xref: /openbmc/linux/drivers/md/raid10.c (revision e9839402)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *    use_far_sets_bugfixed (stored in bit 18 of layout )
43  *
44  * The data to be stored is divided into chunks using chunksize.  Each device
45  * is divided into far_copies sections.   In each section, chunks are laid out
46  * in a style similar to raid0, but near_copies copies of each chunk is stored
47  * (each on a different drive).  The starting device for each section is offset
48  * near_copies from the starting device of the previous section.  Thus there
49  * are (near_copies * far_copies) of each chunk, and each is on a different
50  * drive.  near_copies and far_copies must be at least one, and their product
51  * is at most raid_disks.
52  *
53  * If far_offset is true, then the far_copies are handled a bit differently.
54  * The copies are still in different stripes, but instead of being very far
55  * apart on disk, there are adjacent stripes.
56  *
57  * The far and offset algorithms are handled slightly differently if
58  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
59  * sets that are (near_copies * far_copies) in size.  The far copied stripes
60  * are still shifted by 'near_copies' devices, but this shifting stays confined
61  * to the set rather than the entire array.  This is done to improve the number
62  * of device combinations that can fail without causing the array to fail.
63  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64  * on a device):
65  *    A B C D    A B C D E
66  *      ...         ...
67  *    D A B C    E A B C D
68  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69  *    [A B] [C D]    [A B] [C D E]
70  *    |...| |...|    |...| | ... |
71  *    [B A] [D C]    [B A] [E C D]
72  */
73 
74 /*
75  * Number of guaranteed r10bios in case of extreme VM load:
76  */
77 #define	NR_RAID10_BIOS 256
78 
79 /* when we get a read error on a read-only array, we redirect to another
80  * device without failing the first device, or trying to over-write to
81  * correct the read error.  To keep track of bad blocks on a per-bio
82  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83  */
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86  * bad-block marking which must be done from process context.  So we record
87  * the success by setting devs[n].bio to IO_MADE_GOOD
88  */
89 #define IO_MADE_GOOD ((struct bio *)2)
90 
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92 
93 /* When there are this many requests queued to be written by
94  * the raid10 thread, we become 'congested' to provide back-pressure
95  * for writeback.
96  */
97 static int max_queued_requests = 1024;
98 
99 static void allow_barrier(struct r10conf *conf);
100 static void lower_barrier(struct r10conf *conf);
101 static int _enough(struct r10conf *conf, int previous, int ignore);
102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103 				int *skipped);
104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105 static void end_reshape_write(struct bio *bio);
106 static void end_reshape(struct r10conf *conf);
107 
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110 	struct r10conf *conf = data;
111 	int size = offsetof(struct r10bio, devs[conf->copies]);
112 
113 	/* allocate a r10bio with room for raid_disks entries in the
114 	 * bios array */
115 	return kzalloc(size, gfp_flags);
116 }
117 
118 static void r10bio_pool_free(void *r10_bio, void *data)
119 {
120 	kfree(r10_bio);
121 }
122 
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
130 
131 /*
132  * When performing a resync, we need to read and compare, so
133  * we need as many pages are there are copies.
134  * When performing a recovery, we need 2 bios, one for read,
135  * one for write (we recover only one drive per r10buf)
136  *
137  */
138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139 {
140 	struct r10conf *conf = data;
141 	struct page *page;
142 	struct r10bio *r10_bio;
143 	struct bio *bio;
144 	int i, j;
145 	int nalloc;
146 
147 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148 	if (!r10_bio)
149 		return NULL;
150 
151 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153 		nalloc = conf->copies; /* resync */
154 	else
155 		nalloc = 2; /* recovery */
156 
157 	/*
158 	 * Allocate bios.
159 	 */
160 	for (j = nalloc ; j-- ; ) {
161 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162 		if (!bio)
163 			goto out_free_bio;
164 		r10_bio->devs[j].bio = bio;
165 		if (!conf->have_replacement)
166 			continue;
167 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168 		if (!bio)
169 			goto out_free_bio;
170 		r10_bio->devs[j].repl_bio = bio;
171 	}
172 	/*
173 	 * Allocate RESYNC_PAGES data pages and attach them
174 	 * where needed.
175 	 */
176 	for (j = 0 ; j < nalloc; j++) {
177 		struct bio *rbio = r10_bio->devs[j].repl_bio;
178 		bio = r10_bio->devs[j].bio;
179 		for (i = 0; i < RESYNC_PAGES; i++) {
180 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181 					       &conf->mddev->recovery)) {
182 				/* we can share bv_page's during recovery
183 				 * and reshape */
184 				struct bio *rbio = r10_bio->devs[0].bio;
185 				page = rbio->bi_io_vec[i].bv_page;
186 				get_page(page);
187 			} else
188 				page = alloc_page(gfp_flags);
189 			if (unlikely(!page))
190 				goto out_free_pages;
191 
192 			bio->bi_io_vec[i].bv_page = page;
193 			if (rbio)
194 				rbio->bi_io_vec[i].bv_page = page;
195 		}
196 	}
197 
198 	return r10_bio;
199 
200 out_free_pages:
201 	for ( ; i > 0 ; i--)
202 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
203 	while (j--)
204 		for (i = 0; i < RESYNC_PAGES ; i++)
205 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206 	j = 0;
207 out_free_bio:
208 	for ( ; j < nalloc; j++) {
209 		if (r10_bio->devs[j].bio)
210 			bio_put(r10_bio->devs[j].bio);
211 		if (r10_bio->devs[j].repl_bio)
212 			bio_put(r10_bio->devs[j].repl_bio);
213 	}
214 	r10bio_pool_free(r10_bio, conf);
215 	return NULL;
216 }
217 
218 static void r10buf_pool_free(void *__r10_bio, void *data)
219 {
220 	int i;
221 	struct r10conf *conf = data;
222 	struct r10bio *r10bio = __r10_bio;
223 	int j;
224 
225 	for (j=0; j < conf->copies; j++) {
226 		struct bio *bio = r10bio->devs[j].bio;
227 		if (bio) {
228 			for (i = 0; i < RESYNC_PAGES; i++) {
229 				safe_put_page(bio->bi_io_vec[i].bv_page);
230 				bio->bi_io_vec[i].bv_page = NULL;
231 			}
232 			bio_put(bio);
233 		}
234 		bio = r10bio->devs[j].repl_bio;
235 		if (bio)
236 			bio_put(bio);
237 	}
238 	r10bio_pool_free(r10bio, conf);
239 }
240 
241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
242 {
243 	int i;
244 
245 	for (i = 0; i < conf->copies; i++) {
246 		struct bio **bio = & r10_bio->devs[i].bio;
247 		if (!BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 		bio = &r10_bio->devs[i].repl_bio;
251 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252 			bio_put(*bio);
253 		*bio = NULL;
254 	}
255 }
256 
257 static void free_r10bio(struct r10bio *r10_bio)
258 {
259 	struct r10conf *conf = r10_bio->mddev->private;
260 
261 	put_all_bios(conf, r10_bio);
262 	mempool_free(r10_bio, conf->r10bio_pool);
263 }
264 
265 static void put_buf(struct r10bio *r10_bio)
266 {
267 	struct r10conf *conf = r10_bio->mddev->private;
268 
269 	mempool_free(r10_bio, conf->r10buf_pool);
270 
271 	lower_barrier(conf);
272 }
273 
274 static void reschedule_retry(struct r10bio *r10_bio)
275 {
276 	unsigned long flags;
277 	struct mddev *mddev = r10_bio->mddev;
278 	struct r10conf *conf = mddev->private;
279 
280 	spin_lock_irqsave(&conf->device_lock, flags);
281 	list_add(&r10_bio->retry_list, &conf->retry_list);
282 	conf->nr_queued ++;
283 	spin_unlock_irqrestore(&conf->device_lock, flags);
284 
285 	/* wake up frozen array... */
286 	wake_up(&conf->wait_barrier);
287 
288 	md_wakeup_thread(mddev->thread);
289 }
290 
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void raid_end_bio_io(struct r10bio *r10_bio)
297 {
298 	struct bio *bio = r10_bio->master_bio;
299 	int done;
300 	struct r10conf *conf = r10_bio->mddev->private;
301 
302 	if (bio->bi_phys_segments) {
303 		unsigned long flags;
304 		spin_lock_irqsave(&conf->device_lock, flags);
305 		bio->bi_phys_segments--;
306 		done = (bio->bi_phys_segments == 0);
307 		spin_unlock_irqrestore(&conf->device_lock, flags);
308 	} else
309 		done = 1;
310 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311 		bio->bi_error = -EIO;
312 	if (done) {
313 		bio_endio(bio);
314 		/*
315 		 * Wake up any possible resync thread that waits for the device
316 		 * to go idle.
317 		 */
318 		allow_barrier(conf);
319 	}
320 	free_r10bio(r10_bio);
321 }
322 
323 /*
324  * Update disk head position estimator based on IRQ completion info.
325  */
326 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327 {
328 	struct r10conf *conf = r10_bio->mddev->private;
329 
330 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331 		r10_bio->devs[slot].addr + (r10_bio->sectors);
332 }
333 
334 /*
335  * Find the disk number which triggered given bio
336  */
337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338 			 struct bio *bio, int *slotp, int *replp)
339 {
340 	int slot;
341 	int repl = 0;
342 
343 	for (slot = 0; slot < conf->copies; slot++) {
344 		if (r10_bio->devs[slot].bio == bio)
345 			break;
346 		if (r10_bio->devs[slot].repl_bio == bio) {
347 			repl = 1;
348 			break;
349 		}
350 	}
351 
352 	BUG_ON(slot == conf->copies);
353 	update_head_pos(slot, r10_bio);
354 
355 	if (slotp)
356 		*slotp = slot;
357 	if (replp)
358 		*replp = repl;
359 	return r10_bio->devs[slot].devnum;
360 }
361 
362 static void raid10_end_read_request(struct bio *bio)
363 {
364 	int uptodate = !bio->bi_error;
365 	struct r10bio *r10_bio = bio->bi_private;
366 	int slot, dev;
367 	struct md_rdev *rdev;
368 	struct r10conf *conf = r10_bio->mddev->private;
369 
370 	slot = r10_bio->read_slot;
371 	dev = r10_bio->devs[slot].devnum;
372 	rdev = r10_bio->devs[slot].rdev;
373 	/*
374 	 * this branch is our 'one mirror IO has finished' event handler:
375 	 */
376 	update_head_pos(slot, r10_bio);
377 
378 	if (uptodate) {
379 		/*
380 		 * Set R10BIO_Uptodate in our master bio, so that
381 		 * we will return a good error code to the higher
382 		 * levels even if IO on some other mirrored buffer fails.
383 		 *
384 		 * The 'master' represents the composite IO operation to
385 		 * user-side. So if something waits for IO, then it will
386 		 * wait for the 'master' bio.
387 		 */
388 		set_bit(R10BIO_Uptodate, &r10_bio->state);
389 	} else {
390 		/* If all other devices that store this block have
391 		 * failed, we want to return the error upwards rather
392 		 * than fail the last device.  Here we redefine
393 		 * "uptodate" to mean "Don't want to retry"
394 		 */
395 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 			     rdev->raid_disk))
397 			uptodate = 1;
398 	}
399 	if (uptodate) {
400 		raid_end_bio_io(r10_bio);
401 		rdev_dec_pending(rdev, conf->mddev);
402 	} else {
403 		/*
404 		 * oops, read error - keep the refcount on the rdev
405 		 */
406 		char b[BDEVNAME_SIZE];
407 		printk_ratelimited(KERN_ERR
408 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
409 				   mdname(conf->mddev),
410 				   bdevname(rdev->bdev, b),
411 				   (unsigned long long)r10_bio->sector);
412 		set_bit(R10BIO_ReadError, &r10_bio->state);
413 		reschedule_retry(r10_bio);
414 	}
415 }
416 
417 static void close_write(struct r10bio *r10_bio)
418 {
419 	/* clear the bitmap if all writes complete successfully */
420 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 			r10_bio->sectors,
422 			!test_bit(R10BIO_Degraded, &r10_bio->state),
423 			0);
424 	md_write_end(r10_bio->mddev);
425 }
426 
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429 	if (atomic_dec_and_test(&r10_bio->remaining)) {
430 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 			reschedule_retry(r10_bio);
432 		else {
433 			close_write(r10_bio);
434 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 				reschedule_retry(r10_bio);
436 			else
437 				raid_end_bio_io(r10_bio);
438 		}
439 	}
440 }
441 
442 static void raid10_end_write_request(struct bio *bio)
443 {
444 	struct r10bio *r10_bio = bio->bi_private;
445 	int dev;
446 	int dec_rdev = 1;
447 	struct r10conf *conf = r10_bio->mddev->private;
448 	int slot, repl;
449 	struct md_rdev *rdev = NULL;
450 
451 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452 
453 	if (repl)
454 		rdev = conf->mirrors[dev].replacement;
455 	if (!rdev) {
456 		smp_rmb();
457 		repl = 0;
458 		rdev = conf->mirrors[dev].rdev;
459 	}
460 	/*
461 	 * this branch is our 'one mirror IO has finished' event handler:
462 	 */
463 	if (bio->bi_error) {
464 		if (repl)
465 			/* Never record new bad blocks to replacement,
466 			 * just fail it.
467 			 */
468 			md_error(rdev->mddev, rdev);
469 		else {
470 			set_bit(WriteErrorSeen,	&rdev->flags);
471 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 				set_bit(MD_RECOVERY_NEEDED,
473 					&rdev->mddev->recovery);
474 			set_bit(R10BIO_WriteError, &r10_bio->state);
475 			dec_rdev = 0;
476 		}
477 	} else {
478 		/*
479 		 * Set R10BIO_Uptodate in our master bio, so that
480 		 * we will return a good error code for to the higher
481 		 * levels even if IO on some other mirrored buffer fails.
482 		 *
483 		 * The 'master' represents the composite IO operation to
484 		 * user-side. So if something waits for IO, then it will
485 		 * wait for the 'master' bio.
486 		 */
487 		sector_t first_bad;
488 		int bad_sectors;
489 
490 		/*
491 		 * Do not set R10BIO_Uptodate if the current device is
492 		 * rebuilding or Faulty. This is because we cannot use
493 		 * such device for properly reading the data back (we could
494 		 * potentially use it, if the current write would have felt
495 		 * before rdev->recovery_offset, but for simplicity we don't
496 		 * check this here.
497 		 */
498 		if (test_bit(In_sync, &rdev->flags) &&
499 		    !test_bit(Faulty, &rdev->flags))
500 			set_bit(R10BIO_Uptodate, &r10_bio->state);
501 
502 		/* Maybe we can clear some bad blocks. */
503 		if (is_badblock(rdev,
504 				r10_bio->devs[slot].addr,
505 				r10_bio->sectors,
506 				&first_bad, &bad_sectors)) {
507 			bio_put(bio);
508 			if (repl)
509 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 			else
511 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
512 			dec_rdev = 0;
513 			set_bit(R10BIO_MadeGood, &r10_bio->state);
514 		}
515 	}
516 
517 	/*
518 	 *
519 	 * Let's see if all mirrored write operations have finished
520 	 * already.
521 	 */
522 	one_write_done(r10_bio);
523 	if (dec_rdev)
524 		rdev_dec_pending(rdev, conf->mddev);
525 }
526 
527 /*
528  * RAID10 layout manager
529  * As well as the chunksize and raid_disks count, there are two
530  * parameters: near_copies and far_copies.
531  * near_copies * far_copies must be <= raid_disks.
532  * Normally one of these will be 1.
533  * If both are 1, we get raid0.
534  * If near_copies == raid_disks, we get raid1.
535  *
536  * Chunks are laid out in raid0 style with near_copies copies of the
537  * first chunk, followed by near_copies copies of the next chunk and
538  * so on.
539  * If far_copies > 1, then after 1/far_copies of the array has been assigned
540  * as described above, we start again with a device offset of near_copies.
541  * So we effectively have another copy of the whole array further down all
542  * the drives, but with blocks on different drives.
543  * With this layout, and block is never stored twice on the one device.
544  *
545  * raid10_find_phys finds the sector offset of a given virtual sector
546  * on each device that it is on.
547  *
548  * raid10_find_virt does the reverse mapping, from a device and a
549  * sector offset to a virtual address
550  */
551 
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554 	int n,f;
555 	sector_t sector;
556 	sector_t chunk;
557 	sector_t stripe;
558 	int dev;
559 	int slot = 0;
560 	int last_far_set_start, last_far_set_size;
561 
562 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 	last_far_set_start *= geo->far_set_size;
564 
565 	last_far_set_size = geo->far_set_size;
566 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
567 
568 	/* now calculate first sector/dev */
569 	chunk = r10bio->sector >> geo->chunk_shift;
570 	sector = r10bio->sector & geo->chunk_mask;
571 
572 	chunk *= geo->near_copies;
573 	stripe = chunk;
574 	dev = sector_div(stripe, geo->raid_disks);
575 	if (geo->far_offset)
576 		stripe *= geo->far_copies;
577 
578 	sector += stripe << geo->chunk_shift;
579 
580 	/* and calculate all the others */
581 	for (n = 0; n < geo->near_copies; n++) {
582 		int d = dev;
583 		int set;
584 		sector_t s = sector;
585 		r10bio->devs[slot].devnum = d;
586 		r10bio->devs[slot].addr = s;
587 		slot++;
588 
589 		for (f = 1; f < geo->far_copies; f++) {
590 			set = d / geo->far_set_size;
591 			d += geo->near_copies;
592 
593 			if ((geo->raid_disks % geo->far_set_size) &&
594 			    (d > last_far_set_start)) {
595 				d -= last_far_set_start;
596 				d %= last_far_set_size;
597 				d += last_far_set_start;
598 			} else {
599 				d %= geo->far_set_size;
600 				d += geo->far_set_size * set;
601 			}
602 			s += geo->stride;
603 			r10bio->devs[slot].devnum = d;
604 			r10bio->devs[slot].addr = s;
605 			slot++;
606 		}
607 		dev++;
608 		if (dev >= geo->raid_disks) {
609 			dev = 0;
610 			sector += (geo->chunk_mask + 1);
611 		}
612 	}
613 }
614 
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617 	struct geom *geo = &conf->geo;
618 
619 	if (conf->reshape_progress != MaxSector &&
620 	    ((r10bio->sector >= conf->reshape_progress) !=
621 	     conf->mddev->reshape_backwards)) {
622 		set_bit(R10BIO_Previous, &r10bio->state);
623 		geo = &conf->prev;
624 	} else
625 		clear_bit(R10BIO_Previous, &r10bio->state);
626 
627 	__raid10_find_phys(geo, r10bio);
628 }
629 
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632 	sector_t offset, chunk, vchunk;
633 	/* Never use conf->prev as this is only called during resync
634 	 * or recovery, so reshape isn't happening
635 	 */
636 	struct geom *geo = &conf->geo;
637 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 	int far_set_size = geo->far_set_size;
639 	int last_far_set_start;
640 
641 	if (geo->raid_disks % geo->far_set_size) {
642 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 		last_far_set_start *= geo->far_set_size;
644 
645 		if (dev >= last_far_set_start) {
646 			far_set_size = geo->far_set_size;
647 			far_set_size += (geo->raid_disks % geo->far_set_size);
648 			far_set_start = last_far_set_start;
649 		}
650 	}
651 
652 	offset = sector & geo->chunk_mask;
653 	if (geo->far_offset) {
654 		int fc;
655 		chunk = sector >> geo->chunk_shift;
656 		fc = sector_div(chunk, geo->far_copies);
657 		dev -= fc * geo->near_copies;
658 		if (dev < far_set_start)
659 			dev += far_set_size;
660 	} else {
661 		while (sector >= geo->stride) {
662 			sector -= geo->stride;
663 			if (dev < (geo->near_copies + far_set_start))
664 				dev += far_set_size - geo->near_copies;
665 			else
666 				dev -= geo->near_copies;
667 		}
668 		chunk = sector >> geo->chunk_shift;
669 	}
670 	vchunk = chunk * geo->raid_disks + dev;
671 	sector_div(vchunk, geo->near_copies);
672 	return (vchunk << geo->chunk_shift) + offset;
673 }
674 
675 /*
676  * This routine returns the disk from which the requested read should
677  * be done. There is a per-array 'next expected sequential IO' sector
678  * number - if this matches on the next IO then we use the last disk.
679  * There is also a per-disk 'last know head position' sector that is
680  * maintained from IRQ contexts, both the normal and the resync IO
681  * completion handlers update this position correctly. If there is no
682  * perfect sequential match then we pick the disk whose head is closest.
683  *
684  * If there are 2 mirrors in the same 2 devices, performance degrades
685  * because position is mirror, not device based.
686  *
687  * The rdev for the device selected will have nr_pending incremented.
688  */
689 
690 /*
691  * FIXME: possibly should rethink readbalancing and do it differently
692  * depending on near_copies / far_copies geometry.
693  */
694 static struct md_rdev *read_balance(struct r10conf *conf,
695 				    struct r10bio *r10_bio,
696 				    int *max_sectors)
697 {
698 	const sector_t this_sector = r10_bio->sector;
699 	int disk, slot;
700 	int sectors = r10_bio->sectors;
701 	int best_good_sectors;
702 	sector_t new_distance, best_dist;
703 	struct md_rdev *best_rdev, *rdev = NULL;
704 	int do_balance;
705 	int best_slot;
706 	struct geom *geo = &conf->geo;
707 
708 	raid10_find_phys(conf, r10_bio);
709 	rcu_read_lock();
710 	sectors = r10_bio->sectors;
711 	best_slot = -1;
712 	best_rdev = NULL;
713 	best_dist = MaxSector;
714 	best_good_sectors = 0;
715 	do_balance = 1;
716 	/*
717 	 * Check if we can balance. We can balance on the whole
718 	 * device if no resync is going on (recovery is ok), or below
719 	 * the resync window. We take the first readable disk when
720 	 * above the resync window.
721 	 */
722 	if (conf->mddev->recovery_cp < MaxSector
723 	    && (this_sector + sectors >= conf->next_resync))
724 		do_balance = 0;
725 
726 	for (slot = 0; slot < conf->copies ; slot++) {
727 		sector_t first_bad;
728 		int bad_sectors;
729 		sector_t dev_sector;
730 
731 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
732 			continue;
733 		disk = r10_bio->devs[slot].devnum;
734 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
735 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
736 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
737 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
738 		if (rdev == NULL ||
739 		    test_bit(Faulty, &rdev->flags))
740 			continue;
741 		if (!test_bit(In_sync, &rdev->flags) &&
742 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
743 			continue;
744 
745 		dev_sector = r10_bio->devs[slot].addr;
746 		if (is_badblock(rdev, dev_sector, sectors,
747 				&first_bad, &bad_sectors)) {
748 			if (best_dist < MaxSector)
749 				/* Already have a better slot */
750 				continue;
751 			if (first_bad <= dev_sector) {
752 				/* Cannot read here.  If this is the
753 				 * 'primary' device, then we must not read
754 				 * beyond 'bad_sectors' from another device.
755 				 */
756 				bad_sectors -= (dev_sector - first_bad);
757 				if (!do_balance && sectors > bad_sectors)
758 					sectors = bad_sectors;
759 				if (best_good_sectors > sectors)
760 					best_good_sectors = sectors;
761 			} else {
762 				sector_t good_sectors =
763 					first_bad - dev_sector;
764 				if (good_sectors > best_good_sectors) {
765 					best_good_sectors = good_sectors;
766 					best_slot = slot;
767 					best_rdev = rdev;
768 				}
769 				if (!do_balance)
770 					/* Must read from here */
771 					break;
772 			}
773 			continue;
774 		} else
775 			best_good_sectors = sectors;
776 
777 		if (!do_balance)
778 			break;
779 
780 		/* This optimisation is debatable, and completely destroys
781 		 * sequential read speed for 'far copies' arrays.  So only
782 		 * keep it for 'near' arrays, and review those later.
783 		 */
784 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
785 			break;
786 
787 		/* for far > 1 always use the lowest address */
788 		if (geo->far_copies > 1)
789 			new_distance = r10_bio->devs[slot].addr;
790 		else
791 			new_distance = abs(r10_bio->devs[slot].addr -
792 					   conf->mirrors[disk].head_position);
793 		if (new_distance < best_dist) {
794 			best_dist = new_distance;
795 			best_slot = slot;
796 			best_rdev = rdev;
797 		}
798 	}
799 	if (slot >= conf->copies) {
800 		slot = best_slot;
801 		rdev = best_rdev;
802 	}
803 
804 	if (slot >= 0) {
805 		atomic_inc(&rdev->nr_pending);
806 		r10_bio->read_slot = slot;
807 	} else
808 		rdev = NULL;
809 	rcu_read_unlock();
810 	*max_sectors = best_good_sectors;
811 
812 	return rdev;
813 }
814 
815 static int raid10_congested(struct mddev *mddev, int bits)
816 {
817 	struct r10conf *conf = mddev->private;
818 	int i, ret = 0;
819 
820 	if ((bits & (1 << WB_async_congested)) &&
821 	    conf->pending_count >= max_queued_requests)
822 		return 1;
823 
824 	rcu_read_lock();
825 	for (i = 0;
826 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
827 		     && ret == 0;
828 	     i++) {
829 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
830 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
831 			struct request_queue *q = bdev_get_queue(rdev->bdev);
832 
833 			ret |= bdi_congested(&q->backing_dev_info, bits);
834 		}
835 	}
836 	rcu_read_unlock();
837 	return ret;
838 }
839 
840 static void flush_pending_writes(struct r10conf *conf)
841 {
842 	/* Any writes that have been queued but are awaiting
843 	 * bitmap updates get flushed here.
844 	 */
845 	spin_lock_irq(&conf->device_lock);
846 
847 	if (conf->pending_bio_list.head) {
848 		struct bio *bio;
849 		bio = bio_list_get(&conf->pending_bio_list);
850 		conf->pending_count = 0;
851 		spin_unlock_irq(&conf->device_lock);
852 		/* flush any pending bitmap writes to disk
853 		 * before proceeding w/ I/O */
854 		bitmap_unplug(conf->mddev->bitmap);
855 		wake_up(&conf->wait_barrier);
856 
857 		while (bio) { /* submit pending writes */
858 			struct bio *next = bio->bi_next;
859 			bio->bi_next = NULL;
860 			if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
861 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
862 				/* Just ignore it */
863 				bio_endio(bio);
864 			else
865 				generic_make_request(bio);
866 			bio = next;
867 		}
868 	} else
869 		spin_unlock_irq(&conf->device_lock);
870 }
871 
872 /* Barriers....
873  * Sometimes we need to suspend IO while we do something else,
874  * either some resync/recovery, or reconfigure the array.
875  * To do this we raise a 'barrier'.
876  * The 'barrier' is a counter that can be raised multiple times
877  * to count how many activities are happening which preclude
878  * normal IO.
879  * We can only raise the barrier if there is no pending IO.
880  * i.e. if nr_pending == 0.
881  * We choose only to raise the barrier if no-one is waiting for the
882  * barrier to go down.  This means that as soon as an IO request
883  * is ready, no other operations which require a barrier will start
884  * until the IO request has had a chance.
885  *
886  * So: regular IO calls 'wait_barrier'.  When that returns there
887  *    is no backgroup IO happening,  It must arrange to call
888  *    allow_barrier when it has finished its IO.
889  * backgroup IO calls must call raise_barrier.  Once that returns
890  *    there is no normal IO happeing.  It must arrange to call
891  *    lower_barrier when the particular background IO completes.
892  */
893 
894 static void raise_barrier(struct r10conf *conf, int force)
895 {
896 	BUG_ON(force && !conf->barrier);
897 	spin_lock_irq(&conf->resync_lock);
898 
899 	/* Wait until no block IO is waiting (unless 'force') */
900 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
901 			    conf->resync_lock);
902 
903 	/* block any new IO from starting */
904 	conf->barrier++;
905 
906 	/* Now wait for all pending IO to complete */
907 	wait_event_lock_irq(conf->wait_barrier,
908 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
909 			    conf->resync_lock);
910 
911 	spin_unlock_irq(&conf->resync_lock);
912 }
913 
914 static void lower_barrier(struct r10conf *conf)
915 {
916 	unsigned long flags;
917 	spin_lock_irqsave(&conf->resync_lock, flags);
918 	conf->barrier--;
919 	spin_unlock_irqrestore(&conf->resync_lock, flags);
920 	wake_up(&conf->wait_barrier);
921 }
922 
923 static void wait_barrier(struct r10conf *conf)
924 {
925 	spin_lock_irq(&conf->resync_lock);
926 	if (conf->barrier) {
927 		conf->nr_waiting++;
928 		/* Wait for the barrier to drop.
929 		 * However if there are already pending
930 		 * requests (preventing the barrier from
931 		 * rising completely), and the
932 		 * pre-process bio queue isn't empty,
933 		 * then don't wait, as we need to empty
934 		 * that queue to get the nr_pending
935 		 * count down.
936 		 */
937 		wait_event_lock_irq(conf->wait_barrier,
938 				    !conf->barrier ||
939 				    (atomic_read(&conf->nr_pending) &&
940 				     current->bio_list &&
941 				     !bio_list_empty(current->bio_list)),
942 				    conf->resync_lock);
943 		conf->nr_waiting--;
944 		if (!conf->nr_waiting)
945 			wake_up(&conf->wait_barrier);
946 	}
947 	atomic_inc(&conf->nr_pending);
948 	spin_unlock_irq(&conf->resync_lock);
949 }
950 
951 static void allow_barrier(struct r10conf *conf)
952 {
953 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
954 			(conf->array_freeze_pending))
955 		wake_up(&conf->wait_barrier);
956 }
957 
958 static void freeze_array(struct r10conf *conf, int extra)
959 {
960 	/* stop syncio and normal IO and wait for everything to
961 	 * go quiet.
962 	 * We increment barrier and nr_waiting, and then
963 	 * wait until nr_pending match nr_queued+extra
964 	 * This is called in the context of one normal IO request
965 	 * that has failed. Thus any sync request that might be pending
966 	 * will be blocked by nr_pending, and we need to wait for
967 	 * pending IO requests to complete or be queued for re-try.
968 	 * Thus the number queued (nr_queued) plus this request (extra)
969 	 * must match the number of pending IOs (nr_pending) before
970 	 * we continue.
971 	 */
972 	spin_lock_irq(&conf->resync_lock);
973 	conf->array_freeze_pending++;
974 	conf->barrier++;
975 	conf->nr_waiting++;
976 	wait_event_lock_irq_cmd(conf->wait_barrier,
977 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
978 				conf->resync_lock,
979 				flush_pending_writes(conf));
980 
981 	conf->array_freeze_pending--;
982 	spin_unlock_irq(&conf->resync_lock);
983 }
984 
985 static void unfreeze_array(struct r10conf *conf)
986 {
987 	/* reverse the effect of the freeze */
988 	spin_lock_irq(&conf->resync_lock);
989 	conf->barrier--;
990 	conf->nr_waiting--;
991 	wake_up(&conf->wait_barrier);
992 	spin_unlock_irq(&conf->resync_lock);
993 }
994 
995 static sector_t choose_data_offset(struct r10bio *r10_bio,
996 				   struct md_rdev *rdev)
997 {
998 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
999 	    test_bit(R10BIO_Previous, &r10_bio->state))
1000 		return rdev->data_offset;
1001 	else
1002 		return rdev->new_data_offset;
1003 }
1004 
1005 struct raid10_plug_cb {
1006 	struct blk_plug_cb	cb;
1007 	struct bio_list		pending;
1008 	int			pending_cnt;
1009 };
1010 
1011 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1012 {
1013 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1014 						   cb);
1015 	struct mddev *mddev = plug->cb.data;
1016 	struct r10conf *conf = mddev->private;
1017 	struct bio *bio;
1018 
1019 	if (from_schedule || current->bio_list) {
1020 		spin_lock_irq(&conf->device_lock);
1021 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1022 		conf->pending_count += plug->pending_cnt;
1023 		spin_unlock_irq(&conf->device_lock);
1024 		wake_up(&conf->wait_barrier);
1025 		md_wakeup_thread(mddev->thread);
1026 		kfree(plug);
1027 		return;
1028 	}
1029 
1030 	/* we aren't scheduling, so we can do the write-out directly. */
1031 	bio = bio_list_get(&plug->pending);
1032 	bitmap_unplug(mddev->bitmap);
1033 	wake_up(&conf->wait_barrier);
1034 
1035 	while (bio) { /* submit pending writes */
1036 		struct bio *next = bio->bi_next;
1037 		bio->bi_next = NULL;
1038 		if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1039 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1040 			/* Just ignore it */
1041 			bio_endio(bio);
1042 		else
1043 			generic_make_request(bio);
1044 		bio = next;
1045 	}
1046 	kfree(plug);
1047 }
1048 
1049 static void __make_request(struct mddev *mddev, struct bio *bio)
1050 {
1051 	struct r10conf *conf = mddev->private;
1052 	struct r10bio *r10_bio;
1053 	struct bio *read_bio;
1054 	int i;
1055 	const int op = bio_op(bio);
1056 	const int rw = bio_data_dir(bio);
1057 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1058 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1059 	unsigned long flags;
1060 	struct md_rdev *blocked_rdev;
1061 	struct blk_plug_cb *cb;
1062 	struct raid10_plug_cb *plug = NULL;
1063 	int sectors_handled;
1064 	int max_sectors;
1065 	int sectors;
1066 
1067 	md_write_start(mddev, bio);
1068 
1069 	/*
1070 	 * Register the new request and wait if the reconstruction
1071 	 * thread has put up a bar for new requests.
1072 	 * Continue immediately if no resync is active currently.
1073 	 */
1074 	wait_barrier(conf);
1075 
1076 	sectors = bio_sectors(bio);
1077 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1078 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1079 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1080 		/* IO spans the reshape position.  Need to wait for
1081 		 * reshape to pass
1082 		 */
1083 		allow_barrier(conf);
1084 		wait_event(conf->wait_barrier,
1085 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1086 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1087 			   sectors);
1088 		wait_barrier(conf);
1089 	}
1090 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1091 	    bio_data_dir(bio) == WRITE &&
1092 	    (mddev->reshape_backwards
1093 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1094 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1095 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1096 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1097 		/* Need to update reshape_position in metadata */
1098 		mddev->reshape_position = conf->reshape_progress;
1099 		set_mask_bits(&mddev->flags, 0,
1100 			      BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1101 		md_wakeup_thread(mddev->thread);
1102 		wait_event(mddev->sb_wait,
1103 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1104 
1105 		conf->reshape_safe = mddev->reshape_position;
1106 	}
1107 
1108 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1109 
1110 	r10_bio->master_bio = bio;
1111 	r10_bio->sectors = sectors;
1112 
1113 	r10_bio->mddev = mddev;
1114 	r10_bio->sector = bio->bi_iter.bi_sector;
1115 	r10_bio->state = 0;
1116 
1117 	/* We might need to issue multiple reads to different
1118 	 * devices if there are bad blocks around, so we keep
1119 	 * track of the number of reads in bio->bi_phys_segments.
1120 	 * If this is 0, there is only one r10_bio and no locking
1121 	 * will be needed when the request completes.  If it is
1122 	 * non-zero, then it is the number of not-completed requests.
1123 	 */
1124 	bio->bi_phys_segments = 0;
1125 	bio_clear_flag(bio, BIO_SEG_VALID);
1126 
1127 	if (rw == READ) {
1128 		/*
1129 		 * read balancing logic:
1130 		 */
1131 		struct md_rdev *rdev;
1132 		int slot;
1133 
1134 read_again:
1135 		rdev = read_balance(conf, r10_bio, &max_sectors);
1136 		if (!rdev) {
1137 			raid_end_bio_io(r10_bio);
1138 			return;
1139 		}
1140 		slot = r10_bio->read_slot;
1141 
1142 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1143 		bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1144 			 max_sectors);
1145 
1146 		r10_bio->devs[slot].bio = read_bio;
1147 		r10_bio->devs[slot].rdev = rdev;
1148 
1149 		read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1150 			choose_data_offset(r10_bio, rdev);
1151 		read_bio->bi_bdev = rdev->bdev;
1152 		read_bio->bi_end_io = raid10_end_read_request;
1153 		bio_set_op_attrs(read_bio, op, do_sync);
1154 		read_bio->bi_private = r10_bio;
1155 
1156 		if (max_sectors < r10_bio->sectors) {
1157 			/* Could not read all from this device, so we will
1158 			 * need another r10_bio.
1159 			 */
1160 			sectors_handled = (r10_bio->sector + max_sectors
1161 					   - bio->bi_iter.bi_sector);
1162 			r10_bio->sectors = max_sectors;
1163 			spin_lock_irq(&conf->device_lock);
1164 			if (bio->bi_phys_segments == 0)
1165 				bio->bi_phys_segments = 2;
1166 			else
1167 				bio->bi_phys_segments++;
1168 			spin_unlock_irq(&conf->device_lock);
1169 			/* Cannot call generic_make_request directly
1170 			 * as that will be queued in __generic_make_request
1171 			 * and subsequent mempool_alloc might block
1172 			 * waiting for it.  so hand bio over to raid10d.
1173 			 */
1174 			reschedule_retry(r10_bio);
1175 
1176 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1177 
1178 			r10_bio->master_bio = bio;
1179 			r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1180 			r10_bio->state = 0;
1181 			r10_bio->mddev = mddev;
1182 			r10_bio->sector = bio->bi_iter.bi_sector +
1183 				sectors_handled;
1184 			goto read_again;
1185 		} else
1186 			generic_make_request(read_bio);
1187 		return;
1188 	}
1189 
1190 	/*
1191 	 * WRITE:
1192 	 */
1193 	if (conf->pending_count >= max_queued_requests) {
1194 		md_wakeup_thread(mddev->thread);
1195 		wait_event(conf->wait_barrier,
1196 			   conf->pending_count < max_queued_requests);
1197 	}
1198 	/* first select target devices under rcu_lock and
1199 	 * inc refcount on their rdev.  Record them by setting
1200 	 * bios[x] to bio
1201 	 * If there are known/acknowledged bad blocks on any device
1202 	 * on which we have seen a write error, we want to avoid
1203 	 * writing to those blocks.  This potentially requires several
1204 	 * writes to write around the bad blocks.  Each set of writes
1205 	 * gets its own r10_bio with a set of bios attached.  The number
1206 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1207 	 * the read case.
1208 	 */
1209 
1210 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1211 	raid10_find_phys(conf, r10_bio);
1212 retry_write:
1213 	blocked_rdev = NULL;
1214 	rcu_read_lock();
1215 	max_sectors = r10_bio->sectors;
1216 
1217 	for (i = 0;  i < conf->copies; i++) {
1218 		int d = r10_bio->devs[i].devnum;
1219 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1220 		struct md_rdev *rrdev = rcu_dereference(
1221 			conf->mirrors[d].replacement);
1222 		if (rdev == rrdev)
1223 			rrdev = NULL;
1224 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1225 			atomic_inc(&rdev->nr_pending);
1226 			blocked_rdev = rdev;
1227 			break;
1228 		}
1229 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1230 			atomic_inc(&rrdev->nr_pending);
1231 			blocked_rdev = rrdev;
1232 			break;
1233 		}
1234 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1235 			rdev = NULL;
1236 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1237 			rrdev = NULL;
1238 
1239 		r10_bio->devs[i].bio = NULL;
1240 		r10_bio->devs[i].repl_bio = NULL;
1241 
1242 		if (!rdev && !rrdev) {
1243 			set_bit(R10BIO_Degraded, &r10_bio->state);
1244 			continue;
1245 		}
1246 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1247 			sector_t first_bad;
1248 			sector_t dev_sector = r10_bio->devs[i].addr;
1249 			int bad_sectors;
1250 			int is_bad;
1251 
1252 			is_bad = is_badblock(rdev, dev_sector,
1253 					     max_sectors,
1254 					     &first_bad, &bad_sectors);
1255 			if (is_bad < 0) {
1256 				/* Mustn't write here until the bad block
1257 				 * is acknowledged
1258 				 */
1259 				atomic_inc(&rdev->nr_pending);
1260 				set_bit(BlockedBadBlocks, &rdev->flags);
1261 				blocked_rdev = rdev;
1262 				break;
1263 			}
1264 			if (is_bad && first_bad <= dev_sector) {
1265 				/* Cannot write here at all */
1266 				bad_sectors -= (dev_sector - first_bad);
1267 				if (bad_sectors < max_sectors)
1268 					/* Mustn't write more than bad_sectors
1269 					 * to other devices yet
1270 					 */
1271 					max_sectors = bad_sectors;
1272 				/* We don't set R10BIO_Degraded as that
1273 				 * only applies if the disk is missing,
1274 				 * so it might be re-added, and we want to
1275 				 * know to recover this chunk.
1276 				 * In this case the device is here, and the
1277 				 * fact that this chunk is not in-sync is
1278 				 * recorded in the bad block log.
1279 				 */
1280 				continue;
1281 			}
1282 			if (is_bad) {
1283 				int good_sectors = first_bad - dev_sector;
1284 				if (good_sectors < max_sectors)
1285 					max_sectors = good_sectors;
1286 			}
1287 		}
1288 		if (rdev) {
1289 			r10_bio->devs[i].bio = bio;
1290 			atomic_inc(&rdev->nr_pending);
1291 		}
1292 		if (rrdev) {
1293 			r10_bio->devs[i].repl_bio = bio;
1294 			atomic_inc(&rrdev->nr_pending);
1295 		}
1296 	}
1297 	rcu_read_unlock();
1298 
1299 	if (unlikely(blocked_rdev)) {
1300 		/* Have to wait for this device to get unblocked, then retry */
1301 		int j;
1302 		int d;
1303 
1304 		for (j = 0; j < i; j++) {
1305 			if (r10_bio->devs[j].bio) {
1306 				d = r10_bio->devs[j].devnum;
1307 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1308 			}
1309 			if (r10_bio->devs[j].repl_bio) {
1310 				struct md_rdev *rdev;
1311 				d = r10_bio->devs[j].devnum;
1312 				rdev = conf->mirrors[d].replacement;
1313 				if (!rdev) {
1314 					/* Race with remove_disk */
1315 					smp_mb();
1316 					rdev = conf->mirrors[d].rdev;
1317 				}
1318 				rdev_dec_pending(rdev, mddev);
1319 			}
1320 		}
1321 		allow_barrier(conf);
1322 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1323 		wait_barrier(conf);
1324 		goto retry_write;
1325 	}
1326 
1327 	if (max_sectors < r10_bio->sectors) {
1328 		/* We are splitting this into multiple parts, so
1329 		 * we need to prepare for allocating another r10_bio.
1330 		 */
1331 		r10_bio->sectors = max_sectors;
1332 		spin_lock_irq(&conf->device_lock);
1333 		if (bio->bi_phys_segments == 0)
1334 			bio->bi_phys_segments = 2;
1335 		else
1336 			bio->bi_phys_segments++;
1337 		spin_unlock_irq(&conf->device_lock);
1338 	}
1339 	sectors_handled = r10_bio->sector + max_sectors -
1340 		bio->bi_iter.bi_sector;
1341 
1342 	atomic_set(&r10_bio->remaining, 1);
1343 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1344 
1345 	for (i = 0; i < conf->copies; i++) {
1346 		struct bio *mbio;
1347 		int d = r10_bio->devs[i].devnum;
1348 		if (r10_bio->devs[i].bio) {
1349 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1350 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1351 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1352 				 max_sectors);
1353 			r10_bio->devs[i].bio = mbio;
1354 
1355 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr+
1356 					   choose_data_offset(r10_bio,
1357 							      rdev));
1358 			mbio->bi_bdev = rdev->bdev;
1359 			mbio->bi_end_io	= raid10_end_write_request;
1360 			bio_set_op_attrs(mbio, op, do_sync | do_fua);
1361 			mbio->bi_private = r10_bio;
1362 
1363 			atomic_inc(&r10_bio->remaining);
1364 
1365 			cb = blk_check_plugged(raid10_unplug, mddev,
1366 					       sizeof(*plug));
1367 			if (cb)
1368 				plug = container_of(cb, struct raid10_plug_cb,
1369 						    cb);
1370 			else
1371 				plug = NULL;
1372 			spin_lock_irqsave(&conf->device_lock, flags);
1373 			if (plug) {
1374 				bio_list_add(&plug->pending, mbio);
1375 				plug->pending_cnt++;
1376 			} else {
1377 				bio_list_add(&conf->pending_bio_list, mbio);
1378 				conf->pending_count++;
1379 			}
1380 			spin_unlock_irqrestore(&conf->device_lock, flags);
1381 			if (!plug)
1382 				md_wakeup_thread(mddev->thread);
1383 		}
1384 
1385 		if (r10_bio->devs[i].repl_bio) {
1386 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1387 			if (rdev == NULL) {
1388 				/* Replacement just got moved to main 'rdev' */
1389 				smp_mb();
1390 				rdev = conf->mirrors[d].rdev;
1391 			}
1392 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1393 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1394 				 max_sectors);
1395 			r10_bio->devs[i].repl_bio = mbio;
1396 
1397 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr +
1398 					   choose_data_offset(
1399 						   r10_bio, rdev));
1400 			mbio->bi_bdev = rdev->bdev;
1401 			mbio->bi_end_io	= raid10_end_write_request;
1402 			bio_set_op_attrs(mbio, op, do_sync | do_fua);
1403 			mbio->bi_private = r10_bio;
1404 
1405 			atomic_inc(&r10_bio->remaining);
1406 			spin_lock_irqsave(&conf->device_lock, flags);
1407 			bio_list_add(&conf->pending_bio_list, mbio);
1408 			conf->pending_count++;
1409 			spin_unlock_irqrestore(&conf->device_lock, flags);
1410 			if (!mddev_check_plugged(mddev))
1411 				md_wakeup_thread(mddev->thread);
1412 		}
1413 	}
1414 
1415 	/* Don't remove the bias on 'remaining' (one_write_done) until
1416 	 * after checking if we need to go around again.
1417 	 */
1418 
1419 	if (sectors_handled < bio_sectors(bio)) {
1420 		one_write_done(r10_bio);
1421 		/* We need another r10_bio.  It has already been counted
1422 		 * in bio->bi_phys_segments.
1423 		 */
1424 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1425 
1426 		r10_bio->master_bio = bio;
1427 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1428 
1429 		r10_bio->mddev = mddev;
1430 		r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1431 		r10_bio->state = 0;
1432 		goto retry_write;
1433 	}
1434 	one_write_done(r10_bio);
1435 }
1436 
1437 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1438 {
1439 	struct r10conf *conf = mddev->private;
1440 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1441 	int chunk_sects = chunk_mask + 1;
1442 
1443 	struct bio *split;
1444 
1445 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1446 		md_flush_request(mddev, bio);
1447 		return;
1448 	}
1449 
1450 	do {
1451 
1452 		/*
1453 		 * If this request crosses a chunk boundary, we need to split
1454 		 * it.
1455 		 */
1456 		if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1457 			     bio_sectors(bio) > chunk_sects
1458 			     && (conf->geo.near_copies < conf->geo.raid_disks
1459 				 || conf->prev.near_copies <
1460 				 conf->prev.raid_disks))) {
1461 			split = bio_split(bio, chunk_sects -
1462 					  (bio->bi_iter.bi_sector &
1463 					   (chunk_sects - 1)),
1464 					  GFP_NOIO, fs_bio_set);
1465 			bio_chain(split, bio);
1466 		} else {
1467 			split = bio;
1468 		}
1469 
1470 		__make_request(mddev, split);
1471 	} while (split != bio);
1472 
1473 	/* In case raid10d snuck in to freeze_array */
1474 	wake_up(&conf->wait_barrier);
1475 }
1476 
1477 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1478 {
1479 	struct r10conf *conf = mddev->private;
1480 	int i;
1481 
1482 	if (conf->geo.near_copies < conf->geo.raid_disks)
1483 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1484 	if (conf->geo.near_copies > 1)
1485 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1486 	if (conf->geo.far_copies > 1) {
1487 		if (conf->geo.far_offset)
1488 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1489 		else
1490 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1491 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1492 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1493 	}
1494 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1495 					conf->geo.raid_disks - mddev->degraded);
1496 	rcu_read_lock();
1497 	for (i = 0; i < conf->geo.raid_disks; i++) {
1498 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1499 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1500 	}
1501 	rcu_read_unlock();
1502 	seq_printf(seq, "]");
1503 }
1504 
1505 /* check if there are enough drives for
1506  * every block to appear on atleast one.
1507  * Don't consider the device numbered 'ignore'
1508  * as we might be about to remove it.
1509  */
1510 static int _enough(struct r10conf *conf, int previous, int ignore)
1511 {
1512 	int first = 0;
1513 	int has_enough = 0;
1514 	int disks, ncopies;
1515 	if (previous) {
1516 		disks = conf->prev.raid_disks;
1517 		ncopies = conf->prev.near_copies;
1518 	} else {
1519 		disks = conf->geo.raid_disks;
1520 		ncopies = conf->geo.near_copies;
1521 	}
1522 
1523 	rcu_read_lock();
1524 	do {
1525 		int n = conf->copies;
1526 		int cnt = 0;
1527 		int this = first;
1528 		while (n--) {
1529 			struct md_rdev *rdev;
1530 			if (this != ignore &&
1531 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1532 			    test_bit(In_sync, &rdev->flags))
1533 				cnt++;
1534 			this = (this+1) % disks;
1535 		}
1536 		if (cnt == 0)
1537 			goto out;
1538 		first = (first + ncopies) % disks;
1539 	} while (first != 0);
1540 	has_enough = 1;
1541 out:
1542 	rcu_read_unlock();
1543 	return has_enough;
1544 }
1545 
1546 static int enough(struct r10conf *conf, int ignore)
1547 {
1548 	/* when calling 'enough', both 'prev' and 'geo' must
1549 	 * be stable.
1550 	 * This is ensured if ->reconfig_mutex or ->device_lock
1551 	 * is held.
1552 	 */
1553 	return _enough(conf, 0, ignore) &&
1554 		_enough(conf, 1, ignore);
1555 }
1556 
1557 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1558 {
1559 	char b[BDEVNAME_SIZE];
1560 	struct r10conf *conf = mddev->private;
1561 	unsigned long flags;
1562 
1563 	/*
1564 	 * If it is not operational, then we have already marked it as dead
1565 	 * else if it is the last working disks, ignore the error, let the
1566 	 * next level up know.
1567 	 * else mark the drive as failed
1568 	 */
1569 	spin_lock_irqsave(&conf->device_lock, flags);
1570 	if (test_bit(In_sync, &rdev->flags)
1571 	    && !enough(conf, rdev->raid_disk)) {
1572 		/*
1573 		 * Don't fail the drive, just return an IO error.
1574 		 */
1575 		spin_unlock_irqrestore(&conf->device_lock, flags);
1576 		return;
1577 	}
1578 	if (test_and_clear_bit(In_sync, &rdev->flags))
1579 		mddev->degraded++;
1580 	/*
1581 	 * If recovery is running, make sure it aborts.
1582 	 */
1583 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1584 	set_bit(Blocked, &rdev->flags);
1585 	set_bit(Faulty, &rdev->flags);
1586 	set_mask_bits(&mddev->flags, 0,
1587 		      BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1588 	spin_unlock_irqrestore(&conf->device_lock, flags);
1589 	printk(KERN_ALERT
1590 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1591 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1592 	       mdname(mddev), bdevname(rdev->bdev, b),
1593 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1594 }
1595 
1596 static void print_conf(struct r10conf *conf)
1597 {
1598 	int i;
1599 	struct md_rdev *rdev;
1600 
1601 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1602 	if (!conf) {
1603 		printk(KERN_DEBUG "(!conf)\n");
1604 		return;
1605 	}
1606 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1607 		conf->geo.raid_disks);
1608 
1609 	/* This is only called with ->reconfix_mutex held, so
1610 	 * rcu protection of rdev is not needed */
1611 	for (i = 0; i < conf->geo.raid_disks; i++) {
1612 		char b[BDEVNAME_SIZE];
1613 		rdev = conf->mirrors[i].rdev;
1614 		if (rdev)
1615 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1616 				i, !test_bit(In_sync, &rdev->flags),
1617 			        !test_bit(Faulty, &rdev->flags),
1618 				bdevname(rdev->bdev,b));
1619 	}
1620 }
1621 
1622 static void close_sync(struct r10conf *conf)
1623 {
1624 	wait_barrier(conf);
1625 	allow_barrier(conf);
1626 
1627 	mempool_destroy(conf->r10buf_pool);
1628 	conf->r10buf_pool = NULL;
1629 }
1630 
1631 static int raid10_spare_active(struct mddev *mddev)
1632 {
1633 	int i;
1634 	struct r10conf *conf = mddev->private;
1635 	struct raid10_info *tmp;
1636 	int count = 0;
1637 	unsigned long flags;
1638 
1639 	/*
1640 	 * Find all non-in_sync disks within the RAID10 configuration
1641 	 * and mark them in_sync
1642 	 */
1643 	for (i = 0; i < conf->geo.raid_disks; i++) {
1644 		tmp = conf->mirrors + i;
1645 		if (tmp->replacement
1646 		    && tmp->replacement->recovery_offset == MaxSector
1647 		    && !test_bit(Faulty, &tmp->replacement->flags)
1648 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1649 			/* Replacement has just become active */
1650 			if (!tmp->rdev
1651 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1652 				count++;
1653 			if (tmp->rdev) {
1654 				/* Replaced device not technically faulty,
1655 				 * but we need to be sure it gets removed
1656 				 * and never re-added.
1657 				 */
1658 				set_bit(Faulty, &tmp->rdev->flags);
1659 				sysfs_notify_dirent_safe(
1660 					tmp->rdev->sysfs_state);
1661 			}
1662 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1663 		} else if (tmp->rdev
1664 			   && tmp->rdev->recovery_offset == MaxSector
1665 			   && !test_bit(Faulty, &tmp->rdev->flags)
1666 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1667 			count++;
1668 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1669 		}
1670 	}
1671 	spin_lock_irqsave(&conf->device_lock, flags);
1672 	mddev->degraded -= count;
1673 	spin_unlock_irqrestore(&conf->device_lock, flags);
1674 
1675 	print_conf(conf);
1676 	return count;
1677 }
1678 
1679 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1680 {
1681 	struct r10conf *conf = mddev->private;
1682 	int err = -EEXIST;
1683 	int mirror;
1684 	int first = 0;
1685 	int last = conf->geo.raid_disks - 1;
1686 
1687 	if (mddev->recovery_cp < MaxSector)
1688 		/* only hot-add to in-sync arrays, as recovery is
1689 		 * very different from resync
1690 		 */
1691 		return -EBUSY;
1692 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1693 		return -EINVAL;
1694 
1695 	if (md_integrity_add_rdev(rdev, mddev))
1696 		return -ENXIO;
1697 
1698 	if (rdev->raid_disk >= 0)
1699 		first = last = rdev->raid_disk;
1700 
1701 	if (rdev->saved_raid_disk >= first &&
1702 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1703 		mirror = rdev->saved_raid_disk;
1704 	else
1705 		mirror = first;
1706 	for ( ; mirror <= last ; mirror++) {
1707 		struct raid10_info *p = &conf->mirrors[mirror];
1708 		if (p->recovery_disabled == mddev->recovery_disabled)
1709 			continue;
1710 		if (p->rdev) {
1711 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1712 			    p->replacement != NULL)
1713 				continue;
1714 			clear_bit(In_sync, &rdev->flags);
1715 			set_bit(Replacement, &rdev->flags);
1716 			rdev->raid_disk = mirror;
1717 			err = 0;
1718 			if (mddev->gendisk)
1719 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1720 						  rdev->data_offset << 9);
1721 			conf->fullsync = 1;
1722 			rcu_assign_pointer(p->replacement, rdev);
1723 			break;
1724 		}
1725 
1726 		if (mddev->gendisk)
1727 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1728 					  rdev->data_offset << 9);
1729 
1730 		p->head_position = 0;
1731 		p->recovery_disabled = mddev->recovery_disabled - 1;
1732 		rdev->raid_disk = mirror;
1733 		err = 0;
1734 		if (rdev->saved_raid_disk != mirror)
1735 			conf->fullsync = 1;
1736 		rcu_assign_pointer(p->rdev, rdev);
1737 		break;
1738 	}
1739 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1740 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1741 
1742 	print_conf(conf);
1743 	return err;
1744 }
1745 
1746 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1747 {
1748 	struct r10conf *conf = mddev->private;
1749 	int err = 0;
1750 	int number = rdev->raid_disk;
1751 	struct md_rdev **rdevp;
1752 	struct raid10_info *p = conf->mirrors + number;
1753 
1754 	print_conf(conf);
1755 	if (rdev == p->rdev)
1756 		rdevp = &p->rdev;
1757 	else if (rdev == p->replacement)
1758 		rdevp = &p->replacement;
1759 	else
1760 		return 0;
1761 
1762 	if (test_bit(In_sync, &rdev->flags) ||
1763 	    atomic_read(&rdev->nr_pending)) {
1764 		err = -EBUSY;
1765 		goto abort;
1766 	}
1767 	/* Only remove non-faulty devices if recovery
1768 	 * is not possible.
1769 	 */
1770 	if (!test_bit(Faulty, &rdev->flags) &&
1771 	    mddev->recovery_disabled != p->recovery_disabled &&
1772 	    (!p->replacement || p->replacement == rdev) &&
1773 	    number < conf->geo.raid_disks &&
1774 	    enough(conf, -1)) {
1775 		err = -EBUSY;
1776 		goto abort;
1777 	}
1778 	*rdevp = NULL;
1779 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1780 		synchronize_rcu();
1781 		if (atomic_read(&rdev->nr_pending)) {
1782 			/* lost the race, try later */
1783 			err = -EBUSY;
1784 			*rdevp = rdev;
1785 			goto abort;
1786 		}
1787 	}
1788 	if (p->replacement) {
1789 		/* We must have just cleared 'rdev' */
1790 		p->rdev = p->replacement;
1791 		clear_bit(Replacement, &p->replacement->flags);
1792 		smp_mb(); /* Make sure other CPUs may see both as identical
1793 			   * but will never see neither -- if they are careful.
1794 			   */
1795 		p->replacement = NULL;
1796 		clear_bit(WantReplacement, &rdev->flags);
1797 	} else
1798 		/* We might have just remove the Replacement as faulty
1799 		 * Clear the flag just in case
1800 		 */
1801 		clear_bit(WantReplacement, &rdev->flags);
1802 
1803 	err = md_integrity_register(mddev);
1804 
1805 abort:
1806 
1807 	print_conf(conf);
1808 	return err;
1809 }
1810 
1811 static void end_sync_read(struct bio *bio)
1812 {
1813 	struct r10bio *r10_bio = bio->bi_private;
1814 	struct r10conf *conf = r10_bio->mddev->private;
1815 	int d;
1816 
1817 	if (bio == r10_bio->master_bio) {
1818 		/* this is a reshape read */
1819 		d = r10_bio->read_slot; /* really the read dev */
1820 	} else
1821 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1822 
1823 	if (!bio->bi_error)
1824 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1825 	else
1826 		/* The write handler will notice the lack of
1827 		 * R10BIO_Uptodate and record any errors etc
1828 		 */
1829 		atomic_add(r10_bio->sectors,
1830 			   &conf->mirrors[d].rdev->corrected_errors);
1831 
1832 	/* for reconstruct, we always reschedule after a read.
1833 	 * for resync, only after all reads
1834 	 */
1835 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1836 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1837 	    atomic_dec_and_test(&r10_bio->remaining)) {
1838 		/* we have read all the blocks,
1839 		 * do the comparison in process context in raid10d
1840 		 */
1841 		reschedule_retry(r10_bio);
1842 	}
1843 }
1844 
1845 static void end_sync_request(struct r10bio *r10_bio)
1846 {
1847 	struct mddev *mddev = r10_bio->mddev;
1848 
1849 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1850 		if (r10_bio->master_bio == NULL) {
1851 			/* the primary of several recovery bios */
1852 			sector_t s = r10_bio->sectors;
1853 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1854 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1855 				reschedule_retry(r10_bio);
1856 			else
1857 				put_buf(r10_bio);
1858 			md_done_sync(mddev, s, 1);
1859 			break;
1860 		} else {
1861 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1862 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1863 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1864 				reschedule_retry(r10_bio);
1865 			else
1866 				put_buf(r10_bio);
1867 			r10_bio = r10_bio2;
1868 		}
1869 	}
1870 }
1871 
1872 static void end_sync_write(struct bio *bio)
1873 {
1874 	struct r10bio *r10_bio = bio->bi_private;
1875 	struct mddev *mddev = r10_bio->mddev;
1876 	struct r10conf *conf = mddev->private;
1877 	int d;
1878 	sector_t first_bad;
1879 	int bad_sectors;
1880 	int slot;
1881 	int repl;
1882 	struct md_rdev *rdev = NULL;
1883 
1884 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1885 	if (repl)
1886 		rdev = conf->mirrors[d].replacement;
1887 	else
1888 		rdev = conf->mirrors[d].rdev;
1889 
1890 	if (bio->bi_error) {
1891 		if (repl)
1892 			md_error(mddev, rdev);
1893 		else {
1894 			set_bit(WriteErrorSeen, &rdev->flags);
1895 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1896 				set_bit(MD_RECOVERY_NEEDED,
1897 					&rdev->mddev->recovery);
1898 			set_bit(R10BIO_WriteError, &r10_bio->state);
1899 		}
1900 	} else if (is_badblock(rdev,
1901 			     r10_bio->devs[slot].addr,
1902 			     r10_bio->sectors,
1903 			     &first_bad, &bad_sectors))
1904 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1905 
1906 	rdev_dec_pending(rdev, mddev);
1907 
1908 	end_sync_request(r10_bio);
1909 }
1910 
1911 /*
1912  * Note: sync and recover and handled very differently for raid10
1913  * This code is for resync.
1914  * For resync, we read through virtual addresses and read all blocks.
1915  * If there is any error, we schedule a write.  The lowest numbered
1916  * drive is authoritative.
1917  * However requests come for physical address, so we need to map.
1918  * For every physical address there are raid_disks/copies virtual addresses,
1919  * which is always are least one, but is not necessarly an integer.
1920  * This means that a physical address can span multiple chunks, so we may
1921  * have to submit multiple io requests for a single sync request.
1922  */
1923 /*
1924  * We check if all blocks are in-sync and only write to blocks that
1925  * aren't in sync
1926  */
1927 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1928 {
1929 	struct r10conf *conf = mddev->private;
1930 	int i, first;
1931 	struct bio *tbio, *fbio;
1932 	int vcnt;
1933 
1934 	atomic_set(&r10_bio->remaining, 1);
1935 
1936 	/* find the first device with a block */
1937 	for (i=0; i<conf->copies; i++)
1938 		if (!r10_bio->devs[i].bio->bi_error)
1939 			break;
1940 
1941 	if (i == conf->copies)
1942 		goto done;
1943 
1944 	first = i;
1945 	fbio = r10_bio->devs[i].bio;
1946 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1947 	fbio->bi_iter.bi_idx = 0;
1948 
1949 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1950 	/* now find blocks with errors */
1951 	for (i=0 ; i < conf->copies ; i++) {
1952 		int  j, d;
1953 
1954 		tbio = r10_bio->devs[i].bio;
1955 
1956 		if (tbio->bi_end_io != end_sync_read)
1957 			continue;
1958 		if (i == first)
1959 			continue;
1960 		if (!r10_bio->devs[i].bio->bi_error) {
1961 			/* We know that the bi_io_vec layout is the same for
1962 			 * both 'first' and 'i', so we just compare them.
1963 			 * All vec entries are PAGE_SIZE;
1964 			 */
1965 			int sectors = r10_bio->sectors;
1966 			for (j = 0; j < vcnt; j++) {
1967 				int len = PAGE_SIZE;
1968 				if (sectors < (len / 512))
1969 					len = sectors * 512;
1970 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1971 					   page_address(tbio->bi_io_vec[j].bv_page),
1972 					   len))
1973 					break;
1974 				sectors -= len/512;
1975 			}
1976 			if (j == vcnt)
1977 				continue;
1978 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1979 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1980 				/* Don't fix anything. */
1981 				continue;
1982 		}
1983 		/* Ok, we need to write this bio, either to correct an
1984 		 * inconsistency or to correct an unreadable block.
1985 		 * First we need to fixup bv_offset, bv_len and
1986 		 * bi_vecs, as the read request might have corrupted these
1987 		 */
1988 		bio_reset(tbio);
1989 
1990 		tbio->bi_vcnt = vcnt;
1991 		tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
1992 		tbio->bi_private = r10_bio;
1993 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1994 		tbio->bi_end_io = end_sync_write;
1995 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
1996 
1997 		bio_copy_data(tbio, fbio);
1998 
1999 		d = r10_bio->devs[i].devnum;
2000 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2001 		atomic_inc(&r10_bio->remaining);
2002 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2003 
2004 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2005 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2006 		generic_make_request(tbio);
2007 	}
2008 
2009 	/* Now write out to any replacement devices
2010 	 * that are active
2011 	 */
2012 	for (i = 0; i < conf->copies; i++) {
2013 		int d;
2014 
2015 		tbio = r10_bio->devs[i].repl_bio;
2016 		if (!tbio || !tbio->bi_end_io)
2017 			continue;
2018 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2019 		    && r10_bio->devs[i].bio != fbio)
2020 			bio_copy_data(tbio, fbio);
2021 		d = r10_bio->devs[i].devnum;
2022 		atomic_inc(&r10_bio->remaining);
2023 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2024 			     bio_sectors(tbio));
2025 		generic_make_request(tbio);
2026 	}
2027 
2028 done:
2029 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2030 		md_done_sync(mddev, r10_bio->sectors, 1);
2031 		put_buf(r10_bio);
2032 	}
2033 }
2034 
2035 /*
2036  * Now for the recovery code.
2037  * Recovery happens across physical sectors.
2038  * We recover all non-is_sync drives by finding the virtual address of
2039  * each, and then choose a working drive that also has that virt address.
2040  * There is a separate r10_bio for each non-in_sync drive.
2041  * Only the first two slots are in use. The first for reading,
2042  * The second for writing.
2043  *
2044  */
2045 static void fix_recovery_read_error(struct r10bio *r10_bio)
2046 {
2047 	/* We got a read error during recovery.
2048 	 * We repeat the read in smaller page-sized sections.
2049 	 * If a read succeeds, write it to the new device or record
2050 	 * a bad block if we cannot.
2051 	 * If a read fails, record a bad block on both old and
2052 	 * new devices.
2053 	 */
2054 	struct mddev *mddev = r10_bio->mddev;
2055 	struct r10conf *conf = mddev->private;
2056 	struct bio *bio = r10_bio->devs[0].bio;
2057 	sector_t sect = 0;
2058 	int sectors = r10_bio->sectors;
2059 	int idx = 0;
2060 	int dr = r10_bio->devs[0].devnum;
2061 	int dw = r10_bio->devs[1].devnum;
2062 
2063 	while (sectors) {
2064 		int s = sectors;
2065 		struct md_rdev *rdev;
2066 		sector_t addr;
2067 		int ok;
2068 
2069 		if (s > (PAGE_SIZE>>9))
2070 			s = PAGE_SIZE >> 9;
2071 
2072 		rdev = conf->mirrors[dr].rdev;
2073 		addr = r10_bio->devs[0].addr + sect,
2074 		ok = sync_page_io(rdev,
2075 				  addr,
2076 				  s << 9,
2077 				  bio->bi_io_vec[idx].bv_page,
2078 				  REQ_OP_READ, 0, false);
2079 		if (ok) {
2080 			rdev = conf->mirrors[dw].rdev;
2081 			addr = r10_bio->devs[1].addr + sect;
2082 			ok = sync_page_io(rdev,
2083 					  addr,
2084 					  s << 9,
2085 					  bio->bi_io_vec[idx].bv_page,
2086 					  REQ_OP_WRITE, 0, false);
2087 			if (!ok) {
2088 				set_bit(WriteErrorSeen, &rdev->flags);
2089 				if (!test_and_set_bit(WantReplacement,
2090 						      &rdev->flags))
2091 					set_bit(MD_RECOVERY_NEEDED,
2092 						&rdev->mddev->recovery);
2093 			}
2094 		}
2095 		if (!ok) {
2096 			/* We don't worry if we cannot set a bad block -
2097 			 * it really is bad so there is no loss in not
2098 			 * recording it yet
2099 			 */
2100 			rdev_set_badblocks(rdev, addr, s, 0);
2101 
2102 			if (rdev != conf->mirrors[dw].rdev) {
2103 				/* need bad block on destination too */
2104 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2105 				addr = r10_bio->devs[1].addr + sect;
2106 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2107 				if (!ok) {
2108 					/* just abort the recovery */
2109 					printk(KERN_NOTICE
2110 					       "md/raid10:%s: recovery aborted"
2111 					       " due to read error\n",
2112 					       mdname(mddev));
2113 
2114 					conf->mirrors[dw].recovery_disabled
2115 						= mddev->recovery_disabled;
2116 					set_bit(MD_RECOVERY_INTR,
2117 						&mddev->recovery);
2118 					break;
2119 				}
2120 			}
2121 		}
2122 
2123 		sectors -= s;
2124 		sect += s;
2125 		idx++;
2126 	}
2127 }
2128 
2129 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2130 {
2131 	struct r10conf *conf = mddev->private;
2132 	int d;
2133 	struct bio *wbio, *wbio2;
2134 
2135 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2136 		fix_recovery_read_error(r10_bio);
2137 		end_sync_request(r10_bio);
2138 		return;
2139 	}
2140 
2141 	/*
2142 	 * share the pages with the first bio
2143 	 * and submit the write request
2144 	 */
2145 	d = r10_bio->devs[1].devnum;
2146 	wbio = r10_bio->devs[1].bio;
2147 	wbio2 = r10_bio->devs[1].repl_bio;
2148 	/* Need to test wbio2->bi_end_io before we call
2149 	 * generic_make_request as if the former is NULL,
2150 	 * the latter is free to free wbio2.
2151 	 */
2152 	if (wbio2 && !wbio2->bi_end_io)
2153 		wbio2 = NULL;
2154 	if (wbio->bi_end_io) {
2155 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2156 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2157 		generic_make_request(wbio);
2158 	}
2159 	if (wbio2) {
2160 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2161 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2162 			     bio_sectors(wbio2));
2163 		generic_make_request(wbio2);
2164 	}
2165 }
2166 
2167 /*
2168  * Used by fix_read_error() to decay the per rdev read_errors.
2169  * We halve the read error count for every hour that has elapsed
2170  * since the last recorded read error.
2171  *
2172  */
2173 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2174 {
2175 	long cur_time_mon;
2176 	unsigned long hours_since_last;
2177 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2178 
2179 	cur_time_mon = ktime_get_seconds();
2180 
2181 	if (rdev->last_read_error == 0) {
2182 		/* first time we've seen a read error */
2183 		rdev->last_read_error = cur_time_mon;
2184 		return;
2185 	}
2186 
2187 	hours_since_last = (long)(cur_time_mon -
2188 			    rdev->last_read_error) / 3600;
2189 
2190 	rdev->last_read_error = cur_time_mon;
2191 
2192 	/*
2193 	 * if hours_since_last is > the number of bits in read_errors
2194 	 * just set read errors to 0. We do this to avoid
2195 	 * overflowing the shift of read_errors by hours_since_last.
2196 	 */
2197 	if (hours_since_last >= 8 * sizeof(read_errors))
2198 		atomic_set(&rdev->read_errors, 0);
2199 	else
2200 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2201 }
2202 
2203 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2204 			    int sectors, struct page *page, int rw)
2205 {
2206 	sector_t first_bad;
2207 	int bad_sectors;
2208 
2209 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2210 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2211 		return -1;
2212 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2213 		/* success */
2214 		return 1;
2215 	if (rw == WRITE) {
2216 		set_bit(WriteErrorSeen, &rdev->flags);
2217 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2218 			set_bit(MD_RECOVERY_NEEDED,
2219 				&rdev->mddev->recovery);
2220 	}
2221 	/* need to record an error - either for the block or the device */
2222 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2223 		md_error(rdev->mddev, rdev);
2224 	return 0;
2225 }
2226 
2227 /*
2228  * This is a kernel thread which:
2229  *
2230  *	1.	Retries failed read operations on working mirrors.
2231  *	2.	Updates the raid superblock when problems encounter.
2232  *	3.	Performs writes following reads for array synchronising.
2233  */
2234 
2235 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2236 {
2237 	int sect = 0; /* Offset from r10_bio->sector */
2238 	int sectors = r10_bio->sectors;
2239 	struct md_rdev*rdev;
2240 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2241 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2242 
2243 	/* still own a reference to this rdev, so it cannot
2244 	 * have been cleared recently.
2245 	 */
2246 	rdev = conf->mirrors[d].rdev;
2247 
2248 	if (test_bit(Faulty, &rdev->flags))
2249 		/* drive has already been failed, just ignore any
2250 		   more fix_read_error() attempts */
2251 		return;
2252 
2253 	check_decay_read_errors(mddev, rdev);
2254 	atomic_inc(&rdev->read_errors);
2255 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2256 		char b[BDEVNAME_SIZE];
2257 		bdevname(rdev->bdev, b);
2258 
2259 		printk(KERN_NOTICE
2260 		       "md/raid10:%s: %s: Raid device exceeded "
2261 		       "read_error threshold [cur %d:max %d]\n",
2262 		       mdname(mddev), b,
2263 		       atomic_read(&rdev->read_errors), max_read_errors);
2264 		printk(KERN_NOTICE
2265 		       "md/raid10:%s: %s: Failing raid device\n",
2266 		       mdname(mddev), b);
2267 		md_error(mddev, rdev);
2268 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2269 		return;
2270 	}
2271 
2272 	while(sectors) {
2273 		int s = sectors;
2274 		int sl = r10_bio->read_slot;
2275 		int success = 0;
2276 		int start;
2277 
2278 		if (s > (PAGE_SIZE>>9))
2279 			s = PAGE_SIZE >> 9;
2280 
2281 		rcu_read_lock();
2282 		do {
2283 			sector_t first_bad;
2284 			int bad_sectors;
2285 
2286 			d = r10_bio->devs[sl].devnum;
2287 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2288 			if (rdev &&
2289 			    test_bit(In_sync, &rdev->flags) &&
2290 			    !test_bit(Faulty, &rdev->flags) &&
2291 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2292 					&first_bad, &bad_sectors) == 0) {
2293 				atomic_inc(&rdev->nr_pending);
2294 				rcu_read_unlock();
2295 				success = sync_page_io(rdev,
2296 						       r10_bio->devs[sl].addr +
2297 						       sect,
2298 						       s<<9,
2299 						       conf->tmppage,
2300 						       REQ_OP_READ, 0, false);
2301 				rdev_dec_pending(rdev, mddev);
2302 				rcu_read_lock();
2303 				if (success)
2304 					break;
2305 			}
2306 			sl++;
2307 			if (sl == conf->copies)
2308 				sl = 0;
2309 		} while (!success && sl != r10_bio->read_slot);
2310 		rcu_read_unlock();
2311 
2312 		if (!success) {
2313 			/* Cannot read from anywhere, just mark the block
2314 			 * as bad on the first device to discourage future
2315 			 * reads.
2316 			 */
2317 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2318 			rdev = conf->mirrors[dn].rdev;
2319 
2320 			if (!rdev_set_badblocks(
2321 				    rdev,
2322 				    r10_bio->devs[r10_bio->read_slot].addr
2323 				    + sect,
2324 				    s, 0)) {
2325 				md_error(mddev, rdev);
2326 				r10_bio->devs[r10_bio->read_slot].bio
2327 					= IO_BLOCKED;
2328 			}
2329 			break;
2330 		}
2331 
2332 		start = sl;
2333 		/* write it back and re-read */
2334 		rcu_read_lock();
2335 		while (sl != r10_bio->read_slot) {
2336 			char b[BDEVNAME_SIZE];
2337 
2338 			if (sl==0)
2339 				sl = conf->copies;
2340 			sl--;
2341 			d = r10_bio->devs[sl].devnum;
2342 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2343 			if (!rdev ||
2344 			    test_bit(Faulty, &rdev->flags) ||
2345 			    !test_bit(In_sync, &rdev->flags))
2346 				continue;
2347 
2348 			atomic_inc(&rdev->nr_pending);
2349 			rcu_read_unlock();
2350 			if (r10_sync_page_io(rdev,
2351 					     r10_bio->devs[sl].addr +
2352 					     sect,
2353 					     s, conf->tmppage, WRITE)
2354 			    == 0) {
2355 				/* Well, this device is dead */
2356 				printk(KERN_NOTICE
2357 				       "md/raid10:%s: read correction "
2358 				       "write failed"
2359 				       " (%d sectors at %llu on %s)\n",
2360 				       mdname(mddev), s,
2361 				       (unsigned long long)(
2362 					       sect +
2363 					       choose_data_offset(r10_bio,
2364 								  rdev)),
2365 				       bdevname(rdev->bdev, b));
2366 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2367 				       "drive\n",
2368 				       mdname(mddev),
2369 				       bdevname(rdev->bdev, b));
2370 			}
2371 			rdev_dec_pending(rdev, mddev);
2372 			rcu_read_lock();
2373 		}
2374 		sl = start;
2375 		while (sl != r10_bio->read_slot) {
2376 			char b[BDEVNAME_SIZE];
2377 
2378 			if (sl==0)
2379 				sl = conf->copies;
2380 			sl--;
2381 			d = r10_bio->devs[sl].devnum;
2382 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2383 			if (!rdev ||
2384 			    test_bit(Faulty, &rdev->flags) ||
2385 			    !test_bit(In_sync, &rdev->flags))
2386 				continue;
2387 
2388 			atomic_inc(&rdev->nr_pending);
2389 			rcu_read_unlock();
2390 			switch (r10_sync_page_io(rdev,
2391 					     r10_bio->devs[sl].addr +
2392 					     sect,
2393 					     s, conf->tmppage,
2394 						 READ)) {
2395 			case 0:
2396 				/* Well, this device is dead */
2397 				printk(KERN_NOTICE
2398 				       "md/raid10:%s: unable to read back "
2399 				       "corrected sectors"
2400 				       " (%d sectors at %llu on %s)\n",
2401 				       mdname(mddev), s,
2402 				       (unsigned long long)(
2403 					       sect +
2404 					       choose_data_offset(r10_bio, rdev)),
2405 				       bdevname(rdev->bdev, b));
2406 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2407 				       "drive\n",
2408 				       mdname(mddev),
2409 				       bdevname(rdev->bdev, b));
2410 				break;
2411 			case 1:
2412 				printk(KERN_INFO
2413 				       "md/raid10:%s: read error corrected"
2414 				       " (%d sectors at %llu on %s)\n",
2415 				       mdname(mddev), s,
2416 				       (unsigned long long)(
2417 					       sect +
2418 					       choose_data_offset(r10_bio, rdev)),
2419 				       bdevname(rdev->bdev, b));
2420 				atomic_add(s, &rdev->corrected_errors);
2421 			}
2422 
2423 			rdev_dec_pending(rdev, mddev);
2424 			rcu_read_lock();
2425 		}
2426 		rcu_read_unlock();
2427 
2428 		sectors -= s;
2429 		sect += s;
2430 	}
2431 }
2432 
2433 static int narrow_write_error(struct r10bio *r10_bio, int i)
2434 {
2435 	struct bio *bio = r10_bio->master_bio;
2436 	struct mddev *mddev = r10_bio->mddev;
2437 	struct r10conf *conf = mddev->private;
2438 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2439 	/* bio has the data to be written to slot 'i' where
2440 	 * we just recently had a write error.
2441 	 * We repeatedly clone the bio and trim down to one block,
2442 	 * then try the write.  Where the write fails we record
2443 	 * a bad block.
2444 	 * It is conceivable that the bio doesn't exactly align with
2445 	 * blocks.  We must handle this.
2446 	 *
2447 	 * We currently own a reference to the rdev.
2448 	 */
2449 
2450 	int block_sectors;
2451 	sector_t sector;
2452 	int sectors;
2453 	int sect_to_write = r10_bio->sectors;
2454 	int ok = 1;
2455 
2456 	if (rdev->badblocks.shift < 0)
2457 		return 0;
2458 
2459 	block_sectors = roundup(1 << rdev->badblocks.shift,
2460 				bdev_logical_block_size(rdev->bdev) >> 9);
2461 	sector = r10_bio->sector;
2462 	sectors = ((r10_bio->sector + block_sectors)
2463 		   & ~(sector_t)(block_sectors - 1))
2464 		- sector;
2465 
2466 	while (sect_to_write) {
2467 		struct bio *wbio;
2468 		sector_t wsector;
2469 		if (sectors > sect_to_write)
2470 			sectors = sect_to_write;
2471 		/* Write at 'sector' for 'sectors' */
2472 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2473 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2474 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2475 		wbio->bi_iter.bi_sector = wsector +
2476 				   choose_data_offset(r10_bio, rdev);
2477 		wbio->bi_bdev = rdev->bdev;
2478 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2479 
2480 		if (submit_bio_wait(wbio) < 0)
2481 			/* Failure! */
2482 			ok = rdev_set_badblocks(rdev, wsector,
2483 						sectors, 0)
2484 				&& ok;
2485 
2486 		bio_put(wbio);
2487 		sect_to_write -= sectors;
2488 		sector += sectors;
2489 		sectors = block_sectors;
2490 	}
2491 	return ok;
2492 }
2493 
2494 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2495 {
2496 	int slot = r10_bio->read_slot;
2497 	struct bio *bio;
2498 	struct r10conf *conf = mddev->private;
2499 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2500 	char b[BDEVNAME_SIZE];
2501 	unsigned long do_sync;
2502 	int max_sectors;
2503 
2504 	/* we got a read error. Maybe the drive is bad.  Maybe just
2505 	 * the block and we can fix it.
2506 	 * We freeze all other IO, and try reading the block from
2507 	 * other devices.  When we find one, we re-write
2508 	 * and check it that fixes the read error.
2509 	 * This is all done synchronously while the array is
2510 	 * frozen.
2511 	 */
2512 	bio = r10_bio->devs[slot].bio;
2513 	bdevname(bio->bi_bdev, b);
2514 	bio_put(bio);
2515 	r10_bio->devs[slot].bio = NULL;
2516 
2517 	if (mddev->ro == 0) {
2518 		freeze_array(conf, 1);
2519 		fix_read_error(conf, mddev, r10_bio);
2520 		unfreeze_array(conf);
2521 	} else
2522 		r10_bio->devs[slot].bio = IO_BLOCKED;
2523 
2524 	rdev_dec_pending(rdev, mddev);
2525 
2526 read_more:
2527 	rdev = read_balance(conf, r10_bio, &max_sectors);
2528 	if (rdev == NULL) {
2529 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2530 		       " read error for block %llu\n",
2531 		       mdname(mddev), b,
2532 		       (unsigned long long)r10_bio->sector);
2533 		raid_end_bio_io(r10_bio);
2534 		return;
2535 	}
2536 
2537 	do_sync = (r10_bio->master_bio->bi_opf & REQ_SYNC);
2538 	slot = r10_bio->read_slot;
2539 	printk_ratelimited(
2540 		KERN_ERR
2541 		"md/raid10:%s: %s: redirecting "
2542 		"sector %llu to another mirror\n",
2543 		mdname(mddev),
2544 		bdevname(rdev->bdev, b),
2545 		(unsigned long long)r10_bio->sector);
2546 	bio = bio_clone_mddev(r10_bio->master_bio,
2547 			      GFP_NOIO, mddev);
2548 	bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2549 	r10_bio->devs[slot].bio = bio;
2550 	r10_bio->devs[slot].rdev = rdev;
2551 	bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2552 		+ choose_data_offset(r10_bio, rdev);
2553 	bio->bi_bdev = rdev->bdev;
2554 	bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2555 	bio->bi_private = r10_bio;
2556 	bio->bi_end_io = raid10_end_read_request;
2557 	if (max_sectors < r10_bio->sectors) {
2558 		/* Drat - have to split this up more */
2559 		struct bio *mbio = r10_bio->master_bio;
2560 		int sectors_handled =
2561 			r10_bio->sector + max_sectors
2562 			- mbio->bi_iter.bi_sector;
2563 		r10_bio->sectors = max_sectors;
2564 		spin_lock_irq(&conf->device_lock);
2565 		if (mbio->bi_phys_segments == 0)
2566 			mbio->bi_phys_segments = 2;
2567 		else
2568 			mbio->bi_phys_segments++;
2569 		spin_unlock_irq(&conf->device_lock);
2570 		generic_make_request(bio);
2571 
2572 		r10_bio = mempool_alloc(conf->r10bio_pool,
2573 					GFP_NOIO);
2574 		r10_bio->master_bio = mbio;
2575 		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2576 		r10_bio->state = 0;
2577 		set_bit(R10BIO_ReadError,
2578 			&r10_bio->state);
2579 		r10_bio->mddev = mddev;
2580 		r10_bio->sector = mbio->bi_iter.bi_sector
2581 			+ sectors_handled;
2582 
2583 		goto read_more;
2584 	} else
2585 		generic_make_request(bio);
2586 }
2587 
2588 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2589 {
2590 	/* Some sort of write request has finished and it
2591 	 * succeeded in writing where we thought there was a
2592 	 * bad block.  So forget the bad block.
2593 	 * Or possibly if failed and we need to record
2594 	 * a bad block.
2595 	 */
2596 	int m;
2597 	struct md_rdev *rdev;
2598 
2599 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2600 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2601 		for (m = 0; m < conf->copies; m++) {
2602 			int dev = r10_bio->devs[m].devnum;
2603 			rdev = conf->mirrors[dev].rdev;
2604 			if (r10_bio->devs[m].bio == NULL)
2605 				continue;
2606 			if (!r10_bio->devs[m].bio->bi_error) {
2607 				rdev_clear_badblocks(
2608 					rdev,
2609 					r10_bio->devs[m].addr,
2610 					r10_bio->sectors, 0);
2611 			} else {
2612 				if (!rdev_set_badblocks(
2613 					    rdev,
2614 					    r10_bio->devs[m].addr,
2615 					    r10_bio->sectors, 0))
2616 					md_error(conf->mddev, rdev);
2617 			}
2618 			rdev = conf->mirrors[dev].replacement;
2619 			if (r10_bio->devs[m].repl_bio == NULL)
2620 				continue;
2621 
2622 			if (!r10_bio->devs[m].repl_bio->bi_error) {
2623 				rdev_clear_badblocks(
2624 					rdev,
2625 					r10_bio->devs[m].addr,
2626 					r10_bio->sectors, 0);
2627 			} else {
2628 				if (!rdev_set_badblocks(
2629 					    rdev,
2630 					    r10_bio->devs[m].addr,
2631 					    r10_bio->sectors, 0))
2632 					md_error(conf->mddev, rdev);
2633 			}
2634 		}
2635 		put_buf(r10_bio);
2636 	} else {
2637 		bool fail = false;
2638 		for (m = 0; m < conf->copies; m++) {
2639 			int dev = r10_bio->devs[m].devnum;
2640 			struct bio *bio = r10_bio->devs[m].bio;
2641 			rdev = conf->mirrors[dev].rdev;
2642 			if (bio == IO_MADE_GOOD) {
2643 				rdev_clear_badblocks(
2644 					rdev,
2645 					r10_bio->devs[m].addr,
2646 					r10_bio->sectors, 0);
2647 				rdev_dec_pending(rdev, conf->mddev);
2648 			} else if (bio != NULL && bio->bi_error) {
2649 				fail = true;
2650 				if (!narrow_write_error(r10_bio, m)) {
2651 					md_error(conf->mddev, rdev);
2652 					set_bit(R10BIO_Degraded,
2653 						&r10_bio->state);
2654 				}
2655 				rdev_dec_pending(rdev, conf->mddev);
2656 			}
2657 			bio = r10_bio->devs[m].repl_bio;
2658 			rdev = conf->mirrors[dev].replacement;
2659 			if (rdev && bio == IO_MADE_GOOD) {
2660 				rdev_clear_badblocks(
2661 					rdev,
2662 					r10_bio->devs[m].addr,
2663 					r10_bio->sectors, 0);
2664 				rdev_dec_pending(rdev, conf->mddev);
2665 			}
2666 		}
2667 		if (fail) {
2668 			spin_lock_irq(&conf->device_lock);
2669 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2670 			conf->nr_queued++;
2671 			spin_unlock_irq(&conf->device_lock);
2672 			md_wakeup_thread(conf->mddev->thread);
2673 		} else {
2674 			if (test_bit(R10BIO_WriteError,
2675 				     &r10_bio->state))
2676 				close_write(r10_bio);
2677 			raid_end_bio_io(r10_bio);
2678 		}
2679 	}
2680 }
2681 
2682 static void raid10d(struct md_thread *thread)
2683 {
2684 	struct mddev *mddev = thread->mddev;
2685 	struct r10bio *r10_bio;
2686 	unsigned long flags;
2687 	struct r10conf *conf = mddev->private;
2688 	struct list_head *head = &conf->retry_list;
2689 	struct blk_plug plug;
2690 
2691 	md_check_recovery(mddev);
2692 
2693 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2694 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2695 		LIST_HEAD(tmp);
2696 		spin_lock_irqsave(&conf->device_lock, flags);
2697 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2698 			while (!list_empty(&conf->bio_end_io_list)) {
2699 				list_move(conf->bio_end_io_list.prev, &tmp);
2700 				conf->nr_queued--;
2701 			}
2702 		}
2703 		spin_unlock_irqrestore(&conf->device_lock, flags);
2704 		while (!list_empty(&tmp)) {
2705 			r10_bio = list_first_entry(&tmp, struct r10bio,
2706 						   retry_list);
2707 			list_del(&r10_bio->retry_list);
2708 			if (mddev->degraded)
2709 				set_bit(R10BIO_Degraded, &r10_bio->state);
2710 
2711 			if (test_bit(R10BIO_WriteError,
2712 				     &r10_bio->state))
2713 				close_write(r10_bio);
2714 			raid_end_bio_io(r10_bio);
2715 		}
2716 	}
2717 
2718 	blk_start_plug(&plug);
2719 	for (;;) {
2720 
2721 		flush_pending_writes(conf);
2722 
2723 		spin_lock_irqsave(&conf->device_lock, flags);
2724 		if (list_empty(head)) {
2725 			spin_unlock_irqrestore(&conf->device_lock, flags);
2726 			break;
2727 		}
2728 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2729 		list_del(head->prev);
2730 		conf->nr_queued--;
2731 		spin_unlock_irqrestore(&conf->device_lock, flags);
2732 
2733 		mddev = r10_bio->mddev;
2734 		conf = mddev->private;
2735 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2736 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2737 			handle_write_completed(conf, r10_bio);
2738 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2739 			reshape_request_write(mddev, r10_bio);
2740 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2741 			sync_request_write(mddev, r10_bio);
2742 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2743 			recovery_request_write(mddev, r10_bio);
2744 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2745 			handle_read_error(mddev, r10_bio);
2746 		else {
2747 			/* just a partial read to be scheduled from a
2748 			 * separate context
2749 			 */
2750 			int slot = r10_bio->read_slot;
2751 			generic_make_request(r10_bio->devs[slot].bio);
2752 		}
2753 
2754 		cond_resched();
2755 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2756 			md_check_recovery(mddev);
2757 	}
2758 	blk_finish_plug(&plug);
2759 }
2760 
2761 static int init_resync(struct r10conf *conf)
2762 {
2763 	int buffs;
2764 	int i;
2765 
2766 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2767 	BUG_ON(conf->r10buf_pool);
2768 	conf->have_replacement = 0;
2769 	for (i = 0; i < conf->geo.raid_disks; i++)
2770 		if (conf->mirrors[i].replacement)
2771 			conf->have_replacement = 1;
2772 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2773 	if (!conf->r10buf_pool)
2774 		return -ENOMEM;
2775 	conf->next_resync = 0;
2776 	return 0;
2777 }
2778 
2779 /*
2780  * perform a "sync" on one "block"
2781  *
2782  * We need to make sure that no normal I/O request - particularly write
2783  * requests - conflict with active sync requests.
2784  *
2785  * This is achieved by tracking pending requests and a 'barrier' concept
2786  * that can be installed to exclude normal IO requests.
2787  *
2788  * Resync and recovery are handled very differently.
2789  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2790  *
2791  * For resync, we iterate over virtual addresses, read all copies,
2792  * and update if there are differences.  If only one copy is live,
2793  * skip it.
2794  * For recovery, we iterate over physical addresses, read a good
2795  * value for each non-in_sync drive, and over-write.
2796  *
2797  * So, for recovery we may have several outstanding complex requests for a
2798  * given address, one for each out-of-sync device.  We model this by allocating
2799  * a number of r10_bio structures, one for each out-of-sync device.
2800  * As we setup these structures, we collect all bio's together into a list
2801  * which we then process collectively to add pages, and then process again
2802  * to pass to generic_make_request.
2803  *
2804  * The r10_bio structures are linked using a borrowed master_bio pointer.
2805  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2806  * has its remaining count decremented to 0, the whole complex operation
2807  * is complete.
2808  *
2809  */
2810 
2811 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2812 			     int *skipped)
2813 {
2814 	struct r10conf *conf = mddev->private;
2815 	struct r10bio *r10_bio;
2816 	struct bio *biolist = NULL, *bio;
2817 	sector_t max_sector, nr_sectors;
2818 	int i;
2819 	int max_sync;
2820 	sector_t sync_blocks;
2821 	sector_t sectors_skipped = 0;
2822 	int chunks_skipped = 0;
2823 	sector_t chunk_mask = conf->geo.chunk_mask;
2824 
2825 	if (!conf->r10buf_pool)
2826 		if (init_resync(conf))
2827 			return 0;
2828 
2829 	/*
2830 	 * Allow skipping a full rebuild for incremental assembly
2831 	 * of a clean array, like RAID1 does.
2832 	 */
2833 	if (mddev->bitmap == NULL &&
2834 	    mddev->recovery_cp == MaxSector &&
2835 	    mddev->reshape_position == MaxSector &&
2836 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2837 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2838 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2839 	    conf->fullsync == 0) {
2840 		*skipped = 1;
2841 		return mddev->dev_sectors - sector_nr;
2842 	}
2843 
2844  skipped:
2845 	max_sector = mddev->dev_sectors;
2846 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2847 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2848 		max_sector = mddev->resync_max_sectors;
2849 	if (sector_nr >= max_sector) {
2850 		/* If we aborted, we need to abort the
2851 		 * sync on the 'current' bitmap chucks (there can
2852 		 * be several when recovering multiple devices).
2853 		 * as we may have started syncing it but not finished.
2854 		 * We can find the current address in
2855 		 * mddev->curr_resync, but for recovery,
2856 		 * we need to convert that to several
2857 		 * virtual addresses.
2858 		 */
2859 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2860 			end_reshape(conf);
2861 			close_sync(conf);
2862 			return 0;
2863 		}
2864 
2865 		if (mddev->curr_resync < max_sector) { /* aborted */
2866 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2867 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2868 						&sync_blocks, 1);
2869 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2870 				sector_t sect =
2871 					raid10_find_virt(conf, mddev->curr_resync, i);
2872 				bitmap_end_sync(mddev->bitmap, sect,
2873 						&sync_blocks, 1);
2874 			}
2875 		} else {
2876 			/* completed sync */
2877 			if ((!mddev->bitmap || conf->fullsync)
2878 			    && conf->have_replacement
2879 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2880 				/* Completed a full sync so the replacements
2881 				 * are now fully recovered.
2882 				 */
2883 				rcu_read_lock();
2884 				for (i = 0; i < conf->geo.raid_disks; i++) {
2885 					struct md_rdev *rdev =
2886 						rcu_dereference(conf->mirrors[i].replacement);
2887 					if (rdev)
2888 						rdev->recovery_offset = MaxSector;
2889 				}
2890 				rcu_read_unlock();
2891 			}
2892 			conf->fullsync = 0;
2893 		}
2894 		bitmap_close_sync(mddev->bitmap);
2895 		close_sync(conf);
2896 		*skipped = 1;
2897 		return sectors_skipped;
2898 	}
2899 
2900 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2901 		return reshape_request(mddev, sector_nr, skipped);
2902 
2903 	if (chunks_skipped >= conf->geo.raid_disks) {
2904 		/* if there has been nothing to do on any drive,
2905 		 * then there is nothing to do at all..
2906 		 */
2907 		*skipped = 1;
2908 		return (max_sector - sector_nr) + sectors_skipped;
2909 	}
2910 
2911 	if (max_sector > mddev->resync_max)
2912 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2913 
2914 	/* make sure whole request will fit in a chunk - if chunks
2915 	 * are meaningful
2916 	 */
2917 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2918 	    max_sector > (sector_nr | chunk_mask))
2919 		max_sector = (sector_nr | chunk_mask) + 1;
2920 
2921 	/*
2922 	 * If there is non-resync activity waiting for a turn, then let it
2923 	 * though before starting on this new sync request.
2924 	 */
2925 	if (conf->nr_waiting)
2926 		schedule_timeout_uninterruptible(1);
2927 
2928 	/* Again, very different code for resync and recovery.
2929 	 * Both must result in an r10bio with a list of bios that
2930 	 * have bi_end_io, bi_sector, bi_bdev set,
2931 	 * and bi_private set to the r10bio.
2932 	 * For recovery, we may actually create several r10bios
2933 	 * with 2 bios in each, that correspond to the bios in the main one.
2934 	 * In this case, the subordinate r10bios link back through a
2935 	 * borrowed master_bio pointer, and the counter in the master
2936 	 * includes a ref from each subordinate.
2937 	 */
2938 	/* First, we decide what to do and set ->bi_end_io
2939 	 * To end_sync_read if we want to read, and
2940 	 * end_sync_write if we will want to write.
2941 	 */
2942 
2943 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2944 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2945 		/* recovery... the complicated one */
2946 		int j;
2947 		r10_bio = NULL;
2948 
2949 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2950 			int still_degraded;
2951 			struct r10bio *rb2;
2952 			sector_t sect;
2953 			int must_sync;
2954 			int any_working;
2955 			struct raid10_info *mirror = &conf->mirrors[i];
2956 			struct md_rdev *mrdev, *mreplace;
2957 
2958 			rcu_read_lock();
2959 			mrdev = rcu_dereference(mirror->rdev);
2960 			mreplace = rcu_dereference(mirror->replacement);
2961 
2962 			if ((mrdev == NULL ||
2963 			     test_bit(Faulty, &mrdev->flags) ||
2964 			     test_bit(In_sync, &mrdev->flags)) &&
2965 			    (mreplace == NULL ||
2966 			     test_bit(Faulty, &mreplace->flags))) {
2967 				rcu_read_unlock();
2968 				continue;
2969 			}
2970 
2971 			still_degraded = 0;
2972 			/* want to reconstruct this device */
2973 			rb2 = r10_bio;
2974 			sect = raid10_find_virt(conf, sector_nr, i);
2975 			if (sect >= mddev->resync_max_sectors) {
2976 				/* last stripe is not complete - don't
2977 				 * try to recover this sector.
2978 				 */
2979 				rcu_read_unlock();
2980 				continue;
2981 			}
2982 			if (mreplace && test_bit(Faulty, &mreplace->flags))
2983 				mreplace = NULL;
2984 			/* Unless we are doing a full sync, or a replacement
2985 			 * we only need to recover the block if it is set in
2986 			 * the bitmap
2987 			 */
2988 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2989 						      &sync_blocks, 1);
2990 			if (sync_blocks < max_sync)
2991 				max_sync = sync_blocks;
2992 			if (!must_sync &&
2993 			    mreplace == NULL &&
2994 			    !conf->fullsync) {
2995 				/* yep, skip the sync_blocks here, but don't assume
2996 				 * that there will never be anything to do here
2997 				 */
2998 				chunks_skipped = -1;
2999 				rcu_read_unlock();
3000 				continue;
3001 			}
3002 			atomic_inc(&mrdev->nr_pending);
3003 			if (mreplace)
3004 				atomic_inc(&mreplace->nr_pending);
3005 			rcu_read_unlock();
3006 
3007 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3008 			r10_bio->state = 0;
3009 			raise_barrier(conf, rb2 != NULL);
3010 			atomic_set(&r10_bio->remaining, 0);
3011 
3012 			r10_bio->master_bio = (struct bio*)rb2;
3013 			if (rb2)
3014 				atomic_inc(&rb2->remaining);
3015 			r10_bio->mddev = mddev;
3016 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3017 			r10_bio->sector = sect;
3018 
3019 			raid10_find_phys(conf, r10_bio);
3020 
3021 			/* Need to check if the array will still be
3022 			 * degraded
3023 			 */
3024 			rcu_read_lock();
3025 			for (j = 0; j < conf->geo.raid_disks; j++) {
3026 				struct md_rdev *rdev = rcu_dereference(
3027 					conf->mirrors[j].rdev);
3028 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3029 					still_degraded = 1;
3030 					break;
3031 				}
3032 			}
3033 
3034 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3035 						      &sync_blocks, still_degraded);
3036 
3037 			any_working = 0;
3038 			for (j=0; j<conf->copies;j++) {
3039 				int k;
3040 				int d = r10_bio->devs[j].devnum;
3041 				sector_t from_addr, to_addr;
3042 				struct md_rdev *rdev =
3043 					rcu_dereference(conf->mirrors[d].rdev);
3044 				sector_t sector, first_bad;
3045 				int bad_sectors;
3046 				if (!rdev ||
3047 				    !test_bit(In_sync, &rdev->flags))
3048 					continue;
3049 				/* This is where we read from */
3050 				any_working = 1;
3051 				sector = r10_bio->devs[j].addr;
3052 
3053 				if (is_badblock(rdev, sector, max_sync,
3054 						&first_bad, &bad_sectors)) {
3055 					if (first_bad > sector)
3056 						max_sync = first_bad - sector;
3057 					else {
3058 						bad_sectors -= (sector
3059 								- first_bad);
3060 						if (max_sync > bad_sectors)
3061 							max_sync = bad_sectors;
3062 						continue;
3063 					}
3064 				}
3065 				bio = r10_bio->devs[0].bio;
3066 				bio_reset(bio);
3067 				bio->bi_next = biolist;
3068 				biolist = bio;
3069 				bio->bi_private = r10_bio;
3070 				bio->bi_end_io = end_sync_read;
3071 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3072 				from_addr = r10_bio->devs[j].addr;
3073 				bio->bi_iter.bi_sector = from_addr +
3074 					rdev->data_offset;
3075 				bio->bi_bdev = rdev->bdev;
3076 				atomic_inc(&rdev->nr_pending);
3077 				/* and we write to 'i' (if not in_sync) */
3078 
3079 				for (k=0; k<conf->copies; k++)
3080 					if (r10_bio->devs[k].devnum == i)
3081 						break;
3082 				BUG_ON(k == conf->copies);
3083 				to_addr = r10_bio->devs[k].addr;
3084 				r10_bio->devs[0].devnum = d;
3085 				r10_bio->devs[0].addr = from_addr;
3086 				r10_bio->devs[1].devnum = i;
3087 				r10_bio->devs[1].addr = to_addr;
3088 
3089 				if (!test_bit(In_sync, &mrdev->flags)) {
3090 					bio = r10_bio->devs[1].bio;
3091 					bio_reset(bio);
3092 					bio->bi_next = biolist;
3093 					biolist = bio;
3094 					bio->bi_private = r10_bio;
3095 					bio->bi_end_io = end_sync_write;
3096 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3097 					bio->bi_iter.bi_sector = to_addr
3098 						+ mrdev->data_offset;
3099 					bio->bi_bdev = mrdev->bdev;
3100 					atomic_inc(&r10_bio->remaining);
3101 				} else
3102 					r10_bio->devs[1].bio->bi_end_io = NULL;
3103 
3104 				/* and maybe write to replacement */
3105 				bio = r10_bio->devs[1].repl_bio;
3106 				if (bio)
3107 					bio->bi_end_io = NULL;
3108 				/* Note: if mreplace != NULL, then bio
3109 				 * cannot be NULL as r10buf_pool_alloc will
3110 				 * have allocated it.
3111 				 * So the second test here is pointless.
3112 				 * But it keeps semantic-checkers happy, and
3113 				 * this comment keeps human reviewers
3114 				 * happy.
3115 				 */
3116 				if (mreplace == NULL || bio == NULL ||
3117 				    test_bit(Faulty, &mreplace->flags))
3118 					break;
3119 				bio_reset(bio);
3120 				bio->bi_next = biolist;
3121 				biolist = bio;
3122 				bio->bi_private = r10_bio;
3123 				bio->bi_end_io = end_sync_write;
3124 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3125 				bio->bi_iter.bi_sector = to_addr +
3126 					mreplace->data_offset;
3127 				bio->bi_bdev = mreplace->bdev;
3128 				atomic_inc(&r10_bio->remaining);
3129 				break;
3130 			}
3131 			rcu_read_unlock();
3132 			if (j == conf->copies) {
3133 				/* Cannot recover, so abort the recovery or
3134 				 * record a bad block */
3135 				if (any_working) {
3136 					/* problem is that there are bad blocks
3137 					 * on other device(s)
3138 					 */
3139 					int k;
3140 					for (k = 0; k < conf->copies; k++)
3141 						if (r10_bio->devs[k].devnum == i)
3142 							break;
3143 					if (!test_bit(In_sync,
3144 						      &mrdev->flags)
3145 					    && !rdev_set_badblocks(
3146 						    mrdev,
3147 						    r10_bio->devs[k].addr,
3148 						    max_sync, 0))
3149 						any_working = 0;
3150 					if (mreplace &&
3151 					    !rdev_set_badblocks(
3152 						    mreplace,
3153 						    r10_bio->devs[k].addr,
3154 						    max_sync, 0))
3155 						any_working = 0;
3156 				}
3157 				if (!any_working)  {
3158 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3159 							      &mddev->recovery))
3160 						printk(KERN_INFO "md/raid10:%s: insufficient "
3161 						       "working devices for recovery.\n",
3162 						       mdname(mddev));
3163 					mirror->recovery_disabled
3164 						= mddev->recovery_disabled;
3165 				}
3166 				put_buf(r10_bio);
3167 				if (rb2)
3168 					atomic_dec(&rb2->remaining);
3169 				r10_bio = rb2;
3170 				rdev_dec_pending(mrdev, mddev);
3171 				if (mreplace)
3172 					rdev_dec_pending(mreplace, mddev);
3173 				break;
3174 			}
3175 			rdev_dec_pending(mrdev, mddev);
3176 			if (mreplace)
3177 				rdev_dec_pending(mreplace, mddev);
3178 		}
3179 		if (biolist == NULL) {
3180 			while (r10_bio) {
3181 				struct r10bio *rb2 = r10_bio;
3182 				r10_bio = (struct r10bio*) rb2->master_bio;
3183 				rb2->master_bio = NULL;
3184 				put_buf(rb2);
3185 			}
3186 			goto giveup;
3187 		}
3188 	} else {
3189 		/* resync. Schedule a read for every block at this virt offset */
3190 		int count = 0;
3191 
3192 		bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3193 
3194 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3195 				       &sync_blocks, mddev->degraded) &&
3196 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3197 						 &mddev->recovery)) {
3198 			/* We can skip this block */
3199 			*skipped = 1;
3200 			return sync_blocks + sectors_skipped;
3201 		}
3202 		if (sync_blocks < max_sync)
3203 			max_sync = sync_blocks;
3204 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3205 		r10_bio->state = 0;
3206 
3207 		r10_bio->mddev = mddev;
3208 		atomic_set(&r10_bio->remaining, 0);
3209 		raise_barrier(conf, 0);
3210 		conf->next_resync = sector_nr;
3211 
3212 		r10_bio->master_bio = NULL;
3213 		r10_bio->sector = sector_nr;
3214 		set_bit(R10BIO_IsSync, &r10_bio->state);
3215 		raid10_find_phys(conf, r10_bio);
3216 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3217 
3218 		for (i = 0; i < conf->copies; i++) {
3219 			int d = r10_bio->devs[i].devnum;
3220 			sector_t first_bad, sector;
3221 			int bad_sectors;
3222 			struct md_rdev *rdev;
3223 
3224 			if (r10_bio->devs[i].repl_bio)
3225 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3226 
3227 			bio = r10_bio->devs[i].bio;
3228 			bio_reset(bio);
3229 			bio->bi_error = -EIO;
3230 			rcu_read_lock();
3231 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3232 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3233 				rcu_read_unlock();
3234 				continue;
3235 			}
3236 			sector = r10_bio->devs[i].addr;
3237 			if (is_badblock(rdev, sector, max_sync,
3238 					&first_bad, &bad_sectors)) {
3239 				if (first_bad > sector)
3240 					max_sync = first_bad - sector;
3241 				else {
3242 					bad_sectors -= (sector - first_bad);
3243 					if (max_sync > bad_sectors)
3244 						max_sync = bad_sectors;
3245 					rcu_read_unlock();
3246 					continue;
3247 				}
3248 			}
3249 			atomic_inc(&rdev->nr_pending);
3250 			atomic_inc(&r10_bio->remaining);
3251 			bio->bi_next = biolist;
3252 			biolist = bio;
3253 			bio->bi_private = r10_bio;
3254 			bio->bi_end_io = end_sync_read;
3255 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3256 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3257 			bio->bi_bdev = rdev->bdev;
3258 			count++;
3259 
3260 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3261 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3262 				rcu_read_unlock();
3263 				continue;
3264 			}
3265 			atomic_inc(&rdev->nr_pending);
3266 			rcu_read_unlock();
3267 
3268 			/* Need to set up for writing to the replacement */
3269 			bio = r10_bio->devs[i].repl_bio;
3270 			bio_reset(bio);
3271 			bio->bi_error = -EIO;
3272 
3273 			sector = r10_bio->devs[i].addr;
3274 			bio->bi_next = biolist;
3275 			biolist = bio;
3276 			bio->bi_private = r10_bio;
3277 			bio->bi_end_io = end_sync_write;
3278 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3279 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3280 			bio->bi_bdev = rdev->bdev;
3281 			count++;
3282 		}
3283 
3284 		if (count < 2) {
3285 			for (i=0; i<conf->copies; i++) {
3286 				int d = r10_bio->devs[i].devnum;
3287 				if (r10_bio->devs[i].bio->bi_end_io)
3288 					rdev_dec_pending(conf->mirrors[d].rdev,
3289 							 mddev);
3290 				if (r10_bio->devs[i].repl_bio &&
3291 				    r10_bio->devs[i].repl_bio->bi_end_io)
3292 					rdev_dec_pending(
3293 						conf->mirrors[d].replacement,
3294 						mddev);
3295 			}
3296 			put_buf(r10_bio);
3297 			biolist = NULL;
3298 			goto giveup;
3299 		}
3300 	}
3301 
3302 	nr_sectors = 0;
3303 	if (sector_nr + max_sync < max_sector)
3304 		max_sector = sector_nr + max_sync;
3305 	do {
3306 		struct page *page;
3307 		int len = PAGE_SIZE;
3308 		if (sector_nr + (len>>9) > max_sector)
3309 			len = (max_sector - sector_nr) << 9;
3310 		if (len == 0)
3311 			break;
3312 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3313 			struct bio *bio2;
3314 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3315 			if (bio_add_page(bio, page, len, 0))
3316 				continue;
3317 
3318 			/* stop here */
3319 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3320 			for (bio2 = biolist;
3321 			     bio2 && bio2 != bio;
3322 			     bio2 = bio2->bi_next) {
3323 				/* remove last page from this bio */
3324 				bio2->bi_vcnt--;
3325 				bio2->bi_iter.bi_size -= len;
3326 				bio_clear_flag(bio2, BIO_SEG_VALID);
3327 			}
3328 			goto bio_full;
3329 		}
3330 		nr_sectors += len>>9;
3331 		sector_nr += len>>9;
3332 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3333  bio_full:
3334 	r10_bio->sectors = nr_sectors;
3335 
3336 	while (biolist) {
3337 		bio = biolist;
3338 		biolist = biolist->bi_next;
3339 
3340 		bio->bi_next = NULL;
3341 		r10_bio = bio->bi_private;
3342 		r10_bio->sectors = nr_sectors;
3343 
3344 		if (bio->bi_end_io == end_sync_read) {
3345 			md_sync_acct(bio->bi_bdev, nr_sectors);
3346 			bio->bi_error = 0;
3347 			generic_make_request(bio);
3348 		}
3349 	}
3350 
3351 	if (sectors_skipped)
3352 		/* pretend they weren't skipped, it makes
3353 		 * no important difference in this case
3354 		 */
3355 		md_done_sync(mddev, sectors_skipped, 1);
3356 
3357 	return sectors_skipped + nr_sectors;
3358  giveup:
3359 	/* There is nowhere to write, so all non-sync
3360 	 * drives must be failed or in resync, all drives
3361 	 * have a bad block, so try the next chunk...
3362 	 */
3363 	if (sector_nr + max_sync < max_sector)
3364 		max_sector = sector_nr + max_sync;
3365 
3366 	sectors_skipped += (max_sector - sector_nr);
3367 	chunks_skipped ++;
3368 	sector_nr = max_sector;
3369 	goto skipped;
3370 }
3371 
3372 static sector_t
3373 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3374 {
3375 	sector_t size;
3376 	struct r10conf *conf = mddev->private;
3377 
3378 	if (!raid_disks)
3379 		raid_disks = min(conf->geo.raid_disks,
3380 				 conf->prev.raid_disks);
3381 	if (!sectors)
3382 		sectors = conf->dev_sectors;
3383 
3384 	size = sectors >> conf->geo.chunk_shift;
3385 	sector_div(size, conf->geo.far_copies);
3386 	size = size * raid_disks;
3387 	sector_div(size, conf->geo.near_copies);
3388 
3389 	return size << conf->geo.chunk_shift;
3390 }
3391 
3392 static void calc_sectors(struct r10conf *conf, sector_t size)
3393 {
3394 	/* Calculate the number of sectors-per-device that will
3395 	 * actually be used, and set conf->dev_sectors and
3396 	 * conf->stride
3397 	 */
3398 
3399 	size = size >> conf->geo.chunk_shift;
3400 	sector_div(size, conf->geo.far_copies);
3401 	size = size * conf->geo.raid_disks;
3402 	sector_div(size, conf->geo.near_copies);
3403 	/* 'size' is now the number of chunks in the array */
3404 	/* calculate "used chunks per device" */
3405 	size = size * conf->copies;
3406 
3407 	/* We need to round up when dividing by raid_disks to
3408 	 * get the stride size.
3409 	 */
3410 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3411 
3412 	conf->dev_sectors = size << conf->geo.chunk_shift;
3413 
3414 	if (conf->geo.far_offset)
3415 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3416 	else {
3417 		sector_div(size, conf->geo.far_copies);
3418 		conf->geo.stride = size << conf->geo.chunk_shift;
3419 	}
3420 }
3421 
3422 enum geo_type {geo_new, geo_old, geo_start};
3423 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3424 {
3425 	int nc, fc, fo;
3426 	int layout, chunk, disks;
3427 	switch (new) {
3428 	case geo_old:
3429 		layout = mddev->layout;
3430 		chunk = mddev->chunk_sectors;
3431 		disks = mddev->raid_disks - mddev->delta_disks;
3432 		break;
3433 	case geo_new:
3434 		layout = mddev->new_layout;
3435 		chunk = mddev->new_chunk_sectors;
3436 		disks = mddev->raid_disks;
3437 		break;
3438 	default: /* avoid 'may be unused' warnings */
3439 	case geo_start: /* new when starting reshape - raid_disks not
3440 			 * updated yet. */
3441 		layout = mddev->new_layout;
3442 		chunk = mddev->new_chunk_sectors;
3443 		disks = mddev->raid_disks + mddev->delta_disks;
3444 		break;
3445 	}
3446 	if (layout >> 19)
3447 		return -1;
3448 	if (chunk < (PAGE_SIZE >> 9) ||
3449 	    !is_power_of_2(chunk))
3450 		return -2;
3451 	nc = layout & 255;
3452 	fc = (layout >> 8) & 255;
3453 	fo = layout & (1<<16);
3454 	geo->raid_disks = disks;
3455 	geo->near_copies = nc;
3456 	geo->far_copies = fc;
3457 	geo->far_offset = fo;
3458 	switch (layout >> 17) {
3459 	case 0:	/* original layout.  simple but not always optimal */
3460 		geo->far_set_size = disks;
3461 		break;
3462 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3463 		 * actually using this, but leave code here just in case.*/
3464 		geo->far_set_size = disks/fc;
3465 		WARN(geo->far_set_size < fc,
3466 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3467 		break;
3468 	case 2: /* "improved" layout fixed to match documentation */
3469 		geo->far_set_size = fc * nc;
3470 		break;
3471 	default: /* Not a valid layout */
3472 		return -1;
3473 	}
3474 	geo->chunk_mask = chunk - 1;
3475 	geo->chunk_shift = ffz(~chunk);
3476 	return nc*fc;
3477 }
3478 
3479 static struct r10conf *setup_conf(struct mddev *mddev)
3480 {
3481 	struct r10conf *conf = NULL;
3482 	int err = -EINVAL;
3483 	struct geom geo;
3484 	int copies;
3485 
3486 	copies = setup_geo(&geo, mddev, geo_new);
3487 
3488 	if (copies == -2) {
3489 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3490 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3491 		       mdname(mddev), PAGE_SIZE);
3492 		goto out;
3493 	}
3494 
3495 	if (copies < 2 || copies > mddev->raid_disks) {
3496 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3497 		       mdname(mddev), mddev->new_layout);
3498 		goto out;
3499 	}
3500 
3501 	err = -ENOMEM;
3502 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3503 	if (!conf)
3504 		goto out;
3505 
3506 	/* FIXME calc properly */
3507 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3508 							    max(0,-mddev->delta_disks)),
3509 				GFP_KERNEL);
3510 	if (!conf->mirrors)
3511 		goto out;
3512 
3513 	conf->tmppage = alloc_page(GFP_KERNEL);
3514 	if (!conf->tmppage)
3515 		goto out;
3516 
3517 	conf->geo = geo;
3518 	conf->copies = copies;
3519 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3520 					   r10bio_pool_free, conf);
3521 	if (!conf->r10bio_pool)
3522 		goto out;
3523 
3524 	calc_sectors(conf, mddev->dev_sectors);
3525 	if (mddev->reshape_position == MaxSector) {
3526 		conf->prev = conf->geo;
3527 		conf->reshape_progress = MaxSector;
3528 	} else {
3529 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3530 			err = -EINVAL;
3531 			goto out;
3532 		}
3533 		conf->reshape_progress = mddev->reshape_position;
3534 		if (conf->prev.far_offset)
3535 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3536 		else
3537 			/* far_copies must be 1 */
3538 			conf->prev.stride = conf->dev_sectors;
3539 	}
3540 	conf->reshape_safe = conf->reshape_progress;
3541 	spin_lock_init(&conf->device_lock);
3542 	INIT_LIST_HEAD(&conf->retry_list);
3543 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3544 
3545 	spin_lock_init(&conf->resync_lock);
3546 	init_waitqueue_head(&conf->wait_barrier);
3547 	atomic_set(&conf->nr_pending, 0);
3548 
3549 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3550 	if (!conf->thread)
3551 		goto out;
3552 
3553 	conf->mddev = mddev;
3554 	return conf;
3555 
3556  out:
3557 	if (err == -ENOMEM)
3558 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3559 		       mdname(mddev));
3560 	if (conf) {
3561 		mempool_destroy(conf->r10bio_pool);
3562 		kfree(conf->mirrors);
3563 		safe_put_page(conf->tmppage);
3564 		kfree(conf);
3565 	}
3566 	return ERR_PTR(err);
3567 }
3568 
3569 static int raid10_run(struct mddev *mddev)
3570 {
3571 	struct r10conf *conf;
3572 	int i, disk_idx, chunk_size;
3573 	struct raid10_info *disk;
3574 	struct md_rdev *rdev;
3575 	sector_t size;
3576 	sector_t min_offset_diff = 0;
3577 	int first = 1;
3578 	bool discard_supported = false;
3579 
3580 	if (mddev->private == NULL) {
3581 		conf = setup_conf(mddev);
3582 		if (IS_ERR(conf))
3583 			return PTR_ERR(conf);
3584 		mddev->private = conf;
3585 	}
3586 	conf = mddev->private;
3587 	if (!conf)
3588 		goto out;
3589 
3590 	mddev->thread = conf->thread;
3591 	conf->thread = NULL;
3592 
3593 	chunk_size = mddev->chunk_sectors << 9;
3594 	if (mddev->queue) {
3595 		blk_queue_max_discard_sectors(mddev->queue,
3596 					      mddev->chunk_sectors);
3597 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3598 		blk_queue_io_min(mddev->queue, chunk_size);
3599 		if (conf->geo.raid_disks % conf->geo.near_copies)
3600 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3601 		else
3602 			blk_queue_io_opt(mddev->queue, chunk_size *
3603 					 (conf->geo.raid_disks / conf->geo.near_copies));
3604 	}
3605 
3606 	rdev_for_each(rdev, mddev) {
3607 		long long diff;
3608 		struct request_queue *q;
3609 
3610 		disk_idx = rdev->raid_disk;
3611 		if (disk_idx < 0)
3612 			continue;
3613 		if (disk_idx >= conf->geo.raid_disks &&
3614 		    disk_idx >= conf->prev.raid_disks)
3615 			continue;
3616 		disk = conf->mirrors + disk_idx;
3617 
3618 		if (test_bit(Replacement, &rdev->flags)) {
3619 			if (disk->replacement)
3620 				goto out_free_conf;
3621 			disk->replacement = rdev;
3622 		} else {
3623 			if (disk->rdev)
3624 				goto out_free_conf;
3625 			disk->rdev = rdev;
3626 		}
3627 		q = bdev_get_queue(rdev->bdev);
3628 		diff = (rdev->new_data_offset - rdev->data_offset);
3629 		if (!mddev->reshape_backwards)
3630 			diff = -diff;
3631 		if (diff < 0)
3632 			diff = 0;
3633 		if (first || diff < min_offset_diff)
3634 			min_offset_diff = diff;
3635 
3636 		if (mddev->gendisk)
3637 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3638 					  rdev->data_offset << 9);
3639 
3640 		disk->head_position = 0;
3641 
3642 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3643 			discard_supported = true;
3644 	}
3645 
3646 	if (mddev->queue) {
3647 		if (discard_supported)
3648 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3649 						mddev->queue);
3650 		else
3651 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3652 						  mddev->queue);
3653 	}
3654 	/* need to check that every block has at least one working mirror */
3655 	if (!enough(conf, -1)) {
3656 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3657 		       mdname(mddev));
3658 		goto out_free_conf;
3659 	}
3660 
3661 	if (conf->reshape_progress != MaxSector) {
3662 		/* must ensure that shape change is supported */
3663 		if (conf->geo.far_copies != 1 &&
3664 		    conf->geo.far_offset == 0)
3665 			goto out_free_conf;
3666 		if (conf->prev.far_copies != 1 &&
3667 		    conf->prev.far_offset == 0)
3668 			goto out_free_conf;
3669 	}
3670 
3671 	mddev->degraded = 0;
3672 	for (i = 0;
3673 	     i < conf->geo.raid_disks
3674 		     || i < conf->prev.raid_disks;
3675 	     i++) {
3676 
3677 		disk = conf->mirrors + i;
3678 
3679 		if (!disk->rdev && disk->replacement) {
3680 			/* The replacement is all we have - use it */
3681 			disk->rdev = disk->replacement;
3682 			disk->replacement = NULL;
3683 			clear_bit(Replacement, &disk->rdev->flags);
3684 		}
3685 
3686 		if (!disk->rdev ||
3687 		    !test_bit(In_sync, &disk->rdev->flags)) {
3688 			disk->head_position = 0;
3689 			mddev->degraded++;
3690 			if (disk->rdev &&
3691 			    disk->rdev->saved_raid_disk < 0)
3692 				conf->fullsync = 1;
3693 		}
3694 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3695 	}
3696 
3697 	if (mddev->recovery_cp != MaxSector)
3698 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3699 		       " -- starting background reconstruction\n",
3700 		       mdname(mddev));
3701 	printk(KERN_INFO
3702 		"md/raid10:%s: active with %d out of %d devices\n",
3703 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3704 		conf->geo.raid_disks);
3705 	/*
3706 	 * Ok, everything is just fine now
3707 	 */
3708 	mddev->dev_sectors = conf->dev_sectors;
3709 	size = raid10_size(mddev, 0, 0);
3710 	md_set_array_sectors(mddev, size);
3711 	mddev->resync_max_sectors = size;
3712 
3713 	if (mddev->queue) {
3714 		int stripe = conf->geo.raid_disks *
3715 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3716 
3717 		/* Calculate max read-ahead size.
3718 		 * We need to readahead at least twice a whole stripe....
3719 		 * maybe...
3720 		 */
3721 		stripe /= conf->geo.near_copies;
3722 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3723 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3724 	}
3725 
3726 	if (md_integrity_register(mddev))
3727 		goto out_free_conf;
3728 
3729 	if (conf->reshape_progress != MaxSector) {
3730 		unsigned long before_length, after_length;
3731 
3732 		before_length = ((1 << conf->prev.chunk_shift) *
3733 				 conf->prev.far_copies);
3734 		after_length = ((1 << conf->geo.chunk_shift) *
3735 				conf->geo.far_copies);
3736 
3737 		if (max(before_length, after_length) > min_offset_diff) {
3738 			/* This cannot work */
3739 			printk("md/raid10: offset difference not enough to continue reshape\n");
3740 			goto out_free_conf;
3741 		}
3742 		conf->offset_diff = min_offset_diff;
3743 
3744 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3745 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3746 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3747 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3748 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3749 							"reshape");
3750 	}
3751 
3752 	return 0;
3753 
3754 out_free_conf:
3755 	md_unregister_thread(&mddev->thread);
3756 	mempool_destroy(conf->r10bio_pool);
3757 	safe_put_page(conf->tmppage);
3758 	kfree(conf->mirrors);
3759 	kfree(conf);
3760 	mddev->private = NULL;
3761 out:
3762 	return -EIO;
3763 }
3764 
3765 static void raid10_free(struct mddev *mddev, void *priv)
3766 {
3767 	struct r10conf *conf = priv;
3768 
3769 	mempool_destroy(conf->r10bio_pool);
3770 	safe_put_page(conf->tmppage);
3771 	kfree(conf->mirrors);
3772 	kfree(conf->mirrors_old);
3773 	kfree(conf->mirrors_new);
3774 	kfree(conf);
3775 }
3776 
3777 static void raid10_quiesce(struct mddev *mddev, int state)
3778 {
3779 	struct r10conf *conf = mddev->private;
3780 
3781 	switch(state) {
3782 	case 1:
3783 		raise_barrier(conf, 0);
3784 		break;
3785 	case 0:
3786 		lower_barrier(conf);
3787 		break;
3788 	}
3789 }
3790 
3791 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3792 {
3793 	/* Resize of 'far' arrays is not supported.
3794 	 * For 'near' and 'offset' arrays we can set the
3795 	 * number of sectors used to be an appropriate multiple
3796 	 * of the chunk size.
3797 	 * For 'offset', this is far_copies*chunksize.
3798 	 * For 'near' the multiplier is the LCM of
3799 	 * near_copies and raid_disks.
3800 	 * So if far_copies > 1 && !far_offset, fail.
3801 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3802 	 * multiply by chunk_size.  Then round to this number.
3803 	 * This is mostly done by raid10_size()
3804 	 */
3805 	struct r10conf *conf = mddev->private;
3806 	sector_t oldsize, size;
3807 
3808 	if (mddev->reshape_position != MaxSector)
3809 		return -EBUSY;
3810 
3811 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3812 		return -EINVAL;
3813 
3814 	oldsize = raid10_size(mddev, 0, 0);
3815 	size = raid10_size(mddev, sectors, 0);
3816 	if (mddev->external_size &&
3817 	    mddev->array_sectors > size)
3818 		return -EINVAL;
3819 	if (mddev->bitmap) {
3820 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3821 		if (ret)
3822 			return ret;
3823 	}
3824 	md_set_array_sectors(mddev, size);
3825 	if (mddev->queue) {
3826 		set_capacity(mddev->gendisk, mddev->array_sectors);
3827 		revalidate_disk(mddev->gendisk);
3828 	}
3829 	if (sectors > mddev->dev_sectors &&
3830 	    mddev->recovery_cp > oldsize) {
3831 		mddev->recovery_cp = oldsize;
3832 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3833 	}
3834 	calc_sectors(conf, sectors);
3835 	mddev->dev_sectors = conf->dev_sectors;
3836 	mddev->resync_max_sectors = size;
3837 	return 0;
3838 }
3839 
3840 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3841 {
3842 	struct md_rdev *rdev;
3843 	struct r10conf *conf;
3844 
3845 	if (mddev->degraded > 0) {
3846 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3847 		       mdname(mddev));
3848 		return ERR_PTR(-EINVAL);
3849 	}
3850 	sector_div(size, devs);
3851 
3852 	/* Set new parameters */
3853 	mddev->new_level = 10;
3854 	/* new layout: far_copies = 1, near_copies = 2 */
3855 	mddev->new_layout = (1<<8) + 2;
3856 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3857 	mddev->delta_disks = mddev->raid_disks;
3858 	mddev->raid_disks *= 2;
3859 	/* make sure it will be not marked as dirty */
3860 	mddev->recovery_cp = MaxSector;
3861 	mddev->dev_sectors = size;
3862 
3863 	conf = setup_conf(mddev);
3864 	if (!IS_ERR(conf)) {
3865 		rdev_for_each(rdev, mddev)
3866 			if (rdev->raid_disk >= 0) {
3867 				rdev->new_raid_disk = rdev->raid_disk * 2;
3868 				rdev->sectors = size;
3869 			}
3870 		conf->barrier = 1;
3871 	}
3872 
3873 	return conf;
3874 }
3875 
3876 static void *raid10_takeover(struct mddev *mddev)
3877 {
3878 	struct r0conf *raid0_conf;
3879 
3880 	/* raid10 can take over:
3881 	 *  raid0 - providing it has only two drives
3882 	 */
3883 	if (mddev->level == 0) {
3884 		/* for raid0 takeover only one zone is supported */
3885 		raid0_conf = mddev->private;
3886 		if (raid0_conf->nr_strip_zones > 1) {
3887 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3888 			       " with more than one zone.\n",
3889 			       mdname(mddev));
3890 			return ERR_PTR(-EINVAL);
3891 		}
3892 		return raid10_takeover_raid0(mddev,
3893 			raid0_conf->strip_zone->zone_end,
3894 			raid0_conf->strip_zone->nb_dev);
3895 	}
3896 	return ERR_PTR(-EINVAL);
3897 }
3898 
3899 static int raid10_check_reshape(struct mddev *mddev)
3900 {
3901 	/* Called when there is a request to change
3902 	 * - layout (to ->new_layout)
3903 	 * - chunk size (to ->new_chunk_sectors)
3904 	 * - raid_disks (by delta_disks)
3905 	 * or when trying to restart a reshape that was ongoing.
3906 	 *
3907 	 * We need to validate the request and possibly allocate
3908 	 * space if that might be an issue later.
3909 	 *
3910 	 * Currently we reject any reshape of a 'far' mode array,
3911 	 * allow chunk size to change if new is generally acceptable,
3912 	 * allow raid_disks to increase, and allow
3913 	 * a switch between 'near' mode and 'offset' mode.
3914 	 */
3915 	struct r10conf *conf = mddev->private;
3916 	struct geom geo;
3917 
3918 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3919 		return -EINVAL;
3920 
3921 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3922 		/* mustn't change number of copies */
3923 		return -EINVAL;
3924 	if (geo.far_copies > 1 && !geo.far_offset)
3925 		/* Cannot switch to 'far' mode */
3926 		return -EINVAL;
3927 
3928 	if (mddev->array_sectors & geo.chunk_mask)
3929 			/* not factor of array size */
3930 			return -EINVAL;
3931 
3932 	if (!enough(conf, -1))
3933 		return -EINVAL;
3934 
3935 	kfree(conf->mirrors_new);
3936 	conf->mirrors_new = NULL;
3937 	if (mddev->delta_disks > 0) {
3938 		/* allocate new 'mirrors' list */
3939 		conf->mirrors_new = kzalloc(
3940 			sizeof(struct raid10_info)
3941 			*(mddev->raid_disks +
3942 			  mddev->delta_disks),
3943 			GFP_KERNEL);
3944 		if (!conf->mirrors_new)
3945 			return -ENOMEM;
3946 	}
3947 	return 0;
3948 }
3949 
3950 /*
3951  * Need to check if array has failed when deciding whether to:
3952  *  - start an array
3953  *  - remove non-faulty devices
3954  *  - add a spare
3955  *  - allow a reshape
3956  * This determination is simple when no reshape is happening.
3957  * However if there is a reshape, we need to carefully check
3958  * both the before and after sections.
3959  * This is because some failed devices may only affect one
3960  * of the two sections, and some non-in_sync devices may
3961  * be insync in the section most affected by failed devices.
3962  */
3963 static int calc_degraded(struct r10conf *conf)
3964 {
3965 	int degraded, degraded2;
3966 	int i;
3967 
3968 	rcu_read_lock();
3969 	degraded = 0;
3970 	/* 'prev' section first */
3971 	for (i = 0; i < conf->prev.raid_disks; i++) {
3972 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3973 		if (!rdev || test_bit(Faulty, &rdev->flags))
3974 			degraded++;
3975 		else if (!test_bit(In_sync, &rdev->flags))
3976 			/* When we can reduce the number of devices in
3977 			 * an array, this might not contribute to
3978 			 * 'degraded'.  It does now.
3979 			 */
3980 			degraded++;
3981 	}
3982 	rcu_read_unlock();
3983 	if (conf->geo.raid_disks == conf->prev.raid_disks)
3984 		return degraded;
3985 	rcu_read_lock();
3986 	degraded2 = 0;
3987 	for (i = 0; i < conf->geo.raid_disks; i++) {
3988 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3989 		if (!rdev || test_bit(Faulty, &rdev->flags))
3990 			degraded2++;
3991 		else if (!test_bit(In_sync, &rdev->flags)) {
3992 			/* If reshape is increasing the number of devices,
3993 			 * this section has already been recovered, so
3994 			 * it doesn't contribute to degraded.
3995 			 * else it does.
3996 			 */
3997 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
3998 				degraded2++;
3999 		}
4000 	}
4001 	rcu_read_unlock();
4002 	if (degraded2 > degraded)
4003 		return degraded2;
4004 	return degraded;
4005 }
4006 
4007 static int raid10_start_reshape(struct mddev *mddev)
4008 {
4009 	/* A 'reshape' has been requested. This commits
4010 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4011 	 * This also checks if there are enough spares and adds them
4012 	 * to the array.
4013 	 * We currently require enough spares to make the final
4014 	 * array non-degraded.  We also require that the difference
4015 	 * between old and new data_offset - on each device - is
4016 	 * enough that we never risk over-writing.
4017 	 */
4018 
4019 	unsigned long before_length, after_length;
4020 	sector_t min_offset_diff = 0;
4021 	int first = 1;
4022 	struct geom new;
4023 	struct r10conf *conf = mddev->private;
4024 	struct md_rdev *rdev;
4025 	int spares = 0;
4026 	int ret;
4027 
4028 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4029 		return -EBUSY;
4030 
4031 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4032 		return -EINVAL;
4033 
4034 	before_length = ((1 << conf->prev.chunk_shift) *
4035 			 conf->prev.far_copies);
4036 	after_length = ((1 << conf->geo.chunk_shift) *
4037 			conf->geo.far_copies);
4038 
4039 	rdev_for_each(rdev, mddev) {
4040 		if (!test_bit(In_sync, &rdev->flags)
4041 		    && !test_bit(Faulty, &rdev->flags))
4042 			spares++;
4043 		if (rdev->raid_disk >= 0) {
4044 			long long diff = (rdev->new_data_offset
4045 					  - rdev->data_offset);
4046 			if (!mddev->reshape_backwards)
4047 				diff = -diff;
4048 			if (diff < 0)
4049 				diff = 0;
4050 			if (first || diff < min_offset_diff)
4051 				min_offset_diff = diff;
4052 		}
4053 	}
4054 
4055 	if (max(before_length, after_length) > min_offset_diff)
4056 		return -EINVAL;
4057 
4058 	if (spares < mddev->delta_disks)
4059 		return -EINVAL;
4060 
4061 	conf->offset_diff = min_offset_diff;
4062 	spin_lock_irq(&conf->device_lock);
4063 	if (conf->mirrors_new) {
4064 		memcpy(conf->mirrors_new, conf->mirrors,
4065 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4066 		smp_mb();
4067 		kfree(conf->mirrors_old);
4068 		conf->mirrors_old = conf->mirrors;
4069 		conf->mirrors = conf->mirrors_new;
4070 		conf->mirrors_new = NULL;
4071 	}
4072 	setup_geo(&conf->geo, mddev, geo_start);
4073 	smp_mb();
4074 	if (mddev->reshape_backwards) {
4075 		sector_t size = raid10_size(mddev, 0, 0);
4076 		if (size < mddev->array_sectors) {
4077 			spin_unlock_irq(&conf->device_lock);
4078 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4079 			       mdname(mddev));
4080 			return -EINVAL;
4081 		}
4082 		mddev->resync_max_sectors = size;
4083 		conf->reshape_progress = size;
4084 	} else
4085 		conf->reshape_progress = 0;
4086 	conf->reshape_safe = conf->reshape_progress;
4087 	spin_unlock_irq(&conf->device_lock);
4088 
4089 	if (mddev->delta_disks && mddev->bitmap) {
4090 		ret = bitmap_resize(mddev->bitmap,
4091 				    raid10_size(mddev, 0,
4092 						conf->geo.raid_disks),
4093 				    0, 0);
4094 		if (ret)
4095 			goto abort;
4096 	}
4097 	if (mddev->delta_disks > 0) {
4098 		rdev_for_each(rdev, mddev)
4099 			if (rdev->raid_disk < 0 &&
4100 			    !test_bit(Faulty, &rdev->flags)) {
4101 				if (raid10_add_disk(mddev, rdev) == 0) {
4102 					if (rdev->raid_disk >=
4103 					    conf->prev.raid_disks)
4104 						set_bit(In_sync, &rdev->flags);
4105 					else
4106 						rdev->recovery_offset = 0;
4107 
4108 					if (sysfs_link_rdev(mddev, rdev))
4109 						/* Failure here  is OK */;
4110 				}
4111 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4112 				   && !test_bit(Faulty, &rdev->flags)) {
4113 				/* This is a spare that was manually added */
4114 				set_bit(In_sync, &rdev->flags);
4115 			}
4116 	}
4117 	/* When a reshape changes the number of devices,
4118 	 * ->degraded is measured against the larger of the
4119 	 * pre and  post numbers.
4120 	 */
4121 	spin_lock_irq(&conf->device_lock);
4122 	mddev->degraded = calc_degraded(conf);
4123 	spin_unlock_irq(&conf->device_lock);
4124 	mddev->raid_disks = conf->geo.raid_disks;
4125 	mddev->reshape_position = conf->reshape_progress;
4126 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4127 
4128 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4129 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4130 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4131 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4132 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4133 
4134 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4135 						"reshape");
4136 	if (!mddev->sync_thread) {
4137 		ret = -EAGAIN;
4138 		goto abort;
4139 	}
4140 	conf->reshape_checkpoint = jiffies;
4141 	md_wakeup_thread(mddev->sync_thread);
4142 	md_new_event(mddev);
4143 	return 0;
4144 
4145 abort:
4146 	mddev->recovery = 0;
4147 	spin_lock_irq(&conf->device_lock);
4148 	conf->geo = conf->prev;
4149 	mddev->raid_disks = conf->geo.raid_disks;
4150 	rdev_for_each(rdev, mddev)
4151 		rdev->new_data_offset = rdev->data_offset;
4152 	smp_wmb();
4153 	conf->reshape_progress = MaxSector;
4154 	conf->reshape_safe = MaxSector;
4155 	mddev->reshape_position = MaxSector;
4156 	spin_unlock_irq(&conf->device_lock);
4157 	return ret;
4158 }
4159 
4160 /* Calculate the last device-address that could contain
4161  * any block from the chunk that includes the array-address 's'
4162  * and report the next address.
4163  * i.e. the address returned will be chunk-aligned and after
4164  * any data that is in the chunk containing 's'.
4165  */
4166 static sector_t last_dev_address(sector_t s, struct geom *geo)
4167 {
4168 	s = (s | geo->chunk_mask) + 1;
4169 	s >>= geo->chunk_shift;
4170 	s *= geo->near_copies;
4171 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4172 	s *= geo->far_copies;
4173 	s <<= geo->chunk_shift;
4174 	return s;
4175 }
4176 
4177 /* Calculate the first device-address that could contain
4178  * any block from the chunk that includes the array-address 's'.
4179  * This too will be the start of a chunk
4180  */
4181 static sector_t first_dev_address(sector_t s, struct geom *geo)
4182 {
4183 	s >>= geo->chunk_shift;
4184 	s *= geo->near_copies;
4185 	sector_div(s, geo->raid_disks);
4186 	s *= geo->far_copies;
4187 	s <<= geo->chunk_shift;
4188 	return s;
4189 }
4190 
4191 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4192 				int *skipped)
4193 {
4194 	/* We simply copy at most one chunk (smallest of old and new)
4195 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4196 	 * or we hit a bad block or something.
4197 	 * This might mean we pause for normal IO in the middle of
4198 	 * a chunk, but that is not a problem as mddev->reshape_position
4199 	 * can record any location.
4200 	 *
4201 	 * If we will want to write to a location that isn't
4202 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4203 	 * we need to flush all reshape requests and update the metadata.
4204 	 *
4205 	 * When reshaping forwards (e.g. to more devices), we interpret
4206 	 * 'safe' as the earliest block which might not have been copied
4207 	 * down yet.  We divide this by previous stripe size and multiply
4208 	 * by previous stripe length to get lowest device offset that we
4209 	 * cannot write to yet.
4210 	 * We interpret 'sector_nr' as an address that we want to write to.
4211 	 * From this we use last_device_address() to find where we might
4212 	 * write to, and first_device_address on the  'safe' position.
4213 	 * If this 'next' write position is after the 'safe' position,
4214 	 * we must update the metadata to increase the 'safe' position.
4215 	 *
4216 	 * When reshaping backwards, we round in the opposite direction
4217 	 * and perform the reverse test:  next write position must not be
4218 	 * less than current safe position.
4219 	 *
4220 	 * In all this the minimum difference in data offsets
4221 	 * (conf->offset_diff - always positive) allows a bit of slack,
4222 	 * so next can be after 'safe', but not by more than offset_diff
4223 	 *
4224 	 * We need to prepare all the bios here before we start any IO
4225 	 * to ensure the size we choose is acceptable to all devices.
4226 	 * The means one for each copy for write-out and an extra one for
4227 	 * read-in.
4228 	 * We store the read-in bio in ->master_bio and the others in
4229 	 * ->devs[x].bio and ->devs[x].repl_bio.
4230 	 */
4231 	struct r10conf *conf = mddev->private;
4232 	struct r10bio *r10_bio;
4233 	sector_t next, safe, last;
4234 	int max_sectors;
4235 	int nr_sectors;
4236 	int s;
4237 	struct md_rdev *rdev;
4238 	int need_flush = 0;
4239 	struct bio *blist;
4240 	struct bio *bio, *read_bio;
4241 	int sectors_done = 0;
4242 
4243 	if (sector_nr == 0) {
4244 		/* If restarting in the middle, skip the initial sectors */
4245 		if (mddev->reshape_backwards &&
4246 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4247 			sector_nr = (raid10_size(mddev, 0, 0)
4248 				     - conf->reshape_progress);
4249 		} else if (!mddev->reshape_backwards &&
4250 			   conf->reshape_progress > 0)
4251 			sector_nr = conf->reshape_progress;
4252 		if (sector_nr) {
4253 			mddev->curr_resync_completed = sector_nr;
4254 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4255 			*skipped = 1;
4256 			return sector_nr;
4257 		}
4258 	}
4259 
4260 	/* We don't use sector_nr to track where we are up to
4261 	 * as that doesn't work well for ->reshape_backwards.
4262 	 * So just use ->reshape_progress.
4263 	 */
4264 	if (mddev->reshape_backwards) {
4265 		/* 'next' is the earliest device address that we might
4266 		 * write to for this chunk in the new layout
4267 		 */
4268 		next = first_dev_address(conf->reshape_progress - 1,
4269 					 &conf->geo);
4270 
4271 		/* 'safe' is the last device address that we might read from
4272 		 * in the old layout after a restart
4273 		 */
4274 		safe = last_dev_address(conf->reshape_safe - 1,
4275 					&conf->prev);
4276 
4277 		if (next + conf->offset_diff < safe)
4278 			need_flush = 1;
4279 
4280 		last = conf->reshape_progress - 1;
4281 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4282 					       & conf->prev.chunk_mask);
4283 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4284 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4285 	} else {
4286 		/* 'next' is after the last device address that we
4287 		 * might write to for this chunk in the new layout
4288 		 */
4289 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4290 
4291 		/* 'safe' is the earliest device address that we might
4292 		 * read from in the old layout after a restart
4293 		 */
4294 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4295 
4296 		/* Need to update metadata if 'next' might be beyond 'safe'
4297 		 * as that would possibly corrupt data
4298 		 */
4299 		if (next > safe + conf->offset_diff)
4300 			need_flush = 1;
4301 
4302 		sector_nr = conf->reshape_progress;
4303 		last  = sector_nr | (conf->geo.chunk_mask
4304 				     & conf->prev.chunk_mask);
4305 
4306 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4307 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4308 	}
4309 
4310 	if (need_flush ||
4311 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4312 		/* Need to update reshape_position in metadata */
4313 		wait_barrier(conf);
4314 		mddev->reshape_position = conf->reshape_progress;
4315 		if (mddev->reshape_backwards)
4316 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4317 				- conf->reshape_progress;
4318 		else
4319 			mddev->curr_resync_completed = conf->reshape_progress;
4320 		conf->reshape_checkpoint = jiffies;
4321 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4322 		md_wakeup_thread(mddev->thread);
4323 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4324 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4325 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4326 			allow_barrier(conf);
4327 			return sectors_done;
4328 		}
4329 		conf->reshape_safe = mddev->reshape_position;
4330 		allow_barrier(conf);
4331 	}
4332 
4333 read_more:
4334 	/* Now schedule reads for blocks from sector_nr to last */
4335 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4336 	r10_bio->state = 0;
4337 	raise_barrier(conf, sectors_done != 0);
4338 	atomic_set(&r10_bio->remaining, 0);
4339 	r10_bio->mddev = mddev;
4340 	r10_bio->sector = sector_nr;
4341 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4342 	r10_bio->sectors = last - sector_nr + 1;
4343 	rdev = read_balance(conf, r10_bio, &max_sectors);
4344 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4345 
4346 	if (!rdev) {
4347 		/* Cannot read from here, so need to record bad blocks
4348 		 * on all the target devices.
4349 		 */
4350 		// FIXME
4351 		mempool_free(r10_bio, conf->r10buf_pool);
4352 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4353 		return sectors_done;
4354 	}
4355 
4356 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4357 
4358 	read_bio->bi_bdev = rdev->bdev;
4359 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4360 			       + rdev->data_offset);
4361 	read_bio->bi_private = r10_bio;
4362 	read_bio->bi_end_io = end_sync_read;
4363 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4364 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4365 	read_bio->bi_error = 0;
4366 	read_bio->bi_vcnt = 0;
4367 	read_bio->bi_iter.bi_size = 0;
4368 	r10_bio->master_bio = read_bio;
4369 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4370 
4371 	/* Now find the locations in the new layout */
4372 	__raid10_find_phys(&conf->geo, r10_bio);
4373 
4374 	blist = read_bio;
4375 	read_bio->bi_next = NULL;
4376 
4377 	rcu_read_lock();
4378 	for (s = 0; s < conf->copies*2; s++) {
4379 		struct bio *b;
4380 		int d = r10_bio->devs[s/2].devnum;
4381 		struct md_rdev *rdev2;
4382 		if (s&1) {
4383 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4384 			b = r10_bio->devs[s/2].repl_bio;
4385 		} else {
4386 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4387 			b = r10_bio->devs[s/2].bio;
4388 		}
4389 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4390 			continue;
4391 
4392 		bio_reset(b);
4393 		b->bi_bdev = rdev2->bdev;
4394 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4395 			rdev2->new_data_offset;
4396 		b->bi_private = r10_bio;
4397 		b->bi_end_io = end_reshape_write;
4398 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4399 		b->bi_next = blist;
4400 		blist = b;
4401 	}
4402 
4403 	/* Now add as many pages as possible to all of these bios. */
4404 
4405 	nr_sectors = 0;
4406 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4407 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4408 		int len = (max_sectors - s) << 9;
4409 		if (len > PAGE_SIZE)
4410 			len = PAGE_SIZE;
4411 		for (bio = blist; bio ; bio = bio->bi_next) {
4412 			struct bio *bio2;
4413 			if (bio_add_page(bio, page, len, 0))
4414 				continue;
4415 
4416 			/* Didn't fit, must stop */
4417 			for (bio2 = blist;
4418 			     bio2 && bio2 != bio;
4419 			     bio2 = bio2->bi_next) {
4420 				/* Remove last page from this bio */
4421 				bio2->bi_vcnt--;
4422 				bio2->bi_iter.bi_size -= len;
4423 				bio_clear_flag(bio2, BIO_SEG_VALID);
4424 			}
4425 			goto bio_full;
4426 		}
4427 		sector_nr += len >> 9;
4428 		nr_sectors += len >> 9;
4429 	}
4430 bio_full:
4431 	rcu_read_unlock();
4432 	r10_bio->sectors = nr_sectors;
4433 
4434 	/* Now submit the read */
4435 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4436 	atomic_inc(&r10_bio->remaining);
4437 	read_bio->bi_next = NULL;
4438 	generic_make_request(read_bio);
4439 	sector_nr += nr_sectors;
4440 	sectors_done += nr_sectors;
4441 	if (sector_nr <= last)
4442 		goto read_more;
4443 
4444 	/* Now that we have done the whole section we can
4445 	 * update reshape_progress
4446 	 */
4447 	if (mddev->reshape_backwards)
4448 		conf->reshape_progress -= sectors_done;
4449 	else
4450 		conf->reshape_progress += sectors_done;
4451 
4452 	return sectors_done;
4453 }
4454 
4455 static void end_reshape_request(struct r10bio *r10_bio);
4456 static int handle_reshape_read_error(struct mddev *mddev,
4457 				     struct r10bio *r10_bio);
4458 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4459 {
4460 	/* Reshape read completed.  Hopefully we have a block
4461 	 * to write out.
4462 	 * If we got a read error then we do sync 1-page reads from
4463 	 * elsewhere until we find the data - or give up.
4464 	 */
4465 	struct r10conf *conf = mddev->private;
4466 	int s;
4467 
4468 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4469 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4470 			/* Reshape has been aborted */
4471 			md_done_sync(mddev, r10_bio->sectors, 0);
4472 			return;
4473 		}
4474 
4475 	/* We definitely have the data in the pages, schedule the
4476 	 * writes.
4477 	 */
4478 	atomic_set(&r10_bio->remaining, 1);
4479 	for (s = 0; s < conf->copies*2; s++) {
4480 		struct bio *b;
4481 		int d = r10_bio->devs[s/2].devnum;
4482 		struct md_rdev *rdev;
4483 		rcu_read_lock();
4484 		if (s&1) {
4485 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4486 			b = r10_bio->devs[s/2].repl_bio;
4487 		} else {
4488 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4489 			b = r10_bio->devs[s/2].bio;
4490 		}
4491 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4492 			rcu_read_unlock();
4493 			continue;
4494 		}
4495 		atomic_inc(&rdev->nr_pending);
4496 		rcu_read_unlock();
4497 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4498 		atomic_inc(&r10_bio->remaining);
4499 		b->bi_next = NULL;
4500 		generic_make_request(b);
4501 	}
4502 	end_reshape_request(r10_bio);
4503 }
4504 
4505 static void end_reshape(struct r10conf *conf)
4506 {
4507 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4508 		return;
4509 
4510 	spin_lock_irq(&conf->device_lock);
4511 	conf->prev = conf->geo;
4512 	md_finish_reshape(conf->mddev);
4513 	smp_wmb();
4514 	conf->reshape_progress = MaxSector;
4515 	conf->reshape_safe = MaxSector;
4516 	spin_unlock_irq(&conf->device_lock);
4517 
4518 	/* read-ahead size must cover two whole stripes, which is
4519 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4520 	 */
4521 	if (conf->mddev->queue) {
4522 		int stripe = conf->geo.raid_disks *
4523 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4524 		stripe /= conf->geo.near_copies;
4525 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4526 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4527 	}
4528 	conf->fullsync = 0;
4529 }
4530 
4531 static int handle_reshape_read_error(struct mddev *mddev,
4532 				     struct r10bio *r10_bio)
4533 {
4534 	/* Use sync reads to get the blocks from somewhere else */
4535 	int sectors = r10_bio->sectors;
4536 	struct r10conf *conf = mddev->private;
4537 	struct {
4538 		struct r10bio r10_bio;
4539 		struct r10dev devs[conf->copies];
4540 	} on_stack;
4541 	struct r10bio *r10b = &on_stack.r10_bio;
4542 	int slot = 0;
4543 	int idx = 0;
4544 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4545 
4546 	r10b->sector = r10_bio->sector;
4547 	__raid10_find_phys(&conf->prev, r10b);
4548 
4549 	while (sectors) {
4550 		int s = sectors;
4551 		int success = 0;
4552 		int first_slot = slot;
4553 
4554 		if (s > (PAGE_SIZE >> 9))
4555 			s = PAGE_SIZE >> 9;
4556 
4557 		rcu_read_lock();
4558 		while (!success) {
4559 			int d = r10b->devs[slot].devnum;
4560 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4561 			sector_t addr;
4562 			if (rdev == NULL ||
4563 			    test_bit(Faulty, &rdev->flags) ||
4564 			    !test_bit(In_sync, &rdev->flags))
4565 				goto failed;
4566 
4567 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4568 			atomic_inc(&rdev->nr_pending);
4569 			rcu_read_unlock();
4570 			success = sync_page_io(rdev,
4571 					       addr,
4572 					       s << 9,
4573 					       bvec[idx].bv_page,
4574 					       REQ_OP_READ, 0, false);
4575 			rdev_dec_pending(rdev, mddev);
4576 			rcu_read_lock();
4577 			if (success)
4578 				break;
4579 		failed:
4580 			slot++;
4581 			if (slot >= conf->copies)
4582 				slot = 0;
4583 			if (slot == first_slot)
4584 				break;
4585 		}
4586 		rcu_read_unlock();
4587 		if (!success) {
4588 			/* couldn't read this block, must give up */
4589 			set_bit(MD_RECOVERY_INTR,
4590 				&mddev->recovery);
4591 			return -EIO;
4592 		}
4593 		sectors -= s;
4594 		idx++;
4595 	}
4596 	return 0;
4597 }
4598 
4599 static void end_reshape_write(struct bio *bio)
4600 {
4601 	struct r10bio *r10_bio = bio->bi_private;
4602 	struct mddev *mddev = r10_bio->mddev;
4603 	struct r10conf *conf = mddev->private;
4604 	int d;
4605 	int slot;
4606 	int repl;
4607 	struct md_rdev *rdev = NULL;
4608 
4609 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4610 	if (repl)
4611 		rdev = conf->mirrors[d].replacement;
4612 	if (!rdev) {
4613 		smp_mb();
4614 		rdev = conf->mirrors[d].rdev;
4615 	}
4616 
4617 	if (bio->bi_error) {
4618 		/* FIXME should record badblock */
4619 		md_error(mddev, rdev);
4620 	}
4621 
4622 	rdev_dec_pending(rdev, mddev);
4623 	end_reshape_request(r10_bio);
4624 }
4625 
4626 static void end_reshape_request(struct r10bio *r10_bio)
4627 {
4628 	if (!atomic_dec_and_test(&r10_bio->remaining))
4629 		return;
4630 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4631 	bio_put(r10_bio->master_bio);
4632 	put_buf(r10_bio);
4633 }
4634 
4635 static void raid10_finish_reshape(struct mddev *mddev)
4636 {
4637 	struct r10conf *conf = mddev->private;
4638 
4639 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4640 		return;
4641 
4642 	if (mddev->delta_disks > 0) {
4643 		sector_t size = raid10_size(mddev, 0, 0);
4644 		md_set_array_sectors(mddev, size);
4645 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4646 			mddev->recovery_cp = mddev->resync_max_sectors;
4647 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4648 		}
4649 		mddev->resync_max_sectors = size;
4650 		if (mddev->queue) {
4651 			set_capacity(mddev->gendisk, mddev->array_sectors);
4652 			revalidate_disk(mddev->gendisk);
4653 		}
4654 	} else {
4655 		int d;
4656 		rcu_read_lock();
4657 		for (d = conf->geo.raid_disks ;
4658 		     d < conf->geo.raid_disks - mddev->delta_disks;
4659 		     d++) {
4660 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4661 			if (rdev)
4662 				clear_bit(In_sync, &rdev->flags);
4663 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4664 			if (rdev)
4665 				clear_bit(In_sync, &rdev->flags);
4666 		}
4667 		rcu_read_unlock();
4668 	}
4669 	mddev->layout = mddev->new_layout;
4670 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4671 	mddev->reshape_position = MaxSector;
4672 	mddev->delta_disks = 0;
4673 	mddev->reshape_backwards = 0;
4674 }
4675 
4676 static struct md_personality raid10_personality =
4677 {
4678 	.name		= "raid10",
4679 	.level		= 10,
4680 	.owner		= THIS_MODULE,
4681 	.make_request	= raid10_make_request,
4682 	.run		= raid10_run,
4683 	.free		= raid10_free,
4684 	.status		= raid10_status,
4685 	.error_handler	= raid10_error,
4686 	.hot_add_disk	= raid10_add_disk,
4687 	.hot_remove_disk= raid10_remove_disk,
4688 	.spare_active	= raid10_spare_active,
4689 	.sync_request	= raid10_sync_request,
4690 	.quiesce	= raid10_quiesce,
4691 	.size		= raid10_size,
4692 	.resize		= raid10_resize,
4693 	.takeover	= raid10_takeover,
4694 	.check_reshape	= raid10_check_reshape,
4695 	.start_reshape	= raid10_start_reshape,
4696 	.finish_reshape	= raid10_finish_reshape,
4697 	.congested	= raid10_congested,
4698 };
4699 
4700 static int __init raid_init(void)
4701 {
4702 	return register_md_personality(&raid10_personality);
4703 }
4704 
4705 static void raid_exit(void)
4706 {
4707 	unregister_md_personality(&raid10_personality);
4708 }
4709 
4710 module_init(raid_init);
4711 module_exit(raid_exit);
4712 MODULE_LICENSE("GPL");
4713 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4714 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4715 MODULE_ALIAS("md-raid10");
4716 MODULE_ALIAS("md-level-10");
4717 
4718 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4719