1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 #include "raid10.h" 23 #include "raid0.h" 24 #include "md-bitmap.h" 25 26 /* 27 * RAID10 provides a combination of RAID0 and RAID1 functionality. 28 * The layout of data is defined by 29 * chunk_size 30 * raid_disks 31 * near_copies (stored in low byte of layout) 32 * far_copies (stored in second byte of layout) 33 * far_offset (stored in bit 16 of layout ) 34 * use_far_sets (stored in bit 17 of layout ) 35 * use_far_sets_bugfixed (stored in bit 18 of layout ) 36 * 37 * The data to be stored is divided into chunks using chunksize. Each device 38 * is divided into far_copies sections. In each section, chunks are laid out 39 * in a style similar to raid0, but near_copies copies of each chunk is stored 40 * (each on a different drive). The starting device for each section is offset 41 * near_copies from the starting device of the previous section. Thus there 42 * are (near_copies * far_copies) of each chunk, and each is on a different 43 * drive. near_copies and far_copies must be at least one, and their product 44 * is at most raid_disks. 45 * 46 * If far_offset is true, then the far_copies are handled a bit differently. 47 * The copies are still in different stripes, but instead of being very far 48 * apart on disk, there are adjacent stripes. 49 * 50 * The far and offset algorithms are handled slightly differently if 51 * 'use_far_sets' is true. In this case, the array's devices are grouped into 52 * sets that are (near_copies * far_copies) in size. The far copied stripes 53 * are still shifted by 'near_copies' devices, but this shifting stays confined 54 * to the set rather than the entire array. This is done to improve the number 55 * of device combinations that can fail without causing the array to fail. 56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 57 * on a device): 58 * A B C D A B C D E 59 * ... ... 60 * D A B C E A B C D 61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 62 * [A B] [C D] [A B] [C D E] 63 * |...| |...| |...| | ... | 64 * [B A] [D C] [B A] [E C D] 65 */ 66 67 static void allow_barrier(struct r10conf *conf); 68 static void lower_barrier(struct r10conf *conf); 69 static int _enough(struct r10conf *conf, int previous, int ignore); 70 static int enough(struct r10conf *conf, int ignore); 71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 72 int *skipped); 73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 74 static void end_reshape_write(struct bio *bio); 75 static void end_reshape(struct r10conf *conf); 76 77 #define raid10_log(md, fmt, args...) \ 78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 79 80 #include "raid1-10.c" 81 82 /* 83 * for resync bio, r10bio pointer can be retrieved from the per-bio 84 * 'struct resync_pages'. 85 */ 86 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 87 { 88 return get_resync_pages(bio)->raid_bio; 89 } 90 91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 92 { 93 struct r10conf *conf = data; 94 int size = offsetof(struct r10bio, devs[conf->copies]); 95 96 /* allocate a r10bio with room for raid_disks entries in the 97 * bios array */ 98 return kzalloc(size, gfp_flags); 99 } 100 101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 102 /* amount of memory to reserve for resync requests */ 103 #define RESYNC_WINDOW (1024*1024) 104 /* maximum number of concurrent requests, memory permitting */ 105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 108 109 /* 110 * When performing a resync, we need to read and compare, so 111 * we need as many pages are there are copies. 112 * When performing a recovery, we need 2 bios, one for read, 113 * one for write (we recover only one drive per r10buf) 114 * 115 */ 116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 117 { 118 struct r10conf *conf = data; 119 struct r10bio *r10_bio; 120 struct bio *bio; 121 int j; 122 int nalloc, nalloc_rp; 123 struct resync_pages *rps; 124 125 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 126 if (!r10_bio) 127 return NULL; 128 129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 131 nalloc = conf->copies; /* resync */ 132 else 133 nalloc = 2; /* recovery */ 134 135 /* allocate once for all bios */ 136 if (!conf->have_replacement) 137 nalloc_rp = nalloc; 138 else 139 nalloc_rp = nalloc * 2; 140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 141 if (!rps) 142 goto out_free_r10bio; 143 144 /* 145 * Allocate bios. 146 */ 147 for (j = nalloc ; j-- ; ) { 148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 149 if (!bio) 150 goto out_free_bio; 151 r10_bio->devs[j].bio = bio; 152 if (!conf->have_replacement) 153 continue; 154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 155 if (!bio) 156 goto out_free_bio; 157 r10_bio->devs[j].repl_bio = bio; 158 } 159 /* 160 * Allocate RESYNC_PAGES data pages and attach them 161 * where needed. 162 */ 163 for (j = 0; j < nalloc; j++) { 164 struct bio *rbio = r10_bio->devs[j].repl_bio; 165 struct resync_pages *rp, *rp_repl; 166 167 rp = &rps[j]; 168 if (rbio) 169 rp_repl = &rps[nalloc + j]; 170 171 bio = r10_bio->devs[j].bio; 172 173 if (!j || test_bit(MD_RECOVERY_SYNC, 174 &conf->mddev->recovery)) { 175 if (resync_alloc_pages(rp, gfp_flags)) 176 goto out_free_pages; 177 } else { 178 memcpy(rp, &rps[0], sizeof(*rp)); 179 resync_get_all_pages(rp); 180 } 181 182 rp->raid_bio = r10_bio; 183 bio->bi_private = rp; 184 if (rbio) { 185 memcpy(rp_repl, rp, sizeof(*rp)); 186 rbio->bi_private = rp_repl; 187 } 188 } 189 190 return r10_bio; 191 192 out_free_pages: 193 while (--j >= 0) 194 resync_free_pages(&rps[j * 2]); 195 196 j = 0; 197 out_free_bio: 198 for ( ; j < nalloc; j++) { 199 if (r10_bio->devs[j].bio) 200 bio_put(r10_bio->devs[j].bio); 201 if (r10_bio->devs[j].repl_bio) 202 bio_put(r10_bio->devs[j].repl_bio); 203 } 204 kfree(rps); 205 out_free_r10bio: 206 rbio_pool_free(r10_bio, conf); 207 return NULL; 208 } 209 210 static void r10buf_pool_free(void *__r10_bio, void *data) 211 { 212 struct r10conf *conf = data; 213 struct r10bio *r10bio = __r10_bio; 214 int j; 215 struct resync_pages *rp = NULL; 216 217 for (j = conf->copies; j--; ) { 218 struct bio *bio = r10bio->devs[j].bio; 219 220 if (bio) { 221 rp = get_resync_pages(bio); 222 resync_free_pages(rp); 223 bio_put(bio); 224 } 225 226 bio = r10bio->devs[j].repl_bio; 227 if (bio) 228 bio_put(bio); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r10bio, conf); 235 } 236 237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->copies; i++) { 242 struct bio **bio = & r10_bio->devs[i].bio; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 bio = &r10_bio->devs[i].repl_bio; 247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 } 251 } 252 253 static void free_r10bio(struct r10bio *r10_bio) 254 { 255 struct r10conf *conf = r10_bio->mddev->private; 256 257 put_all_bios(conf, r10_bio); 258 mempool_free(r10_bio, &conf->r10bio_pool); 259 } 260 261 static void put_buf(struct r10bio *r10_bio) 262 { 263 struct r10conf *conf = r10_bio->mddev->private; 264 265 mempool_free(r10_bio, &conf->r10buf_pool); 266 267 lower_barrier(conf); 268 } 269 270 static void reschedule_retry(struct r10bio *r10_bio) 271 { 272 unsigned long flags; 273 struct mddev *mddev = r10_bio->mddev; 274 struct r10conf *conf = mddev->private; 275 276 spin_lock_irqsave(&conf->device_lock, flags); 277 list_add(&r10_bio->retry_list, &conf->retry_list); 278 conf->nr_queued ++; 279 spin_unlock_irqrestore(&conf->device_lock, flags); 280 281 /* wake up frozen array... */ 282 wake_up(&conf->wait_barrier); 283 284 md_wakeup_thread(mddev->thread); 285 } 286 287 /* 288 * raid_end_bio_io() is called when we have finished servicing a mirrored 289 * operation and are ready to return a success/failure code to the buffer 290 * cache layer. 291 */ 292 static void raid_end_bio_io(struct r10bio *r10_bio) 293 { 294 struct bio *bio = r10_bio->master_bio; 295 struct r10conf *conf = r10_bio->mddev->private; 296 297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 298 bio->bi_status = BLK_STS_IOERR; 299 300 bio_endio(bio); 301 /* 302 * Wake up any possible resync thread that waits for the device 303 * to go idle. 304 */ 305 allow_barrier(conf); 306 307 free_r10bio(r10_bio); 308 } 309 310 /* 311 * Update disk head position estimator based on IRQ completion info. 312 */ 313 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 314 { 315 struct r10conf *conf = r10_bio->mddev->private; 316 317 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 318 r10_bio->devs[slot].addr + (r10_bio->sectors); 319 } 320 321 /* 322 * Find the disk number which triggered given bio 323 */ 324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 325 struct bio *bio, int *slotp, int *replp) 326 { 327 int slot; 328 int repl = 0; 329 330 for (slot = 0; slot < conf->copies; slot++) { 331 if (r10_bio->devs[slot].bio == bio) 332 break; 333 if (r10_bio->devs[slot].repl_bio == bio) { 334 repl = 1; 335 break; 336 } 337 } 338 339 BUG_ON(slot == conf->copies); 340 update_head_pos(slot, r10_bio); 341 342 if (slotp) 343 *slotp = slot; 344 if (replp) 345 *replp = repl; 346 return r10_bio->devs[slot].devnum; 347 } 348 349 static void raid10_end_read_request(struct bio *bio) 350 { 351 int uptodate = !bio->bi_status; 352 struct r10bio *r10_bio = bio->bi_private; 353 int slot; 354 struct md_rdev *rdev; 355 struct r10conf *conf = r10_bio->mddev->private; 356 357 slot = r10_bio->read_slot; 358 rdev = r10_bio->devs[slot].rdev; 359 /* 360 * this branch is our 'one mirror IO has finished' event handler: 361 */ 362 update_head_pos(slot, r10_bio); 363 364 if (uptodate) { 365 /* 366 * Set R10BIO_Uptodate in our master bio, so that 367 * we will return a good error code to the higher 368 * levels even if IO on some other mirrored buffer fails. 369 * 370 * The 'master' represents the composite IO operation to 371 * user-side. So if something waits for IO, then it will 372 * wait for the 'master' bio. 373 */ 374 set_bit(R10BIO_Uptodate, &r10_bio->state); 375 } else { 376 /* If all other devices that store this block have 377 * failed, we want to return the error upwards rather 378 * than fail the last device. Here we redefine 379 * "uptodate" to mean "Don't want to retry" 380 */ 381 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 382 rdev->raid_disk)) 383 uptodate = 1; 384 } 385 if (uptodate) { 386 raid_end_bio_io(r10_bio); 387 rdev_dec_pending(rdev, conf->mddev); 388 } else { 389 /* 390 * oops, read error - keep the refcount on the rdev 391 */ 392 char b[BDEVNAME_SIZE]; 393 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 394 mdname(conf->mddev), 395 bdevname(rdev->bdev, b), 396 (unsigned long long)r10_bio->sector); 397 set_bit(R10BIO_ReadError, &r10_bio->state); 398 reschedule_retry(r10_bio); 399 } 400 } 401 402 static void close_write(struct r10bio *r10_bio) 403 { 404 /* clear the bitmap if all writes complete successfully */ 405 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 406 r10_bio->sectors, 407 !test_bit(R10BIO_Degraded, &r10_bio->state), 408 0); 409 md_write_end(r10_bio->mddev); 410 } 411 412 static void one_write_done(struct r10bio *r10_bio) 413 { 414 if (atomic_dec_and_test(&r10_bio->remaining)) { 415 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 416 reschedule_retry(r10_bio); 417 else { 418 close_write(r10_bio); 419 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 420 reschedule_retry(r10_bio); 421 else 422 raid_end_bio_io(r10_bio); 423 } 424 } 425 } 426 427 static void raid10_end_write_request(struct bio *bio) 428 { 429 struct r10bio *r10_bio = bio->bi_private; 430 int dev; 431 int dec_rdev = 1; 432 struct r10conf *conf = r10_bio->mddev->private; 433 int slot, repl; 434 struct md_rdev *rdev = NULL; 435 struct bio *to_put = NULL; 436 bool discard_error; 437 438 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 439 440 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 441 442 if (repl) 443 rdev = conf->mirrors[dev].replacement; 444 if (!rdev) { 445 smp_rmb(); 446 repl = 0; 447 rdev = conf->mirrors[dev].rdev; 448 } 449 /* 450 * this branch is our 'one mirror IO has finished' event handler: 451 */ 452 if (bio->bi_status && !discard_error) { 453 if (repl) 454 /* Never record new bad blocks to replacement, 455 * just fail it. 456 */ 457 md_error(rdev->mddev, rdev); 458 else { 459 set_bit(WriteErrorSeen, &rdev->flags); 460 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 461 set_bit(MD_RECOVERY_NEEDED, 462 &rdev->mddev->recovery); 463 464 dec_rdev = 0; 465 if (test_bit(FailFast, &rdev->flags) && 466 (bio->bi_opf & MD_FAILFAST)) { 467 md_error(rdev->mddev, rdev); 468 if (!test_bit(Faulty, &rdev->flags)) 469 /* This is the only remaining device, 470 * We need to retry the write without 471 * FailFast 472 */ 473 set_bit(R10BIO_WriteError, &r10_bio->state); 474 else { 475 r10_bio->devs[slot].bio = NULL; 476 to_put = bio; 477 dec_rdev = 1; 478 } 479 } else 480 set_bit(R10BIO_WriteError, &r10_bio->state); 481 } 482 } else { 483 /* 484 * Set R10BIO_Uptodate in our master bio, so that 485 * we will return a good error code for to the higher 486 * levels even if IO on some other mirrored buffer fails. 487 * 488 * The 'master' represents the composite IO operation to 489 * user-side. So if something waits for IO, then it will 490 * wait for the 'master' bio. 491 */ 492 sector_t first_bad; 493 int bad_sectors; 494 495 /* 496 * Do not set R10BIO_Uptodate if the current device is 497 * rebuilding or Faulty. This is because we cannot use 498 * such device for properly reading the data back (we could 499 * potentially use it, if the current write would have felt 500 * before rdev->recovery_offset, but for simplicity we don't 501 * check this here. 502 */ 503 if (test_bit(In_sync, &rdev->flags) && 504 !test_bit(Faulty, &rdev->flags)) 505 set_bit(R10BIO_Uptodate, &r10_bio->state); 506 507 /* Maybe we can clear some bad blocks. */ 508 if (is_badblock(rdev, 509 r10_bio->devs[slot].addr, 510 r10_bio->sectors, 511 &first_bad, &bad_sectors) && !discard_error) { 512 bio_put(bio); 513 if (repl) 514 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 515 else 516 r10_bio->devs[slot].bio = IO_MADE_GOOD; 517 dec_rdev = 0; 518 set_bit(R10BIO_MadeGood, &r10_bio->state); 519 } 520 } 521 522 /* 523 * 524 * Let's see if all mirrored write operations have finished 525 * already. 526 */ 527 one_write_done(r10_bio); 528 if (dec_rdev) 529 rdev_dec_pending(rdev, conf->mddev); 530 if (to_put) 531 bio_put(to_put); 532 } 533 534 /* 535 * RAID10 layout manager 536 * As well as the chunksize and raid_disks count, there are two 537 * parameters: near_copies and far_copies. 538 * near_copies * far_copies must be <= raid_disks. 539 * Normally one of these will be 1. 540 * If both are 1, we get raid0. 541 * If near_copies == raid_disks, we get raid1. 542 * 543 * Chunks are laid out in raid0 style with near_copies copies of the 544 * first chunk, followed by near_copies copies of the next chunk and 545 * so on. 546 * If far_copies > 1, then after 1/far_copies of the array has been assigned 547 * as described above, we start again with a device offset of near_copies. 548 * So we effectively have another copy of the whole array further down all 549 * the drives, but with blocks on different drives. 550 * With this layout, and block is never stored twice on the one device. 551 * 552 * raid10_find_phys finds the sector offset of a given virtual sector 553 * on each device that it is on. 554 * 555 * raid10_find_virt does the reverse mapping, from a device and a 556 * sector offset to a virtual address 557 */ 558 559 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 560 { 561 int n,f; 562 sector_t sector; 563 sector_t chunk; 564 sector_t stripe; 565 int dev; 566 int slot = 0; 567 int last_far_set_start, last_far_set_size; 568 569 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 570 last_far_set_start *= geo->far_set_size; 571 572 last_far_set_size = geo->far_set_size; 573 last_far_set_size += (geo->raid_disks % geo->far_set_size); 574 575 /* now calculate first sector/dev */ 576 chunk = r10bio->sector >> geo->chunk_shift; 577 sector = r10bio->sector & geo->chunk_mask; 578 579 chunk *= geo->near_copies; 580 stripe = chunk; 581 dev = sector_div(stripe, geo->raid_disks); 582 if (geo->far_offset) 583 stripe *= geo->far_copies; 584 585 sector += stripe << geo->chunk_shift; 586 587 /* and calculate all the others */ 588 for (n = 0; n < geo->near_copies; n++) { 589 int d = dev; 590 int set; 591 sector_t s = sector; 592 r10bio->devs[slot].devnum = d; 593 r10bio->devs[slot].addr = s; 594 slot++; 595 596 for (f = 1; f < geo->far_copies; f++) { 597 set = d / geo->far_set_size; 598 d += geo->near_copies; 599 600 if ((geo->raid_disks % geo->far_set_size) && 601 (d > last_far_set_start)) { 602 d -= last_far_set_start; 603 d %= last_far_set_size; 604 d += last_far_set_start; 605 } else { 606 d %= geo->far_set_size; 607 d += geo->far_set_size * set; 608 } 609 s += geo->stride; 610 r10bio->devs[slot].devnum = d; 611 r10bio->devs[slot].addr = s; 612 slot++; 613 } 614 dev++; 615 if (dev >= geo->raid_disks) { 616 dev = 0; 617 sector += (geo->chunk_mask + 1); 618 } 619 } 620 } 621 622 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 623 { 624 struct geom *geo = &conf->geo; 625 626 if (conf->reshape_progress != MaxSector && 627 ((r10bio->sector >= conf->reshape_progress) != 628 conf->mddev->reshape_backwards)) { 629 set_bit(R10BIO_Previous, &r10bio->state); 630 geo = &conf->prev; 631 } else 632 clear_bit(R10BIO_Previous, &r10bio->state); 633 634 __raid10_find_phys(geo, r10bio); 635 } 636 637 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 638 { 639 sector_t offset, chunk, vchunk; 640 /* Never use conf->prev as this is only called during resync 641 * or recovery, so reshape isn't happening 642 */ 643 struct geom *geo = &conf->geo; 644 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 645 int far_set_size = geo->far_set_size; 646 int last_far_set_start; 647 648 if (geo->raid_disks % geo->far_set_size) { 649 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 650 last_far_set_start *= geo->far_set_size; 651 652 if (dev >= last_far_set_start) { 653 far_set_size = geo->far_set_size; 654 far_set_size += (geo->raid_disks % geo->far_set_size); 655 far_set_start = last_far_set_start; 656 } 657 } 658 659 offset = sector & geo->chunk_mask; 660 if (geo->far_offset) { 661 int fc; 662 chunk = sector >> geo->chunk_shift; 663 fc = sector_div(chunk, geo->far_copies); 664 dev -= fc * geo->near_copies; 665 if (dev < far_set_start) 666 dev += far_set_size; 667 } else { 668 while (sector >= geo->stride) { 669 sector -= geo->stride; 670 if (dev < (geo->near_copies + far_set_start)) 671 dev += far_set_size - geo->near_copies; 672 else 673 dev -= geo->near_copies; 674 } 675 chunk = sector >> geo->chunk_shift; 676 } 677 vchunk = chunk * geo->raid_disks + dev; 678 sector_div(vchunk, geo->near_copies); 679 return (vchunk << geo->chunk_shift) + offset; 680 } 681 682 /* 683 * This routine returns the disk from which the requested read should 684 * be done. There is a per-array 'next expected sequential IO' sector 685 * number - if this matches on the next IO then we use the last disk. 686 * There is also a per-disk 'last know head position' sector that is 687 * maintained from IRQ contexts, both the normal and the resync IO 688 * completion handlers update this position correctly. If there is no 689 * perfect sequential match then we pick the disk whose head is closest. 690 * 691 * If there are 2 mirrors in the same 2 devices, performance degrades 692 * because position is mirror, not device based. 693 * 694 * The rdev for the device selected will have nr_pending incremented. 695 */ 696 697 /* 698 * FIXME: possibly should rethink readbalancing and do it differently 699 * depending on near_copies / far_copies geometry. 700 */ 701 static struct md_rdev *read_balance(struct r10conf *conf, 702 struct r10bio *r10_bio, 703 int *max_sectors) 704 { 705 const sector_t this_sector = r10_bio->sector; 706 int disk, slot; 707 int sectors = r10_bio->sectors; 708 int best_good_sectors; 709 sector_t new_distance, best_dist; 710 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 711 int do_balance; 712 int best_dist_slot, best_pending_slot; 713 bool has_nonrot_disk = false; 714 unsigned int min_pending; 715 struct geom *geo = &conf->geo; 716 717 raid10_find_phys(conf, r10_bio); 718 rcu_read_lock(); 719 best_dist_slot = -1; 720 min_pending = UINT_MAX; 721 best_dist_rdev = NULL; 722 best_pending_rdev = NULL; 723 best_dist = MaxSector; 724 best_good_sectors = 0; 725 do_balance = 1; 726 clear_bit(R10BIO_FailFast, &r10_bio->state); 727 /* 728 * Check if we can balance. We can balance on the whole 729 * device if no resync is going on (recovery is ok), or below 730 * the resync window. We take the first readable disk when 731 * above the resync window. 732 */ 733 if ((conf->mddev->recovery_cp < MaxSector 734 && (this_sector + sectors >= conf->next_resync)) || 735 (mddev_is_clustered(conf->mddev) && 736 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 737 this_sector + sectors))) 738 do_balance = 0; 739 740 for (slot = 0; slot < conf->copies ; slot++) { 741 sector_t first_bad; 742 int bad_sectors; 743 sector_t dev_sector; 744 unsigned int pending; 745 bool nonrot; 746 747 if (r10_bio->devs[slot].bio == IO_BLOCKED) 748 continue; 749 disk = r10_bio->devs[slot].devnum; 750 rdev = rcu_dereference(conf->mirrors[disk].replacement); 751 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 752 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 753 rdev = rcu_dereference(conf->mirrors[disk].rdev); 754 if (rdev == NULL || 755 test_bit(Faulty, &rdev->flags)) 756 continue; 757 if (!test_bit(In_sync, &rdev->flags) && 758 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 759 continue; 760 761 dev_sector = r10_bio->devs[slot].addr; 762 if (is_badblock(rdev, dev_sector, sectors, 763 &first_bad, &bad_sectors)) { 764 if (best_dist < MaxSector) 765 /* Already have a better slot */ 766 continue; 767 if (first_bad <= dev_sector) { 768 /* Cannot read here. If this is the 769 * 'primary' device, then we must not read 770 * beyond 'bad_sectors' from another device. 771 */ 772 bad_sectors -= (dev_sector - first_bad); 773 if (!do_balance && sectors > bad_sectors) 774 sectors = bad_sectors; 775 if (best_good_sectors > sectors) 776 best_good_sectors = sectors; 777 } else { 778 sector_t good_sectors = 779 first_bad - dev_sector; 780 if (good_sectors > best_good_sectors) { 781 best_good_sectors = good_sectors; 782 best_dist_slot = slot; 783 best_dist_rdev = rdev; 784 } 785 if (!do_balance) 786 /* Must read from here */ 787 break; 788 } 789 continue; 790 } else 791 best_good_sectors = sectors; 792 793 if (!do_balance) 794 break; 795 796 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 797 has_nonrot_disk |= nonrot; 798 pending = atomic_read(&rdev->nr_pending); 799 if (min_pending > pending && nonrot) { 800 min_pending = pending; 801 best_pending_slot = slot; 802 best_pending_rdev = rdev; 803 } 804 805 if (best_dist_slot >= 0) 806 /* At least 2 disks to choose from so failfast is OK */ 807 set_bit(R10BIO_FailFast, &r10_bio->state); 808 /* This optimisation is debatable, and completely destroys 809 * sequential read speed for 'far copies' arrays. So only 810 * keep it for 'near' arrays, and review those later. 811 */ 812 if (geo->near_copies > 1 && !pending) 813 new_distance = 0; 814 815 /* for far > 1 always use the lowest address */ 816 else if (geo->far_copies > 1) 817 new_distance = r10_bio->devs[slot].addr; 818 else 819 new_distance = abs(r10_bio->devs[slot].addr - 820 conf->mirrors[disk].head_position); 821 822 if (new_distance < best_dist) { 823 best_dist = new_distance; 824 best_dist_slot = slot; 825 best_dist_rdev = rdev; 826 } 827 } 828 if (slot >= conf->copies) { 829 if (has_nonrot_disk) { 830 slot = best_pending_slot; 831 rdev = best_pending_rdev; 832 } else { 833 slot = best_dist_slot; 834 rdev = best_dist_rdev; 835 } 836 } 837 838 if (slot >= 0) { 839 atomic_inc(&rdev->nr_pending); 840 r10_bio->read_slot = slot; 841 } else 842 rdev = NULL; 843 rcu_read_unlock(); 844 *max_sectors = best_good_sectors; 845 846 return rdev; 847 } 848 849 static int raid10_congested(struct mddev *mddev, int bits) 850 { 851 struct r10conf *conf = mddev->private; 852 int i, ret = 0; 853 854 if ((bits & (1 << WB_async_congested)) && 855 conf->pending_count >= max_queued_requests) 856 return 1; 857 858 rcu_read_lock(); 859 for (i = 0; 860 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 861 && ret == 0; 862 i++) { 863 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 864 if (rdev && !test_bit(Faulty, &rdev->flags)) { 865 struct request_queue *q = bdev_get_queue(rdev->bdev); 866 867 ret |= bdi_congested(q->backing_dev_info, bits); 868 } 869 } 870 rcu_read_unlock(); 871 return ret; 872 } 873 874 static void flush_pending_writes(struct r10conf *conf) 875 { 876 /* Any writes that have been queued but are awaiting 877 * bitmap updates get flushed here. 878 */ 879 spin_lock_irq(&conf->device_lock); 880 881 if (conf->pending_bio_list.head) { 882 struct blk_plug plug; 883 struct bio *bio; 884 885 bio = bio_list_get(&conf->pending_bio_list); 886 conf->pending_count = 0; 887 spin_unlock_irq(&conf->device_lock); 888 889 /* 890 * As this is called in a wait_event() loop (see freeze_array), 891 * current->state might be TASK_UNINTERRUPTIBLE which will 892 * cause a warning when we prepare to wait again. As it is 893 * rare that this path is taken, it is perfectly safe to force 894 * us to go around the wait_event() loop again, so the warning 895 * is a false-positive. Silence the warning by resetting 896 * thread state 897 */ 898 __set_current_state(TASK_RUNNING); 899 900 blk_start_plug(&plug); 901 /* flush any pending bitmap writes to disk 902 * before proceeding w/ I/O */ 903 md_bitmap_unplug(conf->mddev->bitmap); 904 wake_up(&conf->wait_barrier); 905 906 while (bio) { /* submit pending writes */ 907 struct bio *next = bio->bi_next; 908 struct md_rdev *rdev = (void*)bio->bi_disk; 909 bio->bi_next = NULL; 910 bio_set_dev(bio, rdev->bdev); 911 if (test_bit(Faulty, &rdev->flags)) { 912 bio_io_error(bio); 913 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 914 !blk_queue_discard(bio->bi_disk->queue))) 915 /* Just ignore it */ 916 bio_endio(bio); 917 else 918 generic_make_request(bio); 919 bio = next; 920 } 921 blk_finish_plug(&plug); 922 } else 923 spin_unlock_irq(&conf->device_lock); 924 } 925 926 /* Barriers.... 927 * Sometimes we need to suspend IO while we do something else, 928 * either some resync/recovery, or reconfigure the array. 929 * To do this we raise a 'barrier'. 930 * The 'barrier' is a counter that can be raised multiple times 931 * to count how many activities are happening which preclude 932 * normal IO. 933 * We can only raise the barrier if there is no pending IO. 934 * i.e. if nr_pending == 0. 935 * We choose only to raise the barrier if no-one is waiting for the 936 * barrier to go down. This means that as soon as an IO request 937 * is ready, no other operations which require a barrier will start 938 * until the IO request has had a chance. 939 * 940 * So: regular IO calls 'wait_barrier'. When that returns there 941 * is no backgroup IO happening, It must arrange to call 942 * allow_barrier when it has finished its IO. 943 * backgroup IO calls must call raise_barrier. Once that returns 944 * there is no normal IO happeing. It must arrange to call 945 * lower_barrier when the particular background IO completes. 946 */ 947 948 static void raise_barrier(struct r10conf *conf, int force) 949 { 950 BUG_ON(force && !conf->barrier); 951 spin_lock_irq(&conf->resync_lock); 952 953 /* Wait until no block IO is waiting (unless 'force') */ 954 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 955 conf->resync_lock); 956 957 /* block any new IO from starting */ 958 conf->barrier++; 959 960 /* Now wait for all pending IO to complete */ 961 wait_event_lock_irq(conf->wait_barrier, 962 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 963 conf->resync_lock); 964 965 spin_unlock_irq(&conf->resync_lock); 966 } 967 968 static void lower_barrier(struct r10conf *conf) 969 { 970 unsigned long flags; 971 spin_lock_irqsave(&conf->resync_lock, flags); 972 conf->barrier--; 973 spin_unlock_irqrestore(&conf->resync_lock, flags); 974 wake_up(&conf->wait_barrier); 975 } 976 977 static void wait_barrier(struct r10conf *conf) 978 { 979 spin_lock_irq(&conf->resync_lock); 980 if (conf->barrier) { 981 conf->nr_waiting++; 982 /* Wait for the barrier to drop. 983 * However if there are already pending 984 * requests (preventing the barrier from 985 * rising completely), and the 986 * pre-process bio queue isn't empty, 987 * then don't wait, as we need to empty 988 * that queue to get the nr_pending 989 * count down. 990 */ 991 raid10_log(conf->mddev, "wait barrier"); 992 wait_event_lock_irq(conf->wait_barrier, 993 !conf->barrier || 994 (atomic_read(&conf->nr_pending) && 995 current->bio_list && 996 (!bio_list_empty(¤t->bio_list[0]) || 997 !bio_list_empty(¤t->bio_list[1]))), 998 conf->resync_lock); 999 conf->nr_waiting--; 1000 if (!conf->nr_waiting) 1001 wake_up(&conf->wait_barrier); 1002 } 1003 atomic_inc(&conf->nr_pending); 1004 spin_unlock_irq(&conf->resync_lock); 1005 } 1006 1007 static void allow_barrier(struct r10conf *conf) 1008 { 1009 if ((atomic_dec_and_test(&conf->nr_pending)) || 1010 (conf->array_freeze_pending)) 1011 wake_up(&conf->wait_barrier); 1012 } 1013 1014 static void freeze_array(struct r10conf *conf, int extra) 1015 { 1016 /* stop syncio and normal IO and wait for everything to 1017 * go quiet. 1018 * We increment barrier and nr_waiting, and then 1019 * wait until nr_pending match nr_queued+extra 1020 * This is called in the context of one normal IO request 1021 * that has failed. Thus any sync request that might be pending 1022 * will be blocked by nr_pending, and we need to wait for 1023 * pending IO requests to complete or be queued for re-try. 1024 * Thus the number queued (nr_queued) plus this request (extra) 1025 * must match the number of pending IOs (nr_pending) before 1026 * we continue. 1027 */ 1028 spin_lock_irq(&conf->resync_lock); 1029 conf->array_freeze_pending++; 1030 conf->barrier++; 1031 conf->nr_waiting++; 1032 wait_event_lock_irq_cmd(conf->wait_barrier, 1033 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1034 conf->resync_lock, 1035 flush_pending_writes(conf)); 1036 1037 conf->array_freeze_pending--; 1038 spin_unlock_irq(&conf->resync_lock); 1039 } 1040 1041 static void unfreeze_array(struct r10conf *conf) 1042 { 1043 /* reverse the effect of the freeze */ 1044 spin_lock_irq(&conf->resync_lock); 1045 conf->barrier--; 1046 conf->nr_waiting--; 1047 wake_up(&conf->wait_barrier); 1048 spin_unlock_irq(&conf->resync_lock); 1049 } 1050 1051 static sector_t choose_data_offset(struct r10bio *r10_bio, 1052 struct md_rdev *rdev) 1053 { 1054 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1055 test_bit(R10BIO_Previous, &r10_bio->state)) 1056 return rdev->data_offset; 1057 else 1058 return rdev->new_data_offset; 1059 } 1060 1061 struct raid10_plug_cb { 1062 struct blk_plug_cb cb; 1063 struct bio_list pending; 1064 int pending_cnt; 1065 }; 1066 1067 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1068 { 1069 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1070 cb); 1071 struct mddev *mddev = plug->cb.data; 1072 struct r10conf *conf = mddev->private; 1073 struct bio *bio; 1074 1075 if (from_schedule || current->bio_list) { 1076 spin_lock_irq(&conf->device_lock); 1077 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1078 conf->pending_count += plug->pending_cnt; 1079 spin_unlock_irq(&conf->device_lock); 1080 wake_up(&conf->wait_barrier); 1081 md_wakeup_thread(mddev->thread); 1082 kfree(plug); 1083 return; 1084 } 1085 1086 /* we aren't scheduling, so we can do the write-out directly. */ 1087 bio = bio_list_get(&plug->pending); 1088 md_bitmap_unplug(mddev->bitmap); 1089 wake_up(&conf->wait_barrier); 1090 1091 while (bio) { /* submit pending writes */ 1092 struct bio *next = bio->bi_next; 1093 struct md_rdev *rdev = (void*)bio->bi_disk; 1094 bio->bi_next = NULL; 1095 bio_set_dev(bio, rdev->bdev); 1096 if (test_bit(Faulty, &rdev->flags)) { 1097 bio_io_error(bio); 1098 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1099 !blk_queue_discard(bio->bi_disk->queue))) 1100 /* Just ignore it */ 1101 bio_endio(bio); 1102 else 1103 generic_make_request(bio); 1104 bio = next; 1105 } 1106 kfree(plug); 1107 } 1108 1109 /* 1110 * 1. Register the new request and wait if the reconstruction thread has put 1111 * up a bar for new requests. Continue immediately if no resync is active 1112 * currently. 1113 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1114 */ 1115 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1116 struct bio *bio, sector_t sectors) 1117 { 1118 wait_barrier(conf); 1119 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1120 bio->bi_iter.bi_sector < conf->reshape_progress && 1121 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1122 raid10_log(conf->mddev, "wait reshape"); 1123 allow_barrier(conf); 1124 wait_event(conf->wait_barrier, 1125 conf->reshape_progress <= bio->bi_iter.bi_sector || 1126 conf->reshape_progress >= bio->bi_iter.bi_sector + 1127 sectors); 1128 wait_barrier(conf); 1129 } 1130 } 1131 1132 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1133 struct r10bio *r10_bio) 1134 { 1135 struct r10conf *conf = mddev->private; 1136 struct bio *read_bio; 1137 const int op = bio_op(bio); 1138 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1139 int max_sectors; 1140 struct md_rdev *rdev; 1141 char b[BDEVNAME_SIZE]; 1142 int slot = r10_bio->read_slot; 1143 struct md_rdev *err_rdev = NULL; 1144 gfp_t gfp = GFP_NOIO; 1145 1146 if (r10_bio->devs[slot].rdev) { 1147 /* 1148 * This is an error retry, but we cannot 1149 * safely dereference the rdev in the r10_bio, 1150 * we must use the one in conf. 1151 * If it has already been disconnected (unlikely) 1152 * we lose the device name in error messages. 1153 */ 1154 int disk; 1155 /* 1156 * As we are blocking raid10, it is a little safer to 1157 * use __GFP_HIGH. 1158 */ 1159 gfp = GFP_NOIO | __GFP_HIGH; 1160 1161 rcu_read_lock(); 1162 disk = r10_bio->devs[slot].devnum; 1163 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1164 if (err_rdev) 1165 bdevname(err_rdev->bdev, b); 1166 else { 1167 strcpy(b, "???"); 1168 /* This never gets dereferenced */ 1169 err_rdev = r10_bio->devs[slot].rdev; 1170 } 1171 rcu_read_unlock(); 1172 } 1173 1174 regular_request_wait(mddev, conf, bio, r10_bio->sectors); 1175 rdev = read_balance(conf, r10_bio, &max_sectors); 1176 if (!rdev) { 1177 if (err_rdev) { 1178 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1179 mdname(mddev), b, 1180 (unsigned long long)r10_bio->sector); 1181 } 1182 raid_end_bio_io(r10_bio); 1183 return; 1184 } 1185 if (err_rdev) 1186 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1187 mdname(mddev), 1188 bdevname(rdev->bdev, b), 1189 (unsigned long long)r10_bio->sector); 1190 if (max_sectors < bio_sectors(bio)) { 1191 struct bio *split = bio_split(bio, max_sectors, 1192 gfp, &conf->bio_split); 1193 bio_chain(split, bio); 1194 allow_barrier(conf); 1195 generic_make_request(bio); 1196 wait_barrier(conf); 1197 bio = split; 1198 r10_bio->master_bio = bio; 1199 r10_bio->sectors = max_sectors; 1200 } 1201 slot = r10_bio->read_slot; 1202 1203 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1204 1205 r10_bio->devs[slot].bio = read_bio; 1206 r10_bio->devs[slot].rdev = rdev; 1207 1208 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1209 choose_data_offset(r10_bio, rdev); 1210 bio_set_dev(read_bio, rdev->bdev); 1211 read_bio->bi_end_io = raid10_end_read_request; 1212 bio_set_op_attrs(read_bio, op, do_sync); 1213 if (test_bit(FailFast, &rdev->flags) && 1214 test_bit(R10BIO_FailFast, &r10_bio->state)) 1215 read_bio->bi_opf |= MD_FAILFAST; 1216 read_bio->bi_private = r10_bio; 1217 1218 if (mddev->gendisk) 1219 trace_block_bio_remap(read_bio->bi_disk->queue, 1220 read_bio, disk_devt(mddev->gendisk), 1221 r10_bio->sector); 1222 generic_make_request(read_bio); 1223 return; 1224 } 1225 1226 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1227 struct bio *bio, bool replacement, 1228 int n_copy) 1229 { 1230 const int op = bio_op(bio); 1231 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1232 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1233 unsigned long flags; 1234 struct blk_plug_cb *cb; 1235 struct raid10_plug_cb *plug = NULL; 1236 struct r10conf *conf = mddev->private; 1237 struct md_rdev *rdev; 1238 int devnum = r10_bio->devs[n_copy].devnum; 1239 struct bio *mbio; 1240 1241 if (replacement) { 1242 rdev = conf->mirrors[devnum].replacement; 1243 if (rdev == NULL) { 1244 /* Replacement just got moved to main 'rdev' */ 1245 smp_mb(); 1246 rdev = conf->mirrors[devnum].rdev; 1247 } 1248 } else 1249 rdev = conf->mirrors[devnum].rdev; 1250 1251 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1252 if (replacement) 1253 r10_bio->devs[n_copy].repl_bio = mbio; 1254 else 1255 r10_bio->devs[n_copy].bio = mbio; 1256 1257 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1258 choose_data_offset(r10_bio, rdev)); 1259 bio_set_dev(mbio, rdev->bdev); 1260 mbio->bi_end_io = raid10_end_write_request; 1261 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1262 if (!replacement && test_bit(FailFast, 1263 &conf->mirrors[devnum].rdev->flags) 1264 && enough(conf, devnum)) 1265 mbio->bi_opf |= MD_FAILFAST; 1266 mbio->bi_private = r10_bio; 1267 1268 if (conf->mddev->gendisk) 1269 trace_block_bio_remap(mbio->bi_disk->queue, 1270 mbio, disk_devt(conf->mddev->gendisk), 1271 r10_bio->sector); 1272 /* flush_pending_writes() needs access to the rdev so...*/ 1273 mbio->bi_disk = (void *)rdev; 1274 1275 atomic_inc(&r10_bio->remaining); 1276 1277 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1278 if (cb) 1279 plug = container_of(cb, struct raid10_plug_cb, cb); 1280 else 1281 plug = NULL; 1282 if (plug) { 1283 bio_list_add(&plug->pending, mbio); 1284 plug->pending_cnt++; 1285 } else { 1286 spin_lock_irqsave(&conf->device_lock, flags); 1287 bio_list_add(&conf->pending_bio_list, mbio); 1288 conf->pending_count++; 1289 spin_unlock_irqrestore(&conf->device_lock, flags); 1290 md_wakeup_thread(mddev->thread); 1291 } 1292 } 1293 1294 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1295 struct r10bio *r10_bio) 1296 { 1297 struct r10conf *conf = mddev->private; 1298 int i; 1299 struct md_rdev *blocked_rdev; 1300 sector_t sectors; 1301 int max_sectors; 1302 1303 if ((mddev_is_clustered(mddev) && 1304 md_cluster_ops->area_resyncing(mddev, WRITE, 1305 bio->bi_iter.bi_sector, 1306 bio_end_sector(bio)))) { 1307 DEFINE_WAIT(w); 1308 for (;;) { 1309 prepare_to_wait(&conf->wait_barrier, 1310 &w, TASK_IDLE); 1311 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1312 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1313 break; 1314 schedule(); 1315 } 1316 finish_wait(&conf->wait_barrier, &w); 1317 } 1318 1319 sectors = r10_bio->sectors; 1320 regular_request_wait(mddev, conf, bio, sectors); 1321 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1322 (mddev->reshape_backwards 1323 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1324 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1325 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1326 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1327 /* Need to update reshape_position in metadata */ 1328 mddev->reshape_position = conf->reshape_progress; 1329 set_mask_bits(&mddev->sb_flags, 0, 1330 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1331 md_wakeup_thread(mddev->thread); 1332 raid10_log(conf->mddev, "wait reshape metadata"); 1333 wait_event(mddev->sb_wait, 1334 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1335 1336 conf->reshape_safe = mddev->reshape_position; 1337 } 1338 1339 if (conf->pending_count >= max_queued_requests) { 1340 md_wakeup_thread(mddev->thread); 1341 raid10_log(mddev, "wait queued"); 1342 wait_event(conf->wait_barrier, 1343 conf->pending_count < max_queued_requests); 1344 } 1345 /* first select target devices under rcu_lock and 1346 * inc refcount on their rdev. Record them by setting 1347 * bios[x] to bio 1348 * If there are known/acknowledged bad blocks on any device 1349 * on which we have seen a write error, we want to avoid 1350 * writing to those blocks. This potentially requires several 1351 * writes to write around the bad blocks. Each set of writes 1352 * gets its own r10_bio with a set of bios attached. 1353 */ 1354 1355 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1356 raid10_find_phys(conf, r10_bio); 1357 retry_write: 1358 blocked_rdev = NULL; 1359 rcu_read_lock(); 1360 max_sectors = r10_bio->sectors; 1361 1362 for (i = 0; i < conf->copies; i++) { 1363 int d = r10_bio->devs[i].devnum; 1364 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1365 struct md_rdev *rrdev = rcu_dereference( 1366 conf->mirrors[d].replacement); 1367 if (rdev == rrdev) 1368 rrdev = NULL; 1369 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1370 atomic_inc(&rdev->nr_pending); 1371 blocked_rdev = rdev; 1372 break; 1373 } 1374 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1375 atomic_inc(&rrdev->nr_pending); 1376 blocked_rdev = rrdev; 1377 break; 1378 } 1379 if (rdev && (test_bit(Faulty, &rdev->flags))) 1380 rdev = NULL; 1381 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1382 rrdev = NULL; 1383 1384 r10_bio->devs[i].bio = NULL; 1385 r10_bio->devs[i].repl_bio = NULL; 1386 1387 if (!rdev && !rrdev) { 1388 set_bit(R10BIO_Degraded, &r10_bio->state); 1389 continue; 1390 } 1391 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1392 sector_t first_bad; 1393 sector_t dev_sector = r10_bio->devs[i].addr; 1394 int bad_sectors; 1395 int is_bad; 1396 1397 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1398 &first_bad, &bad_sectors); 1399 if (is_bad < 0) { 1400 /* Mustn't write here until the bad block 1401 * is acknowledged 1402 */ 1403 atomic_inc(&rdev->nr_pending); 1404 set_bit(BlockedBadBlocks, &rdev->flags); 1405 blocked_rdev = rdev; 1406 break; 1407 } 1408 if (is_bad && first_bad <= dev_sector) { 1409 /* Cannot write here at all */ 1410 bad_sectors -= (dev_sector - first_bad); 1411 if (bad_sectors < max_sectors) 1412 /* Mustn't write more than bad_sectors 1413 * to other devices yet 1414 */ 1415 max_sectors = bad_sectors; 1416 /* We don't set R10BIO_Degraded as that 1417 * only applies if the disk is missing, 1418 * so it might be re-added, and we want to 1419 * know to recover this chunk. 1420 * In this case the device is here, and the 1421 * fact that this chunk is not in-sync is 1422 * recorded in the bad block log. 1423 */ 1424 continue; 1425 } 1426 if (is_bad) { 1427 int good_sectors = first_bad - dev_sector; 1428 if (good_sectors < max_sectors) 1429 max_sectors = good_sectors; 1430 } 1431 } 1432 if (rdev) { 1433 r10_bio->devs[i].bio = bio; 1434 atomic_inc(&rdev->nr_pending); 1435 } 1436 if (rrdev) { 1437 r10_bio->devs[i].repl_bio = bio; 1438 atomic_inc(&rrdev->nr_pending); 1439 } 1440 } 1441 rcu_read_unlock(); 1442 1443 if (unlikely(blocked_rdev)) { 1444 /* Have to wait for this device to get unblocked, then retry */ 1445 int j; 1446 int d; 1447 1448 for (j = 0; j < i; j++) { 1449 if (r10_bio->devs[j].bio) { 1450 d = r10_bio->devs[j].devnum; 1451 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1452 } 1453 if (r10_bio->devs[j].repl_bio) { 1454 struct md_rdev *rdev; 1455 d = r10_bio->devs[j].devnum; 1456 rdev = conf->mirrors[d].replacement; 1457 if (!rdev) { 1458 /* Race with remove_disk */ 1459 smp_mb(); 1460 rdev = conf->mirrors[d].rdev; 1461 } 1462 rdev_dec_pending(rdev, mddev); 1463 } 1464 } 1465 allow_barrier(conf); 1466 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1467 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1468 wait_barrier(conf); 1469 goto retry_write; 1470 } 1471 1472 if (max_sectors < r10_bio->sectors) 1473 r10_bio->sectors = max_sectors; 1474 1475 if (r10_bio->sectors < bio_sectors(bio)) { 1476 struct bio *split = bio_split(bio, r10_bio->sectors, 1477 GFP_NOIO, &conf->bio_split); 1478 bio_chain(split, bio); 1479 allow_barrier(conf); 1480 generic_make_request(bio); 1481 wait_barrier(conf); 1482 bio = split; 1483 r10_bio->master_bio = bio; 1484 } 1485 1486 atomic_set(&r10_bio->remaining, 1); 1487 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1488 1489 for (i = 0; i < conf->copies; i++) { 1490 if (r10_bio->devs[i].bio) 1491 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1492 if (r10_bio->devs[i].repl_bio) 1493 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1494 } 1495 one_write_done(r10_bio); 1496 } 1497 1498 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1499 { 1500 struct r10conf *conf = mddev->private; 1501 struct r10bio *r10_bio; 1502 1503 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1504 1505 r10_bio->master_bio = bio; 1506 r10_bio->sectors = sectors; 1507 1508 r10_bio->mddev = mddev; 1509 r10_bio->sector = bio->bi_iter.bi_sector; 1510 r10_bio->state = 0; 1511 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies); 1512 1513 if (bio_data_dir(bio) == READ) 1514 raid10_read_request(mddev, bio, r10_bio); 1515 else 1516 raid10_write_request(mddev, bio, r10_bio); 1517 } 1518 1519 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1520 { 1521 struct r10conf *conf = mddev->private; 1522 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1523 int chunk_sects = chunk_mask + 1; 1524 int sectors = bio_sectors(bio); 1525 1526 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1527 md_flush_request(mddev, bio); 1528 return true; 1529 } 1530 1531 if (!md_write_start(mddev, bio)) 1532 return false; 1533 1534 /* 1535 * If this request crosses a chunk boundary, we need to split 1536 * it. 1537 */ 1538 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1539 sectors > chunk_sects 1540 && (conf->geo.near_copies < conf->geo.raid_disks 1541 || conf->prev.near_copies < 1542 conf->prev.raid_disks))) 1543 sectors = chunk_sects - 1544 (bio->bi_iter.bi_sector & 1545 (chunk_sects - 1)); 1546 __make_request(mddev, bio, sectors); 1547 1548 /* In case raid10d snuck in to freeze_array */ 1549 wake_up(&conf->wait_barrier); 1550 return true; 1551 } 1552 1553 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1554 { 1555 struct r10conf *conf = mddev->private; 1556 int i; 1557 1558 if (conf->geo.near_copies < conf->geo.raid_disks) 1559 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1560 if (conf->geo.near_copies > 1) 1561 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1562 if (conf->geo.far_copies > 1) { 1563 if (conf->geo.far_offset) 1564 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1565 else 1566 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1567 if (conf->geo.far_set_size != conf->geo.raid_disks) 1568 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1569 } 1570 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1571 conf->geo.raid_disks - mddev->degraded); 1572 rcu_read_lock(); 1573 for (i = 0; i < conf->geo.raid_disks; i++) { 1574 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1575 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1576 } 1577 rcu_read_unlock(); 1578 seq_printf(seq, "]"); 1579 } 1580 1581 /* check if there are enough drives for 1582 * every block to appear on atleast one. 1583 * Don't consider the device numbered 'ignore' 1584 * as we might be about to remove it. 1585 */ 1586 static int _enough(struct r10conf *conf, int previous, int ignore) 1587 { 1588 int first = 0; 1589 int has_enough = 0; 1590 int disks, ncopies; 1591 if (previous) { 1592 disks = conf->prev.raid_disks; 1593 ncopies = conf->prev.near_copies; 1594 } else { 1595 disks = conf->geo.raid_disks; 1596 ncopies = conf->geo.near_copies; 1597 } 1598 1599 rcu_read_lock(); 1600 do { 1601 int n = conf->copies; 1602 int cnt = 0; 1603 int this = first; 1604 while (n--) { 1605 struct md_rdev *rdev; 1606 if (this != ignore && 1607 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1608 test_bit(In_sync, &rdev->flags)) 1609 cnt++; 1610 this = (this+1) % disks; 1611 } 1612 if (cnt == 0) 1613 goto out; 1614 first = (first + ncopies) % disks; 1615 } while (first != 0); 1616 has_enough = 1; 1617 out: 1618 rcu_read_unlock(); 1619 return has_enough; 1620 } 1621 1622 static int enough(struct r10conf *conf, int ignore) 1623 { 1624 /* when calling 'enough', both 'prev' and 'geo' must 1625 * be stable. 1626 * This is ensured if ->reconfig_mutex or ->device_lock 1627 * is held. 1628 */ 1629 return _enough(conf, 0, ignore) && 1630 _enough(conf, 1, ignore); 1631 } 1632 1633 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1634 { 1635 char b[BDEVNAME_SIZE]; 1636 struct r10conf *conf = mddev->private; 1637 unsigned long flags; 1638 1639 /* 1640 * If it is not operational, then we have already marked it as dead 1641 * else if it is the last working disks, ignore the error, let the 1642 * next level up know. 1643 * else mark the drive as failed 1644 */ 1645 spin_lock_irqsave(&conf->device_lock, flags); 1646 if (test_bit(In_sync, &rdev->flags) 1647 && !enough(conf, rdev->raid_disk)) { 1648 /* 1649 * Don't fail the drive, just return an IO error. 1650 */ 1651 spin_unlock_irqrestore(&conf->device_lock, flags); 1652 return; 1653 } 1654 if (test_and_clear_bit(In_sync, &rdev->flags)) 1655 mddev->degraded++; 1656 /* 1657 * If recovery is running, make sure it aborts. 1658 */ 1659 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1660 set_bit(Blocked, &rdev->flags); 1661 set_bit(Faulty, &rdev->flags); 1662 set_mask_bits(&mddev->sb_flags, 0, 1663 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1664 spin_unlock_irqrestore(&conf->device_lock, flags); 1665 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1666 "md/raid10:%s: Operation continuing on %d devices.\n", 1667 mdname(mddev), bdevname(rdev->bdev, b), 1668 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1669 } 1670 1671 static void print_conf(struct r10conf *conf) 1672 { 1673 int i; 1674 struct md_rdev *rdev; 1675 1676 pr_debug("RAID10 conf printout:\n"); 1677 if (!conf) { 1678 pr_debug("(!conf)\n"); 1679 return; 1680 } 1681 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1682 conf->geo.raid_disks); 1683 1684 /* This is only called with ->reconfix_mutex held, so 1685 * rcu protection of rdev is not needed */ 1686 for (i = 0; i < conf->geo.raid_disks; i++) { 1687 char b[BDEVNAME_SIZE]; 1688 rdev = conf->mirrors[i].rdev; 1689 if (rdev) 1690 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1691 i, !test_bit(In_sync, &rdev->flags), 1692 !test_bit(Faulty, &rdev->flags), 1693 bdevname(rdev->bdev,b)); 1694 } 1695 } 1696 1697 static void close_sync(struct r10conf *conf) 1698 { 1699 wait_barrier(conf); 1700 allow_barrier(conf); 1701 1702 mempool_exit(&conf->r10buf_pool); 1703 } 1704 1705 static int raid10_spare_active(struct mddev *mddev) 1706 { 1707 int i; 1708 struct r10conf *conf = mddev->private; 1709 struct raid10_info *tmp; 1710 int count = 0; 1711 unsigned long flags; 1712 1713 /* 1714 * Find all non-in_sync disks within the RAID10 configuration 1715 * and mark them in_sync 1716 */ 1717 for (i = 0; i < conf->geo.raid_disks; i++) { 1718 tmp = conf->mirrors + i; 1719 if (tmp->replacement 1720 && tmp->replacement->recovery_offset == MaxSector 1721 && !test_bit(Faulty, &tmp->replacement->flags) 1722 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1723 /* Replacement has just become active */ 1724 if (!tmp->rdev 1725 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1726 count++; 1727 if (tmp->rdev) { 1728 /* Replaced device not technically faulty, 1729 * but we need to be sure it gets removed 1730 * and never re-added. 1731 */ 1732 set_bit(Faulty, &tmp->rdev->flags); 1733 sysfs_notify_dirent_safe( 1734 tmp->rdev->sysfs_state); 1735 } 1736 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1737 } else if (tmp->rdev 1738 && tmp->rdev->recovery_offset == MaxSector 1739 && !test_bit(Faulty, &tmp->rdev->flags) 1740 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1741 count++; 1742 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1743 } 1744 } 1745 spin_lock_irqsave(&conf->device_lock, flags); 1746 mddev->degraded -= count; 1747 spin_unlock_irqrestore(&conf->device_lock, flags); 1748 1749 print_conf(conf); 1750 return count; 1751 } 1752 1753 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1754 { 1755 struct r10conf *conf = mddev->private; 1756 int err = -EEXIST; 1757 int mirror; 1758 int first = 0; 1759 int last = conf->geo.raid_disks - 1; 1760 1761 if (mddev->recovery_cp < MaxSector) 1762 /* only hot-add to in-sync arrays, as recovery is 1763 * very different from resync 1764 */ 1765 return -EBUSY; 1766 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1767 return -EINVAL; 1768 1769 if (md_integrity_add_rdev(rdev, mddev)) 1770 return -ENXIO; 1771 1772 if (rdev->raid_disk >= 0) 1773 first = last = rdev->raid_disk; 1774 1775 if (rdev->saved_raid_disk >= first && 1776 rdev->saved_raid_disk < conf->geo.raid_disks && 1777 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1778 mirror = rdev->saved_raid_disk; 1779 else 1780 mirror = first; 1781 for ( ; mirror <= last ; mirror++) { 1782 struct raid10_info *p = &conf->mirrors[mirror]; 1783 if (p->recovery_disabled == mddev->recovery_disabled) 1784 continue; 1785 if (p->rdev) { 1786 if (!test_bit(WantReplacement, &p->rdev->flags) || 1787 p->replacement != NULL) 1788 continue; 1789 clear_bit(In_sync, &rdev->flags); 1790 set_bit(Replacement, &rdev->flags); 1791 rdev->raid_disk = mirror; 1792 err = 0; 1793 if (mddev->gendisk) 1794 disk_stack_limits(mddev->gendisk, rdev->bdev, 1795 rdev->data_offset << 9); 1796 conf->fullsync = 1; 1797 rcu_assign_pointer(p->replacement, rdev); 1798 break; 1799 } 1800 1801 if (mddev->gendisk) 1802 disk_stack_limits(mddev->gendisk, rdev->bdev, 1803 rdev->data_offset << 9); 1804 1805 p->head_position = 0; 1806 p->recovery_disabled = mddev->recovery_disabled - 1; 1807 rdev->raid_disk = mirror; 1808 err = 0; 1809 if (rdev->saved_raid_disk != mirror) 1810 conf->fullsync = 1; 1811 rcu_assign_pointer(p->rdev, rdev); 1812 break; 1813 } 1814 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1815 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1816 1817 print_conf(conf); 1818 return err; 1819 } 1820 1821 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1822 { 1823 struct r10conf *conf = mddev->private; 1824 int err = 0; 1825 int number = rdev->raid_disk; 1826 struct md_rdev **rdevp; 1827 struct raid10_info *p = conf->mirrors + number; 1828 1829 print_conf(conf); 1830 if (rdev == p->rdev) 1831 rdevp = &p->rdev; 1832 else if (rdev == p->replacement) 1833 rdevp = &p->replacement; 1834 else 1835 return 0; 1836 1837 if (test_bit(In_sync, &rdev->flags) || 1838 atomic_read(&rdev->nr_pending)) { 1839 err = -EBUSY; 1840 goto abort; 1841 } 1842 /* Only remove non-faulty devices if recovery 1843 * is not possible. 1844 */ 1845 if (!test_bit(Faulty, &rdev->flags) && 1846 mddev->recovery_disabled != p->recovery_disabled && 1847 (!p->replacement || p->replacement == rdev) && 1848 number < conf->geo.raid_disks && 1849 enough(conf, -1)) { 1850 err = -EBUSY; 1851 goto abort; 1852 } 1853 *rdevp = NULL; 1854 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1855 synchronize_rcu(); 1856 if (atomic_read(&rdev->nr_pending)) { 1857 /* lost the race, try later */ 1858 err = -EBUSY; 1859 *rdevp = rdev; 1860 goto abort; 1861 } 1862 } 1863 if (p->replacement) { 1864 /* We must have just cleared 'rdev' */ 1865 p->rdev = p->replacement; 1866 clear_bit(Replacement, &p->replacement->flags); 1867 smp_mb(); /* Make sure other CPUs may see both as identical 1868 * but will never see neither -- if they are careful. 1869 */ 1870 p->replacement = NULL; 1871 } 1872 1873 clear_bit(WantReplacement, &rdev->flags); 1874 err = md_integrity_register(mddev); 1875 1876 abort: 1877 1878 print_conf(conf); 1879 return err; 1880 } 1881 1882 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 1883 { 1884 struct r10conf *conf = r10_bio->mddev->private; 1885 1886 if (!bio->bi_status) 1887 set_bit(R10BIO_Uptodate, &r10_bio->state); 1888 else 1889 /* The write handler will notice the lack of 1890 * R10BIO_Uptodate and record any errors etc 1891 */ 1892 atomic_add(r10_bio->sectors, 1893 &conf->mirrors[d].rdev->corrected_errors); 1894 1895 /* for reconstruct, we always reschedule after a read. 1896 * for resync, only after all reads 1897 */ 1898 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1899 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1900 atomic_dec_and_test(&r10_bio->remaining)) { 1901 /* we have read all the blocks, 1902 * do the comparison in process context in raid10d 1903 */ 1904 reschedule_retry(r10_bio); 1905 } 1906 } 1907 1908 static void end_sync_read(struct bio *bio) 1909 { 1910 struct r10bio *r10_bio = get_resync_r10bio(bio); 1911 struct r10conf *conf = r10_bio->mddev->private; 1912 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1913 1914 __end_sync_read(r10_bio, bio, d); 1915 } 1916 1917 static void end_reshape_read(struct bio *bio) 1918 { 1919 /* reshape read bio isn't allocated from r10buf_pool */ 1920 struct r10bio *r10_bio = bio->bi_private; 1921 1922 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 1923 } 1924 1925 static void end_sync_request(struct r10bio *r10_bio) 1926 { 1927 struct mddev *mddev = r10_bio->mddev; 1928 1929 while (atomic_dec_and_test(&r10_bio->remaining)) { 1930 if (r10_bio->master_bio == NULL) { 1931 /* the primary of several recovery bios */ 1932 sector_t s = r10_bio->sectors; 1933 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1934 test_bit(R10BIO_WriteError, &r10_bio->state)) 1935 reschedule_retry(r10_bio); 1936 else 1937 put_buf(r10_bio); 1938 md_done_sync(mddev, s, 1); 1939 break; 1940 } else { 1941 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1942 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1943 test_bit(R10BIO_WriteError, &r10_bio->state)) 1944 reschedule_retry(r10_bio); 1945 else 1946 put_buf(r10_bio); 1947 r10_bio = r10_bio2; 1948 } 1949 } 1950 } 1951 1952 static void end_sync_write(struct bio *bio) 1953 { 1954 struct r10bio *r10_bio = get_resync_r10bio(bio); 1955 struct mddev *mddev = r10_bio->mddev; 1956 struct r10conf *conf = mddev->private; 1957 int d; 1958 sector_t first_bad; 1959 int bad_sectors; 1960 int slot; 1961 int repl; 1962 struct md_rdev *rdev = NULL; 1963 1964 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1965 if (repl) 1966 rdev = conf->mirrors[d].replacement; 1967 else 1968 rdev = conf->mirrors[d].rdev; 1969 1970 if (bio->bi_status) { 1971 if (repl) 1972 md_error(mddev, rdev); 1973 else { 1974 set_bit(WriteErrorSeen, &rdev->flags); 1975 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1976 set_bit(MD_RECOVERY_NEEDED, 1977 &rdev->mddev->recovery); 1978 set_bit(R10BIO_WriteError, &r10_bio->state); 1979 } 1980 } else if (is_badblock(rdev, 1981 r10_bio->devs[slot].addr, 1982 r10_bio->sectors, 1983 &first_bad, &bad_sectors)) 1984 set_bit(R10BIO_MadeGood, &r10_bio->state); 1985 1986 rdev_dec_pending(rdev, mddev); 1987 1988 end_sync_request(r10_bio); 1989 } 1990 1991 /* 1992 * Note: sync and recover and handled very differently for raid10 1993 * This code is for resync. 1994 * For resync, we read through virtual addresses and read all blocks. 1995 * If there is any error, we schedule a write. The lowest numbered 1996 * drive is authoritative. 1997 * However requests come for physical address, so we need to map. 1998 * For every physical address there are raid_disks/copies virtual addresses, 1999 * which is always are least one, but is not necessarly an integer. 2000 * This means that a physical address can span multiple chunks, so we may 2001 * have to submit multiple io requests for a single sync request. 2002 */ 2003 /* 2004 * We check if all blocks are in-sync and only write to blocks that 2005 * aren't in sync 2006 */ 2007 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2008 { 2009 struct r10conf *conf = mddev->private; 2010 int i, first; 2011 struct bio *tbio, *fbio; 2012 int vcnt; 2013 struct page **tpages, **fpages; 2014 2015 atomic_set(&r10_bio->remaining, 1); 2016 2017 /* find the first device with a block */ 2018 for (i=0; i<conf->copies; i++) 2019 if (!r10_bio->devs[i].bio->bi_status) 2020 break; 2021 2022 if (i == conf->copies) 2023 goto done; 2024 2025 first = i; 2026 fbio = r10_bio->devs[i].bio; 2027 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2028 fbio->bi_iter.bi_idx = 0; 2029 fpages = get_resync_pages(fbio)->pages; 2030 2031 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2032 /* now find blocks with errors */ 2033 for (i=0 ; i < conf->copies ; i++) { 2034 int j, d; 2035 struct md_rdev *rdev; 2036 struct resync_pages *rp; 2037 2038 tbio = r10_bio->devs[i].bio; 2039 2040 if (tbio->bi_end_io != end_sync_read) 2041 continue; 2042 if (i == first) 2043 continue; 2044 2045 tpages = get_resync_pages(tbio)->pages; 2046 d = r10_bio->devs[i].devnum; 2047 rdev = conf->mirrors[d].rdev; 2048 if (!r10_bio->devs[i].bio->bi_status) { 2049 /* We know that the bi_io_vec layout is the same for 2050 * both 'first' and 'i', so we just compare them. 2051 * All vec entries are PAGE_SIZE; 2052 */ 2053 int sectors = r10_bio->sectors; 2054 for (j = 0; j < vcnt; j++) { 2055 int len = PAGE_SIZE; 2056 if (sectors < (len / 512)) 2057 len = sectors * 512; 2058 if (memcmp(page_address(fpages[j]), 2059 page_address(tpages[j]), 2060 len)) 2061 break; 2062 sectors -= len/512; 2063 } 2064 if (j == vcnt) 2065 continue; 2066 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2067 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2068 /* Don't fix anything. */ 2069 continue; 2070 } else if (test_bit(FailFast, &rdev->flags)) { 2071 /* Just give up on this device */ 2072 md_error(rdev->mddev, rdev); 2073 continue; 2074 } 2075 /* Ok, we need to write this bio, either to correct an 2076 * inconsistency or to correct an unreadable block. 2077 * First we need to fixup bv_offset, bv_len and 2078 * bi_vecs, as the read request might have corrupted these 2079 */ 2080 rp = get_resync_pages(tbio); 2081 bio_reset(tbio); 2082 2083 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2084 2085 rp->raid_bio = r10_bio; 2086 tbio->bi_private = rp; 2087 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2088 tbio->bi_end_io = end_sync_write; 2089 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2090 2091 bio_copy_data(tbio, fbio); 2092 2093 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2094 atomic_inc(&r10_bio->remaining); 2095 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2096 2097 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2098 tbio->bi_opf |= MD_FAILFAST; 2099 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2100 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev); 2101 generic_make_request(tbio); 2102 } 2103 2104 /* Now write out to any replacement devices 2105 * that are active 2106 */ 2107 for (i = 0; i < conf->copies; i++) { 2108 int d; 2109 2110 tbio = r10_bio->devs[i].repl_bio; 2111 if (!tbio || !tbio->bi_end_io) 2112 continue; 2113 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2114 && r10_bio->devs[i].bio != fbio) 2115 bio_copy_data(tbio, fbio); 2116 d = r10_bio->devs[i].devnum; 2117 atomic_inc(&r10_bio->remaining); 2118 md_sync_acct(conf->mirrors[d].replacement->bdev, 2119 bio_sectors(tbio)); 2120 generic_make_request(tbio); 2121 } 2122 2123 done: 2124 if (atomic_dec_and_test(&r10_bio->remaining)) { 2125 md_done_sync(mddev, r10_bio->sectors, 1); 2126 put_buf(r10_bio); 2127 } 2128 } 2129 2130 /* 2131 * Now for the recovery code. 2132 * Recovery happens across physical sectors. 2133 * We recover all non-is_sync drives by finding the virtual address of 2134 * each, and then choose a working drive that also has that virt address. 2135 * There is a separate r10_bio for each non-in_sync drive. 2136 * Only the first two slots are in use. The first for reading, 2137 * The second for writing. 2138 * 2139 */ 2140 static void fix_recovery_read_error(struct r10bio *r10_bio) 2141 { 2142 /* We got a read error during recovery. 2143 * We repeat the read in smaller page-sized sections. 2144 * If a read succeeds, write it to the new device or record 2145 * a bad block if we cannot. 2146 * If a read fails, record a bad block on both old and 2147 * new devices. 2148 */ 2149 struct mddev *mddev = r10_bio->mddev; 2150 struct r10conf *conf = mddev->private; 2151 struct bio *bio = r10_bio->devs[0].bio; 2152 sector_t sect = 0; 2153 int sectors = r10_bio->sectors; 2154 int idx = 0; 2155 int dr = r10_bio->devs[0].devnum; 2156 int dw = r10_bio->devs[1].devnum; 2157 struct page **pages = get_resync_pages(bio)->pages; 2158 2159 while (sectors) { 2160 int s = sectors; 2161 struct md_rdev *rdev; 2162 sector_t addr; 2163 int ok; 2164 2165 if (s > (PAGE_SIZE>>9)) 2166 s = PAGE_SIZE >> 9; 2167 2168 rdev = conf->mirrors[dr].rdev; 2169 addr = r10_bio->devs[0].addr + sect, 2170 ok = sync_page_io(rdev, 2171 addr, 2172 s << 9, 2173 pages[idx], 2174 REQ_OP_READ, 0, false); 2175 if (ok) { 2176 rdev = conf->mirrors[dw].rdev; 2177 addr = r10_bio->devs[1].addr + sect; 2178 ok = sync_page_io(rdev, 2179 addr, 2180 s << 9, 2181 pages[idx], 2182 REQ_OP_WRITE, 0, false); 2183 if (!ok) { 2184 set_bit(WriteErrorSeen, &rdev->flags); 2185 if (!test_and_set_bit(WantReplacement, 2186 &rdev->flags)) 2187 set_bit(MD_RECOVERY_NEEDED, 2188 &rdev->mddev->recovery); 2189 } 2190 } 2191 if (!ok) { 2192 /* We don't worry if we cannot set a bad block - 2193 * it really is bad so there is no loss in not 2194 * recording it yet 2195 */ 2196 rdev_set_badblocks(rdev, addr, s, 0); 2197 2198 if (rdev != conf->mirrors[dw].rdev) { 2199 /* need bad block on destination too */ 2200 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2201 addr = r10_bio->devs[1].addr + sect; 2202 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2203 if (!ok) { 2204 /* just abort the recovery */ 2205 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2206 mdname(mddev)); 2207 2208 conf->mirrors[dw].recovery_disabled 2209 = mddev->recovery_disabled; 2210 set_bit(MD_RECOVERY_INTR, 2211 &mddev->recovery); 2212 break; 2213 } 2214 } 2215 } 2216 2217 sectors -= s; 2218 sect += s; 2219 idx++; 2220 } 2221 } 2222 2223 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2224 { 2225 struct r10conf *conf = mddev->private; 2226 int d; 2227 struct bio *wbio, *wbio2; 2228 2229 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2230 fix_recovery_read_error(r10_bio); 2231 end_sync_request(r10_bio); 2232 return; 2233 } 2234 2235 /* 2236 * share the pages with the first bio 2237 * and submit the write request 2238 */ 2239 d = r10_bio->devs[1].devnum; 2240 wbio = r10_bio->devs[1].bio; 2241 wbio2 = r10_bio->devs[1].repl_bio; 2242 /* Need to test wbio2->bi_end_io before we call 2243 * generic_make_request as if the former is NULL, 2244 * the latter is free to free wbio2. 2245 */ 2246 if (wbio2 && !wbio2->bi_end_io) 2247 wbio2 = NULL; 2248 if (wbio->bi_end_io) { 2249 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2250 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2251 generic_make_request(wbio); 2252 } 2253 if (wbio2) { 2254 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2255 md_sync_acct(conf->mirrors[d].replacement->bdev, 2256 bio_sectors(wbio2)); 2257 generic_make_request(wbio2); 2258 } 2259 } 2260 2261 /* 2262 * Used by fix_read_error() to decay the per rdev read_errors. 2263 * We halve the read error count for every hour that has elapsed 2264 * since the last recorded read error. 2265 * 2266 */ 2267 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2268 { 2269 long cur_time_mon; 2270 unsigned long hours_since_last; 2271 unsigned int read_errors = atomic_read(&rdev->read_errors); 2272 2273 cur_time_mon = ktime_get_seconds(); 2274 2275 if (rdev->last_read_error == 0) { 2276 /* first time we've seen a read error */ 2277 rdev->last_read_error = cur_time_mon; 2278 return; 2279 } 2280 2281 hours_since_last = (long)(cur_time_mon - 2282 rdev->last_read_error) / 3600; 2283 2284 rdev->last_read_error = cur_time_mon; 2285 2286 /* 2287 * if hours_since_last is > the number of bits in read_errors 2288 * just set read errors to 0. We do this to avoid 2289 * overflowing the shift of read_errors by hours_since_last. 2290 */ 2291 if (hours_since_last >= 8 * sizeof(read_errors)) 2292 atomic_set(&rdev->read_errors, 0); 2293 else 2294 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2295 } 2296 2297 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2298 int sectors, struct page *page, int rw) 2299 { 2300 sector_t first_bad; 2301 int bad_sectors; 2302 2303 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2304 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2305 return -1; 2306 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2307 /* success */ 2308 return 1; 2309 if (rw == WRITE) { 2310 set_bit(WriteErrorSeen, &rdev->flags); 2311 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2312 set_bit(MD_RECOVERY_NEEDED, 2313 &rdev->mddev->recovery); 2314 } 2315 /* need to record an error - either for the block or the device */ 2316 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2317 md_error(rdev->mddev, rdev); 2318 return 0; 2319 } 2320 2321 /* 2322 * This is a kernel thread which: 2323 * 2324 * 1. Retries failed read operations on working mirrors. 2325 * 2. Updates the raid superblock when problems encounter. 2326 * 3. Performs writes following reads for array synchronising. 2327 */ 2328 2329 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2330 { 2331 int sect = 0; /* Offset from r10_bio->sector */ 2332 int sectors = r10_bio->sectors; 2333 struct md_rdev *rdev; 2334 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2335 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2336 2337 /* still own a reference to this rdev, so it cannot 2338 * have been cleared recently. 2339 */ 2340 rdev = conf->mirrors[d].rdev; 2341 2342 if (test_bit(Faulty, &rdev->flags)) 2343 /* drive has already been failed, just ignore any 2344 more fix_read_error() attempts */ 2345 return; 2346 2347 check_decay_read_errors(mddev, rdev); 2348 atomic_inc(&rdev->read_errors); 2349 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2350 char b[BDEVNAME_SIZE]; 2351 bdevname(rdev->bdev, b); 2352 2353 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2354 mdname(mddev), b, 2355 atomic_read(&rdev->read_errors), max_read_errors); 2356 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2357 mdname(mddev), b); 2358 md_error(mddev, rdev); 2359 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2360 return; 2361 } 2362 2363 while(sectors) { 2364 int s = sectors; 2365 int sl = r10_bio->read_slot; 2366 int success = 0; 2367 int start; 2368 2369 if (s > (PAGE_SIZE>>9)) 2370 s = PAGE_SIZE >> 9; 2371 2372 rcu_read_lock(); 2373 do { 2374 sector_t first_bad; 2375 int bad_sectors; 2376 2377 d = r10_bio->devs[sl].devnum; 2378 rdev = rcu_dereference(conf->mirrors[d].rdev); 2379 if (rdev && 2380 test_bit(In_sync, &rdev->flags) && 2381 !test_bit(Faulty, &rdev->flags) && 2382 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2383 &first_bad, &bad_sectors) == 0) { 2384 atomic_inc(&rdev->nr_pending); 2385 rcu_read_unlock(); 2386 success = sync_page_io(rdev, 2387 r10_bio->devs[sl].addr + 2388 sect, 2389 s<<9, 2390 conf->tmppage, 2391 REQ_OP_READ, 0, false); 2392 rdev_dec_pending(rdev, mddev); 2393 rcu_read_lock(); 2394 if (success) 2395 break; 2396 } 2397 sl++; 2398 if (sl == conf->copies) 2399 sl = 0; 2400 } while (!success && sl != r10_bio->read_slot); 2401 rcu_read_unlock(); 2402 2403 if (!success) { 2404 /* Cannot read from anywhere, just mark the block 2405 * as bad on the first device to discourage future 2406 * reads. 2407 */ 2408 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2409 rdev = conf->mirrors[dn].rdev; 2410 2411 if (!rdev_set_badblocks( 2412 rdev, 2413 r10_bio->devs[r10_bio->read_slot].addr 2414 + sect, 2415 s, 0)) { 2416 md_error(mddev, rdev); 2417 r10_bio->devs[r10_bio->read_slot].bio 2418 = IO_BLOCKED; 2419 } 2420 break; 2421 } 2422 2423 start = sl; 2424 /* write it back and re-read */ 2425 rcu_read_lock(); 2426 while (sl != r10_bio->read_slot) { 2427 char b[BDEVNAME_SIZE]; 2428 2429 if (sl==0) 2430 sl = conf->copies; 2431 sl--; 2432 d = r10_bio->devs[sl].devnum; 2433 rdev = rcu_dereference(conf->mirrors[d].rdev); 2434 if (!rdev || 2435 test_bit(Faulty, &rdev->flags) || 2436 !test_bit(In_sync, &rdev->flags)) 2437 continue; 2438 2439 atomic_inc(&rdev->nr_pending); 2440 rcu_read_unlock(); 2441 if (r10_sync_page_io(rdev, 2442 r10_bio->devs[sl].addr + 2443 sect, 2444 s, conf->tmppage, WRITE) 2445 == 0) { 2446 /* Well, this device is dead */ 2447 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2448 mdname(mddev), s, 2449 (unsigned long long)( 2450 sect + 2451 choose_data_offset(r10_bio, 2452 rdev)), 2453 bdevname(rdev->bdev, b)); 2454 pr_notice("md/raid10:%s: %s: failing drive\n", 2455 mdname(mddev), 2456 bdevname(rdev->bdev, b)); 2457 } 2458 rdev_dec_pending(rdev, mddev); 2459 rcu_read_lock(); 2460 } 2461 sl = start; 2462 while (sl != r10_bio->read_slot) { 2463 char b[BDEVNAME_SIZE]; 2464 2465 if (sl==0) 2466 sl = conf->copies; 2467 sl--; 2468 d = r10_bio->devs[sl].devnum; 2469 rdev = rcu_dereference(conf->mirrors[d].rdev); 2470 if (!rdev || 2471 test_bit(Faulty, &rdev->flags) || 2472 !test_bit(In_sync, &rdev->flags)) 2473 continue; 2474 2475 atomic_inc(&rdev->nr_pending); 2476 rcu_read_unlock(); 2477 switch (r10_sync_page_io(rdev, 2478 r10_bio->devs[sl].addr + 2479 sect, 2480 s, conf->tmppage, 2481 READ)) { 2482 case 0: 2483 /* Well, this device is dead */ 2484 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2485 mdname(mddev), s, 2486 (unsigned long long)( 2487 sect + 2488 choose_data_offset(r10_bio, rdev)), 2489 bdevname(rdev->bdev, b)); 2490 pr_notice("md/raid10:%s: %s: failing drive\n", 2491 mdname(mddev), 2492 bdevname(rdev->bdev, b)); 2493 break; 2494 case 1: 2495 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2496 mdname(mddev), s, 2497 (unsigned long long)( 2498 sect + 2499 choose_data_offset(r10_bio, rdev)), 2500 bdevname(rdev->bdev, b)); 2501 atomic_add(s, &rdev->corrected_errors); 2502 } 2503 2504 rdev_dec_pending(rdev, mddev); 2505 rcu_read_lock(); 2506 } 2507 rcu_read_unlock(); 2508 2509 sectors -= s; 2510 sect += s; 2511 } 2512 } 2513 2514 static int narrow_write_error(struct r10bio *r10_bio, int i) 2515 { 2516 struct bio *bio = r10_bio->master_bio; 2517 struct mddev *mddev = r10_bio->mddev; 2518 struct r10conf *conf = mddev->private; 2519 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2520 /* bio has the data to be written to slot 'i' where 2521 * we just recently had a write error. 2522 * We repeatedly clone the bio and trim down to one block, 2523 * then try the write. Where the write fails we record 2524 * a bad block. 2525 * It is conceivable that the bio doesn't exactly align with 2526 * blocks. We must handle this. 2527 * 2528 * We currently own a reference to the rdev. 2529 */ 2530 2531 int block_sectors; 2532 sector_t sector; 2533 int sectors; 2534 int sect_to_write = r10_bio->sectors; 2535 int ok = 1; 2536 2537 if (rdev->badblocks.shift < 0) 2538 return 0; 2539 2540 block_sectors = roundup(1 << rdev->badblocks.shift, 2541 bdev_logical_block_size(rdev->bdev) >> 9); 2542 sector = r10_bio->sector; 2543 sectors = ((r10_bio->sector + block_sectors) 2544 & ~(sector_t)(block_sectors - 1)) 2545 - sector; 2546 2547 while (sect_to_write) { 2548 struct bio *wbio; 2549 sector_t wsector; 2550 if (sectors > sect_to_write) 2551 sectors = sect_to_write; 2552 /* Write at 'sector' for 'sectors' */ 2553 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 2554 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2555 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2556 wbio->bi_iter.bi_sector = wsector + 2557 choose_data_offset(r10_bio, rdev); 2558 bio_set_dev(wbio, rdev->bdev); 2559 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2560 2561 if (submit_bio_wait(wbio) < 0) 2562 /* Failure! */ 2563 ok = rdev_set_badblocks(rdev, wsector, 2564 sectors, 0) 2565 && ok; 2566 2567 bio_put(wbio); 2568 sect_to_write -= sectors; 2569 sector += sectors; 2570 sectors = block_sectors; 2571 } 2572 return ok; 2573 } 2574 2575 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2576 { 2577 int slot = r10_bio->read_slot; 2578 struct bio *bio; 2579 struct r10conf *conf = mddev->private; 2580 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2581 2582 /* we got a read error. Maybe the drive is bad. Maybe just 2583 * the block and we can fix it. 2584 * We freeze all other IO, and try reading the block from 2585 * other devices. When we find one, we re-write 2586 * and check it that fixes the read error. 2587 * This is all done synchronously while the array is 2588 * frozen. 2589 */ 2590 bio = r10_bio->devs[slot].bio; 2591 bio_put(bio); 2592 r10_bio->devs[slot].bio = NULL; 2593 2594 if (mddev->ro) 2595 r10_bio->devs[slot].bio = IO_BLOCKED; 2596 else if (!test_bit(FailFast, &rdev->flags)) { 2597 freeze_array(conf, 1); 2598 fix_read_error(conf, mddev, r10_bio); 2599 unfreeze_array(conf); 2600 } else 2601 md_error(mddev, rdev); 2602 2603 rdev_dec_pending(rdev, mddev); 2604 allow_barrier(conf); 2605 r10_bio->state = 0; 2606 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2607 } 2608 2609 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2610 { 2611 /* Some sort of write request has finished and it 2612 * succeeded in writing where we thought there was a 2613 * bad block. So forget the bad block. 2614 * Or possibly if failed and we need to record 2615 * a bad block. 2616 */ 2617 int m; 2618 struct md_rdev *rdev; 2619 2620 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2621 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2622 for (m = 0; m < conf->copies; m++) { 2623 int dev = r10_bio->devs[m].devnum; 2624 rdev = conf->mirrors[dev].rdev; 2625 if (r10_bio->devs[m].bio == NULL || 2626 r10_bio->devs[m].bio->bi_end_io == NULL) 2627 continue; 2628 if (!r10_bio->devs[m].bio->bi_status) { 2629 rdev_clear_badblocks( 2630 rdev, 2631 r10_bio->devs[m].addr, 2632 r10_bio->sectors, 0); 2633 } else { 2634 if (!rdev_set_badblocks( 2635 rdev, 2636 r10_bio->devs[m].addr, 2637 r10_bio->sectors, 0)) 2638 md_error(conf->mddev, rdev); 2639 } 2640 rdev = conf->mirrors[dev].replacement; 2641 if (r10_bio->devs[m].repl_bio == NULL || 2642 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2643 continue; 2644 2645 if (!r10_bio->devs[m].repl_bio->bi_status) { 2646 rdev_clear_badblocks( 2647 rdev, 2648 r10_bio->devs[m].addr, 2649 r10_bio->sectors, 0); 2650 } else { 2651 if (!rdev_set_badblocks( 2652 rdev, 2653 r10_bio->devs[m].addr, 2654 r10_bio->sectors, 0)) 2655 md_error(conf->mddev, rdev); 2656 } 2657 } 2658 put_buf(r10_bio); 2659 } else { 2660 bool fail = false; 2661 for (m = 0; m < conf->copies; m++) { 2662 int dev = r10_bio->devs[m].devnum; 2663 struct bio *bio = r10_bio->devs[m].bio; 2664 rdev = conf->mirrors[dev].rdev; 2665 if (bio == IO_MADE_GOOD) { 2666 rdev_clear_badblocks( 2667 rdev, 2668 r10_bio->devs[m].addr, 2669 r10_bio->sectors, 0); 2670 rdev_dec_pending(rdev, conf->mddev); 2671 } else if (bio != NULL && bio->bi_status) { 2672 fail = true; 2673 if (!narrow_write_error(r10_bio, m)) { 2674 md_error(conf->mddev, rdev); 2675 set_bit(R10BIO_Degraded, 2676 &r10_bio->state); 2677 } 2678 rdev_dec_pending(rdev, conf->mddev); 2679 } 2680 bio = r10_bio->devs[m].repl_bio; 2681 rdev = conf->mirrors[dev].replacement; 2682 if (rdev && bio == IO_MADE_GOOD) { 2683 rdev_clear_badblocks( 2684 rdev, 2685 r10_bio->devs[m].addr, 2686 r10_bio->sectors, 0); 2687 rdev_dec_pending(rdev, conf->mddev); 2688 } 2689 } 2690 if (fail) { 2691 spin_lock_irq(&conf->device_lock); 2692 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2693 conf->nr_queued++; 2694 spin_unlock_irq(&conf->device_lock); 2695 /* 2696 * In case freeze_array() is waiting for condition 2697 * nr_pending == nr_queued + extra to be true. 2698 */ 2699 wake_up(&conf->wait_barrier); 2700 md_wakeup_thread(conf->mddev->thread); 2701 } else { 2702 if (test_bit(R10BIO_WriteError, 2703 &r10_bio->state)) 2704 close_write(r10_bio); 2705 raid_end_bio_io(r10_bio); 2706 } 2707 } 2708 } 2709 2710 static void raid10d(struct md_thread *thread) 2711 { 2712 struct mddev *mddev = thread->mddev; 2713 struct r10bio *r10_bio; 2714 unsigned long flags; 2715 struct r10conf *conf = mddev->private; 2716 struct list_head *head = &conf->retry_list; 2717 struct blk_plug plug; 2718 2719 md_check_recovery(mddev); 2720 2721 if (!list_empty_careful(&conf->bio_end_io_list) && 2722 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2723 LIST_HEAD(tmp); 2724 spin_lock_irqsave(&conf->device_lock, flags); 2725 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2726 while (!list_empty(&conf->bio_end_io_list)) { 2727 list_move(conf->bio_end_io_list.prev, &tmp); 2728 conf->nr_queued--; 2729 } 2730 } 2731 spin_unlock_irqrestore(&conf->device_lock, flags); 2732 while (!list_empty(&tmp)) { 2733 r10_bio = list_first_entry(&tmp, struct r10bio, 2734 retry_list); 2735 list_del(&r10_bio->retry_list); 2736 if (mddev->degraded) 2737 set_bit(R10BIO_Degraded, &r10_bio->state); 2738 2739 if (test_bit(R10BIO_WriteError, 2740 &r10_bio->state)) 2741 close_write(r10_bio); 2742 raid_end_bio_io(r10_bio); 2743 } 2744 } 2745 2746 blk_start_plug(&plug); 2747 for (;;) { 2748 2749 flush_pending_writes(conf); 2750 2751 spin_lock_irqsave(&conf->device_lock, flags); 2752 if (list_empty(head)) { 2753 spin_unlock_irqrestore(&conf->device_lock, flags); 2754 break; 2755 } 2756 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2757 list_del(head->prev); 2758 conf->nr_queued--; 2759 spin_unlock_irqrestore(&conf->device_lock, flags); 2760 2761 mddev = r10_bio->mddev; 2762 conf = mddev->private; 2763 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2764 test_bit(R10BIO_WriteError, &r10_bio->state)) 2765 handle_write_completed(conf, r10_bio); 2766 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2767 reshape_request_write(mddev, r10_bio); 2768 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2769 sync_request_write(mddev, r10_bio); 2770 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2771 recovery_request_write(mddev, r10_bio); 2772 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2773 handle_read_error(mddev, r10_bio); 2774 else 2775 WARN_ON_ONCE(1); 2776 2777 cond_resched(); 2778 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2779 md_check_recovery(mddev); 2780 } 2781 blk_finish_plug(&plug); 2782 } 2783 2784 static int init_resync(struct r10conf *conf) 2785 { 2786 int ret, buffs, i; 2787 2788 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2789 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 2790 conf->have_replacement = 0; 2791 for (i = 0; i < conf->geo.raid_disks; i++) 2792 if (conf->mirrors[i].replacement) 2793 conf->have_replacement = 1; 2794 ret = mempool_init(&conf->r10buf_pool, buffs, 2795 r10buf_pool_alloc, r10buf_pool_free, conf); 2796 if (ret) 2797 return ret; 2798 conf->next_resync = 0; 2799 return 0; 2800 } 2801 2802 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 2803 { 2804 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 2805 struct rsync_pages *rp; 2806 struct bio *bio; 2807 int nalloc; 2808 int i; 2809 2810 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 2811 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 2812 nalloc = conf->copies; /* resync */ 2813 else 2814 nalloc = 2; /* recovery */ 2815 2816 for (i = 0; i < nalloc; i++) { 2817 bio = r10bio->devs[i].bio; 2818 rp = bio->bi_private; 2819 bio_reset(bio); 2820 bio->bi_private = rp; 2821 bio = r10bio->devs[i].repl_bio; 2822 if (bio) { 2823 rp = bio->bi_private; 2824 bio_reset(bio); 2825 bio->bi_private = rp; 2826 } 2827 } 2828 return r10bio; 2829 } 2830 2831 /* 2832 * Set cluster_sync_high since we need other nodes to add the 2833 * range [cluster_sync_low, cluster_sync_high] to suspend list. 2834 */ 2835 static void raid10_set_cluster_sync_high(struct r10conf *conf) 2836 { 2837 sector_t window_size; 2838 int extra_chunk, chunks; 2839 2840 /* 2841 * First, here we define "stripe" as a unit which across 2842 * all member devices one time, so we get chunks by use 2843 * raid_disks / near_copies. Otherwise, if near_copies is 2844 * close to raid_disks, then resync window could increases 2845 * linearly with the increase of raid_disks, which means 2846 * we will suspend a really large IO window while it is not 2847 * necessary. If raid_disks is not divisible by near_copies, 2848 * an extra chunk is needed to ensure the whole "stripe" is 2849 * covered. 2850 */ 2851 2852 chunks = conf->geo.raid_disks / conf->geo.near_copies; 2853 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 2854 extra_chunk = 0; 2855 else 2856 extra_chunk = 1; 2857 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 2858 2859 /* 2860 * At least use a 32M window to align with raid1's resync window 2861 */ 2862 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 2863 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 2864 2865 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 2866 } 2867 2868 /* 2869 * perform a "sync" on one "block" 2870 * 2871 * We need to make sure that no normal I/O request - particularly write 2872 * requests - conflict with active sync requests. 2873 * 2874 * This is achieved by tracking pending requests and a 'barrier' concept 2875 * that can be installed to exclude normal IO requests. 2876 * 2877 * Resync and recovery are handled very differently. 2878 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2879 * 2880 * For resync, we iterate over virtual addresses, read all copies, 2881 * and update if there are differences. If only one copy is live, 2882 * skip it. 2883 * For recovery, we iterate over physical addresses, read a good 2884 * value for each non-in_sync drive, and over-write. 2885 * 2886 * So, for recovery we may have several outstanding complex requests for a 2887 * given address, one for each out-of-sync device. We model this by allocating 2888 * a number of r10_bio structures, one for each out-of-sync device. 2889 * As we setup these structures, we collect all bio's together into a list 2890 * which we then process collectively to add pages, and then process again 2891 * to pass to generic_make_request. 2892 * 2893 * The r10_bio structures are linked using a borrowed master_bio pointer. 2894 * This link is counted in ->remaining. When the r10_bio that points to NULL 2895 * has its remaining count decremented to 0, the whole complex operation 2896 * is complete. 2897 * 2898 */ 2899 2900 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 2901 int *skipped) 2902 { 2903 struct r10conf *conf = mddev->private; 2904 struct r10bio *r10_bio; 2905 struct bio *biolist = NULL, *bio; 2906 sector_t max_sector, nr_sectors; 2907 int i; 2908 int max_sync; 2909 sector_t sync_blocks; 2910 sector_t sectors_skipped = 0; 2911 int chunks_skipped = 0; 2912 sector_t chunk_mask = conf->geo.chunk_mask; 2913 int page_idx = 0; 2914 2915 if (!mempool_initialized(&conf->r10buf_pool)) 2916 if (init_resync(conf)) 2917 return 0; 2918 2919 /* 2920 * Allow skipping a full rebuild for incremental assembly 2921 * of a clean array, like RAID1 does. 2922 */ 2923 if (mddev->bitmap == NULL && 2924 mddev->recovery_cp == MaxSector && 2925 mddev->reshape_position == MaxSector && 2926 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2927 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2928 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2929 conf->fullsync == 0) { 2930 *skipped = 1; 2931 return mddev->dev_sectors - sector_nr; 2932 } 2933 2934 skipped: 2935 max_sector = mddev->dev_sectors; 2936 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2937 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2938 max_sector = mddev->resync_max_sectors; 2939 if (sector_nr >= max_sector) { 2940 conf->cluster_sync_low = 0; 2941 conf->cluster_sync_high = 0; 2942 2943 /* If we aborted, we need to abort the 2944 * sync on the 'current' bitmap chucks (there can 2945 * be several when recovering multiple devices). 2946 * as we may have started syncing it but not finished. 2947 * We can find the current address in 2948 * mddev->curr_resync, but for recovery, 2949 * we need to convert that to several 2950 * virtual addresses. 2951 */ 2952 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2953 end_reshape(conf); 2954 close_sync(conf); 2955 return 0; 2956 } 2957 2958 if (mddev->curr_resync < max_sector) { /* aborted */ 2959 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2960 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2961 &sync_blocks, 1); 2962 else for (i = 0; i < conf->geo.raid_disks; i++) { 2963 sector_t sect = 2964 raid10_find_virt(conf, mddev->curr_resync, i); 2965 md_bitmap_end_sync(mddev->bitmap, sect, 2966 &sync_blocks, 1); 2967 } 2968 } else { 2969 /* completed sync */ 2970 if ((!mddev->bitmap || conf->fullsync) 2971 && conf->have_replacement 2972 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2973 /* Completed a full sync so the replacements 2974 * are now fully recovered. 2975 */ 2976 rcu_read_lock(); 2977 for (i = 0; i < conf->geo.raid_disks; i++) { 2978 struct md_rdev *rdev = 2979 rcu_dereference(conf->mirrors[i].replacement); 2980 if (rdev) 2981 rdev->recovery_offset = MaxSector; 2982 } 2983 rcu_read_unlock(); 2984 } 2985 conf->fullsync = 0; 2986 } 2987 md_bitmap_close_sync(mddev->bitmap); 2988 close_sync(conf); 2989 *skipped = 1; 2990 return sectors_skipped; 2991 } 2992 2993 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2994 return reshape_request(mddev, sector_nr, skipped); 2995 2996 if (chunks_skipped >= conf->geo.raid_disks) { 2997 /* if there has been nothing to do on any drive, 2998 * then there is nothing to do at all.. 2999 */ 3000 *skipped = 1; 3001 return (max_sector - sector_nr) + sectors_skipped; 3002 } 3003 3004 if (max_sector > mddev->resync_max) 3005 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3006 3007 /* make sure whole request will fit in a chunk - if chunks 3008 * are meaningful 3009 */ 3010 if (conf->geo.near_copies < conf->geo.raid_disks && 3011 max_sector > (sector_nr | chunk_mask)) 3012 max_sector = (sector_nr | chunk_mask) + 1; 3013 3014 /* 3015 * If there is non-resync activity waiting for a turn, then let it 3016 * though before starting on this new sync request. 3017 */ 3018 if (conf->nr_waiting) 3019 schedule_timeout_uninterruptible(1); 3020 3021 /* Again, very different code for resync and recovery. 3022 * Both must result in an r10bio with a list of bios that 3023 * have bi_end_io, bi_sector, bi_disk set, 3024 * and bi_private set to the r10bio. 3025 * For recovery, we may actually create several r10bios 3026 * with 2 bios in each, that correspond to the bios in the main one. 3027 * In this case, the subordinate r10bios link back through a 3028 * borrowed master_bio pointer, and the counter in the master 3029 * includes a ref from each subordinate. 3030 */ 3031 /* First, we decide what to do and set ->bi_end_io 3032 * To end_sync_read if we want to read, and 3033 * end_sync_write if we will want to write. 3034 */ 3035 3036 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3037 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3038 /* recovery... the complicated one */ 3039 int j; 3040 r10_bio = NULL; 3041 3042 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3043 int still_degraded; 3044 struct r10bio *rb2; 3045 sector_t sect; 3046 int must_sync; 3047 int any_working; 3048 int need_recover = 0; 3049 int need_replace = 0; 3050 struct raid10_info *mirror = &conf->mirrors[i]; 3051 struct md_rdev *mrdev, *mreplace; 3052 3053 rcu_read_lock(); 3054 mrdev = rcu_dereference(mirror->rdev); 3055 mreplace = rcu_dereference(mirror->replacement); 3056 3057 if (mrdev != NULL && 3058 !test_bit(Faulty, &mrdev->flags) && 3059 !test_bit(In_sync, &mrdev->flags)) 3060 need_recover = 1; 3061 if (mreplace != NULL && 3062 !test_bit(Faulty, &mreplace->flags)) 3063 need_replace = 1; 3064 3065 if (!need_recover && !need_replace) { 3066 rcu_read_unlock(); 3067 continue; 3068 } 3069 3070 still_degraded = 0; 3071 /* want to reconstruct this device */ 3072 rb2 = r10_bio; 3073 sect = raid10_find_virt(conf, sector_nr, i); 3074 if (sect >= mddev->resync_max_sectors) { 3075 /* last stripe is not complete - don't 3076 * try to recover this sector. 3077 */ 3078 rcu_read_unlock(); 3079 continue; 3080 } 3081 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3082 mreplace = NULL; 3083 /* Unless we are doing a full sync, or a replacement 3084 * we only need to recover the block if it is set in 3085 * the bitmap 3086 */ 3087 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3088 &sync_blocks, 1); 3089 if (sync_blocks < max_sync) 3090 max_sync = sync_blocks; 3091 if (!must_sync && 3092 mreplace == NULL && 3093 !conf->fullsync) { 3094 /* yep, skip the sync_blocks here, but don't assume 3095 * that there will never be anything to do here 3096 */ 3097 chunks_skipped = -1; 3098 rcu_read_unlock(); 3099 continue; 3100 } 3101 atomic_inc(&mrdev->nr_pending); 3102 if (mreplace) 3103 atomic_inc(&mreplace->nr_pending); 3104 rcu_read_unlock(); 3105 3106 r10_bio = raid10_alloc_init_r10buf(conf); 3107 r10_bio->state = 0; 3108 raise_barrier(conf, rb2 != NULL); 3109 atomic_set(&r10_bio->remaining, 0); 3110 3111 r10_bio->master_bio = (struct bio*)rb2; 3112 if (rb2) 3113 atomic_inc(&rb2->remaining); 3114 r10_bio->mddev = mddev; 3115 set_bit(R10BIO_IsRecover, &r10_bio->state); 3116 r10_bio->sector = sect; 3117 3118 raid10_find_phys(conf, r10_bio); 3119 3120 /* Need to check if the array will still be 3121 * degraded 3122 */ 3123 rcu_read_lock(); 3124 for (j = 0; j < conf->geo.raid_disks; j++) { 3125 struct md_rdev *rdev = rcu_dereference( 3126 conf->mirrors[j].rdev); 3127 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3128 still_degraded = 1; 3129 break; 3130 } 3131 } 3132 3133 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3134 &sync_blocks, still_degraded); 3135 3136 any_working = 0; 3137 for (j=0; j<conf->copies;j++) { 3138 int k; 3139 int d = r10_bio->devs[j].devnum; 3140 sector_t from_addr, to_addr; 3141 struct md_rdev *rdev = 3142 rcu_dereference(conf->mirrors[d].rdev); 3143 sector_t sector, first_bad; 3144 int bad_sectors; 3145 if (!rdev || 3146 !test_bit(In_sync, &rdev->flags)) 3147 continue; 3148 /* This is where we read from */ 3149 any_working = 1; 3150 sector = r10_bio->devs[j].addr; 3151 3152 if (is_badblock(rdev, sector, max_sync, 3153 &first_bad, &bad_sectors)) { 3154 if (first_bad > sector) 3155 max_sync = first_bad - sector; 3156 else { 3157 bad_sectors -= (sector 3158 - first_bad); 3159 if (max_sync > bad_sectors) 3160 max_sync = bad_sectors; 3161 continue; 3162 } 3163 } 3164 bio = r10_bio->devs[0].bio; 3165 bio->bi_next = biolist; 3166 biolist = bio; 3167 bio->bi_end_io = end_sync_read; 3168 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3169 if (test_bit(FailFast, &rdev->flags)) 3170 bio->bi_opf |= MD_FAILFAST; 3171 from_addr = r10_bio->devs[j].addr; 3172 bio->bi_iter.bi_sector = from_addr + 3173 rdev->data_offset; 3174 bio_set_dev(bio, rdev->bdev); 3175 atomic_inc(&rdev->nr_pending); 3176 /* and we write to 'i' (if not in_sync) */ 3177 3178 for (k=0; k<conf->copies; k++) 3179 if (r10_bio->devs[k].devnum == i) 3180 break; 3181 BUG_ON(k == conf->copies); 3182 to_addr = r10_bio->devs[k].addr; 3183 r10_bio->devs[0].devnum = d; 3184 r10_bio->devs[0].addr = from_addr; 3185 r10_bio->devs[1].devnum = i; 3186 r10_bio->devs[1].addr = to_addr; 3187 3188 if (need_recover) { 3189 bio = r10_bio->devs[1].bio; 3190 bio->bi_next = biolist; 3191 biolist = bio; 3192 bio->bi_end_io = end_sync_write; 3193 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3194 bio->bi_iter.bi_sector = to_addr 3195 + mrdev->data_offset; 3196 bio_set_dev(bio, mrdev->bdev); 3197 atomic_inc(&r10_bio->remaining); 3198 } else 3199 r10_bio->devs[1].bio->bi_end_io = NULL; 3200 3201 /* and maybe write to replacement */ 3202 bio = r10_bio->devs[1].repl_bio; 3203 if (bio) 3204 bio->bi_end_io = NULL; 3205 /* Note: if need_replace, then bio 3206 * cannot be NULL as r10buf_pool_alloc will 3207 * have allocated it. 3208 */ 3209 if (!need_replace) 3210 break; 3211 bio->bi_next = biolist; 3212 biolist = bio; 3213 bio->bi_end_io = end_sync_write; 3214 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3215 bio->bi_iter.bi_sector = to_addr + 3216 mreplace->data_offset; 3217 bio_set_dev(bio, mreplace->bdev); 3218 atomic_inc(&r10_bio->remaining); 3219 break; 3220 } 3221 rcu_read_unlock(); 3222 if (j == conf->copies) { 3223 /* Cannot recover, so abort the recovery or 3224 * record a bad block */ 3225 if (any_working) { 3226 /* problem is that there are bad blocks 3227 * on other device(s) 3228 */ 3229 int k; 3230 for (k = 0; k < conf->copies; k++) 3231 if (r10_bio->devs[k].devnum == i) 3232 break; 3233 if (!test_bit(In_sync, 3234 &mrdev->flags) 3235 && !rdev_set_badblocks( 3236 mrdev, 3237 r10_bio->devs[k].addr, 3238 max_sync, 0)) 3239 any_working = 0; 3240 if (mreplace && 3241 !rdev_set_badblocks( 3242 mreplace, 3243 r10_bio->devs[k].addr, 3244 max_sync, 0)) 3245 any_working = 0; 3246 } 3247 if (!any_working) { 3248 if (!test_and_set_bit(MD_RECOVERY_INTR, 3249 &mddev->recovery)) 3250 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3251 mdname(mddev)); 3252 mirror->recovery_disabled 3253 = mddev->recovery_disabled; 3254 } 3255 put_buf(r10_bio); 3256 if (rb2) 3257 atomic_dec(&rb2->remaining); 3258 r10_bio = rb2; 3259 rdev_dec_pending(mrdev, mddev); 3260 if (mreplace) 3261 rdev_dec_pending(mreplace, mddev); 3262 break; 3263 } 3264 rdev_dec_pending(mrdev, mddev); 3265 if (mreplace) 3266 rdev_dec_pending(mreplace, mddev); 3267 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3268 /* Only want this if there is elsewhere to 3269 * read from. 'j' is currently the first 3270 * readable copy. 3271 */ 3272 int targets = 1; 3273 for (; j < conf->copies; j++) { 3274 int d = r10_bio->devs[j].devnum; 3275 if (conf->mirrors[d].rdev && 3276 test_bit(In_sync, 3277 &conf->mirrors[d].rdev->flags)) 3278 targets++; 3279 } 3280 if (targets == 1) 3281 r10_bio->devs[0].bio->bi_opf 3282 &= ~MD_FAILFAST; 3283 } 3284 } 3285 if (biolist == NULL) { 3286 while (r10_bio) { 3287 struct r10bio *rb2 = r10_bio; 3288 r10_bio = (struct r10bio*) rb2->master_bio; 3289 rb2->master_bio = NULL; 3290 put_buf(rb2); 3291 } 3292 goto giveup; 3293 } 3294 } else { 3295 /* resync. Schedule a read for every block at this virt offset */ 3296 int count = 0; 3297 3298 /* 3299 * Since curr_resync_completed could probably not update in 3300 * time, and we will set cluster_sync_low based on it. 3301 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3302 * safety reason, which ensures curr_resync_completed is 3303 * updated in bitmap_cond_end_sync. 3304 */ 3305 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3306 mddev_is_clustered(mddev) && 3307 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3308 3309 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3310 &sync_blocks, mddev->degraded) && 3311 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3312 &mddev->recovery)) { 3313 /* We can skip this block */ 3314 *skipped = 1; 3315 return sync_blocks + sectors_skipped; 3316 } 3317 if (sync_blocks < max_sync) 3318 max_sync = sync_blocks; 3319 r10_bio = raid10_alloc_init_r10buf(conf); 3320 r10_bio->state = 0; 3321 3322 r10_bio->mddev = mddev; 3323 atomic_set(&r10_bio->remaining, 0); 3324 raise_barrier(conf, 0); 3325 conf->next_resync = sector_nr; 3326 3327 r10_bio->master_bio = NULL; 3328 r10_bio->sector = sector_nr; 3329 set_bit(R10BIO_IsSync, &r10_bio->state); 3330 raid10_find_phys(conf, r10_bio); 3331 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3332 3333 for (i = 0; i < conf->copies; i++) { 3334 int d = r10_bio->devs[i].devnum; 3335 sector_t first_bad, sector; 3336 int bad_sectors; 3337 struct md_rdev *rdev; 3338 3339 if (r10_bio->devs[i].repl_bio) 3340 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3341 3342 bio = r10_bio->devs[i].bio; 3343 bio->bi_status = BLK_STS_IOERR; 3344 rcu_read_lock(); 3345 rdev = rcu_dereference(conf->mirrors[d].rdev); 3346 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3347 rcu_read_unlock(); 3348 continue; 3349 } 3350 sector = r10_bio->devs[i].addr; 3351 if (is_badblock(rdev, sector, max_sync, 3352 &first_bad, &bad_sectors)) { 3353 if (first_bad > sector) 3354 max_sync = first_bad - sector; 3355 else { 3356 bad_sectors -= (sector - first_bad); 3357 if (max_sync > bad_sectors) 3358 max_sync = bad_sectors; 3359 rcu_read_unlock(); 3360 continue; 3361 } 3362 } 3363 atomic_inc(&rdev->nr_pending); 3364 atomic_inc(&r10_bio->remaining); 3365 bio->bi_next = biolist; 3366 biolist = bio; 3367 bio->bi_end_io = end_sync_read; 3368 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3369 if (test_bit(FailFast, &rdev->flags)) 3370 bio->bi_opf |= MD_FAILFAST; 3371 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3372 bio_set_dev(bio, rdev->bdev); 3373 count++; 3374 3375 rdev = rcu_dereference(conf->mirrors[d].replacement); 3376 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3377 rcu_read_unlock(); 3378 continue; 3379 } 3380 atomic_inc(&rdev->nr_pending); 3381 3382 /* Need to set up for writing to the replacement */ 3383 bio = r10_bio->devs[i].repl_bio; 3384 bio->bi_status = BLK_STS_IOERR; 3385 3386 sector = r10_bio->devs[i].addr; 3387 bio->bi_next = biolist; 3388 biolist = bio; 3389 bio->bi_end_io = end_sync_write; 3390 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3391 if (test_bit(FailFast, &rdev->flags)) 3392 bio->bi_opf |= MD_FAILFAST; 3393 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3394 bio_set_dev(bio, rdev->bdev); 3395 count++; 3396 rcu_read_unlock(); 3397 } 3398 3399 if (count < 2) { 3400 for (i=0; i<conf->copies; i++) { 3401 int d = r10_bio->devs[i].devnum; 3402 if (r10_bio->devs[i].bio->bi_end_io) 3403 rdev_dec_pending(conf->mirrors[d].rdev, 3404 mddev); 3405 if (r10_bio->devs[i].repl_bio && 3406 r10_bio->devs[i].repl_bio->bi_end_io) 3407 rdev_dec_pending( 3408 conf->mirrors[d].replacement, 3409 mddev); 3410 } 3411 put_buf(r10_bio); 3412 biolist = NULL; 3413 goto giveup; 3414 } 3415 } 3416 3417 nr_sectors = 0; 3418 if (sector_nr + max_sync < max_sector) 3419 max_sector = sector_nr + max_sync; 3420 do { 3421 struct page *page; 3422 int len = PAGE_SIZE; 3423 if (sector_nr + (len>>9) > max_sector) 3424 len = (max_sector - sector_nr) << 9; 3425 if (len == 0) 3426 break; 3427 for (bio= biolist ; bio ; bio=bio->bi_next) { 3428 struct resync_pages *rp = get_resync_pages(bio); 3429 page = resync_fetch_page(rp, page_idx); 3430 /* 3431 * won't fail because the vec table is big enough 3432 * to hold all these pages 3433 */ 3434 bio_add_page(bio, page, len, 0); 3435 } 3436 nr_sectors += len>>9; 3437 sector_nr += len>>9; 3438 } while (++page_idx < RESYNC_PAGES); 3439 r10_bio->sectors = nr_sectors; 3440 3441 if (mddev_is_clustered(mddev) && 3442 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3443 /* It is resync not recovery */ 3444 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3445 conf->cluster_sync_low = mddev->curr_resync_completed; 3446 raid10_set_cluster_sync_high(conf); 3447 /* Send resync message */ 3448 md_cluster_ops->resync_info_update(mddev, 3449 conf->cluster_sync_low, 3450 conf->cluster_sync_high); 3451 } 3452 } else if (mddev_is_clustered(mddev)) { 3453 /* This is recovery not resync */ 3454 sector_t sect_va1, sect_va2; 3455 bool broadcast_msg = false; 3456 3457 for (i = 0; i < conf->geo.raid_disks; i++) { 3458 /* 3459 * sector_nr is a device address for recovery, so we 3460 * need translate it to array address before compare 3461 * with cluster_sync_high. 3462 */ 3463 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3464 3465 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3466 broadcast_msg = true; 3467 /* 3468 * curr_resync_completed is similar as 3469 * sector_nr, so make the translation too. 3470 */ 3471 sect_va2 = raid10_find_virt(conf, 3472 mddev->curr_resync_completed, i); 3473 3474 if (conf->cluster_sync_low == 0 || 3475 conf->cluster_sync_low > sect_va2) 3476 conf->cluster_sync_low = sect_va2; 3477 } 3478 } 3479 if (broadcast_msg) { 3480 raid10_set_cluster_sync_high(conf); 3481 md_cluster_ops->resync_info_update(mddev, 3482 conf->cluster_sync_low, 3483 conf->cluster_sync_high); 3484 } 3485 } 3486 3487 while (biolist) { 3488 bio = biolist; 3489 biolist = biolist->bi_next; 3490 3491 bio->bi_next = NULL; 3492 r10_bio = get_resync_r10bio(bio); 3493 r10_bio->sectors = nr_sectors; 3494 3495 if (bio->bi_end_io == end_sync_read) { 3496 md_sync_acct_bio(bio, nr_sectors); 3497 bio->bi_status = 0; 3498 generic_make_request(bio); 3499 } 3500 } 3501 3502 if (sectors_skipped) 3503 /* pretend they weren't skipped, it makes 3504 * no important difference in this case 3505 */ 3506 md_done_sync(mddev, sectors_skipped, 1); 3507 3508 return sectors_skipped + nr_sectors; 3509 giveup: 3510 /* There is nowhere to write, so all non-sync 3511 * drives must be failed or in resync, all drives 3512 * have a bad block, so try the next chunk... 3513 */ 3514 if (sector_nr + max_sync < max_sector) 3515 max_sector = sector_nr + max_sync; 3516 3517 sectors_skipped += (max_sector - sector_nr); 3518 chunks_skipped ++; 3519 sector_nr = max_sector; 3520 goto skipped; 3521 } 3522 3523 static sector_t 3524 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3525 { 3526 sector_t size; 3527 struct r10conf *conf = mddev->private; 3528 3529 if (!raid_disks) 3530 raid_disks = min(conf->geo.raid_disks, 3531 conf->prev.raid_disks); 3532 if (!sectors) 3533 sectors = conf->dev_sectors; 3534 3535 size = sectors >> conf->geo.chunk_shift; 3536 sector_div(size, conf->geo.far_copies); 3537 size = size * raid_disks; 3538 sector_div(size, conf->geo.near_copies); 3539 3540 return size << conf->geo.chunk_shift; 3541 } 3542 3543 static void calc_sectors(struct r10conf *conf, sector_t size) 3544 { 3545 /* Calculate the number of sectors-per-device that will 3546 * actually be used, and set conf->dev_sectors and 3547 * conf->stride 3548 */ 3549 3550 size = size >> conf->geo.chunk_shift; 3551 sector_div(size, conf->geo.far_copies); 3552 size = size * conf->geo.raid_disks; 3553 sector_div(size, conf->geo.near_copies); 3554 /* 'size' is now the number of chunks in the array */ 3555 /* calculate "used chunks per device" */ 3556 size = size * conf->copies; 3557 3558 /* We need to round up when dividing by raid_disks to 3559 * get the stride size. 3560 */ 3561 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3562 3563 conf->dev_sectors = size << conf->geo.chunk_shift; 3564 3565 if (conf->geo.far_offset) 3566 conf->geo.stride = 1 << conf->geo.chunk_shift; 3567 else { 3568 sector_div(size, conf->geo.far_copies); 3569 conf->geo.stride = size << conf->geo.chunk_shift; 3570 } 3571 } 3572 3573 enum geo_type {geo_new, geo_old, geo_start}; 3574 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3575 { 3576 int nc, fc, fo; 3577 int layout, chunk, disks; 3578 switch (new) { 3579 case geo_old: 3580 layout = mddev->layout; 3581 chunk = mddev->chunk_sectors; 3582 disks = mddev->raid_disks - mddev->delta_disks; 3583 break; 3584 case geo_new: 3585 layout = mddev->new_layout; 3586 chunk = mddev->new_chunk_sectors; 3587 disks = mddev->raid_disks; 3588 break; 3589 default: /* avoid 'may be unused' warnings */ 3590 case geo_start: /* new when starting reshape - raid_disks not 3591 * updated yet. */ 3592 layout = mddev->new_layout; 3593 chunk = mddev->new_chunk_sectors; 3594 disks = mddev->raid_disks + mddev->delta_disks; 3595 break; 3596 } 3597 if (layout >> 19) 3598 return -1; 3599 if (chunk < (PAGE_SIZE >> 9) || 3600 !is_power_of_2(chunk)) 3601 return -2; 3602 nc = layout & 255; 3603 fc = (layout >> 8) & 255; 3604 fo = layout & (1<<16); 3605 geo->raid_disks = disks; 3606 geo->near_copies = nc; 3607 geo->far_copies = fc; 3608 geo->far_offset = fo; 3609 switch (layout >> 17) { 3610 case 0: /* original layout. simple but not always optimal */ 3611 geo->far_set_size = disks; 3612 break; 3613 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3614 * actually using this, but leave code here just in case.*/ 3615 geo->far_set_size = disks/fc; 3616 WARN(geo->far_set_size < fc, 3617 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3618 break; 3619 case 2: /* "improved" layout fixed to match documentation */ 3620 geo->far_set_size = fc * nc; 3621 break; 3622 default: /* Not a valid layout */ 3623 return -1; 3624 } 3625 geo->chunk_mask = chunk - 1; 3626 geo->chunk_shift = ffz(~chunk); 3627 return nc*fc; 3628 } 3629 3630 static struct r10conf *setup_conf(struct mddev *mddev) 3631 { 3632 struct r10conf *conf = NULL; 3633 int err = -EINVAL; 3634 struct geom geo; 3635 int copies; 3636 3637 copies = setup_geo(&geo, mddev, geo_new); 3638 3639 if (copies == -2) { 3640 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3641 mdname(mddev), PAGE_SIZE); 3642 goto out; 3643 } 3644 3645 if (copies < 2 || copies > mddev->raid_disks) { 3646 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3647 mdname(mddev), mddev->new_layout); 3648 goto out; 3649 } 3650 3651 err = -ENOMEM; 3652 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3653 if (!conf) 3654 goto out; 3655 3656 /* FIXME calc properly */ 3657 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3658 sizeof(struct raid10_info), 3659 GFP_KERNEL); 3660 if (!conf->mirrors) 3661 goto out; 3662 3663 conf->tmppage = alloc_page(GFP_KERNEL); 3664 if (!conf->tmppage) 3665 goto out; 3666 3667 conf->geo = geo; 3668 conf->copies = copies; 3669 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 3670 rbio_pool_free, conf); 3671 if (err) 3672 goto out; 3673 3674 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3675 if (err) 3676 goto out; 3677 3678 calc_sectors(conf, mddev->dev_sectors); 3679 if (mddev->reshape_position == MaxSector) { 3680 conf->prev = conf->geo; 3681 conf->reshape_progress = MaxSector; 3682 } else { 3683 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3684 err = -EINVAL; 3685 goto out; 3686 } 3687 conf->reshape_progress = mddev->reshape_position; 3688 if (conf->prev.far_offset) 3689 conf->prev.stride = 1 << conf->prev.chunk_shift; 3690 else 3691 /* far_copies must be 1 */ 3692 conf->prev.stride = conf->dev_sectors; 3693 } 3694 conf->reshape_safe = conf->reshape_progress; 3695 spin_lock_init(&conf->device_lock); 3696 INIT_LIST_HEAD(&conf->retry_list); 3697 INIT_LIST_HEAD(&conf->bio_end_io_list); 3698 3699 spin_lock_init(&conf->resync_lock); 3700 init_waitqueue_head(&conf->wait_barrier); 3701 atomic_set(&conf->nr_pending, 0); 3702 3703 err = -ENOMEM; 3704 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3705 if (!conf->thread) 3706 goto out; 3707 3708 conf->mddev = mddev; 3709 return conf; 3710 3711 out: 3712 if (conf) { 3713 mempool_exit(&conf->r10bio_pool); 3714 kfree(conf->mirrors); 3715 safe_put_page(conf->tmppage); 3716 bioset_exit(&conf->bio_split); 3717 kfree(conf); 3718 } 3719 return ERR_PTR(err); 3720 } 3721 3722 static int raid10_run(struct mddev *mddev) 3723 { 3724 struct r10conf *conf; 3725 int i, disk_idx, chunk_size; 3726 struct raid10_info *disk; 3727 struct md_rdev *rdev; 3728 sector_t size; 3729 sector_t min_offset_diff = 0; 3730 int first = 1; 3731 bool discard_supported = false; 3732 3733 if (mddev_init_writes_pending(mddev) < 0) 3734 return -ENOMEM; 3735 3736 if (mddev->private == NULL) { 3737 conf = setup_conf(mddev); 3738 if (IS_ERR(conf)) 3739 return PTR_ERR(conf); 3740 mddev->private = conf; 3741 } 3742 conf = mddev->private; 3743 if (!conf) 3744 goto out; 3745 3746 if (mddev_is_clustered(conf->mddev)) { 3747 int fc, fo; 3748 3749 fc = (mddev->layout >> 8) & 255; 3750 fo = mddev->layout & (1<<16); 3751 if (fc > 1 || fo > 0) { 3752 pr_err("only near layout is supported by clustered" 3753 " raid10\n"); 3754 goto out_free_conf; 3755 } 3756 } 3757 3758 mddev->thread = conf->thread; 3759 conf->thread = NULL; 3760 3761 chunk_size = mddev->chunk_sectors << 9; 3762 if (mddev->queue) { 3763 blk_queue_max_discard_sectors(mddev->queue, 3764 mddev->chunk_sectors); 3765 blk_queue_max_write_same_sectors(mddev->queue, 0); 3766 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3767 blk_queue_io_min(mddev->queue, chunk_size); 3768 if (conf->geo.raid_disks % conf->geo.near_copies) 3769 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3770 else 3771 blk_queue_io_opt(mddev->queue, chunk_size * 3772 (conf->geo.raid_disks / conf->geo.near_copies)); 3773 } 3774 3775 rdev_for_each(rdev, mddev) { 3776 long long diff; 3777 3778 disk_idx = rdev->raid_disk; 3779 if (disk_idx < 0) 3780 continue; 3781 if (disk_idx >= conf->geo.raid_disks && 3782 disk_idx >= conf->prev.raid_disks) 3783 continue; 3784 disk = conf->mirrors + disk_idx; 3785 3786 if (test_bit(Replacement, &rdev->flags)) { 3787 if (disk->replacement) 3788 goto out_free_conf; 3789 disk->replacement = rdev; 3790 } else { 3791 if (disk->rdev) 3792 goto out_free_conf; 3793 disk->rdev = rdev; 3794 } 3795 diff = (rdev->new_data_offset - rdev->data_offset); 3796 if (!mddev->reshape_backwards) 3797 diff = -diff; 3798 if (diff < 0) 3799 diff = 0; 3800 if (first || diff < min_offset_diff) 3801 min_offset_diff = diff; 3802 3803 if (mddev->gendisk) 3804 disk_stack_limits(mddev->gendisk, rdev->bdev, 3805 rdev->data_offset << 9); 3806 3807 disk->head_position = 0; 3808 3809 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3810 discard_supported = true; 3811 first = 0; 3812 } 3813 3814 if (mddev->queue) { 3815 if (discard_supported) 3816 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3817 mddev->queue); 3818 else 3819 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3820 mddev->queue); 3821 } 3822 /* need to check that every block has at least one working mirror */ 3823 if (!enough(conf, -1)) { 3824 pr_err("md/raid10:%s: not enough operational mirrors.\n", 3825 mdname(mddev)); 3826 goto out_free_conf; 3827 } 3828 3829 if (conf->reshape_progress != MaxSector) { 3830 /* must ensure that shape change is supported */ 3831 if (conf->geo.far_copies != 1 && 3832 conf->geo.far_offset == 0) 3833 goto out_free_conf; 3834 if (conf->prev.far_copies != 1 && 3835 conf->prev.far_offset == 0) 3836 goto out_free_conf; 3837 } 3838 3839 mddev->degraded = 0; 3840 for (i = 0; 3841 i < conf->geo.raid_disks 3842 || i < conf->prev.raid_disks; 3843 i++) { 3844 3845 disk = conf->mirrors + i; 3846 3847 if (!disk->rdev && disk->replacement) { 3848 /* The replacement is all we have - use it */ 3849 disk->rdev = disk->replacement; 3850 disk->replacement = NULL; 3851 clear_bit(Replacement, &disk->rdev->flags); 3852 } 3853 3854 if (!disk->rdev || 3855 !test_bit(In_sync, &disk->rdev->flags)) { 3856 disk->head_position = 0; 3857 mddev->degraded++; 3858 if (disk->rdev && 3859 disk->rdev->saved_raid_disk < 0) 3860 conf->fullsync = 1; 3861 } 3862 3863 if (disk->replacement && 3864 !test_bit(In_sync, &disk->replacement->flags) && 3865 disk->replacement->saved_raid_disk < 0) { 3866 conf->fullsync = 1; 3867 } 3868 3869 disk->recovery_disabled = mddev->recovery_disabled - 1; 3870 } 3871 3872 if (mddev->recovery_cp != MaxSector) 3873 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 3874 mdname(mddev)); 3875 pr_info("md/raid10:%s: active with %d out of %d devices\n", 3876 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3877 conf->geo.raid_disks); 3878 /* 3879 * Ok, everything is just fine now 3880 */ 3881 mddev->dev_sectors = conf->dev_sectors; 3882 size = raid10_size(mddev, 0, 0); 3883 md_set_array_sectors(mddev, size); 3884 mddev->resync_max_sectors = size; 3885 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3886 3887 if (mddev->queue) { 3888 int stripe = conf->geo.raid_disks * 3889 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3890 3891 /* Calculate max read-ahead size. 3892 * We need to readahead at least twice a whole stripe.... 3893 * maybe... 3894 */ 3895 stripe /= conf->geo.near_copies; 3896 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 3897 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 3898 } 3899 3900 if (md_integrity_register(mddev)) 3901 goto out_free_conf; 3902 3903 if (conf->reshape_progress != MaxSector) { 3904 unsigned long before_length, after_length; 3905 3906 before_length = ((1 << conf->prev.chunk_shift) * 3907 conf->prev.far_copies); 3908 after_length = ((1 << conf->geo.chunk_shift) * 3909 conf->geo.far_copies); 3910 3911 if (max(before_length, after_length) > min_offset_diff) { 3912 /* This cannot work */ 3913 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 3914 goto out_free_conf; 3915 } 3916 conf->offset_diff = min_offset_diff; 3917 3918 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3919 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3920 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3921 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3922 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3923 "reshape"); 3924 if (!mddev->sync_thread) 3925 goto out_free_conf; 3926 } 3927 3928 return 0; 3929 3930 out_free_conf: 3931 md_unregister_thread(&mddev->thread); 3932 mempool_exit(&conf->r10bio_pool); 3933 safe_put_page(conf->tmppage); 3934 kfree(conf->mirrors); 3935 kfree(conf); 3936 mddev->private = NULL; 3937 out: 3938 return -EIO; 3939 } 3940 3941 static void raid10_free(struct mddev *mddev, void *priv) 3942 { 3943 struct r10conf *conf = priv; 3944 3945 mempool_exit(&conf->r10bio_pool); 3946 safe_put_page(conf->tmppage); 3947 kfree(conf->mirrors); 3948 kfree(conf->mirrors_old); 3949 kfree(conf->mirrors_new); 3950 bioset_exit(&conf->bio_split); 3951 kfree(conf); 3952 } 3953 3954 static void raid10_quiesce(struct mddev *mddev, int quiesce) 3955 { 3956 struct r10conf *conf = mddev->private; 3957 3958 if (quiesce) 3959 raise_barrier(conf, 0); 3960 else 3961 lower_barrier(conf); 3962 } 3963 3964 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3965 { 3966 /* Resize of 'far' arrays is not supported. 3967 * For 'near' and 'offset' arrays we can set the 3968 * number of sectors used to be an appropriate multiple 3969 * of the chunk size. 3970 * For 'offset', this is far_copies*chunksize. 3971 * For 'near' the multiplier is the LCM of 3972 * near_copies and raid_disks. 3973 * So if far_copies > 1 && !far_offset, fail. 3974 * Else find LCM(raid_disks, near_copy)*far_copies and 3975 * multiply by chunk_size. Then round to this number. 3976 * This is mostly done by raid10_size() 3977 */ 3978 struct r10conf *conf = mddev->private; 3979 sector_t oldsize, size; 3980 3981 if (mddev->reshape_position != MaxSector) 3982 return -EBUSY; 3983 3984 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3985 return -EINVAL; 3986 3987 oldsize = raid10_size(mddev, 0, 0); 3988 size = raid10_size(mddev, sectors, 0); 3989 if (mddev->external_size && 3990 mddev->array_sectors > size) 3991 return -EINVAL; 3992 if (mddev->bitmap) { 3993 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 3994 if (ret) 3995 return ret; 3996 } 3997 md_set_array_sectors(mddev, size); 3998 if (sectors > mddev->dev_sectors && 3999 mddev->recovery_cp > oldsize) { 4000 mddev->recovery_cp = oldsize; 4001 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4002 } 4003 calc_sectors(conf, sectors); 4004 mddev->dev_sectors = conf->dev_sectors; 4005 mddev->resync_max_sectors = size; 4006 return 0; 4007 } 4008 4009 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4010 { 4011 struct md_rdev *rdev; 4012 struct r10conf *conf; 4013 4014 if (mddev->degraded > 0) { 4015 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4016 mdname(mddev)); 4017 return ERR_PTR(-EINVAL); 4018 } 4019 sector_div(size, devs); 4020 4021 /* Set new parameters */ 4022 mddev->new_level = 10; 4023 /* new layout: far_copies = 1, near_copies = 2 */ 4024 mddev->new_layout = (1<<8) + 2; 4025 mddev->new_chunk_sectors = mddev->chunk_sectors; 4026 mddev->delta_disks = mddev->raid_disks; 4027 mddev->raid_disks *= 2; 4028 /* make sure it will be not marked as dirty */ 4029 mddev->recovery_cp = MaxSector; 4030 mddev->dev_sectors = size; 4031 4032 conf = setup_conf(mddev); 4033 if (!IS_ERR(conf)) { 4034 rdev_for_each(rdev, mddev) 4035 if (rdev->raid_disk >= 0) { 4036 rdev->new_raid_disk = rdev->raid_disk * 2; 4037 rdev->sectors = size; 4038 } 4039 conf->barrier = 1; 4040 } 4041 4042 return conf; 4043 } 4044 4045 static void *raid10_takeover(struct mddev *mddev) 4046 { 4047 struct r0conf *raid0_conf; 4048 4049 /* raid10 can take over: 4050 * raid0 - providing it has only two drives 4051 */ 4052 if (mddev->level == 0) { 4053 /* for raid0 takeover only one zone is supported */ 4054 raid0_conf = mddev->private; 4055 if (raid0_conf->nr_strip_zones > 1) { 4056 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4057 mdname(mddev)); 4058 return ERR_PTR(-EINVAL); 4059 } 4060 return raid10_takeover_raid0(mddev, 4061 raid0_conf->strip_zone->zone_end, 4062 raid0_conf->strip_zone->nb_dev); 4063 } 4064 return ERR_PTR(-EINVAL); 4065 } 4066 4067 static int raid10_check_reshape(struct mddev *mddev) 4068 { 4069 /* Called when there is a request to change 4070 * - layout (to ->new_layout) 4071 * - chunk size (to ->new_chunk_sectors) 4072 * - raid_disks (by delta_disks) 4073 * or when trying to restart a reshape that was ongoing. 4074 * 4075 * We need to validate the request and possibly allocate 4076 * space if that might be an issue later. 4077 * 4078 * Currently we reject any reshape of a 'far' mode array, 4079 * allow chunk size to change if new is generally acceptable, 4080 * allow raid_disks to increase, and allow 4081 * a switch between 'near' mode and 'offset' mode. 4082 */ 4083 struct r10conf *conf = mddev->private; 4084 struct geom geo; 4085 4086 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4087 return -EINVAL; 4088 4089 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4090 /* mustn't change number of copies */ 4091 return -EINVAL; 4092 if (geo.far_copies > 1 && !geo.far_offset) 4093 /* Cannot switch to 'far' mode */ 4094 return -EINVAL; 4095 4096 if (mddev->array_sectors & geo.chunk_mask) 4097 /* not factor of array size */ 4098 return -EINVAL; 4099 4100 if (!enough(conf, -1)) 4101 return -EINVAL; 4102 4103 kfree(conf->mirrors_new); 4104 conf->mirrors_new = NULL; 4105 if (mddev->delta_disks > 0) { 4106 /* allocate new 'mirrors' list */ 4107 conf->mirrors_new = 4108 kcalloc(mddev->raid_disks + mddev->delta_disks, 4109 sizeof(struct raid10_info), 4110 GFP_KERNEL); 4111 if (!conf->mirrors_new) 4112 return -ENOMEM; 4113 } 4114 return 0; 4115 } 4116 4117 /* 4118 * Need to check if array has failed when deciding whether to: 4119 * - start an array 4120 * - remove non-faulty devices 4121 * - add a spare 4122 * - allow a reshape 4123 * This determination is simple when no reshape is happening. 4124 * However if there is a reshape, we need to carefully check 4125 * both the before and after sections. 4126 * This is because some failed devices may only affect one 4127 * of the two sections, and some non-in_sync devices may 4128 * be insync in the section most affected by failed devices. 4129 */ 4130 static int calc_degraded(struct r10conf *conf) 4131 { 4132 int degraded, degraded2; 4133 int i; 4134 4135 rcu_read_lock(); 4136 degraded = 0; 4137 /* 'prev' section first */ 4138 for (i = 0; i < conf->prev.raid_disks; i++) { 4139 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4140 if (!rdev || test_bit(Faulty, &rdev->flags)) 4141 degraded++; 4142 else if (!test_bit(In_sync, &rdev->flags)) 4143 /* When we can reduce the number of devices in 4144 * an array, this might not contribute to 4145 * 'degraded'. It does now. 4146 */ 4147 degraded++; 4148 } 4149 rcu_read_unlock(); 4150 if (conf->geo.raid_disks == conf->prev.raid_disks) 4151 return degraded; 4152 rcu_read_lock(); 4153 degraded2 = 0; 4154 for (i = 0; i < conf->geo.raid_disks; i++) { 4155 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4156 if (!rdev || test_bit(Faulty, &rdev->flags)) 4157 degraded2++; 4158 else if (!test_bit(In_sync, &rdev->flags)) { 4159 /* If reshape is increasing the number of devices, 4160 * this section has already been recovered, so 4161 * it doesn't contribute to degraded. 4162 * else it does. 4163 */ 4164 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4165 degraded2++; 4166 } 4167 } 4168 rcu_read_unlock(); 4169 if (degraded2 > degraded) 4170 return degraded2; 4171 return degraded; 4172 } 4173 4174 static int raid10_start_reshape(struct mddev *mddev) 4175 { 4176 /* A 'reshape' has been requested. This commits 4177 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4178 * This also checks if there are enough spares and adds them 4179 * to the array. 4180 * We currently require enough spares to make the final 4181 * array non-degraded. We also require that the difference 4182 * between old and new data_offset - on each device - is 4183 * enough that we never risk over-writing. 4184 */ 4185 4186 unsigned long before_length, after_length; 4187 sector_t min_offset_diff = 0; 4188 int first = 1; 4189 struct geom new; 4190 struct r10conf *conf = mddev->private; 4191 struct md_rdev *rdev; 4192 int spares = 0; 4193 int ret; 4194 4195 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4196 return -EBUSY; 4197 4198 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4199 return -EINVAL; 4200 4201 before_length = ((1 << conf->prev.chunk_shift) * 4202 conf->prev.far_copies); 4203 after_length = ((1 << conf->geo.chunk_shift) * 4204 conf->geo.far_copies); 4205 4206 rdev_for_each(rdev, mddev) { 4207 if (!test_bit(In_sync, &rdev->flags) 4208 && !test_bit(Faulty, &rdev->flags)) 4209 spares++; 4210 if (rdev->raid_disk >= 0) { 4211 long long diff = (rdev->new_data_offset 4212 - rdev->data_offset); 4213 if (!mddev->reshape_backwards) 4214 diff = -diff; 4215 if (diff < 0) 4216 diff = 0; 4217 if (first || diff < min_offset_diff) 4218 min_offset_diff = diff; 4219 first = 0; 4220 } 4221 } 4222 4223 if (max(before_length, after_length) > min_offset_diff) 4224 return -EINVAL; 4225 4226 if (spares < mddev->delta_disks) 4227 return -EINVAL; 4228 4229 conf->offset_diff = min_offset_diff; 4230 spin_lock_irq(&conf->device_lock); 4231 if (conf->mirrors_new) { 4232 memcpy(conf->mirrors_new, conf->mirrors, 4233 sizeof(struct raid10_info)*conf->prev.raid_disks); 4234 smp_mb(); 4235 kfree(conf->mirrors_old); 4236 conf->mirrors_old = conf->mirrors; 4237 conf->mirrors = conf->mirrors_new; 4238 conf->mirrors_new = NULL; 4239 } 4240 setup_geo(&conf->geo, mddev, geo_start); 4241 smp_mb(); 4242 if (mddev->reshape_backwards) { 4243 sector_t size = raid10_size(mddev, 0, 0); 4244 if (size < mddev->array_sectors) { 4245 spin_unlock_irq(&conf->device_lock); 4246 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4247 mdname(mddev)); 4248 return -EINVAL; 4249 } 4250 mddev->resync_max_sectors = size; 4251 conf->reshape_progress = size; 4252 } else 4253 conf->reshape_progress = 0; 4254 conf->reshape_safe = conf->reshape_progress; 4255 spin_unlock_irq(&conf->device_lock); 4256 4257 if (mddev->delta_disks && mddev->bitmap) { 4258 struct mdp_superblock_1 *sb = NULL; 4259 sector_t oldsize, newsize; 4260 4261 oldsize = raid10_size(mddev, 0, 0); 4262 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4263 4264 if (!mddev_is_clustered(mddev)) { 4265 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4266 if (ret) 4267 goto abort; 4268 else 4269 goto out; 4270 } 4271 4272 rdev_for_each(rdev, mddev) { 4273 if (rdev->raid_disk > -1 && 4274 !test_bit(Faulty, &rdev->flags)) 4275 sb = page_address(rdev->sb_page); 4276 } 4277 4278 /* 4279 * some node is already performing reshape, and no need to 4280 * call md_bitmap_resize again since it should be called when 4281 * receiving BITMAP_RESIZE msg 4282 */ 4283 if ((sb && (le32_to_cpu(sb->feature_map) & 4284 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4285 goto out; 4286 4287 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4288 if (ret) 4289 goto abort; 4290 4291 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4292 if (ret) { 4293 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4294 goto abort; 4295 } 4296 } 4297 out: 4298 if (mddev->delta_disks > 0) { 4299 rdev_for_each(rdev, mddev) 4300 if (rdev->raid_disk < 0 && 4301 !test_bit(Faulty, &rdev->flags)) { 4302 if (raid10_add_disk(mddev, rdev) == 0) { 4303 if (rdev->raid_disk >= 4304 conf->prev.raid_disks) 4305 set_bit(In_sync, &rdev->flags); 4306 else 4307 rdev->recovery_offset = 0; 4308 4309 if (sysfs_link_rdev(mddev, rdev)) 4310 /* Failure here is OK */; 4311 } 4312 } else if (rdev->raid_disk >= conf->prev.raid_disks 4313 && !test_bit(Faulty, &rdev->flags)) { 4314 /* This is a spare that was manually added */ 4315 set_bit(In_sync, &rdev->flags); 4316 } 4317 } 4318 /* When a reshape changes the number of devices, 4319 * ->degraded is measured against the larger of the 4320 * pre and post numbers. 4321 */ 4322 spin_lock_irq(&conf->device_lock); 4323 mddev->degraded = calc_degraded(conf); 4324 spin_unlock_irq(&conf->device_lock); 4325 mddev->raid_disks = conf->geo.raid_disks; 4326 mddev->reshape_position = conf->reshape_progress; 4327 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4328 4329 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4330 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4331 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4332 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4333 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4334 4335 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4336 "reshape"); 4337 if (!mddev->sync_thread) { 4338 ret = -EAGAIN; 4339 goto abort; 4340 } 4341 conf->reshape_checkpoint = jiffies; 4342 md_wakeup_thread(mddev->sync_thread); 4343 md_new_event(mddev); 4344 return 0; 4345 4346 abort: 4347 mddev->recovery = 0; 4348 spin_lock_irq(&conf->device_lock); 4349 conf->geo = conf->prev; 4350 mddev->raid_disks = conf->geo.raid_disks; 4351 rdev_for_each(rdev, mddev) 4352 rdev->new_data_offset = rdev->data_offset; 4353 smp_wmb(); 4354 conf->reshape_progress = MaxSector; 4355 conf->reshape_safe = MaxSector; 4356 mddev->reshape_position = MaxSector; 4357 spin_unlock_irq(&conf->device_lock); 4358 return ret; 4359 } 4360 4361 /* Calculate the last device-address that could contain 4362 * any block from the chunk that includes the array-address 's' 4363 * and report the next address. 4364 * i.e. the address returned will be chunk-aligned and after 4365 * any data that is in the chunk containing 's'. 4366 */ 4367 static sector_t last_dev_address(sector_t s, struct geom *geo) 4368 { 4369 s = (s | geo->chunk_mask) + 1; 4370 s >>= geo->chunk_shift; 4371 s *= geo->near_copies; 4372 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4373 s *= geo->far_copies; 4374 s <<= geo->chunk_shift; 4375 return s; 4376 } 4377 4378 /* Calculate the first device-address that could contain 4379 * any block from the chunk that includes the array-address 's'. 4380 * This too will be the start of a chunk 4381 */ 4382 static sector_t first_dev_address(sector_t s, struct geom *geo) 4383 { 4384 s >>= geo->chunk_shift; 4385 s *= geo->near_copies; 4386 sector_div(s, geo->raid_disks); 4387 s *= geo->far_copies; 4388 s <<= geo->chunk_shift; 4389 return s; 4390 } 4391 4392 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4393 int *skipped) 4394 { 4395 /* We simply copy at most one chunk (smallest of old and new) 4396 * at a time, possibly less if that exceeds RESYNC_PAGES, 4397 * or we hit a bad block or something. 4398 * This might mean we pause for normal IO in the middle of 4399 * a chunk, but that is not a problem as mddev->reshape_position 4400 * can record any location. 4401 * 4402 * If we will want to write to a location that isn't 4403 * yet recorded as 'safe' (i.e. in metadata on disk) then 4404 * we need to flush all reshape requests and update the metadata. 4405 * 4406 * When reshaping forwards (e.g. to more devices), we interpret 4407 * 'safe' as the earliest block which might not have been copied 4408 * down yet. We divide this by previous stripe size and multiply 4409 * by previous stripe length to get lowest device offset that we 4410 * cannot write to yet. 4411 * We interpret 'sector_nr' as an address that we want to write to. 4412 * From this we use last_device_address() to find where we might 4413 * write to, and first_device_address on the 'safe' position. 4414 * If this 'next' write position is after the 'safe' position, 4415 * we must update the metadata to increase the 'safe' position. 4416 * 4417 * When reshaping backwards, we round in the opposite direction 4418 * and perform the reverse test: next write position must not be 4419 * less than current safe position. 4420 * 4421 * In all this the minimum difference in data offsets 4422 * (conf->offset_diff - always positive) allows a bit of slack, 4423 * so next can be after 'safe', but not by more than offset_diff 4424 * 4425 * We need to prepare all the bios here before we start any IO 4426 * to ensure the size we choose is acceptable to all devices. 4427 * The means one for each copy for write-out and an extra one for 4428 * read-in. 4429 * We store the read-in bio in ->master_bio and the others in 4430 * ->devs[x].bio and ->devs[x].repl_bio. 4431 */ 4432 struct r10conf *conf = mddev->private; 4433 struct r10bio *r10_bio; 4434 sector_t next, safe, last; 4435 int max_sectors; 4436 int nr_sectors; 4437 int s; 4438 struct md_rdev *rdev; 4439 int need_flush = 0; 4440 struct bio *blist; 4441 struct bio *bio, *read_bio; 4442 int sectors_done = 0; 4443 struct page **pages; 4444 4445 if (sector_nr == 0) { 4446 /* If restarting in the middle, skip the initial sectors */ 4447 if (mddev->reshape_backwards && 4448 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4449 sector_nr = (raid10_size(mddev, 0, 0) 4450 - conf->reshape_progress); 4451 } else if (!mddev->reshape_backwards && 4452 conf->reshape_progress > 0) 4453 sector_nr = conf->reshape_progress; 4454 if (sector_nr) { 4455 mddev->curr_resync_completed = sector_nr; 4456 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4457 *skipped = 1; 4458 return sector_nr; 4459 } 4460 } 4461 4462 /* We don't use sector_nr to track where we are up to 4463 * as that doesn't work well for ->reshape_backwards. 4464 * So just use ->reshape_progress. 4465 */ 4466 if (mddev->reshape_backwards) { 4467 /* 'next' is the earliest device address that we might 4468 * write to for this chunk in the new layout 4469 */ 4470 next = first_dev_address(conf->reshape_progress - 1, 4471 &conf->geo); 4472 4473 /* 'safe' is the last device address that we might read from 4474 * in the old layout after a restart 4475 */ 4476 safe = last_dev_address(conf->reshape_safe - 1, 4477 &conf->prev); 4478 4479 if (next + conf->offset_diff < safe) 4480 need_flush = 1; 4481 4482 last = conf->reshape_progress - 1; 4483 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4484 & conf->prev.chunk_mask); 4485 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4486 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4487 } else { 4488 /* 'next' is after the last device address that we 4489 * might write to for this chunk in the new layout 4490 */ 4491 next = last_dev_address(conf->reshape_progress, &conf->geo); 4492 4493 /* 'safe' is the earliest device address that we might 4494 * read from in the old layout after a restart 4495 */ 4496 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4497 4498 /* Need to update metadata if 'next' might be beyond 'safe' 4499 * as that would possibly corrupt data 4500 */ 4501 if (next > safe + conf->offset_diff) 4502 need_flush = 1; 4503 4504 sector_nr = conf->reshape_progress; 4505 last = sector_nr | (conf->geo.chunk_mask 4506 & conf->prev.chunk_mask); 4507 4508 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4509 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4510 } 4511 4512 if (need_flush || 4513 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4514 /* Need to update reshape_position in metadata */ 4515 wait_barrier(conf); 4516 mddev->reshape_position = conf->reshape_progress; 4517 if (mddev->reshape_backwards) 4518 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4519 - conf->reshape_progress; 4520 else 4521 mddev->curr_resync_completed = conf->reshape_progress; 4522 conf->reshape_checkpoint = jiffies; 4523 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4524 md_wakeup_thread(mddev->thread); 4525 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4526 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4527 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4528 allow_barrier(conf); 4529 return sectors_done; 4530 } 4531 conf->reshape_safe = mddev->reshape_position; 4532 allow_barrier(conf); 4533 } 4534 4535 raise_barrier(conf, 0); 4536 read_more: 4537 /* Now schedule reads for blocks from sector_nr to last */ 4538 r10_bio = raid10_alloc_init_r10buf(conf); 4539 r10_bio->state = 0; 4540 raise_barrier(conf, 1); 4541 atomic_set(&r10_bio->remaining, 0); 4542 r10_bio->mddev = mddev; 4543 r10_bio->sector = sector_nr; 4544 set_bit(R10BIO_IsReshape, &r10_bio->state); 4545 r10_bio->sectors = last - sector_nr + 1; 4546 rdev = read_balance(conf, r10_bio, &max_sectors); 4547 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4548 4549 if (!rdev) { 4550 /* Cannot read from here, so need to record bad blocks 4551 * on all the target devices. 4552 */ 4553 // FIXME 4554 mempool_free(r10_bio, &conf->r10buf_pool); 4555 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4556 return sectors_done; 4557 } 4558 4559 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4560 4561 bio_set_dev(read_bio, rdev->bdev); 4562 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4563 + rdev->data_offset); 4564 read_bio->bi_private = r10_bio; 4565 read_bio->bi_end_io = end_reshape_read; 4566 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4567 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4568 read_bio->bi_status = 0; 4569 read_bio->bi_vcnt = 0; 4570 read_bio->bi_iter.bi_size = 0; 4571 r10_bio->master_bio = read_bio; 4572 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4573 4574 /* 4575 * Broadcast RESYNC message to other nodes, so all nodes would not 4576 * write to the region to avoid conflict. 4577 */ 4578 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4579 struct mdp_superblock_1 *sb = NULL; 4580 int sb_reshape_pos = 0; 4581 4582 conf->cluster_sync_low = sector_nr; 4583 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4584 sb = page_address(rdev->sb_page); 4585 if (sb) { 4586 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4587 /* 4588 * Set cluster_sync_low again if next address for array 4589 * reshape is less than cluster_sync_low. Since we can't 4590 * update cluster_sync_low until it has finished reshape. 4591 */ 4592 if (sb_reshape_pos < conf->cluster_sync_low) 4593 conf->cluster_sync_low = sb_reshape_pos; 4594 } 4595 4596 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4597 conf->cluster_sync_high); 4598 } 4599 4600 /* Now find the locations in the new layout */ 4601 __raid10_find_phys(&conf->geo, r10_bio); 4602 4603 blist = read_bio; 4604 read_bio->bi_next = NULL; 4605 4606 rcu_read_lock(); 4607 for (s = 0; s < conf->copies*2; s++) { 4608 struct bio *b; 4609 int d = r10_bio->devs[s/2].devnum; 4610 struct md_rdev *rdev2; 4611 if (s&1) { 4612 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4613 b = r10_bio->devs[s/2].repl_bio; 4614 } else { 4615 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4616 b = r10_bio->devs[s/2].bio; 4617 } 4618 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4619 continue; 4620 4621 bio_set_dev(b, rdev2->bdev); 4622 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4623 rdev2->new_data_offset; 4624 b->bi_end_io = end_reshape_write; 4625 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4626 b->bi_next = blist; 4627 blist = b; 4628 } 4629 4630 /* Now add as many pages as possible to all of these bios. */ 4631 4632 nr_sectors = 0; 4633 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4634 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4635 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4636 int len = (max_sectors - s) << 9; 4637 if (len > PAGE_SIZE) 4638 len = PAGE_SIZE; 4639 for (bio = blist; bio ; bio = bio->bi_next) { 4640 /* 4641 * won't fail because the vec table is big enough 4642 * to hold all these pages 4643 */ 4644 bio_add_page(bio, page, len, 0); 4645 } 4646 sector_nr += len >> 9; 4647 nr_sectors += len >> 9; 4648 } 4649 rcu_read_unlock(); 4650 r10_bio->sectors = nr_sectors; 4651 4652 /* Now submit the read */ 4653 md_sync_acct_bio(read_bio, r10_bio->sectors); 4654 atomic_inc(&r10_bio->remaining); 4655 read_bio->bi_next = NULL; 4656 generic_make_request(read_bio); 4657 sectors_done += nr_sectors; 4658 if (sector_nr <= last) 4659 goto read_more; 4660 4661 lower_barrier(conf); 4662 4663 /* Now that we have done the whole section we can 4664 * update reshape_progress 4665 */ 4666 if (mddev->reshape_backwards) 4667 conf->reshape_progress -= sectors_done; 4668 else 4669 conf->reshape_progress += sectors_done; 4670 4671 return sectors_done; 4672 } 4673 4674 static void end_reshape_request(struct r10bio *r10_bio); 4675 static int handle_reshape_read_error(struct mddev *mddev, 4676 struct r10bio *r10_bio); 4677 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4678 { 4679 /* Reshape read completed. Hopefully we have a block 4680 * to write out. 4681 * If we got a read error then we do sync 1-page reads from 4682 * elsewhere until we find the data - or give up. 4683 */ 4684 struct r10conf *conf = mddev->private; 4685 int s; 4686 4687 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4688 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4689 /* Reshape has been aborted */ 4690 md_done_sync(mddev, r10_bio->sectors, 0); 4691 return; 4692 } 4693 4694 /* We definitely have the data in the pages, schedule the 4695 * writes. 4696 */ 4697 atomic_set(&r10_bio->remaining, 1); 4698 for (s = 0; s < conf->copies*2; s++) { 4699 struct bio *b; 4700 int d = r10_bio->devs[s/2].devnum; 4701 struct md_rdev *rdev; 4702 rcu_read_lock(); 4703 if (s&1) { 4704 rdev = rcu_dereference(conf->mirrors[d].replacement); 4705 b = r10_bio->devs[s/2].repl_bio; 4706 } else { 4707 rdev = rcu_dereference(conf->mirrors[d].rdev); 4708 b = r10_bio->devs[s/2].bio; 4709 } 4710 if (!rdev || test_bit(Faulty, &rdev->flags)) { 4711 rcu_read_unlock(); 4712 continue; 4713 } 4714 atomic_inc(&rdev->nr_pending); 4715 rcu_read_unlock(); 4716 md_sync_acct_bio(b, r10_bio->sectors); 4717 atomic_inc(&r10_bio->remaining); 4718 b->bi_next = NULL; 4719 generic_make_request(b); 4720 } 4721 end_reshape_request(r10_bio); 4722 } 4723 4724 static void end_reshape(struct r10conf *conf) 4725 { 4726 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4727 return; 4728 4729 spin_lock_irq(&conf->device_lock); 4730 conf->prev = conf->geo; 4731 md_finish_reshape(conf->mddev); 4732 smp_wmb(); 4733 conf->reshape_progress = MaxSector; 4734 conf->reshape_safe = MaxSector; 4735 spin_unlock_irq(&conf->device_lock); 4736 4737 /* read-ahead size must cover two whole stripes, which is 4738 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4739 */ 4740 if (conf->mddev->queue) { 4741 int stripe = conf->geo.raid_disks * 4742 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4743 stripe /= conf->geo.near_copies; 4744 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 4745 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 4746 } 4747 conf->fullsync = 0; 4748 } 4749 4750 static void raid10_update_reshape_pos(struct mddev *mddev) 4751 { 4752 struct r10conf *conf = mddev->private; 4753 sector_t lo, hi; 4754 4755 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 4756 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 4757 || mddev->reshape_position == MaxSector) 4758 conf->reshape_progress = mddev->reshape_position; 4759 else 4760 WARN_ON_ONCE(1); 4761 } 4762 4763 static int handle_reshape_read_error(struct mddev *mddev, 4764 struct r10bio *r10_bio) 4765 { 4766 /* Use sync reads to get the blocks from somewhere else */ 4767 int sectors = r10_bio->sectors; 4768 struct r10conf *conf = mddev->private; 4769 struct r10bio *r10b; 4770 int slot = 0; 4771 int idx = 0; 4772 struct page **pages; 4773 4774 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 4775 if (!r10b) { 4776 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4777 return -ENOMEM; 4778 } 4779 4780 /* reshape IOs share pages from .devs[0].bio */ 4781 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4782 4783 r10b->sector = r10_bio->sector; 4784 __raid10_find_phys(&conf->prev, r10b); 4785 4786 while (sectors) { 4787 int s = sectors; 4788 int success = 0; 4789 int first_slot = slot; 4790 4791 if (s > (PAGE_SIZE >> 9)) 4792 s = PAGE_SIZE >> 9; 4793 4794 rcu_read_lock(); 4795 while (!success) { 4796 int d = r10b->devs[slot].devnum; 4797 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4798 sector_t addr; 4799 if (rdev == NULL || 4800 test_bit(Faulty, &rdev->flags) || 4801 !test_bit(In_sync, &rdev->flags)) 4802 goto failed; 4803 4804 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4805 atomic_inc(&rdev->nr_pending); 4806 rcu_read_unlock(); 4807 success = sync_page_io(rdev, 4808 addr, 4809 s << 9, 4810 pages[idx], 4811 REQ_OP_READ, 0, false); 4812 rdev_dec_pending(rdev, mddev); 4813 rcu_read_lock(); 4814 if (success) 4815 break; 4816 failed: 4817 slot++; 4818 if (slot >= conf->copies) 4819 slot = 0; 4820 if (slot == first_slot) 4821 break; 4822 } 4823 rcu_read_unlock(); 4824 if (!success) { 4825 /* couldn't read this block, must give up */ 4826 set_bit(MD_RECOVERY_INTR, 4827 &mddev->recovery); 4828 kfree(r10b); 4829 return -EIO; 4830 } 4831 sectors -= s; 4832 idx++; 4833 } 4834 kfree(r10b); 4835 return 0; 4836 } 4837 4838 static void end_reshape_write(struct bio *bio) 4839 { 4840 struct r10bio *r10_bio = get_resync_r10bio(bio); 4841 struct mddev *mddev = r10_bio->mddev; 4842 struct r10conf *conf = mddev->private; 4843 int d; 4844 int slot; 4845 int repl; 4846 struct md_rdev *rdev = NULL; 4847 4848 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4849 if (repl) 4850 rdev = conf->mirrors[d].replacement; 4851 if (!rdev) { 4852 smp_mb(); 4853 rdev = conf->mirrors[d].rdev; 4854 } 4855 4856 if (bio->bi_status) { 4857 /* FIXME should record badblock */ 4858 md_error(mddev, rdev); 4859 } 4860 4861 rdev_dec_pending(rdev, mddev); 4862 end_reshape_request(r10_bio); 4863 } 4864 4865 static void end_reshape_request(struct r10bio *r10_bio) 4866 { 4867 if (!atomic_dec_and_test(&r10_bio->remaining)) 4868 return; 4869 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4870 bio_put(r10_bio->master_bio); 4871 put_buf(r10_bio); 4872 } 4873 4874 static void raid10_finish_reshape(struct mddev *mddev) 4875 { 4876 struct r10conf *conf = mddev->private; 4877 4878 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4879 return; 4880 4881 if (mddev->delta_disks > 0) { 4882 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4883 mddev->recovery_cp = mddev->resync_max_sectors; 4884 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4885 } 4886 mddev->resync_max_sectors = mddev->array_sectors; 4887 } else { 4888 int d; 4889 rcu_read_lock(); 4890 for (d = conf->geo.raid_disks ; 4891 d < conf->geo.raid_disks - mddev->delta_disks; 4892 d++) { 4893 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4894 if (rdev) 4895 clear_bit(In_sync, &rdev->flags); 4896 rdev = rcu_dereference(conf->mirrors[d].replacement); 4897 if (rdev) 4898 clear_bit(In_sync, &rdev->flags); 4899 } 4900 rcu_read_unlock(); 4901 } 4902 mddev->layout = mddev->new_layout; 4903 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4904 mddev->reshape_position = MaxSector; 4905 mddev->delta_disks = 0; 4906 mddev->reshape_backwards = 0; 4907 } 4908 4909 static struct md_personality raid10_personality = 4910 { 4911 .name = "raid10", 4912 .level = 10, 4913 .owner = THIS_MODULE, 4914 .make_request = raid10_make_request, 4915 .run = raid10_run, 4916 .free = raid10_free, 4917 .status = raid10_status, 4918 .error_handler = raid10_error, 4919 .hot_add_disk = raid10_add_disk, 4920 .hot_remove_disk= raid10_remove_disk, 4921 .spare_active = raid10_spare_active, 4922 .sync_request = raid10_sync_request, 4923 .quiesce = raid10_quiesce, 4924 .size = raid10_size, 4925 .resize = raid10_resize, 4926 .takeover = raid10_takeover, 4927 .check_reshape = raid10_check_reshape, 4928 .start_reshape = raid10_start_reshape, 4929 .finish_reshape = raid10_finish_reshape, 4930 .update_reshape_pos = raid10_update_reshape_pos, 4931 .congested = raid10_congested, 4932 }; 4933 4934 static int __init raid_init(void) 4935 { 4936 return register_md_personality(&raid10_personality); 4937 } 4938 4939 static void raid_exit(void) 4940 { 4941 unregister_md_personality(&raid10_personality); 4942 } 4943 4944 module_init(raid_init); 4945 module_exit(raid_exit); 4946 MODULE_LICENSE("GPL"); 4947 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4948 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4949 MODULE_ALIAS("md-raid10"); 4950 MODULE_ALIAS("md-level-10"); 4951 4952 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4953