1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include "dm-bio-list.h" 22 #include <linux/raid/raid10.h> 23 #include <linux/raid/bitmap.h> 24 25 /* 26 * RAID10 provides a combination of RAID0 and RAID1 functionality. 27 * The layout of data is defined by 28 * chunk_size 29 * raid_disks 30 * near_copies (stored in low byte of layout) 31 * far_copies (stored in second byte of layout) 32 * far_offset (stored in bit 16 of layout ) 33 * 34 * The data to be stored is divided into chunks using chunksize. 35 * Each device is divided into far_copies sections. 36 * In each section, chunks are laid out in a style similar to raid0, but 37 * near_copies copies of each chunk is stored (each on a different drive). 38 * The starting device for each section is offset near_copies from the starting 39 * device of the previous section. 40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 41 * drive. 42 * near_copies and far_copies must be at least one, and their product is at most 43 * raid_disks. 44 * 45 * If far_offset is true, then the far_copies are handled a bit differently. 46 * The copies are still in different stripes, but instead of be very far apart 47 * on disk, there are adjacent stripes. 48 */ 49 50 /* 51 * Number of guaranteed r10bios in case of extreme VM load: 52 */ 53 #define NR_RAID10_BIOS 256 54 55 static void unplug_slaves(mddev_t *mddev); 56 57 static void allow_barrier(conf_t *conf); 58 static void lower_barrier(conf_t *conf); 59 60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 61 { 62 conf_t *conf = data; 63 r10bio_t *r10_bio; 64 int size = offsetof(struct r10bio_s, devs[conf->copies]); 65 66 /* allocate a r10bio with room for raid_disks entries in the bios array */ 67 r10_bio = kzalloc(size, gfp_flags); 68 if (!r10_bio) 69 unplug_slaves(conf->mddev); 70 71 return r10_bio; 72 } 73 74 static void r10bio_pool_free(void *r10_bio, void *data) 75 { 76 kfree(r10_bio); 77 } 78 79 #define RESYNC_BLOCK_SIZE (64*1024) 80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 83 #define RESYNC_WINDOW (2048*1024) 84 85 /* 86 * When performing a resync, we need to read and compare, so 87 * we need as many pages are there are copies. 88 * When performing a recovery, we need 2 bios, one for read, 89 * one for write (we recover only one drive per r10buf) 90 * 91 */ 92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 conf_t *conf = data; 95 struct page *page; 96 r10bio_t *r10_bio; 97 struct bio *bio; 98 int i, j; 99 int nalloc; 100 101 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 102 if (!r10_bio) { 103 unplug_slaves(conf->mddev); 104 return NULL; 105 } 106 107 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 108 nalloc = conf->copies; /* resync */ 109 else 110 nalloc = 2; /* recovery */ 111 112 /* 113 * Allocate bios. 114 */ 115 for (j = nalloc ; j-- ; ) { 116 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 117 if (!bio) 118 goto out_free_bio; 119 r10_bio->devs[j].bio = bio; 120 } 121 /* 122 * Allocate RESYNC_PAGES data pages and attach them 123 * where needed. 124 */ 125 for (j = 0 ; j < nalloc; j++) { 126 bio = r10_bio->devs[j].bio; 127 for (i = 0; i < RESYNC_PAGES; i++) { 128 page = alloc_page(gfp_flags); 129 if (unlikely(!page)) 130 goto out_free_pages; 131 132 bio->bi_io_vec[i].bv_page = page; 133 } 134 } 135 136 return r10_bio; 137 138 out_free_pages: 139 for ( ; i > 0 ; i--) 140 safe_put_page(bio->bi_io_vec[i-1].bv_page); 141 while (j--) 142 for (i = 0; i < RESYNC_PAGES ; i++) 143 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 144 j = -1; 145 out_free_bio: 146 while ( ++j < nalloc ) 147 bio_put(r10_bio->devs[j].bio); 148 r10bio_pool_free(r10_bio, conf); 149 return NULL; 150 } 151 152 static void r10buf_pool_free(void *__r10_bio, void *data) 153 { 154 int i; 155 conf_t *conf = data; 156 r10bio_t *r10bio = __r10_bio; 157 int j; 158 159 for (j=0; j < conf->copies; j++) { 160 struct bio *bio = r10bio->devs[j].bio; 161 if (bio) { 162 for (i = 0; i < RESYNC_PAGES; i++) { 163 safe_put_page(bio->bi_io_vec[i].bv_page); 164 bio->bi_io_vec[i].bv_page = NULL; 165 } 166 bio_put(bio); 167 } 168 } 169 r10bio_pool_free(r10bio, conf); 170 } 171 172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 173 { 174 int i; 175 176 for (i = 0; i < conf->copies; i++) { 177 struct bio **bio = & r10_bio->devs[i].bio; 178 if (*bio && *bio != IO_BLOCKED) 179 bio_put(*bio); 180 *bio = NULL; 181 } 182 } 183 184 static void free_r10bio(r10bio_t *r10_bio) 185 { 186 conf_t *conf = mddev_to_conf(r10_bio->mddev); 187 188 /* 189 * Wake up any possible resync thread that waits for the device 190 * to go idle. 191 */ 192 allow_barrier(conf); 193 194 put_all_bios(conf, r10_bio); 195 mempool_free(r10_bio, conf->r10bio_pool); 196 } 197 198 static void put_buf(r10bio_t *r10_bio) 199 { 200 conf_t *conf = mddev_to_conf(r10_bio->mddev); 201 202 mempool_free(r10_bio, conf->r10buf_pool); 203 204 lower_barrier(conf); 205 } 206 207 static void reschedule_retry(r10bio_t *r10_bio) 208 { 209 unsigned long flags; 210 mddev_t *mddev = r10_bio->mddev; 211 conf_t *conf = mddev_to_conf(mddev); 212 213 spin_lock_irqsave(&conf->device_lock, flags); 214 list_add(&r10_bio->retry_list, &conf->retry_list); 215 conf->nr_queued ++; 216 spin_unlock_irqrestore(&conf->device_lock, flags); 217 218 md_wakeup_thread(mddev->thread); 219 } 220 221 /* 222 * raid_end_bio_io() is called when we have finished servicing a mirrored 223 * operation and are ready to return a success/failure code to the buffer 224 * cache layer. 225 */ 226 static void raid_end_bio_io(r10bio_t *r10_bio) 227 { 228 struct bio *bio = r10_bio->master_bio; 229 230 bio_endio(bio, 231 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 232 free_r10bio(r10_bio); 233 } 234 235 /* 236 * Update disk head position estimator based on IRQ completion info. 237 */ 238 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 239 { 240 conf_t *conf = mddev_to_conf(r10_bio->mddev); 241 242 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 243 r10_bio->devs[slot].addr + (r10_bio->sectors); 244 } 245 246 static void raid10_end_read_request(struct bio *bio, int error) 247 { 248 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 249 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 250 int slot, dev; 251 conf_t *conf = mddev_to_conf(r10_bio->mddev); 252 253 254 slot = r10_bio->read_slot; 255 dev = r10_bio->devs[slot].devnum; 256 /* 257 * this branch is our 'one mirror IO has finished' event handler: 258 */ 259 update_head_pos(slot, r10_bio); 260 261 if (uptodate) { 262 /* 263 * Set R10BIO_Uptodate in our master bio, so that 264 * we will return a good error code to the higher 265 * levels even if IO on some other mirrored buffer fails. 266 * 267 * The 'master' represents the composite IO operation to 268 * user-side. So if something waits for IO, then it will 269 * wait for the 'master' bio. 270 */ 271 set_bit(R10BIO_Uptodate, &r10_bio->state); 272 raid_end_bio_io(r10_bio); 273 } else { 274 /* 275 * oops, read error: 276 */ 277 char b[BDEVNAME_SIZE]; 278 if (printk_ratelimit()) 279 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 280 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 281 reschedule_retry(r10_bio); 282 } 283 284 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 285 } 286 287 static void raid10_end_write_request(struct bio *bio, int error) 288 { 289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 290 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 291 int slot, dev; 292 conf_t *conf = mddev_to_conf(r10_bio->mddev); 293 294 for (slot = 0; slot < conf->copies; slot++) 295 if (r10_bio->devs[slot].bio == bio) 296 break; 297 dev = r10_bio->devs[slot].devnum; 298 299 /* 300 * this branch is our 'one mirror IO has finished' event handler: 301 */ 302 if (!uptodate) { 303 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 304 /* an I/O failed, we can't clear the bitmap */ 305 set_bit(R10BIO_Degraded, &r10_bio->state); 306 } else 307 /* 308 * Set R10BIO_Uptodate in our master bio, so that 309 * we will return a good error code for to the higher 310 * levels even if IO on some other mirrored buffer fails. 311 * 312 * The 'master' represents the composite IO operation to 313 * user-side. So if something waits for IO, then it will 314 * wait for the 'master' bio. 315 */ 316 set_bit(R10BIO_Uptodate, &r10_bio->state); 317 318 update_head_pos(slot, r10_bio); 319 320 /* 321 * 322 * Let's see if all mirrored write operations have finished 323 * already. 324 */ 325 if (atomic_dec_and_test(&r10_bio->remaining)) { 326 /* clear the bitmap if all writes complete successfully */ 327 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 328 r10_bio->sectors, 329 !test_bit(R10BIO_Degraded, &r10_bio->state), 330 0); 331 md_write_end(r10_bio->mddev); 332 raid_end_bio_io(r10_bio); 333 } 334 335 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 336 } 337 338 339 /* 340 * RAID10 layout manager 341 * Aswell as the chunksize and raid_disks count, there are two 342 * parameters: near_copies and far_copies. 343 * near_copies * far_copies must be <= raid_disks. 344 * Normally one of these will be 1. 345 * If both are 1, we get raid0. 346 * If near_copies == raid_disks, we get raid1. 347 * 348 * Chunks are layed out in raid0 style with near_copies copies of the 349 * first chunk, followed by near_copies copies of the next chunk and 350 * so on. 351 * If far_copies > 1, then after 1/far_copies of the array has been assigned 352 * as described above, we start again with a device offset of near_copies. 353 * So we effectively have another copy of the whole array further down all 354 * the drives, but with blocks on different drives. 355 * With this layout, and block is never stored twice on the one device. 356 * 357 * raid10_find_phys finds the sector offset of a given virtual sector 358 * on each device that it is on. 359 * 360 * raid10_find_virt does the reverse mapping, from a device and a 361 * sector offset to a virtual address 362 */ 363 364 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 365 { 366 int n,f; 367 sector_t sector; 368 sector_t chunk; 369 sector_t stripe; 370 int dev; 371 372 int slot = 0; 373 374 /* now calculate first sector/dev */ 375 chunk = r10bio->sector >> conf->chunk_shift; 376 sector = r10bio->sector & conf->chunk_mask; 377 378 chunk *= conf->near_copies; 379 stripe = chunk; 380 dev = sector_div(stripe, conf->raid_disks); 381 if (conf->far_offset) 382 stripe *= conf->far_copies; 383 384 sector += stripe << conf->chunk_shift; 385 386 /* and calculate all the others */ 387 for (n=0; n < conf->near_copies; n++) { 388 int d = dev; 389 sector_t s = sector; 390 r10bio->devs[slot].addr = sector; 391 r10bio->devs[slot].devnum = d; 392 slot++; 393 394 for (f = 1; f < conf->far_copies; f++) { 395 d += conf->near_copies; 396 if (d >= conf->raid_disks) 397 d -= conf->raid_disks; 398 s += conf->stride; 399 r10bio->devs[slot].devnum = d; 400 r10bio->devs[slot].addr = s; 401 slot++; 402 } 403 dev++; 404 if (dev >= conf->raid_disks) { 405 dev = 0; 406 sector += (conf->chunk_mask + 1); 407 } 408 } 409 BUG_ON(slot != conf->copies); 410 } 411 412 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 413 { 414 sector_t offset, chunk, vchunk; 415 416 offset = sector & conf->chunk_mask; 417 if (conf->far_offset) { 418 int fc; 419 chunk = sector >> conf->chunk_shift; 420 fc = sector_div(chunk, conf->far_copies); 421 dev -= fc * conf->near_copies; 422 if (dev < 0) 423 dev += conf->raid_disks; 424 } else { 425 while (sector >= conf->stride) { 426 sector -= conf->stride; 427 if (dev < conf->near_copies) 428 dev += conf->raid_disks - conf->near_copies; 429 else 430 dev -= conf->near_copies; 431 } 432 chunk = sector >> conf->chunk_shift; 433 } 434 vchunk = chunk * conf->raid_disks + dev; 435 sector_div(vchunk, conf->near_copies); 436 return (vchunk << conf->chunk_shift) + offset; 437 } 438 439 /** 440 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 441 * @q: request queue 442 * @bio: the buffer head that's been built up so far 443 * @biovec: the request that could be merged to it. 444 * 445 * Return amount of bytes we can accept at this offset 446 * If near_copies == raid_disk, there are no striping issues, 447 * but in that case, the function isn't called at all. 448 */ 449 static int raid10_mergeable_bvec(struct request_queue *q, struct bio *bio, 450 struct bio_vec *bio_vec) 451 { 452 mddev_t *mddev = q->queuedata; 453 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 454 int max; 455 unsigned int chunk_sectors = mddev->chunk_size >> 9; 456 unsigned int bio_sectors = bio->bi_size >> 9; 457 458 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 459 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 460 if (max <= bio_vec->bv_len && bio_sectors == 0) 461 return bio_vec->bv_len; 462 else 463 return max; 464 } 465 466 /* 467 * This routine returns the disk from which the requested read should 468 * be done. There is a per-array 'next expected sequential IO' sector 469 * number - if this matches on the next IO then we use the last disk. 470 * There is also a per-disk 'last know head position' sector that is 471 * maintained from IRQ contexts, both the normal and the resync IO 472 * completion handlers update this position correctly. If there is no 473 * perfect sequential match then we pick the disk whose head is closest. 474 * 475 * If there are 2 mirrors in the same 2 devices, performance degrades 476 * because position is mirror, not device based. 477 * 478 * The rdev for the device selected will have nr_pending incremented. 479 */ 480 481 /* 482 * FIXME: possibly should rethink readbalancing and do it differently 483 * depending on near_copies / far_copies geometry. 484 */ 485 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 486 { 487 const unsigned long this_sector = r10_bio->sector; 488 int disk, slot, nslot; 489 const int sectors = r10_bio->sectors; 490 sector_t new_distance, current_distance; 491 mdk_rdev_t *rdev; 492 493 raid10_find_phys(conf, r10_bio); 494 rcu_read_lock(); 495 /* 496 * Check if we can balance. We can balance on the whole 497 * device if no resync is going on (recovery is ok), or below 498 * the resync window. We take the first readable disk when 499 * above the resync window. 500 */ 501 if (conf->mddev->recovery_cp < MaxSector 502 && (this_sector + sectors >= conf->next_resync)) { 503 /* make sure that disk is operational */ 504 slot = 0; 505 disk = r10_bio->devs[slot].devnum; 506 507 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 508 r10_bio->devs[slot].bio == IO_BLOCKED || 509 !test_bit(In_sync, &rdev->flags)) { 510 slot++; 511 if (slot == conf->copies) { 512 slot = 0; 513 disk = -1; 514 break; 515 } 516 disk = r10_bio->devs[slot].devnum; 517 } 518 goto rb_out; 519 } 520 521 522 /* make sure the disk is operational */ 523 slot = 0; 524 disk = r10_bio->devs[slot].devnum; 525 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 526 r10_bio->devs[slot].bio == IO_BLOCKED || 527 !test_bit(In_sync, &rdev->flags)) { 528 slot ++; 529 if (slot == conf->copies) { 530 disk = -1; 531 goto rb_out; 532 } 533 disk = r10_bio->devs[slot].devnum; 534 } 535 536 537 current_distance = abs(r10_bio->devs[slot].addr - 538 conf->mirrors[disk].head_position); 539 540 /* Find the disk whose head is closest, 541 * or - for far > 1 - find the closest to partition beginning */ 542 543 for (nslot = slot; nslot < conf->copies; nslot++) { 544 int ndisk = r10_bio->devs[nslot].devnum; 545 546 547 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 548 r10_bio->devs[nslot].bio == IO_BLOCKED || 549 !test_bit(In_sync, &rdev->flags)) 550 continue; 551 552 /* This optimisation is debatable, and completely destroys 553 * sequential read speed for 'far copies' arrays. So only 554 * keep it for 'near' arrays, and review those later. 555 */ 556 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 557 disk = ndisk; 558 slot = nslot; 559 break; 560 } 561 562 /* for far > 1 always use the lowest address */ 563 if (conf->far_copies > 1) 564 new_distance = r10_bio->devs[nslot].addr; 565 else 566 new_distance = abs(r10_bio->devs[nslot].addr - 567 conf->mirrors[ndisk].head_position); 568 if (new_distance < current_distance) { 569 current_distance = new_distance; 570 disk = ndisk; 571 slot = nslot; 572 } 573 } 574 575 rb_out: 576 r10_bio->read_slot = slot; 577 /* conf->next_seq_sect = this_sector + sectors;*/ 578 579 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 580 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 581 else 582 disk = -1; 583 rcu_read_unlock(); 584 585 return disk; 586 } 587 588 static void unplug_slaves(mddev_t *mddev) 589 { 590 conf_t *conf = mddev_to_conf(mddev); 591 int i; 592 593 rcu_read_lock(); 594 for (i=0; i<mddev->raid_disks; i++) { 595 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 596 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 597 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 598 599 atomic_inc(&rdev->nr_pending); 600 rcu_read_unlock(); 601 602 blk_unplug(r_queue); 603 604 rdev_dec_pending(rdev, mddev); 605 rcu_read_lock(); 606 } 607 } 608 rcu_read_unlock(); 609 } 610 611 static void raid10_unplug(struct request_queue *q) 612 { 613 mddev_t *mddev = q->queuedata; 614 615 unplug_slaves(q->queuedata); 616 md_wakeup_thread(mddev->thread); 617 } 618 619 static int raid10_congested(void *data, int bits) 620 { 621 mddev_t *mddev = data; 622 conf_t *conf = mddev_to_conf(mddev); 623 int i, ret = 0; 624 625 rcu_read_lock(); 626 for (i = 0; i < mddev->raid_disks && ret == 0; i++) { 627 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 628 if (rdev && !test_bit(Faulty, &rdev->flags)) { 629 struct request_queue *q = bdev_get_queue(rdev->bdev); 630 631 ret |= bdi_congested(&q->backing_dev_info, bits); 632 } 633 } 634 rcu_read_unlock(); 635 return ret; 636 } 637 638 static int flush_pending_writes(conf_t *conf) 639 { 640 /* Any writes that have been queued but are awaiting 641 * bitmap updates get flushed here. 642 * We return 1 if any requests were actually submitted. 643 */ 644 int rv = 0; 645 646 spin_lock_irq(&conf->device_lock); 647 648 if (conf->pending_bio_list.head) { 649 struct bio *bio; 650 bio = bio_list_get(&conf->pending_bio_list); 651 blk_remove_plug(conf->mddev->queue); 652 spin_unlock_irq(&conf->device_lock); 653 /* flush any pending bitmap writes to disk 654 * before proceeding w/ I/O */ 655 bitmap_unplug(conf->mddev->bitmap); 656 657 while (bio) { /* submit pending writes */ 658 struct bio *next = bio->bi_next; 659 bio->bi_next = NULL; 660 generic_make_request(bio); 661 bio = next; 662 } 663 rv = 1; 664 } else 665 spin_unlock_irq(&conf->device_lock); 666 return rv; 667 } 668 /* Barriers.... 669 * Sometimes we need to suspend IO while we do something else, 670 * either some resync/recovery, or reconfigure the array. 671 * To do this we raise a 'barrier'. 672 * The 'barrier' is a counter that can be raised multiple times 673 * to count how many activities are happening which preclude 674 * normal IO. 675 * We can only raise the barrier if there is no pending IO. 676 * i.e. if nr_pending == 0. 677 * We choose only to raise the barrier if no-one is waiting for the 678 * barrier to go down. This means that as soon as an IO request 679 * is ready, no other operations which require a barrier will start 680 * until the IO request has had a chance. 681 * 682 * So: regular IO calls 'wait_barrier'. When that returns there 683 * is no backgroup IO happening, It must arrange to call 684 * allow_barrier when it has finished its IO. 685 * backgroup IO calls must call raise_barrier. Once that returns 686 * there is no normal IO happeing. It must arrange to call 687 * lower_barrier when the particular background IO completes. 688 */ 689 #define RESYNC_DEPTH 32 690 691 static void raise_barrier(conf_t *conf, int force) 692 { 693 BUG_ON(force && !conf->barrier); 694 spin_lock_irq(&conf->resync_lock); 695 696 /* Wait until no block IO is waiting (unless 'force') */ 697 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 698 conf->resync_lock, 699 raid10_unplug(conf->mddev->queue)); 700 701 /* block any new IO from starting */ 702 conf->barrier++; 703 704 /* No wait for all pending IO to complete */ 705 wait_event_lock_irq(conf->wait_barrier, 706 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 707 conf->resync_lock, 708 raid10_unplug(conf->mddev->queue)); 709 710 spin_unlock_irq(&conf->resync_lock); 711 } 712 713 static void lower_barrier(conf_t *conf) 714 { 715 unsigned long flags; 716 spin_lock_irqsave(&conf->resync_lock, flags); 717 conf->barrier--; 718 spin_unlock_irqrestore(&conf->resync_lock, flags); 719 wake_up(&conf->wait_barrier); 720 } 721 722 static void wait_barrier(conf_t *conf) 723 { 724 spin_lock_irq(&conf->resync_lock); 725 if (conf->barrier) { 726 conf->nr_waiting++; 727 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 728 conf->resync_lock, 729 raid10_unplug(conf->mddev->queue)); 730 conf->nr_waiting--; 731 } 732 conf->nr_pending++; 733 spin_unlock_irq(&conf->resync_lock); 734 } 735 736 static void allow_barrier(conf_t *conf) 737 { 738 unsigned long flags; 739 spin_lock_irqsave(&conf->resync_lock, flags); 740 conf->nr_pending--; 741 spin_unlock_irqrestore(&conf->resync_lock, flags); 742 wake_up(&conf->wait_barrier); 743 } 744 745 static void freeze_array(conf_t *conf) 746 { 747 /* stop syncio and normal IO and wait for everything to 748 * go quiet. 749 * We increment barrier and nr_waiting, and then 750 * wait until nr_pending match nr_queued+1 751 * This is called in the context of one normal IO request 752 * that has failed. Thus any sync request that might be pending 753 * will be blocked by nr_pending, and we need to wait for 754 * pending IO requests to complete or be queued for re-try. 755 * Thus the number queued (nr_queued) plus this request (1) 756 * must match the number of pending IOs (nr_pending) before 757 * we continue. 758 */ 759 spin_lock_irq(&conf->resync_lock); 760 conf->barrier++; 761 conf->nr_waiting++; 762 wait_event_lock_irq(conf->wait_barrier, 763 conf->nr_pending == conf->nr_queued+1, 764 conf->resync_lock, 765 ({ flush_pending_writes(conf); 766 raid10_unplug(conf->mddev->queue); })); 767 spin_unlock_irq(&conf->resync_lock); 768 } 769 770 static void unfreeze_array(conf_t *conf) 771 { 772 /* reverse the effect of the freeze */ 773 spin_lock_irq(&conf->resync_lock); 774 conf->barrier--; 775 conf->nr_waiting--; 776 wake_up(&conf->wait_barrier); 777 spin_unlock_irq(&conf->resync_lock); 778 } 779 780 static int make_request(struct request_queue *q, struct bio * bio) 781 { 782 mddev_t *mddev = q->queuedata; 783 conf_t *conf = mddev_to_conf(mddev); 784 mirror_info_t *mirror; 785 r10bio_t *r10_bio; 786 struct bio *read_bio; 787 int i; 788 int chunk_sects = conf->chunk_mask + 1; 789 const int rw = bio_data_dir(bio); 790 const int do_sync = bio_sync(bio); 791 struct bio_list bl; 792 unsigned long flags; 793 794 if (unlikely(bio_barrier(bio))) { 795 bio_endio(bio, -EOPNOTSUPP); 796 return 0; 797 } 798 799 /* If this request crosses a chunk boundary, we need to 800 * split it. This will only happen for 1 PAGE (or less) requests. 801 */ 802 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 803 > chunk_sects && 804 conf->near_copies < conf->raid_disks)) { 805 struct bio_pair *bp; 806 /* Sanity check -- queue functions should prevent this happening */ 807 if (bio->bi_vcnt != 1 || 808 bio->bi_idx != 0) 809 goto bad_map; 810 /* This is a one page bio that upper layers 811 * refuse to split for us, so we need to split it. 812 */ 813 bp = bio_split(bio, bio_split_pool, 814 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 815 if (make_request(q, &bp->bio1)) 816 generic_make_request(&bp->bio1); 817 if (make_request(q, &bp->bio2)) 818 generic_make_request(&bp->bio2); 819 820 bio_pair_release(bp); 821 return 0; 822 bad_map: 823 printk("raid10_make_request bug: can't convert block across chunks" 824 " or bigger than %dk %llu %d\n", chunk_sects/2, 825 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 826 827 bio_io_error(bio); 828 return 0; 829 } 830 831 md_write_start(mddev, bio); 832 833 /* 834 * Register the new request and wait if the reconstruction 835 * thread has put up a bar for new requests. 836 * Continue immediately if no resync is active currently. 837 */ 838 wait_barrier(conf); 839 840 disk_stat_inc(mddev->gendisk, ios[rw]); 841 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 842 843 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 844 845 r10_bio->master_bio = bio; 846 r10_bio->sectors = bio->bi_size >> 9; 847 848 r10_bio->mddev = mddev; 849 r10_bio->sector = bio->bi_sector; 850 r10_bio->state = 0; 851 852 if (rw == READ) { 853 /* 854 * read balancing logic: 855 */ 856 int disk = read_balance(conf, r10_bio); 857 int slot = r10_bio->read_slot; 858 if (disk < 0) { 859 raid_end_bio_io(r10_bio); 860 return 0; 861 } 862 mirror = conf->mirrors + disk; 863 864 read_bio = bio_clone(bio, GFP_NOIO); 865 866 r10_bio->devs[slot].bio = read_bio; 867 868 read_bio->bi_sector = r10_bio->devs[slot].addr + 869 mirror->rdev->data_offset; 870 read_bio->bi_bdev = mirror->rdev->bdev; 871 read_bio->bi_end_io = raid10_end_read_request; 872 read_bio->bi_rw = READ | do_sync; 873 read_bio->bi_private = r10_bio; 874 875 generic_make_request(read_bio); 876 return 0; 877 } 878 879 /* 880 * WRITE: 881 */ 882 /* first select target devices under spinlock and 883 * inc refcount on their rdev. Record them by setting 884 * bios[x] to bio 885 */ 886 raid10_find_phys(conf, r10_bio); 887 rcu_read_lock(); 888 for (i = 0; i < conf->copies; i++) { 889 int d = r10_bio->devs[i].devnum; 890 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 891 if (rdev && 892 !test_bit(Faulty, &rdev->flags)) { 893 atomic_inc(&rdev->nr_pending); 894 r10_bio->devs[i].bio = bio; 895 } else { 896 r10_bio->devs[i].bio = NULL; 897 set_bit(R10BIO_Degraded, &r10_bio->state); 898 } 899 } 900 rcu_read_unlock(); 901 902 atomic_set(&r10_bio->remaining, 0); 903 904 bio_list_init(&bl); 905 for (i = 0; i < conf->copies; i++) { 906 struct bio *mbio; 907 int d = r10_bio->devs[i].devnum; 908 if (!r10_bio->devs[i].bio) 909 continue; 910 911 mbio = bio_clone(bio, GFP_NOIO); 912 r10_bio->devs[i].bio = mbio; 913 914 mbio->bi_sector = r10_bio->devs[i].addr+ 915 conf->mirrors[d].rdev->data_offset; 916 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 917 mbio->bi_end_io = raid10_end_write_request; 918 mbio->bi_rw = WRITE | do_sync; 919 mbio->bi_private = r10_bio; 920 921 atomic_inc(&r10_bio->remaining); 922 bio_list_add(&bl, mbio); 923 } 924 925 if (unlikely(!atomic_read(&r10_bio->remaining))) { 926 /* the array is dead */ 927 md_write_end(mddev); 928 raid_end_bio_io(r10_bio); 929 return 0; 930 } 931 932 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 933 spin_lock_irqsave(&conf->device_lock, flags); 934 bio_list_merge(&conf->pending_bio_list, &bl); 935 blk_plug_device(mddev->queue); 936 spin_unlock_irqrestore(&conf->device_lock, flags); 937 938 /* In case raid10d snuck in to freeze_array */ 939 wake_up(&conf->wait_barrier); 940 941 if (do_sync) 942 md_wakeup_thread(mddev->thread); 943 944 return 0; 945 } 946 947 static void status(struct seq_file *seq, mddev_t *mddev) 948 { 949 conf_t *conf = mddev_to_conf(mddev); 950 int i; 951 952 if (conf->near_copies < conf->raid_disks) 953 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 954 if (conf->near_copies > 1) 955 seq_printf(seq, " %d near-copies", conf->near_copies); 956 if (conf->far_copies > 1) { 957 if (conf->far_offset) 958 seq_printf(seq, " %d offset-copies", conf->far_copies); 959 else 960 seq_printf(seq, " %d far-copies", conf->far_copies); 961 } 962 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 963 conf->raid_disks - mddev->degraded); 964 for (i = 0; i < conf->raid_disks; i++) 965 seq_printf(seq, "%s", 966 conf->mirrors[i].rdev && 967 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 968 seq_printf(seq, "]"); 969 } 970 971 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 972 { 973 char b[BDEVNAME_SIZE]; 974 conf_t *conf = mddev_to_conf(mddev); 975 976 /* 977 * If it is not operational, then we have already marked it as dead 978 * else if it is the last working disks, ignore the error, let the 979 * next level up know. 980 * else mark the drive as failed 981 */ 982 if (test_bit(In_sync, &rdev->flags) 983 && conf->raid_disks-mddev->degraded == 1) 984 /* 985 * Don't fail the drive, just return an IO error. 986 * The test should really be more sophisticated than 987 * "working_disks == 1", but it isn't critical, and 988 * can wait until we do more sophisticated "is the drive 989 * really dead" tests... 990 */ 991 return; 992 if (test_and_clear_bit(In_sync, &rdev->flags)) { 993 unsigned long flags; 994 spin_lock_irqsave(&conf->device_lock, flags); 995 mddev->degraded++; 996 spin_unlock_irqrestore(&conf->device_lock, flags); 997 /* 998 * if recovery is running, make sure it aborts. 999 */ 1000 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 1001 } 1002 set_bit(Faulty, &rdev->flags); 1003 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1004 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n" 1005 " Operation continuing on %d devices\n", 1006 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1007 } 1008 1009 static void print_conf(conf_t *conf) 1010 { 1011 int i; 1012 mirror_info_t *tmp; 1013 1014 printk("RAID10 conf printout:\n"); 1015 if (!conf) { 1016 printk("(!conf)\n"); 1017 return; 1018 } 1019 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1020 conf->raid_disks); 1021 1022 for (i = 0; i < conf->raid_disks; i++) { 1023 char b[BDEVNAME_SIZE]; 1024 tmp = conf->mirrors + i; 1025 if (tmp->rdev) 1026 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1027 i, !test_bit(In_sync, &tmp->rdev->flags), 1028 !test_bit(Faulty, &tmp->rdev->flags), 1029 bdevname(tmp->rdev->bdev,b)); 1030 } 1031 } 1032 1033 static void close_sync(conf_t *conf) 1034 { 1035 wait_barrier(conf); 1036 allow_barrier(conf); 1037 1038 mempool_destroy(conf->r10buf_pool); 1039 conf->r10buf_pool = NULL; 1040 } 1041 1042 /* check if there are enough drives for 1043 * every block to appear on atleast one 1044 */ 1045 static int enough(conf_t *conf) 1046 { 1047 int first = 0; 1048 1049 do { 1050 int n = conf->copies; 1051 int cnt = 0; 1052 while (n--) { 1053 if (conf->mirrors[first].rdev) 1054 cnt++; 1055 first = (first+1) % conf->raid_disks; 1056 } 1057 if (cnt == 0) 1058 return 0; 1059 } while (first != 0); 1060 return 1; 1061 } 1062 1063 static int raid10_spare_active(mddev_t *mddev) 1064 { 1065 int i; 1066 conf_t *conf = mddev->private; 1067 mirror_info_t *tmp; 1068 1069 /* 1070 * Find all non-in_sync disks within the RAID10 configuration 1071 * and mark them in_sync 1072 */ 1073 for (i = 0; i < conf->raid_disks; i++) { 1074 tmp = conf->mirrors + i; 1075 if (tmp->rdev 1076 && !test_bit(Faulty, &tmp->rdev->flags) 1077 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1078 unsigned long flags; 1079 spin_lock_irqsave(&conf->device_lock, flags); 1080 mddev->degraded--; 1081 spin_unlock_irqrestore(&conf->device_lock, flags); 1082 } 1083 } 1084 1085 print_conf(conf); 1086 return 0; 1087 } 1088 1089 1090 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1091 { 1092 conf_t *conf = mddev->private; 1093 int found = 0; 1094 int mirror; 1095 mirror_info_t *p; 1096 1097 if (mddev->recovery_cp < MaxSector) 1098 /* only hot-add to in-sync arrays, as recovery is 1099 * very different from resync 1100 */ 1101 return 0; 1102 if (!enough(conf)) 1103 return 0; 1104 1105 if (rdev->saved_raid_disk >= 0 && 1106 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1107 mirror = rdev->saved_raid_disk; 1108 else 1109 mirror = 0; 1110 for ( ; mirror < mddev->raid_disks; mirror++) 1111 if ( !(p=conf->mirrors+mirror)->rdev) { 1112 1113 blk_queue_stack_limits(mddev->queue, 1114 rdev->bdev->bd_disk->queue); 1115 /* as we don't honour merge_bvec_fn, we must never risk 1116 * violating it, so limit ->max_sector to one PAGE, as 1117 * a one page request is never in violation. 1118 */ 1119 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1120 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1121 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1122 1123 p->head_position = 0; 1124 rdev->raid_disk = mirror; 1125 found = 1; 1126 if (rdev->saved_raid_disk != mirror) 1127 conf->fullsync = 1; 1128 rcu_assign_pointer(p->rdev, rdev); 1129 break; 1130 } 1131 1132 print_conf(conf); 1133 return found; 1134 } 1135 1136 static int raid10_remove_disk(mddev_t *mddev, int number) 1137 { 1138 conf_t *conf = mddev->private; 1139 int err = 0; 1140 mdk_rdev_t *rdev; 1141 mirror_info_t *p = conf->mirrors+ number; 1142 1143 print_conf(conf); 1144 rdev = p->rdev; 1145 if (rdev) { 1146 if (test_bit(In_sync, &rdev->flags) || 1147 atomic_read(&rdev->nr_pending)) { 1148 err = -EBUSY; 1149 goto abort; 1150 } 1151 p->rdev = NULL; 1152 synchronize_rcu(); 1153 if (atomic_read(&rdev->nr_pending)) { 1154 /* lost the race, try later */ 1155 err = -EBUSY; 1156 p->rdev = rdev; 1157 } 1158 } 1159 abort: 1160 1161 print_conf(conf); 1162 return err; 1163 } 1164 1165 1166 static void end_sync_read(struct bio *bio, int error) 1167 { 1168 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1169 conf_t *conf = mddev_to_conf(r10_bio->mddev); 1170 int i,d; 1171 1172 for (i=0; i<conf->copies; i++) 1173 if (r10_bio->devs[i].bio == bio) 1174 break; 1175 BUG_ON(i == conf->copies); 1176 update_head_pos(i, r10_bio); 1177 d = r10_bio->devs[i].devnum; 1178 1179 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1180 set_bit(R10BIO_Uptodate, &r10_bio->state); 1181 else { 1182 atomic_add(r10_bio->sectors, 1183 &conf->mirrors[d].rdev->corrected_errors); 1184 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1185 md_error(r10_bio->mddev, 1186 conf->mirrors[d].rdev); 1187 } 1188 1189 /* for reconstruct, we always reschedule after a read. 1190 * for resync, only after all reads 1191 */ 1192 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1193 atomic_dec_and_test(&r10_bio->remaining)) { 1194 /* we have read all the blocks, 1195 * do the comparison in process context in raid10d 1196 */ 1197 reschedule_retry(r10_bio); 1198 } 1199 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1200 } 1201 1202 static void end_sync_write(struct bio *bio, int error) 1203 { 1204 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1205 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1206 mddev_t *mddev = r10_bio->mddev; 1207 conf_t *conf = mddev_to_conf(mddev); 1208 int i,d; 1209 1210 for (i = 0; i < conf->copies; i++) 1211 if (r10_bio->devs[i].bio == bio) 1212 break; 1213 d = r10_bio->devs[i].devnum; 1214 1215 if (!uptodate) 1216 md_error(mddev, conf->mirrors[d].rdev); 1217 update_head_pos(i, r10_bio); 1218 1219 while (atomic_dec_and_test(&r10_bio->remaining)) { 1220 if (r10_bio->master_bio == NULL) { 1221 /* the primary of several recovery bios */ 1222 md_done_sync(mddev, r10_bio->sectors, 1); 1223 put_buf(r10_bio); 1224 break; 1225 } else { 1226 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1227 put_buf(r10_bio); 1228 r10_bio = r10_bio2; 1229 } 1230 } 1231 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1232 } 1233 1234 /* 1235 * Note: sync and recover and handled very differently for raid10 1236 * This code is for resync. 1237 * For resync, we read through virtual addresses and read all blocks. 1238 * If there is any error, we schedule a write. The lowest numbered 1239 * drive is authoritative. 1240 * However requests come for physical address, so we need to map. 1241 * For every physical address there are raid_disks/copies virtual addresses, 1242 * which is always are least one, but is not necessarly an integer. 1243 * This means that a physical address can span multiple chunks, so we may 1244 * have to submit multiple io requests for a single sync request. 1245 */ 1246 /* 1247 * We check if all blocks are in-sync and only write to blocks that 1248 * aren't in sync 1249 */ 1250 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1251 { 1252 conf_t *conf = mddev_to_conf(mddev); 1253 int i, first; 1254 struct bio *tbio, *fbio; 1255 1256 atomic_set(&r10_bio->remaining, 1); 1257 1258 /* find the first device with a block */ 1259 for (i=0; i<conf->copies; i++) 1260 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1261 break; 1262 1263 if (i == conf->copies) 1264 goto done; 1265 1266 first = i; 1267 fbio = r10_bio->devs[i].bio; 1268 1269 /* now find blocks with errors */ 1270 for (i=0 ; i < conf->copies ; i++) { 1271 int j, d; 1272 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1273 1274 tbio = r10_bio->devs[i].bio; 1275 1276 if (tbio->bi_end_io != end_sync_read) 1277 continue; 1278 if (i == first) 1279 continue; 1280 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1281 /* We know that the bi_io_vec layout is the same for 1282 * both 'first' and 'i', so we just compare them. 1283 * All vec entries are PAGE_SIZE; 1284 */ 1285 for (j = 0; j < vcnt; j++) 1286 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1287 page_address(tbio->bi_io_vec[j].bv_page), 1288 PAGE_SIZE)) 1289 break; 1290 if (j == vcnt) 1291 continue; 1292 mddev->resync_mismatches += r10_bio->sectors; 1293 } 1294 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1295 /* Don't fix anything. */ 1296 continue; 1297 /* Ok, we need to write this bio 1298 * First we need to fixup bv_offset, bv_len and 1299 * bi_vecs, as the read request might have corrupted these 1300 */ 1301 tbio->bi_vcnt = vcnt; 1302 tbio->bi_size = r10_bio->sectors << 9; 1303 tbio->bi_idx = 0; 1304 tbio->bi_phys_segments = 0; 1305 tbio->bi_hw_segments = 0; 1306 tbio->bi_hw_front_size = 0; 1307 tbio->bi_hw_back_size = 0; 1308 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1309 tbio->bi_flags |= 1 << BIO_UPTODATE; 1310 tbio->bi_next = NULL; 1311 tbio->bi_rw = WRITE; 1312 tbio->bi_private = r10_bio; 1313 tbio->bi_sector = r10_bio->devs[i].addr; 1314 1315 for (j=0; j < vcnt ; j++) { 1316 tbio->bi_io_vec[j].bv_offset = 0; 1317 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1318 1319 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1320 page_address(fbio->bi_io_vec[j].bv_page), 1321 PAGE_SIZE); 1322 } 1323 tbio->bi_end_io = end_sync_write; 1324 1325 d = r10_bio->devs[i].devnum; 1326 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1327 atomic_inc(&r10_bio->remaining); 1328 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1329 1330 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1331 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1332 generic_make_request(tbio); 1333 } 1334 1335 done: 1336 if (atomic_dec_and_test(&r10_bio->remaining)) { 1337 md_done_sync(mddev, r10_bio->sectors, 1); 1338 put_buf(r10_bio); 1339 } 1340 } 1341 1342 /* 1343 * Now for the recovery code. 1344 * Recovery happens across physical sectors. 1345 * We recover all non-is_sync drives by finding the virtual address of 1346 * each, and then choose a working drive that also has that virt address. 1347 * There is a separate r10_bio for each non-in_sync drive. 1348 * Only the first two slots are in use. The first for reading, 1349 * The second for writing. 1350 * 1351 */ 1352 1353 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1354 { 1355 conf_t *conf = mddev_to_conf(mddev); 1356 int i, d; 1357 struct bio *bio, *wbio; 1358 1359 1360 /* move the pages across to the second bio 1361 * and submit the write request 1362 */ 1363 bio = r10_bio->devs[0].bio; 1364 wbio = r10_bio->devs[1].bio; 1365 for (i=0; i < wbio->bi_vcnt; i++) { 1366 struct page *p = bio->bi_io_vec[i].bv_page; 1367 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1368 wbio->bi_io_vec[i].bv_page = p; 1369 } 1370 d = r10_bio->devs[1].devnum; 1371 1372 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1373 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1374 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1375 generic_make_request(wbio); 1376 else 1377 bio_endio(wbio, -EIO); 1378 } 1379 1380 1381 /* 1382 * This is a kernel thread which: 1383 * 1384 * 1. Retries failed read operations on working mirrors. 1385 * 2. Updates the raid superblock when problems encounter. 1386 * 3. Performs writes following reads for array synchronising. 1387 */ 1388 1389 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1390 { 1391 int sect = 0; /* Offset from r10_bio->sector */ 1392 int sectors = r10_bio->sectors; 1393 mdk_rdev_t*rdev; 1394 while(sectors) { 1395 int s = sectors; 1396 int sl = r10_bio->read_slot; 1397 int success = 0; 1398 int start; 1399 1400 if (s > (PAGE_SIZE>>9)) 1401 s = PAGE_SIZE >> 9; 1402 1403 rcu_read_lock(); 1404 do { 1405 int d = r10_bio->devs[sl].devnum; 1406 rdev = rcu_dereference(conf->mirrors[d].rdev); 1407 if (rdev && 1408 test_bit(In_sync, &rdev->flags)) { 1409 atomic_inc(&rdev->nr_pending); 1410 rcu_read_unlock(); 1411 success = sync_page_io(rdev->bdev, 1412 r10_bio->devs[sl].addr + 1413 sect + rdev->data_offset, 1414 s<<9, 1415 conf->tmppage, READ); 1416 rdev_dec_pending(rdev, mddev); 1417 rcu_read_lock(); 1418 if (success) 1419 break; 1420 } 1421 sl++; 1422 if (sl == conf->copies) 1423 sl = 0; 1424 } while (!success && sl != r10_bio->read_slot); 1425 rcu_read_unlock(); 1426 1427 if (!success) { 1428 /* Cannot read from anywhere -- bye bye array */ 1429 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1430 md_error(mddev, conf->mirrors[dn].rdev); 1431 break; 1432 } 1433 1434 start = sl; 1435 /* write it back and re-read */ 1436 rcu_read_lock(); 1437 while (sl != r10_bio->read_slot) { 1438 int d; 1439 if (sl==0) 1440 sl = conf->copies; 1441 sl--; 1442 d = r10_bio->devs[sl].devnum; 1443 rdev = rcu_dereference(conf->mirrors[d].rdev); 1444 if (rdev && 1445 test_bit(In_sync, &rdev->flags)) { 1446 atomic_inc(&rdev->nr_pending); 1447 rcu_read_unlock(); 1448 atomic_add(s, &rdev->corrected_errors); 1449 if (sync_page_io(rdev->bdev, 1450 r10_bio->devs[sl].addr + 1451 sect + rdev->data_offset, 1452 s<<9, conf->tmppage, WRITE) 1453 == 0) 1454 /* Well, this device is dead */ 1455 md_error(mddev, rdev); 1456 rdev_dec_pending(rdev, mddev); 1457 rcu_read_lock(); 1458 } 1459 } 1460 sl = start; 1461 while (sl != r10_bio->read_slot) { 1462 int d; 1463 if (sl==0) 1464 sl = conf->copies; 1465 sl--; 1466 d = r10_bio->devs[sl].devnum; 1467 rdev = rcu_dereference(conf->mirrors[d].rdev); 1468 if (rdev && 1469 test_bit(In_sync, &rdev->flags)) { 1470 char b[BDEVNAME_SIZE]; 1471 atomic_inc(&rdev->nr_pending); 1472 rcu_read_unlock(); 1473 if (sync_page_io(rdev->bdev, 1474 r10_bio->devs[sl].addr + 1475 sect + rdev->data_offset, 1476 s<<9, conf->tmppage, READ) == 0) 1477 /* Well, this device is dead */ 1478 md_error(mddev, rdev); 1479 else 1480 printk(KERN_INFO 1481 "raid10:%s: read error corrected" 1482 " (%d sectors at %llu on %s)\n", 1483 mdname(mddev), s, 1484 (unsigned long long)(sect+ 1485 rdev->data_offset), 1486 bdevname(rdev->bdev, b)); 1487 1488 rdev_dec_pending(rdev, mddev); 1489 rcu_read_lock(); 1490 } 1491 } 1492 rcu_read_unlock(); 1493 1494 sectors -= s; 1495 sect += s; 1496 } 1497 } 1498 1499 static void raid10d(mddev_t *mddev) 1500 { 1501 r10bio_t *r10_bio; 1502 struct bio *bio; 1503 unsigned long flags; 1504 conf_t *conf = mddev_to_conf(mddev); 1505 struct list_head *head = &conf->retry_list; 1506 int unplug=0; 1507 mdk_rdev_t *rdev; 1508 1509 md_check_recovery(mddev); 1510 1511 for (;;) { 1512 char b[BDEVNAME_SIZE]; 1513 1514 unplug += flush_pending_writes(conf); 1515 1516 spin_lock_irqsave(&conf->device_lock, flags); 1517 if (list_empty(head)) { 1518 spin_unlock_irqrestore(&conf->device_lock, flags); 1519 break; 1520 } 1521 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1522 list_del(head->prev); 1523 conf->nr_queued--; 1524 spin_unlock_irqrestore(&conf->device_lock, flags); 1525 1526 mddev = r10_bio->mddev; 1527 conf = mddev_to_conf(mddev); 1528 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1529 sync_request_write(mddev, r10_bio); 1530 unplug = 1; 1531 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1532 recovery_request_write(mddev, r10_bio); 1533 unplug = 1; 1534 } else { 1535 int mirror; 1536 /* we got a read error. Maybe the drive is bad. Maybe just 1537 * the block and we can fix it. 1538 * We freeze all other IO, and try reading the block from 1539 * other devices. When we find one, we re-write 1540 * and check it that fixes the read error. 1541 * This is all done synchronously while the array is 1542 * frozen. 1543 */ 1544 if (mddev->ro == 0) { 1545 freeze_array(conf); 1546 fix_read_error(conf, mddev, r10_bio); 1547 unfreeze_array(conf); 1548 } 1549 1550 bio = r10_bio->devs[r10_bio->read_slot].bio; 1551 r10_bio->devs[r10_bio->read_slot].bio = 1552 mddev->ro ? IO_BLOCKED : NULL; 1553 mirror = read_balance(conf, r10_bio); 1554 if (mirror == -1) { 1555 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1556 " read error for block %llu\n", 1557 bdevname(bio->bi_bdev,b), 1558 (unsigned long long)r10_bio->sector); 1559 raid_end_bio_io(r10_bio); 1560 bio_put(bio); 1561 } else { 1562 const int do_sync = bio_sync(r10_bio->master_bio); 1563 bio_put(bio); 1564 rdev = conf->mirrors[mirror].rdev; 1565 if (printk_ratelimit()) 1566 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1567 " another mirror\n", 1568 bdevname(rdev->bdev,b), 1569 (unsigned long long)r10_bio->sector); 1570 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1571 r10_bio->devs[r10_bio->read_slot].bio = bio; 1572 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1573 + rdev->data_offset; 1574 bio->bi_bdev = rdev->bdev; 1575 bio->bi_rw = READ | do_sync; 1576 bio->bi_private = r10_bio; 1577 bio->bi_end_io = raid10_end_read_request; 1578 unplug = 1; 1579 generic_make_request(bio); 1580 } 1581 } 1582 } 1583 if (unplug) 1584 unplug_slaves(mddev); 1585 } 1586 1587 1588 static int init_resync(conf_t *conf) 1589 { 1590 int buffs; 1591 1592 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1593 BUG_ON(conf->r10buf_pool); 1594 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1595 if (!conf->r10buf_pool) 1596 return -ENOMEM; 1597 conf->next_resync = 0; 1598 return 0; 1599 } 1600 1601 /* 1602 * perform a "sync" on one "block" 1603 * 1604 * We need to make sure that no normal I/O request - particularly write 1605 * requests - conflict with active sync requests. 1606 * 1607 * This is achieved by tracking pending requests and a 'barrier' concept 1608 * that can be installed to exclude normal IO requests. 1609 * 1610 * Resync and recovery are handled very differently. 1611 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1612 * 1613 * For resync, we iterate over virtual addresses, read all copies, 1614 * and update if there are differences. If only one copy is live, 1615 * skip it. 1616 * For recovery, we iterate over physical addresses, read a good 1617 * value for each non-in_sync drive, and over-write. 1618 * 1619 * So, for recovery we may have several outstanding complex requests for a 1620 * given address, one for each out-of-sync device. We model this by allocating 1621 * a number of r10_bio structures, one for each out-of-sync device. 1622 * As we setup these structures, we collect all bio's together into a list 1623 * which we then process collectively to add pages, and then process again 1624 * to pass to generic_make_request. 1625 * 1626 * The r10_bio structures are linked using a borrowed master_bio pointer. 1627 * This link is counted in ->remaining. When the r10_bio that points to NULL 1628 * has its remaining count decremented to 0, the whole complex operation 1629 * is complete. 1630 * 1631 */ 1632 1633 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1634 { 1635 conf_t *conf = mddev_to_conf(mddev); 1636 r10bio_t *r10_bio; 1637 struct bio *biolist = NULL, *bio; 1638 sector_t max_sector, nr_sectors; 1639 int disk; 1640 int i; 1641 int max_sync; 1642 int sync_blocks; 1643 1644 sector_t sectors_skipped = 0; 1645 int chunks_skipped = 0; 1646 1647 if (!conf->r10buf_pool) 1648 if (init_resync(conf)) 1649 return 0; 1650 1651 skipped: 1652 max_sector = mddev->size << 1; 1653 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1654 max_sector = mddev->resync_max_sectors; 1655 if (sector_nr >= max_sector) { 1656 /* If we aborted, we need to abort the 1657 * sync on the 'current' bitmap chucks (there can 1658 * be several when recovering multiple devices). 1659 * as we may have started syncing it but not finished. 1660 * We can find the current address in 1661 * mddev->curr_resync, but for recovery, 1662 * we need to convert that to several 1663 * virtual addresses. 1664 */ 1665 if (mddev->curr_resync < max_sector) { /* aborted */ 1666 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1667 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1668 &sync_blocks, 1); 1669 else for (i=0; i<conf->raid_disks; i++) { 1670 sector_t sect = 1671 raid10_find_virt(conf, mddev->curr_resync, i); 1672 bitmap_end_sync(mddev->bitmap, sect, 1673 &sync_blocks, 1); 1674 } 1675 } else /* completed sync */ 1676 conf->fullsync = 0; 1677 1678 bitmap_close_sync(mddev->bitmap); 1679 close_sync(conf); 1680 *skipped = 1; 1681 return sectors_skipped; 1682 } 1683 if (chunks_skipped >= conf->raid_disks) { 1684 /* if there has been nothing to do on any drive, 1685 * then there is nothing to do at all.. 1686 */ 1687 *skipped = 1; 1688 return (max_sector - sector_nr) + sectors_skipped; 1689 } 1690 1691 if (max_sector > mddev->resync_max) 1692 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1693 1694 /* make sure whole request will fit in a chunk - if chunks 1695 * are meaningful 1696 */ 1697 if (conf->near_copies < conf->raid_disks && 1698 max_sector > (sector_nr | conf->chunk_mask)) 1699 max_sector = (sector_nr | conf->chunk_mask) + 1; 1700 /* 1701 * If there is non-resync activity waiting for us then 1702 * put in a delay to throttle resync. 1703 */ 1704 if (!go_faster && conf->nr_waiting) 1705 msleep_interruptible(1000); 1706 1707 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1708 1709 /* Again, very different code for resync and recovery. 1710 * Both must result in an r10bio with a list of bios that 1711 * have bi_end_io, bi_sector, bi_bdev set, 1712 * and bi_private set to the r10bio. 1713 * For recovery, we may actually create several r10bios 1714 * with 2 bios in each, that correspond to the bios in the main one. 1715 * In this case, the subordinate r10bios link back through a 1716 * borrowed master_bio pointer, and the counter in the master 1717 * includes a ref from each subordinate. 1718 */ 1719 /* First, we decide what to do and set ->bi_end_io 1720 * To end_sync_read if we want to read, and 1721 * end_sync_write if we will want to write. 1722 */ 1723 1724 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1725 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1726 /* recovery... the complicated one */ 1727 int i, j, k; 1728 r10_bio = NULL; 1729 1730 for (i=0 ; i<conf->raid_disks; i++) 1731 if (conf->mirrors[i].rdev && 1732 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1733 int still_degraded = 0; 1734 /* want to reconstruct this device */ 1735 r10bio_t *rb2 = r10_bio; 1736 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1737 int must_sync; 1738 /* Unless we are doing a full sync, we only need 1739 * to recover the block if it is set in the bitmap 1740 */ 1741 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1742 &sync_blocks, 1); 1743 if (sync_blocks < max_sync) 1744 max_sync = sync_blocks; 1745 if (!must_sync && 1746 !conf->fullsync) { 1747 /* yep, skip the sync_blocks here, but don't assume 1748 * that there will never be anything to do here 1749 */ 1750 chunks_skipped = -1; 1751 continue; 1752 } 1753 1754 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1755 raise_barrier(conf, rb2 != NULL); 1756 atomic_set(&r10_bio->remaining, 0); 1757 1758 r10_bio->master_bio = (struct bio*)rb2; 1759 if (rb2) 1760 atomic_inc(&rb2->remaining); 1761 r10_bio->mddev = mddev; 1762 set_bit(R10BIO_IsRecover, &r10_bio->state); 1763 r10_bio->sector = sect; 1764 1765 raid10_find_phys(conf, r10_bio); 1766 /* Need to check if this section will still be 1767 * degraded 1768 */ 1769 for (j=0; j<conf->copies;j++) { 1770 int d = r10_bio->devs[j].devnum; 1771 if (conf->mirrors[d].rdev == NULL || 1772 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) { 1773 still_degraded = 1; 1774 break; 1775 } 1776 } 1777 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1778 &sync_blocks, still_degraded); 1779 1780 for (j=0; j<conf->copies;j++) { 1781 int d = r10_bio->devs[j].devnum; 1782 if (conf->mirrors[d].rdev && 1783 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1784 /* This is where we read from */ 1785 bio = r10_bio->devs[0].bio; 1786 bio->bi_next = biolist; 1787 biolist = bio; 1788 bio->bi_private = r10_bio; 1789 bio->bi_end_io = end_sync_read; 1790 bio->bi_rw = READ; 1791 bio->bi_sector = r10_bio->devs[j].addr + 1792 conf->mirrors[d].rdev->data_offset; 1793 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1794 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1795 atomic_inc(&r10_bio->remaining); 1796 /* and we write to 'i' */ 1797 1798 for (k=0; k<conf->copies; k++) 1799 if (r10_bio->devs[k].devnum == i) 1800 break; 1801 BUG_ON(k == conf->copies); 1802 bio = r10_bio->devs[1].bio; 1803 bio->bi_next = biolist; 1804 biolist = bio; 1805 bio->bi_private = r10_bio; 1806 bio->bi_end_io = end_sync_write; 1807 bio->bi_rw = WRITE; 1808 bio->bi_sector = r10_bio->devs[k].addr + 1809 conf->mirrors[i].rdev->data_offset; 1810 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1811 1812 r10_bio->devs[0].devnum = d; 1813 r10_bio->devs[1].devnum = i; 1814 1815 break; 1816 } 1817 } 1818 if (j == conf->copies) { 1819 /* Cannot recover, so abort the recovery */ 1820 put_buf(r10_bio); 1821 if (rb2) 1822 atomic_dec(&rb2->remaining); 1823 r10_bio = rb2; 1824 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery)) 1825 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1826 mdname(mddev)); 1827 break; 1828 } 1829 } 1830 if (biolist == NULL) { 1831 while (r10_bio) { 1832 r10bio_t *rb2 = r10_bio; 1833 r10_bio = (r10bio_t*) rb2->master_bio; 1834 rb2->master_bio = NULL; 1835 put_buf(rb2); 1836 } 1837 goto giveup; 1838 } 1839 } else { 1840 /* resync. Schedule a read for every block at this virt offset */ 1841 int count = 0; 1842 1843 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1844 &sync_blocks, mddev->degraded) && 1845 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1846 /* We can skip this block */ 1847 *skipped = 1; 1848 return sync_blocks + sectors_skipped; 1849 } 1850 if (sync_blocks < max_sync) 1851 max_sync = sync_blocks; 1852 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1853 1854 r10_bio->mddev = mddev; 1855 atomic_set(&r10_bio->remaining, 0); 1856 raise_barrier(conf, 0); 1857 conf->next_resync = sector_nr; 1858 1859 r10_bio->master_bio = NULL; 1860 r10_bio->sector = sector_nr; 1861 set_bit(R10BIO_IsSync, &r10_bio->state); 1862 raid10_find_phys(conf, r10_bio); 1863 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1864 1865 for (i=0; i<conf->copies; i++) { 1866 int d = r10_bio->devs[i].devnum; 1867 bio = r10_bio->devs[i].bio; 1868 bio->bi_end_io = NULL; 1869 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1870 if (conf->mirrors[d].rdev == NULL || 1871 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1872 continue; 1873 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1874 atomic_inc(&r10_bio->remaining); 1875 bio->bi_next = biolist; 1876 biolist = bio; 1877 bio->bi_private = r10_bio; 1878 bio->bi_end_io = end_sync_read; 1879 bio->bi_rw = READ; 1880 bio->bi_sector = r10_bio->devs[i].addr + 1881 conf->mirrors[d].rdev->data_offset; 1882 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1883 count++; 1884 } 1885 1886 if (count < 2) { 1887 for (i=0; i<conf->copies; i++) { 1888 int d = r10_bio->devs[i].devnum; 1889 if (r10_bio->devs[i].bio->bi_end_io) 1890 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1891 } 1892 put_buf(r10_bio); 1893 biolist = NULL; 1894 goto giveup; 1895 } 1896 } 1897 1898 for (bio = biolist; bio ; bio=bio->bi_next) { 1899 1900 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1901 if (bio->bi_end_io) 1902 bio->bi_flags |= 1 << BIO_UPTODATE; 1903 bio->bi_vcnt = 0; 1904 bio->bi_idx = 0; 1905 bio->bi_phys_segments = 0; 1906 bio->bi_hw_segments = 0; 1907 bio->bi_size = 0; 1908 } 1909 1910 nr_sectors = 0; 1911 if (sector_nr + max_sync < max_sector) 1912 max_sector = sector_nr + max_sync; 1913 do { 1914 struct page *page; 1915 int len = PAGE_SIZE; 1916 disk = 0; 1917 if (sector_nr + (len>>9) > max_sector) 1918 len = (max_sector - sector_nr) << 9; 1919 if (len == 0) 1920 break; 1921 for (bio= biolist ; bio ; bio=bio->bi_next) { 1922 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1923 if (bio_add_page(bio, page, len, 0) == 0) { 1924 /* stop here */ 1925 struct bio *bio2; 1926 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1927 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1928 /* remove last page from this bio */ 1929 bio2->bi_vcnt--; 1930 bio2->bi_size -= len; 1931 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1932 } 1933 goto bio_full; 1934 } 1935 disk = i; 1936 } 1937 nr_sectors += len>>9; 1938 sector_nr += len>>9; 1939 } while (biolist->bi_vcnt < RESYNC_PAGES); 1940 bio_full: 1941 r10_bio->sectors = nr_sectors; 1942 1943 while (biolist) { 1944 bio = biolist; 1945 biolist = biolist->bi_next; 1946 1947 bio->bi_next = NULL; 1948 r10_bio = bio->bi_private; 1949 r10_bio->sectors = nr_sectors; 1950 1951 if (bio->bi_end_io == end_sync_read) { 1952 md_sync_acct(bio->bi_bdev, nr_sectors); 1953 generic_make_request(bio); 1954 } 1955 } 1956 1957 if (sectors_skipped) 1958 /* pretend they weren't skipped, it makes 1959 * no important difference in this case 1960 */ 1961 md_done_sync(mddev, sectors_skipped, 1); 1962 1963 return sectors_skipped + nr_sectors; 1964 giveup: 1965 /* There is nowhere to write, so all non-sync 1966 * drives must be failed, so try the next chunk... 1967 */ 1968 { 1969 sector_t sec = max_sector - sector_nr; 1970 sectors_skipped += sec; 1971 chunks_skipped ++; 1972 sector_nr = max_sector; 1973 goto skipped; 1974 } 1975 } 1976 1977 static int run(mddev_t *mddev) 1978 { 1979 conf_t *conf; 1980 int i, disk_idx; 1981 mirror_info_t *disk; 1982 mdk_rdev_t *rdev; 1983 struct list_head *tmp; 1984 int nc, fc, fo; 1985 sector_t stride, size; 1986 1987 if (mddev->chunk_size == 0) { 1988 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n"); 1989 return -EINVAL; 1990 } 1991 1992 nc = mddev->layout & 255; 1993 fc = (mddev->layout >> 8) & 255; 1994 fo = mddev->layout & (1<<16); 1995 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 1996 (mddev->layout >> 17)) { 1997 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 1998 mdname(mddev), mddev->layout); 1999 goto out; 2000 } 2001 /* 2002 * copy the already verified devices into our private RAID10 2003 * bookkeeping area. [whatever we allocate in run(), 2004 * should be freed in stop()] 2005 */ 2006 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2007 mddev->private = conf; 2008 if (!conf) { 2009 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2010 mdname(mddev)); 2011 goto out; 2012 } 2013 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2014 GFP_KERNEL); 2015 if (!conf->mirrors) { 2016 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2017 mdname(mddev)); 2018 goto out_free_conf; 2019 } 2020 2021 conf->tmppage = alloc_page(GFP_KERNEL); 2022 if (!conf->tmppage) 2023 goto out_free_conf; 2024 2025 conf->mddev = mddev; 2026 conf->raid_disks = mddev->raid_disks; 2027 conf->near_copies = nc; 2028 conf->far_copies = fc; 2029 conf->copies = nc*fc; 2030 conf->far_offset = fo; 2031 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 2032 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 2033 size = mddev->size >> (conf->chunk_shift-1); 2034 sector_div(size, fc); 2035 size = size * conf->raid_disks; 2036 sector_div(size, nc); 2037 /* 'size' is now the number of chunks in the array */ 2038 /* calculate "used chunks per device" in 'stride' */ 2039 stride = size * conf->copies; 2040 2041 /* We need to round up when dividing by raid_disks to 2042 * get the stride size. 2043 */ 2044 stride += conf->raid_disks - 1; 2045 sector_div(stride, conf->raid_disks); 2046 mddev->size = stride << (conf->chunk_shift-1); 2047 2048 if (fo) 2049 stride = 1; 2050 else 2051 sector_div(stride, fc); 2052 conf->stride = stride << conf->chunk_shift; 2053 2054 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2055 r10bio_pool_free, conf); 2056 if (!conf->r10bio_pool) { 2057 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2058 mdname(mddev)); 2059 goto out_free_conf; 2060 } 2061 2062 rdev_for_each(rdev, tmp, mddev) { 2063 disk_idx = rdev->raid_disk; 2064 if (disk_idx >= mddev->raid_disks 2065 || disk_idx < 0) 2066 continue; 2067 disk = conf->mirrors + disk_idx; 2068 2069 disk->rdev = rdev; 2070 2071 blk_queue_stack_limits(mddev->queue, 2072 rdev->bdev->bd_disk->queue); 2073 /* as we don't honour merge_bvec_fn, we must never risk 2074 * violating it, so limit ->max_sector to one PAGE, as 2075 * a one page request is never in violation. 2076 */ 2077 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2078 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 2079 mddev->queue->max_sectors = (PAGE_SIZE>>9); 2080 2081 disk->head_position = 0; 2082 } 2083 spin_lock_init(&conf->device_lock); 2084 INIT_LIST_HEAD(&conf->retry_list); 2085 2086 spin_lock_init(&conf->resync_lock); 2087 init_waitqueue_head(&conf->wait_barrier); 2088 2089 /* need to check that every block has at least one working mirror */ 2090 if (!enough(conf)) { 2091 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 2092 mdname(mddev)); 2093 goto out_free_conf; 2094 } 2095 2096 mddev->degraded = 0; 2097 for (i = 0; i < conf->raid_disks; i++) { 2098 2099 disk = conf->mirrors + i; 2100 2101 if (!disk->rdev || 2102 !test_bit(In_sync, &disk->rdev->flags)) { 2103 disk->head_position = 0; 2104 mddev->degraded++; 2105 } 2106 } 2107 2108 2109 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 2110 if (!mddev->thread) { 2111 printk(KERN_ERR 2112 "raid10: couldn't allocate thread for %s\n", 2113 mdname(mddev)); 2114 goto out_free_conf; 2115 } 2116 2117 printk(KERN_INFO 2118 "raid10: raid set %s active with %d out of %d devices\n", 2119 mdname(mddev), mddev->raid_disks - mddev->degraded, 2120 mddev->raid_disks); 2121 /* 2122 * Ok, everything is just fine now 2123 */ 2124 mddev->array_size = size << (conf->chunk_shift-1); 2125 mddev->resync_max_sectors = size << conf->chunk_shift; 2126 2127 mddev->queue->unplug_fn = raid10_unplug; 2128 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2129 mddev->queue->backing_dev_info.congested_data = mddev; 2130 2131 /* Calculate max read-ahead size. 2132 * We need to readahead at least twice a whole stripe.... 2133 * maybe... 2134 */ 2135 { 2136 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE); 2137 stripe /= conf->near_copies; 2138 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2139 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2140 } 2141 2142 if (conf->near_copies < mddev->raid_disks) 2143 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2144 return 0; 2145 2146 out_free_conf: 2147 if (conf->r10bio_pool) 2148 mempool_destroy(conf->r10bio_pool); 2149 safe_put_page(conf->tmppage); 2150 kfree(conf->mirrors); 2151 kfree(conf); 2152 mddev->private = NULL; 2153 out: 2154 return -EIO; 2155 } 2156 2157 static int stop(mddev_t *mddev) 2158 { 2159 conf_t *conf = mddev_to_conf(mddev); 2160 2161 md_unregister_thread(mddev->thread); 2162 mddev->thread = NULL; 2163 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2164 if (conf->r10bio_pool) 2165 mempool_destroy(conf->r10bio_pool); 2166 kfree(conf->mirrors); 2167 kfree(conf); 2168 mddev->private = NULL; 2169 return 0; 2170 } 2171 2172 static void raid10_quiesce(mddev_t *mddev, int state) 2173 { 2174 conf_t *conf = mddev_to_conf(mddev); 2175 2176 switch(state) { 2177 case 1: 2178 raise_barrier(conf, 0); 2179 break; 2180 case 0: 2181 lower_barrier(conf); 2182 break; 2183 } 2184 if (mddev->thread) { 2185 if (mddev->bitmap) 2186 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 2187 else 2188 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 2189 md_wakeup_thread(mddev->thread); 2190 } 2191 } 2192 2193 static struct mdk_personality raid10_personality = 2194 { 2195 .name = "raid10", 2196 .level = 10, 2197 .owner = THIS_MODULE, 2198 .make_request = make_request, 2199 .run = run, 2200 .stop = stop, 2201 .status = status, 2202 .error_handler = error, 2203 .hot_add_disk = raid10_add_disk, 2204 .hot_remove_disk= raid10_remove_disk, 2205 .spare_active = raid10_spare_active, 2206 .sync_request = sync_request, 2207 .quiesce = raid10_quiesce, 2208 }; 2209 2210 static int __init raid_init(void) 2211 { 2212 return register_md_personality(&raid10_personality); 2213 } 2214 2215 static void raid_exit(void) 2216 { 2217 unregister_md_personality(&raid10_personality); 2218 } 2219 2220 module_init(raid_init); 2221 module_exit(raid_exit); 2222 MODULE_LICENSE("GPL"); 2223 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2224 MODULE_ALIAS("md-raid10"); 2225 MODULE_ALIAS("md-level-10"); 2226