1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid5.c : Multiple Devices driver for Linux 4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 5 * Copyright (C) 1999, 2000 Ingo Molnar 6 * Copyright (C) 2002, 2003 H. Peter Anvin 7 * 8 * RAID-4/5/6 management functions. 9 * Thanks to Penguin Computing for making the RAID-6 development possible 10 * by donating a test server! 11 */ 12 13 /* 14 * BITMAP UNPLUGGING: 15 * 16 * The sequencing for updating the bitmap reliably is a little 17 * subtle (and I got it wrong the first time) so it deserves some 18 * explanation. 19 * 20 * We group bitmap updates into batches. Each batch has a number. 21 * We may write out several batches at once, but that isn't very important. 22 * conf->seq_write is the number of the last batch successfully written. 23 * conf->seq_flush is the number of the last batch that was closed to 24 * new additions. 25 * When we discover that we will need to write to any block in a stripe 26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 27 * the number of the batch it will be in. This is seq_flush+1. 28 * When we are ready to do a write, if that batch hasn't been written yet, 29 * we plug the array and queue the stripe for later. 30 * When an unplug happens, we increment bm_flush, thus closing the current 31 * batch. 32 * When we notice that bm_flush > bm_write, we write out all pending updates 33 * to the bitmap, and advance bm_write to where bm_flush was. 34 * This may occasionally write a bit out twice, but is sure never to 35 * miss any bits. 36 */ 37 38 #include <linux/blkdev.h> 39 #include <linux/delay.h> 40 #include <linux/kthread.h> 41 #include <linux/raid/pq.h> 42 #include <linux/async_tx.h> 43 #include <linux/module.h> 44 #include <linux/async.h> 45 #include <linux/seq_file.h> 46 #include <linux/cpu.h> 47 #include <linux/slab.h> 48 #include <linux/ratelimit.h> 49 #include <linux/nodemask.h> 50 51 #include <trace/events/block.h> 52 #include <linux/list_sort.h> 53 54 #include "md.h" 55 #include "raid5.h" 56 #include "raid0.h" 57 #include "md-bitmap.h" 58 #include "raid5-log.h" 59 60 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED) 61 62 #define cpu_to_group(cpu) cpu_to_node(cpu) 63 #define ANY_GROUP NUMA_NO_NODE 64 65 #define RAID5_MAX_REQ_STRIPES 256 66 67 static bool devices_handle_discard_safely = false; 68 module_param(devices_handle_discard_safely, bool, 0644); 69 MODULE_PARM_DESC(devices_handle_discard_safely, 70 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 71 static struct workqueue_struct *raid5_wq; 72 73 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 74 { 75 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK; 76 return &conf->stripe_hashtbl[hash]; 77 } 78 79 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect) 80 { 81 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK; 82 } 83 84 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 85 __acquires(&conf->device_lock) 86 { 87 spin_lock_irq(conf->hash_locks + hash); 88 spin_lock(&conf->device_lock); 89 } 90 91 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 92 __releases(&conf->device_lock) 93 { 94 spin_unlock(&conf->device_lock); 95 spin_unlock_irq(conf->hash_locks + hash); 96 } 97 98 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 99 __acquires(&conf->device_lock) 100 { 101 int i; 102 spin_lock_irq(conf->hash_locks); 103 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 104 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 105 spin_lock(&conf->device_lock); 106 } 107 108 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 109 __releases(&conf->device_lock) 110 { 111 int i; 112 spin_unlock(&conf->device_lock); 113 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) 114 spin_unlock(conf->hash_locks + i); 115 spin_unlock_irq(conf->hash_locks); 116 } 117 118 /* Find first data disk in a raid6 stripe */ 119 static inline int raid6_d0(struct stripe_head *sh) 120 { 121 if (sh->ddf_layout) 122 /* ddf always start from first device */ 123 return 0; 124 /* md starts just after Q block */ 125 if (sh->qd_idx == sh->disks - 1) 126 return 0; 127 else 128 return sh->qd_idx + 1; 129 } 130 static inline int raid6_next_disk(int disk, int raid_disks) 131 { 132 disk++; 133 return (disk < raid_disks) ? disk : 0; 134 } 135 136 /* When walking through the disks in a raid5, starting at raid6_d0, 137 * We need to map each disk to a 'slot', where the data disks are slot 138 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 139 * is raid_disks-1. This help does that mapping. 140 */ 141 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 142 int *count, int syndrome_disks) 143 { 144 int slot = *count; 145 146 if (sh->ddf_layout) 147 (*count)++; 148 if (idx == sh->pd_idx) 149 return syndrome_disks; 150 if (idx == sh->qd_idx) 151 return syndrome_disks + 1; 152 if (!sh->ddf_layout) 153 (*count)++; 154 return slot; 155 } 156 157 static void print_raid5_conf (struct r5conf *conf); 158 159 static int stripe_operations_active(struct stripe_head *sh) 160 { 161 return sh->check_state || sh->reconstruct_state || 162 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 163 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 164 } 165 166 static bool stripe_is_lowprio(struct stripe_head *sh) 167 { 168 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || 169 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && 170 !test_bit(STRIPE_R5C_CACHING, &sh->state); 171 } 172 173 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 174 __must_hold(&sh->raid_conf->device_lock) 175 { 176 struct r5conf *conf = sh->raid_conf; 177 struct r5worker_group *group; 178 int thread_cnt; 179 int i, cpu = sh->cpu; 180 181 if (!cpu_online(cpu)) { 182 cpu = cpumask_any(cpu_online_mask); 183 sh->cpu = cpu; 184 } 185 186 if (list_empty(&sh->lru)) { 187 struct r5worker_group *group; 188 group = conf->worker_groups + cpu_to_group(cpu); 189 if (stripe_is_lowprio(sh)) 190 list_add_tail(&sh->lru, &group->loprio_list); 191 else 192 list_add_tail(&sh->lru, &group->handle_list); 193 group->stripes_cnt++; 194 sh->group = group; 195 } 196 197 if (conf->worker_cnt_per_group == 0) { 198 md_wakeup_thread(conf->mddev->thread); 199 return; 200 } 201 202 group = conf->worker_groups + cpu_to_group(sh->cpu); 203 204 group->workers[0].working = true; 205 /* at least one worker should run to avoid race */ 206 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 207 208 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 209 /* wakeup more workers */ 210 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 211 if (group->workers[i].working == false) { 212 group->workers[i].working = true; 213 queue_work_on(sh->cpu, raid5_wq, 214 &group->workers[i].work); 215 thread_cnt--; 216 } 217 } 218 } 219 220 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 221 struct list_head *temp_inactive_list) 222 __must_hold(&conf->device_lock) 223 { 224 int i; 225 int injournal = 0; /* number of date pages with R5_InJournal */ 226 227 BUG_ON(!list_empty(&sh->lru)); 228 BUG_ON(atomic_read(&conf->active_stripes)==0); 229 230 if (r5c_is_writeback(conf->log)) 231 for (i = sh->disks; i--; ) 232 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 233 injournal++; 234 /* 235 * In the following cases, the stripe cannot be released to cached 236 * lists. Therefore, we make the stripe write out and set 237 * STRIPE_HANDLE: 238 * 1. when quiesce in r5c write back; 239 * 2. when resync is requested fot the stripe. 240 */ 241 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || 242 (conf->quiesce && r5c_is_writeback(conf->log) && 243 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { 244 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 245 r5c_make_stripe_write_out(sh); 246 set_bit(STRIPE_HANDLE, &sh->state); 247 } 248 249 if (test_bit(STRIPE_HANDLE, &sh->state)) { 250 if (test_bit(STRIPE_DELAYED, &sh->state) && 251 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 252 list_add_tail(&sh->lru, &conf->delayed_list); 253 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 254 sh->bm_seq - conf->seq_write > 0) 255 list_add_tail(&sh->lru, &conf->bitmap_list); 256 else { 257 clear_bit(STRIPE_DELAYED, &sh->state); 258 clear_bit(STRIPE_BIT_DELAY, &sh->state); 259 if (conf->worker_cnt_per_group == 0) { 260 if (stripe_is_lowprio(sh)) 261 list_add_tail(&sh->lru, 262 &conf->loprio_list); 263 else 264 list_add_tail(&sh->lru, 265 &conf->handle_list); 266 } else { 267 raid5_wakeup_stripe_thread(sh); 268 return; 269 } 270 } 271 md_wakeup_thread(conf->mddev->thread); 272 } else { 273 BUG_ON(stripe_operations_active(sh)); 274 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 275 if (atomic_dec_return(&conf->preread_active_stripes) 276 < IO_THRESHOLD) 277 md_wakeup_thread(conf->mddev->thread); 278 atomic_dec(&conf->active_stripes); 279 if (!test_bit(STRIPE_EXPANDING, &sh->state)) { 280 if (!r5c_is_writeback(conf->log)) 281 list_add_tail(&sh->lru, temp_inactive_list); 282 else { 283 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); 284 if (injournal == 0) 285 list_add_tail(&sh->lru, temp_inactive_list); 286 else if (injournal == conf->raid_disks - conf->max_degraded) { 287 /* full stripe */ 288 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) 289 atomic_inc(&conf->r5c_cached_full_stripes); 290 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) 291 atomic_dec(&conf->r5c_cached_partial_stripes); 292 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); 293 r5c_check_cached_full_stripe(conf); 294 } else 295 /* 296 * STRIPE_R5C_PARTIAL_STRIPE is set in 297 * r5c_try_caching_write(). No need to 298 * set it again. 299 */ 300 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); 301 } 302 } 303 } 304 } 305 306 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 307 struct list_head *temp_inactive_list) 308 __must_hold(&conf->device_lock) 309 { 310 if (atomic_dec_and_test(&sh->count)) 311 do_release_stripe(conf, sh, temp_inactive_list); 312 } 313 314 /* 315 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 316 * 317 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 318 * given time. Adding stripes only takes device lock, while deleting stripes 319 * only takes hash lock. 320 */ 321 static void release_inactive_stripe_list(struct r5conf *conf, 322 struct list_head *temp_inactive_list, 323 int hash) 324 { 325 int size; 326 bool do_wakeup = false; 327 unsigned long flags; 328 329 if (hash == NR_STRIPE_HASH_LOCKS) { 330 size = NR_STRIPE_HASH_LOCKS; 331 hash = NR_STRIPE_HASH_LOCKS - 1; 332 } else 333 size = 1; 334 while (size) { 335 struct list_head *list = &temp_inactive_list[size - 1]; 336 337 /* 338 * We don't hold any lock here yet, raid5_get_active_stripe() might 339 * remove stripes from the list 340 */ 341 if (!list_empty_careful(list)) { 342 spin_lock_irqsave(conf->hash_locks + hash, flags); 343 if (list_empty(conf->inactive_list + hash) && 344 !list_empty(list)) 345 atomic_dec(&conf->empty_inactive_list_nr); 346 list_splice_tail_init(list, conf->inactive_list + hash); 347 do_wakeup = true; 348 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 349 } 350 size--; 351 hash--; 352 } 353 354 if (do_wakeup) { 355 wake_up(&conf->wait_for_stripe); 356 if (atomic_read(&conf->active_stripes) == 0) 357 wake_up(&conf->wait_for_quiescent); 358 if (conf->retry_read_aligned) 359 md_wakeup_thread(conf->mddev->thread); 360 } 361 } 362 363 static int release_stripe_list(struct r5conf *conf, 364 struct list_head *temp_inactive_list) 365 __must_hold(&conf->device_lock) 366 { 367 struct stripe_head *sh, *t; 368 int count = 0; 369 struct llist_node *head; 370 371 head = llist_del_all(&conf->released_stripes); 372 head = llist_reverse_order(head); 373 llist_for_each_entry_safe(sh, t, head, release_list) { 374 int hash; 375 376 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 377 smp_mb(); 378 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 379 /* 380 * Don't worry the bit is set here, because if the bit is set 381 * again, the count is always > 1. This is true for 382 * STRIPE_ON_UNPLUG_LIST bit too. 383 */ 384 hash = sh->hash_lock_index; 385 __release_stripe(conf, sh, &temp_inactive_list[hash]); 386 count++; 387 } 388 389 return count; 390 } 391 392 void raid5_release_stripe(struct stripe_head *sh) 393 { 394 struct r5conf *conf = sh->raid_conf; 395 unsigned long flags; 396 struct list_head list; 397 int hash; 398 bool wakeup; 399 400 /* Avoid release_list until the last reference. 401 */ 402 if (atomic_add_unless(&sh->count, -1, 1)) 403 return; 404 405 if (unlikely(!conf->mddev->thread) || 406 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 407 goto slow_path; 408 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 409 if (wakeup) 410 md_wakeup_thread(conf->mddev->thread); 411 return; 412 slow_path: 413 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 414 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { 415 INIT_LIST_HEAD(&list); 416 hash = sh->hash_lock_index; 417 do_release_stripe(conf, sh, &list); 418 spin_unlock_irqrestore(&conf->device_lock, flags); 419 release_inactive_stripe_list(conf, &list, hash); 420 } 421 } 422 423 static inline void remove_hash(struct stripe_head *sh) 424 { 425 pr_debug("remove_hash(), stripe %llu\n", 426 (unsigned long long)sh->sector); 427 428 hlist_del_init(&sh->hash); 429 } 430 431 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 432 { 433 struct hlist_head *hp = stripe_hash(conf, sh->sector); 434 435 pr_debug("insert_hash(), stripe %llu\n", 436 (unsigned long long)sh->sector); 437 438 hlist_add_head(&sh->hash, hp); 439 } 440 441 /* find an idle stripe, make sure it is unhashed, and return it. */ 442 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 443 { 444 struct stripe_head *sh = NULL; 445 struct list_head *first; 446 447 if (list_empty(conf->inactive_list + hash)) 448 goto out; 449 first = (conf->inactive_list + hash)->next; 450 sh = list_entry(first, struct stripe_head, lru); 451 list_del_init(first); 452 remove_hash(sh); 453 atomic_inc(&conf->active_stripes); 454 BUG_ON(hash != sh->hash_lock_index); 455 if (list_empty(conf->inactive_list + hash)) 456 atomic_inc(&conf->empty_inactive_list_nr); 457 out: 458 return sh; 459 } 460 461 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 462 static void free_stripe_pages(struct stripe_head *sh) 463 { 464 int i; 465 struct page *p; 466 467 /* Have not allocate page pool */ 468 if (!sh->pages) 469 return; 470 471 for (i = 0; i < sh->nr_pages; i++) { 472 p = sh->pages[i]; 473 if (p) 474 put_page(p); 475 sh->pages[i] = NULL; 476 } 477 } 478 479 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp) 480 { 481 int i; 482 struct page *p; 483 484 for (i = 0; i < sh->nr_pages; i++) { 485 /* The page have allocated. */ 486 if (sh->pages[i]) 487 continue; 488 489 p = alloc_page(gfp); 490 if (!p) { 491 free_stripe_pages(sh); 492 return -ENOMEM; 493 } 494 sh->pages[i] = p; 495 } 496 return 0; 497 } 498 499 static int 500 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks) 501 { 502 int nr_pages, cnt; 503 504 if (sh->pages) 505 return 0; 506 507 /* Each of the sh->dev[i] need one conf->stripe_size */ 508 cnt = PAGE_SIZE / conf->stripe_size; 509 nr_pages = (disks + cnt - 1) / cnt; 510 511 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 512 if (!sh->pages) 513 return -ENOMEM; 514 sh->nr_pages = nr_pages; 515 sh->stripes_per_page = cnt; 516 return 0; 517 } 518 #endif 519 520 static void shrink_buffers(struct stripe_head *sh) 521 { 522 int i; 523 int num = sh->raid_conf->pool_size; 524 525 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 526 for (i = 0; i < num ; i++) { 527 struct page *p; 528 529 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 530 p = sh->dev[i].page; 531 if (!p) 532 continue; 533 sh->dev[i].page = NULL; 534 put_page(p); 535 } 536 #else 537 for (i = 0; i < num; i++) 538 sh->dev[i].page = NULL; 539 free_stripe_pages(sh); /* Free pages */ 540 #endif 541 } 542 543 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 544 { 545 int i; 546 int num = sh->raid_conf->pool_size; 547 548 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE 549 for (i = 0; i < num; i++) { 550 struct page *page; 551 552 if (!(page = alloc_page(gfp))) { 553 return 1; 554 } 555 sh->dev[i].page = page; 556 sh->dev[i].orig_page = page; 557 sh->dev[i].offset = 0; 558 } 559 #else 560 if (alloc_stripe_pages(sh, gfp)) 561 return -ENOMEM; 562 563 for (i = 0; i < num; i++) { 564 sh->dev[i].page = raid5_get_dev_page(sh, i); 565 sh->dev[i].orig_page = sh->dev[i].page; 566 sh->dev[i].offset = raid5_get_page_offset(sh, i); 567 } 568 #endif 569 return 0; 570 } 571 572 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 573 struct stripe_head *sh); 574 575 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 576 { 577 struct r5conf *conf = sh->raid_conf; 578 int i, seq; 579 580 BUG_ON(atomic_read(&sh->count) != 0); 581 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 582 BUG_ON(stripe_operations_active(sh)); 583 BUG_ON(sh->batch_head); 584 585 pr_debug("init_stripe called, stripe %llu\n", 586 (unsigned long long)sector); 587 retry: 588 seq = read_seqcount_begin(&conf->gen_lock); 589 sh->generation = conf->generation - previous; 590 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 591 sh->sector = sector; 592 stripe_set_idx(sector, conf, previous, sh); 593 sh->state = 0; 594 595 for (i = sh->disks; i--; ) { 596 struct r5dev *dev = &sh->dev[i]; 597 598 if (dev->toread || dev->read || dev->towrite || dev->written || 599 test_bit(R5_LOCKED, &dev->flags)) { 600 pr_err("sector=%llx i=%d %p %p %p %p %d\n", 601 (unsigned long long)sh->sector, i, dev->toread, 602 dev->read, dev->towrite, dev->written, 603 test_bit(R5_LOCKED, &dev->flags)); 604 WARN_ON(1); 605 } 606 dev->flags = 0; 607 dev->sector = raid5_compute_blocknr(sh, i, previous); 608 } 609 if (read_seqcount_retry(&conf->gen_lock, seq)) 610 goto retry; 611 sh->overwrite_disks = 0; 612 insert_hash(conf, sh); 613 sh->cpu = smp_processor_id(); 614 set_bit(STRIPE_BATCH_READY, &sh->state); 615 } 616 617 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 618 short generation) 619 { 620 struct stripe_head *sh; 621 622 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 623 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 624 if (sh->sector == sector && sh->generation == generation) 625 return sh; 626 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 627 return NULL; 628 } 629 630 static struct stripe_head *find_get_stripe(struct r5conf *conf, 631 sector_t sector, short generation, int hash) 632 { 633 int inc_empty_inactive_list_flag; 634 struct stripe_head *sh; 635 636 sh = __find_stripe(conf, sector, generation); 637 if (!sh) 638 return NULL; 639 640 if (atomic_inc_not_zero(&sh->count)) 641 return sh; 642 643 /* 644 * Slow path. The reference count is zero which means the stripe must 645 * be on a list (sh->lru). Must remove the stripe from the list that 646 * references it with the device_lock held. 647 */ 648 649 spin_lock(&conf->device_lock); 650 if (!atomic_read(&sh->count)) { 651 if (!test_bit(STRIPE_HANDLE, &sh->state)) 652 atomic_inc(&conf->active_stripes); 653 BUG_ON(list_empty(&sh->lru) && 654 !test_bit(STRIPE_EXPANDING, &sh->state)); 655 inc_empty_inactive_list_flag = 0; 656 if (!list_empty(conf->inactive_list + hash)) 657 inc_empty_inactive_list_flag = 1; 658 list_del_init(&sh->lru); 659 if (list_empty(conf->inactive_list + hash) && 660 inc_empty_inactive_list_flag) 661 atomic_inc(&conf->empty_inactive_list_nr); 662 if (sh->group) { 663 sh->group->stripes_cnt--; 664 sh->group = NULL; 665 } 666 } 667 atomic_inc(&sh->count); 668 spin_unlock(&conf->device_lock); 669 670 return sh; 671 } 672 673 /* 674 * Need to check if array has failed when deciding whether to: 675 * - start an array 676 * - remove non-faulty devices 677 * - add a spare 678 * - allow a reshape 679 * This determination is simple when no reshape is happening. 680 * However if there is a reshape, we need to carefully check 681 * both the before and after sections. 682 * This is because some failed devices may only affect one 683 * of the two sections, and some non-in_sync devices may 684 * be insync in the section most affected by failed devices. 685 * 686 * Most calls to this function hold &conf->device_lock. Calls 687 * in raid5_run() do not require the lock as no other threads 688 * have been started yet. 689 */ 690 int raid5_calc_degraded(struct r5conf *conf) 691 { 692 int degraded, degraded2; 693 int i; 694 695 rcu_read_lock(); 696 degraded = 0; 697 for (i = 0; i < conf->previous_raid_disks; i++) { 698 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 699 if (rdev && test_bit(Faulty, &rdev->flags)) 700 rdev = rcu_dereference(conf->disks[i].replacement); 701 if (!rdev || test_bit(Faulty, &rdev->flags)) 702 degraded++; 703 else if (test_bit(In_sync, &rdev->flags)) 704 ; 705 else 706 /* not in-sync or faulty. 707 * If the reshape increases the number of devices, 708 * this is being recovered by the reshape, so 709 * this 'previous' section is not in_sync. 710 * If the number of devices is being reduced however, 711 * the device can only be part of the array if 712 * we are reverting a reshape, so this section will 713 * be in-sync. 714 */ 715 if (conf->raid_disks >= conf->previous_raid_disks) 716 degraded++; 717 } 718 rcu_read_unlock(); 719 if (conf->raid_disks == conf->previous_raid_disks) 720 return degraded; 721 rcu_read_lock(); 722 degraded2 = 0; 723 for (i = 0; i < conf->raid_disks; i++) { 724 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 725 if (rdev && test_bit(Faulty, &rdev->flags)) 726 rdev = rcu_dereference(conf->disks[i].replacement); 727 if (!rdev || test_bit(Faulty, &rdev->flags)) 728 degraded2++; 729 else if (test_bit(In_sync, &rdev->flags)) 730 ; 731 else 732 /* not in-sync or faulty. 733 * If reshape increases the number of devices, this 734 * section has already been recovered, else it 735 * almost certainly hasn't. 736 */ 737 if (conf->raid_disks <= conf->previous_raid_disks) 738 degraded2++; 739 } 740 rcu_read_unlock(); 741 if (degraded2 > degraded) 742 return degraded2; 743 return degraded; 744 } 745 746 static bool has_failed(struct r5conf *conf) 747 { 748 int degraded = conf->mddev->degraded; 749 750 if (test_bit(MD_BROKEN, &conf->mddev->flags)) 751 return true; 752 753 if (conf->mddev->reshape_position != MaxSector) 754 degraded = raid5_calc_degraded(conf); 755 756 return degraded > conf->max_degraded; 757 } 758 759 enum stripe_result { 760 STRIPE_SUCCESS = 0, 761 STRIPE_RETRY, 762 STRIPE_SCHEDULE_AND_RETRY, 763 STRIPE_FAIL, 764 }; 765 766 struct stripe_request_ctx { 767 /* a reference to the last stripe_head for batching */ 768 struct stripe_head *batch_last; 769 770 /* first sector in the request */ 771 sector_t first_sector; 772 773 /* last sector in the request */ 774 sector_t last_sector; 775 776 /* 777 * bitmap to track stripe sectors that have been added to stripes 778 * add one to account for unaligned requests 779 */ 780 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1); 781 782 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */ 783 bool do_flush; 784 }; 785 786 /* 787 * Block until another thread clears R5_INACTIVE_BLOCKED or 788 * there are fewer than 3/4 the maximum number of active stripes 789 * and there is an inactive stripe available. 790 */ 791 static bool is_inactive_blocked(struct r5conf *conf, int hash) 792 { 793 if (list_empty(conf->inactive_list + hash)) 794 return false; 795 796 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 797 return true; 798 799 return (atomic_read(&conf->active_stripes) < 800 (conf->max_nr_stripes * 3 / 4)); 801 } 802 803 struct stripe_head *raid5_get_active_stripe(struct r5conf *conf, 804 struct stripe_request_ctx *ctx, sector_t sector, 805 unsigned int flags) 806 { 807 struct stripe_head *sh; 808 int hash = stripe_hash_locks_hash(conf, sector); 809 int previous = !!(flags & R5_GAS_PREVIOUS); 810 811 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 812 813 spin_lock_irq(conf->hash_locks + hash); 814 815 for (;;) { 816 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) { 817 /* 818 * Must release the reference to batch_last before 819 * waiting, on quiesce, otherwise the batch_last will 820 * hold a reference to a stripe and raid5_quiesce() 821 * will deadlock waiting for active_stripes to go to 822 * zero. 823 */ 824 if (ctx && ctx->batch_last) { 825 raid5_release_stripe(ctx->batch_last); 826 ctx->batch_last = NULL; 827 } 828 829 wait_event_lock_irq(conf->wait_for_quiescent, 830 !conf->quiesce, 831 *(conf->hash_locks + hash)); 832 } 833 834 sh = find_get_stripe(conf, sector, conf->generation - previous, 835 hash); 836 if (sh) 837 break; 838 839 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 840 sh = get_free_stripe(conf, hash); 841 if (sh) { 842 r5c_check_stripe_cache_usage(conf); 843 init_stripe(sh, sector, previous); 844 atomic_inc(&sh->count); 845 break; 846 } 847 848 if (!test_bit(R5_DID_ALLOC, &conf->cache_state)) 849 set_bit(R5_ALLOC_MORE, &conf->cache_state); 850 } 851 852 if (flags & R5_GAS_NOBLOCK) 853 break; 854 855 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 856 r5l_wake_reclaim(conf->log, 0); 857 858 /* release batch_last before wait to avoid risk of deadlock */ 859 if (ctx && ctx->batch_last) { 860 raid5_release_stripe(ctx->batch_last); 861 ctx->batch_last = NULL; 862 } 863 864 wait_event_lock_irq(conf->wait_for_stripe, 865 is_inactive_blocked(conf, hash), 866 *(conf->hash_locks + hash)); 867 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state); 868 } 869 870 spin_unlock_irq(conf->hash_locks + hash); 871 return sh; 872 } 873 874 static bool is_full_stripe_write(struct stripe_head *sh) 875 { 876 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 877 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 878 } 879 880 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 881 __acquires(&sh1->stripe_lock) 882 __acquires(&sh2->stripe_lock) 883 { 884 if (sh1 > sh2) { 885 spin_lock_irq(&sh2->stripe_lock); 886 spin_lock_nested(&sh1->stripe_lock, 1); 887 } else { 888 spin_lock_irq(&sh1->stripe_lock); 889 spin_lock_nested(&sh2->stripe_lock, 1); 890 } 891 } 892 893 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 894 __releases(&sh1->stripe_lock) 895 __releases(&sh2->stripe_lock) 896 { 897 spin_unlock(&sh1->stripe_lock); 898 spin_unlock_irq(&sh2->stripe_lock); 899 } 900 901 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 902 static bool stripe_can_batch(struct stripe_head *sh) 903 { 904 struct r5conf *conf = sh->raid_conf; 905 906 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 907 return false; 908 return test_bit(STRIPE_BATCH_READY, &sh->state) && 909 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 910 is_full_stripe_write(sh); 911 } 912 913 /* we only do back search */ 914 static void stripe_add_to_batch_list(struct r5conf *conf, 915 struct stripe_head *sh, struct stripe_head *last_sh) 916 { 917 struct stripe_head *head; 918 sector_t head_sector, tmp_sec; 919 int hash; 920 int dd_idx; 921 922 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 923 tmp_sec = sh->sector; 924 if (!sector_div(tmp_sec, conf->chunk_sectors)) 925 return; 926 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf); 927 928 if (last_sh && head_sector == last_sh->sector) { 929 head = last_sh; 930 atomic_inc(&head->count); 931 } else { 932 hash = stripe_hash_locks_hash(conf, head_sector); 933 spin_lock_irq(conf->hash_locks + hash); 934 head = find_get_stripe(conf, head_sector, conf->generation, 935 hash); 936 spin_unlock_irq(conf->hash_locks + hash); 937 if (!head) 938 return; 939 if (!stripe_can_batch(head)) 940 goto out; 941 } 942 943 lock_two_stripes(head, sh); 944 /* clear_batch_ready clear the flag */ 945 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 946 goto unlock_out; 947 948 if (sh->batch_head) 949 goto unlock_out; 950 951 dd_idx = 0; 952 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 953 dd_idx++; 954 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 955 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 956 goto unlock_out; 957 958 if (head->batch_head) { 959 spin_lock(&head->batch_head->batch_lock); 960 /* This batch list is already running */ 961 if (!stripe_can_batch(head)) { 962 spin_unlock(&head->batch_head->batch_lock); 963 goto unlock_out; 964 } 965 /* 966 * We must assign batch_head of this stripe within the 967 * batch_lock, otherwise clear_batch_ready of batch head 968 * stripe could clear BATCH_READY bit of this stripe and 969 * this stripe->batch_head doesn't get assigned, which 970 * could confuse clear_batch_ready for this stripe 971 */ 972 sh->batch_head = head->batch_head; 973 974 /* 975 * at this point, head's BATCH_READY could be cleared, but we 976 * can still add the stripe to batch list 977 */ 978 list_add(&sh->batch_list, &head->batch_list); 979 spin_unlock(&head->batch_head->batch_lock); 980 } else { 981 head->batch_head = head; 982 sh->batch_head = head->batch_head; 983 spin_lock(&head->batch_lock); 984 list_add_tail(&sh->batch_list, &head->batch_list); 985 spin_unlock(&head->batch_lock); 986 } 987 988 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 989 if (atomic_dec_return(&conf->preread_active_stripes) 990 < IO_THRESHOLD) 991 md_wakeup_thread(conf->mddev->thread); 992 993 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 994 int seq = sh->bm_seq; 995 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 996 sh->batch_head->bm_seq > seq) 997 seq = sh->batch_head->bm_seq; 998 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 999 sh->batch_head->bm_seq = seq; 1000 } 1001 1002 atomic_inc(&sh->count); 1003 unlock_out: 1004 unlock_two_stripes(head, sh); 1005 out: 1006 raid5_release_stripe(head); 1007 } 1008 1009 /* Determine if 'data_offset' or 'new_data_offset' should be used 1010 * in this stripe_head. 1011 */ 1012 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 1013 { 1014 sector_t progress = conf->reshape_progress; 1015 /* Need a memory barrier to make sure we see the value 1016 * of conf->generation, or ->data_offset that was set before 1017 * reshape_progress was updated. 1018 */ 1019 smp_rmb(); 1020 if (progress == MaxSector) 1021 return 0; 1022 if (sh->generation == conf->generation - 1) 1023 return 0; 1024 /* We are in a reshape, and this is a new-generation stripe, 1025 * so use new_data_offset. 1026 */ 1027 return 1; 1028 } 1029 1030 static void dispatch_bio_list(struct bio_list *tmp) 1031 { 1032 struct bio *bio; 1033 1034 while ((bio = bio_list_pop(tmp))) 1035 submit_bio_noacct(bio); 1036 } 1037 1038 static int cmp_stripe(void *priv, const struct list_head *a, 1039 const struct list_head *b) 1040 { 1041 const struct r5pending_data *da = list_entry(a, 1042 struct r5pending_data, sibling); 1043 const struct r5pending_data *db = list_entry(b, 1044 struct r5pending_data, sibling); 1045 if (da->sector > db->sector) 1046 return 1; 1047 if (da->sector < db->sector) 1048 return -1; 1049 return 0; 1050 } 1051 1052 static void dispatch_defer_bios(struct r5conf *conf, int target, 1053 struct bio_list *list) 1054 { 1055 struct r5pending_data *data; 1056 struct list_head *first, *next = NULL; 1057 int cnt = 0; 1058 1059 if (conf->pending_data_cnt == 0) 1060 return; 1061 1062 list_sort(NULL, &conf->pending_list, cmp_stripe); 1063 1064 first = conf->pending_list.next; 1065 1066 /* temporarily move the head */ 1067 if (conf->next_pending_data) 1068 list_move_tail(&conf->pending_list, 1069 &conf->next_pending_data->sibling); 1070 1071 while (!list_empty(&conf->pending_list)) { 1072 data = list_first_entry(&conf->pending_list, 1073 struct r5pending_data, sibling); 1074 if (&data->sibling == first) 1075 first = data->sibling.next; 1076 next = data->sibling.next; 1077 1078 bio_list_merge(list, &data->bios); 1079 list_move(&data->sibling, &conf->free_list); 1080 cnt++; 1081 if (cnt >= target) 1082 break; 1083 } 1084 conf->pending_data_cnt -= cnt; 1085 BUG_ON(conf->pending_data_cnt < 0 || cnt < target); 1086 1087 if (next != &conf->pending_list) 1088 conf->next_pending_data = list_entry(next, 1089 struct r5pending_data, sibling); 1090 else 1091 conf->next_pending_data = NULL; 1092 /* list isn't empty */ 1093 if (first != &conf->pending_list) 1094 list_move_tail(&conf->pending_list, first); 1095 } 1096 1097 static void flush_deferred_bios(struct r5conf *conf) 1098 { 1099 struct bio_list tmp = BIO_EMPTY_LIST; 1100 1101 if (conf->pending_data_cnt == 0) 1102 return; 1103 1104 spin_lock(&conf->pending_bios_lock); 1105 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); 1106 BUG_ON(conf->pending_data_cnt != 0); 1107 spin_unlock(&conf->pending_bios_lock); 1108 1109 dispatch_bio_list(&tmp); 1110 } 1111 1112 static void defer_issue_bios(struct r5conf *conf, sector_t sector, 1113 struct bio_list *bios) 1114 { 1115 struct bio_list tmp = BIO_EMPTY_LIST; 1116 struct r5pending_data *ent; 1117 1118 spin_lock(&conf->pending_bios_lock); 1119 ent = list_first_entry(&conf->free_list, struct r5pending_data, 1120 sibling); 1121 list_move_tail(&ent->sibling, &conf->pending_list); 1122 ent->sector = sector; 1123 bio_list_init(&ent->bios); 1124 bio_list_merge(&ent->bios, bios); 1125 conf->pending_data_cnt++; 1126 if (conf->pending_data_cnt >= PENDING_IO_MAX) 1127 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); 1128 1129 spin_unlock(&conf->pending_bios_lock); 1130 1131 dispatch_bio_list(&tmp); 1132 } 1133 1134 static void 1135 raid5_end_read_request(struct bio *bi); 1136 static void 1137 raid5_end_write_request(struct bio *bi); 1138 1139 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 1140 { 1141 struct r5conf *conf = sh->raid_conf; 1142 int i, disks = sh->disks; 1143 struct stripe_head *head_sh = sh; 1144 struct bio_list pending_bios = BIO_EMPTY_LIST; 1145 struct r5dev *dev; 1146 bool should_defer; 1147 1148 might_sleep(); 1149 1150 if (log_stripe(sh, s) == 0) 1151 return; 1152 1153 should_defer = conf->batch_bio_dispatch && conf->group_cnt; 1154 1155 for (i = disks; i--; ) { 1156 enum req_op op; 1157 blk_opf_t op_flags = 0; 1158 int replace_only = 0; 1159 struct bio *bi, *rbi; 1160 struct md_rdev *rdev, *rrdev = NULL; 1161 1162 sh = head_sh; 1163 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 1164 op = REQ_OP_WRITE; 1165 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 1166 op_flags = REQ_FUA; 1167 if (test_bit(R5_Discard, &sh->dev[i].flags)) 1168 op = REQ_OP_DISCARD; 1169 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1170 op = REQ_OP_READ; 1171 else if (test_and_clear_bit(R5_WantReplace, 1172 &sh->dev[i].flags)) { 1173 op = REQ_OP_WRITE; 1174 replace_only = 1; 1175 } else 1176 continue; 1177 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 1178 op_flags |= REQ_SYNC; 1179 1180 again: 1181 dev = &sh->dev[i]; 1182 bi = &dev->req; 1183 rbi = &dev->rreq; /* For writing to replacement */ 1184 1185 rcu_read_lock(); 1186 rrdev = rcu_dereference(conf->disks[i].replacement); 1187 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 1188 rdev = rcu_dereference(conf->disks[i].rdev); 1189 if (!rdev) { 1190 rdev = rrdev; 1191 rrdev = NULL; 1192 } 1193 if (op_is_write(op)) { 1194 if (replace_only) 1195 rdev = NULL; 1196 if (rdev == rrdev) 1197 /* We raced and saw duplicates */ 1198 rrdev = NULL; 1199 } else { 1200 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 1201 rdev = rrdev; 1202 rrdev = NULL; 1203 } 1204 1205 if (rdev && test_bit(Faulty, &rdev->flags)) 1206 rdev = NULL; 1207 if (rdev) 1208 atomic_inc(&rdev->nr_pending); 1209 if (rrdev && test_bit(Faulty, &rrdev->flags)) 1210 rrdev = NULL; 1211 if (rrdev) 1212 atomic_inc(&rrdev->nr_pending); 1213 rcu_read_unlock(); 1214 1215 /* We have already checked bad blocks for reads. Now 1216 * need to check for writes. We never accept write errors 1217 * on the replacement, so we don't to check rrdev. 1218 */ 1219 while (op_is_write(op) && rdev && 1220 test_bit(WriteErrorSeen, &rdev->flags)) { 1221 sector_t first_bad; 1222 int bad_sectors; 1223 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 1224 &first_bad, &bad_sectors); 1225 if (!bad) 1226 break; 1227 1228 if (bad < 0) { 1229 set_bit(BlockedBadBlocks, &rdev->flags); 1230 if (!conf->mddev->external && 1231 conf->mddev->sb_flags) { 1232 /* It is very unlikely, but we might 1233 * still need to write out the 1234 * bad block log - better give it 1235 * a chance*/ 1236 md_check_recovery(conf->mddev); 1237 } 1238 /* 1239 * Because md_wait_for_blocked_rdev 1240 * will dec nr_pending, we must 1241 * increment it first. 1242 */ 1243 atomic_inc(&rdev->nr_pending); 1244 md_wait_for_blocked_rdev(rdev, conf->mddev); 1245 } else { 1246 /* Acknowledged bad block - skip the write */ 1247 rdev_dec_pending(rdev, conf->mddev); 1248 rdev = NULL; 1249 } 1250 } 1251 1252 if (rdev) { 1253 if (s->syncing || s->expanding || s->expanded 1254 || s->replacing) 1255 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1256 1257 set_bit(STRIPE_IO_STARTED, &sh->state); 1258 1259 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags); 1260 bi->bi_end_io = op_is_write(op) 1261 ? raid5_end_write_request 1262 : raid5_end_read_request; 1263 bi->bi_private = sh; 1264 1265 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1266 __func__, (unsigned long long)sh->sector, 1267 bi->bi_opf, i); 1268 atomic_inc(&sh->count); 1269 if (sh != head_sh) 1270 atomic_inc(&head_sh->count); 1271 if (use_new_offset(conf, sh)) 1272 bi->bi_iter.bi_sector = (sh->sector 1273 + rdev->new_data_offset); 1274 else 1275 bi->bi_iter.bi_sector = (sh->sector 1276 + rdev->data_offset); 1277 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1278 bi->bi_opf |= REQ_NOMERGE; 1279 1280 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1281 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1282 1283 if (!op_is_write(op) && 1284 test_bit(R5_InJournal, &sh->dev[i].flags)) 1285 /* 1286 * issuing read for a page in journal, this 1287 * must be preparing for prexor in rmw; read 1288 * the data into orig_page 1289 */ 1290 sh->dev[i].vec.bv_page = sh->dev[i].orig_page; 1291 else 1292 sh->dev[i].vec.bv_page = sh->dev[i].page; 1293 bi->bi_vcnt = 1; 1294 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1295 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1296 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1297 /* 1298 * If this is discard request, set bi_vcnt 0. We don't 1299 * want to confuse SCSI because SCSI will replace payload 1300 */ 1301 if (op == REQ_OP_DISCARD) 1302 bi->bi_vcnt = 0; 1303 if (rrdev) 1304 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1305 1306 if (conf->mddev->gendisk) 1307 trace_block_bio_remap(bi, 1308 disk_devt(conf->mddev->gendisk), 1309 sh->dev[i].sector); 1310 if (should_defer && op_is_write(op)) 1311 bio_list_add(&pending_bios, bi); 1312 else 1313 submit_bio_noacct(bi); 1314 } 1315 if (rrdev) { 1316 if (s->syncing || s->expanding || s->expanded 1317 || s->replacing) 1318 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf)); 1319 1320 set_bit(STRIPE_IO_STARTED, &sh->state); 1321 1322 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags); 1323 BUG_ON(!op_is_write(op)); 1324 rbi->bi_end_io = raid5_end_write_request; 1325 rbi->bi_private = sh; 1326 1327 pr_debug("%s: for %llu schedule op %d on " 1328 "replacement disc %d\n", 1329 __func__, (unsigned long long)sh->sector, 1330 rbi->bi_opf, i); 1331 atomic_inc(&sh->count); 1332 if (sh != head_sh) 1333 atomic_inc(&head_sh->count); 1334 if (use_new_offset(conf, sh)) 1335 rbi->bi_iter.bi_sector = (sh->sector 1336 + rrdev->new_data_offset); 1337 else 1338 rbi->bi_iter.bi_sector = (sh->sector 1339 + rrdev->data_offset); 1340 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1341 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1342 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1343 rbi->bi_vcnt = 1; 1344 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf); 1345 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset; 1346 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf); 1347 /* 1348 * If this is discard request, set bi_vcnt 0. We don't 1349 * want to confuse SCSI because SCSI will replace payload 1350 */ 1351 if (op == REQ_OP_DISCARD) 1352 rbi->bi_vcnt = 0; 1353 if (conf->mddev->gendisk) 1354 trace_block_bio_remap(rbi, 1355 disk_devt(conf->mddev->gendisk), 1356 sh->dev[i].sector); 1357 if (should_defer && op_is_write(op)) 1358 bio_list_add(&pending_bios, rbi); 1359 else 1360 submit_bio_noacct(rbi); 1361 } 1362 if (!rdev && !rrdev) { 1363 if (op_is_write(op)) 1364 set_bit(STRIPE_DEGRADED, &sh->state); 1365 pr_debug("skip op %d on disc %d for sector %llu\n", 1366 bi->bi_opf, i, (unsigned long long)sh->sector); 1367 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1368 set_bit(STRIPE_HANDLE, &sh->state); 1369 } 1370 1371 if (!head_sh->batch_head) 1372 continue; 1373 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1374 batch_list); 1375 if (sh != head_sh) 1376 goto again; 1377 } 1378 1379 if (should_defer && !bio_list_empty(&pending_bios)) 1380 defer_issue_bios(conf, head_sh->sector, &pending_bios); 1381 } 1382 1383 static struct dma_async_tx_descriptor * 1384 async_copy_data(int frombio, struct bio *bio, struct page **page, 1385 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx, 1386 struct stripe_head *sh, int no_skipcopy) 1387 { 1388 struct bio_vec bvl; 1389 struct bvec_iter iter; 1390 struct page *bio_page; 1391 int page_offset; 1392 struct async_submit_ctl submit; 1393 enum async_tx_flags flags = 0; 1394 struct r5conf *conf = sh->raid_conf; 1395 1396 if (bio->bi_iter.bi_sector >= sector) 1397 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1398 else 1399 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1400 1401 if (frombio) 1402 flags |= ASYNC_TX_FENCE; 1403 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1404 1405 bio_for_each_segment(bvl, bio, iter) { 1406 int len = bvl.bv_len; 1407 int clen; 1408 int b_offset = 0; 1409 1410 if (page_offset < 0) { 1411 b_offset = -page_offset; 1412 page_offset += b_offset; 1413 len -= b_offset; 1414 } 1415 1416 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf)) 1417 clen = RAID5_STRIPE_SIZE(conf) - page_offset; 1418 else 1419 clen = len; 1420 1421 if (clen > 0) { 1422 b_offset += bvl.bv_offset; 1423 bio_page = bvl.bv_page; 1424 if (frombio) { 1425 if (conf->skip_copy && 1426 b_offset == 0 && page_offset == 0 && 1427 clen == RAID5_STRIPE_SIZE(conf) && 1428 !no_skipcopy) 1429 *page = bio_page; 1430 else 1431 tx = async_memcpy(*page, bio_page, page_offset + poff, 1432 b_offset, clen, &submit); 1433 } else 1434 tx = async_memcpy(bio_page, *page, b_offset, 1435 page_offset + poff, clen, &submit); 1436 } 1437 /* chain the operations */ 1438 submit.depend_tx = tx; 1439 1440 if (clen < len) /* hit end of page */ 1441 break; 1442 page_offset += len; 1443 } 1444 1445 return tx; 1446 } 1447 1448 static void ops_complete_biofill(void *stripe_head_ref) 1449 { 1450 struct stripe_head *sh = stripe_head_ref; 1451 int i; 1452 struct r5conf *conf = sh->raid_conf; 1453 1454 pr_debug("%s: stripe %llu\n", __func__, 1455 (unsigned long long)sh->sector); 1456 1457 /* clear completed biofills */ 1458 for (i = sh->disks; i--; ) { 1459 struct r5dev *dev = &sh->dev[i]; 1460 1461 /* acknowledge completion of a biofill operation */ 1462 /* and check if we need to reply to a read request, 1463 * new R5_Wantfill requests are held off until 1464 * !STRIPE_BIOFILL_RUN 1465 */ 1466 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1467 struct bio *rbi, *rbi2; 1468 1469 BUG_ON(!dev->read); 1470 rbi = dev->read; 1471 dev->read = NULL; 1472 while (rbi && rbi->bi_iter.bi_sector < 1473 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1474 rbi2 = r5_next_bio(conf, rbi, dev->sector); 1475 bio_endio(rbi); 1476 rbi = rbi2; 1477 } 1478 } 1479 } 1480 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1481 1482 set_bit(STRIPE_HANDLE, &sh->state); 1483 raid5_release_stripe(sh); 1484 } 1485 1486 static void ops_run_biofill(struct stripe_head *sh) 1487 { 1488 struct dma_async_tx_descriptor *tx = NULL; 1489 struct async_submit_ctl submit; 1490 int i; 1491 struct r5conf *conf = sh->raid_conf; 1492 1493 BUG_ON(sh->batch_head); 1494 pr_debug("%s: stripe %llu\n", __func__, 1495 (unsigned long long)sh->sector); 1496 1497 for (i = sh->disks; i--; ) { 1498 struct r5dev *dev = &sh->dev[i]; 1499 if (test_bit(R5_Wantfill, &dev->flags)) { 1500 struct bio *rbi; 1501 spin_lock_irq(&sh->stripe_lock); 1502 dev->read = rbi = dev->toread; 1503 dev->toread = NULL; 1504 spin_unlock_irq(&sh->stripe_lock); 1505 while (rbi && rbi->bi_iter.bi_sector < 1506 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1507 tx = async_copy_data(0, rbi, &dev->page, 1508 dev->offset, 1509 dev->sector, tx, sh, 0); 1510 rbi = r5_next_bio(conf, rbi, dev->sector); 1511 } 1512 } 1513 } 1514 1515 atomic_inc(&sh->count); 1516 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1517 async_trigger_callback(&submit); 1518 } 1519 1520 static void mark_target_uptodate(struct stripe_head *sh, int target) 1521 { 1522 struct r5dev *tgt; 1523 1524 if (target < 0) 1525 return; 1526 1527 tgt = &sh->dev[target]; 1528 set_bit(R5_UPTODATE, &tgt->flags); 1529 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1530 clear_bit(R5_Wantcompute, &tgt->flags); 1531 } 1532 1533 static void ops_complete_compute(void *stripe_head_ref) 1534 { 1535 struct stripe_head *sh = stripe_head_ref; 1536 1537 pr_debug("%s: stripe %llu\n", __func__, 1538 (unsigned long long)sh->sector); 1539 1540 /* mark the computed target(s) as uptodate */ 1541 mark_target_uptodate(sh, sh->ops.target); 1542 mark_target_uptodate(sh, sh->ops.target2); 1543 1544 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1545 if (sh->check_state == check_state_compute_run) 1546 sh->check_state = check_state_compute_result; 1547 set_bit(STRIPE_HANDLE, &sh->state); 1548 raid5_release_stripe(sh); 1549 } 1550 1551 /* return a pointer to the address conversion region of the scribble buffer */ 1552 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1553 { 1554 return percpu->scribble + i * percpu->scribble_obj_size; 1555 } 1556 1557 /* return a pointer to the address conversion region of the scribble buffer */ 1558 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1559 struct raid5_percpu *percpu, int i) 1560 { 1561 return (void *) (to_addr_page(percpu, i) + sh->disks + 2); 1562 } 1563 1564 /* 1565 * Return a pointer to record offset address. 1566 */ 1567 static unsigned int * 1568 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu) 1569 { 1570 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2); 1571 } 1572 1573 static struct dma_async_tx_descriptor * 1574 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1575 { 1576 int disks = sh->disks; 1577 struct page **xor_srcs = to_addr_page(percpu, 0); 1578 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1579 int target = sh->ops.target; 1580 struct r5dev *tgt = &sh->dev[target]; 1581 struct page *xor_dest = tgt->page; 1582 unsigned int off_dest = tgt->offset; 1583 int count = 0; 1584 struct dma_async_tx_descriptor *tx; 1585 struct async_submit_ctl submit; 1586 int i; 1587 1588 BUG_ON(sh->batch_head); 1589 1590 pr_debug("%s: stripe %llu block: %d\n", 1591 __func__, (unsigned long long)sh->sector, target); 1592 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1593 1594 for (i = disks; i--; ) { 1595 if (i != target) { 1596 off_srcs[count] = sh->dev[i].offset; 1597 xor_srcs[count++] = sh->dev[i].page; 1598 } 1599 } 1600 1601 atomic_inc(&sh->count); 1602 1603 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1604 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1605 if (unlikely(count == 1)) 1606 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 1607 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1608 else 1609 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1610 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1611 1612 return tx; 1613 } 1614 1615 /* set_syndrome_sources - populate source buffers for gen_syndrome 1616 * @srcs - (struct page *) array of size sh->disks 1617 * @offs - (unsigned int) array of offset for each page 1618 * @sh - stripe_head to parse 1619 * 1620 * Populates srcs in proper layout order for the stripe and returns the 1621 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1622 * destination buffer is recorded in srcs[count] and the Q destination 1623 * is recorded in srcs[count+1]]. 1624 */ 1625 static int set_syndrome_sources(struct page **srcs, 1626 unsigned int *offs, 1627 struct stripe_head *sh, 1628 int srctype) 1629 { 1630 int disks = sh->disks; 1631 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1632 int d0_idx = raid6_d0(sh); 1633 int count; 1634 int i; 1635 1636 for (i = 0; i < disks; i++) 1637 srcs[i] = NULL; 1638 1639 count = 0; 1640 i = d0_idx; 1641 do { 1642 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1643 struct r5dev *dev = &sh->dev[i]; 1644 1645 if (i == sh->qd_idx || i == sh->pd_idx || 1646 (srctype == SYNDROME_SRC_ALL) || 1647 (srctype == SYNDROME_SRC_WANT_DRAIN && 1648 (test_bit(R5_Wantdrain, &dev->flags) || 1649 test_bit(R5_InJournal, &dev->flags))) || 1650 (srctype == SYNDROME_SRC_WRITTEN && 1651 (dev->written || 1652 test_bit(R5_InJournal, &dev->flags)))) { 1653 if (test_bit(R5_InJournal, &dev->flags)) 1654 srcs[slot] = sh->dev[i].orig_page; 1655 else 1656 srcs[slot] = sh->dev[i].page; 1657 /* 1658 * For R5_InJournal, PAGE_SIZE must be 4KB and will 1659 * not shared page. In that case, dev[i].offset 1660 * is 0. 1661 */ 1662 offs[slot] = sh->dev[i].offset; 1663 } 1664 i = raid6_next_disk(i, disks); 1665 } while (i != d0_idx); 1666 1667 return syndrome_disks; 1668 } 1669 1670 static struct dma_async_tx_descriptor * 1671 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1672 { 1673 int disks = sh->disks; 1674 struct page **blocks = to_addr_page(percpu, 0); 1675 unsigned int *offs = to_addr_offs(sh, percpu); 1676 int target; 1677 int qd_idx = sh->qd_idx; 1678 struct dma_async_tx_descriptor *tx; 1679 struct async_submit_ctl submit; 1680 struct r5dev *tgt; 1681 struct page *dest; 1682 unsigned int dest_off; 1683 int i; 1684 int count; 1685 1686 BUG_ON(sh->batch_head); 1687 if (sh->ops.target < 0) 1688 target = sh->ops.target2; 1689 else if (sh->ops.target2 < 0) 1690 target = sh->ops.target; 1691 else 1692 /* we should only have one valid target */ 1693 BUG(); 1694 BUG_ON(target < 0); 1695 pr_debug("%s: stripe %llu block: %d\n", 1696 __func__, (unsigned long long)sh->sector, target); 1697 1698 tgt = &sh->dev[target]; 1699 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1700 dest = tgt->page; 1701 dest_off = tgt->offset; 1702 1703 atomic_inc(&sh->count); 1704 1705 if (target == qd_idx) { 1706 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1707 blocks[count] = NULL; /* regenerating p is not necessary */ 1708 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1709 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1710 ops_complete_compute, sh, 1711 to_addr_conv(sh, percpu, 0)); 1712 tx = async_gen_syndrome(blocks, offs, count+2, 1713 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1714 } else { 1715 /* Compute any data- or p-drive using XOR */ 1716 count = 0; 1717 for (i = disks; i-- ; ) { 1718 if (i == target || i == qd_idx) 1719 continue; 1720 offs[count] = sh->dev[i].offset; 1721 blocks[count++] = sh->dev[i].page; 1722 } 1723 1724 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1725 NULL, ops_complete_compute, sh, 1726 to_addr_conv(sh, percpu, 0)); 1727 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1728 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1729 } 1730 1731 return tx; 1732 } 1733 1734 static struct dma_async_tx_descriptor * 1735 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1736 { 1737 int i, count, disks = sh->disks; 1738 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1739 int d0_idx = raid6_d0(sh); 1740 int faila = -1, failb = -1; 1741 int target = sh->ops.target; 1742 int target2 = sh->ops.target2; 1743 struct r5dev *tgt = &sh->dev[target]; 1744 struct r5dev *tgt2 = &sh->dev[target2]; 1745 struct dma_async_tx_descriptor *tx; 1746 struct page **blocks = to_addr_page(percpu, 0); 1747 unsigned int *offs = to_addr_offs(sh, percpu); 1748 struct async_submit_ctl submit; 1749 1750 BUG_ON(sh->batch_head); 1751 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1752 __func__, (unsigned long long)sh->sector, target, target2); 1753 BUG_ON(target < 0 || target2 < 0); 1754 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1755 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1756 1757 /* we need to open-code set_syndrome_sources to handle the 1758 * slot number conversion for 'faila' and 'failb' 1759 */ 1760 for (i = 0; i < disks ; i++) { 1761 offs[i] = 0; 1762 blocks[i] = NULL; 1763 } 1764 count = 0; 1765 i = d0_idx; 1766 do { 1767 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1768 1769 offs[slot] = sh->dev[i].offset; 1770 blocks[slot] = sh->dev[i].page; 1771 1772 if (i == target) 1773 faila = slot; 1774 if (i == target2) 1775 failb = slot; 1776 i = raid6_next_disk(i, disks); 1777 } while (i != d0_idx); 1778 1779 BUG_ON(faila == failb); 1780 if (failb < faila) 1781 swap(faila, failb); 1782 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1783 __func__, (unsigned long long)sh->sector, faila, failb); 1784 1785 atomic_inc(&sh->count); 1786 1787 if (failb == syndrome_disks+1) { 1788 /* Q disk is one of the missing disks */ 1789 if (faila == syndrome_disks) { 1790 /* Missing P+Q, just recompute */ 1791 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1792 ops_complete_compute, sh, 1793 to_addr_conv(sh, percpu, 0)); 1794 return async_gen_syndrome(blocks, offs, syndrome_disks+2, 1795 RAID5_STRIPE_SIZE(sh->raid_conf), 1796 &submit); 1797 } else { 1798 struct page *dest; 1799 unsigned int dest_off; 1800 int data_target; 1801 int qd_idx = sh->qd_idx; 1802 1803 /* Missing D+Q: recompute D from P, then recompute Q */ 1804 if (target == qd_idx) 1805 data_target = target2; 1806 else 1807 data_target = target; 1808 1809 count = 0; 1810 for (i = disks; i-- ; ) { 1811 if (i == data_target || i == qd_idx) 1812 continue; 1813 offs[count] = sh->dev[i].offset; 1814 blocks[count++] = sh->dev[i].page; 1815 } 1816 dest = sh->dev[data_target].page; 1817 dest_off = sh->dev[data_target].offset; 1818 init_async_submit(&submit, 1819 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1820 NULL, NULL, NULL, 1821 to_addr_conv(sh, percpu, 0)); 1822 tx = async_xor_offs(dest, dest_off, blocks, offs, count, 1823 RAID5_STRIPE_SIZE(sh->raid_conf), 1824 &submit); 1825 1826 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL); 1827 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1828 ops_complete_compute, sh, 1829 to_addr_conv(sh, percpu, 0)); 1830 return async_gen_syndrome(blocks, offs, count+2, 1831 RAID5_STRIPE_SIZE(sh->raid_conf), 1832 &submit); 1833 } 1834 } else { 1835 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1836 ops_complete_compute, sh, 1837 to_addr_conv(sh, percpu, 0)); 1838 if (failb == syndrome_disks) { 1839 /* We're missing D+P. */ 1840 return async_raid6_datap_recov(syndrome_disks+2, 1841 RAID5_STRIPE_SIZE(sh->raid_conf), 1842 faila, 1843 blocks, offs, &submit); 1844 } else { 1845 /* We're missing D+D. */ 1846 return async_raid6_2data_recov(syndrome_disks+2, 1847 RAID5_STRIPE_SIZE(sh->raid_conf), 1848 faila, failb, 1849 blocks, offs, &submit); 1850 } 1851 } 1852 } 1853 1854 static void ops_complete_prexor(void *stripe_head_ref) 1855 { 1856 struct stripe_head *sh = stripe_head_ref; 1857 1858 pr_debug("%s: stripe %llu\n", __func__, 1859 (unsigned long long)sh->sector); 1860 1861 if (r5c_is_writeback(sh->raid_conf->log)) 1862 /* 1863 * raid5-cache write back uses orig_page during prexor. 1864 * After prexor, it is time to free orig_page 1865 */ 1866 r5c_release_extra_page(sh); 1867 } 1868 1869 static struct dma_async_tx_descriptor * 1870 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1871 struct dma_async_tx_descriptor *tx) 1872 { 1873 int disks = sh->disks; 1874 struct page **xor_srcs = to_addr_page(percpu, 0); 1875 unsigned int *off_srcs = to_addr_offs(sh, percpu); 1876 int count = 0, pd_idx = sh->pd_idx, i; 1877 struct async_submit_ctl submit; 1878 1879 /* existing parity data subtracted */ 1880 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 1881 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1882 1883 BUG_ON(sh->batch_head); 1884 pr_debug("%s: stripe %llu\n", __func__, 1885 (unsigned long long)sh->sector); 1886 1887 for (i = disks; i--; ) { 1888 struct r5dev *dev = &sh->dev[i]; 1889 /* Only process blocks that are known to be uptodate */ 1890 if (test_bit(R5_InJournal, &dev->flags)) { 1891 /* 1892 * For this case, PAGE_SIZE must be equal to 4KB and 1893 * page offset is zero. 1894 */ 1895 off_srcs[count] = dev->offset; 1896 xor_srcs[count++] = dev->orig_page; 1897 } else if (test_bit(R5_Wantdrain, &dev->flags)) { 1898 off_srcs[count] = dev->offset; 1899 xor_srcs[count++] = dev->page; 1900 } 1901 } 1902 1903 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1904 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1905 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 1906 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1907 1908 return tx; 1909 } 1910 1911 static struct dma_async_tx_descriptor * 1912 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1913 struct dma_async_tx_descriptor *tx) 1914 { 1915 struct page **blocks = to_addr_page(percpu, 0); 1916 unsigned int *offs = to_addr_offs(sh, percpu); 1917 int count; 1918 struct async_submit_ctl submit; 1919 1920 pr_debug("%s: stripe %llu\n", __func__, 1921 (unsigned long long)sh->sector); 1922 1923 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN); 1924 1925 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1926 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1927 tx = async_gen_syndrome(blocks, offs, count+2, 1928 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 1929 1930 return tx; 1931 } 1932 1933 static struct dma_async_tx_descriptor * 1934 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1935 { 1936 struct r5conf *conf = sh->raid_conf; 1937 int disks = sh->disks; 1938 int i; 1939 struct stripe_head *head_sh = sh; 1940 1941 pr_debug("%s: stripe %llu\n", __func__, 1942 (unsigned long long)sh->sector); 1943 1944 for (i = disks; i--; ) { 1945 struct r5dev *dev; 1946 struct bio *chosen; 1947 1948 sh = head_sh; 1949 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1950 struct bio *wbi; 1951 1952 again: 1953 dev = &sh->dev[i]; 1954 /* 1955 * clear R5_InJournal, so when rewriting a page in 1956 * journal, it is not skipped by r5l_log_stripe() 1957 */ 1958 clear_bit(R5_InJournal, &dev->flags); 1959 spin_lock_irq(&sh->stripe_lock); 1960 chosen = dev->towrite; 1961 dev->towrite = NULL; 1962 sh->overwrite_disks = 0; 1963 BUG_ON(dev->written); 1964 wbi = dev->written = chosen; 1965 spin_unlock_irq(&sh->stripe_lock); 1966 WARN_ON(dev->page != dev->orig_page); 1967 1968 while (wbi && wbi->bi_iter.bi_sector < 1969 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 1970 if (wbi->bi_opf & REQ_FUA) 1971 set_bit(R5_WantFUA, &dev->flags); 1972 if (wbi->bi_opf & REQ_SYNC) 1973 set_bit(R5_SyncIO, &dev->flags); 1974 if (bio_op(wbi) == REQ_OP_DISCARD) 1975 set_bit(R5_Discard, &dev->flags); 1976 else { 1977 tx = async_copy_data(1, wbi, &dev->page, 1978 dev->offset, 1979 dev->sector, tx, sh, 1980 r5c_is_writeback(conf->log)); 1981 if (dev->page != dev->orig_page && 1982 !r5c_is_writeback(conf->log)) { 1983 set_bit(R5_SkipCopy, &dev->flags); 1984 clear_bit(R5_UPTODATE, &dev->flags); 1985 clear_bit(R5_OVERWRITE, &dev->flags); 1986 } 1987 } 1988 wbi = r5_next_bio(conf, wbi, dev->sector); 1989 } 1990 1991 if (head_sh->batch_head) { 1992 sh = list_first_entry(&sh->batch_list, 1993 struct stripe_head, 1994 batch_list); 1995 if (sh == head_sh) 1996 continue; 1997 goto again; 1998 } 1999 } 2000 } 2001 2002 return tx; 2003 } 2004 2005 static void ops_complete_reconstruct(void *stripe_head_ref) 2006 { 2007 struct stripe_head *sh = stripe_head_ref; 2008 int disks = sh->disks; 2009 int pd_idx = sh->pd_idx; 2010 int qd_idx = sh->qd_idx; 2011 int i; 2012 bool fua = false, sync = false, discard = false; 2013 2014 pr_debug("%s: stripe %llu\n", __func__, 2015 (unsigned long long)sh->sector); 2016 2017 for (i = disks; i--; ) { 2018 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 2019 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 2020 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 2021 } 2022 2023 for (i = disks; i--; ) { 2024 struct r5dev *dev = &sh->dev[i]; 2025 2026 if (dev->written || i == pd_idx || i == qd_idx) { 2027 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { 2028 set_bit(R5_UPTODATE, &dev->flags); 2029 if (test_bit(STRIPE_EXPAND_READY, &sh->state)) 2030 set_bit(R5_Expanded, &dev->flags); 2031 } 2032 if (fua) 2033 set_bit(R5_WantFUA, &dev->flags); 2034 if (sync) 2035 set_bit(R5_SyncIO, &dev->flags); 2036 } 2037 } 2038 2039 if (sh->reconstruct_state == reconstruct_state_drain_run) 2040 sh->reconstruct_state = reconstruct_state_drain_result; 2041 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 2042 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 2043 else { 2044 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 2045 sh->reconstruct_state = reconstruct_state_result; 2046 } 2047 2048 set_bit(STRIPE_HANDLE, &sh->state); 2049 raid5_release_stripe(sh); 2050 } 2051 2052 static void 2053 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 2054 struct dma_async_tx_descriptor *tx) 2055 { 2056 int disks = sh->disks; 2057 struct page **xor_srcs; 2058 unsigned int *off_srcs; 2059 struct async_submit_ctl submit; 2060 int count, pd_idx = sh->pd_idx, i; 2061 struct page *xor_dest; 2062 unsigned int off_dest; 2063 int prexor = 0; 2064 unsigned long flags; 2065 int j = 0; 2066 struct stripe_head *head_sh = sh; 2067 int last_stripe; 2068 2069 pr_debug("%s: stripe %llu\n", __func__, 2070 (unsigned long long)sh->sector); 2071 2072 for (i = 0; i < sh->disks; i++) { 2073 if (pd_idx == i) 2074 continue; 2075 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2076 break; 2077 } 2078 if (i >= sh->disks) { 2079 atomic_inc(&sh->count); 2080 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 2081 ops_complete_reconstruct(sh); 2082 return; 2083 } 2084 again: 2085 count = 0; 2086 xor_srcs = to_addr_page(percpu, j); 2087 off_srcs = to_addr_offs(sh, percpu); 2088 /* check if prexor is active which means only process blocks 2089 * that are part of a read-modify-write (written) 2090 */ 2091 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2092 prexor = 1; 2093 off_dest = off_srcs[count] = sh->dev[pd_idx].offset; 2094 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 2095 for (i = disks; i--; ) { 2096 struct r5dev *dev = &sh->dev[i]; 2097 if (head_sh->dev[i].written || 2098 test_bit(R5_InJournal, &head_sh->dev[i].flags)) { 2099 off_srcs[count] = dev->offset; 2100 xor_srcs[count++] = dev->page; 2101 } 2102 } 2103 } else { 2104 xor_dest = sh->dev[pd_idx].page; 2105 off_dest = sh->dev[pd_idx].offset; 2106 for (i = disks; i--; ) { 2107 struct r5dev *dev = &sh->dev[i]; 2108 if (i != pd_idx) { 2109 off_srcs[count] = dev->offset; 2110 xor_srcs[count++] = dev->page; 2111 } 2112 } 2113 } 2114 2115 /* 1/ if we prexor'd then the dest is reused as a source 2116 * 2/ if we did not prexor then we are redoing the parity 2117 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 2118 * for the synchronous xor case 2119 */ 2120 last_stripe = !head_sh->batch_head || 2121 list_first_entry(&sh->batch_list, 2122 struct stripe_head, batch_list) == head_sh; 2123 if (last_stripe) { 2124 flags = ASYNC_TX_ACK | 2125 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 2126 2127 atomic_inc(&head_sh->count); 2128 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 2129 to_addr_conv(sh, percpu, j)); 2130 } else { 2131 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 2132 init_async_submit(&submit, flags, tx, NULL, NULL, 2133 to_addr_conv(sh, percpu, j)); 2134 } 2135 2136 if (unlikely(count == 1)) 2137 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0], 2138 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2139 else 2140 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2141 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2142 if (!last_stripe) { 2143 j++; 2144 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2145 batch_list); 2146 goto again; 2147 } 2148 } 2149 2150 static void 2151 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 2152 struct dma_async_tx_descriptor *tx) 2153 { 2154 struct async_submit_ctl submit; 2155 struct page **blocks; 2156 unsigned int *offs; 2157 int count, i, j = 0; 2158 struct stripe_head *head_sh = sh; 2159 int last_stripe; 2160 int synflags; 2161 unsigned long txflags; 2162 2163 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 2164 2165 for (i = 0; i < sh->disks; i++) { 2166 if (sh->pd_idx == i || sh->qd_idx == i) 2167 continue; 2168 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 2169 break; 2170 } 2171 if (i >= sh->disks) { 2172 atomic_inc(&sh->count); 2173 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 2174 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 2175 ops_complete_reconstruct(sh); 2176 return; 2177 } 2178 2179 again: 2180 blocks = to_addr_page(percpu, j); 2181 offs = to_addr_offs(sh, percpu); 2182 2183 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 2184 synflags = SYNDROME_SRC_WRITTEN; 2185 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 2186 } else { 2187 synflags = SYNDROME_SRC_ALL; 2188 txflags = ASYNC_TX_ACK; 2189 } 2190 2191 count = set_syndrome_sources(blocks, offs, sh, synflags); 2192 last_stripe = !head_sh->batch_head || 2193 list_first_entry(&sh->batch_list, 2194 struct stripe_head, batch_list) == head_sh; 2195 2196 if (last_stripe) { 2197 atomic_inc(&head_sh->count); 2198 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 2199 head_sh, to_addr_conv(sh, percpu, j)); 2200 } else 2201 init_async_submit(&submit, 0, tx, NULL, NULL, 2202 to_addr_conv(sh, percpu, j)); 2203 tx = async_gen_syndrome(blocks, offs, count+2, 2204 RAID5_STRIPE_SIZE(sh->raid_conf), &submit); 2205 if (!last_stripe) { 2206 j++; 2207 sh = list_first_entry(&sh->batch_list, struct stripe_head, 2208 batch_list); 2209 goto again; 2210 } 2211 } 2212 2213 static void ops_complete_check(void *stripe_head_ref) 2214 { 2215 struct stripe_head *sh = stripe_head_ref; 2216 2217 pr_debug("%s: stripe %llu\n", __func__, 2218 (unsigned long long)sh->sector); 2219 2220 sh->check_state = check_state_check_result; 2221 set_bit(STRIPE_HANDLE, &sh->state); 2222 raid5_release_stripe(sh); 2223 } 2224 2225 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 2226 { 2227 int disks = sh->disks; 2228 int pd_idx = sh->pd_idx; 2229 int qd_idx = sh->qd_idx; 2230 struct page *xor_dest; 2231 unsigned int off_dest; 2232 struct page **xor_srcs = to_addr_page(percpu, 0); 2233 unsigned int *off_srcs = to_addr_offs(sh, percpu); 2234 struct dma_async_tx_descriptor *tx; 2235 struct async_submit_ctl submit; 2236 int count; 2237 int i; 2238 2239 pr_debug("%s: stripe %llu\n", __func__, 2240 (unsigned long long)sh->sector); 2241 2242 BUG_ON(sh->batch_head); 2243 count = 0; 2244 xor_dest = sh->dev[pd_idx].page; 2245 off_dest = sh->dev[pd_idx].offset; 2246 off_srcs[count] = off_dest; 2247 xor_srcs[count++] = xor_dest; 2248 for (i = disks; i--; ) { 2249 if (i == pd_idx || i == qd_idx) 2250 continue; 2251 off_srcs[count] = sh->dev[i].offset; 2252 xor_srcs[count++] = sh->dev[i].page; 2253 } 2254 2255 init_async_submit(&submit, 0, NULL, NULL, NULL, 2256 to_addr_conv(sh, percpu, 0)); 2257 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count, 2258 RAID5_STRIPE_SIZE(sh->raid_conf), 2259 &sh->ops.zero_sum_result, &submit); 2260 2261 atomic_inc(&sh->count); 2262 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 2263 tx = async_trigger_callback(&submit); 2264 } 2265 2266 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 2267 { 2268 struct page **srcs = to_addr_page(percpu, 0); 2269 unsigned int *offs = to_addr_offs(sh, percpu); 2270 struct async_submit_ctl submit; 2271 int count; 2272 2273 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 2274 (unsigned long long)sh->sector, checkp); 2275 2276 BUG_ON(sh->batch_head); 2277 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL); 2278 if (!checkp) 2279 srcs[count] = NULL; 2280 2281 atomic_inc(&sh->count); 2282 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 2283 sh, to_addr_conv(sh, percpu, 0)); 2284 async_syndrome_val(srcs, offs, count+2, 2285 RAID5_STRIPE_SIZE(sh->raid_conf), 2286 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit); 2287 } 2288 2289 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 2290 { 2291 int overlap_clear = 0, i, disks = sh->disks; 2292 struct dma_async_tx_descriptor *tx = NULL; 2293 struct r5conf *conf = sh->raid_conf; 2294 int level = conf->level; 2295 struct raid5_percpu *percpu; 2296 2297 local_lock(&conf->percpu->lock); 2298 percpu = this_cpu_ptr(conf->percpu); 2299 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 2300 ops_run_biofill(sh); 2301 overlap_clear++; 2302 } 2303 2304 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 2305 if (level < 6) 2306 tx = ops_run_compute5(sh, percpu); 2307 else { 2308 if (sh->ops.target2 < 0 || sh->ops.target < 0) 2309 tx = ops_run_compute6_1(sh, percpu); 2310 else 2311 tx = ops_run_compute6_2(sh, percpu); 2312 } 2313 /* terminate the chain if reconstruct is not set to be run */ 2314 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 2315 async_tx_ack(tx); 2316 } 2317 2318 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 2319 if (level < 6) 2320 tx = ops_run_prexor5(sh, percpu, tx); 2321 else 2322 tx = ops_run_prexor6(sh, percpu, tx); 2323 } 2324 2325 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) 2326 tx = ops_run_partial_parity(sh, percpu, tx); 2327 2328 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 2329 tx = ops_run_biodrain(sh, tx); 2330 overlap_clear++; 2331 } 2332 2333 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 2334 if (level < 6) 2335 ops_run_reconstruct5(sh, percpu, tx); 2336 else 2337 ops_run_reconstruct6(sh, percpu, tx); 2338 } 2339 2340 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 2341 if (sh->check_state == check_state_run) 2342 ops_run_check_p(sh, percpu); 2343 else if (sh->check_state == check_state_run_q) 2344 ops_run_check_pq(sh, percpu, 0); 2345 else if (sh->check_state == check_state_run_pq) 2346 ops_run_check_pq(sh, percpu, 1); 2347 else 2348 BUG(); 2349 } 2350 2351 if (overlap_clear && !sh->batch_head) { 2352 for (i = disks; i--; ) { 2353 struct r5dev *dev = &sh->dev[i]; 2354 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 2355 wake_up(&sh->raid_conf->wait_for_overlap); 2356 } 2357 } 2358 local_unlock(&conf->percpu->lock); 2359 } 2360 2361 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) 2362 { 2363 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2364 kfree(sh->pages); 2365 #endif 2366 if (sh->ppl_page) 2367 __free_page(sh->ppl_page); 2368 kmem_cache_free(sc, sh); 2369 } 2370 2371 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 2372 int disks, struct r5conf *conf) 2373 { 2374 struct stripe_head *sh; 2375 2376 sh = kmem_cache_zalloc(sc, gfp); 2377 if (sh) { 2378 spin_lock_init(&sh->stripe_lock); 2379 spin_lock_init(&sh->batch_lock); 2380 INIT_LIST_HEAD(&sh->batch_list); 2381 INIT_LIST_HEAD(&sh->lru); 2382 INIT_LIST_HEAD(&sh->r5c); 2383 INIT_LIST_HEAD(&sh->log_list); 2384 atomic_set(&sh->count, 1); 2385 sh->raid_conf = conf; 2386 sh->log_start = MaxSector; 2387 2388 if (raid5_has_ppl(conf)) { 2389 sh->ppl_page = alloc_page(gfp); 2390 if (!sh->ppl_page) { 2391 free_stripe(sc, sh); 2392 return NULL; 2393 } 2394 } 2395 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2396 if (init_stripe_shared_pages(sh, conf, disks)) { 2397 free_stripe(sc, sh); 2398 return NULL; 2399 } 2400 #endif 2401 } 2402 return sh; 2403 } 2404 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2405 { 2406 struct stripe_head *sh; 2407 2408 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); 2409 if (!sh) 2410 return 0; 2411 2412 if (grow_buffers(sh, gfp)) { 2413 shrink_buffers(sh); 2414 free_stripe(conf->slab_cache, sh); 2415 return 0; 2416 } 2417 sh->hash_lock_index = 2418 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2419 /* we just created an active stripe so... */ 2420 atomic_inc(&conf->active_stripes); 2421 2422 raid5_release_stripe(sh); 2423 conf->max_nr_stripes++; 2424 return 1; 2425 } 2426 2427 static int grow_stripes(struct r5conf *conf, int num) 2428 { 2429 struct kmem_cache *sc; 2430 size_t namelen = sizeof(conf->cache_name[0]); 2431 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2432 2433 if (conf->mddev->gendisk) 2434 snprintf(conf->cache_name[0], namelen, 2435 "raid%d-%s", conf->level, mdname(conf->mddev)); 2436 else 2437 snprintf(conf->cache_name[0], namelen, 2438 "raid%d-%p", conf->level, conf->mddev); 2439 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); 2440 2441 conf->active_name = 0; 2442 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2443 struct_size_t(struct stripe_head, dev, devs), 2444 0, 0, NULL); 2445 if (!sc) 2446 return 1; 2447 conf->slab_cache = sc; 2448 conf->pool_size = devs; 2449 while (num--) 2450 if (!grow_one_stripe(conf, GFP_KERNEL)) 2451 return 1; 2452 2453 return 0; 2454 } 2455 2456 /** 2457 * scribble_alloc - allocate percpu scribble buffer for required size 2458 * of the scribble region 2459 * @percpu: from for_each_present_cpu() of the caller 2460 * @num: total number of disks in the array 2461 * @cnt: scribble objs count for required size of the scribble region 2462 * 2463 * The scribble buffer size must be enough to contain: 2464 * 1/ a struct page pointer for each device in the array +2 2465 * 2/ room to convert each entry in (1) to its corresponding dma 2466 * (dma_map_page()) or page (page_address()) address. 2467 * 2468 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2469 * calculate over all devices (not just the data blocks), using zeros in place 2470 * of the P and Q blocks. 2471 */ 2472 static int scribble_alloc(struct raid5_percpu *percpu, 2473 int num, int cnt) 2474 { 2475 size_t obj_size = 2476 sizeof(struct page *) * (num + 2) + 2477 sizeof(addr_conv_t) * (num + 2) + 2478 sizeof(unsigned int) * (num + 2); 2479 void *scribble; 2480 2481 /* 2482 * If here is in raid array suspend context, it is in memalloc noio 2483 * context as well, there is no potential recursive memory reclaim 2484 * I/Os with the GFP_KERNEL flag. 2485 */ 2486 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL); 2487 if (!scribble) 2488 return -ENOMEM; 2489 2490 kvfree(percpu->scribble); 2491 2492 percpu->scribble = scribble; 2493 percpu->scribble_obj_size = obj_size; 2494 return 0; 2495 } 2496 2497 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2498 { 2499 unsigned long cpu; 2500 int err = 0; 2501 2502 /* 2503 * Never shrink. And mddev_suspend() could deadlock if this is called 2504 * from raid5d. In that case, scribble_disks and scribble_sectors 2505 * should equal to new_disks and new_sectors 2506 */ 2507 if (conf->scribble_disks >= new_disks && 2508 conf->scribble_sectors >= new_sectors) 2509 return 0; 2510 mddev_suspend(conf->mddev); 2511 cpus_read_lock(); 2512 2513 for_each_present_cpu(cpu) { 2514 struct raid5_percpu *percpu; 2515 2516 percpu = per_cpu_ptr(conf->percpu, cpu); 2517 err = scribble_alloc(percpu, new_disks, 2518 new_sectors / RAID5_STRIPE_SECTORS(conf)); 2519 if (err) 2520 break; 2521 } 2522 2523 cpus_read_unlock(); 2524 mddev_resume(conf->mddev); 2525 if (!err) { 2526 conf->scribble_disks = new_disks; 2527 conf->scribble_sectors = new_sectors; 2528 } 2529 return err; 2530 } 2531 2532 static int resize_stripes(struct r5conf *conf, int newsize) 2533 { 2534 /* Make all the stripes able to hold 'newsize' devices. 2535 * New slots in each stripe get 'page' set to a new page. 2536 * 2537 * This happens in stages: 2538 * 1/ create a new kmem_cache and allocate the required number of 2539 * stripe_heads. 2540 * 2/ gather all the old stripe_heads and transfer the pages across 2541 * to the new stripe_heads. This will have the side effect of 2542 * freezing the array as once all stripe_heads have been collected, 2543 * no IO will be possible. Old stripe heads are freed once their 2544 * pages have been transferred over, and the old kmem_cache is 2545 * freed when all stripes are done. 2546 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2547 * we simple return a failure status - no need to clean anything up. 2548 * 4/ allocate new pages for the new slots in the new stripe_heads. 2549 * If this fails, we don't bother trying the shrink the 2550 * stripe_heads down again, we just leave them as they are. 2551 * As each stripe_head is processed the new one is released into 2552 * active service. 2553 * 2554 * Once step2 is started, we cannot afford to wait for a write, 2555 * so we use GFP_NOIO allocations. 2556 */ 2557 struct stripe_head *osh, *nsh; 2558 LIST_HEAD(newstripes); 2559 struct disk_info *ndisks; 2560 int err = 0; 2561 struct kmem_cache *sc; 2562 int i; 2563 int hash, cnt; 2564 2565 md_allow_write(conf->mddev); 2566 2567 /* Step 1 */ 2568 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2569 struct_size_t(struct stripe_head, dev, newsize), 2570 0, 0, NULL); 2571 if (!sc) 2572 return -ENOMEM; 2573 2574 /* Need to ensure auto-resizing doesn't interfere */ 2575 mutex_lock(&conf->cache_size_mutex); 2576 2577 for (i = conf->max_nr_stripes; i; i--) { 2578 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); 2579 if (!nsh) 2580 break; 2581 2582 list_add(&nsh->lru, &newstripes); 2583 } 2584 if (i) { 2585 /* didn't get enough, give up */ 2586 while (!list_empty(&newstripes)) { 2587 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2588 list_del(&nsh->lru); 2589 free_stripe(sc, nsh); 2590 } 2591 kmem_cache_destroy(sc); 2592 mutex_unlock(&conf->cache_size_mutex); 2593 return -ENOMEM; 2594 } 2595 /* Step 2 - Must use GFP_NOIO now. 2596 * OK, we have enough stripes, start collecting inactive 2597 * stripes and copying them over 2598 */ 2599 hash = 0; 2600 cnt = 0; 2601 list_for_each_entry(nsh, &newstripes, lru) { 2602 lock_device_hash_lock(conf, hash); 2603 wait_event_cmd(conf->wait_for_stripe, 2604 !list_empty(conf->inactive_list + hash), 2605 unlock_device_hash_lock(conf, hash), 2606 lock_device_hash_lock(conf, hash)); 2607 osh = get_free_stripe(conf, hash); 2608 unlock_device_hash_lock(conf, hash); 2609 2610 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2611 for (i = 0; i < osh->nr_pages; i++) { 2612 nsh->pages[i] = osh->pages[i]; 2613 osh->pages[i] = NULL; 2614 } 2615 #endif 2616 for(i=0; i<conf->pool_size; i++) { 2617 nsh->dev[i].page = osh->dev[i].page; 2618 nsh->dev[i].orig_page = osh->dev[i].page; 2619 nsh->dev[i].offset = osh->dev[i].offset; 2620 } 2621 nsh->hash_lock_index = hash; 2622 free_stripe(conf->slab_cache, osh); 2623 cnt++; 2624 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2625 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2626 hash++; 2627 cnt = 0; 2628 } 2629 } 2630 kmem_cache_destroy(conf->slab_cache); 2631 2632 /* Step 3. 2633 * At this point, we are holding all the stripes so the array 2634 * is completely stalled, so now is a good time to resize 2635 * conf->disks and the scribble region 2636 */ 2637 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); 2638 if (ndisks) { 2639 for (i = 0; i < conf->pool_size; i++) 2640 ndisks[i] = conf->disks[i]; 2641 2642 for (i = conf->pool_size; i < newsize; i++) { 2643 ndisks[i].extra_page = alloc_page(GFP_NOIO); 2644 if (!ndisks[i].extra_page) 2645 err = -ENOMEM; 2646 } 2647 2648 if (err) { 2649 for (i = conf->pool_size; i < newsize; i++) 2650 if (ndisks[i].extra_page) 2651 put_page(ndisks[i].extra_page); 2652 kfree(ndisks); 2653 } else { 2654 kfree(conf->disks); 2655 conf->disks = ndisks; 2656 } 2657 } else 2658 err = -ENOMEM; 2659 2660 conf->slab_cache = sc; 2661 conf->active_name = 1-conf->active_name; 2662 2663 /* Step 4, return new stripes to service */ 2664 while(!list_empty(&newstripes)) { 2665 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2666 list_del_init(&nsh->lru); 2667 2668 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 2669 for (i = 0; i < nsh->nr_pages; i++) { 2670 if (nsh->pages[i]) 2671 continue; 2672 nsh->pages[i] = alloc_page(GFP_NOIO); 2673 if (!nsh->pages[i]) 2674 err = -ENOMEM; 2675 } 2676 2677 for (i = conf->raid_disks; i < newsize; i++) { 2678 if (nsh->dev[i].page) 2679 continue; 2680 nsh->dev[i].page = raid5_get_dev_page(nsh, i); 2681 nsh->dev[i].orig_page = nsh->dev[i].page; 2682 nsh->dev[i].offset = raid5_get_page_offset(nsh, i); 2683 } 2684 #else 2685 for (i=conf->raid_disks; i < newsize; i++) 2686 if (nsh->dev[i].page == NULL) { 2687 struct page *p = alloc_page(GFP_NOIO); 2688 nsh->dev[i].page = p; 2689 nsh->dev[i].orig_page = p; 2690 nsh->dev[i].offset = 0; 2691 if (!p) 2692 err = -ENOMEM; 2693 } 2694 #endif 2695 raid5_release_stripe(nsh); 2696 } 2697 /* critical section pass, GFP_NOIO no longer needed */ 2698 2699 if (!err) 2700 conf->pool_size = newsize; 2701 mutex_unlock(&conf->cache_size_mutex); 2702 2703 return err; 2704 } 2705 2706 static int drop_one_stripe(struct r5conf *conf) 2707 { 2708 struct stripe_head *sh; 2709 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2710 2711 spin_lock_irq(conf->hash_locks + hash); 2712 sh = get_free_stripe(conf, hash); 2713 spin_unlock_irq(conf->hash_locks + hash); 2714 if (!sh) 2715 return 0; 2716 BUG_ON(atomic_read(&sh->count)); 2717 shrink_buffers(sh); 2718 free_stripe(conf->slab_cache, sh); 2719 atomic_dec(&conf->active_stripes); 2720 conf->max_nr_stripes--; 2721 return 1; 2722 } 2723 2724 static void shrink_stripes(struct r5conf *conf) 2725 { 2726 while (conf->max_nr_stripes && 2727 drop_one_stripe(conf)) 2728 ; 2729 2730 kmem_cache_destroy(conf->slab_cache); 2731 conf->slab_cache = NULL; 2732 } 2733 2734 /* 2735 * This helper wraps rcu_dereference_protected() and can be used when 2736 * it is known that the nr_pending of the rdev is elevated. 2737 */ 2738 static struct md_rdev *rdev_pend_deref(struct md_rdev __rcu *rdev) 2739 { 2740 return rcu_dereference_protected(rdev, 2741 atomic_read(&rcu_access_pointer(rdev)->nr_pending)); 2742 } 2743 2744 /* 2745 * This helper wraps rcu_dereference_protected() and should be used 2746 * when it is known that the mddev_lock() is held. This is safe 2747 * seeing raid5_remove_disk() has the same lock held. 2748 */ 2749 static struct md_rdev *rdev_mdlock_deref(struct mddev *mddev, 2750 struct md_rdev __rcu *rdev) 2751 { 2752 return rcu_dereference_protected(rdev, 2753 lockdep_is_held(&mddev->reconfig_mutex)); 2754 } 2755 2756 static void raid5_end_read_request(struct bio * bi) 2757 { 2758 struct stripe_head *sh = bi->bi_private; 2759 struct r5conf *conf = sh->raid_conf; 2760 int disks = sh->disks, i; 2761 struct md_rdev *rdev = NULL; 2762 sector_t s; 2763 2764 for (i=0 ; i<disks; i++) 2765 if (bi == &sh->dev[i].req) 2766 break; 2767 2768 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2769 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2770 bi->bi_status); 2771 if (i == disks) { 2772 BUG(); 2773 return; 2774 } 2775 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2776 /* If replacement finished while this request was outstanding, 2777 * 'replacement' might be NULL already. 2778 * In that case it moved down to 'rdev'. 2779 * rdev is not removed until all requests are finished. 2780 */ 2781 rdev = rdev_pend_deref(conf->disks[i].replacement); 2782 if (!rdev) 2783 rdev = rdev_pend_deref(conf->disks[i].rdev); 2784 2785 if (use_new_offset(conf, sh)) 2786 s = sh->sector + rdev->new_data_offset; 2787 else 2788 s = sh->sector + rdev->data_offset; 2789 if (!bi->bi_status) { 2790 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2791 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2792 /* Note that this cannot happen on a 2793 * replacement device. We just fail those on 2794 * any error 2795 */ 2796 pr_info_ratelimited( 2797 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n", 2798 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf), 2799 (unsigned long long)s, 2800 rdev->bdev); 2801 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors); 2802 clear_bit(R5_ReadError, &sh->dev[i].flags); 2803 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2804 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2805 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2806 2807 if (test_bit(R5_InJournal, &sh->dev[i].flags)) 2808 /* 2809 * end read for a page in journal, this 2810 * must be preparing for prexor in rmw 2811 */ 2812 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); 2813 2814 if (atomic_read(&rdev->read_errors)) 2815 atomic_set(&rdev->read_errors, 0); 2816 } else { 2817 int retry = 0; 2818 int set_bad = 0; 2819 2820 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2821 if (!(bi->bi_status == BLK_STS_PROTECTION)) 2822 atomic_inc(&rdev->read_errors); 2823 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2824 pr_warn_ratelimited( 2825 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n", 2826 mdname(conf->mddev), 2827 (unsigned long long)s, 2828 rdev->bdev); 2829 else if (conf->mddev->degraded >= conf->max_degraded) { 2830 set_bad = 1; 2831 pr_warn_ratelimited( 2832 "md/raid:%s: read error not correctable (sector %llu on %pg).\n", 2833 mdname(conf->mddev), 2834 (unsigned long long)s, 2835 rdev->bdev); 2836 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2837 /* Oh, no!!! */ 2838 set_bad = 1; 2839 pr_warn_ratelimited( 2840 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n", 2841 mdname(conf->mddev), 2842 (unsigned long long)s, 2843 rdev->bdev); 2844 } else if (atomic_read(&rdev->read_errors) 2845 > conf->max_nr_stripes) { 2846 if (!test_bit(Faulty, &rdev->flags)) { 2847 pr_warn("md/raid:%s: %d read_errors > %d stripes\n", 2848 mdname(conf->mddev), 2849 atomic_read(&rdev->read_errors), 2850 conf->max_nr_stripes); 2851 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n", 2852 mdname(conf->mddev), rdev->bdev); 2853 } 2854 } else 2855 retry = 1; 2856 if (set_bad && test_bit(In_sync, &rdev->flags) 2857 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2858 retry = 1; 2859 if (retry) 2860 if (sh->qd_idx >= 0 && sh->pd_idx == i) 2861 set_bit(R5_ReadError, &sh->dev[i].flags); 2862 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2863 set_bit(R5_ReadError, &sh->dev[i].flags); 2864 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2865 } else 2866 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2867 else { 2868 clear_bit(R5_ReadError, &sh->dev[i].flags); 2869 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2870 if (!(set_bad 2871 && test_bit(In_sync, &rdev->flags) 2872 && rdev_set_badblocks( 2873 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0))) 2874 md_error(conf->mddev, rdev); 2875 } 2876 } 2877 rdev_dec_pending(rdev, conf->mddev); 2878 bio_uninit(bi); 2879 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2880 set_bit(STRIPE_HANDLE, &sh->state); 2881 raid5_release_stripe(sh); 2882 } 2883 2884 static void raid5_end_write_request(struct bio *bi) 2885 { 2886 struct stripe_head *sh = bi->bi_private; 2887 struct r5conf *conf = sh->raid_conf; 2888 int disks = sh->disks, i; 2889 struct md_rdev *rdev; 2890 sector_t first_bad; 2891 int bad_sectors; 2892 int replacement = 0; 2893 2894 for (i = 0 ; i < disks; i++) { 2895 if (bi == &sh->dev[i].req) { 2896 rdev = rdev_pend_deref(conf->disks[i].rdev); 2897 break; 2898 } 2899 if (bi == &sh->dev[i].rreq) { 2900 rdev = rdev_pend_deref(conf->disks[i].replacement); 2901 if (rdev) 2902 replacement = 1; 2903 else 2904 /* rdev was removed and 'replacement' 2905 * replaced it. rdev is not removed 2906 * until all requests are finished. 2907 */ 2908 rdev = rdev_pend_deref(conf->disks[i].rdev); 2909 break; 2910 } 2911 } 2912 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2913 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2914 bi->bi_status); 2915 if (i == disks) { 2916 BUG(); 2917 return; 2918 } 2919 2920 if (replacement) { 2921 if (bi->bi_status) 2922 md_error(conf->mddev, rdev); 2923 else if (is_badblock(rdev, sh->sector, 2924 RAID5_STRIPE_SECTORS(conf), 2925 &first_bad, &bad_sectors)) 2926 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2927 } else { 2928 if (bi->bi_status) { 2929 set_bit(STRIPE_DEGRADED, &sh->state); 2930 set_bit(WriteErrorSeen, &rdev->flags); 2931 set_bit(R5_WriteError, &sh->dev[i].flags); 2932 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2933 set_bit(MD_RECOVERY_NEEDED, 2934 &rdev->mddev->recovery); 2935 } else if (is_badblock(rdev, sh->sector, 2936 RAID5_STRIPE_SECTORS(conf), 2937 &first_bad, &bad_sectors)) { 2938 set_bit(R5_MadeGood, &sh->dev[i].flags); 2939 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2940 /* That was a successful write so make 2941 * sure it looks like we already did 2942 * a re-write. 2943 */ 2944 set_bit(R5_ReWrite, &sh->dev[i].flags); 2945 } 2946 } 2947 rdev_dec_pending(rdev, conf->mddev); 2948 2949 if (sh->batch_head && bi->bi_status && !replacement) 2950 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2951 2952 bio_uninit(bi); 2953 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2954 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2955 set_bit(STRIPE_HANDLE, &sh->state); 2956 2957 if (sh->batch_head && sh != sh->batch_head) 2958 raid5_release_stripe(sh->batch_head); 2959 raid5_release_stripe(sh); 2960 } 2961 2962 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2963 { 2964 struct r5conf *conf = mddev->private; 2965 unsigned long flags; 2966 pr_debug("raid456: error called\n"); 2967 2968 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n", 2969 mdname(mddev), rdev->bdev); 2970 2971 spin_lock_irqsave(&conf->device_lock, flags); 2972 set_bit(Faulty, &rdev->flags); 2973 clear_bit(In_sync, &rdev->flags); 2974 mddev->degraded = raid5_calc_degraded(conf); 2975 2976 if (has_failed(conf)) { 2977 set_bit(MD_BROKEN, &conf->mddev->flags); 2978 conf->recovery_disabled = mddev->recovery_disabled; 2979 2980 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n", 2981 mdname(mddev), mddev->degraded, conf->raid_disks); 2982 } else { 2983 pr_crit("md/raid:%s: Operation continuing on %d devices.\n", 2984 mdname(mddev), conf->raid_disks - mddev->degraded); 2985 } 2986 2987 spin_unlock_irqrestore(&conf->device_lock, flags); 2988 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2989 2990 set_bit(Blocked, &rdev->flags); 2991 set_mask_bits(&mddev->sb_flags, 0, 2992 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2993 r5c_update_on_rdev_error(mddev, rdev); 2994 } 2995 2996 /* 2997 * Input: a 'big' sector number, 2998 * Output: index of the data and parity disk, and the sector # in them. 2999 */ 3000 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 3001 int previous, int *dd_idx, 3002 struct stripe_head *sh) 3003 { 3004 sector_t stripe, stripe2; 3005 sector_t chunk_number; 3006 unsigned int chunk_offset; 3007 int pd_idx, qd_idx; 3008 int ddf_layout = 0; 3009 sector_t new_sector; 3010 int algorithm = previous ? conf->prev_algo 3011 : conf->algorithm; 3012 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3013 : conf->chunk_sectors; 3014 int raid_disks = previous ? conf->previous_raid_disks 3015 : conf->raid_disks; 3016 int data_disks = raid_disks - conf->max_degraded; 3017 3018 /* First compute the information on this sector */ 3019 3020 /* 3021 * Compute the chunk number and the sector offset inside the chunk 3022 */ 3023 chunk_offset = sector_div(r_sector, sectors_per_chunk); 3024 chunk_number = r_sector; 3025 3026 /* 3027 * Compute the stripe number 3028 */ 3029 stripe = chunk_number; 3030 *dd_idx = sector_div(stripe, data_disks); 3031 stripe2 = stripe; 3032 /* 3033 * Select the parity disk based on the user selected algorithm. 3034 */ 3035 pd_idx = qd_idx = -1; 3036 switch(conf->level) { 3037 case 4: 3038 pd_idx = data_disks; 3039 break; 3040 case 5: 3041 switch (algorithm) { 3042 case ALGORITHM_LEFT_ASYMMETRIC: 3043 pd_idx = data_disks - sector_div(stripe2, raid_disks); 3044 if (*dd_idx >= pd_idx) 3045 (*dd_idx)++; 3046 break; 3047 case ALGORITHM_RIGHT_ASYMMETRIC: 3048 pd_idx = sector_div(stripe2, raid_disks); 3049 if (*dd_idx >= pd_idx) 3050 (*dd_idx)++; 3051 break; 3052 case ALGORITHM_LEFT_SYMMETRIC: 3053 pd_idx = data_disks - sector_div(stripe2, raid_disks); 3054 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3055 break; 3056 case ALGORITHM_RIGHT_SYMMETRIC: 3057 pd_idx = sector_div(stripe2, raid_disks); 3058 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3059 break; 3060 case ALGORITHM_PARITY_0: 3061 pd_idx = 0; 3062 (*dd_idx)++; 3063 break; 3064 case ALGORITHM_PARITY_N: 3065 pd_idx = data_disks; 3066 break; 3067 default: 3068 BUG(); 3069 } 3070 break; 3071 case 6: 3072 3073 switch (algorithm) { 3074 case ALGORITHM_LEFT_ASYMMETRIC: 3075 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3076 qd_idx = pd_idx + 1; 3077 if (pd_idx == raid_disks-1) { 3078 (*dd_idx)++; /* Q D D D P */ 3079 qd_idx = 0; 3080 } else if (*dd_idx >= pd_idx) 3081 (*dd_idx) += 2; /* D D P Q D */ 3082 break; 3083 case ALGORITHM_RIGHT_ASYMMETRIC: 3084 pd_idx = sector_div(stripe2, raid_disks); 3085 qd_idx = pd_idx + 1; 3086 if (pd_idx == raid_disks-1) { 3087 (*dd_idx)++; /* Q D D D P */ 3088 qd_idx = 0; 3089 } else if (*dd_idx >= pd_idx) 3090 (*dd_idx) += 2; /* D D P Q D */ 3091 break; 3092 case ALGORITHM_LEFT_SYMMETRIC: 3093 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3094 qd_idx = (pd_idx + 1) % raid_disks; 3095 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3096 break; 3097 case ALGORITHM_RIGHT_SYMMETRIC: 3098 pd_idx = sector_div(stripe2, raid_disks); 3099 qd_idx = (pd_idx + 1) % raid_disks; 3100 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 3101 break; 3102 3103 case ALGORITHM_PARITY_0: 3104 pd_idx = 0; 3105 qd_idx = 1; 3106 (*dd_idx) += 2; 3107 break; 3108 case ALGORITHM_PARITY_N: 3109 pd_idx = data_disks; 3110 qd_idx = data_disks + 1; 3111 break; 3112 3113 case ALGORITHM_ROTATING_ZERO_RESTART: 3114 /* Exactly the same as RIGHT_ASYMMETRIC, but or 3115 * of blocks for computing Q is different. 3116 */ 3117 pd_idx = sector_div(stripe2, raid_disks); 3118 qd_idx = pd_idx + 1; 3119 if (pd_idx == raid_disks-1) { 3120 (*dd_idx)++; /* Q D D D P */ 3121 qd_idx = 0; 3122 } else if (*dd_idx >= pd_idx) 3123 (*dd_idx) += 2; /* D D P Q D */ 3124 ddf_layout = 1; 3125 break; 3126 3127 case ALGORITHM_ROTATING_N_RESTART: 3128 /* Same a left_asymmetric, by first stripe is 3129 * D D D P Q rather than 3130 * Q D D D P 3131 */ 3132 stripe2 += 1; 3133 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3134 qd_idx = pd_idx + 1; 3135 if (pd_idx == raid_disks-1) { 3136 (*dd_idx)++; /* Q D D D P */ 3137 qd_idx = 0; 3138 } else if (*dd_idx >= pd_idx) 3139 (*dd_idx) += 2; /* D D P Q D */ 3140 ddf_layout = 1; 3141 break; 3142 3143 case ALGORITHM_ROTATING_N_CONTINUE: 3144 /* Same as left_symmetric but Q is before P */ 3145 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 3146 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 3147 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 3148 ddf_layout = 1; 3149 break; 3150 3151 case ALGORITHM_LEFT_ASYMMETRIC_6: 3152 /* RAID5 left_asymmetric, with Q on last device */ 3153 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3154 if (*dd_idx >= pd_idx) 3155 (*dd_idx)++; 3156 qd_idx = raid_disks - 1; 3157 break; 3158 3159 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3160 pd_idx = sector_div(stripe2, raid_disks-1); 3161 if (*dd_idx >= pd_idx) 3162 (*dd_idx)++; 3163 qd_idx = raid_disks - 1; 3164 break; 3165 3166 case ALGORITHM_LEFT_SYMMETRIC_6: 3167 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 3168 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3169 qd_idx = raid_disks - 1; 3170 break; 3171 3172 case ALGORITHM_RIGHT_SYMMETRIC_6: 3173 pd_idx = sector_div(stripe2, raid_disks-1); 3174 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 3175 qd_idx = raid_disks - 1; 3176 break; 3177 3178 case ALGORITHM_PARITY_0_6: 3179 pd_idx = 0; 3180 (*dd_idx)++; 3181 qd_idx = raid_disks - 1; 3182 break; 3183 3184 default: 3185 BUG(); 3186 } 3187 break; 3188 } 3189 3190 if (sh) { 3191 sh->pd_idx = pd_idx; 3192 sh->qd_idx = qd_idx; 3193 sh->ddf_layout = ddf_layout; 3194 } 3195 /* 3196 * Finally, compute the new sector number 3197 */ 3198 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 3199 return new_sector; 3200 } 3201 3202 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 3203 { 3204 struct r5conf *conf = sh->raid_conf; 3205 int raid_disks = sh->disks; 3206 int data_disks = raid_disks - conf->max_degraded; 3207 sector_t new_sector = sh->sector, check; 3208 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 3209 : conf->chunk_sectors; 3210 int algorithm = previous ? conf->prev_algo 3211 : conf->algorithm; 3212 sector_t stripe; 3213 int chunk_offset; 3214 sector_t chunk_number; 3215 int dummy1, dd_idx = i; 3216 sector_t r_sector; 3217 struct stripe_head sh2; 3218 3219 chunk_offset = sector_div(new_sector, sectors_per_chunk); 3220 stripe = new_sector; 3221 3222 if (i == sh->pd_idx) 3223 return 0; 3224 switch(conf->level) { 3225 case 4: break; 3226 case 5: 3227 switch (algorithm) { 3228 case ALGORITHM_LEFT_ASYMMETRIC: 3229 case ALGORITHM_RIGHT_ASYMMETRIC: 3230 if (i > sh->pd_idx) 3231 i--; 3232 break; 3233 case ALGORITHM_LEFT_SYMMETRIC: 3234 case ALGORITHM_RIGHT_SYMMETRIC: 3235 if (i < sh->pd_idx) 3236 i += raid_disks; 3237 i -= (sh->pd_idx + 1); 3238 break; 3239 case ALGORITHM_PARITY_0: 3240 i -= 1; 3241 break; 3242 case ALGORITHM_PARITY_N: 3243 break; 3244 default: 3245 BUG(); 3246 } 3247 break; 3248 case 6: 3249 if (i == sh->qd_idx) 3250 return 0; /* It is the Q disk */ 3251 switch (algorithm) { 3252 case ALGORITHM_LEFT_ASYMMETRIC: 3253 case ALGORITHM_RIGHT_ASYMMETRIC: 3254 case ALGORITHM_ROTATING_ZERO_RESTART: 3255 case ALGORITHM_ROTATING_N_RESTART: 3256 if (sh->pd_idx == raid_disks-1) 3257 i--; /* Q D D D P */ 3258 else if (i > sh->pd_idx) 3259 i -= 2; /* D D P Q D */ 3260 break; 3261 case ALGORITHM_LEFT_SYMMETRIC: 3262 case ALGORITHM_RIGHT_SYMMETRIC: 3263 if (sh->pd_idx == raid_disks-1) 3264 i--; /* Q D D D P */ 3265 else { 3266 /* D D P Q D */ 3267 if (i < sh->pd_idx) 3268 i += raid_disks; 3269 i -= (sh->pd_idx + 2); 3270 } 3271 break; 3272 case ALGORITHM_PARITY_0: 3273 i -= 2; 3274 break; 3275 case ALGORITHM_PARITY_N: 3276 break; 3277 case ALGORITHM_ROTATING_N_CONTINUE: 3278 /* Like left_symmetric, but P is before Q */ 3279 if (sh->pd_idx == 0) 3280 i--; /* P D D D Q */ 3281 else { 3282 /* D D Q P D */ 3283 if (i < sh->pd_idx) 3284 i += raid_disks; 3285 i -= (sh->pd_idx + 1); 3286 } 3287 break; 3288 case ALGORITHM_LEFT_ASYMMETRIC_6: 3289 case ALGORITHM_RIGHT_ASYMMETRIC_6: 3290 if (i > sh->pd_idx) 3291 i--; 3292 break; 3293 case ALGORITHM_LEFT_SYMMETRIC_6: 3294 case ALGORITHM_RIGHT_SYMMETRIC_6: 3295 if (i < sh->pd_idx) 3296 i += data_disks + 1; 3297 i -= (sh->pd_idx + 1); 3298 break; 3299 case ALGORITHM_PARITY_0_6: 3300 i -= 1; 3301 break; 3302 default: 3303 BUG(); 3304 } 3305 break; 3306 } 3307 3308 chunk_number = stripe * data_disks + i; 3309 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 3310 3311 check = raid5_compute_sector(conf, r_sector, 3312 previous, &dummy1, &sh2); 3313 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 3314 || sh2.qd_idx != sh->qd_idx) { 3315 pr_warn("md/raid:%s: compute_blocknr: map not correct\n", 3316 mdname(conf->mddev)); 3317 return 0; 3318 } 3319 return r_sector; 3320 } 3321 3322 /* 3323 * There are cases where we want handle_stripe_dirtying() and 3324 * schedule_reconstruction() to delay towrite to some dev of a stripe. 3325 * 3326 * This function checks whether we want to delay the towrite. Specifically, 3327 * we delay the towrite when: 3328 * 3329 * 1. degraded stripe has a non-overwrite to the missing dev, AND this 3330 * stripe has data in journal (for other devices). 3331 * 3332 * In this case, when reading data for the non-overwrite dev, it is 3333 * necessary to handle complex rmw of write back cache (prexor with 3334 * orig_page, and xor with page). To keep read path simple, we would 3335 * like to flush data in journal to RAID disks first, so complex rmw 3336 * is handled in the write patch (handle_stripe_dirtying). 3337 * 3338 * 2. when journal space is critical (R5C_LOG_CRITICAL=1) 3339 * 3340 * It is important to be able to flush all stripes in raid5-cache. 3341 * Therefore, we need reserve some space on the journal device for 3342 * these flushes. If flush operation includes pending writes to the 3343 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe 3344 * for the flush out. If we exclude these pending writes from flush 3345 * operation, we only need (conf->max_degraded + 1) pages per stripe. 3346 * Therefore, excluding pending writes in these cases enables more 3347 * efficient use of the journal device. 3348 * 3349 * Note: To make sure the stripe makes progress, we only delay 3350 * towrite for stripes with data already in journal (injournal > 0). 3351 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to 3352 * no_space_stripes list. 3353 * 3354 * 3. during journal failure 3355 * In journal failure, we try to flush all cached data to raid disks 3356 * based on data in stripe cache. The array is read-only to upper 3357 * layers, so we would skip all pending writes. 3358 * 3359 */ 3360 static inline bool delay_towrite(struct r5conf *conf, 3361 struct r5dev *dev, 3362 struct stripe_head_state *s) 3363 { 3364 /* case 1 above */ 3365 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3366 !test_bit(R5_Insync, &dev->flags) && s->injournal) 3367 return true; 3368 /* case 2 above */ 3369 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && 3370 s->injournal > 0) 3371 return true; 3372 /* case 3 above */ 3373 if (s->log_failed && s->injournal) 3374 return true; 3375 return false; 3376 } 3377 3378 static void 3379 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 3380 int rcw, int expand) 3381 { 3382 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 3383 struct r5conf *conf = sh->raid_conf; 3384 int level = conf->level; 3385 3386 if (rcw) { 3387 /* 3388 * In some cases, handle_stripe_dirtying initially decided to 3389 * run rmw and allocates extra page for prexor. However, rcw is 3390 * cheaper later on. We need to free the extra page now, 3391 * because we won't be able to do that in ops_complete_prexor(). 3392 */ 3393 r5c_release_extra_page(sh); 3394 3395 for (i = disks; i--; ) { 3396 struct r5dev *dev = &sh->dev[i]; 3397 3398 if (dev->towrite && !delay_towrite(conf, dev, s)) { 3399 set_bit(R5_LOCKED, &dev->flags); 3400 set_bit(R5_Wantdrain, &dev->flags); 3401 if (!expand) 3402 clear_bit(R5_UPTODATE, &dev->flags); 3403 s->locked++; 3404 } else if (test_bit(R5_InJournal, &dev->flags)) { 3405 set_bit(R5_LOCKED, &dev->flags); 3406 s->locked++; 3407 } 3408 } 3409 /* if we are not expanding this is a proper write request, and 3410 * there will be bios with new data to be drained into the 3411 * stripe cache 3412 */ 3413 if (!expand) { 3414 if (!s->locked) 3415 /* False alarm, nothing to do */ 3416 return; 3417 sh->reconstruct_state = reconstruct_state_drain_run; 3418 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3419 } else 3420 sh->reconstruct_state = reconstruct_state_run; 3421 3422 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3423 3424 if (s->locked + conf->max_degraded == disks) 3425 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 3426 atomic_inc(&conf->pending_full_writes); 3427 } else { 3428 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 3429 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 3430 BUG_ON(level == 6 && 3431 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 3432 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 3433 3434 for (i = disks; i--; ) { 3435 struct r5dev *dev = &sh->dev[i]; 3436 if (i == pd_idx || i == qd_idx) 3437 continue; 3438 3439 if (dev->towrite && 3440 (test_bit(R5_UPTODATE, &dev->flags) || 3441 test_bit(R5_Wantcompute, &dev->flags))) { 3442 set_bit(R5_Wantdrain, &dev->flags); 3443 set_bit(R5_LOCKED, &dev->flags); 3444 clear_bit(R5_UPTODATE, &dev->flags); 3445 s->locked++; 3446 } else if (test_bit(R5_InJournal, &dev->flags)) { 3447 set_bit(R5_LOCKED, &dev->flags); 3448 s->locked++; 3449 } 3450 } 3451 if (!s->locked) 3452 /* False alarm - nothing to do */ 3453 return; 3454 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 3455 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 3456 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 3457 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 3458 } 3459 3460 /* keep the parity disk(s) locked while asynchronous operations 3461 * are in flight 3462 */ 3463 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 3464 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3465 s->locked++; 3466 3467 if (level == 6) { 3468 int qd_idx = sh->qd_idx; 3469 struct r5dev *dev = &sh->dev[qd_idx]; 3470 3471 set_bit(R5_LOCKED, &dev->flags); 3472 clear_bit(R5_UPTODATE, &dev->flags); 3473 s->locked++; 3474 } 3475 3476 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && 3477 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && 3478 !test_bit(STRIPE_FULL_WRITE, &sh->state) && 3479 test_bit(R5_Insync, &sh->dev[pd_idx].flags)) 3480 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); 3481 3482 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 3483 __func__, (unsigned long long)sh->sector, 3484 s->locked, s->ops_request); 3485 } 3486 3487 static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi, 3488 int dd_idx, int forwrite) 3489 { 3490 struct r5conf *conf = sh->raid_conf; 3491 struct bio **bip; 3492 3493 pr_debug("checking bi b#%llu to stripe s#%llu\n", 3494 bi->bi_iter.bi_sector, sh->sector); 3495 3496 /* Don't allow new IO added to stripes in batch list */ 3497 if (sh->batch_head) 3498 return true; 3499 3500 if (forwrite) 3501 bip = &sh->dev[dd_idx].towrite; 3502 else 3503 bip = &sh->dev[dd_idx].toread; 3504 3505 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 3506 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 3507 return true; 3508 bip = &(*bip)->bi_next; 3509 } 3510 3511 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 3512 return true; 3513 3514 if (forwrite && raid5_has_ppl(conf)) { 3515 /* 3516 * With PPL only writes to consecutive data chunks within a 3517 * stripe are allowed because for a single stripe_head we can 3518 * only have one PPL entry at a time, which describes one data 3519 * range. Not really an overlap, but wait_for_overlap can be 3520 * used to handle this. 3521 */ 3522 sector_t sector; 3523 sector_t first = 0; 3524 sector_t last = 0; 3525 int count = 0; 3526 int i; 3527 3528 for (i = 0; i < sh->disks; i++) { 3529 if (i != sh->pd_idx && 3530 (i == dd_idx || sh->dev[i].towrite)) { 3531 sector = sh->dev[i].sector; 3532 if (count == 0 || sector < first) 3533 first = sector; 3534 if (sector > last) 3535 last = sector; 3536 count++; 3537 } 3538 } 3539 3540 if (first + conf->chunk_sectors * (count - 1) != last) 3541 return true; 3542 } 3543 3544 return false; 3545 } 3546 3547 static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3548 int dd_idx, int forwrite, int previous) 3549 { 3550 struct r5conf *conf = sh->raid_conf; 3551 struct bio **bip; 3552 int firstwrite = 0; 3553 3554 if (forwrite) { 3555 bip = &sh->dev[dd_idx].towrite; 3556 if (!*bip) 3557 firstwrite = 1; 3558 } else { 3559 bip = &sh->dev[dd_idx].toread; 3560 } 3561 3562 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) 3563 bip = &(*bip)->bi_next; 3564 3565 if (!forwrite || previous) 3566 clear_bit(STRIPE_BATCH_READY, &sh->state); 3567 3568 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3569 if (*bip) 3570 bi->bi_next = *bip; 3571 *bip = bi; 3572 bio_inc_remaining(bi); 3573 md_write_inc(conf->mddev, bi); 3574 3575 if (forwrite) { 3576 /* check if page is covered */ 3577 sector_t sector = sh->dev[dd_idx].sector; 3578 for (bi=sh->dev[dd_idx].towrite; 3579 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) && 3580 bi && bi->bi_iter.bi_sector <= sector; 3581 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) { 3582 if (bio_end_sector(bi) >= sector) 3583 sector = bio_end_sector(bi); 3584 } 3585 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf)) 3586 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3587 sh->overwrite_disks++; 3588 } 3589 3590 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n", 3591 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx, 3592 sh->dev[dd_idx].sector); 3593 3594 if (conf->mddev->bitmap && firstwrite) { 3595 /* Cannot hold spinlock over bitmap_startwrite, 3596 * but must ensure this isn't added to a batch until 3597 * we have added to the bitmap and set bm_seq. 3598 * So set STRIPE_BITMAP_PENDING to prevent 3599 * batching. 3600 * If multiple __add_stripe_bio() calls race here they 3601 * much all set STRIPE_BITMAP_PENDING. So only the first one 3602 * to complete "bitmap_startwrite" gets to set 3603 * STRIPE_BIT_DELAY. This is important as once a stripe 3604 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3605 * any more. 3606 */ 3607 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3608 spin_unlock_irq(&sh->stripe_lock); 3609 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3610 RAID5_STRIPE_SECTORS(conf), 0); 3611 spin_lock_irq(&sh->stripe_lock); 3612 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3613 if (!sh->batch_head) { 3614 sh->bm_seq = conf->seq_flush+1; 3615 set_bit(STRIPE_BIT_DELAY, &sh->state); 3616 } 3617 } 3618 } 3619 3620 /* 3621 * Each stripe/dev can have one or more bios attached. 3622 * toread/towrite point to the first in a chain. 3623 * The bi_next chain must be in order. 3624 */ 3625 static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi, 3626 int dd_idx, int forwrite, int previous) 3627 { 3628 spin_lock_irq(&sh->stripe_lock); 3629 3630 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 3631 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3632 spin_unlock_irq(&sh->stripe_lock); 3633 return false; 3634 } 3635 3636 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 3637 spin_unlock_irq(&sh->stripe_lock); 3638 return true; 3639 } 3640 3641 static void end_reshape(struct r5conf *conf); 3642 3643 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3644 struct stripe_head *sh) 3645 { 3646 int sectors_per_chunk = 3647 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3648 int dd_idx; 3649 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3650 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3651 3652 raid5_compute_sector(conf, 3653 stripe * (disks - conf->max_degraded) 3654 *sectors_per_chunk + chunk_offset, 3655 previous, 3656 &dd_idx, sh); 3657 } 3658 3659 static void 3660 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3661 struct stripe_head_state *s, int disks) 3662 { 3663 int i; 3664 BUG_ON(sh->batch_head); 3665 for (i = disks; i--; ) { 3666 struct bio *bi; 3667 int bitmap_end = 0; 3668 3669 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3670 struct md_rdev *rdev; 3671 rcu_read_lock(); 3672 rdev = rcu_dereference(conf->disks[i].rdev); 3673 if (rdev && test_bit(In_sync, &rdev->flags) && 3674 !test_bit(Faulty, &rdev->flags)) 3675 atomic_inc(&rdev->nr_pending); 3676 else 3677 rdev = NULL; 3678 rcu_read_unlock(); 3679 if (rdev) { 3680 if (!rdev_set_badblocks( 3681 rdev, 3682 sh->sector, 3683 RAID5_STRIPE_SECTORS(conf), 0)) 3684 md_error(conf->mddev, rdev); 3685 rdev_dec_pending(rdev, conf->mddev); 3686 } 3687 } 3688 spin_lock_irq(&sh->stripe_lock); 3689 /* fail all writes first */ 3690 bi = sh->dev[i].towrite; 3691 sh->dev[i].towrite = NULL; 3692 sh->overwrite_disks = 0; 3693 spin_unlock_irq(&sh->stripe_lock); 3694 if (bi) 3695 bitmap_end = 1; 3696 3697 log_stripe_write_finished(sh); 3698 3699 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3700 wake_up(&conf->wait_for_overlap); 3701 3702 while (bi && bi->bi_iter.bi_sector < 3703 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3704 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector); 3705 3706 md_write_end(conf->mddev); 3707 bio_io_error(bi); 3708 bi = nextbi; 3709 } 3710 if (bitmap_end) 3711 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3712 RAID5_STRIPE_SECTORS(conf), 0, 0); 3713 bitmap_end = 0; 3714 /* and fail all 'written' */ 3715 bi = sh->dev[i].written; 3716 sh->dev[i].written = NULL; 3717 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3718 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3719 sh->dev[i].page = sh->dev[i].orig_page; 3720 } 3721 3722 if (bi) bitmap_end = 1; 3723 while (bi && bi->bi_iter.bi_sector < 3724 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3725 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector); 3726 3727 md_write_end(conf->mddev); 3728 bio_io_error(bi); 3729 bi = bi2; 3730 } 3731 3732 /* fail any reads if this device is non-operational and 3733 * the data has not reached the cache yet. 3734 */ 3735 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3736 s->failed > conf->max_degraded && 3737 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3738 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3739 spin_lock_irq(&sh->stripe_lock); 3740 bi = sh->dev[i].toread; 3741 sh->dev[i].toread = NULL; 3742 spin_unlock_irq(&sh->stripe_lock); 3743 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3744 wake_up(&conf->wait_for_overlap); 3745 if (bi) 3746 s->to_read--; 3747 while (bi && bi->bi_iter.bi_sector < 3748 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) { 3749 struct bio *nextbi = 3750 r5_next_bio(conf, bi, sh->dev[i].sector); 3751 3752 bio_io_error(bi); 3753 bi = nextbi; 3754 } 3755 } 3756 if (bitmap_end) 3757 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3758 RAID5_STRIPE_SECTORS(conf), 0, 0); 3759 /* If we were in the middle of a write the parity block might 3760 * still be locked - so just clear all R5_LOCKED flags 3761 */ 3762 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3763 } 3764 s->to_write = 0; 3765 s->written = 0; 3766 3767 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3768 if (atomic_dec_and_test(&conf->pending_full_writes)) 3769 md_wakeup_thread(conf->mddev->thread); 3770 } 3771 3772 static void 3773 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3774 struct stripe_head_state *s) 3775 { 3776 int abort = 0; 3777 int i; 3778 3779 BUG_ON(sh->batch_head); 3780 clear_bit(STRIPE_SYNCING, &sh->state); 3781 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3782 wake_up(&conf->wait_for_overlap); 3783 s->syncing = 0; 3784 s->replacing = 0; 3785 /* There is nothing more to do for sync/check/repair. 3786 * Don't even need to abort as that is handled elsewhere 3787 * if needed, and not always wanted e.g. if there is a known 3788 * bad block here. 3789 * For recover/replace we need to record a bad block on all 3790 * non-sync devices, or abort the recovery 3791 */ 3792 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3793 /* During recovery devices cannot be removed, so 3794 * locking and refcounting of rdevs is not needed 3795 */ 3796 rcu_read_lock(); 3797 for (i = 0; i < conf->raid_disks; i++) { 3798 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3799 if (rdev 3800 && !test_bit(Faulty, &rdev->flags) 3801 && !test_bit(In_sync, &rdev->flags) 3802 && !rdev_set_badblocks(rdev, sh->sector, 3803 RAID5_STRIPE_SECTORS(conf), 0)) 3804 abort = 1; 3805 rdev = rcu_dereference(conf->disks[i].replacement); 3806 if (rdev 3807 && !test_bit(Faulty, &rdev->flags) 3808 && !test_bit(In_sync, &rdev->flags) 3809 && !rdev_set_badblocks(rdev, sh->sector, 3810 RAID5_STRIPE_SECTORS(conf), 0)) 3811 abort = 1; 3812 } 3813 rcu_read_unlock(); 3814 if (abort) 3815 conf->recovery_disabled = 3816 conf->mddev->recovery_disabled; 3817 } 3818 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort); 3819 } 3820 3821 static int want_replace(struct stripe_head *sh, int disk_idx) 3822 { 3823 struct md_rdev *rdev; 3824 int rv = 0; 3825 3826 rcu_read_lock(); 3827 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3828 if (rdev 3829 && !test_bit(Faulty, &rdev->flags) 3830 && !test_bit(In_sync, &rdev->flags) 3831 && (rdev->recovery_offset <= sh->sector 3832 || rdev->mddev->recovery_cp <= sh->sector)) 3833 rv = 1; 3834 rcu_read_unlock(); 3835 return rv; 3836 } 3837 3838 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3839 int disk_idx, int disks) 3840 { 3841 struct r5dev *dev = &sh->dev[disk_idx]; 3842 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3843 &sh->dev[s->failed_num[1]] }; 3844 int i; 3845 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW); 3846 3847 3848 if (test_bit(R5_LOCKED, &dev->flags) || 3849 test_bit(R5_UPTODATE, &dev->flags)) 3850 /* No point reading this as we already have it or have 3851 * decided to get it. 3852 */ 3853 return 0; 3854 3855 if (dev->toread || 3856 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3857 /* We need this block to directly satisfy a request */ 3858 return 1; 3859 3860 if (s->syncing || s->expanding || 3861 (s->replacing && want_replace(sh, disk_idx))) 3862 /* When syncing, or expanding we read everything. 3863 * When replacing, we need the replaced block. 3864 */ 3865 return 1; 3866 3867 if ((s->failed >= 1 && fdev[0]->toread) || 3868 (s->failed >= 2 && fdev[1]->toread)) 3869 /* If we want to read from a failed device, then 3870 * we need to actually read every other device. 3871 */ 3872 return 1; 3873 3874 /* Sometimes neither read-modify-write nor reconstruct-write 3875 * cycles can work. In those cases we read every block we 3876 * can. Then the parity-update is certain to have enough to 3877 * work with. 3878 * This can only be a problem when we need to write something, 3879 * and some device has failed. If either of those tests 3880 * fail we need look no further. 3881 */ 3882 if (!s->failed || !s->to_write) 3883 return 0; 3884 3885 if (test_bit(R5_Insync, &dev->flags) && 3886 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3887 /* Pre-reads at not permitted until after short delay 3888 * to gather multiple requests. However if this 3889 * device is no Insync, the block could only be computed 3890 * and there is no need to delay that. 3891 */ 3892 return 0; 3893 3894 for (i = 0; i < s->failed && i < 2; i++) { 3895 if (fdev[i]->towrite && 3896 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3897 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3898 /* If we have a partial write to a failed 3899 * device, then we will need to reconstruct 3900 * the content of that device, so all other 3901 * devices must be read. 3902 */ 3903 return 1; 3904 3905 if (s->failed >= 2 && 3906 (fdev[i]->towrite || 3907 s->failed_num[i] == sh->pd_idx || 3908 s->failed_num[i] == sh->qd_idx) && 3909 !test_bit(R5_UPTODATE, &fdev[i]->flags)) 3910 /* In max degraded raid6, If the failed disk is P, Q, 3911 * or we want to read the failed disk, we need to do 3912 * reconstruct-write. 3913 */ 3914 force_rcw = true; 3915 } 3916 3917 /* If we are forced to do a reconstruct-write, because parity 3918 * cannot be trusted and we are currently recovering it, there 3919 * is extra need to be careful. 3920 * If one of the devices that we would need to read, because 3921 * it is not being overwritten (and maybe not written at all) 3922 * is missing/faulty, then we need to read everything we can. 3923 */ 3924 if (!force_rcw && 3925 sh->sector < sh->raid_conf->mddev->recovery_cp) 3926 /* reconstruct-write isn't being forced */ 3927 return 0; 3928 for (i = 0; i < s->failed && i < 2; i++) { 3929 if (s->failed_num[i] != sh->pd_idx && 3930 s->failed_num[i] != sh->qd_idx && 3931 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3932 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3933 return 1; 3934 } 3935 3936 return 0; 3937 } 3938 3939 /* fetch_block - checks the given member device to see if its data needs 3940 * to be read or computed to satisfy a request. 3941 * 3942 * Returns 1 when no more member devices need to be checked, otherwise returns 3943 * 0 to tell the loop in handle_stripe_fill to continue 3944 */ 3945 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3946 int disk_idx, int disks) 3947 { 3948 struct r5dev *dev = &sh->dev[disk_idx]; 3949 3950 /* is the data in this block needed, and can we get it? */ 3951 if (need_this_block(sh, s, disk_idx, disks)) { 3952 /* we would like to get this block, possibly by computing it, 3953 * otherwise read it if the backing disk is insync 3954 */ 3955 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3956 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3957 BUG_ON(sh->batch_head); 3958 3959 /* 3960 * In the raid6 case if the only non-uptodate disk is P 3961 * then we already trusted P to compute the other failed 3962 * drives. It is safe to compute rather than re-read P. 3963 * In other cases we only compute blocks from failed 3964 * devices, otherwise check/repair might fail to detect 3965 * a real inconsistency. 3966 */ 3967 3968 if ((s->uptodate == disks - 1) && 3969 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || 3970 (s->failed && (disk_idx == s->failed_num[0] || 3971 disk_idx == s->failed_num[1])))) { 3972 /* have disk failed, and we're requested to fetch it; 3973 * do compute it 3974 */ 3975 pr_debug("Computing stripe %llu block %d\n", 3976 (unsigned long long)sh->sector, disk_idx); 3977 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3978 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3979 set_bit(R5_Wantcompute, &dev->flags); 3980 sh->ops.target = disk_idx; 3981 sh->ops.target2 = -1; /* no 2nd target */ 3982 s->req_compute = 1; 3983 /* Careful: from this point on 'uptodate' is in the eye 3984 * of raid_run_ops which services 'compute' operations 3985 * before writes. R5_Wantcompute flags a block that will 3986 * be R5_UPTODATE by the time it is needed for a 3987 * subsequent operation. 3988 */ 3989 s->uptodate++; 3990 return 1; 3991 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3992 /* Computing 2-failure is *very* expensive; only 3993 * do it if failed >= 2 3994 */ 3995 int other; 3996 for (other = disks; other--; ) { 3997 if (other == disk_idx) 3998 continue; 3999 if (!test_bit(R5_UPTODATE, 4000 &sh->dev[other].flags)) 4001 break; 4002 } 4003 BUG_ON(other < 0); 4004 pr_debug("Computing stripe %llu blocks %d,%d\n", 4005 (unsigned long long)sh->sector, 4006 disk_idx, other); 4007 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4008 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4009 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 4010 set_bit(R5_Wantcompute, &sh->dev[other].flags); 4011 sh->ops.target = disk_idx; 4012 sh->ops.target2 = other; 4013 s->uptodate += 2; 4014 s->req_compute = 1; 4015 return 1; 4016 } else if (test_bit(R5_Insync, &dev->flags)) { 4017 set_bit(R5_LOCKED, &dev->flags); 4018 set_bit(R5_Wantread, &dev->flags); 4019 s->locked++; 4020 pr_debug("Reading block %d (sync=%d)\n", 4021 disk_idx, s->syncing); 4022 } 4023 } 4024 4025 return 0; 4026 } 4027 4028 /* 4029 * handle_stripe_fill - read or compute data to satisfy pending requests. 4030 */ 4031 static void handle_stripe_fill(struct stripe_head *sh, 4032 struct stripe_head_state *s, 4033 int disks) 4034 { 4035 int i; 4036 4037 /* look for blocks to read/compute, skip this if a compute 4038 * is already in flight, or if the stripe contents are in the 4039 * midst of changing due to a write 4040 */ 4041 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 4042 !sh->reconstruct_state) { 4043 4044 /* 4045 * For degraded stripe with data in journal, do not handle 4046 * read requests yet, instead, flush the stripe to raid 4047 * disks first, this avoids handling complex rmw of write 4048 * back cache (prexor with orig_page, and then xor with 4049 * page) in the read path 4050 */ 4051 if (s->to_read && s->injournal && s->failed) { 4052 if (test_bit(STRIPE_R5C_CACHING, &sh->state)) 4053 r5c_make_stripe_write_out(sh); 4054 goto out; 4055 } 4056 4057 for (i = disks; i--; ) 4058 if (fetch_block(sh, s, i, disks)) 4059 break; 4060 } 4061 out: 4062 set_bit(STRIPE_HANDLE, &sh->state); 4063 } 4064 4065 static void break_stripe_batch_list(struct stripe_head *head_sh, 4066 unsigned long handle_flags); 4067 /* handle_stripe_clean_event 4068 * any written block on an uptodate or failed drive can be returned. 4069 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 4070 * never LOCKED, so we don't need to test 'failed' directly. 4071 */ 4072 static void handle_stripe_clean_event(struct r5conf *conf, 4073 struct stripe_head *sh, int disks) 4074 { 4075 int i; 4076 struct r5dev *dev; 4077 int discard_pending = 0; 4078 struct stripe_head *head_sh = sh; 4079 bool do_endio = false; 4080 4081 for (i = disks; i--; ) 4082 if (sh->dev[i].written) { 4083 dev = &sh->dev[i]; 4084 if (!test_bit(R5_LOCKED, &dev->flags) && 4085 (test_bit(R5_UPTODATE, &dev->flags) || 4086 test_bit(R5_Discard, &dev->flags) || 4087 test_bit(R5_SkipCopy, &dev->flags))) { 4088 /* We can return any write requests */ 4089 struct bio *wbi, *wbi2; 4090 pr_debug("Return write for disc %d\n", i); 4091 if (test_and_clear_bit(R5_Discard, &dev->flags)) 4092 clear_bit(R5_UPTODATE, &dev->flags); 4093 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 4094 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 4095 } 4096 do_endio = true; 4097 4098 returnbi: 4099 dev->page = dev->orig_page; 4100 wbi = dev->written; 4101 dev->written = NULL; 4102 while (wbi && wbi->bi_iter.bi_sector < 4103 dev->sector + RAID5_STRIPE_SECTORS(conf)) { 4104 wbi2 = r5_next_bio(conf, wbi, dev->sector); 4105 md_write_end(conf->mddev); 4106 bio_endio(wbi); 4107 wbi = wbi2; 4108 } 4109 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, 4110 RAID5_STRIPE_SECTORS(conf), 4111 !test_bit(STRIPE_DEGRADED, &sh->state), 4112 0); 4113 if (head_sh->batch_head) { 4114 sh = list_first_entry(&sh->batch_list, 4115 struct stripe_head, 4116 batch_list); 4117 if (sh != head_sh) { 4118 dev = &sh->dev[i]; 4119 goto returnbi; 4120 } 4121 } 4122 sh = head_sh; 4123 dev = &sh->dev[i]; 4124 } else if (test_bit(R5_Discard, &dev->flags)) 4125 discard_pending = 1; 4126 } 4127 4128 log_stripe_write_finished(sh); 4129 4130 if (!discard_pending && 4131 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 4132 int hash; 4133 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 4134 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4135 if (sh->qd_idx >= 0) { 4136 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 4137 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 4138 } 4139 /* now that discard is done we can proceed with any sync */ 4140 clear_bit(STRIPE_DISCARD, &sh->state); 4141 /* 4142 * SCSI discard will change some bio fields and the stripe has 4143 * no updated data, so remove it from hash list and the stripe 4144 * will be reinitialized 4145 */ 4146 unhash: 4147 hash = sh->hash_lock_index; 4148 spin_lock_irq(conf->hash_locks + hash); 4149 remove_hash(sh); 4150 spin_unlock_irq(conf->hash_locks + hash); 4151 if (head_sh->batch_head) { 4152 sh = list_first_entry(&sh->batch_list, 4153 struct stripe_head, batch_list); 4154 if (sh != head_sh) 4155 goto unhash; 4156 } 4157 sh = head_sh; 4158 4159 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 4160 set_bit(STRIPE_HANDLE, &sh->state); 4161 4162 } 4163 4164 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 4165 if (atomic_dec_and_test(&conf->pending_full_writes)) 4166 md_wakeup_thread(conf->mddev->thread); 4167 4168 if (head_sh->batch_head && do_endio) 4169 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 4170 } 4171 4172 /* 4173 * For RMW in write back cache, we need extra page in prexor to store the 4174 * old data. This page is stored in dev->orig_page. 4175 * 4176 * This function checks whether we have data for prexor. The exact logic 4177 * is: 4178 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) 4179 */ 4180 static inline bool uptodate_for_rmw(struct r5dev *dev) 4181 { 4182 return (test_bit(R5_UPTODATE, &dev->flags)) && 4183 (!test_bit(R5_InJournal, &dev->flags) || 4184 test_bit(R5_OrigPageUPTDODATE, &dev->flags)); 4185 } 4186 4187 static int handle_stripe_dirtying(struct r5conf *conf, 4188 struct stripe_head *sh, 4189 struct stripe_head_state *s, 4190 int disks) 4191 { 4192 int rmw = 0, rcw = 0, i; 4193 sector_t recovery_cp = conf->mddev->recovery_cp; 4194 4195 /* Check whether resync is now happening or should start. 4196 * If yes, then the array is dirty (after unclean shutdown or 4197 * initial creation), so parity in some stripes might be inconsistent. 4198 * In this case, we need to always do reconstruct-write, to ensure 4199 * that in case of drive failure or read-error correction, we 4200 * generate correct data from the parity. 4201 */ 4202 if (conf->rmw_level == PARITY_DISABLE_RMW || 4203 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 4204 s->failed == 0)) { 4205 /* Calculate the real rcw later - for now make it 4206 * look like rcw is cheaper 4207 */ 4208 rcw = 1; rmw = 2; 4209 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 4210 conf->rmw_level, (unsigned long long)recovery_cp, 4211 (unsigned long long)sh->sector); 4212 } else for (i = disks; i--; ) { 4213 /* would I have to read this buffer for read_modify_write */ 4214 struct r5dev *dev = &sh->dev[i]; 4215 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4216 i == sh->pd_idx || i == sh->qd_idx || 4217 test_bit(R5_InJournal, &dev->flags)) && 4218 !test_bit(R5_LOCKED, &dev->flags) && 4219 !(uptodate_for_rmw(dev) || 4220 test_bit(R5_Wantcompute, &dev->flags))) { 4221 if (test_bit(R5_Insync, &dev->flags)) 4222 rmw++; 4223 else 4224 rmw += 2*disks; /* cannot read it */ 4225 } 4226 /* Would I have to read this buffer for reconstruct_write */ 4227 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4228 i != sh->pd_idx && i != sh->qd_idx && 4229 !test_bit(R5_LOCKED, &dev->flags) && 4230 !(test_bit(R5_UPTODATE, &dev->flags) || 4231 test_bit(R5_Wantcompute, &dev->flags))) { 4232 if (test_bit(R5_Insync, &dev->flags)) 4233 rcw++; 4234 else 4235 rcw += 2*disks; 4236 } 4237 } 4238 4239 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", 4240 (unsigned long long)sh->sector, sh->state, rmw, rcw); 4241 set_bit(STRIPE_HANDLE, &sh->state); 4242 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 4243 /* prefer read-modify-write, but need to get some data */ 4244 if (conf->mddev->queue) 4245 blk_add_trace_msg(conf->mddev->queue, 4246 "raid5 rmw %llu %d", 4247 (unsigned long long)sh->sector, rmw); 4248 for (i = disks; i--; ) { 4249 struct r5dev *dev = &sh->dev[i]; 4250 if (test_bit(R5_InJournal, &dev->flags) && 4251 dev->page == dev->orig_page && 4252 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { 4253 /* alloc page for prexor */ 4254 struct page *p = alloc_page(GFP_NOIO); 4255 4256 if (p) { 4257 dev->orig_page = p; 4258 continue; 4259 } 4260 4261 /* 4262 * alloc_page() failed, try use 4263 * disk_info->extra_page 4264 */ 4265 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, 4266 &conf->cache_state)) { 4267 r5c_use_extra_page(sh); 4268 break; 4269 } 4270 4271 /* extra_page in use, add to delayed_list */ 4272 set_bit(STRIPE_DELAYED, &sh->state); 4273 s->waiting_extra_page = 1; 4274 return -EAGAIN; 4275 } 4276 } 4277 4278 for (i = disks; i--; ) { 4279 struct r5dev *dev = &sh->dev[i]; 4280 if (((dev->towrite && !delay_towrite(conf, dev, s)) || 4281 i == sh->pd_idx || i == sh->qd_idx || 4282 test_bit(R5_InJournal, &dev->flags)) && 4283 !test_bit(R5_LOCKED, &dev->flags) && 4284 !(uptodate_for_rmw(dev) || 4285 test_bit(R5_Wantcompute, &dev->flags)) && 4286 test_bit(R5_Insync, &dev->flags)) { 4287 if (test_bit(STRIPE_PREREAD_ACTIVE, 4288 &sh->state)) { 4289 pr_debug("Read_old block %d for r-m-w\n", 4290 i); 4291 set_bit(R5_LOCKED, &dev->flags); 4292 set_bit(R5_Wantread, &dev->flags); 4293 s->locked++; 4294 } else 4295 set_bit(STRIPE_DELAYED, &sh->state); 4296 } 4297 } 4298 } 4299 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 4300 /* want reconstruct write, but need to get some data */ 4301 int qread =0; 4302 rcw = 0; 4303 for (i = disks; i--; ) { 4304 struct r5dev *dev = &sh->dev[i]; 4305 if (!test_bit(R5_OVERWRITE, &dev->flags) && 4306 i != sh->pd_idx && i != sh->qd_idx && 4307 !test_bit(R5_LOCKED, &dev->flags) && 4308 !(test_bit(R5_UPTODATE, &dev->flags) || 4309 test_bit(R5_Wantcompute, &dev->flags))) { 4310 rcw++; 4311 if (test_bit(R5_Insync, &dev->flags) && 4312 test_bit(STRIPE_PREREAD_ACTIVE, 4313 &sh->state)) { 4314 pr_debug("Read_old block " 4315 "%d for Reconstruct\n", i); 4316 set_bit(R5_LOCKED, &dev->flags); 4317 set_bit(R5_Wantread, &dev->flags); 4318 s->locked++; 4319 qread++; 4320 } else 4321 set_bit(STRIPE_DELAYED, &sh->state); 4322 } 4323 } 4324 if (rcw && conf->mddev->queue) 4325 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 4326 (unsigned long long)sh->sector, 4327 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 4328 } 4329 4330 if (rcw > disks && rmw > disks && 4331 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4332 set_bit(STRIPE_DELAYED, &sh->state); 4333 4334 /* now if nothing is locked, and if we have enough data, 4335 * we can start a write request 4336 */ 4337 /* since handle_stripe can be called at any time we need to handle the 4338 * case where a compute block operation has been submitted and then a 4339 * subsequent call wants to start a write request. raid_run_ops only 4340 * handles the case where compute block and reconstruct are requested 4341 * simultaneously. If this is not the case then new writes need to be 4342 * held off until the compute completes. 4343 */ 4344 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 4345 (s->locked == 0 && (rcw == 0 || rmw == 0) && 4346 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 4347 schedule_reconstruction(sh, s, rcw == 0, 0); 4348 return 0; 4349 } 4350 4351 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 4352 struct stripe_head_state *s, int disks) 4353 { 4354 struct r5dev *dev = NULL; 4355 4356 BUG_ON(sh->batch_head); 4357 set_bit(STRIPE_HANDLE, &sh->state); 4358 4359 switch (sh->check_state) { 4360 case check_state_idle: 4361 /* start a new check operation if there are no failures */ 4362 if (s->failed == 0) { 4363 BUG_ON(s->uptodate != disks); 4364 sh->check_state = check_state_run; 4365 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4366 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 4367 s->uptodate--; 4368 break; 4369 } 4370 dev = &sh->dev[s->failed_num[0]]; 4371 fallthrough; 4372 case check_state_compute_result: 4373 sh->check_state = check_state_idle; 4374 if (!dev) 4375 dev = &sh->dev[sh->pd_idx]; 4376 4377 /* check that a write has not made the stripe insync */ 4378 if (test_bit(STRIPE_INSYNC, &sh->state)) 4379 break; 4380 4381 /* either failed parity check, or recovery is happening */ 4382 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 4383 BUG_ON(s->uptodate != disks); 4384 4385 set_bit(R5_LOCKED, &dev->flags); 4386 s->locked++; 4387 set_bit(R5_Wantwrite, &dev->flags); 4388 4389 clear_bit(STRIPE_DEGRADED, &sh->state); 4390 set_bit(STRIPE_INSYNC, &sh->state); 4391 break; 4392 case check_state_run: 4393 break; /* we will be called again upon completion */ 4394 case check_state_check_result: 4395 sh->check_state = check_state_idle; 4396 4397 /* if a failure occurred during the check operation, leave 4398 * STRIPE_INSYNC not set and let the stripe be handled again 4399 */ 4400 if (s->failed) 4401 break; 4402 4403 /* handle a successful check operation, if parity is correct 4404 * we are done. Otherwise update the mismatch count and repair 4405 * parity if !MD_RECOVERY_CHECK 4406 */ 4407 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 4408 /* parity is correct (on disc, 4409 * not in buffer any more) 4410 */ 4411 set_bit(STRIPE_INSYNC, &sh->state); 4412 else { 4413 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4414 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4415 /* don't try to repair!! */ 4416 set_bit(STRIPE_INSYNC, &sh->state); 4417 pr_warn_ratelimited("%s: mismatch sector in range " 4418 "%llu-%llu\n", mdname(conf->mddev), 4419 (unsigned long long) sh->sector, 4420 (unsigned long long) sh->sector + 4421 RAID5_STRIPE_SECTORS(conf)); 4422 } else { 4423 sh->check_state = check_state_compute_run; 4424 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4425 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4426 set_bit(R5_Wantcompute, 4427 &sh->dev[sh->pd_idx].flags); 4428 sh->ops.target = sh->pd_idx; 4429 sh->ops.target2 = -1; 4430 s->uptodate++; 4431 } 4432 } 4433 break; 4434 case check_state_compute_run: 4435 break; 4436 default: 4437 pr_err("%s: unknown check_state: %d sector: %llu\n", 4438 __func__, sh->check_state, 4439 (unsigned long long) sh->sector); 4440 BUG(); 4441 } 4442 } 4443 4444 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 4445 struct stripe_head_state *s, 4446 int disks) 4447 { 4448 int pd_idx = sh->pd_idx; 4449 int qd_idx = sh->qd_idx; 4450 struct r5dev *dev; 4451 4452 BUG_ON(sh->batch_head); 4453 set_bit(STRIPE_HANDLE, &sh->state); 4454 4455 BUG_ON(s->failed > 2); 4456 4457 /* Want to check and possibly repair P and Q. 4458 * However there could be one 'failed' device, in which 4459 * case we can only check one of them, possibly using the 4460 * other to generate missing data 4461 */ 4462 4463 switch (sh->check_state) { 4464 case check_state_idle: 4465 /* start a new check operation if there are < 2 failures */ 4466 if (s->failed == s->q_failed) { 4467 /* The only possible failed device holds Q, so it 4468 * makes sense to check P (If anything else were failed, 4469 * we would have used P to recreate it). 4470 */ 4471 sh->check_state = check_state_run; 4472 } 4473 if (!s->q_failed && s->failed < 2) { 4474 /* Q is not failed, and we didn't use it to generate 4475 * anything, so it makes sense to check it 4476 */ 4477 if (sh->check_state == check_state_run) 4478 sh->check_state = check_state_run_pq; 4479 else 4480 sh->check_state = check_state_run_q; 4481 } 4482 4483 /* discard potentially stale zero_sum_result */ 4484 sh->ops.zero_sum_result = 0; 4485 4486 if (sh->check_state == check_state_run) { 4487 /* async_xor_zero_sum destroys the contents of P */ 4488 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 4489 s->uptodate--; 4490 } 4491 if (sh->check_state >= check_state_run && 4492 sh->check_state <= check_state_run_pq) { 4493 /* async_syndrome_zero_sum preserves P and Q, so 4494 * no need to mark them !uptodate here 4495 */ 4496 set_bit(STRIPE_OP_CHECK, &s->ops_request); 4497 break; 4498 } 4499 4500 /* we have 2-disk failure */ 4501 BUG_ON(s->failed != 2); 4502 fallthrough; 4503 case check_state_compute_result: 4504 sh->check_state = check_state_idle; 4505 4506 /* check that a write has not made the stripe insync */ 4507 if (test_bit(STRIPE_INSYNC, &sh->state)) 4508 break; 4509 4510 /* now write out any block on a failed drive, 4511 * or P or Q if they were recomputed 4512 */ 4513 dev = NULL; 4514 if (s->failed == 2) { 4515 dev = &sh->dev[s->failed_num[1]]; 4516 s->locked++; 4517 set_bit(R5_LOCKED, &dev->flags); 4518 set_bit(R5_Wantwrite, &dev->flags); 4519 } 4520 if (s->failed >= 1) { 4521 dev = &sh->dev[s->failed_num[0]]; 4522 s->locked++; 4523 set_bit(R5_LOCKED, &dev->flags); 4524 set_bit(R5_Wantwrite, &dev->flags); 4525 } 4526 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4527 dev = &sh->dev[pd_idx]; 4528 s->locked++; 4529 set_bit(R5_LOCKED, &dev->flags); 4530 set_bit(R5_Wantwrite, &dev->flags); 4531 } 4532 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4533 dev = &sh->dev[qd_idx]; 4534 s->locked++; 4535 set_bit(R5_LOCKED, &dev->flags); 4536 set_bit(R5_Wantwrite, &dev->flags); 4537 } 4538 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), 4539 "%s: disk%td not up to date\n", 4540 mdname(conf->mddev), 4541 dev - (struct r5dev *) &sh->dev)) { 4542 clear_bit(R5_LOCKED, &dev->flags); 4543 clear_bit(R5_Wantwrite, &dev->flags); 4544 s->locked--; 4545 } 4546 clear_bit(STRIPE_DEGRADED, &sh->state); 4547 4548 set_bit(STRIPE_INSYNC, &sh->state); 4549 break; 4550 case check_state_run: 4551 case check_state_run_q: 4552 case check_state_run_pq: 4553 break; /* we will be called again upon completion */ 4554 case check_state_check_result: 4555 sh->check_state = check_state_idle; 4556 4557 /* handle a successful check operation, if parity is correct 4558 * we are done. Otherwise update the mismatch count and repair 4559 * parity if !MD_RECOVERY_CHECK 4560 */ 4561 if (sh->ops.zero_sum_result == 0) { 4562 /* both parities are correct */ 4563 if (!s->failed) 4564 set_bit(STRIPE_INSYNC, &sh->state); 4565 else { 4566 /* in contrast to the raid5 case we can validate 4567 * parity, but still have a failure to write 4568 * back 4569 */ 4570 sh->check_state = check_state_compute_result; 4571 /* Returning at this point means that we may go 4572 * off and bring p and/or q uptodate again so 4573 * we make sure to check zero_sum_result again 4574 * to verify if p or q need writeback 4575 */ 4576 } 4577 } else { 4578 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches); 4579 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { 4580 /* don't try to repair!! */ 4581 set_bit(STRIPE_INSYNC, &sh->state); 4582 pr_warn_ratelimited("%s: mismatch sector in range " 4583 "%llu-%llu\n", mdname(conf->mddev), 4584 (unsigned long long) sh->sector, 4585 (unsigned long long) sh->sector + 4586 RAID5_STRIPE_SECTORS(conf)); 4587 } else { 4588 int *target = &sh->ops.target; 4589 4590 sh->ops.target = -1; 4591 sh->ops.target2 = -1; 4592 sh->check_state = check_state_compute_run; 4593 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 4594 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 4595 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 4596 set_bit(R5_Wantcompute, 4597 &sh->dev[pd_idx].flags); 4598 *target = pd_idx; 4599 target = &sh->ops.target2; 4600 s->uptodate++; 4601 } 4602 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 4603 set_bit(R5_Wantcompute, 4604 &sh->dev[qd_idx].flags); 4605 *target = qd_idx; 4606 s->uptodate++; 4607 } 4608 } 4609 } 4610 break; 4611 case check_state_compute_run: 4612 break; 4613 default: 4614 pr_warn("%s: unknown check_state: %d sector: %llu\n", 4615 __func__, sh->check_state, 4616 (unsigned long long) sh->sector); 4617 BUG(); 4618 } 4619 } 4620 4621 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 4622 { 4623 int i; 4624 4625 /* We have read all the blocks in this stripe and now we need to 4626 * copy some of them into a target stripe for expand. 4627 */ 4628 struct dma_async_tx_descriptor *tx = NULL; 4629 BUG_ON(sh->batch_head); 4630 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 4631 for (i = 0; i < sh->disks; i++) 4632 if (i != sh->pd_idx && i != sh->qd_idx) { 4633 int dd_idx, j; 4634 struct stripe_head *sh2; 4635 struct async_submit_ctl submit; 4636 4637 sector_t bn = raid5_compute_blocknr(sh, i, 1); 4638 sector_t s = raid5_compute_sector(conf, bn, 0, 4639 &dd_idx, NULL); 4640 sh2 = raid5_get_active_stripe(conf, NULL, s, 4641 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 4642 if (sh2 == NULL) 4643 /* so far only the early blocks of this stripe 4644 * have been requested. When later blocks 4645 * get requested, we will try again 4646 */ 4647 continue; 4648 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 4649 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 4650 /* must have already done this block */ 4651 raid5_release_stripe(sh2); 4652 continue; 4653 } 4654 4655 /* place all the copies on one channel */ 4656 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 4657 tx = async_memcpy(sh2->dev[dd_idx].page, 4658 sh->dev[i].page, sh2->dev[dd_idx].offset, 4659 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf), 4660 &submit); 4661 4662 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 4663 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 4664 for (j = 0; j < conf->raid_disks; j++) 4665 if (j != sh2->pd_idx && 4666 j != sh2->qd_idx && 4667 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 4668 break; 4669 if (j == conf->raid_disks) { 4670 set_bit(STRIPE_EXPAND_READY, &sh2->state); 4671 set_bit(STRIPE_HANDLE, &sh2->state); 4672 } 4673 raid5_release_stripe(sh2); 4674 4675 } 4676 /* done submitting copies, wait for them to complete */ 4677 async_tx_quiesce(&tx); 4678 } 4679 4680 /* 4681 * handle_stripe - do things to a stripe. 4682 * 4683 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4684 * state of various bits to see what needs to be done. 4685 * Possible results: 4686 * return some read requests which now have data 4687 * return some write requests which are safely on storage 4688 * schedule a read on some buffers 4689 * schedule a write of some buffers 4690 * return confirmation of parity correctness 4691 * 4692 */ 4693 4694 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4695 { 4696 struct r5conf *conf = sh->raid_conf; 4697 int disks = sh->disks; 4698 struct r5dev *dev; 4699 int i; 4700 int do_recovery = 0; 4701 4702 memset(s, 0, sizeof(*s)); 4703 4704 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4705 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4706 s->failed_num[0] = -1; 4707 s->failed_num[1] = -1; 4708 s->log_failed = r5l_log_disk_error(conf); 4709 4710 /* Now to look around and see what can be done */ 4711 rcu_read_lock(); 4712 for (i=disks; i--; ) { 4713 struct md_rdev *rdev; 4714 sector_t first_bad; 4715 int bad_sectors; 4716 int is_bad = 0; 4717 4718 dev = &sh->dev[i]; 4719 4720 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4721 i, dev->flags, 4722 dev->toread, dev->towrite, dev->written); 4723 /* maybe we can reply to a read 4724 * 4725 * new wantfill requests are only permitted while 4726 * ops_complete_biofill is guaranteed to be inactive 4727 */ 4728 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4729 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4730 set_bit(R5_Wantfill, &dev->flags); 4731 4732 /* now count some things */ 4733 if (test_bit(R5_LOCKED, &dev->flags)) 4734 s->locked++; 4735 if (test_bit(R5_UPTODATE, &dev->flags)) 4736 s->uptodate++; 4737 if (test_bit(R5_Wantcompute, &dev->flags)) { 4738 s->compute++; 4739 BUG_ON(s->compute > 2); 4740 } 4741 4742 if (test_bit(R5_Wantfill, &dev->flags)) 4743 s->to_fill++; 4744 else if (dev->toread) 4745 s->to_read++; 4746 if (dev->towrite) { 4747 s->to_write++; 4748 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4749 s->non_overwrite++; 4750 } 4751 if (dev->written) 4752 s->written++; 4753 /* Prefer to use the replacement for reads, but only 4754 * if it is recovered enough and has no bad blocks. 4755 */ 4756 rdev = rcu_dereference(conf->disks[i].replacement); 4757 if (rdev && !test_bit(Faulty, &rdev->flags) && 4758 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) && 4759 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4760 &first_bad, &bad_sectors)) 4761 set_bit(R5_ReadRepl, &dev->flags); 4762 else { 4763 if (rdev && !test_bit(Faulty, &rdev->flags)) 4764 set_bit(R5_NeedReplace, &dev->flags); 4765 else 4766 clear_bit(R5_NeedReplace, &dev->flags); 4767 rdev = rcu_dereference(conf->disks[i].rdev); 4768 clear_bit(R5_ReadRepl, &dev->flags); 4769 } 4770 if (rdev && test_bit(Faulty, &rdev->flags)) 4771 rdev = NULL; 4772 if (rdev) { 4773 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 4774 &first_bad, &bad_sectors); 4775 if (s->blocked_rdev == NULL 4776 && (test_bit(Blocked, &rdev->flags) 4777 || is_bad < 0)) { 4778 if (is_bad < 0) 4779 set_bit(BlockedBadBlocks, 4780 &rdev->flags); 4781 s->blocked_rdev = rdev; 4782 atomic_inc(&rdev->nr_pending); 4783 } 4784 } 4785 clear_bit(R5_Insync, &dev->flags); 4786 if (!rdev) 4787 /* Not in-sync */; 4788 else if (is_bad) { 4789 /* also not in-sync */ 4790 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4791 test_bit(R5_UPTODATE, &dev->flags)) { 4792 /* treat as in-sync, but with a read error 4793 * which we can now try to correct 4794 */ 4795 set_bit(R5_Insync, &dev->flags); 4796 set_bit(R5_ReadError, &dev->flags); 4797 } 4798 } else if (test_bit(In_sync, &rdev->flags)) 4799 set_bit(R5_Insync, &dev->flags); 4800 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset) 4801 /* in sync if before recovery_offset */ 4802 set_bit(R5_Insync, &dev->flags); 4803 else if (test_bit(R5_UPTODATE, &dev->flags) && 4804 test_bit(R5_Expanded, &dev->flags)) 4805 /* If we've reshaped into here, we assume it is Insync. 4806 * We will shortly update recovery_offset to make 4807 * it official. 4808 */ 4809 set_bit(R5_Insync, &dev->flags); 4810 4811 if (test_bit(R5_WriteError, &dev->flags)) { 4812 /* This flag does not apply to '.replacement' 4813 * only to .rdev, so make sure to check that*/ 4814 struct md_rdev *rdev2 = rcu_dereference( 4815 conf->disks[i].rdev); 4816 if (rdev2 == rdev) 4817 clear_bit(R5_Insync, &dev->flags); 4818 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4819 s->handle_bad_blocks = 1; 4820 atomic_inc(&rdev2->nr_pending); 4821 } else 4822 clear_bit(R5_WriteError, &dev->flags); 4823 } 4824 if (test_bit(R5_MadeGood, &dev->flags)) { 4825 /* This flag does not apply to '.replacement' 4826 * only to .rdev, so make sure to check that*/ 4827 struct md_rdev *rdev2 = rcu_dereference( 4828 conf->disks[i].rdev); 4829 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4830 s->handle_bad_blocks = 1; 4831 atomic_inc(&rdev2->nr_pending); 4832 } else 4833 clear_bit(R5_MadeGood, &dev->flags); 4834 } 4835 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4836 struct md_rdev *rdev2 = rcu_dereference( 4837 conf->disks[i].replacement); 4838 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4839 s->handle_bad_blocks = 1; 4840 atomic_inc(&rdev2->nr_pending); 4841 } else 4842 clear_bit(R5_MadeGoodRepl, &dev->flags); 4843 } 4844 if (!test_bit(R5_Insync, &dev->flags)) { 4845 /* The ReadError flag will just be confusing now */ 4846 clear_bit(R5_ReadError, &dev->flags); 4847 clear_bit(R5_ReWrite, &dev->flags); 4848 } 4849 if (test_bit(R5_ReadError, &dev->flags)) 4850 clear_bit(R5_Insync, &dev->flags); 4851 if (!test_bit(R5_Insync, &dev->flags)) { 4852 if (s->failed < 2) 4853 s->failed_num[s->failed] = i; 4854 s->failed++; 4855 if (rdev && !test_bit(Faulty, &rdev->flags)) 4856 do_recovery = 1; 4857 else if (!rdev) { 4858 rdev = rcu_dereference( 4859 conf->disks[i].replacement); 4860 if (rdev && !test_bit(Faulty, &rdev->flags)) 4861 do_recovery = 1; 4862 } 4863 } 4864 4865 if (test_bit(R5_InJournal, &dev->flags)) 4866 s->injournal++; 4867 if (test_bit(R5_InJournal, &dev->flags) && dev->written) 4868 s->just_cached++; 4869 } 4870 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4871 /* If there is a failed device being replaced, 4872 * we must be recovering. 4873 * else if we are after recovery_cp, we must be syncing 4874 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4875 * else we can only be replacing 4876 * sync and recovery both need to read all devices, and so 4877 * use the same flag. 4878 */ 4879 if (do_recovery || 4880 sh->sector >= conf->mddev->recovery_cp || 4881 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4882 s->syncing = 1; 4883 else 4884 s->replacing = 1; 4885 } 4886 rcu_read_unlock(); 4887 } 4888 4889 /* 4890 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or 4891 * a head which can now be handled. 4892 */ 4893 static int clear_batch_ready(struct stripe_head *sh) 4894 { 4895 struct stripe_head *tmp; 4896 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4897 return (sh->batch_head && sh->batch_head != sh); 4898 spin_lock(&sh->stripe_lock); 4899 if (!sh->batch_head) { 4900 spin_unlock(&sh->stripe_lock); 4901 return 0; 4902 } 4903 4904 /* 4905 * this stripe could be added to a batch list before we check 4906 * BATCH_READY, skips it 4907 */ 4908 if (sh->batch_head != sh) { 4909 spin_unlock(&sh->stripe_lock); 4910 return 1; 4911 } 4912 spin_lock(&sh->batch_lock); 4913 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4914 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4915 spin_unlock(&sh->batch_lock); 4916 spin_unlock(&sh->stripe_lock); 4917 4918 /* 4919 * BATCH_READY is cleared, no new stripes can be added. 4920 * batch_list can be accessed without lock 4921 */ 4922 return 0; 4923 } 4924 4925 static void break_stripe_batch_list(struct stripe_head *head_sh, 4926 unsigned long handle_flags) 4927 { 4928 struct stripe_head *sh, *next; 4929 int i; 4930 int do_wakeup = 0; 4931 4932 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4933 4934 list_del_init(&sh->batch_list); 4935 4936 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4937 (1 << STRIPE_SYNCING) | 4938 (1 << STRIPE_REPLACED) | 4939 (1 << STRIPE_DELAYED) | 4940 (1 << STRIPE_BIT_DELAY) | 4941 (1 << STRIPE_FULL_WRITE) | 4942 (1 << STRIPE_BIOFILL_RUN) | 4943 (1 << STRIPE_COMPUTE_RUN) | 4944 (1 << STRIPE_DISCARD) | 4945 (1 << STRIPE_BATCH_READY) | 4946 (1 << STRIPE_BATCH_ERR) | 4947 (1 << STRIPE_BITMAP_PENDING)), 4948 "stripe state: %lx\n", sh->state); 4949 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4950 (1 << STRIPE_REPLACED)), 4951 "head stripe state: %lx\n", head_sh->state); 4952 4953 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4954 (1 << STRIPE_PREREAD_ACTIVE) | 4955 (1 << STRIPE_DEGRADED) | 4956 (1 << STRIPE_ON_UNPLUG_LIST)), 4957 head_sh->state & (1 << STRIPE_INSYNC)); 4958 4959 sh->check_state = head_sh->check_state; 4960 sh->reconstruct_state = head_sh->reconstruct_state; 4961 spin_lock_irq(&sh->stripe_lock); 4962 sh->batch_head = NULL; 4963 spin_unlock_irq(&sh->stripe_lock); 4964 for (i = 0; i < sh->disks; i++) { 4965 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4966 do_wakeup = 1; 4967 sh->dev[i].flags = head_sh->dev[i].flags & 4968 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4969 } 4970 if (handle_flags == 0 || 4971 sh->state & handle_flags) 4972 set_bit(STRIPE_HANDLE, &sh->state); 4973 raid5_release_stripe(sh); 4974 } 4975 spin_lock_irq(&head_sh->stripe_lock); 4976 head_sh->batch_head = NULL; 4977 spin_unlock_irq(&head_sh->stripe_lock); 4978 for (i = 0; i < head_sh->disks; i++) 4979 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4980 do_wakeup = 1; 4981 if (head_sh->state & handle_flags) 4982 set_bit(STRIPE_HANDLE, &head_sh->state); 4983 4984 if (do_wakeup) 4985 wake_up(&head_sh->raid_conf->wait_for_overlap); 4986 } 4987 4988 static void handle_stripe(struct stripe_head *sh) 4989 { 4990 struct stripe_head_state s; 4991 struct r5conf *conf = sh->raid_conf; 4992 int i; 4993 int prexor; 4994 int disks = sh->disks; 4995 struct r5dev *pdev, *qdev; 4996 4997 clear_bit(STRIPE_HANDLE, &sh->state); 4998 4999 /* 5000 * handle_stripe should not continue handle the batched stripe, only 5001 * the head of batch list or lone stripe can continue. Otherwise we 5002 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE 5003 * is set for the batched stripe. 5004 */ 5005 if (clear_batch_ready(sh)) 5006 return; 5007 5008 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 5009 /* already being handled, ensure it gets handled 5010 * again when current action finishes */ 5011 set_bit(STRIPE_HANDLE, &sh->state); 5012 return; 5013 } 5014 5015 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 5016 break_stripe_batch_list(sh, 0); 5017 5018 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 5019 spin_lock(&sh->stripe_lock); 5020 /* 5021 * Cannot process 'sync' concurrently with 'discard'. 5022 * Flush data in r5cache before 'sync'. 5023 */ 5024 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && 5025 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && 5026 !test_bit(STRIPE_DISCARD, &sh->state) && 5027 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 5028 set_bit(STRIPE_SYNCING, &sh->state); 5029 clear_bit(STRIPE_INSYNC, &sh->state); 5030 clear_bit(STRIPE_REPLACED, &sh->state); 5031 } 5032 spin_unlock(&sh->stripe_lock); 5033 } 5034 clear_bit(STRIPE_DELAYED, &sh->state); 5035 5036 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 5037 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 5038 (unsigned long long)sh->sector, sh->state, 5039 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 5040 sh->check_state, sh->reconstruct_state); 5041 5042 analyse_stripe(sh, &s); 5043 5044 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 5045 goto finish; 5046 5047 if (s.handle_bad_blocks || 5048 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { 5049 set_bit(STRIPE_HANDLE, &sh->state); 5050 goto finish; 5051 } 5052 5053 if (unlikely(s.blocked_rdev)) { 5054 if (s.syncing || s.expanding || s.expanded || 5055 s.replacing || s.to_write || s.written) { 5056 set_bit(STRIPE_HANDLE, &sh->state); 5057 goto finish; 5058 } 5059 /* There is nothing for the blocked_rdev to block */ 5060 rdev_dec_pending(s.blocked_rdev, conf->mddev); 5061 s.blocked_rdev = NULL; 5062 } 5063 5064 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 5065 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 5066 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 5067 } 5068 5069 pr_debug("locked=%d uptodate=%d to_read=%d" 5070 " to_write=%d failed=%d failed_num=%d,%d\n", 5071 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 5072 s.failed_num[0], s.failed_num[1]); 5073 /* 5074 * check if the array has lost more than max_degraded devices and, 5075 * if so, some requests might need to be failed. 5076 * 5077 * When journal device failed (log_failed), we will only process 5078 * the stripe if there is data need write to raid disks 5079 */ 5080 if (s.failed > conf->max_degraded || 5081 (s.log_failed && s.injournal == 0)) { 5082 sh->check_state = 0; 5083 sh->reconstruct_state = 0; 5084 break_stripe_batch_list(sh, 0); 5085 if (s.to_read+s.to_write+s.written) 5086 handle_failed_stripe(conf, sh, &s, disks); 5087 if (s.syncing + s.replacing) 5088 handle_failed_sync(conf, sh, &s); 5089 } 5090 5091 /* Now we check to see if any write operations have recently 5092 * completed 5093 */ 5094 prexor = 0; 5095 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 5096 prexor = 1; 5097 if (sh->reconstruct_state == reconstruct_state_drain_result || 5098 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 5099 sh->reconstruct_state = reconstruct_state_idle; 5100 5101 /* All the 'written' buffers and the parity block are ready to 5102 * be written back to disk 5103 */ 5104 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 5105 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 5106 BUG_ON(sh->qd_idx >= 0 && 5107 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 5108 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 5109 for (i = disks; i--; ) { 5110 struct r5dev *dev = &sh->dev[i]; 5111 if (test_bit(R5_LOCKED, &dev->flags) && 5112 (i == sh->pd_idx || i == sh->qd_idx || 5113 dev->written || test_bit(R5_InJournal, 5114 &dev->flags))) { 5115 pr_debug("Writing block %d\n", i); 5116 set_bit(R5_Wantwrite, &dev->flags); 5117 if (prexor) 5118 continue; 5119 if (s.failed > 1) 5120 continue; 5121 if (!test_bit(R5_Insync, &dev->flags) || 5122 ((i == sh->pd_idx || i == sh->qd_idx) && 5123 s.failed == 0)) 5124 set_bit(STRIPE_INSYNC, &sh->state); 5125 } 5126 } 5127 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5128 s.dec_preread_active = 1; 5129 } 5130 5131 /* 5132 * might be able to return some write requests if the parity blocks 5133 * are safe, or on a failed drive 5134 */ 5135 pdev = &sh->dev[sh->pd_idx]; 5136 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 5137 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 5138 qdev = &sh->dev[sh->qd_idx]; 5139 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 5140 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 5141 || conf->level < 6; 5142 5143 if (s.written && 5144 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 5145 && !test_bit(R5_LOCKED, &pdev->flags) 5146 && (test_bit(R5_UPTODATE, &pdev->flags) || 5147 test_bit(R5_Discard, &pdev->flags))))) && 5148 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 5149 && !test_bit(R5_LOCKED, &qdev->flags) 5150 && (test_bit(R5_UPTODATE, &qdev->flags) || 5151 test_bit(R5_Discard, &qdev->flags)))))) 5152 handle_stripe_clean_event(conf, sh, disks); 5153 5154 if (s.just_cached) 5155 r5c_handle_cached_data_endio(conf, sh, disks); 5156 log_stripe_write_finished(sh); 5157 5158 /* Now we might consider reading some blocks, either to check/generate 5159 * parity, or to satisfy requests 5160 * or to load a block that is being partially written. 5161 */ 5162 if (s.to_read || s.non_overwrite 5163 || (s.to_write && s.failed) 5164 || (s.syncing && (s.uptodate + s.compute < disks)) 5165 || s.replacing 5166 || s.expanding) 5167 handle_stripe_fill(sh, &s, disks); 5168 5169 /* 5170 * When the stripe finishes full journal write cycle (write to journal 5171 * and raid disk), this is the clean up procedure so it is ready for 5172 * next operation. 5173 */ 5174 r5c_finish_stripe_write_out(conf, sh, &s); 5175 5176 /* 5177 * Now to consider new write requests, cache write back and what else, 5178 * if anything should be read. We do not handle new writes when: 5179 * 1/ A 'write' operation (copy+xor) is already in flight. 5180 * 2/ A 'check' operation is in flight, as it may clobber the parity 5181 * block. 5182 * 3/ A r5c cache log write is in flight. 5183 */ 5184 5185 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { 5186 if (!r5c_is_writeback(conf->log)) { 5187 if (s.to_write) 5188 handle_stripe_dirtying(conf, sh, &s, disks); 5189 } else { /* write back cache */ 5190 int ret = 0; 5191 5192 /* First, try handle writes in caching phase */ 5193 if (s.to_write) 5194 ret = r5c_try_caching_write(conf, sh, &s, 5195 disks); 5196 /* 5197 * If caching phase failed: ret == -EAGAIN 5198 * OR 5199 * stripe under reclaim: !caching && injournal 5200 * 5201 * fall back to handle_stripe_dirtying() 5202 */ 5203 if (ret == -EAGAIN || 5204 /* stripe under reclaim: !caching && injournal */ 5205 (!test_bit(STRIPE_R5C_CACHING, &sh->state) && 5206 s.injournal > 0)) { 5207 ret = handle_stripe_dirtying(conf, sh, &s, 5208 disks); 5209 if (ret == -EAGAIN) 5210 goto finish; 5211 } 5212 } 5213 } 5214 5215 /* maybe we need to check and possibly fix the parity for this stripe 5216 * Any reads will already have been scheduled, so we just see if enough 5217 * data is available. The parity check is held off while parity 5218 * dependent operations are in flight. 5219 */ 5220 if (sh->check_state || 5221 (s.syncing && s.locked == 0 && 5222 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5223 !test_bit(STRIPE_INSYNC, &sh->state))) { 5224 if (conf->level == 6) 5225 handle_parity_checks6(conf, sh, &s, disks); 5226 else 5227 handle_parity_checks5(conf, sh, &s, disks); 5228 } 5229 5230 if ((s.replacing || s.syncing) && s.locked == 0 5231 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 5232 && !test_bit(STRIPE_REPLACED, &sh->state)) { 5233 /* Write out to replacement devices where possible */ 5234 for (i = 0; i < conf->raid_disks; i++) 5235 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 5236 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 5237 set_bit(R5_WantReplace, &sh->dev[i].flags); 5238 set_bit(R5_LOCKED, &sh->dev[i].flags); 5239 s.locked++; 5240 } 5241 if (s.replacing) 5242 set_bit(STRIPE_INSYNC, &sh->state); 5243 set_bit(STRIPE_REPLACED, &sh->state); 5244 } 5245 if ((s.syncing || s.replacing) && s.locked == 0 && 5246 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 5247 test_bit(STRIPE_INSYNC, &sh->state)) { 5248 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5249 clear_bit(STRIPE_SYNCING, &sh->state); 5250 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 5251 wake_up(&conf->wait_for_overlap); 5252 } 5253 5254 /* If the failed drives are just a ReadError, then we might need 5255 * to progress the repair/check process 5256 */ 5257 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 5258 for (i = 0; i < s.failed; i++) { 5259 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 5260 if (test_bit(R5_ReadError, &dev->flags) 5261 && !test_bit(R5_LOCKED, &dev->flags) 5262 && test_bit(R5_UPTODATE, &dev->flags) 5263 ) { 5264 if (!test_bit(R5_ReWrite, &dev->flags)) { 5265 set_bit(R5_Wantwrite, &dev->flags); 5266 set_bit(R5_ReWrite, &dev->flags); 5267 } else 5268 /* let's read it back */ 5269 set_bit(R5_Wantread, &dev->flags); 5270 set_bit(R5_LOCKED, &dev->flags); 5271 s.locked++; 5272 } 5273 } 5274 5275 /* Finish reconstruct operations initiated by the expansion process */ 5276 if (sh->reconstruct_state == reconstruct_state_result) { 5277 struct stripe_head *sh_src 5278 = raid5_get_active_stripe(conf, NULL, sh->sector, 5279 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK | 5280 R5_GAS_NOQUIESCE); 5281 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 5282 /* sh cannot be written until sh_src has been read. 5283 * so arrange for sh to be delayed a little 5284 */ 5285 set_bit(STRIPE_DELAYED, &sh->state); 5286 set_bit(STRIPE_HANDLE, &sh->state); 5287 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 5288 &sh_src->state)) 5289 atomic_inc(&conf->preread_active_stripes); 5290 raid5_release_stripe(sh_src); 5291 goto finish; 5292 } 5293 if (sh_src) 5294 raid5_release_stripe(sh_src); 5295 5296 sh->reconstruct_state = reconstruct_state_idle; 5297 clear_bit(STRIPE_EXPANDING, &sh->state); 5298 for (i = conf->raid_disks; i--; ) { 5299 set_bit(R5_Wantwrite, &sh->dev[i].flags); 5300 set_bit(R5_LOCKED, &sh->dev[i].flags); 5301 s.locked++; 5302 } 5303 } 5304 5305 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 5306 !sh->reconstruct_state) { 5307 /* Need to write out all blocks after computing parity */ 5308 sh->disks = conf->raid_disks; 5309 stripe_set_idx(sh->sector, conf, 0, sh); 5310 schedule_reconstruction(sh, &s, 1, 1); 5311 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 5312 clear_bit(STRIPE_EXPAND_READY, &sh->state); 5313 atomic_dec(&conf->reshape_stripes); 5314 wake_up(&conf->wait_for_overlap); 5315 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1); 5316 } 5317 5318 if (s.expanding && s.locked == 0 && 5319 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 5320 handle_stripe_expansion(conf, sh); 5321 5322 finish: 5323 /* wait for this device to become unblocked */ 5324 if (unlikely(s.blocked_rdev)) { 5325 if (conf->mddev->external) 5326 md_wait_for_blocked_rdev(s.blocked_rdev, 5327 conf->mddev); 5328 else 5329 /* Internal metadata will immediately 5330 * be written by raid5d, so we don't 5331 * need to wait here. 5332 */ 5333 rdev_dec_pending(s.blocked_rdev, 5334 conf->mddev); 5335 } 5336 5337 if (s.handle_bad_blocks) 5338 for (i = disks; i--; ) { 5339 struct md_rdev *rdev; 5340 struct r5dev *dev = &sh->dev[i]; 5341 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 5342 /* We own a safe reference to the rdev */ 5343 rdev = rdev_pend_deref(conf->disks[i].rdev); 5344 if (!rdev_set_badblocks(rdev, sh->sector, 5345 RAID5_STRIPE_SECTORS(conf), 0)) 5346 md_error(conf->mddev, rdev); 5347 rdev_dec_pending(rdev, conf->mddev); 5348 } 5349 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 5350 rdev = rdev_pend_deref(conf->disks[i].rdev); 5351 rdev_clear_badblocks(rdev, sh->sector, 5352 RAID5_STRIPE_SECTORS(conf), 0); 5353 rdev_dec_pending(rdev, conf->mddev); 5354 } 5355 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 5356 rdev = rdev_pend_deref(conf->disks[i].replacement); 5357 if (!rdev) 5358 /* rdev have been moved down */ 5359 rdev = rdev_pend_deref(conf->disks[i].rdev); 5360 rdev_clear_badblocks(rdev, sh->sector, 5361 RAID5_STRIPE_SECTORS(conf), 0); 5362 rdev_dec_pending(rdev, conf->mddev); 5363 } 5364 } 5365 5366 if (s.ops_request) 5367 raid_run_ops(sh, s.ops_request); 5368 5369 ops_run_io(sh, &s); 5370 5371 if (s.dec_preread_active) { 5372 /* We delay this until after ops_run_io so that if make_request 5373 * is waiting on a flush, it won't continue until the writes 5374 * have actually been submitted. 5375 */ 5376 atomic_dec(&conf->preread_active_stripes); 5377 if (atomic_read(&conf->preread_active_stripes) < 5378 IO_THRESHOLD) 5379 md_wakeup_thread(conf->mddev->thread); 5380 } 5381 5382 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 5383 } 5384 5385 static void raid5_activate_delayed(struct r5conf *conf) 5386 __must_hold(&conf->device_lock) 5387 { 5388 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 5389 while (!list_empty(&conf->delayed_list)) { 5390 struct list_head *l = conf->delayed_list.next; 5391 struct stripe_head *sh; 5392 sh = list_entry(l, struct stripe_head, lru); 5393 list_del_init(l); 5394 clear_bit(STRIPE_DELAYED, &sh->state); 5395 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5396 atomic_inc(&conf->preread_active_stripes); 5397 list_add_tail(&sh->lru, &conf->hold_list); 5398 raid5_wakeup_stripe_thread(sh); 5399 } 5400 } 5401 } 5402 5403 static void activate_bit_delay(struct r5conf *conf, 5404 struct list_head *temp_inactive_list) 5405 __must_hold(&conf->device_lock) 5406 { 5407 struct list_head head; 5408 list_add(&head, &conf->bitmap_list); 5409 list_del_init(&conf->bitmap_list); 5410 while (!list_empty(&head)) { 5411 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 5412 int hash; 5413 list_del_init(&sh->lru); 5414 atomic_inc(&sh->count); 5415 hash = sh->hash_lock_index; 5416 __release_stripe(conf, sh, &temp_inactive_list[hash]); 5417 } 5418 } 5419 5420 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 5421 { 5422 struct r5conf *conf = mddev->private; 5423 sector_t sector = bio->bi_iter.bi_sector; 5424 unsigned int chunk_sectors; 5425 unsigned int bio_sectors = bio_sectors(bio); 5426 5427 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 5428 return chunk_sectors >= 5429 ((sector & (chunk_sectors - 1)) + bio_sectors); 5430 } 5431 5432 /* 5433 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 5434 * later sampled by raid5d. 5435 */ 5436 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 5437 { 5438 unsigned long flags; 5439 5440 spin_lock_irqsave(&conf->device_lock, flags); 5441 5442 bi->bi_next = conf->retry_read_aligned_list; 5443 conf->retry_read_aligned_list = bi; 5444 5445 spin_unlock_irqrestore(&conf->device_lock, flags); 5446 md_wakeup_thread(conf->mddev->thread); 5447 } 5448 5449 static struct bio *remove_bio_from_retry(struct r5conf *conf, 5450 unsigned int *offset) 5451 { 5452 struct bio *bi; 5453 5454 bi = conf->retry_read_aligned; 5455 if (bi) { 5456 *offset = conf->retry_read_offset; 5457 conf->retry_read_aligned = NULL; 5458 return bi; 5459 } 5460 bi = conf->retry_read_aligned_list; 5461 if(bi) { 5462 conf->retry_read_aligned_list = bi->bi_next; 5463 bi->bi_next = NULL; 5464 *offset = 0; 5465 } 5466 5467 return bi; 5468 } 5469 5470 /* 5471 * The "raid5_align_endio" should check if the read succeeded and if it 5472 * did, call bio_endio on the original bio (having bio_put the new bio 5473 * first). 5474 * If the read failed.. 5475 */ 5476 static void raid5_align_endio(struct bio *bi) 5477 { 5478 struct bio *raid_bi = bi->bi_private; 5479 struct md_rdev *rdev = (void *)raid_bi->bi_next; 5480 struct mddev *mddev = rdev->mddev; 5481 struct r5conf *conf = mddev->private; 5482 blk_status_t error = bi->bi_status; 5483 5484 bio_put(bi); 5485 raid_bi->bi_next = NULL; 5486 rdev_dec_pending(rdev, conf->mddev); 5487 5488 if (!error) { 5489 bio_endio(raid_bi); 5490 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5491 wake_up(&conf->wait_for_quiescent); 5492 return; 5493 } 5494 5495 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 5496 5497 add_bio_to_retry(raid_bi, conf); 5498 } 5499 5500 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 5501 { 5502 struct r5conf *conf = mddev->private; 5503 struct bio *align_bio; 5504 struct md_rdev *rdev; 5505 sector_t sector, end_sector, first_bad; 5506 int bad_sectors, dd_idx; 5507 bool did_inc; 5508 5509 if (!in_chunk_boundary(mddev, raid_bio)) { 5510 pr_debug("%s: non aligned\n", __func__); 5511 return 0; 5512 } 5513 5514 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0, 5515 &dd_idx, NULL); 5516 end_sector = sector + bio_sectors(raid_bio); 5517 5518 rcu_read_lock(); 5519 if (r5c_big_stripe_cached(conf, sector)) 5520 goto out_rcu_unlock; 5521 5522 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 5523 if (!rdev || test_bit(Faulty, &rdev->flags) || 5524 rdev->recovery_offset < end_sector) { 5525 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 5526 if (!rdev) 5527 goto out_rcu_unlock; 5528 if (test_bit(Faulty, &rdev->flags) || 5529 !(test_bit(In_sync, &rdev->flags) || 5530 rdev->recovery_offset >= end_sector)) 5531 goto out_rcu_unlock; 5532 } 5533 5534 atomic_inc(&rdev->nr_pending); 5535 rcu_read_unlock(); 5536 5537 if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad, 5538 &bad_sectors)) { 5539 rdev_dec_pending(rdev, mddev); 5540 return 0; 5541 } 5542 5543 md_account_bio(mddev, &raid_bio); 5544 raid_bio->bi_next = (void *)rdev; 5545 5546 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO, 5547 &mddev->bio_set); 5548 align_bio->bi_end_io = raid5_align_endio; 5549 align_bio->bi_private = raid_bio; 5550 align_bio->bi_iter.bi_sector = sector; 5551 5552 /* No reshape active, so we can trust rdev->data_offset */ 5553 align_bio->bi_iter.bi_sector += rdev->data_offset; 5554 5555 did_inc = false; 5556 if (conf->quiesce == 0) { 5557 atomic_inc(&conf->active_aligned_reads); 5558 did_inc = true; 5559 } 5560 /* need a memory barrier to detect the race with raid5_quiesce() */ 5561 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) { 5562 /* quiesce is in progress, so we need to undo io activation and wait 5563 * for it to finish 5564 */ 5565 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads)) 5566 wake_up(&conf->wait_for_quiescent); 5567 spin_lock_irq(&conf->device_lock); 5568 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0, 5569 conf->device_lock); 5570 atomic_inc(&conf->active_aligned_reads); 5571 spin_unlock_irq(&conf->device_lock); 5572 } 5573 5574 if (mddev->gendisk) 5575 trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk), 5576 raid_bio->bi_iter.bi_sector); 5577 submit_bio_noacct(align_bio); 5578 return 1; 5579 5580 out_rcu_unlock: 5581 rcu_read_unlock(); 5582 return 0; 5583 } 5584 5585 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 5586 { 5587 struct bio *split; 5588 sector_t sector = raid_bio->bi_iter.bi_sector; 5589 unsigned chunk_sects = mddev->chunk_sectors; 5590 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 5591 5592 if (sectors < bio_sectors(raid_bio)) { 5593 struct r5conf *conf = mddev->private; 5594 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); 5595 bio_chain(split, raid_bio); 5596 submit_bio_noacct(raid_bio); 5597 raid_bio = split; 5598 } 5599 5600 if (!raid5_read_one_chunk(mddev, raid_bio)) 5601 return raid_bio; 5602 5603 return NULL; 5604 } 5605 5606 /* __get_priority_stripe - get the next stripe to process 5607 * 5608 * Full stripe writes are allowed to pass preread active stripes up until 5609 * the bypass_threshold is exceeded. In general the bypass_count 5610 * increments when the handle_list is handled before the hold_list; however, it 5611 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 5612 * stripe with in flight i/o. The bypass_count will be reset when the 5613 * head of the hold_list has changed, i.e. the head was promoted to the 5614 * handle_list. 5615 */ 5616 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 5617 __must_hold(&conf->device_lock) 5618 { 5619 struct stripe_head *sh, *tmp; 5620 struct list_head *handle_list = NULL; 5621 struct r5worker_group *wg; 5622 bool second_try = !r5c_is_writeback(conf->log) && 5623 !r5l_log_disk_error(conf); 5624 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || 5625 r5l_log_disk_error(conf); 5626 5627 again: 5628 wg = NULL; 5629 sh = NULL; 5630 if (conf->worker_cnt_per_group == 0) { 5631 handle_list = try_loprio ? &conf->loprio_list : 5632 &conf->handle_list; 5633 } else if (group != ANY_GROUP) { 5634 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : 5635 &conf->worker_groups[group].handle_list; 5636 wg = &conf->worker_groups[group]; 5637 } else { 5638 int i; 5639 for (i = 0; i < conf->group_cnt; i++) { 5640 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : 5641 &conf->worker_groups[i].handle_list; 5642 wg = &conf->worker_groups[i]; 5643 if (!list_empty(handle_list)) 5644 break; 5645 } 5646 } 5647 5648 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 5649 __func__, 5650 list_empty(handle_list) ? "empty" : "busy", 5651 list_empty(&conf->hold_list) ? "empty" : "busy", 5652 atomic_read(&conf->pending_full_writes), conf->bypass_count); 5653 5654 if (!list_empty(handle_list)) { 5655 sh = list_entry(handle_list->next, typeof(*sh), lru); 5656 5657 if (list_empty(&conf->hold_list)) 5658 conf->bypass_count = 0; 5659 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 5660 if (conf->hold_list.next == conf->last_hold) 5661 conf->bypass_count++; 5662 else { 5663 conf->last_hold = conf->hold_list.next; 5664 conf->bypass_count -= conf->bypass_threshold; 5665 if (conf->bypass_count < 0) 5666 conf->bypass_count = 0; 5667 } 5668 } 5669 } else if (!list_empty(&conf->hold_list) && 5670 ((conf->bypass_threshold && 5671 conf->bypass_count > conf->bypass_threshold) || 5672 atomic_read(&conf->pending_full_writes) == 0)) { 5673 5674 list_for_each_entry(tmp, &conf->hold_list, lru) { 5675 if (conf->worker_cnt_per_group == 0 || 5676 group == ANY_GROUP || 5677 !cpu_online(tmp->cpu) || 5678 cpu_to_group(tmp->cpu) == group) { 5679 sh = tmp; 5680 break; 5681 } 5682 } 5683 5684 if (sh) { 5685 conf->bypass_count -= conf->bypass_threshold; 5686 if (conf->bypass_count < 0) 5687 conf->bypass_count = 0; 5688 } 5689 wg = NULL; 5690 } 5691 5692 if (!sh) { 5693 if (second_try) 5694 return NULL; 5695 second_try = true; 5696 try_loprio = !try_loprio; 5697 goto again; 5698 } 5699 5700 if (wg) { 5701 wg->stripes_cnt--; 5702 sh->group = NULL; 5703 } 5704 list_del_init(&sh->lru); 5705 BUG_ON(atomic_inc_return(&sh->count) != 1); 5706 return sh; 5707 } 5708 5709 struct raid5_plug_cb { 5710 struct blk_plug_cb cb; 5711 struct list_head list; 5712 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 5713 }; 5714 5715 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5716 { 5717 struct raid5_plug_cb *cb = container_of( 5718 blk_cb, struct raid5_plug_cb, cb); 5719 struct stripe_head *sh; 5720 struct mddev *mddev = cb->cb.data; 5721 struct r5conf *conf = mddev->private; 5722 int cnt = 0; 5723 int hash; 5724 5725 if (cb->list.next && !list_empty(&cb->list)) { 5726 spin_lock_irq(&conf->device_lock); 5727 while (!list_empty(&cb->list)) { 5728 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5729 list_del_init(&sh->lru); 5730 /* 5731 * avoid race release_stripe_plug() sees 5732 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5733 * is still in our list 5734 */ 5735 smp_mb__before_atomic(); 5736 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5737 /* 5738 * STRIPE_ON_RELEASE_LIST could be set here. In that 5739 * case, the count is always > 1 here 5740 */ 5741 hash = sh->hash_lock_index; 5742 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5743 cnt++; 5744 } 5745 spin_unlock_irq(&conf->device_lock); 5746 } 5747 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5748 NR_STRIPE_HASH_LOCKS); 5749 if (mddev->queue) 5750 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5751 kfree(cb); 5752 } 5753 5754 static void release_stripe_plug(struct mddev *mddev, 5755 struct stripe_head *sh) 5756 { 5757 struct blk_plug_cb *blk_cb = blk_check_plugged( 5758 raid5_unplug, mddev, 5759 sizeof(struct raid5_plug_cb)); 5760 struct raid5_plug_cb *cb; 5761 5762 if (!blk_cb) { 5763 raid5_release_stripe(sh); 5764 return; 5765 } 5766 5767 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5768 5769 if (cb->list.next == NULL) { 5770 int i; 5771 INIT_LIST_HEAD(&cb->list); 5772 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5773 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5774 } 5775 5776 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5777 list_add_tail(&sh->lru, &cb->list); 5778 else 5779 raid5_release_stripe(sh); 5780 } 5781 5782 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5783 { 5784 struct r5conf *conf = mddev->private; 5785 sector_t logical_sector, last_sector; 5786 struct stripe_head *sh; 5787 int stripe_sectors; 5788 5789 /* We need to handle this when io_uring supports discard/trim */ 5790 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT)) 5791 return; 5792 5793 if (mddev->reshape_position != MaxSector) 5794 /* Skip discard while reshape is happening */ 5795 return; 5796 5797 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 5798 last_sector = bio_end_sector(bi); 5799 5800 bi->bi_next = NULL; 5801 5802 stripe_sectors = conf->chunk_sectors * 5803 (conf->raid_disks - conf->max_degraded); 5804 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5805 stripe_sectors); 5806 sector_div(last_sector, stripe_sectors); 5807 5808 logical_sector *= conf->chunk_sectors; 5809 last_sector *= conf->chunk_sectors; 5810 5811 for (; logical_sector < last_sector; 5812 logical_sector += RAID5_STRIPE_SECTORS(conf)) { 5813 DEFINE_WAIT(w); 5814 int d; 5815 again: 5816 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0); 5817 prepare_to_wait(&conf->wait_for_overlap, &w, 5818 TASK_UNINTERRUPTIBLE); 5819 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5820 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5821 raid5_release_stripe(sh); 5822 schedule(); 5823 goto again; 5824 } 5825 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5826 spin_lock_irq(&sh->stripe_lock); 5827 for (d = 0; d < conf->raid_disks; d++) { 5828 if (d == sh->pd_idx || d == sh->qd_idx) 5829 continue; 5830 if (sh->dev[d].towrite || sh->dev[d].toread) { 5831 set_bit(R5_Overlap, &sh->dev[d].flags); 5832 spin_unlock_irq(&sh->stripe_lock); 5833 raid5_release_stripe(sh); 5834 schedule(); 5835 goto again; 5836 } 5837 } 5838 set_bit(STRIPE_DISCARD, &sh->state); 5839 finish_wait(&conf->wait_for_overlap, &w); 5840 sh->overwrite_disks = 0; 5841 for (d = 0; d < conf->raid_disks; d++) { 5842 if (d == sh->pd_idx || d == sh->qd_idx) 5843 continue; 5844 sh->dev[d].towrite = bi; 5845 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5846 bio_inc_remaining(bi); 5847 md_write_inc(mddev, bi); 5848 sh->overwrite_disks++; 5849 } 5850 spin_unlock_irq(&sh->stripe_lock); 5851 if (conf->mddev->bitmap) { 5852 for (d = 0; 5853 d < conf->raid_disks - conf->max_degraded; 5854 d++) 5855 md_bitmap_startwrite(mddev->bitmap, 5856 sh->sector, 5857 RAID5_STRIPE_SECTORS(conf), 5858 0); 5859 sh->bm_seq = conf->seq_flush + 1; 5860 set_bit(STRIPE_BIT_DELAY, &sh->state); 5861 } 5862 5863 set_bit(STRIPE_HANDLE, &sh->state); 5864 clear_bit(STRIPE_DELAYED, &sh->state); 5865 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5866 atomic_inc(&conf->preread_active_stripes); 5867 release_stripe_plug(mddev, sh); 5868 } 5869 5870 bio_endio(bi); 5871 } 5872 5873 static bool ahead_of_reshape(struct mddev *mddev, sector_t sector, 5874 sector_t reshape_sector) 5875 { 5876 return mddev->reshape_backwards ? sector < reshape_sector : 5877 sector >= reshape_sector; 5878 } 5879 5880 static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min, 5881 sector_t max, sector_t reshape_sector) 5882 { 5883 return mddev->reshape_backwards ? max < reshape_sector : 5884 min >= reshape_sector; 5885 } 5886 5887 static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf, 5888 struct stripe_head *sh) 5889 { 5890 sector_t max_sector = 0, min_sector = MaxSector; 5891 bool ret = false; 5892 int dd_idx; 5893 5894 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5895 if (dd_idx == sh->pd_idx) 5896 continue; 5897 5898 min_sector = min(min_sector, sh->dev[dd_idx].sector); 5899 max_sector = min(max_sector, sh->dev[dd_idx].sector); 5900 } 5901 5902 spin_lock_irq(&conf->device_lock); 5903 5904 if (!range_ahead_of_reshape(mddev, min_sector, max_sector, 5905 conf->reshape_progress)) 5906 /* mismatch, need to try again */ 5907 ret = true; 5908 5909 spin_unlock_irq(&conf->device_lock); 5910 5911 return ret; 5912 } 5913 5914 static int add_all_stripe_bios(struct r5conf *conf, 5915 struct stripe_request_ctx *ctx, struct stripe_head *sh, 5916 struct bio *bi, int forwrite, int previous) 5917 { 5918 int dd_idx; 5919 int ret = 1; 5920 5921 spin_lock_irq(&sh->stripe_lock); 5922 5923 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5924 struct r5dev *dev = &sh->dev[dd_idx]; 5925 5926 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5927 continue; 5928 5929 if (dev->sector < ctx->first_sector || 5930 dev->sector >= ctx->last_sector) 5931 continue; 5932 5933 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) { 5934 set_bit(R5_Overlap, &dev->flags); 5935 ret = 0; 5936 continue; 5937 } 5938 } 5939 5940 if (!ret) 5941 goto out; 5942 5943 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) { 5944 struct r5dev *dev = &sh->dev[dd_idx]; 5945 5946 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 5947 continue; 5948 5949 if (dev->sector < ctx->first_sector || 5950 dev->sector >= ctx->last_sector) 5951 continue; 5952 5953 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous); 5954 clear_bit((dev->sector - ctx->first_sector) >> 5955 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do); 5956 } 5957 5958 out: 5959 spin_unlock_irq(&sh->stripe_lock); 5960 return ret; 5961 } 5962 5963 static bool reshape_inprogress(struct mddev *mddev) 5964 { 5965 return test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 5966 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 5967 !test_bit(MD_RECOVERY_DONE, &mddev->recovery) && 5968 !test_bit(MD_RECOVERY_INTR, &mddev->recovery); 5969 } 5970 5971 static bool reshape_disabled(struct mddev *mddev) 5972 { 5973 return is_md_suspended(mddev) || !md_is_rdwr(mddev); 5974 } 5975 5976 static enum stripe_result make_stripe_request(struct mddev *mddev, 5977 struct r5conf *conf, struct stripe_request_ctx *ctx, 5978 sector_t logical_sector, struct bio *bi) 5979 { 5980 const int rw = bio_data_dir(bi); 5981 enum stripe_result ret; 5982 struct stripe_head *sh; 5983 sector_t new_sector; 5984 int previous = 0, flags = 0; 5985 int seq, dd_idx; 5986 5987 seq = read_seqcount_begin(&conf->gen_lock); 5988 5989 if (unlikely(conf->reshape_progress != MaxSector)) { 5990 /* 5991 * Spinlock is needed as reshape_progress may be 5992 * 64bit on a 32bit platform, and so it might be 5993 * possible to see a half-updated value 5994 * Of course reshape_progress could change after 5995 * the lock is dropped, so once we get a reference 5996 * to the stripe that we think it is, we will have 5997 * to check again. 5998 */ 5999 spin_lock_irq(&conf->device_lock); 6000 if (ahead_of_reshape(mddev, logical_sector, 6001 conf->reshape_progress)) { 6002 previous = 1; 6003 } else { 6004 if (ahead_of_reshape(mddev, logical_sector, 6005 conf->reshape_safe)) { 6006 spin_unlock_irq(&conf->device_lock); 6007 ret = STRIPE_SCHEDULE_AND_RETRY; 6008 goto out; 6009 } 6010 } 6011 spin_unlock_irq(&conf->device_lock); 6012 } 6013 6014 new_sector = raid5_compute_sector(conf, logical_sector, previous, 6015 &dd_idx, NULL); 6016 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__, 6017 new_sector, logical_sector); 6018 6019 if (previous) 6020 flags |= R5_GAS_PREVIOUS; 6021 if (bi->bi_opf & REQ_RAHEAD) 6022 flags |= R5_GAS_NOBLOCK; 6023 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags); 6024 if (unlikely(!sh)) { 6025 /* cannot get stripe, just give-up */ 6026 bi->bi_status = BLK_STS_IOERR; 6027 return STRIPE_FAIL; 6028 } 6029 6030 if (unlikely(previous) && 6031 stripe_ahead_of_reshape(mddev, conf, sh)) { 6032 /* 6033 * Expansion moved on while waiting for a stripe. 6034 * Expansion could still move past after this 6035 * test, but as we are holding a reference to 6036 * 'sh', we know that if that happens, 6037 * STRIPE_EXPANDING will get set and the expansion 6038 * won't proceed until we finish with the stripe. 6039 */ 6040 ret = STRIPE_SCHEDULE_AND_RETRY; 6041 goto out_release; 6042 } 6043 6044 if (read_seqcount_retry(&conf->gen_lock, seq)) { 6045 /* Might have got the wrong stripe_head by accident */ 6046 ret = STRIPE_RETRY; 6047 goto out_release; 6048 } 6049 6050 if (test_bit(STRIPE_EXPANDING, &sh->state) || 6051 !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) { 6052 /* 6053 * Stripe is busy expanding or add failed due to 6054 * overlap. Flush everything and wait a while. 6055 */ 6056 md_wakeup_thread(mddev->thread); 6057 ret = STRIPE_SCHEDULE_AND_RETRY; 6058 goto out_release; 6059 } 6060 6061 if (stripe_can_batch(sh)) { 6062 stripe_add_to_batch_list(conf, sh, ctx->batch_last); 6063 if (ctx->batch_last) 6064 raid5_release_stripe(ctx->batch_last); 6065 atomic_inc(&sh->count); 6066 ctx->batch_last = sh; 6067 } 6068 6069 if (ctx->do_flush) { 6070 set_bit(STRIPE_R5C_PREFLUSH, &sh->state); 6071 /* we only need flush for one stripe */ 6072 ctx->do_flush = false; 6073 } 6074 6075 set_bit(STRIPE_HANDLE, &sh->state); 6076 clear_bit(STRIPE_DELAYED, &sh->state); 6077 if ((!sh->batch_head || sh == sh->batch_head) && 6078 (bi->bi_opf & REQ_SYNC) && 6079 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 6080 atomic_inc(&conf->preread_active_stripes); 6081 6082 release_stripe_plug(mddev, sh); 6083 return STRIPE_SUCCESS; 6084 6085 out_release: 6086 raid5_release_stripe(sh); 6087 out: 6088 if (ret == STRIPE_SCHEDULE_AND_RETRY && !reshape_inprogress(mddev) && 6089 reshape_disabled(mddev)) { 6090 bi->bi_status = BLK_STS_IOERR; 6091 ret = STRIPE_FAIL; 6092 pr_err("md/raid456:%s: io failed across reshape position while reshape can't make progress.\n", 6093 mdname(mddev)); 6094 } 6095 6096 return ret; 6097 } 6098 6099 /* 6100 * If the bio covers multiple data disks, find sector within the bio that has 6101 * the lowest chunk offset in the first chunk. 6102 */ 6103 static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf, 6104 struct bio *bi) 6105 { 6106 int sectors_per_chunk = conf->chunk_sectors; 6107 int raid_disks = conf->raid_disks; 6108 int dd_idx; 6109 struct stripe_head sh; 6110 unsigned int chunk_offset; 6111 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6112 sector_t sector; 6113 6114 /* We pass in fake stripe_head to get back parity disk numbers */ 6115 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh); 6116 chunk_offset = sector_div(sector, sectors_per_chunk); 6117 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi)) 6118 return r_sector; 6119 /* 6120 * Bio crosses to the next data disk. Check whether it's in the same 6121 * chunk. 6122 */ 6123 dd_idx++; 6124 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx) 6125 dd_idx++; 6126 if (dd_idx >= raid_disks) 6127 return r_sector; 6128 return r_sector + sectors_per_chunk - chunk_offset; 6129 } 6130 6131 static bool raid5_make_request(struct mddev *mddev, struct bio * bi) 6132 { 6133 DEFINE_WAIT_FUNC(wait, woken_wake_function); 6134 struct r5conf *conf = mddev->private; 6135 sector_t logical_sector; 6136 struct stripe_request_ctx ctx = {}; 6137 const int rw = bio_data_dir(bi); 6138 enum stripe_result res; 6139 int s, stripe_cnt; 6140 6141 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 6142 int ret = log_handle_flush_request(conf, bi); 6143 6144 if (ret == 0) 6145 return true; 6146 if (ret == -ENODEV) { 6147 if (md_flush_request(mddev, bi)) 6148 return true; 6149 } 6150 /* ret == -EAGAIN, fallback */ 6151 /* 6152 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, 6153 * we need to flush journal device 6154 */ 6155 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH; 6156 } 6157 6158 if (!md_write_start(mddev, bi)) 6159 return false; 6160 /* 6161 * If array is degraded, better not do chunk aligned read because 6162 * later we might have to read it again in order to reconstruct 6163 * data on failed drives. 6164 */ 6165 if (rw == READ && mddev->degraded == 0 && 6166 mddev->reshape_position == MaxSector) { 6167 bi = chunk_aligned_read(mddev, bi); 6168 if (!bi) 6169 return true; 6170 } 6171 6172 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 6173 make_discard_request(mddev, bi); 6174 md_write_end(mddev); 6175 return true; 6176 } 6177 6178 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6179 ctx.first_sector = logical_sector; 6180 ctx.last_sector = bio_end_sector(bi); 6181 bi->bi_next = NULL; 6182 6183 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector, 6184 RAID5_STRIPE_SECTORS(conf)); 6185 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt); 6186 6187 pr_debug("raid456: %s, logical %llu to %llu\n", __func__, 6188 bi->bi_iter.bi_sector, ctx.last_sector); 6189 6190 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */ 6191 if ((bi->bi_opf & REQ_NOWAIT) && 6192 (conf->reshape_progress != MaxSector) && 6193 !ahead_of_reshape(mddev, logical_sector, conf->reshape_progress) && 6194 ahead_of_reshape(mddev, logical_sector, conf->reshape_safe)) { 6195 bio_wouldblock_error(bi); 6196 if (rw == WRITE) 6197 md_write_end(mddev); 6198 return true; 6199 } 6200 md_account_bio(mddev, &bi); 6201 6202 /* 6203 * Lets start with the stripe with the lowest chunk offset in the first 6204 * chunk. That has the best chances of creating IOs adjacent to 6205 * previous IOs in case of sequential IO and thus creates the most 6206 * sequential IO pattern. We don't bother with the optimization when 6207 * reshaping as the performance benefit is not worth the complexity. 6208 */ 6209 if (likely(conf->reshape_progress == MaxSector)) 6210 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi); 6211 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf); 6212 6213 add_wait_queue(&conf->wait_for_overlap, &wait); 6214 while (1) { 6215 res = make_stripe_request(mddev, conf, &ctx, logical_sector, 6216 bi); 6217 if (res == STRIPE_FAIL) 6218 break; 6219 6220 if (res == STRIPE_RETRY) 6221 continue; 6222 6223 if (res == STRIPE_SCHEDULE_AND_RETRY) { 6224 /* 6225 * Must release the reference to batch_last before 6226 * scheduling and waiting for work to be done, 6227 * otherwise the batch_last stripe head could prevent 6228 * raid5_activate_delayed() from making progress 6229 * and thus deadlocking. 6230 */ 6231 if (ctx.batch_last) { 6232 raid5_release_stripe(ctx.batch_last); 6233 ctx.batch_last = NULL; 6234 } 6235 6236 wait_woken(&wait, TASK_UNINTERRUPTIBLE, 6237 MAX_SCHEDULE_TIMEOUT); 6238 continue; 6239 } 6240 6241 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s); 6242 if (s == stripe_cnt) 6243 break; 6244 6245 logical_sector = ctx.first_sector + 6246 (s << RAID5_STRIPE_SHIFT(conf)); 6247 } 6248 remove_wait_queue(&conf->wait_for_overlap, &wait); 6249 6250 if (ctx.batch_last) 6251 raid5_release_stripe(ctx.batch_last); 6252 6253 if (rw == WRITE) 6254 md_write_end(mddev); 6255 bio_endio(bi); 6256 return true; 6257 } 6258 6259 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 6260 6261 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 6262 { 6263 /* reshaping is quite different to recovery/resync so it is 6264 * handled quite separately ... here. 6265 * 6266 * On each call to sync_request, we gather one chunk worth of 6267 * destination stripes and flag them as expanding. 6268 * Then we find all the source stripes and request reads. 6269 * As the reads complete, handle_stripe will copy the data 6270 * into the destination stripe and release that stripe. 6271 */ 6272 struct r5conf *conf = mddev->private; 6273 struct stripe_head *sh; 6274 struct md_rdev *rdev; 6275 sector_t first_sector, last_sector; 6276 int raid_disks = conf->previous_raid_disks; 6277 int data_disks = raid_disks - conf->max_degraded; 6278 int new_data_disks = conf->raid_disks - conf->max_degraded; 6279 int i; 6280 int dd_idx; 6281 sector_t writepos, readpos, safepos; 6282 sector_t stripe_addr; 6283 int reshape_sectors; 6284 struct list_head stripes; 6285 sector_t retn; 6286 6287 if (sector_nr == 0) { 6288 /* If restarting in the middle, skip the initial sectors */ 6289 if (mddev->reshape_backwards && 6290 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 6291 sector_nr = raid5_size(mddev, 0, 0) 6292 - conf->reshape_progress; 6293 } else if (mddev->reshape_backwards && 6294 conf->reshape_progress == MaxSector) { 6295 /* shouldn't happen, but just in case, finish up.*/ 6296 sector_nr = MaxSector; 6297 } else if (!mddev->reshape_backwards && 6298 conf->reshape_progress > 0) 6299 sector_nr = conf->reshape_progress; 6300 sector_div(sector_nr, new_data_disks); 6301 if (sector_nr) { 6302 mddev->curr_resync_completed = sector_nr; 6303 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6304 *skipped = 1; 6305 retn = sector_nr; 6306 goto finish; 6307 } 6308 } 6309 6310 /* We need to process a full chunk at a time. 6311 * If old and new chunk sizes differ, we need to process the 6312 * largest of these 6313 */ 6314 6315 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 6316 6317 /* We update the metadata at least every 10 seconds, or when 6318 * the data about to be copied would over-write the source of 6319 * the data at the front of the range. i.e. one new_stripe 6320 * along from reshape_progress new_maps to after where 6321 * reshape_safe old_maps to 6322 */ 6323 writepos = conf->reshape_progress; 6324 sector_div(writepos, new_data_disks); 6325 readpos = conf->reshape_progress; 6326 sector_div(readpos, data_disks); 6327 safepos = conf->reshape_safe; 6328 sector_div(safepos, data_disks); 6329 if (mddev->reshape_backwards) { 6330 BUG_ON(writepos < reshape_sectors); 6331 writepos -= reshape_sectors; 6332 readpos += reshape_sectors; 6333 safepos += reshape_sectors; 6334 } else { 6335 writepos += reshape_sectors; 6336 /* readpos and safepos are worst-case calculations. 6337 * A negative number is overly pessimistic, and causes 6338 * obvious problems for unsigned storage. So clip to 0. 6339 */ 6340 readpos -= min_t(sector_t, reshape_sectors, readpos); 6341 safepos -= min_t(sector_t, reshape_sectors, safepos); 6342 } 6343 6344 /* Having calculated the 'writepos' possibly use it 6345 * to set 'stripe_addr' which is where we will write to. 6346 */ 6347 if (mddev->reshape_backwards) { 6348 BUG_ON(conf->reshape_progress == 0); 6349 stripe_addr = writepos; 6350 BUG_ON((mddev->dev_sectors & 6351 ~((sector_t)reshape_sectors - 1)) 6352 - reshape_sectors - stripe_addr 6353 != sector_nr); 6354 } else { 6355 BUG_ON(writepos != sector_nr + reshape_sectors); 6356 stripe_addr = sector_nr; 6357 } 6358 6359 /* 'writepos' is the most advanced device address we might write. 6360 * 'readpos' is the least advanced device address we might read. 6361 * 'safepos' is the least address recorded in the metadata as having 6362 * been reshaped. 6363 * If there is a min_offset_diff, these are adjusted either by 6364 * increasing the safepos/readpos if diff is negative, or 6365 * increasing writepos if diff is positive. 6366 * If 'readpos' is then behind 'writepos', there is no way that we can 6367 * ensure safety in the face of a crash - that must be done by userspace 6368 * making a backup of the data. So in that case there is no particular 6369 * rush to update metadata. 6370 * Otherwise if 'safepos' is behind 'writepos', then we really need to 6371 * update the metadata to advance 'safepos' to match 'readpos' so that 6372 * we can be safe in the event of a crash. 6373 * So we insist on updating metadata if safepos is behind writepos and 6374 * readpos is beyond writepos. 6375 * In any case, update the metadata every 10 seconds. 6376 * Maybe that number should be configurable, but I'm not sure it is 6377 * worth it.... maybe it could be a multiple of safemode_delay??? 6378 */ 6379 if (conf->min_offset_diff < 0) { 6380 safepos += -conf->min_offset_diff; 6381 readpos += -conf->min_offset_diff; 6382 } else 6383 writepos += conf->min_offset_diff; 6384 6385 if ((mddev->reshape_backwards 6386 ? (safepos > writepos && readpos < writepos) 6387 : (safepos < writepos && readpos > writepos)) || 6388 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 6389 /* Cannot proceed until we've updated the superblock... */ 6390 wait_event(conf->wait_for_overlap, 6391 atomic_read(&conf->reshape_stripes)==0 6392 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6393 if (atomic_read(&conf->reshape_stripes) != 0) 6394 return 0; 6395 mddev->reshape_position = conf->reshape_progress; 6396 mddev->curr_resync_completed = sector_nr; 6397 if (!mddev->reshape_backwards) 6398 /* Can update recovery_offset */ 6399 rdev_for_each(rdev, mddev) 6400 if (rdev->raid_disk >= 0 && 6401 !test_bit(Journal, &rdev->flags) && 6402 !test_bit(In_sync, &rdev->flags) && 6403 rdev->recovery_offset < sector_nr) 6404 rdev->recovery_offset = sector_nr; 6405 6406 conf->reshape_checkpoint = jiffies; 6407 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6408 md_wakeup_thread(mddev->thread); 6409 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 6410 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6411 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6412 return 0; 6413 spin_lock_irq(&conf->device_lock); 6414 conf->reshape_safe = mddev->reshape_position; 6415 spin_unlock_irq(&conf->device_lock); 6416 wake_up(&conf->wait_for_overlap); 6417 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6418 } 6419 6420 INIT_LIST_HEAD(&stripes); 6421 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) { 6422 int j; 6423 int skipped_disk = 0; 6424 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i, 6425 R5_GAS_NOQUIESCE); 6426 set_bit(STRIPE_EXPANDING, &sh->state); 6427 atomic_inc(&conf->reshape_stripes); 6428 /* If any of this stripe is beyond the end of the old 6429 * array, then we need to zero those blocks 6430 */ 6431 for (j=sh->disks; j--;) { 6432 sector_t s; 6433 if (j == sh->pd_idx) 6434 continue; 6435 if (conf->level == 6 && 6436 j == sh->qd_idx) 6437 continue; 6438 s = raid5_compute_blocknr(sh, j, 0); 6439 if (s < raid5_size(mddev, 0, 0)) { 6440 skipped_disk = 1; 6441 continue; 6442 } 6443 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf)); 6444 set_bit(R5_Expanded, &sh->dev[j].flags); 6445 set_bit(R5_UPTODATE, &sh->dev[j].flags); 6446 } 6447 if (!skipped_disk) { 6448 set_bit(STRIPE_EXPAND_READY, &sh->state); 6449 set_bit(STRIPE_HANDLE, &sh->state); 6450 } 6451 list_add(&sh->lru, &stripes); 6452 } 6453 spin_lock_irq(&conf->device_lock); 6454 if (mddev->reshape_backwards) 6455 conf->reshape_progress -= reshape_sectors * new_data_disks; 6456 else 6457 conf->reshape_progress += reshape_sectors * new_data_disks; 6458 spin_unlock_irq(&conf->device_lock); 6459 /* Ok, those stripe are ready. We can start scheduling 6460 * reads on the source stripes. 6461 * The source stripes are determined by mapping the first and last 6462 * block on the destination stripes. 6463 */ 6464 first_sector = 6465 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 6466 1, &dd_idx, NULL); 6467 last_sector = 6468 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 6469 * new_data_disks - 1), 6470 1, &dd_idx, NULL); 6471 if (last_sector >= mddev->dev_sectors) 6472 last_sector = mddev->dev_sectors - 1; 6473 while (first_sector <= last_sector) { 6474 sh = raid5_get_active_stripe(conf, NULL, first_sector, 6475 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE); 6476 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 6477 set_bit(STRIPE_HANDLE, &sh->state); 6478 raid5_release_stripe(sh); 6479 first_sector += RAID5_STRIPE_SECTORS(conf); 6480 } 6481 /* Now that the sources are clearly marked, we can release 6482 * the destination stripes 6483 */ 6484 while (!list_empty(&stripes)) { 6485 sh = list_entry(stripes.next, struct stripe_head, lru); 6486 list_del_init(&sh->lru); 6487 raid5_release_stripe(sh); 6488 } 6489 /* If this takes us to the resync_max point where we have to pause, 6490 * then we need to write out the superblock. 6491 */ 6492 sector_nr += reshape_sectors; 6493 retn = reshape_sectors; 6494 finish: 6495 if (mddev->curr_resync_completed > mddev->resync_max || 6496 (sector_nr - mddev->curr_resync_completed) * 2 6497 >= mddev->resync_max - mddev->curr_resync_completed) { 6498 /* Cannot proceed until we've updated the superblock... */ 6499 wait_event(conf->wait_for_overlap, 6500 atomic_read(&conf->reshape_stripes) == 0 6501 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6502 if (atomic_read(&conf->reshape_stripes) != 0) 6503 goto ret; 6504 mddev->reshape_position = conf->reshape_progress; 6505 mddev->curr_resync_completed = sector_nr; 6506 if (!mddev->reshape_backwards) 6507 /* Can update recovery_offset */ 6508 rdev_for_each(rdev, mddev) 6509 if (rdev->raid_disk >= 0 && 6510 !test_bit(Journal, &rdev->flags) && 6511 !test_bit(In_sync, &rdev->flags) && 6512 rdev->recovery_offset < sector_nr) 6513 rdev->recovery_offset = sector_nr; 6514 conf->reshape_checkpoint = jiffies; 6515 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6516 md_wakeup_thread(mddev->thread); 6517 wait_event(mddev->sb_wait, 6518 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) 6519 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 6520 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6521 goto ret; 6522 spin_lock_irq(&conf->device_lock); 6523 conf->reshape_safe = mddev->reshape_position; 6524 spin_unlock_irq(&conf->device_lock); 6525 wake_up(&conf->wait_for_overlap); 6526 sysfs_notify_dirent_safe(mddev->sysfs_completed); 6527 } 6528 ret: 6529 return retn; 6530 } 6531 6532 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 6533 int *skipped) 6534 { 6535 struct r5conf *conf = mddev->private; 6536 struct stripe_head *sh; 6537 sector_t max_sector = mddev->dev_sectors; 6538 sector_t sync_blocks; 6539 int still_degraded = 0; 6540 int i; 6541 6542 if (sector_nr >= max_sector) { 6543 /* just being told to finish up .. nothing much to do */ 6544 6545 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 6546 end_reshape(conf); 6547 return 0; 6548 } 6549 6550 if (mddev->curr_resync < max_sector) /* aborted */ 6551 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 6552 &sync_blocks, 1); 6553 else /* completed sync */ 6554 conf->fullsync = 0; 6555 md_bitmap_close_sync(mddev->bitmap); 6556 6557 return 0; 6558 } 6559 6560 /* Allow raid5_quiesce to complete */ 6561 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 6562 6563 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6564 return reshape_request(mddev, sector_nr, skipped); 6565 6566 /* No need to check resync_max as we never do more than one 6567 * stripe, and as resync_max will always be on a chunk boundary, 6568 * if the check in md_do_sync didn't fire, there is no chance 6569 * of overstepping resync_max here 6570 */ 6571 6572 /* if there is too many failed drives and we are trying 6573 * to resync, then assert that we are finished, because there is 6574 * nothing we can do. 6575 */ 6576 if (mddev->degraded >= conf->max_degraded && 6577 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6578 sector_t rv = mddev->dev_sectors - sector_nr; 6579 *skipped = 1; 6580 return rv; 6581 } 6582 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 6583 !conf->fullsync && 6584 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 6585 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) { 6586 /* we can skip this block, and probably more */ 6587 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf)); 6588 *skipped = 1; 6589 /* keep things rounded to whole stripes */ 6590 return sync_blocks * RAID5_STRIPE_SECTORS(conf); 6591 } 6592 6593 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 6594 6595 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 6596 R5_GAS_NOBLOCK); 6597 if (sh == NULL) { 6598 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0); 6599 /* make sure we don't swamp the stripe cache if someone else 6600 * is trying to get access 6601 */ 6602 schedule_timeout_uninterruptible(1); 6603 } 6604 /* Need to check if array will still be degraded after recovery/resync 6605 * Note in case of > 1 drive failures it's possible we're rebuilding 6606 * one drive while leaving another faulty drive in array. 6607 */ 6608 rcu_read_lock(); 6609 for (i = 0; i < conf->raid_disks; i++) { 6610 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 6611 6612 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 6613 still_degraded = 1; 6614 } 6615 rcu_read_unlock(); 6616 6617 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 6618 6619 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 6620 set_bit(STRIPE_HANDLE, &sh->state); 6621 6622 raid5_release_stripe(sh); 6623 6624 return RAID5_STRIPE_SECTORS(conf); 6625 } 6626 6627 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, 6628 unsigned int offset) 6629 { 6630 /* We may not be able to submit a whole bio at once as there 6631 * may not be enough stripe_heads available. 6632 * We cannot pre-allocate enough stripe_heads as we may need 6633 * more than exist in the cache (if we allow ever large chunks). 6634 * So we do one stripe head at a time and record in 6635 * ->bi_hw_segments how many have been done. 6636 * 6637 * We *know* that this entire raid_bio is in one chunk, so 6638 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 6639 */ 6640 struct stripe_head *sh; 6641 int dd_idx; 6642 sector_t sector, logical_sector, last_sector; 6643 int scnt = 0; 6644 int handled = 0; 6645 6646 logical_sector = raid_bio->bi_iter.bi_sector & 6647 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1); 6648 sector = raid5_compute_sector(conf, logical_sector, 6649 0, &dd_idx, NULL); 6650 last_sector = bio_end_sector(raid_bio); 6651 6652 for (; logical_sector < last_sector; 6653 logical_sector += RAID5_STRIPE_SECTORS(conf), 6654 sector += RAID5_STRIPE_SECTORS(conf), 6655 scnt++) { 6656 6657 if (scnt < offset) 6658 /* already done this stripe */ 6659 continue; 6660 6661 sh = raid5_get_active_stripe(conf, NULL, sector, 6662 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE); 6663 if (!sh) { 6664 /* failed to get a stripe - must wait */ 6665 conf->retry_read_aligned = raid_bio; 6666 conf->retry_read_offset = scnt; 6667 return handled; 6668 } 6669 6670 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 6671 raid5_release_stripe(sh); 6672 conf->retry_read_aligned = raid_bio; 6673 conf->retry_read_offset = scnt; 6674 return handled; 6675 } 6676 6677 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 6678 handle_stripe(sh); 6679 raid5_release_stripe(sh); 6680 handled++; 6681 } 6682 6683 bio_endio(raid_bio); 6684 6685 if (atomic_dec_and_test(&conf->active_aligned_reads)) 6686 wake_up(&conf->wait_for_quiescent); 6687 return handled; 6688 } 6689 6690 static int handle_active_stripes(struct r5conf *conf, int group, 6691 struct r5worker *worker, 6692 struct list_head *temp_inactive_list) 6693 __must_hold(&conf->device_lock) 6694 { 6695 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 6696 int i, batch_size = 0, hash; 6697 bool release_inactive = false; 6698 6699 while (batch_size < MAX_STRIPE_BATCH && 6700 (sh = __get_priority_stripe(conf, group)) != NULL) 6701 batch[batch_size++] = sh; 6702 6703 if (batch_size == 0) { 6704 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6705 if (!list_empty(temp_inactive_list + i)) 6706 break; 6707 if (i == NR_STRIPE_HASH_LOCKS) { 6708 spin_unlock_irq(&conf->device_lock); 6709 log_flush_stripe_to_raid(conf); 6710 spin_lock_irq(&conf->device_lock); 6711 return batch_size; 6712 } 6713 release_inactive = true; 6714 } 6715 spin_unlock_irq(&conf->device_lock); 6716 6717 release_inactive_stripe_list(conf, temp_inactive_list, 6718 NR_STRIPE_HASH_LOCKS); 6719 6720 r5l_flush_stripe_to_raid(conf->log); 6721 if (release_inactive) { 6722 spin_lock_irq(&conf->device_lock); 6723 return 0; 6724 } 6725 6726 for (i = 0; i < batch_size; i++) 6727 handle_stripe(batch[i]); 6728 log_write_stripe_run(conf); 6729 6730 cond_resched(); 6731 6732 spin_lock_irq(&conf->device_lock); 6733 for (i = 0; i < batch_size; i++) { 6734 hash = batch[i]->hash_lock_index; 6735 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 6736 } 6737 return batch_size; 6738 } 6739 6740 static void raid5_do_work(struct work_struct *work) 6741 { 6742 struct r5worker *worker = container_of(work, struct r5worker, work); 6743 struct r5worker_group *group = worker->group; 6744 struct r5conf *conf = group->conf; 6745 struct mddev *mddev = conf->mddev; 6746 int group_id = group - conf->worker_groups; 6747 int handled; 6748 struct blk_plug plug; 6749 6750 pr_debug("+++ raid5worker active\n"); 6751 6752 blk_start_plug(&plug); 6753 handled = 0; 6754 spin_lock_irq(&conf->device_lock); 6755 while (1) { 6756 int batch_size, released; 6757 6758 released = release_stripe_list(conf, worker->temp_inactive_list); 6759 6760 batch_size = handle_active_stripes(conf, group_id, worker, 6761 worker->temp_inactive_list); 6762 worker->working = false; 6763 if (!batch_size && !released) 6764 break; 6765 handled += batch_size; 6766 wait_event_lock_irq(mddev->sb_wait, 6767 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6768 conf->device_lock); 6769 } 6770 pr_debug("%d stripes handled\n", handled); 6771 6772 spin_unlock_irq(&conf->device_lock); 6773 6774 flush_deferred_bios(conf); 6775 6776 r5l_flush_stripe_to_raid(conf->log); 6777 6778 async_tx_issue_pending_all(); 6779 blk_finish_plug(&plug); 6780 6781 pr_debug("--- raid5worker inactive\n"); 6782 } 6783 6784 /* 6785 * This is our raid5 kernel thread. 6786 * 6787 * We scan the hash table for stripes which can be handled now. 6788 * During the scan, completed stripes are saved for us by the interrupt 6789 * handler, so that they will not have to wait for our next wakeup. 6790 */ 6791 static void raid5d(struct md_thread *thread) 6792 { 6793 struct mddev *mddev = thread->mddev; 6794 struct r5conf *conf = mddev->private; 6795 int handled; 6796 struct blk_plug plug; 6797 6798 pr_debug("+++ raid5d active\n"); 6799 6800 md_check_recovery(mddev); 6801 6802 blk_start_plug(&plug); 6803 handled = 0; 6804 spin_lock_irq(&conf->device_lock); 6805 while (1) { 6806 struct bio *bio; 6807 int batch_size, released; 6808 unsigned int offset; 6809 6810 released = release_stripe_list(conf, conf->temp_inactive_list); 6811 if (released) 6812 clear_bit(R5_DID_ALLOC, &conf->cache_state); 6813 6814 if ( 6815 !list_empty(&conf->bitmap_list)) { 6816 /* Now is a good time to flush some bitmap updates */ 6817 conf->seq_flush++; 6818 spin_unlock_irq(&conf->device_lock); 6819 md_bitmap_unplug(mddev->bitmap); 6820 spin_lock_irq(&conf->device_lock); 6821 conf->seq_write = conf->seq_flush; 6822 activate_bit_delay(conf, conf->temp_inactive_list); 6823 } 6824 raid5_activate_delayed(conf); 6825 6826 while ((bio = remove_bio_from_retry(conf, &offset))) { 6827 int ok; 6828 spin_unlock_irq(&conf->device_lock); 6829 ok = retry_aligned_read(conf, bio, offset); 6830 spin_lock_irq(&conf->device_lock); 6831 if (!ok) 6832 break; 6833 handled++; 6834 } 6835 6836 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 6837 conf->temp_inactive_list); 6838 if (!batch_size && !released) 6839 break; 6840 handled += batch_size; 6841 6842 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { 6843 spin_unlock_irq(&conf->device_lock); 6844 md_check_recovery(mddev); 6845 spin_lock_irq(&conf->device_lock); 6846 6847 /* 6848 * Waiting on MD_SB_CHANGE_PENDING below may deadlock 6849 * seeing md_check_recovery() is needed to clear 6850 * the flag when using mdmon. 6851 */ 6852 continue; 6853 } 6854 6855 wait_event_lock_irq(mddev->sb_wait, 6856 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), 6857 conf->device_lock); 6858 } 6859 pr_debug("%d stripes handled\n", handled); 6860 6861 spin_unlock_irq(&conf->device_lock); 6862 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 6863 mutex_trylock(&conf->cache_size_mutex)) { 6864 grow_one_stripe(conf, __GFP_NOWARN); 6865 /* Set flag even if allocation failed. This helps 6866 * slow down allocation requests when mem is short 6867 */ 6868 set_bit(R5_DID_ALLOC, &conf->cache_state); 6869 mutex_unlock(&conf->cache_size_mutex); 6870 } 6871 6872 flush_deferred_bios(conf); 6873 6874 r5l_flush_stripe_to_raid(conf->log); 6875 6876 async_tx_issue_pending_all(); 6877 blk_finish_plug(&plug); 6878 6879 pr_debug("--- raid5d inactive\n"); 6880 } 6881 6882 static ssize_t 6883 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 6884 { 6885 struct r5conf *conf; 6886 int ret = 0; 6887 spin_lock(&mddev->lock); 6888 conf = mddev->private; 6889 if (conf) 6890 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 6891 spin_unlock(&mddev->lock); 6892 return ret; 6893 } 6894 6895 int 6896 raid5_set_cache_size(struct mddev *mddev, int size) 6897 { 6898 int result = 0; 6899 struct r5conf *conf = mddev->private; 6900 6901 if (size <= 16 || size > 32768) 6902 return -EINVAL; 6903 6904 conf->min_nr_stripes = size; 6905 mutex_lock(&conf->cache_size_mutex); 6906 while (size < conf->max_nr_stripes && 6907 drop_one_stripe(conf)) 6908 ; 6909 mutex_unlock(&conf->cache_size_mutex); 6910 6911 md_allow_write(mddev); 6912 6913 mutex_lock(&conf->cache_size_mutex); 6914 while (size > conf->max_nr_stripes) 6915 if (!grow_one_stripe(conf, GFP_KERNEL)) { 6916 conf->min_nr_stripes = conf->max_nr_stripes; 6917 result = -ENOMEM; 6918 break; 6919 } 6920 mutex_unlock(&conf->cache_size_mutex); 6921 6922 return result; 6923 } 6924 EXPORT_SYMBOL(raid5_set_cache_size); 6925 6926 static ssize_t 6927 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 6928 { 6929 struct r5conf *conf; 6930 unsigned long new; 6931 int err; 6932 6933 if (len >= PAGE_SIZE) 6934 return -EINVAL; 6935 if (kstrtoul(page, 10, &new)) 6936 return -EINVAL; 6937 err = mddev_lock(mddev); 6938 if (err) 6939 return err; 6940 conf = mddev->private; 6941 if (!conf) 6942 err = -ENODEV; 6943 else 6944 err = raid5_set_cache_size(mddev, new); 6945 mddev_unlock(mddev); 6946 6947 return err ?: len; 6948 } 6949 6950 static struct md_sysfs_entry 6951 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6952 raid5_show_stripe_cache_size, 6953 raid5_store_stripe_cache_size); 6954 6955 static ssize_t 6956 raid5_show_rmw_level(struct mddev *mddev, char *page) 6957 { 6958 struct r5conf *conf = mddev->private; 6959 if (conf) 6960 return sprintf(page, "%d\n", conf->rmw_level); 6961 else 6962 return 0; 6963 } 6964 6965 static ssize_t 6966 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6967 { 6968 struct r5conf *conf = mddev->private; 6969 unsigned long new; 6970 6971 if (!conf) 6972 return -ENODEV; 6973 6974 if (len >= PAGE_SIZE) 6975 return -EINVAL; 6976 6977 if (kstrtoul(page, 10, &new)) 6978 return -EINVAL; 6979 6980 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6981 return -EINVAL; 6982 6983 if (new != PARITY_DISABLE_RMW && 6984 new != PARITY_ENABLE_RMW && 6985 new != PARITY_PREFER_RMW) 6986 return -EINVAL; 6987 6988 conf->rmw_level = new; 6989 return len; 6990 } 6991 6992 static struct md_sysfs_entry 6993 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6994 raid5_show_rmw_level, 6995 raid5_store_rmw_level); 6996 6997 static ssize_t 6998 raid5_show_stripe_size(struct mddev *mddev, char *page) 6999 { 7000 struct r5conf *conf; 7001 int ret = 0; 7002 7003 spin_lock(&mddev->lock); 7004 conf = mddev->private; 7005 if (conf) 7006 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf)); 7007 spin_unlock(&mddev->lock); 7008 return ret; 7009 } 7010 7011 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 7012 static ssize_t 7013 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len) 7014 { 7015 struct r5conf *conf; 7016 unsigned long new; 7017 int err; 7018 int size; 7019 7020 if (len >= PAGE_SIZE) 7021 return -EINVAL; 7022 if (kstrtoul(page, 10, &new)) 7023 return -EINVAL; 7024 7025 /* 7026 * The value should not be bigger than PAGE_SIZE. It requires to 7027 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power 7028 * of two. 7029 */ 7030 if (new % DEFAULT_STRIPE_SIZE != 0 || 7031 new > PAGE_SIZE || new == 0 || 7032 new != roundup_pow_of_two(new)) 7033 return -EINVAL; 7034 7035 err = mddev_lock(mddev); 7036 if (err) 7037 return err; 7038 7039 conf = mddev->private; 7040 if (!conf) { 7041 err = -ENODEV; 7042 goto out_unlock; 7043 } 7044 7045 if (new == conf->stripe_size) 7046 goto out_unlock; 7047 7048 pr_debug("md/raid: change stripe_size from %lu to %lu\n", 7049 conf->stripe_size, new); 7050 7051 if (mddev->sync_thread || 7052 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7053 mddev->reshape_position != MaxSector || 7054 mddev->sysfs_active) { 7055 err = -EBUSY; 7056 goto out_unlock; 7057 } 7058 7059 mddev_suspend(mddev); 7060 mutex_lock(&conf->cache_size_mutex); 7061 size = conf->max_nr_stripes; 7062 7063 shrink_stripes(conf); 7064 7065 conf->stripe_size = new; 7066 conf->stripe_shift = ilog2(new) - 9; 7067 conf->stripe_sectors = new >> 9; 7068 if (grow_stripes(conf, size)) { 7069 pr_warn("md/raid:%s: couldn't allocate buffers\n", 7070 mdname(mddev)); 7071 err = -ENOMEM; 7072 } 7073 mutex_unlock(&conf->cache_size_mutex); 7074 mddev_resume(mddev); 7075 7076 out_unlock: 7077 mddev_unlock(mddev); 7078 return err ?: len; 7079 } 7080 7081 static struct md_sysfs_entry 7082 raid5_stripe_size = __ATTR(stripe_size, 0644, 7083 raid5_show_stripe_size, 7084 raid5_store_stripe_size); 7085 #else 7086 static struct md_sysfs_entry 7087 raid5_stripe_size = __ATTR(stripe_size, 0444, 7088 raid5_show_stripe_size, 7089 NULL); 7090 #endif 7091 7092 static ssize_t 7093 raid5_show_preread_threshold(struct mddev *mddev, char *page) 7094 { 7095 struct r5conf *conf; 7096 int ret = 0; 7097 spin_lock(&mddev->lock); 7098 conf = mddev->private; 7099 if (conf) 7100 ret = sprintf(page, "%d\n", conf->bypass_threshold); 7101 spin_unlock(&mddev->lock); 7102 return ret; 7103 } 7104 7105 static ssize_t 7106 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 7107 { 7108 struct r5conf *conf; 7109 unsigned long new; 7110 int err; 7111 7112 if (len >= PAGE_SIZE) 7113 return -EINVAL; 7114 if (kstrtoul(page, 10, &new)) 7115 return -EINVAL; 7116 7117 err = mddev_lock(mddev); 7118 if (err) 7119 return err; 7120 conf = mddev->private; 7121 if (!conf) 7122 err = -ENODEV; 7123 else if (new > conf->min_nr_stripes) 7124 err = -EINVAL; 7125 else 7126 conf->bypass_threshold = new; 7127 mddev_unlock(mddev); 7128 return err ?: len; 7129 } 7130 7131 static struct md_sysfs_entry 7132 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 7133 S_IRUGO | S_IWUSR, 7134 raid5_show_preread_threshold, 7135 raid5_store_preread_threshold); 7136 7137 static ssize_t 7138 raid5_show_skip_copy(struct mddev *mddev, char *page) 7139 { 7140 struct r5conf *conf; 7141 int ret = 0; 7142 spin_lock(&mddev->lock); 7143 conf = mddev->private; 7144 if (conf) 7145 ret = sprintf(page, "%d\n", conf->skip_copy); 7146 spin_unlock(&mddev->lock); 7147 return ret; 7148 } 7149 7150 static ssize_t 7151 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 7152 { 7153 struct r5conf *conf; 7154 unsigned long new; 7155 int err; 7156 7157 if (len >= PAGE_SIZE) 7158 return -EINVAL; 7159 if (kstrtoul(page, 10, &new)) 7160 return -EINVAL; 7161 new = !!new; 7162 7163 err = mddev_lock(mddev); 7164 if (err) 7165 return err; 7166 conf = mddev->private; 7167 if (!conf) 7168 err = -ENODEV; 7169 else if (new != conf->skip_copy) { 7170 struct request_queue *q = mddev->queue; 7171 7172 mddev_suspend(mddev); 7173 conf->skip_copy = new; 7174 if (new) 7175 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 7176 else 7177 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 7178 mddev_resume(mddev); 7179 } 7180 mddev_unlock(mddev); 7181 return err ?: len; 7182 } 7183 7184 static struct md_sysfs_entry 7185 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 7186 raid5_show_skip_copy, 7187 raid5_store_skip_copy); 7188 7189 static ssize_t 7190 stripe_cache_active_show(struct mddev *mddev, char *page) 7191 { 7192 struct r5conf *conf = mddev->private; 7193 if (conf) 7194 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 7195 else 7196 return 0; 7197 } 7198 7199 static struct md_sysfs_entry 7200 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 7201 7202 static ssize_t 7203 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 7204 { 7205 struct r5conf *conf; 7206 int ret = 0; 7207 spin_lock(&mddev->lock); 7208 conf = mddev->private; 7209 if (conf) 7210 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 7211 spin_unlock(&mddev->lock); 7212 return ret; 7213 } 7214 7215 static int alloc_thread_groups(struct r5conf *conf, int cnt, 7216 int *group_cnt, 7217 struct r5worker_group **worker_groups); 7218 static ssize_t 7219 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 7220 { 7221 struct r5conf *conf; 7222 unsigned int new; 7223 int err; 7224 struct r5worker_group *new_groups, *old_groups; 7225 int group_cnt; 7226 7227 if (len >= PAGE_SIZE) 7228 return -EINVAL; 7229 if (kstrtouint(page, 10, &new)) 7230 return -EINVAL; 7231 /* 8192 should be big enough */ 7232 if (new > 8192) 7233 return -EINVAL; 7234 7235 err = mddev_lock(mddev); 7236 if (err) 7237 return err; 7238 conf = mddev->private; 7239 if (!conf) 7240 err = -ENODEV; 7241 else if (new != conf->worker_cnt_per_group) { 7242 mddev_suspend(mddev); 7243 7244 old_groups = conf->worker_groups; 7245 if (old_groups) 7246 flush_workqueue(raid5_wq); 7247 7248 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups); 7249 if (!err) { 7250 spin_lock_irq(&conf->device_lock); 7251 conf->group_cnt = group_cnt; 7252 conf->worker_cnt_per_group = new; 7253 conf->worker_groups = new_groups; 7254 spin_unlock_irq(&conf->device_lock); 7255 7256 if (old_groups) 7257 kfree(old_groups[0].workers); 7258 kfree(old_groups); 7259 } 7260 mddev_resume(mddev); 7261 } 7262 mddev_unlock(mddev); 7263 7264 return err ?: len; 7265 } 7266 7267 static struct md_sysfs_entry 7268 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 7269 raid5_show_group_thread_cnt, 7270 raid5_store_group_thread_cnt); 7271 7272 static struct attribute *raid5_attrs[] = { 7273 &raid5_stripecache_size.attr, 7274 &raid5_stripecache_active.attr, 7275 &raid5_preread_bypass_threshold.attr, 7276 &raid5_group_thread_cnt.attr, 7277 &raid5_skip_copy.attr, 7278 &raid5_rmw_level.attr, 7279 &raid5_stripe_size.attr, 7280 &r5c_journal_mode.attr, 7281 &ppl_write_hint.attr, 7282 NULL, 7283 }; 7284 static const struct attribute_group raid5_attrs_group = { 7285 .name = NULL, 7286 .attrs = raid5_attrs, 7287 }; 7288 7289 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt, 7290 struct r5worker_group **worker_groups) 7291 { 7292 int i, j, k; 7293 ssize_t size; 7294 struct r5worker *workers; 7295 7296 if (cnt == 0) { 7297 *group_cnt = 0; 7298 *worker_groups = NULL; 7299 return 0; 7300 } 7301 *group_cnt = num_possible_nodes(); 7302 size = sizeof(struct r5worker) * cnt; 7303 workers = kcalloc(size, *group_cnt, GFP_NOIO); 7304 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), 7305 GFP_NOIO); 7306 if (!*worker_groups || !workers) { 7307 kfree(workers); 7308 kfree(*worker_groups); 7309 return -ENOMEM; 7310 } 7311 7312 for (i = 0; i < *group_cnt; i++) { 7313 struct r5worker_group *group; 7314 7315 group = &(*worker_groups)[i]; 7316 INIT_LIST_HEAD(&group->handle_list); 7317 INIT_LIST_HEAD(&group->loprio_list); 7318 group->conf = conf; 7319 group->workers = workers + i * cnt; 7320 7321 for (j = 0; j < cnt; j++) { 7322 struct r5worker *worker = group->workers + j; 7323 worker->group = group; 7324 INIT_WORK(&worker->work, raid5_do_work); 7325 7326 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 7327 INIT_LIST_HEAD(worker->temp_inactive_list + k); 7328 } 7329 } 7330 7331 return 0; 7332 } 7333 7334 static void free_thread_groups(struct r5conf *conf) 7335 { 7336 if (conf->worker_groups) 7337 kfree(conf->worker_groups[0].workers); 7338 kfree(conf->worker_groups); 7339 conf->worker_groups = NULL; 7340 } 7341 7342 static sector_t 7343 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 7344 { 7345 struct r5conf *conf = mddev->private; 7346 7347 if (!sectors) 7348 sectors = mddev->dev_sectors; 7349 if (!raid_disks) 7350 /* size is defined by the smallest of previous and new size */ 7351 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 7352 7353 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7354 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 7355 return sectors * (raid_disks - conf->max_degraded); 7356 } 7357 7358 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7359 { 7360 safe_put_page(percpu->spare_page); 7361 percpu->spare_page = NULL; 7362 kvfree(percpu->scribble); 7363 percpu->scribble = NULL; 7364 } 7365 7366 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 7367 { 7368 if (conf->level == 6 && !percpu->spare_page) { 7369 percpu->spare_page = alloc_page(GFP_KERNEL); 7370 if (!percpu->spare_page) 7371 return -ENOMEM; 7372 } 7373 7374 if (scribble_alloc(percpu, 7375 max(conf->raid_disks, 7376 conf->previous_raid_disks), 7377 max(conf->chunk_sectors, 7378 conf->prev_chunk_sectors) 7379 / RAID5_STRIPE_SECTORS(conf))) { 7380 free_scratch_buffer(conf, percpu); 7381 return -ENOMEM; 7382 } 7383 7384 local_lock_init(&percpu->lock); 7385 return 0; 7386 } 7387 7388 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 7389 { 7390 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7391 7392 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 7393 return 0; 7394 } 7395 7396 static void raid5_free_percpu(struct r5conf *conf) 7397 { 7398 if (!conf->percpu) 7399 return; 7400 7401 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7402 free_percpu(conf->percpu); 7403 } 7404 7405 static void free_conf(struct r5conf *conf) 7406 { 7407 int i; 7408 7409 log_exit(conf); 7410 7411 unregister_shrinker(&conf->shrinker); 7412 free_thread_groups(conf); 7413 shrink_stripes(conf); 7414 raid5_free_percpu(conf); 7415 for (i = 0; i < conf->pool_size; i++) 7416 if (conf->disks[i].extra_page) 7417 put_page(conf->disks[i].extra_page); 7418 kfree(conf->disks); 7419 bioset_exit(&conf->bio_split); 7420 kfree(conf->stripe_hashtbl); 7421 kfree(conf->pending_data); 7422 kfree(conf); 7423 } 7424 7425 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 7426 { 7427 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 7428 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 7429 7430 if (alloc_scratch_buffer(conf, percpu)) { 7431 pr_warn("%s: failed memory allocation for cpu%u\n", 7432 __func__, cpu); 7433 return -ENOMEM; 7434 } 7435 return 0; 7436 } 7437 7438 static int raid5_alloc_percpu(struct r5conf *conf) 7439 { 7440 int err = 0; 7441 7442 conf->percpu = alloc_percpu(struct raid5_percpu); 7443 if (!conf->percpu) 7444 return -ENOMEM; 7445 7446 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 7447 if (!err) { 7448 conf->scribble_disks = max(conf->raid_disks, 7449 conf->previous_raid_disks); 7450 conf->scribble_sectors = max(conf->chunk_sectors, 7451 conf->prev_chunk_sectors); 7452 } 7453 return err; 7454 } 7455 7456 static unsigned long raid5_cache_scan(struct shrinker *shrink, 7457 struct shrink_control *sc) 7458 { 7459 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 7460 unsigned long ret = SHRINK_STOP; 7461 7462 if (mutex_trylock(&conf->cache_size_mutex)) { 7463 ret= 0; 7464 while (ret < sc->nr_to_scan && 7465 conf->max_nr_stripes > conf->min_nr_stripes) { 7466 if (drop_one_stripe(conf) == 0) { 7467 ret = SHRINK_STOP; 7468 break; 7469 } 7470 ret++; 7471 } 7472 mutex_unlock(&conf->cache_size_mutex); 7473 } 7474 return ret; 7475 } 7476 7477 static unsigned long raid5_cache_count(struct shrinker *shrink, 7478 struct shrink_control *sc) 7479 { 7480 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 7481 7482 if (conf->max_nr_stripes < conf->min_nr_stripes) 7483 /* unlikely, but not impossible */ 7484 return 0; 7485 return conf->max_nr_stripes - conf->min_nr_stripes; 7486 } 7487 7488 static struct r5conf *setup_conf(struct mddev *mddev) 7489 { 7490 struct r5conf *conf; 7491 int raid_disk, memory, max_disks; 7492 struct md_rdev *rdev; 7493 struct disk_info *disk; 7494 char pers_name[6]; 7495 int i; 7496 int group_cnt; 7497 struct r5worker_group *new_group; 7498 int ret = -ENOMEM; 7499 7500 if (mddev->new_level != 5 7501 && mddev->new_level != 4 7502 && mddev->new_level != 6) { 7503 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", 7504 mdname(mddev), mddev->new_level); 7505 return ERR_PTR(-EIO); 7506 } 7507 if ((mddev->new_level == 5 7508 && !algorithm_valid_raid5(mddev->new_layout)) || 7509 (mddev->new_level == 6 7510 && !algorithm_valid_raid6(mddev->new_layout))) { 7511 pr_warn("md/raid:%s: layout %d not supported\n", 7512 mdname(mddev), mddev->new_layout); 7513 return ERR_PTR(-EIO); 7514 } 7515 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 7516 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", 7517 mdname(mddev), mddev->raid_disks); 7518 return ERR_PTR(-EINVAL); 7519 } 7520 7521 if (!mddev->new_chunk_sectors || 7522 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 7523 !is_power_of_2(mddev->new_chunk_sectors)) { 7524 pr_warn("md/raid:%s: invalid chunk size %d\n", 7525 mdname(mddev), mddev->new_chunk_sectors << 9); 7526 return ERR_PTR(-EINVAL); 7527 } 7528 7529 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 7530 if (conf == NULL) 7531 goto abort; 7532 7533 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE 7534 conf->stripe_size = DEFAULT_STRIPE_SIZE; 7535 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9; 7536 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9; 7537 #endif 7538 INIT_LIST_HEAD(&conf->free_list); 7539 INIT_LIST_HEAD(&conf->pending_list); 7540 conf->pending_data = kcalloc(PENDING_IO_MAX, 7541 sizeof(struct r5pending_data), 7542 GFP_KERNEL); 7543 if (!conf->pending_data) 7544 goto abort; 7545 for (i = 0; i < PENDING_IO_MAX; i++) 7546 list_add(&conf->pending_data[i].sibling, &conf->free_list); 7547 /* Don't enable multi-threading by default*/ 7548 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) { 7549 conf->group_cnt = group_cnt; 7550 conf->worker_cnt_per_group = 0; 7551 conf->worker_groups = new_group; 7552 } else 7553 goto abort; 7554 spin_lock_init(&conf->device_lock); 7555 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock); 7556 mutex_init(&conf->cache_size_mutex); 7557 7558 init_waitqueue_head(&conf->wait_for_quiescent); 7559 init_waitqueue_head(&conf->wait_for_stripe); 7560 init_waitqueue_head(&conf->wait_for_overlap); 7561 INIT_LIST_HEAD(&conf->handle_list); 7562 INIT_LIST_HEAD(&conf->loprio_list); 7563 INIT_LIST_HEAD(&conf->hold_list); 7564 INIT_LIST_HEAD(&conf->delayed_list); 7565 INIT_LIST_HEAD(&conf->bitmap_list); 7566 init_llist_head(&conf->released_stripes); 7567 atomic_set(&conf->active_stripes, 0); 7568 atomic_set(&conf->preread_active_stripes, 0); 7569 atomic_set(&conf->active_aligned_reads, 0); 7570 spin_lock_init(&conf->pending_bios_lock); 7571 conf->batch_bio_dispatch = true; 7572 rdev_for_each(rdev, mddev) { 7573 if (test_bit(Journal, &rdev->flags)) 7574 continue; 7575 if (bdev_nonrot(rdev->bdev)) { 7576 conf->batch_bio_dispatch = false; 7577 break; 7578 } 7579 } 7580 7581 conf->bypass_threshold = BYPASS_THRESHOLD; 7582 conf->recovery_disabled = mddev->recovery_disabled - 1; 7583 7584 conf->raid_disks = mddev->raid_disks; 7585 if (mddev->reshape_position == MaxSector) 7586 conf->previous_raid_disks = mddev->raid_disks; 7587 else 7588 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 7589 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 7590 7591 conf->disks = kcalloc(max_disks, sizeof(struct disk_info), 7592 GFP_KERNEL); 7593 7594 if (!conf->disks) 7595 goto abort; 7596 7597 for (i = 0; i < max_disks; i++) { 7598 conf->disks[i].extra_page = alloc_page(GFP_KERNEL); 7599 if (!conf->disks[i].extra_page) 7600 goto abort; 7601 } 7602 7603 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 7604 if (ret) 7605 goto abort; 7606 conf->mddev = mddev; 7607 7608 ret = -ENOMEM; 7609 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL); 7610 if (!conf->stripe_hashtbl) 7611 goto abort; 7612 7613 /* We init hash_locks[0] separately to that it can be used 7614 * as the reference lock in the spin_lock_nest_lock() call 7615 * in lock_all_device_hash_locks_irq in order to convince 7616 * lockdep that we know what we are doing. 7617 */ 7618 spin_lock_init(conf->hash_locks); 7619 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 7620 spin_lock_init(conf->hash_locks + i); 7621 7622 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7623 INIT_LIST_HEAD(conf->inactive_list + i); 7624 7625 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 7626 INIT_LIST_HEAD(conf->temp_inactive_list + i); 7627 7628 atomic_set(&conf->r5c_cached_full_stripes, 0); 7629 INIT_LIST_HEAD(&conf->r5c_full_stripe_list); 7630 atomic_set(&conf->r5c_cached_partial_stripes, 0); 7631 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); 7632 atomic_set(&conf->r5c_flushing_full_stripes, 0); 7633 atomic_set(&conf->r5c_flushing_partial_stripes, 0); 7634 7635 conf->level = mddev->new_level; 7636 conf->chunk_sectors = mddev->new_chunk_sectors; 7637 ret = raid5_alloc_percpu(conf); 7638 if (ret) 7639 goto abort; 7640 7641 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 7642 7643 ret = -EIO; 7644 rdev_for_each(rdev, mddev) { 7645 raid_disk = rdev->raid_disk; 7646 if (raid_disk >= max_disks 7647 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 7648 continue; 7649 disk = conf->disks + raid_disk; 7650 7651 if (test_bit(Replacement, &rdev->flags)) { 7652 if (disk->replacement) 7653 goto abort; 7654 RCU_INIT_POINTER(disk->replacement, rdev); 7655 } else { 7656 if (disk->rdev) 7657 goto abort; 7658 RCU_INIT_POINTER(disk->rdev, rdev); 7659 } 7660 7661 if (test_bit(In_sync, &rdev->flags)) { 7662 pr_info("md/raid:%s: device %pg operational as raid disk %d\n", 7663 mdname(mddev), rdev->bdev, raid_disk); 7664 } else if (rdev->saved_raid_disk != raid_disk) 7665 /* Cannot rely on bitmap to complete recovery */ 7666 conf->fullsync = 1; 7667 } 7668 7669 conf->level = mddev->new_level; 7670 if (conf->level == 6) { 7671 conf->max_degraded = 2; 7672 if (raid6_call.xor_syndrome) 7673 conf->rmw_level = PARITY_ENABLE_RMW; 7674 else 7675 conf->rmw_level = PARITY_DISABLE_RMW; 7676 } else { 7677 conf->max_degraded = 1; 7678 conf->rmw_level = PARITY_ENABLE_RMW; 7679 } 7680 conf->algorithm = mddev->new_layout; 7681 conf->reshape_progress = mddev->reshape_position; 7682 if (conf->reshape_progress != MaxSector) { 7683 conf->prev_chunk_sectors = mddev->chunk_sectors; 7684 conf->prev_algo = mddev->layout; 7685 } else { 7686 conf->prev_chunk_sectors = conf->chunk_sectors; 7687 conf->prev_algo = conf->algorithm; 7688 } 7689 7690 conf->min_nr_stripes = NR_STRIPES; 7691 if (mddev->reshape_position != MaxSector) { 7692 int stripes = max_t(int, 7693 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4, 7694 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4); 7695 conf->min_nr_stripes = max(NR_STRIPES, stripes); 7696 if (conf->min_nr_stripes != NR_STRIPES) 7697 pr_info("md/raid:%s: force stripe size %d for reshape\n", 7698 mdname(mddev), conf->min_nr_stripes); 7699 } 7700 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 7701 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 7702 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 7703 if (grow_stripes(conf, conf->min_nr_stripes)) { 7704 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", 7705 mdname(mddev), memory); 7706 ret = -ENOMEM; 7707 goto abort; 7708 } else 7709 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); 7710 /* 7711 * Losing a stripe head costs more than the time to refill it, 7712 * it reduces the queue depth and so can hurt throughput. 7713 * So set it rather large, scaled by number of devices. 7714 */ 7715 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 7716 conf->shrinker.scan_objects = raid5_cache_scan; 7717 conf->shrinker.count_objects = raid5_cache_count; 7718 conf->shrinker.batch = 128; 7719 conf->shrinker.flags = 0; 7720 ret = register_shrinker(&conf->shrinker, "md-raid5:%s", mdname(mddev)); 7721 if (ret) { 7722 pr_warn("md/raid:%s: couldn't register shrinker.\n", 7723 mdname(mddev)); 7724 goto abort; 7725 } 7726 7727 sprintf(pers_name, "raid%d", mddev->new_level); 7728 rcu_assign_pointer(conf->thread, 7729 md_register_thread(raid5d, mddev, pers_name)); 7730 if (!conf->thread) { 7731 pr_warn("md/raid:%s: couldn't allocate thread.\n", 7732 mdname(mddev)); 7733 ret = -ENOMEM; 7734 goto abort; 7735 } 7736 7737 return conf; 7738 7739 abort: 7740 if (conf) 7741 free_conf(conf); 7742 return ERR_PTR(ret); 7743 } 7744 7745 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 7746 { 7747 switch (algo) { 7748 case ALGORITHM_PARITY_0: 7749 if (raid_disk < max_degraded) 7750 return 1; 7751 break; 7752 case ALGORITHM_PARITY_N: 7753 if (raid_disk >= raid_disks - max_degraded) 7754 return 1; 7755 break; 7756 case ALGORITHM_PARITY_0_6: 7757 if (raid_disk == 0 || 7758 raid_disk == raid_disks - 1) 7759 return 1; 7760 break; 7761 case ALGORITHM_LEFT_ASYMMETRIC_6: 7762 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7763 case ALGORITHM_LEFT_SYMMETRIC_6: 7764 case ALGORITHM_RIGHT_SYMMETRIC_6: 7765 if (raid_disk == raid_disks - 1) 7766 return 1; 7767 } 7768 return 0; 7769 } 7770 7771 static void raid5_set_io_opt(struct r5conf *conf) 7772 { 7773 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) * 7774 (conf->raid_disks - conf->max_degraded)); 7775 } 7776 7777 static int raid5_run(struct mddev *mddev) 7778 { 7779 struct r5conf *conf; 7780 int dirty_parity_disks = 0; 7781 struct md_rdev *rdev; 7782 struct md_rdev *journal_dev = NULL; 7783 sector_t reshape_offset = 0; 7784 int i; 7785 long long min_offset_diff = 0; 7786 int first = 1; 7787 7788 if (mddev_init_writes_pending(mddev) < 0) 7789 return -ENOMEM; 7790 7791 if (mddev->recovery_cp != MaxSector) 7792 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", 7793 mdname(mddev)); 7794 7795 rdev_for_each(rdev, mddev) { 7796 long long diff; 7797 7798 if (test_bit(Journal, &rdev->flags)) { 7799 journal_dev = rdev; 7800 continue; 7801 } 7802 if (rdev->raid_disk < 0) 7803 continue; 7804 diff = (rdev->new_data_offset - rdev->data_offset); 7805 if (first) { 7806 min_offset_diff = diff; 7807 first = 0; 7808 } else if (mddev->reshape_backwards && 7809 diff < min_offset_diff) 7810 min_offset_diff = diff; 7811 else if (!mddev->reshape_backwards && 7812 diff > min_offset_diff) 7813 min_offset_diff = diff; 7814 } 7815 7816 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && 7817 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { 7818 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", 7819 mdname(mddev)); 7820 return -EINVAL; 7821 } 7822 7823 if (mddev->reshape_position != MaxSector) { 7824 /* Check that we can continue the reshape. 7825 * Difficulties arise if the stripe we would write to 7826 * next is at or after the stripe we would read from next. 7827 * For a reshape that changes the number of devices, this 7828 * is only possible for a very short time, and mdadm makes 7829 * sure that time appears to have past before assembling 7830 * the array. So we fail if that time hasn't passed. 7831 * For a reshape that keeps the number of devices the same 7832 * mdadm must be monitoring the reshape can keeping the 7833 * critical areas read-only and backed up. It will start 7834 * the array in read-only mode, so we check for that. 7835 */ 7836 sector_t here_new, here_old; 7837 int old_disks; 7838 int max_degraded = (mddev->level == 6 ? 2 : 1); 7839 int chunk_sectors; 7840 int new_data_disks; 7841 7842 if (journal_dev) { 7843 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", 7844 mdname(mddev)); 7845 return -EINVAL; 7846 } 7847 7848 if (mddev->new_level != mddev->level) { 7849 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", 7850 mdname(mddev)); 7851 return -EINVAL; 7852 } 7853 old_disks = mddev->raid_disks - mddev->delta_disks; 7854 /* reshape_position must be on a new-stripe boundary, and one 7855 * further up in new geometry must map after here in old 7856 * geometry. 7857 * If the chunk sizes are different, then as we perform reshape 7858 * in units of the largest of the two, reshape_position needs 7859 * be a multiple of the largest chunk size times new data disks. 7860 */ 7861 here_new = mddev->reshape_position; 7862 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 7863 new_data_disks = mddev->raid_disks - max_degraded; 7864 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 7865 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", 7866 mdname(mddev)); 7867 return -EINVAL; 7868 } 7869 reshape_offset = here_new * chunk_sectors; 7870 /* here_new is the stripe we will write to */ 7871 here_old = mddev->reshape_position; 7872 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 7873 /* here_old is the first stripe that we might need to read 7874 * from */ 7875 if (mddev->delta_disks == 0) { 7876 /* We cannot be sure it is safe to start an in-place 7877 * reshape. It is only safe if user-space is monitoring 7878 * and taking constant backups. 7879 * mdadm always starts a situation like this in 7880 * readonly mode so it can take control before 7881 * allowing any writes. So just check for that. 7882 */ 7883 if (abs(min_offset_diff) >= mddev->chunk_sectors && 7884 abs(min_offset_diff) >= mddev->new_chunk_sectors) 7885 /* not really in-place - so OK */; 7886 else if (mddev->ro == 0) { 7887 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", 7888 mdname(mddev)); 7889 return -EINVAL; 7890 } 7891 } else if (mddev->reshape_backwards 7892 ? (here_new * chunk_sectors + min_offset_diff <= 7893 here_old * chunk_sectors) 7894 : (here_new * chunk_sectors >= 7895 here_old * chunk_sectors + (-min_offset_diff))) { 7896 /* Reading from the same stripe as writing to - bad */ 7897 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", 7898 mdname(mddev)); 7899 return -EINVAL; 7900 } 7901 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); 7902 /* OK, we should be able to continue; */ 7903 } else { 7904 BUG_ON(mddev->level != mddev->new_level); 7905 BUG_ON(mddev->layout != mddev->new_layout); 7906 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 7907 BUG_ON(mddev->delta_disks != 0); 7908 } 7909 7910 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && 7911 test_bit(MD_HAS_PPL, &mddev->flags)) { 7912 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", 7913 mdname(mddev)); 7914 clear_bit(MD_HAS_PPL, &mddev->flags); 7915 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); 7916 } 7917 7918 if (mddev->private == NULL) 7919 conf = setup_conf(mddev); 7920 else 7921 conf = mddev->private; 7922 7923 if (IS_ERR(conf)) 7924 return PTR_ERR(conf); 7925 7926 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 7927 if (!journal_dev) { 7928 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", 7929 mdname(mddev)); 7930 mddev->ro = 1; 7931 set_disk_ro(mddev->gendisk, 1); 7932 } else if (mddev->recovery_cp == MaxSector) 7933 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 7934 } 7935 7936 conf->min_offset_diff = min_offset_diff; 7937 rcu_assign_pointer(mddev->thread, conf->thread); 7938 rcu_assign_pointer(conf->thread, NULL); 7939 mddev->private = conf; 7940 7941 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 7942 i++) { 7943 rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev); 7944 if (!rdev && conf->disks[i].replacement) { 7945 /* The replacement is all we have yet */ 7946 rdev = rdev_mdlock_deref(mddev, 7947 conf->disks[i].replacement); 7948 conf->disks[i].replacement = NULL; 7949 clear_bit(Replacement, &rdev->flags); 7950 rcu_assign_pointer(conf->disks[i].rdev, rdev); 7951 } 7952 if (!rdev) 7953 continue; 7954 if (rcu_access_pointer(conf->disks[i].replacement) && 7955 conf->reshape_progress != MaxSector) { 7956 /* replacements and reshape simply do not mix. */ 7957 pr_warn("md: cannot handle concurrent replacement and reshape.\n"); 7958 goto abort; 7959 } 7960 if (test_bit(In_sync, &rdev->flags)) 7961 continue; 7962 /* This disc is not fully in-sync. However if it 7963 * just stored parity (beyond the recovery_offset), 7964 * when we don't need to be concerned about the 7965 * array being dirty. 7966 * When reshape goes 'backwards', we never have 7967 * partially completed devices, so we only need 7968 * to worry about reshape going forwards. 7969 */ 7970 /* Hack because v0.91 doesn't store recovery_offset properly. */ 7971 if (mddev->major_version == 0 && 7972 mddev->minor_version > 90) 7973 rdev->recovery_offset = reshape_offset; 7974 7975 if (rdev->recovery_offset < reshape_offset) { 7976 /* We need to check old and new layout */ 7977 if (!only_parity(rdev->raid_disk, 7978 conf->algorithm, 7979 conf->raid_disks, 7980 conf->max_degraded)) 7981 continue; 7982 } 7983 if (!only_parity(rdev->raid_disk, 7984 conf->prev_algo, 7985 conf->previous_raid_disks, 7986 conf->max_degraded)) 7987 continue; 7988 dirty_parity_disks++; 7989 } 7990 7991 /* 7992 * 0 for a fully functional array, 1 or 2 for a degraded array. 7993 */ 7994 mddev->degraded = raid5_calc_degraded(conf); 7995 7996 if (has_failed(conf)) { 7997 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", 7998 mdname(mddev), mddev->degraded, conf->raid_disks); 7999 goto abort; 8000 } 8001 8002 /* device size must be a multiple of chunk size */ 8003 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1); 8004 mddev->resync_max_sectors = mddev->dev_sectors; 8005 8006 if (mddev->degraded > dirty_parity_disks && 8007 mddev->recovery_cp != MaxSector) { 8008 if (test_bit(MD_HAS_PPL, &mddev->flags)) 8009 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", 8010 mdname(mddev)); 8011 else if (mddev->ok_start_degraded) 8012 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", 8013 mdname(mddev)); 8014 else { 8015 pr_crit("md/raid:%s: cannot start dirty degraded array.\n", 8016 mdname(mddev)); 8017 goto abort; 8018 } 8019 } 8020 8021 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", 8022 mdname(mddev), conf->level, 8023 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 8024 mddev->new_layout); 8025 8026 print_raid5_conf(conf); 8027 8028 if (conf->reshape_progress != MaxSector) { 8029 conf->reshape_safe = conf->reshape_progress; 8030 atomic_set(&conf->reshape_stripes, 0); 8031 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8032 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8033 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8034 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8035 rcu_assign_pointer(mddev->sync_thread, 8036 md_register_thread(md_do_sync, mddev, "reshape")); 8037 if (!mddev->sync_thread) 8038 goto abort; 8039 } 8040 8041 /* Ok, everything is just fine now */ 8042 if (mddev->to_remove == &raid5_attrs_group) 8043 mddev->to_remove = NULL; 8044 else if (mddev->kobj.sd && 8045 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 8046 pr_warn("raid5: failed to create sysfs attributes for %s\n", 8047 mdname(mddev)); 8048 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 8049 8050 if (mddev->queue) { 8051 int chunk_size; 8052 /* read-ahead size must cover two whole stripes, which 8053 * is 2 * (datadisks) * chunksize where 'n' is the 8054 * number of raid devices 8055 */ 8056 int data_disks = conf->previous_raid_disks - conf->max_degraded; 8057 int stripe = data_disks * 8058 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 8059 8060 chunk_size = mddev->chunk_sectors << 9; 8061 blk_queue_io_min(mddev->queue, chunk_size); 8062 raid5_set_io_opt(conf); 8063 mddev->queue->limits.raid_partial_stripes_expensive = 1; 8064 /* 8065 * We can only discard a whole stripe. It doesn't make sense to 8066 * discard data disk but write parity disk 8067 */ 8068 stripe = stripe * PAGE_SIZE; 8069 stripe = roundup_pow_of_two(stripe); 8070 mddev->queue->limits.discard_granularity = stripe; 8071 8072 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 8073 8074 rdev_for_each(rdev, mddev) { 8075 disk_stack_limits(mddev->gendisk, rdev->bdev, 8076 rdev->data_offset << 9); 8077 disk_stack_limits(mddev->gendisk, rdev->bdev, 8078 rdev->new_data_offset << 9); 8079 } 8080 8081 /* 8082 * zeroing is required, otherwise data 8083 * could be lost. Consider a scenario: discard a stripe 8084 * (the stripe could be inconsistent if 8085 * discard_zeroes_data is 0); write one disk of the 8086 * stripe (the stripe could be inconsistent again 8087 * depending on which disks are used to calculate 8088 * parity); the disk is broken; The stripe data of this 8089 * disk is lost. 8090 * 8091 * We only allow DISCARD if the sysadmin has confirmed that 8092 * only safe devices are in use by setting a module parameter. 8093 * A better idea might be to turn DISCARD into WRITE_ZEROES 8094 * requests, as that is required to be safe. 8095 */ 8096 if (!devices_handle_discard_safely || 8097 mddev->queue->limits.max_discard_sectors < (stripe >> 9) || 8098 mddev->queue->limits.discard_granularity < stripe) 8099 blk_queue_max_discard_sectors(mddev->queue, 0); 8100 8101 /* 8102 * Requests require having a bitmap for each stripe. 8103 * Limit the max sectors based on this. 8104 */ 8105 blk_queue_max_hw_sectors(mddev->queue, 8106 RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf)); 8107 8108 /* No restrictions on the number of segments in the request */ 8109 blk_queue_max_segments(mddev->queue, USHRT_MAX); 8110 } 8111 8112 if (log_init(conf, journal_dev, raid5_has_ppl(conf))) 8113 goto abort; 8114 8115 return 0; 8116 abort: 8117 md_unregister_thread(mddev, &mddev->thread); 8118 print_raid5_conf(conf); 8119 free_conf(conf); 8120 mddev->private = NULL; 8121 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); 8122 return -EIO; 8123 } 8124 8125 static void raid5_free(struct mddev *mddev, void *priv) 8126 { 8127 struct r5conf *conf = priv; 8128 8129 free_conf(conf); 8130 mddev->to_remove = &raid5_attrs_group; 8131 } 8132 8133 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 8134 { 8135 struct r5conf *conf = mddev->private; 8136 int i; 8137 8138 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 8139 conf->chunk_sectors / 2, mddev->layout); 8140 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 8141 rcu_read_lock(); 8142 for (i = 0; i < conf->raid_disks; i++) { 8143 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 8144 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 8145 } 8146 rcu_read_unlock(); 8147 seq_printf (seq, "]"); 8148 } 8149 8150 static void print_raid5_conf (struct r5conf *conf) 8151 { 8152 struct md_rdev *rdev; 8153 int i; 8154 8155 pr_debug("RAID conf printout:\n"); 8156 if (!conf) { 8157 pr_debug("(conf==NULL)\n"); 8158 return; 8159 } 8160 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, 8161 conf->raid_disks, 8162 conf->raid_disks - conf->mddev->degraded); 8163 8164 rcu_read_lock(); 8165 for (i = 0; i < conf->raid_disks; i++) { 8166 rdev = rcu_dereference(conf->disks[i].rdev); 8167 if (rdev) 8168 pr_debug(" disk %d, o:%d, dev:%pg\n", 8169 i, !test_bit(Faulty, &rdev->flags), 8170 rdev->bdev); 8171 } 8172 rcu_read_unlock(); 8173 } 8174 8175 static int raid5_spare_active(struct mddev *mddev) 8176 { 8177 int i; 8178 struct r5conf *conf = mddev->private; 8179 struct md_rdev *rdev, *replacement; 8180 int count = 0; 8181 unsigned long flags; 8182 8183 for (i = 0; i < conf->raid_disks; i++) { 8184 rdev = rdev_mdlock_deref(mddev, conf->disks[i].rdev); 8185 replacement = rdev_mdlock_deref(mddev, 8186 conf->disks[i].replacement); 8187 if (replacement 8188 && replacement->recovery_offset == MaxSector 8189 && !test_bit(Faulty, &replacement->flags) 8190 && !test_and_set_bit(In_sync, &replacement->flags)) { 8191 /* Replacement has just become active. */ 8192 if (!rdev 8193 || !test_and_clear_bit(In_sync, &rdev->flags)) 8194 count++; 8195 if (rdev) { 8196 /* Replaced device not technically faulty, 8197 * but we need to be sure it gets removed 8198 * and never re-added. 8199 */ 8200 set_bit(Faulty, &rdev->flags); 8201 sysfs_notify_dirent_safe( 8202 rdev->sysfs_state); 8203 } 8204 sysfs_notify_dirent_safe(replacement->sysfs_state); 8205 } else if (rdev 8206 && rdev->recovery_offset == MaxSector 8207 && !test_bit(Faulty, &rdev->flags) 8208 && !test_and_set_bit(In_sync, &rdev->flags)) { 8209 count++; 8210 sysfs_notify_dirent_safe(rdev->sysfs_state); 8211 } 8212 } 8213 spin_lock_irqsave(&conf->device_lock, flags); 8214 mddev->degraded = raid5_calc_degraded(conf); 8215 spin_unlock_irqrestore(&conf->device_lock, flags); 8216 print_raid5_conf(conf); 8217 return count; 8218 } 8219 8220 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 8221 { 8222 struct r5conf *conf = mddev->private; 8223 int err = 0; 8224 int number = rdev->raid_disk; 8225 struct md_rdev __rcu **rdevp; 8226 struct disk_info *p; 8227 struct md_rdev *tmp; 8228 8229 print_raid5_conf(conf); 8230 if (test_bit(Journal, &rdev->flags) && conf->log) { 8231 /* 8232 * we can't wait pending write here, as this is called in 8233 * raid5d, wait will deadlock. 8234 * neilb: there is no locking about new writes here, 8235 * so this cannot be safe. 8236 */ 8237 if (atomic_read(&conf->active_stripes) || 8238 atomic_read(&conf->r5c_cached_full_stripes) || 8239 atomic_read(&conf->r5c_cached_partial_stripes)) { 8240 return -EBUSY; 8241 } 8242 log_exit(conf); 8243 return 0; 8244 } 8245 if (unlikely(number >= conf->pool_size)) 8246 return 0; 8247 p = conf->disks + number; 8248 if (rdev == rcu_access_pointer(p->rdev)) 8249 rdevp = &p->rdev; 8250 else if (rdev == rcu_access_pointer(p->replacement)) 8251 rdevp = &p->replacement; 8252 else 8253 return 0; 8254 8255 if (number >= conf->raid_disks && 8256 conf->reshape_progress == MaxSector) 8257 clear_bit(In_sync, &rdev->flags); 8258 8259 if (test_bit(In_sync, &rdev->flags) || 8260 atomic_read(&rdev->nr_pending)) { 8261 err = -EBUSY; 8262 goto abort; 8263 } 8264 /* Only remove non-faulty devices if recovery 8265 * isn't possible. 8266 */ 8267 if (!test_bit(Faulty, &rdev->flags) && 8268 mddev->recovery_disabled != conf->recovery_disabled && 8269 !has_failed(conf) && 8270 (!rcu_access_pointer(p->replacement) || 8271 rcu_access_pointer(p->replacement) == rdev) && 8272 number < conf->raid_disks) { 8273 err = -EBUSY; 8274 goto abort; 8275 } 8276 *rdevp = NULL; 8277 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 8278 lockdep_assert_held(&mddev->reconfig_mutex); 8279 synchronize_rcu(); 8280 if (atomic_read(&rdev->nr_pending)) { 8281 /* lost the race, try later */ 8282 err = -EBUSY; 8283 rcu_assign_pointer(*rdevp, rdev); 8284 } 8285 } 8286 if (!err) { 8287 err = log_modify(conf, rdev, false); 8288 if (err) 8289 goto abort; 8290 } 8291 8292 tmp = rcu_access_pointer(p->replacement); 8293 if (tmp) { 8294 /* We must have just cleared 'rdev' */ 8295 rcu_assign_pointer(p->rdev, tmp); 8296 clear_bit(Replacement, &tmp->flags); 8297 smp_mb(); /* Make sure other CPUs may see both as identical 8298 * but will never see neither - if they are careful 8299 */ 8300 rcu_assign_pointer(p->replacement, NULL); 8301 8302 if (!err) 8303 err = log_modify(conf, tmp, true); 8304 } 8305 8306 clear_bit(WantReplacement, &rdev->flags); 8307 abort: 8308 8309 print_raid5_conf(conf); 8310 return err; 8311 } 8312 8313 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 8314 { 8315 struct r5conf *conf = mddev->private; 8316 int ret, err = -EEXIST; 8317 int disk; 8318 struct disk_info *p; 8319 struct md_rdev *tmp; 8320 int first = 0; 8321 int last = conf->raid_disks - 1; 8322 8323 if (test_bit(Journal, &rdev->flags)) { 8324 if (conf->log) 8325 return -EBUSY; 8326 8327 rdev->raid_disk = 0; 8328 /* 8329 * The array is in readonly mode if journal is missing, so no 8330 * write requests running. We should be safe 8331 */ 8332 ret = log_init(conf, rdev, false); 8333 if (ret) 8334 return ret; 8335 8336 ret = r5l_start(conf->log); 8337 if (ret) 8338 return ret; 8339 8340 return 0; 8341 } 8342 if (mddev->recovery_disabled == conf->recovery_disabled) 8343 return -EBUSY; 8344 8345 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 8346 /* no point adding a device */ 8347 return -EINVAL; 8348 8349 if (rdev->raid_disk >= 0) 8350 first = last = rdev->raid_disk; 8351 8352 /* 8353 * find the disk ... but prefer rdev->saved_raid_disk 8354 * if possible. 8355 */ 8356 if (rdev->saved_raid_disk >= first && 8357 rdev->saved_raid_disk <= last && 8358 conf->disks[rdev->saved_raid_disk].rdev == NULL) 8359 first = rdev->saved_raid_disk; 8360 8361 for (disk = first; disk <= last; disk++) { 8362 p = conf->disks + disk; 8363 if (p->rdev == NULL) { 8364 clear_bit(In_sync, &rdev->flags); 8365 rdev->raid_disk = disk; 8366 if (rdev->saved_raid_disk != disk) 8367 conf->fullsync = 1; 8368 rcu_assign_pointer(p->rdev, rdev); 8369 8370 err = log_modify(conf, rdev, true); 8371 8372 goto out; 8373 } 8374 } 8375 for (disk = first; disk <= last; disk++) { 8376 p = conf->disks + disk; 8377 tmp = rdev_mdlock_deref(mddev, p->rdev); 8378 if (test_bit(WantReplacement, &tmp->flags) && 8379 mddev->reshape_position == MaxSector && 8380 p->replacement == NULL) { 8381 clear_bit(In_sync, &rdev->flags); 8382 set_bit(Replacement, &rdev->flags); 8383 rdev->raid_disk = disk; 8384 err = 0; 8385 conf->fullsync = 1; 8386 rcu_assign_pointer(p->replacement, rdev); 8387 break; 8388 } 8389 } 8390 out: 8391 print_raid5_conf(conf); 8392 return err; 8393 } 8394 8395 static int raid5_resize(struct mddev *mddev, sector_t sectors) 8396 { 8397 /* no resync is happening, and there is enough space 8398 * on all devices, so we can resize. 8399 * We need to make sure resync covers any new space. 8400 * If the array is shrinking we should possibly wait until 8401 * any io in the removed space completes, but it hardly seems 8402 * worth it. 8403 */ 8404 sector_t newsize; 8405 struct r5conf *conf = mddev->private; 8406 8407 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8408 return -EINVAL; 8409 sectors &= ~((sector_t)conf->chunk_sectors - 1); 8410 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 8411 if (mddev->external_size && 8412 mddev->array_sectors > newsize) 8413 return -EINVAL; 8414 if (mddev->bitmap) { 8415 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0); 8416 if (ret) 8417 return ret; 8418 } 8419 md_set_array_sectors(mddev, newsize); 8420 if (sectors > mddev->dev_sectors && 8421 mddev->recovery_cp > mddev->dev_sectors) { 8422 mddev->recovery_cp = mddev->dev_sectors; 8423 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8424 } 8425 mddev->dev_sectors = sectors; 8426 mddev->resync_max_sectors = sectors; 8427 return 0; 8428 } 8429 8430 static int check_stripe_cache(struct mddev *mddev) 8431 { 8432 /* Can only proceed if there are plenty of stripe_heads. 8433 * We need a minimum of one full stripe,, and for sensible progress 8434 * it is best to have about 4 times that. 8435 * If we require 4 times, then the default 256 4K stripe_heads will 8436 * allow for chunk sizes up to 256K, which is probably OK. 8437 * If the chunk size is greater, user-space should request more 8438 * stripe_heads first. 8439 */ 8440 struct r5conf *conf = mddev->private; 8441 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8442 > conf->min_nr_stripes || 8443 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4 8444 > conf->min_nr_stripes) { 8445 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n", 8446 mdname(mddev), 8447 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 8448 / RAID5_STRIPE_SIZE(conf))*4); 8449 return 0; 8450 } 8451 return 1; 8452 } 8453 8454 static int check_reshape(struct mddev *mddev) 8455 { 8456 struct r5conf *conf = mddev->private; 8457 8458 if (raid5_has_log(conf) || raid5_has_ppl(conf)) 8459 return -EINVAL; 8460 if (mddev->delta_disks == 0 && 8461 mddev->new_layout == mddev->layout && 8462 mddev->new_chunk_sectors == mddev->chunk_sectors) 8463 return 0; /* nothing to do */ 8464 if (has_failed(conf)) 8465 return -EINVAL; 8466 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 8467 /* We might be able to shrink, but the devices must 8468 * be made bigger first. 8469 * For raid6, 4 is the minimum size. 8470 * Otherwise 2 is the minimum 8471 */ 8472 int min = 2; 8473 if (mddev->level == 6) 8474 min = 4; 8475 if (mddev->raid_disks + mddev->delta_disks < min) 8476 return -EINVAL; 8477 } 8478 8479 if (!check_stripe_cache(mddev)) 8480 return -ENOSPC; 8481 8482 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 8483 mddev->delta_disks > 0) 8484 if (resize_chunks(conf, 8485 conf->previous_raid_disks 8486 + max(0, mddev->delta_disks), 8487 max(mddev->new_chunk_sectors, 8488 mddev->chunk_sectors) 8489 ) < 0) 8490 return -ENOMEM; 8491 8492 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) 8493 return 0; /* never bother to shrink */ 8494 return resize_stripes(conf, (conf->previous_raid_disks 8495 + mddev->delta_disks)); 8496 } 8497 8498 static int raid5_start_reshape(struct mddev *mddev) 8499 { 8500 struct r5conf *conf = mddev->private; 8501 struct md_rdev *rdev; 8502 int spares = 0; 8503 int i; 8504 unsigned long flags; 8505 8506 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8507 return -EBUSY; 8508 8509 if (!check_stripe_cache(mddev)) 8510 return -ENOSPC; 8511 8512 if (has_failed(conf)) 8513 return -EINVAL; 8514 8515 /* raid5 can't handle concurrent reshape and recovery */ 8516 if (mddev->recovery_cp < MaxSector) 8517 return -EBUSY; 8518 for (i = 0; i < conf->raid_disks; i++) 8519 if (rdev_mdlock_deref(mddev, conf->disks[i].replacement)) 8520 return -EBUSY; 8521 8522 rdev_for_each(rdev, mddev) { 8523 if (!test_bit(In_sync, &rdev->flags) 8524 && !test_bit(Faulty, &rdev->flags)) 8525 spares++; 8526 } 8527 8528 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 8529 /* Not enough devices even to make a degraded array 8530 * of that size 8531 */ 8532 return -EINVAL; 8533 8534 /* Refuse to reduce size of the array. Any reductions in 8535 * array size must be through explicit setting of array_size 8536 * attribute. 8537 */ 8538 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 8539 < mddev->array_sectors) { 8540 pr_warn("md/raid:%s: array size must be reduced before number of disks\n", 8541 mdname(mddev)); 8542 return -EINVAL; 8543 } 8544 8545 atomic_set(&conf->reshape_stripes, 0); 8546 spin_lock_irq(&conf->device_lock); 8547 write_seqcount_begin(&conf->gen_lock); 8548 conf->previous_raid_disks = conf->raid_disks; 8549 conf->raid_disks += mddev->delta_disks; 8550 conf->prev_chunk_sectors = conf->chunk_sectors; 8551 conf->chunk_sectors = mddev->new_chunk_sectors; 8552 conf->prev_algo = conf->algorithm; 8553 conf->algorithm = mddev->new_layout; 8554 conf->generation++; 8555 /* Code that selects data_offset needs to see the generation update 8556 * if reshape_progress has been set - so a memory barrier needed. 8557 */ 8558 smp_mb(); 8559 if (mddev->reshape_backwards) 8560 conf->reshape_progress = raid5_size(mddev, 0, 0); 8561 else 8562 conf->reshape_progress = 0; 8563 conf->reshape_safe = conf->reshape_progress; 8564 write_seqcount_end(&conf->gen_lock); 8565 spin_unlock_irq(&conf->device_lock); 8566 8567 /* Now make sure any requests that proceeded on the assumption 8568 * the reshape wasn't running - like Discard or Read - have 8569 * completed. 8570 */ 8571 mddev_suspend(mddev); 8572 mddev_resume(mddev); 8573 8574 /* Add some new drives, as many as will fit. 8575 * We know there are enough to make the newly sized array work. 8576 * Don't add devices if we are reducing the number of 8577 * devices in the array. This is because it is not possible 8578 * to correctly record the "partially reconstructed" state of 8579 * such devices during the reshape and confusion could result. 8580 */ 8581 if (mddev->delta_disks >= 0) { 8582 rdev_for_each(rdev, mddev) 8583 if (rdev->raid_disk < 0 && 8584 !test_bit(Faulty, &rdev->flags)) { 8585 if (raid5_add_disk(mddev, rdev) == 0) { 8586 if (rdev->raid_disk 8587 >= conf->previous_raid_disks) 8588 set_bit(In_sync, &rdev->flags); 8589 else 8590 rdev->recovery_offset = 0; 8591 8592 /* Failure here is OK */ 8593 sysfs_link_rdev(mddev, rdev); 8594 } 8595 } else if (rdev->raid_disk >= conf->previous_raid_disks 8596 && !test_bit(Faulty, &rdev->flags)) { 8597 /* This is a spare that was manually added */ 8598 set_bit(In_sync, &rdev->flags); 8599 } 8600 8601 /* When a reshape changes the number of devices, 8602 * ->degraded is measured against the larger of the 8603 * pre and post number of devices. 8604 */ 8605 spin_lock_irqsave(&conf->device_lock, flags); 8606 mddev->degraded = raid5_calc_degraded(conf); 8607 spin_unlock_irqrestore(&conf->device_lock, flags); 8608 } 8609 mddev->raid_disks = conf->raid_disks; 8610 mddev->reshape_position = conf->reshape_progress; 8611 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8612 8613 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8614 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8615 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8616 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8617 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8618 rcu_assign_pointer(mddev->sync_thread, 8619 md_register_thread(md_do_sync, mddev, "reshape")); 8620 if (!mddev->sync_thread) { 8621 mddev->recovery = 0; 8622 spin_lock_irq(&conf->device_lock); 8623 write_seqcount_begin(&conf->gen_lock); 8624 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 8625 mddev->new_chunk_sectors = 8626 conf->chunk_sectors = conf->prev_chunk_sectors; 8627 mddev->new_layout = conf->algorithm = conf->prev_algo; 8628 rdev_for_each(rdev, mddev) 8629 rdev->new_data_offset = rdev->data_offset; 8630 smp_wmb(); 8631 conf->generation --; 8632 conf->reshape_progress = MaxSector; 8633 mddev->reshape_position = MaxSector; 8634 write_seqcount_end(&conf->gen_lock); 8635 spin_unlock_irq(&conf->device_lock); 8636 return -EAGAIN; 8637 } 8638 conf->reshape_checkpoint = jiffies; 8639 md_wakeup_thread(mddev->sync_thread); 8640 md_new_event(); 8641 return 0; 8642 } 8643 8644 /* This is called from the reshape thread and should make any 8645 * changes needed in 'conf' 8646 */ 8647 static void end_reshape(struct r5conf *conf) 8648 { 8649 8650 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 8651 struct md_rdev *rdev; 8652 8653 spin_lock_irq(&conf->device_lock); 8654 conf->previous_raid_disks = conf->raid_disks; 8655 md_finish_reshape(conf->mddev); 8656 smp_wmb(); 8657 conf->reshape_progress = MaxSector; 8658 conf->mddev->reshape_position = MaxSector; 8659 rdev_for_each(rdev, conf->mddev) 8660 if (rdev->raid_disk >= 0 && 8661 !test_bit(Journal, &rdev->flags) && 8662 !test_bit(In_sync, &rdev->flags)) 8663 rdev->recovery_offset = MaxSector; 8664 spin_unlock_irq(&conf->device_lock); 8665 wake_up(&conf->wait_for_overlap); 8666 8667 if (conf->mddev->queue) 8668 raid5_set_io_opt(conf); 8669 } 8670 } 8671 8672 /* This is called from the raid5d thread with mddev_lock held. 8673 * It makes config changes to the device. 8674 */ 8675 static void raid5_finish_reshape(struct mddev *mddev) 8676 { 8677 struct r5conf *conf = mddev->private; 8678 struct md_rdev *rdev; 8679 8680 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8681 8682 if (mddev->delta_disks <= 0) { 8683 int d; 8684 spin_lock_irq(&conf->device_lock); 8685 mddev->degraded = raid5_calc_degraded(conf); 8686 spin_unlock_irq(&conf->device_lock); 8687 for (d = conf->raid_disks ; 8688 d < conf->raid_disks - mddev->delta_disks; 8689 d++) { 8690 rdev = rdev_mdlock_deref(mddev, 8691 conf->disks[d].rdev); 8692 if (rdev) 8693 clear_bit(In_sync, &rdev->flags); 8694 rdev = rdev_mdlock_deref(mddev, 8695 conf->disks[d].replacement); 8696 if (rdev) 8697 clear_bit(In_sync, &rdev->flags); 8698 } 8699 } 8700 mddev->layout = conf->algorithm; 8701 mddev->chunk_sectors = conf->chunk_sectors; 8702 mddev->reshape_position = MaxSector; 8703 mddev->delta_disks = 0; 8704 mddev->reshape_backwards = 0; 8705 } 8706 } 8707 8708 static void raid5_quiesce(struct mddev *mddev, int quiesce) 8709 { 8710 struct r5conf *conf = mddev->private; 8711 8712 if (quiesce) { 8713 /* stop all writes */ 8714 lock_all_device_hash_locks_irq(conf); 8715 /* '2' tells resync/reshape to pause so that all 8716 * active stripes can drain 8717 */ 8718 r5c_flush_cache(conf, INT_MAX); 8719 /* need a memory barrier to make sure read_one_chunk() sees 8720 * quiesce started and reverts to slow (locked) path. 8721 */ 8722 smp_store_release(&conf->quiesce, 2); 8723 wait_event_cmd(conf->wait_for_quiescent, 8724 atomic_read(&conf->active_stripes) == 0 && 8725 atomic_read(&conf->active_aligned_reads) == 0, 8726 unlock_all_device_hash_locks_irq(conf), 8727 lock_all_device_hash_locks_irq(conf)); 8728 conf->quiesce = 1; 8729 unlock_all_device_hash_locks_irq(conf); 8730 /* allow reshape to continue */ 8731 wake_up(&conf->wait_for_overlap); 8732 } else { 8733 /* re-enable writes */ 8734 lock_all_device_hash_locks_irq(conf); 8735 conf->quiesce = 0; 8736 wake_up(&conf->wait_for_quiescent); 8737 wake_up(&conf->wait_for_overlap); 8738 unlock_all_device_hash_locks_irq(conf); 8739 } 8740 log_quiesce(conf, quiesce); 8741 } 8742 8743 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 8744 { 8745 struct r0conf *raid0_conf = mddev->private; 8746 sector_t sectors; 8747 8748 /* for raid0 takeover only one zone is supported */ 8749 if (raid0_conf->nr_strip_zones > 1) { 8750 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", 8751 mdname(mddev)); 8752 return ERR_PTR(-EINVAL); 8753 } 8754 8755 sectors = raid0_conf->strip_zone[0].zone_end; 8756 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 8757 mddev->dev_sectors = sectors; 8758 mddev->new_level = level; 8759 mddev->new_layout = ALGORITHM_PARITY_N; 8760 mddev->new_chunk_sectors = mddev->chunk_sectors; 8761 mddev->raid_disks += 1; 8762 mddev->delta_disks = 1; 8763 /* make sure it will be not marked as dirty */ 8764 mddev->recovery_cp = MaxSector; 8765 8766 return setup_conf(mddev); 8767 } 8768 8769 static void *raid5_takeover_raid1(struct mddev *mddev) 8770 { 8771 int chunksect; 8772 void *ret; 8773 8774 if (mddev->raid_disks != 2 || 8775 mddev->degraded > 1) 8776 return ERR_PTR(-EINVAL); 8777 8778 /* Should check if there are write-behind devices? */ 8779 8780 chunksect = 64*2; /* 64K by default */ 8781 8782 /* The array must be an exact multiple of chunksize */ 8783 while (chunksect && (mddev->array_sectors & (chunksect-1))) 8784 chunksect >>= 1; 8785 8786 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private)) 8787 /* array size does not allow a suitable chunk size */ 8788 return ERR_PTR(-EINVAL); 8789 8790 mddev->new_level = 5; 8791 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 8792 mddev->new_chunk_sectors = chunksect; 8793 8794 ret = setup_conf(mddev); 8795 if (!IS_ERR(ret)) 8796 mddev_clear_unsupported_flags(mddev, 8797 UNSUPPORTED_MDDEV_FLAGS); 8798 return ret; 8799 } 8800 8801 static void *raid5_takeover_raid6(struct mddev *mddev) 8802 { 8803 int new_layout; 8804 8805 switch (mddev->layout) { 8806 case ALGORITHM_LEFT_ASYMMETRIC_6: 8807 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 8808 break; 8809 case ALGORITHM_RIGHT_ASYMMETRIC_6: 8810 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 8811 break; 8812 case ALGORITHM_LEFT_SYMMETRIC_6: 8813 new_layout = ALGORITHM_LEFT_SYMMETRIC; 8814 break; 8815 case ALGORITHM_RIGHT_SYMMETRIC_6: 8816 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 8817 break; 8818 case ALGORITHM_PARITY_0_6: 8819 new_layout = ALGORITHM_PARITY_0; 8820 break; 8821 case ALGORITHM_PARITY_N: 8822 new_layout = ALGORITHM_PARITY_N; 8823 break; 8824 default: 8825 return ERR_PTR(-EINVAL); 8826 } 8827 mddev->new_level = 5; 8828 mddev->new_layout = new_layout; 8829 mddev->delta_disks = -1; 8830 mddev->raid_disks -= 1; 8831 return setup_conf(mddev); 8832 } 8833 8834 static int raid5_check_reshape(struct mddev *mddev) 8835 { 8836 /* For a 2-drive array, the layout and chunk size can be changed 8837 * immediately as not restriping is needed. 8838 * For larger arrays we record the new value - after validation 8839 * to be used by a reshape pass. 8840 */ 8841 struct r5conf *conf = mddev->private; 8842 int new_chunk = mddev->new_chunk_sectors; 8843 8844 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 8845 return -EINVAL; 8846 if (new_chunk > 0) { 8847 if (!is_power_of_2(new_chunk)) 8848 return -EINVAL; 8849 if (new_chunk < (PAGE_SIZE>>9)) 8850 return -EINVAL; 8851 if (mddev->array_sectors & (new_chunk-1)) 8852 /* not factor of array size */ 8853 return -EINVAL; 8854 } 8855 8856 /* They look valid */ 8857 8858 if (mddev->raid_disks == 2) { 8859 /* can make the change immediately */ 8860 if (mddev->new_layout >= 0) { 8861 conf->algorithm = mddev->new_layout; 8862 mddev->layout = mddev->new_layout; 8863 } 8864 if (new_chunk > 0) { 8865 conf->chunk_sectors = new_chunk ; 8866 mddev->chunk_sectors = new_chunk; 8867 } 8868 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8869 md_wakeup_thread(mddev->thread); 8870 } 8871 return check_reshape(mddev); 8872 } 8873 8874 static int raid6_check_reshape(struct mddev *mddev) 8875 { 8876 int new_chunk = mddev->new_chunk_sectors; 8877 8878 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 8879 return -EINVAL; 8880 if (new_chunk > 0) { 8881 if (!is_power_of_2(new_chunk)) 8882 return -EINVAL; 8883 if (new_chunk < (PAGE_SIZE >> 9)) 8884 return -EINVAL; 8885 if (mddev->array_sectors & (new_chunk-1)) 8886 /* not factor of array size */ 8887 return -EINVAL; 8888 } 8889 8890 /* They look valid */ 8891 return check_reshape(mddev); 8892 } 8893 8894 static void *raid5_takeover(struct mddev *mddev) 8895 { 8896 /* raid5 can take over: 8897 * raid0 - if there is only one strip zone - make it a raid4 layout 8898 * raid1 - if there are two drives. We need to know the chunk size 8899 * raid4 - trivial - just use a raid4 layout. 8900 * raid6 - Providing it is a *_6 layout 8901 */ 8902 if (mddev->level == 0) 8903 return raid45_takeover_raid0(mddev, 5); 8904 if (mddev->level == 1) 8905 return raid5_takeover_raid1(mddev); 8906 if (mddev->level == 4) { 8907 mddev->new_layout = ALGORITHM_PARITY_N; 8908 mddev->new_level = 5; 8909 return setup_conf(mddev); 8910 } 8911 if (mddev->level == 6) 8912 return raid5_takeover_raid6(mddev); 8913 8914 return ERR_PTR(-EINVAL); 8915 } 8916 8917 static void *raid4_takeover(struct mddev *mddev) 8918 { 8919 /* raid4 can take over: 8920 * raid0 - if there is only one strip zone 8921 * raid5 - if layout is right 8922 */ 8923 if (mddev->level == 0) 8924 return raid45_takeover_raid0(mddev, 4); 8925 if (mddev->level == 5 && 8926 mddev->layout == ALGORITHM_PARITY_N) { 8927 mddev->new_layout = 0; 8928 mddev->new_level = 4; 8929 return setup_conf(mddev); 8930 } 8931 return ERR_PTR(-EINVAL); 8932 } 8933 8934 static struct md_personality raid5_personality; 8935 8936 static void *raid6_takeover(struct mddev *mddev) 8937 { 8938 /* Currently can only take over a raid5. We map the 8939 * personality to an equivalent raid6 personality 8940 * with the Q block at the end. 8941 */ 8942 int new_layout; 8943 8944 if (mddev->pers != &raid5_personality) 8945 return ERR_PTR(-EINVAL); 8946 if (mddev->degraded > 1) 8947 return ERR_PTR(-EINVAL); 8948 if (mddev->raid_disks > 253) 8949 return ERR_PTR(-EINVAL); 8950 if (mddev->raid_disks < 3) 8951 return ERR_PTR(-EINVAL); 8952 8953 switch (mddev->layout) { 8954 case ALGORITHM_LEFT_ASYMMETRIC: 8955 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 8956 break; 8957 case ALGORITHM_RIGHT_ASYMMETRIC: 8958 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 8959 break; 8960 case ALGORITHM_LEFT_SYMMETRIC: 8961 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 8962 break; 8963 case ALGORITHM_RIGHT_SYMMETRIC: 8964 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 8965 break; 8966 case ALGORITHM_PARITY_0: 8967 new_layout = ALGORITHM_PARITY_0_6; 8968 break; 8969 case ALGORITHM_PARITY_N: 8970 new_layout = ALGORITHM_PARITY_N; 8971 break; 8972 default: 8973 return ERR_PTR(-EINVAL); 8974 } 8975 mddev->new_level = 6; 8976 mddev->new_layout = new_layout; 8977 mddev->delta_disks = 1; 8978 mddev->raid_disks += 1; 8979 return setup_conf(mddev); 8980 } 8981 8982 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) 8983 { 8984 struct r5conf *conf; 8985 int err; 8986 8987 err = mddev_lock(mddev); 8988 if (err) 8989 return err; 8990 conf = mddev->private; 8991 if (!conf) { 8992 mddev_unlock(mddev); 8993 return -ENODEV; 8994 } 8995 8996 if (strncmp(buf, "ppl", 3) == 0) { 8997 /* ppl only works with RAID 5 */ 8998 if (!raid5_has_ppl(conf) && conf->level == 5) { 8999 err = log_init(conf, NULL, true); 9000 if (!err) { 9001 err = resize_stripes(conf, conf->pool_size); 9002 if (err) { 9003 mddev_suspend(mddev); 9004 log_exit(conf); 9005 mddev_resume(mddev); 9006 } 9007 } 9008 } else 9009 err = -EINVAL; 9010 } else if (strncmp(buf, "resync", 6) == 0) { 9011 if (raid5_has_ppl(conf)) { 9012 mddev_suspend(mddev); 9013 log_exit(conf); 9014 mddev_resume(mddev); 9015 err = resize_stripes(conf, conf->pool_size); 9016 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && 9017 r5l_log_disk_error(conf)) { 9018 bool journal_dev_exists = false; 9019 struct md_rdev *rdev; 9020 9021 rdev_for_each(rdev, mddev) 9022 if (test_bit(Journal, &rdev->flags)) { 9023 journal_dev_exists = true; 9024 break; 9025 } 9026 9027 if (!journal_dev_exists) { 9028 mddev_suspend(mddev); 9029 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 9030 mddev_resume(mddev); 9031 } else /* need remove journal device first */ 9032 err = -EBUSY; 9033 } else 9034 err = -EINVAL; 9035 } else { 9036 err = -EINVAL; 9037 } 9038 9039 if (!err) 9040 md_update_sb(mddev, 1); 9041 9042 mddev_unlock(mddev); 9043 9044 return err; 9045 } 9046 9047 static int raid5_start(struct mddev *mddev) 9048 { 9049 struct r5conf *conf = mddev->private; 9050 9051 return r5l_start(conf->log); 9052 } 9053 9054 static void raid5_prepare_suspend(struct mddev *mddev) 9055 { 9056 struct r5conf *conf = mddev->private; 9057 9058 wait_event(mddev->sb_wait, !reshape_inprogress(mddev) || 9059 percpu_ref_is_zero(&mddev->active_io)); 9060 if (percpu_ref_is_zero(&mddev->active_io)) 9061 return; 9062 9063 /* 9064 * Reshape is not in progress, and array is suspended, io that is 9065 * waiting for reshpape can never be done. 9066 */ 9067 wake_up(&conf->wait_for_overlap); 9068 } 9069 9070 static struct md_personality raid6_personality = 9071 { 9072 .name = "raid6", 9073 .level = 6, 9074 .owner = THIS_MODULE, 9075 .make_request = raid5_make_request, 9076 .run = raid5_run, 9077 .start = raid5_start, 9078 .free = raid5_free, 9079 .status = raid5_status, 9080 .error_handler = raid5_error, 9081 .hot_add_disk = raid5_add_disk, 9082 .hot_remove_disk= raid5_remove_disk, 9083 .spare_active = raid5_spare_active, 9084 .sync_request = raid5_sync_request, 9085 .resize = raid5_resize, 9086 .size = raid5_size, 9087 .check_reshape = raid6_check_reshape, 9088 .start_reshape = raid5_start_reshape, 9089 .finish_reshape = raid5_finish_reshape, 9090 .prepare_suspend = raid5_prepare_suspend, 9091 .quiesce = raid5_quiesce, 9092 .takeover = raid6_takeover, 9093 .change_consistency_policy = raid5_change_consistency_policy, 9094 }; 9095 static struct md_personality raid5_personality = 9096 { 9097 .name = "raid5", 9098 .level = 5, 9099 .owner = THIS_MODULE, 9100 .make_request = raid5_make_request, 9101 .run = raid5_run, 9102 .start = raid5_start, 9103 .free = raid5_free, 9104 .status = raid5_status, 9105 .error_handler = raid5_error, 9106 .hot_add_disk = raid5_add_disk, 9107 .hot_remove_disk= raid5_remove_disk, 9108 .spare_active = raid5_spare_active, 9109 .sync_request = raid5_sync_request, 9110 .resize = raid5_resize, 9111 .size = raid5_size, 9112 .check_reshape = raid5_check_reshape, 9113 .start_reshape = raid5_start_reshape, 9114 .finish_reshape = raid5_finish_reshape, 9115 .prepare_suspend = raid5_prepare_suspend, 9116 .quiesce = raid5_quiesce, 9117 .takeover = raid5_takeover, 9118 .change_consistency_policy = raid5_change_consistency_policy, 9119 }; 9120 9121 static struct md_personality raid4_personality = 9122 { 9123 .name = "raid4", 9124 .level = 4, 9125 .owner = THIS_MODULE, 9126 .make_request = raid5_make_request, 9127 .run = raid5_run, 9128 .start = raid5_start, 9129 .free = raid5_free, 9130 .status = raid5_status, 9131 .error_handler = raid5_error, 9132 .hot_add_disk = raid5_add_disk, 9133 .hot_remove_disk= raid5_remove_disk, 9134 .spare_active = raid5_spare_active, 9135 .sync_request = raid5_sync_request, 9136 .resize = raid5_resize, 9137 .size = raid5_size, 9138 .check_reshape = raid5_check_reshape, 9139 .start_reshape = raid5_start_reshape, 9140 .finish_reshape = raid5_finish_reshape, 9141 .prepare_suspend = raid5_prepare_suspend, 9142 .quiesce = raid5_quiesce, 9143 .takeover = raid4_takeover, 9144 .change_consistency_policy = raid5_change_consistency_policy, 9145 }; 9146 9147 static int __init raid5_init(void) 9148 { 9149 int ret; 9150 9151 raid5_wq = alloc_workqueue("raid5wq", 9152 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 9153 if (!raid5_wq) 9154 return -ENOMEM; 9155 9156 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 9157 "md/raid5:prepare", 9158 raid456_cpu_up_prepare, 9159 raid456_cpu_dead); 9160 if (ret) { 9161 destroy_workqueue(raid5_wq); 9162 return ret; 9163 } 9164 register_md_personality(&raid6_personality); 9165 register_md_personality(&raid5_personality); 9166 register_md_personality(&raid4_personality); 9167 return 0; 9168 } 9169 9170 static void raid5_exit(void) 9171 { 9172 unregister_md_personality(&raid6_personality); 9173 unregister_md_personality(&raid5_personality); 9174 unregister_md_personality(&raid4_personality); 9175 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 9176 destroy_workqueue(raid5_wq); 9177 } 9178 9179 module_init(raid5_init); 9180 module_exit(raid5_exit); 9181 MODULE_LICENSE("GPL"); 9182 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 9183 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 9184 MODULE_ALIAS("md-raid5"); 9185 MODULE_ALIAS("md-raid4"); 9186 MODULE_ALIAS("md-level-5"); 9187 MODULE_ALIAS("md-level-4"); 9188 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 9189 MODULE_ALIAS("md-raid6"); 9190 MODULE_ALIAS("md-level-6"); 9191 9192 /* This used to be two separate modules, they were: */ 9193 MODULE_ALIAS("raid5"); 9194 MODULE_ALIAS("raid6"); 9195