xref: /openbmc/linux/drivers/md/raid10.c (revision f42b3800)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
24 
25 /*
26  * RAID10 provides a combination of RAID0 and RAID1 functionality.
27  * The layout of data is defined by
28  *    chunk_size
29  *    raid_disks
30  *    near_copies (stored in low byte of layout)
31  *    far_copies (stored in second byte of layout)
32  *    far_offset (stored in bit 16 of layout )
33  *
34  * The data to be stored is divided into chunks using chunksize.
35  * Each device is divided into far_copies sections.
36  * In each section, chunks are laid out in a style similar to raid0, but
37  * near_copies copies of each chunk is stored (each on a different drive).
38  * The starting device for each section is offset near_copies from the starting
39  * device of the previous section.
40  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
41  * drive.
42  * near_copies and far_copies must be at least one, and their product is at most
43  * raid_disks.
44  *
45  * If far_offset is true, then the far_copies are handled a bit differently.
46  * The copies are still in different stripes, but instead of be very far apart
47  * on disk, there are adjacent stripes.
48  */
49 
50 /*
51  * Number of guaranteed r10bios in case of extreme VM load:
52  */
53 #define	NR_RAID10_BIOS 256
54 
55 static void unplug_slaves(mddev_t *mddev);
56 
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
59 
60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
61 {
62 	conf_t *conf = data;
63 	r10bio_t *r10_bio;
64 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
65 
66 	/* allocate a r10bio with room for raid_disks entries in the bios array */
67 	r10_bio = kzalloc(size, gfp_flags);
68 	if (!r10_bio)
69 		unplug_slaves(conf->mddev);
70 
71 	return r10_bio;
72 }
73 
74 static void r10bio_pool_free(void *r10_bio, void *data)
75 {
76 	kfree(r10_bio);
77 }
78 
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
84 
85 /*
86  * When performing a resync, we need to read and compare, so
87  * we need as many pages are there are copies.
88  * When performing a recovery, we need 2 bios, one for read,
89  * one for write (we recover only one drive per r10buf)
90  *
91  */
92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 	conf_t *conf = data;
95 	struct page *page;
96 	r10bio_t *r10_bio;
97 	struct bio *bio;
98 	int i, j;
99 	int nalloc;
100 
101 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
102 	if (!r10_bio) {
103 		unplug_slaves(conf->mddev);
104 		return NULL;
105 	}
106 
107 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
108 		nalloc = conf->copies; /* resync */
109 	else
110 		nalloc = 2; /* recovery */
111 
112 	/*
113 	 * Allocate bios.
114 	 */
115 	for (j = nalloc ; j-- ; ) {
116 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
117 		if (!bio)
118 			goto out_free_bio;
119 		r10_bio->devs[j].bio = bio;
120 	}
121 	/*
122 	 * Allocate RESYNC_PAGES data pages and attach them
123 	 * where needed.
124 	 */
125 	for (j = 0 ; j < nalloc; j++) {
126 		bio = r10_bio->devs[j].bio;
127 		for (i = 0; i < RESYNC_PAGES; i++) {
128 			page = alloc_page(gfp_flags);
129 			if (unlikely(!page))
130 				goto out_free_pages;
131 
132 			bio->bi_io_vec[i].bv_page = page;
133 		}
134 	}
135 
136 	return r10_bio;
137 
138 out_free_pages:
139 	for ( ; i > 0 ; i--)
140 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
141 	while (j--)
142 		for (i = 0; i < RESYNC_PAGES ; i++)
143 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
144 	j = -1;
145 out_free_bio:
146 	while ( ++j < nalloc )
147 		bio_put(r10_bio->devs[j].bio);
148 	r10bio_pool_free(r10_bio, conf);
149 	return NULL;
150 }
151 
152 static void r10buf_pool_free(void *__r10_bio, void *data)
153 {
154 	int i;
155 	conf_t *conf = data;
156 	r10bio_t *r10bio = __r10_bio;
157 	int j;
158 
159 	for (j=0; j < conf->copies; j++) {
160 		struct bio *bio = r10bio->devs[j].bio;
161 		if (bio) {
162 			for (i = 0; i < RESYNC_PAGES; i++) {
163 				safe_put_page(bio->bi_io_vec[i].bv_page);
164 				bio->bi_io_vec[i].bv_page = NULL;
165 			}
166 			bio_put(bio);
167 		}
168 	}
169 	r10bio_pool_free(r10bio, conf);
170 }
171 
172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
173 {
174 	int i;
175 
176 	for (i = 0; i < conf->copies; i++) {
177 		struct bio **bio = & r10_bio->devs[i].bio;
178 		if (*bio && *bio != IO_BLOCKED)
179 			bio_put(*bio);
180 		*bio = NULL;
181 	}
182 }
183 
184 static void free_r10bio(r10bio_t *r10_bio)
185 {
186 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
187 
188 	/*
189 	 * Wake up any possible resync thread that waits for the device
190 	 * to go idle.
191 	 */
192 	allow_barrier(conf);
193 
194 	put_all_bios(conf, r10_bio);
195 	mempool_free(r10_bio, conf->r10bio_pool);
196 }
197 
198 static void put_buf(r10bio_t *r10_bio)
199 {
200 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
201 
202 	mempool_free(r10_bio, conf->r10buf_pool);
203 
204 	lower_barrier(conf);
205 }
206 
207 static void reschedule_retry(r10bio_t *r10_bio)
208 {
209 	unsigned long flags;
210 	mddev_t *mddev = r10_bio->mddev;
211 	conf_t *conf = mddev_to_conf(mddev);
212 
213 	spin_lock_irqsave(&conf->device_lock, flags);
214 	list_add(&r10_bio->retry_list, &conf->retry_list);
215 	conf->nr_queued ++;
216 	spin_unlock_irqrestore(&conf->device_lock, flags);
217 
218 	md_wakeup_thread(mddev->thread);
219 }
220 
221 /*
222  * raid_end_bio_io() is called when we have finished servicing a mirrored
223  * operation and are ready to return a success/failure code to the buffer
224  * cache layer.
225  */
226 static void raid_end_bio_io(r10bio_t *r10_bio)
227 {
228 	struct bio *bio = r10_bio->master_bio;
229 
230 	bio_endio(bio,
231 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
232 	free_r10bio(r10_bio);
233 }
234 
235 /*
236  * Update disk head position estimator based on IRQ completion info.
237  */
238 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
239 {
240 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
241 
242 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
243 		r10_bio->devs[slot].addr + (r10_bio->sectors);
244 }
245 
246 static void raid10_end_read_request(struct bio *bio, int error)
247 {
248 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
249 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
250 	int slot, dev;
251 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
252 
253 
254 	slot = r10_bio->read_slot;
255 	dev = r10_bio->devs[slot].devnum;
256 	/*
257 	 * this branch is our 'one mirror IO has finished' event handler:
258 	 */
259 	update_head_pos(slot, r10_bio);
260 
261 	if (uptodate) {
262 		/*
263 		 * Set R10BIO_Uptodate in our master bio, so that
264 		 * we will return a good error code to the higher
265 		 * levels even if IO on some other mirrored buffer fails.
266 		 *
267 		 * The 'master' represents the composite IO operation to
268 		 * user-side. So if something waits for IO, then it will
269 		 * wait for the 'master' bio.
270 		 */
271 		set_bit(R10BIO_Uptodate, &r10_bio->state);
272 		raid_end_bio_io(r10_bio);
273 	} else {
274 		/*
275 		 * oops, read error:
276 		 */
277 		char b[BDEVNAME_SIZE];
278 		if (printk_ratelimit())
279 			printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
280 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
281 		reschedule_retry(r10_bio);
282 	}
283 
284 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
285 }
286 
287 static void raid10_end_write_request(struct bio *bio, int error)
288 {
289 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
290 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
291 	int slot, dev;
292 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
293 
294 	for (slot = 0; slot < conf->copies; slot++)
295 		if (r10_bio->devs[slot].bio == bio)
296 			break;
297 	dev = r10_bio->devs[slot].devnum;
298 
299 	/*
300 	 * this branch is our 'one mirror IO has finished' event handler:
301 	 */
302 	if (!uptodate) {
303 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
304 		/* an I/O failed, we can't clear the bitmap */
305 		set_bit(R10BIO_Degraded, &r10_bio->state);
306 	} else
307 		/*
308 		 * Set R10BIO_Uptodate in our master bio, so that
309 		 * we will return a good error code for to the higher
310 		 * levels even if IO on some other mirrored buffer fails.
311 		 *
312 		 * The 'master' represents the composite IO operation to
313 		 * user-side. So if something waits for IO, then it will
314 		 * wait for the 'master' bio.
315 		 */
316 		set_bit(R10BIO_Uptodate, &r10_bio->state);
317 
318 	update_head_pos(slot, r10_bio);
319 
320 	/*
321 	 *
322 	 * Let's see if all mirrored write operations have finished
323 	 * already.
324 	 */
325 	if (atomic_dec_and_test(&r10_bio->remaining)) {
326 		/* clear the bitmap if all writes complete successfully */
327 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
328 				r10_bio->sectors,
329 				!test_bit(R10BIO_Degraded, &r10_bio->state),
330 				0);
331 		md_write_end(r10_bio->mddev);
332 		raid_end_bio_io(r10_bio);
333 	}
334 
335 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
336 }
337 
338 
339 /*
340  * RAID10 layout manager
341  * Aswell as the chunksize and raid_disks count, there are two
342  * parameters: near_copies and far_copies.
343  * near_copies * far_copies must be <= raid_disks.
344  * Normally one of these will be 1.
345  * If both are 1, we get raid0.
346  * If near_copies == raid_disks, we get raid1.
347  *
348  * Chunks are layed out in raid0 style with near_copies copies of the
349  * first chunk, followed by near_copies copies of the next chunk and
350  * so on.
351  * If far_copies > 1, then after 1/far_copies of the array has been assigned
352  * as described above, we start again with a device offset of near_copies.
353  * So we effectively have another copy of the whole array further down all
354  * the drives, but with blocks on different drives.
355  * With this layout, and block is never stored twice on the one device.
356  *
357  * raid10_find_phys finds the sector offset of a given virtual sector
358  * on each device that it is on.
359  *
360  * raid10_find_virt does the reverse mapping, from a device and a
361  * sector offset to a virtual address
362  */
363 
364 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
365 {
366 	int n,f;
367 	sector_t sector;
368 	sector_t chunk;
369 	sector_t stripe;
370 	int dev;
371 
372 	int slot = 0;
373 
374 	/* now calculate first sector/dev */
375 	chunk = r10bio->sector >> conf->chunk_shift;
376 	sector = r10bio->sector & conf->chunk_mask;
377 
378 	chunk *= conf->near_copies;
379 	stripe = chunk;
380 	dev = sector_div(stripe, conf->raid_disks);
381 	if (conf->far_offset)
382 		stripe *= conf->far_copies;
383 
384 	sector += stripe << conf->chunk_shift;
385 
386 	/* and calculate all the others */
387 	for (n=0; n < conf->near_copies; n++) {
388 		int d = dev;
389 		sector_t s = sector;
390 		r10bio->devs[slot].addr = sector;
391 		r10bio->devs[slot].devnum = d;
392 		slot++;
393 
394 		for (f = 1; f < conf->far_copies; f++) {
395 			d += conf->near_copies;
396 			if (d >= conf->raid_disks)
397 				d -= conf->raid_disks;
398 			s += conf->stride;
399 			r10bio->devs[slot].devnum = d;
400 			r10bio->devs[slot].addr = s;
401 			slot++;
402 		}
403 		dev++;
404 		if (dev >= conf->raid_disks) {
405 			dev = 0;
406 			sector += (conf->chunk_mask + 1);
407 		}
408 	}
409 	BUG_ON(slot != conf->copies);
410 }
411 
412 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
413 {
414 	sector_t offset, chunk, vchunk;
415 
416 	offset = sector & conf->chunk_mask;
417 	if (conf->far_offset) {
418 		int fc;
419 		chunk = sector >> conf->chunk_shift;
420 		fc = sector_div(chunk, conf->far_copies);
421 		dev -= fc * conf->near_copies;
422 		if (dev < 0)
423 			dev += conf->raid_disks;
424 	} else {
425 		while (sector >= conf->stride) {
426 			sector -= conf->stride;
427 			if (dev < conf->near_copies)
428 				dev += conf->raid_disks - conf->near_copies;
429 			else
430 				dev -= conf->near_copies;
431 		}
432 		chunk = sector >> conf->chunk_shift;
433 	}
434 	vchunk = chunk * conf->raid_disks + dev;
435 	sector_div(vchunk, conf->near_copies);
436 	return (vchunk << conf->chunk_shift) + offset;
437 }
438 
439 /**
440  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
441  *	@q: request queue
442  *	@bio: the buffer head that's been built up so far
443  *	@biovec: the request that could be merged to it.
444  *
445  *	Return amount of bytes we can accept at this offset
446  *      If near_copies == raid_disk, there are no striping issues,
447  *      but in that case, the function isn't called at all.
448  */
449 static int raid10_mergeable_bvec(struct request_queue *q, struct bio *bio,
450 				struct bio_vec *bio_vec)
451 {
452 	mddev_t *mddev = q->queuedata;
453 	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
454 	int max;
455 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
456 	unsigned int bio_sectors = bio->bi_size >> 9;
457 
458 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
459 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
460 	if (max <= bio_vec->bv_len && bio_sectors == 0)
461 		return bio_vec->bv_len;
462 	else
463 		return max;
464 }
465 
466 /*
467  * This routine returns the disk from which the requested read should
468  * be done. There is a per-array 'next expected sequential IO' sector
469  * number - if this matches on the next IO then we use the last disk.
470  * There is also a per-disk 'last know head position' sector that is
471  * maintained from IRQ contexts, both the normal and the resync IO
472  * completion handlers update this position correctly. If there is no
473  * perfect sequential match then we pick the disk whose head is closest.
474  *
475  * If there are 2 mirrors in the same 2 devices, performance degrades
476  * because position is mirror, not device based.
477  *
478  * The rdev for the device selected will have nr_pending incremented.
479  */
480 
481 /*
482  * FIXME: possibly should rethink readbalancing and do it differently
483  * depending on near_copies / far_copies geometry.
484  */
485 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
486 {
487 	const unsigned long this_sector = r10_bio->sector;
488 	int disk, slot, nslot;
489 	const int sectors = r10_bio->sectors;
490 	sector_t new_distance, current_distance;
491 	mdk_rdev_t *rdev;
492 
493 	raid10_find_phys(conf, r10_bio);
494 	rcu_read_lock();
495 	/*
496 	 * Check if we can balance. We can balance on the whole
497 	 * device if no resync is going on (recovery is ok), or below
498 	 * the resync window. We take the first readable disk when
499 	 * above the resync window.
500 	 */
501 	if (conf->mddev->recovery_cp < MaxSector
502 	    && (this_sector + sectors >= conf->next_resync)) {
503 		/* make sure that disk is operational */
504 		slot = 0;
505 		disk = r10_bio->devs[slot].devnum;
506 
507 		while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
508 		       r10_bio->devs[slot].bio == IO_BLOCKED ||
509 		       !test_bit(In_sync, &rdev->flags)) {
510 			slot++;
511 			if (slot == conf->copies) {
512 				slot = 0;
513 				disk = -1;
514 				break;
515 			}
516 			disk = r10_bio->devs[slot].devnum;
517 		}
518 		goto rb_out;
519 	}
520 
521 
522 	/* make sure the disk is operational */
523 	slot = 0;
524 	disk = r10_bio->devs[slot].devnum;
525 	while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
526 	       r10_bio->devs[slot].bio == IO_BLOCKED ||
527 	       !test_bit(In_sync, &rdev->flags)) {
528 		slot ++;
529 		if (slot == conf->copies) {
530 			disk = -1;
531 			goto rb_out;
532 		}
533 		disk = r10_bio->devs[slot].devnum;
534 	}
535 
536 
537 	current_distance = abs(r10_bio->devs[slot].addr -
538 			       conf->mirrors[disk].head_position);
539 
540 	/* Find the disk whose head is closest,
541 	 * or - for far > 1 - find the closest to partition beginning */
542 
543 	for (nslot = slot; nslot < conf->copies; nslot++) {
544 		int ndisk = r10_bio->devs[nslot].devnum;
545 
546 
547 		if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
548 		    r10_bio->devs[nslot].bio == IO_BLOCKED ||
549 		    !test_bit(In_sync, &rdev->flags))
550 			continue;
551 
552 		/* This optimisation is debatable, and completely destroys
553 		 * sequential read speed for 'far copies' arrays.  So only
554 		 * keep it for 'near' arrays, and review those later.
555 		 */
556 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
557 			disk = ndisk;
558 			slot = nslot;
559 			break;
560 		}
561 
562 		/* for far > 1 always use the lowest address */
563 		if (conf->far_copies > 1)
564 			new_distance = r10_bio->devs[nslot].addr;
565 		else
566 			new_distance = abs(r10_bio->devs[nslot].addr -
567 					   conf->mirrors[ndisk].head_position);
568 		if (new_distance < current_distance) {
569 			current_distance = new_distance;
570 			disk = ndisk;
571 			slot = nslot;
572 		}
573 	}
574 
575 rb_out:
576 	r10_bio->read_slot = slot;
577 /*	conf->next_seq_sect = this_sector + sectors;*/
578 
579 	if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
580 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
581 	else
582 		disk = -1;
583 	rcu_read_unlock();
584 
585 	return disk;
586 }
587 
588 static void unplug_slaves(mddev_t *mddev)
589 {
590 	conf_t *conf = mddev_to_conf(mddev);
591 	int i;
592 
593 	rcu_read_lock();
594 	for (i=0; i<mddev->raid_disks; i++) {
595 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
596 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
597 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
598 
599 			atomic_inc(&rdev->nr_pending);
600 			rcu_read_unlock();
601 
602 			blk_unplug(r_queue);
603 
604 			rdev_dec_pending(rdev, mddev);
605 			rcu_read_lock();
606 		}
607 	}
608 	rcu_read_unlock();
609 }
610 
611 static void raid10_unplug(struct request_queue *q)
612 {
613 	mddev_t *mddev = q->queuedata;
614 
615 	unplug_slaves(q->queuedata);
616 	md_wakeup_thread(mddev->thread);
617 }
618 
619 static int raid10_congested(void *data, int bits)
620 {
621 	mddev_t *mddev = data;
622 	conf_t *conf = mddev_to_conf(mddev);
623 	int i, ret = 0;
624 
625 	rcu_read_lock();
626 	for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
627 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
628 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
629 			struct request_queue *q = bdev_get_queue(rdev->bdev);
630 
631 			ret |= bdi_congested(&q->backing_dev_info, bits);
632 		}
633 	}
634 	rcu_read_unlock();
635 	return ret;
636 }
637 
638 static int flush_pending_writes(conf_t *conf)
639 {
640 	/* Any writes that have been queued but are awaiting
641 	 * bitmap updates get flushed here.
642 	 * We return 1 if any requests were actually submitted.
643 	 */
644 	int rv = 0;
645 
646 	spin_lock_irq(&conf->device_lock);
647 
648 	if (conf->pending_bio_list.head) {
649 		struct bio *bio;
650 		bio = bio_list_get(&conf->pending_bio_list);
651 		blk_remove_plug(conf->mddev->queue);
652 		spin_unlock_irq(&conf->device_lock);
653 		/* flush any pending bitmap writes to disk
654 		 * before proceeding w/ I/O */
655 		bitmap_unplug(conf->mddev->bitmap);
656 
657 		while (bio) { /* submit pending writes */
658 			struct bio *next = bio->bi_next;
659 			bio->bi_next = NULL;
660 			generic_make_request(bio);
661 			bio = next;
662 		}
663 		rv = 1;
664 	} else
665 		spin_unlock_irq(&conf->device_lock);
666 	return rv;
667 }
668 /* Barriers....
669  * Sometimes we need to suspend IO while we do something else,
670  * either some resync/recovery, or reconfigure the array.
671  * To do this we raise a 'barrier'.
672  * The 'barrier' is a counter that can be raised multiple times
673  * to count how many activities are happening which preclude
674  * normal IO.
675  * We can only raise the barrier if there is no pending IO.
676  * i.e. if nr_pending == 0.
677  * We choose only to raise the barrier if no-one is waiting for the
678  * barrier to go down.  This means that as soon as an IO request
679  * is ready, no other operations which require a barrier will start
680  * until the IO request has had a chance.
681  *
682  * So: regular IO calls 'wait_barrier'.  When that returns there
683  *    is no backgroup IO happening,  It must arrange to call
684  *    allow_barrier when it has finished its IO.
685  * backgroup IO calls must call raise_barrier.  Once that returns
686  *    there is no normal IO happeing.  It must arrange to call
687  *    lower_barrier when the particular background IO completes.
688  */
689 #define RESYNC_DEPTH 32
690 
691 static void raise_barrier(conf_t *conf, int force)
692 {
693 	BUG_ON(force && !conf->barrier);
694 	spin_lock_irq(&conf->resync_lock);
695 
696 	/* Wait until no block IO is waiting (unless 'force') */
697 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
698 			    conf->resync_lock,
699 			    raid10_unplug(conf->mddev->queue));
700 
701 	/* block any new IO from starting */
702 	conf->barrier++;
703 
704 	/* No wait for all pending IO to complete */
705 	wait_event_lock_irq(conf->wait_barrier,
706 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
707 			    conf->resync_lock,
708 			    raid10_unplug(conf->mddev->queue));
709 
710 	spin_unlock_irq(&conf->resync_lock);
711 }
712 
713 static void lower_barrier(conf_t *conf)
714 {
715 	unsigned long flags;
716 	spin_lock_irqsave(&conf->resync_lock, flags);
717 	conf->barrier--;
718 	spin_unlock_irqrestore(&conf->resync_lock, flags);
719 	wake_up(&conf->wait_barrier);
720 }
721 
722 static void wait_barrier(conf_t *conf)
723 {
724 	spin_lock_irq(&conf->resync_lock);
725 	if (conf->barrier) {
726 		conf->nr_waiting++;
727 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
728 				    conf->resync_lock,
729 				    raid10_unplug(conf->mddev->queue));
730 		conf->nr_waiting--;
731 	}
732 	conf->nr_pending++;
733 	spin_unlock_irq(&conf->resync_lock);
734 }
735 
736 static void allow_barrier(conf_t *conf)
737 {
738 	unsigned long flags;
739 	spin_lock_irqsave(&conf->resync_lock, flags);
740 	conf->nr_pending--;
741 	spin_unlock_irqrestore(&conf->resync_lock, flags);
742 	wake_up(&conf->wait_barrier);
743 }
744 
745 static void freeze_array(conf_t *conf)
746 {
747 	/* stop syncio and normal IO and wait for everything to
748 	 * go quiet.
749 	 * We increment barrier and nr_waiting, and then
750 	 * wait until nr_pending match nr_queued+1
751 	 * This is called in the context of one normal IO request
752 	 * that has failed. Thus any sync request that might be pending
753 	 * will be blocked by nr_pending, and we need to wait for
754 	 * pending IO requests to complete or be queued for re-try.
755 	 * Thus the number queued (nr_queued) plus this request (1)
756 	 * must match the number of pending IOs (nr_pending) before
757 	 * we continue.
758 	 */
759 	spin_lock_irq(&conf->resync_lock);
760 	conf->barrier++;
761 	conf->nr_waiting++;
762 	wait_event_lock_irq(conf->wait_barrier,
763 			    conf->nr_pending == conf->nr_queued+1,
764 			    conf->resync_lock,
765 			    ({ flush_pending_writes(conf);
766 			       raid10_unplug(conf->mddev->queue); }));
767 	spin_unlock_irq(&conf->resync_lock);
768 }
769 
770 static void unfreeze_array(conf_t *conf)
771 {
772 	/* reverse the effect of the freeze */
773 	spin_lock_irq(&conf->resync_lock);
774 	conf->barrier--;
775 	conf->nr_waiting--;
776 	wake_up(&conf->wait_barrier);
777 	spin_unlock_irq(&conf->resync_lock);
778 }
779 
780 static int make_request(struct request_queue *q, struct bio * bio)
781 {
782 	mddev_t *mddev = q->queuedata;
783 	conf_t *conf = mddev_to_conf(mddev);
784 	mirror_info_t *mirror;
785 	r10bio_t *r10_bio;
786 	struct bio *read_bio;
787 	int i;
788 	int chunk_sects = conf->chunk_mask + 1;
789 	const int rw = bio_data_dir(bio);
790 	const int do_sync = bio_sync(bio);
791 	struct bio_list bl;
792 	unsigned long flags;
793 
794 	if (unlikely(bio_barrier(bio))) {
795 		bio_endio(bio, -EOPNOTSUPP);
796 		return 0;
797 	}
798 
799 	/* If this request crosses a chunk boundary, we need to
800 	 * split it.  This will only happen for 1 PAGE (or less) requests.
801 	 */
802 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
803 		      > chunk_sects &&
804 		    conf->near_copies < conf->raid_disks)) {
805 		struct bio_pair *bp;
806 		/* Sanity check -- queue functions should prevent this happening */
807 		if (bio->bi_vcnt != 1 ||
808 		    bio->bi_idx != 0)
809 			goto bad_map;
810 		/* This is a one page bio that upper layers
811 		 * refuse to split for us, so we need to split it.
812 		 */
813 		bp = bio_split(bio, bio_split_pool,
814 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
815 		if (make_request(q, &bp->bio1))
816 			generic_make_request(&bp->bio1);
817 		if (make_request(q, &bp->bio2))
818 			generic_make_request(&bp->bio2);
819 
820 		bio_pair_release(bp);
821 		return 0;
822 	bad_map:
823 		printk("raid10_make_request bug: can't convert block across chunks"
824 		       " or bigger than %dk %llu %d\n", chunk_sects/2,
825 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
826 
827 		bio_io_error(bio);
828 		return 0;
829 	}
830 
831 	md_write_start(mddev, bio);
832 
833 	/*
834 	 * Register the new request and wait if the reconstruction
835 	 * thread has put up a bar for new requests.
836 	 * Continue immediately if no resync is active currently.
837 	 */
838 	wait_barrier(conf);
839 
840 	disk_stat_inc(mddev->gendisk, ios[rw]);
841 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
842 
843 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
844 
845 	r10_bio->master_bio = bio;
846 	r10_bio->sectors = bio->bi_size >> 9;
847 
848 	r10_bio->mddev = mddev;
849 	r10_bio->sector = bio->bi_sector;
850 	r10_bio->state = 0;
851 
852 	if (rw == READ) {
853 		/*
854 		 * read balancing logic:
855 		 */
856 		int disk = read_balance(conf, r10_bio);
857 		int slot = r10_bio->read_slot;
858 		if (disk < 0) {
859 			raid_end_bio_io(r10_bio);
860 			return 0;
861 		}
862 		mirror = conf->mirrors + disk;
863 
864 		read_bio = bio_clone(bio, GFP_NOIO);
865 
866 		r10_bio->devs[slot].bio = read_bio;
867 
868 		read_bio->bi_sector = r10_bio->devs[slot].addr +
869 			mirror->rdev->data_offset;
870 		read_bio->bi_bdev = mirror->rdev->bdev;
871 		read_bio->bi_end_io = raid10_end_read_request;
872 		read_bio->bi_rw = READ | do_sync;
873 		read_bio->bi_private = r10_bio;
874 
875 		generic_make_request(read_bio);
876 		return 0;
877 	}
878 
879 	/*
880 	 * WRITE:
881 	 */
882 	/* first select target devices under spinlock and
883 	 * inc refcount on their rdev.  Record them by setting
884 	 * bios[x] to bio
885 	 */
886 	raid10_find_phys(conf, r10_bio);
887 	rcu_read_lock();
888 	for (i = 0;  i < conf->copies; i++) {
889 		int d = r10_bio->devs[i].devnum;
890 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
891 		if (rdev &&
892 		    !test_bit(Faulty, &rdev->flags)) {
893 			atomic_inc(&rdev->nr_pending);
894 			r10_bio->devs[i].bio = bio;
895 		} else {
896 			r10_bio->devs[i].bio = NULL;
897 			set_bit(R10BIO_Degraded, &r10_bio->state);
898 		}
899 	}
900 	rcu_read_unlock();
901 
902 	atomic_set(&r10_bio->remaining, 0);
903 
904 	bio_list_init(&bl);
905 	for (i = 0; i < conf->copies; i++) {
906 		struct bio *mbio;
907 		int d = r10_bio->devs[i].devnum;
908 		if (!r10_bio->devs[i].bio)
909 			continue;
910 
911 		mbio = bio_clone(bio, GFP_NOIO);
912 		r10_bio->devs[i].bio = mbio;
913 
914 		mbio->bi_sector	= r10_bio->devs[i].addr+
915 			conf->mirrors[d].rdev->data_offset;
916 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
917 		mbio->bi_end_io	= raid10_end_write_request;
918 		mbio->bi_rw = WRITE | do_sync;
919 		mbio->bi_private = r10_bio;
920 
921 		atomic_inc(&r10_bio->remaining);
922 		bio_list_add(&bl, mbio);
923 	}
924 
925 	if (unlikely(!atomic_read(&r10_bio->remaining))) {
926 		/* the array is dead */
927 		md_write_end(mddev);
928 		raid_end_bio_io(r10_bio);
929 		return 0;
930 	}
931 
932 	bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
933 	spin_lock_irqsave(&conf->device_lock, flags);
934 	bio_list_merge(&conf->pending_bio_list, &bl);
935 	blk_plug_device(mddev->queue);
936 	spin_unlock_irqrestore(&conf->device_lock, flags);
937 
938 	/* In case raid10d snuck in to freeze_array */
939 	wake_up(&conf->wait_barrier);
940 
941 	if (do_sync)
942 		md_wakeup_thread(mddev->thread);
943 
944 	return 0;
945 }
946 
947 static void status(struct seq_file *seq, mddev_t *mddev)
948 {
949 	conf_t *conf = mddev_to_conf(mddev);
950 	int i;
951 
952 	if (conf->near_copies < conf->raid_disks)
953 		seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
954 	if (conf->near_copies > 1)
955 		seq_printf(seq, " %d near-copies", conf->near_copies);
956 	if (conf->far_copies > 1) {
957 		if (conf->far_offset)
958 			seq_printf(seq, " %d offset-copies", conf->far_copies);
959 		else
960 			seq_printf(seq, " %d far-copies", conf->far_copies);
961 	}
962 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
963 					conf->raid_disks - mddev->degraded);
964 	for (i = 0; i < conf->raid_disks; i++)
965 		seq_printf(seq, "%s",
966 			      conf->mirrors[i].rdev &&
967 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
968 	seq_printf(seq, "]");
969 }
970 
971 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
972 {
973 	char b[BDEVNAME_SIZE];
974 	conf_t *conf = mddev_to_conf(mddev);
975 
976 	/*
977 	 * If it is not operational, then we have already marked it as dead
978 	 * else if it is the last working disks, ignore the error, let the
979 	 * next level up know.
980 	 * else mark the drive as failed
981 	 */
982 	if (test_bit(In_sync, &rdev->flags)
983 	    && conf->raid_disks-mddev->degraded == 1)
984 		/*
985 		 * Don't fail the drive, just return an IO error.
986 		 * The test should really be more sophisticated than
987 		 * "working_disks == 1", but it isn't critical, and
988 		 * can wait until we do more sophisticated "is the drive
989 		 * really dead" tests...
990 		 */
991 		return;
992 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
993 		unsigned long flags;
994 		spin_lock_irqsave(&conf->device_lock, flags);
995 		mddev->degraded++;
996 		spin_unlock_irqrestore(&conf->device_lock, flags);
997 		/*
998 		 * if recovery is running, make sure it aborts.
999 		 */
1000 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1001 	}
1002 	set_bit(Faulty, &rdev->flags);
1003 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1004 	printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
1005 		"	Operation continuing on %d devices\n",
1006 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1007 }
1008 
1009 static void print_conf(conf_t *conf)
1010 {
1011 	int i;
1012 	mirror_info_t *tmp;
1013 
1014 	printk("RAID10 conf printout:\n");
1015 	if (!conf) {
1016 		printk("(!conf)\n");
1017 		return;
1018 	}
1019 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1020 		conf->raid_disks);
1021 
1022 	for (i = 0; i < conf->raid_disks; i++) {
1023 		char b[BDEVNAME_SIZE];
1024 		tmp = conf->mirrors + i;
1025 		if (tmp->rdev)
1026 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1027 				i, !test_bit(In_sync, &tmp->rdev->flags),
1028 			        !test_bit(Faulty, &tmp->rdev->flags),
1029 				bdevname(tmp->rdev->bdev,b));
1030 	}
1031 }
1032 
1033 static void close_sync(conf_t *conf)
1034 {
1035 	wait_barrier(conf);
1036 	allow_barrier(conf);
1037 
1038 	mempool_destroy(conf->r10buf_pool);
1039 	conf->r10buf_pool = NULL;
1040 }
1041 
1042 /* check if there are enough drives for
1043  * every block to appear on atleast one
1044  */
1045 static int enough(conf_t *conf)
1046 {
1047 	int first = 0;
1048 
1049 	do {
1050 		int n = conf->copies;
1051 		int cnt = 0;
1052 		while (n--) {
1053 			if (conf->mirrors[first].rdev)
1054 				cnt++;
1055 			first = (first+1) % conf->raid_disks;
1056 		}
1057 		if (cnt == 0)
1058 			return 0;
1059 	} while (first != 0);
1060 	return 1;
1061 }
1062 
1063 static int raid10_spare_active(mddev_t *mddev)
1064 {
1065 	int i;
1066 	conf_t *conf = mddev->private;
1067 	mirror_info_t *tmp;
1068 
1069 	/*
1070 	 * Find all non-in_sync disks within the RAID10 configuration
1071 	 * and mark them in_sync
1072 	 */
1073 	for (i = 0; i < conf->raid_disks; i++) {
1074 		tmp = conf->mirrors + i;
1075 		if (tmp->rdev
1076 		    && !test_bit(Faulty, &tmp->rdev->flags)
1077 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1078 			unsigned long flags;
1079 			spin_lock_irqsave(&conf->device_lock, flags);
1080 			mddev->degraded--;
1081 			spin_unlock_irqrestore(&conf->device_lock, flags);
1082 		}
1083 	}
1084 
1085 	print_conf(conf);
1086 	return 0;
1087 }
1088 
1089 
1090 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1091 {
1092 	conf_t *conf = mddev->private;
1093 	int found = 0;
1094 	int mirror;
1095 	mirror_info_t *p;
1096 
1097 	if (mddev->recovery_cp < MaxSector)
1098 		/* only hot-add to in-sync arrays, as recovery is
1099 		 * very different from resync
1100 		 */
1101 		return 0;
1102 	if (!enough(conf))
1103 		return 0;
1104 
1105 	if (rdev->saved_raid_disk >= 0 &&
1106 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1107 		mirror = rdev->saved_raid_disk;
1108 	else
1109 		mirror = 0;
1110 	for ( ; mirror < mddev->raid_disks; mirror++)
1111 		if ( !(p=conf->mirrors+mirror)->rdev) {
1112 
1113 			blk_queue_stack_limits(mddev->queue,
1114 					       rdev->bdev->bd_disk->queue);
1115 			/* as we don't honour merge_bvec_fn, we must never risk
1116 			 * violating it, so limit ->max_sector to one PAGE, as
1117 			 * a one page request is never in violation.
1118 			 */
1119 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1120 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1121 				mddev->queue->max_sectors = (PAGE_SIZE>>9);
1122 
1123 			p->head_position = 0;
1124 			rdev->raid_disk = mirror;
1125 			found = 1;
1126 			if (rdev->saved_raid_disk != mirror)
1127 				conf->fullsync = 1;
1128 			rcu_assign_pointer(p->rdev, rdev);
1129 			break;
1130 		}
1131 
1132 	print_conf(conf);
1133 	return found;
1134 }
1135 
1136 static int raid10_remove_disk(mddev_t *mddev, int number)
1137 {
1138 	conf_t *conf = mddev->private;
1139 	int err = 0;
1140 	mdk_rdev_t *rdev;
1141 	mirror_info_t *p = conf->mirrors+ number;
1142 
1143 	print_conf(conf);
1144 	rdev = p->rdev;
1145 	if (rdev) {
1146 		if (test_bit(In_sync, &rdev->flags) ||
1147 		    atomic_read(&rdev->nr_pending)) {
1148 			err = -EBUSY;
1149 			goto abort;
1150 		}
1151 		p->rdev = NULL;
1152 		synchronize_rcu();
1153 		if (atomic_read(&rdev->nr_pending)) {
1154 			/* lost the race, try later */
1155 			err = -EBUSY;
1156 			p->rdev = rdev;
1157 		}
1158 	}
1159 abort:
1160 
1161 	print_conf(conf);
1162 	return err;
1163 }
1164 
1165 
1166 static void end_sync_read(struct bio *bio, int error)
1167 {
1168 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1169 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
1170 	int i,d;
1171 
1172 	for (i=0; i<conf->copies; i++)
1173 		if (r10_bio->devs[i].bio == bio)
1174 			break;
1175 	BUG_ON(i == conf->copies);
1176 	update_head_pos(i, r10_bio);
1177 	d = r10_bio->devs[i].devnum;
1178 
1179 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1180 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1181 	else {
1182 		atomic_add(r10_bio->sectors,
1183 			   &conf->mirrors[d].rdev->corrected_errors);
1184 		if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1185 			md_error(r10_bio->mddev,
1186 				 conf->mirrors[d].rdev);
1187 	}
1188 
1189 	/* for reconstruct, we always reschedule after a read.
1190 	 * for resync, only after all reads
1191 	 */
1192 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1193 	    atomic_dec_and_test(&r10_bio->remaining)) {
1194 		/* we have read all the blocks,
1195 		 * do the comparison in process context in raid10d
1196 		 */
1197 		reschedule_retry(r10_bio);
1198 	}
1199 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1200 }
1201 
1202 static void end_sync_write(struct bio *bio, int error)
1203 {
1204 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1205 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1206 	mddev_t *mddev = r10_bio->mddev;
1207 	conf_t *conf = mddev_to_conf(mddev);
1208 	int i,d;
1209 
1210 	for (i = 0; i < conf->copies; i++)
1211 		if (r10_bio->devs[i].bio == bio)
1212 			break;
1213 	d = r10_bio->devs[i].devnum;
1214 
1215 	if (!uptodate)
1216 		md_error(mddev, conf->mirrors[d].rdev);
1217 	update_head_pos(i, r10_bio);
1218 
1219 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1220 		if (r10_bio->master_bio == NULL) {
1221 			/* the primary of several recovery bios */
1222 			md_done_sync(mddev, r10_bio->sectors, 1);
1223 			put_buf(r10_bio);
1224 			break;
1225 		} else {
1226 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1227 			put_buf(r10_bio);
1228 			r10_bio = r10_bio2;
1229 		}
1230 	}
1231 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1232 }
1233 
1234 /*
1235  * Note: sync and recover and handled very differently for raid10
1236  * This code is for resync.
1237  * For resync, we read through virtual addresses and read all blocks.
1238  * If there is any error, we schedule a write.  The lowest numbered
1239  * drive is authoritative.
1240  * However requests come for physical address, so we need to map.
1241  * For every physical address there are raid_disks/copies virtual addresses,
1242  * which is always are least one, but is not necessarly an integer.
1243  * This means that a physical address can span multiple chunks, so we may
1244  * have to submit multiple io requests for a single sync request.
1245  */
1246 /*
1247  * We check if all blocks are in-sync and only write to blocks that
1248  * aren't in sync
1249  */
1250 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1251 {
1252 	conf_t *conf = mddev_to_conf(mddev);
1253 	int i, first;
1254 	struct bio *tbio, *fbio;
1255 
1256 	atomic_set(&r10_bio->remaining, 1);
1257 
1258 	/* find the first device with a block */
1259 	for (i=0; i<conf->copies; i++)
1260 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1261 			break;
1262 
1263 	if (i == conf->copies)
1264 		goto done;
1265 
1266 	first = i;
1267 	fbio = r10_bio->devs[i].bio;
1268 
1269 	/* now find blocks with errors */
1270 	for (i=0 ; i < conf->copies ; i++) {
1271 		int  j, d;
1272 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1273 
1274 		tbio = r10_bio->devs[i].bio;
1275 
1276 		if (tbio->bi_end_io != end_sync_read)
1277 			continue;
1278 		if (i == first)
1279 			continue;
1280 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1281 			/* We know that the bi_io_vec layout is the same for
1282 			 * both 'first' and 'i', so we just compare them.
1283 			 * All vec entries are PAGE_SIZE;
1284 			 */
1285 			for (j = 0; j < vcnt; j++)
1286 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1287 					   page_address(tbio->bi_io_vec[j].bv_page),
1288 					   PAGE_SIZE))
1289 					break;
1290 			if (j == vcnt)
1291 				continue;
1292 			mddev->resync_mismatches += r10_bio->sectors;
1293 		}
1294 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1295 			/* Don't fix anything. */
1296 			continue;
1297 		/* Ok, we need to write this bio
1298 		 * First we need to fixup bv_offset, bv_len and
1299 		 * bi_vecs, as the read request might have corrupted these
1300 		 */
1301 		tbio->bi_vcnt = vcnt;
1302 		tbio->bi_size = r10_bio->sectors << 9;
1303 		tbio->bi_idx = 0;
1304 		tbio->bi_phys_segments = 0;
1305 		tbio->bi_hw_segments = 0;
1306 		tbio->bi_hw_front_size = 0;
1307 		tbio->bi_hw_back_size = 0;
1308 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1309 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1310 		tbio->bi_next = NULL;
1311 		tbio->bi_rw = WRITE;
1312 		tbio->bi_private = r10_bio;
1313 		tbio->bi_sector = r10_bio->devs[i].addr;
1314 
1315 		for (j=0; j < vcnt ; j++) {
1316 			tbio->bi_io_vec[j].bv_offset = 0;
1317 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1318 
1319 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1320 			       page_address(fbio->bi_io_vec[j].bv_page),
1321 			       PAGE_SIZE);
1322 		}
1323 		tbio->bi_end_io = end_sync_write;
1324 
1325 		d = r10_bio->devs[i].devnum;
1326 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1327 		atomic_inc(&r10_bio->remaining);
1328 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1329 
1330 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1331 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1332 		generic_make_request(tbio);
1333 	}
1334 
1335 done:
1336 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1337 		md_done_sync(mddev, r10_bio->sectors, 1);
1338 		put_buf(r10_bio);
1339 	}
1340 }
1341 
1342 /*
1343  * Now for the recovery code.
1344  * Recovery happens across physical sectors.
1345  * We recover all non-is_sync drives by finding the virtual address of
1346  * each, and then choose a working drive that also has that virt address.
1347  * There is a separate r10_bio for each non-in_sync drive.
1348  * Only the first two slots are in use. The first for reading,
1349  * The second for writing.
1350  *
1351  */
1352 
1353 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1354 {
1355 	conf_t *conf = mddev_to_conf(mddev);
1356 	int i, d;
1357 	struct bio *bio, *wbio;
1358 
1359 
1360 	/* move the pages across to the second bio
1361 	 * and submit the write request
1362 	 */
1363 	bio = r10_bio->devs[0].bio;
1364 	wbio = r10_bio->devs[1].bio;
1365 	for (i=0; i < wbio->bi_vcnt; i++) {
1366 		struct page *p = bio->bi_io_vec[i].bv_page;
1367 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1368 		wbio->bi_io_vec[i].bv_page = p;
1369 	}
1370 	d = r10_bio->devs[1].devnum;
1371 
1372 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1373 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1374 	if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1375 		generic_make_request(wbio);
1376 	else
1377 		bio_endio(wbio, -EIO);
1378 }
1379 
1380 
1381 /*
1382  * This is a kernel thread which:
1383  *
1384  *	1.	Retries failed read operations on working mirrors.
1385  *	2.	Updates the raid superblock when problems encounter.
1386  *	3.	Performs writes following reads for array synchronising.
1387  */
1388 
1389 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1390 {
1391 	int sect = 0; /* Offset from r10_bio->sector */
1392 	int sectors = r10_bio->sectors;
1393 	mdk_rdev_t*rdev;
1394 	while(sectors) {
1395 		int s = sectors;
1396 		int sl = r10_bio->read_slot;
1397 		int success = 0;
1398 		int start;
1399 
1400 		if (s > (PAGE_SIZE>>9))
1401 			s = PAGE_SIZE >> 9;
1402 
1403 		rcu_read_lock();
1404 		do {
1405 			int d = r10_bio->devs[sl].devnum;
1406 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1407 			if (rdev &&
1408 			    test_bit(In_sync, &rdev->flags)) {
1409 				atomic_inc(&rdev->nr_pending);
1410 				rcu_read_unlock();
1411 				success = sync_page_io(rdev->bdev,
1412 						       r10_bio->devs[sl].addr +
1413 						       sect + rdev->data_offset,
1414 						       s<<9,
1415 						       conf->tmppage, READ);
1416 				rdev_dec_pending(rdev, mddev);
1417 				rcu_read_lock();
1418 				if (success)
1419 					break;
1420 			}
1421 			sl++;
1422 			if (sl == conf->copies)
1423 				sl = 0;
1424 		} while (!success && sl != r10_bio->read_slot);
1425 		rcu_read_unlock();
1426 
1427 		if (!success) {
1428 			/* Cannot read from anywhere -- bye bye array */
1429 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1430 			md_error(mddev, conf->mirrors[dn].rdev);
1431 			break;
1432 		}
1433 
1434 		start = sl;
1435 		/* write it back and re-read */
1436 		rcu_read_lock();
1437 		while (sl != r10_bio->read_slot) {
1438 			int d;
1439 			if (sl==0)
1440 				sl = conf->copies;
1441 			sl--;
1442 			d = r10_bio->devs[sl].devnum;
1443 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1444 			if (rdev &&
1445 			    test_bit(In_sync, &rdev->flags)) {
1446 				atomic_inc(&rdev->nr_pending);
1447 				rcu_read_unlock();
1448 				atomic_add(s, &rdev->corrected_errors);
1449 				if (sync_page_io(rdev->bdev,
1450 						 r10_bio->devs[sl].addr +
1451 						 sect + rdev->data_offset,
1452 						 s<<9, conf->tmppage, WRITE)
1453 				    == 0)
1454 					/* Well, this device is dead */
1455 					md_error(mddev, rdev);
1456 				rdev_dec_pending(rdev, mddev);
1457 				rcu_read_lock();
1458 			}
1459 		}
1460 		sl = start;
1461 		while (sl != r10_bio->read_slot) {
1462 			int d;
1463 			if (sl==0)
1464 				sl = conf->copies;
1465 			sl--;
1466 			d = r10_bio->devs[sl].devnum;
1467 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1468 			if (rdev &&
1469 			    test_bit(In_sync, &rdev->flags)) {
1470 				char b[BDEVNAME_SIZE];
1471 				atomic_inc(&rdev->nr_pending);
1472 				rcu_read_unlock();
1473 				if (sync_page_io(rdev->bdev,
1474 						 r10_bio->devs[sl].addr +
1475 						 sect + rdev->data_offset,
1476 						 s<<9, conf->tmppage, READ) == 0)
1477 					/* Well, this device is dead */
1478 					md_error(mddev, rdev);
1479 				else
1480 					printk(KERN_INFO
1481 					       "raid10:%s: read error corrected"
1482 					       " (%d sectors at %llu on %s)\n",
1483 					       mdname(mddev), s,
1484 					       (unsigned long long)(sect+
1485 					            rdev->data_offset),
1486 					       bdevname(rdev->bdev, b));
1487 
1488 				rdev_dec_pending(rdev, mddev);
1489 				rcu_read_lock();
1490 			}
1491 		}
1492 		rcu_read_unlock();
1493 
1494 		sectors -= s;
1495 		sect += s;
1496 	}
1497 }
1498 
1499 static void raid10d(mddev_t *mddev)
1500 {
1501 	r10bio_t *r10_bio;
1502 	struct bio *bio;
1503 	unsigned long flags;
1504 	conf_t *conf = mddev_to_conf(mddev);
1505 	struct list_head *head = &conf->retry_list;
1506 	int unplug=0;
1507 	mdk_rdev_t *rdev;
1508 
1509 	md_check_recovery(mddev);
1510 
1511 	for (;;) {
1512 		char b[BDEVNAME_SIZE];
1513 
1514 		unplug += flush_pending_writes(conf);
1515 
1516 		spin_lock_irqsave(&conf->device_lock, flags);
1517 		if (list_empty(head)) {
1518 			spin_unlock_irqrestore(&conf->device_lock, flags);
1519 			break;
1520 		}
1521 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1522 		list_del(head->prev);
1523 		conf->nr_queued--;
1524 		spin_unlock_irqrestore(&conf->device_lock, flags);
1525 
1526 		mddev = r10_bio->mddev;
1527 		conf = mddev_to_conf(mddev);
1528 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1529 			sync_request_write(mddev, r10_bio);
1530 			unplug = 1;
1531 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1532 			recovery_request_write(mddev, r10_bio);
1533 			unplug = 1;
1534 		} else {
1535 			int mirror;
1536 			/* we got a read error. Maybe the drive is bad.  Maybe just
1537 			 * the block and we can fix it.
1538 			 * We freeze all other IO, and try reading the block from
1539 			 * other devices.  When we find one, we re-write
1540 			 * and check it that fixes the read error.
1541 			 * This is all done synchronously while the array is
1542 			 * frozen.
1543 			 */
1544 			if (mddev->ro == 0) {
1545 				freeze_array(conf);
1546 				fix_read_error(conf, mddev, r10_bio);
1547 				unfreeze_array(conf);
1548 			}
1549 
1550 			bio = r10_bio->devs[r10_bio->read_slot].bio;
1551 			r10_bio->devs[r10_bio->read_slot].bio =
1552 				mddev->ro ? IO_BLOCKED : NULL;
1553 			mirror = read_balance(conf, r10_bio);
1554 			if (mirror == -1) {
1555 				printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1556 				       " read error for block %llu\n",
1557 				       bdevname(bio->bi_bdev,b),
1558 				       (unsigned long long)r10_bio->sector);
1559 				raid_end_bio_io(r10_bio);
1560 				bio_put(bio);
1561 			} else {
1562 				const int do_sync = bio_sync(r10_bio->master_bio);
1563 				bio_put(bio);
1564 				rdev = conf->mirrors[mirror].rdev;
1565 				if (printk_ratelimit())
1566 					printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1567 					       " another mirror\n",
1568 					       bdevname(rdev->bdev,b),
1569 					       (unsigned long long)r10_bio->sector);
1570 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1571 				r10_bio->devs[r10_bio->read_slot].bio = bio;
1572 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1573 					+ rdev->data_offset;
1574 				bio->bi_bdev = rdev->bdev;
1575 				bio->bi_rw = READ | do_sync;
1576 				bio->bi_private = r10_bio;
1577 				bio->bi_end_io = raid10_end_read_request;
1578 				unplug = 1;
1579 				generic_make_request(bio);
1580 			}
1581 		}
1582 	}
1583 	if (unplug)
1584 		unplug_slaves(mddev);
1585 }
1586 
1587 
1588 static int init_resync(conf_t *conf)
1589 {
1590 	int buffs;
1591 
1592 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1593 	BUG_ON(conf->r10buf_pool);
1594 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1595 	if (!conf->r10buf_pool)
1596 		return -ENOMEM;
1597 	conf->next_resync = 0;
1598 	return 0;
1599 }
1600 
1601 /*
1602  * perform a "sync" on one "block"
1603  *
1604  * We need to make sure that no normal I/O request - particularly write
1605  * requests - conflict with active sync requests.
1606  *
1607  * This is achieved by tracking pending requests and a 'barrier' concept
1608  * that can be installed to exclude normal IO requests.
1609  *
1610  * Resync and recovery are handled very differently.
1611  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1612  *
1613  * For resync, we iterate over virtual addresses, read all copies,
1614  * and update if there are differences.  If only one copy is live,
1615  * skip it.
1616  * For recovery, we iterate over physical addresses, read a good
1617  * value for each non-in_sync drive, and over-write.
1618  *
1619  * So, for recovery we may have several outstanding complex requests for a
1620  * given address, one for each out-of-sync device.  We model this by allocating
1621  * a number of r10_bio structures, one for each out-of-sync device.
1622  * As we setup these structures, we collect all bio's together into a list
1623  * which we then process collectively to add pages, and then process again
1624  * to pass to generic_make_request.
1625  *
1626  * The r10_bio structures are linked using a borrowed master_bio pointer.
1627  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1628  * has its remaining count decremented to 0, the whole complex operation
1629  * is complete.
1630  *
1631  */
1632 
1633 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1634 {
1635 	conf_t *conf = mddev_to_conf(mddev);
1636 	r10bio_t *r10_bio;
1637 	struct bio *biolist = NULL, *bio;
1638 	sector_t max_sector, nr_sectors;
1639 	int disk;
1640 	int i;
1641 	int max_sync;
1642 	int sync_blocks;
1643 
1644 	sector_t sectors_skipped = 0;
1645 	int chunks_skipped = 0;
1646 
1647 	if (!conf->r10buf_pool)
1648 		if (init_resync(conf))
1649 			return 0;
1650 
1651  skipped:
1652 	max_sector = mddev->size << 1;
1653 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1654 		max_sector = mddev->resync_max_sectors;
1655 	if (sector_nr >= max_sector) {
1656 		/* If we aborted, we need to abort the
1657 		 * sync on the 'current' bitmap chucks (there can
1658 		 * be several when recovering multiple devices).
1659 		 * as we may have started syncing it but not finished.
1660 		 * We can find the current address in
1661 		 * mddev->curr_resync, but for recovery,
1662 		 * we need to convert that to several
1663 		 * virtual addresses.
1664 		 */
1665 		if (mddev->curr_resync < max_sector) { /* aborted */
1666 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1667 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1668 						&sync_blocks, 1);
1669 			else for (i=0; i<conf->raid_disks; i++) {
1670 				sector_t sect =
1671 					raid10_find_virt(conf, mddev->curr_resync, i);
1672 				bitmap_end_sync(mddev->bitmap, sect,
1673 						&sync_blocks, 1);
1674 			}
1675 		} else /* completed sync */
1676 			conf->fullsync = 0;
1677 
1678 		bitmap_close_sync(mddev->bitmap);
1679 		close_sync(conf);
1680 		*skipped = 1;
1681 		return sectors_skipped;
1682 	}
1683 	if (chunks_skipped >= conf->raid_disks) {
1684 		/* if there has been nothing to do on any drive,
1685 		 * then there is nothing to do at all..
1686 		 */
1687 		*skipped = 1;
1688 		return (max_sector - sector_nr) + sectors_skipped;
1689 	}
1690 
1691 	if (max_sector > mddev->resync_max)
1692 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1693 
1694 	/* make sure whole request will fit in a chunk - if chunks
1695 	 * are meaningful
1696 	 */
1697 	if (conf->near_copies < conf->raid_disks &&
1698 	    max_sector > (sector_nr | conf->chunk_mask))
1699 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1700 	/*
1701 	 * If there is non-resync activity waiting for us then
1702 	 * put in a delay to throttle resync.
1703 	 */
1704 	if (!go_faster && conf->nr_waiting)
1705 		msleep_interruptible(1000);
1706 
1707 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1708 
1709 	/* Again, very different code for resync and recovery.
1710 	 * Both must result in an r10bio with a list of bios that
1711 	 * have bi_end_io, bi_sector, bi_bdev set,
1712 	 * and bi_private set to the r10bio.
1713 	 * For recovery, we may actually create several r10bios
1714 	 * with 2 bios in each, that correspond to the bios in the main one.
1715 	 * In this case, the subordinate r10bios link back through a
1716 	 * borrowed master_bio pointer, and the counter in the master
1717 	 * includes a ref from each subordinate.
1718 	 */
1719 	/* First, we decide what to do and set ->bi_end_io
1720 	 * To end_sync_read if we want to read, and
1721 	 * end_sync_write if we will want to write.
1722 	 */
1723 
1724 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1725 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1726 		/* recovery... the complicated one */
1727 		int i, j, k;
1728 		r10_bio = NULL;
1729 
1730 		for (i=0 ; i<conf->raid_disks; i++)
1731 			if (conf->mirrors[i].rdev &&
1732 			    !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1733 				int still_degraded = 0;
1734 				/* want to reconstruct this device */
1735 				r10bio_t *rb2 = r10_bio;
1736 				sector_t sect = raid10_find_virt(conf, sector_nr, i);
1737 				int must_sync;
1738 				/* Unless we are doing a full sync, we only need
1739 				 * to recover the block if it is set in the bitmap
1740 				 */
1741 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1742 							      &sync_blocks, 1);
1743 				if (sync_blocks < max_sync)
1744 					max_sync = sync_blocks;
1745 				if (!must_sync &&
1746 				    !conf->fullsync) {
1747 					/* yep, skip the sync_blocks here, but don't assume
1748 					 * that there will never be anything to do here
1749 					 */
1750 					chunks_skipped = -1;
1751 					continue;
1752 				}
1753 
1754 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1755 				raise_barrier(conf, rb2 != NULL);
1756 				atomic_set(&r10_bio->remaining, 0);
1757 
1758 				r10_bio->master_bio = (struct bio*)rb2;
1759 				if (rb2)
1760 					atomic_inc(&rb2->remaining);
1761 				r10_bio->mddev = mddev;
1762 				set_bit(R10BIO_IsRecover, &r10_bio->state);
1763 				r10_bio->sector = sect;
1764 
1765 				raid10_find_phys(conf, r10_bio);
1766 				/* Need to check if this section will still be
1767 				 * degraded
1768 				 */
1769 				for (j=0; j<conf->copies;j++) {
1770 					int d = r10_bio->devs[j].devnum;
1771 					if (conf->mirrors[d].rdev == NULL ||
1772 					    test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1773 						still_degraded = 1;
1774 						break;
1775 					}
1776 				}
1777 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1778 							      &sync_blocks, still_degraded);
1779 
1780 				for (j=0; j<conf->copies;j++) {
1781 					int d = r10_bio->devs[j].devnum;
1782 					if (conf->mirrors[d].rdev &&
1783 					    test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1784 						/* This is where we read from */
1785 						bio = r10_bio->devs[0].bio;
1786 						bio->bi_next = biolist;
1787 						biolist = bio;
1788 						bio->bi_private = r10_bio;
1789 						bio->bi_end_io = end_sync_read;
1790 						bio->bi_rw = READ;
1791 						bio->bi_sector = r10_bio->devs[j].addr +
1792 							conf->mirrors[d].rdev->data_offset;
1793 						bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1794 						atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1795 						atomic_inc(&r10_bio->remaining);
1796 						/* and we write to 'i' */
1797 
1798 						for (k=0; k<conf->copies; k++)
1799 							if (r10_bio->devs[k].devnum == i)
1800 								break;
1801 						BUG_ON(k == conf->copies);
1802 						bio = r10_bio->devs[1].bio;
1803 						bio->bi_next = biolist;
1804 						biolist = bio;
1805 						bio->bi_private = r10_bio;
1806 						bio->bi_end_io = end_sync_write;
1807 						bio->bi_rw = WRITE;
1808 						bio->bi_sector = r10_bio->devs[k].addr +
1809 							conf->mirrors[i].rdev->data_offset;
1810 						bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1811 
1812 						r10_bio->devs[0].devnum = d;
1813 						r10_bio->devs[1].devnum = i;
1814 
1815 						break;
1816 					}
1817 				}
1818 				if (j == conf->copies) {
1819 					/* Cannot recover, so abort the recovery */
1820 					put_buf(r10_bio);
1821 					if (rb2)
1822 						atomic_dec(&rb2->remaining);
1823 					r10_bio = rb2;
1824 					if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1825 						printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1826 						       mdname(mddev));
1827 					break;
1828 				}
1829 			}
1830 		if (biolist == NULL) {
1831 			while (r10_bio) {
1832 				r10bio_t *rb2 = r10_bio;
1833 				r10_bio = (r10bio_t*) rb2->master_bio;
1834 				rb2->master_bio = NULL;
1835 				put_buf(rb2);
1836 			}
1837 			goto giveup;
1838 		}
1839 	} else {
1840 		/* resync. Schedule a read for every block at this virt offset */
1841 		int count = 0;
1842 
1843 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1844 				       &sync_blocks, mddev->degraded) &&
1845 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1846 			/* We can skip this block */
1847 			*skipped = 1;
1848 			return sync_blocks + sectors_skipped;
1849 		}
1850 		if (sync_blocks < max_sync)
1851 			max_sync = sync_blocks;
1852 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1853 
1854 		r10_bio->mddev = mddev;
1855 		atomic_set(&r10_bio->remaining, 0);
1856 		raise_barrier(conf, 0);
1857 		conf->next_resync = sector_nr;
1858 
1859 		r10_bio->master_bio = NULL;
1860 		r10_bio->sector = sector_nr;
1861 		set_bit(R10BIO_IsSync, &r10_bio->state);
1862 		raid10_find_phys(conf, r10_bio);
1863 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1864 
1865 		for (i=0; i<conf->copies; i++) {
1866 			int d = r10_bio->devs[i].devnum;
1867 			bio = r10_bio->devs[i].bio;
1868 			bio->bi_end_io = NULL;
1869 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
1870 			if (conf->mirrors[d].rdev == NULL ||
1871 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1872 				continue;
1873 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1874 			atomic_inc(&r10_bio->remaining);
1875 			bio->bi_next = biolist;
1876 			biolist = bio;
1877 			bio->bi_private = r10_bio;
1878 			bio->bi_end_io = end_sync_read;
1879 			bio->bi_rw = READ;
1880 			bio->bi_sector = r10_bio->devs[i].addr +
1881 				conf->mirrors[d].rdev->data_offset;
1882 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1883 			count++;
1884 		}
1885 
1886 		if (count < 2) {
1887 			for (i=0; i<conf->copies; i++) {
1888 				int d = r10_bio->devs[i].devnum;
1889 				if (r10_bio->devs[i].bio->bi_end_io)
1890 					rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1891 			}
1892 			put_buf(r10_bio);
1893 			biolist = NULL;
1894 			goto giveup;
1895 		}
1896 	}
1897 
1898 	for (bio = biolist; bio ; bio=bio->bi_next) {
1899 
1900 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1901 		if (bio->bi_end_io)
1902 			bio->bi_flags |= 1 << BIO_UPTODATE;
1903 		bio->bi_vcnt = 0;
1904 		bio->bi_idx = 0;
1905 		bio->bi_phys_segments = 0;
1906 		bio->bi_hw_segments = 0;
1907 		bio->bi_size = 0;
1908 	}
1909 
1910 	nr_sectors = 0;
1911 	if (sector_nr + max_sync < max_sector)
1912 		max_sector = sector_nr + max_sync;
1913 	do {
1914 		struct page *page;
1915 		int len = PAGE_SIZE;
1916 		disk = 0;
1917 		if (sector_nr + (len>>9) > max_sector)
1918 			len = (max_sector - sector_nr) << 9;
1919 		if (len == 0)
1920 			break;
1921 		for (bio= biolist ; bio ; bio=bio->bi_next) {
1922 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1923 			if (bio_add_page(bio, page, len, 0) == 0) {
1924 				/* stop here */
1925 				struct bio *bio2;
1926 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1927 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1928 					/* remove last page from this bio */
1929 					bio2->bi_vcnt--;
1930 					bio2->bi_size -= len;
1931 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1932 				}
1933 				goto bio_full;
1934 			}
1935 			disk = i;
1936 		}
1937 		nr_sectors += len>>9;
1938 		sector_nr += len>>9;
1939 	} while (biolist->bi_vcnt < RESYNC_PAGES);
1940  bio_full:
1941 	r10_bio->sectors = nr_sectors;
1942 
1943 	while (biolist) {
1944 		bio = biolist;
1945 		biolist = biolist->bi_next;
1946 
1947 		bio->bi_next = NULL;
1948 		r10_bio = bio->bi_private;
1949 		r10_bio->sectors = nr_sectors;
1950 
1951 		if (bio->bi_end_io == end_sync_read) {
1952 			md_sync_acct(bio->bi_bdev, nr_sectors);
1953 			generic_make_request(bio);
1954 		}
1955 	}
1956 
1957 	if (sectors_skipped)
1958 		/* pretend they weren't skipped, it makes
1959 		 * no important difference in this case
1960 		 */
1961 		md_done_sync(mddev, sectors_skipped, 1);
1962 
1963 	return sectors_skipped + nr_sectors;
1964  giveup:
1965 	/* There is nowhere to write, so all non-sync
1966 	 * drives must be failed, so try the next chunk...
1967 	 */
1968 	{
1969 	sector_t sec = max_sector - sector_nr;
1970 	sectors_skipped += sec;
1971 	chunks_skipped ++;
1972 	sector_nr = max_sector;
1973 	goto skipped;
1974 	}
1975 }
1976 
1977 static int run(mddev_t *mddev)
1978 {
1979 	conf_t *conf;
1980 	int i, disk_idx;
1981 	mirror_info_t *disk;
1982 	mdk_rdev_t *rdev;
1983 	struct list_head *tmp;
1984 	int nc, fc, fo;
1985 	sector_t stride, size;
1986 
1987 	if (mddev->chunk_size == 0) {
1988 		printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
1989 		return -EINVAL;
1990 	}
1991 
1992 	nc = mddev->layout & 255;
1993 	fc = (mddev->layout >> 8) & 255;
1994 	fo = mddev->layout & (1<<16);
1995 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1996 	    (mddev->layout >> 17)) {
1997 		printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1998 		       mdname(mddev), mddev->layout);
1999 		goto out;
2000 	}
2001 	/*
2002 	 * copy the already verified devices into our private RAID10
2003 	 * bookkeeping area. [whatever we allocate in run(),
2004 	 * should be freed in stop()]
2005 	 */
2006 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2007 	mddev->private = conf;
2008 	if (!conf) {
2009 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2010 			mdname(mddev));
2011 		goto out;
2012 	}
2013 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2014 				 GFP_KERNEL);
2015 	if (!conf->mirrors) {
2016 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2017 		       mdname(mddev));
2018 		goto out_free_conf;
2019 	}
2020 
2021 	conf->tmppage = alloc_page(GFP_KERNEL);
2022 	if (!conf->tmppage)
2023 		goto out_free_conf;
2024 
2025 	conf->mddev = mddev;
2026 	conf->raid_disks = mddev->raid_disks;
2027 	conf->near_copies = nc;
2028 	conf->far_copies = fc;
2029 	conf->copies = nc*fc;
2030 	conf->far_offset = fo;
2031 	conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2032 	conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2033 	size = mddev->size >> (conf->chunk_shift-1);
2034 	sector_div(size, fc);
2035 	size = size * conf->raid_disks;
2036 	sector_div(size, nc);
2037 	/* 'size' is now the number of chunks in the array */
2038 	/* calculate "used chunks per device" in 'stride' */
2039 	stride = size * conf->copies;
2040 
2041 	/* We need to round up when dividing by raid_disks to
2042 	 * get the stride size.
2043 	 */
2044 	stride += conf->raid_disks - 1;
2045 	sector_div(stride, conf->raid_disks);
2046 	mddev->size = stride  << (conf->chunk_shift-1);
2047 
2048 	if (fo)
2049 		stride = 1;
2050 	else
2051 		sector_div(stride, fc);
2052 	conf->stride = stride << conf->chunk_shift;
2053 
2054 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2055 						r10bio_pool_free, conf);
2056 	if (!conf->r10bio_pool) {
2057 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2058 			mdname(mddev));
2059 		goto out_free_conf;
2060 	}
2061 
2062 	rdev_for_each(rdev, tmp, mddev) {
2063 		disk_idx = rdev->raid_disk;
2064 		if (disk_idx >= mddev->raid_disks
2065 		    || disk_idx < 0)
2066 			continue;
2067 		disk = conf->mirrors + disk_idx;
2068 
2069 		disk->rdev = rdev;
2070 
2071 		blk_queue_stack_limits(mddev->queue,
2072 				       rdev->bdev->bd_disk->queue);
2073 		/* as we don't honour merge_bvec_fn, we must never risk
2074 		 * violating it, so limit ->max_sector to one PAGE, as
2075 		 * a one page request is never in violation.
2076 		 */
2077 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2078 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
2079 			mddev->queue->max_sectors = (PAGE_SIZE>>9);
2080 
2081 		disk->head_position = 0;
2082 	}
2083 	spin_lock_init(&conf->device_lock);
2084 	INIT_LIST_HEAD(&conf->retry_list);
2085 
2086 	spin_lock_init(&conf->resync_lock);
2087 	init_waitqueue_head(&conf->wait_barrier);
2088 
2089 	/* need to check that every block has at least one working mirror */
2090 	if (!enough(conf)) {
2091 		printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2092 		       mdname(mddev));
2093 		goto out_free_conf;
2094 	}
2095 
2096 	mddev->degraded = 0;
2097 	for (i = 0; i < conf->raid_disks; i++) {
2098 
2099 		disk = conf->mirrors + i;
2100 
2101 		if (!disk->rdev ||
2102 		    !test_bit(In_sync, &disk->rdev->flags)) {
2103 			disk->head_position = 0;
2104 			mddev->degraded++;
2105 		}
2106 	}
2107 
2108 
2109 	mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2110 	if (!mddev->thread) {
2111 		printk(KERN_ERR
2112 		       "raid10: couldn't allocate thread for %s\n",
2113 		       mdname(mddev));
2114 		goto out_free_conf;
2115 	}
2116 
2117 	printk(KERN_INFO
2118 		"raid10: raid set %s active with %d out of %d devices\n",
2119 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2120 		mddev->raid_disks);
2121 	/*
2122 	 * Ok, everything is just fine now
2123 	 */
2124 	mddev->array_size = size << (conf->chunk_shift-1);
2125 	mddev->resync_max_sectors = size << conf->chunk_shift;
2126 
2127 	mddev->queue->unplug_fn = raid10_unplug;
2128 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2129 	mddev->queue->backing_dev_info.congested_data = mddev;
2130 
2131 	/* Calculate max read-ahead size.
2132 	 * We need to readahead at least twice a whole stripe....
2133 	 * maybe...
2134 	 */
2135 	{
2136 		int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2137 		stripe /= conf->near_copies;
2138 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2139 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2140 	}
2141 
2142 	if (conf->near_copies < mddev->raid_disks)
2143 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2144 	return 0;
2145 
2146 out_free_conf:
2147 	if (conf->r10bio_pool)
2148 		mempool_destroy(conf->r10bio_pool);
2149 	safe_put_page(conf->tmppage);
2150 	kfree(conf->mirrors);
2151 	kfree(conf);
2152 	mddev->private = NULL;
2153 out:
2154 	return -EIO;
2155 }
2156 
2157 static int stop(mddev_t *mddev)
2158 {
2159 	conf_t *conf = mddev_to_conf(mddev);
2160 
2161 	md_unregister_thread(mddev->thread);
2162 	mddev->thread = NULL;
2163 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2164 	if (conf->r10bio_pool)
2165 		mempool_destroy(conf->r10bio_pool);
2166 	kfree(conf->mirrors);
2167 	kfree(conf);
2168 	mddev->private = NULL;
2169 	return 0;
2170 }
2171 
2172 static void raid10_quiesce(mddev_t *mddev, int state)
2173 {
2174 	conf_t *conf = mddev_to_conf(mddev);
2175 
2176 	switch(state) {
2177 	case 1:
2178 		raise_barrier(conf, 0);
2179 		break;
2180 	case 0:
2181 		lower_barrier(conf);
2182 		break;
2183 	}
2184 	if (mddev->thread) {
2185 		if (mddev->bitmap)
2186 			mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2187 		else
2188 			mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2189 		md_wakeup_thread(mddev->thread);
2190 	}
2191 }
2192 
2193 static struct mdk_personality raid10_personality =
2194 {
2195 	.name		= "raid10",
2196 	.level		= 10,
2197 	.owner		= THIS_MODULE,
2198 	.make_request	= make_request,
2199 	.run		= run,
2200 	.stop		= stop,
2201 	.status		= status,
2202 	.error_handler	= error,
2203 	.hot_add_disk	= raid10_add_disk,
2204 	.hot_remove_disk= raid10_remove_disk,
2205 	.spare_active	= raid10_spare_active,
2206 	.sync_request	= sync_request,
2207 	.quiesce	= raid10_quiesce,
2208 };
2209 
2210 static int __init raid_init(void)
2211 {
2212 	return register_md_personality(&raid10_personality);
2213 }
2214 
2215 static void raid_exit(void)
2216 {
2217 	unregister_md_personality(&raid10_personality);
2218 }
2219 
2220 module_init(raid_init);
2221 module_exit(raid_exit);
2222 MODULE_LICENSE("GPL");
2223 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2224 MODULE_ALIAS("md-raid10");
2225 MODULE_ALIAS("md-level-10");
2226