xref: /openbmc/linux/drivers/md/raid5.c (revision 179dd8c0348af75b02c7d72eaaf1cb179f1721ef)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59 
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64 
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67 
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76 
77 #define NR_STRIPES		256
78 #define STRIPE_SIZE		PAGE_SIZE
79 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
81 #define	IO_THRESHOLD		1
82 #define BYPASS_THRESHOLD	1
83 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK		(NR_HASH - 1)
85 #define MAX_STRIPE_BATCH	8
86 
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 	return &conf->stripe_hashtbl[hash];
91 }
92 
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97 
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 	spin_lock_irq(conf->hash_locks + hash);
101 	spin_lock(&conf->device_lock);
102 }
103 
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 	spin_unlock(&conf->device_lock);
107 	spin_unlock_irq(conf->hash_locks + hash);
108 }
109 
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 	int i;
113 	local_irq_disable();
114 	spin_lock(conf->hash_locks);
115 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 	spin_lock(&conf->device_lock);
118 }
119 
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 	int i;
123 	spin_unlock(&conf->device_lock);
124 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 		spin_unlock(conf->hash_locks + i - 1);
126 	local_irq_enable();
127 }
128 
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 	int sectors = bio_sectors(bio);
141 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 		return bio->bi_next;
143 	else
144 		return NULL;
145 }
146 
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 	return (atomic_read(segments) >> 16) & 0xffff;
155 }
156 
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 	return atomic_sub_return(1, segments) & 0xffff;
161 }
162 
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 	atomic_inc(segments);
167 }
168 
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 	unsigned int cnt)
171 {
172 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 	int old, new;
174 
175 	do {
176 		old = atomic_read(segments);
177 		new = (old & 0xffff) | (cnt << 16);
178 	} while (atomic_cmpxchg(segments, old, new) != old);
179 }
180 
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 	atomic_set(segments, cnt);
185 }
186 
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 	if (sh->ddf_layout)
191 		/* ddf always start from first device */
192 		return 0;
193 	/* md starts just after Q block */
194 	if (sh->qd_idx == sh->disks - 1)
195 		return 0;
196 	else
197 		return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 	disk++;
202 	return (disk < raid_disks) ? disk : 0;
203 }
204 
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 			     int *count, int syndrome_disks)
212 {
213 	int slot = *count;
214 
215 	if (sh->ddf_layout)
216 		(*count)++;
217 	if (idx == sh->pd_idx)
218 		return syndrome_disks;
219 	if (idx == sh->qd_idx)
220 		return syndrome_disks + 1;
221 	if (!sh->ddf_layout)
222 		(*count)++;
223 	return slot;
224 }
225 
226 static void return_io(struct bio *return_bi)
227 {
228 	struct bio *bi = return_bi;
229 	while (bi) {
230 
231 		return_bi = bi->bi_next;
232 		bi->bi_next = NULL;
233 		bi->bi_iter.bi_size = 0;
234 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235 					 bi, 0);
236 		bio_endio(bi, 0);
237 		bi = return_bi;
238 	}
239 }
240 
241 static void print_raid5_conf (struct r5conf *conf);
242 
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245 	return sh->check_state || sh->reconstruct_state ||
246 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249 
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252 	struct r5conf *conf = sh->raid_conf;
253 	struct r5worker_group *group;
254 	int thread_cnt;
255 	int i, cpu = sh->cpu;
256 
257 	if (!cpu_online(cpu)) {
258 		cpu = cpumask_any(cpu_online_mask);
259 		sh->cpu = cpu;
260 	}
261 
262 	if (list_empty(&sh->lru)) {
263 		struct r5worker_group *group;
264 		group = conf->worker_groups + cpu_to_group(cpu);
265 		list_add_tail(&sh->lru, &group->handle_list);
266 		group->stripes_cnt++;
267 		sh->group = group;
268 	}
269 
270 	if (conf->worker_cnt_per_group == 0) {
271 		md_wakeup_thread(conf->mddev->thread);
272 		return;
273 	}
274 
275 	group = conf->worker_groups + cpu_to_group(sh->cpu);
276 
277 	group->workers[0].working = true;
278 	/* at least one worker should run to avoid race */
279 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280 
281 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282 	/* wakeup more workers */
283 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284 		if (group->workers[i].working == false) {
285 			group->workers[i].working = true;
286 			queue_work_on(sh->cpu, raid5_wq,
287 				      &group->workers[i].work);
288 			thread_cnt--;
289 		}
290 	}
291 }
292 
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294 			      struct list_head *temp_inactive_list)
295 {
296 	BUG_ON(!list_empty(&sh->lru));
297 	BUG_ON(atomic_read(&conf->active_stripes)==0);
298 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
299 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
300 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301 			list_add_tail(&sh->lru, &conf->delayed_list);
302 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303 			   sh->bm_seq - conf->seq_write > 0)
304 			list_add_tail(&sh->lru, &conf->bitmap_list);
305 		else {
306 			clear_bit(STRIPE_DELAYED, &sh->state);
307 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
308 			if (conf->worker_cnt_per_group == 0) {
309 				list_add_tail(&sh->lru, &conf->handle_list);
310 			} else {
311 				raid5_wakeup_stripe_thread(sh);
312 				return;
313 			}
314 		}
315 		md_wakeup_thread(conf->mddev->thread);
316 	} else {
317 		BUG_ON(stripe_operations_active(sh));
318 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319 			if (atomic_dec_return(&conf->preread_active_stripes)
320 			    < IO_THRESHOLD)
321 				md_wakeup_thread(conf->mddev->thread);
322 		atomic_dec(&conf->active_stripes);
323 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
324 			list_add_tail(&sh->lru, temp_inactive_list);
325 	}
326 }
327 
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329 			     struct list_head *temp_inactive_list)
330 {
331 	if (atomic_dec_and_test(&sh->count))
332 		do_release_stripe(conf, sh, temp_inactive_list);
333 }
334 
335 /*
336  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337  *
338  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339  * given time. Adding stripes only takes device lock, while deleting stripes
340  * only takes hash lock.
341  */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343 					 struct list_head *temp_inactive_list,
344 					 int hash)
345 {
346 	int size;
347 	unsigned long do_wakeup = 0;
348 	int i = 0;
349 	unsigned long flags;
350 
351 	if (hash == NR_STRIPE_HASH_LOCKS) {
352 		size = NR_STRIPE_HASH_LOCKS;
353 		hash = NR_STRIPE_HASH_LOCKS - 1;
354 	} else
355 		size = 1;
356 	while (size) {
357 		struct list_head *list = &temp_inactive_list[size - 1];
358 
359 		/*
360 		 * We don't hold any lock here yet, get_active_stripe() might
361 		 * remove stripes from the list
362 		 */
363 		if (!list_empty_careful(list)) {
364 			spin_lock_irqsave(conf->hash_locks + hash, flags);
365 			if (list_empty(conf->inactive_list + hash) &&
366 			    !list_empty(list))
367 				atomic_dec(&conf->empty_inactive_list_nr);
368 			list_splice_tail_init(list, conf->inactive_list + hash);
369 			do_wakeup |= 1 << hash;
370 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
371 		}
372 		size--;
373 		hash--;
374 	}
375 
376 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
377 		if (do_wakeup & (1 << i))
378 			wake_up(&conf->wait_for_stripe[i]);
379 	}
380 
381 	if (do_wakeup) {
382 		if (atomic_read(&conf->active_stripes) == 0)
383 			wake_up(&conf->wait_for_quiescent);
384 		if (conf->retry_read_aligned)
385 			md_wakeup_thread(conf->mddev->thread);
386 	}
387 }
388 
389 /* should hold conf->device_lock already */
390 static int release_stripe_list(struct r5conf *conf,
391 			       struct list_head *temp_inactive_list)
392 {
393 	struct stripe_head *sh;
394 	int count = 0;
395 	struct llist_node *head;
396 
397 	head = llist_del_all(&conf->released_stripes);
398 	head = llist_reverse_order(head);
399 	while (head) {
400 		int hash;
401 
402 		sh = llist_entry(head, struct stripe_head, release_list);
403 		head = llist_next(head);
404 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
405 		smp_mb();
406 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
407 		/*
408 		 * Don't worry the bit is set here, because if the bit is set
409 		 * again, the count is always > 1. This is true for
410 		 * STRIPE_ON_UNPLUG_LIST bit too.
411 		 */
412 		hash = sh->hash_lock_index;
413 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
414 		count++;
415 	}
416 
417 	return count;
418 }
419 
420 static void release_stripe(struct stripe_head *sh)
421 {
422 	struct r5conf *conf = sh->raid_conf;
423 	unsigned long flags;
424 	struct list_head list;
425 	int hash;
426 	bool wakeup;
427 
428 	/* Avoid release_list until the last reference.
429 	 */
430 	if (atomic_add_unless(&sh->count, -1, 1))
431 		return;
432 
433 	if (unlikely(!conf->mddev->thread) ||
434 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
435 		goto slow_path;
436 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
437 	if (wakeup)
438 		md_wakeup_thread(conf->mddev->thread);
439 	return;
440 slow_path:
441 	local_irq_save(flags);
442 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
443 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
444 		INIT_LIST_HEAD(&list);
445 		hash = sh->hash_lock_index;
446 		do_release_stripe(conf, sh, &list);
447 		spin_unlock(&conf->device_lock);
448 		release_inactive_stripe_list(conf, &list, hash);
449 	}
450 	local_irq_restore(flags);
451 }
452 
453 static inline void remove_hash(struct stripe_head *sh)
454 {
455 	pr_debug("remove_hash(), stripe %llu\n",
456 		(unsigned long long)sh->sector);
457 
458 	hlist_del_init(&sh->hash);
459 }
460 
461 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
462 {
463 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
464 
465 	pr_debug("insert_hash(), stripe %llu\n",
466 		(unsigned long long)sh->sector);
467 
468 	hlist_add_head(&sh->hash, hp);
469 }
470 
471 /* find an idle stripe, make sure it is unhashed, and return it. */
472 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
473 {
474 	struct stripe_head *sh = NULL;
475 	struct list_head *first;
476 
477 	if (list_empty(conf->inactive_list + hash))
478 		goto out;
479 	first = (conf->inactive_list + hash)->next;
480 	sh = list_entry(first, struct stripe_head, lru);
481 	list_del_init(first);
482 	remove_hash(sh);
483 	atomic_inc(&conf->active_stripes);
484 	BUG_ON(hash != sh->hash_lock_index);
485 	if (list_empty(conf->inactive_list + hash))
486 		atomic_inc(&conf->empty_inactive_list_nr);
487 out:
488 	return sh;
489 }
490 
491 static void shrink_buffers(struct stripe_head *sh)
492 {
493 	struct page *p;
494 	int i;
495 	int num = sh->raid_conf->pool_size;
496 
497 	for (i = 0; i < num ; i++) {
498 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
499 		p = sh->dev[i].page;
500 		if (!p)
501 			continue;
502 		sh->dev[i].page = NULL;
503 		put_page(p);
504 	}
505 }
506 
507 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
508 {
509 	int i;
510 	int num = sh->raid_conf->pool_size;
511 
512 	for (i = 0; i < num; i++) {
513 		struct page *page;
514 
515 		if (!(page = alloc_page(gfp))) {
516 			return 1;
517 		}
518 		sh->dev[i].page = page;
519 		sh->dev[i].orig_page = page;
520 	}
521 	return 0;
522 }
523 
524 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
525 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
526 			    struct stripe_head *sh);
527 
528 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
529 {
530 	struct r5conf *conf = sh->raid_conf;
531 	int i, seq;
532 
533 	BUG_ON(atomic_read(&sh->count) != 0);
534 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
535 	BUG_ON(stripe_operations_active(sh));
536 	BUG_ON(sh->batch_head);
537 
538 	pr_debug("init_stripe called, stripe %llu\n",
539 		(unsigned long long)sector);
540 retry:
541 	seq = read_seqcount_begin(&conf->gen_lock);
542 	sh->generation = conf->generation - previous;
543 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
544 	sh->sector = sector;
545 	stripe_set_idx(sector, conf, previous, sh);
546 	sh->state = 0;
547 
548 	for (i = sh->disks; i--; ) {
549 		struct r5dev *dev = &sh->dev[i];
550 
551 		if (dev->toread || dev->read || dev->towrite || dev->written ||
552 		    test_bit(R5_LOCKED, &dev->flags)) {
553 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
554 			       (unsigned long long)sh->sector, i, dev->toread,
555 			       dev->read, dev->towrite, dev->written,
556 			       test_bit(R5_LOCKED, &dev->flags));
557 			WARN_ON(1);
558 		}
559 		dev->flags = 0;
560 		raid5_build_block(sh, i, previous);
561 	}
562 	if (read_seqcount_retry(&conf->gen_lock, seq))
563 		goto retry;
564 	sh->overwrite_disks = 0;
565 	insert_hash(conf, sh);
566 	sh->cpu = smp_processor_id();
567 	set_bit(STRIPE_BATCH_READY, &sh->state);
568 }
569 
570 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
571 					 short generation)
572 {
573 	struct stripe_head *sh;
574 
575 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
576 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
577 		if (sh->sector == sector && sh->generation == generation)
578 			return sh;
579 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
580 	return NULL;
581 }
582 
583 /*
584  * Need to check if array has failed when deciding whether to:
585  *  - start an array
586  *  - remove non-faulty devices
587  *  - add a spare
588  *  - allow a reshape
589  * This determination is simple when no reshape is happening.
590  * However if there is a reshape, we need to carefully check
591  * both the before and after sections.
592  * This is because some failed devices may only affect one
593  * of the two sections, and some non-in_sync devices may
594  * be insync in the section most affected by failed devices.
595  */
596 static int calc_degraded(struct r5conf *conf)
597 {
598 	int degraded, degraded2;
599 	int i;
600 
601 	rcu_read_lock();
602 	degraded = 0;
603 	for (i = 0; i < conf->previous_raid_disks; i++) {
604 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
605 		if (rdev && test_bit(Faulty, &rdev->flags))
606 			rdev = rcu_dereference(conf->disks[i].replacement);
607 		if (!rdev || test_bit(Faulty, &rdev->flags))
608 			degraded++;
609 		else if (test_bit(In_sync, &rdev->flags))
610 			;
611 		else
612 			/* not in-sync or faulty.
613 			 * If the reshape increases the number of devices,
614 			 * this is being recovered by the reshape, so
615 			 * this 'previous' section is not in_sync.
616 			 * If the number of devices is being reduced however,
617 			 * the device can only be part of the array if
618 			 * we are reverting a reshape, so this section will
619 			 * be in-sync.
620 			 */
621 			if (conf->raid_disks >= conf->previous_raid_disks)
622 				degraded++;
623 	}
624 	rcu_read_unlock();
625 	if (conf->raid_disks == conf->previous_raid_disks)
626 		return degraded;
627 	rcu_read_lock();
628 	degraded2 = 0;
629 	for (i = 0; i < conf->raid_disks; i++) {
630 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
631 		if (rdev && test_bit(Faulty, &rdev->flags))
632 			rdev = rcu_dereference(conf->disks[i].replacement);
633 		if (!rdev || test_bit(Faulty, &rdev->flags))
634 			degraded2++;
635 		else if (test_bit(In_sync, &rdev->flags))
636 			;
637 		else
638 			/* not in-sync or faulty.
639 			 * If reshape increases the number of devices, this
640 			 * section has already been recovered, else it
641 			 * almost certainly hasn't.
642 			 */
643 			if (conf->raid_disks <= conf->previous_raid_disks)
644 				degraded2++;
645 	}
646 	rcu_read_unlock();
647 	if (degraded2 > degraded)
648 		return degraded2;
649 	return degraded;
650 }
651 
652 static int has_failed(struct r5conf *conf)
653 {
654 	int degraded;
655 
656 	if (conf->mddev->reshape_position == MaxSector)
657 		return conf->mddev->degraded > conf->max_degraded;
658 
659 	degraded = calc_degraded(conf);
660 	if (degraded > conf->max_degraded)
661 		return 1;
662 	return 0;
663 }
664 
665 static struct stripe_head *
666 get_active_stripe(struct r5conf *conf, sector_t sector,
667 		  int previous, int noblock, int noquiesce)
668 {
669 	struct stripe_head *sh;
670 	int hash = stripe_hash_locks_hash(sector);
671 
672 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
673 
674 	spin_lock_irq(conf->hash_locks + hash);
675 
676 	do {
677 		wait_event_lock_irq(conf->wait_for_quiescent,
678 				    conf->quiesce == 0 || noquiesce,
679 				    *(conf->hash_locks + hash));
680 		sh = __find_stripe(conf, sector, conf->generation - previous);
681 		if (!sh) {
682 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
683 				sh = get_free_stripe(conf, hash);
684 				if (!sh && !test_bit(R5_DID_ALLOC,
685 						     &conf->cache_state))
686 					set_bit(R5_ALLOC_MORE,
687 						&conf->cache_state);
688 			}
689 			if (noblock && sh == NULL)
690 				break;
691 			if (!sh) {
692 				set_bit(R5_INACTIVE_BLOCKED,
693 					&conf->cache_state);
694 				wait_event_exclusive_cmd(
695 					conf->wait_for_stripe[hash],
696 					!list_empty(conf->inactive_list + hash) &&
697 					(atomic_read(&conf->active_stripes)
698 					 < (conf->max_nr_stripes * 3 / 4)
699 					 || !test_bit(R5_INACTIVE_BLOCKED,
700 						      &conf->cache_state)),
701 					spin_unlock_irq(conf->hash_locks + hash),
702 					spin_lock_irq(conf->hash_locks + hash));
703 				clear_bit(R5_INACTIVE_BLOCKED,
704 					  &conf->cache_state);
705 			} else {
706 				init_stripe(sh, sector, previous);
707 				atomic_inc(&sh->count);
708 			}
709 		} else if (!atomic_inc_not_zero(&sh->count)) {
710 			spin_lock(&conf->device_lock);
711 			if (!atomic_read(&sh->count)) {
712 				if (!test_bit(STRIPE_HANDLE, &sh->state))
713 					atomic_inc(&conf->active_stripes);
714 				BUG_ON(list_empty(&sh->lru) &&
715 				       !test_bit(STRIPE_EXPANDING, &sh->state));
716 				list_del_init(&sh->lru);
717 				if (sh->group) {
718 					sh->group->stripes_cnt--;
719 					sh->group = NULL;
720 				}
721 			}
722 			atomic_inc(&sh->count);
723 			spin_unlock(&conf->device_lock);
724 		}
725 	} while (sh == NULL);
726 
727 	if (!list_empty(conf->inactive_list + hash))
728 		wake_up(&conf->wait_for_stripe[hash]);
729 
730 	spin_unlock_irq(conf->hash_locks + hash);
731 	return sh;
732 }
733 
734 static bool is_full_stripe_write(struct stripe_head *sh)
735 {
736 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
737 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
738 }
739 
740 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
741 {
742 	local_irq_disable();
743 	if (sh1 > sh2) {
744 		spin_lock(&sh2->stripe_lock);
745 		spin_lock_nested(&sh1->stripe_lock, 1);
746 	} else {
747 		spin_lock(&sh1->stripe_lock);
748 		spin_lock_nested(&sh2->stripe_lock, 1);
749 	}
750 }
751 
752 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
753 {
754 	spin_unlock(&sh1->stripe_lock);
755 	spin_unlock(&sh2->stripe_lock);
756 	local_irq_enable();
757 }
758 
759 /* Only freshly new full stripe normal write stripe can be added to a batch list */
760 static bool stripe_can_batch(struct stripe_head *sh)
761 {
762 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
763 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
764 		is_full_stripe_write(sh);
765 }
766 
767 /* we only do back search */
768 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
769 {
770 	struct stripe_head *head;
771 	sector_t head_sector, tmp_sec;
772 	int hash;
773 	int dd_idx;
774 
775 	if (!stripe_can_batch(sh))
776 		return;
777 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
778 	tmp_sec = sh->sector;
779 	if (!sector_div(tmp_sec, conf->chunk_sectors))
780 		return;
781 	head_sector = sh->sector - STRIPE_SECTORS;
782 
783 	hash = stripe_hash_locks_hash(head_sector);
784 	spin_lock_irq(conf->hash_locks + hash);
785 	head = __find_stripe(conf, head_sector, conf->generation);
786 	if (head && !atomic_inc_not_zero(&head->count)) {
787 		spin_lock(&conf->device_lock);
788 		if (!atomic_read(&head->count)) {
789 			if (!test_bit(STRIPE_HANDLE, &head->state))
790 				atomic_inc(&conf->active_stripes);
791 			BUG_ON(list_empty(&head->lru) &&
792 			       !test_bit(STRIPE_EXPANDING, &head->state));
793 			list_del_init(&head->lru);
794 			if (head->group) {
795 				head->group->stripes_cnt--;
796 				head->group = NULL;
797 			}
798 		}
799 		atomic_inc(&head->count);
800 		spin_unlock(&conf->device_lock);
801 	}
802 	spin_unlock_irq(conf->hash_locks + hash);
803 
804 	if (!head)
805 		return;
806 	if (!stripe_can_batch(head))
807 		goto out;
808 
809 	lock_two_stripes(head, sh);
810 	/* clear_batch_ready clear the flag */
811 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
812 		goto unlock_out;
813 
814 	if (sh->batch_head)
815 		goto unlock_out;
816 
817 	dd_idx = 0;
818 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
819 		dd_idx++;
820 	if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
821 		goto unlock_out;
822 
823 	if (head->batch_head) {
824 		spin_lock(&head->batch_head->batch_lock);
825 		/* This batch list is already running */
826 		if (!stripe_can_batch(head)) {
827 			spin_unlock(&head->batch_head->batch_lock);
828 			goto unlock_out;
829 		}
830 
831 		/*
832 		 * at this point, head's BATCH_READY could be cleared, but we
833 		 * can still add the stripe to batch list
834 		 */
835 		list_add(&sh->batch_list, &head->batch_list);
836 		spin_unlock(&head->batch_head->batch_lock);
837 
838 		sh->batch_head = head->batch_head;
839 	} else {
840 		head->batch_head = head;
841 		sh->batch_head = head->batch_head;
842 		spin_lock(&head->batch_lock);
843 		list_add_tail(&sh->batch_list, &head->batch_list);
844 		spin_unlock(&head->batch_lock);
845 	}
846 
847 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
848 		if (atomic_dec_return(&conf->preread_active_stripes)
849 		    < IO_THRESHOLD)
850 			md_wakeup_thread(conf->mddev->thread);
851 
852 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
853 		int seq = sh->bm_seq;
854 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
855 		    sh->batch_head->bm_seq > seq)
856 			seq = sh->batch_head->bm_seq;
857 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
858 		sh->batch_head->bm_seq = seq;
859 	}
860 
861 	atomic_inc(&sh->count);
862 unlock_out:
863 	unlock_two_stripes(head, sh);
864 out:
865 	release_stripe(head);
866 }
867 
868 /* Determine if 'data_offset' or 'new_data_offset' should be used
869  * in this stripe_head.
870  */
871 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
872 {
873 	sector_t progress = conf->reshape_progress;
874 	/* Need a memory barrier to make sure we see the value
875 	 * of conf->generation, or ->data_offset that was set before
876 	 * reshape_progress was updated.
877 	 */
878 	smp_rmb();
879 	if (progress == MaxSector)
880 		return 0;
881 	if (sh->generation == conf->generation - 1)
882 		return 0;
883 	/* We are in a reshape, and this is a new-generation stripe,
884 	 * so use new_data_offset.
885 	 */
886 	return 1;
887 }
888 
889 static void
890 raid5_end_read_request(struct bio *bi, int error);
891 static void
892 raid5_end_write_request(struct bio *bi, int error);
893 
894 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
895 {
896 	struct r5conf *conf = sh->raid_conf;
897 	int i, disks = sh->disks;
898 	struct stripe_head *head_sh = sh;
899 
900 	might_sleep();
901 
902 	for (i = disks; i--; ) {
903 		int rw;
904 		int replace_only = 0;
905 		struct bio *bi, *rbi;
906 		struct md_rdev *rdev, *rrdev = NULL;
907 
908 		sh = head_sh;
909 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
910 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
911 				rw = WRITE_FUA;
912 			else
913 				rw = WRITE;
914 			if (test_bit(R5_Discard, &sh->dev[i].flags))
915 				rw |= REQ_DISCARD;
916 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
917 			rw = READ;
918 		else if (test_and_clear_bit(R5_WantReplace,
919 					    &sh->dev[i].flags)) {
920 			rw = WRITE;
921 			replace_only = 1;
922 		} else
923 			continue;
924 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
925 			rw |= REQ_SYNC;
926 
927 again:
928 		bi = &sh->dev[i].req;
929 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
930 
931 		rcu_read_lock();
932 		rrdev = rcu_dereference(conf->disks[i].replacement);
933 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
934 		rdev = rcu_dereference(conf->disks[i].rdev);
935 		if (!rdev) {
936 			rdev = rrdev;
937 			rrdev = NULL;
938 		}
939 		if (rw & WRITE) {
940 			if (replace_only)
941 				rdev = NULL;
942 			if (rdev == rrdev)
943 				/* We raced and saw duplicates */
944 				rrdev = NULL;
945 		} else {
946 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
947 				rdev = rrdev;
948 			rrdev = NULL;
949 		}
950 
951 		if (rdev && test_bit(Faulty, &rdev->flags))
952 			rdev = NULL;
953 		if (rdev)
954 			atomic_inc(&rdev->nr_pending);
955 		if (rrdev && test_bit(Faulty, &rrdev->flags))
956 			rrdev = NULL;
957 		if (rrdev)
958 			atomic_inc(&rrdev->nr_pending);
959 		rcu_read_unlock();
960 
961 		/* We have already checked bad blocks for reads.  Now
962 		 * need to check for writes.  We never accept write errors
963 		 * on the replacement, so we don't to check rrdev.
964 		 */
965 		while ((rw & WRITE) && rdev &&
966 		       test_bit(WriteErrorSeen, &rdev->flags)) {
967 			sector_t first_bad;
968 			int bad_sectors;
969 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
970 					      &first_bad, &bad_sectors);
971 			if (!bad)
972 				break;
973 
974 			if (bad < 0) {
975 				set_bit(BlockedBadBlocks, &rdev->flags);
976 				if (!conf->mddev->external &&
977 				    conf->mddev->flags) {
978 					/* It is very unlikely, but we might
979 					 * still need to write out the
980 					 * bad block log - better give it
981 					 * a chance*/
982 					md_check_recovery(conf->mddev);
983 				}
984 				/*
985 				 * Because md_wait_for_blocked_rdev
986 				 * will dec nr_pending, we must
987 				 * increment it first.
988 				 */
989 				atomic_inc(&rdev->nr_pending);
990 				md_wait_for_blocked_rdev(rdev, conf->mddev);
991 			} else {
992 				/* Acknowledged bad block - skip the write */
993 				rdev_dec_pending(rdev, conf->mddev);
994 				rdev = NULL;
995 			}
996 		}
997 
998 		if (rdev) {
999 			if (s->syncing || s->expanding || s->expanded
1000 			    || s->replacing)
1001 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1002 
1003 			set_bit(STRIPE_IO_STARTED, &sh->state);
1004 
1005 			bio_reset(bi);
1006 			bi->bi_bdev = rdev->bdev;
1007 			bi->bi_rw = rw;
1008 			bi->bi_end_io = (rw & WRITE)
1009 				? raid5_end_write_request
1010 				: raid5_end_read_request;
1011 			bi->bi_private = sh;
1012 
1013 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1014 				__func__, (unsigned long long)sh->sector,
1015 				bi->bi_rw, i);
1016 			atomic_inc(&sh->count);
1017 			if (sh != head_sh)
1018 				atomic_inc(&head_sh->count);
1019 			if (use_new_offset(conf, sh))
1020 				bi->bi_iter.bi_sector = (sh->sector
1021 						 + rdev->new_data_offset);
1022 			else
1023 				bi->bi_iter.bi_sector = (sh->sector
1024 						 + rdev->data_offset);
1025 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1026 				bi->bi_rw |= REQ_NOMERGE;
1027 
1028 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1029 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1030 			sh->dev[i].vec.bv_page = sh->dev[i].page;
1031 			bi->bi_vcnt = 1;
1032 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1033 			bi->bi_io_vec[0].bv_offset = 0;
1034 			bi->bi_iter.bi_size = STRIPE_SIZE;
1035 			/*
1036 			 * If this is discard request, set bi_vcnt 0. We don't
1037 			 * want to confuse SCSI because SCSI will replace payload
1038 			 */
1039 			if (rw & REQ_DISCARD)
1040 				bi->bi_vcnt = 0;
1041 			if (rrdev)
1042 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1043 
1044 			if (conf->mddev->gendisk)
1045 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1046 						      bi, disk_devt(conf->mddev->gendisk),
1047 						      sh->dev[i].sector);
1048 			generic_make_request(bi);
1049 		}
1050 		if (rrdev) {
1051 			if (s->syncing || s->expanding || s->expanded
1052 			    || s->replacing)
1053 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1054 
1055 			set_bit(STRIPE_IO_STARTED, &sh->state);
1056 
1057 			bio_reset(rbi);
1058 			rbi->bi_bdev = rrdev->bdev;
1059 			rbi->bi_rw = rw;
1060 			BUG_ON(!(rw & WRITE));
1061 			rbi->bi_end_io = raid5_end_write_request;
1062 			rbi->bi_private = sh;
1063 
1064 			pr_debug("%s: for %llu schedule op %ld on "
1065 				 "replacement disc %d\n",
1066 				__func__, (unsigned long long)sh->sector,
1067 				rbi->bi_rw, i);
1068 			atomic_inc(&sh->count);
1069 			if (sh != head_sh)
1070 				atomic_inc(&head_sh->count);
1071 			if (use_new_offset(conf, sh))
1072 				rbi->bi_iter.bi_sector = (sh->sector
1073 						  + rrdev->new_data_offset);
1074 			else
1075 				rbi->bi_iter.bi_sector = (sh->sector
1076 						  + rrdev->data_offset);
1077 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1078 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1079 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1080 			rbi->bi_vcnt = 1;
1081 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1082 			rbi->bi_io_vec[0].bv_offset = 0;
1083 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1084 			/*
1085 			 * If this is discard request, set bi_vcnt 0. We don't
1086 			 * want to confuse SCSI because SCSI will replace payload
1087 			 */
1088 			if (rw & REQ_DISCARD)
1089 				rbi->bi_vcnt = 0;
1090 			if (conf->mddev->gendisk)
1091 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1092 						      rbi, disk_devt(conf->mddev->gendisk),
1093 						      sh->dev[i].sector);
1094 			generic_make_request(rbi);
1095 		}
1096 		if (!rdev && !rrdev) {
1097 			if (rw & WRITE)
1098 				set_bit(STRIPE_DEGRADED, &sh->state);
1099 			pr_debug("skip op %ld on disc %d for sector %llu\n",
1100 				bi->bi_rw, i, (unsigned long long)sh->sector);
1101 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1102 			set_bit(STRIPE_HANDLE, &sh->state);
1103 		}
1104 
1105 		if (!head_sh->batch_head)
1106 			continue;
1107 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1108 				      batch_list);
1109 		if (sh != head_sh)
1110 			goto again;
1111 	}
1112 }
1113 
1114 static struct dma_async_tx_descriptor *
1115 async_copy_data(int frombio, struct bio *bio, struct page **page,
1116 	sector_t sector, struct dma_async_tx_descriptor *tx,
1117 	struct stripe_head *sh)
1118 {
1119 	struct bio_vec bvl;
1120 	struct bvec_iter iter;
1121 	struct page *bio_page;
1122 	int page_offset;
1123 	struct async_submit_ctl submit;
1124 	enum async_tx_flags flags = 0;
1125 
1126 	if (bio->bi_iter.bi_sector >= sector)
1127 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1128 	else
1129 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1130 
1131 	if (frombio)
1132 		flags |= ASYNC_TX_FENCE;
1133 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1134 
1135 	bio_for_each_segment(bvl, bio, iter) {
1136 		int len = bvl.bv_len;
1137 		int clen;
1138 		int b_offset = 0;
1139 
1140 		if (page_offset < 0) {
1141 			b_offset = -page_offset;
1142 			page_offset += b_offset;
1143 			len -= b_offset;
1144 		}
1145 
1146 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1147 			clen = STRIPE_SIZE - page_offset;
1148 		else
1149 			clen = len;
1150 
1151 		if (clen > 0) {
1152 			b_offset += bvl.bv_offset;
1153 			bio_page = bvl.bv_page;
1154 			if (frombio) {
1155 				if (sh->raid_conf->skip_copy &&
1156 				    b_offset == 0 && page_offset == 0 &&
1157 				    clen == STRIPE_SIZE)
1158 					*page = bio_page;
1159 				else
1160 					tx = async_memcpy(*page, bio_page, page_offset,
1161 						  b_offset, clen, &submit);
1162 			} else
1163 				tx = async_memcpy(bio_page, *page, b_offset,
1164 						  page_offset, clen, &submit);
1165 		}
1166 		/* chain the operations */
1167 		submit.depend_tx = tx;
1168 
1169 		if (clen < len) /* hit end of page */
1170 			break;
1171 		page_offset +=  len;
1172 	}
1173 
1174 	return tx;
1175 }
1176 
1177 static void ops_complete_biofill(void *stripe_head_ref)
1178 {
1179 	struct stripe_head *sh = stripe_head_ref;
1180 	struct bio *return_bi = NULL;
1181 	int i;
1182 
1183 	pr_debug("%s: stripe %llu\n", __func__,
1184 		(unsigned long long)sh->sector);
1185 
1186 	/* clear completed biofills */
1187 	for (i = sh->disks; i--; ) {
1188 		struct r5dev *dev = &sh->dev[i];
1189 
1190 		/* acknowledge completion of a biofill operation */
1191 		/* and check if we need to reply to a read request,
1192 		 * new R5_Wantfill requests are held off until
1193 		 * !STRIPE_BIOFILL_RUN
1194 		 */
1195 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1196 			struct bio *rbi, *rbi2;
1197 
1198 			BUG_ON(!dev->read);
1199 			rbi = dev->read;
1200 			dev->read = NULL;
1201 			while (rbi && rbi->bi_iter.bi_sector <
1202 				dev->sector + STRIPE_SECTORS) {
1203 				rbi2 = r5_next_bio(rbi, dev->sector);
1204 				if (!raid5_dec_bi_active_stripes(rbi)) {
1205 					rbi->bi_next = return_bi;
1206 					return_bi = rbi;
1207 				}
1208 				rbi = rbi2;
1209 			}
1210 		}
1211 	}
1212 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1213 
1214 	return_io(return_bi);
1215 
1216 	set_bit(STRIPE_HANDLE, &sh->state);
1217 	release_stripe(sh);
1218 }
1219 
1220 static void ops_run_biofill(struct stripe_head *sh)
1221 {
1222 	struct dma_async_tx_descriptor *tx = NULL;
1223 	struct async_submit_ctl submit;
1224 	int i;
1225 
1226 	BUG_ON(sh->batch_head);
1227 	pr_debug("%s: stripe %llu\n", __func__,
1228 		(unsigned long long)sh->sector);
1229 
1230 	for (i = sh->disks; i--; ) {
1231 		struct r5dev *dev = &sh->dev[i];
1232 		if (test_bit(R5_Wantfill, &dev->flags)) {
1233 			struct bio *rbi;
1234 			spin_lock_irq(&sh->stripe_lock);
1235 			dev->read = rbi = dev->toread;
1236 			dev->toread = NULL;
1237 			spin_unlock_irq(&sh->stripe_lock);
1238 			while (rbi && rbi->bi_iter.bi_sector <
1239 				dev->sector + STRIPE_SECTORS) {
1240 				tx = async_copy_data(0, rbi, &dev->page,
1241 					dev->sector, tx, sh);
1242 				rbi = r5_next_bio(rbi, dev->sector);
1243 			}
1244 		}
1245 	}
1246 
1247 	atomic_inc(&sh->count);
1248 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1249 	async_trigger_callback(&submit);
1250 }
1251 
1252 static void mark_target_uptodate(struct stripe_head *sh, int target)
1253 {
1254 	struct r5dev *tgt;
1255 
1256 	if (target < 0)
1257 		return;
1258 
1259 	tgt = &sh->dev[target];
1260 	set_bit(R5_UPTODATE, &tgt->flags);
1261 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1262 	clear_bit(R5_Wantcompute, &tgt->flags);
1263 }
1264 
1265 static void ops_complete_compute(void *stripe_head_ref)
1266 {
1267 	struct stripe_head *sh = stripe_head_ref;
1268 
1269 	pr_debug("%s: stripe %llu\n", __func__,
1270 		(unsigned long long)sh->sector);
1271 
1272 	/* mark the computed target(s) as uptodate */
1273 	mark_target_uptodate(sh, sh->ops.target);
1274 	mark_target_uptodate(sh, sh->ops.target2);
1275 
1276 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1277 	if (sh->check_state == check_state_compute_run)
1278 		sh->check_state = check_state_compute_result;
1279 	set_bit(STRIPE_HANDLE, &sh->state);
1280 	release_stripe(sh);
1281 }
1282 
1283 /* return a pointer to the address conversion region of the scribble buffer */
1284 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1285 				 struct raid5_percpu *percpu, int i)
1286 {
1287 	void *addr;
1288 
1289 	addr = flex_array_get(percpu->scribble, i);
1290 	return addr + sizeof(struct page *) * (sh->disks + 2);
1291 }
1292 
1293 /* return a pointer to the address conversion region of the scribble buffer */
1294 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1295 {
1296 	void *addr;
1297 
1298 	addr = flex_array_get(percpu->scribble, i);
1299 	return addr;
1300 }
1301 
1302 static struct dma_async_tx_descriptor *
1303 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1304 {
1305 	int disks = sh->disks;
1306 	struct page **xor_srcs = to_addr_page(percpu, 0);
1307 	int target = sh->ops.target;
1308 	struct r5dev *tgt = &sh->dev[target];
1309 	struct page *xor_dest = tgt->page;
1310 	int count = 0;
1311 	struct dma_async_tx_descriptor *tx;
1312 	struct async_submit_ctl submit;
1313 	int i;
1314 
1315 	BUG_ON(sh->batch_head);
1316 
1317 	pr_debug("%s: stripe %llu block: %d\n",
1318 		__func__, (unsigned long long)sh->sector, target);
1319 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1320 
1321 	for (i = disks; i--; )
1322 		if (i != target)
1323 			xor_srcs[count++] = sh->dev[i].page;
1324 
1325 	atomic_inc(&sh->count);
1326 
1327 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1328 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1329 	if (unlikely(count == 1))
1330 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1331 	else
1332 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1333 
1334 	return tx;
1335 }
1336 
1337 /* set_syndrome_sources - populate source buffers for gen_syndrome
1338  * @srcs - (struct page *) array of size sh->disks
1339  * @sh - stripe_head to parse
1340  *
1341  * Populates srcs in proper layout order for the stripe and returns the
1342  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1343  * destination buffer is recorded in srcs[count] and the Q destination
1344  * is recorded in srcs[count+1]].
1345  */
1346 static int set_syndrome_sources(struct page **srcs,
1347 				struct stripe_head *sh,
1348 				int srctype)
1349 {
1350 	int disks = sh->disks;
1351 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1352 	int d0_idx = raid6_d0(sh);
1353 	int count;
1354 	int i;
1355 
1356 	for (i = 0; i < disks; i++)
1357 		srcs[i] = NULL;
1358 
1359 	count = 0;
1360 	i = d0_idx;
1361 	do {
1362 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1363 		struct r5dev *dev = &sh->dev[i];
1364 
1365 		if (i == sh->qd_idx || i == sh->pd_idx ||
1366 		    (srctype == SYNDROME_SRC_ALL) ||
1367 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1368 		     test_bit(R5_Wantdrain, &dev->flags)) ||
1369 		    (srctype == SYNDROME_SRC_WRITTEN &&
1370 		     dev->written))
1371 			srcs[slot] = sh->dev[i].page;
1372 		i = raid6_next_disk(i, disks);
1373 	} while (i != d0_idx);
1374 
1375 	return syndrome_disks;
1376 }
1377 
1378 static struct dma_async_tx_descriptor *
1379 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1380 {
1381 	int disks = sh->disks;
1382 	struct page **blocks = to_addr_page(percpu, 0);
1383 	int target;
1384 	int qd_idx = sh->qd_idx;
1385 	struct dma_async_tx_descriptor *tx;
1386 	struct async_submit_ctl submit;
1387 	struct r5dev *tgt;
1388 	struct page *dest;
1389 	int i;
1390 	int count;
1391 
1392 	BUG_ON(sh->batch_head);
1393 	if (sh->ops.target < 0)
1394 		target = sh->ops.target2;
1395 	else if (sh->ops.target2 < 0)
1396 		target = sh->ops.target;
1397 	else
1398 		/* we should only have one valid target */
1399 		BUG();
1400 	BUG_ON(target < 0);
1401 	pr_debug("%s: stripe %llu block: %d\n",
1402 		__func__, (unsigned long long)sh->sector, target);
1403 
1404 	tgt = &sh->dev[target];
1405 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1406 	dest = tgt->page;
1407 
1408 	atomic_inc(&sh->count);
1409 
1410 	if (target == qd_idx) {
1411 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1412 		blocks[count] = NULL; /* regenerating p is not necessary */
1413 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1414 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1415 				  ops_complete_compute, sh,
1416 				  to_addr_conv(sh, percpu, 0));
1417 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1418 	} else {
1419 		/* Compute any data- or p-drive using XOR */
1420 		count = 0;
1421 		for (i = disks; i-- ; ) {
1422 			if (i == target || i == qd_idx)
1423 				continue;
1424 			blocks[count++] = sh->dev[i].page;
1425 		}
1426 
1427 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1428 				  NULL, ops_complete_compute, sh,
1429 				  to_addr_conv(sh, percpu, 0));
1430 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1431 	}
1432 
1433 	return tx;
1434 }
1435 
1436 static struct dma_async_tx_descriptor *
1437 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1438 {
1439 	int i, count, disks = sh->disks;
1440 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1441 	int d0_idx = raid6_d0(sh);
1442 	int faila = -1, failb = -1;
1443 	int target = sh->ops.target;
1444 	int target2 = sh->ops.target2;
1445 	struct r5dev *tgt = &sh->dev[target];
1446 	struct r5dev *tgt2 = &sh->dev[target2];
1447 	struct dma_async_tx_descriptor *tx;
1448 	struct page **blocks = to_addr_page(percpu, 0);
1449 	struct async_submit_ctl submit;
1450 
1451 	BUG_ON(sh->batch_head);
1452 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1453 		 __func__, (unsigned long long)sh->sector, target, target2);
1454 	BUG_ON(target < 0 || target2 < 0);
1455 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1456 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1457 
1458 	/* we need to open-code set_syndrome_sources to handle the
1459 	 * slot number conversion for 'faila' and 'failb'
1460 	 */
1461 	for (i = 0; i < disks ; i++)
1462 		blocks[i] = NULL;
1463 	count = 0;
1464 	i = d0_idx;
1465 	do {
1466 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1467 
1468 		blocks[slot] = sh->dev[i].page;
1469 
1470 		if (i == target)
1471 			faila = slot;
1472 		if (i == target2)
1473 			failb = slot;
1474 		i = raid6_next_disk(i, disks);
1475 	} while (i != d0_idx);
1476 
1477 	BUG_ON(faila == failb);
1478 	if (failb < faila)
1479 		swap(faila, failb);
1480 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1481 		 __func__, (unsigned long long)sh->sector, faila, failb);
1482 
1483 	atomic_inc(&sh->count);
1484 
1485 	if (failb == syndrome_disks+1) {
1486 		/* Q disk is one of the missing disks */
1487 		if (faila == syndrome_disks) {
1488 			/* Missing P+Q, just recompute */
1489 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1490 					  ops_complete_compute, sh,
1491 					  to_addr_conv(sh, percpu, 0));
1492 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1493 						  STRIPE_SIZE, &submit);
1494 		} else {
1495 			struct page *dest;
1496 			int data_target;
1497 			int qd_idx = sh->qd_idx;
1498 
1499 			/* Missing D+Q: recompute D from P, then recompute Q */
1500 			if (target == qd_idx)
1501 				data_target = target2;
1502 			else
1503 				data_target = target;
1504 
1505 			count = 0;
1506 			for (i = disks; i-- ; ) {
1507 				if (i == data_target || i == qd_idx)
1508 					continue;
1509 				blocks[count++] = sh->dev[i].page;
1510 			}
1511 			dest = sh->dev[data_target].page;
1512 			init_async_submit(&submit,
1513 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1514 					  NULL, NULL, NULL,
1515 					  to_addr_conv(sh, percpu, 0));
1516 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1517 				       &submit);
1518 
1519 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1521 					  ops_complete_compute, sh,
1522 					  to_addr_conv(sh, percpu, 0));
1523 			return async_gen_syndrome(blocks, 0, count+2,
1524 						  STRIPE_SIZE, &submit);
1525 		}
1526 	} else {
1527 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1528 				  ops_complete_compute, sh,
1529 				  to_addr_conv(sh, percpu, 0));
1530 		if (failb == syndrome_disks) {
1531 			/* We're missing D+P. */
1532 			return async_raid6_datap_recov(syndrome_disks+2,
1533 						       STRIPE_SIZE, faila,
1534 						       blocks, &submit);
1535 		} else {
1536 			/* We're missing D+D. */
1537 			return async_raid6_2data_recov(syndrome_disks+2,
1538 						       STRIPE_SIZE, faila, failb,
1539 						       blocks, &submit);
1540 		}
1541 	}
1542 }
1543 
1544 static void ops_complete_prexor(void *stripe_head_ref)
1545 {
1546 	struct stripe_head *sh = stripe_head_ref;
1547 
1548 	pr_debug("%s: stripe %llu\n", __func__,
1549 		(unsigned long long)sh->sector);
1550 }
1551 
1552 static struct dma_async_tx_descriptor *
1553 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1554 		struct dma_async_tx_descriptor *tx)
1555 {
1556 	int disks = sh->disks;
1557 	struct page **xor_srcs = to_addr_page(percpu, 0);
1558 	int count = 0, pd_idx = sh->pd_idx, i;
1559 	struct async_submit_ctl submit;
1560 
1561 	/* existing parity data subtracted */
1562 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1563 
1564 	BUG_ON(sh->batch_head);
1565 	pr_debug("%s: stripe %llu\n", __func__,
1566 		(unsigned long long)sh->sector);
1567 
1568 	for (i = disks; i--; ) {
1569 		struct r5dev *dev = &sh->dev[i];
1570 		/* Only process blocks that are known to be uptodate */
1571 		if (test_bit(R5_Wantdrain, &dev->flags))
1572 			xor_srcs[count++] = dev->page;
1573 	}
1574 
1575 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1576 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1577 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1578 
1579 	return tx;
1580 }
1581 
1582 static struct dma_async_tx_descriptor *
1583 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1584 		struct dma_async_tx_descriptor *tx)
1585 {
1586 	struct page **blocks = to_addr_page(percpu, 0);
1587 	int count;
1588 	struct async_submit_ctl submit;
1589 
1590 	pr_debug("%s: stripe %llu\n", __func__,
1591 		(unsigned long long)sh->sector);
1592 
1593 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1594 
1595 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1596 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1597 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1598 
1599 	return tx;
1600 }
1601 
1602 static struct dma_async_tx_descriptor *
1603 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1604 {
1605 	int disks = sh->disks;
1606 	int i;
1607 	struct stripe_head *head_sh = sh;
1608 
1609 	pr_debug("%s: stripe %llu\n", __func__,
1610 		(unsigned long long)sh->sector);
1611 
1612 	for (i = disks; i--; ) {
1613 		struct r5dev *dev;
1614 		struct bio *chosen;
1615 
1616 		sh = head_sh;
1617 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1618 			struct bio *wbi;
1619 
1620 again:
1621 			dev = &sh->dev[i];
1622 			spin_lock_irq(&sh->stripe_lock);
1623 			chosen = dev->towrite;
1624 			dev->towrite = NULL;
1625 			sh->overwrite_disks = 0;
1626 			BUG_ON(dev->written);
1627 			wbi = dev->written = chosen;
1628 			spin_unlock_irq(&sh->stripe_lock);
1629 			WARN_ON(dev->page != dev->orig_page);
1630 
1631 			while (wbi && wbi->bi_iter.bi_sector <
1632 				dev->sector + STRIPE_SECTORS) {
1633 				if (wbi->bi_rw & REQ_FUA)
1634 					set_bit(R5_WantFUA, &dev->flags);
1635 				if (wbi->bi_rw & REQ_SYNC)
1636 					set_bit(R5_SyncIO, &dev->flags);
1637 				if (wbi->bi_rw & REQ_DISCARD)
1638 					set_bit(R5_Discard, &dev->flags);
1639 				else {
1640 					tx = async_copy_data(1, wbi, &dev->page,
1641 						dev->sector, tx, sh);
1642 					if (dev->page != dev->orig_page) {
1643 						set_bit(R5_SkipCopy, &dev->flags);
1644 						clear_bit(R5_UPTODATE, &dev->flags);
1645 						clear_bit(R5_OVERWRITE, &dev->flags);
1646 					}
1647 				}
1648 				wbi = r5_next_bio(wbi, dev->sector);
1649 			}
1650 
1651 			if (head_sh->batch_head) {
1652 				sh = list_first_entry(&sh->batch_list,
1653 						      struct stripe_head,
1654 						      batch_list);
1655 				if (sh == head_sh)
1656 					continue;
1657 				goto again;
1658 			}
1659 		}
1660 	}
1661 
1662 	return tx;
1663 }
1664 
1665 static void ops_complete_reconstruct(void *stripe_head_ref)
1666 {
1667 	struct stripe_head *sh = stripe_head_ref;
1668 	int disks = sh->disks;
1669 	int pd_idx = sh->pd_idx;
1670 	int qd_idx = sh->qd_idx;
1671 	int i;
1672 	bool fua = false, sync = false, discard = false;
1673 
1674 	pr_debug("%s: stripe %llu\n", __func__,
1675 		(unsigned long long)sh->sector);
1676 
1677 	for (i = disks; i--; ) {
1678 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1679 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1680 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1681 	}
1682 
1683 	for (i = disks; i--; ) {
1684 		struct r5dev *dev = &sh->dev[i];
1685 
1686 		if (dev->written || i == pd_idx || i == qd_idx) {
1687 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1688 				set_bit(R5_UPTODATE, &dev->flags);
1689 			if (fua)
1690 				set_bit(R5_WantFUA, &dev->flags);
1691 			if (sync)
1692 				set_bit(R5_SyncIO, &dev->flags);
1693 		}
1694 	}
1695 
1696 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1697 		sh->reconstruct_state = reconstruct_state_drain_result;
1698 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1699 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1700 	else {
1701 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1702 		sh->reconstruct_state = reconstruct_state_result;
1703 	}
1704 
1705 	set_bit(STRIPE_HANDLE, &sh->state);
1706 	release_stripe(sh);
1707 }
1708 
1709 static void
1710 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1711 		     struct dma_async_tx_descriptor *tx)
1712 {
1713 	int disks = sh->disks;
1714 	struct page **xor_srcs;
1715 	struct async_submit_ctl submit;
1716 	int count, pd_idx = sh->pd_idx, i;
1717 	struct page *xor_dest;
1718 	int prexor = 0;
1719 	unsigned long flags;
1720 	int j = 0;
1721 	struct stripe_head *head_sh = sh;
1722 	int last_stripe;
1723 
1724 	pr_debug("%s: stripe %llu\n", __func__,
1725 		(unsigned long long)sh->sector);
1726 
1727 	for (i = 0; i < sh->disks; i++) {
1728 		if (pd_idx == i)
1729 			continue;
1730 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1731 			break;
1732 	}
1733 	if (i >= sh->disks) {
1734 		atomic_inc(&sh->count);
1735 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1736 		ops_complete_reconstruct(sh);
1737 		return;
1738 	}
1739 again:
1740 	count = 0;
1741 	xor_srcs = to_addr_page(percpu, j);
1742 	/* check if prexor is active which means only process blocks
1743 	 * that are part of a read-modify-write (written)
1744 	 */
1745 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1746 		prexor = 1;
1747 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1748 		for (i = disks; i--; ) {
1749 			struct r5dev *dev = &sh->dev[i];
1750 			if (head_sh->dev[i].written)
1751 				xor_srcs[count++] = dev->page;
1752 		}
1753 	} else {
1754 		xor_dest = sh->dev[pd_idx].page;
1755 		for (i = disks; i--; ) {
1756 			struct r5dev *dev = &sh->dev[i];
1757 			if (i != pd_idx)
1758 				xor_srcs[count++] = dev->page;
1759 		}
1760 	}
1761 
1762 	/* 1/ if we prexor'd then the dest is reused as a source
1763 	 * 2/ if we did not prexor then we are redoing the parity
1764 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1765 	 * for the synchronous xor case
1766 	 */
1767 	last_stripe = !head_sh->batch_head ||
1768 		list_first_entry(&sh->batch_list,
1769 				 struct stripe_head, batch_list) == head_sh;
1770 	if (last_stripe) {
1771 		flags = ASYNC_TX_ACK |
1772 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1773 
1774 		atomic_inc(&head_sh->count);
1775 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1776 				  to_addr_conv(sh, percpu, j));
1777 	} else {
1778 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1779 		init_async_submit(&submit, flags, tx, NULL, NULL,
1780 				  to_addr_conv(sh, percpu, j));
1781 	}
1782 
1783 	if (unlikely(count == 1))
1784 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1785 	else
1786 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1787 	if (!last_stripe) {
1788 		j++;
1789 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1790 				      batch_list);
1791 		goto again;
1792 	}
1793 }
1794 
1795 static void
1796 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1797 		     struct dma_async_tx_descriptor *tx)
1798 {
1799 	struct async_submit_ctl submit;
1800 	struct page **blocks;
1801 	int count, i, j = 0;
1802 	struct stripe_head *head_sh = sh;
1803 	int last_stripe;
1804 	int synflags;
1805 	unsigned long txflags;
1806 
1807 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1808 
1809 	for (i = 0; i < sh->disks; i++) {
1810 		if (sh->pd_idx == i || sh->qd_idx == i)
1811 			continue;
1812 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1813 			break;
1814 	}
1815 	if (i >= sh->disks) {
1816 		atomic_inc(&sh->count);
1817 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1818 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1819 		ops_complete_reconstruct(sh);
1820 		return;
1821 	}
1822 
1823 again:
1824 	blocks = to_addr_page(percpu, j);
1825 
1826 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1827 		synflags = SYNDROME_SRC_WRITTEN;
1828 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1829 	} else {
1830 		synflags = SYNDROME_SRC_ALL;
1831 		txflags = ASYNC_TX_ACK;
1832 	}
1833 
1834 	count = set_syndrome_sources(blocks, sh, synflags);
1835 	last_stripe = !head_sh->batch_head ||
1836 		list_first_entry(&sh->batch_list,
1837 				 struct stripe_head, batch_list) == head_sh;
1838 
1839 	if (last_stripe) {
1840 		atomic_inc(&head_sh->count);
1841 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1842 				  head_sh, to_addr_conv(sh, percpu, j));
1843 	} else
1844 		init_async_submit(&submit, 0, tx, NULL, NULL,
1845 				  to_addr_conv(sh, percpu, j));
1846 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1847 	if (!last_stripe) {
1848 		j++;
1849 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1850 				      batch_list);
1851 		goto again;
1852 	}
1853 }
1854 
1855 static void ops_complete_check(void *stripe_head_ref)
1856 {
1857 	struct stripe_head *sh = stripe_head_ref;
1858 
1859 	pr_debug("%s: stripe %llu\n", __func__,
1860 		(unsigned long long)sh->sector);
1861 
1862 	sh->check_state = check_state_check_result;
1863 	set_bit(STRIPE_HANDLE, &sh->state);
1864 	release_stripe(sh);
1865 }
1866 
1867 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1868 {
1869 	int disks = sh->disks;
1870 	int pd_idx = sh->pd_idx;
1871 	int qd_idx = sh->qd_idx;
1872 	struct page *xor_dest;
1873 	struct page **xor_srcs = to_addr_page(percpu, 0);
1874 	struct dma_async_tx_descriptor *tx;
1875 	struct async_submit_ctl submit;
1876 	int count;
1877 	int i;
1878 
1879 	pr_debug("%s: stripe %llu\n", __func__,
1880 		(unsigned long long)sh->sector);
1881 
1882 	BUG_ON(sh->batch_head);
1883 	count = 0;
1884 	xor_dest = sh->dev[pd_idx].page;
1885 	xor_srcs[count++] = xor_dest;
1886 	for (i = disks; i--; ) {
1887 		if (i == pd_idx || i == qd_idx)
1888 			continue;
1889 		xor_srcs[count++] = sh->dev[i].page;
1890 	}
1891 
1892 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1893 			  to_addr_conv(sh, percpu, 0));
1894 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1895 			   &sh->ops.zero_sum_result, &submit);
1896 
1897 	atomic_inc(&sh->count);
1898 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1899 	tx = async_trigger_callback(&submit);
1900 }
1901 
1902 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1903 {
1904 	struct page **srcs = to_addr_page(percpu, 0);
1905 	struct async_submit_ctl submit;
1906 	int count;
1907 
1908 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1909 		(unsigned long long)sh->sector, checkp);
1910 
1911 	BUG_ON(sh->batch_head);
1912 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1913 	if (!checkp)
1914 		srcs[count] = NULL;
1915 
1916 	atomic_inc(&sh->count);
1917 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1918 			  sh, to_addr_conv(sh, percpu, 0));
1919 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1920 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1921 }
1922 
1923 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1924 {
1925 	int overlap_clear = 0, i, disks = sh->disks;
1926 	struct dma_async_tx_descriptor *tx = NULL;
1927 	struct r5conf *conf = sh->raid_conf;
1928 	int level = conf->level;
1929 	struct raid5_percpu *percpu;
1930 	unsigned long cpu;
1931 
1932 	cpu = get_cpu();
1933 	percpu = per_cpu_ptr(conf->percpu, cpu);
1934 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1935 		ops_run_biofill(sh);
1936 		overlap_clear++;
1937 	}
1938 
1939 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1940 		if (level < 6)
1941 			tx = ops_run_compute5(sh, percpu);
1942 		else {
1943 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1944 				tx = ops_run_compute6_1(sh, percpu);
1945 			else
1946 				tx = ops_run_compute6_2(sh, percpu);
1947 		}
1948 		/* terminate the chain if reconstruct is not set to be run */
1949 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1950 			async_tx_ack(tx);
1951 	}
1952 
1953 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1954 		if (level < 6)
1955 			tx = ops_run_prexor5(sh, percpu, tx);
1956 		else
1957 			tx = ops_run_prexor6(sh, percpu, tx);
1958 	}
1959 
1960 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1961 		tx = ops_run_biodrain(sh, tx);
1962 		overlap_clear++;
1963 	}
1964 
1965 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1966 		if (level < 6)
1967 			ops_run_reconstruct5(sh, percpu, tx);
1968 		else
1969 			ops_run_reconstruct6(sh, percpu, tx);
1970 	}
1971 
1972 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1973 		if (sh->check_state == check_state_run)
1974 			ops_run_check_p(sh, percpu);
1975 		else if (sh->check_state == check_state_run_q)
1976 			ops_run_check_pq(sh, percpu, 0);
1977 		else if (sh->check_state == check_state_run_pq)
1978 			ops_run_check_pq(sh, percpu, 1);
1979 		else
1980 			BUG();
1981 	}
1982 
1983 	if (overlap_clear && !sh->batch_head)
1984 		for (i = disks; i--; ) {
1985 			struct r5dev *dev = &sh->dev[i];
1986 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1987 				wake_up(&sh->raid_conf->wait_for_overlap);
1988 		}
1989 	put_cpu();
1990 }
1991 
1992 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1993 {
1994 	struct stripe_head *sh;
1995 
1996 	sh = kmem_cache_zalloc(sc, gfp);
1997 	if (sh) {
1998 		spin_lock_init(&sh->stripe_lock);
1999 		spin_lock_init(&sh->batch_lock);
2000 		INIT_LIST_HEAD(&sh->batch_list);
2001 		INIT_LIST_HEAD(&sh->lru);
2002 		atomic_set(&sh->count, 1);
2003 	}
2004 	return sh;
2005 }
2006 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2007 {
2008 	struct stripe_head *sh;
2009 
2010 	sh = alloc_stripe(conf->slab_cache, gfp);
2011 	if (!sh)
2012 		return 0;
2013 
2014 	sh->raid_conf = conf;
2015 
2016 	if (grow_buffers(sh, gfp)) {
2017 		shrink_buffers(sh);
2018 		kmem_cache_free(conf->slab_cache, sh);
2019 		return 0;
2020 	}
2021 	sh->hash_lock_index =
2022 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2023 	/* we just created an active stripe so... */
2024 	atomic_inc(&conf->active_stripes);
2025 
2026 	release_stripe(sh);
2027 	conf->max_nr_stripes++;
2028 	return 1;
2029 }
2030 
2031 static int grow_stripes(struct r5conf *conf, int num)
2032 {
2033 	struct kmem_cache *sc;
2034 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2035 
2036 	if (conf->mddev->gendisk)
2037 		sprintf(conf->cache_name[0],
2038 			"raid%d-%s", conf->level, mdname(conf->mddev));
2039 	else
2040 		sprintf(conf->cache_name[0],
2041 			"raid%d-%p", conf->level, conf->mddev);
2042 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2043 
2044 	conf->active_name = 0;
2045 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2046 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2047 			       0, 0, NULL);
2048 	if (!sc)
2049 		return 1;
2050 	conf->slab_cache = sc;
2051 	conf->pool_size = devs;
2052 	while (num--)
2053 		if (!grow_one_stripe(conf, GFP_KERNEL))
2054 			return 1;
2055 
2056 	return 0;
2057 }
2058 
2059 /**
2060  * scribble_len - return the required size of the scribble region
2061  * @num - total number of disks in the array
2062  *
2063  * The size must be enough to contain:
2064  * 1/ a struct page pointer for each device in the array +2
2065  * 2/ room to convert each entry in (1) to its corresponding dma
2066  *    (dma_map_page()) or page (page_address()) address.
2067  *
2068  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2069  * calculate over all devices (not just the data blocks), using zeros in place
2070  * of the P and Q blocks.
2071  */
2072 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2073 {
2074 	struct flex_array *ret;
2075 	size_t len;
2076 
2077 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2078 	ret = flex_array_alloc(len, cnt, flags);
2079 	if (!ret)
2080 		return NULL;
2081 	/* always prealloc all elements, so no locking is required */
2082 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2083 		flex_array_free(ret);
2084 		return NULL;
2085 	}
2086 	return ret;
2087 }
2088 
2089 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2090 {
2091 	unsigned long cpu;
2092 	int err = 0;
2093 
2094 	mddev_suspend(conf->mddev);
2095 	get_online_cpus();
2096 	for_each_present_cpu(cpu) {
2097 		struct raid5_percpu *percpu;
2098 		struct flex_array *scribble;
2099 
2100 		percpu = per_cpu_ptr(conf->percpu, cpu);
2101 		scribble = scribble_alloc(new_disks,
2102 					  new_sectors / STRIPE_SECTORS,
2103 					  GFP_NOIO);
2104 
2105 		if (scribble) {
2106 			flex_array_free(percpu->scribble);
2107 			percpu->scribble = scribble;
2108 		} else {
2109 			err = -ENOMEM;
2110 			break;
2111 		}
2112 	}
2113 	put_online_cpus();
2114 	mddev_resume(conf->mddev);
2115 	return err;
2116 }
2117 
2118 static int resize_stripes(struct r5conf *conf, int newsize)
2119 {
2120 	/* Make all the stripes able to hold 'newsize' devices.
2121 	 * New slots in each stripe get 'page' set to a new page.
2122 	 *
2123 	 * This happens in stages:
2124 	 * 1/ create a new kmem_cache and allocate the required number of
2125 	 *    stripe_heads.
2126 	 * 2/ gather all the old stripe_heads and transfer the pages across
2127 	 *    to the new stripe_heads.  This will have the side effect of
2128 	 *    freezing the array as once all stripe_heads have been collected,
2129 	 *    no IO will be possible.  Old stripe heads are freed once their
2130 	 *    pages have been transferred over, and the old kmem_cache is
2131 	 *    freed when all stripes are done.
2132 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2133 	 *    we simple return a failre status - no need to clean anything up.
2134 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2135 	 *    If this fails, we don't bother trying the shrink the
2136 	 *    stripe_heads down again, we just leave them as they are.
2137 	 *    As each stripe_head is processed the new one is released into
2138 	 *    active service.
2139 	 *
2140 	 * Once step2 is started, we cannot afford to wait for a write,
2141 	 * so we use GFP_NOIO allocations.
2142 	 */
2143 	struct stripe_head *osh, *nsh;
2144 	LIST_HEAD(newstripes);
2145 	struct disk_info *ndisks;
2146 	int err;
2147 	struct kmem_cache *sc;
2148 	int i;
2149 	int hash, cnt;
2150 
2151 	if (newsize <= conf->pool_size)
2152 		return 0; /* never bother to shrink */
2153 
2154 	err = md_allow_write(conf->mddev);
2155 	if (err)
2156 		return err;
2157 
2158 	/* Step 1 */
2159 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2160 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2161 			       0, 0, NULL);
2162 	if (!sc)
2163 		return -ENOMEM;
2164 
2165 	for (i = conf->max_nr_stripes; i; i--) {
2166 		nsh = alloc_stripe(sc, GFP_KERNEL);
2167 		if (!nsh)
2168 			break;
2169 
2170 		nsh->raid_conf = conf;
2171 		list_add(&nsh->lru, &newstripes);
2172 	}
2173 	if (i) {
2174 		/* didn't get enough, give up */
2175 		while (!list_empty(&newstripes)) {
2176 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2177 			list_del(&nsh->lru);
2178 			kmem_cache_free(sc, nsh);
2179 		}
2180 		kmem_cache_destroy(sc);
2181 		return -ENOMEM;
2182 	}
2183 	/* Step 2 - Must use GFP_NOIO now.
2184 	 * OK, we have enough stripes, start collecting inactive
2185 	 * stripes and copying them over
2186 	 */
2187 	hash = 0;
2188 	cnt = 0;
2189 	list_for_each_entry(nsh, &newstripes, lru) {
2190 		lock_device_hash_lock(conf, hash);
2191 		wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2192 				    !list_empty(conf->inactive_list + hash),
2193 				    unlock_device_hash_lock(conf, hash),
2194 				    lock_device_hash_lock(conf, hash));
2195 		osh = get_free_stripe(conf, hash);
2196 		unlock_device_hash_lock(conf, hash);
2197 
2198 		for(i=0; i<conf->pool_size; i++) {
2199 			nsh->dev[i].page = osh->dev[i].page;
2200 			nsh->dev[i].orig_page = osh->dev[i].page;
2201 		}
2202 		nsh->hash_lock_index = hash;
2203 		kmem_cache_free(conf->slab_cache, osh);
2204 		cnt++;
2205 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2206 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2207 			hash++;
2208 			cnt = 0;
2209 		}
2210 	}
2211 	kmem_cache_destroy(conf->slab_cache);
2212 
2213 	/* Step 3.
2214 	 * At this point, we are holding all the stripes so the array
2215 	 * is completely stalled, so now is a good time to resize
2216 	 * conf->disks and the scribble region
2217 	 */
2218 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2219 	if (ndisks) {
2220 		for (i=0; i<conf->raid_disks; i++)
2221 			ndisks[i] = conf->disks[i];
2222 		kfree(conf->disks);
2223 		conf->disks = ndisks;
2224 	} else
2225 		err = -ENOMEM;
2226 
2227 	/* Step 4, return new stripes to service */
2228 	while(!list_empty(&newstripes)) {
2229 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2230 		list_del_init(&nsh->lru);
2231 
2232 		for (i=conf->raid_disks; i < newsize; i++)
2233 			if (nsh->dev[i].page == NULL) {
2234 				struct page *p = alloc_page(GFP_NOIO);
2235 				nsh->dev[i].page = p;
2236 				nsh->dev[i].orig_page = p;
2237 				if (!p)
2238 					err = -ENOMEM;
2239 			}
2240 		release_stripe(nsh);
2241 	}
2242 	/* critical section pass, GFP_NOIO no longer needed */
2243 
2244 	conf->slab_cache = sc;
2245 	conf->active_name = 1-conf->active_name;
2246 	if (!err)
2247 		conf->pool_size = newsize;
2248 	return err;
2249 }
2250 
2251 static int drop_one_stripe(struct r5conf *conf)
2252 {
2253 	struct stripe_head *sh;
2254 	int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
2255 
2256 	spin_lock_irq(conf->hash_locks + hash);
2257 	sh = get_free_stripe(conf, hash);
2258 	spin_unlock_irq(conf->hash_locks + hash);
2259 	if (!sh)
2260 		return 0;
2261 	BUG_ON(atomic_read(&sh->count));
2262 	shrink_buffers(sh);
2263 	kmem_cache_free(conf->slab_cache, sh);
2264 	atomic_dec(&conf->active_stripes);
2265 	conf->max_nr_stripes--;
2266 	return 1;
2267 }
2268 
2269 static void shrink_stripes(struct r5conf *conf)
2270 {
2271 	while (conf->max_nr_stripes &&
2272 	       drop_one_stripe(conf))
2273 		;
2274 
2275 	if (conf->slab_cache)
2276 		kmem_cache_destroy(conf->slab_cache);
2277 	conf->slab_cache = NULL;
2278 }
2279 
2280 static void raid5_end_read_request(struct bio * bi, int error)
2281 {
2282 	struct stripe_head *sh = bi->bi_private;
2283 	struct r5conf *conf = sh->raid_conf;
2284 	int disks = sh->disks, i;
2285 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2286 	char b[BDEVNAME_SIZE];
2287 	struct md_rdev *rdev = NULL;
2288 	sector_t s;
2289 
2290 	for (i=0 ; i<disks; i++)
2291 		if (bi == &sh->dev[i].req)
2292 			break;
2293 
2294 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2295 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2296 		uptodate);
2297 	if (i == disks) {
2298 		BUG();
2299 		return;
2300 	}
2301 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2302 		/* If replacement finished while this request was outstanding,
2303 		 * 'replacement' might be NULL already.
2304 		 * In that case it moved down to 'rdev'.
2305 		 * rdev is not removed until all requests are finished.
2306 		 */
2307 		rdev = conf->disks[i].replacement;
2308 	if (!rdev)
2309 		rdev = conf->disks[i].rdev;
2310 
2311 	if (use_new_offset(conf, sh))
2312 		s = sh->sector + rdev->new_data_offset;
2313 	else
2314 		s = sh->sector + rdev->data_offset;
2315 	if (uptodate) {
2316 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2317 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2318 			/* Note that this cannot happen on a
2319 			 * replacement device.  We just fail those on
2320 			 * any error
2321 			 */
2322 			printk_ratelimited(
2323 				KERN_INFO
2324 				"md/raid:%s: read error corrected"
2325 				" (%lu sectors at %llu on %s)\n",
2326 				mdname(conf->mddev), STRIPE_SECTORS,
2327 				(unsigned long long)s,
2328 				bdevname(rdev->bdev, b));
2329 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2330 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2331 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2332 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2333 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2334 
2335 		if (atomic_read(&rdev->read_errors))
2336 			atomic_set(&rdev->read_errors, 0);
2337 	} else {
2338 		const char *bdn = bdevname(rdev->bdev, b);
2339 		int retry = 0;
2340 		int set_bad = 0;
2341 
2342 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2343 		atomic_inc(&rdev->read_errors);
2344 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2345 			printk_ratelimited(
2346 				KERN_WARNING
2347 				"md/raid:%s: read error on replacement device "
2348 				"(sector %llu on %s).\n",
2349 				mdname(conf->mddev),
2350 				(unsigned long long)s,
2351 				bdn);
2352 		else if (conf->mddev->degraded >= conf->max_degraded) {
2353 			set_bad = 1;
2354 			printk_ratelimited(
2355 				KERN_WARNING
2356 				"md/raid:%s: read error not correctable "
2357 				"(sector %llu on %s).\n",
2358 				mdname(conf->mddev),
2359 				(unsigned long long)s,
2360 				bdn);
2361 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2362 			/* Oh, no!!! */
2363 			set_bad = 1;
2364 			printk_ratelimited(
2365 				KERN_WARNING
2366 				"md/raid:%s: read error NOT corrected!! "
2367 				"(sector %llu on %s).\n",
2368 				mdname(conf->mddev),
2369 				(unsigned long long)s,
2370 				bdn);
2371 		} else if (atomic_read(&rdev->read_errors)
2372 			 > conf->max_nr_stripes)
2373 			printk(KERN_WARNING
2374 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2375 			       mdname(conf->mddev), bdn);
2376 		else
2377 			retry = 1;
2378 		if (set_bad && test_bit(In_sync, &rdev->flags)
2379 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2380 			retry = 1;
2381 		if (retry)
2382 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2383 				set_bit(R5_ReadError, &sh->dev[i].flags);
2384 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2385 			} else
2386 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2387 		else {
2388 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2389 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2390 			if (!(set_bad
2391 			      && test_bit(In_sync, &rdev->flags)
2392 			      && rdev_set_badblocks(
2393 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2394 				md_error(conf->mddev, rdev);
2395 		}
2396 	}
2397 	rdev_dec_pending(rdev, conf->mddev);
2398 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2399 	set_bit(STRIPE_HANDLE, &sh->state);
2400 	release_stripe(sh);
2401 }
2402 
2403 static void raid5_end_write_request(struct bio *bi, int error)
2404 {
2405 	struct stripe_head *sh = bi->bi_private;
2406 	struct r5conf *conf = sh->raid_conf;
2407 	int disks = sh->disks, i;
2408 	struct md_rdev *uninitialized_var(rdev);
2409 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2410 	sector_t first_bad;
2411 	int bad_sectors;
2412 	int replacement = 0;
2413 
2414 	for (i = 0 ; i < disks; i++) {
2415 		if (bi == &sh->dev[i].req) {
2416 			rdev = conf->disks[i].rdev;
2417 			break;
2418 		}
2419 		if (bi == &sh->dev[i].rreq) {
2420 			rdev = conf->disks[i].replacement;
2421 			if (rdev)
2422 				replacement = 1;
2423 			else
2424 				/* rdev was removed and 'replacement'
2425 				 * replaced it.  rdev is not removed
2426 				 * until all requests are finished.
2427 				 */
2428 				rdev = conf->disks[i].rdev;
2429 			break;
2430 		}
2431 	}
2432 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2433 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2434 		uptodate);
2435 	if (i == disks) {
2436 		BUG();
2437 		return;
2438 	}
2439 
2440 	if (replacement) {
2441 		if (!uptodate)
2442 			md_error(conf->mddev, rdev);
2443 		else if (is_badblock(rdev, sh->sector,
2444 				     STRIPE_SECTORS,
2445 				     &first_bad, &bad_sectors))
2446 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2447 	} else {
2448 		if (!uptodate) {
2449 			set_bit(STRIPE_DEGRADED, &sh->state);
2450 			set_bit(WriteErrorSeen, &rdev->flags);
2451 			set_bit(R5_WriteError, &sh->dev[i].flags);
2452 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2453 				set_bit(MD_RECOVERY_NEEDED,
2454 					&rdev->mddev->recovery);
2455 		} else if (is_badblock(rdev, sh->sector,
2456 				       STRIPE_SECTORS,
2457 				       &first_bad, &bad_sectors)) {
2458 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2459 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2460 				/* That was a successful write so make
2461 				 * sure it looks like we already did
2462 				 * a re-write.
2463 				 */
2464 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2465 		}
2466 	}
2467 	rdev_dec_pending(rdev, conf->mddev);
2468 
2469 	if (sh->batch_head && !uptodate && !replacement)
2470 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2471 
2472 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2473 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2474 	set_bit(STRIPE_HANDLE, &sh->state);
2475 	release_stripe(sh);
2476 
2477 	if (sh->batch_head && sh != sh->batch_head)
2478 		release_stripe(sh->batch_head);
2479 }
2480 
2481 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2482 
2483 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2484 {
2485 	struct r5dev *dev = &sh->dev[i];
2486 
2487 	bio_init(&dev->req);
2488 	dev->req.bi_io_vec = &dev->vec;
2489 	dev->req.bi_max_vecs = 1;
2490 	dev->req.bi_private = sh;
2491 
2492 	bio_init(&dev->rreq);
2493 	dev->rreq.bi_io_vec = &dev->rvec;
2494 	dev->rreq.bi_max_vecs = 1;
2495 	dev->rreq.bi_private = sh;
2496 
2497 	dev->flags = 0;
2498 	dev->sector = compute_blocknr(sh, i, previous);
2499 }
2500 
2501 static void error(struct mddev *mddev, struct md_rdev *rdev)
2502 {
2503 	char b[BDEVNAME_SIZE];
2504 	struct r5conf *conf = mddev->private;
2505 	unsigned long flags;
2506 	pr_debug("raid456: error called\n");
2507 
2508 	spin_lock_irqsave(&conf->device_lock, flags);
2509 	clear_bit(In_sync, &rdev->flags);
2510 	mddev->degraded = calc_degraded(conf);
2511 	spin_unlock_irqrestore(&conf->device_lock, flags);
2512 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2513 
2514 	set_bit(Blocked, &rdev->flags);
2515 	set_bit(Faulty, &rdev->flags);
2516 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2517 	printk(KERN_ALERT
2518 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2519 	       "md/raid:%s: Operation continuing on %d devices.\n",
2520 	       mdname(mddev),
2521 	       bdevname(rdev->bdev, b),
2522 	       mdname(mddev),
2523 	       conf->raid_disks - mddev->degraded);
2524 }
2525 
2526 /*
2527  * Input: a 'big' sector number,
2528  * Output: index of the data and parity disk, and the sector # in them.
2529  */
2530 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2531 				     int previous, int *dd_idx,
2532 				     struct stripe_head *sh)
2533 {
2534 	sector_t stripe, stripe2;
2535 	sector_t chunk_number;
2536 	unsigned int chunk_offset;
2537 	int pd_idx, qd_idx;
2538 	int ddf_layout = 0;
2539 	sector_t new_sector;
2540 	int algorithm = previous ? conf->prev_algo
2541 				 : conf->algorithm;
2542 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2543 					 : conf->chunk_sectors;
2544 	int raid_disks = previous ? conf->previous_raid_disks
2545 				  : conf->raid_disks;
2546 	int data_disks = raid_disks - conf->max_degraded;
2547 
2548 	/* First compute the information on this sector */
2549 
2550 	/*
2551 	 * Compute the chunk number and the sector offset inside the chunk
2552 	 */
2553 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2554 	chunk_number = r_sector;
2555 
2556 	/*
2557 	 * Compute the stripe number
2558 	 */
2559 	stripe = chunk_number;
2560 	*dd_idx = sector_div(stripe, data_disks);
2561 	stripe2 = stripe;
2562 	/*
2563 	 * Select the parity disk based on the user selected algorithm.
2564 	 */
2565 	pd_idx = qd_idx = -1;
2566 	switch(conf->level) {
2567 	case 4:
2568 		pd_idx = data_disks;
2569 		break;
2570 	case 5:
2571 		switch (algorithm) {
2572 		case ALGORITHM_LEFT_ASYMMETRIC:
2573 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2574 			if (*dd_idx >= pd_idx)
2575 				(*dd_idx)++;
2576 			break;
2577 		case ALGORITHM_RIGHT_ASYMMETRIC:
2578 			pd_idx = sector_div(stripe2, raid_disks);
2579 			if (*dd_idx >= pd_idx)
2580 				(*dd_idx)++;
2581 			break;
2582 		case ALGORITHM_LEFT_SYMMETRIC:
2583 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2584 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2585 			break;
2586 		case ALGORITHM_RIGHT_SYMMETRIC:
2587 			pd_idx = sector_div(stripe2, raid_disks);
2588 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2589 			break;
2590 		case ALGORITHM_PARITY_0:
2591 			pd_idx = 0;
2592 			(*dd_idx)++;
2593 			break;
2594 		case ALGORITHM_PARITY_N:
2595 			pd_idx = data_disks;
2596 			break;
2597 		default:
2598 			BUG();
2599 		}
2600 		break;
2601 	case 6:
2602 
2603 		switch (algorithm) {
2604 		case ALGORITHM_LEFT_ASYMMETRIC:
2605 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2606 			qd_idx = pd_idx + 1;
2607 			if (pd_idx == raid_disks-1) {
2608 				(*dd_idx)++;	/* Q D D D P */
2609 				qd_idx = 0;
2610 			} else if (*dd_idx >= pd_idx)
2611 				(*dd_idx) += 2; /* D D P Q D */
2612 			break;
2613 		case ALGORITHM_RIGHT_ASYMMETRIC:
2614 			pd_idx = sector_div(stripe2, raid_disks);
2615 			qd_idx = pd_idx + 1;
2616 			if (pd_idx == raid_disks-1) {
2617 				(*dd_idx)++;	/* Q D D D P */
2618 				qd_idx = 0;
2619 			} else if (*dd_idx >= pd_idx)
2620 				(*dd_idx) += 2; /* D D P Q D */
2621 			break;
2622 		case ALGORITHM_LEFT_SYMMETRIC:
2623 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2624 			qd_idx = (pd_idx + 1) % raid_disks;
2625 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2626 			break;
2627 		case ALGORITHM_RIGHT_SYMMETRIC:
2628 			pd_idx = sector_div(stripe2, raid_disks);
2629 			qd_idx = (pd_idx + 1) % raid_disks;
2630 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2631 			break;
2632 
2633 		case ALGORITHM_PARITY_0:
2634 			pd_idx = 0;
2635 			qd_idx = 1;
2636 			(*dd_idx) += 2;
2637 			break;
2638 		case ALGORITHM_PARITY_N:
2639 			pd_idx = data_disks;
2640 			qd_idx = data_disks + 1;
2641 			break;
2642 
2643 		case ALGORITHM_ROTATING_ZERO_RESTART:
2644 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2645 			 * of blocks for computing Q is different.
2646 			 */
2647 			pd_idx = sector_div(stripe2, raid_disks);
2648 			qd_idx = pd_idx + 1;
2649 			if (pd_idx == raid_disks-1) {
2650 				(*dd_idx)++;	/* Q D D D P */
2651 				qd_idx = 0;
2652 			} else if (*dd_idx >= pd_idx)
2653 				(*dd_idx) += 2; /* D D P Q D */
2654 			ddf_layout = 1;
2655 			break;
2656 
2657 		case ALGORITHM_ROTATING_N_RESTART:
2658 			/* Same a left_asymmetric, by first stripe is
2659 			 * D D D P Q  rather than
2660 			 * Q D D D P
2661 			 */
2662 			stripe2 += 1;
2663 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2664 			qd_idx = pd_idx + 1;
2665 			if (pd_idx == raid_disks-1) {
2666 				(*dd_idx)++;	/* Q D D D P */
2667 				qd_idx = 0;
2668 			} else if (*dd_idx >= pd_idx)
2669 				(*dd_idx) += 2; /* D D P Q D */
2670 			ddf_layout = 1;
2671 			break;
2672 
2673 		case ALGORITHM_ROTATING_N_CONTINUE:
2674 			/* Same as left_symmetric but Q is before P */
2675 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2676 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2677 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2678 			ddf_layout = 1;
2679 			break;
2680 
2681 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2682 			/* RAID5 left_asymmetric, with Q on last device */
2683 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2684 			if (*dd_idx >= pd_idx)
2685 				(*dd_idx)++;
2686 			qd_idx = raid_disks - 1;
2687 			break;
2688 
2689 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2690 			pd_idx = sector_div(stripe2, raid_disks-1);
2691 			if (*dd_idx >= pd_idx)
2692 				(*dd_idx)++;
2693 			qd_idx = raid_disks - 1;
2694 			break;
2695 
2696 		case ALGORITHM_LEFT_SYMMETRIC_6:
2697 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2698 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2699 			qd_idx = raid_disks - 1;
2700 			break;
2701 
2702 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2703 			pd_idx = sector_div(stripe2, raid_disks-1);
2704 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2705 			qd_idx = raid_disks - 1;
2706 			break;
2707 
2708 		case ALGORITHM_PARITY_0_6:
2709 			pd_idx = 0;
2710 			(*dd_idx)++;
2711 			qd_idx = raid_disks - 1;
2712 			break;
2713 
2714 		default:
2715 			BUG();
2716 		}
2717 		break;
2718 	}
2719 
2720 	if (sh) {
2721 		sh->pd_idx = pd_idx;
2722 		sh->qd_idx = qd_idx;
2723 		sh->ddf_layout = ddf_layout;
2724 	}
2725 	/*
2726 	 * Finally, compute the new sector number
2727 	 */
2728 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2729 	return new_sector;
2730 }
2731 
2732 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2733 {
2734 	struct r5conf *conf = sh->raid_conf;
2735 	int raid_disks = sh->disks;
2736 	int data_disks = raid_disks - conf->max_degraded;
2737 	sector_t new_sector = sh->sector, check;
2738 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2739 					 : conf->chunk_sectors;
2740 	int algorithm = previous ? conf->prev_algo
2741 				 : conf->algorithm;
2742 	sector_t stripe;
2743 	int chunk_offset;
2744 	sector_t chunk_number;
2745 	int dummy1, dd_idx = i;
2746 	sector_t r_sector;
2747 	struct stripe_head sh2;
2748 
2749 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2750 	stripe = new_sector;
2751 
2752 	if (i == sh->pd_idx)
2753 		return 0;
2754 	switch(conf->level) {
2755 	case 4: break;
2756 	case 5:
2757 		switch (algorithm) {
2758 		case ALGORITHM_LEFT_ASYMMETRIC:
2759 		case ALGORITHM_RIGHT_ASYMMETRIC:
2760 			if (i > sh->pd_idx)
2761 				i--;
2762 			break;
2763 		case ALGORITHM_LEFT_SYMMETRIC:
2764 		case ALGORITHM_RIGHT_SYMMETRIC:
2765 			if (i < sh->pd_idx)
2766 				i += raid_disks;
2767 			i -= (sh->pd_idx + 1);
2768 			break;
2769 		case ALGORITHM_PARITY_0:
2770 			i -= 1;
2771 			break;
2772 		case ALGORITHM_PARITY_N:
2773 			break;
2774 		default:
2775 			BUG();
2776 		}
2777 		break;
2778 	case 6:
2779 		if (i == sh->qd_idx)
2780 			return 0; /* It is the Q disk */
2781 		switch (algorithm) {
2782 		case ALGORITHM_LEFT_ASYMMETRIC:
2783 		case ALGORITHM_RIGHT_ASYMMETRIC:
2784 		case ALGORITHM_ROTATING_ZERO_RESTART:
2785 		case ALGORITHM_ROTATING_N_RESTART:
2786 			if (sh->pd_idx == raid_disks-1)
2787 				i--;	/* Q D D D P */
2788 			else if (i > sh->pd_idx)
2789 				i -= 2; /* D D P Q D */
2790 			break;
2791 		case ALGORITHM_LEFT_SYMMETRIC:
2792 		case ALGORITHM_RIGHT_SYMMETRIC:
2793 			if (sh->pd_idx == raid_disks-1)
2794 				i--; /* Q D D D P */
2795 			else {
2796 				/* D D P Q D */
2797 				if (i < sh->pd_idx)
2798 					i += raid_disks;
2799 				i -= (sh->pd_idx + 2);
2800 			}
2801 			break;
2802 		case ALGORITHM_PARITY_0:
2803 			i -= 2;
2804 			break;
2805 		case ALGORITHM_PARITY_N:
2806 			break;
2807 		case ALGORITHM_ROTATING_N_CONTINUE:
2808 			/* Like left_symmetric, but P is before Q */
2809 			if (sh->pd_idx == 0)
2810 				i--;	/* P D D D Q */
2811 			else {
2812 				/* D D Q P D */
2813 				if (i < sh->pd_idx)
2814 					i += raid_disks;
2815 				i -= (sh->pd_idx + 1);
2816 			}
2817 			break;
2818 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2819 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2820 			if (i > sh->pd_idx)
2821 				i--;
2822 			break;
2823 		case ALGORITHM_LEFT_SYMMETRIC_6:
2824 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2825 			if (i < sh->pd_idx)
2826 				i += data_disks + 1;
2827 			i -= (sh->pd_idx + 1);
2828 			break;
2829 		case ALGORITHM_PARITY_0_6:
2830 			i -= 1;
2831 			break;
2832 		default:
2833 			BUG();
2834 		}
2835 		break;
2836 	}
2837 
2838 	chunk_number = stripe * data_disks + i;
2839 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2840 
2841 	check = raid5_compute_sector(conf, r_sector,
2842 				     previous, &dummy1, &sh2);
2843 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2844 		|| sh2.qd_idx != sh->qd_idx) {
2845 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2846 		       mdname(conf->mddev));
2847 		return 0;
2848 	}
2849 	return r_sector;
2850 }
2851 
2852 static void
2853 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2854 			 int rcw, int expand)
2855 {
2856 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2857 	struct r5conf *conf = sh->raid_conf;
2858 	int level = conf->level;
2859 
2860 	if (rcw) {
2861 
2862 		for (i = disks; i--; ) {
2863 			struct r5dev *dev = &sh->dev[i];
2864 
2865 			if (dev->towrite) {
2866 				set_bit(R5_LOCKED, &dev->flags);
2867 				set_bit(R5_Wantdrain, &dev->flags);
2868 				if (!expand)
2869 					clear_bit(R5_UPTODATE, &dev->flags);
2870 				s->locked++;
2871 			}
2872 		}
2873 		/* if we are not expanding this is a proper write request, and
2874 		 * there will be bios with new data to be drained into the
2875 		 * stripe cache
2876 		 */
2877 		if (!expand) {
2878 			if (!s->locked)
2879 				/* False alarm, nothing to do */
2880 				return;
2881 			sh->reconstruct_state = reconstruct_state_drain_run;
2882 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2883 		} else
2884 			sh->reconstruct_state = reconstruct_state_run;
2885 
2886 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2887 
2888 		if (s->locked + conf->max_degraded == disks)
2889 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2890 				atomic_inc(&conf->pending_full_writes);
2891 	} else {
2892 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2893 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2894 		BUG_ON(level == 6 &&
2895 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2896 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2897 
2898 		for (i = disks; i--; ) {
2899 			struct r5dev *dev = &sh->dev[i];
2900 			if (i == pd_idx || i == qd_idx)
2901 				continue;
2902 
2903 			if (dev->towrite &&
2904 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2905 			     test_bit(R5_Wantcompute, &dev->flags))) {
2906 				set_bit(R5_Wantdrain, &dev->flags);
2907 				set_bit(R5_LOCKED, &dev->flags);
2908 				clear_bit(R5_UPTODATE, &dev->flags);
2909 				s->locked++;
2910 			}
2911 		}
2912 		if (!s->locked)
2913 			/* False alarm - nothing to do */
2914 			return;
2915 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2916 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2917 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2918 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2919 	}
2920 
2921 	/* keep the parity disk(s) locked while asynchronous operations
2922 	 * are in flight
2923 	 */
2924 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2925 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2926 	s->locked++;
2927 
2928 	if (level == 6) {
2929 		int qd_idx = sh->qd_idx;
2930 		struct r5dev *dev = &sh->dev[qd_idx];
2931 
2932 		set_bit(R5_LOCKED, &dev->flags);
2933 		clear_bit(R5_UPTODATE, &dev->flags);
2934 		s->locked++;
2935 	}
2936 
2937 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2938 		__func__, (unsigned long long)sh->sector,
2939 		s->locked, s->ops_request);
2940 }
2941 
2942 /*
2943  * Each stripe/dev can have one or more bion attached.
2944  * toread/towrite point to the first in a chain.
2945  * The bi_next chain must be in order.
2946  */
2947 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2948 			  int forwrite, int previous)
2949 {
2950 	struct bio **bip;
2951 	struct r5conf *conf = sh->raid_conf;
2952 	int firstwrite=0;
2953 
2954 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2955 		(unsigned long long)bi->bi_iter.bi_sector,
2956 		(unsigned long long)sh->sector);
2957 
2958 	/*
2959 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2960 	 * reference count to avoid race. The reference count should already be
2961 	 * increased before this function is called (for example, in
2962 	 * make_request()), so other bio sharing this stripe will not free the
2963 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2964 	 * protect it.
2965 	 */
2966 	spin_lock_irq(&sh->stripe_lock);
2967 	/* Don't allow new IO added to stripes in batch list */
2968 	if (sh->batch_head)
2969 		goto overlap;
2970 	if (forwrite) {
2971 		bip = &sh->dev[dd_idx].towrite;
2972 		if (*bip == NULL)
2973 			firstwrite = 1;
2974 	} else
2975 		bip = &sh->dev[dd_idx].toread;
2976 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2977 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2978 			goto overlap;
2979 		bip = & (*bip)->bi_next;
2980 	}
2981 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2982 		goto overlap;
2983 
2984 	if (!forwrite || previous)
2985 		clear_bit(STRIPE_BATCH_READY, &sh->state);
2986 
2987 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2988 	if (*bip)
2989 		bi->bi_next = *bip;
2990 	*bip = bi;
2991 	raid5_inc_bi_active_stripes(bi);
2992 
2993 	if (forwrite) {
2994 		/* check if page is covered */
2995 		sector_t sector = sh->dev[dd_idx].sector;
2996 		for (bi=sh->dev[dd_idx].towrite;
2997 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2998 			     bi && bi->bi_iter.bi_sector <= sector;
2999 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3000 			if (bio_end_sector(bi) >= sector)
3001 				sector = bio_end_sector(bi);
3002 		}
3003 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3004 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3005 				sh->overwrite_disks++;
3006 	}
3007 
3008 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3009 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3010 		(unsigned long long)sh->sector, dd_idx);
3011 
3012 	if (conf->mddev->bitmap && firstwrite) {
3013 		/* Cannot hold spinlock over bitmap_startwrite,
3014 		 * but must ensure this isn't added to a batch until
3015 		 * we have added to the bitmap and set bm_seq.
3016 		 * So set STRIPE_BITMAP_PENDING to prevent
3017 		 * batching.
3018 		 * If multiple add_stripe_bio() calls race here they
3019 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3020 		 * to complete "bitmap_startwrite" gets to set
3021 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3022 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3023 		 * any more.
3024 		 */
3025 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3026 		spin_unlock_irq(&sh->stripe_lock);
3027 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3028 				  STRIPE_SECTORS, 0);
3029 		spin_lock_irq(&sh->stripe_lock);
3030 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3031 		if (!sh->batch_head) {
3032 			sh->bm_seq = conf->seq_flush+1;
3033 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3034 		}
3035 	}
3036 	spin_unlock_irq(&sh->stripe_lock);
3037 
3038 	if (stripe_can_batch(sh))
3039 		stripe_add_to_batch_list(conf, sh);
3040 	return 1;
3041 
3042  overlap:
3043 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3044 	spin_unlock_irq(&sh->stripe_lock);
3045 	return 0;
3046 }
3047 
3048 static void end_reshape(struct r5conf *conf);
3049 
3050 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3051 			    struct stripe_head *sh)
3052 {
3053 	int sectors_per_chunk =
3054 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3055 	int dd_idx;
3056 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3057 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3058 
3059 	raid5_compute_sector(conf,
3060 			     stripe * (disks - conf->max_degraded)
3061 			     *sectors_per_chunk + chunk_offset,
3062 			     previous,
3063 			     &dd_idx, sh);
3064 }
3065 
3066 static void
3067 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3068 				struct stripe_head_state *s, int disks,
3069 				struct bio **return_bi)
3070 {
3071 	int i;
3072 	BUG_ON(sh->batch_head);
3073 	for (i = disks; i--; ) {
3074 		struct bio *bi;
3075 		int bitmap_end = 0;
3076 
3077 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3078 			struct md_rdev *rdev;
3079 			rcu_read_lock();
3080 			rdev = rcu_dereference(conf->disks[i].rdev);
3081 			if (rdev && test_bit(In_sync, &rdev->flags))
3082 				atomic_inc(&rdev->nr_pending);
3083 			else
3084 				rdev = NULL;
3085 			rcu_read_unlock();
3086 			if (rdev) {
3087 				if (!rdev_set_badblocks(
3088 					    rdev,
3089 					    sh->sector,
3090 					    STRIPE_SECTORS, 0))
3091 					md_error(conf->mddev, rdev);
3092 				rdev_dec_pending(rdev, conf->mddev);
3093 			}
3094 		}
3095 		spin_lock_irq(&sh->stripe_lock);
3096 		/* fail all writes first */
3097 		bi = sh->dev[i].towrite;
3098 		sh->dev[i].towrite = NULL;
3099 		sh->overwrite_disks = 0;
3100 		spin_unlock_irq(&sh->stripe_lock);
3101 		if (bi)
3102 			bitmap_end = 1;
3103 
3104 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3105 			wake_up(&conf->wait_for_overlap);
3106 
3107 		while (bi && bi->bi_iter.bi_sector <
3108 			sh->dev[i].sector + STRIPE_SECTORS) {
3109 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3110 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3111 			if (!raid5_dec_bi_active_stripes(bi)) {
3112 				md_write_end(conf->mddev);
3113 				bi->bi_next = *return_bi;
3114 				*return_bi = bi;
3115 			}
3116 			bi = nextbi;
3117 		}
3118 		if (bitmap_end)
3119 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3120 				STRIPE_SECTORS, 0, 0);
3121 		bitmap_end = 0;
3122 		/* and fail all 'written' */
3123 		bi = sh->dev[i].written;
3124 		sh->dev[i].written = NULL;
3125 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3126 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3127 			sh->dev[i].page = sh->dev[i].orig_page;
3128 		}
3129 
3130 		if (bi) bitmap_end = 1;
3131 		while (bi && bi->bi_iter.bi_sector <
3132 		       sh->dev[i].sector + STRIPE_SECTORS) {
3133 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3134 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3135 			if (!raid5_dec_bi_active_stripes(bi)) {
3136 				md_write_end(conf->mddev);
3137 				bi->bi_next = *return_bi;
3138 				*return_bi = bi;
3139 			}
3140 			bi = bi2;
3141 		}
3142 
3143 		/* fail any reads if this device is non-operational and
3144 		 * the data has not reached the cache yet.
3145 		 */
3146 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3147 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3148 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3149 			spin_lock_irq(&sh->stripe_lock);
3150 			bi = sh->dev[i].toread;
3151 			sh->dev[i].toread = NULL;
3152 			spin_unlock_irq(&sh->stripe_lock);
3153 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3154 				wake_up(&conf->wait_for_overlap);
3155 			while (bi && bi->bi_iter.bi_sector <
3156 			       sh->dev[i].sector + STRIPE_SECTORS) {
3157 				struct bio *nextbi =
3158 					r5_next_bio(bi, sh->dev[i].sector);
3159 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
3160 				if (!raid5_dec_bi_active_stripes(bi)) {
3161 					bi->bi_next = *return_bi;
3162 					*return_bi = bi;
3163 				}
3164 				bi = nextbi;
3165 			}
3166 		}
3167 		if (bitmap_end)
3168 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3169 					STRIPE_SECTORS, 0, 0);
3170 		/* If we were in the middle of a write the parity block might
3171 		 * still be locked - so just clear all R5_LOCKED flags
3172 		 */
3173 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3174 	}
3175 
3176 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3177 		if (atomic_dec_and_test(&conf->pending_full_writes))
3178 			md_wakeup_thread(conf->mddev->thread);
3179 }
3180 
3181 static void
3182 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3183 		   struct stripe_head_state *s)
3184 {
3185 	int abort = 0;
3186 	int i;
3187 
3188 	BUG_ON(sh->batch_head);
3189 	clear_bit(STRIPE_SYNCING, &sh->state);
3190 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3191 		wake_up(&conf->wait_for_overlap);
3192 	s->syncing = 0;
3193 	s->replacing = 0;
3194 	/* There is nothing more to do for sync/check/repair.
3195 	 * Don't even need to abort as that is handled elsewhere
3196 	 * if needed, and not always wanted e.g. if there is a known
3197 	 * bad block here.
3198 	 * For recover/replace we need to record a bad block on all
3199 	 * non-sync devices, or abort the recovery
3200 	 */
3201 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3202 		/* During recovery devices cannot be removed, so
3203 		 * locking and refcounting of rdevs is not needed
3204 		 */
3205 		for (i = 0; i < conf->raid_disks; i++) {
3206 			struct md_rdev *rdev = conf->disks[i].rdev;
3207 			if (rdev
3208 			    && !test_bit(Faulty, &rdev->flags)
3209 			    && !test_bit(In_sync, &rdev->flags)
3210 			    && !rdev_set_badblocks(rdev, sh->sector,
3211 						   STRIPE_SECTORS, 0))
3212 				abort = 1;
3213 			rdev = conf->disks[i].replacement;
3214 			if (rdev
3215 			    && !test_bit(Faulty, &rdev->flags)
3216 			    && !test_bit(In_sync, &rdev->flags)
3217 			    && !rdev_set_badblocks(rdev, sh->sector,
3218 						   STRIPE_SECTORS, 0))
3219 				abort = 1;
3220 		}
3221 		if (abort)
3222 			conf->recovery_disabled =
3223 				conf->mddev->recovery_disabled;
3224 	}
3225 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3226 }
3227 
3228 static int want_replace(struct stripe_head *sh, int disk_idx)
3229 {
3230 	struct md_rdev *rdev;
3231 	int rv = 0;
3232 	/* Doing recovery so rcu locking not required */
3233 	rdev = sh->raid_conf->disks[disk_idx].replacement;
3234 	if (rdev
3235 	    && !test_bit(Faulty, &rdev->flags)
3236 	    && !test_bit(In_sync, &rdev->flags)
3237 	    && (rdev->recovery_offset <= sh->sector
3238 		|| rdev->mddev->recovery_cp <= sh->sector))
3239 		rv = 1;
3240 
3241 	return rv;
3242 }
3243 
3244 /* fetch_block - checks the given member device to see if its data needs
3245  * to be read or computed to satisfy a request.
3246  *
3247  * Returns 1 when no more member devices need to be checked, otherwise returns
3248  * 0 to tell the loop in handle_stripe_fill to continue
3249  */
3250 
3251 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3252 			   int disk_idx, int disks)
3253 {
3254 	struct r5dev *dev = &sh->dev[disk_idx];
3255 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3256 				  &sh->dev[s->failed_num[1]] };
3257 	int i;
3258 
3259 
3260 	if (test_bit(R5_LOCKED, &dev->flags) ||
3261 	    test_bit(R5_UPTODATE, &dev->flags))
3262 		/* No point reading this as we already have it or have
3263 		 * decided to get it.
3264 		 */
3265 		return 0;
3266 
3267 	if (dev->toread ||
3268 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3269 		/* We need this block to directly satisfy a request */
3270 		return 1;
3271 
3272 	if (s->syncing || s->expanding ||
3273 	    (s->replacing && want_replace(sh, disk_idx)))
3274 		/* When syncing, or expanding we read everything.
3275 		 * When replacing, we need the replaced block.
3276 		 */
3277 		return 1;
3278 
3279 	if ((s->failed >= 1 && fdev[0]->toread) ||
3280 	    (s->failed >= 2 && fdev[1]->toread))
3281 		/* If we want to read from a failed device, then
3282 		 * we need to actually read every other device.
3283 		 */
3284 		return 1;
3285 
3286 	/* Sometimes neither read-modify-write nor reconstruct-write
3287 	 * cycles can work.  In those cases we read every block we
3288 	 * can.  Then the parity-update is certain to have enough to
3289 	 * work with.
3290 	 * This can only be a problem when we need to write something,
3291 	 * and some device has failed.  If either of those tests
3292 	 * fail we need look no further.
3293 	 */
3294 	if (!s->failed || !s->to_write)
3295 		return 0;
3296 
3297 	if (test_bit(R5_Insync, &dev->flags) &&
3298 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3299 		/* Pre-reads at not permitted until after short delay
3300 		 * to gather multiple requests.  However if this
3301 		 * device is no Insync, the block could only be be computed
3302 		 * and there is no need to delay that.
3303 		 */
3304 		return 0;
3305 
3306 	for (i = 0; i < s->failed; i++) {
3307 		if (fdev[i]->towrite &&
3308 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3309 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3310 			/* If we have a partial write to a failed
3311 			 * device, then we will need to reconstruct
3312 			 * the content of that device, so all other
3313 			 * devices must be read.
3314 			 */
3315 			return 1;
3316 	}
3317 
3318 	/* If we are forced to do a reconstruct-write, either because
3319 	 * the current RAID6 implementation only supports that, or
3320 	 * or because parity cannot be trusted and we are currently
3321 	 * recovering it, there is extra need to be careful.
3322 	 * If one of the devices that we would need to read, because
3323 	 * it is not being overwritten (and maybe not written at all)
3324 	 * is missing/faulty, then we need to read everything we can.
3325 	 */
3326 	if (sh->raid_conf->level != 6 &&
3327 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3328 		/* reconstruct-write isn't being forced */
3329 		return 0;
3330 	for (i = 0; i < s->failed; i++) {
3331 		if (s->failed_num[i] != sh->pd_idx &&
3332 		    s->failed_num[i] != sh->qd_idx &&
3333 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3334 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3335 			return 1;
3336 	}
3337 
3338 	return 0;
3339 }
3340 
3341 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3342 		       int disk_idx, int disks)
3343 {
3344 	struct r5dev *dev = &sh->dev[disk_idx];
3345 
3346 	/* is the data in this block needed, and can we get it? */
3347 	if (need_this_block(sh, s, disk_idx, disks)) {
3348 		/* we would like to get this block, possibly by computing it,
3349 		 * otherwise read it if the backing disk is insync
3350 		 */
3351 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3352 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3353 		BUG_ON(sh->batch_head);
3354 		if ((s->uptodate == disks - 1) &&
3355 		    (s->failed && (disk_idx == s->failed_num[0] ||
3356 				   disk_idx == s->failed_num[1]))) {
3357 			/* have disk failed, and we're requested to fetch it;
3358 			 * do compute it
3359 			 */
3360 			pr_debug("Computing stripe %llu block %d\n",
3361 			       (unsigned long long)sh->sector, disk_idx);
3362 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3363 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3364 			set_bit(R5_Wantcompute, &dev->flags);
3365 			sh->ops.target = disk_idx;
3366 			sh->ops.target2 = -1; /* no 2nd target */
3367 			s->req_compute = 1;
3368 			/* Careful: from this point on 'uptodate' is in the eye
3369 			 * of raid_run_ops which services 'compute' operations
3370 			 * before writes. R5_Wantcompute flags a block that will
3371 			 * be R5_UPTODATE by the time it is needed for a
3372 			 * subsequent operation.
3373 			 */
3374 			s->uptodate++;
3375 			return 1;
3376 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3377 			/* Computing 2-failure is *very* expensive; only
3378 			 * do it if failed >= 2
3379 			 */
3380 			int other;
3381 			for (other = disks; other--; ) {
3382 				if (other == disk_idx)
3383 					continue;
3384 				if (!test_bit(R5_UPTODATE,
3385 				      &sh->dev[other].flags))
3386 					break;
3387 			}
3388 			BUG_ON(other < 0);
3389 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3390 			       (unsigned long long)sh->sector,
3391 			       disk_idx, other);
3392 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3393 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3394 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3395 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3396 			sh->ops.target = disk_idx;
3397 			sh->ops.target2 = other;
3398 			s->uptodate += 2;
3399 			s->req_compute = 1;
3400 			return 1;
3401 		} else if (test_bit(R5_Insync, &dev->flags)) {
3402 			set_bit(R5_LOCKED, &dev->flags);
3403 			set_bit(R5_Wantread, &dev->flags);
3404 			s->locked++;
3405 			pr_debug("Reading block %d (sync=%d)\n",
3406 				disk_idx, s->syncing);
3407 		}
3408 	}
3409 
3410 	return 0;
3411 }
3412 
3413 /**
3414  * handle_stripe_fill - read or compute data to satisfy pending requests.
3415  */
3416 static void handle_stripe_fill(struct stripe_head *sh,
3417 			       struct stripe_head_state *s,
3418 			       int disks)
3419 {
3420 	int i;
3421 
3422 	/* look for blocks to read/compute, skip this if a compute
3423 	 * is already in flight, or if the stripe contents are in the
3424 	 * midst of changing due to a write
3425 	 */
3426 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3427 	    !sh->reconstruct_state)
3428 		for (i = disks; i--; )
3429 			if (fetch_block(sh, s, i, disks))
3430 				break;
3431 	set_bit(STRIPE_HANDLE, &sh->state);
3432 }
3433 
3434 static void break_stripe_batch_list(struct stripe_head *head_sh,
3435 				    unsigned long handle_flags);
3436 /* handle_stripe_clean_event
3437  * any written block on an uptodate or failed drive can be returned.
3438  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3439  * never LOCKED, so we don't need to test 'failed' directly.
3440  */
3441 static void handle_stripe_clean_event(struct r5conf *conf,
3442 	struct stripe_head *sh, int disks, struct bio **return_bi)
3443 {
3444 	int i;
3445 	struct r5dev *dev;
3446 	int discard_pending = 0;
3447 	struct stripe_head *head_sh = sh;
3448 	bool do_endio = false;
3449 
3450 	for (i = disks; i--; )
3451 		if (sh->dev[i].written) {
3452 			dev = &sh->dev[i];
3453 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3454 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3455 			     test_bit(R5_Discard, &dev->flags) ||
3456 			     test_bit(R5_SkipCopy, &dev->flags))) {
3457 				/* We can return any write requests */
3458 				struct bio *wbi, *wbi2;
3459 				pr_debug("Return write for disc %d\n", i);
3460 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3461 					clear_bit(R5_UPTODATE, &dev->flags);
3462 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3463 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3464 				}
3465 				do_endio = true;
3466 
3467 returnbi:
3468 				dev->page = dev->orig_page;
3469 				wbi = dev->written;
3470 				dev->written = NULL;
3471 				while (wbi && wbi->bi_iter.bi_sector <
3472 					dev->sector + STRIPE_SECTORS) {
3473 					wbi2 = r5_next_bio(wbi, dev->sector);
3474 					if (!raid5_dec_bi_active_stripes(wbi)) {
3475 						md_write_end(conf->mddev);
3476 						wbi->bi_next = *return_bi;
3477 						*return_bi = wbi;
3478 					}
3479 					wbi = wbi2;
3480 				}
3481 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3482 						STRIPE_SECTORS,
3483 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3484 						0);
3485 				if (head_sh->batch_head) {
3486 					sh = list_first_entry(&sh->batch_list,
3487 							      struct stripe_head,
3488 							      batch_list);
3489 					if (sh != head_sh) {
3490 						dev = &sh->dev[i];
3491 						goto returnbi;
3492 					}
3493 				}
3494 				sh = head_sh;
3495 				dev = &sh->dev[i];
3496 			} else if (test_bit(R5_Discard, &dev->flags))
3497 				discard_pending = 1;
3498 			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3499 			WARN_ON(dev->page != dev->orig_page);
3500 		}
3501 	if (!discard_pending &&
3502 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3503 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3504 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3505 		if (sh->qd_idx >= 0) {
3506 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3507 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3508 		}
3509 		/* now that discard is done we can proceed with any sync */
3510 		clear_bit(STRIPE_DISCARD, &sh->state);
3511 		/*
3512 		 * SCSI discard will change some bio fields and the stripe has
3513 		 * no updated data, so remove it from hash list and the stripe
3514 		 * will be reinitialized
3515 		 */
3516 		spin_lock_irq(&conf->device_lock);
3517 unhash:
3518 		remove_hash(sh);
3519 		if (head_sh->batch_head) {
3520 			sh = list_first_entry(&sh->batch_list,
3521 					      struct stripe_head, batch_list);
3522 			if (sh != head_sh)
3523 					goto unhash;
3524 		}
3525 		spin_unlock_irq(&conf->device_lock);
3526 		sh = head_sh;
3527 
3528 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3529 			set_bit(STRIPE_HANDLE, &sh->state);
3530 
3531 	}
3532 
3533 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3534 		if (atomic_dec_and_test(&conf->pending_full_writes))
3535 			md_wakeup_thread(conf->mddev->thread);
3536 
3537 	if (head_sh->batch_head && do_endio)
3538 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3539 }
3540 
3541 static void handle_stripe_dirtying(struct r5conf *conf,
3542 				   struct stripe_head *sh,
3543 				   struct stripe_head_state *s,
3544 				   int disks)
3545 {
3546 	int rmw = 0, rcw = 0, i;
3547 	sector_t recovery_cp = conf->mddev->recovery_cp;
3548 
3549 	/* Check whether resync is now happening or should start.
3550 	 * If yes, then the array is dirty (after unclean shutdown or
3551 	 * initial creation), so parity in some stripes might be inconsistent.
3552 	 * In this case, we need to always do reconstruct-write, to ensure
3553 	 * that in case of drive failure or read-error correction, we
3554 	 * generate correct data from the parity.
3555 	 */
3556 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3557 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3558 	     s->failed == 0)) {
3559 		/* Calculate the real rcw later - for now make it
3560 		 * look like rcw is cheaper
3561 		 */
3562 		rcw = 1; rmw = 2;
3563 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3564 			 conf->rmw_level, (unsigned long long)recovery_cp,
3565 			 (unsigned long long)sh->sector);
3566 	} else for (i = disks; i--; ) {
3567 		/* would I have to read this buffer for read_modify_write */
3568 		struct r5dev *dev = &sh->dev[i];
3569 		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3570 		    !test_bit(R5_LOCKED, &dev->flags) &&
3571 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3572 		      test_bit(R5_Wantcompute, &dev->flags))) {
3573 			if (test_bit(R5_Insync, &dev->flags))
3574 				rmw++;
3575 			else
3576 				rmw += 2*disks;  /* cannot read it */
3577 		}
3578 		/* Would I have to read this buffer for reconstruct_write */
3579 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3580 		    i != sh->pd_idx && i != sh->qd_idx &&
3581 		    !test_bit(R5_LOCKED, &dev->flags) &&
3582 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3583 		    test_bit(R5_Wantcompute, &dev->flags))) {
3584 			if (test_bit(R5_Insync, &dev->flags))
3585 				rcw++;
3586 			else
3587 				rcw += 2*disks;
3588 		}
3589 	}
3590 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3591 		(unsigned long long)sh->sector, rmw, rcw);
3592 	set_bit(STRIPE_HANDLE, &sh->state);
3593 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3594 		/* prefer read-modify-write, but need to get some data */
3595 		if (conf->mddev->queue)
3596 			blk_add_trace_msg(conf->mddev->queue,
3597 					  "raid5 rmw %llu %d",
3598 					  (unsigned long long)sh->sector, rmw);
3599 		for (i = disks; i--; ) {
3600 			struct r5dev *dev = &sh->dev[i];
3601 			if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3602 			    !test_bit(R5_LOCKED, &dev->flags) &&
3603 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3604 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3605 			    test_bit(R5_Insync, &dev->flags)) {
3606 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3607 					     &sh->state)) {
3608 					pr_debug("Read_old block %d for r-m-w\n",
3609 						 i);
3610 					set_bit(R5_LOCKED, &dev->flags);
3611 					set_bit(R5_Wantread, &dev->flags);
3612 					s->locked++;
3613 				} else {
3614 					set_bit(STRIPE_DELAYED, &sh->state);
3615 					set_bit(STRIPE_HANDLE, &sh->state);
3616 				}
3617 			}
3618 		}
3619 	}
3620 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3621 		/* want reconstruct write, but need to get some data */
3622 		int qread =0;
3623 		rcw = 0;
3624 		for (i = disks; i--; ) {
3625 			struct r5dev *dev = &sh->dev[i];
3626 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3627 			    i != sh->pd_idx && i != sh->qd_idx &&
3628 			    !test_bit(R5_LOCKED, &dev->flags) &&
3629 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3630 			      test_bit(R5_Wantcompute, &dev->flags))) {
3631 				rcw++;
3632 				if (test_bit(R5_Insync, &dev->flags) &&
3633 				    test_bit(STRIPE_PREREAD_ACTIVE,
3634 					     &sh->state)) {
3635 					pr_debug("Read_old block "
3636 						"%d for Reconstruct\n", i);
3637 					set_bit(R5_LOCKED, &dev->flags);
3638 					set_bit(R5_Wantread, &dev->flags);
3639 					s->locked++;
3640 					qread++;
3641 				} else {
3642 					set_bit(STRIPE_DELAYED, &sh->state);
3643 					set_bit(STRIPE_HANDLE, &sh->state);
3644 				}
3645 			}
3646 		}
3647 		if (rcw && conf->mddev->queue)
3648 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3649 					  (unsigned long long)sh->sector,
3650 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3651 	}
3652 
3653 	if (rcw > disks && rmw > disks &&
3654 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3655 		set_bit(STRIPE_DELAYED, &sh->state);
3656 
3657 	/* now if nothing is locked, and if we have enough data,
3658 	 * we can start a write request
3659 	 */
3660 	/* since handle_stripe can be called at any time we need to handle the
3661 	 * case where a compute block operation has been submitted and then a
3662 	 * subsequent call wants to start a write request.  raid_run_ops only
3663 	 * handles the case where compute block and reconstruct are requested
3664 	 * simultaneously.  If this is not the case then new writes need to be
3665 	 * held off until the compute completes.
3666 	 */
3667 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3668 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3669 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3670 		schedule_reconstruction(sh, s, rcw == 0, 0);
3671 }
3672 
3673 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3674 				struct stripe_head_state *s, int disks)
3675 {
3676 	struct r5dev *dev = NULL;
3677 
3678 	BUG_ON(sh->batch_head);
3679 	set_bit(STRIPE_HANDLE, &sh->state);
3680 
3681 	switch (sh->check_state) {
3682 	case check_state_idle:
3683 		/* start a new check operation if there are no failures */
3684 		if (s->failed == 0) {
3685 			BUG_ON(s->uptodate != disks);
3686 			sh->check_state = check_state_run;
3687 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3688 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3689 			s->uptodate--;
3690 			break;
3691 		}
3692 		dev = &sh->dev[s->failed_num[0]];
3693 		/* fall through */
3694 	case check_state_compute_result:
3695 		sh->check_state = check_state_idle;
3696 		if (!dev)
3697 			dev = &sh->dev[sh->pd_idx];
3698 
3699 		/* check that a write has not made the stripe insync */
3700 		if (test_bit(STRIPE_INSYNC, &sh->state))
3701 			break;
3702 
3703 		/* either failed parity check, or recovery is happening */
3704 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3705 		BUG_ON(s->uptodate != disks);
3706 
3707 		set_bit(R5_LOCKED, &dev->flags);
3708 		s->locked++;
3709 		set_bit(R5_Wantwrite, &dev->flags);
3710 
3711 		clear_bit(STRIPE_DEGRADED, &sh->state);
3712 		set_bit(STRIPE_INSYNC, &sh->state);
3713 		break;
3714 	case check_state_run:
3715 		break; /* we will be called again upon completion */
3716 	case check_state_check_result:
3717 		sh->check_state = check_state_idle;
3718 
3719 		/* if a failure occurred during the check operation, leave
3720 		 * STRIPE_INSYNC not set and let the stripe be handled again
3721 		 */
3722 		if (s->failed)
3723 			break;
3724 
3725 		/* handle a successful check operation, if parity is correct
3726 		 * we are done.  Otherwise update the mismatch count and repair
3727 		 * parity if !MD_RECOVERY_CHECK
3728 		 */
3729 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3730 			/* parity is correct (on disc,
3731 			 * not in buffer any more)
3732 			 */
3733 			set_bit(STRIPE_INSYNC, &sh->state);
3734 		else {
3735 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3736 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3737 				/* don't try to repair!! */
3738 				set_bit(STRIPE_INSYNC, &sh->state);
3739 			else {
3740 				sh->check_state = check_state_compute_run;
3741 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3742 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3743 				set_bit(R5_Wantcompute,
3744 					&sh->dev[sh->pd_idx].flags);
3745 				sh->ops.target = sh->pd_idx;
3746 				sh->ops.target2 = -1;
3747 				s->uptodate++;
3748 			}
3749 		}
3750 		break;
3751 	case check_state_compute_run:
3752 		break;
3753 	default:
3754 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3755 		       __func__, sh->check_state,
3756 		       (unsigned long long) sh->sector);
3757 		BUG();
3758 	}
3759 }
3760 
3761 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3762 				  struct stripe_head_state *s,
3763 				  int disks)
3764 {
3765 	int pd_idx = sh->pd_idx;
3766 	int qd_idx = sh->qd_idx;
3767 	struct r5dev *dev;
3768 
3769 	BUG_ON(sh->batch_head);
3770 	set_bit(STRIPE_HANDLE, &sh->state);
3771 
3772 	BUG_ON(s->failed > 2);
3773 
3774 	/* Want to check and possibly repair P and Q.
3775 	 * However there could be one 'failed' device, in which
3776 	 * case we can only check one of them, possibly using the
3777 	 * other to generate missing data
3778 	 */
3779 
3780 	switch (sh->check_state) {
3781 	case check_state_idle:
3782 		/* start a new check operation if there are < 2 failures */
3783 		if (s->failed == s->q_failed) {
3784 			/* The only possible failed device holds Q, so it
3785 			 * makes sense to check P (If anything else were failed,
3786 			 * we would have used P to recreate it).
3787 			 */
3788 			sh->check_state = check_state_run;
3789 		}
3790 		if (!s->q_failed && s->failed < 2) {
3791 			/* Q is not failed, and we didn't use it to generate
3792 			 * anything, so it makes sense to check it
3793 			 */
3794 			if (sh->check_state == check_state_run)
3795 				sh->check_state = check_state_run_pq;
3796 			else
3797 				sh->check_state = check_state_run_q;
3798 		}
3799 
3800 		/* discard potentially stale zero_sum_result */
3801 		sh->ops.zero_sum_result = 0;
3802 
3803 		if (sh->check_state == check_state_run) {
3804 			/* async_xor_zero_sum destroys the contents of P */
3805 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3806 			s->uptodate--;
3807 		}
3808 		if (sh->check_state >= check_state_run &&
3809 		    sh->check_state <= check_state_run_pq) {
3810 			/* async_syndrome_zero_sum preserves P and Q, so
3811 			 * no need to mark them !uptodate here
3812 			 */
3813 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3814 			break;
3815 		}
3816 
3817 		/* we have 2-disk failure */
3818 		BUG_ON(s->failed != 2);
3819 		/* fall through */
3820 	case check_state_compute_result:
3821 		sh->check_state = check_state_idle;
3822 
3823 		/* check that a write has not made the stripe insync */
3824 		if (test_bit(STRIPE_INSYNC, &sh->state))
3825 			break;
3826 
3827 		/* now write out any block on a failed drive,
3828 		 * or P or Q if they were recomputed
3829 		 */
3830 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3831 		if (s->failed == 2) {
3832 			dev = &sh->dev[s->failed_num[1]];
3833 			s->locked++;
3834 			set_bit(R5_LOCKED, &dev->flags);
3835 			set_bit(R5_Wantwrite, &dev->flags);
3836 		}
3837 		if (s->failed >= 1) {
3838 			dev = &sh->dev[s->failed_num[0]];
3839 			s->locked++;
3840 			set_bit(R5_LOCKED, &dev->flags);
3841 			set_bit(R5_Wantwrite, &dev->flags);
3842 		}
3843 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3844 			dev = &sh->dev[pd_idx];
3845 			s->locked++;
3846 			set_bit(R5_LOCKED, &dev->flags);
3847 			set_bit(R5_Wantwrite, &dev->flags);
3848 		}
3849 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3850 			dev = &sh->dev[qd_idx];
3851 			s->locked++;
3852 			set_bit(R5_LOCKED, &dev->flags);
3853 			set_bit(R5_Wantwrite, &dev->flags);
3854 		}
3855 		clear_bit(STRIPE_DEGRADED, &sh->state);
3856 
3857 		set_bit(STRIPE_INSYNC, &sh->state);
3858 		break;
3859 	case check_state_run:
3860 	case check_state_run_q:
3861 	case check_state_run_pq:
3862 		break; /* we will be called again upon completion */
3863 	case check_state_check_result:
3864 		sh->check_state = check_state_idle;
3865 
3866 		/* handle a successful check operation, if parity is correct
3867 		 * we are done.  Otherwise update the mismatch count and repair
3868 		 * parity if !MD_RECOVERY_CHECK
3869 		 */
3870 		if (sh->ops.zero_sum_result == 0) {
3871 			/* both parities are correct */
3872 			if (!s->failed)
3873 				set_bit(STRIPE_INSYNC, &sh->state);
3874 			else {
3875 				/* in contrast to the raid5 case we can validate
3876 				 * parity, but still have a failure to write
3877 				 * back
3878 				 */
3879 				sh->check_state = check_state_compute_result;
3880 				/* Returning at this point means that we may go
3881 				 * off and bring p and/or q uptodate again so
3882 				 * we make sure to check zero_sum_result again
3883 				 * to verify if p or q need writeback
3884 				 */
3885 			}
3886 		} else {
3887 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3888 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3889 				/* don't try to repair!! */
3890 				set_bit(STRIPE_INSYNC, &sh->state);
3891 			else {
3892 				int *target = &sh->ops.target;
3893 
3894 				sh->ops.target = -1;
3895 				sh->ops.target2 = -1;
3896 				sh->check_state = check_state_compute_run;
3897 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3898 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3899 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3900 					set_bit(R5_Wantcompute,
3901 						&sh->dev[pd_idx].flags);
3902 					*target = pd_idx;
3903 					target = &sh->ops.target2;
3904 					s->uptodate++;
3905 				}
3906 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3907 					set_bit(R5_Wantcompute,
3908 						&sh->dev[qd_idx].flags);
3909 					*target = qd_idx;
3910 					s->uptodate++;
3911 				}
3912 			}
3913 		}
3914 		break;
3915 	case check_state_compute_run:
3916 		break;
3917 	default:
3918 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3919 		       __func__, sh->check_state,
3920 		       (unsigned long long) sh->sector);
3921 		BUG();
3922 	}
3923 }
3924 
3925 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3926 {
3927 	int i;
3928 
3929 	/* We have read all the blocks in this stripe and now we need to
3930 	 * copy some of them into a target stripe for expand.
3931 	 */
3932 	struct dma_async_tx_descriptor *tx = NULL;
3933 	BUG_ON(sh->batch_head);
3934 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3935 	for (i = 0; i < sh->disks; i++)
3936 		if (i != sh->pd_idx && i != sh->qd_idx) {
3937 			int dd_idx, j;
3938 			struct stripe_head *sh2;
3939 			struct async_submit_ctl submit;
3940 
3941 			sector_t bn = compute_blocknr(sh, i, 1);
3942 			sector_t s = raid5_compute_sector(conf, bn, 0,
3943 							  &dd_idx, NULL);
3944 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3945 			if (sh2 == NULL)
3946 				/* so far only the early blocks of this stripe
3947 				 * have been requested.  When later blocks
3948 				 * get requested, we will try again
3949 				 */
3950 				continue;
3951 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3952 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3953 				/* must have already done this block */
3954 				release_stripe(sh2);
3955 				continue;
3956 			}
3957 
3958 			/* place all the copies on one channel */
3959 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3960 			tx = async_memcpy(sh2->dev[dd_idx].page,
3961 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3962 					  &submit);
3963 
3964 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3965 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3966 			for (j = 0; j < conf->raid_disks; j++)
3967 				if (j != sh2->pd_idx &&
3968 				    j != sh2->qd_idx &&
3969 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3970 					break;
3971 			if (j == conf->raid_disks) {
3972 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3973 				set_bit(STRIPE_HANDLE, &sh2->state);
3974 			}
3975 			release_stripe(sh2);
3976 
3977 		}
3978 	/* done submitting copies, wait for them to complete */
3979 	async_tx_quiesce(&tx);
3980 }
3981 
3982 /*
3983  * handle_stripe - do things to a stripe.
3984  *
3985  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3986  * state of various bits to see what needs to be done.
3987  * Possible results:
3988  *    return some read requests which now have data
3989  *    return some write requests which are safely on storage
3990  *    schedule a read on some buffers
3991  *    schedule a write of some buffers
3992  *    return confirmation of parity correctness
3993  *
3994  */
3995 
3996 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3997 {
3998 	struct r5conf *conf = sh->raid_conf;
3999 	int disks = sh->disks;
4000 	struct r5dev *dev;
4001 	int i;
4002 	int do_recovery = 0;
4003 
4004 	memset(s, 0, sizeof(*s));
4005 
4006 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4007 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4008 	s->failed_num[0] = -1;
4009 	s->failed_num[1] = -1;
4010 
4011 	/* Now to look around and see what can be done */
4012 	rcu_read_lock();
4013 	for (i=disks; i--; ) {
4014 		struct md_rdev *rdev;
4015 		sector_t first_bad;
4016 		int bad_sectors;
4017 		int is_bad = 0;
4018 
4019 		dev = &sh->dev[i];
4020 
4021 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4022 			 i, dev->flags,
4023 			 dev->toread, dev->towrite, dev->written);
4024 		/* maybe we can reply to a read
4025 		 *
4026 		 * new wantfill requests are only permitted while
4027 		 * ops_complete_biofill is guaranteed to be inactive
4028 		 */
4029 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4030 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4031 			set_bit(R5_Wantfill, &dev->flags);
4032 
4033 		/* now count some things */
4034 		if (test_bit(R5_LOCKED, &dev->flags))
4035 			s->locked++;
4036 		if (test_bit(R5_UPTODATE, &dev->flags))
4037 			s->uptodate++;
4038 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4039 			s->compute++;
4040 			BUG_ON(s->compute > 2);
4041 		}
4042 
4043 		if (test_bit(R5_Wantfill, &dev->flags))
4044 			s->to_fill++;
4045 		else if (dev->toread)
4046 			s->to_read++;
4047 		if (dev->towrite) {
4048 			s->to_write++;
4049 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4050 				s->non_overwrite++;
4051 		}
4052 		if (dev->written)
4053 			s->written++;
4054 		/* Prefer to use the replacement for reads, but only
4055 		 * if it is recovered enough and has no bad blocks.
4056 		 */
4057 		rdev = rcu_dereference(conf->disks[i].replacement);
4058 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4059 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4060 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4061 				 &first_bad, &bad_sectors))
4062 			set_bit(R5_ReadRepl, &dev->flags);
4063 		else {
4064 			if (rdev)
4065 				set_bit(R5_NeedReplace, &dev->flags);
4066 			rdev = rcu_dereference(conf->disks[i].rdev);
4067 			clear_bit(R5_ReadRepl, &dev->flags);
4068 		}
4069 		if (rdev && test_bit(Faulty, &rdev->flags))
4070 			rdev = NULL;
4071 		if (rdev) {
4072 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4073 					     &first_bad, &bad_sectors);
4074 			if (s->blocked_rdev == NULL
4075 			    && (test_bit(Blocked, &rdev->flags)
4076 				|| is_bad < 0)) {
4077 				if (is_bad < 0)
4078 					set_bit(BlockedBadBlocks,
4079 						&rdev->flags);
4080 				s->blocked_rdev = rdev;
4081 				atomic_inc(&rdev->nr_pending);
4082 			}
4083 		}
4084 		clear_bit(R5_Insync, &dev->flags);
4085 		if (!rdev)
4086 			/* Not in-sync */;
4087 		else if (is_bad) {
4088 			/* also not in-sync */
4089 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4090 			    test_bit(R5_UPTODATE, &dev->flags)) {
4091 				/* treat as in-sync, but with a read error
4092 				 * which we can now try to correct
4093 				 */
4094 				set_bit(R5_Insync, &dev->flags);
4095 				set_bit(R5_ReadError, &dev->flags);
4096 			}
4097 		} else if (test_bit(In_sync, &rdev->flags))
4098 			set_bit(R5_Insync, &dev->flags);
4099 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4100 			/* in sync if before recovery_offset */
4101 			set_bit(R5_Insync, &dev->flags);
4102 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4103 			 test_bit(R5_Expanded, &dev->flags))
4104 			/* If we've reshaped into here, we assume it is Insync.
4105 			 * We will shortly update recovery_offset to make
4106 			 * it official.
4107 			 */
4108 			set_bit(R5_Insync, &dev->flags);
4109 
4110 		if (test_bit(R5_WriteError, &dev->flags)) {
4111 			/* This flag does not apply to '.replacement'
4112 			 * only to .rdev, so make sure to check that*/
4113 			struct md_rdev *rdev2 = rcu_dereference(
4114 				conf->disks[i].rdev);
4115 			if (rdev2 == rdev)
4116 				clear_bit(R5_Insync, &dev->flags);
4117 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4118 				s->handle_bad_blocks = 1;
4119 				atomic_inc(&rdev2->nr_pending);
4120 			} else
4121 				clear_bit(R5_WriteError, &dev->flags);
4122 		}
4123 		if (test_bit(R5_MadeGood, &dev->flags)) {
4124 			/* This flag does not apply to '.replacement'
4125 			 * only to .rdev, so make sure to check that*/
4126 			struct md_rdev *rdev2 = rcu_dereference(
4127 				conf->disks[i].rdev);
4128 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4129 				s->handle_bad_blocks = 1;
4130 				atomic_inc(&rdev2->nr_pending);
4131 			} else
4132 				clear_bit(R5_MadeGood, &dev->flags);
4133 		}
4134 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4135 			struct md_rdev *rdev2 = rcu_dereference(
4136 				conf->disks[i].replacement);
4137 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4138 				s->handle_bad_blocks = 1;
4139 				atomic_inc(&rdev2->nr_pending);
4140 			} else
4141 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4142 		}
4143 		if (!test_bit(R5_Insync, &dev->flags)) {
4144 			/* The ReadError flag will just be confusing now */
4145 			clear_bit(R5_ReadError, &dev->flags);
4146 			clear_bit(R5_ReWrite, &dev->flags);
4147 		}
4148 		if (test_bit(R5_ReadError, &dev->flags))
4149 			clear_bit(R5_Insync, &dev->flags);
4150 		if (!test_bit(R5_Insync, &dev->flags)) {
4151 			if (s->failed < 2)
4152 				s->failed_num[s->failed] = i;
4153 			s->failed++;
4154 			if (rdev && !test_bit(Faulty, &rdev->flags))
4155 				do_recovery = 1;
4156 		}
4157 	}
4158 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4159 		/* If there is a failed device being replaced,
4160 		 *     we must be recovering.
4161 		 * else if we are after recovery_cp, we must be syncing
4162 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4163 		 * else we can only be replacing
4164 		 * sync and recovery both need to read all devices, and so
4165 		 * use the same flag.
4166 		 */
4167 		if (do_recovery ||
4168 		    sh->sector >= conf->mddev->recovery_cp ||
4169 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4170 			s->syncing = 1;
4171 		else
4172 			s->replacing = 1;
4173 	}
4174 	rcu_read_unlock();
4175 }
4176 
4177 static int clear_batch_ready(struct stripe_head *sh)
4178 {
4179 	/* Return '1' if this is a member of batch, or
4180 	 * '0' if it is a lone stripe or a head which can now be
4181 	 * handled.
4182 	 */
4183 	struct stripe_head *tmp;
4184 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4185 		return (sh->batch_head && sh->batch_head != sh);
4186 	spin_lock(&sh->stripe_lock);
4187 	if (!sh->batch_head) {
4188 		spin_unlock(&sh->stripe_lock);
4189 		return 0;
4190 	}
4191 
4192 	/*
4193 	 * this stripe could be added to a batch list before we check
4194 	 * BATCH_READY, skips it
4195 	 */
4196 	if (sh->batch_head != sh) {
4197 		spin_unlock(&sh->stripe_lock);
4198 		return 1;
4199 	}
4200 	spin_lock(&sh->batch_lock);
4201 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4202 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4203 	spin_unlock(&sh->batch_lock);
4204 	spin_unlock(&sh->stripe_lock);
4205 
4206 	/*
4207 	 * BATCH_READY is cleared, no new stripes can be added.
4208 	 * batch_list can be accessed without lock
4209 	 */
4210 	return 0;
4211 }
4212 
4213 static void break_stripe_batch_list(struct stripe_head *head_sh,
4214 				    unsigned long handle_flags)
4215 {
4216 	struct stripe_head *sh, *next;
4217 	int i;
4218 	int do_wakeup = 0;
4219 
4220 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4221 
4222 		list_del_init(&sh->batch_list);
4223 
4224 		WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4225 					  (1 << STRIPE_SYNCING) |
4226 					  (1 << STRIPE_REPLACED) |
4227 					  (1 << STRIPE_PREREAD_ACTIVE) |
4228 					  (1 << STRIPE_DELAYED) |
4229 					  (1 << STRIPE_BIT_DELAY) |
4230 					  (1 << STRIPE_FULL_WRITE) |
4231 					  (1 << STRIPE_BIOFILL_RUN) |
4232 					  (1 << STRIPE_COMPUTE_RUN)  |
4233 					  (1 << STRIPE_OPS_REQ_PENDING) |
4234 					  (1 << STRIPE_DISCARD) |
4235 					  (1 << STRIPE_BATCH_READY) |
4236 					  (1 << STRIPE_BATCH_ERR) |
4237 					  (1 << STRIPE_BITMAP_PENDING)));
4238 		WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4239 					      (1 << STRIPE_REPLACED)));
4240 
4241 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4242 					    (1 << STRIPE_DEGRADED)),
4243 			      head_sh->state & (1 << STRIPE_INSYNC));
4244 
4245 		sh->check_state = head_sh->check_state;
4246 		sh->reconstruct_state = head_sh->reconstruct_state;
4247 		for (i = 0; i < sh->disks; i++) {
4248 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4249 				do_wakeup = 1;
4250 			sh->dev[i].flags = head_sh->dev[i].flags &
4251 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4252 		}
4253 		spin_lock_irq(&sh->stripe_lock);
4254 		sh->batch_head = NULL;
4255 		spin_unlock_irq(&sh->stripe_lock);
4256 		if (handle_flags == 0 ||
4257 		    sh->state & handle_flags)
4258 			set_bit(STRIPE_HANDLE, &sh->state);
4259 		release_stripe(sh);
4260 	}
4261 	spin_lock_irq(&head_sh->stripe_lock);
4262 	head_sh->batch_head = NULL;
4263 	spin_unlock_irq(&head_sh->stripe_lock);
4264 	for (i = 0; i < head_sh->disks; i++)
4265 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4266 			do_wakeup = 1;
4267 	if (head_sh->state & handle_flags)
4268 		set_bit(STRIPE_HANDLE, &head_sh->state);
4269 
4270 	if (do_wakeup)
4271 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4272 }
4273 
4274 static void handle_stripe(struct stripe_head *sh)
4275 {
4276 	struct stripe_head_state s;
4277 	struct r5conf *conf = sh->raid_conf;
4278 	int i;
4279 	int prexor;
4280 	int disks = sh->disks;
4281 	struct r5dev *pdev, *qdev;
4282 
4283 	clear_bit(STRIPE_HANDLE, &sh->state);
4284 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4285 		/* already being handled, ensure it gets handled
4286 		 * again when current action finishes */
4287 		set_bit(STRIPE_HANDLE, &sh->state);
4288 		return;
4289 	}
4290 
4291 	if (clear_batch_ready(sh) ) {
4292 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4293 		return;
4294 	}
4295 
4296 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4297 		break_stripe_batch_list(sh, 0);
4298 
4299 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4300 		spin_lock(&sh->stripe_lock);
4301 		/* Cannot process 'sync' concurrently with 'discard' */
4302 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4303 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4304 			set_bit(STRIPE_SYNCING, &sh->state);
4305 			clear_bit(STRIPE_INSYNC, &sh->state);
4306 			clear_bit(STRIPE_REPLACED, &sh->state);
4307 		}
4308 		spin_unlock(&sh->stripe_lock);
4309 	}
4310 	clear_bit(STRIPE_DELAYED, &sh->state);
4311 
4312 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4313 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4314 	       (unsigned long long)sh->sector, sh->state,
4315 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4316 	       sh->check_state, sh->reconstruct_state);
4317 
4318 	analyse_stripe(sh, &s);
4319 
4320 	if (s.handle_bad_blocks) {
4321 		set_bit(STRIPE_HANDLE, &sh->state);
4322 		goto finish;
4323 	}
4324 
4325 	if (unlikely(s.blocked_rdev)) {
4326 		if (s.syncing || s.expanding || s.expanded ||
4327 		    s.replacing || s.to_write || s.written) {
4328 			set_bit(STRIPE_HANDLE, &sh->state);
4329 			goto finish;
4330 		}
4331 		/* There is nothing for the blocked_rdev to block */
4332 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4333 		s.blocked_rdev = NULL;
4334 	}
4335 
4336 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4337 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4338 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4339 	}
4340 
4341 	pr_debug("locked=%d uptodate=%d to_read=%d"
4342 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4343 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4344 	       s.failed_num[0], s.failed_num[1]);
4345 	/* check if the array has lost more than max_degraded devices and,
4346 	 * if so, some requests might need to be failed.
4347 	 */
4348 	if (s.failed > conf->max_degraded) {
4349 		sh->check_state = 0;
4350 		sh->reconstruct_state = 0;
4351 		break_stripe_batch_list(sh, 0);
4352 		if (s.to_read+s.to_write+s.written)
4353 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4354 		if (s.syncing + s.replacing)
4355 			handle_failed_sync(conf, sh, &s);
4356 	}
4357 
4358 	/* Now we check to see if any write operations have recently
4359 	 * completed
4360 	 */
4361 	prexor = 0;
4362 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4363 		prexor = 1;
4364 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4365 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4366 		sh->reconstruct_state = reconstruct_state_idle;
4367 
4368 		/* All the 'written' buffers and the parity block are ready to
4369 		 * be written back to disk
4370 		 */
4371 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4372 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4373 		BUG_ON(sh->qd_idx >= 0 &&
4374 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4375 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4376 		for (i = disks; i--; ) {
4377 			struct r5dev *dev = &sh->dev[i];
4378 			if (test_bit(R5_LOCKED, &dev->flags) &&
4379 				(i == sh->pd_idx || i == sh->qd_idx ||
4380 				 dev->written)) {
4381 				pr_debug("Writing block %d\n", i);
4382 				set_bit(R5_Wantwrite, &dev->flags);
4383 				if (prexor)
4384 					continue;
4385 				if (s.failed > 1)
4386 					continue;
4387 				if (!test_bit(R5_Insync, &dev->flags) ||
4388 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4389 				     s.failed == 0))
4390 					set_bit(STRIPE_INSYNC, &sh->state);
4391 			}
4392 		}
4393 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4394 			s.dec_preread_active = 1;
4395 	}
4396 
4397 	/*
4398 	 * might be able to return some write requests if the parity blocks
4399 	 * are safe, or on a failed drive
4400 	 */
4401 	pdev = &sh->dev[sh->pd_idx];
4402 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4403 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4404 	qdev = &sh->dev[sh->qd_idx];
4405 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4406 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4407 		|| conf->level < 6;
4408 
4409 	if (s.written &&
4410 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4411 			     && !test_bit(R5_LOCKED, &pdev->flags)
4412 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4413 				 test_bit(R5_Discard, &pdev->flags))))) &&
4414 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4415 			     && !test_bit(R5_LOCKED, &qdev->flags)
4416 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4417 				 test_bit(R5_Discard, &qdev->flags))))))
4418 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4419 
4420 	/* Now we might consider reading some blocks, either to check/generate
4421 	 * parity, or to satisfy requests
4422 	 * or to load a block that is being partially written.
4423 	 */
4424 	if (s.to_read || s.non_overwrite
4425 	    || (conf->level == 6 && s.to_write && s.failed)
4426 	    || (s.syncing && (s.uptodate + s.compute < disks))
4427 	    || s.replacing
4428 	    || s.expanding)
4429 		handle_stripe_fill(sh, &s, disks);
4430 
4431 	/* Now to consider new write requests and what else, if anything
4432 	 * should be read.  We do not handle new writes when:
4433 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4434 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4435 	 *    block.
4436 	 */
4437 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4438 		handle_stripe_dirtying(conf, sh, &s, disks);
4439 
4440 	/* maybe we need to check and possibly fix the parity for this stripe
4441 	 * Any reads will already have been scheduled, so we just see if enough
4442 	 * data is available.  The parity check is held off while parity
4443 	 * dependent operations are in flight.
4444 	 */
4445 	if (sh->check_state ||
4446 	    (s.syncing && s.locked == 0 &&
4447 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4448 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4449 		if (conf->level == 6)
4450 			handle_parity_checks6(conf, sh, &s, disks);
4451 		else
4452 			handle_parity_checks5(conf, sh, &s, disks);
4453 	}
4454 
4455 	if ((s.replacing || s.syncing) && s.locked == 0
4456 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4457 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4458 		/* Write out to replacement devices where possible */
4459 		for (i = 0; i < conf->raid_disks; i++)
4460 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4461 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4462 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4463 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4464 				s.locked++;
4465 			}
4466 		if (s.replacing)
4467 			set_bit(STRIPE_INSYNC, &sh->state);
4468 		set_bit(STRIPE_REPLACED, &sh->state);
4469 	}
4470 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4471 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4472 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4473 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4474 		clear_bit(STRIPE_SYNCING, &sh->state);
4475 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4476 			wake_up(&conf->wait_for_overlap);
4477 	}
4478 
4479 	/* If the failed drives are just a ReadError, then we might need
4480 	 * to progress the repair/check process
4481 	 */
4482 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4483 		for (i = 0; i < s.failed; i++) {
4484 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4485 			if (test_bit(R5_ReadError, &dev->flags)
4486 			    && !test_bit(R5_LOCKED, &dev->flags)
4487 			    && test_bit(R5_UPTODATE, &dev->flags)
4488 				) {
4489 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4490 					set_bit(R5_Wantwrite, &dev->flags);
4491 					set_bit(R5_ReWrite, &dev->flags);
4492 					set_bit(R5_LOCKED, &dev->flags);
4493 					s.locked++;
4494 				} else {
4495 					/* let's read it back */
4496 					set_bit(R5_Wantread, &dev->flags);
4497 					set_bit(R5_LOCKED, &dev->flags);
4498 					s.locked++;
4499 				}
4500 			}
4501 		}
4502 
4503 	/* Finish reconstruct operations initiated by the expansion process */
4504 	if (sh->reconstruct_state == reconstruct_state_result) {
4505 		struct stripe_head *sh_src
4506 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
4507 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4508 			/* sh cannot be written until sh_src has been read.
4509 			 * so arrange for sh to be delayed a little
4510 			 */
4511 			set_bit(STRIPE_DELAYED, &sh->state);
4512 			set_bit(STRIPE_HANDLE, &sh->state);
4513 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4514 					      &sh_src->state))
4515 				atomic_inc(&conf->preread_active_stripes);
4516 			release_stripe(sh_src);
4517 			goto finish;
4518 		}
4519 		if (sh_src)
4520 			release_stripe(sh_src);
4521 
4522 		sh->reconstruct_state = reconstruct_state_idle;
4523 		clear_bit(STRIPE_EXPANDING, &sh->state);
4524 		for (i = conf->raid_disks; i--; ) {
4525 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4526 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4527 			s.locked++;
4528 		}
4529 	}
4530 
4531 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4532 	    !sh->reconstruct_state) {
4533 		/* Need to write out all blocks after computing parity */
4534 		sh->disks = conf->raid_disks;
4535 		stripe_set_idx(sh->sector, conf, 0, sh);
4536 		schedule_reconstruction(sh, &s, 1, 1);
4537 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4538 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4539 		atomic_dec(&conf->reshape_stripes);
4540 		wake_up(&conf->wait_for_overlap);
4541 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4542 	}
4543 
4544 	if (s.expanding && s.locked == 0 &&
4545 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4546 		handle_stripe_expansion(conf, sh);
4547 
4548 finish:
4549 	/* wait for this device to become unblocked */
4550 	if (unlikely(s.blocked_rdev)) {
4551 		if (conf->mddev->external)
4552 			md_wait_for_blocked_rdev(s.blocked_rdev,
4553 						 conf->mddev);
4554 		else
4555 			/* Internal metadata will immediately
4556 			 * be written by raid5d, so we don't
4557 			 * need to wait here.
4558 			 */
4559 			rdev_dec_pending(s.blocked_rdev,
4560 					 conf->mddev);
4561 	}
4562 
4563 	if (s.handle_bad_blocks)
4564 		for (i = disks; i--; ) {
4565 			struct md_rdev *rdev;
4566 			struct r5dev *dev = &sh->dev[i];
4567 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4568 				/* We own a safe reference to the rdev */
4569 				rdev = conf->disks[i].rdev;
4570 				if (!rdev_set_badblocks(rdev, sh->sector,
4571 							STRIPE_SECTORS, 0))
4572 					md_error(conf->mddev, rdev);
4573 				rdev_dec_pending(rdev, conf->mddev);
4574 			}
4575 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4576 				rdev = conf->disks[i].rdev;
4577 				rdev_clear_badblocks(rdev, sh->sector,
4578 						     STRIPE_SECTORS, 0);
4579 				rdev_dec_pending(rdev, conf->mddev);
4580 			}
4581 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4582 				rdev = conf->disks[i].replacement;
4583 				if (!rdev)
4584 					/* rdev have been moved down */
4585 					rdev = conf->disks[i].rdev;
4586 				rdev_clear_badblocks(rdev, sh->sector,
4587 						     STRIPE_SECTORS, 0);
4588 				rdev_dec_pending(rdev, conf->mddev);
4589 			}
4590 		}
4591 
4592 	if (s.ops_request)
4593 		raid_run_ops(sh, s.ops_request);
4594 
4595 	ops_run_io(sh, &s);
4596 
4597 	if (s.dec_preread_active) {
4598 		/* We delay this until after ops_run_io so that if make_request
4599 		 * is waiting on a flush, it won't continue until the writes
4600 		 * have actually been submitted.
4601 		 */
4602 		atomic_dec(&conf->preread_active_stripes);
4603 		if (atomic_read(&conf->preread_active_stripes) <
4604 		    IO_THRESHOLD)
4605 			md_wakeup_thread(conf->mddev->thread);
4606 	}
4607 
4608 	return_io(s.return_bi);
4609 
4610 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4611 }
4612 
4613 static void raid5_activate_delayed(struct r5conf *conf)
4614 {
4615 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4616 		while (!list_empty(&conf->delayed_list)) {
4617 			struct list_head *l = conf->delayed_list.next;
4618 			struct stripe_head *sh;
4619 			sh = list_entry(l, struct stripe_head, lru);
4620 			list_del_init(l);
4621 			clear_bit(STRIPE_DELAYED, &sh->state);
4622 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4623 				atomic_inc(&conf->preread_active_stripes);
4624 			list_add_tail(&sh->lru, &conf->hold_list);
4625 			raid5_wakeup_stripe_thread(sh);
4626 		}
4627 	}
4628 }
4629 
4630 static void activate_bit_delay(struct r5conf *conf,
4631 	struct list_head *temp_inactive_list)
4632 {
4633 	/* device_lock is held */
4634 	struct list_head head;
4635 	list_add(&head, &conf->bitmap_list);
4636 	list_del_init(&conf->bitmap_list);
4637 	while (!list_empty(&head)) {
4638 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4639 		int hash;
4640 		list_del_init(&sh->lru);
4641 		atomic_inc(&sh->count);
4642 		hash = sh->hash_lock_index;
4643 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4644 	}
4645 }
4646 
4647 static int raid5_congested(struct mddev *mddev, int bits)
4648 {
4649 	struct r5conf *conf = mddev->private;
4650 
4651 	/* No difference between reads and writes.  Just check
4652 	 * how busy the stripe_cache is
4653 	 */
4654 
4655 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4656 		return 1;
4657 	if (conf->quiesce)
4658 		return 1;
4659 	if (atomic_read(&conf->empty_inactive_list_nr))
4660 		return 1;
4661 
4662 	return 0;
4663 }
4664 
4665 /* We want read requests to align with chunks where possible,
4666  * but write requests don't need to.
4667  */
4668 static int raid5_mergeable_bvec(struct mddev *mddev,
4669 				struct bvec_merge_data *bvm,
4670 				struct bio_vec *biovec)
4671 {
4672 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4673 	int max;
4674 	unsigned int chunk_sectors = mddev->chunk_sectors;
4675 	unsigned int bio_sectors = bvm->bi_size >> 9;
4676 
4677 	/*
4678 	 * always allow writes to be mergeable, read as well if array
4679 	 * is degraded as we'll go through stripe cache anyway.
4680 	 */
4681 	if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4682 		return biovec->bv_len;
4683 
4684 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4685 		chunk_sectors = mddev->new_chunk_sectors;
4686 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4687 	if (max < 0) max = 0;
4688 	if (max <= biovec->bv_len && bio_sectors == 0)
4689 		return biovec->bv_len;
4690 	else
4691 		return max;
4692 }
4693 
4694 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4695 {
4696 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4697 	unsigned int chunk_sectors = mddev->chunk_sectors;
4698 	unsigned int bio_sectors = bio_sectors(bio);
4699 
4700 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4701 		chunk_sectors = mddev->new_chunk_sectors;
4702 	return  chunk_sectors >=
4703 		((sector & (chunk_sectors - 1)) + bio_sectors);
4704 }
4705 
4706 /*
4707  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4708  *  later sampled by raid5d.
4709  */
4710 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4711 {
4712 	unsigned long flags;
4713 
4714 	spin_lock_irqsave(&conf->device_lock, flags);
4715 
4716 	bi->bi_next = conf->retry_read_aligned_list;
4717 	conf->retry_read_aligned_list = bi;
4718 
4719 	spin_unlock_irqrestore(&conf->device_lock, flags);
4720 	md_wakeup_thread(conf->mddev->thread);
4721 }
4722 
4723 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4724 {
4725 	struct bio *bi;
4726 
4727 	bi = conf->retry_read_aligned;
4728 	if (bi) {
4729 		conf->retry_read_aligned = NULL;
4730 		return bi;
4731 	}
4732 	bi = conf->retry_read_aligned_list;
4733 	if(bi) {
4734 		conf->retry_read_aligned_list = bi->bi_next;
4735 		bi->bi_next = NULL;
4736 		/*
4737 		 * this sets the active strip count to 1 and the processed
4738 		 * strip count to zero (upper 8 bits)
4739 		 */
4740 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4741 	}
4742 
4743 	return bi;
4744 }
4745 
4746 /*
4747  *  The "raid5_align_endio" should check if the read succeeded and if it
4748  *  did, call bio_endio on the original bio (having bio_put the new bio
4749  *  first).
4750  *  If the read failed..
4751  */
4752 static void raid5_align_endio(struct bio *bi, int error)
4753 {
4754 	struct bio* raid_bi  = bi->bi_private;
4755 	struct mddev *mddev;
4756 	struct r5conf *conf;
4757 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4758 	struct md_rdev *rdev;
4759 
4760 	bio_put(bi);
4761 
4762 	rdev = (void*)raid_bi->bi_next;
4763 	raid_bi->bi_next = NULL;
4764 	mddev = rdev->mddev;
4765 	conf = mddev->private;
4766 
4767 	rdev_dec_pending(rdev, conf->mddev);
4768 
4769 	if (!error && uptodate) {
4770 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4771 					 raid_bi, 0);
4772 		bio_endio(raid_bi, 0);
4773 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4774 			wake_up(&conf->wait_for_quiescent);
4775 		return;
4776 	}
4777 
4778 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4779 
4780 	add_bio_to_retry(raid_bi, conf);
4781 }
4782 
4783 static int bio_fits_rdev(struct bio *bi)
4784 {
4785 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4786 
4787 	if (bio_sectors(bi) > queue_max_sectors(q))
4788 		return 0;
4789 	blk_recount_segments(q, bi);
4790 	if (bi->bi_phys_segments > queue_max_segments(q))
4791 		return 0;
4792 
4793 	if (q->merge_bvec_fn)
4794 		/* it's too hard to apply the merge_bvec_fn at this stage,
4795 		 * just just give up
4796 		 */
4797 		return 0;
4798 
4799 	return 1;
4800 }
4801 
4802 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4803 {
4804 	struct r5conf *conf = mddev->private;
4805 	int dd_idx;
4806 	struct bio* align_bi;
4807 	struct md_rdev *rdev;
4808 	sector_t end_sector;
4809 
4810 	if (!in_chunk_boundary(mddev, raid_bio)) {
4811 		pr_debug("chunk_aligned_read : non aligned\n");
4812 		return 0;
4813 	}
4814 	/*
4815 	 * use bio_clone_mddev to make a copy of the bio
4816 	 */
4817 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4818 	if (!align_bi)
4819 		return 0;
4820 	/*
4821 	 *   set bi_end_io to a new function, and set bi_private to the
4822 	 *     original bio.
4823 	 */
4824 	align_bi->bi_end_io  = raid5_align_endio;
4825 	align_bi->bi_private = raid_bio;
4826 	/*
4827 	 *	compute position
4828 	 */
4829 	align_bi->bi_iter.bi_sector =
4830 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4831 				     0, &dd_idx, NULL);
4832 
4833 	end_sector = bio_end_sector(align_bi);
4834 	rcu_read_lock();
4835 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4836 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4837 	    rdev->recovery_offset < end_sector) {
4838 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4839 		if (rdev &&
4840 		    (test_bit(Faulty, &rdev->flags) ||
4841 		    !(test_bit(In_sync, &rdev->flags) ||
4842 		      rdev->recovery_offset >= end_sector)))
4843 			rdev = NULL;
4844 	}
4845 	if (rdev) {
4846 		sector_t first_bad;
4847 		int bad_sectors;
4848 
4849 		atomic_inc(&rdev->nr_pending);
4850 		rcu_read_unlock();
4851 		raid_bio->bi_next = (void*)rdev;
4852 		align_bi->bi_bdev =  rdev->bdev;
4853 		__clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4854 
4855 		if (!bio_fits_rdev(align_bi) ||
4856 		    is_badblock(rdev, align_bi->bi_iter.bi_sector,
4857 				bio_sectors(align_bi),
4858 				&first_bad, &bad_sectors)) {
4859 			/* too big in some way, or has a known bad block */
4860 			bio_put(align_bi);
4861 			rdev_dec_pending(rdev, mddev);
4862 			return 0;
4863 		}
4864 
4865 		/* No reshape active, so we can trust rdev->data_offset */
4866 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4867 
4868 		spin_lock_irq(&conf->device_lock);
4869 		wait_event_lock_irq(conf->wait_for_quiescent,
4870 				    conf->quiesce == 0,
4871 				    conf->device_lock);
4872 		atomic_inc(&conf->active_aligned_reads);
4873 		spin_unlock_irq(&conf->device_lock);
4874 
4875 		if (mddev->gendisk)
4876 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4877 					      align_bi, disk_devt(mddev->gendisk),
4878 					      raid_bio->bi_iter.bi_sector);
4879 		generic_make_request(align_bi);
4880 		return 1;
4881 	} else {
4882 		rcu_read_unlock();
4883 		bio_put(align_bi);
4884 		return 0;
4885 	}
4886 }
4887 
4888 /* __get_priority_stripe - get the next stripe to process
4889  *
4890  * Full stripe writes are allowed to pass preread active stripes up until
4891  * the bypass_threshold is exceeded.  In general the bypass_count
4892  * increments when the handle_list is handled before the hold_list; however, it
4893  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4894  * stripe with in flight i/o.  The bypass_count will be reset when the
4895  * head of the hold_list has changed, i.e. the head was promoted to the
4896  * handle_list.
4897  */
4898 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4899 {
4900 	struct stripe_head *sh = NULL, *tmp;
4901 	struct list_head *handle_list = NULL;
4902 	struct r5worker_group *wg = NULL;
4903 
4904 	if (conf->worker_cnt_per_group == 0) {
4905 		handle_list = &conf->handle_list;
4906 	} else if (group != ANY_GROUP) {
4907 		handle_list = &conf->worker_groups[group].handle_list;
4908 		wg = &conf->worker_groups[group];
4909 	} else {
4910 		int i;
4911 		for (i = 0; i < conf->group_cnt; i++) {
4912 			handle_list = &conf->worker_groups[i].handle_list;
4913 			wg = &conf->worker_groups[i];
4914 			if (!list_empty(handle_list))
4915 				break;
4916 		}
4917 	}
4918 
4919 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4920 		  __func__,
4921 		  list_empty(handle_list) ? "empty" : "busy",
4922 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4923 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4924 
4925 	if (!list_empty(handle_list)) {
4926 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4927 
4928 		if (list_empty(&conf->hold_list))
4929 			conf->bypass_count = 0;
4930 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4931 			if (conf->hold_list.next == conf->last_hold)
4932 				conf->bypass_count++;
4933 			else {
4934 				conf->last_hold = conf->hold_list.next;
4935 				conf->bypass_count -= conf->bypass_threshold;
4936 				if (conf->bypass_count < 0)
4937 					conf->bypass_count = 0;
4938 			}
4939 		}
4940 	} else if (!list_empty(&conf->hold_list) &&
4941 		   ((conf->bypass_threshold &&
4942 		     conf->bypass_count > conf->bypass_threshold) ||
4943 		    atomic_read(&conf->pending_full_writes) == 0)) {
4944 
4945 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4946 			if (conf->worker_cnt_per_group == 0 ||
4947 			    group == ANY_GROUP ||
4948 			    !cpu_online(tmp->cpu) ||
4949 			    cpu_to_group(tmp->cpu) == group) {
4950 				sh = tmp;
4951 				break;
4952 			}
4953 		}
4954 
4955 		if (sh) {
4956 			conf->bypass_count -= conf->bypass_threshold;
4957 			if (conf->bypass_count < 0)
4958 				conf->bypass_count = 0;
4959 		}
4960 		wg = NULL;
4961 	}
4962 
4963 	if (!sh)
4964 		return NULL;
4965 
4966 	if (wg) {
4967 		wg->stripes_cnt--;
4968 		sh->group = NULL;
4969 	}
4970 	list_del_init(&sh->lru);
4971 	BUG_ON(atomic_inc_return(&sh->count) != 1);
4972 	return sh;
4973 }
4974 
4975 struct raid5_plug_cb {
4976 	struct blk_plug_cb	cb;
4977 	struct list_head	list;
4978 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4979 };
4980 
4981 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4982 {
4983 	struct raid5_plug_cb *cb = container_of(
4984 		blk_cb, struct raid5_plug_cb, cb);
4985 	struct stripe_head *sh;
4986 	struct mddev *mddev = cb->cb.data;
4987 	struct r5conf *conf = mddev->private;
4988 	int cnt = 0;
4989 	int hash;
4990 
4991 	if (cb->list.next && !list_empty(&cb->list)) {
4992 		spin_lock_irq(&conf->device_lock);
4993 		while (!list_empty(&cb->list)) {
4994 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4995 			list_del_init(&sh->lru);
4996 			/*
4997 			 * avoid race release_stripe_plug() sees
4998 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4999 			 * is still in our list
5000 			 */
5001 			smp_mb__before_atomic();
5002 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5003 			/*
5004 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5005 			 * case, the count is always > 1 here
5006 			 */
5007 			hash = sh->hash_lock_index;
5008 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5009 			cnt++;
5010 		}
5011 		spin_unlock_irq(&conf->device_lock);
5012 	}
5013 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5014 				     NR_STRIPE_HASH_LOCKS);
5015 	if (mddev->queue)
5016 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5017 	kfree(cb);
5018 }
5019 
5020 static void release_stripe_plug(struct mddev *mddev,
5021 				struct stripe_head *sh)
5022 {
5023 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5024 		raid5_unplug, mddev,
5025 		sizeof(struct raid5_plug_cb));
5026 	struct raid5_plug_cb *cb;
5027 
5028 	if (!blk_cb) {
5029 		release_stripe(sh);
5030 		return;
5031 	}
5032 
5033 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5034 
5035 	if (cb->list.next == NULL) {
5036 		int i;
5037 		INIT_LIST_HEAD(&cb->list);
5038 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5039 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5040 	}
5041 
5042 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5043 		list_add_tail(&sh->lru, &cb->list);
5044 	else
5045 		release_stripe(sh);
5046 }
5047 
5048 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5049 {
5050 	struct r5conf *conf = mddev->private;
5051 	sector_t logical_sector, last_sector;
5052 	struct stripe_head *sh;
5053 	int remaining;
5054 	int stripe_sectors;
5055 
5056 	if (mddev->reshape_position != MaxSector)
5057 		/* Skip discard while reshape is happening */
5058 		return;
5059 
5060 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5061 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5062 
5063 	bi->bi_next = NULL;
5064 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5065 
5066 	stripe_sectors = conf->chunk_sectors *
5067 		(conf->raid_disks - conf->max_degraded);
5068 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5069 					       stripe_sectors);
5070 	sector_div(last_sector, stripe_sectors);
5071 
5072 	logical_sector *= conf->chunk_sectors;
5073 	last_sector *= conf->chunk_sectors;
5074 
5075 	for (; logical_sector < last_sector;
5076 	     logical_sector += STRIPE_SECTORS) {
5077 		DEFINE_WAIT(w);
5078 		int d;
5079 	again:
5080 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5081 		prepare_to_wait(&conf->wait_for_overlap, &w,
5082 				TASK_UNINTERRUPTIBLE);
5083 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5084 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5085 			release_stripe(sh);
5086 			schedule();
5087 			goto again;
5088 		}
5089 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5090 		spin_lock_irq(&sh->stripe_lock);
5091 		for (d = 0; d < conf->raid_disks; d++) {
5092 			if (d == sh->pd_idx || d == sh->qd_idx)
5093 				continue;
5094 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5095 				set_bit(R5_Overlap, &sh->dev[d].flags);
5096 				spin_unlock_irq(&sh->stripe_lock);
5097 				release_stripe(sh);
5098 				schedule();
5099 				goto again;
5100 			}
5101 		}
5102 		set_bit(STRIPE_DISCARD, &sh->state);
5103 		finish_wait(&conf->wait_for_overlap, &w);
5104 		sh->overwrite_disks = 0;
5105 		for (d = 0; d < conf->raid_disks; d++) {
5106 			if (d == sh->pd_idx || d == sh->qd_idx)
5107 				continue;
5108 			sh->dev[d].towrite = bi;
5109 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5110 			raid5_inc_bi_active_stripes(bi);
5111 			sh->overwrite_disks++;
5112 		}
5113 		spin_unlock_irq(&sh->stripe_lock);
5114 		if (conf->mddev->bitmap) {
5115 			for (d = 0;
5116 			     d < conf->raid_disks - conf->max_degraded;
5117 			     d++)
5118 				bitmap_startwrite(mddev->bitmap,
5119 						  sh->sector,
5120 						  STRIPE_SECTORS,
5121 						  0);
5122 			sh->bm_seq = conf->seq_flush + 1;
5123 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5124 		}
5125 
5126 		set_bit(STRIPE_HANDLE, &sh->state);
5127 		clear_bit(STRIPE_DELAYED, &sh->state);
5128 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5129 			atomic_inc(&conf->preread_active_stripes);
5130 		release_stripe_plug(mddev, sh);
5131 	}
5132 
5133 	remaining = raid5_dec_bi_active_stripes(bi);
5134 	if (remaining == 0) {
5135 		md_write_end(mddev);
5136 		bio_endio(bi, 0);
5137 	}
5138 }
5139 
5140 static void make_request(struct mddev *mddev, struct bio * bi)
5141 {
5142 	struct r5conf *conf = mddev->private;
5143 	int dd_idx;
5144 	sector_t new_sector;
5145 	sector_t logical_sector, last_sector;
5146 	struct stripe_head *sh;
5147 	const int rw = bio_data_dir(bi);
5148 	int remaining;
5149 	DEFINE_WAIT(w);
5150 	bool do_prepare;
5151 
5152 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5153 		md_flush_request(mddev, bi);
5154 		return;
5155 	}
5156 
5157 	md_write_start(mddev, bi);
5158 
5159 	/*
5160 	 * If array is degraded, better not do chunk aligned read because
5161 	 * later we might have to read it again in order to reconstruct
5162 	 * data on failed drives.
5163 	 */
5164 	if (rw == READ && mddev->degraded == 0 &&
5165 	     mddev->reshape_position == MaxSector &&
5166 	     chunk_aligned_read(mddev,bi))
5167 		return;
5168 
5169 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5170 		make_discard_request(mddev, bi);
5171 		return;
5172 	}
5173 
5174 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5175 	last_sector = bio_end_sector(bi);
5176 	bi->bi_next = NULL;
5177 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5178 
5179 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5180 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5181 		int previous;
5182 		int seq;
5183 
5184 		do_prepare = false;
5185 	retry:
5186 		seq = read_seqcount_begin(&conf->gen_lock);
5187 		previous = 0;
5188 		if (do_prepare)
5189 			prepare_to_wait(&conf->wait_for_overlap, &w,
5190 				TASK_UNINTERRUPTIBLE);
5191 		if (unlikely(conf->reshape_progress != MaxSector)) {
5192 			/* spinlock is needed as reshape_progress may be
5193 			 * 64bit on a 32bit platform, and so it might be
5194 			 * possible to see a half-updated value
5195 			 * Of course reshape_progress could change after
5196 			 * the lock is dropped, so once we get a reference
5197 			 * to the stripe that we think it is, we will have
5198 			 * to check again.
5199 			 */
5200 			spin_lock_irq(&conf->device_lock);
5201 			if (mddev->reshape_backwards
5202 			    ? logical_sector < conf->reshape_progress
5203 			    : logical_sector >= conf->reshape_progress) {
5204 				previous = 1;
5205 			} else {
5206 				if (mddev->reshape_backwards
5207 				    ? logical_sector < conf->reshape_safe
5208 				    : logical_sector >= conf->reshape_safe) {
5209 					spin_unlock_irq(&conf->device_lock);
5210 					schedule();
5211 					do_prepare = true;
5212 					goto retry;
5213 				}
5214 			}
5215 			spin_unlock_irq(&conf->device_lock);
5216 		}
5217 
5218 		new_sector = raid5_compute_sector(conf, logical_sector,
5219 						  previous,
5220 						  &dd_idx, NULL);
5221 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
5222 			(unsigned long long)new_sector,
5223 			(unsigned long long)logical_sector);
5224 
5225 		sh = get_active_stripe(conf, new_sector, previous,
5226 				       (bi->bi_rw&RWA_MASK), 0);
5227 		if (sh) {
5228 			if (unlikely(previous)) {
5229 				/* expansion might have moved on while waiting for a
5230 				 * stripe, so we must do the range check again.
5231 				 * Expansion could still move past after this
5232 				 * test, but as we are holding a reference to
5233 				 * 'sh', we know that if that happens,
5234 				 *  STRIPE_EXPANDING will get set and the expansion
5235 				 * won't proceed until we finish with the stripe.
5236 				 */
5237 				int must_retry = 0;
5238 				spin_lock_irq(&conf->device_lock);
5239 				if (mddev->reshape_backwards
5240 				    ? logical_sector >= conf->reshape_progress
5241 				    : logical_sector < conf->reshape_progress)
5242 					/* mismatch, need to try again */
5243 					must_retry = 1;
5244 				spin_unlock_irq(&conf->device_lock);
5245 				if (must_retry) {
5246 					release_stripe(sh);
5247 					schedule();
5248 					do_prepare = true;
5249 					goto retry;
5250 				}
5251 			}
5252 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5253 				/* Might have got the wrong stripe_head
5254 				 * by accident
5255 				 */
5256 				release_stripe(sh);
5257 				goto retry;
5258 			}
5259 
5260 			if (rw == WRITE &&
5261 			    logical_sector >= mddev->suspend_lo &&
5262 			    logical_sector < mddev->suspend_hi) {
5263 				release_stripe(sh);
5264 				/* As the suspend_* range is controlled by
5265 				 * userspace, we want an interruptible
5266 				 * wait.
5267 				 */
5268 				flush_signals(current);
5269 				prepare_to_wait(&conf->wait_for_overlap,
5270 						&w, TASK_INTERRUPTIBLE);
5271 				if (logical_sector >= mddev->suspend_lo &&
5272 				    logical_sector < mddev->suspend_hi) {
5273 					schedule();
5274 					do_prepare = true;
5275 				}
5276 				goto retry;
5277 			}
5278 
5279 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5280 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5281 				/* Stripe is busy expanding or
5282 				 * add failed due to overlap.  Flush everything
5283 				 * and wait a while
5284 				 */
5285 				md_wakeup_thread(mddev->thread);
5286 				release_stripe(sh);
5287 				schedule();
5288 				do_prepare = true;
5289 				goto retry;
5290 			}
5291 			set_bit(STRIPE_HANDLE, &sh->state);
5292 			clear_bit(STRIPE_DELAYED, &sh->state);
5293 			if ((!sh->batch_head || sh == sh->batch_head) &&
5294 			    (bi->bi_rw & REQ_SYNC) &&
5295 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5296 				atomic_inc(&conf->preread_active_stripes);
5297 			release_stripe_plug(mddev, sh);
5298 		} else {
5299 			/* cannot get stripe for read-ahead, just give-up */
5300 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
5301 			break;
5302 		}
5303 	}
5304 	finish_wait(&conf->wait_for_overlap, &w);
5305 
5306 	remaining = raid5_dec_bi_active_stripes(bi);
5307 	if (remaining == 0) {
5308 
5309 		if ( rw == WRITE )
5310 			md_write_end(mddev);
5311 
5312 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5313 					 bi, 0);
5314 		bio_endio(bi, 0);
5315 	}
5316 }
5317 
5318 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5319 
5320 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5321 {
5322 	/* reshaping is quite different to recovery/resync so it is
5323 	 * handled quite separately ... here.
5324 	 *
5325 	 * On each call to sync_request, we gather one chunk worth of
5326 	 * destination stripes and flag them as expanding.
5327 	 * Then we find all the source stripes and request reads.
5328 	 * As the reads complete, handle_stripe will copy the data
5329 	 * into the destination stripe and release that stripe.
5330 	 */
5331 	struct r5conf *conf = mddev->private;
5332 	struct stripe_head *sh;
5333 	sector_t first_sector, last_sector;
5334 	int raid_disks = conf->previous_raid_disks;
5335 	int data_disks = raid_disks - conf->max_degraded;
5336 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5337 	int i;
5338 	int dd_idx;
5339 	sector_t writepos, readpos, safepos;
5340 	sector_t stripe_addr;
5341 	int reshape_sectors;
5342 	struct list_head stripes;
5343 
5344 	if (sector_nr == 0) {
5345 		/* If restarting in the middle, skip the initial sectors */
5346 		if (mddev->reshape_backwards &&
5347 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5348 			sector_nr = raid5_size(mddev, 0, 0)
5349 				- conf->reshape_progress;
5350 		} else if (!mddev->reshape_backwards &&
5351 			   conf->reshape_progress > 0)
5352 			sector_nr = conf->reshape_progress;
5353 		sector_div(sector_nr, new_data_disks);
5354 		if (sector_nr) {
5355 			mddev->curr_resync_completed = sector_nr;
5356 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5357 			*skipped = 1;
5358 			return sector_nr;
5359 		}
5360 	}
5361 
5362 	/* We need to process a full chunk at a time.
5363 	 * If old and new chunk sizes differ, we need to process the
5364 	 * largest of these
5365 	 */
5366 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5367 		reshape_sectors = mddev->new_chunk_sectors;
5368 	else
5369 		reshape_sectors = mddev->chunk_sectors;
5370 
5371 	/* We update the metadata at least every 10 seconds, or when
5372 	 * the data about to be copied would over-write the source of
5373 	 * the data at the front of the range.  i.e. one new_stripe
5374 	 * along from reshape_progress new_maps to after where
5375 	 * reshape_safe old_maps to
5376 	 */
5377 	writepos = conf->reshape_progress;
5378 	sector_div(writepos, new_data_disks);
5379 	readpos = conf->reshape_progress;
5380 	sector_div(readpos, data_disks);
5381 	safepos = conf->reshape_safe;
5382 	sector_div(safepos, data_disks);
5383 	if (mddev->reshape_backwards) {
5384 		writepos -= min_t(sector_t, reshape_sectors, writepos);
5385 		readpos += reshape_sectors;
5386 		safepos += reshape_sectors;
5387 	} else {
5388 		writepos += reshape_sectors;
5389 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5390 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5391 	}
5392 
5393 	/* Having calculated the 'writepos' possibly use it
5394 	 * to set 'stripe_addr' which is where we will write to.
5395 	 */
5396 	if (mddev->reshape_backwards) {
5397 		BUG_ON(conf->reshape_progress == 0);
5398 		stripe_addr = writepos;
5399 		BUG_ON((mddev->dev_sectors &
5400 			~((sector_t)reshape_sectors - 1))
5401 		       - reshape_sectors - stripe_addr
5402 		       != sector_nr);
5403 	} else {
5404 		BUG_ON(writepos != sector_nr + reshape_sectors);
5405 		stripe_addr = sector_nr;
5406 	}
5407 
5408 	/* 'writepos' is the most advanced device address we might write.
5409 	 * 'readpos' is the least advanced device address we might read.
5410 	 * 'safepos' is the least address recorded in the metadata as having
5411 	 *     been reshaped.
5412 	 * If there is a min_offset_diff, these are adjusted either by
5413 	 * increasing the safepos/readpos if diff is negative, or
5414 	 * increasing writepos if diff is positive.
5415 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5416 	 * ensure safety in the face of a crash - that must be done by userspace
5417 	 * making a backup of the data.  So in that case there is no particular
5418 	 * rush to update metadata.
5419 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5420 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5421 	 * we can be safe in the event of a crash.
5422 	 * So we insist on updating metadata if safepos is behind writepos and
5423 	 * readpos is beyond writepos.
5424 	 * In any case, update the metadata every 10 seconds.
5425 	 * Maybe that number should be configurable, but I'm not sure it is
5426 	 * worth it.... maybe it could be a multiple of safemode_delay???
5427 	 */
5428 	if (conf->min_offset_diff < 0) {
5429 		safepos += -conf->min_offset_diff;
5430 		readpos += -conf->min_offset_diff;
5431 	} else
5432 		writepos += conf->min_offset_diff;
5433 
5434 	if ((mddev->reshape_backwards
5435 	     ? (safepos > writepos && readpos < writepos)
5436 	     : (safepos < writepos && readpos > writepos)) ||
5437 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5438 		/* Cannot proceed until we've updated the superblock... */
5439 		wait_event(conf->wait_for_overlap,
5440 			   atomic_read(&conf->reshape_stripes)==0
5441 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5442 		if (atomic_read(&conf->reshape_stripes) != 0)
5443 			return 0;
5444 		mddev->reshape_position = conf->reshape_progress;
5445 		mddev->curr_resync_completed = sector_nr;
5446 		conf->reshape_checkpoint = jiffies;
5447 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5448 		md_wakeup_thread(mddev->thread);
5449 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
5450 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5451 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5452 			return 0;
5453 		spin_lock_irq(&conf->device_lock);
5454 		conf->reshape_safe = mddev->reshape_position;
5455 		spin_unlock_irq(&conf->device_lock);
5456 		wake_up(&conf->wait_for_overlap);
5457 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5458 	}
5459 
5460 	INIT_LIST_HEAD(&stripes);
5461 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5462 		int j;
5463 		int skipped_disk = 0;
5464 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5465 		set_bit(STRIPE_EXPANDING, &sh->state);
5466 		atomic_inc(&conf->reshape_stripes);
5467 		/* If any of this stripe is beyond the end of the old
5468 		 * array, then we need to zero those blocks
5469 		 */
5470 		for (j=sh->disks; j--;) {
5471 			sector_t s;
5472 			if (j == sh->pd_idx)
5473 				continue;
5474 			if (conf->level == 6 &&
5475 			    j == sh->qd_idx)
5476 				continue;
5477 			s = compute_blocknr(sh, j, 0);
5478 			if (s < raid5_size(mddev, 0, 0)) {
5479 				skipped_disk = 1;
5480 				continue;
5481 			}
5482 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5483 			set_bit(R5_Expanded, &sh->dev[j].flags);
5484 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5485 		}
5486 		if (!skipped_disk) {
5487 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5488 			set_bit(STRIPE_HANDLE, &sh->state);
5489 		}
5490 		list_add(&sh->lru, &stripes);
5491 	}
5492 	spin_lock_irq(&conf->device_lock);
5493 	if (mddev->reshape_backwards)
5494 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5495 	else
5496 		conf->reshape_progress += reshape_sectors * new_data_disks;
5497 	spin_unlock_irq(&conf->device_lock);
5498 	/* Ok, those stripe are ready. We can start scheduling
5499 	 * reads on the source stripes.
5500 	 * The source stripes are determined by mapping the first and last
5501 	 * block on the destination stripes.
5502 	 */
5503 	first_sector =
5504 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5505 				     1, &dd_idx, NULL);
5506 	last_sector =
5507 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5508 					    * new_data_disks - 1),
5509 				     1, &dd_idx, NULL);
5510 	if (last_sector >= mddev->dev_sectors)
5511 		last_sector = mddev->dev_sectors - 1;
5512 	while (first_sector <= last_sector) {
5513 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5514 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5515 		set_bit(STRIPE_HANDLE, &sh->state);
5516 		release_stripe(sh);
5517 		first_sector += STRIPE_SECTORS;
5518 	}
5519 	/* Now that the sources are clearly marked, we can release
5520 	 * the destination stripes
5521 	 */
5522 	while (!list_empty(&stripes)) {
5523 		sh = list_entry(stripes.next, struct stripe_head, lru);
5524 		list_del_init(&sh->lru);
5525 		release_stripe(sh);
5526 	}
5527 	/* If this takes us to the resync_max point where we have to pause,
5528 	 * then we need to write out the superblock.
5529 	 */
5530 	sector_nr += reshape_sectors;
5531 	if ((sector_nr - mddev->curr_resync_completed) * 2
5532 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5533 		/* Cannot proceed until we've updated the superblock... */
5534 		wait_event(conf->wait_for_overlap,
5535 			   atomic_read(&conf->reshape_stripes) == 0
5536 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5537 		if (atomic_read(&conf->reshape_stripes) != 0)
5538 			goto ret;
5539 		mddev->reshape_position = conf->reshape_progress;
5540 		mddev->curr_resync_completed = sector_nr;
5541 		conf->reshape_checkpoint = jiffies;
5542 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5543 		md_wakeup_thread(mddev->thread);
5544 		wait_event(mddev->sb_wait,
5545 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5546 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5547 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5548 			goto ret;
5549 		spin_lock_irq(&conf->device_lock);
5550 		conf->reshape_safe = mddev->reshape_position;
5551 		spin_unlock_irq(&conf->device_lock);
5552 		wake_up(&conf->wait_for_overlap);
5553 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5554 	}
5555 ret:
5556 	return reshape_sectors;
5557 }
5558 
5559 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5560 {
5561 	struct r5conf *conf = mddev->private;
5562 	struct stripe_head *sh;
5563 	sector_t max_sector = mddev->dev_sectors;
5564 	sector_t sync_blocks;
5565 	int still_degraded = 0;
5566 	int i;
5567 
5568 	if (sector_nr >= max_sector) {
5569 		/* just being told to finish up .. nothing much to do */
5570 
5571 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5572 			end_reshape(conf);
5573 			return 0;
5574 		}
5575 
5576 		if (mddev->curr_resync < max_sector) /* aborted */
5577 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5578 					&sync_blocks, 1);
5579 		else /* completed sync */
5580 			conf->fullsync = 0;
5581 		bitmap_close_sync(mddev->bitmap);
5582 
5583 		return 0;
5584 	}
5585 
5586 	/* Allow raid5_quiesce to complete */
5587 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5588 
5589 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5590 		return reshape_request(mddev, sector_nr, skipped);
5591 
5592 	/* No need to check resync_max as we never do more than one
5593 	 * stripe, and as resync_max will always be on a chunk boundary,
5594 	 * if the check in md_do_sync didn't fire, there is no chance
5595 	 * of overstepping resync_max here
5596 	 */
5597 
5598 	/* if there is too many failed drives and we are trying
5599 	 * to resync, then assert that we are finished, because there is
5600 	 * nothing we can do.
5601 	 */
5602 	if (mddev->degraded >= conf->max_degraded &&
5603 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5604 		sector_t rv = mddev->dev_sectors - sector_nr;
5605 		*skipped = 1;
5606 		return rv;
5607 	}
5608 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5609 	    !conf->fullsync &&
5610 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5611 	    sync_blocks >= STRIPE_SECTORS) {
5612 		/* we can skip this block, and probably more */
5613 		sync_blocks /= STRIPE_SECTORS;
5614 		*skipped = 1;
5615 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5616 	}
5617 
5618 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5619 
5620 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5621 	if (sh == NULL) {
5622 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5623 		/* make sure we don't swamp the stripe cache if someone else
5624 		 * is trying to get access
5625 		 */
5626 		schedule_timeout_uninterruptible(1);
5627 	}
5628 	/* Need to check if array will still be degraded after recovery/resync
5629 	 * Note in case of > 1 drive failures it's possible we're rebuilding
5630 	 * one drive while leaving another faulty drive in array.
5631 	 */
5632 	rcu_read_lock();
5633 	for (i = 0; i < conf->raid_disks; i++) {
5634 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5635 
5636 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5637 			still_degraded = 1;
5638 	}
5639 	rcu_read_unlock();
5640 
5641 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5642 
5643 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5644 	set_bit(STRIPE_HANDLE, &sh->state);
5645 
5646 	release_stripe(sh);
5647 
5648 	return STRIPE_SECTORS;
5649 }
5650 
5651 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5652 {
5653 	/* We may not be able to submit a whole bio at once as there
5654 	 * may not be enough stripe_heads available.
5655 	 * We cannot pre-allocate enough stripe_heads as we may need
5656 	 * more than exist in the cache (if we allow ever large chunks).
5657 	 * So we do one stripe head at a time and record in
5658 	 * ->bi_hw_segments how many have been done.
5659 	 *
5660 	 * We *know* that this entire raid_bio is in one chunk, so
5661 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5662 	 */
5663 	struct stripe_head *sh;
5664 	int dd_idx;
5665 	sector_t sector, logical_sector, last_sector;
5666 	int scnt = 0;
5667 	int remaining;
5668 	int handled = 0;
5669 
5670 	logical_sector = raid_bio->bi_iter.bi_sector &
5671 		~((sector_t)STRIPE_SECTORS-1);
5672 	sector = raid5_compute_sector(conf, logical_sector,
5673 				      0, &dd_idx, NULL);
5674 	last_sector = bio_end_sector(raid_bio);
5675 
5676 	for (; logical_sector < last_sector;
5677 	     logical_sector += STRIPE_SECTORS,
5678 		     sector += STRIPE_SECTORS,
5679 		     scnt++) {
5680 
5681 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5682 			/* already done this stripe */
5683 			continue;
5684 
5685 		sh = get_active_stripe(conf, sector, 0, 1, 1);
5686 
5687 		if (!sh) {
5688 			/* failed to get a stripe - must wait */
5689 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5690 			conf->retry_read_aligned = raid_bio;
5691 			return handled;
5692 		}
5693 
5694 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5695 			release_stripe(sh);
5696 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5697 			conf->retry_read_aligned = raid_bio;
5698 			return handled;
5699 		}
5700 
5701 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5702 		handle_stripe(sh);
5703 		release_stripe(sh);
5704 		handled++;
5705 	}
5706 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5707 	if (remaining == 0) {
5708 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5709 					 raid_bio, 0);
5710 		bio_endio(raid_bio, 0);
5711 	}
5712 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5713 		wake_up(&conf->wait_for_quiescent);
5714 	return handled;
5715 }
5716 
5717 static int handle_active_stripes(struct r5conf *conf, int group,
5718 				 struct r5worker *worker,
5719 				 struct list_head *temp_inactive_list)
5720 {
5721 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5722 	int i, batch_size = 0, hash;
5723 	bool release_inactive = false;
5724 
5725 	while (batch_size < MAX_STRIPE_BATCH &&
5726 			(sh = __get_priority_stripe(conf, group)) != NULL)
5727 		batch[batch_size++] = sh;
5728 
5729 	if (batch_size == 0) {
5730 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5731 			if (!list_empty(temp_inactive_list + i))
5732 				break;
5733 		if (i == NR_STRIPE_HASH_LOCKS)
5734 			return batch_size;
5735 		release_inactive = true;
5736 	}
5737 	spin_unlock_irq(&conf->device_lock);
5738 
5739 	release_inactive_stripe_list(conf, temp_inactive_list,
5740 				     NR_STRIPE_HASH_LOCKS);
5741 
5742 	if (release_inactive) {
5743 		spin_lock_irq(&conf->device_lock);
5744 		return 0;
5745 	}
5746 
5747 	for (i = 0; i < batch_size; i++)
5748 		handle_stripe(batch[i]);
5749 
5750 	cond_resched();
5751 
5752 	spin_lock_irq(&conf->device_lock);
5753 	for (i = 0; i < batch_size; i++) {
5754 		hash = batch[i]->hash_lock_index;
5755 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5756 	}
5757 	return batch_size;
5758 }
5759 
5760 static void raid5_do_work(struct work_struct *work)
5761 {
5762 	struct r5worker *worker = container_of(work, struct r5worker, work);
5763 	struct r5worker_group *group = worker->group;
5764 	struct r5conf *conf = group->conf;
5765 	int group_id = group - conf->worker_groups;
5766 	int handled;
5767 	struct blk_plug plug;
5768 
5769 	pr_debug("+++ raid5worker active\n");
5770 
5771 	blk_start_plug(&plug);
5772 	handled = 0;
5773 	spin_lock_irq(&conf->device_lock);
5774 	while (1) {
5775 		int batch_size, released;
5776 
5777 		released = release_stripe_list(conf, worker->temp_inactive_list);
5778 
5779 		batch_size = handle_active_stripes(conf, group_id, worker,
5780 						   worker->temp_inactive_list);
5781 		worker->working = false;
5782 		if (!batch_size && !released)
5783 			break;
5784 		handled += batch_size;
5785 	}
5786 	pr_debug("%d stripes handled\n", handled);
5787 
5788 	spin_unlock_irq(&conf->device_lock);
5789 	blk_finish_plug(&plug);
5790 
5791 	pr_debug("--- raid5worker inactive\n");
5792 }
5793 
5794 /*
5795  * This is our raid5 kernel thread.
5796  *
5797  * We scan the hash table for stripes which can be handled now.
5798  * During the scan, completed stripes are saved for us by the interrupt
5799  * handler, so that they will not have to wait for our next wakeup.
5800  */
5801 static void raid5d(struct md_thread *thread)
5802 {
5803 	struct mddev *mddev = thread->mddev;
5804 	struct r5conf *conf = mddev->private;
5805 	int handled;
5806 	struct blk_plug plug;
5807 
5808 	pr_debug("+++ raid5d active\n");
5809 
5810 	md_check_recovery(mddev);
5811 
5812 	blk_start_plug(&plug);
5813 	handled = 0;
5814 	spin_lock_irq(&conf->device_lock);
5815 	while (1) {
5816 		struct bio *bio;
5817 		int batch_size, released;
5818 
5819 		released = release_stripe_list(conf, conf->temp_inactive_list);
5820 		if (released)
5821 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
5822 
5823 		if (
5824 		    !list_empty(&conf->bitmap_list)) {
5825 			/* Now is a good time to flush some bitmap updates */
5826 			conf->seq_flush++;
5827 			spin_unlock_irq(&conf->device_lock);
5828 			bitmap_unplug(mddev->bitmap);
5829 			spin_lock_irq(&conf->device_lock);
5830 			conf->seq_write = conf->seq_flush;
5831 			activate_bit_delay(conf, conf->temp_inactive_list);
5832 		}
5833 		raid5_activate_delayed(conf);
5834 
5835 		while ((bio = remove_bio_from_retry(conf))) {
5836 			int ok;
5837 			spin_unlock_irq(&conf->device_lock);
5838 			ok = retry_aligned_read(conf, bio);
5839 			spin_lock_irq(&conf->device_lock);
5840 			if (!ok)
5841 				break;
5842 			handled++;
5843 		}
5844 
5845 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5846 						   conf->temp_inactive_list);
5847 		if (!batch_size && !released)
5848 			break;
5849 		handled += batch_size;
5850 
5851 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5852 			spin_unlock_irq(&conf->device_lock);
5853 			md_check_recovery(mddev);
5854 			spin_lock_irq(&conf->device_lock);
5855 		}
5856 	}
5857 	pr_debug("%d stripes handled\n", handled);
5858 
5859 	spin_unlock_irq(&conf->device_lock);
5860 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
5861 		grow_one_stripe(conf, __GFP_NOWARN);
5862 		/* Set flag even if allocation failed.  This helps
5863 		 * slow down allocation requests when mem is short
5864 		 */
5865 		set_bit(R5_DID_ALLOC, &conf->cache_state);
5866 	}
5867 
5868 	async_tx_issue_pending_all();
5869 	blk_finish_plug(&plug);
5870 
5871 	pr_debug("--- raid5d inactive\n");
5872 }
5873 
5874 static ssize_t
5875 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5876 {
5877 	struct r5conf *conf;
5878 	int ret = 0;
5879 	spin_lock(&mddev->lock);
5880 	conf = mddev->private;
5881 	if (conf)
5882 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5883 	spin_unlock(&mddev->lock);
5884 	return ret;
5885 }
5886 
5887 int
5888 raid5_set_cache_size(struct mddev *mddev, int size)
5889 {
5890 	struct r5conf *conf = mddev->private;
5891 	int err;
5892 
5893 	if (size <= 16 || size > 32768)
5894 		return -EINVAL;
5895 
5896 	conf->min_nr_stripes = size;
5897 	while (size < conf->max_nr_stripes &&
5898 	       drop_one_stripe(conf))
5899 		;
5900 
5901 
5902 	err = md_allow_write(mddev);
5903 	if (err)
5904 		return err;
5905 
5906 	while (size > conf->max_nr_stripes)
5907 		if (!grow_one_stripe(conf, GFP_KERNEL))
5908 			break;
5909 
5910 	return 0;
5911 }
5912 EXPORT_SYMBOL(raid5_set_cache_size);
5913 
5914 static ssize_t
5915 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5916 {
5917 	struct r5conf *conf;
5918 	unsigned long new;
5919 	int err;
5920 
5921 	if (len >= PAGE_SIZE)
5922 		return -EINVAL;
5923 	if (kstrtoul(page, 10, &new))
5924 		return -EINVAL;
5925 	err = mddev_lock(mddev);
5926 	if (err)
5927 		return err;
5928 	conf = mddev->private;
5929 	if (!conf)
5930 		err = -ENODEV;
5931 	else
5932 		err = raid5_set_cache_size(mddev, new);
5933 	mddev_unlock(mddev);
5934 
5935 	return err ?: len;
5936 }
5937 
5938 static struct md_sysfs_entry
5939 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5940 				raid5_show_stripe_cache_size,
5941 				raid5_store_stripe_cache_size);
5942 
5943 static ssize_t
5944 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5945 {
5946 	struct r5conf *conf = mddev->private;
5947 	if (conf)
5948 		return sprintf(page, "%d\n", conf->rmw_level);
5949 	else
5950 		return 0;
5951 }
5952 
5953 static ssize_t
5954 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5955 {
5956 	struct r5conf *conf = mddev->private;
5957 	unsigned long new;
5958 
5959 	if (!conf)
5960 		return -ENODEV;
5961 
5962 	if (len >= PAGE_SIZE)
5963 		return -EINVAL;
5964 
5965 	if (kstrtoul(page, 10, &new))
5966 		return -EINVAL;
5967 
5968 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5969 		return -EINVAL;
5970 
5971 	if (new != PARITY_DISABLE_RMW &&
5972 	    new != PARITY_ENABLE_RMW &&
5973 	    new != PARITY_PREFER_RMW)
5974 		return -EINVAL;
5975 
5976 	conf->rmw_level = new;
5977 	return len;
5978 }
5979 
5980 static struct md_sysfs_entry
5981 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5982 			 raid5_show_rmw_level,
5983 			 raid5_store_rmw_level);
5984 
5985 
5986 static ssize_t
5987 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5988 {
5989 	struct r5conf *conf;
5990 	int ret = 0;
5991 	spin_lock(&mddev->lock);
5992 	conf = mddev->private;
5993 	if (conf)
5994 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
5995 	spin_unlock(&mddev->lock);
5996 	return ret;
5997 }
5998 
5999 static ssize_t
6000 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6001 {
6002 	struct r5conf *conf;
6003 	unsigned long new;
6004 	int err;
6005 
6006 	if (len >= PAGE_SIZE)
6007 		return -EINVAL;
6008 	if (kstrtoul(page, 10, &new))
6009 		return -EINVAL;
6010 
6011 	err = mddev_lock(mddev);
6012 	if (err)
6013 		return err;
6014 	conf = mddev->private;
6015 	if (!conf)
6016 		err = -ENODEV;
6017 	else if (new > conf->min_nr_stripes)
6018 		err = -EINVAL;
6019 	else
6020 		conf->bypass_threshold = new;
6021 	mddev_unlock(mddev);
6022 	return err ?: len;
6023 }
6024 
6025 static struct md_sysfs_entry
6026 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6027 					S_IRUGO | S_IWUSR,
6028 					raid5_show_preread_threshold,
6029 					raid5_store_preread_threshold);
6030 
6031 static ssize_t
6032 raid5_show_skip_copy(struct mddev *mddev, char *page)
6033 {
6034 	struct r5conf *conf;
6035 	int ret = 0;
6036 	spin_lock(&mddev->lock);
6037 	conf = mddev->private;
6038 	if (conf)
6039 		ret = sprintf(page, "%d\n", conf->skip_copy);
6040 	spin_unlock(&mddev->lock);
6041 	return ret;
6042 }
6043 
6044 static ssize_t
6045 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6046 {
6047 	struct r5conf *conf;
6048 	unsigned long new;
6049 	int err;
6050 
6051 	if (len >= PAGE_SIZE)
6052 		return -EINVAL;
6053 	if (kstrtoul(page, 10, &new))
6054 		return -EINVAL;
6055 	new = !!new;
6056 
6057 	err = mddev_lock(mddev);
6058 	if (err)
6059 		return err;
6060 	conf = mddev->private;
6061 	if (!conf)
6062 		err = -ENODEV;
6063 	else if (new != conf->skip_copy) {
6064 		mddev_suspend(mddev);
6065 		conf->skip_copy = new;
6066 		if (new)
6067 			mddev->queue->backing_dev_info.capabilities |=
6068 				BDI_CAP_STABLE_WRITES;
6069 		else
6070 			mddev->queue->backing_dev_info.capabilities &=
6071 				~BDI_CAP_STABLE_WRITES;
6072 		mddev_resume(mddev);
6073 	}
6074 	mddev_unlock(mddev);
6075 	return err ?: len;
6076 }
6077 
6078 static struct md_sysfs_entry
6079 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6080 					raid5_show_skip_copy,
6081 					raid5_store_skip_copy);
6082 
6083 static ssize_t
6084 stripe_cache_active_show(struct mddev *mddev, char *page)
6085 {
6086 	struct r5conf *conf = mddev->private;
6087 	if (conf)
6088 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6089 	else
6090 		return 0;
6091 }
6092 
6093 static struct md_sysfs_entry
6094 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6095 
6096 static ssize_t
6097 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6098 {
6099 	struct r5conf *conf;
6100 	int ret = 0;
6101 	spin_lock(&mddev->lock);
6102 	conf = mddev->private;
6103 	if (conf)
6104 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6105 	spin_unlock(&mddev->lock);
6106 	return ret;
6107 }
6108 
6109 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6110 			       int *group_cnt,
6111 			       int *worker_cnt_per_group,
6112 			       struct r5worker_group **worker_groups);
6113 static ssize_t
6114 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6115 {
6116 	struct r5conf *conf;
6117 	unsigned long new;
6118 	int err;
6119 	struct r5worker_group *new_groups, *old_groups;
6120 	int group_cnt, worker_cnt_per_group;
6121 
6122 	if (len >= PAGE_SIZE)
6123 		return -EINVAL;
6124 	if (kstrtoul(page, 10, &new))
6125 		return -EINVAL;
6126 
6127 	err = mddev_lock(mddev);
6128 	if (err)
6129 		return err;
6130 	conf = mddev->private;
6131 	if (!conf)
6132 		err = -ENODEV;
6133 	else if (new != conf->worker_cnt_per_group) {
6134 		mddev_suspend(mddev);
6135 
6136 		old_groups = conf->worker_groups;
6137 		if (old_groups)
6138 			flush_workqueue(raid5_wq);
6139 
6140 		err = alloc_thread_groups(conf, new,
6141 					  &group_cnt, &worker_cnt_per_group,
6142 					  &new_groups);
6143 		if (!err) {
6144 			spin_lock_irq(&conf->device_lock);
6145 			conf->group_cnt = group_cnt;
6146 			conf->worker_cnt_per_group = worker_cnt_per_group;
6147 			conf->worker_groups = new_groups;
6148 			spin_unlock_irq(&conf->device_lock);
6149 
6150 			if (old_groups)
6151 				kfree(old_groups[0].workers);
6152 			kfree(old_groups);
6153 		}
6154 		mddev_resume(mddev);
6155 	}
6156 	mddev_unlock(mddev);
6157 
6158 	return err ?: len;
6159 }
6160 
6161 static struct md_sysfs_entry
6162 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6163 				raid5_show_group_thread_cnt,
6164 				raid5_store_group_thread_cnt);
6165 
6166 static struct attribute *raid5_attrs[] =  {
6167 	&raid5_stripecache_size.attr,
6168 	&raid5_stripecache_active.attr,
6169 	&raid5_preread_bypass_threshold.attr,
6170 	&raid5_group_thread_cnt.attr,
6171 	&raid5_skip_copy.attr,
6172 	&raid5_rmw_level.attr,
6173 	NULL,
6174 };
6175 static struct attribute_group raid5_attrs_group = {
6176 	.name = NULL,
6177 	.attrs = raid5_attrs,
6178 };
6179 
6180 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6181 			       int *group_cnt,
6182 			       int *worker_cnt_per_group,
6183 			       struct r5worker_group **worker_groups)
6184 {
6185 	int i, j, k;
6186 	ssize_t size;
6187 	struct r5worker *workers;
6188 
6189 	*worker_cnt_per_group = cnt;
6190 	if (cnt == 0) {
6191 		*group_cnt = 0;
6192 		*worker_groups = NULL;
6193 		return 0;
6194 	}
6195 	*group_cnt = num_possible_nodes();
6196 	size = sizeof(struct r5worker) * cnt;
6197 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6198 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6199 				*group_cnt, GFP_NOIO);
6200 	if (!*worker_groups || !workers) {
6201 		kfree(workers);
6202 		kfree(*worker_groups);
6203 		return -ENOMEM;
6204 	}
6205 
6206 	for (i = 0; i < *group_cnt; i++) {
6207 		struct r5worker_group *group;
6208 
6209 		group = &(*worker_groups)[i];
6210 		INIT_LIST_HEAD(&group->handle_list);
6211 		group->conf = conf;
6212 		group->workers = workers + i * cnt;
6213 
6214 		for (j = 0; j < cnt; j++) {
6215 			struct r5worker *worker = group->workers + j;
6216 			worker->group = group;
6217 			INIT_WORK(&worker->work, raid5_do_work);
6218 
6219 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6220 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6221 		}
6222 	}
6223 
6224 	return 0;
6225 }
6226 
6227 static void free_thread_groups(struct r5conf *conf)
6228 {
6229 	if (conf->worker_groups)
6230 		kfree(conf->worker_groups[0].workers);
6231 	kfree(conf->worker_groups);
6232 	conf->worker_groups = NULL;
6233 }
6234 
6235 static sector_t
6236 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6237 {
6238 	struct r5conf *conf = mddev->private;
6239 
6240 	if (!sectors)
6241 		sectors = mddev->dev_sectors;
6242 	if (!raid_disks)
6243 		/* size is defined by the smallest of previous and new size */
6244 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6245 
6246 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6247 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6248 	return sectors * (raid_disks - conf->max_degraded);
6249 }
6250 
6251 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6252 {
6253 	safe_put_page(percpu->spare_page);
6254 	if (percpu->scribble)
6255 		flex_array_free(percpu->scribble);
6256 	percpu->spare_page = NULL;
6257 	percpu->scribble = NULL;
6258 }
6259 
6260 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6261 {
6262 	if (conf->level == 6 && !percpu->spare_page)
6263 		percpu->spare_page = alloc_page(GFP_KERNEL);
6264 	if (!percpu->scribble)
6265 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6266 						      conf->previous_raid_disks),
6267 						  max(conf->chunk_sectors,
6268 						      conf->prev_chunk_sectors)
6269 						   / STRIPE_SECTORS,
6270 						  GFP_KERNEL);
6271 
6272 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6273 		free_scratch_buffer(conf, percpu);
6274 		return -ENOMEM;
6275 	}
6276 
6277 	return 0;
6278 }
6279 
6280 static void raid5_free_percpu(struct r5conf *conf)
6281 {
6282 	unsigned long cpu;
6283 
6284 	if (!conf->percpu)
6285 		return;
6286 
6287 #ifdef CONFIG_HOTPLUG_CPU
6288 	unregister_cpu_notifier(&conf->cpu_notify);
6289 #endif
6290 
6291 	get_online_cpus();
6292 	for_each_possible_cpu(cpu)
6293 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6294 	put_online_cpus();
6295 
6296 	free_percpu(conf->percpu);
6297 }
6298 
6299 static void free_conf(struct r5conf *conf)
6300 {
6301 	if (conf->shrinker.seeks)
6302 		unregister_shrinker(&conf->shrinker);
6303 	free_thread_groups(conf);
6304 	shrink_stripes(conf);
6305 	raid5_free_percpu(conf);
6306 	kfree(conf->disks);
6307 	kfree(conf->stripe_hashtbl);
6308 	kfree(conf);
6309 }
6310 
6311 #ifdef CONFIG_HOTPLUG_CPU
6312 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6313 			      void *hcpu)
6314 {
6315 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6316 	long cpu = (long)hcpu;
6317 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6318 
6319 	switch (action) {
6320 	case CPU_UP_PREPARE:
6321 	case CPU_UP_PREPARE_FROZEN:
6322 		if (alloc_scratch_buffer(conf, percpu)) {
6323 			pr_err("%s: failed memory allocation for cpu%ld\n",
6324 			       __func__, cpu);
6325 			return notifier_from_errno(-ENOMEM);
6326 		}
6327 		break;
6328 	case CPU_DEAD:
6329 	case CPU_DEAD_FROZEN:
6330 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6331 		break;
6332 	default:
6333 		break;
6334 	}
6335 	return NOTIFY_OK;
6336 }
6337 #endif
6338 
6339 static int raid5_alloc_percpu(struct r5conf *conf)
6340 {
6341 	unsigned long cpu;
6342 	int err = 0;
6343 
6344 	conf->percpu = alloc_percpu(struct raid5_percpu);
6345 	if (!conf->percpu)
6346 		return -ENOMEM;
6347 
6348 #ifdef CONFIG_HOTPLUG_CPU
6349 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
6350 	conf->cpu_notify.priority = 0;
6351 	err = register_cpu_notifier(&conf->cpu_notify);
6352 	if (err)
6353 		return err;
6354 #endif
6355 
6356 	get_online_cpus();
6357 	for_each_present_cpu(cpu) {
6358 		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6359 		if (err) {
6360 			pr_err("%s: failed memory allocation for cpu%ld\n",
6361 			       __func__, cpu);
6362 			break;
6363 		}
6364 	}
6365 	put_online_cpus();
6366 
6367 	return err;
6368 }
6369 
6370 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6371 				      struct shrink_control *sc)
6372 {
6373 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6374 	int ret = 0;
6375 	while (ret < sc->nr_to_scan) {
6376 		if (drop_one_stripe(conf) == 0)
6377 			return SHRINK_STOP;
6378 		ret++;
6379 	}
6380 	return ret;
6381 }
6382 
6383 static unsigned long raid5_cache_count(struct shrinker *shrink,
6384 				       struct shrink_control *sc)
6385 {
6386 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6387 
6388 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6389 		/* unlikely, but not impossible */
6390 		return 0;
6391 	return conf->max_nr_stripes - conf->min_nr_stripes;
6392 }
6393 
6394 static struct r5conf *setup_conf(struct mddev *mddev)
6395 {
6396 	struct r5conf *conf;
6397 	int raid_disk, memory, max_disks;
6398 	struct md_rdev *rdev;
6399 	struct disk_info *disk;
6400 	char pers_name[6];
6401 	int i;
6402 	int group_cnt, worker_cnt_per_group;
6403 	struct r5worker_group *new_group;
6404 
6405 	if (mddev->new_level != 5
6406 	    && mddev->new_level != 4
6407 	    && mddev->new_level != 6) {
6408 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6409 		       mdname(mddev), mddev->new_level);
6410 		return ERR_PTR(-EIO);
6411 	}
6412 	if ((mddev->new_level == 5
6413 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6414 	    (mddev->new_level == 6
6415 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6416 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6417 		       mdname(mddev), mddev->new_layout);
6418 		return ERR_PTR(-EIO);
6419 	}
6420 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6421 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6422 		       mdname(mddev), mddev->raid_disks);
6423 		return ERR_PTR(-EINVAL);
6424 	}
6425 
6426 	if (!mddev->new_chunk_sectors ||
6427 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6428 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6429 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6430 		       mdname(mddev), mddev->new_chunk_sectors << 9);
6431 		return ERR_PTR(-EINVAL);
6432 	}
6433 
6434 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6435 	if (conf == NULL)
6436 		goto abort;
6437 	/* Don't enable multi-threading by default*/
6438 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6439 				 &new_group)) {
6440 		conf->group_cnt = group_cnt;
6441 		conf->worker_cnt_per_group = worker_cnt_per_group;
6442 		conf->worker_groups = new_group;
6443 	} else
6444 		goto abort;
6445 	spin_lock_init(&conf->device_lock);
6446 	seqcount_init(&conf->gen_lock);
6447 	init_waitqueue_head(&conf->wait_for_quiescent);
6448 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6449 		init_waitqueue_head(&conf->wait_for_stripe[i]);
6450 	}
6451 	init_waitqueue_head(&conf->wait_for_overlap);
6452 	INIT_LIST_HEAD(&conf->handle_list);
6453 	INIT_LIST_HEAD(&conf->hold_list);
6454 	INIT_LIST_HEAD(&conf->delayed_list);
6455 	INIT_LIST_HEAD(&conf->bitmap_list);
6456 	init_llist_head(&conf->released_stripes);
6457 	atomic_set(&conf->active_stripes, 0);
6458 	atomic_set(&conf->preread_active_stripes, 0);
6459 	atomic_set(&conf->active_aligned_reads, 0);
6460 	conf->bypass_threshold = BYPASS_THRESHOLD;
6461 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6462 
6463 	conf->raid_disks = mddev->raid_disks;
6464 	if (mddev->reshape_position == MaxSector)
6465 		conf->previous_raid_disks = mddev->raid_disks;
6466 	else
6467 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6468 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6469 
6470 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6471 			      GFP_KERNEL);
6472 	if (!conf->disks)
6473 		goto abort;
6474 
6475 	conf->mddev = mddev;
6476 
6477 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6478 		goto abort;
6479 
6480 	/* We init hash_locks[0] separately to that it can be used
6481 	 * as the reference lock in the spin_lock_nest_lock() call
6482 	 * in lock_all_device_hash_locks_irq in order to convince
6483 	 * lockdep that we know what we are doing.
6484 	 */
6485 	spin_lock_init(conf->hash_locks);
6486 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6487 		spin_lock_init(conf->hash_locks + i);
6488 
6489 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6490 		INIT_LIST_HEAD(conf->inactive_list + i);
6491 
6492 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6493 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6494 
6495 	conf->level = mddev->new_level;
6496 	conf->chunk_sectors = mddev->new_chunk_sectors;
6497 	if (raid5_alloc_percpu(conf) != 0)
6498 		goto abort;
6499 
6500 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6501 
6502 	rdev_for_each(rdev, mddev) {
6503 		raid_disk = rdev->raid_disk;
6504 		if (raid_disk >= max_disks
6505 		    || raid_disk < 0)
6506 			continue;
6507 		disk = conf->disks + raid_disk;
6508 
6509 		if (test_bit(Replacement, &rdev->flags)) {
6510 			if (disk->replacement)
6511 				goto abort;
6512 			disk->replacement = rdev;
6513 		} else {
6514 			if (disk->rdev)
6515 				goto abort;
6516 			disk->rdev = rdev;
6517 		}
6518 
6519 		if (test_bit(In_sync, &rdev->flags)) {
6520 			char b[BDEVNAME_SIZE];
6521 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6522 			       " disk %d\n",
6523 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6524 		} else if (rdev->saved_raid_disk != raid_disk)
6525 			/* Cannot rely on bitmap to complete recovery */
6526 			conf->fullsync = 1;
6527 	}
6528 
6529 	conf->level = mddev->new_level;
6530 	if (conf->level == 6) {
6531 		conf->max_degraded = 2;
6532 		if (raid6_call.xor_syndrome)
6533 			conf->rmw_level = PARITY_ENABLE_RMW;
6534 		else
6535 			conf->rmw_level = PARITY_DISABLE_RMW;
6536 	} else {
6537 		conf->max_degraded = 1;
6538 		conf->rmw_level = PARITY_ENABLE_RMW;
6539 	}
6540 	conf->algorithm = mddev->new_layout;
6541 	conf->reshape_progress = mddev->reshape_position;
6542 	if (conf->reshape_progress != MaxSector) {
6543 		conf->prev_chunk_sectors = mddev->chunk_sectors;
6544 		conf->prev_algo = mddev->layout;
6545 	}
6546 
6547 	conf->min_nr_stripes = NR_STRIPES;
6548 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6549 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6550 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6551 	if (grow_stripes(conf, conf->min_nr_stripes)) {
6552 		printk(KERN_ERR
6553 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
6554 		       mdname(mddev), memory);
6555 		goto abort;
6556 	} else
6557 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6558 		       mdname(mddev), memory);
6559 	/*
6560 	 * Losing a stripe head costs more than the time to refill it,
6561 	 * it reduces the queue depth and so can hurt throughput.
6562 	 * So set it rather large, scaled by number of devices.
6563 	 */
6564 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6565 	conf->shrinker.scan_objects = raid5_cache_scan;
6566 	conf->shrinker.count_objects = raid5_cache_count;
6567 	conf->shrinker.batch = 128;
6568 	conf->shrinker.flags = 0;
6569 	register_shrinker(&conf->shrinker);
6570 
6571 	sprintf(pers_name, "raid%d", mddev->new_level);
6572 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
6573 	if (!conf->thread) {
6574 		printk(KERN_ERR
6575 		       "md/raid:%s: couldn't allocate thread.\n",
6576 		       mdname(mddev));
6577 		goto abort;
6578 	}
6579 
6580 	return conf;
6581 
6582  abort:
6583 	if (conf) {
6584 		free_conf(conf);
6585 		return ERR_PTR(-EIO);
6586 	} else
6587 		return ERR_PTR(-ENOMEM);
6588 }
6589 
6590 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6591 {
6592 	switch (algo) {
6593 	case ALGORITHM_PARITY_0:
6594 		if (raid_disk < max_degraded)
6595 			return 1;
6596 		break;
6597 	case ALGORITHM_PARITY_N:
6598 		if (raid_disk >= raid_disks - max_degraded)
6599 			return 1;
6600 		break;
6601 	case ALGORITHM_PARITY_0_6:
6602 		if (raid_disk == 0 ||
6603 		    raid_disk == raid_disks - 1)
6604 			return 1;
6605 		break;
6606 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6607 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6608 	case ALGORITHM_LEFT_SYMMETRIC_6:
6609 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6610 		if (raid_disk == raid_disks - 1)
6611 			return 1;
6612 	}
6613 	return 0;
6614 }
6615 
6616 static int run(struct mddev *mddev)
6617 {
6618 	struct r5conf *conf;
6619 	int working_disks = 0;
6620 	int dirty_parity_disks = 0;
6621 	struct md_rdev *rdev;
6622 	sector_t reshape_offset = 0;
6623 	int i;
6624 	long long min_offset_diff = 0;
6625 	int first = 1;
6626 
6627 	if (mddev->recovery_cp != MaxSector)
6628 		printk(KERN_NOTICE "md/raid:%s: not clean"
6629 		       " -- starting background reconstruction\n",
6630 		       mdname(mddev));
6631 
6632 	rdev_for_each(rdev, mddev) {
6633 		long long diff;
6634 		if (rdev->raid_disk < 0)
6635 			continue;
6636 		diff = (rdev->new_data_offset - rdev->data_offset);
6637 		if (first) {
6638 			min_offset_diff = diff;
6639 			first = 0;
6640 		} else if (mddev->reshape_backwards &&
6641 			 diff < min_offset_diff)
6642 			min_offset_diff = diff;
6643 		else if (!mddev->reshape_backwards &&
6644 			 diff > min_offset_diff)
6645 			min_offset_diff = diff;
6646 	}
6647 
6648 	if (mddev->reshape_position != MaxSector) {
6649 		/* Check that we can continue the reshape.
6650 		 * Difficulties arise if the stripe we would write to
6651 		 * next is at or after the stripe we would read from next.
6652 		 * For a reshape that changes the number of devices, this
6653 		 * is only possible for a very short time, and mdadm makes
6654 		 * sure that time appears to have past before assembling
6655 		 * the array.  So we fail if that time hasn't passed.
6656 		 * For a reshape that keeps the number of devices the same
6657 		 * mdadm must be monitoring the reshape can keeping the
6658 		 * critical areas read-only and backed up.  It will start
6659 		 * the array in read-only mode, so we check for that.
6660 		 */
6661 		sector_t here_new, here_old;
6662 		int old_disks;
6663 		int max_degraded = (mddev->level == 6 ? 2 : 1);
6664 
6665 		if (mddev->new_level != mddev->level) {
6666 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
6667 			       "required - aborting.\n",
6668 			       mdname(mddev));
6669 			return -EINVAL;
6670 		}
6671 		old_disks = mddev->raid_disks - mddev->delta_disks;
6672 		/* reshape_position must be on a new-stripe boundary, and one
6673 		 * further up in new geometry must map after here in old
6674 		 * geometry.
6675 		 */
6676 		here_new = mddev->reshape_position;
6677 		if (sector_div(here_new, mddev->new_chunk_sectors *
6678 			       (mddev->raid_disks - max_degraded))) {
6679 			printk(KERN_ERR "md/raid:%s: reshape_position not "
6680 			       "on a stripe boundary\n", mdname(mddev));
6681 			return -EINVAL;
6682 		}
6683 		reshape_offset = here_new * mddev->new_chunk_sectors;
6684 		/* here_new is the stripe we will write to */
6685 		here_old = mddev->reshape_position;
6686 		sector_div(here_old, mddev->chunk_sectors *
6687 			   (old_disks-max_degraded));
6688 		/* here_old is the first stripe that we might need to read
6689 		 * from */
6690 		if (mddev->delta_disks == 0) {
6691 			if ((here_new * mddev->new_chunk_sectors !=
6692 			     here_old * mddev->chunk_sectors)) {
6693 				printk(KERN_ERR "md/raid:%s: reshape position is"
6694 				       " confused - aborting\n", mdname(mddev));
6695 				return -EINVAL;
6696 			}
6697 			/* We cannot be sure it is safe to start an in-place
6698 			 * reshape.  It is only safe if user-space is monitoring
6699 			 * and taking constant backups.
6700 			 * mdadm always starts a situation like this in
6701 			 * readonly mode so it can take control before
6702 			 * allowing any writes.  So just check for that.
6703 			 */
6704 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6705 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6706 				/* not really in-place - so OK */;
6707 			else if (mddev->ro == 0) {
6708 				printk(KERN_ERR "md/raid:%s: in-place reshape "
6709 				       "must be started in read-only mode "
6710 				       "- aborting\n",
6711 				       mdname(mddev));
6712 				return -EINVAL;
6713 			}
6714 		} else if (mddev->reshape_backwards
6715 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6716 		       here_old * mddev->chunk_sectors)
6717 		    : (here_new * mddev->new_chunk_sectors >=
6718 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6719 			/* Reading from the same stripe as writing to - bad */
6720 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6721 			       "auto-recovery - aborting.\n",
6722 			       mdname(mddev));
6723 			return -EINVAL;
6724 		}
6725 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6726 		       mdname(mddev));
6727 		/* OK, we should be able to continue; */
6728 	} else {
6729 		BUG_ON(mddev->level != mddev->new_level);
6730 		BUG_ON(mddev->layout != mddev->new_layout);
6731 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6732 		BUG_ON(mddev->delta_disks != 0);
6733 	}
6734 
6735 	if (mddev->private == NULL)
6736 		conf = setup_conf(mddev);
6737 	else
6738 		conf = mddev->private;
6739 
6740 	if (IS_ERR(conf))
6741 		return PTR_ERR(conf);
6742 
6743 	conf->min_offset_diff = min_offset_diff;
6744 	mddev->thread = conf->thread;
6745 	conf->thread = NULL;
6746 	mddev->private = conf;
6747 
6748 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6749 	     i++) {
6750 		rdev = conf->disks[i].rdev;
6751 		if (!rdev && conf->disks[i].replacement) {
6752 			/* The replacement is all we have yet */
6753 			rdev = conf->disks[i].replacement;
6754 			conf->disks[i].replacement = NULL;
6755 			clear_bit(Replacement, &rdev->flags);
6756 			conf->disks[i].rdev = rdev;
6757 		}
6758 		if (!rdev)
6759 			continue;
6760 		if (conf->disks[i].replacement &&
6761 		    conf->reshape_progress != MaxSector) {
6762 			/* replacements and reshape simply do not mix. */
6763 			printk(KERN_ERR "md: cannot handle concurrent "
6764 			       "replacement and reshape.\n");
6765 			goto abort;
6766 		}
6767 		if (test_bit(In_sync, &rdev->flags)) {
6768 			working_disks++;
6769 			continue;
6770 		}
6771 		/* This disc is not fully in-sync.  However if it
6772 		 * just stored parity (beyond the recovery_offset),
6773 		 * when we don't need to be concerned about the
6774 		 * array being dirty.
6775 		 * When reshape goes 'backwards', we never have
6776 		 * partially completed devices, so we only need
6777 		 * to worry about reshape going forwards.
6778 		 */
6779 		/* Hack because v0.91 doesn't store recovery_offset properly. */
6780 		if (mddev->major_version == 0 &&
6781 		    mddev->minor_version > 90)
6782 			rdev->recovery_offset = reshape_offset;
6783 
6784 		if (rdev->recovery_offset < reshape_offset) {
6785 			/* We need to check old and new layout */
6786 			if (!only_parity(rdev->raid_disk,
6787 					 conf->algorithm,
6788 					 conf->raid_disks,
6789 					 conf->max_degraded))
6790 				continue;
6791 		}
6792 		if (!only_parity(rdev->raid_disk,
6793 				 conf->prev_algo,
6794 				 conf->previous_raid_disks,
6795 				 conf->max_degraded))
6796 			continue;
6797 		dirty_parity_disks++;
6798 	}
6799 
6800 	/*
6801 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6802 	 */
6803 	mddev->degraded = calc_degraded(conf);
6804 
6805 	if (has_failed(conf)) {
6806 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6807 			" (%d/%d failed)\n",
6808 			mdname(mddev), mddev->degraded, conf->raid_disks);
6809 		goto abort;
6810 	}
6811 
6812 	/* device size must be a multiple of chunk size */
6813 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6814 	mddev->resync_max_sectors = mddev->dev_sectors;
6815 
6816 	if (mddev->degraded > dirty_parity_disks &&
6817 	    mddev->recovery_cp != MaxSector) {
6818 		if (mddev->ok_start_degraded)
6819 			printk(KERN_WARNING
6820 			       "md/raid:%s: starting dirty degraded array"
6821 			       " - data corruption possible.\n",
6822 			       mdname(mddev));
6823 		else {
6824 			printk(KERN_ERR
6825 			       "md/raid:%s: cannot start dirty degraded array.\n",
6826 			       mdname(mddev));
6827 			goto abort;
6828 		}
6829 	}
6830 
6831 	if (mddev->degraded == 0)
6832 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6833 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6834 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6835 		       mddev->new_layout);
6836 	else
6837 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6838 		       " out of %d devices, algorithm %d\n",
6839 		       mdname(mddev), conf->level,
6840 		       mddev->raid_disks - mddev->degraded,
6841 		       mddev->raid_disks, mddev->new_layout);
6842 
6843 	print_raid5_conf(conf);
6844 
6845 	if (conf->reshape_progress != MaxSector) {
6846 		conf->reshape_safe = conf->reshape_progress;
6847 		atomic_set(&conf->reshape_stripes, 0);
6848 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6849 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6850 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6851 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6852 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6853 							"reshape");
6854 	}
6855 
6856 	/* Ok, everything is just fine now */
6857 	if (mddev->to_remove == &raid5_attrs_group)
6858 		mddev->to_remove = NULL;
6859 	else if (mddev->kobj.sd &&
6860 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6861 		printk(KERN_WARNING
6862 		       "raid5: failed to create sysfs attributes for %s\n",
6863 		       mdname(mddev));
6864 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6865 
6866 	if (mddev->queue) {
6867 		int chunk_size;
6868 		bool discard_supported = true;
6869 		/* read-ahead size must cover two whole stripes, which
6870 		 * is 2 * (datadisks) * chunksize where 'n' is the
6871 		 * number of raid devices
6872 		 */
6873 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6874 		int stripe = data_disks *
6875 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6876 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6877 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6878 
6879 		chunk_size = mddev->chunk_sectors << 9;
6880 		blk_queue_io_min(mddev->queue, chunk_size);
6881 		blk_queue_io_opt(mddev->queue, chunk_size *
6882 				 (conf->raid_disks - conf->max_degraded));
6883 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6884 		/*
6885 		 * We can only discard a whole stripe. It doesn't make sense to
6886 		 * discard data disk but write parity disk
6887 		 */
6888 		stripe = stripe * PAGE_SIZE;
6889 		/* Round up to power of 2, as discard handling
6890 		 * currently assumes that */
6891 		while ((stripe-1) & stripe)
6892 			stripe = (stripe | (stripe-1)) + 1;
6893 		mddev->queue->limits.discard_alignment = stripe;
6894 		mddev->queue->limits.discard_granularity = stripe;
6895 		/*
6896 		 * unaligned part of discard request will be ignored, so can't
6897 		 * guarantee discard_zeroes_data
6898 		 */
6899 		mddev->queue->limits.discard_zeroes_data = 0;
6900 
6901 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6902 
6903 		rdev_for_each(rdev, mddev) {
6904 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6905 					  rdev->data_offset << 9);
6906 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6907 					  rdev->new_data_offset << 9);
6908 			/*
6909 			 * discard_zeroes_data is required, otherwise data
6910 			 * could be lost. Consider a scenario: discard a stripe
6911 			 * (the stripe could be inconsistent if
6912 			 * discard_zeroes_data is 0); write one disk of the
6913 			 * stripe (the stripe could be inconsistent again
6914 			 * depending on which disks are used to calculate
6915 			 * parity); the disk is broken; The stripe data of this
6916 			 * disk is lost.
6917 			 */
6918 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6919 			    !bdev_get_queue(rdev->bdev)->
6920 						limits.discard_zeroes_data)
6921 				discard_supported = false;
6922 			/* Unfortunately, discard_zeroes_data is not currently
6923 			 * a guarantee - just a hint.  So we only allow DISCARD
6924 			 * if the sysadmin has confirmed that only safe devices
6925 			 * are in use by setting a module parameter.
6926 			 */
6927 			if (!devices_handle_discard_safely) {
6928 				if (discard_supported) {
6929 					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6930 					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6931 				}
6932 				discard_supported = false;
6933 			}
6934 		}
6935 
6936 		if (discard_supported &&
6937 		   mddev->queue->limits.max_discard_sectors >= stripe &&
6938 		   mddev->queue->limits.discard_granularity >= stripe)
6939 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6940 						mddev->queue);
6941 		else
6942 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6943 						mddev->queue);
6944 	}
6945 
6946 	return 0;
6947 abort:
6948 	md_unregister_thread(&mddev->thread);
6949 	print_raid5_conf(conf);
6950 	free_conf(conf);
6951 	mddev->private = NULL;
6952 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6953 	return -EIO;
6954 }
6955 
6956 static void raid5_free(struct mddev *mddev, void *priv)
6957 {
6958 	struct r5conf *conf = priv;
6959 
6960 	free_conf(conf);
6961 	mddev->to_remove = &raid5_attrs_group;
6962 }
6963 
6964 static void status(struct seq_file *seq, struct mddev *mddev)
6965 {
6966 	struct r5conf *conf = mddev->private;
6967 	int i;
6968 
6969 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6970 		mddev->chunk_sectors / 2, mddev->layout);
6971 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6972 	for (i = 0; i < conf->raid_disks; i++)
6973 		seq_printf (seq, "%s",
6974 			       conf->disks[i].rdev &&
6975 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6976 	seq_printf (seq, "]");
6977 }
6978 
6979 static void print_raid5_conf (struct r5conf *conf)
6980 {
6981 	int i;
6982 	struct disk_info *tmp;
6983 
6984 	printk(KERN_DEBUG "RAID conf printout:\n");
6985 	if (!conf) {
6986 		printk("(conf==NULL)\n");
6987 		return;
6988 	}
6989 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6990 	       conf->raid_disks,
6991 	       conf->raid_disks - conf->mddev->degraded);
6992 
6993 	for (i = 0; i < conf->raid_disks; i++) {
6994 		char b[BDEVNAME_SIZE];
6995 		tmp = conf->disks + i;
6996 		if (tmp->rdev)
6997 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6998 			       i, !test_bit(Faulty, &tmp->rdev->flags),
6999 			       bdevname(tmp->rdev->bdev, b));
7000 	}
7001 }
7002 
7003 static int raid5_spare_active(struct mddev *mddev)
7004 {
7005 	int i;
7006 	struct r5conf *conf = mddev->private;
7007 	struct disk_info *tmp;
7008 	int count = 0;
7009 	unsigned long flags;
7010 
7011 	for (i = 0; i < conf->raid_disks; i++) {
7012 		tmp = conf->disks + i;
7013 		if (tmp->replacement
7014 		    && tmp->replacement->recovery_offset == MaxSector
7015 		    && !test_bit(Faulty, &tmp->replacement->flags)
7016 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7017 			/* Replacement has just become active. */
7018 			if (!tmp->rdev
7019 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7020 				count++;
7021 			if (tmp->rdev) {
7022 				/* Replaced device not technically faulty,
7023 				 * but we need to be sure it gets removed
7024 				 * and never re-added.
7025 				 */
7026 				set_bit(Faulty, &tmp->rdev->flags);
7027 				sysfs_notify_dirent_safe(
7028 					tmp->rdev->sysfs_state);
7029 			}
7030 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7031 		} else if (tmp->rdev
7032 		    && tmp->rdev->recovery_offset == MaxSector
7033 		    && !test_bit(Faulty, &tmp->rdev->flags)
7034 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7035 			count++;
7036 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7037 		}
7038 	}
7039 	spin_lock_irqsave(&conf->device_lock, flags);
7040 	mddev->degraded = calc_degraded(conf);
7041 	spin_unlock_irqrestore(&conf->device_lock, flags);
7042 	print_raid5_conf(conf);
7043 	return count;
7044 }
7045 
7046 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7047 {
7048 	struct r5conf *conf = mddev->private;
7049 	int err = 0;
7050 	int number = rdev->raid_disk;
7051 	struct md_rdev **rdevp;
7052 	struct disk_info *p = conf->disks + number;
7053 
7054 	print_raid5_conf(conf);
7055 	if (rdev == p->rdev)
7056 		rdevp = &p->rdev;
7057 	else if (rdev == p->replacement)
7058 		rdevp = &p->replacement;
7059 	else
7060 		return 0;
7061 
7062 	if (number >= conf->raid_disks &&
7063 	    conf->reshape_progress == MaxSector)
7064 		clear_bit(In_sync, &rdev->flags);
7065 
7066 	if (test_bit(In_sync, &rdev->flags) ||
7067 	    atomic_read(&rdev->nr_pending)) {
7068 		err = -EBUSY;
7069 		goto abort;
7070 	}
7071 	/* Only remove non-faulty devices if recovery
7072 	 * isn't possible.
7073 	 */
7074 	if (!test_bit(Faulty, &rdev->flags) &&
7075 	    mddev->recovery_disabled != conf->recovery_disabled &&
7076 	    !has_failed(conf) &&
7077 	    (!p->replacement || p->replacement == rdev) &&
7078 	    number < conf->raid_disks) {
7079 		err = -EBUSY;
7080 		goto abort;
7081 	}
7082 	*rdevp = NULL;
7083 	synchronize_rcu();
7084 	if (atomic_read(&rdev->nr_pending)) {
7085 		/* lost the race, try later */
7086 		err = -EBUSY;
7087 		*rdevp = rdev;
7088 	} else if (p->replacement) {
7089 		/* We must have just cleared 'rdev' */
7090 		p->rdev = p->replacement;
7091 		clear_bit(Replacement, &p->replacement->flags);
7092 		smp_mb(); /* Make sure other CPUs may see both as identical
7093 			   * but will never see neither - if they are careful
7094 			   */
7095 		p->replacement = NULL;
7096 		clear_bit(WantReplacement, &rdev->flags);
7097 	} else
7098 		/* We might have just removed the Replacement as faulty-
7099 		 * clear the bit just in case
7100 		 */
7101 		clear_bit(WantReplacement, &rdev->flags);
7102 abort:
7103 
7104 	print_raid5_conf(conf);
7105 	return err;
7106 }
7107 
7108 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7109 {
7110 	struct r5conf *conf = mddev->private;
7111 	int err = -EEXIST;
7112 	int disk;
7113 	struct disk_info *p;
7114 	int first = 0;
7115 	int last = conf->raid_disks - 1;
7116 
7117 	if (mddev->recovery_disabled == conf->recovery_disabled)
7118 		return -EBUSY;
7119 
7120 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7121 		/* no point adding a device */
7122 		return -EINVAL;
7123 
7124 	if (rdev->raid_disk >= 0)
7125 		first = last = rdev->raid_disk;
7126 
7127 	/*
7128 	 * find the disk ... but prefer rdev->saved_raid_disk
7129 	 * if possible.
7130 	 */
7131 	if (rdev->saved_raid_disk >= 0 &&
7132 	    rdev->saved_raid_disk >= first &&
7133 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7134 		first = rdev->saved_raid_disk;
7135 
7136 	for (disk = first; disk <= last; disk++) {
7137 		p = conf->disks + disk;
7138 		if (p->rdev == NULL) {
7139 			clear_bit(In_sync, &rdev->flags);
7140 			rdev->raid_disk = disk;
7141 			err = 0;
7142 			if (rdev->saved_raid_disk != disk)
7143 				conf->fullsync = 1;
7144 			rcu_assign_pointer(p->rdev, rdev);
7145 			goto out;
7146 		}
7147 	}
7148 	for (disk = first; disk <= last; disk++) {
7149 		p = conf->disks + disk;
7150 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7151 		    p->replacement == NULL) {
7152 			clear_bit(In_sync, &rdev->flags);
7153 			set_bit(Replacement, &rdev->flags);
7154 			rdev->raid_disk = disk;
7155 			err = 0;
7156 			conf->fullsync = 1;
7157 			rcu_assign_pointer(p->replacement, rdev);
7158 			break;
7159 		}
7160 	}
7161 out:
7162 	print_raid5_conf(conf);
7163 	return err;
7164 }
7165 
7166 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7167 {
7168 	/* no resync is happening, and there is enough space
7169 	 * on all devices, so we can resize.
7170 	 * We need to make sure resync covers any new space.
7171 	 * If the array is shrinking we should possibly wait until
7172 	 * any io in the removed space completes, but it hardly seems
7173 	 * worth it.
7174 	 */
7175 	sector_t newsize;
7176 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7177 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7178 	if (mddev->external_size &&
7179 	    mddev->array_sectors > newsize)
7180 		return -EINVAL;
7181 	if (mddev->bitmap) {
7182 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7183 		if (ret)
7184 			return ret;
7185 	}
7186 	md_set_array_sectors(mddev, newsize);
7187 	set_capacity(mddev->gendisk, mddev->array_sectors);
7188 	revalidate_disk(mddev->gendisk);
7189 	if (sectors > mddev->dev_sectors &&
7190 	    mddev->recovery_cp > mddev->dev_sectors) {
7191 		mddev->recovery_cp = mddev->dev_sectors;
7192 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7193 	}
7194 	mddev->dev_sectors = sectors;
7195 	mddev->resync_max_sectors = sectors;
7196 	return 0;
7197 }
7198 
7199 static int check_stripe_cache(struct mddev *mddev)
7200 {
7201 	/* Can only proceed if there are plenty of stripe_heads.
7202 	 * We need a minimum of one full stripe,, and for sensible progress
7203 	 * it is best to have about 4 times that.
7204 	 * If we require 4 times, then the default 256 4K stripe_heads will
7205 	 * allow for chunk sizes up to 256K, which is probably OK.
7206 	 * If the chunk size is greater, user-space should request more
7207 	 * stripe_heads first.
7208 	 */
7209 	struct r5conf *conf = mddev->private;
7210 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7211 	    > conf->min_nr_stripes ||
7212 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7213 	    > conf->min_nr_stripes) {
7214 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7215 		       mdname(mddev),
7216 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7217 			/ STRIPE_SIZE)*4);
7218 		return 0;
7219 	}
7220 	return 1;
7221 }
7222 
7223 static int check_reshape(struct mddev *mddev)
7224 {
7225 	struct r5conf *conf = mddev->private;
7226 
7227 	if (mddev->delta_disks == 0 &&
7228 	    mddev->new_layout == mddev->layout &&
7229 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7230 		return 0; /* nothing to do */
7231 	if (has_failed(conf))
7232 		return -EINVAL;
7233 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7234 		/* We might be able to shrink, but the devices must
7235 		 * be made bigger first.
7236 		 * For raid6, 4 is the minimum size.
7237 		 * Otherwise 2 is the minimum
7238 		 */
7239 		int min = 2;
7240 		if (mddev->level == 6)
7241 			min = 4;
7242 		if (mddev->raid_disks + mddev->delta_disks < min)
7243 			return -EINVAL;
7244 	}
7245 
7246 	if (!check_stripe_cache(mddev))
7247 		return -ENOSPC;
7248 
7249 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7250 	    mddev->delta_disks > 0)
7251 		if (resize_chunks(conf,
7252 				  conf->previous_raid_disks
7253 				  + max(0, mddev->delta_disks),
7254 				  max(mddev->new_chunk_sectors,
7255 				      mddev->chunk_sectors)
7256 			    ) < 0)
7257 			return -ENOMEM;
7258 	return resize_stripes(conf, (conf->previous_raid_disks
7259 				     + mddev->delta_disks));
7260 }
7261 
7262 static int raid5_start_reshape(struct mddev *mddev)
7263 {
7264 	struct r5conf *conf = mddev->private;
7265 	struct md_rdev *rdev;
7266 	int spares = 0;
7267 	unsigned long flags;
7268 
7269 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7270 		return -EBUSY;
7271 
7272 	if (!check_stripe_cache(mddev))
7273 		return -ENOSPC;
7274 
7275 	if (has_failed(conf))
7276 		return -EINVAL;
7277 
7278 	rdev_for_each(rdev, mddev) {
7279 		if (!test_bit(In_sync, &rdev->flags)
7280 		    && !test_bit(Faulty, &rdev->flags))
7281 			spares++;
7282 	}
7283 
7284 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7285 		/* Not enough devices even to make a degraded array
7286 		 * of that size
7287 		 */
7288 		return -EINVAL;
7289 
7290 	/* Refuse to reduce size of the array.  Any reductions in
7291 	 * array size must be through explicit setting of array_size
7292 	 * attribute.
7293 	 */
7294 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7295 	    < mddev->array_sectors) {
7296 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
7297 		       "before number of disks\n", mdname(mddev));
7298 		return -EINVAL;
7299 	}
7300 
7301 	atomic_set(&conf->reshape_stripes, 0);
7302 	spin_lock_irq(&conf->device_lock);
7303 	write_seqcount_begin(&conf->gen_lock);
7304 	conf->previous_raid_disks = conf->raid_disks;
7305 	conf->raid_disks += mddev->delta_disks;
7306 	conf->prev_chunk_sectors = conf->chunk_sectors;
7307 	conf->chunk_sectors = mddev->new_chunk_sectors;
7308 	conf->prev_algo = conf->algorithm;
7309 	conf->algorithm = mddev->new_layout;
7310 	conf->generation++;
7311 	/* Code that selects data_offset needs to see the generation update
7312 	 * if reshape_progress has been set - so a memory barrier needed.
7313 	 */
7314 	smp_mb();
7315 	if (mddev->reshape_backwards)
7316 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7317 	else
7318 		conf->reshape_progress = 0;
7319 	conf->reshape_safe = conf->reshape_progress;
7320 	write_seqcount_end(&conf->gen_lock);
7321 	spin_unlock_irq(&conf->device_lock);
7322 
7323 	/* Now make sure any requests that proceeded on the assumption
7324 	 * the reshape wasn't running - like Discard or Read - have
7325 	 * completed.
7326 	 */
7327 	mddev_suspend(mddev);
7328 	mddev_resume(mddev);
7329 
7330 	/* Add some new drives, as many as will fit.
7331 	 * We know there are enough to make the newly sized array work.
7332 	 * Don't add devices if we are reducing the number of
7333 	 * devices in the array.  This is because it is not possible
7334 	 * to correctly record the "partially reconstructed" state of
7335 	 * such devices during the reshape and confusion could result.
7336 	 */
7337 	if (mddev->delta_disks >= 0) {
7338 		rdev_for_each(rdev, mddev)
7339 			if (rdev->raid_disk < 0 &&
7340 			    !test_bit(Faulty, &rdev->flags)) {
7341 				if (raid5_add_disk(mddev, rdev) == 0) {
7342 					if (rdev->raid_disk
7343 					    >= conf->previous_raid_disks)
7344 						set_bit(In_sync, &rdev->flags);
7345 					else
7346 						rdev->recovery_offset = 0;
7347 
7348 					if (sysfs_link_rdev(mddev, rdev))
7349 						/* Failure here is OK */;
7350 				}
7351 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7352 				   && !test_bit(Faulty, &rdev->flags)) {
7353 				/* This is a spare that was manually added */
7354 				set_bit(In_sync, &rdev->flags);
7355 			}
7356 
7357 		/* When a reshape changes the number of devices,
7358 		 * ->degraded is measured against the larger of the
7359 		 * pre and post number of devices.
7360 		 */
7361 		spin_lock_irqsave(&conf->device_lock, flags);
7362 		mddev->degraded = calc_degraded(conf);
7363 		spin_unlock_irqrestore(&conf->device_lock, flags);
7364 	}
7365 	mddev->raid_disks = conf->raid_disks;
7366 	mddev->reshape_position = conf->reshape_progress;
7367 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7368 
7369 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7370 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7371 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7372 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7373 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7374 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7375 						"reshape");
7376 	if (!mddev->sync_thread) {
7377 		mddev->recovery = 0;
7378 		spin_lock_irq(&conf->device_lock);
7379 		write_seqcount_begin(&conf->gen_lock);
7380 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7381 		mddev->new_chunk_sectors =
7382 			conf->chunk_sectors = conf->prev_chunk_sectors;
7383 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7384 		rdev_for_each(rdev, mddev)
7385 			rdev->new_data_offset = rdev->data_offset;
7386 		smp_wmb();
7387 		conf->generation --;
7388 		conf->reshape_progress = MaxSector;
7389 		mddev->reshape_position = MaxSector;
7390 		write_seqcount_end(&conf->gen_lock);
7391 		spin_unlock_irq(&conf->device_lock);
7392 		return -EAGAIN;
7393 	}
7394 	conf->reshape_checkpoint = jiffies;
7395 	md_wakeup_thread(mddev->sync_thread);
7396 	md_new_event(mddev);
7397 	return 0;
7398 }
7399 
7400 /* This is called from the reshape thread and should make any
7401  * changes needed in 'conf'
7402  */
7403 static void end_reshape(struct r5conf *conf)
7404 {
7405 
7406 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7407 		struct md_rdev *rdev;
7408 
7409 		spin_lock_irq(&conf->device_lock);
7410 		conf->previous_raid_disks = conf->raid_disks;
7411 		rdev_for_each(rdev, conf->mddev)
7412 			rdev->data_offset = rdev->new_data_offset;
7413 		smp_wmb();
7414 		conf->reshape_progress = MaxSector;
7415 		spin_unlock_irq(&conf->device_lock);
7416 		wake_up(&conf->wait_for_overlap);
7417 
7418 		/* read-ahead size must cover two whole stripes, which is
7419 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7420 		 */
7421 		if (conf->mddev->queue) {
7422 			int data_disks = conf->raid_disks - conf->max_degraded;
7423 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7424 						   / PAGE_SIZE);
7425 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7426 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7427 		}
7428 	}
7429 }
7430 
7431 /* This is called from the raid5d thread with mddev_lock held.
7432  * It makes config changes to the device.
7433  */
7434 static void raid5_finish_reshape(struct mddev *mddev)
7435 {
7436 	struct r5conf *conf = mddev->private;
7437 
7438 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7439 
7440 		if (mddev->delta_disks > 0) {
7441 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7442 			set_capacity(mddev->gendisk, mddev->array_sectors);
7443 			revalidate_disk(mddev->gendisk);
7444 		} else {
7445 			int d;
7446 			spin_lock_irq(&conf->device_lock);
7447 			mddev->degraded = calc_degraded(conf);
7448 			spin_unlock_irq(&conf->device_lock);
7449 			for (d = conf->raid_disks ;
7450 			     d < conf->raid_disks - mddev->delta_disks;
7451 			     d++) {
7452 				struct md_rdev *rdev = conf->disks[d].rdev;
7453 				if (rdev)
7454 					clear_bit(In_sync, &rdev->flags);
7455 				rdev = conf->disks[d].replacement;
7456 				if (rdev)
7457 					clear_bit(In_sync, &rdev->flags);
7458 			}
7459 		}
7460 		mddev->layout = conf->algorithm;
7461 		mddev->chunk_sectors = conf->chunk_sectors;
7462 		mddev->reshape_position = MaxSector;
7463 		mddev->delta_disks = 0;
7464 		mddev->reshape_backwards = 0;
7465 	}
7466 }
7467 
7468 static void raid5_quiesce(struct mddev *mddev, int state)
7469 {
7470 	struct r5conf *conf = mddev->private;
7471 
7472 	switch(state) {
7473 	case 2: /* resume for a suspend */
7474 		wake_up(&conf->wait_for_overlap);
7475 		break;
7476 
7477 	case 1: /* stop all writes */
7478 		lock_all_device_hash_locks_irq(conf);
7479 		/* '2' tells resync/reshape to pause so that all
7480 		 * active stripes can drain
7481 		 */
7482 		conf->quiesce = 2;
7483 		wait_event_cmd(conf->wait_for_quiescent,
7484 				    atomic_read(&conf->active_stripes) == 0 &&
7485 				    atomic_read(&conf->active_aligned_reads) == 0,
7486 				    unlock_all_device_hash_locks_irq(conf),
7487 				    lock_all_device_hash_locks_irq(conf));
7488 		conf->quiesce = 1;
7489 		unlock_all_device_hash_locks_irq(conf);
7490 		/* allow reshape to continue */
7491 		wake_up(&conf->wait_for_overlap);
7492 		break;
7493 
7494 	case 0: /* re-enable writes */
7495 		lock_all_device_hash_locks_irq(conf);
7496 		conf->quiesce = 0;
7497 		wake_up(&conf->wait_for_quiescent);
7498 		wake_up(&conf->wait_for_overlap);
7499 		unlock_all_device_hash_locks_irq(conf);
7500 		break;
7501 	}
7502 }
7503 
7504 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7505 {
7506 	struct r0conf *raid0_conf = mddev->private;
7507 	sector_t sectors;
7508 
7509 	/* for raid0 takeover only one zone is supported */
7510 	if (raid0_conf->nr_strip_zones > 1) {
7511 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7512 		       mdname(mddev));
7513 		return ERR_PTR(-EINVAL);
7514 	}
7515 
7516 	sectors = raid0_conf->strip_zone[0].zone_end;
7517 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7518 	mddev->dev_sectors = sectors;
7519 	mddev->new_level = level;
7520 	mddev->new_layout = ALGORITHM_PARITY_N;
7521 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7522 	mddev->raid_disks += 1;
7523 	mddev->delta_disks = 1;
7524 	/* make sure it will be not marked as dirty */
7525 	mddev->recovery_cp = MaxSector;
7526 
7527 	return setup_conf(mddev);
7528 }
7529 
7530 static void *raid5_takeover_raid1(struct mddev *mddev)
7531 {
7532 	int chunksect;
7533 
7534 	if (mddev->raid_disks != 2 ||
7535 	    mddev->degraded > 1)
7536 		return ERR_PTR(-EINVAL);
7537 
7538 	/* Should check if there are write-behind devices? */
7539 
7540 	chunksect = 64*2; /* 64K by default */
7541 
7542 	/* The array must be an exact multiple of chunksize */
7543 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
7544 		chunksect >>= 1;
7545 
7546 	if ((chunksect<<9) < STRIPE_SIZE)
7547 		/* array size does not allow a suitable chunk size */
7548 		return ERR_PTR(-EINVAL);
7549 
7550 	mddev->new_level = 5;
7551 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7552 	mddev->new_chunk_sectors = chunksect;
7553 
7554 	return setup_conf(mddev);
7555 }
7556 
7557 static void *raid5_takeover_raid6(struct mddev *mddev)
7558 {
7559 	int new_layout;
7560 
7561 	switch (mddev->layout) {
7562 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7563 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7564 		break;
7565 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7566 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7567 		break;
7568 	case ALGORITHM_LEFT_SYMMETRIC_6:
7569 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
7570 		break;
7571 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7572 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7573 		break;
7574 	case ALGORITHM_PARITY_0_6:
7575 		new_layout = ALGORITHM_PARITY_0;
7576 		break;
7577 	case ALGORITHM_PARITY_N:
7578 		new_layout = ALGORITHM_PARITY_N;
7579 		break;
7580 	default:
7581 		return ERR_PTR(-EINVAL);
7582 	}
7583 	mddev->new_level = 5;
7584 	mddev->new_layout = new_layout;
7585 	mddev->delta_disks = -1;
7586 	mddev->raid_disks -= 1;
7587 	return setup_conf(mddev);
7588 }
7589 
7590 static int raid5_check_reshape(struct mddev *mddev)
7591 {
7592 	/* For a 2-drive array, the layout and chunk size can be changed
7593 	 * immediately as not restriping is needed.
7594 	 * For larger arrays we record the new value - after validation
7595 	 * to be used by a reshape pass.
7596 	 */
7597 	struct r5conf *conf = mddev->private;
7598 	int new_chunk = mddev->new_chunk_sectors;
7599 
7600 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7601 		return -EINVAL;
7602 	if (new_chunk > 0) {
7603 		if (!is_power_of_2(new_chunk))
7604 			return -EINVAL;
7605 		if (new_chunk < (PAGE_SIZE>>9))
7606 			return -EINVAL;
7607 		if (mddev->array_sectors & (new_chunk-1))
7608 			/* not factor of array size */
7609 			return -EINVAL;
7610 	}
7611 
7612 	/* They look valid */
7613 
7614 	if (mddev->raid_disks == 2) {
7615 		/* can make the change immediately */
7616 		if (mddev->new_layout >= 0) {
7617 			conf->algorithm = mddev->new_layout;
7618 			mddev->layout = mddev->new_layout;
7619 		}
7620 		if (new_chunk > 0) {
7621 			conf->chunk_sectors = new_chunk ;
7622 			mddev->chunk_sectors = new_chunk;
7623 		}
7624 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7625 		md_wakeup_thread(mddev->thread);
7626 	}
7627 	return check_reshape(mddev);
7628 }
7629 
7630 static int raid6_check_reshape(struct mddev *mddev)
7631 {
7632 	int new_chunk = mddev->new_chunk_sectors;
7633 
7634 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7635 		return -EINVAL;
7636 	if (new_chunk > 0) {
7637 		if (!is_power_of_2(new_chunk))
7638 			return -EINVAL;
7639 		if (new_chunk < (PAGE_SIZE >> 9))
7640 			return -EINVAL;
7641 		if (mddev->array_sectors & (new_chunk-1))
7642 			/* not factor of array size */
7643 			return -EINVAL;
7644 	}
7645 
7646 	/* They look valid */
7647 	return check_reshape(mddev);
7648 }
7649 
7650 static void *raid5_takeover(struct mddev *mddev)
7651 {
7652 	/* raid5 can take over:
7653 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7654 	 *  raid1 - if there are two drives.  We need to know the chunk size
7655 	 *  raid4 - trivial - just use a raid4 layout.
7656 	 *  raid6 - Providing it is a *_6 layout
7657 	 */
7658 	if (mddev->level == 0)
7659 		return raid45_takeover_raid0(mddev, 5);
7660 	if (mddev->level == 1)
7661 		return raid5_takeover_raid1(mddev);
7662 	if (mddev->level == 4) {
7663 		mddev->new_layout = ALGORITHM_PARITY_N;
7664 		mddev->new_level = 5;
7665 		return setup_conf(mddev);
7666 	}
7667 	if (mddev->level == 6)
7668 		return raid5_takeover_raid6(mddev);
7669 
7670 	return ERR_PTR(-EINVAL);
7671 }
7672 
7673 static void *raid4_takeover(struct mddev *mddev)
7674 {
7675 	/* raid4 can take over:
7676 	 *  raid0 - if there is only one strip zone
7677 	 *  raid5 - if layout is right
7678 	 */
7679 	if (mddev->level == 0)
7680 		return raid45_takeover_raid0(mddev, 4);
7681 	if (mddev->level == 5 &&
7682 	    mddev->layout == ALGORITHM_PARITY_N) {
7683 		mddev->new_layout = 0;
7684 		mddev->new_level = 4;
7685 		return setup_conf(mddev);
7686 	}
7687 	return ERR_PTR(-EINVAL);
7688 }
7689 
7690 static struct md_personality raid5_personality;
7691 
7692 static void *raid6_takeover(struct mddev *mddev)
7693 {
7694 	/* Currently can only take over a raid5.  We map the
7695 	 * personality to an equivalent raid6 personality
7696 	 * with the Q block at the end.
7697 	 */
7698 	int new_layout;
7699 
7700 	if (mddev->pers != &raid5_personality)
7701 		return ERR_PTR(-EINVAL);
7702 	if (mddev->degraded > 1)
7703 		return ERR_PTR(-EINVAL);
7704 	if (mddev->raid_disks > 253)
7705 		return ERR_PTR(-EINVAL);
7706 	if (mddev->raid_disks < 3)
7707 		return ERR_PTR(-EINVAL);
7708 
7709 	switch (mddev->layout) {
7710 	case ALGORITHM_LEFT_ASYMMETRIC:
7711 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7712 		break;
7713 	case ALGORITHM_RIGHT_ASYMMETRIC:
7714 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7715 		break;
7716 	case ALGORITHM_LEFT_SYMMETRIC:
7717 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7718 		break;
7719 	case ALGORITHM_RIGHT_SYMMETRIC:
7720 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7721 		break;
7722 	case ALGORITHM_PARITY_0:
7723 		new_layout = ALGORITHM_PARITY_0_6;
7724 		break;
7725 	case ALGORITHM_PARITY_N:
7726 		new_layout = ALGORITHM_PARITY_N;
7727 		break;
7728 	default:
7729 		return ERR_PTR(-EINVAL);
7730 	}
7731 	mddev->new_level = 6;
7732 	mddev->new_layout = new_layout;
7733 	mddev->delta_disks = 1;
7734 	mddev->raid_disks += 1;
7735 	return setup_conf(mddev);
7736 }
7737 
7738 static struct md_personality raid6_personality =
7739 {
7740 	.name		= "raid6",
7741 	.level		= 6,
7742 	.owner		= THIS_MODULE,
7743 	.make_request	= make_request,
7744 	.run		= run,
7745 	.free		= raid5_free,
7746 	.status		= status,
7747 	.error_handler	= error,
7748 	.hot_add_disk	= raid5_add_disk,
7749 	.hot_remove_disk= raid5_remove_disk,
7750 	.spare_active	= raid5_spare_active,
7751 	.sync_request	= sync_request,
7752 	.resize		= raid5_resize,
7753 	.size		= raid5_size,
7754 	.check_reshape	= raid6_check_reshape,
7755 	.start_reshape  = raid5_start_reshape,
7756 	.finish_reshape = raid5_finish_reshape,
7757 	.quiesce	= raid5_quiesce,
7758 	.takeover	= raid6_takeover,
7759 	.congested	= raid5_congested,
7760 	.mergeable_bvec	= raid5_mergeable_bvec,
7761 };
7762 static struct md_personality raid5_personality =
7763 {
7764 	.name		= "raid5",
7765 	.level		= 5,
7766 	.owner		= THIS_MODULE,
7767 	.make_request	= make_request,
7768 	.run		= run,
7769 	.free		= raid5_free,
7770 	.status		= status,
7771 	.error_handler	= error,
7772 	.hot_add_disk	= raid5_add_disk,
7773 	.hot_remove_disk= raid5_remove_disk,
7774 	.spare_active	= raid5_spare_active,
7775 	.sync_request	= sync_request,
7776 	.resize		= raid5_resize,
7777 	.size		= raid5_size,
7778 	.check_reshape	= raid5_check_reshape,
7779 	.start_reshape  = raid5_start_reshape,
7780 	.finish_reshape = raid5_finish_reshape,
7781 	.quiesce	= raid5_quiesce,
7782 	.takeover	= raid5_takeover,
7783 	.congested	= raid5_congested,
7784 	.mergeable_bvec	= raid5_mergeable_bvec,
7785 };
7786 
7787 static struct md_personality raid4_personality =
7788 {
7789 	.name		= "raid4",
7790 	.level		= 4,
7791 	.owner		= THIS_MODULE,
7792 	.make_request	= make_request,
7793 	.run		= run,
7794 	.free		= raid5_free,
7795 	.status		= status,
7796 	.error_handler	= error,
7797 	.hot_add_disk	= raid5_add_disk,
7798 	.hot_remove_disk= raid5_remove_disk,
7799 	.spare_active	= raid5_spare_active,
7800 	.sync_request	= sync_request,
7801 	.resize		= raid5_resize,
7802 	.size		= raid5_size,
7803 	.check_reshape	= raid5_check_reshape,
7804 	.start_reshape  = raid5_start_reshape,
7805 	.finish_reshape = raid5_finish_reshape,
7806 	.quiesce	= raid5_quiesce,
7807 	.takeover	= raid4_takeover,
7808 	.congested	= raid5_congested,
7809 	.mergeable_bvec	= raid5_mergeable_bvec,
7810 };
7811 
7812 static int __init raid5_init(void)
7813 {
7814 	raid5_wq = alloc_workqueue("raid5wq",
7815 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7816 	if (!raid5_wq)
7817 		return -ENOMEM;
7818 	register_md_personality(&raid6_personality);
7819 	register_md_personality(&raid5_personality);
7820 	register_md_personality(&raid4_personality);
7821 	return 0;
7822 }
7823 
7824 static void raid5_exit(void)
7825 {
7826 	unregister_md_personality(&raid6_personality);
7827 	unregister_md_personality(&raid5_personality);
7828 	unregister_md_personality(&raid4_personality);
7829 	destroy_workqueue(raid5_wq);
7830 }
7831 
7832 module_init(raid5_init);
7833 module_exit(raid5_exit);
7834 MODULE_LICENSE("GPL");
7835 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7836 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7837 MODULE_ALIAS("md-raid5");
7838 MODULE_ALIAS("md-raid4");
7839 MODULE_ALIAS("md-level-5");
7840 MODULE_ALIAS("md-level-4");
7841 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7842 MODULE_ALIAS("md-raid6");
7843 MODULE_ALIAS("md-level-6");
7844 
7845 /* This used to be two separate modules, they were: */
7846 MODULE_ALIAS("raid5");
7847 MODULE_ALIAS("raid6");
7848