xref: /openbmc/linux/drivers/md/raid10.c (revision e23feb16)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72 
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define	NR_RAID10_BIOS 256
77 
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89 
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91 
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97 
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 				int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106 
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 	struct r10conf *conf = data;
110 	int size = offsetof(struct r10bio, devs[conf->copies]);
111 
112 	/* allocate a r10bio with room for raid_disks entries in the
113 	 * bios array */
114 	return kzalloc(size, gfp_flags);
115 }
116 
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 	kfree(r10_bio);
120 }
121 
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129 
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 	struct r10conf *conf = data;
140 	struct page *page;
141 	struct r10bio *r10_bio;
142 	struct bio *bio;
143 	int i, j;
144 	int nalloc;
145 
146 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 	if (!r10_bio)
148 		return NULL;
149 
150 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 		nalloc = conf->copies; /* resync */
153 	else
154 		nalloc = 2; /* recovery */
155 
156 	/*
157 	 * Allocate bios.
158 	 */
159 	for (j = nalloc ; j-- ; ) {
160 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 		if (!bio)
162 			goto out_free_bio;
163 		r10_bio->devs[j].bio = bio;
164 		if (!conf->have_replacement)
165 			continue;
166 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 		if (!bio)
168 			goto out_free_bio;
169 		r10_bio->devs[j].repl_bio = bio;
170 	}
171 	/*
172 	 * Allocate RESYNC_PAGES data pages and attach them
173 	 * where needed.
174 	 */
175 	for (j = 0 ; j < nalloc; j++) {
176 		struct bio *rbio = r10_bio->devs[j].repl_bio;
177 		bio = r10_bio->devs[j].bio;
178 		for (i = 0; i < RESYNC_PAGES; i++) {
179 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 					       &conf->mddev->recovery)) {
181 				/* we can share bv_page's during recovery
182 				 * and reshape */
183 				struct bio *rbio = r10_bio->devs[0].bio;
184 				page = rbio->bi_io_vec[i].bv_page;
185 				get_page(page);
186 			} else
187 				page = alloc_page(gfp_flags);
188 			if (unlikely(!page))
189 				goto out_free_pages;
190 
191 			bio->bi_io_vec[i].bv_page = page;
192 			if (rbio)
193 				rbio->bi_io_vec[i].bv_page = page;
194 		}
195 	}
196 
197 	return r10_bio;
198 
199 out_free_pages:
200 	for ( ; i > 0 ; i--)
201 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 	while (j--)
203 		for (i = 0; i < RESYNC_PAGES ; i++)
204 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 	j = 0;
206 out_free_bio:
207 	for ( ; j < nalloc; j++) {
208 		if (r10_bio->devs[j].bio)
209 			bio_put(r10_bio->devs[j].bio);
210 		if (r10_bio->devs[j].repl_bio)
211 			bio_put(r10_bio->devs[j].repl_bio);
212 	}
213 	r10bio_pool_free(r10_bio, conf);
214 	return NULL;
215 }
216 
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 	int i;
220 	struct r10conf *conf = data;
221 	struct r10bio *r10bio = __r10_bio;
222 	int j;
223 
224 	for (j=0; j < conf->copies; j++) {
225 		struct bio *bio = r10bio->devs[j].bio;
226 		if (bio) {
227 			for (i = 0; i < RESYNC_PAGES; i++) {
228 				safe_put_page(bio->bi_io_vec[i].bv_page);
229 				bio->bi_io_vec[i].bv_page = NULL;
230 			}
231 			bio_put(bio);
232 		}
233 		bio = r10bio->devs[j].repl_bio;
234 		if (bio)
235 			bio_put(bio);
236 	}
237 	r10bio_pool_free(r10bio, conf);
238 }
239 
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 	int i;
243 
244 	for (i = 0; i < conf->copies; i++) {
245 		struct bio **bio = & r10_bio->devs[i].bio;
246 		if (!BIO_SPECIAL(*bio))
247 			bio_put(*bio);
248 		*bio = NULL;
249 		bio = &r10_bio->devs[i].repl_bio;
250 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 			bio_put(*bio);
252 		*bio = NULL;
253 	}
254 }
255 
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 	struct r10conf *conf = r10_bio->mddev->private;
259 
260 	put_all_bios(conf, r10_bio);
261 	mempool_free(r10_bio, conf->r10bio_pool);
262 }
263 
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 	struct r10conf *conf = r10_bio->mddev->private;
267 
268 	mempool_free(r10_bio, conf->r10buf_pool);
269 
270 	lower_barrier(conf);
271 }
272 
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 	unsigned long flags;
276 	struct mddev *mddev = r10_bio->mddev;
277 	struct r10conf *conf = mddev->private;
278 
279 	spin_lock_irqsave(&conf->device_lock, flags);
280 	list_add(&r10_bio->retry_list, &conf->retry_list);
281 	conf->nr_queued ++;
282 	spin_unlock_irqrestore(&conf->device_lock, flags);
283 
284 	/* wake up frozen array... */
285 	wake_up(&conf->wait_barrier);
286 
287 	md_wakeup_thread(mddev->thread);
288 }
289 
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 	struct bio *bio = r10_bio->master_bio;
298 	int done;
299 	struct r10conf *conf = r10_bio->mddev->private;
300 
301 	if (bio->bi_phys_segments) {
302 		unsigned long flags;
303 		spin_lock_irqsave(&conf->device_lock, flags);
304 		bio->bi_phys_segments--;
305 		done = (bio->bi_phys_segments == 0);
306 		spin_unlock_irqrestore(&conf->device_lock, flags);
307 	} else
308 		done = 1;
309 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 	if (done) {
312 		bio_endio(bio, 0);
313 		/*
314 		 * Wake up any possible resync thread that waits for the device
315 		 * to go idle.
316 		 */
317 		allow_barrier(conf);
318 	}
319 	free_r10bio(r10_bio);
320 }
321 
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 	struct r10conf *conf = r10_bio->mddev->private;
328 
329 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 		r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332 
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 			 struct bio *bio, int *slotp, int *replp)
338 {
339 	int slot;
340 	int repl = 0;
341 
342 	for (slot = 0; slot < conf->copies; slot++) {
343 		if (r10_bio->devs[slot].bio == bio)
344 			break;
345 		if (r10_bio->devs[slot].repl_bio == bio) {
346 			repl = 1;
347 			break;
348 		}
349 	}
350 
351 	BUG_ON(slot == conf->copies);
352 	update_head_pos(slot, r10_bio);
353 
354 	if (slotp)
355 		*slotp = slot;
356 	if (replp)
357 		*replp = repl;
358 	return r10_bio->devs[slot].devnum;
359 }
360 
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 	struct r10bio *r10_bio = bio->bi_private;
365 	int slot, dev;
366 	struct md_rdev *rdev;
367 	struct r10conf *conf = r10_bio->mddev->private;
368 
369 
370 	slot = r10_bio->read_slot;
371 	dev = r10_bio->devs[slot].devnum;
372 	rdev = r10_bio->devs[slot].rdev;
373 	/*
374 	 * this branch is our 'one mirror IO has finished' event handler:
375 	 */
376 	update_head_pos(slot, r10_bio);
377 
378 	if (uptodate) {
379 		/*
380 		 * Set R10BIO_Uptodate in our master bio, so that
381 		 * we will return a good error code to the higher
382 		 * levels even if IO on some other mirrored buffer fails.
383 		 *
384 		 * The 'master' represents the composite IO operation to
385 		 * user-side. So if something waits for IO, then it will
386 		 * wait for the 'master' bio.
387 		 */
388 		set_bit(R10BIO_Uptodate, &r10_bio->state);
389 	} else {
390 		/* If all other devices that store this block have
391 		 * failed, we want to return the error upwards rather
392 		 * than fail the last device.  Here we redefine
393 		 * "uptodate" to mean "Don't want to retry"
394 		 */
395 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 			     rdev->raid_disk))
397 			uptodate = 1;
398 	}
399 	if (uptodate) {
400 		raid_end_bio_io(r10_bio);
401 		rdev_dec_pending(rdev, conf->mddev);
402 	} else {
403 		/*
404 		 * oops, read error - keep the refcount on the rdev
405 		 */
406 		char b[BDEVNAME_SIZE];
407 		printk_ratelimited(KERN_ERR
408 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
409 				   mdname(conf->mddev),
410 				   bdevname(rdev->bdev, b),
411 				   (unsigned long long)r10_bio->sector);
412 		set_bit(R10BIO_ReadError, &r10_bio->state);
413 		reschedule_retry(r10_bio);
414 	}
415 }
416 
417 static void close_write(struct r10bio *r10_bio)
418 {
419 	/* clear the bitmap if all writes complete successfully */
420 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 			r10_bio->sectors,
422 			!test_bit(R10BIO_Degraded, &r10_bio->state),
423 			0);
424 	md_write_end(r10_bio->mddev);
425 }
426 
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429 	if (atomic_dec_and_test(&r10_bio->remaining)) {
430 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 			reschedule_retry(r10_bio);
432 		else {
433 			close_write(r10_bio);
434 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 				reschedule_retry(r10_bio);
436 			else
437 				raid_end_bio_io(r10_bio);
438 		}
439 	}
440 }
441 
442 static void raid10_end_write_request(struct bio *bio, int error)
443 {
444 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
445 	struct r10bio *r10_bio = bio->bi_private;
446 	int dev;
447 	int dec_rdev = 1;
448 	struct r10conf *conf = r10_bio->mddev->private;
449 	int slot, repl;
450 	struct md_rdev *rdev = NULL;
451 
452 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
453 
454 	if (repl)
455 		rdev = conf->mirrors[dev].replacement;
456 	if (!rdev) {
457 		smp_rmb();
458 		repl = 0;
459 		rdev = conf->mirrors[dev].rdev;
460 	}
461 	/*
462 	 * this branch is our 'one mirror IO has finished' event handler:
463 	 */
464 	if (!uptodate) {
465 		if (repl)
466 			/* Never record new bad blocks to replacement,
467 			 * just fail it.
468 			 */
469 			md_error(rdev->mddev, rdev);
470 		else {
471 			set_bit(WriteErrorSeen,	&rdev->flags);
472 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
473 				set_bit(MD_RECOVERY_NEEDED,
474 					&rdev->mddev->recovery);
475 			set_bit(R10BIO_WriteError, &r10_bio->state);
476 			dec_rdev = 0;
477 		}
478 	} else {
479 		/*
480 		 * Set R10BIO_Uptodate in our master bio, so that
481 		 * we will return a good error code for to the higher
482 		 * levels even if IO on some other mirrored buffer fails.
483 		 *
484 		 * The 'master' represents the composite IO operation to
485 		 * user-side. So if something waits for IO, then it will
486 		 * wait for the 'master' bio.
487 		 */
488 		sector_t first_bad;
489 		int bad_sectors;
490 
491 		/*
492 		 * Do not set R10BIO_Uptodate if the current device is
493 		 * rebuilding or Faulty. This is because we cannot use
494 		 * such device for properly reading the data back (we could
495 		 * potentially use it, if the current write would have felt
496 		 * before rdev->recovery_offset, but for simplicity we don't
497 		 * check this here.
498 		 */
499 		if (test_bit(In_sync, &rdev->flags) &&
500 		    !test_bit(Faulty, &rdev->flags))
501 			set_bit(R10BIO_Uptodate, &r10_bio->state);
502 
503 		/* Maybe we can clear some bad blocks. */
504 		if (is_badblock(rdev,
505 				r10_bio->devs[slot].addr,
506 				r10_bio->sectors,
507 				&first_bad, &bad_sectors)) {
508 			bio_put(bio);
509 			if (repl)
510 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
511 			else
512 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
513 			dec_rdev = 0;
514 			set_bit(R10BIO_MadeGood, &r10_bio->state);
515 		}
516 	}
517 
518 	/*
519 	 *
520 	 * Let's see if all mirrored write operations have finished
521 	 * already.
522 	 */
523 	one_write_done(r10_bio);
524 	if (dec_rdev)
525 		rdev_dec_pending(rdev, conf->mddev);
526 }
527 
528 /*
529  * RAID10 layout manager
530  * As well as the chunksize and raid_disks count, there are two
531  * parameters: near_copies and far_copies.
532  * near_copies * far_copies must be <= raid_disks.
533  * Normally one of these will be 1.
534  * If both are 1, we get raid0.
535  * If near_copies == raid_disks, we get raid1.
536  *
537  * Chunks are laid out in raid0 style with near_copies copies of the
538  * first chunk, followed by near_copies copies of the next chunk and
539  * so on.
540  * If far_copies > 1, then after 1/far_copies of the array has been assigned
541  * as described above, we start again with a device offset of near_copies.
542  * So we effectively have another copy of the whole array further down all
543  * the drives, but with blocks on different drives.
544  * With this layout, and block is never stored twice on the one device.
545  *
546  * raid10_find_phys finds the sector offset of a given virtual sector
547  * on each device that it is on.
548  *
549  * raid10_find_virt does the reverse mapping, from a device and a
550  * sector offset to a virtual address
551  */
552 
553 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
554 {
555 	int n,f;
556 	sector_t sector;
557 	sector_t chunk;
558 	sector_t stripe;
559 	int dev;
560 	int slot = 0;
561 	int last_far_set_start, last_far_set_size;
562 
563 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
564 	last_far_set_start *= geo->far_set_size;
565 
566 	last_far_set_size = geo->far_set_size;
567 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
568 
569 	/* now calculate first sector/dev */
570 	chunk = r10bio->sector >> geo->chunk_shift;
571 	sector = r10bio->sector & geo->chunk_mask;
572 
573 	chunk *= geo->near_copies;
574 	stripe = chunk;
575 	dev = sector_div(stripe, geo->raid_disks);
576 	if (geo->far_offset)
577 		stripe *= geo->far_copies;
578 
579 	sector += stripe << geo->chunk_shift;
580 
581 	/* and calculate all the others */
582 	for (n = 0; n < geo->near_copies; n++) {
583 		int d = dev;
584 		int set;
585 		sector_t s = sector;
586 		r10bio->devs[slot].devnum = d;
587 		r10bio->devs[slot].addr = s;
588 		slot++;
589 
590 		for (f = 1; f < geo->far_copies; f++) {
591 			set = d / geo->far_set_size;
592 			d += geo->near_copies;
593 
594 			if ((geo->raid_disks % geo->far_set_size) &&
595 			    (d > last_far_set_start)) {
596 				d -= last_far_set_start;
597 				d %= last_far_set_size;
598 				d += last_far_set_start;
599 			} else {
600 				d %= geo->far_set_size;
601 				d += geo->far_set_size * set;
602 			}
603 			s += geo->stride;
604 			r10bio->devs[slot].devnum = d;
605 			r10bio->devs[slot].addr = s;
606 			slot++;
607 		}
608 		dev++;
609 		if (dev >= geo->raid_disks) {
610 			dev = 0;
611 			sector += (geo->chunk_mask + 1);
612 		}
613 	}
614 }
615 
616 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
617 {
618 	struct geom *geo = &conf->geo;
619 
620 	if (conf->reshape_progress != MaxSector &&
621 	    ((r10bio->sector >= conf->reshape_progress) !=
622 	     conf->mddev->reshape_backwards)) {
623 		set_bit(R10BIO_Previous, &r10bio->state);
624 		geo = &conf->prev;
625 	} else
626 		clear_bit(R10BIO_Previous, &r10bio->state);
627 
628 	__raid10_find_phys(geo, r10bio);
629 }
630 
631 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
632 {
633 	sector_t offset, chunk, vchunk;
634 	/* Never use conf->prev as this is only called during resync
635 	 * or recovery, so reshape isn't happening
636 	 */
637 	struct geom *geo = &conf->geo;
638 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
639 	int far_set_size = geo->far_set_size;
640 	int last_far_set_start;
641 
642 	if (geo->raid_disks % geo->far_set_size) {
643 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
644 		last_far_set_start *= geo->far_set_size;
645 
646 		if (dev >= last_far_set_start) {
647 			far_set_size = geo->far_set_size;
648 			far_set_size += (geo->raid_disks % geo->far_set_size);
649 			far_set_start = last_far_set_start;
650 		}
651 	}
652 
653 	offset = sector & geo->chunk_mask;
654 	if (geo->far_offset) {
655 		int fc;
656 		chunk = sector >> geo->chunk_shift;
657 		fc = sector_div(chunk, geo->far_copies);
658 		dev -= fc * geo->near_copies;
659 		if (dev < far_set_start)
660 			dev += far_set_size;
661 	} else {
662 		while (sector >= geo->stride) {
663 			sector -= geo->stride;
664 			if (dev < (geo->near_copies + far_set_start))
665 				dev += far_set_size - geo->near_copies;
666 			else
667 				dev -= geo->near_copies;
668 		}
669 		chunk = sector >> geo->chunk_shift;
670 	}
671 	vchunk = chunk * geo->raid_disks + dev;
672 	sector_div(vchunk, geo->near_copies);
673 	return (vchunk << geo->chunk_shift) + offset;
674 }
675 
676 /**
677  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
678  *	@q: request queue
679  *	@bvm: properties of new bio
680  *	@biovec: the request that could be merged to it.
681  *
682  *	Return amount of bytes we can accept at this offset
683  *	This requires checking for end-of-chunk if near_copies != raid_disks,
684  *	and for subordinate merge_bvec_fns if merge_check_needed.
685  */
686 static int raid10_mergeable_bvec(struct request_queue *q,
687 				 struct bvec_merge_data *bvm,
688 				 struct bio_vec *biovec)
689 {
690 	struct mddev *mddev = q->queuedata;
691 	struct r10conf *conf = mddev->private;
692 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
693 	int max;
694 	unsigned int chunk_sectors;
695 	unsigned int bio_sectors = bvm->bi_size >> 9;
696 	struct geom *geo = &conf->geo;
697 
698 	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
699 	if (conf->reshape_progress != MaxSector &&
700 	    ((sector >= conf->reshape_progress) !=
701 	     conf->mddev->reshape_backwards))
702 		geo = &conf->prev;
703 
704 	if (geo->near_copies < geo->raid_disks) {
705 		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
706 					+ bio_sectors)) << 9;
707 		if (max < 0)
708 			/* bio_add cannot handle a negative return */
709 			max = 0;
710 		if (max <= biovec->bv_len && bio_sectors == 0)
711 			return biovec->bv_len;
712 	} else
713 		max = biovec->bv_len;
714 
715 	if (mddev->merge_check_needed) {
716 		struct {
717 			struct r10bio r10_bio;
718 			struct r10dev devs[conf->copies];
719 		} on_stack;
720 		struct r10bio *r10_bio = &on_stack.r10_bio;
721 		int s;
722 		if (conf->reshape_progress != MaxSector) {
723 			/* Cannot give any guidance during reshape */
724 			if (max <= biovec->bv_len && bio_sectors == 0)
725 				return biovec->bv_len;
726 			return 0;
727 		}
728 		r10_bio->sector = sector;
729 		raid10_find_phys(conf, r10_bio);
730 		rcu_read_lock();
731 		for (s = 0; s < conf->copies; s++) {
732 			int disk = r10_bio->devs[s].devnum;
733 			struct md_rdev *rdev = rcu_dereference(
734 				conf->mirrors[disk].rdev);
735 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
736 				struct request_queue *q =
737 					bdev_get_queue(rdev->bdev);
738 				if (q->merge_bvec_fn) {
739 					bvm->bi_sector = r10_bio->devs[s].addr
740 						+ rdev->data_offset;
741 					bvm->bi_bdev = rdev->bdev;
742 					max = min(max, q->merge_bvec_fn(
743 							  q, bvm, biovec));
744 				}
745 			}
746 			rdev = rcu_dereference(conf->mirrors[disk].replacement);
747 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
748 				struct request_queue *q =
749 					bdev_get_queue(rdev->bdev);
750 				if (q->merge_bvec_fn) {
751 					bvm->bi_sector = r10_bio->devs[s].addr
752 						+ rdev->data_offset;
753 					bvm->bi_bdev = rdev->bdev;
754 					max = min(max, q->merge_bvec_fn(
755 							  q, bvm, biovec));
756 				}
757 			}
758 		}
759 		rcu_read_unlock();
760 	}
761 	return max;
762 }
763 
764 /*
765  * This routine returns the disk from which the requested read should
766  * be done. There is a per-array 'next expected sequential IO' sector
767  * number - if this matches on the next IO then we use the last disk.
768  * There is also a per-disk 'last know head position' sector that is
769  * maintained from IRQ contexts, both the normal and the resync IO
770  * completion handlers update this position correctly. If there is no
771  * perfect sequential match then we pick the disk whose head is closest.
772  *
773  * If there are 2 mirrors in the same 2 devices, performance degrades
774  * because position is mirror, not device based.
775  *
776  * The rdev for the device selected will have nr_pending incremented.
777  */
778 
779 /*
780  * FIXME: possibly should rethink readbalancing and do it differently
781  * depending on near_copies / far_copies geometry.
782  */
783 static struct md_rdev *read_balance(struct r10conf *conf,
784 				    struct r10bio *r10_bio,
785 				    int *max_sectors)
786 {
787 	const sector_t this_sector = r10_bio->sector;
788 	int disk, slot;
789 	int sectors = r10_bio->sectors;
790 	int best_good_sectors;
791 	sector_t new_distance, best_dist;
792 	struct md_rdev *best_rdev, *rdev = NULL;
793 	int do_balance;
794 	int best_slot;
795 	struct geom *geo = &conf->geo;
796 
797 	raid10_find_phys(conf, r10_bio);
798 	rcu_read_lock();
799 retry:
800 	sectors = r10_bio->sectors;
801 	best_slot = -1;
802 	best_rdev = NULL;
803 	best_dist = MaxSector;
804 	best_good_sectors = 0;
805 	do_balance = 1;
806 	/*
807 	 * Check if we can balance. We can balance on the whole
808 	 * device if no resync is going on (recovery is ok), or below
809 	 * the resync window. We take the first readable disk when
810 	 * above the resync window.
811 	 */
812 	if (conf->mddev->recovery_cp < MaxSector
813 	    && (this_sector + sectors >= conf->next_resync))
814 		do_balance = 0;
815 
816 	for (slot = 0; slot < conf->copies ; slot++) {
817 		sector_t first_bad;
818 		int bad_sectors;
819 		sector_t dev_sector;
820 
821 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
822 			continue;
823 		disk = r10_bio->devs[slot].devnum;
824 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
825 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
826 		    test_bit(Unmerged, &rdev->flags) ||
827 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
828 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
829 		if (rdev == NULL ||
830 		    test_bit(Faulty, &rdev->flags) ||
831 		    test_bit(Unmerged, &rdev->flags))
832 			continue;
833 		if (!test_bit(In_sync, &rdev->flags) &&
834 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
835 			continue;
836 
837 		dev_sector = r10_bio->devs[slot].addr;
838 		if (is_badblock(rdev, dev_sector, sectors,
839 				&first_bad, &bad_sectors)) {
840 			if (best_dist < MaxSector)
841 				/* Already have a better slot */
842 				continue;
843 			if (first_bad <= dev_sector) {
844 				/* Cannot read here.  If this is the
845 				 * 'primary' device, then we must not read
846 				 * beyond 'bad_sectors' from another device.
847 				 */
848 				bad_sectors -= (dev_sector - first_bad);
849 				if (!do_balance && sectors > bad_sectors)
850 					sectors = bad_sectors;
851 				if (best_good_sectors > sectors)
852 					best_good_sectors = sectors;
853 			} else {
854 				sector_t good_sectors =
855 					first_bad - dev_sector;
856 				if (good_sectors > best_good_sectors) {
857 					best_good_sectors = good_sectors;
858 					best_slot = slot;
859 					best_rdev = rdev;
860 				}
861 				if (!do_balance)
862 					/* Must read from here */
863 					break;
864 			}
865 			continue;
866 		} else
867 			best_good_sectors = sectors;
868 
869 		if (!do_balance)
870 			break;
871 
872 		/* This optimisation is debatable, and completely destroys
873 		 * sequential read speed for 'far copies' arrays.  So only
874 		 * keep it for 'near' arrays, and review those later.
875 		 */
876 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
877 			break;
878 
879 		/* for far > 1 always use the lowest address */
880 		if (geo->far_copies > 1)
881 			new_distance = r10_bio->devs[slot].addr;
882 		else
883 			new_distance = abs(r10_bio->devs[slot].addr -
884 					   conf->mirrors[disk].head_position);
885 		if (new_distance < best_dist) {
886 			best_dist = new_distance;
887 			best_slot = slot;
888 			best_rdev = rdev;
889 		}
890 	}
891 	if (slot >= conf->copies) {
892 		slot = best_slot;
893 		rdev = best_rdev;
894 	}
895 
896 	if (slot >= 0) {
897 		atomic_inc(&rdev->nr_pending);
898 		if (test_bit(Faulty, &rdev->flags)) {
899 			/* Cannot risk returning a device that failed
900 			 * before we inc'ed nr_pending
901 			 */
902 			rdev_dec_pending(rdev, conf->mddev);
903 			goto retry;
904 		}
905 		r10_bio->read_slot = slot;
906 	} else
907 		rdev = NULL;
908 	rcu_read_unlock();
909 	*max_sectors = best_good_sectors;
910 
911 	return rdev;
912 }
913 
914 int md_raid10_congested(struct mddev *mddev, int bits)
915 {
916 	struct r10conf *conf = mddev->private;
917 	int i, ret = 0;
918 
919 	if ((bits & (1 << BDI_async_congested)) &&
920 	    conf->pending_count >= max_queued_requests)
921 		return 1;
922 
923 	rcu_read_lock();
924 	for (i = 0;
925 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
926 		     && ret == 0;
927 	     i++) {
928 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
929 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
930 			struct request_queue *q = bdev_get_queue(rdev->bdev);
931 
932 			ret |= bdi_congested(&q->backing_dev_info, bits);
933 		}
934 	}
935 	rcu_read_unlock();
936 	return ret;
937 }
938 EXPORT_SYMBOL_GPL(md_raid10_congested);
939 
940 static int raid10_congested(void *data, int bits)
941 {
942 	struct mddev *mddev = data;
943 
944 	return mddev_congested(mddev, bits) ||
945 		md_raid10_congested(mddev, bits);
946 }
947 
948 static void flush_pending_writes(struct r10conf *conf)
949 {
950 	/* Any writes that have been queued but are awaiting
951 	 * bitmap updates get flushed here.
952 	 */
953 	spin_lock_irq(&conf->device_lock);
954 
955 	if (conf->pending_bio_list.head) {
956 		struct bio *bio;
957 		bio = bio_list_get(&conf->pending_bio_list);
958 		conf->pending_count = 0;
959 		spin_unlock_irq(&conf->device_lock);
960 		/* flush any pending bitmap writes to disk
961 		 * before proceeding w/ I/O */
962 		bitmap_unplug(conf->mddev->bitmap);
963 		wake_up(&conf->wait_barrier);
964 
965 		while (bio) { /* submit pending writes */
966 			struct bio *next = bio->bi_next;
967 			bio->bi_next = NULL;
968 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
969 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
970 				/* Just ignore it */
971 				bio_endio(bio, 0);
972 			else
973 				generic_make_request(bio);
974 			bio = next;
975 		}
976 	} else
977 		spin_unlock_irq(&conf->device_lock);
978 }
979 
980 /* Barriers....
981  * Sometimes we need to suspend IO while we do something else,
982  * either some resync/recovery, or reconfigure the array.
983  * To do this we raise a 'barrier'.
984  * The 'barrier' is a counter that can be raised multiple times
985  * to count how many activities are happening which preclude
986  * normal IO.
987  * We can only raise the barrier if there is no pending IO.
988  * i.e. if nr_pending == 0.
989  * We choose only to raise the barrier if no-one is waiting for the
990  * barrier to go down.  This means that as soon as an IO request
991  * is ready, no other operations which require a barrier will start
992  * until the IO request has had a chance.
993  *
994  * So: regular IO calls 'wait_barrier'.  When that returns there
995  *    is no backgroup IO happening,  It must arrange to call
996  *    allow_barrier when it has finished its IO.
997  * backgroup IO calls must call raise_barrier.  Once that returns
998  *    there is no normal IO happeing.  It must arrange to call
999  *    lower_barrier when the particular background IO completes.
1000  */
1001 
1002 static void raise_barrier(struct r10conf *conf, int force)
1003 {
1004 	BUG_ON(force && !conf->barrier);
1005 	spin_lock_irq(&conf->resync_lock);
1006 
1007 	/* Wait until no block IO is waiting (unless 'force') */
1008 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1009 			    conf->resync_lock);
1010 
1011 	/* block any new IO from starting */
1012 	conf->barrier++;
1013 
1014 	/* Now wait for all pending IO to complete */
1015 	wait_event_lock_irq(conf->wait_barrier,
1016 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1017 			    conf->resync_lock);
1018 
1019 	spin_unlock_irq(&conf->resync_lock);
1020 }
1021 
1022 static void lower_barrier(struct r10conf *conf)
1023 {
1024 	unsigned long flags;
1025 	spin_lock_irqsave(&conf->resync_lock, flags);
1026 	conf->barrier--;
1027 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1028 	wake_up(&conf->wait_barrier);
1029 }
1030 
1031 static void wait_barrier(struct r10conf *conf)
1032 {
1033 	spin_lock_irq(&conf->resync_lock);
1034 	if (conf->barrier) {
1035 		conf->nr_waiting++;
1036 		/* Wait for the barrier to drop.
1037 		 * However if there are already pending
1038 		 * requests (preventing the barrier from
1039 		 * rising completely), and the
1040 		 * pre-process bio queue isn't empty,
1041 		 * then don't wait, as we need to empty
1042 		 * that queue to get the nr_pending
1043 		 * count down.
1044 		 */
1045 		wait_event_lock_irq(conf->wait_barrier,
1046 				    !conf->barrier ||
1047 				    (conf->nr_pending &&
1048 				     current->bio_list &&
1049 				     !bio_list_empty(current->bio_list)),
1050 				    conf->resync_lock);
1051 		conf->nr_waiting--;
1052 	}
1053 	conf->nr_pending++;
1054 	spin_unlock_irq(&conf->resync_lock);
1055 }
1056 
1057 static void allow_barrier(struct r10conf *conf)
1058 {
1059 	unsigned long flags;
1060 	spin_lock_irqsave(&conf->resync_lock, flags);
1061 	conf->nr_pending--;
1062 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1063 	wake_up(&conf->wait_barrier);
1064 }
1065 
1066 static void freeze_array(struct r10conf *conf, int extra)
1067 {
1068 	/* stop syncio and normal IO and wait for everything to
1069 	 * go quiet.
1070 	 * We increment barrier and nr_waiting, and then
1071 	 * wait until nr_pending match nr_queued+extra
1072 	 * This is called in the context of one normal IO request
1073 	 * that has failed. Thus any sync request that might be pending
1074 	 * will be blocked by nr_pending, and we need to wait for
1075 	 * pending IO requests to complete or be queued for re-try.
1076 	 * Thus the number queued (nr_queued) plus this request (extra)
1077 	 * must match the number of pending IOs (nr_pending) before
1078 	 * we continue.
1079 	 */
1080 	spin_lock_irq(&conf->resync_lock);
1081 	conf->barrier++;
1082 	conf->nr_waiting++;
1083 	wait_event_lock_irq_cmd(conf->wait_barrier,
1084 				conf->nr_pending == conf->nr_queued+extra,
1085 				conf->resync_lock,
1086 				flush_pending_writes(conf));
1087 
1088 	spin_unlock_irq(&conf->resync_lock);
1089 }
1090 
1091 static void unfreeze_array(struct r10conf *conf)
1092 {
1093 	/* reverse the effect of the freeze */
1094 	spin_lock_irq(&conf->resync_lock);
1095 	conf->barrier--;
1096 	conf->nr_waiting--;
1097 	wake_up(&conf->wait_barrier);
1098 	spin_unlock_irq(&conf->resync_lock);
1099 }
1100 
1101 static sector_t choose_data_offset(struct r10bio *r10_bio,
1102 				   struct md_rdev *rdev)
1103 {
1104 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105 	    test_bit(R10BIO_Previous, &r10_bio->state))
1106 		return rdev->data_offset;
1107 	else
1108 		return rdev->new_data_offset;
1109 }
1110 
1111 struct raid10_plug_cb {
1112 	struct blk_plug_cb	cb;
1113 	struct bio_list		pending;
1114 	int			pending_cnt;
1115 };
1116 
1117 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1118 {
1119 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120 						   cb);
1121 	struct mddev *mddev = plug->cb.data;
1122 	struct r10conf *conf = mddev->private;
1123 	struct bio *bio;
1124 
1125 	if (from_schedule || current->bio_list) {
1126 		spin_lock_irq(&conf->device_lock);
1127 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128 		conf->pending_count += plug->pending_cnt;
1129 		spin_unlock_irq(&conf->device_lock);
1130 		wake_up(&conf->wait_barrier);
1131 		md_wakeup_thread(mddev->thread);
1132 		kfree(plug);
1133 		return;
1134 	}
1135 
1136 	/* we aren't scheduling, so we can do the write-out directly. */
1137 	bio = bio_list_get(&plug->pending);
1138 	bitmap_unplug(mddev->bitmap);
1139 	wake_up(&conf->wait_barrier);
1140 
1141 	while (bio) { /* submit pending writes */
1142 		struct bio *next = bio->bi_next;
1143 		bio->bi_next = NULL;
1144 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146 			/* Just ignore it */
1147 			bio_endio(bio, 0);
1148 		else
1149 			generic_make_request(bio);
1150 		bio = next;
1151 	}
1152 	kfree(plug);
1153 }
1154 
1155 static void make_request(struct mddev *mddev, struct bio * bio)
1156 {
1157 	struct r10conf *conf = mddev->private;
1158 	struct r10bio *r10_bio;
1159 	struct bio *read_bio;
1160 	int i;
1161 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1162 	int chunk_sects = chunk_mask + 1;
1163 	const int rw = bio_data_dir(bio);
1164 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1165 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1166 	const unsigned long do_discard = (bio->bi_rw
1167 					  & (REQ_DISCARD | REQ_SECURE));
1168 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1169 	unsigned long flags;
1170 	struct md_rdev *blocked_rdev;
1171 	struct blk_plug_cb *cb;
1172 	struct raid10_plug_cb *plug = NULL;
1173 	int sectors_handled;
1174 	int max_sectors;
1175 	int sectors;
1176 
1177 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1178 		md_flush_request(mddev, bio);
1179 		return;
1180 	}
1181 
1182 	/* If this request crosses a chunk boundary, we need to
1183 	 * split it.  This will only happen for 1 PAGE (or less) requests.
1184 	 */
1185 	if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio)
1186 		     > chunk_sects
1187 		     && (conf->geo.near_copies < conf->geo.raid_disks
1188 			 || conf->prev.near_copies < conf->prev.raid_disks))) {
1189 		struct bio_pair *bp;
1190 		/* Sanity check -- queue functions should prevent this happening */
1191 		if (bio_segments(bio) > 1)
1192 			goto bad_map;
1193 		/* This is a one page bio that upper layers
1194 		 * refuse to split for us, so we need to split it.
1195 		 */
1196 		bp = bio_split(bio,
1197 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1198 
1199 		/* Each of these 'make_request' calls will call 'wait_barrier'.
1200 		 * If the first succeeds but the second blocks due to the resync
1201 		 * thread raising the barrier, we will deadlock because the
1202 		 * IO to the underlying device will be queued in generic_make_request
1203 		 * and will never complete, so will never reduce nr_pending.
1204 		 * So increment nr_waiting here so no new raise_barriers will
1205 		 * succeed, and so the second wait_barrier cannot block.
1206 		 */
1207 		spin_lock_irq(&conf->resync_lock);
1208 		conf->nr_waiting++;
1209 		spin_unlock_irq(&conf->resync_lock);
1210 
1211 		make_request(mddev, &bp->bio1);
1212 		make_request(mddev, &bp->bio2);
1213 
1214 		spin_lock_irq(&conf->resync_lock);
1215 		conf->nr_waiting--;
1216 		wake_up(&conf->wait_barrier);
1217 		spin_unlock_irq(&conf->resync_lock);
1218 
1219 		bio_pair_release(bp);
1220 		return;
1221 	bad_map:
1222 		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1223 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1224 		       (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2);
1225 
1226 		bio_io_error(bio);
1227 		return;
1228 	}
1229 
1230 	md_write_start(mddev, bio);
1231 
1232 	/*
1233 	 * Register the new request and wait if the reconstruction
1234 	 * thread has put up a bar for new requests.
1235 	 * Continue immediately if no resync is active currently.
1236 	 */
1237 	wait_barrier(conf);
1238 
1239 	sectors = bio_sectors(bio);
1240 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1241 	    bio->bi_sector < conf->reshape_progress &&
1242 	    bio->bi_sector + sectors > conf->reshape_progress) {
1243 		/* IO spans the reshape position.  Need to wait for
1244 		 * reshape to pass
1245 		 */
1246 		allow_barrier(conf);
1247 		wait_event(conf->wait_barrier,
1248 			   conf->reshape_progress <= bio->bi_sector ||
1249 			   conf->reshape_progress >= bio->bi_sector + sectors);
1250 		wait_barrier(conf);
1251 	}
1252 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1253 	    bio_data_dir(bio) == WRITE &&
1254 	    (mddev->reshape_backwards
1255 	     ? (bio->bi_sector < conf->reshape_safe &&
1256 		bio->bi_sector + sectors > conf->reshape_progress)
1257 	     : (bio->bi_sector + sectors > conf->reshape_safe &&
1258 		bio->bi_sector < conf->reshape_progress))) {
1259 		/* Need to update reshape_position in metadata */
1260 		mddev->reshape_position = conf->reshape_progress;
1261 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1262 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1263 		md_wakeup_thread(mddev->thread);
1264 		wait_event(mddev->sb_wait,
1265 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1266 
1267 		conf->reshape_safe = mddev->reshape_position;
1268 	}
1269 
1270 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1271 
1272 	r10_bio->master_bio = bio;
1273 	r10_bio->sectors = sectors;
1274 
1275 	r10_bio->mddev = mddev;
1276 	r10_bio->sector = bio->bi_sector;
1277 	r10_bio->state = 0;
1278 
1279 	/* We might need to issue multiple reads to different
1280 	 * devices if there are bad blocks around, so we keep
1281 	 * track of the number of reads in bio->bi_phys_segments.
1282 	 * If this is 0, there is only one r10_bio and no locking
1283 	 * will be needed when the request completes.  If it is
1284 	 * non-zero, then it is the number of not-completed requests.
1285 	 */
1286 	bio->bi_phys_segments = 0;
1287 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1288 
1289 	if (rw == READ) {
1290 		/*
1291 		 * read balancing logic:
1292 		 */
1293 		struct md_rdev *rdev;
1294 		int slot;
1295 
1296 read_again:
1297 		rdev = read_balance(conf, r10_bio, &max_sectors);
1298 		if (!rdev) {
1299 			raid_end_bio_io(r10_bio);
1300 			return;
1301 		}
1302 		slot = r10_bio->read_slot;
1303 
1304 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1305 		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1306 			    max_sectors);
1307 
1308 		r10_bio->devs[slot].bio = read_bio;
1309 		r10_bio->devs[slot].rdev = rdev;
1310 
1311 		read_bio->bi_sector = r10_bio->devs[slot].addr +
1312 			choose_data_offset(r10_bio, rdev);
1313 		read_bio->bi_bdev = rdev->bdev;
1314 		read_bio->bi_end_io = raid10_end_read_request;
1315 		read_bio->bi_rw = READ | do_sync;
1316 		read_bio->bi_private = r10_bio;
1317 
1318 		if (max_sectors < r10_bio->sectors) {
1319 			/* Could not read all from this device, so we will
1320 			 * need another r10_bio.
1321 			 */
1322 			sectors_handled = (r10_bio->sectors + max_sectors
1323 					   - bio->bi_sector);
1324 			r10_bio->sectors = max_sectors;
1325 			spin_lock_irq(&conf->device_lock);
1326 			if (bio->bi_phys_segments == 0)
1327 				bio->bi_phys_segments = 2;
1328 			else
1329 				bio->bi_phys_segments++;
1330 			spin_unlock(&conf->device_lock);
1331 			/* Cannot call generic_make_request directly
1332 			 * as that will be queued in __generic_make_request
1333 			 * and subsequent mempool_alloc might block
1334 			 * waiting for it.  so hand bio over to raid10d.
1335 			 */
1336 			reschedule_retry(r10_bio);
1337 
1338 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1339 
1340 			r10_bio->master_bio = bio;
1341 			r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1342 			r10_bio->state = 0;
1343 			r10_bio->mddev = mddev;
1344 			r10_bio->sector = bio->bi_sector + sectors_handled;
1345 			goto read_again;
1346 		} else
1347 			generic_make_request(read_bio);
1348 		return;
1349 	}
1350 
1351 	/*
1352 	 * WRITE:
1353 	 */
1354 	if (conf->pending_count >= max_queued_requests) {
1355 		md_wakeup_thread(mddev->thread);
1356 		wait_event(conf->wait_barrier,
1357 			   conf->pending_count < max_queued_requests);
1358 	}
1359 	/* first select target devices under rcu_lock and
1360 	 * inc refcount on their rdev.  Record them by setting
1361 	 * bios[x] to bio
1362 	 * If there are known/acknowledged bad blocks on any device
1363 	 * on which we have seen a write error, we want to avoid
1364 	 * writing to those blocks.  This potentially requires several
1365 	 * writes to write around the bad blocks.  Each set of writes
1366 	 * gets its own r10_bio with a set of bios attached.  The number
1367 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1368 	 * the read case.
1369 	 */
1370 
1371 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1372 	raid10_find_phys(conf, r10_bio);
1373 retry_write:
1374 	blocked_rdev = NULL;
1375 	rcu_read_lock();
1376 	max_sectors = r10_bio->sectors;
1377 
1378 	for (i = 0;  i < conf->copies; i++) {
1379 		int d = r10_bio->devs[i].devnum;
1380 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1381 		struct md_rdev *rrdev = rcu_dereference(
1382 			conf->mirrors[d].replacement);
1383 		if (rdev == rrdev)
1384 			rrdev = NULL;
1385 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1386 			atomic_inc(&rdev->nr_pending);
1387 			blocked_rdev = rdev;
1388 			break;
1389 		}
1390 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1391 			atomic_inc(&rrdev->nr_pending);
1392 			blocked_rdev = rrdev;
1393 			break;
1394 		}
1395 		if (rdev && (test_bit(Faulty, &rdev->flags)
1396 			     || test_bit(Unmerged, &rdev->flags)))
1397 			rdev = NULL;
1398 		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1399 			      || test_bit(Unmerged, &rrdev->flags)))
1400 			rrdev = NULL;
1401 
1402 		r10_bio->devs[i].bio = NULL;
1403 		r10_bio->devs[i].repl_bio = NULL;
1404 
1405 		if (!rdev && !rrdev) {
1406 			set_bit(R10BIO_Degraded, &r10_bio->state);
1407 			continue;
1408 		}
1409 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1410 			sector_t first_bad;
1411 			sector_t dev_sector = r10_bio->devs[i].addr;
1412 			int bad_sectors;
1413 			int is_bad;
1414 
1415 			is_bad = is_badblock(rdev, dev_sector,
1416 					     max_sectors,
1417 					     &first_bad, &bad_sectors);
1418 			if (is_bad < 0) {
1419 				/* Mustn't write here until the bad block
1420 				 * is acknowledged
1421 				 */
1422 				atomic_inc(&rdev->nr_pending);
1423 				set_bit(BlockedBadBlocks, &rdev->flags);
1424 				blocked_rdev = rdev;
1425 				break;
1426 			}
1427 			if (is_bad && first_bad <= dev_sector) {
1428 				/* Cannot write here at all */
1429 				bad_sectors -= (dev_sector - first_bad);
1430 				if (bad_sectors < max_sectors)
1431 					/* Mustn't write more than bad_sectors
1432 					 * to other devices yet
1433 					 */
1434 					max_sectors = bad_sectors;
1435 				/* We don't set R10BIO_Degraded as that
1436 				 * only applies if the disk is missing,
1437 				 * so it might be re-added, and we want to
1438 				 * know to recover this chunk.
1439 				 * In this case the device is here, and the
1440 				 * fact that this chunk is not in-sync is
1441 				 * recorded in the bad block log.
1442 				 */
1443 				continue;
1444 			}
1445 			if (is_bad) {
1446 				int good_sectors = first_bad - dev_sector;
1447 				if (good_sectors < max_sectors)
1448 					max_sectors = good_sectors;
1449 			}
1450 		}
1451 		if (rdev) {
1452 			r10_bio->devs[i].bio = bio;
1453 			atomic_inc(&rdev->nr_pending);
1454 		}
1455 		if (rrdev) {
1456 			r10_bio->devs[i].repl_bio = bio;
1457 			atomic_inc(&rrdev->nr_pending);
1458 		}
1459 	}
1460 	rcu_read_unlock();
1461 
1462 	if (unlikely(blocked_rdev)) {
1463 		/* Have to wait for this device to get unblocked, then retry */
1464 		int j;
1465 		int d;
1466 
1467 		for (j = 0; j < i; j++) {
1468 			if (r10_bio->devs[j].bio) {
1469 				d = r10_bio->devs[j].devnum;
1470 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1471 			}
1472 			if (r10_bio->devs[j].repl_bio) {
1473 				struct md_rdev *rdev;
1474 				d = r10_bio->devs[j].devnum;
1475 				rdev = conf->mirrors[d].replacement;
1476 				if (!rdev) {
1477 					/* Race with remove_disk */
1478 					smp_mb();
1479 					rdev = conf->mirrors[d].rdev;
1480 				}
1481 				rdev_dec_pending(rdev, mddev);
1482 			}
1483 		}
1484 		allow_barrier(conf);
1485 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1486 		wait_barrier(conf);
1487 		goto retry_write;
1488 	}
1489 
1490 	if (max_sectors < r10_bio->sectors) {
1491 		/* We are splitting this into multiple parts, so
1492 		 * we need to prepare for allocating another r10_bio.
1493 		 */
1494 		r10_bio->sectors = max_sectors;
1495 		spin_lock_irq(&conf->device_lock);
1496 		if (bio->bi_phys_segments == 0)
1497 			bio->bi_phys_segments = 2;
1498 		else
1499 			bio->bi_phys_segments++;
1500 		spin_unlock_irq(&conf->device_lock);
1501 	}
1502 	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1503 
1504 	atomic_set(&r10_bio->remaining, 1);
1505 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1506 
1507 	for (i = 0; i < conf->copies; i++) {
1508 		struct bio *mbio;
1509 		int d = r10_bio->devs[i].devnum;
1510 		if (r10_bio->devs[i].bio) {
1511 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1512 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1513 			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1514 				    max_sectors);
1515 			r10_bio->devs[i].bio = mbio;
1516 
1517 			mbio->bi_sector	= (r10_bio->devs[i].addr+
1518 					   choose_data_offset(r10_bio,
1519 							      rdev));
1520 			mbio->bi_bdev = rdev->bdev;
1521 			mbio->bi_end_io	= raid10_end_write_request;
1522 			mbio->bi_rw =
1523 				WRITE | do_sync | do_fua | do_discard | do_same;
1524 			mbio->bi_private = r10_bio;
1525 
1526 			atomic_inc(&r10_bio->remaining);
1527 
1528 			cb = blk_check_plugged(raid10_unplug, mddev,
1529 					       sizeof(*plug));
1530 			if (cb)
1531 				plug = container_of(cb, struct raid10_plug_cb,
1532 						    cb);
1533 			else
1534 				plug = NULL;
1535 			spin_lock_irqsave(&conf->device_lock, flags);
1536 			if (plug) {
1537 				bio_list_add(&plug->pending, mbio);
1538 				plug->pending_cnt++;
1539 			} else {
1540 				bio_list_add(&conf->pending_bio_list, mbio);
1541 				conf->pending_count++;
1542 			}
1543 			spin_unlock_irqrestore(&conf->device_lock, flags);
1544 			if (!plug)
1545 				md_wakeup_thread(mddev->thread);
1546 		}
1547 
1548 		if (r10_bio->devs[i].repl_bio) {
1549 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1550 			if (rdev == NULL) {
1551 				/* Replacement just got moved to main 'rdev' */
1552 				smp_mb();
1553 				rdev = conf->mirrors[d].rdev;
1554 			}
1555 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1556 			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1557 				    max_sectors);
1558 			r10_bio->devs[i].repl_bio = mbio;
1559 
1560 			mbio->bi_sector	= (r10_bio->devs[i].addr +
1561 					   choose_data_offset(
1562 						   r10_bio, rdev));
1563 			mbio->bi_bdev = rdev->bdev;
1564 			mbio->bi_end_io	= raid10_end_write_request;
1565 			mbio->bi_rw =
1566 				WRITE | do_sync | do_fua | do_discard | do_same;
1567 			mbio->bi_private = r10_bio;
1568 
1569 			atomic_inc(&r10_bio->remaining);
1570 			spin_lock_irqsave(&conf->device_lock, flags);
1571 			bio_list_add(&conf->pending_bio_list, mbio);
1572 			conf->pending_count++;
1573 			spin_unlock_irqrestore(&conf->device_lock, flags);
1574 			if (!mddev_check_plugged(mddev))
1575 				md_wakeup_thread(mddev->thread);
1576 		}
1577 	}
1578 
1579 	/* Don't remove the bias on 'remaining' (one_write_done) until
1580 	 * after checking if we need to go around again.
1581 	 */
1582 
1583 	if (sectors_handled < bio_sectors(bio)) {
1584 		one_write_done(r10_bio);
1585 		/* We need another r10_bio.  It has already been counted
1586 		 * in bio->bi_phys_segments.
1587 		 */
1588 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1589 
1590 		r10_bio->master_bio = bio;
1591 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1592 
1593 		r10_bio->mddev = mddev;
1594 		r10_bio->sector = bio->bi_sector + sectors_handled;
1595 		r10_bio->state = 0;
1596 		goto retry_write;
1597 	}
1598 	one_write_done(r10_bio);
1599 
1600 	/* In case raid10d snuck in to freeze_array */
1601 	wake_up(&conf->wait_barrier);
1602 }
1603 
1604 static void status(struct seq_file *seq, struct mddev *mddev)
1605 {
1606 	struct r10conf *conf = mddev->private;
1607 	int i;
1608 
1609 	if (conf->geo.near_copies < conf->geo.raid_disks)
1610 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1611 	if (conf->geo.near_copies > 1)
1612 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1613 	if (conf->geo.far_copies > 1) {
1614 		if (conf->geo.far_offset)
1615 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1616 		else
1617 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1618 	}
1619 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1620 					conf->geo.raid_disks - mddev->degraded);
1621 	for (i = 0; i < conf->geo.raid_disks; i++)
1622 		seq_printf(seq, "%s",
1623 			      conf->mirrors[i].rdev &&
1624 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1625 	seq_printf(seq, "]");
1626 }
1627 
1628 /* check if there are enough drives for
1629  * every block to appear on atleast one.
1630  * Don't consider the device numbered 'ignore'
1631  * as we might be about to remove it.
1632  */
1633 static int _enough(struct r10conf *conf, int previous, int ignore)
1634 {
1635 	int first = 0;
1636 	int has_enough = 0;
1637 	int disks, ncopies;
1638 	if (previous) {
1639 		disks = conf->prev.raid_disks;
1640 		ncopies = conf->prev.near_copies;
1641 	} else {
1642 		disks = conf->geo.raid_disks;
1643 		ncopies = conf->geo.near_copies;
1644 	}
1645 
1646 	rcu_read_lock();
1647 	do {
1648 		int n = conf->copies;
1649 		int cnt = 0;
1650 		int this = first;
1651 		while (n--) {
1652 			struct md_rdev *rdev;
1653 			if (this != ignore &&
1654 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1655 			    test_bit(In_sync, &rdev->flags))
1656 				cnt++;
1657 			this = (this+1) % disks;
1658 		}
1659 		if (cnt == 0)
1660 			goto out;
1661 		first = (first + ncopies) % disks;
1662 	} while (first != 0);
1663 	has_enough = 1;
1664 out:
1665 	rcu_read_unlock();
1666 	return has_enough;
1667 }
1668 
1669 static int enough(struct r10conf *conf, int ignore)
1670 {
1671 	/* when calling 'enough', both 'prev' and 'geo' must
1672 	 * be stable.
1673 	 * This is ensured if ->reconfig_mutex or ->device_lock
1674 	 * is held.
1675 	 */
1676 	return _enough(conf, 0, ignore) &&
1677 		_enough(conf, 1, ignore);
1678 }
1679 
1680 static void error(struct mddev *mddev, struct md_rdev *rdev)
1681 {
1682 	char b[BDEVNAME_SIZE];
1683 	struct r10conf *conf = mddev->private;
1684 	unsigned long flags;
1685 
1686 	/*
1687 	 * If it is not operational, then we have already marked it as dead
1688 	 * else if it is the last working disks, ignore the error, let the
1689 	 * next level up know.
1690 	 * else mark the drive as failed
1691 	 */
1692 	spin_lock_irqsave(&conf->device_lock, flags);
1693 	if (test_bit(In_sync, &rdev->flags)
1694 	    && !enough(conf, rdev->raid_disk)) {
1695 		/*
1696 		 * Don't fail the drive, just return an IO error.
1697 		 */
1698 		spin_unlock_irqrestore(&conf->device_lock, flags);
1699 		return;
1700 	}
1701 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1702 		mddev->degraded++;
1703 			/*
1704 		 * if recovery is running, make sure it aborts.
1705 		 */
1706 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1707 	}
1708 	set_bit(Blocked, &rdev->flags);
1709 	set_bit(Faulty, &rdev->flags);
1710 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711 	spin_unlock_irqrestore(&conf->device_lock, flags);
1712 	printk(KERN_ALERT
1713 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1714 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1715 	       mdname(mddev), bdevname(rdev->bdev, b),
1716 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1717 }
1718 
1719 static void print_conf(struct r10conf *conf)
1720 {
1721 	int i;
1722 	struct raid10_info *tmp;
1723 
1724 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1725 	if (!conf) {
1726 		printk(KERN_DEBUG "(!conf)\n");
1727 		return;
1728 	}
1729 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1730 		conf->geo.raid_disks);
1731 
1732 	for (i = 0; i < conf->geo.raid_disks; i++) {
1733 		char b[BDEVNAME_SIZE];
1734 		tmp = conf->mirrors + i;
1735 		if (tmp->rdev)
1736 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1737 				i, !test_bit(In_sync, &tmp->rdev->flags),
1738 			        !test_bit(Faulty, &tmp->rdev->flags),
1739 				bdevname(tmp->rdev->bdev,b));
1740 	}
1741 }
1742 
1743 static void close_sync(struct r10conf *conf)
1744 {
1745 	wait_barrier(conf);
1746 	allow_barrier(conf);
1747 
1748 	mempool_destroy(conf->r10buf_pool);
1749 	conf->r10buf_pool = NULL;
1750 }
1751 
1752 static int raid10_spare_active(struct mddev *mddev)
1753 {
1754 	int i;
1755 	struct r10conf *conf = mddev->private;
1756 	struct raid10_info *tmp;
1757 	int count = 0;
1758 	unsigned long flags;
1759 
1760 	/*
1761 	 * Find all non-in_sync disks within the RAID10 configuration
1762 	 * and mark them in_sync
1763 	 */
1764 	for (i = 0; i < conf->geo.raid_disks; i++) {
1765 		tmp = conf->mirrors + i;
1766 		if (tmp->replacement
1767 		    && tmp->replacement->recovery_offset == MaxSector
1768 		    && !test_bit(Faulty, &tmp->replacement->flags)
1769 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1770 			/* Replacement has just become active */
1771 			if (!tmp->rdev
1772 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1773 				count++;
1774 			if (tmp->rdev) {
1775 				/* Replaced device not technically faulty,
1776 				 * but we need to be sure it gets removed
1777 				 * and never re-added.
1778 				 */
1779 				set_bit(Faulty, &tmp->rdev->flags);
1780 				sysfs_notify_dirent_safe(
1781 					tmp->rdev->sysfs_state);
1782 			}
1783 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1784 		} else if (tmp->rdev
1785 			   && !test_bit(Faulty, &tmp->rdev->flags)
1786 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1787 			count++;
1788 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1789 		}
1790 	}
1791 	spin_lock_irqsave(&conf->device_lock, flags);
1792 	mddev->degraded -= count;
1793 	spin_unlock_irqrestore(&conf->device_lock, flags);
1794 
1795 	print_conf(conf);
1796 	return count;
1797 }
1798 
1799 
1800 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1801 {
1802 	struct r10conf *conf = mddev->private;
1803 	int err = -EEXIST;
1804 	int mirror;
1805 	int first = 0;
1806 	int last = conf->geo.raid_disks - 1;
1807 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1808 
1809 	if (mddev->recovery_cp < MaxSector)
1810 		/* only hot-add to in-sync arrays, as recovery is
1811 		 * very different from resync
1812 		 */
1813 		return -EBUSY;
1814 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1815 		return -EINVAL;
1816 
1817 	if (rdev->raid_disk >= 0)
1818 		first = last = rdev->raid_disk;
1819 
1820 	if (q->merge_bvec_fn) {
1821 		set_bit(Unmerged, &rdev->flags);
1822 		mddev->merge_check_needed = 1;
1823 	}
1824 
1825 	if (rdev->saved_raid_disk >= first &&
1826 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1827 		mirror = rdev->saved_raid_disk;
1828 	else
1829 		mirror = first;
1830 	for ( ; mirror <= last ; mirror++) {
1831 		struct raid10_info *p = &conf->mirrors[mirror];
1832 		if (p->recovery_disabled == mddev->recovery_disabled)
1833 			continue;
1834 		if (p->rdev) {
1835 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1836 			    p->replacement != NULL)
1837 				continue;
1838 			clear_bit(In_sync, &rdev->flags);
1839 			set_bit(Replacement, &rdev->flags);
1840 			rdev->raid_disk = mirror;
1841 			err = 0;
1842 			if (mddev->gendisk)
1843 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1844 						  rdev->data_offset << 9);
1845 			conf->fullsync = 1;
1846 			rcu_assign_pointer(p->replacement, rdev);
1847 			break;
1848 		}
1849 
1850 		if (mddev->gendisk)
1851 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1852 					  rdev->data_offset << 9);
1853 
1854 		p->head_position = 0;
1855 		p->recovery_disabled = mddev->recovery_disabled - 1;
1856 		rdev->raid_disk = mirror;
1857 		err = 0;
1858 		if (rdev->saved_raid_disk != mirror)
1859 			conf->fullsync = 1;
1860 		rcu_assign_pointer(p->rdev, rdev);
1861 		break;
1862 	}
1863 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1864 		/* Some requests might not have seen this new
1865 		 * merge_bvec_fn.  We must wait for them to complete
1866 		 * before merging the device fully.
1867 		 * First we make sure any code which has tested
1868 		 * our function has submitted the request, then
1869 		 * we wait for all outstanding requests to complete.
1870 		 */
1871 		synchronize_sched();
1872 		freeze_array(conf, 0);
1873 		unfreeze_array(conf);
1874 		clear_bit(Unmerged, &rdev->flags);
1875 	}
1876 	md_integrity_add_rdev(rdev, mddev);
1877 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1878 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1879 
1880 	print_conf(conf);
1881 	return err;
1882 }
1883 
1884 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1885 {
1886 	struct r10conf *conf = mddev->private;
1887 	int err = 0;
1888 	int number = rdev->raid_disk;
1889 	struct md_rdev **rdevp;
1890 	struct raid10_info *p = conf->mirrors + number;
1891 
1892 	print_conf(conf);
1893 	if (rdev == p->rdev)
1894 		rdevp = &p->rdev;
1895 	else if (rdev == p->replacement)
1896 		rdevp = &p->replacement;
1897 	else
1898 		return 0;
1899 
1900 	if (test_bit(In_sync, &rdev->flags) ||
1901 	    atomic_read(&rdev->nr_pending)) {
1902 		err = -EBUSY;
1903 		goto abort;
1904 	}
1905 	/* Only remove faulty devices if recovery
1906 	 * is not possible.
1907 	 */
1908 	if (!test_bit(Faulty, &rdev->flags) &&
1909 	    mddev->recovery_disabled != p->recovery_disabled &&
1910 	    (!p->replacement || p->replacement == rdev) &&
1911 	    number < conf->geo.raid_disks &&
1912 	    enough(conf, -1)) {
1913 		err = -EBUSY;
1914 		goto abort;
1915 	}
1916 	*rdevp = NULL;
1917 	synchronize_rcu();
1918 	if (atomic_read(&rdev->nr_pending)) {
1919 		/* lost the race, try later */
1920 		err = -EBUSY;
1921 		*rdevp = rdev;
1922 		goto abort;
1923 	} else if (p->replacement) {
1924 		/* We must have just cleared 'rdev' */
1925 		p->rdev = p->replacement;
1926 		clear_bit(Replacement, &p->replacement->flags);
1927 		smp_mb(); /* Make sure other CPUs may see both as identical
1928 			   * but will never see neither -- if they are careful.
1929 			   */
1930 		p->replacement = NULL;
1931 		clear_bit(WantReplacement, &rdev->flags);
1932 	} else
1933 		/* We might have just remove the Replacement as faulty
1934 		 * Clear the flag just in case
1935 		 */
1936 		clear_bit(WantReplacement, &rdev->flags);
1937 
1938 	err = md_integrity_register(mddev);
1939 
1940 abort:
1941 
1942 	print_conf(conf);
1943 	return err;
1944 }
1945 
1946 
1947 static void end_sync_read(struct bio *bio, int error)
1948 {
1949 	struct r10bio *r10_bio = bio->bi_private;
1950 	struct r10conf *conf = r10_bio->mddev->private;
1951 	int d;
1952 
1953 	if (bio == r10_bio->master_bio) {
1954 		/* this is a reshape read */
1955 		d = r10_bio->read_slot; /* really the read dev */
1956 	} else
1957 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1958 
1959 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1960 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1961 	else
1962 		/* The write handler will notice the lack of
1963 		 * R10BIO_Uptodate and record any errors etc
1964 		 */
1965 		atomic_add(r10_bio->sectors,
1966 			   &conf->mirrors[d].rdev->corrected_errors);
1967 
1968 	/* for reconstruct, we always reschedule after a read.
1969 	 * for resync, only after all reads
1970 	 */
1971 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1972 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1973 	    atomic_dec_and_test(&r10_bio->remaining)) {
1974 		/* we have read all the blocks,
1975 		 * do the comparison in process context in raid10d
1976 		 */
1977 		reschedule_retry(r10_bio);
1978 	}
1979 }
1980 
1981 static void end_sync_request(struct r10bio *r10_bio)
1982 {
1983 	struct mddev *mddev = r10_bio->mddev;
1984 
1985 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1986 		if (r10_bio->master_bio == NULL) {
1987 			/* the primary of several recovery bios */
1988 			sector_t s = r10_bio->sectors;
1989 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1990 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1991 				reschedule_retry(r10_bio);
1992 			else
1993 				put_buf(r10_bio);
1994 			md_done_sync(mddev, s, 1);
1995 			break;
1996 		} else {
1997 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1998 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1999 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2000 				reschedule_retry(r10_bio);
2001 			else
2002 				put_buf(r10_bio);
2003 			r10_bio = r10_bio2;
2004 		}
2005 	}
2006 }
2007 
2008 static void end_sync_write(struct bio *bio, int error)
2009 {
2010 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2011 	struct r10bio *r10_bio = bio->bi_private;
2012 	struct mddev *mddev = r10_bio->mddev;
2013 	struct r10conf *conf = mddev->private;
2014 	int d;
2015 	sector_t first_bad;
2016 	int bad_sectors;
2017 	int slot;
2018 	int repl;
2019 	struct md_rdev *rdev = NULL;
2020 
2021 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2022 	if (repl)
2023 		rdev = conf->mirrors[d].replacement;
2024 	else
2025 		rdev = conf->mirrors[d].rdev;
2026 
2027 	if (!uptodate) {
2028 		if (repl)
2029 			md_error(mddev, rdev);
2030 		else {
2031 			set_bit(WriteErrorSeen, &rdev->flags);
2032 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2033 				set_bit(MD_RECOVERY_NEEDED,
2034 					&rdev->mddev->recovery);
2035 			set_bit(R10BIO_WriteError, &r10_bio->state);
2036 		}
2037 	} else if (is_badblock(rdev,
2038 			     r10_bio->devs[slot].addr,
2039 			     r10_bio->sectors,
2040 			     &first_bad, &bad_sectors))
2041 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2042 
2043 	rdev_dec_pending(rdev, mddev);
2044 
2045 	end_sync_request(r10_bio);
2046 }
2047 
2048 /*
2049  * Note: sync and recover and handled very differently for raid10
2050  * This code is for resync.
2051  * For resync, we read through virtual addresses and read all blocks.
2052  * If there is any error, we schedule a write.  The lowest numbered
2053  * drive is authoritative.
2054  * However requests come for physical address, so we need to map.
2055  * For every physical address there are raid_disks/copies virtual addresses,
2056  * which is always are least one, but is not necessarly an integer.
2057  * This means that a physical address can span multiple chunks, so we may
2058  * have to submit multiple io requests for a single sync request.
2059  */
2060 /*
2061  * We check if all blocks are in-sync and only write to blocks that
2062  * aren't in sync
2063  */
2064 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2065 {
2066 	struct r10conf *conf = mddev->private;
2067 	int i, first;
2068 	struct bio *tbio, *fbio;
2069 	int vcnt;
2070 
2071 	atomic_set(&r10_bio->remaining, 1);
2072 
2073 	/* find the first device with a block */
2074 	for (i=0; i<conf->copies; i++)
2075 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2076 			break;
2077 
2078 	if (i == conf->copies)
2079 		goto done;
2080 
2081 	first = i;
2082 	fbio = r10_bio->devs[i].bio;
2083 
2084 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2085 	/* now find blocks with errors */
2086 	for (i=0 ; i < conf->copies ; i++) {
2087 		int  j, d;
2088 
2089 		tbio = r10_bio->devs[i].bio;
2090 
2091 		if (tbio->bi_end_io != end_sync_read)
2092 			continue;
2093 		if (i == first)
2094 			continue;
2095 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2096 			/* We know that the bi_io_vec layout is the same for
2097 			 * both 'first' and 'i', so we just compare them.
2098 			 * All vec entries are PAGE_SIZE;
2099 			 */
2100 			int sectors = r10_bio->sectors;
2101 			for (j = 0; j < vcnt; j++) {
2102 				int len = PAGE_SIZE;
2103 				if (sectors < (len / 512))
2104 					len = sectors * 512;
2105 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2106 					   page_address(tbio->bi_io_vec[j].bv_page),
2107 					   len))
2108 					break;
2109 				sectors -= len/512;
2110 			}
2111 			if (j == vcnt)
2112 				continue;
2113 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2114 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2115 				/* Don't fix anything. */
2116 				continue;
2117 		}
2118 		/* Ok, we need to write this bio, either to correct an
2119 		 * inconsistency or to correct an unreadable block.
2120 		 * First we need to fixup bv_offset, bv_len and
2121 		 * bi_vecs, as the read request might have corrupted these
2122 		 */
2123 		bio_reset(tbio);
2124 
2125 		tbio->bi_vcnt = vcnt;
2126 		tbio->bi_size = r10_bio->sectors << 9;
2127 		tbio->bi_rw = WRITE;
2128 		tbio->bi_private = r10_bio;
2129 		tbio->bi_sector = r10_bio->devs[i].addr;
2130 
2131 		for (j=0; j < vcnt ; j++) {
2132 			tbio->bi_io_vec[j].bv_offset = 0;
2133 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2134 
2135 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2136 			       page_address(fbio->bi_io_vec[j].bv_page),
2137 			       PAGE_SIZE);
2138 		}
2139 		tbio->bi_end_io = end_sync_write;
2140 
2141 		d = r10_bio->devs[i].devnum;
2142 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2143 		atomic_inc(&r10_bio->remaining);
2144 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2145 
2146 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2147 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2148 		generic_make_request(tbio);
2149 	}
2150 
2151 	/* Now write out to any replacement devices
2152 	 * that are active
2153 	 */
2154 	for (i = 0; i < conf->copies; i++) {
2155 		int j, d;
2156 
2157 		tbio = r10_bio->devs[i].repl_bio;
2158 		if (!tbio || !tbio->bi_end_io)
2159 			continue;
2160 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2161 		    && r10_bio->devs[i].bio != fbio)
2162 			for (j = 0; j < vcnt; j++)
2163 				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2164 				       page_address(fbio->bi_io_vec[j].bv_page),
2165 				       PAGE_SIZE);
2166 		d = r10_bio->devs[i].devnum;
2167 		atomic_inc(&r10_bio->remaining);
2168 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2169 			     bio_sectors(tbio));
2170 		generic_make_request(tbio);
2171 	}
2172 
2173 done:
2174 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2175 		md_done_sync(mddev, r10_bio->sectors, 1);
2176 		put_buf(r10_bio);
2177 	}
2178 }
2179 
2180 /*
2181  * Now for the recovery code.
2182  * Recovery happens across physical sectors.
2183  * We recover all non-is_sync drives by finding the virtual address of
2184  * each, and then choose a working drive that also has that virt address.
2185  * There is a separate r10_bio for each non-in_sync drive.
2186  * Only the first two slots are in use. The first for reading,
2187  * The second for writing.
2188  *
2189  */
2190 static void fix_recovery_read_error(struct r10bio *r10_bio)
2191 {
2192 	/* We got a read error during recovery.
2193 	 * We repeat the read in smaller page-sized sections.
2194 	 * If a read succeeds, write it to the new device or record
2195 	 * a bad block if we cannot.
2196 	 * If a read fails, record a bad block on both old and
2197 	 * new devices.
2198 	 */
2199 	struct mddev *mddev = r10_bio->mddev;
2200 	struct r10conf *conf = mddev->private;
2201 	struct bio *bio = r10_bio->devs[0].bio;
2202 	sector_t sect = 0;
2203 	int sectors = r10_bio->sectors;
2204 	int idx = 0;
2205 	int dr = r10_bio->devs[0].devnum;
2206 	int dw = r10_bio->devs[1].devnum;
2207 
2208 	while (sectors) {
2209 		int s = sectors;
2210 		struct md_rdev *rdev;
2211 		sector_t addr;
2212 		int ok;
2213 
2214 		if (s > (PAGE_SIZE>>9))
2215 			s = PAGE_SIZE >> 9;
2216 
2217 		rdev = conf->mirrors[dr].rdev;
2218 		addr = r10_bio->devs[0].addr + sect,
2219 		ok = sync_page_io(rdev,
2220 				  addr,
2221 				  s << 9,
2222 				  bio->bi_io_vec[idx].bv_page,
2223 				  READ, false);
2224 		if (ok) {
2225 			rdev = conf->mirrors[dw].rdev;
2226 			addr = r10_bio->devs[1].addr + sect;
2227 			ok = sync_page_io(rdev,
2228 					  addr,
2229 					  s << 9,
2230 					  bio->bi_io_vec[idx].bv_page,
2231 					  WRITE, false);
2232 			if (!ok) {
2233 				set_bit(WriteErrorSeen, &rdev->flags);
2234 				if (!test_and_set_bit(WantReplacement,
2235 						      &rdev->flags))
2236 					set_bit(MD_RECOVERY_NEEDED,
2237 						&rdev->mddev->recovery);
2238 			}
2239 		}
2240 		if (!ok) {
2241 			/* We don't worry if we cannot set a bad block -
2242 			 * it really is bad so there is no loss in not
2243 			 * recording it yet
2244 			 */
2245 			rdev_set_badblocks(rdev, addr, s, 0);
2246 
2247 			if (rdev != conf->mirrors[dw].rdev) {
2248 				/* need bad block on destination too */
2249 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2250 				addr = r10_bio->devs[1].addr + sect;
2251 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2252 				if (!ok) {
2253 					/* just abort the recovery */
2254 					printk(KERN_NOTICE
2255 					       "md/raid10:%s: recovery aborted"
2256 					       " due to read error\n",
2257 					       mdname(mddev));
2258 
2259 					conf->mirrors[dw].recovery_disabled
2260 						= mddev->recovery_disabled;
2261 					set_bit(MD_RECOVERY_INTR,
2262 						&mddev->recovery);
2263 					break;
2264 				}
2265 			}
2266 		}
2267 
2268 		sectors -= s;
2269 		sect += s;
2270 		idx++;
2271 	}
2272 }
2273 
2274 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2275 {
2276 	struct r10conf *conf = mddev->private;
2277 	int d;
2278 	struct bio *wbio, *wbio2;
2279 
2280 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2281 		fix_recovery_read_error(r10_bio);
2282 		end_sync_request(r10_bio);
2283 		return;
2284 	}
2285 
2286 	/*
2287 	 * share the pages with the first bio
2288 	 * and submit the write request
2289 	 */
2290 	d = r10_bio->devs[1].devnum;
2291 	wbio = r10_bio->devs[1].bio;
2292 	wbio2 = r10_bio->devs[1].repl_bio;
2293 	/* Need to test wbio2->bi_end_io before we call
2294 	 * generic_make_request as if the former is NULL,
2295 	 * the latter is free to free wbio2.
2296 	 */
2297 	if (wbio2 && !wbio2->bi_end_io)
2298 		wbio2 = NULL;
2299 	if (wbio->bi_end_io) {
2300 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2301 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2302 		generic_make_request(wbio);
2303 	}
2304 	if (wbio2) {
2305 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2306 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2307 			     bio_sectors(wbio2));
2308 		generic_make_request(wbio2);
2309 	}
2310 }
2311 
2312 
2313 /*
2314  * Used by fix_read_error() to decay the per rdev read_errors.
2315  * We halve the read error count for every hour that has elapsed
2316  * since the last recorded read error.
2317  *
2318  */
2319 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2320 {
2321 	struct timespec cur_time_mon;
2322 	unsigned long hours_since_last;
2323 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2324 
2325 	ktime_get_ts(&cur_time_mon);
2326 
2327 	if (rdev->last_read_error.tv_sec == 0 &&
2328 	    rdev->last_read_error.tv_nsec == 0) {
2329 		/* first time we've seen a read error */
2330 		rdev->last_read_error = cur_time_mon;
2331 		return;
2332 	}
2333 
2334 	hours_since_last = (cur_time_mon.tv_sec -
2335 			    rdev->last_read_error.tv_sec) / 3600;
2336 
2337 	rdev->last_read_error = cur_time_mon;
2338 
2339 	/*
2340 	 * if hours_since_last is > the number of bits in read_errors
2341 	 * just set read errors to 0. We do this to avoid
2342 	 * overflowing the shift of read_errors by hours_since_last.
2343 	 */
2344 	if (hours_since_last >= 8 * sizeof(read_errors))
2345 		atomic_set(&rdev->read_errors, 0);
2346 	else
2347 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2348 }
2349 
2350 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2351 			    int sectors, struct page *page, int rw)
2352 {
2353 	sector_t first_bad;
2354 	int bad_sectors;
2355 
2356 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2357 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2358 		return -1;
2359 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2360 		/* success */
2361 		return 1;
2362 	if (rw == WRITE) {
2363 		set_bit(WriteErrorSeen, &rdev->flags);
2364 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2365 			set_bit(MD_RECOVERY_NEEDED,
2366 				&rdev->mddev->recovery);
2367 	}
2368 	/* need to record an error - either for the block or the device */
2369 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2370 		md_error(rdev->mddev, rdev);
2371 	return 0;
2372 }
2373 
2374 /*
2375  * This is a kernel thread which:
2376  *
2377  *	1.	Retries failed read operations on working mirrors.
2378  *	2.	Updates the raid superblock when problems encounter.
2379  *	3.	Performs writes following reads for array synchronising.
2380  */
2381 
2382 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2383 {
2384 	int sect = 0; /* Offset from r10_bio->sector */
2385 	int sectors = r10_bio->sectors;
2386 	struct md_rdev*rdev;
2387 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2388 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2389 
2390 	/* still own a reference to this rdev, so it cannot
2391 	 * have been cleared recently.
2392 	 */
2393 	rdev = conf->mirrors[d].rdev;
2394 
2395 	if (test_bit(Faulty, &rdev->flags))
2396 		/* drive has already been failed, just ignore any
2397 		   more fix_read_error() attempts */
2398 		return;
2399 
2400 	check_decay_read_errors(mddev, rdev);
2401 	atomic_inc(&rdev->read_errors);
2402 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2403 		char b[BDEVNAME_SIZE];
2404 		bdevname(rdev->bdev, b);
2405 
2406 		printk(KERN_NOTICE
2407 		       "md/raid10:%s: %s: Raid device exceeded "
2408 		       "read_error threshold [cur %d:max %d]\n",
2409 		       mdname(mddev), b,
2410 		       atomic_read(&rdev->read_errors), max_read_errors);
2411 		printk(KERN_NOTICE
2412 		       "md/raid10:%s: %s: Failing raid device\n",
2413 		       mdname(mddev), b);
2414 		md_error(mddev, conf->mirrors[d].rdev);
2415 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2416 		return;
2417 	}
2418 
2419 	while(sectors) {
2420 		int s = sectors;
2421 		int sl = r10_bio->read_slot;
2422 		int success = 0;
2423 		int start;
2424 
2425 		if (s > (PAGE_SIZE>>9))
2426 			s = PAGE_SIZE >> 9;
2427 
2428 		rcu_read_lock();
2429 		do {
2430 			sector_t first_bad;
2431 			int bad_sectors;
2432 
2433 			d = r10_bio->devs[sl].devnum;
2434 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2435 			if (rdev &&
2436 			    !test_bit(Unmerged, &rdev->flags) &&
2437 			    test_bit(In_sync, &rdev->flags) &&
2438 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2439 					&first_bad, &bad_sectors) == 0) {
2440 				atomic_inc(&rdev->nr_pending);
2441 				rcu_read_unlock();
2442 				success = sync_page_io(rdev,
2443 						       r10_bio->devs[sl].addr +
2444 						       sect,
2445 						       s<<9,
2446 						       conf->tmppage, READ, false);
2447 				rdev_dec_pending(rdev, mddev);
2448 				rcu_read_lock();
2449 				if (success)
2450 					break;
2451 			}
2452 			sl++;
2453 			if (sl == conf->copies)
2454 				sl = 0;
2455 		} while (!success && sl != r10_bio->read_slot);
2456 		rcu_read_unlock();
2457 
2458 		if (!success) {
2459 			/* Cannot read from anywhere, just mark the block
2460 			 * as bad on the first device to discourage future
2461 			 * reads.
2462 			 */
2463 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2464 			rdev = conf->mirrors[dn].rdev;
2465 
2466 			if (!rdev_set_badblocks(
2467 				    rdev,
2468 				    r10_bio->devs[r10_bio->read_slot].addr
2469 				    + sect,
2470 				    s, 0)) {
2471 				md_error(mddev, rdev);
2472 				r10_bio->devs[r10_bio->read_slot].bio
2473 					= IO_BLOCKED;
2474 			}
2475 			break;
2476 		}
2477 
2478 		start = sl;
2479 		/* write it back and re-read */
2480 		rcu_read_lock();
2481 		while (sl != r10_bio->read_slot) {
2482 			char b[BDEVNAME_SIZE];
2483 
2484 			if (sl==0)
2485 				sl = conf->copies;
2486 			sl--;
2487 			d = r10_bio->devs[sl].devnum;
2488 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2489 			if (!rdev ||
2490 			    test_bit(Unmerged, &rdev->flags) ||
2491 			    !test_bit(In_sync, &rdev->flags))
2492 				continue;
2493 
2494 			atomic_inc(&rdev->nr_pending);
2495 			rcu_read_unlock();
2496 			if (r10_sync_page_io(rdev,
2497 					     r10_bio->devs[sl].addr +
2498 					     sect,
2499 					     s, conf->tmppage, WRITE)
2500 			    == 0) {
2501 				/* Well, this device is dead */
2502 				printk(KERN_NOTICE
2503 				       "md/raid10:%s: read correction "
2504 				       "write failed"
2505 				       " (%d sectors at %llu on %s)\n",
2506 				       mdname(mddev), s,
2507 				       (unsigned long long)(
2508 					       sect +
2509 					       choose_data_offset(r10_bio,
2510 								  rdev)),
2511 				       bdevname(rdev->bdev, b));
2512 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2513 				       "drive\n",
2514 				       mdname(mddev),
2515 				       bdevname(rdev->bdev, b));
2516 			}
2517 			rdev_dec_pending(rdev, mddev);
2518 			rcu_read_lock();
2519 		}
2520 		sl = start;
2521 		while (sl != r10_bio->read_slot) {
2522 			char b[BDEVNAME_SIZE];
2523 
2524 			if (sl==0)
2525 				sl = conf->copies;
2526 			sl--;
2527 			d = r10_bio->devs[sl].devnum;
2528 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2529 			if (!rdev ||
2530 			    !test_bit(In_sync, &rdev->flags))
2531 				continue;
2532 
2533 			atomic_inc(&rdev->nr_pending);
2534 			rcu_read_unlock();
2535 			switch (r10_sync_page_io(rdev,
2536 					     r10_bio->devs[sl].addr +
2537 					     sect,
2538 					     s, conf->tmppage,
2539 						 READ)) {
2540 			case 0:
2541 				/* Well, this device is dead */
2542 				printk(KERN_NOTICE
2543 				       "md/raid10:%s: unable to read back "
2544 				       "corrected sectors"
2545 				       " (%d sectors at %llu on %s)\n",
2546 				       mdname(mddev), s,
2547 				       (unsigned long long)(
2548 					       sect +
2549 					       choose_data_offset(r10_bio, rdev)),
2550 				       bdevname(rdev->bdev, b));
2551 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2552 				       "drive\n",
2553 				       mdname(mddev),
2554 				       bdevname(rdev->bdev, b));
2555 				break;
2556 			case 1:
2557 				printk(KERN_INFO
2558 				       "md/raid10:%s: read error corrected"
2559 				       " (%d sectors at %llu on %s)\n",
2560 				       mdname(mddev), s,
2561 				       (unsigned long long)(
2562 					       sect +
2563 					       choose_data_offset(r10_bio, rdev)),
2564 				       bdevname(rdev->bdev, b));
2565 				atomic_add(s, &rdev->corrected_errors);
2566 			}
2567 
2568 			rdev_dec_pending(rdev, mddev);
2569 			rcu_read_lock();
2570 		}
2571 		rcu_read_unlock();
2572 
2573 		sectors -= s;
2574 		sect += s;
2575 	}
2576 }
2577 
2578 static int narrow_write_error(struct r10bio *r10_bio, int i)
2579 {
2580 	struct bio *bio = r10_bio->master_bio;
2581 	struct mddev *mddev = r10_bio->mddev;
2582 	struct r10conf *conf = mddev->private;
2583 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2584 	/* bio has the data to be written to slot 'i' where
2585 	 * we just recently had a write error.
2586 	 * We repeatedly clone the bio and trim down to one block,
2587 	 * then try the write.  Where the write fails we record
2588 	 * a bad block.
2589 	 * It is conceivable that the bio doesn't exactly align with
2590 	 * blocks.  We must handle this.
2591 	 *
2592 	 * We currently own a reference to the rdev.
2593 	 */
2594 
2595 	int block_sectors;
2596 	sector_t sector;
2597 	int sectors;
2598 	int sect_to_write = r10_bio->sectors;
2599 	int ok = 1;
2600 
2601 	if (rdev->badblocks.shift < 0)
2602 		return 0;
2603 
2604 	block_sectors = 1 << rdev->badblocks.shift;
2605 	sector = r10_bio->sector;
2606 	sectors = ((r10_bio->sector + block_sectors)
2607 		   & ~(sector_t)(block_sectors - 1))
2608 		- sector;
2609 
2610 	while (sect_to_write) {
2611 		struct bio *wbio;
2612 		if (sectors > sect_to_write)
2613 			sectors = sect_to_write;
2614 		/* Write at 'sector' for 'sectors' */
2615 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2616 		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2617 		wbio->bi_sector = (r10_bio->devs[i].addr+
2618 				   choose_data_offset(r10_bio, rdev) +
2619 				   (sector - r10_bio->sector));
2620 		wbio->bi_bdev = rdev->bdev;
2621 		if (submit_bio_wait(WRITE, wbio) == 0)
2622 			/* Failure! */
2623 			ok = rdev_set_badblocks(rdev, sector,
2624 						sectors, 0)
2625 				&& ok;
2626 
2627 		bio_put(wbio);
2628 		sect_to_write -= sectors;
2629 		sector += sectors;
2630 		sectors = block_sectors;
2631 	}
2632 	return ok;
2633 }
2634 
2635 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2636 {
2637 	int slot = r10_bio->read_slot;
2638 	struct bio *bio;
2639 	struct r10conf *conf = mddev->private;
2640 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2641 	char b[BDEVNAME_SIZE];
2642 	unsigned long do_sync;
2643 	int max_sectors;
2644 
2645 	/* we got a read error. Maybe the drive is bad.  Maybe just
2646 	 * the block and we can fix it.
2647 	 * We freeze all other IO, and try reading the block from
2648 	 * other devices.  When we find one, we re-write
2649 	 * and check it that fixes the read error.
2650 	 * This is all done synchronously while the array is
2651 	 * frozen.
2652 	 */
2653 	bio = r10_bio->devs[slot].bio;
2654 	bdevname(bio->bi_bdev, b);
2655 	bio_put(bio);
2656 	r10_bio->devs[slot].bio = NULL;
2657 
2658 	if (mddev->ro == 0) {
2659 		freeze_array(conf, 1);
2660 		fix_read_error(conf, mddev, r10_bio);
2661 		unfreeze_array(conf);
2662 	} else
2663 		r10_bio->devs[slot].bio = IO_BLOCKED;
2664 
2665 	rdev_dec_pending(rdev, mddev);
2666 
2667 read_more:
2668 	rdev = read_balance(conf, r10_bio, &max_sectors);
2669 	if (rdev == NULL) {
2670 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2671 		       " read error for block %llu\n",
2672 		       mdname(mddev), b,
2673 		       (unsigned long long)r10_bio->sector);
2674 		raid_end_bio_io(r10_bio);
2675 		return;
2676 	}
2677 
2678 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2679 	slot = r10_bio->read_slot;
2680 	printk_ratelimited(
2681 		KERN_ERR
2682 		"md/raid10:%s: %s: redirecting "
2683 		"sector %llu to another mirror\n",
2684 		mdname(mddev),
2685 		bdevname(rdev->bdev, b),
2686 		(unsigned long long)r10_bio->sector);
2687 	bio = bio_clone_mddev(r10_bio->master_bio,
2688 			      GFP_NOIO, mddev);
2689 	md_trim_bio(bio,
2690 		    r10_bio->sector - bio->bi_sector,
2691 		    max_sectors);
2692 	r10_bio->devs[slot].bio = bio;
2693 	r10_bio->devs[slot].rdev = rdev;
2694 	bio->bi_sector = r10_bio->devs[slot].addr
2695 		+ choose_data_offset(r10_bio, rdev);
2696 	bio->bi_bdev = rdev->bdev;
2697 	bio->bi_rw = READ | do_sync;
2698 	bio->bi_private = r10_bio;
2699 	bio->bi_end_io = raid10_end_read_request;
2700 	if (max_sectors < r10_bio->sectors) {
2701 		/* Drat - have to split this up more */
2702 		struct bio *mbio = r10_bio->master_bio;
2703 		int sectors_handled =
2704 			r10_bio->sector + max_sectors
2705 			- mbio->bi_sector;
2706 		r10_bio->sectors = max_sectors;
2707 		spin_lock_irq(&conf->device_lock);
2708 		if (mbio->bi_phys_segments == 0)
2709 			mbio->bi_phys_segments = 2;
2710 		else
2711 			mbio->bi_phys_segments++;
2712 		spin_unlock_irq(&conf->device_lock);
2713 		generic_make_request(bio);
2714 
2715 		r10_bio = mempool_alloc(conf->r10bio_pool,
2716 					GFP_NOIO);
2717 		r10_bio->master_bio = mbio;
2718 		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2719 		r10_bio->state = 0;
2720 		set_bit(R10BIO_ReadError,
2721 			&r10_bio->state);
2722 		r10_bio->mddev = mddev;
2723 		r10_bio->sector = mbio->bi_sector
2724 			+ sectors_handled;
2725 
2726 		goto read_more;
2727 	} else
2728 		generic_make_request(bio);
2729 }
2730 
2731 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2732 {
2733 	/* Some sort of write request has finished and it
2734 	 * succeeded in writing where we thought there was a
2735 	 * bad block.  So forget the bad block.
2736 	 * Or possibly if failed and we need to record
2737 	 * a bad block.
2738 	 */
2739 	int m;
2740 	struct md_rdev *rdev;
2741 
2742 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2743 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2744 		for (m = 0; m < conf->copies; m++) {
2745 			int dev = r10_bio->devs[m].devnum;
2746 			rdev = conf->mirrors[dev].rdev;
2747 			if (r10_bio->devs[m].bio == NULL)
2748 				continue;
2749 			if (test_bit(BIO_UPTODATE,
2750 				     &r10_bio->devs[m].bio->bi_flags)) {
2751 				rdev_clear_badblocks(
2752 					rdev,
2753 					r10_bio->devs[m].addr,
2754 					r10_bio->sectors, 0);
2755 			} else {
2756 				if (!rdev_set_badblocks(
2757 					    rdev,
2758 					    r10_bio->devs[m].addr,
2759 					    r10_bio->sectors, 0))
2760 					md_error(conf->mddev, rdev);
2761 			}
2762 			rdev = conf->mirrors[dev].replacement;
2763 			if (r10_bio->devs[m].repl_bio == NULL)
2764 				continue;
2765 			if (test_bit(BIO_UPTODATE,
2766 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2767 				rdev_clear_badblocks(
2768 					rdev,
2769 					r10_bio->devs[m].addr,
2770 					r10_bio->sectors, 0);
2771 			} else {
2772 				if (!rdev_set_badblocks(
2773 					    rdev,
2774 					    r10_bio->devs[m].addr,
2775 					    r10_bio->sectors, 0))
2776 					md_error(conf->mddev, rdev);
2777 			}
2778 		}
2779 		put_buf(r10_bio);
2780 	} else {
2781 		for (m = 0; m < conf->copies; m++) {
2782 			int dev = r10_bio->devs[m].devnum;
2783 			struct bio *bio = r10_bio->devs[m].bio;
2784 			rdev = conf->mirrors[dev].rdev;
2785 			if (bio == IO_MADE_GOOD) {
2786 				rdev_clear_badblocks(
2787 					rdev,
2788 					r10_bio->devs[m].addr,
2789 					r10_bio->sectors, 0);
2790 				rdev_dec_pending(rdev, conf->mddev);
2791 			} else if (bio != NULL &&
2792 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2793 				if (!narrow_write_error(r10_bio, m)) {
2794 					md_error(conf->mddev, rdev);
2795 					set_bit(R10BIO_Degraded,
2796 						&r10_bio->state);
2797 				}
2798 				rdev_dec_pending(rdev, conf->mddev);
2799 			}
2800 			bio = r10_bio->devs[m].repl_bio;
2801 			rdev = conf->mirrors[dev].replacement;
2802 			if (rdev && bio == IO_MADE_GOOD) {
2803 				rdev_clear_badblocks(
2804 					rdev,
2805 					r10_bio->devs[m].addr,
2806 					r10_bio->sectors, 0);
2807 				rdev_dec_pending(rdev, conf->mddev);
2808 			}
2809 		}
2810 		if (test_bit(R10BIO_WriteError,
2811 			     &r10_bio->state))
2812 			close_write(r10_bio);
2813 		raid_end_bio_io(r10_bio);
2814 	}
2815 }
2816 
2817 static void raid10d(struct md_thread *thread)
2818 {
2819 	struct mddev *mddev = thread->mddev;
2820 	struct r10bio *r10_bio;
2821 	unsigned long flags;
2822 	struct r10conf *conf = mddev->private;
2823 	struct list_head *head = &conf->retry_list;
2824 	struct blk_plug plug;
2825 
2826 	md_check_recovery(mddev);
2827 
2828 	blk_start_plug(&plug);
2829 	for (;;) {
2830 
2831 		flush_pending_writes(conf);
2832 
2833 		spin_lock_irqsave(&conf->device_lock, flags);
2834 		if (list_empty(head)) {
2835 			spin_unlock_irqrestore(&conf->device_lock, flags);
2836 			break;
2837 		}
2838 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2839 		list_del(head->prev);
2840 		conf->nr_queued--;
2841 		spin_unlock_irqrestore(&conf->device_lock, flags);
2842 
2843 		mddev = r10_bio->mddev;
2844 		conf = mddev->private;
2845 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2846 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2847 			handle_write_completed(conf, r10_bio);
2848 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2849 			reshape_request_write(mddev, r10_bio);
2850 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2851 			sync_request_write(mddev, r10_bio);
2852 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2853 			recovery_request_write(mddev, r10_bio);
2854 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2855 			handle_read_error(mddev, r10_bio);
2856 		else {
2857 			/* just a partial read to be scheduled from a
2858 			 * separate context
2859 			 */
2860 			int slot = r10_bio->read_slot;
2861 			generic_make_request(r10_bio->devs[slot].bio);
2862 		}
2863 
2864 		cond_resched();
2865 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2866 			md_check_recovery(mddev);
2867 	}
2868 	blk_finish_plug(&plug);
2869 }
2870 
2871 
2872 static int init_resync(struct r10conf *conf)
2873 {
2874 	int buffs;
2875 	int i;
2876 
2877 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2878 	BUG_ON(conf->r10buf_pool);
2879 	conf->have_replacement = 0;
2880 	for (i = 0; i < conf->geo.raid_disks; i++)
2881 		if (conf->mirrors[i].replacement)
2882 			conf->have_replacement = 1;
2883 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2884 	if (!conf->r10buf_pool)
2885 		return -ENOMEM;
2886 	conf->next_resync = 0;
2887 	return 0;
2888 }
2889 
2890 /*
2891  * perform a "sync" on one "block"
2892  *
2893  * We need to make sure that no normal I/O request - particularly write
2894  * requests - conflict with active sync requests.
2895  *
2896  * This is achieved by tracking pending requests and a 'barrier' concept
2897  * that can be installed to exclude normal IO requests.
2898  *
2899  * Resync and recovery are handled very differently.
2900  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2901  *
2902  * For resync, we iterate over virtual addresses, read all copies,
2903  * and update if there are differences.  If only one copy is live,
2904  * skip it.
2905  * For recovery, we iterate over physical addresses, read a good
2906  * value for each non-in_sync drive, and over-write.
2907  *
2908  * So, for recovery we may have several outstanding complex requests for a
2909  * given address, one for each out-of-sync device.  We model this by allocating
2910  * a number of r10_bio structures, one for each out-of-sync device.
2911  * As we setup these structures, we collect all bio's together into a list
2912  * which we then process collectively to add pages, and then process again
2913  * to pass to generic_make_request.
2914  *
2915  * The r10_bio structures are linked using a borrowed master_bio pointer.
2916  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2917  * has its remaining count decremented to 0, the whole complex operation
2918  * is complete.
2919  *
2920  */
2921 
2922 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2923 			     int *skipped, int go_faster)
2924 {
2925 	struct r10conf *conf = mddev->private;
2926 	struct r10bio *r10_bio;
2927 	struct bio *biolist = NULL, *bio;
2928 	sector_t max_sector, nr_sectors;
2929 	int i;
2930 	int max_sync;
2931 	sector_t sync_blocks;
2932 	sector_t sectors_skipped = 0;
2933 	int chunks_skipped = 0;
2934 	sector_t chunk_mask = conf->geo.chunk_mask;
2935 
2936 	if (!conf->r10buf_pool)
2937 		if (init_resync(conf))
2938 			return 0;
2939 
2940 	/*
2941 	 * Allow skipping a full rebuild for incremental assembly
2942 	 * of a clean array, like RAID1 does.
2943 	 */
2944 	if (mddev->bitmap == NULL &&
2945 	    mddev->recovery_cp == MaxSector &&
2946 	    mddev->reshape_position == MaxSector &&
2947 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2948 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2949 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2950 	    conf->fullsync == 0) {
2951 		*skipped = 1;
2952 		return mddev->dev_sectors - sector_nr;
2953 	}
2954 
2955  skipped:
2956 	max_sector = mddev->dev_sectors;
2957 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2958 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2959 		max_sector = mddev->resync_max_sectors;
2960 	if (sector_nr >= max_sector) {
2961 		/* If we aborted, we need to abort the
2962 		 * sync on the 'current' bitmap chucks (there can
2963 		 * be several when recovering multiple devices).
2964 		 * as we may have started syncing it but not finished.
2965 		 * We can find the current address in
2966 		 * mddev->curr_resync, but for recovery,
2967 		 * we need to convert that to several
2968 		 * virtual addresses.
2969 		 */
2970 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2971 			end_reshape(conf);
2972 			return 0;
2973 		}
2974 
2975 		if (mddev->curr_resync < max_sector) { /* aborted */
2976 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2977 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2978 						&sync_blocks, 1);
2979 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2980 				sector_t sect =
2981 					raid10_find_virt(conf, mddev->curr_resync, i);
2982 				bitmap_end_sync(mddev->bitmap, sect,
2983 						&sync_blocks, 1);
2984 			}
2985 		} else {
2986 			/* completed sync */
2987 			if ((!mddev->bitmap || conf->fullsync)
2988 			    && conf->have_replacement
2989 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2990 				/* Completed a full sync so the replacements
2991 				 * are now fully recovered.
2992 				 */
2993 				for (i = 0; i < conf->geo.raid_disks; i++)
2994 					if (conf->mirrors[i].replacement)
2995 						conf->mirrors[i].replacement
2996 							->recovery_offset
2997 							= MaxSector;
2998 			}
2999 			conf->fullsync = 0;
3000 		}
3001 		bitmap_close_sync(mddev->bitmap);
3002 		close_sync(conf);
3003 		*skipped = 1;
3004 		return sectors_skipped;
3005 	}
3006 
3007 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3008 		return reshape_request(mddev, sector_nr, skipped);
3009 
3010 	if (chunks_skipped >= conf->geo.raid_disks) {
3011 		/* if there has been nothing to do on any drive,
3012 		 * then there is nothing to do at all..
3013 		 */
3014 		*skipped = 1;
3015 		return (max_sector - sector_nr) + sectors_skipped;
3016 	}
3017 
3018 	if (max_sector > mddev->resync_max)
3019 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3020 
3021 	/* make sure whole request will fit in a chunk - if chunks
3022 	 * are meaningful
3023 	 */
3024 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3025 	    max_sector > (sector_nr | chunk_mask))
3026 		max_sector = (sector_nr | chunk_mask) + 1;
3027 	/*
3028 	 * If there is non-resync activity waiting for us then
3029 	 * put in a delay to throttle resync.
3030 	 */
3031 	if (!go_faster && conf->nr_waiting)
3032 		msleep_interruptible(1000);
3033 
3034 	/* Again, very different code for resync and recovery.
3035 	 * Both must result in an r10bio with a list of bios that
3036 	 * have bi_end_io, bi_sector, bi_bdev set,
3037 	 * and bi_private set to the r10bio.
3038 	 * For recovery, we may actually create several r10bios
3039 	 * with 2 bios in each, that correspond to the bios in the main one.
3040 	 * In this case, the subordinate r10bios link back through a
3041 	 * borrowed master_bio pointer, and the counter in the master
3042 	 * includes a ref from each subordinate.
3043 	 */
3044 	/* First, we decide what to do and set ->bi_end_io
3045 	 * To end_sync_read if we want to read, and
3046 	 * end_sync_write if we will want to write.
3047 	 */
3048 
3049 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3050 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3051 		/* recovery... the complicated one */
3052 		int j;
3053 		r10_bio = NULL;
3054 
3055 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3056 			int still_degraded;
3057 			struct r10bio *rb2;
3058 			sector_t sect;
3059 			int must_sync;
3060 			int any_working;
3061 			struct raid10_info *mirror = &conf->mirrors[i];
3062 
3063 			if ((mirror->rdev == NULL ||
3064 			     test_bit(In_sync, &mirror->rdev->flags))
3065 			    &&
3066 			    (mirror->replacement == NULL ||
3067 			     test_bit(Faulty,
3068 				      &mirror->replacement->flags)))
3069 				continue;
3070 
3071 			still_degraded = 0;
3072 			/* want to reconstruct this device */
3073 			rb2 = r10_bio;
3074 			sect = raid10_find_virt(conf, sector_nr, i);
3075 			if (sect >= mddev->resync_max_sectors) {
3076 				/* last stripe is not complete - don't
3077 				 * try to recover this sector.
3078 				 */
3079 				continue;
3080 			}
3081 			/* Unless we are doing a full sync, or a replacement
3082 			 * we only need to recover the block if it is set in
3083 			 * the bitmap
3084 			 */
3085 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3086 						      &sync_blocks, 1);
3087 			if (sync_blocks < max_sync)
3088 				max_sync = sync_blocks;
3089 			if (!must_sync &&
3090 			    mirror->replacement == NULL &&
3091 			    !conf->fullsync) {
3092 				/* yep, skip the sync_blocks here, but don't assume
3093 				 * that there will never be anything to do here
3094 				 */
3095 				chunks_skipped = -1;
3096 				continue;
3097 			}
3098 
3099 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3100 			raise_barrier(conf, rb2 != NULL);
3101 			atomic_set(&r10_bio->remaining, 0);
3102 
3103 			r10_bio->master_bio = (struct bio*)rb2;
3104 			if (rb2)
3105 				atomic_inc(&rb2->remaining);
3106 			r10_bio->mddev = mddev;
3107 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3108 			r10_bio->sector = sect;
3109 
3110 			raid10_find_phys(conf, r10_bio);
3111 
3112 			/* Need to check if the array will still be
3113 			 * degraded
3114 			 */
3115 			for (j = 0; j < conf->geo.raid_disks; j++)
3116 				if (conf->mirrors[j].rdev == NULL ||
3117 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3118 					still_degraded = 1;
3119 					break;
3120 				}
3121 
3122 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3123 						      &sync_blocks, still_degraded);
3124 
3125 			any_working = 0;
3126 			for (j=0; j<conf->copies;j++) {
3127 				int k;
3128 				int d = r10_bio->devs[j].devnum;
3129 				sector_t from_addr, to_addr;
3130 				struct md_rdev *rdev;
3131 				sector_t sector, first_bad;
3132 				int bad_sectors;
3133 				if (!conf->mirrors[d].rdev ||
3134 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3135 					continue;
3136 				/* This is where we read from */
3137 				any_working = 1;
3138 				rdev = conf->mirrors[d].rdev;
3139 				sector = r10_bio->devs[j].addr;
3140 
3141 				if (is_badblock(rdev, sector, max_sync,
3142 						&first_bad, &bad_sectors)) {
3143 					if (first_bad > sector)
3144 						max_sync = first_bad - sector;
3145 					else {
3146 						bad_sectors -= (sector
3147 								- first_bad);
3148 						if (max_sync > bad_sectors)
3149 							max_sync = bad_sectors;
3150 						continue;
3151 					}
3152 				}
3153 				bio = r10_bio->devs[0].bio;
3154 				bio_reset(bio);
3155 				bio->bi_next = biolist;
3156 				biolist = bio;
3157 				bio->bi_private = r10_bio;
3158 				bio->bi_end_io = end_sync_read;
3159 				bio->bi_rw = READ;
3160 				from_addr = r10_bio->devs[j].addr;
3161 				bio->bi_sector = from_addr + rdev->data_offset;
3162 				bio->bi_bdev = rdev->bdev;
3163 				atomic_inc(&rdev->nr_pending);
3164 				/* and we write to 'i' (if not in_sync) */
3165 
3166 				for (k=0; k<conf->copies; k++)
3167 					if (r10_bio->devs[k].devnum == i)
3168 						break;
3169 				BUG_ON(k == conf->copies);
3170 				to_addr = r10_bio->devs[k].addr;
3171 				r10_bio->devs[0].devnum = d;
3172 				r10_bio->devs[0].addr = from_addr;
3173 				r10_bio->devs[1].devnum = i;
3174 				r10_bio->devs[1].addr = to_addr;
3175 
3176 				rdev = mirror->rdev;
3177 				if (!test_bit(In_sync, &rdev->flags)) {
3178 					bio = r10_bio->devs[1].bio;
3179 					bio_reset(bio);
3180 					bio->bi_next = biolist;
3181 					biolist = bio;
3182 					bio->bi_private = r10_bio;
3183 					bio->bi_end_io = end_sync_write;
3184 					bio->bi_rw = WRITE;
3185 					bio->bi_sector = to_addr
3186 						+ rdev->data_offset;
3187 					bio->bi_bdev = rdev->bdev;
3188 					atomic_inc(&r10_bio->remaining);
3189 				} else
3190 					r10_bio->devs[1].bio->bi_end_io = NULL;
3191 
3192 				/* and maybe write to replacement */
3193 				bio = r10_bio->devs[1].repl_bio;
3194 				if (bio)
3195 					bio->bi_end_io = NULL;
3196 				rdev = mirror->replacement;
3197 				/* Note: if rdev != NULL, then bio
3198 				 * cannot be NULL as r10buf_pool_alloc will
3199 				 * have allocated it.
3200 				 * So the second test here is pointless.
3201 				 * But it keeps semantic-checkers happy, and
3202 				 * this comment keeps human reviewers
3203 				 * happy.
3204 				 */
3205 				if (rdev == NULL || bio == NULL ||
3206 				    test_bit(Faulty, &rdev->flags))
3207 					break;
3208 				bio_reset(bio);
3209 				bio->bi_next = biolist;
3210 				biolist = bio;
3211 				bio->bi_private = r10_bio;
3212 				bio->bi_end_io = end_sync_write;
3213 				bio->bi_rw = WRITE;
3214 				bio->bi_sector = to_addr + rdev->data_offset;
3215 				bio->bi_bdev = rdev->bdev;
3216 				atomic_inc(&r10_bio->remaining);
3217 				break;
3218 			}
3219 			if (j == conf->copies) {
3220 				/* Cannot recover, so abort the recovery or
3221 				 * record a bad block */
3222 				put_buf(r10_bio);
3223 				if (rb2)
3224 					atomic_dec(&rb2->remaining);
3225 				r10_bio = rb2;
3226 				if (any_working) {
3227 					/* problem is that there are bad blocks
3228 					 * on other device(s)
3229 					 */
3230 					int k;
3231 					for (k = 0; k < conf->copies; k++)
3232 						if (r10_bio->devs[k].devnum == i)
3233 							break;
3234 					if (!test_bit(In_sync,
3235 						      &mirror->rdev->flags)
3236 					    && !rdev_set_badblocks(
3237 						    mirror->rdev,
3238 						    r10_bio->devs[k].addr,
3239 						    max_sync, 0))
3240 						any_working = 0;
3241 					if (mirror->replacement &&
3242 					    !rdev_set_badblocks(
3243 						    mirror->replacement,
3244 						    r10_bio->devs[k].addr,
3245 						    max_sync, 0))
3246 						any_working = 0;
3247 				}
3248 				if (!any_working)  {
3249 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3250 							      &mddev->recovery))
3251 						printk(KERN_INFO "md/raid10:%s: insufficient "
3252 						       "working devices for recovery.\n",
3253 						       mdname(mddev));
3254 					mirror->recovery_disabled
3255 						= mddev->recovery_disabled;
3256 				}
3257 				break;
3258 			}
3259 		}
3260 		if (biolist == NULL) {
3261 			while (r10_bio) {
3262 				struct r10bio *rb2 = r10_bio;
3263 				r10_bio = (struct r10bio*) rb2->master_bio;
3264 				rb2->master_bio = NULL;
3265 				put_buf(rb2);
3266 			}
3267 			goto giveup;
3268 		}
3269 	} else {
3270 		/* resync. Schedule a read for every block at this virt offset */
3271 		int count = 0;
3272 
3273 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3274 
3275 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3276 				       &sync_blocks, mddev->degraded) &&
3277 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3278 						 &mddev->recovery)) {
3279 			/* We can skip this block */
3280 			*skipped = 1;
3281 			return sync_blocks + sectors_skipped;
3282 		}
3283 		if (sync_blocks < max_sync)
3284 			max_sync = sync_blocks;
3285 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3286 
3287 		r10_bio->mddev = mddev;
3288 		atomic_set(&r10_bio->remaining, 0);
3289 		raise_barrier(conf, 0);
3290 		conf->next_resync = sector_nr;
3291 
3292 		r10_bio->master_bio = NULL;
3293 		r10_bio->sector = sector_nr;
3294 		set_bit(R10BIO_IsSync, &r10_bio->state);
3295 		raid10_find_phys(conf, r10_bio);
3296 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3297 
3298 		for (i = 0; i < conf->copies; i++) {
3299 			int d = r10_bio->devs[i].devnum;
3300 			sector_t first_bad, sector;
3301 			int bad_sectors;
3302 
3303 			if (r10_bio->devs[i].repl_bio)
3304 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3305 
3306 			bio = r10_bio->devs[i].bio;
3307 			bio_reset(bio);
3308 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3309 			if (conf->mirrors[d].rdev == NULL ||
3310 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3311 				continue;
3312 			sector = r10_bio->devs[i].addr;
3313 			if (is_badblock(conf->mirrors[d].rdev,
3314 					sector, max_sync,
3315 					&first_bad, &bad_sectors)) {
3316 				if (first_bad > sector)
3317 					max_sync = first_bad - sector;
3318 				else {
3319 					bad_sectors -= (sector - first_bad);
3320 					if (max_sync > bad_sectors)
3321 						max_sync = bad_sectors;
3322 					continue;
3323 				}
3324 			}
3325 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3326 			atomic_inc(&r10_bio->remaining);
3327 			bio->bi_next = biolist;
3328 			biolist = bio;
3329 			bio->bi_private = r10_bio;
3330 			bio->bi_end_io = end_sync_read;
3331 			bio->bi_rw = READ;
3332 			bio->bi_sector = sector +
3333 				conf->mirrors[d].rdev->data_offset;
3334 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3335 			count++;
3336 
3337 			if (conf->mirrors[d].replacement == NULL ||
3338 			    test_bit(Faulty,
3339 				     &conf->mirrors[d].replacement->flags))
3340 				continue;
3341 
3342 			/* Need to set up for writing to the replacement */
3343 			bio = r10_bio->devs[i].repl_bio;
3344 			bio_reset(bio);
3345 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3346 
3347 			sector = r10_bio->devs[i].addr;
3348 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3349 			bio->bi_next = biolist;
3350 			biolist = bio;
3351 			bio->bi_private = r10_bio;
3352 			bio->bi_end_io = end_sync_write;
3353 			bio->bi_rw = WRITE;
3354 			bio->bi_sector = sector +
3355 				conf->mirrors[d].replacement->data_offset;
3356 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3357 			count++;
3358 		}
3359 
3360 		if (count < 2) {
3361 			for (i=0; i<conf->copies; i++) {
3362 				int d = r10_bio->devs[i].devnum;
3363 				if (r10_bio->devs[i].bio->bi_end_io)
3364 					rdev_dec_pending(conf->mirrors[d].rdev,
3365 							 mddev);
3366 				if (r10_bio->devs[i].repl_bio &&
3367 				    r10_bio->devs[i].repl_bio->bi_end_io)
3368 					rdev_dec_pending(
3369 						conf->mirrors[d].replacement,
3370 						mddev);
3371 			}
3372 			put_buf(r10_bio);
3373 			biolist = NULL;
3374 			goto giveup;
3375 		}
3376 	}
3377 
3378 	nr_sectors = 0;
3379 	if (sector_nr + max_sync < max_sector)
3380 		max_sector = sector_nr + max_sync;
3381 	do {
3382 		struct page *page;
3383 		int len = PAGE_SIZE;
3384 		if (sector_nr + (len>>9) > max_sector)
3385 			len = (max_sector - sector_nr) << 9;
3386 		if (len == 0)
3387 			break;
3388 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3389 			struct bio *bio2;
3390 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3391 			if (bio_add_page(bio, page, len, 0))
3392 				continue;
3393 
3394 			/* stop here */
3395 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3396 			for (bio2 = biolist;
3397 			     bio2 && bio2 != bio;
3398 			     bio2 = bio2->bi_next) {
3399 				/* remove last page from this bio */
3400 				bio2->bi_vcnt--;
3401 				bio2->bi_size -= len;
3402 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3403 			}
3404 			goto bio_full;
3405 		}
3406 		nr_sectors += len>>9;
3407 		sector_nr += len>>9;
3408 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3409  bio_full:
3410 	r10_bio->sectors = nr_sectors;
3411 
3412 	while (biolist) {
3413 		bio = biolist;
3414 		biolist = biolist->bi_next;
3415 
3416 		bio->bi_next = NULL;
3417 		r10_bio = bio->bi_private;
3418 		r10_bio->sectors = nr_sectors;
3419 
3420 		if (bio->bi_end_io == end_sync_read) {
3421 			md_sync_acct(bio->bi_bdev, nr_sectors);
3422 			set_bit(BIO_UPTODATE, &bio->bi_flags);
3423 			generic_make_request(bio);
3424 		}
3425 	}
3426 
3427 	if (sectors_skipped)
3428 		/* pretend they weren't skipped, it makes
3429 		 * no important difference in this case
3430 		 */
3431 		md_done_sync(mddev, sectors_skipped, 1);
3432 
3433 	return sectors_skipped + nr_sectors;
3434  giveup:
3435 	/* There is nowhere to write, so all non-sync
3436 	 * drives must be failed or in resync, all drives
3437 	 * have a bad block, so try the next chunk...
3438 	 */
3439 	if (sector_nr + max_sync < max_sector)
3440 		max_sector = sector_nr + max_sync;
3441 
3442 	sectors_skipped += (max_sector - sector_nr);
3443 	chunks_skipped ++;
3444 	sector_nr = max_sector;
3445 	goto skipped;
3446 }
3447 
3448 static sector_t
3449 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3450 {
3451 	sector_t size;
3452 	struct r10conf *conf = mddev->private;
3453 
3454 	if (!raid_disks)
3455 		raid_disks = min(conf->geo.raid_disks,
3456 				 conf->prev.raid_disks);
3457 	if (!sectors)
3458 		sectors = conf->dev_sectors;
3459 
3460 	size = sectors >> conf->geo.chunk_shift;
3461 	sector_div(size, conf->geo.far_copies);
3462 	size = size * raid_disks;
3463 	sector_div(size, conf->geo.near_copies);
3464 
3465 	return size << conf->geo.chunk_shift;
3466 }
3467 
3468 static void calc_sectors(struct r10conf *conf, sector_t size)
3469 {
3470 	/* Calculate the number of sectors-per-device that will
3471 	 * actually be used, and set conf->dev_sectors and
3472 	 * conf->stride
3473 	 */
3474 
3475 	size = size >> conf->geo.chunk_shift;
3476 	sector_div(size, conf->geo.far_copies);
3477 	size = size * conf->geo.raid_disks;
3478 	sector_div(size, conf->geo.near_copies);
3479 	/* 'size' is now the number of chunks in the array */
3480 	/* calculate "used chunks per device" */
3481 	size = size * conf->copies;
3482 
3483 	/* We need to round up when dividing by raid_disks to
3484 	 * get the stride size.
3485 	 */
3486 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3487 
3488 	conf->dev_sectors = size << conf->geo.chunk_shift;
3489 
3490 	if (conf->geo.far_offset)
3491 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3492 	else {
3493 		sector_div(size, conf->geo.far_copies);
3494 		conf->geo.stride = size << conf->geo.chunk_shift;
3495 	}
3496 }
3497 
3498 enum geo_type {geo_new, geo_old, geo_start};
3499 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3500 {
3501 	int nc, fc, fo;
3502 	int layout, chunk, disks;
3503 	switch (new) {
3504 	case geo_old:
3505 		layout = mddev->layout;
3506 		chunk = mddev->chunk_sectors;
3507 		disks = mddev->raid_disks - mddev->delta_disks;
3508 		break;
3509 	case geo_new:
3510 		layout = mddev->new_layout;
3511 		chunk = mddev->new_chunk_sectors;
3512 		disks = mddev->raid_disks;
3513 		break;
3514 	default: /* avoid 'may be unused' warnings */
3515 	case geo_start: /* new when starting reshape - raid_disks not
3516 			 * updated yet. */
3517 		layout = mddev->new_layout;
3518 		chunk = mddev->new_chunk_sectors;
3519 		disks = mddev->raid_disks + mddev->delta_disks;
3520 		break;
3521 	}
3522 	if (layout >> 18)
3523 		return -1;
3524 	if (chunk < (PAGE_SIZE >> 9) ||
3525 	    !is_power_of_2(chunk))
3526 		return -2;
3527 	nc = layout & 255;
3528 	fc = (layout >> 8) & 255;
3529 	fo = layout & (1<<16);
3530 	geo->raid_disks = disks;
3531 	geo->near_copies = nc;
3532 	geo->far_copies = fc;
3533 	geo->far_offset = fo;
3534 	geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3535 	geo->chunk_mask = chunk - 1;
3536 	geo->chunk_shift = ffz(~chunk);
3537 	return nc*fc;
3538 }
3539 
3540 static struct r10conf *setup_conf(struct mddev *mddev)
3541 {
3542 	struct r10conf *conf = NULL;
3543 	int err = -EINVAL;
3544 	struct geom geo;
3545 	int copies;
3546 
3547 	copies = setup_geo(&geo, mddev, geo_new);
3548 
3549 	if (copies == -2) {
3550 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3551 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3552 		       mdname(mddev), PAGE_SIZE);
3553 		goto out;
3554 	}
3555 
3556 	if (copies < 2 || copies > mddev->raid_disks) {
3557 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3558 		       mdname(mddev), mddev->new_layout);
3559 		goto out;
3560 	}
3561 
3562 	err = -ENOMEM;
3563 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3564 	if (!conf)
3565 		goto out;
3566 
3567 	/* FIXME calc properly */
3568 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3569 							    max(0,-mddev->delta_disks)),
3570 				GFP_KERNEL);
3571 	if (!conf->mirrors)
3572 		goto out;
3573 
3574 	conf->tmppage = alloc_page(GFP_KERNEL);
3575 	if (!conf->tmppage)
3576 		goto out;
3577 
3578 	conf->geo = geo;
3579 	conf->copies = copies;
3580 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3581 					   r10bio_pool_free, conf);
3582 	if (!conf->r10bio_pool)
3583 		goto out;
3584 
3585 	calc_sectors(conf, mddev->dev_sectors);
3586 	if (mddev->reshape_position == MaxSector) {
3587 		conf->prev = conf->geo;
3588 		conf->reshape_progress = MaxSector;
3589 	} else {
3590 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3591 			err = -EINVAL;
3592 			goto out;
3593 		}
3594 		conf->reshape_progress = mddev->reshape_position;
3595 		if (conf->prev.far_offset)
3596 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3597 		else
3598 			/* far_copies must be 1 */
3599 			conf->prev.stride = conf->dev_sectors;
3600 	}
3601 	spin_lock_init(&conf->device_lock);
3602 	INIT_LIST_HEAD(&conf->retry_list);
3603 
3604 	spin_lock_init(&conf->resync_lock);
3605 	init_waitqueue_head(&conf->wait_barrier);
3606 
3607 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3608 	if (!conf->thread)
3609 		goto out;
3610 
3611 	conf->mddev = mddev;
3612 	return conf;
3613 
3614  out:
3615 	if (err == -ENOMEM)
3616 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3617 		       mdname(mddev));
3618 	if (conf) {
3619 		if (conf->r10bio_pool)
3620 			mempool_destroy(conf->r10bio_pool);
3621 		kfree(conf->mirrors);
3622 		safe_put_page(conf->tmppage);
3623 		kfree(conf);
3624 	}
3625 	return ERR_PTR(err);
3626 }
3627 
3628 static int run(struct mddev *mddev)
3629 {
3630 	struct r10conf *conf;
3631 	int i, disk_idx, chunk_size;
3632 	struct raid10_info *disk;
3633 	struct md_rdev *rdev;
3634 	sector_t size;
3635 	sector_t min_offset_diff = 0;
3636 	int first = 1;
3637 	bool discard_supported = false;
3638 
3639 	if (mddev->private == NULL) {
3640 		conf = setup_conf(mddev);
3641 		if (IS_ERR(conf))
3642 			return PTR_ERR(conf);
3643 		mddev->private = conf;
3644 	}
3645 	conf = mddev->private;
3646 	if (!conf)
3647 		goto out;
3648 
3649 	mddev->thread = conf->thread;
3650 	conf->thread = NULL;
3651 
3652 	chunk_size = mddev->chunk_sectors << 9;
3653 	if (mddev->queue) {
3654 		blk_queue_max_discard_sectors(mddev->queue,
3655 					      mddev->chunk_sectors);
3656 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3657 		blk_queue_io_min(mddev->queue, chunk_size);
3658 		if (conf->geo.raid_disks % conf->geo.near_copies)
3659 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3660 		else
3661 			blk_queue_io_opt(mddev->queue, chunk_size *
3662 					 (conf->geo.raid_disks / conf->geo.near_copies));
3663 	}
3664 
3665 	rdev_for_each(rdev, mddev) {
3666 		long long diff;
3667 		struct request_queue *q;
3668 
3669 		disk_idx = rdev->raid_disk;
3670 		if (disk_idx < 0)
3671 			continue;
3672 		if (disk_idx >= conf->geo.raid_disks &&
3673 		    disk_idx >= conf->prev.raid_disks)
3674 			continue;
3675 		disk = conf->mirrors + disk_idx;
3676 
3677 		if (test_bit(Replacement, &rdev->flags)) {
3678 			if (disk->replacement)
3679 				goto out_free_conf;
3680 			disk->replacement = rdev;
3681 		} else {
3682 			if (disk->rdev)
3683 				goto out_free_conf;
3684 			disk->rdev = rdev;
3685 		}
3686 		q = bdev_get_queue(rdev->bdev);
3687 		if (q->merge_bvec_fn)
3688 			mddev->merge_check_needed = 1;
3689 		diff = (rdev->new_data_offset - rdev->data_offset);
3690 		if (!mddev->reshape_backwards)
3691 			diff = -diff;
3692 		if (diff < 0)
3693 			diff = 0;
3694 		if (first || diff < min_offset_diff)
3695 			min_offset_diff = diff;
3696 
3697 		if (mddev->gendisk)
3698 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3699 					  rdev->data_offset << 9);
3700 
3701 		disk->head_position = 0;
3702 
3703 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3704 			discard_supported = true;
3705 	}
3706 
3707 	if (mddev->queue) {
3708 		if (discard_supported)
3709 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3710 						mddev->queue);
3711 		else
3712 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3713 						  mddev->queue);
3714 	}
3715 	/* need to check that every block has at least one working mirror */
3716 	if (!enough(conf, -1)) {
3717 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3718 		       mdname(mddev));
3719 		goto out_free_conf;
3720 	}
3721 
3722 	if (conf->reshape_progress != MaxSector) {
3723 		/* must ensure that shape change is supported */
3724 		if (conf->geo.far_copies != 1 &&
3725 		    conf->geo.far_offset == 0)
3726 			goto out_free_conf;
3727 		if (conf->prev.far_copies != 1 &&
3728 		    conf->prev.far_offset == 0)
3729 			goto out_free_conf;
3730 	}
3731 
3732 	mddev->degraded = 0;
3733 	for (i = 0;
3734 	     i < conf->geo.raid_disks
3735 		     || i < conf->prev.raid_disks;
3736 	     i++) {
3737 
3738 		disk = conf->mirrors + i;
3739 
3740 		if (!disk->rdev && disk->replacement) {
3741 			/* The replacement is all we have - use it */
3742 			disk->rdev = disk->replacement;
3743 			disk->replacement = NULL;
3744 			clear_bit(Replacement, &disk->rdev->flags);
3745 		}
3746 
3747 		if (!disk->rdev ||
3748 		    !test_bit(In_sync, &disk->rdev->flags)) {
3749 			disk->head_position = 0;
3750 			mddev->degraded++;
3751 			if (disk->rdev)
3752 				conf->fullsync = 1;
3753 		}
3754 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3755 	}
3756 
3757 	if (mddev->recovery_cp != MaxSector)
3758 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3759 		       " -- starting background reconstruction\n",
3760 		       mdname(mddev));
3761 	printk(KERN_INFO
3762 		"md/raid10:%s: active with %d out of %d devices\n",
3763 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3764 		conf->geo.raid_disks);
3765 	/*
3766 	 * Ok, everything is just fine now
3767 	 */
3768 	mddev->dev_sectors = conf->dev_sectors;
3769 	size = raid10_size(mddev, 0, 0);
3770 	md_set_array_sectors(mddev, size);
3771 	mddev->resync_max_sectors = size;
3772 
3773 	if (mddev->queue) {
3774 		int stripe = conf->geo.raid_disks *
3775 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3776 		mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3777 		mddev->queue->backing_dev_info.congested_data = mddev;
3778 
3779 		/* Calculate max read-ahead size.
3780 		 * We need to readahead at least twice a whole stripe....
3781 		 * maybe...
3782 		 */
3783 		stripe /= conf->geo.near_copies;
3784 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3785 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3786 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3787 	}
3788 
3789 
3790 	if (md_integrity_register(mddev))
3791 		goto out_free_conf;
3792 
3793 	if (conf->reshape_progress != MaxSector) {
3794 		unsigned long before_length, after_length;
3795 
3796 		before_length = ((1 << conf->prev.chunk_shift) *
3797 				 conf->prev.far_copies);
3798 		after_length = ((1 << conf->geo.chunk_shift) *
3799 				conf->geo.far_copies);
3800 
3801 		if (max(before_length, after_length) > min_offset_diff) {
3802 			/* This cannot work */
3803 			printk("md/raid10: offset difference not enough to continue reshape\n");
3804 			goto out_free_conf;
3805 		}
3806 		conf->offset_diff = min_offset_diff;
3807 
3808 		conf->reshape_safe = conf->reshape_progress;
3809 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3810 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3811 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3812 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3813 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3814 							"reshape");
3815 	}
3816 
3817 	return 0;
3818 
3819 out_free_conf:
3820 	md_unregister_thread(&mddev->thread);
3821 	if (conf->r10bio_pool)
3822 		mempool_destroy(conf->r10bio_pool);
3823 	safe_put_page(conf->tmppage);
3824 	kfree(conf->mirrors);
3825 	kfree(conf);
3826 	mddev->private = NULL;
3827 out:
3828 	return -EIO;
3829 }
3830 
3831 static int stop(struct mddev *mddev)
3832 {
3833 	struct r10conf *conf = mddev->private;
3834 
3835 	raise_barrier(conf, 0);
3836 	lower_barrier(conf);
3837 
3838 	md_unregister_thread(&mddev->thread);
3839 	if (mddev->queue)
3840 		/* the unplug fn references 'conf'*/
3841 		blk_sync_queue(mddev->queue);
3842 
3843 	if (conf->r10bio_pool)
3844 		mempool_destroy(conf->r10bio_pool);
3845 	safe_put_page(conf->tmppage);
3846 	kfree(conf->mirrors);
3847 	kfree(conf);
3848 	mddev->private = NULL;
3849 	return 0;
3850 }
3851 
3852 static void raid10_quiesce(struct mddev *mddev, int state)
3853 {
3854 	struct r10conf *conf = mddev->private;
3855 
3856 	switch(state) {
3857 	case 1:
3858 		raise_barrier(conf, 0);
3859 		break;
3860 	case 0:
3861 		lower_barrier(conf);
3862 		break;
3863 	}
3864 }
3865 
3866 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3867 {
3868 	/* Resize of 'far' arrays is not supported.
3869 	 * For 'near' and 'offset' arrays we can set the
3870 	 * number of sectors used to be an appropriate multiple
3871 	 * of the chunk size.
3872 	 * For 'offset', this is far_copies*chunksize.
3873 	 * For 'near' the multiplier is the LCM of
3874 	 * near_copies and raid_disks.
3875 	 * So if far_copies > 1 && !far_offset, fail.
3876 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3877 	 * multiply by chunk_size.  Then round to this number.
3878 	 * This is mostly done by raid10_size()
3879 	 */
3880 	struct r10conf *conf = mddev->private;
3881 	sector_t oldsize, size;
3882 
3883 	if (mddev->reshape_position != MaxSector)
3884 		return -EBUSY;
3885 
3886 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3887 		return -EINVAL;
3888 
3889 	oldsize = raid10_size(mddev, 0, 0);
3890 	size = raid10_size(mddev, sectors, 0);
3891 	if (mddev->external_size &&
3892 	    mddev->array_sectors > size)
3893 		return -EINVAL;
3894 	if (mddev->bitmap) {
3895 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3896 		if (ret)
3897 			return ret;
3898 	}
3899 	md_set_array_sectors(mddev, size);
3900 	set_capacity(mddev->gendisk, mddev->array_sectors);
3901 	revalidate_disk(mddev->gendisk);
3902 	if (sectors > mddev->dev_sectors &&
3903 	    mddev->recovery_cp > oldsize) {
3904 		mddev->recovery_cp = oldsize;
3905 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3906 	}
3907 	calc_sectors(conf, sectors);
3908 	mddev->dev_sectors = conf->dev_sectors;
3909 	mddev->resync_max_sectors = size;
3910 	return 0;
3911 }
3912 
3913 static void *raid10_takeover_raid0(struct mddev *mddev)
3914 {
3915 	struct md_rdev *rdev;
3916 	struct r10conf *conf;
3917 
3918 	if (mddev->degraded > 0) {
3919 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3920 		       mdname(mddev));
3921 		return ERR_PTR(-EINVAL);
3922 	}
3923 
3924 	/* Set new parameters */
3925 	mddev->new_level = 10;
3926 	/* new layout: far_copies = 1, near_copies = 2 */
3927 	mddev->new_layout = (1<<8) + 2;
3928 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3929 	mddev->delta_disks = mddev->raid_disks;
3930 	mddev->raid_disks *= 2;
3931 	/* make sure it will be not marked as dirty */
3932 	mddev->recovery_cp = MaxSector;
3933 
3934 	conf = setup_conf(mddev);
3935 	if (!IS_ERR(conf)) {
3936 		rdev_for_each(rdev, mddev)
3937 			if (rdev->raid_disk >= 0)
3938 				rdev->new_raid_disk = rdev->raid_disk * 2;
3939 		conf->barrier = 1;
3940 	}
3941 
3942 	return conf;
3943 }
3944 
3945 static void *raid10_takeover(struct mddev *mddev)
3946 {
3947 	struct r0conf *raid0_conf;
3948 
3949 	/* raid10 can take over:
3950 	 *  raid0 - providing it has only two drives
3951 	 */
3952 	if (mddev->level == 0) {
3953 		/* for raid0 takeover only one zone is supported */
3954 		raid0_conf = mddev->private;
3955 		if (raid0_conf->nr_strip_zones > 1) {
3956 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3957 			       " with more than one zone.\n",
3958 			       mdname(mddev));
3959 			return ERR_PTR(-EINVAL);
3960 		}
3961 		return raid10_takeover_raid0(mddev);
3962 	}
3963 	return ERR_PTR(-EINVAL);
3964 }
3965 
3966 static int raid10_check_reshape(struct mddev *mddev)
3967 {
3968 	/* Called when there is a request to change
3969 	 * - layout (to ->new_layout)
3970 	 * - chunk size (to ->new_chunk_sectors)
3971 	 * - raid_disks (by delta_disks)
3972 	 * or when trying to restart a reshape that was ongoing.
3973 	 *
3974 	 * We need to validate the request and possibly allocate
3975 	 * space if that might be an issue later.
3976 	 *
3977 	 * Currently we reject any reshape of a 'far' mode array,
3978 	 * allow chunk size to change if new is generally acceptable,
3979 	 * allow raid_disks to increase, and allow
3980 	 * a switch between 'near' mode and 'offset' mode.
3981 	 */
3982 	struct r10conf *conf = mddev->private;
3983 	struct geom geo;
3984 
3985 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3986 		return -EINVAL;
3987 
3988 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3989 		/* mustn't change number of copies */
3990 		return -EINVAL;
3991 	if (geo.far_copies > 1 && !geo.far_offset)
3992 		/* Cannot switch to 'far' mode */
3993 		return -EINVAL;
3994 
3995 	if (mddev->array_sectors & geo.chunk_mask)
3996 			/* not factor of array size */
3997 			return -EINVAL;
3998 
3999 	if (!enough(conf, -1))
4000 		return -EINVAL;
4001 
4002 	kfree(conf->mirrors_new);
4003 	conf->mirrors_new = NULL;
4004 	if (mddev->delta_disks > 0) {
4005 		/* allocate new 'mirrors' list */
4006 		conf->mirrors_new = kzalloc(
4007 			sizeof(struct raid10_info)
4008 			*(mddev->raid_disks +
4009 			  mddev->delta_disks),
4010 			GFP_KERNEL);
4011 		if (!conf->mirrors_new)
4012 			return -ENOMEM;
4013 	}
4014 	return 0;
4015 }
4016 
4017 /*
4018  * Need to check if array has failed when deciding whether to:
4019  *  - start an array
4020  *  - remove non-faulty devices
4021  *  - add a spare
4022  *  - allow a reshape
4023  * This determination is simple when no reshape is happening.
4024  * However if there is a reshape, we need to carefully check
4025  * both the before and after sections.
4026  * This is because some failed devices may only affect one
4027  * of the two sections, and some non-in_sync devices may
4028  * be insync in the section most affected by failed devices.
4029  */
4030 static int calc_degraded(struct r10conf *conf)
4031 {
4032 	int degraded, degraded2;
4033 	int i;
4034 
4035 	rcu_read_lock();
4036 	degraded = 0;
4037 	/* 'prev' section first */
4038 	for (i = 0; i < conf->prev.raid_disks; i++) {
4039 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4040 		if (!rdev || test_bit(Faulty, &rdev->flags))
4041 			degraded++;
4042 		else if (!test_bit(In_sync, &rdev->flags))
4043 			/* When we can reduce the number of devices in
4044 			 * an array, this might not contribute to
4045 			 * 'degraded'.  It does now.
4046 			 */
4047 			degraded++;
4048 	}
4049 	rcu_read_unlock();
4050 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4051 		return degraded;
4052 	rcu_read_lock();
4053 	degraded2 = 0;
4054 	for (i = 0; i < conf->geo.raid_disks; i++) {
4055 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4056 		if (!rdev || test_bit(Faulty, &rdev->flags))
4057 			degraded2++;
4058 		else if (!test_bit(In_sync, &rdev->flags)) {
4059 			/* If reshape is increasing the number of devices,
4060 			 * this section has already been recovered, so
4061 			 * it doesn't contribute to degraded.
4062 			 * else it does.
4063 			 */
4064 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4065 				degraded2++;
4066 		}
4067 	}
4068 	rcu_read_unlock();
4069 	if (degraded2 > degraded)
4070 		return degraded2;
4071 	return degraded;
4072 }
4073 
4074 static int raid10_start_reshape(struct mddev *mddev)
4075 {
4076 	/* A 'reshape' has been requested. This commits
4077 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4078 	 * This also checks if there are enough spares and adds them
4079 	 * to the array.
4080 	 * We currently require enough spares to make the final
4081 	 * array non-degraded.  We also require that the difference
4082 	 * between old and new data_offset - on each device - is
4083 	 * enough that we never risk over-writing.
4084 	 */
4085 
4086 	unsigned long before_length, after_length;
4087 	sector_t min_offset_diff = 0;
4088 	int first = 1;
4089 	struct geom new;
4090 	struct r10conf *conf = mddev->private;
4091 	struct md_rdev *rdev;
4092 	int spares = 0;
4093 	int ret;
4094 
4095 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4096 		return -EBUSY;
4097 
4098 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4099 		return -EINVAL;
4100 
4101 	before_length = ((1 << conf->prev.chunk_shift) *
4102 			 conf->prev.far_copies);
4103 	after_length = ((1 << conf->geo.chunk_shift) *
4104 			conf->geo.far_copies);
4105 
4106 	rdev_for_each(rdev, mddev) {
4107 		if (!test_bit(In_sync, &rdev->flags)
4108 		    && !test_bit(Faulty, &rdev->flags))
4109 			spares++;
4110 		if (rdev->raid_disk >= 0) {
4111 			long long diff = (rdev->new_data_offset
4112 					  - rdev->data_offset);
4113 			if (!mddev->reshape_backwards)
4114 				diff = -diff;
4115 			if (diff < 0)
4116 				diff = 0;
4117 			if (first || diff < min_offset_diff)
4118 				min_offset_diff = diff;
4119 		}
4120 	}
4121 
4122 	if (max(before_length, after_length) > min_offset_diff)
4123 		return -EINVAL;
4124 
4125 	if (spares < mddev->delta_disks)
4126 		return -EINVAL;
4127 
4128 	conf->offset_diff = min_offset_diff;
4129 	spin_lock_irq(&conf->device_lock);
4130 	if (conf->mirrors_new) {
4131 		memcpy(conf->mirrors_new, conf->mirrors,
4132 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4133 		smp_mb();
4134 		kfree(conf->mirrors_old); /* FIXME and elsewhere */
4135 		conf->mirrors_old = conf->mirrors;
4136 		conf->mirrors = conf->mirrors_new;
4137 		conf->mirrors_new = NULL;
4138 	}
4139 	setup_geo(&conf->geo, mddev, geo_start);
4140 	smp_mb();
4141 	if (mddev->reshape_backwards) {
4142 		sector_t size = raid10_size(mddev, 0, 0);
4143 		if (size < mddev->array_sectors) {
4144 			spin_unlock_irq(&conf->device_lock);
4145 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4146 			       mdname(mddev));
4147 			return -EINVAL;
4148 		}
4149 		mddev->resync_max_sectors = size;
4150 		conf->reshape_progress = size;
4151 	} else
4152 		conf->reshape_progress = 0;
4153 	spin_unlock_irq(&conf->device_lock);
4154 
4155 	if (mddev->delta_disks && mddev->bitmap) {
4156 		ret = bitmap_resize(mddev->bitmap,
4157 				    raid10_size(mddev, 0,
4158 						conf->geo.raid_disks),
4159 				    0, 0);
4160 		if (ret)
4161 			goto abort;
4162 	}
4163 	if (mddev->delta_disks > 0) {
4164 		rdev_for_each(rdev, mddev)
4165 			if (rdev->raid_disk < 0 &&
4166 			    !test_bit(Faulty, &rdev->flags)) {
4167 				if (raid10_add_disk(mddev, rdev) == 0) {
4168 					if (rdev->raid_disk >=
4169 					    conf->prev.raid_disks)
4170 						set_bit(In_sync, &rdev->flags);
4171 					else
4172 						rdev->recovery_offset = 0;
4173 
4174 					if (sysfs_link_rdev(mddev, rdev))
4175 						/* Failure here  is OK */;
4176 				}
4177 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4178 				   && !test_bit(Faulty, &rdev->flags)) {
4179 				/* This is a spare that was manually added */
4180 				set_bit(In_sync, &rdev->flags);
4181 			}
4182 	}
4183 	/* When a reshape changes the number of devices,
4184 	 * ->degraded is measured against the larger of the
4185 	 * pre and  post numbers.
4186 	 */
4187 	spin_lock_irq(&conf->device_lock);
4188 	mddev->degraded = calc_degraded(conf);
4189 	spin_unlock_irq(&conf->device_lock);
4190 	mddev->raid_disks = conf->geo.raid_disks;
4191 	mddev->reshape_position = conf->reshape_progress;
4192 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4193 
4194 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4195 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4196 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4197 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4198 
4199 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4200 						"reshape");
4201 	if (!mddev->sync_thread) {
4202 		ret = -EAGAIN;
4203 		goto abort;
4204 	}
4205 	conf->reshape_checkpoint = jiffies;
4206 	md_wakeup_thread(mddev->sync_thread);
4207 	md_new_event(mddev);
4208 	return 0;
4209 
4210 abort:
4211 	mddev->recovery = 0;
4212 	spin_lock_irq(&conf->device_lock);
4213 	conf->geo = conf->prev;
4214 	mddev->raid_disks = conf->geo.raid_disks;
4215 	rdev_for_each(rdev, mddev)
4216 		rdev->new_data_offset = rdev->data_offset;
4217 	smp_wmb();
4218 	conf->reshape_progress = MaxSector;
4219 	mddev->reshape_position = MaxSector;
4220 	spin_unlock_irq(&conf->device_lock);
4221 	return ret;
4222 }
4223 
4224 /* Calculate the last device-address that could contain
4225  * any block from the chunk that includes the array-address 's'
4226  * and report the next address.
4227  * i.e. the address returned will be chunk-aligned and after
4228  * any data that is in the chunk containing 's'.
4229  */
4230 static sector_t last_dev_address(sector_t s, struct geom *geo)
4231 {
4232 	s = (s | geo->chunk_mask) + 1;
4233 	s >>= geo->chunk_shift;
4234 	s *= geo->near_copies;
4235 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4236 	s *= geo->far_copies;
4237 	s <<= geo->chunk_shift;
4238 	return s;
4239 }
4240 
4241 /* Calculate the first device-address that could contain
4242  * any block from the chunk that includes the array-address 's'.
4243  * This too will be the start of a chunk
4244  */
4245 static sector_t first_dev_address(sector_t s, struct geom *geo)
4246 {
4247 	s >>= geo->chunk_shift;
4248 	s *= geo->near_copies;
4249 	sector_div(s, geo->raid_disks);
4250 	s *= geo->far_copies;
4251 	s <<= geo->chunk_shift;
4252 	return s;
4253 }
4254 
4255 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4256 				int *skipped)
4257 {
4258 	/* We simply copy at most one chunk (smallest of old and new)
4259 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4260 	 * or we hit a bad block or something.
4261 	 * This might mean we pause for normal IO in the middle of
4262 	 * a chunk, but that is not a problem was mddev->reshape_position
4263 	 * can record any location.
4264 	 *
4265 	 * If we will want to write to a location that isn't
4266 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4267 	 * we need to flush all reshape requests and update the metadata.
4268 	 *
4269 	 * When reshaping forwards (e.g. to more devices), we interpret
4270 	 * 'safe' as the earliest block which might not have been copied
4271 	 * down yet.  We divide this by previous stripe size and multiply
4272 	 * by previous stripe length to get lowest device offset that we
4273 	 * cannot write to yet.
4274 	 * We interpret 'sector_nr' as an address that we want to write to.
4275 	 * From this we use last_device_address() to find where we might
4276 	 * write to, and first_device_address on the  'safe' position.
4277 	 * If this 'next' write position is after the 'safe' position,
4278 	 * we must update the metadata to increase the 'safe' position.
4279 	 *
4280 	 * When reshaping backwards, we round in the opposite direction
4281 	 * and perform the reverse test:  next write position must not be
4282 	 * less than current safe position.
4283 	 *
4284 	 * In all this the minimum difference in data offsets
4285 	 * (conf->offset_diff - always positive) allows a bit of slack,
4286 	 * so next can be after 'safe', but not by more than offset_disk
4287 	 *
4288 	 * We need to prepare all the bios here before we start any IO
4289 	 * to ensure the size we choose is acceptable to all devices.
4290 	 * The means one for each copy for write-out and an extra one for
4291 	 * read-in.
4292 	 * We store the read-in bio in ->master_bio and the others in
4293 	 * ->devs[x].bio and ->devs[x].repl_bio.
4294 	 */
4295 	struct r10conf *conf = mddev->private;
4296 	struct r10bio *r10_bio;
4297 	sector_t next, safe, last;
4298 	int max_sectors;
4299 	int nr_sectors;
4300 	int s;
4301 	struct md_rdev *rdev;
4302 	int need_flush = 0;
4303 	struct bio *blist;
4304 	struct bio *bio, *read_bio;
4305 	int sectors_done = 0;
4306 
4307 	if (sector_nr == 0) {
4308 		/* If restarting in the middle, skip the initial sectors */
4309 		if (mddev->reshape_backwards &&
4310 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4311 			sector_nr = (raid10_size(mddev, 0, 0)
4312 				     - conf->reshape_progress);
4313 		} else if (!mddev->reshape_backwards &&
4314 			   conf->reshape_progress > 0)
4315 			sector_nr = conf->reshape_progress;
4316 		if (sector_nr) {
4317 			mddev->curr_resync_completed = sector_nr;
4318 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4319 			*skipped = 1;
4320 			return sector_nr;
4321 		}
4322 	}
4323 
4324 	/* We don't use sector_nr to track where we are up to
4325 	 * as that doesn't work well for ->reshape_backwards.
4326 	 * So just use ->reshape_progress.
4327 	 */
4328 	if (mddev->reshape_backwards) {
4329 		/* 'next' is the earliest device address that we might
4330 		 * write to for this chunk in the new layout
4331 		 */
4332 		next = first_dev_address(conf->reshape_progress - 1,
4333 					 &conf->geo);
4334 
4335 		/* 'safe' is the last device address that we might read from
4336 		 * in the old layout after a restart
4337 		 */
4338 		safe = last_dev_address(conf->reshape_safe - 1,
4339 					&conf->prev);
4340 
4341 		if (next + conf->offset_diff < safe)
4342 			need_flush = 1;
4343 
4344 		last = conf->reshape_progress - 1;
4345 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4346 					       & conf->prev.chunk_mask);
4347 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4348 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4349 	} else {
4350 		/* 'next' is after the last device address that we
4351 		 * might write to for this chunk in the new layout
4352 		 */
4353 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4354 
4355 		/* 'safe' is the earliest device address that we might
4356 		 * read from in the old layout after a restart
4357 		 */
4358 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4359 
4360 		/* Need to update metadata if 'next' might be beyond 'safe'
4361 		 * as that would possibly corrupt data
4362 		 */
4363 		if (next > safe + conf->offset_diff)
4364 			need_flush = 1;
4365 
4366 		sector_nr = conf->reshape_progress;
4367 		last  = sector_nr | (conf->geo.chunk_mask
4368 				     & conf->prev.chunk_mask);
4369 
4370 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4371 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4372 	}
4373 
4374 	if (need_flush ||
4375 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4376 		/* Need to update reshape_position in metadata */
4377 		wait_barrier(conf);
4378 		mddev->reshape_position = conf->reshape_progress;
4379 		if (mddev->reshape_backwards)
4380 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4381 				- conf->reshape_progress;
4382 		else
4383 			mddev->curr_resync_completed = conf->reshape_progress;
4384 		conf->reshape_checkpoint = jiffies;
4385 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4386 		md_wakeup_thread(mddev->thread);
4387 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4388 			   kthread_should_stop());
4389 		conf->reshape_safe = mddev->reshape_position;
4390 		allow_barrier(conf);
4391 	}
4392 
4393 read_more:
4394 	/* Now schedule reads for blocks from sector_nr to last */
4395 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4396 	raise_barrier(conf, sectors_done != 0);
4397 	atomic_set(&r10_bio->remaining, 0);
4398 	r10_bio->mddev = mddev;
4399 	r10_bio->sector = sector_nr;
4400 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4401 	r10_bio->sectors = last - sector_nr + 1;
4402 	rdev = read_balance(conf, r10_bio, &max_sectors);
4403 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4404 
4405 	if (!rdev) {
4406 		/* Cannot read from here, so need to record bad blocks
4407 		 * on all the target devices.
4408 		 */
4409 		// FIXME
4410 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4411 		return sectors_done;
4412 	}
4413 
4414 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4415 
4416 	read_bio->bi_bdev = rdev->bdev;
4417 	read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4418 			       + rdev->data_offset);
4419 	read_bio->bi_private = r10_bio;
4420 	read_bio->bi_end_io = end_sync_read;
4421 	read_bio->bi_rw = READ;
4422 	read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4423 	read_bio->bi_flags |= 1 << BIO_UPTODATE;
4424 	read_bio->bi_vcnt = 0;
4425 	read_bio->bi_size = 0;
4426 	r10_bio->master_bio = read_bio;
4427 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4428 
4429 	/* Now find the locations in the new layout */
4430 	__raid10_find_phys(&conf->geo, r10_bio);
4431 
4432 	blist = read_bio;
4433 	read_bio->bi_next = NULL;
4434 
4435 	for (s = 0; s < conf->copies*2; s++) {
4436 		struct bio *b;
4437 		int d = r10_bio->devs[s/2].devnum;
4438 		struct md_rdev *rdev2;
4439 		if (s&1) {
4440 			rdev2 = conf->mirrors[d].replacement;
4441 			b = r10_bio->devs[s/2].repl_bio;
4442 		} else {
4443 			rdev2 = conf->mirrors[d].rdev;
4444 			b = r10_bio->devs[s/2].bio;
4445 		}
4446 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4447 			continue;
4448 
4449 		bio_reset(b);
4450 		b->bi_bdev = rdev2->bdev;
4451 		b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4452 		b->bi_private = r10_bio;
4453 		b->bi_end_io = end_reshape_write;
4454 		b->bi_rw = WRITE;
4455 		b->bi_next = blist;
4456 		blist = b;
4457 	}
4458 
4459 	/* Now add as many pages as possible to all of these bios. */
4460 
4461 	nr_sectors = 0;
4462 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4463 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4464 		int len = (max_sectors - s) << 9;
4465 		if (len > PAGE_SIZE)
4466 			len = PAGE_SIZE;
4467 		for (bio = blist; bio ; bio = bio->bi_next) {
4468 			struct bio *bio2;
4469 			if (bio_add_page(bio, page, len, 0))
4470 				continue;
4471 
4472 			/* Didn't fit, must stop */
4473 			for (bio2 = blist;
4474 			     bio2 && bio2 != bio;
4475 			     bio2 = bio2->bi_next) {
4476 				/* Remove last page from this bio */
4477 				bio2->bi_vcnt--;
4478 				bio2->bi_size -= len;
4479 				bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4480 			}
4481 			goto bio_full;
4482 		}
4483 		sector_nr += len >> 9;
4484 		nr_sectors += len >> 9;
4485 	}
4486 bio_full:
4487 	r10_bio->sectors = nr_sectors;
4488 
4489 	/* Now submit the read */
4490 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4491 	atomic_inc(&r10_bio->remaining);
4492 	read_bio->bi_next = NULL;
4493 	generic_make_request(read_bio);
4494 	sector_nr += nr_sectors;
4495 	sectors_done += nr_sectors;
4496 	if (sector_nr <= last)
4497 		goto read_more;
4498 
4499 	/* Now that we have done the whole section we can
4500 	 * update reshape_progress
4501 	 */
4502 	if (mddev->reshape_backwards)
4503 		conf->reshape_progress -= sectors_done;
4504 	else
4505 		conf->reshape_progress += sectors_done;
4506 
4507 	return sectors_done;
4508 }
4509 
4510 static void end_reshape_request(struct r10bio *r10_bio);
4511 static int handle_reshape_read_error(struct mddev *mddev,
4512 				     struct r10bio *r10_bio);
4513 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4514 {
4515 	/* Reshape read completed.  Hopefully we have a block
4516 	 * to write out.
4517 	 * If we got a read error then we do sync 1-page reads from
4518 	 * elsewhere until we find the data - or give up.
4519 	 */
4520 	struct r10conf *conf = mddev->private;
4521 	int s;
4522 
4523 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4524 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4525 			/* Reshape has been aborted */
4526 			md_done_sync(mddev, r10_bio->sectors, 0);
4527 			return;
4528 		}
4529 
4530 	/* We definitely have the data in the pages, schedule the
4531 	 * writes.
4532 	 */
4533 	atomic_set(&r10_bio->remaining, 1);
4534 	for (s = 0; s < conf->copies*2; s++) {
4535 		struct bio *b;
4536 		int d = r10_bio->devs[s/2].devnum;
4537 		struct md_rdev *rdev;
4538 		if (s&1) {
4539 			rdev = conf->mirrors[d].replacement;
4540 			b = r10_bio->devs[s/2].repl_bio;
4541 		} else {
4542 			rdev = conf->mirrors[d].rdev;
4543 			b = r10_bio->devs[s/2].bio;
4544 		}
4545 		if (!rdev || test_bit(Faulty, &rdev->flags))
4546 			continue;
4547 		atomic_inc(&rdev->nr_pending);
4548 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4549 		atomic_inc(&r10_bio->remaining);
4550 		b->bi_next = NULL;
4551 		generic_make_request(b);
4552 	}
4553 	end_reshape_request(r10_bio);
4554 }
4555 
4556 static void end_reshape(struct r10conf *conf)
4557 {
4558 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4559 		return;
4560 
4561 	spin_lock_irq(&conf->device_lock);
4562 	conf->prev = conf->geo;
4563 	md_finish_reshape(conf->mddev);
4564 	smp_wmb();
4565 	conf->reshape_progress = MaxSector;
4566 	spin_unlock_irq(&conf->device_lock);
4567 
4568 	/* read-ahead size must cover two whole stripes, which is
4569 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4570 	 */
4571 	if (conf->mddev->queue) {
4572 		int stripe = conf->geo.raid_disks *
4573 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4574 		stripe /= conf->geo.near_copies;
4575 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4576 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4577 	}
4578 	conf->fullsync = 0;
4579 }
4580 
4581 
4582 static int handle_reshape_read_error(struct mddev *mddev,
4583 				     struct r10bio *r10_bio)
4584 {
4585 	/* Use sync reads to get the blocks from somewhere else */
4586 	int sectors = r10_bio->sectors;
4587 	struct r10conf *conf = mddev->private;
4588 	struct {
4589 		struct r10bio r10_bio;
4590 		struct r10dev devs[conf->copies];
4591 	} on_stack;
4592 	struct r10bio *r10b = &on_stack.r10_bio;
4593 	int slot = 0;
4594 	int idx = 0;
4595 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4596 
4597 	r10b->sector = r10_bio->sector;
4598 	__raid10_find_phys(&conf->prev, r10b);
4599 
4600 	while (sectors) {
4601 		int s = sectors;
4602 		int success = 0;
4603 		int first_slot = slot;
4604 
4605 		if (s > (PAGE_SIZE >> 9))
4606 			s = PAGE_SIZE >> 9;
4607 
4608 		while (!success) {
4609 			int d = r10b->devs[slot].devnum;
4610 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4611 			sector_t addr;
4612 			if (rdev == NULL ||
4613 			    test_bit(Faulty, &rdev->flags) ||
4614 			    !test_bit(In_sync, &rdev->flags))
4615 				goto failed;
4616 
4617 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4618 			success = sync_page_io(rdev,
4619 					       addr,
4620 					       s << 9,
4621 					       bvec[idx].bv_page,
4622 					       READ, false);
4623 			if (success)
4624 				break;
4625 		failed:
4626 			slot++;
4627 			if (slot >= conf->copies)
4628 				slot = 0;
4629 			if (slot == first_slot)
4630 				break;
4631 		}
4632 		if (!success) {
4633 			/* couldn't read this block, must give up */
4634 			set_bit(MD_RECOVERY_INTR,
4635 				&mddev->recovery);
4636 			return -EIO;
4637 		}
4638 		sectors -= s;
4639 		idx++;
4640 	}
4641 	return 0;
4642 }
4643 
4644 static void end_reshape_write(struct bio *bio, int error)
4645 {
4646 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4647 	struct r10bio *r10_bio = bio->bi_private;
4648 	struct mddev *mddev = r10_bio->mddev;
4649 	struct r10conf *conf = mddev->private;
4650 	int d;
4651 	int slot;
4652 	int repl;
4653 	struct md_rdev *rdev = NULL;
4654 
4655 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4656 	if (repl)
4657 		rdev = conf->mirrors[d].replacement;
4658 	if (!rdev) {
4659 		smp_mb();
4660 		rdev = conf->mirrors[d].rdev;
4661 	}
4662 
4663 	if (!uptodate) {
4664 		/* FIXME should record badblock */
4665 		md_error(mddev, rdev);
4666 	}
4667 
4668 	rdev_dec_pending(rdev, mddev);
4669 	end_reshape_request(r10_bio);
4670 }
4671 
4672 static void end_reshape_request(struct r10bio *r10_bio)
4673 {
4674 	if (!atomic_dec_and_test(&r10_bio->remaining))
4675 		return;
4676 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4677 	bio_put(r10_bio->master_bio);
4678 	put_buf(r10_bio);
4679 }
4680 
4681 static void raid10_finish_reshape(struct mddev *mddev)
4682 {
4683 	struct r10conf *conf = mddev->private;
4684 
4685 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4686 		return;
4687 
4688 	if (mddev->delta_disks > 0) {
4689 		sector_t size = raid10_size(mddev, 0, 0);
4690 		md_set_array_sectors(mddev, size);
4691 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4692 			mddev->recovery_cp = mddev->resync_max_sectors;
4693 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4694 		}
4695 		mddev->resync_max_sectors = size;
4696 		set_capacity(mddev->gendisk, mddev->array_sectors);
4697 		revalidate_disk(mddev->gendisk);
4698 	} else {
4699 		int d;
4700 		for (d = conf->geo.raid_disks ;
4701 		     d < conf->geo.raid_disks - mddev->delta_disks;
4702 		     d++) {
4703 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4704 			if (rdev)
4705 				clear_bit(In_sync, &rdev->flags);
4706 			rdev = conf->mirrors[d].replacement;
4707 			if (rdev)
4708 				clear_bit(In_sync, &rdev->flags);
4709 		}
4710 	}
4711 	mddev->layout = mddev->new_layout;
4712 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4713 	mddev->reshape_position = MaxSector;
4714 	mddev->delta_disks = 0;
4715 	mddev->reshape_backwards = 0;
4716 }
4717 
4718 static struct md_personality raid10_personality =
4719 {
4720 	.name		= "raid10",
4721 	.level		= 10,
4722 	.owner		= THIS_MODULE,
4723 	.make_request	= make_request,
4724 	.run		= run,
4725 	.stop		= stop,
4726 	.status		= status,
4727 	.error_handler	= error,
4728 	.hot_add_disk	= raid10_add_disk,
4729 	.hot_remove_disk= raid10_remove_disk,
4730 	.spare_active	= raid10_spare_active,
4731 	.sync_request	= sync_request,
4732 	.quiesce	= raid10_quiesce,
4733 	.size		= raid10_size,
4734 	.resize		= raid10_resize,
4735 	.takeover	= raid10_takeover,
4736 	.check_reshape	= raid10_check_reshape,
4737 	.start_reshape	= raid10_start_reshape,
4738 	.finish_reshape	= raid10_finish_reshape,
4739 };
4740 
4741 static int __init raid_init(void)
4742 {
4743 	return register_md_personality(&raid10_personality);
4744 }
4745 
4746 static void raid_exit(void)
4747 {
4748 	unregister_md_personality(&raid10_personality);
4749 }
4750 
4751 module_init(raid_init);
4752 module_exit(raid_exit);
4753 MODULE_LICENSE("GPL");
4754 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4755 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4756 MODULE_ALIAS("md-raid10");
4757 MODULE_ALIAS("md-level-10");
4758 
4759 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4760