xref: /openbmc/linux/drivers/md/raid5.c (revision 0da85d1e)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59 
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64 
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67 
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76 
77 #define NR_STRIPES		256
78 #define STRIPE_SIZE		PAGE_SIZE
79 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
81 #define	IO_THRESHOLD		1
82 #define BYPASS_THRESHOLD	1
83 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK		(NR_HASH - 1)
85 #define MAX_STRIPE_BATCH	8
86 
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 	return &conf->stripe_hashtbl[hash];
91 }
92 
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97 
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 	spin_lock_irq(conf->hash_locks + hash);
101 	spin_lock(&conf->device_lock);
102 }
103 
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 	spin_unlock(&conf->device_lock);
107 	spin_unlock_irq(conf->hash_locks + hash);
108 }
109 
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 	int i;
113 	local_irq_disable();
114 	spin_lock(conf->hash_locks);
115 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 	spin_lock(&conf->device_lock);
118 }
119 
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 	int i;
123 	spin_unlock(&conf->device_lock);
124 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 		spin_unlock(conf->hash_locks + i - 1);
126 	local_irq_enable();
127 }
128 
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 	int sectors = bio_sectors(bio);
141 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 		return bio->bi_next;
143 	else
144 		return NULL;
145 }
146 
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 	return (atomic_read(segments) >> 16) & 0xffff;
155 }
156 
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 	return atomic_sub_return(1, segments) & 0xffff;
161 }
162 
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 	atomic_inc(segments);
167 }
168 
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 	unsigned int cnt)
171 {
172 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 	int old, new;
174 
175 	do {
176 		old = atomic_read(segments);
177 		new = (old & 0xffff) | (cnt << 16);
178 	} while (atomic_cmpxchg(segments, old, new) != old);
179 }
180 
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 	atomic_set(segments, cnt);
185 }
186 
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 	if (sh->ddf_layout)
191 		/* ddf always start from first device */
192 		return 0;
193 	/* md starts just after Q block */
194 	if (sh->qd_idx == sh->disks - 1)
195 		return 0;
196 	else
197 		return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 	disk++;
202 	return (disk < raid_disks) ? disk : 0;
203 }
204 
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 			     int *count, int syndrome_disks)
212 {
213 	int slot = *count;
214 
215 	if (sh->ddf_layout)
216 		(*count)++;
217 	if (idx == sh->pd_idx)
218 		return syndrome_disks;
219 	if (idx == sh->qd_idx)
220 		return syndrome_disks + 1;
221 	if (!sh->ddf_layout)
222 		(*count)++;
223 	return slot;
224 }
225 
226 static void return_io(struct bio *return_bi)
227 {
228 	struct bio *bi = return_bi;
229 	while (bi) {
230 
231 		return_bi = bi->bi_next;
232 		bi->bi_next = NULL;
233 		bi->bi_iter.bi_size = 0;
234 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235 					 bi, 0);
236 		bio_endio(bi, 0);
237 		bi = return_bi;
238 	}
239 }
240 
241 static void print_raid5_conf (struct r5conf *conf);
242 
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245 	return sh->check_state || sh->reconstruct_state ||
246 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249 
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252 	struct r5conf *conf = sh->raid_conf;
253 	struct r5worker_group *group;
254 	int thread_cnt;
255 	int i, cpu = sh->cpu;
256 
257 	if (!cpu_online(cpu)) {
258 		cpu = cpumask_any(cpu_online_mask);
259 		sh->cpu = cpu;
260 	}
261 
262 	if (list_empty(&sh->lru)) {
263 		struct r5worker_group *group;
264 		group = conf->worker_groups + cpu_to_group(cpu);
265 		list_add_tail(&sh->lru, &group->handle_list);
266 		group->stripes_cnt++;
267 		sh->group = group;
268 	}
269 
270 	if (conf->worker_cnt_per_group == 0) {
271 		md_wakeup_thread(conf->mddev->thread);
272 		return;
273 	}
274 
275 	group = conf->worker_groups + cpu_to_group(sh->cpu);
276 
277 	group->workers[0].working = true;
278 	/* at least one worker should run to avoid race */
279 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280 
281 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282 	/* wakeup more workers */
283 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284 		if (group->workers[i].working == false) {
285 			group->workers[i].working = true;
286 			queue_work_on(sh->cpu, raid5_wq,
287 				      &group->workers[i].work);
288 			thread_cnt--;
289 		}
290 	}
291 }
292 
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294 			      struct list_head *temp_inactive_list)
295 {
296 	BUG_ON(!list_empty(&sh->lru));
297 	BUG_ON(atomic_read(&conf->active_stripes)==0);
298 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
299 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
300 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301 			list_add_tail(&sh->lru, &conf->delayed_list);
302 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303 			   sh->bm_seq - conf->seq_write > 0)
304 			list_add_tail(&sh->lru, &conf->bitmap_list);
305 		else {
306 			clear_bit(STRIPE_DELAYED, &sh->state);
307 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
308 			if (conf->worker_cnt_per_group == 0) {
309 				list_add_tail(&sh->lru, &conf->handle_list);
310 			} else {
311 				raid5_wakeup_stripe_thread(sh);
312 				return;
313 			}
314 		}
315 		md_wakeup_thread(conf->mddev->thread);
316 	} else {
317 		BUG_ON(stripe_operations_active(sh));
318 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319 			if (atomic_dec_return(&conf->preread_active_stripes)
320 			    < IO_THRESHOLD)
321 				md_wakeup_thread(conf->mddev->thread);
322 		atomic_dec(&conf->active_stripes);
323 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
324 			list_add_tail(&sh->lru, temp_inactive_list);
325 	}
326 }
327 
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329 			     struct list_head *temp_inactive_list)
330 {
331 	if (atomic_dec_and_test(&sh->count))
332 		do_release_stripe(conf, sh, temp_inactive_list);
333 }
334 
335 /*
336  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337  *
338  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339  * given time. Adding stripes only takes device lock, while deleting stripes
340  * only takes hash lock.
341  */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343 					 struct list_head *temp_inactive_list,
344 					 int hash)
345 {
346 	int size;
347 	bool do_wakeup = false;
348 	unsigned long flags;
349 
350 	if (hash == NR_STRIPE_HASH_LOCKS) {
351 		size = NR_STRIPE_HASH_LOCKS;
352 		hash = NR_STRIPE_HASH_LOCKS - 1;
353 	} else
354 		size = 1;
355 	while (size) {
356 		struct list_head *list = &temp_inactive_list[size - 1];
357 
358 		/*
359 		 * We don't hold any lock here yet, get_active_stripe() might
360 		 * remove stripes from the list
361 		 */
362 		if (!list_empty_careful(list)) {
363 			spin_lock_irqsave(conf->hash_locks + hash, flags);
364 			if (list_empty(conf->inactive_list + hash) &&
365 			    !list_empty(list))
366 				atomic_dec(&conf->empty_inactive_list_nr);
367 			list_splice_tail_init(list, conf->inactive_list + hash);
368 			do_wakeup = true;
369 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370 		}
371 		size--;
372 		hash--;
373 	}
374 
375 	if (do_wakeup) {
376 		wake_up(&conf->wait_for_stripe);
377 		if (conf->retry_read_aligned)
378 			md_wakeup_thread(conf->mddev->thread);
379 	}
380 }
381 
382 /* should hold conf->device_lock already */
383 static int release_stripe_list(struct r5conf *conf,
384 			       struct list_head *temp_inactive_list)
385 {
386 	struct stripe_head *sh;
387 	int count = 0;
388 	struct llist_node *head;
389 
390 	head = llist_del_all(&conf->released_stripes);
391 	head = llist_reverse_order(head);
392 	while (head) {
393 		int hash;
394 
395 		sh = llist_entry(head, struct stripe_head, release_list);
396 		head = llist_next(head);
397 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398 		smp_mb();
399 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400 		/*
401 		 * Don't worry the bit is set here, because if the bit is set
402 		 * again, the count is always > 1. This is true for
403 		 * STRIPE_ON_UNPLUG_LIST bit too.
404 		 */
405 		hash = sh->hash_lock_index;
406 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
407 		count++;
408 	}
409 
410 	return count;
411 }
412 
413 static void release_stripe(struct stripe_head *sh)
414 {
415 	struct r5conf *conf = sh->raid_conf;
416 	unsigned long flags;
417 	struct list_head list;
418 	int hash;
419 	bool wakeup;
420 
421 	/* Avoid release_list until the last reference.
422 	 */
423 	if (atomic_add_unless(&sh->count, -1, 1))
424 		return;
425 
426 	if (unlikely(!conf->mddev->thread) ||
427 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
428 		goto slow_path;
429 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430 	if (wakeup)
431 		md_wakeup_thread(conf->mddev->thread);
432 	return;
433 slow_path:
434 	local_irq_save(flags);
435 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437 		INIT_LIST_HEAD(&list);
438 		hash = sh->hash_lock_index;
439 		do_release_stripe(conf, sh, &list);
440 		spin_unlock(&conf->device_lock);
441 		release_inactive_stripe_list(conf, &list, hash);
442 	}
443 	local_irq_restore(flags);
444 }
445 
446 static inline void remove_hash(struct stripe_head *sh)
447 {
448 	pr_debug("remove_hash(), stripe %llu\n",
449 		(unsigned long long)sh->sector);
450 
451 	hlist_del_init(&sh->hash);
452 }
453 
454 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
455 {
456 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
457 
458 	pr_debug("insert_hash(), stripe %llu\n",
459 		(unsigned long long)sh->sector);
460 
461 	hlist_add_head(&sh->hash, hp);
462 }
463 
464 /* find an idle stripe, make sure it is unhashed, and return it. */
465 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
466 {
467 	struct stripe_head *sh = NULL;
468 	struct list_head *first;
469 
470 	if (list_empty(conf->inactive_list + hash))
471 		goto out;
472 	first = (conf->inactive_list + hash)->next;
473 	sh = list_entry(first, struct stripe_head, lru);
474 	list_del_init(first);
475 	remove_hash(sh);
476 	atomic_inc(&conf->active_stripes);
477 	BUG_ON(hash != sh->hash_lock_index);
478 	if (list_empty(conf->inactive_list + hash))
479 		atomic_inc(&conf->empty_inactive_list_nr);
480 out:
481 	return sh;
482 }
483 
484 static void shrink_buffers(struct stripe_head *sh)
485 {
486 	struct page *p;
487 	int i;
488 	int num = sh->raid_conf->pool_size;
489 
490 	for (i = 0; i < num ; i++) {
491 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
492 		p = sh->dev[i].page;
493 		if (!p)
494 			continue;
495 		sh->dev[i].page = NULL;
496 		put_page(p);
497 	}
498 }
499 
500 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
501 {
502 	int i;
503 	int num = sh->raid_conf->pool_size;
504 
505 	for (i = 0; i < num; i++) {
506 		struct page *page;
507 
508 		if (!(page = alloc_page(gfp))) {
509 			return 1;
510 		}
511 		sh->dev[i].page = page;
512 		sh->dev[i].orig_page = page;
513 	}
514 	return 0;
515 }
516 
517 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519 			    struct stripe_head *sh);
520 
521 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
522 {
523 	struct r5conf *conf = sh->raid_conf;
524 	int i, seq;
525 
526 	BUG_ON(atomic_read(&sh->count) != 0);
527 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528 	BUG_ON(stripe_operations_active(sh));
529 	BUG_ON(sh->batch_head);
530 
531 	pr_debug("init_stripe called, stripe %llu\n",
532 		(unsigned long long)sector);
533 retry:
534 	seq = read_seqcount_begin(&conf->gen_lock);
535 	sh->generation = conf->generation - previous;
536 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537 	sh->sector = sector;
538 	stripe_set_idx(sector, conf, previous, sh);
539 	sh->state = 0;
540 
541 	for (i = sh->disks; i--; ) {
542 		struct r5dev *dev = &sh->dev[i];
543 
544 		if (dev->toread || dev->read || dev->towrite || dev->written ||
545 		    test_bit(R5_LOCKED, &dev->flags)) {
546 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
547 			       (unsigned long long)sh->sector, i, dev->toread,
548 			       dev->read, dev->towrite, dev->written,
549 			       test_bit(R5_LOCKED, &dev->flags));
550 			WARN_ON(1);
551 		}
552 		dev->flags = 0;
553 		raid5_build_block(sh, i, previous);
554 	}
555 	if (read_seqcount_retry(&conf->gen_lock, seq))
556 		goto retry;
557 	sh->overwrite_disks = 0;
558 	insert_hash(conf, sh);
559 	sh->cpu = smp_processor_id();
560 	set_bit(STRIPE_BATCH_READY, &sh->state);
561 }
562 
563 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
564 					 short generation)
565 {
566 	struct stripe_head *sh;
567 
568 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
569 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
570 		if (sh->sector == sector && sh->generation == generation)
571 			return sh;
572 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
573 	return NULL;
574 }
575 
576 /*
577  * Need to check if array has failed when deciding whether to:
578  *  - start an array
579  *  - remove non-faulty devices
580  *  - add a spare
581  *  - allow a reshape
582  * This determination is simple when no reshape is happening.
583  * However if there is a reshape, we need to carefully check
584  * both the before and after sections.
585  * This is because some failed devices may only affect one
586  * of the two sections, and some non-in_sync devices may
587  * be insync in the section most affected by failed devices.
588  */
589 static int calc_degraded(struct r5conf *conf)
590 {
591 	int degraded, degraded2;
592 	int i;
593 
594 	rcu_read_lock();
595 	degraded = 0;
596 	for (i = 0; i < conf->previous_raid_disks; i++) {
597 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
598 		if (rdev && test_bit(Faulty, &rdev->flags))
599 			rdev = rcu_dereference(conf->disks[i].replacement);
600 		if (!rdev || test_bit(Faulty, &rdev->flags))
601 			degraded++;
602 		else if (test_bit(In_sync, &rdev->flags))
603 			;
604 		else
605 			/* not in-sync or faulty.
606 			 * If the reshape increases the number of devices,
607 			 * this is being recovered by the reshape, so
608 			 * this 'previous' section is not in_sync.
609 			 * If the number of devices is being reduced however,
610 			 * the device can only be part of the array if
611 			 * we are reverting a reshape, so this section will
612 			 * be in-sync.
613 			 */
614 			if (conf->raid_disks >= conf->previous_raid_disks)
615 				degraded++;
616 	}
617 	rcu_read_unlock();
618 	if (conf->raid_disks == conf->previous_raid_disks)
619 		return degraded;
620 	rcu_read_lock();
621 	degraded2 = 0;
622 	for (i = 0; i < conf->raid_disks; i++) {
623 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
624 		if (rdev && test_bit(Faulty, &rdev->flags))
625 			rdev = rcu_dereference(conf->disks[i].replacement);
626 		if (!rdev || test_bit(Faulty, &rdev->flags))
627 			degraded2++;
628 		else if (test_bit(In_sync, &rdev->flags))
629 			;
630 		else
631 			/* not in-sync or faulty.
632 			 * If reshape increases the number of devices, this
633 			 * section has already been recovered, else it
634 			 * almost certainly hasn't.
635 			 */
636 			if (conf->raid_disks <= conf->previous_raid_disks)
637 				degraded2++;
638 	}
639 	rcu_read_unlock();
640 	if (degraded2 > degraded)
641 		return degraded2;
642 	return degraded;
643 }
644 
645 static int has_failed(struct r5conf *conf)
646 {
647 	int degraded;
648 
649 	if (conf->mddev->reshape_position == MaxSector)
650 		return conf->mddev->degraded > conf->max_degraded;
651 
652 	degraded = calc_degraded(conf);
653 	if (degraded > conf->max_degraded)
654 		return 1;
655 	return 0;
656 }
657 
658 static struct stripe_head *
659 get_active_stripe(struct r5conf *conf, sector_t sector,
660 		  int previous, int noblock, int noquiesce)
661 {
662 	struct stripe_head *sh;
663 	int hash = stripe_hash_locks_hash(sector);
664 
665 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
666 
667 	spin_lock_irq(conf->hash_locks + hash);
668 
669 	do {
670 		wait_event_lock_irq(conf->wait_for_stripe,
671 				    conf->quiesce == 0 || noquiesce,
672 				    *(conf->hash_locks + hash));
673 		sh = __find_stripe(conf, sector, conf->generation - previous);
674 		if (!sh) {
675 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
676 				sh = get_free_stripe(conf, hash);
677 				if (!sh && llist_empty(&conf->released_stripes) &&
678 				    !test_bit(R5_DID_ALLOC, &conf->cache_state))
679 					set_bit(R5_ALLOC_MORE,
680 						&conf->cache_state);
681 			}
682 			if (noblock && sh == NULL)
683 				break;
684 			if (!sh) {
685 				set_bit(R5_INACTIVE_BLOCKED,
686 					&conf->cache_state);
687 				wait_event_lock_irq(
688 					conf->wait_for_stripe,
689 					!list_empty(conf->inactive_list + hash) &&
690 					(atomic_read(&conf->active_stripes)
691 					 < (conf->max_nr_stripes * 3 / 4)
692 					 || !test_bit(R5_INACTIVE_BLOCKED,
693 						      &conf->cache_state)),
694 					*(conf->hash_locks + hash));
695 				clear_bit(R5_INACTIVE_BLOCKED,
696 					  &conf->cache_state);
697 			} else {
698 				init_stripe(sh, sector, previous);
699 				atomic_inc(&sh->count);
700 			}
701 		} else if (!atomic_inc_not_zero(&sh->count)) {
702 			spin_lock(&conf->device_lock);
703 			if (!atomic_read(&sh->count)) {
704 				if (!test_bit(STRIPE_HANDLE, &sh->state))
705 					atomic_inc(&conf->active_stripes);
706 				BUG_ON(list_empty(&sh->lru) &&
707 				       !test_bit(STRIPE_EXPANDING, &sh->state));
708 				list_del_init(&sh->lru);
709 				if (sh->group) {
710 					sh->group->stripes_cnt--;
711 					sh->group = NULL;
712 				}
713 			}
714 			atomic_inc(&sh->count);
715 			spin_unlock(&conf->device_lock);
716 		}
717 	} while (sh == NULL);
718 
719 	spin_unlock_irq(conf->hash_locks + hash);
720 	return sh;
721 }
722 
723 static bool is_full_stripe_write(struct stripe_head *sh)
724 {
725 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
726 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
727 }
728 
729 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730 {
731 	local_irq_disable();
732 	if (sh1 > sh2) {
733 		spin_lock(&sh2->stripe_lock);
734 		spin_lock_nested(&sh1->stripe_lock, 1);
735 	} else {
736 		spin_lock(&sh1->stripe_lock);
737 		spin_lock_nested(&sh2->stripe_lock, 1);
738 	}
739 }
740 
741 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
742 {
743 	spin_unlock(&sh1->stripe_lock);
744 	spin_unlock(&sh2->stripe_lock);
745 	local_irq_enable();
746 }
747 
748 /* Only freshly new full stripe normal write stripe can be added to a batch list */
749 static bool stripe_can_batch(struct stripe_head *sh)
750 {
751 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
752 		is_full_stripe_write(sh);
753 }
754 
755 /* we only do back search */
756 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
757 {
758 	struct stripe_head *head;
759 	sector_t head_sector, tmp_sec;
760 	int hash;
761 	int dd_idx;
762 
763 	if (!stripe_can_batch(sh))
764 		return;
765 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
766 	tmp_sec = sh->sector;
767 	if (!sector_div(tmp_sec, conf->chunk_sectors))
768 		return;
769 	head_sector = sh->sector - STRIPE_SECTORS;
770 
771 	hash = stripe_hash_locks_hash(head_sector);
772 	spin_lock_irq(conf->hash_locks + hash);
773 	head = __find_stripe(conf, head_sector, conf->generation);
774 	if (head && !atomic_inc_not_zero(&head->count)) {
775 		spin_lock(&conf->device_lock);
776 		if (!atomic_read(&head->count)) {
777 			if (!test_bit(STRIPE_HANDLE, &head->state))
778 				atomic_inc(&conf->active_stripes);
779 			BUG_ON(list_empty(&head->lru) &&
780 			       !test_bit(STRIPE_EXPANDING, &head->state));
781 			list_del_init(&head->lru);
782 			if (head->group) {
783 				head->group->stripes_cnt--;
784 				head->group = NULL;
785 			}
786 		}
787 		atomic_inc(&head->count);
788 		spin_unlock(&conf->device_lock);
789 	}
790 	spin_unlock_irq(conf->hash_locks + hash);
791 
792 	if (!head)
793 		return;
794 	if (!stripe_can_batch(head))
795 		goto out;
796 
797 	lock_two_stripes(head, sh);
798 	/* clear_batch_ready clear the flag */
799 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
800 		goto unlock_out;
801 
802 	if (sh->batch_head)
803 		goto unlock_out;
804 
805 	dd_idx = 0;
806 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
807 		dd_idx++;
808 	if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
809 		goto unlock_out;
810 
811 	if (head->batch_head) {
812 		spin_lock(&head->batch_head->batch_lock);
813 		/* This batch list is already running */
814 		if (!stripe_can_batch(head)) {
815 			spin_unlock(&head->batch_head->batch_lock);
816 			goto unlock_out;
817 		}
818 
819 		/*
820 		 * at this point, head's BATCH_READY could be cleared, but we
821 		 * can still add the stripe to batch list
822 		 */
823 		list_add(&sh->batch_list, &head->batch_list);
824 		spin_unlock(&head->batch_head->batch_lock);
825 
826 		sh->batch_head = head->batch_head;
827 	} else {
828 		head->batch_head = head;
829 		sh->batch_head = head->batch_head;
830 		spin_lock(&head->batch_lock);
831 		list_add_tail(&sh->batch_list, &head->batch_list);
832 		spin_unlock(&head->batch_lock);
833 	}
834 
835 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
836 		if (atomic_dec_return(&conf->preread_active_stripes)
837 		    < IO_THRESHOLD)
838 			md_wakeup_thread(conf->mddev->thread);
839 
840 	atomic_inc(&sh->count);
841 unlock_out:
842 	unlock_two_stripes(head, sh);
843 out:
844 	release_stripe(head);
845 }
846 
847 /* Determine if 'data_offset' or 'new_data_offset' should be used
848  * in this stripe_head.
849  */
850 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
851 {
852 	sector_t progress = conf->reshape_progress;
853 	/* Need a memory barrier to make sure we see the value
854 	 * of conf->generation, or ->data_offset that was set before
855 	 * reshape_progress was updated.
856 	 */
857 	smp_rmb();
858 	if (progress == MaxSector)
859 		return 0;
860 	if (sh->generation == conf->generation - 1)
861 		return 0;
862 	/* We are in a reshape, and this is a new-generation stripe,
863 	 * so use new_data_offset.
864 	 */
865 	return 1;
866 }
867 
868 static void
869 raid5_end_read_request(struct bio *bi, int error);
870 static void
871 raid5_end_write_request(struct bio *bi, int error);
872 
873 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
874 {
875 	struct r5conf *conf = sh->raid_conf;
876 	int i, disks = sh->disks;
877 	struct stripe_head *head_sh = sh;
878 
879 	might_sleep();
880 
881 	for (i = disks; i--; ) {
882 		int rw;
883 		int replace_only = 0;
884 		struct bio *bi, *rbi;
885 		struct md_rdev *rdev, *rrdev = NULL;
886 
887 		sh = head_sh;
888 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
889 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
890 				rw = WRITE_FUA;
891 			else
892 				rw = WRITE;
893 			if (test_bit(R5_Discard, &sh->dev[i].flags))
894 				rw |= REQ_DISCARD;
895 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
896 			rw = READ;
897 		else if (test_and_clear_bit(R5_WantReplace,
898 					    &sh->dev[i].flags)) {
899 			rw = WRITE;
900 			replace_only = 1;
901 		} else
902 			continue;
903 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
904 			rw |= REQ_SYNC;
905 
906 again:
907 		bi = &sh->dev[i].req;
908 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
909 
910 		rcu_read_lock();
911 		rrdev = rcu_dereference(conf->disks[i].replacement);
912 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
913 		rdev = rcu_dereference(conf->disks[i].rdev);
914 		if (!rdev) {
915 			rdev = rrdev;
916 			rrdev = NULL;
917 		}
918 		if (rw & WRITE) {
919 			if (replace_only)
920 				rdev = NULL;
921 			if (rdev == rrdev)
922 				/* We raced and saw duplicates */
923 				rrdev = NULL;
924 		} else {
925 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
926 				rdev = rrdev;
927 			rrdev = NULL;
928 		}
929 
930 		if (rdev && test_bit(Faulty, &rdev->flags))
931 			rdev = NULL;
932 		if (rdev)
933 			atomic_inc(&rdev->nr_pending);
934 		if (rrdev && test_bit(Faulty, &rrdev->flags))
935 			rrdev = NULL;
936 		if (rrdev)
937 			atomic_inc(&rrdev->nr_pending);
938 		rcu_read_unlock();
939 
940 		/* We have already checked bad blocks for reads.  Now
941 		 * need to check for writes.  We never accept write errors
942 		 * on the replacement, so we don't to check rrdev.
943 		 */
944 		while ((rw & WRITE) && rdev &&
945 		       test_bit(WriteErrorSeen, &rdev->flags)) {
946 			sector_t first_bad;
947 			int bad_sectors;
948 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
949 					      &first_bad, &bad_sectors);
950 			if (!bad)
951 				break;
952 
953 			if (bad < 0) {
954 				set_bit(BlockedBadBlocks, &rdev->flags);
955 				if (!conf->mddev->external &&
956 				    conf->mddev->flags) {
957 					/* It is very unlikely, but we might
958 					 * still need to write out the
959 					 * bad block log - better give it
960 					 * a chance*/
961 					md_check_recovery(conf->mddev);
962 				}
963 				/*
964 				 * Because md_wait_for_blocked_rdev
965 				 * will dec nr_pending, we must
966 				 * increment it first.
967 				 */
968 				atomic_inc(&rdev->nr_pending);
969 				md_wait_for_blocked_rdev(rdev, conf->mddev);
970 			} else {
971 				/* Acknowledged bad block - skip the write */
972 				rdev_dec_pending(rdev, conf->mddev);
973 				rdev = NULL;
974 			}
975 		}
976 
977 		if (rdev) {
978 			if (s->syncing || s->expanding || s->expanded
979 			    || s->replacing)
980 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
981 
982 			set_bit(STRIPE_IO_STARTED, &sh->state);
983 
984 			bio_reset(bi);
985 			bi->bi_bdev = rdev->bdev;
986 			bi->bi_rw = rw;
987 			bi->bi_end_io = (rw & WRITE)
988 				? raid5_end_write_request
989 				: raid5_end_read_request;
990 			bi->bi_private = sh;
991 
992 			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
993 				__func__, (unsigned long long)sh->sector,
994 				bi->bi_rw, i);
995 			atomic_inc(&sh->count);
996 			if (sh != head_sh)
997 				atomic_inc(&head_sh->count);
998 			if (use_new_offset(conf, sh))
999 				bi->bi_iter.bi_sector = (sh->sector
1000 						 + rdev->new_data_offset);
1001 			else
1002 				bi->bi_iter.bi_sector = (sh->sector
1003 						 + rdev->data_offset);
1004 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1005 				bi->bi_rw |= REQ_NOMERGE;
1006 
1007 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1008 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1009 			sh->dev[i].vec.bv_page = sh->dev[i].page;
1010 			bi->bi_vcnt = 1;
1011 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1012 			bi->bi_io_vec[0].bv_offset = 0;
1013 			bi->bi_iter.bi_size = STRIPE_SIZE;
1014 			/*
1015 			 * If this is discard request, set bi_vcnt 0. We don't
1016 			 * want to confuse SCSI because SCSI will replace payload
1017 			 */
1018 			if (rw & REQ_DISCARD)
1019 				bi->bi_vcnt = 0;
1020 			if (rrdev)
1021 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1022 
1023 			if (conf->mddev->gendisk)
1024 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1025 						      bi, disk_devt(conf->mddev->gendisk),
1026 						      sh->dev[i].sector);
1027 			generic_make_request(bi);
1028 		}
1029 		if (rrdev) {
1030 			if (s->syncing || s->expanding || s->expanded
1031 			    || s->replacing)
1032 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1033 
1034 			set_bit(STRIPE_IO_STARTED, &sh->state);
1035 
1036 			bio_reset(rbi);
1037 			rbi->bi_bdev = rrdev->bdev;
1038 			rbi->bi_rw = rw;
1039 			BUG_ON(!(rw & WRITE));
1040 			rbi->bi_end_io = raid5_end_write_request;
1041 			rbi->bi_private = sh;
1042 
1043 			pr_debug("%s: for %llu schedule op %ld on "
1044 				 "replacement disc %d\n",
1045 				__func__, (unsigned long long)sh->sector,
1046 				rbi->bi_rw, i);
1047 			atomic_inc(&sh->count);
1048 			if (sh != head_sh)
1049 				atomic_inc(&head_sh->count);
1050 			if (use_new_offset(conf, sh))
1051 				rbi->bi_iter.bi_sector = (sh->sector
1052 						  + rrdev->new_data_offset);
1053 			else
1054 				rbi->bi_iter.bi_sector = (sh->sector
1055 						  + rrdev->data_offset);
1056 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1057 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1058 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1059 			rbi->bi_vcnt = 1;
1060 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1061 			rbi->bi_io_vec[0].bv_offset = 0;
1062 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1063 			/*
1064 			 * If this is discard request, set bi_vcnt 0. We don't
1065 			 * want to confuse SCSI because SCSI will replace payload
1066 			 */
1067 			if (rw & REQ_DISCARD)
1068 				rbi->bi_vcnt = 0;
1069 			if (conf->mddev->gendisk)
1070 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1071 						      rbi, disk_devt(conf->mddev->gendisk),
1072 						      sh->dev[i].sector);
1073 			generic_make_request(rbi);
1074 		}
1075 		if (!rdev && !rrdev) {
1076 			if (rw & WRITE)
1077 				set_bit(STRIPE_DEGRADED, &sh->state);
1078 			pr_debug("skip op %ld on disc %d for sector %llu\n",
1079 				bi->bi_rw, i, (unsigned long long)sh->sector);
1080 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1081 			if (sh->batch_head)
1082 				set_bit(STRIPE_BATCH_ERR,
1083 					&sh->batch_head->state);
1084 			set_bit(STRIPE_HANDLE, &sh->state);
1085 		}
1086 
1087 		if (!head_sh->batch_head)
1088 			continue;
1089 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1090 				      batch_list);
1091 		if (sh != head_sh)
1092 			goto again;
1093 	}
1094 }
1095 
1096 static struct dma_async_tx_descriptor *
1097 async_copy_data(int frombio, struct bio *bio, struct page **page,
1098 	sector_t sector, struct dma_async_tx_descriptor *tx,
1099 	struct stripe_head *sh)
1100 {
1101 	struct bio_vec bvl;
1102 	struct bvec_iter iter;
1103 	struct page *bio_page;
1104 	int page_offset;
1105 	struct async_submit_ctl submit;
1106 	enum async_tx_flags flags = 0;
1107 
1108 	if (bio->bi_iter.bi_sector >= sector)
1109 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1110 	else
1111 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1112 
1113 	if (frombio)
1114 		flags |= ASYNC_TX_FENCE;
1115 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1116 
1117 	bio_for_each_segment(bvl, bio, iter) {
1118 		int len = bvl.bv_len;
1119 		int clen;
1120 		int b_offset = 0;
1121 
1122 		if (page_offset < 0) {
1123 			b_offset = -page_offset;
1124 			page_offset += b_offset;
1125 			len -= b_offset;
1126 		}
1127 
1128 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1129 			clen = STRIPE_SIZE - page_offset;
1130 		else
1131 			clen = len;
1132 
1133 		if (clen > 0) {
1134 			b_offset += bvl.bv_offset;
1135 			bio_page = bvl.bv_page;
1136 			if (frombio) {
1137 				if (sh->raid_conf->skip_copy &&
1138 				    b_offset == 0 && page_offset == 0 &&
1139 				    clen == STRIPE_SIZE)
1140 					*page = bio_page;
1141 				else
1142 					tx = async_memcpy(*page, bio_page, page_offset,
1143 						  b_offset, clen, &submit);
1144 			} else
1145 				tx = async_memcpy(bio_page, *page, b_offset,
1146 						  page_offset, clen, &submit);
1147 		}
1148 		/* chain the operations */
1149 		submit.depend_tx = tx;
1150 
1151 		if (clen < len) /* hit end of page */
1152 			break;
1153 		page_offset +=  len;
1154 	}
1155 
1156 	return tx;
1157 }
1158 
1159 static void ops_complete_biofill(void *stripe_head_ref)
1160 {
1161 	struct stripe_head *sh = stripe_head_ref;
1162 	struct bio *return_bi = NULL;
1163 	int i;
1164 
1165 	pr_debug("%s: stripe %llu\n", __func__,
1166 		(unsigned long long)sh->sector);
1167 
1168 	/* clear completed biofills */
1169 	for (i = sh->disks; i--; ) {
1170 		struct r5dev *dev = &sh->dev[i];
1171 
1172 		/* acknowledge completion of a biofill operation */
1173 		/* and check if we need to reply to a read request,
1174 		 * new R5_Wantfill requests are held off until
1175 		 * !STRIPE_BIOFILL_RUN
1176 		 */
1177 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1178 			struct bio *rbi, *rbi2;
1179 
1180 			BUG_ON(!dev->read);
1181 			rbi = dev->read;
1182 			dev->read = NULL;
1183 			while (rbi && rbi->bi_iter.bi_sector <
1184 				dev->sector + STRIPE_SECTORS) {
1185 				rbi2 = r5_next_bio(rbi, dev->sector);
1186 				if (!raid5_dec_bi_active_stripes(rbi)) {
1187 					rbi->bi_next = return_bi;
1188 					return_bi = rbi;
1189 				}
1190 				rbi = rbi2;
1191 			}
1192 		}
1193 	}
1194 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1195 
1196 	return_io(return_bi);
1197 
1198 	set_bit(STRIPE_HANDLE, &sh->state);
1199 	release_stripe(sh);
1200 }
1201 
1202 static void ops_run_biofill(struct stripe_head *sh)
1203 {
1204 	struct dma_async_tx_descriptor *tx = NULL;
1205 	struct async_submit_ctl submit;
1206 	int i;
1207 
1208 	BUG_ON(sh->batch_head);
1209 	pr_debug("%s: stripe %llu\n", __func__,
1210 		(unsigned long long)sh->sector);
1211 
1212 	for (i = sh->disks; i--; ) {
1213 		struct r5dev *dev = &sh->dev[i];
1214 		if (test_bit(R5_Wantfill, &dev->flags)) {
1215 			struct bio *rbi;
1216 			spin_lock_irq(&sh->stripe_lock);
1217 			dev->read = rbi = dev->toread;
1218 			dev->toread = NULL;
1219 			spin_unlock_irq(&sh->stripe_lock);
1220 			while (rbi && rbi->bi_iter.bi_sector <
1221 				dev->sector + STRIPE_SECTORS) {
1222 				tx = async_copy_data(0, rbi, &dev->page,
1223 					dev->sector, tx, sh);
1224 				rbi = r5_next_bio(rbi, dev->sector);
1225 			}
1226 		}
1227 	}
1228 
1229 	atomic_inc(&sh->count);
1230 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1231 	async_trigger_callback(&submit);
1232 }
1233 
1234 static void mark_target_uptodate(struct stripe_head *sh, int target)
1235 {
1236 	struct r5dev *tgt;
1237 
1238 	if (target < 0)
1239 		return;
1240 
1241 	tgt = &sh->dev[target];
1242 	set_bit(R5_UPTODATE, &tgt->flags);
1243 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1244 	clear_bit(R5_Wantcompute, &tgt->flags);
1245 }
1246 
1247 static void ops_complete_compute(void *stripe_head_ref)
1248 {
1249 	struct stripe_head *sh = stripe_head_ref;
1250 
1251 	pr_debug("%s: stripe %llu\n", __func__,
1252 		(unsigned long long)sh->sector);
1253 
1254 	/* mark the computed target(s) as uptodate */
1255 	mark_target_uptodate(sh, sh->ops.target);
1256 	mark_target_uptodate(sh, sh->ops.target2);
1257 
1258 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1259 	if (sh->check_state == check_state_compute_run)
1260 		sh->check_state = check_state_compute_result;
1261 	set_bit(STRIPE_HANDLE, &sh->state);
1262 	release_stripe(sh);
1263 }
1264 
1265 /* return a pointer to the address conversion region of the scribble buffer */
1266 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1267 				 struct raid5_percpu *percpu, int i)
1268 {
1269 	void *addr;
1270 
1271 	addr = flex_array_get(percpu->scribble, i);
1272 	return addr + sizeof(struct page *) * (sh->disks + 2);
1273 }
1274 
1275 /* return a pointer to the address conversion region of the scribble buffer */
1276 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1277 {
1278 	void *addr;
1279 
1280 	addr = flex_array_get(percpu->scribble, i);
1281 	return addr;
1282 }
1283 
1284 static struct dma_async_tx_descriptor *
1285 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1286 {
1287 	int disks = sh->disks;
1288 	struct page **xor_srcs = to_addr_page(percpu, 0);
1289 	int target = sh->ops.target;
1290 	struct r5dev *tgt = &sh->dev[target];
1291 	struct page *xor_dest = tgt->page;
1292 	int count = 0;
1293 	struct dma_async_tx_descriptor *tx;
1294 	struct async_submit_ctl submit;
1295 	int i;
1296 
1297 	BUG_ON(sh->batch_head);
1298 
1299 	pr_debug("%s: stripe %llu block: %d\n",
1300 		__func__, (unsigned long long)sh->sector, target);
1301 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1302 
1303 	for (i = disks; i--; )
1304 		if (i != target)
1305 			xor_srcs[count++] = sh->dev[i].page;
1306 
1307 	atomic_inc(&sh->count);
1308 
1309 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1310 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1311 	if (unlikely(count == 1))
1312 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1313 	else
1314 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1315 
1316 	return tx;
1317 }
1318 
1319 /* set_syndrome_sources - populate source buffers for gen_syndrome
1320  * @srcs - (struct page *) array of size sh->disks
1321  * @sh - stripe_head to parse
1322  *
1323  * Populates srcs in proper layout order for the stripe and returns the
1324  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1325  * destination buffer is recorded in srcs[count] and the Q destination
1326  * is recorded in srcs[count+1]].
1327  */
1328 static int set_syndrome_sources(struct page **srcs,
1329 				struct stripe_head *sh,
1330 				int srctype)
1331 {
1332 	int disks = sh->disks;
1333 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1334 	int d0_idx = raid6_d0(sh);
1335 	int count;
1336 	int i;
1337 
1338 	for (i = 0; i < disks; i++)
1339 		srcs[i] = NULL;
1340 
1341 	count = 0;
1342 	i = d0_idx;
1343 	do {
1344 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1345 		struct r5dev *dev = &sh->dev[i];
1346 
1347 		if (i == sh->qd_idx || i == sh->pd_idx ||
1348 		    (srctype == SYNDROME_SRC_ALL) ||
1349 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1350 		     test_bit(R5_Wantdrain, &dev->flags)) ||
1351 		    (srctype == SYNDROME_SRC_WRITTEN &&
1352 		     dev->written))
1353 			srcs[slot] = sh->dev[i].page;
1354 		i = raid6_next_disk(i, disks);
1355 	} while (i != d0_idx);
1356 
1357 	return syndrome_disks;
1358 }
1359 
1360 static struct dma_async_tx_descriptor *
1361 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1362 {
1363 	int disks = sh->disks;
1364 	struct page **blocks = to_addr_page(percpu, 0);
1365 	int target;
1366 	int qd_idx = sh->qd_idx;
1367 	struct dma_async_tx_descriptor *tx;
1368 	struct async_submit_ctl submit;
1369 	struct r5dev *tgt;
1370 	struct page *dest;
1371 	int i;
1372 	int count;
1373 
1374 	BUG_ON(sh->batch_head);
1375 	if (sh->ops.target < 0)
1376 		target = sh->ops.target2;
1377 	else if (sh->ops.target2 < 0)
1378 		target = sh->ops.target;
1379 	else
1380 		/* we should only have one valid target */
1381 		BUG();
1382 	BUG_ON(target < 0);
1383 	pr_debug("%s: stripe %llu block: %d\n",
1384 		__func__, (unsigned long long)sh->sector, target);
1385 
1386 	tgt = &sh->dev[target];
1387 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1388 	dest = tgt->page;
1389 
1390 	atomic_inc(&sh->count);
1391 
1392 	if (target == qd_idx) {
1393 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1394 		blocks[count] = NULL; /* regenerating p is not necessary */
1395 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1396 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1397 				  ops_complete_compute, sh,
1398 				  to_addr_conv(sh, percpu, 0));
1399 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1400 	} else {
1401 		/* Compute any data- or p-drive using XOR */
1402 		count = 0;
1403 		for (i = disks; i-- ; ) {
1404 			if (i == target || i == qd_idx)
1405 				continue;
1406 			blocks[count++] = sh->dev[i].page;
1407 		}
1408 
1409 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1410 				  NULL, ops_complete_compute, sh,
1411 				  to_addr_conv(sh, percpu, 0));
1412 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1413 	}
1414 
1415 	return tx;
1416 }
1417 
1418 static struct dma_async_tx_descriptor *
1419 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1420 {
1421 	int i, count, disks = sh->disks;
1422 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1423 	int d0_idx = raid6_d0(sh);
1424 	int faila = -1, failb = -1;
1425 	int target = sh->ops.target;
1426 	int target2 = sh->ops.target2;
1427 	struct r5dev *tgt = &sh->dev[target];
1428 	struct r5dev *tgt2 = &sh->dev[target2];
1429 	struct dma_async_tx_descriptor *tx;
1430 	struct page **blocks = to_addr_page(percpu, 0);
1431 	struct async_submit_ctl submit;
1432 
1433 	BUG_ON(sh->batch_head);
1434 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1435 		 __func__, (unsigned long long)sh->sector, target, target2);
1436 	BUG_ON(target < 0 || target2 < 0);
1437 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1438 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1439 
1440 	/* we need to open-code set_syndrome_sources to handle the
1441 	 * slot number conversion for 'faila' and 'failb'
1442 	 */
1443 	for (i = 0; i < disks ; i++)
1444 		blocks[i] = NULL;
1445 	count = 0;
1446 	i = d0_idx;
1447 	do {
1448 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1449 
1450 		blocks[slot] = sh->dev[i].page;
1451 
1452 		if (i == target)
1453 			faila = slot;
1454 		if (i == target2)
1455 			failb = slot;
1456 		i = raid6_next_disk(i, disks);
1457 	} while (i != d0_idx);
1458 
1459 	BUG_ON(faila == failb);
1460 	if (failb < faila)
1461 		swap(faila, failb);
1462 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1463 		 __func__, (unsigned long long)sh->sector, faila, failb);
1464 
1465 	atomic_inc(&sh->count);
1466 
1467 	if (failb == syndrome_disks+1) {
1468 		/* Q disk is one of the missing disks */
1469 		if (faila == syndrome_disks) {
1470 			/* Missing P+Q, just recompute */
1471 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1472 					  ops_complete_compute, sh,
1473 					  to_addr_conv(sh, percpu, 0));
1474 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1475 						  STRIPE_SIZE, &submit);
1476 		} else {
1477 			struct page *dest;
1478 			int data_target;
1479 			int qd_idx = sh->qd_idx;
1480 
1481 			/* Missing D+Q: recompute D from P, then recompute Q */
1482 			if (target == qd_idx)
1483 				data_target = target2;
1484 			else
1485 				data_target = target;
1486 
1487 			count = 0;
1488 			for (i = disks; i-- ; ) {
1489 				if (i == data_target || i == qd_idx)
1490 					continue;
1491 				blocks[count++] = sh->dev[i].page;
1492 			}
1493 			dest = sh->dev[data_target].page;
1494 			init_async_submit(&submit,
1495 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1496 					  NULL, NULL, NULL,
1497 					  to_addr_conv(sh, percpu, 0));
1498 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1499 				       &submit);
1500 
1501 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1502 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1503 					  ops_complete_compute, sh,
1504 					  to_addr_conv(sh, percpu, 0));
1505 			return async_gen_syndrome(blocks, 0, count+2,
1506 						  STRIPE_SIZE, &submit);
1507 		}
1508 	} else {
1509 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1510 				  ops_complete_compute, sh,
1511 				  to_addr_conv(sh, percpu, 0));
1512 		if (failb == syndrome_disks) {
1513 			/* We're missing D+P. */
1514 			return async_raid6_datap_recov(syndrome_disks+2,
1515 						       STRIPE_SIZE, faila,
1516 						       blocks, &submit);
1517 		} else {
1518 			/* We're missing D+D. */
1519 			return async_raid6_2data_recov(syndrome_disks+2,
1520 						       STRIPE_SIZE, faila, failb,
1521 						       blocks, &submit);
1522 		}
1523 	}
1524 }
1525 
1526 static void ops_complete_prexor(void *stripe_head_ref)
1527 {
1528 	struct stripe_head *sh = stripe_head_ref;
1529 
1530 	pr_debug("%s: stripe %llu\n", __func__,
1531 		(unsigned long long)sh->sector);
1532 }
1533 
1534 static struct dma_async_tx_descriptor *
1535 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1536 		struct dma_async_tx_descriptor *tx)
1537 {
1538 	int disks = sh->disks;
1539 	struct page **xor_srcs = to_addr_page(percpu, 0);
1540 	int count = 0, pd_idx = sh->pd_idx, i;
1541 	struct async_submit_ctl submit;
1542 
1543 	/* existing parity data subtracted */
1544 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1545 
1546 	BUG_ON(sh->batch_head);
1547 	pr_debug("%s: stripe %llu\n", __func__,
1548 		(unsigned long long)sh->sector);
1549 
1550 	for (i = disks; i--; ) {
1551 		struct r5dev *dev = &sh->dev[i];
1552 		/* Only process blocks that are known to be uptodate */
1553 		if (test_bit(R5_Wantdrain, &dev->flags))
1554 			xor_srcs[count++] = dev->page;
1555 	}
1556 
1557 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1558 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1559 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1560 
1561 	return tx;
1562 }
1563 
1564 static struct dma_async_tx_descriptor *
1565 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1566 		struct dma_async_tx_descriptor *tx)
1567 {
1568 	struct page **blocks = to_addr_page(percpu, 0);
1569 	int count;
1570 	struct async_submit_ctl submit;
1571 
1572 	pr_debug("%s: stripe %llu\n", __func__,
1573 		(unsigned long long)sh->sector);
1574 
1575 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1576 
1577 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1578 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1579 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1580 
1581 	return tx;
1582 }
1583 
1584 static struct dma_async_tx_descriptor *
1585 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1586 {
1587 	int disks = sh->disks;
1588 	int i;
1589 	struct stripe_head *head_sh = sh;
1590 
1591 	pr_debug("%s: stripe %llu\n", __func__,
1592 		(unsigned long long)sh->sector);
1593 
1594 	for (i = disks; i--; ) {
1595 		struct r5dev *dev;
1596 		struct bio *chosen;
1597 
1598 		sh = head_sh;
1599 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1600 			struct bio *wbi;
1601 
1602 again:
1603 			dev = &sh->dev[i];
1604 			spin_lock_irq(&sh->stripe_lock);
1605 			chosen = dev->towrite;
1606 			dev->towrite = NULL;
1607 			sh->overwrite_disks = 0;
1608 			BUG_ON(dev->written);
1609 			wbi = dev->written = chosen;
1610 			spin_unlock_irq(&sh->stripe_lock);
1611 			WARN_ON(dev->page != dev->orig_page);
1612 
1613 			while (wbi && wbi->bi_iter.bi_sector <
1614 				dev->sector + STRIPE_SECTORS) {
1615 				if (wbi->bi_rw & REQ_FUA)
1616 					set_bit(R5_WantFUA, &dev->flags);
1617 				if (wbi->bi_rw & REQ_SYNC)
1618 					set_bit(R5_SyncIO, &dev->flags);
1619 				if (wbi->bi_rw & REQ_DISCARD)
1620 					set_bit(R5_Discard, &dev->flags);
1621 				else {
1622 					tx = async_copy_data(1, wbi, &dev->page,
1623 						dev->sector, tx, sh);
1624 					if (dev->page != dev->orig_page) {
1625 						set_bit(R5_SkipCopy, &dev->flags);
1626 						clear_bit(R5_UPTODATE, &dev->flags);
1627 						clear_bit(R5_OVERWRITE, &dev->flags);
1628 					}
1629 				}
1630 				wbi = r5_next_bio(wbi, dev->sector);
1631 			}
1632 
1633 			if (head_sh->batch_head) {
1634 				sh = list_first_entry(&sh->batch_list,
1635 						      struct stripe_head,
1636 						      batch_list);
1637 				if (sh == head_sh)
1638 					continue;
1639 				goto again;
1640 			}
1641 		}
1642 	}
1643 
1644 	return tx;
1645 }
1646 
1647 static void ops_complete_reconstruct(void *stripe_head_ref)
1648 {
1649 	struct stripe_head *sh = stripe_head_ref;
1650 	int disks = sh->disks;
1651 	int pd_idx = sh->pd_idx;
1652 	int qd_idx = sh->qd_idx;
1653 	int i;
1654 	bool fua = false, sync = false, discard = false;
1655 
1656 	pr_debug("%s: stripe %llu\n", __func__,
1657 		(unsigned long long)sh->sector);
1658 
1659 	for (i = disks; i--; ) {
1660 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1661 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1662 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1663 	}
1664 
1665 	for (i = disks; i--; ) {
1666 		struct r5dev *dev = &sh->dev[i];
1667 
1668 		if (dev->written || i == pd_idx || i == qd_idx) {
1669 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1670 				set_bit(R5_UPTODATE, &dev->flags);
1671 			if (fua)
1672 				set_bit(R5_WantFUA, &dev->flags);
1673 			if (sync)
1674 				set_bit(R5_SyncIO, &dev->flags);
1675 		}
1676 	}
1677 
1678 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1679 		sh->reconstruct_state = reconstruct_state_drain_result;
1680 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1681 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1682 	else {
1683 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1684 		sh->reconstruct_state = reconstruct_state_result;
1685 	}
1686 
1687 	set_bit(STRIPE_HANDLE, &sh->state);
1688 	release_stripe(sh);
1689 }
1690 
1691 static void
1692 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1693 		     struct dma_async_tx_descriptor *tx)
1694 {
1695 	int disks = sh->disks;
1696 	struct page **xor_srcs;
1697 	struct async_submit_ctl submit;
1698 	int count, pd_idx = sh->pd_idx, i;
1699 	struct page *xor_dest;
1700 	int prexor = 0;
1701 	unsigned long flags;
1702 	int j = 0;
1703 	struct stripe_head *head_sh = sh;
1704 	int last_stripe;
1705 
1706 	pr_debug("%s: stripe %llu\n", __func__,
1707 		(unsigned long long)sh->sector);
1708 
1709 	for (i = 0; i < sh->disks; i++) {
1710 		if (pd_idx == i)
1711 			continue;
1712 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1713 			break;
1714 	}
1715 	if (i >= sh->disks) {
1716 		atomic_inc(&sh->count);
1717 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1718 		ops_complete_reconstruct(sh);
1719 		return;
1720 	}
1721 again:
1722 	count = 0;
1723 	xor_srcs = to_addr_page(percpu, j);
1724 	/* check if prexor is active which means only process blocks
1725 	 * that are part of a read-modify-write (written)
1726 	 */
1727 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1728 		prexor = 1;
1729 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1730 		for (i = disks; i--; ) {
1731 			struct r5dev *dev = &sh->dev[i];
1732 			if (head_sh->dev[i].written)
1733 				xor_srcs[count++] = dev->page;
1734 		}
1735 	} else {
1736 		xor_dest = sh->dev[pd_idx].page;
1737 		for (i = disks; i--; ) {
1738 			struct r5dev *dev = &sh->dev[i];
1739 			if (i != pd_idx)
1740 				xor_srcs[count++] = dev->page;
1741 		}
1742 	}
1743 
1744 	/* 1/ if we prexor'd then the dest is reused as a source
1745 	 * 2/ if we did not prexor then we are redoing the parity
1746 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1747 	 * for the synchronous xor case
1748 	 */
1749 	last_stripe = !head_sh->batch_head ||
1750 		list_first_entry(&sh->batch_list,
1751 				 struct stripe_head, batch_list) == head_sh;
1752 	if (last_stripe) {
1753 		flags = ASYNC_TX_ACK |
1754 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1755 
1756 		atomic_inc(&head_sh->count);
1757 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1758 				  to_addr_conv(sh, percpu, j));
1759 	} else {
1760 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1761 		init_async_submit(&submit, flags, tx, NULL, NULL,
1762 				  to_addr_conv(sh, percpu, j));
1763 	}
1764 
1765 	if (unlikely(count == 1))
1766 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1767 	else
1768 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1769 	if (!last_stripe) {
1770 		j++;
1771 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1772 				      batch_list);
1773 		goto again;
1774 	}
1775 }
1776 
1777 static void
1778 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1779 		     struct dma_async_tx_descriptor *tx)
1780 {
1781 	struct async_submit_ctl submit;
1782 	struct page **blocks;
1783 	int count, i, j = 0;
1784 	struct stripe_head *head_sh = sh;
1785 	int last_stripe;
1786 	int synflags;
1787 	unsigned long txflags;
1788 
1789 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1790 
1791 	for (i = 0; i < sh->disks; i++) {
1792 		if (sh->pd_idx == i || sh->qd_idx == i)
1793 			continue;
1794 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1795 			break;
1796 	}
1797 	if (i >= sh->disks) {
1798 		atomic_inc(&sh->count);
1799 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1800 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1801 		ops_complete_reconstruct(sh);
1802 		return;
1803 	}
1804 
1805 again:
1806 	blocks = to_addr_page(percpu, j);
1807 
1808 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1809 		synflags = SYNDROME_SRC_WRITTEN;
1810 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1811 	} else {
1812 		synflags = SYNDROME_SRC_ALL;
1813 		txflags = ASYNC_TX_ACK;
1814 	}
1815 
1816 	count = set_syndrome_sources(blocks, sh, synflags);
1817 	last_stripe = !head_sh->batch_head ||
1818 		list_first_entry(&sh->batch_list,
1819 				 struct stripe_head, batch_list) == head_sh;
1820 
1821 	if (last_stripe) {
1822 		atomic_inc(&head_sh->count);
1823 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1824 				  head_sh, to_addr_conv(sh, percpu, j));
1825 	} else
1826 		init_async_submit(&submit, 0, tx, NULL, NULL,
1827 				  to_addr_conv(sh, percpu, j));
1828 	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1829 	if (!last_stripe) {
1830 		j++;
1831 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1832 				      batch_list);
1833 		goto again;
1834 	}
1835 }
1836 
1837 static void ops_complete_check(void *stripe_head_ref)
1838 {
1839 	struct stripe_head *sh = stripe_head_ref;
1840 
1841 	pr_debug("%s: stripe %llu\n", __func__,
1842 		(unsigned long long)sh->sector);
1843 
1844 	sh->check_state = check_state_check_result;
1845 	set_bit(STRIPE_HANDLE, &sh->state);
1846 	release_stripe(sh);
1847 }
1848 
1849 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1850 {
1851 	int disks = sh->disks;
1852 	int pd_idx = sh->pd_idx;
1853 	int qd_idx = sh->qd_idx;
1854 	struct page *xor_dest;
1855 	struct page **xor_srcs = to_addr_page(percpu, 0);
1856 	struct dma_async_tx_descriptor *tx;
1857 	struct async_submit_ctl submit;
1858 	int count;
1859 	int i;
1860 
1861 	pr_debug("%s: stripe %llu\n", __func__,
1862 		(unsigned long long)sh->sector);
1863 
1864 	BUG_ON(sh->batch_head);
1865 	count = 0;
1866 	xor_dest = sh->dev[pd_idx].page;
1867 	xor_srcs[count++] = xor_dest;
1868 	for (i = disks; i--; ) {
1869 		if (i == pd_idx || i == qd_idx)
1870 			continue;
1871 		xor_srcs[count++] = sh->dev[i].page;
1872 	}
1873 
1874 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1875 			  to_addr_conv(sh, percpu, 0));
1876 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1877 			   &sh->ops.zero_sum_result, &submit);
1878 
1879 	atomic_inc(&sh->count);
1880 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1881 	tx = async_trigger_callback(&submit);
1882 }
1883 
1884 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1885 {
1886 	struct page **srcs = to_addr_page(percpu, 0);
1887 	struct async_submit_ctl submit;
1888 	int count;
1889 
1890 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1891 		(unsigned long long)sh->sector, checkp);
1892 
1893 	BUG_ON(sh->batch_head);
1894 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1895 	if (!checkp)
1896 		srcs[count] = NULL;
1897 
1898 	atomic_inc(&sh->count);
1899 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1900 			  sh, to_addr_conv(sh, percpu, 0));
1901 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1902 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1903 }
1904 
1905 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1906 {
1907 	int overlap_clear = 0, i, disks = sh->disks;
1908 	struct dma_async_tx_descriptor *tx = NULL;
1909 	struct r5conf *conf = sh->raid_conf;
1910 	int level = conf->level;
1911 	struct raid5_percpu *percpu;
1912 	unsigned long cpu;
1913 
1914 	cpu = get_cpu();
1915 	percpu = per_cpu_ptr(conf->percpu, cpu);
1916 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1917 		ops_run_biofill(sh);
1918 		overlap_clear++;
1919 	}
1920 
1921 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1922 		if (level < 6)
1923 			tx = ops_run_compute5(sh, percpu);
1924 		else {
1925 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1926 				tx = ops_run_compute6_1(sh, percpu);
1927 			else
1928 				tx = ops_run_compute6_2(sh, percpu);
1929 		}
1930 		/* terminate the chain if reconstruct is not set to be run */
1931 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1932 			async_tx_ack(tx);
1933 	}
1934 
1935 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1936 		if (level < 6)
1937 			tx = ops_run_prexor5(sh, percpu, tx);
1938 		else
1939 			tx = ops_run_prexor6(sh, percpu, tx);
1940 	}
1941 
1942 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1943 		tx = ops_run_biodrain(sh, tx);
1944 		overlap_clear++;
1945 	}
1946 
1947 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1948 		if (level < 6)
1949 			ops_run_reconstruct5(sh, percpu, tx);
1950 		else
1951 			ops_run_reconstruct6(sh, percpu, tx);
1952 	}
1953 
1954 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1955 		if (sh->check_state == check_state_run)
1956 			ops_run_check_p(sh, percpu);
1957 		else if (sh->check_state == check_state_run_q)
1958 			ops_run_check_pq(sh, percpu, 0);
1959 		else if (sh->check_state == check_state_run_pq)
1960 			ops_run_check_pq(sh, percpu, 1);
1961 		else
1962 			BUG();
1963 	}
1964 
1965 	if (overlap_clear && !sh->batch_head)
1966 		for (i = disks; i--; ) {
1967 			struct r5dev *dev = &sh->dev[i];
1968 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1969 				wake_up(&sh->raid_conf->wait_for_overlap);
1970 		}
1971 	put_cpu();
1972 }
1973 
1974 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1975 {
1976 	struct stripe_head *sh;
1977 	sh = kmem_cache_zalloc(conf->slab_cache, gfp);
1978 	if (!sh)
1979 		return 0;
1980 
1981 	sh->raid_conf = conf;
1982 
1983 	spin_lock_init(&sh->stripe_lock);
1984 
1985 	if (grow_buffers(sh, gfp)) {
1986 		shrink_buffers(sh);
1987 		kmem_cache_free(conf->slab_cache, sh);
1988 		return 0;
1989 	}
1990 	sh->hash_lock_index =
1991 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1992 	/* we just created an active stripe so... */
1993 	atomic_set(&sh->count, 1);
1994 	atomic_inc(&conf->active_stripes);
1995 	INIT_LIST_HEAD(&sh->lru);
1996 
1997 	spin_lock_init(&sh->batch_lock);
1998 	INIT_LIST_HEAD(&sh->batch_list);
1999 	sh->batch_head = NULL;
2000 	release_stripe(sh);
2001 	conf->max_nr_stripes++;
2002 	return 1;
2003 }
2004 
2005 static int grow_stripes(struct r5conf *conf, int num)
2006 {
2007 	struct kmem_cache *sc;
2008 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2009 
2010 	if (conf->mddev->gendisk)
2011 		sprintf(conf->cache_name[0],
2012 			"raid%d-%s", conf->level, mdname(conf->mddev));
2013 	else
2014 		sprintf(conf->cache_name[0],
2015 			"raid%d-%p", conf->level, conf->mddev);
2016 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2017 
2018 	conf->active_name = 0;
2019 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2020 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2021 			       0, 0, NULL);
2022 	if (!sc)
2023 		return 1;
2024 	conf->slab_cache = sc;
2025 	conf->pool_size = devs;
2026 	while (num--)
2027 		if (!grow_one_stripe(conf, GFP_KERNEL))
2028 			return 1;
2029 
2030 	return 0;
2031 }
2032 
2033 /**
2034  * scribble_len - return the required size of the scribble region
2035  * @num - total number of disks in the array
2036  *
2037  * The size must be enough to contain:
2038  * 1/ a struct page pointer for each device in the array +2
2039  * 2/ room to convert each entry in (1) to its corresponding dma
2040  *    (dma_map_page()) or page (page_address()) address.
2041  *
2042  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2043  * calculate over all devices (not just the data blocks), using zeros in place
2044  * of the P and Q blocks.
2045  */
2046 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2047 {
2048 	struct flex_array *ret;
2049 	size_t len;
2050 
2051 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2052 	ret = flex_array_alloc(len, cnt, flags);
2053 	if (!ret)
2054 		return NULL;
2055 	/* always prealloc all elements, so no locking is required */
2056 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2057 		flex_array_free(ret);
2058 		return NULL;
2059 	}
2060 	return ret;
2061 }
2062 
2063 static int resize_stripes(struct r5conf *conf, int newsize)
2064 {
2065 	/* Make all the stripes able to hold 'newsize' devices.
2066 	 * New slots in each stripe get 'page' set to a new page.
2067 	 *
2068 	 * This happens in stages:
2069 	 * 1/ create a new kmem_cache and allocate the required number of
2070 	 *    stripe_heads.
2071 	 * 2/ gather all the old stripe_heads and transfer the pages across
2072 	 *    to the new stripe_heads.  This will have the side effect of
2073 	 *    freezing the array as once all stripe_heads have been collected,
2074 	 *    no IO will be possible.  Old stripe heads are freed once their
2075 	 *    pages have been transferred over, and the old kmem_cache is
2076 	 *    freed when all stripes are done.
2077 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2078 	 *    we simple return a failre status - no need to clean anything up.
2079 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2080 	 *    If this fails, we don't bother trying the shrink the
2081 	 *    stripe_heads down again, we just leave them as they are.
2082 	 *    As each stripe_head is processed the new one is released into
2083 	 *    active service.
2084 	 *
2085 	 * Once step2 is started, we cannot afford to wait for a write,
2086 	 * so we use GFP_NOIO allocations.
2087 	 */
2088 	struct stripe_head *osh, *nsh;
2089 	LIST_HEAD(newstripes);
2090 	struct disk_info *ndisks;
2091 	unsigned long cpu;
2092 	int err;
2093 	struct kmem_cache *sc;
2094 	int i;
2095 	int hash, cnt;
2096 
2097 	if (newsize <= conf->pool_size)
2098 		return 0; /* never bother to shrink */
2099 
2100 	err = md_allow_write(conf->mddev);
2101 	if (err)
2102 		return err;
2103 
2104 	/* Step 1 */
2105 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2106 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2107 			       0, 0, NULL);
2108 	if (!sc)
2109 		return -ENOMEM;
2110 
2111 	for (i = conf->max_nr_stripes; i; i--) {
2112 		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
2113 		if (!nsh)
2114 			break;
2115 
2116 		nsh->raid_conf = conf;
2117 		spin_lock_init(&nsh->stripe_lock);
2118 
2119 		list_add(&nsh->lru, &newstripes);
2120 	}
2121 	if (i) {
2122 		/* didn't get enough, give up */
2123 		while (!list_empty(&newstripes)) {
2124 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2125 			list_del(&nsh->lru);
2126 			kmem_cache_free(sc, nsh);
2127 		}
2128 		kmem_cache_destroy(sc);
2129 		return -ENOMEM;
2130 	}
2131 	/* Step 2 - Must use GFP_NOIO now.
2132 	 * OK, we have enough stripes, start collecting inactive
2133 	 * stripes and copying them over
2134 	 */
2135 	hash = 0;
2136 	cnt = 0;
2137 	list_for_each_entry(nsh, &newstripes, lru) {
2138 		lock_device_hash_lock(conf, hash);
2139 		wait_event_cmd(conf->wait_for_stripe,
2140 				    !list_empty(conf->inactive_list + hash),
2141 				    unlock_device_hash_lock(conf, hash),
2142 				    lock_device_hash_lock(conf, hash));
2143 		osh = get_free_stripe(conf, hash);
2144 		unlock_device_hash_lock(conf, hash);
2145 		atomic_set(&nsh->count, 1);
2146 		for(i=0; i<conf->pool_size; i++) {
2147 			nsh->dev[i].page = osh->dev[i].page;
2148 			nsh->dev[i].orig_page = osh->dev[i].page;
2149 		}
2150 		for( ; i<newsize; i++)
2151 			nsh->dev[i].page = NULL;
2152 		nsh->hash_lock_index = hash;
2153 		kmem_cache_free(conf->slab_cache, osh);
2154 		cnt++;
2155 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2156 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2157 			hash++;
2158 			cnt = 0;
2159 		}
2160 	}
2161 	kmem_cache_destroy(conf->slab_cache);
2162 
2163 	/* Step 3.
2164 	 * At this point, we are holding all the stripes so the array
2165 	 * is completely stalled, so now is a good time to resize
2166 	 * conf->disks and the scribble region
2167 	 */
2168 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2169 	if (ndisks) {
2170 		for (i=0; i<conf->raid_disks; i++)
2171 			ndisks[i] = conf->disks[i];
2172 		kfree(conf->disks);
2173 		conf->disks = ndisks;
2174 	} else
2175 		err = -ENOMEM;
2176 
2177 	get_online_cpus();
2178 	for_each_present_cpu(cpu) {
2179 		struct raid5_percpu *percpu;
2180 		struct flex_array *scribble;
2181 
2182 		percpu = per_cpu_ptr(conf->percpu, cpu);
2183 		scribble = scribble_alloc(newsize, conf->chunk_sectors /
2184 			STRIPE_SECTORS, GFP_NOIO);
2185 
2186 		if (scribble) {
2187 			flex_array_free(percpu->scribble);
2188 			percpu->scribble = scribble;
2189 		} else {
2190 			err = -ENOMEM;
2191 			break;
2192 		}
2193 	}
2194 	put_online_cpus();
2195 
2196 	/* Step 4, return new stripes to service */
2197 	while(!list_empty(&newstripes)) {
2198 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2199 		list_del_init(&nsh->lru);
2200 
2201 		for (i=conf->raid_disks; i < newsize; i++)
2202 			if (nsh->dev[i].page == NULL) {
2203 				struct page *p = alloc_page(GFP_NOIO);
2204 				nsh->dev[i].page = p;
2205 				nsh->dev[i].orig_page = p;
2206 				if (!p)
2207 					err = -ENOMEM;
2208 			}
2209 		release_stripe(nsh);
2210 	}
2211 	/* critical section pass, GFP_NOIO no longer needed */
2212 
2213 	conf->slab_cache = sc;
2214 	conf->active_name = 1-conf->active_name;
2215 	conf->pool_size = newsize;
2216 	return err;
2217 }
2218 
2219 static int drop_one_stripe(struct r5conf *conf)
2220 {
2221 	struct stripe_head *sh;
2222 	int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
2223 
2224 	spin_lock_irq(conf->hash_locks + hash);
2225 	sh = get_free_stripe(conf, hash);
2226 	spin_unlock_irq(conf->hash_locks + hash);
2227 	if (!sh)
2228 		return 0;
2229 	BUG_ON(atomic_read(&sh->count));
2230 	shrink_buffers(sh);
2231 	kmem_cache_free(conf->slab_cache, sh);
2232 	atomic_dec(&conf->active_stripes);
2233 	conf->max_nr_stripes--;
2234 	return 1;
2235 }
2236 
2237 static void shrink_stripes(struct r5conf *conf)
2238 {
2239 	while (conf->max_nr_stripes &&
2240 	       drop_one_stripe(conf))
2241 		;
2242 
2243 	if (conf->slab_cache)
2244 		kmem_cache_destroy(conf->slab_cache);
2245 	conf->slab_cache = NULL;
2246 }
2247 
2248 static void raid5_end_read_request(struct bio * bi, int error)
2249 {
2250 	struct stripe_head *sh = bi->bi_private;
2251 	struct r5conf *conf = sh->raid_conf;
2252 	int disks = sh->disks, i;
2253 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2254 	char b[BDEVNAME_SIZE];
2255 	struct md_rdev *rdev = NULL;
2256 	sector_t s;
2257 
2258 	for (i=0 ; i<disks; i++)
2259 		if (bi == &sh->dev[i].req)
2260 			break;
2261 
2262 	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2263 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2264 		uptodate);
2265 	if (i == disks) {
2266 		BUG();
2267 		return;
2268 	}
2269 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2270 		/* If replacement finished while this request was outstanding,
2271 		 * 'replacement' might be NULL already.
2272 		 * In that case it moved down to 'rdev'.
2273 		 * rdev is not removed until all requests are finished.
2274 		 */
2275 		rdev = conf->disks[i].replacement;
2276 	if (!rdev)
2277 		rdev = conf->disks[i].rdev;
2278 
2279 	if (use_new_offset(conf, sh))
2280 		s = sh->sector + rdev->new_data_offset;
2281 	else
2282 		s = sh->sector + rdev->data_offset;
2283 	if (uptodate) {
2284 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2285 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2286 			/* Note that this cannot happen on a
2287 			 * replacement device.  We just fail those on
2288 			 * any error
2289 			 */
2290 			printk_ratelimited(
2291 				KERN_INFO
2292 				"md/raid:%s: read error corrected"
2293 				" (%lu sectors at %llu on %s)\n",
2294 				mdname(conf->mddev), STRIPE_SECTORS,
2295 				(unsigned long long)s,
2296 				bdevname(rdev->bdev, b));
2297 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2298 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2299 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2300 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2301 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2302 
2303 		if (atomic_read(&rdev->read_errors))
2304 			atomic_set(&rdev->read_errors, 0);
2305 	} else {
2306 		const char *bdn = bdevname(rdev->bdev, b);
2307 		int retry = 0;
2308 		int set_bad = 0;
2309 
2310 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2311 		atomic_inc(&rdev->read_errors);
2312 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2313 			printk_ratelimited(
2314 				KERN_WARNING
2315 				"md/raid:%s: read error on replacement device "
2316 				"(sector %llu on %s).\n",
2317 				mdname(conf->mddev),
2318 				(unsigned long long)s,
2319 				bdn);
2320 		else if (conf->mddev->degraded >= conf->max_degraded) {
2321 			set_bad = 1;
2322 			printk_ratelimited(
2323 				KERN_WARNING
2324 				"md/raid:%s: read error not correctable "
2325 				"(sector %llu on %s).\n",
2326 				mdname(conf->mddev),
2327 				(unsigned long long)s,
2328 				bdn);
2329 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2330 			/* Oh, no!!! */
2331 			set_bad = 1;
2332 			printk_ratelimited(
2333 				KERN_WARNING
2334 				"md/raid:%s: read error NOT corrected!! "
2335 				"(sector %llu on %s).\n",
2336 				mdname(conf->mddev),
2337 				(unsigned long long)s,
2338 				bdn);
2339 		} else if (atomic_read(&rdev->read_errors)
2340 			 > conf->max_nr_stripes)
2341 			printk(KERN_WARNING
2342 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2343 			       mdname(conf->mddev), bdn);
2344 		else
2345 			retry = 1;
2346 		if (set_bad && test_bit(In_sync, &rdev->flags)
2347 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2348 			retry = 1;
2349 		if (retry)
2350 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2351 				set_bit(R5_ReadError, &sh->dev[i].flags);
2352 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2353 			} else
2354 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2355 		else {
2356 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2357 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2358 			if (!(set_bad
2359 			      && test_bit(In_sync, &rdev->flags)
2360 			      && rdev_set_badblocks(
2361 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2362 				md_error(conf->mddev, rdev);
2363 		}
2364 	}
2365 	rdev_dec_pending(rdev, conf->mddev);
2366 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2367 	set_bit(STRIPE_HANDLE, &sh->state);
2368 	release_stripe(sh);
2369 }
2370 
2371 static void raid5_end_write_request(struct bio *bi, int error)
2372 {
2373 	struct stripe_head *sh = bi->bi_private;
2374 	struct r5conf *conf = sh->raid_conf;
2375 	int disks = sh->disks, i;
2376 	struct md_rdev *uninitialized_var(rdev);
2377 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2378 	sector_t first_bad;
2379 	int bad_sectors;
2380 	int replacement = 0;
2381 
2382 	for (i = 0 ; i < disks; i++) {
2383 		if (bi == &sh->dev[i].req) {
2384 			rdev = conf->disks[i].rdev;
2385 			break;
2386 		}
2387 		if (bi == &sh->dev[i].rreq) {
2388 			rdev = conf->disks[i].replacement;
2389 			if (rdev)
2390 				replacement = 1;
2391 			else
2392 				/* rdev was removed and 'replacement'
2393 				 * replaced it.  rdev is not removed
2394 				 * until all requests are finished.
2395 				 */
2396 				rdev = conf->disks[i].rdev;
2397 			break;
2398 		}
2399 	}
2400 	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2401 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2402 		uptodate);
2403 	if (i == disks) {
2404 		BUG();
2405 		return;
2406 	}
2407 
2408 	if (replacement) {
2409 		if (!uptodate)
2410 			md_error(conf->mddev, rdev);
2411 		else if (is_badblock(rdev, sh->sector,
2412 				     STRIPE_SECTORS,
2413 				     &first_bad, &bad_sectors))
2414 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2415 	} else {
2416 		if (!uptodate) {
2417 			set_bit(STRIPE_DEGRADED, &sh->state);
2418 			set_bit(WriteErrorSeen, &rdev->flags);
2419 			set_bit(R5_WriteError, &sh->dev[i].flags);
2420 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2421 				set_bit(MD_RECOVERY_NEEDED,
2422 					&rdev->mddev->recovery);
2423 		} else if (is_badblock(rdev, sh->sector,
2424 				       STRIPE_SECTORS,
2425 				       &first_bad, &bad_sectors)) {
2426 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2427 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2428 				/* That was a successful write so make
2429 				 * sure it looks like we already did
2430 				 * a re-write.
2431 				 */
2432 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2433 		}
2434 	}
2435 	rdev_dec_pending(rdev, conf->mddev);
2436 
2437 	if (sh->batch_head && !uptodate)
2438 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2439 
2440 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2441 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2442 	set_bit(STRIPE_HANDLE, &sh->state);
2443 	release_stripe(sh);
2444 
2445 	if (sh->batch_head && sh != sh->batch_head)
2446 		release_stripe(sh->batch_head);
2447 }
2448 
2449 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2450 
2451 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2452 {
2453 	struct r5dev *dev = &sh->dev[i];
2454 
2455 	bio_init(&dev->req);
2456 	dev->req.bi_io_vec = &dev->vec;
2457 	dev->req.bi_max_vecs = 1;
2458 	dev->req.bi_private = sh;
2459 
2460 	bio_init(&dev->rreq);
2461 	dev->rreq.bi_io_vec = &dev->rvec;
2462 	dev->rreq.bi_max_vecs = 1;
2463 	dev->rreq.bi_private = sh;
2464 
2465 	dev->flags = 0;
2466 	dev->sector = compute_blocknr(sh, i, previous);
2467 }
2468 
2469 static void error(struct mddev *mddev, struct md_rdev *rdev)
2470 {
2471 	char b[BDEVNAME_SIZE];
2472 	struct r5conf *conf = mddev->private;
2473 	unsigned long flags;
2474 	pr_debug("raid456: error called\n");
2475 
2476 	spin_lock_irqsave(&conf->device_lock, flags);
2477 	clear_bit(In_sync, &rdev->flags);
2478 	mddev->degraded = calc_degraded(conf);
2479 	spin_unlock_irqrestore(&conf->device_lock, flags);
2480 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2481 
2482 	set_bit(Blocked, &rdev->flags);
2483 	set_bit(Faulty, &rdev->flags);
2484 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2485 	printk(KERN_ALERT
2486 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2487 	       "md/raid:%s: Operation continuing on %d devices.\n",
2488 	       mdname(mddev),
2489 	       bdevname(rdev->bdev, b),
2490 	       mdname(mddev),
2491 	       conf->raid_disks - mddev->degraded);
2492 }
2493 
2494 /*
2495  * Input: a 'big' sector number,
2496  * Output: index of the data and parity disk, and the sector # in them.
2497  */
2498 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2499 				     int previous, int *dd_idx,
2500 				     struct stripe_head *sh)
2501 {
2502 	sector_t stripe, stripe2;
2503 	sector_t chunk_number;
2504 	unsigned int chunk_offset;
2505 	int pd_idx, qd_idx;
2506 	int ddf_layout = 0;
2507 	sector_t new_sector;
2508 	int algorithm = previous ? conf->prev_algo
2509 				 : conf->algorithm;
2510 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2511 					 : conf->chunk_sectors;
2512 	int raid_disks = previous ? conf->previous_raid_disks
2513 				  : conf->raid_disks;
2514 	int data_disks = raid_disks - conf->max_degraded;
2515 
2516 	/* First compute the information on this sector */
2517 
2518 	/*
2519 	 * Compute the chunk number and the sector offset inside the chunk
2520 	 */
2521 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2522 	chunk_number = r_sector;
2523 
2524 	/*
2525 	 * Compute the stripe number
2526 	 */
2527 	stripe = chunk_number;
2528 	*dd_idx = sector_div(stripe, data_disks);
2529 	stripe2 = stripe;
2530 	/*
2531 	 * Select the parity disk based on the user selected algorithm.
2532 	 */
2533 	pd_idx = qd_idx = -1;
2534 	switch(conf->level) {
2535 	case 4:
2536 		pd_idx = data_disks;
2537 		break;
2538 	case 5:
2539 		switch (algorithm) {
2540 		case ALGORITHM_LEFT_ASYMMETRIC:
2541 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2542 			if (*dd_idx >= pd_idx)
2543 				(*dd_idx)++;
2544 			break;
2545 		case ALGORITHM_RIGHT_ASYMMETRIC:
2546 			pd_idx = sector_div(stripe2, raid_disks);
2547 			if (*dd_idx >= pd_idx)
2548 				(*dd_idx)++;
2549 			break;
2550 		case ALGORITHM_LEFT_SYMMETRIC:
2551 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2552 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2553 			break;
2554 		case ALGORITHM_RIGHT_SYMMETRIC:
2555 			pd_idx = sector_div(stripe2, raid_disks);
2556 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2557 			break;
2558 		case ALGORITHM_PARITY_0:
2559 			pd_idx = 0;
2560 			(*dd_idx)++;
2561 			break;
2562 		case ALGORITHM_PARITY_N:
2563 			pd_idx = data_disks;
2564 			break;
2565 		default:
2566 			BUG();
2567 		}
2568 		break;
2569 	case 6:
2570 
2571 		switch (algorithm) {
2572 		case ALGORITHM_LEFT_ASYMMETRIC:
2573 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2574 			qd_idx = pd_idx + 1;
2575 			if (pd_idx == raid_disks-1) {
2576 				(*dd_idx)++;	/* Q D D D P */
2577 				qd_idx = 0;
2578 			} else if (*dd_idx >= pd_idx)
2579 				(*dd_idx) += 2; /* D D P Q D */
2580 			break;
2581 		case ALGORITHM_RIGHT_ASYMMETRIC:
2582 			pd_idx = sector_div(stripe2, raid_disks);
2583 			qd_idx = pd_idx + 1;
2584 			if (pd_idx == raid_disks-1) {
2585 				(*dd_idx)++;	/* Q D D D P */
2586 				qd_idx = 0;
2587 			} else if (*dd_idx >= pd_idx)
2588 				(*dd_idx) += 2; /* D D P Q D */
2589 			break;
2590 		case ALGORITHM_LEFT_SYMMETRIC:
2591 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2592 			qd_idx = (pd_idx + 1) % raid_disks;
2593 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2594 			break;
2595 		case ALGORITHM_RIGHT_SYMMETRIC:
2596 			pd_idx = sector_div(stripe2, raid_disks);
2597 			qd_idx = (pd_idx + 1) % raid_disks;
2598 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2599 			break;
2600 
2601 		case ALGORITHM_PARITY_0:
2602 			pd_idx = 0;
2603 			qd_idx = 1;
2604 			(*dd_idx) += 2;
2605 			break;
2606 		case ALGORITHM_PARITY_N:
2607 			pd_idx = data_disks;
2608 			qd_idx = data_disks + 1;
2609 			break;
2610 
2611 		case ALGORITHM_ROTATING_ZERO_RESTART:
2612 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2613 			 * of blocks for computing Q is different.
2614 			 */
2615 			pd_idx = sector_div(stripe2, raid_disks);
2616 			qd_idx = pd_idx + 1;
2617 			if (pd_idx == raid_disks-1) {
2618 				(*dd_idx)++;	/* Q D D D P */
2619 				qd_idx = 0;
2620 			} else if (*dd_idx >= pd_idx)
2621 				(*dd_idx) += 2; /* D D P Q D */
2622 			ddf_layout = 1;
2623 			break;
2624 
2625 		case ALGORITHM_ROTATING_N_RESTART:
2626 			/* Same a left_asymmetric, by first stripe is
2627 			 * D D D P Q  rather than
2628 			 * Q D D D P
2629 			 */
2630 			stripe2 += 1;
2631 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2632 			qd_idx = pd_idx + 1;
2633 			if (pd_idx == raid_disks-1) {
2634 				(*dd_idx)++;	/* Q D D D P */
2635 				qd_idx = 0;
2636 			} else if (*dd_idx >= pd_idx)
2637 				(*dd_idx) += 2; /* D D P Q D */
2638 			ddf_layout = 1;
2639 			break;
2640 
2641 		case ALGORITHM_ROTATING_N_CONTINUE:
2642 			/* Same as left_symmetric but Q is before P */
2643 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2644 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2645 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2646 			ddf_layout = 1;
2647 			break;
2648 
2649 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2650 			/* RAID5 left_asymmetric, with Q on last device */
2651 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2652 			if (*dd_idx >= pd_idx)
2653 				(*dd_idx)++;
2654 			qd_idx = raid_disks - 1;
2655 			break;
2656 
2657 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2658 			pd_idx = sector_div(stripe2, raid_disks-1);
2659 			if (*dd_idx >= pd_idx)
2660 				(*dd_idx)++;
2661 			qd_idx = raid_disks - 1;
2662 			break;
2663 
2664 		case ALGORITHM_LEFT_SYMMETRIC_6:
2665 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2666 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2667 			qd_idx = raid_disks - 1;
2668 			break;
2669 
2670 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2671 			pd_idx = sector_div(stripe2, raid_disks-1);
2672 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2673 			qd_idx = raid_disks - 1;
2674 			break;
2675 
2676 		case ALGORITHM_PARITY_0_6:
2677 			pd_idx = 0;
2678 			(*dd_idx)++;
2679 			qd_idx = raid_disks - 1;
2680 			break;
2681 
2682 		default:
2683 			BUG();
2684 		}
2685 		break;
2686 	}
2687 
2688 	if (sh) {
2689 		sh->pd_idx = pd_idx;
2690 		sh->qd_idx = qd_idx;
2691 		sh->ddf_layout = ddf_layout;
2692 	}
2693 	/*
2694 	 * Finally, compute the new sector number
2695 	 */
2696 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2697 	return new_sector;
2698 }
2699 
2700 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2701 {
2702 	struct r5conf *conf = sh->raid_conf;
2703 	int raid_disks = sh->disks;
2704 	int data_disks = raid_disks - conf->max_degraded;
2705 	sector_t new_sector = sh->sector, check;
2706 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2707 					 : conf->chunk_sectors;
2708 	int algorithm = previous ? conf->prev_algo
2709 				 : conf->algorithm;
2710 	sector_t stripe;
2711 	int chunk_offset;
2712 	sector_t chunk_number;
2713 	int dummy1, dd_idx = i;
2714 	sector_t r_sector;
2715 	struct stripe_head sh2;
2716 
2717 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2718 	stripe = new_sector;
2719 
2720 	if (i == sh->pd_idx)
2721 		return 0;
2722 	switch(conf->level) {
2723 	case 4: break;
2724 	case 5:
2725 		switch (algorithm) {
2726 		case ALGORITHM_LEFT_ASYMMETRIC:
2727 		case ALGORITHM_RIGHT_ASYMMETRIC:
2728 			if (i > sh->pd_idx)
2729 				i--;
2730 			break;
2731 		case ALGORITHM_LEFT_SYMMETRIC:
2732 		case ALGORITHM_RIGHT_SYMMETRIC:
2733 			if (i < sh->pd_idx)
2734 				i += raid_disks;
2735 			i -= (sh->pd_idx + 1);
2736 			break;
2737 		case ALGORITHM_PARITY_0:
2738 			i -= 1;
2739 			break;
2740 		case ALGORITHM_PARITY_N:
2741 			break;
2742 		default:
2743 			BUG();
2744 		}
2745 		break;
2746 	case 6:
2747 		if (i == sh->qd_idx)
2748 			return 0; /* It is the Q disk */
2749 		switch (algorithm) {
2750 		case ALGORITHM_LEFT_ASYMMETRIC:
2751 		case ALGORITHM_RIGHT_ASYMMETRIC:
2752 		case ALGORITHM_ROTATING_ZERO_RESTART:
2753 		case ALGORITHM_ROTATING_N_RESTART:
2754 			if (sh->pd_idx == raid_disks-1)
2755 				i--;	/* Q D D D P */
2756 			else if (i > sh->pd_idx)
2757 				i -= 2; /* D D P Q D */
2758 			break;
2759 		case ALGORITHM_LEFT_SYMMETRIC:
2760 		case ALGORITHM_RIGHT_SYMMETRIC:
2761 			if (sh->pd_idx == raid_disks-1)
2762 				i--; /* Q D D D P */
2763 			else {
2764 				/* D D P Q D */
2765 				if (i < sh->pd_idx)
2766 					i += raid_disks;
2767 				i -= (sh->pd_idx + 2);
2768 			}
2769 			break;
2770 		case ALGORITHM_PARITY_0:
2771 			i -= 2;
2772 			break;
2773 		case ALGORITHM_PARITY_N:
2774 			break;
2775 		case ALGORITHM_ROTATING_N_CONTINUE:
2776 			/* Like left_symmetric, but P is before Q */
2777 			if (sh->pd_idx == 0)
2778 				i--;	/* P D D D Q */
2779 			else {
2780 				/* D D Q P D */
2781 				if (i < sh->pd_idx)
2782 					i += raid_disks;
2783 				i -= (sh->pd_idx + 1);
2784 			}
2785 			break;
2786 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2787 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2788 			if (i > sh->pd_idx)
2789 				i--;
2790 			break;
2791 		case ALGORITHM_LEFT_SYMMETRIC_6:
2792 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2793 			if (i < sh->pd_idx)
2794 				i += data_disks + 1;
2795 			i -= (sh->pd_idx + 1);
2796 			break;
2797 		case ALGORITHM_PARITY_0_6:
2798 			i -= 1;
2799 			break;
2800 		default:
2801 			BUG();
2802 		}
2803 		break;
2804 	}
2805 
2806 	chunk_number = stripe * data_disks + i;
2807 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2808 
2809 	check = raid5_compute_sector(conf, r_sector,
2810 				     previous, &dummy1, &sh2);
2811 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2812 		|| sh2.qd_idx != sh->qd_idx) {
2813 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2814 		       mdname(conf->mddev));
2815 		return 0;
2816 	}
2817 	return r_sector;
2818 }
2819 
2820 static void
2821 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2822 			 int rcw, int expand)
2823 {
2824 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2825 	struct r5conf *conf = sh->raid_conf;
2826 	int level = conf->level;
2827 
2828 	if (rcw) {
2829 
2830 		for (i = disks; i--; ) {
2831 			struct r5dev *dev = &sh->dev[i];
2832 
2833 			if (dev->towrite) {
2834 				set_bit(R5_LOCKED, &dev->flags);
2835 				set_bit(R5_Wantdrain, &dev->flags);
2836 				if (!expand)
2837 					clear_bit(R5_UPTODATE, &dev->flags);
2838 				s->locked++;
2839 			}
2840 		}
2841 		/* if we are not expanding this is a proper write request, and
2842 		 * there will be bios with new data to be drained into the
2843 		 * stripe cache
2844 		 */
2845 		if (!expand) {
2846 			if (!s->locked)
2847 				/* False alarm, nothing to do */
2848 				return;
2849 			sh->reconstruct_state = reconstruct_state_drain_run;
2850 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2851 		} else
2852 			sh->reconstruct_state = reconstruct_state_run;
2853 
2854 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2855 
2856 		if (s->locked + conf->max_degraded == disks)
2857 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2858 				atomic_inc(&conf->pending_full_writes);
2859 	} else {
2860 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2861 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2862 		BUG_ON(level == 6 &&
2863 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2864 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2865 
2866 		for (i = disks; i--; ) {
2867 			struct r5dev *dev = &sh->dev[i];
2868 			if (i == pd_idx || i == qd_idx)
2869 				continue;
2870 
2871 			if (dev->towrite &&
2872 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2873 			     test_bit(R5_Wantcompute, &dev->flags))) {
2874 				set_bit(R5_Wantdrain, &dev->flags);
2875 				set_bit(R5_LOCKED, &dev->flags);
2876 				clear_bit(R5_UPTODATE, &dev->flags);
2877 				s->locked++;
2878 			}
2879 		}
2880 		if (!s->locked)
2881 			/* False alarm - nothing to do */
2882 			return;
2883 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2884 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2885 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2886 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2887 	}
2888 
2889 	/* keep the parity disk(s) locked while asynchronous operations
2890 	 * are in flight
2891 	 */
2892 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2893 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2894 	s->locked++;
2895 
2896 	if (level == 6) {
2897 		int qd_idx = sh->qd_idx;
2898 		struct r5dev *dev = &sh->dev[qd_idx];
2899 
2900 		set_bit(R5_LOCKED, &dev->flags);
2901 		clear_bit(R5_UPTODATE, &dev->flags);
2902 		s->locked++;
2903 	}
2904 
2905 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2906 		__func__, (unsigned long long)sh->sector,
2907 		s->locked, s->ops_request);
2908 }
2909 
2910 /*
2911  * Each stripe/dev can have one or more bion attached.
2912  * toread/towrite point to the first in a chain.
2913  * The bi_next chain must be in order.
2914  */
2915 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2916 			  int forwrite, int previous)
2917 {
2918 	struct bio **bip;
2919 	struct r5conf *conf = sh->raid_conf;
2920 	int firstwrite=0;
2921 
2922 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2923 		(unsigned long long)bi->bi_iter.bi_sector,
2924 		(unsigned long long)sh->sector);
2925 
2926 	/*
2927 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2928 	 * reference count to avoid race. The reference count should already be
2929 	 * increased before this function is called (for example, in
2930 	 * make_request()), so other bio sharing this stripe will not free the
2931 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2932 	 * protect it.
2933 	 */
2934 	spin_lock_irq(&sh->stripe_lock);
2935 	/* Don't allow new IO added to stripes in batch list */
2936 	if (sh->batch_head)
2937 		goto overlap;
2938 	if (forwrite) {
2939 		bip = &sh->dev[dd_idx].towrite;
2940 		if (*bip == NULL)
2941 			firstwrite = 1;
2942 	} else
2943 		bip = &sh->dev[dd_idx].toread;
2944 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2945 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2946 			goto overlap;
2947 		bip = & (*bip)->bi_next;
2948 	}
2949 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2950 		goto overlap;
2951 
2952 	if (!forwrite || previous)
2953 		clear_bit(STRIPE_BATCH_READY, &sh->state);
2954 
2955 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2956 	if (*bip)
2957 		bi->bi_next = *bip;
2958 	*bip = bi;
2959 	raid5_inc_bi_active_stripes(bi);
2960 
2961 	if (forwrite) {
2962 		/* check if page is covered */
2963 		sector_t sector = sh->dev[dd_idx].sector;
2964 		for (bi=sh->dev[dd_idx].towrite;
2965 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2966 			     bi && bi->bi_iter.bi_sector <= sector;
2967 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2968 			if (bio_end_sector(bi) >= sector)
2969 				sector = bio_end_sector(bi);
2970 		}
2971 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2972 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2973 				sh->overwrite_disks++;
2974 	}
2975 
2976 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2977 		(unsigned long long)(*bip)->bi_iter.bi_sector,
2978 		(unsigned long long)sh->sector, dd_idx);
2979 	spin_unlock_irq(&sh->stripe_lock);
2980 
2981 	if (conf->mddev->bitmap && firstwrite) {
2982 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2983 				  STRIPE_SECTORS, 0);
2984 		sh->bm_seq = conf->seq_flush+1;
2985 		set_bit(STRIPE_BIT_DELAY, &sh->state);
2986 	}
2987 
2988 	if (stripe_can_batch(sh))
2989 		stripe_add_to_batch_list(conf, sh);
2990 	return 1;
2991 
2992  overlap:
2993 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2994 	spin_unlock_irq(&sh->stripe_lock);
2995 	return 0;
2996 }
2997 
2998 static void end_reshape(struct r5conf *conf);
2999 
3000 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3001 			    struct stripe_head *sh)
3002 {
3003 	int sectors_per_chunk =
3004 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3005 	int dd_idx;
3006 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3007 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3008 
3009 	raid5_compute_sector(conf,
3010 			     stripe * (disks - conf->max_degraded)
3011 			     *sectors_per_chunk + chunk_offset,
3012 			     previous,
3013 			     &dd_idx, sh);
3014 }
3015 
3016 static void
3017 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3018 				struct stripe_head_state *s, int disks,
3019 				struct bio **return_bi)
3020 {
3021 	int i;
3022 	BUG_ON(sh->batch_head);
3023 	for (i = disks; i--; ) {
3024 		struct bio *bi;
3025 		int bitmap_end = 0;
3026 
3027 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3028 			struct md_rdev *rdev;
3029 			rcu_read_lock();
3030 			rdev = rcu_dereference(conf->disks[i].rdev);
3031 			if (rdev && test_bit(In_sync, &rdev->flags))
3032 				atomic_inc(&rdev->nr_pending);
3033 			else
3034 				rdev = NULL;
3035 			rcu_read_unlock();
3036 			if (rdev) {
3037 				if (!rdev_set_badblocks(
3038 					    rdev,
3039 					    sh->sector,
3040 					    STRIPE_SECTORS, 0))
3041 					md_error(conf->mddev, rdev);
3042 				rdev_dec_pending(rdev, conf->mddev);
3043 			}
3044 		}
3045 		spin_lock_irq(&sh->stripe_lock);
3046 		/* fail all writes first */
3047 		bi = sh->dev[i].towrite;
3048 		sh->dev[i].towrite = NULL;
3049 		sh->overwrite_disks = 0;
3050 		spin_unlock_irq(&sh->stripe_lock);
3051 		if (bi)
3052 			bitmap_end = 1;
3053 
3054 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3055 			wake_up(&conf->wait_for_overlap);
3056 
3057 		while (bi && bi->bi_iter.bi_sector <
3058 			sh->dev[i].sector + STRIPE_SECTORS) {
3059 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3060 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3061 			if (!raid5_dec_bi_active_stripes(bi)) {
3062 				md_write_end(conf->mddev);
3063 				bi->bi_next = *return_bi;
3064 				*return_bi = bi;
3065 			}
3066 			bi = nextbi;
3067 		}
3068 		if (bitmap_end)
3069 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3070 				STRIPE_SECTORS, 0, 0);
3071 		bitmap_end = 0;
3072 		/* and fail all 'written' */
3073 		bi = sh->dev[i].written;
3074 		sh->dev[i].written = NULL;
3075 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3076 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3077 			sh->dev[i].page = sh->dev[i].orig_page;
3078 		}
3079 
3080 		if (bi) bitmap_end = 1;
3081 		while (bi && bi->bi_iter.bi_sector <
3082 		       sh->dev[i].sector + STRIPE_SECTORS) {
3083 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3084 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3085 			if (!raid5_dec_bi_active_stripes(bi)) {
3086 				md_write_end(conf->mddev);
3087 				bi->bi_next = *return_bi;
3088 				*return_bi = bi;
3089 			}
3090 			bi = bi2;
3091 		}
3092 
3093 		/* fail any reads if this device is non-operational and
3094 		 * the data has not reached the cache yet.
3095 		 */
3096 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3097 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3098 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3099 			spin_lock_irq(&sh->stripe_lock);
3100 			bi = sh->dev[i].toread;
3101 			sh->dev[i].toread = NULL;
3102 			spin_unlock_irq(&sh->stripe_lock);
3103 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3104 				wake_up(&conf->wait_for_overlap);
3105 			while (bi && bi->bi_iter.bi_sector <
3106 			       sh->dev[i].sector + STRIPE_SECTORS) {
3107 				struct bio *nextbi =
3108 					r5_next_bio(bi, sh->dev[i].sector);
3109 				clear_bit(BIO_UPTODATE, &bi->bi_flags);
3110 				if (!raid5_dec_bi_active_stripes(bi)) {
3111 					bi->bi_next = *return_bi;
3112 					*return_bi = bi;
3113 				}
3114 				bi = nextbi;
3115 			}
3116 		}
3117 		if (bitmap_end)
3118 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3119 					STRIPE_SECTORS, 0, 0);
3120 		/* If we were in the middle of a write the parity block might
3121 		 * still be locked - so just clear all R5_LOCKED flags
3122 		 */
3123 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3124 	}
3125 
3126 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3127 		if (atomic_dec_and_test(&conf->pending_full_writes))
3128 			md_wakeup_thread(conf->mddev->thread);
3129 }
3130 
3131 static void
3132 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3133 		   struct stripe_head_state *s)
3134 {
3135 	int abort = 0;
3136 	int i;
3137 
3138 	BUG_ON(sh->batch_head);
3139 	clear_bit(STRIPE_SYNCING, &sh->state);
3140 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3141 		wake_up(&conf->wait_for_overlap);
3142 	s->syncing = 0;
3143 	s->replacing = 0;
3144 	/* There is nothing more to do for sync/check/repair.
3145 	 * Don't even need to abort as that is handled elsewhere
3146 	 * if needed, and not always wanted e.g. if there is a known
3147 	 * bad block here.
3148 	 * For recover/replace we need to record a bad block on all
3149 	 * non-sync devices, or abort the recovery
3150 	 */
3151 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3152 		/* During recovery devices cannot be removed, so
3153 		 * locking and refcounting of rdevs is not needed
3154 		 */
3155 		for (i = 0; i < conf->raid_disks; i++) {
3156 			struct md_rdev *rdev = conf->disks[i].rdev;
3157 			if (rdev
3158 			    && !test_bit(Faulty, &rdev->flags)
3159 			    && !test_bit(In_sync, &rdev->flags)
3160 			    && !rdev_set_badblocks(rdev, sh->sector,
3161 						   STRIPE_SECTORS, 0))
3162 				abort = 1;
3163 			rdev = conf->disks[i].replacement;
3164 			if (rdev
3165 			    && !test_bit(Faulty, &rdev->flags)
3166 			    && !test_bit(In_sync, &rdev->flags)
3167 			    && !rdev_set_badblocks(rdev, sh->sector,
3168 						   STRIPE_SECTORS, 0))
3169 				abort = 1;
3170 		}
3171 		if (abort)
3172 			conf->recovery_disabled =
3173 				conf->mddev->recovery_disabled;
3174 	}
3175 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3176 }
3177 
3178 static int want_replace(struct stripe_head *sh, int disk_idx)
3179 {
3180 	struct md_rdev *rdev;
3181 	int rv = 0;
3182 	/* Doing recovery so rcu locking not required */
3183 	rdev = sh->raid_conf->disks[disk_idx].replacement;
3184 	if (rdev
3185 	    && !test_bit(Faulty, &rdev->flags)
3186 	    && !test_bit(In_sync, &rdev->flags)
3187 	    && (rdev->recovery_offset <= sh->sector
3188 		|| rdev->mddev->recovery_cp <= sh->sector))
3189 		rv = 1;
3190 
3191 	return rv;
3192 }
3193 
3194 /* fetch_block - checks the given member device to see if its data needs
3195  * to be read or computed to satisfy a request.
3196  *
3197  * Returns 1 when no more member devices need to be checked, otherwise returns
3198  * 0 to tell the loop in handle_stripe_fill to continue
3199  */
3200 
3201 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3202 			   int disk_idx, int disks)
3203 {
3204 	struct r5dev *dev = &sh->dev[disk_idx];
3205 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3206 				  &sh->dev[s->failed_num[1]] };
3207 	int i;
3208 
3209 
3210 	if (test_bit(R5_LOCKED, &dev->flags) ||
3211 	    test_bit(R5_UPTODATE, &dev->flags))
3212 		/* No point reading this as we already have it or have
3213 		 * decided to get it.
3214 		 */
3215 		return 0;
3216 
3217 	if (dev->toread ||
3218 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3219 		/* We need this block to directly satisfy a request */
3220 		return 1;
3221 
3222 	if (s->syncing || s->expanding ||
3223 	    (s->replacing && want_replace(sh, disk_idx)))
3224 		/* When syncing, or expanding we read everything.
3225 		 * When replacing, we need the replaced block.
3226 		 */
3227 		return 1;
3228 
3229 	if ((s->failed >= 1 && fdev[0]->toread) ||
3230 	    (s->failed >= 2 && fdev[1]->toread))
3231 		/* If we want to read from a failed device, then
3232 		 * we need to actually read every other device.
3233 		 */
3234 		return 1;
3235 
3236 	/* Sometimes neither read-modify-write nor reconstruct-write
3237 	 * cycles can work.  In those cases we read every block we
3238 	 * can.  Then the parity-update is certain to have enough to
3239 	 * work with.
3240 	 * This can only be a problem when we need to write something,
3241 	 * and some device has failed.  If either of those tests
3242 	 * fail we need look no further.
3243 	 */
3244 	if (!s->failed || !s->to_write)
3245 		return 0;
3246 
3247 	if (test_bit(R5_Insync, &dev->flags) &&
3248 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3249 		/* Pre-reads at not permitted until after short delay
3250 		 * to gather multiple requests.  However if this
3251 		 * device is no Insync, the block could only be be computed
3252 		 * and there is no need to delay that.
3253 		 */
3254 		return 0;
3255 
3256 	for (i = 0; i < s->failed; i++) {
3257 		if (fdev[i]->towrite &&
3258 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3259 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3260 			/* If we have a partial write to a failed
3261 			 * device, then we will need to reconstruct
3262 			 * the content of that device, so all other
3263 			 * devices must be read.
3264 			 */
3265 			return 1;
3266 	}
3267 
3268 	/* If we are forced to do a reconstruct-write, either because
3269 	 * the current RAID6 implementation only supports that, or
3270 	 * or because parity cannot be trusted and we are currently
3271 	 * recovering it, there is extra need to be careful.
3272 	 * If one of the devices that we would need to read, because
3273 	 * it is not being overwritten (and maybe not written at all)
3274 	 * is missing/faulty, then we need to read everything we can.
3275 	 */
3276 	if (sh->raid_conf->level != 6 &&
3277 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3278 		/* reconstruct-write isn't being forced */
3279 		return 0;
3280 	for (i = 0; i < s->failed; i++) {
3281 		if (!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3282 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3283 			return 1;
3284 	}
3285 
3286 	return 0;
3287 }
3288 
3289 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3290 		       int disk_idx, int disks)
3291 {
3292 	struct r5dev *dev = &sh->dev[disk_idx];
3293 
3294 	/* is the data in this block needed, and can we get it? */
3295 	if (need_this_block(sh, s, disk_idx, disks)) {
3296 		/* we would like to get this block, possibly by computing it,
3297 		 * otherwise read it if the backing disk is insync
3298 		 */
3299 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3300 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3301 		if ((s->uptodate == disks - 1) &&
3302 		    (s->failed && (disk_idx == s->failed_num[0] ||
3303 				   disk_idx == s->failed_num[1]))) {
3304 			/* have disk failed, and we're requested to fetch it;
3305 			 * do compute it
3306 			 */
3307 			pr_debug("Computing stripe %llu block %d\n",
3308 			       (unsigned long long)sh->sector, disk_idx);
3309 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3310 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3311 			set_bit(R5_Wantcompute, &dev->flags);
3312 			sh->ops.target = disk_idx;
3313 			sh->ops.target2 = -1; /* no 2nd target */
3314 			s->req_compute = 1;
3315 			/* Careful: from this point on 'uptodate' is in the eye
3316 			 * of raid_run_ops which services 'compute' operations
3317 			 * before writes. R5_Wantcompute flags a block that will
3318 			 * be R5_UPTODATE by the time it is needed for a
3319 			 * subsequent operation.
3320 			 */
3321 			s->uptodate++;
3322 			return 1;
3323 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3324 			/* Computing 2-failure is *very* expensive; only
3325 			 * do it if failed >= 2
3326 			 */
3327 			int other;
3328 			for (other = disks; other--; ) {
3329 				if (other == disk_idx)
3330 					continue;
3331 				if (!test_bit(R5_UPTODATE,
3332 				      &sh->dev[other].flags))
3333 					break;
3334 			}
3335 			BUG_ON(other < 0);
3336 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3337 			       (unsigned long long)sh->sector,
3338 			       disk_idx, other);
3339 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3340 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3341 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3342 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3343 			sh->ops.target = disk_idx;
3344 			sh->ops.target2 = other;
3345 			s->uptodate += 2;
3346 			s->req_compute = 1;
3347 			return 1;
3348 		} else if (test_bit(R5_Insync, &dev->flags)) {
3349 			set_bit(R5_LOCKED, &dev->flags);
3350 			set_bit(R5_Wantread, &dev->flags);
3351 			s->locked++;
3352 			pr_debug("Reading block %d (sync=%d)\n",
3353 				disk_idx, s->syncing);
3354 		}
3355 	}
3356 
3357 	return 0;
3358 }
3359 
3360 /**
3361  * handle_stripe_fill - read or compute data to satisfy pending requests.
3362  */
3363 static void handle_stripe_fill(struct stripe_head *sh,
3364 			       struct stripe_head_state *s,
3365 			       int disks)
3366 {
3367 	int i;
3368 
3369 	BUG_ON(sh->batch_head);
3370 	/* look for blocks to read/compute, skip this if a compute
3371 	 * is already in flight, or if the stripe contents are in the
3372 	 * midst of changing due to a write
3373 	 */
3374 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3375 	    !sh->reconstruct_state)
3376 		for (i = disks; i--; )
3377 			if (fetch_block(sh, s, i, disks))
3378 				break;
3379 	set_bit(STRIPE_HANDLE, &sh->state);
3380 }
3381 
3382 /* handle_stripe_clean_event
3383  * any written block on an uptodate or failed drive can be returned.
3384  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3385  * never LOCKED, so we don't need to test 'failed' directly.
3386  */
3387 static void handle_stripe_clean_event(struct r5conf *conf,
3388 	struct stripe_head *sh, int disks, struct bio **return_bi)
3389 {
3390 	int i;
3391 	struct r5dev *dev;
3392 	int discard_pending = 0;
3393 	struct stripe_head *head_sh = sh;
3394 	bool do_endio = false;
3395 	int wakeup_nr = 0;
3396 
3397 	for (i = disks; i--; )
3398 		if (sh->dev[i].written) {
3399 			dev = &sh->dev[i];
3400 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3401 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3402 			     test_bit(R5_Discard, &dev->flags) ||
3403 			     test_bit(R5_SkipCopy, &dev->flags))) {
3404 				/* We can return any write requests */
3405 				struct bio *wbi, *wbi2;
3406 				pr_debug("Return write for disc %d\n", i);
3407 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3408 					clear_bit(R5_UPTODATE, &dev->flags);
3409 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3410 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3411 				}
3412 				do_endio = true;
3413 
3414 returnbi:
3415 				dev->page = dev->orig_page;
3416 				wbi = dev->written;
3417 				dev->written = NULL;
3418 				while (wbi && wbi->bi_iter.bi_sector <
3419 					dev->sector + STRIPE_SECTORS) {
3420 					wbi2 = r5_next_bio(wbi, dev->sector);
3421 					if (!raid5_dec_bi_active_stripes(wbi)) {
3422 						md_write_end(conf->mddev);
3423 						wbi->bi_next = *return_bi;
3424 						*return_bi = wbi;
3425 					}
3426 					wbi = wbi2;
3427 				}
3428 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3429 						STRIPE_SECTORS,
3430 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3431 						0);
3432 				if (head_sh->batch_head) {
3433 					sh = list_first_entry(&sh->batch_list,
3434 							      struct stripe_head,
3435 							      batch_list);
3436 					if (sh != head_sh) {
3437 						dev = &sh->dev[i];
3438 						goto returnbi;
3439 					}
3440 				}
3441 				sh = head_sh;
3442 				dev = &sh->dev[i];
3443 			} else if (test_bit(R5_Discard, &dev->flags))
3444 				discard_pending = 1;
3445 			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3446 			WARN_ON(dev->page != dev->orig_page);
3447 		}
3448 	if (!discard_pending &&
3449 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3450 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3451 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3452 		if (sh->qd_idx >= 0) {
3453 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3454 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3455 		}
3456 		/* now that discard is done we can proceed with any sync */
3457 		clear_bit(STRIPE_DISCARD, &sh->state);
3458 		/*
3459 		 * SCSI discard will change some bio fields and the stripe has
3460 		 * no updated data, so remove it from hash list and the stripe
3461 		 * will be reinitialized
3462 		 */
3463 		spin_lock_irq(&conf->device_lock);
3464 unhash:
3465 		remove_hash(sh);
3466 		if (head_sh->batch_head) {
3467 			sh = list_first_entry(&sh->batch_list,
3468 					      struct stripe_head, batch_list);
3469 			if (sh != head_sh)
3470 					goto unhash;
3471 		}
3472 		spin_unlock_irq(&conf->device_lock);
3473 		sh = head_sh;
3474 
3475 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3476 			set_bit(STRIPE_HANDLE, &sh->state);
3477 
3478 	}
3479 
3480 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3481 		if (atomic_dec_and_test(&conf->pending_full_writes))
3482 			md_wakeup_thread(conf->mddev->thread);
3483 
3484 	if (!head_sh->batch_head || !do_endio)
3485 		return;
3486 	for (i = 0; i < head_sh->disks; i++) {
3487 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
3488 			wakeup_nr++;
3489 	}
3490 	while (!list_empty(&head_sh->batch_list)) {
3491 		int i;
3492 		sh = list_first_entry(&head_sh->batch_list,
3493 				      struct stripe_head, batch_list);
3494 		list_del_init(&sh->batch_list);
3495 
3496 		set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
3497 			      head_sh->state & ~((1 << STRIPE_ACTIVE) |
3498 						 (1 << STRIPE_PREREAD_ACTIVE) |
3499 						 STRIPE_EXPAND_SYNC_FLAG));
3500 		sh->check_state = head_sh->check_state;
3501 		sh->reconstruct_state = head_sh->reconstruct_state;
3502 		for (i = 0; i < sh->disks; i++) {
3503 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3504 				wakeup_nr++;
3505 			sh->dev[i].flags = head_sh->dev[i].flags;
3506 		}
3507 
3508 		spin_lock_irq(&sh->stripe_lock);
3509 		sh->batch_head = NULL;
3510 		spin_unlock_irq(&sh->stripe_lock);
3511 		if (sh->state & STRIPE_EXPAND_SYNC_FLAG)
3512 			set_bit(STRIPE_HANDLE, &sh->state);
3513 		release_stripe(sh);
3514 	}
3515 
3516 	spin_lock_irq(&head_sh->stripe_lock);
3517 	head_sh->batch_head = NULL;
3518 	spin_unlock_irq(&head_sh->stripe_lock);
3519 	wake_up_nr(&conf->wait_for_overlap, wakeup_nr);
3520 	if (head_sh->state & STRIPE_EXPAND_SYNC_FLAG)
3521 		set_bit(STRIPE_HANDLE, &head_sh->state);
3522 }
3523 
3524 static void handle_stripe_dirtying(struct r5conf *conf,
3525 				   struct stripe_head *sh,
3526 				   struct stripe_head_state *s,
3527 				   int disks)
3528 {
3529 	int rmw = 0, rcw = 0, i;
3530 	sector_t recovery_cp = conf->mddev->recovery_cp;
3531 
3532 	/* Check whether resync is now happening or should start.
3533 	 * If yes, then the array is dirty (after unclean shutdown or
3534 	 * initial creation), so parity in some stripes might be inconsistent.
3535 	 * In this case, we need to always do reconstruct-write, to ensure
3536 	 * that in case of drive failure or read-error correction, we
3537 	 * generate correct data from the parity.
3538 	 */
3539 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3540 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3541 	     s->failed == 0)) {
3542 		/* Calculate the real rcw later - for now make it
3543 		 * look like rcw is cheaper
3544 		 */
3545 		rcw = 1; rmw = 2;
3546 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3547 			 conf->rmw_level, (unsigned long long)recovery_cp,
3548 			 (unsigned long long)sh->sector);
3549 	} else for (i = disks; i--; ) {
3550 		/* would I have to read this buffer for read_modify_write */
3551 		struct r5dev *dev = &sh->dev[i];
3552 		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3553 		    !test_bit(R5_LOCKED, &dev->flags) &&
3554 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3555 		      test_bit(R5_Wantcompute, &dev->flags))) {
3556 			if (test_bit(R5_Insync, &dev->flags))
3557 				rmw++;
3558 			else
3559 				rmw += 2*disks;  /* cannot read it */
3560 		}
3561 		/* Would I have to read this buffer for reconstruct_write */
3562 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3563 		    i != sh->pd_idx && i != sh->qd_idx &&
3564 		    !test_bit(R5_LOCKED, &dev->flags) &&
3565 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3566 		    test_bit(R5_Wantcompute, &dev->flags))) {
3567 			if (test_bit(R5_Insync, &dev->flags))
3568 				rcw++;
3569 			else
3570 				rcw += 2*disks;
3571 		}
3572 	}
3573 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3574 		(unsigned long long)sh->sector, rmw, rcw);
3575 	set_bit(STRIPE_HANDLE, &sh->state);
3576 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3577 		/* prefer read-modify-write, but need to get some data */
3578 		if (conf->mddev->queue)
3579 			blk_add_trace_msg(conf->mddev->queue,
3580 					  "raid5 rmw %llu %d",
3581 					  (unsigned long long)sh->sector, rmw);
3582 		for (i = disks; i--; ) {
3583 			struct r5dev *dev = &sh->dev[i];
3584 			if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3585 			    !test_bit(R5_LOCKED, &dev->flags) &&
3586 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3587 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3588 			    test_bit(R5_Insync, &dev->flags)) {
3589 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3590 					     &sh->state)) {
3591 					pr_debug("Read_old block %d for r-m-w\n",
3592 						 i);
3593 					set_bit(R5_LOCKED, &dev->flags);
3594 					set_bit(R5_Wantread, &dev->flags);
3595 					s->locked++;
3596 				} else {
3597 					set_bit(STRIPE_DELAYED, &sh->state);
3598 					set_bit(STRIPE_HANDLE, &sh->state);
3599 				}
3600 			}
3601 		}
3602 	}
3603 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3604 		/* want reconstruct write, but need to get some data */
3605 		int qread =0;
3606 		rcw = 0;
3607 		for (i = disks; i--; ) {
3608 			struct r5dev *dev = &sh->dev[i];
3609 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3610 			    i != sh->pd_idx && i != sh->qd_idx &&
3611 			    !test_bit(R5_LOCKED, &dev->flags) &&
3612 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3613 			      test_bit(R5_Wantcompute, &dev->flags))) {
3614 				rcw++;
3615 				if (test_bit(R5_Insync, &dev->flags) &&
3616 				    test_bit(STRIPE_PREREAD_ACTIVE,
3617 					     &sh->state)) {
3618 					pr_debug("Read_old block "
3619 						"%d for Reconstruct\n", i);
3620 					set_bit(R5_LOCKED, &dev->flags);
3621 					set_bit(R5_Wantread, &dev->flags);
3622 					s->locked++;
3623 					qread++;
3624 				} else {
3625 					set_bit(STRIPE_DELAYED, &sh->state);
3626 					set_bit(STRIPE_HANDLE, &sh->state);
3627 				}
3628 			}
3629 		}
3630 		if (rcw && conf->mddev->queue)
3631 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3632 					  (unsigned long long)sh->sector,
3633 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3634 	}
3635 
3636 	if (rcw > disks && rmw > disks &&
3637 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3638 		set_bit(STRIPE_DELAYED, &sh->state);
3639 
3640 	/* now if nothing is locked, and if we have enough data,
3641 	 * we can start a write request
3642 	 */
3643 	/* since handle_stripe can be called at any time we need to handle the
3644 	 * case where a compute block operation has been submitted and then a
3645 	 * subsequent call wants to start a write request.  raid_run_ops only
3646 	 * handles the case where compute block and reconstruct are requested
3647 	 * simultaneously.  If this is not the case then new writes need to be
3648 	 * held off until the compute completes.
3649 	 */
3650 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3651 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3652 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3653 		schedule_reconstruction(sh, s, rcw == 0, 0);
3654 }
3655 
3656 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3657 				struct stripe_head_state *s, int disks)
3658 {
3659 	struct r5dev *dev = NULL;
3660 
3661 	BUG_ON(sh->batch_head);
3662 	set_bit(STRIPE_HANDLE, &sh->state);
3663 
3664 	switch (sh->check_state) {
3665 	case check_state_idle:
3666 		/* start a new check operation if there are no failures */
3667 		if (s->failed == 0) {
3668 			BUG_ON(s->uptodate != disks);
3669 			sh->check_state = check_state_run;
3670 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3671 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3672 			s->uptodate--;
3673 			break;
3674 		}
3675 		dev = &sh->dev[s->failed_num[0]];
3676 		/* fall through */
3677 	case check_state_compute_result:
3678 		sh->check_state = check_state_idle;
3679 		if (!dev)
3680 			dev = &sh->dev[sh->pd_idx];
3681 
3682 		/* check that a write has not made the stripe insync */
3683 		if (test_bit(STRIPE_INSYNC, &sh->state))
3684 			break;
3685 
3686 		/* either failed parity check, or recovery is happening */
3687 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3688 		BUG_ON(s->uptodate != disks);
3689 
3690 		set_bit(R5_LOCKED, &dev->flags);
3691 		s->locked++;
3692 		set_bit(R5_Wantwrite, &dev->flags);
3693 
3694 		clear_bit(STRIPE_DEGRADED, &sh->state);
3695 		set_bit(STRIPE_INSYNC, &sh->state);
3696 		break;
3697 	case check_state_run:
3698 		break; /* we will be called again upon completion */
3699 	case check_state_check_result:
3700 		sh->check_state = check_state_idle;
3701 
3702 		/* if a failure occurred during the check operation, leave
3703 		 * STRIPE_INSYNC not set and let the stripe be handled again
3704 		 */
3705 		if (s->failed)
3706 			break;
3707 
3708 		/* handle a successful check operation, if parity is correct
3709 		 * we are done.  Otherwise update the mismatch count and repair
3710 		 * parity if !MD_RECOVERY_CHECK
3711 		 */
3712 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3713 			/* parity is correct (on disc,
3714 			 * not in buffer any more)
3715 			 */
3716 			set_bit(STRIPE_INSYNC, &sh->state);
3717 		else {
3718 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3719 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3720 				/* don't try to repair!! */
3721 				set_bit(STRIPE_INSYNC, &sh->state);
3722 			else {
3723 				sh->check_state = check_state_compute_run;
3724 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3725 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3726 				set_bit(R5_Wantcompute,
3727 					&sh->dev[sh->pd_idx].flags);
3728 				sh->ops.target = sh->pd_idx;
3729 				sh->ops.target2 = -1;
3730 				s->uptodate++;
3731 			}
3732 		}
3733 		break;
3734 	case check_state_compute_run:
3735 		break;
3736 	default:
3737 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3738 		       __func__, sh->check_state,
3739 		       (unsigned long long) sh->sector);
3740 		BUG();
3741 	}
3742 }
3743 
3744 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3745 				  struct stripe_head_state *s,
3746 				  int disks)
3747 {
3748 	int pd_idx = sh->pd_idx;
3749 	int qd_idx = sh->qd_idx;
3750 	struct r5dev *dev;
3751 
3752 	BUG_ON(sh->batch_head);
3753 	set_bit(STRIPE_HANDLE, &sh->state);
3754 
3755 	BUG_ON(s->failed > 2);
3756 
3757 	/* Want to check and possibly repair P and Q.
3758 	 * However there could be one 'failed' device, in which
3759 	 * case we can only check one of them, possibly using the
3760 	 * other to generate missing data
3761 	 */
3762 
3763 	switch (sh->check_state) {
3764 	case check_state_idle:
3765 		/* start a new check operation if there are < 2 failures */
3766 		if (s->failed == s->q_failed) {
3767 			/* The only possible failed device holds Q, so it
3768 			 * makes sense to check P (If anything else were failed,
3769 			 * we would have used P to recreate it).
3770 			 */
3771 			sh->check_state = check_state_run;
3772 		}
3773 		if (!s->q_failed && s->failed < 2) {
3774 			/* Q is not failed, and we didn't use it to generate
3775 			 * anything, so it makes sense to check it
3776 			 */
3777 			if (sh->check_state == check_state_run)
3778 				sh->check_state = check_state_run_pq;
3779 			else
3780 				sh->check_state = check_state_run_q;
3781 		}
3782 
3783 		/* discard potentially stale zero_sum_result */
3784 		sh->ops.zero_sum_result = 0;
3785 
3786 		if (sh->check_state == check_state_run) {
3787 			/* async_xor_zero_sum destroys the contents of P */
3788 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3789 			s->uptodate--;
3790 		}
3791 		if (sh->check_state >= check_state_run &&
3792 		    sh->check_state <= check_state_run_pq) {
3793 			/* async_syndrome_zero_sum preserves P and Q, so
3794 			 * no need to mark them !uptodate here
3795 			 */
3796 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3797 			break;
3798 		}
3799 
3800 		/* we have 2-disk failure */
3801 		BUG_ON(s->failed != 2);
3802 		/* fall through */
3803 	case check_state_compute_result:
3804 		sh->check_state = check_state_idle;
3805 
3806 		/* check that a write has not made the stripe insync */
3807 		if (test_bit(STRIPE_INSYNC, &sh->state))
3808 			break;
3809 
3810 		/* now write out any block on a failed drive,
3811 		 * or P or Q if they were recomputed
3812 		 */
3813 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3814 		if (s->failed == 2) {
3815 			dev = &sh->dev[s->failed_num[1]];
3816 			s->locked++;
3817 			set_bit(R5_LOCKED, &dev->flags);
3818 			set_bit(R5_Wantwrite, &dev->flags);
3819 		}
3820 		if (s->failed >= 1) {
3821 			dev = &sh->dev[s->failed_num[0]];
3822 			s->locked++;
3823 			set_bit(R5_LOCKED, &dev->flags);
3824 			set_bit(R5_Wantwrite, &dev->flags);
3825 		}
3826 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3827 			dev = &sh->dev[pd_idx];
3828 			s->locked++;
3829 			set_bit(R5_LOCKED, &dev->flags);
3830 			set_bit(R5_Wantwrite, &dev->flags);
3831 		}
3832 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3833 			dev = &sh->dev[qd_idx];
3834 			s->locked++;
3835 			set_bit(R5_LOCKED, &dev->flags);
3836 			set_bit(R5_Wantwrite, &dev->flags);
3837 		}
3838 		clear_bit(STRIPE_DEGRADED, &sh->state);
3839 
3840 		set_bit(STRIPE_INSYNC, &sh->state);
3841 		break;
3842 	case check_state_run:
3843 	case check_state_run_q:
3844 	case check_state_run_pq:
3845 		break; /* we will be called again upon completion */
3846 	case check_state_check_result:
3847 		sh->check_state = check_state_idle;
3848 
3849 		/* handle a successful check operation, if parity is correct
3850 		 * we are done.  Otherwise update the mismatch count and repair
3851 		 * parity if !MD_RECOVERY_CHECK
3852 		 */
3853 		if (sh->ops.zero_sum_result == 0) {
3854 			/* both parities are correct */
3855 			if (!s->failed)
3856 				set_bit(STRIPE_INSYNC, &sh->state);
3857 			else {
3858 				/* in contrast to the raid5 case we can validate
3859 				 * parity, but still have a failure to write
3860 				 * back
3861 				 */
3862 				sh->check_state = check_state_compute_result;
3863 				/* Returning at this point means that we may go
3864 				 * off and bring p and/or q uptodate again so
3865 				 * we make sure to check zero_sum_result again
3866 				 * to verify if p or q need writeback
3867 				 */
3868 			}
3869 		} else {
3870 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3871 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3872 				/* don't try to repair!! */
3873 				set_bit(STRIPE_INSYNC, &sh->state);
3874 			else {
3875 				int *target = &sh->ops.target;
3876 
3877 				sh->ops.target = -1;
3878 				sh->ops.target2 = -1;
3879 				sh->check_state = check_state_compute_run;
3880 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3881 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3882 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3883 					set_bit(R5_Wantcompute,
3884 						&sh->dev[pd_idx].flags);
3885 					*target = pd_idx;
3886 					target = &sh->ops.target2;
3887 					s->uptodate++;
3888 				}
3889 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3890 					set_bit(R5_Wantcompute,
3891 						&sh->dev[qd_idx].flags);
3892 					*target = qd_idx;
3893 					s->uptodate++;
3894 				}
3895 			}
3896 		}
3897 		break;
3898 	case check_state_compute_run:
3899 		break;
3900 	default:
3901 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3902 		       __func__, sh->check_state,
3903 		       (unsigned long long) sh->sector);
3904 		BUG();
3905 	}
3906 }
3907 
3908 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3909 {
3910 	int i;
3911 
3912 	/* We have read all the blocks in this stripe and now we need to
3913 	 * copy some of them into a target stripe for expand.
3914 	 */
3915 	struct dma_async_tx_descriptor *tx = NULL;
3916 	BUG_ON(sh->batch_head);
3917 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3918 	for (i = 0; i < sh->disks; i++)
3919 		if (i != sh->pd_idx && i != sh->qd_idx) {
3920 			int dd_idx, j;
3921 			struct stripe_head *sh2;
3922 			struct async_submit_ctl submit;
3923 
3924 			sector_t bn = compute_blocknr(sh, i, 1);
3925 			sector_t s = raid5_compute_sector(conf, bn, 0,
3926 							  &dd_idx, NULL);
3927 			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3928 			if (sh2 == NULL)
3929 				/* so far only the early blocks of this stripe
3930 				 * have been requested.  When later blocks
3931 				 * get requested, we will try again
3932 				 */
3933 				continue;
3934 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3935 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3936 				/* must have already done this block */
3937 				release_stripe(sh2);
3938 				continue;
3939 			}
3940 
3941 			/* place all the copies on one channel */
3942 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3943 			tx = async_memcpy(sh2->dev[dd_idx].page,
3944 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3945 					  &submit);
3946 
3947 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3948 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3949 			for (j = 0; j < conf->raid_disks; j++)
3950 				if (j != sh2->pd_idx &&
3951 				    j != sh2->qd_idx &&
3952 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3953 					break;
3954 			if (j == conf->raid_disks) {
3955 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3956 				set_bit(STRIPE_HANDLE, &sh2->state);
3957 			}
3958 			release_stripe(sh2);
3959 
3960 		}
3961 	/* done submitting copies, wait for them to complete */
3962 	async_tx_quiesce(&tx);
3963 }
3964 
3965 /*
3966  * handle_stripe - do things to a stripe.
3967  *
3968  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3969  * state of various bits to see what needs to be done.
3970  * Possible results:
3971  *    return some read requests which now have data
3972  *    return some write requests which are safely on storage
3973  *    schedule a read on some buffers
3974  *    schedule a write of some buffers
3975  *    return confirmation of parity correctness
3976  *
3977  */
3978 
3979 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3980 {
3981 	struct r5conf *conf = sh->raid_conf;
3982 	int disks = sh->disks;
3983 	struct r5dev *dev;
3984 	int i;
3985 	int do_recovery = 0;
3986 
3987 	memset(s, 0, sizeof(*s));
3988 
3989 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
3990 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
3991 	s->failed_num[0] = -1;
3992 	s->failed_num[1] = -1;
3993 
3994 	/* Now to look around and see what can be done */
3995 	rcu_read_lock();
3996 	for (i=disks; i--; ) {
3997 		struct md_rdev *rdev;
3998 		sector_t first_bad;
3999 		int bad_sectors;
4000 		int is_bad = 0;
4001 
4002 		dev = &sh->dev[i];
4003 
4004 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4005 			 i, dev->flags,
4006 			 dev->toread, dev->towrite, dev->written);
4007 		/* maybe we can reply to a read
4008 		 *
4009 		 * new wantfill requests are only permitted while
4010 		 * ops_complete_biofill is guaranteed to be inactive
4011 		 */
4012 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4013 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4014 			set_bit(R5_Wantfill, &dev->flags);
4015 
4016 		/* now count some things */
4017 		if (test_bit(R5_LOCKED, &dev->flags))
4018 			s->locked++;
4019 		if (test_bit(R5_UPTODATE, &dev->flags))
4020 			s->uptodate++;
4021 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4022 			s->compute++;
4023 			BUG_ON(s->compute > 2);
4024 		}
4025 
4026 		if (test_bit(R5_Wantfill, &dev->flags))
4027 			s->to_fill++;
4028 		else if (dev->toread)
4029 			s->to_read++;
4030 		if (dev->towrite) {
4031 			s->to_write++;
4032 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4033 				s->non_overwrite++;
4034 		}
4035 		if (dev->written)
4036 			s->written++;
4037 		/* Prefer to use the replacement for reads, but only
4038 		 * if it is recovered enough and has no bad blocks.
4039 		 */
4040 		rdev = rcu_dereference(conf->disks[i].replacement);
4041 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4042 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4043 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4044 				 &first_bad, &bad_sectors))
4045 			set_bit(R5_ReadRepl, &dev->flags);
4046 		else {
4047 			if (rdev)
4048 				set_bit(R5_NeedReplace, &dev->flags);
4049 			rdev = rcu_dereference(conf->disks[i].rdev);
4050 			clear_bit(R5_ReadRepl, &dev->flags);
4051 		}
4052 		if (rdev && test_bit(Faulty, &rdev->flags))
4053 			rdev = NULL;
4054 		if (rdev) {
4055 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4056 					     &first_bad, &bad_sectors);
4057 			if (s->blocked_rdev == NULL
4058 			    && (test_bit(Blocked, &rdev->flags)
4059 				|| is_bad < 0)) {
4060 				if (is_bad < 0)
4061 					set_bit(BlockedBadBlocks,
4062 						&rdev->flags);
4063 				s->blocked_rdev = rdev;
4064 				atomic_inc(&rdev->nr_pending);
4065 			}
4066 		}
4067 		clear_bit(R5_Insync, &dev->flags);
4068 		if (!rdev)
4069 			/* Not in-sync */;
4070 		else if (is_bad) {
4071 			/* also not in-sync */
4072 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4073 			    test_bit(R5_UPTODATE, &dev->flags)) {
4074 				/* treat as in-sync, but with a read error
4075 				 * which we can now try to correct
4076 				 */
4077 				set_bit(R5_Insync, &dev->flags);
4078 				set_bit(R5_ReadError, &dev->flags);
4079 			}
4080 		} else if (test_bit(In_sync, &rdev->flags))
4081 			set_bit(R5_Insync, &dev->flags);
4082 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4083 			/* in sync if before recovery_offset */
4084 			set_bit(R5_Insync, &dev->flags);
4085 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4086 			 test_bit(R5_Expanded, &dev->flags))
4087 			/* If we've reshaped into here, we assume it is Insync.
4088 			 * We will shortly update recovery_offset to make
4089 			 * it official.
4090 			 */
4091 			set_bit(R5_Insync, &dev->flags);
4092 
4093 		if (test_bit(R5_WriteError, &dev->flags)) {
4094 			/* This flag does not apply to '.replacement'
4095 			 * only to .rdev, so make sure to check that*/
4096 			struct md_rdev *rdev2 = rcu_dereference(
4097 				conf->disks[i].rdev);
4098 			if (rdev2 == rdev)
4099 				clear_bit(R5_Insync, &dev->flags);
4100 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4101 				s->handle_bad_blocks = 1;
4102 				atomic_inc(&rdev2->nr_pending);
4103 			} else
4104 				clear_bit(R5_WriteError, &dev->flags);
4105 		}
4106 		if (test_bit(R5_MadeGood, &dev->flags)) {
4107 			/* This flag does not apply to '.replacement'
4108 			 * only to .rdev, so make sure to check that*/
4109 			struct md_rdev *rdev2 = rcu_dereference(
4110 				conf->disks[i].rdev);
4111 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4112 				s->handle_bad_blocks = 1;
4113 				atomic_inc(&rdev2->nr_pending);
4114 			} else
4115 				clear_bit(R5_MadeGood, &dev->flags);
4116 		}
4117 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4118 			struct md_rdev *rdev2 = rcu_dereference(
4119 				conf->disks[i].replacement);
4120 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4121 				s->handle_bad_blocks = 1;
4122 				atomic_inc(&rdev2->nr_pending);
4123 			} else
4124 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4125 		}
4126 		if (!test_bit(R5_Insync, &dev->flags)) {
4127 			/* The ReadError flag will just be confusing now */
4128 			clear_bit(R5_ReadError, &dev->flags);
4129 			clear_bit(R5_ReWrite, &dev->flags);
4130 		}
4131 		if (test_bit(R5_ReadError, &dev->flags))
4132 			clear_bit(R5_Insync, &dev->flags);
4133 		if (!test_bit(R5_Insync, &dev->flags)) {
4134 			if (s->failed < 2)
4135 				s->failed_num[s->failed] = i;
4136 			s->failed++;
4137 			if (rdev && !test_bit(Faulty, &rdev->flags))
4138 				do_recovery = 1;
4139 		}
4140 	}
4141 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4142 		/* If there is a failed device being replaced,
4143 		 *     we must be recovering.
4144 		 * else if we are after recovery_cp, we must be syncing
4145 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4146 		 * else we can only be replacing
4147 		 * sync and recovery both need to read all devices, and so
4148 		 * use the same flag.
4149 		 */
4150 		if (do_recovery ||
4151 		    sh->sector >= conf->mddev->recovery_cp ||
4152 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4153 			s->syncing = 1;
4154 		else
4155 			s->replacing = 1;
4156 	}
4157 	rcu_read_unlock();
4158 }
4159 
4160 static int clear_batch_ready(struct stripe_head *sh)
4161 {
4162 	struct stripe_head *tmp;
4163 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4164 		return 0;
4165 	spin_lock(&sh->stripe_lock);
4166 	if (!sh->batch_head) {
4167 		spin_unlock(&sh->stripe_lock);
4168 		return 0;
4169 	}
4170 
4171 	/*
4172 	 * this stripe could be added to a batch list before we check
4173 	 * BATCH_READY, skips it
4174 	 */
4175 	if (sh->batch_head != sh) {
4176 		spin_unlock(&sh->stripe_lock);
4177 		return 1;
4178 	}
4179 	spin_lock(&sh->batch_lock);
4180 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4181 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4182 	spin_unlock(&sh->batch_lock);
4183 	spin_unlock(&sh->stripe_lock);
4184 
4185 	/*
4186 	 * BATCH_READY is cleared, no new stripes can be added.
4187 	 * batch_list can be accessed without lock
4188 	 */
4189 	return 0;
4190 }
4191 
4192 static void check_break_stripe_batch_list(struct stripe_head *sh)
4193 {
4194 	struct stripe_head *head_sh, *next;
4195 	int i;
4196 
4197 	if (!test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4198 		return;
4199 
4200 	head_sh = sh;
4201 	do {
4202 		sh = list_first_entry(&sh->batch_list,
4203 				      struct stripe_head, batch_list);
4204 		BUG_ON(sh == head_sh);
4205 	} while (!test_bit(STRIPE_DEGRADED, &sh->state));
4206 
4207 	while (sh != head_sh) {
4208 		next = list_first_entry(&sh->batch_list,
4209 					struct stripe_head, batch_list);
4210 		list_del_init(&sh->batch_list);
4211 
4212 		set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
4213 			      head_sh->state & ~((1 << STRIPE_ACTIVE) |
4214 						 (1 << STRIPE_PREREAD_ACTIVE) |
4215 						 (1 << STRIPE_DEGRADED) |
4216 						 STRIPE_EXPAND_SYNC_FLAG));
4217 		sh->check_state = head_sh->check_state;
4218 		sh->reconstruct_state = head_sh->reconstruct_state;
4219 		for (i = 0; i < sh->disks; i++)
4220 			sh->dev[i].flags = head_sh->dev[i].flags &
4221 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4222 
4223 		spin_lock_irq(&sh->stripe_lock);
4224 		sh->batch_head = NULL;
4225 		spin_unlock_irq(&sh->stripe_lock);
4226 
4227 		set_bit(STRIPE_HANDLE, &sh->state);
4228 		release_stripe(sh);
4229 
4230 		sh = next;
4231 	}
4232 }
4233 
4234 static void handle_stripe(struct stripe_head *sh)
4235 {
4236 	struct stripe_head_state s;
4237 	struct r5conf *conf = sh->raid_conf;
4238 	int i;
4239 	int prexor;
4240 	int disks = sh->disks;
4241 	struct r5dev *pdev, *qdev;
4242 
4243 	clear_bit(STRIPE_HANDLE, &sh->state);
4244 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4245 		/* already being handled, ensure it gets handled
4246 		 * again when current action finishes */
4247 		set_bit(STRIPE_HANDLE, &sh->state);
4248 		return;
4249 	}
4250 
4251 	if (clear_batch_ready(sh) ) {
4252 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4253 		return;
4254 	}
4255 
4256 	check_break_stripe_batch_list(sh);
4257 
4258 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4259 		spin_lock(&sh->stripe_lock);
4260 		/* Cannot process 'sync' concurrently with 'discard' */
4261 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4262 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4263 			set_bit(STRIPE_SYNCING, &sh->state);
4264 			clear_bit(STRIPE_INSYNC, &sh->state);
4265 			clear_bit(STRIPE_REPLACED, &sh->state);
4266 		}
4267 		spin_unlock(&sh->stripe_lock);
4268 	}
4269 	clear_bit(STRIPE_DELAYED, &sh->state);
4270 
4271 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4272 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4273 	       (unsigned long long)sh->sector, sh->state,
4274 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4275 	       sh->check_state, sh->reconstruct_state);
4276 
4277 	analyse_stripe(sh, &s);
4278 
4279 	if (s.handle_bad_blocks) {
4280 		set_bit(STRIPE_HANDLE, &sh->state);
4281 		goto finish;
4282 	}
4283 
4284 	if (unlikely(s.blocked_rdev)) {
4285 		if (s.syncing || s.expanding || s.expanded ||
4286 		    s.replacing || s.to_write || s.written) {
4287 			set_bit(STRIPE_HANDLE, &sh->state);
4288 			goto finish;
4289 		}
4290 		/* There is nothing for the blocked_rdev to block */
4291 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4292 		s.blocked_rdev = NULL;
4293 	}
4294 
4295 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4296 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4297 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4298 	}
4299 
4300 	pr_debug("locked=%d uptodate=%d to_read=%d"
4301 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4302 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4303 	       s.failed_num[0], s.failed_num[1]);
4304 	/* check if the array has lost more than max_degraded devices and,
4305 	 * if so, some requests might need to be failed.
4306 	 */
4307 	if (s.failed > conf->max_degraded) {
4308 		sh->check_state = 0;
4309 		sh->reconstruct_state = 0;
4310 		if (s.to_read+s.to_write+s.written)
4311 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4312 		if (s.syncing + s.replacing)
4313 			handle_failed_sync(conf, sh, &s);
4314 	}
4315 
4316 	/* Now we check to see if any write operations have recently
4317 	 * completed
4318 	 */
4319 	prexor = 0;
4320 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4321 		prexor = 1;
4322 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4323 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4324 		sh->reconstruct_state = reconstruct_state_idle;
4325 
4326 		/* All the 'written' buffers and the parity block are ready to
4327 		 * be written back to disk
4328 		 */
4329 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4330 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4331 		BUG_ON(sh->qd_idx >= 0 &&
4332 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4333 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4334 		for (i = disks; i--; ) {
4335 			struct r5dev *dev = &sh->dev[i];
4336 			if (test_bit(R5_LOCKED, &dev->flags) &&
4337 				(i == sh->pd_idx || i == sh->qd_idx ||
4338 				 dev->written)) {
4339 				pr_debug("Writing block %d\n", i);
4340 				set_bit(R5_Wantwrite, &dev->flags);
4341 				if (prexor)
4342 					continue;
4343 				if (s.failed > 1)
4344 					continue;
4345 				if (!test_bit(R5_Insync, &dev->flags) ||
4346 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4347 				     s.failed == 0))
4348 					set_bit(STRIPE_INSYNC, &sh->state);
4349 			}
4350 		}
4351 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4352 			s.dec_preread_active = 1;
4353 	}
4354 
4355 	/*
4356 	 * might be able to return some write requests if the parity blocks
4357 	 * are safe, or on a failed drive
4358 	 */
4359 	pdev = &sh->dev[sh->pd_idx];
4360 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4361 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4362 	qdev = &sh->dev[sh->qd_idx];
4363 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4364 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4365 		|| conf->level < 6;
4366 
4367 	if (s.written &&
4368 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4369 			     && !test_bit(R5_LOCKED, &pdev->flags)
4370 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4371 				 test_bit(R5_Discard, &pdev->flags))))) &&
4372 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4373 			     && !test_bit(R5_LOCKED, &qdev->flags)
4374 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4375 				 test_bit(R5_Discard, &qdev->flags))))))
4376 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4377 
4378 	/* Now we might consider reading some blocks, either to check/generate
4379 	 * parity, or to satisfy requests
4380 	 * or to load a block that is being partially written.
4381 	 */
4382 	if (s.to_read || s.non_overwrite
4383 	    || (conf->level == 6 && s.to_write && s.failed)
4384 	    || (s.syncing && (s.uptodate + s.compute < disks))
4385 	    || s.replacing
4386 	    || s.expanding)
4387 		handle_stripe_fill(sh, &s, disks);
4388 
4389 	/* Now to consider new write requests and what else, if anything
4390 	 * should be read.  We do not handle new writes when:
4391 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4392 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4393 	 *    block.
4394 	 */
4395 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4396 		handle_stripe_dirtying(conf, sh, &s, disks);
4397 
4398 	/* maybe we need to check and possibly fix the parity for this stripe
4399 	 * Any reads will already have been scheduled, so we just see if enough
4400 	 * data is available.  The parity check is held off while parity
4401 	 * dependent operations are in flight.
4402 	 */
4403 	if (sh->check_state ||
4404 	    (s.syncing && s.locked == 0 &&
4405 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4406 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4407 		if (conf->level == 6)
4408 			handle_parity_checks6(conf, sh, &s, disks);
4409 		else
4410 			handle_parity_checks5(conf, sh, &s, disks);
4411 	}
4412 
4413 	if ((s.replacing || s.syncing) && s.locked == 0
4414 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4415 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4416 		/* Write out to replacement devices where possible */
4417 		for (i = 0; i < conf->raid_disks; i++)
4418 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4419 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4420 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4421 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4422 				s.locked++;
4423 			}
4424 		if (s.replacing)
4425 			set_bit(STRIPE_INSYNC, &sh->state);
4426 		set_bit(STRIPE_REPLACED, &sh->state);
4427 	}
4428 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4429 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4430 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4431 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4432 		clear_bit(STRIPE_SYNCING, &sh->state);
4433 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4434 			wake_up(&conf->wait_for_overlap);
4435 	}
4436 
4437 	/* If the failed drives are just a ReadError, then we might need
4438 	 * to progress the repair/check process
4439 	 */
4440 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4441 		for (i = 0; i < s.failed; i++) {
4442 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4443 			if (test_bit(R5_ReadError, &dev->flags)
4444 			    && !test_bit(R5_LOCKED, &dev->flags)
4445 			    && test_bit(R5_UPTODATE, &dev->flags)
4446 				) {
4447 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4448 					set_bit(R5_Wantwrite, &dev->flags);
4449 					set_bit(R5_ReWrite, &dev->flags);
4450 					set_bit(R5_LOCKED, &dev->flags);
4451 					s.locked++;
4452 				} else {
4453 					/* let's read it back */
4454 					set_bit(R5_Wantread, &dev->flags);
4455 					set_bit(R5_LOCKED, &dev->flags);
4456 					s.locked++;
4457 				}
4458 			}
4459 		}
4460 
4461 	/* Finish reconstruct operations initiated by the expansion process */
4462 	if (sh->reconstruct_state == reconstruct_state_result) {
4463 		struct stripe_head *sh_src
4464 			= get_active_stripe(conf, sh->sector, 1, 1, 1);
4465 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4466 			/* sh cannot be written until sh_src has been read.
4467 			 * so arrange for sh to be delayed a little
4468 			 */
4469 			set_bit(STRIPE_DELAYED, &sh->state);
4470 			set_bit(STRIPE_HANDLE, &sh->state);
4471 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4472 					      &sh_src->state))
4473 				atomic_inc(&conf->preread_active_stripes);
4474 			release_stripe(sh_src);
4475 			goto finish;
4476 		}
4477 		if (sh_src)
4478 			release_stripe(sh_src);
4479 
4480 		sh->reconstruct_state = reconstruct_state_idle;
4481 		clear_bit(STRIPE_EXPANDING, &sh->state);
4482 		for (i = conf->raid_disks; i--; ) {
4483 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4484 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4485 			s.locked++;
4486 		}
4487 	}
4488 
4489 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4490 	    !sh->reconstruct_state) {
4491 		/* Need to write out all blocks after computing parity */
4492 		sh->disks = conf->raid_disks;
4493 		stripe_set_idx(sh->sector, conf, 0, sh);
4494 		schedule_reconstruction(sh, &s, 1, 1);
4495 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4496 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4497 		atomic_dec(&conf->reshape_stripes);
4498 		wake_up(&conf->wait_for_overlap);
4499 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4500 	}
4501 
4502 	if (s.expanding && s.locked == 0 &&
4503 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4504 		handle_stripe_expansion(conf, sh);
4505 
4506 finish:
4507 	/* wait for this device to become unblocked */
4508 	if (unlikely(s.blocked_rdev)) {
4509 		if (conf->mddev->external)
4510 			md_wait_for_blocked_rdev(s.blocked_rdev,
4511 						 conf->mddev);
4512 		else
4513 			/* Internal metadata will immediately
4514 			 * be written by raid5d, so we don't
4515 			 * need to wait here.
4516 			 */
4517 			rdev_dec_pending(s.blocked_rdev,
4518 					 conf->mddev);
4519 	}
4520 
4521 	if (s.handle_bad_blocks)
4522 		for (i = disks; i--; ) {
4523 			struct md_rdev *rdev;
4524 			struct r5dev *dev = &sh->dev[i];
4525 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4526 				/* We own a safe reference to the rdev */
4527 				rdev = conf->disks[i].rdev;
4528 				if (!rdev_set_badblocks(rdev, sh->sector,
4529 							STRIPE_SECTORS, 0))
4530 					md_error(conf->mddev, rdev);
4531 				rdev_dec_pending(rdev, conf->mddev);
4532 			}
4533 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4534 				rdev = conf->disks[i].rdev;
4535 				rdev_clear_badblocks(rdev, sh->sector,
4536 						     STRIPE_SECTORS, 0);
4537 				rdev_dec_pending(rdev, conf->mddev);
4538 			}
4539 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4540 				rdev = conf->disks[i].replacement;
4541 				if (!rdev)
4542 					/* rdev have been moved down */
4543 					rdev = conf->disks[i].rdev;
4544 				rdev_clear_badblocks(rdev, sh->sector,
4545 						     STRIPE_SECTORS, 0);
4546 				rdev_dec_pending(rdev, conf->mddev);
4547 			}
4548 		}
4549 
4550 	if (s.ops_request)
4551 		raid_run_ops(sh, s.ops_request);
4552 
4553 	ops_run_io(sh, &s);
4554 
4555 	if (s.dec_preread_active) {
4556 		/* We delay this until after ops_run_io so that if make_request
4557 		 * is waiting on a flush, it won't continue until the writes
4558 		 * have actually been submitted.
4559 		 */
4560 		atomic_dec(&conf->preread_active_stripes);
4561 		if (atomic_read(&conf->preread_active_stripes) <
4562 		    IO_THRESHOLD)
4563 			md_wakeup_thread(conf->mddev->thread);
4564 	}
4565 
4566 	return_io(s.return_bi);
4567 
4568 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4569 }
4570 
4571 static void raid5_activate_delayed(struct r5conf *conf)
4572 {
4573 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4574 		while (!list_empty(&conf->delayed_list)) {
4575 			struct list_head *l = conf->delayed_list.next;
4576 			struct stripe_head *sh;
4577 			sh = list_entry(l, struct stripe_head, lru);
4578 			list_del_init(l);
4579 			clear_bit(STRIPE_DELAYED, &sh->state);
4580 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4581 				atomic_inc(&conf->preread_active_stripes);
4582 			list_add_tail(&sh->lru, &conf->hold_list);
4583 			raid5_wakeup_stripe_thread(sh);
4584 		}
4585 	}
4586 }
4587 
4588 static void activate_bit_delay(struct r5conf *conf,
4589 	struct list_head *temp_inactive_list)
4590 {
4591 	/* device_lock is held */
4592 	struct list_head head;
4593 	list_add(&head, &conf->bitmap_list);
4594 	list_del_init(&conf->bitmap_list);
4595 	while (!list_empty(&head)) {
4596 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4597 		int hash;
4598 		list_del_init(&sh->lru);
4599 		atomic_inc(&sh->count);
4600 		hash = sh->hash_lock_index;
4601 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4602 	}
4603 }
4604 
4605 static int raid5_congested(struct mddev *mddev, int bits)
4606 {
4607 	struct r5conf *conf = mddev->private;
4608 
4609 	/* No difference between reads and writes.  Just check
4610 	 * how busy the stripe_cache is
4611 	 */
4612 
4613 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4614 		return 1;
4615 	if (conf->quiesce)
4616 		return 1;
4617 	if (atomic_read(&conf->empty_inactive_list_nr))
4618 		return 1;
4619 
4620 	return 0;
4621 }
4622 
4623 /* We want read requests to align with chunks where possible,
4624  * but write requests don't need to.
4625  */
4626 static int raid5_mergeable_bvec(struct mddev *mddev,
4627 				struct bvec_merge_data *bvm,
4628 				struct bio_vec *biovec)
4629 {
4630 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4631 	int max;
4632 	unsigned int chunk_sectors = mddev->chunk_sectors;
4633 	unsigned int bio_sectors = bvm->bi_size >> 9;
4634 
4635 	/*
4636 	 * always allow writes to be mergeable, read as well if array
4637 	 * is degraded as we'll go through stripe cache anyway.
4638 	 */
4639 	if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4640 		return biovec->bv_len;
4641 
4642 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4643 		chunk_sectors = mddev->new_chunk_sectors;
4644 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4645 	if (max < 0) max = 0;
4646 	if (max <= biovec->bv_len && bio_sectors == 0)
4647 		return biovec->bv_len;
4648 	else
4649 		return max;
4650 }
4651 
4652 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4653 {
4654 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4655 	unsigned int chunk_sectors = mddev->chunk_sectors;
4656 	unsigned int bio_sectors = bio_sectors(bio);
4657 
4658 	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4659 		chunk_sectors = mddev->new_chunk_sectors;
4660 	return  chunk_sectors >=
4661 		((sector & (chunk_sectors - 1)) + bio_sectors);
4662 }
4663 
4664 /*
4665  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4666  *  later sampled by raid5d.
4667  */
4668 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4669 {
4670 	unsigned long flags;
4671 
4672 	spin_lock_irqsave(&conf->device_lock, flags);
4673 
4674 	bi->bi_next = conf->retry_read_aligned_list;
4675 	conf->retry_read_aligned_list = bi;
4676 
4677 	spin_unlock_irqrestore(&conf->device_lock, flags);
4678 	md_wakeup_thread(conf->mddev->thread);
4679 }
4680 
4681 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4682 {
4683 	struct bio *bi;
4684 
4685 	bi = conf->retry_read_aligned;
4686 	if (bi) {
4687 		conf->retry_read_aligned = NULL;
4688 		return bi;
4689 	}
4690 	bi = conf->retry_read_aligned_list;
4691 	if(bi) {
4692 		conf->retry_read_aligned_list = bi->bi_next;
4693 		bi->bi_next = NULL;
4694 		/*
4695 		 * this sets the active strip count to 1 and the processed
4696 		 * strip count to zero (upper 8 bits)
4697 		 */
4698 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4699 	}
4700 
4701 	return bi;
4702 }
4703 
4704 /*
4705  *  The "raid5_align_endio" should check if the read succeeded and if it
4706  *  did, call bio_endio on the original bio (having bio_put the new bio
4707  *  first).
4708  *  If the read failed..
4709  */
4710 static void raid5_align_endio(struct bio *bi, int error)
4711 {
4712 	struct bio* raid_bi  = bi->bi_private;
4713 	struct mddev *mddev;
4714 	struct r5conf *conf;
4715 	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4716 	struct md_rdev *rdev;
4717 
4718 	bio_put(bi);
4719 
4720 	rdev = (void*)raid_bi->bi_next;
4721 	raid_bi->bi_next = NULL;
4722 	mddev = rdev->mddev;
4723 	conf = mddev->private;
4724 
4725 	rdev_dec_pending(rdev, conf->mddev);
4726 
4727 	if (!error && uptodate) {
4728 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4729 					 raid_bi, 0);
4730 		bio_endio(raid_bi, 0);
4731 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4732 			wake_up(&conf->wait_for_stripe);
4733 		return;
4734 	}
4735 
4736 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4737 
4738 	add_bio_to_retry(raid_bi, conf);
4739 }
4740 
4741 static int bio_fits_rdev(struct bio *bi)
4742 {
4743 	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4744 
4745 	if (bio_sectors(bi) > queue_max_sectors(q))
4746 		return 0;
4747 	blk_recount_segments(q, bi);
4748 	if (bi->bi_phys_segments > queue_max_segments(q))
4749 		return 0;
4750 
4751 	if (q->merge_bvec_fn)
4752 		/* it's too hard to apply the merge_bvec_fn at this stage,
4753 		 * just just give up
4754 		 */
4755 		return 0;
4756 
4757 	return 1;
4758 }
4759 
4760 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4761 {
4762 	struct r5conf *conf = mddev->private;
4763 	int dd_idx;
4764 	struct bio* align_bi;
4765 	struct md_rdev *rdev;
4766 	sector_t end_sector;
4767 
4768 	if (!in_chunk_boundary(mddev, raid_bio)) {
4769 		pr_debug("chunk_aligned_read : non aligned\n");
4770 		return 0;
4771 	}
4772 	/*
4773 	 * use bio_clone_mddev to make a copy of the bio
4774 	 */
4775 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4776 	if (!align_bi)
4777 		return 0;
4778 	/*
4779 	 *   set bi_end_io to a new function, and set bi_private to the
4780 	 *     original bio.
4781 	 */
4782 	align_bi->bi_end_io  = raid5_align_endio;
4783 	align_bi->bi_private = raid_bio;
4784 	/*
4785 	 *	compute position
4786 	 */
4787 	align_bi->bi_iter.bi_sector =
4788 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4789 				     0, &dd_idx, NULL);
4790 
4791 	end_sector = bio_end_sector(align_bi);
4792 	rcu_read_lock();
4793 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4794 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4795 	    rdev->recovery_offset < end_sector) {
4796 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4797 		if (rdev &&
4798 		    (test_bit(Faulty, &rdev->flags) ||
4799 		    !(test_bit(In_sync, &rdev->flags) ||
4800 		      rdev->recovery_offset >= end_sector)))
4801 			rdev = NULL;
4802 	}
4803 	if (rdev) {
4804 		sector_t first_bad;
4805 		int bad_sectors;
4806 
4807 		atomic_inc(&rdev->nr_pending);
4808 		rcu_read_unlock();
4809 		raid_bio->bi_next = (void*)rdev;
4810 		align_bi->bi_bdev =  rdev->bdev;
4811 		__clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4812 
4813 		if (!bio_fits_rdev(align_bi) ||
4814 		    is_badblock(rdev, align_bi->bi_iter.bi_sector,
4815 				bio_sectors(align_bi),
4816 				&first_bad, &bad_sectors)) {
4817 			/* too big in some way, or has a known bad block */
4818 			bio_put(align_bi);
4819 			rdev_dec_pending(rdev, mddev);
4820 			return 0;
4821 		}
4822 
4823 		/* No reshape active, so we can trust rdev->data_offset */
4824 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4825 
4826 		spin_lock_irq(&conf->device_lock);
4827 		wait_event_lock_irq(conf->wait_for_stripe,
4828 				    conf->quiesce == 0,
4829 				    conf->device_lock);
4830 		atomic_inc(&conf->active_aligned_reads);
4831 		spin_unlock_irq(&conf->device_lock);
4832 
4833 		if (mddev->gendisk)
4834 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4835 					      align_bi, disk_devt(mddev->gendisk),
4836 					      raid_bio->bi_iter.bi_sector);
4837 		generic_make_request(align_bi);
4838 		return 1;
4839 	} else {
4840 		rcu_read_unlock();
4841 		bio_put(align_bi);
4842 		return 0;
4843 	}
4844 }
4845 
4846 /* __get_priority_stripe - get the next stripe to process
4847  *
4848  * Full stripe writes are allowed to pass preread active stripes up until
4849  * the bypass_threshold is exceeded.  In general the bypass_count
4850  * increments when the handle_list is handled before the hold_list; however, it
4851  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4852  * stripe with in flight i/o.  The bypass_count will be reset when the
4853  * head of the hold_list has changed, i.e. the head was promoted to the
4854  * handle_list.
4855  */
4856 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4857 {
4858 	struct stripe_head *sh = NULL, *tmp;
4859 	struct list_head *handle_list = NULL;
4860 	struct r5worker_group *wg = NULL;
4861 
4862 	if (conf->worker_cnt_per_group == 0) {
4863 		handle_list = &conf->handle_list;
4864 	} else if (group != ANY_GROUP) {
4865 		handle_list = &conf->worker_groups[group].handle_list;
4866 		wg = &conf->worker_groups[group];
4867 	} else {
4868 		int i;
4869 		for (i = 0; i < conf->group_cnt; i++) {
4870 			handle_list = &conf->worker_groups[i].handle_list;
4871 			wg = &conf->worker_groups[i];
4872 			if (!list_empty(handle_list))
4873 				break;
4874 		}
4875 	}
4876 
4877 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4878 		  __func__,
4879 		  list_empty(handle_list) ? "empty" : "busy",
4880 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4881 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4882 
4883 	if (!list_empty(handle_list)) {
4884 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4885 
4886 		if (list_empty(&conf->hold_list))
4887 			conf->bypass_count = 0;
4888 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4889 			if (conf->hold_list.next == conf->last_hold)
4890 				conf->bypass_count++;
4891 			else {
4892 				conf->last_hold = conf->hold_list.next;
4893 				conf->bypass_count -= conf->bypass_threshold;
4894 				if (conf->bypass_count < 0)
4895 					conf->bypass_count = 0;
4896 			}
4897 		}
4898 	} else if (!list_empty(&conf->hold_list) &&
4899 		   ((conf->bypass_threshold &&
4900 		     conf->bypass_count > conf->bypass_threshold) ||
4901 		    atomic_read(&conf->pending_full_writes) == 0)) {
4902 
4903 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4904 			if (conf->worker_cnt_per_group == 0 ||
4905 			    group == ANY_GROUP ||
4906 			    !cpu_online(tmp->cpu) ||
4907 			    cpu_to_group(tmp->cpu) == group) {
4908 				sh = tmp;
4909 				break;
4910 			}
4911 		}
4912 
4913 		if (sh) {
4914 			conf->bypass_count -= conf->bypass_threshold;
4915 			if (conf->bypass_count < 0)
4916 				conf->bypass_count = 0;
4917 		}
4918 		wg = NULL;
4919 	}
4920 
4921 	if (!sh)
4922 		return NULL;
4923 
4924 	if (wg) {
4925 		wg->stripes_cnt--;
4926 		sh->group = NULL;
4927 	}
4928 	list_del_init(&sh->lru);
4929 	BUG_ON(atomic_inc_return(&sh->count) != 1);
4930 	return sh;
4931 }
4932 
4933 struct raid5_plug_cb {
4934 	struct blk_plug_cb	cb;
4935 	struct list_head	list;
4936 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4937 };
4938 
4939 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4940 {
4941 	struct raid5_plug_cb *cb = container_of(
4942 		blk_cb, struct raid5_plug_cb, cb);
4943 	struct stripe_head *sh;
4944 	struct mddev *mddev = cb->cb.data;
4945 	struct r5conf *conf = mddev->private;
4946 	int cnt = 0;
4947 	int hash;
4948 
4949 	if (cb->list.next && !list_empty(&cb->list)) {
4950 		spin_lock_irq(&conf->device_lock);
4951 		while (!list_empty(&cb->list)) {
4952 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
4953 			list_del_init(&sh->lru);
4954 			/*
4955 			 * avoid race release_stripe_plug() sees
4956 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4957 			 * is still in our list
4958 			 */
4959 			smp_mb__before_atomic();
4960 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4961 			/*
4962 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
4963 			 * case, the count is always > 1 here
4964 			 */
4965 			hash = sh->hash_lock_index;
4966 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4967 			cnt++;
4968 		}
4969 		spin_unlock_irq(&conf->device_lock);
4970 	}
4971 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
4972 				     NR_STRIPE_HASH_LOCKS);
4973 	if (mddev->queue)
4974 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
4975 	kfree(cb);
4976 }
4977 
4978 static void release_stripe_plug(struct mddev *mddev,
4979 				struct stripe_head *sh)
4980 {
4981 	struct blk_plug_cb *blk_cb = blk_check_plugged(
4982 		raid5_unplug, mddev,
4983 		sizeof(struct raid5_plug_cb));
4984 	struct raid5_plug_cb *cb;
4985 
4986 	if (!blk_cb) {
4987 		release_stripe(sh);
4988 		return;
4989 	}
4990 
4991 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4992 
4993 	if (cb->list.next == NULL) {
4994 		int i;
4995 		INIT_LIST_HEAD(&cb->list);
4996 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4997 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
4998 	}
4999 
5000 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5001 		list_add_tail(&sh->lru, &cb->list);
5002 	else
5003 		release_stripe(sh);
5004 }
5005 
5006 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5007 {
5008 	struct r5conf *conf = mddev->private;
5009 	sector_t logical_sector, last_sector;
5010 	struct stripe_head *sh;
5011 	int remaining;
5012 	int stripe_sectors;
5013 
5014 	if (mddev->reshape_position != MaxSector)
5015 		/* Skip discard while reshape is happening */
5016 		return;
5017 
5018 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5019 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5020 
5021 	bi->bi_next = NULL;
5022 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5023 
5024 	stripe_sectors = conf->chunk_sectors *
5025 		(conf->raid_disks - conf->max_degraded);
5026 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5027 					       stripe_sectors);
5028 	sector_div(last_sector, stripe_sectors);
5029 
5030 	logical_sector *= conf->chunk_sectors;
5031 	last_sector *= conf->chunk_sectors;
5032 
5033 	for (; logical_sector < last_sector;
5034 	     logical_sector += STRIPE_SECTORS) {
5035 		DEFINE_WAIT(w);
5036 		int d;
5037 	again:
5038 		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5039 		prepare_to_wait(&conf->wait_for_overlap, &w,
5040 				TASK_UNINTERRUPTIBLE);
5041 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5042 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5043 			release_stripe(sh);
5044 			schedule();
5045 			goto again;
5046 		}
5047 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5048 		spin_lock_irq(&sh->stripe_lock);
5049 		for (d = 0; d < conf->raid_disks; d++) {
5050 			if (d == sh->pd_idx || d == sh->qd_idx)
5051 				continue;
5052 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5053 				set_bit(R5_Overlap, &sh->dev[d].flags);
5054 				spin_unlock_irq(&sh->stripe_lock);
5055 				release_stripe(sh);
5056 				schedule();
5057 				goto again;
5058 			}
5059 		}
5060 		set_bit(STRIPE_DISCARD, &sh->state);
5061 		finish_wait(&conf->wait_for_overlap, &w);
5062 		sh->overwrite_disks = 0;
5063 		for (d = 0; d < conf->raid_disks; d++) {
5064 			if (d == sh->pd_idx || d == sh->qd_idx)
5065 				continue;
5066 			sh->dev[d].towrite = bi;
5067 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5068 			raid5_inc_bi_active_stripes(bi);
5069 			sh->overwrite_disks++;
5070 		}
5071 		spin_unlock_irq(&sh->stripe_lock);
5072 		if (conf->mddev->bitmap) {
5073 			for (d = 0;
5074 			     d < conf->raid_disks - conf->max_degraded;
5075 			     d++)
5076 				bitmap_startwrite(mddev->bitmap,
5077 						  sh->sector,
5078 						  STRIPE_SECTORS,
5079 						  0);
5080 			sh->bm_seq = conf->seq_flush + 1;
5081 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5082 		}
5083 
5084 		set_bit(STRIPE_HANDLE, &sh->state);
5085 		clear_bit(STRIPE_DELAYED, &sh->state);
5086 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5087 			atomic_inc(&conf->preread_active_stripes);
5088 		release_stripe_plug(mddev, sh);
5089 	}
5090 
5091 	remaining = raid5_dec_bi_active_stripes(bi);
5092 	if (remaining == 0) {
5093 		md_write_end(mddev);
5094 		bio_endio(bi, 0);
5095 	}
5096 }
5097 
5098 static void make_request(struct mddev *mddev, struct bio * bi)
5099 {
5100 	struct r5conf *conf = mddev->private;
5101 	int dd_idx;
5102 	sector_t new_sector;
5103 	sector_t logical_sector, last_sector;
5104 	struct stripe_head *sh;
5105 	const int rw = bio_data_dir(bi);
5106 	int remaining;
5107 	DEFINE_WAIT(w);
5108 	bool do_prepare;
5109 
5110 	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5111 		md_flush_request(mddev, bi);
5112 		return;
5113 	}
5114 
5115 	md_write_start(mddev, bi);
5116 
5117 	/*
5118 	 * If array is degraded, better not do chunk aligned read because
5119 	 * later we might have to read it again in order to reconstruct
5120 	 * data on failed drives.
5121 	 */
5122 	if (rw == READ && mddev->degraded == 0 &&
5123 	     mddev->reshape_position == MaxSector &&
5124 	     chunk_aligned_read(mddev,bi))
5125 		return;
5126 
5127 	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5128 		make_discard_request(mddev, bi);
5129 		return;
5130 	}
5131 
5132 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5133 	last_sector = bio_end_sector(bi);
5134 	bi->bi_next = NULL;
5135 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5136 
5137 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5138 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5139 		int previous;
5140 		int seq;
5141 
5142 		do_prepare = false;
5143 	retry:
5144 		seq = read_seqcount_begin(&conf->gen_lock);
5145 		previous = 0;
5146 		if (do_prepare)
5147 			prepare_to_wait(&conf->wait_for_overlap, &w,
5148 				TASK_UNINTERRUPTIBLE);
5149 		if (unlikely(conf->reshape_progress != MaxSector)) {
5150 			/* spinlock is needed as reshape_progress may be
5151 			 * 64bit on a 32bit platform, and so it might be
5152 			 * possible to see a half-updated value
5153 			 * Of course reshape_progress could change after
5154 			 * the lock is dropped, so once we get a reference
5155 			 * to the stripe that we think it is, we will have
5156 			 * to check again.
5157 			 */
5158 			spin_lock_irq(&conf->device_lock);
5159 			if (mddev->reshape_backwards
5160 			    ? logical_sector < conf->reshape_progress
5161 			    : logical_sector >= conf->reshape_progress) {
5162 				previous = 1;
5163 			} else {
5164 				if (mddev->reshape_backwards
5165 				    ? logical_sector < conf->reshape_safe
5166 				    : logical_sector >= conf->reshape_safe) {
5167 					spin_unlock_irq(&conf->device_lock);
5168 					schedule();
5169 					do_prepare = true;
5170 					goto retry;
5171 				}
5172 			}
5173 			spin_unlock_irq(&conf->device_lock);
5174 		}
5175 
5176 		new_sector = raid5_compute_sector(conf, logical_sector,
5177 						  previous,
5178 						  &dd_idx, NULL);
5179 		pr_debug("raid456: make_request, sector %llu logical %llu\n",
5180 			(unsigned long long)new_sector,
5181 			(unsigned long long)logical_sector);
5182 
5183 		sh = get_active_stripe(conf, new_sector, previous,
5184 				       (bi->bi_rw&RWA_MASK), 0);
5185 		if (sh) {
5186 			if (unlikely(previous)) {
5187 				/* expansion might have moved on while waiting for a
5188 				 * stripe, so we must do the range check again.
5189 				 * Expansion could still move past after this
5190 				 * test, but as we are holding a reference to
5191 				 * 'sh', we know that if that happens,
5192 				 *  STRIPE_EXPANDING will get set and the expansion
5193 				 * won't proceed until we finish with the stripe.
5194 				 */
5195 				int must_retry = 0;
5196 				spin_lock_irq(&conf->device_lock);
5197 				if (mddev->reshape_backwards
5198 				    ? logical_sector >= conf->reshape_progress
5199 				    : logical_sector < conf->reshape_progress)
5200 					/* mismatch, need to try again */
5201 					must_retry = 1;
5202 				spin_unlock_irq(&conf->device_lock);
5203 				if (must_retry) {
5204 					release_stripe(sh);
5205 					schedule();
5206 					do_prepare = true;
5207 					goto retry;
5208 				}
5209 			}
5210 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5211 				/* Might have got the wrong stripe_head
5212 				 * by accident
5213 				 */
5214 				release_stripe(sh);
5215 				goto retry;
5216 			}
5217 
5218 			if (rw == WRITE &&
5219 			    logical_sector >= mddev->suspend_lo &&
5220 			    logical_sector < mddev->suspend_hi) {
5221 				release_stripe(sh);
5222 				/* As the suspend_* range is controlled by
5223 				 * userspace, we want an interruptible
5224 				 * wait.
5225 				 */
5226 				flush_signals(current);
5227 				prepare_to_wait(&conf->wait_for_overlap,
5228 						&w, TASK_INTERRUPTIBLE);
5229 				if (logical_sector >= mddev->suspend_lo &&
5230 				    logical_sector < mddev->suspend_hi) {
5231 					schedule();
5232 					do_prepare = true;
5233 				}
5234 				goto retry;
5235 			}
5236 
5237 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5238 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5239 				/* Stripe is busy expanding or
5240 				 * add failed due to overlap.  Flush everything
5241 				 * and wait a while
5242 				 */
5243 				md_wakeup_thread(mddev->thread);
5244 				release_stripe(sh);
5245 				schedule();
5246 				do_prepare = true;
5247 				goto retry;
5248 			}
5249 			set_bit(STRIPE_HANDLE, &sh->state);
5250 			clear_bit(STRIPE_DELAYED, &sh->state);
5251 			if ((!sh->batch_head || sh == sh->batch_head) &&
5252 			    (bi->bi_rw & REQ_SYNC) &&
5253 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5254 				atomic_inc(&conf->preread_active_stripes);
5255 			release_stripe_plug(mddev, sh);
5256 		} else {
5257 			/* cannot get stripe for read-ahead, just give-up */
5258 			clear_bit(BIO_UPTODATE, &bi->bi_flags);
5259 			break;
5260 		}
5261 	}
5262 	finish_wait(&conf->wait_for_overlap, &w);
5263 
5264 	remaining = raid5_dec_bi_active_stripes(bi);
5265 	if (remaining == 0) {
5266 
5267 		if ( rw == WRITE )
5268 			md_write_end(mddev);
5269 
5270 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5271 					 bi, 0);
5272 		bio_endio(bi, 0);
5273 	}
5274 }
5275 
5276 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5277 
5278 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5279 {
5280 	/* reshaping is quite different to recovery/resync so it is
5281 	 * handled quite separately ... here.
5282 	 *
5283 	 * On each call to sync_request, we gather one chunk worth of
5284 	 * destination stripes and flag them as expanding.
5285 	 * Then we find all the source stripes and request reads.
5286 	 * As the reads complete, handle_stripe will copy the data
5287 	 * into the destination stripe and release that stripe.
5288 	 */
5289 	struct r5conf *conf = mddev->private;
5290 	struct stripe_head *sh;
5291 	sector_t first_sector, last_sector;
5292 	int raid_disks = conf->previous_raid_disks;
5293 	int data_disks = raid_disks - conf->max_degraded;
5294 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5295 	int i;
5296 	int dd_idx;
5297 	sector_t writepos, readpos, safepos;
5298 	sector_t stripe_addr;
5299 	int reshape_sectors;
5300 	struct list_head stripes;
5301 
5302 	if (sector_nr == 0) {
5303 		/* If restarting in the middle, skip the initial sectors */
5304 		if (mddev->reshape_backwards &&
5305 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5306 			sector_nr = raid5_size(mddev, 0, 0)
5307 				- conf->reshape_progress;
5308 		} else if (!mddev->reshape_backwards &&
5309 			   conf->reshape_progress > 0)
5310 			sector_nr = conf->reshape_progress;
5311 		sector_div(sector_nr, new_data_disks);
5312 		if (sector_nr) {
5313 			mddev->curr_resync_completed = sector_nr;
5314 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5315 			*skipped = 1;
5316 			return sector_nr;
5317 		}
5318 	}
5319 
5320 	/* We need to process a full chunk at a time.
5321 	 * If old and new chunk sizes differ, we need to process the
5322 	 * largest of these
5323 	 */
5324 	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5325 		reshape_sectors = mddev->new_chunk_sectors;
5326 	else
5327 		reshape_sectors = mddev->chunk_sectors;
5328 
5329 	/* We update the metadata at least every 10 seconds, or when
5330 	 * the data about to be copied would over-write the source of
5331 	 * the data at the front of the range.  i.e. one new_stripe
5332 	 * along from reshape_progress new_maps to after where
5333 	 * reshape_safe old_maps to
5334 	 */
5335 	writepos = conf->reshape_progress;
5336 	sector_div(writepos, new_data_disks);
5337 	readpos = conf->reshape_progress;
5338 	sector_div(readpos, data_disks);
5339 	safepos = conf->reshape_safe;
5340 	sector_div(safepos, data_disks);
5341 	if (mddev->reshape_backwards) {
5342 		writepos -= min_t(sector_t, reshape_sectors, writepos);
5343 		readpos += reshape_sectors;
5344 		safepos += reshape_sectors;
5345 	} else {
5346 		writepos += reshape_sectors;
5347 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5348 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5349 	}
5350 
5351 	/* Having calculated the 'writepos' possibly use it
5352 	 * to set 'stripe_addr' which is where we will write to.
5353 	 */
5354 	if (mddev->reshape_backwards) {
5355 		BUG_ON(conf->reshape_progress == 0);
5356 		stripe_addr = writepos;
5357 		BUG_ON((mddev->dev_sectors &
5358 			~((sector_t)reshape_sectors - 1))
5359 		       - reshape_sectors - stripe_addr
5360 		       != sector_nr);
5361 	} else {
5362 		BUG_ON(writepos != sector_nr + reshape_sectors);
5363 		stripe_addr = sector_nr;
5364 	}
5365 
5366 	/* 'writepos' is the most advanced device address we might write.
5367 	 * 'readpos' is the least advanced device address we might read.
5368 	 * 'safepos' is the least address recorded in the metadata as having
5369 	 *     been reshaped.
5370 	 * If there is a min_offset_diff, these are adjusted either by
5371 	 * increasing the safepos/readpos if diff is negative, or
5372 	 * increasing writepos if diff is positive.
5373 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5374 	 * ensure safety in the face of a crash - that must be done by userspace
5375 	 * making a backup of the data.  So in that case there is no particular
5376 	 * rush to update metadata.
5377 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5378 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5379 	 * we can be safe in the event of a crash.
5380 	 * So we insist on updating metadata if safepos is behind writepos and
5381 	 * readpos is beyond writepos.
5382 	 * In any case, update the metadata every 10 seconds.
5383 	 * Maybe that number should be configurable, but I'm not sure it is
5384 	 * worth it.... maybe it could be a multiple of safemode_delay???
5385 	 */
5386 	if (conf->min_offset_diff < 0) {
5387 		safepos += -conf->min_offset_diff;
5388 		readpos += -conf->min_offset_diff;
5389 	} else
5390 		writepos += conf->min_offset_diff;
5391 
5392 	if ((mddev->reshape_backwards
5393 	     ? (safepos > writepos && readpos < writepos)
5394 	     : (safepos < writepos && readpos > writepos)) ||
5395 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5396 		/* Cannot proceed until we've updated the superblock... */
5397 		wait_event(conf->wait_for_overlap,
5398 			   atomic_read(&conf->reshape_stripes)==0
5399 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5400 		if (atomic_read(&conf->reshape_stripes) != 0)
5401 			return 0;
5402 		mddev->reshape_position = conf->reshape_progress;
5403 		mddev->curr_resync_completed = sector_nr;
5404 		conf->reshape_checkpoint = jiffies;
5405 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5406 		md_wakeup_thread(mddev->thread);
5407 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
5408 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5409 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5410 			return 0;
5411 		spin_lock_irq(&conf->device_lock);
5412 		conf->reshape_safe = mddev->reshape_position;
5413 		spin_unlock_irq(&conf->device_lock);
5414 		wake_up(&conf->wait_for_overlap);
5415 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5416 	}
5417 
5418 	INIT_LIST_HEAD(&stripes);
5419 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5420 		int j;
5421 		int skipped_disk = 0;
5422 		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5423 		set_bit(STRIPE_EXPANDING, &sh->state);
5424 		atomic_inc(&conf->reshape_stripes);
5425 		/* If any of this stripe is beyond the end of the old
5426 		 * array, then we need to zero those blocks
5427 		 */
5428 		for (j=sh->disks; j--;) {
5429 			sector_t s;
5430 			if (j == sh->pd_idx)
5431 				continue;
5432 			if (conf->level == 6 &&
5433 			    j == sh->qd_idx)
5434 				continue;
5435 			s = compute_blocknr(sh, j, 0);
5436 			if (s < raid5_size(mddev, 0, 0)) {
5437 				skipped_disk = 1;
5438 				continue;
5439 			}
5440 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5441 			set_bit(R5_Expanded, &sh->dev[j].flags);
5442 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5443 		}
5444 		if (!skipped_disk) {
5445 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5446 			set_bit(STRIPE_HANDLE, &sh->state);
5447 		}
5448 		list_add(&sh->lru, &stripes);
5449 	}
5450 	spin_lock_irq(&conf->device_lock);
5451 	if (mddev->reshape_backwards)
5452 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5453 	else
5454 		conf->reshape_progress += reshape_sectors * new_data_disks;
5455 	spin_unlock_irq(&conf->device_lock);
5456 	/* Ok, those stripe are ready. We can start scheduling
5457 	 * reads on the source stripes.
5458 	 * The source stripes are determined by mapping the first and last
5459 	 * block on the destination stripes.
5460 	 */
5461 	first_sector =
5462 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5463 				     1, &dd_idx, NULL);
5464 	last_sector =
5465 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5466 					    * new_data_disks - 1),
5467 				     1, &dd_idx, NULL);
5468 	if (last_sector >= mddev->dev_sectors)
5469 		last_sector = mddev->dev_sectors - 1;
5470 	while (first_sector <= last_sector) {
5471 		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5472 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5473 		set_bit(STRIPE_HANDLE, &sh->state);
5474 		release_stripe(sh);
5475 		first_sector += STRIPE_SECTORS;
5476 	}
5477 	/* Now that the sources are clearly marked, we can release
5478 	 * the destination stripes
5479 	 */
5480 	while (!list_empty(&stripes)) {
5481 		sh = list_entry(stripes.next, struct stripe_head, lru);
5482 		list_del_init(&sh->lru);
5483 		release_stripe(sh);
5484 	}
5485 	/* If this takes us to the resync_max point where we have to pause,
5486 	 * then we need to write out the superblock.
5487 	 */
5488 	sector_nr += reshape_sectors;
5489 	if ((sector_nr - mddev->curr_resync_completed) * 2
5490 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5491 		/* Cannot proceed until we've updated the superblock... */
5492 		wait_event(conf->wait_for_overlap,
5493 			   atomic_read(&conf->reshape_stripes) == 0
5494 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5495 		if (atomic_read(&conf->reshape_stripes) != 0)
5496 			goto ret;
5497 		mddev->reshape_position = conf->reshape_progress;
5498 		mddev->curr_resync_completed = sector_nr;
5499 		conf->reshape_checkpoint = jiffies;
5500 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5501 		md_wakeup_thread(mddev->thread);
5502 		wait_event(mddev->sb_wait,
5503 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5504 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5505 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5506 			goto ret;
5507 		spin_lock_irq(&conf->device_lock);
5508 		conf->reshape_safe = mddev->reshape_position;
5509 		spin_unlock_irq(&conf->device_lock);
5510 		wake_up(&conf->wait_for_overlap);
5511 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5512 	}
5513 ret:
5514 	return reshape_sectors;
5515 }
5516 
5517 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5518 {
5519 	struct r5conf *conf = mddev->private;
5520 	struct stripe_head *sh;
5521 	sector_t max_sector = mddev->dev_sectors;
5522 	sector_t sync_blocks;
5523 	int still_degraded = 0;
5524 	int i;
5525 
5526 	if (sector_nr >= max_sector) {
5527 		/* just being told to finish up .. nothing much to do */
5528 
5529 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5530 			end_reshape(conf);
5531 			return 0;
5532 		}
5533 
5534 		if (mddev->curr_resync < max_sector) /* aborted */
5535 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5536 					&sync_blocks, 1);
5537 		else /* completed sync */
5538 			conf->fullsync = 0;
5539 		bitmap_close_sync(mddev->bitmap);
5540 
5541 		return 0;
5542 	}
5543 
5544 	/* Allow raid5_quiesce to complete */
5545 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5546 
5547 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5548 		return reshape_request(mddev, sector_nr, skipped);
5549 
5550 	/* No need to check resync_max as we never do more than one
5551 	 * stripe, and as resync_max will always be on a chunk boundary,
5552 	 * if the check in md_do_sync didn't fire, there is no chance
5553 	 * of overstepping resync_max here
5554 	 */
5555 
5556 	/* if there is too many failed drives and we are trying
5557 	 * to resync, then assert that we are finished, because there is
5558 	 * nothing we can do.
5559 	 */
5560 	if (mddev->degraded >= conf->max_degraded &&
5561 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5562 		sector_t rv = mddev->dev_sectors - sector_nr;
5563 		*skipped = 1;
5564 		return rv;
5565 	}
5566 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5567 	    !conf->fullsync &&
5568 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5569 	    sync_blocks >= STRIPE_SECTORS) {
5570 		/* we can skip this block, and probably more */
5571 		sync_blocks /= STRIPE_SECTORS;
5572 		*skipped = 1;
5573 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5574 	}
5575 
5576 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5577 
5578 	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5579 	if (sh == NULL) {
5580 		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5581 		/* make sure we don't swamp the stripe cache if someone else
5582 		 * is trying to get access
5583 		 */
5584 		schedule_timeout_uninterruptible(1);
5585 	}
5586 	/* Need to check if array will still be degraded after recovery/resync
5587 	 * Note in case of > 1 drive failures it's possible we're rebuilding
5588 	 * one drive while leaving another faulty drive in array.
5589 	 */
5590 	rcu_read_lock();
5591 	for (i = 0; i < conf->raid_disks; i++) {
5592 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5593 
5594 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5595 			still_degraded = 1;
5596 	}
5597 	rcu_read_unlock();
5598 
5599 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5600 
5601 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5602 	set_bit(STRIPE_HANDLE, &sh->state);
5603 
5604 	release_stripe(sh);
5605 
5606 	return STRIPE_SECTORS;
5607 }
5608 
5609 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5610 {
5611 	/* We may not be able to submit a whole bio at once as there
5612 	 * may not be enough stripe_heads available.
5613 	 * We cannot pre-allocate enough stripe_heads as we may need
5614 	 * more than exist in the cache (if we allow ever large chunks).
5615 	 * So we do one stripe head at a time and record in
5616 	 * ->bi_hw_segments how many have been done.
5617 	 *
5618 	 * We *know* that this entire raid_bio is in one chunk, so
5619 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5620 	 */
5621 	struct stripe_head *sh;
5622 	int dd_idx;
5623 	sector_t sector, logical_sector, last_sector;
5624 	int scnt = 0;
5625 	int remaining;
5626 	int handled = 0;
5627 
5628 	logical_sector = raid_bio->bi_iter.bi_sector &
5629 		~((sector_t)STRIPE_SECTORS-1);
5630 	sector = raid5_compute_sector(conf, logical_sector,
5631 				      0, &dd_idx, NULL);
5632 	last_sector = bio_end_sector(raid_bio);
5633 
5634 	for (; logical_sector < last_sector;
5635 	     logical_sector += STRIPE_SECTORS,
5636 		     sector += STRIPE_SECTORS,
5637 		     scnt++) {
5638 
5639 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5640 			/* already done this stripe */
5641 			continue;
5642 
5643 		sh = get_active_stripe(conf, sector, 0, 1, 1);
5644 
5645 		if (!sh) {
5646 			/* failed to get a stripe - must wait */
5647 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5648 			conf->retry_read_aligned = raid_bio;
5649 			return handled;
5650 		}
5651 
5652 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5653 			release_stripe(sh);
5654 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5655 			conf->retry_read_aligned = raid_bio;
5656 			return handled;
5657 		}
5658 
5659 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5660 		handle_stripe(sh);
5661 		release_stripe(sh);
5662 		handled++;
5663 	}
5664 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5665 	if (remaining == 0) {
5666 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5667 					 raid_bio, 0);
5668 		bio_endio(raid_bio, 0);
5669 	}
5670 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5671 		wake_up(&conf->wait_for_stripe);
5672 	return handled;
5673 }
5674 
5675 static int handle_active_stripes(struct r5conf *conf, int group,
5676 				 struct r5worker *worker,
5677 				 struct list_head *temp_inactive_list)
5678 {
5679 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5680 	int i, batch_size = 0, hash;
5681 	bool release_inactive = false;
5682 
5683 	while (batch_size < MAX_STRIPE_BATCH &&
5684 			(sh = __get_priority_stripe(conf, group)) != NULL)
5685 		batch[batch_size++] = sh;
5686 
5687 	if (batch_size == 0) {
5688 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5689 			if (!list_empty(temp_inactive_list + i))
5690 				break;
5691 		if (i == NR_STRIPE_HASH_LOCKS)
5692 			return batch_size;
5693 		release_inactive = true;
5694 	}
5695 	spin_unlock_irq(&conf->device_lock);
5696 
5697 	release_inactive_stripe_list(conf, temp_inactive_list,
5698 				     NR_STRIPE_HASH_LOCKS);
5699 
5700 	if (release_inactive) {
5701 		spin_lock_irq(&conf->device_lock);
5702 		return 0;
5703 	}
5704 
5705 	for (i = 0; i < batch_size; i++)
5706 		handle_stripe(batch[i]);
5707 
5708 	cond_resched();
5709 
5710 	spin_lock_irq(&conf->device_lock);
5711 	for (i = 0; i < batch_size; i++) {
5712 		hash = batch[i]->hash_lock_index;
5713 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5714 	}
5715 	return batch_size;
5716 }
5717 
5718 static void raid5_do_work(struct work_struct *work)
5719 {
5720 	struct r5worker *worker = container_of(work, struct r5worker, work);
5721 	struct r5worker_group *group = worker->group;
5722 	struct r5conf *conf = group->conf;
5723 	int group_id = group - conf->worker_groups;
5724 	int handled;
5725 	struct blk_plug plug;
5726 
5727 	pr_debug("+++ raid5worker active\n");
5728 
5729 	blk_start_plug(&plug);
5730 	handled = 0;
5731 	spin_lock_irq(&conf->device_lock);
5732 	while (1) {
5733 		int batch_size, released;
5734 
5735 		released = release_stripe_list(conf, worker->temp_inactive_list);
5736 
5737 		batch_size = handle_active_stripes(conf, group_id, worker,
5738 						   worker->temp_inactive_list);
5739 		worker->working = false;
5740 		if (!batch_size && !released)
5741 			break;
5742 		handled += batch_size;
5743 	}
5744 	pr_debug("%d stripes handled\n", handled);
5745 
5746 	spin_unlock_irq(&conf->device_lock);
5747 	blk_finish_plug(&plug);
5748 
5749 	pr_debug("--- raid5worker inactive\n");
5750 }
5751 
5752 /*
5753  * This is our raid5 kernel thread.
5754  *
5755  * We scan the hash table for stripes which can be handled now.
5756  * During the scan, completed stripes are saved for us by the interrupt
5757  * handler, so that they will not have to wait for our next wakeup.
5758  */
5759 static void raid5d(struct md_thread *thread)
5760 {
5761 	struct mddev *mddev = thread->mddev;
5762 	struct r5conf *conf = mddev->private;
5763 	int handled;
5764 	struct blk_plug plug;
5765 
5766 	pr_debug("+++ raid5d active\n");
5767 
5768 	md_check_recovery(mddev);
5769 
5770 	blk_start_plug(&plug);
5771 	handled = 0;
5772 	spin_lock_irq(&conf->device_lock);
5773 	while (1) {
5774 		struct bio *bio;
5775 		int batch_size, released;
5776 
5777 		released = release_stripe_list(conf, conf->temp_inactive_list);
5778 		if (released)
5779 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
5780 
5781 		if (
5782 		    !list_empty(&conf->bitmap_list)) {
5783 			/* Now is a good time to flush some bitmap updates */
5784 			conf->seq_flush++;
5785 			spin_unlock_irq(&conf->device_lock);
5786 			bitmap_unplug(mddev->bitmap);
5787 			spin_lock_irq(&conf->device_lock);
5788 			conf->seq_write = conf->seq_flush;
5789 			activate_bit_delay(conf, conf->temp_inactive_list);
5790 		}
5791 		raid5_activate_delayed(conf);
5792 
5793 		while ((bio = remove_bio_from_retry(conf))) {
5794 			int ok;
5795 			spin_unlock_irq(&conf->device_lock);
5796 			ok = retry_aligned_read(conf, bio);
5797 			spin_lock_irq(&conf->device_lock);
5798 			if (!ok)
5799 				break;
5800 			handled++;
5801 		}
5802 
5803 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5804 						   conf->temp_inactive_list);
5805 		if (!batch_size && !released)
5806 			break;
5807 		handled += batch_size;
5808 
5809 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5810 			spin_unlock_irq(&conf->device_lock);
5811 			md_check_recovery(mddev);
5812 			spin_lock_irq(&conf->device_lock);
5813 		}
5814 	}
5815 	pr_debug("%d stripes handled\n", handled);
5816 
5817 	spin_unlock_irq(&conf->device_lock);
5818 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
5819 		grow_one_stripe(conf, __GFP_NOWARN);
5820 		/* Set flag even if allocation failed.  This helps
5821 		 * slow down allocation requests when mem is short
5822 		 */
5823 		set_bit(R5_DID_ALLOC, &conf->cache_state);
5824 	}
5825 
5826 	async_tx_issue_pending_all();
5827 	blk_finish_plug(&plug);
5828 
5829 	pr_debug("--- raid5d inactive\n");
5830 }
5831 
5832 static ssize_t
5833 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5834 {
5835 	struct r5conf *conf;
5836 	int ret = 0;
5837 	spin_lock(&mddev->lock);
5838 	conf = mddev->private;
5839 	if (conf)
5840 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5841 	spin_unlock(&mddev->lock);
5842 	return ret;
5843 }
5844 
5845 int
5846 raid5_set_cache_size(struct mddev *mddev, int size)
5847 {
5848 	struct r5conf *conf = mddev->private;
5849 	int err;
5850 
5851 	if (size <= 16 || size > 32768)
5852 		return -EINVAL;
5853 
5854 	conf->min_nr_stripes = size;
5855 	while (size < conf->max_nr_stripes &&
5856 	       drop_one_stripe(conf))
5857 		;
5858 
5859 
5860 	err = md_allow_write(mddev);
5861 	if (err)
5862 		return err;
5863 
5864 	while (size > conf->max_nr_stripes)
5865 		if (!grow_one_stripe(conf, GFP_KERNEL))
5866 			break;
5867 
5868 	return 0;
5869 }
5870 EXPORT_SYMBOL(raid5_set_cache_size);
5871 
5872 static ssize_t
5873 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5874 {
5875 	struct r5conf *conf;
5876 	unsigned long new;
5877 	int err;
5878 
5879 	if (len >= PAGE_SIZE)
5880 		return -EINVAL;
5881 	if (kstrtoul(page, 10, &new))
5882 		return -EINVAL;
5883 	err = mddev_lock(mddev);
5884 	if (err)
5885 		return err;
5886 	conf = mddev->private;
5887 	if (!conf)
5888 		err = -ENODEV;
5889 	else
5890 		err = raid5_set_cache_size(mddev, new);
5891 	mddev_unlock(mddev);
5892 
5893 	return err ?: len;
5894 }
5895 
5896 static struct md_sysfs_entry
5897 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5898 				raid5_show_stripe_cache_size,
5899 				raid5_store_stripe_cache_size);
5900 
5901 static ssize_t
5902 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5903 {
5904 	struct r5conf *conf = mddev->private;
5905 	if (conf)
5906 		return sprintf(page, "%d\n", conf->rmw_level);
5907 	else
5908 		return 0;
5909 }
5910 
5911 static ssize_t
5912 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5913 {
5914 	struct r5conf *conf = mddev->private;
5915 	unsigned long new;
5916 
5917 	if (!conf)
5918 		return -ENODEV;
5919 
5920 	if (len >= PAGE_SIZE)
5921 		return -EINVAL;
5922 
5923 	if (kstrtoul(page, 10, &new))
5924 		return -EINVAL;
5925 
5926 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5927 		return -EINVAL;
5928 
5929 	if (new != PARITY_DISABLE_RMW &&
5930 	    new != PARITY_ENABLE_RMW &&
5931 	    new != PARITY_PREFER_RMW)
5932 		return -EINVAL;
5933 
5934 	conf->rmw_level = new;
5935 	return len;
5936 }
5937 
5938 static struct md_sysfs_entry
5939 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5940 			 raid5_show_rmw_level,
5941 			 raid5_store_rmw_level);
5942 
5943 
5944 static ssize_t
5945 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5946 {
5947 	struct r5conf *conf;
5948 	int ret = 0;
5949 	spin_lock(&mddev->lock);
5950 	conf = mddev->private;
5951 	if (conf)
5952 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
5953 	spin_unlock(&mddev->lock);
5954 	return ret;
5955 }
5956 
5957 static ssize_t
5958 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5959 {
5960 	struct r5conf *conf;
5961 	unsigned long new;
5962 	int err;
5963 
5964 	if (len >= PAGE_SIZE)
5965 		return -EINVAL;
5966 	if (kstrtoul(page, 10, &new))
5967 		return -EINVAL;
5968 
5969 	err = mddev_lock(mddev);
5970 	if (err)
5971 		return err;
5972 	conf = mddev->private;
5973 	if (!conf)
5974 		err = -ENODEV;
5975 	else if (new > conf->min_nr_stripes)
5976 		err = -EINVAL;
5977 	else
5978 		conf->bypass_threshold = new;
5979 	mddev_unlock(mddev);
5980 	return err ?: len;
5981 }
5982 
5983 static struct md_sysfs_entry
5984 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5985 					S_IRUGO | S_IWUSR,
5986 					raid5_show_preread_threshold,
5987 					raid5_store_preread_threshold);
5988 
5989 static ssize_t
5990 raid5_show_skip_copy(struct mddev *mddev, char *page)
5991 {
5992 	struct r5conf *conf;
5993 	int ret = 0;
5994 	spin_lock(&mddev->lock);
5995 	conf = mddev->private;
5996 	if (conf)
5997 		ret = sprintf(page, "%d\n", conf->skip_copy);
5998 	spin_unlock(&mddev->lock);
5999 	return ret;
6000 }
6001 
6002 static ssize_t
6003 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6004 {
6005 	struct r5conf *conf;
6006 	unsigned long new;
6007 	int err;
6008 
6009 	if (len >= PAGE_SIZE)
6010 		return -EINVAL;
6011 	if (kstrtoul(page, 10, &new))
6012 		return -EINVAL;
6013 	new = !!new;
6014 
6015 	err = mddev_lock(mddev);
6016 	if (err)
6017 		return err;
6018 	conf = mddev->private;
6019 	if (!conf)
6020 		err = -ENODEV;
6021 	else if (new != conf->skip_copy) {
6022 		mddev_suspend(mddev);
6023 		conf->skip_copy = new;
6024 		if (new)
6025 			mddev->queue->backing_dev_info.capabilities |=
6026 				BDI_CAP_STABLE_WRITES;
6027 		else
6028 			mddev->queue->backing_dev_info.capabilities &=
6029 				~BDI_CAP_STABLE_WRITES;
6030 		mddev_resume(mddev);
6031 	}
6032 	mddev_unlock(mddev);
6033 	return err ?: len;
6034 }
6035 
6036 static struct md_sysfs_entry
6037 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6038 					raid5_show_skip_copy,
6039 					raid5_store_skip_copy);
6040 
6041 static ssize_t
6042 stripe_cache_active_show(struct mddev *mddev, char *page)
6043 {
6044 	struct r5conf *conf = mddev->private;
6045 	if (conf)
6046 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6047 	else
6048 		return 0;
6049 }
6050 
6051 static struct md_sysfs_entry
6052 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6053 
6054 static ssize_t
6055 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6056 {
6057 	struct r5conf *conf;
6058 	int ret = 0;
6059 	spin_lock(&mddev->lock);
6060 	conf = mddev->private;
6061 	if (conf)
6062 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6063 	spin_unlock(&mddev->lock);
6064 	return ret;
6065 }
6066 
6067 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6068 			       int *group_cnt,
6069 			       int *worker_cnt_per_group,
6070 			       struct r5worker_group **worker_groups);
6071 static ssize_t
6072 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6073 {
6074 	struct r5conf *conf;
6075 	unsigned long new;
6076 	int err;
6077 	struct r5worker_group *new_groups, *old_groups;
6078 	int group_cnt, worker_cnt_per_group;
6079 
6080 	if (len >= PAGE_SIZE)
6081 		return -EINVAL;
6082 	if (kstrtoul(page, 10, &new))
6083 		return -EINVAL;
6084 
6085 	err = mddev_lock(mddev);
6086 	if (err)
6087 		return err;
6088 	conf = mddev->private;
6089 	if (!conf)
6090 		err = -ENODEV;
6091 	else if (new != conf->worker_cnt_per_group) {
6092 		mddev_suspend(mddev);
6093 
6094 		old_groups = conf->worker_groups;
6095 		if (old_groups)
6096 			flush_workqueue(raid5_wq);
6097 
6098 		err = alloc_thread_groups(conf, new,
6099 					  &group_cnt, &worker_cnt_per_group,
6100 					  &new_groups);
6101 		if (!err) {
6102 			spin_lock_irq(&conf->device_lock);
6103 			conf->group_cnt = group_cnt;
6104 			conf->worker_cnt_per_group = worker_cnt_per_group;
6105 			conf->worker_groups = new_groups;
6106 			spin_unlock_irq(&conf->device_lock);
6107 
6108 			if (old_groups)
6109 				kfree(old_groups[0].workers);
6110 			kfree(old_groups);
6111 		}
6112 		mddev_resume(mddev);
6113 	}
6114 	mddev_unlock(mddev);
6115 
6116 	return err ?: len;
6117 }
6118 
6119 static struct md_sysfs_entry
6120 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6121 				raid5_show_group_thread_cnt,
6122 				raid5_store_group_thread_cnt);
6123 
6124 static struct attribute *raid5_attrs[] =  {
6125 	&raid5_stripecache_size.attr,
6126 	&raid5_stripecache_active.attr,
6127 	&raid5_preread_bypass_threshold.attr,
6128 	&raid5_group_thread_cnt.attr,
6129 	&raid5_skip_copy.attr,
6130 	&raid5_rmw_level.attr,
6131 	NULL,
6132 };
6133 static struct attribute_group raid5_attrs_group = {
6134 	.name = NULL,
6135 	.attrs = raid5_attrs,
6136 };
6137 
6138 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6139 			       int *group_cnt,
6140 			       int *worker_cnt_per_group,
6141 			       struct r5worker_group **worker_groups)
6142 {
6143 	int i, j, k;
6144 	ssize_t size;
6145 	struct r5worker *workers;
6146 
6147 	*worker_cnt_per_group = cnt;
6148 	if (cnt == 0) {
6149 		*group_cnt = 0;
6150 		*worker_groups = NULL;
6151 		return 0;
6152 	}
6153 	*group_cnt = num_possible_nodes();
6154 	size = sizeof(struct r5worker) * cnt;
6155 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6156 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6157 				*group_cnt, GFP_NOIO);
6158 	if (!*worker_groups || !workers) {
6159 		kfree(workers);
6160 		kfree(*worker_groups);
6161 		return -ENOMEM;
6162 	}
6163 
6164 	for (i = 0; i < *group_cnt; i++) {
6165 		struct r5worker_group *group;
6166 
6167 		group = &(*worker_groups)[i];
6168 		INIT_LIST_HEAD(&group->handle_list);
6169 		group->conf = conf;
6170 		group->workers = workers + i * cnt;
6171 
6172 		for (j = 0; j < cnt; j++) {
6173 			struct r5worker *worker = group->workers + j;
6174 			worker->group = group;
6175 			INIT_WORK(&worker->work, raid5_do_work);
6176 
6177 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6178 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6179 		}
6180 	}
6181 
6182 	return 0;
6183 }
6184 
6185 static void free_thread_groups(struct r5conf *conf)
6186 {
6187 	if (conf->worker_groups)
6188 		kfree(conf->worker_groups[0].workers);
6189 	kfree(conf->worker_groups);
6190 	conf->worker_groups = NULL;
6191 }
6192 
6193 static sector_t
6194 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6195 {
6196 	struct r5conf *conf = mddev->private;
6197 
6198 	if (!sectors)
6199 		sectors = mddev->dev_sectors;
6200 	if (!raid_disks)
6201 		/* size is defined by the smallest of previous and new size */
6202 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6203 
6204 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6205 	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6206 	return sectors * (raid_disks - conf->max_degraded);
6207 }
6208 
6209 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6210 {
6211 	safe_put_page(percpu->spare_page);
6212 	if (percpu->scribble)
6213 		flex_array_free(percpu->scribble);
6214 	percpu->spare_page = NULL;
6215 	percpu->scribble = NULL;
6216 }
6217 
6218 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6219 {
6220 	if (conf->level == 6 && !percpu->spare_page)
6221 		percpu->spare_page = alloc_page(GFP_KERNEL);
6222 	if (!percpu->scribble)
6223 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6224 			conf->previous_raid_disks), conf->chunk_sectors /
6225 			STRIPE_SECTORS, GFP_KERNEL);
6226 
6227 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6228 		free_scratch_buffer(conf, percpu);
6229 		return -ENOMEM;
6230 	}
6231 
6232 	return 0;
6233 }
6234 
6235 static void raid5_free_percpu(struct r5conf *conf)
6236 {
6237 	unsigned long cpu;
6238 
6239 	if (!conf->percpu)
6240 		return;
6241 
6242 #ifdef CONFIG_HOTPLUG_CPU
6243 	unregister_cpu_notifier(&conf->cpu_notify);
6244 #endif
6245 
6246 	get_online_cpus();
6247 	for_each_possible_cpu(cpu)
6248 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6249 	put_online_cpus();
6250 
6251 	free_percpu(conf->percpu);
6252 }
6253 
6254 static void free_conf(struct r5conf *conf)
6255 {
6256 	if (conf->shrinker.seeks)
6257 		unregister_shrinker(&conf->shrinker);
6258 	free_thread_groups(conf);
6259 	shrink_stripes(conf);
6260 	raid5_free_percpu(conf);
6261 	kfree(conf->disks);
6262 	kfree(conf->stripe_hashtbl);
6263 	kfree(conf);
6264 }
6265 
6266 #ifdef CONFIG_HOTPLUG_CPU
6267 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6268 			      void *hcpu)
6269 {
6270 	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6271 	long cpu = (long)hcpu;
6272 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6273 
6274 	switch (action) {
6275 	case CPU_UP_PREPARE:
6276 	case CPU_UP_PREPARE_FROZEN:
6277 		if (alloc_scratch_buffer(conf, percpu)) {
6278 			pr_err("%s: failed memory allocation for cpu%ld\n",
6279 			       __func__, cpu);
6280 			return notifier_from_errno(-ENOMEM);
6281 		}
6282 		break;
6283 	case CPU_DEAD:
6284 	case CPU_DEAD_FROZEN:
6285 		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6286 		break;
6287 	default:
6288 		break;
6289 	}
6290 	return NOTIFY_OK;
6291 }
6292 #endif
6293 
6294 static int raid5_alloc_percpu(struct r5conf *conf)
6295 {
6296 	unsigned long cpu;
6297 	int err = 0;
6298 
6299 	conf->percpu = alloc_percpu(struct raid5_percpu);
6300 	if (!conf->percpu)
6301 		return -ENOMEM;
6302 
6303 #ifdef CONFIG_HOTPLUG_CPU
6304 	conf->cpu_notify.notifier_call = raid456_cpu_notify;
6305 	conf->cpu_notify.priority = 0;
6306 	err = register_cpu_notifier(&conf->cpu_notify);
6307 	if (err)
6308 		return err;
6309 #endif
6310 
6311 	get_online_cpus();
6312 	for_each_present_cpu(cpu) {
6313 		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6314 		if (err) {
6315 			pr_err("%s: failed memory allocation for cpu%ld\n",
6316 			       __func__, cpu);
6317 			break;
6318 		}
6319 	}
6320 	put_online_cpus();
6321 
6322 	return err;
6323 }
6324 
6325 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6326 				      struct shrink_control *sc)
6327 {
6328 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6329 	int ret = 0;
6330 	while (ret < sc->nr_to_scan) {
6331 		if (drop_one_stripe(conf) == 0)
6332 			return SHRINK_STOP;
6333 		ret++;
6334 	}
6335 	return ret;
6336 }
6337 
6338 static unsigned long raid5_cache_count(struct shrinker *shrink,
6339 				       struct shrink_control *sc)
6340 {
6341 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6342 
6343 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6344 		/* unlikely, but not impossible */
6345 		return 0;
6346 	return conf->max_nr_stripes - conf->min_nr_stripes;
6347 }
6348 
6349 static struct r5conf *setup_conf(struct mddev *mddev)
6350 {
6351 	struct r5conf *conf;
6352 	int raid_disk, memory, max_disks;
6353 	struct md_rdev *rdev;
6354 	struct disk_info *disk;
6355 	char pers_name[6];
6356 	int i;
6357 	int group_cnt, worker_cnt_per_group;
6358 	struct r5worker_group *new_group;
6359 
6360 	if (mddev->new_level != 5
6361 	    && mddev->new_level != 4
6362 	    && mddev->new_level != 6) {
6363 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6364 		       mdname(mddev), mddev->new_level);
6365 		return ERR_PTR(-EIO);
6366 	}
6367 	if ((mddev->new_level == 5
6368 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6369 	    (mddev->new_level == 6
6370 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6371 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6372 		       mdname(mddev), mddev->new_layout);
6373 		return ERR_PTR(-EIO);
6374 	}
6375 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6376 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6377 		       mdname(mddev), mddev->raid_disks);
6378 		return ERR_PTR(-EINVAL);
6379 	}
6380 
6381 	if (!mddev->new_chunk_sectors ||
6382 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6383 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6384 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6385 		       mdname(mddev), mddev->new_chunk_sectors << 9);
6386 		return ERR_PTR(-EINVAL);
6387 	}
6388 
6389 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6390 	if (conf == NULL)
6391 		goto abort;
6392 	/* Don't enable multi-threading by default*/
6393 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6394 				 &new_group)) {
6395 		conf->group_cnt = group_cnt;
6396 		conf->worker_cnt_per_group = worker_cnt_per_group;
6397 		conf->worker_groups = new_group;
6398 	} else
6399 		goto abort;
6400 	spin_lock_init(&conf->device_lock);
6401 	seqcount_init(&conf->gen_lock);
6402 	init_waitqueue_head(&conf->wait_for_stripe);
6403 	init_waitqueue_head(&conf->wait_for_overlap);
6404 	INIT_LIST_HEAD(&conf->handle_list);
6405 	INIT_LIST_HEAD(&conf->hold_list);
6406 	INIT_LIST_HEAD(&conf->delayed_list);
6407 	INIT_LIST_HEAD(&conf->bitmap_list);
6408 	init_llist_head(&conf->released_stripes);
6409 	atomic_set(&conf->active_stripes, 0);
6410 	atomic_set(&conf->preread_active_stripes, 0);
6411 	atomic_set(&conf->active_aligned_reads, 0);
6412 	conf->bypass_threshold = BYPASS_THRESHOLD;
6413 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6414 
6415 	conf->raid_disks = mddev->raid_disks;
6416 	if (mddev->reshape_position == MaxSector)
6417 		conf->previous_raid_disks = mddev->raid_disks;
6418 	else
6419 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6420 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6421 
6422 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6423 			      GFP_KERNEL);
6424 	if (!conf->disks)
6425 		goto abort;
6426 
6427 	conf->mddev = mddev;
6428 
6429 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6430 		goto abort;
6431 
6432 	/* We init hash_locks[0] separately to that it can be used
6433 	 * as the reference lock in the spin_lock_nest_lock() call
6434 	 * in lock_all_device_hash_locks_irq in order to convince
6435 	 * lockdep that we know what we are doing.
6436 	 */
6437 	spin_lock_init(conf->hash_locks);
6438 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6439 		spin_lock_init(conf->hash_locks + i);
6440 
6441 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6442 		INIT_LIST_HEAD(conf->inactive_list + i);
6443 
6444 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6445 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6446 
6447 	conf->level = mddev->new_level;
6448 	conf->chunk_sectors = mddev->new_chunk_sectors;
6449 	if (raid5_alloc_percpu(conf) != 0)
6450 		goto abort;
6451 
6452 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6453 
6454 	rdev_for_each(rdev, mddev) {
6455 		raid_disk = rdev->raid_disk;
6456 		if (raid_disk >= max_disks
6457 		    || raid_disk < 0)
6458 			continue;
6459 		disk = conf->disks + raid_disk;
6460 
6461 		if (test_bit(Replacement, &rdev->flags)) {
6462 			if (disk->replacement)
6463 				goto abort;
6464 			disk->replacement = rdev;
6465 		} else {
6466 			if (disk->rdev)
6467 				goto abort;
6468 			disk->rdev = rdev;
6469 		}
6470 
6471 		if (test_bit(In_sync, &rdev->flags)) {
6472 			char b[BDEVNAME_SIZE];
6473 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6474 			       " disk %d\n",
6475 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6476 		} else if (rdev->saved_raid_disk != raid_disk)
6477 			/* Cannot rely on bitmap to complete recovery */
6478 			conf->fullsync = 1;
6479 	}
6480 
6481 	conf->level = mddev->new_level;
6482 	if (conf->level == 6) {
6483 		conf->max_degraded = 2;
6484 		if (raid6_call.xor_syndrome)
6485 			conf->rmw_level = PARITY_ENABLE_RMW;
6486 		else
6487 			conf->rmw_level = PARITY_DISABLE_RMW;
6488 	} else {
6489 		conf->max_degraded = 1;
6490 		conf->rmw_level = PARITY_ENABLE_RMW;
6491 	}
6492 	conf->algorithm = mddev->new_layout;
6493 	conf->reshape_progress = mddev->reshape_position;
6494 	if (conf->reshape_progress != MaxSector) {
6495 		conf->prev_chunk_sectors = mddev->chunk_sectors;
6496 		conf->prev_algo = mddev->layout;
6497 	}
6498 
6499 	conf->min_nr_stripes = NR_STRIPES;
6500 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6501 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6502 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6503 	if (grow_stripes(conf, conf->min_nr_stripes)) {
6504 		printk(KERN_ERR
6505 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
6506 		       mdname(mddev), memory);
6507 		goto abort;
6508 	} else
6509 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6510 		       mdname(mddev), memory);
6511 	/*
6512 	 * Losing a stripe head costs more than the time to refill it,
6513 	 * it reduces the queue depth and so can hurt throughput.
6514 	 * So set it rather large, scaled by number of devices.
6515 	 */
6516 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6517 	conf->shrinker.scan_objects = raid5_cache_scan;
6518 	conf->shrinker.count_objects = raid5_cache_count;
6519 	conf->shrinker.batch = 128;
6520 	conf->shrinker.flags = 0;
6521 	register_shrinker(&conf->shrinker);
6522 
6523 	sprintf(pers_name, "raid%d", mddev->new_level);
6524 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
6525 	if (!conf->thread) {
6526 		printk(KERN_ERR
6527 		       "md/raid:%s: couldn't allocate thread.\n",
6528 		       mdname(mddev));
6529 		goto abort;
6530 	}
6531 
6532 	return conf;
6533 
6534  abort:
6535 	if (conf) {
6536 		free_conf(conf);
6537 		return ERR_PTR(-EIO);
6538 	} else
6539 		return ERR_PTR(-ENOMEM);
6540 }
6541 
6542 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6543 {
6544 	switch (algo) {
6545 	case ALGORITHM_PARITY_0:
6546 		if (raid_disk < max_degraded)
6547 			return 1;
6548 		break;
6549 	case ALGORITHM_PARITY_N:
6550 		if (raid_disk >= raid_disks - max_degraded)
6551 			return 1;
6552 		break;
6553 	case ALGORITHM_PARITY_0_6:
6554 		if (raid_disk == 0 ||
6555 		    raid_disk == raid_disks - 1)
6556 			return 1;
6557 		break;
6558 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6559 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6560 	case ALGORITHM_LEFT_SYMMETRIC_6:
6561 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6562 		if (raid_disk == raid_disks - 1)
6563 			return 1;
6564 	}
6565 	return 0;
6566 }
6567 
6568 static int run(struct mddev *mddev)
6569 {
6570 	struct r5conf *conf;
6571 	int working_disks = 0;
6572 	int dirty_parity_disks = 0;
6573 	struct md_rdev *rdev;
6574 	sector_t reshape_offset = 0;
6575 	int i;
6576 	long long min_offset_diff = 0;
6577 	int first = 1;
6578 
6579 	if (mddev->recovery_cp != MaxSector)
6580 		printk(KERN_NOTICE "md/raid:%s: not clean"
6581 		       " -- starting background reconstruction\n",
6582 		       mdname(mddev));
6583 
6584 	rdev_for_each(rdev, mddev) {
6585 		long long diff;
6586 		if (rdev->raid_disk < 0)
6587 			continue;
6588 		diff = (rdev->new_data_offset - rdev->data_offset);
6589 		if (first) {
6590 			min_offset_diff = diff;
6591 			first = 0;
6592 		} else if (mddev->reshape_backwards &&
6593 			 diff < min_offset_diff)
6594 			min_offset_diff = diff;
6595 		else if (!mddev->reshape_backwards &&
6596 			 diff > min_offset_diff)
6597 			min_offset_diff = diff;
6598 	}
6599 
6600 	if (mddev->reshape_position != MaxSector) {
6601 		/* Check that we can continue the reshape.
6602 		 * Difficulties arise if the stripe we would write to
6603 		 * next is at or after the stripe we would read from next.
6604 		 * For a reshape that changes the number of devices, this
6605 		 * is only possible for a very short time, and mdadm makes
6606 		 * sure that time appears to have past before assembling
6607 		 * the array.  So we fail if that time hasn't passed.
6608 		 * For a reshape that keeps the number of devices the same
6609 		 * mdadm must be monitoring the reshape can keeping the
6610 		 * critical areas read-only and backed up.  It will start
6611 		 * the array in read-only mode, so we check for that.
6612 		 */
6613 		sector_t here_new, here_old;
6614 		int old_disks;
6615 		int max_degraded = (mddev->level == 6 ? 2 : 1);
6616 
6617 		if (mddev->new_level != mddev->level) {
6618 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
6619 			       "required - aborting.\n",
6620 			       mdname(mddev));
6621 			return -EINVAL;
6622 		}
6623 		old_disks = mddev->raid_disks - mddev->delta_disks;
6624 		/* reshape_position must be on a new-stripe boundary, and one
6625 		 * further up in new geometry must map after here in old
6626 		 * geometry.
6627 		 */
6628 		here_new = mddev->reshape_position;
6629 		if (sector_div(here_new, mddev->new_chunk_sectors *
6630 			       (mddev->raid_disks - max_degraded))) {
6631 			printk(KERN_ERR "md/raid:%s: reshape_position not "
6632 			       "on a stripe boundary\n", mdname(mddev));
6633 			return -EINVAL;
6634 		}
6635 		reshape_offset = here_new * mddev->new_chunk_sectors;
6636 		/* here_new is the stripe we will write to */
6637 		here_old = mddev->reshape_position;
6638 		sector_div(here_old, mddev->chunk_sectors *
6639 			   (old_disks-max_degraded));
6640 		/* here_old is the first stripe that we might need to read
6641 		 * from */
6642 		if (mddev->delta_disks == 0) {
6643 			if ((here_new * mddev->new_chunk_sectors !=
6644 			     here_old * mddev->chunk_sectors)) {
6645 				printk(KERN_ERR "md/raid:%s: reshape position is"
6646 				       " confused - aborting\n", mdname(mddev));
6647 				return -EINVAL;
6648 			}
6649 			/* We cannot be sure it is safe to start an in-place
6650 			 * reshape.  It is only safe if user-space is monitoring
6651 			 * and taking constant backups.
6652 			 * mdadm always starts a situation like this in
6653 			 * readonly mode so it can take control before
6654 			 * allowing any writes.  So just check for that.
6655 			 */
6656 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6657 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6658 				/* not really in-place - so OK */;
6659 			else if (mddev->ro == 0) {
6660 				printk(KERN_ERR "md/raid:%s: in-place reshape "
6661 				       "must be started in read-only mode "
6662 				       "- aborting\n",
6663 				       mdname(mddev));
6664 				return -EINVAL;
6665 			}
6666 		} else if (mddev->reshape_backwards
6667 		    ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6668 		       here_old * mddev->chunk_sectors)
6669 		    : (here_new * mddev->new_chunk_sectors >=
6670 		       here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6671 			/* Reading from the same stripe as writing to - bad */
6672 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6673 			       "auto-recovery - aborting.\n",
6674 			       mdname(mddev));
6675 			return -EINVAL;
6676 		}
6677 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6678 		       mdname(mddev));
6679 		/* OK, we should be able to continue; */
6680 	} else {
6681 		BUG_ON(mddev->level != mddev->new_level);
6682 		BUG_ON(mddev->layout != mddev->new_layout);
6683 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6684 		BUG_ON(mddev->delta_disks != 0);
6685 	}
6686 
6687 	if (mddev->private == NULL)
6688 		conf = setup_conf(mddev);
6689 	else
6690 		conf = mddev->private;
6691 
6692 	if (IS_ERR(conf))
6693 		return PTR_ERR(conf);
6694 
6695 	conf->min_offset_diff = min_offset_diff;
6696 	mddev->thread = conf->thread;
6697 	conf->thread = NULL;
6698 	mddev->private = conf;
6699 
6700 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6701 	     i++) {
6702 		rdev = conf->disks[i].rdev;
6703 		if (!rdev && conf->disks[i].replacement) {
6704 			/* The replacement is all we have yet */
6705 			rdev = conf->disks[i].replacement;
6706 			conf->disks[i].replacement = NULL;
6707 			clear_bit(Replacement, &rdev->flags);
6708 			conf->disks[i].rdev = rdev;
6709 		}
6710 		if (!rdev)
6711 			continue;
6712 		if (conf->disks[i].replacement &&
6713 		    conf->reshape_progress != MaxSector) {
6714 			/* replacements and reshape simply do not mix. */
6715 			printk(KERN_ERR "md: cannot handle concurrent "
6716 			       "replacement and reshape.\n");
6717 			goto abort;
6718 		}
6719 		if (test_bit(In_sync, &rdev->flags)) {
6720 			working_disks++;
6721 			continue;
6722 		}
6723 		/* This disc is not fully in-sync.  However if it
6724 		 * just stored parity (beyond the recovery_offset),
6725 		 * when we don't need to be concerned about the
6726 		 * array being dirty.
6727 		 * When reshape goes 'backwards', we never have
6728 		 * partially completed devices, so we only need
6729 		 * to worry about reshape going forwards.
6730 		 */
6731 		/* Hack because v0.91 doesn't store recovery_offset properly. */
6732 		if (mddev->major_version == 0 &&
6733 		    mddev->minor_version > 90)
6734 			rdev->recovery_offset = reshape_offset;
6735 
6736 		if (rdev->recovery_offset < reshape_offset) {
6737 			/* We need to check old and new layout */
6738 			if (!only_parity(rdev->raid_disk,
6739 					 conf->algorithm,
6740 					 conf->raid_disks,
6741 					 conf->max_degraded))
6742 				continue;
6743 		}
6744 		if (!only_parity(rdev->raid_disk,
6745 				 conf->prev_algo,
6746 				 conf->previous_raid_disks,
6747 				 conf->max_degraded))
6748 			continue;
6749 		dirty_parity_disks++;
6750 	}
6751 
6752 	/*
6753 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6754 	 */
6755 	mddev->degraded = calc_degraded(conf);
6756 
6757 	if (has_failed(conf)) {
6758 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6759 			" (%d/%d failed)\n",
6760 			mdname(mddev), mddev->degraded, conf->raid_disks);
6761 		goto abort;
6762 	}
6763 
6764 	/* device size must be a multiple of chunk size */
6765 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6766 	mddev->resync_max_sectors = mddev->dev_sectors;
6767 
6768 	if (mddev->degraded > dirty_parity_disks &&
6769 	    mddev->recovery_cp != MaxSector) {
6770 		if (mddev->ok_start_degraded)
6771 			printk(KERN_WARNING
6772 			       "md/raid:%s: starting dirty degraded array"
6773 			       " - data corruption possible.\n",
6774 			       mdname(mddev));
6775 		else {
6776 			printk(KERN_ERR
6777 			       "md/raid:%s: cannot start dirty degraded array.\n",
6778 			       mdname(mddev));
6779 			goto abort;
6780 		}
6781 	}
6782 
6783 	if (mddev->degraded == 0)
6784 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6785 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6786 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6787 		       mddev->new_layout);
6788 	else
6789 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6790 		       " out of %d devices, algorithm %d\n",
6791 		       mdname(mddev), conf->level,
6792 		       mddev->raid_disks - mddev->degraded,
6793 		       mddev->raid_disks, mddev->new_layout);
6794 
6795 	print_raid5_conf(conf);
6796 
6797 	if (conf->reshape_progress != MaxSector) {
6798 		conf->reshape_safe = conf->reshape_progress;
6799 		atomic_set(&conf->reshape_stripes, 0);
6800 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6801 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6802 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6803 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6804 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6805 							"reshape");
6806 	}
6807 
6808 	/* Ok, everything is just fine now */
6809 	if (mddev->to_remove == &raid5_attrs_group)
6810 		mddev->to_remove = NULL;
6811 	else if (mddev->kobj.sd &&
6812 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6813 		printk(KERN_WARNING
6814 		       "raid5: failed to create sysfs attributes for %s\n",
6815 		       mdname(mddev));
6816 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6817 
6818 	if (mddev->queue) {
6819 		int chunk_size;
6820 		bool discard_supported = true;
6821 		/* read-ahead size must cover two whole stripes, which
6822 		 * is 2 * (datadisks) * chunksize where 'n' is the
6823 		 * number of raid devices
6824 		 */
6825 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6826 		int stripe = data_disks *
6827 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6828 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6829 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6830 
6831 		chunk_size = mddev->chunk_sectors << 9;
6832 		blk_queue_io_min(mddev->queue, chunk_size);
6833 		blk_queue_io_opt(mddev->queue, chunk_size *
6834 				 (conf->raid_disks - conf->max_degraded));
6835 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6836 		/*
6837 		 * We can only discard a whole stripe. It doesn't make sense to
6838 		 * discard data disk but write parity disk
6839 		 */
6840 		stripe = stripe * PAGE_SIZE;
6841 		/* Round up to power of 2, as discard handling
6842 		 * currently assumes that */
6843 		while ((stripe-1) & stripe)
6844 			stripe = (stripe | (stripe-1)) + 1;
6845 		mddev->queue->limits.discard_alignment = stripe;
6846 		mddev->queue->limits.discard_granularity = stripe;
6847 		/*
6848 		 * unaligned part of discard request will be ignored, so can't
6849 		 * guarantee discard_zeroes_data
6850 		 */
6851 		mddev->queue->limits.discard_zeroes_data = 0;
6852 
6853 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6854 
6855 		rdev_for_each(rdev, mddev) {
6856 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6857 					  rdev->data_offset << 9);
6858 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6859 					  rdev->new_data_offset << 9);
6860 			/*
6861 			 * discard_zeroes_data is required, otherwise data
6862 			 * could be lost. Consider a scenario: discard a stripe
6863 			 * (the stripe could be inconsistent if
6864 			 * discard_zeroes_data is 0); write one disk of the
6865 			 * stripe (the stripe could be inconsistent again
6866 			 * depending on which disks are used to calculate
6867 			 * parity); the disk is broken; The stripe data of this
6868 			 * disk is lost.
6869 			 */
6870 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6871 			    !bdev_get_queue(rdev->bdev)->
6872 						limits.discard_zeroes_data)
6873 				discard_supported = false;
6874 			/* Unfortunately, discard_zeroes_data is not currently
6875 			 * a guarantee - just a hint.  So we only allow DISCARD
6876 			 * if the sysadmin has confirmed that only safe devices
6877 			 * are in use by setting a module parameter.
6878 			 */
6879 			if (!devices_handle_discard_safely) {
6880 				if (discard_supported) {
6881 					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6882 					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6883 				}
6884 				discard_supported = false;
6885 			}
6886 		}
6887 
6888 		if (discard_supported &&
6889 		   mddev->queue->limits.max_discard_sectors >= stripe &&
6890 		   mddev->queue->limits.discard_granularity >= stripe)
6891 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6892 						mddev->queue);
6893 		else
6894 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6895 						mddev->queue);
6896 	}
6897 
6898 	return 0;
6899 abort:
6900 	md_unregister_thread(&mddev->thread);
6901 	print_raid5_conf(conf);
6902 	free_conf(conf);
6903 	mddev->private = NULL;
6904 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6905 	return -EIO;
6906 }
6907 
6908 static void raid5_free(struct mddev *mddev, void *priv)
6909 {
6910 	struct r5conf *conf = priv;
6911 
6912 	free_conf(conf);
6913 	mddev->to_remove = &raid5_attrs_group;
6914 }
6915 
6916 static void status(struct seq_file *seq, struct mddev *mddev)
6917 {
6918 	struct r5conf *conf = mddev->private;
6919 	int i;
6920 
6921 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6922 		mddev->chunk_sectors / 2, mddev->layout);
6923 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6924 	for (i = 0; i < conf->raid_disks; i++)
6925 		seq_printf (seq, "%s",
6926 			       conf->disks[i].rdev &&
6927 			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6928 	seq_printf (seq, "]");
6929 }
6930 
6931 static void print_raid5_conf (struct r5conf *conf)
6932 {
6933 	int i;
6934 	struct disk_info *tmp;
6935 
6936 	printk(KERN_DEBUG "RAID conf printout:\n");
6937 	if (!conf) {
6938 		printk("(conf==NULL)\n");
6939 		return;
6940 	}
6941 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6942 	       conf->raid_disks,
6943 	       conf->raid_disks - conf->mddev->degraded);
6944 
6945 	for (i = 0; i < conf->raid_disks; i++) {
6946 		char b[BDEVNAME_SIZE];
6947 		tmp = conf->disks + i;
6948 		if (tmp->rdev)
6949 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6950 			       i, !test_bit(Faulty, &tmp->rdev->flags),
6951 			       bdevname(tmp->rdev->bdev, b));
6952 	}
6953 }
6954 
6955 static int raid5_spare_active(struct mddev *mddev)
6956 {
6957 	int i;
6958 	struct r5conf *conf = mddev->private;
6959 	struct disk_info *tmp;
6960 	int count = 0;
6961 	unsigned long flags;
6962 
6963 	for (i = 0; i < conf->raid_disks; i++) {
6964 		tmp = conf->disks + i;
6965 		if (tmp->replacement
6966 		    && tmp->replacement->recovery_offset == MaxSector
6967 		    && !test_bit(Faulty, &tmp->replacement->flags)
6968 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6969 			/* Replacement has just become active. */
6970 			if (!tmp->rdev
6971 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6972 				count++;
6973 			if (tmp->rdev) {
6974 				/* Replaced device not technically faulty,
6975 				 * but we need to be sure it gets removed
6976 				 * and never re-added.
6977 				 */
6978 				set_bit(Faulty, &tmp->rdev->flags);
6979 				sysfs_notify_dirent_safe(
6980 					tmp->rdev->sysfs_state);
6981 			}
6982 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6983 		} else if (tmp->rdev
6984 		    && tmp->rdev->recovery_offset == MaxSector
6985 		    && !test_bit(Faulty, &tmp->rdev->flags)
6986 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6987 			count++;
6988 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6989 		}
6990 	}
6991 	spin_lock_irqsave(&conf->device_lock, flags);
6992 	mddev->degraded = calc_degraded(conf);
6993 	spin_unlock_irqrestore(&conf->device_lock, flags);
6994 	print_raid5_conf(conf);
6995 	return count;
6996 }
6997 
6998 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6999 {
7000 	struct r5conf *conf = mddev->private;
7001 	int err = 0;
7002 	int number = rdev->raid_disk;
7003 	struct md_rdev **rdevp;
7004 	struct disk_info *p = conf->disks + number;
7005 
7006 	print_raid5_conf(conf);
7007 	if (rdev == p->rdev)
7008 		rdevp = &p->rdev;
7009 	else if (rdev == p->replacement)
7010 		rdevp = &p->replacement;
7011 	else
7012 		return 0;
7013 
7014 	if (number >= conf->raid_disks &&
7015 	    conf->reshape_progress == MaxSector)
7016 		clear_bit(In_sync, &rdev->flags);
7017 
7018 	if (test_bit(In_sync, &rdev->flags) ||
7019 	    atomic_read(&rdev->nr_pending)) {
7020 		err = -EBUSY;
7021 		goto abort;
7022 	}
7023 	/* Only remove non-faulty devices if recovery
7024 	 * isn't possible.
7025 	 */
7026 	if (!test_bit(Faulty, &rdev->flags) &&
7027 	    mddev->recovery_disabled != conf->recovery_disabled &&
7028 	    !has_failed(conf) &&
7029 	    (!p->replacement || p->replacement == rdev) &&
7030 	    number < conf->raid_disks) {
7031 		err = -EBUSY;
7032 		goto abort;
7033 	}
7034 	*rdevp = NULL;
7035 	synchronize_rcu();
7036 	if (atomic_read(&rdev->nr_pending)) {
7037 		/* lost the race, try later */
7038 		err = -EBUSY;
7039 		*rdevp = rdev;
7040 	} else if (p->replacement) {
7041 		/* We must have just cleared 'rdev' */
7042 		p->rdev = p->replacement;
7043 		clear_bit(Replacement, &p->replacement->flags);
7044 		smp_mb(); /* Make sure other CPUs may see both as identical
7045 			   * but will never see neither - if they are careful
7046 			   */
7047 		p->replacement = NULL;
7048 		clear_bit(WantReplacement, &rdev->flags);
7049 	} else
7050 		/* We might have just removed the Replacement as faulty-
7051 		 * clear the bit just in case
7052 		 */
7053 		clear_bit(WantReplacement, &rdev->flags);
7054 abort:
7055 
7056 	print_raid5_conf(conf);
7057 	return err;
7058 }
7059 
7060 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7061 {
7062 	struct r5conf *conf = mddev->private;
7063 	int err = -EEXIST;
7064 	int disk;
7065 	struct disk_info *p;
7066 	int first = 0;
7067 	int last = conf->raid_disks - 1;
7068 
7069 	if (mddev->recovery_disabled == conf->recovery_disabled)
7070 		return -EBUSY;
7071 
7072 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7073 		/* no point adding a device */
7074 		return -EINVAL;
7075 
7076 	if (rdev->raid_disk >= 0)
7077 		first = last = rdev->raid_disk;
7078 
7079 	/*
7080 	 * find the disk ... but prefer rdev->saved_raid_disk
7081 	 * if possible.
7082 	 */
7083 	if (rdev->saved_raid_disk >= 0 &&
7084 	    rdev->saved_raid_disk >= first &&
7085 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7086 		first = rdev->saved_raid_disk;
7087 
7088 	for (disk = first; disk <= last; disk++) {
7089 		p = conf->disks + disk;
7090 		if (p->rdev == NULL) {
7091 			clear_bit(In_sync, &rdev->flags);
7092 			rdev->raid_disk = disk;
7093 			err = 0;
7094 			if (rdev->saved_raid_disk != disk)
7095 				conf->fullsync = 1;
7096 			rcu_assign_pointer(p->rdev, rdev);
7097 			goto out;
7098 		}
7099 	}
7100 	for (disk = first; disk <= last; disk++) {
7101 		p = conf->disks + disk;
7102 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7103 		    p->replacement == NULL) {
7104 			clear_bit(In_sync, &rdev->flags);
7105 			set_bit(Replacement, &rdev->flags);
7106 			rdev->raid_disk = disk;
7107 			err = 0;
7108 			conf->fullsync = 1;
7109 			rcu_assign_pointer(p->replacement, rdev);
7110 			break;
7111 		}
7112 	}
7113 out:
7114 	print_raid5_conf(conf);
7115 	return err;
7116 }
7117 
7118 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7119 {
7120 	/* no resync is happening, and there is enough space
7121 	 * on all devices, so we can resize.
7122 	 * We need to make sure resync covers any new space.
7123 	 * If the array is shrinking we should possibly wait until
7124 	 * any io in the removed space completes, but it hardly seems
7125 	 * worth it.
7126 	 */
7127 	sector_t newsize;
7128 	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7129 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7130 	if (mddev->external_size &&
7131 	    mddev->array_sectors > newsize)
7132 		return -EINVAL;
7133 	if (mddev->bitmap) {
7134 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7135 		if (ret)
7136 			return ret;
7137 	}
7138 	md_set_array_sectors(mddev, newsize);
7139 	set_capacity(mddev->gendisk, mddev->array_sectors);
7140 	revalidate_disk(mddev->gendisk);
7141 	if (sectors > mddev->dev_sectors &&
7142 	    mddev->recovery_cp > mddev->dev_sectors) {
7143 		mddev->recovery_cp = mddev->dev_sectors;
7144 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7145 	}
7146 	mddev->dev_sectors = sectors;
7147 	mddev->resync_max_sectors = sectors;
7148 	return 0;
7149 }
7150 
7151 static int check_stripe_cache(struct mddev *mddev)
7152 {
7153 	/* Can only proceed if there are plenty of stripe_heads.
7154 	 * We need a minimum of one full stripe,, and for sensible progress
7155 	 * it is best to have about 4 times that.
7156 	 * If we require 4 times, then the default 256 4K stripe_heads will
7157 	 * allow for chunk sizes up to 256K, which is probably OK.
7158 	 * If the chunk size is greater, user-space should request more
7159 	 * stripe_heads first.
7160 	 */
7161 	struct r5conf *conf = mddev->private;
7162 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7163 	    > conf->min_nr_stripes ||
7164 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7165 	    > conf->min_nr_stripes) {
7166 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7167 		       mdname(mddev),
7168 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7169 			/ STRIPE_SIZE)*4);
7170 		return 0;
7171 	}
7172 	return 1;
7173 }
7174 
7175 static int check_reshape(struct mddev *mddev)
7176 {
7177 	struct r5conf *conf = mddev->private;
7178 
7179 	if (mddev->delta_disks == 0 &&
7180 	    mddev->new_layout == mddev->layout &&
7181 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7182 		return 0; /* nothing to do */
7183 	if (has_failed(conf))
7184 		return -EINVAL;
7185 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7186 		/* We might be able to shrink, but the devices must
7187 		 * be made bigger first.
7188 		 * For raid6, 4 is the minimum size.
7189 		 * Otherwise 2 is the minimum
7190 		 */
7191 		int min = 2;
7192 		if (mddev->level == 6)
7193 			min = 4;
7194 		if (mddev->raid_disks + mddev->delta_disks < min)
7195 			return -EINVAL;
7196 	}
7197 
7198 	if (!check_stripe_cache(mddev))
7199 		return -ENOSPC;
7200 
7201 	return resize_stripes(conf, (conf->previous_raid_disks
7202 				     + mddev->delta_disks));
7203 }
7204 
7205 static int raid5_start_reshape(struct mddev *mddev)
7206 {
7207 	struct r5conf *conf = mddev->private;
7208 	struct md_rdev *rdev;
7209 	int spares = 0;
7210 	unsigned long flags;
7211 
7212 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7213 		return -EBUSY;
7214 
7215 	if (!check_stripe_cache(mddev))
7216 		return -ENOSPC;
7217 
7218 	if (has_failed(conf))
7219 		return -EINVAL;
7220 
7221 	rdev_for_each(rdev, mddev) {
7222 		if (!test_bit(In_sync, &rdev->flags)
7223 		    && !test_bit(Faulty, &rdev->flags))
7224 			spares++;
7225 	}
7226 
7227 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7228 		/* Not enough devices even to make a degraded array
7229 		 * of that size
7230 		 */
7231 		return -EINVAL;
7232 
7233 	/* Refuse to reduce size of the array.  Any reductions in
7234 	 * array size must be through explicit setting of array_size
7235 	 * attribute.
7236 	 */
7237 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7238 	    < mddev->array_sectors) {
7239 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
7240 		       "before number of disks\n", mdname(mddev));
7241 		return -EINVAL;
7242 	}
7243 
7244 	atomic_set(&conf->reshape_stripes, 0);
7245 	spin_lock_irq(&conf->device_lock);
7246 	write_seqcount_begin(&conf->gen_lock);
7247 	conf->previous_raid_disks = conf->raid_disks;
7248 	conf->raid_disks += mddev->delta_disks;
7249 	conf->prev_chunk_sectors = conf->chunk_sectors;
7250 	conf->chunk_sectors = mddev->new_chunk_sectors;
7251 	conf->prev_algo = conf->algorithm;
7252 	conf->algorithm = mddev->new_layout;
7253 	conf->generation++;
7254 	/* Code that selects data_offset needs to see the generation update
7255 	 * if reshape_progress has been set - so a memory barrier needed.
7256 	 */
7257 	smp_mb();
7258 	if (mddev->reshape_backwards)
7259 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7260 	else
7261 		conf->reshape_progress = 0;
7262 	conf->reshape_safe = conf->reshape_progress;
7263 	write_seqcount_end(&conf->gen_lock);
7264 	spin_unlock_irq(&conf->device_lock);
7265 
7266 	/* Now make sure any requests that proceeded on the assumption
7267 	 * the reshape wasn't running - like Discard or Read - have
7268 	 * completed.
7269 	 */
7270 	mddev_suspend(mddev);
7271 	mddev_resume(mddev);
7272 
7273 	/* Add some new drives, as many as will fit.
7274 	 * We know there are enough to make the newly sized array work.
7275 	 * Don't add devices if we are reducing the number of
7276 	 * devices in the array.  This is because it is not possible
7277 	 * to correctly record the "partially reconstructed" state of
7278 	 * such devices during the reshape and confusion could result.
7279 	 */
7280 	if (mddev->delta_disks >= 0) {
7281 		rdev_for_each(rdev, mddev)
7282 			if (rdev->raid_disk < 0 &&
7283 			    !test_bit(Faulty, &rdev->flags)) {
7284 				if (raid5_add_disk(mddev, rdev) == 0) {
7285 					if (rdev->raid_disk
7286 					    >= conf->previous_raid_disks)
7287 						set_bit(In_sync, &rdev->flags);
7288 					else
7289 						rdev->recovery_offset = 0;
7290 
7291 					if (sysfs_link_rdev(mddev, rdev))
7292 						/* Failure here is OK */;
7293 				}
7294 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7295 				   && !test_bit(Faulty, &rdev->flags)) {
7296 				/* This is a spare that was manually added */
7297 				set_bit(In_sync, &rdev->flags);
7298 			}
7299 
7300 		/* When a reshape changes the number of devices,
7301 		 * ->degraded is measured against the larger of the
7302 		 * pre and post number of devices.
7303 		 */
7304 		spin_lock_irqsave(&conf->device_lock, flags);
7305 		mddev->degraded = calc_degraded(conf);
7306 		spin_unlock_irqrestore(&conf->device_lock, flags);
7307 	}
7308 	mddev->raid_disks = conf->raid_disks;
7309 	mddev->reshape_position = conf->reshape_progress;
7310 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7311 
7312 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7313 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7314 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7315 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7316 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7317 						"reshape");
7318 	if (!mddev->sync_thread) {
7319 		mddev->recovery = 0;
7320 		spin_lock_irq(&conf->device_lock);
7321 		write_seqcount_begin(&conf->gen_lock);
7322 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7323 		mddev->new_chunk_sectors =
7324 			conf->chunk_sectors = conf->prev_chunk_sectors;
7325 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7326 		rdev_for_each(rdev, mddev)
7327 			rdev->new_data_offset = rdev->data_offset;
7328 		smp_wmb();
7329 		conf->generation --;
7330 		conf->reshape_progress = MaxSector;
7331 		mddev->reshape_position = MaxSector;
7332 		write_seqcount_end(&conf->gen_lock);
7333 		spin_unlock_irq(&conf->device_lock);
7334 		return -EAGAIN;
7335 	}
7336 	conf->reshape_checkpoint = jiffies;
7337 	md_wakeup_thread(mddev->sync_thread);
7338 	md_new_event(mddev);
7339 	return 0;
7340 }
7341 
7342 /* This is called from the reshape thread and should make any
7343  * changes needed in 'conf'
7344  */
7345 static void end_reshape(struct r5conf *conf)
7346 {
7347 
7348 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7349 		struct md_rdev *rdev;
7350 
7351 		spin_lock_irq(&conf->device_lock);
7352 		conf->previous_raid_disks = conf->raid_disks;
7353 		rdev_for_each(rdev, conf->mddev)
7354 			rdev->data_offset = rdev->new_data_offset;
7355 		smp_wmb();
7356 		conf->reshape_progress = MaxSector;
7357 		spin_unlock_irq(&conf->device_lock);
7358 		wake_up(&conf->wait_for_overlap);
7359 
7360 		/* read-ahead size must cover two whole stripes, which is
7361 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7362 		 */
7363 		if (conf->mddev->queue) {
7364 			int data_disks = conf->raid_disks - conf->max_degraded;
7365 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7366 						   / PAGE_SIZE);
7367 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7368 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7369 		}
7370 	}
7371 }
7372 
7373 /* This is called from the raid5d thread with mddev_lock held.
7374  * It makes config changes to the device.
7375  */
7376 static void raid5_finish_reshape(struct mddev *mddev)
7377 {
7378 	struct r5conf *conf = mddev->private;
7379 
7380 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7381 
7382 		if (mddev->delta_disks > 0) {
7383 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7384 			set_capacity(mddev->gendisk, mddev->array_sectors);
7385 			revalidate_disk(mddev->gendisk);
7386 		} else {
7387 			int d;
7388 			spin_lock_irq(&conf->device_lock);
7389 			mddev->degraded = calc_degraded(conf);
7390 			spin_unlock_irq(&conf->device_lock);
7391 			for (d = conf->raid_disks ;
7392 			     d < conf->raid_disks - mddev->delta_disks;
7393 			     d++) {
7394 				struct md_rdev *rdev = conf->disks[d].rdev;
7395 				if (rdev)
7396 					clear_bit(In_sync, &rdev->flags);
7397 				rdev = conf->disks[d].replacement;
7398 				if (rdev)
7399 					clear_bit(In_sync, &rdev->flags);
7400 			}
7401 		}
7402 		mddev->layout = conf->algorithm;
7403 		mddev->chunk_sectors = conf->chunk_sectors;
7404 		mddev->reshape_position = MaxSector;
7405 		mddev->delta_disks = 0;
7406 		mddev->reshape_backwards = 0;
7407 	}
7408 }
7409 
7410 static void raid5_quiesce(struct mddev *mddev, int state)
7411 {
7412 	struct r5conf *conf = mddev->private;
7413 
7414 	switch(state) {
7415 	case 2: /* resume for a suspend */
7416 		wake_up(&conf->wait_for_overlap);
7417 		break;
7418 
7419 	case 1: /* stop all writes */
7420 		lock_all_device_hash_locks_irq(conf);
7421 		/* '2' tells resync/reshape to pause so that all
7422 		 * active stripes can drain
7423 		 */
7424 		conf->quiesce = 2;
7425 		wait_event_cmd(conf->wait_for_stripe,
7426 				    atomic_read(&conf->active_stripes) == 0 &&
7427 				    atomic_read(&conf->active_aligned_reads) == 0,
7428 				    unlock_all_device_hash_locks_irq(conf),
7429 				    lock_all_device_hash_locks_irq(conf));
7430 		conf->quiesce = 1;
7431 		unlock_all_device_hash_locks_irq(conf);
7432 		/* allow reshape to continue */
7433 		wake_up(&conf->wait_for_overlap);
7434 		break;
7435 
7436 	case 0: /* re-enable writes */
7437 		lock_all_device_hash_locks_irq(conf);
7438 		conf->quiesce = 0;
7439 		wake_up(&conf->wait_for_stripe);
7440 		wake_up(&conf->wait_for_overlap);
7441 		unlock_all_device_hash_locks_irq(conf);
7442 		break;
7443 	}
7444 }
7445 
7446 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7447 {
7448 	struct r0conf *raid0_conf = mddev->private;
7449 	sector_t sectors;
7450 
7451 	/* for raid0 takeover only one zone is supported */
7452 	if (raid0_conf->nr_strip_zones > 1) {
7453 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7454 		       mdname(mddev));
7455 		return ERR_PTR(-EINVAL);
7456 	}
7457 
7458 	sectors = raid0_conf->strip_zone[0].zone_end;
7459 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7460 	mddev->dev_sectors = sectors;
7461 	mddev->new_level = level;
7462 	mddev->new_layout = ALGORITHM_PARITY_N;
7463 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7464 	mddev->raid_disks += 1;
7465 	mddev->delta_disks = 1;
7466 	/* make sure it will be not marked as dirty */
7467 	mddev->recovery_cp = MaxSector;
7468 
7469 	return setup_conf(mddev);
7470 }
7471 
7472 static void *raid5_takeover_raid1(struct mddev *mddev)
7473 {
7474 	int chunksect;
7475 
7476 	if (mddev->raid_disks != 2 ||
7477 	    mddev->degraded > 1)
7478 		return ERR_PTR(-EINVAL);
7479 
7480 	/* Should check if there are write-behind devices? */
7481 
7482 	chunksect = 64*2; /* 64K by default */
7483 
7484 	/* The array must be an exact multiple of chunksize */
7485 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
7486 		chunksect >>= 1;
7487 
7488 	if ((chunksect<<9) < STRIPE_SIZE)
7489 		/* array size does not allow a suitable chunk size */
7490 		return ERR_PTR(-EINVAL);
7491 
7492 	mddev->new_level = 5;
7493 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7494 	mddev->new_chunk_sectors = chunksect;
7495 
7496 	return setup_conf(mddev);
7497 }
7498 
7499 static void *raid5_takeover_raid6(struct mddev *mddev)
7500 {
7501 	int new_layout;
7502 
7503 	switch (mddev->layout) {
7504 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7505 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7506 		break;
7507 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7508 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7509 		break;
7510 	case ALGORITHM_LEFT_SYMMETRIC_6:
7511 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
7512 		break;
7513 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7514 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7515 		break;
7516 	case ALGORITHM_PARITY_0_6:
7517 		new_layout = ALGORITHM_PARITY_0;
7518 		break;
7519 	case ALGORITHM_PARITY_N:
7520 		new_layout = ALGORITHM_PARITY_N;
7521 		break;
7522 	default:
7523 		return ERR_PTR(-EINVAL);
7524 	}
7525 	mddev->new_level = 5;
7526 	mddev->new_layout = new_layout;
7527 	mddev->delta_disks = -1;
7528 	mddev->raid_disks -= 1;
7529 	return setup_conf(mddev);
7530 }
7531 
7532 static int raid5_check_reshape(struct mddev *mddev)
7533 {
7534 	/* For a 2-drive array, the layout and chunk size can be changed
7535 	 * immediately as not restriping is needed.
7536 	 * For larger arrays we record the new value - after validation
7537 	 * to be used by a reshape pass.
7538 	 */
7539 	struct r5conf *conf = mddev->private;
7540 	int new_chunk = mddev->new_chunk_sectors;
7541 
7542 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7543 		return -EINVAL;
7544 	if (new_chunk > 0) {
7545 		if (!is_power_of_2(new_chunk))
7546 			return -EINVAL;
7547 		if (new_chunk < (PAGE_SIZE>>9))
7548 			return -EINVAL;
7549 		if (mddev->array_sectors & (new_chunk-1))
7550 			/* not factor of array size */
7551 			return -EINVAL;
7552 	}
7553 
7554 	/* They look valid */
7555 
7556 	if (mddev->raid_disks == 2) {
7557 		/* can make the change immediately */
7558 		if (mddev->new_layout >= 0) {
7559 			conf->algorithm = mddev->new_layout;
7560 			mddev->layout = mddev->new_layout;
7561 		}
7562 		if (new_chunk > 0) {
7563 			conf->chunk_sectors = new_chunk ;
7564 			mddev->chunk_sectors = new_chunk;
7565 		}
7566 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7567 		md_wakeup_thread(mddev->thread);
7568 	}
7569 	return check_reshape(mddev);
7570 }
7571 
7572 static int raid6_check_reshape(struct mddev *mddev)
7573 {
7574 	int new_chunk = mddev->new_chunk_sectors;
7575 
7576 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7577 		return -EINVAL;
7578 	if (new_chunk > 0) {
7579 		if (!is_power_of_2(new_chunk))
7580 			return -EINVAL;
7581 		if (new_chunk < (PAGE_SIZE >> 9))
7582 			return -EINVAL;
7583 		if (mddev->array_sectors & (new_chunk-1))
7584 			/* not factor of array size */
7585 			return -EINVAL;
7586 	}
7587 
7588 	/* They look valid */
7589 	return check_reshape(mddev);
7590 }
7591 
7592 static void *raid5_takeover(struct mddev *mddev)
7593 {
7594 	/* raid5 can take over:
7595 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7596 	 *  raid1 - if there are two drives.  We need to know the chunk size
7597 	 *  raid4 - trivial - just use a raid4 layout.
7598 	 *  raid6 - Providing it is a *_6 layout
7599 	 */
7600 	if (mddev->level == 0)
7601 		return raid45_takeover_raid0(mddev, 5);
7602 	if (mddev->level == 1)
7603 		return raid5_takeover_raid1(mddev);
7604 	if (mddev->level == 4) {
7605 		mddev->new_layout = ALGORITHM_PARITY_N;
7606 		mddev->new_level = 5;
7607 		return setup_conf(mddev);
7608 	}
7609 	if (mddev->level == 6)
7610 		return raid5_takeover_raid6(mddev);
7611 
7612 	return ERR_PTR(-EINVAL);
7613 }
7614 
7615 static void *raid4_takeover(struct mddev *mddev)
7616 {
7617 	/* raid4 can take over:
7618 	 *  raid0 - if there is only one strip zone
7619 	 *  raid5 - if layout is right
7620 	 */
7621 	if (mddev->level == 0)
7622 		return raid45_takeover_raid0(mddev, 4);
7623 	if (mddev->level == 5 &&
7624 	    mddev->layout == ALGORITHM_PARITY_N) {
7625 		mddev->new_layout = 0;
7626 		mddev->new_level = 4;
7627 		return setup_conf(mddev);
7628 	}
7629 	return ERR_PTR(-EINVAL);
7630 }
7631 
7632 static struct md_personality raid5_personality;
7633 
7634 static void *raid6_takeover(struct mddev *mddev)
7635 {
7636 	/* Currently can only take over a raid5.  We map the
7637 	 * personality to an equivalent raid6 personality
7638 	 * with the Q block at the end.
7639 	 */
7640 	int new_layout;
7641 
7642 	if (mddev->pers != &raid5_personality)
7643 		return ERR_PTR(-EINVAL);
7644 	if (mddev->degraded > 1)
7645 		return ERR_PTR(-EINVAL);
7646 	if (mddev->raid_disks > 253)
7647 		return ERR_PTR(-EINVAL);
7648 	if (mddev->raid_disks < 3)
7649 		return ERR_PTR(-EINVAL);
7650 
7651 	switch (mddev->layout) {
7652 	case ALGORITHM_LEFT_ASYMMETRIC:
7653 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7654 		break;
7655 	case ALGORITHM_RIGHT_ASYMMETRIC:
7656 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7657 		break;
7658 	case ALGORITHM_LEFT_SYMMETRIC:
7659 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7660 		break;
7661 	case ALGORITHM_RIGHT_SYMMETRIC:
7662 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7663 		break;
7664 	case ALGORITHM_PARITY_0:
7665 		new_layout = ALGORITHM_PARITY_0_6;
7666 		break;
7667 	case ALGORITHM_PARITY_N:
7668 		new_layout = ALGORITHM_PARITY_N;
7669 		break;
7670 	default:
7671 		return ERR_PTR(-EINVAL);
7672 	}
7673 	mddev->new_level = 6;
7674 	mddev->new_layout = new_layout;
7675 	mddev->delta_disks = 1;
7676 	mddev->raid_disks += 1;
7677 	return setup_conf(mddev);
7678 }
7679 
7680 static struct md_personality raid6_personality =
7681 {
7682 	.name		= "raid6",
7683 	.level		= 6,
7684 	.owner		= THIS_MODULE,
7685 	.make_request	= make_request,
7686 	.run		= run,
7687 	.free		= raid5_free,
7688 	.status		= status,
7689 	.error_handler	= error,
7690 	.hot_add_disk	= raid5_add_disk,
7691 	.hot_remove_disk= raid5_remove_disk,
7692 	.spare_active	= raid5_spare_active,
7693 	.sync_request	= sync_request,
7694 	.resize		= raid5_resize,
7695 	.size		= raid5_size,
7696 	.check_reshape	= raid6_check_reshape,
7697 	.start_reshape  = raid5_start_reshape,
7698 	.finish_reshape = raid5_finish_reshape,
7699 	.quiesce	= raid5_quiesce,
7700 	.takeover	= raid6_takeover,
7701 	.congested	= raid5_congested,
7702 	.mergeable_bvec	= raid5_mergeable_bvec,
7703 };
7704 static struct md_personality raid5_personality =
7705 {
7706 	.name		= "raid5",
7707 	.level		= 5,
7708 	.owner		= THIS_MODULE,
7709 	.make_request	= make_request,
7710 	.run		= run,
7711 	.free		= raid5_free,
7712 	.status		= status,
7713 	.error_handler	= error,
7714 	.hot_add_disk	= raid5_add_disk,
7715 	.hot_remove_disk= raid5_remove_disk,
7716 	.spare_active	= raid5_spare_active,
7717 	.sync_request	= sync_request,
7718 	.resize		= raid5_resize,
7719 	.size		= raid5_size,
7720 	.check_reshape	= raid5_check_reshape,
7721 	.start_reshape  = raid5_start_reshape,
7722 	.finish_reshape = raid5_finish_reshape,
7723 	.quiesce	= raid5_quiesce,
7724 	.takeover	= raid5_takeover,
7725 	.congested	= raid5_congested,
7726 	.mergeable_bvec	= raid5_mergeable_bvec,
7727 };
7728 
7729 static struct md_personality raid4_personality =
7730 {
7731 	.name		= "raid4",
7732 	.level		= 4,
7733 	.owner		= THIS_MODULE,
7734 	.make_request	= make_request,
7735 	.run		= run,
7736 	.free		= raid5_free,
7737 	.status		= status,
7738 	.error_handler	= error,
7739 	.hot_add_disk	= raid5_add_disk,
7740 	.hot_remove_disk= raid5_remove_disk,
7741 	.spare_active	= raid5_spare_active,
7742 	.sync_request	= sync_request,
7743 	.resize		= raid5_resize,
7744 	.size		= raid5_size,
7745 	.check_reshape	= raid5_check_reshape,
7746 	.start_reshape  = raid5_start_reshape,
7747 	.finish_reshape = raid5_finish_reshape,
7748 	.quiesce	= raid5_quiesce,
7749 	.takeover	= raid4_takeover,
7750 	.congested	= raid5_congested,
7751 	.mergeable_bvec	= raid5_mergeable_bvec,
7752 };
7753 
7754 static int __init raid5_init(void)
7755 {
7756 	raid5_wq = alloc_workqueue("raid5wq",
7757 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7758 	if (!raid5_wq)
7759 		return -ENOMEM;
7760 	register_md_personality(&raid6_personality);
7761 	register_md_personality(&raid5_personality);
7762 	register_md_personality(&raid4_personality);
7763 	return 0;
7764 }
7765 
7766 static void raid5_exit(void)
7767 {
7768 	unregister_md_personality(&raid6_personality);
7769 	unregister_md_personality(&raid5_personality);
7770 	unregister_md_personality(&raid4_personality);
7771 	destroy_workqueue(raid5_wq);
7772 }
7773 
7774 module_init(raid5_init);
7775 module_exit(raid5_exit);
7776 MODULE_LICENSE("GPL");
7777 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7778 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7779 MODULE_ALIAS("md-raid5");
7780 MODULE_ALIAS("md-raid4");
7781 MODULE_ALIAS("md-level-5");
7782 MODULE_ALIAS("md-level-4");
7783 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7784 MODULE_ALIAS("md-raid6");
7785 MODULE_ALIAS("md-level-6");
7786 
7787 /* This used to be two separate modules, they were: */
7788 MODULE_ALIAS("raid5");
7789 MODULE_ALIAS("raid6");
7790