xref: /openbmc/linux/drivers/md/raid10.c (revision 7eb8ff02)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25 
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66 
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 				int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76 
77 #define raid10_log(md, fmt, args...)				\
78 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79 
80 #include "raid1-10.c"
81 
82 #define NULL_CMD
83 #define cmd_before(conf, cmd) \
84 	do { \
85 		write_sequnlock_irq(&(conf)->resync_lock); \
86 		cmd; \
87 	} while (0)
88 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
89 
90 #define wait_event_barrier_cmd(conf, cond, cmd) \
91 	wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
92 		       cmd_after(conf))
93 
94 #define wait_event_barrier(conf, cond) \
95 	wait_event_barrier_cmd(conf, cond, NULL_CMD)
96 
97 /*
98  * for resync bio, r10bio pointer can be retrieved from the per-bio
99  * 'struct resync_pages'.
100  */
get_resync_r10bio(struct bio * bio)101 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
102 {
103 	return get_resync_pages(bio)->raid_bio;
104 }
105 
r10bio_pool_alloc(gfp_t gfp_flags,void * data)106 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
107 {
108 	struct r10conf *conf = data;
109 	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
110 
111 	/* allocate a r10bio with room for raid_disks entries in the
112 	 * bios array */
113 	return kzalloc(size, gfp_flags);
114 }
115 
116 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
117 /* amount of memory to reserve for resync requests */
118 #define RESYNC_WINDOW (1024*1024)
119 /* maximum number of concurrent requests, memory permitting */
120 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
121 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
122 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
123 
124 /*
125  * When performing a resync, we need to read and compare, so
126  * we need as many pages are there are copies.
127  * When performing a recovery, we need 2 bios, one for read,
128  * one for write (we recover only one drive per r10buf)
129  *
130  */
r10buf_pool_alloc(gfp_t gfp_flags,void * data)131 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
132 {
133 	struct r10conf *conf = data;
134 	struct r10bio *r10_bio;
135 	struct bio *bio;
136 	int j;
137 	int nalloc, nalloc_rp;
138 	struct resync_pages *rps;
139 
140 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
141 	if (!r10_bio)
142 		return NULL;
143 
144 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
145 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
146 		nalloc = conf->copies; /* resync */
147 	else
148 		nalloc = 2; /* recovery */
149 
150 	/* allocate once for all bios */
151 	if (!conf->have_replacement)
152 		nalloc_rp = nalloc;
153 	else
154 		nalloc_rp = nalloc * 2;
155 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
156 	if (!rps)
157 		goto out_free_r10bio;
158 
159 	/*
160 	 * Allocate bios.
161 	 */
162 	for (j = nalloc ; j-- ; ) {
163 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
164 		if (!bio)
165 			goto out_free_bio;
166 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
167 		r10_bio->devs[j].bio = bio;
168 		if (!conf->have_replacement)
169 			continue;
170 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
171 		if (!bio)
172 			goto out_free_bio;
173 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
174 		r10_bio->devs[j].repl_bio = bio;
175 	}
176 	/*
177 	 * Allocate RESYNC_PAGES data pages and attach them
178 	 * where needed.
179 	 */
180 	for (j = 0; j < nalloc; j++) {
181 		struct bio *rbio = r10_bio->devs[j].repl_bio;
182 		struct resync_pages *rp, *rp_repl;
183 
184 		rp = &rps[j];
185 		if (rbio)
186 			rp_repl = &rps[nalloc + j];
187 
188 		bio = r10_bio->devs[j].bio;
189 
190 		if (!j || test_bit(MD_RECOVERY_SYNC,
191 				   &conf->mddev->recovery)) {
192 			if (resync_alloc_pages(rp, gfp_flags))
193 				goto out_free_pages;
194 		} else {
195 			memcpy(rp, &rps[0], sizeof(*rp));
196 			resync_get_all_pages(rp);
197 		}
198 
199 		rp->raid_bio = r10_bio;
200 		bio->bi_private = rp;
201 		if (rbio) {
202 			memcpy(rp_repl, rp, sizeof(*rp));
203 			rbio->bi_private = rp_repl;
204 		}
205 	}
206 
207 	return r10_bio;
208 
209 out_free_pages:
210 	while (--j >= 0)
211 		resync_free_pages(&rps[j]);
212 
213 	j = 0;
214 out_free_bio:
215 	for ( ; j < nalloc; j++) {
216 		if (r10_bio->devs[j].bio)
217 			bio_uninit(r10_bio->devs[j].bio);
218 		kfree(r10_bio->devs[j].bio);
219 		if (r10_bio->devs[j].repl_bio)
220 			bio_uninit(r10_bio->devs[j].repl_bio);
221 		kfree(r10_bio->devs[j].repl_bio);
222 	}
223 	kfree(rps);
224 out_free_r10bio:
225 	rbio_pool_free(r10_bio, conf);
226 	return NULL;
227 }
228 
r10buf_pool_free(void * __r10_bio,void * data)229 static void r10buf_pool_free(void *__r10_bio, void *data)
230 {
231 	struct r10conf *conf = data;
232 	struct r10bio *r10bio = __r10_bio;
233 	int j;
234 	struct resync_pages *rp = NULL;
235 
236 	for (j = conf->copies; j--; ) {
237 		struct bio *bio = r10bio->devs[j].bio;
238 
239 		if (bio) {
240 			rp = get_resync_pages(bio);
241 			resync_free_pages(rp);
242 			bio_uninit(bio);
243 			kfree(bio);
244 		}
245 
246 		bio = r10bio->devs[j].repl_bio;
247 		if (bio) {
248 			bio_uninit(bio);
249 			kfree(bio);
250 		}
251 	}
252 
253 	/* resync pages array stored in the 1st bio's .bi_private */
254 	kfree(rp);
255 
256 	rbio_pool_free(r10bio, conf);
257 }
258 
put_all_bios(struct r10conf * conf,struct r10bio * r10_bio)259 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
260 {
261 	int i;
262 
263 	for (i = 0; i < conf->geo.raid_disks; i++) {
264 		struct bio **bio = & r10_bio->devs[i].bio;
265 		if (!BIO_SPECIAL(*bio))
266 			bio_put(*bio);
267 		*bio = NULL;
268 		bio = &r10_bio->devs[i].repl_bio;
269 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
270 			bio_put(*bio);
271 		*bio = NULL;
272 	}
273 }
274 
free_r10bio(struct r10bio * r10_bio)275 static void free_r10bio(struct r10bio *r10_bio)
276 {
277 	struct r10conf *conf = r10_bio->mddev->private;
278 
279 	put_all_bios(conf, r10_bio);
280 	mempool_free(r10_bio, &conf->r10bio_pool);
281 }
282 
put_buf(struct r10bio * r10_bio)283 static void put_buf(struct r10bio *r10_bio)
284 {
285 	struct r10conf *conf = r10_bio->mddev->private;
286 
287 	mempool_free(r10_bio, &conf->r10buf_pool);
288 
289 	lower_barrier(conf);
290 }
291 
wake_up_barrier(struct r10conf * conf)292 static void wake_up_barrier(struct r10conf *conf)
293 {
294 	if (wq_has_sleeper(&conf->wait_barrier))
295 		wake_up(&conf->wait_barrier);
296 }
297 
reschedule_retry(struct r10bio * r10_bio)298 static void reschedule_retry(struct r10bio *r10_bio)
299 {
300 	unsigned long flags;
301 	struct mddev *mddev = r10_bio->mddev;
302 	struct r10conf *conf = mddev->private;
303 
304 	spin_lock_irqsave(&conf->device_lock, flags);
305 	list_add(&r10_bio->retry_list, &conf->retry_list);
306 	conf->nr_queued ++;
307 	spin_unlock_irqrestore(&conf->device_lock, flags);
308 
309 	/* wake up frozen array... */
310 	wake_up(&conf->wait_barrier);
311 
312 	md_wakeup_thread(mddev->thread);
313 }
314 
315 /*
316  * raid_end_bio_io() is called when we have finished servicing a mirrored
317  * operation and are ready to return a success/failure code to the buffer
318  * cache layer.
319  */
raid_end_bio_io(struct r10bio * r10_bio)320 static void raid_end_bio_io(struct r10bio *r10_bio)
321 {
322 	struct bio *bio = r10_bio->master_bio;
323 	struct r10conf *conf = r10_bio->mddev->private;
324 
325 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
326 		bio->bi_status = BLK_STS_IOERR;
327 
328 	bio_endio(bio);
329 	/*
330 	 * Wake up any possible resync thread that waits for the device
331 	 * to go idle.
332 	 */
333 	allow_barrier(conf);
334 
335 	free_r10bio(r10_bio);
336 }
337 
338 /*
339  * Update disk head position estimator based on IRQ completion info.
340  */
update_head_pos(int slot,struct r10bio * r10_bio)341 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
342 {
343 	struct r10conf *conf = r10_bio->mddev->private;
344 
345 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
346 		r10_bio->devs[slot].addr + (r10_bio->sectors);
347 }
348 
349 /*
350  * Find the disk number which triggered given bio
351  */
find_bio_disk(struct r10conf * conf,struct r10bio * r10_bio,struct bio * bio,int * slotp,int * replp)352 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
353 			 struct bio *bio, int *slotp, int *replp)
354 {
355 	int slot;
356 	int repl = 0;
357 
358 	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
359 		if (r10_bio->devs[slot].bio == bio)
360 			break;
361 		if (r10_bio->devs[slot].repl_bio == bio) {
362 			repl = 1;
363 			break;
364 		}
365 	}
366 
367 	update_head_pos(slot, r10_bio);
368 
369 	if (slotp)
370 		*slotp = slot;
371 	if (replp)
372 		*replp = repl;
373 	return r10_bio->devs[slot].devnum;
374 }
375 
raid10_end_read_request(struct bio * bio)376 static void raid10_end_read_request(struct bio *bio)
377 {
378 	int uptodate = !bio->bi_status;
379 	struct r10bio *r10_bio = bio->bi_private;
380 	int slot;
381 	struct md_rdev *rdev;
382 	struct r10conf *conf = r10_bio->mddev->private;
383 
384 	slot = r10_bio->read_slot;
385 	rdev = r10_bio->devs[slot].rdev;
386 	/*
387 	 * this branch is our 'one mirror IO has finished' event handler:
388 	 */
389 	update_head_pos(slot, r10_bio);
390 
391 	if (uptodate) {
392 		/*
393 		 * Set R10BIO_Uptodate in our master bio, so that
394 		 * we will return a good error code to the higher
395 		 * levels even if IO on some other mirrored buffer fails.
396 		 *
397 		 * The 'master' represents the composite IO operation to
398 		 * user-side. So if something waits for IO, then it will
399 		 * wait for the 'master' bio.
400 		 */
401 		set_bit(R10BIO_Uptodate, &r10_bio->state);
402 	} else {
403 		/* If all other devices that store this block have
404 		 * failed, we want to return the error upwards rather
405 		 * than fail the last device.  Here we redefine
406 		 * "uptodate" to mean "Don't want to retry"
407 		 */
408 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
409 			     rdev->raid_disk))
410 			uptodate = 1;
411 	}
412 	if (uptodate) {
413 		raid_end_bio_io(r10_bio);
414 		rdev_dec_pending(rdev, conf->mddev);
415 	} else {
416 		/*
417 		 * oops, read error - keep the refcount on the rdev
418 		 */
419 		pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
420 				   mdname(conf->mddev),
421 				   rdev->bdev,
422 				   (unsigned long long)r10_bio->sector);
423 		set_bit(R10BIO_ReadError, &r10_bio->state);
424 		reschedule_retry(r10_bio);
425 	}
426 }
427 
close_write(struct r10bio * r10_bio)428 static void close_write(struct r10bio *r10_bio)
429 {
430 	/* clear the bitmap if all writes complete successfully */
431 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
432 			   r10_bio->sectors,
433 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
434 			   0);
435 	md_write_end(r10_bio->mddev);
436 }
437 
one_write_done(struct r10bio * r10_bio)438 static void one_write_done(struct r10bio *r10_bio)
439 {
440 	if (atomic_dec_and_test(&r10_bio->remaining)) {
441 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
442 			reschedule_retry(r10_bio);
443 		else {
444 			close_write(r10_bio);
445 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
446 				reschedule_retry(r10_bio);
447 			else
448 				raid_end_bio_io(r10_bio);
449 		}
450 	}
451 }
452 
raid10_end_write_request(struct bio * bio)453 static void raid10_end_write_request(struct bio *bio)
454 {
455 	struct r10bio *r10_bio = bio->bi_private;
456 	int dev;
457 	int dec_rdev = 1;
458 	struct r10conf *conf = r10_bio->mddev->private;
459 	int slot, repl;
460 	struct md_rdev *rdev = NULL;
461 	struct bio *to_put = NULL;
462 	bool discard_error;
463 
464 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
465 
466 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
467 
468 	if (repl)
469 		rdev = conf->mirrors[dev].replacement;
470 	if (!rdev) {
471 		smp_rmb();
472 		repl = 0;
473 		rdev = conf->mirrors[dev].rdev;
474 	}
475 	/*
476 	 * this branch is our 'one mirror IO has finished' event handler:
477 	 */
478 	if (bio->bi_status && !discard_error) {
479 		if (repl)
480 			/* Never record new bad blocks to replacement,
481 			 * just fail it.
482 			 */
483 			md_error(rdev->mddev, rdev);
484 		else {
485 			set_bit(WriteErrorSeen,	&rdev->flags);
486 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
487 				set_bit(MD_RECOVERY_NEEDED,
488 					&rdev->mddev->recovery);
489 
490 			dec_rdev = 0;
491 			if (test_bit(FailFast, &rdev->flags) &&
492 			    (bio->bi_opf & MD_FAILFAST)) {
493 				md_error(rdev->mddev, rdev);
494 			}
495 
496 			/*
497 			 * When the device is faulty, it is not necessary to
498 			 * handle write error.
499 			 */
500 			if (!test_bit(Faulty, &rdev->flags))
501 				set_bit(R10BIO_WriteError, &r10_bio->state);
502 			else {
503 				/* Fail the request */
504 				set_bit(R10BIO_Degraded, &r10_bio->state);
505 				r10_bio->devs[slot].bio = NULL;
506 				to_put = bio;
507 				dec_rdev = 1;
508 			}
509 		}
510 	} else {
511 		/*
512 		 * Set R10BIO_Uptodate in our master bio, so that
513 		 * we will return a good error code for to the higher
514 		 * levels even if IO on some other mirrored buffer fails.
515 		 *
516 		 * The 'master' represents the composite IO operation to
517 		 * user-side. So if something waits for IO, then it will
518 		 * wait for the 'master' bio.
519 		 */
520 		sector_t first_bad;
521 		int bad_sectors;
522 
523 		/*
524 		 * Do not set R10BIO_Uptodate if the current device is
525 		 * rebuilding or Faulty. This is because we cannot use
526 		 * such device for properly reading the data back (we could
527 		 * potentially use it, if the current write would have felt
528 		 * before rdev->recovery_offset, but for simplicity we don't
529 		 * check this here.
530 		 */
531 		if (test_bit(In_sync, &rdev->flags) &&
532 		    !test_bit(Faulty, &rdev->flags))
533 			set_bit(R10BIO_Uptodate, &r10_bio->state);
534 
535 		/* Maybe we can clear some bad blocks. */
536 		if (is_badblock(rdev,
537 				r10_bio->devs[slot].addr,
538 				r10_bio->sectors,
539 				&first_bad, &bad_sectors) && !discard_error) {
540 			bio_put(bio);
541 			if (repl)
542 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
543 			else
544 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
545 			dec_rdev = 0;
546 			set_bit(R10BIO_MadeGood, &r10_bio->state);
547 		}
548 	}
549 
550 	/*
551 	 *
552 	 * Let's see if all mirrored write operations have finished
553 	 * already.
554 	 */
555 	one_write_done(r10_bio);
556 	if (dec_rdev)
557 		rdev_dec_pending(rdev, conf->mddev);
558 	if (to_put)
559 		bio_put(to_put);
560 }
561 
562 /*
563  * RAID10 layout manager
564  * As well as the chunksize and raid_disks count, there are two
565  * parameters: near_copies and far_copies.
566  * near_copies * far_copies must be <= raid_disks.
567  * Normally one of these will be 1.
568  * If both are 1, we get raid0.
569  * If near_copies == raid_disks, we get raid1.
570  *
571  * Chunks are laid out in raid0 style with near_copies copies of the
572  * first chunk, followed by near_copies copies of the next chunk and
573  * so on.
574  * If far_copies > 1, then after 1/far_copies of the array has been assigned
575  * as described above, we start again with a device offset of near_copies.
576  * So we effectively have another copy of the whole array further down all
577  * the drives, but with blocks on different drives.
578  * With this layout, and block is never stored twice on the one device.
579  *
580  * raid10_find_phys finds the sector offset of a given virtual sector
581  * on each device that it is on.
582  *
583  * raid10_find_virt does the reverse mapping, from a device and a
584  * sector offset to a virtual address
585  */
586 
__raid10_find_phys(struct geom * geo,struct r10bio * r10bio)587 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
588 {
589 	int n,f;
590 	sector_t sector;
591 	sector_t chunk;
592 	sector_t stripe;
593 	int dev;
594 	int slot = 0;
595 	int last_far_set_start, last_far_set_size;
596 
597 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
598 	last_far_set_start *= geo->far_set_size;
599 
600 	last_far_set_size = geo->far_set_size;
601 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
602 
603 	/* now calculate first sector/dev */
604 	chunk = r10bio->sector >> geo->chunk_shift;
605 	sector = r10bio->sector & geo->chunk_mask;
606 
607 	chunk *= geo->near_copies;
608 	stripe = chunk;
609 	dev = sector_div(stripe, geo->raid_disks);
610 	if (geo->far_offset)
611 		stripe *= geo->far_copies;
612 
613 	sector += stripe << geo->chunk_shift;
614 
615 	/* and calculate all the others */
616 	for (n = 0; n < geo->near_copies; n++) {
617 		int d = dev;
618 		int set;
619 		sector_t s = sector;
620 		r10bio->devs[slot].devnum = d;
621 		r10bio->devs[slot].addr = s;
622 		slot++;
623 
624 		for (f = 1; f < geo->far_copies; f++) {
625 			set = d / geo->far_set_size;
626 			d += geo->near_copies;
627 
628 			if ((geo->raid_disks % geo->far_set_size) &&
629 			    (d > last_far_set_start)) {
630 				d -= last_far_set_start;
631 				d %= last_far_set_size;
632 				d += last_far_set_start;
633 			} else {
634 				d %= geo->far_set_size;
635 				d += geo->far_set_size * set;
636 			}
637 			s += geo->stride;
638 			r10bio->devs[slot].devnum = d;
639 			r10bio->devs[slot].addr = s;
640 			slot++;
641 		}
642 		dev++;
643 		if (dev >= geo->raid_disks) {
644 			dev = 0;
645 			sector += (geo->chunk_mask + 1);
646 		}
647 	}
648 }
649 
raid10_find_phys(struct r10conf * conf,struct r10bio * r10bio)650 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
651 {
652 	struct geom *geo = &conf->geo;
653 
654 	if (conf->reshape_progress != MaxSector &&
655 	    ((r10bio->sector >= conf->reshape_progress) !=
656 	     conf->mddev->reshape_backwards)) {
657 		set_bit(R10BIO_Previous, &r10bio->state);
658 		geo = &conf->prev;
659 	} else
660 		clear_bit(R10BIO_Previous, &r10bio->state);
661 
662 	__raid10_find_phys(geo, r10bio);
663 }
664 
raid10_find_virt(struct r10conf * conf,sector_t sector,int dev)665 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
666 {
667 	sector_t offset, chunk, vchunk;
668 	/* Never use conf->prev as this is only called during resync
669 	 * or recovery, so reshape isn't happening
670 	 */
671 	struct geom *geo = &conf->geo;
672 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
673 	int far_set_size = geo->far_set_size;
674 	int last_far_set_start;
675 
676 	if (geo->raid_disks % geo->far_set_size) {
677 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
678 		last_far_set_start *= geo->far_set_size;
679 
680 		if (dev >= last_far_set_start) {
681 			far_set_size = geo->far_set_size;
682 			far_set_size += (geo->raid_disks % geo->far_set_size);
683 			far_set_start = last_far_set_start;
684 		}
685 	}
686 
687 	offset = sector & geo->chunk_mask;
688 	if (geo->far_offset) {
689 		int fc;
690 		chunk = sector >> geo->chunk_shift;
691 		fc = sector_div(chunk, geo->far_copies);
692 		dev -= fc * geo->near_copies;
693 		if (dev < far_set_start)
694 			dev += far_set_size;
695 	} else {
696 		while (sector >= geo->stride) {
697 			sector -= geo->stride;
698 			if (dev < (geo->near_copies + far_set_start))
699 				dev += far_set_size - geo->near_copies;
700 			else
701 				dev -= geo->near_copies;
702 		}
703 		chunk = sector >> geo->chunk_shift;
704 	}
705 	vchunk = chunk * geo->raid_disks + dev;
706 	sector_div(vchunk, geo->near_copies);
707 	return (vchunk << geo->chunk_shift) + offset;
708 }
709 
710 /*
711  * This routine returns the disk from which the requested read should
712  * be done. There is a per-array 'next expected sequential IO' sector
713  * number - if this matches on the next IO then we use the last disk.
714  * There is also a per-disk 'last know head position' sector that is
715  * maintained from IRQ contexts, both the normal and the resync IO
716  * completion handlers update this position correctly. If there is no
717  * perfect sequential match then we pick the disk whose head is closest.
718  *
719  * If there are 2 mirrors in the same 2 devices, performance degrades
720  * because position is mirror, not device based.
721  *
722  * The rdev for the device selected will have nr_pending incremented.
723  */
724 
725 /*
726  * FIXME: possibly should rethink readbalancing and do it differently
727  * depending on near_copies / far_copies geometry.
728  */
read_balance(struct r10conf * conf,struct r10bio * r10_bio,int * max_sectors)729 static struct md_rdev *read_balance(struct r10conf *conf,
730 				    struct r10bio *r10_bio,
731 				    int *max_sectors)
732 {
733 	const sector_t this_sector = r10_bio->sector;
734 	int disk, slot;
735 	int sectors = r10_bio->sectors;
736 	int best_good_sectors;
737 	sector_t new_distance, best_dist;
738 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
739 	int do_balance;
740 	int best_dist_slot, best_pending_slot;
741 	bool has_nonrot_disk = false;
742 	unsigned int min_pending;
743 	struct geom *geo = &conf->geo;
744 
745 	raid10_find_phys(conf, r10_bio);
746 	rcu_read_lock();
747 	best_dist_slot = -1;
748 	min_pending = UINT_MAX;
749 	best_dist_rdev = NULL;
750 	best_pending_rdev = NULL;
751 	best_dist = MaxSector;
752 	best_good_sectors = 0;
753 	do_balance = 1;
754 	clear_bit(R10BIO_FailFast, &r10_bio->state);
755 	/*
756 	 * Check if we can balance. We can balance on the whole
757 	 * device if no resync is going on (recovery is ok), or below
758 	 * the resync window. We take the first readable disk when
759 	 * above the resync window.
760 	 */
761 	if ((conf->mddev->recovery_cp < MaxSector
762 	     && (this_sector + sectors >= conf->next_resync)) ||
763 	    (mddev_is_clustered(conf->mddev) &&
764 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
765 					    this_sector + sectors)))
766 		do_balance = 0;
767 
768 	for (slot = 0; slot < conf->copies ; slot++) {
769 		sector_t first_bad;
770 		int bad_sectors;
771 		sector_t dev_sector;
772 		unsigned int pending;
773 		bool nonrot;
774 
775 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
776 			continue;
777 		disk = r10_bio->devs[slot].devnum;
778 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
779 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
780 		    r10_bio->devs[slot].addr + sectors >
781 		    rdev->recovery_offset) {
782 			/*
783 			 * Read replacement first to prevent reading both rdev
784 			 * and replacement as NULL during replacement replace
785 			 * rdev.
786 			 */
787 			smp_mb();
788 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
789 		}
790 		if (rdev == NULL ||
791 		    test_bit(Faulty, &rdev->flags))
792 			continue;
793 		if (!test_bit(In_sync, &rdev->flags) &&
794 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
795 			continue;
796 
797 		dev_sector = r10_bio->devs[slot].addr;
798 		if (is_badblock(rdev, dev_sector, sectors,
799 				&first_bad, &bad_sectors)) {
800 			if (best_dist < MaxSector)
801 				/* Already have a better slot */
802 				continue;
803 			if (first_bad <= dev_sector) {
804 				/* Cannot read here.  If this is the
805 				 * 'primary' device, then we must not read
806 				 * beyond 'bad_sectors' from another device.
807 				 */
808 				bad_sectors -= (dev_sector - first_bad);
809 				if (!do_balance && sectors > bad_sectors)
810 					sectors = bad_sectors;
811 				if (best_good_sectors > sectors)
812 					best_good_sectors = sectors;
813 			} else {
814 				sector_t good_sectors =
815 					first_bad - dev_sector;
816 				if (good_sectors > best_good_sectors) {
817 					best_good_sectors = good_sectors;
818 					best_dist_slot = slot;
819 					best_dist_rdev = rdev;
820 				}
821 				if (!do_balance)
822 					/* Must read from here */
823 					break;
824 			}
825 			continue;
826 		} else
827 			best_good_sectors = sectors;
828 
829 		if (!do_balance)
830 			break;
831 
832 		nonrot = bdev_nonrot(rdev->bdev);
833 		has_nonrot_disk |= nonrot;
834 		pending = atomic_read(&rdev->nr_pending);
835 		if (min_pending > pending && nonrot) {
836 			min_pending = pending;
837 			best_pending_slot = slot;
838 			best_pending_rdev = rdev;
839 		}
840 
841 		if (best_dist_slot >= 0)
842 			/* At least 2 disks to choose from so failfast is OK */
843 			set_bit(R10BIO_FailFast, &r10_bio->state);
844 		/* This optimisation is debatable, and completely destroys
845 		 * sequential read speed for 'far copies' arrays.  So only
846 		 * keep it for 'near' arrays, and review those later.
847 		 */
848 		if (geo->near_copies > 1 && !pending)
849 			new_distance = 0;
850 
851 		/* for far > 1 always use the lowest address */
852 		else if (geo->far_copies > 1)
853 			new_distance = r10_bio->devs[slot].addr;
854 		else
855 			new_distance = abs(r10_bio->devs[slot].addr -
856 					   conf->mirrors[disk].head_position);
857 
858 		if (new_distance < best_dist) {
859 			best_dist = new_distance;
860 			best_dist_slot = slot;
861 			best_dist_rdev = rdev;
862 		}
863 	}
864 	if (slot >= conf->copies) {
865 		if (has_nonrot_disk) {
866 			slot = best_pending_slot;
867 			rdev = best_pending_rdev;
868 		} else {
869 			slot = best_dist_slot;
870 			rdev = best_dist_rdev;
871 		}
872 	}
873 
874 	if (slot >= 0) {
875 		atomic_inc(&rdev->nr_pending);
876 		r10_bio->read_slot = slot;
877 	} else
878 		rdev = NULL;
879 	rcu_read_unlock();
880 	*max_sectors = best_good_sectors;
881 
882 	return rdev;
883 }
884 
flush_pending_writes(struct r10conf * conf)885 static void flush_pending_writes(struct r10conf *conf)
886 {
887 	/* Any writes that have been queued but are awaiting
888 	 * bitmap updates get flushed here.
889 	 */
890 	spin_lock_irq(&conf->device_lock);
891 
892 	if (conf->pending_bio_list.head) {
893 		struct blk_plug plug;
894 		struct bio *bio;
895 
896 		bio = bio_list_get(&conf->pending_bio_list);
897 		spin_unlock_irq(&conf->device_lock);
898 
899 		/*
900 		 * As this is called in a wait_event() loop (see freeze_array),
901 		 * current->state might be TASK_UNINTERRUPTIBLE which will
902 		 * cause a warning when we prepare to wait again.  As it is
903 		 * rare that this path is taken, it is perfectly safe to force
904 		 * us to go around the wait_event() loop again, so the warning
905 		 * is a false-positive. Silence the warning by resetting
906 		 * thread state
907 		 */
908 		__set_current_state(TASK_RUNNING);
909 
910 		blk_start_plug(&plug);
911 		raid1_prepare_flush_writes(conf->mddev->bitmap);
912 		wake_up(&conf->wait_barrier);
913 
914 		while (bio) { /* submit pending writes */
915 			struct bio *next = bio->bi_next;
916 
917 			raid1_submit_write(bio);
918 			bio = next;
919 			cond_resched();
920 		}
921 		blk_finish_plug(&plug);
922 	} else
923 		spin_unlock_irq(&conf->device_lock);
924 }
925 
926 /* Barriers....
927  * Sometimes we need to suspend IO while we do something else,
928  * either some resync/recovery, or reconfigure the array.
929  * To do this we raise a 'barrier'.
930  * The 'barrier' is a counter that can be raised multiple times
931  * to count how many activities are happening which preclude
932  * normal IO.
933  * We can only raise the barrier if there is no pending IO.
934  * i.e. if nr_pending == 0.
935  * We choose only to raise the barrier if no-one is waiting for the
936  * barrier to go down.  This means that as soon as an IO request
937  * is ready, no other operations which require a barrier will start
938  * until the IO request has had a chance.
939  *
940  * So: regular IO calls 'wait_barrier'.  When that returns there
941  *    is no backgroup IO happening,  It must arrange to call
942  *    allow_barrier when it has finished its IO.
943  * backgroup IO calls must call raise_barrier.  Once that returns
944  *    there is no normal IO happeing.  It must arrange to call
945  *    lower_barrier when the particular background IO completes.
946  */
947 
raise_barrier(struct r10conf * conf,int force)948 static void raise_barrier(struct r10conf *conf, int force)
949 {
950 	write_seqlock_irq(&conf->resync_lock);
951 
952 	if (WARN_ON_ONCE(force && !conf->barrier))
953 		force = false;
954 
955 	/* Wait until no block IO is waiting (unless 'force') */
956 	wait_event_barrier(conf, force || !conf->nr_waiting);
957 
958 	/* block any new IO from starting */
959 	WRITE_ONCE(conf->barrier, conf->barrier + 1);
960 
961 	/* Now wait for all pending IO to complete */
962 	wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
963 				 conf->barrier < RESYNC_DEPTH);
964 
965 	write_sequnlock_irq(&conf->resync_lock);
966 }
967 
lower_barrier(struct r10conf * conf)968 static void lower_barrier(struct r10conf *conf)
969 {
970 	unsigned long flags;
971 
972 	write_seqlock_irqsave(&conf->resync_lock, flags);
973 	WRITE_ONCE(conf->barrier, conf->barrier - 1);
974 	write_sequnlock_irqrestore(&conf->resync_lock, flags);
975 	wake_up(&conf->wait_barrier);
976 }
977 
stop_waiting_barrier(struct r10conf * conf)978 static bool stop_waiting_barrier(struct r10conf *conf)
979 {
980 	struct bio_list *bio_list = current->bio_list;
981 	struct md_thread *thread;
982 
983 	/* barrier is dropped */
984 	if (!conf->barrier)
985 		return true;
986 
987 	/*
988 	 * If there are already pending requests (preventing the barrier from
989 	 * rising completely), and the pre-process bio queue isn't empty, then
990 	 * don't wait, as we need to empty that queue to get the nr_pending
991 	 * count down.
992 	 */
993 	if (atomic_read(&conf->nr_pending) && bio_list &&
994 	    (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
995 		return true;
996 
997 	/* daemon thread must exist while handling io */
998 	thread = rcu_dereference_protected(conf->mddev->thread, true);
999 	/*
1000 	 * move on if io is issued from raid10d(), nr_pending is not released
1001 	 * from original io(see handle_read_error()). All raise barrier is
1002 	 * blocked until this io is done.
1003 	 */
1004 	if (thread->tsk == current) {
1005 		WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
1006 		return true;
1007 	}
1008 
1009 	return false;
1010 }
1011 
wait_barrier_nolock(struct r10conf * conf)1012 static bool wait_barrier_nolock(struct r10conf *conf)
1013 {
1014 	unsigned int seq = read_seqbegin(&conf->resync_lock);
1015 
1016 	if (READ_ONCE(conf->barrier))
1017 		return false;
1018 
1019 	atomic_inc(&conf->nr_pending);
1020 	if (!read_seqretry(&conf->resync_lock, seq))
1021 		return true;
1022 
1023 	if (atomic_dec_and_test(&conf->nr_pending))
1024 		wake_up_barrier(conf);
1025 
1026 	return false;
1027 }
1028 
wait_barrier(struct r10conf * conf,bool nowait)1029 static bool wait_barrier(struct r10conf *conf, bool nowait)
1030 {
1031 	bool ret = true;
1032 
1033 	if (wait_barrier_nolock(conf))
1034 		return true;
1035 
1036 	write_seqlock_irq(&conf->resync_lock);
1037 	if (conf->barrier) {
1038 		/* Return false when nowait flag is set */
1039 		if (nowait) {
1040 			ret = false;
1041 		} else {
1042 			conf->nr_waiting++;
1043 			raid10_log(conf->mddev, "wait barrier");
1044 			wait_event_barrier(conf, stop_waiting_barrier(conf));
1045 			conf->nr_waiting--;
1046 		}
1047 		if (!conf->nr_waiting)
1048 			wake_up(&conf->wait_barrier);
1049 	}
1050 	/* Only increment nr_pending when we wait */
1051 	if (ret)
1052 		atomic_inc(&conf->nr_pending);
1053 	write_sequnlock_irq(&conf->resync_lock);
1054 	return ret;
1055 }
1056 
allow_barrier(struct r10conf * conf)1057 static void allow_barrier(struct r10conf *conf)
1058 {
1059 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1060 			(conf->array_freeze_pending))
1061 		wake_up_barrier(conf);
1062 }
1063 
freeze_array(struct r10conf * conf,int extra)1064 static void freeze_array(struct r10conf *conf, int extra)
1065 {
1066 	/* stop syncio and normal IO and wait for everything to
1067 	 * go quiet.
1068 	 * We increment barrier and nr_waiting, and then
1069 	 * wait until nr_pending match nr_queued+extra
1070 	 * This is called in the context of one normal IO request
1071 	 * that has failed. Thus any sync request that might be pending
1072 	 * will be blocked by nr_pending, and we need to wait for
1073 	 * pending IO requests to complete or be queued for re-try.
1074 	 * Thus the number queued (nr_queued) plus this request (extra)
1075 	 * must match the number of pending IOs (nr_pending) before
1076 	 * we continue.
1077 	 */
1078 	write_seqlock_irq(&conf->resync_lock);
1079 	conf->array_freeze_pending++;
1080 	WRITE_ONCE(conf->barrier, conf->barrier + 1);
1081 	conf->nr_waiting++;
1082 	wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1083 			conf->nr_queued + extra, flush_pending_writes(conf));
1084 	conf->array_freeze_pending--;
1085 	write_sequnlock_irq(&conf->resync_lock);
1086 }
1087 
unfreeze_array(struct r10conf * conf)1088 static void unfreeze_array(struct r10conf *conf)
1089 {
1090 	/* reverse the effect of the freeze */
1091 	write_seqlock_irq(&conf->resync_lock);
1092 	WRITE_ONCE(conf->barrier, conf->barrier - 1);
1093 	conf->nr_waiting--;
1094 	wake_up(&conf->wait_barrier);
1095 	write_sequnlock_irq(&conf->resync_lock);
1096 }
1097 
choose_data_offset(struct r10bio * r10_bio,struct md_rdev * rdev)1098 static sector_t choose_data_offset(struct r10bio *r10_bio,
1099 				   struct md_rdev *rdev)
1100 {
1101 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1102 	    test_bit(R10BIO_Previous, &r10_bio->state))
1103 		return rdev->data_offset;
1104 	else
1105 		return rdev->new_data_offset;
1106 }
1107 
raid10_unplug(struct blk_plug_cb * cb,bool from_schedule)1108 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1109 {
1110 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1111 	struct mddev *mddev = plug->cb.data;
1112 	struct r10conf *conf = mddev->private;
1113 	struct bio *bio;
1114 
1115 	if (from_schedule) {
1116 		spin_lock_irq(&conf->device_lock);
1117 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1118 		spin_unlock_irq(&conf->device_lock);
1119 		wake_up_barrier(conf);
1120 		md_wakeup_thread(mddev->thread);
1121 		kfree(plug);
1122 		return;
1123 	}
1124 
1125 	/* we aren't scheduling, so we can do the write-out directly. */
1126 	bio = bio_list_get(&plug->pending);
1127 	raid1_prepare_flush_writes(mddev->bitmap);
1128 	wake_up_barrier(conf);
1129 
1130 	while (bio) { /* submit pending writes */
1131 		struct bio *next = bio->bi_next;
1132 
1133 		raid1_submit_write(bio);
1134 		bio = next;
1135 		cond_resched();
1136 	}
1137 	kfree(plug);
1138 }
1139 
1140 /*
1141  * 1. Register the new request and wait if the reconstruction thread has put
1142  * up a bar for new requests. Continue immediately if no resync is active
1143  * currently.
1144  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1145  */
regular_request_wait(struct mddev * mddev,struct r10conf * conf,struct bio * bio,sector_t sectors)1146 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1147 				 struct bio *bio, sector_t sectors)
1148 {
1149 	/* Bail out if REQ_NOWAIT is set for the bio */
1150 	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1151 		bio_wouldblock_error(bio);
1152 		return false;
1153 	}
1154 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1155 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1156 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1157 		allow_barrier(conf);
1158 		if (bio->bi_opf & REQ_NOWAIT) {
1159 			bio_wouldblock_error(bio);
1160 			return false;
1161 		}
1162 		raid10_log(conf->mddev, "wait reshape");
1163 		wait_event(conf->wait_barrier,
1164 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1165 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1166 			   sectors);
1167 		wait_barrier(conf, false);
1168 	}
1169 	return true;
1170 }
1171 
raid10_read_request(struct mddev * mddev,struct bio * bio,struct r10bio * r10_bio,bool io_accounting)1172 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1173 				struct r10bio *r10_bio, bool io_accounting)
1174 {
1175 	struct r10conf *conf = mddev->private;
1176 	struct bio *read_bio;
1177 	const enum req_op op = bio_op(bio);
1178 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1179 	int max_sectors;
1180 	struct md_rdev *rdev;
1181 	char b[BDEVNAME_SIZE];
1182 	int slot = r10_bio->read_slot;
1183 	struct md_rdev *err_rdev = NULL;
1184 	gfp_t gfp = GFP_NOIO;
1185 
1186 	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1187 		/*
1188 		 * This is an error retry, but we cannot
1189 		 * safely dereference the rdev in the r10_bio,
1190 		 * we must use the one in conf.
1191 		 * If it has already been disconnected (unlikely)
1192 		 * we lose the device name in error messages.
1193 		 */
1194 		int disk;
1195 		/*
1196 		 * As we are blocking raid10, it is a little safer to
1197 		 * use __GFP_HIGH.
1198 		 */
1199 		gfp = GFP_NOIO | __GFP_HIGH;
1200 
1201 		rcu_read_lock();
1202 		disk = r10_bio->devs[slot].devnum;
1203 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1204 		if (err_rdev)
1205 			snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1206 		else {
1207 			strcpy(b, "???");
1208 			/* This never gets dereferenced */
1209 			err_rdev = r10_bio->devs[slot].rdev;
1210 		}
1211 		rcu_read_unlock();
1212 	}
1213 
1214 	if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1215 		return;
1216 	rdev = read_balance(conf, r10_bio, &max_sectors);
1217 	if (!rdev) {
1218 		if (err_rdev) {
1219 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1220 					    mdname(mddev), b,
1221 					    (unsigned long long)r10_bio->sector);
1222 		}
1223 		raid_end_bio_io(r10_bio);
1224 		return;
1225 	}
1226 	if (err_rdev)
1227 		pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1228 				   mdname(mddev),
1229 				   rdev->bdev,
1230 				   (unsigned long long)r10_bio->sector);
1231 	if (max_sectors < bio_sectors(bio)) {
1232 		struct bio *split = bio_split(bio, max_sectors,
1233 					      gfp, &conf->bio_split);
1234 		bio_chain(split, bio);
1235 		allow_barrier(conf);
1236 		submit_bio_noacct(bio);
1237 		wait_barrier(conf, false);
1238 		bio = split;
1239 		r10_bio->master_bio = bio;
1240 		r10_bio->sectors = max_sectors;
1241 	}
1242 	slot = r10_bio->read_slot;
1243 
1244 	if (io_accounting) {
1245 		md_account_bio(mddev, &bio);
1246 		r10_bio->master_bio = bio;
1247 	}
1248 	read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1249 
1250 	r10_bio->devs[slot].bio = read_bio;
1251 	r10_bio->devs[slot].rdev = rdev;
1252 
1253 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1254 		choose_data_offset(r10_bio, rdev);
1255 	read_bio->bi_end_io = raid10_end_read_request;
1256 	read_bio->bi_opf = op | do_sync;
1257 	if (test_bit(FailFast, &rdev->flags) &&
1258 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1259 	        read_bio->bi_opf |= MD_FAILFAST;
1260 	read_bio->bi_private = r10_bio;
1261 
1262 	if (mddev->gendisk)
1263 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1264 	                              r10_bio->sector);
1265 	submit_bio_noacct(read_bio);
1266 	return;
1267 }
1268 
raid10_write_one_disk(struct mddev * mddev,struct r10bio * r10_bio,struct bio * bio,bool replacement,int n_copy)1269 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1270 				  struct bio *bio, bool replacement,
1271 				  int n_copy)
1272 {
1273 	const enum req_op op = bio_op(bio);
1274 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1275 	const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1276 	unsigned long flags;
1277 	struct r10conf *conf = mddev->private;
1278 	struct md_rdev *rdev;
1279 	int devnum = r10_bio->devs[n_copy].devnum;
1280 	struct bio *mbio;
1281 
1282 	if (replacement) {
1283 		rdev = conf->mirrors[devnum].replacement;
1284 		if (rdev == NULL) {
1285 			/* Replacement just got moved to main 'rdev' */
1286 			smp_mb();
1287 			rdev = conf->mirrors[devnum].rdev;
1288 		}
1289 	} else
1290 		rdev = conf->mirrors[devnum].rdev;
1291 
1292 	mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1293 	if (replacement)
1294 		r10_bio->devs[n_copy].repl_bio = mbio;
1295 	else
1296 		r10_bio->devs[n_copy].bio = mbio;
1297 
1298 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1299 				   choose_data_offset(r10_bio, rdev));
1300 	mbio->bi_end_io	= raid10_end_write_request;
1301 	mbio->bi_opf = op | do_sync | do_fua;
1302 	if (!replacement && test_bit(FailFast,
1303 				     &conf->mirrors[devnum].rdev->flags)
1304 			 && enough(conf, devnum))
1305 		mbio->bi_opf |= MD_FAILFAST;
1306 	mbio->bi_private = r10_bio;
1307 
1308 	if (conf->mddev->gendisk)
1309 		trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1310 				      r10_bio->sector);
1311 	/* flush_pending_writes() needs access to the rdev so...*/
1312 	mbio->bi_bdev = (void *)rdev;
1313 
1314 	atomic_inc(&r10_bio->remaining);
1315 
1316 	if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1317 		spin_lock_irqsave(&conf->device_lock, flags);
1318 		bio_list_add(&conf->pending_bio_list, mbio);
1319 		spin_unlock_irqrestore(&conf->device_lock, flags);
1320 		md_wakeup_thread(mddev->thread);
1321 	}
1322 }
1323 
dereference_rdev_and_rrdev(struct raid10_info * mirror,struct md_rdev ** prrdev)1324 static struct md_rdev *dereference_rdev_and_rrdev(struct raid10_info *mirror,
1325 						  struct md_rdev **prrdev)
1326 {
1327 	struct md_rdev *rdev, *rrdev;
1328 
1329 	rrdev = rcu_dereference(mirror->replacement);
1330 	/*
1331 	 * Read replacement first to prevent reading both rdev and
1332 	 * replacement as NULL during replacement replace rdev.
1333 	 */
1334 	smp_mb();
1335 	rdev = rcu_dereference(mirror->rdev);
1336 	if (rdev == rrdev)
1337 		rrdev = NULL;
1338 
1339 	*prrdev = rrdev;
1340 	return rdev;
1341 }
1342 
wait_blocked_dev(struct mddev * mddev,struct r10bio * r10_bio)1343 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1344 {
1345 	int i;
1346 	struct r10conf *conf = mddev->private;
1347 	struct md_rdev *blocked_rdev;
1348 
1349 retry_wait:
1350 	blocked_rdev = NULL;
1351 	rcu_read_lock();
1352 	for (i = 0; i < conf->copies; i++) {
1353 		struct md_rdev *rdev, *rrdev;
1354 
1355 		rdev = dereference_rdev_and_rrdev(&conf->mirrors[i], &rrdev);
1356 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1357 			atomic_inc(&rdev->nr_pending);
1358 			blocked_rdev = rdev;
1359 			break;
1360 		}
1361 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1362 			atomic_inc(&rrdev->nr_pending);
1363 			blocked_rdev = rrdev;
1364 			break;
1365 		}
1366 
1367 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1368 			sector_t first_bad;
1369 			sector_t dev_sector = r10_bio->devs[i].addr;
1370 			int bad_sectors;
1371 			int is_bad;
1372 
1373 			/*
1374 			 * Discard request doesn't care the write result
1375 			 * so it doesn't need to wait blocked disk here.
1376 			 */
1377 			if (!r10_bio->sectors)
1378 				continue;
1379 
1380 			is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1381 					     &first_bad, &bad_sectors);
1382 			if (is_bad < 0) {
1383 				/*
1384 				 * Mustn't write here until the bad block
1385 				 * is acknowledged
1386 				 */
1387 				atomic_inc(&rdev->nr_pending);
1388 				set_bit(BlockedBadBlocks, &rdev->flags);
1389 				blocked_rdev = rdev;
1390 				break;
1391 			}
1392 		}
1393 	}
1394 	rcu_read_unlock();
1395 
1396 	if (unlikely(blocked_rdev)) {
1397 		/* Have to wait for this device to get unblocked, then retry */
1398 		allow_barrier(conf);
1399 		raid10_log(conf->mddev, "%s wait rdev %d blocked",
1400 				__func__, blocked_rdev->raid_disk);
1401 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1402 		wait_barrier(conf, false);
1403 		goto retry_wait;
1404 	}
1405 }
1406 
raid10_write_request(struct mddev * mddev,struct bio * bio,struct r10bio * r10_bio)1407 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1408 				 struct r10bio *r10_bio)
1409 {
1410 	struct r10conf *conf = mddev->private;
1411 	int i;
1412 	sector_t sectors;
1413 	int max_sectors;
1414 
1415 	if ((mddev_is_clustered(mddev) &&
1416 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1417 					    bio->bi_iter.bi_sector,
1418 					    bio_end_sector(bio)))) {
1419 		DEFINE_WAIT(w);
1420 		/* Bail out if REQ_NOWAIT is set for the bio */
1421 		if (bio->bi_opf & REQ_NOWAIT) {
1422 			bio_wouldblock_error(bio);
1423 			return;
1424 		}
1425 		for (;;) {
1426 			prepare_to_wait(&conf->wait_barrier,
1427 					&w, TASK_IDLE);
1428 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1429 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1430 				break;
1431 			schedule();
1432 		}
1433 		finish_wait(&conf->wait_barrier, &w);
1434 	}
1435 
1436 	sectors = r10_bio->sectors;
1437 	if (!regular_request_wait(mddev, conf, bio, sectors))
1438 		return;
1439 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1440 	    (mddev->reshape_backwards
1441 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1442 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1443 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1444 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1445 		/* Need to update reshape_position in metadata */
1446 		mddev->reshape_position = conf->reshape_progress;
1447 		set_mask_bits(&mddev->sb_flags, 0,
1448 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1449 		md_wakeup_thread(mddev->thread);
1450 		if (bio->bi_opf & REQ_NOWAIT) {
1451 			allow_barrier(conf);
1452 			bio_wouldblock_error(bio);
1453 			return;
1454 		}
1455 		raid10_log(conf->mddev, "wait reshape metadata");
1456 		wait_event(mddev->sb_wait,
1457 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1458 
1459 		conf->reshape_safe = mddev->reshape_position;
1460 	}
1461 
1462 	/* first select target devices under rcu_lock and
1463 	 * inc refcount on their rdev.  Record them by setting
1464 	 * bios[x] to bio
1465 	 * If there are known/acknowledged bad blocks on any device
1466 	 * on which we have seen a write error, we want to avoid
1467 	 * writing to those blocks.  This potentially requires several
1468 	 * writes to write around the bad blocks.  Each set of writes
1469 	 * gets its own r10_bio with a set of bios attached.
1470 	 */
1471 
1472 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1473 	raid10_find_phys(conf, r10_bio);
1474 
1475 	wait_blocked_dev(mddev, r10_bio);
1476 
1477 	rcu_read_lock();
1478 	max_sectors = r10_bio->sectors;
1479 
1480 	for (i = 0;  i < conf->copies; i++) {
1481 		int d = r10_bio->devs[i].devnum;
1482 		struct md_rdev *rdev, *rrdev;
1483 
1484 		rdev = dereference_rdev_and_rrdev(&conf->mirrors[d], &rrdev);
1485 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1486 			rdev = NULL;
1487 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1488 			rrdev = NULL;
1489 
1490 		r10_bio->devs[i].bio = NULL;
1491 		r10_bio->devs[i].repl_bio = NULL;
1492 
1493 		if (!rdev && !rrdev) {
1494 			set_bit(R10BIO_Degraded, &r10_bio->state);
1495 			continue;
1496 		}
1497 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1498 			sector_t first_bad;
1499 			sector_t dev_sector = r10_bio->devs[i].addr;
1500 			int bad_sectors;
1501 			int is_bad;
1502 
1503 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1504 					     &first_bad, &bad_sectors);
1505 			if (is_bad && first_bad <= dev_sector) {
1506 				/* Cannot write here at all */
1507 				bad_sectors -= (dev_sector - first_bad);
1508 				if (bad_sectors < max_sectors)
1509 					/* Mustn't write more than bad_sectors
1510 					 * to other devices yet
1511 					 */
1512 					max_sectors = bad_sectors;
1513 				/* We don't set R10BIO_Degraded as that
1514 				 * only applies if the disk is missing,
1515 				 * so it might be re-added, and we want to
1516 				 * know to recover this chunk.
1517 				 * In this case the device is here, and the
1518 				 * fact that this chunk is not in-sync is
1519 				 * recorded in the bad block log.
1520 				 */
1521 				continue;
1522 			}
1523 			if (is_bad) {
1524 				int good_sectors = first_bad - dev_sector;
1525 				if (good_sectors < max_sectors)
1526 					max_sectors = good_sectors;
1527 			}
1528 		}
1529 		if (rdev) {
1530 			r10_bio->devs[i].bio = bio;
1531 			atomic_inc(&rdev->nr_pending);
1532 		}
1533 		if (rrdev) {
1534 			r10_bio->devs[i].repl_bio = bio;
1535 			atomic_inc(&rrdev->nr_pending);
1536 		}
1537 	}
1538 	rcu_read_unlock();
1539 
1540 	if (max_sectors < r10_bio->sectors)
1541 		r10_bio->sectors = max_sectors;
1542 
1543 	if (r10_bio->sectors < bio_sectors(bio)) {
1544 		struct bio *split = bio_split(bio, r10_bio->sectors,
1545 					      GFP_NOIO, &conf->bio_split);
1546 		bio_chain(split, bio);
1547 		allow_barrier(conf);
1548 		submit_bio_noacct(bio);
1549 		wait_barrier(conf, false);
1550 		bio = split;
1551 		r10_bio->master_bio = bio;
1552 	}
1553 
1554 	md_account_bio(mddev, &bio);
1555 	r10_bio->master_bio = bio;
1556 	atomic_set(&r10_bio->remaining, 1);
1557 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1558 
1559 	for (i = 0; i < conf->copies; i++) {
1560 		if (r10_bio->devs[i].bio)
1561 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1562 		if (r10_bio->devs[i].repl_bio)
1563 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1564 	}
1565 	one_write_done(r10_bio);
1566 }
1567 
__make_request(struct mddev * mddev,struct bio * bio,int sectors)1568 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1569 {
1570 	struct r10conf *conf = mddev->private;
1571 	struct r10bio *r10_bio;
1572 
1573 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1574 
1575 	r10_bio->master_bio = bio;
1576 	r10_bio->sectors = sectors;
1577 
1578 	r10_bio->mddev = mddev;
1579 	r10_bio->sector = bio->bi_iter.bi_sector;
1580 	r10_bio->state = 0;
1581 	r10_bio->read_slot = -1;
1582 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1583 			conf->geo.raid_disks);
1584 
1585 	if (bio_data_dir(bio) == READ)
1586 		raid10_read_request(mddev, bio, r10_bio, true);
1587 	else
1588 		raid10_write_request(mddev, bio, r10_bio);
1589 }
1590 
raid_end_discard_bio(struct r10bio * r10bio)1591 static void raid_end_discard_bio(struct r10bio *r10bio)
1592 {
1593 	struct r10conf *conf = r10bio->mddev->private;
1594 	struct r10bio *first_r10bio;
1595 
1596 	while (atomic_dec_and_test(&r10bio->remaining)) {
1597 
1598 		allow_barrier(conf);
1599 
1600 		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1601 			first_r10bio = (struct r10bio *)r10bio->master_bio;
1602 			free_r10bio(r10bio);
1603 			r10bio = first_r10bio;
1604 		} else {
1605 			md_write_end(r10bio->mddev);
1606 			bio_endio(r10bio->master_bio);
1607 			free_r10bio(r10bio);
1608 			break;
1609 		}
1610 	}
1611 }
1612 
raid10_end_discard_request(struct bio * bio)1613 static void raid10_end_discard_request(struct bio *bio)
1614 {
1615 	struct r10bio *r10_bio = bio->bi_private;
1616 	struct r10conf *conf = r10_bio->mddev->private;
1617 	struct md_rdev *rdev = NULL;
1618 	int dev;
1619 	int slot, repl;
1620 
1621 	/*
1622 	 * We don't care the return value of discard bio
1623 	 */
1624 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1625 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1626 
1627 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1628 	if (repl)
1629 		rdev = conf->mirrors[dev].replacement;
1630 	if (!rdev) {
1631 		/*
1632 		 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1633 		 * replacement before setting replacement to NULL. It can read
1634 		 * rdev first without barrier protect even replacement is NULL
1635 		 */
1636 		smp_rmb();
1637 		rdev = conf->mirrors[dev].rdev;
1638 	}
1639 
1640 	raid_end_discard_bio(r10_bio);
1641 	rdev_dec_pending(rdev, conf->mddev);
1642 }
1643 
1644 /*
1645  * There are some limitations to handle discard bio
1646  * 1st, the discard size is bigger than stripe_size*2.
1647  * 2st, if the discard bio spans reshape progress, we use the old way to
1648  * handle discard bio
1649  */
raid10_handle_discard(struct mddev * mddev,struct bio * bio)1650 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1651 {
1652 	struct r10conf *conf = mddev->private;
1653 	struct geom *geo = &conf->geo;
1654 	int far_copies = geo->far_copies;
1655 	bool first_copy = true;
1656 	struct r10bio *r10_bio, *first_r10bio;
1657 	struct bio *split;
1658 	int disk;
1659 	sector_t chunk;
1660 	unsigned int stripe_size;
1661 	unsigned int stripe_data_disks;
1662 	sector_t split_size;
1663 	sector_t bio_start, bio_end;
1664 	sector_t first_stripe_index, last_stripe_index;
1665 	sector_t start_disk_offset;
1666 	unsigned int start_disk_index;
1667 	sector_t end_disk_offset;
1668 	unsigned int end_disk_index;
1669 	unsigned int remainder;
1670 
1671 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1672 		return -EAGAIN;
1673 
1674 	if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1675 		bio_wouldblock_error(bio);
1676 		return 0;
1677 	}
1678 	wait_barrier(conf, false);
1679 
1680 	/*
1681 	 * Check reshape again to avoid reshape happens after checking
1682 	 * MD_RECOVERY_RESHAPE and before wait_barrier
1683 	 */
1684 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1685 		goto out;
1686 
1687 	if (geo->near_copies)
1688 		stripe_data_disks = geo->raid_disks / geo->near_copies +
1689 					geo->raid_disks % geo->near_copies;
1690 	else
1691 		stripe_data_disks = geo->raid_disks;
1692 
1693 	stripe_size = stripe_data_disks << geo->chunk_shift;
1694 
1695 	bio_start = bio->bi_iter.bi_sector;
1696 	bio_end = bio_end_sector(bio);
1697 
1698 	/*
1699 	 * Maybe one discard bio is smaller than strip size or across one
1700 	 * stripe and discard region is larger than one stripe size. For far
1701 	 * offset layout, if the discard region is not aligned with stripe
1702 	 * size, there is hole when we submit discard bio to member disk.
1703 	 * For simplicity, we only handle discard bio which discard region
1704 	 * is bigger than stripe_size * 2
1705 	 */
1706 	if (bio_sectors(bio) < stripe_size*2)
1707 		goto out;
1708 
1709 	/*
1710 	 * Keep bio aligned with strip size.
1711 	 */
1712 	div_u64_rem(bio_start, stripe_size, &remainder);
1713 	if (remainder) {
1714 		split_size = stripe_size - remainder;
1715 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1716 		bio_chain(split, bio);
1717 		allow_barrier(conf);
1718 		/* Resend the fist split part */
1719 		submit_bio_noacct(split);
1720 		wait_barrier(conf, false);
1721 	}
1722 	div_u64_rem(bio_end, stripe_size, &remainder);
1723 	if (remainder) {
1724 		split_size = bio_sectors(bio) - remainder;
1725 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1726 		bio_chain(split, bio);
1727 		allow_barrier(conf);
1728 		/* Resend the second split part */
1729 		submit_bio_noacct(bio);
1730 		bio = split;
1731 		wait_barrier(conf, false);
1732 	}
1733 
1734 	bio_start = bio->bi_iter.bi_sector;
1735 	bio_end = bio_end_sector(bio);
1736 
1737 	/*
1738 	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1739 	 * One stripe contains the chunks from all member disk (one chunk from
1740 	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1741 	 */
1742 	chunk = bio_start >> geo->chunk_shift;
1743 	chunk *= geo->near_copies;
1744 	first_stripe_index = chunk;
1745 	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1746 	if (geo->far_offset)
1747 		first_stripe_index *= geo->far_copies;
1748 	start_disk_offset = (bio_start & geo->chunk_mask) +
1749 				(first_stripe_index << geo->chunk_shift);
1750 
1751 	chunk = bio_end >> geo->chunk_shift;
1752 	chunk *= geo->near_copies;
1753 	last_stripe_index = chunk;
1754 	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1755 	if (geo->far_offset)
1756 		last_stripe_index *= geo->far_copies;
1757 	end_disk_offset = (bio_end & geo->chunk_mask) +
1758 				(last_stripe_index << geo->chunk_shift);
1759 
1760 retry_discard:
1761 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1762 	r10_bio->mddev = mddev;
1763 	r10_bio->state = 0;
1764 	r10_bio->sectors = 0;
1765 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1766 	wait_blocked_dev(mddev, r10_bio);
1767 
1768 	/*
1769 	 * For far layout it needs more than one r10bio to cover all regions.
1770 	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1771 	 * to record the discard bio. Other r10bio->master_bio record the first
1772 	 * r10bio. The first r10bio only release after all other r10bios finish.
1773 	 * The discard bio returns only first r10bio finishes
1774 	 */
1775 	if (first_copy) {
1776 		r10_bio->master_bio = bio;
1777 		set_bit(R10BIO_Discard, &r10_bio->state);
1778 		first_copy = false;
1779 		first_r10bio = r10_bio;
1780 	} else
1781 		r10_bio->master_bio = (struct bio *)first_r10bio;
1782 
1783 	/*
1784 	 * first select target devices under rcu_lock and
1785 	 * inc refcount on their rdev.  Record them by setting
1786 	 * bios[x] to bio
1787 	 */
1788 	rcu_read_lock();
1789 	for (disk = 0; disk < geo->raid_disks; disk++) {
1790 		struct md_rdev *rdev, *rrdev;
1791 
1792 		rdev = dereference_rdev_and_rrdev(&conf->mirrors[disk], &rrdev);
1793 		r10_bio->devs[disk].bio = NULL;
1794 		r10_bio->devs[disk].repl_bio = NULL;
1795 
1796 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1797 			rdev = NULL;
1798 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1799 			rrdev = NULL;
1800 		if (!rdev && !rrdev)
1801 			continue;
1802 
1803 		if (rdev) {
1804 			r10_bio->devs[disk].bio = bio;
1805 			atomic_inc(&rdev->nr_pending);
1806 		}
1807 		if (rrdev) {
1808 			r10_bio->devs[disk].repl_bio = bio;
1809 			atomic_inc(&rrdev->nr_pending);
1810 		}
1811 	}
1812 	rcu_read_unlock();
1813 
1814 	atomic_set(&r10_bio->remaining, 1);
1815 	for (disk = 0; disk < geo->raid_disks; disk++) {
1816 		sector_t dev_start, dev_end;
1817 		struct bio *mbio, *rbio = NULL;
1818 
1819 		/*
1820 		 * Now start to calculate the start and end address for each disk.
1821 		 * The space between dev_start and dev_end is the discard region.
1822 		 *
1823 		 * For dev_start, it needs to consider three conditions:
1824 		 * 1st, the disk is before start_disk, you can imagine the disk in
1825 		 * the next stripe. So the dev_start is the start address of next
1826 		 * stripe.
1827 		 * 2st, the disk is after start_disk, it means the disk is at the
1828 		 * same stripe of first disk
1829 		 * 3st, the first disk itself, we can use start_disk_offset directly
1830 		 */
1831 		if (disk < start_disk_index)
1832 			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1833 		else if (disk > start_disk_index)
1834 			dev_start = first_stripe_index * mddev->chunk_sectors;
1835 		else
1836 			dev_start = start_disk_offset;
1837 
1838 		if (disk < end_disk_index)
1839 			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1840 		else if (disk > end_disk_index)
1841 			dev_end = last_stripe_index * mddev->chunk_sectors;
1842 		else
1843 			dev_end = end_disk_offset;
1844 
1845 		/*
1846 		 * It only handles discard bio which size is >= stripe size, so
1847 		 * dev_end > dev_start all the time.
1848 		 * It doesn't need to use rcu lock to get rdev here. We already
1849 		 * add rdev->nr_pending in the first loop.
1850 		 */
1851 		if (r10_bio->devs[disk].bio) {
1852 			struct md_rdev *rdev = conf->mirrors[disk].rdev;
1853 			mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1854 					       &mddev->bio_set);
1855 			mbio->bi_end_io = raid10_end_discard_request;
1856 			mbio->bi_private = r10_bio;
1857 			r10_bio->devs[disk].bio = mbio;
1858 			r10_bio->devs[disk].devnum = disk;
1859 			atomic_inc(&r10_bio->remaining);
1860 			md_submit_discard_bio(mddev, rdev, mbio,
1861 					dev_start + choose_data_offset(r10_bio, rdev),
1862 					dev_end - dev_start);
1863 			bio_endio(mbio);
1864 		}
1865 		if (r10_bio->devs[disk].repl_bio) {
1866 			struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1867 			rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1868 					       &mddev->bio_set);
1869 			rbio->bi_end_io = raid10_end_discard_request;
1870 			rbio->bi_private = r10_bio;
1871 			r10_bio->devs[disk].repl_bio = rbio;
1872 			r10_bio->devs[disk].devnum = disk;
1873 			atomic_inc(&r10_bio->remaining);
1874 			md_submit_discard_bio(mddev, rrdev, rbio,
1875 					dev_start + choose_data_offset(r10_bio, rrdev),
1876 					dev_end - dev_start);
1877 			bio_endio(rbio);
1878 		}
1879 	}
1880 
1881 	if (!geo->far_offset && --far_copies) {
1882 		first_stripe_index += geo->stride >> geo->chunk_shift;
1883 		start_disk_offset += geo->stride;
1884 		last_stripe_index += geo->stride >> geo->chunk_shift;
1885 		end_disk_offset += geo->stride;
1886 		atomic_inc(&first_r10bio->remaining);
1887 		raid_end_discard_bio(r10_bio);
1888 		wait_barrier(conf, false);
1889 		goto retry_discard;
1890 	}
1891 
1892 	raid_end_discard_bio(r10_bio);
1893 
1894 	return 0;
1895 out:
1896 	allow_barrier(conf);
1897 	return -EAGAIN;
1898 }
1899 
raid10_make_request(struct mddev * mddev,struct bio * bio)1900 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1901 {
1902 	struct r10conf *conf = mddev->private;
1903 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1904 	int chunk_sects = chunk_mask + 1;
1905 	int sectors = bio_sectors(bio);
1906 
1907 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1908 	    && md_flush_request(mddev, bio))
1909 		return true;
1910 
1911 	if (!md_write_start(mddev, bio))
1912 		return false;
1913 
1914 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1915 		if (!raid10_handle_discard(mddev, bio))
1916 			return true;
1917 
1918 	/*
1919 	 * If this request crosses a chunk boundary, we need to split
1920 	 * it.
1921 	 */
1922 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1923 		     sectors > chunk_sects
1924 		     && (conf->geo.near_copies < conf->geo.raid_disks
1925 			 || conf->prev.near_copies <
1926 			 conf->prev.raid_disks)))
1927 		sectors = chunk_sects -
1928 			(bio->bi_iter.bi_sector &
1929 			 (chunk_sects - 1));
1930 	__make_request(mddev, bio, sectors);
1931 
1932 	/* In case raid10d snuck in to freeze_array */
1933 	wake_up_barrier(conf);
1934 	return true;
1935 }
1936 
raid10_status(struct seq_file * seq,struct mddev * mddev)1937 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1938 {
1939 	struct r10conf *conf = mddev->private;
1940 	int i;
1941 
1942 	if (conf->geo.near_copies < conf->geo.raid_disks)
1943 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1944 	if (conf->geo.near_copies > 1)
1945 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1946 	if (conf->geo.far_copies > 1) {
1947 		if (conf->geo.far_offset)
1948 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1949 		else
1950 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1951 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1952 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1953 	}
1954 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1955 					conf->geo.raid_disks - mddev->degraded);
1956 	rcu_read_lock();
1957 	for (i = 0; i < conf->geo.raid_disks; i++) {
1958 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1959 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1960 	}
1961 	rcu_read_unlock();
1962 	seq_printf(seq, "]");
1963 }
1964 
1965 /* check if there are enough drives for
1966  * every block to appear on atleast one.
1967  * Don't consider the device numbered 'ignore'
1968  * as we might be about to remove it.
1969  */
_enough(struct r10conf * conf,int previous,int ignore)1970 static int _enough(struct r10conf *conf, int previous, int ignore)
1971 {
1972 	int first = 0;
1973 	int has_enough = 0;
1974 	int disks, ncopies;
1975 	if (previous) {
1976 		disks = conf->prev.raid_disks;
1977 		ncopies = conf->prev.near_copies;
1978 	} else {
1979 		disks = conf->geo.raid_disks;
1980 		ncopies = conf->geo.near_copies;
1981 	}
1982 
1983 	rcu_read_lock();
1984 	do {
1985 		int n = conf->copies;
1986 		int cnt = 0;
1987 		int this = first;
1988 		while (n--) {
1989 			struct md_rdev *rdev;
1990 			if (this != ignore &&
1991 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1992 			    test_bit(In_sync, &rdev->flags))
1993 				cnt++;
1994 			this = (this+1) % disks;
1995 		}
1996 		if (cnt == 0)
1997 			goto out;
1998 		first = (first + ncopies) % disks;
1999 	} while (first != 0);
2000 	has_enough = 1;
2001 out:
2002 	rcu_read_unlock();
2003 	return has_enough;
2004 }
2005 
enough(struct r10conf * conf,int ignore)2006 static int enough(struct r10conf *conf, int ignore)
2007 {
2008 	/* when calling 'enough', both 'prev' and 'geo' must
2009 	 * be stable.
2010 	 * This is ensured if ->reconfig_mutex or ->device_lock
2011 	 * is held.
2012 	 */
2013 	return _enough(conf, 0, ignore) &&
2014 		_enough(conf, 1, ignore);
2015 }
2016 
2017 /**
2018  * raid10_error() - RAID10 error handler.
2019  * @mddev: affected md device.
2020  * @rdev: member device to fail.
2021  *
2022  * The routine acknowledges &rdev failure and determines new @mddev state.
2023  * If it failed, then:
2024  *	- &MD_BROKEN flag is set in &mddev->flags.
2025  * Otherwise, it must be degraded:
2026  *	- recovery is interrupted.
2027  *	- &mddev->degraded is bumped.
2028  *
2029  * @rdev is marked as &Faulty excluding case when array is failed and
2030  * &mddev->fail_last_dev is off.
2031  */
raid10_error(struct mddev * mddev,struct md_rdev * rdev)2032 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
2033 {
2034 	struct r10conf *conf = mddev->private;
2035 	unsigned long flags;
2036 
2037 	spin_lock_irqsave(&conf->device_lock, flags);
2038 
2039 	if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2040 		set_bit(MD_BROKEN, &mddev->flags);
2041 
2042 		if (!mddev->fail_last_dev) {
2043 			spin_unlock_irqrestore(&conf->device_lock, flags);
2044 			return;
2045 		}
2046 	}
2047 	if (test_and_clear_bit(In_sync, &rdev->flags))
2048 		mddev->degraded++;
2049 
2050 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2051 	set_bit(Blocked, &rdev->flags);
2052 	set_bit(Faulty, &rdev->flags);
2053 	set_mask_bits(&mddev->sb_flags, 0,
2054 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2055 	spin_unlock_irqrestore(&conf->device_lock, flags);
2056 	pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2057 		"md/raid10:%s: Operation continuing on %d devices.\n",
2058 		mdname(mddev), rdev->bdev,
2059 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2060 }
2061 
print_conf(struct r10conf * conf)2062 static void print_conf(struct r10conf *conf)
2063 {
2064 	int i;
2065 	struct md_rdev *rdev;
2066 
2067 	pr_debug("RAID10 conf printout:\n");
2068 	if (!conf) {
2069 		pr_debug("(!conf)\n");
2070 		return;
2071 	}
2072 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2073 		 conf->geo.raid_disks);
2074 
2075 	/* This is only called with ->reconfix_mutex held, so
2076 	 * rcu protection of rdev is not needed */
2077 	for (i = 0; i < conf->geo.raid_disks; i++) {
2078 		rdev = conf->mirrors[i].rdev;
2079 		if (rdev)
2080 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2081 				 i, !test_bit(In_sync, &rdev->flags),
2082 				 !test_bit(Faulty, &rdev->flags),
2083 				 rdev->bdev);
2084 	}
2085 }
2086 
close_sync(struct r10conf * conf)2087 static void close_sync(struct r10conf *conf)
2088 {
2089 	wait_barrier(conf, false);
2090 	allow_barrier(conf);
2091 
2092 	mempool_exit(&conf->r10buf_pool);
2093 }
2094 
raid10_spare_active(struct mddev * mddev)2095 static int raid10_spare_active(struct mddev *mddev)
2096 {
2097 	int i;
2098 	struct r10conf *conf = mddev->private;
2099 	struct raid10_info *tmp;
2100 	int count = 0;
2101 	unsigned long flags;
2102 
2103 	/*
2104 	 * Find all non-in_sync disks within the RAID10 configuration
2105 	 * and mark them in_sync
2106 	 */
2107 	for (i = 0; i < conf->geo.raid_disks; i++) {
2108 		tmp = conf->mirrors + i;
2109 		if (tmp->replacement
2110 		    && tmp->replacement->recovery_offset == MaxSector
2111 		    && !test_bit(Faulty, &tmp->replacement->flags)
2112 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2113 			/* Replacement has just become active */
2114 			if (!tmp->rdev
2115 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2116 				count++;
2117 			if (tmp->rdev) {
2118 				/* Replaced device not technically faulty,
2119 				 * but we need to be sure it gets removed
2120 				 * and never re-added.
2121 				 */
2122 				set_bit(Faulty, &tmp->rdev->flags);
2123 				sysfs_notify_dirent_safe(
2124 					tmp->rdev->sysfs_state);
2125 			}
2126 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2127 		} else if (tmp->rdev
2128 			   && tmp->rdev->recovery_offset == MaxSector
2129 			   && !test_bit(Faulty, &tmp->rdev->flags)
2130 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2131 			count++;
2132 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2133 		}
2134 	}
2135 	spin_lock_irqsave(&conf->device_lock, flags);
2136 	mddev->degraded -= count;
2137 	spin_unlock_irqrestore(&conf->device_lock, flags);
2138 
2139 	print_conf(conf);
2140 	return count;
2141 }
2142 
raid10_add_disk(struct mddev * mddev,struct md_rdev * rdev)2143 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2144 {
2145 	struct r10conf *conf = mddev->private;
2146 	int err = -EEXIST;
2147 	int mirror, repl_slot = -1;
2148 	int first = 0;
2149 	int last = conf->geo.raid_disks - 1;
2150 	struct raid10_info *p;
2151 
2152 	if (mddev->recovery_cp < MaxSector)
2153 		/* only hot-add to in-sync arrays, as recovery is
2154 		 * very different from resync
2155 		 */
2156 		return -EBUSY;
2157 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2158 		return -EINVAL;
2159 
2160 	if (md_integrity_add_rdev(rdev, mddev))
2161 		return -ENXIO;
2162 
2163 	if (rdev->raid_disk >= 0)
2164 		first = last = rdev->raid_disk;
2165 
2166 	if (rdev->saved_raid_disk >= first &&
2167 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2168 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2169 		mirror = rdev->saved_raid_disk;
2170 	else
2171 		mirror = first;
2172 	for ( ; mirror <= last ; mirror++) {
2173 		p = &conf->mirrors[mirror];
2174 		if (p->recovery_disabled == mddev->recovery_disabled)
2175 			continue;
2176 		if (p->rdev) {
2177 			if (test_bit(WantReplacement, &p->rdev->flags) &&
2178 			    p->replacement == NULL && repl_slot < 0)
2179 				repl_slot = mirror;
2180 			continue;
2181 		}
2182 
2183 		if (mddev->gendisk)
2184 			disk_stack_limits(mddev->gendisk, rdev->bdev,
2185 					  rdev->data_offset << 9);
2186 
2187 		p->head_position = 0;
2188 		p->recovery_disabled = mddev->recovery_disabled - 1;
2189 		rdev->raid_disk = mirror;
2190 		err = 0;
2191 		if (rdev->saved_raid_disk != mirror)
2192 			conf->fullsync = 1;
2193 		rcu_assign_pointer(p->rdev, rdev);
2194 		break;
2195 	}
2196 
2197 	if (err && repl_slot >= 0) {
2198 		p = &conf->mirrors[repl_slot];
2199 		clear_bit(In_sync, &rdev->flags);
2200 		set_bit(Replacement, &rdev->flags);
2201 		rdev->raid_disk = repl_slot;
2202 		err = 0;
2203 		if (mddev->gendisk)
2204 			disk_stack_limits(mddev->gendisk, rdev->bdev,
2205 					  rdev->data_offset << 9);
2206 		conf->fullsync = 1;
2207 		rcu_assign_pointer(p->replacement, rdev);
2208 	}
2209 
2210 	print_conf(conf);
2211 	return err;
2212 }
2213 
raid10_remove_disk(struct mddev * mddev,struct md_rdev * rdev)2214 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2215 {
2216 	struct r10conf *conf = mddev->private;
2217 	int err = 0;
2218 	int number = rdev->raid_disk;
2219 	struct md_rdev **rdevp;
2220 	struct raid10_info *p;
2221 
2222 	print_conf(conf);
2223 	if (unlikely(number >= mddev->raid_disks))
2224 		return 0;
2225 	p = conf->mirrors + number;
2226 	if (rdev == p->rdev)
2227 		rdevp = &p->rdev;
2228 	else if (rdev == p->replacement)
2229 		rdevp = &p->replacement;
2230 	else
2231 		return 0;
2232 
2233 	if (test_bit(In_sync, &rdev->flags) ||
2234 	    atomic_read(&rdev->nr_pending)) {
2235 		err = -EBUSY;
2236 		goto abort;
2237 	}
2238 	/* Only remove non-faulty devices if recovery
2239 	 * is not possible.
2240 	 */
2241 	if (!test_bit(Faulty, &rdev->flags) &&
2242 	    mddev->recovery_disabled != p->recovery_disabled &&
2243 	    (!p->replacement || p->replacement == rdev) &&
2244 	    number < conf->geo.raid_disks &&
2245 	    enough(conf, -1)) {
2246 		err = -EBUSY;
2247 		goto abort;
2248 	}
2249 	*rdevp = NULL;
2250 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2251 		synchronize_rcu();
2252 		if (atomic_read(&rdev->nr_pending)) {
2253 			/* lost the race, try later */
2254 			err = -EBUSY;
2255 			*rdevp = rdev;
2256 			goto abort;
2257 		}
2258 	}
2259 	if (p->replacement) {
2260 		/* We must have just cleared 'rdev' */
2261 		p->rdev = p->replacement;
2262 		clear_bit(Replacement, &p->replacement->flags);
2263 		smp_mb(); /* Make sure other CPUs may see both as identical
2264 			   * but will never see neither -- if they are careful.
2265 			   */
2266 		p->replacement = NULL;
2267 	}
2268 
2269 	clear_bit(WantReplacement, &rdev->flags);
2270 	err = md_integrity_register(mddev);
2271 
2272 abort:
2273 
2274 	print_conf(conf);
2275 	return err;
2276 }
2277 
__end_sync_read(struct r10bio * r10_bio,struct bio * bio,int d)2278 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2279 {
2280 	struct r10conf *conf = r10_bio->mddev->private;
2281 
2282 	if (!bio->bi_status)
2283 		set_bit(R10BIO_Uptodate, &r10_bio->state);
2284 	else
2285 		/* The write handler will notice the lack of
2286 		 * R10BIO_Uptodate and record any errors etc
2287 		 */
2288 		atomic_add(r10_bio->sectors,
2289 			   &conf->mirrors[d].rdev->corrected_errors);
2290 
2291 	/* for reconstruct, we always reschedule after a read.
2292 	 * for resync, only after all reads
2293 	 */
2294 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2295 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2296 	    atomic_dec_and_test(&r10_bio->remaining)) {
2297 		/* we have read all the blocks,
2298 		 * do the comparison in process context in raid10d
2299 		 */
2300 		reschedule_retry(r10_bio);
2301 	}
2302 }
2303 
end_sync_read(struct bio * bio)2304 static void end_sync_read(struct bio *bio)
2305 {
2306 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2307 	struct r10conf *conf = r10_bio->mddev->private;
2308 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2309 
2310 	__end_sync_read(r10_bio, bio, d);
2311 }
2312 
end_reshape_read(struct bio * bio)2313 static void end_reshape_read(struct bio *bio)
2314 {
2315 	/* reshape read bio isn't allocated from r10buf_pool */
2316 	struct r10bio *r10_bio = bio->bi_private;
2317 
2318 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2319 }
2320 
end_sync_request(struct r10bio * r10_bio)2321 static void end_sync_request(struct r10bio *r10_bio)
2322 {
2323 	struct mddev *mddev = r10_bio->mddev;
2324 
2325 	while (atomic_dec_and_test(&r10_bio->remaining)) {
2326 		if (r10_bio->master_bio == NULL) {
2327 			/* the primary of several recovery bios */
2328 			sector_t s = r10_bio->sectors;
2329 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2330 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2331 				reschedule_retry(r10_bio);
2332 			else
2333 				put_buf(r10_bio);
2334 			md_done_sync(mddev, s, 1);
2335 			break;
2336 		} else {
2337 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2338 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2339 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2340 				reschedule_retry(r10_bio);
2341 			else
2342 				put_buf(r10_bio);
2343 			r10_bio = r10_bio2;
2344 		}
2345 	}
2346 }
2347 
end_sync_write(struct bio * bio)2348 static void end_sync_write(struct bio *bio)
2349 {
2350 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2351 	struct mddev *mddev = r10_bio->mddev;
2352 	struct r10conf *conf = mddev->private;
2353 	int d;
2354 	sector_t first_bad;
2355 	int bad_sectors;
2356 	int slot;
2357 	int repl;
2358 	struct md_rdev *rdev = NULL;
2359 
2360 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2361 	if (repl)
2362 		rdev = conf->mirrors[d].replacement;
2363 	else
2364 		rdev = conf->mirrors[d].rdev;
2365 
2366 	if (bio->bi_status) {
2367 		if (repl)
2368 			md_error(mddev, rdev);
2369 		else {
2370 			set_bit(WriteErrorSeen, &rdev->flags);
2371 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2372 				set_bit(MD_RECOVERY_NEEDED,
2373 					&rdev->mddev->recovery);
2374 			set_bit(R10BIO_WriteError, &r10_bio->state);
2375 		}
2376 	} else if (is_badblock(rdev,
2377 			     r10_bio->devs[slot].addr,
2378 			     r10_bio->sectors,
2379 			     &first_bad, &bad_sectors))
2380 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2381 
2382 	rdev_dec_pending(rdev, mddev);
2383 
2384 	end_sync_request(r10_bio);
2385 }
2386 
2387 /*
2388  * Note: sync and recover and handled very differently for raid10
2389  * This code is for resync.
2390  * For resync, we read through virtual addresses and read all blocks.
2391  * If there is any error, we schedule a write.  The lowest numbered
2392  * drive is authoritative.
2393  * However requests come for physical address, so we need to map.
2394  * For every physical address there are raid_disks/copies virtual addresses,
2395  * which is always are least one, but is not necessarly an integer.
2396  * This means that a physical address can span multiple chunks, so we may
2397  * have to submit multiple io requests for a single sync request.
2398  */
2399 /*
2400  * We check if all blocks are in-sync and only write to blocks that
2401  * aren't in sync
2402  */
sync_request_write(struct mddev * mddev,struct r10bio * r10_bio)2403 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2404 {
2405 	struct r10conf *conf = mddev->private;
2406 	int i, first;
2407 	struct bio *tbio, *fbio;
2408 	int vcnt;
2409 	struct page **tpages, **fpages;
2410 
2411 	atomic_set(&r10_bio->remaining, 1);
2412 
2413 	/* find the first device with a block */
2414 	for (i=0; i<conf->copies; i++)
2415 		if (!r10_bio->devs[i].bio->bi_status)
2416 			break;
2417 
2418 	if (i == conf->copies)
2419 		goto done;
2420 
2421 	first = i;
2422 	fbio = r10_bio->devs[i].bio;
2423 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2424 	fbio->bi_iter.bi_idx = 0;
2425 	fpages = get_resync_pages(fbio)->pages;
2426 
2427 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2428 	/* now find blocks with errors */
2429 	for (i=0 ; i < conf->copies ; i++) {
2430 		int  j, d;
2431 		struct md_rdev *rdev;
2432 		struct resync_pages *rp;
2433 
2434 		tbio = r10_bio->devs[i].bio;
2435 
2436 		if (tbio->bi_end_io != end_sync_read)
2437 			continue;
2438 		if (i == first)
2439 			continue;
2440 
2441 		tpages = get_resync_pages(tbio)->pages;
2442 		d = r10_bio->devs[i].devnum;
2443 		rdev = conf->mirrors[d].rdev;
2444 		if (!r10_bio->devs[i].bio->bi_status) {
2445 			/* We know that the bi_io_vec layout is the same for
2446 			 * both 'first' and 'i', so we just compare them.
2447 			 * All vec entries are PAGE_SIZE;
2448 			 */
2449 			int sectors = r10_bio->sectors;
2450 			for (j = 0; j < vcnt; j++) {
2451 				int len = PAGE_SIZE;
2452 				if (sectors < (len / 512))
2453 					len = sectors * 512;
2454 				if (memcmp(page_address(fpages[j]),
2455 					   page_address(tpages[j]),
2456 					   len))
2457 					break;
2458 				sectors -= len/512;
2459 			}
2460 			if (j == vcnt)
2461 				continue;
2462 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2463 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2464 				/* Don't fix anything. */
2465 				continue;
2466 		} else if (test_bit(FailFast, &rdev->flags)) {
2467 			/* Just give up on this device */
2468 			md_error(rdev->mddev, rdev);
2469 			continue;
2470 		}
2471 		/* Ok, we need to write this bio, either to correct an
2472 		 * inconsistency or to correct an unreadable block.
2473 		 * First we need to fixup bv_offset, bv_len and
2474 		 * bi_vecs, as the read request might have corrupted these
2475 		 */
2476 		rp = get_resync_pages(tbio);
2477 		bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2478 
2479 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2480 
2481 		rp->raid_bio = r10_bio;
2482 		tbio->bi_private = rp;
2483 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2484 		tbio->bi_end_io = end_sync_write;
2485 
2486 		bio_copy_data(tbio, fbio);
2487 
2488 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2489 		atomic_inc(&r10_bio->remaining);
2490 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2491 
2492 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2493 			tbio->bi_opf |= MD_FAILFAST;
2494 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2495 		submit_bio_noacct(tbio);
2496 	}
2497 
2498 	/* Now write out to any replacement devices
2499 	 * that are active
2500 	 */
2501 	for (i = 0; i < conf->copies; i++) {
2502 		int d;
2503 
2504 		tbio = r10_bio->devs[i].repl_bio;
2505 		if (!tbio || !tbio->bi_end_io)
2506 			continue;
2507 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2508 		    && r10_bio->devs[i].bio != fbio)
2509 			bio_copy_data(tbio, fbio);
2510 		d = r10_bio->devs[i].devnum;
2511 		atomic_inc(&r10_bio->remaining);
2512 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2513 			     bio_sectors(tbio));
2514 		submit_bio_noacct(tbio);
2515 	}
2516 
2517 done:
2518 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2519 		md_done_sync(mddev, r10_bio->sectors, 1);
2520 		put_buf(r10_bio);
2521 	}
2522 }
2523 
2524 /*
2525  * Now for the recovery code.
2526  * Recovery happens across physical sectors.
2527  * We recover all non-is_sync drives by finding the virtual address of
2528  * each, and then choose a working drive that also has that virt address.
2529  * There is a separate r10_bio for each non-in_sync drive.
2530  * Only the first two slots are in use. The first for reading,
2531  * The second for writing.
2532  *
2533  */
fix_recovery_read_error(struct r10bio * r10_bio)2534 static void fix_recovery_read_error(struct r10bio *r10_bio)
2535 {
2536 	/* We got a read error during recovery.
2537 	 * We repeat the read in smaller page-sized sections.
2538 	 * If a read succeeds, write it to the new device or record
2539 	 * a bad block if we cannot.
2540 	 * If a read fails, record a bad block on both old and
2541 	 * new devices.
2542 	 */
2543 	struct mddev *mddev = r10_bio->mddev;
2544 	struct r10conf *conf = mddev->private;
2545 	struct bio *bio = r10_bio->devs[0].bio;
2546 	sector_t sect = 0;
2547 	int sectors = r10_bio->sectors;
2548 	int idx = 0;
2549 	int dr = r10_bio->devs[0].devnum;
2550 	int dw = r10_bio->devs[1].devnum;
2551 	struct page **pages = get_resync_pages(bio)->pages;
2552 
2553 	while (sectors) {
2554 		int s = sectors;
2555 		struct md_rdev *rdev;
2556 		sector_t addr;
2557 		int ok;
2558 
2559 		if (s > (PAGE_SIZE>>9))
2560 			s = PAGE_SIZE >> 9;
2561 
2562 		rdev = conf->mirrors[dr].rdev;
2563 		addr = r10_bio->devs[0].addr + sect,
2564 		ok = sync_page_io(rdev,
2565 				  addr,
2566 				  s << 9,
2567 				  pages[idx],
2568 				  REQ_OP_READ, false);
2569 		if (ok) {
2570 			rdev = conf->mirrors[dw].rdev;
2571 			addr = r10_bio->devs[1].addr + sect;
2572 			ok = sync_page_io(rdev,
2573 					  addr,
2574 					  s << 9,
2575 					  pages[idx],
2576 					  REQ_OP_WRITE, false);
2577 			if (!ok) {
2578 				set_bit(WriteErrorSeen, &rdev->flags);
2579 				if (!test_and_set_bit(WantReplacement,
2580 						      &rdev->flags))
2581 					set_bit(MD_RECOVERY_NEEDED,
2582 						&rdev->mddev->recovery);
2583 			}
2584 		}
2585 		if (!ok) {
2586 			/* We don't worry if we cannot set a bad block -
2587 			 * it really is bad so there is no loss in not
2588 			 * recording it yet
2589 			 */
2590 			rdev_set_badblocks(rdev, addr, s, 0);
2591 
2592 			if (rdev != conf->mirrors[dw].rdev) {
2593 				/* need bad block on destination too */
2594 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2595 				addr = r10_bio->devs[1].addr + sect;
2596 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2597 				if (!ok) {
2598 					/* just abort the recovery */
2599 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2600 						  mdname(mddev));
2601 
2602 					conf->mirrors[dw].recovery_disabled
2603 						= mddev->recovery_disabled;
2604 					set_bit(MD_RECOVERY_INTR,
2605 						&mddev->recovery);
2606 					break;
2607 				}
2608 			}
2609 		}
2610 
2611 		sectors -= s;
2612 		sect += s;
2613 		idx++;
2614 	}
2615 }
2616 
recovery_request_write(struct mddev * mddev,struct r10bio * r10_bio)2617 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2618 {
2619 	struct r10conf *conf = mddev->private;
2620 	int d;
2621 	struct bio *wbio = r10_bio->devs[1].bio;
2622 	struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2623 
2624 	/* Need to test wbio2->bi_end_io before we call
2625 	 * submit_bio_noacct as if the former is NULL,
2626 	 * the latter is free to free wbio2.
2627 	 */
2628 	if (wbio2 && !wbio2->bi_end_io)
2629 		wbio2 = NULL;
2630 
2631 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2632 		fix_recovery_read_error(r10_bio);
2633 		if (wbio->bi_end_io)
2634 			end_sync_request(r10_bio);
2635 		if (wbio2)
2636 			end_sync_request(r10_bio);
2637 		return;
2638 	}
2639 
2640 	/*
2641 	 * share the pages with the first bio
2642 	 * and submit the write request
2643 	 */
2644 	d = r10_bio->devs[1].devnum;
2645 	if (wbio->bi_end_io) {
2646 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2647 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2648 		submit_bio_noacct(wbio);
2649 	}
2650 	if (wbio2) {
2651 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2652 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2653 			     bio_sectors(wbio2));
2654 		submit_bio_noacct(wbio2);
2655 	}
2656 }
2657 
2658 /*
2659  * Used by fix_read_error() to decay the per rdev read_errors.
2660  * We halve the read error count for every hour that has elapsed
2661  * since the last recorded read error.
2662  *
2663  */
check_decay_read_errors(struct mddev * mddev,struct md_rdev * rdev)2664 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2665 {
2666 	long cur_time_mon;
2667 	unsigned long hours_since_last;
2668 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2669 
2670 	cur_time_mon = ktime_get_seconds();
2671 
2672 	if (rdev->last_read_error == 0) {
2673 		/* first time we've seen a read error */
2674 		rdev->last_read_error = cur_time_mon;
2675 		return;
2676 	}
2677 
2678 	hours_since_last = (long)(cur_time_mon -
2679 			    rdev->last_read_error) / 3600;
2680 
2681 	rdev->last_read_error = cur_time_mon;
2682 
2683 	/*
2684 	 * if hours_since_last is > the number of bits in read_errors
2685 	 * just set read errors to 0. We do this to avoid
2686 	 * overflowing the shift of read_errors by hours_since_last.
2687 	 */
2688 	if (hours_since_last >= 8 * sizeof(read_errors))
2689 		atomic_set(&rdev->read_errors, 0);
2690 	else
2691 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2692 }
2693 
r10_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,enum req_op op)2694 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2695 			    int sectors, struct page *page, enum req_op op)
2696 {
2697 	sector_t first_bad;
2698 	int bad_sectors;
2699 
2700 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2701 	    && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2702 		return -1;
2703 	if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2704 		/* success */
2705 		return 1;
2706 	if (op == REQ_OP_WRITE) {
2707 		set_bit(WriteErrorSeen, &rdev->flags);
2708 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2709 			set_bit(MD_RECOVERY_NEEDED,
2710 				&rdev->mddev->recovery);
2711 	}
2712 	/* need to record an error - either for the block or the device */
2713 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2714 		md_error(rdev->mddev, rdev);
2715 	return 0;
2716 }
2717 
2718 /*
2719  * This is a kernel thread which:
2720  *
2721  *	1.	Retries failed read operations on working mirrors.
2722  *	2.	Updates the raid superblock when problems encounter.
2723  *	3.	Performs writes following reads for array synchronising.
2724  */
2725 
fix_read_error(struct r10conf * conf,struct mddev * mddev,struct r10bio * r10_bio)2726 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2727 {
2728 	int sect = 0; /* Offset from r10_bio->sector */
2729 	int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2730 	struct md_rdev *rdev;
2731 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2732 	int d = r10_bio->devs[slot].devnum;
2733 
2734 	/* still own a reference to this rdev, so it cannot
2735 	 * have been cleared recently.
2736 	 */
2737 	rdev = conf->mirrors[d].rdev;
2738 
2739 	if (test_bit(Faulty, &rdev->flags))
2740 		/* drive has already been failed, just ignore any
2741 		   more fix_read_error() attempts */
2742 		return;
2743 
2744 	check_decay_read_errors(mddev, rdev);
2745 	atomic_inc(&rdev->read_errors);
2746 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2747 		pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2748 			  mdname(mddev), rdev->bdev,
2749 			  atomic_read(&rdev->read_errors), max_read_errors);
2750 		pr_notice("md/raid10:%s: %pg: Failing raid device\n",
2751 			  mdname(mddev), rdev->bdev);
2752 		md_error(mddev, rdev);
2753 		r10_bio->devs[slot].bio = IO_BLOCKED;
2754 		return;
2755 	}
2756 
2757 	while(sectors) {
2758 		int s = sectors;
2759 		int sl = slot;
2760 		int success = 0;
2761 		int start;
2762 
2763 		if (s > (PAGE_SIZE>>9))
2764 			s = PAGE_SIZE >> 9;
2765 
2766 		rcu_read_lock();
2767 		do {
2768 			sector_t first_bad;
2769 			int bad_sectors;
2770 
2771 			d = r10_bio->devs[sl].devnum;
2772 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2773 			if (rdev &&
2774 			    test_bit(In_sync, &rdev->flags) &&
2775 			    !test_bit(Faulty, &rdev->flags) &&
2776 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2777 					&first_bad, &bad_sectors) == 0) {
2778 				atomic_inc(&rdev->nr_pending);
2779 				rcu_read_unlock();
2780 				success = sync_page_io(rdev,
2781 						       r10_bio->devs[sl].addr +
2782 						       sect,
2783 						       s<<9,
2784 						       conf->tmppage,
2785 						       REQ_OP_READ, false);
2786 				rdev_dec_pending(rdev, mddev);
2787 				rcu_read_lock();
2788 				if (success)
2789 					break;
2790 			}
2791 			sl++;
2792 			if (sl == conf->copies)
2793 				sl = 0;
2794 		} while (sl != slot);
2795 		rcu_read_unlock();
2796 
2797 		if (!success) {
2798 			/* Cannot read from anywhere, just mark the block
2799 			 * as bad on the first device to discourage future
2800 			 * reads.
2801 			 */
2802 			int dn = r10_bio->devs[slot].devnum;
2803 			rdev = conf->mirrors[dn].rdev;
2804 
2805 			if (!rdev_set_badblocks(
2806 				    rdev,
2807 				    r10_bio->devs[slot].addr
2808 				    + sect,
2809 				    s, 0)) {
2810 				md_error(mddev, rdev);
2811 				r10_bio->devs[slot].bio
2812 					= IO_BLOCKED;
2813 			}
2814 			break;
2815 		}
2816 
2817 		start = sl;
2818 		/* write it back and re-read */
2819 		rcu_read_lock();
2820 		while (sl != slot) {
2821 			if (sl==0)
2822 				sl = conf->copies;
2823 			sl--;
2824 			d = r10_bio->devs[sl].devnum;
2825 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2826 			if (!rdev ||
2827 			    test_bit(Faulty, &rdev->flags) ||
2828 			    !test_bit(In_sync, &rdev->flags))
2829 				continue;
2830 
2831 			atomic_inc(&rdev->nr_pending);
2832 			rcu_read_unlock();
2833 			if (r10_sync_page_io(rdev,
2834 					     r10_bio->devs[sl].addr +
2835 					     sect,
2836 					     s, conf->tmppage, REQ_OP_WRITE)
2837 			    == 0) {
2838 				/* Well, this device is dead */
2839 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2840 					  mdname(mddev), s,
2841 					  (unsigned long long)(
2842 						  sect +
2843 						  choose_data_offset(r10_bio,
2844 								     rdev)),
2845 					  rdev->bdev);
2846 				pr_notice("md/raid10:%s: %pg: failing drive\n",
2847 					  mdname(mddev),
2848 					  rdev->bdev);
2849 			}
2850 			rdev_dec_pending(rdev, mddev);
2851 			rcu_read_lock();
2852 		}
2853 		sl = start;
2854 		while (sl != slot) {
2855 			if (sl==0)
2856 				sl = conf->copies;
2857 			sl--;
2858 			d = r10_bio->devs[sl].devnum;
2859 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2860 			if (!rdev ||
2861 			    test_bit(Faulty, &rdev->flags) ||
2862 			    !test_bit(In_sync, &rdev->flags))
2863 				continue;
2864 
2865 			atomic_inc(&rdev->nr_pending);
2866 			rcu_read_unlock();
2867 			switch (r10_sync_page_io(rdev,
2868 					     r10_bio->devs[sl].addr +
2869 					     sect,
2870 					     s, conf->tmppage, REQ_OP_READ)) {
2871 			case 0:
2872 				/* Well, this device is dead */
2873 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2874 				       mdname(mddev), s,
2875 				       (unsigned long long)(
2876 					       sect +
2877 					       choose_data_offset(r10_bio, rdev)),
2878 				       rdev->bdev);
2879 				pr_notice("md/raid10:%s: %pg: failing drive\n",
2880 				       mdname(mddev),
2881 				       rdev->bdev);
2882 				break;
2883 			case 1:
2884 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2885 				       mdname(mddev), s,
2886 				       (unsigned long long)(
2887 					       sect +
2888 					       choose_data_offset(r10_bio, rdev)),
2889 				       rdev->bdev);
2890 				atomic_add(s, &rdev->corrected_errors);
2891 			}
2892 
2893 			rdev_dec_pending(rdev, mddev);
2894 			rcu_read_lock();
2895 		}
2896 		rcu_read_unlock();
2897 
2898 		sectors -= s;
2899 		sect += s;
2900 	}
2901 }
2902 
narrow_write_error(struct r10bio * r10_bio,int i)2903 static int narrow_write_error(struct r10bio *r10_bio, int i)
2904 {
2905 	struct bio *bio = r10_bio->master_bio;
2906 	struct mddev *mddev = r10_bio->mddev;
2907 	struct r10conf *conf = mddev->private;
2908 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2909 	/* bio has the data to be written to slot 'i' where
2910 	 * we just recently had a write error.
2911 	 * We repeatedly clone the bio and trim down to one block,
2912 	 * then try the write.  Where the write fails we record
2913 	 * a bad block.
2914 	 * It is conceivable that the bio doesn't exactly align with
2915 	 * blocks.  We must handle this.
2916 	 *
2917 	 * We currently own a reference to the rdev.
2918 	 */
2919 
2920 	int block_sectors;
2921 	sector_t sector;
2922 	int sectors;
2923 	int sect_to_write = r10_bio->sectors;
2924 	int ok = 1;
2925 
2926 	if (rdev->badblocks.shift < 0)
2927 		return 0;
2928 
2929 	block_sectors = roundup(1 << rdev->badblocks.shift,
2930 				bdev_logical_block_size(rdev->bdev) >> 9);
2931 	sector = r10_bio->sector;
2932 	sectors = ((r10_bio->sector + block_sectors)
2933 		   & ~(sector_t)(block_sectors - 1))
2934 		- sector;
2935 
2936 	while (sect_to_write) {
2937 		struct bio *wbio;
2938 		sector_t wsector;
2939 		if (sectors > sect_to_write)
2940 			sectors = sect_to_write;
2941 		/* Write at 'sector' for 'sectors' */
2942 		wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2943 				       &mddev->bio_set);
2944 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2945 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2946 		wbio->bi_iter.bi_sector = wsector +
2947 				   choose_data_offset(r10_bio, rdev);
2948 		wbio->bi_opf = REQ_OP_WRITE;
2949 
2950 		if (submit_bio_wait(wbio) < 0)
2951 			/* Failure! */
2952 			ok = rdev_set_badblocks(rdev, wsector,
2953 						sectors, 0)
2954 				&& ok;
2955 
2956 		bio_put(wbio);
2957 		sect_to_write -= sectors;
2958 		sector += sectors;
2959 		sectors = block_sectors;
2960 	}
2961 	return ok;
2962 }
2963 
handle_read_error(struct mddev * mddev,struct r10bio * r10_bio)2964 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2965 {
2966 	int slot = r10_bio->read_slot;
2967 	struct bio *bio;
2968 	struct r10conf *conf = mddev->private;
2969 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2970 
2971 	/* we got a read error. Maybe the drive is bad.  Maybe just
2972 	 * the block and we can fix it.
2973 	 * We freeze all other IO, and try reading the block from
2974 	 * other devices.  When we find one, we re-write
2975 	 * and check it that fixes the read error.
2976 	 * This is all done synchronously while the array is
2977 	 * frozen.
2978 	 */
2979 	bio = r10_bio->devs[slot].bio;
2980 	bio_put(bio);
2981 	r10_bio->devs[slot].bio = NULL;
2982 
2983 	if (mddev->ro)
2984 		r10_bio->devs[slot].bio = IO_BLOCKED;
2985 	else if (!test_bit(FailFast, &rdev->flags)) {
2986 		freeze_array(conf, 1);
2987 		fix_read_error(conf, mddev, r10_bio);
2988 		unfreeze_array(conf);
2989 	} else
2990 		md_error(mddev, rdev);
2991 
2992 	rdev_dec_pending(rdev, mddev);
2993 	r10_bio->state = 0;
2994 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2995 	/*
2996 	 * allow_barrier after re-submit to ensure no sync io
2997 	 * can be issued while regular io pending.
2998 	 */
2999 	allow_barrier(conf);
3000 }
3001 
handle_write_completed(struct r10conf * conf,struct r10bio * r10_bio)3002 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
3003 {
3004 	/* Some sort of write request has finished and it
3005 	 * succeeded in writing where we thought there was a
3006 	 * bad block.  So forget the bad block.
3007 	 * Or possibly if failed and we need to record
3008 	 * a bad block.
3009 	 */
3010 	int m;
3011 	struct md_rdev *rdev;
3012 
3013 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
3014 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
3015 		for (m = 0; m < conf->copies; m++) {
3016 			int dev = r10_bio->devs[m].devnum;
3017 			rdev = conf->mirrors[dev].rdev;
3018 			if (r10_bio->devs[m].bio == NULL ||
3019 				r10_bio->devs[m].bio->bi_end_io == NULL)
3020 				continue;
3021 			if (!r10_bio->devs[m].bio->bi_status) {
3022 				rdev_clear_badblocks(
3023 					rdev,
3024 					r10_bio->devs[m].addr,
3025 					r10_bio->sectors, 0);
3026 			} else {
3027 				if (!rdev_set_badblocks(
3028 					    rdev,
3029 					    r10_bio->devs[m].addr,
3030 					    r10_bio->sectors, 0))
3031 					md_error(conf->mddev, rdev);
3032 			}
3033 			rdev = conf->mirrors[dev].replacement;
3034 			if (r10_bio->devs[m].repl_bio == NULL ||
3035 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
3036 				continue;
3037 
3038 			if (!r10_bio->devs[m].repl_bio->bi_status) {
3039 				rdev_clear_badblocks(
3040 					rdev,
3041 					r10_bio->devs[m].addr,
3042 					r10_bio->sectors, 0);
3043 			} else {
3044 				if (!rdev_set_badblocks(
3045 					    rdev,
3046 					    r10_bio->devs[m].addr,
3047 					    r10_bio->sectors, 0))
3048 					md_error(conf->mddev, rdev);
3049 			}
3050 		}
3051 		put_buf(r10_bio);
3052 	} else {
3053 		bool fail = false;
3054 		for (m = 0; m < conf->copies; m++) {
3055 			int dev = r10_bio->devs[m].devnum;
3056 			struct bio *bio = r10_bio->devs[m].bio;
3057 			rdev = conf->mirrors[dev].rdev;
3058 			if (bio == IO_MADE_GOOD) {
3059 				rdev_clear_badblocks(
3060 					rdev,
3061 					r10_bio->devs[m].addr,
3062 					r10_bio->sectors, 0);
3063 				rdev_dec_pending(rdev, conf->mddev);
3064 			} else if (bio != NULL && bio->bi_status) {
3065 				fail = true;
3066 				if (!narrow_write_error(r10_bio, m)) {
3067 					md_error(conf->mddev, rdev);
3068 					set_bit(R10BIO_Degraded,
3069 						&r10_bio->state);
3070 				}
3071 				rdev_dec_pending(rdev, conf->mddev);
3072 			}
3073 			bio = r10_bio->devs[m].repl_bio;
3074 			rdev = conf->mirrors[dev].replacement;
3075 			if (rdev && bio == IO_MADE_GOOD) {
3076 				rdev_clear_badblocks(
3077 					rdev,
3078 					r10_bio->devs[m].addr,
3079 					r10_bio->sectors, 0);
3080 				rdev_dec_pending(rdev, conf->mddev);
3081 			}
3082 		}
3083 		if (fail) {
3084 			spin_lock_irq(&conf->device_lock);
3085 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3086 			conf->nr_queued++;
3087 			spin_unlock_irq(&conf->device_lock);
3088 			/*
3089 			 * In case freeze_array() is waiting for condition
3090 			 * nr_pending == nr_queued + extra to be true.
3091 			 */
3092 			wake_up(&conf->wait_barrier);
3093 			md_wakeup_thread(conf->mddev->thread);
3094 		} else {
3095 			if (test_bit(R10BIO_WriteError,
3096 				     &r10_bio->state))
3097 				close_write(r10_bio);
3098 			raid_end_bio_io(r10_bio);
3099 		}
3100 	}
3101 }
3102 
raid10d(struct md_thread * thread)3103 static void raid10d(struct md_thread *thread)
3104 {
3105 	struct mddev *mddev = thread->mddev;
3106 	struct r10bio *r10_bio;
3107 	unsigned long flags;
3108 	struct r10conf *conf = mddev->private;
3109 	struct list_head *head = &conf->retry_list;
3110 	struct blk_plug plug;
3111 
3112 	md_check_recovery(mddev);
3113 
3114 	if (!list_empty_careful(&conf->bio_end_io_list) &&
3115 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3116 		LIST_HEAD(tmp);
3117 		spin_lock_irqsave(&conf->device_lock, flags);
3118 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3119 			while (!list_empty(&conf->bio_end_io_list)) {
3120 				list_move(conf->bio_end_io_list.prev, &tmp);
3121 				conf->nr_queued--;
3122 			}
3123 		}
3124 		spin_unlock_irqrestore(&conf->device_lock, flags);
3125 		while (!list_empty(&tmp)) {
3126 			r10_bio = list_first_entry(&tmp, struct r10bio,
3127 						   retry_list);
3128 			list_del(&r10_bio->retry_list);
3129 			if (mddev->degraded)
3130 				set_bit(R10BIO_Degraded, &r10_bio->state);
3131 
3132 			if (test_bit(R10BIO_WriteError,
3133 				     &r10_bio->state))
3134 				close_write(r10_bio);
3135 			raid_end_bio_io(r10_bio);
3136 		}
3137 	}
3138 
3139 	blk_start_plug(&plug);
3140 	for (;;) {
3141 
3142 		flush_pending_writes(conf);
3143 
3144 		spin_lock_irqsave(&conf->device_lock, flags);
3145 		if (list_empty(head)) {
3146 			spin_unlock_irqrestore(&conf->device_lock, flags);
3147 			break;
3148 		}
3149 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3150 		list_del(head->prev);
3151 		conf->nr_queued--;
3152 		spin_unlock_irqrestore(&conf->device_lock, flags);
3153 
3154 		mddev = r10_bio->mddev;
3155 		conf = mddev->private;
3156 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3157 		    test_bit(R10BIO_WriteError, &r10_bio->state))
3158 			handle_write_completed(conf, r10_bio);
3159 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3160 			reshape_request_write(mddev, r10_bio);
3161 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3162 			sync_request_write(mddev, r10_bio);
3163 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3164 			recovery_request_write(mddev, r10_bio);
3165 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3166 			handle_read_error(mddev, r10_bio);
3167 		else
3168 			WARN_ON_ONCE(1);
3169 
3170 		cond_resched();
3171 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3172 			md_check_recovery(mddev);
3173 	}
3174 	blk_finish_plug(&plug);
3175 }
3176 
init_resync(struct r10conf * conf)3177 static int init_resync(struct r10conf *conf)
3178 {
3179 	int ret, buffs, i;
3180 
3181 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3182 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3183 	conf->have_replacement = 0;
3184 	for (i = 0; i < conf->geo.raid_disks; i++)
3185 		if (conf->mirrors[i].replacement)
3186 			conf->have_replacement = 1;
3187 	ret = mempool_init(&conf->r10buf_pool, buffs,
3188 			   r10buf_pool_alloc, r10buf_pool_free, conf);
3189 	if (ret)
3190 		return ret;
3191 	conf->next_resync = 0;
3192 	return 0;
3193 }
3194 
raid10_alloc_init_r10buf(struct r10conf * conf)3195 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3196 {
3197 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3198 	struct rsync_pages *rp;
3199 	struct bio *bio;
3200 	int nalloc;
3201 	int i;
3202 
3203 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3204 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3205 		nalloc = conf->copies; /* resync */
3206 	else
3207 		nalloc = 2; /* recovery */
3208 
3209 	for (i = 0; i < nalloc; i++) {
3210 		bio = r10bio->devs[i].bio;
3211 		rp = bio->bi_private;
3212 		bio_reset(bio, NULL, 0);
3213 		bio->bi_private = rp;
3214 		bio = r10bio->devs[i].repl_bio;
3215 		if (bio) {
3216 			rp = bio->bi_private;
3217 			bio_reset(bio, NULL, 0);
3218 			bio->bi_private = rp;
3219 		}
3220 	}
3221 	return r10bio;
3222 }
3223 
3224 /*
3225  * Set cluster_sync_high since we need other nodes to add the
3226  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3227  */
raid10_set_cluster_sync_high(struct r10conf * conf)3228 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3229 {
3230 	sector_t window_size;
3231 	int extra_chunk, chunks;
3232 
3233 	/*
3234 	 * First, here we define "stripe" as a unit which across
3235 	 * all member devices one time, so we get chunks by use
3236 	 * raid_disks / near_copies. Otherwise, if near_copies is
3237 	 * close to raid_disks, then resync window could increases
3238 	 * linearly with the increase of raid_disks, which means
3239 	 * we will suspend a really large IO window while it is not
3240 	 * necessary. If raid_disks is not divisible by near_copies,
3241 	 * an extra chunk is needed to ensure the whole "stripe" is
3242 	 * covered.
3243 	 */
3244 
3245 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3246 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3247 		extra_chunk = 0;
3248 	else
3249 		extra_chunk = 1;
3250 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3251 
3252 	/*
3253 	 * At least use a 32M window to align with raid1's resync window
3254 	 */
3255 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3256 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3257 
3258 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3259 }
3260 
3261 /*
3262  * perform a "sync" on one "block"
3263  *
3264  * We need to make sure that no normal I/O request - particularly write
3265  * requests - conflict with active sync requests.
3266  *
3267  * This is achieved by tracking pending requests and a 'barrier' concept
3268  * that can be installed to exclude normal IO requests.
3269  *
3270  * Resync and recovery are handled very differently.
3271  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3272  *
3273  * For resync, we iterate over virtual addresses, read all copies,
3274  * and update if there are differences.  If only one copy is live,
3275  * skip it.
3276  * For recovery, we iterate over physical addresses, read a good
3277  * value for each non-in_sync drive, and over-write.
3278  *
3279  * So, for recovery we may have several outstanding complex requests for a
3280  * given address, one for each out-of-sync device.  We model this by allocating
3281  * a number of r10_bio structures, one for each out-of-sync device.
3282  * As we setup these structures, we collect all bio's together into a list
3283  * which we then process collectively to add pages, and then process again
3284  * to pass to submit_bio_noacct.
3285  *
3286  * The r10_bio structures are linked using a borrowed master_bio pointer.
3287  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3288  * has its remaining count decremented to 0, the whole complex operation
3289  * is complete.
3290  *
3291  */
3292 
raid10_sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)3293 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3294 			     int *skipped)
3295 {
3296 	struct r10conf *conf = mddev->private;
3297 	struct r10bio *r10_bio;
3298 	struct bio *biolist = NULL, *bio;
3299 	sector_t max_sector, nr_sectors;
3300 	int i;
3301 	int max_sync;
3302 	sector_t sync_blocks;
3303 	sector_t sectors_skipped = 0;
3304 	int chunks_skipped = 0;
3305 	sector_t chunk_mask = conf->geo.chunk_mask;
3306 	int page_idx = 0;
3307 	int error_disk = -1;
3308 
3309 	/*
3310 	 * Allow skipping a full rebuild for incremental assembly
3311 	 * of a clean array, like RAID1 does.
3312 	 */
3313 	if (mddev->bitmap == NULL &&
3314 	    mddev->recovery_cp == MaxSector &&
3315 	    mddev->reshape_position == MaxSector &&
3316 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3317 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3318 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3319 	    conf->fullsync == 0) {
3320 		*skipped = 1;
3321 		return mddev->dev_sectors - sector_nr;
3322 	}
3323 
3324 	if (!mempool_initialized(&conf->r10buf_pool))
3325 		if (init_resync(conf))
3326 			return 0;
3327 
3328  skipped:
3329 	max_sector = mddev->dev_sectors;
3330 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3331 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3332 		max_sector = mddev->resync_max_sectors;
3333 	if (sector_nr >= max_sector) {
3334 		conf->cluster_sync_low = 0;
3335 		conf->cluster_sync_high = 0;
3336 
3337 		/* If we aborted, we need to abort the
3338 		 * sync on the 'current' bitmap chucks (there can
3339 		 * be several when recovering multiple devices).
3340 		 * as we may have started syncing it but not finished.
3341 		 * We can find the current address in
3342 		 * mddev->curr_resync, but for recovery,
3343 		 * we need to convert that to several
3344 		 * virtual addresses.
3345 		 */
3346 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3347 			end_reshape(conf);
3348 			close_sync(conf);
3349 			return 0;
3350 		}
3351 
3352 		if (mddev->curr_resync < max_sector) { /* aborted */
3353 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3354 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3355 						   &sync_blocks, 1);
3356 			else for (i = 0; i < conf->geo.raid_disks; i++) {
3357 				sector_t sect =
3358 					raid10_find_virt(conf, mddev->curr_resync, i);
3359 				md_bitmap_end_sync(mddev->bitmap, sect,
3360 						   &sync_blocks, 1);
3361 			}
3362 		} else {
3363 			/* completed sync */
3364 			if ((!mddev->bitmap || conf->fullsync)
3365 			    && conf->have_replacement
3366 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3367 				/* Completed a full sync so the replacements
3368 				 * are now fully recovered.
3369 				 */
3370 				rcu_read_lock();
3371 				for (i = 0; i < conf->geo.raid_disks; i++) {
3372 					struct md_rdev *rdev =
3373 						rcu_dereference(conf->mirrors[i].replacement);
3374 					if (rdev)
3375 						rdev->recovery_offset = MaxSector;
3376 				}
3377 				rcu_read_unlock();
3378 			}
3379 			conf->fullsync = 0;
3380 		}
3381 		md_bitmap_close_sync(mddev->bitmap);
3382 		close_sync(conf);
3383 		*skipped = 1;
3384 		return sectors_skipped;
3385 	}
3386 
3387 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3388 		return reshape_request(mddev, sector_nr, skipped);
3389 
3390 	if (chunks_skipped >= conf->geo.raid_disks) {
3391 		pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3392 			test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?  "resync" : "recovery");
3393 		if (error_disk >= 0 &&
3394 		    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3395 			/*
3396 			 * recovery fails, set mirrors.recovery_disabled,
3397 			 * device shouldn't be added to there.
3398 			 */
3399 			conf->mirrors[error_disk].recovery_disabled =
3400 						mddev->recovery_disabled;
3401 			return 0;
3402 		}
3403 		/*
3404 		 * if there has been nothing to do on any drive,
3405 		 * then there is nothing to do at all.
3406 		 */
3407 		*skipped = 1;
3408 		return (max_sector - sector_nr) + sectors_skipped;
3409 	}
3410 
3411 	if (max_sector > mddev->resync_max)
3412 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3413 
3414 	/* make sure whole request will fit in a chunk - if chunks
3415 	 * are meaningful
3416 	 */
3417 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3418 	    max_sector > (sector_nr | chunk_mask))
3419 		max_sector = (sector_nr | chunk_mask) + 1;
3420 
3421 	/*
3422 	 * If there is non-resync activity waiting for a turn, then let it
3423 	 * though before starting on this new sync request.
3424 	 */
3425 	if (conf->nr_waiting)
3426 		schedule_timeout_uninterruptible(1);
3427 
3428 	/* Again, very different code for resync and recovery.
3429 	 * Both must result in an r10bio with a list of bios that
3430 	 * have bi_end_io, bi_sector, bi_bdev set,
3431 	 * and bi_private set to the r10bio.
3432 	 * For recovery, we may actually create several r10bios
3433 	 * with 2 bios in each, that correspond to the bios in the main one.
3434 	 * In this case, the subordinate r10bios link back through a
3435 	 * borrowed master_bio pointer, and the counter in the master
3436 	 * includes a ref from each subordinate.
3437 	 */
3438 	/* First, we decide what to do and set ->bi_end_io
3439 	 * To end_sync_read if we want to read, and
3440 	 * end_sync_write if we will want to write.
3441 	 */
3442 
3443 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3444 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3445 		/* recovery... the complicated one */
3446 		int j;
3447 		r10_bio = NULL;
3448 
3449 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3450 			int still_degraded;
3451 			struct r10bio *rb2;
3452 			sector_t sect;
3453 			int must_sync;
3454 			int any_working;
3455 			struct raid10_info *mirror = &conf->mirrors[i];
3456 			struct md_rdev *mrdev, *mreplace;
3457 
3458 			rcu_read_lock();
3459 			mrdev = rcu_dereference(mirror->rdev);
3460 			mreplace = rcu_dereference(mirror->replacement);
3461 
3462 			if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3463 			    test_bit(In_sync, &mrdev->flags)))
3464 				mrdev = NULL;
3465 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3466 				mreplace = NULL;
3467 
3468 			if (!mrdev && !mreplace) {
3469 				rcu_read_unlock();
3470 				continue;
3471 			}
3472 
3473 			still_degraded = 0;
3474 			/* want to reconstruct this device */
3475 			rb2 = r10_bio;
3476 			sect = raid10_find_virt(conf, sector_nr, i);
3477 			if (sect >= mddev->resync_max_sectors) {
3478 				/* last stripe is not complete - don't
3479 				 * try to recover this sector.
3480 				 */
3481 				rcu_read_unlock();
3482 				continue;
3483 			}
3484 			/* Unless we are doing a full sync, or a replacement
3485 			 * we only need to recover the block if it is set in
3486 			 * the bitmap
3487 			 */
3488 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3489 							 &sync_blocks, 1);
3490 			if (sync_blocks < max_sync)
3491 				max_sync = sync_blocks;
3492 			if (!must_sync &&
3493 			    mreplace == NULL &&
3494 			    !conf->fullsync) {
3495 				/* yep, skip the sync_blocks here, but don't assume
3496 				 * that there will never be anything to do here
3497 				 */
3498 				chunks_skipped = -1;
3499 				rcu_read_unlock();
3500 				continue;
3501 			}
3502 			if (mrdev)
3503 				atomic_inc(&mrdev->nr_pending);
3504 			if (mreplace)
3505 				atomic_inc(&mreplace->nr_pending);
3506 			rcu_read_unlock();
3507 
3508 			r10_bio = raid10_alloc_init_r10buf(conf);
3509 			r10_bio->state = 0;
3510 			raise_barrier(conf, rb2 != NULL);
3511 			atomic_set(&r10_bio->remaining, 0);
3512 
3513 			r10_bio->master_bio = (struct bio*)rb2;
3514 			if (rb2)
3515 				atomic_inc(&rb2->remaining);
3516 			r10_bio->mddev = mddev;
3517 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3518 			r10_bio->sector = sect;
3519 
3520 			raid10_find_phys(conf, r10_bio);
3521 
3522 			/* Need to check if the array will still be
3523 			 * degraded
3524 			 */
3525 			rcu_read_lock();
3526 			for (j = 0; j < conf->geo.raid_disks; j++) {
3527 				struct md_rdev *rdev = rcu_dereference(
3528 					conf->mirrors[j].rdev);
3529 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3530 					still_degraded = 1;
3531 					break;
3532 				}
3533 			}
3534 
3535 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3536 							 &sync_blocks, still_degraded);
3537 
3538 			any_working = 0;
3539 			for (j=0; j<conf->copies;j++) {
3540 				int k;
3541 				int d = r10_bio->devs[j].devnum;
3542 				sector_t from_addr, to_addr;
3543 				struct md_rdev *rdev =
3544 					rcu_dereference(conf->mirrors[d].rdev);
3545 				sector_t sector, first_bad;
3546 				int bad_sectors;
3547 				if (!rdev ||
3548 				    !test_bit(In_sync, &rdev->flags))
3549 					continue;
3550 				/* This is where we read from */
3551 				any_working = 1;
3552 				sector = r10_bio->devs[j].addr;
3553 
3554 				if (is_badblock(rdev, sector, max_sync,
3555 						&first_bad, &bad_sectors)) {
3556 					if (first_bad > sector)
3557 						max_sync = first_bad - sector;
3558 					else {
3559 						bad_sectors -= (sector
3560 								- first_bad);
3561 						if (max_sync > bad_sectors)
3562 							max_sync = bad_sectors;
3563 						continue;
3564 					}
3565 				}
3566 				bio = r10_bio->devs[0].bio;
3567 				bio->bi_next = biolist;
3568 				biolist = bio;
3569 				bio->bi_end_io = end_sync_read;
3570 				bio->bi_opf = REQ_OP_READ;
3571 				if (test_bit(FailFast, &rdev->flags))
3572 					bio->bi_opf |= MD_FAILFAST;
3573 				from_addr = r10_bio->devs[j].addr;
3574 				bio->bi_iter.bi_sector = from_addr +
3575 					rdev->data_offset;
3576 				bio_set_dev(bio, rdev->bdev);
3577 				atomic_inc(&rdev->nr_pending);
3578 				/* and we write to 'i' (if not in_sync) */
3579 
3580 				for (k=0; k<conf->copies; k++)
3581 					if (r10_bio->devs[k].devnum == i)
3582 						break;
3583 				BUG_ON(k == conf->copies);
3584 				to_addr = r10_bio->devs[k].addr;
3585 				r10_bio->devs[0].devnum = d;
3586 				r10_bio->devs[0].addr = from_addr;
3587 				r10_bio->devs[1].devnum = i;
3588 				r10_bio->devs[1].addr = to_addr;
3589 
3590 				if (mrdev) {
3591 					bio = r10_bio->devs[1].bio;
3592 					bio->bi_next = biolist;
3593 					biolist = bio;
3594 					bio->bi_end_io = end_sync_write;
3595 					bio->bi_opf = REQ_OP_WRITE;
3596 					bio->bi_iter.bi_sector = to_addr
3597 						+ mrdev->data_offset;
3598 					bio_set_dev(bio, mrdev->bdev);
3599 					atomic_inc(&r10_bio->remaining);
3600 				} else
3601 					r10_bio->devs[1].bio->bi_end_io = NULL;
3602 
3603 				/* and maybe write to replacement */
3604 				bio = r10_bio->devs[1].repl_bio;
3605 				if (bio)
3606 					bio->bi_end_io = NULL;
3607 				/* Note: if replace is not NULL, then bio
3608 				 * cannot be NULL as r10buf_pool_alloc will
3609 				 * have allocated it.
3610 				 */
3611 				if (!mreplace)
3612 					break;
3613 				bio->bi_next = biolist;
3614 				biolist = bio;
3615 				bio->bi_end_io = end_sync_write;
3616 				bio->bi_opf = REQ_OP_WRITE;
3617 				bio->bi_iter.bi_sector = to_addr +
3618 					mreplace->data_offset;
3619 				bio_set_dev(bio, mreplace->bdev);
3620 				atomic_inc(&r10_bio->remaining);
3621 				break;
3622 			}
3623 			rcu_read_unlock();
3624 			if (j == conf->copies) {
3625 				/* Cannot recover, so abort the recovery or
3626 				 * record a bad block */
3627 				if (any_working) {
3628 					/* problem is that there are bad blocks
3629 					 * on other device(s)
3630 					 */
3631 					int k;
3632 					for (k = 0; k < conf->copies; k++)
3633 						if (r10_bio->devs[k].devnum == i)
3634 							break;
3635 					if (mrdev && !test_bit(In_sync,
3636 						      &mrdev->flags)
3637 					    && !rdev_set_badblocks(
3638 						    mrdev,
3639 						    r10_bio->devs[k].addr,
3640 						    max_sync, 0))
3641 						any_working = 0;
3642 					if (mreplace &&
3643 					    !rdev_set_badblocks(
3644 						    mreplace,
3645 						    r10_bio->devs[k].addr,
3646 						    max_sync, 0))
3647 						any_working = 0;
3648 				}
3649 				if (!any_working)  {
3650 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3651 							      &mddev->recovery))
3652 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3653 						       mdname(mddev));
3654 					mirror->recovery_disabled
3655 						= mddev->recovery_disabled;
3656 				} else {
3657 					error_disk = i;
3658 				}
3659 				put_buf(r10_bio);
3660 				if (rb2)
3661 					atomic_dec(&rb2->remaining);
3662 				r10_bio = rb2;
3663 				if (mrdev)
3664 					rdev_dec_pending(mrdev, mddev);
3665 				if (mreplace)
3666 					rdev_dec_pending(mreplace, mddev);
3667 				break;
3668 			}
3669 			if (mrdev)
3670 				rdev_dec_pending(mrdev, mddev);
3671 			if (mreplace)
3672 				rdev_dec_pending(mreplace, mddev);
3673 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3674 				/* Only want this if there is elsewhere to
3675 				 * read from. 'j' is currently the first
3676 				 * readable copy.
3677 				 */
3678 				int targets = 1;
3679 				for (; j < conf->copies; j++) {
3680 					int d = r10_bio->devs[j].devnum;
3681 					if (conf->mirrors[d].rdev &&
3682 					    test_bit(In_sync,
3683 						      &conf->mirrors[d].rdev->flags))
3684 						targets++;
3685 				}
3686 				if (targets == 1)
3687 					r10_bio->devs[0].bio->bi_opf
3688 						&= ~MD_FAILFAST;
3689 			}
3690 		}
3691 		if (biolist == NULL) {
3692 			while (r10_bio) {
3693 				struct r10bio *rb2 = r10_bio;
3694 				r10_bio = (struct r10bio*) rb2->master_bio;
3695 				rb2->master_bio = NULL;
3696 				put_buf(rb2);
3697 			}
3698 			goto giveup;
3699 		}
3700 	} else {
3701 		/* resync. Schedule a read for every block at this virt offset */
3702 		int count = 0;
3703 
3704 		/*
3705 		 * Since curr_resync_completed could probably not update in
3706 		 * time, and we will set cluster_sync_low based on it.
3707 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3708 		 * safety reason, which ensures curr_resync_completed is
3709 		 * updated in bitmap_cond_end_sync.
3710 		 */
3711 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3712 					mddev_is_clustered(mddev) &&
3713 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3714 
3715 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3716 					  &sync_blocks, mddev->degraded) &&
3717 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3718 						 &mddev->recovery)) {
3719 			/* We can skip this block */
3720 			*skipped = 1;
3721 			return sync_blocks + sectors_skipped;
3722 		}
3723 		if (sync_blocks < max_sync)
3724 			max_sync = sync_blocks;
3725 		r10_bio = raid10_alloc_init_r10buf(conf);
3726 		r10_bio->state = 0;
3727 
3728 		r10_bio->mddev = mddev;
3729 		atomic_set(&r10_bio->remaining, 0);
3730 		raise_barrier(conf, 0);
3731 		conf->next_resync = sector_nr;
3732 
3733 		r10_bio->master_bio = NULL;
3734 		r10_bio->sector = sector_nr;
3735 		set_bit(R10BIO_IsSync, &r10_bio->state);
3736 		raid10_find_phys(conf, r10_bio);
3737 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3738 
3739 		for (i = 0; i < conf->copies; i++) {
3740 			int d = r10_bio->devs[i].devnum;
3741 			sector_t first_bad, sector;
3742 			int bad_sectors;
3743 			struct md_rdev *rdev;
3744 
3745 			if (r10_bio->devs[i].repl_bio)
3746 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3747 
3748 			bio = r10_bio->devs[i].bio;
3749 			bio->bi_status = BLK_STS_IOERR;
3750 			rcu_read_lock();
3751 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3752 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3753 				rcu_read_unlock();
3754 				continue;
3755 			}
3756 			sector = r10_bio->devs[i].addr;
3757 			if (is_badblock(rdev, sector, max_sync,
3758 					&first_bad, &bad_sectors)) {
3759 				if (first_bad > sector)
3760 					max_sync = first_bad - sector;
3761 				else {
3762 					bad_sectors -= (sector - first_bad);
3763 					if (max_sync > bad_sectors)
3764 						max_sync = bad_sectors;
3765 					rcu_read_unlock();
3766 					continue;
3767 				}
3768 			}
3769 			atomic_inc(&rdev->nr_pending);
3770 			atomic_inc(&r10_bio->remaining);
3771 			bio->bi_next = biolist;
3772 			biolist = bio;
3773 			bio->bi_end_io = end_sync_read;
3774 			bio->bi_opf = REQ_OP_READ;
3775 			if (test_bit(FailFast, &rdev->flags))
3776 				bio->bi_opf |= MD_FAILFAST;
3777 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3778 			bio_set_dev(bio, rdev->bdev);
3779 			count++;
3780 
3781 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3782 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3783 				rcu_read_unlock();
3784 				continue;
3785 			}
3786 			atomic_inc(&rdev->nr_pending);
3787 
3788 			/* Need to set up for writing to the replacement */
3789 			bio = r10_bio->devs[i].repl_bio;
3790 			bio->bi_status = BLK_STS_IOERR;
3791 
3792 			sector = r10_bio->devs[i].addr;
3793 			bio->bi_next = biolist;
3794 			biolist = bio;
3795 			bio->bi_end_io = end_sync_write;
3796 			bio->bi_opf = REQ_OP_WRITE;
3797 			if (test_bit(FailFast, &rdev->flags))
3798 				bio->bi_opf |= MD_FAILFAST;
3799 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3800 			bio_set_dev(bio, rdev->bdev);
3801 			count++;
3802 			rcu_read_unlock();
3803 		}
3804 
3805 		if (count < 2) {
3806 			for (i=0; i<conf->copies; i++) {
3807 				int d = r10_bio->devs[i].devnum;
3808 				if (r10_bio->devs[i].bio->bi_end_io)
3809 					rdev_dec_pending(conf->mirrors[d].rdev,
3810 							 mddev);
3811 				if (r10_bio->devs[i].repl_bio &&
3812 				    r10_bio->devs[i].repl_bio->bi_end_io)
3813 					rdev_dec_pending(
3814 						conf->mirrors[d].replacement,
3815 						mddev);
3816 			}
3817 			put_buf(r10_bio);
3818 			biolist = NULL;
3819 			goto giveup;
3820 		}
3821 	}
3822 
3823 	nr_sectors = 0;
3824 	if (sector_nr + max_sync < max_sector)
3825 		max_sector = sector_nr + max_sync;
3826 	do {
3827 		struct page *page;
3828 		int len = PAGE_SIZE;
3829 		if (sector_nr + (len>>9) > max_sector)
3830 			len = (max_sector - sector_nr) << 9;
3831 		if (len == 0)
3832 			break;
3833 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3834 			struct resync_pages *rp = get_resync_pages(bio);
3835 			page = resync_fetch_page(rp, page_idx);
3836 			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3837 				bio->bi_status = BLK_STS_RESOURCE;
3838 				bio_endio(bio);
3839 				goto giveup;
3840 			}
3841 		}
3842 		nr_sectors += len>>9;
3843 		sector_nr += len>>9;
3844 	} while (++page_idx < RESYNC_PAGES);
3845 	r10_bio->sectors = nr_sectors;
3846 
3847 	if (mddev_is_clustered(mddev) &&
3848 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3849 		/* It is resync not recovery */
3850 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3851 			conf->cluster_sync_low = mddev->curr_resync_completed;
3852 			raid10_set_cluster_sync_high(conf);
3853 			/* Send resync message */
3854 			md_cluster_ops->resync_info_update(mddev,
3855 						conf->cluster_sync_low,
3856 						conf->cluster_sync_high);
3857 		}
3858 	} else if (mddev_is_clustered(mddev)) {
3859 		/* This is recovery not resync */
3860 		sector_t sect_va1, sect_va2;
3861 		bool broadcast_msg = false;
3862 
3863 		for (i = 0; i < conf->geo.raid_disks; i++) {
3864 			/*
3865 			 * sector_nr is a device address for recovery, so we
3866 			 * need translate it to array address before compare
3867 			 * with cluster_sync_high.
3868 			 */
3869 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3870 
3871 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3872 				broadcast_msg = true;
3873 				/*
3874 				 * curr_resync_completed is similar as
3875 				 * sector_nr, so make the translation too.
3876 				 */
3877 				sect_va2 = raid10_find_virt(conf,
3878 					mddev->curr_resync_completed, i);
3879 
3880 				if (conf->cluster_sync_low == 0 ||
3881 				    conf->cluster_sync_low > sect_va2)
3882 					conf->cluster_sync_low = sect_va2;
3883 			}
3884 		}
3885 		if (broadcast_msg) {
3886 			raid10_set_cluster_sync_high(conf);
3887 			md_cluster_ops->resync_info_update(mddev,
3888 						conf->cluster_sync_low,
3889 						conf->cluster_sync_high);
3890 		}
3891 	}
3892 
3893 	while (biolist) {
3894 		bio = biolist;
3895 		biolist = biolist->bi_next;
3896 
3897 		bio->bi_next = NULL;
3898 		r10_bio = get_resync_r10bio(bio);
3899 		r10_bio->sectors = nr_sectors;
3900 
3901 		if (bio->bi_end_io == end_sync_read) {
3902 			md_sync_acct_bio(bio, nr_sectors);
3903 			bio->bi_status = 0;
3904 			submit_bio_noacct(bio);
3905 		}
3906 	}
3907 
3908 	if (sectors_skipped)
3909 		/* pretend they weren't skipped, it makes
3910 		 * no important difference in this case
3911 		 */
3912 		md_done_sync(mddev, sectors_skipped, 1);
3913 
3914 	return sectors_skipped + nr_sectors;
3915  giveup:
3916 	/* There is nowhere to write, so all non-sync
3917 	 * drives must be failed or in resync, all drives
3918 	 * have a bad block, so try the next chunk...
3919 	 */
3920 	if (sector_nr + max_sync < max_sector)
3921 		max_sector = sector_nr + max_sync;
3922 
3923 	sectors_skipped += (max_sector - sector_nr);
3924 	chunks_skipped ++;
3925 	sector_nr = max_sector;
3926 	goto skipped;
3927 }
3928 
3929 static sector_t
raid10_size(struct mddev * mddev,sector_t sectors,int raid_disks)3930 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3931 {
3932 	sector_t size;
3933 	struct r10conf *conf = mddev->private;
3934 
3935 	if (!raid_disks)
3936 		raid_disks = min(conf->geo.raid_disks,
3937 				 conf->prev.raid_disks);
3938 	if (!sectors)
3939 		sectors = conf->dev_sectors;
3940 
3941 	size = sectors >> conf->geo.chunk_shift;
3942 	sector_div(size, conf->geo.far_copies);
3943 	size = size * raid_disks;
3944 	sector_div(size, conf->geo.near_copies);
3945 
3946 	return size << conf->geo.chunk_shift;
3947 }
3948 
calc_sectors(struct r10conf * conf,sector_t size)3949 static void calc_sectors(struct r10conf *conf, sector_t size)
3950 {
3951 	/* Calculate the number of sectors-per-device that will
3952 	 * actually be used, and set conf->dev_sectors and
3953 	 * conf->stride
3954 	 */
3955 
3956 	size = size >> conf->geo.chunk_shift;
3957 	sector_div(size, conf->geo.far_copies);
3958 	size = size * conf->geo.raid_disks;
3959 	sector_div(size, conf->geo.near_copies);
3960 	/* 'size' is now the number of chunks in the array */
3961 	/* calculate "used chunks per device" */
3962 	size = size * conf->copies;
3963 
3964 	/* We need to round up when dividing by raid_disks to
3965 	 * get the stride size.
3966 	 */
3967 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3968 
3969 	conf->dev_sectors = size << conf->geo.chunk_shift;
3970 
3971 	if (conf->geo.far_offset)
3972 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3973 	else {
3974 		sector_div(size, conf->geo.far_copies);
3975 		conf->geo.stride = size << conf->geo.chunk_shift;
3976 	}
3977 }
3978 
3979 enum geo_type {geo_new, geo_old, geo_start};
setup_geo(struct geom * geo,struct mddev * mddev,enum geo_type new)3980 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3981 {
3982 	int nc, fc, fo;
3983 	int layout, chunk, disks;
3984 	switch (new) {
3985 	case geo_old:
3986 		layout = mddev->layout;
3987 		chunk = mddev->chunk_sectors;
3988 		disks = mddev->raid_disks - mddev->delta_disks;
3989 		break;
3990 	case geo_new:
3991 		layout = mddev->new_layout;
3992 		chunk = mddev->new_chunk_sectors;
3993 		disks = mddev->raid_disks;
3994 		break;
3995 	default: /* avoid 'may be unused' warnings */
3996 	case geo_start: /* new when starting reshape - raid_disks not
3997 			 * updated yet. */
3998 		layout = mddev->new_layout;
3999 		chunk = mddev->new_chunk_sectors;
4000 		disks = mddev->raid_disks + mddev->delta_disks;
4001 		break;
4002 	}
4003 	if (layout >> 19)
4004 		return -1;
4005 	if (chunk < (PAGE_SIZE >> 9) ||
4006 	    !is_power_of_2(chunk))
4007 		return -2;
4008 	nc = layout & 255;
4009 	fc = (layout >> 8) & 255;
4010 	fo = layout & (1<<16);
4011 	geo->raid_disks = disks;
4012 	geo->near_copies = nc;
4013 	geo->far_copies = fc;
4014 	geo->far_offset = fo;
4015 	switch (layout >> 17) {
4016 	case 0:	/* original layout.  simple but not always optimal */
4017 		geo->far_set_size = disks;
4018 		break;
4019 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
4020 		 * actually using this, but leave code here just in case.*/
4021 		geo->far_set_size = disks/fc;
4022 		WARN(geo->far_set_size < fc,
4023 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
4024 		break;
4025 	case 2: /* "improved" layout fixed to match documentation */
4026 		geo->far_set_size = fc * nc;
4027 		break;
4028 	default: /* Not a valid layout */
4029 		return -1;
4030 	}
4031 	geo->chunk_mask = chunk - 1;
4032 	geo->chunk_shift = ffz(~chunk);
4033 	return nc*fc;
4034 }
4035 
raid10_free_conf(struct r10conf * conf)4036 static void raid10_free_conf(struct r10conf *conf)
4037 {
4038 	if (!conf)
4039 		return;
4040 
4041 	mempool_exit(&conf->r10bio_pool);
4042 	kfree(conf->mirrors);
4043 	kfree(conf->mirrors_old);
4044 	kfree(conf->mirrors_new);
4045 	safe_put_page(conf->tmppage);
4046 	bioset_exit(&conf->bio_split);
4047 	kfree(conf);
4048 }
4049 
setup_conf(struct mddev * mddev)4050 static struct r10conf *setup_conf(struct mddev *mddev)
4051 {
4052 	struct r10conf *conf = NULL;
4053 	int err = -EINVAL;
4054 	struct geom geo;
4055 	int copies;
4056 
4057 	copies = setup_geo(&geo, mddev, geo_new);
4058 
4059 	if (copies == -2) {
4060 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
4061 			mdname(mddev), PAGE_SIZE);
4062 		goto out;
4063 	}
4064 
4065 	if (copies < 2 || copies > mddev->raid_disks) {
4066 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
4067 			mdname(mddev), mddev->new_layout);
4068 		goto out;
4069 	}
4070 
4071 	err = -ENOMEM;
4072 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
4073 	if (!conf)
4074 		goto out;
4075 
4076 	/* FIXME calc properly */
4077 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
4078 				sizeof(struct raid10_info),
4079 				GFP_KERNEL);
4080 	if (!conf->mirrors)
4081 		goto out;
4082 
4083 	conf->tmppage = alloc_page(GFP_KERNEL);
4084 	if (!conf->tmppage)
4085 		goto out;
4086 
4087 	conf->geo = geo;
4088 	conf->copies = copies;
4089 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4090 			   rbio_pool_free, conf);
4091 	if (err)
4092 		goto out;
4093 
4094 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4095 	if (err)
4096 		goto out;
4097 
4098 	calc_sectors(conf, mddev->dev_sectors);
4099 	if (mddev->reshape_position == MaxSector) {
4100 		conf->prev = conf->geo;
4101 		conf->reshape_progress = MaxSector;
4102 	} else {
4103 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4104 			err = -EINVAL;
4105 			goto out;
4106 		}
4107 		conf->reshape_progress = mddev->reshape_position;
4108 		if (conf->prev.far_offset)
4109 			conf->prev.stride = 1 << conf->prev.chunk_shift;
4110 		else
4111 			/* far_copies must be 1 */
4112 			conf->prev.stride = conf->dev_sectors;
4113 	}
4114 	conf->reshape_safe = conf->reshape_progress;
4115 	spin_lock_init(&conf->device_lock);
4116 	INIT_LIST_HEAD(&conf->retry_list);
4117 	INIT_LIST_HEAD(&conf->bio_end_io_list);
4118 
4119 	seqlock_init(&conf->resync_lock);
4120 	init_waitqueue_head(&conf->wait_barrier);
4121 	atomic_set(&conf->nr_pending, 0);
4122 
4123 	err = -ENOMEM;
4124 	rcu_assign_pointer(conf->thread,
4125 			   md_register_thread(raid10d, mddev, "raid10"));
4126 	if (!conf->thread)
4127 		goto out;
4128 
4129 	conf->mddev = mddev;
4130 	return conf;
4131 
4132  out:
4133 	raid10_free_conf(conf);
4134 	return ERR_PTR(err);
4135 }
4136 
raid10_set_io_opt(struct r10conf * conf)4137 static void raid10_set_io_opt(struct r10conf *conf)
4138 {
4139 	int raid_disks = conf->geo.raid_disks;
4140 
4141 	if (!(conf->geo.raid_disks % conf->geo.near_copies))
4142 		raid_disks /= conf->geo.near_copies;
4143 	blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4144 			 raid_disks);
4145 }
4146 
raid10_run(struct mddev * mddev)4147 static int raid10_run(struct mddev *mddev)
4148 {
4149 	struct r10conf *conf;
4150 	int i, disk_idx;
4151 	struct raid10_info *disk;
4152 	struct md_rdev *rdev;
4153 	sector_t size;
4154 	sector_t min_offset_diff = 0;
4155 	int first = 1;
4156 
4157 	if (mddev_init_writes_pending(mddev) < 0)
4158 		return -ENOMEM;
4159 
4160 	if (mddev->private == NULL) {
4161 		conf = setup_conf(mddev);
4162 		if (IS_ERR(conf))
4163 			return PTR_ERR(conf);
4164 		mddev->private = conf;
4165 	}
4166 	conf = mddev->private;
4167 	if (!conf)
4168 		goto out;
4169 
4170 	rcu_assign_pointer(mddev->thread, conf->thread);
4171 	rcu_assign_pointer(conf->thread, NULL);
4172 
4173 	if (mddev_is_clustered(conf->mddev)) {
4174 		int fc, fo;
4175 
4176 		fc = (mddev->layout >> 8) & 255;
4177 		fo = mddev->layout & (1<<16);
4178 		if (fc > 1 || fo > 0) {
4179 			pr_err("only near layout is supported by clustered"
4180 				" raid10\n");
4181 			goto out_free_conf;
4182 		}
4183 	}
4184 
4185 	if (mddev->queue) {
4186 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4187 		blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4188 		raid10_set_io_opt(conf);
4189 	}
4190 
4191 	rdev_for_each(rdev, mddev) {
4192 		long long diff;
4193 
4194 		disk_idx = rdev->raid_disk;
4195 		if (disk_idx < 0)
4196 			continue;
4197 		if (disk_idx >= conf->geo.raid_disks &&
4198 		    disk_idx >= conf->prev.raid_disks)
4199 			continue;
4200 		disk = conf->mirrors + disk_idx;
4201 
4202 		if (test_bit(Replacement, &rdev->flags)) {
4203 			if (disk->replacement)
4204 				goto out_free_conf;
4205 			disk->replacement = rdev;
4206 		} else {
4207 			if (disk->rdev)
4208 				goto out_free_conf;
4209 			disk->rdev = rdev;
4210 		}
4211 		diff = (rdev->new_data_offset - rdev->data_offset);
4212 		if (!mddev->reshape_backwards)
4213 			diff = -diff;
4214 		if (diff < 0)
4215 			diff = 0;
4216 		if (first || diff < min_offset_diff)
4217 			min_offset_diff = diff;
4218 
4219 		if (mddev->gendisk)
4220 			disk_stack_limits(mddev->gendisk, rdev->bdev,
4221 					  rdev->data_offset << 9);
4222 
4223 		disk->head_position = 0;
4224 		first = 0;
4225 	}
4226 
4227 	/* need to check that every block has at least one working mirror */
4228 	if (!enough(conf, -1)) {
4229 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4230 		       mdname(mddev));
4231 		goto out_free_conf;
4232 	}
4233 
4234 	if (conf->reshape_progress != MaxSector) {
4235 		/* must ensure that shape change is supported */
4236 		if (conf->geo.far_copies != 1 &&
4237 		    conf->geo.far_offset == 0)
4238 			goto out_free_conf;
4239 		if (conf->prev.far_copies != 1 &&
4240 		    conf->prev.far_offset == 0)
4241 			goto out_free_conf;
4242 	}
4243 
4244 	mddev->degraded = 0;
4245 	for (i = 0;
4246 	     i < conf->geo.raid_disks
4247 		     || i < conf->prev.raid_disks;
4248 	     i++) {
4249 
4250 		disk = conf->mirrors + i;
4251 
4252 		if (!disk->rdev && disk->replacement) {
4253 			/* The replacement is all we have - use it */
4254 			disk->rdev = disk->replacement;
4255 			disk->replacement = NULL;
4256 			clear_bit(Replacement, &disk->rdev->flags);
4257 		}
4258 
4259 		if (!disk->rdev ||
4260 		    !test_bit(In_sync, &disk->rdev->flags)) {
4261 			disk->head_position = 0;
4262 			mddev->degraded++;
4263 			if (disk->rdev &&
4264 			    disk->rdev->saved_raid_disk < 0)
4265 				conf->fullsync = 1;
4266 		}
4267 
4268 		if (disk->replacement &&
4269 		    !test_bit(In_sync, &disk->replacement->flags) &&
4270 		    disk->replacement->saved_raid_disk < 0) {
4271 			conf->fullsync = 1;
4272 		}
4273 
4274 		disk->recovery_disabled = mddev->recovery_disabled - 1;
4275 	}
4276 
4277 	if (mddev->recovery_cp != MaxSector)
4278 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4279 			  mdname(mddev));
4280 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4281 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4282 		conf->geo.raid_disks);
4283 	/*
4284 	 * Ok, everything is just fine now
4285 	 */
4286 	mddev->dev_sectors = conf->dev_sectors;
4287 	size = raid10_size(mddev, 0, 0);
4288 	md_set_array_sectors(mddev, size);
4289 	mddev->resync_max_sectors = size;
4290 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4291 
4292 	if (md_integrity_register(mddev))
4293 		goto out_free_conf;
4294 
4295 	if (conf->reshape_progress != MaxSector) {
4296 		unsigned long before_length, after_length;
4297 
4298 		before_length = ((1 << conf->prev.chunk_shift) *
4299 				 conf->prev.far_copies);
4300 		after_length = ((1 << conf->geo.chunk_shift) *
4301 				conf->geo.far_copies);
4302 
4303 		if (max(before_length, after_length) > min_offset_diff) {
4304 			/* This cannot work */
4305 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4306 			goto out_free_conf;
4307 		}
4308 		conf->offset_diff = min_offset_diff;
4309 
4310 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4311 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4312 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4313 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4314 		rcu_assign_pointer(mddev->sync_thread,
4315 			md_register_thread(md_do_sync, mddev, "reshape"));
4316 		if (!mddev->sync_thread)
4317 			goto out_free_conf;
4318 	}
4319 
4320 	return 0;
4321 
4322 out_free_conf:
4323 	md_unregister_thread(mddev, &mddev->thread);
4324 	raid10_free_conf(conf);
4325 	mddev->private = NULL;
4326 out:
4327 	return -EIO;
4328 }
4329 
raid10_free(struct mddev * mddev,void * priv)4330 static void raid10_free(struct mddev *mddev, void *priv)
4331 {
4332 	raid10_free_conf(priv);
4333 }
4334 
raid10_quiesce(struct mddev * mddev,int quiesce)4335 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4336 {
4337 	struct r10conf *conf = mddev->private;
4338 
4339 	if (quiesce)
4340 		raise_barrier(conf, 0);
4341 	else
4342 		lower_barrier(conf);
4343 }
4344 
raid10_resize(struct mddev * mddev,sector_t sectors)4345 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4346 {
4347 	/* Resize of 'far' arrays is not supported.
4348 	 * For 'near' and 'offset' arrays we can set the
4349 	 * number of sectors used to be an appropriate multiple
4350 	 * of the chunk size.
4351 	 * For 'offset', this is far_copies*chunksize.
4352 	 * For 'near' the multiplier is the LCM of
4353 	 * near_copies and raid_disks.
4354 	 * So if far_copies > 1 && !far_offset, fail.
4355 	 * Else find LCM(raid_disks, near_copy)*far_copies and
4356 	 * multiply by chunk_size.  Then round to this number.
4357 	 * This is mostly done by raid10_size()
4358 	 */
4359 	struct r10conf *conf = mddev->private;
4360 	sector_t oldsize, size;
4361 
4362 	if (mddev->reshape_position != MaxSector)
4363 		return -EBUSY;
4364 
4365 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4366 		return -EINVAL;
4367 
4368 	oldsize = raid10_size(mddev, 0, 0);
4369 	size = raid10_size(mddev, sectors, 0);
4370 	if (mddev->external_size &&
4371 	    mddev->array_sectors > size)
4372 		return -EINVAL;
4373 	if (mddev->bitmap) {
4374 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4375 		if (ret)
4376 			return ret;
4377 	}
4378 	md_set_array_sectors(mddev, size);
4379 	if (sectors > mddev->dev_sectors &&
4380 	    mddev->recovery_cp > oldsize) {
4381 		mddev->recovery_cp = oldsize;
4382 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4383 	}
4384 	calc_sectors(conf, sectors);
4385 	mddev->dev_sectors = conf->dev_sectors;
4386 	mddev->resync_max_sectors = size;
4387 	return 0;
4388 }
4389 
raid10_takeover_raid0(struct mddev * mddev,sector_t size,int devs)4390 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4391 {
4392 	struct md_rdev *rdev;
4393 	struct r10conf *conf;
4394 
4395 	if (mddev->degraded > 0) {
4396 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4397 			mdname(mddev));
4398 		return ERR_PTR(-EINVAL);
4399 	}
4400 	sector_div(size, devs);
4401 
4402 	/* Set new parameters */
4403 	mddev->new_level = 10;
4404 	/* new layout: far_copies = 1, near_copies = 2 */
4405 	mddev->new_layout = (1<<8) + 2;
4406 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4407 	mddev->delta_disks = mddev->raid_disks;
4408 	mddev->raid_disks *= 2;
4409 	/* make sure it will be not marked as dirty */
4410 	mddev->recovery_cp = MaxSector;
4411 	mddev->dev_sectors = size;
4412 
4413 	conf = setup_conf(mddev);
4414 	if (!IS_ERR(conf)) {
4415 		rdev_for_each(rdev, mddev)
4416 			if (rdev->raid_disk >= 0) {
4417 				rdev->new_raid_disk = rdev->raid_disk * 2;
4418 				rdev->sectors = size;
4419 			}
4420 	}
4421 
4422 	return conf;
4423 }
4424 
raid10_takeover(struct mddev * mddev)4425 static void *raid10_takeover(struct mddev *mddev)
4426 {
4427 	struct r0conf *raid0_conf;
4428 
4429 	/* raid10 can take over:
4430 	 *  raid0 - providing it has only two drives
4431 	 */
4432 	if (mddev->level == 0) {
4433 		/* for raid0 takeover only one zone is supported */
4434 		raid0_conf = mddev->private;
4435 		if (raid0_conf->nr_strip_zones > 1) {
4436 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4437 				mdname(mddev));
4438 			return ERR_PTR(-EINVAL);
4439 		}
4440 		return raid10_takeover_raid0(mddev,
4441 			raid0_conf->strip_zone->zone_end,
4442 			raid0_conf->strip_zone->nb_dev);
4443 	}
4444 	return ERR_PTR(-EINVAL);
4445 }
4446 
raid10_check_reshape(struct mddev * mddev)4447 static int raid10_check_reshape(struct mddev *mddev)
4448 {
4449 	/* Called when there is a request to change
4450 	 * - layout (to ->new_layout)
4451 	 * - chunk size (to ->new_chunk_sectors)
4452 	 * - raid_disks (by delta_disks)
4453 	 * or when trying to restart a reshape that was ongoing.
4454 	 *
4455 	 * We need to validate the request and possibly allocate
4456 	 * space if that might be an issue later.
4457 	 *
4458 	 * Currently we reject any reshape of a 'far' mode array,
4459 	 * allow chunk size to change if new is generally acceptable,
4460 	 * allow raid_disks to increase, and allow
4461 	 * a switch between 'near' mode and 'offset' mode.
4462 	 */
4463 	struct r10conf *conf = mddev->private;
4464 	struct geom geo;
4465 
4466 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4467 		return -EINVAL;
4468 
4469 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4470 		/* mustn't change number of copies */
4471 		return -EINVAL;
4472 	if (geo.far_copies > 1 && !geo.far_offset)
4473 		/* Cannot switch to 'far' mode */
4474 		return -EINVAL;
4475 
4476 	if (mddev->array_sectors & geo.chunk_mask)
4477 			/* not factor of array size */
4478 			return -EINVAL;
4479 
4480 	if (!enough(conf, -1))
4481 		return -EINVAL;
4482 
4483 	kfree(conf->mirrors_new);
4484 	conf->mirrors_new = NULL;
4485 	if (mddev->delta_disks > 0) {
4486 		/* allocate new 'mirrors' list */
4487 		conf->mirrors_new =
4488 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4489 				sizeof(struct raid10_info),
4490 				GFP_KERNEL);
4491 		if (!conf->mirrors_new)
4492 			return -ENOMEM;
4493 	}
4494 	return 0;
4495 }
4496 
4497 /*
4498  * Need to check if array has failed when deciding whether to:
4499  *  - start an array
4500  *  - remove non-faulty devices
4501  *  - add a spare
4502  *  - allow a reshape
4503  * This determination is simple when no reshape is happening.
4504  * However if there is a reshape, we need to carefully check
4505  * both the before and after sections.
4506  * This is because some failed devices may only affect one
4507  * of the two sections, and some non-in_sync devices may
4508  * be insync in the section most affected by failed devices.
4509  */
calc_degraded(struct r10conf * conf)4510 static int calc_degraded(struct r10conf *conf)
4511 {
4512 	int degraded, degraded2;
4513 	int i;
4514 
4515 	rcu_read_lock();
4516 	degraded = 0;
4517 	/* 'prev' section first */
4518 	for (i = 0; i < conf->prev.raid_disks; i++) {
4519 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4520 		if (!rdev || test_bit(Faulty, &rdev->flags))
4521 			degraded++;
4522 		else if (!test_bit(In_sync, &rdev->flags))
4523 			/* When we can reduce the number of devices in
4524 			 * an array, this might not contribute to
4525 			 * 'degraded'.  It does now.
4526 			 */
4527 			degraded++;
4528 	}
4529 	rcu_read_unlock();
4530 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4531 		return degraded;
4532 	rcu_read_lock();
4533 	degraded2 = 0;
4534 	for (i = 0; i < conf->geo.raid_disks; i++) {
4535 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4536 		if (!rdev || test_bit(Faulty, &rdev->flags))
4537 			degraded2++;
4538 		else if (!test_bit(In_sync, &rdev->flags)) {
4539 			/* If reshape is increasing the number of devices,
4540 			 * this section has already been recovered, so
4541 			 * it doesn't contribute to degraded.
4542 			 * else it does.
4543 			 */
4544 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4545 				degraded2++;
4546 		}
4547 	}
4548 	rcu_read_unlock();
4549 	if (degraded2 > degraded)
4550 		return degraded2;
4551 	return degraded;
4552 }
4553 
raid10_start_reshape(struct mddev * mddev)4554 static int raid10_start_reshape(struct mddev *mddev)
4555 {
4556 	/* A 'reshape' has been requested. This commits
4557 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4558 	 * This also checks if there are enough spares and adds them
4559 	 * to the array.
4560 	 * We currently require enough spares to make the final
4561 	 * array non-degraded.  We also require that the difference
4562 	 * between old and new data_offset - on each device - is
4563 	 * enough that we never risk over-writing.
4564 	 */
4565 
4566 	unsigned long before_length, after_length;
4567 	sector_t min_offset_diff = 0;
4568 	int first = 1;
4569 	struct geom new;
4570 	struct r10conf *conf = mddev->private;
4571 	struct md_rdev *rdev;
4572 	int spares = 0;
4573 	int ret;
4574 
4575 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4576 		return -EBUSY;
4577 
4578 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4579 		return -EINVAL;
4580 
4581 	before_length = ((1 << conf->prev.chunk_shift) *
4582 			 conf->prev.far_copies);
4583 	after_length = ((1 << conf->geo.chunk_shift) *
4584 			conf->geo.far_copies);
4585 
4586 	rdev_for_each(rdev, mddev) {
4587 		if (!test_bit(In_sync, &rdev->flags)
4588 		    && !test_bit(Faulty, &rdev->flags))
4589 			spares++;
4590 		if (rdev->raid_disk >= 0) {
4591 			long long diff = (rdev->new_data_offset
4592 					  - rdev->data_offset);
4593 			if (!mddev->reshape_backwards)
4594 				diff = -diff;
4595 			if (diff < 0)
4596 				diff = 0;
4597 			if (first || diff < min_offset_diff)
4598 				min_offset_diff = diff;
4599 			first = 0;
4600 		}
4601 	}
4602 
4603 	if (max(before_length, after_length) > min_offset_diff)
4604 		return -EINVAL;
4605 
4606 	if (spares < mddev->delta_disks)
4607 		return -EINVAL;
4608 
4609 	conf->offset_diff = min_offset_diff;
4610 	spin_lock_irq(&conf->device_lock);
4611 	if (conf->mirrors_new) {
4612 		memcpy(conf->mirrors_new, conf->mirrors,
4613 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4614 		smp_mb();
4615 		kfree(conf->mirrors_old);
4616 		conf->mirrors_old = conf->mirrors;
4617 		conf->mirrors = conf->mirrors_new;
4618 		conf->mirrors_new = NULL;
4619 	}
4620 	setup_geo(&conf->geo, mddev, geo_start);
4621 	smp_mb();
4622 	if (mddev->reshape_backwards) {
4623 		sector_t size = raid10_size(mddev, 0, 0);
4624 		if (size < mddev->array_sectors) {
4625 			spin_unlock_irq(&conf->device_lock);
4626 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4627 				mdname(mddev));
4628 			return -EINVAL;
4629 		}
4630 		mddev->resync_max_sectors = size;
4631 		conf->reshape_progress = size;
4632 	} else
4633 		conf->reshape_progress = 0;
4634 	conf->reshape_safe = conf->reshape_progress;
4635 	spin_unlock_irq(&conf->device_lock);
4636 
4637 	if (mddev->delta_disks && mddev->bitmap) {
4638 		struct mdp_superblock_1 *sb = NULL;
4639 		sector_t oldsize, newsize;
4640 
4641 		oldsize = raid10_size(mddev, 0, 0);
4642 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4643 
4644 		if (!mddev_is_clustered(mddev)) {
4645 			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4646 			if (ret)
4647 				goto abort;
4648 			else
4649 				goto out;
4650 		}
4651 
4652 		rdev_for_each(rdev, mddev) {
4653 			if (rdev->raid_disk > -1 &&
4654 			    !test_bit(Faulty, &rdev->flags))
4655 				sb = page_address(rdev->sb_page);
4656 		}
4657 
4658 		/*
4659 		 * some node is already performing reshape, and no need to
4660 		 * call md_bitmap_resize again since it should be called when
4661 		 * receiving BITMAP_RESIZE msg
4662 		 */
4663 		if ((sb && (le32_to_cpu(sb->feature_map) &
4664 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4665 			goto out;
4666 
4667 		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4668 		if (ret)
4669 			goto abort;
4670 
4671 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4672 		if (ret) {
4673 			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4674 			goto abort;
4675 		}
4676 	}
4677 out:
4678 	if (mddev->delta_disks > 0) {
4679 		rdev_for_each(rdev, mddev)
4680 			if (rdev->raid_disk < 0 &&
4681 			    !test_bit(Faulty, &rdev->flags)) {
4682 				if (raid10_add_disk(mddev, rdev) == 0) {
4683 					if (rdev->raid_disk >=
4684 					    conf->prev.raid_disks)
4685 						set_bit(In_sync, &rdev->flags);
4686 					else
4687 						rdev->recovery_offset = 0;
4688 
4689 					/* Failure here is OK */
4690 					sysfs_link_rdev(mddev, rdev);
4691 				}
4692 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4693 				   && !test_bit(Faulty, &rdev->flags)) {
4694 				/* This is a spare that was manually added */
4695 				set_bit(In_sync, &rdev->flags);
4696 			}
4697 	}
4698 	/* When a reshape changes the number of devices,
4699 	 * ->degraded is measured against the larger of the
4700 	 * pre and  post numbers.
4701 	 */
4702 	spin_lock_irq(&conf->device_lock);
4703 	mddev->degraded = calc_degraded(conf);
4704 	spin_unlock_irq(&conf->device_lock);
4705 	mddev->raid_disks = conf->geo.raid_disks;
4706 	mddev->reshape_position = conf->reshape_progress;
4707 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4708 
4709 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4710 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4711 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4712 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4713 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4714 
4715 	rcu_assign_pointer(mddev->sync_thread,
4716 			   md_register_thread(md_do_sync, mddev, "reshape"));
4717 	if (!mddev->sync_thread) {
4718 		ret = -EAGAIN;
4719 		goto abort;
4720 	}
4721 	conf->reshape_checkpoint = jiffies;
4722 	md_wakeup_thread(mddev->sync_thread);
4723 	md_new_event();
4724 	return 0;
4725 
4726 abort:
4727 	mddev->recovery = 0;
4728 	spin_lock_irq(&conf->device_lock);
4729 	conf->geo = conf->prev;
4730 	mddev->raid_disks = conf->geo.raid_disks;
4731 	rdev_for_each(rdev, mddev)
4732 		rdev->new_data_offset = rdev->data_offset;
4733 	smp_wmb();
4734 	conf->reshape_progress = MaxSector;
4735 	conf->reshape_safe = MaxSector;
4736 	mddev->reshape_position = MaxSector;
4737 	spin_unlock_irq(&conf->device_lock);
4738 	return ret;
4739 }
4740 
4741 /* Calculate the last device-address that could contain
4742  * any block from the chunk that includes the array-address 's'
4743  * and report the next address.
4744  * i.e. the address returned will be chunk-aligned and after
4745  * any data that is in the chunk containing 's'.
4746  */
last_dev_address(sector_t s,struct geom * geo)4747 static sector_t last_dev_address(sector_t s, struct geom *geo)
4748 {
4749 	s = (s | geo->chunk_mask) + 1;
4750 	s >>= geo->chunk_shift;
4751 	s *= geo->near_copies;
4752 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4753 	s *= geo->far_copies;
4754 	s <<= geo->chunk_shift;
4755 	return s;
4756 }
4757 
4758 /* Calculate the first device-address that could contain
4759  * any block from the chunk that includes the array-address 's'.
4760  * This too will be the start of a chunk
4761  */
first_dev_address(sector_t s,struct geom * geo)4762 static sector_t first_dev_address(sector_t s, struct geom *geo)
4763 {
4764 	s >>= geo->chunk_shift;
4765 	s *= geo->near_copies;
4766 	sector_div(s, geo->raid_disks);
4767 	s *= geo->far_copies;
4768 	s <<= geo->chunk_shift;
4769 	return s;
4770 }
4771 
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)4772 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4773 				int *skipped)
4774 {
4775 	/* We simply copy at most one chunk (smallest of old and new)
4776 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4777 	 * or we hit a bad block or something.
4778 	 * This might mean we pause for normal IO in the middle of
4779 	 * a chunk, but that is not a problem as mddev->reshape_position
4780 	 * can record any location.
4781 	 *
4782 	 * If we will want to write to a location that isn't
4783 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4784 	 * we need to flush all reshape requests and update the metadata.
4785 	 *
4786 	 * When reshaping forwards (e.g. to more devices), we interpret
4787 	 * 'safe' as the earliest block which might not have been copied
4788 	 * down yet.  We divide this by previous stripe size and multiply
4789 	 * by previous stripe length to get lowest device offset that we
4790 	 * cannot write to yet.
4791 	 * We interpret 'sector_nr' as an address that we want to write to.
4792 	 * From this we use last_device_address() to find where we might
4793 	 * write to, and first_device_address on the  'safe' position.
4794 	 * If this 'next' write position is after the 'safe' position,
4795 	 * we must update the metadata to increase the 'safe' position.
4796 	 *
4797 	 * When reshaping backwards, we round in the opposite direction
4798 	 * and perform the reverse test:  next write position must not be
4799 	 * less than current safe position.
4800 	 *
4801 	 * In all this the minimum difference in data offsets
4802 	 * (conf->offset_diff - always positive) allows a bit of slack,
4803 	 * so next can be after 'safe', but not by more than offset_diff
4804 	 *
4805 	 * We need to prepare all the bios here before we start any IO
4806 	 * to ensure the size we choose is acceptable to all devices.
4807 	 * The means one for each copy for write-out and an extra one for
4808 	 * read-in.
4809 	 * We store the read-in bio in ->master_bio and the others in
4810 	 * ->devs[x].bio and ->devs[x].repl_bio.
4811 	 */
4812 	struct r10conf *conf = mddev->private;
4813 	struct r10bio *r10_bio;
4814 	sector_t next, safe, last;
4815 	int max_sectors;
4816 	int nr_sectors;
4817 	int s;
4818 	struct md_rdev *rdev;
4819 	int need_flush = 0;
4820 	struct bio *blist;
4821 	struct bio *bio, *read_bio;
4822 	int sectors_done = 0;
4823 	struct page **pages;
4824 
4825 	if (sector_nr == 0) {
4826 		/* If restarting in the middle, skip the initial sectors */
4827 		if (mddev->reshape_backwards &&
4828 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4829 			sector_nr = (raid10_size(mddev, 0, 0)
4830 				     - conf->reshape_progress);
4831 		} else if (!mddev->reshape_backwards &&
4832 			   conf->reshape_progress > 0)
4833 			sector_nr = conf->reshape_progress;
4834 		if (sector_nr) {
4835 			mddev->curr_resync_completed = sector_nr;
4836 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4837 			*skipped = 1;
4838 			return sector_nr;
4839 		}
4840 	}
4841 
4842 	/* We don't use sector_nr to track where we are up to
4843 	 * as that doesn't work well for ->reshape_backwards.
4844 	 * So just use ->reshape_progress.
4845 	 */
4846 	if (mddev->reshape_backwards) {
4847 		/* 'next' is the earliest device address that we might
4848 		 * write to for this chunk in the new layout
4849 		 */
4850 		next = first_dev_address(conf->reshape_progress - 1,
4851 					 &conf->geo);
4852 
4853 		/* 'safe' is the last device address that we might read from
4854 		 * in the old layout after a restart
4855 		 */
4856 		safe = last_dev_address(conf->reshape_safe - 1,
4857 					&conf->prev);
4858 
4859 		if (next + conf->offset_diff < safe)
4860 			need_flush = 1;
4861 
4862 		last = conf->reshape_progress - 1;
4863 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4864 					       & conf->prev.chunk_mask);
4865 		if (sector_nr + RESYNC_SECTORS < last)
4866 			sector_nr = last + 1 - RESYNC_SECTORS;
4867 	} else {
4868 		/* 'next' is after the last device address that we
4869 		 * might write to for this chunk in the new layout
4870 		 */
4871 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4872 
4873 		/* 'safe' is the earliest device address that we might
4874 		 * read from in the old layout after a restart
4875 		 */
4876 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4877 
4878 		/* Need to update metadata if 'next' might be beyond 'safe'
4879 		 * as that would possibly corrupt data
4880 		 */
4881 		if (next > safe + conf->offset_diff)
4882 			need_flush = 1;
4883 
4884 		sector_nr = conf->reshape_progress;
4885 		last  = sector_nr | (conf->geo.chunk_mask
4886 				     & conf->prev.chunk_mask);
4887 
4888 		if (sector_nr + RESYNC_SECTORS <= last)
4889 			last = sector_nr + RESYNC_SECTORS - 1;
4890 	}
4891 
4892 	if (need_flush ||
4893 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4894 		/* Need to update reshape_position in metadata */
4895 		wait_barrier(conf, false);
4896 		mddev->reshape_position = conf->reshape_progress;
4897 		if (mddev->reshape_backwards)
4898 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4899 				- conf->reshape_progress;
4900 		else
4901 			mddev->curr_resync_completed = conf->reshape_progress;
4902 		conf->reshape_checkpoint = jiffies;
4903 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4904 		md_wakeup_thread(mddev->thread);
4905 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4906 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4907 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4908 			allow_barrier(conf);
4909 			return sectors_done;
4910 		}
4911 		conf->reshape_safe = mddev->reshape_position;
4912 		allow_barrier(conf);
4913 	}
4914 
4915 	raise_barrier(conf, 0);
4916 read_more:
4917 	/* Now schedule reads for blocks from sector_nr to last */
4918 	r10_bio = raid10_alloc_init_r10buf(conf);
4919 	r10_bio->state = 0;
4920 	raise_barrier(conf, 1);
4921 	atomic_set(&r10_bio->remaining, 0);
4922 	r10_bio->mddev = mddev;
4923 	r10_bio->sector = sector_nr;
4924 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4925 	r10_bio->sectors = last - sector_nr + 1;
4926 	rdev = read_balance(conf, r10_bio, &max_sectors);
4927 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4928 
4929 	if (!rdev) {
4930 		/* Cannot read from here, so need to record bad blocks
4931 		 * on all the target devices.
4932 		 */
4933 		// FIXME
4934 		mempool_free(r10_bio, &conf->r10buf_pool);
4935 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4936 		return sectors_done;
4937 	}
4938 
4939 	read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4940 				    GFP_KERNEL, &mddev->bio_set);
4941 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4942 			       + rdev->data_offset);
4943 	read_bio->bi_private = r10_bio;
4944 	read_bio->bi_end_io = end_reshape_read;
4945 	r10_bio->master_bio = read_bio;
4946 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4947 
4948 	/*
4949 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4950 	 * write to the region to avoid conflict.
4951 	*/
4952 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4953 		struct mdp_superblock_1 *sb = NULL;
4954 		int sb_reshape_pos = 0;
4955 
4956 		conf->cluster_sync_low = sector_nr;
4957 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4958 		sb = page_address(rdev->sb_page);
4959 		if (sb) {
4960 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4961 			/*
4962 			 * Set cluster_sync_low again if next address for array
4963 			 * reshape is less than cluster_sync_low. Since we can't
4964 			 * update cluster_sync_low until it has finished reshape.
4965 			 */
4966 			if (sb_reshape_pos < conf->cluster_sync_low)
4967 				conf->cluster_sync_low = sb_reshape_pos;
4968 		}
4969 
4970 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4971 							  conf->cluster_sync_high);
4972 	}
4973 
4974 	/* Now find the locations in the new layout */
4975 	__raid10_find_phys(&conf->geo, r10_bio);
4976 
4977 	blist = read_bio;
4978 	read_bio->bi_next = NULL;
4979 
4980 	rcu_read_lock();
4981 	for (s = 0; s < conf->copies*2; s++) {
4982 		struct bio *b;
4983 		int d = r10_bio->devs[s/2].devnum;
4984 		struct md_rdev *rdev2;
4985 		if (s&1) {
4986 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4987 			b = r10_bio->devs[s/2].repl_bio;
4988 		} else {
4989 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4990 			b = r10_bio->devs[s/2].bio;
4991 		}
4992 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4993 			continue;
4994 
4995 		bio_set_dev(b, rdev2->bdev);
4996 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4997 			rdev2->new_data_offset;
4998 		b->bi_end_io = end_reshape_write;
4999 		b->bi_opf = REQ_OP_WRITE;
5000 		b->bi_next = blist;
5001 		blist = b;
5002 	}
5003 
5004 	/* Now add as many pages as possible to all of these bios. */
5005 
5006 	nr_sectors = 0;
5007 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5008 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
5009 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
5010 		int len = (max_sectors - s) << 9;
5011 		if (len > PAGE_SIZE)
5012 			len = PAGE_SIZE;
5013 		for (bio = blist; bio ; bio = bio->bi_next) {
5014 			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
5015 				bio->bi_status = BLK_STS_RESOURCE;
5016 				bio_endio(bio);
5017 				return sectors_done;
5018 			}
5019 		}
5020 		sector_nr += len >> 9;
5021 		nr_sectors += len >> 9;
5022 	}
5023 	rcu_read_unlock();
5024 	r10_bio->sectors = nr_sectors;
5025 
5026 	/* Now submit the read */
5027 	md_sync_acct_bio(read_bio, r10_bio->sectors);
5028 	atomic_inc(&r10_bio->remaining);
5029 	read_bio->bi_next = NULL;
5030 	submit_bio_noacct(read_bio);
5031 	sectors_done += nr_sectors;
5032 	if (sector_nr <= last)
5033 		goto read_more;
5034 
5035 	lower_barrier(conf);
5036 
5037 	/* Now that we have done the whole section we can
5038 	 * update reshape_progress
5039 	 */
5040 	if (mddev->reshape_backwards)
5041 		conf->reshape_progress -= sectors_done;
5042 	else
5043 		conf->reshape_progress += sectors_done;
5044 
5045 	return sectors_done;
5046 }
5047 
5048 static void end_reshape_request(struct r10bio *r10_bio);
5049 static int handle_reshape_read_error(struct mddev *mddev,
5050 				     struct r10bio *r10_bio);
reshape_request_write(struct mddev * mddev,struct r10bio * r10_bio)5051 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
5052 {
5053 	/* Reshape read completed.  Hopefully we have a block
5054 	 * to write out.
5055 	 * If we got a read error then we do sync 1-page reads from
5056 	 * elsewhere until we find the data - or give up.
5057 	 */
5058 	struct r10conf *conf = mddev->private;
5059 	int s;
5060 
5061 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
5062 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
5063 			/* Reshape has been aborted */
5064 			md_done_sync(mddev, r10_bio->sectors, 0);
5065 			return;
5066 		}
5067 
5068 	/* We definitely have the data in the pages, schedule the
5069 	 * writes.
5070 	 */
5071 	atomic_set(&r10_bio->remaining, 1);
5072 	for (s = 0; s < conf->copies*2; s++) {
5073 		struct bio *b;
5074 		int d = r10_bio->devs[s/2].devnum;
5075 		struct md_rdev *rdev;
5076 		rcu_read_lock();
5077 		if (s&1) {
5078 			rdev = rcu_dereference(conf->mirrors[d].replacement);
5079 			b = r10_bio->devs[s/2].repl_bio;
5080 		} else {
5081 			rdev = rcu_dereference(conf->mirrors[d].rdev);
5082 			b = r10_bio->devs[s/2].bio;
5083 		}
5084 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
5085 			rcu_read_unlock();
5086 			continue;
5087 		}
5088 		atomic_inc(&rdev->nr_pending);
5089 		rcu_read_unlock();
5090 		md_sync_acct_bio(b, r10_bio->sectors);
5091 		atomic_inc(&r10_bio->remaining);
5092 		b->bi_next = NULL;
5093 		submit_bio_noacct(b);
5094 	}
5095 	end_reshape_request(r10_bio);
5096 }
5097 
end_reshape(struct r10conf * conf)5098 static void end_reshape(struct r10conf *conf)
5099 {
5100 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5101 		return;
5102 
5103 	spin_lock_irq(&conf->device_lock);
5104 	conf->prev = conf->geo;
5105 	md_finish_reshape(conf->mddev);
5106 	smp_wmb();
5107 	conf->reshape_progress = MaxSector;
5108 	conf->reshape_safe = MaxSector;
5109 	spin_unlock_irq(&conf->device_lock);
5110 
5111 	if (conf->mddev->queue)
5112 		raid10_set_io_opt(conf);
5113 	conf->fullsync = 0;
5114 }
5115 
raid10_update_reshape_pos(struct mddev * mddev)5116 static void raid10_update_reshape_pos(struct mddev *mddev)
5117 {
5118 	struct r10conf *conf = mddev->private;
5119 	sector_t lo, hi;
5120 
5121 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5122 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5123 	    || mddev->reshape_position == MaxSector)
5124 		conf->reshape_progress = mddev->reshape_position;
5125 	else
5126 		WARN_ON_ONCE(1);
5127 }
5128 
handle_reshape_read_error(struct mddev * mddev,struct r10bio * r10_bio)5129 static int handle_reshape_read_error(struct mddev *mddev,
5130 				     struct r10bio *r10_bio)
5131 {
5132 	/* Use sync reads to get the blocks from somewhere else */
5133 	int sectors = r10_bio->sectors;
5134 	struct r10conf *conf = mddev->private;
5135 	struct r10bio *r10b;
5136 	int slot = 0;
5137 	int idx = 0;
5138 	struct page **pages;
5139 
5140 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5141 	if (!r10b) {
5142 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5143 		return -ENOMEM;
5144 	}
5145 
5146 	/* reshape IOs share pages from .devs[0].bio */
5147 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5148 
5149 	r10b->sector = r10_bio->sector;
5150 	__raid10_find_phys(&conf->prev, r10b);
5151 
5152 	while (sectors) {
5153 		int s = sectors;
5154 		int success = 0;
5155 		int first_slot = slot;
5156 
5157 		if (s > (PAGE_SIZE >> 9))
5158 			s = PAGE_SIZE >> 9;
5159 
5160 		rcu_read_lock();
5161 		while (!success) {
5162 			int d = r10b->devs[slot].devnum;
5163 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5164 			sector_t addr;
5165 			if (rdev == NULL ||
5166 			    test_bit(Faulty, &rdev->flags) ||
5167 			    !test_bit(In_sync, &rdev->flags))
5168 				goto failed;
5169 
5170 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5171 			atomic_inc(&rdev->nr_pending);
5172 			rcu_read_unlock();
5173 			success = sync_page_io(rdev,
5174 					       addr,
5175 					       s << 9,
5176 					       pages[idx],
5177 					       REQ_OP_READ, false);
5178 			rdev_dec_pending(rdev, mddev);
5179 			rcu_read_lock();
5180 			if (success)
5181 				break;
5182 		failed:
5183 			slot++;
5184 			if (slot >= conf->copies)
5185 				slot = 0;
5186 			if (slot == first_slot)
5187 				break;
5188 		}
5189 		rcu_read_unlock();
5190 		if (!success) {
5191 			/* couldn't read this block, must give up */
5192 			set_bit(MD_RECOVERY_INTR,
5193 				&mddev->recovery);
5194 			kfree(r10b);
5195 			return -EIO;
5196 		}
5197 		sectors -= s;
5198 		idx++;
5199 	}
5200 	kfree(r10b);
5201 	return 0;
5202 }
5203 
end_reshape_write(struct bio * bio)5204 static void end_reshape_write(struct bio *bio)
5205 {
5206 	struct r10bio *r10_bio = get_resync_r10bio(bio);
5207 	struct mddev *mddev = r10_bio->mddev;
5208 	struct r10conf *conf = mddev->private;
5209 	int d;
5210 	int slot;
5211 	int repl;
5212 	struct md_rdev *rdev = NULL;
5213 
5214 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5215 	if (repl)
5216 		rdev = conf->mirrors[d].replacement;
5217 	if (!rdev) {
5218 		smp_mb();
5219 		rdev = conf->mirrors[d].rdev;
5220 	}
5221 
5222 	if (bio->bi_status) {
5223 		/* FIXME should record badblock */
5224 		md_error(mddev, rdev);
5225 	}
5226 
5227 	rdev_dec_pending(rdev, mddev);
5228 	end_reshape_request(r10_bio);
5229 }
5230 
end_reshape_request(struct r10bio * r10_bio)5231 static void end_reshape_request(struct r10bio *r10_bio)
5232 {
5233 	if (!atomic_dec_and_test(&r10_bio->remaining))
5234 		return;
5235 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5236 	bio_put(r10_bio->master_bio);
5237 	put_buf(r10_bio);
5238 }
5239 
raid10_finish_reshape(struct mddev * mddev)5240 static void raid10_finish_reshape(struct mddev *mddev)
5241 {
5242 	struct r10conf *conf = mddev->private;
5243 
5244 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5245 		return;
5246 
5247 	if (mddev->delta_disks > 0) {
5248 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
5249 			mddev->recovery_cp = mddev->resync_max_sectors;
5250 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5251 		}
5252 		mddev->resync_max_sectors = mddev->array_sectors;
5253 	} else {
5254 		int d;
5255 		rcu_read_lock();
5256 		for (d = conf->geo.raid_disks ;
5257 		     d < conf->geo.raid_disks - mddev->delta_disks;
5258 		     d++) {
5259 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5260 			if (rdev)
5261 				clear_bit(In_sync, &rdev->flags);
5262 			rdev = rcu_dereference(conf->mirrors[d].replacement);
5263 			if (rdev)
5264 				clear_bit(In_sync, &rdev->flags);
5265 		}
5266 		rcu_read_unlock();
5267 	}
5268 	mddev->layout = mddev->new_layout;
5269 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5270 	mddev->reshape_position = MaxSector;
5271 	mddev->delta_disks = 0;
5272 	mddev->reshape_backwards = 0;
5273 }
5274 
5275 static struct md_personality raid10_personality =
5276 {
5277 	.name		= "raid10",
5278 	.level		= 10,
5279 	.owner		= THIS_MODULE,
5280 	.make_request	= raid10_make_request,
5281 	.run		= raid10_run,
5282 	.free		= raid10_free,
5283 	.status		= raid10_status,
5284 	.error_handler	= raid10_error,
5285 	.hot_add_disk	= raid10_add_disk,
5286 	.hot_remove_disk= raid10_remove_disk,
5287 	.spare_active	= raid10_spare_active,
5288 	.sync_request	= raid10_sync_request,
5289 	.quiesce	= raid10_quiesce,
5290 	.size		= raid10_size,
5291 	.resize		= raid10_resize,
5292 	.takeover	= raid10_takeover,
5293 	.check_reshape	= raid10_check_reshape,
5294 	.start_reshape	= raid10_start_reshape,
5295 	.finish_reshape	= raid10_finish_reshape,
5296 	.update_reshape_pos = raid10_update_reshape_pos,
5297 };
5298 
raid_init(void)5299 static int __init raid_init(void)
5300 {
5301 	return register_md_personality(&raid10_personality);
5302 }
5303 
raid_exit(void)5304 static void raid_exit(void)
5305 {
5306 	unregister_md_personality(&raid10_personality);
5307 }
5308 
5309 module_init(raid_init);
5310 module_exit(raid_exit);
5311 MODULE_LICENSE("GPL");
5312 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5313 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5314 MODULE_ALIAS("md-raid10");
5315 MODULE_ALIAS("md-level-10");
5316