1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 #include "raid10.h" 23 #include "raid0.h" 24 #include "md-bitmap.h" 25 26 /* 27 * RAID10 provides a combination of RAID0 and RAID1 functionality. 28 * The layout of data is defined by 29 * chunk_size 30 * raid_disks 31 * near_copies (stored in low byte of layout) 32 * far_copies (stored in second byte of layout) 33 * far_offset (stored in bit 16 of layout ) 34 * use_far_sets (stored in bit 17 of layout ) 35 * use_far_sets_bugfixed (stored in bit 18 of layout ) 36 * 37 * The data to be stored is divided into chunks using chunksize. Each device 38 * is divided into far_copies sections. In each section, chunks are laid out 39 * in a style similar to raid0, but near_copies copies of each chunk is stored 40 * (each on a different drive). The starting device for each section is offset 41 * near_copies from the starting device of the previous section. Thus there 42 * are (near_copies * far_copies) of each chunk, and each is on a different 43 * drive. near_copies and far_copies must be at least one, and their product 44 * is at most raid_disks. 45 * 46 * If far_offset is true, then the far_copies are handled a bit differently. 47 * The copies are still in different stripes, but instead of being very far 48 * apart on disk, there are adjacent stripes. 49 * 50 * The far and offset algorithms are handled slightly differently if 51 * 'use_far_sets' is true. In this case, the array's devices are grouped into 52 * sets that are (near_copies * far_copies) in size. The far copied stripes 53 * are still shifted by 'near_copies' devices, but this shifting stays confined 54 * to the set rather than the entire array. This is done to improve the number 55 * of device combinations that can fail without causing the array to fail. 56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 57 * on a device): 58 * A B C D A B C D E 59 * ... ... 60 * D A B C E A B C D 61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 62 * [A B] [C D] [A B] [C D E] 63 * |...| |...| |...| | ... | 64 * [B A] [D C] [B A] [E C D] 65 */ 66 67 static void allow_barrier(struct r10conf *conf); 68 static void lower_barrier(struct r10conf *conf); 69 static int _enough(struct r10conf *conf, int previous, int ignore); 70 static int enough(struct r10conf *conf, int ignore); 71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 72 int *skipped); 73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 74 static void end_reshape_write(struct bio *bio); 75 static void end_reshape(struct r10conf *conf); 76 77 #define raid10_log(md, fmt, args...) \ 78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 79 80 #include "raid1-10.c" 81 82 /* 83 * for resync bio, r10bio pointer can be retrieved from the per-bio 84 * 'struct resync_pages'. 85 */ 86 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 87 { 88 return get_resync_pages(bio)->raid_bio; 89 } 90 91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 92 { 93 struct r10conf *conf = data; 94 int size = offsetof(struct r10bio, devs[conf->copies]); 95 96 /* allocate a r10bio with room for raid_disks entries in the 97 * bios array */ 98 return kzalloc(size, gfp_flags); 99 } 100 101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 102 /* amount of memory to reserve for resync requests */ 103 #define RESYNC_WINDOW (1024*1024) 104 /* maximum number of concurrent requests, memory permitting */ 105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 108 109 /* 110 * When performing a resync, we need to read and compare, so 111 * we need as many pages are there are copies. 112 * When performing a recovery, we need 2 bios, one for read, 113 * one for write (we recover only one drive per r10buf) 114 * 115 */ 116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 117 { 118 struct r10conf *conf = data; 119 struct r10bio *r10_bio; 120 struct bio *bio; 121 int j; 122 int nalloc, nalloc_rp; 123 struct resync_pages *rps; 124 125 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 126 if (!r10_bio) 127 return NULL; 128 129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 131 nalloc = conf->copies; /* resync */ 132 else 133 nalloc = 2; /* recovery */ 134 135 /* allocate once for all bios */ 136 if (!conf->have_replacement) 137 nalloc_rp = nalloc; 138 else 139 nalloc_rp = nalloc * 2; 140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 141 if (!rps) 142 goto out_free_r10bio; 143 144 /* 145 * Allocate bios. 146 */ 147 for (j = nalloc ; j-- ; ) { 148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 149 if (!bio) 150 goto out_free_bio; 151 r10_bio->devs[j].bio = bio; 152 if (!conf->have_replacement) 153 continue; 154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 155 if (!bio) 156 goto out_free_bio; 157 r10_bio->devs[j].repl_bio = bio; 158 } 159 /* 160 * Allocate RESYNC_PAGES data pages and attach them 161 * where needed. 162 */ 163 for (j = 0; j < nalloc; j++) { 164 struct bio *rbio = r10_bio->devs[j].repl_bio; 165 struct resync_pages *rp, *rp_repl; 166 167 rp = &rps[j]; 168 if (rbio) 169 rp_repl = &rps[nalloc + j]; 170 171 bio = r10_bio->devs[j].bio; 172 173 if (!j || test_bit(MD_RECOVERY_SYNC, 174 &conf->mddev->recovery)) { 175 if (resync_alloc_pages(rp, gfp_flags)) 176 goto out_free_pages; 177 } else { 178 memcpy(rp, &rps[0], sizeof(*rp)); 179 resync_get_all_pages(rp); 180 } 181 182 rp->raid_bio = r10_bio; 183 bio->bi_private = rp; 184 if (rbio) { 185 memcpy(rp_repl, rp, sizeof(*rp)); 186 rbio->bi_private = rp_repl; 187 } 188 } 189 190 return r10_bio; 191 192 out_free_pages: 193 while (--j >= 0) 194 resync_free_pages(&rps[j]); 195 196 j = 0; 197 out_free_bio: 198 for ( ; j < nalloc; j++) { 199 if (r10_bio->devs[j].bio) 200 bio_put(r10_bio->devs[j].bio); 201 if (r10_bio->devs[j].repl_bio) 202 bio_put(r10_bio->devs[j].repl_bio); 203 } 204 kfree(rps); 205 out_free_r10bio: 206 rbio_pool_free(r10_bio, conf); 207 return NULL; 208 } 209 210 static void r10buf_pool_free(void *__r10_bio, void *data) 211 { 212 struct r10conf *conf = data; 213 struct r10bio *r10bio = __r10_bio; 214 int j; 215 struct resync_pages *rp = NULL; 216 217 for (j = conf->copies; j--; ) { 218 struct bio *bio = r10bio->devs[j].bio; 219 220 if (bio) { 221 rp = get_resync_pages(bio); 222 resync_free_pages(rp); 223 bio_put(bio); 224 } 225 226 bio = r10bio->devs[j].repl_bio; 227 if (bio) 228 bio_put(bio); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r10bio, conf); 235 } 236 237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->copies; i++) { 242 struct bio **bio = & r10_bio->devs[i].bio; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 bio = &r10_bio->devs[i].repl_bio; 247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 } 251 } 252 253 static void free_r10bio(struct r10bio *r10_bio) 254 { 255 struct r10conf *conf = r10_bio->mddev->private; 256 257 put_all_bios(conf, r10_bio); 258 mempool_free(r10_bio, &conf->r10bio_pool); 259 } 260 261 static void put_buf(struct r10bio *r10_bio) 262 { 263 struct r10conf *conf = r10_bio->mddev->private; 264 265 mempool_free(r10_bio, &conf->r10buf_pool); 266 267 lower_barrier(conf); 268 } 269 270 static void reschedule_retry(struct r10bio *r10_bio) 271 { 272 unsigned long flags; 273 struct mddev *mddev = r10_bio->mddev; 274 struct r10conf *conf = mddev->private; 275 276 spin_lock_irqsave(&conf->device_lock, flags); 277 list_add(&r10_bio->retry_list, &conf->retry_list); 278 conf->nr_queued ++; 279 spin_unlock_irqrestore(&conf->device_lock, flags); 280 281 /* wake up frozen array... */ 282 wake_up(&conf->wait_barrier); 283 284 md_wakeup_thread(mddev->thread); 285 } 286 287 /* 288 * raid_end_bio_io() is called when we have finished servicing a mirrored 289 * operation and are ready to return a success/failure code to the buffer 290 * cache layer. 291 */ 292 static void raid_end_bio_io(struct r10bio *r10_bio) 293 { 294 struct bio *bio = r10_bio->master_bio; 295 struct r10conf *conf = r10_bio->mddev->private; 296 297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 298 bio->bi_status = BLK_STS_IOERR; 299 300 bio_endio(bio); 301 /* 302 * Wake up any possible resync thread that waits for the device 303 * to go idle. 304 */ 305 allow_barrier(conf); 306 307 free_r10bio(r10_bio); 308 } 309 310 /* 311 * Update disk head position estimator based on IRQ completion info. 312 */ 313 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 314 { 315 struct r10conf *conf = r10_bio->mddev->private; 316 317 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 318 r10_bio->devs[slot].addr + (r10_bio->sectors); 319 } 320 321 /* 322 * Find the disk number which triggered given bio 323 */ 324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 325 struct bio *bio, int *slotp, int *replp) 326 { 327 int slot; 328 int repl = 0; 329 330 for (slot = 0; slot < conf->copies; slot++) { 331 if (r10_bio->devs[slot].bio == bio) 332 break; 333 if (r10_bio->devs[slot].repl_bio == bio) { 334 repl = 1; 335 break; 336 } 337 } 338 339 BUG_ON(slot == conf->copies); 340 update_head_pos(slot, r10_bio); 341 342 if (slotp) 343 *slotp = slot; 344 if (replp) 345 *replp = repl; 346 return r10_bio->devs[slot].devnum; 347 } 348 349 static void raid10_end_read_request(struct bio *bio) 350 { 351 int uptodate = !bio->bi_status; 352 struct r10bio *r10_bio = bio->bi_private; 353 int slot; 354 struct md_rdev *rdev; 355 struct r10conf *conf = r10_bio->mddev->private; 356 357 slot = r10_bio->read_slot; 358 rdev = r10_bio->devs[slot].rdev; 359 /* 360 * this branch is our 'one mirror IO has finished' event handler: 361 */ 362 update_head_pos(slot, r10_bio); 363 364 if (uptodate) { 365 /* 366 * Set R10BIO_Uptodate in our master bio, so that 367 * we will return a good error code to the higher 368 * levels even if IO on some other mirrored buffer fails. 369 * 370 * The 'master' represents the composite IO operation to 371 * user-side. So if something waits for IO, then it will 372 * wait for the 'master' bio. 373 */ 374 set_bit(R10BIO_Uptodate, &r10_bio->state); 375 } else { 376 /* If all other devices that store this block have 377 * failed, we want to return the error upwards rather 378 * than fail the last device. Here we redefine 379 * "uptodate" to mean "Don't want to retry" 380 */ 381 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 382 rdev->raid_disk)) 383 uptodate = 1; 384 } 385 if (uptodate) { 386 raid_end_bio_io(r10_bio); 387 rdev_dec_pending(rdev, conf->mddev); 388 } else { 389 /* 390 * oops, read error - keep the refcount on the rdev 391 */ 392 char b[BDEVNAME_SIZE]; 393 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 394 mdname(conf->mddev), 395 bdevname(rdev->bdev, b), 396 (unsigned long long)r10_bio->sector); 397 set_bit(R10BIO_ReadError, &r10_bio->state); 398 reschedule_retry(r10_bio); 399 } 400 } 401 402 static void close_write(struct r10bio *r10_bio) 403 { 404 /* clear the bitmap if all writes complete successfully */ 405 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 406 r10_bio->sectors, 407 !test_bit(R10BIO_Degraded, &r10_bio->state), 408 0); 409 md_write_end(r10_bio->mddev); 410 } 411 412 static void one_write_done(struct r10bio *r10_bio) 413 { 414 if (atomic_dec_and_test(&r10_bio->remaining)) { 415 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 416 reschedule_retry(r10_bio); 417 else { 418 close_write(r10_bio); 419 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 420 reschedule_retry(r10_bio); 421 else 422 raid_end_bio_io(r10_bio); 423 } 424 } 425 } 426 427 static void raid10_end_write_request(struct bio *bio) 428 { 429 struct r10bio *r10_bio = bio->bi_private; 430 int dev; 431 int dec_rdev = 1; 432 struct r10conf *conf = r10_bio->mddev->private; 433 int slot, repl; 434 struct md_rdev *rdev = NULL; 435 struct bio *to_put = NULL; 436 bool discard_error; 437 438 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 439 440 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 441 442 if (repl) 443 rdev = conf->mirrors[dev].replacement; 444 if (!rdev) { 445 smp_rmb(); 446 repl = 0; 447 rdev = conf->mirrors[dev].rdev; 448 } 449 /* 450 * this branch is our 'one mirror IO has finished' event handler: 451 */ 452 if (bio->bi_status && !discard_error) { 453 if (repl) 454 /* Never record new bad blocks to replacement, 455 * just fail it. 456 */ 457 md_error(rdev->mddev, rdev); 458 else { 459 set_bit(WriteErrorSeen, &rdev->flags); 460 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 461 set_bit(MD_RECOVERY_NEEDED, 462 &rdev->mddev->recovery); 463 464 dec_rdev = 0; 465 if (test_bit(FailFast, &rdev->flags) && 466 (bio->bi_opf & MD_FAILFAST)) { 467 md_error(rdev->mddev, rdev); 468 } 469 470 /* 471 * When the device is faulty, it is not necessary to 472 * handle write error. 473 * For failfast, this is the only remaining device, 474 * We need to retry the write without FailFast. 475 */ 476 if (!test_bit(Faulty, &rdev->flags)) 477 set_bit(R10BIO_WriteError, &r10_bio->state); 478 else { 479 r10_bio->devs[slot].bio = NULL; 480 to_put = bio; 481 dec_rdev = 1; 482 } 483 } 484 } else { 485 /* 486 * Set R10BIO_Uptodate in our master bio, so that 487 * we will return a good error code for to the higher 488 * levels even if IO on some other mirrored buffer fails. 489 * 490 * The 'master' represents the composite IO operation to 491 * user-side. So if something waits for IO, then it will 492 * wait for the 'master' bio. 493 */ 494 sector_t first_bad; 495 int bad_sectors; 496 497 /* 498 * Do not set R10BIO_Uptodate if the current device is 499 * rebuilding or Faulty. This is because we cannot use 500 * such device for properly reading the data back (we could 501 * potentially use it, if the current write would have felt 502 * before rdev->recovery_offset, but for simplicity we don't 503 * check this here. 504 */ 505 if (test_bit(In_sync, &rdev->flags) && 506 !test_bit(Faulty, &rdev->flags)) 507 set_bit(R10BIO_Uptodate, &r10_bio->state); 508 509 /* Maybe we can clear some bad blocks. */ 510 if (is_badblock(rdev, 511 r10_bio->devs[slot].addr, 512 r10_bio->sectors, 513 &first_bad, &bad_sectors) && !discard_error) { 514 bio_put(bio); 515 if (repl) 516 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 517 else 518 r10_bio->devs[slot].bio = IO_MADE_GOOD; 519 dec_rdev = 0; 520 set_bit(R10BIO_MadeGood, &r10_bio->state); 521 } 522 } 523 524 /* 525 * 526 * Let's see if all mirrored write operations have finished 527 * already. 528 */ 529 one_write_done(r10_bio); 530 if (dec_rdev) 531 rdev_dec_pending(rdev, conf->mddev); 532 if (to_put) 533 bio_put(to_put); 534 } 535 536 /* 537 * RAID10 layout manager 538 * As well as the chunksize and raid_disks count, there are two 539 * parameters: near_copies and far_copies. 540 * near_copies * far_copies must be <= raid_disks. 541 * Normally one of these will be 1. 542 * If both are 1, we get raid0. 543 * If near_copies == raid_disks, we get raid1. 544 * 545 * Chunks are laid out in raid0 style with near_copies copies of the 546 * first chunk, followed by near_copies copies of the next chunk and 547 * so on. 548 * If far_copies > 1, then after 1/far_copies of the array has been assigned 549 * as described above, we start again with a device offset of near_copies. 550 * So we effectively have another copy of the whole array further down all 551 * the drives, but with blocks on different drives. 552 * With this layout, and block is never stored twice on the one device. 553 * 554 * raid10_find_phys finds the sector offset of a given virtual sector 555 * on each device that it is on. 556 * 557 * raid10_find_virt does the reverse mapping, from a device and a 558 * sector offset to a virtual address 559 */ 560 561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 562 { 563 int n,f; 564 sector_t sector; 565 sector_t chunk; 566 sector_t stripe; 567 int dev; 568 int slot = 0; 569 int last_far_set_start, last_far_set_size; 570 571 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 572 last_far_set_start *= geo->far_set_size; 573 574 last_far_set_size = geo->far_set_size; 575 last_far_set_size += (geo->raid_disks % geo->far_set_size); 576 577 /* now calculate first sector/dev */ 578 chunk = r10bio->sector >> geo->chunk_shift; 579 sector = r10bio->sector & geo->chunk_mask; 580 581 chunk *= geo->near_copies; 582 stripe = chunk; 583 dev = sector_div(stripe, geo->raid_disks); 584 if (geo->far_offset) 585 stripe *= geo->far_copies; 586 587 sector += stripe << geo->chunk_shift; 588 589 /* and calculate all the others */ 590 for (n = 0; n < geo->near_copies; n++) { 591 int d = dev; 592 int set; 593 sector_t s = sector; 594 r10bio->devs[slot].devnum = d; 595 r10bio->devs[slot].addr = s; 596 slot++; 597 598 for (f = 1; f < geo->far_copies; f++) { 599 set = d / geo->far_set_size; 600 d += geo->near_copies; 601 602 if ((geo->raid_disks % geo->far_set_size) && 603 (d > last_far_set_start)) { 604 d -= last_far_set_start; 605 d %= last_far_set_size; 606 d += last_far_set_start; 607 } else { 608 d %= geo->far_set_size; 609 d += geo->far_set_size * set; 610 } 611 s += geo->stride; 612 r10bio->devs[slot].devnum = d; 613 r10bio->devs[slot].addr = s; 614 slot++; 615 } 616 dev++; 617 if (dev >= geo->raid_disks) { 618 dev = 0; 619 sector += (geo->chunk_mask + 1); 620 } 621 } 622 } 623 624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 625 { 626 struct geom *geo = &conf->geo; 627 628 if (conf->reshape_progress != MaxSector && 629 ((r10bio->sector >= conf->reshape_progress) != 630 conf->mddev->reshape_backwards)) { 631 set_bit(R10BIO_Previous, &r10bio->state); 632 geo = &conf->prev; 633 } else 634 clear_bit(R10BIO_Previous, &r10bio->state); 635 636 __raid10_find_phys(geo, r10bio); 637 } 638 639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 640 { 641 sector_t offset, chunk, vchunk; 642 /* Never use conf->prev as this is only called during resync 643 * or recovery, so reshape isn't happening 644 */ 645 struct geom *geo = &conf->geo; 646 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 647 int far_set_size = geo->far_set_size; 648 int last_far_set_start; 649 650 if (geo->raid_disks % geo->far_set_size) { 651 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 652 last_far_set_start *= geo->far_set_size; 653 654 if (dev >= last_far_set_start) { 655 far_set_size = geo->far_set_size; 656 far_set_size += (geo->raid_disks % geo->far_set_size); 657 far_set_start = last_far_set_start; 658 } 659 } 660 661 offset = sector & geo->chunk_mask; 662 if (geo->far_offset) { 663 int fc; 664 chunk = sector >> geo->chunk_shift; 665 fc = sector_div(chunk, geo->far_copies); 666 dev -= fc * geo->near_copies; 667 if (dev < far_set_start) 668 dev += far_set_size; 669 } else { 670 while (sector >= geo->stride) { 671 sector -= geo->stride; 672 if (dev < (geo->near_copies + far_set_start)) 673 dev += far_set_size - geo->near_copies; 674 else 675 dev -= geo->near_copies; 676 } 677 chunk = sector >> geo->chunk_shift; 678 } 679 vchunk = chunk * geo->raid_disks + dev; 680 sector_div(vchunk, geo->near_copies); 681 return (vchunk << geo->chunk_shift) + offset; 682 } 683 684 /* 685 * This routine returns the disk from which the requested read should 686 * be done. There is a per-array 'next expected sequential IO' sector 687 * number - if this matches on the next IO then we use the last disk. 688 * There is also a per-disk 'last know head position' sector that is 689 * maintained from IRQ contexts, both the normal and the resync IO 690 * completion handlers update this position correctly. If there is no 691 * perfect sequential match then we pick the disk whose head is closest. 692 * 693 * If there are 2 mirrors in the same 2 devices, performance degrades 694 * because position is mirror, not device based. 695 * 696 * The rdev for the device selected will have nr_pending incremented. 697 */ 698 699 /* 700 * FIXME: possibly should rethink readbalancing and do it differently 701 * depending on near_copies / far_copies geometry. 702 */ 703 static struct md_rdev *read_balance(struct r10conf *conf, 704 struct r10bio *r10_bio, 705 int *max_sectors) 706 { 707 const sector_t this_sector = r10_bio->sector; 708 int disk, slot; 709 int sectors = r10_bio->sectors; 710 int best_good_sectors; 711 sector_t new_distance, best_dist; 712 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 713 int do_balance; 714 int best_dist_slot, best_pending_slot; 715 bool has_nonrot_disk = false; 716 unsigned int min_pending; 717 struct geom *geo = &conf->geo; 718 719 raid10_find_phys(conf, r10_bio); 720 rcu_read_lock(); 721 best_dist_slot = -1; 722 min_pending = UINT_MAX; 723 best_dist_rdev = NULL; 724 best_pending_rdev = NULL; 725 best_dist = MaxSector; 726 best_good_sectors = 0; 727 do_balance = 1; 728 clear_bit(R10BIO_FailFast, &r10_bio->state); 729 /* 730 * Check if we can balance. We can balance on the whole 731 * device if no resync is going on (recovery is ok), or below 732 * the resync window. We take the first readable disk when 733 * above the resync window. 734 */ 735 if ((conf->mddev->recovery_cp < MaxSector 736 && (this_sector + sectors >= conf->next_resync)) || 737 (mddev_is_clustered(conf->mddev) && 738 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 739 this_sector + sectors))) 740 do_balance = 0; 741 742 for (slot = 0; slot < conf->copies ; slot++) { 743 sector_t first_bad; 744 int bad_sectors; 745 sector_t dev_sector; 746 unsigned int pending; 747 bool nonrot; 748 749 if (r10_bio->devs[slot].bio == IO_BLOCKED) 750 continue; 751 disk = r10_bio->devs[slot].devnum; 752 rdev = rcu_dereference(conf->mirrors[disk].replacement); 753 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 754 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 755 rdev = rcu_dereference(conf->mirrors[disk].rdev); 756 if (rdev == NULL || 757 test_bit(Faulty, &rdev->flags)) 758 continue; 759 if (!test_bit(In_sync, &rdev->flags) && 760 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 761 continue; 762 763 dev_sector = r10_bio->devs[slot].addr; 764 if (is_badblock(rdev, dev_sector, sectors, 765 &first_bad, &bad_sectors)) { 766 if (best_dist < MaxSector) 767 /* Already have a better slot */ 768 continue; 769 if (first_bad <= dev_sector) { 770 /* Cannot read here. If this is the 771 * 'primary' device, then we must not read 772 * beyond 'bad_sectors' from another device. 773 */ 774 bad_sectors -= (dev_sector - first_bad); 775 if (!do_balance && sectors > bad_sectors) 776 sectors = bad_sectors; 777 if (best_good_sectors > sectors) 778 best_good_sectors = sectors; 779 } else { 780 sector_t good_sectors = 781 first_bad - dev_sector; 782 if (good_sectors > best_good_sectors) { 783 best_good_sectors = good_sectors; 784 best_dist_slot = slot; 785 best_dist_rdev = rdev; 786 } 787 if (!do_balance) 788 /* Must read from here */ 789 break; 790 } 791 continue; 792 } else 793 best_good_sectors = sectors; 794 795 if (!do_balance) 796 break; 797 798 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 799 has_nonrot_disk |= nonrot; 800 pending = atomic_read(&rdev->nr_pending); 801 if (min_pending > pending && nonrot) { 802 min_pending = pending; 803 best_pending_slot = slot; 804 best_pending_rdev = rdev; 805 } 806 807 if (best_dist_slot >= 0) 808 /* At least 2 disks to choose from so failfast is OK */ 809 set_bit(R10BIO_FailFast, &r10_bio->state); 810 /* This optimisation is debatable, and completely destroys 811 * sequential read speed for 'far copies' arrays. So only 812 * keep it for 'near' arrays, and review those later. 813 */ 814 if (geo->near_copies > 1 && !pending) 815 new_distance = 0; 816 817 /* for far > 1 always use the lowest address */ 818 else if (geo->far_copies > 1) 819 new_distance = r10_bio->devs[slot].addr; 820 else 821 new_distance = abs(r10_bio->devs[slot].addr - 822 conf->mirrors[disk].head_position); 823 824 if (new_distance < best_dist) { 825 best_dist = new_distance; 826 best_dist_slot = slot; 827 best_dist_rdev = rdev; 828 } 829 } 830 if (slot >= conf->copies) { 831 if (has_nonrot_disk) { 832 slot = best_pending_slot; 833 rdev = best_pending_rdev; 834 } else { 835 slot = best_dist_slot; 836 rdev = best_dist_rdev; 837 } 838 } 839 840 if (slot >= 0) { 841 atomic_inc(&rdev->nr_pending); 842 r10_bio->read_slot = slot; 843 } else 844 rdev = NULL; 845 rcu_read_unlock(); 846 *max_sectors = best_good_sectors; 847 848 return rdev; 849 } 850 851 static int raid10_congested(struct mddev *mddev, int bits) 852 { 853 struct r10conf *conf = mddev->private; 854 int i, ret = 0; 855 856 if ((bits & (1 << WB_async_congested)) && 857 conf->pending_count >= max_queued_requests) 858 return 1; 859 860 rcu_read_lock(); 861 for (i = 0; 862 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 863 && ret == 0; 864 i++) { 865 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 866 if (rdev && !test_bit(Faulty, &rdev->flags)) { 867 struct request_queue *q = bdev_get_queue(rdev->bdev); 868 869 ret |= bdi_congested(q->backing_dev_info, bits); 870 } 871 } 872 rcu_read_unlock(); 873 return ret; 874 } 875 876 static void flush_pending_writes(struct r10conf *conf) 877 { 878 /* Any writes that have been queued but are awaiting 879 * bitmap updates get flushed here. 880 */ 881 spin_lock_irq(&conf->device_lock); 882 883 if (conf->pending_bio_list.head) { 884 struct blk_plug plug; 885 struct bio *bio; 886 887 bio = bio_list_get(&conf->pending_bio_list); 888 conf->pending_count = 0; 889 spin_unlock_irq(&conf->device_lock); 890 891 /* 892 * As this is called in a wait_event() loop (see freeze_array), 893 * current->state might be TASK_UNINTERRUPTIBLE which will 894 * cause a warning when we prepare to wait again. As it is 895 * rare that this path is taken, it is perfectly safe to force 896 * us to go around the wait_event() loop again, so the warning 897 * is a false-positive. Silence the warning by resetting 898 * thread state 899 */ 900 __set_current_state(TASK_RUNNING); 901 902 blk_start_plug(&plug); 903 /* flush any pending bitmap writes to disk 904 * before proceeding w/ I/O */ 905 md_bitmap_unplug(conf->mddev->bitmap); 906 wake_up(&conf->wait_barrier); 907 908 while (bio) { /* submit pending writes */ 909 struct bio *next = bio->bi_next; 910 struct md_rdev *rdev = (void*)bio->bi_disk; 911 bio->bi_next = NULL; 912 bio_set_dev(bio, rdev->bdev); 913 if (test_bit(Faulty, &rdev->flags)) { 914 bio_io_error(bio); 915 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 916 !blk_queue_discard(bio->bi_disk->queue))) 917 /* Just ignore it */ 918 bio_endio(bio); 919 else 920 generic_make_request(bio); 921 bio = next; 922 } 923 blk_finish_plug(&plug); 924 } else 925 spin_unlock_irq(&conf->device_lock); 926 } 927 928 /* Barriers.... 929 * Sometimes we need to suspend IO while we do something else, 930 * either some resync/recovery, or reconfigure the array. 931 * To do this we raise a 'barrier'. 932 * The 'barrier' is a counter that can be raised multiple times 933 * to count how many activities are happening which preclude 934 * normal IO. 935 * We can only raise the barrier if there is no pending IO. 936 * i.e. if nr_pending == 0. 937 * We choose only to raise the barrier if no-one is waiting for the 938 * barrier to go down. This means that as soon as an IO request 939 * is ready, no other operations which require a barrier will start 940 * until the IO request has had a chance. 941 * 942 * So: regular IO calls 'wait_barrier'. When that returns there 943 * is no backgroup IO happening, It must arrange to call 944 * allow_barrier when it has finished its IO. 945 * backgroup IO calls must call raise_barrier. Once that returns 946 * there is no normal IO happeing. It must arrange to call 947 * lower_barrier when the particular background IO completes. 948 */ 949 950 static void raise_barrier(struct r10conf *conf, int force) 951 { 952 BUG_ON(force && !conf->barrier); 953 spin_lock_irq(&conf->resync_lock); 954 955 /* Wait until no block IO is waiting (unless 'force') */ 956 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 957 conf->resync_lock); 958 959 /* block any new IO from starting */ 960 conf->barrier++; 961 962 /* Now wait for all pending IO to complete */ 963 wait_event_lock_irq(conf->wait_barrier, 964 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 965 conf->resync_lock); 966 967 spin_unlock_irq(&conf->resync_lock); 968 } 969 970 static void lower_barrier(struct r10conf *conf) 971 { 972 unsigned long flags; 973 spin_lock_irqsave(&conf->resync_lock, flags); 974 conf->barrier--; 975 spin_unlock_irqrestore(&conf->resync_lock, flags); 976 wake_up(&conf->wait_barrier); 977 } 978 979 static void wait_barrier(struct r10conf *conf) 980 { 981 spin_lock_irq(&conf->resync_lock); 982 if (conf->barrier) { 983 conf->nr_waiting++; 984 /* Wait for the barrier to drop. 985 * However if there are already pending 986 * requests (preventing the barrier from 987 * rising completely), and the 988 * pre-process bio queue isn't empty, 989 * then don't wait, as we need to empty 990 * that queue to get the nr_pending 991 * count down. 992 */ 993 raid10_log(conf->mddev, "wait barrier"); 994 wait_event_lock_irq(conf->wait_barrier, 995 !conf->barrier || 996 (atomic_read(&conf->nr_pending) && 997 current->bio_list && 998 (!bio_list_empty(¤t->bio_list[0]) || 999 !bio_list_empty(¤t->bio_list[1]))), 1000 conf->resync_lock); 1001 conf->nr_waiting--; 1002 if (!conf->nr_waiting) 1003 wake_up(&conf->wait_barrier); 1004 } 1005 atomic_inc(&conf->nr_pending); 1006 spin_unlock_irq(&conf->resync_lock); 1007 } 1008 1009 static void allow_barrier(struct r10conf *conf) 1010 { 1011 if ((atomic_dec_and_test(&conf->nr_pending)) || 1012 (conf->array_freeze_pending)) 1013 wake_up(&conf->wait_barrier); 1014 } 1015 1016 static void freeze_array(struct r10conf *conf, int extra) 1017 { 1018 /* stop syncio and normal IO and wait for everything to 1019 * go quiet. 1020 * We increment barrier and nr_waiting, and then 1021 * wait until nr_pending match nr_queued+extra 1022 * This is called in the context of one normal IO request 1023 * that has failed. Thus any sync request that might be pending 1024 * will be blocked by nr_pending, and we need to wait for 1025 * pending IO requests to complete or be queued for re-try. 1026 * Thus the number queued (nr_queued) plus this request (extra) 1027 * must match the number of pending IOs (nr_pending) before 1028 * we continue. 1029 */ 1030 spin_lock_irq(&conf->resync_lock); 1031 conf->array_freeze_pending++; 1032 conf->barrier++; 1033 conf->nr_waiting++; 1034 wait_event_lock_irq_cmd(conf->wait_barrier, 1035 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1036 conf->resync_lock, 1037 flush_pending_writes(conf)); 1038 1039 conf->array_freeze_pending--; 1040 spin_unlock_irq(&conf->resync_lock); 1041 } 1042 1043 static void unfreeze_array(struct r10conf *conf) 1044 { 1045 /* reverse the effect of the freeze */ 1046 spin_lock_irq(&conf->resync_lock); 1047 conf->barrier--; 1048 conf->nr_waiting--; 1049 wake_up(&conf->wait_barrier); 1050 spin_unlock_irq(&conf->resync_lock); 1051 } 1052 1053 static sector_t choose_data_offset(struct r10bio *r10_bio, 1054 struct md_rdev *rdev) 1055 { 1056 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1057 test_bit(R10BIO_Previous, &r10_bio->state)) 1058 return rdev->data_offset; 1059 else 1060 return rdev->new_data_offset; 1061 } 1062 1063 struct raid10_plug_cb { 1064 struct blk_plug_cb cb; 1065 struct bio_list pending; 1066 int pending_cnt; 1067 }; 1068 1069 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1070 { 1071 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1072 cb); 1073 struct mddev *mddev = plug->cb.data; 1074 struct r10conf *conf = mddev->private; 1075 struct bio *bio; 1076 1077 if (from_schedule || current->bio_list) { 1078 spin_lock_irq(&conf->device_lock); 1079 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1080 conf->pending_count += plug->pending_cnt; 1081 spin_unlock_irq(&conf->device_lock); 1082 wake_up(&conf->wait_barrier); 1083 md_wakeup_thread(mddev->thread); 1084 kfree(plug); 1085 return; 1086 } 1087 1088 /* we aren't scheduling, so we can do the write-out directly. */ 1089 bio = bio_list_get(&plug->pending); 1090 md_bitmap_unplug(mddev->bitmap); 1091 wake_up(&conf->wait_barrier); 1092 1093 while (bio) { /* submit pending writes */ 1094 struct bio *next = bio->bi_next; 1095 struct md_rdev *rdev = (void*)bio->bi_disk; 1096 bio->bi_next = NULL; 1097 bio_set_dev(bio, rdev->bdev); 1098 if (test_bit(Faulty, &rdev->flags)) { 1099 bio_io_error(bio); 1100 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1101 !blk_queue_discard(bio->bi_disk->queue))) 1102 /* Just ignore it */ 1103 bio_endio(bio); 1104 else 1105 generic_make_request(bio); 1106 bio = next; 1107 } 1108 kfree(plug); 1109 } 1110 1111 /* 1112 * 1. Register the new request and wait if the reconstruction thread has put 1113 * up a bar for new requests. Continue immediately if no resync is active 1114 * currently. 1115 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1116 */ 1117 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1118 struct bio *bio, sector_t sectors) 1119 { 1120 wait_barrier(conf); 1121 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1122 bio->bi_iter.bi_sector < conf->reshape_progress && 1123 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1124 raid10_log(conf->mddev, "wait reshape"); 1125 allow_barrier(conf); 1126 wait_event(conf->wait_barrier, 1127 conf->reshape_progress <= bio->bi_iter.bi_sector || 1128 conf->reshape_progress >= bio->bi_iter.bi_sector + 1129 sectors); 1130 wait_barrier(conf); 1131 } 1132 } 1133 1134 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1135 struct r10bio *r10_bio) 1136 { 1137 struct r10conf *conf = mddev->private; 1138 struct bio *read_bio; 1139 const int op = bio_op(bio); 1140 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1141 int max_sectors; 1142 struct md_rdev *rdev; 1143 char b[BDEVNAME_SIZE]; 1144 int slot = r10_bio->read_slot; 1145 struct md_rdev *err_rdev = NULL; 1146 gfp_t gfp = GFP_NOIO; 1147 1148 if (r10_bio->devs[slot].rdev) { 1149 /* 1150 * This is an error retry, but we cannot 1151 * safely dereference the rdev in the r10_bio, 1152 * we must use the one in conf. 1153 * If it has already been disconnected (unlikely) 1154 * we lose the device name in error messages. 1155 */ 1156 int disk; 1157 /* 1158 * As we are blocking raid10, it is a little safer to 1159 * use __GFP_HIGH. 1160 */ 1161 gfp = GFP_NOIO | __GFP_HIGH; 1162 1163 rcu_read_lock(); 1164 disk = r10_bio->devs[slot].devnum; 1165 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1166 if (err_rdev) 1167 bdevname(err_rdev->bdev, b); 1168 else { 1169 strcpy(b, "???"); 1170 /* This never gets dereferenced */ 1171 err_rdev = r10_bio->devs[slot].rdev; 1172 } 1173 rcu_read_unlock(); 1174 } 1175 1176 regular_request_wait(mddev, conf, bio, r10_bio->sectors); 1177 rdev = read_balance(conf, r10_bio, &max_sectors); 1178 if (!rdev) { 1179 if (err_rdev) { 1180 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1181 mdname(mddev), b, 1182 (unsigned long long)r10_bio->sector); 1183 } 1184 raid_end_bio_io(r10_bio); 1185 return; 1186 } 1187 if (err_rdev) 1188 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1189 mdname(mddev), 1190 bdevname(rdev->bdev, b), 1191 (unsigned long long)r10_bio->sector); 1192 if (max_sectors < bio_sectors(bio)) { 1193 struct bio *split = bio_split(bio, max_sectors, 1194 gfp, &conf->bio_split); 1195 bio_chain(split, bio); 1196 allow_barrier(conf); 1197 generic_make_request(bio); 1198 wait_barrier(conf); 1199 bio = split; 1200 r10_bio->master_bio = bio; 1201 r10_bio->sectors = max_sectors; 1202 } 1203 slot = r10_bio->read_slot; 1204 1205 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1206 1207 r10_bio->devs[slot].bio = read_bio; 1208 r10_bio->devs[slot].rdev = rdev; 1209 1210 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1211 choose_data_offset(r10_bio, rdev); 1212 bio_set_dev(read_bio, rdev->bdev); 1213 read_bio->bi_end_io = raid10_end_read_request; 1214 bio_set_op_attrs(read_bio, op, do_sync); 1215 if (test_bit(FailFast, &rdev->flags) && 1216 test_bit(R10BIO_FailFast, &r10_bio->state)) 1217 read_bio->bi_opf |= MD_FAILFAST; 1218 read_bio->bi_private = r10_bio; 1219 1220 if (mddev->gendisk) 1221 trace_block_bio_remap(read_bio->bi_disk->queue, 1222 read_bio, disk_devt(mddev->gendisk), 1223 r10_bio->sector); 1224 generic_make_request(read_bio); 1225 return; 1226 } 1227 1228 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1229 struct bio *bio, bool replacement, 1230 int n_copy) 1231 { 1232 const int op = bio_op(bio); 1233 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1234 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1235 unsigned long flags; 1236 struct blk_plug_cb *cb; 1237 struct raid10_plug_cb *plug = NULL; 1238 struct r10conf *conf = mddev->private; 1239 struct md_rdev *rdev; 1240 int devnum = r10_bio->devs[n_copy].devnum; 1241 struct bio *mbio; 1242 1243 if (replacement) { 1244 rdev = conf->mirrors[devnum].replacement; 1245 if (rdev == NULL) { 1246 /* Replacement just got moved to main 'rdev' */ 1247 smp_mb(); 1248 rdev = conf->mirrors[devnum].rdev; 1249 } 1250 } else 1251 rdev = conf->mirrors[devnum].rdev; 1252 1253 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1254 if (replacement) 1255 r10_bio->devs[n_copy].repl_bio = mbio; 1256 else 1257 r10_bio->devs[n_copy].bio = mbio; 1258 1259 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1260 choose_data_offset(r10_bio, rdev)); 1261 bio_set_dev(mbio, rdev->bdev); 1262 mbio->bi_end_io = raid10_end_write_request; 1263 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1264 if (!replacement && test_bit(FailFast, 1265 &conf->mirrors[devnum].rdev->flags) 1266 && enough(conf, devnum)) 1267 mbio->bi_opf |= MD_FAILFAST; 1268 mbio->bi_private = r10_bio; 1269 1270 if (conf->mddev->gendisk) 1271 trace_block_bio_remap(mbio->bi_disk->queue, 1272 mbio, disk_devt(conf->mddev->gendisk), 1273 r10_bio->sector); 1274 /* flush_pending_writes() needs access to the rdev so...*/ 1275 mbio->bi_disk = (void *)rdev; 1276 1277 atomic_inc(&r10_bio->remaining); 1278 1279 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1280 if (cb) 1281 plug = container_of(cb, struct raid10_plug_cb, cb); 1282 else 1283 plug = NULL; 1284 if (plug) { 1285 bio_list_add(&plug->pending, mbio); 1286 plug->pending_cnt++; 1287 } else { 1288 spin_lock_irqsave(&conf->device_lock, flags); 1289 bio_list_add(&conf->pending_bio_list, mbio); 1290 conf->pending_count++; 1291 spin_unlock_irqrestore(&conf->device_lock, flags); 1292 md_wakeup_thread(mddev->thread); 1293 } 1294 } 1295 1296 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1297 struct r10bio *r10_bio) 1298 { 1299 struct r10conf *conf = mddev->private; 1300 int i; 1301 struct md_rdev *blocked_rdev; 1302 sector_t sectors; 1303 int max_sectors; 1304 1305 if ((mddev_is_clustered(mddev) && 1306 md_cluster_ops->area_resyncing(mddev, WRITE, 1307 bio->bi_iter.bi_sector, 1308 bio_end_sector(bio)))) { 1309 DEFINE_WAIT(w); 1310 for (;;) { 1311 prepare_to_wait(&conf->wait_barrier, 1312 &w, TASK_IDLE); 1313 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1314 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1315 break; 1316 schedule(); 1317 } 1318 finish_wait(&conf->wait_barrier, &w); 1319 } 1320 1321 sectors = r10_bio->sectors; 1322 regular_request_wait(mddev, conf, bio, sectors); 1323 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1324 (mddev->reshape_backwards 1325 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1326 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1327 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1328 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1329 /* Need to update reshape_position in metadata */ 1330 mddev->reshape_position = conf->reshape_progress; 1331 set_mask_bits(&mddev->sb_flags, 0, 1332 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1333 md_wakeup_thread(mddev->thread); 1334 raid10_log(conf->mddev, "wait reshape metadata"); 1335 wait_event(mddev->sb_wait, 1336 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1337 1338 conf->reshape_safe = mddev->reshape_position; 1339 } 1340 1341 if (conf->pending_count >= max_queued_requests) { 1342 md_wakeup_thread(mddev->thread); 1343 raid10_log(mddev, "wait queued"); 1344 wait_event(conf->wait_barrier, 1345 conf->pending_count < max_queued_requests); 1346 } 1347 /* first select target devices under rcu_lock and 1348 * inc refcount on their rdev. Record them by setting 1349 * bios[x] to bio 1350 * If there are known/acknowledged bad blocks on any device 1351 * on which we have seen a write error, we want to avoid 1352 * writing to those blocks. This potentially requires several 1353 * writes to write around the bad blocks. Each set of writes 1354 * gets its own r10_bio with a set of bios attached. 1355 */ 1356 1357 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1358 raid10_find_phys(conf, r10_bio); 1359 retry_write: 1360 blocked_rdev = NULL; 1361 rcu_read_lock(); 1362 max_sectors = r10_bio->sectors; 1363 1364 for (i = 0; i < conf->copies; i++) { 1365 int d = r10_bio->devs[i].devnum; 1366 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1367 struct md_rdev *rrdev = rcu_dereference( 1368 conf->mirrors[d].replacement); 1369 if (rdev == rrdev) 1370 rrdev = NULL; 1371 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1372 atomic_inc(&rdev->nr_pending); 1373 blocked_rdev = rdev; 1374 break; 1375 } 1376 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1377 atomic_inc(&rrdev->nr_pending); 1378 blocked_rdev = rrdev; 1379 break; 1380 } 1381 if (rdev && (test_bit(Faulty, &rdev->flags))) 1382 rdev = NULL; 1383 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1384 rrdev = NULL; 1385 1386 r10_bio->devs[i].bio = NULL; 1387 r10_bio->devs[i].repl_bio = NULL; 1388 1389 if (!rdev && !rrdev) { 1390 set_bit(R10BIO_Degraded, &r10_bio->state); 1391 continue; 1392 } 1393 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1394 sector_t first_bad; 1395 sector_t dev_sector = r10_bio->devs[i].addr; 1396 int bad_sectors; 1397 int is_bad; 1398 1399 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1400 &first_bad, &bad_sectors); 1401 if (is_bad < 0) { 1402 /* Mustn't write here until the bad block 1403 * is acknowledged 1404 */ 1405 atomic_inc(&rdev->nr_pending); 1406 set_bit(BlockedBadBlocks, &rdev->flags); 1407 blocked_rdev = rdev; 1408 break; 1409 } 1410 if (is_bad && first_bad <= dev_sector) { 1411 /* Cannot write here at all */ 1412 bad_sectors -= (dev_sector - first_bad); 1413 if (bad_sectors < max_sectors) 1414 /* Mustn't write more than bad_sectors 1415 * to other devices yet 1416 */ 1417 max_sectors = bad_sectors; 1418 /* We don't set R10BIO_Degraded as that 1419 * only applies if the disk is missing, 1420 * so it might be re-added, and we want to 1421 * know to recover this chunk. 1422 * In this case the device is here, and the 1423 * fact that this chunk is not in-sync is 1424 * recorded in the bad block log. 1425 */ 1426 continue; 1427 } 1428 if (is_bad) { 1429 int good_sectors = first_bad - dev_sector; 1430 if (good_sectors < max_sectors) 1431 max_sectors = good_sectors; 1432 } 1433 } 1434 if (rdev) { 1435 r10_bio->devs[i].bio = bio; 1436 atomic_inc(&rdev->nr_pending); 1437 } 1438 if (rrdev) { 1439 r10_bio->devs[i].repl_bio = bio; 1440 atomic_inc(&rrdev->nr_pending); 1441 } 1442 } 1443 rcu_read_unlock(); 1444 1445 if (unlikely(blocked_rdev)) { 1446 /* Have to wait for this device to get unblocked, then retry */ 1447 int j; 1448 int d; 1449 1450 for (j = 0; j < i; j++) { 1451 if (r10_bio->devs[j].bio) { 1452 d = r10_bio->devs[j].devnum; 1453 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1454 } 1455 if (r10_bio->devs[j].repl_bio) { 1456 struct md_rdev *rdev; 1457 d = r10_bio->devs[j].devnum; 1458 rdev = conf->mirrors[d].replacement; 1459 if (!rdev) { 1460 /* Race with remove_disk */ 1461 smp_mb(); 1462 rdev = conf->mirrors[d].rdev; 1463 } 1464 rdev_dec_pending(rdev, mddev); 1465 } 1466 } 1467 allow_barrier(conf); 1468 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1469 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1470 wait_barrier(conf); 1471 goto retry_write; 1472 } 1473 1474 if (max_sectors < r10_bio->sectors) 1475 r10_bio->sectors = max_sectors; 1476 1477 if (r10_bio->sectors < bio_sectors(bio)) { 1478 struct bio *split = bio_split(bio, r10_bio->sectors, 1479 GFP_NOIO, &conf->bio_split); 1480 bio_chain(split, bio); 1481 allow_barrier(conf); 1482 generic_make_request(bio); 1483 wait_barrier(conf); 1484 bio = split; 1485 r10_bio->master_bio = bio; 1486 } 1487 1488 atomic_set(&r10_bio->remaining, 1); 1489 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1490 1491 for (i = 0; i < conf->copies; i++) { 1492 if (r10_bio->devs[i].bio) 1493 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1494 if (r10_bio->devs[i].repl_bio) 1495 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1496 } 1497 one_write_done(r10_bio); 1498 } 1499 1500 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1501 { 1502 struct r10conf *conf = mddev->private; 1503 struct r10bio *r10_bio; 1504 1505 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1506 1507 r10_bio->master_bio = bio; 1508 r10_bio->sectors = sectors; 1509 1510 r10_bio->mddev = mddev; 1511 r10_bio->sector = bio->bi_iter.bi_sector; 1512 r10_bio->state = 0; 1513 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies); 1514 1515 if (bio_data_dir(bio) == READ) 1516 raid10_read_request(mddev, bio, r10_bio); 1517 else 1518 raid10_write_request(mddev, bio, r10_bio); 1519 } 1520 1521 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1522 { 1523 struct r10conf *conf = mddev->private; 1524 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1525 int chunk_sects = chunk_mask + 1; 1526 int sectors = bio_sectors(bio); 1527 1528 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1529 && md_flush_request(mddev, bio)) 1530 return true; 1531 1532 if (!md_write_start(mddev, bio)) 1533 return false; 1534 1535 /* 1536 * If this request crosses a chunk boundary, we need to split 1537 * it. 1538 */ 1539 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1540 sectors > chunk_sects 1541 && (conf->geo.near_copies < conf->geo.raid_disks 1542 || conf->prev.near_copies < 1543 conf->prev.raid_disks))) 1544 sectors = chunk_sects - 1545 (bio->bi_iter.bi_sector & 1546 (chunk_sects - 1)); 1547 __make_request(mddev, bio, sectors); 1548 1549 /* In case raid10d snuck in to freeze_array */ 1550 wake_up(&conf->wait_barrier); 1551 return true; 1552 } 1553 1554 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1555 { 1556 struct r10conf *conf = mddev->private; 1557 int i; 1558 1559 if (conf->geo.near_copies < conf->geo.raid_disks) 1560 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1561 if (conf->geo.near_copies > 1) 1562 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1563 if (conf->geo.far_copies > 1) { 1564 if (conf->geo.far_offset) 1565 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1566 else 1567 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1568 if (conf->geo.far_set_size != conf->geo.raid_disks) 1569 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1570 } 1571 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1572 conf->geo.raid_disks - mddev->degraded); 1573 rcu_read_lock(); 1574 for (i = 0; i < conf->geo.raid_disks; i++) { 1575 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1576 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1577 } 1578 rcu_read_unlock(); 1579 seq_printf(seq, "]"); 1580 } 1581 1582 /* check if there are enough drives for 1583 * every block to appear on atleast one. 1584 * Don't consider the device numbered 'ignore' 1585 * as we might be about to remove it. 1586 */ 1587 static int _enough(struct r10conf *conf, int previous, int ignore) 1588 { 1589 int first = 0; 1590 int has_enough = 0; 1591 int disks, ncopies; 1592 if (previous) { 1593 disks = conf->prev.raid_disks; 1594 ncopies = conf->prev.near_copies; 1595 } else { 1596 disks = conf->geo.raid_disks; 1597 ncopies = conf->geo.near_copies; 1598 } 1599 1600 rcu_read_lock(); 1601 do { 1602 int n = conf->copies; 1603 int cnt = 0; 1604 int this = first; 1605 while (n--) { 1606 struct md_rdev *rdev; 1607 if (this != ignore && 1608 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1609 test_bit(In_sync, &rdev->flags)) 1610 cnt++; 1611 this = (this+1) % disks; 1612 } 1613 if (cnt == 0) 1614 goto out; 1615 first = (first + ncopies) % disks; 1616 } while (first != 0); 1617 has_enough = 1; 1618 out: 1619 rcu_read_unlock(); 1620 return has_enough; 1621 } 1622 1623 static int enough(struct r10conf *conf, int ignore) 1624 { 1625 /* when calling 'enough', both 'prev' and 'geo' must 1626 * be stable. 1627 * This is ensured if ->reconfig_mutex or ->device_lock 1628 * is held. 1629 */ 1630 return _enough(conf, 0, ignore) && 1631 _enough(conf, 1, ignore); 1632 } 1633 1634 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1635 { 1636 char b[BDEVNAME_SIZE]; 1637 struct r10conf *conf = mddev->private; 1638 unsigned long flags; 1639 1640 /* 1641 * If it is not operational, then we have already marked it as dead 1642 * else if it is the last working disks with "fail_last_dev == false", 1643 * ignore the error, let the next level up know. 1644 * else mark the drive as failed 1645 */ 1646 spin_lock_irqsave(&conf->device_lock, flags); 1647 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1648 && !enough(conf, rdev->raid_disk)) { 1649 /* 1650 * Don't fail the drive, just return an IO error. 1651 */ 1652 spin_unlock_irqrestore(&conf->device_lock, flags); 1653 return; 1654 } 1655 if (test_and_clear_bit(In_sync, &rdev->flags)) 1656 mddev->degraded++; 1657 /* 1658 * If recovery is running, make sure it aborts. 1659 */ 1660 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1661 set_bit(Blocked, &rdev->flags); 1662 set_bit(Faulty, &rdev->flags); 1663 set_mask_bits(&mddev->sb_flags, 0, 1664 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1665 spin_unlock_irqrestore(&conf->device_lock, flags); 1666 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1667 "md/raid10:%s: Operation continuing on %d devices.\n", 1668 mdname(mddev), bdevname(rdev->bdev, b), 1669 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1670 } 1671 1672 static void print_conf(struct r10conf *conf) 1673 { 1674 int i; 1675 struct md_rdev *rdev; 1676 1677 pr_debug("RAID10 conf printout:\n"); 1678 if (!conf) { 1679 pr_debug("(!conf)\n"); 1680 return; 1681 } 1682 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1683 conf->geo.raid_disks); 1684 1685 /* This is only called with ->reconfix_mutex held, so 1686 * rcu protection of rdev is not needed */ 1687 for (i = 0; i < conf->geo.raid_disks; i++) { 1688 char b[BDEVNAME_SIZE]; 1689 rdev = conf->mirrors[i].rdev; 1690 if (rdev) 1691 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1692 i, !test_bit(In_sync, &rdev->flags), 1693 !test_bit(Faulty, &rdev->flags), 1694 bdevname(rdev->bdev,b)); 1695 } 1696 } 1697 1698 static void close_sync(struct r10conf *conf) 1699 { 1700 wait_barrier(conf); 1701 allow_barrier(conf); 1702 1703 mempool_exit(&conf->r10buf_pool); 1704 } 1705 1706 static int raid10_spare_active(struct mddev *mddev) 1707 { 1708 int i; 1709 struct r10conf *conf = mddev->private; 1710 struct raid10_info *tmp; 1711 int count = 0; 1712 unsigned long flags; 1713 1714 /* 1715 * Find all non-in_sync disks within the RAID10 configuration 1716 * and mark them in_sync 1717 */ 1718 for (i = 0; i < conf->geo.raid_disks; i++) { 1719 tmp = conf->mirrors + i; 1720 if (tmp->replacement 1721 && tmp->replacement->recovery_offset == MaxSector 1722 && !test_bit(Faulty, &tmp->replacement->flags) 1723 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1724 /* Replacement has just become active */ 1725 if (!tmp->rdev 1726 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1727 count++; 1728 if (tmp->rdev) { 1729 /* Replaced device not technically faulty, 1730 * but we need to be sure it gets removed 1731 * and never re-added. 1732 */ 1733 set_bit(Faulty, &tmp->rdev->flags); 1734 sysfs_notify_dirent_safe( 1735 tmp->rdev->sysfs_state); 1736 } 1737 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1738 } else if (tmp->rdev 1739 && tmp->rdev->recovery_offset == MaxSector 1740 && !test_bit(Faulty, &tmp->rdev->flags) 1741 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1742 count++; 1743 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1744 } 1745 } 1746 spin_lock_irqsave(&conf->device_lock, flags); 1747 mddev->degraded -= count; 1748 spin_unlock_irqrestore(&conf->device_lock, flags); 1749 1750 print_conf(conf); 1751 return count; 1752 } 1753 1754 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1755 { 1756 struct r10conf *conf = mddev->private; 1757 int err = -EEXIST; 1758 int mirror; 1759 int first = 0; 1760 int last = conf->geo.raid_disks - 1; 1761 1762 if (mddev->recovery_cp < MaxSector) 1763 /* only hot-add to in-sync arrays, as recovery is 1764 * very different from resync 1765 */ 1766 return -EBUSY; 1767 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1768 return -EINVAL; 1769 1770 if (md_integrity_add_rdev(rdev, mddev)) 1771 return -ENXIO; 1772 1773 if (rdev->raid_disk >= 0) 1774 first = last = rdev->raid_disk; 1775 1776 if (rdev->saved_raid_disk >= first && 1777 rdev->saved_raid_disk < conf->geo.raid_disks && 1778 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1779 mirror = rdev->saved_raid_disk; 1780 else 1781 mirror = first; 1782 for ( ; mirror <= last ; mirror++) { 1783 struct raid10_info *p = &conf->mirrors[mirror]; 1784 if (p->recovery_disabled == mddev->recovery_disabled) 1785 continue; 1786 if (p->rdev) { 1787 if (!test_bit(WantReplacement, &p->rdev->flags) || 1788 p->replacement != NULL) 1789 continue; 1790 clear_bit(In_sync, &rdev->flags); 1791 set_bit(Replacement, &rdev->flags); 1792 rdev->raid_disk = mirror; 1793 err = 0; 1794 if (mddev->gendisk) 1795 disk_stack_limits(mddev->gendisk, rdev->bdev, 1796 rdev->data_offset << 9); 1797 conf->fullsync = 1; 1798 rcu_assign_pointer(p->replacement, rdev); 1799 break; 1800 } 1801 1802 if (mddev->gendisk) 1803 disk_stack_limits(mddev->gendisk, rdev->bdev, 1804 rdev->data_offset << 9); 1805 1806 p->head_position = 0; 1807 p->recovery_disabled = mddev->recovery_disabled - 1; 1808 rdev->raid_disk = mirror; 1809 err = 0; 1810 if (rdev->saved_raid_disk != mirror) 1811 conf->fullsync = 1; 1812 rcu_assign_pointer(p->rdev, rdev); 1813 break; 1814 } 1815 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1816 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1817 1818 print_conf(conf); 1819 return err; 1820 } 1821 1822 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1823 { 1824 struct r10conf *conf = mddev->private; 1825 int err = 0; 1826 int number = rdev->raid_disk; 1827 struct md_rdev **rdevp; 1828 struct raid10_info *p = conf->mirrors + number; 1829 1830 print_conf(conf); 1831 if (rdev == p->rdev) 1832 rdevp = &p->rdev; 1833 else if (rdev == p->replacement) 1834 rdevp = &p->replacement; 1835 else 1836 return 0; 1837 1838 if (test_bit(In_sync, &rdev->flags) || 1839 atomic_read(&rdev->nr_pending)) { 1840 err = -EBUSY; 1841 goto abort; 1842 } 1843 /* Only remove non-faulty devices if recovery 1844 * is not possible. 1845 */ 1846 if (!test_bit(Faulty, &rdev->flags) && 1847 mddev->recovery_disabled != p->recovery_disabled && 1848 (!p->replacement || p->replacement == rdev) && 1849 number < conf->geo.raid_disks && 1850 enough(conf, -1)) { 1851 err = -EBUSY; 1852 goto abort; 1853 } 1854 *rdevp = NULL; 1855 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1856 synchronize_rcu(); 1857 if (atomic_read(&rdev->nr_pending)) { 1858 /* lost the race, try later */ 1859 err = -EBUSY; 1860 *rdevp = rdev; 1861 goto abort; 1862 } 1863 } 1864 if (p->replacement) { 1865 /* We must have just cleared 'rdev' */ 1866 p->rdev = p->replacement; 1867 clear_bit(Replacement, &p->replacement->flags); 1868 smp_mb(); /* Make sure other CPUs may see both as identical 1869 * but will never see neither -- if they are careful. 1870 */ 1871 p->replacement = NULL; 1872 } 1873 1874 clear_bit(WantReplacement, &rdev->flags); 1875 err = md_integrity_register(mddev); 1876 1877 abort: 1878 1879 print_conf(conf); 1880 return err; 1881 } 1882 1883 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 1884 { 1885 struct r10conf *conf = r10_bio->mddev->private; 1886 1887 if (!bio->bi_status) 1888 set_bit(R10BIO_Uptodate, &r10_bio->state); 1889 else 1890 /* The write handler will notice the lack of 1891 * R10BIO_Uptodate and record any errors etc 1892 */ 1893 atomic_add(r10_bio->sectors, 1894 &conf->mirrors[d].rdev->corrected_errors); 1895 1896 /* for reconstruct, we always reschedule after a read. 1897 * for resync, only after all reads 1898 */ 1899 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1900 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1901 atomic_dec_and_test(&r10_bio->remaining)) { 1902 /* we have read all the blocks, 1903 * do the comparison in process context in raid10d 1904 */ 1905 reschedule_retry(r10_bio); 1906 } 1907 } 1908 1909 static void end_sync_read(struct bio *bio) 1910 { 1911 struct r10bio *r10_bio = get_resync_r10bio(bio); 1912 struct r10conf *conf = r10_bio->mddev->private; 1913 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1914 1915 __end_sync_read(r10_bio, bio, d); 1916 } 1917 1918 static void end_reshape_read(struct bio *bio) 1919 { 1920 /* reshape read bio isn't allocated from r10buf_pool */ 1921 struct r10bio *r10_bio = bio->bi_private; 1922 1923 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 1924 } 1925 1926 static void end_sync_request(struct r10bio *r10_bio) 1927 { 1928 struct mddev *mddev = r10_bio->mddev; 1929 1930 while (atomic_dec_and_test(&r10_bio->remaining)) { 1931 if (r10_bio->master_bio == NULL) { 1932 /* the primary of several recovery bios */ 1933 sector_t s = r10_bio->sectors; 1934 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1935 test_bit(R10BIO_WriteError, &r10_bio->state)) 1936 reschedule_retry(r10_bio); 1937 else 1938 put_buf(r10_bio); 1939 md_done_sync(mddev, s, 1); 1940 break; 1941 } else { 1942 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1943 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1944 test_bit(R10BIO_WriteError, &r10_bio->state)) 1945 reschedule_retry(r10_bio); 1946 else 1947 put_buf(r10_bio); 1948 r10_bio = r10_bio2; 1949 } 1950 } 1951 } 1952 1953 static void end_sync_write(struct bio *bio) 1954 { 1955 struct r10bio *r10_bio = get_resync_r10bio(bio); 1956 struct mddev *mddev = r10_bio->mddev; 1957 struct r10conf *conf = mddev->private; 1958 int d; 1959 sector_t first_bad; 1960 int bad_sectors; 1961 int slot; 1962 int repl; 1963 struct md_rdev *rdev = NULL; 1964 1965 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1966 if (repl) 1967 rdev = conf->mirrors[d].replacement; 1968 else 1969 rdev = conf->mirrors[d].rdev; 1970 1971 if (bio->bi_status) { 1972 if (repl) 1973 md_error(mddev, rdev); 1974 else { 1975 set_bit(WriteErrorSeen, &rdev->flags); 1976 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1977 set_bit(MD_RECOVERY_NEEDED, 1978 &rdev->mddev->recovery); 1979 set_bit(R10BIO_WriteError, &r10_bio->state); 1980 } 1981 } else if (is_badblock(rdev, 1982 r10_bio->devs[slot].addr, 1983 r10_bio->sectors, 1984 &first_bad, &bad_sectors)) 1985 set_bit(R10BIO_MadeGood, &r10_bio->state); 1986 1987 rdev_dec_pending(rdev, mddev); 1988 1989 end_sync_request(r10_bio); 1990 } 1991 1992 /* 1993 * Note: sync and recover and handled very differently for raid10 1994 * This code is for resync. 1995 * For resync, we read through virtual addresses and read all blocks. 1996 * If there is any error, we schedule a write. The lowest numbered 1997 * drive is authoritative. 1998 * However requests come for physical address, so we need to map. 1999 * For every physical address there are raid_disks/copies virtual addresses, 2000 * which is always are least one, but is not necessarly an integer. 2001 * This means that a physical address can span multiple chunks, so we may 2002 * have to submit multiple io requests for a single sync request. 2003 */ 2004 /* 2005 * We check if all blocks are in-sync and only write to blocks that 2006 * aren't in sync 2007 */ 2008 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2009 { 2010 struct r10conf *conf = mddev->private; 2011 int i, first; 2012 struct bio *tbio, *fbio; 2013 int vcnt; 2014 struct page **tpages, **fpages; 2015 2016 atomic_set(&r10_bio->remaining, 1); 2017 2018 /* find the first device with a block */ 2019 for (i=0; i<conf->copies; i++) 2020 if (!r10_bio->devs[i].bio->bi_status) 2021 break; 2022 2023 if (i == conf->copies) 2024 goto done; 2025 2026 first = i; 2027 fbio = r10_bio->devs[i].bio; 2028 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2029 fbio->bi_iter.bi_idx = 0; 2030 fpages = get_resync_pages(fbio)->pages; 2031 2032 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2033 /* now find blocks with errors */ 2034 for (i=0 ; i < conf->copies ; i++) { 2035 int j, d; 2036 struct md_rdev *rdev; 2037 struct resync_pages *rp; 2038 2039 tbio = r10_bio->devs[i].bio; 2040 2041 if (tbio->bi_end_io != end_sync_read) 2042 continue; 2043 if (i == first) 2044 continue; 2045 2046 tpages = get_resync_pages(tbio)->pages; 2047 d = r10_bio->devs[i].devnum; 2048 rdev = conf->mirrors[d].rdev; 2049 if (!r10_bio->devs[i].bio->bi_status) { 2050 /* We know that the bi_io_vec layout is the same for 2051 * both 'first' and 'i', so we just compare them. 2052 * All vec entries are PAGE_SIZE; 2053 */ 2054 int sectors = r10_bio->sectors; 2055 for (j = 0; j < vcnt; j++) { 2056 int len = PAGE_SIZE; 2057 if (sectors < (len / 512)) 2058 len = sectors * 512; 2059 if (memcmp(page_address(fpages[j]), 2060 page_address(tpages[j]), 2061 len)) 2062 break; 2063 sectors -= len/512; 2064 } 2065 if (j == vcnt) 2066 continue; 2067 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2068 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2069 /* Don't fix anything. */ 2070 continue; 2071 } else if (test_bit(FailFast, &rdev->flags)) { 2072 /* Just give up on this device */ 2073 md_error(rdev->mddev, rdev); 2074 continue; 2075 } 2076 /* Ok, we need to write this bio, either to correct an 2077 * inconsistency or to correct an unreadable block. 2078 * First we need to fixup bv_offset, bv_len and 2079 * bi_vecs, as the read request might have corrupted these 2080 */ 2081 rp = get_resync_pages(tbio); 2082 bio_reset(tbio); 2083 2084 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2085 2086 rp->raid_bio = r10_bio; 2087 tbio->bi_private = rp; 2088 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2089 tbio->bi_end_io = end_sync_write; 2090 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2091 2092 bio_copy_data(tbio, fbio); 2093 2094 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2095 atomic_inc(&r10_bio->remaining); 2096 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2097 2098 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2099 tbio->bi_opf |= MD_FAILFAST; 2100 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2101 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev); 2102 generic_make_request(tbio); 2103 } 2104 2105 /* Now write out to any replacement devices 2106 * that are active 2107 */ 2108 for (i = 0; i < conf->copies; i++) { 2109 int d; 2110 2111 tbio = r10_bio->devs[i].repl_bio; 2112 if (!tbio || !tbio->bi_end_io) 2113 continue; 2114 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2115 && r10_bio->devs[i].bio != fbio) 2116 bio_copy_data(tbio, fbio); 2117 d = r10_bio->devs[i].devnum; 2118 atomic_inc(&r10_bio->remaining); 2119 md_sync_acct(conf->mirrors[d].replacement->bdev, 2120 bio_sectors(tbio)); 2121 generic_make_request(tbio); 2122 } 2123 2124 done: 2125 if (atomic_dec_and_test(&r10_bio->remaining)) { 2126 md_done_sync(mddev, r10_bio->sectors, 1); 2127 put_buf(r10_bio); 2128 } 2129 } 2130 2131 /* 2132 * Now for the recovery code. 2133 * Recovery happens across physical sectors. 2134 * We recover all non-is_sync drives by finding the virtual address of 2135 * each, and then choose a working drive that also has that virt address. 2136 * There is a separate r10_bio for each non-in_sync drive. 2137 * Only the first two slots are in use. The first for reading, 2138 * The second for writing. 2139 * 2140 */ 2141 static void fix_recovery_read_error(struct r10bio *r10_bio) 2142 { 2143 /* We got a read error during recovery. 2144 * We repeat the read in smaller page-sized sections. 2145 * If a read succeeds, write it to the new device or record 2146 * a bad block if we cannot. 2147 * If a read fails, record a bad block on both old and 2148 * new devices. 2149 */ 2150 struct mddev *mddev = r10_bio->mddev; 2151 struct r10conf *conf = mddev->private; 2152 struct bio *bio = r10_bio->devs[0].bio; 2153 sector_t sect = 0; 2154 int sectors = r10_bio->sectors; 2155 int idx = 0; 2156 int dr = r10_bio->devs[0].devnum; 2157 int dw = r10_bio->devs[1].devnum; 2158 struct page **pages = get_resync_pages(bio)->pages; 2159 2160 while (sectors) { 2161 int s = sectors; 2162 struct md_rdev *rdev; 2163 sector_t addr; 2164 int ok; 2165 2166 if (s > (PAGE_SIZE>>9)) 2167 s = PAGE_SIZE >> 9; 2168 2169 rdev = conf->mirrors[dr].rdev; 2170 addr = r10_bio->devs[0].addr + sect, 2171 ok = sync_page_io(rdev, 2172 addr, 2173 s << 9, 2174 pages[idx], 2175 REQ_OP_READ, 0, false); 2176 if (ok) { 2177 rdev = conf->mirrors[dw].rdev; 2178 addr = r10_bio->devs[1].addr + sect; 2179 ok = sync_page_io(rdev, 2180 addr, 2181 s << 9, 2182 pages[idx], 2183 REQ_OP_WRITE, 0, false); 2184 if (!ok) { 2185 set_bit(WriteErrorSeen, &rdev->flags); 2186 if (!test_and_set_bit(WantReplacement, 2187 &rdev->flags)) 2188 set_bit(MD_RECOVERY_NEEDED, 2189 &rdev->mddev->recovery); 2190 } 2191 } 2192 if (!ok) { 2193 /* We don't worry if we cannot set a bad block - 2194 * it really is bad so there is no loss in not 2195 * recording it yet 2196 */ 2197 rdev_set_badblocks(rdev, addr, s, 0); 2198 2199 if (rdev != conf->mirrors[dw].rdev) { 2200 /* need bad block on destination too */ 2201 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2202 addr = r10_bio->devs[1].addr + sect; 2203 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2204 if (!ok) { 2205 /* just abort the recovery */ 2206 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2207 mdname(mddev)); 2208 2209 conf->mirrors[dw].recovery_disabled 2210 = mddev->recovery_disabled; 2211 set_bit(MD_RECOVERY_INTR, 2212 &mddev->recovery); 2213 break; 2214 } 2215 } 2216 } 2217 2218 sectors -= s; 2219 sect += s; 2220 idx++; 2221 } 2222 } 2223 2224 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2225 { 2226 struct r10conf *conf = mddev->private; 2227 int d; 2228 struct bio *wbio, *wbio2; 2229 2230 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2231 fix_recovery_read_error(r10_bio); 2232 end_sync_request(r10_bio); 2233 return; 2234 } 2235 2236 /* 2237 * share the pages with the first bio 2238 * and submit the write request 2239 */ 2240 d = r10_bio->devs[1].devnum; 2241 wbio = r10_bio->devs[1].bio; 2242 wbio2 = r10_bio->devs[1].repl_bio; 2243 /* Need to test wbio2->bi_end_io before we call 2244 * generic_make_request as if the former is NULL, 2245 * the latter is free to free wbio2. 2246 */ 2247 if (wbio2 && !wbio2->bi_end_io) 2248 wbio2 = NULL; 2249 if (wbio->bi_end_io) { 2250 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2251 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2252 generic_make_request(wbio); 2253 } 2254 if (wbio2) { 2255 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2256 md_sync_acct(conf->mirrors[d].replacement->bdev, 2257 bio_sectors(wbio2)); 2258 generic_make_request(wbio2); 2259 } 2260 } 2261 2262 /* 2263 * Used by fix_read_error() to decay the per rdev read_errors. 2264 * We halve the read error count for every hour that has elapsed 2265 * since the last recorded read error. 2266 * 2267 */ 2268 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2269 { 2270 long cur_time_mon; 2271 unsigned long hours_since_last; 2272 unsigned int read_errors = atomic_read(&rdev->read_errors); 2273 2274 cur_time_mon = ktime_get_seconds(); 2275 2276 if (rdev->last_read_error == 0) { 2277 /* first time we've seen a read error */ 2278 rdev->last_read_error = cur_time_mon; 2279 return; 2280 } 2281 2282 hours_since_last = (long)(cur_time_mon - 2283 rdev->last_read_error) / 3600; 2284 2285 rdev->last_read_error = cur_time_mon; 2286 2287 /* 2288 * if hours_since_last is > the number of bits in read_errors 2289 * just set read errors to 0. We do this to avoid 2290 * overflowing the shift of read_errors by hours_since_last. 2291 */ 2292 if (hours_since_last >= 8 * sizeof(read_errors)) 2293 atomic_set(&rdev->read_errors, 0); 2294 else 2295 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2296 } 2297 2298 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2299 int sectors, struct page *page, int rw) 2300 { 2301 sector_t first_bad; 2302 int bad_sectors; 2303 2304 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2305 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2306 return -1; 2307 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2308 /* success */ 2309 return 1; 2310 if (rw == WRITE) { 2311 set_bit(WriteErrorSeen, &rdev->flags); 2312 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2313 set_bit(MD_RECOVERY_NEEDED, 2314 &rdev->mddev->recovery); 2315 } 2316 /* need to record an error - either for the block or the device */ 2317 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2318 md_error(rdev->mddev, rdev); 2319 return 0; 2320 } 2321 2322 /* 2323 * This is a kernel thread which: 2324 * 2325 * 1. Retries failed read operations on working mirrors. 2326 * 2. Updates the raid superblock when problems encounter. 2327 * 3. Performs writes following reads for array synchronising. 2328 */ 2329 2330 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2331 { 2332 int sect = 0; /* Offset from r10_bio->sector */ 2333 int sectors = r10_bio->sectors; 2334 struct md_rdev *rdev; 2335 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2336 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2337 2338 /* still own a reference to this rdev, so it cannot 2339 * have been cleared recently. 2340 */ 2341 rdev = conf->mirrors[d].rdev; 2342 2343 if (test_bit(Faulty, &rdev->flags)) 2344 /* drive has already been failed, just ignore any 2345 more fix_read_error() attempts */ 2346 return; 2347 2348 check_decay_read_errors(mddev, rdev); 2349 atomic_inc(&rdev->read_errors); 2350 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2351 char b[BDEVNAME_SIZE]; 2352 bdevname(rdev->bdev, b); 2353 2354 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2355 mdname(mddev), b, 2356 atomic_read(&rdev->read_errors), max_read_errors); 2357 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2358 mdname(mddev), b); 2359 md_error(mddev, rdev); 2360 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2361 return; 2362 } 2363 2364 while(sectors) { 2365 int s = sectors; 2366 int sl = r10_bio->read_slot; 2367 int success = 0; 2368 int start; 2369 2370 if (s > (PAGE_SIZE>>9)) 2371 s = PAGE_SIZE >> 9; 2372 2373 rcu_read_lock(); 2374 do { 2375 sector_t first_bad; 2376 int bad_sectors; 2377 2378 d = r10_bio->devs[sl].devnum; 2379 rdev = rcu_dereference(conf->mirrors[d].rdev); 2380 if (rdev && 2381 test_bit(In_sync, &rdev->flags) && 2382 !test_bit(Faulty, &rdev->flags) && 2383 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2384 &first_bad, &bad_sectors) == 0) { 2385 atomic_inc(&rdev->nr_pending); 2386 rcu_read_unlock(); 2387 success = sync_page_io(rdev, 2388 r10_bio->devs[sl].addr + 2389 sect, 2390 s<<9, 2391 conf->tmppage, 2392 REQ_OP_READ, 0, false); 2393 rdev_dec_pending(rdev, mddev); 2394 rcu_read_lock(); 2395 if (success) 2396 break; 2397 } 2398 sl++; 2399 if (sl == conf->copies) 2400 sl = 0; 2401 } while (!success && sl != r10_bio->read_slot); 2402 rcu_read_unlock(); 2403 2404 if (!success) { 2405 /* Cannot read from anywhere, just mark the block 2406 * as bad on the first device to discourage future 2407 * reads. 2408 */ 2409 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2410 rdev = conf->mirrors[dn].rdev; 2411 2412 if (!rdev_set_badblocks( 2413 rdev, 2414 r10_bio->devs[r10_bio->read_slot].addr 2415 + sect, 2416 s, 0)) { 2417 md_error(mddev, rdev); 2418 r10_bio->devs[r10_bio->read_slot].bio 2419 = IO_BLOCKED; 2420 } 2421 break; 2422 } 2423 2424 start = sl; 2425 /* write it back and re-read */ 2426 rcu_read_lock(); 2427 while (sl != r10_bio->read_slot) { 2428 char b[BDEVNAME_SIZE]; 2429 2430 if (sl==0) 2431 sl = conf->copies; 2432 sl--; 2433 d = r10_bio->devs[sl].devnum; 2434 rdev = rcu_dereference(conf->mirrors[d].rdev); 2435 if (!rdev || 2436 test_bit(Faulty, &rdev->flags) || 2437 !test_bit(In_sync, &rdev->flags)) 2438 continue; 2439 2440 atomic_inc(&rdev->nr_pending); 2441 rcu_read_unlock(); 2442 if (r10_sync_page_io(rdev, 2443 r10_bio->devs[sl].addr + 2444 sect, 2445 s, conf->tmppage, WRITE) 2446 == 0) { 2447 /* Well, this device is dead */ 2448 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2449 mdname(mddev), s, 2450 (unsigned long long)( 2451 sect + 2452 choose_data_offset(r10_bio, 2453 rdev)), 2454 bdevname(rdev->bdev, b)); 2455 pr_notice("md/raid10:%s: %s: failing drive\n", 2456 mdname(mddev), 2457 bdevname(rdev->bdev, b)); 2458 } 2459 rdev_dec_pending(rdev, mddev); 2460 rcu_read_lock(); 2461 } 2462 sl = start; 2463 while (sl != r10_bio->read_slot) { 2464 char b[BDEVNAME_SIZE]; 2465 2466 if (sl==0) 2467 sl = conf->copies; 2468 sl--; 2469 d = r10_bio->devs[sl].devnum; 2470 rdev = rcu_dereference(conf->mirrors[d].rdev); 2471 if (!rdev || 2472 test_bit(Faulty, &rdev->flags) || 2473 !test_bit(In_sync, &rdev->flags)) 2474 continue; 2475 2476 atomic_inc(&rdev->nr_pending); 2477 rcu_read_unlock(); 2478 switch (r10_sync_page_io(rdev, 2479 r10_bio->devs[sl].addr + 2480 sect, 2481 s, conf->tmppage, 2482 READ)) { 2483 case 0: 2484 /* Well, this device is dead */ 2485 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2486 mdname(mddev), s, 2487 (unsigned long long)( 2488 sect + 2489 choose_data_offset(r10_bio, rdev)), 2490 bdevname(rdev->bdev, b)); 2491 pr_notice("md/raid10:%s: %s: failing drive\n", 2492 mdname(mddev), 2493 bdevname(rdev->bdev, b)); 2494 break; 2495 case 1: 2496 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2497 mdname(mddev), s, 2498 (unsigned long long)( 2499 sect + 2500 choose_data_offset(r10_bio, rdev)), 2501 bdevname(rdev->bdev, b)); 2502 atomic_add(s, &rdev->corrected_errors); 2503 } 2504 2505 rdev_dec_pending(rdev, mddev); 2506 rcu_read_lock(); 2507 } 2508 rcu_read_unlock(); 2509 2510 sectors -= s; 2511 sect += s; 2512 } 2513 } 2514 2515 static int narrow_write_error(struct r10bio *r10_bio, int i) 2516 { 2517 struct bio *bio = r10_bio->master_bio; 2518 struct mddev *mddev = r10_bio->mddev; 2519 struct r10conf *conf = mddev->private; 2520 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2521 /* bio has the data to be written to slot 'i' where 2522 * we just recently had a write error. 2523 * We repeatedly clone the bio and trim down to one block, 2524 * then try the write. Where the write fails we record 2525 * a bad block. 2526 * It is conceivable that the bio doesn't exactly align with 2527 * blocks. We must handle this. 2528 * 2529 * We currently own a reference to the rdev. 2530 */ 2531 2532 int block_sectors; 2533 sector_t sector; 2534 int sectors; 2535 int sect_to_write = r10_bio->sectors; 2536 int ok = 1; 2537 2538 if (rdev->badblocks.shift < 0) 2539 return 0; 2540 2541 block_sectors = roundup(1 << rdev->badblocks.shift, 2542 bdev_logical_block_size(rdev->bdev) >> 9); 2543 sector = r10_bio->sector; 2544 sectors = ((r10_bio->sector + block_sectors) 2545 & ~(sector_t)(block_sectors - 1)) 2546 - sector; 2547 2548 while (sect_to_write) { 2549 struct bio *wbio; 2550 sector_t wsector; 2551 if (sectors > sect_to_write) 2552 sectors = sect_to_write; 2553 /* Write at 'sector' for 'sectors' */ 2554 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 2555 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2556 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2557 wbio->bi_iter.bi_sector = wsector + 2558 choose_data_offset(r10_bio, rdev); 2559 bio_set_dev(wbio, rdev->bdev); 2560 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2561 2562 if (submit_bio_wait(wbio) < 0) 2563 /* Failure! */ 2564 ok = rdev_set_badblocks(rdev, wsector, 2565 sectors, 0) 2566 && ok; 2567 2568 bio_put(wbio); 2569 sect_to_write -= sectors; 2570 sector += sectors; 2571 sectors = block_sectors; 2572 } 2573 return ok; 2574 } 2575 2576 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2577 { 2578 int slot = r10_bio->read_slot; 2579 struct bio *bio; 2580 struct r10conf *conf = mddev->private; 2581 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2582 2583 /* we got a read error. Maybe the drive is bad. Maybe just 2584 * the block and we can fix it. 2585 * We freeze all other IO, and try reading the block from 2586 * other devices. When we find one, we re-write 2587 * and check it that fixes the read error. 2588 * This is all done synchronously while the array is 2589 * frozen. 2590 */ 2591 bio = r10_bio->devs[slot].bio; 2592 bio_put(bio); 2593 r10_bio->devs[slot].bio = NULL; 2594 2595 if (mddev->ro) 2596 r10_bio->devs[slot].bio = IO_BLOCKED; 2597 else if (!test_bit(FailFast, &rdev->flags)) { 2598 freeze_array(conf, 1); 2599 fix_read_error(conf, mddev, r10_bio); 2600 unfreeze_array(conf); 2601 } else 2602 md_error(mddev, rdev); 2603 2604 rdev_dec_pending(rdev, mddev); 2605 allow_barrier(conf); 2606 r10_bio->state = 0; 2607 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2608 } 2609 2610 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2611 { 2612 /* Some sort of write request has finished and it 2613 * succeeded in writing where we thought there was a 2614 * bad block. So forget the bad block. 2615 * Or possibly if failed and we need to record 2616 * a bad block. 2617 */ 2618 int m; 2619 struct md_rdev *rdev; 2620 2621 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2622 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2623 for (m = 0; m < conf->copies; m++) { 2624 int dev = r10_bio->devs[m].devnum; 2625 rdev = conf->mirrors[dev].rdev; 2626 if (r10_bio->devs[m].bio == NULL || 2627 r10_bio->devs[m].bio->bi_end_io == NULL) 2628 continue; 2629 if (!r10_bio->devs[m].bio->bi_status) { 2630 rdev_clear_badblocks( 2631 rdev, 2632 r10_bio->devs[m].addr, 2633 r10_bio->sectors, 0); 2634 } else { 2635 if (!rdev_set_badblocks( 2636 rdev, 2637 r10_bio->devs[m].addr, 2638 r10_bio->sectors, 0)) 2639 md_error(conf->mddev, rdev); 2640 } 2641 rdev = conf->mirrors[dev].replacement; 2642 if (r10_bio->devs[m].repl_bio == NULL || 2643 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2644 continue; 2645 2646 if (!r10_bio->devs[m].repl_bio->bi_status) { 2647 rdev_clear_badblocks( 2648 rdev, 2649 r10_bio->devs[m].addr, 2650 r10_bio->sectors, 0); 2651 } else { 2652 if (!rdev_set_badblocks( 2653 rdev, 2654 r10_bio->devs[m].addr, 2655 r10_bio->sectors, 0)) 2656 md_error(conf->mddev, rdev); 2657 } 2658 } 2659 put_buf(r10_bio); 2660 } else { 2661 bool fail = false; 2662 for (m = 0; m < conf->copies; m++) { 2663 int dev = r10_bio->devs[m].devnum; 2664 struct bio *bio = r10_bio->devs[m].bio; 2665 rdev = conf->mirrors[dev].rdev; 2666 if (bio == IO_MADE_GOOD) { 2667 rdev_clear_badblocks( 2668 rdev, 2669 r10_bio->devs[m].addr, 2670 r10_bio->sectors, 0); 2671 rdev_dec_pending(rdev, conf->mddev); 2672 } else if (bio != NULL && bio->bi_status) { 2673 fail = true; 2674 if (!narrow_write_error(r10_bio, m)) { 2675 md_error(conf->mddev, rdev); 2676 set_bit(R10BIO_Degraded, 2677 &r10_bio->state); 2678 } 2679 rdev_dec_pending(rdev, conf->mddev); 2680 } 2681 bio = r10_bio->devs[m].repl_bio; 2682 rdev = conf->mirrors[dev].replacement; 2683 if (rdev && bio == IO_MADE_GOOD) { 2684 rdev_clear_badblocks( 2685 rdev, 2686 r10_bio->devs[m].addr, 2687 r10_bio->sectors, 0); 2688 rdev_dec_pending(rdev, conf->mddev); 2689 } 2690 } 2691 if (fail) { 2692 spin_lock_irq(&conf->device_lock); 2693 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2694 conf->nr_queued++; 2695 spin_unlock_irq(&conf->device_lock); 2696 /* 2697 * In case freeze_array() is waiting for condition 2698 * nr_pending == nr_queued + extra to be true. 2699 */ 2700 wake_up(&conf->wait_barrier); 2701 md_wakeup_thread(conf->mddev->thread); 2702 } else { 2703 if (test_bit(R10BIO_WriteError, 2704 &r10_bio->state)) 2705 close_write(r10_bio); 2706 raid_end_bio_io(r10_bio); 2707 } 2708 } 2709 } 2710 2711 static void raid10d(struct md_thread *thread) 2712 { 2713 struct mddev *mddev = thread->mddev; 2714 struct r10bio *r10_bio; 2715 unsigned long flags; 2716 struct r10conf *conf = mddev->private; 2717 struct list_head *head = &conf->retry_list; 2718 struct blk_plug plug; 2719 2720 md_check_recovery(mddev); 2721 2722 if (!list_empty_careful(&conf->bio_end_io_list) && 2723 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2724 LIST_HEAD(tmp); 2725 spin_lock_irqsave(&conf->device_lock, flags); 2726 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2727 while (!list_empty(&conf->bio_end_io_list)) { 2728 list_move(conf->bio_end_io_list.prev, &tmp); 2729 conf->nr_queued--; 2730 } 2731 } 2732 spin_unlock_irqrestore(&conf->device_lock, flags); 2733 while (!list_empty(&tmp)) { 2734 r10_bio = list_first_entry(&tmp, struct r10bio, 2735 retry_list); 2736 list_del(&r10_bio->retry_list); 2737 if (mddev->degraded) 2738 set_bit(R10BIO_Degraded, &r10_bio->state); 2739 2740 if (test_bit(R10BIO_WriteError, 2741 &r10_bio->state)) 2742 close_write(r10_bio); 2743 raid_end_bio_io(r10_bio); 2744 } 2745 } 2746 2747 blk_start_plug(&plug); 2748 for (;;) { 2749 2750 flush_pending_writes(conf); 2751 2752 spin_lock_irqsave(&conf->device_lock, flags); 2753 if (list_empty(head)) { 2754 spin_unlock_irqrestore(&conf->device_lock, flags); 2755 break; 2756 } 2757 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2758 list_del(head->prev); 2759 conf->nr_queued--; 2760 spin_unlock_irqrestore(&conf->device_lock, flags); 2761 2762 mddev = r10_bio->mddev; 2763 conf = mddev->private; 2764 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2765 test_bit(R10BIO_WriteError, &r10_bio->state)) 2766 handle_write_completed(conf, r10_bio); 2767 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2768 reshape_request_write(mddev, r10_bio); 2769 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2770 sync_request_write(mddev, r10_bio); 2771 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2772 recovery_request_write(mddev, r10_bio); 2773 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2774 handle_read_error(mddev, r10_bio); 2775 else 2776 WARN_ON_ONCE(1); 2777 2778 cond_resched(); 2779 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2780 md_check_recovery(mddev); 2781 } 2782 blk_finish_plug(&plug); 2783 } 2784 2785 static int init_resync(struct r10conf *conf) 2786 { 2787 int ret, buffs, i; 2788 2789 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2790 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 2791 conf->have_replacement = 0; 2792 for (i = 0; i < conf->geo.raid_disks; i++) 2793 if (conf->mirrors[i].replacement) 2794 conf->have_replacement = 1; 2795 ret = mempool_init(&conf->r10buf_pool, buffs, 2796 r10buf_pool_alloc, r10buf_pool_free, conf); 2797 if (ret) 2798 return ret; 2799 conf->next_resync = 0; 2800 return 0; 2801 } 2802 2803 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 2804 { 2805 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 2806 struct rsync_pages *rp; 2807 struct bio *bio; 2808 int nalloc; 2809 int i; 2810 2811 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 2812 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 2813 nalloc = conf->copies; /* resync */ 2814 else 2815 nalloc = 2; /* recovery */ 2816 2817 for (i = 0; i < nalloc; i++) { 2818 bio = r10bio->devs[i].bio; 2819 rp = bio->bi_private; 2820 bio_reset(bio); 2821 bio->bi_private = rp; 2822 bio = r10bio->devs[i].repl_bio; 2823 if (bio) { 2824 rp = bio->bi_private; 2825 bio_reset(bio); 2826 bio->bi_private = rp; 2827 } 2828 } 2829 return r10bio; 2830 } 2831 2832 /* 2833 * Set cluster_sync_high since we need other nodes to add the 2834 * range [cluster_sync_low, cluster_sync_high] to suspend list. 2835 */ 2836 static void raid10_set_cluster_sync_high(struct r10conf *conf) 2837 { 2838 sector_t window_size; 2839 int extra_chunk, chunks; 2840 2841 /* 2842 * First, here we define "stripe" as a unit which across 2843 * all member devices one time, so we get chunks by use 2844 * raid_disks / near_copies. Otherwise, if near_copies is 2845 * close to raid_disks, then resync window could increases 2846 * linearly with the increase of raid_disks, which means 2847 * we will suspend a really large IO window while it is not 2848 * necessary. If raid_disks is not divisible by near_copies, 2849 * an extra chunk is needed to ensure the whole "stripe" is 2850 * covered. 2851 */ 2852 2853 chunks = conf->geo.raid_disks / conf->geo.near_copies; 2854 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 2855 extra_chunk = 0; 2856 else 2857 extra_chunk = 1; 2858 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 2859 2860 /* 2861 * At least use a 32M window to align with raid1's resync window 2862 */ 2863 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 2864 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 2865 2866 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 2867 } 2868 2869 /* 2870 * perform a "sync" on one "block" 2871 * 2872 * We need to make sure that no normal I/O request - particularly write 2873 * requests - conflict with active sync requests. 2874 * 2875 * This is achieved by tracking pending requests and a 'barrier' concept 2876 * that can be installed to exclude normal IO requests. 2877 * 2878 * Resync and recovery are handled very differently. 2879 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2880 * 2881 * For resync, we iterate over virtual addresses, read all copies, 2882 * and update if there are differences. If only one copy is live, 2883 * skip it. 2884 * For recovery, we iterate over physical addresses, read a good 2885 * value for each non-in_sync drive, and over-write. 2886 * 2887 * So, for recovery we may have several outstanding complex requests for a 2888 * given address, one for each out-of-sync device. We model this by allocating 2889 * a number of r10_bio structures, one for each out-of-sync device. 2890 * As we setup these structures, we collect all bio's together into a list 2891 * which we then process collectively to add pages, and then process again 2892 * to pass to generic_make_request. 2893 * 2894 * The r10_bio structures are linked using a borrowed master_bio pointer. 2895 * This link is counted in ->remaining. When the r10_bio that points to NULL 2896 * has its remaining count decremented to 0, the whole complex operation 2897 * is complete. 2898 * 2899 */ 2900 2901 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 2902 int *skipped) 2903 { 2904 struct r10conf *conf = mddev->private; 2905 struct r10bio *r10_bio; 2906 struct bio *biolist = NULL, *bio; 2907 sector_t max_sector, nr_sectors; 2908 int i; 2909 int max_sync; 2910 sector_t sync_blocks; 2911 sector_t sectors_skipped = 0; 2912 int chunks_skipped = 0; 2913 sector_t chunk_mask = conf->geo.chunk_mask; 2914 int page_idx = 0; 2915 2916 if (!mempool_initialized(&conf->r10buf_pool)) 2917 if (init_resync(conf)) 2918 return 0; 2919 2920 /* 2921 * Allow skipping a full rebuild for incremental assembly 2922 * of a clean array, like RAID1 does. 2923 */ 2924 if (mddev->bitmap == NULL && 2925 mddev->recovery_cp == MaxSector && 2926 mddev->reshape_position == MaxSector && 2927 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2928 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2929 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2930 conf->fullsync == 0) { 2931 *skipped = 1; 2932 return mddev->dev_sectors - sector_nr; 2933 } 2934 2935 skipped: 2936 max_sector = mddev->dev_sectors; 2937 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2938 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2939 max_sector = mddev->resync_max_sectors; 2940 if (sector_nr >= max_sector) { 2941 conf->cluster_sync_low = 0; 2942 conf->cluster_sync_high = 0; 2943 2944 /* If we aborted, we need to abort the 2945 * sync on the 'current' bitmap chucks (there can 2946 * be several when recovering multiple devices). 2947 * as we may have started syncing it but not finished. 2948 * We can find the current address in 2949 * mddev->curr_resync, but for recovery, 2950 * we need to convert that to several 2951 * virtual addresses. 2952 */ 2953 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2954 end_reshape(conf); 2955 close_sync(conf); 2956 return 0; 2957 } 2958 2959 if (mddev->curr_resync < max_sector) { /* aborted */ 2960 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2961 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2962 &sync_blocks, 1); 2963 else for (i = 0; i < conf->geo.raid_disks; i++) { 2964 sector_t sect = 2965 raid10_find_virt(conf, mddev->curr_resync, i); 2966 md_bitmap_end_sync(mddev->bitmap, sect, 2967 &sync_blocks, 1); 2968 } 2969 } else { 2970 /* completed sync */ 2971 if ((!mddev->bitmap || conf->fullsync) 2972 && conf->have_replacement 2973 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2974 /* Completed a full sync so the replacements 2975 * are now fully recovered. 2976 */ 2977 rcu_read_lock(); 2978 for (i = 0; i < conf->geo.raid_disks; i++) { 2979 struct md_rdev *rdev = 2980 rcu_dereference(conf->mirrors[i].replacement); 2981 if (rdev) 2982 rdev->recovery_offset = MaxSector; 2983 } 2984 rcu_read_unlock(); 2985 } 2986 conf->fullsync = 0; 2987 } 2988 md_bitmap_close_sync(mddev->bitmap); 2989 close_sync(conf); 2990 *skipped = 1; 2991 return sectors_skipped; 2992 } 2993 2994 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2995 return reshape_request(mddev, sector_nr, skipped); 2996 2997 if (chunks_skipped >= conf->geo.raid_disks) { 2998 /* if there has been nothing to do on any drive, 2999 * then there is nothing to do at all.. 3000 */ 3001 *skipped = 1; 3002 return (max_sector - sector_nr) + sectors_skipped; 3003 } 3004 3005 if (max_sector > mddev->resync_max) 3006 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3007 3008 /* make sure whole request will fit in a chunk - if chunks 3009 * are meaningful 3010 */ 3011 if (conf->geo.near_copies < conf->geo.raid_disks && 3012 max_sector > (sector_nr | chunk_mask)) 3013 max_sector = (sector_nr | chunk_mask) + 1; 3014 3015 /* 3016 * If there is non-resync activity waiting for a turn, then let it 3017 * though before starting on this new sync request. 3018 */ 3019 if (conf->nr_waiting) 3020 schedule_timeout_uninterruptible(1); 3021 3022 /* Again, very different code for resync and recovery. 3023 * Both must result in an r10bio with a list of bios that 3024 * have bi_end_io, bi_sector, bi_disk set, 3025 * and bi_private set to the r10bio. 3026 * For recovery, we may actually create several r10bios 3027 * with 2 bios in each, that correspond to the bios in the main one. 3028 * In this case, the subordinate r10bios link back through a 3029 * borrowed master_bio pointer, and the counter in the master 3030 * includes a ref from each subordinate. 3031 */ 3032 /* First, we decide what to do and set ->bi_end_io 3033 * To end_sync_read if we want to read, and 3034 * end_sync_write if we will want to write. 3035 */ 3036 3037 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3038 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3039 /* recovery... the complicated one */ 3040 int j; 3041 r10_bio = NULL; 3042 3043 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3044 int still_degraded; 3045 struct r10bio *rb2; 3046 sector_t sect; 3047 int must_sync; 3048 int any_working; 3049 int need_recover = 0; 3050 int need_replace = 0; 3051 struct raid10_info *mirror = &conf->mirrors[i]; 3052 struct md_rdev *mrdev, *mreplace; 3053 3054 rcu_read_lock(); 3055 mrdev = rcu_dereference(mirror->rdev); 3056 mreplace = rcu_dereference(mirror->replacement); 3057 3058 if (mrdev != NULL && 3059 !test_bit(Faulty, &mrdev->flags) && 3060 !test_bit(In_sync, &mrdev->flags)) 3061 need_recover = 1; 3062 if (mreplace != NULL && 3063 !test_bit(Faulty, &mreplace->flags)) 3064 need_replace = 1; 3065 3066 if (!need_recover && !need_replace) { 3067 rcu_read_unlock(); 3068 continue; 3069 } 3070 3071 still_degraded = 0; 3072 /* want to reconstruct this device */ 3073 rb2 = r10_bio; 3074 sect = raid10_find_virt(conf, sector_nr, i); 3075 if (sect >= mddev->resync_max_sectors) { 3076 /* last stripe is not complete - don't 3077 * try to recover this sector. 3078 */ 3079 rcu_read_unlock(); 3080 continue; 3081 } 3082 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3083 mreplace = NULL; 3084 /* Unless we are doing a full sync, or a replacement 3085 * we only need to recover the block if it is set in 3086 * the bitmap 3087 */ 3088 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3089 &sync_blocks, 1); 3090 if (sync_blocks < max_sync) 3091 max_sync = sync_blocks; 3092 if (!must_sync && 3093 mreplace == NULL && 3094 !conf->fullsync) { 3095 /* yep, skip the sync_blocks here, but don't assume 3096 * that there will never be anything to do here 3097 */ 3098 chunks_skipped = -1; 3099 rcu_read_unlock(); 3100 continue; 3101 } 3102 atomic_inc(&mrdev->nr_pending); 3103 if (mreplace) 3104 atomic_inc(&mreplace->nr_pending); 3105 rcu_read_unlock(); 3106 3107 r10_bio = raid10_alloc_init_r10buf(conf); 3108 r10_bio->state = 0; 3109 raise_barrier(conf, rb2 != NULL); 3110 atomic_set(&r10_bio->remaining, 0); 3111 3112 r10_bio->master_bio = (struct bio*)rb2; 3113 if (rb2) 3114 atomic_inc(&rb2->remaining); 3115 r10_bio->mddev = mddev; 3116 set_bit(R10BIO_IsRecover, &r10_bio->state); 3117 r10_bio->sector = sect; 3118 3119 raid10_find_phys(conf, r10_bio); 3120 3121 /* Need to check if the array will still be 3122 * degraded 3123 */ 3124 rcu_read_lock(); 3125 for (j = 0; j < conf->geo.raid_disks; j++) { 3126 struct md_rdev *rdev = rcu_dereference( 3127 conf->mirrors[j].rdev); 3128 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3129 still_degraded = 1; 3130 break; 3131 } 3132 } 3133 3134 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3135 &sync_blocks, still_degraded); 3136 3137 any_working = 0; 3138 for (j=0; j<conf->copies;j++) { 3139 int k; 3140 int d = r10_bio->devs[j].devnum; 3141 sector_t from_addr, to_addr; 3142 struct md_rdev *rdev = 3143 rcu_dereference(conf->mirrors[d].rdev); 3144 sector_t sector, first_bad; 3145 int bad_sectors; 3146 if (!rdev || 3147 !test_bit(In_sync, &rdev->flags)) 3148 continue; 3149 /* This is where we read from */ 3150 any_working = 1; 3151 sector = r10_bio->devs[j].addr; 3152 3153 if (is_badblock(rdev, sector, max_sync, 3154 &first_bad, &bad_sectors)) { 3155 if (first_bad > sector) 3156 max_sync = first_bad - sector; 3157 else { 3158 bad_sectors -= (sector 3159 - first_bad); 3160 if (max_sync > bad_sectors) 3161 max_sync = bad_sectors; 3162 continue; 3163 } 3164 } 3165 bio = r10_bio->devs[0].bio; 3166 bio->bi_next = biolist; 3167 biolist = bio; 3168 bio->bi_end_io = end_sync_read; 3169 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3170 if (test_bit(FailFast, &rdev->flags)) 3171 bio->bi_opf |= MD_FAILFAST; 3172 from_addr = r10_bio->devs[j].addr; 3173 bio->bi_iter.bi_sector = from_addr + 3174 rdev->data_offset; 3175 bio_set_dev(bio, rdev->bdev); 3176 atomic_inc(&rdev->nr_pending); 3177 /* and we write to 'i' (if not in_sync) */ 3178 3179 for (k=0; k<conf->copies; k++) 3180 if (r10_bio->devs[k].devnum == i) 3181 break; 3182 BUG_ON(k == conf->copies); 3183 to_addr = r10_bio->devs[k].addr; 3184 r10_bio->devs[0].devnum = d; 3185 r10_bio->devs[0].addr = from_addr; 3186 r10_bio->devs[1].devnum = i; 3187 r10_bio->devs[1].addr = to_addr; 3188 3189 if (need_recover) { 3190 bio = r10_bio->devs[1].bio; 3191 bio->bi_next = biolist; 3192 biolist = bio; 3193 bio->bi_end_io = end_sync_write; 3194 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3195 bio->bi_iter.bi_sector = to_addr 3196 + mrdev->data_offset; 3197 bio_set_dev(bio, mrdev->bdev); 3198 atomic_inc(&r10_bio->remaining); 3199 } else 3200 r10_bio->devs[1].bio->bi_end_io = NULL; 3201 3202 /* and maybe write to replacement */ 3203 bio = r10_bio->devs[1].repl_bio; 3204 if (bio) 3205 bio->bi_end_io = NULL; 3206 /* Note: if need_replace, then bio 3207 * cannot be NULL as r10buf_pool_alloc will 3208 * have allocated it. 3209 */ 3210 if (!need_replace) 3211 break; 3212 bio->bi_next = biolist; 3213 biolist = bio; 3214 bio->bi_end_io = end_sync_write; 3215 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3216 bio->bi_iter.bi_sector = to_addr + 3217 mreplace->data_offset; 3218 bio_set_dev(bio, mreplace->bdev); 3219 atomic_inc(&r10_bio->remaining); 3220 break; 3221 } 3222 rcu_read_unlock(); 3223 if (j == conf->copies) { 3224 /* Cannot recover, so abort the recovery or 3225 * record a bad block */ 3226 if (any_working) { 3227 /* problem is that there are bad blocks 3228 * on other device(s) 3229 */ 3230 int k; 3231 for (k = 0; k < conf->copies; k++) 3232 if (r10_bio->devs[k].devnum == i) 3233 break; 3234 if (!test_bit(In_sync, 3235 &mrdev->flags) 3236 && !rdev_set_badblocks( 3237 mrdev, 3238 r10_bio->devs[k].addr, 3239 max_sync, 0)) 3240 any_working = 0; 3241 if (mreplace && 3242 !rdev_set_badblocks( 3243 mreplace, 3244 r10_bio->devs[k].addr, 3245 max_sync, 0)) 3246 any_working = 0; 3247 } 3248 if (!any_working) { 3249 if (!test_and_set_bit(MD_RECOVERY_INTR, 3250 &mddev->recovery)) 3251 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3252 mdname(mddev)); 3253 mirror->recovery_disabled 3254 = mddev->recovery_disabled; 3255 } 3256 put_buf(r10_bio); 3257 if (rb2) 3258 atomic_dec(&rb2->remaining); 3259 r10_bio = rb2; 3260 rdev_dec_pending(mrdev, mddev); 3261 if (mreplace) 3262 rdev_dec_pending(mreplace, mddev); 3263 break; 3264 } 3265 rdev_dec_pending(mrdev, mddev); 3266 if (mreplace) 3267 rdev_dec_pending(mreplace, mddev); 3268 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3269 /* Only want this if there is elsewhere to 3270 * read from. 'j' is currently the first 3271 * readable copy. 3272 */ 3273 int targets = 1; 3274 for (; j < conf->copies; j++) { 3275 int d = r10_bio->devs[j].devnum; 3276 if (conf->mirrors[d].rdev && 3277 test_bit(In_sync, 3278 &conf->mirrors[d].rdev->flags)) 3279 targets++; 3280 } 3281 if (targets == 1) 3282 r10_bio->devs[0].bio->bi_opf 3283 &= ~MD_FAILFAST; 3284 } 3285 } 3286 if (biolist == NULL) { 3287 while (r10_bio) { 3288 struct r10bio *rb2 = r10_bio; 3289 r10_bio = (struct r10bio*) rb2->master_bio; 3290 rb2->master_bio = NULL; 3291 put_buf(rb2); 3292 } 3293 goto giveup; 3294 } 3295 } else { 3296 /* resync. Schedule a read for every block at this virt offset */ 3297 int count = 0; 3298 3299 /* 3300 * Since curr_resync_completed could probably not update in 3301 * time, and we will set cluster_sync_low based on it. 3302 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3303 * safety reason, which ensures curr_resync_completed is 3304 * updated in bitmap_cond_end_sync. 3305 */ 3306 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3307 mddev_is_clustered(mddev) && 3308 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3309 3310 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3311 &sync_blocks, mddev->degraded) && 3312 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3313 &mddev->recovery)) { 3314 /* We can skip this block */ 3315 *skipped = 1; 3316 return sync_blocks + sectors_skipped; 3317 } 3318 if (sync_blocks < max_sync) 3319 max_sync = sync_blocks; 3320 r10_bio = raid10_alloc_init_r10buf(conf); 3321 r10_bio->state = 0; 3322 3323 r10_bio->mddev = mddev; 3324 atomic_set(&r10_bio->remaining, 0); 3325 raise_barrier(conf, 0); 3326 conf->next_resync = sector_nr; 3327 3328 r10_bio->master_bio = NULL; 3329 r10_bio->sector = sector_nr; 3330 set_bit(R10BIO_IsSync, &r10_bio->state); 3331 raid10_find_phys(conf, r10_bio); 3332 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3333 3334 for (i = 0; i < conf->copies; i++) { 3335 int d = r10_bio->devs[i].devnum; 3336 sector_t first_bad, sector; 3337 int bad_sectors; 3338 struct md_rdev *rdev; 3339 3340 if (r10_bio->devs[i].repl_bio) 3341 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3342 3343 bio = r10_bio->devs[i].bio; 3344 bio->bi_status = BLK_STS_IOERR; 3345 rcu_read_lock(); 3346 rdev = rcu_dereference(conf->mirrors[d].rdev); 3347 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3348 rcu_read_unlock(); 3349 continue; 3350 } 3351 sector = r10_bio->devs[i].addr; 3352 if (is_badblock(rdev, sector, max_sync, 3353 &first_bad, &bad_sectors)) { 3354 if (first_bad > sector) 3355 max_sync = first_bad - sector; 3356 else { 3357 bad_sectors -= (sector - first_bad); 3358 if (max_sync > bad_sectors) 3359 max_sync = bad_sectors; 3360 rcu_read_unlock(); 3361 continue; 3362 } 3363 } 3364 atomic_inc(&rdev->nr_pending); 3365 atomic_inc(&r10_bio->remaining); 3366 bio->bi_next = biolist; 3367 biolist = bio; 3368 bio->bi_end_io = end_sync_read; 3369 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3370 if (test_bit(FailFast, &rdev->flags)) 3371 bio->bi_opf |= MD_FAILFAST; 3372 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3373 bio_set_dev(bio, rdev->bdev); 3374 count++; 3375 3376 rdev = rcu_dereference(conf->mirrors[d].replacement); 3377 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3378 rcu_read_unlock(); 3379 continue; 3380 } 3381 atomic_inc(&rdev->nr_pending); 3382 3383 /* Need to set up for writing to the replacement */ 3384 bio = r10_bio->devs[i].repl_bio; 3385 bio->bi_status = BLK_STS_IOERR; 3386 3387 sector = r10_bio->devs[i].addr; 3388 bio->bi_next = biolist; 3389 biolist = bio; 3390 bio->bi_end_io = end_sync_write; 3391 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3392 if (test_bit(FailFast, &rdev->flags)) 3393 bio->bi_opf |= MD_FAILFAST; 3394 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3395 bio_set_dev(bio, rdev->bdev); 3396 count++; 3397 rcu_read_unlock(); 3398 } 3399 3400 if (count < 2) { 3401 for (i=0; i<conf->copies; i++) { 3402 int d = r10_bio->devs[i].devnum; 3403 if (r10_bio->devs[i].bio->bi_end_io) 3404 rdev_dec_pending(conf->mirrors[d].rdev, 3405 mddev); 3406 if (r10_bio->devs[i].repl_bio && 3407 r10_bio->devs[i].repl_bio->bi_end_io) 3408 rdev_dec_pending( 3409 conf->mirrors[d].replacement, 3410 mddev); 3411 } 3412 put_buf(r10_bio); 3413 biolist = NULL; 3414 goto giveup; 3415 } 3416 } 3417 3418 nr_sectors = 0; 3419 if (sector_nr + max_sync < max_sector) 3420 max_sector = sector_nr + max_sync; 3421 do { 3422 struct page *page; 3423 int len = PAGE_SIZE; 3424 if (sector_nr + (len>>9) > max_sector) 3425 len = (max_sector - sector_nr) << 9; 3426 if (len == 0) 3427 break; 3428 for (bio= biolist ; bio ; bio=bio->bi_next) { 3429 struct resync_pages *rp = get_resync_pages(bio); 3430 page = resync_fetch_page(rp, page_idx); 3431 /* 3432 * won't fail because the vec table is big enough 3433 * to hold all these pages 3434 */ 3435 bio_add_page(bio, page, len, 0); 3436 } 3437 nr_sectors += len>>9; 3438 sector_nr += len>>9; 3439 } while (++page_idx < RESYNC_PAGES); 3440 r10_bio->sectors = nr_sectors; 3441 3442 if (mddev_is_clustered(mddev) && 3443 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3444 /* It is resync not recovery */ 3445 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3446 conf->cluster_sync_low = mddev->curr_resync_completed; 3447 raid10_set_cluster_sync_high(conf); 3448 /* Send resync message */ 3449 md_cluster_ops->resync_info_update(mddev, 3450 conf->cluster_sync_low, 3451 conf->cluster_sync_high); 3452 } 3453 } else if (mddev_is_clustered(mddev)) { 3454 /* This is recovery not resync */ 3455 sector_t sect_va1, sect_va2; 3456 bool broadcast_msg = false; 3457 3458 for (i = 0; i < conf->geo.raid_disks; i++) { 3459 /* 3460 * sector_nr is a device address for recovery, so we 3461 * need translate it to array address before compare 3462 * with cluster_sync_high. 3463 */ 3464 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3465 3466 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3467 broadcast_msg = true; 3468 /* 3469 * curr_resync_completed is similar as 3470 * sector_nr, so make the translation too. 3471 */ 3472 sect_va2 = raid10_find_virt(conf, 3473 mddev->curr_resync_completed, i); 3474 3475 if (conf->cluster_sync_low == 0 || 3476 conf->cluster_sync_low > sect_va2) 3477 conf->cluster_sync_low = sect_va2; 3478 } 3479 } 3480 if (broadcast_msg) { 3481 raid10_set_cluster_sync_high(conf); 3482 md_cluster_ops->resync_info_update(mddev, 3483 conf->cluster_sync_low, 3484 conf->cluster_sync_high); 3485 } 3486 } 3487 3488 while (biolist) { 3489 bio = biolist; 3490 biolist = biolist->bi_next; 3491 3492 bio->bi_next = NULL; 3493 r10_bio = get_resync_r10bio(bio); 3494 r10_bio->sectors = nr_sectors; 3495 3496 if (bio->bi_end_io == end_sync_read) { 3497 md_sync_acct_bio(bio, nr_sectors); 3498 bio->bi_status = 0; 3499 generic_make_request(bio); 3500 } 3501 } 3502 3503 if (sectors_skipped) 3504 /* pretend they weren't skipped, it makes 3505 * no important difference in this case 3506 */ 3507 md_done_sync(mddev, sectors_skipped, 1); 3508 3509 return sectors_skipped + nr_sectors; 3510 giveup: 3511 /* There is nowhere to write, so all non-sync 3512 * drives must be failed or in resync, all drives 3513 * have a bad block, so try the next chunk... 3514 */ 3515 if (sector_nr + max_sync < max_sector) 3516 max_sector = sector_nr + max_sync; 3517 3518 sectors_skipped += (max_sector - sector_nr); 3519 chunks_skipped ++; 3520 sector_nr = max_sector; 3521 goto skipped; 3522 } 3523 3524 static sector_t 3525 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3526 { 3527 sector_t size; 3528 struct r10conf *conf = mddev->private; 3529 3530 if (!raid_disks) 3531 raid_disks = min(conf->geo.raid_disks, 3532 conf->prev.raid_disks); 3533 if (!sectors) 3534 sectors = conf->dev_sectors; 3535 3536 size = sectors >> conf->geo.chunk_shift; 3537 sector_div(size, conf->geo.far_copies); 3538 size = size * raid_disks; 3539 sector_div(size, conf->geo.near_copies); 3540 3541 return size << conf->geo.chunk_shift; 3542 } 3543 3544 static void calc_sectors(struct r10conf *conf, sector_t size) 3545 { 3546 /* Calculate the number of sectors-per-device that will 3547 * actually be used, and set conf->dev_sectors and 3548 * conf->stride 3549 */ 3550 3551 size = size >> conf->geo.chunk_shift; 3552 sector_div(size, conf->geo.far_copies); 3553 size = size * conf->geo.raid_disks; 3554 sector_div(size, conf->geo.near_copies); 3555 /* 'size' is now the number of chunks in the array */ 3556 /* calculate "used chunks per device" */ 3557 size = size * conf->copies; 3558 3559 /* We need to round up when dividing by raid_disks to 3560 * get the stride size. 3561 */ 3562 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3563 3564 conf->dev_sectors = size << conf->geo.chunk_shift; 3565 3566 if (conf->geo.far_offset) 3567 conf->geo.stride = 1 << conf->geo.chunk_shift; 3568 else { 3569 sector_div(size, conf->geo.far_copies); 3570 conf->geo.stride = size << conf->geo.chunk_shift; 3571 } 3572 } 3573 3574 enum geo_type {geo_new, geo_old, geo_start}; 3575 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3576 { 3577 int nc, fc, fo; 3578 int layout, chunk, disks; 3579 switch (new) { 3580 case geo_old: 3581 layout = mddev->layout; 3582 chunk = mddev->chunk_sectors; 3583 disks = mddev->raid_disks - mddev->delta_disks; 3584 break; 3585 case geo_new: 3586 layout = mddev->new_layout; 3587 chunk = mddev->new_chunk_sectors; 3588 disks = mddev->raid_disks; 3589 break; 3590 default: /* avoid 'may be unused' warnings */ 3591 case geo_start: /* new when starting reshape - raid_disks not 3592 * updated yet. */ 3593 layout = mddev->new_layout; 3594 chunk = mddev->new_chunk_sectors; 3595 disks = mddev->raid_disks + mddev->delta_disks; 3596 break; 3597 } 3598 if (layout >> 19) 3599 return -1; 3600 if (chunk < (PAGE_SIZE >> 9) || 3601 !is_power_of_2(chunk)) 3602 return -2; 3603 nc = layout & 255; 3604 fc = (layout >> 8) & 255; 3605 fo = layout & (1<<16); 3606 geo->raid_disks = disks; 3607 geo->near_copies = nc; 3608 geo->far_copies = fc; 3609 geo->far_offset = fo; 3610 switch (layout >> 17) { 3611 case 0: /* original layout. simple but not always optimal */ 3612 geo->far_set_size = disks; 3613 break; 3614 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3615 * actually using this, but leave code here just in case.*/ 3616 geo->far_set_size = disks/fc; 3617 WARN(geo->far_set_size < fc, 3618 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3619 break; 3620 case 2: /* "improved" layout fixed to match documentation */ 3621 geo->far_set_size = fc * nc; 3622 break; 3623 default: /* Not a valid layout */ 3624 return -1; 3625 } 3626 geo->chunk_mask = chunk - 1; 3627 geo->chunk_shift = ffz(~chunk); 3628 return nc*fc; 3629 } 3630 3631 static struct r10conf *setup_conf(struct mddev *mddev) 3632 { 3633 struct r10conf *conf = NULL; 3634 int err = -EINVAL; 3635 struct geom geo; 3636 int copies; 3637 3638 copies = setup_geo(&geo, mddev, geo_new); 3639 3640 if (copies == -2) { 3641 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3642 mdname(mddev), PAGE_SIZE); 3643 goto out; 3644 } 3645 3646 if (copies < 2 || copies > mddev->raid_disks) { 3647 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3648 mdname(mddev), mddev->new_layout); 3649 goto out; 3650 } 3651 3652 err = -ENOMEM; 3653 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3654 if (!conf) 3655 goto out; 3656 3657 /* FIXME calc properly */ 3658 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3659 sizeof(struct raid10_info), 3660 GFP_KERNEL); 3661 if (!conf->mirrors) 3662 goto out; 3663 3664 conf->tmppage = alloc_page(GFP_KERNEL); 3665 if (!conf->tmppage) 3666 goto out; 3667 3668 conf->geo = geo; 3669 conf->copies = copies; 3670 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 3671 rbio_pool_free, conf); 3672 if (err) 3673 goto out; 3674 3675 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3676 if (err) 3677 goto out; 3678 3679 calc_sectors(conf, mddev->dev_sectors); 3680 if (mddev->reshape_position == MaxSector) { 3681 conf->prev = conf->geo; 3682 conf->reshape_progress = MaxSector; 3683 } else { 3684 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3685 err = -EINVAL; 3686 goto out; 3687 } 3688 conf->reshape_progress = mddev->reshape_position; 3689 if (conf->prev.far_offset) 3690 conf->prev.stride = 1 << conf->prev.chunk_shift; 3691 else 3692 /* far_copies must be 1 */ 3693 conf->prev.stride = conf->dev_sectors; 3694 } 3695 conf->reshape_safe = conf->reshape_progress; 3696 spin_lock_init(&conf->device_lock); 3697 INIT_LIST_HEAD(&conf->retry_list); 3698 INIT_LIST_HEAD(&conf->bio_end_io_list); 3699 3700 spin_lock_init(&conf->resync_lock); 3701 init_waitqueue_head(&conf->wait_barrier); 3702 atomic_set(&conf->nr_pending, 0); 3703 3704 err = -ENOMEM; 3705 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3706 if (!conf->thread) 3707 goto out; 3708 3709 conf->mddev = mddev; 3710 return conf; 3711 3712 out: 3713 if (conf) { 3714 mempool_exit(&conf->r10bio_pool); 3715 kfree(conf->mirrors); 3716 safe_put_page(conf->tmppage); 3717 bioset_exit(&conf->bio_split); 3718 kfree(conf); 3719 } 3720 return ERR_PTR(err); 3721 } 3722 3723 static int raid10_run(struct mddev *mddev) 3724 { 3725 struct r10conf *conf; 3726 int i, disk_idx, chunk_size; 3727 struct raid10_info *disk; 3728 struct md_rdev *rdev; 3729 sector_t size; 3730 sector_t min_offset_diff = 0; 3731 int first = 1; 3732 bool discard_supported = false; 3733 3734 if (mddev_init_writes_pending(mddev) < 0) 3735 return -ENOMEM; 3736 3737 if (mddev->private == NULL) { 3738 conf = setup_conf(mddev); 3739 if (IS_ERR(conf)) 3740 return PTR_ERR(conf); 3741 mddev->private = conf; 3742 } 3743 conf = mddev->private; 3744 if (!conf) 3745 goto out; 3746 3747 if (mddev_is_clustered(conf->mddev)) { 3748 int fc, fo; 3749 3750 fc = (mddev->layout >> 8) & 255; 3751 fo = mddev->layout & (1<<16); 3752 if (fc > 1 || fo > 0) { 3753 pr_err("only near layout is supported by clustered" 3754 " raid10\n"); 3755 goto out_free_conf; 3756 } 3757 } 3758 3759 mddev->thread = conf->thread; 3760 conf->thread = NULL; 3761 3762 chunk_size = mddev->chunk_sectors << 9; 3763 if (mddev->queue) { 3764 blk_queue_max_discard_sectors(mddev->queue, 3765 mddev->chunk_sectors); 3766 blk_queue_max_write_same_sectors(mddev->queue, 0); 3767 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3768 blk_queue_io_min(mddev->queue, chunk_size); 3769 if (conf->geo.raid_disks % conf->geo.near_copies) 3770 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3771 else 3772 blk_queue_io_opt(mddev->queue, chunk_size * 3773 (conf->geo.raid_disks / conf->geo.near_copies)); 3774 } 3775 3776 rdev_for_each(rdev, mddev) { 3777 long long diff; 3778 3779 disk_idx = rdev->raid_disk; 3780 if (disk_idx < 0) 3781 continue; 3782 if (disk_idx >= conf->geo.raid_disks && 3783 disk_idx >= conf->prev.raid_disks) 3784 continue; 3785 disk = conf->mirrors + disk_idx; 3786 3787 if (test_bit(Replacement, &rdev->flags)) { 3788 if (disk->replacement) 3789 goto out_free_conf; 3790 disk->replacement = rdev; 3791 } else { 3792 if (disk->rdev) 3793 goto out_free_conf; 3794 disk->rdev = rdev; 3795 } 3796 diff = (rdev->new_data_offset - rdev->data_offset); 3797 if (!mddev->reshape_backwards) 3798 diff = -diff; 3799 if (diff < 0) 3800 diff = 0; 3801 if (first || diff < min_offset_diff) 3802 min_offset_diff = diff; 3803 3804 if (mddev->gendisk) 3805 disk_stack_limits(mddev->gendisk, rdev->bdev, 3806 rdev->data_offset << 9); 3807 3808 disk->head_position = 0; 3809 3810 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3811 discard_supported = true; 3812 first = 0; 3813 } 3814 3815 if (mddev->queue) { 3816 if (discard_supported) 3817 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3818 mddev->queue); 3819 else 3820 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3821 mddev->queue); 3822 } 3823 /* need to check that every block has at least one working mirror */ 3824 if (!enough(conf, -1)) { 3825 pr_err("md/raid10:%s: not enough operational mirrors.\n", 3826 mdname(mddev)); 3827 goto out_free_conf; 3828 } 3829 3830 if (conf->reshape_progress != MaxSector) { 3831 /* must ensure that shape change is supported */ 3832 if (conf->geo.far_copies != 1 && 3833 conf->geo.far_offset == 0) 3834 goto out_free_conf; 3835 if (conf->prev.far_copies != 1 && 3836 conf->prev.far_offset == 0) 3837 goto out_free_conf; 3838 } 3839 3840 mddev->degraded = 0; 3841 for (i = 0; 3842 i < conf->geo.raid_disks 3843 || i < conf->prev.raid_disks; 3844 i++) { 3845 3846 disk = conf->mirrors + i; 3847 3848 if (!disk->rdev && disk->replacement) { 3849 /* The replacement is all we have - use it */ 3850 disk->rdev = disk->replacement; 3851 disk->replacement = NULL; 3852 clear_bit(Replacement, &disk->rdev->flags); 3853 } 3854 3855 if (!disk->rdev || 3856 !test_bit(In_sync, &disk->rdev->flags)) { 3857 disk->head_position = 0; 3858 mddev->degraded++; 3859 if (disk->rdev && 3860 disk->rdev->saved_raid_disk < 0) 3861 conf->fullsync = 1; 3862 } 3863 3864 if (disk->replacement && 3865 !test_bit(In_sync, &disk->replacement->flags) && 3866 disk->replacement->saved_raid_disk < 0) { 3867 conf->fullsync = 1; 3868 } 3869 3870 disk->recovery_disabled = mddev->recovery_disabled - 1; 3871 } 3872 3873 if (mddev->recovery_cp != MaxSector) 3874 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 3875 mdname(mddev)); 3876 pr_info("md/raid10:%s: active with %d out of %d devices\n", 3877 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3878 conf->geo.raid_disks); 3879 /* 3880 * Ok, everything is just fine now 3881 */ 3882 mddev->dev_sectors = conf->dev_sectors; 3883 size = raid10_size(mddev, 0, 0); 3884 md_set_array_sectors(mddev, size); 3885 mddev->resync_max_sectors = size; 3886 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3887 3888 if (mddev->queue) { 3889 int stripe = conf->geo.raid_disks * 3890 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3891 3892 /* Calculate max read-ahead size. 3893 * We need to readahead at least twice a whole stripe.... 3894 * maybe... 3895 */ 3896 stripe /= conf->geo.near_copies; 3897 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 3898 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 3899 } 3900 3901 if (md_integrity_register(mddev)) 3902 goto out_free_conf; 3903 3904 if (conf->reshape_progress != MaxSector) { 3905 unsigned long before_length, after_length; 3906 3907 before_length = ((1 << conf->prev.chunk_shift) * 3908 conf->prev.far_copies); 3909 after_length = ((1 << conf->geo.chunk_shift) * 3910 conf->geo.far_copies); 3911 3912 if (max(before_length, after_length) > min_offset_diff) { 3913 /* This cannot work */ 3914 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 3915 goto out_free_conf; 3916 } 3917 conf->offset_diff = min_offset_diff; 3918 3919 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3920 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3921 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3922 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3923 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3924 "reshape"); 3925 if (!mddev->sync_thread) 3926 goto out_free_conf; 3927 } 3928 3929 return 0; 3930 3931 out_free_conf: 3932 md_unregister_thread(&mddev->thread); 3933 mempool_exit(&conf->r10bio_pool); 3934 safe_put_page(conf->tmppage); 3935 kfree(conf->mirrors); 3936 kfree(conf); 3937 mddev->private = NULL; 3938 out: 3939 return -EIO; 3940 } 3941 3942 static void raid10_free(struct mddev *mddev, void *priv) 3943 { 3944 struct r10conf *conf = priv; 3945 3946 mempool_exit(&conf->r10bio_pool); 3947 safe_put_page(conf->tmppage); 3948 kfree(conf->mirrors); 3949 kfree(conf->mirrors_old); 3950 kfree(conf->mirrors_new); 3951 bioset_exit(&conf->bio_split); 3952 kfree(conf); 3953 } 3954 3955 static void raid10_quiesce(struct mddev *mddev, int quiesce) 3956 { 3957 struct r10conf *conf = mddev->private; 3958 3959 if (quiesce) 3960 raise_barrier(conf, 0); 3961 else 3962 lower_barrier(conf); 3963 } 3964 3965 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3966 { 3967 /* Resize of 'far' arrays is not supported. 3968 * For 'near' and 'offset' arrays we can set the 3969 * number of sectors used to be an appropriate multiple 3970 * of the chunk size. 3971 * For 'offset', this is far_copies*chunksize. 3972 * For 'near' the multiplier is the LCM of 3973 * near_copies and raid_disks. 3974 * So if far_copies > 1 && !far_offset, fail. 3975 * Else find LCM(raid_disks, near_copy)*far_copies and 3976 * multiply by chunk_size. Then round to this number. 3977 * This is mostly done by raid10_size() 3978 */ 3979 struct r10conf *conf = mddev->private; 3980 sector_t oldsize, size; 3981 3982 if (mddev->reshape_position != MaxSector) 3983 return -EBUSY; 3984 3985 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3986 return -EINVAL; 3987 3988 oldsize = raid10_size(mddev, 0, 0); 3989 size = raid10_size(mddev, sectors, 0); 3990 if (mddev->external_size && 3991 mddev->array_sectors > size) 3992 return -EINVAL; 3993 if (mddev->bitmap) { 3994 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 3995 if (ret) 3996 return ret; 3997 } 3998 md_set_array_sectors(mddev, size); 3999 if (sectors > mddev->dev_sectors && 4000 mddev->recovery_cp > oldsize) { 4001 mddev->recovery_cp = oldsize; 4002 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4003 } 4004 calc_sectors(conf, sectors); 4005 mddev->dev_sectors = conf->dev_sectors; 4006 mddev->resync_max_sectors = size; 4007 return 0; 4008 } 4009 4010 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4011 { 4012 struct md_rdev *rdev; 4013 struct r10conf *conf; 4014 4015 if (mddev->degraded > 0) { 4016 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4017 mdname(mddev)); 4018 return ERR_PTR(-EINVAL); 4019 } 4020 sector_div(size, devs); 4021 4022 /* Set new parameters */ 4023 mddev->new_level = 10; 4024 /* new layout: far_copies = 1, near_copies = 2 */ 4025 mddev->new_layout = (1<<8) + 2; 4026 mddev->new_chunk_sectors = mddev->chunk_sectors; 4027 mddev->delta_disks = mddev->raid_disks; 4028 mddev->raid_disks *= 2; 4029 /* make sure it will be not marked as dirty */ 4030 mddev->recovery_cp = MaxSector; 4031 mddev->dev_sectors = size; 4032 4033 conf = setup_conf(mddev); 4034 if (!IS_ERR(conf)) { 4035 rdev_for_each(rdev, mddev) 4036 if (rdev->raid_disk >= 0) { 4037 rdev->new_raid_disk = rdev->raid_disk * 2; 4038 rdev->sectors = size; 4039 } 4040 conf->barrier = 1; 4041 } 4042 4043 return conf; 4044 } 4045 4046 static void *raid10_takeover(struct mddev *mddev) 4047 { 4048 struct r0conf *raid0_conf; 4049 4050 /* raid10 can take over: 4051 * raid0 - providing it has only two drives 4052 */ 4053 if (mddev->level == 0) { 4054 /* for raid0 takeover only one zone is supported */ 4055 raid0_conf = mddev->private; 4056 if (raid0_conf->nr_strip_zones > 1) { 4057 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4058 mdname(mddev)); 4059 return ERR_PTR(-EINVAL); 4060 } 4061 return raid10_takeover_raid0(mddev, 4062 raid0_conf->strip_zone->zone_end, 4063 raid0_conf->strip_zone->nb_dev); 4064 } 4065 return ERR_PTR(-EINVAL); 4066 } 4067 4068 static int raid10_check_reshape(struct mddev *mddev) 4069 { 4070 /* Called when there is a request to change 4071 * - layout (to ->new_layout) 4072 * - chunk size (to ->new_chunk_sectors) 4073 * - raid_disks (by delta_disks) 4074 * or when trying to restart a reshape that was ongoing. 4075 * 4076 * We need to validate the request and possibly allocate 4077 * space if that might be an issue later. 4078 * 4079 * Currently we reject any reshape of a 'far' mode array, 4080 * allow chunk size to change if new is generally acceptable, 4081 * allow raid_disks to increase, and allow 4082 * a switch between 'near' mode and 'offset' mode. 4083 */ 4084 struct r10conf *conf = mddev->private; 4085 struct geom geo; 4086 4087 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4088 return -EINVAL; 4089 4090 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4091 /* mustn't change number of copies */ 4092 return -EINVAL; 4093 if (geo.far_copies > 1 && !geo.far_offset) 4094 /* Cannot switch to 'far' mode */ 4095 return -EINVAL; 4096 4097 if (mddev->array_sectors & geo.chunk_mask) 4098 /* not factor of array size */ 4099 return -EINVAL; 4100 4101 if (!enough(conf, -1)) 4102 return -EINVAL; 4103 4104 kfree(conf->mirrors_new); 4105 conf->mirrors_new = NULL; 4106 if (mddev->delta_disks > 0) { 4107 /* allocate new 'mirrors' list */ 4108 conf->mirrors_new = 4109 kcalloc(mddev->raid_disks + mddev->delta_disks, 4110 sizeof(struct raid10_info), 4111 GFP_KERNEL); 4112 if (!conf->mirrors_new) 4113 return -ENOMEM; 4114 } 4115 return 0; 4116 } 4117 4118 /* 4119 * Need to check if array has failed when deciding whether to: 4120 * - start an array 4121 * - remove non-faulty devices 4122 * - add a spare 4123 * - allow a reshape 4124 * This determination is simple when no reshape is happening. 4125 * However if there is a reshape, we need to carefully check 4126 * both the before and after sections. 4127 * This is because some failed devices may only affect one 4128 * of the two sections, and some non-in_sync devices may 4129 * be insync in the section most affected by failed devices. 4130 */ 4131 static int calc_degraded(struct r10conf *conf) 4132 { 4133 int degraded, degraded2; 4134 int i; 4135 4136 rcu_read_lock(); 4137 degraded = 0; 4138 /* 'prev' section first */ 4139 for (i = 0; i < conf->prev.raid_disks; i++) { 4140 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4141 if (!rdev || test_bit(Faulty, &rdev->flags)) 4142 degraded++; 4143 else if (!test_bit(In_sync, &rdev->flags)) 4144 /* When we can reduce the number of devices in 4145 * an array, this might not contribute to 4146 * 'degraded'. It does now. 4147 */ 4148 degraded++; 4149 } 4150 rcu_read_unlock(); 4151 if (conf->geo.raid_disks == conf->prev.raid_disks) 4152 return degraded; 4153 rcu_read_lock(); 4154 degraded2 = 0; 4155 for (i = 0; i < conf->geo.raid_disks; i++) { 4156 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4157 if (!rdev || test_bit(Faulty, &rdev->flags)) 4158 degraded2++; 4159 else if (!test_bit(In_sync, &rdev->flags)) { 4160 /* If reshape is increasing the number of devices, 4161 * this section has already been recovered, so 4162 * it doesn't contribute to degraded. 4163 * else it does. 4164 */ 4165 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4166 degraded2++; 4167 } 4168 } 4169 rcu_read_unlock(); 4170 if (degraded2 > degraded) 4171 return degraded2; 4172 return degraded; 4173 } 4174 4175 static int raid10_start_reshape(struct mddev *mddev) 4176 { 4177 /* A 'reshape' has been requested. This commits 4178 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4179 * This also checks if there are enough spares and adds them 4180 * to the array. 4181 * We currently require enough spares to make the final 4182 * array non-degraded. We also require that the difference 4183 * between old and new data_offset - on each device - is 4184 * enough that we never risk over-writing. 4185 */ 4186 4187 unsigned long before_length, after_length; 4188 sector_t min_offset_diff = 0; 4189 int first = 1; 4190 struct geom new; 4191 struct r10conf *conf = mddev->private; 4192 struct md_rdev *rdev; 4193 int spares = 0; 4194 int ret; 4195 4196 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4197 return -EBUSY; 4198 4199 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4200 return -EINVAL; 4201 4202 before_length = ((1 << conf->prev.chunk_shift) * 4203 conf->prev.far_copies); 4204 after_length = ((1 << conf->geo.chunk_shift) * 4205 conf->geo.far_copies); 4206 4207 rdev_for_each(rdev, mddev) { 4208 if (!test_bit(In_sync, &rdev->flags) 4209 && !test_bit(Faulty, &rdev->flags)) 4210 spares++; 4211 if (rdev->raid_disk >= 0) { 4212 long long diff = (rdev->new_data_offset 4213 - rdev->data_offset); 4214 if (!mddev->reshape_backwards) 4215 diff = -diff; 4216 if (diff < 0) 4217 diff = 0; 4218 if (first || diff < min_offset_diff) 4219 min_offset_diff = diff; 4220 first = 0; 4221 } 4222 } 4223 4224 if (max(before_length, after_length) > min_offset_diff) 4225 return -EINVAL; 4226 4227 if (spares < mddev->delta_disks) 4228 return -EINVAL; 4229 4230 conf->offset_diff = min_offset_diff; 4231 spin_lock_irq(&conf->device_lock); 4232 if (conf->mirrors_new) { 4233 memcpy(conf->mirrors_new, conf->mirrors, 4234 sizeof(struct raid10_info)*conf->prev.raid_disks); 4235 smp_mb(); 4236 kfree(conf->mirrors_old); 4237 conf->mirrors_old = conf->mirrors; 4238 conf->mirrors = conf->mirrors_new; 4239 conf->mirrors_new = NULL; 4240 } 4241 setup_geo(&conf->geo, mddev, geo_start); 4242 smp_mb(); 4243 if (mddev->reshape_backwards) { 4244 sector_t size = raid10_size(mddev, 0, 0); 4245 if (size < mddev->array_sectors) { 4246 spin_unlock_irq(&conf->device_lock); 4247 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4248 mdname(mddev)); 4249 return -EINVAL; 4250 } 4251 mddev->resync_max_sectors = size; 4252 conf->reshape_progress = size; 4253 } else 4254 conf->reshape_progress = 0; 4255 conf->reshape_safe = conf->reshape_progress; 4256 spin_unlock_irq(&conf->device_lock); 4257 4258 if (mddev->delta_disks && mddev->bitmap) { 4259 struct mdp_superblock_1 *sb = NULL; 4260 sector_t oldsize, newsize; 4261 4262 oldsize = raid10_size(mddev, 0, 0); 4263 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4264 4265 if (!mddev_is_clustered(mddev)) { 4266 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4267 if (ret) 4268 goto abort; 4269 else 4270 goto out; 4271 } 4272 4273 rdev_for_each(rdev, mddev) { 4274 if (rdev->raid_disk > -1 && 4275 !test_bit(Faulty, &rdev->flags)) 4276 sb = page_address(rdev->sb_page); 4277 } 4278 4279 /* 4280 * some node is already performing reshape, and no need to 4281 * call md_bitmap_resize again since it should be called when 4282 * receiving BITMAP_RESIZE msg 4283 */ 4284 if ((sb && (le32_to_cpu(sb->feature_map) & 4285 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4286 goto out; 4287 4288 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4289 if (ret) 4290 goto abort; 4291 4292 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4293 if (ret) { 4294 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4295 goto abort; 4296 } 4297 } 4298 out: 4299 if (mddev->delta_disks > 0) { 4300 rdev_for_each(rdev, mddev) 4301 if (rdev->raid_disk < 0 && 4302 !test_bit(Faulty, &rdev->flags)) { 4303 if (raid10_add_disk(mddev, rdev) == 0) { 4304 if (rdev->raid_disk >= 4305 conf->prev.raid_disks) 4306 set_bit(In_sync, &rdev->flags); 4307 else 4308 rdev->recovery_offset = 0; 4309 4310 if (sysfs_link_rdev(mddev, rdev)) 4311 /* Failure here is OK */; 4312 } 4313 } else if (rdev->raid_disk >= conf->prev.raid_disks 4314 && !test_bit(Faulty, &rdev->flags)) { 4315 /* This is a spare that was manually added */ 4316 set_bit(In_sync, &rdev->flags); 4317 } 4318 } 4319 /* When a reshape changes the number of devices, 4320 * ->degraded is measured against the larger of the 4321 * pre and post numbers. 4322 */ 4323 spin_lock_irq(&conf->device_lock); 4324 mddev->degraded = calc_degraded(conf); 4325 spin_unlock_irq(&conf->device_lock); 4326 mddev->raid_disks = conf->geo.raid_disks; 4327 mddev->reshape_position = conf->reshape_progress; 4328 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4329 4330 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4331 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4332 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4333 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4334 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4335 4336 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4337 "reshape"); 4338 if (!mddev->sync_thread) { 4339 ret = -EAGAIN; 4340 goto abort; 4341 } 4342 conf->reshape_checkpoint = jiffies; 4343 md_wakeup_thread(mddev->sync_thread); 4344 md_new_event(mddev); 4345 return 0; 4346 4347 abort: 4348 mddev->recovery = 0; 4349 spin_lock_irq(&conf->device_lock); 4350 conf->geo = conf->prev; 4351 mddev->raid_disks = conf->geo.raid_disks; 4352 rdev_for_each(rdev, mddev) 4353 rdev->new_data_offset = rdev->data_offset; 4354 smp_wmb(); 4355 conf->reshape_progress = MaxSector; 4356 conf->reshape_safe = MaxSector; 4357 mddev->reshape_position = MaxSector; 4358 spin_unlock_irq(&conf->device_lock); 4359 return ret; 4360 } 4361 4362 /* Calculate the last device-address that could contain 4363 * any block from the chunk that includes the array-address 's' 4364 * and report the next address. 4365 * i.e. the address returned will be chunk-aligned and after 4366 * any data that is in the chunk containing 's'. 4367 */ 4368 static sector_t last_dev_address(sector_t s, struct geom *geo) 4369 { 4370 s = (s | geo->chunk_mask) + 1; 4371 s >>= geo->chunk_shift; 4372 s *= geo->near_copies; 4373 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4374 s *= geo->far_copies; 4375 s <<= geo->chunk_shift; 4376 return s; 4377 } 4378 4379 /* Calculate the first device-address that could contain 4380 * any block from the chunk that includes the array-address 's'. 4381 * This too will be the start of a chunk 4382 */ 4383 static sector_t first_dev_address(sector_t s, struct geom *geo) 4384 { 4385 s >>= geo->chunk_shift; 4386 s *= geo->near_copies; 4387 sector_div(s, geo->raid_disks); 4388 s *= geo->far_copies; 4389 s <<= geo->chunk_shift; 4390 return s; 4391 } 4392 4393 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4394 int *skipped) 4395 { 4396 /* We simply copy at most one chunk (smallest of old and new) 4397 * at a time, possibly less if that exceeds RESYNC_PAGES, 4398 * or we hit a bad block or something. 4399 * This might mean we pause for normal IO in the middle of 4400 * a chunk, but that is not a problem as mddev->reshape_position 4401 * can record any location. 4402 * 4403 * If we will want to write to a location that isn't 4404 * yet recorded as 'safe' (i.e. in metadata on disk) then 4405 * we need to flush all reshape requests and update the metadata. 4406 * 4407 * When reshaping forwards (e.g. to more devices), we interpret 4408 * 'safe' as the earliest block which might not have been copied 4409 * down yet. We divide this by previous stripe size and multiply 4410 * by previous stripe length to get lowest device offset that we 4411 * cannot write to yet. 4412 * We interpret 'sector_nr' as an address that we want to write to. 4413 * From this we use last_device_address() to find where we might 4414 * write to, and first_device_address on the 'safe' position. 4415 * If this 'next' write position is after the 'safe' position, 4416 * we must update the metadata to increase the 'safe' position. 4417 * 4418 * When reshaping backwards, we round in the opposite direction 4419 * and perform the reverse test: next write position must not be 4420 * less than current safe position. 4421 * 4422 * In all this the minimum difference in data offsets 4423 * (conf->offset_diff - always positive) allows a bit of slack, 4424 * so next can be after 'safe', but not by more than offset_diff 4425 * 4426 * We need to prepare all the bios here before we start any IO 4427 * to ensure the size we choose is acceptable to all devices. 4428 * The means one for each copy for write-out and an extra one for 4429 * read-in. 4430 * We store the read-in bio in ->master_bio and the others in 4431 * ->devs[x].bio and ->devs[x].repl_bio. 4432 */ 4433 struct r10conf *conf = mddev->private; 4434 struct r10bio *r10_bio; 4435 sector_t next, safe, last; 4436 int max_sectors; 4437 int nr_sectors; 4438 int s; 4439 struct md_rdev *rdev; 4440 int need_flush = 0; 4441 struct bio *blist; 4442 struct bio *bio, *read_bio; 4443 int sectors_done = 0; 4444 struct page **pages; 4445 4446 if (sector_nr == 0) { 4447 /* If restarting in the middle, skip the initial sectors */ 4448 if (mddev->reshape_backwards && 4449 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4450 sector_nr = (raid10_size(mddev, 0, 0) 4451 - conf->reshape_progress); 4452 } else if (!mddev->reshape_backwards && 4453 conf->reshape_progress > 0) 4454 sector_nr = conf->reshape_progress; 4455 if (sector_nr) { 4456 mddev->curr_resync_completed = sector_nr; 4457 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4458 *skipped = 1; 4459 return sector_nr; 4460 } 4461 } 4462 4463 /* We don't use sector_nr to track where we are up to 4464 * as that doesn't work well for ->reshape_backwards. 4465 * So just use ->reshape_progress. 4466 */ 4467 if (mddev->reshape_backwards) { 4468 /* 'next' is the earliest device address that we might 4469 * write to for this chunk in the new layout 4470 */ 4471 next = first_dev_address(conf->reshape_progress - 1, 4472 &conf->geo); 4473 4474 /* 'safe' is the last device address that we might read from 4475 * in the old layout after a restart 4476 */ 4477 safe = last_dev_address(conf->reshape_safe - 1, 4478 &conf->prev); 4479 4480 if (next + conf->offset_diff < safe) 4481 need_flush = 1; 4482 4483 last = conf->reshape_progress - 1; 4484 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4485 & conf->prev.chunk_mask); 4486 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4487 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4488 } else { 4489 /* 'next' is after the last device address that we 4490 * might write to for this chunk in the new layout 4491 */ 4492 next = last_dev_address(conf->reshape_progress, &conf->geo); 4493 4494 /* 'safe' is the earliest device address that we might 4495 * read from in the old layout after a restart 4496 */ 4497 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4498 4499 /* Need to update metadata if 'next' might be beyond 'safe' 4500 * as that would possibly corrupt data 4501 */ 4502 if (next > safe + conf->offset_diff) 4503 need_flush = 1; 4504 4505 sector_nr = conf->reshape_progress; 4506 last = sector_nr | (conf->geo.chunk_mask 4507 & conf->prev.chunk_mask); 4508 4509 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4510 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4511 } 4512 4513 if (need_flush || 4514 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4515 /* Need to update reshape_position in metadata */ 4516 wait_barrier(conf); 4517 mddev->reshape_position = conf->reshape_progress; 4518 if (mddev->reshape_backwards) 4519 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4520 - conf->reshape_progress; 4521 else 4522 mddev->curr_resync_completed = conf->reshape_progress; 4523 conf->reshape_checkpoint = jiffies; 4524 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4525 md_wakeup_thread(mddev->thread); 4526 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4527 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4528 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4529 allow_barrier(conf); 4530 return sectors_done; 4531 } 4532 conf->reshape_safe = mddev->reshape_position; 4533 allow_barrier(conf); 4534 } 4535 4536 raise_barrier(conf, 0); 4537 read_more: 4538 /* Now schedule reads for blocks from sector_nr to last */ 4539 r10_bio = raid10_alloc_init_r10buf(conf); 4540 r10_bio->state = 0; 4541 raise_barrier(conf, 1); 4542 atomic_set(&r10_bio->remaining, 0); 4543 r10_bio->mddev = mddev; 4544 r10_bio->sector = sector_nr; 4545 set_bit(R10BIO_IsReshape, &r10_bio->state); 4546 r10_bio->sectors = last - sector_nr + 1; 4547 rdev = read_balance(conf, r10_bio, &max_sectors); 4548 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4549 4550 if (!rdev) { 4551 /* Cannot read from here, so need to record bad blocks 4552 * on all the target devices. 4553 */ 4554 // FIXME 4555 mempool_free(r10_bio, &conf->r10buf_pool); 4556 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4557 return sectors_done; 4558 } 4559 4560 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4561 4562 bio_set_dev(read_bio, rdev->bdev); 4563 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4564 + rdev->data_offset); 4565 read_bio->bi_private = r10_bio; 4566 read_bio->bi_end_io = end_reshape_read; 4567 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4568 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4569 read_bio->bi_status = 0; 4570 read_bio->bi_vcnt = 0; 4571 read_bio->bi_iter.bi_size = 0; 4572 r10_bio->master_bio = read_bio; 4573 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4574 4575 /* 4576 * Broadcast RESYNC message to other nodes, so all nodes would not 4577 * write to the region to avoid conflict. 4578 */ 4579 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4580 struct mdp_superblock_1 *sb = NULL; 4581 int sb_reshape_pos = 0; 4582 4583 conf->cluster_sync_low = sector_nr; 4584 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4585 sb = page_address(rdev->sb_page); 4586 if (sb) { 4587 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4588 /* 4589 * Set cluster_sync_low again if next address for array 4590 * reshape is less than cluster_sync_low. Since we can't 4591 * update cluster_sync_low until it has finished reshape. 4592 */ 4593 if (sb_reshape_pos < conf->cluster_sync_low) 4594 conf->cluster_sync_low = sb_reshape_pos; 4595 } 4596 4597 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4598 conf->cluster_sync_high); 4599 } 4600 4601 /* Now find the locations in the new layout */ 4602 __raid10_find_phys(&conf->geo, r10_bio); 4603 4604 blist = read_bio; 4605 read_bio->bi_next = NULL; 4606 4607 rcu_read_lock(); 4608 for (s = 0; s < conf->copies*2; s++) { 4609 struct bio *b; 4610 int d = r10_bio->devs[s/2].devnum; 4611 struct md_rdev *rdev2; 4612 if (s&1) { 4613 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4614 b = r10_bio->devs[s/2].repl_bio; 4615 } else { 4616 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4617 b = r10_bio->devs[s/2].bio; 4618 } 4619 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4620 continue; 4621 4622 bio_set_dev(b, rdev2->bdev); 4623 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4624 rdev2->new_data_offset; 4625 b->bi_end_io = end_reshape_write; 4626 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4627 b->bi_next = blist; 4628 blist = b; 4629 } 4630 4631 /* Now add as many pages as possible to all of these bios. */ 4632 4633 nr_sectors = 0; 4634 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4635 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4636 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4637 int len = (max_sectors - s) << 9; 4638 if (len > PAGE_SIZE) 4639 len = PAGE_SIZE; 4640 for (bio = blist; bio ; bio = bio->bi_next) { 4641 /* 4642 * won't fail because the vec table is big enough 4643 * to hold all these pages 4644 */ 4645 bio_add_page(bio, page, len, 0); 4646 } 4647 sector_nr += len >> 9; 4648 nr_sectors += len >> 9; 4649 } 4650 rcu_read_unlock(); 4651 r10_bio->sectors = nr_sectors; 4652 4653 /* Now submit the read */ 4654 md_sync_acct_bio(read_bio, r10_bio->sectors); 4655 atomic_inc(&r10_bio->remaining); 4656 read_bio->bi_next = NULL; 4657 generic_make_request(read_bio); 4658 sectors_done += nr_sectors; 4659 if (sector_nr <= last) 4660 goto read_more; 4661 4662 lower_barrier(conf); 4663 4664 /* Now that we have done the whole section we can 4665 * update reshape_progress 4666 */ 4667 if (mddev->reshape_backwards) 4668 conf->reshape_progress -= sectors_done; 4669 else 4670 conf->reshape_progress += sectors_done; 4671 4672 return sectors_done; 4673 } 4674 4675 static void end_reshape_request(struct r10bio *r10_bio); 4676 static int handle_reshape_read_error(struct mddev *mddev, 4677 struct r10bio *r10_bio); 4678 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4679 { 4680 /* Reshape read completed. Hopefully we have a block 4681 * to write out. 4682 * If we got a read error then we do sync 1-page reads from 4683 * elsewhere until we find the data - or give up. 4684 */ 4685 struct r10conf *conf = mddev->private; 4686 int s; 4687 4688 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4689 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4690 /* Reshape has been aborted */ 4691 md_done_sync(mddev, r10_bio->sectors, 0); 4692 return; 4693 } 4694 4695 /* We definitely have the data in the pages, schedule the 4696 * writes. 4697 */ 4698 atomic_set(&r10_bio->remaining, 1); 4699 for (s = 0; s < conf->copies*2; s++) { 4700 struct bio *b; 4701 int d = r10_bio->devs[s/2].devnum; 4702 struct md_rdev *rdev; 4703 rcu_read_lock(); 4704 if (s&1) { 4705 rdev = rcu_dereference(conf->mirrors[d].replacement); 4706 b = r10_bio->devs[s/2].repl_bio; 4707 } else { 4708 rdev = rcu_dereference(conf->mirrors[d].rdev); 4709 b = r10_bio->devs[s/2].bio; 4710 } 4711 if (!rdev || test_bit(Faulty, &rdev->flags)) { 4712 rcu_read_unlock(); 4713 continue; 4714 } 4715 atomic_inc(&rdev->nr_pending); 4716 rcu_read_unlock(); 4717 md_sync_acct_bio(b, r10_bio->sectors); 4718 atomic_inc(&r10_bio->remaining); 4719 b->bi_next = NULL; 4720 generic_make_request(b); 4721 } 4722 end_reshape_request(r10_bio); 4723 } 4724 4725 static void end_reshape(struct r10conf *conf) 4726 { 4727 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4728 return; 4729 4730 spin_lock_irq(&conf->device_lock); 4731 conf->prev = conf->geo; 4732 md_finish_reshape(conf->mddev); 4733 smp_wmb(); 4734 conf->reshape_progress = MaxSector; 4735 conf->reshape_safe = MaxSector; 4736 spin_unlock_irq(&conf->device_lock); 4737 4738 /* read-ahead size must cover two whole stripes, which is 4739 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4740 */ 4741 if (conf->mddev->queue) { 4742 int stripe = conf->geo.raid_disks * 4743 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4744 stripe /= conf->geo.near_copies; 4745 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 4746 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 4747 } 4748 conf->fullsync = 0; 4749 } 4750 4751 static void raid10_update_reshape_pos(struct mddev *mddev) 4752 { 4753 struct r10conf *conf = mddev->private; 4754 sector_t lo, hi; 4755 4756 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 4757 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 4758 || mddev->reshape_position == MaxSector) 4759 conf->reshape_progress = mddev->reshape_position; 4760 else 4761 WARN_ON_ONCE(1); 4762 } 4763 4764 static int handle_reshape_read_error(struct mddev *mddev, 4765 struct r10bio *r10_bio) 4766 { 4767 /* Use sync reads to get the blocks from somewhere else */ 4768 int sectors = r10_bio->sectors; 4769 struct r10conf *conf = mddev->private; 4770 struct r10bio *r10b; 4771 int slot = 0; 4772 int idx = 0; 4773 struct page **pages; 4774 4775 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 4776 if (!r10b) { 4777 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4778 return -ENOMEM; 4779 } 4780 4781 /* reshape IOs share pages from .devs[0].bio */ 4782 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4783 4784 r10b->sector = r10_bio->sector; 4785 __raid10_find_phys(&conf->prev, r10b); 4786 4787 while (sectors) { 4788 int s = sectors; 4789 int success = 0; 4790 int first_slot = slot; 4791 4792 if (s > (PAGE_SIZE >> 9)) 4793 s = PAGE_SIZE >> 9; 4794 4795 rcu_read_lock(); 4796 while (!success) { 4797 int d = r10b->devs[slot].devnum; 4798 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4799 sector_t addr; 4800 if (rdev == NULL || 4801 test_bit(Faulty, &rdev->flags) || 4802 !test_bit(In_sync, &rdev->flags)) 4803 goto failed; 4804 4805 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4806 atomic_inc(&rdev->nr_pending); 4807 rcu_read_unlock(); 4808 success = sync_page_io(rdev, 4809 addr, 4810 s << 9, 4811 pages[idx], 4812 REQ_OP_READ, 0, false); 4813 rdev_dec_pending(rdev, mddev); 4814 rcu_read_lock(); 4815 if (success) 4816 break; 4817 failed: 4818 slot++; 4819 if (slot >= conf->copies) 4820 slot = 0; 4821 if (slot == first_slot) 4822 break; 4823 } 4824 rcu_read_unlock(); 4825 if (!success) { 4826 /* couldn't read this block, must give up */ 4827 set_bit(MD_RECOVERY_INTR, 4828 &mddev->recovery); 4829 kfree(r10b); 4830 return -EIO; 4831 } 4832 sectors -= s; 4833 idx++; 4834 } 4835 kfree(r10b); 4836 return 0; 4837 } 4838 4839 static void end_reshape_write(struct bio *bio) 4840 { 4841 struct r10bio *r10_bio = get_resync_r10bio(bio); 4842 struct mddev *mddev = r10_bio->mddev; 4843 struct r10conf *conf = mddev->private; 4844 int d; 4845 int slot; 4846 int repl; 4847 struct md_rdev *rdev = NULL; 4848 4849 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4850 if (repl) 4851 rdev = conf->mirrors[d].replacement; 4852 if (!rdev) { 4853 smp_mb(); 4854 rdev = conf->mirrors[d].rdev; 4855 } 4856 4857 if (bio->bi_status) { 4858 /* FIXME should record badblock */ 4859 md_error(mddev, rdev); 4860 } 4861 4862 rdev_dec_pending(rdev, mddev); 4863 end_reshape_request(r10_bio); 4864 } 4865 4866 static void end_reshape_request(struct r10bio *r10_bio) 4867 { 4868 if (!atomic_dec_and_test(&r10_bio->remaining)) 4869 return; 4870 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4871 bio_put(r10_bio->master_bio); 4872 put_buf(r10_bio); 4873 } 4874 4875 static void raid10_finish_reshape(struct mddev *mddev) 4876 { 4877 struct r10conf *conf = mddev->private; 4878 4879 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4880 return; 4881 4882 if (mddev->delta_disks > 0) { 4883 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4884 mddev->recovery_cp = mddev->resync_max_sectors; 4885 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4886 } 4887 mddev->resync_max_sectors = mddev->array_sectors; 4888 } else { 4889 int d; 4890 rcu_read_lock(); 4891 for (d = conf->geo.raid_disks ; 4892 d < conf->geo.raid_disks - mddev->delta_disks; 4893 d++) { 4894 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4895 if (rdev) 4896 clear_bit(In_sync, &rdev->flags); 4897 rdev = rcu_dereference(conf->mirrors[d].replacement); 4898 if (rdev) 4899 clear_bit(In_sync, &rdev->flags); 4900 } 4901 rcu_read_unlock(); 4902 } 4903 mddev->layout = mddev->new_layout; 4904 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4905 mddev->reshape_position = MaxSector; 4906 mddev->delta_disks = 0; 4907 mddev->reshape_backwards = 0; 4908 } 4909 4910 static struct md_personality raid10_personality = 4911 { 4912 .name = "raid10", 4913 .level = 10, 4914 .owner = THIS_MODULE, 4915 .make_request = raid10_make_request, 4916 .run = raid10_run, 4917 .free = raid10_free, 4918 .status = raid10_status, 4919 .error_handler = raid10_error, 4920 .hot_add_disk = raid10_add_disk, 4921 .hot_remove_disk= raid10_remove_disk, 4922 .spare_active = raid10_spare_active, 4923 .sync_request = raid10_sync_request, 4924 .quiesce = raid10_quiesce, 4925 .size = raid10_size, 4926 .resize = raid10_resize, 4927 .takeover = raid10_takeover, 4928 .check_reshape = raid10_check_reshape, 4929 .start_reshape = raid10_start_reshape, 4930 .finish_reshape = raid10_finish_reshape, 4931 .update_reshape_pos = raid10_update_reshape_pos, 4932 .congested = raid10_congested, 4933 }; 4934 4935 static int __init raid_init(void) 4936 { 4937 return register_md_personality(&raid10_personality); 4938 } 4939 4940 static void raid_exit(void) 4941 { 4942 unregister_md_personality(&raid10_personality); 4943 } 4944 4945 module_init(raid_init); 4946 module_exit(raid_exit); 4947 MODULE_LICENSE("GPL"); 4948 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4949 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4950 MODULE_ALIAS("md-raid10"); 4951 MODULE_ALIAS("md-level-10"); 4952 4953 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4954