xref: /openbmc/linux/drivers/md/raid10.c (revision dd1fc3c5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25 
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66 
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 				int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76 
77 #define raid10_log(md, fmt, args...)				\
78 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79 
80 #include "raid1-10.c"
81 
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88 	return get_resync_pages(bio)->raid_bio;
89 }
90 
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93 	struct r10conf *conf = data;
94 	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
95 
96 	/* allocate a r10bio with room for raid_disks entries in the
97 	 * bios array */
98 	return kzalloc(size, gfp_flags);
99 }
100 
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108 
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 	struct r10conf *conf = data;
119 	struct r10bio *r10_bio;
120 	struct bio *bio;
121 	int j;
122 	int nalloc, nalloc_rp;
123 	struct resync_pages *rps;
124 
125 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126 	if (!r10_bio)
127 		return NULL;
128 
129 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 		nalloc = conf->copies; /* resync */
132 	else
133 		nalloc = 2; /* recovery */
134 
135 	/* allocate once for all bios */
136 	if (!conf->have_replacement)
137 		nalloc_rp = nalloc;
138 	else
139 		nalloc_rp = nalloc * 2;
140 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141 	if (!rps)
142 		goto out_free_r10bio;
143 
144 	/*
145 	 * Allocate bios.
146 	 */
147 	for (j = nalloc ; j-- ; ) {
148 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149 		if (!bio)
150 			goto out_free_bio;
151 		r10_bio->devs[j].bio = bio;
152 		if (!conf->have_replacement)
153 			continue;
154 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155 		if (!bio)
156 			goto out_free_bio;
157 		r10_bio->devs[j].repl_bio = bio;
158 	}
159 	/*
160 	 * Allocate RESYNC_PAGES data pages and attach them
161 	 * where needed.
162 	 */
163 	for (j = 0; j < nalloc; j++) {
164 		struct bio *rbio = r10_bio->devs[j].repl_bio;
165 		struct resync_pages *rp, *rp_repl;
166 
167 		rp = &rps[j];
168 		if (rbio)
169 			rp_repl = &rps[nalloc + j];
170 
171 		bio = r10_bio->devs[j].bio;
172 
173 		if (!j || test_bit(MD_RECOVERY_SYNC,
174 				   &conf->mddev->recovery)) {
175 			if (resync_alloc_pages(rp, gfp_flags))
176 				goto out_free_pages;
177 		} else {
178 			memcpy(rp, &rps[0], sizeof(*rp));
179 			resync_get_all_pages(rp);
180 		}
181 
182 		rp->raid_bio = r10_bio;
183 		bio->bi_private = rp;
184 		if (rbio) {
185 			memcpy(rp_repl, rp, sizeof(*rp));
186 			rbio->bi_private = rp_repl;
187 		}
188 	}
189 
190 	return r10_bio;
191 
192 out_free_pages:
193 	while (--j >= 0)
194 		resync_free_pages(&rps[j]);
195 
196 	j = 0;
197 out_free_bio:
198 	for ( ; j < nalloc; j++) {
199 		if (r10_bio->devs[j].bio)
200 			bio_put(r10_bio->devs[j].bio);
201 		if (r10_bio->devs[j].repl_bio)
202 			bio_put(r10_bio->devs[j].repl_bio);
203 	}
204 	kfree(rps);
205 out_free_r10bio:
206 	rbio_pool_free(r10_bio, conf);
207 	return NULL;
208 }
209 
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212 	struct r10conf *conf = data;
213 	struct r10bio *r10bio = __r10_bio;
214 	int j;
215 	struct resync_pages *rp = NULL;
216 
217 	for (j = conf->copies; j--; ) {
218 		struct bio *bio = r10bio->devs[j].bio;
219 
220 		if (bio) {
221 			rp = get_resync_pages(bio);
222 			resync_free_pages(rp);
223 			bio_put(bio);
224 		}
225 
226 		bio = r10bio->devs[j].repl_bio;
227 		if (bio)
228 			bio_put(bio);
229 	}
230 
231 	/* resync pages array stored in the 1st bio's .bi_private */
232 	kfree(rp);
233 
234 	rbio_pool_free(r10bio, conf);
235 }
236 
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239 	int i;
240 
241 	for (i = 0; i < conf->geo.raid_disks; i++) {
242 		struct bio **bio = & r10_bio->devs[i].bio;
243 		if (!BIO_SPECIAL(*bio))
244 			bio_put(*bio);
245 		*bio = NULL;
246 		bio = &r10_bio->devs[i].repl_bio;
247 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 	}
251 }
252 
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255 	struct r10conf *conf = r10_bio->mddev->private;
256 
257 	put_all_bios(conf, r10_bio);
258 	mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260 
261 static void put_buf(struct r10bio *r10_bio)
262 {
263 	struct r10conf *conf = r10_bio->mddev->private;
264 
265 	mempool_free(r10_bio, &conf->r10buf_pool);
266 
267 	lower_barrier(conf);
268 }
269 
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272 	unsigned long flags;
273 	struct mddev *mddev = r10_bio->mddev;
274 	struct r10conf *conf = mddev->private;
275 
276 	spin_lock_irqsave(&conf->device_lock, flags);
277 	list_add(&r10_bio->retry_list, &conf->retry_list);
278 	conf->nr_queued ++;
279 	spin_unlock_irqrestore(&conf->device_lock, flags);
280 
281 	/* wake up frozen array... */
282 	wake_up(&conf->wait_barrier);
283 
284 	md_wakeup_thread(mddev->thread);
285 }
286 
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294 	struct bio *bio = r10_bio->master_bio;
295 	struct r10conf *conf = r10_bio->mddev->private;
296 
297 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298 		bio->bi_status = BLK_STS_IOERR;
299 
300 	bio_endio(bio);
301 	/*
302 	 * Wake up any possible resync thread that waits for the device
303 	 * to go idle.
304 	 */
305 	allow_barrier(conf);
306 
307 	free_r10bio(r10_bio);
308 }
309 
310 /*
311  * Update disk head position estimator based on IRQ completion info.
312  */
313 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314 {
315 	struct r10conf *conf = r10_bio->mddev->private;
316 
317 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318 		r10_bio->devs[slot].addr + (r10_bio->sectors);
319 }
320 
321 /*
322  * Find the disk number which triggered given bio
323  */
324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325 			 struct bio *bio, int *slotp, int *replp)
326 {
327 	int slot;
328 	int repl = 0;
329 
330 	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
331 		if (r10_bio->devs[slot].bio == bio)
332 			break;
333 		if (r10_bio->devs[slot].repl_bio == bio) {
334 			repl = 1;
335 			break;
336 		}
337 	}
338 
339 	update_head_pos(slot, r10_bio);
340 
341 	if (slotp)
342 		*slotp = slot;
343 	if (replp)
344 		*replp = repl;
345 	return r10_bio->devs[slot].devnum;
346 }
347 
348 static void raid10_end_read_request(struct bio *bio)
349 {
350 	int uptodate = !bio->bi_status;
351 	struct r10bio *r10_bio = bio->bi_private;
352 	int slot;
353 	struct md_rdev *rdev;
354 	struct r10conf *conf = r10_bio->mddev->private;
355 
356 	slot = r10_bio->read_slot;
357 	rdev = r10_bio->devs[slot].rdev;
358 	/*
359 	 * this branch is our 'one mirror IO has finished' event handler:
360 	 */
361 	update_head_pos(slot, r10_bio);
362 
363 	if (uptodate) {
364 		/*
365 		 * Set R10BIO_Uptodate in our master bio, so that
366 		 * we will return a good error code to the higher
367 		 * levels even if IO on some other mirrored buffer fails.
368 		 *
369 		 * The 'master' represents the composite IO operation to
370 		 * user-side. So if something waits for IO, then it will
371 		 * wait for the 'master' bio.
372 		 */
373 		set_bit(R10BIO_Uptodate, &r10_bio->state);
374 	} else {
375 		/* If all other devices that store this block have
376 		 * failed, we want to return the error upwards rather
377 		 * than fail the last device.  Here we redefine
378 		 * "uptodate" to mean "Don't want to retry"
379 		 */
380 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
381 			     rdev->raid_disk))
382 			uptodate = 1;
383 	}
384 	if (uptodate) {
385 		raid_end_bio_io(r10_bio);
386 		rdev_dec_pending(rdev, conf->mddev);
387 	} else {
388 		/*
389 		 * oops, read error - keep the refcount on the rdev
390 		 */
391 		char b[BDEVNAME_SIZE];
392 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
393 				   mdname(conf->mddev),
394 				   bdevname(rdev->bdev, b),
395 				   (unsigned long long)r10_bio->sector);
396 		set_bit(R10BIO_ReadError, &r10_bio->state);
397 		reschedule_retry(r10_bio);
398 	}
399 }
400 
401 static void close_write(struct r10bio *r10_bio)
402 {
403 	/* clear the bitmap if all writes complete successfully */
404 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
405 			   r10_bio->sectors,
406 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
407 			   0);
408 	md_write_end(r10_bio->mddev);
409 }
410 
411 static void one_write_done(struct r10bio *r10_bio)
412 {
413 	if (atomic_dec_and_test(&r10_bio->remaining)) {
414 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
415 			reschedule_retry(r10_bio);
416 		else {
417 			close_write(r10_bio);
418 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
419 				reschedule_retry(r10_bio);
420 			else
421 				raid_end_bio_io(r10_bio);
422 		}
423 	}
424 }
425 
426 static void raid10_end_write_request(struct bio *bio)
427 {
428 	struct r10bio *r10_bio = bio->bi_private;
429 	int dev;
430 	int dec_rdev = 1;
431 	struct r10conf *conf = r10_bio->mddev->private;
432 	int slot, repl;
433 	struct md_rdev *rdev = NULL;
434 	struct bio *to_put = NULL;
435 	bool discard_error;
436 
437 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
438 
439 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
440 
441 	if (repl)
442 		rdev = conf->mirrors[dev].replacement;
443 	if (!rdev) {
444 		smp_rmb();
445 		repl = 0;
446 		rdev = conf->mirrors[dev].rdev;
447 	}
448 	/*
449 	 * this branch is our 'one mirror IO has finished' event handler:
450 	 */
451 	if (bio->bi_status && !discard_error) {
452 		if (repl)
453 			/* Never record new bad blocks to replacement,
454 			 * just fail it.
455 			 */
456 			md_error(rdev->mddev, rdev);
457 		else {
458 			set_bit(WriteErrorSeen,	&rdev->flags);
459 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
460 				set_bit(MD_RECOVERY_NEEDED,
461 					&rdev->mddev->recovery);
462 
463 			dec_rdev = 0;
464 			if (test_bit(FailFast, &rdev->flags) &&
465 			    (bio->bi_opf & MD_FAILFAST)) {
466 				md_error(rdev->mddev, rdev);
467 			}
468 
469 			/*
470 			 * When the device is faulty, it is not necessary to
471 			 * handle write error.
472 			 * For failfast, this is the only remaining device,
473 			 * We need to retry the write without FailFast.
474 			 */
475 			if (!test_bit(Faulty, &rdev->flags))
476 				set_bit(R10BIO_WriteError, &r10_bio->state);
477 			else {
478 				r10_bio->devs[slot].bio = NULL;
479 				to_put = bio;
480 				dec_rdev = 1;
481 			}
482 		}
483 	} else {
484 		/*
485 		 * Set R10BIO_Uptodate in our master bio, so that
486 		 * we will return a good error code for to the higher
487 		 * levels even if IO on some other mirrored buffer fails.
488 		 *
489 		 * The 'master' represents the composite IO operation to
490 		 * user-side. So if something waits for IO, then it will
491 		 * wait for the 'master' bio.
492 		 */
493 		sector_t first_bad;
494 		int bad_sectors;
495 
496 		/*
497 		 * Do not set R10BIO_Uptodate if the current device is
498 		 * rebuilding or Faulty. This is because we cannot use
499 		 * such device for properly reading the data back (we could
500 		 * potentially use it, if the current write would have felt
501 		 * before rdev->recovery_offset, but for simplicity we don't
502 		 * check this here.
503 		 */
504 		if (test_bit(In_sync, &rdev->flags) &&
505 		    !test_bit(Faulty, &rdev->flags))
506 			set_bit(R10BIO_Uptodate, &r10_bio->state);
507 
508 		/* Maybe we can clear some bad blocks. */
509 		if (is_badblock(rdev,
510 				r10_bio->devs[slot].addr,
511 				r10_bio->sectors,
512 				&first_bad, &bad_sectors) && !discard_error) {
513 			bio_put(bio);
514 			if (repl)
515 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
516 			else
517 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
518 			dec_rdev = 0;
519 			set_bit(R10BIO_MadeGood, &r10_bio->state);
520 		}
521 	}
522 
523 	/*
524 	 *
525 	 * Let's see if all mirrored write operations have finished
526 	 * already.
527 	 */
528 	one_write_done(r10_bio);
529 	if (dec_rdev)
530 		rdev_dec_pending(rdev, conf->mddev);
531 	if (to_put)
532 		bio_put(to_put);
533 }
534 
535 /*
536  * RAID10 layout manager
537  * As well as the chunksize and raid_disks count, there are two
538  * parameters: near_copies and far_copies.
539  * near_copies * far_copies must be <= raid_disks.
540  * Normally one of these will be 1.
541  * If both are 1, we get raid0.
542  * If near_copies == raid_disks, we get raid1.
543  *
544  * Chunks are laid out in raid0 style with near_copies copies of the
545  * first chunk, followed by near_copies copies of the next chunk and
546  * so on.
547  * If far_copies > 1, then after 1/far_copies of the array has been assigned
548  * as described above, we start again with a device offset of near_copies.
549  * So we effectively have another copy of the whole array further down all
550  * the drives, but with blocks on different drives.
551  * With this layout, and block is never stored twice on the one device.
552  *
553  * raid10_find_phys finds the sector offset of a given virtual sector
554  * on each device that it is on.
555  *
556  * raid10_find_virt does the reverse mapping, from a device and a
557  * sector offset to a virtual address
558  */
559 
560 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
561 {
562 	int n,f;
563 	sector_t sector;
564 	sector_t chunk;
565 	sector_t stripe;
566 	int dev;
567 	int slot = 0;
568 	int last_far_set_start, last_far_set_size;
569 
570 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
571 	last_far_set_start *= geo->far_set_size;
572 
573 	last_far_set_size = geo->far_set_size;
574 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
575 
576 	/* now calculate first sector/dev */
577 	chunk = r10bio->sector >> geo->chunk_shift;
578 	sector = r10bio->sector & geo->chunk_mask;
579 
580 	chunk *= geo->near_copies;
581 	stripe = chunk;
582 	dev = sector_div(stripe, geo->raid_disks);
583 	if (geo->far_offset)
584 		stripe *= geo->far_copies;
585 
586 	sector += stripe << geo->chunk_shift;
587 
588 	/* and calculate all the others */
589 	for (n = 0; n < geo->near_copies; n++) {
590 		int d = dev;
591 		int set;
592 		sector_t s = sector;
593 		r10bio->devs[slot].devnum = d;
594 		r10bio->devs[slot].addr = s;
595 		slot++;
596 
597 		for (f = 1; f < geo->far_copies; f++) {
598 			set = d / geo->far_set_size;
599 			d += geo->near_copies;
600 
601 			if ((geo->raid_disks % geo->far_set_size) &&
602 			    (d > last_far_set_start)) {
603 				d -= last_far_set_start;
604 				d %= last_far_set_size;
605 				d += last_far_set_start;
606 			} else {
607 				d %= geo->far_set_size;
608 				d += geo->far_set_size * set;
609 			}
610 			s += geo->stride;
611 			r10bio->devs[slot].devnum = d;
612 			r10bio->devs[slot].addr = s;
613 			slot++;
614 		}
615 		dev++;
616 		if (dev >= geo->raid_disks) {
617 			dev = 0;
618 			sector += (geo->chunk_mask + 1);
619 		}
620 	}
621 }
622 
623 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
624 {
625 	struct geom *geo = &conf->geo;
626 
627 	if (conf->reshape_progress != MaxSector &&
628 	    ((r10bio->sector >= conf->reshape_progress) !=
629 	     conf->mddev->reshape_backwards)) {
630 		set_bit(R10BIO_Previous, &r10bio->state);
631 		geo = &conf->prev;
632 	} else
633 		clear_bit(R10BIO_Previous, &r10bio->state);
634 
635 	__raid10_find_phys(geo, r10bio);
636 }
637 
638 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
639 {
640 	sector_t offset, chunk, vchunk;
641 	/* Never use conf->prev as this is only called during resync
642 	 * or recovery, so reshape isn't happening
643 	 */
644 	struct geom *geo = &conf->geo;
645 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
646 	int far_set_size = geo->far_set_size;
647 	int last_far_set_start;
648 
649 	if (geo->raid_disks % geo->far_set_size) {
650 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
651 		last_far_set_start *= geo->far_set_size;
652 
653 		if (dev >= last_far_set_start) {
654 			far_set_size = geo->far_set_size;
655 			far_set_size += (geo->raid_disks % geo->far_set_size);
656 			far_set_start = last_far_set_start;
657 		}
658 	}
659 
660 	offset = sector & geo->chunk_mask;
661 	if (geo->far_offset) {
662 		int fc;
663 		chunk = sector >> geo->chunk_shift;
664 		fc = sector_div(chunk, geo->far_copies);
665 		dev -= fc * geo->near_copies;
666 		if (dev < far_set_start)
667 			dev += far_set_size;
668 	} else {
669 		while (sector >= geo->stride) {
670 			sector -= geo->stride;
671 			if (dev < (geo->near_copies + far_set_start))
672 				dev += far_set_size - geo->near_copies;
673 			else
674 				dev -= geo->near_copies;
675 		}
676 		chunk = sector >> geo->chunk_shift;
677 	}
678 	vchunk = chunk * geo->raid_disks + dev;
679 	sector_div(vchunk, geo->near_copies);
680 	return (vchunk << geo->chunk_shift) + offset;
681 }
682 
683 /*
684  * This routine returns the disk from which the requested read should
685  * be done. There is a per-array 'next expected sequential IO' sector
686  * number - if this matches on the next IO then we use the last disk.
687  * There is also a per-disk 'last know head position' sector that is
688  * maintained from IRQ contexts, both the normal and the resync IO
689  * completion handlers update this position correctly. If there is no
690  * perfect sequential match then we pick the disk whose head is closest.
691  *
692  * If there are 2 mirrors in the same 2 devices, performance degrades
693  * because position is mirror, not device based.
694  *
695  * The rdev for the device selected will have nr_pending incremented.
696  */
697 
698 /*
699  * FIXME: possibly should rethink readbalancing and do it differently
700  * depending on near_copies / far_copies geometry.
701  */
702 static struct md_rdev *read_balance(struct r10conf *conf,
703 				    struct r10bio *r10_bio,
704 				    int *max_sectors)
705 {
706 	const sector_t this_sector = r10_bio->sector;
707 	int disk, slot;
708 	int sectors = r10_bio->sectors;
709 	int best_good_sectors;
710 	sector_t new_distance, best_dist;
711 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
712 	int do_balance;
713 	int best_dist_slot, best_pending_slot;
714 	bool has_nonrot_disk = false;
715 	unsigned int min_pending;
716 	struct geom *geo = &conf->geo;
717 
718 	raid10_find_phys(conf, r10_bio);
719 	rcu_read_lock();
720 	best_dist_slot = -1;
721 	min_pending = UINT_MAX;
722 	best_dist_rdev = NULL;
723 	best_pending_rdev = NULL;
724 	best_dist = MaxSector;
725 	best_good_sectors = 0;
726 	do_balance = 1;
727 	clear_bit(R10BIO_FailFast, &r10_bio->state);
728 	/*
729 	 * Check if we can balance. We can balance on the whole
730 	 * device if no resync is going on (recovery is ok), or below
731 	 * the resync window. We take the first readable disk when
732 	 * above the resync window.
733 	 */
734 	if ((conf->mddev->recovery_cp < MaxSector
735 	     && (this_sector + sectors >= conf->next_resync)) ||
736 	    (mddev_is_clustered(conf->mddev) &&
737 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
738 					    this_sector + sectors)))
739 		do_balance = 0;
740 
741 	for (slot = 0; slot < conf->copies ; slot++) {
742 		sector_t first_bad;
743 		int bad_sectors;
744 		sector_t dev_sector;
745 		unsigned int pending;
746 		bool nonrot;
747 
748 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
749 			continue;
750 		disk = r10_bio->devs[slot].devnum;
751 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
752 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
753 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
754 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
755 		if (rdev == NULL ||
756 		    test_bit(Faulty, &rdev->flags))
757 			continue;
758 		if (!test_bit(In_sync, &rdev->flags) &&
759 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
760 			continue;
761 
762 		dev_sector = r10_bio->devs[slot].addr;
763 		if (is_badblock(rdev, dev_sector, sectors,
764 				&first_bad, &bad_sectors)) {
765 			if (best_dist < MaxSector)
766 				/* Already have a better slot */
767 				continue;
768 			if (first_bad <= dev_sector) {
769 				/* Cannot read here.  If this is the
770 				 * 'primary' device, then we must not read
771 				 * beyond 'bad_sectors' from another device.
772 				 */
773 				bad_sectors -= (dev_sector - first_bad);
774 				if (!do_balance && sectors > bad_sectors)
775 					sectors = bad_sectors;
776 				if (best_good_sectors > sectors)
777 					best_good_sectors = sectors;
778 			} else {
779 				sector_t good_sectors =
780 					first_bad - dev_sector;
781 				if (good_sectors > best_good_sectors) {
782 					best_good_sectors = good_sectors;
783 					best_dist_slot = slot;
784 					best_dist_rdev = rdev;
785 				}
786 				if (!do_balance)
787 					/* Must read from here */
788 					break;
789 			}
790 			continue;
791 		} else
792 			best_good_sectors = sectors;
793 
794 		if (!do_balance)
795 			break;
796 
797 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
798 		has_nonrot_disk |= nonrot;
799 		pending = atomic_read(&rdev->nr_pending);
800 		if (min_pending > pending && nonrot) {
801 			min_pending = pending;
802 			best_pending_slot = slot;
803 			best_pending_rdev = rdev;
804 		}
805 
806 		if (best_dist_slot >= 0)
807 			/* At least 2 disks to choose from so failfast is OK */
808 			set_bit(R10BIO_FailFast, &r10_bio->state);
809 		/* This optimisation is debatable, and completely destroys
810 		 * sequential read speed for 'far copies' arrays.  So only
811 		 * keep it for 'near' arrays, and review those later.
812 		 */
813 		if (geo->near_copies > 1 && !pending)
814 			new_distance = 0;
815 
816 		/* for far > 1 always use the lowest address */
817 		else if (geo->far_copies > 1)
818 			new_distance = r10_bio->devs[slot].addr;
819 		else
820 			new_distance = abs(r10_bio->devs[slot].addr -
821 					   conf->mirrors[disk].head_position);
822 
823 		if (new_distance < best_dist) {
824 			best_dist = new_distance;
825 			best_dist_slot = slot;
826 			best_dist_rdev = rdev;
827 		}
828 	}
829 	if (slot >= conf->copies) {
830 		if (has_nonrot_disk) {
831 			slot = best_pending_slot;
832 			rdev = best_pending_rdev;
833 		} else {
834 			slot = best_dist_slot;
835 			rdev = best_dist_rdev;
836 		}
837 	}
838 
839 	if (slot >= 0) {
840 		atomic_inc(&rdev->nr_pending);
841 		r10_bio->read_slot = slot;
842 	} else
843 		rdev = NULL;
844 	rcu_read_unlock();
845 	*max_sectors = best_good_sectors;
846 
847 	return rdev;
848 }
849 
850 static void flush_pending_writes(struct r10conf *conf)
851 {
852 	/* Any writes that have been queued but are awaiting
853 	 * bitmap updates get flushed here.
854 	 */
855 	spin_lock_irq(&conf->device_lock);
856 
857 	if (conf->pending_bio_list.head) {
858 		struct blk_plug plug;
859 		struct bio *bio;
860 
861 		bio = bio_list_get(&conf->pending_bio_list);
862 		conf->pending_count = 0;
863 		spin_unlock_irq(&conf->device_lock);
864 
865 		/*
866 		 * As this is called in a wait_event() loop (see freeze_array),
867 		 * current->state might be TASK_UNINTERRUPTIBLE which will
868 		 * cause a warning when we prepare to wait again.  As it is
869 		 * rare that this path is taken, it is perfectly safe to force
870 		 * us to go around the wait_event() loop again, so the warning
871 		 * is a false-positive. Silence the warning by resetting
872 		 * thread state
873 		 */
874 		__set_current_state(TASK_RUNNING);
875 
876 		blk_start_plug(&plug);
877 		/* flush any pending bitmap writes to disk
878 		 * before proceeding w/ I/O */
879 		md_bitmap_unplug(conf->mddev->bitmap);
880 		wake_up(&conf->wait_barrier);
881 
882 		while (bio) { /* submit pending writes */
883 			struct bio *next = bio->bi_next;
884 			struct md_rdev *rdev = (void*)bio->bi_bdev;
885 			bio->bi_next = NULL;
886 			bio_set_dev(bio, rdev->bdev);
887 			if (test_bit(Faulty, &rdev->flags)) {
888 				bio_io_error(bio);
889 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
890 					    !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
891 				/* Just ignore it */
892 				bio_endio(bio);
893 			else
894 				submit_bio_noacct(bio);
895 			bio = next;
896 		}
897 		blk_finish_plug(&plug);
898 	} else
899 		spin_unlock_irq(&conf->device_lock);
900 }
901 
902 /* Barriers....
903  * Sometimes we need to suspend IO while we do something else,
904  * either some resync/recovery, or reconfigure the array.
905  * To do this we raise a 'barrier'.
906  * The 'barrier' is a counter that can be raised multiple times
907  * to count how many activities are happening which preclude
908  * normal IO.
909  * We can only raise the barrier if there is no pending IO.
910  * i.e. if nr_pending == 0.
911  * We choose only to raise the barrier if no-one is waiting for the
912  * barrier to go down.  This means that as soon as an IO request
913  * is ready, no other operations which require a barrier will start
914  * until the IO request has had a chance.
915  *
916  * So: regular IO calls 'wait_barrier'.  When that returns there
917  *    is no backgroup IO happening,  It must arrange to call
918  *    allow_barrier when it has finished its IO.
919  * backgroup IO calls must call raise_barrier.  Once that returns
920  *    there is no normal IO happeing.  It must arrange to call
921  *    lower_barrier when the particular background IO completes.
922  */
923 
924 static void raise_barrier(struct r10conf *conf, int force)
925 {
926 	BUG_ON(force && !conf->barrier);
927 	spin_lock_irq(&conf->resync_lock);
928 
929 	/* Wait until no block IO is waiting (unless 'force') */
930 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
931 			    conf->resync_lock);
932 
933 	/* block any new IO from starting */
934 	conf->barrier++;
935 
936 	/* Now wait for all pending IO to complete */
937 	wait_event_lock_irq(conf->wait_barrier,
938 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
939 			    conf->resync_lock);
940 
941 	spin_unlock_irq(&conf->resync_lock);
942 }
943 
944 static void lower_barrier(struct r10conf *conf)
945 {
946 	unsigned long flags;
947 	spin_lock_irqsave(&conf->resync_lock, flags);
948 	conf->barrier--;
949 	spin_unlock_irqrestore(&conf->resync_lock, flags);
950 	wake_up(&conf->wait_barrier);
951 }
952 
953 static void wait_barrier(struct r10conf *conf)
954 {
955 	spin_lock_irq(&conf->resync_lock);
956 	if (conf->barrier) {
957 		struct bio_list *bio_list = current->bio_list;
958 		conf->nr_waiting++;
959 		/* Wait for the barrier to drop.
960 		 * However if there are already pending
961 		 * requests (preventing the barrier from
962 		 * rising completely), and the
963 		 * pre-process bio queue isn't empty,
964 		 * then don't wait, as we need to empty
965 		 * that queue to get the nr_pending
966 		 * count down.
967 		 */
968 		raid10_log(conf->mddev, "wait barrier");
969 		wait_event_lock_irq(conf->wait_barrier,
970 				    !conf->barrier ||
971 				    (atomic_read(&conf->nr_pending) &&
972 				     bio_list &&
973 				     (!bio_list_empty(&bio_list[0]) ||
974 				      !bio_list_empty(&bio_list[1]))) ||
975 				     /* move on if recovery thread is
976 				      * blocked by us
977 				      */
978 				     (conf->mddev->thread->tsk == current &&
979 				      test_bit(MD_RECOVERY_RUNNING,
980 					       &conf->mddev->recovery) &&
981 				      conf->nr_queued > 0),
982 				    conf->resync_lock);
983 		conf->nr_waiting--;
984 		if (!conf->nr_waiting)
985 			wake_up(&conf->wait_barrier);
986 	}
987 	atomic_inc(&conf->nr_pending);
988 	spin_unlock_irq(&conf->resync_lock);
989 }
990 
991 static void allow_barrier(struct r10conf *conf)
992 {
993 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
994 			(conf->array_freeze_pending))
995 		wake_up(&conf->wait_barrier);
996 }
997 
998 static void freeze_array(struct r10conf *conf, int extra)
999 {
1000 	/* stop syncio and normal IO and wait for everything to
1001 	 * go quiet.
1002 	 * We increment barrier and nr_waiting, and then
1003 	 * wait until nr_pending match nr_queued+extra
1004 	 * This is called in the context of one normal IO request
1005 	 * that has failed. Thus any sync request that might be pending
1006 	 * will be blocked by nr_pending, and we need to wait for
1007 	 * pending IO requests to complete or be queued for re-try.
1008 	 * Thus the number queued (nr_queued) plus this request (extra)
1009 	 * must match the number of pending IOs (nr_pending) before
1010 	 * we continue.
1011 	 */
1012 	spin_lock_irq(&conf->resync_lock);
1013 	conf->array_freeze_pending++;
1014 	conf->barrier++;
1015 	conf->nr_waiting++;
1016 	wait_event_lock_irq_cmd(conf->wait_barrier,
1017 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1018 				conf->resync_lock,
1019 				flush_pending_writes(conf));
1020 
1021 	conf->array_freeze_pending--;
1022 	spin_unlock_irq(&conf->resync_lock);
1023 }
1024 
1025 static void unfreeze_array(struct r10conf *conf)
1026 {
1027 	/* reverse the effect of the freeze */
1028 	spin_lock_irq(&conf->resync_lock);
1029 	conf->barrier--;
1030 	conf->nr_waiting--;
1031 	wake_up(&conf->wait_barrier);
1032 	spin_unlock_irq(&conf->resync_lock);
1033 }
1034 
1035 static sector_t choose_data_offset(struct r10bio *r10_bio,
1036 				   struct md_rdev *rdev)
1037 {
1038 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1039 	    test_bit(R10BIO_Previous, &r10_bio->state))
1040 		return rdev->data_offset;
1041 	else
1042 		return rdev->new_data_offset;
1043 }
1044 
1045 struct raid10_plug_cb {
1046 	struct blk_plug_cb	cb;
1047 	struct bio_list		pending;
1048 	int			pending_cnt;
1049 };
1050 
1051 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1052 {
1053 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1054 						   cb);
1055 	struct mddev *mddev = plug->cb.data;
1056 	struct r10conf *conf = mddev->private;
1057 	struct bio *bio;
1058 
1059 	if (from_schedule || current->bio_list) {
1060 		spin_lock_irq(&conf->device_lock);
1061 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1062 		conf->pending_count += plug->pending_cnt;
1063 		spin_unlock_irq(&conf->device_lock);
1064 		wake_up(&conf->wait_barrier);
1065 		md_wakeup_thread(mddev->thread);
1066 		kfree(plug);
1067 		return;
1068 	}
1069 
1070 	/* we aren't scheduling, so we can do the write-out directly. */
1071 	bio = bio_list_get(&plug->pending);
1072 	md_bitmap_unplug(mddev->bitmap);
1073 	wake_up(&conf->wait_barrier);
1074 
1075 	while (bio) { /* submit pending writes */
1076 		struct bio *next = bio->bi_next;
1077 		struct md_rdev *rdev = (void*)bio->bi_bdev;
1078 		bio->bi_next = NULL;
1079 		bio_set_dev(bio, rdev->bdev);
1080 		if (test_bit(Faulty, &rdev->flags)) {
1081 			bio_io_error(bio);
1082 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1083 				    !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
1084 			/* Just ignore it */
1085 			bio_endio(bio);
1086 		else
1087 			submit_bio_noacct(bio);
1088 		bio = next;
1089 	}
1090 	kfree(plug);
1091 }
1092 
1093 /*
1094  * 1. Register the new request and wait if the reconstruction thread has put
1095  * up a bar for new requests. Continue immediately if no resync is active
1096  * currently.
1097  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1098  */
1099 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1100 				 struct bio *bio, sector_t sectors)
1101 {
1102 	wait_barrier(conf);
1103 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1104 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1105 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1106 		raid10_log(conf->mddev, "wait reshape");
1107 		allow_barrier(conf);
1108 		wait_event(conf->wait_barrier,
1109 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1110 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1111 			   sectors);
1112 		wait_barrier(conf);
1113 	}
1114 }
1115 
1116 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1117 				struct r10bio *r10_bio)
1118 {
1119 	struct r10conf *conf = mddev->private;
1120 	struct bio *read_bio;
1121 	const int op = bio_op(bio);
1122 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1123 	int max_sectors;
1124 	struct md_rdev *rdev;
1125 	char b[BDEVNAME_SIZE];
1126 	int slot = r10_bio->read_slot;
1127 	struct md_rdev *err_rdev = NULL;
1128 	gfp_t gfp = GFP_NOIO;
1129 
1130 	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1131 		/*
1132 		 * This is an error retry, but we cannot
1133 		 * safely dereference the rdev in the r10_bio,
1134 		 * we must use the one in conf.
1135 		 * If it has already been disconnected (unlikely)
1136 		 * we lose the device name in error messages.
1137 		 */
1138 		int disk;
1139 		/*
1140 		 * As we are blocking raid10, it is a little safer to
1141 		 * use __GFP_HIGH.
1142 		 */
1143 		gfp = GFP_NOIO | __GFP_HIGH;
1144 
1145 		rcu_read_lock();
1146 		disk = r10_bio->devs[slot].devnum;
1147 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1148 		if (err_rdev)
1149 			bdevname(err_rdev->bdev, b);
1150 		else {
1151 			strcpy(b, "???");
1152 			/* This never gets dereferenced */
1153 			err_rdev = r10_bio->devs[slot].rdev;
1154 		}
1155 		rcu_read_unlock();
1156 	}
1157 
1158 	regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1159 	rdev = read_balance(conf, r10_bio, &max_sectors);
1160 	if (!rdev) {
1161 		if (err_rdev) {
1162 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1163 					    mdname(mddev), b,
1164 					    (unsigned long long)r10_bio->sector);
1165 		}
1166 		raid_end_bio_io(r10_bio);
1167 		return;
1168 	}
1169 	if (err_rdev)
1170 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1171 				   mdname(mddev),
1172 				   bdevname(rdev->bdev, b),
1173 				   (unsigned long long)r10_bio->sector);
1174 	if (max_sectors < bio_sectors(bio)) {
1175 		struct bio *split = bio_split(bio, max_sectors,
1176 					      gfp, &conf->bio_split);
1177 		bio_chain(split, bio);
1178 		allow_barrier(conf);
1179 		submit_bio_noacct(bio);
1180 		wait_barrier(conf);
1181 		bio = split;
1182 		r10_bio->master_bio = bio;
1183 		r10_bio->sectors = max_sectors;
1184 	}
1185 	slot = r10_bio->read_slot;
1186 
1187 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1188 
1189 	r10_bio->devs[slot].bio = read_bio;
1190 	r10_bio->devs[slot].rdev = rdev;
1191 
1192 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1193 		choose_data_offset(r10_bio, rdev);
1194 	bio_set_dev(read_bio, rdev->bdev);
1195 	read_bio->bi_end_io = raid10_end_read_request;
1196 	bio_set_op_attrs(read_bio, op, do_sync);
1197 	if (test_bit(FailFast, &rdev->flags) &&
1198 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1199 	        read_bio->bi_opf |= MD_FAILFAST;
1200 	read_bio->bi_private = r10_bio;
1201 
1202 	if (mddev->gendisk)
1203 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1204 	                              r10_bio->sector);
1205 	submit_bio_noacct(read_bio);
1206 	return;
1207 }
1208 
1209 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1210 				  struct bio *bio, bool replacement,
1211 				  int n_copy)
1212 {
1213 	const int op = bio_op(bio);
1214 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1215 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1216 	unsigned long flags;
1217 	struct blk_plug_cb *cb;
1218 	struct raid10_plug_cb *plug = NULL;
1219 	struct r10conf *conf = mddev->private;
1220 	struct md_rdev *rdev;
1221 	int devnum = r10_bio->devs[n_copy].devnum;
1222 	struct bio *mbio;
1223 
1224 	if (replacement) {
1225 		rdev = conf->mirrors[devnum].replacement;
1226 		if (rdev == NULL) {
1227 			/* Replacement just got moved to main 'rdev' */
1228 			smp_mb();
1229 			rdev = conf->mirrors[devnum].rdev;
1230 		}
1231 	} else
1232 		rdev = conf->mirrors[devnum].rdev;
1233 
1234 	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1235 	if (replacement)
1236 		r10_bio->devs[n_copy].repl_bio = mbio;
1237 	else
1238 		r10_bio->devs[n_copy].bio = mbio;
1239 
1240 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1241 				   choose_data_offset(r10_bio, rdev));
1242 	bio_set_dev(mbio, rdev->bdev);
1243 	mbio->bi_end_io	= raid10_end_write_request;
1244 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1245 	if (!replacement && test_bit(FailFast,
1246 				     &conf->mirrors[devnum].rdev->flags)
1247 			 && enough(conf, devnum))
1248 		mbio->bi_opf |= MD_FAILFAST;
1249 	mbio->bi_private = r10_bio;
1250 
1251 	if (conf->mddev->gendisk)
1252 		trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1253 				      r10_bio->sector);
1254 	/* flush_pending_writes() needs access to the rdev so...*/
1255 	mbio->bi_bdev = (void *)rdev;
1256 
1257 	atomic_inc(&r10_bio->remaining);
1258 
1259 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1260 	if (cb)
1261 		plug = container_of(cb, struct raid10_plug_cb, cb);
1262 	else
1263 		plug = NULL;
1264 	if (plug) {
1265 		bio_list_add(&plug->pending, mbio);
1266 		plug->pending_cnt++;
1267 	} else {
1268 		spin_lock_irqsave(&conf->device_lock, flags);
1269 		bio_list_add(&conf->pending_bio_list, mbio);
1270 		conf->pending_count++;
1271 		spin_unlock_irqrestore(&conf->device_lock, flags);
1272 		md_wakeup_thread(mddev->thread);
1273 	}
1274 }
1275 
1276 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1277 {
1278 	int i;
1279 	struct r10conf *conf = mddev->private;
1280 	struct md_rdev *blocked_rdev;
1281 
1282 retry_wait:
1283 	blocked_rdev = NULL;
1284 	rcu_read_lock();
1285 	for (i = 0; i < conf->copies; i++) {
1286 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1287 		struct md_rdev *rrdev = rcu_dereference(
1288 			conf->mirrors[i].replacement);
1289 		if (rdev == rrdev)
1290 			rrdev = NULL;
1291 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1292 			atomic_inc(&rdev->nr_pending);
1293 			blocked_rdev = rdev;
1294 			break;
1295 		}
1296 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1297 			atomic_inc(&rrdev->nr_pending);
1298 			blocked_rdev = rrdev;
1299 			break;
1300 		}
1301 
1302 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1303 			sector_t first_bad;
1304 			sector_t dev_sector = r10_bio->devs[i].addr;
1305 			int bad_sectors;
1306 			int is_bad;
1307 
1308 			/*
1309 			 * Discard request doesn't care the write result
1310 			 * so it doesn't need to wait blocked disk here.
1311 			 */
1312 			if (!r10_bio->sectors)
1313 				continue;
1314 
1315 			is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1316 					     &first_bad, &bad_sectors);
1317 			if (is_bad < 0) {
1318 				/*
1319 				 * Mustn't write here until the bad block
1320 				 * is acknowledged
1321 				 */
1322 				atomic_inc(&rdev->nr_pending);
1323 				set_bit(BlockedBadBlocks, &rdev->flags);
1324 				blocked_rdev = rdev;
1325 				break;
1326 			}
1327 		}
1328 	}
1329 	rcu_read_unlock();
1330 
1331 	if (unlikely(blocked_rdev)) {
1332 		/* Have to wait for this device to get unblocked, then retry */
1333 		allow_barrier(conf);
1334 		raid10_log(conf->mddev, "%s wait rdev %d blocked",
1335 				__func__, blocked_rdev->raid_disk);
1336 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1337 		wait_barrier(conf);
1338 		goto retry_wait;
1339 	}
1340 }
1341 
1342 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1343 				 struct r10bio *r10_bio)
1344 {
1345 	struct r10conf *conf = mddev->private;
1346 	int i;
1347 	sector_t sectors;
1348 	int max_sectors;
1349 
1350 	if ((mddev_is_clustered(mddev) &&
1351 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1352 					    bio->bi_iter.bi_sector,
1353 					    bio_end_sector(bio)))) {
1354 		DEFINE_WAIT(w);
1355 		for (;;) {
1356 			prepare_to_wait(&conf->wait_barrier,
1357 					&w, TASK_IDLE);
1358 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1359 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1360 				break;
1361 			schedule();
1362 		}
1363 		finish_wait(&conf->wait_barrier, &w);
1364 	}
1365 
1366 	sectors = r10_bio->sectors;
1367 	regular_request_wait(mddev, conf, bio, sectors);
1368 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1369 	    (mddev->reshape_backwards
1370 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1371 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1372 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1373 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1374 		/* Need to update reshape_position in metadata */
1375 		mddev->reshape_position = conf->reshape_progress;
1376 		set_mask_bits(&mddev->sb_flags, 0,
1377 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1378 		md_wakeup_thread(mddev->thread);
1379 		raid10_log(conf->mddev, "wait reshape metadata");
1380 		wait_event(mddev->sb_wait,
1381 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1382 
1383 		conf->reshape_safe = mddev->reshape_position;
1384 	}
1385 
1386 	if (conf->pending_count >= max_queued_requests) {
1387 		md_wakeup_thread(mddev->thread);
1388 		raid10_log(mddev, "wait queued");
1389 		wait_event(conf->wait_barrier,
1390 			   conf->pending_count < max_queued_requests);
1391 	}
1392 	/* first select target devices under rcu_lock and
1393 	 * inc refcount on their rdev.  Record them by setting
1394 	 * bios[x] to bio
1395 	 * If there are known/acknowledged bad blocks on any device
1396 	 * on which we have seen a write error, we want to avoid
1397 	 * writing to those blocks.  This potentially requires several
1398 	 * writes to write around the bad blocks.  Each set of writes
1399 	 * gets its own r10_bio with a set of bios attached.
1400 	 */
1401 
1402 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1403 	raid10_find_phys(conf, r10_bio);
1404 
1405 	wait_blocked_dev(mddev, r10_bio);
1406 
1407 	rcu_read_lock();
1408 	max_sectors = r10_bio->sectors;
1409 
1410 	for (i = 0;  i < conf->copies; i++) {
1411 		int d = r10_bio->devs[i].devnum;
1412 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1413 		struct md_rdev *rrdev = rcu_dereference(
1414 			conf->mirrors[d].replacement);
1415 		if (rdev == rrdev)
1416 			rrdev = NULL;
1417 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1418 			rdev = NULL;
1419 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1420 			rrdev = NULL;
1421 
1422 		r10_bio->devs[i].bio = NULL;
1423 		r10_bio->devs[i].repl_bio = NULL;
1424 
1425 		if (!rdev && !rrdev) {
1426 			set_bit(R10BIO_Degraded, &r10_bio->state);
1427 			continue;
1428 		}
1429 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1430 			sector_t first_bad;
1431 			sector_t dev_sector = r10_bio->devs[i].addr;
1432 			int bad_sectors;
1433 			int is_bad;
1434 
1435 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1436 					     &first_bad, &bad_sectors);
1437 			if (is_bad && first_bad <= dev_sector) {
1438 				/* Cannot write here at all */
1439 				bad_sectors -= (dev_sector - first_bad);
1440 				if (bad_sectors < max_sectors)
1441 					/* Mustn't write more than bad_sectors
1442 					 * to other devices yet
1443 					 */
1444 					max_sectors = bad_sectors;
1445 				/* We don't set R10BIO_Degraded as that
1446 				 * only applies if the disk is missing,
1447 				 * so it might be re-added, and we want to
1448 				 * know to recover this chunk.
1449 				 * In this case the device is here, and the
1450 				 * fact that this chunk is not in-sync is
1451 				 * recorded in the bad block log.
1452 				 */
1453 				continue;
1454 			}
1455 			if (is_bad) {
1456 				int good_sectors = first_bad - dev_sector;
1457 				if (good_sectors < max_sectors)
1458 					max_sectors = good_sectors;
1459 			}
1460 		}
1461 		if (rdev) {
1462 			r10_bio->devs[i].bio = bio;
1463 			atomic_inc(&rdev->nr_pending);
1464 		}
1465 		if (rrdev) {
1466 			r10_bio->devs[i].repl_bio = bio;
1467 			atomic_inc(&rrdev->nr_pending);
1468 		}
1469 	}
1470 	rcu_read_unlock();
1471 
1472 	if (max_sectors < r10_bio->sectors)
1473 		r10_bio->sectors = max_sectors;
1474 
1475 	if (r10_bio->sectors < bio_sectors(bio)) {
1476 		struct bio *split = bio_split(bio, r10_bio->sectors,
1477 					      GFP_NOIO, &conf->bio_split);
1478 		bio_chain(split, bio);
1479 		allow_barrier(conf);
1480 		submit_bio_noacct(bio);
1481 		wait_barrier(conf);
1482 		bio = split;
1483 		r10_bio->master_bio = bio;
1484 	}
1485 
1486 	atomic_set(&r10_bio->remaining, 1);
1487 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1488 
1489 	for (i = 0; i < conf->copies; i++) {
1490 		if (r10_bio->devs[i].bio)
1491 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1492 		if (r10_bio->devs[i].repl_bio)
1493 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1494 	}
1495 	one_write_done(r10_bio);
1496 }
1497 
1498 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1499 {
1500 	struct r10conf *conf = mddev->private;
1501 	struct r10bio *r10_bio;
1502 
1503 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1504 
1505 	r10_bio->master_bio = bio;
1506 	r10_bio->sectors = sectors;
1507 
1508 	r10_bio->mddev = mddev;
1509 	r10_bio->sector = bio->bi_iter.bi_sector;
1510 	r10_bio->state = 0;
1511 	r10_bio->read_slot = -1;
1512 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1513 			conf->geo.raid_disks);
1514 
1515 	if (bio_data_dir(bio) == READ)
1516 		raid10_read_request(mddev, bio, r10_bio);
1517 	else
1518 		raid10_write_request(mddev, bio, r10_bio);
1519 }
1520 
1521 static void raid_end_discard_bio(struct r10bio *r10bio)
1522 {
1523 	struct r10conf *conf = r10bio->mddev->private;
1524 	struct r10bio *first_r10bio;
1525 
1526 	while (atomic_dec_and_test(&r10bio->remaining)) {
1527 
1528 		allow_barrier(conf);
1529 
1530 		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1531 			first_r10bio = (struct r10bio *)r10bio->master_bio;
1532 			free_r10bio(r10bio);
1533 			r10bio = first_r10bio;
1534 		} else {
1535 			md_write_end(r10bio->mddev);
1536 			bio_endio(r10bio->master_bio);
1537 			free_r10bio(r10bio);
1538 			break;
1539 		}
1540 	}
1541 }
1542 
1543 static void raid10_end_discard_request(struct bio *bio)
1544 {
1545 	struct r10bio *r10_bio = bio->bi_private;
1546 	struct r10conf *conf = r10_bio->mddev->private;
1547 	struct md_rdev *rdev = NULL;
1548 	int dev;
1549 	int slot, repl;
1550 
1551 	/*
1552 	 * We don't care the return value of discard bio
1553 	 */
1554 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1555 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1556 
1557 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1558 	if (repl)
1559 		rdev = conf->mirrors[dev].replacement;
1560 	if (!rdev) {
1561 		/*
1562 		 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1563 		 * replacement before setting replacement to NULL. It can read
1564 		 * rdev first without barrier protect even replacment is NULL
1565 		 */
1566 		smp_rmb();
1567 		rdev = conf->mirrors[dev].rdev;
1568 	}
1569 
1570 	raid_end_discard_bio(r10_bio);
1571 	rdev_dec_pending(rdev, conf->mddev);
1572 }
1573 
1574 /*
1575  * There are some limitations to handle discard bio
1576  * 1st, the discard size is bigger than stripe_size*2.
1577  * 2st, if the discard bio spans reshape progress, we use the old way to
1578  * handle discard bio
1579  */
1580 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1581 {
1582 	struct r10conf *conf = mddev->private;
1583 	struct geom *geo = &conf->geo;
1584 	int far_copies = geo->far_copies;
1585 	bool first_copy = true;
1586 	struct r10bio *r10_bio, *first_r10bio;
1587 	struct bio *split;
1588 	int disk;
1589 	sector_t chunk;
1590 	unsigned int stripe_size;
1591 	unsigned int stripe_data_disks;
1592 	sector_t split_size;
1593 	sector_t bio_start, bio_end;
1594 	sector_t first_stripe_index, last_stripe_index;
1595 	sector_t start_disk_offset;
1596 	unsigned int start_disk_index;
1597 	sector_t end_disk_offset;
1598 	unsigned int end_disk_index;
1599 	unsigned int remainder;
1600 
1601 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1602 		return -EAGAIN;
1603 
1604 	wait_barrier(conf);
1605 
1606 	/*
1607 	 * Check reshape again to avoid reshape happens after checking
1608 	 * MD_RECOVERY_RESHAPE and before wait_barrier
1609 	 */
1610 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1611 		goto out;
1612 
1613 	if (geo->near_copies)
1614 		stripe_data_disks = geo->raid_disks / geo->near_copies +
1615 					geo->raid_disks % geo->near_copies;
1616 	else
1617 		stripe_data_disks = geo->raid_disks;
1618 
1619 	stripe_size = stripe_data_disks << geo->chunk_shift;
1620 
1621 	bio_start = bio->bi_iter.bi_sector;
1622 	bio_end = bio_end_sector(bio);
1623 
1624 	/*
1625 	 * Maybe one discard bio is smaller than strip size or across one
1626 	 * stripe and discard region is larger than one stripe size. For far
1627 	 * offset layout, if the discard region is not aligned with stripe
1628 	 * size, there is hole when we submit discard bio to member disk.
1629 	 * For simplicity, we only handle discard bio which discard region
1630 	 * is bigger than stripe_size * 2
1631 	 */
1632 	if (bio_sectors(bio) < stripe_size*2)
1633 		goto out;
1634 
1635 	/*
1636 	 * Keep bio aligned with strip size.
1637 	 */
1638 	div_u64_rem(bio_start, stripe_size, &remainder);
1639 	if (remainder) {
1640 		split_size = stripe_size - remainder;
1641 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1642 		bio_chain(split, bio);
1643 		allow_barrier(conf);
1644 		/* Resend the fist split part */
1645 		submit_bio_noacct(split);
1646 		wait_barrier(conf);
1647 	}
1648 	div_u64_rem(bio_end, stripe_size, &remainder);
1649 	if (remainder) {
1650 		split_size = bio_sectors(bio) - remainder;
1651 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1652 		bio_chain(split, bio);
1653 		allow_barrier(conf);
1654 		/* Resend the second split part */
1655 		submit_bio_noacct(bio);
1656 		bio = split;
1657 		wait_barrier(conf);
1658 	}
1659 
1660 	bio_start = bio->bi_iter.bi_sector;
1661 	bio_end = bio_end_sector(bio);
1662 
1663 	/*
1664 	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1665 	 * One stripe contains the chunks from all member disk (one chunk from
1666 	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1667 	 */
1668 	chunk = bio_start >> geo->chunk_shift;
1669 	chunk *= geo->near_copies;
1670 	first_stripe_index = chunk;
1671 	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1672 	if (geo->far_offset)
1673 		first_stripe_index *= geo->far_copies;
1674 	start_disk_offset = (bio_start & geo->chunk_mask) +
1675 				(first_stripe_index << geo->chunk_shift);
1676 
1677 	chunk = bio_end >> geo->chunk_shift;
1678 	chunk *= geo->near_copies;
1679 	last_stripe_index = chunk;
1680 	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1681 	if (geo->far_offset)
1682 		last_stripe_index *= geo->far_copies;
1683 	end_disk_offset = (bio_end & geo->chunk_mask) +
1684 				(last_stripe_index << geo->chunk_shift);
1685 
1686 retry_discard:
1687 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1688 	r10_bio->mddev = mddev;
1689 	r10_bio->state = 0;
1690 	r10_bio->sectors = 0;
1691 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1692 	wait_blocked_dev(mddev, r10_bio);
1693 
1694 	/*
1695 	 * For far layout it needs more than one r10bio to cover all regions.
1696 	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1697 	 * to record the discard bio. Other r10bio->master_bio record the first
1698 	 * r10bio. The first r10bio only release after all other r10bios finish.
1699 	 * The discard bio returns only first r10bio finishes
1700 	 */
1701 	if (first_copy) {
1702 		r10_bio->master_bio = bio;
1703 		set_bit(R10BIO_Discard, &r10_bio->state);
1704 		first_copy = false;
1705 		first_r10bio = r10_bio;
1706 	} else
1707 		r10_bio->master_bio = (struct bio *)first_r10bio;
1708 
1709 	rcu_read_lock();
1710 	for (disk = 0; disk < geo->raid_disks; disk++) {
1711 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1712 		struct md_rdev *rrdev = rcu_dereference(
1713 			conf->mirrors[disk].replacement);
1714 
1715 		r10_bio->devs[disk].bio = NULL;
1716 		r10_bio->devs[disk].repl_bio = NULL;
1717 
1718 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1719 			rdev = NULL;
1720 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1721 			rrdev = NULL;
1722 		if (!rdev && !rrdev)
1723 			continue;
1724 
1725 		if (rdev) {
1726 			r10_bio->devs[disk].bio = bio;
1727 			atomic_inc(&rdev->nr_pending);
1728 		}
1729 		if (rrdev) {
1730 			r10_bio->devs[disk].repl_bio = bio;
1731 			atomic_inc(&rrdev->nr_pending);
1732 		}
1733 	}
1734 	rcu_read_unlock();
1735 
1736 	atomic_set(&r10_bio->remaining, 1);
1737 	for (disk = 0; disk < geo->raid_disks; disk++) {
1738 		sector_t dev_start, dev_end;
1739 		struct bio *mbio, *rbio = NULL;
1740 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1741 		struct md_rdev *rrdev = rcu_dereference(
1742 			conf->mirrors[disk].replacement);
1743 
1744 		/*
1745 		 * Now start to calculate the start and end address for each disk.
1746 		 * The space between dev_start and dev_end is the discard region.
1747 		 *
1748 		 * For dev_start, it needs to consider three conditions:
1749 		 * 1st, the disk is before start_disk, you can imagine the disk in
1750 		 * the next stripe. So the dev_start is the start address of next
1751 		 * stripe.
1752 		 * 2st, the disk is after start_disk, it means the disk is at the
1753 		 * same stripe of first disk
1754 		 * 3st, the first disk itself, we can use start_disk_offset directly
1755 		 */
1756 		if (disk < start_disk_index)
1757 			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1758 		else if (disk > start_disk_index)
1759 			dev_start = first_stripe_index * mddev->chunk_sectors;
1760 		else
1761 			dev_start = start_disk_offset;
1762 
1763 		if (disk < end_disk_index)
1764 			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1765 		else if (disk > end_disk_index)
1766 			dev_end = last_stripe_index * mddev->chunk_sectors;
1767 		else
1768 			dev_end = end_disk_offset;
1769 
1770 		/*
1771 		 * It only handles discard bio which size is >= stripe size, so
1772 		 * dev_end > dev_start all the time
1773 		 */
1774 		if (r10_bio->devs[disk].bio) {
1775 			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1776 			mbio->bi_end_io = raid10_end_discard_request;
1777 			mbio->bi_private = r10_bio;
1778 			r10_bio->devs[disk].bio = mbio;
1779 			r10_bio->devs[disk].devnum = disk;
1780 			atomic_inc(&r10_bio->remaining);
1781 			md_submit_discard_bio(mddev, rdev, mbio,
1782 					dev_start + choose_data_offset(r10_bio, rdev),
1783 					dev_end - dev_start);
1784 			bio_endio(mbio);
1785 		}
1786 		if (r10_bio->devs[disk].repl_bio) {
1787 			rbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1788 			rbio->bi_end_io = raid10_end_discard_request;
1789 			rbio->bi_private = r10_bio;
1790 			r10_bio->devs[disk].repl_bio = rbio;
1791 			r10_bio->devs[disk].devnum = disk;
1792 			atomic_inc(&r10_bio->remaining);
1793 			md_submit_discard_bio(mddev, rrdev, rbio,
1794 					dev_start + choose_data_offset(r10_bio, rrdev),
1795 					dev_end - dev_start);
1796 			bio_endio(rbio);
1797 		}
1798 	}
1799 
1800 	if (!geo->far_offset && --far_copies) {
1801 		first_stripe_index += geo->stride >> geo->chunk_shift;
1802 		start_disk_offset += geo->stride;
1803 		last_stripe_index += geo->stride >> geo->chunk_shift;
1804 		end_disk_offset += geo->stride;
1805 		atomic_inc(&first_r10bio->remaining);
1806 		raid_end_discard_bio(r10_bio);
1807 		wait_barrier(conf);
1808 		goto retry_discard;
1809 	}
1810 
1811 	raid_end_discard_bio(r10_bio);
1812 
1813 	return 0;
1814 out:
1815 	allow_barrier(conf);
1816 	return -EAGAIN;
1817 }
1818 
1819 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1820 {
1821 	struct r10conf *conf = mddev->private;
1822 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1823 	int chunk_sects = chunk_mask + 1;
1824 	int sectors = bio_sectors(bio);
1825 
1826 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1827 	    && md_flush_request(mddev, bio))
1828 		return true;
1829 
1830 	if (!md_write_start(mddev, bio))
1831 		return false;
1832 
1833 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1834 		if (!raid10_handle_discard(mddev, bio))
1835 			return true;
1836 
1837 	/*
1838 	 * If this request crosses a chunk boundary, we need to split
1839 	 * it.
1840 	 */
1841 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1842 		     sectors > chunk_sects
1843 		     && (conf->geo.near_copies < conf->geo.raid_disks
1844 			 || conf->prev.near_copies <
1845 			 conf->prev.raid_disks)))
1846 		sectors = chunk_sects -
1847 			(bio->bi_iter.bi_sector &
1848 			 (chunk_sects - 1));
1849 	__make_request(mddev, bio, sectors);
1850 
1851 	/* In case raid10d snuck in to freeze_array */
1852 	wake_up(&conf->wait_barrier);
1853 	return true;
1854 }
1855 
1856 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1857 {
1858 	struct r10conf *conf = mddev->private;
1859 	int i;
1860 
1861 	if (conf->geo.near_copies < conf->geo.raid_disks)
1862 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1863 	if (conf->geo.near_copies > 1)
1864 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1865 	if (conf->geo.far_copies > 1) {
1866 		if (conf->geo.far_offset)
1867 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1868 		else
1869 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1870 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1871 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1872 	}
1873 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1874 					conf->geo.raid_disks - mddev->degraded);
1875 	rcu_read_lock();
1876 	for (i = 0; i < conf->geo.raid_disks; i++) {
1877 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1878 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1879 	}
1880 	rcu_read_unlock();
1881 	seq_printf(seq, "]");
1882 }
1883 
1884 /* check if there are enough drives for
1885  * every block to appear on atleast one.
1886  * Don't consider the device numbered 'ignore'
1887  * as we might be about to remove it.
1888  */
1889 static int _enough(struct r10conf *conf, int previous, int ignore)
1890 {
1891 	int first = 0;
1892 	int has_enough = 0;
1893 	int disks, ncopies;
1894 	if (previous) {
1895 		disks = conf->prev.raid_disks;
1896 		ncopies = conf->prev.near_copies;
1897 	} else {
1898 		disks = conf->geo.raid_disks;
1899 		ncopies = conf->geo.near_copies;
1900 	}
1901 
1902 	rcu_read_lock();
1903 	do {
1904 		int n = conf->copies;
1905 		int cnt = 0;
1906 		int this = first;
1907 		while (n--) {
1908 			struct md_rdev *rdev;
1909 			if (this != ignore &&
1910 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1911 			    test_bit(In_sync, &rdev->flags))
1912 				cnt++;
1913 			this = (this+1) % disks;
1914 		}
1915 		if (cnt == 0)
1916 			goto out;
1917 		first = (first + ncopies) % disks;
1918 	} while (first != 0);
1919 	has_enough = 1;
1920 out:
1921 	rcu_read_unlock();
1922 	return has_enough;
1923 }
1924 
1925 static int enough(struct r10conf *conf, int ignore)
1926 {
1927 	/* when calling 'enough', both 'prev' and 'geo' must
1928 	 * be stable.
1929 	 * This is ensured if ->reconfig_mutex or ->device_lock
1930 	 * is held.
1931 	 */
1932 	return _enough(conf, 0, ignore) &&
1933 		_enough(conf, 1, ignore);
1934 }
1935 
1936 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1937 {
1938 	char b[BDEVNAME_SIZE];
1939 	struct r10conf *conf = mddev->private;
1940 	unsigned long flags;
1941 
1942 	/*
1943 	 * If it is not operational, then we have already marked it as dead
1944 	 * else if it is the last working disks with "fail_last_dev == false",
1945 	 * ignore the error, let the next level up know.
1946 	 * else mark the drive as failed
1947 	 */
1948 	spin_lock_irqsave(&conf->device_lock, flags);
1949 	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1950 	    && !enough(conf, rdev->raid_disk)) {
1951 		/*
1952 		 * Don't fail the drive, just return an IO error.
1953 		 */
1954 		spin_unlock_irqrestore(&conf->device_lock, flags);
1955 		return;
1956 	}
1957 	if (test_and_clear_bit(In_sync, &rdev->flags))
1958 		mddev->degraded++;
1959 	/*
1960 	 * If recovery is running, make sure it aborts.
1961 	 */
1962 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1963 	set_bit(Blocked, &rdev->flags);
1964 	set_bit(Faulty, &rdev->flags);
1965 	set_mask_bits(&mddev->sb_flags, 0,
1966 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1967 	spin_unlock_irqrestore(&conf->device_lock, flags);
1968 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1969 		"md/raid10:%s: Operation continuing on %d devices.\n",
1970 		mdname(mddev), bdevname(rdev->bdev, b),
1971 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1972 }
1973 
1974 static void print_conf(struct r10conf *conf)
1975 {
1976 	int i;
1977 	struct md_rdev *rdev;
1978 
1979 	pr_debug("RAID10 conf printout:\n");
1980 	if (!conf) {
1981 		pr_debug("(!conf)\n");
1982 		return;
1983 	}
1984 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1985 		 conf->geo.raid_disks);
1986 
1987 	/* This is only called with ->reconfix_mutex held, so
1988 	 * rcu protection of rdev is not needed */
1989 	for (i = 0; i < conf->geo.raid_disks; i++) {
1990 		char b[BDEVNAME_SIZE];
1991 		rdev = conf->mirrors[i].rdev;
1992 		if (rdev)
1993 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1994 				 i, !test_bit(In_sync, &rdev->flags),
1995 				 !test_bit(Faulty, &rdev->flags),
1996 				 bdevname(rdev->bdev,b));
1997 	}
1998 }
1999 
2000 static void close_sync(struct r10conf *conf)
2001 {
2002 	wait_barrier(conf);
2003 	allow_barrier(conf);
2004 
2005 	mempool_exit(&conf->r10buf_pool);
2006 }
2007 
2008 static int raid10_spare_active(struct mddev *mddev)
2009 {
2010 	int i;
2011 	struct r10conf *conf = mddev->private;
2012 	struct raid10_info *tmp;
2013 	int count = 0;
2014 	unsigned long flags;
2015 
2016 	/*
2017 	 * Find all non-in_sync disks within the RAID10 configuration
2018 	 * and mark them in_sync
2019 	 */
2020 	for (i = 0; i < conf->geo.raid_disks; i++) {
2021 		tmp = conf->mirrors + i;
2022 		if (tmp->replacement
2023 		    && tmp->replacement->recovery_offset == MaxSector
2024 		    && !test_bit(Faulty, &tmp->replacement->flags)
2025 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2026 			/* Replacement has just become active */
2027 			if (!tmp->rdev
2028 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2029 				count++;
2030 			if (tmp->rdev) {
2031 				/* Replaced device not technically faulty,
2032 				 * but we need to be sure it gets removed
2033 				 * and never re-added.
2034 				 */
2035 				set_bit(Faulty, &tmp->rdev->flags);
2036 				sysfs_notify_dirent_safe(
2037 					tmp->rdev->sysfs_state);
2038 			}
2039 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2040 		} else if (tmp->rdev
2041 			   && tmp->rdev->recovery_offset == MaxSector
2042 			   && !test_bit(Faulty, &tmp->rdev->flags)
2043 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2044 			count++;
2045 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2046 		}
2047 	}
2048 	spin_lock_irqsave(&conf->device_lock, flags);
2049 	mddev->degraded -= count;
2050 	spin_unlock_irqrestore(&conf->device_lock, flags);
2051 
2052 	print_conf(conf);
2053 	return count;
2054 }
2055 
2056 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2057 {
2058 	struct r10conf *conf = mddev->private;
2059 	int err = -EEXIST;
2060 	int mirror;
2061 	int first = 0;
2062 	int last = conf->geo.raid_disks - 1;
2063 
2064 	if (mddev->recovery_cp < MaxSector)
2065 		/* only hot-add to in-sync arrays, as recovery is
2066 		 * very different from resync
2067 		 */
2068 		return -EBUSY;
2069 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2070 		return -EINVAL;
2071 
2072 	if (md_integrity_add_rdev(rdev, mddev))
2073 		return -ENXIO;
2074 
2075 	if (rdev->raid_disk >= 0)
2076 		first = last = rdev->raid_disk;
2077 
2078 	if (rdev->saved_raid_disk >= first &&
2079 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2080 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2081 		mirror = rdev->saved_raid_disk;
2082 	else
2083 		mirror = first;
2084 	for ( ; mirror <= last ; mirror++) {
2085 		struct raid10_info *p = &conf->mirrors[mirror];
2086 		if (p->recovery_disabled == mddev->recovery_disabled)
2087 			continue;
2088 		if (p->rdev) {
2089 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
2090 			    p->replacement != NULL)
2091 				continue;
2092 			clear_bit(In_sync, &rdev->flags);
2093 			set_bit(Replacement, &rdev->flags);
2094 			rdev->raid_disk = mirror;
2095 			err = 0;
2096 			if (mddev->gendisk)
2097 				disk_stack_limits(mddev->gendisk, rdev->bdev,
2098 						  rdev->data_offset << 9);
2099 			conf->fullsync = 1;
2100 			rcu_assign_pointer(p->replacement, rdev);
2101 			break;
2102 		}
2103 
2104 		if (mddev->gendisk)
2105 			disk_stack_limits(mddev->gendisk, rdev->bdev,
2106 					  rdev->data_offset << 9);
2107 
2108 		p->head_position = 0;
2109 		p->recovery_disabled = mddev->recovery_disabled - 1;
2110 		rdev->raid_disk = mirror;
2111 		err = 0;
2112 		if (rdev->saved_raid_disk != mirror)
2113 			conf->fullsync = 1;
2114 		rcu_assign_pointer(p->rdev, rdev);
2115 		break;
2116 	}
2117 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2118 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
2119 
2120 	print_conf(conf);
2121 	return err;
2122 }
2123 
2124 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2125 {
2126 	struct r10conf *conf = mddev->private;
2127 	int err = 0;
2128 	int number = rdev->raid_disk;
2129 	struct md_rdev **rdevp;
2130 	struct raid10_info *p = conf->mirrors + number;
2131 
2132 	print_conf(conf);
2133 	if (rdev == p->rdev)
2134 		rdevp = &p->rdev;
2135 	else if (rdev == p->replacement)
2136 		rdevp = &p->replacement;
2137 	else
2138 		return 0;
2139 
2140 	if (test_bit(In_sync, &rdev->flags) ||
2141 	    atomic_read(&rdev->nr_pending)) {
2142 		err = -EBUSY;
2143 		goto abort;
2144 	}
2145 	/* Only remove non-faulty devices if recovery
2146 	 * is not possible.
2147 	 */
2148 	if (!test_bit(Faulty, &rdev->flags) &&
2149 	    mddev->recovery_disabled != p->recovery_disabled &&
2150 	    (!p->replacement || p->replacement == rdev) &&
2151 	    number < conf->geo.raid_disks &&
2152 	    enough(conf, -1)) {
2153 		err = -EBUSY;
2154 		goto abort;
2155 	}
2156 	*rdevp = NULL;
2157 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2158 		synchronize_rcu();
2159 		if (atomic_read(&rdev->nr_pending)) {
2160 			/* lost the race, try later */
2161 			err = -EBUSY;
2162 			*rdevp = rdev;
2163 			goto abort;
2164 		}
2165 	}
2166 	if (p->replacement) {
2167 		/* We must have just cleared 'rdev' */
2168 		p->rdev = p->replacement;
2169 		clear_bit(Replacement, &p->replacement->flags);
2170 		smp_mb(); /* Make sure other CPUs may see both as identical
2171 			   * but will never see neither -- if they are careful.
2172 			   */
2173 		p->replacement = NULL;
2174 	}
2175 
2176 	clear_bit(WantReplacement, &rdev->flags);
2177 	err = md_integrity_register(mddev);
2178 
2179 abort:
2180 
2181 	print_conf(conf);
2182 	return err;
2183 }
2184 
2185 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2186 {
2187 	struct r10conf *conf = r10_bio->mddev->private;
2188 
2189 	if (!bio->bi_status)
2190 		set_bit(R10BIO_Uptodate, &r10_bio->state);
2191 	else
2192 		/* The write handler will notice the lack of
2193 		 * R10BIO_Uptodate and record any errors etc
2194 		 */
2195 		atomic_add(r10_bio->sectors,
2196 			   &conf->mirrors[d].rdev->corrected_errors);
2197 
2198 	/* for reconstruct, we always reschedule after a read.
2199 	 * for resync, only after all reads
2200 	 */
2201 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2202 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2203 	    atomic_dec_and_test(&r10_bio->remaining)) {
2204 		/* we have read all the blocks,
2205 		 * do the comparison in process context in raid10d
2206 		 */
2207 		reschedule_retry(r10_bio);
2208 	}
2209 }
2210 
2211 static void end_sync_read(struct bio *bio)
2212 {
2213 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2214 	struct r10conf *conf = r10_bio->mddev->private;
2215 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2216 
2217 	__end_sync_read(r10_bio, bio, d);
2218 }
2219 
2220 static void end_reshape_read(struct bio *bio)
2221 {
2222 	/* reshape read bio isn't allocated from r10buf_pool */
2223 	struct r10bio *r10_bio = bio->bi_private;
2224 
2225 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2226 }
2227 
2228 static void end_sync_request(struct r10bio *r10_bio)
2229 {
2230 	struct mddev *mddev = r10_bio->mddev;
2231 
2232 	while (atomic_dec_and_test(&r10_bio->remaining)) {
2233 		if (r10_bio->master_bio == NULL) {
2234 			/* the primary of several recovery bios */
2235 			sector_t s = r10_bio->sectors;
2236 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2237 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2238 				reschedule_retry(r10_bio);
2239 			else
2240 				put_buf(r10_bio);
2241 			md_done_sync(mddev, s, 1);
2242 			break;
2243 		} else {
2244 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2245 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2246 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2247 				reschedule_retry(r10_bio);
2248 			else
2249 				put_buf(r10_bio);
2250 			r10_bio = r10_bio2;
2251 		}
2252 	}
2253 }
2254 
2255 static void end_sync_write(struct bio *bio)
2256 {
2257 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2258 	struct mddev *mddev = r10_bio->mddev;
2259 	struct r10conf *conf = mddev->private;
2260 	int d;
2261 	sector_t first_bad;
2262 	int bad_sectors;
2263 	int slot;
2264 	int repl;
2265 	struct md_rdev *rdev = NULL;
2266 
2267 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2268 	if (repl)
2269 		rdev = conf->mirrors[d].replacement;
2270 	else
2271 		rdev = conf->mirrors[d].rdev;
2272 
2273 	if (bio->bi_status) {
2274 		if (repl)
2275 			md_error(mddev, rdev);
2276 		else {
2277 			set_bit(WriteErrorSeen, &rdev->flags);
2278 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2279 				set_bit(MD_RECOVERY_NEEDED,
2280 					&rdev->mddev->recovery);
2281 			set_bit(R10BIO_WriteError, &r10_bio->state);
2282 		}
2283 	} else if (is_badblock(rdev,
2284 			     r10_bio->devs[slot].addr,
2285 			     r10_bio->sectors,
2286 			     &first_bad, &bad_sectors))
2287 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2288 
2289 	rdev_dec_pending(rdev, mddev);
2290 
2291 	end_sync_request(r10_bio);
2292 }
2293 
2294 /*
2295  * Note: sync and recover and handled very differently for raid10
2296  * This code is for resync.
2297  * For resync, we read through virtual addresses and read all blocks.
2298  * If there is any error, we schedule a write.  The lowest numbered
2299  * drive is authoritative.
2300  * However requests come for physical address, so we need to map.
2301  * For every physical address there are raid_disks/copies virtual addresses,
2302  * which is always are least one, but is not necessarly an integer.
2303  * This means that a physical address can span multiple chunks, so we may
2304  * have to submit multiple io requests for a single sync request.
2305  */
2306 /*
2307  * We check if all blocks are in-sync and only write to blocks that
2308  * aren't in sync
2309  */
2310 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2311 {
2312 	struct r10conf *conf = mddev->private;
2313 	int i, first;
2314 	struct bio *tbio, *fbio;
2315 	int vcnt;
2316 	struct page **tpages, **fpages;
2317 
2318 	atomic_set(&r10_bio->remaining, 1);
2319 
2320 	/* find the first device with a block */
2321 	for (i=0; i<conf->copies; i++)
2322 		if (!r10_bio->devs[i].bio->bi_status)
2323 			break;
2324 
2325 	if (i == conf->copies)
2326 		goto done;
2327 
2328 	first = i;
2329 	fbio = r10_bio->devs[i].bio;
2330 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2331 	fbio->bi_iter.bi_idx = 0;
2332 	fpages = get_resync_pages(fbio)->pages;
2333 
2334 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2335 	/* now find blocks with errors */
2336 	for (i=0 ; i < conf->copies ; i++) {
2337 		int  j, d;
2338 		struct md_rdev *rdev;
2339 		struct resync_pages *rp;
2340 
2341 		tbio = r10_bio->devs[i].bio;
2342 
2343 		if (tbio->bi_end_io != end_sync_read)
2344 			continue;
2345 		if (i == first)
2346 			continue;
2347 
2348 		tpages = get_resync_pages(tbio)->pages;
2349 		d = r10_bio->devs[i].devnum;
2350 		rdev = conf->mirrors[d].rdev;
2351 		if (!r10_bio->devs[i].bio->bi_status) {
2352 			/* We know that the bi_io_vec layout is the same for
2353 			 * both 'first' and 'i', so we just compare them.
2354 			 * All vec entries are PAGE_SIZE;
2355 			 */
2356 			int sectors = r10_bio->sectors;
2357 			for (j = 0; j < vcnt; j++) {
2358 				int len = PAGE_SIZE;
2359 				if (sectors < (len / 512))
2360 					len = sectors * 512;
2361 				if (memcmp(page_address(fpages[j]),
2362 					   page_address(tpages[j]),
2363 					   len))
2364 					break;
2365 				sectors -= len/512;
2366 			}
2367 			if (j == vcnt)
2368 				continue;
2369 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2370 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2371 				/* Don't fix anything. */
2372 				continue;
2373 		} else if (test_bit(FailFast, &rdev->flags)) {
2374 			/* Just give up on this device */
2375 			md_error(rdev->mddev, rdev);
2376 			continue;
2377 		}
2378 		/* Ok, we need to write this bio, either to correct an
2379 		 * inconsistency or to correct an unreadable block.
2380 		 * First we need to fixup bv_offset, bv_len and
2381 		 * bi_vecs, as the read request might have corrupted these
2382 		 */
2383 		rp = get_resync_pages(tbio);
2384 		bio_reset(tbio);
2385 
2386 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2387 
2388 		rp->raid_bio = r10_bio;
2389 		tbio->bi_private = rp;
2390 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2391 		tbio->bi_end_io = end_sync_write;
2392 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2393 
2394 		bio_copy_data(tbio, fbio);
2395 
2396 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2397 		atomic_inc(&r10_bio->remaining);
2398 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2399 
2400 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2401 			tbio->bi_opf |= MD_FAILFAST;
2402 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2403 		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2404 		submit_bio_noacct(tbio);
2405 	}
2406 
2407 	/* Now write out to any replacement devices
2408 	 * that are active
2409 	 */
2410 	for (i = 0; i < conf->copies; i++) {
2411 		int d;
2412 
2413 		tbio = r10_bio->devs[i].repl_bio;
2414 		if (!tbio || !tbio->bi_end_io)
2415 			continue;
2416 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2417 		    && r10_bio->devs[i].bio != fbio)
2418 			bio_copy_data(tbio, fbio);
2419 		d = r10_bio->devs[i].devnum;
2420 		atomic_inc(&r10_bio->remaining);
2421 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2422 			     bio_sectors(tbio));
2423 		submit_bio_noacct(tbio);
2424 	}
2425 
2426 done:
2427 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2428 		md_done_sync(mddev, r10_bio->sectors, 1);
2429 		put_buf(r10_bio);
2430 	}
2431 }
2432 
2433 /*
2434  * Now for the recovery code.
2435  * Recovery happens across physical sectors.
2436  * We recover all non-is_sync drives by finding the virtual address of
2437  * each, and then choose a working drive that also has that virt address.
2438  * There is a separate r10_bio for each non-in_sync drive.
2439  * Only the first two slots are in use. The first for reading,
2440  * The second for writing.
2441  *
2442  */
2443 static void fix_recovery_read_error(struct r10bio *r10_bio)
2444 {
2445 	/* We got a read error during recovery.
2446 	 * We repeat the read in smaller page-sized sections.
2447 	 * If a read succeeds, write it to the new device or record
2448 	 * a bad block if we cannot.
2449 	 * If a read fails, record a bad block on both old and
2450 	 * new devices.
2451 	 */
2452 	struct mddev *mddev = r10_bio->mddev;
2453 	struct r10conf *conf = mddev->private;
2454 	struct bio *bio = r10_bio->devs[0].bio;
2455 	sector_t sect = 0;
2456 	int sectors = r10_bio->sectors;
2457 	int idx = 0;
2458 	int dr = r10_bio->devs[0].devnum;
2459 	int dw = r10_bio->devs[1].devnum;
2460 	struct page **pages = get_resync_pages(bio)->pages;
2461 
2462 	while (sectors) {
2463 		int s = sectors;
2464 		struct md_rdev *rdev;
2465 		sector_t addr;
2466 		int ok;
2467 
2468 		if (s > (PAGE_SIZE>>9))
2469 			s = PAGE_SIZE >> 9;
2470 
2471 		rdev = conf->mirrors[dr].rdev;
2472 		addr = r10_bio->devs[0].addr + sect,
2473 		ok = sync_page_io(rdev,
2474 				  addr,
2475 				  s << 9,
2476 				  pages[idx],
2477 				  REQ_OP_READ, 0, false);
2478 		if (ok) {
2479 			rdev = conf->mirrors[dw].rdev;
2480 			addr = r10_bio->devs[1].addr + sect;
2481 			ok = sync_page_io(rdev,
2482 					  addr,
2483 					  s << 9,
2484 					  pages[idx],
2485 					  REQ_OP_WRITE, 0, false);
2486 			if (!ok) {
2487 				set_bit(WriteErrorSeen, &rdev->flags);
2488 				if (!test_and_set_bit(WantReplacement,
2489 						      &rdev->flags))
2490 					set_bit(MD_RECOVERY_NEEDED,
2491 						&rdev->mddev->recovery);
2492 			}
2493 		}
2494 		if (!ok) {
2495 			/* We don't worry if we cannot set a bad block -
2496 			 * it really is bad so there is no loss in not
2497 			 * recording it yet
2498 			 */
2499 			rdev_set_badblocks(rdev, addr, s, 0);
2500 
2501 			if (rdev != conf->mirrors[dw].rdev) {
2502 				/* need bad block on destination too */
2503 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2504 				addr = r10_bio->devs[1].addr + sect;
2505 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2506 				if (!ok) {
2507 					/* just abort the recovery */
2508 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2509 						  mdname(mddev));
2510 
2511 					conf->mirrors[dw].recovery_disabled
2512 						= mddev->recovery_disabled;
2513 					set_bit(MD_RECOVERY_INTR,
2514 						&mddev->recovery);
2515 					break;
2516 				}
2517 			}
2518 		}
2519 
2520 		sectors -= s;
2521 		sect += s;
2522 		idx++;
2523 	}
2524 }
2525 
2526 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2527 {
2528 	struct r10conf *conf = mddev->private;
2529 	int d;
2530 	struct bio *wbio, *wbio2;
2531 
2532 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2533 		fix_recovery_read_error(r10_bio);
2534 		end_sync_request(r10_bio);
2535 		return;
2536 	}
2537 
2538 	/*
2539 	 * share the pages with the first bio
2540 	 * and submit the write request
2541 	 */
2542 	d = r10_bio->devs[1].devnum;
2543 	wbio = r10_bio->devs[1].bio;
2544 	wbio2 = r10_bio->devs[1].repl_bio;
2545 	/* Need to test wbio2->bi_end_io before we call
2546 	 * submit_bio_noacct as if the former is NULL,
2547 	 * the latter is free to free wbio2.
2548 	 */
2549 	if (wbio2 && !wbio2->bi_end_io)
2550 		wbio2 = NULL;
2551 	if (wbio->bi_end_io) {
2552 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2553 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2554 		submit_bio_noacct(wbio);
2555 	}
2556 	if (wbio2) {
2557 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2558 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2559 			     bio_sectors(wbio2));
2560 		submit_bio_noacct(wbio2);
2561 	}
2562 }
2563 
2564 /*
2565  * Used by fix_read_error() to decay the per rdev read_errors.
2566  * We halve the read error count for every hour that has elapsed
2567  * since the last recorded read error.
2568  *
2569  */
2570 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2571 {
2572 	long cur_time_mon;
2573 	unsigned long hours_since_last;
2574 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2575 
2576 	cur_time_mon = ktime_get_seconds();
2577 
2578 	if (rdev->last_read_error == 0) {
2579 		/* first time we've seen a read error */
2580 		rdev->last_read_error = cur_time_mon;
2581 		return;
2582 	}
2583 
2584 	hours_since_last = (long)(cur_time_mon -
2585 			    rdev->last_read_error) / 3600;
2586 
2587 	rdev->last_read_error = cur_time_mon;
2588 
2589 	/*
2590 	 * if hours_since_last is > the number of bits in read_errors
2591 	 * just set read errors to 0. We do this to avoid
2592 	 * overflowing the shift of read_errors by hours_since_last.
2593 	 */
2594 	if (hours_since_last >= 8 * sizeof(read_errors))
2595 		atomic_set(&rdev->read_errors, 0);
2596 	else
2597 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2598 }
2599 
2600 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2601 			    int sectors, struct page *page, int rw)
2602 {
2603 	sector_t first_bad;
2604 	int bad_sectors;
2605 
2606 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2607 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2608 		return -1;
2609 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2610 		/* success */
2611 		return 1;
2612 	if (rw == WRITE) {
2613 		set_bit(WriteErrorSeen, &rdev->flags);
2614 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2615 			set_bit(MD_RECOVERY_NEEDED,
2616 				&rdev->mddev->recovery);
2617 	}
2618 	/* need to record an error - either for the block or the device */
2619 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2620 		md_error(rdev->mddev, rdev);
2621 	return 0;
2622 }
2623 
2624 /*
2625  * This is a kernel thread which:
2626  *
2627  *	1.	Retries failed read operations on working mirrors.
2628  *	2.	Updates the raid superblock when problems encounter.
2629  *	3.	Performs writes following reads for array synchronising.
2630  */
2631 
2632 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2633 {
2634 	int sect = 0; /* Offset from r10_bio->sector */
2635 	int sectors = r10_bio->sectors;
2636 	struct md_rdev *rdev;
2637 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2638 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2639 
2640 	/* still own a reference to this rdev, so it cannot
2641 	 * have been cleared recently.
2642 	 */
2643 	rdev = conf->mirrors[d].rdev;
2644 
2645 	if (test_bit(Faulty, &rdev->flags))
2646 		/* drive has already been failed, just ignore any
2647 		   more fix_read_error() attempts */
2648 		return;
2649 
2650 	check_decay_read_errors(mddev, rdev);
2651 	atomic_inc(&rdev->read_errors);
2652 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2653 		char b[BDEVNAME_SIZE];
2654 		bdevname(rdev->bdev, b);
2655 
2656 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2657 			  mdname(mddev), b,
2658 			  atomic_read(&rdev->read_errors), max_read_errors);
2659 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2660 			  mdname(mddev), b);
2661 		md_error(mddev, rdev);
2662 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2663 		return;
2664 	}
2665 
2666 	while(sectors) {
2667 		int s = sectors;
2668 		int sl = r10_bio->read_slot;
2669 		int success = 0;
2670 		int start;
2671 
2672 		if (s > (PAGE_SIZE>>9))
2673 			s = PAGE_SIZE >> 9;
2674 
2675 		rcu_read_lock();
2676 		do {
2677 			sector_t first_bad;
2678 			int bad_sectors;
2679 
2680 			d = r10_bio->devs[sl].devnum;
2681 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2682 			if (rdev &&
2683 			    test_bit(In_sync, &rdev->flags) &&
2684 			    !test_bit(Faulty, &rdev->flags) &&
2685 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2686 					&first_bad, &bad_sectors) == 0) {
2687 				atomic_inc(&rdev->nr_pending);
2688 				rcu_read_unlock();
2689 				success = sync_page_io(rdev,
2690 						       r10_bio->devs[sl].addr +
2691 						       sect,
2692 						       s<<9,
2693 						       conf->tmppage,
2694 						       REQ_OP_READ, 0, false);
2695 				rdev_dec_pending(rdev, mddev);
2696 				rcu_read_lock();
2697 				if (success)
2698 					break;
2699 			}
2700 			sl++;
2701 			if (sl == conf->copies)
2702 				sl = 0;
2703 		} while (!success && sl != r10_bio->read_slot);
2704 		rcu_read_unlock();
2705 
2706 		if (!success) {
2707 			/* Cannot read from anywhere, just mark the block
2708 			 * as bad on the first device to discourage future
2709 			 * reads.
2710 			 */
2711 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2712 			rdev = conf->mirrors[dn].rdev;
2713 
2714 			if (!rdev_set_badblocks(
2715 				    rdev,
2716 				    r10_bio->devs[r10_bio->read_slot].addr
2717 				    + sect,
2718 				    s, 0)) {
2719 				md_error(mddev, rdev);
2720 				r10_bio->devs[r10_bio->read_slot].bio
2721 					= IO_BLOCKED;
2722 			}
2723 			break;
2724 		}
2725 
2726 		start = sl;
2727 		/* write it back and re-read */
2728 		rcu_read_lock();
2729 		while (sl != r10_bio->read_slot) {
2730 			char b[BDEVNAME_SIZE];
2731 
2732 			if (sl==0)
2733 				sl = conf->copies;
2734 			sl--;
2735 			d = r10_bio->devs[sl].devnum;
2736 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2737 			if (!rdev ||
2738 			    test_bit(Faulty, &rdev->flags) ||
2739 			    !test_bit(In_sync, &rdev->flags))
2740 				continue;
2741 
2742 			atomic_inc(&rdev->nr_pending);
2743 			rcu_read_unlock();
2744 			if (r10_sync_page_io(rdev,
2745 					     r10_bio->devs[sl].addr +
2746 					     sect,
2747 					     s, conf->tmppage, WRITE)
2748 			    == 0) {
2749 				/* Well, this device is dead */
2750 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2751 					  mdname(mddev), s,
2752 					  (unsigned long long)(
2753 						  sect +
2754 						  choose_data_offset(r10_bio,
2755 								     rdev)),
2756 					  bdevname(rdev->bdev, b));
2757 				pr_notice("md/raid10:%s: %s: failing drive\n",
2758 					  mdname(mddev),
2759 					  bdevname(rdev->bdev, b));
2760 			}
2761 			rdev_dec_pending(rdev, mddev);
2762 			rcu_read_lock();
2763 		}
2764 		sl = start;
2765 		while (sl != r10_bio->read_slot) {
2766 			char b[BDEVNAME_SIZE];
2767 
2768 			if (sl==0)
2769 				sl = conf->copies;
2770 			sl--;
2771 			d = r10_bio->devs[sl].devnum;
2772 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2773 			if (!rdev ||
2774 			    test_bit(Faulty, &rdev->flags) ||
2775 			    !test_bit(In_sync, &rdev->flags))
2776 				continue;
2777 
2778 			atomic_inc(&rdev->nr_pending);
2779 			rcu_read_unlock();
2780 			switch (r10_sync_page_io(rdev,
2781 					     r10_bio->devs[sl].addr +
2782 					     sect,
2783 					     s, conf->tmppage,
2784 						 READ)) {
2785 			case 0:
2786 				/* Well, this device is dead */
2787 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2788 				       mdname(mddev), s,
2789 				       (unsigned long long)(
2790 					       sect +
2791 					       choose_data_offset(r10_bio, rdev)),
2792 				       bdevname(rdev->bdev, b));
2793 				pr_notice("md/raid10:%s: %s: failing drive\n",
2794 				       mdname(mddev),
2795 				       bdevname(rdev->bdev, b));
2796 				break;
2797 			case 1:
2798 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2799 				       mdname(mddev), s,
2800 				       (unsigned long long)(
2801 					       sect +
2802 					       choose_data_offset(r10_bio, rdev)),
2803 				       bdevname(rdev->bdev, b));
2804 				atomic_add(s, &rdev->corrected_errors);
2805 			}
2806 
2807 			rdev_dec_pending(rdev, mddev);
2808 			rcu_read_lock();
2809 		}
2810 		rcu_read_unlock();
2811 
2812 		sectors -= s;
2813 		sect += s;
2814 	}
2815 }
2816 
2817 static int narrow_write_error(struct r10bio *r10_bio, int i)
2818 {
2819 	struct bio *bio = r10_bio->master_bio;
2820 	struct mddev *mddev = r10_bio->mddev;
2821 	struct r10conf *conf = mddev->private;
2822 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2823 	/* bio has the data to be written to slot 'i' where
2824 	 * we just recently had a write error.
2825 	 * We repeatedly clone the bio and trim down to one block,
2826 	 * then try the write.  Where the write fails we record
2827 	 * a bad block.
2828 	 * It is conceivable that the bio doesn't exactly align with
2829 	 * blocks.  We must handle this.
2830 	 *
2831 	 * We currently own a reference to the rdev.
2832 	 */
2833 
2834 	int block_sectors;
2835 	sector_t sector;
2836 	int sectors;
2837 	int sect_to_write = r10_bio->sectors;
2838 	int ok = 1;
2839 
2840 	if (rdev->badblocks.shift < 0)
2841 		return 0;
2842 
2843 	block_sectors = roundup(1 << rdev->badblocks.shift,
2844 				bdev_logical_block_size(rdev->bdev) >> 9);
2845 	sector = r10_bio->sector;
2846 	sectors = ((r10_bio->sector + block_sectors)
2847 		   & ~(sector_t)(block_sectors - 1))
2848 		- sector;
2849 
2850 	while (sect_to_write) {
2851 		struct bio *wbio;
2852 		sector_t wsector;
2853 		if (sectors > sect_to_write)
2854 			sectors = sect_to_write;
2855 		/* Write at 'sector' for 'sectors' */
2856 		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2857 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2858 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2859 		wbio->bi_iter.bi_sector = wsector +
2860 				   choose_data_offset(r10_bio, rdev);
2861 		bio_set_dev(wbio, rdev->bdev);
2862 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2863 
2864 		if (submit_bio_wait(wbio) < 0)
2865 			/* Failure! */
2866 			ok = rdev_set_badblocks(rdev, wsector,
2867 						sectors, 0)
2868 				&& ok;
2869 
2870 		bio_put(wbio);
2871 		sect_to_write -= sectors;
2872 		sector += sectors;
2873 		sectors = block_sectors;
2874 	}
2875 	return ok;
2876 }
2877 
2878 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2879 {
2880 	int slot = r10_bio->read_slot;
2881 	struct bio *bio;
2882 	struct r10conf *conf = mddev->private;
2883 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2884 
2885 	/* we got a read error. Maybe the drive is bad.  Maybe just
2886 	 * the block and we can fix it.
2887 	 * We freeze all other IO, and try reading the block from
2888 	 * other devices.  When we find one, we re-write
2889 	 * and check it that fixes the read error.
2890 	 * This is all done synchronously while the array is
2891 	 * frozen.
2892 	 */
2893 	bio = r10_bio->devs[slot].bio;
2894 	bio_put(bio);
2895 	r10_bio->devs[slot].bio = NULL;
2896 
2897 	if (mddev->ro)
2898 		r10_bio->devs[slot].bio = IO_BLOCKED;
2899 	else if (!test_bit(FailFast, &rdev->flags)) {
2900 		freeze_array(conf, 1);
2901 		fix_read_error(conf, mddev, r10_bio);
2902 		unfreeze_array(conf);
2903 	} else
2904 		md_error(mddev, rdev);
2905 
2906 	rdev_dec_pending(rdev, mddev);
2907 	allow_barrier(conf);
2908 	r10_bio->state = 0;
2909 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2910 }
2911 
2912 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2913 {
2914 	/* Some sort of write request has finished and it
2915 	 * succeeded in writing where we thought there was a
2916 	 * bad block.  So forget the bad block.
2917 	 * Or possibly if failed and we need to record
2918 	 * a bad block.
2919 	 */
2920 	int m;
2921 	struct md_rdev *rdev;
2922 
2923 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2924 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2925 		for (m = 0; m < conf->copies; m++) {
2926 			int dev = r10_bio->devs[m].devnum;
2927 			rdev = conf->mirrors[dev].rdev;
2928 			if (r10_bio->devs[m].bio == NULL ||
2929 				r10_bio->devs[m].bio->bi_end_io == NULL)
2930 				continue;
2931 			if (!r10_bio->devs[m].bio->bi_status) {
2932 				rdev_clear_badblocks(
2933 					rdev,
2934 					r10_bio->devs[m].addr,
2935 					r10_bio->sectors, 0);
2936 			} else {
2937 				if (!rdev_set_badblocks(
2938 					    rdev,
2939 					    r10_bio->devs[m].addr,
2940 					    r10_bio->sectors, 0))
2941 					md_error(conf->mddev, rdev);
2942 			}
2943 			rdev = conf->mirrors[dev].replacement;
2944 			if (r10_bio->devs[m].repl_bio == NULL ||
2945 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2946 				continue;
2947 
2948 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2949 				rdev_clear_badblocks(
2950 					rdev,
2951 					r10_bio->devs[m].addr,
2952 					r10_bio->sectors, 0);
2953 			} else {
2954 				if (!rdev_set_badblocks(
2955 					    rdev,
2956 					    r10_bio->devs[m].addr,
2957 					    r10_bio->sectors, 0))
2958 					md_error(conf->mddev, rdev);
2959 			}
2960 		}
2961 		put_buf(r10_bio);
2962 	} else {
2963 		bool fail = false;
2964 		for (m = 0; m < conf->copies; m++) {
2965 			int dev = r10_bio->devs[m].devnum;
2966 			struct bio *bio = r10_bio->devs[m].bio;
2967 			rdev = conf->mirrors[dev].rdev;
2968 			if (bio == IO_MADE_GOOD) {
2969 				rdev_clear_badblocks(
2970 					rdev,
2971 					r10_bio->devs[m].addr,
2972 					r10_bio->sectors, 0);
2973 				rdev_dec_pending(rdev, conf->mddev);
2974 			} else if (bio != NULL && bio->bi_status) {
2975 				fail = true;
2976 				if (!narrow_write_error(r10_bio, m)) {
2977 					md_error(conf->mddev, rdev);
2978 					set_bit(R10BIO_Degraded,
2979 						&r10_bio->state);
2980 				}
2981 				rdev_dec_pending(rdev, conf->mddev);
2982 			}
2983 			bio = r10_bio->devs[m].repl_bio;
2984 			rdev = conf->mirrors[dev].replacement;
2985 			if (rdev && bio == IO_MADE_GOOD) {
2986 				rdev_clear_badblocks(
2987 					rdev,
2988 					r10_bio->devs[m].addr,
2989 					r10_bio->sectors, 0);
2990 				rdev_dec_pending(rdev, conf->mddev);
2991 			}
2992 		}
2993 		if (fail) {
2994 			spin_lock_irq(&conf->device_lock);
2995 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2996 			conf->nr_queued++;
2997 			spin_unlock_irq(&conf->device_lock);
2998 			/*
2999 			 * In case freeze_array() is waiting for condition
3000 			 * nr_pending == nr_queued + extra to be true.
3001 			 */
3002 			wake_up(&conf->wait_barrier);
3003 			md_wakeup_thread(conf->mddev->thread);
3004 		} else {
3005 			if (test_bit(R10BIO_WriteError,
3006 				     &r10_bio->state))
3007 				close_write(r10_bio);
3008 			raid_end_bio_io(r10_bio);
3009 		}
3010 	}
3011 }
3012 
3013 static void raid10d(struct md_thread *thread)
3014 {
3015 	struct mddev *mddev = thread->mddev;
3016 	struct r10bio *r10_bio;
3017 	unsigned long flags;
3018 	struct r10conf *conf = mddev->private;
3019 	struct list_head *head = &conf->retry_list;
3020 	struct blk_plug plug;
3021 
3022 	md_check_recovery(mddev);
3023 
3024 	if (!list_empty_careful(&conf->bio_end_io_list) &&
3025 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3026 		LIST_HEAD(tmp);
3027 		spin_lock_irqsave(&conf->device_lock, flags);
3028 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3029 			while (!list_empty(&conf->bio_end_io_list)) {
3030 				list_move(conf->bio_end_io_list.prev, &tmp);
3031 				conf->nr_queued--;
3032 			}
3033 		}
3034 		spin_unlock_irqrestore(&conf->device_lock, flags);
3035 		while (!list_empty(&tmp)) {
3036 			r10_bio = list_first_entry(&tmp, struct r10bio,
3037 						   retry_list);
3038 			list_del(&r10_bio->retry_list);
3039 			if (mddev->degraded)
3040 				set_bit(R10BIO_Degraded, &r10_bio->state);
3041 
3042 			if (test_bit(R10BIO_WriteError,
3043 				     &r10_bio->state))
3044 				close_write(r10_bio);
3045 			raid_end_bio_io(r10_bio);
3046 		}
3047 	}
3048 
3049 	blk_start_plug(&plug);
3050 	for (;;) {
3051 
3052 		flush_pending_writes(conf);
3053 
3054 		spin_lock_irqsave(&conf->device_lock, flags);
3055 		if (list_empty(head)) {
3056 			spin_unlock_irqrestore(&conf->device_lock, flags);
3057 			break;
3058 		}
3059 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3060 		list_del(head->prev);
3061 		conf->nr_queued--;
3062 		spin_unlock_irqrestore(&conf->device_lock, flags);
3063 
3064 		mddev = r10_bio->mddev;
3065 		conf = mddev->private;
3066 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3067 		    test_bit(R10BIO_WriteError, &r10_bio->state))
3068 			handle_write_completed(conf, r10_bio);
3069 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3070 			reshape_request_write(mddev, r10_bio);
3071 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3072 			sync_request_write(mddev, r10_bio);
3073 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3074 			recovery_request_write(mddev, r10_bio);
3075 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3076 			handle_read_error(mddev, r10_bio);
3077 		else
3078 			WARN_ON_ONCE(1);
3079 
3080 		cond_resched();
3081 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3082 			md_check_recovery(mddev);
3083 	}
3084 	blk_finish_plug(&plug);
3085 }
3086 
3087 static int init_resync(struct r10conf *conf)
3088 {
3089 	int ret, buffs, i;
3090 
3091 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3092 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3093 	conf->have_replacement = 0;
3094 	for (i = 0; i < conf->geo.raid_disks; i++)
3095 		if (conf->mirrors[i].replacement)
3096 			conf->have_replacement = 1;
3097 	ret = mempool_init(&conf->r10buf_pool, buffs,
3098 			   r10buf_pool_alloc, r10buf_pool_free, conf);
3099 	if (ret)
3100 		return ret;
3101 	conf->next_resync = 0;
3102 	return 0;
3103 }
3104 
3105 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3106 {
3107 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3108 	struct rsync_pages *rp;
3109 	struct bio *bio;
3110 	int nalloc;
3111 	int i;
3112 
3113 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3114 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3115 		nalloc = conf->copies; /* resync */
3116 	else
3117 		nalloc = 2; /* recovery */
3118 
3119 	for (i = 0; i < nalloc; i++) {
3120 		bio = r10bio->devs[i].bio;
3121 		rp = bio->bi_private;
3122 		bio_reset(bio);
3123 		bio->bi_private = rp;
3124 		bio = r10bio->devs[i].repl_bio;
3125 		if (bio) {
3126 			rp = bio->bi_private;
3127 			bio_reset(bio);
3128 			bio->bi_private = rp;
3129 		}
3130 	}
3131 	return r10bio;
3132 }
3133 
3134 /*
3135  * Set cluster_sync_high since we need other nodes to add the
3136  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3137  */
3138 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3139 {
3140 	sector_t window_size;
3141 	int extra_chunk, chunks;
3142 
3143 	/*
3144 	 * First, here we define "stripe" as a unit which across
3145 	 * all member devices one time, so we get chunks by use
3146 	 * raid_disks / near_copies. Otherwise, if near_copies is
3147 	 * close to raid_disks, then resync window could increases
3148 	 * linearly with the increase of raid_disks, which means
3149 	 * we will suspend a really large IO window while it is not
3150 	 * necessary. If raid_disks is not divisible by near_copies,
3151 	 * an extra chunk is needed to ensure the whole "stripe" is
3152 	 * covered.
3153 	 */
3154 
3155 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3156 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3157 		extra_chunk = 0;
3158 	else
3159 		extra_chunk = 1;
3160 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3161 
3162 	/*
3163 	 * At least use a 32M window to align with raid1's resync window
3164 	 */
3165 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3166 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3167 
3168 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3169 }
3170 
3171 /*
3172  * perform a "sync" on one "block"
3173  *
3174  * We need to make sure that no normal I/O request - particularly write
3175  * requests - conflict with active sync requests.
3176  *
3177  * This is achieved by tracking pending requests and a 'barrier' concept
3178  * that can be installed to exclude normal IO requests.
3179  *
3180  * Resync and recovery are handled very differently.
3181  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3182  *
3183  * For resync, we iterate over virtual addresses, read all copies,
3184  * and update if there are differences.  If only one copy is live,
3185  * skip it.
3186  * For recovery, we iterate over physical addresses, read a good
3187  * value for each non-in_sync drive, and over-write.
3188  *
3189  * So, for recovery we may have several outstanding complex requests for a
3190  * given address, one for each out-of-sync device.  We model this by allocating
3191  * a number of r10_bio structures, one for each out-of-sync device.
3192  * As we setup these structures, we collect all bio's together into a list
3193  * which we then process collectively to add pages, and then process again
3194  * to pass to submit_bio_noacct.
3195  *
3196  * The r10_bio structures are linked using a borrowed master_bio pointer.
3197  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3198  * has its remaining count decremented to 0, the whole complex operation
3199  * is complete.
3200  *
3201  */
3202 
3203 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3204 			     int *skipped)
3205 {
3206 	struct r10conf *conf = mddev->private;
3207 	struct r10bio *r10_bio;
3208 	struct bio *biolist = NULL, *bio;
3209 	sector_t max_sector, nr_sectors;
3210 	int i;
3211 	int max_sync;
3212 	sector_t sync_blocks;
3213 	sector_t sectors_skipped = 0;
3214 	int chunks_skipped = 0;
3215 	sector_t chunk_mask = conf->geo.chunk_mask;
3216 	int page_idx = 0;
3217 
3218 	if (!mempool_initialized(&conf->r10buf_pool))
3219 		if (init_resync(conf))
3220 			return 0;
3221 
3222 	/*
3223 	 * Allow skipping a full rebuild for incremental assembly
3224 	 * of a clean array, like RAID1 does.
3225 	 */
3226 	if (mddev->bitmap == NULL &&
3227 	    mddev->recovery_cp == MaxSector &&
3228 	    mddev->reshape_position == MaxSector &&
3229 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3230 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3231 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3232 	    conf->fullsync == 0) {
3233 		*skipped = 1;
3234 		return mddev->dev_sectors - sector_nr;
3235 	}
3236 
3237  skipped:
3238 	max_sector = mddev->dev_sectors;
3239 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3240 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3241 		max_sector = mddev->resync_max_sectors;
3242 	if (sector_nr >= max_sector) {
3243 		conf->cluster_sync_low = 0;
3244 		conf->cluster_sync_high = 0;
3245 
3246 		/* If we aborted, we need to abort the
3247 		 * sync on the 'current' bitmap chucks (there can
3248 		 * be several when recovering multiple devices).
3249 		 * as we may have started syncing it but not finished.
3250 		 * We can find the current address in
3251 		 * mddev->curr_resync, but for recovery,
3252 		 * we need to convert that to several
3253 		 * virtual addresses.
3254 		 */
3255 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3256 			end_reshape(conf);
3257 			close_sync(conf);
3258 			return 0;
3259 		}
3260 
3261 		if (mddev->curr_resync < max_sector) { /* aborted */
3262 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3263 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3264 						   &sync_blocks, 1);
3265 			else for (i = 0; i < conf->geo.raid_disks; i++) {
3266 				sector_t sect =
3267 					raid10_find_virt(conf, mddev->curr_resync, i);
3268 				md_bitmap_end_sync(mddev->bitmap, sect,
3269 						   &sync_blocks, 1);
3270 			}
3271 		} else {
3272 			/* completed sync */
3273 			if ((!mddev->bitmap || conf->fullsync)
3274 			    && conf->have_replacement
3275 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3276 				/* Completed a full sync so the replacements
3277 				 * are now fully recovered.
3278 				 */
3279 				rcu_read_lock();
3280 				for (i = 0; i < conf->geo.raid_disks; i++) {
3281 					struct md_rdev *rdev =
3282 						rcu_dereference(conf->mirrors[i].replacement);
3283 					if (rdev)
3284 						rdev->recovery_offset = MaxSector;
3285 				}
3286 				rcu_read_unlock();
3287 			}
3288 			conf->fullsync = 0;
3289 		}
3290 		md_bitmap_close_sync(mddev->bitmap);
3291 		close_sync(conf);
3292 		*skipped = 1;
3293 		return sectors_skipped;
3294 	}
3295 
3296 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3297 		return reshape_request(mddev, sector_nr, skipped);
3298 
3299 	if (chunks_skipped >= conf->geo.raid_disks) {
3300 		/* if there has been nothing to do on any drive,
3301 		 * then there is nothing to do at all..
3302 		 */
3303 		*skipped = 1;
3304 		return (max_sector - sector_nr) + sectors_skipped;
3305 	}
3306 
3307 	if (max_sector > mddev->resync_max)
3308 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3309 
3310 	/* make sure whole request will fit in a chunk - if chunks
3311 	 * are meaningful
3312 	 */
3313 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3314 	    max_sector > (sector_nr | chunk_mask))
3315 		max_sector = (sector_nr | chunk_mask) + 1;
3316 
3317 	/*
3318 	 * If there is non-resync activity waiting for a turn, then let it
3319 	 * though before starting on this new sync request.
3320 	 */
3321 	if (conf->nr_waiting)
3322 		schedule_timeout_uninterruptible(1);
3323 
3324 	/* Again, very different code for resync and recovery.
3325 	 * Both must result in an r10bio with a list of bios that
3326 	 * have bi_end_io, bi_sector, bi_bdev set,
3327 	 * and bi_private set to the r10bio.
3328 	 * For recovery, we may actually create several r10bios
3329 	 * with 2 bios in each, that correspond to the bios in the main one.
3330 	 * In this case, the subordinate r10bios link back through a
3331 	 * borrowed master_bio pointer, and the counter in the master
3332 	 * includes a ref from each subordinate.
3333 	 */
3334 	/* First, we decide what to do and set ->bi_end_io
3335 	 * To end_sync_read if we want to read, and
3336 	 * end_sync_write if we will want to write.
3337 	 */
3338 
3339 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3340 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3341 		/* recovery... the complicated one */
3342 		int j;
3343 		r10_bio = NULL;
3344 
3345 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3346 			int still_degraded;
3347 			struct r10bio *rb2;
3348 			sector_t sect;
3349 			int must_sync;
3350 			int any_working;
3351 			int need_recover = 0;
3352 			int need_replace = 0;
3353 			struct raid10_info *mirror = &conf->mirrors[i];
3354 			struct md_rdev *mrdev, *mreplace;
3355 
3356 			rcu_read_lock();
3357 			mrdev = rcu_dereference(mirror->rdev);
3358 			mreplace = rcu_dereference(mirror->replacement);
3359 
3360 			if (mrdev != NULL &&
3361 			    !test_bit(Faulty, &mrdev->flags) &&
3362 			    !test_bit(In_sync, &mrdev->flags))
3363 				need_recover = 1;
3364 			if (mreplace != NULL &&
3365 			    !test_bit(Faulty, &mreplace->flags))
3366 				need_replace = 1;
3367 
3368 			if (!need_recover && !need_replace) {
3369 				rcu_read_unlock();
3370 				continue;
3371 			}
3372 
3373 			still_degraded = 0;
3374 			/* want to reconstruct this device */
3375 			rb2 = r10_bio;
3376 			sect = raid10_find_virt(conf, sector_nr, i);
3377 			if (sect >= mddev->resync_max_sectors) {
3378 				/* last stripe is not complete - don't
3379 				 * try to recover this sector.
3380 				 */
3381 				rcu_read_unlock();
3382 				continue;
3383 			}
3384 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3385 				mreplace = NULL;
3386 			/* Unless we are doing a full sync, or a replacement
3387 			 * we only need to recover the block if it is set in
3388 			 * the bitmap
3389 			 */
3390 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3391 							 &sync_blocks, 1);
3392 			if (sync_blocks < max_sync)
3393 				max_sync = sync_blocks;
3394 			if (!must_sync &&
3395 			    mreplace == NULL &&
3396 			    !conf->fullsync) {
3397 				/* yep, skip the sync_blocks here, but don't assume
3398 				 * that there will never be anything to do here
3399 				 */
3400 				chunks_skipped = -1;
3401 				rcu_read_unlock();
3402 				continue;
3403 			}
3404 			atomic_inc(&mrdev->nr_pending);
3405 			if (mreplace)
3406 				atomic_inc(&mreplace->nr_pending);
3407 			rcu_read_unlock();
3408 
3409 			r10_bio = raid10_alloc_init_r10buf(conf);
3410 			r10_bio->state = 0;
3411 			raise_barrier(conf, rb2 != NULL);
3412 			atomic_set(&r10_bio->remaining, 0);
3413 
3414 			r10_bio->master_bio = (struct bio*)rb2;
3415 			if (rb2)
3416 				atomic_inc(&rb2->remaining);
3417 			r10_bio->mddev = mddev;
3418 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3419 			r10_bio->sector = sect;
3420 
3421 			raid10_find_phys(conf, r10_bio);
3422 
3423 			/* Need to check if the array will still be
3424 			 * degraded
3425 			 */
3426 			rcu_read_lock();
3427 			for (j = 0; j < conf->geo.raid_disks; j++) {
3428 				struct md_rdev *rdev = rcu_dereference(
3429 					conf->mirrors[j].rdev);
3430 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3431 					still_degraded = 1;
3432 					break;
3433 				}
3434 			}
3435 
3436 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3437 							 &sync_blocks, still_degraded);
3438 
3439 			any_working = 0;
3440 			for (j=0; j<conf->copies;j++) {
3441 				int k;
3442 				int d = r10_bio->devs[j].devnum;
3443 				sector_t from_addr, to_addr;
3444 				struct md_rdev *rdev =
3445 					rcu_dereference(conf->mirrors[d].rdev);
3446 				sector_t sector, first_bad;
3447 				int bad_sectors;
3448 				if (!rdev ||
3449 				    !test_bit(In_sync, &rdev->flags))
3450 					continue;
3451 				/* This is where we read from */
3452 				any_working = 1;
3453 				sector = r10_bio->devs[j].addr;
3454 
3455 				if (is_badblock(rdev, sector, max_sync,
3456 						&first_bad, &bad_sectors)) {
3457 					if (first_bad > sector)
3458 						max_sync = first_bad - sector;
3459 					else {
3460 						bad_sectors -= (sector
3461 								- first_bad);
3462 						if (max_sync > bad_sectors)
3463 							max_sync = bad_sectors;
3464 						continue;
3465 					}
3466 				}
3467 				bio = r10_bio->devs[0].bio;
3468 				bio->bi_next = biolist;
3469 				biolist = bio;
3470 				bio->bi_end_io = end_sync_read;
3471 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3472 				if (test_bit(FailFast, &rdev->flags))
3473 					bio->bi_opf |= MD_FAILFAST;
3474 				from_addr = r10_bio->devs[j].addr;
3475 				bio->bi_iter.bi_sector = from_addr +
3476 					rdev->data_offset;
3477 				bio_set_dev(bio, rdev->bdev);
3478 				atomic_inc(&rdev->nr_pending);
3479 				/* and we write to 'i' (if not in_sync) */
3480 
3481 				for (k=0; k<conf->copies; k++)
3482 					if (r10_bio->devs[k].devnum == i)
3483 						break;
3484 				BUG_ON(k == conf->copies);
3485 				to_addr = r10_bio->devs[k].addr;
3486 				r10_bio->devs[0].devnum = d;
3487 				r10_bio->devs[0].addr = from_addr;
3488 				r10_bio->devs[1].devnum = i;
3489 				r10_bio->devs[1].addr = to_addr;
3490 
3491 				if (need_recover) {
3492 					bio = r10_bio->devs[1].bio;
3493 					bio->bi_next = biolist;
3494 					biolist = bio;
3495 					bio->bi_end_io = end_sync_write;
3496 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3497 					bio->bi_iter.bi_sector = to_addr
3498 						+ mrdev->data_offset;
3499 					bio_set_dev(bio, mrdev->bdev);
3500 					atomic_inc(&r10_bio->remaining);
3501 				} else
3502 					r10_bio->devs[1].bio->bi_end_io = NULL;
3503 
3504 				/* and maybe write to replacement */
3505 				bio = r10_bio->devs[1].repl_bio;
3506 				if (bio)
3507 					bio->bi_end_io = NULL;
3508 				/* Note: if need_replace, then bio
3509 				 * cannot be NULL as r10buf_pool_alloc will
3510 				 * have allocated it.
3511 				 */
3512 				if (!need_replace)
3513 					break;
3514 				bio->bi_next = biolist;
3515 				biolist = bio;
3516 				bio->bi_end_io = end_sync_write;
3517 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3518 				bio->bi_iter.bi_sector = to_addr +
3519 					mreplace->data_offset;
3520 				bio_set_dev(bio, mreplace->bdev);
3521 				atomic_inc(&r10_bio->remaining);
3522 				break;
3523 			}
3524 			rcu_read_unlock();
3525 			if (j == conf->copies) {
3526 				/* Cannot recover, so abort the recovery or
3527 				 * record a bad block */
3528 				if (any_working) {
3529 					/* problem is that there are bad blocks
3530 					 * on other device(s)
3531 					 */
3532 					int k;
3533 					for (k = 0; k < conf->copies; k++)
3534 						if (r10_bio->devs[k].devnum == i)
3535 							break;
3536 					if (!test_bit(In_sync,
3537 						      &mrdev->flags)
3538 					    && !rdev_set_badblocks(
3539 						    mrdev,
3540 						    r10_bio->devs[k].addr,
3541 						    max_sync, 0))
3542 						any_working = 0;
3543 					if (mreplace &&
3544 					    !rdev_set_badblocks(
3545 						    mreplace,
3546 						    r10_bio->devs[k].addr,
3547 						    max_sync, 0))
3548 						any_working = 0;
3549 				}
3550 				if (!any_working)  {
3551 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3552 							      &mddev->recovery))
3553 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3554 						       mdname(mddev));
3555 					mirror->recovery_disabled
3556 						= mddev->recovery_disabled;
3557 				}
3558 				put_buf(r10_bio);
3559 				if (rb2)
3560 					atomic_dec(&rb2->remaining);
3561 				r10_bio = rb2;
3562 				rdev_dec_pending(mrdev, mddev);
3563 				if (mreplace)
3564 					rdev_dec_pending(mreplace, mddev);
3565 				break;
3566 			}
3567 			rdev_dec_pending(mrdev, mddev);
3568 			if (mreplace)
3569 				rdev_dec_pending(mreplace, mddev);
3570 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3571 				/* Only want this if there is elsewhere to
3572 				 * read from. 'j' is currently the first
3573 				 * readable copy.
3574 				 */
3575 				int targets = 1;
3576 				for (; j < conf->copies; j++) {
3577 					int d = r10_bio->devs[j].devnum;
3578 					if (conf->mirrors[d].rdev &&
3579 					    test_bit(In_sync,
3580 						      &conf->mirrors[d].rdev->flags))
3581 						targets++;
3582 				}
3583 				if (targets == 1)
3584 					r10_bio->devs[0].bio->bi_opf
3585 						&= ~MD_FAILFAST;
3586 			}
3587 		}
3588 		if (biolist == NULL) {
3589 			while (r10_bio) {
3590 				struct r10bio *rb2 = r10_bio;
3591 				r10_bio = (struct r10bio*) rb2->master_bio;
3592 				rb2->master_bio = NULL;
3593 				put_buf(rb2);
3594 			}
3595 			goto giveup;
3596 		}
3597 	} else {
3598 		/* resync. Schedule a read for every block at this virt offset */
3599 		int count = 0;
3600 
3601 		/*
3602 		 * Since curr_resync_completed could probably not update in
3603 		 * time, and we will set cluster_sync_low based on it.
3604 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3605 		 * safety reason, which ensures curr_resync_completed is
3606 		 * updated in bitmap_cond_end_sync.
3607 		 */
3608 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3609 					mddev_is_clustered(mddev) &&
3610 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3611 
3612 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3613 					  &sync_blocks, mddev->degraded) &&
3614 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3615 						 &mddev->recovery)) {
3616 			/* We can skip this block */
3617 			*skipped = 1;
3618 			return sync_blocks + sectors_skipped;
3619 		}
3620 		if (sync_blocks < max_sync)
3621 			max_sync = sync_blocks;
3622 		r10_bio = raid10_alloc_init_r10buf(conf);
3623 		r10_bio->state = 0;
3624 
3625 		r10_bio->mddev = mddev;
3626 		atomic_set(&r10_bio->remaining, 0);
3627 		raise_barrier(conf, 0);
3628 		conf->next_resync = sector_nr;
3629 
3630 		r10_bio->master_bio = NULL;
3631 		r10_bio->sector = sector_nr;
3632 		set_bit(R10BIO_IsSync, &r10_bio->state);
3633 		raid10_find_phys(conf, r10_bio);
3634 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3635 
3636 		for (i = 0; i < conf->copies; i++) {
3637 			int d = r10_bio->devs[i].devnum;
3638 			sector_t first_bad, sector;
3639 			int bad_sectors;
3640 			struct md_rdev *rdev;
3641 
3642 			if (r10_bio->devs[i].repl_bio)
3643 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3644 
3645 			bio = r10_bio->devs[i].bio;
3646 			bio->bi_status = BLK_STS_IOERR;
3647 			rcu_read_lock();
3648 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3649 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3650 				rcu_read_unlock();
3651 				continue;
3652 			}
3653 			sector = r10_bio->devs[i].addr;
3654 			if (is_badblock(rdev, sector, max_sync,
3655 					&first_bad, &bad_sectors)) {
3656 				if (first_bad > sector)
3657 					max_sync = first_bad - sector;
3658 				else {
3659 					bad_sectors -= (sector - first_bad);
3660 					if (max_sync > bad_sectors)
3661 						max_sync = bad_sectors;
3662 					rcu_read_unlock();
3663 					continue;
3664 				}
3665 			}
3666 			atomic_inc(&rdev->nr_pending);
3667 			atomic_inc(&r10_bio->remaining);
3668 			bio->bi_next = biolist;
3669 			biolist = bio;
3670 			bio->bi_end_io = end_sync_read;
3671 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3672 			if (test_bit(FailFast, &rdev->flags))
3673 				bio->bi_opf |= MD_FAILFAST;
3674 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3675 			bio_set_dev(bio, rdev->bdev);
3676 			count++;
3677 
3678 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3679 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3680 				rcu_read_unlock();
3681 				continue;
3682 			}
3683 			atomic_inc(&rdev->nr_pending);
3684 
3685 			/* Need to set up for writing to the replacement */
3686 			bio = r10_bio->devs[i].repl_bio;
3687 			bio->bi_status = BLK_STS_IOERR;
3688 
3689 			sector = r10_bio->devs[i].addr;
3690 			bio->bi_next = biolist;
3691 			biolist = bio;
3692 			bio->bi_end_io = end_sync_write;
3693 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3694 			if (test_bit(FailFast, &rdev->flags))
3695 				bio->bi_opf |= MD_FAILFAST;
3696 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3697 			bio_set_dev(bio, rdev->bdev);
3698 			count++;
3699 			rcu_read_unlock();
3700 		}
3701 
3702 		if (count < 2) {
3703 			for (i=0; i<conf->copies; i++) {
3704 				int d = r10_bio->devs[i].devnum;
3705 				if (r10_bio->devs[i].bio->bi_end_io)
3706 					rdev_dec_pending(conf->mirrors[d].rdev,
3707 							 mddev);
3708 				if (r10_bio->devs[i].repl_bio &&
3709 				    r10_bio->devs[i].repl_bio->bi_end_io)
3710 					rdev_dec_pending(
3711 						conf->mirrors[d].replacement,
3712 						mddev);
3713 			}
3714 			put_buf(r10_bio);
3715 			biolist = NULL;
3716 			goto giveup;
3717 		}
3718 	}
3719 
3720 	nr_sectors = 0;
3721 	if (sector_nr + max_sync < max_sector)
3722 		max_sector = sector_nr + max_sync;
3723 	do {
3724 		struct page *page;
3725 		int len = PAGE_SIZE;
3726 		if (sector_nr + (len>>9) > max_sector)
3727 			len = (max_sector - sector_nr) << 9;
3728 		if (len == 0)
3729 			break;
3730 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3731 			struct resync_pages *rp = get_resync_pages(bio);
3732 			page = resync_fetch_page(rp, page_idx);
3733 			/*
3734 			 * won't fail because the vec table is big enough
3735 			 * to hold all these pages
3736 			 */
3737 			bio_add_page(bio, page, len, 0);
3738 		}
3739 		nr_sectors += len>>9;
3740 		sector_nr += len>>9;
3741 	} while (++page_idx < RESYNC_PAGES);
3742 	r10_bio->sectors = nr_sectors;
3743 
3744 	if (mddev_is_clustered(mddev) &&
3745 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3746 		/* It is resync not recovery */
3747 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3748 			conf->cluster_sync_low = mddev->curr_resync_completed;
3749 			raid10_set_cluster_sync_high(conf);
3750 			/* Send resync message */
3751 			md_cluster_ops->resync_info_update(mddev,
3752 						conf->cluster_sync_low,
3753 						conf->cluster_sync_high);
3754 		}
3755 	} else if (mddev_is_clustered(mddev)) {
3756 		/* This is recovery not resync */
3757 		sector_t sect_va1, sect_va2;
3758 		bool broadcast_msg = false;
3759 
3760 		for (i = 0; i < conf->geo.raid_disks; i++) {
3761 			/*
3762 			 * sector_nr is a device address for recovery, so we
3763 			 * need translate it to array address before compare
3764 			 * with cluster_sync_high.
3765 			 */
3766 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3767 
3768 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3769 				broadcast_msg = true;
3770 				/*
3771 				 * curr_resync_completed is similar as
3772 				 * sector_nr, so make the translation too.
3773 				 */
3774 				sect_va2 = raid10_find_virt(conf,
3775 					mddev->curr_resync_completed, i);
3776 
3777 				if (conf->cluster_sync_low == 0 ||
3778 				    conf->cluster_sync_low > sect_va2)
3779 					conf->cluster_sync_low = sect_va2;
3780 			}
3781 		}
3782 		if (broadcast_msg) {
3783 			raid10_set_cluster_sync_high(conf);
3784 			md_cluster_ops->resync_info_update(mddev,
3785 						conf->cluster_sync_low,
3786 						conf->cluster_sync_high);
3787 		}
3788 	}
3789 
3790 	while (biolist) {
3791 		bio = biolist;
3792 		biolist = biolist->bi_next;
3793 
3794 		bio->bi_next = NULL;
3795 		r10_bio = get_resync_r10bio(bio);
3796 		r10_bio->sectors = nr_sectors;
3797 
3798 		if (bio->bi_end_io == end_sync_read) {
3799 			md_sync_acct_bio(bio, nr_sectors);
3800 			bio->bi_status = 0;
3801 			submit_bio_noacct(bio);
3802 		}
3803 	}
3804 
3805 	if (sectors_skipped)
3806 		/* pretend they weren't skipped, it makes
3807 		 * no important difference in this case
3808 		 */
3809 		md_done_sync(mddev, sectors_skipped, 1);
3810 
3811 	return sectors_skipped + nr_sectors;
3812  giveup:
3813 	/* There is nowhere to write, so all non-sync
3814 	 * drives must be failed or in resync, all drives
3815 	 * have a bad block, so try the next chunk...
3816 	 */
3817 	if (sector_nr + max_sync < max_sector)
3818 		max_sector = sector_nr + max_sync;
3819 
3820 	sectors_skipped += (max_sector - sector_nr);
3821 	chunks_skipped ++;
3822 	sector_nr = max_sector;
3823 	goto skipped;
3824 }
3825 
3826 static sector_t
3827 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3828 {
3829 	sector_t size;
3830 	struct r10conf *conf = mddev->private;
3831 
3832 	if (!raid_disks)
3833 		raid_disks = min(conf->geo.raid_disks,
3834 				 conf->prev.raid_disks);
3835 	if (!sectors)
3836 		sectors = conf->dev_sectors;
3837 
3838 	size = sectors >> conf->geo.chunk_shift;
3839 	sector_div(size, conf->geo.far_copies);
3840 	size = size * raid_disks;
3841 	sector_div(size, conf->geo.near_copies);
3842 
3843 	return size << conf->geo.chunk_shift;
3844 }
3845 
3846 static void calc_sectors(struct r10conf *conf, sector_t size)
3847 {
3848 	/* Calculate the number of sectors-per-device that will
3849 	 * actually be used, and set conf->dev_sectors and
3850 	 * conf->stride
3851 	 */
3852 
3853 	size = size >> conf->geo.chunk_shift;
3854 	sector_div(size, conf->geo.far_copies);
3855 	size = size * conf->geo.raid_disks;
3856 	sector_div(size, conf->geo.near_copies);
3857 	/* 'size' is now the number of chunks in the array */
3858 	/* calculate "used chunks per device" */
3859 	size = size * conf->copies;
3860 
3861 	/* We need to round up when dividing by raid_disks to
3862 	 * get the stride size.
3863 	 */
3864 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3865 
3866 	conf->dev_sectors = size << conf->geo.chunk_shift;
3867 
3868 	if (conf->geo.far_offset)
3869 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3870 	else {
3871 		sector_div(size, conf->geo.far_copies);
3872 		conf->geo.stride = size << conf->geo.chunk_shift;
3873 	}
3874 }
3875 
3876 enum geo_type {geo_new, geo_old, geo_start};
3877 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3878 {
3879 	int nc, fc, fo;
3880 	int layout, chunk, disks;
3881 	switch (new) {
3882 	case geo_old:
3883 		layout = mddev->layout;
3884 		chunk = mddev->chunk_sectors;
3885 		disks = mddev->raid_disks - mddev->delta_disks;
3886 		break;
3887 	case geo_new:
3888 		layout = mddev->new_layout;
3889 		chunk = mddev->new_chunk_sectors;
3890 		disks = mddev->raid_disks;
3891 		break;
3892 	default: /* avoid 'may be unused' warnings */
3893 	case geo_start: /* new when starting reshape - raid_disks not
3894 			 * updated yet. */
3895 		layout = mddev->new_layout;
3896 		chunk = mddev->new_chunk_sectors;
3897 		disks = mddev->raid_disks + mddev->delta_disks;
3898 		break;
3899 	}
3900 	if (layout >> 19)
3901 		return -1;
3902 	if (chunk < (PAGE_SIZE >> 9) ||
3903 	    !is_power_of_2(chunk))
3904 		return -2;
3905 	nc = layout & 255;
3906 	fc = (layout >> 8) & 255;
3907 	fo = layout & (1<<16);
3908 	geo->raid_disks = disks;
3909 	geo->near_copies = nc;
3910 	geo->far_copies = fc;
3911 	geo->far_offset = fo;
3912 	switch (layout >> 17) {
3913 	case 0:	/* original layout.  simple but not always optimal */
3914 		geo->far_set_size = disks;
3915 		break;
3916 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3917 		 * actually using this, but leave code here just in case.*/
3918 		geo->far_set_size = disks/fc;
3919 		WARN(geo->far_set_size < fc,
3920 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3921 		break;
3922 	case 2: /* "improved" layout fixed to match documentation */
3923 		geo->far_set_size = fc * nc;
3924 		break;
3925 	default: /* Not a valid layout */
3926 		return -1;
3927 	}
3928 	geo->chunk_mask = chunk - 1;
3929 	geo->chunk_shift = ffz(~chunk);
3930 	return nc*fc;
3931 }
3932 
3933 static struct r10conf *setup_conf(struct mddev *mddev)
3934 {
3935 	struct r10conf *conf = NULL;
3936 	int err = -EINVAL;
3937 	struct geom geo;
3938 	int copies;
3939 
3940 	copies = setup_geo(&geo, mddev, geo_new);
3941 
3942 	if (copies == -2) {
3943 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3944 			mdname(mddev), PAGE_SIZE);
3945 		goto out;
3946 	}
3947 
3948 	if (copies < 2 || copies > mddev->raid_disks) {
3949 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3950 			mdname(mddev), mddev->new_layout);
3951 		goto out;
3952 	}
3953 
3954 	err = -ENOMEM;
3955 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3956 	if (!conf)
3957 		goto out;
3958 
3959 	/* FIXME calc properly */
3960 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3961 				sizeof(struct raid10_info),
3962 				GFP_KERNEL);
3963 	if (!conf->mirrors)
3964 		goto out;
3965 
3966 	conf->tmppage = alloc_page(GFP_KERNEL);
3967 	if (!conf->tmppage)
3968 		goto out;
3969 
3970 	conf->geo = geo;
3971 	conf->copies = copies;
3972 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3973 			   rbio_pool_free, conf);
3974 	if (err)
3975 		goto out;
3976 
3977 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3978 	if (err)
3979 		goto out;
3980 
3981 	calc_sectors(conf, mddev->dev_sectors);
3982 	if (mddev->reshape_position == MaxSector) {
3983 		conf->prev = conf->geo;
3984 		conf->reshape_progress = MaxSector;
3985 	} else {
3986 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3987 			err = -EINVAL;
3988 			goto out;
3989 		}
3990 		conf->reshape_progress = mddev->reshape_position;
3991 		if (conf->prev.far_offset)
3992 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3993 		else
3994 			/* far_copies must be 1 */
3995 			conf->prev.stride = conf->dev_sectors;
3996 	}
3997 	conf->reshape_safe = conf->reshape_progress;
3998 	spin_lock_init(&conf->device_lock);
3999 	INIT_LIST_HEAD(&conf->retry_list);
4000 	INIT_LIST_HEAD(&conf->bio_end_io_list);
4001 
4002 	spin_lock_init(&conf->resync_lock);
4003 	init_waitqueue_head(&conf->wait_barrier);
4004 	atomic_set(&conf->nr_pending, 0);
4005 
4006 	err = -ENOMEM;
4007 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
4008 	if (!conf->thread)
4009 		goto out;
4010 
4011 	conf->mddev = mddev;
4012 	return conf;
4013 
4014  out:
4015 	if (conf) {
4016 		mempool_exit(&conf->r10bio_pool);
4017 		kfree(conf->mirrors);
4018 		safe_put_page(conf->tmppage);
4019 		bioset_exit(&conf->bio_split);
4020 		kfree(conf);
4021 	}
4022 	return ERR_PTR(err);
4023 }
4024 
4025 static void raid10_set_io_opt(struct r10conf *conf)
4026 {
4027 	int raid_disks = conf->geo.raid_disks;
4028 
4029 	if (!(conf->geo.raid_disks % conf->geo.near_copies))
4030 		raid_disks /= conf->geo.near_copies;
4031 	blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4032 			 raid_disks);
4033 }
4034 
4035 static int raid10_run(struct mddev *mddev)
4036 {
4037 	struct r10conf *conf;
4038 	int i, disk_idx;
4039 	struct raid10_info *disk;
4040 	struct md_rdev *rdev;
4041 	sector_t size;
4042 	sector_t min_offset_diff = 0;
4043 	int first = 1;
4044 	bool discard_supported = false;
4045 
4046 	if (mddev_init_writes_pending(mddev) < 0)
4047 		return -ENOMEM;
4048 
4049 	if (mddev->private == NULL) {
4050 		conf = setup_conf(mddev);
4051 		if (IS_ERR(conf))
4052 			return PTR_ERR(conf);
4053 		mddev->private = conf;
4054 	}
4055 	conf = mddev->private;
4056 	if (!conf)
4057 		goto out;
4058 
4059 	if (mddev_is_clustered(conf->mddev)) {
4060 		int fc, fo;
4061 
4062 		fc = (mddev->layout >> 8) & 255;
4063 		fo = mddev->layout & (1<<16);
4064 		if (fc > 1 || fo > 0) {
4065 			pr_err("only near layout is supported by clustered"
4066 				" raid10\n");
4067 			goto out_free_conf;
4068 		}
4069 	}
4070 
4071 	mddev->thread = conf->thread;
4072 	conf->thread = NULL;
4073 
4074 	if (mddev->queue) {
4075 		blk_queue_max_discard_sectors(mddev->queue,
4076 					      UINT_MAX);
4077 		blk_queue_max_write_same_sectors(mddev->queue, 0);
4078 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4079 		blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4080 		raid10_set_io_opt(conf);
4081 	}
4082 
4083 	rdev_for_each(rdev, mddev) {
4084 		long long diff;
4085 
4086 		disk_idx = rdev->raid_disk;
4087 		if (disk_idx < 0)
4088 			continue;
4089 		if (disk_idx >= conf->geo.raid_disks &&
4090 		    disk_idx >= conf->prev.raid_disks)
4091 			continue;
4092 		disk = conf->mirrors + disk_idx;
4093 
4094 		if (test_bit(Replacement, &rdev->flags)) {
4095 			if (disk->replacement)
4096 				goto out_free_conf;
4097 			disk->replacement = rdev;
4098 		} else {
4099 			if (disk->rdev)
4100 				goto out_free_conf;
4101 			disk->rdev = rdev;
4102 		}
4103 		diff = (rdev->new_data_offset - rdev->data_offset);
4104 		if (!mddev->reshape_backwards)
4105 			diff = -diff;
4106 		if (diff < 0)
4107 			diff = 0;
4108 		if (first || diff < min_offset_diff)
4109 			min_offset_diff = diff;
4110 
4111 		if (mddev->gendisk)
4112 			disk_stack_limits(mddev->gendisk, rdev->bdev,
4113 					  rdev->data_offset << 9);
4114 
4115 		disk->head_position = 0;
4116 
4117 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
4118 			discard_supported = true;
4119 		first = 0;
4120 	}
4121 
4122 	if (mddev->queue) {
4123 		if (discard_supported)
4124 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
4125 						mddev->queue);
4126 		else
4127 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
4128 						  mddev->queue);
4129 	}
4130 	/* need to check that every block has at least one working mirror */
4131 	if (!enough(conf, -1)) {
4132 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4133 		       mdname(mddev));
4134 		goto out_free_conf;
4135 	}
4136 
4137 	if (conf->reshape_progress != MaxSector) {
4138 		/* must ensure that shape change is supported */
4139 		if (conf->geo.far_copies != 1 &&
4140 		    conf->geo.far_offset == 0)
4141 			goto out_free_conf;
4142 		if (conf->prev.far_copies != 1 &&
4143 		    conf->prev.far_offset == 0)
4144 			goto out_free_conf;
4145 	}
4146 
4147 	mddev->degraded = 0;
4148 	for (i = 0;
4149 	     i < conf->geo.raid_disks
4150 		     || i < conf->prev.raid_disks;
4151 	     i++) {
4152 
4153 		disk = conf->mirrors + i;
4154 
4155 		if (!disk->rdev && disk->replacement) {
4156 			/* The replacement is all we have - use it */
4157 			disk->rdev = disk->replacement;
4158 			disk->replacement = NULL;
4159 			clear_bit(Replacement, &disk->rdev->flags);
4160 		}
4161 
4162 		if (!disk->rdev ||
4163 		    !test_bit(In_sync, &disk->rdev->flags)) {
4164 			disk->head_position = 0;
4165 			mddev->degraded++;
4166 			if (disk->rdev &&
4167 			    disk->rdev->saved_raid_disk < 0)
4168 				conf->fullsync = 1;
4169 		}
4170 
4171 		if (disk->replacement &&
4172 		    !test_bit(In_sync, &disk->replacement->flags) &&
4173 		    disk->replacement->saved_raid_disk < 0) {
4174 			conf->fullsync = 1;
4175 		}
4176 
4177 		disk->recovery_disabled = mddev->recovery_disabled - 1;
4178 	}
4179 
4180 	if (mddev->recovery_cp != MaxSector)
4181 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4182 			  mdname(mddev));
4183 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4184 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4185 		conf->geo.raid_disks);
4186 	/*
4187 	 * Ok, everything is just fine now
4188 	 */
4189 	mddev->dev_sectors = conf->dev_sectors;
4190 	size = raid10_size(mddev, 0, 0);
4191 	md_set_array_sectors(mddev, size);
4192 	mddev->resync_max_sectors = size;
4193 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4194 
4195 	if (md_integrity_register(mddev))
4196 		goto out_free_conf;
4197 
4198 	if (conf->reshape_progress != MaxSector) {
4199 		unsigned long before_length, after_length;
4200 
4201 		before_length = ((1 << conf->prev.chunk_shift) *
4202 				 conf->prev.far_copies);
4203 		after_length = ((1 << conf->geo.chunk_shift) *
4204 				conf->geo.far_copies);
4205 
4206 		if (max(before_length, after_length) > min_offset_diff) {
4207 			/* This cannot work */
4208 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4209 			goto out_free_conf;
4210 		}
4211 		conf->offset_diff = min_offset_diff;
4212 
4213 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4214 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4215 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4216 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4217 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4218 							"reshape");
4219 		if (!mddev->sync_thread)
4220 			goto out_free_conf;
4221 	}
4222 
4223 	return 0;
4224 
4225 out_free_conf:
4226 	md_unregister_thread(&mddev->thread);
4227 	mempool_exit(&conf->r10bio_pool);
4228 	safe_put_page(conf->tmppage);
4229 	kfree(conf->mirrors);
4230 	kfree(conf);
4231 	mddev->private = NULL;
4232 out:
4233 	return -EIO;
4234 }
4235 
4236 static void raid10_free(struct mddev *mddev, void *priv)
4237 {
4238 	struct r10conf *conf = priv;
4239 
4240 	mempool_exit(&conf->r10bio_pool);
4241 	safe_put_page(conf->tmppage);
4242 	kfree(conf->mirrors);
4243 	kfree(conf->mirrors_old);
4244 	kfree(conf->mirrors_new);
4245 	bioset_exit(&conf->bio_split);
4246 	kfree(conf);
4247 }
4248 
4249 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4250 {
4251 	struct r10conf *conf = mddev->private;
4252 
4253 	if (quiesce)
4254 		raise_barrier(conf, 0);
4255 	else
4256 		lower_barrier(conf);
4257 }
4258 
4259 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4260 {
4261 	/* Resize of 'far' arrays is not supported.
4262 	 * For 'near' and 'offset' arrays we can set the
4263 	 * number of sectors used to be an appropriate multiple
4264 	 * of the chunk size.
4265 	 * For 'offset', this is far_copies*chunksize.
4266 	 * For 'near' the multiplier is the LCM of
4267 	 * near_copies and raid_disks.
4268 	 * So if far_copies > 1 && !far_offset, fail.
4269 	 * Else find LCM(raid_disks, near_copy)*far_copies and
4270 	 * multiply by chunk_size.  Then round to this number.
4271 	 * This is mostly done by raid10_size()
4272 	 */
4273 	struct r10conf *conf = mddev->private;
4274 	sector_t oldsize, size;
4275 
4276 	if (mddev->reshape_position != MaxSector)
4277 		return -EBUSY;
4278 
4279 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4280 		return -EINVAL;
4281 
4282 	oldsize = raid10_size(mddev, 0, 0);
4283 	size = raid10_size(mddev, sectors, 0);
4284 	if (mddev->external_size &&
4285 	    mddev->array_sectors > size)
4286 		return -EINVAL;
4287 	if (mddev->bitmap) {
4288 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4289 		if (ret)
4290 			return ret;
4291 	}
4292 	md_set_array_sectors(mddev, size);
4293 	if (sectors > mddev->dev_sectors &&
4294 	    mddev->recovery_cp > oldsize) {
4295 		mddev->recovery_cp = oldsize;
4296 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4297 	}
4298 	calc_sectors(conf, sectors);
4299 	mddev->dev_sectors = conf->dev_sectors;
4300 	mddev->resync_max_sectors = size;
4301 	return 0;
4302 }
4303 
4304 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4305 {
4306 	struct md_rdev *rdev;
4307 	struct r10conf *conf;
4308 
4309 	if (mddev->degraded > 0) {
4310 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4311 			mdname(mddev));
4312 		return ERR_PTR(-EINVAL);
4313 	}
4314 	sector_div(size, devs);
4315 
4316 	/* Set new parameters */
4317 	mddev->new_level = 10;
4318 	/* new layout: far_copies = 1, near_copies = 2 */
4319 	mddev->new_layout = (1<<8) + 2;
4320 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4321 	mddev->delta_disks = mddev->raid_disks;
4322 	mddev->raid_disks *= 2;
4323 	/* make sure it will be not marked as dirty */
4324 	mddev->recovery_cp = MaxSector;
4325 	mddev->dev_sectors = size;
4326 
4327 	conf = setup_conf(mddev);
4328 	if (!IS_ERR(conf)) {
4329 		rdev_for_each(rdev, mddev)
4330 			if (rdev->raid_disk >= 0) {
4331 				rdev->new_raid_disk = rdev->raid_disk * 2;
4332 				rdev->sectors = size;
4333 			}
4334 		conf->barrier = 1;
4335 	}
4336 
4337 	return conf;
4338 }
4339 
4340 static void *raid10_takeover(struct mddev *mddev)
4341 {
4342 	struct r0conf *raid0_conf;
4343 
4344 	/* raid10 can take over:
4345 	 *  raid0 - providing it has only two drives
4346 	 */
4347 	if (mddev->level == 0) {
4348 		/* for raid0 takeover only one zone is supported */
4349 		raid0_conf = mddev->private;
4350 		if (raid0_conf->nr_strip_zones > 1) {
4351 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4352 				mdname(mddev));
4353 			return ERR_PTR(-EINVAL);
4354 		}
4355 		return raid10_takeover_raid0(mddev,
4356 			raid0_conf->strip_zone->zone_end,
4357 			raid0_conf->strip_zone->nb_dev);
4358 	}
4359 	return ERR_PTR(-EINVAL);
4360 }
4361 
4362 static int raid10_check_reshape(struct mddev *mddev)
4363 {
4364 	/* Called when there is a request to change
4365 	 * - layout (to ->new_layout)
4366 	 * - chunk size (to ->new_chunk_sectors)
4367 	 * - raid_disks (by delta_disks)
4368 	 * or when trying to restart a reshape that was ongoing.
4369 	 *
4370 	 * We need to validate the request and possibly allocate
4371 	 * space if that might be an issue later.
4372 	 *
4373 	 * Currently we reject any reshape of a 'far' mode array,
4374 	 * allow chunk size to change if new is generally acceptable,
4375 	 * allow raid_disks to increase, and allow
4376 	 * a switch between 'near' mode and 'offset' mode.
4377 	 */
4378 	struct r10conf *conf = mddev->private;
4379 	struct geom geo;
4380 
4381 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4382 		return -EINVAL;
4383 
4384 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4385 		/* mustn't change number of copies */
4386 		return -EINVAL;
4387 	if (geo.far_copies > 1 && !geo.far_offset)
4388 		/* Cannot switch to 'far' mode */
4389 		return -EINVAL;
4390 
4391 	if (mddev->array_sectors & geo.chunk_mask)
4392 			/* not factor of array size */
4393 			return -EINVAL;
4394 
4395 	if (!enough(conf, -1))
4396 		return -EINVAL;
4397 
4398 	kfree(conf->mirrors_new);
4399 	conf->mirrors_new = NULL;
4400 	if (mddev->delta_disks > 0) {
4401 		/* allocate new 'mirrors' list */
4402 		conf->mirrors_new =
4403 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4404 				sizeof(struct raid10_info),
4405 				GFP_KERNEL);
4406 		if (!conf->mirrors_new)
4407 			return -ENOMEM;
4408 	}
4409 	return 0;
4410 }
4411 
4412 /*
4413  * Need to check if array has failed when deciding whether to:
4414  *  - start an array
4415  *  - remove non-faulty devices
4416  *  - add a spare
4417  *  - allow a reshape
4418  * This determination is simple when no reshape is happening.
4419  * However if there is a reshape, we need to carefully check
4420  * both the before and after sections.
4421  * This is because some failed devices may only affect one
4422  * of the two sections, and some non-in_sync devices may
4423  * be insync in the section most affected by failed devices.
4424  */
4425 static int calc_degraded(struct r10conf *conf)
4426 {
4427 	int degraded, degraded2;
4428 	int i;
4429 
4430 	rcu_read_lock();
4431 	degraded = 0;
4432 	/* 'prev' section first */
4433 	for (i = 0; i < conf->prev.raid_disks; i++) {
4434 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4435 		if (!rdev || test_bit(Faulty, &rdev->flags))
4436 			degraded++;
4437 		else if (!test_bit(In_sync, &rdev->flags))
4438 			/* When we can reduce the number of devices in
4439 			 * an array, this might not contribute to
4440 			 * 'degraded'.  It does now.
4441 			 */
4442 			degraded++;
4443 	}
4444 	rcu_read_unlock();
4445 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4446 		return degraded;
4447 	rcu_read_lock();
4448 	degraded2 = 0;
4449 	for (i = 0; i < conf->geo.raid_disks; i++) {
4450 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4451 		if (!rdev || test_bit(Faulty, &rdev->flags))
4452 			degraded2++;
4453 		else if (!test_bit(In_sync, &rdev->flags)) {
4454 			/* If reshape is increasing the number of devices,
4455 			 * this section has already been recovered, so
4456 			 * it doesn't contribute to degraded.
4457 			 * else it does.
4458 			 */
4459 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4460 				degraded2++;
4461 		}
4462 	}
4463 	rcu_read_unlock();
4464 	if (degraded2 > degraded)
4465 		return degraded2;
4466 	return degraded;
4467 }
4468 
4469 static int raid10_start_reshape(struct mddev *mddev)
4470 {
4471 	/* A 'reshape' has been requested. This commits
4472 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4473 	 * This also checks if there are enough spares and adds them
4474 	 * to the array.
4475 	 * We currently require enough spares to make the final
4476 	 * array non-degraded.  We also require that the difference
4477 	 * between old and new data_offset - on each device - is
4478 	 * enough that we never risk over-writing.
4479 	 */
4480 
4481 	unsigned long before_length, after_length;
4482 	sector_t min_offset_diff = 0;
4483 	int first = 1;
4484 	struct geom new;
4485 	struct r10conf *conf = mddev->private;
4486 	struct md_rdev *rdev;
4487 	int spares = 0;
4488 	int ret;
4489 
4490 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4491 		return -EBUSY;
4492 
4493 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4494 		return -EINVAL;
4495 
4496 	before_length = ((1 << conf->prev.chunk_shift) *
4497 			 conf->prev.far_copies);
4498 	after_length = ((1 << conf->geo.chunk_shift) *
4499 			conf->geo.far_copies);
4500 
4501 	rdev_for_each(rdev, mddev) {
4502 		if (!test_bit(In_sync, &rdev->flags)
4503 		    && !test_bit(Faulty, &rdev->flags))
4504 			spares++;
4505 		if (rdev->raid_disk >= 0) {
4506 			long long diff = (rdev->new_data_offset
4507 					  - rdev->data_offset);
4508 			if (!mddev->reshape_backwards)
4509 				diff = -diff;
4510 			if (diff < 0)
4511 				diff = 0;
4512 			if (first || diff < min_offset_diff)
4513 				min_offset_diff = diff;
4514 			first = 0;
4515 		}
4516 	}
4517 
4518 	if (max(before_length, after_length) > min_offset_diff)
4519 		return -EINVAL;
4520 
4521 	if (spares < mddev->delta_disks)
4522 		return -EINVAL;
4523 
4524 	conf->offset_diff = min_offset_diff;
4525 	spin_lock_irq(&conf->device_lock);
4526 	if (conf->mirrors_new) {
4527 		memcpy(conf->mirrors_new, conf->mirrors,
4528 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4529 		smp_mb();
4530 		kfree(conf->mirrors_old);
4531 		conf->mirrors_old = conf->mirrors;
4532 		conf->mirrors = conf->mirrors_new;
4533 		conf->mirrors_new = NULL;
4534 	}
4535 	setup_geo(&conf->geo, mddev, geo_start);
4536 	smp_mb();
4537 	if (mddev->reshape_backwards) {
4538 		sector_t size = raid10_size(mddev, 0, 0);
4539 		if (size < mddev->array_sectors) {
4540 			spin_unlock_irq(&conf->device_lock);
4541 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4542 				mdname(mddev));
4543 			return -EINVAL;
4544 		}
4545 		mddev->resync_max_sectors = size;
4546 		conf->reshape_progress = size;
4547 	} else
4548 		conf->reshape_progress = 0;
4549 	conf->reshape_safe = conf->reshape_progress;
4550 	spin_unlock_irq(&conf->device_lock);
4551 
4552 	if (mddev->delta_disks && mddev->bitmap) {
4553 		struct mdp_superblock_1 *sb = NULL;
4554 		sector_t oldsize, newsize;
4555 
4556 		oldsize = raid10_size(mddev, 0, 0);
4557 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4558 
4559 		if (!mddev_is_clustered(mddev)) {
4560 			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4561 			if (ret)
4562 				goto abort;
4563 			else
4564 				goto out;
4565 		}
4566 
4567 		rdev_for_each(rdev, mddev) {
4568 			if (rdev->raid_disk > -1 &&
4569 			    !test_bit(Faulty, &rdev->flags))
4570 				sb = page_address(rdev->sb_page);
4571 		}
4572 
4573 		/*
4574 		 * some node is already performing reshape, and no need to
4575 		 * call md_bitmap_resize again since it should be called when
4576 		 * receiving BITMAP_RESIZE msg
4577 		 */
4578 		if ((sb && (le32_to_cpu(sb->feature_map) &
4579 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4580 			goto out;
4581 
4582 		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4583 		if (ret)
4584 			goto abort;
4585 
4586 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4587 		if (ret) {
4588 			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4589 			goto abort;
4590 		}
4591 	}
4592 out:
4593 	if (mddev->delta_disks > 0) {
4594 		rdev_for_each(rdev, mddev)
4595 			if (rdev->raid_disk < 0 &&
4596 			    !test_bit(Faulty, &rdev->flags)) {
4597 				if (raid10_add_disk(mddev, rdev) == 0) {
4598 					if (rdev->raid_disk >=
4599 					    conf->prev.raid_disks)
4600 						set_bit(In_sync, &rdev->flags);
4601 					else
4602 						rdev->recovery_offset = 0;
4603 
4604 					/* Failure here is OK */
4605 					sysfs_link_rdev(mddev, rdev);
4606 				}
4607 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4608 				   && !test_bit(Faulty, &rdev->flags)) {
4609 				/* This is a spare that was manually added */
4610 				set_bit(In_sync, &rdev->flags);
4611 			}
4612 	}
4613 	/* When a reshape changes the number of devices,
4614 	 * ->degraded is measured against the larger of the
4615 	 * pre and  post numbers.
4616 	 */
4617 	spin_lock_irq(&conf->device_lock);
4618 	mddev->degraded = calc_degraded(conf);
4619 	spin_unlock_irq(&conf->device_lock);
4620 	mddev->raid_disks = conf->geo.raid_disks;
4621 	mddev->reshape_position = conf->reshape_progress;
4622 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4623 
4624 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4625 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4626 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4627 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4628 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4629 
4630 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4631 						"reshape");
4632 	if (!mddev->sync_thread) {
4633 		ret = -EAGAIN;
4634 		goto abort;
4635 	}
4636 	conf->reshape_checkpoint = jiffies;
4637 	md_wakeup_thread(mddev->sync_thread);
4638 	md_new_event(mddev);
4639 	return 0;
4640 
4641 abort:
4642 	mddev->recovery = 0;
4643 	spin_lock_irq(&conf->device_lock);
4644 	conf->geo = conf->prev;
4645 	mddev->raid_disks = conf->geo.raid_disks;
4646 	rdev_for_each(rdev, mddev)
4647 		rdev->new_data_offset = rdev->data_offset;
4648 	smp_wmb();
4649 	conf->reshape_progress = MaxSector;
4650 	conf->reshape_safe = MaxSector;
4651 	mddev->reshape_position = MaxSector;
4652 	spin_unlock_irq(&conf->device_lock);
4653 	return ret;
4654 }
4655 
4656 /* Calculate the last device-address that could contain
4657  * any block from the chunk that includes the array-address 's'
4658  * and report the next address.
4659  * i.e. the address returned will be chunk-aligned and after
4660  * any data that is in the chunk containing 's'.
4661  */
4662 static sector_t last_dev_address(sector_t s, struct geom *geo)
4663 {
4664 	s = (s | geo->chunk_mask) + 1;
4665 	s >>= geo->chunk_shift;
4666 	s *= geo->near_copies;
4667 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4668 	s *= geo->far_copies;
4669 	s <<= geo->chunk_shift;
4670 	return s;
4671 }
4672 
4673 /* Calculate the first device-address that could contain
4674  * any block from the chunk that includes the array-address 's'.
4675  * This too will be the start of a chunk
4676  */
4677 static sector_t first_dev_address(sector_t s, struct geom *geo)
4678 {
4679 	s >>= geo->chunk_shift;
4680 	s *= geo->near_copies;
4681 	sector_div(s, geo->raid_disks);
4682 	s *= geo->far_copies;
4683 	s <<= geo->chunk_shift;
4684 	return s;
4685 }
4686 
4687 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4688 				int *skipped)
4689 {
4690 	/* We simply copy at most one chunk (smallest of old and new)
4691 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4692 	 * or we hit a bad block or something.
4693 	 * This might mean we pause for normal IO in the middle of
4694 	 * a chunk, but that is not a problem as mddev->reshape_position
4695 	 * can record any location.
4696 	 *
4697 	 * If we will want to write to a location that isn't
4698 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4699 	 * we need to flush all reshape requests and update the metadata.
4700 	 *
4701 	 * When reshaping forwards (e.g. to more devices), we interpret
4702 	 * 'safe' as the earliest block which might not have been copied
4703 	 * down yet.  We divide this by previous stripe size and multiply
4704 	 * by previous stripe length to get lowest device offset that we
4705 	 * cannot write to yet.
4706 	 * We interpret 'sector_nr' as an address that we want to write to.
4707 	 * From this we use last_device_address() to find where we might
4708 	 * write to, and first_device_address on the  'safe' position.
4709 	 * If this 'next' write position is after the 'safe' position,
4710 	 * we must update the metadata to increase the 'safe' position.
4711 	 *
4712 	 * When reshaping backwards, we round in the opposite direction
4713 	 * and perform the reverse test:  next write position must not be
4714 	 * less than current safe position.
4715 	 *
4716 	 * In all this the minimum difference in data offsets
4717 	 * (conf->offset_diff - always positive) allows a bit of slack,
4718 	 * so next can be after 'safe', but not by more than offset_diff
4719 	 *
4720 	 * We need to prepare all the bios here before we start any IO
4721 	 * to ensure the size we choose is acceptable to all devices.
4722 	 * The means one for each copy for write-out and an extra one for
4723 	 * read-in.
4724 	 * We store the read-in bio in ->master_bio and the others in
4725 	 * ->devs[x].bio and ->devs[x].repl_bio.
4726 	 */
4727 	struct r10conf *conf = mddev->private;
4728 	struct r10bio *r10_bio;
4729 	sector_t next, safe, last;
4730 	int max_sectors;
4731 	int nr_sectors;
4732 	int s;
4733 	struct md_rdev *rdev;
4734 	int need_flush = 0;
4735 	struct bio *blist;
4736 	struct bio *bio, *read_bio;
4737 	int sectors_done = 0;
4738 	struct page **pages;
4739 
4740 	if (sector_nr == 0) {
4741 		/* If restarting in the middle, skip the initial sectors */
4742 		if (mddev->reshape_backwards &&
4743 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4744 			sector_nr = (raid10_size(mddev, 0, 0)
4745 				     - conf->reshape_progress);
4746 		} else if (!mddev->reshape_backwards &&
4747 			   conf->reshape_progress > 0)
4748 			sector_nr = conf->reshape_progress;
4749 		if (sector_nr) {
4750 			mddev->curr_resync_completed = sector_nr;
4751 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4752 			*skipped = 1;
4753 			return sector_nr;
4754 		}
4755 	}
4756 
4757 	/* We don't use sector_nr to track where we are up to
4758 	 * as that doesn't work well for ->reshape_backwards.
4759 	 * So just use ->reshape_progress.
4760 	 */
4761 	if (mddev->reshape_backwards) {
4762 		/* 'next' is the earliest device address that we might
4763 		 * write to for this chunk in the new layout
4764 		 */
4765 		next = first_dev_address(conf->reshape_progress - 1,
4766 					 &conf->geo);
4767 
4768 		/* 'safe' is the last device address that we might read from
4769 		 * in the old layout after a restart
4770 		 */
4771 		safe = last_dev_address(conf->reshape_safe - 1,
4772 					&conf->prev);
4773 
4774 		if (next + conf->offset_diff < safe)
4775 			need_flush = 1;
4776 
4777 		last = conf->reshape_progress - 1;
4778 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4779 					       & conf->prev.chunk_mask);
4780 		if (sector_nr + RESYNC_SECTORS < last)
4781 			sector_nr = last + 1 - RESYNC_SECTORS;
4782 	} else {
4783 		/* 'next' is after the last device address that we
4784 		 * might write to for this chunk in the new layout
4785 		 */
4786 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4787 
4788 		/* 'safe' is the earliest device address that we might
4789 		 * read from in the old layout after a restart
4790 		 */
4791 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4792 
4793 		/* Need to update metadata if 'next' might be beyond 'safe'
4794 		 * as that would possibly corrupt data
4795 		 */
4796 		if (next > safe + conf->offset_diff)
4797 			need_flush = 1;
4798 
4799 		sector_nr = conf->reshape_progress;
4800 		last  = sector_nr | (conf->geo.chunk_mask
4801 				     & conf->prev.chunk_mask);
4802 
4803 		if (sector_nr + RESYNC_SECTORS <= last)
4804 			last = sector_nr + RESYNC_SECTORS - 1;
4805 	}
4806 
4807 	if (need_flush ||
4808 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4809 		/* Need to update reshape_position in metadata */
4810 		wait_barrier(conf);
4811 		mddev->reshape_position = conf->reshape_progress;
4812 		if (mddev->reshape_backwards)
4813 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4814 				- conf->reshape_progress;
4815 		else
4816 			mddev->curr_resync_completed = conf->reshape_progress;
4817 		conf->reshape_checkpoint = jiffies;
4818 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4819 		md_wakeup_thread(mddev->thread);
4820 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4821 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4822 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4823 			allow_barrier(conf);
4824 			return sectors_done;
4825 		}
4826 		conf->reshape_safe = mddev->reshape_position;
4827 		allow_barrier(conf);
4828 	}
4829 
4830 	raise_barrier(conf, 0);
4831 read_more:
4832 	/* Now schedule reads for blocks from sector_nr to last */
4833 	r10_bio = raid10_alloc_init_r10buf(conf);
4834 	r10_bio->state = 0;
4835 	raise_barrier(conf, 1);
4836 	atomic_set(&r10_bio->remaining, 0);
4837 	r10_bio->mddev = mddev;
4838 	r10_bio->sector = sector_nr;
4839 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4840 	r10_bio->sectors = last - sector_nr + 1;
4841 	rdev = read_balance(conf, r10_bio, &max_sectors);
4842 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4843 
4844 	if (!rdev) {
4845 		/* Cannot read from here, so need to record bad blocks
4846 		 * on all the target devices.
4847 		 */
4848 		// FIXME
4849 		mempool_free(r10_bio, &conf->r10buf_pool);
4850 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4851 		return sectors_done;
4852 	}
4853 
4854 	read_bio = bio_alloc_bioset(GFP_KERNEL, RESYNC_PAGES, &mddev->bio_set);
4855 
4856 	bio_set_dev(read_bio, rdev->bdev);
4857 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4858 			       + rdev->data_offset);
4859 	read_bio->bi_private = r10_bio;
4860 	read_bio->bi_end_io = end_reshape_read;
4861 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4862 	r10_bio->master_bio = read_bio;
4863 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4864 
4865 	/*
4866 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4867 	 * write to the region to avoid conflict.
4868 	*/
4869 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4870 		struct mdp_superblock_1 *sb = NULL;
4871 		int sb_reshape_pos = 0;
4872 
4873 		conf->cluster_sync_low = sector_nr;
4874 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4875 		sb = page_address(rdev->sb_page);
4876 		if (sb) {
4877 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4878 			/*
4879 			 * Set cluster_sync_low again if next address for array
4880 			 * reshape is less than cluster_sync_low. Since we can't
4881 			 * update cluster_sync_low until it has finished reshape.
4882 			 */
4883 			if (sb_reshape_pos < conf->cluster_sync_low)
4884 				conf->cluster_sync_low = sb_reshape_pos;
4885 		}
4886 
4887 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4888 							  conf->cluster_sync_high);
4889 	}
4890 
4891 	/* Now find the locations in the new layout */
4892 	__raid10_find_phys(&conf->geo, r10_bio);
4893 
4894 	blist = read_bio;
4895 	read_bio->bi_next = NULL;
4896 
4897 	rcu_read_lock();
4898 	for (s = 0; s < conf->copies*2; s++) {
4899 		struct bio *b;
4900 		int d = r10_bio->devs[s/2].devnum;
4901 		struct md_rdev *rdev2;
4902 		if (s&1) {
4903 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4904 			b = r10_bio->devs[s/2].repl_bio;
4905 		} else {
4906 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4907 			b = r10_bio->devs[s/2].bio;
4908 		}
4909 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4910 			continue;
4911 
4912 		bio_set_dev(b, rdev2->bdev);
4913 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4914 			rdev2->new_data_offset;
4915 		b->bi_end_io = end_reshape_write;
4916 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4917 		b->bi_next = blist;
4918 		blist = b;
4919 	}
4920 
4921 	/* Now add as many pages as possible to all of these bios. */
4922 
4923 	nr_sectors = 0;
4924 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4925 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4926 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4927 		int len = (max_sectors - s) << 9;
4928 		if (len > PAGE_SIZE)
4929 			len = PAGE_SIZE;
4930 		for (bio = blist; bio ; bio = bio->bi_next) {
4931 			/*
4932 			 * won't fail because the vec table is big enough
4933 			 * to hold all these pages
4934 			 */
4935 			bio_add_page(bio, page, len, 0);
4936 		}
4937 		sector_nr += len >> 9;
4938 		nr_sectors += len >> 9;
4939 	}
4940 	rcu_read_unlock();
4941 	r10_bio->sectors = nr_sectors;
4942 
4943 	/* Now submit the read */
4944 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4945 	atomic_inc(&r10_bio->remaining);
4946 	read_bio->bi_next = NULL;
4947 	submit_bio_noacct(read_bio);
4948 	sectors_done += nr_sectors;
4949 	if (sector_nr <= last)
4950 		goto read_more;
4951 
4952 	lower_barrier(conf);
4953 
4954 	/* Now that we have done the whole section we can
4955 	 * update reshape_progress
4956 	 */
4957 	if (mddev->reshape_backwards)
4958 		conf->reshape_progress -= sectors_done;
4959 	else
4960 		conf->reshape_progress += sectors_done;
4961 
4962 	return sectors_done;
4963 }
4964 
4965 static void end_reshape_request(struct r10bio *r10_bio);
4966 static int handle_reshape_read_error(struct mddev *mddev,
4967 				     struct r10bio *r10_bio);
4968 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4969 {
4970 	/* Reshape read completed.  Hopefully we have a block
4971 	 * to write out.
4972 	 * If we got a read error then we do sync 1-page reads from
4973 	 * elsewhere until we find the data - or give up.
4974 	 */
4975 	struct r10conf *conf = mddev->private;
4976 	int s;
4977 
4978 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4979 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4980 			/* Reshape has been aborted */
4981 			md_done_sync(mddev, r10_bio->sectors, 0);
4982 			return;
4983 		}
4984 
4985 	/* We definitely have the data in the pages, schedule the
4986 	 * writes.
4987 	 */
4988 	atomic_set(&r10_bio->remaining, 1);
4989 	for (s = 0; s < conf->copies*2; s++) {
4990 		struct bio *b;
4991 		int d = r10_bio->devs[s/2].devnum;
4992 		struct md_rdev *rdev;
4993 		rcu_read_lock();
4994 		if (s&1) {
4995 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4996 			b = r10_bio->devs[s/2].repl_bio;
4997 		} else {
4998 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4999 			b = r10_bio->devs[s/2].bio;
5000 		}
5001 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
5002 			rcu_read_unlock();
5003 			continue;
5004 		}
5005 		atomic_inc(&rdev->nr_pending);
5006 		rcu_read_unlock();
5007 		md_sync_acct_bio(b, r10_bio->sectors);
5008 		atomic_inc(&r10_bio->remaining);
5009 		b->bi_next = NULL;
5010 		submit_bio_noacct(b);
5011 	}
5012 	end_reshape_request(r10_bio);
5013 }
5014 
5015 static void end_reshape(struct r10conf *conf)
5016 {
5017 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5018 		return;
5019 
5020 	spin_lock_irq(&conf->device_lock);
5021 	conf->prev = conf->geo;
5022 	md_finish_reshape(conf->mddev);
5023 	smp_wmb();
5024 	conf->reshape_progress = MaxSector;
5025 	conf->reshape_safe = MaxSector;
5026 	spin_unlock_irq(&conf->device_lock);
5027 
5028 	if (conf->mddev->queue)
5029 		raid10_set_io_opt(conf);
5030 	conf->fullsync = 0;
5031 }
5032 
5033 static void raid10_update_reshape_pos(struct mddev *mddev)
5034 {
5035 	struct r10conf *conf = mddev->private;
5036 	sector_t lo, hi;
5037 
5038 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5039 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5040 	    || mddev->reshape_position == MaxSector)
5041 		conf->reshape_progress = mddev->reshape_position;
5042 	else
5043 		WARN_ON_ONCE(1);
5044 }
5045 
5046 static int handle_reshape_read_error(struct mddev *mddev,
5047 				     struct r10bio *r10_bio)
5048 {
5049 	/* Use sync reads to get the blocks from somewhere else */
5050 	int sectors = r10_bio->sectors;
5051 	struct r10conf *conf = mddev->private;
5052 	struct r10bio *r10b;
5053 	int slot = 0;
5054 	int idx = 0;
5055 	struct page **pages;
5056 
5057 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5058 	if (!r10b) {
5059 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5060 		return -ENOMEM;
5061 	}
5062 
5063 	/* reshape IOs share pages from .devs[0].bio */
5064 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5065 
5066 	r10b->sector = r10_bio->sector;
5067 	__raid10_find_phys(&conf->prev, r10b);
5068 
5069 	while (sectors) {
5070 		int s = sectors;
5071 		int success = 0;
5072 		int first_slot = slot;
5073 
5074 		if (s > (PAGE_SIZE >> 9))
5075 			s = PAGE_SIZE >> 9;
5076 
5077 		rcu_read_lock();
5078 		while (!success) {
5079 			int d = r10b->devs[slot].devnum;
5080 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5081 			sector_t addr;
5082 			if (rdev == NULL ||
5083 			    test_bit(Faulty, &rdev->flags) ||
5084 			    !test_bit(In_sync, &rdev->flags))
5085 				goto failed;
5086 
5087 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5088 			atomic_inc(&rdev->nr_pending);
5089 			rcu_read_unlock();
5090 			success = sync_page_io(rdev,
5091 					       addr,
5092 					       s << 9,
5093 					       pages[idx],
5094 					       REQ_OP_READ, 0, false);
5095 			rdev_dec_pending(rdev, mddev);
5096 			rcu_read_lock();
5097 			if (success)
5098 				break;
5099 		failed:
5100 			slot++;
5101 			if (slot >= conf->copies)
5102 				slot = 0;
5103 			if (slot == first_slot)
5104 				break;
5105 		}
5106 		rcu_read_unlock();
5107 		if (!success) {
5108 			/* couldn't read this block, must give up */
5109 			set_bit(MD_RECOVERY_INTR,
5110 				&mddev->recovery);
5111 			kfree(r10b);
5112 			return -EIO;
5113 		}
5114 		sectors -= s;
5115 		idx++;
5116 	}
5117 	kfree(r10b);
5118 	return 0;
5119 }
5120 
5121 static void end_reshape_write(struct bio *bio)
5122 {
5123 	struct r10bio *r10_bio = get_resync_r10bio(bio);
5124 	struct mddev *mddev = r10_bio->mddev;
5125 	struct r10conf *conf = mddev->private;
5126 	int d;
5127 	int slot;
5128 	int repl;
5129 	struct md_rdev *rdev = NULL;
5130 
5131 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5132 	if (repl)
5133 		rdev = conf->mirrors[d].replacement;
5134 	if (!rdev) {
5135 		smp_mb();
5136 		rdev = conf->mirrors[d].rdev;
5137 	}
5138 
5139 	if (bio->bi_status) {
5140 		/* FIXME should record badblock */
5141 		md_error(mddev, rdev);
5142 	}
5143 
5144 	rdev_dec_pending(rdev, mddev);
5145 	end_reshape_request(r10_bio);
5146 }
5147 
5148 static void end_reshape_request(struct r10bio *r10_bio)
5149 {
5150 	if (!atomic_dec_and_test(&r10_bio->remaining))
5151 		return;
5152 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5153 	bio_put(r10_bio->master_bio);
5154 	put_buf(r10_bio);
5155 }
5156 
5157 static void raid10_finish_reshape(struct mddev *mddev)
5158 {
5159 	struct r10conf *conf = mddev->private;
5160 
5161 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5162 		return;
5163 
5164 	if (mddev->delta_disks > 0) {
5165 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
5166 			mddev->recovery_cp = mddev->resync_max_sectors;
5167 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5168 		}
5169 		mddev->resync_max_sectors = mddev->array_sectors;
5170 	} else {
5171 		int d;
5172 		rcu_read_lock();
5173 		for (d = conf->geo.raid_disks ;
5174 		     d < conf->geo.raid_disks - mddev->delta_disks;
5175 		     d++) {
5176 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5177 			if (rdev)
5178 				clear_bit(In_sync, &rdev->flags);
5179 			rdev = rcu_dereference(conf->mirrors[d].replacement);
5180 			if (rdev)
5181 				clear_bit(In_sync, &rdev->flags);
5182 		}
5183 		rcu_read_unlock();
5184 	}
5185 	mddev->layout = mddev->new_layout;
5186 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5187 	mddev->reshape_position = MaxSector;
5188 	mddev->delta_disks = 0;
5189 	mddev->reshape_backwards = 0;
5190 }
5191 
5192 static struct md_personality raid10_personality =
5193 {
5194 	.name		= "raid10",
5195 	.level		= 10,
5196 	.owner		= THIS_MODULE,
5197 	.make_request	= raid10_make_request,
5198 	.run		= raid10_run,
5199 	.free		= raid10_free,
5200 	.status		= raid10_status,
5201 	.error_handler	= raid10_error,
5202 	.hot_add_disk	= raid10_add_disk,
5203 	.hot_remove_disk= raid10_remove_disk,
5204 	.spare_active	= raid10_spare_active,
5205 	.sync_request	= raid10_sync_request,
5206 	.quiesce	= raid10_quiesce,
5207 	.size		= raid10_size,
5208 	.resize		= raid10_resize,
5209 	.takeover	= raid10_takeover,
5210 	.check_reshape	= raid10_check_reshape,
5211 	.start_reshape	= raid10_start_reshape,
5212 	.finish_reshape	= raid10_finish_reshape,
5213 	.update_reshape_pos = raid10_update_reshape_pos,
5214 };
5215 
5216 static int __init raid_init(void)
5217 {
5218 	return register_md_personality(&raid10_personality);
5219 }
5220 
5221 static void raid_exit(void)
5222 {
5223 	unregister_md_personality(&raid10_personality);
5224 }
5225 
5226 module_init(raid_init);
5227 module_exit(raid_exit);
5228 MODULE_LICENSE("GPL");
5229 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5230 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5231 MODULE_ALIAS("md-raid10");
5232 MODULE_ALIAS("md-level-10");
5233 
5234 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
5235