xref: /openbmc/linux/drivers/md/raid10.c (revision e52a6321)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25 
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66 
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 				int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76 
77 #define raid10_log(md, fmt, args...)				\
78 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79 
80 #include "raid1-10.c"
81 
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88 	return get_resync_pages(bio)->raid_bio;
89 }
90 
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93 	struct r10conf *conf = data;
94 	int size = offsetof(struct r10bio, devs[conf->copies]);
95 
96 	/* allocate a r10bio with room for raid_disks entries in the
97 	 * bios array */
98 	return kzalloc(size, gfp_flags);
99 }
100 
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108 
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 	struct r10conf *conf = data;
119 	struct r10bio *r10_bio;
120 	struct bio *bio;
121 	int j;
122 	int nalloc, nalloc_rp;
123 	struct resync_pages *rps;
124 
125 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126 	if (!r10_bio)
127 		return NULL;
128 
129 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 		nalloc = conf->copies; /* resync */
132 	else
133 		nalloc = 2; /* recovery */
134 
135 	/* allocate once for all bios */
136 	if (!conf->have_replacement)
137 		nalloc_rp = nalloc;
138 	else
139 		nalloc_rp = nalloc * 2;
140 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141 	if (!rps)
142 		goto out_free_r10bio;
143 
144 	/*
145 	 * Allocate bios.
146 	 */
147 	for (j = nalloc ; j-- ; ) {
148 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149 		if (!bio)
150 			goto out_free_bio;
151 		r10_bio->devs[j].bio = bio;
152 		if (!conf->have_replacement)
153 			continue;
154 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155 		if (!bio)
156 			goto out_free_bio;
157 		r10_bio->devs[j].repl_bio = bio;
158 	}
159 	/*
160 	 * Allocate RESYNC_PAGES data pages and attach them
161 	 * where needed.
162 	 */
163 	for (j = 0; j < nalloc; j++) {
164 		struct bio *rbio = r10_bio->devs[j].repl_bio;
165 		struct resync_pages *rp, *rp_repl;
166 
167 		rp = &rps[j];
168 		if (rbio)
169 			rp_repl = &rps[nalloc + j];
170 
171 		bio = r10_bio->devs[j].bio;
172 
173 		if (!j || test_bit(MD_RECOVERY_SYNC,
174 				   &conf->mddev->recovery)) {
175 			if (resync_alloc_pages(rp, gfp_flags))
176 				goto out_free_pages;
177 		} else {
178 			memcpy(rp, &rps[0], sizeof(*rp));
179 			resync_get_all_pages(rp);
180 		}
181 
182 		rp->raid_bio = r10_bio;
183 		bio->bi_private = rp;
184 		if (rbio) {
185 			memcpy(rp_repl, rp, sizeof(*rp));
186 			rbio->bi_private = rp_repl;
187 		}
188 	}
189 
190 	return r10_bio;
191 
192 out_free_pages:
193 	while (--j >= 0)
194 		resync_free_pages(&rps[j * 2]);
195 
196 	j = 0;
197 out_free_bio:
198 	for ( ; j < nalloc; j++) {
199 		if (r10_bio->devs[j].bio)
200 			bio_put(r10_bio->devs[j].bio);
201 		if (r10_bio->devs[j].repl_bio)
202 			bio_put(r10_bio->devs[j].repl_bio);
203 	}
204 	kfree(rps);
205 out_free_r10bio:
206 	rbio_pool_free(r10_bio, conf);
207 	return NULL;
208 }
209 
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212 	struct r10conf *conf = data;
213 	struct r10bio *r10bio = __r10_bio;
214 	int j;
215 	struct resync_pages *rp = NULL;
216 
217 	for (j = conf->copies; j--; ) {
218 		struct bio *bio = r10bio->devs[j].bio;
219 
220 		if (bio) {
221 			rp = get_resync_pages(bio);
222 			resync_free_pages(rp);
223 			bio_put(bio);
224 		}
225 
226 		bio = r10bio->devs[j].repl_bio;
227 		if (bio)
228 			bio_put(bio);
229 	}
230 
231 	/* resync pages array stored in the 1st bio's .bi_private */
232 	kfree(rp);
233 
234 	rbio_pool_free(r10bio, conf);
235 }
236 
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239 	int i;
240 
241 	for (i = 0; i < conf->copies; i++) {
242 		struct bio **bio = & r10_bio->devs[i].bio;
243 		if (!BIO_SPECIAL(*bio))
244 			bio_put(*bio);
245 		*bio = NULL;
246 		bio = &r10_bio->devs[i].repl_bio;
247 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 	}
251 }
252 
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255 	struct r10conf *conf = r10_bio->mddev->private;
256 
257 	put_all_bios(conf, r10_bio);
258 	mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260 
261 static void put_buf(struct r10bio *r10_bio)
262 {
263 	struct r10conf *conf = r10_bio->mddev->private;
264 
265 	mempool_free(r10_bio, &conf->r10buf_pool);
266 
267 	lower_barrier(conf);
268 }
269 
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272 	unsigned long flags;
273 	struct mddev *mddev = r10_bio->mddev;
274 	struct r10conf *conf = mddev->private;
275 
276 	spin_lock_irqsave(&conf->device_lock, flags);
277 	list_add(&r10_bio->retry_list, &conf->retry_list);
278 	conf->nr_queued ++;
279 	spin_unlock_irqrestore(&conf->device_lock, flags);
280 
281 	/* wake up frozen array... */
282 	wake_up(&conf->wait_barrier);
283 
284 	md_wakeup_thread(mddev->thread);
285 }
286 
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294 	struct bio *bio = r10_bio->master_bio;
295 	struct r10conf *conf = r10_bio->mddev->private;
296 
297 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298 		bio->bi_status = BLK_STS_IOERR;
299 
300 	bio_endio(bio);
301 	/*
302 	 * Wake up any possible resync thread that waits for the device
303 	 * to go idle.
304 	 */
305 	allow_barrier(conf);
306 
307 	free_r10bio(r10_bio);
308 }
309 
310 /*
311  * Update disk head position estimator based on IRQ completion info.
312  */
313 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314 {
315 	struct r10conf *conf = r10_bio->mddev->private;
316 
317 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318 		r10_bio->devs[slot].addr + (r10_bio->sectors);
319 }
320 
321 /*
322  * Find the disk number which triggered given bio
323  */
324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325 			 struct bio *bio, int *slotp, int *replp)
326 {
327 	int slot;
328 	int repl = 0;
329 
330 	for (slot = 0; slot < conf->copies; slot++) {
331 		if (r10_bio->devs[slot].bio == bio)
332 			break;
333 		if (r10_bio->devs[slot].repl_bio == bio) {
334 			repl = 1;
335 			break;
336 		}
337 	}
338 
339 	BUG_ON(slot == conf->copies);
340 	update_head_pos(slot, r10_bio);
341 
342 	if (slotp)
343 		*slotp = slot;
344 	if (replp)
345 		*replp = repl;
346 	return r10_bio->devs[slot].devnum;
347 }
348 
349 static void raid10_end_read_request(struct bio *bio)
350 {
351 	int uptodate = !bio->bi_status;
352 	struct r10bio *r10_bio = bio->bi_private;
353 	int slot;
354 	struct md_rdev *rdev;
355 	struct r10conf *conf = r10_bio->mddev->private;
356 
357 	slot = r10_bio->read_slot;
358 	rdev = r10_bio->devs[slot].rdev;
359 	/*
360 	 * this branch is our 'one mirror IO has finished' event handler:
361 	 */
362 	update_head_pos(slot, r10_bio);
363 
364 	if (uptodate) {
365 		/*
366 		 * Set R10BIO_Uptodate in our master bio, so that
367 		 * we will return a good error code to the higher
368 		 * levels even if IO on some other mirrored buffer fails.
369 		 *
370 		 * The 'master' represents the composite IO operation to
371 		 * user-side. So if something waits for IO, then it will
372 		 * wait for the 'master' bio.
373 		 */
374 		set_bit(R10BIO_Uptodate, &r10_bio->state);
375 	} else {
376 		/* If all other devices that store this block have
377 		 * failed, we want to return the error upwards rather
378 		 * than fail the last device.  Here we redefine
379 		 * "uptodate" to mean "Don't want to retry"
380 		 */
381 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
382 			     rdev->raid_disk))
383 			uptodate = 1;
384 	}
385 	if (uptodate) {
386 		raid_end_bio_io(r10_bio);
387 		rdev_dec_pending(rdev, conf->mddev);
388 	} else {
389 		/*
390 		 * oops, read error - keep the refcount on the rdev
391 		 */
392 		char b[BDEVNAME_SIZE];
393 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
394 				   mdname(conf->mddev),
395 				   bdevname(rdev->bdev, b),
396 				   (unsigned long long)r10_bio->sector);
397 		set_bit(R10BIO_ReadError, &r10_bio->state);
398 		reschedule_retry(r10_bio);
399 	}
400 }
401 
402 static void close_write(struct r10bio *r10_bio)
403 {
404 	/* clear the bitmap if all writes complete successfully */
405 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
406 			   r10_bio->sectors,
407 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
408 			   0);
409 	md_write_end(r10_bio->mddev);
410 }
411 
412 static void one_write_done(struct r10bio *r10_bio)
413 {
414 	if (atomic_dec_and_test(&r10_bio->remaining)) {
415 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
416 			reschedule_retry(r10_bio);
417 		else {
418 			close_write(r10_bio);
419 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
420 				reschedule_retry(r10_bio);
421 			else
422 				raid_end_bio_io(r10_bio);
423 		}
424 	}
425 }
426 
427 static void raid10_end_write_request(struct bio *bio)
428 {
429 	struct r10bio *r10_bio = bio->bi_private;
430 	int dev;
431 	int dec_rdev = 1;
432 	struct r10conf *conf = r10_bio->mddev->private;
433 	int slot, repl;
434 	struct md_rdev *rdev = NULL;
435 	struct bio *to_put = NULL;
436 	bool discard_error;
437 
438 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
439 
440 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
441 
442 	if (repl)
443 		rdev = conf->mirrors[dev].replacement;
444 	if (!rdev) {
445 		smp_rmb();
446 		repl = 0;
447 		rdev = conf->mirrors[dev].rdev;
448 	}
449 	/*
450 	 * this branch is our 'one mirror IO has finished' event handler:
451 	 */
452 	if (bio->bi_status && !discard_error) {
453 		if (repl)
454 			/* Never record new bad blocks to replacement,
455 			 * just fail it.
456 			 */
457 			md_error(rdev->mddev, rdev);
458 		else {
459 			set_bit(WriteErrorSeen,	&rdev->flags);
460 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
461 				set_bit(MD_RECOVERY_NEEDED,
462 					&rdev->mddev->recovery);
463 
464 			dec_rdev = 0;
465 			if (test_bit(FailFast, &rdev->flags) &&
466 			    (bio->bi_opf & MD_FAILFAST)) {
467 				md_error(rdev->mddev, rdev);
468 				if (!test_bit(Faulty, &rdev->flags))
469 					/* This is the only remaining device,
470 					 * We need to retry the write without
471 					 * FailFast
472 					 */
473 					set_bit(R10BIO_WriteError, &r10_bio->state);
474 				else {
475 					r10_bio->devs[slot].bio = NULL;
476 					to_put = bio;
477 					dec_rdev = 1;
478 				}
479 			} else
480 				set_bit(R10BIO_WriteError, &r10_bio->state);
481 		}
482 	} else {
483 		/*
484 		 * Set R10BIO_Uptodate in our master bio, so that
485 		 * we will return a good error code for to the higher
486 		 * levels even if IO on some other mirrored buffer fails.
487 		 *
488 		 * The 'master' represents the composite IO operation to
489 		 * user-side. So if something waits for IO, then it will
490 		 * wait for the 'master' bio.
491 		 */
492 		sector_t first_bad;
493 		int bad_sectors;
494 
495 		/*
496 		 * Do not set R10BIO_Uptodate if the current device is
497 		 * rebuilding or Faulty. This is because we cannot use
498 		 * such device for properly reading the data back (we could
499 		 * potentially use it, if the current write would have felt
500 		 * before rdev->recovery_offset, but for simplicity we don't
501 		 * check this here.
502 		 */
503 		if (test_bit(In_sync, &rdev->flags) &&
504 		    !test_bit(Faulty, &rdev->flags))
505 			set_bit(R10BIO_Uptodate, &r10_bio->state);
506 
507 		/* Maybe we can clear some bad blocks. */
508 		if (is_badblock(rdev,
509 				r10_bio->devs[slot].addr,
510 				r10_bio->sectors,
511 				&first_bad, &bad_sectors) && !discard_error) {
512 			bio_put(bio);
513 			if (repl)
514 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
515 			else
516 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
517 			dec_rdev = 0;
518 			set_bit(R10BIO_MadeGood, &r10_bio->state);
519 		}
520 	}
521 
522 	/*
523 	 *
524 	 * Let's see if all mirrored write operations have finished
525 	 * already.
526 	 */
527 	one_write_done(r10_bio);
528 	if (dec_rdev)
529 		rdev_dec_pending(rdev, conf->mddev);
530 	if (to_put)
531 		bio_put(to_put);
532 }
533 
534 /*
535  * RAID10 layout manager
536  * As well as the chunksize and raid_disks count, there are two
537  * parameters: near_copies and far_copies.
538  * near_copies * far_copies must be <= raid_disks.
539  * Normally one of these will be 1.
540  * If both are 1, we get raid0.
541  * If near_copies == raid_disks, we get raid1.
542  *
543  * Chunks are laid out in raid0 style with near_copies copies of the
544  * first chunk, followed by near_copies copies of the next chunk and
545  * so on.
546  * If far_copies > 1, then after 1/far_copies of the array has been assigned
547  * as described above, we start again with a device offset of near_copies.
548  * So we effectively have another copy of the whole array further down all
549  * the drives, but with blocks on different drives.
550  * With this layout, and block is never stored twice on the one device.
551  *
552  * raid10_find_phys finds the sector offset of a given virtual sector
553  * on each device that it is on.
554  *
555  * raid10_find_virt does the reverse mapping, from a device and a
556  * sector offset to a virtual address
557  */
558 
559 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
560 {
561 	int n,f;
562 	sector_t sector;
563 	sector_t chunk;
564 	sector_t stripe;
565 	int dev;
566 	int slot = 0;
567 	int last_far_set_start, last_far_set_size;
568 
569 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
570 	last_far_set_start *= geo->far_set_size;
571 
572 	last_far_set_size = geo->far_set_size;
573 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
574 
575 	/* now calculate first sector/dev */
576 	chunk = r10bio->sector >> geo->chunk_shift;
577 	sector = r10bio->sector & geo->chunk_mask;
578 
579 	chunk *= geo->near_copies;
580 	stripe = chunk;
581 	dev = sector_div(stripe, geo->raid_disks);
582 	if (geo->far_offset)
583 		stripe *= geo->far_copies;
584 
585 	sector += stripe << geo->chunk_shift;
586 
587 	/* and calculate all the others */
588 	for (n = 0; n < geo->near_copies; n++) {
589 		int d = dev;
590 		int set;
591 		sector_t s = sector;
592 		r10bio->devs[slot].devnum = d;
593 		r10bio->devs[slot].addr = s;
594 		slot++;
595 
596 		for (f = 1; f < geo->far_copies; f++) {
597 			set = d / geo->far_set_size;
598 			d += geo->near_copies;
599 
600 			if ((geo->raid_disks % geo->far_set_size) &&
601 			    (d > last_far_set_start)) {
602 				d -= last_far_set_start;
603 				d %= last_far_set_size;
604 				d += last_far_set_start;
605 			} else {
606 				d %= geo->far_set_size;
607 				d += geo->far_set_size * set;
608 			}
609 			s += geo->stride;
610 			r10bio->devs[slot].devnum = d;
611 			r10bio->devs[slot].addr = s;
612 			slot++;
613 		}
614 		dev++;
615 		if (dev >= geo->raid_disks) {
616 			dev = 0;
617 			sector += (geo->chunk_mask + 1);
618 		}
619 	}
620 }
621 
622 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
623 {
624 	struct geom *geo = &conf->geo;
625 
626 	if (conf->reshape_progress != MaxSector &&
627 	    ((r10bio->sector >= conf->reshape_progress) !=
628 	     conf->mddev->reshape_backwards)) {
629 		set_bit(R10BIO_Previous, &r10bio->state);
630 		geo = &conf->prev;
631 	} else
632 		clear_bit(R10BIO_Previous, &r10bio->state);
633 
634 	__raid10_find_phys(geo, r10bio);
635 }
636 
637 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
638 {
639 	sector_t offset, chunk, vchunk;
640 	/* Never use conf->prev as this is only called during resync
641 	 * or recovery, so reshape isn't happening
642 	 */
643 	struct geom *geo = &conf->geo;
644 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
645 	int far_set_size = geo->far_set_size;
646 	int last_far_set_start;
647 
648 	if (geo->raid_disks % geo->far_set_size) {
649 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
650 		last_far_set_start *= geo->far_set_size;
651 
652 		if (dev >= last_far_set_start) {
653 			far_set_size = geo->far_set_size;
654 			far_set_size += (geo->raid_disks % geo->far_set_size);
655 			far_set_start = last_far_set_start;
656 		}
657 	}
658 
659 	offset = sector & geo->chunk_mask;
660 	if (geo->far_offset) {
661 		int fc;
662 		chunk = sector >> geo->chunk_shift;
663 		fc = sector_div(chunk, geo->far_copies);
664 		dev -= fc * geo->near_copies;
665 		if (dev < far_set_start)
666 			dev += far_set_size;
667 	} else {
668 		while (sector >= geo->stride) {
669 			sector -= geo->stride;
670 			if (dev < (geo->near_copies + far_set_start))
671 				dev += far_set_size - geo->near_copies;
672 			else
673 				dev -= geo->near_copies;
674 		}
675 		chunk = sector >> geo->chunk_shift;
676 	}
677 	vchunk = chunk * geo->raid_disks + dev;
678 	sector_div(vchunk, geo->near_copies);
679 	return (vchunk << geo->chunk_shift) + offset;
680 }
681 
682 /*
683  * This routine returns the disk from which the requested read should
684  * be done. There is a per-array 'next expected sequential IO' sector
685  * number - if this matches on the next IO then we use the last disk.
686  * There is also a per-disk 'last know head position' sector that is
687  * maintained from IRQ contexts, both the normal and the resync IO
688  * completion handlers update this position correctly. If there is no
689  * perfect sequential match then we pick the disk whose head is closest.
690  *
691  * If there are 2 mirrors in the same 2 devices, performance degrades
692  * because position is mirror, not device based.
693  *
694  * The rdev for the device selected will have nr_pending incremented.
695  */
696 
697 /*
698  * FIXME: possibly should rethink readbalancing and do it differently
699  * depending on near_copies / far_copies geometry.
700  */
701 static struct md_rdev *read_balance(struct r10conf *conf,
702 				    struct r10bio *r10_bio,
703 				    int *max_sectors)
704 {
705 	const sector_t this_sector = r10_bio->sector;
706 	int disk, slot;
707 	int sectors = r10_bio->sectors;
708 	int best_good_sectors;
709 	sector_t new_distance, best_dist;
710 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
711 	int do_balance;
712 	int best_dist_slot, best_pending_slot;
713 	bool has_nonrot_disk = false;
714 	unsigned int min_pending;
715 	struct geom *geo = &conf->geo;
716 
717 	raid10_find_phys(conf, r10_bio);
718 	rcu_read_lock();
719 	best_dist_slot = -1;
720 	min_pending = UINT_MAX;
721 	best_dist_rdev = NULL;
722 	best_pending_rdev = NULL;
723 	best_dist = MaxSector;
724 	best_good_sectors = 0;
725 	do_balance = 1;
726 	clear_bit(R10BIO_FailFast, &r10_bio->state);
727 	/*
728 	 * Check if we can balance. We can balance on the whole
729 	 * device if no resync is going on (recovery is ok), or below
730 	 * the resync window. We take the first readable disk when
731 	 * above the resync window.
732 	 */
733 	if ((conf->mddev->recovery_cp < MaxSector
734 	     && (this_sector + sectors >= conf->next_resync)) ||
735 	    (mddev_is_clustered(conf->mddev) &&
736 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
737 					    this_sector + sectors)))
738 		do_balance = 0;
739 
740 	for (slot = 0; slot < conf->copies ; slot++) {
741 		sector_t first_bad;
742 		int bad_sectors;
743 		sector_t dev_sector;
744 		unsigned int pending;
745 		bool nonrot;
746 
747 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
748 			continue;
749 		disk = r10_bio->devs[slot].devnum;
750 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
751 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
752 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
753 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
754 		if (rdev == NULL ||
755 		    test_bit(Faulty, &rdev->flags))
756 			continue;
757 		if (!test_bit(In_sync, &rdev->flags) &&
758 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
759 			continue;
760 
761 		dev_sector = r10_bio->devs[slot].addr;
762 		if (is_badblock(rdev, dev_sector, sectors,
763 				&first_bad, &bad_sectors)) {
764 			if (best_dist < MaxSector)
765 				/* Already have a better slot */
766 				continue;
767 			if (first_bad <= dev_sector) {
768 				/* Cannot read here.  If this is the
769 				 * 'primary' device, then we must not read
770 				 * beyond 'bad_sectors' from another device.
771 				 */
772 				bad_sectors -= (dev_sector - first_bad);
773 				if (!do_balance && sectors > bad_sectors)
774 					sectors = bad_sectors;
775 				if (best_good_sectors > sectors)
776 					best_good_sectors = sectors;
777 			} else {
778 				sector_t good_sectors =
779 					first_bad - dev_sector;
780 				if (good_sectors > best_good_sectors) {
781 					best_good_sectors = good_sectors;
782 					best_dist_slot = slot;
783 					best_dist_rdev = rdev;
784 				}
785 				if (!do_balance)
786 					/* Must read from here */
787 					break;
788 			}
789 			continue;
790 		} else
791 			best_good_sectors = sectors;
792 
793 		if (!do_balance)
794 			break;
795 
796 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
797 		has_nonrot_disk |= nonrot;
798 		pending = atomic_read(&rdev->nr_pending);
799 		if (min_pending > pending && nonrot) {
800 			min_pending = pending;
801 			best_pending_slot = slot;
802 			best_pending_rdev = rdev;
803 		}
804 
805 		if (best_dist_slot >= 0)
806 			/* At least 2 disks to choose from so failfast is OK */
807 			set_bit(R10BIO_FailFast, &r10_bio->state);
808 		/* This optimisation is debatable, and completely destroys
809 		 * sequential read speed for 'far copies' arrays.  So only
810 		 * keep it for 'near' arrays, and review those later.
811 		 */
812 		if (geo->near_copies > 1 && !pending)
813 			new_distance = 0;
814 
815 		/* for far > 1 always use the lowest address */
816 		else if (geo->far_copies > 1)
817 			new_distance = r10_bio->devs[slot].addr;
818 		else
819 			new_distance = abs(r10_bio->devs[slot].addr -
820 					   conf->mirrors[disk].head_position);
821 
822 		if (new_distance < best_dist) {
823 			best_dist = new_distance;
824 			best_dist_slot = slot;
825 			best_dist_rdev = rdev;
826 		}
827 	}
828 	if (slot >= conf->copies) {
829 		if (has_nonrot_disk) {
830 			slot = best_pending_slot;
831 			rdev = best_pending_rdev;
832 		} else {
833 			slot = best_dist_slot;
834 			rdev = best_dist_rdev;
835 		}
836 	}
837 
838 	if (slot >= 0) {
839 		atomic_inc(&rdev->nr_pending);
840 		r10_bio->read_slot = slot;
841 	} else
842 		rdev = NULL;
843 	rcu_read_unlock();
844 	*max_sectors = best_good_sectors;
845 
846 	return rdev;
847 }
848 
849 static int raid10_congested(struct mddev *mddev, int bits)
850 {
851 	struct r10conf *conf = mddev->private;
852 	int i, ret = 0;
853 
854 	if ((bits & (1 << WB_async_congested)) &&
855 	    conf->pending_count >= max_queued_requests)
856 		return 1;
857 
858 	rcu_read_lock();
859 	for (i = 0;
860 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
861 		     && ret == 0;
862 	     i++) {
863 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
864 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
865 			struct request_queue *q = bdev_get_queue(rdev->bdev);
866 
867 			ret |= bdi_congested(q->backing_dev_info, bits);
868 		}
869 	}
870 	rcu_read_unlock();
871 	return ret;
872 }
873 
874 static void flush_pending_writes(struct r10conf *conf)
875 {
876 	/* Any writes that have been queued but are awaiting
877 	 * bitmap updates get flushed here.
878 	 */
879 	spin_lock_irq(&conf->device_lock);
880 
881 	if (conf->pending_bio_list.head) {
882 		struct blk_plug plug;
883 		struct bio *bio;
884 
885 		bio = bio_list_get(&conf->pending_bio_list);
886 		conf->pending_count = 0;
887 		spin_unlock_irq(&conf->device_lock);
888 
889 		/*
890 		 * As this is called in a wait_event() loop (see freeze_array),
891 		 * current->state might be TASK_UNINTERRUPTIBLE which will
892 		 * cause a warning when we prepare to wait again.  As it is
893 		 * rare that this path is taken, it is perfectly safe to force
894 		 * us to go around the wait_event() loop again, so the warning
895 		 * is a false-positive. Silence the warning by resetting
896 		 * thread state
897 		 */
898 		__set_current_state(TASK_RUNNING);
899 
900 		blk_start_plug(&plug);
901 		/* flush any pending bitmap writes to disk
902 		 * before proceeding w/ I/O */
903 		md_bitmap_unplug(conf->mddev->bitmap);
904 		wake_up(&conf->wait_barrier);
905 
906 		while (bio) { /* submit pending writes */
907 			struct bio *next = bio->bi_next;
908 			struct md_rdev *rdev = (void*)bio->bi_disk;
909 			bio->bi_next = NULL;
910 			bio_set_dev(bio, rdev->bdev);
911 			if (test_bit(Faulty, &rdev->flags)) {
912 				bio_io_error(bio);
913 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
914 					    !blk_queue_discard(bio->bi_disk->queue)))
915 				/* Just ignore it */
916 				bio_endio(bio);
917 			else
918 				generic_make_request(bio);
919 			bio = next;
920 		}
921 		blk_finish_plug(&plug);
922 	} else
923 		spin_unlock_irq(&conf->device_lock);
924 }
925 
926 /* Barriers....
927  * Sometimes we need to suspend IO while we do something else,
928  * either some resync/recovery, or reconfigure the array.
929  * To do this we raise a 'barrier'.
930  * The 'barrier' is a counter that can be raised multiple times
931  * to count how many activities are happening which preclude
932  * normal IO.
933  * We can only raise the barrier if there is no pending IO.
934  * i.e. if nr_pending == 0.
935  * We choose only to raise the barrier if no-one is waiting for the
936  * barrier to go down.  This means that as soon as an IO request
937  * is ready, no other operations which require a barrier will start
938  * until the IO request has had a chance.
939  *
940  * So: regular IO calls 'wait_barrier'.  When that returns there
941  *    is no backgroup IO happening,  It must arrange to call
942  *    allow_barrier when it has finished its IO.
943  * backgroup IO calls must call raise_barrier.  Once that returns
944  *    there is no normal IO happeing.  It must arrange to call
945  *    lower_barrier when the particular background IO completes.
946  */
947 
948 static void raise_barrier(struct r10conf *conf, int force)
949 {
950 	BUG_ON(force && !conf->barrier);
951 	spin_lock_irq(&conf->resync_lock);
952 
953 	/* Wait until no block IO is waiting (unless 'force') */
954 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
955 			    conf->resync_lock);
956 
957 	/* block any new IO from starting */
958 	conf->barrier++;
959 
960 	/* Now wait for all pending IO to complete */
961 	wait_event_lock_irq(conf->wait_barrier,
962 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
963 			    conf->resync_lock);
964 
965 	spin_unlock_irq(&conf->resync_lock);
966 }
967 
968 static void lower_barrier(struct r10conf *conf)
969 {
970 	unsigned long flags;
971 	spin_lock_irqsave(&conf->resync_lock, flags);
972 	conf->barrier--;
973 	spin_unlock_irqrestore(&conf->resync_lock, flags);
974 	wake_up(&conf->wait_barrier);
975 }
976 
977 static void wait_barrier(struct r10conf *conf)
978 {
979 	spin_lock_irq(&conf->resync_lock);
980 	if (conf->barrier) {
981 		conf->nr_waiting++;
982 		/* Wait for the barrier to drop.
983 		 * However if there are already pending
984 		 * requests (preventing the barrier from
985 		 * rising completely), and the
986 		 * pre-process bio queue isn't empty,
987 		 * then don't wait, as we need to empty
988 		 * that queue to get the nr_pending
989 		 * count down.
990 		 */
991 		raid10_log(conf->mddev, "wait barrier");
992 		wait_event_lock_irq(conf->wait_barrier,
993 				    !conf->barrier ||
994 				    (atomic_read(&conf->nr_pending) &&
995 				     current->bio_list &&
996 				     (!bio_list_empty(&current->bio_list[0]) ||
997 				      !bio_list_empty(&current->bio_list[1]))),
998 				    conf->resync_lock);
999 		conf->nr_waiting--;
1000 		if (!conf->nr_waiting)
1001 			wake_up(&conf->wait_barrier);
1002 	}
1003 	atomic_inc(&conf->nr_pending);
1004 	spin_unlock_irq(&conf->resync_lock);
1005 }
1006 
1007 static void allow_barrier(struct r10conf *conf)
1008 {
1009 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1010 			(conf->array_freeze_pending))
1011 		wake_up(&conf->wait_barrier);
1012 }
1013 
1014 static void freeze_array(struct r10conf *conf, int extra)
1015 {
1016 	/* stop syncio and normal IO and wait for everything to
1017 	 * go quiet.
1018 	 * We increment barrier and nr_waiting, and then
1019 	 * wait until nr_pending match nr_queued+extra
1020 	 * This is called in the context of one normal IO request
1021 	 * that has failed. Thus any sync request that might be pending
1022 	 * will be blocked by nr_pending, and we need to wait for
1023 	 * pending IO requests to complete or be queued for re-try.
1024 	 * Thus the number queued (nr_queued) plus this request (extra)
1025 	 * must match the number of pending IOs (nr_pending) before
1026 	 * we continue.
1027 	 */
1028 	spin_lock_irq(&conf->resync_lock);
1029 	conf->array_freeze_pending++;
1030 	conf->barrier++;
1031 	conf->nr_waiting++;
1032 	wait_event_lock_irq_cmd(conf->wait_barrier,
1033 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1034 				conf->resync_lock,
1035 				flush_pending_writes(conf));
1036 
1037 	conf->array_freeze_pending--;
1038 	spin_unlock_irq(&conf->resync_lock);
1039 }
1040 
1041 static void unfreeze_array(struct r10conf *conf)
1042 {
1043 	/* reverse the effect of the freeze */
1044 	spin_lock_irq(&conf->resync_lock);
1045 	conf->barrier--;
1046 	conf->nr_waiting--;
1047 	wake_up(&conf->wait_barrier);
1048 	spin_unlock_irq(&conf->resync_lock);
1049 }
1050 
1051 static sector_t choose_data_offset(struct r10bio *r10_bio,
1052 				   struct md_rdev *rdev)
1053 {
1054 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1055 	    test_bit(R10BIO_Previous, &r10_bio->state))
1056 		return rdev->data_offset;
1057 	else
1058 		return rdev->new_data_offset;
1059 }
1060 
1061 struct raid10_plug_cb {
1062 	struct blk_plug_cb	cb;
1063 	struct bio_list		pending;
1064 	int			pending_cnt;
1065 };
1066 
1067 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1068 {
1069 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1070 						   cb);
1071 	struct mddev *mddev = plug->cb.data;
1072 	struct r10conf *conf = mddev->private;
1073 	struct bio *bio;
1074 
1075 	if (from_schedule || current->bio_list) {
1076 		spin_lock_irq(&conf->device_lock);
1077 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1078 		conf->pending_count += plug->pending_cnt;
1079 		spin_unlock_irq(&conf->device_lock);
1080 		wake_up(&conf->wait_barrier);
1081 		md_wakeup_thread(mddev->thread);
1082 		kfree(plug);
1083 		return;
1084 	}
1085 
1086 	/* we aren't scheduling, so we can do the write-out directly. */
1087 	bio = bio_list_get(&plug->pending);
1088 	md_bitmap_unplug(mddev->bitmap);
1089 	wake_up(&conf->wait_barrier);
1090 
1091 	while (bio) { /* submit pending writes */
1092 		struct bio *next = bio->bi_next;
1093 		struct md_rdev *rdev = (void*)bio->bi_disk;
1094 		bio->bi_next = NULL;
1095 		bio_set_dev(bio, rdev->bdev);
1096 		if (test_bit(Faulty, &rdev->flags)) {
1097 			bio_io_error(bio);
1098 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1099 				    !blk_queue_discard(bio->bi_disk->queue)))
1100 			/* Just ignore it */
1101 			bio_endio(bio);
1102 		else
1103 			generic_make_request(bio);
1104 		bio = next;
1105 	}
1106 	kfree(plug);
1107 }
1108 
1109 /*
1110  * 1. Register the new request and wait if the reconstruction thread has put
1111  * up a bar for new requests. Continue immediately if no resync is active
1112  * currently.
1113  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1114  */
1115 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1116 				 struct bio *bio, sector_t sectors)
1117 {
1118 	wait_barrier(conf);
1119 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1120 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1121 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1122 		raid10_log(conf->mddev, "wait reshape");
1123 		allow_barrier(conf);
1124 		wait_event(conf->wait_barrier,
1125 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1126 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1127 			   sectors);
1128 		wait_barrier(conf);
1129 	}
1130 }
1131 
1132 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1133 				struct r10bio *r10_bio)
1134 {
1135 	struct r10conf *conf = mddev->private;
1136 	struct bio *read_bio;
1137 	const int op = bio_op(bio);
1138 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1139 	int max_sectors;
1140 	struct md_rdev *rdev;
1141 	char b[BDEVNAME_SIZE];
1142 	int slot = r10_bio->read_slot;
1143 	struct md_rdev *err_rdev = NULL;
1144 	gfp_t gfp = GFP_NOIO;
1145 
1146 	if (r10_bio->devs[slot].rdev) {
1147 		/*
1148 		 * This is an error retry, but we cannot
1149 		 * safely dereference the rdev in the r10_bio,
1150 		 * we must use the one in conf.
1151 		 * If it has already been disconnected (unlikely)
1152 		 * we lose the device name in error messages.
1153 		 */
1154 		int disk;
1155 		/*
1156 		 * As we are blocking raid10, it is a little safer to
1157 		 * use __GFP_HIGH.
1158 		 */
1159 		gfp = GFP_NOIO | __GFP_HIGH;
1160 
1161 		rcu_read_lock();
1162 		disk = r10_bio->devs[slot].devnum;
1163 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1164 		if (err_rdev)
1165 			bdevname(err_rdev->bdev, b);
1166 		else {
1167 			strcpy(b, "???");
1168 			/* This never gets dereferenced */
1169 			err_rdev = r10_bio->devs[slot].rdev;
1170 		}
1171 		rcu_read_unlock();
1172 	}
1173 
1174 	regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1175 	rdev = read_balance(conf, r10_bio, &max_sectors);
1176 	if (!rdev) {
1177 		if (err_rdev) {
1178 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1179 					    mdname(mddev), b,
1180 					    (unsigned long long)r10_bio->sector);
1181 		}
1182 		raid_end_bio_io(r10_bio);
1183 		return;
1184 	}
1185 	if (err_rdev)
1186 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1187 				   mdname(mddev),
1188 				   bdevname(rdev->bdev, b),
1189 				   (unsigned long long)r10_bio->sector);
1190 	if (max_sectors < bio_sectors(bio)) {
1191 		struct bio *split = bio_split(bio, max_sectors,
1192 					      gfp, &conf->bio_split);
1193 		bio_chain(split, bio);
1194 		allow_barrier(conf);
1195 		generic_make_request(bio);
1196 		wait_barrier(conf);
1197 		bio = split;
1198 		r10_bio->master_bio = bio;
1199 		r10_bio->sectors = max_sectors;
1200 	}
1201 	slot = r10_bio->read_slot;
1202 
1203 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1204 
1205 	r10_bio->devs[slot].bio = read_bio;
1206 	r10_bio->devs[slot].rdev = rdev;
1207 
1208 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1209 		choose_data_offset(r10_bio, rdev);
1210 	bio_set_dev(read_bio, rdev->bdev);
1211 	read_bio->bi_end_io = raid10_end_read_request;
1212 	bio_set_op_attrs(read_bio, op, do_sync);
1213 	if (test_bit(FailFast, &rdev->flags) &&
1214 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1215 	        read_bio->bi_opf |= MD_FAILFAST;
1216 	read_bio->bi_private = r10_bio;
1217 
1218 	if (mddev->gendisk)
1219 	        trace_block_bio_remap(read_bio->bi_disk->queue,
1220 	                              read_bio, disk_devt(mddev->gendisk),
1221 	                              r10_bio->sector);
1222 	generic_make_request(read_bio);
1223 	return;
1224 }
1225 
1226 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1227 				  struct bio *bio, bool replacement,
1228 				  int n_copy)
1229 {
1230 	const int op = bio_op(bio);
1231 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1232 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1233 	unsigned long flags;
1234 	struct blk_plug_cb *cb;
1235 	struct raid10_plug_cb *plug = NULL;
1236 	struct r10conf *conf = mddev->private;
1237 	struct md_rdev *rdev;
1238 	int devnum = r10_bio->devs[n_copy].devnum;
1239 	struct bio *mbio;
1240 
1241 	if (replacement) {
1242 		rdev = conf->mirrors[devnum].replacement;
1243 		if (rdev == NULL) {
1244 			/* Replacement just got moved to main 'rdev' */
1245 			smp_mb();
1246 			rdev = conf->mirrors[devnum].rdev;
1247 		}
1248 	} else
1249 		rdev = conf->mirrors[devnum].rdev;
1250 
1251 	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1252 	if (replacement)
1253 		r10_bio->devs[n_copy].repl_bio = mbio;
1254 	else
1255 		r10_bio->devs[n_copy].bio = mbio;
1256 
1257 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1258 				   choose_data_offset(r10_bio, rdev));
1259 	bio_set_dev(mbio, rdev->bdev);
1260 	mbio->bi_end_io	= raid10_end_write_request;
1261 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1262 	if (!replacement && test_bit(FailFast,
1263 				     &conf->mirrors[devnum].rdev->flags)
1264 			 && enough(conf, devnum))
1265 		mbio->bi_opf |= MD_FAILFAST;
1266 	mbio->bi_private = r10_bio;
1267 
1268 	if (conf->mddev->gendisk)
1269 		trace_block_bio_remap(mbio->bi_disk->queue,
1270 				      mbio, disk_devt(conf->mddev->gendisk),
1271 				      r10_bio->sector);
1272 	/* flush_pending_writes() needs access to the rdev so...*/
1273 	mbio->bi_disk = (void *)rdev;
1274 
1275 	atomic_inc(&r10_bio->remaining);
1276 
1277 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1278 	if (cb)
1279 		plug = container_of(cb, struct raid10_plug_cb, cb);
1280 	else
1281 		plug = NULL;
1282 	if (plug) {
1283 		bio_list_add(&plug->pending, mbio);
1284 		plug->pending_cnt++;
1285 	} else {
1286 		spin_lock_irqsave(&conf->device_lock, flags);
1287 		bio_list_add(&conf->pending_bio_list, mbio);
1288 		conf->pending_count++;
1289 		spin_unlock_irqrestore(&conf->device_lock, flags);
1290 		md_wakeup_thread(mddev->thread);
1291 	}
1292 }
1293 
1294 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1295 				 struct r10bio *r10_bio)
1296 {
1297 	struct r10conf *conf = mddev->private;
1298 	int i;
1299 	struct md_rdev *blocked_rdev;
1300 	sector_t sectors;
1301 	int max_sectors;
1302 
1303 	if ((mddev_is_clustered(mddev) &&
1304 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1305 					    bio->bi_iter.bi_sector,
1306 					    bio_end_sector(bio)))) {
1307 		DEFINE_WAIT(w);
1308 		for (;;) {
1309 			prepare_to_wait(&conf->wait_barrier,
1310 					&w, TASK_IDLE);
1311 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1312 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1313 				break;
1314 			schedule();
1315 		}
1316 		finish_wait(&conf->wait_barrier, &w);
1317 	}
1318 
1319 	sectors = r10_bio->sectors;
1320 	regular_request_wait(mddev, conf, bio, sectors);
1321 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1322 	    (mddev->reshape_backwards
1323 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1324 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1325 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1326 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1327 		/* Need to update reshape_position in metadata */
1328 		mddev->reshape_position = conf->reshape_progress;
1329 		set_mask_bits(&mddev->sb_flags, 0,
1330 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1331 		md_wakeup_thread(mddev->thread);
1332 		raid10_log(conf->mddev, "wait reshape metadata");
1333 		wait_event(mddev->sb_wait,
1334 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1335 
1336 		conf->reshape_safe = mddev->reshape_position;
1337 	}
1338 
1339 	if (conf->pending_count >= max_queued_requests) {
1340 		md_wakeup_thread(mddev->thread);
1341 		raid10_log(mddev, "wait queued");
1342 		wait_event(conf->wait_barrier,
1343 			   conf->pending_count < max_queued_requests);
1344 	}
1345 	/* first select target devices under rcu_lock and
1346 	 * inc refcount on their rdev.  Record them by setting
1347 	 * bios[x] to bio
1348 	 * If there are known/acknowledged bad blocks on any device
1349 	 * on which we have seen a write error, we want to avoid
1350 	 * writing to those blocks.  This potentially requires several
1351 	 * writes to write around the bad blocks.  Each set of writes
1352 	 * gets its own r10_bio with a set of bios attached.
1353 	 */
1354 
1355 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1356 	raid10_find_phys(conf, r10_bio);
1357 retry_write:
1358 	blocked_rdev = NULL;
1359 	rcu_read_lock();
1360 	max_sectors = r10_bio->sectors;
1361 
1362 	for (i = 0;  i < conf->copies; i++) {
1363 		int d = r10_bio->devs[i].devnum;
1364 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1365 		struct md_rdev *rrdev = rcu_dereference(
1366 			conf->mirrors[d].replacement);
1367 		if (rdev == rrdev)
1368 			rrdev = NULL;
1369 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1370 			atomic_inc(&rdev->nr_pending);
1371 			blocked_rdev = rdev;
1372 			break;
1373 		}
1374 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1375 			atomic_inc(&rrdev->nr_pending);
1376 			blocked_rdev = rrdev;
1377 			break;
1378 		}
1379 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1380 			rdev = NULL;
1381 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1382 			rrdev = NULL;
1383 
1384 		r10_bio->devs[i].bio = NULL;
1385 		r10_bio->devs[i].repl_bio = NULL;
1386 
1387 		if (!rdev && !rrdev) {
1388 			set_bit(R10BIO_Degraded, &r10_bio->state);
1389 			continue;
1390 		}
1391 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1392 			sector_t first_bad;
1393 			sector_t dev_sector = r10_bio->devs[i].addr;
1394 			int bad_sectors;
1395 			int is_bad;
1396 
1397 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1398 					     &first_bad, &bad_sectors);
1399 			if (is_bad < 0) {
1400 				/* Mustn't write here until the bad block
1401 				 * is acknowledged
1402 				 */
1403 				atomic_inc(&rdev->nr_pending);
1404 				set_bit(BlockedBadBlocks, &rdev->flags);
1405 				blocked_rdev = rdev;
1406 				break;
1407 			}
1408 			if (is_bad && first_bad <= dev_sector) {
1409 				/* Cannot write here at all */
1410 				bad_sectors -= (dev_sector - first_bad);
1411 				if (bad_sectors < max_sectors)
1412 					/* Mustn't write more than bad_sectors
1413 					 * to other devices yet
1414 					 */
1415 					max_sectors = bad_sectors;
1416 				/* We don't set R10BIO_Degraded as that
1417 				 * only applies if the disk is missing,
1418 				 * so it might be re-added, and we want to
1419 				 * know to recover this chunk.
1420 				 * In this case the device is here, and the
1421 				 * fact that this chunk is not in-sync is
1422 				 * recorded in the bad block log.
1423 				 */
1424 				continue;
1425 			}
1426 			if (is_bad) {
1427 				int good_sectors = first_bad - dev_sector;
1428 				if (good_sectors < max_sectors)
1429 					max_sectors = good_sectors;
1430 			}
1431 		}
1432 		if (rdev) {
1433 			r10_bio->devs[i].bio = bio;
1434 			atomic_inc(&rdev->nr_pending);
1435 		}
1436 		if (rrdev) {
1437 			r10_bio->devs[i].repl_bio = bio;
1438 			atomic_inc(&rrdev->nr_pending);
1439 		}
1440 	}
1441 	rcu_read_unlock();
1442 
1443 	if (unlikely(blocked_rdev)) {
1444 		/* Have to wait for this device to get unblocked, then retry */
1445 		int j;
1446 		int d;
1447 
1448 		for (j = 0; j < i; j++) {
1449 			if (r10_bio->devs[j].bio) {
1450 				d = r10_bio->devs[j].devnum;
1451 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1452 			}
1453 			if (r10_bio->devs[j].repl_bio) {
1454 				struct md_rdev *rdev;
1455 				d = r10_bio->devs[j].devnum;
1456 				rdev = conf->mirrors[d].replacement;
1457 				if (!rdev) {
1458 					/* Race with remove_disk */
1459 					smp_mb();
1460 					rdev = conf->mirrors[d].rdev;
1461 				}
1462 				rdev_dec_pending(rdev, mddev);
1463 			}
1464 		}
1465 		allow_barrier(conf);
1466 		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1467 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1468 		wait_barrier(conf);
1469 		goto retry_write;
1470 	}
1471 
1472 	if (max_sectors < r10_bio->sectors)
1473 		r10_bio->sectors = max_sectors;
1474 
1475 	if (r10_bio->sectors < bio_sectors(bio)) {
1476 		struct bio *split = bio_split(bio, r10_bio->sectors,
1477 					      GFP_NOIO, &conf->bio_split);
1478 		bio_chain(split, bio);
1479 		allow_barrier(conf);
1480 		generic_make_request(bio);
1481 		wait_barrier(conf);
1482 		bio = split;
1483 		r10_bio->master_bio = bio;
1484 	}
1485 
1486 	atomic_set(&r10_bio->remaining, 1);
1487 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1488 
1489 	for (i = 0; i < conf->copies; i++) {
1490 		if (r10_bio->devs[i].bio)
1491 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1492 		if (r10_bio->devs[i].repl_bio)
1493 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1494 	}
1495 	one_write_done(r10_bio);
1496 }
1497 
1498 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1499 {
1500 	struct r10conf *conf = mddev->private;
1501 	struct r10bio *r10_bio;
1502 
1503 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1504 
1505 	r10_bio->master_bio = bio;
1506 	r10_bio->sectors = sectors;
1507 
1508 	r10_bio->mddev = mddev;
1509 	r10_bio->sector = bio->bi_iter.bi_sector;
1510 	r10_bio->state = 0;
1511 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1512 
1513 	if (bio_data_dir(bio) == READ)
1514 		raid10_read_request(mddev, bio, r10_bio);
1515 	else
1516 		raid10_write_request(mddev, bio, r10_bio);
1517 }
1518 
1519 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1520 {
1521 	struct r10conf *conf = mddev->private;
1522 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1523 	int chunk_sects = chunk_mask + 1;
1524 	int sectors = bio_sectors(bio);
1525 
1526 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1527 		md_flush_request(mddev, bio);
1528 		return true;
1529 	}
1530 
1531 	if (!md_write_start(mddev, bio))
1532 		return false;
1533 
1534 	/*
1535 	 * If this request crosses a chunk boundary, we need to split
1536 	 * it.
1537 	 */
1538 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1539 		     sectors > chunk_sects
1540 		     && (conf->geo.near_copies < conf->geo.raid_disks
1541 			 || conf->prev.near_copies <
1542 			 conf->prev.raid_disks)))
1543 		sectors = chunk_sects -
1544 			(bio->bi_iter.bi_sector &
1545 			 (chunk_sects - 1));
1546 	__make_request(mddev, bio, sectors);
1547 
1548 	/* In case raid10d snuck in to freeze_array */
1549 	wake_up(&conf->wait_barrier);
1550 	return true;
1551 }
1552 
1553 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1554 {
1555 	struct r10conf *conf = mddev->private;
1556 	int i;
1557 
1558 	if (conf->geo.near_copies < conf->geo.raid_disks)
1559 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1560 	if (conf->geo.near_copies > 1)
1561 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1562 	if (conf->geo.far_copies > 1) {
1563 		if (conf->geo.far_offset)
1564 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1565 		else
1566 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1567 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1568 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1569 	}
1570 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1571 					conf->geo.raid_disks - mddev->degraded);
1572 	rcu_read_lock();
1573 	for (i = 0; i < conf->geo.raid_disks; i++) {
1574 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1575 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1576 	}
1577 	rcu_read_unlock();
1578 	seq_printf(seq, "]");
1579 }
1580 
1581 /* check if there are enough drives for
1582  * every block to appear on atleast one.
1583  * Don't consider the device numbered 'ignore'
1584  * as we might be about to remove it.
1585  */
1586 static int _enough(struct r10conf *conf, int previous, int ignore)
1587 {
1588 	int first = 0;
1589 	int has_enough = 0;
1590 	int disks, ncopies;
1591 	if (previous) {
1592 		disks = conf->prev.raid_disks;
1593 		ncopies = conf->prev.near_copies;
1594 	} else {
1595 		disks = conf->geo.raid_disks;
1596 		ncopies = conf->geo.near_copies;
1597 	}
1598 
1599 	rcu_read_lock();
1600 	do {
1601 		int n = conf->copies;
1602 		int cnt = 0;
1603 		int this = first;
1604 		while (n--) {
1605 			struct md_rdev *rdev;
1606 			if (this != ignore &&
1607 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1608 			    test_bit(In_sync, &rdev->flags))
1609 				cnt++;
1610 			this = (this+1) % disks;
1611 		}
1612 		if (cnt == 0)
1613 			goto out;
1614 		first = (first + ncopies) % disks;
1615 	} while (first != 0);
1616 	has_enough = 1;
1617 out:
1618 	rcu_read_unlock();
1619 	return has_enough;
1620 }
1621 
1622 static int enough(struct r10conf *conf, int ignore)
1623 {
1624 	/* when calling 'enough', both 'prev' and 'geo' must
1625 	 * be stable.
1626 	 * This is ensured if ->reconfig_mutex or ->device_lock
1627 	 * is held.
1628 	 */
1629 	return _enough(conf, 0, ignore) &&
1630 		_enough(conf, 1, ignore);
1631 }
1632 
1633 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1634 {
1635 	char b[BDEVNAME_SIZE];
1636 	struct r10conf *conf = mddev->private;
1637 	unsigned long flags;
1638 
1639 	/*
1640 	 * If it is not operational, then we have already marked it as dead
1641 	 * else if it is the last working disks, ignore the error, let the
1642 	 * next level up know.
1643 	 * else mark the drive as failed
1644 	 */
1645 	spin_lock_irqsave(&conf->device_lock, flags);
1646 	if (test_bit(In_sync, &rdev->flags)
1647 	    && !enough(conf, rdev->raid_disk)) {
1648 		/*
1649 		 * Don't fail the drive, just return an IO error.
1650 		 */
1651 		spin_unlock_irqrestore(&conf->device_lock, flags);
1652 		return;
1653 	}
1654 	if (test_and_clear_bit(In_sync, &rdev->flags))
1655 		mddev->degraded++;
1656 	/*
1657 	 * If recovery is running, make sure it aborts.
1658 	 */
1659 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1660 	set_bit(Blocked, &rdev->flags);
1661 	set_bit(Faulty, &rdev->flags);
1662 	set_mask_bits(&mddev->sb_flags, 0,
1663 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1664 	spin_unlock_irqrestore(&conf->device_lock, flags);
1665 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1666 		"md/raid10:%s: Operation continuing on %d devices.\n",
1667 		mdname(mddev), bdevname(rdev->bdev, b),
1668 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1669 }
1670 
1671 static void print_conf(struct r10conf *conf)
1672 {
1673 	int i;
1674 	struct md_rdev *rdev;
1675 
1676 	pr_debug("RAID10 conf printout:\n");
1677 	if (!conf) {
1678 		pr_debug("(!conf)\n");
1679 		return;
1680 	}
1681 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1682 		 conf->geo.raid_disks);
1683 
1684 	/* This is only called with ->reconfix_mutex held, so
1685 	 * rcu protection of rdev is not needed */
1686 	for (i = 0; i < conf->geo.raid_disks; i++) {
1687 		char b[BDEVNAME_SIZE];
1688 		rdev = conf->mirrors[i].rdev;
1689 		if (rdev)
1690 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1691 				 i, !test_bit(In_sync, &rdev->flags),
1692 				 !test_bit(Faulty, &rdev->flags),
1693 				 bdevname(rdev->bdev,b));
1694 	}
1695 }
1696 
1697 static void close_sync(struct r10conf *conf)
1698 {
1699 	wait_barrier(conf);
1700 	allow_barrier(conf);
1701 
1702 	mempool_exit(&conf->r10buf_pool);
1703 }
1704 
1705 static int raid10_spare_active(struct mddev *mddev)
1706 {
1707 	int i;
1708 	struct r10conf *conf = mddev->private;
1709 	struct raid10_info *tmp;
1710 	int count = 0;
1711 	unsigned long flags;
1712 
1713 	/*
1714 	 * Find all non-in_sync disks within the RAID10 configuration
1715 	 * and mark them in_sync
1716 	 */
1717 	for (i = 0; i < conf->geo.raid_disks; i++) {
1718 		tmp = conf->mirrors + i;
1719 		if (tmp->replacement
1720 		    && tmp->replacement->recovery_offset == MaxSector
1721 		    && !test_bit(Faulty, &tmp->replacement->flags)
1722 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1723 			/* Replacement has just become active */
1724 			if (!tmp->rdev
1725 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1726 				count++;
1727 			if (tmp->rdev) {
1728 				/* Replaced device not technically faulty,
1729 				 * but we need to be sure it gets removed
1730 				 * and never re-added.
1731 				 */
1732 				set_bit(Faulty, &tmp->rdev->flags);
1733 				sysfs_notify_dirent_safe(
1734 					tmp->rdev->sysfs_state);
1735 			}
1736 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1737 		} else if (tmp->rdev
1738 			   && tmp->rdev->recovery_offset == MaxSector
1739 			   && !test_bit(Faulty, &tmp->rdev->flags)
1740 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1741 			count++;
1742 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1743 		}
1744 	}
1745 	spin_lock_irqsave(&conf->device_lock, flags);
1746 	mddev->degraded -= count;
1747 	spin_unlock_irqrestore(&conf->device_lock, flags);
1748 
1749 	print_conf(conf);
1750 	return count;
1751 }
1752 
1753 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1754 {
1755 	struct r10conf *conf = mddev->private;
1756 	int err = -EEXIST;
1757 	int mirror;
1758 	int first = 0;
1759 	int last = conf->geo.raid_disks - 1;
1760 
1761 	if (mddev->recovery_cp < MaxSector)
1762 		/* only hot-add to in-sync arrays, as recovery is
1763 		 * very different from resync
1764 		 */
1765 		return -EBUSY;
1766 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1767 		return -EINVAL;
1768 
1769 	if (md_integrity_add_rdev(rdev, mddev))
1770 		return -ENXIO;
1771 
1772 	if (rdev->raid_disk >= 0)
1773 		first = last = rdev->raid_disk;
1774 
1775 	if (rdev->saved_raid_disk >= first &&
1776 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
1777 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1778 		mirror = rdev->saved_raid_disk;
1779 	else
1780 		mirror = first;
1781 	for ( ; mirror <= last ; mirror++) {
1782 		struct raid10_info *p = &conf->mirrors[mirror];
1783 		if (p->recovery_disabled == mddev->recovery_disabled)
1784 			continue;
1785 		if (p->rdev) {
1786 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1787 			    p->replacement != NULL)
1788 				continue;
1789 			clear_bit(In_sync, &rdev->flags);
1790 			set_bit(Replacement, &rdev->flags);
1791 			rdev->raid_disk = mirror;
1792 			err = 0;
1793 			if (mddev->gendisk)
1794 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1795 						  rdev->data_offset << 9);
1796 			conf->fullsync = 1;
1797 			rcu_assign_pointer(p->replacement, rdev);
1798 			break;
1799 		}
1800 
1801 		if (mddev->gendisk)
1802 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1803 					  rdev->data_offset << 9);
1804 
1805 		p->head_position = 0;
1806 		p->recovery_disabled = mddev->recovery_disabled - 1;
1807 		rdev->raid_disk = mirror;
1808 		err = 0;
1809 		if (rdev->saved_raid_disk != mirror)
1810 			conf->fullsync = 1;
1811 		rcu_assign_pointer(p->rdev, rdev);
1812 		break;
1813 	}
1814 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1815 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1816 
1817 	print_conf(conf);
1818 	return err;
1819 }
1820 
1821 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1822 {
1823 	struct r10conf *conf = mddev->private;
1824 	int err = 0;
1825 	int number = rdev->raid_disk;
1826 	struct md_rdev **rdevp;
1827 	struct raid10_info *p = conf->mirrors + number;
1828 
1829 	print_conf(conf);
1830 	if (rdev == p->rdev)
1831 		rdevp = &p->rdev;
1832 	else if (rdev == p->replacement)
1833 		rdevp = &p->replacement;
1834 	else
1835 		return 0;
1836 
1837 	if (test_bit(In_sync, &rdev->flags) ||
1838 	    atomic_read(&rdev->nr_pending)) {
1839 		err = -EBUSY;
1840 		goto abort;
1841 	}
1842 	/* Only remove non-faulty devices if recovery
1843 	 * is not possible.
1844 	 */
1845 	if (!test_bit(Faulty, &rdev->flags) &&
1846 	    mddev->recovery_disabled != p->recovery_disabled &&
1847 	    (!p->replacement || p->replacement == rdev) &&
1848 	    number < conf->geo.raid_disks &&
1849 	    enough(conf, -1)) {
1850 		err = -EBUSY;
1851 		goto abort;
1852 	}
1853 	*rdevp = NULL;
1854 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1855 		synchronize_rcu();
1856 		if (atomic_read(&rdev->nr_pending)) {
1857 			/* lost the race, try later */
1858 			err = -EBUSY;
1859 			*rdevp = rdev;
1860 			goto abort;
1861 		}
1862 	}
1863 	if (p->replacement) {
1864 		/* We must have just cleared 'rdev' */
1865 		p->rdev = p->replacement;
1866 		clear_bit(Replacement, &p->replacement->flags);
1867 		smp_mb(); /* Make sure other CPUs may see both as identical
1868 			   * but will never see neither -- if they are careful.
1869 			   */
1870 		p->replacement = NULL;
1871 	}
1872 
1873 	clear_bit(WantReplacement, &rdev->flags);
1874 	err = md_integrity_register(mddev);
1875 
1876 abort:
1877 
1878 	print_conf(conf);
1879 	return err;
1880 }
1881 
1882 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1883 {
1884 	struct r10conf *conf = r10_bio->mddev->private;
1885 
1886 	if (!bio->bi_status)
1887 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1888 	else
1889 		/* The write handler will notice the lack of
1890 		 * R10BIO_Uptodate and record any errors etc
1891 		 */
1892 		atomic_add(r10_bio->sectors,
1893 			   &conf->mirrors[d].rdev->corrected_errors);
1894 
1895 	/* for reconstruct, we always reschedule after a read.
1896 	 * for resync, only after all reads
1897 	 */
1898 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1899 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1900 	    atomic_dec_and_test(&r10_bio->remaining)) {
1901 		/* we have read all the blocks,
1902 		 * do the comparison in process context in raid10d
1903 		 */
1904 		reschedule_retry(r10_bio);
1905 	}
1906 }
1907 
1908 static void end_sync_read(struct bio *bio)
1909 {
1910 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1911 	struct r10conf *conf = r10_bio->mddev->private;
1912 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1913 
1914 	__end_sync_read(r10_bio, bio, d);
1915 }
1916 
1917 static void end_reshape_read(struct bio *bio)
1918 {
1919 	/* reshape read bio isn't allocated from r10buf_pool */
1920 	struct r10bio *r10_bio = bio->bi_private;
1921 
1922 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1923 }
1924 
1925 static void end_sync_request(struct r10bio *r10_bio)
1926 {
1927 	struct mddev *mddev = r10_bio->mddev;
1928 
1929 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1930 		if (r10_bio->master_bio == NULL) {
1931 			/* the primary of several recovery bios */
1932 			sector_t s = r10_bio->sectors;
1933 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1934 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1935 				reschedule_retry(r10_bio);
1936 			else
1937 				put_buf(r10_bio);
1938 			md_done_sync(mddev, s, 1);
1939 			break;
1940 		} else {
1941 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1942 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1943 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1944 				reschedule_retry(r10_bio);
1945 			else
1946 				put_buf(r10_bio);
1947 			r10_bio = r10_bio2;
1948 		}
1949 	}
1950 }
1951 
1952 static void end_sync_write(struct bio *bio)
1953 {
1954 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1955 	struct mddev *mddev = r10_bio->mddev;
1956 	struct r10conf *conf = mddev->private;
1957 	int d;
1958 	sector_t first_bad;
1959 	int bad_sectors;
1960 	int slot;
1961 	int repl;
1962 	struct md_rdev *rdev = NULL;
1963 
1964 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1965 	if (repl)
1966 		rdev = conf->mirrors[d].replacement;
1967 	else
1968 		rdev = conf->mirrors[d].rdev;
1969 
1970 	if (bio->bi_status) {
1971 		if (repl)
1972 			md_error(mddev, rdev);
1973 		else {
1974 			set_bit(WriteErrorSeen, &rdev->flags);
1975 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1976 				set_bit(MD_RECOVERY_NEEDED,
1977 					&rdev->mddev->recovery);
1978 			set_bit(R10BIO_WriteError, &r10_bio->state);
1979 		}
1980 	} else if (is_badblock(rdev,
1981 			     r10_bio->devs[slot].addr,
1982 			     r10_bio->sectors,
1983 			     &first_bad, &bad_sectors))
1984 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1985 
1986 	rdev_dec_pending(rdev, mddev);
1987 
1988 	end_sync_request(r10_bio);
1989 }
1990 
1991 /*
1992  * Note: sync and recover and handled very differently for raid10
1993  * This code is for resync.
1994  * For resync, we read through virtual addresses and read all blocks.
1995  * If there is any error, we schedule a write.  The lowest numbered
1996  * drive is authoritative.
1997  * However requests come for physical address, so we need to map.
1998  * For every physical address there are raid_disks/copies virtual addresses,
1999  * which is always are least one, but is not necessarly an integer.
2000  * This means that a physical address can span multiple chunks, so we may
2001  * have to submit multiple io requests for a single sync request.
2002  */
2003 /*
2004  * We check if all blocks are in-sync and only write to blocks that
2005  * aren't in sync
2006  */
2007 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2008 {
2009 	struct r10conf *conf = mddev->private;
2010 	int i, first;
2011 	struct bio *tbio, *fbio;
2012 	int vcnt;
2013 	struct page **tpages, **fpages;
2014 
2015 	atomic_set(&r10_bio->remaining, 1);
2016 
2017 	/* find the first device with a block */
2018 	for (i=0; i<conf->copies; i++)
2019 		if (!r10_bio->devs[i].bio->bi_status)
2020 			break;
2021 
2022 	if (i == conf->copies)
2023 		goto done;
2024 
2025 	first = i;
2026 	fbio = r10_bio->devs[i].bio;
2027 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2028 	fbio->bi_iter.bi_idx = 0;
2029 	fpages = get_resync_pages(fbio)->pages;
2030 
2031 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2032 	/* now find blocks with errors */
2033 	for (i=0 ; i < conf->copies ; i++) {
2034 		int  j, d;
2035 		struct md_rdev *rdev;
2036 		struct resync_pages *rp;
2037 
2038 		tbio = r10_bio->devs[i].bio;
2039 
2040 		if (tbio->bi_end_io != end_sync_read)
2041 			continue;
2042 		if (i == first)
2043 			continue;
2044 
2045 		tpages = get_resync_pages(tbio)->pages;
2046 		d = r10_bio->devs[i].devnum;
2047 		rdev = conf->mirrors[d].rdev;
2048 		if (!r10_bio->devs[i].bio->bi_status) {
2049 			/* We know that the bi_io_vec layout is the same for
2050 			 * both 'first' and 'i', so we just compare them.
2051 			 * All vec entries are PAGE_SIZE;
2052 			 */
2053 			int sectors = r10_bio->sectors;
2054 			for (j = 0; j < vcnt; j++) {
2055 				int len = PAGE_SIZE;
2056 				if (sectors < (len / 512))
2057 					len = sectors * 512;
2058 				if (memcmp(page_address(fpages[j]),
2059 					   page_address(tpages[j]),
2060 					   len))
2061 					break;
2062 				sectors -= len/512;
2063 			}
2064 			if (j == vcnt)
2065 				continue;
2066 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2067 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2068 				/* Don't fix anything. */
2069 				continue;
2070 		} else if (test_bit(FailFast, &rdev->flags)) {
2071 			/* Just give up on this device */
2072 			md_error(rdev->mddev, rdev);
2073 			continue;
2074 		}
2075 		/* Ok, we need to write this bio, either to correct an
2076 		 * inconsistency or to correct an unreadable block.
2077 		 * First we need to fixup bv_offset, bv_len and
2078 		 * bi_vecs, as the read request might have corrupted these
2079 		 */
2080 		rp = get_resync_pages(tbio);
2081 		bio_reset(tbio);
2082 
2083 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2084 
2085 		rp->raid_bio = r10_bio;
2086 		tbio->bi_private = rp;
2087 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2088 		tbio->bi_end_io = end_sync_write;
2089 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2090 
2091 		bio_copy_data(tbio, fbio);
2092 
2093 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2094 		atomic_inc(&r10_bio->remaining);
2095 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2096 
2097 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2098 			tbio->bi_opf |= MD_FAILFAST;
2099 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2100 		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2101 		generic_make_request(tbio);
2102 	}
2103 
2104 	/* Now write out to any replacement devices
2105 	 * that are active
2106 	 */
2107 	for (i = 0; i < conf->copies; i++) {
2108 		int d;
2109 
2110 		tbio = r10_bio->devs[i].repl_bio;
2111 		if (!tbio || !tbio->bi_end_io)
2112 			continue;
2113 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2114 		    && r10_bio->devs[i].bio != fbio)
2115 			bio_copy_data(tbio, fbio);
2116 		d = r10_bio->devs[i].devnum;
2117 		atomic_inc(&r10_bio->remaining);
2118 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2119 			     bio_sectors(tbio));
2120 		generic_make_request(tbio);
2121 	}
2122 
2123 done:
2124 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2125 		md_done_sync(mddev, r10_bio->sectors, 1);
2126 		put_buf(r10_bio);
2127 	}
2128 }
2129 
2130 /*
2131  * Now for the recovery code.
2132  * Recovery happens across physical sectors.
2133  * We recover all non-is_sync drives by finding the virtual address of
2134  * each, and then choose a working drive that also has that virt address.
2135  * There is a separate r10_bio for each non-in_sync drive.
2136  * Only the first two slots are in use. The first for reading,
2137  * The second for writing.
2138  *
2139  */
2140 static void fix_recovery_read_error(struct r10bio *r10_bio)
2141 {
2142 	/* We got a read error during recovery.
2143 	 * We repeat the read in smaller page-sized sections.
2144 	 * If a read succeeds, write it to the new device or record
2145 	 * a bad block if we cannot.
2146 	 * If a read fails, record a bad block on both old and
2147 	 * new devices.
2148 	 */
2149 	struct mddev *mddev = r10_bio->mddev;
2150 	struct r10conf *conf = mddev->private;
2151 	struct bio *bio = r10_bio->devs[0].bio;
2152 	sector_t sect = 0;
2153 	int sectors = r10_bio->sectors;
2154 	int idx = 0;
2155 	int dr = r10_bio->devs[0].devnum;
2156 	int dw = r10_bio->devs[1].devnum;
2157 	struct page **pages = get_resync_pages(bio)->pages;
2158 
2159 	while (sectors) {
2160 		int s = sectors;
2161 		struct md_rdev *rdev;
2162 		sector_t addr;
2163 		int ok;
2164 
2165 		if (s > (PAGE_SIZE>>9))
2166 			s = PAGE_SIZE >> 9;
2167 
2168 		rdev = conf->mirrors[dr].rdev;
2169 		addr = r10_bio->devs[0].addr + sect,
2170 		ok = sync_page_io(rdev,
2171 				  addr,
2172 				  s << 9,
2173 				  pages[idx],
2174 				  REQ_OP_READ, 0, false);
2175 		if (ok) {
2176 			rdev = conf->mirrors[dw].rdev;
2177 			addr = r10_bio->devs[1].addr + sect;
2178 			ok = sync_page_io(rdev,
2179 					  addr,
2180 					  s << 9,
2181 					  pages[idx],
2182 					  REQ_OP_WRITE, 0, false);
2183 			if (!ok) {
2184 				set_bit(WriteErrorSeen, &rdev->flags);
2185 				if (!test_and_set_bit(WantReplacement,
2186 						      &rdev->flags))
2187 					set_bit(MD_RECOVERY_NEEDED,
2188 						&rdev->mddev->recovery);
2189 			}
2190 		}
2191 		if (!ok) {
2192 			/* We don't worry if we cannot set a bad block -
2193 			 * it really is bad so there is no loss in not
2194 			 * recording it yet
2195 			 */
2196 			rdev_set_badblocks(rdev, addr, s, 0);
2197 
2198 			if (rdev != conf->mirrors[dw].rdev) {
2199 				/* need bad block on destination too */
2200 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2201 				addr = r10_bio->devs[1].addr + sect;
2202 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2203 				if (!ok) {
2204 					/* just abort the recovery */
2205 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2206 						  mdname(mddev));
2207 
2208 					conf->mirrors[dw].recovery_disabled
2209 						= mddev->recovery_disabled;
2210 					set_bit(MD_RECOVERY_INTR,
2211 						&mddev->recovery);
2212 					break;
2213 				}
2214 			}
2215 		}
2216 
2217 		sectors -= s;
2218 		sect += s;
2219 		idx++;
2220 	}
2221 }
2222 
2223 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2224 {
2225 	struct r10conf *conf = mddev->private;
2226 	int d;
2227 	struct bio *wbio, *wbio2;
2228 
2229 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2230 		fix_recovery_read_error(r10_bio);
2231 		end_sync_request(r10_bio);
2232 		return;
2233 	}
2234 
2235 	/*
2236 	 * share the pages with the first bio
2237 	 * and submit the write request
2238 	 */
2239 	d = r10_bio->devs[1].devnum;
2240 	wbio = r10_bio->devs[1].bio;
2241 	wbio2 = r10_bio->devs[1].repl_bio;
2242 	/* Need to test wbio2->bi_end_io before we call
2243 	 * generic_make_request as if the former is NULL,
2244 	 * the latter is free to free wbio2.
2245 	 */
2246 	if (wbio2 && !wbio2->bi_end_io)
2247 		wbio2 = NULL;
2248 	if (wbio->bi_end_io) {
2249 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2250 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2251 		generic_make_request(wbio);
2252 	}
2253 	if (wbio2) {
2254 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2255 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2256 			     bio_sectors(wbio2));
2257 		generic_make_request(wbio2);
2258 	}
2259 }
2260 
2261 /*
2262  * Used by fix_read_error() to decay the per rdev read_errors.
2263  * We halve the read error count for every hour that has elapsed
2264  * since the last recorded read error.
2265  *
2266  */
2267 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2268 {
2269 	long cur_time_mon;
2270 	unsigned long hours_since_last;
2271 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2272 
2273 	cur_time_mon = ktime_get_seconds();
2274 
2275 	if (rdev->last_read_error == 0) {
2276 		/* first time we've seen a read error */
2277 		rdev->last_read_error = cur_time_mon;
2278 		return;
2279 	}
2280 
2281 	hours_since_last = (long)(cur_time_mon -
2282 			    rdev->last_read_error) / 3600;
2283 
2284 	rdev->last_read_error = cur_time_mon;
2285 
2286 	/*
2287 	 * if hours_since_last is > the number of bits in read_errors
2288 	 * just set read errors to 0. We do this to avoid
2289 	 * overflowing the shift of read_errors by hours_since_last.
2290 	 */
2291 	if (hours_since_last >= 8 * sizeof(read_errors))
2292 		atomic_set(&rdev->read_errors, 0);
2293 	else
2294 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2295 }
2296 
2297 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2298 			    int sectors, struct page *page, int rw)
2299 {
2300 	sector_t first_bad;
2301 	int bad_sectors;
2302 
2303 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2304 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2305 		return -1;
2306 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2307 		/* success */
2308 		return 1;
2309 	if (rw == WRITE) {
2310 		set_bit(WriteErrorSeen, &rdev->flags);
2311 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2312 			set_bit(MD_RECOVERY_NEEDED,
2313 				&rdev->mddev->recovery);
2314 	}
2315 	/* need to record an error - either for the block or the device */
2316 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2317 		md_error(rdev->mddev, rdev);
2318 	return 0;
2319 }
2320 
2321 /*
2322  * This is a kernel thread which:
2323  *
2324  *	1.	Retries failed read operations on working mirrors.
2325  *	2.	Updates the raid superblock when problems encounter.
2326  *	3.	Performs writes following reads for array synchronising.
2327  */
2328 
2329 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2330 {
2331 	int sect = 0; /* Offset from r10_bio->sector */
2332 	int sectors = r10_bio->sectors;
2333 	struct md_rdev *rdev;
2334 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2335 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2336 
2337 	/* still own a reference to this rdev, so it cannot
2338 	 * have been cleared recently.
2339 	 */
2340 	rdev = conf->mirrors[d].rdev;
2341 
2342 	if (test_bit(Faulty, &rdev->flags))
2343 		/* drive has already been failed, just ignore any
2344 		   more fix_read_error() attempts */
2345 		return;
2346 
2347 	check_decay_read_errors(mddev, rdev);
2348 	atomic_inc(&rdev->read_errors);
2349 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2350 		char b[BDEVNAME_SIZE];
2351 		bdevname(rdev->bdev, b);
2352 
2353 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2354 			  mdname(mddev), b,
2355 			  atomic_read(&rdev->read_errors), max_read_errors);
2356 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2357 			  mdname(mddev), b);
2358 		md_error(mddev, rdev);
2359 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2360 		return;
2361 	}
2362 
2363 	while(sectors) {
2364 		int s = sectors;
2365 		int sl = r10_bio->read_slot;
2366 		int success = 0;
2367 		int start;
2368 
2369 		if (s > (PAGE_SIZE>>9))
2370 			s = PAGE_SIZE >> 9;
2371 
2372 		rcu_read_lock();
2373 		do {
2374 			sector_t first_bad;
2375 			int bad_sectors;
2376 
2377 			d = r10_bio->devs[sl].devnum;
2378 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2379 			if (rdev &&
2380 			    test_bit(In_sync, &rdev->flags) &&
2381 			    !test_bit(Faulty, &rdev->flags) &&
2382 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2383 					&first_bad, &bad_sectors) == 0) {
2384 				atomic_inc(&rdev->nr_pending);
2385 				rcu_read_unlock();
2386 				success = sync_page_io(rdev,
2387 						       r10_bio->devs[sl].addr +
2388 						       sect,
2389 						       s<<9,
2390 						       conf->tmppage,
2391 						       REQ_OP_READ, 0, false);
2392 				rdev_dec_pending(rdev, mddev);
2393 				rcu_read_lock();
2394 				if (success)
2395 					break;
2396 			}
2397 			sl++;
2398 			if (sl == conf->copies)
2399 				sl = 0;
2400 		} while (!success && sl != r10_bio->read_slot);
2401 		rcu_read_unlock();
2402 
2403 		if (!success) {
2404 			/* Cannot read from anywhere, just mark the block
2405 			 * as bad on the first device to discourage future
2406 			 * reads.
2407 			 */
2408 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2409 			rdev = conf->mirrors[dn].rdev;
2410 
2411 			if (!rdev_set_badblocks(
2412 				    rdev,
2413 				    r10_bio->devs[r10_bio->read_slot].addr
2414 				    + sect,
2415 				    s, 0)) {
2416 				md_error(mddev, rdev);
2417 				r10_bio->devs[r10_bio->read_slot].bio
2418 					= IO_BLOCKED;
2419 			}
2420 			break;
2421 		}
2422 
2423 		start = sl;
2424 		/* write it back and re-read */
2425 		rcu_read_lock();
2426 		while (sl != r10_bio->read_slot) {
2427 			char b[BDEVNAME_SIZE];
2428 
2429 			if (sl==0)
2430 				sl = conf->copies;
2431 			sl--;
2432 			d = r10_bio->devs[sl].devnum;
2433 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2434 			if (!rdev ||
2435 			    test_bit(Faulty, &rdev->flags) ||
2436 			    !test_bit(In_sync, &rdev->flags))
2437 				continue;
2438 
2439 			atomic_inc(&rdev->nr_pending);
2440 			rcu_read_unlock();
2441 			if (r10_sync_page_io(rdev,
2442 					     r10_bio->devs[sl].addr +
2443 					     sect,
2444 					     s, conf->tmppage, WRITE)
2445 			    == 0) {
2446 				/* Well, this device is dead */
2447 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2448 					  mdname(mddev), s,
2449 					  (unsigned long long)(
2450 						  sect +
2451 						  choose_data_offset(r10_bio,
2452 								     rdev)),
2453 					  bdevname(rdev->bdev, b));
2454 				pr_notice("md/raid10:%s: %s: failing drive\n",
2455 					  mdname(mddev),
2456 					  bdevname(rdev->bdev, b));
2457 			}
2458 			rdev_dec_pending(rdev, mddev);
2459 			rcu_read_lock();
2460 		}
2461 		sl = start;
2462 		while (sl != r10_bio->read_slot) {
2463 			char b[BDEVNAME_SIZE];
2464 
2465 			if (sl==0)
2466 				sl = conf->copies;
2467 			sl--;
2468 			d = r10_bio->devs[sl].devnum;
2469 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2470 			if (!rdev ||
2471 			    test_bit(Faulty, &rdev->flags) ||
2472 			    !test_bit(In_sync, &rdev->flags))
2473 				continue;
2474 
2475 			atomic_inc(&rdev->nr_pending);
2476 			rcu_read_unlock();
2477 			switch (r10_sync_page_io(rdev,
2478 					     r10_bio->devs[sl].addr +
2479 					     sect,
2480 					     s, conf->tmppage,
2481 						 READ)) {
2482 			case 0:
2483 				/* Well, this device is dead */
2484 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2485 				       mdname(mddev), s,
2486 				       (unsigned long long)(
2487 					       sect +
2488 					       choose_data_offset(r10_bio, rdev)),
2489 				       bdevname(rdev->bdev, b));
2490 				pr_notice("md/raid10:%s: %s: failing drive\n",
2491 				       mdname(mddev),
2492 				       bdevname(rdev->bdev, b));
2493 				break;
2494 			case 1:
2495 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2496 				       mdname(mddev), s,
2497 				       (unsigned long long)(
2498 					       sect +
2499 					       choose_data_offset(r10_bio, rdev)),
2500 				       bdevname(rdev->bdev, b));
2501 				atomic_add(s, &rdev->corrected_errors);
2502 			}
2503 
2504 			rdev_dec_pending(rdev, mddev);
2505 			rcu_read_lock();
2506 		}
2507 		rcu_read_unlock();
2508 
2509 		sectors -= s;
2510 		sect += s;
2511 	}
2512 }
2513 
2514 static int narrow_write_error(struct r10bio *r10_bio, int i)
2515 {
2516 	struct bio *bio = r10_bio->master_bio;
2517 	struct mddev *mddev = r10_bio->mddev;
2518 	struct r10conf *conf = mddev->private;
2519 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2520 	/* bio has the data to be written to slot 'i' where
2521 	 * we just recently had a write error.
2522 	 * We repeatedly clone the bio and trim down to one block,
2523 	 * then try the write.  Where the write fails we record
2524 	 * a bad block.
2525 	 * It is conceivable that the bio doesn't exactly align with
2526 	 * blocks.  We must handle this.
2527 	 *
2528 	 * We currently own a reference to the rdev.
2529 	 */
2530 
2531 	int block_sectors;
2532 	sector_t sector;
2533 	int sectors;
2534 	int sect_to_write = r10_bio->sectors;
2535 	int ok = 1;
2536 
2537 	if (rdev->badblocks.shift < 0)
2538 		return 0;
2539 
2540 	block_sectors = roundup(1 << rdev->badblocks.shift,
2541 				bdev_logical_block_size(rdev->bdev) >> 9);
2542 	sector = r10_bio->sector;
2543 	sectors = ((r10_bio->sector + block_sectors)
2544 		   & ~(sector_t)(block_sectors - 1))
2545 		- sector;
2546 
2547 	while (sect_to_write) {
2548 		struct bio *wbio;
2549 		sector_t wsector;
2550 		if (sectors > sect_to_write)
2551 			sectors = sect_to_write;
2552 		/* Write at 'sector' for 'sectors' */
2553 		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2554 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2555 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2556 		wbio->bi_iter.bi_sector = wsector +
2557 				   choose_data_offset(r10_bio, rdev);
2558 		bio_set_dev(wbio, rdev->bdev);
2559 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2560 
2561 		if (submit_bio_wait(wbio) < 0)
2562 			/* Failure! */
2563 			ok = rdev_set_badblocks(rdev, wsector,
2564 						sectors, 0)
2565 				&& ok;
2566 
2567 		bio_put(wbio);
2568 		sect_to_write -= sectors;
2569 		sector += sectors;
2570 		sectors = block_sectors;
2571 	}
2572 	return ok;
2573 }
2574 
2575 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2576 {
2577 	int slot = r10_bio->read_slot;
2578 	struct bio *bio;
2579 	struct r10conf *conf = mddev->private;
2580 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2581 
2582 	/* we got a read error. Maybe the drive is bad.  Maybe just
2583 	 * the block and we can fix it.
2584 	 * We freeze all other IO, and try reading the block from
2585 	 * other devices.  When we find one, we re-write
2586 	 * and check it that fixes the read error.
2587 	 * This is all done synchronously while the array is
2588 	 * frozen.
2589 	 */
2590 	bio = r10_bio->devs[slot].bio;
2591 	bio_put(bio);
2592 	r10_bio->devs[slot].bio = NULL;
2593 
2594 	if (mddev->ro)
2595 		r10_bio->devs[slot].bio = IO_BLOCKED;
2596 	else if (!test_bit(FailFast, &rdev->flags)) {
2597 		freeze_array(conf, 1);
2598 		fix_read_error(conf, mddev, r10_bio);
2599 		unfreeze_array(conf);
2600 	} else
2601 		md_error(mddev, rdev);
2602 
2603 	rdev_dec_pending(rdev, mddev);
2604 	allow_barrier(conf);
2605 	r10_bio->state = 0;
2606 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2607 }
2608 
2609 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2610 {
2611 	/* Some sort of write request has finished and it
2612 	 * succeeded in writing where we thought there was a
2613 	 * bad block.  So forget the bad block.
2614 	 * Or possibly if failed and we need to record
2615 	 * a bad block.
2616 	 */
2617 	int m;
2618 	struct md_rdev *rdev;
2619 
2620 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2621 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2622 		for (m = 0; m < conf->copies; m++) {
2623 			int dev = r10_bio->devs[m].devnum;
2624 			rdev = conf->mirrors[dev].rdev;
2625 			if (r10_bio->devs[m].bio == NULL ||
2626 				r10_bio->devs[m].bio->bi_end_io == NULL)
2627 				continue;
2628 			if (!r10_bio->devs[m].bio->bi_status) {
2629 				rdev_clear_badblocks(
2630 					rdev,
2631 					r10_bio->devs[m].addr,
2632 					r10_bio->sectors, 0);
2633 			} else {
2634 				if (!rdev_set_badblocks(
2635 					    rdev,
2636 					    r10_bio->devs[m].addr,
2637 					    r10_bio->sectors, 0))
2638 					md_error(conf->mddev, rdev);
2639 			}
2640 			rdev = conf->mirrors[dev].replacement;
2641 			if (r10_bio->devs[m].repl_bio == NULL ||
2642 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2643 				continue;
2644 
2645 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2646 				rdev_clear_badblocks(
2647 					rdev,
2648 					r10_bio->devs[m].addr,
2649 					r10_bio->sectors, 0);
2650 			} else {
2651 				if (!rdev_set_badblocks(
2652 					    rdev,
2653 					    r10_bio->devs[m].addr,
2654 					    r10_bio->sectors, 0))
2655 					md_error(conf->mddev, rdev);
2656 			}
2657 		}
2658 		put_buf(r10_bio);
2659 	} else {
2660 		bool fail = false;
2661 		for (m = 0; m < conf->copies; m++) {
2662 			int dev = r10_bio->devs[m].devnum;
2663 			struct bio *bio = r10_bio->devs[m].bio;
2664 			rdev = conf->mirrors[dev].rdev;
2665 			if (bio == IO_MADE_GOOD) {
2666 				rdev_clear_badblocks(
2667 					rdev,
2668 					r10_bio->devs[m].addr,
2669 					r10_bio->sectors, 0);
2670 				rdev_dec_pending(rdev, conf->mddev);
2671 			} else if (bio != NULL && bio->bi_status) {
2672 				fail = true;
2673 				if (!narrow_write_error(r10_bio, m)) {
2674 					md_error(conf->mddev, rdev);
2675 					set_bit(R10BIO_Degraded,
2676 						&r10_bio->state);
2677 				}
2678 				rdev_dec_pending(rdev, conf->mddev);
2679 			}
2680 			bio = r10_bio->devs[m].repl_bio;
2681 			rdev = conf->mirrors[dev].replacement;
2682 			if (rdev && bio == IO_MADE_GOOD) {
2683 				rdev_clear_badblocks(
2684 					rdev,
2685 					r10_bio->devs[m].addr,
2686 					r10_bio->sectors, 0);
2687 				rdev_dec_pending(rdev, conf->mddev);
2688 			}
2689 		}
2690 		if (fail) {
2691 			spin_lock_irq(&conf->device_lock);
2692 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2693 			conf->nr_queued++;
2694 			spin_unlock_irq(&conf->device_lock);
2695 			/*
2696 			 * In case freeze_array() is waiting for condition
2697 			 * nr_pending == nr_queued + extra to be true.
2698 			 */
2699 			wake_up(&conf->wait_barrier);
2700 			md_wakeup_thread(conf->mddev->thread);
2701 		} else {
2702 			if (test_bit(R10BIO_WriteError,
2703 				     &r10_bio->state))
2704 				close_write(r10_bio);
2705 			raid_end_bio_io(r10_bio);
2706 		}
2707 	}
2708 }
2709 
2710 static void raid10d(struct md_thread *thread)
2711 {
2712 	struct mddev *mddev = thread->mddev;
2713 	struct r10bio *r10_bio;
2714 	unsigned long flags;
2715 	struct r10conf *conf = mddev->private;
2716 	struct list_head *head = &conf->retry_list;
2717 	struct blk_plug plug;
2718 
2719 	md_check_recovery(mddev);
2720 
2721 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2722 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2723 		LIST_HEAD(tmp);
2724 		spin_lock_irqsave(&conf->device_lock, flags);
2725 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2726 			while (!list_empty(&conf->bio_end_io_list)) {
2727 				list_move(conf->bio_end_io_list.prev, &tmp);
2728 				conf->nr_queued--;
2729 			}
2730 		}
2731 		spin_unlock_irqrestore(&conf->device_lock, flags);
2732 		while (!list_empty(&tmp)) {
2733 			r10_bio = list_first_entry(&tmp, struct r10bio,
2734 						   retry_list);
2735 			list_del(&r10_bio->retry_list);
2736 			if (mddev->degraded)
2737 				set_bit(R10BIO_Degraded, &r10_bio->state);
2738 
2739 			if (test_bit(R10BIO_WriteError,
2740 				     &r10_bio->state))
2741 				close_write(r10_bio);
2742 			raid_end_bio_io(r10_bio);
2743 		}
2744 	}
2745 
2746 	blk_start_plug(&plug);
2747 	for (;;) {
2748 
2749 		flush_pending_writes(conf);
2750 
2751 		spin_lock_irqsave(&conf->device_lock, flags);
2752 		if (list_empty(head)) {
2753 			spin_unlock_irqrestore(&conf->device_lock, flags);
2754 			break;
2755 		}
2756 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2757 		list_del(head->prev);
2758 		conf->nr_queued--;
2759 		spin_unlock_irqrestore(&conf->device_lock, flags);
2760 
2761 		mddev = r10_bio->mddev;
2762 		conf = mddev->private;
2763 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2764 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2765 			handle_write_completed(conf, r10_bio);
2766 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2767 			reshape_request_write(mddev, r10_bio);
2768 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2769 			sync_request_write(mddev, r10_bio);
2770 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2771 			recovery_request_write(mddev, r10_bio);
2772 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2773 			handle_read_error(mddev, r10_bio);
2774 		else
2775 			WARN_ON_ONCE(1);
2776 
2777 		cond_resched();
2778 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2779 			md_check_recovery(mddev);
2780 	}
2781 	blk_finish_plug(&plug);
2782 }
2783 
2784 static int init_resync(struct r10conf *conf)
2785 {
2786 	int ret, buffs, i;
2787 
2788 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2789 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
2790 	conf->have_replacement = 0;
2791 	for (i = 0; i < conf->geo.raid_disks; i++)
2792 		if (conf->mirrors[i].replacement)
2793 			conf->have_replacement = 1;
2794 	ret = mempool_init(&conf->r10buf_pool, buffs,
2795 			   r10buf_pool_alloc, r10buf_pool_free, conf);
2796 	if (ret)
2797 		return ret;
2798 	conf->next_resync = 0;
2799 	return 0;
2800 }
2801 
2802 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2803 {
2804 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2805 	struct rsync_pages *rp;
2806 	struct bio *bio;
2807 	int nalloc;
2808 	int i;
2809 
2810 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2811 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2812 		nalloc = conf->copies; /* resync */
2813 	else
2814 		nalloc = 2; /* recovery */
2815 
2816 	for (i = 0; i < nalloc; i++) {
2817 		bio = r10bio->devs[i].bio;
2818 		rp = bio->bi_private;
2819 		bio_reset(bio);
2820 		bio->bi_private = rp;
2821 		bio = r10bio->devs[i].repl_bio;
2822 		if (bio) {
2823 			rp = bio->bi_private;
2824 			bio_reset(bio);
2825 			bio->bi_private = rp;
2826 		}
2827 	}
2828 	return r10bio;
2829 }
2830 
2831 /*
2832  * Set cluster_sync_high since we need other nodes to add the
2833  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2834  */
2835 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2836 {
2837 	sector_t window_size;
2838 	int extra_chunk, chunks;
2839 
2840 	/*
2841 	 * First, here we define "stripe" as a unit which across
2842 	 * all member devices one time, so we get chunks by use
2843 	 * raid_disks / near_copies. Otherwise, if near_copies is
2844 	 * close to raid_disks, then resync window could increases
2845 	 * linearly with the increase of raid_disks, which means
2846 	 * we will suspend a really large IO window while it is not
2847 	 * necessary. If raid_disks is not divisible by near_copies,
2848 	 * an extra chunk is needed to ensure the whole "stripe" is
2849 	 * covered.
2850 	 */
2851 
2852 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2853 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2854 		extra_chunk = 0;
2855 	else
2856 		extra_chunk = 1;
2857 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2858 
2859 	/*
2860 	 * At least use a 32M window to align with raid1's resync window
2861 	 */
2862 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2863 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2864 
2865 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2866 }
2867 
2868 /*
2869  * perform a "sync" on one "block"
2870  *
2871  * We need to make sure that no normal I/O request - particularly write
2872  * requests - conflict with active sync requests.
2873  *
2874  * This is achieved by tracking pending requests and a 'barrier' concept
2875  * that can be installed to exclude normal IO requests.
2876  *
2877  * Resync and recovery are handled very differently.
2878  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2879  *
2880  * For resync, we iterate over virtual addresses, read all copies,
2881  * and update if there are differences.  If only one copy is live,
2882  * skip it.
2883  * For recovery, we iterate over physical addresses, read a good
2884  * value for each non-in_sync drive, and over-write.
2885  *
2886  * So, for recovery we may have several outstanding complex requests for a
2887  * given address, one for each out-of-sync device.  We model this by allocating
2888  * a number of r10_bio structures, one for each out-of-sync device.
2889  * As we setup these structures, we collect all bio's together into a list
2890  * which we then process collectively to add pages, and then process again
2891  * to pass to generic_make_request.
2892  *
2893  * The r10_bio structures are linked using a borrowed master_bio pointer.
2894  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2895  * has its remaining count decremented to 0, the whole complex operation
2896  * is complete.
2897  *
2898  */
2899 
2900 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2901 			     int *skipped)
2902 {
2903 	struct r10conf *conf = mddev->private;
2904 	struct r10bio *r10_bio;
2905 	struct bio *biolist = NULL, *bio;
2906 	sector_t max_sector, nr_sectors;
2907 	int i;
2908 	int max_sync;
2909 	sector_t sync_blocks;
2910 	sector_t sectors_skipped = 0;
2911 	int chunks_skipped = 0;
2912 	sector_t chunk_mask = conf->geo.chunk_mask;
2913 	int page_idx = 0;
2914 
2915 	if (!mempool_initialized(&conf->r10buf_pool))
2916 		if (init_resync(conf))
2917 			return 0;
2918 
2919 	/*
2920 	 * Allow skipping a full rebuild for incremental assembly
2921 	 * of a clean array, like RAID1 does.
2922 	 */
2923 	if (mddev->bitmap == NULL &&
2924 	    mddev->recovery_cp == MaxSector &&
2925 	    mddev->reshape_position == MaxSector &&
2926 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2927 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2928 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2929 	    conf->fullsync == 0) {
2930 		*skipped = 1;
2931 		return mddev->dev_sectors - sector_nr;
2932 	}
2933 
2934  skipped:
2935 	max_sector = mddev->dev_sectors;
2936 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2937 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2938 		max_sector = mddev->resync_max_sectors;
2939 	if (sector_nr >= max_sector) {
2940 		conf->cluster_sync_low = 0;
2941 		conf->cluster_sync_high = 0;
2942 
2943 		/* If we aborted, we need to abort the
2944 		 * sync on the 'current' bitmap chucks (there can
2945 		 * be several when recovering multiple devices).
2946 		 * as we may have started syncing it but not finished.
2947 		 * We can find the current address in
2948 		 * mddev->curr_resync, but for recovery,
2949 		 * we need to convert that to several
2950 		 * virtual addresses.
2951 		 */
2952 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2953 			end_reshape(conf);
2954 			close_sync(conf);
2955 			return 0;
2956 		}
2957 
2958 		if (mddev->curr_resync < max_sector) { /* aborted */
2959 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2960 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2961 						   &sync_blocks, 1);
2962 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2963 				sector_t sect =
2964 					raid10_find_virt(conf, mddev->curr_resync, i);
2965 				md_bitmap_end_sync(mddev->bitmap, sect,
2966 						   &sync_blocks, 1);
2967 			}
2968 		} else {
2969 			/* completed sync */
2970 			if ((!mddev->bitmap || conf->fullsync)
2971 			    && conf->have_replacement
2972 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2973 				/* Completed a full sync so the replacements
2974 				 * are now fully recovered.
2975 				 */
2976 				rcu_read_lock();
2977 				for (i = 0; i < conf->geo.raid_disks; i++) {
2978 					struct md_rdev *rdev =
2979 						rcu_dereference(conf->mirrors[i].replacement);
2980 					if (rdev)
2981 						rdev->recovery_offset = MaxSector;
2982 				}
2983 				rcu_read_unlock();
2984 			}
2985 			conf->fullsync = 0;
2986 		}
2987 		md_bitmap_close_sync(mddev->bitmap);
2988 		close_sync(conf);
2989 		*skipped = 1;
2990 		return sectors_skipped;
2991 	}
2992 
2993 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2994 		return reshape_request(mddev, sector_nr, skipped);
2995 
2996 	if (chunks_skipped >= conf->geo.raid_disks) {
2997 		/* if there has been nothing to do on any drive,
2998 		 * then there is nothing to do at all..
2999 		 */
3000 		*skipped = 1;
3001 		return (max_sector - sector_nr) + sectors_skipped;
3002 	}
3003 
3004 	if (max_sector > mddev->resync_max)
3005 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3006 
3007 	/* make sure whole request will fit in a chunk - if chunks
3008 	 * are meaningful
3009 	 */
3010 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3011 	    max_sector > (sector_nr | chunk_mask))
3012 		max_sector = (sector_nr | chunk_mask) + 1;
3013 
3014 	/*
3015 	 * If there is non-resync activity waiting for a turn, then let it
3016 	 * though before starting on this new sync request.
3017 	 */
3018 	if (conf->nr_waiting)
3019 		schedule_timeout_uninterruptible(1);
3020 
3021 	/* Again, very different code for resync and recovery.
3022 	 * Both must result in an r10bio with a list of bios that
3023 	 * have bi_end_io, bi_sector, bi_disk set,
3024 	 * and bi_private set to the r10bio.
3025 	 * For recovery, we may actually create several r10bios
3026 	 * with 2 bios in each, that correspond to the bios in the main one.
3027 	 * In this case, the subordinate r10bios link back through a
3028 	 * borrowed master_bio pointer, and the counter in the master
3029 	 * includes a ref from each subordinate.
3030 	 */
3031 	/* First, we decide what to do and set ->bi_end_io
3032 	 * To end_sync_read if we want to read, and
3033 	 * end_sync_write if we will want to write.
3034 	 */
3035 
3036 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3037 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3038 		/* recovery... the complicated one */
3039 		int j;
3040 		r10_bio = NULL;
3041 
3042 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3043 			int still_degraded;
3044 			struct r10bio *rb2;
3045 			sector_t sect;
3046 			int must_sync;
3047 			int any_working;
3048 			int need_recover = 0;
3049 			int need_replace = 0;
3050 			struct raid10_info *mirror = &conf->mirrors[i];
3051 			struct md_rdev *mrdev, *mreplace;
3052 
3053 			rcu_read_lock();
3054 			mrdev = rcu_dereference(mirror->rdev);
3055 			mreplace = rcu_dereference(mirror->replacement);
3056 
3057 			if (mrdev != NULL &&
3058 			    !test_bit(Faulty, &mrdev->flags) &&
3059 			    !test_bit(In_sync, &mrdev->flags))
3060 				need_recover = 1;
3061 			if (mreplace != NULL &&
3062 			    !test_bit(Faulty, &mreplace->flags))
3063 				need_replace = 1;
3064 
3065 			if (!need_recover && !need_replace) {
3066 				rcu_read_unlock();
3067 				continue;
3068 			}
3069 
3070 			still_degraded = 0;
3071 			/* want to reconstruct this device */
3072 			rb2 = r10_bio;
3073 			sect = raid10_find_virt(conf, sector_nr, i);
3074 			if (sect >= mddev->resync_max_sectors) {
3075 				/* last stripe is not complete - don't
3076 				 * try to recover this sector.
3077 				 */
3078 				rcu_read_unlock();
3079 				continue;
3080 			}
3081 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3082 				mreplace = NULL;
3083 			/* Unless we are doing a full sync, or a replacement
3084 			 * we only need to recover the block if it is set in
3085 			 * the bitmap
3086 			 */
3087 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3088 							 &sync_blocks, 1);
3089 			if (sync_blocks < max_sync)
3090 				max_sync = sync_blocks;
3091 			if (!must_sync &&
3092 			    mreplace == NULL &&
3093 			    !conf->fullsync) {
3094 				/* yep, skip the sync_blocks here, but don't assume
3095 				 * that there will never be anything to do here
3096 				 */
3097 				chunks_skipped = -1;
3098 				rcu_read_unlock();
3099 				continue;
3100 			}
3101 			atomic_inc(&mrdev->nr_pending);
3102 			if (mreplace)
3103 				atomic_inc(&mreplace->nr_pending);
3104 			rcu_read_unlock();
3105 
3106 			r10_bio = raid10_alloc_init_r10buf(conf);
3107 			r10_bio->state = 0;
3108 			raise_barrier(conf, rb2 != NULL);
3109 			atomic_set(&r10_bio->remaining, 0);
3110 
3111 			r10_bio->master_bio = (struct bio*)rb2;
3112 			if (rb2)
3113 				atomic_inc(&rb2->remaining);
3114 			r10_bio->mddev = mddev;
3115 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3116 			r10_bio->sector = sect;
3117 
3118 			raid10_find_phys(conf, r10_bio);
3119 
3120 			/* Need to check if the array will still be
3121 			 * degraded
3122 			 */
3123 			rcu_read_lock();
3124 			for (j = 0; j < conf->geo.raid_disks; j++) {
3125 				struct md_rdev *rdev = rcu_dereference(
3126 					conf->mirrors[j].rdev);
3127 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3128 					still_degraded = 1;
3129 					break;
3130 				}
3131 			}
3132 
3133 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3134 							 &sync_blocks, still_degraded);
3135 
3136 			any_working = 0;
3137 			for (j=0; j<conf->copies;j++) {
3138 				int k;
3139 				int d = r10_bio->devs[j].devnum;
3140 				sector_t from_addr, to_addr;
3141 				struct md_rdev *rdev =
3142 					rcu_dereference(conf->mirrors[d].rdev);
3143 				sector_t sector, first_bad;
3144 				int bad_sectors;
3145 				if (!rdev ||
3146 				    !test_bit(In_sync, &rdev->flags))
3147 					continue;
3148 				/* This is where we read from */
3149 				any_working = 1;
3150 				sector = r10_bio->devs[j].addr;
3151 
3152 				if (is_badblock(rdev, sector, max_sync,
3153 						&first_bad, &bad_sectors)) {
3154 					if (first_bad > sector)
3155 						max_sync = first_bad - sector;
3156 					else {
3157 						bad_sectors -= (sector
3158 								- first_bad);
3159 						if (max_sync > bad_sectors)
3160 							max_sync = bad_sectors;
3161 						continue;
3162 					}
3163 				}
3164 				bio = r10_bio->devs[0].bio;
3165 				bio->bi_next = biolist;
3166 				biolist = bio;
3167 				bio->bi_end_io = end_sync_read;
3168 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3169 				if (test_bit(FailFast, &rdev->flags))
3170 					bio->bi_opf |= MD_FAILFAST;
3171 				from_addr = r10_bio->devs[j].addr;
3172 				bio->bi_iter.bi_sector = from_addr +
3173 					rdev->data_offset;
3174 				bio_set_dev(bio, rdev->bdev);
3175 				atomic_inc(&rdev->nr_pending);
3176 				/* and we write to 'i' (if not in_sync) */
3177 
3178 				for (k=0; k<conf->copies; k++)
3179 					if (r10_bio->devs[k].devnum == i)
3180 						break;
3181 				BUG_ON(k == conf->copies);
3182 				to_addr = r10_bio->devs[k].addr;
3183 				r10_bio->devs[0].devnum = d;
3184 				r10_bio->devs[0].addr = from_addr;
3185 				r10_bio->devs[1].devnum = i;
3186 				r10_bio->devs[1].addr = to_addr;
3187 
3188 				if (need_recover) {
3189 					bio = r10_bio->devs[1].bio;
3190 					bio->bi_next = biolist;
3191 					biolist = bio;
3192 					bio->bi_end_io = end_sync_write;
3193 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3194 					bio->bi_iter.bi_sector = to_addr
3195 						+ mrdev->data_offset;
3196 					bio_set_dev(bio, mrdev->bdev);
3197 					atomic_inc(&r10_bio->remaining);
3198 				} else
3199 					r10_bio->devs[1].bio->bi_end_io = NULL;
3200 
3201 				/* and maybe write to replacement */
3202 				bio = r10_bio->devs[1].repl_bio;
3203 				if (bio)
3204 					bio->bi_end_io = NULL;
3205 				/* Note: if need_replace, then bio
3206 				 * cannot be NULL as r10buf_pool_alloc will
3207 				 * have allocated it.
3208 				 */
3209 				if (!need_replace)
3210 					break;
3211 				bio->bi_next = biolist;
3212 				biolist = bio;
3213 				bio->bi_end_io = end_sync_write;
3214 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3215 				bio->bi_iter.bi_sector = to_addr +
3216 					mreplace->data_offset;
3217 				bio_set_dev(bio, mreplace->bdev);
3218 				atomic_inc(&r10_bio->remaining);
3219 				break;
3220 			}
3221 			rcu_read_unlock();
3222 			if (j == conf->copies) {
3223 				/* Cannot recover, so abort the recovery or
3224 				 * record a bad block */
3225 				if (any_working) {
3226 					/* problem is that there are bad blocks
3227 					 * on other device(s)
3228 					 */
3229 					int k;
3230 					for (k = 0; k < conf->copies; k++)
3231 						if (r10_bio->devs[k].devnum == i)
3232 							break;
3233 					if (!test_bit(In_sync,
3234 						      &mrdev->flags)
3235 					    && !rdev_set_badblocks(
3236 						    mrdev,
3237 						    r10_bio->devs[k].addr,
3238 						    max_sync, 0))
3239 						any_working = 0;
3240 					if (mreplace &&
3241 					    !rdev_set_badblocks(
3242 						    mreplace,
3243 						    r10_bio->devs[k].addr,
3244 						    max_sync, 0))
3245 						any_working = 0;
3246 				}
3247 				if (!any_working)  {
3248 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3249 							      &mddev->recovery))
3250 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3251 						       mdname(mddev));
3252 					mirror->recovery_disabled
3253 						= mddev->recovery_disabled;
3254 				}
3255 				put_buf(r10_bio);
3256 				if (rb2)
3257 					atomic_dec(&rb2->remaining);
3258 				r10_bio = rb2;
3259 				rdev_dec_pending(mrdev, mddev);
3260 				if (mreplace)
3261 					rdev_dec_pending(mreplace, mddev);
3262 				break;
3263 			}
3264 			rdev_dec_pending(mrdev, mddev);
3265 			if (mreplace)
3266 				rdev_dec_pending(mreplace, mddev);
3267 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3268 				/* Only want this if there is elsewhere to
3269 				 * read from. 'j' is currently the first
3270 				 * readable copy.
3271 				 */
3272 				int targets = 1;
3273 				for (; j < conf->copies; j++) {
3274 					int d = r10_bio->devs[j].devnum;
3275 					if (conf->mirrors[d].rdev &&
3276 					    test_bit(In_sync,
3277 						      &conf->mirrors[d].rdev->flags))
3278 						targets++;
3279 				}
3280 				if (targets == 1)
3281 					r10_bio->devs[0].bio->bi_opf
3282 						&= ~MD_FAILFAST;
3283 			}
3284 		}
3285 		if (biolist == NULL) {
3286 			while (r10_bio) {
3287 				struct r10bio *rb2 = r10_bio;
3288 				r10_bio = (struct r10bio*) rb2->master_bio;
3289 				rb2->master_bio = NULL;
3290 				put_buf(rb2);
3291 			}
3292 			goto giveup;
3293 		}
3294 	} else {
3295 		/* resync. Schedule a read for every block at this virt offset */
3296 		int count = 0;
3297 
3298 		/*
3299 		 * Since curr_resync_completed could probably not update in
3300 		 * time, and we will set cluster_sync_low based on it.
3301 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3302 		 * safety reason, which ensures curr_resync_completed is
3303 		 * updated in bitmap_cond_end_sync.
3304 		 */
3305 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3306 					mddev_is_clustered(mddev) &&
3307 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3308 
3309 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3310 					  &sync_blocks, mddev->degraded) &&
3311 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3312 						 &mddev->recovery)) {
3313 			/* We can skip this block */
3314 			*skipped = 1;
3315 			return sync_blocks + sectors_skipped;
3316 		}
3317 		if (sync_blocks < max_sync)
3318 			max_sync = sync_blocks;
3319 		r10_bio = raid10_alloc_init_r10buf(conf);
3320 		r10_bio->state = 0;
3321 
3322 		r10_bio->mddev = mddev;
3323 		atomic_set(&r10_bio->remaining, 0);
3324 		raise_barrier(conf, 0);
3325 		conf->next_resync = sector_nr;
3326 
3327 		r10_bio->master_bio = NULL;
3328 		r10_bio->sector = sector_nr;
3329 		set_bit(R10BIO_IsSync, &r10_bio->state);
3330 		raid10_find_phys(conf, r10_bio);
3331 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3332 
3333 		for (i = 0; i < conf->copies; i++) {
3334 			int d = r10_bio->devs[i].devnum;
3335 			sector_t first_bad, sector;
3336 			int bad_sectors;
3337 			struct md_rdev *rdev;
3338 
3339 			if (r10_bio->devs[i].repl_bio)
3340 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3341 
3342 			bio = r10_bio->devs[i].bio;
3343 			bio->bi_status = BLK_STS_IOERR;
3344 			rcu_read_lock();
3345 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3346 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3347 				rcu_read_unlock();
3348 				continue;
3349 			}
3350 			sector = r10_bio->devs[i].addr;
3351 			if (is_badblock(rdev, sector, max_sync,
3352 					&first_bad, &bad_sectors)) {
3353 				if (first_bad > sector)
3354 					max_sync = first_bad - sector;
3355 				else {
3356 					bad_sectors -= (sector - first_bad);
3357 					if (max_sync > bad_sectors)
3358 						max_sync = bad_sectors;
3359 					rcu_read_unlock();
3360 					continue;
3361 				}
3362 			}
3363 			atomic_inc(&rdev->nr_pending);
3364 			atomic_inc(&r10_bio->remaining);
3365 			bio->bi_next = biolist;
3366 			biolist = bio;
3367 			bio->bi_end_io = end_sync_read;
3368 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3369 			if (test_bit(FailFast, &rdev->flags))
3370 				bio->bi_opf |= MD_FAILFAST;
3371 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3372 			bio_set_dev(bio, rdev->bdev);
3373 			count++;
3374 
3375 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3376 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3377 				rcu_read_unlock();
3378 				continue;
3379 			}
3380 			atomic_inc(&rdev->nr_pending);
3381 
3382 			/* Need to set up for writing to the replacement */
3383 			bio = r10_bio->devs[i].repl_bio;
3384 			bio->bi_status = BLK_STS_IOERR;
3385 
3386 			sector = r10_bio->devs[i].addr;
3387 			bio->bi_next = biolist;
3388 			biolist = bio;
3389 			bio->bi_end_io = end_sync_write;
3390 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3391 			if (test_bit(FailFast, &rdev->flags))
3392 				bio->bi_opf |= MD_FAILFAST;
3393 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3394 			bio_set_dev(bio, rdev->bdev);
3395 			count++;
3396 			rcu_read_unlock();
3397 		}
3398 
3399 		if (count < 2) {
3400 			for (i=0; i<conf->copies; i++) {
3401 				int d = r10_bio->devs[i].devnum;
3402 				if (r10_bio->devs[i].bio->bi_end_io)
3403 					rdev_dec_pending(conf->mirrors[d].rdev,
3404 							 mddev);
3405 				if (r10_bio->devs[i].repl_bio &&
3406 				    r10_bio->devs[i].repl_bio->bi_end_io)
3407 					rdev_dec_pending(
3408 						conf->mirrors[d].replacement,
3409 						mddev);
3410 			}
3411 			put_buf(r10_bio);
3412 			biolist = NULL;
3413 			goto giveup;
3414 		}
3415 	}
3416 
3417 	nr_sectors = 0;
3418 	if (sector_nr + max_sync < max_sector)
3419 		max_sector = sector_nr + max_sync;
3420 	do {
3421 		struct page *page;
3422 		int len = PAGE_SIZE;
3423 		if (sector_nr + (len>>9) > max_sector)
3424 			len = (max_sector - sector_nr) << 9;
3425 		if (len == 0)
3426 			break;
3427 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3428 			struct resync_pages *rp = get_resync_pages(bio);
3429 			page = resync_fetch_page(rp, page_idx);
3430 			/*
3431 			 * won't fail because the vec table is big enough
3432 			 * to hold all these pages
3433 			 */
3434 			bio_add_page(bio, page, len, 0);
3435 		}
3436 		nr_sectors += len>>9;
3437 		sector_nr += len>>9;
3438 	} while (++page_idx < RESYNC_PAGES);
3439 	r10_bio->sectors = nr_sectors;
3440 
3441 	if (mddev_is_clustered(mddev) &&
3442 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3443 		/* It is resync not recovery */
3444 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3445 			conf->cluster_sync_low = mddev->curr_resync_completed;
3446 			raid10_set_cluster_sync_high(conf);
3447 			/* Send resync message */
3448 			md_cluster_ops->resync_info_update(mddev,
3449 						conf->cluster_sync_low,
3450 						conf->cluster_sync_high);
3451 		}
3452 	} else if (mddev_is_clustered(mddev)) {
3453 		/* This is recovery not resync */
3454 		sector_t sect_va1, sect_va2;
3455 		bool broadcast_msg = false;
3456 
3457 		for (i = 0; i < conf->geo.raid_disks; i++) {
3458 			/*
3459 			 * sector_nr is a device address for recovery, so we
3460 			 * need translate it to array address before compare
3461 			 * with cluster_sync_high.
3462 			 */
3463 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3464 
3465 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3466 				broadcast_msg = true;
3467 				/*
3468 				 * curr_resync_completed is similar as
3469 				 * sector_nr, so make the translation too.
3470 				 */
3471 				sect_va2 = raid10_find_virt(conf,
3472 					mddev->curr_resync_completed, i);
3473 
3474 				if (conf->cluster_sync_low == 0 ||
3475 				    conf->cluster_sync_low > sect_va2)
3476 					conf->cluster_sync_low = sect_va2;
3477 			}
3478 		}
3479 		if (broadcast_msg) {
3480 			raid10_set_cluster_sync_high(conf);
3481 			md_cluster_ops->resync_info_update(mddev,
3482 						conf->cluster_sync_low,
3483 						conf->cluster_sync_high);
3484 		}
3485 	}
3486 
3487 	while (biolist) {
3488 		bio = biolist;
3489 		biolist = biolist->bi_next;
3490 
3491 		bio->bi_next = NULL;
3492 		r10_bio = get_resync_r10bio(bio);
3493 		r10_bio->sectors = nr_sectors;
3494 
3495 		if (bio->bi_end_io == end_sync_read) {
3496 			md_sync_acct_bio(bio, nr_sectors);
3497 			bio->bi_status = 0;
3498 			generic_make_request(bio);
3499 		}
3500 	}
3501 
3502 	if (sectors_skipped)
3503 		/* pretend they weren't skipped, it makes
3504 		 * no important difference in this case
3505 		 */
3506 		md_done_sync(mddev, sectors_skipped, 1);
3507 
3508 	return sectors_skipped + nr_sectors;
3509  giveup:
3510 	/* There is nowhere to write, so all non-sync
3511 	 * drives must be failed or in resync, all drives
3512 	 * have a bad block, so try the next chunk...
3513 	 */
3514 	if (sector_nr + max_sync < max_sector)
3515 		max_sector = sector_nr + max_sync;
3516 
3517 	sectors_skipped += (max_sector - sector_nr);
3518 	chunks_skipped ++;
3519 	sector_nr = max_sector;
3520 	goto skipped;
3521 }
3522 
3523 static sector_t
3524 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3525 {
3526 	sector_t size;
3527 	struct r10conf *conf = mddev->private;
3528 
3529 	if (!raid_disks)
3530 		raid_disks = min(conf->geo.raid_disks,
3531 				 conf->prev.raid_disks);
3532 	if (!sectors)
3533 		sectors = conf->dev_sectors;
3534 
3535 	size = sectors >> conf->geo.chunk_shift;
3536 	sector_div(size, conf->geo.far_copies);
3537 	size = size * raid_disks;
3538 	sector_div(size, conf->geo.near_copies);
3539 
3540 	return size << conf->geo.chunk_shift;
3541 }
3542 
3543 static void calc_sectors(struct r10conf *conf, sector_t size)
3544 {
3545 	/* Calculate the number of sectors-per-device that will
3546 	 * actually be used, and set conf->dev_sectors and
3547 	 * conf->stride
3548 	 */
3549 
3550 	size = size >> conf->geo.chunk_shift;
3551 	sector_div(size, conf->geo.far_copies);
3552 	size = size * conf->geo.raid_disks;
3553 	sector_div(size, conf->geo.near_copies);
3554 	/* 'size' is now the number of chunks in the array */
3555 	/* calculate "used chunks per device" */
3556 	size = size * conf->copies;
3557 
3558 	/* We need to round up when dividing by raid_disks to
3559 	 * get the stride size.
3560 	 */
3561 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3562 
3563 	conf->dev_sectors = size << conf->geo.chunk_shift;
3564 
3565 	if (conf->geo.far_offset)
3566 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3567 	else {
3568 		sector_div(size, conf->geo.far_copies);
3569 		conf->geo.stride = size << conf->geo.chunk_shift;
3570 	}
3571 }
3572 
3573 enum geo_type {geo_new, geo_old, geo_start};
3574 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3575 {
3576 	int nc, fc, fo;
3577 	int layout, chunk, disks;
3578 	switch (new) {
3579 	case geo_old:
3580 		layout = mddev->layout;
3581 		chunk = mddev->chunk_sectors;
3582 		disks = mddev->raid_disks - mddev->delta_disks;
3583 		break;
3584 	case geo_new:
3585 		layout = mddev->new_layout;
3586 		chunk = mddev->new_chunk_sectors;
3587 		disks = mddev->raid_disks;
3588 		break;
3589 	default: /* avoid 'may be unused' warnings */
3590 	case geo_start: /* new when starting reshape - raid_disks not
3591 			 * updated yet. */
3592 		layout = mddev->new_layout;
3593 		chunk = mddev->new_chunk_sectors;
3594 		disks = mddev->raid_disks + mddev->delta_disks;
3595 		break;
3596 	}
3597 	if (layout >> 19)
3598 		return -1;
3599 	if (chunk < (PAGE_SIZE >> 9) ||
3600 	    !is_power_of_2(chunk))
3601 		return -2;
3602 	nc = layout & 255;
3603 	fc = (layout >> 8) & 255;
3604 	fo = layout & (1<<16);
3605 	geo->raid_disks = disks;
3606 	geo->near_copies = nc;
3607 	geo->far_copies = fc;
3608 	geo->far_offset = fo;
3609 	switch (layout >> 17) {
3610 	case 0:	/* original layout.  simple but not always optimal */
3611 		geo->far_set_size = disks;
3612 		break;
3613 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3614 		 * actually using this, but leave code here just in case.*/
3615 		geo->far_set_size = disks/fc;
3616 		WARN(geo->far_set_size < fc,
3617 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3618 		break;
3619 	case 2: /* "improved" layout fixed to match documentation */
3620 		geo->far_set_size = fc * nc;
3621 		break;
3622 	default: /* Not a valid layout */
3623 		return -1;
3624 	}
3625 	geo->chunk_mask = chunk - 1;
3626 	geo->chunk_shift = ffz(~chunk);
3627 	return nc*fc;
3628 }
3629 
3630 static struct r10conf *setup_conf(struct mddev *mddev)
3631 {
3632 	struct r10conf *conf = NULL;
3633 	int err = -EINVAL;
3634 	struct geom geo;
3635 	int copies;
3636 
3637 	copies = setup_geo(&geo, mddev, geo_new);
3638 
3639 	if (copies == -2) {
3640 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3641 			mdname(mddev), PAGE_SIZE);
3642 		goto out;
3643 	}
3644 
3645 	if (copies < 2 || copies > mddev->raid_disks) {
3646 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3647 			mdname(mddev), mddev->new_layout);
3648 		goto out;
3649 	}
3650 
3651 	err = -ENOMEM;
3652 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3653 	if (!conf)
3654 		goto out;
3655 
3656 	/* FIXME calc properly */
3657 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3658 				sizeof(struct raid10_info),
3659 				GFP_KERNEL);
3660 	if (!conf->mirrors)
3661 		goto out;
3662 
3663 	conf->tmppage = alloc_page(GFP_KERNEL);
3664 	if (!conf->tmppage)
3665 		goto out;
3666 
3667 	conf->geo = geo;
3668 	conf->copies = copies;
3669 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3670 			   rbio_pool_free, conf);
3671 	if (err)
3672 		goto out;
3673 
3674 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3675 	if (err)
3676 		goto out;
3677 
3678 	calc_sectors(conf, mddev->dev_sectors);
3679 	if (mddev->reshape_position == MaxSector) {
3680 		conf->prev = conf->geo;
3681 		conf->reshape_progress = MaxSector;
3682 	} else {
3683 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3684 			err = -EINVAL;
3685 			goto out;
3686 		}
3687 		conf->reshape_progress = mddev->reshape_position;
3688 		if (conf->prev.far_offset)
3689 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3690 		else
3691 			/* far_copies must be 1 */
3692 			conf->prev.stride = conf->dev_sectors;
3693 	}
3694 	conf->reshape_safe = conf->reshape_progress;
3695 	spin_lock_init(&conf->device_lock);
3696 	INIT_LIST_HEAD(&conf->retry_list);
3697 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3698 
3699 	spin_lock_init(&conf->resync_lock);
3700 	init_waitqueue_head(&conf->wait_barrier);
3701 	atomic_set(&conf->nr_pending, 0);
3702 
3703 	err = -ENOMEM;
3704 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3705 	if (!conf->thread)
3706 		goto out;
3707 
3708 	conf->mddev = mddev;
3709 	return conf;
3710 
3711  out:
3712 	if (conf) {
3713 		mempool_exit(&conf->r10bio_pool);
3714 		kfree(conf->mirrors);
3715 		safe_put_page(conf->tmppage);
3716 		bioset_exit(&conf->bio_split);
3717 		kfree(conf);
3718 	}
3719 	return ERR_PTR(err);
3720 }
3721 
3722 static int raid10_run(struct mddev *mddev)
3723 {
3724 	struct r10conf *conf;
3725 	int i, disk_idx, chunk_size;
3726 	struct raid10_info *disk;
3727 	struct md_rdev *rdev;
3728 	sector_t size;
3729 	sector_t min_offset_diff = 0;
3730 	int first = 1;
3731 	bool discard_supported = false;
3732 
3733 	if (mddev_init_writes_pending(mddev) < 0)
3734 		return -ENOMEM;
3735 
3736 	if (mddev->private == NULL) {
3737 		conf = setup_conf(mddev);
3738 		if (IS_ERR(conf))
3739 			return PTR_ERR(conf);
3740 		mddev->private = conf;
3741 	}
3742 	conf = mddev->private;
3743 	if (!conf)
3744 		goto out;
3745 
3746 	if (mddev_is_clustered(conf->mddev)) {
3747 		int fc, fo;
3748 
3749 		fc = (mddev->layout >> 8) & 255;
3750 		fo = mddev->layout & (1<<16);
3751 		if (fc > 1 || fo > 0) {
3752 			pr_err("only near layout is supported by clustered"
3753 				" raid10\n");
3754 			goto out_free_conf;
3755 		}
3756 	}
3757 
3758 	mddev->thread = conf->thread;
3759 	conf->thread = NULL;
3760 
3761 	chunk_size = mddev->chunk_sectors << 9;
3762 	if (mddev->queue) {
3763 		blk_queue_max_discard_sectors(mddev->queue,
3764 					      mddev->chunk_sectors);
3765 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3766 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3767 		blk_queue_io_min(mddev->queue, chunk_size);
3768 		if (conf->geo.raid_disks % conf->geo.near_copies)
3769 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3770 		else
3771 			blk_queue_io_opt(mddev->queue, chunk_size *
3772 					 (conf->geo.raid_disks / conf->geo.near_copies));
3773 	}
3774 
3775 	rdev_for_each(rdev, mddev) {
3776 		long long diff;
3777 
3778 		disk_idx = rdev->raid_disk;
3779 		if (disk_idx < 0)
3780 			continue;
3781 		if (disk_idx >= conf->geo.raid_disks &&
3782 		    disk_idx >= conf->prev.raid_disks)
3783 			continue;
3784 		disk = conf->mirrors + disk_idx;
3785 
3786 		if (test_bit(Replacement, &rdev->flags)) {
3787 			if (disk->replacement)
3788 				goto out_free_conf;
3789 			disk->replacement = rdev;
3790 		} else {
3791 			if (disk->rdev)
3792 				goto out_free_conf;
3793 			disk->rdev = rdev;
3794 		}
3795 		diff = (rdev->new_data_offset - rdev->data_offset);
3796 		if (!mddev->reshape_backwards)
3797 			diff = -diff;
3798 		if (diff < 0)
3799 			diff = 0;
3800 		if (first || diff < min_offset_diff)
3801 			min_offset_diff = diff;
3802 
3803 		if (mddev->gendisk)
3804 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3805 					  rdev->data_offset << 9);
3806 
3807 		disk->head_position = 0;
3808 
3809 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3810 			discard_supported = true;
3811 		first = 0;
3812 	}
3813 
3814 	if (mddev->queue) {
3815 		if (discard_supported)
3816 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3817 						mddev->queue);
3818 		else
3819 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3820 						  mddev->queue);
3821 	}
3822 	/* need to check that every block has at least one working mirror */
3823 	if (!enough(conf, -1)) {
3824 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3825 		       mdname(mddev));
3826 		goto out_free_conf;
3827 	}
3828 
3829 	if (conf->reshape_progress != MaxSector) {
3830 		/* must ensure that shape change is supported */
3831 		if (conf->geo.far_copies != 1 &&
3832 		    conf->geo.far_offset == 0)
3833 			goto out_free_conf;
3834 		if (conf->prev.far_copies != 1 &&
3835 		    conf->prev.far_offset == 0)
3836 			goto out_free_conf;
3837 	}
3838 
3839 	mddev->degraded = 0;
3840 	for (i = 0;
3841 	     i < conf->geo.raid_disks
3842 		     || i < conf->prev.raid_disks;
3843 	     i++) {
3844 
3845 		disk = conf->mirrors + i;
3846 
3847 		if (!disk->rdev && disk->replacement) {
3848 			/* The replacement is all we have - use it */
3849 			disk->rdev = disk->replacement;
3850 			disk->replacement = NULL;
3851 			clear_bit(Replacement, &disk->rdev->flags);
3852 		}
3853 
3854 		if (!disk->rdev ||
3855 		    !test_bit(In_sync, &disk->rdev->flags)) {
3856 			disk->head_position = 0;
3857 			mddev->degraded++;
3858 			if (disk->rdev &&
3859 			    disk->rdev->saved_raid_disk < 0)
3860 				conf->fullsync = 1;
3861 		}
3862 
3863 		if (disk->replacement &&
3864 		    !test_bit(In_sync, &disk->replacement->flags) &&
3865 		    disk->replacement->saved_raid_disk < 0) {
3866 			conf->fullsync = 1;
3867 		}
3868 
3869 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3870 	}
3871 
3872 	if (mddev->recovery_cp != MaxSector)
3873 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3874 			  mdname(mddev));
3875 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3876 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3877 		conf->geo.raid_disks);
3878 	/*
3879 	 * Ok, everything is just fine now
3880 	 */
3881 	mddev->dev_sectors = conf->dev_sectors;
3882 	size = raid10_size(mddev, 0, 0);
3883 	md_set_array_sectors(mddev, size);
3884 	mddev->resync_max_sectors = size;
3885 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3886 
3887 	if (mddev->queue) {
3888 		int stripe = conf->geo.raid_disks *
3889 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3890 
3891 		/* Calculate max read-ahead size.
3892 		 * We need to readahead at least twice a whole stripe....
3893 		 * maybe...
3894 		 */
3895 		stripe /= conf->geo.near_copies;
3896 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3897 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3898 	}
3899 
3900 	if (md_integrity_register(mddev))
3901 		goto out_free_conf;
3902 
3903 	if (conf->reshape_progress != MaxSector) {
3904 		unsigned long before_length, after_length;
3905 
3906 		before_length = ((1 << conf->prev.chunk_shift) *
3907 				 conf->prev.far_copies);
3908 		after_length = ((1 << conf->geo.chunk_shift) *
3909 				conf->geo.far_copies);
3910 
3911 		if (max(before_length, after_length) > min_offset_diff) {
3912 			/* This cannot work */
3913 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3914 			goto out_free_conf;
3915 		}
3916 		conf->offset_diff = min_offset_diff;
3917 
3918 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3919 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3920 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3921 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3922 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3923 							"reshape");
3924 		if (!mddev->sync_thread)
3925 			goto out_free_conf;
3926 	}
3927 
3928 	return 0;
3929 
3930 out_free_conf:
3931 	md_unregister_thread(&mddev->thread);
3932 	mempool_exit(&conf->r10bio_pool);
3933 	safe_put_page(conf->tmppage);
3934 	kfree(conf->mirrors);
3935 	kfree(conf);
3936 	mddev->private = NULL;
3937 out:
3938 	return -EIO;
3939 }
3940 
3941 static void raid10_free(struct mddev *mddev, void *priv)
3942 {
3943 	struct r10conf *conf = priv;
3944 
3945 	mempool_exit(&conf->r10bio_pool);
3946 	safe_put_page(conf->tmppage);
3947 	kfree(conf->mirrors);
3948 	kfree(conf->mirrors_old);
3949 	kfree(conf->mirrors_new);
3950 	bioset_exit(&conf->bio_split);
3951 	kfree(conf);
3952 }
3953 
3954 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3955 {
3956 	struct r10conf *conf = mddev->private;
3957 
3958 	if (quiesce)
3959 		raise_barrier(conf, 0);
3960 	else
3961 		lower_barrier(conf);
3962 }
3963 
3964 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3965 {
3966 	/* Resize of 'far' arrays is not supported.
3967 	 * For 'near' and 'offset' arrays we can set the
3968 	 * number of sectors used to be an appropriate multiple
3969 	 * of the chunk size.
3970 	 * For 'offset', this is far_copies*chunksize.
3971 	 * For 'near' the multiplier is the LCM of
3972 	 * near_copies and raid_disks.
3973 	 * So if far_copies > 1 && !far_offset, fail.
3974 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3975 	 * multiply by chunk_size.  Then round to this number.
3976 	 * This is mostly done by raid10_size()
3977 	 */
3978 	struct r10conf *conf = mddev->private;
3979 	sector_t oldsize, size;
3980 
3981 	if (mddev->reshape_position != MaxSector)
3982 		return -EBUSY;
3983 
3984 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3985 		return -EINVAL;
3986 
3987 	oldsize = raid10_size(mddev, 0, 0);
3988 	size = raid10_size(mddev, sectors, 0);
3989 	if (mddev->external_size &&
3990 	    mddev->array_sectors > size)
3991 		return -EINVAL;
3992 	if (mddev->bitmap) {
3993 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3994 		if (ret)
3995 			return ret;
3996 	}
3997 	md_set_array_sectors(mddev, size);
3998 	if (sectors > mddev->dev_sectors &&
3999 	    mddev->recovery_cp > oldsize) {
4000 		mddev->recovery_cp = oldsize;
4001 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4002 	}
4003 	calc_sectors(conf, sectors);
4004 	mddev->dev_sectors = conf->dev_sectors;
4005 	mddev->resync_max_sectors = size;
4006 	return 0;
4007 }
4008 
4009 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4010 {
4011 	struct md_rdev *rdev;
4012 	struct r10conf *conf;
4013 
4014 	if (mddev->degraded > 0) {
4015 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4016 			mdname(mddev));
4017 		return ERR_PTR(-EINVAL);
4018 	}
4019 	sector_div(size, devs);
4020 
4021 	/* Set new parameters */
4022 	mddev->new_level = 10;
4023 	/* new layout: far_copies = 1, near_copies = 2 */
4024 	mddev->new_layout = (1<<8) + 2;
4025 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4026 	mddev->delta_disks = mddev->raid_disks;
4027 	mddev->raid_disks *= 2;
4028 	/* make sure it will be not marked as dirty */
4029 	mddev->recovery_cp = MaxSector;
4030 	mddev->dev_sectors = size;
4031 
4032 	conf = setup_conf(mddev);
4033 	if (!IS_ERR(conf)) {
4034 		rdev_for_each(rdev, mddev)
4035 			if (rdev->raid_disk >= 0) {
4036 				rdev->new_raid_disk = rdev->raid_disk * 2;
4037 				rdev->sectors = size;
4038 			}
4039 		conf->barrier = 1;
4040 	}
4041 
4042 	return conf;
4043 }
4044 
4045 static void *raid10_takeover(struct mddev *mddev)
4046 {
4047 	struct r0conf *raid0_conf;
4048 
4049 	/* raid10 can take over:
4050 	 *  raid0 - providing it has only two drives
4051 	 */
4052 	if (mddev->level == 0) {
4053 		/* for raid0 takeover only one zone is supported */
4054 		raid0_conf = mddev->private;
4055 		if (raid0_conf->nr_strip_zones > 1) {
4056 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4057 				mdname(mddev));
4058 			return ERR_PTR(-EINVAL);
4059 		}
4060 		return raid10_takeover_raid0(mddev,
4061 			raid0_conf->strip_zone->zone_end,
4062 			raid0_conf->strip_zone->nb_dev);
4063 	}
4064 	return ERR_PTR(-EINVAL);
4065 }
4066 
4067 static int raid10_check_reshape(struct mddev *mddev)
4068 {
4069 	/* Called when there is a request to change
4070 	 * - layout (to ->new_layout)
4071 	 * - chunk size (to ->new_chunk_sectors)
4072 	 * - raid_disks (by delta_disks)
4073 	 * or when trying to restart a reshape that was ongoing.
4074 	 *
4075 	 * We need to validate the request and possibly allocate
4076 	 * space if that might be an issue later.
4077 	 *
4078 	 * Currently we reject any reshape of a 'far' mode array,
4079 	 * allow chunk size to change if new is generally acceptable,
4080 	 * allow raid_disks to increase, and allow
4081 	 * a switch between 'near' mode and 'offset' mode.
4082 	 */
4083 	struct r10conf *conf = mddev->private;
4084 	struct geom geo;
4085 
4086 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4087 		return -EINVAL;
4088 
4089 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4090 		/* mustn't change number of copies */
4091 		return -EINVAL;
4092 	if (geo.far_copies > 1 && !geo.far_offset)
4093 		/* Cannot switch to 'far' mode */
4094 		return -EINVAL;
4095 
4096 	if (mddev->array_sectors & geo.chunk_mask)
4097 			/* not factor of array size */
4098 			return -EINVAL;
4099 
4100 	if (!enough(conf, -1))
4101 		return -EINVAL;
4102 
4103 	kfree(conf->mirrors_new);
4104 	conf->mirrors_new = NULL;
4105 	if (mddev->delta_disks > 0) {
4106 		/* allocate new 'mirrors' list */
4107 		conf->mirrors_new =
4108 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4109 				sizeof(struct raid10_info),
4110 				GFP_KERNEL);
4111 		if (!conf->mirrors_new)
4112 			return -ENOMEM;
4113 	}
4114 	return 0;
4115 }
4116 
4117 /*
4118  * Need to check if array has failed when deciding whether to:
4119  *  - start an array
4120  *  - remove non-faulty devices
4121  *  - add a spare
4122  *  - allow a reshape
4123  * This determination is simple when no reshape is happening.
4124  * However if there is a reshape, we need to carefully check
4125  * both the before and after sections.
4126  * This is because some failed devices may only affect one
4127  * of the two sections, and some non-in_sync devices may
4128  * be insync in the section most affected by failed devices.
4129  */
4130 static int calc_degraded(struct r10conf *conf)
4131 {
4132 	int degraded, degraded2;
4133 	int i;
4134 
4135 	rcu_read_lock();
4136 	degraded = 0;
4137 	/* 'prev' section first */
4138 	for (i = 0; i < conf->prev.raid_disks; i++) {
4139 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4140 		if (!rdev || test_bit(Faulty, &rdev->flags))
4141 			degraded++;
4142 		else if (!test_bit(In_sync, &rdev->flags))
4143 			/* When we can reduce the number of devices in
4144 			 * an array, this might not contribute to
4145 			 * 'degraded'.  It does now.
4146 			 */
4147 			degraded++;
4148 	}
4149 	rcu_read_unlock();
4150 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4151 		return degraded;
4152 	rcu_read_lock();
4153 	degraded2 = 0;
4154 	for (i = 0; i < conf->geo.raid_disks; i++) {
4155 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4156 		if (!rdev || test_bit(Faulty, &rdev->flags))
4157 			degraded2++;
4158 		else if (!test_bit(In_sync, &rdev->flags)) {
4159 			/* If reshape is increasing the number of devices,
4160 			 * this section has already been recovered, so
4161 			 * it doesn't contribute to degraded.
4162 			 * else it does.
4163 			 */
4164 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4165 				degraded2++;
4166 		}
4167 	}
4168 	rcu_read_unlock();
4169 	if (degraded2 > degraded)
4170 		return degraded2;
4171 	return degraded;
4172 }
4173 
4174 static int raid10_start_reshape(struct mddev *mddev)
4175 {
4176 	/* A 'reshape' has been requested. This commits
4177 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4178 	 * This also checks if there are enough spares and adds them
4179 	 * to the array.
4180 	 * We currently require enough spares to make the final
4181 	 * array non-degraded.  We also require that the difference
4182 	 * between old and new data_offset - on each device - is
4183 	 * enough that we never risk over-writing.
4184 	 */
4185 
4186 	unsigned long before_length, after_length;
4187 	sector_t min_offset_diff = 0;
4188 	int first = 1;
4189 	struct geom new;
4190 	struct r10conf *conf = mddev->private;
4191 	struct md_rdev *rdev;
4192 	int spares = 0;
4193 	int ret;
4194 
4195 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4196 		return -EBUSY;
4197 
4198 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4199 		return -EINVAL;
4200 
4201 	before_length = ((1 << conf->prev.chunk_shift) *
4202 			 conf->prev.far_copies);
4203 	after_length = ((1 << conf->geo.chunk_shift) *
4204 			conf->geo.far_copies);
4205 
4206 	rdev_for_each(rdev, mddev) {
4207 		if (!test_bit(In_sync, &rdev->flags)
4208 		    && !test_bit(Faulty, &rdev->flags))
4209 			spares++;
4210 		if (rdev->raid_disk >= 0) {
4211 			long long diff = (rdev->new_data_offset
4212 					  - rdev->data_offset);
4213 			if (!mddev->reshape_backwards)
4214 				diff = -diff;
4215 			if (diff < 0)
4216 				diff = 0;
4217 			if (first || diff < min_offset_diff)
4218 				min_offset_diff = diff;
4219 			first = 0;
4220 		}
4221 	}
4222 
4223 	if (max(before_length, after_length) > min_offset_diff)
4224 		return -EINVAL;
4225 
4226 	if (spares < mddev->delta_disks)
4227 		return -EINVAL;
4228 
4229 	conf->offset_diff = min_offset_diff;
4230 	spin_lock_irq(&conf->device_lock);
4231 	if (conf->mirrors_new) {
4232 		memcpy(conf->mirrors_new, conf->mirrors,
4233 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4234 		smp_mb();
4235 		kfree(conf->mirrors_old);
4236 		conf->mirrors_old = conf->mirrors;
4237 		conf->mirrors = conf->mirrors_new;
4238 		conf->mirrors_new = NULL;
4239 	}
4240 	setup_geo(&conf->geo, mddev, geo_start);
4241 	smp_mb();
4242 	if (mddev->reshape_backwards) {
4243 		sector_t size = raid10_size(mddev, 0, 0);
4244 		if (size < mddev->array_sectors) {
4245 			spin_unlock_irq(&conf->device_lock);
4246 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4247 				mdname(mddev));
4248 			return -EINVAL;
4249 		}
4250 		mddev->resync_max_sectors = size;
4251 		conf->reshape_progress = size;
4252 	} else
4253 		conf->reshape_progress = 0;
4254 	conf->reshape_safe = conf->reshape_progress;
4255 	spin_unlock_irq(&conf->device_lock);
4256 
4257 	if (mddev->delta_disks && mddev->bitmap) {
4258 		struct mdp_superblock_1 *sb = NULL;
4259 		sector_t oldsize, newsize;
4260 
4261 		oldsize = raid10_size(mddev, 0, 0);
4262 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4263 
4264 		if (!mddev_is_clustered(mddev)) {
4265 			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4266 			if (ret)
4267 				goto abort;
4268 			else
4269 				goto out;
4270 		}
4271 
4272 		rdev_for_each(rdev, mddev) {
4273 			if (rdev->raid_disk > -1 &&
4274 			    !test_bit(Faulty, &rdev->flags))
4275 				sb = page_address(rdev->sb_page);
4276 		}
4277 
4278 		/*
4279 		 * some node is already performing reshape, and no need to
4280 		 * call md_bitmap_resize again since it should be called when
4281 		 * receiving BITMAP_RESIZE msg
4282 		 */
4283 		if ((sb && (le32_to_cpu(sb->feature_map) &
4284 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4285 			goto out;
4286 
4287 		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4288 		if (ret)
4289 			goto abort;
4290 
4291 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4292 		if (ret) {
4293 			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4294 			goto abort;
4295 		}
4296 	}
4297 out:
4298 	if (mddev->delta_disks > 0) {
4299 		rdev_for_each(rdev, mddev)
4300 			if (rdev->raid_disk < 0 &&
4301 			    !test_bit(Faulty, &rdev->flags)) {
4302 				if (raid10_add_disk(mddev, rdev) == 0) {
4303 					if (rdev->raid_disk >=
4304 					    conf->prev.raid_disks)
4305 						set_bit(In_sync, &rdev->flags);
4306 					else
4307 						rdev->recovery_offset = 0;
4308 
4309 					if (sysfs_link_rdev(mddev, rdev))
4310 						/* Failure here  is OK */;
4311 				}
4312 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4313 				   && !test_bit(Faulty, &rdev->flags)) {
4314 				/* This is a spare that was manually added */
4315 				set_bit(In_sync, &rdev->flags);
4316 			}
4317 	}
4318 	/* When a reshape changes the number of devices,
4319 	 * ->degraded is measured against the larger of the
4320 	 * pre and  post numbers.
4321 	 */
4322 	spin_lock_irq(&conf->device_lock);
4323 	mddev->degraded = calc_degraded(conf);
4324 	spin_unlock_irq(&conf->device_lock);
4325 	mddev->raid_disks = conf->geo.raid_disks;
4326 	mddev->reshape_position = conf->reshape_progress;
4327 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4328 
4329 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4330 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4331 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4332 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4333 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4334 
4335 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4336 						"reshape");
4337 	if (!mddev->sync_thread) {
4338 		ret = -EAGAIN;
4339 		goto abort;
4340 	}
4341 	conf->reshape_checkpoint = jiffies;
4342 	md_wakeup_thread(mddev->sync_thread);
4343 	md_new_event(mddev);
4344 	return 0;
4345 
4346 abort:
4347 	mddev->recovery = 0;
4348 	spin_lock_irq(&conf->device_lock);
4349 	conf->geo = conf->prev;
4350 	mddev->raid_disks = conf->geo.raid_disks;
4351 	rdev_for_each(rdev, mddev)
4352 		rdev->new_data_offset = rdev->data_offset;
4353 	smp_wmb();
4354 	conf->reshape_progress = MaxSector;
4355 	conf->reshape_safe = MaxSector;
4356 	mddev->reshape_position = MaxSector;
4357 	spin_unlock_irq(&conf->device_lock);
4358 	return ret;
4359 }
4360 
4361 /* Calculate the last device-address that could contain
4362  * any block from the chunk that includes the array-address 's'
4363  * and report the next address.
4364  * i.e. the address returned will be chunk-aligned and after
4365  * any data that is in the chunk containing 's'.
4366  */
4367 static sector_t last_dev_address(sector_t s, struct geom *geo)
4368 {
4369 	s = (s | geo->chunk_mask) + 1;
4370 	s >>= geo->chunk_shift;
4371 	s *= geo->near_copies;
4372 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4373 	s *= geo->far_copies;
4374 	s <<= geo->chunk_shift;
4375 	return s;
4376 }
4377 
4378 /* Calculate the first device-address that could contain
4379  * any block from the chunk that includes the array-address 's'.
4380  * This too will be the start of a chunk
4381  */
4382 static sector_t first_dev_address(sector_t s, struct geom *geo)
4383 {
4384 	s >>= geo->chunk_shift;
4385 	s *= geo->near_copies;
4386 	sector_div(s, geo->raid_disks);
4387 	s *= geo->far_copies;
4388 	s <<= geo->chunk_shift;
4389 	return s;
4390 }
4391 
4392 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4393 				int *skipped)
4394 {
4395 	/* We simply copy at most one chunk (smallest of old and new)
4396 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4397 	 * or we hit a bad block or something.
4398 	 * This might mean we pause for normal IO in the middle of
4399 	 * a chunk, but that is not a problem as mddev->reshape_position
4400 	 * can record any location.
4401 	 *
4402 	 * If we will want to write to a location that isn't
4403 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4404 	 * we need to flush all reshape requests and update the metadata.
4405 	 *
4406 	 * When reshaping forwards (e.g. to more devices), we interpret
4407 	 * 'safe' as the earliest block which might not have been copied
4408 	 * down yet.  We divide this by previous stripe size and multiply
4409 	 * by previous stripe length to get lowest device offset that we
4410 	 * cannot write to yet.
4411 	 * We interpret 'sector_nr' as an address that we want to write to.
4412 	 * From this we use last_device_address() to find where we might
4413 	 * write to, and first_device_address on the  'safe' position.
4414 	 * If this 'next' write position is after the 'safe' position,
4415 	 * we must update the metadata to increase the 'safe' position.
4416 	 *
4417 	 * When reshaping backwards, we round in the opposite direction
4418 	 * and perform the reverse test:  next write position must not be
4419 	 * less than current safe position.
4420 	 *
4421 	 * In all this the minimum difference in data offsets
4422 	 * (conf->offset_diff - always positive) allows a bit of slack,
4423 	 * so next can be after 'safe', but not by more than offset_diff
4424 	 *
4425 	 * We need to prepare all the bios here before we start any IO
4426 	 * to ensure the size we choose is acceptable to all devices.
4427 	 * The means one for each copy for write-out and an extra one for
4428 	 * read-in.
4429 	 * We store the read-in bio in ->master_bio and the others in
4430 	 * ->devs[x].bio and ->devs[x].repl_bio.
4431 	 */
4432 	struct r10conf *conf = mddev->private;
4433 	struct r10bio *r10_bio;
4434 	sector_t next, safe, last;
4435 	int max_sectors;
4436 	int nr_sectors;
4437 	int s;
4438 	struct md_rdev *rdev;
4439 	int need_flush = 0;
4440 	struct bio *blist;
4441 	struct bio *bio, *read_bio;
4442 	int sectors_done = 0;
4443 	struct page **pages;
4444 
4445 	if (sector_nr == 0) {
4446 		/* If restarting in the middle, skip the initial sectors */
4447 		if (mddev->reshape_backwards &&
4448 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4449 			sector_nr = (raid10_size(mddev, 0, 0)
4450 				     - conf->reshape_progress);
4451 		} else if (!mddev->reshape_backwards &&
4452 			   conf->reshape_progress > 0)
4453 			sector_nr = conf->reshape_progress;
4454 		if (sector_nr) {
4455 			mddev->curr_resync_completed = sector_nr;
4456 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4457 			*skipped = 1;
4458 			return sector_nr;
4459 		}
4460 	}
4461 
4462 	/* We don't use sector_nr to track where we are up to
4463 	 * as that doesn't work well for ->reshape_backwards.
4464 	 * So just use ->reshape_progress.
4465 	 */
4466 	if (mddev->reshape_backwards) {
4467 		/* 'next' is the earliest device address that we might
4468 		 * write to for this chunk in the new layout
4469 		 */
4470 		next = first_dev_address(conf->reshape_progress - 1,
4471 					 &conf->geo);
4472 
4473 		/* 'safe' is the last device address that we might read from
4474 		 * in the old layout after a restart
4475 		 */
4476 		safe = last_dev_address(conf->reshape_safe - 1,
4477 					&conf->prev);
4478 
4479 		if (next + conf->offset_diff < safe)
4480 			need_flush = 1;
4481 
4482 		last = conf->reshape_progress - 1;
4483 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4484 					       & conf->prev.chunk_mask);
4485 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4486 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4487 	} else {
4488 		/* 'next' is after the last device address that we
4489 		 * might write to for this chunk in the new layout
4490 		 */
4491 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4492 
4493 		/* 'safe' is the earliest device address that we might
4494 		 * read from in the old layout after a restart
4495 		 */
4496 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4497 
4498 		/* Need to update metadata if 'next' might be beyond 'safe'
4499 		 * as that would possibly corrupt data
4500 		 */
4501 		if (next > safe + conf->offset_diff)
4502 			need_flush = 1;
4503 
4504 		sector_nr = conf->reshape_progress;
4505 		last  = sector_nr | (conf->geo.chunk_mask
4506 				     & conf->prev.chunk_mask);
4507 
4508 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4509 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4510 	}
4511 
4512 	if (need_flush ||
4513 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4514 		/* Need to update reshape_position in metadata */
4515 		wait_barrier(conf);
4516 		mddev->reshape_position = conf->reshape_progress;
4517 		if (mddev->reshape_backwards)
4518 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4519 				- conf->reshape_progress;
4520 		else
4521 			mddev->curr_resync_completed = conf->reshape_progress;
4522 		conf->reshape_checkpoint = jiffies;
4523 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4524 		md_wakeup_thread(mddev->thread);
4525 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4526 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4527 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4528 			allow_barrier(conf);
4529 			return sectors_done;
4530 		}
4531 		conf->reshape_safe = mddev->reshape_position;
4532 		allow_barrier(conf);
4533 	}
4534 
4535 	raise_barrier(conf, 0);
4536 read_more:
4537 	/* Now schedule reads for blocks from sector_nr to last */
4538 	r10_bio = raid10_alloc_init_r10buf(conf);
4539 	r10_bio->state = 0;
4540 	raise_barrier(conf, 1);
4541 	atomic_set(&r10_bio->remaining, 0);
4542 	r10_bio->mddev = mddev;
4543 	r10_bio->sector = sector_nr;
4544 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4545 	r10_bio->sectors = last - sector_nr + 1;
4546 	rdev = read_balance(conf, r10_bio, &max_sectors);
4547 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4548 
4549 	if (!rdev) {
4550 		/* Cannot read from here, so need to record bad blocks
4551 		 * on all the target devices.
4552 		 */
4553 		// FIXME
4554 		mempool_free(r10_bio, &conf->r10buf_pool);
4555 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4556 		return sectors_done;
4557 	}
4558 
4559 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4560 
4561 	bio_set_dev(read_bio, rdev->bdev);
4562 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4563 			       + rdev->data_offset);
4564 	read_bio->bi_private = r10_bio;
4565 	read_bio->bi_end_io = end_reshape_read;
4566 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4567 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4568 	read_bio->bi_status = 0;
4569 	read_bio->bi_vcnt = 0;
4570 	read_bio->bi_iter.bi_size = 0;
4571 	r10_bio->master_bio = read_bio;
4572 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4573 
4574 	/*
4575 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4576 	 * write to the region to avoid conflict.
4577 	*/
4578 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4579 		struct mdp_superblock_1 *sb = NULL;
4580 		int sb_reshape_pos = 0;
4581 
4582 		conf->cluster_sync_low = sector_nr;
4583 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4584 		sb = page_address(rdev->sb_page);
4585 		if (sb) {
4586 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4587 			/*
4588 			 * Set cluster_sync_low again if next address for array
4589 			 * reshape is less than cluster_sync_low. Since we can't
4590 			 * update cluster_sync_low until it has finished reshape.
4591 			 */
4592 			if (sb_reshape_pos < conf->cluster_sync_low)
4593 				conf->cluster_sync_low = sb_reshape_pos;
4594 		}
4595 
4596 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4597 							  conf->cluster_sync_high);
4598 	}
4599 
4600 	/* Now find the locations in the new layout */
4601 	__raid10_find_phys(&conf->geo, r10_bio);
4602 
4603 	blist = read_bio;
4604 	read_bio->bi_next = NULL;
4605 
4606 	rcu_read_lock();
4607 	for (s = 0; s < conf->copies*2; s++) {
4608 		struct bio *b;
4609 		int d = r10_bio->devs[s/2].devnum;
4610 		struct md_rdev *rdev2;
4611 		if (s&1) {
4612 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4613 			b = r10_bio->devs[s/2].repl_bio;
4614 		} else {
4615 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4616 			b = r10_bio->devs[s/2].bio;
4617 		}
4618 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4619 			continue;
4620 
4621 		bio_set_dev(b, rdev2->bdev);
4622 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4623 			rdev2->new_data_offset;
4624 		b->bi_end_io = end_reshape_write;
4625 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4626 		b->bi_next = blist;
4627 		blist = b;
4628 	}
4629 
4630 	/* Now add as many pages as possible to all of these bios. */
4631 
4632 	nr_sectors = 0;
4633 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4634 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4635 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4636 		int len = (max_sectors - s) << 9;
4637 		if (len > PAGE_SIZE)
4638 			len = PAGE_SIZE;
4639 		for (bio = blist; bio ; bio = bio->bi_next) {
4640 			/*
4641 			 * won't fail because the vec table is big enough
4642 			 * to hold all these pages
4643 			 */
4644 			bio_add_page(bio, page, len, 0);
4645 		}
4646 		sector_nr += len >> 9;
4647 		nr_sectors += len >> 9;
4648 	}
4649 	rcu_read_unlock();
4650 	r10_bio->sectors = nr_sectors;
4651 
4652 	/* Now submit the read */
4653 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4654 	atomic_inc(&r10_bio->remaining);
4655 	read_bio->bi_next = NULL;
4656 	generic_make_request(read_bio);
4657 	sectors_done += nr_sectors;
4658 	if (sector_nr <= last)
4659 		goto read_more;
4660 
4661 	lower_barrier(conf);
4662 
4663 	/* Now that we have done the whole section we can
4664 	 * update reshape_progress
4665 	 */
4666 	if (mddev->reshape_backwards)
4667 		conf->reshape_progress -= sectors_done;
4668 	else
4669 		conf->reshape_progress += sectors_done;
4670 
4671 	return sectors_done;
4672 }
4673 
4674 static void end_reshape_request(struct r10bio *r10_bio);
4675 static int handle_reshape_read_error(struct mddev *mddev,
4676 				     struct r10bio *r10_bio);
4677 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4678 {
4679 	/* Reshape read completed.  Hopefully we have a block
4680 	 * to write out.
4681 	 * If we got a read error then we do sync 1-page reads from
4682 	 * elsewhere until we find the data - or give up.
4683 	 */
4684 	struct r10conf *conf = mddev->private;
4685 	int s;
4686 
4687 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4688 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4689 			/* Reshape has been aborted */
4690 			md_done_sync(mddev, r10_bio->sectors, 0);
4691 			return;
4692 		}
4693 
4694 	/* We definitely have the data in the pages, schedule the
4695 	 * writes.
4696 	 */
4697 	atomic_set(&r10_bio->remaining, 1);
4698 	for (s = 0; s < conf->copies*2; s++) {
4699 		struct bio *b;
4700 		int d = r10_bio->devs[s/2].devnum;
4701 		struct md_rdev *rdev;
4702 		rcu_read_lock();
4703 		if (s&1) {
4704 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4705 			b = r10_bio->devs[s/2].repl_bio;
4706 		} else {
4707 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4708 			b = r10_bio->devs[s/2].bio;
4709 		}
4710 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4711 			rcu_read_unlock();
4712 			continue;
4713 		}
4714 		atomic_inc(&rdev->nr_pending);
4715 		rcu_read_unlock();
4716 		md_sync_acct_bio(b, r10_bio->sectors);
4717 		atomic_inc(&r10_bio->remaining);
4718 		b->bi_next = NULL;
4719 		generic_make_request(b);
4720 	}
4721 	end_reshape_request(r10_bio);
4722 }
4723 
4724 static void end_reshape(struct r10conf *conf)
4725 {
4726 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4727 		return;
4728 
4729 	spin_lock_irq(&conf->device_lock);
4730 	conf->prev = conf->geo;
4731 	md_finish_reshape(conf->mddev);
4732 	smp_wmb();
4733 	conf->reshape_progress = MaxSector;
4734 	conf->reshape_safe = MaxSector;
4735 	spin_unlock_irq(&conf->device_lock);
4736 
4737 	/* read-ahead size must cover two whole stripes, which is
4738 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4739 	 */
4740 	if (conf->mddev->queue) {
4741 		int stripe = conf->geo.raid_disks *
4742 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4743 		stripe /= conf->geo.near_copies;
4744 		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4745 			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4746 	}
4747 	conf->fullsync = 0;
4748 }
4749 
4750 static void raid10_update_reshape_pos(struct mddev *mddev)
4751 {
4752 	struct r10conf *conf = mddev->private;
4753 	sector_t lo, hi;
4754 
4755 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4756 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4757 	    || mddev->reshape_position == MaxSector)
4758 		conf->reshape_progress = mddev->reshape_position;
4759 	else
4760 		WARN_ON_ONCE(1);
4761 }
4762 
4763 static int handle_reshape_read_error(struct mddev *mddev,
4764 				     struct r10bio *r10_bio)
4765 {
4766 	/* Use sync reads to get the blocks from somewhere else */
4767 	int sectors = r10_bio->sectors;
4768 	struct r10conf *conf = mddev->private;
4769 	struct r10bio *r10b;
4770 	int slot = 0;
4771 	int idx = 0;
4772 	struct page **pages;
4773 
4774 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4775 	if (!r10b) {
4776 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4777 		return -ENOMEM;
4778 	}
4779 
4780 	/* reshape IOs share pages from .devs[0].bio */
4781 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4782 
4783 	r10b->sector = r10_bio->sector;
4784 	__raid10_find_phys(&conf->prev, r10b);
4785 
4786 	while (sectors) {
4787 		int s = sectors;
4788 		int success = 0;
4789 		int first_slot = slot;
4790 
4791 		if (s > (PAGE_SIZE >> 9))
4792 			s = PAGE_SIZE >> 9;
4793 
4794 		rcu_read_lock();
4795 		while (!success) {
4796 			int d = r10b->devs[slot].devnum;
4797 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4798 			sector_t addr;
4799 			if (rdev == NULL ||
4800 			    test_bit(Faulty, &rdev->flags) ||
4801 			    !test_bit(In_sync, &rdev->flags))
4802 				goto failed;
4803 
4804 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4805 			atomic_inc(&rdev->nr_pending);
4806 			rcu_read_unlock();
4807 			success = sync_page_io(rdev,
4808 					       addr,
4809 					       s << 9,
4810 					       pages[idx],
4811 					       REQ_OP_READ, 0, false);
4812 			rdev_dec_pending(rdev, mddev);
4813 			rcu_read_lock();
4814 			if (success)
4815 				break;
4816 		failed:
4817 			slot++;
4818 			if (slot >= conf->copies)
4819 				slot = 0;
4820 			if (slot == first_slot)
4821 				break;
4822 		}
4823 		rcu_read_unlock();
4824 		if (!success) {
4825 			/* couldn't read this block, must give up */
4826 			set_bit(MD_RECOVERY_INTR,
4827 				&mddev->recovery);
4828 			kfree(r10b);
4829 			return -EIO;
4830 		}
4831 		sectors -= s;
4832 		idx++;
4833 	}
4834 	kfree(r10b);
4835 	return 0;
4836 }
4837 
4838 static void end_reshape_write(struct bio *bio)
4839 {
4840 	struct r10bio *r10_bio = get_resync_r10bio(bio);
4841 	struct mddev *mddev = r10_bio->mddev;
4842 	struct r10conf *conf = mddev->private;
4843 	int d;
4844 	int slot;
4845 	int repl;
4846 	struct md_rdev *rdev = NULL;
4847 
4848 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4849 	if (repl)
4850 		rdev = conf->mirrors[d].replacement;
4851 	if (!rdev) {
4852 		smp_mb();
4853 		rdev = conf->mirrors[d].rdev;
4854 	}
4855 
4856 	if (bio->bi_status) {
4857 		/* FIXME should record badblock */
4858 		md_error(mddev, rdev);
4859 	}
4860 
4861 	rdev_dec_pending(rdev, mddev);
4862 	end_reshape_request(r10_bio);
4863 }
4864 
4865 static void end_reshape_request(struct r10bio *r10_bio)
4866 {
4867 	if (!atomic_dec_and_test(&r10_bio->remaining))
4868 		return;
4869 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4870 	bio_put(r10_bio->master_bio);
4871 	put_buf(r10_bio);
4872 }
4873 
4874 static void raid10_finish_reshape(struct mddev *mddev)
4875 {
4876 	struct r10conf *conf = mddev->private;
4877 
4878 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4879 		return;
4880 
4881 	if (mddev->delta_disks > 0) {
4882 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4883 			mddev->recovery_cp = mddev->resync_max_sectors;
4884 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4885 		}
4886 		mddev->resync_max_sectors = mddev->array_sectors;
4887 	} else {
4888 		int d;
4889 		rcu_read_lock();
4890 		for (d = conf->geo.raid_disks ;
4891 		     d < conf->geo.raid_disks - mddev->delta_disks;
4892 		     d++) {
4893 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4894 			if (rdev)
4895 				clear_bit(In_sync, &rdev->flags);
4896 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4897 			if (rdev)
4898 				clear_bit(In_sync, &rdev->flags);
4899 		}
4900 		rcu_read_unlock();
4901 	}
4902 	mddev->layout = mddev->new_layout;
4903 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4904 	mddev->reshape_position = MaxSector;
4905 	mddev->delta_disks = 0;
4906 	mddev->reshape_backwards = 0;
4907 }
4908 
4909 static struct md_personality raid10_personality =
4910 {
4911 	.name		= "raid10",
4912 	.level		= 10,
4913 	.owner		= THIS_MODULE,
4914 	.make_request	= raid10_make_request,
4915 	.run		= raid10_run,
4916 	.free		= raid10_free,
4917 	.status		= raid10_status,
4918 	.error_handler	= raid10_error,
4919 	.hot_add_disk	= raid10_add_disk,
4920 	.hot_remove_disk= raid10_remove_disk,
4921 	.spare_active	= raid10_spare_active,
4922 	.sync_request	= raid10_sync_request,
4923 	.quiesce	= raid10_quiesce,
4924 	.size		= raid10_size,
4925 	.resize		= raid10_resize,
4926 	.takeover	= raid10_takeover,
4927 	.check_reshape	= raid10_check_reshape,
4928 	.start_reshape	= raid10_start_reshape,
4929 	.finish_reshape	= raid10_finish_reshape,
4930 	.update_reshape_pos = raid10_update_reshape_pos,
4931 	.congested	= raid10_congested,
4932 };
4933 
4934 static int __init raid_init(void)
4935 {
4936 	return register_md_personality(&raid10_personality);
4937 }
4938 
4939 static void raid_exit(void)
4940 {
4941 	unregister_md_personality(&raid10_personality);
4942 }
4943 
4944 module_init(raid_init);
4945 module_exit(raid_exit);
4946 MODULE_LICENSE("GPL");
4947 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4948 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4949 MODULE_ALIAS("md-raid10");
4950 MODULE_ALIAS("md-level-10");
4951 
4952 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4953