xref: /openbmc/linux/drivers/md/raid10.c (revision fb960bd2)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "md-bitmap.h"
33 
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74 
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define	NR_RAID10_BIOS 256
79 
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91 
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93 
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99 
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 				int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109 
110 #define raid10_log(md, fmt, args...)				\
111 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112 
113 #include "raid1-10.c"
114 
115 /*
116  * for resync bio, r10bio pointer can be retrieved from the per-bio
117  * 'struct resync_pages'.
118  */
119 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120 {
121 	return get_resync_pages(bio)->raid_bio;
122 }
123 
124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
125 {
126 	struct r10conf *conf = data;
127 	int size = offsetof(struct r10bio, devs[conf->copies]);
128 
129 	/* allocate a r10bio with room for raid_disks entries in the
130 	 * bios array */
131 	return kzalloc(size, gfp_flags);
132 }
133 
134 static void r10bio_pool_free(void *r10_bio, void *data)
135 {
136 	kfree(r10_bio);
137 }
138 
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 /* amount of memory to reserve for resync requests */
141 #define RESYNC_WINDOW (1024*1024)
142 /* maximum number of concurrent requests, memory permitting */
143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
144 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
146 
147 /*
148  * When performing a resync, we need to read and compare, so
149  * we need as many pages are there are copies.
150  * When performing a recovery, we need 2 bios, one for read,
151  * one for write (we recover only one drive per r10buf)
152  *
153  */
154 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
155 {
156 	struct r10conf *conf = data;
157 	struct r10bio *r10_bio;
158 	struct bio *bio;
159 	int j;
160 	int nalloc, nalloc_rp;
161 	struct resync_pages *rps;
162 
163 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
164 	if (!r10_bio)
165 		return NULL;
166 
167 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
168 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
169 		nalloc = conf->copies; /* resync */
170 	else
171 		nalloc = 2; /* recovery */
172 
173 	/* allocate once for all bios */
174 	if (!conf->have_replacement)
175 		nalloc_rp = nalloc;
176 	else
177 		nalloc_rp = nalloc * 2;
178 	rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
179 	if (!rps)
180 		goto out_free_r10bio;
181 
182 	/*
183 	 * Allocate bios.
184 	 */
185 	for (j = nalloc ; j-- ; ) {
186 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
187 		if (!bio)
188 			goto out_free_bio;
189 		r10_bio->devs[j].bio = bio;
190 		if (!conf->have_replacement)
191 			continue;
192 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
193 		if (!bio)
194 			goto out_free_bio;
195 		r10_bio->devs[j].repl_bio = bio;
196 	}
197 	/*
198 	 * Allocate RESYNC_PAGES data pages and attach them
199 	 * where needed.
200 	 */
201 	for (j = 0; j < nalloc; j++) {
202 		struct bio *rbio = r10_bio->devs[j].repl_bio;
203 		struct resync_pages *rp, *rp_repl;
204 
205 		rp = &rps[j];
206 		if (rbio)
207 			rp_repl = &rps[nalloc + j];
208 
209 		bio = r10_bio->devs[j].bio;
210 
211 		if (!j || test_bit(MD_RECOVERY_SYNC,
212 				   &conf->mddev->recovery)) {
213 			if (resync_alloc_pages(rp, gfp_flags))
214 				goto out_free_pages;
215 		} else {
216 			memcpy(rp, &rps[0], sizeof(*rp));
217 			resync_get_all_pages(rp);
218 		}
219 
220 		rp->raid_bio = r10_bio;
221 		bio->bi_private = rp;
222 		if (rbio) {
223 			memcpy(rp_repl, rp, sizeof(*rp));
224 			rbio->bi_private = rp_repl;
225 		}
226 	}
227 
228 	return r10_bio;
229 
230 out_free_pages:
231 	while (--j >= 0)
232 		resync_free_pages(&rps[j * 2]);
233 
234 	j = 0;
235 out_free_bio:
236 	for ( ; j < nalloc; j++) {
237 		if (r10_bio->devs[j].bio)
238 			bio_put(r10_bio->devs[j].bio);
239 		if (r10_bio->devs[j].repl_bio)
240 			bio_put(r10_bio->devs[j].repl_bio);
241 	}
242 	kfree(rps);
243 out_free_r10bio:
244 	r10bio_pool_free(r10_bio, conf);
245 	return NULL;
246 }
247 
248 static void r10buf_pool_free(void *__r10_bio, void *data)
249 {
250 	struct r10conf *conf = data;
251 	struct r10bio *r10bio = __r10_bio;
252 	int j;
253 	struct resync_pages *rp = NULL;
254 
255 	for (j = conf->copies; j--; ) {
256 		struct bio *bio = r10bio->devs[j].bio;
257 
258 		rp = get_resync_pages(bio);
259 		resync_free_pages(rp);
260 		bio_put(bio);
261 
262 		bio = r10bio->devs[j].repl_bio;
263 		if (bio)
264 			bio_put(bio);
265 	}
266 
267 	/* resync pages array stored in the 1st bio's .bi_private */
268 	kfree(rp);
269 
270 	r10bio_pool_free(r10bio, conf);
271 }
272 
273 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
274 {
275 	int i;
276 
277 	for (i = 0; i < conf->copies; i++) {
278 		struct bio **bio = & r10_bio->devs[i].bio;
279 		if (!BIO_SPECIAL(*bio))
280 			bio_put(*bio);
281 		*bio = NULL;
282 		bio = &r10_bio->devs[i].repl_bio;
283 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
284 			bio_put(*bio);
285 		*bio = NULL;
286 	}
287 }
288 
289 static void free_r10bio(struct r10bio *r10_bio)
290 {
291 	struct r10conf *conf = r10_bio->mddev->private;
292 
293 	put_all_bios(conf, r10_bio);
294 	mempool_free(r10_bio, conf->r10bio_pool);
295 }
296 
297 static void put_buf(struct r10bio *r10_bio)
298 {
299 	struct r10conf *conf = r10_bio->mddev->private;
300 
301 	mempool_free(r10_bio, conf->r10buf_pool);
302 
303 	lower_barrier(conf);
304 }
305 
306 static void reschedule_retry(struct r10bio *r10_bio)
307 {
308 	unsigned long flags;
309 	struct mddev *mddev = r10_bio->mddev;
310 	struct r10conf *conf = mddev->private;
311 
312 	spin_lock_irqsave(&conf->device_lock, flags);
313 	list_add(&r10_bio->retry_list, &conf->retry_list);
314 	conf->nr_queued ++;
315 	spin_unlock_irqrestore(&conf->device_lock, flags);
316 
317 	/* wake up frozen array... */
318 	wake_up(&conf->wait_barrier);
319 
320 	md_wakeup_thread(mddev->thread);
321 }
322 
323 /*
324  * raid_end_bio_io() is called when we have finished servicing a mirrored
325  * operation and are ready to return a success/failure code to the buffer
326  * cache layer.
327  */
328 static void raid_end_bio_io(struct r10bio *r10_bio)
329 {
330 	struct bio *bio = r10_bio->master_bio;
331 	struct r10conf *conf = r10_bio->mddev->private;
332 
333 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
334 		bio->bi_status = BLK_STS_IOERR;
335 
336 	bio_endio(bio);
337 	/*
338 	 * Wake up any possible resync thread that waits for the device
339 	 * to go idle.
340 	 */
341 	allow_barrier(conf);
342 
343 	free_r10bio(r10_bio);
344 }
345 
346 /*
347  * Update disk head position estimator based on IRQ completion info.
348  */
349 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
350 {
351 	struct r10conf *conf = r10_bio->mddev->private;
352 
353 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
354 		r10_bio->devs[slot].addr + (r10_bio->sectors);
355 }
356 
357 /*
358  * Find the disk number which triggered given bio
359  */
360 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
361 			 struct bio *bio, int *slotp, int *replp)
362 {
363 	int slot;
364 	int repl = 0;
365 
366 	for (slot = 0; slot < conf->copies; slot++) {
367 		if (r10_bio->devs[slot].bio == bio)
368 			break;
369 		if (r10_bio->devs[slot].repl_bio == bio) {
370 			repl = 1;
371 			break;
372 		}
373 	}
374 
375 	BUG_ON(slot == conf->copies);
376 	update_head_pos(slot, r10_bio);
377 
378 	if (slotp)
379 		*slotp = slot;
380 	if (replp)
381 		*replp = repl;
382 	return r10_bio->devs[slot].devnum;
383 }
384 
385 static void raid10_end_read_request(struct bio *bio)
386 {
387 	int uptodate = !bio->bi_status;
388 	struct r10bio *r10_bio = bio->bi_private;
389 	int slot;
390 	struct md_rdev *rdev;
391 	struct r10conf *conf = r10_bio->mddev->private;
392 
393 	slot = r10_bio->read_slot;
394 	rdev = r10_bio->devs[slot].rdev;
395 	/*
396 	 * this branch is our 'one mirror IO has finished' event handler:
397 	 */
398 	update_head_pos(slot, r10_bio);
399 
400 	if (uptodate) {
401 		/*
402 		 * Set R10BIO_Uptodate in our master bio, so that
403 		 * we will return a good error code to the higher
404 		 * levels even if IO on some other mirrored buffer fails.
405 		 *
406 		 * The 'master' represents the composite IO operation to
407 		 * user-side. So if something waits for IO, then it will
408 		 * wait for the 'master' bio.
409 		 */
410 		set_bit(R10BIO_Uptodate, &r10_bio->state);
411 	} else {
412 		/* If all other devices that store this block have
413 		 * failed, we want to return the error upwards rather
414 		 * than fail the last device.  Here we redefine
415 		 * "uptodate" to mean "Don't want to retry"
416 		 */
417 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
418 			     rdev->raid_disk))
419 			uptodate = 1;
420 	}
421 	if (uptodate) {
422 		raid_end_bio_io(r10_bio);
423 		rdev_dec_pending(rdev, conf->mddev);
424 	} else {
425 		/*
426 		 * oops, read error - keep the refcount on the rdev
427 		 */
428 		char b[BDEVNAME_SIZE];
429 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
430 				   mdname(conf->mddev),
431 				   bdevname(rdev->bdev, b),
432 				   (unsigned long long)r10_bio->sector);
433 		set_bit(R10BIO_ReadError, &r10_bio->state);
434 		reschedule_retry(r10_bio);
435 	}
436 }
437 
438 static void close_write(struct r10bio *r10_bio)
439 {
440 	/* clear the bitmap if all writes complete successfully */
441 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
442 			r10_bio->sectors,
443 			!test_bit(R10BIO_Degraded, &r10_bio->state),
444 			0);
445 	md_write_end(r10_bio->mddev);
446 }
447 
448 static void one_write_done(struct r10bio *r10_bio)
449 {
450 	if (atomic_dec_and_test(&r10_bio->remaining)) {
451 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
452 			reschedule_retry(r10_bio);
453 		else {
454 			close_write(r10_bio);
455 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
456 				reschedule_retry(r10_bio);
457 			else
458 				raid_end_bio_io(r10_bio);
459 		}
460 	}
461 }
462 
463 static void raid10_end_write_request(struct bio *bio)
464 {
465 	struct r10bio *r10_bio = bio->bi_private;
466 	int dev;
467 	int dec_rdev = 1;
468 	struct r10conf *conf = r10_bio->mddev->private;
469 	int slot, repl;
470 	struct md_rdev *rdev = NULL;
471 	struct bio *to_put = NULL;
472 	bool discard_error;
473 
474 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
475 
476 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
477 
478 	if (repl)
479 		rdev = conf->mirrors[dev].replacement;
480 	if (!rdev) {
481 		smp_rmb();
482 		repl = 0;
483 		rdev = conf->mirrors[dev].rdev;
484 	}
485 	/*
486 	 * this branch is our 'one mirror IO has finished' event handler:
487 	 */
488 	if (bio->bi_status && !discard_error) {
489 		if (repl)
490 			/* Never record new bad blocks to replacement,
491 			 * just fail it.
492 			 */
493 			md_error(rdev->mddev, rdev);
494 		else {
495 			set_bit(WriteErrorSeen,	&rdev->flags);
496 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
497 				set_bit(MD_RECOVERY_NEEDED,
498 					&rdev->mddev->recovery);
499 
500 			dec_rdev = 0;
501 			if (test_bit(FailFast, &rdev->flags) &&
502 			    (bio->bi_opf & MD_FAILFAST)) {
503 				md_error(rdev->mddev, rdev);
504 				if (!test_bit(Faulty, &rdev->flags))
505 					/* This is the only remaining device,
506 					 * We need to retry the write without
507 					 * FailFast
508 					 */
509 					set_bit(R10BIO_WriteError, &r10_bio->state);
510 				else {
511 					r10_bio->devs[slot].bio = NULL;
512 					to_put = bio;
513 					dec_rdev = 1;
514 				}
515 			} else
516 				set_bit(R10BIO_WriteError, &r10_bio->state);
517 		}
518 	} else {
519 		/*
520 		 * Set R10BIO_Uptodate in our master bio, so that
521 		 * we will return a good error code for to the higher
522 		 * levels even if IO on some other mirrored buffer fails.
523 		 *
524 		 * The 'master' represents the composite IO operation to
525 		 * user-side. So if something waits for IO, then it will
526 		 * wait for the 'master' bio.
527 		 */
528 		sector_t first_bad;
529 		int bad_sectors;
530 
531 		/*
532 		 * Do not set R10BIO_Uptodate if the current device is
533 		 * rebuilding or Faulty. This is because we cannot use
534 		 * such device for properly reading the data back (we could
535 		 * potentially use it, if the current write would have felt
536 		 * before rdev->recovery_offset, but for simplicity we don't
537 		 * check this here.
538 		 */
539 		if (test_bit(In_sync, &rdev->flags) &&
540 		    !test_bit(Faulty, &rdev->flags))
541 			set_bit(R10BIO_Uptodate, &r10_bio->state);
542 
543 		/* Maybe we can clear some bad blocks. */
544 		if (is_badblock(rdev,
545 				r10_bio->devs[slot].addr,
546 				r10_bio->sectors,
547 				&first_bad, &bad_sectors) && !discard_error) {
548 			bio_put(bio);
549 			if (repl)
550 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
551 			else
552 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
553 			dec_rdev = 0;
554 			set_bit(R10BIO_MadeGood, &r10_bio->state);
555 		}
556 	}
557 
558 	/*
559 	 *
560 	 * Let's see if all mirrored write operations have finished
561 	 * already.
562 	 */
563 	one_write_done(r10_bio);
564 	if (dec_rdev)
565 		rdev_dec_pending(rdev, conf->mddev);
566 	if (to_put)
567 		bio_put(to_put);
568 }
569 
570 /*
571  * RAID10 layout manager
572  * As well as the chunksize and raid_disks count, there are two
573  * parameters: near_copies and far_copies.
574  * near_copies * far_copies must be <= raid_disks.
575  * Normally one of these will be 1.
576  * If both are 1, we get raid0.
577  * If near_copies == raid_disks, we get raid1.
578  *
579  * Chunks are laid out in raid0 style with near_copies copies of the
580  * first chunk, followed by near_copies copies of the next chunk and
581  * so on.
582  * If far_copies > 1, then after 1/far_copies of the array has been assigned
583  * as described above, we start again with a device offset of near_copies.
584  * So we effectively have another copy of the whole array further down all
585  * the drives, but with blocks on different drives.
586  * With this layout, and block is never stored twice on the one device.
587  *
588  * raid10_find_phys finds the sector offset of a given virtual sector
589  * on each device that it is on.
590  *
591  * raid10_find_virt does the reverse mapping, from a device and a
592  * sector offset to a virtual address
593  */
594 
595 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
596 {
597 	int n,f;
598 	sector_t sector;
599 	sector_t chunk;
600 	sector_t stripe;
601 	int dev;
602 	int slot = 0;
603 	int last_far_set_start, last_far_set_size;
604 
605 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
606 	last_far_set_start *= geo->far_set_size;
607 
608 	last_far_set_size = geo->far_set_size;
609 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
610 
611 	/* now calculate first sector/dev */
612 	chunk = r10bio->sector >> geo->chunk_shift;
613 	sector = r10bio->sector & geo->chunk_mask;
614 
615 	chunk *= geo->near_copies;
616 	stripe = chunk;
617 	dev = sector_div(stripe, geo->raid_disks);
618 	if (geo->far_offset)
619 		stripe *= geo->far_copies;
620 
621 	sector += stripe << geo->chunk_shift;
622 
623 	/* and calculate all the others */
624 	for (n = 0; n < geo->near_copies; n++) {
625 		int d = dev;
626 		int set;
627 		sector_t s = sector;
628 		r10bio->devs[slot].devnum = d;
629 		r10bio->devs[slot].addr = s;
630 		slot++;
631 
632 		for (f = 1; f < geo->far_copies; f++) {
633 			set = d / geo->far_set_size;
634 			d += geo->near_copies;
635 
636 			if ((geo->raid_disks % geo->far_set_size) &&
637 			    (d > last_far_set_start)) {
638 				d -= last_far_set_start;
639 				d %= last_far_set_size;
640 				d += last_far_set_start;
641 			} else {
642 				d %= geo->far_set_size;
643 				d += geo->far_set_size * set;
644 			}
645 			s += geo->stride;
646 			r10bio->devs[slot].devnum = d;
647 			r10bio->devs[slot].addr = s;
648 			slot++;
649 		}
650 		dev++;
651 		if (dev >= geo->raid_disks) {
652 			dev = 0;
653 			sector += (geo->chunk_mask + 1);
654 		}
655 	}
656 }
657 
658 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
659 {
660 	struct geom *geo = &conf->geo;
661 
662 	if (conf->reshape_progress != MaxSector &&
663 	    ((r10bio->sector >= conf->reshape_progress) !=
664 	     conf->mddev->reshape_backwards)) {
665 		set_bit(R10BIO_Previous, &r10bio->state);
666 		geo = &conf->prev;
667 	} else
668 		clear_bit(R10BIO_Previous, &r10bio->state);
669 
670 	__raid10_find_phys(geo, r10bio);
671 }
672 
673 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
674 {
675 	sector_t offset, chunk, vchunk;
676 	/* Never use conf->prev as this is only called during resync
677 	 * or recovery, so reshape isn't happening
678 	 */
679 	struct geom *geo = &conf->geo;
680 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
681 	int far_set_size = geo->far_set_size;
682 	int last_far_set_start;
683 
684 	if (geo->raid_disks % geo->far_set_size) {
685 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
686 		last_far_set_start *= geo->far_set_size;
687 
688 		if (dev >= last_far_set_start) {
689 			far_set_size = geo->far_set_size;
690 			far_set_size += (geo->raid_disks % geo->far_set_size);
691 			far_set_start = last_far_set_start;
692 		}
693 	}
694 
695 	offset = sector & geo->chunk_mask;
696 	if (geo->far_offset) {
697 		int fc;
698 		chunk = sector >> geo->chunk_shift;
699 		fc = sector_div(chunk, geo->far_copies);
700 		dev -= fc * geo->near_copies;
701 		if (dev < far_set_start)
702 			dev += far_set_size;
703 	} else {
704 		while (sector >= geo->stride) {
705 			sector -= geo->stride;
706 			if (dev < (geo->near_copies + far_set_start))
707 				dev += far_set_size - geo->near_copies;
708 			else
709 				dev -= geo->near_copies;
710 		}
711 		chunk = sector >> geo->chunk_shift;
712 	}
713 	vchunk = chunk * geo->raid_disks + dev;
714 	sector_div(vchunk, geo->near_copies);
715 	return (vchunk << geo->chunk_shift) + offset;
716 }
717 
718 /*
719  * This routine returns the disk from which the requested read should
720  * be done. There is a per-array 'next expected sequential IO' sector
721  * number - if this matches on the next IO then we use the last disk.
722  * There is also a per-disk 'last know head position' sector that is
723  * maintained from IRQ contexts, both the normal and the resync IO
724  * completion handlers update this position correctly. If there is no
725  * perfect sequential match then we pick the disk whose head is closest.
726  *
727  * If there are 2 mirrors in the same 2 devices, performance degrades
728  * because position is mirror, not device based.
729  *
730  * The rdev for the device selected will have nr_pending incremented.
731  */
732 
733 /*
734  * FIXME: possibly should rethink readbalancing and do it differently
735  * depending on near_copies / far_copies geometry.
736  */
737 static struct md_rdev *read_balance(struct r10conf *conf,
738 				    struct r10bio *r10_bio,
739 				    int *max_sectors)
740 {
741 	const sector_t this_sector = r10_bio->sector;
742 	int disk, slot;
743 	int sectors = r10_bio->sectors;
744 	int best_good_sectors;
745 	sector_t new_distance, best_dist;
746 	struct md_rdev *best_rdev, *rdev = NULL;
747 	int do_balance;
748 	int best_slot;
749 	struct geom *geo = &conf->geo;
750 
751 	raid10_find_phys(conf, r10_bio);
752 	rcu_read_lock();
753 	best_slot = -1;
754 	best_rdev = NULL;
755 	best_dist = MaxSector;
756 	best_good_sectors = 0;
757 	do_balance = 1;
758 	clear_bit(R10BIO_FailFast, &r10_bio->state);
759 	/*
760 	 * Check if we can balance. We can balance on the whole
761 	 * device if no resync is going on (recovery is ok), or below
762 	 * the resync window. We take the first readable disk when
763 	 * above the resync window.
764 	 */
765 	if ((conf->mddev->recovery_cp < MaxSector
766 	     && (this_sector + sectors >= conf->next_resync)) ||
767 	    (mddev_is_clustered(conf->mddev) &&
768 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
769 					    this_sector + sectors)))
770 		do_balance = 0;
771 
772 	for (slot = 0; slot < conf->copies ; slot++) {
773 		sector_t first_bad;
774 		int bad_sectors;
775 		sector_t dev_sector;
776 
777 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
778 			continue;
779 		disk = r10_bio->devs[slot].devnum;
780 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
781 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
782 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
783 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
784 		if (rdev == NULL ||
785 		    test_bit(Faulty, &rdev->flags))
786 			continue;
787 		if (!test_bit(In_sync, &rdev->flags) &&
788 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
789 			continue;
790 
791 		dev_sector = r10_bio->devs[slot].addr;
792 		if (is_badblock(rdev, dev_sector, sectors,
793 				&first_bad, &bad_sectors)) {
794 			if (best_dist < MaxSector)
795 				/* Already have a better slot */
796 				continue;
797 			if (first_bad <= dev_sector) {
798 				/* Cannot read here.  If this is the
799 				 * 'primary' device, then we must not read
800 				 * beyond 'bad_sectors' from another device.
801 				 */
802 				bad_sectors -= (dev_sector - first_bad);
803 				if (!do_balance && sectors > bad_sectors)
804 					sectors = bad_sectors;
805 				if (best_good_sectors > sectors)
806 					best_good_sectors = sectors;
807 			} else {
808 				sector_t good_sectors =
809 					first_bad - dev_sector;
810 				if (good_sectors > best_good_sectors) {
811 					best_good_sectors = good_sectors;
812 					best_slot = slot;
813 					best_rdev = rdev;
814 				}
815 				if (!do_balance)
816 					/* Must read from here */
817 					break;
818 			}
819 			continue;
820 		} else
821 			best_good_sectors = sectors;
822 
823 		if (!do_balance)
824 			break;
825 
826 		if (best_slot >= 0)
827 			/* At least 2 disks to choose from so failfast is OK */
828 			set_bit(R10BIO_FailFast, &r10_bio->state);
829 		/* This optimisation is debatable, and completely destroys
830 		 * sequential read speed for 'far copies' arrays.  So only
831 		 * keep it for 'near' arrays, and review those later.
832 		 */
833 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
834 			new_distance = 0;
835 
836 		/* for far > 1 always use the lowest address */
837 		else if (geo->far_copies > 1)
838 			new_distance = r10_bio->devs[slot].addr;
839 		else
840 			new_distance = abs(r10_bio->devs[slot].addr -
841 					   conf->mirrors[disk].head_position);
842 		if (new_distance < best_dist) {
843 			best_dist = new_distance;
844 			best_slot = slot;
845 			best_rdev = rdev;
846 		}
847 	}
848 	if (slot >= conf->copies) {
849 		slot = best_slot;
850 		rdev = best_rdev;
851 	}
852 
853 	if (slot >= 0) {
854 		atomic_inc(&rdev->nr_pending);
855 		r10_bio->read_slot = slot;
856 	} else
857 		rdev = NULL;
858 	rcu_read_unlock();
859 	*max_sectors = best_good_sectors;
860 
861 	return rdev;
862 }
863 
864 static int raid10_congested(struct mddev *mddev, int bits)
865 {
866 	struct r10conf *conf = mddev->private;
867 	int i, ret = 0;
868 
869 	if ((bits & (1 << WB_async_congested)) &&
870 	    conf->pending_count >= max_queued_requests)
871 		return 1;
872 
873 	rcu_read_lock();
874 	for (i = 0;
875 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
876 		     && ret == 0;
877 	     i++) {
878 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
879 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
880 			struct request_queue *q = bdev_get_queue(rdev->bdev);
881 
882 			ret |= bdi_congested(q->backing_dev_info, bits);
883 		}
884 	}
885 	rcu_read_unlock();
886 	return ret;
887 }
888 
889 static void flush_pending_writes(struct r10conf *conf)
890 {
891 	/* Any writes that have been queued but are awaiting
892 	 * bitmap updates get flushed here.
893 	 */
894 	spin_lock_irq(&conf->device_lock);
895 
896 	if (conf->pending_bio_list.head) {
897 		struct bio *bio;
898 		bio = bio_list_get(&conf->pending_bio_list);
899 		conf->pending_count = 0;
900 		spin_unlock_irq(&conf->device_lock);
901 		/* flush any pending bitmap writes to disk
902 		 * before proceeding w/ I/O */
903 		bitmap_unplug(conf->mddev->bitmap);
904 		wake_up(&conf->wait_barrier);
905 
906 		while (bio) { /* submit pending writes */
907 			struct bio *next = bio->bi_next;
908 			struct md_rdev *rdev = (void*)bio->bi_disk;
909 			bio->bi_next = NULL;
910 			bio_set_dev(bio, rdev->bdev);
911 			if (test_bit(Faulty, &rdev->flags)) {
912 				bio_io_error(bio);
913 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
914 					    !blk_queue_discard(bio->bi_disk->queue)))
915 				/* Just ignore it */
916 				bio_endio(bio);
917 			else
918 				generic_make_request(bio);
919 			bio = next;
920 		}
921 	} else
922 		spin_unlock_irq(&conf->device_lock);
923 }
924 
925 /* Barriers....
926  * Sometimes we need to suspend IO while we do something else,
927  * either some resync/recovery, or reconfigure the array.
928  * To do this we raise a 'barrier'.
929  * The 'barrier' is a counter that can be raised multiple times
930  * to count how many activities are happening which preclude
931  * normal IO.
932  * We can only raise the barrier if there is no pending IO.
933  * i.e. if nr_pending == 0.
934  * We choose only to raise the barrier if no-one is waiting for the
935  * barrier to go down.  This means that as soon as an IO request
936  * is ready, no other operations which require a barrier will start
937  * until the IO request has had a chance.
938  *
939  * So: regular IO calls 'wait_barrier'.  When that returns there
940  *    is no backgroup IO happening,  It must arrange to call
941  *    allow_barrier when it has finished its IO.
942  * backgroup IO calls must call raise_barrier.  Once that returns
943  *    there is no normal IO happeing.  It must arrange to call
944  *    lower_barrier when the particular background IO completes.
945  */
946 
947 static void raise_barrier(struct r10conf *conf, int force)
948 {
949 	BUG_ON(force && !conf->barrier);
950 	spin_lock_irq(&conf->resync_lock);
951 
952 	/* Wait until no block IO is waiting (unless 'force') */
953 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
954 			    conf->resync_lock);
955 
956 	/* block any new IO from starting */
957 	conf->barrier++;
958 
959 	/* Now wait for all pending IO to complete */
960 	wait_event_lock_irq(conf->wait_barrier,
961 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
962 			    conf->resync_lock);
963 
964 	spin_unlock_irq(&conf->resync_lock);
965 }
966 
967 static void lower_barrier(struct r10conf *conf)
968 {
969 	unsigned long flags;
970 	spin_lock_irqsave(&conf->resync_lock, flags);
971 	conf->barrier--;
972 	spin_unlock_irqrestore(&conf->resync_lock, flags);
973 	wake_up(&conf->wait_barrier);
974 }
975 
976 static void wait_barrier(struct r10conf *conf)
977 {
978 	spin_lock_irq(&conf->resync_lock);
979 	if (conf->barrier) {
980 		conf->nr_waiting++;
981 		/* Wait for the barrier to drop.
982 		 * However if there are already pending
983 		 * requests (preventing the barrier from
984 		 * rising completely), and the
985 		 * pre-process bio queue isn't empty,
986 		 * then don't wait, as we need to empty
987 		 * that queue to get the nr_pending
988 		 * count down.
989 		 */
990 		raid10_log(conf->mddev, "wait barrier");
991 		wait_event_lock_irq(conf->wait_barrier,
992 				    !conf->barrier ||
993 				    (atomic_read(&conf->nr_pending) &&
994 				     current->bio_list &&
995 				     (!bio_list_empty(&current->bio_list[0]) ||
996 				      !bio_list_empty(&current->bio_list[1]))),
997 				    conf->resync_lock);
998 		conf->nr_waiting--;
999 		if (!conf->nr_waiting)
1000 			wake_up(&conf->wait_barrier);
1001 	}
1002 	atomic_inc(&conf->nr_pending);
1003 	spin_unlock_irq(&conf->resync_lock);
1004 }
1005 
1006 static void allow_barrier(struct r10conf *conf)
1007 {
1008 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1009 			(conf->array_freeze_pending))
1010 		wake_up(&conf->wait_barrier);
1011 }
1012 
1013 static void freeze_array(struct r10conf *conf, int extra)
1014 {
1015 	/* stop syncio and normal IO and wait for everything to
1016 	 * go quiet.
1017 	 * We increment barrier and nr_waiting, and then
1018 	 * wait until nr_pending match nr_queued+extra
1019 	 * This is called in the context of one normal IO request
1020 	 * that has failed. Thus any sync request that might be pending
1021 	 * will be blocked by nr_pending, and we need to wait for
1022 	 * pending IO requests to complete or be queued for re-try.
1023 	 * Thus the number queued (nr_queued) plus this request (extra)
1024 	 * must match the number of pending IOs (nr_pending) before
1025 	 * we continue.
1026 	 */
1027 	spin_lock_irq(&conf->resync_lock);
1028 	conf->array_freeze_pending++;
1029 	conf->barrier++;
1030 	conf->nr_waiting++;
1031 	wait_event_lock_irq_cmd(conf->wait_barrier,
1032 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1033 				conf->resync_lock,
1034 				flush_pending_writes(conf));
1035 
1036 	conf->array_freeze_pending--;
1037 	spin_unlock_irq(&conf->resync_lock);
1038 }
1039 
1040 static void unfreeze_array(struct r10conf *conf)
1041 {
1042 	/* reverse the effect of the freeze */
1043 	spin_lock_irq(&conf->resync_lock);
1044 	conf->barrier--;
1045 	conf->nr_waiting--;
1046 	wake_up(&conf->wait_barrier);
1047 	spin_unlock_irq(&conf->resync_lock);
1048 }
1049 
1050 static sector_t choose_data_offset(struct r10bio *r10_bio,
1051 				   struct md_rdev *rdev)
1052 {
1053 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1054 	    test_bit(R10BIO_Previous, &r10_bio->state))
1055 		return rdev->data_offset;
1056 	else
1057 		return rdev->new_data_offset;
1058 }
1059 
1060 struct raid10_plug_cb {
1061 	struct blk_plug_cb	cb;
1062 	struct bio_list		pending;
1063 	int			pending_cnt;
1064 };
1065 
1066 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1067 {
1068 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1069 						   cb);
1070 	struct mddev *mddev = plug->cb.data;
1071 	struct r10conf *conf = mddev->private;
1072 	struct bio *bio;
1073 
1074 	if (from_schedule || current->bio_list) {
1075 		spin_lock_irq(&conf->device_lock);
1076 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1077 		conf->pending_count += plug->pending_cnt;
1078 		spin_unlock_irq(&conf->device_lock);
1079 		wake_up(&conf->wait_barrier);
1080 		md_wakeup_thread(mddev->thread);
1081 		kfree(plug);
1082 		return;
1083 	}
1084 
1085 	/* we aren't scheduling, so we can do the write-out directly. */
1086 	bio = bio_list_get(&plug->pending);
1087 	bitmap_unplug(mddev->bitmap);
1088 	wake_up(&conf->wait_barrier);
1089 
1090 	while (bio) { /* submit pending writes */
1091 		struct bio *next = bio->bi_next;
1092 		struct md_rdev *rdev = (void*)bio->bi_disk;
1093 		bio->bi_next = NULL;
1094 		bio_set_dev(bio, rdev->bdev);
1095 		if (test_bit(Faulty, &rdev->flags)) {
1096 			bio_io_error(bio);
1097 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1098 				    !blk_queue_discard(bio->bi_disk->queue)))
1099 			/* Just ignore it */
1100 			bio_endio(bio);
1101 		else
1102 			generic_make_request(bio);
1103 		bio = next;
1104 	}
1105 	kfree(plug);
1106 }
1107 
1108 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1109 				struct r10bio *r10_bio)
1110 {
1111 	struct r10conf *conf = mddev->private;
1112 	struct bio *read_bio;
1113 	const int op = bio_op(bio);
1114 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1115 	int max_sectors;
1116 	sector_t sectors;
1117 	struct md_rdev *rdev;
1118 	char b[BDEVNAME_SIZE];
1119 	int slot = r10_bio->read_slot;
1120 	struct md_rdev *err_rdev = NULL;
1121 	gfp_t gfp = GFP_NOIO;
1122 
1123 	if (r10_bio->devs[slot].rdev) {
1124 		/*
1125 		 * This is an error retry, but we cannot
1126 		 * safely dereference the rdev in the r10_bio,
1127 		 * we must use the one in conf.
1128 		 * If it has already been disconnected (unlikely)
1129 		 * we lose the device name in error messages.
1130 		 */
1131 		int disk;
1132 		/*
1133 		 * As we are blocking raid10, it is a little safer to
1134 		 * use __GFP_HIGH.
1135 		 */
1136 		gfp = GFP_NOIO | __GFP_HIGH;
1137 
1138 		rcu_read_lock();
1139 		disk = r10_bio->devs[slot].devnum;
1140 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1141 		if (err_rdev)
1142 			bdevname(err_rdev->bdev, b);
1143 		else {
1144 			strcpy(b, "???");
1145 			/* This never gets dereferenced */
1146 			err_rdev = r10_bio->devs[slot].rdev;
1147 		}
1148 		rcu_read_unlock();
1149 	}
1150 	/*
1151 	 * Register the new request and wait if the reconstruction
1152 	 * thread has put up a bar for new requests.
1153 	 * Continue immediately if no resync is active currently.
1154 	 */
1155 	wait_barrier(conf);
1156 
1157 	sectors = r10_bio->sectors;
1158 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1159 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1160 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1161 		/*
1162 		 * IO spans the reshape position.  Need to wait for reshape to
1163 		 * pass
1164 		 */
1165 		raid10_log(conf->mddev, "wait reshape");
1166 		allow_barrier(conf);
1167 		wait_event(conf->wait_barrier,
1168 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1169 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1170 			   sectors);
1171 		wait_barrier(conf);
1172 	}
1173 
1174 	rdev = read_balance(conf, r10_bio, &max_sectors);
1175 	if (!rdev) {
1176 		if (err_rdev) {
1177 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1178 					    mdname(mddev), b,
1179 					    (unsigned long long)r10_bio->sector);
1180 		}
1181 		raid_end_bio_io(r10_bio);
1182 		return;
1183 	}
1184 	if (err_rdev)
1185 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1186 				   mdname(mddev),
1187 				   bdevname(rdev->bdev, b),
1188 				   (unsigned long long)r10_bio->sector);
1189 	if (max_sectors < bio_sectors(bio)) {
1190 		struct bio *split = bio_split(bio, max_sectors,
1191 					      gfp, conf->bio_split);
1192 		bio_chain(split, bio);
1193 		generic_make_request(bio);
1194 		bio = split;
1195 		r10_bio->master_bio = bio;
1196 		r10_bio->sectors = max_sectors;
1197 	}
1198 	slot = r10_bio->read_slot;
1199 
1200 	read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1201 
1202 	r10_bio->devs[slot].bio = read_bio;
1203 	r10_bio->devs[slot].rdev = rdev;
1204 
1205 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1206 		choose_data_offset(r10_bio, rdev);
1207 	bio_set_dev(read_bio, rdev->bdev);
1208 	read_bio->bi_end_io = raid10_end_read_request;
1209 	bio_set_op_attrs(read_bio, op, do_sync);
1210 	if (test_bit(FailFast, &rdev->flags) &&
1211 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1212 	        read_bio->bi_opf |= MD_FAILFAST;
1213 	read_bio->bi_private = r10_bio;
1214 
1215 	if (mddev->gendisk)
1216 	        trace_block_bio_remap(read_bio->bi_disk->queue,
1217 	                              read_bio, disk_devt(mddev->gendisk),
1218 	                              r10_bio->sector);
1219 	generic_make_request(read_bio);
1220 	return;
1221 }
1222 
1223 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1224 				  struct bio *bio, bool replacement,
1225 				  int n_copy)
1226 {
1227 	const int op = bio_op(bio);
1228 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1229 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1230 	unsigned long flags;
1231 	struct blk_plug_cb *cb;
1232 	struct raid10_plug_cb *plug = NULL;
1233 	struct r10conf *conf = mddev->private;
1234 	struct md_rdev *rdev;
1235 	int devnum = r10_bio->devs[n_copy].devnum;
1236 	struct bio *mbio;
1237 
1238 	if (replacement) {
1239 		rdev = conf->mirrors[devnum].replacement;
1240 		if (rdev == NULL) {
1241 			/* Replacement just got moved to main 'rdev' */
1242 			smp_mb();
1243 			rdev = conf->mirrors[devnum].rdev;
1244 		}
1245 	} else
1246 		rdev = conf->mirrors[devnum].rdev;
1247 
1248 	mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1249 	if (replacement)
1250 		r10_bio->devs[n_copy].repl_bio = mbio;
1251 	else
1252 		r10_bio->devs[n_copy].bio = mbio;
1253 
1254 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1255 				   choose_data_offset(r10_bio, rdev));
1256 	bio_set_dev(mbio, rdev->bdev);
1257 	mbio->bi_end_io	= raid10_end_write_request;
1258 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1259 	if (!replacement && test_bit(FailFast,
1260 				     &conf->mirrors[devnum].rdev->flags)
1261 			 && enough(conf, devnum))
1262 		mbio->bi_opf |= MD_FAILFAST;
1263 	mbio->bi_private = r10_bio;
1264 
1265 	if (conf->mddev->gendisk)
1266 		trace_block_bio_remap(mbio->bi_disk->queue,
1267 				      mbio, disk_devt(conf->mddev->gendisk),
1268 				      r10_bio->sector);
1269 	/* flush_pending_writes() needs access to the rdev so...*/
1270 	mbio->bi_disk = (void *)rdev;
1271 
1272 	atomic_inc(&r10_bio->remaining);
1273 
1274 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1275 	if (cb)
1276 		plug = container_of(cb, struct raid10_plug_cb, cb);
1277 	else
1278 		plug = NULL;
1279 	if (plug) {
1280 		bio_list_add(&plug->pending, mbio);
1281 		plug->pending_cnt++;
1282 	} else {
1283 		spin_lock_irqsave(&conf->device_lock, flags);
1284 		bio_list_add(&conf->pending_bio_list, mbio);
1285 		conf->pending_count++;
1286 		spin_unlock_irqrestore(&conf->device_lock, flags);
1287 		md_wakeup_thread(mddev->thread);
1288 	}
1289 }
1290 
1291 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1292 				 struct r10bio *r10_bio)
1293 {
1294 	struct r10conf *conf = mddev->private;
1295 	int i;
1296 	struct md_rdev *blocked_rdev;
1297 	sector_t sectors;
1298 	int max_sectors;
1299 
1300 	if ((mddev_is_clustered(mddev) &&
1301 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1302 					    bio->bi_iter.bi_sector,
1303 					    bio_end_sector(bio)))) {
1304 		DEFINE_WAIT(w);
1305 		for (;;) {
1306 			prepare_to_wait(&conf->wait_barrier,
1307 					&w, TASK_IDLE);
1308 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1309 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1310 				break;
1311 			schedule();
1312 		}
1313 		finish_wait(&conf->wait_barrier, &w);
1314 	}
1315 
1316 	/*
1317 	 * Register the new request and wait if the reconstruction
1318 	 * thread has put up a bar for new requests.
1319 	 * Continue immediately if no resync is active currently.
1320 	 */
1321 	wait_barrier(conf);
1322 
1323 	sectors = r10_bio->sectors;
1324 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1325 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1326 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1327 		/*
1328 		 * IO spans the reshape position.  Need to wait for reshape to
1329 		 * pass
1330 		 */
1331 		raid10_log(conf->mddev, "wait reshape");
1332 		allow_barrier(conf);
1333 		wait_event(conf->wait_barrier,
1334 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1335 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1336 			   sectors);
1337 		wait_barrier(conf);
1338 	}
1339 
1340 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1341 	    (mddev->reshape_backwards
1342 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1343 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1344 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1345 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1346 		/* Need to update reshape_position in metadata */
1347 		mddev->reshape_position = conf->reshape_progress;
1348 		set_mask_bits(&mddev->sb_flags, 0,
1349 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1350 		md_wakeup_thread(mddev->thread);
1351 		raid10_log(conf->mddev, "wait reshape metadata");
1352 		wait_event(mddev->sb_wait,
1353 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1354 
1355 		conf->reshape_safe = mddev->reshape_position;
1356 	}
1357 
1358 	if (conf->pending_count >= max_queued_requests) {
1359 		md_wakeup_thread(mddev->thread);
1360 		raid10_log(mddev, "wait queued");
1361 		wait_event(conf->wait_barrier,
1362 			   conf->pending_count < max_queued_requests);
1363 	}
1364 	/* first select target devices under rcu_lock and
1365 	 * inc refcount on their rdev.  Record them by setting
1366 	 * bios[x] to bio
1367 	 * If there are known/acknowledged bad blocks on any device
1368 	 * on which we have seen a write error, we want to avoid
1369 	 * writing to those blocks.  This potentially requires several
1370 	 * writes to write around the bad blocks.  Each set of writes
1371 	 * gets its own r10_bio with a set of bios attached.
1372 	 */
1373 
1374 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1375 	raid10_find_phys(conf, r10_bio);
1376 retry_write:
1377 	blocked_rdev = NULL;
1378 	rcu_read_lock();
1379 	max_sectors = r10_bio->sectors;
1380 
1381 	for (i = 0;  i < conf->copies; i++) {
1382 		int d = r10_bio->devs[i].devnum;
1383 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1384 		struct md_rdev *rrdev = rcu_dereference(
1385 			conf->mirrors[d].replacement);
1386 		if (rdev == rrdev)
1387 			rrdev = NULL;
1388 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1389 			atomic_inc(&rdev->nr_pending);
1390 			blocked_rdev = rdev;
1391 			break;
1392 		}
1393 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1394 			atomic_inc(&rrdev->nr_pending);
1395 			blocked_rdev = rrdev;
1396 			break;
1397 		}
1398 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1399 			rdev = NULL;
1400 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1401 			rrdev = NULL;
1402 
1403 		r10_bio->devs[i].bio = NULL;
1404 		r10_bio->devs[i].repl_bio = NULL;
1405 
1406 		if (!rdev && !rrdev) {
1407 			set_bit(R10BIO_Degraded, &r10_bio->state);
1408 			continue;
1409 		}
1410 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1411 			sector_t first_bad;
1412 			sector_t dev_sector = r10_bio->devs[i].addr;
1413 			int bad_sectors;
1414 			int is_bad;
1415 
1416 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1417 					     &first_bad, &bad_sectors);
1418 			if (is_bad < 0) {
1419 				/* Mustn't write here until the bad block
1420 				 * is acknowledged
1421 				 */
1422 				atomic_inc(&rdev->nr_pending);
1423 				set_bit(BlockedBadBlocks, &rdev->flags);
1424 				blocked_rdev = rdev;
1425 				break;
1426 			}
1427 			if (is_bad && first_bad <= dev_sector) {
1428 				/* Cannot write here at all */
1429 				bad_sectors -= (dev_sector - first_bad);
1430 				if (bad_sectors < max_sectors)
1431 					/* Mustn't write more than bad_sectors
1432 					 * to other devices yet
1433 					 */
1434 					max_sectors = bad_sectors;
1435 				/* We don't set R10BIO_Degraded as that
1436 				 * only applies if the disk is missing,
1437 				 * so it might be re-added, and we want to
1438 				 * know to recover this chunk.
1439 				 * In this case the device is here, and the
1440 				 * fact that this chunk is not in-sync is
1441 				 * recorded in the bad block log.
1442 				 */
1443 				continue;
1444 			}
1445 			if (is_bad) {
1446 				int good_sectors = first_bad - dev_sector;
1447 				if (good_sectors < max_sectors)
1448 					max_sectors = good_sectors;
1449 			}
1450 		}
1451 		if (rdev) {
1452 			r10_bio->devs[i].bio = bio;
1453 			atomic_inc(&rdev->nr_pending);
1454 		}
1455 		if (rrdev) {
1456 			r10_bio->devs[i].repl_bio = bio;
1457 			atomic_inc(&rrdev->nr_pending);
1458 		}
1459 	}
1460 	rcu_read_unlock();
1461 
1462 	if (unlikely(blocked_rdev)) {
1463 		/* Have to wait for this device to get unblocked, then retry */
1464 		int j;
1465 		int d;
1466 
1467 		for (j = 0; j < i; j++) {
1468 			if (r10_bio->devs[j].bio) {
1469 				d = r10_bio->devs[j].devnum;
1470 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1471 			}
1472 			if (r10_bio->devs[j].repl_bio) {
1473 				struct md_rdev *rdev;
1474 				d = r10_bio->devs[j].devnum;
1475 				rdev = conf->mirrors[d].replacement;
1476 				if (!rdev) {
1477 					/* Race with remove_disk */
1478 					smp_mb();
1479 					rdev = conf->mirrors[d].rdev;
1480 				}
1481 				rdev_dec_pending(rdev, mddev);
1482 			}
1483 		}
1484 		allow_barrier(conf);
1485 		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1486 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1487 		wait_barrier(conf);
1488 		goto retry_write;
1489 	}
1490 
1491 	if (max_sectors < r10_bio->sectors)
1492 		r10_bio->sectors = max_sectors;
1493 
1494 	if (r10_bio->sectors < bio_sectors(bio)) {
1495 		struct bio *split = bio_split(bio, r10_bio->sectors,
1496 					      GFP_NOIO, conf->bio_split);
1497 		bio_chain(split, bio);
1498 		generic_make_request(bio);
1499 		bio = split;
1500 		r10_bio->master_bio = bio;
1501 	}
1502 
1503 	atomic_set(&r10_bio->remaining, 1);
1504 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1505 
1506 	for (i = 0; i < conf->copies; i++) {
1507 		if (r10_bio->devs[i].bio)
1508 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1509 		if (r10_bio->devs[i].repl_bio)
1510 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1511 	}
1512 	one_write_done(r10_bio);
1513 }
1514 
1515 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1516 {
1517 	struct r10conf *conf = mddev->private;
1518 	struct r10bio *r10_bio;
1519 
1520 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1521 
1522 	r10_bio->master_bio = bio;
1523 	r10_bio->sectors = sectors;
1524 
1525 	r10_bio->mddev = mddev;
1526 	r10_bio->sector = bio->bi_iter.bi_sector;
1527 	r10_bio->state = 0;
1528 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1529 
1530 	if (bio_data_dir(bio) == READ)
1531 		raid10_read_request(mddev, bio, r10_bio);
1532 	else
1533 		raid10_write_request(mddev, bio, r10_bio);
1534 }
1535 
1536 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1537 {
1538 	struct r10conf *conf = mddev->private;
1539 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1540 	int chunk_sects = chunk_mask + 1;
1541 	int sectors = bio_sectors(bio);
1542 
1543 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1544 		md_flush_request(mddev, bio);
1545 		return true;
1546 	}
1547 
1548 	if (!md_write_start(mddev, bio))
1549 		return false;
1550 
1551 	/*
1552 	 * If this request crosses a chunk boundary, we need to split
1553 	 * it.
1554 	 */
1555 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1556 		     sectors > chunk_sects
1557 		     && (conf->geo.near_copies < conf->geo.raid_disks
1558 			 || conf->prev.near_copies <
1559 			 conf->prev.raid_disks)))
1560 		sectors = chunk_sects -
1561 			(bio->bi_iter.bi_sector &
1562 			 (chunk_sects - 1));
1563 	__make_request(mddev, bio, sectors);
1564 
1565 	/* In case raid10d snuck in to freeze_array */
1566 	wake_up(&conf->wait_barrier);
1567 	return true;
1568 }
1569 
1570 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1571 {
1572 	struct r10conf *conf = mddev->private;
1573 	int i;
1574 
1575 	if (conf->geo.near_copies < conf->geo.raid_disks)
1576 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1577 	if (conf->geo.near_copies > 1)
1578 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1579 	if (conf->geo.far_copies > 1) {
1580 		if (conf->geo.far_offset)
1581 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1582 		else
1583 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1584 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1585 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1586 	}
1587 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1588 					conf->geo.raid_disks - mddev->degraded);
1589 	rcu_read_lock();
1590 	for (i = 0; i < conf->geo.raid_disks; i++) {
1591 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1592 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1593 	}
1594 	rcu_read_unlock();
1595 	seq_printf(seq, "]");
1596 }
1597 
1598 /* check if there are enough drives for
1599  * every block to appear on atleast one.
1600  * Don't consider the device numbered 'ignore'
1601  * as we might be about to remove it.
1602  */
1603 static int _enough(struct r10conf *conf, int previous, int ignore)
1604 {
1605 	int first = 0;
1606 	int has_enough = 0;
1607 	int disks, ncopies;
1608 	if (previous) {
1609 		disks = conf->prev.raid_disks;
1610 		ncopies = conf->prev.near_copies;
1611 	} else {
1612 		disks = conf->geo.raid_disks;
1613 		ncopies = conf->geo.near_copies;
1614 	}
1615 
1616 	rcu_read_lock();
1617 	do {
1618 		int n = conf->copies;
1619 		int cnt = 0;
1620 		int this = first;
1621 		while (n--) {
1622 			struct md_rdev *rdev;
1623 			if (this != ignore &&
1624 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1625 			    test_bit(In_sync, &rdev->flags))
1626 				cnt++;
1627 			this = (this+1) % disks;
1628 		}
1629 		if (cnt == 0)
1630 			goto out;
1631 		first = (first + ncopies) % disks;
1632 	} while (first != 0);
1633 	has_enough = 1;
1634 out:
1635 	rcu_read_unlock();
1636 	return has_enough;
1637 }
1638 
1639 static int enough(struct r10conf *conf, int ignore)
1640 {
1641 	/* when calling 'enough', both 'prev' and 'geo' must
1642 	 * be stable.
1643 	 * This is ensured if ->reconfig_mutex or ->device_lock
1644 	 * is held.
1645 	 */
1646 	return _enough(conf, 0, ignore) &&
1647 		_enough(conf, 1, ignore);
1648 }
1649 
1650 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1651 {
1652 	char b[BDEVNAME_SIZE];
1653 	struct r10conf *conf = mddev->private;
1654 	unsigned long flags;
1655 
1656 	/*
1657 	 * If it is not operational, then we have already marked it as dead
1658 	 * else if it is the last working disks, ignore the error, let the
1659 	 * next level up know.
1660 	 * else mark the drive as failed
1661 	 */
1662 	spin_lock_irqsave(&conf->device_lock, flags);
1663 	if (test_bit(In_sync, &rdev->flags)
1664 	    && !enough(conf, rdev->raid_disk)) {
1665 		/*
1666 		 * Don't fail the drive, just return an IO error.
1667 		 */
1668 		spin_unlock_irqrestore(&conf->device_lock, flags);
1669 		return;
1670 	}
1671 	if (test_and_clear_bit(In_sync, &rdev->flags))
1672 		mddev->degraded++;
1673 	/*
1674 	 * If recovery is running, make sure it aborts.
1675 	 */
1676 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1677 	set_bit(Blocked, &rdev->flags);
1678 	set_bit(Faulty, &rdev->flags);
1679 	set_mask_bits(&mddev->sb_flags, 0,
1680 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1681 	spin_unlock_irqrestore(&conf->device_lock, flags);
1682 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1683 		"md/raid10:%s: Operation continuing on %d devices.\n",
1684 		mdname(mddev), bdevname(rdev->bdev, b),
1685 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1686 }
1687 
1688 static void print_conf(struct r10conf *conf)
1689 {
1690 	int i;
1691 	struct md_rdev *rdev;
1692 
1693 	pr_debug("RAID10 conf printout:\n");
1694 	if (!conf) {
1695 		pr_debug("(!conf)\n");
1696 		return;
1697 	}
1698 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1699 		 conf->geo.raid_disks);
1700 
1701 	/* This is only called with ->reconfix_mutex held, so
1702 	 * rcu protection of rdev is not needed */
1703 	for (i = 0; i < conf->geo.raid_disks; i++) {
1704 		char b[BDEVNAME_SIZE];
1705 		rdev = conf->mirrors[i].rdev;
1706 		if (rdev)
1707 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1708 				 i, !test_bit(In_sync, &rdev->flags),
1709 				 !test_bit(Faulty, &rdev->flags),
1710 				 bdevname(rdev->bdev,b));
1711 	}
1712 }
1713 
1714 static void close_sync(struct r10conf *conf)
1715 {
1716 	wait_barrier(conf);
1717 	allow_barrier(conf);
1718 
1719 	mempool_destroy(conf->r10buf_pool);
1720 	conf->r10buf_pool = NULL;
1721 }
1722 
1723 static int raid10_spare_active(struct mddev *mddev)
1724 {
1725 	int i;
1726 	struct r10conf *conf = mddev->private;
1727 	struct raid10_info *tmp;
1728 	int count = 0;
1729 	unsigned long flags;
1730 
1731 	/*
1732 	 * Find all non-in_sync disks within the RAID10 configuration
1733 	 * and mark them in_sync
1734 	 */
1735 	for (i = 0; i < conf->geo.raid_disks; i++) {
1736 		tmp = conf->mirrors + i;
1737 		if (tmp->replacement
1738 		    && tmp->replacement->recovery_offset == MaxSector
1739 		    && !test_bit(Faulty, &tmp->replacement->flags)
1740 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1741 			/* Replacement has just become active */
1742 			if (!tmp->rdev
1743 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1744 				count++;
1745 			if (tmp->rdev) {
1746 				/* Replaced device not technically faulty,
1747 				 * but we need to be sure it gets removed
1748 				 * and never re-added.
1749 				 */
1750 				set_bit(Faulty, &tmp->rdev->flags);
1751 				sysfs_notify_dirent_safe(
1752 					tmp->rdev->sysfs_state);
1753 			}
1754 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1755 		} else if (tmp->rdev
1756 			   && tmp->rdev->recovery_offset == MaxSector
1757 			   && !test_bit(Faulty, &tmp->rdev->flags)
1758 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1759 			count++;
1760 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1761 		}
1762 	}
1763 	spin_lock_irqsave(&conf->device_lock, flags);
1764 	mddev->degraded -= count;
1765 	spin_unlock_irqrestore(&conf->device_lock, flags);
1766 
1767 	print_conf(conf);
1768 	return count;
1769 }
1770 
1771 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1772 {
1773 	struct r10conf *conf = mddev->private;
1774 	int err = -EEXIST;
1775 	int mirror;
1776 	int first = 0;
1777 	int last = conf->geo.raid_disks - 1;
1778 
1779 	if (mddev->recovery_cp < MaxSector)
1780 		/* only hot-add to in-sync arrays, as recovery is
1781 		 * very different from resync
1782 		 */
1783 		return -EBUSY;
1784 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1785 		return -EINVAL;
1786 
1787 	if (md_integrity_add_rdev(rdev, mddev))
1788 		return -ENXIO;
1789 
1790 	if (rdev->raid_disk >= 0)
1791 		first = last = rdev->raid_disk;
1792 
1793 	if (rdev->saved_raid_disk >= first &&
1794 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1795 		mirror = rdev->saved_raid_disk;
1796 	else
1797 		mirror = first;
1798 	for ( ; mirror <= last ; mirror++) {
1799 		struct raid10_info *p = &conf->mirrors[mirror];
1800 		if (p->recovery_disabled == mddev->recovery_disabled)
1801 			continue;
1802 		if (p->rdev) {
1803 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1804 			    p->replacement != NULL)
1805 				continue;
1806 			clear_bit(In_sync, &rdev->flags);
1807 			set_bit(Replacement, &rdev->flags);
1808 			rdev->raid_disk = mirror;
1809 			err = 0;
1810 			if (mddev->gendisk)
1811 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1812 						  rdev->data_offset << 9);
1813 			conf->fullsync = 1;
1814 			rcu_assign_pointer(p->replacement, rdev);
1815 			break;
1816 		}
1817 
1818 		if (mddev->gendisk)
1819 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1820 					  rdev->data_offset << 9);
1821 
1822 		p->head_position = 0;
1823 		p->recovery_disabled = mddev->recovery_disabled - 1;
1824 		rdev->raid_disk = mirror;
1825 		err = 0;
1826 		if (rdev->saved_raid_disk != mirror)
1827 			conf->fullsync = 1;
1828 		rcu_assign_pointer(p->rdev, rdev);
1829 		break;
1830 	}
1831 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1832 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1833 
1834 	print_conf(conf);
1835 	return err;
1836 }
1837 
1838 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1839 {
1840 	struct r10conf *conf = mddev->private;
1841 	int err = 0;
1842 	int number = rdev->raid_disk;
1843 	struct md_rdev **rdevp;
1844 	struct raid10_info *p = conf->mirrors + number;
1845 
1846 	print_conf(conf);
1847 	if (rdev == p->rdev)
1848 		rdevp = &p->rdev;
1849 	else if (rdev == p->replacement)
1850 		rdevp = &p->replacement;
1851 	else
1852 		return 0;
1853 
1854 	if (test_bit(In_sync, &rdev->flags) ||
1855 	    atomic_read(&rdev->nr_pending)) {
1856 		err = -EBUSY;
1857 		goto abort;
1858 	}
1859 	/* Only remove non-faulty devices if recovery
1860 	 * is not possible.
1861 	 */
1862 	if (!test_bit(Faulty, &rdev->flags) &&
1863 	    mddev->recovery_disabled != p->recovery_disabled &&
1864 	    (!p->replacement || p->replacement == rdev) &&
1865 	    number < conf->geo.raid_disks &&
1866 	    enough(conf, -1)) {
1867 		err = -EBUSY;
1868 		goto abort;
1869 	}
1870 	*rdevp = NULL;
1871 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1872 		synchronize_rcu();
1873 		if (atomic_read(&rdev->nr_pending)) {
1874 			/* lost the race, try later */
1875 			err = -EBUSY;
1876 			*rdevp = rdev;
1877 			goto abort;
1878 		}
1879 	}
1880 	if (p->replacement) {
1881 		/* We must have just cleared 'rdev' */
1882 		p->rdev = p->replacement;
1883 		clear_bit(Replacement, &p->replacement->flags);
1884 		smp_mb(); /* Make sure other CPUs may see both as identical
1885 			   * but will never see neither -- if they are careful.
1886 			   */
1887 		p->replacement = NULL;
1888 	}
1889 
1890 	clear_bit(WantReplacement, &rdev->flags);
1891 	err = md_integrity_register(mddev);
1892 
1893 abort:
1894 
1895 	print_conf(conf);
1896 	return err;
1897 }
1898 
1899 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1900 {
1901 	struct r10conf *conf = r10_bio->mddev->private;
1902 
1903 	if (!bio->bi_status)
1904 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1905 	else
1906 		/* The write handler will notice the lack of
1907 		 * R10BIO_Uptodate and record any errors etc
1908 		 */
1909 		atomic_add(r10_bio->sectors,
1910 			   &conf->mirrors[d].rdev->corrected_errors);
1911 
1912 	/* for reconstruct, we always reschedule after a read.
1913 	 * for resync, only after all reads
1914 	 */
1915 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1916 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1917 	    atomic_dec_and_test(&r10_bio->remaining)) {
1918 		/* we have read all the blocks,
1919 		 * do the comparison in process context in raid10d
1920 		 */
1921 		reschedule_retry(r10_bio);
1922 	}
1923 }
1924 
1925 static void end_sync_read(struct bio *bio)
1926 {
1927 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1928 	struct r10conf *conf = r10_bio->mddev->private;
1929 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1930 
1931 	__end_sync_read(r10_bio, bio, d);
1932 }
1933 
1934 static void end_reshape_read(struct bio *bio)
1935 {
1936 	/* reshape read bio isn't allocated from r10buf_pool */
1937 	struct r10bio *r10_bio = bio->bi_private;
1938 
1939 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1940 }
1941 
1942 static void end_sync_request(struct r10bio *r10_bio)
1943 {
1944 	struct mddev *mddev = r10_bio->mddev;
1945 
1946 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1947 		if (r10_bio->master_bio == NULL) {
1948 			/* the primary of several recovery bios */
1949 			sector_t s = r10_bio->sectors;
1950 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1951 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1952 				reschedule_retry(r10_bio);
1953 			else
1954 				put_buf(r10_bio);
1955 			md_done_sync(mddev, s, 1);
1956 			break;
1957 		} else {
1958 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1959 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1960 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1961 				reschedule_retry(r10_bio);
1962 			else
1963 				put_buf(r10_bio);
1964 			r10_bio = r10_bio2;
1965 		}
1966 	}
1967 }
1968 
1969 static void end_sync_write(struct bio *bio)
1970 {
1971 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1972 	struct mddev *mddev = r10_bio->mddev;
1973 	struct r10conf *conf = mddev->private;
1974 	int d;
1975 	sector_t first_bad;
1976 	int bad_sectors;
1977 	int slot;
1978 	int repl;
1979 	struct md_rdev *rdev = NULL;
1980 
1981 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1982 	if (repl)
1983 		rdev = conf->mirrors[d].replacement;
1984 	else
1985 		rdev = conf->mirrors[d].rdev;
1986 
1987 	if (bio->bi_status) {
1988 		if (repl)
1989 			md_error(mddev, rdev);
1990 		else {
1991 			set_bit(WriteErrorSeen, &rdev->flags);
1992 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1993 				set_bit(MD_RECOVERY_NEEDED,
1994 					&rdev->mddev->recovery);
1995 			set_bit(R10BIO_WriteError, &r10_bio->state);
1996 		}
1997 	} else if (is_badblock(rdev,
1998 			     r10_bio->devs[slot].addr,
1999 			     r10_bio->sectors,
2000 			     &first_bad, &bad_sectors))
2001 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2002 
2003 	rdev_dec_pending(rdev, mddev);
2004 
2005 	end_sync_request(r10_bio);
2006 }
2007 
2008 /*
2009  * Note: sync and recover and handled very differently for raid10
2010  * This code is for resync.
2011  * For resync, we read through virtual addresses and read all blocks.
2012  * If there is any error, we schedule a write.  The lowest numbered
2013  * drive is authoritative.
2014  * However requests come for physical address, so we need to map.
2015  * For every physical address there are raid_disks/copies virtual addresses,
2016  * which is always are least one, but is not necessarly an integer.
2017  * This means that a physical address can span multiple chunks, so we may
2018  * have to submit multiple io requests for a single sync request.
2019  */
2020 /*
2021  * We check if all blocks are in-sync and only write to blocks that
2022  * aren't in sync
2023  */
2024 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2025 {
2026 	struct r10conf *conf = mddev->private;
2027 	int i, first;
2028 	struct bio *tbio, *fbio;
2029 	int vcnt;
2030 	struct page **tpages, **fpages;
2031 
2032 	atomic_set(&r10_bio->remaining, 1);
2033 
2034 	/* find the first device with a block */
2035 	for (i=0; i<conf->copies; i++)
2036 		if (!r10_bio->devs[i].bio->bi_status)
2037 			break;
2038 
2039 	if (i == conf->copies)
2040 		goto done;
2041 
2042 	first = i;
2043 	fbio = r10_bio->devs[i].bio;
2044 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2045 	fbio->bi_iter.bi_idx = 0;
2046 	fpages = get_resync_pages(fbio)->pages;
2047 
2048 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2049 	/* now find blocks with errors */
2050 	for (i=0 ; i < conf->copies ; i++) {
2051 		int  j, d;
2052 		struct md_rdev *rdev;
2053 		struct resync_pages *rp;
2054 
2055 		tbio = r10_bio->devs[i].bio;
2056 
2057 		if (tbio->bi_end_io != end_sync_read)
2058 			continue;
2059 		if (i == first)
2060 			continue;
2061 
2062 		tpages = get_resync_pages(tbio)->pages;
2063 		d = r10_bio->devs[i].devnum;
2064 		rdev = conf->mirrors[d].rdev;
2065 		if (!r10_bio->devs[i].bio->bi_status) {
2066 			/* We know that the bi_io_vec layout is the same for
2067 			 * both 'first' and 'i', so we just compare them.
2068 			 * All vec entries are PAGE_SIZE;
2069 			 */
2070 			int sectors = r10_bio->sectors;
2071 			for (j = 0; j < vcnt; j++) {
2072 				int len = PAGE_SIZE;
2073 				if (sectors < (len / 512))
2074 					len = sectors * 512;
2075 				if (memcmp(page_address(fpages[j]),
2076 					   page_address(tpages[j]),
2077 					   len))
2078 					break;
2079 				sectors -= len/512;
2080 			}
2081 			if (j == vcnt)
2082 				continue;
2083 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2084 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2085 				/* Don't fix anything. */
2086 				continue;
2087 		} else if (test_bit(FailFast, &rdev->flags)) {
2088 			/* Just give up on this device */
2089 			md_error(rdev->mddev, rdev);
2090 			continue;
2091 		}
2092 		/* Ok, we need to write this bio, either to correct an
2093 		 * inconsistency or to correct an unreadable block.
2094 		 * First we need to fixup bv_offset, bv_len and
2095 		 * bi_vecs, as the read request might have corrupted these
2096 		 */
2097 		rp = get_resync_pages(tbio);
2098 		bio_reset(tbio);
2099 
2100 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2101 
2102 		rp->raid_bio = r10_bio;
2103 		tbio->bi_private = rp;
2104 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2105 		tbio->bi_end_io = end_sync_write;
2106 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2107 
2108 		bio_copy_data(tbio, fbio);
2109 
2110 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2111 		atomic_inc(&r10_bio->remaining);
2112 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2113 
2114 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2115 			tbio->bi_opf |= MD_FAILFAST;
2116 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2117 		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2118 		generic_make_request(tbio);
2119 	}
2120 
2121 	/* Now write out to any replacement devices
2122 	 * that are active
2123 	 */
2124 	for (i = 0; i < conf->copies; i++) {
2125 		int d;
2126 
2127 		tbio = r10_bio->devs[i].repl_bio;
2128 		if (!tbio || !tbio->bi_end_io)
2129 			continue;
2130 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2131 		    && r10_bio->devs[i].bio != fbio)
2132 			bio_copy_data(tbio, fbio);
2133 		d = r10_bio->devs[i].devnum;
2134 		atomic_inc(&r10_bio->remaining);
2135 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2136 			     bio_sectors(tbio));
2137 		generic_make_request(tbio);
2138 	}
2139 
2140 done:
2141 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2142 		md_done_sync(mddev, r10_bio->sectors, 1);
2143 		put_buf(r10_bio);
2144 	}
2145 }
2146 
2147 /*
2148  * Now for the recovery code.
2149  * Recovery happens across physical sectors.
2150  * We recover all non-is_sync drives by finding the virtual address of
2151  * each, and then choose a working drive that also has that virt address.
2152  * There is a separate r10_bio for each non-in_sync drive.
2153  * Only the first two slots are in use. The first for reading,
2154  * The second for writing.
2155  *
2156  */
2157 static void fix_recovery_read_error(struct r10bio *r10_bio)
2158 {
2159 	/* We got a read error during recovery.
2160 	 * We repeat the read in smaller page-sized sections.
2161 	 * If a read succeeds, write it to the new device or record
2162 	 * a bad block if we cannot.
2163 	 * If a read fails, record a bad block on both old and
2164 	 * new devices.
2165 	 */
2166 	struct mddev *mddev = r10_bio->mddev;
2167 	struct r10conf *conf = mddev->private;
2168 	struct bio *bio = r10_bio->devs[0].bio;
2169 	sector_t sect = 0;
2170 	int sectors = r10_bio->sectors;
2171 	int idx = 0;
2172 	int dr = r10_bio->devs[0].devnum;
2173 	int dw = r10_bio->devs[1].devnum;
2174 	struct page **pages = get_resync_pages(bio)->pages;
2175 
2176 	while (sectors) {
2177 		int s = sectors;
2178 		struct md_rdev *rdev;
2179 		sector_t addr;
2180 		int ok;
2181 
2182 		if (s > (PAGE_SIZE>>9))
2183 			s = PAGE_SIZE >> 9;
2184 
2185 		rdev = conf->mirrors[dr].rdev;
2186 		addr = r10_bio->devs[0].addr + sect,
2187 		ok = sync_page_io(rdev,
2188 				  addr,
2189 				  s << 9,
2190 				  pages[idx],
2191 				  REQ_OP_READ, 0, false);
2192 		if (ok) {
2193 			rdev = conf->mirrors[dw].rdev;
2194 			addr = r10_bio->devs[1].addr + sect;
2195 			ok = sync_page_io(rdev,
2196 					  addr,
2197 					  s << 9,
2198 					  pages[idx],
2199 					  REQ_OP_WRITE, 0, false);
2200 			if (!ok) {
2201 				set_bit(WriteErrorSeen, &rdev->flags);
2202 				if (!test_and_set_bit(WantReplacement,
2203 						      &rdev->flags))
2204 					set_bit(MD_RECOVERY_NEEDED,
2205 						&rdev->mddev->recovery);
2206 			}
2207 		}
2208 		if (!ok) {
2209 			/* We don't worry if we cannot set a bad block -
2210 			 * it really is bad so there is no loss in not
2211 			 * recording it yet
2212 			 */
2213 			rdev_set_badblocks(rdev, addr, s, 0);
2214 
2215 			if (rdev != conf->mirrors[dw].rdev) {
2216 				/* need bad block on destination too */
2217 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2218 				addr = r10_bio->devs[1].addr + sect;
2219 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2220 				if (!ok) {
2221 					/* just abort the recovery */
2222 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2223 						  mdname(mddev));
2224 
2225 					conf->mirrors[dw].recovery_disabled
2226 						= mddev->recovery_disabled;
2227 					set_bit(MD_RECOVERY_INTR,
2228 						&mddev->recovery);
2229 					break;
2230 				}
2231 			}
2232 		}
2233 
2234 		sectors -= s;
2235 		sect += s;
2236 		idx++;
2237 	}
2238 }
2239 
2240 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2241 {
2242 	struct r10conf *conf = mddev->private;
2243 	int d;
2244 	struct bio *wbio, *wbio2;
2245 
2246 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2247 		fix_recovery_read_error(r10_bio);
2248 		end_sync_request(r10_bio);
2249 		return;
2250 	}
2251 
2252 	/*
2253 	 * share the pages with the first bio
2254 	 * and submit the write request
2255 	 */
2256 	d = r10_bio->devs[1].devnum;
2257 	wbio = r10_bio->devs[1].bio;
2258 	wbio2 = r10_bio->devs[1].repl_bio;
2259 	/* Need to test wbio2->bi_end_io before we call
2260 	 * generic_make_request as if the former is NULL,
2261 	 * the latter is free to free wbio2.
2262 	 */
2263 	if (wbio2 && !wbio2->bi_end_io)
2264 		wbio2 = NULL;
2265 	if (wbio->bi_end_io) {
2266 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2267 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2268 		generic_make_request(wbio);
2269 	}
2270 	if (wbio2) {
2271 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2272 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2273 			     bio_sectors(wbio2));
2274 		generic_make_request(wbio2);
2275 	}
2276 }
2277 
2278 /*
2279  * Used by fix_read_error() to decay the per rdev read_errors.
2280  * We halve the read error count for every hour that has elapsed
2281  * since the last recorded read error.
2282  *
2283  */
2284 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2285 {
2286 	long cur_time_mon;
2287 	unsigned long hours_since_last;
2288 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2289 
2290 	cur_time_mon = ktime_get_seconds();
2291 
2292 	if (rdev->last_read_error == 0) {
2293 		/* first time we've seen a read error */
2294 		rdev->last_read_error = cur_time_mon;
2295 		return;
2296 	}
2297 
2298 	hours_since_last = (long)(cur_time_mon -
2299 			    rdev->last_read_error) / 3600;
2300 
2301 	rdev->last_read_error = cur_time_mon;
2302 
2303 	/*
2304 	 * if hours_since_last is > the number of bits in read_errors
2305 	 * just set read errors to 0. We do this to avoid
2306 	 * overflowing the shift of read_errors by hours_since_last.
2307 	 */
2308 	if (hours_since_last >= 8 * sizeof(read_errors))
2309 		atomic_set(&rdev->read_errors, 0);
2310 	else
2311 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2312 }
2313 
2314 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2315 			    int sectors, struct page *page, int rw)
2316 {
2317 	sector_t first_bad;
2318 	int bad_sectors;
2319 
2320 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2321 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2322 		return -1;
2323 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2324 		/* success */
2325 		return 1;
2326 	if (rw == WRITE) {
2327 		set_bit(WriteErrorSeen, &rdev->flags);
2328 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2329 			set_bit(MD_RECOVERY_NEEDED,
2330 				&rdev->mddev->recovery);
2331 	}
2332 	/* need to record an error - either for the block or the device */
2333 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2334 		md_error(rdev->mddev, rdev);
2335 	return 0;
2336 }
2337 
2338 /*
2339  * This is a kernel thread which:
2340  *
2341  *	1.	Retries failed read operations on working mirrors.
2342  *	2.	Updates the raid superblock when problems encounter.
2343  *	3.	Performs writes following reads for array synchronising.
2344  */
2345 
2346 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2347 {
2348 	int sect = 0; /* Offset from r10_bio->sector */
2349 	int sectors = r10_bio->sectors;
2350 	struct md_rdev*rdev;
2351 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2352 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2353 
2354 	/* still own a reference to this rdev, so it cannot
2355 	 * have been cleared recently.
2356 	 */
2357 	rdev = conf->mirrors[d].rdev;
2358 
2359 	if (test_bit(Faulty, &rdev->flags))
2360 		/* drive has already been failed, just ignore any
2361 		   more fix_read_error() attempts */
2362 		return;
2363 
2364 	check_decay_read_errors(mddev, rdev);
2365 	atomic_inc(&rdev->read_errors);
2366 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2367 		char b[BDEVNAME_SIZE];
2368 		bdevname(rdev->bdev, b);
2369 
2370 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2371 			  mdname(mddev), b,
2372 			  atomic_read(&rdev->read_errors), max_read_errors);
2373 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2374 			  mdname(mddev), b);
2375 		md_error(mddev, rdev);
2376 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2377 		return;
2378 	}
2379 
2380 	while(sectors) {
2381 		int s = sectors;
2382 		int sl = r10_bio->read_slot;
2383 		int success = 0;
2384 		int start;
2385 
2386 		if (s > (PAGE_SIZE>>9))
2387 			s = PAGE_SIZE >> 9;
2388 
2389 		rcu_read_lock();
2390 		do {
2391 			sector_t first_bad;
2392 			int bad_sectors;
2393 
2394 			d = r10_bio->devs[sl].devnum;
2395 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2396 			if (rdev &&
2397 			    test_bit(In_sync, &rdev->flags) &&
2398 			    !test_bit(Faulty, &rdev->flags) &&
2399 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2400 					&first_bad, &bad_sectors) == 0) {
2401 				atomic_inc(&rdev->nr_pending);
2402 				rcu_read_unlock();
2403 				success = sync_page_io(rdev,
2404 						       r10_bio->devs[sl].addr +
2405 						       sect,
2406 						       s<<9,
2407 						       conf->tmppage,
2408 						       REQ_OP_READ, 0, false);
2409 				rdev_dec_pending(rdev, mddev);
2410 				rcu_read_lock();
2411 				if (success)
2412 					break;
2413 			}
2414 			sl++;
2415 			if (sl == conf->copies)
2416 				sl = 0;
2417 		} while (!success && sl != r10_bio->read_slot);
2418 		rcu_read_unlock();
2419 
2420 		if (!success) {
2421 			/* Cannot read from anywhere, just mark the block
2422 			 * as bad on the first device to discourage future
2423 			 * reads.
2424 			 */
2425 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2426 			rdev = conf->mirrors[dn].rdev;
2427 
2428 			if (!rdev_set_badblocks(
2429 				    rdev,
2430 				    r10_bio->devs[r10_bio->read_slot].addr
2431 				    + sect,
2432 				    s, 0)) {
2433 				md_error(mddev, rdev);
2434 				r10_bio->devs[r10_bio->read_slot].bio
2435 					= IO_BLOCKED;
2436 			}
2437 			break;
2438 		}
2439 
2440 		start = sl;
2441 		/* write it back and re-read */
2442 		rcu_read_lock();
2443 		while (sl != r10_bio->read_slot) {
2444 			char b[BDEVNAME_SIZE];
2445 
2446 			if (sl==0)
2447 				sl = conf->copies;
2448 			sl--;
2449 			d = r10_bio->devs[sl].devnum;
2450 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2451 			if (!rdev ||
2452 			    test_bit(Faulty, &rdev->flags) ||
2453 			    !test_bit(In_sync, &rdev->flags))
2454 				continue;
2455 
2456 			atomic_inc(&rdev->nr_pending);
2457 			rcu_read_unlock();
2458 			if (r10_sync_page_io(rdev,
2459 					     r10_bio->devs[sl].addr +
2460 					     sect,
2461 					     s, conf->tmppage, WRITE)
2462 			    == 0) {
2463 				/* Well, this device is dead */
2464 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2465 					  mdname(mddev), s,
2466 					  (unsigned long long)(
2467 						  sect +
2468 						  choose_data_offset(r10_bio,
2469 								     rdev)),
2470 					  bdevname(rdev->bdev, b));
2471 				pr_notice("md/raid10:%s: %s: failing drive\n",
2472 					  mdname(mddev),
2473 					  bdevname(rdev->bdev, b));
2474 			}
2475 			rdev_dec_pending(rdev, mddev);
2476 			rcu_read_lock();
2477 		}
2478 		sl = start;
2479 		while (sl != r10_bio->read_slot) {
2480 			char b[BDEVNAME_SIZE];
2481 
2482 			if (sl==0)
2483 				sl = conf->copies;
2484 			sl--;
2485 			d = r10_bio->devs[sl].devnum;
2486 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2487 			if (!rdev ||
2488 			    test_bit(Faulty, &rdev->flags) ||
2489 			    !test_bit(In_sync, &rdev->flags))
2490 				continue;
2491 
2492 			atomic_inc(&rdev->nr_pending);
2493 			rcu_read_unlock();
2494 			switch (r10_sync_page_io(rdev,
2495 					     r10_bio->devs[sl].addr +
2496 					     sect,
2497 					     s, conf->tmppage,
2498 						 READ)) {
2499 			case 0:
2500 				/* Well, this device is dead */
2501 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2502 				       mdname(mddev), s,
2503 				       (unsigned long long)(
2504 					       sect +
2505 					       choose_data_offset(r10_bio, rdev)),
2506 				       bdevname(rdev->bdev, b));
2507 				pr_notice("md/raid10:%s: %s: failing drive\n",
2508 				       mdname(mddev),
2509 				       bdevname(rdev->bdev, b));
2510 				break;
2511 			case 1:
2512 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2513 				       mdname(mddev), s,
2514 				       (unsigned long long)(
2515 					       sect +
2516 					       choose_data_offset(r10_bio, rdev)),
2517 				       bdevname(rdev->bdev, b));
2518 				atomic_add(s, &rdev->corrected_errors);
2519 			}
2520 
2521 			rdev_dec_pending(rdev, mddev);
2522 			rcu_read_lock();
2523 		}
2524 		rcu_read_unlock();
2525 
2526 		sectors -= s;
2527 		sect += s;
2528 	}
2529 }
2530 
2531 static int narrow_write_error(struct r10bio *r10_bio, int i)
2532 {
2533 	struct bio *bio = r10_bio->master_bio;
2534 	struct mddev *mddev = r10_bio->mddev;
2535 	struct r10conf *conf = mddev->private;
2536 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2537 	/* bio has the data to be written to slot 'i' where
2538 	 * we just recently had a write error.
2539 	 * We repeatedly clone the bio and trim down to one block,
2540 	 * then try the write.  Where the write fails we record
2541 	 * a bad block.
2542 	 * It is conceivable that the bio doesn't exactly align with
2543 	 * blocks.  We must handle this.
2544 	 *
2545 	 * We currently own a reference to the rdev.
2546 	 */
2547 
2548 	int block_sectors;
2549 	sector_t sector;
2550 	int sectors;
2551 	int sect_to_write = r10_bio->sectors;
2552 	int ok = 1;
2553 
2554 	if (rdev->badblocks.shift < 0)
2555 		return 0;
2556 
2557 	block_sectors = roundup(1 << rdev->badblocks.shift,
2558 				bdev_logical_block_size(rdev->bdev) >> 9);
2559 	sector = r10_bio->sector;
2560 	sectors = ((r10_bio->sector + block_sectors)
2561 		   & ~(sector_t)(block_sectors - 1))
2562 		- sector;
2563 
2564 	while (sect_to_write) {
2565 		struct bio *wbio;
2566 		sector_t wsector;
2567 		if (sectors > sect_to_write)
2568 			sectors = sect_to_write;
2569 		/* Write at 'sector' for 'sectors' */
2570 		wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2571 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2572 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2573 		wbio->bi_iter.bi_sector = wsector +
2574 				   choose_data_offset(r10_bio, rdev);
2575 		bio_set_dev(wbio, rdev->bdev);
2576 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2577 
2578 		if (submit_bio_wait(wbio) < 0)
2579 			/* Failure! */
2580 			ok = rdev_set_badblocks(rdev, wsector,
2581 						sectors, 0)
2582 				&& ok;
2583 
2584 		bio_put(wbio);
2585 		sect_to_write -= sectors;
2586 		sector += sectors;
2587 		sectors = block_sectors;
2588 	}
2589 	return ok;
2590 }
2591 
2592 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2593 {
2594 	int slot = r10_bio->read_slot;
2595 	struct bio *bio;
2596 	struct r10conf *conf = mddev->private;
2597 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2598 
2599 	/* we got a read error. Maybe the drive is bad.  Maybe just
2600 	 * the block and we can fix it.
2601 	 * We freeze all other IO, and try reading the block from
2602 	 * other devices.  When we find one, we re-write
2603 	 * and check it that fixes the read error.
2604 	 * This is all done synchronously while the array is
2605 	 * frozen.
2606 	 */
2607 	bio = r10_bio->devs[slot].bio;
2608 	bio_put(bio);
2609 	r10_bio->devs[slot].bio = NULL;
2610 
2611 	if (mddev->ro)
2612 		r10_bio->devs[slot].bio = IO_BLOCKED;
2613 	else if (!test_bit(FailFast, &rdev->flags)) {
2614 		freeze_array(conf, 1);
2615 		fix_read_error(conf, mddev, r10_bio);
2616 		unfreeze_array(conf);
2617 	} else
2618 		md_error(mddev, rdev);
2619 
2620 	rdev_dec_pending(rdev, mddev);
2621 	allow_barrier(conf);
2622 	r10_bio->state = 0;
2623 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2624 }
2625 
2626 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2627 {
2628 	/* Some sort of write request has finished and it
2629 	 * succeeded in writing where we thought there was a
2630 	 * bad block.  So forget the bad block.
2631 	 * Or possibly if failed and we need to record
2632 	 * a bad block.
2633 	 */
2634 	int m;
2635 	struct md_rdev *rdev;
2636 
2637 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2638 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2639 		for (m = 0; m < conf->copies; m++) {
2640 			int dev = r10_bio->devs[m].devnum;
2641 			rdev = conf->mirrors[dev].rdev;
2642 			if (r10_bio->devs[m].bio == NULL)
2643 				continue;
2644 			if (!r10_bio->devs[m].bio->bi_status) {
2645 				rdev_clear_badblocks(
2646 					rdev,
2647 					r10_bio->devs[m].addr,
2648 					r10_bio->sectors, 0);
2649 			} else {
2650 				if (!rdev_set_badblocks(
2651 					    rdev,
2652 					    r10_bio->devs[m].addr,
2653 					    r10_bio->sectors, 0))
2654 					md_error(conf->mddev, rdev);
2655 			}
2656 			rdev = conf->mirrors[dev].replacement;
2657 			if (r10_bio->devs[m].repl_bio == NULL)
2658 				continue;
2659 
2660 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2661 				rdev_clear_badblocks(
2662 					rdev,
2663 					r10_bio->devs[m].addr,
2664 					r10_bio->sectors, 0);
2665 			} else {
2666 				if (!rdev_set_badblocks(
2667 					    rdev,
2668 					    r10_bio->devs[m].addr,
2669 					    r10_bio->sectors, 0))
2670 					md_error(conf->mddev, rdev);
2671 			}
2672 		}
2673 		put_buf(r10_bio);
2674 	} else {
2675 		bool fail = false;
2676 		for (m = 0; m < conf->copies; m++) {
2677 			int dev = r10_bio->devs[m].devnum;
2678 			struct bio *bio = r10_bio->devs[m].bio;
2679 			rdev = conf->mirrors[dev].rdev;
2680 			if (bio == IO_MADE_GOOD) {
2681 				rdev_clear_badblocks(
2682 					rdev,
2683 					r10_bio->devs[m].addr,
2684 					r10_bio->sectors, 0);
2685 				rdev_dec_pending(rdev, conf->mddev);
2686 			} else if (bio != NULL && bio->bi_status) {
2687 				fail = true;
2688 				if (!narrow_write_error(r10_bio, m)) {
2689 					md_error(conf->mddev, rdev);
2690 					set_bit(R10BIO_Degraded,
2691 						&r10_bio->state);
2692 				}
2693 				rdev_dec_pending(rdev, conf->mddev);
2694 			}
2695 			bio = r10_bio->devs[m].repl_bio;
2696 			rdev = conf->mirrors[dev].replacement;
2697 			if (rdev && bio == IO_MADE_GOOD) {
2698 				rdev_clear_badblocks(
2699 					rdev,
2700 					r10_bio->devs[m].addr,
2701 					r10_bio->sectors, 0);
2702 				rdev_dec_pending(rdev, conf->mddev);
2703 			}
2704 		}
2705 		if (fail) {
2706 			spin_lock_irq(&conf->device_lock);
2707 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2708 			conf->nr_queued++;
2709 			spin_unlock_irq(&conf->device_lock);
2710 			/*
2711 			 * In case freeze_array() is waiting for condition
2712 			 * nr_pending == nr_queued + extra to be true.
2713 			 */
2714 			wake_up(&conf->wait_barrier);
2715 			md_wakeup_thread(conf->mddev->thread);
2716 		} else {
2717 			if (test_bit(R10BIO_WriteError,
2718 				     &r10_bio->state))
2719 				close_write(r10_bio);
2720 			raid_end_bio_io(r10_bio);
2721 		}
2722 	}
2723 }
2724 
2725 static void raid10d(struct md_thread *thread)
2726 {
2727 	struct mddev *mddev = thread->mddev;
2728 	struct r10bio *r10_bio;
2729 	unsigned long flags;
2730 	struct r10conf *conf = mddev->private;
2731 	struct list_head *head = &conf->retry_list;
2732 	struct blk_plug plug;
2733 
2734 	md_check_recovery(mddev);
2735 
2736 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2737 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2738 		LIST_HEAD(tmp);
2739 		spin_lock_irqsave(&conf->device_lock, flags);
2740 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2741 			while (!list_empty(&conf->bio_end_io_list)) {
2742 				list_move(conf->bio_end_io_list.prev, &tmp);
2743 				conf->nr_queued--;
2744 			}
2745 		}
2746 		spin_unlock_irqrestore(&conf->device_lock, flags);
2747 		while (!list_empty(&tmp)) {
2748 			r10_bio = list_first_entry(&tmp, struct r10bio,
2749 						   retry_list);
2750 			list_del(&r10_bio->retry_list);
2751 			if (mddev->degraded)
2752 				set_bit(R10BIO_Degraded, &r10_bio->state);
2753 
2754 			if (test_bit(R10BIO_WriteError,
2755 				     &r10_bio->state))
2756 				close_write(r10_bio);
2757 			raid_end_bio_io(r10_bio);
2758 		}
2759 	}
2760 
2761 	blk_start_plug(&plug);
2762 	for (;;) {
2763 
2764 		flush_pending_writes(conf);
2765 
2766 		spin_lock_irqsave(&conf->device_lock, flags);
2767 		if (list_empty(head)) {
2768 			spin_unlock_irqrestore(&conf->device_lock, flags);
2769 			break;
2770 		}
2771 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2772 		list_del(head->prev);
2773 		conf->nr_queued--;
2774 		spin_unlock_irqrestore(&conf->device_lock, flags);
2775 
2776 		mddev = r10_bio->mddev;
2777 		conf = mddev->private;
2778 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2779 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2780 			handle_write_completed(conf, r10_bio);
2781 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2782 			reshape_request_write(mddev, r10_bio);
2783 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2784 			sync_request_write(mddev, r10_bio);
2785 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2786 			recovery_request_write(mddev, r10_bio);
2787 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2788 			handle_read_error(mddev, r10_bio);
2789 		else
2790 			WARN_ON_ONCE(1);
2791 
2792 		cond_resched();
2793 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2794 			md_check_recovery(mddev);
2795 	}
2796 	blk_finish_plug(&plug);
2797 }
2798 
2799 static int init_resync(struct r10conf *conf)
2800 {
2801 	int buffs;
2802 	int i;
2803 
2804 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2805 	BUG_ON(conf->r10buf_pool);
2806 	conf->have_replacement = 0;
2807 	for (i = 0; i < conf->geo.raid_disks; i++)
2808 		if (conf->mirrors[i].replacement)
2809 			conf->have_replacement = 1;
2810 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2811 	if (!conf->r10buf_pool)
2812 		return -ENOMEM;
2813 	conf->next_resync = 0;
2814 	return 0;
2815 }
2816 
2817 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2818 {
2819 	struct r10bio *r10bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2820 	struct rsync_pages *rp;
2821 	struct bio *bio;
2822 	int nalloc;
2823 	int i;
2824 
2825 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2826 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2827 		nalloc = conf->copies; /* resync */
2828 	else
2829 		nalloc = 2; /* recovery */
2830 
2831 	for (i = 0; i < nalloc; i++) {
2832 		bio = r10bio->devs[i].bio;
2833 		rp = bio->bi_private;
2834 		bio_reset(bio);
2835 		bio->bi_private = rp;
2836 		bio = r10bio->devs[i].repl_bio;
2837 		if (bio) {
2838 			rp = bio->bi_private;
2839 			bio_reset(bio);
2840 			bio->bi_private = rp;
2841 		}
2842 	}
2843 	return r10bio;
2844 }
2845 
2846 /*
2847  * Set cluster_sync_high since we need other nodes to add the
2848  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2849  */
2850 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2851 {
2852 	sector_t window_size;
2853 	int extra_chunk, chunks;
2854 
2855 	/*
2856 	 * First, here we define "stripe" as a unit which across
2857 	 * all member devices one time, so we get chunks by use
2858 	 * raid_disks / near_copies. Otherwise, if near_copies is
2859 	 * close to raid_disks, then resync window could increases
2860 	 * linearly with the increase of raid_disks, which means
2861 	 * we will suspend a really large IO window while it is not
2862 	 * necessary. If raid_disks is not divisible by near_copies,
2863 	 * an extra chunk is needed to ensure the whole "stripe" is
2864 	 * covered.
2865 	 */
2866 
2867 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2868 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2869 		extra_chunk = 0;
2870 	else
2871 		extra_chunk = 1;
2872 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2873 
2874 	/*
2875 	 * At least use a 32M window to align with raid1's resync window
2876 	 */
2877 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2878 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2879 
2880 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2881 }
2882 
2883 /*
2884  * perform a "sync" on one "block"
2885  *
2886  * We need to make sure that no normal I/O request - particularly write
2887  * requests - conflict with active sync requests.
2888  *
2889  * This is achieved by tracking pending requests and a 'barrier' concept
2890  * that can be installed to exclude normal IO requests.
2891  *
2892  * Resync and recovery are handled very differently.
2893  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2894  *
2895  * For resync, we iterate over virtual addresses, read all copies,
2896  * and update if there are differences.  If only one copy is live,
2897  * skip it.
2898  * For recovery, we iterate over physical addresses, read a good
2899  * value for each non-in_sync drive, and over-write.
2900  *
2901  * So, for recovery we may have several outstanding complex requests for a
2902  * given address, one for each out-of-sync device.  We model this by allocating
2903  * a number of r10_bio structures, one for each out-of-sync device.
2904  * As we setup these structures, we collect all bio's together into a list
2905  * which we then process collectively to add pages, and then process again
2906  * to pass to generic_make_request.
2907  *
2908  * The r10_bio structures are linked using a borrowed master_bio pointer.
2909  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2910  * has its remaining count decremented to 0, the whole complex operation
2911  * is complete.
2912  *
2913  */
2914 
2915 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2916 			     int *skipped)
2917 {
2918 	struct r10conf *conf = mddev->private;
2919 	struct r10bio *r10_bio;
2920 	struct bio *biolist = NULL, *bio;
2921 	sector_t max_sector, nr_sectors;
2922 	int i;
2923 	int max_sync;
2924 	sector_t sync_blocks;
2925 	sector_t sectors_skipped = 0;
2926 	int chunks_skipped = 0;
2927 	sector_t chunk_mask = conf->geo.chunk_mask;
2928 	int page_idx = 0;
2929 
2930 	if (!conf->r10buf_pool)
2931 		if (init_resync(conf))
2932 			return 0;
2933 
2934 	/*
2935 	 * Allow skipping a full rebuild for incremental assembly
2936 	 * of a clean array, like RAID1 does.
2937 	 */
2938 	if (mddev->bitmap == NULL &&
2939 	    mddev->recovery_cp == MaxSector &&
2940 	    mddev->reshape_position == MaxSector &&
2941 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2942 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2943 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2944 	    conf->fullsync == 0) {
2945 		*skipped = 1;
2946 		return mddev->dev_sectors - sector_nr;
2947 	}
2948 
2949  skipped:
2950 	max_sector = mddev->dev_sectors;
2951 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2952 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2953 		max_sector = mddev->resync_max_sectors;
2954 	if (sector_nr >= max_sector) {
2955 		conf->cluster_sync_low = 0;
2956 		conf->cluster_sync_high = 0;
2957 
2958 		/* If we aborted, we need to abort the
2959 		 * sync on the 'current' bitmap chucks (there can
2960 		 * be several when recovering multiple devices).
2961 		 * as we may have started syncing it but not finished.
2962 		 * We can find the current address in
2963 		 * mddev->curr_resync, but for recovery,
2964 		 * we need to convert that to several
2965 		 * virtual addresses.
2966 		 */
2967 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2968 			end_reshape(conf);
2969 			close_sync(conf);
2970 			return 0;
2971 		}
2972 
2973 		if (mddev->curr_resync < max_sector) { /* aborted */
2974 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2975 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2976 						&sync_blocks, 1);
2977 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2978 				sector_t sect =
2979 					raid10_find_virt(conf, mddev->curr_resync, i);
2980 				bitmap_end_sync(mddev->bitmap, sect,
2981 						&sync_blocks, 1);
2982 			}
2983 		} else {
2984 			/* completed sync */
2985 			if ((!mddev->bitmap || conf->fullsync)
2986 			    && conf->have_replacement
2987 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2988 				/* Completed a full sync so the replacements
2989 				 * are now fully recovered.
2990 				 */
2991 				rcu_read_lock();
2992 				for (i = 0; i < conf->geo.raid_disks; i++) {
2993 					struct md_rdev *rdev =
2994 						rcu_dereference(conf->mirrors[i].replacement);
2995 					if (rdev)
2996 						rdev->recovery_offset = MaxSector;
2997 				}
2998 				rcu_read_unlock();
2999 			}
3000 			conf->fullsync = 0;
3001 		}
3002 		bitmap_close_sync(mddev->bitmap);
3003 		close_sync(conf);
3004 		*skipped = 1;
3005 		return sectors_skipped;
3006 	}
3007 
3008 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3009 		return reshape_request(mddev, sector_nr, skipped);
3010 
3011 	if (chunks_skipped >= conf->geo.raid_disks) {
3012 		/* if there has been nothing to do on any drive,
3013 		 * then there is nothing to do at all..
3014 		 */
3015 		*skipped = 1;
3016 		return (max_sector - sector_nr) + sectors_skipped;
3017 	}
3018 
3019 	if (max_sector > mddev->resync_max)
3020 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3021 
3022 	/* make sure whole request will fit in a chunk - if chunks
3023 	 * are meaningful
3024 	 */
3025 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3026 	    max_sector > (sector_nr | chunk_mask))
3027 		max_sector = (sector_nr | chunk_mask) + 1;
3028 
3029 	/*
3030 	 * If there is non-resync activity waiting for a turn, then let it
3031 	 * though before starting on this new sync request.
3032 	 */
3033 	if (conf->nr_waiting)
3034 		schedule_timeout_uninterruptible(1);
3035 
3036 	/* Again, very different code for resync and recovery.
3037 	 * Both must result in an r10bio with a list of bios that
3038 	 * have bi_end_io, bi_sector, bi_disk set,
3039 	 * and bi_private set to the r10bio.
3040 	 * For recovery, we may actually create several r10bios
3041 	 * with 2 bios in each, that correspond to the bios in the main one.
3042 	 * In this case, the subordinate r10bios link back through a
3043 	 * borrowed master_bio pointer, and the counter in the master
3044 	 * includes a ref from each subordinate.
3045 	 */
3046 	/* First, we decide what to do and set ->bi_end_io
3047 	 * To end_sync_read if we want to read, and
3048 	 * end_sync_write if we will want to write.
3049 	 */
3050 
3051 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3052 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3053 		/* recovery... the complicated one */
3054 		int j;
3055 		r10_bio = NULL;
3056 
3057 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3058 			int still_degraded;
3059 			struct r10bio *rb2;
3060 			sector_t sect;
3061 			int must_sync;
3062 			int any_working;
3063 			struct raid10_info *mirror = &conf->mirrors[i];
3064 			struct md_rdev *mrdev, *mreplace;
3065 
3066 			rcu_read_lock();
3067 			mrdev = rcu_dereference(mirror->rdev);
3068 			mreplace = rcu_dereference(mirror->replacement);
3069 
3070 			if ((mrdev == NULL ||
3071 			     test_bit(Faulty, &mrdev->flags) ||
3072 			     test_bit(In_sync, &mrdev->flags)) &&
3073 			    (mreplace == NULL ||
3074 			     test_bit(Faulty, &mreplace->flags))) {
3075 				rcu_read_unlock();
3076 				continue;
3077 			}
3078 
3079 			still_degraded = 0;
3080 			/* want to reconstruct this device */
3081 			rb2 = r10_bio;
3082 			sect = raid10_find_virt(conf, sector_nr, i);
3083 			if (sect >= mddev->resync_max_sectors) {
3084 				/* last stripe is not complete - don't
3085 				 * try to recover this sector.
3086 				 */
3087 				rcu_read_unlock();
3088 				continue;
3089 			}
3090 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3091 				mreplace = NULL;
3092 			/* Unless we are doing a full sync, or a replacement
3093 			 * we only need to recover the block if it is set in
3094 			 * the bitmap
3095 			 */
3096 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3097 						      &sync_blocks, 1);
3098 			if (sync_blocks < max_sync)
3099 				max_sync = sync_blocks;
3100 			if (!must_sync &&
3101 			    mreplace == NULL &&
3102 			    !conf->fullsync) {
3103 				/* yep, skip the sync_blocks here, but don't assume
3104 				 * that there will never be anything to do here
3105 				 */
3106 				chunks_skipped = -1;
3107 				rcu_read_unlock();
3108 				continue;
3109 			}
3110 			atomic_inc(&mrdev->nr_pending);
3111 			if (mreplace)
3112 				atomic_inc(&mreplace->nr_pending);
3113 			rcu_read_unlock();
3114 
3115 			r10_bio = raid10_alloc_init_r10buf(conf);
3116 			r10_bio->state = 0;
3117 			raise_barrier(conf, rb2 != NULL);
3118 			atomic_set(&r10_bio->remaining, 0);
3119 
3120 			r10_bio->master_bio = (struct bio*)rb2;
3121 			if (rb2)
3122 				atomic_inc(&rb2->remaining);
3123 			r10_bio->mddev = mddev;
3124 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3125 			r10_bio->sector = sect;
3126 
3127 			raid10_find_phys(conf, r10_bio);
3128 
3129 			/* Need to check if the array will still be
3130 			 * degraded
3131 			 */
3132 			rcu_read_lock();
3133 			for (j = 0; j < conf->geo.raid_disks; j++) {
3134 				struct md_rdev *rdev = rcu_dereference(
3135 					conf->mirrors[j].rdev);
3136 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3137 					still_degraded = 1;
3138 					break;
3139 				}
3140 			}
3141 
3142 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3143 						      &sync_blocks, still_degraded);
3144 
3145 			any_working = 0;
3146 			for (j=0; j<conf->copies;j++) {
3147 				int k;
3148 				int d = r10_bio->devs[j].devnum;
3149 				sector_t from_addr, to_addr;
3150 				struct md_rdev *rdev =
3151 					rcu_dereference(conf->mirrors[d].rdev);
3152 				sector_t sector, first_bad;
3153 				int bad_sectors;
3154 				if (!rdev ||
3155 				    !test_bit(In_sync, &rdev->flags))
3156 					continue;
3157 				/* This is where we read from */
3158 				any_working = 1;
3159 				sector = r10_bio->devs[j].addr;
3160 
3161 				if (is_badblock(rdev, sector, max_sync,
3162 						&first_bad, &bad_sectors)) {
3163 					if (first_bad > sector)
3164 						max_sync = first_bad - sector;
3165 					else {
3166 						bad_sectors -= (sector
3167 								- first_bad);
3168 						if (max_sync > bad_sectors)
3169 							max_sync = bad_sectors;
3170 						continue;
3171 					}
3172 				}
3173 				bio = r10_bio->devs[0].bio;
3174 				bio->bi_next = biolist;
3175 				biolist = bio;
3176 				bio->bi_end_io = end_sync_read;
3177 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3178 				if (test_bit(FailFast, &rdev->flags))
3179 					bio->bi_opf |= MD_FAILFAST;
3180 				from_addr = r10_bio->devs[j].addr;
3181 				bio->bi_iter.bi_sector = from_addr +
3182 					rdev->data_offset;
3183 				bio_set_dev(bio, rdev->bdev);
3184 				atomic_inc(&rdev->nr_pending);
3185 				/* and we write to 'i' (if not in_sync) */
3186 
3187 				for (k=0; k<conf->copies; k++)
3188 					if (r10_bio->devs[k].devnum == i)
3189 						break;
3190 				BUG_ON(k == conf->copies);
3191 				to_addr = r10_bio->devs[k].addr;
3192 				r10_bio->devs[0].devnum = d;
3193 				r10_bio->devs[0].addr = from_addr;
3194 				r10_bio->devs[1].devnum = i;
3195 				r10_bio->devs[1].addr = to_addr;
3196 
3197 				if (!test_bit(In_sync, &mrdev->flags)) {
3198 					bio = r10_bio->devs[1].bio;
3199 					bio->bi_next = biolist;
3200 					biolist = bio;
3201 					bio->bi_end_io = end_sync_write;
3202 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3203 					bio->bi_iter.bi_sector = to_addr
3204 						+ mrdev->data_offset;
3205 					bio_set_dev(bio, mrdev->bdev);
3206 					atomic_inc(&r10_bio->remaining);
3207 				} else
3208 					r10_bio->devs[1].bio->bi_end_io = NULL;
3209 
3210 				/* and maybe write to replacement */
3211 				bio = r10_bio->devs[1].repl_bio;
3212 				if (bio)
3213 					bio->bi_end_io = NULL;
3214 				/* Note: if mreplace != NULL, then bio
3215 				 * cannot be NULL as r10buf_pool_alloc will
3216 				 * have allocated it.
3217 				 * So the second test here is pointless.
3218 				 * But it keeps semantic-checkers happy, and
3219 				 * this comment keeps human reviewers
3220 				 * happy.
3221 				 */
3222 				if (mreplace == NULL || bio == NULL ||
3223 				    test_bit(Faulty, &mreplace->flags))
3224 					break;
3225 				bio->bi_next = biolist;
3226 				biolist = bio;
3227 				bio->bi_end_io = end_sync_write;
3228 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3229 				bio->bi_iter.bi_sector = to_addr +
3230 					mreplace->data_offset;
3231 				bio_set_dev(bio, mreplace->bdev);
3232 				atomic_inc(&r10_bio->remaining);
3233 				break;
3234 			}
3235 			rcu_read_unlock();
3236 			if (j == conf->copies) {
3237 				/* Cannot recover, so abort the recovery or
3238 				 * record a bad block */
3239 				if (any_working) {
3240 					/* problem is that there are bad blocks
3241 					 * on other device(s)
3242 					 */
3243 					int k;
3244 					for (k = 0; k < conf->copies; k++)
3245 						if (r10_bio->devs[k].devnum == i)
3246 							break;
3247 					if (!test_bit(In_sync,
3248 						      &mrdev->flags)
3249 					    && !rdev_set_badblocks(
3250 						    mrdev,
3251 						    r10_bio->devs[k].addr,
3252 						    max_sync, 0))
3253 						any_working = 0;
3254 					if (mreplace &&
3255 					    !rdev_set_badblocks(
3256 						    mreplace,
3257 						    r10_bio->devs[k].addr,
3258 						    max_sync, 0))
3259 						any_working = 0;
3260 				}
3261 				if (!any_working)  {
3262 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3263 							      &mddev->recovery))
3264 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3265 						       mdname(mddev));
3266 					mirror->recovery_disabled
3267 						= mddev->recovery_disabled;
3268 				}
3269 				put_buf(r10_bio);
3270 				if (rb2)
3271 					atomic_dec(&rb2->remaining);
3272 				r10_bio = rb2;
3273 				rdev_dec_pending(mrdev, mddev);
3274 				if (mreplace)
3275 					rdev_dec_pending(mreplace, mddev);
3276 				break;
3277 			}
3278 			rdev_dec_pending(mrdev, mddev);
3279 			if (mreplace)
3280 				rdev_dec_pending(mreplace, mddev);
3281 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3282 				/* Only want this if there is elsewhere to
3283 				 * read from. 'j' is currently the first
3284 				 * readable copy.
3285 				 */
3286 				int targets = 1;
3287 				for (; j < conf->copies; j++) {
3288 					int d = r10_bio->devs[j].devnum;
3289 					if (conf->mirrors[d].rdev &&
3290 					    test_bit(In_sync,
3291 						      &conf->mirrors[d].rdev->flags))
3292 						targets++;
3293 				}
3294 				if (targets == 1)
3295 					r10_bio->devs[0].bio->bi_opf
3296 						&= ~MD_FAILFAST;
3297 			}
3298 		}
3299 		if (biolist == NULL) {
3300 			while (r10_bio) {
3301 				struct r10bio *rb2 = r10_bio;
3302 				r10_bio = (struct r10bio*) rb2->master_bio;
3303 				rb2->master_bio = NULL;
3304 				put_buf(rb2);
3305 			}
3306 			goto giveup;
3307 		}
3308 	} else {
3309 		/* resync. Schedule a read for every block at this virt offset */
3310 		int count = 0;
3311 
3312 		/*
3313 		 * Since curr_resync_completed could probably not update in
3314 		 * time, and we will set cluster_sync_low based on it.
3315 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3316 		 * safety reason, which ensures curr_resync_completed is
3317 		 * updated in bitmap_cond_end_sync.
3318 		 */
3319 		bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3320 				     mddev_is_clustered(mddev) &&
3321 				     (sector_nr + 2 * RESYNC_SECTORS >
3322 				      conf->cluster_sync_high));
3323 
3324 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3325 				       &sync_blocks, mddev->degraded) &&
3326 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3327 						 &mddev->recovery)) {
3328 			/* We can skip this block */
3329 			*skipped = 1;
3330 			return sync_blocks + sectors_skipped;
3331 		}
3332 		if (sync_blocks < max_sync)
3333 			max_sync = sync_blocks;
3334 		r10_bio = raid10_alloc_init_r10buf(conf);
3335 		r10_bio->state = 0;
3336 
3337 		r10_bio->mddev = mddev;
3338 		atomic_set(&r10_bio->remaining, 0);
3339 		raise_barrier(conf, 0);
3340 		conf->next_resync = sector_nr;
3341 
3342 		r10_bio->master_bio = NULL;
3343 		r10_bio->sector = sector_nr;
3344 		set_bit(R10BIO_IsSync, &r10_bio->state);
3345 		raid10_find_phys(conf, r10_bio);
3346 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3347 
3348 		for (i = 0; i < conf->copies; i++) {
3349 			int d = r10_bio->devs[i].devnum;
3350 			sector_t first_bad, sector;
3351 			int bad_sectors;
3352 			struct md_rdev *rdev;
3353 
3354 			if (r10_bio->devs[i].repl_bio)
3355 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3356 
3357 			bio = r10_bio->devs[i].bio;
3358 			bio->bi_status = BLK_STS_IOERR;
3359 			rcu_read_lock();
3360 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3361 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3362 				rcu_read_unlock();
3363 				continue;
3364 			}
3365 			sector = r10_bio->devs[i].addr;
3366 			if (is_badblock(rdev, sector, max_sync,
3367 					&first_bad, &bad_sectors)) {
3368 				if (first_bad > sector)
3369 					max_sync = first_bad - sector;
3370 				else {
3371 					bad_sectors -= (sector - first_bad);
3372 					if (max_sync > bad_sectors)
3373 						max_sync = bad_sectors;
3374 					rcu_read_unlock();
3375 					continue;
3376 				}
3377 			}
3378 			atomic_inc(&rdev->nr_pending);
3379 			atomic_inc(&r10_bio->remaining);
3380 			bio->bi_next = biolist;
3381 			biolist = bio;
3382 			bio->bi_end_io = end_sync_read;
3383 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3384 			if (test_bit(FailFast, &rdev->flags))
3385 				bio->bi_opf |= MD_FAILFAST;
3386 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3387 			bio_set_dev(bio, rdev->bdev);
3388 			count++;
3389 
3390 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3391 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3392 				rcu_read_unlock();
3393 				continue;
3394 			}
3395 			atomic_inc(&rdev->nr_pending);
3396 
3397 			/* Need to set up for writing to the replacement */
3398 			bio = r10_bio->devs[i].repl_bio;
3399 			bio->bi_status = BLK_STS_IOERR;
3400 
3401 			sector = r10_bio->devs[i].addr;
3402 			bio->bi_next = biolist;
3403 			biolist = bio;
3404 			bio->bi_end_io = end_sync_write;
3405 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3406 			if (test_bit(FailFast, &rdev->flags))
3407 				bio->bi_opf |= MD_FAILFAST;
3408 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3409 			bio_set_dev(bio, rdev->bdev);
3410 			count++;
3411 			rcu_read_unlock();
3412 		}
3413 
3414 		if (count < 2) {
3415 			for (i=0; i<conf->copies; i++) {
3416 				int d = r10_bio->devs[i].devnum;
3417 				if (r10_bio->devs[i].bio->bi_end_io)
3418 					rdev_dec_pending(conf->mirrors[d].rdev,
3419 							 mddev);
3420 				if (r10_bio->devs[i].repl_bio &&
3421 				    r10_bio->devs[i].repl_bio->bi_end_io)
3422 					rdev_dec_pending(
3423 						conf->mirrors[d].replacement,
3424 						mddev);
3425 			}
3426 			put_buf(r10_bio);
3427 			biolist = NULL;
3428 			goto giveup;
3429 		}
3430 	}
3431 
3432 	nr_sectors = 0;
3433 	if (sector_nr + max_sync < max_sector)
3434 		max_sector = sector_nr + max_sync;
3435 	do {
3436 		struct page *page;
3437 		int len = PAGE_SIZE;
3438 		if (sector_nr + (len>>9) > max_sector)
3439 			len = (max_sector - sector_nr) << 9;
3440 		if (len == 0)
3441 			break;
3442 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3443 			struct resync_pages *rp = get_resync_pages(bio);
3444 			page = resync_fetch_page(rp, page_idx);
3445 			/*
3446 			 * won't fail because the vec table is big enough
3447 			 * to hold all these pages
3448 			 */
3449 			bio_add_page(bio, page, len, 0);
3450 		}
3451 		nr_sectors += len>>9;
3452 		sector_nr += len>>9;
3453 	} while (++page_idx < RESYNC_PAGES);
3454 	r10_bio->sectors = nr_sectors;
3455 
3456 	if (mddev_is_clustered(mddev) &&
3457 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3458 		/* It is resync not recovery */
3459 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3460 			conf->cluster_sync_low = mddev->curr_resync_completed;
3461 			raid10_set_cluster_sync_high(conf);
3462 			/* Send resync message */
3463 			md_cluster_ops->resync_info_update(mddev,
3464 						conf->cluster_sync_low,
3465 						conf->cluster_sync_high);
3466 		}
3467 	} else if (mddev_is_clustered(mddev)) {
3468 		/* This is recovery not resync */
3469 		sector_t sect_va1, sect_va2;
3470 		bool broadcast_msg = false;
3471 
3472 		for (i = 0; i < conf->geo.raid_disks; i++) {
3473 			/*
3474 			 * sector_nr is a device address for recovery, so we
3475 			 * need translate it to array address before compare
3476 			 * with cluster_sync_high.
3477 			 */
3478 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3479 
3480 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3481 				broadcast_msg = true;
3482 				/*
3483 				 * curr_resync_completed is similar as
3484 				 * sector_nr, so make the translation too.
3485 				 */
3486 				sect_va2 = raid10_find_virt(conf,
3487 					mddev->curr_resync_completed, i);
3488 
3489 				if (conf->cluster_sync_low == 0 ||
3490 				    conf->cluster_sync_low > sect_va2)
3491 					conf->cluster_sync_low = sect_va2;
3492 			}
3493 		}
3494 		if (broadcast_msg) {
3495 			raid10_set_cluster_sync_high(conf);
3496 			md_cluster_ops->resync_info_update(mddev,
3497 						conf->cluster_sync_low,
3498 						conf->cluster_sync_high);
3499 		}
3500 	}
3501 
3502 	while (biolist) {
3503 		bio = biolist;
3504 		biolist = biolist->bi_next;
3505 
3506 		bio->bi_next = NULL;
3507 		r10_bio = get_resync_r10bio(bio);
3508 		r10_bio->sectors = nr_sectors;
3509 
3510 		if (bio->bi_end_io == end_sync_read) {
3511 			md_sync_acct_bio(bio, nr_sectors);
3512 			bio->bi_status = 0;
3513 			generic_make_request(bio);
3514 		}
3515 	}
3516 
3517 	if (sectors_skipped)
3518 		/* pretend they weren't skipped, it makes
3519 		 * no important difference in this case
3520 		 */
3521 		md_done_sync(mddev, sectors_skipped, 1);
3522 
3523 	return sectors_skipped + nr_sectors;
3524  giveup:
3525 	/* There is nowhere to write, so all non-sync
3526 	 * drives must be failed or in resync, all drives
3527 	 * have a bad block, so try the next chunk...
3528 	 */
3529 	if (sector_nr + max_sync < max_sector)
3530 		max_sector = sector_nr + max_sync;
3531 
3532 	sectors_skipped += (max_sector - sector_nr);
3533 	chunks_skipped ++;
3534 	sector_nr = max_sector;
3535 	goto skipped;
3536 }
3537 
3538 static sector_t
3539 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3540 {
3541 	sector_t size;
3542 	struct r10conf *conf = mddev->private;
3543 
3544 	if (!raid_disks)
3545 		raid_disks = min(conf->geo.raid_disks,
3546 				 conf->prev.raid_disks);
3547 	if (!sectors)
3548 		sectors = conf->dev_sectors;
3549 
3550 	size = sectors >> conf->geo.chunk_shift;
3551 	sector_div(size, conf->geo.far_copies);
3552 	size = size * raid_disks;
3553 	sector_div(size, conf->geo.near_copies);
3554 
3555 	return size << conf->geo.chunk_shift;
3556 }
3557 
3558 static void calc_sectors(struct r10conf *conf, sector_t size)
3559 {
3560 	/* Calculate the number of sectors-per-device that will
3561 	 * actually be used, and set conf->dev_sectors and
3562 	 * conf->stride
3563 	 */
3564 
3565 	size = size >> conf->geo.chunk_shift;
3566 	sector_div(size, conf->geo.far_copies);
3567 	size = size * conf->geo.raid_disks;
3568 	sector_div(size, conf->geo.near_copies);
3569 	/* 'size' is now the number of chunks in the array */
3570 	/* calculate "used chunks per device" */
3571 	size = size * conf->copies;
3572 
3573 	/* We need to round up when dividing by raid_disks to
3574 	 * get the stride size.
3575 	 */
3576 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3577 
3578 	conf->dev_sectors = size << conf->geo.chunk_shift;
3579 
3580 	if (conf->geo.far_offset)
3581 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3582 	else {
3583 		sector_div(size, conf->geo.far_copies);
3584 		conf->geo.stride = size << conf->geo.chunk_shift;
3585 	}
3586 }
3587 
3588 enum geo_type {geo_new, geo_old, geo_start};
3589 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3590 {
3591 	int nc, fc, fo;
3592 	int layout, chunk, disks;
3593 	switch (new) {
3594 	case geo_old:
3595 		layout = mddev->layout;
3596 		chunk = mddev->chunk_sectors;
3597 		disks = mddev->raid_disks - mddev->delta_disks;
3598 		break;
3599 	case geo_new:
3600 		layout = mddev->new_layout;
3601 		chunk = mddev->new_chunk_sectors;
3602 		disks = mddev->raid_disks;
3603 		break;
3604 	default: /* avoid 'may be unused' warnings */
3605 	case geo_start: /* new when starting reshape - raid_disks not
3606 			 * updated yet. */
3607 		layout = mddev->new_layout;
3608 		chunk = mddev->new_chunk_sectors;
3609 		disks = mddev->raid_disks + mddev->delta_disks;
3610 		break;
3611 	}
3612 	if (layout >> 19)
3613 		return -1;
3614 	if (chunk < (PAGE_SIZE >> 9) ||
3615 	    !is_power_of_2(chunk))
3616 		return -2;
3617 	nc = layout & 255;
3618 	fc = (layout >> 8) & 255;
3619 	fo = layout & (1<<16);
3620 	geo->raid_disks = disks;
3621 	geo->near_copies = nc;
3622 	geo->far_copies = fc;
3623 	geo->far_offset = fo;
3624 	switch (layout >> 17) {
3625 	case 0:	/* original layout.  simple but not always optimal */
3626 		geo->far_set_size = disks;
3627 		break;
3628 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3629 		 * actually using this, but leave code here just in case.*/
3630 		geo->far_set_size = disks/fc;
3631 		WARN(geo->far_set_size < fc,
3632 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3633 		break;
3634 	case 2: /* "improved" layout fixed to match documentation */
3635 		geo->far_set_size = fc * nc;
3636 		break;
3637 	default: /* Not a valid layout */
3638 		return -1;
3639 	}
3640 	geo->chunk_mask = chunk - 1;
3641 	geo->chunk_shift = ffz(~chunk);
3642 	return nc*fc;
3643 }
3644 
3645 static struct r10conf *setup_conf(struct mddev *mddev)
3646 {
3647 	struct r10conf *conf = NULL;
3648 	int err = -EINVAL;
3649 	struct geom geo;
3650 	int copies;
3651 
3652 	copies = setup_geo(&geo, mddev, geo_new);
3653 
3654 	if (copies == -2) {
3655 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3656 			mdname(mddev), PAGE_SIZE);
3657 		goto out;
3658 	}
3659 
3660 	if (copies < 2 || copies > mddev->raid_disks) {
3661 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3662 			mdname(mddev), mddev->new_layout);
3663 		goto out;
3664 	}
3665 
3666 	err = -ENOMEM;
3667 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3668 	if (!conf)
3669 		goto out;
3670 
3671 	/* FIXME calc properly */
3672 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3673 							    max(0,-mddev->delta_disks)),
3674 				GFP_KERNEL);
3675 	if (!conf->mirrors)
3676 		goto out;
3677 
3678 	conf->tmppage = alloc_page(GFP_KERNEL);
3679 	if (!conf->tmppage)
3680 		goto out;
3681 
3682 	conf->geo = geo;
3683 	conf->copies = copies;
3684 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3685 					   r10bio_pool_free, conf);
3686 	if (!conf->r10bio_pool)
3687 		goto out;
3688 
3689 	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
3690 	if (!conf->bio_split)
3691 		goto out;
3692 
3693 	calc_sectors(conf, mddev->dev_sectors);
3694 	if (mddev->reshape_position == MaxSector) {
3695 		conf->prev = conf->geo;
3696 		conf->reshape_progress = MaxSector;
3697 	} else {
3698 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3699 			err = -EINVAL;
3700 			goto out;
3701 		}
3702 		conf->reshape_progress = mddev->reshape_position;
3703 		if (conf->prev.far_offset)
3704 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3705 		else
3706 			/* far_copies must be 1 */
3707 			conf->prev.stride = conf->dev_sectors;
3708 	}
3709 	conf->reshape_safe = conf->reshape_progress;
3710 	spin_lock_init(&conf->device_lock);
3711 	INIT_LIST_HEAD(&conf->retry_list);
3712 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3713 
3714 	spin_lock_init(&conf->resync_lock);
3715 	init_waitqueue_head(&conf->wait_barrier);
3716 	atomic_set(&conf->nr_pending, 0);
3717 
3718 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3719 	if (!conf->thread)
3720 		goto out;
3721 
3722 	conf->mddev = mddev;
3723 	return conf;
3724 
3725  out:
3726 	if (conf) {
3727 		mempool_destroy(conf->r10bio_pool);
3728 		kfree(conf->mirrors);
3729 		safe_put_page(conf->tmppage);
3730 		if (conf->bio_split)
3731 			bioset_free(conf->bio_split);
3732 		kfree(conf);
3733 	}
3734 	return ERR_PTR(err);
3735 }
3736 
3737 static int raid10_run(struct mddev *mddev)
3738 {
3739 	struct r10conf *conf;
3740 	int i, disk_idx, chunk_size;
3741 	struct raid10_info *disk;
3742 	struct md_rdev *rdev;
3743 	sector_t size;
3744 	sector_t min_offset_diff = 0;
3745 	int first = 1;
3746 	bool discard_supported = false;
3747 
3748 	if (mddev_init_writes_pending(mddev) < 0)
3749 		return -ENOMEM;
3750 
3751 	if (mddev->private == NULL) {
3752 		conf = setup_conf(mddev);
3753 		if (IS_ERR(conf))
3754 			return PTR_ERR(conf);
3755 		mddev->private = conf;
3756 	}
3757 	conf = mddev->private;
3758 	if (!conf)
3759 		goto out;
3760 
3761 	if (mddev_is_clustered(conf->mddev)) {
3762 		int fc, fo;
3763 
3764 		fc = (mddev->layout >> 8) & 255;
3765 		fo = mddev->layout & (1<<16);
3766 		if (fc > 1 || fo > 0) {
3767 			pr_err("only near layout is supported by clustered"
3768 				" raid10\n");
3769 			goto out;
3770 		}
3771 	}
3772 
3773 	mddev->thread = conf->thread;
3774 	conf->thread = NULL;
3775 
3776 	chunk_size = mddev->chunk_sectors << 9;
3777 	if (mddev->queue) {
3778 		blk_queue_max_discard_sectors(mddev->queue,
3779 					      mddev->chunk_sectors);
3780 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3781 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3782 		blk_queue_io_min(mddev->queue, chunk_size);
3783 		if (conf->geo.raid_disks % conf->geo.near_copies)
3784 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3785 		else
3786 			blk_queue_io_opt(mddev->queue, chunk_size *
3787 					 (conf->geo.raid_disks / conf->geo.near_copies));
3788 	}
3789 
3790 	rdev_for_each(rdev, mddev) {
3791 		long long diff;
3792 
3793 		disk_idx = rdev->raid_disk;
3794 		if (disk_idx < 0)
3795 			continue;
3796 		if (disk_idx >= conf->geo.raid_disks &&
3797 		    disk_idx >= conf->prev.raid_disks)
3798 			continue;
3799 		disk = conf->mirrors + disk_idx;
3800 
3801 		if (test_bit(Replacement, &rdev->flags)) {
3802 			if (disk->replacement)
3803 				goto out_free_conf;
3804 			disk->replacement = rdev;
3805 		} else {
3806 			if (disk->rdev)
3807 				goto out_free_conf;
3808 			disk->rdev = rdev;
3809 		}
3810 		diff = (rdev->new_data_offset - rdev->data_offset);
3811 		if (!mddev->reshape_backwards)
3812 			diff = -diff;
3813 		if (diff < 0)
3814 			diff = 0;
3815 		if (first || diff < min_offset_diff)
3816 			min_offset_diff = diff;
3817 
3818 		if (mddev->gendisk)
3819 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3820 					  rdev->data_offset << 9);
3821 
3822 		disk->head_position = 0;
3823 
3824 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3825 			discard_supported = true;
3826 		first = 0;
3827 	}
3828 
3829 	if (mddev->queue) {
3830 		if (discard_supported)
3831 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3832 						mddev->queue);
3833 		else
3834 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3835 						  mddev->queue);
3836 	}
3837 	/* need to check that every block has at least one working mirror */
3838 	if (!enough(conf, -1)) {
3839 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3840 		       mdname(mddev));
3841 		goto out_free_conf;
3842 	}
3843 
3844 	if (conf->reshape_progress != MaxSector) {
3845 		/* must ensure that shape change is supported */
3846 		if (conf->geo.far_copies != 1 &&
3847 		    conf->geo.far_offset == 0)
3848 			goto out_free_conf;
3849 		if (conf->prev.far_copies != 1 &&
3850 		    conf->prev.far_offset == 0)
3851 			goto out_free_conf;
3852 	}
3853 
3854 	mddev->degraded = 0;
3855 	for (i = 0;
3856 	     i < conf->geo.raid_disks
3857 		     || i < conf->prev.raid_disks;
3858 	     i++) {
3859 
3860 		disk = conf->mirrors + i;
3861 
3862 		if (!disk->rdev && disk->replacement) {
3863 			/* The replacement is all we have - use it */
3864 			disk->rdev = disk->replacement;
3865 			disk->replacement = NULL;
3866 			clear_bit(Replacement, &disk->rdev->flags);
3867 		}
3868 
3869 		if (!disk->rdev ||
3870 		    !test_bit(In_sync, &disk->rdev->flags)) {
3871 			disk->head_position = 0;
3872 			mddev->degraded++;
3873 			if (disk->rdev &&
3874 			    disk->rdev->saved_raid_disk < 0)
3875 				conf->fullsync = 1;
3876 		}
3877 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3878 	}
3879 
3880 	if (mddev->recovery_cp != MaxSector)
3881 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3882 			  mdname(mddev));
3883 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3884 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3885 		conf->geo.raid_disks);
3886 	/*
3887 	 * Ok, everything is just fine now
3888 	 */
3889 	mddev->dev_sectors = conf->dev_sectors;
3890 	size = raid10_size(mddev, 0, 0);
3891 	md_set_array_sectors(mddev, size);
3892 	mddev->resync_max_sectors = size;
3893 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3894 
3895 	if (mddev->queue) {
3896 		int stripe = conf->geo.raid_disks *
3897 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3898 
3899 		/* Calculate max read-ahead size.
3900 		 * We need to readahead at least twice a whole stripe....
3901 		 * maybe...
3902 		 */
3903 		stripe /= conf->geo.near_copies;
3904 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3905 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3906 	}
3907 
3908 	if (md_integrity_register(mddev))
3909 		goto out_free_conf;
3910 
3911 	if (conf->reshape_progress != MaxSector) {
3912 		unsigned long before_length, after_length;
3913 
3914 		before_length = ((1 << conf->prev.chunk_shift) *
3915 				 conf->prev.far_copies);
3916 		after_length = ((1 << conf->geo.chunk_shift) *
3917 				conf->geo.far_copies);
3918 
3919 		if (max(before_length, after_length) > min_offset_diff) {
3920 			/* This cannot work */
3921 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3922 			goto out_free_conf;
3923 		}
3924 		conf->offset_diff = min_offset_diff;
3925 
3926 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3927 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3928 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3929 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3930 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3931 							"reshape");
3932 	}
3933 
3934 	return 0;
3935 
3936 out_free_conf:
3937 	md_unregister_thread(&mddev->thread);
3938 	mempool_destroy(conf->r10bio_pool);
3939 	safe_put_page(conf->tmppage);
3940 	kfree(conf->mirrors);
3941 	kfree(conf);
3942 	mddev->private = NULL;
3943 out:
3944 	return -EIO;
3945 }
3946 
3947 static void raid10_free(struct mddev *mddev, void *priv)
3948 {
3949 	struct r10conf *conf = priv;
3950 
3951 	mempool_destroy(conf->r10bio_pool);
3952 	safe_put_page(conf->tmppage);
3953 	kfree(conf->mirrors);
3954 	kfree(conf->mirrors_old);
3955 	kfree(conf->mirrors_new);
3956 	if (conf->bio_split)
3957 		bioset_free(conf->bio_split);
3958 	kfree(conf);
3959 }
3960 
3961 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3962 {
3963 	struct r10conf *conf = mddev->private;
3964 
3965 	if (quiesce)
3966 		raise_barrier(conf, 0);
3967 	else
3968 		lower_barrier(conf);
3969 }
3970 
3971 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3972 {
3973 	/* Resize of 'far' arrays is not supported.
3974 	 * For 'near' and 'offset' arrays we can set the
3975 	 * number of sectors used to be an appropriate multiple
3976 	 * of the chunk size.
3977 	 * For 'offset', this is far_copies*chunksize.
3978 	 * For 'near' the multiplier is the LCM of
3979 	 * near_copies and raid_disks.
3980 	 * So if far_copies > 1 && !far_offset, fail.
3981 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3982 	 * multiply by chunk_size.  Then round to this number.
3983 	 * This is mostly done by raid10_size()
3984 	 */
3985 	struct r10conf *conf = mddev->private;
3986 	sector_t oldsize, size;
3987 
3988 	if (mddev->reshape_position != MaxSector)
3989 		return -EBUSY;
3990 
3991 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3992 		return -EINVAL;
3993 
3994 	oldsize = raid10_size(mddev, 0, 0);
3995 	size = raid10_size(mddev, sectors, 0);
3996 	if (mddev->external_size &&
3997 	    mddev->array_sectors > size)
3998 		return -EINVAL;
3999 	if (mddev->bitmap) {
4000 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
4001 		if (ret)
4002 			return ret;
4003 	}
4004 	md_set_array_sectors(mddev, size);
4005 	if (sectors > mddev->dev_sectors &&
4006 	    mddev->recovery_cp > oldsize) {
4007 		mddev->recovery_cp = oldsize;
4008 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4009 	}
4010 	calc_sectors(conf, sectors);
4011 	mddev->dev_sectors = conf->dev_sectors;
4012 	mddev->resync_max_sectors = size;
4013 	return 0;
4014 }
4015 
4016 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4017 {
4018 	struct md_rdev *rdev;
4019 	struct r10conf *conf;
4020 
4021 	if (mddev->degraded > 0) {
4022 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4023 			mdname(mddev));
4024 		return ERR_PTR(-EINVAL);
4025 	}
4026 	sector_div(size, devs);
4027 
4028 	/* Set new parameters */
4029 	mddev->new_level = 10;
4030 	/* new layout: far_copies = 1, near_copies = 2 */
4031 	mddev->new_layout = (1<<8) + 2;
4032 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4033 	mddev->delta_disks = mddev->raid_disks;
4034 	mddev->raid_disks *= 2;
4035 	/* make sure it will be not marked as dirty */
4036 	mddev->recovery_cp = MaxSector;
4037 	mddev->dev_sectors = size;
4038 
4039 	conf = setup_conf(mddev);
4040 	if (!IS_ERR(conf)) {
4041 		rdev_for_each(rdev, mddev)
4042 			if (rdev->raid_disk >= 0) {
4043 				rdev->new_raid_disk = rdev->raid_disk * 2;
4044 				rdev->sectors = size;
4045 			}
4046 		conf->barrier = 1;
4047 	}
4048 
4049 	return conf;
4050 }
4051 
4052 static void *raid10_takeover(struct mddev *mddev)
4053 {
4054 	struct r0conf *raid0_conf;
4055 
4056 	/* raid10 can take over:
4057 	 *  raid0 - providing it has only two drives
4058 	 */
4059 	if (mddev->level == 0) {
4060 		/* for raid0 takeover only one zone is supported */
4061 		raid0_conf = mddev->private;
4062 		if (raid0_conf->nr_strip_zones > 1) {
4063 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4064 				mdname(mddev));
4065 			return ERR_PTR(-EINVAL);
4066 		}
4067 		return raid10_takeover_raid0(mddev,
4068 			raid0_conf->strip_zone->zone_end,
4069 			raid0_conf->strip_zone->nb_dev);
4070 	}
4071 	return ERR_PTR(-EINVAL);
4072 }
4073 
4074 static int raid10_check_reshape(struct mddev *mddev)
4075 {
4076 	/* Called when there is a request to change
4077 	 * - layout (to ->new_layout)
4078 	 * - chunk size (to ->new_chunk_sectors)
4079 	 * - raid_disks (by delta_disks)
4080 	 * or when trying to restart a reshape that was ongoing.
4081 	 *
4082 	 * We need to validate the request and possibly allocate
4083 	 * space if that might be an issue later.
4084 	 *
4085 	 * Currently we reject any reshape of a 'far' mode array,
4086 	 * allow chunk size to change if new is generally acceptable,
4087 	 * allow raid_disks to increase, and allow
4088 	 * a switch between 'near' mode and 'offset' mode.
4089 	 */
4090 	struct r10conf *conf = mddev->private;
4091 	struct geom geo;
4092 
4093 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4094 		return -EINVAL;
4095 
4096 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4097 		/* mustn't change number of copies */
4098 		return -EINVAL;
4099 	if (geo.far_copies > 1 && !geo.far_offset)
4100 		/* Cannot switch to 'far' mode */
4101 		return -EINVAL;
4102 
4103 	if (mddev->array_sectors & geo.chunk_mask)
4104 			/* not factor of array size */
4105 			return -EINVAL;
4106 
4107 	if (!enough(conf, -1))
4108 		return -EINVAL;
4109 
4110 	kfree(conf->mirrors_new);
4111 	conf->mirrors_new = NULL;
4112 	if (mddev->delta_disks > 0) {
4113 		/* allocate new 'mirrors' list */
4114 		conf->mirrors_new = kzalloc(
4115 			sizeof(struct raid10_info)
4116 			*(mddev->raid_disks +
4117 			  mddev->delta_disks),
4118 			GFP_KERNEL);
4119 		if (!conf->mirrors_new)
4120 			return -ENOMEM;
4121 	}
4122 	return 0;
4123 }
4124 
4125 /*
4126  * Need to check if array has failed when deciding whether to:
4127  *  - start an array
4128  *  - remove non-faulty devices
4129  *  - add a spare
4130  *  - allow a reshape
4131  * This determination is simple when no reshape is happening.
4132  * However if there is a reshape, we need to carefully check
4133  * both the before and after sections.
4134  * This is because some failed devices may only affect one
4135  * of the two sections, and some non-in_sync devices may
4136  * be insync in the section most affected by failed devices.
4137  */
4138 static int calc_degraded(struct r10conf *conf)
4139 {
4140 	int degraded, degraded2;
4141 	int i;
4142 
4143 	rcu_read_lock();
4144 	degraded = 0;
4145 	/* 'prev' section first */
4146 	for (i = 0; i < conf->prev.raid_disks; i++) {
4147 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4148 		if (!rdev || test_bit(Faulty, &rdev->flags))
4149 			degraded++;
4150 		else if (!test_bit(In_sync, &rdev->flags))
4151 			/* When we can reduce the number of devices in
4152 			 * an array, this might not contribute to
4153 			 * 'degraded'.  It does now.
4154 			 */
4155 			degraded++;
4156 	}
4157 	rcu_read_unlock();
4158 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4159 		return degraded;
4160 	rcu_read_lock();
4161 	degraded2 = 0;
4162 	for (i = 0; i < conf->geo.raid_disks; i++) {
4163 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4164 		if (!rdev || test_bit(Faulty, &rdev->flags))
4165 			degraded2++;
4166 		else if (!test_bit(In_sync, &rdev->flags)) {
4167 			/* If reshape is increasing the number of devices,
4168 			 * this section has already been recovered, so
4169 			 * it doesn't contribute to degraded.
4170 			 * else it does.
4171 			 */
4172 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4173 				degraded2++;
4174 		}
4175 	}
4176 	rcu_read_unlock();
4177 	if (degraded2 > degraded)
4178 		return degraded2;
4179 	return degraded;
4180 }
4181 
4182 static int raid10_start_reshape(struct mddev *mddev)
4183 {
4184 	/* A 'reshape' has been requested. This commits
4185 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4186 	 * This also checks if there are enough spares and adds them
4187 	 * to the array.
4188 	 * We currently require enough spares to make the final
4189 	 * array non-degraded.  We also require that the difference
4190 	 * between old and new data_offset - on each device - is
4191 	 * enough that we never risk over-writing.
4192 	 */
4193 
4194 	unsigned long before_length, after_length;
4195 	sector_t min_offset_diff = 0;
4196 	int first = 1;
4197 	struct geom new;
4198 	struct r10conf *conf = mddev->private;
4199 	struct md_rdev *rdev;
4200 	int spares = 0;
4201 	int ret;
4202 
4203 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4204 		return -EBUSY;
4205 
4206 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4207 		return -EINVAL;
4208 
4209 	before_length = ((1 << conf->prev.chunk_shift) *
4210 			 conf->prev.far_copies);
4211 	after_length = ((1 << conf->geo.chunk_shift) *
4212 			conf->geo.far_copies);
4213 
4214 	rdev_for_each(rdev, mddev) {
4215 		if (!test_bit(In_sync, &rdev->flags)
4216 		    && !test_bit(Faulty, &rdev->flags))
4217 			spares++;
4218 		if (rdev->raid_disk >= 0) {
4219 			long long diff = (rdev->new_data_offset
4220 					  - rdev->data_offset);
4221 			if (!mddev->reshape_backwards)
4222 				diff = -diff;
4223 			if (diff < 0)
4224 				diff = 0;
4225 			if (first || diff < min_offset_diff)
4226 				min_offset_diff = diff;
4227 			first = 0;
4228 		}
4229 	}
4230 
4231 	if (max(before_length, after_length) > min_offset_diff)
4232 		return -EINVAL;
4233 
4234 	if (spares < mddev->delta_disks)
4235 		return -EINVAL;
4236 
4237 	conf->offset_diff = min_offset_diff;
4238 	spin_lock_irq(&conf->device_lock);
4239 	if (conf->mirrors_new) {
4240 		memcpy(conf->mirrors_new, conf->mirrors,
4241 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4242 		smp_mb();
4243 		kfree(conf->mirrors_old);
4244 		conf->mirrors_old = conf->mirrors;
4245 		conf->mirrors = conf->mirrors_new;
4246 		conf->mirrors_new = NULL;
4247 	}
4248 	setup_geo(&conf->geo, mddev, geo_start);
4249 	smp_mb();
4250 	if (mddev->reshape_backwards) {
4251 		sector_t size = raid10_size(mddev, 0, 0);
4252 		if (size < mddev->array_sectors) {
4253 			spin_unlock_irq(&conf->device_lock);
4254 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4255 				mdname(mddev));
4256 			return -EINVAL;
4257 		}
4258 		mddev->resync_max_sectors = size;
4259 		conf->reshape_progress = size;
4260 	} else
4261 		conf->reshape_progress = 0;
4262 	conf->reshape_safe = conf->reshape_progress;
4263 	spin_unlock_irq(&conf->device_lock);
4264 
4265 	if (mddev->delta_disks && mddev->bitmap) {
4266 		ret = bitmap_resize(mddev->bitmap,
4267 				    raid10_size(mddev, 0,
4268 						conf->geo.raid_disks),
4269 				    0, 0);
4270 		if (ret)
4271 			goto abort;
4272 	}
4273 	if (mddev->delta_disks > 0) {
4274 		rdev_for_each(rdev, mddev)
4275 			if (rdev->raid_disk < 0 &&
4276 			    !test_bit(Faulty, &rdev->flags)) {
4277 				if (raid10_add_disk(mddev, rdev) == 0) {
4278 					if (rdev->raid_disk >=
4279 					    conf->prev.raid_disks)
4280 						set_bit(In_sync, &rdev->flags);
4281 					else
4282 						rdev->recovery_offset = 0;
4283 
4284 					if (sysfs_link_rdev(mddev, rdev))
4285 						/* Failure here  is OK */;
4286 				}
4287 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4288 				   && !test_bit(Faulty, &rdev->flags)) {
4289 				/* This is a spare that was manually added */
4290 				set_bit(In_sync, &rdev->flags);
4291 			}
4292 	}
4293 	/* When a reshape changes the number of devices,
4294 	 * ->degraded is measured against the larger of the
4295 	 * pre and  post numbers.
4296 	 */
4297 	spin_lock_irq(&conf->device_lock);
4298 	mddev->degraded = calc_degraded(conf);
4299 	spin_unlock_irq(&conf->device_lock);
4300 	mddev->raid_disks = conf->geo.raid_disks;
4301 	mddev->reshape_position = conf->reshape_progress;
4302 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4303 
4304 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4305 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4306 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4307 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4308 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4309 
4310 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4311 						"reshape");
4312 	if (!mddev->sync_thread) {
4313 		ret = -EAGAIN;
4314 		goto abort;
4315 	}
4316 	conf->reshape_checkpoint = jiffies;
4317 	md_wakeup_thread(mddev->sync_thread);
4318 	md_new_event(mddev);
4319 	return 0;
4320 
4321 abort:
4322 	mddev->recovery = 0;
4323 	spin_lock_irq(&conf->device_lock);
4324 	conf->geo = conf->prev;
4325 	mddev->raid_disks = conf->geo.raid_disks;
4326 	rdev_for_each(rdev, mddev)
4327 		rdev->new_data_offset = rdev->data_offset;
4328 	smp_wmb();
4329 	conf->reshape_progress = MaxSector;
4330 	conf->reshape_safe = MaxSector;
4331 	mddev->reshape_position = MaxSector;
4332 	spin_unlock_irq(&conf->device_lock);
4333 	return ret;
4334 }
4335 
4336 /* Calculate the last device-address that could contain
4337  * any block from the chunk that includes the array-address 's'
4338  * and report the next address.
4339  * i.e. the address returned will be chunk-aligned and after
4340  * any data that is in the chunk containing 's'.
4341  */
4342 static sector_t last_dev_address(sector_t s, struct geom *geo)
4343 {
4344 	s = (s | geo->chunk_mask) + 1;
4345 	s >>= geo->chunk_shift;
4346 	s *= geo->near_copies;
4347 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4348 	s *= geo->far_copies;
4349 	s <<= geo->chunk_shift;
4350 	return s;
4351 }
4352 
4353 /* Calculate the first device-address that could contain
4354  * any block from the chunk that includes the array-address 's'.
4355  * This too will be the start of a chunk
4356  */
4357 static sector_t first_dev_address(sector_t s, struct geom *geo)
4358 {
4359 	s >>= geo->chunk_shift;
4360 	s *= geo->near_copies;
4361 	sector_div(s, geo->raid_disks);
4362 	s *= geo->far_copies;
4363 	s <<= geo->chunk_shift;
4364 	return s;
4365 }
4366 
4367 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4368 				int *skipped)
4369 {
4370 	/* We simply copy at most one chunk (smallest of old and new)
4371 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4372 	 * or we hit a bad block or something.
4373 	 * This might mean we pause for normal IO in the middle of
4374 	 * a chunk, but that is not a problem as mddev->reshape_position
4375 	 * can record any location.
4376 	 *
4377 	 * If we will want to write to a location that isn't
4378 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4379 	 * we need to flush all reshape requests and update the metadata.
4380 	 *
4381 	 * When reshaping forwards (e.g. to more devices), we interpret
4382 	 * 'safe' as the earliest block which might not have been copied
4383 	 * down yet.  We divide this by previous stripe size and multiply
4384 	 * by previous stripe length to get lowest device offset that we
4385 	 * cannot write to yet.
4386 	 * We interpret 'sector_nr' as an address that we want to write to.
4387 	 * From this we use last_device_address() to find where we might
4388 	 * write to, and first_device_address on the  'safe' position.
4389 	 * If this 'next' write position is after the 'safe' position,
4390 	 * we must update the metadata to increase the 'safe' position.
4391 	 *
4392 	 * When reshaping backwards, we round in the opposite direction
4393 	 * and perform the reverse test:  next write position must not be
4394 	 * less than current safe position.
4395 	 *
4396 	 * In all this the minimum difference in data offsets
4397 	 * (conf->offset_diff - always positive) allows a bit of slack,
4398 	 * so next can be after 'safe', but not by more than offset_diff
4399 	 *
4400 	 * We need to prepare all the bios here before we start any IO
4401 	 * to ensure the size we choose is acceptable to all devices.
4402 	 * The means one for each copy for write-out and an extra one for
4403 	 * read-in.
4404 	 * We store the read-in bio in ->master_bio and the others in
4405 	 * ->devs[x].bio and ->devs[x].repl_bio.
4406 	 */
4407 	struct r10conf *conf = mddev->private;
4408 	struct r10bio *r10_bio;
4409 	sector_t next, safe, last;
4410 	int max_sectors;
4411 	int nr_sectors;
4412 	int s;
4413 	struct md_rdev *rdev;
4414 	int need_flush = 0;
4415 	struct bio *blist;
4416 	struct bio *bio, *read_bio;
4417 	int sectors_done = 0;
4418 	struct page **pages;
4419 
4420 	if (sector_nr == 0) {
4421 		/* If restarting in the middle, skip the initial sectors */
4422 		if (mddev->reshape_backwards &&
4423 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4424 			sector_nr = (raid10_size(mddev, 0, 0)
4425 				     - conf->reshape_progress);
4426 		} else if (!mddev->reshape_backwards &&
4427 			   conf->reshape_progress > 0)
4428 			sector_nr = conf->reshape_progress;
4429 		if (sector_nr) {
4430 			mddev->curr_resync_completed = sector_nr;
4431 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4432 			*skipped = 1;
4433 			return sector_nr;
4434 		}
4435 	}
4436 
4437 	/* We don't use sector_nr to track where we are up to
4438 	 * as that doesn't work well for ->reshape_backwards.
4439 	 * So just use ->reshape_progress.
4440 	 */
4441 	if (mddev->reshape_backwards) {
4442 		/* 'next' is the earliest device address that we might
4443 		 * write to for this chunk in the new layout
4444 		 */
4445 		next = first_dev_address(conf->reshape_progress - 1,
4446 					 &conf->geo);
4447 
4448 		/* 'safe' is the last device address that we might read from
4449 		 * in the old layout after a restart
4450 		 */
4451 		safe = last_dev_address(conf->reshape_safe - 1,
4452 					&conf->prev);
4453 
4454 		if (next + conf->offset_diff < safe)
4455 			need_flush = 1;
4456 
4457 		last = conf->reshape_progress - 1;
4458 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4459 					       & conf->prev.chunk_mask);
4460 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4461 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4462 	} else {
4463 		/* 'next' is after the last device address that we
4464 		 * might write to for this chunk in the new layout
4465 		 */
4466 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4467 
4468 		/* 'safe' is the earliest device address that we might
4469 		 * read from in the old layout after a restart
4470 		 */
4471 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4472 
4473 		/* Need to update metadata if 'next' might be beyond 'safe'
4474 		 * as that would possibly corrupt data
4475 		 */
4476 		if (next > safe + conf->offset_diff)
4477 			need_flush = 1;
4478 
4479 		sector_nr = conf->reshape_progress;
4480 		last  = sector_nr | (conf->geo.chunk_mask
4481 				     & conf->prev.chunk_mask);
4482 
4483 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4484 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4485 	}
4486 
4487 	if (need_flush ||
4488 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4489 		/* Need to update reshape_position in metadata */
4490 		wait_barrier(conf);
4491 		mddev->reshape_position = conf->reshape_progress;
4492 		if (mddev->reshape_backwards)
4493 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4494 				- conf->reshape_progress;
4495 		else
4496 			mddev->curr_resync_completed = conf->reshape_progress;
4497 		conf->reshape_checkpoint = jiffies;
4498 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4499 		md_wakeup_thread(mddev->thread);
4500 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4501 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4502 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4503 			allow_barrier(conf);
4504 			return sectors_done;
4505 		}
4506 		conf->reshape_safe = mddev->reshape_position;
4507 		allow_barrier(conf);
4508 	}
4509 
4510 read_more:
4511 	/* Now schedule reads for blocks from sector_nr to last */
4512 	r10_bio = raid10_alloc_init_r10buf(conf);
4513 	r10_bio->state = 0;
4514 	raise_barrier(conf, sectors_done != 0);
4515 	atomic_set(&r10_bio->remaining, 0);
4516 	r10_bio->mddev = mddev;
4517 	r10_bio->sector = sector_nr;
4518 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4519 	r10_bio->sectors = last - sector_nr + 1;
4520 	rdev = read_balance(conf, r10_bio, &max_sectors);
4521 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4522 
4523 	if (!rdev) {
4524 		/* Cannot read from here, so need to record bad blocks
4525 		 * on all the target devices.
4526 		 */
4527 		// FIXME
4528 		mempool_free(r10_bio, conf->r10buf_pool);
4529 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4530 		return sectors_done;
4531 	}
4532 
4533 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4534 
4535 	bio_set_dev(read_bio, rdev->bdev);
4536 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4537 			       + rdev->data_offset);
4538 	read_bio->bi_private = r10_bio;
4539 	read_bio->bi_end_io = end_reshape_read;
4540 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4541 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4542 	read_bio->bi_status = 0;
4543 	read_bio->bi_vcnt = 0;
4544 	read_bio->bi_iter.bi_size = 0;
4545 	r10_bio->master_bio = read_bio;
4546 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4547 
4548 	/* Now find the locations in the new layout */
4549 	__raid10_find_phys(&conf->geo, r10_bio);
4550 
4551 	blist = read_bio;
4552 	read_bio->bi_next = NULL;
4553 
4554 	rcu_read_lock();
4555 	for (s = 0; s < conf->copies*2; s++) {
4556 		struct bio *b;
4557 		int d = r10_bio->devs[s/2].devnum;
4558 		struct md_rdev *rdev2;
4559 		if (s&1) {
4560 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4561 			b = r10_bio->devs[s/2].repl_bio;
4562 		} else {
4563 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4564 			b = r10_bio->devs[s/2].bio;
4565 		}
4566 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4567 			continue;
4568 
4569 		bio_set_dev(b, rdev2->bdev);
4570 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4571 			rdev2->new_data_offset;
4572 		b->bi_end_io = end_reshape_write;
4573 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4574 		b->bi_next = blist;
4575 		blist = b;
4576 	}
4577 
4578 	/* Now add as many pages as possible to all of these bios. */
4579 
4580 	nr_sectors = 0;
4581 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4582 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4583 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4584 		int len = (max_sectors - s) << 9;
4585 		if (len > PAGE_SIZE)
4586 			len = PAGE_SIZE;
4587 		for (bio = blist; bio ; bio = bio->bi_next) {
4588 			/*
4589 			 * won't fail because the vec table is big enough
4590 			 * to hold all these pages
4591 			 */
4592 			bio_add_page(bio, page, len, 0);
4593 		}
4594 		sector_nr += len >> 9;
4595 		nr_sectors += len >> 9;
4596 	}
4597 	rcu_read_unlock();
4598 	r10_bio->sectors = nr_sectors;
4599 
4600 	/* Now submit the read */
4601 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4602 	atomic_inc(&r10_bio->remaining);
4603 	read_bio->bi_next = NULL;
4604 	generic_make_request(read_bio);
4605 	sector_nr += nr_sectors;
4606 	sectors_done += nr_sectors;
4607 	if (sector_nr <= last)
4608 		goto read_more;
4609 
4610 	/* Now that we have done the whole section we can
4611 	 * update reshape_progress
4612 	 */
4613 	if (mddev->reshape_backwards)
4614 		conf->reshape_progress -= sectors_done;
4615 	else
4616 		conf->reshape_progress += sectors_done;
4617 
4618 	return sectors_done;
4619 }
4620 
4621 static void end_reshape_request(struct r10bio *r10_bio);
4622 static int handle_reshape_read_error(struct mddev *mddev,
4623 				     struct r10bio *r10_bio);
4624 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4625 {
4626 	/* Reshape read completed.  Hopefully we have a block
4627 	 * to write out.
4628 	 * If we got a read error then we do sync 1-page reads from
4629 	 * elsewhere until we find the data - or give up.
4630 	 */
4631 	struct r10conf *conf = mddev->private;
4632 	int s;
4633 
4634 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4635 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4636 			/* Reshape has been aborted */
4637 			md_done_sync(mddev, r10_bio->sectors, 0);
4638 			return;
4639 		}
4640 
4641 	/* We definitely have the data in the pages, schedule the
4642 	 * writes.
4643 	 */
4644 	atomic_set(&r10_bio->remaining, 1);
4645 	for (s = 0; s < conf->copies*2; s++) {
4646 		struct bio *b;
4647 		int d = r10_bio->devs[s/2].devnum;
4648 		struct md_rdev *rdev;
4649 		rcu_read_lock();
4650 		if (s&1) {
4651 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4652 			b = r10_bio->devs[s/2].repl_bio;
4653 		} else {
4654 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4655 			b = r10_bio->devs[s/2].bio;
4656 		}
4657 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4658 			rcu_read_unlock();
4659 			continue;
4660 		}
4661 		atomic_inc(&rdev->nr_pending);
4662 		rcu_read_unlock();
4663 		md_sync_acct_bio(b, r10_bio->sectors);
4664 		atomic_inc(&r10_bio->remaining);
4665 		b->bi_next = NULL;
4666 		generic_make_request(b);
4667 	}
4668 	end_reshape_request(r10_bio);
4669 }
4670 
4671 static void end_reshape(struct r10conf *conf)
4672 {
4673 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4674 		return;
4675 
4676 	spin_lock_irq(&conf->device_lock);
4677 	conf->prev = conf->geo;
4678 	md_finish_reshape(conf->mddev);
4679 	smp_wmb();
4680 	conf->reshape_progress = MaxSector;
4681 	conf->reshape_safe = MaxSector;
4682 	spin_unlock_irq(&conf->device_lock);
4683 
4684 	/* read-ahead size must cover two whole stripes, which is
4685 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4686 	 */
4687 	if (conf->mddev->queue) {
4688 		int stripe = conf->geo.raid_disks *
4689 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4690 		stripe /= conf->geo.near_copies;
4691 		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4692 			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4693 	}
4694 	conf->fullsync = 0;
4695 }
4696 
4697 static int handle_reshape_read_error(struct mddev *mddev,
4698 				     struct r10bio *r10_bio)
4699 {
4700 	/* Use sync reads to get the blocks from somewhere else */
4701 	int sectors = r10_bio->sectors;
4702 	struct r10conf *conf = mddev->private;
4703 	struct r10bio *r10b;
4704 	int slot = 0;
4705 	int idx = 0;
4706 	struct page **pages;
4707 
4708 	r10b = kmalloc(sizeof(*r10b) +
4709 	       sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4710 	if (!r10b) {
4711 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4712 		return -ENOMEM;
4713 	}
4714 
4715 	/* reshape IOs share pages from .devs[0].bio */
4716 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4717 
4718 	r10b->sector = r10_bio->sector;
4719 	__raid10_find_phys(&conf->prev, r10b);
4720 
4721 	while (sectors) {
4722 		int s = sectors;
4723 		int success = 0;
4724 		int first_slot = slot;
4725 
4726 		if (s > (PAGE_SIZE >> 9))
4727 			s = PAGE_SIZE >> 9;
4728 
4729 		rcu_read_lock();
4730 		while (!success) {
4731 			int d = r10b->devs[slot].devnum;
4732 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4733 			sector_t addr;
4734 			if (rdev == NULL ||
4735 			    test_bit(Faulty, &rdev->flags) ||
4736 			    !test_bit(In_sync, &rdev->flags))
4737 				goto failed;
4738 
4739 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4740 			atomic_inc(&rdev->nr_pending);
4741 			rcu_read_unlock();
4742 			success = sync_page_io(rdev,
4743 					       addr,
4744 					       s << 9,
4745 					       pages[idx],
4746 					       REQ_OP_READ, 0, false);
4747 			rdev_dec_pending(rdev, mddev);
4748 			rcu_read_lock();
4749 			if (success)
4750 				break;
4751 		failed:
4752 			slot++;
4753 			if (slot >= conf->copies)
4754 				slot = 0;
4755 			if (slot == first_slot)
4756 				break;
4757 		}
4758 		rcu_read_unlock();
4759 		if (!success) {
4760 			/* couldn't read this block, must give up */
4761 			set_bit(MD_RECOVERY_INTR,
4762 				&mddev->recovery);
4763 			kfree(r10b);
4764 			return -EIO;
4765 		}
4766 		sectors -= s;
4767 		idx++;
4768 	}
4769 	kfree(r10b);
4770 	return 0;
4771 }
4772 
4773 static void end_reshape_write(struct bio *bio)
4774 {
4775 	struct r10bio *r10_bio = get_resync_r10bio(bio);
4776 	struct mddev *mddev = r10_bio->mddev;
4777 	struct r10conf *conf = mddev->private;
4778 	int d;
4779 	int slot;
4780 	int repl;
4781 	struct md_rdev *rdev = NULL;
4782 
4783 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4784 	if (repl)
4785 		rdev = conf->mirrors[d].replacement;
4786 	if (!rdev) {
4787 		smp_mb();
4788 		rdev = conf->mirrors[d].rdev;
4789 	}
4790 
4791 	if (bio->bi_status) {
4792 		/* FIXME should record badblock */
4793 		md_error(mddev, rdev);
4794 	}
4795 
4796 	rdev_dec_pending(rdev, mddev);
4797 	end_reshape_request(r10_bio);
4798 }
4799 
4800 static void end_reshape_request(struct r10bio *r10_bio)
4801 {
4802 	if (!atomic_dec_and_test(&r10_bio->remaining))
4803 		return;
4804 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4805 	bio_put(r10_bio->master_bio);
4806 	put_buf(r10_bio);
4807 }
4808 
4809 static void raid10_finish_reshape(struct mddev *mddev)
4810 {
4811 	struct r10conf *conf = mddev->private;
4812 
4813 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4814 		return;
4815 
4816 	if (mddev->delta_disks > 0) {
4817 		sector_t size = raid10_size(mddev, 0, 0);
4818 		md_set_array_sectors(mddev, size);
4819 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4820 			mddev->recovery_cp = mddev->resync_max_sectors;
4821 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4822 		}
4823 		mddev->resync_max_sectors = size;
4824 		if (mddev->queue) {
4825 			set_capacity(mddev->gendisk, mddev->array_sectors);
4826 			revalidate_disk(mddev->gendisk);
4827 		}
4828 	} else {
4829 		int d;
4830 		rcu_read_lock();
4831 		for (d = conf->geo.raid_disks ;
4832 		     d < conf->geo.raid_disks - mddev->delta_disks;
4833 		     d++) {
4834 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4835 			if (rdev)
4836 				clear_bit(In_sync, &rdev->flags);
4837 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4838 			if (rdev)
4839 				clear_bit(In_sync, &rdev->flags);
4840 		}
4841 		rcu_read_unlock();
4842 	}
4843 	mddev->layout = mddev->new_layout;
4844 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4845 	mddev->reshape_position = MaxSector;
4846 	mddev->delta_disks = 0;
4847 	mddev->reshape_backwards = 0;
4848 }
4849 
4850 static struct md_personality raid10_personality =
4851 {
4852 	.name		= "raid10",
4853 	.level		= 10,
4854 	.owner		= THIS_MODULE,
4855 	.make_request	= raid10_make_request,
4856 	.run		= raid10_run,
4857 	.free		= raid10_free,
4858 	.status		= raid10_status,
4859 	.error_handler	= raid10_error,
4860 	.hot_add_disk	= raid10_add_disk,
4861 	.hot_remove_disk= raid10_remove_disk,
4862 	.spare_active	= raid10_spare_active,
4863 	.sync_request	= raid10_sync_request,
4864 	.quiesce	= raid10_quiesce,
4865 	.size		= raid10_size,
4866 	.resize		= raid10_resize,
4867 	.takeover	= raid10_takeover,
4868 	.check_reshape	= raid10_check_reshape,
4869 	.start_reshape	= raid10_start_reshape,
4870 	.finish_reshape	= raid10_finish_reshape,
4871 	.congested	= raid10_congested,
4872 };
4873 
4874 static int __init raid_init(void)
4875 {
4876 	return register_md_personality(&raid10_personality);
4877 }
4878 
4879 static void raid_exit(void)
4880 {
4881 	unregister_md_personality(&raid10_personality);
4882 }
4883 
4884 module_init(raid_init);
4885 module_exit(raid_exit);
4886 MODULE_LICENSE("GPL");
4887 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4888 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4889 MODULE_ALIAS("md-raid10");
4890 MODULE_ALIAS("md-level-10");
4891 
4892 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4893