1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 #include "raid10.h" 23 #include "raid0.h" 24 #include "md-bitmap.h" 25 26 /* 27 * RAID10 provides a combination of RAID0 and RAID1 functionality. 28 * The layout of data is defined by 29 * chunk_size 30 * raid_disks 31 * near_copies (stored in low byte of layout) 32 * far_copies (stored in second byte of layout) 33 * far_offset (stored in bit 16 of layout ) 34 * use_far_sets (stored in bit 17 of layout ) 35 * use_far_sets_bugfixed (stored in bit 18 of layout ) 36 * 37 * The data to be stored is divided into chunks using chunksize. Each device 38 * is divided into far_copies sections. In each section, chunks are laid out 39 * in a style similar to raid0, but near_copies copies of each chunk is stored 40 * (each on a different drive). The starting device for each section is offset 41 * near_copies from the starting device of the previous section. Thus there 42 * are (near_copies * far_copies) of each chunk, and each is on a different 43 * drive. near_copies and far_copies must be at least one, and their product 44 * is at most raid_disks. 45 * 46 * If far_offset is true, then the far_copies are handled a bit differently. 47 * The copies are still in different stripes, but instead of being very far 48 * apart on disk, there are adjacent stripes. 49 * 50 * The far and offset algorithms are handled slightly differently if 51 * 'use_far_sets' is true. In this case, the array's devices are grouped into 52 * sets that are (near_copies * far_copies) in size. The far copied stripes 53 * are still shifted by 'near_copies' devices, but this shifting stays confined 54 * to the set rather than the entire array. This is done to improve the number 55 * of device combinations that can fail without causing the array to fail. 56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 57 * on a device): 58 * A B C D A B C D E 59 * ... ... 60 * D A B C E A B C D 61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 62 * [A B] [C D] [A B] [C D E] 63 * |...| |...| |...| | ... | 64 * [B A] [D C] [B A] [E C D] 65 */ 66 67 static void allow_barrier(struct r10conf *conf); 68 static void lower_barrier(struct r10conf *conf); 69 static int _enough(struct r10conf *conf, int previous, int ignore); 70 static int enough(struct r10conf *conf, int ignore); 71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 72 int *skipped); 73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 74 static void end_reshape_write(struct bio *bio); 75 static void end_reshape(struct r10conf *conf); 76 77 #define raid10_log(md, fmt, args...) \ 78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 79 80 #include "raid1-10.c" 81 82 /* 83 * for resync bio, r10bio pointer can be retrieved from the per-bio 84 * 'struct resync_pages'. 85 */ 86 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 87 { 88 return get_resync_pages(bio)->raid_bio; 89 } 90 91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 92 { 93 struct r10conf *conf = data; 94 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]); 95 96 /* allocate a r10bio with room for raid_disks entries in the 97 * bios array */ 98 return kzalloc(size, gfp_flags); 99 } 100 101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 102 /* amount of memory to reserve for resync requests */ 103 #define RESYNC_WINDOW (1024*1024) 104 /* maximum number of concurrent requests, memory permitting */ 105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 108 109 /* 110 * When performing a resync, we need to read and compare, so 111 * we need as many pages are there are copies. 112 * When performing a recovery, we need 2 bios, one for read, 113 * one for write (we recover only one drive per r10buf) 114 * 115 */ 116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 117 { 118 struct r10conf *conf = data; 119 struct r10bio *r10_bio; 120 struct bio *bio; 121 int j; 122 int nalloc, nalloc_rp; 123 struct resync_pages *rps; 124 125 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 126 if (!r10_bio) 127 return NULL; 128 129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 131 nalloc = conf->copies; /* resync */ 132 else 133 nalloc = 2; /* recovery */ 134 135 /* allocate once for all bios */ 136 if (!conf->have_replacement) 137 nalloc_rp = nalloc; 138 else 139 nalloc_rp = nalloc * 2; 140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 141 if (!rps) 142 goto out_free_r10bio; 143 144 /* 145 * Allocate bios. 146 */ 147 for (j = nalloc ; j-- ; ) { 148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 149 if (!bio) 150 goto out_free_bio; 151 r10_bio->devs[j].bio = bio; 152 if (!conf->have_replacement) 153 continue; 154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 155 if (!bio) 156 goto out_free_bio; 157 r10_bio->devs[j].repl_bio = bio; 158 } 159 /* 160 * Allocate RESYNC_PAGES data pages and attach them 161 * where needed. 162 */ 163 for (j = 0; j < nalloc; j++) { 164 struct bio *rbio = r10_bio->devs[j].repl_bio; 165 struct resync_pages *rp, *rp_repl; 166 167 rp = &rps[j]; 168 if (rbio) 169 rp_repl = &rps[nalloc + j]; 170 171 bio = r10_bio->devs[j].bio; 172 173 if (!j || test_bit(MD_RECOVERY_SYNC, 174 &conf->mddev->recovery)) { 175 if (resync_alloc_pages(rp, gfp_flags)) 176 goto out_free_pages; 177 } else { 178 memcpy(rp, &rps[0], sizeof(*rp)); 179 resync_get_all_pages(rp); 180 } 181 182 rp->raid_bio = r10_bio; 183 bio->bi_private = rp; 184 if (rbio) { 185 memcpy(rp_repl, rp, sizeof(*rp)); 186 rbio->bi_private = rp_repl; 187 } 188 } 189 190 return r10_bio; 191 192 out_free_pages: 193 while (--j >= 0) 194 resync_free_pages(&rps[j]); 195 196 j = 0; 197 out_free_bio: 198 for ( ; j < nalloc; j++) { 199 if (r10_bio->devs[j].bio) 200 bio_put(r10_bio->devs[j].bio); 201 if (r10_bio->devs[j].repl_bio) 202 bio_put(r10_bio->devs[j].repl_bio); 203 } 204 kfree(rps); 205 out_free_r10bio: 206 rbio_pool_free(r10_bio, conf); 207 return NULL; 208 } 209 210 static void r10buf_pool_free(void *__r10_bio, void *data) 211 { 212 struct r10conf *conf = data; 213 struct r10bio *r10bio = __r10_bio; 214 int j; 215 struct resync_pages *rp = NULL; 216 217 for (j = conf->copies; j--; ) { 218 struct bio *bio = r10bio->devs[j].bio; 219 220 if (bio) { 221 rp = get_resync_pages(bio); 222 resync_free_pages(rp); 223 bio_put(bio); 224 } 225 226 bio = r10bio->devs[j].repl_bio; 227 if (bio) 228 bio_put(bio); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r10bio, conf); 235 } 236 237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->geo.raid_disks; i++) { 242 struct bio **bio = & r10_bio->devs[i].bio; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 bio = &r10_bio->devs[i].repl_bio; 247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 } 251 } 252 253 static void free_r10bio(struct r10bio *r10_bio) 254 { 255 struct r10conf *conf = r10_bio->mddev->private; 256 257 put_all_bios(conf, r10_bio); 258 mempool_free(r10_bio, &conf->r10bio_pool); 259 } 260 261 static void put_buf(struct r10bio *r10_bio) 262 { 263 struct r10conf *conf = r10_bio->mddev->private; 264 265 mempool_free(r10_bio, &conf->r10buf_pool); 266 267 lower_barrier(conf); 268 } 269 270 static void reschedule_retry(struct r10bio *r10_bio) 271 { 272 unsigned long flags; 273 struct mddev *mddev = r10_bio->mddev; 274 struct r10conf *conf = mddev->private; 275 276 spin_lock_irqsave(&conf->device_lock, flags); 277 list_add(&r10_bio->retry_list, &conf->retry_list); 278 conf->nr_queued ++; 279 spin_unlock_irqrestore(&conf->device_lock, flags); 280 281 /* wake up frozen array... */ 282 wake_up(&conf->wait_barrier); 283 284 md_wakeup_thread(mddev->thread); 285 } 286 287 /* 288 * raid_end_bio_io() is called when we have finished servicing a mirrored 289 * operation and are ready to return a success/failure code to the buffer 290 * cache layer. 291 */ 292 static void raid_end_bio_io(struct r10bio *r10_bio) 293 { 294 struct bio *bio = r10_bio->master_bio; 295 struct r10conf *conf = r10_bio->mddev->private; 296 297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 298 bio->bi_status = BLK_STS_IOERR; 299 300 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 301 bio_end_io_acct(bio, r10_bio->start_time); 302 bio_endio(bio); 303 /* 304 * Wake up any possible resync thread that waits for the device 305 * to go idle. 306 */ 307 allow_barrier(conf); 308 309 free_r10bio(r10_bio); 310 } 311 312 /* 313 * Update disk head position estimator based on IRQ completion info. 314 */ 315 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 316 { 317 struct r10conf *conf = r10_bio->mddev->private; 318 319 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 320 r10_bio->devs[slot].addr + (r10_bio->sectors); 321 } 322 323 /* 324 * Find the disk number which triggered given bio 325 */ 326 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 327 struct bio *bio, int *slotp, int *replp) 328 { 329 int slot; 330 int repl = 0; 331 332 for (slot = 0; slot < conf->geo.raid_disks; slot++) { 333 if (r10_bio->devs[slot].bio == bio) 334 break; 335 if (r10_bio->devs[slot].repl_bio == bio) { 336 repl = 1; 337 break; 338 } 339 } 340 341 update_head_pos(slot, r10_bio); 342 343 if (slotp) 344 *slotp = slot; 345 if (replp) 346 *replp = repl; 347 return r10_bio->devs[slot].devnum; 348 } 349 350 static void raid10_end_read_request(struct bio *bio) 351 { 352 int uptodate = !bio->bi_status; 353 struct r10bio *r10_bio = bio->bi_private; 354 int slot; 355 struct md_rdev *rdev; 356 struct r10conf *conf = r10_bio->mddev->private; 357 358 slot = r10_bio->read_slot; 359 rdev = r10_bio->devs[slot].rdev; 360 /* 361 * this branch is our 'one mirror IO has finished' event handler: 362 */ 363 update_head_pos(slot, r10_bio); 364 365 if (uptodate) { 366 /* 367 * Set R10BIO_Uptodate in our master bio, so that 368 * we will return a good error code to the higher 369 * levels even if IO on some other mirrored buffer fails. 370 * 371 * The 'master' represents the composite IO operation to 372 * user-side. So if something waits for IO, then it will 373 * wait for the 'master' bio. 374 */ 375 set_bit(R10BIO_Uptodate, &r10_bio->state); 376 } else { 377 /* If all other devices that store this block have 378 * failed, we want to return the error upwards rather 379 * than fail the last device. Here we redefine 380 * "uptodate" to mean "Don't want to retry" 381 */ 382 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 383 rdev->raid_disk)) 384 uptodate = 1; 385 } 386 if (uptodate) { 387 raid_end_bio_io(r10_bio); 388 rdev_dec_pending(rdev, conf->mddev); 389 } else { 390 /* 391 * oops, read error - keep the refcount on the rdev 392 */ 393 char b[BDEVNAME_SIZE]; 394 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 395 mdname(conf->mddev), 396 bdevname(rdev->bdev, b), 397 (unsigned long long)r10_bio->sector); 398 set_bit(R10BIO_ReadError, &r10_bio->state); 399 reschedule_retry(r10_bio); 400 } 401 } 402 403 static void close_write(struct r10bio *r10_bio) 404 { 405 /* clear the bitmap if all writes complete successfully */ 406 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 407 r10_bio->sectors, 408 !test_bit(R10BIO_Degraded, &r10_bio->state), 409 0); 410 md_write_end(r10_bio->mddev); 411 } 412 413 static void one_write_done(struct r10bio *r10_bio) 414 { 415 if (atomic_dec_and_test(&r10_bio->remaining)) { 416 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 417 reschedule_retry(r10_bio); 418 else { 419 close_write(r10_bio); 420 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 421 reschedule_retry(r10_bio); 422 else 423 raid_end_bio_io(r10_bio); 424 } 425 } 426 } 427 428 static void raid10_end_write_request(struct bio *bio) 429 { 430 struct r10bio *r10_bio = bio->bi_private; 431 int dev; 432 int dec_rdev = 1; 433 struct r10conf *conf = r10_bio->mddev->private; 434 int slot, repl; 435 struct md_rdev *rdev = NULL; 436 struct bio *to_put = NULL; 437 bool discard_error; 438 439 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 440 441 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 442 443 if (repl) 444 rdev = conf->mirrors[dev].replacement; 445 if (!rdev) { 446 smp_rmb(); 447 repl = 0; 448 rdev = conf->mirrors[dev].rdev; 449 } 450 /* 451 * this branch is our 'one mirror IO has finished' event handler: 452 */ 453 if (bio->bi_status && !discard_error) { 454 if (repl) 455 /* Never record new bad blocks to replacement, 456 * just fail it. 457 */ 458 md_error(rdev->mddev, rdev); 459 else { 460 set_bit(WriteErrorSeen, &rdev->flags); 461 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 462 set_bit(MD_RECOVERY_NEEDED, 463 &rdev->mddev->recovery); 464 465 dec_rdev = 0; 466 if (test_bit(FailFast, &rdev->flags) && 467 (bio->bi_opf & MD_FAILFAST)) { 468 md_error(rdev->mddev, rdev); 469 } 470 471 /* 472 * When the device is faulty, it is not necessary to 473 * handle write error. 474 */ 475 if (!test_bit(Faulty, &rdev->flags)) 476 set_bit(R10BIO_WriteError, &r10_bio->state); 477 else { 478 /* Fail the request */ 479 set_bit(R10BIO_Degraded, &r10_bio->state); 480 r10_bio->devs[slot].bio = NULL; 481 to_put = bio; 482 dec_rdev = 1; 483 } 484 } 485 } else { 486 /* 487 * Set R10BIO_Uptodate in our master bio, so that 488 * we will return a good error code for to the higher 489 * levels even if IO on some other mirrored buffer fails. 490 * 491 * The 'master' represents the composite IO operation to 492 * user-side. So if something waits for IO, then it will 493 * wait for the 'master' bio. 494 */ 495 sector_t first_bad; 496 int bad_sectors; 497 498 /* 499 * Do not set R10BIO_Uptodate if the current device is 500 * rebuilding or Faulty. This is because we cannot use 501 * such device for properly reading the data back (we could 502 * potentially use it, if the current write would have felt 503 * before rdev->recovery_offset, but for simplicity we don't 504 * check this here. 505 */ 506 if (test_bit(In_sync, &rdev->flags) && 507 !test_bit(Faulty, &rdev->flags)) 508 set_bit(R10BIO_Uptodate, &r10_bio->state); 509 510 /* Maybe we can clear some bad blocks. */ 511 if (is_badblock(rdev, 512 r10_bio->devs[slot].addr, 513 r10_bio->sectors, 514 &first_bad, &bad_sectors) && !discard_error) { 515 bio_put(bio); 516 if (repl) 517 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 518 else 519 r10_bio->devs[slot].bio = IO_MADE_GOOD; 520 dec_rdev = 0; 521 set_bit(R10BIO_MadeGood, &r10_bio->state); 522 } 523 } 524 525 /* 526 * 527 * Let's see if all mirrored write operations have finished 528 * already. 529 */ 530 one_write_done(r10_bio); 531 if (dec_rdev) 532 rdev_dec_pending(rdev, conf->mddev); 533 if (to_put) 534 bio_put(to_put); 535 } 536 537 /* 538 * RAID10 layout manager 539 * As well as the chunksize and raid_disks count, there are two 540 * parameters: near_copies and far_copies. 541 * near_copies * far_copies must be <= raid_disks. 542 * Normally one of these will be 1. 543 * If both are 1, we get raid0. 544 * If near_copies == raid_disks, we get raid1. 545 * 546 * Chunks are laid out in raid0 style with near_copies copies of the 547 * first chunk, followed by near_copies copies of the next chunk and 548 * so on. 549 * If far_copies > 1, then after 1/far_copies of the array has been assigned 550 * as described above, we start again with a device offset of near_copies. 551 * So we effectively have another copy of the whole array further down all 552 * the drives, but with blocks on different drives. 553 * With this layout, and block is never stored twice on the one device. 554 * 555 * raid10_find_phys finds the sector offset of a given virtual sector 556 * on each device that it is on. 557 * 558 * raid10_find_virt does the reverse mapping, from a device and a 559 * sector offset to a virtual address 560 */ 561 562 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 563 { 564 int n,f; 565 sector_t sector; 566 sector_t chunk; 567 sector_t stripe; 568 int dev; 569 int slot = 0; 570 int last_far_set_start, last_far_set_size; 571 572 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 573 last_far_set_start *= geo->far_set_size; 574 575 last_far_set_size = geo->far_set_size; 576 last_far_set_size += (geo->raid_disks % geo->far_set_size); 577 578 /* now calculate first sector/dev */ 579 chunk = r10bio->sector >> geo->chunk_shift; 580 sector = r10bio->sector & geo->chunk_mask; 581 582 chunk *= geo->near_copies; 583 stripe = chunk; 584 dev = sector_div(stripe, geo->raid_disks); 585 if (geo->far_offset) 586 stripe *= geo->far_copies; 587 588 sector += stripe << geo->chunk_shift; 589 590 /* and calculate all the others */ 591 for (n = 0; n < geo->near_copies; n++) { 592 int d = dev; 593 int set; 594 sector_t s = sector; 595 r10bio->devs[slot].devnum = d; 596 r10bio->devs[slot].addr = s; 597 slot++; 598 599 for (f = 1; f < geo->far_copies; f++) { 600 set = d / geo->far_set_size; 601 d += geo->near_copies; 602 603 if ((geo->raid_disks % geo->far_set_size) && 604 (d > last_far_set_start)) { 605 d -= last_far_set_start; 606 d %= last_far_set_size; 607 d += last_far_set_start; 608 } else { 609 d %= geo->far_set_size; 610 d += geo->far_set_size * set; 611 } 612 s += geo->stride; 613 r10bio->devs[slot].devnum = d; 614 r10bio->devs[slot].addr = s; 615 slot++; 616 } 617 dev++; 618 if (dev >= geo->raid_disks) { 619 dev = 0; 620 sector += (geo->chunk_mask + 1); 621 } 622 } 623 } 624 625 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 626 { 627 struct geom *geo = &conf->geo; 628 629 if (conf->reshape_progress != MaxSector && 630 ((r10bio->sector >= conf->reshape_progress) != 631 conf->mddev->reshape_backwards)) { 632 set_bit(R10BIO_Previous, &r10bio->state); 633 geo = &conf->prev; 634 } else 635 clear_bit(R10BIO_Previous, &r10bio->state); 636 637 __raid10_find_phys(geo, r10bio); 638 } 639 640 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 641 { 642 sector_t offset, chunk, vchunk; 643 /* Never use conf->prev as this is only called during resync 644 * or recovery, so reshape isn't happening 645 */ 646 struct geom *geo = &conf->geo; 647 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 648 int far_set_size = geo->far_set_size; 649 int last_far_set_start; 650 651 if (geo->raid_disks % geo->far_set_size) { 652 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 653 last_far_set_start *= geo->far_set_size; 654 655 if (dev >= last_far_set_start) { 656 far_set_size = geo->far_set_size; 657 far_set_size += (geo->raid_disks % geo->far_set_size); 658 far_set_start = last_far_set_start; 659 } 660 } 661 662 offset = sector & geo->chunk_mask; 663 if (geo->far_offset) { 664 int fc; 665 chunk = sector >> geo->chunk_shift; 666 fc = sector_div(chunk, geo->far_copies); 667 dev -= fc * geo->near_copies; 668 if (dev < far_set_start) 669 dev += far_set_size; 670 } else { 671 while (sector >= geo->stride) { 672 sector -= geo->stride; 673 if (dev < (geo->near_copies + far_set_start)) 674 dev += far_set_size - geo->near_copies; 675 else 676 dev -= geo->near_copies; 677 } 678 chunk = sector >> geo->chunk_shift; 679 } 680 vchunk = chunk * geo->raid_disks + dev; 681 sector_div(vchunk, geo->near_copies); 682 return (vchunk << geo->chunk_shift) + offset; 683 } 684 685 /* 686 * This routine returns the disk from which the requested read should 687 * be done. There is a per-array 'next expected sequential IO' sector 688 * number - if this matches on the next IO then we use the last disk. 689 * There is also a per-disk 'last know head position' sector that is 690 * maintained from IRQ contexts, both the normal and the resync IO 691 * completion handlers update this position correctly. If there is no 692 * perfect sequential match then we pick the disk whose head is closest. 693 * 694 * If there are 2 mirrors in the same 2 devices, performance degrades 695 * because position is mirror, not device based. 696 * 697 * The rdev for the device selected will have nr_pending incremented. 698 */ 699 700 /* 701 * FIXME: possibly should rethink readbalancing and do it differently 702 * depending on near_copies / far_copies geometry. 703 */ 704 static struct md_rdev *read_balance(struct r10conf *conf, 705 struct r10bio *r10_bio, 706 int *max_sectors) 707 { 708 const sector_t this_sector = r10_bio->sector; 709 int disk, slot; 710 int sectors = r10_bio->sectors; 711 int best_good_sectors; 712 sector_t new_distance, best_dist; 713 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 714 int do_balance; 715 int best_dist_slot, best_pending_slot; 716 bool has_nonrot_disk = false; 717 unsigned int min_pending; 718 struct geom *geo = &conf->geo; 719 720 raid10_find_phys(conf, r10_bio); 721 rcu_read_lock(); 722 best_dist_slot = -1; 723 min_pending = UINT_MAX; 724 best_dist_rdev = NULL; 725 best_pending_rdev = NULL; 726 best_dist = MaxSector; 727 best_good_sectors = 0; 728 do_balance = 1; 729 clear_bit(R10BIO_FailFast, &r10_bio->state); 730 /* 731 * Check if we can balance. We can balance on the whole 732 * device if no resync is going on (recovery is ok), or below 733 * the resync window. We take the first readable disk when 734 * above the resync window. 735 */ 736 if ((conf->mddev->recovery_cp < MaxSector 737 && (this_sector + sectors >= conf->next_resync)) || 738 (mddev_is_clustered(conf->mddev) && 739 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 740 this_sector + sectors))) 741 do_balance = 0; 742 743 for (slot = 0; slot < conf->copies ; slot++) { 744 sector_t first_bad; 745 int bad_sectors; 746 sector_t dev_sector; 747 unsigned int pending; 748 bool nonrot; 749 750 if (r10_bio->devs[slot].bio == IO_BLOCKED) 751 continue; 752 disk = r10_bio->devs[slot].devnum; 753 rdev = rcu_dereference(conf->mirrors[disk].replacement); 754 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 755 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 756 rdev = rcu_dereference(conf->mirrors[disk].rdev); 757 if (rdev == NULL || 758 test_bit(Faulty, &rdev->flags)) 759 continue; 760 if (!test_bit(In_sync, &rdev->flags) && 761 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 762 continue; 763 764 dev_sector = r10_bio->devs[slot].addr; 765 if (is_badblock(rdev, dev_sector, sectors, 766 &first_bad, &bad_sectors)) { 767 if (best_dist < MaxSector) 768 /* Already have a better slot */ 769 continue; 770 if (first_bad <= dev_sector) { 771 /* Cannot read here. If this is the 772 * 'primary' device, then we must not read 773 * beyond 'bad_sectors' from another device. 774 */ 775 bad_sectors -= (dev_sector - first_bad); 776 if (!do_balance && sectors > bad_sectors) 777 sectors = bad_sectors; 778 if (best_good_sectors > sectors) 779 best_good_sectors = sectors; 780 } else { 781 sector_t good_sectors = 782 first_bad - dev_sector; 783 if (good_sectors > best_good_sectors) { 784 best_good_sectors = good_sectors; 785 best_dist_slot = slot; 786 best_dist_rdev = rdev; 787 } 788 if (!do_balance) 789 /* Must read from here */ 790 break; 791 } 792 continue; 793 } else 794 best_good_sectors = sectors; 795 796 if (!do_balance) 797 break; 798 799 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 800 has_nonrot_disk |= nonrot; 801 pending = atomic_read(&rdev->nr_pending); 802 if (min_pending > pending && nonrot) { 803 min_pending = pending; 804 best_pending_slot = slot; 805 best_pending_rdev = rdev; 806 } 807 808 if (best_dist_slot >= 0) 809 /* At least 2 disks to choose from so failfast is OK */ 810 set_bit(R10BIO_FailFast, &r10_bio->state); 811 /* This optimisation is debatable, and completely destroys 812 * sequential read speed for 'far copies' arrays. So only 813 * keep it for 'near' arrays, and review those later. 814 */ 815 if (geo->near_copies > 1 && !pending) 816 new_distance = 0; 817 818 /* for far > 1 always use the lowest address */ 819 else if (geo->far_copies > 1) 820 new_distance = r10_bio->devs[slot].addr; 821 else 822 new_distance = abs(r10_bio->devs[slot].addr - 823 conf->mirrors[disk].head_position); 824 825 if (new_distance < best_dist) { 826 best_dist = new_distance; 827 best_dist_slot = slot; 828 best_dist_rdev = rdev; 829 } 830 } 831 if (slot >= conf->copies) { 832 if (has_nonrot_disk) { 833 slot = best_pending_slot; 834 rdev = best_pending_rdev; 835 } else { 836 slot = best_dist_slot; 837 rdev = best_dist_rdev; 838 } 839 } 840 841 if (slot >= 0) { 842 atomic_inc(&rdev->nr_pending); 843 r10_bio->read_slot = slot; 844 } else 845 rdev = NULL; 846 rcu_read_unlock(); 847 *max_sectors = best_good_sectors; 848 849 return rdev; 850 } 851 852 static void flush_pending_writes(struct r10conf *conf) 853 { 854 /* Any writes that have been queued but are awaiting 855 * bitmap updates get flushed here. 856 */ 857 spin_lock_irq(&conf->device_lock); 858 859 if (conf->pending_bio_list.head) { 860 struct blk_plug plug; 861 struct bio *bio; 862 863 bio = bio_list_get(&conf->pending_bio_list); 864 conf->pending_count = 0; 865 spin_unlock_irq(&conf->device_lock); 866 867 /* 868 * As this is called in a wait_event() loop (see freeze_array), 869 * current->state might be TASK_UNINTERRUPTIBLE which will 870 * cause a warning when we prepare to wait again. As it is 871 * rare that this path is taken, it is perfectly safe to force 872 * us to go around the wait_event() loop again, so the warning 873 * is a false-positive. Silence the warning by resetting 874 * thread state 875 */ 876 __set_current_state(TASK_RUNNING); 877 878 blk_start_plug(&plug); 879 /* flush any pending bitmap writes to disk 880 * before proceeding w/ I/O */ 881 md_bitmap_unplug(conf->mddev->bitmap); 882 wake_up(&conf->wait_barrier); 883 884 while (bio) { /* submit pending writes */ 885 struct bio *next = bio->bi_next; 886 struct md_rdev *rdev = (void*)bio->bi_bdev; 887 bio->bi_next = NULL; 888 bio_set_dev(bio, rdev->bdev); 889 if (test_bit(Faulty, &rdev->flags)) { 890 bio_io_error(bio); 891 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 892 !blk_queue_discard(bio->bi_bdev->bd_disk->queue))) 893 /* Just ignore it */ 894 bio_endio(bio); 895 else 896 submit_bio_noacct(bio); 897 bio = next; 898 } 899 blk_finish_plug(&plug); 900 } else 901 spin_unlock_irq(&conf->device_lock); 902 } 903 904 /* Barriers.... 905 * Sometimes we need to suspend IO while we do something else, 906 * either some resync/recovery, or reconfigure the array. 907 * To do this we raise a 'barrier'. 908 * The 'barrier' is a counter that can be raised multiple times 909 * to count how many activities are happening which preclude 910 * normal IO. 911 * We can only raise the barrier if there is no pending IO. 912 * i.e. if nr_pending == 0. 913 * We choose only to raise the barrier if no-one is waiting for the 914 * barrier to go down. This means that as soon as an IO request 915 * is ready, no other operations which require a barrier will start 916 * until the IO request has had a chance. 917 * 918 * So: regular IO calls 'wait_barrier'. When that returns there 919 * is no backgroup IO happening, It must arrange to call 920 * allow_barrier when it has finished its IO. 921 * backgroup IO calls must call raise_barrier. Once that returns 922 * there is no normal IO happeing. It must arrange to call 923 * lower_barrier when the particular background IO completes. 924 */ 925 926 static void raise_barrier(struct r10conf *conf, int force) 927 { 928 BUG_ON(force && !conf->barrier); 929 spin_lock_irq(&conf->resync_lock); 930 931 /* Wait until no block IO is waiting (unless 'force') */ 932 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 933 conf->resync_lock); 934 935 /* block any new IO from starting */ 936 conf->barrier++; 937 938 /* Now wait for all pending IO to complete */ 939 wait_event_lock_irq(conf->wait_barrier, 940 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 941 conf->resync_lock); 942 943 spin_unlock_irq(&conf->resync_lock); 944 } 945 946 static void lower_barrier(struct r10conf *conf) 947 { 948 unsigned long flags; 949 spin_lock_irqsave(&conf->resync_lock, flags); 950 conf->barrier--; 951 spin_unlock_irqrestore(&conf->resync_lock, flags); 952 wake_up(&conf->wait_barrier); 953 } 954 955 static bool wait_barrier(struct r10conf *conf, bool nowait) 956 { 957 bool ret = true; 958 959 spin_lock_irq(&conf->resync_lock); 960 if (conf->barrier) { 961 struct bio_list *bio_list = current->bio_list; 962 conf->nr_waiting++; 963 /* Wait for the barrier to drop. 964 * However if there are already pending 965 * requests (preventing the barrier from 966 * rising completely), and the 967 * pre-process bio queue isn't empty, 968 * then don't wait, as we need to empty 969 * that queue to get the nr_pending 970 * count down. 971 */ 972 /* Return false when nowait flag is set */ 973 if (nowait) { 974 ret = false; 975 } else { 976 raid10_log(conf->mddev, "wait barrier"); 977 wait_event_lock_irq(conf->wait_barrier, 978 !conf->barrier || 979 (atomic_read(&conf->nr_pending) && 980 bio_list && 981 (!bio_list_empty(&bio_list[0]) || 982 !bio_list_empty(&bio_list[1]))) || 983 /* move on if recovery thread is 984 * blocked by us 985 */ 986 (conf->mddev->thread->tsk == current && 987 test_bit(MD_RECOVERY_RUNNING, 988 &conf->mddev->recovery) && 989 conf->nr_queued > 0), 990 conf->resync_lock); 991 } 992 conf->nr_waiting--; 993 if (!conf->nr_waiting) 994 wake_up(&conf->wait_barrier); 995 } 996 /* Only increment nr_pending when we wait */ 997 if (ret) 998 atomic_inc(&conf->nr_pending); 999 spin_unlock_irq(&conf->resync_lock); 1000 return ret; 1001 } 1002 1003 static void allow_barrier(struct r10conf *conf) 1004 { 1005 if ((atomic_dec_and_test(&conf->nr_pending)) || 1006 (conf->array_freeze_pending)) 1007 wake_up(&conf->wait_barrier); 1008 } 1009 1010 static void freeze_array(struct r10conf *conf, int extra) 1011 { 1012 /* stop syncio and normal IO and wait for everything to 1013 * go quiet. 1014 * We increment barrier and nr_waiting, and then 1015 * wait until nr_pending match nr_queued+extra 1016 * This is called in the context of one normal IO request 1017 * that has failed. Thus any sync request that might be pending 1018 * will be blocked by nr_pending, and we need to wait for 1019 * pending IO requests to complete or be queued for re-try. 1020 * Thus the number queued (nr_queued) plus this request (extra) 1021 * must match the number of pending IOs (nr_pending) before 1022 * we continue. 1023 */ 1024 spin_lock_irq(&conf->resync_lock); 1025 conf->array_freeze_pending++; 1026 conf->barrier++; 1027 conf->nr_waiting++; 1028 wait_event_lock_irq_cmd(conf->wait_barrier, 1029 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1030 conf->resync_lock, 1031 flush_pending_writes(conf)); 1032 1033 conf->array_freeze_pending--; 1034 spin_unlock_irq(&conf->resync_lock); 1035 } 1036 1037 static void unfreeze_array(struct r10conf *conf) 1038 { 1039 /* reverse the effect of the freeze */ 1040 spin_lock_irq(&conf->resync_lock); 1041 conf->barrier--; 1042 conf->nr_waiting--; 1043 wake_up(&conf->wait_barrier); 1044 spin_unlock_irq(&conf->resync_lock); 1045 } 1046 1047 static sector_t choose_data_offset(struct r10bio *r10_bio, 1048 struct md_rdev *rdev) 1049 { 1050 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1051 test_bit(R10BIO_Previous, &r10_bio->state)) 1052 return rdev->data_offset; 1053 else 1054 return rdev->new_data_offset; 1055 } 1056 1057 struct raid10_plug_cb { 1058 struct blk_plug_cb cb; 1059 struct bio_list pending; 1060 int pending_cnt; 1061 }; 1062 1063 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1064 { 1065 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1066 cb); 1067 struct mddev *mddev = plug->cb.data; 1068 struct r10conf *conf = mddev->private; 1069 struct bio *bio; 1070 1071 if (from_schedule || current->bio_list) { 1072 spin_lock_irq(&conf->device_lock); 1073 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1074 conf->pending_count += plug->pending_cnt; 1075 spin_unlock_irq(&conf->device_lock); 1076 wake_up(&conf->wait_barrier); 1077 md_wakeup_thread(mddev->thread); 1078 kfree(plug); 1079 return; 1080 } 1081 1082 /* we aren't scheduling, so we can do the write-out directly. */ 1083 bio = bio_list_get(&plug->pending); 1084 md_bitmap_unplug(mddev->bitmap); 1085 wake_up(&conf->wait_barrier); 1086 1087 while (bio) { /* submit pending writes */ 1088 struct bio *next = bio->bi_next; 1089 struct md_rdev *rdev = (void*)bio->bi_bdev; 1090 bio->bi_next = NULL; 1091 bio_set_dev(bio, rdev->bdev); 1092 if (test_bit(Faulty, &rdev->flags)) { 1093 bio_io_error(bio); 1094 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1095 !blk_queue_discard(bio->bi_bdev->bd_disk->queue))) 1096 /* Just ignore it */ 1097 bio_endio(bio); 1098 else 1099 submit_bio_noacct(bio); 1100 bio = next; 1101 } 1102 kfree(plug); 1103 } 1104 1105 /* 1106 * 1. Register the new request and wait if the reconstruction thread has put 1107 * up a bar for new requests. Continue immediately if no resync is active 1108 * currently. 1109 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1110 */ 1111 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1112 struct bio *bio, sector_t sectors) 1113 { 1114 /* Bail out if REQ_NOWAIT is set for the bio */ 1115 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) { 1116 bio_wouldblock_error(bio); 1117 return false; 1118 } 1119 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1120 bio->bi_iter.bi_sector < conf->reshape_progress && 1121 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1122 allow_barrier(conf); 1123 if (bio->bi_opf & REQ_NOWAIT) { 1124 bio_wouldblock_error(bio); 1125 return false; 1126 } 1127 raid10_log(conf->mddev, "wait reshape"); 1128 wait_event(conf->wait_barrier, 1129 conf->reshape_progress <= bio->bi_iter.bi_sector || 1130 conf->reshape_progress >= bio->bi_iter.bi_sector + 1131 sectors); 1132 wait_barrier(conf, false); 1133 } 1134 return true; 1135 } 1136 1137 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1138 struct r10bio *r10_bio) 1139 { 1140 struct r10conf *conf = mddev->private; 1141 struct bio *read_bio; 1142 const int op = bio_op(bio); 1143 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1144 int max_sectors; 1145 struct md_rdev *rdev; 1146 char b[BDEVNAME_SIZE]; 1147 int slot = r10_bio->read_slot; 1148 struct md_rdev *err_rdev = NULL; 1149 gfp_t gfp = GFP_NOIO; 1150 1151 if (slot >= 0 && r10_bio->devs[slot].rdev) { 1152 /* 1153 * This is an error retry, but we cannot 1154 * safely dereference the rdev in the r10_bio, 1155 * we must use the one in conf. 1156 * If it has already been disconnected (unlikely) 1157 * we lose the device name in error messages. 1158 */ 1159 int disk; 1160 /* 1161 * As we are blocking raid10, it is a little safer to 1162 * use __GFP_HIGH. 1163 */ 1164 gfp = GFP_NOIO | __GFP_HIGH; 1165 1166 rcu_read_lock(); 1167 disk = r10_bio->devs[slot].devnum; 1168 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1169 if (err_rdev) 1170 bdevname(err_rdev->bdev, b); 1171 else { 1172 strcpy(b, "???"); 1173 /* This never gets dereferenced */ 1174 err_rdev = r10_bio->devs[slot].rdev; 1175 } 1176 rcu_read_unlock(); 1177 } 1178 1179 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors)) 1180 return; 1181 rdev = read_balance(conf, r10_bio, &max_sectors); 1182 if (!rdev) { 1183 if (err_rdev) { 1184 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1185 mdname(mddev), b, 1186 (unsigned long long)r10_bio->sector); 1187 } 1188 raid_end_bio_io(r10_bio); 1189 return; 1190 } 1191 if (err_rdev) 1192 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1193 mdname(mddev), 1194 bdevname(rdev->bdev, b), 1195 (unsigned long long)r10_bio->sector); 1196 if (max_sectors < bio_sectors(bio)) { 1197 struct bio *split = bio_split(bio, max_sectors, 1198 gfp, &conf->bio_split); 1199 bio_chain(split, bio); 1200 allow_barrier(conf); 1201 submit_bio_noacct(bio); 1202 wait_barrier(conf, false); 1203 bio = split; 1204 r10_bio->master_bio = bio; 1205 r10_bio->sectors = max_sectors; 1206 } 1207 slot = r10_bio->read_slot; 1208 1209 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1210 r10_bio->start_time = bio_start_io_acct(bio); 1211 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1212 1213 r10_bio->devs[slot].bio = read_bio; 1214 r10_bio->devs[slot].rdev = rdev; 1215 1216 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1217 choose_data_offset(r10_bio, rdev); 1218 bio_set_dev(read_bio, rdev->bdev); 1219 read_bio->bi_end_io = raid10_end_read_request; 1220 bio_set_op_attrs(read_bio, op, do_sync); 1221 if (test_bit(FailFast, &rdev->flags) && 1222 test_bit(R10BIO_FailFast, &r10_bio->state)) 1223 read_bio->bi_opf |= MD_FAILFAST; 1224 read_bio->bi_private = r10_bio; 1225 1226 if (mddev->gendisk) 1227 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1228 r10_bio->sector); 1229 submit_bio_noacct(read_bio); 1230 return; 1231 } 1232 1233 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1234 struct bio *bio, bool replacement, 1235 int n_copy) 1236 { 1237 const int op = bio_op(bio); 1238 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1239 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1240 unsigned long flags; 1241 struct blk_plug_cb *cb; 1242 struct raid10_plug_cb *plug = NULL; 1243 struct r10conf *conf = mddev->private; 1244 struct md_rdev *rdev; 1245 int devnum = r10_bio->devs[n_copy].devnum; 1246 struct bio *mbio; 1247 1248 if (replacement) { 1249 rdev = conf->mirrors[devnum].replacement; 1250 if (rdev == NULL) { 1251 /* Replacement just got moved to main 'rdev' */ 1252 smp_mb(); 1253 rdev = conf->mirrors[devnum].rdev; 1254 } 1255 } else 1256 rdev = conf->mirrors[devnum].rdev; 1257 1258 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1259 if (replacement) 1260 r10_bio->devs[n_copy].repl_bio = mbio; 1261 else 1262 r10_bio->devs[n_copy].bio = mbio; 1263 1264 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1265 choose_data_offset(r10_bio, rdev)); 1266 bio_set_dev(mbio, rdev->bdev); 1267 mbio->bi_end_io = raid10_end_write_request; 1268 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1269 if (!replacement && test_bit(FailFast, 1270 &conf->mirrors[devnum].rdev->flags) 1271 && enough(conf, devnum)) 1272 mbio->bi_opf |= MD_FAILFAST; 1273 mbio->bi_private = r10_bio; 1274 1275 if (conf->mddev->gendisk) 1276 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk), 1277 r10_bio->sector); 1278 /* flush_pending_writes() needs access to the rdev so...*/ 1279 mbio->bi_bdev = (void *)rdev; 1280 1281 atomic_inc(&r10_bio->remaining); 1282 1283 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1284 if (cb) 1285 plug = container_of(cb, struct raid10_plug_cb, cb); 1286 else 1287 plug = NULL; 1288 if (plug) { 1289 bio_list_add(&plug->pending, mbio); 1290 plug->pending_cnt++; 1291 } else { 1292 spin_lock_irqsave(&conf->device_lock, flags); 1293 bio_list_add(&conf->pending_bio_list, mbio); 1294 conf->pending_count++; 1295 spin_unlock_irqrestore(&conf->device_lock, flags); 1296 md_wakeup_thread(mddev->thread); 1297 } 1298 } 1299 1300 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio) 1301 { 1302 int i; 1303 struct r10conf *conf = mddev->private; 1304 struct md_rdev *blocked_rdev; 1305 1306 retry_wait: 1307 blocked_rdev = NULL; 1308 rcu_read_lock(); 1309 for (i = 0; i < conf->copies; i++) { 1310 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1311 struct md_rdev *rrdev = rcu_dereference( 1312 conf->mirrors[i].replacement); 1313 if (rdev == rrdev) 1314 rrdev = NULL; 1315 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1316 atomic_inc(&rdev->nr_pending); 1317 blocked_rdev = rdev; 1318 break; 1319 } 1320 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1321 atomic_inc(&rrdev->nr_pending); 1322 blocked_rdev = rrdev; 1323 break; 1324 } 1325 1326 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1327 sector_t first_bad; 1328 sector_t dev_sector = r10_bio->devs[i].addr; 1329 int bad_sectors; 1330 int is_bad; 1331 1332 /* 1333 * Discard request doesn't care the write result 1334 * so it doesn't need to wait blocked disk here. 1335 */ 1336 if (!r10_bio->sectors) 1337 continue; 1338 1339 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors, 1340 &first_bad, &bad_sectors); 1341 if (is_bad < 0) { 1342 /* 1343 * Mustn't write here until the bad block 1344 * is acknowledged 1345 */ 1346 atomic_inc(&rdev->nr_pending); 1347 set_bit(BlockedBadBlocks, &rdev->flags); 1348 blocked_rdev = rdev; 1349 break; 1350 } 1351 } 1352 } 1353 rcu_read_unlock(); 1354 1355 if (unlikely(blocked_rdev)) { 1356 /* Have to wait for this device to get unblocked, then retry */ 1357 allow_barrier(conf); 1358 raid10_log(conf->mddev, "%s wait rdev %d blocked", 1359 __func__, blocked_rdev->raid_disk); 1360 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1361 wait_barrier(conf, false); 1362 goto retry_wait; 1363 } 1364 } 1365 1366 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1367 struct r10bio *r10_bio) 1368 { 1369 struct r10conf *conf = mddev->private; 1370 int i; 1371 sector_t sectors; 1372 int max_sectors; 1373 1374 if ((mddev_is_clustered(mddev) && 1375 md_cluster_ops->area_resyncing(mddev, WRITE, 1376 bio->bi_iter.bi_sector, 1377 bio_end_sector(bio)))) { 1378 DEFINE_WAIT(w); 1379 /* Bail out if REQ_NOWAIT is set for the bio */ 1380 if (bio->bi_opf & REQ_NOWAIT) { 1381 bio_wouldblock_error(bio); 1382 return; 1383 } 1384 for (;;) { 1385 prepare_to_wait(&conf->wait_barrier, 1386 &w, TASK_IDLE); 1387 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1388 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1389 break; 1390 schedule(); 1391 } 1392 finish_wait(&conf->wait_barrier, &w); 1393 } 1394 1395 sectors = r10_bio->sectors; 1396 if (!regular_request_wait(mddev, conf, bio, sectors)) 1397 return; 1398 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1399 (mddev->reshape_backwards 1400 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1401 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1402 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1403 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1404 /* Need to update reshape_position in metadata */ 1405 mddev->reshape_position = conf->reshape_progress; 1406 set_mask_bits(&mddev->sb_flags, 0, 1407 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1408 md_wakeup_thread(mddev->thread); 1409 if (bio->bi_opf & REQ_NOWAIT) { 1410 allow_barrier(conf); 1411 bio_wouldblock_error(bio); 1412 return; 1413 } 1414 raid10_log(conf->mddev, "wait reshape metadata"); 1415 wait_event(mddev->sb_wait, 1416 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1417 1418 conf->reshape_safe = mddev->reshape_position; 1419 } 1420 1421 /* first select target devices under rcu_lock and 1422 * inc refcount on their rdev. Record them by setting 1423 * bios[x] to bio 1424 * If there are known/acknowledged bad blocks on any device 1425 * on which we have seen a write error, we want to avoid 1426 * writing to those blocks. This potentially requires several 1427 * writes to write around the bad blocks. Each set of writes 1428 * gets its own r10_bio with a set of bios attached. 1429 */ 1430 1431 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1432 raid10_find_phys(conf, r10_bio); 1433 1434 wait_blocked_dev(mddev, r10_bio); 1435 1436 rcu_read_lock(); 1437 max_sectors = r10_bio->sectors; 1438 1439 for (i = 0; i < conf->copies; i++) { 1440 int d = r10_bio->devs[i].devnum; 1441 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1442 struct md_rdev *rrdev = rcu_dereference( 1443 conf->mirrors[d].replacement); 1444 if (rdev == rrdev) 1445 rrdev = NULL; 1446 if (rdev && (test_bit(Faulty, &rdev->flags))) 1447 rdev = NULL; 1448 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1449 rrdev = NULL; 1450 1451 r10_bio->devs[i].bio = NULL; 1452 r10_bio->devs[i].repl_bio = NULL; 1453 1454 if (!rdev && !rrdev) { 1455 set_bit(R10BIO_Degraded, &r10_bio->state); 1456 continue; 1457 } 1458 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1459 sector_t first_bad; 1460 sector_t dev_sector = r10_bio->devs[i].addr; 1461 int bad_sectors; 1462 int is_bad; 1463 1464 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1465 &first_bad, &bad_sectors); 1466 if (is_bad && first_bad <= dev_sector) { 1467 /* Cannot write here at all */ 1468 bad_sectors -= (dev_sector - first_bad); 1469 if (bad_sectors < max_sectors) 1470 /* Mustn't write more than bad_sectors 1471 * to other devices yet 1472 */ 1473 max_sectors = bad_sectors; 1474 /* We don't set R10BIO_Degraded as that 1475 * only applies if the disk is missing, 1476 * so it might be re-added, and we want to 1477 * know to recover this chunk. 1478 * In this case the device is here, and the 1479 * fact that this chunk is not in-sync is 1480 * recorded in the bad block log. 1481 */ 1482 continue; 1483 } 1484 if (is_bad) { 1485 int good_sectors = first_bad - dev_sector; 1486 if (good_sectors < max_sectors) 1487 max_sectors = good_sectors; 1488 } 1489 } 1490 if (rdev) { 1491 r10_bio->devs[i].bio = bio; 1492 atomic_inc(&rdev->nr_pending); 1493 } 1494 if (rrdev) { 1495 r10_bio->devs[i].repl_bio = bio; 1496 atomic_inc(&rrdev->nr_pending); 1497 } 1498 } 1499 rcu_read_unlock(); 1500 1501 if (max_sectors < r10_bio->sectors) 1502 r10_bio->sectors = max_sectors; 1503 1504 if (r10_bio->sectors < bio_sectors(bio)) { 1505 struct bio *split = bio_split(bio, r10_bio->sectors, 1506 GFP_NOIO, &conf->bio_split); 1507 bio_chain(split, bio); 1508 allow_barrier(conf); 1509 submit_bio_noacct(bio); 1510 wait_barrier(conf, false); 1511 bio = split; 1512 r10_bio->master_bio = bio; 1513 } 1514 1515 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1516 r10_bio->start_time = bio_start_io_acct(bio); 1517 atomic_set(&r10_bio->remaining, 1); 1518 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1519 1520 for (i = 0; i < conf->copies; i++) { 1521 if (r10_bio->devs[i].bio) 1522 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1523 if (r10_bio->devs[i].repl_bio) 1524 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1525 } 1526 one_write_done(r10_bio); 1527 } 1528 1529 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1530 { 1531 struct r10conf *conf = mddev->private; 1532 struct r10bio *r10_bio; 1533 1534 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1535 1536 r10_bio->master_bio = bio; 1537 r10_bio->sectors = sectors; 1538 1539 r10_bio->mddev = mddev; 1540 r10_bio->sector = bio->bi_iter.bi_sector; 1541 r10_bio->state = 0; 1542 r10_bio->read_slot = -1; 1543 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * 1544 conf->geo.raid_disks); 1545 1546 if (bio_data_dir(bio) == READ) 1547 raid10_read_request(mddev, bio, r10_bio); 1548 else 1549 raid10_write_request(mddev, bio, r10_bio); 1550 } 1551 1552 static void raid_end_discard_bio(struct r10bio *r10bio) 1553 { 1554 struct r10conf *conf = r10bio->mddev->private; 1555 struct r10bio *first_r10bio; 1556 1557 while (atomic_dec_and_test(&r10bio->remaining)) { 1558 1559 allow_barrier(conf); 1560 1561 if (!test_bit(R10BIO_Discard, &r10bio->state)) { 1562 first_r10bio = (struct r10bio *)r10bio->master_bio; 1563 free_r10bio(r10bio); 1564 r10bio = first_r10bio; 1565 } else { 1566 md_write_end(r10bio->mddev); 1567 bio_endio(r10bio->master_bio); 1568 free_r10bio(r10bio); 1569 break; 1570 } 1571 } 1572 } 1573 1574 static void raid10_end_discard_request(struct bio *bio) 1575 { 1576 struct r10bio *r10_bio = bio->bi_private; 1577 struct r10conf *conf = r10_bio->mddev->private; 1578 struct md_rdev *rdev = NULL; 1579 int dev; 1580 int slot, repl; 1581 1582 /* 1583 * We don't care the return value of discard bio 1584 */ 1585 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 1586 set_bit(R10BIO_Uptodate, &r10_bio->state); 1587 1588 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1589 if (repl) 1590 rdev = conf->mirrors[dev].replacement; 1591 if (!rdev) { 1592 /* 1593 * raid10_remove_disk uses smp_mb to make sure rdev is set to 1594 * replacement before setting replacement to NULL. It can read 1595 * rdev first without barrier protect even replacment is NULL 1596 */ 1597 smp_rmb(); 1598 rdev = conf->mirrors[dev].rdev; 1599 } 1600 1601 raid_end_discard_bio(r10_bio); 1602 rdev_dec_pending(rdev, conf->mddev); 1603 } 1604 1605 /* 1606 * There are some limitations to handle discard bio 1607 * 1st, the discard size is bigger than stripe_size*2. 1608 * 2st, if the discard bio spans reshape progress, we use the old way to 1609 * handle discard bio 1610 */ 1611 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio) 1612 { 1613 struct r10conf *conf = mddev->private; 1614 struct geom *geo = &conf->geo; 1615 int far_copies = geo->far_copies; 1616 bool first_copy = true; 1617 struct r10bio *r10_bio, *first_r10bio; 1618 struct bio *split; 1619 int disk; 1620 sector_t chunk; 1621 unsigned int stripe_size; 1622 unsigned int stripe_data_disks; 1623 sector_t split_size; 1624 sector_t bio_start, bio_end; 1625 sector_t first_stripe_index, last_stripe_index; 1626 sector_t start_disk_offset; 1627 unsigned int start_disk_index; 1628 sector_t end_disk_offset; 1629 unsigned int end_disk_index; 1630 unsigned int remainder; 1631 1632 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1633 return -EAGAIN; 1634 1635 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) { 1636 bio_wouldblock_error(bio); 1637 return 0; 1638 } 1639 wait_barrier(conf, false); 1640 1641 /* 1642 * Check reshape again to avoid reshape happens after checking 1643 * MD_RECOVERY_RESHAPE and before wait_barrier 1644 */ 1645 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1646 goto out; 1647 1648 if (geo->near_copies) 1649 stripe_data_disks = geo->raid_disks / geo->near_copies + 1650 geo->raid_disks % geo->near_copies; 1651 else 1652 stripe_data_disks = geo->raid_disks; 1653 1654 stripe_size = stripe_data_disks << geo->chunk_shift; 1655 1656 bio_start = bio->bi_iter.bi_sector; 1657 bio_end = bio_end_sector(bio); 1658 1659 /* 1660 * Maybe one discard bio is smaller than strip size or across one 1661 * stripe and discard region is larger than one stripe size. For far 1662 * offset layout, if the discard region is not aligned with stripe 1663 * size, there is hole when we submit discard bio to member disk. 1664 * For simplicity, we only handle discard bio which discard region 1665 * is bigger than stripe_size * 2 1666 */ 1667 if (bio_sectors(bio) < stripe_size*2) 1668 goto out; 1669 1670 /* 1671 * Keep bio aligned with strip size. 1672 */ 1673 div_u64_rem(bio_start, stripe_size, &remainder); 1674 if (remainder) { 1675 split_size = stripe_size - remainder; 1676 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1677 bio_chain(split, bio); 1678 allow_barrier(conf); 1679 /* Resend the fist split part */ 1680 submit_bio_noacct(split); 1681 wait_barrier(conf, false); 1682 } 1683 div_u64_rem(bio_end, stripe_size, &remainder); 1684 if (remainder) { 1685 split_size = bio_sectors(bio) - remainder; 1686 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1687 bio_chain(split, bio); 1688 allow_barrier(conf); 1689 /* Resend the second split part */ 1690 submit_bio_noacct(bio); 1691 bio = split; 1692 wait_barrier(conf, false); 1693 } 1694 1695 bio_start = bio->bi_iter.bi_sector; 1696 bio_end = bio_end_sector(bio); 1697 1698 /* 1699 * Raid10 uses chunk as the unit to store data. It's similar like raid0. 1700 * One stripe contains the chunks from all member disk (one chunk from 1701 * one disk at the same HBA address). For layout detail, see 'man md 4' 1702 */ 1703 chunk = bio_start >> geo->chunk_shift; 1704 chunk *= geo->near_copies; 1705 first_stripe_index = chunk; 1706 start_disk_index = sector_div(first_stripe_index, geo->raid_disks); 1707 if (geo->far_offset) 1708 first_stripe_index *= geo->far_copies; 1709 start_disk_offset = (bio_start & geo->chunk_mask) + 1710 (first_stripe_index << geo->chunk_shift); 1711 1712 chunk = bio_end >> geo->chunk_shift; 1713 chunk *= geo->near_copies; 1714 last_stripe_index = chunk; 1715 end_disk_index = sector_div(last_stripe_index, geo->raid_disks); 1716 if (geo->far_offset) 1717 last_stripe_index *= geo->far_copies; 1718 end_disk_offset = (bio_end & geo->chunk_mask) + 1719 (last_stripe_index << geo->chunk_shift); 1720 1721 retry_discard: 1722 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1723 r10_bio->mddev = mddev; 1724 r10_bio->state = 0; 1725 r10_bio->sectors = 0; 1726 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks); 1727 wait_blocked_dev(mddev, r10_bio); 1728 1729 /* 1730 * For far layout it needs more than one r10bio to cover all regions. 1731 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio 1732 * to record the discard bio. Other r10bio->master_bio record the first 1733 * r10bio. The first r10bio only release after all other r10bios finish. 1734 * The discard bio returns only first r10bio finishes 1735 */ 1736 if (first_copy) { 1737 r10_bio->master_bio = bio; 1738 set_bit(R10BIO_Discard, &r10_bio->state); 1739 first_copy = false; 1740 first_r10bio = r10_bio; 1741 } else 1742 r10_bio->master_bio = (struct bio *)first_r10bio; 1743 1744 /* 1745 * first select target devices under rcu_lock and 1746 * inc refcount on their rdev. Record them by setting 1747 * bios[x] to bio 1748 */ 1749 rcu_read_lock(); 1750 for (disk = 0; disk < geo->raid_disks; disk++) { 1751 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev); 1752 struct md_rdev *rrdev = rcu_dereference( 1753 conf->mirrors[disk].replacement); 1754 1755 r10_bio->devs[disk].bio = NULL; 1756 r10_bio->devs[disk].repl_bio = NULL; 1757 1758 if (rdev && (test_bit(Faulty, &rdev->flags))) 1759 rdev = NULL; 1760 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1761 rrdev = NULL; 1762 if (!rdev && !rrdev) 1763 continue; 1764 1765 if (rdev) { 1766 r10_bio->devs[disk].bio = bio; 1767 atomic_inc(&rdev->nr_pending); 1768 } 1769 if (rrdev) { 1770 r10_bio->devs[disk].repl_bio = bio; 1771 atomic_inc(&rrdev->nr_pending); 1772 } 1773 } 1774 rcu_read_unlock(); 1775 1776 atomic_set(&r10_bio->remaining, 1); 1777 for (disk = 0; disk < geo->raid_disks; disk++) { 1778 sector_t dev_start, dev_end; 1779 struct bio *mbio, *rbio = NULL; 1780 1781 /* 1782 * Now start to calculate the start and end address for each disk. 1783 * The space between dev_start and dev_end is the discard region. 1784 * 1785 * For dev_start, it needs to consider three conditions: 1786 * 1st, the disk is before start_disk, you can imagine the disk in 1787 * the next stripe. So the dev_start is the start address of next 1788 * stripe. 1789 * 2st, the disk is after start_disk, it means the disk is at the 1790 * same stripe of first disk 1791 * 3st, the first disk itself, we can use start_disk_offset directly 1792 */ 1793 if (disk < start_disk_index) 1794 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors; 1795 else if (disk > start_disk_index) 1796 dev_start = first_stripe_index * mddev->chunk_sectors; 1797 else 1798 dev_start = start_disk_offset; 1799 1800 if (disk < end_disk_index) 1801 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors; 1802 else if (disk > end_disk_index) 1803 dev_end = last_stripe_index * mddev->chunk_sectors; 1804 else 1805 dev_end = end_disk_offset; 1806 1807 /* 1808 * It only handles discard bio which size is >= stripe size, so 1809 * dev_end > dev_start all the time. 1810 * It doesn't need to use rcu lock to get rdev here. We already 1811 * add rdev->nr_pending in the first loop. 1812 */ 1813 if (r10_bio->devs[disk].bio) { 1814 struct md_rdev *rdev = conf->mirrors[disk].rdev; 1815 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1816 mbio->bi_end_io = raid10_end_discard_request; 1817 mbio->bi_private = r10_bio; 1818 r10_bio->devs[disk].bio = mbio; 1819 r10_bio->devs[disk].devnum = disk; 1820 atomic_inc(&r10_bio->remaining); 1821 md_submit_discard_bio(mddev, rdev, mbio, 1822 dev_start + choose_data_offset(r10_bio, rdev), 1823 dev_end - dev_start); 1824 bio_endio(mbio); 1825 } 1826 if (r10_bio->devs[disk].repl_bio) { 1827 struct md_rdev *rrdev = conf->mirrors[disk].replacement; 1828 rbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1829 rbio->bi_end_io = raid10_end_discard_request; 1830 rbio->bi_private = r10_bio; 1831 r10_bio->devs[disk].repl_bio = rbio; 1832 r10_bio->devs[disk].devnum = disk; 1833 atomic_inc(&r10_bio->remaining); 1834 md_submit_discard_bio(mddev, rrdev, rbio, 1835 dev_start + choose_data_offset(r10_bio, rrdev), 1836 dev_end - dev_start); 1837 bio_endio(rbio); 1838 } 1839 } 1840 1841 if (!geo->far_offset && --far_copies) { 1842 first_stripe_index += geo->stride >> geo->chunk_shift; 1843 start_disk_offset += geo->stride; 1844 last_stripe_index += geo->stride >> geo->chunk_shift; 1845 end_disk_offset += geo->stride; 1846 atomic_inc(&first_r10bio->remaining); 1847 raid_end_discard_bio(r10_bio); 1848 wait_barrier(conf, false); 1849 goto retry_discard; 1850 } 1851 1852 raid_end_discard_bio(r10_bio); 1853 1854 return 0; 1855 out: 1856 allow_barrier(conf); 1857 return -EAGAIN; 1858 } 1859 1860 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1861 { 1862 struct r10conf *conf = mddev->private; 1863 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1864 int chunk_sects = chunk_mask + 1; 1865 int sectors = bio_sectors(bio); 1866 1867 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1868 && md_flush_request(mddev, bio)) 1869 return true; 1870 1871 if (!md_write_start(mddev, bio)) 1872 return false; 1873 1874 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1875 if (!raid10_handle_discard(mddev, bio)) 1876 return true; 1877 1878 /* 1879 * If this request crosses a chunk boundary, we need to split 1880 * it. 1881 */ 1882 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1883 sectors > chunk_sects 1884 && (conf->geo.near_copies < conf->geo.raid_disks 1885 || conf->prev.near_copies < 1886 conf->prev.raid_disks))) 1887 sectors = chunk_sects - 1888 (bio->bi_iter.bi_sector & 1889 (chunk_sects - 1)); 1890 __make_request(mddev, bio, sectors); 1891 1892 /* In case raid10d snuck in to freeze_array */ 1893 wake_up(&conf->wait_barrier); 1894 return true; 1895 } 1896 1897 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1898 { 1899 struct r10conf *conf = mddev->private; 1900 int i; 1901 1902 if (conf->geo.near_copies < conf->geo.raid_disks) 1903 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1904 if (conf->geo.near_copies > 1) 1905 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1906 if (conf->geo.far_copies > 1) { 1907 if (conf->geo.far_offset) 1908 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1909 else 1910 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1911 if (conf->geo.far_set_size != conf->geo.raid_disks) 1912 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1913 } 1914 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1915 conf->geo.raid_disks - mddev->degraded); 1916 rcu_read_lock(); 1917 for (i = 0; i < conf->geo.raid_disks; i++) { 1918 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1919 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1920 } 1921 rcu_read_unlock(); 1922 seq_printf(seq, "]"); 1923 } 1924 1925 /* check if there are enough drives for 1926 * every block to appear on atleast one. 1927 * Don't consider the device numbered 'ignore' 1928 * as we might be about to remove it. 1929 */ 1930 static int _enough(struct r10conf *conf, int previous, int ignore) 1931 { 1932 int first = 0; 1933 int has_enough = 0; 1934 int disks, ncopies; 1935 if (previous) { 1936 disks = conf->prev.raid_disks; 1937 ncopies = conf->prev.near_copies; 1938 } else { 1939 disks = conf->geo.raid_disks; 1940 ncopies = conf->geo.near_copies; 1941 } 1942 1943 rcu_read_lock(); 1944 do { 1945 int n = conf->copies; 1946 int cnt = 0; 1947 int this = first; 1948 while (n--) { 1949 struct md_rdev *rdev; 1950 if (this != ignore && 1951 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1952 test_bit(In_sync, &rdev->flags)) 1953 cnt++; 1954 this = (this+1) % disks; 1955 } 1956 if (cnt == 0) 1957 goto out; 1958 first = (first + ncopies) % disks; 1959 } while (first != 0); 1960 has_enough = 1; 1961 out: 1962 rcu_read_unlock(); 1963 return has_enough; 1964 } 1965 1966 static int enough(struct r10conf *conf, int ignore) 1967 { 1968 /* when calling 'enough', both 'prev' and 'geo' must 1969 * be stable. 1970 * This is ensured if ->reconfig_mutex or ->device_lock 1971 * is held. 1972 */ 1973 return _enough(conf, 0, ignore) && 1974 _enough(conf, 1, ignore); 1975 } 1976 1977 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1978 { 1979 char b[BDEVNAME_SIZE]; 1980 struct r10conf *conf = mddev->private; 1981 unsigned long flags; 1982 1983 /* 1984 * If it is not operational, then we have already marked it as dead 1985 * else if it is the last working disks with "fail_last_dev == false", 1986 * ignore the error, let the next level up know. 1987 * else mark the drive as failed 1988 */ 1989 spin_lock_irqsave(&conf->device_lock, flags); 1990 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1991 && !enough(conf, rdev->raid_disk)) { 1992 /* 1993 * Don't fail the drive, just return an IO error. 1994 */ 1995 spin_unlock_irqrestore(&conf->device_lock, flags); 1996 return; 1997 } 1998 if (test_and_clear_bit(In_sync, &rdev->flags)) 1999 mddev->degraded++; 2000 /* 2001 * If recovery is running, make sure it aborts. 2002 */ 2003 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2004 set_bit(Blocked, &rdev->flags); 2005 set_bit(Faulty, &rdev->flags); 2006 set_mask_bits(&mddev->sb_flags, 0, 2007 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 2008 spin_unlock_irqrestore(&conf->device_lock, flags); 2009 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 2010 "md/raid10:%s: Operation continuing on %d devices.\n", 2011 mdname(mddev), bdevname(rdev->bdev, b), 2012 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 2013 } 2014 2015 static void print_conf(struct r10conf *conf) 2016 { 2017 int i; 2018 struct md_rdev *rdev; 2019 2020 pr_debug("RAID10 conf printout:\n"); 2021 if (!conf) { 2022 pr_debug("(!conf)\n"); 2023 return; 2024 } 2025 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 2026 conf->geo.raid_disks); 2027 2028 /* This is only called with ->reconfix_mutex held, so 2029 * rcu protection of rdev is not needed */ 2030 for (i = 0; i < conf->geo.raid_disks; i++) { 2031 char b[BDEVNAME_SIZE]; 2032 rdev = conf->mirrors[i].rdev; 2033 if (rdev) 2034 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 2035 i, !test_bit(In_sync, &rdev->flags), 2036 !test_bit(Faulty, &rdev->flags), 2037 bdevname(rdev->bdev,b)); 2038 } 2039 } 2040 2041 static void close_sync(struct r10conf *conf) 2042 { 2043 wait_barrier(conf, false); 2044 allow_barrier(conf); 2045 2046 mempool_exit(&conf->r10buf_pool); 2047 } 2048 2049 static int raid10_spare_active(struct mddev *mddev) 2050 { 2051 int i; 2052 struct r10conf *conf = mddev->private; 2053 struct raid10_info *tmp; 2054 int count = 0; 2055 unsigned long flags; 2056 2057 /* 2058 * Find all non-in_sync disks within the RAID10 configuration 2059 * and mark them in_sync 2060 */ 2061 for (i = 0; i < conf->geo.raid_disks; i++) { 2062 tmp = conf->mirrors + i; 2063 if (tmp->replacement 2064 && tmp->replacement->recovery_offset == MaxSector 2065 && !test_bit(Faulty, &tmp->replacement->flags) 2066 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 2067 /* Replacement has just become active */ 2068 if (!tmp->rdev 2069 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 2070 count++; 2071 if (tmp->rdev) { 2072 /* Replaced device not technically faulty, 2073 * but we need to be sure it gets removed 2074 * and never re-added. 2075 */ 2076 set_bit(Faulty, &tmp->rdev->flags); 2077 sysfs_notify_dirent_safe( 2078 tmp->rdev->sysfs_state); 2079 } 2080 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 2081 } else if (tmp->rdev 2082 && tmp->rdev->recovery_offset == MaxSector 2083 && !test_bit(Faulty, &tmp->rdev->flags) 2084 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 2085 count++; 2086 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 2087 } 2088 } 2089 spin_lock_irqsave(&conf->device_lock, flags); 2090 mddev->degraded -= count; 2091 spin_unlock_irqrestore(&conf->device_lock, flags); 2092 2093 print_conf(conf); 2094 return count; 2095 } 2096 2097 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 2098 { 2099 struct r10conf *conf = mddev->private; 2100 int err = -EEXIST; 2101 int mirror; 2102 int first = 0; 2103 int last = conf->geo.raid_disks - 1; 2104 2105 if (mddev->recovery_cp < MaxSector) 2106 /* only hot-add to in-sync arrays, as recovery is 2107 * very different from resync 2108 */ 2109 return -EBUSY; 2110 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 2111 return -EINVAL; 2112 2113 if (md_integrity_add_rdev(rdev, mddev)) 2114 return -ENXIO; 2115 2116 if (rdev->raid_disk >= 0) 2117 first = last = rdev->raid_disk; 2118 2119 if (rdev->saved_raid_disk >= first && 2120 rdev->saved_raid_disk < conf->geo.raid_disks && 2121 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 2122 mirror = rdev->saved_raid_disk; 2123 else 2124 mirror = first; 2125 for ( ; mirror <= last ; mirror++) { 2126 struct raid10_info *p = &conf->mirrors[mirror]; 2127 if (p->recovery_disabled == mddev->recovery_disabled) 2128 continue; 2129 if (p->rdev) { 2130 if (!test_bit(WantReplacement, &p->rdev->flags) || 2131 p->replacement != NULL) 2132 continue; 2133 clear_bit(In_sync, &rdev->flags); 2134 set_bit(Replacement, &rdev->flags); 2135 rdev->raid_disk = mirror; 2136 err = 0; 2137 if (mddev->gendisk) 2138 disk_stack_limits(mddev->gendisk, rdev->bdev, 2139 rdev->data_offset << 9); 2140 conf->fullsync = 1; 2141 rcu_assign_pointer(p->replacement, rdev); 2142 break; 2143 } 2144 2145 if (mddev->gendisk) 2146 disk_stack_limits(mddev->gendisk, rdev->bdev, 2147 rdev->data_offset << 9); 2148 2149 p->head_position = 0; 2150 p->recovery_disabled = mddev->recovery_disabled - 1; 2151 rdev->raid_disk = mirror; 2152 err = 0; 2153 if (rdev->saved_raid_disk != mirror) 2154 conf->fullsync = 1; 2155 rcu_assign_pointer(p->rdev, rdev); 2156 break; 2157 } 2158 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 2159 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 2160 2161 print_conf(conf); 2162 return err; 2163 } 2164 2165 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 2166 { 2167 struct r10conf *conf = mddev->private; 2168 int err = 0; 2169 int number = rdev->raid_disk; 2170 struct md_rdev **rdevp; 2171 struct raid10_info *p = conf->mirrors + number; 2172 2173 print_conf(conf); 2174 if (rdev == p->rdev) 2175 rdevp = &p->rdev; 2176 else if (rdev == p->replacement) 2177 rdevp = &p->replacement; 2178 else 2179 return 0; 2180 2181 if (test_bit(In_sync, &rdev->flags) || 2182 atomic_read(&rdev->nr_pending)) { 2183 err = -EBUSY; 2184 goto abort; 2185 } 2186 /* Only remove non-faulty devices if recovery 2187 * is not possible. 2188 */ 2189 if (!test_bit(Faulty, &rdev->flags) && 2190 mddev->recovery_disabled != p->recovery_disabled && 2191 (!p->replacement || p->replacement == rdev) && 2192 number < conf->geo.raid_disks && 2193 enough(conf, -1)) { 2194 err = -EBUSY; 2195 goto abort; 2196 } 2197 *rdevp = NULL; 2198 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 2199 synchronize_rcu(); 2200 if (atomic_read(&rdev->nr_pending)) { 2201 /* lost the race, try later */ 2202 err = -EBUSY; 2203 *rdevp = rdev; 2204 goto abort; 2205 } 2206 } 2207 if (p->replacement) { 2208 /* We must have just cleared 'rdev' */ 2209 p->rdev = p->replacement; 2210 clear_bit(Replacement, &p->replacement->flags); 2211 smp_mb(); /* Make sure other CPUs may see both as identical 2212 * but will never see neither -- if they are careful. 2213 */ 2214 p->replacement = NULL; 2215 } 2216 2217 clear_bit(WantReplacement, &rdev->flags); 2218 err = md_integrity_register(mddev); 2219 2220 abort: 2221 2222 print_conf(conf); 2223 return err; 2224 } 2225 2226 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 2227 { 2228 struct r10conf *conf = r10_bio->mddev->private; 2229 2230 if (!bio->bi_status) 2231 set_bit(R10BIO_Uptodate, &r10_bio->state); 2232 else 2233 /* The write handler will notice the lack of 2234 * R10BIO_Uptodate and record any errors etc 2235 */ 2236 atomic_add(r10_bio->sectors, 2237 &conf->mirrors[d].rdev->corrected_errors); 2238 2239 /* for reconstruct, we always reschedule after a read. 2240 * for resync, only after all reads 2241 */ 2242 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 2243 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 2244 atomic_dec_and_test(&r10_bio->remaining)) { 2245 /* we have read all the blocks, 2246 * do the comparison in process context in raid10d 2247 */ 2248 reschedule_retry(r10_bio); 2249 } 2250 } 2251 2252 static void end_sync_read(struct bio *bio) 2253 { 2254 struct r10bio *r10_bio = get_resync_r10bio(bio); 2255 struct r10conf *conf = r10_bio->mddev->private; 2256 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 2257 2258 __end_sync_read(r10_bio, bio, d); 2259 } 2260 2261 static void end_reshape_read(struct bio *bio) 2262 { 2263 /* reshape read bio isn't allocated from r10buf_pool */ 2264 struct r10bio *r10_bio = bio->bi_private; 2265 2266 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 2267 } 2268 2269 static void end_sync_request(struct r10bio *r10_bio) 2270 { 2271 struct mddev *mddev = r10_bio->mddev; 2272 2273 while (atomic_dec_and_test(&r10_bio->remaining)) { 2274 if (r10_bio->master_bio == NULL) { 2275 /* the primary of several recovery bios */ 2276 sector_t s = r10_bio->sectors; 2277 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2278 test_bit(R10BIO_WriteError, &r10_bio->state)) 2279 reschedule_retry(r10_bio); 2280 else 2281 put_buf(r10_bio); 2282 md_done_sync(mddev, s, 1); 2283 break; 2284 } else { 2285 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 2286 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2287 test_bit(R10BIO_WriteError, &r10_bio->state)) 2288 reschedule_retry(r10_bio); 2289 else 2290 put_buf(r10_bio); 2291 r10_bio = r10_bio2; 2292 } 2293 } 2294 } 2295 2296 static void end_sync_write(struct bio *bio) 2297 { 2298 struct r10bio *r10_bio = get_resync_r10bio(bio); 2299 struct mddev *mddev = r10_bio->mddev; 2300 struct r10conf *conf = mddev->private; 2301 int d; 2302 sector_t first_bad; 2303 int bad_sectors; 2304 int slot; 2305 int repl; 2306 struct md_rdev *rdev = NULL; 2307 2308 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2309 if (repl) 2310 rdev = conf->mirrors[d].replacement; 2311 else 2312 rdev = conf->mirrors[d].rdev; 2313 2314 if (bio->bi_status) { 2315 if (repl) 2316 md_error(mddev, rdev); 2317 else { 2318 set_bit(WriteErrorSeen, &rdev->flags); 2319 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2320 set_bit(MD_RECOVERY_NEEDED, 2321 &rdev->mddev->recovery); 2322 set_bit(R10BIO_WriteError, &r10_bio->state); 2323 } 2324 } else if (is_badblock(rdev, 2325 r10_bio->devs[slot].addr, 2326 r10_bio->sectors, 2327 &first_bad, &bad_sectors)) 2328 set_bit(R10BIO_MadeGood, &r10_bio->state); 2329 2330 rdev_dec_pending(rdev, mddev); 2331 2332 end_sync_request(r10_bio); 2333 } 2334 2335 /* 2336 * Note: sync and recover and handled very differently for raid10 2337 * This code is for resync. 2338 * For resync, we read through virtual addresses and read all blocks. 2339 * If there is any error, we schedule a write. The lowest numbered 2340 * drive is authoritative. 2341 * However requests come for physical address, so we need to map. 2342 * For every physical address there are raid_disks/copies virtual addresses, 2343 * which is always are least one, but is not necessarly an integer. 2344 * This means that a physical address can span multiple chunks, so we may 2345 * have to submit multiple io requests for a single sync request. 2346 */ 2347 /* 2348 * We check if all blocks are in-sync and only write to blocks that 2349 * aren't in sync 2350 */ 2351 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2352 { 2353 struct r10conf *conf = mddev->private; 2354 int i, first; 2355 struct bio *tbio, *fbio; 2356 int vcnt; 2357 struct page **tpages, **fpages; 2358 2359 atomic_set(&r10_bio->remaining, 1); 2360 2361 /* find the first device with a block */ 2362 for (i=0; i<conf->copies; i++) 2363 if (!r10_bio->devs[i].bio->bi_status) 2364 break; 2365 2366 if (i == conf->copies) 2367 goto done; 2368 2369 first = i; 2370 fbio = r10_bio->devs[i].bio; 2371 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2372 fbio->bi_iter.bi_idx = 0; 2373 fpages = get_resync_pages(fbio)->pages; 2374 2375 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2376 /* now find blocks with errors */ 2377 for (i=0 ; i < conf->copies ; i++) { 2378 int j, d; 2379 struct md_rdev *rdev; 2380 struct resync_pages *rp; 2381 2382 tbio = r10_bio->devs[i].bio; 2383 2384 if (tbio->bi_end_io != end_sync_read) 2385 continue; 2386 if (i == first) 2387 continue; 2388 2389 tpages = get_resync_pages(tbio)->pages; 2390 d = r10_bio->devs[i].devnum; 2391 rdev = conf->mirrors[d].rdev; 2392 if (!r10_bio->devs[i].bio->bi_status) { 2393 /* We know that the bi_io_vec layout is the same for 2394 * both 'first' and 'i', so we just compare them. 2395 * All vec entries are PAGE_SIZE; 2396 */ 2397 int sectors = r10_bio->sectors; 2398 for (j = 0; j < vcnt; j++) { 2399 int len = PAGE_SIZE; 2400 if (sectors < (len / 512)) 2401 len = sectors * 512; 2402 if (memcmp(page_address(fpages[j]), 2403 page_address(tpages[j]), 2404 len)) 2405 break; 2406 sectors -= len/512; 2407 } 2408 if (j == vcnt) 2409 continue; 2410 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2411 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2412 /* Don't fix anything. */ 2413 continue; 2414 } else if (test_bit(FailFast, &rdev->flags)) { 2415 /* Just give up on this device */ 2416 md_error(rdev->mddev, rdev); 2417 continue; 2418 } 2419 /* Ok, we need to write this bio, either to correct an 2420 * inconsistency or to correct an unreadable block. 2421 * First we need to fixup bv_offset, bv_len and 2422 * bi_vecs, as the read request might have corrupted these 2423 */ 2424 rp = get_resync_pages(tbio); 2425 bio_reset(tbio); 2426 2427 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2428 2429 rp->raid_bio = r10_bio; 2430 tbio->bi_private = rp; 2431 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2432 tbio->bi_end_io = end_sync_write; 2433 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2434 2435 bio_copy_data(tbio, fbio); 2436 2437 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2438 atomic_inc(&r10_bio->remaining); 2439 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2440 2441 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2442 tbio->bi_opf |= MD_FAILFAST; 2443 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2444 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev); 2445 submit_bio_noacct(tbio); 2446 } 2447 2448 /* Now write out to any replacement devices 2449 * that are active 2450 */ 2451 for (i = 0; i < conf->copies; i++) { 2452 int d; 2453 2454 tbio = r10_bio->devs[i].repl_bio; 2455 if (!tbio || !tbio->bi_end_io) 2456 continue; 2457 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2458 && r10_bio->devs[i].bio != fbio) 2459 bio_copy_data(tbio, fbio); 2460 d = r10_bio->devs[i].devnum; 2461 atomic_inc(&r10_bio->remaining); 2462 md_sync_acct(conf->mirrors[d].replacement->bdev, 2463 bio_sectors(tbio)); 2464 submit_bio_noacct(tbio); 2465 } 2466 2467 done: 2468 if (atomic_dec_and_test(&r10_bio->remaining)) { 2469 md_done_sync(mddev, r10_bio->sectors, 1); 2470 put_buf(r10_bio); 2471 } 2472 } 2473 2474 /* 2475 * Now for the recovery code. 2476 * Recovery happens across physical sectors. 2477 * We recover all non-is_sync drives by finding the virtual address of 2478 * each, and then choose a working drive that also has that virt address. 2479 * There is a separate r10_bio for each non-in_sync drive. 2480 * Only the first two slots are in use. The first for reading, 2481 * The second for writing. 2482 * 2483 */ 2484 static void fix_recovery_read_error(struct r10bio *r10_bio) 2485 { 2486 /* We got a read error during recovery. 2487 * We repeat the read in smaller page-sized sections. 2488 * If a read succeeds, write it to the new device or record 2489 * a bad block if we cannot. 2490 * If a read fails, record a bad block on both old and 2491 * new devices. 2492 */ 2493 struct mddev *mddev = r10_bio->mddev; 2494 struct r10conf *conf = mddev->private; 2495 struct bio *bio = r10_bio->devs[0].bio; 2496 sector_t sect = 0; 2497 int sectors = r10_bio->sectors; 2498 int idx = 0; 2499 int dr = r10_bio->devs[0].devnum; 2500 int dw = r10_bio->devs[1].devnum; 2501 struct page **pages = get_resync_pages(bio)->pages; 2502 2503 while (sectors) { 2504 int s = sectors; 2505 struct md_rdev *rdev; 2506 sector_t addr; 2507 int ok; 2508 2509 if (s > (PAGE_SIZE>>9)) 2510 s = PAGE_SIZE >> 9; 2511 2512 rdev = conf->mirrors[dr].rdev; 2513 addr = r10_bio->devs[0].addr + sect, 2514 ok = sync_page_io(rdev, 2515 addr, 2516 s << 9, 2517 pages[idx], 2518 REQ_OP_READ, 0, false); 2519 if (ok) { 2520 rdev = conf->mirrors[dw].rdev; 2521 addr = r10_bio->devs[1].addr + sect; 2522 ok = sync_page_io(rdev, 2523 addr, 2524 s << 9, 2525 pages[idx], 2526 REQ_OP_WRITE, 0, false); 2527 if (!ok) { 2528 set_bit(WriteErrorSeen, &rdev->flags); 2529 if (!test_and_set_bit(WantReplacement, 2530 &rdev->flags)) 2531 set_bit(MD_RECOVERY_NEEDED, 2532 &rdev->mddev->recovery); 2533 } 2534 } 2535 if (!ok) { 2536 /* We don't worry if we cannot set a bad block - 2537 * it really is bad so there is no loss in not 2538 * recording it yet 2539 */ 2540 rdev_set_badblocks(rdev, addr, s, 0); 2541 2542 if (rdev != conf->mirrors[dw].rdev) { 2543 /* need bad block on destination too */ 2544 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2545 addr = r10_bio->devs[1].addr + sect; 2546 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2547 if (!ok) { 2548 /* just abort the recovery */ 2549 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2550 mdname(mddev)); 2551 2552 conf->mirrors[dw].recovery_disabled 2553 = mddev->recovery_disabled; 2554 set_bit(MD_RECOVERY_INTR, 2555 &mddev->recovery); 2556 break; 2557 } 2558 } 2559 } 2560 2561 sectors -= s; 2562 sect += s; 2563 idx++; 2564 } 2565 } 2566 2567 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2568 { 2569 struct r10conf *conf = mddev->private; 2570 int d; 2571 struct bio *wbio, *wbio2; 2572 2573 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2574 fix_recovery_read_error(r10_bio); 2575 end_sync_request(r10_bio); 2576 return; 2577 } 2578 2579 /* 2580 * share the pages with the first bio 2581 * and submit the write request 2582 */ 2583 d = r10_bio->devs[1].devnum; 2584 wbio = r10_bio->devs[1].bio; 2585 wbio2 = r10_bio->devs[1].repl_bio; 2586 /* Need to test wbio2->bi_end_io before we call 2587 * submit_bio_noacct as if the former is NULL, 2588 * the latter is free to free wbio2. 2589 */ 2590 if (wbio2 && !wbio2->bi_end_io) 2591 wbio2 = NULL; 2592 if (wbio->bi_end_io) { 2593 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2594 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2595 submit_bio_noacct(wbio); 2596 } 2597 if (wbio2) { 2598 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2599 md_sync_acct(conf->mirrors[d].replacement->bdev, 2600 bio_sectors(wbio2)); 2601 submit_bio_noacct(wbio2); 2602 } 2603 } 2604 2605 /* 2606 * Used by fix_read_error() to decay the per rdev read_errors. 2607 * We halve the read error count for every hour that has elapsed 2608 * since the last recorded read error. 2609 * 2610 */ 2611 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2612 { 2613 long cur_time_mon; 2614 unsigned long hours_since_last; 2615 unsigned int read_errors = atomic_read(&rdev->read_errors); 2616 2617 cur_time_mon = ktime_get_seconds(); 2618 2619 if (rdev->last_read_error == 0) { 2620 /* first time we've seen a read error */ 2621 rdev->last_read_error = cur_time_mon; 2622 return; 2623 } 2624 2625 hours_since_last = (long)(cur_time_mon - 2626 rdev->last_read_error) / 3600; 2627 2628 rdev->last_read_error = cur_time_mon; 2629 2630 /* 2631 * if hours_since_last is > the number of bits in read_errors 2632 * just set read errors to 0. We do this to avoid 2633 * overflowing the shift of read_errors by hours_since_last. 2634 */ 2635 if (hours_since_last >= 8 * sizeof(read_errors)) 2636 atomic_set(&rdev->read_errors, 0); 2637 else 2638 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2639 } 2640 2641 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2642 int sectors, struct page *page, int rw) 2643 { 2644 sector_t first_bad; 2645 int bad_sectors; 2646 2647 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2648 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2649 return -1; 2650 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2651 /* success */ 2652 return 1; 2653 if (rw == WRITE) { 2654 set_bit(WriteErrorSeen, &rdev->flags); 2655 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2656 set_bit(MD_RECOVERY_NEEDED, 2657 &rdev->mddev->recovery); 2658 } 2659 /* need to record an error - either for the block or the device */ 2660 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2661 md_error(rdev->mddev, rdev); 2662 return 0; 2663 } 2664 2665 /* 2666 * This is a kernel thread which: 2667 * 2668 * 1. Retries failed read operations on working mirrors. 2669 * 2. Updates the raid superblock when problems encounter. 2670 * 3. Performs writes following reads for array synchronising. 2671 */ 2672 2673 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2674 { 2675 int sect = 0; /* Offset from r10_bio->sector */ 2676 int sectors = r10_bio->sectors; 2677 struct md_rdev *rdev; 2678 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2679 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2680 2681 /* still own a reference to this rdev, so it cannot 2682 * have been cleared recently. 2683 */ 2684 rdev = conf->mirrors[d].rdev; 2685 2686 if (test_bit(Faulty, &rdev->flags)) 2687 /* drive has already been failed, just ignore any 2688 more fix_read_error() attempts */ 2689 return; 2690 2691 check_decay_read_errors(mddev, rdev); 2692 atomic_inc(&rdev->read_errors); 2693 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2694 char b[BDEVNAME_SIZE]; 2695 bdevname(rdev->bdev, b); 2696 2697 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2698 mdname(mddev), b, 2699 atomic_read(&rdev->read_errors), max_read_errors); 2700 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2701 mdname(mddev), b); 2702 md_error(mddev, rdev); 2703 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2704 return; 2705 } 2706 2707 while(sectors) { 2708 int s = sectors; 2709 int sl = r10_bio->read_slot; 2710 int success = 0; 2711 int start; 2712 2713 if (s > (PAGE_SIZE>>9)) 2714 s = PAGE_SIZE >> 9; 2715 2716 rcu_read_lock(); 2717 do { 2718 sector_t first_bad; 2719 int bad_sectors; 2720 2721 d = r10_bio->devs[sl].devnum; 2722 rdev = rcu_dereference(conf->mirrors[d].rdev); 2723 if (rdev && 2724 test_bit(In_sync, &rdev->flags) && 2725 !test_bit(Faulty, &rdev->flags) && 2726 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2727 &first_bad, &bad_sectors) == 0) { 2728 atomic_inc(&rdev->nr_pending); 2729 rcu_read_unlock(); 2730 success = sync_page_io(rdev, 2731 r10_bio->devs[sl].addr + 2732 sect, 2733 s<<9, 2734 conf->tmppage, 2735 REQ_OP_READ, 0, false); 2736 rdev_dec_pending(rdev, mddev); 2737 rcu_read_lock(); 2738 if (success) 2739 break; 2740 } 2741 sl++; 2742 if (sl == conf->copies) 2743 sl = 0; 2744 } while (!success && sl != r10_bio->read_slot); 2745 rcu_read_unlock(); 2746 2747 if (!success) { 2748 /* Cannot read from anywhere, just mark the block 2749 * as bad on the first device to discourage future 2750 * reads. 2751 */ 2752 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2753 rdev = conf->mirrors[dn].rdev; 2754 2755 if (!rdev_set_badblocks( 2756 rdev, 2757 r10_bio->devs[r10_bio->read_slot].addr 2758 + sect, 2759 s, 0)) { 2760 md_error(mddev, rdev); 2761 r10_bio->devs[r10_bio->read_slot].bio 2762 = IO_BLOCKED; 2763 } 2764 break; 2765 } 2766 2767 start = sl; 2768 /* write it back and re-read */ 2769 rcu_read_lock(); 2770 while (sl != r10_bio->read_slot) { 2771 char b[BDEVNAME_SIZE]; 2772 2773 if (sl==0) 2774 sl = conf->copies; 2775 sl--; 2776 d = r10_bio->devs[sl].devnum; 2777 rdev = rcu_dereference(conf->mirrors[d].rdev); 2778 if (!rdev || 2779 test_bit(Faulty, &rdev->flags) || 2780 !test_bit(In_sync, &rdev->flags)) 2781 continue; 2782 2783 atomic_inc(&rdev->nr_pending); 2784 rcu_read_unlock(); 2785 if (r10_sync_page_io(rdev, 2786 r10_bio->devs[sl].addr + 2787 sect, 2788 s, conf->tmppage, WRITE) 2789 == 0) { 2790 /* Well, this device is dead */ 2791 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2792 mdname(mddev), s, 2793 (unsigned long long)( 2794 sect + 2795 choose_data_offset(r10_bio, 2796 rdev)), 2797 bdevname(rdev->bdev, b)); 2798 pr_notice("md/raid10:%s: %s: failing drive\n", 2799 mdname(mddev), 2800 bdevname(rdev->bdev, b)); 2801 } 2802 rdev_dec_pending(rdev, mddev); 2803 rcu_read_lock(); 2804 } 2805 sl = start; 2806 while (sl != r10_bio->read_slot) { 2807 char b[BDEVNAME_SIZE]; 2808 2809 if (sl==0) 2810 sl = conf->copies; 2811 sl--; 2812 d = r10_bio->devs[sl].devnum; 2813 rdev = rcu_dereference(conf->mirrors[d].rdev); 2814 if (!rdev || 2815 test_bit(Faulty, &rdev->flags) || 2816 !test_bit(In_sync, &rdev->flags)) 2817 continue; 2818 2819 atomic_inc(&rdev->nr_pending); 2820 rcu_read_unlock(); 2821 switch (r10_sync_page_io(rdev, 2822 r10_bio->devs[sl].addr + 2823 sect, 2824 s, conf->tmppage, 2825 READ)) { 2826 case 0: 2827 /* Well, this device is dead */ 2828 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2829 mdname(mddev), s, 2830 (unsigned long long)( 2831 sect + 2832 choose_data_offset(r10_bio, rdev)), 2833 bdevname(rdev->bdev, b)); 2834 pr_notice("md/raid10:%s: %s: failing drive\n", 2835 mdname(mddev), 2836 bdevname(rdev->bdev, b)); 2837 break; 2838 case 1: 2839 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2840 mdname(mddev), s, 2841 (unsigned long long)( 2842 sect + 2843 choose_data_offset(r10_bio, rdev)), 2844 bdevname(rdev->bdev, b)); 2845 atomic_add(s, &rdev->corrected_errors); 2846 } 2847 2848 rdev_dec_pending(rdev, mddev); 2849 rcu_read_lock(); 2850 } 2851 rcu_read_unlock(); 2852 2853 sectors -= s; 2854 sect += s; 2855 } 2856 } 2857 2858 static int narrow_write_error(struct r10bio *r10_bio, int i) 2859 { 2860 struct bio *bio = r10_bio->master_bio; 2861 struct mddev *mddev = r10_bio->mddev; 2862 struct r10conf *conf = mddev->private; 2863 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2864 /* bio has the data to be written to slot 'i' where 2865 * we just recently had a write error. 2866 * We repeatedly clone the bio and trim down to one block, 2867 * then try the write. Where the write fails we record 2868 * a bad block. 2869 * It is conceivable that the bio doesn't exactly align with 2870 * blocks. We must handle this. 2871 * 2872 * We currently own a reference to the rdev. 2873 */ 2874 2875 int block_sectors; 2876 sector_t sector; 2877 int sectors; 2878 int sect_to_write = r10_bio->sectors; 2879 int ok = 1; 2880 2881 if (rdev->badblocks.shift < 0) 2882 return 0; 2883 2884 block_sectors = roundup(1 << rdev->badblocks.shift, 2885 bdev_logical_block_size(rdev->bdev) >> 9); 2886 sector = r10_bio->sector; 2887 sectors = ((r10_bio->sector + block_sectors) 2888 & ~(sector_t)(block_sectors - 1)) 2889 - sector; 2890 2891 while (sect_to_write) { 2892 struct bio *wbio; 2893 sector_t wsector; 2894 if (sectors > sect_to_write) 2895 sectors = sect_to_write; 2896 /* Write at 'sector' for 'sectors' */ 2897 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 2898 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2899 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2900 wbio->bi_iter.bi_sector = wsector + 2901 choose_data_offset(r10_bio, rdev); 2902 bio_set_dev(wbio, rdev->bdev); 2903 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2904 2905 if (submit_bio_wait(wbio) < 0) 2906 /* Failure! */ 2907 ok = rdev_set_badblocks(rdev, wsector, 2908 sectors, 0) 2909 && ok; 2910 2911 bio_put(wbio); 2912 sect_to_write -= sectors; 2913 sector += sectors; 2914 sectors = block_sectors; 2915 } 2916 return ok; 2917 } 2918 2919 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2920 { 2921 int slot = r10_bio->read_slot; 2922 struct bio *bio; 2923 struct r10conf *conf = mddev->private; 2924 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2925 2926 /* we got a read error. Maybe the drive is bad. Maybe just 2927 * the block and we can fix it. 2928 * We freeze all other IO, and try reading the block from 2929 * other devices. When we find one, we re-write 2930 * and check it that fixes the read error. 2931 * This is all done synchronously while the array is 2932 * frozen. 2933 */ 2934 bio = r10_bio->devs[slot].bio; 2935 bio_put(bio); 2936 r10_bio->devs[slot].bio = NULL; 2937 2938 if (mddev->ro) 2939 r10_bio->devs[slot].bio = IO_BLOCKED; 2940 else if (!test_bit(FailFast, &rdev->flags)) { 2941 freeze_array(conf, 1); 2942 fix_read_error(conf, mddev, r10_bio); 2943 unfreeze_array(conf); 2944 } else 2945 md_error(mddev, rdev); 2946 2947 rdev_dec_pending(rdev, mddev); 2948 allow_barrier(conf); 2949 r10_bio->state = 0; 2950 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2951 } 2952 2953 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2954 { 2955 /* Some sort of write request has finished and it 2956 * succeeded in writing where we thought there was a 2957 * bad block. So forget the bad block. 2958 * Or possibly if failed and we need to record 2959 * a bad block. 2960 */ 2961 int m; 2962 struct md_rdev *rdev; 2963 2964 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2965 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2966 for (m = 0; m < conf->copies; m++) { 2967 int dev = r10_bio->devs[m].devnum; 2968 rdev = conf->mirrors[dev].rdev; 2969 if (r10_bio->devs[m].bio == NULL || 2970 r10_bio->devs[m].bio->bi_end_io == NULL) 2971 continue; 2972 if (!r10_bio->devs[m].bio->bi_status) { 2973 rdev_clear_badblocks( 2974 rdev, 2975 r10_bio->devs[m].addr, 2976 r10_bio->sectors, 0); 2977 } else { 2978 if (!rdev_set_badblocks( 2979 rdev, 2980 r10_bio->devs[m].addr, 2981 r10_bio->sectors, 0)) 2982 md_error(conf->mddev, rdev); 2983 } 2984 rdev = conf->mirrors[dev].replacement; 2985 if (r10_bio->devs[m].repl_bio == NULL || 2986 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2987 continue; 2988 2989 if (!r10_bio->devs[m].repl_bio->bi_status) { 2990 rdev_clear_badblocks( 2991 rdev, 2992 r10_bio->devs[m].addr, 2993 r10_bio->sectors, 0); 2994 } else { 2995 if (!rdev_set_badblocks( 2996 rdev, 2997 r10_bio->devs[m].addr, 2998 r10_bio->sectors, 0)) 2999 md_error(conf->mddev, rdev); 3000 } 3001 } 3002 put_buf(r10_bio); 3003 } else { 3004 bool fail = false; 3005 for (m = 0; m < conf->copies; m++) { 3006 int dev = r10_bio->devs[m].devnum; 3007 struct bio *bio = r10_bio->devs[m].bio; 3008 rdev = conf->mirrors[dev].rdev; 3009 if (bio == IO_MADE_GOOD) { 3010 rdev_clear_badblocks( 3011 rdev, 3012 r10_bio->devs[m].addr, 3013 r10_bio->sectors, 0); 3014 rdev_dec_pending(rdev, conf->mddev); 3015 } else if (bio != NULL && bio->bi_status) { 3016 fail = true; 3017 if (!narrow_write_error(r10_bio, m)) { 3018 md_error(conf->mddev, rdev); 3019 set_bit(R10BIO_Degraded, 3020 &r10_bio->state); 3021 } 3022 rdev_dec_pending(rdev, conf->mddev); 3023 } 3024 bio = r10_bio->devs[m].repl_bio; 3025 rdev = conf->mirrors[dev].replacement; 3026 if (rdev && bio == IO_MADE_GOOD) { 3027 rdev_clear_badblocks( 3028 rdev, 3029 r10_bio->devs[m].addr, 3030 r10_bio->sectors, 0); 3031 rdev_dec_pending(rdev, conf->mddev); 3032 } 3033 } 3034 if (fail) { 3035 spin_lock_irq(&conf->device_lock); 3036 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 3037 conf->nr_queued++; 3038 spin_unlock_irq(&conf->device_lock); 3039 /* 3040 * In case freeze_array() is waiting for condition 3041 * nr_pending == nr_queued + extra to be true. 3042 */ 3043 wake_up(&conf->wait_barrier); 3044 md_wakeup_thread(conf->mddev->thread); 3045 } else { 3046 if (test_bit(R10BIO_WriteError, 3047 &r10_bio->state)) 3048 close_write(r10_bio); 3049 raid_end_bio_io(r10_bio); 3050 } 3051 } 3052 } 3053 3054 static void raid10d(struct md_thread *thread) 3055 { 3056 struct mddev *mddev = thread->mddev; 3057 struct r10bio *r10_bio; 3058 unsigned long flags; 3059 struct r10conf *conf = mddev->private; 3060 struct list_head *head = &conf->retry_list; 3061 struct blk_plug plug; 3062 3063 md_check_recovery(mddev); 3064 3065 if (!list_empty_careful(&conf->bio_end_io_list) && 3066 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3067 LIST_HEAD(tmp); 3068 spin_lock_irqsave(&conf->device_lock, flags); 3069 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3070 while (!list_empty(&conf->bio_end_io_list)) { 3071 list_move(conf->bio_end_io_list.prev, &tmp); 3072 conf->nr_queued--; 3073 } 3074 } 3075 spin_unlock_irqrestore(&conf->device_lock, flags); 3076 while (!list_empty(&tmp)) { 3077 r10_bio = list_first_entry(&tmp, struct r10bio, 3078 retry_list); 3079 list_del(&r10_bio->retry_list); 3080 if (mddev->degraded) 3081 set_bit(R10BIO_Degraded, &r10_bio->state); 3082 3083 if (test_bit(R10BIO_WriteError, 3084 &r10_bio->state)) 3085 close_write(r10_bio); 3086 raid_end_bio_io(r10_bio); 3087 } 3088 } 3089 3090 blk_start_plug(&plug); 3091 for (;;) { 3092 3093 flush_pending_writes(conf); 3094 3095 spin_lock_irqsave(&conf->device_lock, flags); 3096 if (list_empty(head)) { 3097 spin_unlock_irqrestore(&conf->device_lock, flags); 3098 break; 3099 } 3100 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 3101 list_del(head->prev); 3102 conf->nr_queued--; 3103 spin_unlock_irqrestore(&conf->device_lock, flags); 3104 3105 mddev = r10_bio->mddev; 3106 conf = mddev->private; 3107 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 3108 test_bit(R10BIO_WriteError, &r10_bio->state)) 3109 handle_write_completed(conf, r10_bio); 3110 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 3111 reshape_request_write(mddev, r10_bio); 3112 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 3113 sync_request_write(mddev, r10_bio); 3114 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 3115 recovery_request_write(mddev, r10_bio); 3116 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 3117 handle_read_error(mddev, r10_bio); 3118 else 3119 WARN_ON_ONCE(1); 3120 3121 cond_resched(); 3122 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 3123 md_check_recovery(mddev); 3124 } 3125 blk_finish_plug(&plug); 3126 } 3127 3128 static int init_resync(struct r10conf *conf) 3129 { 3130 int ret, buffs, i; 3131 3132 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 3133 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 3134 conf->have_replacement = 0; 3135 for (i = 0; i < conf->geo.raid_disks; i++) 3136 if (conf->mirrors[i].replacement) 3137 conf->have_replacement = 1; 3138 ret = mempool_init(&conf->r10buf_pool, buffs, 3139 r10buf_pool_alloc, r10buf_pool_free, conf); 3140 if (ret) 3141 return ret; 3142 conf->next_resync = 0; 3143 return 0; 3144 } 3145 3146 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 3147 { 3148 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 3149 struct rsync_pages *rp; 3150 struct bio *bio; 3151 int nalloc; 3152 int i; 3153 3154 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 3155 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 3156 nalloc = conf->copies; /* resync */ 3157 else 3158 nalloc = 2; /* recovery */ 3159 3160 for (i = 0; i < nalloc; i++) { 3161 bio = r10bio->devs[i].bio; 3162 rp = bio->bi_private; 3163 bio_reset(bio); 3164 bio->bi_private = rp; 3165 bio = r10bio->devs[i].repl_bio; 3166 if (bio) { 3167 rp = bio->bi_private; 3168 bio_reset(bio); 3169 bio->bi_private = rp; 3170 } 3171 } 3172 return r10bio; 3173 } 3174 3175 /* 3176 * Set cluster_sync_high since we need other nodes to add the 3177 * range [cluster_sync_low, cluster_sync_high] to suspend list. 3178 */ 3179 static void raid10_set_cluster_sync_high(struct r10conf *conf) 3180 { 3181 sector_t window_size; 3182 int extra_chunk, chunks; 3183 3184 /* 3185 * First, here we define "stripe" as a unit which across 3186 * all member devices one time, so we get chunks by use 3187 * raid_disks / near_copies. Otherwise, if near_copies is 3188 * close to raid_disks, then resync window could increases 3189 * linearly with the increase of raid_disks, which means 3190 * we will suspend a really large IO window while it is not 3191 * necessary. If raid_disks is not divisible by near_copies, 3192 * an extra chunk is needed to ensure the whole "stripe" is 3193 * covered. 3194 */ 3195 3196 chunks = conf->geo.raid_disks / conf->geo.near_copies; 3197 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 3198 extra_chunk = 0; 3199 else 3200 extra_chunk = 1; 3201 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 3202 3203 /* 3204 * At least use a 32M window to align with raid1's resync window 3205 */ 3206 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 3207 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 3208 3209 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 3210 } 3211 3212 /* 3213 * perform a "sync" on one "block" 3214 * 3215 * We need to make sure that no normal I/O request - particularly write 3216 * requests - conflict with active sync requests. 3217 * 3218 * This is achieved by tracking pending requests and a 'barrier' concept 3219 * that can be installed to exclude normal IO requests. 3220 * 3221 * Resync and recovery are handled very differently. 3222 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 3223 * 3224 * For resync, we iterate over virtual addresses, read all copies, 3225 * and update if there are differences. If only one copy is live, 3226 * skip it. 3227 * For recovery, we iterate over physical addresses, read a good 3228 * value for each non-in_sync drive, and over-write. 3229 * 3230 * So, for recovery we may have several outstanding complex requests for a 3231 * given address, one for each out-of-sync device. We model this by allocating 3232 * a number of r10_bio structures, one for each out-of-sync device. 3233 * As we setup these structures, we collect all bio's together into a list 3234 * which we then process collectively to add pages, and then process again 3235 * to pass to submit_bio_noacct. 3236 * 3237 * The r10_bio structures are linked using a borrowed master_bio pointer. 3238 * This link is counted in ->remaining. When the r10_bio that points to NULL 3239 * has its remaining count decremented to 0, the whole complex operation 3240 * is complete. 3241 * 3242 */ 3243 3244 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 3245 int *skipped) 3246 { 3247 struct r10conf *conf = mddev->private; 3248 struct r10bio *r10_bio; 3249 struct bio *biolist = NULL, *bio; 3250 sector_t max_sector, nr_sectors; 3251 int i; 3252 int max_sync; 3253 sector_t sync_blocks; 3254 sector_t sectors_skipped = 0; 3255 int chunks_skipped = 0; 3256 sector_t chunk_mask = conf->geo.chunk_mask; 3257 int page_idx = 0; 3258 3259 if (!mempool_initialized(&conf->r10buf_pool)) 3260 if (init_resync(conf)) 3261 return 0; 3262 3263 /* 3264 * Allow skipping a full rebuild for incremental assembly 3265 * of a clean array, like RAID1 does. 3266 */ 3267 if (mddev->bitmap == NULL && 3268 mddev->recovery_cp == MaxSector && 3269 mddev->reshape_position == MaxSector && 3270 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 3271 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3272 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 3273 conf->fullsync == 0) { 3274 *skipped = 1; 3275 return mddev->dev_sectors - sector_nr; 3276 } 3277 3278 skipped: 3279 max_sector = mddev->dev_sectors; 3280 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 3281 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3282 max_sector = mddev->resync_max_sectors; 3283 if (sector_nr >= max_sector) { 3284 conf->cluster_sync_low = 0; 3285 conf->cluster_sync_high = 0; 3286 3287 /* If we aborted, we need to abort the 3288 * sync on the 'current' bitmap chucks (there can 3289 * be several when recovering multiple devices). 3290 * as we may have started syncing it but not finished. 3291 * We can find the current address in 3292 * mddev->curr_resync, but for recovery, 3293 * we need to convert that to several 3294 * virtual addresses. 3295 */ 3296 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3297 end_reshape(conf); 3298 close_sync(conf); 3299 return 0; 3300 } 3301 3302 if (mddev->curr_resync < max_sector) { /* aborted */ 3303 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3304 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 3305 &sync_blocks, 1); 3306 else for (i = 0; i < conf->geo.raid_disks; i++) { 3307 sector_t sect = 3308 raid10_find_virt(conf, mddev->curr_resync, i); 3309 md_bitmap_end_sync(mddev->bitmap, sect, 3310 &sync_blocks, 1); 3311 } 3312 } else { 3313 /* completed sync */ 3314 if ((!mddev->bitmap || conf->fullsync) 3315 && conf->have_replacement 3316 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3317 /* Completed a full sync so the replacements 3318 * are now fully recovered. 3319 */ 3320 rcu_read_lock(); 3321 for (i = 0; i < conf->geo.raid_disks; i++) { 3322 struct md_rdev *rdev = 3323 rcu_dereference(conf->mirrors[i].replacement); 3324 if (rdev) 3325 rdev->recovery_offset = MaxSector; 3326 } 3327 rcu_read_unlock(); 3328 } 3329 conf->fullsync = 0; 3330 } 3331 md_bitmap_close_sync(mddev->bitmap); 3332 close_sync(conf); 3333 *skipped = 1; 3334 return sectors_skipped; 3335 } 3336 3337 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3338 return reshape_request(mddev, sector_nr, skipped); 3339 3340 if (chunks_skipped >= conf->geo.raid_disks) { 3341 /* if there has been nothing to do on any drive, 3342 * then there is nothing to do at all.. 3343 */ 3344 *skipped = 1; 3345 return (max_sector - sector_nr) + sectors_skipped; 3346 } 3347 3348 if (max_sector > mddev->resync_max) 3349 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3350 3351 /* make sure whole request will fit in a chunk - if chunks 3352 * are meaningful 3353 */ 3354 if (conf->geo.near_copies < conf->geo.raid_disks && 3355 max_sector > (sector_nr | chunk_mask)) 3356 max_sector = (sector_nr | chunk_mask) + 1; 3357 3358 /* 3359 * If there is non-resync activity waiting for a turn, then let it 3360 * though before starting on this new sync request. 3361 */ 3362 if (conf->nr_waiting) 3363 schedule_timeout_uninterruptible(1); 3364 3365 /* Again, very different code for resync and recovery. 3366 * Both must result in an r10bio with a list of bios that 3367 * have bi_end_io, bi_sector, bi_bdev set, 3368 * and bi_private set to the r10bio. 3369 * For recovery, we may actually create several r10bios 3370 * with 2 bios in each, that correspond to the bios in the main one. 3371 * In this case, the subordinate r10bios link back through a 3372 * borrowed master_bio pointer, and the counter in the master 3373 * includes a ref from each subordinate. 3374 */ 3375 /* First, we decide what to do and set ->bi_end_io 3376 * To end_sync_read if we want to read, and 3377 * end_sync_write if we will want to write. 3378 */ 3379 3380 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3381 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3382 /* recovery... the complicated one */ 3383 int j; 3384 r10_bio = NULL; 3385 3386 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3387 int still_degraded; 3388 struct r10bio *rb2; 3389 sector_t sect; 3390 int must_sync; 3391 int any_working; 3392 int need_recover = 0; 3393 int need_replace = 0; 3394 struct raid10_info *mirror = &conf->mirrors[i]; 3395 struct md_rdev *mrdev, *mreplace; 3396 3397 rcu_read_lock(); 3398 mrdev = rcu_dereference(mirror->rdev); 3399 mreplace = rcu_dereference(mirror->replacement); 3400 3401 if (mrdev != NULL && 3402 !test_bit(Faulty, &mrdev->flags) && 3403 !test_bit(In_sync, &mrdev->flags)) 3404 need_recover = 1; 3405 if (mreplace != NULL && 3406 !test_bit(Faulty, &mreplace->flags)) 3407 need_replace = 1; 3408 3409 if (!need_recover && !need_replace) { 3410 rcu_read_unlock(); 3411 continue; 3412 } 3413 3414 still_degraded = 0; 3415 /* want to reconstruct this device */ 3416 rb2 = r10_bio; 3417 sect = raid10_find_virt(conf, sector_nr, i); 3418 if (sect >= mddev->resync_max_sectors) { 3419 /* last stripe is not complete - don't 3420 * try to recover this sector. 3421 */ 3422 rcu_read_unlock(); 3423 continue; 3424 } 3425 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3426 mreplace = NULL; 3427 /* Unless we are doing a full sync, or a replacement 3428 * we only need to recover the block if it is set in 3429 * the bitmap 3430 */ 3431 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3432 &sync_blocks, 1); 3433 if (sync_blocks < max_sync) 3434 max_sync = sync_blocks; 3435 if (!must_sync && 3436 mreplace == NULL && 3437 !conf->fullsync) { 3438 /* yep, skip the sync_blocks here, but don't assume 3439 * that there will never be anything to do here 3440 */ 3441 chunks_skipped = -1; 3442 rcu_read_unlock(); 3443 continue; 3444 } 3445 atomic_inc(&mrdev->nr_pending); 3446 if (mreplace) 3447 atomic_inc(&mreplace->nr_pending); 3448 rcu_read_unlock(); 3449 3450 r10_bio = raid10_alloc_init_r10buf(conf); 3451 r10_bio->state = 0; 3452 raise_barrier(conf, rb2 != NULL); 3453 atomic_set(&r10_bio->remaining, 0); 3454 3455 r10_bio->master_bio = (struct bio*)rb2; 3456 if (rb2) 3457 atomic_inc(&rb2->remaining); 3458 r10_bio->mddev = mddev; 3459 set_bit(R10BIO_IsRecover, &r10_bio->state); 3460 r10_bio->sector = sect; 3461 3462 raid10_find_phys(conf, r10_bio); 3463 3464 /* Need to check if the array will still be 3465 * degraded 3466 */ 3467 rcu_read_lock(); 3468 for (j = 0; j < conf->geo.raid_disks; j++) { 3469 struct md_rdev *rdev = rcu_dereference( 3470 conf->mirrors[j].rdev); 3471 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3472 still_degraded = 1; 3473 break; 3474 } 3475 } 3476 3477 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3478 &sync_blocks, still_degraded); 3479 3480 any_working = 0; 3481 for (j=0; j<conf->copies;j++) { 3482 int k; 3483 int d = r10_bio->devs[j].devnum; 3484 sector_t from_addr, to_addr; 3485 struct md_rdev *rdev = 3486 rcu_dereference(conf->mirrors[d].rdev); 3487 sector_t sector, first_bad; 3488 int bad_sectors; 3489 if (!rdev || 3490 !test_bit(In_sync, &rdev->flags)) 3491 continue; 3492 /* This is where we read from */ 3493 any_working = 1; 3494 sector = r10_bio->devs[j].addr; 3495 3496 if (is_badblock(rdev, sector, max_sync, 3497 &first_bad, &bad_sectors)) { 3498 if (first_bad > sector) 3499 max_sync = first_bad - sector; 3500 else { 3501 bad_sectors -= (sector 3502 - first_bad); 3503 if (max_sync > bad_sectors) 3504 max_sync = bad_sectors; 3505 continue; 3506 } 3507 } 3508 bio = r10_bio->devs[0].bio; 3509 bio->bi_next = biolist; 3510 biolist = bio; 3511 bio->bi_end_io = end_sync_read; 3512 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3513 if (test_bit(FailFast, &rdev->flags)) 3514 bio->bi_opf |= MD_FAILFAST; 3515 from_addr = r10_bio->devs[j].addr; 3516 bio->bi_iter.bi_sector = from_addr + 3517 rdev->data_offset; 3518 bio_set_dev(bio, rdev->bdev); 3519 atomic_inc(&rdev->nr_pending); 3520 /* and we write to 'i' (if not in_sync) */ 3521 3522 for (k=0; k<conf->copies; k++) 3523 if (r10_bio->devs[k].devnum == i) 3524 break; 3525 BUG_ON(k == conf->copies); 3526 to_addr = r10_bio->devs[k].addr; 3527 r10_bio->devs[0].devnum = d; 3528 r10_bio->devs[0].addr = from_addr; 3529 r10_bio->devs[1].devnum = i; 3530 r10_bio->devs[1].addr = to_addr; 3531 3532 if (need_recover) { 3533 bio = r10_bio->devs[1].bio; 3534 bio->bi_next = biolist; 3535 biolist = bio; 3536 bio->bi_end_io = end_sync_write; 3537 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3538 bio->bi_iter.bi_sector = to_addr 3539 + mrdev->data_offset; 3540 bio_set_dev(bio, mrdev->bdev); 3541 atomic_inc(&r10_bio->remaining); 3542 } else 3543 r10_bio->devs[1].bio->bi_end_io = NULL; 3544 3545 /* and maybe write to replacement */ 3546 bio = r10_bio->devs[1].repl_bio; 3547 if (bio) 3548 bio->bi_end_io = NULL; 3549 /* Note: if need_replace, then bio 3550 * cannot be NULL as r10buf_pool_alloc will 3551 * have allocated it. 3552 */ 3553 if (!need_replace) 3554 break; 3555 bio->bi_next = biolist; 3556 biolist = bio; 3557 bio->bi_end_io = end_sync_write; 3558 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3559 bio->bi_iter.bi_sector = to_addr + 3560 mreplace->data_offset; 3561 bio_set_dev(bio, mreplace->bdev); 3562 atomic_inc(&r10_bio->remaining); 3563 break; 3564 } 3565 rcu_read_unlock(); 3566 if (j == conf->copies) { 3567 /* Cannot recover, so abort the recovery or 3568 * record a bad block */ 3569 if (any_working) { 3570 /* problem is that there are bad blocks 3571 * on other device(s) 3572 */ 3573 int k; 3574 for (k = 0; k < conf->copies; k++) 3575 if (r10_bio->devs[k].devnum == i) 3576 break; 3577 if (!test_bit(In_sync, 3578 &mrdev->flags) 3579 && !rdev_set_badblocks( 3580 mrdev, 3581 r10_bio->devs[k].addr, 3582 max_sync, 0)) 3583 any_working = 0; 3584 if (mreplace && 3585 !rdev_set_badblocks( 3586 mreplace, 3587 r10_bio->devs[k].addr, 3588 max_sync, 0)) 3589 any_working = 0; 3590 } 3591 if (!any_working) { 3592 if (!test_and_set_bit(MD_RECOVERY_INTR, 3593 &mddev->recovery)) 3594 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3595 mdname(mddev)); 3596 mirror->recovery_disabled 3597 = mddev->recovery_disabled; 3598 } 3599 put_buf(r10_bio); 3600 if (rb2) 3601 atomic_dec(&rb2->remaining); 3602 r10_bio = rb2; 3603 rdev_dec_pending(mrdev, mddev); 3604 if (mreplace) 3605 rdev_dec_pending(mreplace, mddev); 3606 break; 3607 } 3608 rdev_dec_pending(mrdev, mddev); 3609 if (mreplace) 3610 rdev_dec_pending(mreplace, mddev); 3611 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3612 /* Only want this if there is elsewhere to 3613 * read from. 'j' is currently the first 3614 * readable copy. 3615 */ 3616 int targets = 1; 3617 for (; j < conf->copies; j++) { 3618 int d = r10_bio->devs[j].devnum; 3619 if (conf->mirrors[d].rdev && 3620 test_bit(In_sync, 3621 &conf->mirrors[d].rdev->flags)) 3622 targets++; 3623 } 3624 if (targets == 1) 3625 r10_bio->devs[0].bio->bi_opf 3626 &= ~MD_FAILFAST; 3627 } 3628 } 3629 if (biolist == NULL) { 3630 while (r10_bio) { 3631 struct r10bio *rb2 = r10_bio; 3632 r10_bio = (struct r10bio*) rb2->master_bio; 3633 rb2->master_bio = NULL; 3634 put_buf(rb2); 3635 } 3636 goto giveup; 3637 } 3638 } else { 3639 /* resync. Schedule a read for every block at this virt offset */ 3640 int count = 0; 3641 3642 /* 3643 * Since curr_resync_completed could probably not update in 3644 * time, and we will set cluster_sync_low based on it. 3645 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3646 * safety reason, which ensures curr_resync_completed is 3647 * updated in bitmap_cond_end_sync. 3648 */ 3649 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3650 mddev_is_clustered(mddev) && 3651 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3652 3653 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3654 &sync_blocks, mddev->degraded) && 3655 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3656 &mddev->recovery)) { 3657 /* We can skip this block */ 3658 *skipped = 1; 3659 return sync_blocks + sectors_skipped; 3660 } 3661 if (sync_blocks < max_sync) 3662 max_sync = sync_blocks; 3663 r10_bio = raid10_alloc_init_r10buf(conf); 3664 r10_bio->state = 0; 3665 3666 r10_bio->mddev = mddev; 3667 atomic_set(&r10_bio->remaining, 0); 3668 raise_barrier(conf, 0); 3669 conf->next_resync = sector_nr; 3670 3671 r10_bio->master_bio = NULL; 3672 r10_bio->sector = sector_nr; 3673 set_bit(R10BIO_IsSync, &r10_bio->state); 3674 raid10_find_phys(conf, r10_bio); 3675 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3676 3677 for (i = 0; i < conf->copies; i++) { 3678 int d = r10_bio->devs[i].devnum; 3679 sector_t first_bad, sector; 3680 int bad_sectors; 3681 struct md_rdev *rdev; 3682 3683 if (r10_bio->devs[i].repl_bio) 3684 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3685 3686 bio = r10_bio->devs[i].bio; 3687 bio->bi_status = BLK_STS_IOERR; 3688 rcu_read_lock(); 3689 rdev = rcu_dereference(conf->mirrors[d].rdev); 3690 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3691 rcu_read_unlock(); 3692 continue; 3693 } 3694 sector = r10_bio->devs[i].addr; 3695 if (is_badblock(rdev, sector, max_sync, 3696 &first_bad, &bad_sectors)) { 3697 if (first_bad > sector) 3698 max_sync = first_bad - sector; 3699 else { 3700 bad_sectors -= (sector - first_bad); 3701 if (max_sync > bad_sectors) 3702 max_sync = bad_sectors; 3703 rcu_read_unlock(); 3704 continue; 3705 } 3706 } 3707 atomic_inc(&rdev->nr_pending); 3708 atomic_inc(&r10_bio->remaining); 3709 bio->bi_next = biolist; 3710 biolist = bio; 3711 bio->bi_end_io = end_sync_read; 3712 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3713 if (test_bit(FailFast, &rdev->flags)) 3714 bio->bi_opf |= MD_FAILFAST; 3715 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3716 bio_set_dev(bio, rdev->bdev); 3717 count++; 3718 3719 rdev = rcu_dereference(conf->mirrors[d].replacement); 3720 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3721 rcu_read_unlock(); 3722 continue; 3723 } 3724 atomic_inc(&rdev->nr_pending); 3725 3726 /* Need to set up for writing to the replacement */ 3727 bio = r10_bio->devs[i].repl_bio; 3728 bio->bi_status = BLK_STS_IOERR; 3729 3730 sector = r10_bio->devs[i].addr; 3731 bio->bi_next = biolist; 3732 biolist = bio; 3733 bio->bi_end_io = end_sync_write; 3734 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3735 if (test_bit(FailFast, &rdev->flags)) 3736 bio->bi_opf |= MD_FAILFAST; 3737 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3738 bio_set_dev(bio, rdev->bdev); 3739 count++; 3740 rcu_read_unlock(); 3741 } 3742 3743 if (count < 2) { 3744 for (i=0; i<conf->copies; i++) { 3745 int d = r10_bio->devs[i].devnum; 3746 if (r10_bio->devs[i].bio->bi_end_io) 3747 rdev_dec_pending(conf->mirrors[d].rdev, 3748 mddev); 3749 if (r10_bio->devs[i].repl_bio && 3750 r10_bio->devs[i].repl_bio->bi_end_io) 3751 rdev_dec_pending( 3752 conf->mirrors[d].replacement, 3753 mddev); 3754 } 3755 put_buf(r10_bio); 3756 biolist = NULL; 3757 goto giveup; 3758 } 3759 } 3760 3761 nr_sectors = 0; 3762 if (sector_nr + max_sync < max_sector) 3763 max_sector = sector_nr + max_sync; 3764 do { 3765 struct page *page; 3766 int len = PAGE_SIZE; 3767 if (sector_nr + (len>>9) > max_sector) 3768 len = (max_sector - sector_nr) << 9; 3769 if (len == 0) 3770 break; 3771 for (bio= biolist ; bio ; bio=bio->bi_next) { 3772 struct resync_pages *rp = get_resync_pages(bio); 3773 page = resync_fetch_page(rp, page_idx); 3774 /* 3775 * won't fail because the vec table is big enough 3776 * to hold all these pages 3777 */ 3778 bio_add_page(bio, page, len, 0); 3779 } 3780 nr_sectors += len>>9; 3781 sector_nr += len>>9; 3782 } while (++page_idx < RESYNC_PAGES); 3783 r10_bio->sectors = nr_sectors; 3784 3785 if (mddev_is_clustered(mddev) && 3786 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3787 /* It is resync not recovery */ 3788 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3789 conf->cluster_sync_low = mddev->curr_resync_completed; 3790 raid10_set_cluster_sync_high(conf); 3791 /* Send resync message */ 3792 md_cluster_ops->resync_info_update(mddev, 3793 conf->cluster_sync_low, 3794 conf->cluster_sync_high); 3795 } 3796 } else if (mddev_is_clustered(mddev)) { 3797 /* This is recovery not resync */ 3798 sector_t sect_va1, sect_va2; 3799 bool broadcast_msg = false; 3800 3801 for (i = 0; i < conf->geo.raid_disks; i++) { 3802 /* 3803 * sector_nr is a device address for recovery, so we 3804 * need translate it to array address before compare 3805 * with cluster_sync_high. 3806 */ 3807 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3808 3809 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3810 broadcast_msg = true; 3811 /* 3812 * curr_resync_completed is similar as 3813 * sector_nr, so make the translation too. 3814 */ 3815 sect_va2 = raid10_find_virt(conf, 3816 mddev->curr_resync_completed, i); 3817 3818 if (conf->cluster_sync_low == 0 || 3819 conf->cluster_sync_low > sect_va2) 3820 conf->cluster_sync_low = sect_va2; 3821 } 3822 } 3823 if (broadcast_msg) { 3824 raid10_set_cluster_sync_high(conf); 3825 md_cluster_ops->resync_info_update(mddev, 3826 conf->cluster_sync_low, 3827 conf->cluster_sync_high); 3828 } 3829 } 3830 3831 while (biolist) { 3832 bio = biolist; 3833 biolist = biolist->bi_next; 3834 3835 bio->bi_next = NULL; 3836 r10_bio = get_resync_r10bio(bio); 3837 r10_bio->sectors = nr_sectors; 3838 3839 if (bio->bi_end_io == end_sync_read) { 3840 md_sync_acct_bio(bio, nr_sectors); 3841 bio->bi_status = 0; 3842 submit_bio_noacct(bio); 3843 } 3844 } 3845 3846 if (sectors_skipped) 3847 /* pretend they weren't skipped, it makes 3848 * no important difference in this case 3849 */ 3850 md_done_sync(mddev, sectors_skipped, 1); 3851 3852 return sectors_skipped + nr_sectors; 3853 giveup: 3854 /* There is nowhere to write, so all non-sync 3855 * drives must be failed or in resync, all drives 3856 * have a bad block, so try the next chunk... 3857 */ 3858 if (sector_nr + max_sync < max_sector) 3859 max_sector = sector_nr + max_sync; 3860 3861 sectors_skipped += (max_sector - sector_nr); 3862 chunks_skipped ++; 3863 sector_nr = max_sector; 3864 goto skipped; 3865 } 3866 3867 static sector_t 3868 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3869 { 3870 sector_t size; 3871 struct r10conf *conf = mddev->private; 3872 3873 if (!raid_disks) 3874 raid_disks = min(conf->geo.raid_disks, 3875 conf->prev.raid_disks); 3876 if (!sectors) 3877 sectors = conf->dev_sectors; 3878 3879 size = sectors >> conf->geo.chunk_shift; 3880 sector_div(size, conf->geo.far_copies); 3881 size = size * raid_disks; 3882 sector_div(size, conf->geo.near_copies); 3883 3884 return size << conf->geo.chunk_shift; 3885 } 3886 3887 static void calc_sectors(struct r10conf *conf, sector_t size) 3888 { 3889 /* Calculate the number of sectors-per-device that will 3890 * actually be used, and set conf->dev_sectors and 3891 * conf->stride 3892 */ 3893 3894 size = size >> conf->geo.chunk_shift; 3895 sector_div(size, conf->geo.far_copies); 3896 size = size * conf->geo.raid_disks; 3897 sector_div(size, conf->geo.near_copies); 3898 /* 'size' is now the number of chunks in the array */ 3899 /* calculate "used chunks per device" */ 3900 size = size * conf->copies; 3901 3902 /* We need to round up when dividing by raid_disks to 3903 * get the stride size. 3904 */ 3905 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3906 3907 conf->dev_sectors = size << conf->geo.chunk_shift; 3908 3909 if (conf->geo.far_offset) 3910 conf->geo.stride = 1 << conf->geo.chunk_shift; 3911 else { 3912 sector_div(size, conf->geo.far_copies); 3913 conf->geo.stride = size << conf->geo.chunk_shift; 3914 } 3915 } 3916 3917 enum geo_type {geo_new, geo_old, geo_start}; 3918 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3919 { 3920 int nc, fc, fo; 3921 int layout, chunk, disks; 3922 switch (new) { 3923 case geo_old: 3924 layout = mddev->layout; 3925 chunk = mddev->chunk_sectors; 3926 disks = mddev->raid_disks - mddev->delta_disks; 3927 break; 3928 case geo_new: 3929 layout = mddev->new_layout; 3930 chunk = mddev->new_chunk_sectors; 3931 disks = mddev->raid_disks; 3932 break; 3933 default: /* avoid 'may be unused' warnings */ 3934 case geo_start: /* new when starting reshape - raid_disks not 3935 * updated yet. */ 3936 layout = mddev->new_layout; 3937 chunk = mddev->new_chunk_sectors; 3938 disks = mddev->raid_disks + mddev->delta_disks; 3939 break; 3940 } 3941 if (layout >> 19) 3942 return -1; 3943 if (chunk < (PAGE_SIZE >> 9) || 3944 !is_power_of_2(chunk)) 3945 return -2; 3946 nc = layout & 255; 3947 fc = (layout >> 8) & 255; 3948 fo = layout & (1<<16); 3949 geo->raid_disks = disks; 3950 geo->near_copies = nc; 3951 geo->far_copies = fc; 3952 geo->far_offset = fo; 3953 switch (layout >> 17) { 3954 case 0: /* original layout. simple but not always optimal */ 3955 geo->far_set_size = disks; 3956 break; 3957 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3958 * actually using this, but leave code here just in case.*/ 3959 geo->far_set_size = disks/fc; 3960 WARN(geo->far_set_size < fc, 3961 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3962 break; 3963 case 2: /* "improved" layout fixed to match documentation */ 3964 geo->far_set_size = fc * nc; 3965 break; 3966 default: /* Not a valid layout */ 3967 return -1; 3968 } 3969 geo->chunk_mask = chunk - 1; 3970 geo->chunk_shift = ffz(~chunk); 3971 return nc*fc; 3972 } 3973 3974 static struct r10conf *setup_conf(struct mddev *mddev) 3975 { 3976 struct r10conf *conf = NULL; 3977 int err = -EINVAL; 3978 struct geom geo; 3979 int copies; 3980 3981 copies = setup_geo(&geo, mddev, geo_new); 3982 3983 if (copies == -2) { 3984 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3985 mdname(mddev), PAGE_SIZE); 3986 goto out; 3987 } 3988 3989 if (copies < 2 || copies > mddev->raid_disks) { 3990 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3991 mdname(mddev), mddev->new_layout); 3992 goto out; 3993 } 3994 3995 err = -ENOMEM; 3996 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3997 if (!conf) 3998 goto out; 3999 4000 /* FIXME calc properly */ 4001 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 4002 sizeof(struct raid10_info), 4003 GFP_KERNEL); 4004 if (!conf->mirrors) 4005 goto out; 4006 4007 conf->tmppage = alloc_page(GFP_KERNEL); 4008 if (!conf->tmppage) 4009 goto out; 4010 4011 conf->geo = geo; 4012 conf->copies = copies; 4013 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 4014 rbio_pool_free, conf); 4015 if (err) 4016 goto out; 4017 4018 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 4019 if (err) 4020 goto out; 4021 4022 calc_sectors(conf, mddev->dev_sectors); 4023 if (mddev->reshape_position == MaxSector) { 4024 conf->prev = conf->geo; 4025 conf->reshape_progress = MaxSector; 4026 } else { 4027 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 4028 err = -EINVAL; 4029 goto out; 4030 } 4031 conf->reshape_progress = mddev->reshape_position; 4032 if (conf->prev.far_offset) 4033 conf->prev.stride = 1 << conf->prev.chunk_shift; 4034 else 4035 /* far_copies must be 1 */ 4036 conf->prev.stride = conf->dev_sectors; 4037 } 4038 conf->reshape_safe = conf->reshape_progress; 4039 spin_lock_init(&conf->device_lock); 4040 INIT_LIST_HEAD(&conf->retry_list); 4041 INIT_LIST_HEAD(&conf->bio_end_io_list); 4042 4043 spin_lock_init(&conf->resync_lock); 4044 init_waitqueue_head(&conf->wait_barrier); 4045 atomic_set(&conf->nr_pending, 0); 4046 4047 err = -ENOMEM; 4048 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 4049 if (!conf->thread) 4050 goto out; 4051 4052 conf->mddev = mddev; 4053 return conf; 4054 4055 out: 4056 if (conf) { 4057 mempool_exit(&conf->r10bio_pool); 4058 kfree(conf->mirrors); 4059 safe_put_page(conf->tmppage); 4060 bioset_exit(&conf->bio_split); 4061 kfree(conf); 4062 } 4063 return ERR_PTR(err); 4064 } 4065 4066 static void raid10_set_io_opt(struct r10conf *conf) 4067 { 4068 int raid_disks = conf->geo.raid_disks; 4069 4070 if (!(conf->geo.raid_disks % conf->geo.near_copies)) 4071 raid_disks /= conf->geo.near_copies; 4072 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) * 4073 raid_disks); 4074 } 4075 4076 static int raid10_run(struct mddev *mddev) 4077 { 4078 struct r10conf *conf; 4079 int i, disk_idx; 4080 struct raid10_info *disk; 4081 struct md_rdev *rdev; 4082 sector_t size; 4083 sector_t min_offset_diff = 0; 4084 int first = 1; 4085 bool discard_supported = false; 4086 4087 if (mddev_init_writes_pending(mddev) < 0) 4088 return -ENOMEM; 4089 4090 if (mddev->private == NULL) { 4091 conf = setup_conf(mddev); 4092 if (IS_ERR(conf)) 4093 return PTR_ERR(conf); 4094 mddev->private = conf; 4095 } 4096 conf = mddev->private; 4097 if (!conf) 4098 goto out; 4099 4100 if (mddev_is_clustered(conf->mddev)) { 4101 int fc, fo; 4102 4103 fc = (mddev->layout >> 8) & 255; 4104 fo = mddev->layout & (1<<16); 4105 if (fc > 1 || fo > 0) { 4106 pr_err("only near layout is supported by clustered" 4107 " raid10\n"); 4108 goto out_free_conf; 4109 } 4110 } 4111 4112 mddev->thread = conf->thread; 4113 conf->thread = NULL; 4114 4115 if (mddev->queue) { 4116 blk_queue_max_discard_sectors(mddev->queue, 4117 UINT_MAX); 4118 blk_queue_max_write_same_sectors(mddev->queue, 0); 4119 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 4120 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9); 4121 raid10_set_io_opt(conf); 4122 } 4123 4124 rdev_for_each(rdev, mddev) { 4125 long long diff; 4126 4127 disk_idx = rdev->raid_disk; 4128 if (disk_idx < 0) 4129 continue; 4130 if (disk_idx >= conf->geo.raid_disks && 4131 disk_idx >= conf->prev.raid_disks) 4132 continue; 4133 disk = conf->mirrors + disk_idx; 4134 4135 if (test_bit(Replacement, &rdev->flags)) { 4136 if (disk->replacement) 4137 goto out_free_conf; 4138 disk->replacement = rdev; 4139 } else { 4140 if (disk->rdev) 4141 goto out_free_conf; 4142 disk->rdev = rdev; 4143 } 4144 diff = (rdev->new_data_offset - rdev->data_offset); 4145 if (!mddev->reshape_backwards) 4146 diff = -diff; 4147 if (diff < 0) 4148 diff = 0; 4149 if (first || diff < min_offset_diff) 4150 min_offset_diff = diff; 4151 4152 if (mddev->gendisk) 4153 disk_stack_limits(mddev->gendisk, rdev->bdev, 4154 rdev->data_offset << 9); 4155 4156 disk->head_position = 0; 4157 4158 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 4159 discard_supported = true; 4160 first = 0; 4161 } 4162 4163 if (mddev->queue) { 4164 if (discard_supported) 4165 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 4166 mddev->queue); 4167 else 4168 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 4169 mddev->queue); 4170 } 4171 /* need to check that every block has at least one working mirror */ 4172 if (!enough(conf, -1)) { 4173 pr_err("md/raid10:%s: not enough operational mirrors.\n", 4174 mdname(mddev)); 4175 goto out_free_conf; 4176 } 4177 4178 if (conf->reshape_progress != MaxSector) { 4179 /* must ensure that shape change is supported */ 4180 if (conf->geo.far_copies != 1 && 4181 conf->geo.far_offset == 0) 4182 goto out_free_conf; 4183 if (conf->prev.far_copies != 1 && 4184 conf->prev.far_offset == 0) 4185 goto out_free_conf; 4186 } 4187 4188 mddev->degraded = 0; 4189 for (i = 0; 4190 i < conf->geo.raid_disks 4191 || i < conf->prev.raid_disks; 4192 i++) { 4193 4194 disk = conf->mirrors + i; 4195 4196 if (!disk->rdev && disk->replacement) { 4197 /* The replacement is all we have - use it */ 4198 disk->rdev = disk->replacement; 4199 disk->replacement = NULL; 4200 clear_bit(Replacement, &disk->rdev->flags); 4201 } 4202 4203 if (!disk->rdev || 4204 !test_bit(In_sync, &disk->rdev->flags)) { 4205 disk->head_position = 0; 4206 mddev->degraded++; 4207 if (disk->rdev && 4208 disk->rdev->saved_raid_disk < 0) 4209 conf->fullsync = 1; 4210 } 4211 4212 if (disk->replacement && 4213 !test_bit(In_sync, &disk->replacement->flags) && 4214 disk->replacement->saved_raid_disk < 0) { 4215 conf->fullsync = 1; 4216 } 4217 4218 disk->recovery_disabled = mddev->recovery_disabled - 1; 4219 } 4220 4221 if (mddev->recovery_cp != MaxSector) 4222 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 4223 mdname(mddev)); 4224 pr_info("md/raid10:%s: active with %d out of %d devices\n", 4225 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 4226 conf->geo.raid_disks); 4227 /* 4228 * Ok, everything is just fine now 4229 */ 4230 mddev->dev_sectors = conf->dev_sectors; 4231 size = raid10_size(mddev, 0, 0); 4232 md_set_array_sectors(mddev, size); 4233 mddev->resync_max_sectors = size; 4234 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 4235 4236 if (md_integrity_register(mddev)) 4237 goto out_free_conf; 4238 4239 if (conf->reshape_progress != MaxSector) { 4240 unsigned long before_length, after_length; 4241 4242 before_length = ((1 << conf->prev.chunk_shift) * 4243 conf->prev.far_copies); 4244 after_length = ((1 << conf->geo.chunk_shift) * 4245 conf->geo.far_copies); 4246 4247 if (max(before_length, after_length) > min_offset_diff) { 4248 /* This cannot work */ 4249 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 4250 goto out_free_conf; 4251 } 4252 conf->offset_diff = min_offset_diff; 4253 4254 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4255 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4256 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4257 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4258 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4259 "reshape"); 4260 if (!mddev->sync_thread) 4261 goto out_free_conf; 4262 } 4263 4264 return 0; 4265 4266 out_free_conf: 4267 md_unregister_thread(&mddev->thread); 4268 mempool_exit(&conf->r10bio_pool); 4269 safe_put_page(conf->tmppage); 4270 kfree(conf->mirrors); 4271 kfree(conf); 4272 mddev->private = NULL; 4273 out: 4274 return -EIO; 4275 } 4276 4277 static void raid10_free(struct mddev *mddev, void *priv) 4278 { 4279 struct r10conf *conf = priv; 4280 4281 mempool_exit(&conf->r10bio_pool); 4282 safe_put_page(conf->tmppage); 4283 kfree(conf->mirrors); 4284 kfree(conf->mirrors_old); 4285 kfree(conf->mirrors_new); 4286 bioset_exit(&conf->bio_split); 4287 kfree(conf); 4288 } 4289 4290 static void raid10_quiesce(struct mddev *mddev, int quiesce) 4291 { 4292 struct r10conf *conf = mddev->private; 4293 4294 if (quiesce) 4295 raise_barrier(conf, 0); 4296 else 4297 lower_barrier(conf); 4298 } 4299 4300 static int raid10_resize(struct mddev *mddev, sector_t sectors) 4301 { 4302 /* Resize of 'far' arrays is not supported. 4303 * For 'near' and 'offset' arrays we can set the 4304 * number of sectors used to be an appropriate multiple 4305 * of the chunk size. 4306 * For 'offset', this is far_copies*chunksize. 4307 * For 'near' the multiplier is the LCM of 4308 * near_copies and raid_disks. 4309 * So if far_copies > 1 && !far_offset, fail. 4310 * Else find LCM(raid_disks, near_copy)*far_copies and 4311 * multiply by chunk_size. Then round to this number. 4312 * This is mostly done by raid10_size() 4313 */ 4314 struct r10conf *conf = mddev->private; 4315 sector_t oldsize, size; 4316 4317 if (mddev->reshape_position != MaxSector) 4318 return -EBUSY; 4319 4320 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4321 return -EINVAL; 4322 4323 oldsize = raid10_size(mddev, 0, 0); 4324 size = raid10_size(mddev, sectors, 0); 4325 if (mddev->external_size && 4326 mddev->array_sectors > size) 4327 return -EINVAL; 4328 if (mddev->bitmap) { 4329 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 4330 if (ret) 4331 return ret; 4332 } 4333 md_set_array_sectors(mddev, size); 4334 if (sectors > mddev->dev_sectors && 4335 mddev->recovery_cp > oldsize) { 4336 mddev->recovery_cp = oldsize; 4337 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4338 } 4339 calc_sectors(conf, sectors); 4340 mddev->dev_sectors = conf->dev_sectors; 4341 mddev->resync_max_sectors = size; 4342 return 0; 4343 } 4344 4345 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4346 { 4347 struct md_rdev *rdev; 4348 struct r10conf *conf; 4349 4350 if (mddev->degraded > 0) { 4351 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4352 mdname(mddev)); 4353 return ERR_PTR(-EINVAL); 4354 } 4355 sector_div(size, devs); 4356 4357 /* Set new parameters */ 4358 mddev->new_level = 10; 4359 /* new layout: far_copies = 1, near_copies = 2 */ 4360 mddev->new_layout = (1<<8) + 2; 4361 mddev->new_chunk_sectors = mddev->chunk_sectors; 4362 mddev->delta_disks = mddev->raid_disks; 4363 mddev->raid_disks *= 2; 4364 /* make sure it will be not marked as dirty */ 4365 mddev->recovery_cp = MaxSector; 4366 mddev->dev_sectors = size; 4367 4368 conf = setup_conf(mddev); 4369 if (!IS_ERR(conf)) { 4370 rdev_for_each(rdev, mddev) 4371 if (rdev->raid_disk >= 0) { 4372 rdev->new_raid_disk = rdev->raid_disk * 2; 4373 rdev->sectors = size; 4374 } 4375 conf->barrier = 1; 4376 } 4377 4378 return conf; 4379 } 4380 4381 static void *raid10_takeover(struct mddev *mddev) 4382 { 4383 struct r0conf *raid0_conf; 4384 4385 /* raid10 can take over: 4386 * raid0 - providing it has only two drives 4387 */ 4388 if (mddev->level == 0) { 4389 /* for raid0 takeover only one zone is supported */ 4390 raid0_conf = mddev->private; 4391 if (raid0_conf->nr_strip_zones > 1) { 4392 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4393 mdname(mddev)); 4394 return ERR_PTR(-EINVAL); 4395 } 4396 return raid10_takeover_raid0(mddev, 4397 raid0_conf->strip_zone->zone_end, 4398 raid0_conf->strip_zone->nb_dev); 4399 } 4400 return ERR_PTR(-EINVAL); 4401 } 4402 4403 static int raid10_check_reshape(struct mddev *mddev) 4404 { 4405 /* Called when there is a request to change 4406 * - layout (to ->new_layout) 4407 * - chunk size (to ->new_chunk_sectors) 4408 * - raid_disks (by delta_disks) 4409 * or when trying to restart a reshape that was ongoing. 4410 * 4411 * We need to validate the request and possibly allocate 4412 * space if that might be an issue later. 4413 * 4414 * Currently we reject any reshape of a 'far' mode array, 4415 * allow chunk size to change if new is generally acceptable, 4416 * allow raid_disks to increase, and allow 4417 * a switch between 'near' mode and 'offset' mode. 4418 */ 4419 struct r10conf *conf = mddev->private; 4420 struct geom geo; 4421 4422 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4423 return -EINVAL; 4424 4425 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4426 /* mustn't change number of copies */ 4427 return -EINVAL; 4428 if (geo.far_copies > 1 && !geo.far_offset) 4429 /* Cannot switch to 'far' mode */ 4430 return -EINVAL; 4431 4432 if (mddev->array_sectors & geo.chunk_mask) 4433 /* not factor of array size */ 4434 return -EINVAL; 4435 4436 if (!enough(conf, -1)) 4437 return -EINVAL; 4438 4439 kfree(conf->mirrors_new); 4440 conf->mirrors_new = NULL; 4441 if (mddev->delta_disks > 0) { 4442 /* allocate new 'mirrors' list */ 4443 conf->mirrors_new = 4444 kcalloc(mddev->raid_disks + mddev->delta_disks, 4445 sizeof(struct raid10_info), 4446 GFP_KERNEL); 4447 if (!conf->mirrors_new) 4448 return -ENOMEM; 4449 } 4450 return 0; 4451 } 4452 4453 /* 4454 * Need to check if array has failed when deciding whether to: 4455 * - start an array 4456 * - remove non-faulty devices 4457 * - add a spare 4458 * - allow a reshape 4459 * This determination is simple when no reshape is happening. 4460 * However if there is a reshape, we need to carefully check 4461 * both the before and after sections. 4462 * This is because some failed devices may only affect one 4463 * of the two sections, and some non-in_sync devices may 4464 * be insync in the section most affected by failed devices. 4465 */ 4466 static int calc_degraded(struct r10conf *conf) 4467 { 4468 int degraded, degraded2; 4469 int i; 4470 4471 rcu_read_lock(); 4472 degraded = 0; 4473 /* 'prev' section first */ 4474 for (i = 0; i < conf->prev.raid_disks; i++) { 4475 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4476 if (!rdev || test_bit(Faulty, &rdev->flags)) 4477 degraded++; 4478 else if (!test_bit(In_sync, &rdev->flags)) 4479 /* When we can reduce the number of devices in 4480 * an array, this might not contribute to 4481 * 'degraded'. It does now. 4482 */ 4483 degraded++; 4484 } 4485 rcu_read_unlock(); 4486 if (conf->geo.raid_disks == conf->prev.raid_disks) 4487 return degraded; 4488 rcu_read_lock(); 4489 degraded2 = 0; 4490 for (i = 0; i < conf->geo.raid_disks; i++) { 4491 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4492 if (!rdev || test_bit(Faulty, &rdev->flags)) 4493 degraded2++; 4494 else if (!test_bit(In_sync, &rdev->flags)) { 4495 /* If reshape is increasing the number of devices, 4496 * this section has already been recovered, so 4497 * it doesn't contribute to degraded. 4498 * else it does. 4499 */ 4500 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4501 degraded2++; 4502 } 4503 } 4504 rcu_read_unlock(); 4505 if (degraded2 > degraded) 4506 return degraded2; 4507 return degraded; 4508 } 4509 4510 static int raid10_start_reshape(struct mddev *mddev) 4511 { 4512 /* A 'reshape' has been requested. This commits 4513 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4514 * This also checks if there are enough spares and adds them 4515 * to the array. 4516 * We currently require enough spares to make the final 4517 * array non-degraded. We also require that the difference 4518 * between old and new data_offset - on each device - is 4519 * enough that we never risk over-writing. 4520 */ 4521 4522 unsigned long before_length, after_length; 4523 sector_t min_offset_diff = 0; 4524 int first = 1; 4525 struct geom new; 4526 struct r10conf *conf = mddev->private; 4527 struct md_rdev *rdev; 4528 int spares = 0; 4529 int ret; 4530 4531 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4532 return -EBUSY; 4533 4534 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4535 return -EINVAL; 4536 4537 before_length = ((1 << conf->prev.chunk_shift) * 4538 conf->prev.far_copies); 4539 after_length = ((1 << conf->geo.chunk_shift) * 4540 conf->geo.far_copies); 4541 4542 rdev_for_each(rdev, mddev) { 4543 if (!test_bit(In_sync, &rdev->flags) 4544 && !test_bit(Faulty, &rdev->flags)) 4545 spares++; 4546 if (rdev->raid_disk >= 0) { 4547 long long diff = (rdev->new_data_offset 4548 - rdev->data_offset); 4549 if (!mddev->reshape_backwards) 4550 diff = -diff; 4551 if (diff < 0) 4552 diff = 0; 4553 if (first || diff < min_offset_diff) 4554 min_offset_diff = diff; 4555 first = 0; 4556 } 4557 } 4558 4559 if (max(before_length, after_length) > min_offset_diff) 4560 return -EINVAL; 4561 4562 if (spares < mddev->delta_disks) 4563 return -EINVAL; 4564 4565 conf->offset_diff = min_offset_diff; 4566 spin_lock_irq(&conf->device_lock); 4567 if (conf->mirrors_new) { 4568 memcpy(conf->mirrors_new, conf->mirrors, 4569 sizeof(struct raid10_info)*conf->prev.raid_disks); 4570 smp_mb(); 4571 kfree(conf->mirrors_old); 4572 conf->mirrors_old = conf->mirrors; 4573 conf->mirrors = conf->mirrors_new; 4574 conf->mirrors_new = NULL; 4575 } 4576 setup_geo(&conf->geo, mddev, geo_start); 4577 smp_mb(); 4578 if (mddev->reshape_backwards) { 4579 sector_t size = raid10_size(mddev, 0, 0); 4580 if (size < mddev->array_sectors) { 4581 spin_unlock_irq(&conf->device_lock); 4582 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4583 mdname(mddev)); 4584 return -EINVAL; 4585 } 4586 mddev->resync_max_sectors = size; 4587 conf->reshape_progress = size; 4588 } else 4589 conf->reshape_progress = 0; 4590 conf->reshape_safe = conf->reshape_progress; 4591 spin_unlock_irq(&conf->device_lock); 4592 4593 if (mddev->delta_disks && mddev->bitmap) { 4594 struct mdp_superblock_1 *sb = NULL; 4595 sector_t oldsize, newsize; 4596 4597 oldsize = raid10_size(mddev, 0, 0); 4598 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4599 4600 if (!mddev_is_clustered(mddev)) { 4601 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4602 if (ret) 4603 goto abort; 4604 else 4605 goto out; 4606 } 4607 4608 rdev_for_each(rdev, mddev) { 4609 if (rdev->raid_disk > -1 && 4610 !test_bit(Faulty, &rdev->flags)) 4611 sb = page_address(rdev->sb_page); 4612 } 4613 4614 /* 4615 * some node is already performing reshape, and no need to 4616 * call md_bitmap_resize again since it should be called when 4617 * receiving BITMAP_RESIZE msg 4618 */ 4619 if ((sb && (le32_to_cpu(sb->feature_map) & 4620 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4621 goto out; 4622 4623 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4624 if (ret) 4625 goto abort; 4626 4627 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4628 if (ret) { 4629 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4630 goto abort; 4631 } 4632 } 4633 out: 4634 if (mddev->delta_disks > 0) { 4635 rdev_for_each(rdev, mddev) 4636 if (rdev->raid_disk < 0 && 4637 !test_bit(Faulty, &rdev->flags)) { 4638 if (raid10_add_disk(mddev, rdev) == 0) { 4639 if (rdev->raid_disk >= 4640 conf->prev.raid_disks) 4641 set_bit(In_sync, &rdev->flags); 4642 else 4643 rdev->recovery_offset = 0; 4644 4645 /* Failure here is OK */ 4646 sysfs_link_rdev(mddev, rdev); 4647 } 4648 } else if (rdev->raid_disk >= conf->prev.raid_disks 4649 && !test_bit(Faulty, &rdev->flags)) { 4650 /* This is a spare that was manually added */ 4651 set_bit(In_sync, &rdev->flags); 4652 } 4653 } 4654 /* When a reshape changes the number of devices, 4655 * ->degraded is measured against the larger of the 4656 * pre and post numbers. 4657 */ 4658 spin_lock_irq(&conf->device_lock); 4659 mddev->degraded = calc_degraded(conf); 4660 spin_unlock_irq(&conf->device_lock); 4661 mddev->raid_disks = conf->geo.raid_disks; 4662 mddev->reshape_position = conf->reshape_progress; 4663 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4664 4665 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4666 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4667 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4668 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4669 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4670 4671 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4672 "reshape"); 4673 if (!mddev->sync_thread) { 4674 ret = -EAGAIN; 4675 goto abort; 4676 } 4677 conf->reshape_checkpoint = jiffies; 4678 md_wakeup_thread(mddev->sync_thread); 4679 md_new_event(); 4680 return 0; 4681 4682 abort: 4683 mddev->recovery = 0; 4684 spin_lock_irq(&conf->device_lock); 4685 conf->geo = conf->prev; 4686 mddev->raid_disks = conf->geo.raid_disks; 4687 rdev_for_each(rdev, mddev) 4688 rdev->new_data_offset = rdev->data_offset; 4689 smp_wmb(); 4690 conf->reshape_progress = MaxSector; 4691 conf->reshape_safe = MaxSector; 4692 mddev->reshape_position = MaxSector; 4693 spin_unlock_irq(&conf->device_lock); 4694 return ret; 4695 } 4696 4697 /* Calculate the last device-address that could contain 4698 * any block from the chunk that includes the array-address 's' 4699 * and report the next address. 4700 * i.e. the address returned will be chunk-aligned and after 4701 * any data that is in the chunk containing 's'. 4702 */ 4703 static sector_t last_dev_address(sector_t s, struct geom *geo) 4704 { 4705 s = (s | geo->chunk_mask) + 1; 4706 s >>= geo->chunk_shift; 4707 s *= geo->near_copies; 4708 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4709 s *= geo->far_copies; 4710 s <<= geo->chunk_shift; 4711 return s; 4712 } 4713 4714 /* Calculate the first device-address that could contain 4715 * any block from the chunk that includes the array-address 's'. 4716 * This too will be the start of a chunk 4717 */ 4718 static sector_t first_dev_address(sector_t s, struct geom *geo) 4719 { 4720 s >>= geo->chunk_shift; 4721 s *= geo->near_copies; 4722 sector_div(s, geo->raid_disks); 4723 s *= geo->far_copies; 4724 s <<= geo->chunk_shift; 4725 return s; 4726 } 4727 4728 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4729 int *skipped) 4730 { 4731 /* We simply copy at most one chunk (smallest of old and new) 4732 * at a time, possibly less if that exceeds RESYNC_PAGES, 4733 * or we hit a bad block or something. 4734 * This might mean we pause for normal IO in the middle of 4735 * a chunk, but that is not a problem as mddev->reshape_position 4736 * can record any location. 4737 * 4738 * If we will want to write to a location that isn't 4739 * yet recorded as 'safe' (i.e. in metadata on disk) then 4740 * we need to flush all reshape requests and update the metadata. 4741 * 4742 * When reshaping forwards (e.g. to more devices), we interpret 4743 * 'safe' as the earliest block which might not have been copied 4744 * down yet. We divide this by previous stripe size and multiply 4745 * by previous stripe length to get lowest device offset that we 4746 * cannot write to yet. 4747 * We interpret 'sector_nr' as an address that we want to write to. 4748 * From this we use last_device_address() to find where we might 4749 * write to, and first_device_address on the 'safe' position. 4750 * If this 'next' write position is after the 'safe' position, 4751 * we must update the metadata to increase the 'safe' position. 4752 * 4753 * When reshaping backwards, we round in the opposite direction 4754 * and perform the reverse test: next write position must not be 4755 * less than current safe position. 4756 * 4757 * In all this the minimum difference in data offsets 4758 * (conf->offset_diff - always positive) allows a bit of slack, 4759 * so next can be after 'safe', but not by more than offset_diff 4760 * 4761 * We need to prepare all the bios here before we start any IO 4762 * to ensure the size we choose is acceptable to all devices. 4763 * The means one for each copy for write-out and an extra one for 4764 * read-in. 4765 * We store the read-in bio in ->master_bio and the others in 4766 * ->devs[x].bio and ->devs[x].repl_bio. 4767 */ 4768 struct r10conf *conf = mddev->private; 4769 struct r10bio *r10_bio; 4770 sector_t next, safe, last; 4771 int max_sectors; 4772 int nr_sectors; 4773 int s; 4774 struct md_rdev *rdev; 4775 int need_flush = 0; 4776 struct bio *blist; 4777 struct bio *bio, *read_bio; 4778 int sectors_done = 0; 4779 struct page **pages; 4780 4781 if (sector_nr == 0) { 4782 /* If restarting in the middle, skip the initial sectors */ 4783 if (mddev->reshape_backwards && 4784 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4785 sector_nr = (raid10_size(mddev, 0, 0) 4786 - conf->reshape_progress); 4787 } else if (!mddev->reshape_backwards && 4788 conf->reshape_progress > 0) 4789 sector_nr = conf->reshape_progress; 4790 if (sector_nr) { 4791 mddev->curr_resync_completed = sector_nr; 4792 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4793 *skipped = 1; 4794 return sector_nr; 4795 } 4796 } 4797 4798 /* We don't use sector_nr to track where we are up to 4799 * as that doesn't work well for ->reshape_backwards. 4800 * So just use ->reshape_progress. 4801 */ 4802 if (mddev->reshape_backwards) { 4803 /* 'next' is the earliest device address that we might 4804 * write to for this chunk in the new layout 4805 */ 4806 next = first_dev_address(conf->reshape_progress - 1, 4807 &conf->geo); 4808 4809 /* 'safe' is the last device address that we might read from 4810 * in the old layout after a restart 4811 */ 4812 safe = last_dev_address(conf->reshape_safe - 1, 4813 &conf->prev); 4814 4815 if (next + conf->offset_diff < safe) 4816 need_flush = 1; 4817 4818 last = conf->reshape_progress - 1; 4819 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4820 & conf->prev.chunk_mask); 4821 if (sector_nr + RESYNC_SECTORS < last) 4822 sector_nr = last + 1 - RESYNC_SECTORS; 4823 } else { 4824 /* 'next' is after the last device address that we 4825 * might write to for this chunk in the new layout 4826 */ 4827 next = last_dev_address(conf->reshape_progress, &conf->geo); 4828 4829 /* 'safe' is the earliest device address that we might 4830 * read from in the old layout after a restart 4831 */ 4832 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4833 4834 /* Need to update metadata if 'next' might be beyond 'safe' 4835 * as that would possibly corrupt data 4836 */ 4837 if (next > safe + conf->offset_diff) 4838 need_flush = 1; 4839 4840 sector_nr = conf->reshape_progress; 4841 last = sector_nr | (conf->geo.chunk_mask 4842 & conf->prev.chunk_mask); 4843 4844 if (sector_nr + RESYNC_SECTORS <= last) 4845 last = sector_nr + RESYNC_SECTORS - 1; 4846 } 4847 4848 if (need_flush || 4849 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4850 /* Need to update reshape_position in metadata */ 4851 wait_barrier(conf, false); 4852 mddev->reshape_position = conf->reshape_progress; 4853 if (mddev->reshape_backwards) 4854 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4855 - conf->reshape_progress; 4856 else 4857 mddev->curr_resync_completed = conf->reshape_progress; 4858 conf->reshape_checkpoint = jiffies; 4859 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4860 md_wakeup_thread(mddev->thread); 4861 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4862 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4863 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4864 allow_barrier(conf); 4865 return sectors_done; 4866 } 4867 conf->reshape_safe = mddev->reshape_position; 4868 allow_barrier(conf); 4869 } 4870 4871 raise_barrier(conf, 0); 4872 read_more: 4873 /* Now schedule reads for blocks from sector_nr to last */ 4874 r10_bio = raid10_alloc_init_r10buf(conf); 4875 r10_bio->state = 0; 4876 raise_barrier(conf, 1); 4877 atomic_set(&r10_bio->remaining, 0); 4878 r10_bio->mddev = mddev; 4879 r10_bio->sector = sector_nr; 4880 set_bit(R10BIO_IsReshape, &r10_bio->state); 4881 r10_bio->sectors = last - sector_nr + 1; 4882 rdev = read_balance(conf, r10_bio, &max_sectors); 4883 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4884 4885 if (!rdev) { 4886 /* Cannot read from here, so need to record bad blocks 4887 * on all the target devices. 4888 */ 4889 // FIXME 4890 mempool_free(r10_bio, &conf->r10buf_pool); 4891 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4892 return sectors_done; 4893 } 4894 4895 read_bio = bio_alloc_bioset(GFP_KERNEL, RESYNC_PAGES, &mddev->bio_set); 4896 4897 bio_set_dev(read_bio, rdev->bdev); 4898 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4899 + rdev->data_offset); 4900 read_bio->bi_private = r10_bio; 4901 read_bio->bi_end_io = end_reshape_read; 4902 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4903 r10_bio->master_bio = read_bio; 4904 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4905 4906 /* 4907 * Broadcast RESYNC message to other nodes, so all nodes would not 4908 * write to the region to avoid conflict. 4909 */ 4910 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4911 struct mdp_superblock_1 *sb = NULL; 4912 int sb_reshape_pos = 0; 4913 4914 conf->cluster_sync_low = sector_nr; 4915 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4916 sb = page_address(rdev->sb_page); 4917 if (sb) { 4918 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4919 /* 4920 * Set cluster_sync_low again if next address for array 4921 * reshape is less than cluster_sync_low. Since we can't 4922 * update cluster_sync_low until it has finished reshape. 4923 */ 4924 if (sb_reshape_pos < conf->cluster_sync_low) 4925 conf->cluster_sync_low = sb_reshape_pos; 4926 } 4927 4928 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4929 conf->cluster_sync_high); 4930 } 4931 4932 /* Now find the locations in the new layout */ 4933 __raid10_find_phys(&conf->geo, r10_bio); 4934 4935 blist = read_bio; 4936 read_bio->bi_next = NULL; 4937 4938 rcu_read_lock(); 4939 for (s = 0; s < conf->copies*2; s++) { 4940 struct bio *b; 4941 int d = r10_bio->devs[s/2].devnum; 4942 struct md_rdev *rdev2; 4943 if (s&1) { 4944 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4945 b = r10_bio->devs[s/2].repl_bio; 4946 } else { 4947 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4948 b = r10_bio->devs[s/2].bio; 4949 } 4950 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4951 continue; 4952 4953 bio_set_dev(b, rdev2->bdev); 4954 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4955 rdev2->new_data_offset; 4956 b->bi_end_io = end_reshape_write; 4957 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4958 b->bi_next = blist; 4959 blist = b; 4960 } 4961 4962 /* Now add as many pages as possible to all of these bios. */ 4963 4964 nr_sectors = 0; 4965 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4966 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4967 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4968 int len = (max_sectors - s) << 9; 4969 if (len > PAGE_SIZE) 4970 len = PAGE_SIZE; 4971 for (bio = blist; bio ; bio = bio->bi_next) { 4972 /* 4973 * won't fail because the vec table is big enough 4974 * to hold all these pages 4975 */ 4976 bio_add_page(bio, page, len, 0); 4977 } 4978 sector_nr += len >> 9; 4979 nr_sectors += len >> 9; 4980 } 4981 rcu_read_unlock(); 4982 r10_bio->sectors = nr_sectors; 4983 4984 /* Now submit the read */ 4985 md_sync_acct_bio(read_bio, r10_bio->sectors); 4986 atomic_inc(&r10_bio->remaining); 4987 read_bio->bi_next = NULL; 4988 submit_bio_noacct(read_bio); 4989 sectors_done += nr_sectors; 4990 if (sector_nr <= last) 4991 goto read_more; 4992 4993 lower_barrier(conf); 4994 4995 /* Now that we have done the whole section we can 4996 * update reshape_progress 4997 */ 4998 if (mddev->reshape_backwards) 4999 conf->reshape_progress -= sectors_done; 5000 else 5001 conf->reshape_progress += sectors_done; 5002 5003 return sectors_done; 5004 } 5005 5006 static void end_reshape_request(struct r10bio *r10_bio); 5007 static int handle_reshape_read_error(struct mddev *mddev, 5008 struct r10bio *r10_bio); 5009 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 5010 { 5011 /* Reshape read completed. Hopefully we have a block 5012 * to write out. 5013 * If we got a read error then we do sync 1-page reads from 5014 * elsewhere until we find the data - or give up. 5015 */ 5016 struct r10conf *conf = mddev->private; 5017 int s; 5018 5019 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 5020 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 5021 /* Reshape has been aborted */ 5022 md_done_sync(mddev, r10_bio->sectors, 0); 5023 return; 5024 } 5025 5026 /* We definitely have the data in the pages, schedule the 5027 * writes. 5028 */ 5029 atomic_set(&r10_bio->remaining, 1); 5030 for (s = 0; s < conf->copies*2; s++) { 5031 struct bio *b; 5032 int d = r10_bio->devs[s/2].devnum; 5033 struct md_rdev *rdev; 5034 rcu_read_lock(); 5035 if (s&1) { 5036 rdev = rcu_dereference(conf->mirrors[d].replacement); 5037 b = r10_bio->devs[s/2].repl_bio; 5038 } else { 5039 rdev = rcu_dereference(conf->mirrors[d].rdev); 5040 b = r10_bio->devs[s/2].bio; 5041 } 5042 if (!rdev || test_bit(Faulty, &rdev->flags)) { 5043 rcu_read_unlock(); 5044 continue; 5045 } 5046 atomic_inc(&rdev->nr_pending); 5047 rcu_read_unlock(); 5048 md_sync_acct_bio(b, r10_bio->sectors); 5049 atomic_inc(&r10_bio->remaining); 5050 b->bi_next = NULL; 5051 submit_bio_noacct(b); 5052 } 5053 end_reshape_request(r10_bio); 5054 } 5055 5056 static void end_reshape(struct r10conf *conf) 5057 { 5058 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 5059 return; 5060 5061 spin_lock_irq(&conf->device_lock); 5062 conf->prev = conf->geo; 5063 md_finish_reshape(conf->mddev); 5064 smp_wmb(); 5065 conf->reshape_progress = MaxSector; 5066 conf->reshape_safe = MaxSector; 5067 spin_unlock_irq(&conf->device_lock); 5068 5069 if (conf->mddev->queue) 5070 raid10_set_io_opt(conf); 5071 conf->fullsync = 0; 5072 } 5073 5074 static void raid10_update_reshape_pos(struct mddev *mddev) 5075 { 5076 struct r10conf *conf = mddev->private; 5077 sector_t lo, hi; 5078 5079 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 5080 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 5081 || mddev->reshape_position == MaxSector) 5082 conf->reshape_progress = mddev->reshape_position; 5083 else 5084 WARN_ON_ONCE(1); 5085 } 5086 5087 static int handle_reshape_read_error(struct mddev *mddev, 5088 struct r10bio *r10_bio) 5089 { 5090 /* Use sync reads to get the blocks from somewhere else */ 5091 int sectors = r10_bio->sectors; 5092 struct r10conf *conf = mddev->private; 5093 struct r10bio *r10b; 5094 int slot = 0; 5095 int idx = 0; 5096 struct page **pages; 5097 5098 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 5099 if (!r10b) { 5100 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5101 return -ENOMEM; 5102 } 5103 5104 /* reshape IOs share pages from .devs[0].bio */ 5105 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 5106 5107 r10b->sector = r10_bio->sector; 5108 __raid10_find_phys(&conf->prev, r10b); 5109 5110 while (sectors) { 5111 int s = sectors; 5112 int success = 0; 5113 int first_slot = slot; 5114 5115 if (s > (PAGE_SIZE >> 9)) 5116 s = PAGE_SIZE >> 9; 5117 5118 rcu_read_lock(); 5119 while (!success) { 5120 int d = r10b->devs[slot].devnum; 5121 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 5122 sector_t addr; 5123 if (rdev == NULL || 5124 test_bit(Faulty, &rdev->flags) || 5125 !test_bit(In_sync, &rdev->flags)) 5126 goto failed; 5127 5128 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 5129 atomic_inc(&rdev->nr_pending); 5130 rcu_read_unlock(); 5131 success = sync_page_io(rdev, 5132 addr, 5133 s << 9, 5134 pages[idx], 5135 REQ_OP_READ, 0, false); 5136 rdev_dec_pending(rdev, mddev); 5137 rcu_read_lock(); 5138 if (success) 5139 break; 5140 failed: 5141 slot++; 5142 if (slot >= conf->copies) 5143 slot = 0; 5144 if (slot == first_slot) 5145 break; 5146 } 5147 rcu_read_unlock(); 5148 if (!success) { 5149 /* couldn't read this block, must give up */ 5150 set_bit(MD_RECOVERY_INTR, 5151 &mddev->recovery); 5152 kfree(r10b); 5153 return -EIO; 5154 } 5155 sectors -= s; 5156 idx++; 5157 } 5158 kfree(r10b); 5159 return 0; 5160 } 5161 5162 static void end_reshape_write(struct bio *bio) 5163 { 5164 struct r10bio *r10_bio = get_resync_r10bio(bio); 5165 struct mddev *mddev = r10_bio->mddev; 5166 struct r10conf *conf = mddev->private; 5167 int d; 5168 int slot; 5169 int repl; 5170 struct md_rdev *rdev = NULL; 5171 5172 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 5173 if (repl) 5174 rdev = conf->mirrors[d].replacement; 5175 if (!rdev) { 5176 smp_mb(); 5177 rdev = conf->mirrors[d].rdev; 5178 } 5179 5180 if (bio->bi_status) { 5181 /* FIXME should record badblock */ 5182 md_error(mddev, rdev); 5183 } 5184 5185 rdev_dec_pending(rdev, mddev); 5186 end_reshape_request(r10_bio); 5187 } 5188 5189 static void end_reshape_request(struct r10bio *r10_bio) 5190 { 5191 if (!atomic_dec_and_test(&r10_bio->remaining)) 5192 return; 5193 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 5194 bio_put(r10_bio->master_bio); 5195 put_buf(r10_bio); 5196 } 5197 5198 static void raid10_finish_reshape(struct mddev *mddev) 5199 { 5200 struct r10conf *conf = mddev->private; 5201 5202 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5203 return; 5204 5205 if (mddev->delta_disks > 0) { 5206 if (mddev->recovery_cp > mddev->resync_max_sectors) { 5207 mddev->recovery_cp = mddev->resync_max_sectors; 5208 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5209 } 5210 mddev->resync_max_sectors = mddev->array_sectors; 5211 } else { 5212 int d; 5213 rcu_read_lock(); 5214 for (d = conf->geo.raid_disks ; 5215 d < conf->geo.raid_disks - mddev->delta_disks; 5216 d++) { 5217 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 5218 if (rdev) 5219 clear_bit(In_sync, &rdev->flags); 5220 rdev = rcu_dereference(conf->mirrors[d].replacement); 5221 if (rdev) 5222 clear_bit(In_sync, &rdev->flags); 5223 } 5224 rcu_read_unlock(); 5225 } 5226 mddev->layout = mddev->new_layout; 5227 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 5228 mddev->reshape_position = MaxSector; 5229 mddev->delta_disks = 0; 5230 mddev->reshape_backwards = 0; 5231 } 5232 5233 static struct md_personality raid10_personality = 5234 { 5235 .name = "raid10", 5236 .level = 10, 5237 .owner = THIS_MODULE, 5238 .make_request = raid10_make_request, 5239 .run = raid10_run, 5240 .free = raid10_free, 5241 .status = raid10_status, 5242 .error_handler = raid10_error, 5243 .hot_add_disk = raid10_add_disk, 5244 .hot_remove_disk= raid10_remove_disk, 5245 .spare_active = raid10_spare_active, 5246 .sync_request = raid10_sync_request, 5247 .quiesce = raid10_quiesce, 5248 .size = raid10_size, 5249 .resize = raid10_resize, 5250 .takeover = raid10_takeover, 5251 .check_reshape = raid10_check_reshape, 5252 .start_reshape = raid10_start_reshape, 5253 .finish_reshape = raid10_finish_reshape, 5254 .update_reshape_pos = raid10_update_reshape_pos, 5255 }; 5256 5257 static int __init raid_init(void) 5258 { 5259 return register_md_personality(&raid10_personality); 5260 } 5261 5262 static void raid_exit(void) 5263 { 5264 unregister_md_personality(&raid10_personality); 5265 } 5266 5267 module_init(raid_init); 5268 module_exit(raid_exit); 5269 MODULE_LICENSE("GPL"); 5270 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 5271 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 5272 MODULE_ALIAS("md-raid10"); 5273 MODULE_ALIAS("md-level-10"); 5274