xref: /openbmc/linux/drivers/md/raid5.c (revision 1c2dd16a)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <linux/sched/signal.h>
59 
60 #include <trace/events/block.h>
61 
62 #include "md.h"
63 #include "raid5.h"
64 #include "raid0.h"
65 #include "bitmap.h"
66 
67 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
68 
69 #define cpu_to_group(cpu) cpu_to_node(cpu)
70 #define ANY_GROUP NUMA_NO_NODE
71 
72 static bool devices_handle_discard_safely = false;
73 module_param(devices_handle_discard_safely, bool, 0644);
74 MODULE_PARM_DESC(devices_handle_discard_safely,
75 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
76 static struct workqueue_struct *raid5_wq;
77 
78 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
79 {
80 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
81 	return &conf->stripe_hashtbl[hash];
82 }
83 
84 static inline int stripe_hash_locks_hash(sector_t sect)
85 {
86 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
87 }
88 
89 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
90 {
91 	spin_lock_irq(conf->hash_locks + hash);
92 	spin_lock(&conf->device_lock);
93 }
94 
95 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
96 {
97 	spin_unlock(&conf->device_lock);
98 	spin_unlock_irq(conf->hash_locks + hash);
99 }
100 
101 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
102 {
103 	int i;
104 	local_irq_disable();
105 	spin_lock(conf->hash_locks);
106 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
107 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
108 	spin_lock(&conf->device_lock);
109 }
110 
111 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
112 {
113 	int i;
114 	spin_unlock(&conf->device_lock);
115 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
116 		spin_unlock(conf->hash_locks + i - 1);
117 	local_irq_enable();
118 }
119 
120 /* Find first data disk in a raid6 stripe */
121 static inline int raid6_d0(struct stripe_head *sh)
122 {
123 	if (sh->ddf_layout)
124 		/* ddf always start from first device */
125 		return 0;
126 	/* md starts just after Q block */
127 	if (sh->qd_idx == sh->disks - 1)
128 		return 0;
129 	else
130 		return sh->qd_idx + 1;
131 }
132 static inline int raid6_next_disk(int disk, int raid_disks)
133 {
134 	disk++;
135 	return (disk < raid_disks) ? disk : 0;
136 }
137 
138 /* When walking through the disks in a raid5, starting at raid6_d0,
139  * We need to map each disk to a 'slot', where the data disks are slot
140  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141  * is raid_disks-1.  This help does that mapping.
142  */
143 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144 			     int *count, int syndrome_disks)
145 {
146 	int slot = *count;
147 
148 	if (sh->ddf_layout)
149 		(*count)++;
150 	if (idx == sh->pd_idx)
151 		return syndrome_disks;
152 	if (idx == sh->qd_idx)
153 		return syndrome_disks + 1;
154 	if (!sh->ddf_layout)
155 		(*count)++;
156 	return slot;
157 }
158 
159 static void return_io(struct bio_list *return_bi)
160 {
161 	struct bio *bi;
162 	while ((bi = bio_list_pop(return_bi)) != NULL) {
163 		bi->bi_iter.bi_size = 0;
164 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
165 					 bi, 0);
166 		bio_endio(bi);
167 	}
168 }
169 
170 static void print_raid5_conf (struct r5conf *conf);
171 
172 static int stripe_operations_active(struct stripe_head *sh)
173 {
174 	return sh->check_state || sh->reconstruct_state ||
175 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
176 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
177 }
178 
179 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
180 {
181 	struct r5conf *conf = sh->raid_conf;
182 	struct r5worker_group *group;
183 	int thread_cnt;
184 	int i, cpu = sh->cpu;
185 
186 	if (!cpu_online(cpu)) {
187 		cpu = cpumask_any(cpu_online_mask);
188 		sh->cpu = cpu;
189 	}
190 
191 	if (list_empty(&sh->lru)) {
192 		struct r5worker_group *group;
193 		group = conf->worker_groups + cpu_to_group(cpu);
194 		list_add_tail(&sh->lru, &group->handle_list);
195 		group->stripes_cnt++;
196 		sh->group = group;
197 	}
198 
199 	if (conf->worker_cnt_per_group == 0) {
200 		md_wakeup_thread(conf->mddev->thread);
201 		return;
202 	}
203 
204 	group = conf->worker_groups + cpu_to_group(sh->cpu);
205 
206 	group->workers[0].working = true;
207 	/* at least one worker should run to avoid race */
208 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209 
210 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
211 	/* wakeup more workers */
212 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
213 		if (group->workers[i].working == false) {
214 			group->workers[i].working = true;
215 			queue_work_on(sh->cpu, raid5_wq,
216 				      &group->workers[i].work);
217 			thread_cnt--;
218 		}
219 	}
220 }
221 
222 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
223 			      struct list_head *temp_inactive_list)
224 {
225 	int i;
226 	int injournal = 0;	/* number of date pages with R5_InJournal */
227 
228 	BUG_ON(!list_empty(&sh->lru));
229 	BUG_ON(atomic_read(&conf->active_stripes)==0);
230 
231 	if (r5c_is_writeback(conf->log))
232 		for (i = sh->disks; i--; )
233 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 				injournal++;
235 	/*
236 	 * When quiesce in r5c write back, set STRIPE_HANDLE for stripes with
237 	 * data in journal, so they are not released to cached lists
238 	 */
239 	if (conf->quiesce && r5c_is_writeback(conf->log) &&
240 	    !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0) {
241 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
242 			r5c_make_stripe_write_out(sh);
243 		set_bit(STRIPE_HANDLE, &sh->state);
244 	}
245 
246 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
247 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
248 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
249 			list_add_tail(&sh->lru, &conf->delayed_list);
250 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
251 			   sh->bm_seq - conf->seq_write > 0)
252 			list_add_tail(&sh->lru, &conf->bitmap_list);
253 		else {
254 			clear_bit(STRIPE_DELAYED, &sh->state);
255 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
256 			if (conf->worker_cnt_per_group == 0) {
257 				list_add_tail(&sh->lru, &conf->handle_list);
258 			} else {
259 				raid5_wakeup_stripe_thread(sh);
260 				return;
261 			}
262 		}
263 		md_wakeup_thread(conf->mddev->thread);
264 	} else {
265 		BUG_ON(stripe_operations_active(sh));
266 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
267 			if (atomic_dec_return(&conf->preread_active_stripes)
268 			    < IO_THRESHOLD)
269 				md_wakeup_thread(conf->mddev->thread);
270 		atomic_dec(&conf->active_stripes);
271 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
272 			if (!r5c_is_writeback(conf->log))
273 				list_add_tail(&sh->lru, temp_inactive_list);
274 			else {
275 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
276 				if (injournal == 0)
277 					list_add_tail(&sh->lru, temp_inactive_list);
278 				else if (injournal == conf->raid_disks - conf->max_degraded) {
279 					/* full stripe */
280 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
281 						atomic_inc(&conf->r5c_cached_full_stripes);
282 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
283 						atomic_dec(&conf->r5c_cached_partial_stripes);
284 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
285 					r5c_check_cached_full_stripe(conf);
286 				} else
287 					/*
288 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
289 					 * r5c_try_caching_write(). No need to
290 					 * set it again.
291 					 */
292 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
293 			}
294 		}
295 	}
296 }
297 
298 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
299 			     struct list_head *temp_inactive_list)
300 {
301 	if (atomic_dec_and_test(&sh->count))
302 		do_release_stripe(conf, sh, temp_inactive_list);
303 }
304 
305 /*
306  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
307  *
308  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
309  * given time. Adding stripes only takes device lock, while deleting stripes
310  * only takes hash lock.
311  */
312 static void release_inactive_stripe_list(struct r5conf *conf,
313 					 struct list_head *temp_inactive_list,
314 					 int hash)
315 {
316 	int size;
317 	bool do_wakeup = false;
318 	unsigned long flags;
319 
320 	if (hash == NR_STRIPE_HASH_LOCKS) {
321 		size = NR_STRIPE_HASH_LOCKS;
322 		hash = NR_STRIPE_HASH_LOCKS - 1;
323 	} else
324 		size = 1;
325 	while (size) {
326 		struct list_head *list = &temp_inactive_list[size - 1];
327 
328 		/*
329 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
330 		 * remove stripes from the list
331 		 */
332 		if (!list_empty_careful(list)) {
333 			spin_lock_irqsave(conf->hash_locks + hash, flags);
334 			if (list_empty(conf->inactive_list + hash) &&
335 			    !list_empty(list))
336 				atomic_dec(&conf->empty_inactive_list_nr);
337 			list_splice_tail_init(list, conf->inactive_list + hash);
338 			do_wakeup = true;
339 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
340 		}
341 		size--;
342 		hash--;
343 	}
344 
345 	if (do_wakeup) {
346 		wake_up(&conf->wait_for_stripe);
347 		if (atomic_read(&conf->active_stripes) == 0)
348 			wake_up(&conf->wait_for_quiescent);
349 		if (conf->retry_read_aligned)
350 			md_wakeup_thread(conf->mddev->thread);
351 	}
352 }
353 
354 /* should hold conf->device_lock already */
355 static int release_stripe_list(struct r5conf *conf,
356 			       struct list_head *temp_inactive_list)
357 {
358 	struct stripe_head *sh, *t;
359 	int count = 0;
360 	struct llist_node *head;
361 
362 	head = llist_del_all(&conf->released_stripes);
363 	head = llist_reverse_order(head);
364 	llist_for_each_entry_safe(sh, t, head, release_list) {
365 		int hash;
366 
367 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
368 		smp_mb();
369 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
370 		/*
371 		 * Don't worry the bit is set here, because if the bit is set
372 		 * again, the count is always > 1. This is true for
373 		 * STRIPE_ON_UNPLUG_LIST bit too.
374 		 */
375 		hash = sh->hash_lock_index;
376 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
377 		count++;
378 	}
379 
380 	return count;
381 }
382 
383 void raid5_release_stripe(struct stripe_head *sh)
384 {
385 	struct r5conf *conf = sh->raid_conf;
386 	unsigned long flags;
387 	struct list_head list;
388 	int hash;
389 	bool wakeup;
390 
391 	/* Avoid release_list until the last reference.
392 	 */
393 	if (atomic_add_unless(&sh->count, -1, 1))
394 		return;
395 
396 	if (unlikely(!conf->mddev->thread) ||
397 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
398 		goto slow_path;
399 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
400 	if (wakeup)
401 		md_wakeup_thread(conf->mddev->thread);
402 	return;
403 slow_path:
404 	local_irq_save(flags);
405 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
406 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
407 		INIT_LIST_HEAD(&list);
408 		hash = sh->hash_lock_index;
409 		do_release_stripe(conf, sh, &list);
410 		spin_unlock(&conf->device_lock);
411 		release_inactive_stripe_list(conf, &list, hash);
412 	}
413 	local_irq_restore(flags);
414 }
415 
416 static inline void remove_hash(struct stripe_head *sh)
417 {
418 	pr_debug("remove_hash(), stripe %llu\n",
419 		(unsigned long long)sh->sector);
420 
421 	hlist_del_init(&sh->hash);
422 }
423 
424 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
425 {
426 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
427 
428 	pr_debug("insert_hash(), stripe %llu\n",
429 		(unsigned long long)sh->sector);
430 
431 	hlist_add_head(&sh->hash, hp);
432 }
433 
434 /* find an idle stripe, make sure it is unhashed, and return it. */
435 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
436 {
437 	struct stripe_head *sh = NULL;
438 	struct list_head *first;
439 
440 	if (list_empty(conf->inactive_list + hash))
441 		goto out;
442 	first = (conf->inactive_list + hash)->next;
443 	sh = list_entry(first, struct stripe_head, lru);
444 	list_del_init(first);
445 	remove_hash(sh);
446 	atomic_inc(&conf->active_stripes);
447 	BUG_ON(hash != sh->hash_lock_index);
448 	if (list_empty(conf->inactive_list + hash))
449 		atomic_inc(&conf->empty_inactive_list_nr);
450 out:
451 	return sh;
452 }
453 
454 static void shrink_buffers(struct stripe_head *sh)
455 {
456 	struct page *p;
457 	int i;
458 	int num = sh->raid_conf->pool_size;
459 
460 	for (i = 0; i < num ; i++) {
461 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
462 		p = sh->dev[i].page;
463 		if (!p)
464 			continue;
465 		sh->dev[i].page = NULL;
466 		put_page(p);
467 	}
468 }
469 
470 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
471 {
472 	int i;
473 	int num = sh->raid_conf->pool_size;
474 
475 	for (i = 0; i < num; i++) {
476 		struct page *page;
477 
478 		if (!(page = alloc_page(gfp))) {
479 			return 1;
480 		}
481 		sh->dev[i].page = page;
482 		sh->dev[i].orig_page = page;
483 	}
484 	return 0;
485 }
486 
487 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
488 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
489 			    struct stripe_head *sh);
490 
491 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
492 {
493 	struct r5conf *conf = sh->raid_conf;
494 	int i, seq;
495 
496 	BUG_ON(atomic_read(&sh->count) != 0);
497 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
498 	BUG_ON(stripe_operations_active(sh));
499 	BUG_ON(sh->batch_head);
500 
501 	pr_debug("init_stripe called, stripe %llu\n",
502 		(unsigned long long)sector);
503 retry:
504 	seq = read_seqcount_begin(&conf->gen_lock);
505 	sh->generation = conf->generation - previous;
506 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
507 	sh->sector = sector;
508 	stripe_set_idx(sector, conf, previous, sh);
509 	sh->state = 0;
510 
511 	for (i = sh->disks; i--; ) {
512 		struct r5dev *dev = &sh->dev[i];
513 
514 		if (dev->toread || dev->read || dev->towrite || dev->written ||
515 		    test_bit(R5_LOCKED, &dev->flags)) {
516 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
517 			       (unsigned long long)sh->sector, i, dev->toread,
518 			       dev->read, dev->towrite, dev->written,
519 			       test_bit(R5_LOCKED, &dev->flags));
520 			WARN_ON(1);
521 		}
522 		dev->flags = 0;
523 		raid5_build_block(sh, i, previous);
524 	}
525 	if (read_seqcount_retry(&conf->gen_lock, seq))
526 		goto retry;
527 	sh->overwrite_disks = 0;
528 	insert_hash(conf, sh);
529 	sh->cpu = smp_processor_id();
530 	set_bit(STRIPE_BATCH_READY, &sh->state);
531 }
532 
533 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
534 					 short generation)
535 {
536 	struct stripe_head *sh;
537 
538 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
539 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
540 		if (sh->sector == sector && sh->generation == generation)
541 			return sh;
542 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
543 	return NULL;
544 }
545 
546 /*
547  * Need to check if array has failed when deciding whether to:
548  *  - start an array
549  *  - remove non-faulty devices
550  *  - add a spare
551  *  - allow a reshape
552  * This determination is simple when no reshape is happening.
553  * However if there is a reshape, we need to carefully check
554  * both the before and after sections.
555  * This is because some failed devices may only affect one
556  * of the two sections, and some non-in_sync devices may
557  * be insync in the section most affected by failed devices.
558  */
559 int raid5_calc_degraded(struct r5conf *conf)
560 {
561 	int degraded, degraded2;
562 	int i;
563 
564 	rcu_read_lock();
565 	degraded = 0;
566 	for (i = 0; i < conf->previous_raid_disks; i++) {
567 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
568 		if (rdev && test_bit(Faulty, &rdev->flags))
569 			rdev = rcu_dereference(conf->disks[i].replacement);
570 		if (!rdev || test_bit(Faulty, &rdev->flags))
571 			degraded++;
572 		else if (test_bit(In_sync, &rdev->flags))
573 			;
574 		else
575 			/* not in-sync or faulty.
576 			 * If the reshape increases the number of devices,
577 			 * this is being recovered by the reshape, so
578 			 * this 'previous' section is not in_sync.
579 			 * If the number of devices is being reduced however,
580 			 * the device can only be part of the array if
581 			 * we are reverting a reshape, so this section will
582 			 * be in-sync.
583 			 */
584 			if (conf->raid_disks >= conf->previous_raid_disks)
585 				degraded++;
586 	}
587 	rcu_read_unlock();
588 	if (conf->raid_disks == conf->previous_raid_disks)
589 		return degraded;
590 	rcu_read_lock();
591 	degraded2 = 0;
592 	for (i = 0; i < conf->raid_disks; i++) {
593 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
594 		if (rdev && test_bit(Faulty, &rdev->flags))
595 			rdev = rcu_dereference(conf->disks[i].replacement);
596 		if (!rdev || test_bit(Faulty, &rdev->flags))
597 			degraded2++;
598 		else if (test_bit(In_sync, &rdev->flags))
599 			;
600 		else
601 			/* not in-sync or faulty.
602 			 * If reshape increases the number of devices, this
603 			 * section has already been recovered, else it
604 			 * almost certainly hasn't.
605 			 */
606 			if (conf->raid_disks <= conf->previous_raid_disks)
607 				degraded2++;
608 	}
609 	rcu_read_unlock();
610 	if (degraded2 > degraded)
611 		return degraded2;
612 	return degraded;
613 }
614 
615 static int has_failed(struct r5conf *conf)
616 {
617 	int degraded;
618 
619 	if (conf->mddev->reshape_position == MaxSector)
620 		return conf->mddev->degraded > conf->max_degraded;
621 
622 	degraded = raid5_calc_degraded(conf);
623 	if (degraded > conf->max_degraded)
624 		return 1;
625 	return 0;
626 }
627 
628 struct stripe_head *
629 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
630 			int previous, int noblock, int noquiesce)
631 {
632 	struct stripe_head *sh;
633 	int hash = stripe_hash_locks_hash(sector);
634 	int inc_empty_inactive_list_flag;
635 
636 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
637 
638 	spin_lock_irq(conf->hash_locks + hash);
639 
640 	do {
641 		wait_event_lock_irq(conf->wait_for_quiescent,
642 				    conf->quiesce == 0 || noquiesce,
643 				    *(conf->hash_locks + hash));
644 		sh = __find_stripe(conf, sector, conf->generation - previous);
645 		if (!sh) {
646 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
647 				sh = get_free_stripe(conf, hash);
648 				if (!sh && !test_bit(R5_DID_ALLOC,
649 						     &conf->cache_state))
650 					set_bit(R5_ALLOC_MORE,
651 						&conf->cache_state);
652 			}
653 			if (noblock && sh == NULL)
654 				break;
655 
656 			r5c_check_stripe_cache_usage(conf);
657 			if (!sh) {
658 				set_bit(R5_INACTIVE_BLOCKED,
659 					&conf->cache_state);
660 				r5l_wake_reclaim(conf->log, 0);
661 				wait_event_lock_irq(
662 					conf->wait_for_stripe,
663 					!list_empty(conf->inactive_list + hash) &&
664 					(atomic_read(&conf->active_stripes)
665 					 < (conf->max_nr_stripes * 3 / 4)
666 					 || !test_bit(R5_INACTIVE_BLOCKED,
667 						      &conf->cache_state)),
668 					*(conf->hash_locks + hash));
669 				clear_bit(R5_INACTIVE_BLOCKED,
670 					  &conf->cache_state);
671 			} else {
672 				init_stripe(sh, sector, previous);
673 				atomic_inc(&sh->count);
674 			}
675 		} else if (!atomic_inc_not_zero(&sh->count)) {
676 			spin_lock(&conf->device_lock);
677 			if (!atomic_read(&sh->count)) {
678 				if (!test_bit(STRIPE_HANDLE, &sh->state))
679 					atomic_inc(&conf->active_stripes);
680 				BUG_ON(list_empty(&sh->lru) &&
681 				       !test_bit(STRIPE_EXPANDING, &sh->state));
682 				inc_empty_inactive_list_flag = 0;
683 				if (!list_empty(conf->inactive_list + hash))
684 					inc_empty_inactive_list_flag = 1;
685 				list_del_init(&sh->lru);
686 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
687 					atomic_inc(&conf->empty_inactive_list_nr);
688 				if (sh->group) {
689 					sh->group->stripes_cnt--;
690 					sh->group = NULL;
691 				}
692 			}
693 			atomic_inc(&sh->count);
694 			spin_unlock(&conf->device_lock);
695 		}
696 	} while (sh == NULL);
697 
698 	spin_unlock_irq(conf->hash_locks + hash);
699 	return sh;
700 }
701 
702 static bool is_full_stripe_write(struct stripe_head *sh)
703 {
704 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
705 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
706 }
707 
708 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
709 {
710 	local_irq_disable();
711 	if (sh1 > sh2) {
712 		spin_lock(&sh2->stripe_lock);
713 		spin_lock_nested(&sh1->stripe_lock, 1);
714 	} else {
715 		spin_lock(&sh1->stripe_lock);
716 		spin_lock_nested(&sh2->stripe_lock, 1);
717 	}
718 }
719 
720 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
721 {
722 	spin_unlock(&sh1->stripe_lock);
723 	spin_unlock(&sh2->stripe_lock);
724 	local_irq_enable();
725 }
726 
727 /* Only freshly new full stripe normal write stripe can be added to a batch list */
728 static bool stripe_can_batch(struct stripe_head *sh)
729 {
730 	struct r5conf *conf = sh->raid_conf;
731 
732 	if (conf->log)
733 		return false;
734 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
735 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
736 		is_full_stripe_write(sh);
737 }
738 
739 /* we only do back search */
740 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
741 {
742 	struct stripe_head *head;
743 	sector_t head_sector, tmp_sec;
744 	int hash;
745 	int dd_idx;
746 	int inc_empty_inactive_list_flag;
747 
748 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
749 	tmp_sec = sh->sector;
750 	if (!sector_div(tmp_sec, conf->chunk_sectors))
751 		return;
752 	head_sector = sh->sector - STRIPE_SECTORS;
753 
754 	hash = stripe_hash_locks_hash(head_sector);
755 	spin_lock_irq(conf->hash_locks + hash);
756 	head = __find_stripe(conf, head_sector, conf->generation);
757 	if (head && !atomic_inc_not_zero(&head->count)) {
758 		spin_lock(&conf->device_lock);
759 		if (!atomic_read(&head->count)) {
760 			if (!test_bit(STRIPE_HANDLE, &head->state))
761 				atomic_inc(&conf->active_stripes);
762 			BUG_ON(list_empty(&head->lru) &&
763 			       !test_bit(STRIPE_EXPANDING, &head->state));
764 			inc_empty_inactive_list_flag = 0;
765 			if (!list_empty(conf->inactive_list + hash))
766 				inc_empty_inactive_list_flag = 1;
767 			list_del_init(&head->lru);
768 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
769 				atomic_inc(&conf->empty_inactive_list_nr);
770 			if (head->group) {
771 				head->group->stripes_cnt--;
772 				head->group = NULL;
773 			}
774 		}
775 		atomic_inc(&head->count);
776 		spin_unlock(&conf->device_lock);
777 	}
778 	spin_unlock_irq(conf->hash_locks + hash);
779 
780 	if (!head)
781 		return;
782 	if (!stripe_can_batch(head))
783 		goto out;
784 
785 	lock_two_stripes(head, sh);
786 	/* clear_batch_ready clear the flag */
787 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
788 		goto unlock_out;
789 
790 	if (sh->batch_head)
791 		goto unlock_out;
792 
793 	dd_idx = 0;
794 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
795 		dd_idx++;
796 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
797 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
798 		goto unlock_out;
799 
800 	if (head->batch_head) {
801 		spin_lock(&head->batch_head->batch_lock);
802 		/* This batch list is already running */
803 		if (!stripe_can_batch(head)) {
804 			spin_unlock(&head->batch_head->batch_lock);
805 			goto unlock_out;
806 		}
807 
808 		/*
809 		 * at this point, head's BATCH_READY could be cleared, but we
810 		 * can still add the stripe to batch list
811 		 */
812 		list_add(&sh->batch_list, &head->batch_list);
813 		spin_unlock(&head->batch_head->batch_lock);
814 
815 		sh->batch_head = head->batch_head;
816 	} else {
817 		head->batch_head = head;
818 		sh->batch_head = head->batch_head;
819 		spin_lock(&head->batch_lock);
820 		list_add_tail(&sh->batch_list, &head->batch_list);
821 		spin_unlock(&head->batch_lock);
822 	}
823 
824 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
825 		if (atomic_dec_return(&conf->preread_active_stripes)
826 		    < IO_THRESHOLD)
827 			md_wakeup_thread(conf->mddev->thread);
828 
829 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
830 		int seq = sh->bm_seq;
831 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
832 		    sh->batch_head->bm_seq > seq)
833 			seq = sh->batch_head->bm_seq;
834 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
835 		sh->batch_head->bm_seq = seq;
836 	}
837 
838 	atomic_inc(&sh->count);
839 unlock_out:
840 	unlock_two_stripes(head, sh);
841 out:
842 	raid5_release_stripe(head);
843 }
844 
845 /* Determine if 'data_offset' or 'new_data_offset' should be used
846  * in this stripe_head.
847  */
848 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
849 {
850 	sector_t progress = conf->reshape_progress;
851 	/* Need a memory barrier to make sure we see the value
852 	 * of conf->generation, or ->data_offset that was set before
853 	 * reshape_progress was updated.
854 	 */
855 	smp_rmb();
856 	if (progress == MaxSector)
857 		return 0;
858 	if (sh->generation == conf->generation - 1)
859 		return 0;
860 	/* We are in a reshape, and this is a new-generation stripe,
861 	 * so use new_data_offset.
862 	 */
863 	return 1;
864 }
865 
866 static void flush_deferred_bios(struct r5conf *conf)
867 {
868 	struct bio_list tmp;
869 	struct bio *bio;
870 
871 	if (!conf->batch_bio_dispatch || !conf->group_cnt)
872 		return;
873 
874 	bio_list_init(&tmp);
875 	spin_lock(&conf->pending_bios_lock);
876 	bio_list_merge(&tmp, &conf->pending_bios);
877 	bio_list_init(&conf->pending_bios);
878 	spin_unlock(&conf->pending_bios_lock);
879 
880 	while ((bio = bio_list_pop(&tmp)))
881 		generic_make_request(bio);
882 }
883 
884 static void defer_bio_issue(struct r5conf *conf, struct bio *bio)
885 {
886 	/*
887 	 * change group_cnt will drain all bios, so this is safe
888 	 *
889 	 * A read generally means a read-modify-write, which usually means a
890 	 * randwrite, so we don't delay it
891 	 */
892 	if (!conf->batch_bio_dispatch || !conf->group_cnt ||
893 	    bio_op(bio) == REQ_OP_READ) {
894 		generic_make_request(bio);
895 		return;
896 	}
897 	spin_lock(&conf->pending_bios_lock);
898 	bio_list_add(&conf->pending_bios, bio);
899 	spin_unlock(&conf->pending_bios_lock);
900 	md_wakeup_thread(conf->mddev->thread);
901 }
902 
903 static void
904 raid5_end_read_request(struct bio *bi);
905 static void
906 raid5_end_write_request(struct bio *bi);
907 
908 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
909 {
910 	struct r5conf *conf = sh->raid_conf;
911 	int i, disks = sh->disks;
912 	struct stripe_head *head_sh = sh;
913 
914 	might_sleep();
915 
916 	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
917 		/* writing out phase */
918 		if (s->waiting_extra_page)
919 			return;
920 		if (r5l_write_stripe(conf->log, sh) == 0)
921 			return;
922 	} else {  /* caching phase */
923 		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) {
924 			r5c_cache_data(conf->log, sh, s);
925 			return;
926 		}
927 	}
928 
929 	for (i = disks; i--; ) {
930 		int op, op_flags = 0;
931 		int replace_only = 0;
932 		struct bio *bi, *rbi;
933 		struct md_rdev *rdev, *rrdev = NULL;
934 
935 		sh = head_sh;
936 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
937 			op = REQ_OP_WRITE;
938 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
939 				op_flags = REQ_FUA;
940 			if (test_bit(R5_Discard, &sh->dev[i].flags))
941 				op = REQ_OP_DISCARD;
942 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
943 			op = REQ_OP_READ;
944 		else if (test_and_clear_bit(R5_WantReplace,
945 					    &sh->dev[i].flags)) {
946 			op = REQ_OP_WRITE;
947 			replace_only = 1;
948 		} else
949 			continue;
950 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
951 			op_flags |= REQ_SYNC;
952 
953 again:
954 		bi = &sh->dev[i].req;
955 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
956 
957 		rcu_read_lock();
958 		rrdev = rcu_dereference(conf->disks[i].replacement);
959 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
960 		rdev = rcu_dereference(conf->disks[i].rdev);
961 		if (!rdev) {
962 			rdev = rrdev;
963 			rrdev = NULL;
964 		}
965 		if (op_is_write(op)) {
966 			if (replace_only)
967 				rdev = NULL;
968 			if (rdev == rrdev)
969 				/* We raced and saw duplicates */
970 				rrdev = NULL;
971 		} else {
972 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
973 				rdev = rrdev;
974 			rrdev = NULL;
975 		}
976 
977 		if (rdev && test_bit(Faulty, &rdev->flags))
978 			rdev = NULL;
979 		if (rdev)
980 			atomic_inc(&rdev->nr_pending);
981 		if (rrdev && test_bit(Faulty, &rrdev->flags))
982 			rrdev = NULL;
983 		if (rrdev)
984 			atomic_inc(&rrdev->nr_pending);
985 		rcu_read_unlock();
986 
987 		/* We have already checked bad blocks for reads.  Now
988 		 * need to check for writes.  We never accept write errors
989 		 * on the replacement, so we don't to check rrdev.
990 		 */
991 		while (op_is_write(op) && rdev &&
992 		       test_bit(WriteErrorSeen, &rdev->flags)) {
993 			sector_t first_bad;
994 			int bad_sectors;
995 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
996 					      &first_bad, &bad_sectors);
997 			if (!bad)
998 				break;
999 
1000 			if (bad < 0) {
1001 				set_bit(BlockedBadBlocks, &rdev->flags);
1002 				if (!conf->mddev->external &&
1003 				    conf->mddev->sb_flags) {
1004 					/* It is very unlikely, but we might
1005 					 * still need to write out the
1006 					 * bad block log - better give it
1007 					 * a chance*/
1008 					md_check_recovery(conf->mddev);
1009 				}
1010 				/*
1011 				 * Because md_wait_for_blocked_rdev
1012 				 * will dec nr_pending, we must
1013 				 * increment it first.
1014 				 */
1015 				atomic_inc(&rdev->nr_pending);
1016 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1017 			} else {
1018 				/* Acknowledged bad block - skip the write */
1019 				rdev_dec_pending(rdev, conf->mddev);
1020 				rdev = NULL;
1021 			}
1022 		}
1023 
1024 		if (rdev) {
1025 			if (s->syncing || s->expanding || s->expanded
1026 			    || s->replacing)
1027 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1028 
1029 			set_bit(STRIPE_IO_STARTED, &sh->state);
1030 
1031 			bi->bi_bdev = rdev->bdev;
1032 			bio_set_op_attrs(bi, op, op_flags);
1033 			bi->bi_end_io = op_is_write(op)
1034 				? raid5_end_write_request
1035 				: raid5_end_read_request;
1036 			bi->bi_private = sh;
1037 
1038 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1039 				__func__, (unsigned long long)sh->sector,
1040 				bi->bi_opf, i);
1041 			atomic_inc(&sh->count);
1042 			if (sh != head_sh)
1043 				atomic_inc(&head_sh->count);
1044 			if (use_new_offset(conf, sh))
1045 				bi->bi_iter.bi_sector = (sh->sector
1046 						 + rdev->new_data_offset);
1047 			else
1048 				bi->bi_iter.bi_sector = (sh->sector
1049 						 + rdev->data_offset);
1050 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1051 				bi->bi_opf |= REQ_NOMERGE;
1052 
1053 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1054 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1055 
1056 			if (!op_is_write(op) &&
1057 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1058 				/*
1059 				 * issuing read for a page in journal, this
1060 				 * must be preparing for prexor in rmw; read
1061 				 * the data into orig_page
1062 				 */
1063 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1064 			else
1065 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1066 			bi->bi_vcnt = 1;
1067 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1068 			bi->bi_io_vec[0].bv_offset = 0;
1069 			bi->bi_iter.bi_size = STRIPE_SIZE;
1070 			/*
1071 			 * If this is discard request, set bi_vcnt 0. We don't
1072 			 * want to confuse SCSI because SCSI will replace payload
1073 			 */
1074 			if (op == REQ_OP_DISCARD)
1075 				bi->bi_vcnt = 0;
1076 			if (rrdev)
1077 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1078 
1079 			if (conf->mddev->gendisk)
1080 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1081 						      bi, disk_devt(conf->mddev->gendisk),
1082 						      sh->dev[i].sector);
1083 			defer_bio_issue(conf, bi);
1084 		}
1085 		if (rrdev) {
1086 			if (s->syncing || s->expanding || s->expanded
1087 			    || s->replacing)
1088 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1089 
1090 			set_bit(STRIPE_IO_STARTED, &sh->state);
1091 
1092 			rbi->bi_bdev = rrdev->bdev;
1093 			bio_set_op_attrs(rbi, op, op_flags);
1094 			BUG_ON(!op_is_write(op));
1095 			rbi->bi_end_io = raid5_end_write_request;
1096 			rbi->bi_private = sh;
1097 
1098 			pr_debug("%s: for %llu schedule op %d on "
1099 				 "replacement disc %d\n",
1100 				__func__, (unsigned long long)sh->sector,
1101 				rbi->bi_opf, i);
1102 			atomic_inc(&sh->count);
1103 			if (sh != head_sh)
1104 				atomic_inc(&head_sh->count);
1105 			if (use_new_offset(conf, sh))
1106 				rbi->bi_iter.bi_sector = (sh->sector
1107 						  + rrdev->new_data_offset);
1108 			else
1109 				rbi->bi_iter.bi_sector = (sh->sector
1110 						  + rrdev->data_offset);
1111 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1112 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1113 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1114 			rbi->bi_vcnt = 1;
1115 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1116 			rbi->bi_io_vec[0].bv_offset = 0;
1117 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1118 			/*
1119 			 * If this is discard request, set bi_vcnt 0. We don't
1120 			 * want to confuse SCSI because SCSI will replace payload
1121 			 */
1122 			if (op == REQ_OP_DISCARD)
1123 				rbi->bi_vcnt = 0;
1124 			if (conf->mddev->gendisk)
1125 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1126 						      rbi, disk_devt(conf->mddev->gendisk),
1127 						      sh->dev[i].sector);
1128 			defer_bio_issue(conf, rbi);
1129 		}
1130 		if (!rdev && !rrdev) {
1131 			if (op_is_write(op))
1132 				set_bit(STRIPE_DEGRADED, &sh->state);
1133 			pr_debug("skip op %d on disc %d for sector %llu\n",
1134 				bi->bi_opf, i, (unsigned long long)sh->sector);
1135 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1136 			set_bit(STRIPE_HANDLE, &sh->state);
1137 		}
1138 
1139 		if (!head_sh->batch_head)
1140 			continue;
1141 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1142 				      batch_list);
1143 		if (sh != head_sh)
1144 			goto again;
1145 	}
1146 }
1147 
1148 static struct dma_async_tx_descriptor *
1149 async_copy_data(int frombio, struct bio *bio, struct page **page,
1150 	sector_t sector, struct dma_async_tx_descriptor *tx,
1151 	struct stripe_head *sh, int no_skipcopy)
1152 {
1153 	struct bio_vec bvl;
1154 	struct bvec_iter iter;
1155 	struct page *bio_page;
1156 	int page_offset;
1157 	struct async_submit_ctl submit;
1158 	enum async_tx_flags flags = 0;
1159 
1160 	if (bio->bi_iter.bi_sector >= sector)
1161 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1162 	else
1163 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1164 
1165 	if (frombio)
1166 		flags |= ASYNC_TX_FENCE;
1167 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1168 
1169 	bio_for_each_segment(bvl, bio, iter) {
1170 		int len = bvl.bv_len;
1171 		int clen;
1172 		int b_offset = 0;
1173 
1174 		if (page_offset < 0) {
1175 			b_offset = -page_offset;
1176 			page_offset += b_offset;
1177 			len -= b_offset;
1178 		}
1179 
1180 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1181 			clen = STRIPE_SIZE - page_offset;
1182 		else
1183 			clen = len;
1184 
1185 		if (clen > 0) {
1186 			b_offset += bvl.bv_offset;
1187 			bio_page = bvl.bv_page;
1188 			if (frombio) {
1189 				if (sh->raid_conf->skip_copy &&
1190 				    b_offset == 0 && page_offset == 0 &&
1191 				    clen == STRIPE_SIZE &&
1192 				    !no_skipcopy)
1193 					*page = bio_page;
1194 				else
1195 					tx = async_memcpy(*page, bio_page, page_offset,
1196 						  b_offset, clen, &submit);
1197 			} else
1198 				tx = async_memcpy(bio_page, *page, b_offset,
1199 						  page_offset, clen, &submit);
1200 		}
1201 		/* chain the operations */
1202 		submit.depend_tx = tx;
1203 
1204 		if (clen < len) /* hit end of page */
1205 			break;
1206 		page_offset +=  len;
1207 	}
1208 
1209 	return tx;
1210 }
1211 
1212 static void ops_complete_biofill(void *stripe_head_ref)
1213 {
1214 	struct stripe_head *sh = stripe_head_ref;
1215 	struct bio_list return_bi = BIO_EMPTY_LIST;
1216 	int i;
1217 
1218 	pr_debug("%s: stripe %llu\n", __func__,
1219 		(unsigned long long)sh->sector);
1220 
1221 	/* clear completed biofills */
1222 	for (i = sh->disks; i--; ) {
1223 		struct r5dev *dev = &sh->dev[i];
1224 
1225 		/* acknowledge completion of a biofill operation */
1226 		/* and check if we need to reply to a read request,
1227 		 * new R5_Wantfill requests are held off until
1228 		 * !STRIPE_BIOFILL_RUN
1229 		 */
1230 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1231 			struct bio *rbi, *rbi2;
1232 
1233 			BUG_ON(!dev->read);
1234 			rbi = dev->read;
1235 			dev->read = NULL;
1236 			while (rbi && rbi->bi_iter.bi_sector <
1237 				dev->sector + STRIPE_SECTORS) {
1238 				rbi2 = r5_next_bio(rbi, dev->sector);
1239 				if (!raid5_dec_bi_active_stripes(rbi))
1240 					bio_list_add(&return_bi, rbi);
1241 				rbi = rbi2;
1242 			}
1243 		}
1244 	}
1245 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1246 
1247 	return_io(&return_bi);
1248 
1249 	set_bit(STRIPE_HANDLE, &sh->state);
1250 	raid5_release_stripe(sh);
1251 }
1252 
1253 static void ops_run_biofill(struct stripe_head *sh)
1254 {
1255 	struct dma_async_tx_descriptor *tx = NULL;
1256 	struct async_submit_ctl submit;
1257 	int i;
1258 
1259 	BUG_ON(sh->batch_head);
1260 	pr_debug("%s: stripe %llu\n", __func__,
1261 		(unsigned long long)sh->sector);
1262 
1263 	for (i = sh->disks; i--; ) {
1264 		struct r5dev *dev = &sh->dev[i];
1265 		if (test_bit(R5_Wantfill, &dev->flags)) {
1266 			struct bio *rbi;
1267 			spin_lock_irq(&sh->stripe_lock);
1268 			dev->read = rbi = dev->toread;
1269 			dev->toread = NULL;
1270 			spin_unlock_irq(&sh->stripe_lock);
1271 			while (rbi && rbi->bi_iter.bi_sector <
1272 				dev->sector + STRIPE_SECTORS) {
1273 				tx = async_copy_data(0, rbi, &dev->page,
1274 						     dev->sector, tx, sh, 0);
1275 				rbi = r5_next_bio(rbi, dev->sector);
1276 			}
1277 		}
1278 	}
1279 
1280 	atomic_inc(&sh->count);
1281 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1282 	async_trigger_callback(&submit);
1283 }
1284 
1285 static void mark_target_uptodate(struct stripe_head *sh, int target)
1286 {
1287 	struct r5dev *tgt;
1288 
1289 	if (target < 0)
1290 		return;
1291 
1292 	tgt = &sh->dev[target];
1293 	set_bit(R5_UPTODATE, &tgt->flags);
1294 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1295 	clear_bit(R5_Wantcompute, &tgt->flags);
1296 }
1297 
1298 static void ops_complete_compute(void *stripe_head_ref)
1299 {
1300 	struct stripe_head *sh = stripe_head_ref;
1301 
1302 	pr_debug("%s: stripe %llu\n", __func__,
1303 		(unsigned long long)sh->sector);
1304 
1305 	/* mark the computed target(s) as uptodate */
1306 	mark_target_uptodate(sh, sh->ops.target);
1307 	mark_target_uptodate(sh, sh->ops.target2);
1308 
1309 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1310 	if (sh->check_state == check_state_compute_run)
1311 		sh->check_state = check_state_compute_result;
1312 	set_bit(STRIPE_HANDLE, &sh->state);
1313 	raid5_release_stripe(sh);
1314 }
1315 
1316 /* return a pointer to the address conversion region of the scribble buffer */
1317 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1318 				 struct raid5_percpu *percpu, int i)
1319 {
1320 	void *addr;
1321 
1322 	addr = flex_array_get(percpu->scribble, i);
1323 	return addr + sizeof(struct page *) * (sh->disks + 2);
1324 }
1325 
1326 /* return a pointer to the address conversion region of the scribble buffer */
1327 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1328 {
1329 	void *addr;
1330 
1331 	addr = flex_array_get(percpu->scribble, i);
1332 	return addr;
1333 }
1334 
1335 static struct dma_async_tx_descriptor *
1336 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1337 {
1338 	int disks = sh->disks;
1339 	struct page **xor_srcs = to_addr_page(percpu, 0);
1340 	int target = sh->ops.target;
1341 	struct r5dev *tgt = &sh->dev[target];
1342 	struct page *xor_dest = tgt->page;
1343 	int count = 0;
1344 	struct dma_async_tx_descriptor *tx;
1345 	struct async_submit_ctl submit;
1346 	int i;
1347 
1348 	BUG_ON(sh->batch_head);
1349 
1350 	pr_debug("%s: stripe %llu block: %d\n",
1351 		__func__, (unsigned long long)sh->sector, target);
1352 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1353 
1354 	for (i = disks; i--; )
1355 		if (i != target)
1356 			xor_srcs[count++] = sh->dev[i].page;
1357 
1358 	atomic_inc(&sh->count);
1359 
1360 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1361 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1362 	if (unlikely(count == 1))
1363 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1364 	else
1365 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1366 
1367 	return tx;
1368 }
1369 
1370 /* set_syndrome_sources - populate source buffers for gen_syndrome
1371  * @srcs - (struct page *) array of size sh->disks
1372  * @sh - stripe_head to parse
1373  *
1374  * Populates srcs in proper layout order for the stripe and returns the
1375  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1376  * destination buffer is recorded in srcs[count] and the Q destination
1377  * is recorded in srcs[count+1]].
1378  */
1379 static int set_syndrome_sources(struct page **srcs,
1380 				struct stripe_head *sh,
1381 				int srctype)
1382 {
1383 	int disks = sh->disks;
1384 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1385 	int d0_idx = raid6_d0(sh);
1386 	int count;
1387 	int i;
1388 
1389 	for (i = 0; i < disks; i++)
1390 		srcs[i] = NULL;
1391 
1392 	count = 0;
1393 	i = d0_idx;
1394 	do {
1395 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1396 		struct r5dev *dev = &sh->dev[i];
1397 
1398 		if (i == sh->qd_idx || i == sh->pd_idx ||
1399 		    (srctype == SYNDROME_SRC_ALL) ||
1400 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1401 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1402 		      test_bit(R5_InJournal, &dev->flags))) ||
1403 		    (srctype == SYNDROME_SRC_WRITTEN &&
1404 		     (dev->written ||
1405 		      test_bit(R5_InJournal, &dev->flags)))) {
1406 			if (test_bit(R5_InJournal, &dev->flags))
1407 				srcs[slot] = sh->dev[i].orig_page;
1408 			else
1409 				srcs[slot] = sh->dev[i].page;
1410 		}
1411 		i = raid6_next_disk(i, disks);
1412 	} while (i != d0_idx);
1413 
1414 	return syndrome_disks;
1415 }
1416 
1417 static struct dma_async_tx_descriptor *
1418 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1419 {
1420 	int disks = sh->disks;
1421 	struct page **blocks = to_addr_page(percpu, 0);
1422 	int target;
1423 	int qd_idx = sh->qd_idx;
1424 	struct dma_async_tx_descriptor *tx;
1425 	struct async_submit_ctl submit;
1426 	struct r5dev *tgt;
1427 	struct page *dest;
1428 	int i;
1429 	int count;
1430 
1431 	BUG_ON(sh->batch_head);
1432 	if (sh->ops.target < 0)
1433 		target = sh->ops.target2;
1434 	else if (sh->ops.target2 < 0)
1435 		target = sh->ops.target;
1436 	else
1437 		/* we should only have one valid target */
1438 		BUG();
1439 	BUG_ON(target < 0);
1440 	pr_debug("%s: stripe %llu block: %d\n",
1441 		__func__, (unsigned long long)sh->sector, target);
1442 
1443 	tgt = &sh->dev[target];
1444 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1445 	dest = tgt->page;
1446 
1447 	atomic_inc(&sh->count);
1448 
1449 	if (target == qd_idx) {
1450 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1451 		blocks[count] = NULL; /* regenerating p is not necessary */
1452 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1453 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1454 				  ops_complete_compute, sh,
1455 				  to_addr_conv(sh, percpu, 0));
1456 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1457 	} else {
1458 		/* Compute any data- or p-drive using XOR */
1459 		count = 0;
1460 		for (i = disks; i-- ; ) {
1461 			if (i == target || i == qd_idx)
1462 				continue;
1463 			blocks[count++] = sh->dev[i].page;
1464 		}
1465 
1466 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1467 				  NULL, ops_complete_compute, sh,
1468 				  to_addr_conv(sh, percpu, 0));
1469 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1470 	}
1471 
1472 	return tx;
1473 }
1474 
1475 static struct dma_async_tx_descriptor *
1476 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1477 {
1478 	int i, count, disks = sh->disks;
1479 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1480 	int d0_idx = raid6_d0(sh);
1481 	int faila = -1, failb = -1;
1482 	int target = sh->ops.target;
1483 	int target2 = sh->ops.target2;
1484 	struct r5dev *tgt = &sh->dev[target];
1485 	struct r5dev *tgt2 = &sh->dev[target2];
1486 	struct dma_async_tx_descriptor *tx;
1487 	struct page **blocks = to_addr_page(percpu, 0);
1488 	struct async_submit_ctl submit;
1489 
1490 	BUG_ON(sh->batch_head);
1491 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1492 		 __func__, (unsigned long long)sh->sector, target, target2);
1493 	BUG_ON(target < 0 || target2 < 0);
1494 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1495 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1496 
1497 	/* we need to open-code set_syndrome_sources to handle the
1498 	 * slot number conversion for 'faila' and 'failb'
1499 	 */
1500 	for (i = 0; i < disks ; i++)
1501 		blocks[i] = NULL;
1502 	count = 0;
1503 	i = d0_idx;
1504 	do {
1505 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1506 
1507 		blocks[slot] = sh->dev[i].page;
1508 
1509 		if (i == target)
1510 			faila = slot;
1511 		if (i == target2)
1512 			failb = slot;
1513 		i = raid6_next_disk(i, disks);
1514 	} while (i != d0_idx);
1515 
1516 	BUG_ON(faila == failb);
1517 	if (failb < faila)
1518 		swap(faila, failb);
1519 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1520 		 __func__, (unsigned long long)sh->sector, faila, failb);
1521 
1522 	atomic_inc(&sh->count);
1523 
1524 	if (failb == syndrome_disks+1) {
1525 		/* Q disk is one of the missing disks */
1526 		if (faila == syndrome_disks) {
1527 			/* Missing P+Q, just recompute */
1528 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1529 					  ops_complete_compute, sh,
1530 					  to_addr_conv(sh, percpu, 0));
1531 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1532 						  STRIPE_SIZE, &submit);
1533 		} else {
1534 			struct page *dest;
1535 			int data_target;
1536 			int qd_idx = sh->qd_idx;
1537 
1538 			/* Missing D+Q: recompute D from P, then recompute Q */
1539 			if (target == qd_idx)
1540 				data_target = target2;
1541 			else
1542 				data_target = target;
1543 
1544 			count = 0;
1545 			for (i = disks; i-- ; ) {
1546 				if (i == data_target || i == qd_idx)
1547 					continue;
1548 				blocks[count++] = sh->dev[i].page;
1549 			}
1550 			dest = sh->dev[data_target].page;
1551 			init_async_submit(&submit,
1552 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1553 					  NULL, NULL, NULL,
1554 					  to_addr_conv(sh, percpu, 0));
1555 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1556 				       &submit);
1557 
1558 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1559 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1560 					  ops_complete_compute, sh,
1561 					  to_addr_conv(sh, percpu, 0));
1562 			return async_gen_syndrome(blocks, 0, count+2,
1563 						  STRIPE_SIZE, &submit);
1564 		}
1565 	} else {
1566 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1567 				  ops_complete_compute, sh,
1568 				  to_addr_conv(sh, percpu, 0));
1569 		if (failb == syndrome_disks) {
1570 			/* We're missing D+P. */
1571 			return async_raid6_datap_recov(syndrome_disks+2,
1572 						       STRIPE_SIZE, faila,
1573 						       blocks, &submit);
1574 		} else {
1575 			/* We're missing D+D. */
1576 			return async_raid6_2data_recov(syndrome_disks+2,
1577 						       STRIPE_SIZE, faila, failb,
1578 						       blocks, &submit);
1579 		}
1580 	}
1581 }
1582 
1583 static void ops_complete_prexor(void *stripe_head_ref)
1584 {
1585 	struct stripe_head *sh = stripe_head_ref;
1586 
1587 	pr_debug("%s: stripe %llu\n", __func__,
1588 		(unsigned long long)sh->sector);
1589 
1590 	if (r5c_is_writeback(sh->raid_conf->log))
1591 		/*
1592 		 * raid5-cache write back uses orig_page during prexor.
1593 		 * After prexor, it is time to free orig_page
1594 		 */
1595 		r5c_release_extra_page(sh);
1596 }
1597 
1598 static struct dma_async_tx_descriptor *
1599 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1600 		struct dma_async_tx_descriptor *tx)
1601 {
1602 	int disks = sh->disks;
1603 	struct page **xor_srcs = to_addr_page(percpu, 0);
1604 	int count = 0, pd_idx = sh->pd_idx, i;
1605 	struct async_submit_ctl submit;
1606 
1607 	/* existing parity data subtracted */
1608 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1609 
1610 	BUG_ON(sh->batch_head);
1611 	pr_debug("%s: stripe %llu\n", __func__,
1612 		(unsigned long long)sh->sector);
1613 
1614 	for (i = disks; i--; ) {
1615 		struct r5dev *dev = &sh->dev[i];
1616 		/* Only process blocks that are known to be uptodate */
1617 		if (test_bit(R5_InJournal, &dev->flags))
1618 			xor_srcs[count++] = dev->orig_page;
1619 		else if (test_bit(R5_Wantdrain, &dev->flags))
1620 			xor_srcs[count++] = dev->page;
1621 	}
1622 
1623 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1624 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1625 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1626 
1627 	return tx;
1628 }
1629 
1630 static struct dma_async_tx_descriptor *
1631 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1632 		struct dma_async_tx_descriptor *tx)
1633 {
1634 	struct page **blocks = to_addr_page(percpu, 0);
1635 	int count;
1636 	struct async_submit_ctl submit;
1637 
1638 	pr_debug("%s: stripe %llu\n", __func__,
1639 		(unsigned long long)sh->sector);
1640 
1641 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1642 
1643 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1644 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1645 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1646 
1647 	return tx;
1648 }
1649 
1650 static struct dma_async_tx_descriptor *
1651 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1652 {
1653 	struct r5conf *conf = sh->raid_conf;
1654 	int disks = sh->disks;
1655 	int i;
1656 	struct stripe_head *head_sh = sh;
1657 
1658 	pr_debug("%s: stripe %llu\n", __func__,
1659 		(unsigned long long)sh->sector);
1660 
1661 	for (i = disks; i--; ) {
1662 		struct r5dev *dev;
1663 		struct bio *chosen;
1664 
1665 		sh = head_sh;
1666 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1667 			struct bio *wbi;
1668 
1669 again:
1670 			dev = &sh->dev[i];
1671 			/*
1672 			 * clear R5_InJournal, so when rewriting a page in
1673 			 * journal, it is not skipped by r5l_log_stripe()
1674 			 */
1675 			clear_bit(R5_InJournal, &dev->flags);
1676 			spin_lock_irq(&sh->stripe_lock);
1677 			chosen = dev->towrite;
1678 			dev->towrite = NULL;
1679 			sh->overwrite_disks = 0;
1680 			BUG_ON(dev->written);
1681 			wbi = dev->written = chosen;
1682 			spin_unlock_irq(&sh->stripe_lock);
1683 			WARN_ON(dev->page != dev->orig_page);
1684 
1685 			while (wbi && wbi->bi_iter.bi_sector <
1686 				dev->sector + STRIPE_SECTORS) {
1687 				if (wbi->bi_opf & REQ_FUA)
1688 					set_bit(R5_WantFUA, &dev->flags);
1689 				if (wbi->bi_opf & REQ_SYNC)
1690 					set_bit(R5_SyncIO, &dev->flags);
1691 				if (bio_op(wbi) == REQ_OP_DISCARD)
1692 					set_bit(R5_Discard, &dev->flags);
1693 				else {
1694 					tx = async_copy_data(1, wbi, &dev->page,
1695 							     dev->sector, tx, sh,
1696 							     r5c_is_writeback(conf->log));
1697 					if (dev->page != dev->orig_page &&
1698 					    !r5c_is_writeback(conf->log)) {
1699 						set_bit(R5_SkipCopy, &dev->flags);
1700 						clear_bit(R5_UPTODATE, &dev->flags);
1701 						clear_bit(R5_OVERWRITE, &dev->flags);
1702 					}
1703 				}
1704 				wbi = r5_next_bio(wbi, dev->sector);
1705 			}
1706 
1707 			if (head_sh->batch_head) {
1708 				sh = list_first_entry(&sh->batch_list,
1709 						      struct stripe_head,
1710 						      batch_list);
1711 				if (sh == head_sh)
1712 					continue;
1713 				goto again;
1714 			}
1715 		}
1716 	}
1717 
1718 	return tx;
1719 }
1720 
1721 static void ops_complete_reconstruct(void *stripe_head_ref)
1722 {
1723 	struct stripe_head *sh = stripe_head_ref;
1724 	int disks = sh->disks;
1725 	int pd_idx = sh->pd_idx;
1726 	int qd_idx = sh->qd_idx;
1727 	int i;
1728 	bool fua = false, sync = false, discard = false;
1729 
1730 	pr_debug("%s: stripe %llu\n", __func__,
1731 		(unsigned long long)sh->sector);
1732 
1733 	for (i = disks; i--; ) {
1734 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1735 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1736 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1737 	}
1738 
1739 	for (i = disks; i--; ) {
1740 		struct r5dev *dev = &sh->dev[i];
1741 
1742 		if (dev->written || i == pd_idx || i == qd_idx) {
1743 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1744 				set_bit(R5_UPTODATE, &dev->flags);
1745 			if (fua)
1746 				set_bit(R5_WantFUA, &dev->flags);
1747 			if (sync)
1748 				set_bit(R5_SyncIO, &dev->flags);
1749 		}
1750 	}
1751 
1752 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1753 		sh->reconstruct_state = reconstruct_state_drain_result;
1754 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1755 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1756 	else {
1757 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1758 		sh->reconstruct_state = reconstruct_state_result;
1759 	}
1760 
1761 	set_bit(STRIPE_HANDLE, &sh->state);
1762 	raid5_release_stripe(sh);
1763 }
1764 
1765 static void
1766 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1767 		     struct dma_async_tx_descriptor *tx)
1768 {
1769 	int disks = sh->disks;
1770 	struct page **xor_srcs;
1771 	struct async_submit_ctl submit;
1772 	int count, pd_idx = sh->pd_idx, i;
1773 	struct page *xor_dest;
1774 	int prexor = 0;
1775 	unsigned long flags;
1776 	int j = 0;
1777 	struct stripe_head *head_sh = sh;
1778 	int last_stripe;
1779 
1780 	pr_debug("%s: stripe %llu\n", __func__,
1781 		(unsigned long long)sh->sector);
1782 
1783 	for (i = 0; i < sh->disks; i++) {
1784 		if (pd_idx == i)
1785 			continue;
1786 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1787 			break;
1788 	}
1789 	if (i >= sh->disks) {
1790 		atomic_inc(&sh->count);
1791 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1792 		ops_complete_reconstruct(sh);
1793 		return;
1794 	}
1795 again:
1796 	count = 0;
1797 	xor_srcs = to_addr_page(percpu, j);
1798 	/* check if prexor is active which means only process blocks
1799 	 * that are part of a read-modify-write (written)
1800 	 */
1801 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1802 		prexor = 1;
1803 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1804 		for (i = disks; i--; ) {
1805 			struct r5dev *dev = &sh->dev[i];
1806 			if (head_sh->dev[i].written ||
1807 			    test_bit(R5_InJournal, &head_sh->dev[i].flags))
1808 				xor_srcs[count++] = dev->page;
1809 		}
1810 	} else {
1811 		xor_dest = sh->dev[pd_idx].page;
1812 		for (i = disks; i--; ) {
1813 			struct r5dev *dev = &sh->dev[i];
1814 			if (i != pd_idx)
1815 				xor_srcs[count++] = dev->page;
1816 		}
1817 	}
1818 
1819 	/* 1/ if we prexor'd then the dest is reused as a source
1820 	 * 2/ if we did not prexor then we are redoing the parity
1821 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1822 	 * for the synchronous xor case
1823 	 */
1824 	last_stripe = !head_sh->batch_head ||
1825 		list_first_entry(&sh->batch_list,
1826 				 struct stripe_head, batch_list) == head_sh;
1827 	if (last_stripe) {
1828 		flags = ASYNC_TX_ACK |
1829 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1830 
1831 		atomic_inc(&head_sh->count);
1832 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1833 				  to_addr_conv(sh, percpu, j));
1834 	} else {
1835 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1836 		init_async_submit(&submit, flags, tx, NULL, NULL,
1837 				  to_addr_conv(sh, percpu, j));
1838 	}
1839 
1840 	if (unlikely(count == 1))
1841 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1842 	else
1843 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1844 	if (!last_stripe) {
1845 		j++;
1846 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1847 				      batch_list);
1848 		goto again;
1849 	}
1850 }
1851 
1852 static void
1853 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1854 		     struct dma_async_tx_descriptor *tx)
1855 {
1856 	struct async_submit_ctl submit;
1857 	struct page **blocks;
1858 	int count, i, j = 0;
1859 	struct stripe_head *head_sh = sh;
1860 	int last_stripe;
1861 	int synflags;
1862 	unsigned long txflags;
1863 
1864 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1865 
1866 	for (i = 0; i < sh->disks; i++) {
1867 		if (sh->pd_idx == i || sh->qd_idx == i)
1868 			continue;
1869 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1870 			break;
1871 	}
1872 	if (i >= sh->disks) {
1873 		atomic_inc(&sh->count);
1874 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1875 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1876 		ops_complete_reconstruct(sh);
1877 		return;
1878 	}
1879 
1880 again:
1881 	blocks = to_addr_page(percpu, j);
1882 
1883 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1884 		synflags = SYNDROME_SRC_WRITTEN;
1885 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1886 	} else {
1887 		synflags = SYNDROME_SRC_ALL;
1888 		txflags = ASYNC_TX_ACK;
1889 	}
1890 
1891 	count = set_syndrome_sources(blocks, sh, synflags);
1892 	last_stripe = !head_sh->batch_head ||
1893 		list_first_entry(&sh->batch_list,
1894 				 struct stripe_head, batch_list) == head_sh;
1895 
1896 	if (last_stripe) {
1897 		atomic_inc(&head_sh->count);
1898 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1899 				  head_sh, to_addr_conv(sh, percpu, j));
1900 	} else
1901 		init_async_submit(&submit, 0, tx, NULL, NULL,
1902 				  to_addr_conv(sh, percpu, j));
1903 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1904 	if (!last_stripe) {
1905 		j++;
1906 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1907 				      batch_list);
1908 		goto again;
1909 	}
1910 }
1911 
1912 static void ops_complete_check(void *stripe_head_ref)
1913 {
1914 	struct stripe_head *sh = stripe_head_ref;
1915 
1916 	pr_debug("%s: stripe %llu\n", __func__,
1917 		(unsigned long long)sh->sector);
1918 
1919 	sh->check_state = check_state_check_result;
1920 	set_bit(STRIPE_HANDLE, &sh->state);
1921 	raid5_release_stripe(sh);
1922 }
1923 
1924 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1925 {
1926 	int disks = sh->disks;
1927 	int pd_idx = sh->pd_idx;
1928 	int qd_idx = sh->qd_idx;
1929 	struct page *xor_dest;
1930 	struct page **xor_srcs = to_addr_page(percpu, 0);
1931 	struct dma_async_tx_descriptor *tx;
1932 	struct async_submit_ctl submit;
1933 	int count;
1934 	int i;
1935 
1936 	pr_debug("%s: stripe %llu\n", __func__,
1937 		(unsigned long long)sh->sector);
1938 
1939 	BUG_ON(sh->batch_head);
1940 	count = 0;
1941 	xor_dest = sh->dev[pd_idx].page;
1942 	xor_srcs[count++] = xor_dest;
1943 	for (i = disks; i--; ) {
1944 		if (i == pd_idx || i == qd_idx)
1945 			continue;
1946 		xor_srcs[count++] = sh->dev[i].page;
1947 	}
1948 
1949 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1950 			  to_addr_conv(sh, percpu, 0));
1951 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1952 			   &sh->ops.zero_sum_result, &submit);
1953 
1954 	atomic_inc(&sh->count);
1955 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1956 	tx = async_trigger_callback(&submit);
1957 }
1958 
1959 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1960 {
1961 	struct page **srcs = to_addr_page(percpu, 0);
1962 	struct async_submit_ctl submit;
1963 	int count;
1964 
1965 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1966 		(unsigned long long)sh->sector, checkp);
1967 
1968 	BUG_ON(sh->batch_head);
1969 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1970 	if (!checkp)
1971 		srcs[count] = NULL;
1972 
1973 	atomic_inc(&sh->count);
1974 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1975 			  sh, to_addr_conv(sh, percpu, 0));
1976 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1977 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1978 }
1979 
1980 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1981 {
1982 	int overlap_clear = 0, i, disks = sh->disks;
1983 	struct dma_async_tx_descriptor *tx = NULL;
1984 	struct r5conf *conf = sh->raid_conf;
1985 	int level = conf->level;
1986 	struct raid5_percpu *percpu;
1987 	unsigned long cpu;
1988 
1989 	cpu = get_cpu();
1990 	percpu = per_cpu_ptr(conf->percpu, cpu);
1991 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1992 		ops_run_biofill(sh);
1993 		overlap_clear++;
1994 	}
1995 
1996 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1997 		if (level < 6)
1998 			tx = ops_run_compute5(sh, percpu);
1999 		else {
2000 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2001 				tx = ops_run_compute6_1(sh, percpu);
2002 			else
2003 				tx = ops_run_compute6_2(sh, percpu);
2004 		}
2005 		/* terminate the chain if reconstruct is not set to be run */
2006 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2007 			async_tx_ack(tx);
2008 	}
2009 
2010 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2011 		if (level < 6)
2012 			tx = ops_run_prexor5(sh, percpu, tx);
2013 		else
2014 			tx = ops_run_prexor6(sh, percpu, tx);
2015 	}
2016 
2017 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2018 		tx = ops_run_biodrain(sh, tx);
2019 		overlap_clear++;
2020 	}
2021 
2022 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2023 		if (level < 6)
2024 			ops_run_reconstruct5(sh, percpu, tx);
2025 		else
2026 			ops_run_reconstruct6(sh, percpu, tx);
2027 	}
2028 
2029 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2030 		if (sh->check_state == check_state_run)
2031 			ops_run_check_p(sh, percpu);
2032 		else if (sh->check_state == check_state_run_q)
2033 			ops_run_check_pq(sh, percpu, 0);
2034 		else if (sh->check_state == check_state_run_pq)
2035 			ops_run_check_pq(sh, percpu, 1);
2036 		else
2037 			BUG();
2038 	}
2039 
2040 	if (overlap_clear && !sh->batch_head)
2041 		for (i = disks; i--; ) {
2042 			struct r5dev *dev = &sh->dev[i];
2043 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2044 				wake_up(&sh->raid_conf->wait_for_overlap);
2045 		}
2046 	put_cpu();
2047 }
2048 
2049 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2050 	int disks)
2051 {
2052 	struct stripe_head *sh;
2053 	int i;
2054 
2055 	sh = kmem_cache_zalloc(sc, gfp);
2056 	if (sh) {
2057 		spin_lock_init(&sh->stripe_lock);
2058 		spin_lock_init(&sh->batch_lock);
2059 		INIT_LIST_HEAD(&sh->batch_list);
2060 		INIT_LIST_HEAD(&sh->lru);
2061 		INIT_LIST_HEAD(&sh->r5c);
2062 		INIT_LIST_HEAD(&sh->log_list);
2063 		atomic_set(&sh->count, 1);
2064 		sh->log_start = MaxSector;
2065 		for (i = 0; i < disks; i++) {
2066 			struct r5dev *dev = &sh->dev[i];
2067 
2068 			bio_init(&dev->req, &dev->vec, 1);
2069 			bio_init(&dev->rreq, &dev->rvec, 1);
2070 		}
2071 	}
2072 	return sh;
2073 }
2074 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2075 {
2076 	struct stripe_head *sh;
2077 
2078 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size);
2079 	if (!sh)
2080 		return 0;
2081 
2082 	sh->raid_conf = conf;
2083 
2084 	if (grow_buffers(sh, gfp)) {
2085 		shrink_buffers(sh);
2086 		kmem_cache_free(conf->slab_cache, sh);
2087 		return 0;
2088 	}
2089 	sh->hash_lock_index =
2090 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2091 	/* we just created an active stripe so... */
2092 	atomic_inc(&conf->active_stripes);
2093 
2094 	raid5_release_stripe(sh);
2095 	conf->max_nr_stripes++;
2096 	return 1;
2097 }
2098 
2099 static int grow_stripes(struct r5conf *conf, int num)
2100 {
2101 	struct kmem_cache *sc;
2102 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2103 
2104 	if (conf->mddev->gendisk)
2105 		sprintf(conf->cache_name[0],
2106 			"raid%d-%s", conf->level, mdname(conf->mddev));
2107 	else
2108 		sprintf(conf->cache_name[0],
2109 			"raid%d-%p", conf->level, conf->mddev);
2110 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2111 
2112 	conf->active_name = 0;
2113 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2114 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2115 			       0, 0, NULL);
2116 	if (!sc)
2117 		return 1;
2118 	conf->slab_cache = sc;
2119 	conf->pool_size = devs;
2120 	while (num--)
2121 		if (!grow_one_stripe(conf, GFP_KERNEL))
2122 			return 1;
2123 
2124 	return 0;
2125 }
2126 
2127 /**
2128  * scribble_len - return the required size of the scribble region
2129  * @num - total number of disks in the array
2130  *
2131  * The size must be enough to contain:
2132  * 1/ a struct page pointer for each device in the array +2
2133  * 2/ room to convert each entry in (1) to its corresponding dma
2134  *    (dma_map_page()) or page (page_address()) address.
2135  *
2136  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2137  * calculate over all devices (not just the data blocks), using zeros in place
2138  * of the P and Q blocks.
2139  */
2140 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2141 {
2142 	struct flex_array *ret;
2143 	size_t len;
2144 
2145 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2146 	ret = flex_array_alloc(len, cnt, flags);
2147 	if (!ret)
2148 		return NULL;
2149 	/* always prealloc all elements, so no locking is required */
2150 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2151 		flex_array_free(ret);
2152 		return NULL;
2153 	}
2154 	return ret;
2155 }
2156 
2157 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2158 {
2159 	unsigned long cpu;
2160 	int err = 0;
2161 
2162 	/*
2163 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2164 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2165 	 * should equal to new_disks and new_sectors
2166 	 */
2167 	if (conf->scribble_disks >= new_disks &&
2168 	    conf->scribble_sectors >= new_sectors)
2169 		return 0;
2170 	mddev_suspend(conf->mddev);
2171 	get_online_cpus();
2172 	for_each_present_cpu(cpu) {
2173 		struct raid5_percpu *percpu;
2174 		struct flex_array *scribble;
2175 
2176 		percpu = per_cpu_ptr(conf->percpu, cpu);
2177 		scribble = scribble_alloc(new_disks,
2178 					  new_sectors / STRIPE_SECTORS,
2179 					  GFP_NOIO);
2180 
2181 		if (scribble) {
2182 			flex_array_free(percpu->scribble);
2183 			percpu->scribble = scribble;
2184 		} else {
2185 			err = -ENOMEM;
2186 			break;
2187 		}
2188 	}
2189 	put_online_cpus();
2190 	mddev_resume(conf->mddev);
2191 	if (!err) {
2192 		conf->scribble_disks = new_disks;
2193 		conf->scribble_sectors = new_sectors;
2194 	}
2195 	return err;
2196 }
2197 
2198 static int resize_stripes(struct r5conf *conf, int newsize)
2199 {
2200 	/* Make all the stripes able to hold 'newsize' devices.
2201 	 * New slots in each stripe get 'page' set to a new page.
2202 	 *
2203 	 * This happens in stages:
2204 	 * 1/ create a new kmem_cache and allocate the required number of
2205 	 *    stripe_heads.
2206 	 * 2/ gather all the old stripe_heads and transfer the pages across
2207 	 *    to the new stripe_heads.  This will have the side effect of
2208 	 *    freezing the array as once all stripe_heads have been collected,
2209 	 *    no IO will be possible.  Old stripe heads are freed once their
2210 	 *    pages have been transferred over, and the old kmem_cache is
2211 	 *    freed when all stripes are done.
2212 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2213 	 *    we simple return a failre status - no need to clean anything up.
2214 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2215 	 *    If this fails, we don't bother trying the shrink the
2216 	 *    stripe_heads down again, we just leave them as they are.
2217 	 *    As each stripe_head is processed the new one is released into
2218 	 *    active service.
2219 	 *
2220 	 * Once step2 is started, we cannot afford to wait for a write,
2221 	 * so we use GFP_NOIO allocations.
2222 	 */
2223 	struct stripe_head *osh, *nsh;
2224 	LIST_HEAD(newstripes);
2225 	struct disk_info *ndisks;
2226 	int err;
2227 	struct kmem_cache *sc;
2228 	int i;
2229 	int hash, cnt;
2230 
2231 	if (newsize <= conf->pool_size)
2232 		return 0; /* never bother to shrink */
2233 
2234 	err = md_allow_write(conf->mddev);
2235 	if (err)
2236 		return err;
2237 
2238 	/* Step 1 */
2239 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2240 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2241 			       0, 0, NULL);
2242 	if (!sc)
2243 		return -ENOMEM;
2244 
2245 	/* Need to ensure auto-resizing doesn't interfere */
2246 	mutex_lock(&conf->cache_size_mutex);
2247 
2248 	for (i = conf->max_nr_stripes; i; i--) {
2249 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize);
2250 		if (!nsh)
2251 			break;
2252 
2253 		nsh->raid_conf = conf;
2254 		list_add(&nsh->lru, &newstripes);
2255 	}
2256 	if (i) {
2257 		/* didn't get enough, give up */
2258 		while (!list_empty(&newstripes)) {
2259 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2260 			list_del(&nsh->lru);
2261 			kmem_cache_free(sc, nsh);
2262 		}
2263 		kmem_cache_destroy(sc);
2264 		mutex_unlock(&conf->cache_size_mutex);
2265 		return -ENOMEM;
2266 	}
2267 	/* Step 2 - Must use GFP_NOIO now.
2268 	 * OK, we have enough stripes, start collecting inactive
2269 	 * stripes and copying them over
2270 	 */
2271 	hash = 0;
2272 	cnt = 0;
2273 	list_for_each_entry(nsh, &newstripes, lru) {
2274 		lock_device_hash_lock(conf, hash);
2275 		wait_event_cmd(conf->wait_for_stripe,
2276 				    !list_empty(conf->inactive_list + hash),
2277 				    unlock_device_hash_lock(conf, hash),
2278 				    lock_device_hash_lock(conf, hash));
2279 		osh = get_free_stripe(conf, hash);
2280 		unlock_device_hash_lock(conf, hash);
2281 
2282 		for(i=0; i<conf->pool_size; i++) {
2283 			nsh->dev[i].page = osh->dev[i].page;
2284 			nsh->dev[i].orig_page = osh->dev[i].page;
2285 		}
2286 		nsh->hash_lock_index = hash;
2287 		kmem_cache_free(conf->slab_cache, osh);
2288 		cnt++;
2289 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2290 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2291 			hash++;
2292 			cnt = 0;
2293 		}
2294 	}
2295 	kmem_cache_destroy(conf->slab_cache);
2296 
2297 	/* Step 3.
2298 	 * At this point, we are holding all the stripes so the array
2299 	 * is completely stalled, so now is a good time to resize
2300 	 * conf->disks and the scribble region
2301 	 */
2302 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2303 	if (ndisks) {
2304 		for (i = 0; i < conf->pool_size; i++)
2305 			ndisks[i] = conf->disks[i];
2306 
2307 		for (i = conf->pool_size; i < newsize; i++) {
2308 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2309 			if (!ndisks[i].extra_page)
2310 				err = -ENOMEM;
2311 		}
2312 
2313 		if (err) {
2314 			for (i = conf->pool_size; i < newsize; i++)
2315 				if (ndisks[i].extra_page)
2316 					put_page(ndisks[i].extra_page);
2317 			kfree(ndisks);
2318 		} else {
2319 			kfree(conf->disks);
2320 			conf->disks = ndisks;
2321 		}
2322 	} else
2323 		err = -ENOMEM;
2324 
2325 	mutex_unlock(&conf->cache_size_mutex);
2326 	/* Step 4, return new stripes to service */
2327 	while(!list_empty(&newstripes)) {
2328 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2329 		list_del_init(&nsh->lru);
2330 
2331 		for (i=conf->raid_disks; i < newsize; i++)
2332 			if (nsh->dev[i].page == NULL) {
2333 				struct page *p = alloc_page(GFP_NOIO);
2334 				nsh->dev[i].page = p;
2335 				nsh->dev[i].orig_page = p;
2336 				if (!p)
2337 					err = -ENOMEM;
2338 			}
2339 		raid5_release_stripe(nsh);
2340 	}
2341 	/* critical section pass, GFP_NOIO no longer needed */
2342 
2343 	conf->slab_cache = sc;
2344 	conf->active_name = 1-conf->active_name;
2345 	if (!err)
2346 		conf->pool_size = newsize;
2347 	return err;
2348 }
2349 
2350 static int drop_one_stripe(struct r5conf *conf)
2351 {
2352 	struct stripe_head *sh;
2353 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2354 
2355 	spin_lock_irq(conf->hash_locks + hash);
2356 	sh = get_free_stripe(conf, hash);
2357 	spin_unlock_irq(conf->hash_locks + hash);
2358 	if (!sh)
2359 		return 0;
2360 	BUG_ON(atomic_read(&sh->count));
2361 	shrink_buffers(sh);
2362 	kmem_cache_free(conf->slab_cache, sh);
2363 	atomic_dec(&conf->active_stripes);
2364 	conf->max_nr_stripes--;
2365 	return 1;
2366 }
2367 
2368 static void shrink_stripes(struct r5conf *conf)
2369 {
2370 	while (conf->max_nr_stripes &&
2371 	       drop_one_stripe(conf))
2372 		;
2373 
2374 	kmem_cache_destroy(conf->slab_cache);
2375 	conf->slab_cache = NULL;
2376 }
2377 
2378 static void raid5_end_read_request(struct bio * bi)
2379 {
2380 	struct stripe_head *sh = bi->bi_private;
2381 	struct r5conf *conf = sh->raid_conf;
2382 	int disks = sh->disks, i;
2383 	char b[BDEVNAME_SIZE];
2384 	struct md_rdev *rdev = NULL;
2385 	sector_t s;
2386 
2387 	for (i=0 ; i<disks; i++)
2388 		if (bi == &sh->dev[i].req)
2389 			break;
2390 
2391 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2392 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2393 		bi->bi_error);
2394 	if (i == disks) {
2395 		bio_reset(bi);
2396 		BUG();
2397 		return;
2398 	}
2399 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2400 		/* If replacement finished while this request was outstanding,
2401 		 * 'replacement' might be NULL already.
2402 		 * In that case it moved down to 'rdev'.
2403 		 * rdev is not removed until all requests are finished.
2404 		 */
2405 		rdev = conf->disks[i].replacement;
2406 	if (!rdev)
2407 		rdev = conf->disks[i].rdev;
2408 
2409 	if (use_new_offset(conf, sh))
2410 		s = sh->sector + rdev->new_data_offset;
2411 	else
2412 		s = sh->sector + rdev->data_offset;
2413 	if (!bi->bi_error) {
2414 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2415 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2416 			/* Note that this cannot happen on a
2417 			 * replacement device.  We just fail those on
2418 			 * any error
2419 			 */
2420 			pr_info_ratelimited(
2421 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2422 				mdname(conf->mddev), STRIPE_SECTORS,
2423 				(unsigned long long)s,
2424 				bdevname(rdev->bdev, b));
2425 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2426 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2427 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2428 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2429 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2430 
2431 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2432 			/*
2433 			 * end read for a page in journal, this
2434 			 * must be preparing for prexor in rmw
2435 			 */
2436 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2437 
2438 		if (atomic_read(&rdev->read_errors))
2439 			atomic_set(&rdev->read_errors, 0);
2440 	} else {
2441 		const char *bdn = bdevname(rdev->bdev, b);
2442 		int retry = 0;
2443 		int set_bad = 0;
2444 
2445 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2446 		atomic_inc(&rdev->read_errors);
2447 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2448 			pr_warn_ratelimited(
2449 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2450 				mdname(conf->mddev),
2451 				(unsigned long long)s,
2452 				bdn);
2453 		else if (conf->mddev->degraded >= conf->max_degraded) {
2454 			set_bad = 1;
2455 			pr_warn_ratelimited(
2456 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2457 				mdname(conf->mddev),
2458 				(unsigned long long)s,
2459 				bdn);
2460 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2461 			/* Oh, no!!! */
2462 			set_bad = 1;
2463 			pr_warn_ratelimited(
2464 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2465 				mdname(conf->mddev),
2466 				(unsigned long long)s,
2467 				bdn);
2468 		} else if (atomic_read(&rdev->read_errors)
2469 			 > conf->max_nr_stripes)
2470 			pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2471 			       mdname(conf->mddev), bdn);
2472 		else
2473 			retry = 1;
2474 		if (set_bad && test_bit(In_sync, &rdev->flags)
2475 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2476 			retry = 1;
2477 		if (retry)
2478 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2479 				set_bit(R5_ReadError, &sh->dev[i].flags);
2480 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2481 			} else
2482 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2483 		else {
2484 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2485 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2486 			if (!(set_bad
2487 			      && test_bit(In_sync, &rdev->flags)
2488 			      && rdev_set_badblocks(
2489 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2490 				md_error(conf->mddev, rdev);
2491 		}
2492 	}
2493 	rdev_dec_pending(rdev, conf->mddev);
2494 	bio_reset(bi);
2495 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2496 	set_bit(STRIPE_HANDLE, &sh->state);
2497 	raid5_release_stripe(sh);
2498 }
2499 
2500 static void raid5_end_write_request(struct bio *bi)
2501 {
2502 	struct stripe_head *sh = bi->bi_private;
2503 	struct r5conf *conf = sh->raid_conf;
2504 	int disks = sh->disks, i;
2505 	struct md_rdev *uninitialized_var(rdev);
2506 	sector_t first_bad;
2507 	int bad_sectors;
2508 	int replacement = 0;
2509 
2510 	for (i = 0 ; i < disks; i++) {
2511 		if (bi == &sh->dev[i].req) {
2512 			rdev = conf->disks[i].rdev;
2513 			break;
2514 		}
2515 		if (bi == &sh->dev[i].rreq) {
2516 			rdev = conf->disks[i].replacement;
2517 			if (rdev)
2518 				replacement = 1;
2519 			else
2520 				/* rdev was removed and 'replacement'
2521 				 * replaced it.  rdev is not removed
2522 				 * until all requests are finished.
2523 				 */
2524 				rdev = conf->disks[i].rdev;
2525 			break;
2526 		}
2527 	}
2528 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2529 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2530 		bi->bi_error);
2531 	if (i == disks) {
2532 		bio_reset(bi);
2533 		BUG();
2534 		return;
2535 	}
2536 
2537 	if (replacement) {
2538 		if (bi->bi_error)
2539 			md_error(conf->mddev, rdev);
2540 		else if (is_badblock(rdev, sh->sector,
2541 				     STRIPE_SECTORS,
2542 				     &first_bad, &bad_sectors))
2543 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2544 	} else {
2545 		if (bi->bi_error) {
2546 			set_bit(STRIPE_DEGRADED, &sh->state);
2547 			set_bit(WriteErrorSeen, &rdev->flags);
2548 			set_bit(R5_WriteError, &sh->dev[i].flags);
2549 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2550 				set_bit(MD_RECOVERY_NEEDED,
2551 					&rdev->mddev->recovery);
2552 		} else if (is_badblock(rdev, sh->sector,
2553 				       STRIPE_SECTORS,
2554 				       &first_bad, &bad_sectors)) {
2555 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2556 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2557 				/* That was a successful write so make
2558 				 * sure it looks like we already did
2559 				 * a re-write.
2560 				 */
2561 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2562 		}
2563 	}
2564 	rdev_dec_pending(rdev, conf->mddev);
2565 
2566 	if (sh->batch_head && bi->bi_error && !replacement)
2567 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2568 
2569 	bio_reset(bi);
2570 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2571 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2572 	set_bit(STRIPE_HANDLE, &sh->state);
2573 	raid5_release_stripe(sh);
2574 
2575 	if (sh->batch_head && sh != sh->batch_head)
2576 		raid5_release_stripe(sh->batch_head);
2577 }
2578 
2579 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2580 {
2581 	struct r5dev *dev = &sh->dev[i];
2582 
2583 	dev->flags = 0;
2584 	dev->sector = raid5_compute_blocknr(sh, i, previous);
2585 }
2586 
2587 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2588 {
2589 	char b[BDEVNAME_SIZE];
2590 	struct r5conf *conf = mddev->private;
2591 	unsigned long flags;
2592 	pr_debug("raid456: error called\n");
2593 
2594 	spin_lock_irqsave(&conf->device_lock, flags);
2595 	clear_bit(In_sync, &rdev->flags);
2596 	mddev->degraded = raid5_calc_degraded(conf);
2597 	spin_unlock_irqrestore(&conf->device_lock, flags);
2598 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2599 
2600 	set_bit(Blocked, &rdev->flags);
2601 	set_bit(Faulty, &rdev->flags);
2602 	set_mask_bits(&mddev->sb_flags, 0,
2603 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2604 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2605 		"md/raid:%s: Operation continuing on %d devices.\n",
2606 		mdname(mddev),
2607 		bdevname(rdev->bdev, b),
2608 		mdname(mddev),
2609 		conf->raid_disks - mddev->degraded);
2610 	r5c_update_on_rdev_error(mddev);
2611 }
2612 
2613 /*
2614  * Input: a 'big' sector number,
2615  * Output: index of the data and parity disk, and the sector # in them.
2616  */
2617 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2618 			      int previous, int *dd_idx,
2619 			      struct stripe_head *sh)
2620 {
2621 	sector_t stripe, stripe2;
2622 	sector_t chunk_number;
2623 	unsigned int chunk_offset;
2624 	int pd_idx, qd_idx;
2625 	int ddf_layout = 0;
2626 	sector_t new_sector;
2627 	int algorithm = previous ? conf->prev_algo
2628 				 : conf->algorithm;
2629 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2630 					 : conf->chunk_sectors;
2631 	int raid_disks = previous ? conf->previous_raid_disks
2632 				  : conf->raid_disks;
2633 	int data_disks = raid_disks - conf->max_degraded;
2634 
2635 	/* First compute the information on this sector */
2636 
2637 	/*
2638 	 * Compute the chunk number and the sector offset inside the chunk
2639 	 */
2640 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2641 	chunk_number = r_sector;
2642 
2643 	/*
2644 	 * Compute the stripe number
2645 	 */
2646 	stripe = chunk_number;
2647 	*dd_idx = sector_div(stripe, data_disks);
2648 	stripe2 = stripe;
2649 	/*
2650 	 * Select the parity disk based on the user selected algorithm.
2651 	 */
2652 	pd_idx = qd_idx = -1;
2653 	switch(conf->level) {
2654 	case 4:
2655 		pd_idx = data_disks;
2656 		break;
2657 	case 5:
2658 		switch (algorithm) {
2659 		case ALGORITHM_LEFT_ASYMMETRIC:
2660 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2661 			if (*dd_idx >= pd_idx)
2662 				(*dd_idx)++;
2663 			break;
2664 		case ALGORITHM_RIGHT_ASYMMETRIC:
2665 			pd_idx = sector_div(stripe2, raid_disks);
2666 			if (*dd_idx >= pd_idx)
2667 				(*dd_idx)++;
2668 			break;
2669 		case ALGORITHM_LEFT_SYMMETRIC:
2670 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2671 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2672 			break;
2673 		case ALGORITHM_RIGHT_SYMMETRIC:
2674 			pd_idx = sector_div(stripe2, raid_disks);
2675 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2676 			break;
2677 		case ALGORITHM_PARITY_0:
2678 			pd_idx = 0;
2679 			(*dd_idx)++;
2680 			break;
2681 		case ALGORITHM_PARITY_N:
2682 			pd_idx = data_disks;
2683 			break;
2684 		default:
2685 			BUG();
2686 		}
2687 		break;
2688 	case 6:
2689 
2690 		switch (algorithm) {
2691 		case ALGORITHM_LEFT_ASYMMETRIC:
2692 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2693 			qd_idx = pd_idx + 1;
2694 			if (pd_idx == raid_disks-1) {
2695 				(*dd_idx)++;	/* Q D D D P */
2696 				qd_idx = 0;
2697 			} else if (*dd_idx >= pd_idx)
2698 				(*dd_idx) += 2; /* D D P Q D */
2699 			break;
2700 		case ALGORITHM_RIGHT_ASYMMETRIC:
2701 			pd_idx = sector_div(stripe2, raid_disks);
2702 			qd_idx = pd_idx + 1;
2703 			if (pd_idx == raid_disks-1) {
2704 				(*dd_idx)++;	/* Q D D D P */
2705 				qd_idx = 0;
2706 			} else if (*dd_idx >= pd_idx)
2707 				(*dd_idx) += 2; /* D D P Q D */
2708 			break;
2709 		case ALGORITHM_LEFT_SYMMETRIC:
2710 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2711 			qd_idx = (pd_idx + 1) % raid_disks;
2712 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2713 			break;
2714 		case ALGORITHM_RIGHT_SYMMETRIC:
2715 			pd_idx = sector_div(stripe2, raid_disks);
2716 			qd_idx = (pd_idx + 1) % raid_disks;
2717 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2718 			break;
2719 
2720 		case ALGORITHM_PARITY_0:
2721 			pd_idx = 0;
2722 			qd_idx = 1;
2723 			(*dd_idx) += 2;
2724 			break;
2725 		case ALGORITHM_PARITY_N:
2726 			pd_idx = data_disks;
2727 			qd_idx = data_disks + 1;
2728 			break;
2729 
2730 		case ALGORITHM_ROTATING_ZERO_RESTART:
2731 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2732 			 * of blocks for computing Q is different.
2733 			 */
2734 			pd_idx = sector_div(stripe2, raid_disks);
2735 			qd_idx = pd_idx + 1;
2736 			if (pd_idx == raid_disks-1) {
2737 				(*dd_idx)++;	/* Q D D D P */
2738 				qd_idx = 0;
2739 			} else if (*dd_idx >= pd_idx)
2740 				(*dd_idx) += 2; /* D D P Q D */
2741 			ddf_layout = 1;
2742 			break;
2743 
2744 		case ALGORITHM_ROTATING_N_RESTART:
2745 			/* Same a left_asymmetric, by first stripe is
2746 			 * D D D P Q  rather than
2747 			 * Q D D D P
2748 			 */
2749 			stripe2 += 1;
2750 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2751 			qd_idx = pd_idx + 1;
2752 			if (pd_idx == raid_disks-1) {
2753 				(*dd_idx)++;	/* Q D D D P */
2754 				qd_idx = 0;
2755 			} else if (*dd_idx >= pd_idx)
2756 				(*dd_idx) += 2; /* D D P Q D */
2757 			ddf_layout = 1;
2758 			break;
2759 
2760 		case ALGORITHM_ROTATING_N_CONTINUE:
2761 			/* Same as left_symmetric but Q is before P */
2762 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2763 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2764 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2765 			ddf_layout = 1;
2766 			break;
2767 
2768 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2769 			/* RAID5 left_asymmetric, with Q on last device */
2770 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2771 			if (*dd_idx >= pd_idx)
2772 				(*dd_idx)++;
2773 			qd_idx = raid_disks - 1;
2774 			break;
2775 
2776 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2777 			pd_idx = sector_div(stripe2, raid_disks-1);
2778 			if (*dd_idx >= pd_idx)
2779 				(*dd_idx)++;
2780 			qd_idx = raid_disks - 1;
2781 			break;
2782 
2783 		case ALGORITHM_LEFT_SYMMETRIC_6:
2784 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2785 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2786 			qd_idx = raid_disks - 1;
2787 			break;
2788 
2789 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2790 			pd_idx = sector_div(stripe2, raid_disks-1);
2791 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2792 			qd_idx = raid_disks - 1;
2793 			break;
2794 
2795 		case ALGORITHM_PARITY_0_6:
2796 			pd_idx = 0;
2797 			(*dd_idx)++;
2798 			qd_idx = raid_disks - 1;
2799 			break;
2800 
2801 		default:
2802 			BUG();
2803 		}
2804 		break;
2805 	}
2806 
2807 	if (sh) {
2808 		sh->pd_idx = pd_idx;
2809 		sh->qd_idx = qd_idx;
2810 		sh->ddf_layout = ddf_layout;
2811 	}
2812 	/*
2813 	 * Finally, compute the new sector number
2814 	 */
2815 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2816 	return new_sector;
2817 }
2818 
2819 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2820 {
2821 	struct r5conf *conf = sh->raid_conf;
2822 	int raid_disks = sh->disks;
2823 	int data_disks = raid_disks - conf->max_degraded;
2824 	sector_t new_sector = sh->sector, check;
2825 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2826 					 : conf->chunk_sectors;
2827 	int algorithm = previous ? conf->prev_algo
2828 				 : conf->algorithm;
2829 	sector_t stripe;
2830 	int chunk_offset;
2831 	sector_t chunk_number;
2832 	int dummy1, dd_idx = i;
2833 	sector_t r_sector;
2834 	struct stripe_head sh2;
2835 
2836 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2837 	stripe = new_sector;
2838 
2839 	if (i == sh->pd_idx)
2840 		return 0;
2841 	switch(conf->level) {
2842 	case 4: break;
2843 	case 5:
2844 		switch (algorithm) {
2845 		case ALGORITHM_LEFT_ASYMMETRIC:
2846 		case ALGORITHM_RIGHT_ASYMMETRIC:
2847 			if (i > sh->pd_idx)
2848 				i--;
2849 			break;
2850 		case ALGORITHM_LEFT_SYMMETRIC:
2851 		case ALGORITHM_RIGHT_SYMMETRIC:
2852 			if (i < sh->pd_idx)
2853 				i += raid_disks;
2854 			i -= (sh->pd_idx + 1);
2855 			break;
2856 		case ALGORITHM_PARITY_0:
2857 			i -= 1;
2858 			break;
2859 		case ALGORITHM_PARITY_N:
2860 			break;
2861 		default:
2862 			BUG();
2863 		}
2864 		break;
2865 	case 6:
2866 		if (i == sh->qd_idx)
2867 			return 0; /* It is the Q disk */
2868 		switch (algorithm) {
2869 		case ALGORITHM_LEFT_ASYMMETRIC:
2870 		case ALGORITHM_RIGHT_ASYMMETRIC:
2871 		case ALGORITHM_ROTATING_ZERO_RESTART:
2872 		case ALGORITHM_ROTATING_N_RESTART:
2873 			if (sh->pd_idx == raid_disks-1)
2874 				i--;	/* Q D D D P */
2875 			else if (i > sh->pd_idx)
2876 				i -= 2; /* D D P Q D */
2877 			break;
2878 		case ALGORITHM_LEFT_SYMMETRIC:
2879 		case ALGORITHM_RIGHT_SYMMETRIC:
2880 			if (sh->pd_idx == raid_disks-1)
2881 				i--; /* Q D D D P */
2882 			else {
2883 				/* D D P Q D */
2884 				if (i < sh->pd_idx)
2885 					i += raid_disks;
2886 				i -= (sh->pd_idx + 2);
2887 			}
2888 			break;
2889 		case ALGORITHM_PARITY_0:
2890 			i -= 2;
2891 			break;
2892 		case ALGORITHM_PARITY_N:
2893 			break;
2894 		case ALGORITHM_ROTATING_N_CONTINUE:
2895 			/* Like left_symmetric, but P is before Q */
2896 			if (sh->pd_idx == 0)
2897 				i--;	/* P D D D Q */
2898 			else {
2899 				/* D D Q P D */
2900 				if (i < sh->pd_idx)
2901 					i += raid_disks;
2902 				i -= (sh->pd_idx + 1);
2903 			}
2904 			break;
2905 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2906 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2907 			if (i > sh->pd_idx)
2908 				i--;
2909 			break;
2910 		case ALGORITHM_LEFT_SYMMETRIC_6:
2911 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2912 			if (i < sh->pd_idx)
2913 				i += data_disks + 1;
2914 			i -= (sh->pd_idx + 1);
2915 			break;
2916 		case ALGORITHM_PARITY_0_6:
2917 			i -= 1;
2918 			break;
2919 		default:
2920 			BUG();
2921 		}
2922 		break;
2923 	}
2924 
2925 	chunk_number = stripe * data_disks + i;
2926 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2927 
2928 	check = raid5_compute_sector(conf, r_sector,
2929 				     previous, &dummy1, &sh2);
2930 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2931 		|| sh2.qd_idx != sh->qd_idx) {
2932 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
2933 			mdname(conf->mddev));
2934 		return 0;
2935 	}
2936 	return r_sector;
2937 }
2938 
2939 /*
2940  * There are cases where we want handle_stripe_dirtying() and
2941  * schedule_reconstruction() to delay towrite to some dev of a stripe.
2942  *
2943  * This function checks whether we want to delay the towrite. Specifically,
2944  * we delay the towrite when:
2945  *
2946  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
2947  *      stripe has data in journal (for other devices).
2948  *
2949  *      In this case, when reading data for the non-overwrite dev, it is
2950  *      necessary to handle complex rmw of write back cache (prexor with
2951  *      orig_page, and xor with page). To keep read path simple, we would
2952  *      like to flush data in journal to RAID disks first, so complex rmw
2953  *      is handled in the write patch (handle_stripe_dirtying).
2954  *
2955  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
2956  *
2957  *      It is important to be able to flush all stripes in raid5-cache.
2958  *      Therefore, we need reserve some space on the journal device for
2959  *      these flushes. If flush operation includes pending writes to the
2960  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
2961  *      for the flush out. If we exclude these pending writes from flush
2962  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
2963  *      Therefore, excluding pending writes in these cases enables more
2964  *      efficient use of the journal device.
2965  *
2966  *      Note: To make sure the stripe makes progress, we only delay
2967  *      towrite for stripes with data already in journal (injournal > 0).
2968  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
2969  *      no_space_stripes list.
2970  *
2971  */
2972 static inline bool delay_towrite(struct r5conf *conf,
2973 				 struct r5dev *dev,
2974 				 struct stripe_head_state *s)
2975 {
2976 	/* case 1 above */
2977 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2978 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
2979 		return true;
2980 	/* case 2 above */
2981 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2982 	    s->injournal > 0)
2983 		return true;
2984 	return false;
2985 }
2986 
2987 static void
2988 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2989 			 int rcw, int expand)
2990 {
2991 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2992 	struct r5conf *conf = sh->raid_conf;
2993 	int level = conf->level;
2994 
2995 	if (rcw) {
2996 		/*
2997 		 * In some cases, handle_stripe_dirtying initially decided to
2998 		 * run rmw and allocates extra page for prexor. However, rcw is
2999 		 * cheaper later on. We need to free the extra page now,
3000 		 * because we won't be able to do that in ops_complete_prexor().
3001 		 */
3002 		r5c_release_extra_page(sh);
3003 
3004 		for (i = disks; i--; ) {
3005 			struct r5dev *dev = &sh->dev[i];
3006 
3007 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3008 				set_bit(R5_LOCKED, &dev->flags);
3009 				set_bit(R5_Wantdrain, &dev->flags);
3010 				if (!expand)
3011 					clear_bit(R5_UPTODATE, &dev->flags);
3012 				s->locked++;
3013 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3014 				set_bit(R5_LOCKED, &dev->flags);
3015 				s->locked++;
3016 			}
3017 		}
3018 		/* if we are not expanding this is a proper write request, and
3019 		 * there will be bios with new data to be drained into the
3020 		 * stripe cache
3021 		 */
3022 		if (!expand) {
3023 			if (!s->locked)
3024 				/* False alarm, nothing to do */
3025 				return;
3026 			sh->reconstruct_state = reconstruct_state_drain_run;
3027 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3028 		} else
3029 			sh->reconstruct_state = reconstruct_state_run;
3030 
3031 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3032 
3033 		if (s->locked + conf->max_degraded == disks)
3034 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3035 				atomic_inc(&conf->pending_full_writes);
3036 	} else {
3037 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3038 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3039 		BUG_ON(level == 6 &&
3040 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3041 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3042 
3043 		for (i = disks; i--; ) {
3044 			struct r5dev *dev = &sh->dev[i];
3045 			if (i == pd_idx || i == qd_idx)
3046 				continue;
3047 
3048 			if (dev->towrite &&
3049 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3050 			     test_bit(R5_Wantcompute, &dev->flags))) {
3051 				set_bit(R5_Wantdrain, &dev->flags);
3052 				set_bit(R5_LOCKED, &dev->flags);
3053 				clear_bit(R5_UPTODATE, &dev->flags);
3054 				s->locked++;
3055 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3056 				set_bit(R5_LOCKED, &dev->flags);
3057 				s->locked++;
3058 			}
3059 		}
3060 		if (!s->locked)
3061 			/* False alarm - nothing to do */
3062 			return;
3063 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3064 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3065 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3066 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3067 	}
3068 
3069 	/* keep the parity disk(s) locked while asynchronous operations
3070 	 * are in flight
3071 	 */
3072 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3073 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3074 	s->locked++;
3075 
3076 	if (level == 6) {
3077 		int qd_idx = sh->qd_idx;
3078 		struct r5dev *dev = &sh->dev[qd_idx];
3079 
3080 		set_bit(R5_LOCKED, &dev->flags);
3081 		clear_bit(R5_UPTODATE, &dev->flags);
3082 		s->locked++;
3083 	}
3084 
3085 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3086 		__func__, (unsigned long long)sh->sector,
3087 		s->locked, s->ops_request);
3088 }
3089 
3090 /*
3091  * Each stripe/dev can have one or more bion attached.
3092  * toread/towrite point to the first in a chain.
3093  * The bi_next chain must be in order.
3094  */
3095 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3096 			  int forwrite, int previous)
3097 {
3098 	struct bio **bip;
3099 	struct r5conf *conf = sh->raid_conf;
3100 	int firstwrite=0;
3101 
3102 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3103 		(unsigned long long)bi->bi_iter.bi_sector,
3104 		(unsigned long long)sh->sector);
3105 
3106 	/*
3107 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
3108 	 * reference count to avoid race. The reference count should already be
3109 	 * increased before this function is called (for example, in
3110 	 * raid5_make_request()), so other bio sharing this stripe will not free the
3111 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
3112 	 * protect it.
3113 	 */
3114 	spin_lock_irq(&sh->stripe_lock);
3115 	/* Don't allow new IO added to stripes in batch list */
3116 	if (sh->batch_head)
3117 		goto overlap;
3118 	if (forwrite) {
3119 		bip = &sh->dev[dd_idx].towrite;
3120 		if (*bip == NULL)
3121 			firstwrite = 1;
3122 	} else
3123 		bip = &sh->dev[dd_idx].toread;
3124 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3125 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3126 			goto overlap;
3127 		bip = & (*bip)->bi_next;
3128 	}
3129 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3130 		goto overlap;
3131 
3132 	if (!forwrite || previous)
3133 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3134 
3135 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3136 	if (*bip)
3137 		bi->bi_next = *bip;
3138 	*bip = bi;
3139 	raid5_inc_bi_active_stripes(bi);
3140 
3141 	if (forwrite) {
3142 		/* check if page is covered */
3143 		sector_t sector = sh->dev[dd_idx].sector;
3144 		for (bi=sh->dev[dd_idx].towrite;
3145 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3146 			     bi && bi->bi_iter.bi_sector <= sector;
3147 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3148 			if (bio_end_sector(bi) >= sector)
3149 				sector = bio_end_sector(bi);
3150 		}
3151 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3152 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3153 				sh->overwrite_disks++;
3154 	}
3155 
3156 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3157 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3158 		(unsigned long long)sh->sector, dd_idx);
3159 
3160 	if (conf->mddev->bitmap && firstwrite) {
3161 		/* Cannot hold spinlock over bitmap_startwrite,
3162 		 * but must ensure this isn't added to a batch until
3163 		 * we have added to the bitmap and set bm_seq.
3164 		 * So set STRIPE_BITMAP_PENDING to prevent
3165 		 * batching.
3166 		 * If multiple add_stripe_bio() calls race here they
3167 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3168 		 * to complete "bitmap_startwrite" gets to set
3169 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3170 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3171 		 * any more.
3172 		 */
3173 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3174 		spin_unlock_irq(&sh->stripe_lock);
3175 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3176 				  STRIPE_SECTORS, 0);
3177 		spin_lock_irq(&sh->stripe_lock);
3178 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3179 		if (!sh->batch_head) {
3180 			sh->bm_seq = conf->seq_flush+1;
3181 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3182 		}
3183 	}
3184 	spin_unlock_irq(&sh->stripe_lock);
3185 
3186 	if (stripe_can_batch(sh))
3187 		stripe_add_to_batch_list(conf, sh);
3188 	return 1;
3189 
3190  overlap:
3191 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3192 	spin_unlock_irq(&sh->stripe_lock);
3193 	return 0;
3194 }
3195 
3196 static void end_reshape(struct r5conf *conf);
3197 
3198 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3199 			    struct stripe_head *sh)
3200 {
3201 	int sectors_per_chunk =
3202 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3203 	int dd_idx;
3204 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3205 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3206 
3207 	raid5_compute_sector(conf,
3208 			     stripe * (disks - conf->max_degraded)
3209 			     *sectors_per_chunk + chunk_offset,
3210 			     previous,
3211 			     &dd_idx, sh);
3212 }
3213 
3214 static void
3215 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3216 				struct stripe_head_state *s, int disks,
3217 				struct bio_list *return_bi)
3218 {
3219 	int i;
3220 	BUG_ON(sh->batch_head);
3221 	for (i = disks; i--; ) {
3222 		struct bio *bi;
3223 		int bitmap_end = 0;
3224 
3225 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3226 			struct md_rdev *rdev;
3227 			rcu_read_lock();
3228 			rdev = rcu_dereference(conf->disks[i].rdev);
3229 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3230 			    !test_bit(Faulty, &rdev->flags))
3231 				atomic_inc(&rdev->nr_pending);
3232 			else
3233 				rdev = NULL;
3234 			rcu_read_unlock();
3235 			if (rdev) {
3236 				if (!rdev_set_badblocks(
3237 					    rdev,
3238 					    sh->sector,
3239 					    STRIPE_SECTORS, 0))
3240 					md_error(conf->mddev, rdev);
3241 				rdev_dec_pending(rdev, conf->mddev);
3242 			}
3243 		}
3244 		spin_lock_irq(&sh->stripe_lock);
3245 		/* fail all writes first */
3246 		bi = sh->dev[i].towrite;
3247 		sh->dev[i].towrite = NULL;
3248 		sh->overwrite_disks = 0;
3249 		spin_unlock_irq(&sh->stripe_lock);
3250 		if (bi)
3251 			bitmap_end = 1;
3252 
3253 		r5l_stripe_write_finished(sh);
3254 
3255 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3256 			wake_up(&conf->wait_for_overlap);
3257 
3258 		while (bi && bi->bi_iter.bi_sector <
3259 			sh->dev[i].sector + STRIPE_SECTORS) {
3260 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3261 
3262 			bi->bi_error = -EIO;
3263 			if (!raid5_dec_bi_active_stripes(bi)) {
3264 				md_write_end(conf->mddev);
3265 				bio_list_add(return_bi, bi);
3266 			}
3267 			bi = nextbi;
3268 		}
3269 		if (bitmap_end)
3270 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3271 				STRIPE_SECTORS, 0, 0);
3272 		bitmap_end = 0;
3273 		/* and fail all 'written' */
3274 		bi = sh->dev[i].written;
3275 		sh->dev[i].written = NULL;
3276 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3277 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3278 			sh->dev[i].page = sh->dev[i].orig_page;
3279 		}
3280 
3281 		if (bi) bitmap_end = 1;
3282 		while (bi && bi->bi_iter.bi_sector <
3283 		       sh->dev[i].sector + STRIPE_SECTORS) {
3284 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3285 
3286 			bi->bi_error = -EIO;
3287 			if (!raid5_dec_bi_active_stripes(bi)) {
3288 				md_write_end(conf->mddev);
3289 				bio_list_add(return_bi, bi);
3290 			}
3291 			bi = bi2;
3292 		}
3293 
3294 		/* fail any reads if this device is non-operational and
3295 		 * the data has not reached the cache yet.
3296 		 */
3297 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3298 		    s->failed > conf->max_degraded &&
3299 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3300 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3301 			spin_lock_irq(&sh->stripe_lock);
3302 			bi = sh->dev[i].toread;
3303 			sh->dev[i].toread = NULL;
3304 			spin_unlock_irq(&sh->stripe_lock);
3305 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3306 				wake_up(&conf->wait_for_overlap);
3307 			if (bi)
3308 				s->to_read--;
3309 			while (bi && bi->bi_iter.bi_sector <
3310 			       sh->dev[i].sector + STRIPE_SECTORS) {
3311 				struct bio *nextbi =
3312 					r5_next_bio(bi, sh->dev[i].sector);
3313 
3314 				bi->bi_error = -EIO;
3315 				if (!raid5_dec_bi_active_stripes(bi))
3316 					bio_list_add(return_bi, bi);
3317 				bi = nextbi;
3318 			}
3319 		}
3320 		if (bitmap_end)
3321 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3322 					STRIPE_SECTORS, 0, 0);
3323 		/* If we were in the middle of a write the parity block might
3324 		 * still be locked - so just clear all R5_LOCKED flags
3325 		 */
3326 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3327 	}
3328 	s->to_write = 0;
3329 	s->written = 0;
3330 
3331 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3332 		if (atomic_dec_and_test(&conf->pending_full_writes))
3333 			md_wakeup_thread(conf->mddev->thread);
3334 }
3335 
3336 static void
3337 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3338 		   struct stripe_head_state *s)
3339 {
3340 	int abort = 0;
3341 	int i;
3342 
3343 	BUG_ON(sh->batch_head);
3344 	clear_bit(STRIPE_SYNCING, &sh->state);
3345 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3346 		wake_up(&conf->wait_for_overlap);
3347 	s->syncing = 0;
3348 	s->replacing = 0;
3349 	/* There is nothing more to do for sync/check/repair.
3350 	 * Don't even need to abort as that is handled elsewhere
3351 	 * if needed, and not always wanted e.g. if there is a known
3352 	 * bad block here.
3353 	 * For recover/replace we need to record a bad block on all
3354 	 * non-sync devices, or abort the recovery
3355 	 */
3356 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3357 		/* During recovery devices cannot be removed, so
3358 		 * locking and refcounting of rdevs is not needed
3359 		 */
3360 		rcu_read_lock();
3361 		for (i = 0; i < conf->raid_disks; i++) {
3362 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3363 			if (rdev
3364 			    && !test_bit(Faulty, &rdev->flags)
3365 			    && !test_bit(In_sync, &rdev->flags)
3366 			    && !rdev_set_badblocks(rdev, sh->sector,
3367 						   STRIPE_SECTORS, 0))
3368 				abort = 1;
3369 			rdev = rcu_dereference(conf->disks[i].replacement);
3370 			if (rdev
3371 			    && !test_bit(Faulty, &rdev->flags)
3372 			    && !test_bit(In_sync, &rdev->flags)
3373 			    && !rdev_set_badblocks(rdev, sh->sector,
3374 						   STRIPE_SECTORS, 0))
3375 				abort = 1;
3376 		}
3377 		rcu_read_unlock();
3378 		if (abort)
3379 			conf->recovery_disabled =
3380 				conf->mddev->recovery_disabled;
3381 	}
3382 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3383 }
3384 
3385 static int want_replace(struct stripe_head *sh, int disk_idx)
3386 {
3387 	struct md_rdev *rdev;
3388 	int rv = 0;
3389 
3390 	rcu_read_lock();
3391 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3392 	if (rdev
3393 	    && !test_bit(Faulty, &rdev->flags)
3394 	    && !test_bit(In_sync, &rdev->flags)
3395 	    && (rdev->recovery_offset <= sh->sector
3396 		|| rdev->mddev->recovery_cp <= sh->sector))
3397 		rv = 1;
3398 	rcu_read_unlock();
3399 	return rv;
3400 }
3401 
3402 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3403 			   int disk_idx, int disks)
3404 {
3405 	struct r5dev *dev = &sh->dev[disk_idx];
3406 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3407 				  &sh->dev[s->failed_num[1]] };
3408 	int i;
3409 
3410 
3411 	if (test_bit(R5_LOCKED, &dev->flags) ||
3412 	    test_bit(R5_UPTODATE, &dev->flags))
3413 		/* No point reading this as we already have it or have
3414 		 * decided to get it.
3415 		 */
3416 		return 0;
3417 
3418 	if (dev->toread ||
3419 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3420 		/* We need this block to directly satisfy a request */
3421 		return 1;
3422 
3423 	if (s->syncing || s->expanding ||
3424 	    (s->replacing && want_replace(sh, disk_idx)))
3425 		/* When syncing, or expanding we read everything.
3426 		 * When replacing, we need the replaced block.
3427 		 */
3428 		return 1;
3429 
3430 	if ((s->failed >= 1 && fdev[0]->toread) ||
3431 	    (s->failed >= 2 && fdev[1]->toread))
3432 		/* If we want to read from a failed device, then
3433 		 * we need to actually read every other device.
3434 		 */
3435 		return 1;
3436 
3437 	/* Sometimes neither read-modify-write nor reconstruct-write
3438 	 * cycles can work.  In those cases we read every block we
3439 	 * can.  Then the parity-update is certain to have enough to
3440 	 * work with.
3441 	 * This can only be a problem when we need to write something,
3442 	 * and some device has failed.  If either of those tests
3443 	 * fail we need look no further.
3444 	 */
3445 	if (!s->failed || !s->to_write)
3446 		return 0;
3447 
3448 	if (test_bit(R5_Insync, &dev->flags) &&
3449 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3450 		/* Pre-reads at not permitted until after short delay
3451 		 * to gather multiple requests.  However if this
3452 		 * device is no Insync, the block could only be be computed
3453 		 * and there is no need to delay that.
3454 		 */
3455 		return 0;
3456 
3457 	for (i = 0; i < s->failed && i < 2; i++) {
3458 		if (fdev[i]->towrite &&
3459 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3460 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3461 			/* If we have a partial write to a failed
3462 			 * device, then we will need to reconstruct
3463 			 * the content of that device, so all other
3464 			 * devices must be read.
3465 			 */
3466 			return 1;
3467 	}
3468 
3469 	/* If we are forced to do a reconstruct-write, either because
3470 	 * the current RAID6 implementation only supports that, or
3471 	 * or because parity cannot be trusted and we are currently
3472 	 * recovering it, there is extra need to be careful.
3473 	 * If one of the devices that we would need to read, because
3474 	 * it is not being overwritten (and maybe not written at all)
3475 	 * is missing/faulty, then we need to read everything we can.
3476 	 */
3477 	if (sh->raid_conf->level != 6 &&
3478 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3479 		/* reconstruct-write isn't being forced */
3480 		return 0;
3481 	for (i = 0; i < s->failed && i < 2; i++) {
3482 		if (s->failed_num[i] != sh->pd_idx &&
3483 		    s->failed_num[i] != sh->qd_idx &&
3484 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3485 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3486 			return 1;
3487 	}
3488 
3489 	return 0;
3490 }
3491 
3492 /* fetch_block - checks the given member device to see if its data needs
3493  * to be read or computed to satisfy a request.
3494  *
3495  * Returns 1 when no more member devices need to be checked, otherwise returns
3496  * 0 to tell the loop in handle_stripe_fill to continue
3497  */
3498 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3499 		       int disk_idx, int disks)
3500 {
3501 	struct r5dev *dev = &sh->dev[disk_idx];
3502 
3503 	/* is the data in this block needed, and can we get it? */
3504 	if (need_this_block(sh, s, disk_idx, disks)) {
3505 		/* we would like to get this block, possibly by computing it,
3506 		 * otherwise read it if the backing disk is insync
3507 		 */
3508 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3509 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3510 		BUG_ON(sh->batch_head);
3511 		if ((s->uptodate == disks - 1) &&
3512 		    (s->failed && (disk_idx == s->failed_num[0] ||
3513 				   disk_idx == s->failed_num[1]))) {
3514 			/* have disk failed, and we're requested to fetch it;
3515 			 * do compute it
3516 			 */
3517 			pr_debug("Computing stripe %llu block %d\n",
3518 			       (unsigned long long)sh->sector, disk_idx);
3519 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3520 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3521 			set_bit(R5_Wantcompute, &dev->flags);
3522 			sh->ops.target = disk_idx;
3523 			sh->ops.target2 = -1; /* no 2nd target */
3524 			s->req_compute = 1;
3525 			/* Careful: from this point on 'uptodate' is in the eye
3526 			 * of raid_run_ops which services 'compute' operations
3527 			 * before writes. R5_Wantcompute flags a block that will
3528 			 * be R5_UPTODATE by the time it is needed for a
3529 			 * subsequent operation.
3530 			 */
3531 			s->uptodate++;
3532 			return 1;
3533 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3534 			/* Computing 2-failure is *very* expensive; only
3535 			 * do it if failed >= 2
3536 			 */
3537 			int other;
3538 			for (other = disks; other--; ) {
3539 				if (other == disk_idx)
3540 					continue;
3541 				if (!test_bit(R5_UPTODATE,
3542 				      &sh->dev[other].flags))
3543 					break;
3544 			}
3545 			BUG_ON(other < 0);
3546 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3547 			       (unsigned long long)sh->sector,
3548 			       disk_idx, other);
3549 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3550 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3551 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3552 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3553 			sh->ops.target = disk_idx;
3554 			sh->ops.target2 = other;
3555 			s->uptodate += 2;
3556 			s->req_compute = 1;
3557 			return 1;
3558 		} else if (test_bit(R5_Insync, &dev->flags)) {
3559 			set_bit(R5_LOCKED, &dev->flags);
3560 			set_bit(R5_Wantread, &dev->flags);
3561 			s->locked++;
3562 			pr_debug("Reading block %d (sync=%d)\n",
3563 				disk_idx, s->syncing);
3564 		}
3565 	}
3566 
3567 	return 0;
3568 }
3569 
3570 /**
3571  * handle_stripe_fill - read or compute data to satisfy pending requests.
3572  */
3573 static void handle_stripe_fill(struct stripe_head *sh,
3574 			       struct stripe_head_state *s,
3575 			       int disks)
3576 {
3577 	int i;
3578 
3579 	/* look for blocks to read/compute, skip this if a compute
3580 	 * is already in flight, or if the stripe contents are in the
3581 	 * midst of changing due to a write
3582 	 */
3583 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3584 	    !sh->reconstruct_state) {
3585 
3586 		/*
3587 		 * For degraded stripe with data in journal, do not handle
3588 		 * read requests yet, instead, flush the stripe to raid
3589 		 * disks first, this avoids handling complex rmw of write
3590 		 * back cache (prexor with orig_page, and then xor with
3591 		 * page) in the read path
3592 		 */
3593 		if (s->injournal && s->failed) {
3594 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3595 				r5c_make_stripe_write_out(sh);
3596 			goto out;
3597 		}
3598 
3599 		for (i = disks; i--; )
3600 			if (fetch_block(sh, s, i, disks))
3601 				break;
3602 	}
3603 out:
3604 	set_bit(STRIPE_HANDLE, &sh->state);
3605 }
3606 
3607 static void break_stripe_batch_list(struct stripe_head *head_sh,
3608 				    unsigned long handle_flags);
3609 /* handle_stripe_clean_event
3610  * any written block on an uptodate or failed drive can be returned.
3611  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3612  * never LOCKED, so we don't need to test 'failed' directly.
3613  */
3614 static void handle_stripe_clean_event(struct r5conf *conf,
3615 	struct stripe_head *sh, int disks, struct bio_list *return_bi)
3616 {
3617 	int i;
3618 	struct r5dev *dev;
3619 	int discard_pending = 0;
3620 	struct stripe_head *head_sh = sh;
3621 	bool do_endio = false;
3622 
3623 	for (i = disks; i--; )
3624 		if (sh->dev[i].written) {
3625 			dev = &sh->dev[i];
3626 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3627 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3628 			     test_bit(R5_Discard, &dev->flags) ||
3629 			     test_bit(R5_SkipCopy, &dev->flags))) {
3630 				/* We can return any write requests */
3631 				struct bio *wbi, *wbi2;
3632 				pr_debug("Return write for disc %d\n", i);
3633 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3634 					clear_bit(R5_UPTODATE, &dev->flags);
3635 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3636 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3637 				}
3638 				do_endio = true;
3639 
3640 returnbi:
3641 				dev->page = dev->orig_page;
3642 				wbi = dev->written;
3643 				dev->written = NULL;
3644 				while (wbi && wbi->bi_iter.bi_sector <
3645 					dev->sector + STRIPE_SECTORS) {
3646 					wbi2 = r5_next_bio(wbi, dev->sector);
3647 					if (!raid5_dec_bi_active_stripes(wbi)) {
3648 						md_write_end(conf->mddev);
3649 						bio_list_add(return_bi, wbi);
3650 					}
3651 					wbi = wbi2;
3652 				}
3653 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3654 						STRIPE_SECTORS,
3655 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3656 						0);
3657 				if (head_sh->batch_head) {
3658 					sh = list_first_entry(&sh->batch_list,
3659 							      struct stripe_head,
3660 							      batch_list);
3661 					if (sh != head_sh) {
3662 						dev = &sh->dev[i];
3663 						goto returnbi;
3664 					}
3665 				}
3666 				sh = head_sh;
3667 				dev = &sh->dev[i];
3668 			} else if (test_bit(R5_Discard, &dev->flags))
3669 				discard_pending = 1;
3670 		}
3671 
3672 	r5l_stripe_write_finished(sh);
3673 
3674 	if (!discard_pending &&
3675 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3676 		int hash;
3677 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3678 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3679 		if (sh->qd_idx >= 0) {
3680 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3681 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3682 		}
3683 		/* now that discard is done we can proceed with any sync */
3684 		clear_bit(STRIPE_DISCARD, &sh->state);
3685 		/*
3686 		 * SCSI discard will change some bio fields and the stripe has
3687 		 * no updated data, so remove it from hash list and the stripe
3688 		 * will be reinitialized
3689 		 */
3690 unhash:
3691 		hash = sh->hash_lock_index;
3692 		spin_lock_irq(conf->hash_locks + hash);
3693 		remove_hash(sh);
3694 		spin_unlock_irq(conf->hash_locks + hash);
3695 		if (head_sh->batch_head) {
3696 			sh = list_first_entry(&sh->batch_list,
3697 					      struct stripe_head, batch_list);
3698 			if (sh != head_sh)
3699 					goto unhash;
3700 		}
3701 		sh = head_sh;
3702 
3703 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3704 			set_bit(STRIPE_HANDLE, &sh->state);
3705 
3706 	}
3707 
3708 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3709 		if (atomic_dec_and_test(&conf->pending_full_writes))
3710 			md_wakeup_thread(conf->mddev->thread);
3711 
3712 	if (head_sh->batch_head && do_endio)
3713 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3714 }
3715 
3716 /*
3717  * For RMW in write back cache, we need extra page in prexor to store the
3718  * old data. This page is stored in dev->orig_page.
3719  *
3720  * This function checks whether we have data for prexor. The exact logic
3721  * is:
3722  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3723  */
3724 static inline bool uptodate_for_rmw(struct r5dev *dev)
3725 {
3726 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
3727 		(!test_bit(R5_InJournal, &dev->flags) ||
3728 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3729 }
3730 
3731 static int handle_stripe_dirtying(struct r5conf *conf,
3732 				  struct stripe_head *sh,
3733 				  struct stripe_head_state *s,
3734 				  int disks)
3735 {
3736 	int rmw = 0, rcw = 0, i;
3737 	sector_t recovery_cp = conf->mddev->recovery_cp;
3738 
3739 	/* Check whether resync is now happening or should start.
3740 	 * If yes, then the array is dirty (after unclean shutdown or
3741 	 * initial creation), so parity in some stripes might be inconsistent.
3742 	 * In this case, we need to always do reconstruct-write, to ensure
3743 	 * that in case of drive failure or read-error correction, we
3744 	 * generate correct data from the parity.
3745 	 */
3746 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3747 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3748 	     s->failed == 0)) {
3749 		/* Calculate the real rcw later - for now make it
3750 		 * look like rcw is cheaper
3751 		 */
3752 		rcw = 1; rmw = 2;
3753 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3754 			 conf->rmw_level, (unsigned long long)recovery_cp,
3755 			 (unsigned long long)sh->sector);
3756 	} else for (i = disks; i--; ) {
3757 		/* would I have to read this buffer for read_modify_write */
3758 		struct r5dev *dev = &sh->dev[i];
3759 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3760 		     i == sh->pd_idx || i == sh->qd_idx ||
3761 		     test_bit(R5_InJournal, &dev->flags)) &&
3762 		    !test_bit(R5_LOCKED, &dev->flags) &&
3763 		    !(uptodate_for_rmw(dev) ||
3764 		      test_bit(R5_Wantcompute, &dev->flags))) {
3765 			if (test_bit(R5_Insync, &dev->flags))
3766 				rmw++;
3767 			else
3768 				rmw += 2*disks;  /* cannot read it */
3769 		}
3770 		/* Would I have to read this buffer for reconstruct_write */
3771 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3772 		    i != sh->pd_idx && i != sh->qd_idx &&
3773 		    !test_bit(R5_LOCKED, &dev->flags) &&
3774 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3775 		      test_bit(R5_Wantcompute, &dev->flags))) {
3776 			if (test_bit(R5_Insync, &dev->flags))
3777 				rcw++;
3778 			else
3779 				rcw += 2*disks;
3780 		}
3781 	}
3782 
3783 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3784 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3785 	set_bit(STRIPE_HANDLE, &sh->state);
3786 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3787 		/* prefer read-modify-write, but need to get some data */
3788 		if (conf->mddev->queue)
3789 			blk_add_trace_msg(conf->mddev->queue,
3790 					  "raid5 rmw %llu %d",
3791 					  (unsigned long long)sh->sector, rmw);
3792 		for (i = disks; i--; ) {
3793 			struct r5dev *dev = &sh->dev[i];
3794 			if (test_bit(R5_InJournal, &dev->flags) &&
3795 			    dev->page == dev->orig_page &&
3796 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3797 				/* alloc page for prexor */
3798 				struct page *p = alloc_page(GFP_NOIO);
3799 
3800 				if (p) {
3801 					dev->orig_page = p;
3802 					continue;
3803 				}
3804 
3805 				/*
3806 				 * alloc_page() failed, try use
3807 				 * disk_info->extra_page
3808 				 */
3809 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3810 						      &conf->cache_state)) {
3811 					r5c_use_extra_page(sh);
3812 					break;
3813 				}
3814 
3815 				/* extra_page in use, add to delayed_list */
3816 				set_bit(STRIPE_DELAYED, &sh->state);
3817 				s->waiting_extra_page = 1;
3818 				return -EAGAIN;
3819 			}
3820 		}
3821 
3822 		for (i = disks; i--; ) {
3823 			struct r5dev *dev = &sh->dev[i];
3824 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3825 			     i == sh->pd_idx || i == sh->qd_idx ||
3826 			     test_bit(R5_InJournal, &dev->flags)) &&
3827 			    !test_bit(R5_LOCKED, &dev->flags) &&
3828 			    !(uptodate_for_rmw(dev) ||
3829 			      test_bit(R5_Wantcompute, &dev->flags)) &&
3830 			    test_bit(R5_Insync, &dev->flags)) {
3831 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3832 					     &sh->state)) {
3833 					pr_debug("Read_old block %d for r-m-w\n",
3834 						 i);
3835 					set_bit(R5_LOCKED, &dev->flags);
3836 					set_bit(R5_Wantread, &dev->flags);
3837 					s->locked++;
3838 				} else {
3839 					set_bit(STRIPE_DELAYED, &sh->state);
3840 					set_bit(STRIPE_HANDLE, &sh->state);
3841 				}
3842 			}
3843 		}
3844 	}
3845 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3846 		/* want reconstruct write, but need to get some data */
3847 		int qread =0;
3848 		rcw = 0;
3849 		for (i = disks; i--; ) {
3850 			struct r5dev *dev = &sh->dev[i];
3851 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3852 			    i != sh->pd_idx && i != sh->qd_idx &&
3853 			    !test_bit(R5_LOCKED, &dev->flags) &&
3854 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3855 			      test_bit(R5_Wantcompute, &dev->flags))) {
3856 				rcw++;
3857 				if (test_bit(R5_Insync, &dev->flags) &&
3858 				    test_bit(STRIPE_PREREAD_ACTIVE,
3859 					     &sh->state)) {
3860 					pr_debug("Read_old block "
3861 						"%d for Reconstruct\n", i);
3862 					set_bit(R5_LOCKED, &dev->flags);
3863 					set_bit(R5_Wantread, &dev->flags);
3864 					s->locked++;
3865 					qread++;
3866 				} else {
3867 					set_bit(STRIPE_DELAYED, &sh->state);
3868 					set_bit(STRIPE_HANDLE, &sh->state);
3869 				}
3870 			}
3871 		}
3872 		if (rcw && conf->mddev->queue)
3873 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3874 					  (unsigned long long)sh->sector,
3875 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3876 	}
3877 
3878 	if (rcw > disks && rmw > disks &&
3879 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3880 		set_bit(STRIPE_DELAYED, &sh->state);
3881 
3882 	/* now if nothing is locked, and if we have enough data,
3883 	 * we can start a write request
3884 	 */
3885 	/* since handle_stripe can be called at any time we need to handle the
3886 	 * case where a compute block operation has been submitted and then a
3887 	 * subsequent call wants to start a write request.  raid_run_ops only
3888 	 * handles the case where compute block and reconstruct are requested
3889 	 * simultaneously.  If this is not the case then new writes need to be
3890 	 * held off until the compute completes.
3891 	 */
3892 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3893 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3894 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3895 		schedule_reconstruction(sh, s, rcw == 0, 0);
3896 	return 0;
3897 }
3898 
3899 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3900 				struct stripe_head_state *s, int disks)
3901 {
3902 	struct r5dev *dev = NULL;
3903 
3904 	BUG_ON(sh->batch_head);
3905 	set_bit(STRIPE_HANDLE, &sh->state);
3906 
3907 	switch (sh->check_state) {
3908 	case check_state_idle:
3909 		/* start a new check operation if there are no failures */
3910 		if (s->failed == 0) {
3911 			BUG_ON(s->uptodate != disks);
3912 			sh->check_state = check_state_run;
3913 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3914 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3915 			s->uptodate--;
3916 			break;
3917 		}
3918 		dev = &sh->dev[s->failed_num[0]];
3919 		/* fall through */
3920 	case check_state_compute_result:
3921 		sh->check_state = check_state_idle;
3922 		if (!dev)
3923 			dev = &sh->dev[sh->pd_idx];
3924 
3925 		/* check that a write has not made the stripe insync */
3926 		if (test_bit(STRIPE_INSYNC, &sh->state))
3927 			break;
3928 
3929 		/* either failed parity check, or recovery is happening */
3930 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3931 		BUG_ON(s->uptodate != disks);
3932 
3933 		set_bit(R5_LOCKED, &dev->flags);
3934 		s->locked++;
3935 		set_bit(R5_Wantwrite, &dev->flags);
3936 
3937 		clear_bit(STRIPE_DEGRADED, &sh->state);
3938 		set_bit(STRIPE_INSYNC, &sh->state);
3939 		break;
3940 	case check_state_run:
3941 		break; /* we will be called again upon completion */
3942 	case check_state_check_result:
3943 		sh->check_state = check_state_idle;
3944 
3945 		/* if a failure occurred during the check operation, leave
3946 		 * STRIPE_INSYNC not set and let the stripe be handled again
3947 		 */
3948 		if (s->failed)
3949 			break;
3950 
3951 		/* handle a successful check operation, if parity is correct
3952 		 * we are done.  Otherwise update the mismatch count and repair
3953 		 * parity if !MD_RECOVERY_CHECK
3954 		 */
3955 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3956 			/* parity is correct (on disc,
3957 			 * not in buffer any more)
3958 			 */
3959 			set_bit(STRIPE_INSYNC, &sh->state);
3960 		else {
3961 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3962 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3963 				/* don't try to repair!! */
3964 				set_bit(STRIPE_INSYNC, &sh->state);
3965 			else {
3966 				sh->check_state = check_state_compute_run;
3967 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3968 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3969 				set_bit(R5_Wantcompute,
3970 					&sh->dev[sh->pd_idx].flags);
3971 				sh->ops.target = sh->pd_idx;
3972 				sh->ops.target2 = -1;
3973 				s->uptodate++;
3974 			}
3975 		}
3976 		break;
3977 	case check_state_compute_run:
3978 		break;
3979 	default:
3980 		pr_err("%s: unknown check_state: %d sector: %llu\n",
3981 		       __func__, sh->check_state,
3982 		       (unsigned long long) sh->sector);
3983 		BUG();
3984 	}
3985 }
3986 
3987 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3988 				  struct stripe_head_state *s,
3989 				  int disks)
3990 {
3991 	int pd_idx = sh->pd_idx;
3992 	int qd_idx = sh->qd_idx;
3993 	struct r5dev *dev;
3994 
3995 	BUG_ON(sh->batch_head);
3996 	set_bit(STRIPE_HANDLE, &sh->state);
3997 
3998 	BUG_ON(s->failed > 2);
3999 
4000 	/* Want to check and possibly repair P and Q.
4001 	 * However there could be one 'failed' device, in which
4002 	 * case we can only check one of them, possibly using the
4003 	 * other to generate missing data
4004 	 */
4005 
4006 	switch (sh->check_state) {
4007 	case check_state_idle:
4008 		/* start a new check operation if there are < 2 failures */
4009 		if (s->failed == s->q_failed) {
4010 			/* The only possible failed device holds Q, so it
4011 			 * makes sense to check P (If anything else were failed,
4012 			 * we would have used P to recreate it).
4013 			 */
4014 			sh->check_state = check_state_run;
4015 		}
4016 		if (!s->q_failed && s->failed < 2) {
4017 			/* Q is not failed, and we didn't use it to generate
4018 			 * anything, so it makes sense to check it
4019 			 */
4020 			if (sh->check_state == check_state_run)
4021 				sh->check_state = check_state_run_pq;
4022 			else
4023 				sh->check_state = check_state_run_q;
4024 		}
4025 
4026 		/* discard potentially stale zero_sum_result */
4027 		sh->ops.zero_sum_result = 0;
4028 
4029 		if (sh->check_state == check_state_run) {
4030 			/* async_xor_zero_sum destroys the contents of P */
4031 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4032 			s->uptodate--;
4033 		}
4034 		if (sh->check_state >= check_state_run &&
4035 		    sh->check_state <= check_state_run_pq) {
4036 			/* async_syndrome_zero_sum preserves P and Q, so
4037 			 * no need to mark them !uptodate here
4038 			 */
4039 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4040 			break;
4041 		}
4042 
4043 		/* we have 2-disk failure */
4044 		BUG_ON(s->failed != 2);
4045 		/* fall through */
4046 	case check_state_compute_result:
4047 		sh->check_state = check_state_idle;
4048 
4049 		/* check that a write has not made the stripe insync */
4050 		if (test_bit(STRIPE_INSYNC, &sh->state))
4051 			break;
4052 
4053 		/* now write out any block on a failed drive,
4054 		 * or P or Q if they were recomputed
4055 		 */
4056 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4057 		if (s->failed == 2) {
4058 			dev = &sh->dev[s->failed_num[1]];
4059 			s->locked++;
4060 			set_bit(R5_LOCKED, &dev->flags);
4061 			set_bit(R5_Wantwrite, &dev->flags);
4062 		}
4063 		if (s->failed >= 1) {
4064 			dev = &sh->dev[s->failed_num[0]];
4065 			s->locked++;
4066 			set_bit(R5_LOCKED, &dev->flags);
4067 			set_bit(R5_Wantwrite, &dev->flags);
4068 		}
4069 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4070 			dev = &sh->dev[pd_idx];
4071 			s->locked++;
4072 			set_bit(R5_LOCKED, &dev->flags);
4073 			set_bit(R5_Wantwrite, &dev->flags);
4074 		}
4075 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4076 			dev = &sh->dev[qd_idx];
4077 			s->locked++;
4078 			set_bit(R5_LOCKED, &dev->flags);
4079 			set_bit(R5_Wantwrite, &dev->flags);
4080 		}
4081 		clear_bit(STRIPE_DEGRADED, &sh->state);
4082 
4083 		set_bit(STRIPE_INSYNC, &sh->state);
4084 		break;
4085 	case check_state_run:
4086 	case check_state_run_q:
4087 	case check_state_run_pq:
4088 		break; /* we will be called again upon completion */
4089 	case check_state_check_result:
4090 		sh->check_state = check_state_idle;
4091 
4092 		/* handle a successful check operation, if parity is correct
4093 		 * we are done.  Otherwise update the mismatch count and repair
4094 		 * parity if !MD_RECOVERY_CHECK
4095 		 */
4096 		if (sh->ops.zero_sum_result == 0) {
4097 			/* both parities are correct */
4098 			if (!s->failed)
4099 				set_bit(STRIPE_INSYNC, &sh->state);
4100 			else {
4101 				/* in contrast to the raid5 case we can validate
4102 				 * parity, but still have a failure to write
4103 				 * back
4104 				 */
4105 				sh->check_state = check_state_compute_result;
4106 				/* Returning at this point means that we may go
4107 				 * off and bring p and/or q uptodate again so
4108 				 * we make sure to check zero_sum_result again
4109 				 * to verify if p or q need writeback
4110 				 */
4111 			}
4112 		} else {
4113 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4114 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
4115 				/* don't try to repair!! */
4116 				set_bit(STRIPE_INSYNC, &sh->state);
4117 			else {
4118 				int *target = &sh->ops.target;
4119 
4120 				sh->ops.target = -1;
4121 				sh->ops.target2 = -1;
4122 				sh->check_state = check_state_compute_run;
4123 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4124 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4125 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4126 					set_bit(R5_Wantcompute,
4127 						&sh->dev[pd_idx].flags);
4128 					*target = pd_idx;
4129 					target = &sh->ops.target2;
4130 					s->uptodate++;
4131 				}
4132 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4133 					set_bit(R5_Wantcompute,
4134 						&sh->dev[qd_idx].flags);
4135 					*target = qd_idx;
4136 					s->uptodate++;
4137 				}
4138 			}
4139 		}
4140 		break;
4141 	case check_state_compute_run:
4142 		break;
4143 	default:
4144 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4145 			__func__, sh->check_state,
4146 			(unsigned long long) sh->sector);
4147 		BUG();
4148 	}
4149 }
4150 
4151 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4152 {
4153 	int i;
4154 
4155 	/* We have read all the blocks in this stripe and now we need to
4156 	 * copy some of them into a target stripe for expand.
4157 	 */
4158 	struct dma_async_tx_descriptor *tx = NULL;
4159 	BUG_ON(sh->batch_head);
4160 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4161 	for (i = 0; i < sh->disks; i++)
4162 		if (i != sh->pd_idx && i != sh->qd_idx) {
4163 			int dd_idx, j;
4164 			struct stripe_head *sh2;
4165 			struct async_submit_ctl submit;
4166 
4167 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4168 			sector_t s = raid5_compute_sector(conf, bn, 0,
4169 							  &dd_idx, NULL);
4170 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4171 			if (sh2 == NULL)
4172 				/* so far only the early blocks of this stripe
4173 				 * have been requested.  When later blocks
4174 				 * get requested, we will try again
4175 				 */
4176 				continue;
4177 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4178 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4179 				/* must have already done this block */
4180 				raid5_release_stripe(sh2);
4181 				continue;
4182 			}
4183 
4184 			/* place all the copies on one channel */
4185 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4186 			tx = async_memcpy(sh2->dev[dd_idx].page,
4187 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
4188 					  &submit);
4189 
4190 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4191 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4192 			for (j = 0; j < conf->raid_disks; j++)
4193 				if (j != sh2->pd_idx &&
4194 				    j != sh2->qd_idx &&
4195 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4196 					break;
4197 			if (j == conf->raid_disks) {
4198 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4199 				set_bit(STRIPE_HANDLE, &sh2->state);
4200 			}
4201 			raid5_release_stripe(sh2);
4202 
4203 		}
4204 	/* done submitting copies, wait for them to complete */
4205 	async_tx_quiesce(&tx);
4206 }
4207 
4208 /*
4209  * handle_stripe - do things to a stripe.
4210  *
4211  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4212  * state of various bits to see what needs to be done.
4213  * Possible results:
4214  *    return some read requests which now have data
4215  *    return some write requests which are safely on storage
4216  *    schedule a read on some buffers
4217  *    schedule a write of some buffers
4218  *    return confirmation of parity correctness
4219  *
4220  */
4221 
4222 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4223 {
4224 	struct r5conf *conf = sh->raid_conf;
4225 	int disks = sh->disks;
4226 	struct r5dev *dev;
4227 	int i;
4228 	int do_recovery = 0;
4229 
4230 	memset(s, 0, sizeof(*s));
4231 
4232 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4233 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4234 	s->failed_num[0] = -1;
4235 	s->failed_num[1] = -1;
4236 	s->log_failed = r5l_log_disk_error(conf);
4237 
4238 	/* Now to look around and see what can be done */
4239 	rcu_read_lock();
4240 	for (i=disks; i--; ) {
4241 		struct md_rdev *rdev;
4242 		sector_t first_bad;
4243 		int bad_sectors;
4244 		int is_bad = 0;
4245 
4246 		dev = &sh->dev[i];
4247 
4248 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4249 			 i, dev->flags,
4250 			 dev->toread, dev->towrite, dev->written);
4251 		/* maybe we can reply to a read
4252 		 *
4253 		 * new wantfill requests are only permitted while
4254 		 * ops_complete_biofill is guaranteed to be inactive
4255 		 */
4256 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4257 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4258 			set_bit(R5_Wantfill, &dev->flags);
4259 
4260 		/* now count some things */
4261 		if (test_bit(R5_LOCKED, &dev->flags))
4262 			s->locked++;
4263 		if (test_bit(R5_UPTODATE, &dev->flags))
4264 			s->uptodate++;
4265 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4266 			s->compute++;
4267 			BUG_ON(s->compute > 2);
4268 		}
4269 
4270 		if (test_bit(R5_Wantfill, &dev->flags))
4271 			s->to_fill++;
4272 		else if (dev->toread)
4273 			s->to_read++;
4274 		if (dev->towrite) {
4275 			s->to_write++;
4276 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4277 				s->non_overwrite++;
4278 		}
4279 		if (dev->written)
4280 			s->written++;
4281 		/* Prefer to use the replacement for reads, but only
4282 		 * if it is recovered enough and has no bad blocks.
4283 		 */
4284 		rdev = rcu_dereference(conf->disks[i].replacement);
4285 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4286 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4287 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4288 				 &first_bad, &bad_sectors))
4289 			set_bit(R5_ReadRepl, &dev->flags);
4290 		else {
4291 			if (rdev && !test_bit(Faulty, &rdev->flags))
4292 				set_bit(R5_NeedReplace, &dev->flags);
4293 			else
4294 				clear_bit(R5_NeedReplace, &dev->flags);
4295 			rdev = rcu_dereference(conf->disks[i].rdev);
4296 			clear_bit(R5_ReadRepl, &dev->flags);
4297 		}
4298 		if (rdev && test_bit(Faulty, &rdev->flags))
4299 			rdev = NULL;
4300 		if (rdev) {
4301 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4302 					     &first_bad, &bad_sectors);
4303 			if (s->blocked_rdev == NULL
4304 			    && (test_bit(Blocked, &rdev->flags)
4305 				|| is_bad < 0)) {
4306 				if (is_bad < 0)
4307 					set_bit(BlockedBadBlocks,
4308 						&rdev->flags);
4309 				s->blocked_rdev = rdev;
4310 				atomic_inc(&rdev->nr_pending);
4311 			}
4312 		}
4313 		clear_bit(R5_Insync, &dev->flags);
4314 		if (!rdev)
4315 			/* Not in-sync */;
4316 		else if (is_bad) {
4317 			/* also not in-sync */
4318 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4319 			    test_bit(R5_UPTODATE, &dev->flags)) {
4320 				/* treat as in-sync, but with a read error
4321 				 * which we can now try to correct
4322 				 */
4323 				set_bit(R5_Insync, &dev->flags);
4324 				set_bit(R5_ReadError, &dev->flags);
4325 			}
4326 		} else if (test_bit(In_sync, &rdev->flags))
4327 			set_bit(R5_Insync, &dev->flags);
4328 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4329 			/* in sync if before recovery_offset */
4330 			set_bit(R5_Insync, &dev->flags);
4331 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4332 			 test_bit(R5_Expanded, &dev->flags))
4333 			/* If we've reshaped into here, we assume it is Insync.
4334 			 * We will shortly update recovery_offset to make
4335 			 * it official.
4336 			 */
4337 			set_bit(R5_Insync, &dev->flags);
4338 
4339 		if (test_bit(R5_WriteError, &dev->flags)) {
4340 			/* This flag does not apply to '.replacement'
4341 			 * only to .rdev, so make sure to check that*/
4342 			struct md_rdev *rdev2 = rcu_dereference(
4343 				conf->disks[i].rdev);
4344 			if (rdev2 == rdev)
4345 				clear_bit(R5_Insync, &dev->flags);
4346 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4347 				s->handle_bad_blocks = 1;
4348 				atomic_inc(&rdev2->nr_pending);
4349 			} else
4350 				clear_bit(R5_WriteError, &dev->flags);
4351 		}
4352 		if (test_bit(R5_MadeGood, &dev->flags)) {
4353 			/* This flag does not apply to '.replacement'
4354 			 * only to .rdev, so make sure to check that*/
4355 			struct md_rdev *rdev2 = rcu_dereference(
4356 				conf->disks[i].rdev);
4357 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4358 				s->handle_bad_blocks = 1;
4359 				atomic_inc(&rdev2->nr_pending);
4360 			} else
4361 				clear_bit(R5_MadeGood, &dev->flags);
4362 		}
4363 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4364 			struct md_rdev *rdev2 = rcu_dereference(
4365 				conf->disks[i].replacement);
4366 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4367 				s->handle_bad_blocks = 1;
4368 				atomic_inc(&rdev2->nr_pending);
4369 			} else
4370 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4371 		}
4372 		if (!test_bit(R5_Insync, &dev->flags)) {
4373 			/* The ReadError flag will just be confusing now */
4374 			clear_bit(R5_ReadError, &dev->flags);
4375 			clear_bit(R5_ReWrite, &dev->flags);
4376 		}
4377 		if (test_bit(R5_ReadError, &dev->flags))
4378 			clear_bit(R5_Insync, &dev->flags);
4379 		if (!test_bit(R5_Insync, &dev->flags)) {
4380 			if (s->failed < 2)
4381 				s->failed_num[s->failed] = i;
4382 			s->failed++;
4383 			if (rdev && !test_bit(Faulty, &rdev->flags))
4384 				do_recovery = 1;
4385 		}
4386 
4387 		if (test_bit(R5_InJournal, &dev->flags))
4388 			s->injournal++;
4389 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4390 			s->just_cached++;
4391 	}
4392 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4393 		/* If there is a failed device being replaced,
4394 		 *     we must be recovering.
4395 		 * else if we are after recovery_cp, we must be syncing
4396 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4397 		 * else we can only be replacing
4398 		 * sync and recovery both need to read all devices, and so
4399 		 * use the same flag.
4400 		 */
4401 		if (do_recovery ||
4402 		    sh->sector >= conf->mddev->recovery_cp ||
4403 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4404 			s->syncing = 1;
4405 		else
4406 			s->replacing = 1;
4407 	}
4408 	rcu_read_unlock();
4409 }
4410 
4411 static int clear_batch_ready(struct stripe_head *sh)
4412 {
4413 	/* Return '1' if this is a member of batch, or
4414 	 * '0' if it is a lone stripe or a head which can now be
4415 	 * handled.
4416 	 */
4417 	struct stripe_head *tmp;
4418 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4419 		return (sh->batch_head && sh->batch_head != sh);
4420 	spin_lock(&sh->stripe_lock);
4421 	if (!sh->batch_head) {
4422 		spin_unlock(&sh->stripe_lock);
4423 		return 0;
4424 	}
4425 
4426 	/*
4427 	 * this stripe could be added to a batch list before we check
4428 	 * BATCH_READY, skips it
4429 	 */
4430 	if (sh->batch_head != sh) {
4431 		spin_unlock(&sh->stripe_lock);
4432 		return 1;
4433 	}
4434 	spin_lock(&sh->batch_lock);
4435 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4436 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4437 	spin_unlock(&sh->batch_lock);
4438 	spin_unlock(&sh->stripe_lock);
4439 
4440 	/*
4441 	 * BATCH_READY is cleared, no new stripes can be added.
4442 	 * batch_list can be accessed without lock
4443 	 */
4444 	return 0;
4445 }
4446 
4447 static void break_stripe_batch_list(struct stripe_head *head_sh,
4448 				    unsigned long handle_flags)
4449 {
4450 	struct stripe_head *sh, *next;
4451 	int i;
4452 	int do_wakeup = 0;
4453 
4454 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4455 
4456 		list_del_init(&sh->batch_list);
4457 
4458 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4459 					  (1 << STRIPE_SYNCING) |
4460 					  (1 << STRIPE_REPLACED) |
4461 					  (1 << STRIPE_DELAYED) |
4462 					  (1 << STRIPE_BIT_DELAY) |
4463 					  (1 << STRIPE_FULL_WRITE) |
4464 					  (1 << STRIPE_BIOFILL_RUN) |
4465 					  (1 << STRIPE_COMPUTE_RUN)  |
4466 					  (1 << STRIPE_OPS_REQ_PENDING) |
4467 					  (1 << STRIPE_DISCARD) |
4468 					  (1 << STRIPE_BATCH_READY) |
4469 					  (1 << STRIPE_BATCH_ERR) |
4470 					  (1 << STRIPE_BITMAP_PENDING)),
4471 			"stripe state: %lx\n", sh->state);
4472 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4473 					      (1 << STRIPE_REPLACED)),
4474 			"head stripe state: %lx\n", head_sh->state);
4475 
4476 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4477 					    (1 << STRIPE_PREREAD_ACTIVE) |
4478 					    (1 << STRIPE_DEGRADED)),
4479 			      head_sh->state & (1 << STRIPE_INSYNC));
4480 
4481 		sh->check_state = head_sh->check_state;
4482 		sh->reconstruct_state = head_sh->reconstruct_state;
4483 		for (i = 0; i < sh->disks; i++) {
4484 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4485 				do_wakeup = 1;
4486 			sh->dev[i].flags = head_sh->dev[i].flags &
4487 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4488 		}
4489 		spin_lock_irq(&sh->stripe_lock);
4490 		sh->batch_head = NULL;
4491 		spin_unlock_irq(&sh->stripe_lock);
4492 		if (handle_flags == 0 ||
4493 		    sh->state & handle_flags)
4494 			set_bit(STRIPE_HANDLE, &sh->state);
4495 		raid5_release_stripe(sh);
4496 	}
4497 	spin_lock_irq(&head_sh->stripe_lock);
4498 	head_sh->batch_head = NULL;
4499 	spin_unlock_irq(&head_sh->stripe_lock);
4500 	for (i = 0; i < head_sh->disks; i++)
4501 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4502 			do_wakeup = 1;
4503 	if (head_sh->state & handle_flags)
4504 		set_bit(STRIPE_HANDLE, &head_sh->state);
4505 
4506 	if (do_wakeup)
4507 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4508 }
4509 
4510 static void handle_stripe(struct stripe_head *sh)
4511 {
4512 	struct stripe_head_state s;
4513 	struct r5conf *conf = sh->raid_conf;
4514 	int i;
4515 	int prexor;
4516 	int disks = sh->disks;
4517 	struct r5dev *pdev, *qdev;
4518 
4519 	clear_bit(STRIPE_HANDLE, &sh->state);
4520 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4521 		/* already being handled, ensure it gets handled
4522 		 * again when current action finishes */
4523 		set_bit(STRIPE_HANDLE, &sh->state);
4524 		return;
4525 	}
4526 
4527 	if (clear_batch_ready(sh) ) {
4528 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4529 		return;
4530 	}
4531 
4532 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4533 		break_stripe_batch_list(sh, 0);
4534 
4535 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4536 		spin_lock(&sh->stripe_lock);
4537 		/* Cannot process 'sync' concurrently with 'discard' */
4538 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4539 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4540 			set_bit(STRIPE_SYNCING, &sh->state);
4541 			clear_bit(STRIPE_INSYNC, &sh->state);
4542 			clear_bit(STRIPE_REPLACED, &sh->state);
4543 		}
4544 		spin_unlock(&sh->stripe_lock);
4545 	}
4546 	clear_bit(STRIPE_DELAYED, &sh->state);
4547 
4548 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4549 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4550 	       (unsigned long long)sh->sector, sh->state,
4551 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4552 	       sh->check_state, sh->reconstruct_state);
4553 
4554 	analyse_stripe(sh, &s);
4555 
4556 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4557 		goto finish;
4558 
4559 	if (s.handle_bad_blocks) {
4560 		set_bit(STRIPE_HANDLE, &sh->state);
4561 		goto finish;
4562 	}
4563 
4564 	if (unlikely(s.blocked_rdev)) {
4565 		if (s.syncing || s.expanding || s.expanded ||
4566 		    s.replacing || s.to_write || s.written) {
4567 			set_bit(STRIPE_HANDLE, &sh->state);
4568 			goto finish;
4569 		}
4570 		/* There is nothing for the blocked_rdev to block */
4571 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4572 		s.blocked_rdev = NULL;
4573 	}
4574 
4575 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4576 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4577 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4578 	}
4579 
4580 	pr_debug("locked=%d uptodate=%d to_read=%d"
4581 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4582 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4583 	       s.failed_num[0], s.failed_num[1]);
4584 	/* check if the array has lost more than max_degraded devices and,
4585 	 * if so, some requests might need to be failed.
4586 	 */
4587 	if (s.failed > conf->max_degraded || s.log_failed) {
4588 		sh->check_state = 0;
4589 		sh->reconstruct_state = 0;
4590 		break_stripe_batch_list(sh, 0);
4591 		if (s.to_read+s.to_write+s.written)
4592 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4593 		if (s.syncing + s.replacing)
4594 			handle_failed_sync(conf, sh, &s);
4595 	}
4596 
4597 	/* Now we check to see if any write operations have recently
4598 	 * completed
4599 	 */
4600 	prexor = 0;
4601 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4602 		prexor = 1;
4603 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4604 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4605 		sh->reconstruct_state = reconstruct_state_idle;
4606 
4607 		/* All the 'written' buffers and the parity block are ready to
4608 		 * be written back to disk
4609 		 */
4610 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4611 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4612 		BUG_ON(sh->qd_idx >= 0 &&
4613 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4614 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4615 		for (i = disks; i--; ) {
4616 			struct r5dev *dev = &sh->dev[i];
4617 			if (test_bit(R5_LOCKED, &dev->flags) &&
4618 				(i == sh->pd_idx || i == sh->qd_idx ||
4619 				 dev->written || test_bit(R5_InJournal,
4620 							  &dev->flags))) {
4621 				pr_debug("Writing block %d\n", i);
4622 				set_bit(R5_Wantwrite, &dev->flags);
4623 				if (prexor)
4624 					continue;
4625 				if (s.failed > 1)
4626 					continue;
4627 				if (!test_bit(R5_Insync, &dev->flags) ||
4628 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4629 				     s.failed == 0))
4630 					set_bit(STRIPE_INSYNC, &sh->state);
4631 			}
4632 		}
4633 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4634 			s.dec_preread_active = 1;
4635 	}
4636 
4637 	/*
4638 	 * might be able to return some write requests if the parity blocks
4639 	 * are safe, or on a failed drive
4640 	 */
4641 	pdev = &sh->dev[sh->pd_idx];
4642 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4643 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4644 	qdev = &sh->dev[sh->qd_idx];
4645 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4646 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4647 		|| conf->level < 6;
4648 
4649 	if (s.written &&
4650 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4651 			     && !test_bit(R5_LOCKED, &pdev->flags)
4652 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4653 				 test_bit(R5_Discard, &pdev->flags))))) &&
4654 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4655 			     && !test_bit(R5_LOCKED, &qdev->flags)
4656 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4657 				 test_bit(R5_Discard, &qdev->flags))))))
4658 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4659 
4660 	if (s.just_cached)
4661 		r5c_handle_cached_data_endio(conf, sh, disks, &s.return_bi);
4662 	r5l_stripe_write_finished(sh);
4663 
4664 	/* Now we might consider reading some blocks, either to check/generate
4665 	 * parity, or to satisfy requests
4666 	 * or to load a block that is being partially written.
4667 	 */
4668 	if (s.to_read || s.non_overwrite
4669 	    || (conf->level == 6 && s.to_write && s.failed)
4670 	    || (s.syncing && (s.uptodate + s.compute < disks))
4671 	    || s.replacing
4672 	    || s.expanding)
4673 		handle_stripe_fill(sh, &s, disks);
4674 
4675 	/*
4676 	 * When the stripe finishes full journal write cycle (write to journal
4677 	 * and raid disk), this is the clean up procedure so it is ready for
4678 	 * next operation.
4679 	 */
4680 	r5c_finish_stripe_write_out(conf, sh, &s);
4681 
4682 	/*
4683 	 * Now to consider new write requests, cache write back and what else,
4684 	 * if anything should be read.  We do not handle new writes when:
4685 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4686 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4687 	 *    block.
4688 	 * 3/ A r5c cache log write is in flight.
4689 	 */
4690 
4691 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4692 		if (!r5c_is_writeback(conf->log)) {
4693 			if (s.to_write)
4694 				handle_stripe_dirtying(conf, sh, &s, disks);
4695 		} else { /* write back cache */
4696 			int ret = 0;
4697 
4698 			/* First, try handle writes in caching phase */
4699 			if (s.to_write)
4700 				ret = r5c_try_caching_write(conf, sh, &s,
4701 							    disks);
4702 			/*
4703 			 * If caching phase failed: ret == -EAGAIN
4704 			 *    OR
4705 			 * stripe under reclaim: !caching && injournal
4706 			 *
4707 			 * fall back to handle_stripe_dirtying()
4708 			 */
4709 			if (ret == -EAGAIN ||
4710 			    /* stripe under reclaim: !caching && injournal */
4711 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4712 			     s.injournal > 0)) {
4713 				ret = handle_stripe_dirtying(conf, sh, &s,
4714 							     disks);
4715 				if (ret == -EAGAIN)
4716 					goto finish;
4717 			}
4718 		}
4719 	}
4720 
4721 	/* maybe we need to check and possibly fix the parity for this stripe
4722 	 * Any reads will already have been scheduled, so we just see if enough
4723 	 * data is available.  The parity check is held off while parity
4724 	 * dependent operations are in flight.
4725 	 */
4726 	if (sh->check_state ||
4727 	    (s.syncing && s.locked == 0 &&
4728 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4729 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4730 		if (conf->level == 6)
4731 			handle_parity_checks6(conf, sh, &s, disks);
4732 		else
4733 			handle_parity_checks5(conf, sh, &s, disks);
4734 	}
4735 
4736 	if ((s.replacing || s.syncing) && s.locked == 0
4737 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4738 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4739 		/* Write out to replacement devices where possible */
4740 		for (i = 0; i < conf->raid_disks; i++)
4741 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4742 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4743 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4744 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4745 				s.locked++;
4746 			}
4747 		if (s.replacing)
4748 			set_bit(STRIPE_INSYNC, &sh->state);
4749 		set_bit(STRIPE_REPLACED, &sh->state);
4750 	}
4751 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4752 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4753 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4754 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4755 		clear_bit(STRIPE_SYNCING, &sh->state);
4756 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4757 			wake_up(&conf->wait_for_overlap);
4758 	}
4759 
4760 	/* If the failed drives are just a ReadError, then we might need
4761 	 * to progress the repair/check process
4762 	 */
4763 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4764 		for (i = 0; i < s.failed; i++) {
4765 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4766 			if (test_bit(R5_ReadError, &dev->flags)
4767 			    && !test_bit(R5_LOCKED, &dev->flags)
4768 			    && test_bit(R5_UPTODATE, &dev->flags)
4769 				) {
4770 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4771 					set_bit(R5_Wantwrite, &dev->flags);
4772 					set_bit(R5_ReWrite, &dev->flags);
4773 					set_bit(R5_LOCKED, &dev->flags);
4774 					s.locked++;
4775 				} else {
4776 					/* let's read it back */
4777 					set_bit(R5_Wantread, &dev->flags);
4778 					set_bit(R5_LOCKED, &dev->flags);
4779 					s.locked++;
4780 				}
4781 			}
4782 		}
4783 
4784 	/* Finish reconstruct operations initiated by the expansion process */
4785 	if (sh->reconstruct_state == reconstruct_state_result) {
4786 		struct stripe_head *sh_src
4787 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4788 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4789 			/* sh cannot be written until sh_src has been read.
4790 			 * so arrange for sh to be delayed a little
4791 			 */
4792 			set_bit(STRIPE_DELAYED, &sh->state);
4793 			set_bit(STRIPE_HANDLE, &sh->state);
4794 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4795 					      &sh_src->state))
4796 				atomic_inc(&conf->preread_active_stripes);
4797 			raid5_release_stripe(sh_src);
4798 			goto finish;
4799 		}
4800 		if (sh_src)
4801 			raid5_release_stripe(sh_src);
4802 
4803 		sh->reconstruct_state = reconstruct_state_idle;
4804 		clear_bit(STRIPE_EXPANDING, &sh->state);
4805 		for (i = conf->raid_disks; i--; ) {
4806 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4807 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4808 			s.locked++;
4809 		}
4810 	}
4811 
4812 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4813 	    !sh->reconstruct_state) {
4814 		/* Need to write out all blocks after computing parity */
4815 		sh->disks = conf->raid_disks;
4816 		stripe_set_idx(sh->sector, conf, 0, sh);
4817 		schedule_reconstruction(sh, &s, 1, 1);
4818 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4819 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4820 		atomic_dec(&conf->reshape_stripes);
4821 		wake_up(&conf->wait_for_overlap);
4822 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4823 	}
4824 
4825 	if (s.expanding && s.locked == 0 &&
4826 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4827 		handle_stripe_expansion(conf, sh);
4828 
4829 finish:
4830 	/* wait for this device to become unblocked */
4831 	if (unlikely(s.blocked_rdev)) {
4832 		if (conf->mddev->external)
4833 			md_wait_for_blocked_rdev(s.blocked_rdev,
4834 						 conf->mddev);
4835 		else
4836 			/* Internal metadata will immediately
4837 			 * be written by raid5d, so we don't
4838 			 * need to wait here.
4839 			 */
4840 			rdev_dec_pending(s.blocked_rdev,
4841 					 conf->mddev);
4842 	}
4843 
4844 	if (s.handle_bad_blocks)
4845 		for (i = disks; i--; ) {
4846 			struct md_rdev *rdev;
4847 			struct r5dev *dev = &sh->dev[i];
4848 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4849 				/* We own a safe reference to the rdev */
4850 				rdev = conf->disks[i].rdev;
4851 				if (!rdev_set_badblocks(rdev, sh->sector,
4852 							STRIPE_SECTORS, 0))
4853 					md_error(conf->mddev, rdev);
4854 				rdev_dec_pending(rdev, conf->mddev);
4855 			}
4856 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4857 				rdev = conf->disks[i].rdev;
4858 				rdev_clear_badblocks(rdev, sh->sector,
4859 						     STRIPE_SECTORS, 0);
4860 				rdev_dec_pending(rdev, conf->mddev);
4861 			}
4862 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4863 				rdev = conf->disks[i].replacement;
4864 				if (!rdev)
4865 					/* rdev have been moved down */
4866 					rdev = conf->disks[i].rdev;
4867 				rdev_clear_badblocks(rdev, sh->sector,
4868 						     STRIPE_SECTORS, 0);
4869 				rdev_dec_pending(rdev, conf->mddev);
4870 			}
4871 		}
4872 
4873 	if (s.ops_request)
4874 		raid_run_ops(sh, s.ops_request);
4875 
4876 	ops_run_io(sh, &s);
4877 
4878 	if (s.dec_preread_active) {
4879 		/* We delay this until after ops_run_io so that if make_request
4880 		 * is waiting on a flush, it won't continue until the writes
4881 		 * have actually been submitted.
4882 		 */
4883 		atomic_dec(&conf->preread_active_stripes);
4884 		if (atomic_read(&conf->preread_active_stripes) <
4885 		    IO_THRESHOLD)
4886 			md_wakeup_thread(conf->mddev->thread);
4887 	}
4888 
4889 	if (!bio_list_empty(&s.return_bi)) {
4890 		if (test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4891 			spin_lock_irq(&conf->device_lock);
4892 			bio_list_merge(&conf->return_bi, &s.return_bi);
4893 			spin_unlock_irq(&conf->device_lock);
4894 			md_wakeup_thread(conf->mddev->thread);
4895 		} else
4896 			return_io(&s.return_bi);
4897 	}
4898 
4899 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4900 }
4901 
4902 static void raid5_activate_delayed(struct r5conf *conf)
4903 {
4904 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4905 		while (!list_empty(&conf->delayed_list)) {
4906 			struct list_head *l = conf->delayed_list.next;
4907 			struct stripe_head *sh;
4908 			sh = list_entry(l, struct stripe_head, lru);
4909 			list_del_init(l);
4910 			clear_bit(STRIPE_DELAYED, &sh->state);
4911 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4912 				atomic_inc(&conf->preread_active_stripes);
4913 			list_add_tail(&sh->lru, &conf->hold_list);
4914 			raid5_wakeup_stripe_thread(sh);
4915 		}
4916 	}
4917 }
4918 
4919 static void activate_bit_delay(struct r5conf *conf,
4920 	struct list_head *temp_inactive_list)
4921 {
4922 	/* device_lock is held */
4923 	struct list_head head;
4924 	list_add(&head, &conf->bitmap_list);
4925 	list_del_init(&conf->bitmap_list);
4926 	while (!list_empty(&head)) {
4927 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4928 		int hash;
4929 		list_del_init(&sh->lru);
4930 		atomic_inc(&sh->count);
4931 		hash = sh->hash_lock_index;
4932 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4933 	}
4934 }
4935 
4936 static int raid5_congested(struct mddev *mddev, int bits)
4937 {
4938 	struct r5conf *conf = mddev->private;
4939 
4940 	/* No difference between reads and writes.  Just check
4941 	 * how busy the stripe_cache is
4942 	 */
4943 
4944 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4945 		return 1;
4946 
4947 	/* Also checks whether there is pressure on r5cache log space */
4948 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
4949 		return 1;
4950 	if (conf->quiesce)
4951 		return 1;
4952 	if (atomic_read(&conf->empty_inactive_list_nr))
4953 		return 1;
4954 
4955 	return 0;
4956 }
4957 
4958 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4959 {
4960 	struct r5conf *conf = mddev->private;
4961 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4962 	unsigned int chunk_sectors;
4963 	unsigned int bio_sectors = bio_sectors(bio);
4964 
4965 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4966 	return  chunk_sectors >=
4967 		((sector & (chunk_sectors - 1)) + bio_sectors);
4968 }
4969 
4970 /*
4971  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4972  *  later sampled by raid5d.
4973  */
4974 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4975 {
4976 	unsigned long flags;
4977 
4978 	spin_lock_irqsave(&conf->device_lock, flags);
4979 
4980 	bi->bi_next = conf->retry_read_aligned_list;
4981 	conf->retry_read_aligned_list = bi;
4982 
4983 	spin_unlock_irqrestore(&conf->device_lock, flags);
4984 	md_wakeup_thread(conf->mddev->thread);
4985 }
4986 
4987 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4988 {
4989 	struct bio *bi;
4990 
4991 	bi = conf->retry_read_aligned;
4992 	if (bi) {
4993 		conf->retry_read_aligned = NULL;
4994 		return bi;
4995 	}
4996 	bi = conf->retry_read_aligned_list;
4997 	if(bi) {
4998 		conf->retry_read_aligned_list = bi->bi_next;
4999 		bi->bi_next = NULL;
5000 		/*
5001 		 * this sets the active strip count to 1 and the processed
5002 		 * strip count to zero (upper 8 bits)
5003 		 */
5004 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
5005 	}
5006 
5007 	return bi;
5008 }
5009 
5010 /*
5011  *  The "raid5_align_endio" should check if the read succeeded and if it
5012  *  did, call bio_endio on the original bio (having bio_put the new bio
5013  *  first).
5014  *  If the read failed..
5015  */
5016 static void raid5_align_endio(struct bio *bi)
5017 {
5018 	struct bio* raid_bi  = bi->bi_private;
5019 	struct mddev *mddev;
5020 	struct r5conf *conf;
5021 	struct md_rdev *rdev;
5022 	int error = bi->bi_error;
5023 
5024 	bio_put(bi);
5025 
5026 	rdev = (void*)raid_bi->bi_next;
5027 	raid_bi->bi_next = NULL;
5028 	mddev = rdev->mddev;
5029 	conf = mddev->private;
5030 
5031 	rdev_dec_pending(rdev, conf->mddev);
5032 
5033 	if (!error) {
5034 		bio_endio(raid_bi);
5035 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5036 			wake_up(&conf->wait_for_quiescent);
5037 		return;
5038 	}
5039 
5040 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5041 
5042 	add_bio_to_retry(raid_bi, conf);
5043 }
5044 
5045 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5046 {
5047 	struct r5conf *conf = mddev->private;
5048 	int dd_idx;
5049 	struct bio* align_bi;
5050 	struct md_rdev *rdev;
5051 	sector_t end_sector;
5052 
5053 	if (!in_chunk_boundary(mddev, raid_bio)) {
5054 		pr_debug("%s: non aligned\n", __func__);
5055 		return 0;
5056 	}
5057 	/*
5058 	 * use bio_clone_fast to make a copy of the bio
5059 	 */
5060 	align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5061 	if (!align_bi)
5062 		return 0;
5063 	/*
5064 	 *   set bi_end_io to a new function, and set bi_private to the
5065 	 *     original bio.
5066 	 */
5067 	align_bi->bi_end_io  = raid5_align_endio;
5068 	align_bi->bi_private = raid_bio;
5069 	/*
5070 	 *	compute position
5071 	 */
5072 	align_bi->bi_iter.bi_sector =
5073 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5074 				     0, &dd_idx, NULL);
5075 
5076 	end_sector = bio_end_sector(align_bi);
5077 	rcu_read_lock();
5078 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5079 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5080 	    rdev->recovery_offset < end_sector) {
5081 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5082 		if (rdev &&
5083 		    (test_bit(Faulty, &rdev->flags) ||
5084 		    !(test_bit(In_sync, &rdev->flags) ||
5085 		      rdev->recovery_offset >= end_sector)))
5086 			rdev = NULL;
5087 	}
5088 
5089 	if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5090 		rcu_read_unlock();
5091 		bio_put(align_bi);
5092 		return 0;
5093 	}
5094 
5095 	if (rdev) {
5096 		sector_t first_bad;
5097 		int bad_sectors;
5098 
5099 		atomic_inc(&rdev->nr_pending);
5100 		rcu_read_unlock();
5101 		raid_bio->bi_next = (void*)rdev;
5102 		align_bi->bi_bdev =  rdev->bdev;
5103 		bio_clear_flag(align_bi, BIO_SEG_VALID);
5104 
5105 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5106 				bio_sectors(align_bi),
5107 				&first_bad, &bad_sectors)) {
5108 			bio_put(align_bi);
5109 			rdev_dec_pending(rdev, mddev);
5110 			return 0;
5111 		}
5112 
5113 		/* No reshape active, so we can trust rdev->data_offset */
5114 		align_bi->bi_iter.bi_sector += rdev->data_offset;
5115 
5116 		spin_lock_irq(&conf->device_lock);
5117 		wait_event_lock_irq(conf->wait_for_quiescent,
5118 				    conf->quiesce == 0,
5119 				    conf->device_lock);
5120 		atomic_inc(&conf->active_aligned_reads);
5121 		spin_unlock_irq(&conf->device_lock);
5122 
5123 		if (mddev->gendisk)
5124 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
5125 					      align_bi, disk_devt(mddev->gendisk),
5126 					      raid_bio->bi_iter.bi_sector);
5127 		generic_make_request(align_bi);
5128 		return 1;
5129 	} else {
5130 		rcu_read_unlock();
5131 		bio_put(align_bi);
5132 		return 0;
5133 	}
5134 }
5135 
5136 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5137 {
5138 	struct bio *split;
5139 
5140 	do {
5141 		sector_t sector = raid_bio->bi_iter.bi_sector;
5142 		unsigned chunk_sects = mddev->chunk_sectors;
5143 		unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5144 
5145 		if (sectors < bio_sectors(raid_bio)) {
5146 			split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
5147 			bio_chain(split, raid_bio);
5148 		} else
5149 			split = raid_bio;
5150 
5151 		if (!raid5_read_one_chunk(mddev, split)) {
5152 			if (split != raid_bio)
5153 				generic_make_request(raid_bio);
5154 			return split;
5155 		}
5156 	} while (split != raid_bio);
5157 
5158 	return NULL;
5159 }
5160 
5161 /* __get_priority_stripe - get the next stripe to process
5162  *
5163  * Full stripe writes are allowed to pass preread active stripes up until
5164  * the bypass_threshold is exceeded.  In general the bypass_count
5165  * increments when the handle_list is handled before the hold_list; however, it
5166  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5167  * stripe with in flight i/o.  The bypass_count will be reset when the
5168  * head of the hold_list has changed, i.e. the head was promoted to the
5169  * handle_list.
5170  */
5171 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5172 {
5173 	struct stripe_head *sh = NULL, *tmp;
5174 	struct list_head *handle_list = NULL;
5175 	struct r5worker_group *wg = NULL;
5176 
5177 	if (conf->worker_cnt_per_group == 0) {
5178 		handle_list = &conf->handle_list;
5179 	} else if (group != ANY_GROUP) {
5180 		handle_list = &conf->worker_groups[group].handle_list;
5181 		wg = &conf->worker_groups[group];
5182 	} else {
5183 		int i;
5184 		for (i = 0; i < conf->group_cnt; i++) {
5185 			handle_list = &conf->worker_groups[i].handle_list;
5186 			wg = &conf->worker_groups[i];
5187 			if (!list_empty(handle_list))
5188 				break;
5189 		}
5190 	}
5191 
5192 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5193 		  __func__,
5194 		  list_empty(handle_list) ? "empty" : "busy",
5195 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5196 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5197 
5198 	if (!list_empty(handle_list)) {
5199 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5200 
5201 		if (list_empty(&conf->hold_list))
5202 			conf->bypass_count = 0;
5203 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5204 			if (conf->hold_list.next == conf->last_hold)
5205 				conf->bypass_count++;
5206 			else {
5207 				conf->last_hold = conf->hold_list.next;
5208 				conf->bypass_count -= conf->bypass_threshold;
5209 				if (conf->bypass_count < 0)
5210 					conf->bypass_count = 0;
5211 			}
5212 		}
5213 	} else if (!list_empty(&conf->hold_list) &&
5214 		   ((conf->bypass_threshold &&
5215 		     conf->bypass_count > conf->bypass_threshold) ||
5216 		    atomic_read(&conf->pending_full_writes) == 0)) {
5217 
5218 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5219 			if (conf->worker_cnt_per_group == 0 ||
5220 			    group == ANY_GROUP ||
5221 			    !cpu_online(tmp->cpu) ||
5222 			    cpu_to_group(tmp->cpu) == group) {
5223 				sh = tmp;
5224 				break;
5225 			}
5226 		}
5227 
5228 		if (sh) {
5229 			conf->bypass_count -= conf->bypass_threshold;
5230 			if (conf->bypass_count < 0)
5231 				conf->bypass_count = 0;
5232 		}
5233 		wg = NULL;
5234 	}
5235 
5236 	if (!sh)
5237 		return NULL;
5238 
5239 	if (wg) {
5240 		wg->stripes_cnt--;
5241 		sh->group = NULL;
5242 	}
5243 	list_del_init(&sh->lru);
5244 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5245 	return sh;
5246 }
5247 
5248 struct raid5_plug_cb {
5249 	struct blk_plug_cb	cb;
5250 	struct list_head	list;
5251 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5252 };
5253 
5254 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5255 {
5256 	struct raid5_plug_cb *cb = container_of(
5257 		blk_cb, struct raid5_plug_cb, cb);
5258 	struct stripe_head *sh;
5259 	struct mddev *mddev = cb->cb.data;
5260 	struct r5conf *conf = mddev->private;
5261 	int cnt = 0;
5262 	int hash;
5263 
5264 	if (cb->list.next && !list_empty(&cb->list)) {
5265 		spin_lock_irq(&conf->device_lock);
5266 		while (!list_empty(&cb->list)) {
5267 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5268 			list_del_init(&sh->lru);
5269 			/*
5270 			 * avoid race release_stripe_plug() sees
5271 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5272 			 * is still in our list
5273 			 */
5274 			smp_mb__before_atomic();
5275 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5276 			/*
5277 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5278 			 * case, the count is always > 1 here
5279 			 */
5280 			hash = sh->hash_lock_index;
5281 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5282 			cnt++;
5283 		}
5284 		spin_unlock_irq(&conf->device_lock);
5285 	}
5286 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5287 				     NR_STRIPE_HASH_LOCKS);
5288 	if (mddev->queue)
5289 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5290 	kfree(cb);
5291 }
5292 
5293 static void release_stripe_plug(struct mddev *mddev,
5294 				struct stripe_head *sh)
5295 {
5296 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5297 		raid5_unplug, mddev,
5298 		sizeof(struct raid5_plug_cb));
5299 	struct raid5_plug_cb *cb;
5300 
5301 	if (!blk_cb) {
5302 		raid5_release_stripe(sh);
5303 		return;
5304 	}
5305 
5306 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5307 
5308 	if (cb->list.next == NULL) {
5309 		int i;
5310 		INIT_LIST_HEAD(&cb->list);
5311 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5312 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5313 	}
5314 
5315 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5316 		list_add_tail(&sh->lru, &cb->list);
5317 	else
5318 		raid5_release_stripe(sh);
5319 }
5320 
5321 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5322 {
5323 	struct r5conf *conf = mddev->private;
5324 	sector_t logical_sector, last_sector;
5325 	struct stripe_head *sh;
5326 	int remaining;
5327 	int stripe_sectors;
5328 
5329 	if (mddev->reshape_position != MaxSector)
5330 		/* Skip discard while reshape is happening */
5331 		return;
5332 
5333 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5334 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5335 
5336 	bi->bi_next = NULL;
5337 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5338 
5339 	stripe_sectors = conf->chunk_sectors *
5340 		(conf->raid_disks - conf->max_degraded);
5341 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5342 					       stripe_sectors);
5343 	sector_div(last_sector, stripe_sectors);
5344 
5345 	logical_sector *= conf->chunk_sectors;
5346 	last_sector *= conf->chunk_sectors;
5347 
5348 	for (; logical_sector < last_sector;
5349 	     logical_sector += STRIPE_SECTORS) {
5350 		DEFINE_WAIT(w);
5351 		int d;
5352 	again:
5353 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5354 		prepare_to_wait(&conf->wait_for_overlap, &w,
5355 				TASK_UNINTERRUPTIBLE);
5356 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5357 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5358 			raid5_release_stripe(sh);
5359 			schedule();
5360 			goto again;
5361 		}
5362 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5363 		spin_lock_irq(&sh->stripe_lock);
5364 		for (d = 0; d < conf->raid_disks; d++) {
5365 			if (d == sh->pd_idx || d == sh->qd_idx)
5366 				continue;
5367 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5368 				set_bit(R5_Overlap, &sh->dev[d].flags);
5369 				spin_unlock_irq(&sh->stripe_lock);
5370 				raid5_release_stripe(sh);
5371 				schedule();
5372 				goto again;
5373 			}
5374 		}
5375 		set_bit(STRIPE_DISCARD, &sh->state);
5376 		finish_wait(&conf->wait_for_overlap, &w);
5377 		sh->overwrite_disks = 0;
5378 		for (d = 0; d < conf->raid_disks; d++) {
5379 			if (d == sh->pd_idx || d == sh->qd_idx)
5380 				continue;
5381 			sh->dev[d].towrite = bi;
5382 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5383 			raid5_inc_bi_active_stripes(bi);
5384 			sh->overwrite_disks++;
5385 		}
5386 		spin_unlock_irq(&sh->stripe_lock);
5387 		if (conf->mddev->bitmap) {
5388 			for (d = 0;
5389 			     d < conf->raid_disks - conf->max_degraded;
5390 			     d++)
5391 				bitmap_startwrite(mddev->bitmap,
5392 						  sh->sector,
5393 						  STRIPE_SECTORS,
5394 						  0);
5395 			sh->bm_seq = conf->seq_flush + 1;
5396 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5397 		}
5398 
5399 		set_bit(STRIPE_HANDLE, &sh->state);
5400 		clear_bit(STRIPE_DELAYED, &sh->state);
5401 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5402 			atomic_inc(&conf->preread_active_stripes);
5403 		release_stripe_plug(mddev, sh);
5404 	}
5405 
5406 	remaining = raid5_dec_bi_active_stripes(bi);
5407 	if (remaining == 0) {
5408 		md_write_end(mddev);
5409 		bio_endio(bi);
5410 	}
5411 }
5412 
5413 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5414 {
5415 	struct r5conf *conf = mddev->private;
5416 	int dd_idx;
5417 	sector_t new_sector;
5418 	sector_t logical_sector, last_sector;
5419 	struct stripe_head *sh;
5420 	const int rw = bio_data_dir(bi);
5421 	int remaining;
5422 	DEFINE_WAIT(w);
5423 	bool do_prepare;
5424 	bool do_flush = false;
5425 
5426 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5427 		int ret = r5l_handle_flush_request(conf->log, bi);
5428 
5429 		if (ret == 0)
5430 			return;
5431 		if (ret == -ENODEV) {
5432 			md_flush_request(mddev, bi);
5433 			return;
5434 		}
5435 		/* ret == -EAGAIN, fallback */
5436 		/*
5437 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5438 		 * we need to flush journal device
5439 		 */
5440 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5441 	}
5442 
5443 	md_write_start(mddev, bi);
5444 
5445 	/*
5446 	 * If array is degraded, better not do chunk aligned read because
5447 	 * later we might have to read it again in order to reconstruct
5448 	 * data on failed drives.
5449 	 */
5450 	if (rw == READ && mddev->degraded == 0 &&
5451 	    mddev->reshape_position == MaxSector) {
5452 		bi = chunk_aligned_read(mddev, bi);
5453 		if (!bi)
5454 			return;
5455 	}
5456 
5457 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5458 		make_discard_request(mddev, bi);
5459 		return;
5460 	}
5461 
5462 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5463 	last_sector = bio_end_sector(bi);
5464 	bi->bi_next = NULL;
5465 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5466 
5467 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5468 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5469 		int previous;
5470 		int seq;
5471 
5472 		do_prepare = false;
5473 	retry:
5474 		seq = read_seqcount_begin(&conf->gen_lock);
5475 		previous = 0;
5476 		if (do_prepare)
5477 			prepare_to_wait(&conf->wait_for_overlap, &w,
5478 				TASK_UNINTERRUPTIBLE);
5479 		if (unlikely(conf->reshape_progress != MaxSector)) {
5480 			/* spinlock is needed as reshape_progress may be
5481 			 * 64bit on a 32bit platform, and so it might be
5482 			 * possible to see a half-updated value
5483 			 * Of course reshape_progress could change after
5484 			 * the lock is dropped, so once we get a reference
5485 			 * to the stripe that we think it is, we will have
5486 			 * to check again.
5487 			 */
5488 			spin_lock_irq(&conf->device_lock);
5489 			if (mddev->reshape_backwards
5490 			    ? logical_sector < conf->reshape_progress
5491 			    : logical_sector >= conf->reshape_progress) {
5492 				previous = 1;
5493 			} else {
5494 				if (mddev->reshape_backwards
5495 				    ? logical_sector < conf->reshape_safe
5496 				    : logical_sector >= conf->reshape_safe) {
5497 					spin_unlock_irq(&conf->device_lock);
5498 					schedule();
5499 					do_prepare = true;
5500 					goto retry;
5501 				}
5502 			}
5503 			spin_unlock_irq(&conf->device_lock);
5504 		}
5505 
5506 		new_sector = raid5_compute_sector(conf, logical_sector,
5507 						  previous,
5508 						  &dd_idx, NULL);
5509 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5510 			(unsigned long long)new_sector,
5511 			(unsigned long long)logical_sector);
5512 
5513 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5514 				       (bi->bi_opf & REQ_RAHEAD), 0);
5515 		if (sh) {
5516 			if (unlikely(previous)) {
5517 				/* expansion might have moved on while waiting for a
5518 				 * stripe, so we must do the range check again.
5519 				 * Expansion could still move past after this
5520 				 * test, but as we are holding a reference to
5521 				 * 'sh', we know that if that happens,
5522 				 *  STRIPE_EXPANDING will get set and the expansion
5523 				 * won't proceed until we finish with the stripe.
5524 				 */
5525 				int must_retry = 0;
5526 				spin_lock_irq(&conf->device_lock);
5527 				if (mddev->reshape_backwards
5528 				    ? logical_sector >= conf->reshape_progress
5529 				    : logical_sector < conf->reshape_progress)
5530 					/* mismatch, need to try again */
5531 					must_retry = 1;
5532 				spin_unlock_irq(&conf->device_lock);
5533 				if (must_retry) {
5534 					raid5_release_stripe(sh);
5535 					schedule();
5536 					do_prepare = true;
5537 					goto retry;
5538 				}
5539 			}
5540 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5541 				/* Might have got the wrong stripe_head
5542 				 * by accident
5543 				 */
5544 				raid5_release_stripe(sh);
5545 				goto retry;
5546 			}
5547 
5548 			if (rw == WRITE &&
5549 			    logical_sector >= mddev->suspend_lo &&
5550 			    logical_sector < mddev->suspend_hi) {
5551 				raid5_release_stripe(sh);
5552 				/* As the suspend_* range is controlled by
5553 				 * userspace, we want an interruptible
5554 				 * wait.
5555 				 */
5556 				flush_signals(current);
5557 				prepare_to_wait(&conf->wait_for_overlap,
5558 						&w, TASK_INTERRUPTIBLE);
5559 				if (logical_sector >= mddev->suspend_lo &&
5560 				    logical_sector < mddev->suspend_hi) {
5561 					schedule();
5562 					do_prepare = true;
5563 				}
5564 				goto retry;
5565 			}
5566 
5567 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5568 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5569 				/* Stripe is busy expanding or
5570 				 * add failed due to overlap.  Flush everything
5571 				 * and wait a while
5572 				 */
5573 				md_wakeup_thread(mddev->thread);
5574 				raid5_release_stripe(sh);
5575 				schedule();
5576 				do_prepare = true;
5577 				goto retry;
5578 			}
5579 			if (do_flush) {
5580 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5581 				/* we only need flush for one stripe */
5582 				do_flush = false;
5583 			}
5584 
5585 			set_bit(STRIPE_HANDLE, &sh->state);
5586 			clear_bit(STRIPE_DELAYED, &sh->state);
5587 			if ((!sh->batch_head || sh == sh->batch_head) &&
5588 			    (bi->bi_opf & REQ_SYNC) &&
5589 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5590 				atomic_inc(&conf->preread_active_stripes);
5591 			release_stripe_plug(mddev, sh);
5592 		} else {
5593 			/* cannot get stripe for read-ahead, just give-up */
5594 			bi->bi_error = -EIO;
5595 			break;
5596 		}
5597 	}
5598 	finish_wait(&conf->wait_for_overlap, &w);
5599 
5600 	remaining = raid5_dec_bi_active_stripes(bi);
5601 	if (remaining == 0) {
5602 
5603 		if ( rw == WRITE )
5604 			md_write_end(mddev);
5605 
5606 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5607 					 bi, 0);
5608 		bio_endio(bi);
5609 	}
5610 }
5611 
5612 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5613 
5614 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5615 {
5616 	/* reshaping is quite different to recovery/resync so it is
5617 	 * handled quite separately ... here.
5618 	 *
5619 	 * On each call to sync_request, we gather one chunk worth of
5620 	 * destination stripes and flag them as expanding.
5621 	 * Then we find all the source stripes and request reads.
5622 	 * As the reads complete, handle_stripe will copy the data
5623 	 * into the destination stripe and release that stripe.
5624 	 */
5625 	struct r5conf *conf = mddev->private;
5626 	struct stripe_head *sh;
5627 	sector_t first_sector, last_sector;
5628 	int raid_disks = conf->previous_raid_disks;
5629 	int data_disks = raid_disks - conf->max_degraded;
5630 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5631 	int i;
5632 	int dd_idx;
5633 	sector_t writepos, readpos, safepos;
5634 	sector_t stripe_addr;
5635 	int reshape_sectors;
5636 	struct list_head stripes;
5637 	sector_t retn;
5638 
5639 	if (sector_nr == 0) {
5640 		/* If restarting in the middle, skip the initial sectors */
5641 		if (mddev->reshape_backwards &&
5642 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5643 			sector_nr = raid5_size(mddev, 0, 0)
5644 				- conf->reshape_progress;
5645 		} else if (mddev->reshape_backwards &&
5646 			   conf->reshape_progress == MaxSector) {
5647 			/* shouldn't happen, but just in case, finish up.*/
5648 			sector_nr = MaxSector;
5649 		} else if (!mddev->reshape_backwards &&
5650 			   conf->reshape_progress > 0)
5651 			sector_nr = conf->reshape_progress;
5652 		sector_div(sector_nr, new_data_disks);
5653 		if (sector_nr) {
5654 			mddev->curr_resync_completed = sector_nr;
5655 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5656 			*skipped = 1;
5657 			retn = sector_nr;
5658 			goto finish;
5659 		}
5660 	}
5661 
5662 	/* We need to process a full chunk at a time.
5663 	 * If old and new chunk sizes differ, we need to process the
5664 	 * largest of these
5665 	 */
5666 
5667 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5668 
5669 	/* We update the metadata at least every 10 seconds, or when
5670 	 * the data about to be copied would over-write the source of
5671 	 * the data at the front of the range.  i.e. one new_stripe
5672 	 * along from reshape_progress new_maps to after where
5673 	 * reshape_safe old_maps to
5674 	 */
5675 	writepos = conf->reshape_progress;
5676 	sector_div(writepos, new_data_disks);
5677 	readpos = conf->reshape_progress;
5678 	sector_div(readpos, data_disks);
5679 	safepos = conf->reshape_safe;
5680 	sector_div(safepos, data_disks);
5681 	if (mddev->reshape_backwards) {
5682 		BUG_ON(writepos < reshape_sectors);
5683 		writepos -= reshape_sectors;
5684 		readpos += reshape_sectors;
5685 		safepos += reshape_sectors;
5686 	} else {
5687 		writepos += reshape_sectors;
5688 		/* readpos and safepos are worst-case calculations.
5689 		 * A negative number is overly pessimistic, and causes
5690 		 * obvious problems for unsigned storage.  So clip to 0.
5691 		 */
5692 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5693 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5694 	}
5695 
5696 	/* Having calculated the 'writepos' possibly use it
5697 	 * to set 'stripe_addr' which is where we will write to.
5698 	 */
5699 	if (mddev->reshape_backwards) {
5700 		BUG_ON(conf->reshape_progress == 0);
5701 		stripe_addr = writepos;
5702 		BUG_ON((mddev->dev_sectors &
5703 			~((sector_t)reshape_sectors - 1))
5704 		       - reshape_sectors - stripe_addr
5705 		       != sector_nr);
5706 	} else {
5707 		BUG_ON(writepos != sector_nr + reshape_sectors);
5708 		stripe_addr = sector_nr;
5709 	}
5710 
5711 	/* 'writepos' is the most advanced device address we might write.
5712 	 * 'readpos' is the least advanced device address we might read.
5713 	 * 'safepos' is the least address recorded in the metadata as having
5714 	 *     been reshaped.
5715 	 * If there is a min_offset_diff, these are adjusted either by
5716 	 * increasing the safepos/readpos if diff is negative, or
5717 	 * increasing writepos if diff is positive.
5718 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5719 	 * ensure safety in the face of a crash - that must be done by userspace
5720 	 * making a backup of the data.  So in that case there is no particular
5721 	 * rush to update metadata.
5722 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5723 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5724 	 * we can be safe in the event of a crash.
5725 	 * So we insist on updating metadata if safepos is behind writepos and
5726 	 * readpos is beyond writepos.
5727 	 * In any case, update the metadata every 10 seconds.
5728 	 * Maybe that number should be configurable, but I'm not sure it is
5729 	 * worth it.... maybe it could be a multiple of safemode_delay???
5730 	 */
5731 	if (conf->min_offset_diff < 0) {
5732 		safepos += -conf->min_offset_diff;
5733 		readpos += -conf->min_offset_diff;
5734 	} else
5735 		writepos += conf->min_offset_diff;
5736 
5737 	if ((mddev->reshape_backwards
5738 	     ? (safepos > writepos && readpos < writepos)
5739 	     : (safepos < writepos && readpos > writepos)) ||
5740 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5741 		/* Cannot proceed until we've updated the superblock... */
5742 		wait_event(conf->wait_for_overlap,
5743 			   atomic_read(&conf->reshape_stripes)==0
5744 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5745 		if (atomic_read(&conf->reshape_stripes) != 0)
5746 			return 0;
5747 		mddev->reshape_position = conf->reshape_progress;
5748 		mddev->curr_resync_completed = sector_nr;
5749 		conf->reshape_checkpoint = jiffies;
5750 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5751 		md_wakeup_thread(mddev->thread);
5752 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5753 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5754 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5755 			return 0;
5756 		spin_lock_irq(&conf->device_lock);
5757 		conf->reshape_safe = mddev->reshape_position;
5758 		spin_unlock_irq(&conf->device_lock);
5759 		wake_up(&conf->wait_for_overlap);
5760 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5761 	}
5762 
5763 	INIT_LIST_HEAD(&stripes);
5764 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5765 		int j;
5766 		int skipped_disk = 0;
5767 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5768 		set_bit(STRIPE_EXPANDING, &sh->state);
5769 		atomic_inc(&conf->reshape_stripes);
5770 		/* If any of this stripe is beyond the end of the old
5771 		 * array, then we need to zero those blocks
5772 		 */
5773 		for (j=sh->disks; j--;) {
5774 			sector_t s;
5775 			if (j == sh->pd_idx)
5776 				continue;
5777 			if (conf->level == 6 &&
5778 			    j == sh->qd_idx)
5779 				continue;
5780 			s = raid5_compute_blocknr(sh, j, 0);
5781 			if (s < raid5_size(mddev, 0, 0)) {
5782 				skipped_disk = 1;
5783 				continue;
5784 			}
5785 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5786 			set_bit(R5_Expanded, &sh->dev[j].flags);
5787 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5788 		}
5789 		if (!skipped_disk) {
5790 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5791 			set_bit(STRIPE_HANDLE, &sh->state);
5792 		}
5793 		list_add(&sh->lru, &stripes);
5794 	}
5795 	spin_lock_irq(&conf->device_lock);
5796 	if (mddev->reshape_backwards)
5797 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5798 	else
5799 		conf->reshape_progress += reshape_sectors * new_data_disks;
5800 	spin_unlock_irq(&conf->device_lock);
5801 	/* Ok, those stripe are ready. We can start scheduling
5802 	 * reads on the source stripes.
5803 	 * The source stripes are determined by mapping the first and last
5804 	 * block on the destination stripes.
5805 	 */
5806 	first_sector =
5807 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5808 				     1, &dd_idx, NULL);
5809 	last_sector =
5810 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5811 					    * new_data_disks - 1),
5812 				     1, &dd_idx, NULL);
5813 	if (last_sector >= mddev->dev_sectors)
5814 		last_sector = mddev->dev_sectors - 1;
5815 	while (first_sector <= last_sector) {
5816 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5817 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5818 		set_bit(STRIPE_HANDLE, &sh->state);
5819 		raid5_release_stripe(sh);
5820 		first_sector += STRIPE_SECTORS;
5821 	}
5822 	/* Now that the sources are clearly marked, we can release
5823 	 * the destination stripes
5824 	 */
5825 	while (!list_empty(&stripes)) {
5826 		sh = list_entry(stripes.next, struct stripe_head, lru);
5827 		list_del_init(&sh->lru);
5828 		raid5_release_stripe(sh);
5829 	}
5830 	/* If this takes us to the resync_max point where we have to pause,
5831 	 * then we need to write out the superblock.
5832 	 */
5833 	sector_nr += reshape_sectors;
5834 	retn = reshape_sectors;
5835 finish:
5836 	if (mddev->curr_resync_completed > mddev->resync_max ||
5837 	    (sector_nr - mddev->curr_resync_completed) * 2
5838 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5839 		/* Cannot proceed until we've updated the superblock... */
5840 		wait_event(conf->wait_for_overlap,
5841 			   atomic_read(&conf->reshape_stripes) == 0
5842 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5843 		if (atomic_read(&conf->reshape_stripes) != 0)
5844 			goto ret;
5845 		mddev->reshape_position = conf->reshape_progress;
5846 		mddev->curr_resync_completed = sector_nr;
5847 		conf->reshape_checkpoint = jiffies;
5848 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5849 		md_wakeup_thread(mddev->thread);
5850 		wait_event(mddev->sb_wait,
5851 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5852 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5853 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5854 			goto ret;
5855 		spin_lock_irq(&conf->device_lock);
5856 		conf->reshape_safe = mddev->reshape_position;
5857 		spin_unlock_irq(&conf->device_lock);
5858 		wake_up(&conf->wait_for_overlap);
5859 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5860 	}
5861 ret:
5862 	return retn;
5863 }
5864 
5865 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5866 					  int *skipped)
5867 {
5868 	struct r5conf *conf = mddev->private;
5869 	struct stripe_head *sh;
5870 	sector_t max_sector = mddev->dev_sectors;
5871 	sector_t sync_blocks;
5872 	int still_degraded = 0;
5873 	int i;
5874 
5875 	if (sector_nr >= max_sector) {
5876 		/* just being told to finish up .. nothing much to do */
5877 
5878 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5879 			end_reshape(conf);
5880 			return 0;
5881 		}
5882 
5883 		if (mddev->curr_resync < max_sector) /* aborted */
5884 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5885 					&sync_blocks, 1);
5886 		else /* completed sync */
5887 			conf->fullsync = 0;
5888 		bitmap_close_sync(mddev->bitmap);
5889 
5890 		return 0;
5891 	}
5892 
5893 	/* Allow raid5_quiesce to complete */
5894 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5895 
5896 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5897 		return reshape_request(mddev, sector_nr, skipped);
5898 
5899 	/* No need to check resync_max as we never do more than one
5900 	 * stripe, and as resync_max will always be on a chunk boundary,
5901 	 * if the check in md_do_sync didn't fire, there is no chance
5902 	 * of overstepping resync_max here
5903 	 */
5904 
5905 	/* if there is too many failed drives and we are trying
5906 	 * to resync, then assert that we are finished, because there is
5907 	 * nothing we can do.
5908 	 */
5909 	if (mddev->degraded >= conf->max_degraded &&
5910 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5911 		sector_t rv = mddev->dev_sectors - sector_nr;
5912 		*skipped = 1;
5913 		return rv;
5914 	}
5915 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5916 	    !conf->fullsync &&
5917 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5918 	    sync_blocks >= STRIPE_SECTORS) {
5919 		/* we can skip this block, and probably more */
5920 		sync_blocks /= STRIPE_SECTORS;
5921 		*skipped = 1;
5922 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5923 	}
5924 
5925 	bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5926 
5927 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5928 	if (sh == NULL) {
5929 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5930 		/* make sure we don't swamp the stripe cache if someone else
5931 		 * is trying to get access
5932 		 */
5933 		schedule_timeout_uninterruptible(1);
5934 	}
5935 	/* Need to check if array will still be degraded after recovery/resync
5936 	 * Note in case of > 1 drive failures it's possible we're rebuilding
5937 	 * one drive while leaving another faulty drive in array.
5938 	 */
5939 	rcu_read_lock();
5940 	for (i = 0; i < conf->raid_disks; i++) {
5941 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5942 
5943 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5944 			still_degraded = 1;
5945 	}
5946 	rcu_read_unlock();
5947 
5948 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5949 
5950 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5951 	set_bit(STRIPE_HANDLE, &sh->state);
5952 
5953 	raid5_release_stripe(sh);
5954 
5955 	return STRIPE_SECTORS;
5956 }
5957 
5958 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5959 {
5960 	/* We may not be able to submit a whole bio at once as there
5961 	 * may not be enough stripe_heads available.
5962 	 * We cannot pre-allocate enough stripe_heads as we may need
5963 	 * more than exist in the cache (if we allow ever large chunks).
5964 	 * So we do one stripe head at a time and record in
5965 	 * ->bi_hw_segments how many have been done.
5966 	 *
5967 	 * We *know* that this entire raid_bio is in one chunk, so
5968 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5969 	 */
5970 	struct stripe_head *sh;
5971 	int dd_idx;
5972 	sector_t sector, logical_sector, last_sector;
5973 	int scnt = 0;
5974 	int remaining;
5975 	int handled = 0;
5976 
5977 	logical_sector = raid_bio->bi_iter.bi_sector &
5978 		~((sector_t)STRIPE_SECTORS-1);
5979 	sector = raid5_compute_sector(conf, logical_sector,
5980 				      0, &dd_idx, NULL);
5981 	last_sector = bio_end_sector(raid_bio);
5982 
5983 	for (; logical_sector < last_sector;
5984 	     logical_sector += STRIPE_SECTORS,
5985 		     sector += STRIPE_SECTORS,
5986 		     scnt++) {
5987 
5988 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5989 			/* already done this stripe */
5990 			continue;
5991 
5992 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5993 
5994 		if (!sh) {
5995 			/* failed to get a stripe - must wait */
5996 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5997 			conf->retry_read_aligned = raid_bio;
5998 			return handled;
5999 		}
6000 
6001 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6002 			raid5_release_stripe(sh);
6003 			raid5_set_bi_processed_stripes(raid_bio, scnt);
6004 			conf->retry_read_aligned = raid_bio;
6005 			return handled;
6006 		}
6007 
6008 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6009 		handle_stripe(sh);
6010 		raid5_release_stripe(sh);
6011 		handled++;
6012 	}
6013 	remaining = raid5_dec_bi_active_stripes(raid_bio);
6014 	if (remaining == 0) {
6015 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
6016 					 raid_bio, 0);
6017 		bio_endio(raid_bio);
6018 	}
6019 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6020 		wake_up(&conf->wait_for_quiescent);
6021 	return handled;
6022 }
6023 
6024 static int handle_active_stripes(struct r5conf *conf, int group,
6025 				 struct r5worker *worker,
6026 				 struct list_head *temp_inactive_list)
6027 {
6028 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6029 	int i, batch_size = 0, hash;
6030 	bool release_inactive = false;
6031 
6032 	while (batch_size < MAX_STRIPE_BATCH &&
6033 			(sh = __get_priority_stripe(conf, group)) != NULL)
6034 		batch[batch_size++] = sh;
6035 
6036 	if (batch_size == 0) {
6037 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6038 			if (!list_empty(temp_inactive_list + i))
6039 				break;
6040 		if (i == NR_STRIPE_HASH_LOCKS) {
6041 			spin_unlock_irq(&conf->device_lock);
6042 			r5l_flush_stripe_to_raid(conf->log);
6043 			spin_lock_irq(&conf->device_lock);
6044 			return batch_size;
6045 		}
6046 		release_inactive = true;
6047 	}
6048 	spin_unlock_irq(&conf->device_lock);
6049 
6050 	release_inactive_stripe_list(conf, temp_inactive_list,
6051 				     NR_STRIPE_HASH_LOCKS);
6052 
6053 	r5l_flush_stripe_to_raid(conf->log);
6054 	if (release_inactive) {
6055 		spin_lock_irq(&conf->device_lock);
6056 		return 0;
6057 	}
6058 
6059 	for (i = 0; i < batch_size; i++)
6060 		handle_stripe(batch[i]);
6061 	r5l_write_stripe_run(conf->log);
6062 
6063 	cond_resched();
6064 
6065 	spin_lock_irq(&conf->device_lock);
6066 	for (i = 0; i < batch_size; i++) {
6067 		hash = batch[i]->hash_lock_index;
6068 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6069 	}
6070 	return batch_size;
6071 }
6072 
6073 static void raid5_do_work(struct work_struct *work)
6074 {
6075 	struct r5worker *worker = container_of(work, struct r5worker, work);
6076 	struct r5worker_group *group = worker->group;
6077 	struct r5conf *conf = group->conf;
6078 	int group_id = group - conf->worker_groups;
6079 	int handled;
6080 	struct blk_plug plug;
6081 
6082 	pr_debug("+++ raid5worker active\n");
6083 
6084 	blk_start_plug(&plug);
6085 	handled = 0;
6086 	spin_lock_irq(&conf->device_lock);
6087 	while (1) {
6088 		int batch_size, released;
6089 
6090 		released = release_stripe_list(conf, worker->temp_inactive_list);
6091 
6092 		batch_size = handle_active_stripes(conf, group_id, worker,
6093 						   worker->temp_inactive_list);
6094 		worker->working = false;
6095 		if (!batch_size && !released)
6096 			break;
6097 		handled += batch_size;
6098 	}
6099 	pr_debug("%d stripes handled\n", handled);
6100 
6101 	spin_unlock_irq(&conf->device_lock);
6102 	blk_finish_plug(&plug);
6103 
6104 	pr_debug("--- raid5worker inactive\n");
6105 }
6106 
6107 /*
6108  * This is our raid5 kernel thread.
6109  *
6110  * We scan the hash table for stripes which can be handled now.
6111  * During the scan, completed stripes are saved for us by the interrupt
6112  * handler, so that they will not have to wait for our next wakeup.
6113  */
6114 static void raid5d(struct md_thread *thread)
6115 {
6116 	struct mddev *mddev = thread->mddev;
6117 	struct r5conf *conf = mddev->private;
6118 	int handled;
6119 	struct blk_plug plug;
6120 
6121 	pr_debug("+++ raid5d active\n");
6122 
6123 	md_check_recovery(mddev);
6124 
6125 	if (!bio_list_empty(&conf->return_bi) &&
6126 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
6127 		struct bio_list tmp = BIO_EMPTY_LIST;
6128 		spin_lock_irq(&conf->device_lock);
6129 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
6130 			bio_list_merge(&tmp, &conf->return_bi);
6131 			bio_list_init(&conf->return_bi);
6132 		}
6133 		spin_unlock_irq(&conf->device_lock);
6134 		return_io(&tmp);
6135 	}
6136 
6137 	blk_start_plug(&plug);
6138 	handled = 0;
6139 	spin_lock_irq(&conf->device_lock);
6140 	while (1) {
6141 		struct bio *bio;
6142 		int batch_size, released;
6143 
6144 		released = release_stripe_list(conf, conf->temp_inactive_list);
6145 		if (released)
6146 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6147 
6148 		if (
6149 		    !list_empty(&conf->bitmap_list)) {
6150 			/* Now is a good time to flush some bitmap updates */
6151 			conf->seq_flush++;
6152 			spin_unlock_irq(&conf->device_lock);
6153 			bitmap_unplug(mddev->bitmap);
6154 			spin_lock_irq(&conf->device_lock);
6155 			conf->seq_write = conf->seq_flush;
6156 			activate_bit_delay(conf, conf->temp_inactive_list);
6157 		}
6158 		raid5_activate_delayed(conf);
6159 
6160 		while ((bio = remove_bio_from_retry(conf))) {
6161 			int ok;
6162 			spin_unlock_irq(&conf->device_lock);
6163 			ok = retry_aligned_read(conf, bio);
6164 			spin_lock_irq(&conf->device_lock);
6165 			if (!ok)
6166 				break;
6167 			handled++;
6168 		}
6169 
6170 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6171 						   conf->temp_inactive_list);
6172 		if (!batch_size && !released)
6173 			break;
6174 		handled += batch_size;
6175 
6176 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6177 			spin_unlock_irq(&conf->device_lock);
6178 			md_check_recovery(mddev);
6179 			spin_lock_irq(&conf->device_lock);
6180 		}
6181 	}
6182 	pr_debug("%d stripes handled\n", handled);
6183 
6184 	spin_unlock_irq(&conf->device_lock);
6185 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6186 	    mutex_trylock(&conf->cache_size_mutex)) {
6187 		grow_one_stripe(conf, __GFP_NOWARN);
6188 		/* Set flag even if allocation failed.  This helps
6189 		 * slow down allocation requests when mem is short
6190 		 */
6191 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6192 		mutex_unlock(&conf->cache_size_mutex);
6193 	}
6194 
6195 	flush_deferred_bios(conf);
6196 
6197 	r5l_flush_stripe_to_raid(conf->log);
6198 
6199 	async_tx_issue_pending_all();
6200 	blk_finish_plug(&plug);
6201 
6202 	pr_debug("--- raid5d inactive\n");
6203 }
6204 
6205 static ssize_t
6206 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6207 {
6208 	struct r5conf *conf;
6209 	int ret = 0;
6210 	spin_lock(&mddev->lock);
6211 	conf = mddev->private;
6212 	if (conf)
6213 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6214 	spin_unlock(&mddev->lock);
6215 	return ret;
6216 }
6217 
6218 int
6219 raid5_set_cache_size(struct mddev *mddev, int size)
6220 {
6221 	struct r5conf *conf = mddev->private;
6222 	int err;
6223 
6224 	if (size <= 16 || size > 32768)
6225 		return -EINVAL;
6226 
6227 	conf->min_nr_stripes = size;
6228 	mutex_lock(&conf->cache_size_mutex);
6229 	while (size < conf->max_nr_stripes &&
6230 	       drop_one_stripe(conf))
6231 		;
6232 	mutex_unlock(&conf->cache_size_mutex);
6233 
6234 
6235 	err = md_allow_write(mddev);
6236 	if (err)
6237 		return err;
6238 
6239 	mutex_lock(&conf->cache_size_mutex);
6240 	while (size > conf->max_nr_stripes)
6241 		if (!grow_one_stripe(conf, GFP_KERNEL))
6242 			break;
6243 	mutex_unlock(&conf->cache_size_mutex);
6244 
6245 	return 0;
6246 }
6247 EXPORT_SYMBOL(raid5_set_cache_size);
6248 
6249 static ssize_t
6250 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6251 {
6252 	struct r5conf *conf;
6253 	unsigned long new;
6254 	int err;
6255 
6256 	if (len >= PAGE_SIZE)
6257 		return -EINVAL;
6258 	if (kstrtoul(page, 10, &new))
6259 		return -EINVAL;
6260 	err = mddev_lock(mddev);
6261 	if (err)
6262 		return err;
6263 	conf = mddev->private;
6264 	if (!conf)
6265 		err = -ENODEV;
6266 	else
6267 		err = raid5_set_cache_size(mddev, new);
6268 	mddev_unlock(mddev);
6269 
6270 	return err ?: len;
6271 }
6272 
6273 static struct md_sysfs_entry
6274 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6275 				raid5_show_stripe_cache_size,
6276 				raid5_store_stripe_cache_size);
6277 
6278 static ssize_t
6279 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6280 {
6281 	struct r5conf *conf = mddev->private;
6282 	if (conf)
6283 		return sprintf(page, "%d\n", conf->rmw_level);
6284 	else
6285 		return 0;
6286 }
6287 
6288 static ssize_t
6289 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6290 {
6291 	struct r5conf *conf = mddev->private;
6292 	unsigned long new;
6293 
6294 	if (!conf)
6295 		return -ENODEV;
6296 
6297 	if (len >= PAGE_SIZE)
6298 		return -EINVAL;
6299 
6300 	if (kstrtoul(page, 10, &new))
6301 		return -EINVAL;
6302 
6303 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6304 		return -EINVAL;
6305 
6306 	if (new != PARITY_DISABLE_RMW &&
6307 	    new != PARITY_ENABLE_RMW &&
6308 	    new != PARITY_PREFER_RMW)
6309 		return -EINVAL;
6310 
6311 	conf->rmw_level = new;
6312 	return len;
6313 }
6314 
6315 static struct md_sysfs_entry
6316 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6317 			 raid5_show_rmw_level,
6318 			 raid5_store_rmw_level);
6319 
6320 
6321 static ssize_t
6322 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6323 {
6324 	struct r5conf *conf;
6325 	int ret = 0;
6326 	spin_lock(&mddev->lock);
6327 	conf = mddev->private;
6328 	if (conf)
6329 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6330 	spin_unlock(&mddev->lock);
6331 	return ret;
6332 }
6333 
6334 static ssize_t
6335 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6336 {
6337 	struct r5conf *conf;
6338 	unsigned long new;
6339 	int err;
6340 
6341 	if (len >= PAGE_SIZE)
6342 		return -EINVAL;
6343 	if (kstrtoul(page, 10, &new))
6344 		return -EINVAL;
6345 
6346 	err = mddev_lock(mddev);
6347 	if (err)
6348 		return err;
6349 	conf = mddev->private;
6350 	if (!conf)
6351 		err = -ENODEV;
6352 	else if (new > conf->min_nr_stripes)
6353 		err = -EINVAL;
6354 	else
6355 		conf->bypass_threshold = new;
6356 	mddev_unlock(mddev);
6357 	return err ?: len;
6358 }
6359 
6360 static struct md_sysfs_entry
6361 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6362 					S_IRUGO | S_IWUSR,
6363 					raid5_show_preread_threshold,
6364 					raid5_store_preread_threshold);
6365 
6366 static ssize_t
6367 raid5_show_skip_copy(struct mddev *mddev, char *page)
6368 {
6369 	struct r5conf *conf;
6370 	int ret = 0;
6371 	spin_lock(&mddev->lock);
6372 	conf = mddev->private;
6373 	if (conf)
6374 		ret = sprintf(page, "%d\n", conf->skip_copy);
6375 	spin_unlock(&mddev->lock);
6376 	return ret;
6377 }
6378 
6379 static ssize_t
6380 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6381 {
6382 	struct r5conf *conf;
6383 	unsigned long new;
6384 	int err;
6385 
6386 	if (len >= PAGE_SIZE)
6387 		return -EINVAL;
6388 	if (kstrtoul(page, 10, &new))
6389 		return -EINVAL;
6390 	new = !!new;
6391 
6392 	err = mddev_lock(mddev);
6393 	if (err)
6394 		return err;
6395 	conf = mddev->private;
6396 	if (!conf)
6397 		err = -ENODEV;
6398 	else if (new != conf->skip_copy) {
6399 		mddev_suspend(mddev);
6400 		conf->skip_copy = new;
6401 		if (new)
6402 			mddev->queue->backing_dev_info->capabilities |=
6403 				BDI_CAP_STABLE_WRITES;
6404 		else
6405 			mddev->queue->backing_dev_info->capabilities &=
6406 				~BDI_CAP_STABLE_WRITES;
6407 		mddev_resume(mddev);
6408 	}
6409 	mddev_unlock(mddev);
6410 	return err ?: len;
6411 }
6412 
6413 static struct md_sysfs_entry
6414 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6415 					raid5_show_skip_copy,
6416 					raid5_store_skip_copy);
6417 
6418 static ssize_t
6419 stripe_cache_active_show(struct mddev *mddev, char *page)
6420 {
6421 	struct r5conf *conf = mddev->private;
6422 	if (conf)
6423 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6424 	else
6425 		return 0;
6426 }
6427 
6428 static struct md_sysfs_entry
6429 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6430 
6431 static ssize_t
6432 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6433 {
6434 	struct r5conf *conf;
6435 	int ret = 0;
6436 	spin_lock(&mddev->lock);
6437 	conf = mddev->private;
6438 	if (conf)
6439 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6440 	spin_unlock(&mddev->lock);
6441 	return ret;
6442 }
6443 
6444 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6445 			       int *group_cnt,
6446 			       int *worker_cnt_per_group,
6447 			       struct r5worker_group **worker_groups);
6448 static ssize_t
6449 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6450 {
6451 	struct r5conf *conf;
6452 	unsigned long new;
6453 	int err;
6454 	struct r5worker_group *new_groups, *old_groups;
6455 	int group_cnt, worker_cnt_per_group;
6456 
6457 	if (len >= PAGE_SIZE)
6458 		return -EINVAL;
6459 	if (kstrtoul(page, 10, &new))
6460 		return -EINVAL;
6461 
6462 	err = mddev_lock(mddev);
6463 	if (err)
6464 		return err;
6465 	conf = mddev->private;
6466 	if (!conf)
6467 		err = -ENODEV;
6468 	else if (new != conf->worker_cnt_per_group) {
6469 		mddev_suspend(mddev);
6470 
6471 		old_groups = conf->worker_groups;
6472 		if (old_groups)
6473 			flush_workqueue(raid5_wq);
6474 
6475 		err = alloc_thread_groups(conf, new,
6476 					  &group_cnt, &worker_cnt_per_group,
6477 					  &new_groups);
6478 		if (!err) {
6479 			spin_lock_irq(&conf->device_lock);
6480 			conf->group_cnt = group_cnt;
6481 			conf->worker_cnt_per_group = worker_cnt_per_group;
6482 			conf->worker_groups = new_groups;
6483 			spin_unlock_irq(&conf->device_lock);
6484 
6485 			if (old_groups)
6486 				kfree(old_groups[0].workers);
6487 			kfree(old_groups);
6488 		}
6489 		mddev_resume(mddev);
6490 	}
6491 	mddev_unlock(mddev);
6492 
6493 	return err ?: len;
6494 }
6495 
6496 static struct md_sysfs_entry
6497 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6498 				raid5_show_group_thread_cnt,
6499 				raid5_store_group_thread_cnt);
6500 
6501 static struct attribute *raid5_attrs[] =  {
6502 	&raid5_stripecache_size.attr,
6503 	&raid5_stripecache_active.attr,
6504 	&raid5_preread_bypass_threshold.attr,
6505 	&raid5_group_thread_cnt.attr,
6506 	&raid5_skip_copy.attr,
6507 	&raid5_rmw_level.attr,
6508 	&r5c_journal_mode.attr,
6509 	NULL,
6510 };
6511 static struct attribute_group raid5_attrs_group = {
6512 	.name = NULL,
6513 	.attrs = raid5_attrs,
6514 };
6515 
6516 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6517 			       int *group_cnt,
6518 			       int *worker_cnt_per_group,
6519 			       struct r5worker_group **worker_groups)
6520 {
6521 	int i, j, k;
6522 	ssize_t size;
6523 	struct r5worker *workers;
6524 
6525 	*worker_cnt_per_group = cnt;
6526 	if (cnt == 0) {
6527 		*group_cnt = 0;
6528 		*worker_groups = NULL;
6529 		return 0;
6530 	}
6531 	*group_cnt = num_possible_nodes();
6532 	size = sizeof(struct r5worker) * cnt;
6533 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6534 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6535 				*group_cnt, GFP_NOIO);
6536 	if (!*worker_groups || !workers) {
6537 		kfree(workers);
6538 		kfree(*worker_groups);
6539 		return -ENOMEM;
6540 	}
6541 
6542 	for (i = 0; i < *group_cnt; i++) {
6543 		struct r5worker_group *group;
6544 
6545 		group = &(*worker_groups)[i];
6546 		INIT_LIST_HEAD(&group->handle_list);
6547 		group->conf = conf;
6548 		group->workers = workers + i * cnt;
6549 
6550 		for (j = 0; j < cnt; j++) {
6551 			struct r5worker *worker = group->workers + j;
6552 			worker->group = group;
6553 			INIT_WORK(&worker->work, raid5_do_work);
6554 
6555 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6556 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6557 		}
6558 	}
6559 
6560 	return 0;
6561 }
6562 
6563 static void free_thread_groups(struct r5conf *conf)
6564 {
6565 	if (conf->worker_groups)
6566 		kfree(conf->worker_groups[0].workers);
6567 	kfree(conf->worker_groups);
6568 	conf->worker_groups = NULL;
6569 }
6570 
6571 static sector_t
6572 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6573 {
6574 	struct r5conf *conf = mddev->private;
6575 
6576 	if (!sectors)
6577 		sectors = mddev->dev_sectors;
6578 	if (!raid_disks)
6579 		/* size is defined by the smallest of previous and new size */
6580 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6581 
6582 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6583 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6584 	return sectors * (raid_disks - conf->max_degraded);
6585 }
6586 
6587 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6588 {
6589 	safe_put_page(percpu->spare_page);
6590 	if (percpu->scribble)
6591 		flex_array_free(percpu->scribble);
6592 	percpu->spare_page = NULL;
6593 	percpu->scribble = NULL;
6594 }
6595 
6596 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6597 {
6598 	if (conf->level == 6 && !percpu->spare_page)
6599 		percpu->spare_page = alloc_page(GFP_KERNEL);
6600 	if (!percpu->scribble)
6601 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6602 						      conf->previous_raid_disks),
6603 						  max(conf->chunk_sectors,
6604 						      conf->prev_chunk_sectors)
6605 						   / STRIPE_SECTORS,
6606 						  GFP_KERNEL);
6607 
6608 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6609 		free_scratch_buffer(conf, percpu);
6610 		return -ENOMEM;
6611 	}
6612 
6613 	return 0;
6614 }
6615 
6616 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6617 {
6618 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6619 
6620 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6621 	return 0;
6622 }
6623 
6624 static void raid5_free_percpu(struct r5conf *conf)
6625 {
6626 	if (!conf->percpu)
6627 		return;
6628 
6629 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6630 	free_percpu(conf->percpu);
6631 }
6632 
6633 static void free_conf(struct r5conf *conf)
6634 {
6635 	int i;
6636 
6637 	if (conf->log)
6638 		r5l_exit_log(conf->log);
6639 	if (conf->shrinker.nr_deferred)
6640 		unregister_shrinker(&conf->shrinker);
6641 
6642 	free_thread_groups(conf);
6643 	shrink_stripes(conf);
6644 	raid5_free_percpu(conf);
6645 	for (i = 0; i < conf->pool_size; i++)
6646 		if (conf->disks[i].extra_page)
6647 			put_page(conf->disks[i].extra_page);
6648 	kfree(conf->disks);
6649 	kfree(conf->stripe_hashtbl);
6650 	kfree(conf);
6651 }
6652 
6653 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6654 {
6655 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6656 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6657 
6658 	if (alloc_scratch_buffer(conf, percpu)) {
6659 		pr_warn("%s: failed memory allocation for cpu%u\n",
6660 			__func__, cpu);
6661 		return -ENOMEM;
6662 	}
6663 	return 0;
6664 }
6665 
6666 static int raid5_alloc_percpu(struct r5conf *conf)
6667 {
6668 	int err = 0;
6669 
6670 	conf->percpu = alloc_percpu(struct raid5_percpu);
6671 	if (!conf->percpu)
6672 		return -ENOMEM;
6673 
6674 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6675 	if (!err) {
6676 		conf->scribble_disks = max(conf->raid_disks,
6677 			conf->previous_raid_disks);
6678 		conf->scribble_sectors = max(conf->chunk_sectors,
6679 			conf->prev_chunk_sectors);
6680 	}
6681 	return err;
6682 }
6683 
6684 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6685 				      struct shrink_control *sc)
6686 {
6687 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6688 	unsigned long ret = SHRINK_STOP;
6689 
6690 	if (mutex_trylock(&conf->cache_size_mutex)) {
6691 		ret= 0;
6692 		while (ret < sc->nr_to_scan &&
6693 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6694 			if (drop_one_stripe(conf) == 0) {
6695 				ret = SHRINK_STOP;
6696 				break;
6697 			}
6698 			ret++;
6699 		}
6700 		mutex_unlock(&conf->cache_size_mutex);
6701 	}
6702 	return ret;
6703 }
6704 
6705 static unsigned long raid5_cache_count(struct shrinker *shrink,
6706 				       struct shrink_control *sc)
6707 {
6708 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6709 
6710 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6711 		/* unlikely, but not impossible */
6712 		return 0;
6713 	return conf->max_nr_stripes - conf->min_nr_stripes;
6714 }
6715 
6716 static struct r5conf *setup_conf(struct mddev *mddev)
6717 {
6718 	struct r5conf *conf;
6719 	int raid_disk, memory, max_disks;
6720 	struct md_rdev *rdev;
6721 	struct disk_info *disk;
6722 	char pers_name[6];
6723 	int i;
6724 	int group_cnt, worker_cnt_per_group;
6725 	struct r5worker_group *new_group;
6726 
6727 	if (mddev->new_level != 5
6728 	    && mddev->new_level != 4
6729 	    && mddev->new_level != 6) {
6730 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6731 			mdname(mddev), mddev->new_level);
6732 		return ERR_PTR(-EIO);
6733 	}
6734 	if ((mddev->new_level == 5
6735 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6736 	    (mddev->new_level == 6
6737 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6738 		pr_warn("md/raid:%s: layout %d not supported\n",
6739 			mdname(mddev), mddev->new_layout);
6740 		return ERR_PTR(-EIO);
6741 	}
6742 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6743 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6744 			mdname(mddev), mddev->raid_disks);
6745 		return ERR_PTR(-EINVAL);
6746 	}
6747 
6748 	if (!mddev->new_chunk_sectors ||
6749 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6750 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6751 		pr_warn("md/raid:%s: invalid chunk size %d\n",
6752 			mdname(mddev), mddev->new_chunk_sectors << 9);
6753 		return ERR_PTR(-EINVAL);
6754 	}
6755 
6756 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6757 	if (conf == NULL)
6758 		goto abort;
6759 	/* Don't enable multi-threading by default*/
6760 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6761 				 &new_group)) {
6762 		conf->group_cnt = group_cnt;
6763 		conf->worker_cnt_per_group = worker_cnt_per_group;
6764 		conf->worker_groups = new_group;
6765 	} else
6766 		goto abort;
6767 	spin_lock_init(&conf->device_lock);
6768 	seqcount_init(&conf->gen_lock);
6769 	mutex_init(&conf->cache_size_mutex);
6770 	init_waitqueue_head(&conf->wait_for_quiescent);
6771 	init_waitqueue_head(&conf->wait_for_stripe);
6772 	init_waitqueue_head(&conf->wait_for_overlap);
6773 	INIT_LIST_HEAD(&conf->handle_list);
6774 	INIT_LIST_HEAD(&conf->hold_list);
6775 	INIT_LIST_HEAD(&conf->delayed_list);
6776 	INIT_LIST_HEAD(&conf->bitmap_list);
6777 	bio_list_init(&conf->return_bi);
6778 	init_llist_head(&conf->released_stripes);
6779 	atomic_set(&conf->active_stripes, 0);
6780 	atomic_set(&conf->preread_active_stripes, 0);
6781 	atomic_set(&conf->active_aligned_reads, 0);
6782 	bio_list_init(&conf->pending_bios);
6783 	spin_lock_init(&conf->pending_bios_lock);
6784 	conf->batch_bio_dispatch = true;
6785 	rdev_for_each(rdev, mddev) {
6786 		if (test_bit(Journal, &rdev->flags))
6787 			continue;
6788 		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6789 			conf->batch_bio_dispatch = false;
6790 			break;
6791 		}
6792 	}
6793 
6794 	conf->bypass_threshold = BYPASS_THRESHOLD;
6795 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6796 
6797 	conf->raid_disks = mddev->raid_disks;
6798 	if (mddev->reshape_position == MaxSector)
6799 		conf->previous_raid_disks = mddev->raid_disks;
6800 	else
6801 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6802 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6803 
6804 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6805 			      GFP_KERNEL);
6806 
6807 	if (!conf->disks)
6808 		goto abort;
6809 
6810 	for (i = 0; i < max_disks; i++) {
6811 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6812 		if (!conf->disks[i].extra_page)
6813 			goto abort;
6814 	}
6815 
6816 	conf->mddev = mddev;
6817 
6818 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6819 		goto abort;
6820 
6821 	/* We init hash_locks[0] separately to that it can be used
6822 	 * as the reference lock in the spin_lock_nest_lock() call
6823 	 * in lock_all_device_hash_locks_irq in order to convince
6824 	 * lockdep that we know what we are doing.
6825 	 */
6826 	spin_lock_init(conf->hash_locks);
6827 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6828 		spin_lock_init(conf->hash_locks + i);
6829 
6830 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6831 		INIT_LIST_HEAD(conf->inactive_list + i);
6832 
6833 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6834 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6835 
6836 	atomic_set(&conf->r5c_cached_full_stripes, 0);
6837 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6838 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
6839 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6840 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
6841 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6842 
6843 	conf->level = mddev->new_level;
6844 	conf->chunk_sectors = mddev->new_chunk_sectors;
6845 	if (raid5_alloc_percpu(conf) != 0)
6846 		goto abort;
6847 
6848 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6849 
6850 	rdev_for_each(rdev, mddev) {
6851 		raid_disk = rdev->raid_disk;
6852 		if (raid_disk >= max_disks
6853 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6854 			continue;
6855 		disk = conf->disks + raid_disk;
6856 
6857 		if (test_bit(Replacement, &rdev->flags)) {
6858 			if (disk->replacement)
6859 				goto abort;
6860 			disk->replacement = rdev;
6861 		} else {
6862 			if (disk->rdev)
6863 				goto abort;
6864 			disk->rdev = rdev;
6865 		}
6866 
6867 		if (test_bit(In_sync, &rdev->flags)) {
6868 			char b[BDEVNAME_SIZE];
6869 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
6870 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6871 		} else if (rdev->saved_raid_disk != raid_disk)
6872 			/* Cannot rely on bitmap to complete recovery */
6873 			conf->fullsync = 1;
6874 	}
6875 
6876 	conf->level = mddev->new_level;
6877 	if (conf->level == 6) {
6878 		conf->max_degraded = 2;
6879 		if (raid6_call.xor_syndrome)
6880 			conf->rmw_level = PARITY_ENABLE_RMW;
6881 		else
6882 			conf->rmw_level = PARITY_DISABLE_RMW;
6883 	} else {
6884 		conf->max_degraded = 1;
6885 		conf->rmw_level = PARITY_ENABLE_RMW;
6886 	}
6887 	conf->algorithm = mddev->new_layout;
6888 	conf->reshape_progress = mddev->reshape_position;
6889 	if (conf->reshape_progress != MaxSector) {
6890 		conf->prev_chunk_sectors = mddev->chunk_sectors;
6891 		conf->prev_algo = mddev->layout;
6892 	} else {
6893 		conf->prev_chunk_sectors = conf->chunk_sectors;
6894 		conf->prev_algo = conf->algorithm;
6895 	}
6896 
6897 	conf->min_nr_stripes = NR_STRIPES;
6898 	if (mddev->reshape_position != MaxSector) {
6899 		int stripes = max_t(int,
6900 			((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
6901 			((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
6902 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
6903 		if (conf->min_nr_stripes != NR_STRIPES)
6904 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
6905 				mdname(mddev), conf->min_nr_stripes);
6906 	}
6907 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6908 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6909 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6910 	if (grow_stripes(conf, conf->min_nr_stripes)) {
6911 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
6912 			mdname(mddev), memory);
6913 		goto abort;
6914 	} else
6915 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
6916 	/*
6917 	 * Losing a stripe head costs more than the time to refill it,
6918 	 * it reduces the queue depth and so can hurt throughput.
6919 	 * So set it rather large, scaled by number of devices.
6920 	 */
6921 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6922 	conf->shrinker.scan_objects = raid5_cache_scan;
6923 	conf->shrinker.count_objects = raid5_cache_count;
6924 	conf->shrinker.batch = 128;
6925 	conf->shrinker.flags = 0;
6926 	if (register_shrinker(&conf->shrinker)) {
6927 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
6928 			mdname(mddev));
6929 		goto abort;
6930 	}
6931 
6932 	sprintf(pers_name, "raid%d", mddev->new_level);
6933 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
6934 	if (!conf->thread) {
6935 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
6936 			mdname(mddev));
6937 		goto abort;
6938 	}
6939 
6940 	return conf;
6941 
6942  abort:
6943 	if (conf) {
6944 		free_conf(conf);
6945 		return ERR_PTR(-EIO);
6946 	} else
6947 		return ERR_PTR(-ENOMEM);
6948 }
6949 
6950 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6951 {
6952 	switch (algo) {
6953 	case ALGORITHM_PARITY_0:
6954 		if (raid_disk < max_degraded)
6955 			return 1;
6956 		break;
6957 	case ALGORITHM_PARITY_N:
6958 		if (raid_disk >= raid_disks - max_degraded)
6959 			return 1;
6960 		break;
6961 	case ALGORITHM_PARITY_0_6:
6962 		if (raid_disk == 0 ||
6963 		    raid_disk == raid_disks - 1)
6964 			return 1;
6965 		break;
6966 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6967 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6968 	case ALGORITHM_LEFT_SYMMETRIC_6:
6969 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6970 		if (raid_disk == raid_disks - 1)
6971 			return 1;
6972 	}
6973 	return 0;
6974 }
6975 
6976 static int raid5_run(struct mddev *mddev)
6977 {
6978 	struct r5conf *conf;
6979 	int working_disks = 0;
6980 	int dirty_parity_disks = 0;
6981 	struct md_rdev *rdev;
6982 	struct md_rdev *journal_dev = NULL;
6983 	sector_t reshape_offset = 0;
6984 	int i;
6985 	long long min_offset_diff = 0;
6986 	int first = 1;
6987 
6988 	if (mddev->recovery_cp != MaxSector)
6989 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
6990 			  mdname(mddev));
6991 
6992 	rdev_for_each(rdev, mddev) {
6993 		long long diff;
6994 
6995 		if (test_bit(Journal, &rdev->flags)) {
6996 			journal_dev = rdev;
6997 			continue;
6998 		}
6999 		if (rdev->raid_disk < 0)
7000 			continue;
7001 		diff = (rdev->new_data_offset - rdev->data_offset);
7002 		if (first) {
7003 			min_offset_diff = diff;
7004 			first = 0;
7005 		} else if (mddev->reshape_backwards &&
7006 			 diff < min_offset_diff)
7007 			min_offset_diff = diff;
7008 		else if (!mddev->reshape_backwards &&
7009 			 diff > min_offset_diff)
7010 			min_offset_diff = diff;
7011 	}
7012 
7013 	if (mddev->reshape_position != MaxSector) {
7014 		/* Check that we can continue the reshape.
7015 		 * Difficulties arise if the stripe we would write to
7016 		 * next is at or after the stripe we would read from next.
7017 		 * For a reshape that changes the number of devices, this
7018 		 * is only possible for a very short time, and mdadm makes
7019 		 * sure that time appears to have past before assembling
7020 		 * the array.  So we fail if that time hasn't passed.
7021 		 * For a reshape that keeps the number of devices the same
7022 		 * mdadm must be monitoring the reshape can keeping the
7023 		 * critical areas read-only and backed up.  It will start
7024 		 * the array in read-only mode, so we check for that.
7025 		 */
7026 		sector_t here_new, here_old;
7027 		int old_disks;
7028 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7029 		int chunk_sectors;
7030 		int new_data_disks;
7031 
7032 		if (journal_dev) {
7033 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7034 				mdname(mddev));
7035 			return -EINVAL;
7036 		}
7037 
7038 		if (mddev->new_level != mddev->level) {
7039 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7040 				mdname(mddev));
7041 			return -EINVAL;
7042 		}
7043 		old_disks = mddev->raid_disks - mddev->delta_disks;
7044 		/* reshape_position must be on a new-stripe boundary, and one
7045 		 * further up in new geometry must map after here in old
7046 		 * geometry.
7047 		 * If the chunk sizes are different, then as we perform reshape
7048 		 * in units of the largest of the two, reshape_position needs
7049 		 * be a multiple of the largest chunk size times new data disks.
7050 		 */
7051 		here_new = mddev->reshape_position;
7052 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7053 		new_data_disks = mddev->raid_disks - max_degraded;
7054 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7055 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7056 				mdname(mddev));
7057 			return -EINVAL;
7058 		}
7059 		reshape_offset = here_new * chunk_sectors;
7060 		/* here_new is the stripe we will write to */
7061 		here_old = mddev->reshape_position;
7062 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7063 		/* here_old is the first stripe that we might need to read
7064 		 * from */
7065 		if (mddev->delta_disks == 0) {
7066 			/* We cannot be sure it is safe to start an in-place
7067 			 * reshape.  It is only safe if user-space is monitoring
7068 			 * and taking constant backups.
7069 			 * mdadm always starts a situation like this in
7070 			 * readonly mode so it can take control before
7071 			 * allowing any writes.  So just check for that.
7072 			 */
7073 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7074 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7075 				/* not really in-place - so OK */;
7076 			else if (mddev->ro == 0) {
7077 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7078 					mdname(mddev));
7079 				return -EINVAL;
7080 			}
7081 		} else if (mddev->reshape_backwards
7082 		    ? (here_new * chunk_sectors + min_offset_diff <=
7083 		       here_old * chunk_sectors)
7084 		    : (here_new * chunk_sectors >=
7085 		       here_old * chunk_sectors + (-min_offset_diff))) {
7086 			/* Reading from the same stripe as writing to - bad */
7087 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7088 				mdname(mddev));
7089 			return -EINVAL;
7090 		}
7091 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7092 		/* OK, we should be able to continue; */
7093 	} else {
7094 		BUG_ON(mddev->level != mddev->new_level);
7095 		BUG_ON(mddev->layout != mddev->new_layout);
7096 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7097 		BUG_ON(mddev->delta_disks != 0);
7098 	}
7099 
7100 	if (mddev->private == NULL)
7101 		conf = setup_conf(mddev);
7102 	else
7103 		conf = mddev->private;
7104 
7105 	if (IS_ERR(conf))
7106 		return PTR_ERR(conf);
7107 
7108 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7109 		if (!journal_dev) {
7110 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7111 				mdname(mddev));
7112 			mddev->ro = 1;
7113 			set_disk_ro(mddev->gendisk, 1);
7114 		} else if (mddev->recovery_cp == MaxSector)
7115 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7116 	}
7117 
7118 	conf->min_offset_diff = min_offset_diff;
7119 	mddev->thread = conf->thread;
7120 	conf->thread = NULL;
7121 	mddev->private = conf;
7122 
7123 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7124 	     i++) {
7125 		rdev = conf->disks[i].rdev;
7126 		if (!rdev && conf->disks[i].replacement) {
7127 			/* The replacement is all we have yet */
7128 			rdev = conf->disks[i].replacement;
7129 			conf->disks[i].replacement = NULL;
7130 			clear_bit(Replacement, &rdev->flags);
7131 			conf->disks[i].rdev = rdev;
7132 		}
7133 		if (!rdev)
7134 			continue;
7135 		if (conf->disks[i].replacement &&
7136 		    conf->reshape_progress != MaxSector) {
7137 			/* replacements and reshape simply do not mix. */
7138 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7139 			goto abort;
7140 		}
7141 		if (test_bit(In_sync, &rdev->flags)) {
7142 			working_disks++;
7143 			continue;
7144 		}
7145 		/* This disc is not fully in-sync.  However if it
7146 		 * just stored parity (beyond the recovery_offset),
7147 		 * when we don't need to be concerned about the
7148 		 * array being dirty.
7149 		 * When reshape goes 'backwards', we never have
7150 		 * partially completed devices, so we only need
7151 		 * to worry about reshape going forwards.
7152 		 */
7153 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7154 		if (mddev->major_version == 0 &&
7155 		    mddev->minor_version > 90)
7156 			rdev->recovery_offset = reshape_offset;
7157 
7158 		if (rdev->recovery_offset < reshape_offset) {
7159 			/* We need to check old and new layout */
7160 			if (!only_parity(rdev->raid_disk,
7161 					 conf->algorithm,
7162 					 conf->raid_disks,
7163 					 conf->max_degraded))
7164 				continue;
7165 		}
7166 		if (!only_parity(rdev->raid_disk,
7167 				 conf->prev_algo,
7168 				 conf->previous_raid_disks,
7169 				 conf->max_degraded))
7170 			continue;
7171 		dirty_parity_disks++;
7172 	}
7173 
7174 	/*
7175 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7176 	 */
7177 	mddev->degraded = raid5_calc_degraded(conf);
7178 
7179 	if (has_failed(conf)) {
7180 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7181 			mdname(mddev), mddev->degraded, conf->raid_disks);
7182 		goto abort;
7183 	}
7184 
7185 	/* device size must be a multiple of chunk size */
7186 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7187 	mddev->resync_max_sectors = mddev->dev_sectors;
7188 
7189 	if (mddev->degraded > dirty_parity_disks &&
7190 	    mddev->recovery_cp != MaxSector) {
7191 		if (mddev->ok_start_degraded)
7192 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7193 				mdname(mddev));
7194 		else {
7195 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7196 				mdname(mddev));
7197 			goto abort;
7198 		}
7199 	}
7200 
7201 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7202 		mdname(mddev), conf->level,
7203 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7204 		mddev->new_layout);
7205 
7206 	print_raid5_conf(conf);
7207 
7208 	if (conf->reshape_progress != MaxSector) {
7209 		conf->reshape_safe = conf->reshape_progress;
7210 		atomic_set(&conf->reshape_stripes, 0);
7211 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7212 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7213 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7214 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7215 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7216 							"reshape");
7217 	}
7218 
7219 	/* Ok, everything is just fine now */
7220 	if (mddev->to_remove == &raid5_attrs_group)
7221 		mddev->to_remove = NULL;
7222 	else if (mddev->kobj.sd &&
7223 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7224 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7225 			mdname(mddev));
7226 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7227 
7228 	if (mddev->queue) {
7229 		int chunk_size;
7230 		/* read-ahead size must cover two whole stripes, which
7231 		 * is 2 * (datadisks) * chunksize where 'n' is the
7232 		 * number of raid devices
7233 		 */
7234 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7235 		int stripe = data_disks *
7236 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7237 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7238 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7239 
7240 		chunk_size = mddev->chunk_sectors << 9;
7241 		blk_queue_io_min(mddev->queue, chunk_size);
7242 		blk_queue_io_opt(mddev->queue, chunk_size *
7243 				 (conf->raid_disks - conf->max_degraded));
7244 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7245 		/*
7246 		 * We can only discard a whole stripe. It doesn't make sense to
7247 		 * discard data disk but write parity disk
7248 		 */
7249 		stripe = stripe * PAGE_SIZE;
7250 		/* Round up to power of 2, as discard handling
7251 		 * currently assumes that */
7252 		while ((stripe-1) & stripe)
7253 			stripe = (stripe | (stripe-1)) + 1;
7254 		mddev->queue->limits.discard_alignment = stripe;
7255 		mddev->queue->limits.discard_granularity = stripe;
7256 
7257 		/*
7258 		 * We use 16-bit counter of active stripes in bi_phys_segments
7259 		 * (minus one for over-loaded initialization)
7260 		 */
7261 		blk_queue_max_hw_sectors(mddev->queue, 0xfffe * STRIPE_SECTORS);
7262 		blk_queue_max_discard_sectors(mddev->queue,
7263 					      0xfffe * STRIPE_SECTORS);
7264 
7265 		blk_queue_max_write_same_sectors(mddev->queue, 0);
7266 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7267 
7268 		rdev_for_each(rdev, mddev) {
7269 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7270 					  rdev->data_offset << 9);
7271 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7272 					  rdev->new_data_offset << 9);
7273 		}
7274 
7275 		/*
7276 		 * zeroing is required, otherwise data
7277 		 * could be lost. Consider a scenario: discard a stripe
7278 		 * (the stripe could be inconsistent if
7279 		 * discard_zeroes_data is 0); write one disk of the
7280 		 * stripe (the stripe could be inconsistent again
7281 		 * depending on which disks are used to calculate
7282 		 * parity); the disk is broken; The stripe data of this
7283 		 * disk is lost.
7284 		 *
7285 		 * We only allow DISCARD if the sysadmin has confirmed that
7286 		 * only safe devices are in use by setting a module parameter.
7287 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7288 		 * requests, as that is required to be safe.
7289 		 */
7290 		if (devices_handle_discard_safely &&
7291 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7292 		    mddev->queue->limits.discard_granularity >= stripe)
7293 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7294 						mddev->queue);
7295 		else
7296 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7297 						mddev->queue);
7298 
7299 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7300 	}
7301 
7302 	if (journal_dev) {
7303 		char b[BDEVNAME_SIZE];
7304 
7305 		pr_debug("md/raid:%s: using device %s as journal\n",
7306 			 mdname(mddev), bdevname(journal_dev->bdev, b));
7307 		if (r5l_init_log(conf, journal_dev))
7308 			goto abort;
7309 	}
7310 
7311 	return 0;
7312 abort:
7313 	md_unregister_thread(&mddev->thread);
7314 	print_raid5_conf(conf);
7315 	free_conf(conf);
7316 	mddev->private = NULL;
7317 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7318 	return -EIO;
7319 }
7320 
7321 static void raid5_free(struct mddev *mddev, void *priv)
7322 {
7323 	struct r5conf *conf = priv;
7324 
7325 	free_conf(conf);
7326 	mddev->to_remove = &raid5_attrs_group;
7327 }
7328 
7329 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7330 {
7331 	struct r5conf *conf = mddev->private;
7332 	int i;
7333 
7334 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7335 		conf->chunk_sectors / 2, mddev->layout);
7336 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7337 	rcu_read_lock();
7338 	for (i = 0; i < conf->raid_disks; i++) {
7339 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7340 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7341 	}
7342 	rcu_read_unlock();
7343 	seq_printf (seq, "]");
7344 }
7345 
7346 static void print_raid5_conf (struct r5conf *conf)
7347 {
7348 	int i;
7349 	struct disk_info *tmp;
7350 
7351 	pr_debug("RAID conf printout:\n");
7352 	if (!conf) {
7353 		pr_debug("(conf==NULL)\n");
7354 		return;
7355 	}
7356 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7357 	       conf->raid_disks,
7358 	       conf->raid_disks - conf->mddev->degraded);
7359 
7360 	for (i = 0; i < conf->raid_disks; i++) {
7361 		char b[BDEVNAME_SIZE];
7362 		tmp = conf->disks + i;
7363 		if (tmp->rdev)
7364 			pr_debug(" disk %d, o:%d, dev:%s\n",
7365 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7366 			       bdevname(tmp->rdev->bdev, b));
7367 	}
7368 }
7369 
7370 static int raid5_spare_active(struct mddev *mddev)
7371 {
7372 	int i;
7373 	struct r5conf *conf = mddev->private;
7374 	struct disk_info *tmp;
7375 	int count = 0;
7376 	unsigned long flags;
7377 
7378 	for (i = 0; i < conf->raid_disks; i++) {
7379 		tmp = conf->disks + i;
7380 		if (tmp->replacement
7381 		    && tmp->replacement->recovery_offset == MaxSector
7382 		    && !test_bit(Faulty, &tmp->replacement->flags)
7383 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7384 			/* Replacement has just become active. */
7385 			if (!tmp->rdev
7386 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7387 				count++;
7388 			if (tmp->rdev) {
7389 				/* Replaced device not technically faulty,
7390 				 * but we need to be sure it gets removed
7391 				 * and never re-added.
7392 				 */
7393 				set_bit(Faulty, &tmp->rdev->flags);
7394 				sysfs_notify_dirent_safe(
7395 					tmp->rdev->sysfs_state);
7396 			}
7397 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7398 		} else if (tmp->rdev
7399 		    && tmp->rdev->recovery_offset == MaxSector
7400 		    && !test_bit(Faulty, &tmp->rdev->flags)
7401 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7402 			count++;
7403 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7404 		}
7405 	}
7406 	spin_lock_irqsave(&conf->device_lock, flags);
7407 	mddev->degraded = raid5_calc_degraded(conf);
7408 	spin_unlock_irqrestore(&conf->device_lock, flags);
7409 	print_raid5_conf(conf);
7410 	return count;
7411 }
7412 
7413 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7414 {
7415 	struct r5conf *conf = mddev->private;
7416 	int err = 0;
7417 	int number = rdev->raid_disk;
7418 	struct md_rdev **rdevp;
7419 	struct disk_info *p = conf->disks + number;
7420 
7421 	print_raid5_conf(conf);
7422 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7423 		struct r5l_log *log;
7424 		/*
7425 		 * we can't wait pending write here, as this is called in
7426 		 * raid5d, wait will deadlock.
7427 		 */
7428 		if (atomic_read(&mddev->writes_pending))
7429 			return -EBUSY;
7430 		log = conf->log;
7431 		conf->log = NULL;
7432 		synchronize_rcu();
7433 		r5l_exit_log(log);
7434 		return 0;
7435 	}
7436 	if (rdev == p->rdev)
7437 		rdevp = &p->rdev;
7438 	else if (rdev == p->replacement)
7439 		rdevp = &p->replacement;
7440 	else
7441 		return 0;
7442 
7443 	if (number >= conf->raid_disks &&
7444 	    conf->reshape_progress == MaxSector)
7445 		clear_bit(In_sync, &rdev->flags);
7446 
7447 	if (test_bit(In_sync, &rdev->flags) ||
7448 	    atomic_read(&rdev->nr_pending)) {
7449 		err = -EBUSY;
7450 		goto abort;
7451 	}
7452 	/* Only remove non-faulty devices if recovery
7453 	 * isn't possible.
7454 	 */
7455 	if (!test_bit(Faulty, &rdev->flags) &&
7456 	    mddev->recovery_disabled != conf->recovery_disabled &&
7457 	    !has_failed(conf) &&
7458 	    (!p->replacement || p->replacement == rdev) &&
7459 	    number < conf->raid_disks) {
7460 		err = -EBUSY;
7461 		goto abort;
7462 	}
7463 	*rdevp = NULL;
7464 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7465 		synchronize_rcu();
7466 		if (atomic_read(&rdev->nr_pending)) {
7467 			/* lost the race, try later */
7468 			err = -EBUSY;
7469 			*rdevp = rdev;
7470 		}
7471 	}
7472 	if (p->replacement) {
7473 		/* We must have just cleared 'rdev' */
7474 		p->rdev = p->replacement;
7475 		clear_bit(Replacement, &p->replacement->flags);
7476 		smp_mb(); /* Make sure other CPUs may see both as identical
7477 			   * but will never see neither - if they are careful
7478 			   */
7479 		p->replacement = NULL;
7480 		clear_bit(WantReplacement, &rdev->flags);
7481 	} else
7482 		/* We might have just removed the Replacement as faulty-
7483 		 * clear the bit just in case
7484 		 */
7485 		clear_bit(WantReplacement, &rdev->flags);
7486 abort:
7487 
7488 	print_raid5_conf(conf);
7489 	return err;
7490 }
7491 
7492 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7493 {
7494 	struct r5conf *conf = mddev->private;
7495 	int err = -EEXIST;
7496 	int disk;
7497 	struct disk_info *p;
7498 	int first = 0;
7499 	int last = conf->raid_disks - 1;
7500 
7501 	if (test_bit(Journal, &rdev->flags)) {
7502 		char b[BDEVNAME_SIZE];
7503 		if (conf->log)
7504 			return -EBUSY;
7505 
7506 		rdev->raid_disk = 0;
7507 		/*
7508 		 * The array is in readonly mode if journal is missing, so no
7509 		 * write requests running. We should be safe
7510 		 */
7511 		r5l_init_log(conf, rdev);
7512 		pr_debug("md/raid:%s: using device %s as journal\n",
7513 			 mdname(mddev), bdevname(rdev->bdev, b));
7514 		return 0;
7515 	}
7516 	if (mddev->recovery_disabled == conf->recovery_disabled)
7517 		return -EBUSY;
7518 
7519 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7520 		/* no point adding a device */
7521 		return -EINVAL;
7522 
7523 	if (rdev->raid_disk >= 0)
7524 		first = last = rdev->raid_disk;
7525 
7526 	/*
7527 	 * find the disk ... but prefer rdev->saved_raid_disk
7528 	 * if possible.
7529 	 */
7530 	if (rdev->saved_raid_disk >= 0 &&
7531 	    rdev->saved_raid_disk >= first &&
7532 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7533 		first = rdev->saved_raid_disk;
7534 
7535 	for (disk = first; disk <= last; disk++) {
7536 		p = conf->disks + disk;
7537 		if (p->rdev == NULL) {
7538 			clear_bit(In_sync, &rdev->flags);
7539 			rdev->raid_disk = disk;
7540 			err = 0;
7541 			if (rdev->saved_raid_disk != disk)
7542 				conf->fullsync = 1;
7543 			rcu_assign_pointer(p->rdev, rdev);
7544 			goto out;
7545 		}
7546 	}
7547 	for (disk = first; disk <= last; disk++) {
7548 		p = conf->disks + disk;
7549 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7550 		    p->replacement == NULL) {
7551 			clear_bit(In_sync, &rdev->flags);
7552 			set_bit(Replacement, &rdev->flags);
7553 			rdev->raid_disk = disk;
7554 			err = 0;
7555 			conf->fullsync = 1;
7556 			rcu_assign_pointer(p->replacement, rdev);
7557 			break;
7558 		}
7559 	}
7560 out:
7561 	print_raid5_conf(conf);
7562 	return err;
7563 }
7564 
7565 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7566 {
7567 	/* no resync is happening, and there is enough space
7568 	 * on all devices, so we can resize.
7569 	 * We need to make sure resync covers any new space.
7570 	 * If the array is shrinking we should possibly wait until
7571 	 * any io in the removed space completes, but it hardly seems
7572 	 * worth it.
7573 	 */
7574 	sector_t newsize;
7575 	struct r5conf *conf = mddev->private;
7576 
7577 	if (conf->log)
7578 		return -EINVAL;
7579 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7580 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7581 	if (mddev->external_size &&
7582 	    mddev->array_sectors > newsize)
7583 		return -EINVAL;
7584 	if (mddev->bitmap) {
7585 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7586 		if (ret)
7587 			return ret;
7588 	}
7589 	md_set_array_sectors(mddev, newsize);
7590 	if (sectors > mddev->dev_sectors &&
7591 	    mddev->recovery_cp > mddev->dev_sectors) {
7592 		mddev->recovery_cp = mddev->dev_sectors;
7593 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7594 	}
7595 	mddev->dev_sectors = sectors;
7596 	mddev->resync_max_sectors = sectors;
7597 	return 0;
7598 }
7599 
7600 static int check_stripe_cache(struct mddev *mddev)
7601 {
7602 	/* Can only proceed if there are plenty of stripe_heads.
7603 	 * We need a minimum of one full stripe,, and for sensible progress
7604 	 * it is best to have about 4 times that.
7605 	 * If we require 4 times, then the default 256 4K stripe_heads will
7606 	 * allow for chunk sizes up to 256K, which is probably OK.
7607 	 * If the chunk size is greater, user-space should request more
7608 	 * stripe_heads first.
7609 	 */
7610 	struct r5conf *conf = mddev->private;
7611 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7612 	    > conf->min_nr_stripes ||
7613 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7614 	    > conf->min_nr_stripes) {
7615 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7616 			mdname(mddev),
7617 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7618 			 / STRIPE_SIZE)*4);
7619 		return 0;
7620 	}
7621 	return 1;
7622 }
7623 
7624 static int check_reshape(struct mddev *mddev)
7625 {
7626 	struct r5conf *conf = mddev->private;
7627 
7628 	if (conf->log)
7629 		return -EINVAL;
7630 	if (mddev->delta_disks == 0 &&
7631 	    mddev->new_layout == mddev->layout &&
7632 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7633 		return 0; /* nothing to do */
7634 	if (has_failed(conf))
7635 		return -EINVAL;
7636 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7637 		/* We might be able to shrink, but the devices must
7638 		 * be made bigger first.
7639 		 * For raid6, 4 is the minimum size.
7640 		 * Otherwise 2 is the minimum
7641 		 */
7642 		int min = 2;
7643 		if (mddev->level == 6)
7644 			min = 4;
7645 		if (mddev->raid_disks + mddev->delta_disks < min)
7646 			return -EINVAL;
7647 	}
7648 
7649 	if (!check_stripe_cache(mddev))
7650 		return -ENOSPC;
7651 
7652 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7653 	    mddev->delta_disks > 0)
7654 		if (resize_chunks(conf,
7655 				  conf->previous_raid_disks
7656 				  + max(0, mddev->delta_disks),
7657 				  max(mddev->new_chunk_sectors,
7658 				      mddev->chunk_sectors)
7659 			    ) < 0)
7660 			return -ENOMEM;
7661 	return resize_stripes(conf, (conf->previous_raid_disks
7662 				     + mddev->delta_disks));
7663 }
7664 
7665 static int raid5_start_reshape(struct mddev *mddev)
7666 {
7667 	struct r5conf *conf = mddev->private;
7668 	struct md_rdev *rdev;
7669 	int spares = 0;
7670 	unsigned long flags;
7671 
7672 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7673 		return -EBUSY;
7674 
7675 	if (!check_stripe_cache(mddev))
7676 		return -ENOSPC;
7677 
7678 	if (has_failed(conf))
7679 		return -EINVAL;
7680 
7681 	rdev_for_each(rdev, mddev) {
7682 		if (!test_bit(In_sync, &rdev->flags)
7683 		    && !test_bit(Faulty, &rdev->flags))
7684 			spares++;
7685 	}
7686 
7687 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7688 		/* Not enough devices even to make a degraded array
7689 		 * of that size
7690 		 */
7691 		return -EINVAL;
7692 
7693 	/* Refuse to reduce size of the array.  Any reductions in
7694 	 * array size must be through explicit setting of array_size
7695 	 * attribute.
7696 	 */
7697 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7698 	    < mddev->array_sectors) {
7699 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7700 			mdname(mddev));
7701 		return -EINVAL;
7702 	}
7703 
7704 	atomic_set(&conf->reshape_stripes, 0);
7705 	spin_lock_irq(&conf->device_lock);
7706 	write_seqcount_begin(&conf->gen_lock);
7707 	conf->previous_raid_disks = conf->raid_disks;
7708 	conf->raid_disks += mddev->delta_disks;
7709 	conf->prev_chunk_sectors = conf->chunk_sectors;
7710 	conf->chunk_sectors = mddev->new_chunk_sectors;
7711 	conf->prev_algo = conf->algorithm;
7712 	conf->algorithm = mddev->new_layout;
7713 	conf->generation++;
7714 	/* Code that selects data_offset needs to see the generation update
7715 	 * if reshape_progress has been set - so a memory barrier needed.
7716 	 */
7717 	smp_mb();
7718 	if (mddev->reshape_backwards)
7719 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7720 	else
7721 		conf->reshape_progress = 0;
7722 	conf->reshape_safe = conf->reshape_progress;
7723 	write_seqcount_end(&conf->gen_lock);
7724 	spin_unlock_irq(&conf->device_lock);
7725 
7726 	/* Now make sure any requests that proceeded on the assumption
7727 	 * the reshape wasn't running - like Discard or Read - have
7728 	 * completed.
7729 	 */
7730 	mddev_suspend(mddev);
7731 	mddev_resume(mddev);
7732 
7733 	/* Add some new drives, as many as will fit.
7734 	 * We know there are enough to make the newly sized array work.
7735 	 * Don't add devices if we are reducing the number of
7736 	 * devices in the array.  This is because it is not possible
7737 	 * to correctly record the "partially reconstructed" state of
7738 	 * such devices during the reshape and confusion could result.
7739 	 */
7740 	if (mddev->delta_disks >= 0) {
7741 		rdev_for_each(rdev, mddev)
7742 			if (rdev->raid_disk < 0 &&
7743 			    !test_bit(Faulty, &rdev->flags)) {
7744 				if (raid5_add_disk(mddev, rdev) == 0) {
7745 					if (rdev->raid_disk
7746 					    >= conf->previous_raid_disks)
7747 						set_bit(In_sync, &rdev->flags);
7748 					else
7749 						rdev->recovery_offset = 0;
7750 
7751 					if (sysfs_link_rdev(mddev, rdev))
7752 						/* Failure here is OK */;
7753 				}
7754 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7755 				   && !test_bit(Faulty, &rdev->flags)) {
7756 				/* This is a spare that was manually added */
7757 				set_bit(In_sync, &rdev->flags);
7758 			}
7759 
7760 		/* When a reshape changes the number of devices,
7761 		 * ->degraded is measured against the larger of the
7762 		 * pre and post number of devices.
7763 		 */
7764 		spin_lock_irqsave(&conf->device_lock, flags);
7765 		mddev->degraded = raid5_calc_degraded(conf);
7766 		spin_unlock_irqrestore(&conf->device_lock, flags);
7767 	}
7768 	mddev->raid_disks = conf->raid_disks;
7769 	mddev->reshape_position = conf->reshape_progress;
7770 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7771 
7772 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7773 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7774 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7775 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7776 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7777 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7778 						"reshape");
7779 	if (!mddev->sync_thread) {
7780 		mddev->recovery = 0;
7781 		spin_lock_irq(&conf->device_lock);
7782 		write_seqcount_begin(&conf->gen_lock);
7783 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7784 		mddev->new_chunk_sectors =
7785 			conf->chunk_sectors = conf->prev_chunk_sectors;
7786 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7787 		rdev_for_each(rdev, mddev)
7788 			rdev->new_data_offset = rdev->data_offset;
7789 		smp_wmb();
7790 		conf->generation --;
7791 		conf->reshape_progress = MaxSector;
7792 		mddev->reshape_position = MaxSector;
7793 		write_seqcount_end(&conf->gen_lock);
7794 		spin_unlock_irq(&conf->device_lock);
7795 		return -EAGAIN;
7796 	}
7797 	conf->reshape_checkpoint = jiffies;
7798 	md_wakeup_thread(mddev->sync_thread);
7799 	md_new_event(mddev);
7800 	return 0;
7801 }
7802 
7803 /* This is called from the reshape thread and should make any
7804  * changes needed in 'conf'
7805  */
7806 static void end_reshape(struct r5conf *conf)
7807 {
7808 
7809 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7810 		struct md_rdev *rdev;
7811 
7812 		spin_lock_irq(&conf->device_lock);
7813 		conf->previous_raid_disks = conf->raid_disks;
7814 		rdev_for_each(rdev, conf->mddev)
7815 			rdev->data_offset = rdev->new_data_offset;
7816 		smp_wmb();
7817 		conf->reshape_progress = MaxSector;
7818 		conf->mddev->reshape_position = MaxSector;
7819 		spin_unlock_irq(&conf->device_lock);
7820 		wake_up(&conf->wait_for_overlap);
7821 
7822 		/* read-ahead size must cover two whole stripes, which is
7823 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7824 		 */
7825 		if (conf->mddev->queue) {
7826 			int data_disks = conf->raid_disks - conf->max_degraded;
7827 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7828 						   / PAGE_SIZE);
7829 			if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7830 				conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7831 		}
7832 	}
7833 }
7834 
7835 /* This is called from the raid5d thread with mddev_lock held.
7836  * It makes config changes to the device.
7837  */
7838 static void raid5_finish_reshape(struct mddev *mddev)
7839 {
7840 	struct r5conf *conf = mddev->private;
7841 
7842 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7843 
7844 		if (mddev->delta_disks > 0) {
7845 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7846 			if (mddev->queue) {
7847 				set_capacity(mddev->gendisk, mddev->array_sectors);
7848 				revalidate_disk(mddev->gendisk);
7849 			}
7850 		} else {
7851 			int d;
7852 			spin_lock_irq(&conf->device_lock);
7853 			mddev->degraded = raid5_calc_degraded(conf);
7854 			spin_unlock_irq(&conf->device_lock);
7855 			for (d = conf->raid_disks ;
7856 			     d < conf->raid_disks - mddev->delta_disks;
7857 			     d++) {
7858 				struct md_rdev *rdev = conf->disks[d].rdev;
7859 				if (rdev)
7860 					clear_bit(In_sync, &rdev->flags);
7861 				rdev = conf->disks[d].replacement;
7862 				if (rdev)
7863 					clear_bit(In_sync, &rdev->flags);
7864 			}
7865 		}
7866 		mddev->layout = conf->algorithm;
7867 		mddev->chunk_sectors = conf->chunk_sectors;
7868 		mddev->reshape_position = MaxSector;
7869 		mddev->delta_disks = 0;
7870 		mddev->reshape_backwards = 0;
7871 	}
7872 }
7873 
7874 static void raid5_quiesce(struct mddev *mddev, int state)
7875 {
7876 	struct r5conf *conf = mddev->private;
7877 
7878 	switch(state) {
7879 	case 2: /* resume for a suspend */
7880 		wake_up(&conf->wait_for_overlap);
7881 		break;
7882 
7883 	case 1: /* stop all writes */
7884 		lock_all_device_hash_locks_irq(conf);
7885 		/* '2' tells resync/reshape to pause so that all
7886 		 * active stripes can drain
7887 		 */
7888 		r5c_flush_cache(conf, INT_MAX);
7889 		conf->quiesce = 2;
7890 		wait_event_cmd(conf->wait_for_quiescent,
7891 				    atomic_read(&conf->active_stripes) == 0 &&
7892 				    atomic_read(&conf->active_aligned_reads) == 0,
7893 				    unlock_all_device_hash_locks_irq(conf),
7894 				    lock_all_device_hash_locks_irq(conf));
7895 		conf->quiesce = 1;
7896 		unlock_all_device_hash_locks_irq(conf);
7897 		/* allow reshape to continue */
7898 		wake_up(&conf->wait_for_overlap);
7899 		break;
7900 
7901 	case 0: /* re-enable writes */
7902 		lock_all_device_hash_locks_irq(conf);
7903 		conf->quiesce = 0;
7904 		wake_up(&conf->wait_for_quiescent);
7905 		wake_up(&conf->wait_for_overlap);
7906 		unlock_all_device_hash_locks_irq(conf);
7907 		break;
7908 	}
7909 	r5l_quiesce(conf->log, state);
7910 }
7911 
7912 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7913 {
7914 	struct r0conf *raid0_conf = mddev->private;
7915 	sector_t sectors;
7916 
7917 	/* for raid0 takeover only one zone is supported */
7918 	if (raid0_conf->nr_strip_zones > 1) {
7919 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7920 			mdname(mddev));
7921 		return ERR_PTR(-EINVAL);
7922 	}
7923 
7924 	sectors = raid0_conf->strip_zone[0].zone_end;
7925 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7926 	mddev->dev_sectors = sectors;
7927 	mddev->new_level = level;
7928 	mddev->new_layout = ALGORITHM_PARITY_N;
7929 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7930 	mddev->raid_disks += 1;
7931 	mddev->delta_disks = 1;
7932 	/* make sure it will be not marked as dirty */
7933 	mddev->recovery_cp = MaxSector;
7934 
7935 	return setup_conf(mddev);
7936 }
7937 
7938 static void *raid5_takeover_raid1(struct mddev *mddev)
7939 {
7940 	int chunksect;
7941 	void *ret;
7942 
7943 	if (mddev->raid_disks != 2 ||
7944 	    mddev->degraded > 1)
7945 		return ERR_PTR(-EINVAL);
7946 
7947 	/* Should check if there are write-behind devices? */
7948 
7949 	chunksect = 64*2; /* 64K by default */
7950 
7951 	/* The array must be an exact multiple of chunksize */
7952 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
7953 		chunksect >>= 1;
7954 
7955 	if ((chunksect<<9) < STRIPE_SIZE)
7956 		/* array size does not allow a suitable chunk size */
7957 		return ERR_PTR(-EINVAL);
7958 
7959 	mddev->new_level = 5;
7960 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7961 	mddev->new_chunk_sectors = chunksect;
7962 
7963 	ret = setup_conf(mddev);
7964 	if (!IS_ERR(ret))
7965 		mddev_clear_unsupported_flags(mddev,
7966 			UNSUPPORTED_MDDEV_FLAGS);
7967 	return ret;
7968 }
7969 
7970 static void *raid5_takeover_raid6(struct mddev *mddev)
7971 {
7972 	int new_layout;
7973 
7974 	switch (mddev->layout) {
7975 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7976 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7977 		break;
7978 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7979 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7980 		break;
7981 	case ALGORITHM_LEFT_SYMMETRIC_6:
7982 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
7983 		break;
7984 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7985 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7986 		break;
7987 	case ALGORITHM_PARITY_0_6:
7988 		new_layout = ALGORITHM_PARITY_0;
7989 		break;
7990 	case ALGORITHM_PARITY_N:
7991 		new_layout = ALGORITHM_PARITY_N;
7992 		break;
7993 	default:
7994 		return ERR_PTR(-EINVAL);
7995 	}
7996 	mddev->new_level = 5;
7997 	mddev->new_layout = new_layout;
7998 	mddev->delta_disks = -1;
7999 	mddev->raid_disks -= 1;
8000 	return setup_conf(mddev);
8001 }
8002 
8003 static int raid5_check_reshape(struct mddev *mddev)
8004 {
8005 	/* For a 2-drive array, the layout and chunk size can be changed
8006 	 * immediately as not restriping is needed.
8007 	 * For larger arrays we record the new value - after validation
8008 	 * to be used by a reshape pass.
8009 	 */
8010 	struct r5conf *conf = mddev->private;
8011 	int new_chunk = mddev->new_chunk_sectors;
8012 
8013 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8014 		return -EINVAL;
8015 	if (new_chunk > 0) {
8016 		if (!is_power_of_2(new_chunk))
8017 			return -EINVAL;
8018 		if (new_chunk < (PAGE_SIZE>>9))
8019 			return -EINVAL;
8020 		if (mddev->array_sectors & (new_chunk-1))
8021 			/* not factor of array size */
8022 			return -EINVAL;
8023 	}
8024 
8025 	/* They look valid */
8026 
8027 	if (mddev->raid_disks == 2) {
8028 		/* can make the change immediately */
8029 		if (mddev->new_layout >= 0) {
8030 			conf->algorithm = mddev->new_layout;
8031 			mddev->layout = mddev->new_layout;
8032 		}
8033 		if (new_chunk > 0) {
8034 			conf->chunk_sectors = new_chunk ;
8035 			mddev->chunk_sectors = new_chunk;
8036 		}
8037 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8038 		md_wakeup_thread(mddev->thread);
8039 	}
8040 	return check_reshape(mddev);
8041 }
8042 
8043 static int raid6_check_reshape(struct mddev *mddev)
8044 {
8045 	int new_chunk = mddev->new_chunk_sectors;
8046 
8047 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8048 		return -EINVAL;
8049 	if (new_chunk > 0) {
8050 		if (!is_power_of_2(new_chunk))
8051 			return -EINVAL;
8052 		if (new_chunk < (PAGE_SIZE >> 9))
8053 			return -EINVAL;
8054 		if (mddev->array_sectors & (new_chunk-1))
8055 			/* not factor of array size */
8056 			return -EINVAL;
8057 	}
8058 
8059 	/* They look valid */
8060 	return check_reshape(mddev);
8061 }
8062 
8063 static void *raid5_takeover(struct mddev *mddev)
8064 {
8065 	/* raid5 can take over:
8066 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8067 	 *  raid1 - if there are two drives.  We need to know the chunk size
8068 	 *  raid4 - trivial - just use a raid4 layout.
8069 	 *  raid6 - Providing it is a *_6 layout
8070 	 */
8071 	if (mddev->level == 0)
8072 		return raid45_takeover_raid0(mddev, 5);
8073 	if (mddev->level == 1)
8074 		return raid5_takeover_raid1(mddev);
8075 	if (mddev->level == 4) {
8076 		mddev->new_layout = ALGORITHM_PARITY_N;
8077 		mddev->new_level = 5;
8078 		return setup_conf(mddev);
8079 	}
8080 	if (mddev->level == 6)
8081 		return raid5_takeover_raid6(mddev);
8082 
8083 	return ERR_PTR(-EINVAL);
8084 }
8085 
8086 static void *raid4_takeover(struct mddev *mddev)
8087 {
8088 	/* raid4 can take over:
8089 	 *  raid0 - if there is only one strip zone
8090 	 *  raid5 - if layout is right
8091 	 */
8092 	if (mddev->level == 0)
8093 		return raid45_takeover_raid0(mddev, 4);
8094 	if (mddev->level == 5 &&
8095 	    mddev->layout == ALGORITHM_PARITY_N) {
8096 		mddev->new_layout = 0;
8097 		mddev->new_level = 4;
8098 		return setup_conf(mddev);
8099 	}
8100 	return ERR_PTR(-EINVAL);
8101 }
8102 
8103 static struct md_personality raid5_personality;
8104 
8105 static void *raid6_takeover(struct mddev *mddev)
8106 {
8107 	/* Currently can only take over a raid5.  We map the
8108 	 * personality to an equivalent raid6 personality
8109 	 * with the Q block at the end.
8110 	 */
8111 	int new_layout;
8112 
8113 	if (mddev->pers != &raid5_personality)
8114 		return ERR_PTR(-EINVAL);
8115 	if (mddev->degraded > 1)
8116 		return ERR_PTR(-EINVAL);
8117 	if (mddev->raid_disks > 253)
8118 		return ERR_PTR(-EINVAL);
8119 	if (mddev->raid_disks < 3)
8120 		return ERR_PTR(-EINVAL);
8121 
8122 	switch (mddev->layout) {
8123 	case ALGORITHM_LEFT_ASYMMETRIC:
8124 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8125 		break;
8126 	case ALGORITHM_RIGHT_ASYMMETRIC:
8127 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8128 		break;
8129 	case ALGORITHM_LEFT_SYMMETRIC:
8130 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8131 		break;
8132 	case ALGORITHM_RIGHT_SYMMETRIC:
8133 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8134 		break;
8135 	case ALGORITHM_PARITY_0:
8136 		new_layout = ALGORITHM_PARITY_0_6;
8137 		break;
8138 	case ALGORITHM_PARITY_N:
8139 		new_layout = ALGORITHM_PARITY_N;
8140 		break;
8141 	default:
8142 		return ERR_PTR(-EINVAL);
8143 	}
8144 	mddev->new_level = 6;
8145 	mddev->new_layout = new_layout;
8146 	mddev->delta_disks = 1;
8147 	mddev->raid_disks += 1;
8148 	return setup_conf(mddev);
8149 }
8150 
8151 static struct md_personality raid6_personality =
8152 {
8153 	.name		= "raid6",
8154 	.level		= 6,
8155 	.owner		= THIS_MODULE,
8156 	.make_request	= raid5_make_request,
8157 	.run		= raid5_run,
8158 	.free		= raid5_free,
8159 	.status		= raid5_status,
8160 	.error_handler	= raid5_error,
8161 	.hot_add_disk	= raid5_add_disk,
8162 	.hot_remove_disk= raid5_remove_disk,
8163 	.spare_active	= raid5_spare_active,
8164 	.sync_request	= raid5_sync_request,
8165 	.resize		= raid5_resize,
8166 	.size		= raid5_size,
8167 	.check_reshape	= raid6_check_reshape,
8168 	.start_reshape  = raid5_start_reshape,
8169 	.finish_reshape = raid5_finish_reshape,
8170 	.quiesce	= raid5_quiesce,
8171 	.takeover	= raid6_takeover,
8172 	.congested	= raid5_congested,
8173 };
8174 static struct md_personality raid5_personality =
8175 {
8176 	.name		= "raid5",
8177 	.level		= 5,
8178 	.owner		= THIS_MODULE,
8179 	.make_request	= raid5_make_request,
8180 	.run		= raid5_run,
8181 	.free		= raid5_free,
8182 	.status		= raid5_status,
8183 	.error_handler	= raid5_error,
8184 	.hot_add_disk	= raid5_add_disk,
8185 	.hot_remove_disk= raid5_remove_disk,
8186 	.spare_active	= raid5_spare_active,
8187 	.sync_request	= raid5_sync_request,
8188 	.resize		= raid5_resize,
8189 	.size		= raid5_size,
8190 	.check_reshape	= raid5_check_reshape,
8191 	.start_reshape  = raid5_start_reshape,
8192 	.finish_reshape = raid5_finish_reshape,
8193 	.quiesce	= raid5_quiesce,
8194 	.takeover	= raid5_takeover,
8195 	.congested	= raid5_congested,
8196 };
8197 
8198 static struct md_personality raid4_personality =
8199 {
8200 	.name		= "raid4",
8201 	.level		= 4,
8202 	.owner		= THIS_MODULE,
8203 	.make_request	= raid5_make_request,
8204 	.run		= raid5_run,
8205 	.free		= raid5_free,
8206 	.status		= raid5_status,
8207 	.error_handler	= raid5_error,
8208 	.hot_add_disk	= raid5_add_disk,
8209 	.hot_remove_disk= raid5_remove_disk,
8210 	.spare_active	= raid5_spare_active,
8211 	.sync_request	= raid5_sync_request,
8212 	.resize		= raid5_resize,
8213 	.size		= raid5_size,
8214 	.check_reshape	= raid5_check_reshape,
8215 	.start_reshape  = raid5_start_reshape,
8216 	.finish_reshape = raid5_finish_reshape,
8217 	.quiesce	= raid5_quiesce,
8218 	.takeover	= raid4_takeover,
8219 	.congested	= raid5_congested,
8220 };
8221 
8222 static int __init raid5_init(void)
8223 {
8224 	int ret;
8225 
8226 	raid5_wq = alloc_workqueue("raid5wq",
8227 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8228 	if (!raid5_wq)
8229 		return -ENOMEM;
8230 
8231 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8232 				      "md/raid5:prepare",
8233 				      raid456_cpu_up_prepare,
8234 				      raid456_cpu_dead);
8235 	if (ret) {
8236 		destroy_workqueue(raid5_wq);
8237 		return ret;
8238 	}
8239 	register_md_personality(&raid6_personality);
8240 	register_md_personality(&raid5_personality);
8241 	register_md_personality(&raid4_personality);
8242 	return 0;
8243 }
8244 
8245 static void raid5_exit(void)
8246 {
8247 	unregister_md_personality(&raid6_personality);
8248 	unregister_md_personality(&raid5_personality);
8249 	unregister_md_personality(&raid4_personality);
8250 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8251 	destroy_workqueue(raid5_wq);
8252 }
8253 
8254 module_init(raid5_init);
8255 module_exit(raid5_exit);
8256 MODULE_LICENSE("GPL");
8257 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8258 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8259 MODULE_ALIAS("md-raid5");
8260 MODULE_ALIAS("md-raid4");
8261 MODULE_ALIAS("md-level-5");
8262 MODULE_ALIAS("md-level-4");
8263 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8264 MODULE_ALIAS("md-raid6");
8265 MODULE_ALIAS("md-level-6");
8266 
8267 /* This used to be two separate modules, they were: */
8268 MODULE_ALIAS("raid5");
8269 MODULE_ALIAS("raid6");
8270