and new layout */ 7160 if (!only_parity(rdev->raid_disk, 7161 conf->algorithm, 7162 conf->raid_disks, 7163 conf->max_degraded)) 7164 continue; 7165 } 7166 if (!only_parity(rdev->raid_disk, 7167 conf->prev_algo, 7168 conf->previous_raid_disks, 7169 conf->max_degraded)) 7170 continue; 7171 dirty_parity_disks++; 7172 } 7173 7174 /* 7175 * 0 for a fully functional array, 1 or 2 for a degraded array. 7176 */ 7177 mddev->degraded = raid5_calc_degraded(conf); 7178 7179 if (has_failed(conf)) { 7180 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7181 mdname(mddev), mddev->degraded, conf->raid_disks); 7182 goto abort; 7183 } 7184 7185 /* device size must be a multiple of chunk size */ 7186 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 7187 mddev->resync_max_sectors = mddev->dev_sectors; 7188 7189 if (mddev->degraded > dirty_parity_disks && 7190 mddev->recovery_cp != MaxSector) { 7191 if (mddev->ok_start_degraded) 7192 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 7193 mdname(mddev)); 7194 else { 7195 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 7196 mdname(mddev)); 7197 goto abort; 7198 } 7199 } 7200 7201 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 7202 mdname(mddev), conf->level, 7203 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 7204 mddev->new_layout); 7205 7206 print_raid5_conf(conf); 7207 7208 if (conf->reshape_progress != MaxSector) { 7209 conf->reshape_safe = conf->reshape_progress; 7210 atomic_set(&conf->reshape_stripes, 0); 7211 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7212 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7213 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7214 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7215 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7216 "reshape"); 7217 } 7218 7219 /* Ok, everything is just fine now */ 7220 if (mddev->to_remove == &raid5_attrs_group) 7221 mddev->to_remove = NULL; 7222 else if (mddev->kobj.sd && 7223 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 7224 pr_warn("raid5: failed to create sysfs attributes for %s\n", 7225 mdname(mddev)); 7226 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7227 7228 if (mddev->queue) { 7229 int chunk_size; 7230 /* read-ahead size must cover two whole stripes, which 7231 * is 2 * (datadisks) * chunksize where 'n' is the 7232 * number of raid devices 7233 */ 7234 int data_disks = conf->previous_raid_disks - conf->max_degraded; 7235 int stripe = data_disks * 7236 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 7237 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 7238 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 7239 7240 chunk_size = mddev->chunk_sectors << 9; 7241 blk_queue_io_min(mddev->queue, chunk_size); 7242 blk_queue_io_opt(mddev->queue, chunk_size * 7243 (conf->raid_disks - conf->max_degraded)); 7244 mddev->queue->limits.raid_partial_stripes_expensive = 1; 7245 /* 7246 * We can only discard a whole stripe. It doesn't make sense to 7247 * discard data disk but write parity disk 7248 */ 7249 stripe = stripe * PAGE_SIZE; 7250 /* Round up to power of 2, as discard handling 7251 * currently assumes that */ 7252 while ((stripe-1) & stripe) 7253 stripe = (stripe | (stripe-1)) + 1; 7254 mddev->queue->limits.discard_alignment = stripe; 7255 mddev->queue->limits.discard_granularity = stripe; 7256 7257 /* 7258 * We use 16-bit counter of active stripes in bi_phys_segments 7259 * (minus one for over-loaded initialization) 7260 */ 7261 blk_queue_max_hw_sectors(mddev->queue, 0xfffe * STRIPE_SECTORS); 7262 blk_queue_max_discard_sectors(mddev->queue, 7263 0xfffe * STRIPE_SECTORS); 7264 7265 blk_queue_max_write_same_sectors(mddev->queue, 0); 7266 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 7267 7268 rdev_for_each(rdev, mddev) { 7269 disk_stack_limits(mddev->gendisk, rdev->bdev, 7270 rdev->data_offset << 9); 7271 disk_stack_limits(mddev->gendisk, rdev->bdev, 7272 rdev->new_data_offset << 9); 7273 } 7274 7275 /* 7276 * zeroing is required, otherwise data 7277 * could be lost. Consider a scenario: discard a stripe 7278 * (the stripe could be inconsistent if 7279 * discard_zeroes_data is 0); write one disk of the 7280 * stripe (the stripe could be inconsistent again 7281 * depending on which disks are used to calculate 7282 * parity); the disk is broken; The stripe data of this 7283 * disk is lost. 7284 * 7285 * We only allow DISCARD if the sysadmin has confirmed that 7286 * only safe devices are in use by setting a module parameter. 7287 * A better idea might be to turn DISCARD into WRITE_ZEROES 7288 * requests, as that is required to be safe. 7289 */ 7290 if (devices_handle_discard_safely && 7291 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && 7292 mddev->queue->limits.discard_granularity >= stripe) 7293 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 7294 mddev->queue); 7295 else 7296 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 7297 mddev->queue); 7298 7299 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX); 7300 } 7301 7302 if (journal_dev) { 7303 char b[BDEVNAME_SIZE]; 7304 7305 pr_debug("md/raid:%s: using device %s as journal\n", 7306 mdname(mddev), bdevname(journal_dev->bdev, b)); 7307 if (r5l_init_log(conf, journal_dev)) 7308 goto abort; 7309 } 7310 7311 return 0; 7312 abort: 7313 md_unregister_thread(&mddev->thread); 7314 print_raid5_conf(conf); 7315 free_conf(conf); 7316 mddev->private = NULL; 7317 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7318 return -EIO; 7319 } 7320 7321 static void raid5_free(struct mddev *mddev, void *priv) 7322 { 7323 struct r5conf *conf = priv; 7324 7325 free_conf(conf); 7326 mddev->to_remove = &raid5_attrs_group; 7327 } 7328 7329 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7330 { 7331 struct r5conf *conf = mddev->private; 7332 int i; 7333 7334 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7335 conf->chunk_sectors / 2, mddev->layout); 7336 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7337 rcu_read_lock(); 7338 for (i = 0; i < conf->raid_disks; i++) { 7339 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 7340 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 7341 } 7342 rcu_read_unlock(); 7343 seq_printf (seq, "]"); 7344 } 7345 7346 static void print_raid5_conf (struct r5conf *conf) 7347 { 7348 int i; 7349 struct disk_info *tmp; 7350 7351 pr_debug("RAID conf printout:\n"); 7352 if (!conf) { 7353 pr_debug("(conf==NULL)\n"); 7354 return; 7355 } 7356 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 7357 conf->raid_disks, 7358 conf->raid_disks - conf->mddev->degraded); 7359 7360 for (i = 0; i < conf->raid_disks; i++) { 7361 char b[BDEVNAME_SIZE]; 7362 tmp = conf->disks + i; 7363 if (tmp->rdev) 7364 pr_debug(" disk %d, o:%d, dev:%s\n", 7365 i, !test_bit(Faulty, &tmp->rdev->flags), 7366 bdevname(tmp->rdev->bdev, b)); 7367 } 7368 } 7369 7370 static int raid5_spare_active(struct mddev *mddev) 7371 { 7372 int i; 7373 struct r5conf *conf = mddev->private; 7374 struct disk_info *tmp; 7375 int count = 0; 7376 unsigned long flags; 7377 7378 for (i = 0; i < conf->raid_disks; i++) { 7379 tmp = conf->disks + i; 7380 if (tmp->replacement 7381 && tmp->replacement->recovery_offset == MaxSector 7382 && !test_bit(Faulty, &tmp->replacement->flags) 7383 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7384 /* Replacement has just become active. */ 7385 if (!tmp->rdev 7386 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7387 count++; 7388 if (tmp->rdev) { 7389 /* Replaced device not technically faulty, 7390 * but we need to be sure it gets removed 7391 * and never re-added. 7392 */ 7393 set_bit(Faulty, &tmp->rdev->flags); 7394 sysfs_notify_dirent_safe( 7395 tmp->rdev->sysfs_state); 7396 } 7397 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7398 } else if (tmp->rdev 7399 && tmp->rdev->recovery_offset == MaxSector 7400 && !test_bit(Faulty, &tmp->rdev->flags) 7401 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7402 count++; 7403 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7404 } 7405 } 7406 spin_lock_irqsave(&conf->device_lock, flags); 7407 mddev->degraded = raid5_calc_degraded(conf); 7408 spin_unlock_irqrestore(&conf->device_lock, flags); 7409 print_raid5_conf(conf); 7410 return count; 7411 } 7412 7413 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7414 { 7415 struct r5conf *conf = mddev->private; 7416 int err = 0; 7417 int number = rdev->raid_disk; 7418 struct md_rdev **rdevp; 7419 struct disk_info *p = conf->disks + number; 7420 7421 print_raid5_conf(conf); 7422 if (test_bit(Journal, &rdev->flags) && conf->log) { 7423 struct r5l_log *log; 7424 /* 7425 * we can't wait pending write here, as this is called in 7426 * raid5d, wait will deadlock. 7427 */ 7428 if (atomic_read(&mddev->writes_pending)) 7429 return -EBUSY; 7430 log = conf->log; 7431 conf->log = NULL; 7432 synchronize_rcu(); 7433 r5l_exit_log(log); 7434 return 0; 7435 } 7436 if (rdev == p->rdev) 7437 rdevp = &p->rdev; 7438 else if (rdev == p->replacement) 7439 rdevp = &p->replacement; 7440 else 7441 return 0; 7442 7443 if (number >= conf->raid_disks && 7444 conf->reshape_progress == MaxSector) 7445 clear_bit(In_sync, &rdev->flags); 7446 7447 if (test_bit(In_sync, &rdev->flags) || 7448 atomic_read(&rdev->nr_pending)) { 7449 err = -EBUSY; 7450 goto abort; 7451 } 7452 /* Only remove non-faulty devices if recovery 7453 * isn't possible. 7454 */ 7455 if (!test_bit(Faulty, &rdev->flags) && 7456 mddev->recovery_disabled != conf->recovery_disabled && 7457 !has_failed(conf) && 7458 (!p->replacement || p->replacement == rdev) && 7459 number < conf->raid_disks) { 7460 err = -EBUSY; 7461 goto abort; 7462 } 7463 *rdevp = NULL; 7464 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 7465 synchronize_rcu(); 7466 if (atomic_read(&rdev->nr_pending)) { 7467 /* lost the race, try later */ 7468 err = -EBUSY; 7469 *rdevp = rdev; 7470 } 7471 } 7472 if (p->replacement) { 7473 /* We must have just cleared 'rdev' */ 7474 p->rdev = p->replacement; 7475 clear_bit(Replacement, &p->replacement->flags); 7476 smp_mb(); /* Make sure other CPUs may see both as identical 7477 * but will never see neither - if they are careful 7478 */ 7479 p->replacement = NULL; 7480 clear_bit(WantReplacement, &rdev->flags); 7481 } else 7482 /* We might have just removed the Replacement as faulty- 7483 * clear the bit just in case 7484 */ 7485 clear_bit(WantReplacement, &rdev->flags); 7486 abort: 7487 7488 print_raid5_conf(conf); 7489 return err; 7490 } 7491 7492 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7493 { 7494 struct r5conf *conf = mddev->private; 7495 int err = -EEXIST; 7496 int disk; 7497 struct disk_info *p; 7498 int first = 0; 7499 int last = conf->raid_disks - 1; 7500 7501 if (test_bit(Journal, &rdev->flags)) { 7502 char b[BDEVNAME_SIZE]; 7503 if (conf->log) 7504 return -EBUSY; 7505 7506 rdev->raid_disk = 0; 7507 /* 7508 * The array is in readonly mode if journal is missing, so no 7509 * write requests running. We should be safe 7510 */ 7511 r5l_init_log(conf, rdev); 7512 pr_debug("md/raid:%s: using device %s as journal\n", 7513 mdname(mddev), bdevname(rdev->bdev, b)); 7514 return 0; 7515 } 7516 if (mddev->recovery_disabled == conf->recovery_disabled) 7517 return -EBUSY; 7518 7519 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7520 /* no point adding a device */ 7521 return -EINVAL; 7522 7523 if (rdev->raid_disk >= 0) 7524 first = last = rdev->raid_disk; 7525 7526 /* 7527 * find the disk ... but prefer rdev->saved_raid_disk 7528 * if possible. 7529 */ 7530 if (rdev->saved_raid_disk >= 0 && 7531 rdev->saved_raid_disk >= first && 7532 conf->disks[rdev->saved_raid_disk].rdev == NULL) 7533 first = rdev->saved_raid_disk; 7534 7535 for (disk = first; disk <= last; disk++) { 7536 p = conf->disks + disk; 7537 if (p->rdev == NULL) { 7538 clear_bit(In_sync, &rdev->flags); 7539 rdev->raid_disk = disk; 7540 err = 0; 7541 if (rdev->saved_raid_disk != disk) 7542 conf->fullsync = 1; 7543 rcu_assign_pointer(p->rdev, rdev); 7544 goto out; 7545 } 7546 } 7547 for (disk = first; disk <= last; disk++) { 7548 p = conf->disks + disk; 7549 if (test_bit(WantReplacement, &p->rdev->flags) && 7550 p->replacement == NULL) { 7551 clear_bit(In_sync, &rdev->flags); 7552 set_bit(Replacement, &rdev->flags); 7553 rdev->raid_disk = disk; 7554 err = 0; 7555 conf->fullsync = 1; 7556 rcu_assign_pointer(p->replacement, rdev); 7557 break; 7558 } 7559 } 7560 out: 7561 print_raid5_conf(conf); 7562 return err; 7563 } 7564 7565 static int raid5_resize(struct mddev *mddev, sector_t sectors) 7566 { 7567 /* no resync is happening, and there is enough space 7568 * on all devices, so we can resize. 7569 * We need to make sure resync covers any new space. 7570 * If the array is shrinking we should possibly wait until 7571 * any io in the removed space completes, but it hardly seems 7572 * worth it. 7573 */ 7574 sector_t newsize; 7575 struct r5conf *conf = mddev->private; 7576 7577 if (conf->log) 7578 return -EINVAL; 7579 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7580 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 7581 if (mddev->external_size && 7582 mddev->array_sectors > newsize) 7583 return -EINVAL; 7584 if (mddev->bitmap) { 7585 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 7586 if (ret) 7587 return ret; 7588 } 7589 md_set_array_sectors(mddev, newsize); 7590 if (sectors > mddev->dev_sectors && 7591 mddev->recovery_cp > mddev->dev_sectors) { 7592 mddev->recovery_cp = mddev->dev_sectors; 7593 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7594 } 7595 mddev->dev_sectors = sectors; 7596 mddev->resync_max_sectors = sectors; 7597 return 0; 7598 } 7599 7600 static int check_stripe_cache(struct mddev *mddev) 7601 { 7602 /* Can only proceed if there are plenty of stripe_heads. 7603 * We need a minimum of one full stripe,, and for sensible progress 7604 * it is best to have about 4 times that. 7605 * If we require 4 times, then the default 256 4K stripe_heads will 7606 * allow for chunk sizes up to 256K, which is probably OK. 7607 * If the chunk size is greater, user-space should request more 7608 * stripe_heads first. 7609 */ 7610 struct r5conf *conf = mddev->private; 7611 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 7612 > conf->min_nr_stripes || 7613 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 7614 > conf->min_nr_stripes) { 7615 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 7616 mdname(mddev), 7617 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 7618 / STRIPE_SIZE)*4); 7619 return 0; 7620 } 7621 return 1; 7622 } 7623 7624 static int check_reshape(struct mddev *mddev) 7625 { 7626 struct r5conf *conf = mddev->private; 7627 7628 if (conf->log) 7629 return -EINVAL; 7630 if (mddev->delta_disks == 0 && 7631 mddev->new_layout == mddev->layout && 7632 mddev->new_chunk_sectors == mddev->chunk_sectors) 7633 return 0; /* nothing to do */ 7634 if (has_failed(conf)) 7635 return -EINVAL; 7636 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 7637 /* We might be able to shrink, but the devices must 7638 * be made bigger first. 7639 * For raid6, 4 is the minimum size. 7640 * Otherwise 2 is the minimum 7641 */ 7642 int min = 2; 7643 if (mddev->level == 6) 7644 min = 4; 7645 if (mddev->raid_disks + mddev->delta_disks < min) 7646 return -EINVAL; 7647 } 7648 7649 if (!check_stripe_cache(mddev)) 7650 return -ENOSPC; 7651 7652 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 7653 mddev->delta_disks > 0) 7654 if (resize_chunks(conf, 7655 conf->previous_raid_disks 7656 + max(0, mddev->delta_disks), 7657 max(mddev->new_chunk_sectors, 7658 mddev->chunk_sectors) 7659 ) < 0) 7660 return -ENOMEM; 7661 return resize_stripes(conf, (conf->previous_raid_disks 7662 + mddev->delta_disks)); 7663 } 7664 7665 static int raid5_start_reshape(struct mddev *mddev) 7666 { 7667 struct r5conf *conf = mddev->private; 7668 struct md_rdev *rdev; 7669 int spares = 0; 7670 unsigned long flags; 7671 7672 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 7673 return -EBUSY; 7674 7675 if (!check_stripe_cache(mddev)) 7676 return -ENOSPC; 7677 7678 if (has_failed(conf)) 7679 return -EINVAL; 7680 7681 rdev_for_each(rdev, mddev) { 7682 if (!test_bit(In_sync, &rdev->flags) 7683 && !test_bit(Faulty, &rdev->flags)) 7684 spares++; 7685 } 7686 7687 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 7688 /* Not enough devices even to make a degraded array 7689 * of that size 7690 */ 7691 return -EINVAL; 7692 7693 /* Refuse to reduce size of the array. Any reductions in 7694 * array size must be through explicit setting of array_size 7695 * attribute. 7696 */ 7697 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 7698 < mddev->array_sectors) { 7699 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 7700 mdname(mddev)); 7701 return -EINVAL; 7702 } 7703 7704 atomic_set(&conf->reshape_stripes, 0); 7705 spin_lock_irq(&conf->device_lock); 7706 write_seqcount_begin(&conf->gen_lock); 7707 conf->previous_raid_disks = conf->raid_disks; 7708 conf->raid_disks += mddev->delta_disks; 7709 conf->prev_chunk_sectors = conf->chunk_sectors; 7710 conf->chunk_sectors = mddev->new_chunk_sectors; 7711 conf->prev_algo = conf->algorithm; 7712 conf->algorithm = mddev->new_layout; 7713 conf->generation++; 7714 /* Code that selects data_offset needs to see the generation update 7715 * if reshape_progress has been set - so a memory barrier needed. 7716 */ 7717 smp_mb(); 7718 if (mddev->reshape_backwards) 7719 conf->reshape_progress = raid5_size(mddev, 0, 0); 7720 else 7721 conf->reshape_progress = 0; 7722 conf->reshape_safe = conf->reshape_progress; 7723 write_seqcount_end(&conf->gen_lock); 7724 spin_unlock_irq(&conf->device_lock); 7725 7726 /* Now make sure any requests that proceeded on the assumption 7727 * the reshape wasn't running - like Discard or Read - have 7728 * completed. 7729 */ 7730 mddev_suspend(mddev); 7731 mddev_resume(mddev); 7732 7733 /* Add some new drives, as many as will fit. 7734 * We know there are enough to make the newly sized array work. 7735 * Don't add devices if we are reducing the number of 7736 * devices in the array. This is because it is not possible 7737 * to correctly record the "partially reconstructed" state of 7738 * such devices during the reshape and confusion could result. 7739 */ 7740 if (mddev->delta_disks >= 0) { 7741 rdev_for_each(rdev, mddev) 7742 if (rdev->raid_disk < 0 && 7743 !test_bit(Faulty, &rdev->flags)) { 7744 if (raid5_add_disk(mddev, rdev) == 0) { 7745 if (rdev->raid_disk 7746 >= conf->previous_raid_disks) 7747 set_bit(In_sync, &rdev->flags); 7748 else 7749 rdev->recovery_offset = 0; 7750 7751 if (sysfs_link_rdev(mddev, rdev)) 7752 /* Failure here is OK */; 7753 } 7754 } else if (rdev->raid_disk >= conf->previous_raid_disks 7755 && !test_bit(Faulty, &rdev->flags)) { 7756 /* This is a spare that was manually added */ 7757 set_bit(In_sync, &rdev->flags); 7758 } 7759 7760 /* When a reshape changes the number of devices, 7761 * ->degraded is measured against the larger of the 7762 * pre and post number of devices. 7763 */ 7764 spin_lock_irqsave(&conf->device_lock, flags); 7765 mddev->degraded = raid5_calc_degraded(conf); 7766 spin_unlock_irqrestore(&conf->device_lock, flags); 7767 } 7768 mddev->raid_disks = conf->raid_disks; 7769 mddev->reshape_position = conf->reshape_progress; 7770 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7771 7772 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7773 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7774 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7775 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7776 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7777 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7778 "reshape"); 7779 if (!mddev->sync_thread) { 7780 mddev->recovery = 0; 7781 spin_lock_irq(&conf->device_lock); 7782 write_seqcount_begin(&conf->gen_lock); 7783 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 7784 mddev->new_chunk_sectors = 7785 conf->chunk_sectors = conf->prev_chunk_sectors; 7786 mddev->new_layout = conf->algorithm = conf->prev_algo; 7787 rdev_for_each(rdev, mddev) 7788 rdev->new_data_offset = rdev->data_offset; 7789 smp_wmb(); 7790 conf->generation --; 7791 conf->reshape_progress = MaxSector; 7792 mddev->reshape_position = MaxSector; 7793 write_seqcount_end(&conf->gen_lock); 7794 spin_unlock_irq(&conf->device_lock); 7795 return -EAGAIN; 7796 } 7797 conf->reshape_checkpoint = jiffies; 7798 md_wakeup_thread(mddev->sync_thread); 7799 md_new_event(mddev); 7800 return 0; 7801 } 7802 7803 /* This is called from the reshape thread and should make any 7804 * changes needed in 'conf' 7805 */ 7806 static void end_reshape(struct r5conf *conf) 7807 { 7808 7809 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 7810 struct md_rdev *rdev; 7811 7812 spin_lock_irq(&conf->device_lock); 7813 conf->previous_raid_disks = conf->raid_disks; 7814 rdev_for_each(rdev, conf->mddev) 7815 rdev->data_offset = rdev->new_data_offset; 7816 smp_wmb(); 7817 conf->reshape_progress = MaxSector; 7818 conf->mddev->reshape_position = MaxSector; 7819 spin_unlock_irq(&conf->device_lock); 7820 wake_up(&conf->wait_for_overlap); 7821 7822 /* read-ahead size must cover two whole stripes, which is 7823 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 7824 */ 7825 if (conf->mddev->queue) { 7826 int data_disks = conf->raid_disks - conf->max_degraded; 7827 int stripe = data_disks * ((conf->chunk_sectors << 9) 7828 / PAGE_SIZE); 7829 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 7830 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 7831 } 7832 } 7833 } 7834 7835 /* This is called from the raid5d thread with mddev_lock held. 7836 * It makes config changes to the device. 7837 */ 7838 static void raid5_finish_reshape(struct mddev *mddev) 7839 { 7840 struct r5conf *conf = mddev->private; 7841 7842 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7843 7844 if (mddev->delta_disks > 0) { 7845 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7846 if (mddev->queue) { 7847 set_capacity(mddev->gendisk, mddev->array_sectors); 7848 revalidate_disk(mddev->gendisk); 7849 } 7850 } else { 7851 int d; 7852 spin_lock_irq(&conf->device_lock); 7853 mddev->degraded = raid5_calc_degraded(conf); 7854 spin_unlock_irq(&conf->device_lock); 7855 for (d = conf->raid_disks ; 7856 d < conf->raid_disks - mddev->delta_disks; 7857 d++) { 7858 struct md_rdev *rdev = conf->disks[d].rdev; 7859 if (rdev) 7860 clear_bit(In_sync, &rdev->flags); 7861 rdev = conf->disks[d].replacement; 7862 if (rdev) 7863 clear_bit(In_sync, &rdev->flags); 7864 } 7865 } 7866 mddev->layout = conf->algorithm; 7867 mddev->chunk_sectors = conf->chunk_sectors; 7868 mddev->reshape_position = MaxSector; 7869 mddev->delta_disks = 0; 7870 mddev->reshape_backwards = 0; 7871 } 7872 } 7873 7874 static void raid5_quiesce(struct mddev *mddev, int state) 7875 { 7876 struct r5conf *conf = mddev->private; 7877 7878 switch(state) { 7879 case 2: /* resume for a suspend */ 7880 wake_up(&conf->wait_for_overlap); 7881 break; 7882 7883 case 1: /* stop all writes */ 7884 lock_all_device_hash_locks_irq(conf); 7885 /* '2' tells resync/reshape to pause so that all 7886 * active stripes can drain 7887 */ 7888 r5c_flush_cache(conf, INT_MAX); 7889 conf->quiesce = 2; 7890 wait_event_cmd(conf->wait_for_quiescent, 7891 atomic_read(&conf->active_stripes) == 0 && 7892 atomic_read(&conf->active_aligned_reads) == 0, 7893 unlock_all_device_hash_locks_irq(conf), 7894 lock_all_device_hash_locks_irq(conf)); 7895 conf->quiesce = 1; 7896 unlock_all_device_hash_locks_irq(conf); 7897 /* allow reshape to continue */ 7898 wake_up(&conf->wait_for_overlap); 7899 break; 7900 7901 case 0: /* re-enable writes */ 7902 lock_all_device_hash_locks_irq(conf); 7903 conf->quiesce = 0; 7904 wake_up(&conf->wait_for_quiescent); 7905 wake_up(&conf->wait_for_overlap); 7906 unlock_all_device_hash_locks_irq(conf); 7907 break; 7908 } 7909 r5l_quiesce(conf->log, state); 7910 } 7911 7912 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 7913 { 7914 struct r0conf *raid0_conf = mddev->private; 7915 sector_t sectors; 7916 7917 /* for raid0 takeover only one zone is supported */ 7918 if (raid0_conf->nr_strip_zones > 1) { 7919 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 7920 mdname(mddev)); 7921 return ERR_PTR(-EINVAL); 7922 } 7923 7924 sectors = raid0_conf->strip_zone[0].zone_end; 7925 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 7926 mddev->dev_sectors = sectors; 7927 mddev->new_level = level; 7928 mddev->new_layout = ALGORITHM_PARITY_N; 7929 mddev->new_chunk_sectors = mddev->chunk_sectors; 7930 mddev->raid_disks += 1; 7931 mddev->delta_disks = 1; 7932 /* make sure it will be not marked as dirty */ 7933 mddev->recovery_cp = MaxSector; 7934 7935 return setup_conf(mddev); 7936 } 7937 7938 static void *raid5_takeover_raid1(struct mddev *mddev) 7939 { 7940 int chunksect; 7941 void *ret; 7942 7943 if (mddev->raid_disks != 2 || 7944 mddev->degraded > 1) 7945 return ERR_PTR(-EINVAL); 7946 7947 /* Should check if there are write-behind devices? */ 7948 7949 chunksect = 64*2; /* 64K by default */ 7950 7951 /* The array must be an exact multiple of chunksize */ 7952 while (chunksect && (mddev->array_sectors & (chunksect-1))) 7953 chunksect >>= 1; 7954 7955 if ((chunksect<<9) < STRIPE_SIZE) 7956 /* array size does not allow a suitable chunk size */ 7957 return ERR_PTR(-EINVAL); 7958 7959 mddev->new_level = 5; 7960 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 7961 mddev->new_chunk_sectors = chunksect; 7962 7963 ret = setup_conf(mddev); 7964 if (!IS_ERR(ret)) 7965 mddev_clear_unsupported_flags(mddev, 7966 UNSUPPORTED_MDDEV_FLAGS); 7967 return ret; 7968 } 7969 7970 static void *raid5_takeover_raid6(struct mddev *mddev) 7971 { 7972 int new_layout; 7973 7974 switch (mddev->layout) { 7975 case ALGORITHM_LEFT_ASYMMETRIC_6: 7976 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 7977 break; 7978 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7979 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 7980 break; 7981 case ALGORITHM_LEFT_SYMMETRIC_6: 7982 new_layout = ALGORITHM_LEFT_SYMMETRIC; 7983 break; 7984 case ALGORITHM_RIGHT_SYMMETRIC_6: 7985 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 7986 break; 7987 case ALGORITHM_PARITY_0_6: 7988 new_layout = ALGORITHM_PARITY_0; 7989 break; 7990 case ALGORITHM_PARITY_N: 7991 new_layout = ALGORITHM_PARITY_N; 7992 break; 7993 default: 7994 return ERR_PTR(-EINVAL); 7995 } 7996 mddev->new_level = 5; 7997 mddev->new_layout = new_layout; 7998 mddev->delta_disks = -1; 7999 mddev->raid_disks -= 1; 8000 return setup_conf(mddev); 8001 } 8002 8003 static int raid5_check_reshape(struct mddev *mddev) 8004 { 8005 /* For a 2-drive array, the layout and chunk size can be changed 8006 * immediately as not restriping is needed. 8007 * For larger arrays we record the new value - after validation 8008 * to be used by a reshape pass. 8009 */ 8010 struct r5conf *conf = mddev->private; 8011 int new_chunk = mddev->new_chunk_sectors; 8012 8013 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8014 return -EINVAL; 8015 if (new_chunk > 0) { 8016 if (!is_power_of_2(new_chunk)) 8017 return -EINVAL; 8018 if (new_chunk < (PAGE_SIZE>>9)) 8019 return -EINVAL; 8020 if (mddev->array_sectors & (new_chunk-1)) 8021 /* not factor of array size */ 8022 return -EINVAL; 8023 } 8024 8025 /* They look valid */ 8026 8027 if (mddev->raid_disks == 2) { 8028 /* can make the change immediately */ 8029 if (mddev->new_layout >= 0) { 8030 conf->algorithm = mddev->new_layout; 8031 mddev->layout = mddev->new_layout; 8032 } 8033 if (new_chunk > 0) { 8034 conf->chunk_sectors = new_chunk ; 8035 mddev->chunk_sectors = new_chunk; 8036 } 8037 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8038 md_wakeup_thread(mddev->thread); 8039 } 8040 return check_reshape(mddev); 8041 } 8042 8043 static int raid6_check_reshape(struct mddev *mddev) 8044 { 8045 int new_chunk = mddev->new_chunk_sectors; 8046 8047 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8048 return -EINVAL; 8049 if (new_chunk > 0) { 8050 if (!is_power_of_2(new_chunk)) 8051 return -EINVAL; 8052 if (new_chunk < (PAGE_SIZE >> 9)) 8053 return -EINVAL; 8054 if (mddev->array_sectors & (new_chunk-1)) 8055 /* not factor of array size */ 8056 return -EINVAL; 8057 } 8058 8059 /* They look valid */ 8060 return check_reshape(mddev); 8061 } 8062 8063 static void *raid5_takeover(struct mddev *mddev) 8064 { 8065 /* raid5 can take over: 8066 * raid0 - if there is only one strip zone - make it a raid4 layout 8067 * raid1 - if there are two drives. We need to know the chunk size 8068 * raid4 - trivial - just use a raid4 layout. 8069 * raid6 - Providing it is a *_6 layout 8070 */ 8071 if (mddev->level == 0) 8072 return raid45_takeover_raid0(mddev, 5); 8073 if (mddev->level == 1) 8074 return raid5_takeover_raid1(mddev); 8075 if (mddev->level == 4) { 8076 mddev->new_layout = ALGORITHM_PARITY_N; 8077 mddev->new_level = 5; 8078 return setup_conf(mddev); 8079 } 8080 if (mddev->level == 6) 8081 return raid5_takeover_raid6(mddev); 8082 8083 return ERR_PTR(-EINVAL); 8084 } 8085 8086 static void *raid4_takeover(struct mddev *mddev) 8087 { 8088 /* raid4 can take over: 8089 * raid0 - if there is only one strip zone 8090 * raid5 - if layout is right 8091 */ 8092 if (mddev->level == 0) 8093 return raid45_takeover_raid0(mddev, 4); 8094 if (mddev->level == 5 && 8095 mddev->layout == ALGORITHM_PARITY_N) { 8096 mddev->new_layout = 0; 8097 mddev->new_level = 4; 8098 return setup_conf(mddev); 8099 } 8100 return ERR_PTR(-EINVAL); 8101 } 8102 8103 static struct md_personality raid5_personality; 8104 8105 static void *raid6_takeover(struct mddev *mddev) 8106 { 8107 /* Currently can only take over a raid5. We map the 8108 * personality to an equivalent raid6 personality 8109 * with the Q block at the end. 8110 */ 8111 int new_layout; 8112 8113 if (mddev->pers != &raid5_personality) 8114 return ERR_PTR(-EINVAL); 8115 if (mddev->degraded > 1) 8116 return ERR_PTR(-EINVAL); 8117 if (mddev->raid_disks > 253) 8118 return ERR_PTR(-EINVAL); 8119 if (mddev->raid_disks < 3) 8120 return ERR_PTR(-EINVAL); 8121 8122 switch (mddev->layout) { 8123 case ALGORITHM_LEFT_ASYMMETRIC: 8124 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8125 break; 8126 case ALGORITHM_RIGHT_ASYMMETRIC: 8127 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8128 break; 8129 case ALGORITHM_LEFT_SYMMETRIC: 8130 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8131 break; 8132 case ALGORITHM_RIGHT_SYMMETRIC: 8133 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8134 break; 8135 case ALGORITHM_PARITY_0: 8136 new_layout = ALGORITHM_PARITY_0_6; 8137 break; 8138 case ALGORITHM_PARITY_N: 8139 new_layout = ALGORITHM_PARITY_N; 8140 break; 8141 default: 8142 return ERR_PTR(-EINVAL); 8143 } 8144 mddev->new_level = 6; 8145 mddev->new_layout = new_layout; 8146 mddev->delta_disks = 1; 8147 mddev->raid_disks += 1; 8148 return setup_conf(mddev); 8149 } 8150 8151 static struct md_personality raid6_personality = 8152 { 8153 .name = "raid6", 8154 .level = 6, 8155 .owner = THIS_MODULE, 8156 .make_request = raid5_make_request, 8157 .run = raid5_run, 8158 .free = raid5_free, 8159 .status = raid5_status, 8160 .error_handler = raid5_error, 8161 .hot_add_disk = raid5_add_disk, 8162 .hot_remove_disk= raid5_remove_disk, 8163 .spare_active = raid5_spare_active, 8164 .sync_request = raid5_sync_request, 8165 .resize = raid5_resize, 8166 .size = raid5_size, 8167 .check_reshape = raid6_check_reshape, 8168 .start_reshape = raid5_start_reshape, 8169 .finish_reshape = raid5_finish_reshape, 8170 .quiesce = raid5_quiesce, 8171 .takeover = raid6_takeover, 8172 .congested = raid5_congested, 8173 }; 8174 static struct md_personality raid5_personality = 8175 { 8176 .name = "raid5", 8177 .level = 5, 8178 .owner = THIS_MODULE, 8179 .make_request = raid5_make_request, 8180 .run = raid5_run, 8181 .free = raid5_free, 8182 .status = raid5_status, 8183 .error_handler = raid5_error, 8184 .hot_add_disk = raid5_add_disk, 8185 .hot_remove_disk= raid5_remove_disk, 8186 .spare_active = raid5_spare_active, 8187 .sync_request = raid5_sync_request, 8188 .resize = raid5_resize, 8189 .size = raid5_size, 8190 .check_reshape = raid5_check_reshape, 8191 .start_reshape = raid5_start_reshape, 8192 .finish_reshape = raid5_finish_reshape, 8193 .quiesce = raid5_quiesce, 8194 .takeover = raid5_takeover, 8195 .congested = raid5_congested, 8196 }; 8197 8198 static struct md_personality raid4_personality = 8199 { 8200 .name = "raid4", 8201 .level = 4, 8202 .owner = THIS_MODULE, 8203 .make_request = raid5_make_request, 8204 .run = raid5_run, 8205 .free = raid5_free, 8206 .status = raid5_status, 8207 .error_handler = raid5_error, 8208 .hot_add_disk = raid5_add_disk, 8209 .hot_remove_disk= raid5_remove_disk, 8210 .spare_active = raid5_spare_active, 8211 .sync_request = raid5_sync_request, 8212 .resize = raid5_resize, 8213 .size = raid5_size, 8214 .check_reshape = raid5_check_reshape, 8215 .start_reshape = raid5_start_reshape, 8216 .finish_reshape = raid5_finish_reshape, 8217 .quiesce = raid5_quiesce, 8218 .takeover = raid4_takeover, 8219 .congested = raid5_congested, 8220 }; 8221 8222 static int __init raid5_init(void) 8223 { 8224 int ret; 8225 8226 raid5_wq = alloc_workqueue("raid5wq", 8227 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 8228 if (!raid5_wq) 8229 return -ENOMEM; 8230 8231 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 8232 "md/raid5:prepare", 8233 raid456_cpu_up_prepare, 8234 raid456_cpu_dead); 8235 if (ret) { 8236 destroy_workqueue(raid5_wq); 8237 return ret; 8238 } 8239 register_md_personality(&raid6_personality); 8240 register_md_personality(&raid5_personality); 8241 register_md_personality(&raid4_personality); 8242 return 0; 8243 } 8244 8245 static void raid5_exit(void) 8246 { 8247 unregister_md_personality(&raid6_personality); 8248 unregister_md_personality(&raid5_personality); 8249 unregister_md_personality(&raid4_personality); 8250 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 8251 destroy_workqueue(raid5_wq); 8252 } 8253 8254 module_init(raid5_init); 8255 module_exit(raid5_exit); 8256 MODULE_LICENSE("GPL"); 8257 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 8258 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 8259 MODULE_ALIAS("md-raid5"); 8260 MODULE_ALIAS("md-raid4"); 8261 MODULE_ALIAS("md-level-5"); 8262 MODULE_ALIAS("md-level-4"); 8263 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 8264 MODULE_ALIAS("md-raid6"); 8265 MODULE_ALIAS("md-level-6"); 8266 8267 /* This used to be two separate modules, they were: */ 8268 MODULE_ALIAS("raid5"); 8269 MODULE_ALIAS("raid6"); 8270