1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <trace/events/block.h> 29 #include "md.h" 30 #include "raid10.h" 31 #include "raid0.h" 32 #include "md-bitmap.h" 33 34 /* 35 * RAID10 provides a combination of RAID0 and RAID1 functionality. 36 * The layout of data is defined by 37 * chunk_size 38 * raid_disks 39 * near_copies (stored in low byte of layout) 40 * far_copies (stored in second byte of layout) 41 * far_offset (stored in bit 16 of layout ) 42 * use_far_sets (stored in bit 17 of layout ) 43 * use_far_sets_bugfixed (stored in bit 18 of layout ) 44 * 45 * The data to be stored is divided into chunks using chunksize. Each device 46 * is divided into far_copies sections. In each section, chunks are laid out 47 * in a style similar to raid0, but near_copies copies of each chunk is stored 48 * (each on a different drive). The starting device for each section is offset 49 * near_copies from the starting device of the previous section. Thus there 50 * are (near_copies * far_copies) of each chunk, and each is on a different 51 * drive. near_copies and far_copies must be at least one, and their product 52 * is at most raid_disks. 53 * 54 * If far_offset is true, then the far_copies are handled a bit differently. 55 * The copies are still in different stripes, but instead of being very far 56 * apart on disk, there are adjacent stripes. 57 * 58 * The far and offset algorithms are handled slightly differently if 59 * 'use_far_sets' is true. In this case, the array's devices are grouped into 60 * sets that are (near_copies * far_copies) in size. The far copied stripes 61 * are still shifted by 'near_copies' devices, but this shifting stays confined 62 * to the set rather than the entire array. This is done to improve the number 63 * of device combinations that can fail without causing the array to fail. 64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 65 * on a device): 66 * A B C D A B C D E 67 * ... ... 68 * D A B C E A B C D 69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 70 * [A B] [C D] [A B] [C D E] 71 * |...| |...| |...| | ... | 72 * [B A] [D C] [B A] [E C D] 73 */ 74 75 /* 76 * Number of guaranteed r10bios in case of extreme VM load: 77 */ 78 #define NR_RAID10_BIOS 256 79 80 /* when we get a read error on a read-only array, we redirect to another 81 * device without failing the first device, or trying to over-write to 82 * correct the read error. To keep track of bad blocks on a per-bio 83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 84 */ 85 #define IO_BLOCKED ((struct bio *)1) 86 /* When we successfully write to a known bad-block, we need to remove the 87 * bad-block marking which must be done from process context. So we record 88 * the success by setting devs[n].bio to IO_MADE_GOOD 89 */ 90 #define IO_MADE_GOOD ((struct bio *)2) 91 92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 93 94 /* When there are this many requests queued to be written by 95 * the raid10 thread, we become 'congested' to provide back-pressure 96 * for writeback. 97 */ 98 static int max_queued_requests = 1024; 99 100 static void allow_barrier(struct r10conf *conf); 101 static void lower_barrier(struct r10conf *conf); 102 static int _enough(struct r10conf *conf, int previous, int ignore); 103 static int enough(struct r10conf *conf, int ignore); 104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 105 int *skipped); 106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 107 static void end_reshape_write(struct bio *bio); 108 static void end_reshape(struct r10conf *conf); 109 110 #define raid10_log(md, fmt, args...) \ 111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 112 113 #include "raid1-10.c" 114 115 /* 116 * for resync bio, r10bio pointer can be retrieved from the per-bio 117 * 'struct resync_pages'. 118 */ 119 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 120 { 121 return get_resync_pages(bio)->raid_bio; 122 } 123 124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 125 { 126 struct r10conf *conf = data; 127 int size = offsetof(struct r10bio, devs[conf->copies]); 128 129 /* allocate a r10bio with room for raid_disks entries in the 130 * bios array */ 131 return kzalloc(size, gfp_flags); 132 } 133 134 static void r10bio_pool_free(void *r10_bio, void *data) 135 { 136 kfree(r10_bio); 137 } 138 139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 140 /* amount of memory to reserve for resync requests */ 141 #define RESYNC_WINDOW (1024*1024) 142 /* maximum number of concurrent requests, memory permitting */ 143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 144 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 146 147 /* 148 * When performing a resync, we need to read and compare, so 149 * we need as many pages are there are copies. 150 * When performing a recovery, we need 2 bios, one for read, 151 * one for write (we recover only one drive per r10buf) 152 * 153 */ 154 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 155 { 156 struct r10conf *conf = data; 157 struct r10bio *r10_bio; 158 struct bio *bio; 159 int j; 160 int nalloc, nalloc_rp; 161 struct resync_pages *rps; 162 163 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 164 if (!r10_bio) 165 return NULL; 166 167 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 168 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 169 nalloc = conf->copies; /* resync */ 170 else 171 nalloc = 2; /* recovery */ 172 173 /* allocate once for all bios */ 174 if (!conf->have_replacement) 175 nalloc_rp = nalloc; 176 else 177 nalloc_rp = nalloc * 2; 178 rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags); 179 if (!rps) 180 goto out_free_r10bio; 181 182 /* 183 * Allocate bios. 184 */ 185 for (j = nalloc ; j-- ; ) { 186 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 187 if (!bio) 188 goto out_free_bio; 189 r10_bio->devs[j].bio = bio; 190 if (!conf->have_replacement) 191 continue; 192 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 193 if (!bio) 194 goto out_free_bio; 195 r10_bio->devs[j].repl_bio = bio; 196 } 197 /* 198 * Allocate RESYNC_PAGES data pages and attach them 199 * where needed. 200 */ 201 for (j = 0; j < nalloc; j++) { 202 struct bio *rbio = r10_bio->devs[j].repl_bio; 203 struct resync_pages *rp, *rp_repl; 204 205 rp = &rps[j]; 206 if (rbio) 207 rp_repl = &rps[nalloc + j]; 208 209 bio = r10_bio->devs[j].bio; 210 211 if (!j || test_bit(MD_RECOVERY_SYNC, 212 &conf->mddev->recovery)) { 213 if (resync_alloc_pages(rp, gfp_flags)) 214 goto out_free_pages; 215 } else { 216 memcpy(rp, &rps[0], sizeof(*rp)); 217 resync_get_all_pages(rp); 218 } 219 220 rp->raid_bio = r10_bio; 221 bio->bi_private = rp; 222 if (rbio) { 223 memcpy(rp_repl, rp, sizeof(*rp)); 224 rbio->bi_private = rp_repl; 225 } 226 } 227 228 return r10_bio; 229 230 out_free_pages: 231 while (--j >= 0) 232 resync_free_pages(&rps[j * 2]); 233 234 j = 0; 235 out_free_bio: 236 for ( ; j < nalloc; j++) { 237 if (r10_bio->devs[j].bio) 238 bio_put(r10_bio->devs[j].bio); 239 if (r10_bio->devs[j].repl_bio) 240 bio_put(r10_bio->devs[j].repl_bio); 241 } 242 kfree(rps); 243 out_free_r10bio: 244 r10bio_pool_free(r10_bio, conf); 245 return NULL; 246 } 247 248 static void r10buf_pool_free(void *__r10_bio, void *data) 249 { 250 struct r10conf *conf = data; 251 struct r10bio *r10bio = __r10_bio; 252 int j; 253 struct resync_pages *rp = NULL; 254 255 for (j = conf->copies; j--; ) { 256 struct bio *bio = r10bio->devs[j].bio; 257 258 rp = get_resync_pages(bio); 259 resync_free_pages(rp); 260 bio_put(bio); 261 262 bio = r10bio->devs[j].repl_bio; 263 if (bio) 264 bio_put(bio); 265 } 266 267 /* resync pages array stored in the 1st bio's .bi_private */ 268 kfree(rp); 269 270 r10bio_pool_free(r10bio, conf); 271 } 272 273 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 274 { 275 int i; 276 277 for (i = 0; i < conf->copies; i++) { 278 struct bio **bio = & r10_bio->devs[i].bio; 279 if (!BIO_SPECIAL(*bio)) 280 bio_put(*bio); 281 *bio = NULL; 282 bio = &r10_bio->devs[i].repl_bio; 283 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 284 bio_put(*bio); 285 *bio = NULL; 286 } 287 } 288 289 static void free_r10bio(struct r10bio *r10_bio) 290 { 291 struct r10conf *conf = r10_bio->mddev->private; 292 293 put_all_bios(conf, r10_bio); 294 mempool_free(r10_bio, conf->r10bio_pool); 295 } 296 297 static void put_buf(struct r10bio *r10_bio) 298 { 299 struct r10conf *conf = r10_bio->mddev->private; 300 301 mempool_free(r10_bio, conf->r10buf_pool); 302 303 lower_barrier(conf); 304 } 305 306 static void reschedule_retry(struct r10bio *r10_bio) 307 { 308 unsigned long flags; 309 struct mddev *mddev = r10_bio->mddev; 310 struct r10conf *conf = mddev->private; 311 312 spin_lock_irqsave(&conf->device_lock, flags); 313 list_add(&r10_bio->retry_list, &conf->retry_list); 314 conf->nr_queued ++; 315 spin_unlock_irqrestore(&conf->device_lock, flags); 316 317 /* wake up frozen array... */ 318 wake_up(&conf->wait_barrier); 319 320 md_wakeup_thread(mddev->thread); 321 } 322 323 /* 324 * raid_end_bio_io() is called when we have finished servicing a mirrored 325 * operation and are ready to return a success/failure code to the buffer 326 * cache layer. 327 */ 328 static void raid_end_bio_io(struct r10bio *r10_bio) 329 { 330 struct bio *bio = r10_bio->master_bio; 331 struct r10conf *conf = r10_bio->mddev->private; 332 333 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 334 bio->bi_status = BLK_STS_IOERR; 335 336 bio_endio(bio); 337 /* 338 * Wake up any possible resync thread that waits for the device 339 * to go idle. 340 */ 341 allow_barrier(conf); 342 343 free_r10bio(r10_bio); 344 } 345 346 /* 347 * Update disk head position estimator based on IRQ completion info. 348 */ 349 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 350 { 351 struct r10conf *conf = r10_bio->mddev->private; 352 353 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 354 r10_bio->devs[slot].addr + (r10_bio->sectors); 355 } 356 357 /* 358 * Find the disk number which triggered given bio 359 */ 360 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 361 struct bio *bio, int *slotp, int *replp) 362 { 363 int slot; 364 int repl = 0; 365 366 for (slot = 0; slot < conf->copies; slot++) { 367 if (r10_bio->devs[slot].bio == bio) 368 break; 369 if (r10_bio->devs[slot].repl_bio == bio) { 370 repl = 1; 371 break; 372 } 373 } 374 375 BUG_ON(slot == conf->copies); 376 update_head_pos(slot, r10_bio); 377 378 if (slotp) 379 *slotp = slot; 380 if (replp) 381 *replp = repl; 382 return r10_bio->devs[slot].devnum; 383 } 384 385 static void raid10_end_read_request(struct bio *bio) 386 { 387 int uptodate = !bio->bi_status; 388 struct r10bio *r10_bio = bio->bi_private; 389 int slot; 390 struct md_rdev *rdev; 391 struct r10conf *conf = r10_bio->mddev->private; 392 393 slot = r10_bio->read_slot; 394 rdev = r10_bio->devs[slot].rdev; 395 /* 396 * this branch is our 'one mirror IO has finished' event handler: 397 */ 398 update_head_pos(slot, r10_bio); 399 400 if (uptodate) { 401 /* 402 * Set R10BIO_Uptodate in our master bio, so that 403 * we will return a good error code to the higher 404 * levels even if IO on some other mirrored buffer fails. 405 * 406 * The 'master' represents the composite IO operation to 407 * user-side. So if something waits for IO, then it will 408 * wait for the 'master' bio. 409 */ 410 set_bit(R10BIO_Uptodate, &r10_bio->state); 411 } else { 412 /* If all other devices that store this block have 413 * failed, we want to return the error upwards rather 414 * than fail the last device. Here we redefine 415 * "uptodate" to mean "Don't want to retry" 416 */ 417 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 418 rdev->raid_disk)) 419 uptodate = 1; 420 } 421 if (uptodate) { 422 raid_end_bio_io(r10_bio); 423 rdev_dec_pending(rdev, conf->mddev); 424 } else { 425 /* 426 * oops, read error - keep the refcount on the rdev 427 */ 428 char b[BDEVNAME_SIZE]; 429 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 430 mdname(conf->mddev), 431 bdevname(rdev->bdev, b), 432 (unsigned long long)r10_bio->sector); 433 set_bit(R10BIO_ReadError, &r10_bio->state); 434 reschedule_retry(r10_bio); 435 } 436 } 437 438 static void close_write(struct r10bio *r10_bio) 439 { 440 /* clear the bitmap if all writes complete successfully */ 441 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 442 r10_bio->sectors, 443 !test_bit(R10BIO_Degraded, &r10_bio->state), 444 0); 445 md_write_end(r10_bio->mddev); 446 } 447 448 static void one_write_done(struct r10bio *r10_bio) 449 { 450 if (atomic_dec_and_test(&r10_bio->remaining)) { 451 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 452 reschedule_retry(r10_bio); 453 else { 454 close_write(r10_bio); 455 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 456 reschedule_retry(r10_bio); 457 else 458 raid_end_bio_io(r10_bio); 459 } 460 } 461 } 462 463 static void raid10_end_write_request(struct bio *bio) 464 { 465 struct r10bio *r10_bio = bio->bi_private; 466 int dev; 467 int dec_rdev = 1; 468 struct r10conf *conf = r10_bio->mddev->private; 469 int slot, repl; 470 struct md_rdev *rdev = NULL; 471 struct bio *to_put = NULL; 472 bool discard_error; 473 474 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 475 476 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 477 478 if (repl) 479 rdev = conf->mirrors[dev].replacement; 480 if (!rdev) { 481 smp_rmb(); 482 repl = 0; 483 rdev = conf->mirrors[dev].rdev; 484 } 485 /* 486 * this branch is our 'one mirror IO has finished' event handler: 487 */ 488 if (bio->bi_status && !discard_error) { 489 if (repl) 490 /* Never record new bad blocks to replacement, 491 * just fail it. 492 */ 493 md_error(rdev->mddev, rdev); 494 else { 495 set_bit(WriteErrorSeen, &rdev->flags); 496 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 497 set_bit(MD_RECOVERY_NEEDED, 498 &rdev->mddev->recovery); 499 500 dec_rdev = 0; 501 if (test_bit(FailFast, &rdev->flags) && 502 (bio->bi_opf & MD_FAILFAST)) { 503 md_error(rdev->mddev, rdev); 504 if (!test_bit(Faulty, &rdev->flags)) 505 /* This is the only remaining device, 506 * We need to retry the write without 507 * FailFast 508 */ 509 set_bit(R10BIO_WriteError, &r10_bio->state); 510 else { 511 r10_bio->devs[slot].bio = NULL; 512 to_put = bio; 513 dec_rdev = 1; 514 } 515 } else 516 set_bit(R10BIO_WriteError, &r10_bio->state); 517 } 518 } else { 519 /* 520 * Set R10BIO_Uptodate in our master bio, so that 521 * we will return a good error code for to the higher 522 * levels even if IO on some other mirrored buffer fails. 523 * 524 * The 'master' represents the composite IO operation to 525 * user-side. So if something waits for IO, then it will 526 * wait for the 'master' bio. 527 */ 528 sector_t first_bad; 529 int bad_sectors; 530 531 /* 532 * Do not set R10BIO_Uptodate if the current device is 533 * rebuilding or Faulty. This is because we cannot use 534 * such device for properly reading the data back (we could 535 * potentially use it, if the current write would have felt 536 * before rdev->recovery_offset, but for simplicity we don't 537 * check this here. 538 */ 539 if (test_bit(In_sync, &rdev->flags) && 540 !test_bit(Faulty, &rdev->flags)) 541 set_bit(R10BIO_Uptodate, &r10_bio->state); 542 543 /* Maybe we can clear some bad blocks. */ 544 if (is_badblock(rdev, 545 r10_bio->devs[slot].addr, 546 r10_bio->sectors, 547 &first_bad, &bad_sectors) && !discard_error) { 548 bio_put(bio); 549 if (repl) 550 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 551 else 552 r10_bio->devs[slot].bio = IO_MADE_GOOD; 553 dec_rdev = 0; 554 set_bit(R10BIO_MadeGood, &r10_bio->state); 555 } 556 } 557 558 /* 559 * 560 * Let's see if all mirrored write operations have finished 561 * already. 562 */ 563 one_write_done(r10_bio); 564 if (dec_rdev) 565 rdev_dec_pending(rdev, conf->mddev); 566 if (to_put) 567 bio_put(to_put); 568 } 569 570 /* 571 * RAID10 layout manager 572 * As well as the chunksize and raid_disks count, there are two 573 * parameters: near_copies and far_copies. 574 * near_copies * far_copies must be <= raid_disks. 575 * Normally one of these will be 1. 576 * If both are 1, we get raid0. 577 * If near_copies == raid_disks, we get raid1. 578 * 579 * Chunks are laid out in raid0 style with near_copies copies of the 580 * first chunk, followed by near_copies copies of the next chunk and 581 * so on. 582 * If far_copies > 1, then after 1/far_copies of the array has been assigned 583 * as described above, we start again with a device offset of near_copies. 584 * So we effectively have another copy of the whole array further down all 585 * the drives, but with blocks on different drives. 586 * With this layout, and block is never stored twice on the one device. 587 * 588 * raid10_find_phys finds the sector offset of a given virtual sector 589 * on each device that it is on. 590 * 591 * raid10_find_virt does the reverse mapping, from a device and a 592 * sector offset to a virtual address 593 */ 594 595 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 596 { 597 int n,f; 598 sector_t sector; 599 sector_t chunk; 600 sector_t stripe; 601 int dev; 602 int slot = 0; 603 int last_far_set_start, last_far_set_size; 604 605 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 606 last_far_set_start *= geo->far_set_size; 607 608 last_far_set_size = geo->far_set_size; 609 last_far_set_size += (geo->raid_disks % geo->far_set_size); 610 611 /* now calculate first sector/dev */ 612 chunk = r10bio->sector >> geo->chunk_shift; 613 sector = r10bio->sector & geo->chunk_mask; 614 615 chunk *= geo->near_copies; 616 stripe = chunk; 617 dev = sector_div(stripe, geo->raid_disks); 618 if (geo->far_offset) 619 stripe *= geo->far_copies; 620 621 sector += stripe << geo->chunk_shift; 622 623 /* and calculate all the others */ 624 for (n = 0; n < geo->near_copies; n++) { 625 int d = dev; 626 int set; 627 sector_t s = sector; 628 r10bio->devs[slot].devnum = d; 629 r10bio->devs[slot].addr = s; 630 slot++; 631 632 for (f = 1; f < geo->far_copies; f++) { 633 set = d / geo->far_set_size; 634 d += geo->near_copies; 635 636 if ((geo->raid_disks % geo->far_set_size) && 637 (d > last_far_set_start)) { 638 d -= last_far_set_start; 639 d %= last_far_set_size; 640 d += last_far_set_start; 641 } else { 642 d %= geo->far_set_size; 643 d += geo->far_set_size * set; 644 } 645 s += geo->stride; 646 r10bio->devs[slot].devnum = d; 647 r10bio->devs[slot].addr = s; 648 slot++; 649 } 650 dev++; 651 if (dev >= geo->raid_disks) { 652 dev = 0; 653 sector += (geo->chunk_mask + 1); 654 } 655 } 656 } 657 658 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 659 { 660 struct geom *geo = &conf->geo; 661 662 if (conf->reshape_progress != MaxSector && 663 ((r10bio->sector >= conf->reshape_progress) != 664 conf->mddev->reshape_backwards)) { 665 set_bit(R10BIO_Previous, &r10bio->state); 666 geo = &conf->prev; 667 } else 668 clear_bit(R10BIO_Previous, &r10bio->state); 669 670 __raid10_find_phys(geo, r10bio); 671 } 672 673 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 674 { 675 sector_t offset, chunk, vchunk; 676 /* Never use conf->prev as this is only called during resync 677 * or recovery, so reshape isn't happening 678 */ 679 struct geom *geo = &conf->geo; 680 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 681 int far_set_size = geo->far_set_size; 682 int last_far_set_start; 683 684 if (geo->raid_disks % geo->far_set_size) { 685 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 686 last_far_set_start *= geo->far_set_size; 687 688 if (dev >= last_far_set_start) { 689 far_set_size = geo->far_set_size; 690 far_set_size += (geo->raid_disks % geo->far_set_size); 691 far_set_start = last_far_set_start; 692 } 693 } 694 695 offset = sector & geo->chunk_mask; 696 if (geo->far_offset) { 697 int fc; 698 chunk = sector >> geo->chunk_shift; 699 fc = sector_div(chunk, geo->far_copies); 700 dev -= fc * geo->near_copies; 701 if (dev < far_set_start) 702 dev += far_set_size; 703 } else { 704 while (sector >= geo->stride) { 705 sector -= geo->stride; 706 if (dev < (geo->near_copies + far_set_start)) 707 dev += far_set_size - geo->near_copies; 708 else 709 dev -= geo->near_copies; 710 } 711 chunk = sector >> geo->chunk_shift; 712 } 713 vchunk = chunk * geo->raid_disks + dev; 714 sector_div(vchunk, geo->near_copies); 715 return (vchunk << geo->chunk_shift) + offset; 716 } 717 718 /* 719 * This routine returns the disk from which the requested read should 720 * be done. There is a per-array 'next expected sequential IO' sector 721 * number - if this matches on the next IO then we use the last disk. 722 * There is also a per-disk 'last know head position' sector that is 723 * maintained from IRQ contexts, both the normal and the resync IO 724 * completion handlers update this position correctly. If there is no 725 * perfect sequential match then we pick the disk whose head is closest. 726 * 727 * If there are 2 mirrors in the same 2 devices, performance degrades 728 * because position is mirror, not device based. 729 * 730 * The rdev for the device selected will have nr_pending incremented. 731 */ 732 733 /* 734 * FIXME: possibly should rethink readbalancing and do it differently 735 * depending on near_copies / far_copies geometry. 736 */ 737 static struct md_rdev *read_balance(struct r10conf *conf, 738 struct r10bio *r10_bio, 739 int *max_sectors) 740 { 741 const sector_t this_sector = r10_bio->sector; 742 int disk, slot; 743 int sectors = r10_bio->sectors; 744 int best_good_sectors; 745 sector_t new_distance, best_dist; 746 struct md_rdev *best_rdev, *rdev = NULL; 747 int do_balance; 748 int best_slot; 749 struct geom *geo = &conf->geo; 750 751 raid10_find_phys(conf, r10_bio); 752 rcu_read_lock(); 753 best_slot = -1; 754 best_rdev = NULL; 755 best_dist = MaxSector; 756 best_good_sectors = 0; 757 do_balance = 1; 758 clear_bit(R10BIO_FailFast, &r10_bio->state); 759 /* 760 * Check if we can balance. We can balance on the whole 761 * device if no resync is going on (recovery is ok), or below 762 * the resync window. We take the first readable disk when 763 * above the resync window. 764 */ 765 if ((conf->mddev->recovery_cp < MaxSector 766 && (this_sector + sectors >= conf->next_resync)) || 767 (mddev_is_clustered(conf->mddev) && 768 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 769 this_sector + sectors))) 770 do_balance = 0; 771 772 for (slot = 0; slot < conf->copies ; slot++) { 773 sector_t first_bad; 774 int bad_sectors; 775 sector_t dev_sector; 776 777 if (r10_bio->devs[slot].bio == IO_BLOCKED) 778 continue; 779 disk = r10_bio->devs[slot].devnum; 780 rdev = rcu_dereference(conf->mirrors[disk].replacement); 781 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 782 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 783 rdev = rcu_dereference(conf->mirrors[disk].rdev); 784 if (rdev == NULL || 785 test_bit(Faulty, &rdev->flags)) 786 continue; 787 if (!test_bit(In_sync, &rdev->flags) && 788 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 789 continue; 790 791 dev_sector = r10_bio->devs[slot].addr; 792 if (is_badblock(rdev, dev_sector, sectors, 793 &first_bad, &bad_sectors)) { 794 if (best_dist < MaxSector) 795 /* Already have a better slot */ 796 continue; 797 if (first_bad <= dev_sector) { 798 /* Cannot read here. If this is the 799 * 'primary' device, then we must not read 800 * beyond 'bad_sectors' from another device. 801 */ 802 bad_sectors -= (dev_sector - first_bad); 803 if (!do_balance && sectors > bad_sectors) 804 sectors = bad_sectors; 805 if (best_good_sectors > sectors) 806 best_good_sectors = sectors; 807 } else { 808 sector_t good_sectors = 809 first_bad - dev_sector; 810 if (good_sectors > best_good_sectors) { 811 best_good_sectors = good_sectors; 812 best_slot = slot; 813 best_rdev = rdev; 814 } 815 if (!do_balance) 816 /* Must read from here */ 817 break; 818 } 819 continue; 820 } else 821 best_good_sectors = sectors; 822 823 if (!do_balance) 824 break; 825 826 if (best_slot >= 0) 827 /* At least 2 disks to choose from so failfast is OK */ 828 set_bit(R10BIO_FailFast, &r10_bio->state); 829 /* This optimisation is debatable, and completely destroys 830 * sequential read speed for 'far copies' arrays. So only 831 * keep it for 'near' arrays, and review those later. 832 */ 833 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 834 new_distance = 0; 835 836 /* for far > 1 always use the lowest address */ 837 else if (geo->far_copies > 1) 838 new_distance = r10_bio->devs[slot].addr; 839 else 840 new_distance = abs(r10_bio->devs[slot].addr - 841 conf->mirrors[disk].head_position); 842 if (new_distance < best_dist) { 843 best_dist = new_distance; 844 best_slot = slot; 845 best_rdev = rdev; 846 } 847 } 848 if (slot >= conf->copies) { 849 slot = best_slot; 850 rdev = best_rdev; 851 } 852 853 if (slot >= 0) { 854 atomic_inc(&rdev->nr_pending); 855 r10_bio->read_slot = slot; 856 } else 857 rdev = NULL; 858 rcu_read_unlock(); 859 *max_sectors = best_good_sectors; 860 861 return rdev; 862 } 863 864 static int raid10_congested(struct mddev *mddev, int bits) 865 { 866 struct r10conf *conf = mddev->private; 867 int i, ret = 0; 868 869 if ((bits & (1 << WB_async_congested)) && 870 conf->pending_count >= max_queued_requests) 871 return 1; 872 873 rcu_read_lock(); 874 for (i = 0; 875 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 876 && ret == 0; 877 i++) { 878 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 879 if (rdev && !test_bit(Faulty, &rdev->flags)) { 880 struct request_queue *q = bdev_get_queue(rdev->bdev); 881 882 ret |= bdi_congested(q->backing_dev_info, bits); 883 } 884 } 885 rcu_read_unlock(); 886 return ret; 887 } 888 889 static void flush_pending_writes(struct r10conf *conf) 890 { 891 /* Any writes that have been queued but are awaiting 892 * bitmap updates get flushed here. 893 */ 894 spin_lock_irq(&conf->device_lock); 895 896 if (conf->pending_bio_list.head) { 897 struct bio *bio; 898 bio = bio_list_get(&conf->pending_bio_list); 899 conf->pending_count = 0; 900 spin_unlock_irq(&conf->device_lock); 901 /* flush any pending bitmap writes to disk 902 * before proceeding w/ I/O */ 903 bitmap_unplug(conf->mddev->bitmap); 904 wake_up(&conf->wait_barrier); 905 906 while (bio) { /* submit pending writes */ 907 struct bio *next = bio->bi_next; 908 struct md_rdev *rdev = (void*)bio->bi_disk; 909 bio->bi_next = NULL; 910 bio_set_dev(bio, rdev->bdev); 911 if (test_bit(Faulty, &rdev->flags)) { 912 bio_io_error(bio); 913 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 914 !blk_queue_discard(bio->bi_disk->queue))) 915 /* Just ignore it */ 916 bio_endio(bio); 917 else 918 generic_make_request(bio); 919 bio = next; 920 } 921 } else 922 spin_unlock_irq(&conf->device_lock); 923 } 924 925 /* Barriers.... 926 * Sometimes we need to suspend IO while we do something else, 927 * either some resync/recovery, or reconfigure the array. 928 * To do this we raise a 'barrier'. 929 * The 'barrier' is a counter that can be raised multiple times 930 * to count how many activities are happening which preclude 931 * normal IO. 932 * We can only raise the barrier if there is no pending IO. 933 * i.e. if nr_pending == 0. 934 * We choose only to raise the barrier if no-one is waiting for the 935 * barrier to go down. This means that as soon as an IO request 936 * is ready, no other operations which require a barrier will start 937 * until the IO request has had a chance. 938 * 939 * So: regular IO calls 'wait_barrier'. When that returns there 940 * is no backgroup IO happening, It must arrange to call 941 * allow_barrier when it has finished its IO. 942 * backgroup IO calls must call raise_barrier. Once that returns 943 * there is no normal IO happeing. It must arrange to call 944 * lower_barrier when the particular background IO completes. 945 */ 946 947 static void raise_barrier(struct r10conf *conf, int force) 948 { 949 BUG_ON(force && !conf->barrier); 950 spin_lock_irq(&conf->resync_lock); 951 952 /* Wait until no block IO is waiting (unless 'force') */ 953 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 954 conf->resync_lock); 955 956 /* block any new IO from starting */ 957 conf->barrier++; 958 959 /* Now wait for all pending IO to complete */ 960 wait_event_lock_irq(conf->wait_barrier, 961 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 962 conf->resync_lock); 963 964 spin_unlock_irq(&conf->resync_lock); 965 } 966 967 static void lower_barrier(struct r10conf *conf) 968 { 969 unsigned long flags; 970 spin_lock_irqsave(&conf->resync_lock, flags); 971 conf->barrier--; 972 spin_unlock_irqrestore(&conf->resync_lock, flags); 973 wake_up(&conf->wait_barrier); 974 } 975 976 static void wait_barrier(struct r10conf *conf) 977 { 978 spin_lock_irq(&conf->resync_lock); 979 if (conf->barrier) { 980 conf->nr_waiting++; 981 /* Wait for the barrier to drop. 982 * However if there are already pending 983 * requests (preventing the barrier from 984 * rising completely), and the 985 * pre-process bio queue isn't empty, 986 * then don't wait, as we need to empty 987 * that queue to get the nr_pending 988 * count down. 989 */ 990 raid10_log(conf->mddev, "wait barrier"); 991 wait_event_lock_irq(conf->wait_barrier, 992 !conf->barrier || 993 (atomic_read(&conf->nr_pending) && 994 current->bio_list && 995 (!bio_list_empty(¤t->bio_list[0]) || 996 !bio_list_empty(¤t->bio_list[1]))), 997 conf->resync_lock); 998 conf->nr_waiting--; 999 if (!conf->nr_waiting) 1000 wake_up(&conf->wait_barrier); 1001 } 1002 atomic_inc(&conf->nr_pending); 1003 spin_unlock_irq(&conf->resync_lock); 1004 } 1005 1006 static void allow_barrier(struct r10conf *conf) 1007 { 1008 if ((atomic_dec_and_test(&conf->nr_pending)) || 1009 (conf->array_freeze_pending)) 1010 wake_up(&conf->wait_barrier); 1011 } 1012 1013 static void freeze_array(struct r10conf *conf, int extra) 1014 { 1015 /* stop syncio and normal IO and wait for everything to 1016 * go quiet. 1017 * We increment barrier and nr_waiting, and then 1018 * wait until nr_pending match nr_queued+extra 1019 * This is called in the context of one normal IO request 1020 * that has failed. Thus any sync request that might be pending 1021 * will be blocked by nr_pending, and we need to wait for 1022 * pending IO requests to complete or be queued for re-try. 1023 * Thus the number queued (nr_queued) plus this request (extra) 1024 * must match the number of pending IOs (nr_pending) before 1025 * we continue. 1026 */ 1027 spin_lock_irq(&conf->resync_lock); 1028 conf->array_freeze_pending++; 1029 conf->barrier++; 1030 conf->nr_waiting++; 1031 wait_event_lock_irq_cmd(conf->wait_barrier, 1032 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1033 conf->resync_lock, 1034 flush_pending_writes(conf)); 1035 1036 conf->array_freeze_pending--; 1037 spin_unlock_irq(&conf->resync_lock); 1038 } 1039 1040 static void unfreeze_array(struct r10conf *conf) 1041 { 1042 /* reverse the effect of the freeze */ 1043 spin_lock_irq(&conf->resync_lock); 1044 conf->barrier--; 1045 conf->nr_waiting--; 1046 wake_up(&conf->wait_barrier); 1047 spin_unlock_irq(&conf->resync_lock); 1048 } 1049 1050 static sector_t choose_data_offset(struct r10bio *r10_bio, 1051 struct md_rdev *rdev) 1052 { 1053 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1054 test_bit(R10BIO_Previous, &r10_bio->state)) 1055 return rdev->data_offset; 1056 else 1057 return rdev->new_data_offset; 1058 } 1059 1060 struct raid10_plug_cb { 1061 struct blk_plug_cb cb; 1062 struct bio_list pending; 1063 int pending_cnt; 1064 }; 1065 1066 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1067 { 1068 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1069 cb); 1070 struct mddev *mddev = plug->cb.data; 1071 struct r10conf *conf = mddev->private; 1072 struct bio *bio; 1073 1074 if (from_schedule || current->bio_list) { 1075 spin_lock_irq(&conf->device_lock); 1076 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1077 conf->pending_count += plug->pending_cnt; 1078 spin_unlock_irq(&conf->device_lock); 1079 wake_up(&conf->wait_barrier); 1080 md_wakeup_thread(mddev->thread); 1081 kfree(plug); 1082 return; 1083 } 1084 1085 /* we aren't scheduling, so we can do the write-out directly. */ 1086 bio = bio_list_get(&plug->pending); 1087 bitmap_unplug(mddev->bitmap); 1088 wake_up(&conf->wait_barrier); 1089 1090 while (bio) { /* submit pending writes */ 1091 struct bio *next = bio->bi_next; 1092 struct md_rdev *rdev = (void*)bio->bi_disk; 1093 bio->bi_next = NULL; 1094 bio_set_dev(bio, rdev->bdev); 1095 if (test_bit(Faulty, &rdev->flags)) { 1096 bio_io_error(bio); 1097 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1098 !blk_queue_discard(bio->bi_disk->queue))) 1099 /* Just ignore it */ 1100 bio_endio(bio); 1101 else 1102 generic_make_request(bio); 1103 bio = next; 1104 } 1105 kfree(plug); 1106 } 1107 1108 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1109 struct r10bio *r10_bio) 1110 { 1111 struct r10conf *conf = mddev->private; 1112 struct bio *read_bio; 1113 const int op = bio_op(bio); 1114 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1115 int max_sectors; 1116 sector_t sectors; 1117 struct md_rdev *rdev; 1118 char b[BDEVNAME_SIZE]; 1119 int slot = r10_bio->read_slot; 1120 struct md_rdev *err_rdev = NULL; 1121 gfp_t gfp = GFP_NOIO; 1122 1123 if (r10_bio->devs[slot].rdev) { 1124 /* 1125 * This is an error retry, but we cannot 1126 * safely dereference the rdev in the r10_bio, 1127 * we must use the one in conf. 1128 * If it has already been disconnected (unlikely) 1129 * we lose the device name in error messages. 1130 */ 1131 int disk; 1132 /* 1133 * As we are blocking raid10, it is a little safer to 1134 * use __GFP_HIGH. 1135 */ 1136 gfp = GFP_NOIO | __GFP_HIGH; 1137 1138 rcu_read_lock(); 1139 disk = r10_bio->devs[slot].devnum; 1140 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1141 if (err_rdev) 1142 bdevname(err_rdev->bdev, b); 1143 else { 1144 strcpy(b, "???"); 1145 /* This never gets dereferenced */ 1146 err_rdev = r10_bio->devs[slot].rdev; 1147 } 1148 rcu_read_unlock(); 1149 } 1150 /* 1151 * Register the new request and wait if the reconstruction 1152 * thread has put up a bar for new requests. 1153 * Continue immediately if no resync is active currently. 1154 */ 1155 wait_barrier(conf); 1156 1157 sectors = r10_bio->sectors; 1158 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1159 bio->bi_iter.bi_sector < conf->reshape_progress && 1160 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1161 /* 1162 * IO spans the reshape position. Need to wait for reshape to 1163 * pass 1164 */ 1165 raid10_log(conf->mddev, "wait reshape"); 1166 allow_barrier(conf); 1167 wait_event(conf->wait_barrier, 1168 conf->reshape_progress <= bio->bi_iter.bi_sector || 1169 conf->reshape_progress >= bio->bi_iter.bi_sector + 1170 sectors); 1171 wait_barrier(conf); 1172 } 1173 1174 rdev = read_balance(conf, r10_bio, &max_sectors); 1175 if (!rdev) { 1176 if (err_rdev) { 1177 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1178 mdname(mddev), b, 1179 (unsigned long long)r10_bio->sector); 1180 } 1181 raid_end_bio_io(r10_bio); 1182 return; 1183 } 1184 if (err_rdev) 1185 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1186 mdname(mddev), 1187 bdevname(rdev->bdev, b), 1188 (unsigned long long)r10_bio->sector); 1189 if (max_sectors < bio_sectors(bio)) { 1190 struct bio *split = bio_split(bio, max_sectors, 1191 gfp, conf->bio_split); 1192 bio_chain(split, bio); 1193 generic_make_request(bio); 1194 bio = split; 1195 r10_bio->master_bio = bio; 1196 r10_bio->sectors = max_sectors; 1197 } 1198 slot = r10_bio->read_slot; 1199 1200 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set); 1201 1202 r10_bio->devs[slot].bio = read_bio; 1203 r10_bio->devs[slot].rdev = rdev; 1204 1205 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1206 choose_data_offset(r10_bio, rdev); 1207 bio_set_dev(read_bio, rdev->bdev); 1208 read_bio->bi_end_io = raid10_end_read_request; 1209 bio_set_op_attrs(read_bio, op, do_sync); 1210 if (test_bit(FailFast, &rdev->flags) && 1211 test_bit(R10BIO_FailFast, &r10_bio->state)) 1212 read_bio->bi_opf |= MD_FAILFAST; 1213 read_bio->bi_private = r10_bio; 1214 1215 if (mddev->gendisk) 1216 trace_block_bio_remap(read_bio->bi_disk->queue, 1217 read_bio, disk_devt(mddev->gendisk), 1218 r10_bio->sector); 1219 generic_make_request(read_bio); 1220 return; 1221 } 1222 1223 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1224 struct bio *bio, bool replacement, 1225 int n_copy) 1226 { 1227 const int op = bio_op(bio); 1228 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1229 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1230 unsigned long flags; 1231 struct blk_plug_cb *cb; 1232 struct raid10_plug_cb *plug = NULL; 1233 struct r10conf *conf = mddev->private; 1234 struct md_rdev *rdev; 1235 int devnum = r10_bio->devs[n_copy].devnum; 1236 struct bio *mbio; 1237 1238 if (replacement) { 1239 rdev = conf->mirrors[devnum].replacement; 1240 if (rdev == NULL) { 1241 /* Replacement just got moved to main 'rdev' */ 1242 smp_mb(); 1243 rdev = conf->mirrors[devnum].rdev; 1244 } 1245 } else 1246 rdev = conf->mirrors[devnum].rdev; 1247 1248 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 1249 if (replacement) 1250 r10_bio->devs[n_copy].repl_bio = mbio; 1251 else 1252 r10_bio->devs[n_copy].bio = mbio; 1253 1254 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1255 choose_data_offset(r10_bio, rdev)); 1256 bio_set_dev(mbio, rdev->bdev); 1257 mbio->bi_end_io = raid10_end_write_request; 1258 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1259 if (!replacement && test_bit(FailFast, 1260 &conf->mirrors[devnum].rdev->flags) 1261 && enough(conf, devnum)) 1262 mbio->bi_opf |= MD_FAILFAST; 1263 mbio->bi_private = r10_bio; 1264 1265 if (conf->mddev->gendisk) 1266 trace_block_bio_remap(mbio->bi_disk->queue, 1267 mbio, disk_devt(conf->mddev->gendisk), 1268 r10_bio->sector); 1269 /* flush_pending_writes() needs access to the rdev so...*/ 1270 mbio->bi_disk = (void *)rdev; 1271 1272 atomic_inc(&r10_bio->remaining); 1273 1274 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1275 if (cb) 1276 plug = container_of(cb, struct raid10_plug_cb, cb); 1277 else 1278 plug = NULL; 1279 if (plug) { 1280 bio_list_add(&plug->pending, mbio); 1281 plug->pending_cnt++; 1282 } else { 1283 spin_lock_irqsave(&conf->device_lock, flags); 1284 bio_list_add(&conf->pending_bio_list, mbio); 1285 conf->pending_count++; 1286 spin_unlock_irqrestore(&conf->device_lock, flags); 1287 md_wakeup_thread(mddev->thread); 1288 } 1289 } 1290 1291 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1292 struct r10bio *r10_bio) 1293 { 1294 struct r10conf *conf = mddev->private; 1295 int i; 1296 struct md_rdev *blocked_rdev; 1297 sector_t sectors; 1298 int max_sectors; 1299 1300 if ((mddev_is_clustered(mddev) && 1301 md_cluster_ops->area_resyncing(mddev, WRITE, 1302 bio->bi_iter.bi_sector, 1303 bio_end_sector(bio)))) { 1304 DEFINE_WAIT(w); 1305 for (;;) { 1306 prepare_to_wait(&conf->wait_barrier, 1307 &w, TASK_IDLE); 1308 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1309 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1310 break; 1311 schedule(); 1312 } 1313 finish_wait(&conf->wait_barrier, &w); 1314 } 1315 1316 /* 1317 * Register the new request and wait if the reconstruction 1318 * thread has put up a bar for new requests. 1319 * Continue immediately if no resync is active currently. 1320 */ 1321 wait_barrier(conf); 1322 1323 sectors = r10_bio->sectors; 1324 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1325 bio->bi_iter.bi_sector < conf->reshape_progress && 1326 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1327 /* 1328 * IO spans the reshape position. Need to wait for reshape to 1329 * pass 1330 */ 1331 raid10_log(conf->mddev, "wait reshape"); 1332 allow_barrier(conf); 1333 wait_event(conf->wait_barrier, 1334 conf->reshape_progress <= bio->bi_iter.bi_sector || 1335 conf->reshape_progress >= bio->bi_iter.bi_sector + 1336 sectors); 1337 wait_barrier(conf); 1338 } 1339 1340 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1341 (mddev->reshape_backwards 1342 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1343 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1344 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1345 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1346 /* Need to update reshape_position in metadata */ 1347 mddev->reshape_position = conf->reshape_progress; 1348 set_mask_bits(&mddev->sb_flags, 0, 1349 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1350 md_wakeup_thread(mddev->thread); 1351 raid10_log(conf->mddev, "wait reshape metadata"); 1352 wait_event(mddev->sb_wait, 1353 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1354 1355 conf->reshape_safe = mddev->reshape_position; 1356 } 1357 1358 if (conf->pending_count >= max_queued_requests) { 1359 md_wakeup_thread(mddev->thread); 1360 raid10_log(mddev, "wait queued"); 1361 wait_event(conf->wait_barrier, 1362 conf->pending_count < max_queued_requests); 1363 } 1364 /* first select target devices under rcu_lock and 1365 * inc refcount on their rdev. Record them by setting 1366 * bios[x] to bio 1367 * If there are known/acknowledged bad blocks on any device 1368 * on which we have seen a write error, we want to avoid 1369 * writing to those blocks. This potentially requires several 1370 * writes to write around the bad blocks. Each set of writes 1371 * gets its own r10_bio with a set of bios attached. 1372 */ 1373 1374 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1375 raid10_find_phys(conf, r10_bio); 1376 retry_write: 1377 blocked_rdev = NULL; 1378 rcu_read_lock(); 1379 max_sectors = r10_bio->sectors; 1380 1381 for (i = 0; i < conf->copies; i++) { 1382 int d = r10_bio->devs[i].devnum; 1383 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1384 struct md_rdev *rrdev = rcu_dereference( 1385 conf->mirrors[d].replacement); 1386 if (rdev == rrdev) 1387 rrdev = NULL; 1388 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1389 atomic_inc(&rdev->nr_pending); 1390 blocked_rdev = rdev; 1391 break; 1392 } 1393 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1394 atomic_inc(&rrdev->nr_pending); 1395 blocked_rdev = rrdev; 1396 break; 1397 } 1398 if (rdev && (test_bit(Faulty, &rdev->flags))) 1399 rdev = NULL; 1400 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1401 rrdev = NULL; 1402 1403 r10_bio->devs[i].bio = NULL; 1404 r10_bio->devs[i].repl_bio = NULL; 1405 1406 if (!rdev && !rrdev) { 1407 set_bit(R10BIO_Degraded, &r10_bio->state); 1408 continue; 1409 } 1410 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1411 sector_t first_bad; 1412 sector_t dev_sector = r10_bio->devs[i].addr; 1413 int bad_sectors; 1414 int is_bad; 1415 1416 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1417 &first_bad, &bad_sectors); 1418 if (is_bad < 0) { 1419 /* Mustn't write here until the bad block 1420 * is acknowledged 1421 */ 1422 atomic_inc(&rdev->nr_pending); 1423 set_bit(BlockedBadBlocks, &rdev->flags); 1424 blocked_rdev = rdev; 1425 break; 1426 } 1427 if (is_bad && first_bad <= dev_sector) { 1428 /* Cannot write here at all */ 1429 bad_sectors -= (dev_sector - first_bad); 1430 if (bad_sectors < max_sectors) 1431 /* Mustn't write more than bad_sectors 1432 * to other devices yet 1433 */ 1434 max_sectors = bad_sectors; 1435 /* We don't set R10BIO_Degraded as that 1436 * only applies if the disk is missing, 1437 * so it might be re-added, and we want to 1438 * know to recover this chunk. 1439 * In this case the device is here, and the 1440 * fact that this chunk is not in-sync is 1441 * recorded in the bad block log. 1442 */ 1443 continue; 1444 } 1445 if (is_bad) { 1446 int good_sectors = first_bad - dev_sector; 1447 if (good_sectors < max_sectors) 1448 max_sectors = good_sectors; 1449 } 1450 } 1451 if (rdev) { 1452 r10_bio->devs[i].bio = bio; 1453 atomic_inc(&rdev->nr_pending); 1454 } 1455 if (rrdev) { 1456 r10_bio->devs[i].repl_bio = bio; 1457 atomic_inc(&rrdev->nr_pending); 1458 } 1459 } 1460 rcu_read_unlock(); 1461 1462 if (unlikely(blocked_rdev)) { 1463 /* Have to wait for this device to get unblocked, then retry */ 1464 int j; 1465 int d; 1466 1467 for (j = 0; j < i; j++) { 1468 if (r10_bio->devs[j].bio) { 1469 d = r10_bio->devs[j].devnum; 1470 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1471 } 1472 if (r10_bio->devs[j].repl_bio) { 1473 struct md_rdev *rdev; 1474 d = r10_bio->devs[j].devnum; 1475 rdev = conf->mirrors[d].replacement; 1476 if (!rdev) { 1477 /* Race with remove_disk */ 1478 smp_mb(); 1479 rdev = conf->mirrors[d].rdev; 1480 } 1481 rdev_dec_pending(rdev, mddev); 1482 } 1483 } 1484 allow_barrier(conf); 1485 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1486 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1487 wait_barrier(conf); 1488 goto retry_write; 1489 } 1490 1491 if (max_sectors < r10_bio->sectors) 1492 r10_bio->sectors = max_sectors; 1493 1494 if (r10_bio->sectors < bio_sectors(bio)) { 1495 struct bio *split = bio_split(bio, r10_bio->sectors, 1496 GFP_NOIO, conf->bio_split); 1497 bio_chain(split, bio); 1498 generic_make_request(bio); 1499 bio = split; 1500 r10_bio->master_bio = bio; 1501 } 1502 1503 atomic_set(&r10_bio->remaining, 1); 1504 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1505 1506 for (i = 0; i < conf->copies; i++) { 1507 if (r10_bio->devs[i].bio) 1508 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1509 if (r10_bio->devs[i].repl_bio) 1510 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1511 } 1512 one_write_done(r10_bio); 1513 } 1514 1515 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1516 { 1517 struct r10conf *conf = mddev->private; 1518 struct r10bio *r10_bio; 1519 1520 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1521 1522 r10_bio->master_bio = bio; 1523 r10_bio->sectors = sectors; 1524 1525 r10_bio->mddev = mddev; 1526 r10_bio->sector = bio->bi_iter.bi_sector; 1527 r10_bio->state = 0; 1528 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies); 1529 1530 if (bio_data_dir(bio) == READ) 1531 raid10_read_request(mddev, bio, r10_bio); 1532 else 1533 raid10_write_request(mddev, bio, r10_bio); 1534 } 1535 1536 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1537 { 1538 struct r10conf *conf = mddev->private; 1539 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1540 int chunk_sects = chunk_mask + 1; 1541 int sectors = bio_sectors(bio); 1542 1543 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1544 md_flush_request(mddev, bio); 1545 return true; 1546 } 1547 1548 if (!md_write_start(mddev, bio)) 1549 return false; 1550 1551 /* 1552 * If this request crosses a chunk boundary, we need to split 1553 * it. 1554 */ 1555 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1556 sectors > chunk_sects 1557 && (conf->geo.near_copies < conf->geo.raid_disks 1558 || conf->prev.near_copies < 1559 conf->prev.raid_disks))) 1560 sectors = chunk_sects - 1561 (bio->bi_iter.bi_sector & 1562 (chunk_sects - 1)); 1563 __make_request(mddev, bio, sectors); 1564 1565 /* In case raid10d snuck in to freeze_array */ 1566 wake_up(&conf->wait_barrier); 1567 return true; 1568 } 1569 1570 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1571 { 1572 struct r10conf *conf = mddev->private; 1573 int i; 1574 1575 if (conf->geo.near_copies < conf->geo.raid_disks) 1576 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1577 if (conf->geo.near_copies > 1) 1578 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1579 if (conf->geo.far_copies > 1) { 1580 if (conf->geo.far_offset) 1581 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1582 else 1583 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1584 if (conf->geo.far_set_size != conf->geo.raid_disks) 1585 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1586 } 1587 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1588 conf->geo.raid_disks - mddev->degraded); 1589 rcu_read_lock(); 1590 for (i = 0; i < conf->geo.raid_disks; i++) { 1591 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1592 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1593 } 1594 rcu_read_unlock(); 1595 seq_printf(seq, "]"); 1596 } 1597 1598 /* check if there are enough drives for 1599 * every block to appear on atleast one. 1600 * Don't consider the device numbered 'ignore' 1601 * as we might be about to remove it. 1602 */ 1603 static int _enough(struct r10conf *conf, int previous, int ignore) 1604 { 1605 int first = 0; 1606 int has_enough = 0; 1607 int disks, ncopies; 1608 if (previous) { 1609 disks = conf->prev.raid_disks; 1610 ncopies = conf->prev.near_copies; 1611 } else { 1612 disks = conf->geo.raid_disks; 1613 ncopies = conf->geo.near_copies; 1614 } 1615 1616 rcu_read_lock(); 1617 do { 1618 int n = conf->copies; 1619 int cnt = 0; 1620 int this = first; 1621 while (n--) { 1622 struct md_rdev *rdev; 1623 if (this != ignore && 1624 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1625 test_bit(In_sync, &rdev->flags)) 1626 cnt++; 1627 this = (this+1) % disks; 1628 } 1629 if (cnt == 0) 1630 goto out; 1631 first = (first + ncopies) % disks; 1632 } while (first != 0); 1633 has_enough = 1; 1634 out: 1635 rcu_read_unlock(); 1636 return has_enough; 1637 } 1638 1639 static int enough(struct r10conf *conf, int ignore) 1640 { 1641 /* when calling 'enough', both 'prev' and 'geo' must 1642 * be stable. 1643 * This is ensured if ->reconfig_mutex or ->device_lock 1644 * is held. 1645 */ 1646 return _enough(conf, 0, ignore) && 1647 _enough(conf, 1, ignore); 1648 } 1649 1650 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1651 { 1652 char b[BDEVNAME_SIZE]; 1653 struct r10conf *conf = mddev->private; 1654 unsigned long flags; 1655 1656 /* 1657 * If it is not operational, then we have already marked it as dead 1658 * else if it is the last working disks, ignore the error, let the 1659 * next level up know. 1660 * else mark the drive as failed 1661 */ 1662 spin_lock_irqsave(&conf->device_lock, flags); 1663 if (test_bit(In_sync, &rdev->flags) 1664 && !enough(conf, rdev->raid_disk)) { 1665 /* 1666 * Don't fail the drive, just return an IO error. 1667 */ 1668 spin_unlock_irqrestore(&conf->device_lock, flags); 1669 return; 1670 } 1671 if (test_and_clear_bit(In_sync, &rdev->flags)) 1672 mddev->degraded++; 1673 /* 1674 * If recovery is running, make sure it aborts. 1675 */ 1676 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1677 set_bit(Blocked, &rdev->flags); 1678 set_bit(Faulty, &rdev->flags); 1679 set_mask_bits(&mddev->sb_flags, 0, 1680 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1681 spin_unlock_irqrestore(&conf->device_lock, flags); 1682 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1683 "md/raid10:%s: Operation continuing on %d devices.\n", 1684 mdname(mddev), bdevname(rdev->bdev, b), 1685 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1686 } 1687 1688 static void print_conf(struct r10conf *conf) 1689 { 1690 int i; 1691 struct md_rdev *rdev; 1692 1693 pr_debug("RAID10 conf printout:\n"); 1694 if (!conf) { 1695 pr_debug("(!conf)\n"); 1696 return; 1697 } 1698 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1699 conf->geo.raid_disks); 1700 1701 /* This is only called with ->reconfix_mutex held, so 1702 * rcu protection of rdev is not needed */ 1703 for (i = 0; i < conf->geo.raid_disks; i++) { 1704 char b[BDEVNAME_SIZE]; 1705 rdev = conf->mirrors[i].rdev; 1706 if (rdev) 1707 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1708 i, !test_bit(In_sync, &rdev->flags), 1709 !test_bit(Faulty, &rdev->flags), 1710 bdevname(rdev->bdev,b)); 1711 } 1712 } 1713 1714 static void close_sync(struct r10conf *conf) 1715 { 1716 wait_barrier(conf); 1717 allow_barrier(conf); 1718 1719 mempool_destroy(conf->r10buf_pool); 1720 conf->r10buf_pool = NULL; 1721 } 1722 1723 static int raid10_spare_active(struct mddev *mddev) 1724 { 1725 int i; 1726 struct r10conf *conf = mddev->private; 1727 struct raid10_info *tmp; 1728 int count = 0; 1729 unsigned long flags; 1730 1731 /* 1732 * Find all non-in_sync disks within the RAID10 configuration 1733 * and mark them in_sync 1734 */ 1735 for (i = 0; i < conf->geo.raid_disks; i++) { 1736 tmp = conf->mirrors + i; 1737 if (tmp->replacement 1738 && tmp->replacement->recovery_offset == MaxSector 1739 && !test_bit(Faulty, &tmp->replacement->flags) 1740 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1741 /* Replacement has just become active */ 1742 if (!tmp->rdev 1743 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1744 count++; 1745 if (tmp->rdev) { 1746 /* Replaced device not technically faulty, 1747 * but we need to be sure it gets removed 1748 * and never re-added. 1749 */ 1750 set_bit(Faulty, &tmp->rdev->flags); 1751 sysfs_notify_dirent_safe( 1752 tmp->rdev->sysfs_state); 1753 } 1754 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1755 } else if (tmp->rdev 1756 && tmp->rdev->recovery_offset == MaxSector 1757 && !test_bit(Faulty, &tmp->rdev->flags) 1758 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1759 count++; 1760 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1761 } 1762 } 1763 spin_lock_irqsave(&conf->device_lock, flags); 1764 mddev->degraded -= count; 1765 spin_unlock_irqrestore(&conf->device_lock, flags); 1766 1767 print_conf(conf); 1768 return count; 1769 } 1770 1771 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1772 { 1773 struct r10conf *conf = mddev->private; 1774 int err = -EEXIST; 1775 int mirror; 1776 int first = 0; 1777 int last = conf->geo.raid_disks - 1; 1778 1779 if (mddev->recovery_cp < MaxSector) 1780 /* only hot-add to in-sync arrays, as recovery is 1781 * very different from resync 1782 */ 1783 return -EBUSY; 1784 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1785 return -EINVAL; 1786 1787 if (md_integrity_add_rdev(rdev, mddev)) 1788 return -ENXIO; 1789 1790 if (rdev->raid_disk >= 0) 1791 first = last = rdev->raid_disk; 1792 1793 if (rdev->saved_raid_disk >= first && 1794 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1795 mirror = rdev->saved_raid_disk; 1796 else 1797 mirror = first; 1798 for ( ; mirror <= last ; mirror++) { 1799 struct raid10_info *p = &conf->mirrors[mirror]; 1800 if (p->recovery_disabled == mddev->recovery_disabled) 1801 continue; 1802 if (p->rdev) { 1803 if (!test_bit(WantReplacement, &p->rdev->flags) || 1804 p->replacement != NULL) 1805 continue; 1806 clear_bit(In_sync, &rdev->flags); 1807 set_bit(Replacement, &rdev->flags); 1808 rdev->raid_disk = mirror; 1809 err = 0; 1810 if (mddev->gendisk) 1811 disk_stack_limits(mddev->gendisk, rdev->bdev, 1812 rdev->data_offset << 9); 1813 conf->fullsync = 1; 1814 rcu_assign_pointer(p->replacement, rdev); 1815 break; 1816 } 1817 1818 if (mddev->gendisk) 1819 disk_stack_limits(mddev->gendisk, rdev->bdev, 1820 rdev->data_offset << 9); 1821 1822 p->head_position = 0; 1823 p->recovery_disabled = mddev->recovery_disabled - 1; 1824 rdev->raid_disk = mirror; 1825 err = 0; 1826 if (rdev->saved_raid_disk != mirror) 1827 conf->fullsync = 1; 1828 rcu_assign_pointer(p->rdev, rdev); 1829 break; 1830 } 1831 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1832 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1833 1834 print_conf(conf); 1835 return err; 1836 } 1837 1838 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1839 { 1840 struct r10conf *conf = mddev->private; 1841 int err = 0; 1842 int number = rdev->raid_disk; 1843 struct md_rdev **rdevp; 1844 struct raid10_info *p = conf->mirrors + number; 1845 1846 print_conf(conf); 1847 if (rdev == p->rdev) 1848 rdevp = &p->rdev; 1849 else if (rdev == p->replacement) 1850 rdevp = &p->replacement; 1851 else 1852 return 0; 1853 1854 if (test_bit(In_sync, &rdev->flags) || 1855 atomic_read(&rdev->nr_pending)) { 1856 err = -EBUSY; 1857 goto abort; 1858 } 1859 /* Only remove non-faulty devices if recovery 1860 * is not possible. 1861 */ 1862 if (!test_bit(Faulty, &rdev->flags) && 1863 mddev->recovery_disabled != p->recovery_disabled && 1864 (!p->replacement || p->replacement == rdev) && 1865 number < conf->geo.raid_disks && 1866 enough(conf, -1)) { 1867 err = -EBUSY; 1868 goto abort; 1869 } 1870 *rdevp = NULL; 1871 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1872 synchronize_rcu(); 1873 if (atomic_read(&rdev->nr_pending)) { 1874 /* lost the race, try later */ 1875 err = -EBUSY; 1876 *rdevp = rdev; 1877 goto abort; 1878 } 1879 } 1880 if (p->replacement) { 1881 /* We must have just cleared 'rdev' */ 1882 p->rdev = p->replacement; 1883 clear_bit(Replacement, &p->replacement->flags); 1884 smp_mb(); /* Make sure other CPUs may see both as identical 1885 * but will never see neither -- if they are careful. 1886 */ 1887 p->replacement = NULL; 1888 } 1889 1890 clear_bit(WantReplacement, &rdev->flags); 1891 err = md_integrity_register(mddev); 1892 1893 abort: 1894 1895 print_conf(conf); 1896 return err; 1897 } 1898 1899 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 1900 { 1901 struct r10conf *conf = r10_bio->mddev->private; 1902 1903 if (!bio->bi_status) 1904 set_bit(R10BIO_Uptodate, &r10_bio->state); 1905 else 1906 /* The write handler will notice the lack of 1907 * R10BIO_Uptodate and record any errors etc 1908 */ 1909 atomic_add(r10_bio->sectors, 1910 &conf->mirrors[d].rdev->corrected_errors); 1911 1912 /* for reconstruct, we always reschedule after a read. 1913 * for resync, only after all reads 1914 */ 1915 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1916 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1917 atomic_dec_and_test(&r10_bio->remaining)) { 1918 /* we have read all the blocks, 1919 * do the comparison in process context in raid10d 1920 */ 1921 reschedule_retry(r10_bio); 1922 } 1923 } 1924 1925 static void end_sync_read(struct bio *bio) 1926 { 1927 struct r10bio *r10_bio = get_resync_r10bio(bio); 1928 struct r10conf *conf = r10_bio->mddev->private; 1929 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1930 1931 __end_sync_read(r10_bio, bio, d); 1932 } 1933 1934 static void end_reshape_read(struct bio *bio) 1935 { 1936 /* reshape read bio isn't allocated from r10buf_pool */ 1937 struct r10bio *r10_bio = bio->bi_private; 1938 1939 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 1940 } 1941 1942 static void end_sync_request(struct r10bio *r10_bio) 1943 { 1944 struct mddev *mddev = r10_bio->mddev; 1945 1946 while (atomic_dec_and_test(&r10_bio->remaining)) { 1947 if (r10_bio->master_bio == NULL) { 1948 /* the primary of several recovery bios */ 1949 sector_t s = r10_bio->sectors; 1950 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1951 test_bit(R10BIO_WriteError, &r10_bio->state)) 1952 reschedule_retry(r10_bio); 1953 else 1954 put_buf(r10_bio); 1955 md_done_sync(mddev, s, 1); 1956 break; 1957 } else { 1958 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1959 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1960 test_bit(R10BIO_WriteError, &r10_bio->state)) 1961 reschedule_retry(r10_bio); 1962 else 1963 put_buf(r10_bio); 1964 r10_bio = r10_bio2; 1965 } 1966 } 1967 } 1968 1969 static void end_sync_write(struct bio *bio) 1970 { 1971 struct r10bio *r10_bio = get_resync_r10bio(bio); 1972 struct mddev *mddev = r10_bio->mddev; 1973 struct r10conf *conf = mddev->private; 1974 int d; 1975 sector_t first_bad; 1976 int bad_sectors; 1977 int slot; 1978 int repl; 1979 struct md_rdev *rdev = NULL; 1980 1981 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1982 if (repl) 1983 rdev = conf->mirrors[d].replacement; 1984 else 1985 rdev = conf->mirrors[d].rdev; 1986 1987 if (bio->bi_status) { 1988 if (repl) 1989 md_error(mddev, rdev); 1990 else { 1991 set_bit(WriteErrorSeen, &rdev->flags); 1992 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1993 set_bit(MD_RECOVERY_NEEDED, 1994 &rdev->mddev->recovery); 1995 set_bit(R10BIO_WriteError, &r10_bio->state); 1996 } 1997 } else if (is_badblock(rdev, 1998 r10_bio->devs[slot].addr, 1999 r10_bio->sectors, 2000 &first_bad, &bad_sectors)) 2001 set_bit(R10BIO_MadeGood, &r10_bio->state); 2002 2003 rdev_dec_pending(rdev, mddev); 2004 2005 end_sync_request(r10_bio); 2006 } 2007 2008 /* 2009 * Note: sync and recover and handled very differently for raid10 2010 * This code is for resync. 2011 * For resync, we read through virtual addresses and read all blocks. 2012 * If there is any error, we schedule a write. The lowest numbered 2013 * drive is authoritative. 2014 * However requests come for physical address, so we need to map. 2015 * For every physical address there are raid_disks/copies virtual addresses, 2016 * which is always are least one, but is not necessarly an integer. 2017 * This means that a physical address can span multiple chunks, so we may 2018 * have to submit multiple io requests for a single sync request. 2019 */ 2020 /* 2021 * We check if all blocks are in-sync and only write to blocks that 2022 * aren't in sync 2023 */ 2024 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2025 { 2026 struct r10conf *conf = mddev->private; 2027 int i, first; 2028 struct bio *tbio, *fbio; 2029 int vcnt; 2030 struct page **tpages, **fpages; 2031 2032 atomic_set(&r10_bio->remaining, 1); 2033 2034 /* find the first device with a block */ 2035 for (i=0; i<conf->copies; i++) 2036 if (!r10_bio->devs[i].bio->bi_status) 2037 break; 2038 2039 if (i == conf->copies) 2040 goto done; 2041 2042 first = i; 2043 fbio = r10_bio->devs[i].bio; 2044 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2045 fbio->bi_iter.bi_idx = 0; 2046 fpages = get_resync_pages(fbio)->pages; 2047 2048 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2049 /* now find blocks with errors */ 2050 for (i=0 ; i < conf->copies ; i++) { 2051 int j, d; 2052 struct md_rdev *rdev; 2053 struct resync_pages *rp; 2054 2055 tbio = r10_bio->devs[i].bio; 2056 2057 if (tbio->bi_end_io != end_sync_read) 2058 continue; 2059 if (i == first) 2060 continue; 2061 2062 tpages = get_resync_pages(tbio)->pages; 2063 d = r10_bio->devs[i].devnum; 2064 rdev = conf->mirrors[d].rdev; 2065 if (!r10_bio->devs[i].bio->bi_status) { 2066 /* We know that the bi_io_vec layout is the same for 2067 * both 'first' and 'i', so we just compare them. 2068 * All vec entries are PAGE_SIZE; 2069 */ 2070 int sectors = r10_bio->sectors; 2071 for (j = 0; j < vcnt; j++) { 2072 int len = PAGE_SIZE; 2073 if (sectors < (len / 512)) 2074 len = sectors * 512; 2075 if (memcmp(page_address(fpages[j]), 2076 page_address(tpages[j]), 2077 len)) 2078 break; 2079 sectors -= len/512; 2080 } 2081 if (j == vcnt) 2082 continue; 2083 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2084 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2085 /* Don't fix anything. */ 2086 continue; 2087 } else if (test_bit(FailFast, &rdev->flags)) { 2088 /* Just give up on this device */ 2089 md_error(rdev->mddev, rdev); 2090 continue; 2091 } 2092 /* Ok, we need to write this bio, either to correct an 2093 * inconsistency or to correct an unreadable block. 2094 * First we need to fixup bv_offset, bv_len and 2095 * bi_vecs, as the read request might have corrupted these 2096 */ 2097 rp = get_resync_pages(tbio); 2098 bio_reset(tbio); 2099 2100 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2101 2102 rp->raid_bio = r10_bio; 2103 tbio->bi_private = rp; 2104 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2105 tbio->bi_end_io = end_sync_write; 2106 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2107 2108 bio_copy_data(tbio, fbio); 2109 2110 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2111 atomic_inc(&r10_bio->remaining); 2112 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2113 2114 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2115 tbio->bi_opf |= MD_FAILFAST; 2116 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2117 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev); 2118 generic_make_request(tbio); 2119 } 2120 2121 /* Now write out to any replacement devices 2122 * that are active 2123 */ 2124 for (i = 0; i < conf->copies; i++) { 2125 int d; 2126 2127 tbio = r10_bio->devs[i].repl_bio; 2128 if (!tbio || !tbio->bi_end_io) 2129 continue; 2130 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2131 && r10_bio->devs[i].bio != fbio) 2132 bio_copy_data(tbio, fbio); 2133 d = r10_bio->devs[i].devnum; 2134 atomic_inc(&r10_bio->remaining); 2135 md_sync_acct(conf->mirrors[d].replacement->bdev, 2136 bio_sectors(tbio)); 2137 generic_make_request(tbio); 2138 } 2139 2140 done: 2141 if (atomic_dec_and_test(&r10_bio->remaining)) { 2142 md_done_sync(mddev, r10_bio->sectors, 1); 2143 put_buf(r10_bio); 2144 } 2145 } 2146 2147 /* 2148 * Now for the recovery code. 2149 * Recovery happens across physical sectors. 2150 * We recover all non-is_sync drives by finding the virtual address of 2151 * each, and then choose a working drive that also has that virt address. 2152 * There is a separate r10_bio for each non-in_sync drive. 2153 * Only the first two slots are in use. The first for reading, 2154 * The second for writing. 2155 * 2156 */ 2157 static void fix_recovery_read_error(struct r10bio *r10_bio) 2158 { 2159 /* We got a read error during recovery. 2160 * We repeat the read in smaller page-sized sections. 2161 * If a read succeeds, write it to the new device or record 2162 * a bad block if we cannot. 2163 * If a read fails, record a bad block on both old and 2164 * new devices. 2165 */ 2166 struct mddev *mddev = r10_bio->mddev; 2167 struct r10conf *conf = mddev->private; 2168 struct bio *bio = r10_bio->devs[0].bio; 2169 sector_t sect = 0; 2170 int sectors = r10_bio->sectors; 2171 int idx = 0; 2172 int dr = r10_bio->devs[0].devnum; 2173 int dw = r10_bio->devs[1].devnum; 2174 struct page **pages = get_resync_pages(bio)->pages; 2175 2176 while (sectors) { 2177 int s = sectors; 2178 struct md_rdev *rdev; 2179 sector_t addr; 2180 int ok; 2181 2182 if (s > (PAGE_SIZE>>9)) 2183 s = PAGE_SIZE >> 9; 2184 2185 rdev = conf->mirrors[dr].rdev; 2186 addr = r10_bio->devs[0].addr + sect, 2187 ok = sync_page_io(rdev, 2188 addr, 2189 s << 9, 2190 pages[idx], 2191 REQ_OP_READ, 0, false); 2192 if (ok) { 2193 rdev = conf->mirrors[dw].rdev; 2194 addr = r10_bio->devs[1].addr + sect; 2195 ok = sync_page_io(rdev, 2196 addr, 2197 s << 9, 2198 pages[idx], 2199 REQ_OP_WRITE, 0, false); 2200 if (!ok) { 2201 set_bit(WriteErrorSeen, &rdev->flags); 2202 if (!test_and_set_bit(WantReplacement, 2203 &rdev->flags)) 2204 set_bit(MD_RECOVERY_NEEDED, 2205 &rdev->mddev->recovery); 2206 } 2207 } 2208 if (!ok) { 2209 /* We don't worry if we cannot set a bad block - 2210 * it really is bad so there is no loss in not 2211 * recording it yet 2212 */ 2213 rdev_set_badblocks(rdev, addr, s, 0); 2214 2215 if (rdev != conf->mirrors[dw].rdev) { 2216 /* need bad block on destination too */ 2217 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2218 addr = r10_bio->devs[1].addr + sect; 2219 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2220 if (!ok) { 2221 /* just abort the recovery */ 2222 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2223 mdname(mddev)); 2224 2225 conf->mirrors[dw].recovery_disabled 2226 = mddev->recovery_disabled; 2227 set_bit(MD_RECOVERY_INTR, 2228 &mddev->recovery); 2229 break; 2230 } 2231 } 2232 } 2233 2234 sectors -= s; 2235 sect += s; 2236 idx++; 2237 } 2238 } 2239 2240 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2241 { 2242 struct r10conf *conf = mddev->private; 2243 int d; 2244 struct bio *wbio, *wbio2; 2245 2246 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2247 fix_recovery_read_error(r10_bio); 2248 end_sync_request(r10_bio); 2249 return; 2250 } 2251 2252 /* 2253 * share the pages with the first bio 2254 * and submit the write request 2255 */ 2256 d = r10_bio->devs[1].devnum; 2257 wbio = r10_bio->devs[1].bio; 2258 wbio2 = r10_bio->devs[1].repl_bio; 2259 /* Need to test wbio2->bi_end_io before we call 2260 * generic_make_request as if the former is NULL, 2261 * the latter is free to free wbio2. 2262 */ 2263 if (wbio2 && !wbio2->bi_end_io) 2264 wbio2 = NULL; 2265 if (wbio->bi_end_io) { 2266 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2267 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2268 generic_make_request(wbio); 2269 } 2270 if (wbio2) { 2271 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2272 md_sync_acct(conf->mirrors[d].replacement->bdev, 2273 bio_sectors(wbio2)); 2274 generic_make_request(wbio2); 2275 } 2276 } 2277 2278 /* 2279 * Used by fix_read_error() to decay the per rdev read_errors. 2280 * We halve the read error count for every hour that has elapsed 2281 * since the last recorded read error. 2282 * 2283 */ 2284 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2285 { 2286 long cur_time_mon; 2287 unsigned long hours_since_last; 2288 unsigned int read_errors = atomic_read(&rdev->read_errors); 2289 2290 cur_time_mon = ktime_get_seconds(); 2291 2292 if (rdev->last_read_error == 0) { 2293 /* first time we've seen a read error */ 2294 rdev->last_read_error = cur_time_mon; 2295 return; 2296 } 2297 2298 hours_since_last = (long)(cur_time_mon - 2299 rdev->last_read_error) / 3600; 2300 2301 rdev->last_read_error = cur_time_mon; 2302 2303 /* 2304 * if hours_since_last is > the number of bits in read_errors 2305 * just set read errors to 0. We do this to avoid 2306 * overflowing the shift of read_errors by hours_since_last. 2307 */ 2308 if (hours_since_last >= 8 * sizeof(read_errors)) 2309 atomic_set(&rdev->read_errors, 0); 2310 else 2311 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2312 } 2313 2314 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2315 int sectors, struct page *page, int rw) 2316 { 2317 sector_t first_bad; 2318 int bad_sectors; 2319 2320 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2321 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2322 return -1; 2323 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2324 /* success */ 2325 return 1; 2326 if (rw == WRITE) { 2327 set_bit(WriteErrorSeen, &rdev->flags); 2328 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2329 set_bit(MD_RECOVERY_NEEDED, 2330 &rdev->mddev->recovery); 2331 } 2332 /* need to record an error - either for the block or the device */ 2333 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2334 md_error(rdev->mddev, rdev); 2335 return 0; 2336 } 2337 2338 /* 2339 * This is a kernel thread which: 2340 * 2341 * 1. Retries failed read operations on working mirrors. 2342 * 2. Updates the raid superblock when problems encounter. 2343 * 3. Performs writes following reads for array synchronising. 2344 */ 2345 2346 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2347 { 2348 int sect = 0; /* Offset from r10_bio->sector */ 2349 int sectors = r10_bio->sectors; 2350 struct md_rdev*rdev; 2351 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2352 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2353 2354 /* still own a reference to this rdev, so it cannot 2355 * have been cleared recently. 2356 */ 2357 rdev = conf->mirrors[d].rdev; 2358 2359 if (test_bit(Faulty, &rdev->flags)) 2360 /* drive has already been failed, just ignore any 2361 more fix_read_error() attempts */ 2362 return; 2363 2364 check_decay_read_errors(mddev, rdev); 2365 atomic_inc(&rdev->read_errors); 2366 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2367 char b[BDEVNAME_SIZE]; 2368 bdevname(rdev->bdev, b); 2369 2370 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2371 mdname(mddev), b, 2372 atomic_read(&rdev->read_errors), max_read_errors); 2373 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2374 mdname(mddev), b); 2375 md_error(mddev, rdev); 2376 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2377 return; 2378 } 2379 2380 while(sectors) { 2381 int s = sectors; 2382 int sl = r10_bio->read_slot; 2383 int success = 0; 2384 int start; 2385 2386 if (s > (PAGE_SIZE>>9)) 2387 s = PAGE_SIZE >> 9; 2388 2389 rcu_read_lock(); 2390 do { 2391 sector_t first_bad; 2392 int bad_sectors; 2393 2394 d = r10_bio->devs[sl].devnum; 2395 rdev = rcu_dereference(conf->mirrors[d].rdev); 2396 if (rdev && 2397 test_bit(In_sync, &rdev->flags) && 2398 !test_bit(Faulty, &rdev->flags) && 2399 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2400 &first_bad, &bad_sectors) == 0) { 2401 atomic_inc(&rdev->nr_pending); 2402 rcu_read_unlock(); 2403 success = sync_page_io(rdev, 2404 r10_bio->devs[sl].addr + 2405 sect, 2406 s<<9, 2407 conf->tmppage, 2408 REQ_OP_READ, 0, false); 2409 rdev_dec_pending(rdev, mddev); 2410 rcu_read_lock(); 2411 if (success) 2412 break; 2413 } 2414 sl++; 2415 if (sl == conf->copies) 2416 sl = 0; 2417 } while (!success && sl != r10_bio->read_slot); 2418 rcu_read_unlock(); 2419 2420 if (!success) { 2421 /* Cannot read from anywhere, just mark the block 2422 * as bad on the first device to discourage future 2423 * reads. 2424 */ 2425 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2426 rdev = conf->mirrors[dn].rdev; 2427 2428 if (!rdev_set_badblocks( 2429 rdev, 2430 r10_bio->devs[r10_bio->read_slot].addr 2431 + sect, 2432 s, 0)) { 2433 md_error(mddev, rdev); 2434 r10_bio->devs[r10_bio->read_slot].bio 2435 = IO_BLOCKED; 2436 } 2437 break; 2438 } 2439 2440 start = sl; 2441 /* write it back and re-read */ 2442 rcu_read_lock(); 2443 while (sl != r10_bio->read_slot) { 2444 char b[BDEVNAME_SIZE]; 2445 2446 if (sl==0) 2447 sl = conf->copies; 2448 sl--; 2449 d = r10_bio->devs[sl].devnum; 2450 rdev = rcu_dereference(conf->mirrors[d].rdev); 2451 if (!rdev || 2452 test_bit(Faulty, &rdev->flags) || 2453 !test_bit(In_sync, &rdev->flags)) 2454 continue; 2455 2456 atomic_inc(&rdev->nr_pending); 2457 rcu_read_unlock(); 2458 if (r10_sync_page_io(rdev, 2459 r10_bio->devs[sl].addr + 2460 sect, 2461 s, conf->tmppage, WRITE) 2462 == 0) { 2463 /* Well, this device is dead */ 2464 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2465 mdname(mddev), s, 2466 (unsigned long long)( 2467 sect + 2468 choose_data_offset(r10_bio, 2469 rdev)), 2470 bdevname(rdev->bdev, b)); 2471 pr_notice("md/raid10:%s: %s: failing drive\n", 2472 mdname(mddev), 2473 bdevname(rdev->bdev, b)); 2474 } 2475 rdev_dec_pending(rdev, mddev); 2476 rcu_read_lock(); 2477 } 2478 sl = start; 2479 while (sl != r10_bio->read_slot) { 2480 char b[BDEVNAME_SIZE]; 2481 2482 if (sl==0) 2483 sl = conf->copies; 2484 sl--; 2485 d = r10_bio->devs[sl].devnum; 2486 rdev = rcu_dereference(conf->mirrors[d].rdev); 2487 if (!rdev || 2488 test_bit(Faulty, &rdev->flags) || 2489 !test_bit(In_sync, &rdev->flags)) 2490 continue; 2491 2492 atomic_inc(&rdev->nr_pending); 2493 rcu_read_unlock(); 2494 switch (r10_sync_page_io(rdev, 2495 r10_bio->devs[sl].addr + 2496 sect, 2497 s, conf->tmppage, 2498 READ)) { 2499 case 0: 2500 /* Well, this device is dead */ 2501 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2502 mdname(mddev), s, 2503 (unsigned long long)( 2504 sect + 2505 choose_data_offset(r10_bio, rdev)), 2506 bdevname(rdev->bdev, b)); 2507 pr_notice("md/raid10:%s: %s: failing drive\n", 2508 mdname(mddev), 2509 bdevname(rdev->bdev, b)); 2510 break; 2511 case 1: 2512 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2513 mdname(mddev), s, 2514 (unsigned long long)( 2515 sect + 2516 choose_data_offset(r10_bio, rdev)), 2517 bdevname(rdev->bdev, b)); 2518 atomic_add(s, &rdev->corrected_errors); 2519 } 2520 2521 rdev_dec_pending(rdev, mddev); 2522 rcu_read_lock(); 2523 } 2524 rcu_read_unlock(); 2525 2526 sectors -= s; 2527 sect += s; 2528 } 2529 } 2530 2531 static int narrow_write_error(struct r10bio *r10_bio, int i) 2532 { 2533 struct bio *bio = r10_bio->master_bio; 2534 struct mddev *mddev = r10_bio->mddev; 2535 struct r10conf *conf = mddev->private; 2536 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2537 /* bio has the data to be written to slot 'i' where 2538 * we just recently had a write error. 2539 * We repeatedly clone the bio and trim down to one block, 2540 * then try the write. Where the write fails we record 2541 * a bad block. 2542 * It is conceivable that the bio doesn't exactly align with 2543 * blocks. We must handle this. 2544 * 2545 * We currently own a reference to the rdev. 2546 */ 2547 2548 int block_sectors; 2549 sector_t sector; 2550 int sectors; 2551 int sect_to_write = r10_bio->sectors; 2552 int ok = 1; 2553 2554 if (rdev->badblocks.shift < 0) 2555 return 0; 2556 2557 block_sectors = roundup(1 << rdev->badblocks.shift, 2558 bdev_logical_block_size(rdev->bdev) >> 9); 2559 sector = r10_bio->sector; 2560 sectors = ((r10_bio->sector + block_sectors) 2561 & ~(sector_t)(block_sectors - 1)) 2562 - sector; 2563 2564 while (sect_to_write) { 2565 struct bio *wbio; 2566 sector_t wsector; 2567 if (sectors > sect_to_write) 2568 sectors = sect_to_write; 2569 /* Write at 'sector' for 'sectors' */ 2570 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 2571 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2572 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2573 wbio->bi_iter.bi_sector = wsector + 2574 choose_data_offset(r10_bio, rdev); 2575 bio_set_dev(wbio, rdev->bdev); 2576 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2577 2578 if (submit_bio_wait(wbio) < 0) 2579 /* Failure! */ 2580 ok = rdev_set_badblocks(rdev, wsector, 2581 sectors, 0) 2582 && ok; 2583 2584 bio_put(wbio); 2585 sect_to_write -= sectors; 2586 sector += sectors; 2587 sectors = block_sectors; 2588 } 2589 return ok; 2590 } 2591 2592 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2593 { 2594 int slot = r10_bio->read_slot; 2595 struct bio *bio; 2596 struct r10conf *conf = mddev->private; 2597 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2598 2599 /* we got a read error. Maybe the drive is bad. Maybe just 2600 * the block and we can fix it. 2601 * We freeze all other IO, and try reading the block from 2602 * other devices. When we find one, we re-write 2603 * and check it that fixes the read error. 2604 * This is all done synchronously while the array is 2605 * frozen. 2606 */ 2607 bio = r10_bio->devs[slot].bio; 2608 bio_put(bio); 2609 r10_bio->devs[slot].bio = NULL; 2610 2611 if (mddev->ro) 2612 r10_bio->devs[slot].bio = IO_BLOCKED; 2613 else if (!test_bit(FailFast, &rdev->flags)) { 2614 freeze_array(conf, 1); 2615 fix_read_error(conf, mddev, r10_bio); 2616 unfreeze_array(conf); 2617 } else 2618 md_error(mddev, rdev); 2619 2620 rdev_dec_pending(rdev, mddev); 2621 allow_barrier(conf); 2622 r10_bio->state = 0; 2623 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2624 } 2625 2626 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2627 { 2628 /* Some sort of write request has finished and it 2629 * succeeded in writing where we thought there was a 2630 * bad block. So forget the bad block. 2631 * Or possibly if failed and we need to record 2632 * a bad block. 2633 */ 2634 int m; 2635 struct md_rdev *rdev; 2636 2637 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2638 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2639 for (m = 0; m < conf->copies; m++) { 2640 int dev = r10_bio->devs[m].devnum; 2641 rdev = conf->mirrors[dev].rdev; 2642 if (r10_bio->devs[m].bio == NULL) 2643 continue; 2644 if (!r10_bio->devs[m].bio->bi_status) { 2645 rdev_clear_badblocks( 2646 rdev, 2647 r10_bio->devs[m].addr, 2648 r10_bio->sectors, 0); 2649 } else { 2650 if (!rdev_set_badblocks( 2651 rdev, 2652 r10_bio->devs[m].addr, 2653 r10_bio->sectors, 0)) 2654 md_error(conf->mddev, rdev); 2655 } 2656 rdev = conf->mirrors[dev].replacement; 2657 if (r10_bio->devs[m].repl_bio == NULL) 2658 continue; 2659 2660 if (!r10_bio->devs[m].repl_bio->bi_status) { 2661 rdev_clear_badblocks( 2662 rdev, 2663 r10_bio->devs[m].addr, 2664 r10_bio->sectors, 0); 2665 } else { 2666 if (!rdev_set_badblocks( 2667 rdev, 2668 r10_bio->devs[m].addr, 2669 r10_bio->sectors, 0)) 2670 md_error(conf->mddev, rdev); 2671 } 2672 } 2673 put_buf(r10_bio); 2674 } else { 2675 bool fail = false; 2676 for (m = 0; m < conf->copies; m++) { 2677 int dev = r10_bio->devs[m].devnum; 2678 struct bio *bio = r10_bio->devs[m].bio; 2679 rdev = conf->mirrors[dev].rdev; 2680 if (bio == IO_MADE_GOOD) { 2681 rdev_clear_badblocks( 2682 rdev, 2683 r10_bio->devs[m].addr, 2684 r10_bio->sectors, 0); 2685 rdev_dec_pending(rdev, conf->mddev); 2686 } else if (bio != NULL && bio->bi_status) { 2687 fail = true; 2688 if (!narrow_write_error(r10_bio, m)) { 2689 md_error(conf->mddev, rdev); 2690 set_bit(R10BIO_Degraded, 2691 &r10_bio->state); 2692 } 2693 rdev_dec_pending(rdev, conf->mddev); 2694 } 2695 bio = r10_bio->devs[m].repl_bio; 2696 rdev = conf->mirrors[dev].replacement; 2697 if (rdev && bio == IO_MADE_GOOD) { 2698 rdev_clear_badblocks( 2699 rdev, 2700 r10_bio->devs[m].addr, 2701 r10_bio->sectors, 0); 2702 rdev_dec_pending(rdev, conf->mddev); 2703 } 2704 } 2705 if (fail) { 2706 spin_lock_irq(&conf->device_lock); 2707 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2708 conf->nr_queued++; 2709 spin_unlock_irq(&conf->device_lock); 2710 /* 2711 * In case freeze_array() is waiting for condition 2712 * nr_pending == nr_queued + extra to be true. 2713 */ 2714 wake_up(&conf->wait_barrier); 2715 md_wakeup_thread(conf->mddev->thread); 2716 } else { 2717 if (test_bit(R10BIO_WriteError, 2718 &r10_bio->state)) 2719 close_write(r10_bio); 2720 raid_end_bio_io(r10_bio); 2721 } 2722 } 2723 } 2724 2725 static void raid10d(struct md_thread *thread) 2726 { 2727 struct mddev *mddev = thread->mddev; 2728 struct r10bio *r10_bio; 2729 unsigned long flags; 2730 struct r10conf *conf = mddev->private; 2731 struct list_head *head = &conf->retry_list; 2732 struct blk_plug plug; 2733 2734 md_check_recovery(mddev); 2735 2736 if (!list_empty_careful(&conf->bio_end_io_list) && 2737 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2738 LIST_HEAD(tmp); 2739 spin_lock_irqsave(&conf->device_lock, flags); 2740 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2741 while (!list_empty(&conf->bio_end_io_list)) { 2742 list_move(conf->bio_end_io_list.prev, &tmp); 2743 conf->nr_queued--; 2744 } 2745 } 2746 spin_unlock_irqrestore(&conf->device_lock, flags); 2747 while (!list_empty(&tmp)) { 2748 r10_bio = list_first_entry(&tmp, struct r10bio, 2749 retry_list); 2750 list_del(&r10_bio->retry_list); 2751 if (mddev->degraded) 2752 set_bit(R10BIO_Degraded, &r10_bio->state); 2753 2754 if (test_bit(R10BIO_WriteError, 2755 &r10_bio->state)) 2756 close_write(r10_bio); 2757 raid_end_bio_io(r10_bio); 2758 } 2759 } 2760 2761 blk_start_plug(&plug); 2762 for (;;) { 2763 2764 flush_pending_writes(conf); 2765 2766 spin_lock_irqsave(&conf->device_lock, flags); 2767 if (list_empty(head)) { 2768 spin_unlock_irqrestore(&conf->device_lock, flags); 2769 break; 2770 } 2771 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2772 list_del(head->prev); 2773 conf->nr_queued--; 2774 spin_unlock_irqrestore(&conf->device_lock, flags); 2775 2776 mddev = r10_bio->mddev; 2777 conf = mddev->private; 2778 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2779 test_bit(R10BIO_WriteError, &r10_bio->state)) 2780 handle_write_completed(conf, r10_bio); 2781 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2782 reshape_request_write(mddev, r10_bio); 2783 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2784 sync_request_write(mddev, r10_bio); 2785 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2786 recovery_request_write(mddev, r10_bio); 2787 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2788 handle_read_error(mddev, r10_bio); 2789 else 2790 WARN_ON_ONCE(1); 2791 2792 cond_resched(); 2793 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2794 md_check_recovery(mddev); 2795 } 2796 blk_finish_plug(&plug); 2797 } 2798 2799 static int init_resync(struct r10conf *conf) 2800 { 2801 int buffs; 2802 int i; 2803 2804 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2805 BUG_ON(conf->r10buf_pool); 2806 conf->have_replacement = 0; 2807 for (i = 0; i < conf->geo.raid_disks; i++) 2808 if (conf->mirrors[i].replacement) 2809 conf->have_replacement = 1; 2810 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2811 if (!conf->r10buf_pool) 2812 return -ENOMEM; 2813 conf->next_resync = 0; 2814 return 0; 2815 } 2816 2817 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 2818 { 2819 struct r10bio *r10bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2820 struct rsync_pages *rp; 2821 struct bio *bio; 2822 int nalloc; 2823 int i; 2824 2825 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 2826 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 2827 nalloc = conf->copies; /* resync */ 2828 else 2829 nalloc = 2; /* recovery */ 2830 2831 for (i = 0; i < nalloc; i++) { 2832 bio = r10bio->devs[i].bio; 2833 rp = bio->bi_private; 2834 bio_reset(bio); 2835 bio->bi_private = rp; 2836 bio = r10bio->devs[i].repl_bio; 2837 if (bio) { 2838 rp = bio->bi_private; 2839 bio_reset(bio); 2840 bio->bi_private = rp; 2841 } 2842 } 2843 return r10bio; 2844 } 2845 2846 /* 2847 * Set cluster_sync_high since we need other nodes to add the 2848 * range [cluster_sync_low, cluster_sync_high] to suspend list. 2849 */ 2850 static void raid10_set_cluster_sync_high(struct r10conf *conf) 2851 { 2852 sector_t window_size; 2853 int extra_chunk, chunks; 2854 2855 /* 2856 * First, here we define "stripe" as a unit which across 2857 * all member devices one time, so we get chunks by use 2858 * raid_disks / near_copies. Otherwise, if near_copies is 2859 * close to raid_disks, then resync window could increases 2860 * linearly with the increase of raid_disks, which means 2861 * we will suspend a really large IO window while it is not 2862 * necessary. If raid_disks is not divisible by near_copies, 2863 * an extra chunk is needed to ensure the whole "stripe" is 2864 * covered. 2865 */ 2866 2867 chunks = conf->geo.raid_disks / conf->geo.near_copies; 2868 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 2869 extra_chunk = 0; 2870 else 2871 extra_chunk = 1; 2872 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 2873 2874 /* 2875 * At least use a 32M window to align with raid1's resync window 2876 */ 2877 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 2878 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 2879 2880 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 2881 } 2882 2883 /* 2884 * perform a "sync" on one "block" 2885 * 2886 * We need to make sure that no normal I/O request - particularly write 2887 * requests - conflict with active sync requests. 2888 * 2889 * This is achieved by tracking pending requests and a 'barrier' concept 2890 * that can be installed to exclude normal IO requests. 2891 * 2892 * Resync and recovery are handled very differently. 2893 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2894 * 2895 * For resync, we iterate over virtual addresses, read all copies, 2896 * and update if there are differences. If only one copy is live, 2897 * skip it. 2898 * For recovery, we iterate over physical addresses, read a good 2899 * value for each non-in_sync drive, and over-write. 2900 * 2901 * So, for recovery we may have several outstanding complex requests for a 2902 * given address, one for each out-of-sync device. We model this by allocating 2903 * a number of r10_bio structures, one for each out-of-sync device. 2904 * As we setup these structures, we collect all bio's together into a list 2905 * which we then process collectively to add pages, and then process again 2906 * to pass to generic_make_request. 2907 * 2908 * The r10_bio structures are linked using a borrowed master_bio pointer. 2909 * This link is counted in ->remaining. When the r10_bio that points to NULL 2910 * has its remaining count decremented to 0, the whole complex operation 2911 * is complete. 2912 * 2913 */ 2914 2915 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 2916 int *skipped) 2917 { 2918 struct r10conf *conf = mddev->private; 2919 struct r10bio *r10_bio; 2920 struct bio *biolist = NULL, *bio; 2921 sector_t max_sector, nr_sectors; 2922 int i; 2923 int max_sync; 2924 sector_t sync_blocks; 2925 sector_t sectors_skipped = 0; 2926 int chunks_skipped = 0; 2927 sector_t chunk_mask = conf->geo.chunk_mask; 2928 int page_idx = 0; 2929 2930 if (!conf->r10buf_pool) 2931 if (init_resync(conf)) 2932 return 0; 2933 2934 /* 2935 * Allow skipping a full rebuild for incremental assembly 2936 * of a clean array, like RAID1 does. 2937 */ 2938 if (mddev->bitmap == NULL && 2939 mddev->recovery_cp == MaxSector && 2940 mddev->reshape_position == MaxSector && 2941 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2942 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2943 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2944 conf->fullsync == 0) { 2945 *skipped = 1; 2946 return mddev->dev_sectors - sector_nr; 2947 } 2948 2949 skipped: 2950 max_sector = mddev->dev_sectors; 2951 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2952 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2953 max_sector = mddev->resync_max_sectors; 2954 if (sector_nr >= max_sector) { 2955 conf->cluster_sync_low = 0; 2956 conf->cluster_sync_high = 0; 2957 2958 /* If we aborted, we need to abort the 2959 * sync on the 'current' bitmap chucks (there can 2960 * be several when recovering multiple devices). 2961 * as we may have started syncing it but not finished. 2962 * We can find the current address in 2963 * mddev->curr_resync, but for recovery, 2964 * we need to convert that to several 2965 * virtual addresses. 2966 */ 2967 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2968 end_reshape(conf); 2969 close_sync(conf); 2970 return 0; 2971 } 2972 2973 if (mddev->curr_resync < max_sector) { /* aborted */ 2974 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2975 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2976 &sync_blocks, 1); 2977 else for (i = 0; i < conf->geo.raid_disks; i++) { 2978 sector_t sect = 2979 raid10_find_virt(conf, mddev->curr_resync, i); 2980 bitmap_end_sync(mddev->bitmap, sect, 2981 &sync_blocks, 1); 2982 } 2983 } else { 2984 /* completed sync */ 2985 if ((!mddev->bitmap || conf->fullsync) 2986 && conf->have_replacement 2987 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2988 /* Completed a full sync so the replacements 2989 * are now fully recovered. 2990 */ 2991 rcu_read_lock(); 2992 for (i = 0; i < conf->geo.raid_disks; i++) { 2993 struct md_rdev *rdev = 2994 rcu_dereference(conf->mirrors[i].replacement); 2995 if (rdev) 2996 rdev->recovery_offset = MaxSector; 2997 } 2998 rcu_read_unlock(); 2999 } 3000 conf->fullsync = 0; 3001 } 3002 bitmap_close_sync(mddev->bitmap); 3003 close_sync(conf); 3004 *skipped = 1; 3005 return sectors_skipped; 3006 } 3007 3008 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3009 return reshape_request(mddev, sector_nr, skipped); 3010 3011 if (chunks_skipped >= conf->geo.raid_disks) { 3012 /* if there has been nothing to do on any drive, 3013 * then there is nothing to do at all.. 3014 */ 3015 *skipped = 1; 3016 return (max_sector - sector_nr) + sectors_skipped; 3017 } 3018 3019 if (max_sector > mddev->resync_max) 3020 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3021 3022 /* make sure whole request will fit in a chunk - if chunks 3023 * are meaningful 3024 */ 3025 if (conf->geo.near_copies < conf->geo.raid_disks && 3026 max_sector > (sector_nr | chunk_mask)) 3027 max_sector = (sector_nr | chunk_mask) + 1; 3028 3029 /* 3030 * If there is non-resync activity waiting for a turn, then let it 3031 * though before starting on this new sync request. 3032 */ 3033 if (conf->nr_waiting) 3034 schedule_timeout_uninterruptible(1); 3035 3036 /* Again, very different code for resync and recovery. 3037 * Both must result in an r10bio with a list of bios that 3038 * have bi_end_io, bi_sector, bi_disk set, 3039 * and bi_private set to the r10bio. 3040 * For recovery, we may actually create several r10bios 3041 * with 2 bios in each, that correspond to the bios in the main one. 3042 * In this case, the subordinate r10bios link back through a 3043 * borrowed master_bio pointer, and the counter in the master 3044 * includes a ref from each subordinate. 3045 */ 3046 /* First, we decide what to do and set ->bi_end_io 3047 * To end_sync_read if we want to read, and 3048 * end_sync_write if we will want to write. 3049 */ 3050 3051 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3052 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3053 /* recovery... the complicated one */ 3054 int j; 3055 r10_bio = NULL; 3056 3057 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3058 int still_degraded; 3059 struct r10bio *rb2; 3060 sector_t sect; 3061 int must_sync; 3062 int any_working; 3063 struct raid10_info *mirror = &conf->mirrors[i]; 3064 struct md_rdev *mrdev, *mreplace; 3065 3066 rcu_read_lock(); 3067 mrdev = rcu_dereference(mirror->rdev); 3068 mreplace = rcu_dereference(mirror->replacement); 3069 3070 if ((mrdev == NULL || 3071 test_bit(Faulty, &mrdev->flags) || 3072 test_bit(In_sync, &mrdev->flags)) && 3073 (mreplace == NULL || 3074 test_bit(Faulty, &mreplace->flags))) { 3075 rcu_read_unlock(); 3076 continue; 3077 } 3078 3079 still_degraded = 0; 3080 /* want to reconstruct this device */ 3081 rb2 = r10_bio; 3082 sect = raid10_find_virt(conf, sector_nr, i); 3083 if (sect >= mddev->resync_max_sectors) { 3084 /* last stripe is not complete - don't 3085 * try to recover this sector. 3086 */ 3087 rcu_read_unlock(); 3088 continue; 3089 } 3090 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3091 mreplace = NULL; 3092 /* Unless we are doing a full sync, or a replacement 3093 * we only need to recover the block if it is set in 3094 * the bitmap 3095 */ 3096 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3097 &sync_blocks, 1); 3098 if (sync_blocks < max_sync) 3099 max_sync = sync_blocks; 3100 if (!must_sync && 3101 mreplace == NULL && 3102 !conf->fullsync) { 3103 /* yep, skip the sync_blocks here, but don't assume 3104 * that there will never be anything to do here 3105 */ 3106 chunks_skipped = -1; 3107 rcu_read_unlock(); 3108 continue; 3109 } 3110 atomic_inc(&mrdev->nr_pending); 3111 if (mreplace) 3112 atomic_inc(&mreplace->nr_pending); 3113 rcu_read_unlock(); 3114 3115 r10_bio = raid10_alloc_init_r10buf(conf); 3116 r10_bio->state = 0; 3117 raise_barrier(conf, rb2 != NULL); 3118 atomic_set(&r10_bio->remaining, 0); 3119 3120 r10_bio->master_bio = (struct bio*)rb2; 3121 if (rb2) 3122 atomic_inc(&rb2->remaining); 3123 r10_bio->mddev = mddev; 3124 set_bit(R10BIO_IsRecover, &r10_bio->state); 3125 r10_bio->sector = sect; 3126 3127 raid10_find_phys(conf, r10_bio); 3128 3129 /* Need to check if the array will still be 3130 * degraded 3131 */ 3132 rcu_read_lock(); 3133 for (j = 0; j < conf->geo.raid_disks; j++) { 3134 struct md_rdev *rdev = rcu_dereference( 3135 conf->mirrors[j].rdev); 3136 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3137 still_degraded = 1; 3138 break; 3139 } 3140 } 3141 3142 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3143 &sync_blocks, still_degraded); 3144 3145 any_working = 0; 3146 for (j=0; j<conf->copies;j++) { 3147 int k; 3148 int d = r10_bio->devs[j].devnum; 3149 sector_t from_addr, to_addr; 3150 struct md_rdev *rdev = 3151 rcu_dereference(conf->mirrors[d].rdev); 3152 sector_t sector, first_bad; 3153 int bad_sectors; 3154 if (!rdev || 3155 !test_bit(In_sync, &rdev->flags)) 3156 continue; 3157 /* This is where we read from */ 3158 any_working = 1; 3159 sector = r10_bio->devs[j].addr; 3160 3161 if (is_badblock(rdev, sector, max_sync, 3162 &first_bad, &bad_sectors)) { 3163 if (first_bad > sector) 3164 max_sync = first_bad - sector; 3165 else { 3166 bad_sectors -= (sector 3167 - first_bad); 3168 if (max_sync > bad_sectors) 3169 max_sync = bad_sectors; 3170 continue; 3171 } 3172 } 3173 bio = r10_bio->devs[0].bio; 3174 bio->bi_next = biolist; 3175 biolist = bio; 3176 bio->bi_end_io = end_sync_read; 3177 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3178 if (test_bit(FailFast, &rdev->flags)) 3179 bio->bi_opf |= MD_FAILFAST; 3180 from_addr = r10_bio->devs[j].addr; 3181 bio->bi_iter.bi_sector = from_addr + 3182 rdev->data_offset; 3183 bio_set_dev(bio, rdev->bdev); 3184 atomic_inc(&rdev->nr_pending); 3185 /* and we write to 'i' (if not in_sync) */ 3186 3187 for (k=0; k<conf->copies; k++) 3188 if (r10_bio->devs[k].devnum == i) 3189 break; 3190 BUG_ON(k == conf->copies); 3191 to_addr = r10_bio->devs[k].addr; 3192 r10_bio->devs[0].devnum = d; 3193 r10_bio->devs[0].addr = from_addr; 3194 r10_bio->devs[1].devnum = i; 3195 r10_bio->devs[1].addr = to_addr; 3196 3197 if (!test_bit(In_sync, &mrdev->flags)) { 3198 bio = r10_bio->devs[1].bio; 3199 bio->bi_next = biolist; 3200 biolist = bio; 3201 bio->bi_end_io = end_sync_write; 3202 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3203 bio->bi_iter.bi_sector = to_addr 3204 + mrdev->data_offset; 3205 bio_set_dev(bio, mrdev->bdev); 3206 atomic_inc(&r10_bio->remaining); 3207 } else 3208 r10_bio->devs[1].bio->bi_end_io = NULL; 3209 3210 /* and maybe write to replacement */ 3211 bio = r10_bio->devs[1].repl_bio; 3212 if (bio) 3213 bio->bi_end_io = NULL; 3214 /* Note: if mreplace != NULL, then bio 3215 * cannot be NULL as r10buf_pool_alloc will 3216 * have allocated it. 3217 * So the second test here is pointless. 3218 * But it keeps semantic-checkers happy, and 3219 * this comment keeps human reviewers 3220 * happy. 3221 */ 3222 if (mreplace == NULL || bio == NULL || 3223 test_bit(Faulty, &mreplace->flags)) 3224 break; 3225 bio->bi_next = biolist; 3226 biolist = bio; 3227 bio->bi_end_io = end_sync_write; 3228 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3229 bio->bi_iter.bi_sector = to_addr + 3230 mreplace->data_offset; 3231 bio_set_dev(bio, mreplace->bdev); 3232 atomic_inc(&r10_bio->remaining); 3233 break; 3234 } 3235 rcu_read_unlock(); 3236 if (j == conf->copies) { 3237 /* Cannot recover, so abort the recovery or 3238 * record a bad block */ 3239 if (any_working) { 3240 /* problem is that there are bad blocks 3241 * on other device(s) 3242 */ 3243 int k; 3244 for (k = 0; k < conf->copies; k++) 3245 if (r10_bio->devs[k].devnum == i) 3246 break; 3247 if (!test_bit(In_sync, 3248 &mrdev->flags) 3249 && !rdev_set_badblocks( 3250 mrdev, 3251 r10_bio->devs[k].addr, 3252 max_sync, 0)) 3253 any_working = 0; 3254 if (mreplace && 3255 !rdev_set_badblocks( 3256 mreplace, 3257 r10_bio->devs[k].addr, 3258 max_sync, 0)) 3259 any_working = 0; 3260 } 3261 if (!any_working) { 3262 if (!test_and_set_bit(MD_RECOVERY_INTR, 3263 &mddev->recovery)) 3264 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3265 mdname(mddev)); 3266 mirror->recovery_disabled 3267 = mddev->recovery_disabled; 3268 } 3269 put_buf(r10_bio); 3270 if (rb2) 3271 atomic_dec(&rb2->remaining); 3272 r10_bio = rb2; 3273 rdev_dec_pending(mrdev, mddev); 3274 if (mreplace) 3275 rdev_dec_pending(mreplace, mddev); 3276 break; 3277 } 3278 rdev_dec_pending(mrdev, mddev); 3279 if (mreplace) 3280 rdev_dec_pending(mreplace, mddev); 3281 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3282 /* Only want this if there is elsewhere to 3283 * read from. 'j' is currently the first 3284 * readable copy. 3285 */ 3286 int targets = 1; 3287 for (; j < conf->copies; j++) { 3288 int d = r10_bio->devs[j].devnum; 3289 if (conf->mirrors[d].rdev && 3290 test_bit(In_sync, 3291 &conf->mirrors[d].rdev->flags)) 3292 targets++; 3293 } 3294 if (targets == 1) 3295 r10_bio->devs[0].bio->bi_opf 3296 &= ~MD_FAILFAST; 3297 } 3298 } 3299 if (biolist == NULL) { 3300 while (r10_bio) { 3301 struct r10bio *rb2 = r10_bio; 3302 r10_bio = (struct r10bio*) rb2->master_bio; 3303 rb2->master_bio = NULL; 3304 put_buf(rb2); 3305 } 3306 goto giveup; 3307 } 3308 } else { 3309 /* resync. Schedule a read for every block at this virt offset */ 3310 int count = 0; 3311 3312 /* 3313 * Since curr_resync_completed could probably not update in 3314 * time, and we will set cluster_sync_low based on it. 3315 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3316 * safety reason, which ensures curr_resync_completed is 3317 * updated in bitmap_cond_end_sync. 3318 */ 3319 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3320 mddev_is_clustered(mddev) && 3321 (sector_nr + 2 * RESYNC_SECTORS > 3322 conf->cluster_sync_high)); 3323 3324 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3325 &sync_blocks, mddev->degraded) && 3326 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3327 &mddev->recovery)) { 3328 /* We can skip this block */ 3329 *skipped = 1; 3330 return sync_blocks + sectors_skipped; 3331 } 3332 if (sync_blocks < max_sync) 3333 max_sync = sync_blocks; 3334 r10_bio = raid10_alloc_init_r10buf(conf); 3335 r10_bio->state = 0; 3336 3337 r10_bio->mddev = mddev; 3338 atomic_set(&r10_bio->remaining, 0); 3339 raise_barrier(conf, 0); 3340 conf->next_resync = sector_nr; 3341 3342 r10_bio->master_bio = NULL; 3343 r10_bio->sector = sector_nr; 3344 set_bit(R10BIO_IsSync, &r10_bio->state); 3345 raid10_find_phys(conf, r10_bio); 3346 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3347 3348 for (i = 0; i < conf->copies; i++) { 3349 int d = r10_bio->devs[i].devnum; 3350 sector_t first_bad, sector; 3351 int bad_sectors; 3352 struct md_rdev *rdev; 3353 3354 if (r10_bio->devs[i].repl_bio) 3355 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3356 3357 bio = r10_bio->devs[i].bio; 3358 bio->bi_status = BLK_STS_IOERR; 3359 rcu_read_lock(); 3360 rdev = rcu_dereference(conf->mirrors[d].rdev); 3361 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3362 rcu_read_unlock(); 3363 continue; 3364 } 3365 sector = r10_bio->devs[i].addr; 3366 if (is_badblock(rdev, sector, max_sync, 3367 &first_bad, &bad_sectors)) { 3368 if (first_bad > sector) 3369 max_sync = first_bad - sector; 3370 else { 3371 bad_sectors -= (sector - first_bad); 3372 if (max_sync > bad_sectors) 3373 max_sync = bad_sectors; 3374 rcu_read_unlock(); 3375 continue; 3376 } 3377 } 3378 atomic_inc(&rdev->nr_pending); 3379 atomic_inc(&r10_bio->remaining); 3380 bio->bi_next = biolist; 3381 biolist = bio; 3382 bio->bi_end_io = end_sync_read; 3383 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3384 if (test_bit(FailFast, &rdev->flags)) 3385 bio->bi_opf |= MD_FAILFAST; 3386 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3387 bio_set_dev(bio, rdev->bdev); 3388 count++; 3389 3390 rdev = rcu_dereference(conf->mirrors[d].replacement); 3391 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3392 rcu_read_unlock(); 3393 continue; 3394 } 3395 atomic_inc(&rdev->nr_pending); 3396 3397 /* Need to set up for writing to the replacement */ 3398 bio = r10_bio->devs[i].repl_bio; 3399 bio->bi_status = BLK_STS_IOERR; 3400 3401 sector = r10_bio->devs[i].addr; 3402 bio->bi_next = biolist; 3403 biolist = bio; 3404 bio->bi_end_io = end_sync_write; 3405 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3406 if (test_bit(FailFast, &rdev->flags)) 3407 bio->bi_opf |= MD_FAILFAST; 3408 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3409 bio_set_dev(bio, rdev->bdev); 3410 count++; 3411 rcu_read_unlock(); 3412 } 3413 3414 if (count < 2) { 3415 for (i=0; i<conf->copies; i++) { 3416 int d = r10_bio->devs[i].devnum; 3417 if (r10_bio->devs[i].bio->bi_end_io) 3418 rdev_dec_pending(conf->mirrors[d].rdev, 3419 mddev); 3420 if (r10_bio->devs[i].repl_bio && 3421 r10_bio->devs[i].repl_bio->bi_end_io) 3422 rdev_dec_pending( 3423 conf->mirrors[d].replacement, 3424 mddev); 3425 } 3426 put_buf(r10_bio); 3427 biolist = NULL; 3428 goto giveup; 3429 } 3430 } 3431 3432 nr_sectors = 0; 3433 if (sector_nr + max_sync < max_sector) 3434 max_sector = sector_nr + max_sync; 3435 do { 3436 struct page *page; 3437 int len = PAGE_SIZE; 3438 if (sector_nr + (len>>9) > max_sector) 3439 len = (max_sector - sector_nr) << 9; 3440 if (len == 0) 3441 break; 3442 for (bio= biolist ; bio ; bio=bio->bi_next) { 3443 struct resync_pages *rp = get_resync_pages(bio); 3444 page = resync_fetch_page(rp, page_idx); 3445 /* 3446 * won't fail because the vec table is big enough 3447 * to hold all these pages 3448 */ 3449 bio_add_page(bio, page, len, 0); 3450 } 3451 nr_sectors += len>>9; 3452 sector_nr += len>>9; 3453 } while (++page_idx < RESYNC_PAGES); 3454 r10_bio->sectors = nr_sectors; 3455 3456 if (mddev_is_clustered(mddev) && 3457 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3458 /* It is resync not recovery */ 3459 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3460 conf->cluster_sync_low = mddev->curr_resync_completed; 3461 raid10_set_cluster_sync_high(conf); 3462 /* Send resync message */ 3463 md_cluster_ops->resync_info_update(mddev, 3464 conf->cluster_sync_low, 3465 conf->cluster_sync_high); 3466 } 3467 } else if (mddev_is_clustered(mddev)) { 3468 /* This is recovery not resync */ 3469 sector_t sect_va1, sect_va2; 3470 bool broadcast_msg = false; 3471 3472 for (i = 0; i < conf->geo.raid_disks; i++) { 3473 /* 3474 * sector_nr is a device address for recovery, so we 3475 * need translate it to array address before compare 3476 * with cluster_sync_high. 3477 */ 3478 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3479 3480 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3481 broadcast_msg = true; 3482 /* 3483 * curr_resync_completed is similar as 3484 * sector_nr, so make the translation too. 3485 */ 3486 sect_va2 = raid10_find_virt(conf, 3487 mddev->curr_resync_completed, i); 3488 3489 if (conf->cluster_sync_low == 0 || 3490 conf->cluster_sync_low > sect_va2) 3491 conf->cluster_sync_low = sect_va2; 3492 } 3493 } 3494 if (broadcast_msg) { 3495 raid10_set_cluster_sync_high(conf); 3496 md_cluster_ops->resync_info_update(mddev, 3497 conf->cluster_sync_low, 3498 conf->cluster_sync_high); 3499 } 3500 } 3501 3502 while (biolist) { 3503 bio = biolist; 3504 biolist = biolist->bi_next; 3505 3506 bio->bi_next = NULL; 3507 r10_bio = get_resync_r10bio(bio); 3508 r10_bio->sectors = nr_sectors; 3509 3510 if (bio->bi_end_io == end_sync_read) { 3511 md_sync_acct_bio(bio, nr_sectors); 3512 bio->bi_status = 0; 3513 generic_make_request(bio); 3514 } 3515 } 3516 3517 if (sectors_skipped) 3518 /* pretend they weren't skipped, it makes 3519 * no important difference in this case 3520 */ 3521 md_done_sync(mddev, sectors_skipped, 1); 3522 3523 return sectors_skipped + nr_sectors; 3524 giveup: 3525 /* There is nowhere to write, so all non-sync 3526 * drives must be failed or in resync, all drives 3527 * have a bad block, so try the next chunk... 3528 */ 3529 if (sector_nr + max_sync < max_sector) 3530 max_sector = sector_nr + max_sync; 3531 3532 sectors_skipped += (max_sector - sector_nr); 3533 chunks_skipped ++; 3534 sector_nr = max_sector; 3535 goto skipped; 3536 } 3537 3538 static sector_t 3539 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3540 { 3541 sector_t size; 3542 struct r10conf *conf = mddev->private; 3543 3544 if (!raid_disks) 3545 raid_disks = min(conf->geo.raid_disks, 3546 conf->prev.raid_disks); 3547 if (!sectors) 3548 sectors = conf->dev_sectors; 3549 3550 size = sectors >> conf->geo.chunk_shift; 3551 sector_div(size, conf->geo.far_copies); 3552 size = size * raid_disks; 3553 sector_div(size, conf->geo.near_copies); 3554 3555 return size << conf->geo.chunk_shift; 3556 } 3557 3558 static void calc_sectors(struct r10conf *conf, sector_t size) 3559 { 3560 /* Calculate the number of sectors-per-device that will 3561 * actually be used, and set conf->dev_sectors and 3562 * conf->stride 3563 */ 3564 3565 size = size >> conf->geo.chunk_shift; 3566 sector_div(size, conf->geo.far_copies); 3567 size = size * conf->geo.raid_disks; 3568 sector_div(size, conf->geo.near_copies); 3569 /* 'size' is now the number of chunks in the array */ 3570 /* calculate "used chunks per device" */ 3571 size = size * conf->copies; 3572 3573 /* We need to round up when dividing by raid_disks to 3574 * get the stride size. 3575 */ 3576 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3577 3578 conf->dev_sectors = size << conf->geo.chunk_shift; 3579 3580 if (conf->geo.far_offset) 3581 conf->geo.stride = 1 << conf->geo.chunk_shift; 3582 else { 3583 sector_div(size, conf->geo.far_copies); 3584 conf->geo.stride = size << conf->geo.chunk_shift; 3585 } 3586 } 3587 3588 enum geo_type {geo_new, geo_old, geo_start}; 3589 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3590 { 3591 int nc, fc, fo; 3592 int layout, chunk, disks; 3593 switch (new) { 3594 case geo_old: 3595 layout = mddev->layout; 3596 chunk = mddev->chunk_sectors; 3597 disks = mddev->raid_disks - mddev->delta_disks; 3598 break; 3599 case geo_new: 3600 layout = mddev->new_layout; 3601 chunk = mddev->new_chunk_sectors; 3602 disks = mddev->raid_disks; 3603 break; 3604 default: /* avoid 'may be unused' warnings */ 3605 case geo_start: /* new when starting reshape - raid_disks not 3606 * updated yet. */ 3607 layout = mddev->new_layout; 3608 chunk = mddev->new_chunk_sectors; 3609 disks = mddev->raid_disks + mddev->delta_disks; 3610 break; 3611 } 3612 if (layout >> 19) 3613 return -1; 3614 if (chunk < (PAGE_SIZE >> 9) || 3615 !is_power_of_2(chunk)) 3616 return -2; 3617 nc = layout & 255; 3618 fc = (layout >> 8) & 255; 3619 fo = layout & (1<<16); 3620 geo->raid_disks = disks; 3621 geo->near_copies = nc; 3622 geo->far_copies = fc; 3623 geo->far_offset = fo; 3624 switch (layout >> 17) { 3625 case 0: /* original layout. simple but not always optimal */ 3626 geo->far_set_size = disks; 3627 break; 3628 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3629 * actually using this, but leave code here just in case.*/ 3630 geo->far_set_size = disks/fc; 3631 WARN(geo->far_set_size < fc, 3632 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3633 break; 3634 case 2: /* "improved" layout fixed to match documentation */ 3635 geo->far_set_size = fc * nc; 3636 break; 3637 default: /* Not a valid layout */ 3638 return -1; 3639 } 3640 geo->chunk_mask = chunk - 1; 3641 geo->chunk_shift = ffz(~chunk); 3642 return nc*fc; 3643 } 3644 3645 static struct r10conf *setup_conf(struct mddev *mddev) 3646 { 3647 struct r10conf *conf = NULL; 3648 int err = -EINVAL; 3649 struct geom geo; 3650 int copies; 3651 3652 copies = setup_geo(&geo, mddev, geo_new); 3653 3654 if (copies == -2) { 3655 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3656 mdname(mddev), PAGE_SIZE); 3657 goto out; 3658 } 3659 3660 if (copies < 2 || copies > mddev->raid_disks) { 3661 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3662 mdname(mddev), mddev->new_layout); 3663 goto out; 3664 } 3665 3666 err = -ENOMEM; 3667 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3668 if (!conf) 3669 goto out; 3670 3671 /* FIXME calc properly */ 3672 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3673 max(0,-mddev->delta_disks)), 3674 GFP_KERNEL); 3675 if (!conf->mirrors) 3676 goto out; 3677 3678 conf->tmppage = alloc_page(GFP_KERNEL); 3679 if (!conf->tmppage) 3680 goto out; 3681 3682 conf->geo = geo; 3683 conf->copies = copies; 3684 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3685 r10bio_pool_free, conf); 3686 if (!conf->r10bio_pool) 3687 goto out; 3688 3689 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0); 3690 if (!conf->bio_split) 3691 goto out; 3692 3693 calc_sectors(conf, mddev->dev_sectors); 3694 if (mddev->reshape_position == MaxSector) { 3695 conf->prev = conf->geo; 3696 conf->reshape_progress = MaxSector; 3697 } else { 3698 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3699 err = -EINVAL; 3700 goto out; 3701 } 3702 conf->reshape_progress = mddev->reshape_position; 3703 if (conf->prev.far_offset) 3704 conf->prev.stride = 1 << conf->prev.chunk_shift; 3705 else 3706 /* far_copies must be 1 */ 3707 conf->prev.stride = conf->dev_sectors; 3708 } 3709 conf->reshape_safe = conf->reshape_progress; 3710 spin_lock_init(&conf->device_lock); 3711 INIT_LIST_HEAD(&conf->retry_list); 3712 INIT_LIST_HEAD(&conf->bio_end_io_list); 3713 3714 spin_lock_init(&conf->resync_lock); 3715 init_waitqueue_head(&conf->wait_barrier); 3716 atomic_set(&conf->nr_pending, 0); 3717 3718 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3719 if (!conf->thread) 3720 goto out; 3721 3722 conf->mddev = mddev; 3723 return conf; 3724 3725 out: 3726 if (conf) { 3727 mempool_destroy(conf->r10bio_pool); 3728 kfree(conf->mirrors); 3729 safe_put_page(conf->tmppage); 3730 if (conf->bio_split) 3731 bioset_free(conf->bio_split); 3732 kfree(conf); 3733 } 3734 return ERR_PTR(err); 3735 } 3736 3737 static int raid10_run(struct mddev *mddev) 3738 { 3739 struct r10conf *conf; 3740 int i, disk_idx, chunk_size; 3741 struct raid10_info *disk; 3742 struct md_rdev *rdev; 3743 sector_t size; 3744 sector_t min_offset_diff = 0; 3745 int first = 1; 3746 bool discard_supported = false; 3747 3748 if (mddev_init_writes_pending(mddev) < 0) 3749 return -ENOMEM; 3750 3751 if (mddev->private == NULL) { 3752 conf = setup_conf(mddev); 3753 if (IS_ERR(conf)) 3754 return PTR_ERR(conf); 3755 mddev->private = conf; 3756 } 3757 conf = mddev->private; 3758 if (!conf) 3759 goto out; 3760 3761 if (mddev_is_clustered(conf->mddev)) { 3762 int fc, fo; 3763 3764 fc = (mddev->layout >> 8) & 255; 3765 fo = mddev->layout & (1<<16); 3766 if (fc > 1 || fo > 0) { 3767 pr_err("only near layout is supported by clustered" 3768 " raid10\n"); 3769 goto out; 3770 } 3771 } 3772 3773 mddev->thread = conf->thread; 3774 conf->thread = NULL; 3775 3776 chunk_size = mddev->chunk_sectors << 9; 3777 if (mddev->queue) { 3778 blk_queue_max_discard_sectors(mddev->queue, 3779 mddev->chunk_sectors); 3780 blk_queue_max_write_same_sectors(mddev->queue, 0); 3781 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3782 blk_queue_io_min(mddev->queue, chunk_size); 3783 if (conf->geo.raid_disks % conf->geo.near_copies) 3784 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3785 else 3786 blk_queue_io_opt(mddev->queue, chunk_size * 3787 (conf->geo.raid_disks / conf->geo.near_copies)); 3788 } 3789 3790 rdev_for_each(rdev, mddev) { 3791 long long diff; 3792 3793 disk_idx = rdev->raid_disk; 3794 if (disk_idx < 0) 3795 continue; 3796 if (disk_idx >= conf->geo.raid_disks && 3797 disk_idx >= conf->prev.raid_disks) 3798 continue; 3799 disk = conf->mirrors + disk_idx; 3800 3801 if (test_bit(Replacement, &rdev->flags)) { 3802 if (disk->replacement) 3803 goto out_free_conf; 3804 disk->replacement = rdev; 3805 } else { 3806 if (disk->rdev) 3807 goto out_free_conf; 3808 disk->rdev = rdev; 3809 } 3810 diff = (rdev->new_data_offset - rdev->data_offset); 3811 if (!mddev->reshape_backwards) 3812 diff = -diff; 3813 if (diff < 0) 3814 diff = 0; 3815 if (first || diff < min_offset_diff) 3816 min_offset_diff = diff; 3817 3818 if (mddev->gendisk) 3819 disk_stack_limits(mddev->gendisk, rdev->bdev, 3820 rdev->data_offset << 9); 3821 3822 disk->head_position = 0; 3823 3824 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3825 discard_supported = true; 3826 first = 0; 3827 } 3828 3829 if (mddev->queue) { 3830 if (discard_supported) 3831 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3832 mddev->queue); 3833 else 3834 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3835 mddev->queue); 3836 } 3837 /* need to check that every block has at least one working mirror */ 3838 if (!enough(conf, -1)) { 3839 pr_err("md/raid10:%s: not enough operational mirrors.\n", 3840 mdname(mddev)); 3841 goto out_free_conf; 3842 } 3843 3844 if (conf->reshape_progress != MaxSector) { 3845 /* must ensure that shape change is supported */ 3846 if (conf->geo.far_copies != 1 && 3847 conf->geo.far_offset == 0) 3848 goto out_free_conf; 3849 if (conf->prev.far_copies != 1 && 3850 conf->prev.far_offset == 0) 3851 goto out_free_conf; 3852 } 3853 3854 mddev->degraded = 0; 3855 for (i = 0; 3856 i < conf->geo.raid_disks 3857 || i < conf->prev.raid_disks; 3858 i++) { 3859 3860 disk = conf->mirrors + i; 3861 3862 if (!disk->rdev && disk->replacement) { 3863 /* The replacement is all we have - use it */ 3864 disk->rdev = disk->replacement; 3865 disk->replacement = NULL; 3866 clear_bit(Replacement, &disk->rdev->flags); 3867 } 3868 3869 if (!disk->rdev || 3870 !test_bit(In_sync, &disk->rdev->flags)) { 3871 disk->head_position = 0; 3872 mddev->degraded++; 3873 if (disk->rdev && 3874 disk->rdev->saved_raid_disk < 0) 3875 conf->fullsync = 1; 3876 } 3877 disk->recovery_disabled = mddev->recovery_disabled - 1; 3878 } 3879 3880 if (mddev->recovery_cp != MaxSector) 3881 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 3882 mdname(mddev)); 3883 pr_info("md/raid10:%s: active with %d out of %d devices\n", 3884 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3885 conf->geo.raid_disks); 3886 /* 3887 * Ok, everything is just fine now 3888 */ 3889 mddev->dev_sectors = conf->dev_sectors; 3890 size = raid10_size(mddev, 0, 0); 3891 md_set_array_sectors(mddev, size); 3892 mddev->resync_max_sectors = size; 3893 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3894 3895 if (mddev->queue) { 3896 int stripe = conf->geo.raid_disks * 3897 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3898 3899 /* Calculate max read-ahead size. 3900 * We need to readahead at least twice a whole stripe.... 3901 * maybe... 3902 */ 3903 stripe /= conf->geo.near_copies; 3904 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 3905 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 3906 } 3907 3908 if (md_integrity_register(mddev)) 3909 goto out_free_conf; 3910 3911 if (conf->reshape_progress != MaxSector) { 3912 unsigned long before_length, after_length; 3913 3914 before_length = ((1 << conf->prev.chunk_shift) * 3915 conf->prev.far_copies); 3916 after_length = ((1 << conf->geo.chunk_shift) * 3917 conf->geo.far_copies); 3918 3919 if (max(before_length, after_length) > min_offset_diff) { 3920 /* This cannot work */ 3921 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 3922 goto out_free_conf; 3923 } 3924 conf->offset_diff = min_offset_diff; 3925 3926 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3927 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3928 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3929 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3930 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3931 "reshape"); 3932 } 3933 3934 return 0; 3935 3936 out_free_conf: 3937 md_unregister_thread(&mddev->thread); 3938 mempool_destroy(conf->r10bio_pool); 3939 safe_put_page(conf->tmppage); 3940 kfree(conf->mirrors); 3941 kfree(conf); 3942 mddev->private = NULL; 3943 out: 3944 return -EIO; 3945 } 3946 3947 static void raid10_free(struct mddev *mddev, void *priv) 3948 { 3949 struct r10conf *conf = priv; 3950 3951 mempool_destroy(conf->r10bio_pool); 3952 safe_put_page(conf->tmppage); 3953 kfree(conf->mirrors); 3954 kfree(conf->mirrors_old); 3955 kfree(conf->mirrors_new); 3956 if (conf->bio_split) 3957 bioset_free(conf->bio_split); 3958 kfree(conf); 3959 } 3960 3961 static void raid10_quiesce(struct mddev *mddev, int quiesce) 3962 { 3963 struct r10conf *conf = mddev->private; 3964 3965 if (quiesce) 3966 raise_barrier(conf, 0); 3967 else 3968 lower_barrier(conf); 3969 } 3970 3971 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3972 { 3973 /* Resize of 'far' arrays is not supported. 3974 * For 'near' and 'offset' arrays we can set the 3975 * number of sectors used to be an appropriate multiple 3976 * of the chunk size. 3977 * For 'offset', this is far_copies*chunksize. 3978 * For 'near' the multiplier is the LCM of 3979 * near_copies and raid_disks. 3980 * So if far_copies > 1 && !far_offset, fail. 3981 * Else find LCM(raid_disks, near_copy)*far_copies and 3982 * multiply by chunk_size. Then round to this number. 3983 * This is mostly done by raid10_size() 3984 */ 3985 struct r10conf *conf = mddev->private; 3986 sector_t oldsize, size; 3987 3988 if (mddev->reshape_position != MaxSector) 3989 return -EBUSY; 3990 3991 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3992 return -EINVAL; 3993 3994 oldsize = raid10_size(mddev, 0, 0); 3995 size = raid10_size(mddev, sectors, 0); 3996 if (mddev->external_size && 3997 mddev->array_sectors > size) 3998 return -EINVAL; 3999 if (mddev->bitmap) { 4000 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 4001 if (ret) 4002 return ret; 4003 } 4004 md_set_array_sectors(mddev, size); 4005 if (sectors > mddev->dev_sectors && 4006 mddev->recovery_cp > oldsize) { 4007 mddev->recovery_cp = oldsize; 4008 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4009 } 4010 calc_sectors(conf, sectors); 4011 mddev->dev_sectors = conf->dev_sectors; 4012 mddev->resync_max_sectors = size; 4013 return 0; 4014 } 4015 4016 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4017 { 4018 struct md_rdev *rdev; 4019 struct r10conf *conf; 4020 4021 if (mddev->degraded > 0) { 4022 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4023 mdname(mddev)); 4024 return ERR_PTR(-EINVAL); 4025 } 4026 sector_div(size, devs); 4027 4028 /* Set new parameters */ 4029 mddev->new_level = 10; 4030 /* new layout: far_copies = 1, near_copies = 2 */ 4031 mddev->new_layout = (1<<8) + 2; 4032 mddev->new_chunk_sectors = mddev->chunk_sectors; 4033 mddev->delta_disks = mddev->raid_disks; 4034 mddev->raid_disks *= 2; 4035 /* make sure it will be not marked as dirty */ 4036 mddev->recovery_cp = MaxSector; 4037 mddev->dev_sectors = size; 4038 4039 conf = setup_conf(mddev); 4040 if (!IS_ERR(conf)) { 4041 rdev_for_each(rdev, mddev) 4042 if (rdev->raid_disk >= 0) { 4043 rdev->new_raid_disk = rdev->raid_disk * 2; 4044 rdev->sectors = size; 4045 } 4046 conf->barrier = 1; 4047 } 4048 4049 return conf; 4050 } 4051 4052 static void *raid10_takeover(struct mddev *mddev) 4053 { 4054 struct r0conf *raid0_conf; 4055 4056 /* raid10 can take over: 4057 * raid0 - providing it has only two drives 4058 */ 4059 if (mddev->level == 0) { 4060 /* for raid0 takeover only one zone is supported */ 4061 raid0_conf = mddev->private; 4062 if (raid0_conf->nr_strip_zones > 1) { 4063 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4064 mdname(mddev)); 4065 return ERR_PTR(-EINVAL); 4066 } 4067 return raid10_takeover_raid0(mddev, 4068 raid0_conf->strip_zone->zone_end, 4069 raid0_conf->strip_zone->nb_dev); 4070 } 4071 return ERR_PTR(-EINVAL); 4072 } 4073 4074 static int raid10_check_reshape(struct mddev *mddev) 4075 { 4076 /* Called when there is a request to change 4077 * - layout (to ->new_layout) 4078 * - chunk size (to ->new_chunk_sectors) 4079 * - raid_disks (by delta_disks) 4080 * or when trying to restart a reshape that was ongoing. 4081 * 4082 * We need to validate the request and possibly allocate 4083 * space if that might be an issue later. 4084 * 4085 * Currently we reject any reshape of a 'far' mode array, 4086 * allow chunk size to change if new is generally acceptable, 4087 * allow raid_disks to increase, and allow 4088 * a switch between 'near' mode and 'offset' mode. 4089 */ 4090 struct r10conf *conf = mddev->private; 4091 struct geom geo; 4092 4093 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4094 return -EINVAL; 4095 4096 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4097 /* mustn't change number of copies */ 4098 return -EINVAL; 4099 if (geo.far_copies > 1 && !geo.far_offset) 4100 /* Cannot switch to 'far' mode */ 4101 return -EINVAL; 4102 4103 if (mddev->array_sectors & geo.chunk_mask) 4104 /* not factor of array size */ 4105 return -EINVAL; 4106 4107 if (!enough(conf, -1)) 4108 return -EINVAL; 4109 4110 kfree(conf->mirrors_new); 4111 conf->mirrors_new = NULL; 4112 if (mddev->delta_disks > 0) { 4113 /* allocate new 'mirrors' list */ 4114 conf->mirrors_new = kzalloc( 4115 sizeof(struct raid10_info) 4116 *(mddev->raid_disks + 4117 mddev->delta_disks), 4118 GFP_KERNEL); 4119 if (!conf->mirrors_new) 4120 return -ENOMEM; 4121 } 4122 return 0; 4123 } 4124 4125 /* 4126 * Need to check if array has failed when deciding whether to: 4127 * - start an array 4128 * - remove non-faulty devices 4129 * - add a spare 4130 * - allow a reshape 4131 * This determination is simple when no reshape is happening. 4132 * However if there is a reshape, we need to carefully check 4133 * both the before and after sections. 4134 * This is because some failed devices may only affect one 4135 * of the two sections, and some non-in_sync devices may 4136 * be insync in the section most affected by failed devices. 4137 */ 4138 static int calc_degraded(struct r10conf *conf) 4139 { 4140 int degraded, degraded2; 4141 int i; 4142 4143 rcu_read_lock(); 4144 degraded = 0; 4145 /* 'prev' section first */ 4146 for (i = 0; i < conf->prev.raid_disks; i++) { 4147 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4148 if (!rdev || test_bit(Faulty, &rdev->flags)) 4149 degraded++; 4150 else if (!test_bit(In_sync, &rdev->flags)) 4151 /* When we can reduce the number of devices in 4152 * an array, this might not contribute to 4153 * 'degraded'. It does now. 4154 */ 4155 degraded++; 4156 } 4157 rcu_read_unlock(); 4158 if (conf->geo.raid_disks == conf->prev.raid_disks) 4159 return degraded; 4160 rcu_read_lock(); 4161 degraded2 = 0; 4162 for (i = 0; i < conf->geo.raid_disks; i++) { 4163 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4164 if (!rdev || test_bit(Faulty, &rdev->flags)) 4165 degraded2++; 4166 else if (!test_bit(In_sync, &rdev->flags)) { 4167 /* If reshape is increasing the number of devices, 4168 * this section has already been recovered, so 4169 * it doesn't contribute to degraded. 4170 * else it does. 4171 */ 4172 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4173 degraded2++; 4174 } 4175 } 4176 rcu_read_unlock(); 4177 if (degraded2 > degraded) 4178 return degraded2; 4179 return degraded; 4180 } 4181 4182 static int raid10_start_reshape(struct mddev *mddev) 4183 { 4184 /* A 'reshape' has been requested. This commits 4185 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4186 * This also checks if there are enough spares and adds them 4187 * to the array. 4188 * We currently require enough spares to make the final 4189 * array non-degraded. We also require that the difference 4190 * between old and new data_offset - on each device - is 4191 * enough that we never risk over-writing. 4192 */ 4193 4194 unsigned long before_length, after_length; 4195 sector_t min_offset_diff = 0; 4196 int first = 1; 4197 struct geom new; 4198 struct r10conf *conf = mddev->private; 4199 struct md_rdev *rdev; 4200 int spares = 0; 4201 int ret; 4202 4203 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4204 return -EBUSY; 4205 4206 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4207 return -EINVAL; 4208 4209 before_length = ((1 << conf->prev.chunk_shift) * 4210 conf->prev.far_copies); 4211 after_length = ((1 << conf->geo.chunk_shift) * 4212 conf->geo.far_copies); 4213 4214 rdev_for_each(rdev, mddev) { 4215 if (!test_bit(In_sync, &rdev->flags) 4216 && !test_bit(Faulty, &rdev->flags)) 4217 spares++; 4218 if (rdev->raid_disk >= 0) { 4219 long long diff = (rdev->new_data_offset 4220 - rdev->data_offset); 4221 if (!mddev->reshape_backwards) 4222 diff = -diff; 4223 if (diff < 0) 4224 diff = 0; 4225 if (first || diff < min_offset_diff) 4226 min_offset_diff = diff; 4227 first = 0; 4228 } 4229 } 4230 4231 if (max(before_length, after_length) > min_offset_diff) 4232 return -EINVAL; 4233 4234 if (spares < mddev->delta_disks) 4235 return -EINVAL; 4236 4237 conf->offset_diff = min_offset_diff; 4238 spin_lock_irq(&conf->device_lock); 4239 if (conf->mirrors_new) { 4240 memcpy(conf->mirrors_new, conf->mirrors, 4241 sizeof(struct raid10_info)*conf->prev.raid_disks); 4242 smp_mb(); 4243 kfree(conf->mirrors_old); 4244 conf->mirrors_old = conf->mirrors; 4245 conf->mirrors = conf->mirrors_new; 4246 conf->mirrors_new = NULL; 4247 } 4248 setup_geo(&conf->geo, mddev, geo_start); 4249 smp_mb(); 4250 if (mddev->reshape_backwards) { 4251 sector_t size = raid10_size(mddev, 0, 0); 4252 if (size < mddev->array_sectors) { 4253 spin_unlock_irq(&conf->device_lock); 4254 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4255 mdname(mddev)); 4256 return -EINVAL; 4257 } 4258 mddev->resync_max_sectors = size; 4259 conf->reshape_progress = size; 4260 } else 4261 conf->reshape_progress = 0; 4262 conf->reshape_safe = conf->reshape_progress; 4263 spin_unlock_irq(&conf->device_lock); 4264 4265 if (mddev->delta_disks && mddev->bitmap) { 4266 ret = bitmap_resize(mddev->bitmap, 4267 raid10_size(mddev, 0, 4268 conf->geo.raid_disks), 4269 0, 0); 4270 if (ret) 4271 goto abort; 4272 } 4273 if (mddev->delta_disks > 0) { 4274 rdev_for_each(rdev, mddev) 4275 if (rdev->raid_disk < 0 && 4276 !test_bit(Faulty, &rdev->flags)) { 4277 if (raid10_add_disk(mddev, rdev) == 0) { 4278 if (rdev->raid_disk >= 4279 conf->prev.raid_disks) 4280 set_bit(In_sync, &rdev->flags); 4281 else 4282 rdev->recovery_offset = 0; 4283 4284 if (sysfs_link_rdev(mddev, rdev)) 4285 /* Failure here is OK */; 4286 } 4287 } else if (rdev->raid_disk >= conf->prev.raid_disks 4288 && !test_bit(Faulty, &rdev->flags)) { 4289 /* This is a spare that was manually added */ 4290 set_bit(In_sync, &rdev->flags); 4291 } 4292 } 4293 /* When a reshape changes the number of devices, 4294 * ->degraded is measured against the larger of the 4295 * pre and post numbers. 4296 */ 4297 spin_lock_irq(&conf->device_lock); 4298 mddev->degraded = calc_degraded(conf); 4299 spin_unlock_irq(&conf->device_lock); 4300 mddev->raid_disks = conf->geo.raid_disks; 4301 mddev->reshape_position = conf->reshape_progress; 4302 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4303 4304 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4305 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4306 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4307 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4308 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4309 4310 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4311 "reshape"); 4312 if (!mddev->sync_thread) { 4313 ret = -EAGAIN; 4314 goto abort; 4315 } 4316 conf->reshape_checkpoint = jiffies; 4317 md_wakeup_thread(mddev->sync_thread); 4318 md_new_event(mddev); 4319 return 0; 4320 4321 abort: 4322 mddev->recovery = 0; 4323 spin_lock_irq(&conf->device_lock); 4324 conf->geo = conf->prev; 4325 mddev->raid_disks = conf->geo.raid_disks; 4326 rdev_for_each(rdev, mddev) 4327 rdev->new_data_offset = rdev->data_offset; 4328 smp_wmb(); 4329 conf->reshape_progress = MaxSector; 4330 conf->reshape_safe = MaxSector; 4331 mddev->reshape_position = MaxSector; 4332 spin_unlock_irq(&conf->device_lock); 4333 return ret; 4334 } 4335 4336 /* Calculate the last device-address that could contain 4337 * any block from the chunk that includes the array-address 's' 4338 * and report the next address. 4339 * i.e. the address returned will be chunk-aligned and after 4340 * any data that is in the chunk containing 's'. 4341 */ 4342 static sector_t last_dev_address(sector_t s, struct geom *geo) 4343 { 4344 s = (s | geo->chunk_mask) + 1; 4345 s >>= geo->chunk_shift; 4346 s *= geo->near_copies; 4347 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4348 s *= geo->far_copies; 4349 s <<= geo->chunk_shift; 4350 return s; 4351 } 4352 4353 /* Calculate the first device-address that could contain 4354 * any block from the chunk that includes the array-address 's'. 4355 * This too will be the start of a chunk 4356 */ 4357 static sector_t first_dev_address(sector_t s, struct geom *geo) 4358 { 4359 s >>= geo->chunk_shift; 4360 s *= geo->near_copies; 4361 sector_div(s, geo->raid_disks); 4362 s *= geo->far_copies; 4363 s <<= geo->chunk_shift; 4364 return s; 4365 } 4366 4367 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4368 int *skipped) 4369 { 4370 /* We simply copy at most one chunk (smallest of old and new) 4371 * at a time, possibly less if that exceeds RESYNC_PAGES, 4372 * or we hit a bad block or something. 4373 * This might mean we pause for normal IO in the middle of 4374 * a chunk, but that is not a problem as mddev->reshape_position 4375 * can record any location. 4376 * 4377 * If we will want to write to a location that isn't 4378 * yet recorded as 'safe' (i.e. in metadata on disk) then 4379 * we need to flush all reshape requests and update the metadata. 4380 * 4381 * When reshaping forwards (e.g. to more devices), we interpret 4382 * 'safe' as the earliest block which might not have been copied 4383 * down yet. We divide this by previous stripe size and multiply 4384 * by previous stripe length to get lowest device offset that we 4385 * cannot write to yet. 4386 * We interpret 'sector_nr' as an address that we want to write to. 4387 * From this we use last_device_address() to find where we might 4388 * write to, and first_device_address on the 'safe' position. 4389 * If this 'next' write position is after the 'safe' position, 4390 * we must update the metadata to increase the 'safe' position. 4391 * 4392 * When reshaping backwards, we round in the opposite direction 4393 * and perform the reverse test: next write position must not be 4394 * less than current safe position. 4395 * 4396 * In all this the minimum difference in data offsets 4397 * (conf->offset_diff - always positive) allows a bit of slack, 4398 * so next can be after 'safe', but not by more than offset_diff 4399 * 4400 * We need to prepare all the bios here before we start any IO 4401 * to ensure the size we choose is acceptable to all devices. 4402 * The means one for each copy for write-out and an extra one for 4403 * read-in. 4404 * We store the read-in bio in ->master_bio and the others in 4405 * ->devs[x].bio and ->devs[x].repl_bio. 4406 */ 4407 struct r10conf *conf = mddev->private; 4408 struct r10bio *r10_bio; 4409 sector_t next, safe, last; 4410 int max_sectors; 4411 int nr_sectors; 4412 int s; 4413 struct md_rdev *rdev; 4414 int need_flush = 0; 4415 struct bio *blist; 4416 struct bio *bio, *read_bio; 4417 int sectors_done = 0; 4418 struct page **pages; 4419 4420 if (sector_nr == 0) { 4421 /* If restarting in the middle, skip the initial sectors */ 4422 if (mddev->reshape_backwards && 4423 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4424 sector_nr = (raid10_size(mddev, 0, 0) 4425 - conf->reshape_progress); 4426 } else if (!mddev->reshape_backwards && 4427 conf->reshape_progress > 0) 4428 sector_nr = conf->reshape_progress; 4429 if (sector_nr) { 4430 mddev->curr_resync_completed = sector_nr; 4431 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4432 *skipped = 1; 4433 return sector_nr; 4434 } 4435 } 4436 4437 /* We don't use sector_nr to track where we are up to 4438 * as that doesn't work well for ->reshape_backwards. 4439 * So just use ->reshape_progress. 4440 */ 4441 if (mddev->reshape_backwards) { 4442 /* 'next' is the earliest device address that we might 4443 * write to for this chunk in the new layout 4444 */ 4445 next = first_dev_address(conf->reshape_progress - 1, 4446 &conf->geo); 4447 4448 /* 'safe' is the last device address that we might read from 4449 * in the old layout after a restart 4450 */ 4451 safe = last_dev_address(conf->reshape_safe - 1, 4452 &conf->prev); 4453 4454 if (next + conf->offset_diff < safe) 4455 need_flush = 1; 4456 4457 last = conf->reshape_progress - 1; 4458 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4459 & conf->prev.chunk_mask); 4460 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4461 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4462 } else { 4463 /* 'next' is after the last device address that we 4464 * might write to for this chunk in the new layout 4465 */ 4466 next = last_dev_address(conf->reshape_progress, &conf->geo); 4467 4468 /* 'safe' is the earliest device address that we might 4469 * read from in the old layout after a restart 4470 */ 4471 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4472 4473 /* Need to update metadata if 'next' might be beyond 'safe' 4474 * as that would possibly corrupt data 4475 */ 4476 if (next > safe + conf->offset_diff) 4477 need_flush = 1; 4478 4479 sector_nr = conf->reshape_progress; 4480 last = sector_nr | (conf->geo.chunk_mask 4481 & conf->prev.chunk_mask); 4482 4483 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4484 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4485 } 4486 4487 if (need_flush || 4488 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4489 /* Need to update reshape_position in metadata */ 4490 wait_barrier(conf); 4491 mddev->reshape_position = conf->reshape_progress; 4492 if (mddev->reshape_backwards) 4493 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4494 - conf->reshape_progress; 4495 else 4496 mddev->curr_resync_completed = conf->reshape_progress; 4497 conf->reshape_checkpoint = jiffies; 4498 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4499 md_wakeup_thread(mddev->thread); 4500 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4501 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4502 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4503 allow_barrier(conf); 4504 return sectors_done; 4505 } 4506 conf->reshape_safe = mddev->reshape_position; 4507 allow_barrier(conf); 4508 } 4509 4510 read_more: 4511 /* Now schedule reads for blocks from sector_nr to last */ 4512 r10_bio = raid10_alloc_init_r10buf(conf); 4513 r10_bio->state = 0; 4514 raise_barrier(conf, sectors_done != 0); 4515 atomic_set(&r10_bio->remaining, 0); 4516 r10_bio->mddev = mddev; 4517 r10_bio->sector = sector_nr; 4518 set_bit(R10BIO_IsReshape, &r10_bio->state); 4519 r10_bio->sectors = last - sector_nr + 1; 4520 rdev = read_balance(conf, r10_bio, &max_sectors); 4521 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4522 4523 if (!rdev) { 4524 /* Cannot read from here, so need to record bad blocks 4525 * on all the target devices. 4526 */ 4527 // FIXME 4528 mempool_free(r10_bio, conf->r10buf_pool); 4529 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4530 return sectors_done; 4531 } 4532 4533 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4534 4535 bio_set_dev(read_bio, rdev->bdev); 4536 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4537 + rdev->data_offset); 4538 read_bio->bi_private = r10_bio; 4539 read_bio->bi_end_io = end_reshape_read; 4540 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4541 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4542 read_bio->bi_status = 0; 4543 read_bio->bi_vcnt = 0; 4544 read_bio->bi_iter.bi_size = 0; 4545 r10_bio->master_bio = read_bio; 4546 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4547 4548 /* Now find the locations in the new layout */ 4549 __raid10_find_phys(&conf->geo, r10_bio); 4550 4551 blist = read_bio; 4552 read_bio->bi_next = NULL; 4553 4554 rcu_read_lock(); 4555 for (s = 0; s < conf->copies*2; s++) { 4556 struct bio *b; 4557 int d = r10_bio->devs[s/2].devnum; 4558 struct md_rdev *rdev2; 4559 if (s&1) { 4560 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4561 b = r10_bio->devs[s/2].repl_bio; 4562 } else { 4563 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4564 b = r10_bio->devs[s/2].bio; 4565 } 4566 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4567 continue; 4568 4569 bio_set_dev(b, rdev2->bdev); 4570 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4571 rdev2->new_data_offset; 4572 b->bi_end_io = end_reshape_write; 4573 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4574 b->bi_next = blist; 4575 blist = b; 4576 } 4577 4578 /* Now add as many pages as possible to all of these bios. */ 4579 4580 nr_sectors = 0; 4581 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4582 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4583 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4584 int len = (max_sectors - s) << 9; 4585 if (len > PAGE_SIZE) 4586 len = PAGE_SIZE; 4587 for (bio = blist; bio ; bio = bio->bi_next) { 4588 /* 4589 * won't fail because the vec table is big enough 4590 * to hold all these pages 4591 */ 4592 bio_add_page(bio, page, len, 0); 4593 } 4594 sector_nr += len >> 9; 4595 nr_sectors += len >> 9; 4596 } 4597 rcu_read_unlock(); 4598 r10_bio->sectors = nr_sectors; 4599 4600 /* Now submit the read */ 4601 md_sync_acct_bio(read_bio, r10_bio->sectors); 4602 atomic_inc(&r10_bio->remaining); 4603 read_bio->bi_next = NULL; 4604 generic_make_request(read_bio); 4605 sector_nr += nr_sectors; 4606 sectors_done += nr_sectors; 4607 if (sector_nr <= last) 4608 goto read_more; 4609 4610 /* Now that we have done the whole section we can 4611 * update reshape_progress 4612 */ 4613 if (mddev->reshape_backwards) 4614 conf->reshape_progress -= sectors_done; 4615 else 4616 conf->reshape_progress += sectors_done; 4617 4618 return sectors_done; 4619 } 4620 4621 static void end_reshape_request(struct r10bio *r10_bio); 4622 static int handle_reshape_read_error(struct mddev *mddev, 4623 struct r10bio *r10_bio); 4624 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4625 { 4626 /* Reshape read completed. Hopefully we have a block 4627 * to write out. 4628 * If we got a read error then we do sync 1-page reads from 4629 * elsewhere until we find the data - or give up. 4630 */ 4631 struct r10conf *conf = mddev->private; 4632 int s; 4633 4634 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4635 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4636 /* Reshape has been aborted */ 4637 md_done_sync(mddev, r10_bio->sectors, 0); 4638 return; 4639 } 4640 4641 /* We definitely have the data in the pages, schedule the 4642 * writes. 4643 */ 4644 atomic_set(&r10_bio->remaining, 1); 4645 for (s = 0; s < conf->copies*2; s++) { 4646 struct bio *b; 4647 int d = r10_bio->devs[s/2].devnum; 4648 struct md_rdev *rdev; 4649 rcu_read_lock(); 4650 if (s&1) { 4651 rdev = rcu_dereference(conf->mirrors[d].replacement); 4652 b = r10_bio->devs[s/2].repl_bio; 4653 } else { 4654 rdev = rcu_dereference(conf->mirrors[d].rdev); 4655 b = r10_bio->devs[s/2].bio; 4656 } 4657 if (!rdev || test_bit(Faulty, &rdev->flags)) { 4658 rcu_read_unlock(); 4659 continue; 4660 } 4661 atomic_inc(&rdev->nr_pending); 4662 rcu_read_unlock(); 4663 md_sync_acct_bio(b, r10_bio->sectors); 4664 atomic_inc(&r10_bio->remaining); 4665 b->bi_next = NULL; 4666 generic_make_request(b); 4667 } 4668 end_reshape_request(r10_bio); 4669 } 4670 4671 static void end_reshape(struct r10conf *conf) 4672 { 4673 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4674 return; 4675 4676 spin_lock_irq(&conf->device_lock); 4677 conf->prev = conf->geo; 4678 md_finish_reshape(conf->mddev); 4679 smp_wmb(); 4680 conf->reshape_progress = MaxSector; 4681 conf->reshape_safe = MaxSector; 4682 spin_unlock_irq(&conf->device_lock); 4683 4684 /* read-ahead size must cover two whole stripes, which is 4685 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4686 */ 4687 if (conf->mddev->queue) { 4688 int stripe = conf->geo.raid_disks * 4689 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4690 stripe /= conf->geo.near_copies; 4691 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 4692 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 4693 } 4694 conf->fullsync = 0; 4695 } 4696 4697 static int handle_reshape_read_error(struct mddev *mddev, 4698 struct r10bio *r10_bio) 4699 { 4700 /* Use sync reads to get the blocks from somewhere else */ 4701 int sectors = r10_bio->sectors; 4702 struct r10conf *conf = mddev->private; 4703 struct r10bio *r10b; 4704 int slot = 0; 4705 int idx = 0; 4706 struct page **pages; 4707 4708 r10b = kmalloc(sizeof(*r10b) + 4709 sizeof(struct r10dev) * conf->copies, GFP_NOIO); 4710 if (!r10b) { 4711 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4712 return -ENOMEM; 4713 } 4714 4715 /* reshape IOs share pages from .devs[0].bio */ 4716 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4717 4718 r10b->sector = r10_bio->sector; 4719 __raid10_find_phys(&conf->prev, r10b); 4720 4721 while (sectors) { 4722 int s = sectors; 4723 int success = 0; 4724 int first_slot = slot; 4725 4726 if (s > (PAGE_SIZE >> 9)) 4727 s = PAGE_SIZE >> 9; 4728 4729 rcu_read_lock(); 4730 while (!success) { 4731 int d = r10b->devs[slot].devnum; 4732 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4733 sector_t addr; 4734 if (rdev == NULL || 4735 test_bit(Faulty, &rdev->flags) || 4736 !test_bit(In_sync, &rdev->flags)) 4737 goto failed; 4738 4739 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4740 atomic_inc(&rdev->nr_pending); 4741 rcu_read_unlock(); 4742 success = sync_page_io(rdev, 4743 addr, 4744 s << 9, 4745 pages[idx], 4746 REQ_OP_READ, 0, false); 4747 rdev_dec_pending(rdev, mddev); 4748 rcu_read_lock(); 4749 if (success) 4750 break; 4751 failed: 4752 slot++; 4753 if (slot >= conf->copies) 4754 slot = 0; 4755 if (slot == first_slot) 4756 break; 4757 } 4758 rcu_read_unlock(); 4759 if (!success) { 4760 /* couldn't read this block, must give up */ 4761 set_bit(MD_RECOVERY_INTR, 4762 &mddev->recovery); 4763 kfree(r10b); 4764 return -EIO; 4765 } 4766 sectors -= s; 4767 idx++; 4768 } 4769 kfree(r10b); 4770 return 0; 4771 } 4772 4773 static void end_reshape_write(struct bio *bio) 4774 { 4775 struct r10bio *r10_bio = get_resync_r10bio(bio); 4776 struct mddev *mddev = r10_bio->mddev; 4777 struct r10conf *conf = mddev->private; 4778 int d; 4779 int slot; 4780 int repl; 4781 struct md_rdev *rdev = NULL; 4782 4783 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4784 if (repl) 4785 rdev = conf->mirrors[d].replacement; 4786 if (!rdev) { 4787 smp_mb(); 4788 rdev = conf->mirrors[d].rdev; 4789 } 4790 4791 if (bio->bi_status) { 4792 /* FIXME should record badblock */ 4793 md_error(mddev, rdev); 4794 } 4795 4796 rdev_dec_pending(rdev, mddev); 4797 end_reshape_request(r10_bio); 4798 } 4799 4800 static void end_reshape_request(struct r10bio *r10_bio) 4801 { 4802 if (!atomic_dec_and_test(&r10_bio->remaining)) 4803 return; 4804 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4805 bio_put(r10_bio->master_bio); 4806 put_buf(r10_bio); 4807 } 4808 4809 static void raid10_finish_reshape(struct mddev *mddev) 4810 { 4811 struct r10conf *conf = mddev->private; 4812 4813 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4814 return; 4815 4816 if (mddev->delta_disks > 0) { 4817 sector_t size = raid10_size(mddev, 0, 0); 4818 md_set_array_sectors(mddev, size); 4819 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4820 mddev->recovery_cp = mddev->resync_max_sectors; 4821 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4822 } 4823 mddev->resync_max_sectors = size; 4824 if (mddev->queue) { 4825 set_capacity(mddev->gendisk, mddev->array_sectors); 4826 revalidate_disk(mddev->gendisk); 4827 } 4828 } else { 4829 int d; 4830 rcu_read_lock(); 4831 for (d = conf->geo.raid_disks ; 4832 d < conf->geo.raid_disks - mddev->delta_disks; 4833 d++) { 4834 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4835 if (rdev) 4836 clear_bit(In_sync, &rdev->flags); 4837 rdev = rcu_dereference(conf->mirrors[d].replacement); 4838 if (rdev) 4839 clear_bit(In_sync, &rdev->flags); 4840 } 4841 rcu_read_unlock(); 4842 } 4843 mddev->layout = mddev->new_layout; 4844 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4845 mddev->reshape_position = MaxSector; 4846 mddev->delta_disks = 0; 4847 mddev->reshape_backwards = 0; 4848 } 4849 4850 static struct md_personality raid10_personality = 4851 { 4852 .name = "raid10", 4853 .level = 10, 4854 .owner = THIS_MODULE, 4855 .make_request = raid10_make_request, 4856 .run = raid10_run, 4857 .free = raid10_free, 4858 .status = raid10_status, 4859 .error_handler = raid10_error, 4860 .hot_add_disk = raid10_add_disk, 4861 .hot_remove_disk= raid10_remove_disk, 4862 .spare_active = raid10_spare_active, 4863 .sync_request = raid10_sync_request, 4864 .quiesce = raid10_quiesce, 4865 .size = raid10_size, 4866 .resize = raid10_resize, 4867 .takeover = raid10_takeover, 4868 .check_reshape = raid10_check_reshape, 4869 .start_reshape = raid10_start_reshape, 4870 .finish_reshape = raid10_finish_reshape, 4871 .congested = raid10_congested, 4872 }; 4873 4874 static int __init raid_init(void) 4875 { 4876 return register_md_personality(&raid10_personality); 4877 } 4878 4879 static void raid_exit(void) 4880 { 4881 unregister_md_personality(&raid10_personality); 4882 } 4883 4884 module_init(raid_init); 4885 module_exit(raid_exit); 4886 MODULE_LICENSE("GPL"); 4887 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4888 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4889 MODULE_ALIAS("md-raid10"); 4890 MODULE_ALIAS("md-level-10"); 4891 4892 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4893