xref: /openbmc/linux/drivers/md/raid10.c (revision f2a89d3b)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *    use_far_sets_bugfixed (stored in bit 18 of layout )
43  *
44  * The data to be stored is divided into chunks using chunksize.  Each device
45  * is divided into far_copies sections.   In each section, chunks are laid out
46  * in a style similar to raid0, but near_copies copies of each chunk is stored
47  * (each on a different drive).  The starting device for each section is offset
48  * near_copies from the starting device of the previous section.  Thus there
49  * are (near_copies * far_copies) of each chunk, and each is on a different
50  * drive.  near_copies and far_copies must be at least one, and their product
51  * is at most raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of being very far
55  * apart on disk, there are adjacent stripes.
56  *
57  * The far and offset algorithms are handled slightly differently if
58  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
59  * sets that are (near_copies * far_copies) in size.  The far copied stripes
60  * are still shifted by 'near_copies' devices, but this shifting stays confined
61  * to the set rather than the entire array.  This is done to improve the number
62  * of device combinations that can fail without causing the array to fail.
63  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64  * on a device):
65  *    A B C D    A B C D E
66  *      ...         ...
67  *    D A B C    E A B C D
68  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69  *    [A B] [C D]    [A B] [C D E]
70  *    |...| |...|    |...| | ... |
71  *    [B A] [D C]    [B A] [E C D]
72  */
73 
74 /*
75  * Number of guaranteed r10bios in case of extreme VM load:
76  */
77 #define	NR_RAID10_BIOS 256
78 
79 /* when we get a read error on a read-only array, we redirect to another
80  * device without failing the first device, or trying to over-write to
81  * correct the read error.  To keep track of bad blocks on a per-bio
82  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83  */
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86  * bad-block marking which must be done from process context.  So we record
87  * the success by setting devs[n].bio to IO_MADE_GOOD
88  */
89 #define IO_MADE_GOOD ((struct bio *)2)
90 
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92 
93 /* When there are this many requests queued to be written by
94  * the raid10 thread, we become 'congested' to provide back-pressure
95  * for writeback.
96  */
97 static int max_queued_requests = 1024;
98 
99 static void allow_barrier(struct r10conf *conf);
100 static void lower_barrier(struct r10conf *conf);
101 static int _enough(struct r10conf *conf, int previous, int ignore);
102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103 				int *skipped);
104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105 static void end_reshape_write(struct bio *bio);
106 static void end_reshape(struct r10conf *conf);
107 
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110 	struct r10conf *conf = data;
111 	int size = offsetof(struct r10bio, devs[conf->copies]);
112 
113 	/* allocate a r10bio with room for raid_disks entries in the
114 	 * bios array */
115 	return kzalloc(size, gfp_flags);
116 }
117 
118 static void r10bio_pool_free(void *r10_bio, void *data)
119 {
120 	kfree(r10_bio);
121 }
122 
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
130 
131 /*
132  * When performing a resync, we need to read and compare, so
133  * we need as many pages are there are copies.
134  * When performing a recovery, we need 2 bios, one for read,
135  * one for write (we recover only one drive per r10buf)
136  *
137  */
138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139 {
140 	struct r10conf *conf = data;
141 	struct page *page;
142 	struct r10bio *r10_bio;
143 	struct bio *bio;
144 	int i, j;
145 	int nalloc;
146 
147 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148 	if (!r10_bio)
149 		return NULL;
150 
151 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153 		nalloc = conf->copies; /* resync */
154 	else
155 		nalloc = 2; /* recovery */
156 
157 	/*
158 	 * Allocate bios.
159 	 */
160 	for (j = nalloc ; j-- ; ) {
161 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162 		if (!bio)
163 			goto out_free_bio;
164 		r10_bio->devs[j].bio = bio;
165 		if (!conf->have_replacement)
166 			continue;
167 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168 		if (!bio)
169 			goto out_free_bio;
170 		r10_bio->devs[j].repl_bio = bio;
171 	}
172 	/*
173 	 * Allocate RESYNC_PAGES data pages and attach them
174 	 * where needed.
175 	 */
176 	for (j = 0 ; j < nalloc; j++) {
177 		struct bio *rbio = r10_bio->devs[j].repl_bio;
178 		bio = r10_bio->devs[j].bio;
179 		for (i = 0; i < RESYNC_PAGES; i++) {
180 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181 					       &conf->mddev->recovery)) {
182 				/* we can share bv_page's during recovery
183 				 * and reshape */
184 				struct bio *rbio = r10_bio->devs[0].bio;
185 				page = rbio->bi_io_vec[i].bv_page;
186 				get_page(page);
187 			} else
188 				page = alloc_page(gfp_flags);
189 			if (unlikely(!page))
190 				goto out_free_pages;
191 
192 			bio->bi_io_vec[i].bv_page = page;
193 			if (rbio)
194 				rbio->bi_io_vec[i].bv_page = page;
195 		}
196 	}
197 
198 	return r10_bio;
199 
200 out_free_pages:
201 	for ( ; i > 0 ; i--)
202 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
203 	while (j--)
204 		for (i = 0; i < RESYNC_PAGES ; i++)
205 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206 	j = 0;
207 out_free_bio:
208 	for ( ; j < nalloc; j++) {
209 		if (r10_bio->devs[j].bio)
210 			bio_put(r10_bio->devs[j].bio);
211 		if (r10_bio->devs[j].repl_bio)
212 			bio_put(r10_bio->devs[j].repl_bio);
213 	}
214 	r10bio_pool_free(r10_bio, conf);
215 	return NULL;
216 }
217 
218 static void r10buf_pool_free(void *__r10_bio, void *data)
219 {
220 	int i;
221 	struct r10conf *conf = data;
222 	struct r10bio *r10bio = __r10_bio;
223 	int j;
224 
225 	for (j=0; j < conf->copies; j++) {
226 		struct bio *bio = r10bio->devs[j].bio;
227 		if (bio) {
228 			for (i = 0; i < RESYNC_PAGES; i++) {
229 				safe_put_page(bio->bi_io_vec[i].bv_page);
230 				bio->bi_io_vec[i].bv_page = NULL;
231 			}
232 			bio_put(bio);
233 		}
234 		bio = r10bio->devs[j].repl_bio;
235 		if (bio)
236 			bio_put(bio);
237 	}
238 	r10bio_pool_free(r10bio, conf);
239 }
240 
241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
242 {
243 	int i;
244 
245 	for (i = 0; i < conf->copies; i++) {
246 		struct bio **bio = & r10_bio->devs[i].bio;
247 		if (!BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 		bio = &r10_bio->devs[i].repl_bio;
251 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252 			bio_put(*bio);
253 		*bio = NULL;
254 	}
255 }
256 
257 static void free_r10bio(struct r10bio *r10_bio)
258 {
259 	struct r10conf *conf = r10_bio->mddev->private;
260 
261 	put_all_bios(conf, r10_bio);
262 	mempool_free(r10_bio, conf->r10bio_pool);
263 }
264 
265 static void put_buf(struct r10bio *r10_bio)
266 {
267 	struct r10conf *conf = r10_bio->mddev->private;
268 
269 	mempool_free(r10_bio, conf->r10buf_pool);
270 
271 	lower_barrier(conf);
272 }
273 
274 static void reschedule_retry(struct r10bio *r10_bio)
275 {
276 	unsigned long flags;
277 	struct mddev *mddev = r10_bio->mddev;
278 	struct r10conf *conf = mddev->private;
279 
280 	spin_lock_irqsave(&conf->device_lock, flags);
281 	list_add(&r10_bio->retry_list, &conf->retry_list);
282 	conf->nr_queued ++;
283 	spin_unlock_irqrestore(&conf->device_lock, flags);
284 
285 	/* wake up frozen array... */
286 	wake_up(&conf->wait_barrier);
287 
288 	md_wakeup_thread(mddev->thread);
289 }
290 
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void raid_end_bio_io(struct r10bio *r10_bio)
297 {
298 	struct bio *bio = r10_bio->master_bio;
299 	int done;
300 	struct r10conf *conf = r10_bio->mddev->private;
301 
302 	if (bio->bi_phys_segments) {
303 		unsigned long flags;
304 		spin_lock_irqsave(&conf->device_lock, flags);
305 		bio->bi_phys_segments--;
306 		done = (bio->bi_phys_segments == 0);
307 		spin_unlock_irqrestore(&conf->device_lock, flags);
308 	} else
309 		done = 1;
310 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311 		bio->bi_error = -EIO;
312 	if (done) {
313 		bio_endio(bio);
314 		/*
315 		 * Wake up any possible resync thread that waits for the device
316 		 * to go idle.
317 		 */
318 		allow_barrier(conf);
319 	}
320 	free_r10bio(r10_bio);
321 }
322 
323 /*
324  * Update disk head position estimator based on IRQ completion info.
325  */
326 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327 {
328 	struct r10conf *conf = r10_bio->mddev->private;
329 
330 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331 		r10_bio->devs[slot].addr + (r10_bio->sectors);
332 }
333 
334 /*
335  * Find the disk number which triggered given bio
336  */
337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338 			 struct bio *bio, int *slotp, int *replp)
339 {
340 	int slot;
341 	int repl = 0;
342 
343 	for (slot = 0; slot < conf->copies; slot++) {
344 		if (r10_bio->devs[slot].bio == bio)
345 			break;
346 		if (r10_bio->devs[slot].repl_bio == bio) {
347 			repl = 1;
348 			break;
349 		}
350 	}
351 
352 	BUG_ON(slot == conf->copies);
353 	update_head_pos(slot, r10_bio);
354 
355 	if (slotp)
356 		*slotp = slot;
357 	if (replp)
358 		*replp = repl;
359 	return r10_bio->devs[slot].devnum;
360 }
361 
362 static void raid10_end_read_request(struct bio *bio)
363 {
364 	int uptodate = !bio->bi_error;
365 	struct r10bio *r10_bio = bio->bi_private;
366 	int slot, dev;
367 	struct md_rdev *rdev;
368 	struct r10conf *conf = r10_bio->mddev->private;
369 
370 	slot = r10_bio->read_slot;
371 	dev = r10_bio->devs[slot].devnum;
372 	rdev = r10_bio->devs[slot].rdev;
373 	/*
374 	 * this branch is our 'one mirror IO has finished' event handler:
375 	 */
376 	update_head_pos(slot, r10_bio);
377 
378 	if (uptodate) {
379 		/*
380 		 * Set R10BIO_Uptodate in our master bio, so that
381 		 * we will return a good error code to the higher
382 		 * levels even if IO on some other mirrored buffer fails.
383 		 *
384 		 * The 'master' represents the composite IO operation to
385 		 * user-side. So if something waits for IO, then it will
386 		 * wait for the 'master' bio.
387 		 */
388 		set_bit(R10BIO_Uptodate, &r10_bio->state);
389 	} else {
390 		/* If all other devices that store this block have
391 		 * failed, we want to return the error upwards rather
392 		 * than fail the last device.  Here we redefine
393 		 * "uptodate" to mean "Don't want to retry"
394 		 */
395 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 			     rdev->raid_disk))
397 			uptodate = 1;
398 	}
399 	if (uptodate) {
400 		raid_end_bio_io(r10_bio);
401 		rdev_dec_pending(rdev, conf->mddev);
402 	} else {
403 		/*
404 		 * oops, read error - keep the refcount on the rdev
405 		 */
406 		char b[BDEVNAME_SIZE];
407 		printk_ratelimited(KERN_ERR
408 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
409 				   mdname(conf->mddev),
410 				   bdevname(rdev->bdev, b),
411 				   (unsigned long long)r10_bio->sector);
412 		set_bit(R10BIO_ReadError, &r10_bio->state);
413 		reschedule_retry(r10_bio);
414 	}
415 }
416 
417 static void close_write(struct r10bio *r10_bio)
418 {
419 	/* clear the bitmap if all writes complete successfully */
420 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 			r10_bio->sectors,
422 			!test_bit(R10BIO_Degraded, &r10_bio->state),
423 			0);
424 	md_write_end(r10_bio->mddev);
425 }
426 
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429 	if (atomic_dec_and_test(&r10_bio->remaining)) {
430 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 			reschedule_retry(r10_bio);
432 		else {
433 			close_write(r10_bio);
434 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 				reschedule_retry(r10_bio);
436 			else
437 				raid_end_bio_io(r10_bio);
438 		}
439 	}
440 }
441 
442 static void raid10_end_write_request(struct bio *bio)
443 {
444 	struct r10bio *r10_bio = bio->bi_private;
445 	int dev;
446 	int dec_rdev = 1;
447 	struct r10conf *conf = r10_bio->mddev->private;
448 	int slot, repl;
449 	struct md_rdev *rdev = NULL;
450 
451 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452 
453 	if (repl)
454 		rdev = conf->mirrors[dev].replacement;
455 	if (!rdev) {
456 		smp_rmb();
457 		repl = 0;
458 		rdev = conf->mirrors[dev].rdev;
459 	}
460 	/*
461 	 * this branch is our 'one mirror IO has finished' event handler:
462 	 */
463 	if (bio->bi_error) {
464 		if (repl)
465 			/* Never record new bad blocks to replacement,
466 			 * just fail it.
467 			 */
468 			md_error(rdev->mddev, rdev);
469 		else {
470 			set_bit(WriteErrorSeen,	&rdev->flags);
471 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 				set_bit(MD_RECOVERY_NEEDED,
473 					&rdev->mddev->recovery);
474 			set_bit(R10BIO_WriteError, &r10_bio->state);
475 			dec_rdev = 0;
476 		}
477 	} else {
478 		/*
479 		 * Set R10BIO_Uptodate in our master bio, so that
480 		 * we will return a good error code for to the higher
481 		 * levels even if IO on some other mirrored buffer fails.
482 		 *
483 		 * The 'master' represents the composite IO operation to
484 		 * user-side. So if something waits for IO, then it will
485 		 * wait for the 'master' bio.
486 		 */
487 		sector_t first_bad;
488 		int bad_sectors;
489 
490 		/*
491 		 * Do not set R10BIO_Uptodate if the current device is
492 		 * rebuilding or Faulty. This is because we cannot use
493 		 * such device for properly reading the data back (we could
494 		 * potentially use it, if the current write would have felt
495 		 * before rdev->recovery_offset, but for simplicity we don't
496 		 * check this here.
497 		 */
498 		if (test_bit(In_sync, &rdev->flags) &&
499 		    !test_bit(Faulty, &rdev->flags))
500 			set_bit(R10BIO_Uptodate, &r10_bio->state);
501 
502 		/* Maybe we can clear some bad blocks. */
503 		if (is_badblock(rdev,
504 				r10_bio->devs[slot].addr,
505 				r10_bio->sectors,
506 				&first_bad, &bad_sectors)) {
507 			bio_put(bio);
508 			if (repl)
509 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 			else
511 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
512 			dec_rdev = 0;
513 			set_bit(R10BIO_MadeGood, &r10_bio->state);
514 		}
515 	}
516 
517 	/*
518 	 *
519 	 * Let's see if all mirrored write operations have finished
520 	 * already.
521 	 */
522 	one_write_done(r10_bio);
523 	if (dec_rdev)
524 		rdev_dec_pending(rdev, conf->mddev);
525 }
526 
527 /*
528  * RAID10 layout manager
529  * As well as the chunksize and raid_disks count, there are two
530  * parameters: near_copies and far_copies.
531  * near_copies * far_copies must be <= raid_disks.
532  * Normally one of these will be 1.
533  * If both are 1, we get raid0.
534  * If near_copies == raid_disks, we get raid1.
535  *
536  * Chunks are laid out in raid0 style with near_copies copies of the
537  * first chunk, followed by near_copies copies of the next chunk and
538  * so on.
539  * If far_copies > 1, then after 1/far_copies of the array has been assigned
540  * as described above, we start again with a device offset of near_copies.
541  * So we effectively have another copy of the whole array further down all
542  * the drives, but with blocks on different drives.
543  * With this layout, and block is never stored twice on the one device.
544  *
545  * raid10_find_phys finds the sector offset of a given virtual sector
546  * on each device that it is on.
547  *
548  * raid10_find_virt does the reverse mapping, from a device and a
549  * sector offset to a virtual address
550  */
551 
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554 	int n,f;
555 	sector_t sector;
556 	sector_t chunk;
557 	sector_t stripe;
558 	int dev;
559 	int slot = 0;
560 	int last_far_set_start, last_far_set_size;
561 
562 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 	last_far_set_start *= geo->far_set_size;
564 
565 	last_far_set_size = geo->far_set_size;
566 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
567 
568 	/* now calculate first sector/dev */
569 	chunk = r10bio->sector >> geo->chunk_shift;
570 	sector = r10bio->sector & geo->chunk_mask;
571 
572 	chunk *= geo->near_copies;
573 	stripe = chunk;
574 	dev = sector_div(stripe, geo->raid_disks);
575 	if (geo->far_offset)
576 		stripe *= geo->far_copies;
577 
578 	sector += stripe << geo->chunk_shift;
579 
580 	/* and calculate all the others */
581 	for (n = 0; n < geo->near_copies; n++) {
582 		int d = dev;
583 		int set;
584 		sector_t s = sector;
585 		r10bio->devs[slot].devnum = d;
586 		r10bio->devs[slot].addr = s;
587 		slot++;
588 
589 		for (f = 1; f < geo->far_copies; f++) {
590 			set = d / geo->far_set_size;
591 			d += geo->near_copies;
592 
593 			if ((geo->raid_disks % geo->far_set_size) &&
594 			    (d > last_far_set_start)) {
595 				d -= last_far_set_start;
596 				d %= last_far_set_size;
597 				d += last_far_set_start;
598 			} else {
599 				d %= geo->far_set_size;
600 				d += geo->far_set_size * set;
601 			}
602 			s += geo->stride;
603 			r10bio->devs[slot].devnum = d;
604 			r10bio->devs[slot].addr = s;
605 			slot++;
606 		}
607 		dev++;
608 		if (dev >= geo->raid_disks) {
609 			dev = 0;
610 			sector += (geo->chunk_mask + 1);
611 		}
612 	}
613 }
614 
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617 	struct geom *geo = &conf->geo;
618 
619 	if (conf->reshape_progress != MaxSector &&
620 	    ((r10bio->sector >= conf->reshape_progress) !=
621 	     conf->mddev->reshape_backwards)) {
622 		set_bit(R10BIO_Previous, &r10bio->state);
623 		geo = &conf->prev;
624 	} else
625 		clear_bit(R10BIO_Previous, &r10bio->state);
626 
627 	__raid10_find_phys(geo, r10bio);
628 }
629 
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632 	sector_t offset, chunk, vchunk;
633 	/* Never use conf->prev as this is only called during resync
634 	 * or recovery, so reshape isn't happening
635 	 */
636 	struct geom *geo = &conf->geo;
637 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 	int far_set_size = geo->far_set_size;
639 	int last_far_set_start;
640 
641 	if (geo->raid_disks % geo->far_set_size) {
642 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 		last_far_set_start *= geo->far_set_size;
644 
645 		if (dev >= last_far_set_start) {
646 			far_set_size = geo->far_set_size;
647 			far_set_size += (geo->raid_disks % geo->far_set_size);
648 			far_set_start = last_far_set_start;
649 		}
650 	}
651 
652 	offset = sector & geo->chunk_mask;
653 	if (geo->far_offset) {
654 		int fc;
655 		chunk = sector >> geo->chunk_shift;
656 		fc = sector_div(chunk, geo->far_copies);
657 		dev -= fc * geo->near_copies;
658 		if (dev < far_set_start)
659 			dev += far_set_size;
660 	} else {
661 		while (sector >= geo->stride) {
662 			sector -= geo->stride;
663 			if (dev < (geo->near_copies + far_set_start))
664 				dev += far_set_size - geo->near_copies;
665 			else
666 				dev -= geo->near_copies;
667 		}
668 		chunk = sector >> geo->chunk_shift;
669 	}
670 	vchunk = chunk * geo->raid_disks + dev;
671 	sector_div(vchunk, geo->near_copies);
672 	return (vchunk << geo->chunk_shift) + offset;
673 }
674 
675 /*
676  * This routine returns the disk from which the requested read should
677  * be done. There is a per-array 'next expected sequential IO' sector
678  * number - if this matches on the next IO then we use the last disk.
679  * There is also a per-disk 'last know head position' sector that is
680  * maintained from IRQ contexts, both the normal and the resync IO
681  * completion handlers update this position correctly. If there is no
682  * perfect sequential match then we pick the disk whose head is closest.
683  *
684  * If there are 2 mirrors in the same 2 devices, performance degrades
685  * because position is mirror, not device based.
686  *
687  * The rdev for the device selected will have nr_pending incremented.
688  */
689 
690 /*
691  * FIXME: possibly should rethink readbalancing and do it differently
692  * depending on near_copies / far_copies geometry.
693  */
694 static struct md_rdev *read_balance(struct r10conf *conf,
695 				    struct r10bio *r10_bio,
696 				    int *max_sectors)
697 {
698 	const sector_t this_sector = r10_bio->sector;
699 	int disk, slot;
700 	int sectors = r10_bio->sectors;
701 	int best_good_sectors;
702 	sector_t new_distance, best_dist;
703 	struct md_rdev *best_rdev, *rdev = NULL;
704 	int do_balance;
705 	int best_slot;
706 	struct geom *geo = &conf->geo;
707 
708 	raid10_find_phys(conf, r10_bio);
709 	rcu_read_lock();
710 	sectors = r10_bio->sectors;
711 	best_slot = -1;
712 	best_rdev = NULL;
713 	best_dist = MaxSector;
714 	best_good_sectors = 0;
715 	do_balance = 1;
716 	/*
717 	 * Check if we can balance. We can balance on the whole
718 	 * device if no resync is going on (recovery is ok), or below
719 	 * the resync window. We take the first readable disk when
720 	 * above the resync window.
721 	 */
722 	if (conf->mddev->recovery_cp < MaxSector
723 	    && (this_sector + sectors >= conf->next_resync))
724 		do_balance = 0;
725 
726 	for (slot = 0; slot < conf->copies ; slot++) {
727 		sector_t first_bad;
728 		int bad_sectors;
729 		sector_t dev_sector;
730 
731 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
732 			continue;
733 		disk = r10_bio->devs[slot].devnum;
734 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
735 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
736 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
737 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
738 		if (rdev == NULL ||
739 		    test_bit(Faulty, &rdev->flags))
740 			continue;
741 		if (!test_bit(In_sync, &rdev->flags) &&
742 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
743 			continue;
744 
745 		dev_sector = r10_bio->devs[slot].addr;
746 		if (is_badblock(rdev, dev_sector, sectors,
747 				&first_bad, &bad_sectors)) {
748 			if (best_dist < MaxSector)
749 				/* Already have a better slot */
750 				continue;
751 			if (first_bad <= dev_sector) {
752 				/* Cannot read here.  If this is the
753 				 * 'primary' device, then we must not read
754 				 * beyond 'bad_sectors' from another device.
755 				 */
756 				bad_sectors -= (dev_sector - first_bad);
757 				if (!do_balance && sectors > bad_sectors)
758 					sectors = bad_sectors;
759 				if (best_good_sectors > sectors)
760 					best_good_sectors = sectors;
761 			} else {
762 				sector_t good_sectors =
763 					first_bad - dev_sector;
764 				if (good_sectors > best_good_sectors) {
765 					best_good_sectors = good_sectors;
766 					best_slot = slot;
767 					best_rdev = rdev;
768 				}
769 				if (!do_balance)
770 					/* Must read from here */
771 					break;
772 			}
773 			continue;
774 		} else
775 			best_good_sectors = sectors;
776 
777 		if (!do_balance)
778 			break;
779 
780 		/* This optimisation is debatable, and completely destroys
781 		 * sequential read speed for 'far copies' arrays.  So only
782 		 * keep it for 'near' arrays, and review those later.
783 		 */
784 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
785 			break;
786 
787 		/* for far > 1 always use the lowest address */
788 		if (geo->far_copies > 1)
789 			new_distance = r10_bio->devs[slot].addr;
790 		else
791 			new_distance = abs(r10_bio->devs[slot].addr -
792 					   conf->mirrors[disk].head_position);
793 		if (new_distance < best_dist) {
794 			best_dist = new_distance;
795 			best_slot = slot;
796 			best_rdev = rdev;
797 		}
798 	}
799 	if (slot >= conf->copies) {
800 		slot = best_slot;
801 		rdev = best_rdev;
802 	}
803 
804 	if (slot >= 0) {
805 		atomic_inc(&rdev->nr_pending);
806 		r10_bio->read_slot = slot;
807 	} else
808 		rdev = NULL;
809 	rcu_read_unlock();
810 	*max_sectors = best_good_sectors;
811 
812 	return rdev;
813 }
814 
815 static int raid10_congested(struct mddev *mddev, int bits)
816 {
817 	struct r10conf *conf = mddev->private;
818 	int i, ret = 0;
819 
820 	if ((bits & (1 << WB_async_congested)) &&
821 	    conf->pending_count >= max_queued_requests)
822 		return 1;
823 
824 	rcu_read_lock();
825 	for (i = 0;
826 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
827 		     && ret == 0;
828 	     i++) {
829 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
830 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
831 			struct request_queue *q = bdev_get_queue(rdev->bdev);
832 
833 			ret |= bdi_congested(&q->backing_dev_info, bits);
834 		}
835 	}
836 	rcu_read_unlock();
837 	return ret;
838 }
839 
840 static void flush_pending_writes(struct r10conf *conf)
841 {
842 	/* Any writes that have been queued but are awaiting
843 	 * bitmap updates get flushed here.
844 	 */
845 	spin_lock_irq(&conf->device_lock);
846 
847 	if (conf->pending_bio_list.head) {
848 		struct bio *bio;
849 		bio = bio_list_get(&conf->pending_bio_list);
850 		conf->pending_count = 0;
851 		spin_unlock_irq(&conf->device_lock);
852 		/* flush any pending bitmap writes to disk
853 		 * before proceeding w/ I/O */
854 		bitmap_unplug(conf->mddev->bitmap);
855 		wake_up(&conf->wait_barrier);
856 
857 		while (bio) { /* submit pending writes */
858 			struct bio *next = bio->bi_next;
859 			bio->bi_next = NULL;
860 			if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
861 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
862 				/* Just ignore it */
863 				bio_endio(bio);
864 			else
865 				generic_make_request(bio);
866 			bio = next;
867 		}
868 	} else
869 		spin_unlock_irq(&conf->device_lock);
870 }
871 
872 /* Barriers....
873  * Sometimes we need to suspend IO while we do something else,
874  * either some resync/recovery, or reconfigure the array.
875  * To do this we raise a 'barrier'.
876  * The 'barrier' is a counter that can be raised multiple times
877  * to count how many activities are happening which preclude
878  * normal IO.
879  * We can only raise the barrier if there is no pending IO.
880  * i.e. if nr_pending == 0.
881  * We choose only to raise the barrier if no-one is waiting for the
882  * barrier to go down.  This means that as soon as an IO request
883  * is ready, no other operations which require a barrier will start
884  * until the IO request has had a chance.
885  *
886  * So: regular IO calls 'wait_barrier'.  When that returns there
887  *    is no backgroup IO happening,  It must arrange to call
888  *    allow_barrier when it has finished its IO.
889  * backgroup IO calls must call raise_barrier.  Once that returns
890  *    there is no normal IO happeing.  It must arrange to call
891  *    lower_barrier when the particular background IO completes.
892  */
893 
894 static void raise_barrier(struct r10conf *conf, int force)
895 {
896 	BUG_ON(force && !conf->barrier);
897 	spin_lock_irq(&conf->resync_lock);
898 
899 	/* Wait until no block IO is waiting (unless 'force') */
900 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
901 			    conf->resync_lock);
902 
903 	/* block any new IO from starting */
904 	conf->barrier++;
905 
906 	/* Now wait for all pending IO to complete */
907 	wait_event_lock_irq(conf->wait_barrier,
908 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
909 			    conf->resync_lock);
910 
911 	spin_unlock_irq(&conf->resync_lock);
912 }
913 
914 static void lower_barrier(struct r10conf *conf)
915 {
916 	unsigned long flags;
917 	spin_lock_irqsave(&conf->resync_lock, flags);
918 	conf->barrier--;
919 	spin_unlock_irqrestore(&conf->resync_lock, flags);
920 	wake_up(&conf->wait_barrier);
921 }
922 
923 static void wait_barrier(struct r10conf *conf)
924 {
925 	spin_lock_irq(&conf->resync_lock);
926 	if (conf->barrier) {
927 		conf->nr_waiting++;
928 		/* Wait for the barrier to drop.
929 		 * However if there are already pending
930 		 * requests (preventing the barrier from
931 		 * rising completely), and the
932 		 * pre-process bio queue isn't empty,
933 		 * then don't wait, as we need to empty
934 		 * that queue to get the nr_pending
935 		 * count down.
936 		 */
937 		wait_event_lock_irq(conf->wait_barrier,
938 				    !conf->barrier ||
939 				    (atomic_read(&conf->nr_pending) &&
940 				     current->bio_list &&
941 				     !bio_list_empty(current->bio_list)),
942 				    conf->resync_lock);
943 		conf->nr_waiting--;
944 		if (!conf->nr_waiting)
945 			wake_up(&conf->wait_barrier);
946 	}
947 	atomic_inc(&conf->nr_pending);
948 	spin_unlock_irq(&conf->resync_lock);
949 }
950 
951 static void allow_barrier(struct r10conf *conf)
952 {
953 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
954 			(conf->array_freeze_pending))
955 		wake_up(&conf->wait_barrier);
956 }
957 
958 static void freeze_array(struct r10conf *conf, int extra)
959 {
960 	/* stop syncio and normal IO and wait for everything to
961 	 * go quiet.
962 	 * We increment barrier and nr_waiting, and then
963 	 * wait until nr_pending match nr_queued+extra
964 	 * This is called in the context of one normal IO request
965 	 * that has failed. Thus any sync request that might be pending
966 	 * will be blocked by nr_pending, and we need to wait for
967 	 * pending IO requests to complete or be queued for re-try.
968 	 * Thus the number queued (nr_queued) plus this request (extra)
969 	 * must match the number of pending IOs (nr_pending) before
970 	 * we continue.
971 	 */
972 	spin_lock_irq(&conf->resync_lock);
973 	conf->array_freeze_pending++;
974 	conf->barrier++;
975 	conf->nr_waiting++;
976 	wait_event_lock_irq_cmd(conf->wait_barrier,
977 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
978 				conf->resync_lock,
979 				flush_pending_writes(conf));
980 
981 	conf->array_freeze_pending--;
982 	spin_unlock_irq(&conf->resync_lock);
983 }
984 
985 static void unfreeze_array(struct r10conf *conf)
986 {
987 	/* reverse the effect of the freeze */
988 	spin_lock_irq(&conf->resync_lock);
989 	conf->barrier--;
990 	conf->nr_waiting--;
991 	wake_up(&conf->wait_barrier);
992 	spin_unlock_irq(&conf->resync_lock);
993 }
994 
995 static sector_t choose_data_offset(struct r10bio *r10_bio,
996 				   struct md_rdev *rdev)
997 {
998 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
999 	    test_bit(R10BIO_Previous, &r10_bio->state))
1000 		return rdev->data_offset;
1001 	else
1002 		return rdev->new_data_offset;
1003 }
1004 
1005 struct raid10_plug_cb {
1006 	struct blk_plug_cb	cb;
1007 	struct bio_list		pending;
1008 	int			pending_cnt;
1009 };
1010 
1011 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1012 {
1013 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1014 						   cb);
1015 	struct mddev *mddev = plug->cb.data;
1016 	struct r10conf *conf = mddev->private;
1017 	struct bio *bio;
1018 
1019 	if (from_schedule || current->bio_list) {
1020 		spin_lock_irq(&conf->device_lock);
1021 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1022 		conf->pending_count += plug->pending_cnt;
1023 		spin_unlock_irq(&conf->device_lock);
1024 		wake_up(&conf->wait_barrier);
1025 		md_wakeup_thread(mddev->thread);
1026 		kfree(plug);
1027 		return;
1028 	}
1029 
1030 	/* we aren't scheduling, so we can do the write-out directly. */
1031 	bio = bio_list_get(&plug->pending);
1032 	bitmap_unplug(mddev->bitmap);
1033 	wake_up(&conf->wait_barrier);
1034 
1035 	while (bio) { /* submit pending writes */
1036 		struct bio *next = bio->bi_next;
1037 		bio->bi_next = NULL;
1038 		if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1039 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1040 			/* Just ignore it */
1041 			bio_endio(bio);
1042 		else
1043 			generic_make_request(bio);
1044 		bio = next;
1045 	}
1046 	kfree(plug);
1047 }
1048 
1049 static void __make_request(struct mddev *mddev, struct bio *bio)
1050 {
1051 	struct r10conf *conf = mddev->private;
1052 	struct r10bio *r10_bio;
1053 	struct bio *read_bio;
1054 	int i;
1055 	const int op = bio_op(bio);
1056 	const int rw = bio_data_dir(bio);
1057 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1058 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1059 	unsigned long flags;
1060 	struct md_rdev *blocked_rdev;
1061 	struct blk_plug_cb *cb;
1062 	struct raid10_plug_cb *plug = NULL;
1063 	int sectors_handled;
1064 	int max_sectors;
1065 	int sectors;
1066 
1067 	/*
1068 	 * Register the new request and wait if the reconstruction
1069 	 * thread has put up a bar for new requests.
1070 	 * Continue immediately if no resync is active currently.
1071 	 */
1072 	wait_barrier(conf);
1073 
1074 	sectors = bio_sectors(bio);
1075 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1076 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1077 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1078 		/* IO spans the reshape position.  Need to wait for
1079 		 * reshape to pass
1080 		 */
1081 		allow_barrier(conf);
1082 		wait_event(conf->wait_barrier,
1083 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1084 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1085 			   sectors);
1086 		wait_barrier(conf);
1087 	}
1088 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1089 	    bio_data_dir(bio) == WRITE &&
1090 	    (mddev->reshape_backwards
1091 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1092 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1093 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1094 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1095 		/* Need to update reshape_position in metadata */
1096 		mddev->reshape_position = conf->reshape_progress;
1097 		set_mask_bits(&mddev->flags, 0,
1098 			      BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1099 		md_wakeup_thread(mddev->thread);
1100 		wait_event(mddev->sb_wait,
1101 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1102 
1103 		conf->reshape_safe = mddev->reshape_position;
1104 	}
1105 
1106 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1107 
1108 	r10_bio->master_bio = bio;
1109 	r10_bio->sectors = sectors;
1110 
1111 	r10_bio->mddev = mddev;
1112 	r10_bio->sector = bio->bi_iter.bi_sector;
1113 	r10_bio->state = 0;
1114 
1115 	/* We might need to issue multiple reads to different
1116 	 * devices if there are bad blocks around, so we keep
1117 	 * track of the number of reads in bio->bi_phys_segments.
1118 	 * If this is 0, there is only one r10_bio and no locking
1119 	 * will be needed when the request completes.  If it is
1120 	 * non-zero, then it is the number of not-completed requests.
1121 	 */
1122 	bio->bi_phys_segments = 0;
1123 	bio_clear_flag(bio, BIO_SEG_VALID);
1124 
1125 	if (rw == READ) {
1126 		/*
1127 		 * read balancing logic:
1128 		 */
1129 		struct md_rdev *rdev;
1130 		int slot;
1131 
1132 read_again:
1133 		rdev = read_balance(conf, r10_bio, &max_sectors);
1134 		if (!rdev) {
1135 			raid_end_bio_io(r10_bio);
1136 			return;
1137 		}
1138 		slot = r10_bio->read_slot;
1139 
1140 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1141 		bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1142 			 max_sectors);
1143 
1144 		r10_bio->devs[slot].bio = read_bio;
1145 		r10_bio->devs[slot].rdev = rdev;
1146 
1147 		read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1148 			choose_data_offset(r10_bio, rdev);
1149 		read_bio->bi_bdev = rdev->bdev;
1150 		read_bio->bi_end_io = raid10_end_read_request;
1151 		bio_set_op_attrs(read_bio, op, do_sync);
1152 		read_bio->bi_private = r10_bio;
1153 
1154 		if (max_sectors < r10_bio->sectors) {
1155 			/* Could not read all from this device, so we will
1156 			 * need another r10_bio.
1157 			 */
1158 			sectors_handled = (r10_bio->sector + max_sectors
1159 					   - bio->bi_iter.bi_sector);
1160 			r10_bio->sectors = max_sectors;
1161 			spin_lock_irq(&conf->device_lock);
1162 			if (bio->bi_phys_segments == 0)
1163 				bio->bi_phys_segments = 2;
1164 			else
1165 				bio->bi_phys_segments++;
1166 			spin_unlock_irq(&conf->device_lock);
1167 			/* Cannot call generic_make_request directly
1168 			 * as that will be queued in __generic_make_request
1169 			 * and subsequent mempool_alloc might block
1170 			 * waiting for it.  so hand bio over to raid10d.
1171 			 */
1172 			reschedule_retry(r10_bio);
1173 
1174 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1175 
1176 			r10_bio->master_bio = bio;
1177 			r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1178 			r10_bio->state = 0;
1179 			r10_bio->mddev = mddev;
1180 			r10_bio->sector = bio->bi_iter.bi_sector +
1181 				sectors_handled;
1182 			goto read_again;
1183 		} else
1184 			generic_make_request(read_bio);
1185 		return;
1186 	}
1187 
1188 	/*
1189 	 * WRITE:
1190 	 */
1191 	if (conf->pending_count >= max_queued_requests) {
1192 		md_wakeup_thread(mddev->thread);
1193 		wait_event(conf->wait_barrier,
1194 			   conf->pending_count < max_queued_requests);
1195 	}
1196 	/* first select target devices under rcu_lock and
1197 	 * inc refcount on their rdev.  Record them by setting
1198 	 * bios[x] to bio
1199 	 * If there are known/acknowledged bad blocks on any device
1200 	 * on which we have seen a write error, we want to avoid
1201 	 * writing to those blocks.  This potentially requires several
1202 	 * writes to write around the bad blocks.  Each set of writes
1203 	 * gets its own r10_bio with a set of bios attached.  The number
1204 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1205 	 * the read case.
1206 	 */
1207 
1208 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1209 	raid10_find_phys(conf, r10_bio);
1210 retry_write:
1211 	blocked_rdev = NULL;
1212 	rcu_read_lock();
1213 	max_sectors = r10_bio->sectors;
1214 
1215 	for (i = 0;  i < conf->copies; i++) {
1216 		int d = r10_bio->devs[i].devnum;
1217 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1218 		struct md_rdev *rrdev = rcu_dereference(
1219 			conf->mirrors[d].replacement);
1220 		if (rdev == rrdev)
1221 			rrdev = NULL;
1222 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1223 			atomic_inc(&rdev->nr_pending);
1224 			blocked_rdev = rdev;
1225 			break;
1226 		}
1227 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1228 			atomic_inc(&rrdev->nr_pending);
1229 			blocked_rdev = rrdev;
1230 			break;
1231 		}
1232 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1233 			rdev = NULL;
1234 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1235 			rrdev = NULL;
1236 
1237 		r10_bio->devs[i].bio = NULL;
1238 		r10_bio->devs[i].repl_bio = NULL;
1239 
1240 		if (!rdev && !rrdev) {
1241 			set_bit(R10BIO_Degraded, &r10_bio->state);
1242 			continue;
1243 		}
1244 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1245 			sector_t first_bad;
1246 			sector_t dev_sector = r10_bio->devs[i].addr;
1247 			int bad_sectors;
1248 			int is_bad;
1249 
1250 			is_bad = is_badblock(rdev, dev_sector,
1251 					     max_sectors,
1252 					     &first_bad, &bad_sectors);
1253 			if (is_bad < 0) {
1254 				/* Mustn't write here until the bad block
1255 				 * is acknowledged
1256 				 */
1257 				atomic_inc(&rdev->nr_pending);
1258 				set_bit(BlockedBadBlocks, &rdev->flags);
1259 				blocked_rdev = rdev;
1260 				break;
1261 			}
1262 			if (is_bad && first_bad <= dev_sector) {
1263 				/* Cannot write here at all */
1264 				bad_sectors -= (dev_sector - first_bad);
1265 				if (bad_sectors < max_sectors)
1266 					/* Mustn't write more than bad_sectors
1267 					 * to other devices yet
1268 					 */
1269 					max_sectors = bad_sectors;
1270 				/* We don't set R10BIO_Degraded as that
1271 				 * only applies if the disk is missing,
1272 				 * so it might be re-added, and we want to
1273 				 * know to recover this chunk.
1274 				 * In this case the device is here, and the
1275 				 * fact that this chunk is not in-sync is
1276 				 * recorded in the bad block log.
1277 				 */
1278 				continue;
1279 			}
1280 			if (is_bad) {
1281 				int good_sectors = first_bad - dev_sector;
1282 				if (good_sectors < max_sectors)
1283 					max_sectors = good_sectors;
1284 			}
1285 		}
1286 		if (rdev) {
1287 			r10_bio->devs[i].bio = bio;
1288 			atomic_inc(&rdev->nr_pending);
1289 		}
1290 		if (rrdev) {
1291 			r10_bio->devs[i].repl_bio = bio;
1292 			atomic_inc(&rrdev->nr_pending);
1293 		}
1294 	}
1295 	rcu_read_unlock();
1296 
1297 	if (unlikely(blocked_rdev)) {
1298 		/* Have to wait for this device to get unblocked, then retry */
1299 		int j;
1300 		int d;
1301 
1302 		for (j = 0; j < i; j++) {
1303 			if (r10_bio->devs[j].bio) {
1304 				d = r10_bio->devs[j].devnum;
1305 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1306 			}
1307 			if (r10_bio->devs[j].repl_bio) {
1308 				struct md_rdev *rdev;
1309 				d = r10_bio->devs[j].devnum;
1310 				rdev = conf->mirrors[d].replacement;
1311 				if (!rdev) {
1312 					/* Race with remove_disk */
1313 					smp_mb();
1314 					rdev = conf->mirrors[d].rdev;
1315 				}
1316 				rdev_dec_pending(rdev, mddev);
1317 			}
1318 		}
1319 		allow_barrier(conf);
1320 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1321 		wait_barrier(conf);
1322 		goto retry_write;
1323 	}
1324 
1325 	if (max_sectors < r10_bio->sectors) {
1326 		/* We are splitting this into multiple parts, so
1327 		 * we need to prepare for allocating another r10_bio.
1328 		 */
1329 		r10_bio->sectors = max_sectors;
1330 		spin_lock_irq(&conf->device_lock);
1331 		if (bio->bi_phys_segments == 0)
1332 			bio->bi_phys_segments = 2;
1333 		else
1334 			bio->bi_phys_segments++;
1335 		spin_unlock_irq(&conf->device_lock);
1336 	}
1337 	sectors_handled = r10_bio->sector + max_sectors -
1338 		bio->bi_iter.bi_sector;
1339 
1340 	atomic_set(&r10_bio->remaining, 1);
1341 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1342 
1343 	for (i = 0; i < conf->copies; i++) {
1344 		struct bio *mbio;
1345 		int d = r10_bio->devs[i].devnum;
1346 		if (r10_bio->devs[i].bio) {
1347 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1348 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1349 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1350 				 max_sectors);
1351 			r10_bio->devs[i].bio = mbio;
1352 
1353 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr+
1354 					   choose_data_offset(r10_bio,
1355 							      rdev));
1356 			mbio->bi_bdev = rdev->bdev;
1357 			mbio->bi_end_io	= raid10_end_write_request;
1358 			bio_set_op_attrs(mbio, op, do_sync | do_fua);
1359 			mbio->bi_private = r10_bio;
1360 
1361 			atomic_inc(&r10_bio->remaining);
1362 
1363 			cb = blk_check_plugged(raid10_unplug, mddev,
1364 					       sizeof(*plug));
1365 			if (cb)
1366 				plug = container_of(cb, struct raid10_plug_cb,
1367 						    cb);
1368 			else
1369 				plug = NULL;
1370 			spin_lock_irqsave(&conf->device_lock, flags);
1371 			if (plug) {
1372 				bio_list_add(&plug->pending, mbio);
1373 				plug->pending_cnt++;
1374 			} else {
1375 				bio_list_add(&conf->pending_bio_list, mbio);
1376 				conf->pending_count++;
1377 			}
1378 			spin_unlock_irqrestore(&conf->device_lock, flags);
1379 			if (!plug)
1380 				md_wakeup_thread(mddev->thread);
1381 		}
1382 
1383 		if (r10_bio->devs[i].repl_bio) {
1384 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1385 			if (rdev == NULL) {
1386 				/* Replacement just got moved to main 'rdev' */
1387 				smp_mb();
1388 				rdev = conf->mirrors[d].rdev;
1389 			}
1390 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1391 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1392 				 max_sectors);
1393 			r10_bio->devs[i].repl_bio = mbio;
1394 
1395 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr +
1396 					   choose_data_offset(
1397 						   r10_bio, rdev));
1398 			mbio->bi_bdev = rdev->bdev;
1399 			mbio->bi_end_io	= raid10_end_write_request;
1400 			bio_set_op_attrs(mbio, op, do_sync | do_fua);
1401 			mbio->bi_private = r10_bio;
1402 
1403 			atomic_inc(&r10_bio->remaining);
1404 			spin_lock_irqsave(&conf->device_lock, flags);
1405 			bio_list_add(&conf->pending_bio_list, mbio);
1406 			conf->pending_count++;
1407 			spin_unlock_irqrestore(&conf->device_lock, flags);
1408 			if (!mddev_check_plugged(mddev))
1409 				md_wakeup_thread(mddev->thread);
1410 		}
1411 	}
1412 
1413 	/* Don't remove the bias on 'remaining' (one_write_done) until
1414 	 * after checking if we need to go around again.
1415 	 */
1416 
1417 	if (sectors_handled < bio_sectors(bio)) {
1418 		one_write_done(r10_bio);
1419 		/* We need another r10_bio.  It has already been counted
1420 		 * in bio->bi_phys_segments.
1421 		 */
1422 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1423 
1424 		r10_bio->master_bio = bio;
1425 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1426 
1427 		r10_bio->mddev = mddev;
1428 		r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1429 		r10_bio->state = 0;
1430 		goto retry_write;
1431 	}
1432 	one_write_done(r10_bio);
1433 }
1434 
1435 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1436 {
1437 	struct r10conf *conf = mddev->private;
1438 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1439 	int chunk_sects = chunk_mask + 1;
1440 
1441 	struct bio *split;
1442 
1443 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1444 		md_flush_request(mddev, bio);
1445 		return;
1446 	}
1447 
1448 	md_write_start(mddev, bio);
1449 
1450 	do {
1451 
1452 		/*
1453 		 * If this request crosses a chunk boundary, we need to split
1454 		 * it.
1455 		 */
1456 		if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1457 			     bio_sectors(bio) > chunk_sects
1458 			     && (conf->geo.near_copies < conf->geo.raid_disks
1459 				 || conf->prev.near_copies <
1460 				 conf->prev.raid_disks))) {
1461 			split = bio_split(bio, chunk_sects -
1462 					  (bio->bi_iter.bi_sector &
1463 					   (chunk_sects - 1)),
1464 					  GFP_NOIO, fs_bio_set);
1465 			bio_chain(split, bio);
1466 		} else {
1467 			split = bio;
1468 		}
1469 
1470 		__make_request(mddev, split);
1471 	} while (split != bio);
1472 
1473 	/* In case raid10d snuck in to freeze_array */
1474 	wake_up(&conf->wait_barrier);
1475 }
1476 
1477 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1478 {
1479 	struct r10conf *conf = mddev->private;
1480 	int i;
1481 
1482 	if (conf->geo.near_copies < conf->geo.raid_disks)
1483 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1484 	if (conf->geo.near_copies > 1)
1485 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1486 	if (conf->geo.far_copies > 1) {
1487 		if (conf->geo.far_offset)
1488 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1489 		else
1490 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1491 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1492 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1493 	}
1494 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1495 					conf->geo.raid_disks - mddev->degraded);
1496 	rcu_read_lock();
1497 	for (i = 0; i < conf->geo.raid_disks; i++) {
1498 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1499 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1500 	}
1501 	rcu_read_unlock();
1502 	seq_printf(seq, "]");
1503 }
1504 
1505 /* check if there are enough drives for
1506  * every block to appear on atleast one.
1507  * Don't consider the device numbered 'ignore'
1508  * as we might be about to remove it.
1509  */
1510 static int _enough(struct r10conf *conf, int previous, int ignore)
1511 {
1512 	int first = 0;
1513 	int has_enough = 0;
1514 	int disks, ncopies;
1515 	if (previous) {
1516 		disks = conf->prev.raid_disks;
1517 		ncopies = conf->prev.near_copies;
1518 	} else {
1519 		disks = conf->geo.raid_disks;
1520 		ncopies = conf->geo.near_copies;
1521 	}
1522 
1523 	rcu_read_lock();
1524 	do {
1525 		int n = conf->copies;
1526 		int cnt = 0;
1527 		int this = first;
1528 		while (n--) {
1529 			struct md_rdev *rdev;
1530 			if (this != ignore &&
1531 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1532 			    test_bit(In_sync, &rdev->flags))
1533 				cnt++;
1534 			this = (this+1) % disks;
1535 		}
1536 		if (cnt == 0)
1537 			goto out;
1538 		first = (first + ncopies) % disks;
1539 	} while (first != 0);
1540 	has_enough = 1;
1541 out:
1542 	rcu_read_unlock();
1543 	return has_enough;
1544 }
1545 
1546 static int enough(struct r10conf *conf, int ignore)
1547 {
1548 	/* when calling 'enough', both 'prev' and 'geo' must
1549 	 * be stable.
1550 	 * This is ensured if ->reconfig_mutex or ->device_lock
1551 	 * is held.
1552 	 */
1553 	return _enough(conf, 0, ignore) &&
1554 		_enough(conf, 1, ignore);
1555 }
1556 
1557 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1558 {
1559 	char b[BDEVNAME_SIZE];
1560 	struct r10conf *conf = mddev->private;
1561 	unsigned long flags;
1562 
1563 	/*
1564 	 * If it is not operational, then we have already marked it as dead
1565 	 * else if it is the last working disks, ignore the error, let the
1566 	 * next level up know.
1567 	 * else mark the drive as failed
1568 	 */
1569 	spin_lock_irqsave(&conf->device_lock, flags);
1570 	if (test_bit(In_sync, &rdev->flags)
1571 	    && !enough(conf, rdev->raid_disk)) {
1572 		/*
1573 		 * Don't fail the drive, just return an IO error.
1574 		 */
1575 		spin_unlock_irqrestore(&conf->device_lock, flags);
1576 		return;
1577 	}
1578 	if (test_and_clear_bit(In_sync, &rdev->flags))
1579 		mddev->degraded++;
1580 	/*
1581 	 * If recovery is running, make sure it aborts.
1582 	 */
1583 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1584 	set_bit(Blocked, &rdev->flags);
1585 	set_bit(Faulty, &rdev->flags);
1586 	set_mask_bits(&mddev->flags, 0,
1587 		      BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1588 	spin_unlock_irqrestore(&conf->device_lock, flags);
1589 	printk(KERN_ALERT
1590 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1591 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1592 	       mdname(mddev), bdevname(rdev->bdev, b),
1593 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1594 }
1595 
1596 static void print_conf(struct r10conf *conf)
1597 {
1598 	int i;
1599 	struct md_rdev *rdev;
1600 
1601 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1602 	if (!conf) {
1603 		printk(KERN_DEBUG "(!conf)\n");
1604 		return;
1605 	}
1606 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1607 		conf->geo.raid_disks);
1608 
1609 	/* This is only called with ->reconfix_mutex held, so
1610 	 * rcu protection of rdev is not needed */
1611 	for (i = 0; i < conf->geo.raid_disks; i++) {
1612 		char b[BDEVNAME_SIZE];
1613 		rdev = conf->mirrors[i].rdev;
1614 		if (rdev)
1615 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1616 				i, !test_bit(In_sync, &rdev->flags),
1617 			        !test_bit(Faulty, &rdev->flags),
1618 				bdevname(rdev->bdev,b));
1619 	}
1620 }
1621 
1622 static void close_sync(struct r10conf *conf)
1623 {
1624 	wait_barrier(conf);
1625 	allow_barrier(conf);
1626 
1627 	mempool_destroy(conf->r10buf_pool);
1628 	conf->r10buf_pool = NULL;
1629 }
1630 
1631 static int raid10_spare_active(struct mddev *mddev)
1632 {
1633 	int i;
1634 	struct r10conf *conf = mddev->private;
1635 	struct raid10_info *tmp;
1636 	int count = 0;
1637 	unsigned long flags;
1638 
1639 	/*
1640 	 * Find all non-in_sync disks within the RAID10 configuration
1641 	 * and mark them in_sync
1642 	 */
1643 	for (i = 0; i < conf->geo.raid_disks; i++) {
1644 		tmp = conf->mirrors + i;
1645 		if (tmp->replacement
1646 		    && tmp->replacement->recovery_offset == MaxSector
1647 		    && !test_bit(Faulty, &tmp->replacement->flags)
1648 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1649 			/* Replacement has just become active */
1650 			if (!tmp->rdev
1651 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1652 				count++;
1653 			if (tmp->rdev) {
1654 				/* Replaced device not technically faulty,
1655 				 * but we need to be sure it gets removed
1656 				 * and never re-added.
1657 				 */
1658 				set_bit(Faulty, &tmp->rdev->flags);
1659 				sysfs_notify_dirent_safe(
1660 					tmp->rdev->sysfs_state);
1661 			}
1662 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1663 		} else if (tmp->rdev
1664 			   && tmp->rdev->recovery_offset == MaxSector
1665 			   && !test_bit(Faulty, &tmp->rdev->flags)
1666 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1667 			count++;
1668 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1669 		}
1670 	}
1671 	spin_lock_irqsave(&conf->device_lock, flags);
1672 	mddev->degraded -= count;
1673 	spin_unlock_irqrestore(&conf->device_lock, flags);
1674 
1675 	print_conf(conf);
1676 	return count;
1677 }
1678 
1679 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1680 {
1681 	struct r10conf *conf = mddev->private;
1682 	int err = -EEXIST;
1683 	int mirror;
1684 	int first = 0;
1685 	int last = conf->geo.raid_disks - 1;
1686 
1687 	if (mddev->recovery_cp < MaxSector)
1688 		/* only hot-add to in-sync arrays, as recovery is
1689 		 * very different from resync
1690 		 */
1691 		return -EBUSY;
1692 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1693 		return -EINVAL;
1694 
1695 	if (md_integrity_add_rdev(rdev, mddev))
1696 		return -ENXIO;
1697 
1698 	if (rdev->raid_disk >= 0)
1699 		first = last = rdev->raid_disk;
1700 
1701 	if (rdev->saved_raid_disk >= first &&
1702 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1703 		mirror = rdev->saved_raid_disk;
1704 	else
1705 		mirror = first;
1706 	for ( ; mirror <= last ; mirror++) {
1707 		struct raid10_info *p = &conf->mirrors[mirror];
1708 		if (p->recovery_disabled == mddev->recovery_disabled)
1709 			continue;
1710 		if (p->rdev) {
1711 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1712 			    p->replacement != NULL)
1713 				continue;
1714 			clear_bit(In_sync, &rdev->flags);
1715 			set_bit(Replacement, &rdev->flags);
1716 			rdev->raid_disk = mirror;
1717 			err = 0;
1718 			if (mddev->gendisk)
1719 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1720 						  rdev->data_offset << 9);
1721 			conf->fullsync = 1;
1722 			rcu_assign_pointer(p->replacement, rdev);
1723 			break;
1724 		}
1725 
1726 		if (mddev->gendisk)
1727 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1728 					  rdev->data_offset << 9);
1729 
1730 		p->head_position = 0;
1731 		p->recovery_disabled = mddev->recovery_disabled - 1;
1732 		rdev->raid_disk = mirror;
1733 		err = 0;
1734 		if (rdev->saved_raid_disk != mirror)
1735 			conf->fullsync = 1;
1736 		rcu_assign_pointer(p->rdev, rdev);
1737 		break;
1738 	}
1739 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1740 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1741 
1742 	print_conf(conf);
1743 	return err;
1744 }
1745 
1746 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1747 {
1748 	struct r10conf *conf = mddev->private;
1749 	int err = 0;
1750 	int number = rdev->raid_disk;
1751 	struct md_rdev **rdevp;
1752 	struct raid10_info *p = conf->mirrors + number;
1753 
1754 	print_conf(conf);
1755 	if (rdev == p->rdev)
1756 		rdevp = &p->rdev;
1757 	else if (rdev == p->replacement)
1758 		rdevp = &p->replacement;
1759 	else
1760 		return 0;
1761 
1762 	if (test_bit(In_sync, &rdev->flags) ||
1763 	    atomic_read(&rdev->nr_pending)) {
1764 		err = -EBUSY;
1765 		goto abort;
1766 	}
1767 	/* Only remove non-faulty devices if recovery
1768 	 * is not possible.
1769 	 */
1770 	if (!test_bit(Faulty, &rdev->flags) &&
1771 	    mddev->recovery_disabled != p->recovery_disabled &&
1772 	    (!p->replacement || p->replacement == rdev) &&
1773 	    number < conf->geo.raid_disks &&
1774 	    enough(conf, -1)) {
1775 		err = -EBUSY;
1776 		goto abort;
1777 	}
1778 	*rdevp = NULL;
1779 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1780 		synchronize_rcu();
1781 		if (atomic_read(&rdev->nr_pending)) {
1782 			/* lost the race, try later */
1783 			err = -EBUSY;
1784 			*rdevp = rdev;
1785 			goto abort;
1786 		}
1787 	}
1788 	if (p->replacement) {
1789 		/* We must have just cleared 'rdev' */
1790 		p->rdev = p->replacement;
1791 		clear_bit(Replacement, &p->replacement->flags);
1792 		smp_mb(); /* Make sure other CPUs may see both as identical
1793 			   * but will never see neither -- if they are careful.
1794 			   */
1795 		p->replacement = NULL;
1796 		clear_bit(WantReplacement, &rdev->flags);
1797 	} else
1798 		/* We might have just remove the Replacement as faulty
1799 		 * Clear the flag just in case
1800 		 */
1801 		clear_bit(WantReplacement, &rdev->flags);
1802 
1803 	err = md_integrity_register(mddev);
1804 
1805 abort:
1806 
1807 	print_conf(conf);
1808 	return err;
1809 }
1810 
1811 static void end_sync_read(struct bio *bio)
1812 {
1813 	struct r10bio *r10_bio = bio->bi_private;
1814 	struct r10conf *conf = r10_bio->mddev->private;
1815 	int d;
1816 
1817 	if (bio == r10_bio->master_bio) {
1818 		/* this is a reshape read */
1819 		d = r10_bio->read_slot; /* really the read dev */
1820 	} else
1821 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1822 
1823 	if (!bio->bi_error)
1824 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1825 	else
1826 		/* The write handler will notice the lack of
1827 		 * R10BIO_Uptodate and record any errors etc
1828 		 */
1829 		atomic_add(r10_bio->sectors,
1830 			   &conf->mirrors[d].rdev->corrected_errors);
1831 
1832 	/* for reconstruct, we always reschedule after a read.
1833 	 * for resync, only after all reads
1834 	 */
1835 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1836 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1837 	    atomic_dec_and_test(&r10_bio->remaining)) {
1838 		/* we have read all the blocks,
1839 		 * do the comparison in process context in raid10d
1840 		 */
1841 		reschedule_retry(r10_bio);
1842 	}
1843 }
1844 
1845 static void end_sync_request(struct r10bio *r10_bio)
1846 {
1847 	struct mddev *mddev = r10_bio->mddev;
1848 
1849 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1850 		if (r10_bio->master_bio == NULL) {
1851 			/* the primary of several recovery bios */
1852 			sector_t s = r10_bio->sectors;
1853 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1854 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1855 				reschedule_retry(r10_bio);
1856 			else
1857 				put_buf(r10_bio);
1858 			md_done_sync(mddev, s, 1);
1859 			break;
1860 		} else {
1861 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1862 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1863 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1864 				reschedule_retry(r10_bio);
1865 			else
1866 				put_buf(r10_bio);
1867 			r10_bio = r10_bio2;
1868 		}
1869 	}
1870 }
1871 
1872 static void end_sync_write(struct bio *bio)
1873 {
1874 	struct r10bio *r10_bio = bio->bi_private;
1875 	struct mddev *mddev = r10_bio->mddev;
1876 	struct r10conf *conf = mddev->private;
1877 	int d;
1878 	sector_t first_bad;
1879 	int bad_sectors;
1880 	int slot;
1881 	int repl;
1882 	struct md_rdev *rdev = NULL;
1883 
1884 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1885 	if (repl)
1886 		rdev = conf->mirrors[d].replacement;
1887 	else
1888 		rdev = conf->mirrors[d].rdev;
1889 
1890 	if (bio->bi_error) {
1891 		if (repl)
1892 			md_error(mddev, rdev);
1893 		else {
1894 			set_bit(WriteErrorSeen, &rdev->flags);
1895 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1896 				set_bit(MD_RECOVERY_NEEDED,
1897 					&rdev->mddev->recovery);
1898 			set_bit(R10BIO_WriteError, &r10_bio->state);
1899 		}
1900 	} else if (is_badblock(rdev,
1901 			     r10_bio->devs[slot].addr,
1902 			     r10_bio->sectors,
1903 			     &first_bad, &bad_sectors))
1904 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1905 
1906 	rdev_dec_pending(rdev, mddev);
1907 
1908 	end_sync_request(r10_bio);
1909 }
1910 
1911 /*
1912  * Note: sync and recover and handled very differently for raid10
1913  * This code is for resync.
1914  * For resync, we read through virtual addresses and read all blocks.
1915  * If there is any error, we schedule a write.  The lowest numbered
1916  * drive is authoritative.
1917  * However requests come for physical address, so we need to map.
1918  * For every physical address there are raid_disks/copies virtual addresses,
1919  * which is always are least one, but is not necessarly an integer.
1920  * This means that a physical address can span multiple chunks, so we may
1921  * have to submit multiple io requests for a single sync request.
1922  */
1923 /*
1924  * We check if all blocks are in-sync and only write to blocks that
1925  * aren't in sync
1926  */
1927 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1928 {
1929 	struct r10conf *conf = mddev->private;
1930 	int i, first;
1931 	struct bio *tbio, *fbio;
1932 	int vcnt;
1933 
1934 	atomic_set(&r10_bio->remaining, 1);
1935 
1936 	/* find the first device with a block */
1937 	for (i=0; i<conf->copies; i++)
1938 		if (!r10_bio->devs[i].bio->bi_error)
1939 			break;
1940 
1941 	if (i == conf->copies)
1942 		goto done;
1943 
1944 	first = i;
1945 	fbio = r10_bio->devs[i].bio;
1946 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1947 	fbio->bi_iter.bi_idx = 0;
1948 
1949 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1950 	/* now find blocks with errors */
1951 	for (i=0 ; i < conf->copies ; i++) {
1952 		int  j, d;
1953 
1954 		tbio = r10_bio->devs[i].bio;
1955 
1956 		if (tbio->bi_end_io != end_sync_read)
1957 			continue;
1958 		if (i == first)
1959 			continue;
1960 		if (!r10_bio->devs[i].bio->bi_error) {
1961 			/* We know that the bi_io_vec layout is the same for
1962 			 * both 'first' and 'i', so we just compare them.
1963 			 * All vec entries are PAGE_SIZE;
1964 			 */
1965 			int sectors = r10_bio->sectors;
1966 			for (j = 0; j < vcnt; j++) {
1967 				int len = PAGE_SIZE;
1968 				if (sectors < (len / 512))
1969 					len = sectors * 512;
1970 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1971 					   page_address(tbio->bi_io_vec[j].bv_page),
1972 					   len))
1973 					break;
1974 				sectors -= len/512;
1975 			}
1976 			if (j == vcnt)
1977 				continue;
1978 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1979 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1980 				/* Don't fix anything. */
1981 				continue;
1982 		}
1983 		/* Ok, we need to write this bio, either to correct an
1984 		 * inconsistency or to correct an unreadable block.
1985 		 * First we need to fixup bv_offset, bv_len and
1986 		 * bi_vecs, as the read request might have corrupted these
1987 		 */
1988 		bio_reset(tbio);
1989 
1990 		tbio->bi_vcnt = vcnt;
1991 		tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
1992 		tbio->bi_private = r10_bio;
1993 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1994 		tbio->bi_end_io = end_sync_write;
1995 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
1996 
1997 		bio_copy_data(tbio, fbio);
1998 
1999 		d = r10_bio->devs[i].devnum;
2000 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2001 		atomic_inc(&r10_bio->remaining);
2002 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2003 
2004 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2005 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2006 		generic_make_request(tbio);
2007 	}
2008 
2009 	/* Now write out to any replacement devices
2010 	 * that are active
2011 	 */
2012 	for (i = 0; i < conf->copies; i++) {
2013 		int d;
2014 
2015 		tbio = r10_bio->devs[i].repl_bio;
2016 		if (!tbio || !tbio->bi_end_io)
2017 			continue;
2018 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2019 		    && r10_bio->devs[i].bio != fbio)
2020 			bio_copy_data(tbio, fbio);
2021 		d = r10_bio->devs[i].devnum;
2022 		atomic_inc(&r10_bio->remaining);
2023 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2024 			     bio_sectors(tbio));
2025 		generic_make_request(tbio);
2026 	}
2027 
2028 done:
2029 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2030 		md_done_sync(mddev, r10_bio->sectors, 1);
2031 		put_buf(r10_bio);
2032 	}
2033 }
2034 
2035 /*
2036  * Now for the recovery code.
2037  * Recovery happens across physical sectors.
2038  * We recover all non-is_sync drives by finding the virtual address of
2039  * each, and then choose a working drive that also has that virt address.
2040  * There is a separate r10_bio for each non-in_sync drive.
2041  * Only the first two slots are in use. The first for reading,
2042  * The second for writing.
2043  *
2044  */
2045 static void fix_recovery_read_error(struct r10bio *r10_bio)
2046 {
2047 	/* We got a read error during recovery.
2048 	 * We repeat the read in smaller page-sized sections.
2049 	 * If a read succeeds, write it to the new device or record
2050 	 * a bad block if we cannot.
2051 	 * If a read fails, record a bad block on both old and
2052 	 * new devices.
2053 	 */
2054 	struct mddev *mddev = r10_bio->mddev;
2055 	struct r10conf *conf = mddev->private;
2056 	struct bio *bio = r10_bio->devs[0].bio;
2057 	sector_t sect = 0;
2058 	int sectors = r10_bio->sectors;
2059 	int idx = 0;
2060 	int dr = r10_bio->devs[0].devnum;
2061 	int dw = r10_bio->devs[1].devnum;
2062 
2063 	while (sectors) {
2064 		int s = sectors;
2065 		struct md_rdev *rdev;
2066 		sector_t addr;
2067 		int ok;
2068 
2069 		if (s > (PAGE_SIZE>>9))
2070 			s = PAGE_SIZE >> 9;
2071 
2072 		rdev = conf->mirrors[dr].rdev;
2073 		addr = r10_bio->devs[0].addr + sect,
2074 		ok = sync_page_io(rdev,
2075 				  addr,
2076 				  s << 9,
2077 				  bio->bi_io_vec[idx].bv_page,
2078 				  REQ_OP_READ, 0, false);
2079 		if (ok) {
2080 			rdev = conf->mirrors[dw].rdev;
2081 			addr = r10_bio->devs[1].addr + sect;
2082 			ok = sync_page_io(rdev,
2083 					  addr,
2084 					  s << 9,
2085 					  bio->bi_io_vec[idx].bv_page,
2086 					  REQ_OP_WRITE, 0, false);
2087 			if (!ok) {
2088 				set_bit(WriteErrorSeen, &rdev->flags);
2089 				if (!test_and_set_bit(WantReplacement,
2090 						      &rdev->flags))
2091 					set_bit(MD_RECOVERY_NEEDED,
2092 						&rdev->mddev->recovery);
2093 			}
2094 		}
2095 		if (!ok) {
2096 			/* We don't worry if we cannot set a bad block -
2097 			 * it really is bad so there is no loss in not
2098 			 * recording it yet
2099 			 */
2100 			rdev_set_badblocks(rdev, addr, s, 0);
2101 
2102 			if (rdev != conf->mirrors[dw].rdev) {
2103 				/* need bad block on destination too */
2104 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2105 				addr = r10_bio->devs[1].addr + sect;
2106 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2107 				if (!ok) {
2108 					/* just abort the recovery */
2109 					printk(KERN_NOTICE
2110 					       "md/raid10:%s: recovery aborted"
2111 					       " due to read error\n",
2112 					       mdname(mddev));
2113 
2114 					conf->mirrors[dw].recovery_disabled
2115 						= mddev->recovery_disabled;
2116 					set_bit(MD_RECOVERY_INTR,
2117 						&mddev->recovery);
2118 					break;
2119 				}
2120 			}
2121 		}
2122 
2123 		sectors -= s;
2124 		sect += s;
2125 		idx++;
2126 	}
2127 }
2128 
2129 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2130 {
2131 	struct r10conf *conf = mddev->private;
2132 	int d;
2133 	struct bio *wbio, *wbio2;
2134 
2135 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2136 		fix_recovery_read_error(r10_bio);
2137 		end_sync_request(r10_bio);
2138 		return;
2139 	}
2140 
2141 	/*
2142 	 * share the pages with the first bio
2143 	 * and submit the write request
2144 	 */
2145 	d = r10_bio->devs[1].devnum;
2146 	wbio = r10_bio->devs[1].bio;
2147 	wbio2 = r10_bio->devs[1].repl_bio;
2148 	/* Need to test wbio2->bi_end_io before we call
2149 	 * generic_make_request as if the former is NULL,
2150 	 * the latter is free to free wbio2.
2151 	 */
2152 	if (wbio2 && !wbio2->bi_end_io)
2153 		wbio2 = NULL;
2154 	if (wbio->bi_end_io) {
2155 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2156 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2157 		generic_make_request(wbio);
2158 	}
2159 	if (wbio2) {
2160 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2161 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2162 			     bio_sectors(wbio2));
2163 		generic_make_request(wbio2);
2164 	}
2165 }
2166 
2167 /*
2168  * Used by fix_read_error() to decay the per rdev read_errors.
2169  * We halve the read error count for every hour that has elapsed
2170  * since the last recorded read error.
2171  *
2172  */
2173 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2174 {
2175 	long cur_time_mon;
2176 	unsigned long hours_since_last;
2177 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2178 
2179 	cur_time_mon = ktime_get_seconds();
2180 
2181 	if (rdev->last_read_error == 0) {
2182 		/* first time we've seen a read error */
2183 		rdev->last_read_error = cur_time_mon;
2184 		return;
2185 	}
2186 
2187 	hours_since_last = (long)(cur_time_mon -
2188 			    rdev->last_read_error) / 3600;
2189 
2190 	rdev->last_read_error = cur_time_mon;
2191 
2192 	/*
2193 	 * if hours_since_last is > the number of bits in read_errors
2194 	 * just set read errors to 0. We do this to avoid
2195 	 * overflowing the shift of read_errors by hours_since_last.
2196 	 */
2197 	if (hours_since_last >= 8 * sizeof(read_errors))
2198 		atomic_set(&rdev->read_errors, 0);
2199 	else
2200 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2201 }
2202 
2203 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2204 			    int sectors, struct page *page, int rw)
2205 {
2206 	sector_t first_bad;
2207 	int bad_sectors;
2208 
2209 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2210 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2211 		return -1;
2212 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2213 		/* success */
2214 		return 1;
2215 	if (rw == WRITE) {
2216 		set_bit(WriteErrorSeen, &rdev->flags);
2217 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2218 			set_bit(MD_RECOVERY_NEEDED,
2219 				&rdev->mddev->recovery);
2220 	}
2221 	/* need to record an error - either for the block or the device */
2222 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2223 		md_error(rdev->mddev, rdev);
2224 	return 0;
2225 }
2226 
2227 /*
2228  * This is a kernel thread which:
2229  *
2230  *	1.	Retries failed read operations on working mirrors.
2231  *	2.	Updates the raid superblock when problems encounter.
2232  *	3.	Performs writes following reads for array synchronising.
2233  */
2234 
2235 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2236 {
2237 	int sect = 0; /* Offset from r10_bio->sector */
2238 	int sectors = r10_bio->sectors;
2239 	struct md_rdev*rdev;
2240 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2241 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2242 
2243 	/* still own a reference to this rdev, so it cannot
2244 	 * have been cleared recently.
2245 	 */
2246 	rdev = conf->mirrors[d].rdev;
2247 
2248 	if (test_bit(Faulty, &rdev->flags))
2249 		/* drive has already been failed, just ignore any
2250 		   more fix_read_error() attempts */
2251 		return;
2252 
2253 	check_decay_read_errors(mddev, rdev);
2254 	atomic_inc(&rdev->read_errors);
2255 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2256 		char b[BDEVNAME_SIZE];
2257 		bdevname(rdev->bdev, b);
2258 
2259 		printk(KERN_NOTICE
2260 		       "md/raid10:%s: %s: Raid device exceeded "
2261 		       "read_error threshold [cur %d:max %d]\n",
2262 		       mdname(mddev), b,
2263 		       atomic_read(&rdev->read_errors), max_read_errors);
2264 		printk(KERN_NOTICE
2265 		       "md/raid10:%s: %s: Failing raid device\n",
2266 		       mdname(mddev), b);
2267 		md_error(mddev, rdev);
2268 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2269 		return;
2270 	}
2271 
2272 	while(sectors) {
2273 		int s = sectors;
2274 		int sl = r10_bio->read_slot;
2275 		int success = 0;
2276 		int start;
2277 
2278 		if (s > (PAGE_SIZE>>9))
2279 			s = PAGE_SIZE >> 9;
2280 
2281 		rcu_read_lock();
2282 		do {
2283 			sector_t first_bad;
2284 			int bad_sectors;
2285 
2286 			d = r10_bio->devs[sl].devnum;
2287 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2288 			if (rdev &&
2289 			    test_bit(In_sync, &rdev->flags) &&
2290 			    !test_bit(Faulty, &rdev->flags) &&
2291 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2292 					&first_bad, &bad_sectors) == 0) {
2293 				atomic_inc(&rdev->nr_pending);
2294 				rcu_read_unlock();
2295 				success = sync_page_io(rdev,
2296 						       r10_bio->devs[sl].addr +
2297 						       sect,
2298 						       s<<9,
2299 						       conf->tmppage,
2300 						       REQ_OP_READ, 0, false);
2301 				rdev_dec_pending(rdev, mddev);
2302 				rcu_read_lock();
2303 				if (success)
2304 					break;
2305 			}
2306 			sl++;
2307 			if (sl == conf->copies)
2308 				sl = 0;
2309 		} while (!success && sl != r10_bio->read_slot);
2310 		rcu_read_unlock();
2311 
2312 		if (!success) {
2313 			/* Cannot read from anywhere, just mark the block
2314 			 * as bad on the first device to discourage future
2315 			 * reads.
2316 			 */
2317 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2318 			rdev = conf->mirrors[dn].rdev;
2319 
2320 			if (!rdev_set_badblocks(
2321 				    rdev,
2322 				    r10_bio->devs[r10_bio->read_slot].addr
2323 				    + sect,
2324 				    s, 0)) {
2325 				md_error(mddev, rdev);
2326 				r10_bio->devs[r10_bio->read_slot].bio
2327 					= IO_BLOCKED;
2328 			}
2329 			break;
2330 		}
2331 
2332 		start = sl;
2333 		/* write it back and re-read */
2334 		rcu_read_lock();
2335 		while (sl != r10_bio->read_slot) {
2336 			char b[BDEVNAME_SIZE];
2337 
2338 			if (sl==0)
2339 				sl = conf->copies;
2340 			sl--;
2341 			d = r10_bio->devs[sl].devnum;
2342 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2343 			if (!rdev ||
2344 			    test_bit(Faulty, &rdev->flags) ||
2345 			    !test_bit(In_sync, &rdev->flags))
2346 				continue;
2347 
2348 			atomic_inc(&rdev->nr_pending);
2349 			rcu_read_unlock();
2350 			if (r10_sync_page_io(rdev,
2351 					     r10_bio->devs[sl].addr +
2352 					     sect,
2353 					     s, conf->tmppage, WRITE)
2354 			    == 0) {
2355 				/* Well, this device is dead */
2356 				printk(KERN_NOTICE
2357 				       "md/raid10:%s: read correction "
2358 				       "write failed"
2359 				       " (%d sectors at %llu on %s)\n",
2360 				       mdname(mddev), s,
2361 				       (unsigned long long)(
2362 					       sect +
2363 					       choose_data_offset(r10_bio,
2364 								  rdev)),
2365 				       bdevname(rdev->bdev, b));
2366 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2367 				       "drive\n",
2368 				       mdname(mddev),
2369 				       bdevname(rdev->bdev, b));
2370 			}
2371 			rdev_dec_pending(rdev, mddev);
2372 			rcu_read_lock();
2373 		}
2374 		sl = start;
2375 		while (sl != r10_bio->read_slot) {
2376 			char b[BDEVNAME_SIZE];
2377 
2378 			if (sl==0)
2379 				sl = conf->copies;
2380 			sl--;
2381 			d = r10_bio->devs[sl].devnum;
2382 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2383 			if (!rdev ||
2384 			    test_bit(Faulty, &rdev->flags) ||
2385 			    !test_bit(In_sync, &rdev->flags))
2386 				continue;
2387 
2388 			atomic_inc(&rdev->nr_pending);
2389 			rcu_read_unlock();
2390 			switch (r10_sync_page_io(rdev,
2391 					     r10_bio->devs[sl].addr +
2392 					     sect,
2393 					     s, conf->tmppage,
2394 						 READ)) {
2395 			case 0:
2396 				/* Well, this device is dead */
2397 				printk(KERN_NOTICE
2398 				       "md/raid10:%s: unable to read back "
2399 				       "corrected sectors"
2400 				       " (%d sectors at %llu on %s)\n",
2401 				       mdname(mddev), s,
2402 				       (unsigned long long)(
2403 					       sect +
2404 					       choose_data_offset(r10_bio, rdev)),
2405 				       bdevname(rdev->bdev, b));
2406 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2407 				       "drive\n",
2408 				       mdname(mddev),
2409 				       bdevname(rdev->bdev, b));
2410 				break;
2411 			case 1:
2412 				printk(KERN_INFO
2413 				       "md/raid10:%s: read error corrected"
2414 				       " (%d sectors at %llu on %s)\n",
2415 				       mdname(mddev), s,
2416 				       (unsigned long long)(
2417 					       sect +
2418 					       choose_data_offset(r10_bio, rdev)),
2419 				       bdevname(rdev->bdev, b));
2420 				atomic_add(s, &rdev->corrected_errors);
2421 			}
2422 
2423 			rdev_dec_pending(rdev, mddev);
2424 			rcu_read_lock();
2425 		}
2426 		rcu_read_unlock();
2427 
2428 		sectors -= s;
2429 		sect += s;
2430 	}
2431 }
2432 
2433 static int narrow_write_error(struct r10bio *r10_bio, int i)
2434 {
2435 	struct bio *bio = r10_bio->master_bio;
2436 	struct mddev *mddev = r10_bio->mddev;
2437 	struct r10conf *conf = mddev->private;
2438 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2439 	/* bio has the data to be written to slot 'i' where
2440 	 * we just recently had a write error.
2441 	 * We repeatedly clone the bio and trim down to one block,
2442 	 * then try the write.  Where the write fails we record
2443 	 * a bad block.
2444 	 * It is conceivable that the bio doesn't exactly align with
2445 	 * blocks.  We must handle this.
2446 	 *
2447 	 * We currently own a reference to the rdev.
2448 	 */
2449 
2450 	int block_sectors;
2451 	sector_t sector;
2452 	int sectors;
2453 	int sect_to_write = r10_bio->sectors;
2454 	int ok = 1;
2455 
2456 	if (rdev->badblocks.shift < 0)
2457 		return 0;
2458 
2459 	block_sectors = roundup(1 << rdev->badblocks.shift,
2460 				bdev_logical_block_size(rdev->bdev) >> 9);
2461 	sector = r10_bio->sector;
2462 	sectors = ((r10_bio->sector + block_sectors)
2463 		   & ~(sector_t)(block_sectors - 1))
2464 		- sector;
2465 
2466 	while (sect_to_write) {
2467 		struct bio *wbio;
2468 		if (sectors > sect_to_write)
2469 			sectors = sect_to_write;
2470 		/* Write at 'sector' for 'sectors' */
2471 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2472 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2473 		wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2474 				   choose_data_offset(r10_bio, rdev) +
2475 				   (sector - r10_bio->sector));
2476 		wbio->bi_bdev = rdev->bdev;
2477 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2478 
2479 		if (submit_bio_wait(wbio) < 0)
2480 			/* Failure! */
2481 			ok = rdev_set_badblocks(rdev, sector,
2482 						sectors, 0)
2483 				&& ok;
2484 
2485 		bio_put(wbio);
2486 		sect_to_write -= sectors;
2487 		sector += sectors;
2488 		sectors = block_sectors;
2489 	}
2490 	return ok;
2491 }
2492 
2493 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2494 {
2495 	int slot = r10_bio->read_slot;
2496 	struct bio *bio;
2497 	struct r10conf *conf = mddev->private;
2498 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2499 	char b[BDEVNAME_SIZE];
2500 	unsigned long do_sync;
2501 	int max_sectors;
2502 
2503 	/* we got a read error. Maybe the drive is bad.  Maybe just
2504 	 * the block and we can fix it.
2505 	 * We freeze all other IO, and try reading the block from
2506 	 * other devices.  When we find one, we re-write
2507 	 * and check it that fixes the read error.
2508 	 * This is all done synchronously while the array is
2509 	 * frozen.
2510 	 */
2511 	bio = r10_bio->devs[slot].bio;
2512 	bdevname(bio->bi_bdev, b);
2513 	bio_put(bio);
2514 	r10_bio->devs[slot].bio = NULL;
2515 
2516 	if (mddev->ro == 0) {
2517 		freeze_array(conf, 1);
2518 		fix_read_error(conf, mddev, r10_bio);
2519 		unfreeze_array(conf);
2520 	} else
2521 		r10_bio->devs[slot].bio = IO_BLOCKED;
2522 
2523 	rdev_dec_pending(rdev, mddev);
2524 
2525 read_more:
2526 	rdev = read_balance(conf, r10_bio, &max_sectors);
2527 	if (rdev == NULL) {
2528 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2529 		       " read error for block %llu\n",
2530 		       mdname(mddev), b,
2531 		       (unsigned long long)r10_bio->sector);
2532 		raid_end_bio_io(r10_bio);
2533 		return;
2534 	}
2535 
2536 	do_sync = (r10_bio->master_bio->bi_opf & REQ_SYNC);
2537 	slot = r10_bio->read_slot;
2538 	printk_ratelimited(
2539 		KERN_ERR
2540 		"md/raid10:%s: %s: redirecting "
2541 		"sector %llu to another mirror\n",
2542 		mdname(mddev),
2543 		bdevname(rdev->bdev, b),
2544 		(unsigned long long)r10_bio->sector);
2545 	bio = bio_clone_mddev(r10_bio->master_bio,
2546 			      GFP_NOIO, mddev);
2547 	bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2548 	r10_bio->devs[slot].bio = bio;
2549 	r10_bio->devs[slot].rdev = rdev;
2550 	bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2551 		+ choose_data_offset(r10_bio, rdev);
2552 	bio->bi_bdev = rdev->bdev;
2553 	bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2554 	bio->bi_private = r10_bio;
2555 	bio->bi_end_io = raid10_end_read_request;
2556 	if (max_sectors < r10_bio->sectors) {
2557 		/* Drat - have to split this up more */
2558 		struct bio *mbio = r10_bio->master_bio;
2559 		int sectors_handled =
2560 			r10_bio->sector + max_sectors
2561 			- mbio->bi_iter.bi_sector;
2562 		r10_bio->sectors = max_sectors;
2563 		spin_lock_irq(&conf->device_lock);
2564 		if (mbio->bi_phys_segments == 0)
2565 			mbio->bi_phys_segments = 2;
2566 		else
2567 			mbio->bi_phys_segments++;
2568 		spin_unlock_irq(&conf->device_lock);
2569 		generic_make_request(bio);
2570 
2571 		r10_bio = mempool_alloc(conf->r10bio_pool,
2572 					GFP_NOIO);
2573 		r10_bio->master_bio = mbio;
2574 		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2575 		r10_bio->state = 0;
2576 		set_bit(R10BIO_ReadError,
2577 			&r10_bio->state);
2578 		r10_bio->mddev = mddev;
2579 		r10_bio->sector = mbio->bi_iter.bi_sector
2580 			+ sectors_handled;
2581 
2582 		goto read_more;
2583 	} else
2584 		generic_make_request(bio);
2585 }
2586 
2587 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2588 {
2589 	/* Some sort of write request has finished and it
2590 	 * succeeded in writing where we thought there was a
2591 	 * bad block.  So forget the bad block.
2592 	 * Or possibly if failed and we need to record
2593 	 * a bad block.
2594 	 */
2595 	int m;
2596 	struct md_rdev *rdev;
2597 
2598 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2599 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2600 		for (m = 0; m < conf->copies; m++) {
2601 			int dev = r10_bio->devs[m].devnum;
2602 			rdev = conf->mirrors[dev].rdev;
2603 			if (r10_bio->devs[m].bio == NULL)
2604 				continue;
2605 			if (!r10_bio->devs[m].bio->bi_error) {
2606 				rdev_clear_badblocks(
2607 					rdev,
2608 					r10_bio->devs[m].addr,
2609 					r10_bio->sectors, 0);
2610 			} else {
2611 				if (!rdev_set_badblocks(
2612 					    rdev,
2613 					    r10_bio->devs[m].addr,
2614 					    r10_bio->sectors, 0))
2615 					md_error(conf->mddev, rdev);
2616 			}
2617 			rdev = conf->mirrors[dev].replacement;
2618 			if (r10_bio->devs[m].repl_bio == NULL)
2619 				continue;
2620 
2621 			if (!r10_bio->devs[m].repl_bio->bi_error) {
2622 				rdev_clear_badblocks(
2623 					rdev,
2624 					r10_bio->devs[m].addr,
2625 					r10_bio->sectors, 0);
2626 			} else {
2627 				if (!rdev_set_badblocks(
2628 					    rdev,
2629 					    r10_bio->devs[m].addr,
2630 					    r10_bio->sectors, 0))
2631 					md_error(conf->mddev, rdev);
2632 			}
2633 		}
2634 		put_buf(r10_bio);
2635 	} else {
2636 		bool fail = false;
2637 		for (m = 0; m < conf->copies; m++) {
2638 			int dev = r10_bio->devs[m].devnum;
2639 			struct bio *bio = r10_bio->devs[m].bio;
2640 			rdev = conf->mirrors[dev].rdev;
2641 			if (bio == IO_MADE_GOOD) {
2642 				rdev_clear_badblocks(
2643 					rdev,
2644 					r10_bio->devs[m].addr,
2645 					r10_bio->sectors, 0);
2646 				rdev_dec_pending(rdev, conf->mddev);
2647 			} else if (bio != NULL && bio->bi_error) {
2648 				fail = true;
2649 				if (!narrow_write_error(r10_bio, m)) {
2650 					md_error(conf->mddev, rdev);
2651 					set_bit(R10BIO_Degraded,
2652 						&r10_bio->state);
2653 				}
2654 				rdev_dec_pending(rdev, conf->mddev);
2655 			}
2656 			bio = r10_bio->devs[m].repl_bio;
2657 			rdev = conf->mirrors[dev].replacement;
2658 			if (rdev && bio == IO_MADE_GOOD) {
2659 				rdev_clear_badblocks(
2660 					rdev,
2661 					r10_bio->devs[m].addr,
2662 					r10_bio->sectors, 0);
2663 				rdev_dec_pending(rdev, conf->mddev);
2664 			}
2665 		}
2666 		if (fail) {
2667 			spin_lock_irq(&conf->device_lock);
2668 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2669 			conf->nr_queued++;
2670 			spin_unlock_irq(&conf->device_lock);
2671 			md_wakeup_thread(conf->mddev->thread);
2672 		} else {
2673 			if (test_bit(R10BIO_WriteError,
2674 				     &r10_bio->state))
2675 				close_write(r10_bio);
2676 			raid_end_bio_io(r10_bio);
2677 		}
2678 	}
2679 }
2680 
2681 static void raid10d(struct md_thread *thread)
2682 {
2683 	struct mddev *mddev = thread->mddev;
2684 	struct r10bio *r10_bio;
2685 	unsigned long flags;
2686 	struct r10conf *conf = mddev->private;
2687 	struct list_head *head = &conf->retry_list;
2688 	struct blk_plug plug;
2689 
2690 	md_check_recovery(mddev);
2691 
2692 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2693 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2694 		LIST_HEAD(tmp);
2695 		spin_lock_irqsave(&conf->device_lock, flags);
2696 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2697 			while (!list_empty(&conf->bio_end_io_list)) {
2698 				list_move(conf->bio_end_io_list.prev, &tmp);
2699 				conf->nr_queued--;
2700 			}
2701 		}
2702 		spin_unlock_irqrestore(&conf->device_lock, flags);
2703 		while (!list_empty(&tmp)) {
2704 			r10_bio = list_first_entry(&tmp, struct r10bio,
2705 						   retry_list);
2706 			list_del(&r10_bio->retry_list);
2707 			if (mddev->degraded)
2708 				set_bit(R10BIO_Degraded, &r10_bio->state);
2709 
2710 			if (test_bit(R10BIO_WriteError,
2711 				     &r10_bio->state))
2712 				close_write(r10_bio);
2713 			raid_end_bio_io(r10_bio);
2714 		}
2715 	}
2716 
2717 	blk_start_plug(&plug);
2718 	for (;;) {
2719 
2720 		flush_pending_writes(conf);
2721 
2722 		spin_lock_irqsave(&conf->device_lock, flags);
2723 		if (list_empty(head)) {
2724 			spin_unlock_irqrestore(&conf->device_lock, flags);
2725 			break;
2726 		}
2727 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2728 		list_del(head->prev);
2729 		conf->nr_queued--;
2730 		spin_unlock_irqrestore(&conf->device_lock, flags);
2731 
2732 		mddev = r10_bio->mddev;
2733 		conf = mddev->private;
2734 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2735 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2736 			handle_write_completed(conf, r10_bio);
2737 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2738 			reshape_request_write(mddev, r10_bio);
2739 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2740 			sync_request_write(mddev, r10_bio);
2741 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2742 			recovery_request_write(mddev, r10_bio);
2743 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2744 			handle_read_error(mddev, r10_bio);
2745 		else {
2746 			/* just a partial read to be scheduled from a
2747 			 * separate context
2748 			 */
2749 			int slot = r10_bio->read_slot;
2750 			generic_make_request(r10_bio->devs[slot].bio);
2751 		}
2752 
2753 		cond_resched();
2754 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2755 			md_check_recovery(mddev);
2756 	}
2757 	blk_finish_plug(&plug);
2758 }
2759 
2760 static int init_resync(struct r10conf *conf)
2761 {
2762 	int buffs;
2763 	int i;
2764 
2765 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2766 	BUG_ON(conf->r10buf_pool);
2767 	conf->have_replacement = 0;
2768 	for (i = 0; i < conf->geo.raid_disks; i++)
2769 		if (conf->mirrors[i].replacement)
2770 			conf->have_replacement = 1;
2771 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2772 	if (!conf->r10buf_pool)
2773 		return -ENOMEM;
2774 	conf->next_resync = 0;
2775 	return 0;
2776 }
2777 
2778 /*
2779  * perform a "sync" on one "block"
2780  *
2781  * We need to make sure that no normal I/O request - particularly write
2782  * requests - conflict with active sync requests.
2783  *
2784  * This is achieved by tracking pending requests and a 'barrier' concept
2785  * that can be installed to exclude normal IO requests.
2786  *
2787  * Resync and recovery are handled very differently.
2788  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2789  *
2790  * For resync, we iterate over virtual addresses, read all copies,
2791  * and update if there are differences.  If only one copy is live,
2792  * skip it.
2793  * For recovery, we iterate over physical addresses, read a good
2794  * value for each non-in_sync drive, and over-write.
2795  *
2796  * So, for recovery we may have several outstanding complex requests for a
2797  * given address, one for each out-of-sync device.  We model this by allocating
2798  * a number of r10_bio structures, one for each out-of-sync device.
2799  * As we setup these structures, we collect all bio's together into a list
2800  * which we then process collectively to add pages, and then process again
2801  * to pass to generic_make_request.
2802  *
2803  * The r10_bio structures are linked using a borrowed master_bio pointer.
2804  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2805  * has its remaining count decremented to 0, the whole complex operation
2806  * is complete.
2807  *
2808  */
2809 
2810 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2811 			     int *skipped)
2812 {
2813 	struct r10conf *conf = mddev->private;
2814 	struct r10bio *r10_bio;
2815 	struct bio *biolist = NULL, *bio;
2816 	sector_t max_sector, nr_sectors;
2817 	int i;
2818 	int max_sync;
2819 	sector_t sync_blocks;
2820 	sector_t sectors_skipped = 0;
2821 	int chunks_skipped = 0;
2822 	sector_t chunk_mask = conf->geo.chunk_mask;
2823 
2824 	if (!conf->r10buf_pool)
2825 		if (init_resync(conf))
2826 			return 0;
2827 
2828 	/*
2829 	 * Allow skipping a full rebuild for incremental assembly
2830 	 * of a clean array, like RAID1 does.
2831 	 */
2832 	if (mddev->bitmap == NULL &&
2833 	    mddev->recovery_cp == MaxSector &&
2834 	    mddev->reshape_position == MaxSector &&
2835 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2836 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2837 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2838 	    conf->fullsync == 0) {
2839 		*skipped = 1;
2840 		return mddev->dev_sectors - sector_nr;
2841 	}
2842 
2843  skipped:
2844 	max_sector = mddev->dev_sectors;
2845 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2846 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2847 		max_sector = mddev->resync_max_sectors;
2848 	if (sector_nr >= max_sector) {
2849 		/* If we aborted, we need to abort the
2850 		 * sync on the 'current' bitmap chucks (there can
2851 		 * be several when recovering multiple devices).
2852 		 * as we may have started syncing it but not finished.
2853 		 * We can find the current address in
2854 		 * mddev->curr_resync, but for recovery,
2855 		 * we need to convert that to several
2856 		 * virtual addresses.
2857 		 */
2858 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2859 			end_reshape(conf);
2860 			close_sync(conf);
2861 			return 0;
2862 		}
2863 
2864 		if (mddev->curr_resync < max_sector) { /* aborted */
2865 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2866 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2867 						&sync_blocks, 1);
2868 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2869 				sector_t sect =
2870 					raid10_find_virt(conf, mddev->curr_resync, i);
2871 				bitmap_end_sync(mddev->bitmap, sect,
2872 						&sync_blocks, 1);
2873 			}
2874 		} else {
2875 			/* completed sync */
2876 			if ((!mddev->bitmap || conf->fullsync)
2877 			    && conf->have_replacement
2878 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2879 				/* Completed a full sync so the replacements
2880 				 * are now fully recovered.
2881 				 */
2882 				rcu_read_lock();
2883 				for (i = 0; i < conf->geo.raid_disks; i++) {
2884 					struct md_rdev *rdev =
2885 						rcu_dereference(conf->mirrors[i].replacement);
2886 					if (rdev)
2887 						rdev->recovery_offset = MaxSector;
2888 				}
2889 				rcu_read_unlock();
2890 			}
2891 			conf->fullsync = 0;
2892 		}
2893 		bitmap_close_sync(mddev->bitmap);
2894 		close_sync(conf);
2895 		*skipped = 1;
2896 		return sectors_skipped;
2897 	}
2898 
2899 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2900 		return reshape_request(mddev, sector_nr, skipped);
2901 
2902 	if (chunks_skipped >= conf->geo.raid_disks) {
2903 		/* if there has been nothing to do on any drive,
2904 		 * then there is nothing to do at all..
2905 		 */
2906 		*skipped = 1;
2907 		return (max_sector - sector_nr) + sectors_skipped;
2908 	}
2909 
2910 	if (max_sector > mddev->resync_max)
2911 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2912 
2913 	/* make sure whole request will fit in a chunk - if chunks
2914 	 * are meaningful
2915 	 */
2916 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2917 	    max_sector > (sector_nr | chunk_mask))
2918 		max_sector = (sector_nr | chunk_mask) + 1;
2919 
2920 	/*
2921 	 * If there is non-resync activity waiting for a turn, then let it
2922 	 * though before starting on this new sync request.
2923 	 */
2924 	if (conf->nr_waiting)
2925 		schedule_timeout_uninterruptible(1);
2926 
2927 	/* Again, very different code for resync and recovery.
2928 	 * Both must result in an r10bio with a list of bios that
2929 	 * have bi_end_io, bi_sector, bi_bdev set,
2930 	 * and bi_private set to the r10bio.
2931 	 * For recovery, we may actually create several r10bios
2932 	 * with 2 bios in each, that correspond to the bios in the main one.
2933 	 * In this case, the subordinate r10bios link back through a
2934 	 * borrowed master_bio pointer, and the counter in the master
2935 	 * includes a ref from each subordinate.
2936 	 */
2937 	/* First, we decide what to do and set ->bi_end_io
2938 	 * To end_sync_read if we want to read, and
2939 	 * end_sync_write if we will want to write.
2940 	 */
2941 
2942 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2943 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2944 		/* recovery... the complicated one */
2945 		int j;
2946 		r10_bio = NULL;
2947 
2948 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2949 			int still_degraded;
2950 			struct r10bio *rb2;
2951 			sector_t sect;
2952 			int must_sync;
2953 			int any_working;
2954 			struct raid10_info *mirror = &conf->mirrors[i];
2955 			struct md_rdev *mrdev, *mreplace;
2956 
2957 			rcu_read_lock();
2958 			mrdev = rcu_dereference(mirror->rdev);
2959 			mreplace = rcu_dereference(mirror->replacement);
2960 
2961 			if ((mrdev == NULL ||
2962 			     test_bit(Faulty, &mrdev->flags) ||
2963 			     test_bit(In_sync, &mrdev->flags)) &&
2964 			    (mreplace == NULL ||
2965 			     test_bit(Faulty, &mreplace->flags))) {
2966 				rcu_read_unlock();
2967 				continue;
2968 			}
2969 
2970 			still_degraded = 0;
2971 			/* want to reconstruct this device */
2972 			rb2 = r10_bio;
2973 			sect = raid10_find_virt(conf, sector_nr, i);
2974 			if (sect >= mddev->resync_max_sectors) {
2975 				/* last stripe is not complete - don't
2976 				 * try to recover this sector.
2977 				 */
2978 				rcu_read_unlock();
2979 				continue;
2980 			}
2981 			if (mreplace && test_bit(Faulty, &mreplace->flags))
2982 				mreplace = NULL;
2983 			/* Unless we are doing a full sync, or a replacement
2984 			 * we only need to recover the block if it is set in
2985 			 * the bitmap
2986 			 */
2987 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2988 						      &sync_blocks, 1);
2989 			if (sync_blocks < max_sync)
2990 				max_sync = sync_blocks;
2991 			if (!must_sync &&
2992 			    mreplace == NULL &&
2993 			    !conf->fullsync) {
2994 				/* yep, skip the sync_blocks here, but don't assume
2995 				 * that there will never be anything to do here
2996 				 */
2997 				chunks_skipped = -1;
2998 				rcu_read_unlock();
2999 				continue;
3000 			}
3001 			atomic_inc(&mrdev->nr_pending);
3002 			if (mreplace)
3003 				atomic_inc(&mreplace->nr_pending);
3004 			rcu_read_unlock();
3005 
3006 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3007 			r10_bio->state = 0;
3008 			raise_barrier(conf, rb2 != NULL);
3009 			atomic_set(&r10_bio->remaining, 0);
3010 
3011 			r10_bio->master_bio = (struct bio*)rb2;
3012 			if (rb2)
3013 				atomic_inc(&rb2->remaining);
3014 			r10_bio->mddev = mddev;
3015 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3016 			r10_bio->sector = sect;
3017 
3018 			raid10_find_phys(conf, r10_bio);
3019 
3020 			/* Need to check if the array will still be
3021 			 * degraded
3022 			 */
3023 			rcu_read_lock();
3024 			for (j = 0; j < conf->geo.raid_disks; j++) {
3025 				struct md_rdev *rdev = rcu_dereference(
3026 					conf->mirrors[j].rdev);
3027 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3028 					still_degraded = 1;
3029 					break;
3030 				}
3031 			}
3032 
3033 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3034 						      &sync_blocks, still_degraded);
3035 
3036 			any_working = 0;
3037 			for (j=0; j<conf->copies;j++) {
3038 				int k;
3039 				int d = r10_bio->devs[j].devnum;
3040 				sector_t from_addr, to_addr;
3041 				struct md_rdev *rdev =
3042 					rcu_dereference(conf->mirrors[d].rdev);
3043 				sector_t sector, first_bad;
3044 				int bad_sectors;
3045 				if (!rdev ||
3046 				    !test_bit(In_sync, &rdev->flags))
3047 					continue;
3048 				/* This is where we read from */
3049 				any_working = 1;
3050 				sector = r10_bio->devs[j].addr;
3051 
3052 				if (is_badblock(rdev, sector, max_sync,
3053 						&first_bad, &bad_sectors)) {
3054 					if (first_bad > sector)
3055 						max_sync = first_bad - sector;
3056 					else {
3057 						bad_sectors -= (sector
3058 								- first_bad);
3059 						if (max_sync > bad_sectors)
3060 							max_sync = bad_sectors;
3061 						continue;
3062 					}
3063 				}
3064 				bio = r10_bio->devs[0].bio;
3065 				bio_reset(bio);
3066 				bio->bi_next = biolist;
3067 				biolist = bio;
3068 				bio->bi_private = r10_bio;
3069 				bio->bi_end_io = end_sync_read;
3070 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3071 				from_addr = r10_bio->devs[j].addr;
3072 				bio->bi_iter.bi_sector = from_addr +
3073 					rdev->data_offset;
3074 				bio->bi_bdev = rdev->bdev;
3075 				atomic_inc(&rdev->nr_pending);
3076 				/* and we write to 'i' (if not in_sync) */
3077 
3078 				for (k=0; k<conf->copies; k++)
3079 					if (r10_bio->devs[k].devnum == i)
3080 						break;
3081 				BUG_ON(k == conf->copies);
3082 				to_addr = r10_bio->devs[k].addr;
3083 				r10_bio->devs[0].devnum = d;
3084 				r10_bio->devs[0].addr = from_addr;
3085 				r10_bio->devs[1].devnum = i;
3086 				r10_bio->devs[1].addr = to_addr;
3087 
3088 				if (!test_bit(In_sync, &mrdev->flags)) {
3089 					bio = r10_bio->devs[1].bio;
3090 					bio_reset(bio);
3091 					bio->bi_next = biolist;
3092 					biolist = bio;
3093 					bio->bi_private = r10_bio;
3094 					bio->bi_end_io = end_sync_write;
3095 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3096 					bio->bi_iter.bi_sector = to_addr
3097 						+ mrdev->data_offset;
3098 					bio->bi_bdev = mrdev->bdev;
3099 					atomic_inc(&r10_bio->remaining);
3100 				} else
3101 					r10_bio->devs[1].bio->bi_end_io = NULL;
3102 
3103 				/* and maybe write to replacement */
3104 				bio = r10_bio->devs[1].repl_bio;
3105 				if (bio)
3106 					bio->bi_end_io = NULL;
3107 				/* Note: if mreplace != NULL, then bio
3108 				 * cannot be NULL as r10buf_pool_alloc will
3109 				 * have allocated it.
3110 				 * So the second test here is pointless.
3111 				 * But it keeps semantic-checkers happy, and
3112 				 * this comment keeps human reviewers
3113 				 * happy.
3114 				 */
3115 				if (mreplace == NULL || bio == NULL ||
3116 				    test_bit(Faulty, &mreplace->flags))
3117 					break;
3118 				bio_reset(bio);
3119 				bio->bi_next = biolist;
3120 				biolist = bio;
3121 				bio->bi_private = r10_bio;
3122 				bio->bi_end_io = end_sync_write;
3123 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3124 				bio->bi_iter.bi_sector = to_addr +
3125 					mreplace->data_offset;
3126 				bio->bi_bdev = mreplace->bdev;
3127 				atomic_inc(&r10_bio->remaining);
3128 				break;
3129 			}
3130 			rcu_read_unlock();
3131 			if (j == conf->copies) {
3132 				/* Cannot recover, so abort the recovery or
3133 				 * record a bad block */
3134 				if (any_working) {
3135 					/* problem is that there are bad blocks
3136 					 * on other device(s)
3137 					 */
3138 					int k;
3139 					for (k = 0; k < conf->copies; k++)
3140 						if (r10_bio->devs[k].devnum == i)
3141 							break;
3142 					if (!test_bit(In_sync,
3143 						      &mrdev->flags)
3144 					    && !rdev_set_badblocks(
3145 						    mrdev,
3146 						    r10_bio->devs[k].addr,
3147 						    max_sync, 0))
3148 						any_working = 0;
3149 					if (mreplace &&
3150 					    !rdev_set_badblocks(
3151 						    mreplace,
3152 						    r10_bio->devs[k].addr,
3153 						    max_sync, 0))
3154 						any_working = 0;
3155 				}
3156 				if (!any_working)  {
3157 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3158 							      &mddev->recovery))
3159 						printk(KERN_INFO "md/raid10:%s: insufficient "
3160 						       "working devices for recovery.\n",
3161 						       mdname(mddev));
3162 					mirror->recovery_disabled
3163 						= mddev->recovery_disabled;
3164 				}
3165 				put_buf(r10_bio);
3166 				if (rb2)
3167 					atomic_dec(&rb2->remaining);
3168 				r10_bio = rb2;
3169 				rdev_dec_pending(mrdev, mddev);
3170 				if (mreplace)
3171 					rdev_dec_pending(mreplace, mddev);
3172 				break;
3173 			}
3174 			rdev_dec_pending(mrdev, mddev);
3175 			if (mreplace)
3176 				rdev_dec_pending(mreplace, mddev);
3177 		}
3178 		if (biolist == NULL) {
3179 			while (r10_bio) {
3180 				struct r10bio *rb2 = r10_bio;
3181 				r10_bio = (struct r10bio*) rb2->master_bio;
3182 				rb2->master_bio = NULL;
3183 				put_buf(rb2);
3184 			}
3185 			goto giveup;
3186 		}
3187 	} else {
3188 		/* resync. Schedule a read for every block at this virt offset */
3189 		int count = 0;
3190 
3191 		bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3192 
3193 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3194 				       &sync_blocks, mddev->degraded) &&
3195 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3196 						 &mddev->recovery)) {
3197 			/* We can skip this block */
3198 			*skipped = 1;
3199 			return sync_blocks + sectors_skipped;
3200 		}
3201 		if (sync_blocks < max_sync)
3202 			max_sync = sync_blocks;
3203 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3204 		r10_bio->state = 0;
3205 
3206 		r10_bio->mddev = mddev;
3207 		atomic_set(&r10_bio->remaining, 0);
3208 		raise_barrier(conf, 0);
3209 		conf->next_resync = sector_nr;
3210 
3211 		r10_bio->master_bio = NULL;
3212 		r10_bio->sector = sector_nr;
3213 		set_bit(R10BIO_IsSync, &r10_bio->state);
3214 		raid10_find_phys(conf, r10_bio);
3215 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3216 
3217 		for (i = 0; i < conf->copies; i++) {
3218 			int d = r10_bio->devs[i].devnum;
3219 			sector_t first_bad, sector;
3220 			int bad_sectors;
3221 			struct md_rdev *rdev;
3222 
3223 			if (r10_bio->devs[i].repl_bio)
3224 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3225 
3226 			bio = r10_bio->devs[i].bio;
3227 			bio_reset(bio);
3228 			bio->bi_error = -EIO;
3229 			rcu_read_lock();
3230 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3231 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3232 				rcu_read_unlock();
3233 				continue;
3234 			}
3235 			sector = r10_bio->devs[i].addr;
3236 			if (is_badblock(rdev, sector, max_sync,
3237 					&first_bad, &bad_sectors)) {
3238 				if (first_bad > sector)
3239 					max_sync = first_bad - sector;
3240 				else {
3241 					bad_sectors -= (sector - first_bad);
3242 					if (max_sync > bad_sectors)
3243 						max_sync = bad_sectors;
3244 					rcu_read_unlock();
3245 					continue;
3246 				}
3247 			}
3248 			atomic_inc(&rdev->nr_pending);
3249 			atomic_inc(&r10_bio->remaining);
3250 			bio->bi_next = biolist;
3251 			biolist = bio;
3252 			bio->bi_private = r10_bio;
3253 			bio->bi_end_io = end_sync_read;
3254 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3255 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3256 			bio->bi_bdev = rdev->bdev;
3257 			count++;
3258 
3259 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3260 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3261 				rcu_read_unlock();
3262 				continue;
3263 			}
3264 			atomic_inc(&rdev->nr_pending);
3265 			rcu_read_unlock();
3266 
3267 			/* Need to set up for writing to the replacement */
3268 			bio = r10_bio->devs[i].repl_bio;
3269 			bio_reset(bio);
3270 			bio->bi_error = -EIO;
3271 
3272 			sector = r10_bio->devs[i].addr;
3273 			bio->bi_next = biolist;
3274 			biolist = bio;
3275 			bio->bi_private = r10_bio;
3276 			bio->bi_end_io = end_sync_write;
3277 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3278 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3279 			bio->bi_bdev = rdev->bdev;
3280 			count++;
3281 		}
3282 
3283 		if (count < 2) {
3284 			for (i=0; i<conf->copies; i++) {
3285 				int d = r10_bio->devs[i].devnum;
3286 				if (r10_bio->devs[i].bio->bi_end_io)
3287 					rdev_dec_pending(conf->mirrors[d].rdev,
3288 							 mddev);
3289 				if (r10_bio->devs[i].repl_bio &&
3290 				    r10_bio->devs[i].repl_bio->bi_end_io)
3291 					rdev_dec_pending(
3292 						conf->mirrors[d].replacement,
3293 						mddev);
3294 			}
3295 			put_buf(r10_bio);
3296 			biolist = NULL;
3297 			goto giveup;
3298 		}
3299 	}
3300 
3301 	nr_sectors = 0;
3302 	if (sector_nr + max_sync < max_sector)
3303 		max_sector = sector_nr + max_sync;
3304 	do {
3305 		struct page *page;
3306 		int len = PAGE_SIZE;
3307 		if (sector_nr + (len>>9) > max_sector)
3308 			len = (max_sector - sector_nr) << 9;
3309 		if (len == 0)
3310 			break;
3311 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3312 			struct bio *bio2;
3313 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3314 			if (bio_add_page(bio, page, len, 0))
3315 				continue;
3316 
3317 			/* stop here */
3318 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3319 			for (bio2 = biolist;
3320 			     bio2 && bio2 != bio;
3321 			     bio2 = bio2->bi_next) {
3322 				/* remove last page from this bio */
3323 				bio2->bi_vcnt--;
3324 				bio2->bi_iter.bi_size -= len;
3325 				bio_clear_flag(bio2, BIO_SEG_VALID);
3326 			}
3327 			goto bio_full;
3328 		}
3329 		nr_sectors += len>>9;
3330 		sector_nr += len>>9;
3331 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3332  bio_full:
3333 	r10_bio->sectors = nr_sectors;
3334 
3335 	while (biolist) {
3336 		bio = biolist;
3337 		biolist = biolist->bi_next;
3338 
3339 		bio->bi_next = NULL;
3340 		r10_bio = bio->bi_private;
3341 		r10_bio->sectors = nr_sectors;
3342 
3343 		if (bio->bi_end_io == end_sync_read) {
3344 			md_sync_acct(bio->bi_bdev, nr_sectors);
3345 			bio->bi_error = 0;
3346 			generic_make_request(bio);
3347 		}
3348 	}
3349 
3350 	if (sectors_skipped)
3351 		/* pretend they weren't skipped, it makes
3352 		 * no important difference in this case
3353 		 */
3354 		md_done_sync(mddev, sectors_skipped, 1);
3355 
3356 	return sectors_skipped + nr_sectors;
3357  giveup:
3358 	/* There is nowhere to write, so all non-sync
3359 	 * drives must be failed or in resync, all drives
3360 	 * have a bad block, so try the next chunk...
3361 	 */
3362 	if (sector_nr + max_sync < max_sector)
3363 		max_sector = sector_nr + max_sync;
3364 
3365 	sectors_skipped += (max_sector - sector_nr);
3366 	chunks_skipped ++;
3367 	sector_nr = max_sector;
3368 	goto skipped;
3369 }
3370 
3371 static sector_t
3372 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3373 {
3374 	sector_t size;
3375 	struct r10conf *conf = mddev->private;
3376 
3377 	if (!raid_disks)
3378 		raid_disks = min(conf->geo.raid_disks,
3379 				 conf->prev.raid_disks);
3380 	if (!sectors)
3381 		sectors = conf->dev_sectors;
3382 
3383 	size = sectors >> conf->geo.chunk_shift;
3384 	sector_div(size, conf->geo.far_copies);
3385 	size = size * raid_disks;
3386 	sector_div(size, conf->geo.near_copies);
3387 
3388 	return size << conf->geo.chunk_shift;
3389 }
3390 
3391 static void calc_sectors(struct r10conf *conf, sector_t size)
3392 {
3393 	/* Calculate the number of sectors-per-device that will
3394 	 * actually be used, and set conf->dev_sectors and
3395 	 * conf->stride
3396 	 */
3397 
3398 	size = size >> conf->geo.chunk_shift;
3399 	sector_div(size, conf->geo.far_copies);
3400 	size = size * conf->geo.raid_disks;
3401 	sector_div(size, conf->geo.near_copies);
3402 	/* 'size' is now the number of chunks in the array */
3403 	/* calculate "used chunks per device" */
3404 	size = size * conf->copies;
3405 
3406 	/* We need to round up when dividing by raid_disks to
3407 	 * get the stride size.
3408 	 */
3409 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3410 
3411 	conf->dev_sectors = size << conf->geo.chunk_shift;
3412 
3413 	if (conf->geo.far_offset)
3414 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3415 	else {
3416 		sector_div(size, conf->geo.far_copies);
3417 		conf->geo.stride = size << conf->geo.chunk_shift;
3418 	}
3419 }
3420 
3421 enum geo_type {geo_new, geo_old, geo_start};
3422 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3423 {
3424 	int nc, fc, fo;
3425 	int layout, chunk, disks;
3426 	switch (new) {
3427 	case geo_old:
3428 		layout = mddev->layout;
3429 		chunk = mddev->chunk_sectors;
3430 		disks = mddev->raid_disks - mddev->delta_disks;
3431 		break;
3432 	case geo_new:
3433 		layout = mddev->new_layout;
3434 		chunk = mddev->new_chunk_sectors;
3435 		disks = mddev->raid_disks;
3436 		break;
3437 	default: /* avoid 'may be unused' warnings */
3438 	case geo_start: /* new when starting reshape - raid_disks not
3439 			 * updated yet. */
3440 		layout = mddev->new_layout;
3441 		chunk = mddev->new_chunk_sectors;
3442 		disks = mddev->raid_disks + mddev->delta_disks;
3443 		break;
3444 	}
3445 	if (layout >> 19)
3446 		return -1;
3447 	if (chunk < (PAGE_SIZE >> 9) ||
3448 	    !is_power_of_2(chunk))
3449 		return -2;
3450 	nc = layout & 255;
3451 	fc = (layout >> 8) & 255;
3452 	fo = layout & (1<<16);
3453 	geo->raid_disks = disks;
3454 	geo->near_copies = nc;
3455 	geo->far_copies = fc;
3456 	geo->far_offset = fo;
3457 	switch (layout >> 17) {
3458 	case 0:	/* original layout.  simple but not always optimal */
3459 		geo->far_set_size = disks;
3460 		break;
3461 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3462 		 * actually using this, but leave code here just in case.*/
3463 		geo->far_set_size = disks/fc;
3464 		WARN(geo->far_set_size < fc,
3465 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3466 		break;
3467 	case 2: /* "improved" layout fixed to match documentation */
3468 		geo->far_set_size = fc * nc;
3469 		break;
3470 	default: /* Not a valid layout */
3471 		return -1;
3472 	}
3473 	geo->chunk_mask = chunk - 1;
3474 	geo->chunk_shift = ffz(~chunk);
3475 	return nc*fc;
3476 }
3477 
3478 static struct r10conf *setup_conf(struct mddev *mddev)
3479 {
3480 	struct r10conf *conf = NULL;
3481 	int err = -EINVAL;
3482 	struct geom geo;
3483 	int copies;
3484 
3485 	copies = setup_geo(&geo, mddev, geo_new);
3486 
3487 	if (copies == -2) {
3488 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3489 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3490 		       mdname(mddev), PAGE_SIZE);
3491 		goto out;
3492 	}
3493 
3494 	if (copies < 2 || copies > mddev->raid_disks) {
3495 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3496 		       mdname(mddev), mddev->new_layout);
3497 		goto out;
3498 	}
3499 
3500 	err = -ENOMEM;
3501 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3502 	if (!conf)
3503 		goto out;
3504 
3505 	/* FIXME calc properly */
3506 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3507 							    max(0,-mddev->delta_disks)),
3508 				GFP_KERNEL);
3509 	if (!conf->mirrors)
3510 		goto out;
3511 
3512 	conf->tmppage = alloc_page(GFP_KERNEL);
3513 	if (!conf->tmppage)
3514 		goto out;
3515 
3516 	conf->geo = geo;
3517 	conf->copies = copies;
3518 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3519 					   r10bio_pool_free, conf);
3520 	if (!conf->r10bio_pool)
3521 		goto out;
3522 
3523 	calc_sectors(conf, mddev->dev_sectors);
3524 	if (mddev->reshape_position == MaxSector) {
3525 		conf->prev = conf->geo;
3526 		conf->reshape_progress = MaxSector;
3527 	} else {
3528 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3529 			err = -EINVAL;
3530 			goto out;
3531 		}
3532 		conf->reshape_progress = mddev->reshape_position;
3533 		if (conf->prev.far_offset)
3534 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3535 		else
3536 			/* far_copies must be 1 */
3537 			conf->prev.stride = conf->dev_sectors;
3538 	}
3539 	conf->reshape_safe = conf->reshape_progress;
3540 	spin_lock_init(&conf->device_lock);
3541 	INIT_LIST_HEAD(&conf->retry_list);
3542 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3543 
3544 	spin_lock_init(&conf->resync_lock);
3545 	init_waitqueue_head(&conf->wait_barrier);
3546 	atomic_set(&conf->nr_pending, 0);
3547 
3548 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3549 	if (!conf->thread)
3550 		goto out;
3551 
3552 	conf->mddev = mddev;
3553 	return conf;
3554 
3555  out:
3556 	if (err == -ENOMEM)
3557 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3558 		       mdname(mddev));
3559 	if (conf) {
3560 		mempool_destroy(conf->r10bio_pool);
3561 		kfree(conf->mirrors);
3562 		safe_put_page(conf->tmppage);
3563 		kfree(conf);
3564 	}
3565 	return ERR_PTR(err);
3566 }
3567 
3568 static int raid10_run(struct mddev *mddev)
3569 {
3570 	struct r10conf *conf;
3571 	int i, disk_idx, chunk_size;
3572 	struct raid10_info *disk;
3573 	struct md_rdev *rdev;
3574 	sector_t size;
3575 	sector_t min_offset_diff = 0;
3576 	int first = 1;
3577 	bool discard_supported = false;
3578 
3579 	if (mddev->private == NULL) {
3580 		conf = setup_conf(mddev);
3581 		if (IS_ERR(conf))
3582 			return PTR_ERR(conf);
3583 		mddev->private = conf;
3584 	}
3585 	conf = mddev->private;
3586 	if (!conf)
3587 		goto out;
3588 
3589 	mddev->thread = conf->thread;
3590 	conf->thread = NULL;
3591 
3592 	chunk_size = mddev->chunk_sectors << 9;
3593 	if (mddev->queue) {
3594 		blk_queue_max_discard_sectors(mddev->queue,
3595 					      mddev->chunk_sectors);
3596 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3597 		blk_queue_io_min(mddev->queue, chunk_size);
3598 		if (conf->geo.raid_disks % conf->geo.near_copies)
3599 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3600 		else
3601 			blk_queue_io_opt(mddev->queue, chunk_size *
3602 					 (conf->geo.raid_disks / conf->geo.near_copies));
3603 	}
3604 
3605 	rdev_for_each(rdev, mddev) {
3606 		long long diff;
3607 		struct request_queue *q;
3608 
3609 		disk_idx = rdev->raid_disk;
3610 		if (disk_idx < 0)
3611 			continue;
3612 		if (disk_idx >= conf->geo.raid_disks &&
3613 		    disk_idx >= conf->prev.raid_disks)
3614 			continue;
3615 		disk = conf->mirrors + disk_idx;
3616 
3617 		if (test_bit(Replacement, &rdev->flags)) {
3618 			if (disk->replacement)
3619 				goto out_free_conf;
3620 			disk->replacement = rdev;
3621 		} else {
3622 			if (disk->rdev)
3623 				goto out_free_conf;
3624 			disk->rdev = rdev;
3625 		}
3626 		q = bdev_get_queue(rdev->bdev);
3627 		diff = (rdev->new_data_offset - rdev->data_offset);
3628 		if (!mddev->reshape_backwards)
3629 			diff = -diff;
3630 		if (diff < 0)
3631 			diff = 0;
3632 		if (first || diff < min_offset_diff)
3633 			min_offset_diff = diff;
3634 
3635 		if (mddev->gendisk)
3636 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3637 					  rdev->data_offset << 9);
3638 
3639 		disk->head_position = 0;
3640 
3641 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3642 			discard_supported = true;
3643 	}
3644 
3645 	if (mddev->queue) {
3646 		if (discard_supported)
3647 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3648 						mddev->queue);
3649 		else
3650 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3651 						  mddev->queue);
3652 	}
3653 	/* need to check that every block has at least one working mirror */
3654 	if (!enough(conf, -1)) {
3655 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3656 		       mdname(mddev));
3657 		goto out_free_conf;
3658 	}
3659 
3660 	if (conf->reshape_progress != MaxSector) {
3661 		/* must ensure that shape change is supported */
3662 		if (conf->geo.far_copies != 1 &&
3663 		    conf->geo.far_offset == 0)
3664 			goto out_free_conf;
3665 		if (conf->prev.far_copies != 1 &&
3666 		    conf->prev.far_offset == 0)
3667 			goto out_free_conf;
3668 	}
3669 
3670 	mddev->degraded = 0;
3671 	for (i = 0;
3672 	     i < conf->geo.raid_disks
3673 		     || i < conf->prev.raid_disks;
3674 	     i++) {
3675 
3676 		disk = conf->mirrors + i;
3677 
3678 		if (!disk->rdev && disk->replacement) {
3679 			/* The replacement is all we have - use it */
3680 			disk->rdev = disk->replacement;
3681 			disk->replacement = NULL;
3682 			clear_bit(Replacement, &disk->rdev->flags);
3683 		}
3684 
3685 		if (!disk->rdev ||
3686 		    !test_bit(In_sync, &disk->rdev->flags)) {
3687 			disk->head_position = 0;
3688 			mddev->degraded++;
3689 			if (disk->rdev &&
3690 			    disk->rdev->saved_raid_disk < 0)
3691 				conf->fullsync = 1;
3692 		}
3693 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3694 	}
3695 
3696 	if (mddev->recovery_cp != MaxSector)
3697 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3698 		       " -- starting background reconstruction\n",
3699 		       mdname(mddev));
3700 	printk(KERN_INFO
3701 		"md/raid10:%s: active with %d out of %d devices\n",
3702 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3703 		conf->geo.raid_disks);
3704 	/*
3705 	 * Ok, everything is just fine now
3706 	 */
3707 	mddev->dev_sectors = conf->dev_sectors;
3708 	size = raid10_size(mddev, 0, 0);
3709 	md_set_array_sectors(mddev, size);
3710 	mddev->resync_max_sectors = size;
3711 
3712 	if (mddev->queue) {
3713 		int stripe = conf->geo.raid_disks *
3714 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3715 
3716 		/* Calculate max read-ahead size.
3717 		 * We need to readahead at least twice a whole stripe....
3718 		 * maybe...
3719 		 */
3720 		stripe /= conf->geo.near_copies;
3721 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3722 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3723 	}
3724 
3725 	if (md_integrity_register(mddev))
3726 		goto out_free_conf;
3727 
3728 	if (conf->reshape_progress != MaxSector) {
3729 		unsigned long before_length, after_length;
3730 
3731 		before_length = ((1 << conf->prev.chunk_shift) *
3732 				 conf->prev.far_copies);
3733 		after_length = ((1 << conf->geo.chunk_shift) *
3734 				conf->geo.far_copies);
3735 
3736 		if (max(before_length, after_length) > min_offset_diff) {
3737 			/* This cannot work */
3738 			printk("md/raid10: offset difference not enough to continue reshape\n");
3739 			goto out_free_conf;
3740 		}
3741 		conf->offset_diff = min_offset_diff;
3742 
3743 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3744 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3745 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3746 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3747 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3748 							"reshape");
3749 	}
3750 
3751 	return 0;
3752 
3753 out_free_conf:
3754 	md_unregister_thread(&mddev->thread);
3755 	mempool_destroy(conf->r10bio_pool);
3756 	safe_put_page(conf->tmppage);
3757 	kfree(conf->mirrors);
3758 	kfree(conf);
3759 	mddev->private = NULL;
3760 out:
3761 	return -EIO;
3762 }
3763 
3764 static void raid10_free(struct mddev *mddev, void *priv)
3765 {
3766 	struct r10conf *conf = priv;
3767 
3768 	mempool_destroy(conf->r10bio_pool);
3769 	safe_put_page(conf->tmppage);
3770 	kfree(conf->mirrors);
3771 	kfree(conf->mirrors_old);
3772 	kfree(conf->mirrors_new);
3773 	kfree(conf);
3774 }
3775 
3776 static void raid10_quiesce(struct mddev *mddev, int state)
3777 {
3778 	struct r10conf *conf = mddev->private;
3779 
3780 	switch(state) {
3781 	case 1:
3782 		raise_barrier(conf, 0);
3783 		break;
3784 	case 0:
3785 		lower_barrier(conf);
3786 		break;
3787 	}
3788 }
3789 
3790 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3791 {
3792 	/* Resize of 'far' arrays is not supported.
3793 	 * For 'near' and 'offset' arrays we can set the
3794 	 * number of sectors used to be an appropriate multiple
3795 	 * of the chunk size.
3796 	 * For 'offset', this is far_copies*chunksize.
3797 	 * For 'near' the multiplier is the LCM of
3798 	 * near_copies and raid_disks.
3799 	 * So if far_copies > 1 && !far_offset, fail.
3800 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3801 	 * multiply by chunk_size.  Then round to this number.
3802 	 * This is mostly done by raid10_size()
3803 	 */
3804 	struct r10conf *conf = mddev->private;
3805 	sector_t oldsize, size;
3806 
3807 	if (mddev->reshape_position != MaxSector)
3808 		return -EBUSY;
3809 
3810 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3811 		return -EINVAL;
3812 
3813 	oldsize = raid10_size(mddev, 0, 0);
3814 	size = raid10_size(mddev, sectors, 0);
3815 	if (mddev->external_size &&
3816 	    mddev->array_sectors > size)
3817 		return -EINVAL;
3818 	if (mddev->bitmap) {
3819 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3820 		if (ret)
3821 			return ret;
3822 	}
3823 	md_set_array_sectors(mddev, size);
3824 	if (mddev->queue) {
3825 		set_capacity(mddev->gendisk, mddev->array_sectors);
3826 		revalidate_disk(mddev->gendisk);
3827 	}
3828 	if (sectors > mddev->dev_sectors &&
3829 	    mddev->recovery_cp > oldsize) {
3830 		mddev->recovery_cp = oldsize;
3831 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3832 	}
3833 	calc_sectors(conf, sectors);
3834 	mddev->dev_sectors = conf->dev_sectors;
3835 	mddev->resync_max_sectors = size;
3836 	return 0;
3837 }
3838 
3839 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3840 {
3841 	struct md_rdev *rdev;
3842 	struct r10conf *conf;
3843 
3844 	if (mddev->degraded > 0) {
3845 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3846 		       mdname(mddev));
3847 		return ERR_PTR(-EINVAL);
3848 	}
3849 	sector_div(size, devs);
3850 
3851 	/* Set new parameters */
3852 	mddev->new_level = 10;
3853 	/* new layout: far_copies = 1, near_copies = 2 */
3854 	mddev->new_layout = (1<<8) + 2;
3855 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3856 	mddev->delta_disks = mddev->raid_disks;
3857 	mddev->raid_disks *= 2;
3858 	/* make sure it will be not marked as dirty */
3859 	mddev->recovery_cp = MaxSector;
3860 	mddev->dev_sectors = size;
3861 
3862 	conf = setup_conf(mddev);
3863 	if (!IS_ERR(conf)) {
3864 		rdev_for_each(rdev, mddev)
3865 			if (rdev->raid_disk >= 0) {
3866 				rdev->new_raid_disk = rdev->raid_disk * 2;
3867 				rdev->sectors = size;
3868 			}
3869 		conf->barrier = 1;
3870 	}
3871 
3872 	return conf;
3873 }
3874 
3875 static void *raid10_takeover(struct mddev *mddev)
3876 {
3877 	struct r0conf *raid0_conf;
3878 
3879 	/* raid10 can take over:
3880 	 *  raid0 - providing it has only two drives
3881 	 */
3882 	if (mddev->level == 0) {
3883 		/* for raid0 takeover only one zone is supported */
3884 		raid0_conf = mddev->private;
3885 		if (raid0_conf->nr_strip_zones > 1) {
3886 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3887 			       " with more than one zone.\n",
3888 			       mdname(mddev));
3889 			return ERR_PTR(-EINVAL);
3890 		}
3891 		return raid10_takeover_raid0(mddev,
3892 			raid0_conf->strip_zone->zone_end,
3893 			raid0_conf->strip_zone->nb_dev);
3894 	}
3895 	return ERR_PTR(-EINVAL);
3896 }
3897 
3898 static int raid10_check_reshape(struct mddev *mddev)
3899 {
3900 	/* Called when there is a request to change
3901 	 * - layout (to ->new_layout)
3902 	 * - chunk size (to ->new_chunk_sectors)
3903 	 * - raid_disks (by delta_disks)
3904 	 * or when trying to restart a reshape that was ongoing.
3905 	 *
3906 	 * We need to validate the request and possibly allocate
3907 	 * space if that might be an issue later.
3908 	 *
3909 	 * Currently we reject any reshape of a 'far' mode array,
3910 	 * allow chunk size to change if new is generally acceptable,
3911 	 * allow raid_disks to increase, and allow
3912 	 * a switch between 'near' mode and 'offset' mode.
3913 	 */
3914 	struct r10conf *conf = mddev->private;
3915 	struct geom geo;
3916 
3917 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3918 		return -EINVAL;
3919 
3920 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3921 		/* mustn't change number of copies */
3922 		return -EINVAL;
3923 	if (geo.far_copies > 1 && !geo.far_offset)
3924 		/* Cannot switch to 'far' mode */
3925 		return -EINVAL;
3926 
3927 	if (mddev->array_sectors & geo.chunk_mask)
3928 			/* not factor of array size */
3929 			return -EINVAL;
3930 
3931 	if (!enough(conf, -1))
3932 		return -EINVAL;
3933 
3934 	kfree(conf->mirrors_new);
3935 	conf->mirrors_new = NULL;
3936 	if (mddev->delta_disks > 0) {
3937 		/* allocate new 'mirrors' list */
3938 		conf->mirrors_new = kzalloc(
3939 			sizeof(struct raid10_info)
3940 			*(mddev->raid_disks +
3941 			  mddev->delta_disks),
3942 			GFP_KERNEL);
3943 		if (!conf->mirrors_new)
3944 			return -ENOMEM;
3945 	}
3946 	return 0;
3947 }
3948 
3949 /*
3950  * Need to check if array has failed when deciding whether to:
3951  *  - start an array
3952  *  - remove non-faulty devices
3953  *  - add a spare
3954  *  - allow a reshape
3955  * This determination is simple when no reshape is happening.
3956  * However if there is a reshape, we need to carefully check
3957  * both the before and after sections.
3958  * This is because some failed devices may only affect one
3959  * of the two sections, and some non-in_sync devices may
3960  * be insync in the section most affected by failed devices.
3961  */
3962 static int calc_degraded(struct r10conf *conf)
3963 {
3964 	int degraded, degraded2;
3965 	int i;
3966 
3967 	rcu_read_lock();
3968 	degraded = 0;
3969 	/* 'prev' section first */
3970 	for (i = 0; i < conf->prev.raid_disks; i++) {
3971 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3972 		if (!rdev || test_bit(Faulty, &rdev->flags))
3973 			degraded++;
3974 		else if (!test_bit(In_sync, &rdev->flags))
3975 			/* When we can reduce the number of devices in
3976 			 * an array, this might not contribute to
3977 			 * 'degraded'.  It does now.
3978 			 */
3979 			degraded++;
3980 	}
3981 	rcu_read_unlock();
3982 	if (conf->geo.raid_disks == conf->prev.raid_disks)
3983 		return degraded;
3984 	rcu_read_lock();
3985 	degraded2 = 0;
3986 	for (i = 0; i < conf->geo.raid_disks; i++) {
3987 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3988 		if (!rdev || test_bit(Faulty, &rdev->flags))
3989 			degraded2++;
3990 		else if (!test_bit(In_sync, &rdev->flags)) {
3991 			/* If reshape is increasing the number of devices,
3992 			 * this section has already been recovered, so
3993 			 * it doesn't contribute to degraded.
3994 			 * else it does.
3995 			 */
3996 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
3997 				degraded2++;
3998 		}
3999 	}
4000 	rcu_read_unlock();
4001 	if (degraded2 > degraded)
4002 		return degraded2;
4003 	return degraded;
4004 }
4005 
4006 static int raid10_start_reshape(struct mddev *mddev)
4007 {
4008 	/* A 'reshape' has been requested. This commits
4009 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4010 	 * This also checks if there are enough spares and adds them
4011 	 * to the array.
4012 	 * We currently require enough spares to make the final
4013 	 * array non-degraded.  We also require that the difference
4014 	 * between old and new data_offset - on each device - is
4015 	 * enough that we never risk over-writing.
4016 	 */
4017 
4018 	unsigned long before_length, after_length;
4019 	sector_t min_offset_diff = 0;
4020 	int first = 1;
4021 	struct geom new;
4022 	struct r10conf *conf = mddev->private;
4023 	struct md_rdev *rdev;
4024 	int spares = 0;
4025 	int ret;
4026 
4027 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4028 		return -EBUSY;
4029 
4030 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4031 		return -EINVAL;
4032 
4033 	before_length = ((1 << conf->prev.chunk_shift) *
4034 			 conf->prev.far_copies);
4035 	after_length = ((1 << conf->geo.chunk_shift) *
4036 			conf->geo.far_copies);
4037 
4038 	rdev_for_each(rdev, mddev) {
4039 		if (!test_bit(In_sync, &rdev->flags)
4040 		    && !test_bit(Faulty, &rdev->flags))
4041 			spares++;
4042 		if (rdev->raid_disk >= 0) {
4043 			long long diff = (rdev->new_data_offset
4044 					  - rdev->data_offset);
4045 			if (!mddev->reshape_backwards)
4046 				diff = -diff;
4047 			if (diff < 0)
4048 				diff = 0;
4049 			if (first || diff < min_offset_diff)
4050 				min_offset_diff = diff;
4051 		}
4052 	}
4053 
4054 	if (max(before_length, after_length) > min_offset_diff)
4055 		return -EINVAL;
4056 
4057 	if (spares < mddev->delta_disks)
4058 		return -EINVAL;
4059 
4060 	conf->offset_diff = min_offset_diff;
4061 	spin_lock_irq(&conf->device_lock);
4062 	if (conf->mirrors_new) {
4063 		memcpy(conf->mirrors_new, conf->mirrors,
4064 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4065 		smp_mb();
4066 		kfree(conf->mirrors_old);
4067 		conf->mirrors_old = conf->mirrors;
4068 		conf->mirrors = conf->mirrors_new;
4069 		conf->mirrors_new = NULL;
4070 	}
4071 	setup_geo(&conf->geo, mddev, geo_start);
4072 	smp_mb();
4073 	if (mddev->reshape_backwards) {
4074 		sector_t size = raid10_size(mddev, 0, 0);
4075 		if (size < mddev->array_sectors) {
4076 			spin_unlock_irq(&conf->device_lock);
4077 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4078 			       mdname(mddev));
4079 			return -EINVAL;
4080 		}
4081 		mddev->resync_max_sectors = size;
4082 		conf->reshape_progress = size;
4083 	} else
4084 		conf->reshape_progress = 0;
4085 	conf->reshape_safe = conf->reshape_progress;
4086 	spin_unlock_irq(&conf->device_lock);
4087 
4088 	if (mddev->delta_disks && mddev->bitmap) {
4089 		ret = bitmap_resize(mddev->bitmap,
4090 				    raid10_size(mddev, 0,
4091 						conf->geo.raid_disks),
4092 				    0, 0);
4093 		if (ret)
4094 			goto abort;
4095 	}
4096 	if (mddev->delta_disks > 0) {
4097 		rdev_for_each(rdev, mddev)
4098 			if (rdev->raid_disk < 0 &&
4099 			    !test_bit(Faulty, &rdev->flags)) {
4100 				if (raid10_add_disk(mddev, rdev) == 0) {
4101 					if (rdev->raid_disk >=
4102 					    conf->prev.raid_disks)
4103 						set_bit(In_sync, &rdev->flags);
4104 					else
4105 						rdev->recovery_offset = 0;
4106 
4107 					if (sysfs_link_rdev(mddev, rdev))
4108 						/* Failure here  is OK */;
4109 				}
4110 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4111 				   && !test_bit(Faulty, &rdev->flags)) {
4112 				/* This is a spare that was manually added */
4113 				set_bit(In_sync, &rdev->flags);
4114 			}
4115 	}
4116 	/* When a reshape changes the number of devices,
4117 	 * ->degraded is measured against the larger of the
4118 	 * pre and  post numbers.
4119 	 */
4120 	spin_lock_irq(&conf->device_lock);
4121 	mddev->degraded = calc_degraded(conf);
4122 	spin_unlock_irq(&conf->device_lock);
4123 	mddev->raid_disks = conf->geo.raid_disks;
4124 	mddev->reshape_position = conf->reshape_progress;
4125 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4126 
4127 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4128 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4129 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4130 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4131 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4132 
4133 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4134 						"reshape");
4135 	if (!mddev->sync_thread) {
4136 		ret = -EAGAIN;
4137 		goto abort;
4138 	}
4139 	conf->reshape_checkpoint = jiffies;
4140 	md_wakeup_thread(mddev->sync_thread);
4141 	md_new_event(mddev);
4142 	return 0;
4143 
4144 abort:
4145 	mddev->recovery = 0;
4146 	spin_lock_irq(&conf->device_lock);
4147 	conf->geo = conf->prev;
4148 	mddev->raid_disks = conf->geo.raid_disks;
4149 	rdev_for_each(rdev, mddev)
4150 		rdev->new_data_offset = rdev->data_offset;
4151 	smp_wmb();
4152 	conf->reshape_progress = MaxSector;
4153 	conf->reshape_safe = MaxSector;
4154 	mddev->reshape_position = MaxSector;
4155 	spin_unlock_irq(&conf->device_lock);
4156 	return ret;
4157 }
4158 
4159 /* Calculate the last device-address that could contain
4160  * any block from the chunk that includes the array-address 's'
4161  * and report the next address.
4162  * i.e. the address returned will be chunk-aligned and after
4163  * any data that is in the chunk containing 's'.
4164  */
4165 static sector_t last_dev_address(sector_t s, struct geom *geo)
4166 {
4167 	s = (s | geo->chunk_mask) + 1;
4168 	s >>= geo->chunk_shift;
4169 	s *= geo->near_copies;
4170 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4171 	s *= geo->far_copies;
4172 	s <<= geo->chunk_shift;
4173 	return s;
4174 }
4175 
4176 /* Calculate the first device-address that could contain
4177  * any block from the chunk that includes the array-address 's'.
4178  * This too will be the start of a chunk
4179  */
4180 static sector_t first_dev_address(sector_t s, struct geom *geo)
4181 {
4182 	s >>= geo->chunk_shift;
4183 	s *= geo->near_copies;
4184 	sector_div(s, geo->raid_disks);
4185 	s *= geo->far_copies;
4186 	s <<= geo->chunk_shift;
4187 	return s;
4188 }
4189 
4190 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4191 				int *skipped)
4192 {
4193 	/* We simply copy at most one chunk (smallest of old and new)
4194 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4195 	 * or we hit a bad block or something.
4196 	 * This might mean we pause for normal IO in the middle of
4197 	 * a chunk, but that is not a problem as mddev->reshape_position
4198 	 * can record any location.
4199 	 *
4200 	 * If we will want to write to a location that isn't
4201 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4202 	 * we need to flush all reshape requests and update the metadata.
4203 	 *
4204 	 * When reshaping forwards (e.g. to more devices), we interpret
4205 	 * 'safe' as the earliest block which might not have been copied
4206 	 * down yet.  We divide this by previous stripe size and multiply
4207 	 * by previous stripe length to get lowest device offset that we
4208 	 * cannot write to yet.
4209 	 * We interpret 'sector_nr' as an address that we want to write to.
4210 	 * From this we use last_device_address() to find where we might
4211 	 * write to, and first_device_address on the  'safe' position.
4212 	 * If this 'next' write position is after the 'safe' position,
4213 	 * we must update the metadata to increase the 'safe' position.
4214 	 *
4215 	 * When reshaping backwards, we round in the opposite direction
4216 	 * and perform the reverse test:  next write position must not be
4217 	 * less than current safe position.
4218 	 *
4219 	 * In all this the minimum difference in data offsets
4220 	 * (conf->offset_diff - always positive) allows a bit of slack,
4221 	 * so next can be after 'safe', but not by more than offset_diff
4222 	 *
4223 	 * We need to prepare all the bios here before we start any IO
4224 	 * to ensure the size we choose is acceptable to all devices.
4225 	 * The means one for each copy for write-out and an extra one for
4226 	 * read-in.
4227 	 * We store the read-in bio in ->master_bio and the others in
4228 	 * ->devs[x].bio and ->devs[x].repl_bio.
4229 	 */
4230 	struct r10conf *conf = mddev->private;
4231 	struct r10bio *r10_bio;
4232 	sector_t next, safe, last;
4233 	int max_sectors;
4234 	int nr_sectors;
4235 	int s;
4236 	struct md_rdev *rdev;
4237 	int need_flush = 0;
4238 	struct bio *blist;
4239 	struct bio *bio, *read_bio;
4240 	int sectors_done = 0;
4241 
4242 	if (sector_nr == 0) {
4243 		/* If restarting in the middle, skip the initial sectors */
4244 		if (mddev->reshape_backwards &&
4245 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4246 			sector_nr = (raid10_size(mddev, 0, 0)
4247 				     - conf->reshape_progress);
4248 		} else if (!mddev->reshape_backwards &&
4249 			   conf->reshape_progress > 0)
4250 			sector_nr = conf->reshape_progress;
4251 		if (sector_nr) {
4252 			mddev->curr_resync_completed = sector_nr;
4253 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4254 			*skipped = 1;
4255 			return sector_nr;
4256 		}
4257 	}
4258 
4259 	/* We don't use sector_nr to track where we are up to
4260 	 * as that doesn't work well for ->reshape_backwards.
4261 	 * So just use ->reshape_progress.
4262 	 */
4263 	if (mddev->reshape_backwards) {
4264 		/* 'next' is the earliest device address that we might
4265 		 * write to for this chunk in the new layout
4266 		 */
4267 		next = first_dev_address(conf->reshape_progress - 1,
4268 					 &conf->geo);
4269 
4270 		/* 'safe' is the last device address that we might read from
4271 		 * in the old layout after a restart
4272 		 */
4273 		safe = last_dev_address(conf->reshape_safe - 1,
4274 					&conf->prev);
4275 
4276 		if (next + conf->offset_diff < safe)
4277 			need_flush = 1;
4278 
4279 		last = conf->reshape_progress - 1;
4280 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4281 					       & conf->prev.chunk_mask);
4282 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4283 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4284 	} else {
4285 		/* 'next' is after the last device address that we
4286 		 * might write to for this chunk in the new layout
4287 		 */
4288 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4289 
4290 		/* 'safe' is the earliest device address that we might
4291 		 * read from in the old layout after a restart
4292 		 */
4293 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4294 
4295 		/* Need to update metadata if 'next' might be beyond 'safe'
4296 		 * as that would possibly corrupt data
4297 		 */
4298 		if (next > safe + conf->offset_diff)
4299 			need_flush = 1;
4300 
4301 		sector_nr = conf->reshape_progress;
4302 		last  = sector_nr | (conf->geo.chunk_mask
4303 				     & conf->prev.chunk_mask);
4304 
4305 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4306 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4307 	}
4308 
4309 	if (need_flush ||
4310 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4311 		/* Need to update reshape_position in metadata */
4312 		wait_barrier(conf);
4313 		mddev->reshape_position = conf->reshape_progress;
4314 		if (mddev->reshape_backwards)
4315 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4316 				- conf->reshape_progress;
4317 		else
4318 			mddev->curr_resync_completed = conf->reshape_progress;
4319 		conf->reshape_checkpoint = jiffies;
4320 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4321 		md_wakeup_thread(mddev->thread);
4322 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4323 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4324 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4325 			allow_barrier(conf);
4326 			return sectors_done;
4327 		}
4328 		conf->reshape_safe = mddev->reshape_position;
4329 		allow_barrier(conf);
4330 	}
4331 
4332 read_more:
4333 	/* Now schedule reads for blocks from sector_nr to last */
4334 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4335 	r10_bio->state = 0;
4336 	raise_barrier(conf, sectors_done != 0);
4337 	atomic_set(&r10_bio->remaining, 0);
4338 	r10_bio->mddev = mddev;
4339 	r10_bio->sector = sector_nr;
4340 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4341 	r10_bio->sectors = last - sector_nr + 1;
4342 	rdev = read_balance(conf, r10_bio, &max_sectors);
4343 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4344 
4345 	if (!rdev) {
4346 		/* Cannot read from here, so need to record bad blocks
4347 		 * on all the target devices.
4348 		 */
4349 		// FIXME
4350 		mempool_free(r10_bio, conf->r10buf_pool);
4351 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4352 		return sectors_done;
4353 	}
4354 
4355 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4356 
4357 	read_bio->bi_bdev = rdev->bdev;
4358 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4359 			       + rdev->data_offset);
4360 	read_bio->bi_private = r10_bio;
4361 	read_bio->bi_end_io = end_sync_read;
4362 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4363 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4364 	read_bio->bi_error = 0;
4365 	read_bio->bi_vcnt = 0;
4366 	read_bio->bi_iter.bi_size = 0;
4367 	r10_bio->master_bio = read_bio;
4368 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4369 
4370 	/* Now find the locations in the new layout */
4371 	__raid10_find_phys(&conf->geo, r10_bio);
4372 
4373 	blist = read_bio;
4374 	read_bio->bi_next = NULL;
4375 
4376 	rcu_read_lock();
4377 	for (s = 0; s < conf->copies*2; s++) {
4378 		struct bio *b;
4379 		int d = r10_bio->devs[s/2].devnum;
4380 		struct md_rdev *rdev2;
4381 		if (s&1) {
4382 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4383 			b = r10_bio->devs[s/2].repl_bio;
4384 		} else {
4385 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4386 			b = r10_bio->devs[s/2].bio;
4387 		}
4388 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4389 			continue;
4390 
4391 		bio_reset(b);
4392 		b->bi_bdev = rdev2->bdev;
4393 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4394 			rdev2->new_data_offset;
4395 		b->bi_private = r10_bio;
4396 		b->bi_end_io = end_reshape_write;
4397 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4398 		b->bi_next = blist;
4399 		blist = b;
4400 	}
4401 
4402 	/* Now add as many pages as possible to all of these bios. */
4403 
4404 	nr_sectors = 0;
4405 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4406 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4407 		int len = (max_sectors - s) << 9;
4408 		if (len > PAGE_SIZE)
4409 			len = PAGE_SIZE;
4410 		for (bio = blist; bio ; bio = bio->bi_next) {
4411 			struct bio *bio2;
4412 			if (bio_add_page(bio, page, len, 0))
4413 				continue;
4414 
4415 			/* Didn't fit, must stop */
4416 			for (bio2 = blist;
4417 			     bio2 && bio2 != bio;
4418 			     bio2 = bio2->bi_next) {
4419 				/* Remove last page from this bio */
4420 				bio2->bi_vcnt--;
4421 				bio2->bi_iter.bi_size -= len;
4422 				bio_clear_flag(bio2, BIO_SEG_VALID);
4423 			}
4424 			goto bio_full;
4425 		}
4426 		sector_nr += len >> 9;
4427 		nr_sectors += len >> 9;
4428 	}
4429 bio_full:
4430 	rcu_read_unlock();
4431 	r10_bio->sectors = nr_sectors;
4432 
4433 	/* Now submit the read */
4434 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4435 	atomic_inc(&r10_bio->remaining);
4436 	read_bio->bi_next = NULL;
4437 	generic_make_request(read_bio);
4438 	sector_nr += nr_sectors;
4439 	sectors_done += nr_sectors;
4440 	if (sector_nr <= last)
4441 		goto read_more;
4442 
4443 	/* Now that we have done the whole section we can
4444 	 * update reshape_progress
4445 	 */
4446 	if (mddev->reshape_backwards)
4447 		conf->reshape_progress -= sectors_done;
4448 	else
4449 		conf->reshape_progress += sectors_done;
4450 
4451 	return sectors_done;
4452 }
4453 
4454 static void end_reshape_request(struct r10bio *r10_bio);
4455 static int handle_reshape_read_error(struct mddev *mddev,
4456 				     struct r10bio *r10_bio);
4457 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4458 {
4459 	/* Reshape read completed.  Hopefully we have a block
4460 	 * to write out.
4461 	 * If we got a read error then we do sync 1-page reads from
4462 	 * elsewhere until we find the data - or give up.
4463 	 */
4464 	struct r10conf *conf = mddev->private;
4465 	int s;
4466 
4467 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4468 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4469 			/* Reshape has been aborted */
4470 			md_done_sync(mddev, r10_bio->sectors, 0);
4471 			return;
4472 		}
4473 
4474 	/* We definitely have the data in the pages, schedule the
4475 	 * writes.
4476 	 */
4477 	atomic_set(&r10_bio->remaining, 1);
4478 	for (s = 0; s < conf->copies*2; s++) {
4479 		struct bio *b;
4480 		int d = r10_bio->devs[s/2].devnum;
4481 		struct md_rdev *rdev;
4482 		rcu_read_lock();
4483 		if (s&1) {
4484 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4485 			b = r10_bio->devs[s/2].repl_bio;
4486 		} else {
4487 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4488 			b = r10_bio->devs[s/2].bio;
4489 		}
4490 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4491 			rcu_read_unlock();
4492 			continue;
4493 		}
4494 		atomic_inc(&rdev->nr_pending);
4495 		rcu_read_unlock();
4496 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4497 		atomic_inc(&r10_bio->remaining);
4498 		b->bi_next = NULL;
4499 		generic_make_request(b);
4500 	}
4501 	end_reshape_request(r10_bio);
4502 }
4503 
4504 static void end_reshape(struct r10conf *conf)
4505 {
4506 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4507 		return;
4508 
4509 	spin_lock_irq(&conf->device_lock);
4510 	conf->prev = conf->geo;
4511 	md_finish_reshape(conf->mddev);
4512 	smp_wmb();
4513 	conf->reshape_progress = MaxSector;
4514 	conf->reshape_safe = MaxSector;
4515 	spin_unlock_irq(&conf->device_lock);
4516 
4517 	/* read-ahead size must cover two whole stripes, which is
4518 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4519 	 */
4520 	if (conf->mddev->queue) {
4521 		int stripe = conf->geo.raid_disks *
4522 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4523 		stripe /= conf->geo.near_copies;
4524 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4525 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4526 	}
4527 	conf->fullsync = 0;
4528 }
4529 
4530 static int handle_reshape_read_error(struct mddev *mddev,
4531 				     struct r10bio *r10_bio)
4532 {
4533 	/* Use sync reads to get the blocks from somewhere else */
4534 	int sectors = r10_bio->sectors;
4535 	struct r10conf *conf = mddev->private;
4536 	struct {
4537 		struct r10bio r10_bio;
4538 		struct r10dev devs[conf->copies];
4539 	} on_stack;
4540 	struct r10bio *r10b = &on_stack.r10_bio;
4541 	int slot = 0;
4542 	int idx = 0;
4543 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4544 
4545 	r10b->sector = r10_bio->sector;
4546 	__raid10_find_phys(&conf->prev, r10b);
4547 
4548 	while (sectors) {
4549 		int s = sectors;
4550 		int success = 0;
4551 		int first_slot = slot;
4552 
4553 		if (s > (PAGE_SIZE >> 9))
4554 			s = PAGE_SIZE >> 9;
4555 
4556 		rcu_read_lock();
4557 		while (!success) {
4558 			int d = r10b->devs[slot].devnum;
4559 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4560 			sector_t addr;
4561 			if (rdev == NULL ||
4562 			    test_bit(Faulty, &rdev->flags) ||
4563 			    !test_bit(In_sync, &rdev->flags))
4564 				goto failed;
4565 
4566 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4567 			atomic_inc(&rdev->nr_pending);
4568 			rcu_read_unlock();
4569 			success = sync_page_io(rdev,
4570 					       addr,
4571 					       s << 9,
4572 					       bvec[idx].bv_page,
4573 					       REQ_OP_READ, 0, false);
4574 			rdev_dec_pending(rdev, mddev);
4575 			rcu_read_lock();
4576 			if (success)
4577 				break;
4578 		failed:
4579 			slot++;
4580 			if (slot >= conf->copies)
4581 				slot = 0;
4582 			if (slot == first_slot)
4583 				break;
4584 		}
4585 		rcu_read_unlock();
4586 		if (!success) {
4587 			/* couldn't read this block, must give up */
4588 			set_bit(MD_RECOVERY_INTR,
4589 				&mddev->recovery);
4590 			return -EIO;
4591 		}
4592 		sectors -= s;
4593 		idx++;
4594 	}
4595 	return 0;
4596 }
4597 
4598 static void end_reshape_write(struct bio *bio)
4599 {
4600 	struct r10bio *r10_bio = bio->bi_private;
4601 	struct mddev *mddev = r10_bio->mddev;
4602 	struct r10conf *conf = mddev->private;
4603 	int d;
4604 	int slot;
4605 	int repl;
4606 	struct md_rdev *rdev = NULL;
4607 
4608 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4609 	if (repl)
4610 		rdev = conf->mirrors[d].replacement;
4611 	if (!rdev) {
4612 		smp_mb();
4613 		rdev = conf->mirrors[d].rdev;
4614 	}
4615 
4616 	if (bio->bi_error) {
4617 		/* FIXME should record badblock */
4618 		md_error(mddev, rdev);
4619 	}
4620 
4621 	rdev_dec_pending(rdev, mddev);
4622 	end_reshape_request(r10_bio);
4623 }
4624 
4625 static void end_reshape_request(struct r10bio *r10_bio)
4626 {
4627 	if (!atomic_dec_and_test(&r10_bio->remaining))
4628 		return;
4629 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4630 	bio_put(r10_bio->master_bio);
4631 	put_buf(r10_bio);
4632 }
4633 
4634 static void raid10_finish_reshape(struct mddev *mddev)
4635 {
4636 	struct r10conf *conf = mddev->private;
4637 
4638 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4639 		return;
4640 
4641 	if (mddev->delta_disks > 0) {
4642 		sector_t size = raid10_size(mddev, 0, 0);
4643 		md_set_array_sectors(mddev, size);
4644 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4645 			mddev->recovery_cp = mddev->resync_max_sectors;
4646 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4647 		}
4648 		mddev->resync_max_sectors = size;
4649 		if (mddev->queue) {
4650 			set_capacity(mddev->gendisk, mddev->array_sectors);
4651 			revalidate_disk(mddev->gendisk);
4652 		}
4653 	} else {
4654 		int d;
4655 		rcu_read_lock();
4656 		for (d = conf->geo.raid_disks ;
4657 		     d < conf->geo.raid_disks - mddev->delta_disks;
4658 		     d++) {
4659 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4660 			if (rdev)
4661 				clear_bit(In_sync, &rdev->flags);
4662 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4663 			if (rdev)
4664 				clear_bit(In_sync, &rdev->flags);
4665 		}
4666 		rcu_read_unlock();
4667 	}
4668 	mddev->layout = mddev->new_layout;
4669 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4670 	mddev->reshape_position = MaxSector;
4671 	mddev->delta_disks = 0;
4672 	mddev->reshape_backwards = 0;
4673 }
4674 
4675 static struct md_personality raid10_personality =
4676 {
4677 	.name		= "raid10",
4678 	.level		= 10,
4679 	.owner		= THIS_MODULE,
4680 	.make_request	= raid10_make_request,
4681 	.run		= raid10_run,
4682 	.free		= raid10_free,
4683 	.status		= raid10_status,
4684 	.error_handler	= raid10_error,
4685 	.hot_add_disk	= raid10_add_disk,
4686 	.hot_remove_disk= raid10_remove_disk,
4687 	.spare_active	= raid10_spare_active,
4688 	.sync_request	= raid10_sync_request,
4689 	.quiesce	= raid10_quiesce,
4690 	.size		= raid10_size,
4691 	.resize		= raid10_resize,
4692 	.takeover	= raid10_takeover,
4693 	.check_reshape	= raid10_check_reshape,
4694 	.start_reshape	= raid10_start_reshape,
4695 	.finish_reshape	= raid10_finish_reshape,
4696 	.congested	= raid10_congested,
4697 };
4698 
4699 static int __init raid_init(void)
4700 {
4701 	return register_md_personality(&raid10_personality);
4702 }
4703 
4704 static void raid_exit(void)
4705 {
4706 	unregister_md_personality(&raid10_personality);
4707 }
4708 
4709 module_init(raid_init);
4710 module_exit(raid_exit);
4711 MODULE_LICENSE("GPL");
4712 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4713 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4714 MODULE_ALIAS("md-raid10");
4715 MODULE_ALIAS("md-level-10");
4716 
4717 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4718