1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <trace/events/block.h> 29 #include "md.h" 30 #include "raid10.h" 31 #include "raid0.h" 32 #include "bitmap.h" 33 34 /* 35 * RAID10 provides a combination of RAID0 and RAID1 functionality. 36 * The layout of data is defined by 37 * chunk_size 38 * raid_disks 39 * near_copies (stored in low byte of layout) 40 * far_copies (stored in second byte of layout) 41 * far_offset (stored in bit 16 of layout ) 42 * use_far_sets (stored in bit 17 of layout ) 43 * use_far_sets_bugfixed (stored in bit 18 of layout ) 44 * 45 * The data to be stored is divided into chunks using chunksize. Each device 46 * is divided into far_copies sections. In each section, chunks are laid out 47 * in a style similar to raid0, but near_copies copies of each chunk is stored 48 * (each on a different drive). The starting device for each section is offset 49 * near_copies from the starting device of the previous section. Thus there 50 * are (near_copies * far_copies) of each chunk, and each is on a different 51 * drive. near_copies and far_copies must be at least one, and their product 52 * is at most raid_disks. 53 * 54 * If far_offset is true, then the far_copies are handled a bit differently. 55 * The copies are still in different stripes, but instead of being very far 56 * apart on disk, there are adjacent stripes. 57 * 58 * The far and offset algorithms are handled slightly differently if 59 * 'use_far_sets' is true. In this case, the array's devices are grouped into 60 * sets that are (near_copies * far_copies) in size. The far copied stripes 61 * are still shifted by 'near_copies' devices, but this shifting stays confined 62 * to the set rather than the entire array. This is done to improve the number 63 * of device combinations that can fail without causing the array to fail. 64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 65 * on a device): 66 * A B C D A B C D E 67 * ... ... 68 * D A B C E A B C D 69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 70 * [A B] [C D] [A B] [C D E] 71 * |...| |...| |...| | ... | 72 * [B A] [D C] [B A] [E C D] 73 */ 74 75 /* 76 * Number of guaranteed r10bios in case of extreme VM load: 77 */ 78 #define NR_RAID10_BIOS 256 79 80 /* when we get a read error on a read-only array, we redirect to another 81 * device without failing the first device, or trying to over-write to 82 * correct the read error. To keep track of bad blocks on a per-bio 83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 84 */ 85 #define IO_BLOCKED ((struct bio *)1) 86 /* When we successfully write to a known bad-block, we need to remove the 87 * bad-block marking which must be done from process context. So we record 88 * the success by setting devs[n].bio to IO_MADE_GOOD 89 */ 90 #define IO_MADE_GOOD ((struct bio *)2) 91 92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 93 94 /* When there are this many requests queued to be written by 95 * the raid10 thread, we become 'congested' to provide back-pressure 96 * for writeback. 97 */ 98 static int max_queued_requests = 1024; 99 100 static void allow_barrier(struct r10conf *conf); 101 static void lower_barrier(struct r10conf *conf); 102 static int _enough(struct r10conf *conf, int previous, int ignore); 103 static int enough(struct r10conf *conf, int ignore); 104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 105 int *skipped); 106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 107 static void end_reshape_write(struct bio *bio); 108 static void end_reshape(struct r10conf *conf); 109 110 #define raid10_log(md, fmt, args...) \ 111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 112 113 #include "raid1-10.c" 114 115 /* 116 * for resync bio, r10bio pointer can be retrieved from the per-bio 117 * 'struct resync_pages'. 118 */ 119 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 120 { 121 return get_resync_pages(bio)->raid_bio; 122 } 123 124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 125 { 126 struct r10conf *conf = data; 127 int size = offsetof(struct r10bio, devs[conf->copies]); 128 129 /* allocate a r10bio with room for raid_disks entries in the 130 * bios array */ 131 return kzalloc(size, gfp_flags); 132 } 133 134 static void r10bio_pool_free(void *r10_bio, void *data) 135 { 136 kfree(r10_bio); 137 } 138 139 /* amount of memory to reserve for resync requests */ 140 #define RESYNC_WINDOW (1024*1024) 141 /* maximum number of concurrent requests, memory permitting */ 142 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 143 144 /* 145 * When performing a resync, we need to read and compare, so 146 * we need as many pages are there are copies. 147 * When performing a recovery, we need 2 bios, one for read, 148 * one for write (we recover only one drive per r10buf) 149 * 150 */ 151 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 152 { 153 struct r10conf *conf = data; 154 struct r10bio *r10_bio; 155 struct bio *bio; 156 int j; 157 int nalloc, nalloc_rp; 158 struct resync_pages *rps; 159 160 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 161 if (!r10_bio) 162 return NULL; 163 164 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 165 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 166 nalloc = conf->copies; /* resync */ 167 else 168 nalloc = 2; /* recovery */ 169 170 /* allocate once for all bios */ 171 if (!conf->have_replacement) 172 nalloc_rp = nalloc; 173 else 174 nalloc_rp = nalloc * 2; 175 rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags); 176 if (!rps) 177 goto out_free_r10bio; 178 179 /* 180 * Allocate bios. 181 */ 182 for (j = nalloc ; j-- ; ) { 183 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 184 if (!bio) 185 goto out_free_bio; 186 r10_bio->devs[j].bio = bio; 187 if (!conf->have_replacement) 188 continue; 189 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 190 if (!bio) 191 goto out_free_bio; 192 r10_bio->devs[j].repl_bio = bio; 193 } 194 /* 195 * Allocate RESYNC_PAGES data pages and attach them 196 * where needed. 197 */ 198 for (j = 0; j < nalloc; j++) { 199 struct bio *rbio = r10_bio->devs[j].repl_bio; 200 struct resync_pages *rp, *rp_repl; 201 202 rp = &rps[j]; 203 if (rbio) 204 rp_repl = &rps[nalloc + j]; 205 206 bio = r10_bio->devs[j].bio; 207 208 if (!j || test_bit(MD_RECOVERY_SYNC, 209 &conf->mddev->recovery)) { 210 if (resync_alloc_pages(rp, gfp_flags)) 211 goto out_free_pages; 212 } else { 213 memcpy(rp, &rps[0], sizeof(*rp)); 214 resync_get_all_pages(rp); 215 } 216 217 rp->raid_bio = r10_bio; 218 bio->bi_private = rp; 219 if (rbio) { 220 memcpy(rp_repl, rp, sizeof(*rp)); 221 rbio->bi_private = rp_repl; 222 } 223 } 224 225 return r10_bio; 226 227 out_free_pages: 228 while (--j >= 0) 229 resync_free_pages(&rps[j * 2]); 230 231 j = 0; 232 out_free_bio: 233 for ( ; j < nalloc; j++) { 234 if (r10_bio->devs[j].bio) 235 bio_put(r10_bio->devs[j].bio); 236 if (r10_bio->devs[j].repl_bio) 237 bio_put(r10_bio->devs[j].repl_bio); 238 } 239 kfree(rps); 240 out_free_r10bio: 241 r10bio_pool_free(r10_bio, conf); 242 return NULL; 243 } 244 245 static void r10buf_pool_free(void *__r10_bio, void *data) 246 { 247 struct r10conf *conf = data; 248 struct r10bio *r10bio = __r10_bio; 249 int j; 250 struct resync_pages *rp = NULL; 251 252 for (j = conf->copies; j--; ) { 253 struct bio *bio = r10bio->devs[j].bio; 254 255 rp = get_resync_pages(bio); 256 resync_free_pages(rp); 257 bio_put(bio); 258 259 bio = r10bio->devs[j].repl_bio; 260 if (bio) 261 bio_put(bio); 262 } 263 264 /* resync pages array stored in the 1st bio's .bi_private */ 265 kfree(rp); 266 267 r10bio_pool_free(r10bio, conf); 268 } 269 270 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 271 { 272 int i; 273 274 for (i = 0; i < conf->copies; i++) { 275 struct bio **bio = & r10_bio->devs[i].bio; 276 if (!BIO_SPECIAL(*bio)) 277 bio_put(*bio); 278 *bio = NULL; 279 bio = &r10_bio->devs[i].repl_bio; 280 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 281 bio_put(*bio); 282 *bio = NULL; 283 } 284 } 285 286 static void free_r10bio(struct r10bio *r10_bio) 287 { 288 struct r10conf *conf = r10_bio->mddev->private; 289 290 put_all_bios(conf, r10_bio); 291 mempool_free(r10_bio, conf->r10bio_pool); 292 } 293 294 static void put_buf(struct r10bio *r10_bio) 295 { 296 struct r10conf *conf = r10_bio->mddev->private; 297 298 mempool_free(r10_bio, conf->r10buf_pool); 299 300 lower_barrier(conf); 301 } 302 303 static void reschedule_retry(struct r10bio *r10_bio) 304 { 305 unsigned long flags; 306 struct mddev *mddev = r10_bio->mddev; 307 struct r10conf *conf = mddev->private; 308 309 spin_lock_irqsave(&conf->device_lock, flags); 310 list_add(&r10_bio->retry_list, &conf->retry_list); 311 conf->nr_queued ++; 312 spin_unlock_irqrestore(&conf->device_lock, flags); 313 314 /* wake up frozen array... */ 315 wake_up(&conf->wait_barrier); 316 317 md_wakeup_thread(mddev->thread); 318 } 319 320 /* 321 * raid_end_bio_io() is called when we have finished servicing a mirrored 322 * operation and are ready to return a success/failure code to the buffer 323 * cache layer. 324 */ 325 static void raid_end_bio_io(struct r10bio *r10_bio) 326 { 327 struct bio *bio = r10_bio->master_bio; 328 struct r10conf *conf = r10_bio->mddev->private; 329 330 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 331 bio->bi_status = BLK_STS_IOERR; 332 333 bio_endio(bio); 334 /* 335 * Wake up any possible resync thread that waits for the device 336 * to go idle. 337 */ 338 allow_barrier(conf); 339 340 free_r10bio(r10_bio); 341 } 342 343 /* 344 * Update disk head position estimator based on IRQ completion info. 345 */ 346 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 347 { 348 struct r10conf *conf = r10_bio->mddev->private; 349 350 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 351 r10_bio->devs[slot].addr + (r10_bio->sectors); 352 } 353 354 /* 355 * Find the disk number which triggered given bio 356 */ 357 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 358 struct bio *bio, int *slotp, int *replp) 359 { 360 int slot; 361 int repl = 0; 362 363 for (slot = 0; slot < conf->copies; slot++) { 364 if (r10_bio->devs[slot].bio == bio) 365 break; 366 if (r10_bio->devs[slot].repl_bio == bio) { 367 repl = 1; 368 break; 369 } 370 } 371 372 BUG_ON(slot == conf->copies); 373 update_head_pos(slot, r10_bio); 374 375 if (slotp) 376 *slotp = slot; 377 if (replp) 378 *replp = repl; 379 return r10_bio->devs[slot].devnum; 380 } 381 382 static void raid10_end_read_request(struct bio *bio) 383 { 384 int uptodate = !bio->bi_status; 385 struct r10bio *r10_bio = bio->bi_private; 386 int slot, dev; 387 struct md_rdev *rdev; 388 struct r10conf *conf = r10_bio->mddev->private; 389 390 slot = r10_bio->read_slot; 391 dev = r10_bio->devs[slot].devnum; 392 rdev = r10_bio->devs[slot].rdev; 393 /* 394 * this branch is our 'one mirror IO has finished' event handler: 395 */ 396 update_head_pos(slot, r10_bio); 397 398 if (uptodate) { 399 /* 400 * Set R10BIO_Uptodate in our master bio, so that 401 * we will return a good error code to the higher 402 * levels even if IO on some other mirrored buffer fails. 403 * 404 * The 'master' represents the composite IO operation to 405 * user-side. So if something waits for IO, then it will 406 * wait for the 'master' bio. 407 */ 408 set_bit(R10BIO_Uptodate, &r10_bio->state); 409 } else { 410 /* If all other devices that store this block have 411 * failed, we want to return the error upwards rather 412 * than fail the last device. Here we redefine 413 * "uptodate" to mean "Don't want to retry" 414 */ 415 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 416 rdev->raid_disk)) 417 uptodate = 1; 418 } 419 if (uptodate) { 420 raid_end_bio_io(r10_bio); 421 rdev_dec_pending(rdev, conf->mddev); 422 } else { 423 /* 424 * oops, read error - keep the refcount on the rdev 425 */ 426 char b[BDEVNAME_SIZE]; 427 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 428 mdname(conf->mddev), 429 bdevname(rdev->bdev, b), 430 (unsigned long long)r10_bio->sector); 431 set_bit(R10BIO_ReadError, &r10_bio->state); 432 reschedule_retry(r10_bio); 433 } 434 } 435 436 static void close_write(struct r10bio *r10_bio) 437 { 438 /* clear the bitmap if all writes complete successfully */ 439 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 440 r10_bio->sectors, 441 !test_bit(R10BIO_Degraded, &r10_bio->state), 442 0); 443 md_write_end(r10_bio->mddev); 444 } 445 446 static void one_write_done(struct r10bio *r10_bio) 447 { 448 if (atomic_dec_and_test(&r10_bio->remaining)) { 449 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 450 reschedule_retry(r10_bio); 451 else { 452 close_write(r10_bio); 453 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 454 reschedule_retry(r10_bio); 455 else 456 raid_end_bio_io(r10_bio); 457 } 458 } 459 } 460 461 static void raid10_end_write_request(struct bio *bio) 462 { 463 struct r10bio *r10_bio = bio->bi_private; 464 int dev; 465 int dec_rdev = 1; 466 struct r10conf *conf = r10_bio->mddev->private; 467 int slot, repl; 468 struct md_rdev *rdev = NULL; 469 struct bio *to_put = NULL; 470 bool discard_error; 471 472 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 473 474 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 475 476 if (repl) 477 rdev = conf->mirrors[dev].replacement; 478 if (!rdev) { 479 smp_rmb(); 480 repl = 0; 481 rdev = conf->mirrors[dev].rdev; 482 } 483 /* 484 * this branch is our 'one mirror IO has finished' event handler: 485 */ 486 if (bio->bi_status && !discard_error) { 487 if (repl) 488 /* Never record new bad blocks to replacement, 489 * just fail it. 490 */ 491 md_error(rdev->mddev, rdev); 492 else { 493 set_bit(WriteErrorSeen, &rdev->flags); 494 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 495 set_bit(MD_RECOVERY_NEEDED, 496 &rdev->mddev->recovery); 497 498 dec_rdev = 0; 499 if (test_bit(FailFast, &rdev->flags) && 500 (bio->bi_opf & MD_FAILFAST)) { 501 md_error(rdev->mddev, rdev); 502 if (!test_bit(Faulty, &rdev->flags)) 503 /* This is the only remaining device, 504 * We need to retry the write without 505 * FailFast 506 */ 507 set_bit(R10BIO_WriteError, &r10_bio->state); 508 else { 509 r10_bio->devs[slot].bio = NULL; 510 to_put = bio; 511 dec_rdev = 1; 512 } 513 } else 514 set_bit(R10BIO_WriteError, &r10_bio->state); 515 } 516 } else { 517 /* 518 * Set R10BIO_Uptodate in our master bio, so that 519 * we will return a good error code for to the higher 520 * levels even if IO on some other mirrored buffer fails. 521 * 522 * The 'master' represents the composite IO operation to 523 * user-side. So if something waits for IO, then it will 524 * wait for the 'master' bio. 525 */ 526 sector_t first_bad; 527 int bad_sectors; 528 529 /* 530 * Do not set R10BIO_Uptodate if the current device is 531 * rebuilding or Faulty. This is because we cannot use 532 * such device for properly reading the data back (we could 533 * potentially use it, if the current write would have felt 534 * before rdev->recovery_offset, but for simplicity we don't 535 * check this here. 536 */ 537 if (test_bit(In_sync, &rdev->flags) && 538 !test_bit(Faulty, &rdev->flags)) 539 set_bit(R10BIO_Uptodate, &r10_bio->state); 540 541 /* Maybe we can clear some bad blocks. */ 542 if (is_badblock(rdev, 543 r10_bio->devs[slot].addr, 544 r10_bio->sectors, 545 &first_bad, &bad_sectors) && !discard_error) { 546 bio_put(bio); 547 if (repl) 548 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 549 else 550 r10_bio->devs[slot].bio = IO_MADE_GOOD; 551 dec_rdev = 0; 552 set_bit(R10BIO_MadeGood, &r10_bio->state); 553 } 554 } 555 556 /* 557 * 558 * Let's see if all mirrored write operations have finished 559 * already. 560 */ 561 one_write_done(r10_bio); 562 if (dec_rdev) 563 rdev_dec_pending(rdev, conf->mddev); 564 if (to_put) 565 bio_put(to_put); 566 } 567 568 /* 569 * RAID10 layout manager 570 * As well as the chunksize and raid_disks count, there are two 571 * parameters: near_copies and far_copies. 572 * near_copies * far_copies must be <= raid_disks. 573 * Normally one of these will be 1. 574 * If both are 1, we get raid0. 575 * If near_copies == raid_disks, we get raid1. 576 * 577 * Chunks are laid out in raid0 style with near_copies copies of the 578 * first chunk, followed by near_copies copies of the next chunk and 579 * so on. 580 * If far_copies > 1, then after 1/far_copies of the array has been assigned 581 * as described above, we start again with a device offset of near_copies. 582 * So we effectively have another copy of the whole array further down all 583 * the drives, but with blocks on different drives. 584 * With this layout, and block is never stored twice on the one device. 585 * 586 * raid10_find_phys finds the sector offset of a given virtual sector 587 * on each device that it is on. 588 * 589 * raid10_find_virt does the reverse mapping, from a device and a 590 * sector offset to a virtual address 591 */ 592 593 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 594 { 595 int n,f; 596 sector_t sector; 597 sector_t chunk; 598 sector_t stripe; 599 int dev; 600 int slot = 0; 601 int last_far_set_start, last_far_set_size; 602 603 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 604 last_far_set_start *= geo->far_set_size; 605 606 last_far_set_size = geo->far_set_size; 607 last_far_set_size += (geo->raid_disks % geo->far_set_size); 608 609 /* now calculate first sector/dev */ 610 chunk = r10bio->sector >> geo->chunk_shift; 611 sector = r10bio->sector & geo->chunk_mask; 612 613 chunk *= geo->near_copies; 614 stripe = chunk; 615 dev = sector_div(stripe, geo->raid_disks); 616 if (geo->far_offset) 617 stripe *= geo->far_copies; 618 619 sector += stripe << geo->chunk_shift; 620 621 /* and calculate all the others */ 622 for (n = 0; n < geo->near_copies; n++) { 623 int d = dev; 624 int set; 625 sector_t s = sector; 626 r10bio->devs[slot].devnum = d; 627 r10bio->devs[slot].addr = s; 628 slot++; 629 630 for (f = 1; f < geo->far_copies; f++) { 631 set = d / geo->far_set_size; 632 d += geo->near_copies; 633 634 if ((geo->raid_disks % geo->far_set_size) && 635 (d > last_far_set_start)) { 636 d -= last_far_set_start; 637 d %= last_far_set_size; 638 d += last_far_set_start; 639 } else { 640 d %= geo->far_set_size; 641 d += geo->far_set_size * set; 642 } 643 s += geo->stride; 644 r10bio->devs[slot].devnum = d; 645 r10bio->devs[slot].addr = s; 646 slot++; 647 } 648 dev++; 649 if (dev >= geo->raid_disks) { 650 dev = 0; 651 sector += (geo->chunk_mask + 1); 652 } 653 } 654 } 655 656 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 657 { 658 struct geom *geo = &conf->geo; 659 660 if (conf->reshape_progress != MaxSector && 661 ((r10bio->sector >= conf->reshape_progress) != 662 conf->mddev->reshape_backwards)) { 663 set_bit(R10BIO_Previous, &r10bio->state); 664 geo = &conf->prev; 665 } else 666 clear_bit(R10BIO_Previous, &r10bio->state); 667 668 __raid10_find_phys(geo, r10bio); 669 } 670 671 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 672 { 673 sector_t offset, chunk, vchunk; 674 /* Never use conf->prev as this is only called during resync 675 * or recovery, so reshape isn't happening 676 */ 677 struct geom *geo = &conf->geo; 678 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 679 int far_set_size = geo->far_set_size; 680 int last_far_set_start; 681 682 if (geo->raid_disks % geo->far_set_size) { 683 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 684 last_far_set_start *= geo->far_set_size; 685 686 if (dev >= last_far_set_start) { 687 far_set_size = geo->far_set_size; 688 far_set_size += (geo->raid_disks % geo->far_set_size); 689 far_set_start = last_far_set_start; 690 } 691 } 692 693 offset = sector & geo->chunk_mask; 694 if (geo->far_offset) { 695 int fc; 696 chunk = sector >> geo->chunk_shift; 697 fc = sector_div(chunk, geo->far_copies); 698 dev -= fc * geo->near_copies; 699 if (dev < far_set_start) 700 dev += far_set_size; 701 } else { 702 while (sector >= geo->stride) { 703 sector -= geo->stride; 704 if (dev < (geo->near_copies + far_set_start)) 705 dev += far_set_size - geo->near_copies; 706 else 707 dev -= geo->near_copies; 708 } 709 chunk = sector >> geo->chunk_shift; 710 } 711 vchunk = chunk * geo->raid_disks + dev; 712 sector_div(vchunk, geo->near_copies); 713 return (vchunk << geo->chunk_shift) + offset; 714 } 715 716 /* 717 * This routine returns the disk from which the requested read should 718 * be done. There is a per-array 'next expected sequential IO' sector 719 * number - if this matches on the next IO then we use the last disk. 720 * There is also a per-disk 'last know head position' sector that is 721 * maintained from IRQ contexts, both the normal and the resync IO 722 * completion handlers update this position correctly. If there is no 723 * perfect sequential match then we pick the disk whose head is closest. 724 * 725 * If there are 2 mirrors in the same 2 devices, performance degrades 726 * because position is mirror, not device based. 727 * 728 * The rdev for the device selected will have nr_pending incremented. 729 */ 730 731 /* 732 * FIXME: possibly should rethink readbalancing and do it differently 733 * depending on near_copies / far_copies geometry. 734 */ 735 static struct md_rdev *read_balance(struct r10conf *conf, 736 struct r10bio *r10_bio, 737 int *max_sectors) 738 { 739 const sector_t this_sector = r10_bio->sector; 740 int disk, slot; 741 int sectors = r10_bio->sectors; 742 int best_good_sectors; 743 sector_t new_distance, best_dist; 744 struct md_rdev *best_rdev, *rdev = NULL; 745 int do_balance; 746 int best_slot; 747 struct geom *geo = &conf->geo; 748 749 raid10_find_phys(conf, r10_bio); 750 rcu_read_lock(); 751 sectors = r10_bio->sectors; 752 best_slot = -1; 753 best_rdev = NULL; 754 best_dist = MaxSector; 755 best_good_sectors = 0; 756 do_balance = 1; 757 clear_bit(R10BIO_FailFast, &r10_bio->state); 758 /* 759 * Check if we can balance. We can balance on the whole 760 * device if no resync is going on (recovery is ok), or below 761 * the resync window. We take the first readable disk when 762 * above the resync window. 763 */ 764 if (conf->mddev->recovery_cp < MaxSector 765 && (this_sector + sectors >= conf->next_resync)) 766 do_balance = 0; 767 768 for (slot = 0; slot < conf->copies ; slot++) { 769 sector_t first_bad; 770 int bad_sectors; 771 sector_t dev_sector; 772 773 if (r10_bio->devs[slot].bio == IO_BLOCKED) 774 continue; 775 disk = r10_bio->devs[slot].devnum; 776 rdev = rcu_dereference(conf->mirrors[disk].replacement); 777 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 778 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 779 rdev = rcu_dereference(conf->mirrors[disk].rdev); 780 if (rdev == NULL || 781 test_bit(Faulty, &rdev->flags)) 782 continue; 783 if (!test_bit(In_sync, &rdev->flags) && 784 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 785 continue; 786 787 dev_sector = r10_bio->devs[slot].addr; 788 if (is_badblock(rdev, dev_sector, sectors, 789 &first_bad, &bad_sectors)) { 790 if (best_dist < MaxSector) 791 /* Already have a better slot */ 792 continue; 793 if (first_bad <= dev_sector) { 794 /* Cannot read here. If this is the 795 * 'primary' device, then we must not read 796 * beyond 'bad_sectors' from another device. 797 */ 798 bad_sectors -= (dev_sector - first_bad); 799 if (!do_balance && sectors > bad_sectors) 800 sectors = bad_sectors; 801 if (best_good_sectors > sectors) 802 best_good_sectors = sectors; 803 } else { 804 sector_t good_sectors = 805 first_bad - dev_sector; 806 if (good_sectors > best_good_sectors) { 807 best_good_sectors = good_sectors; 808 best_slot = slot; 809 best_rdev = rdev; 810 } 811 if (!do_balance) 812 /* Must read from here */ 813 break; 814 } 815 continue; 816 } else 817 best_good_sectors = sectors; 818 819 if (!do_balance) 820 break; 821 822 if (best_slot >= 0) 823 /* At least 2 disks to choose from so failfast is OK */ 824 set_bit(R10BIO_FailFast, &r10_bio->state); 825 /* This optimisation is debatable, and completely destroys 826 * sequential read speed for 'far copies' arrays. So only 827 * keep it for 'near' arrays, and review those later. 828 */ 829 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 830 new_distance = 0; 831 832 /* for far > 1 always use the lowest address */ 833 else if (geo->far_copies > 1) 834 new_distance = r10_bio->devs[slot].addr; 835 else 836 new_distance = abs(r10_bio->devs[slot].addr - 837 conf->mirrors[disk].head_position); 838 if (new_distance < best_dist) { 839 best_dist = new_distance; 840 best_slot = slot; 841 best_rdev = rdev; 842 } 843 } 844 if (slot >= conf->copies) { 845 slot = best_slot; 846 rdev = best_rdev; 847 } 848 849 if (slot >= 0) { 850 atomic_inc(&rdev->nr_pending); 851 r10_bio->read_slot = slot; 852 } else 853 rdev = NULL; 854 rcu_read_unlock(); 855 *max_sectors = best_good_sectors; 856 857 return rdev; 858 } 859 860 static int raid10_congested(struct mddev *mddev, int bits) 861 { 862 struct r10conf *conf = mddev->private; 863 int i, ret = 0; 864 865 if ((bits & (1 << WB_async_congested)) && 866 conf->pending_count >= max_queued_requests) 867 return 1; 868 869 rcu_read_lock(); 870 for (i = 0; 871 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 872 && ret == 0; 873 i++) { 874 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 875 if (rdev && !test_bit(Faulty, &rdev->flags)) { 876 struct request_queue *q = bdev_get_queue(rdev->bdev); 877 878 ret |= bdi_congested(q->backing_dev_info, bits); 879 } 880 } 881 rcu_read_unlock(); 882 return ret; 883 } 884 885 static void flush_pending_writes(struct r10conf *conf) 886 { 887 /* Any writes that have been queued but are awaiting 888 * bitmap updates get flushed here. 889 */ 890 spin_lock_irq(&conf->device_lock); 891 892 if (conf->pending_bio_list.head) { 893 struct bio *bio; 894 bio = bio_list_get(&conf->pending_bio_list); 895 conf->pending_count = 0; 896 spin_unlock_irq(&conf->device_lock); 897 /* flush any pending bitmap writes to disk 898 * before proceeding w/ I/O */ 899 bitmap_unplug(conf->mddev->bitmap); 900 wake_up(&conf->wait_barrier); 901 902 while (bio) { /* submit pending writes */ 903 struct bio *next = bio->bi_next; 904 struct md_rdev *rdev = (void*)bio->bi_disk; 905 bio->bi_next = NULL; 906 bio_set_dev(bio, rdev->bdev); 907 if (test_bit(Faulty, &rdev->flags)) { 908 bio_io_error(bio); 909 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 910 !blk_queue_discard(bio->bi_disk->queue))) 911 /* Just ignore it */ 912 bio_endio(bio); 913 else 914 generic_make_request(bio); 915 bio = next; 916 } 917 } else 918 spin_unlock_irq(&conf->device_lock); 919 } 920 921 /* Barriers.... 922 * Sometimes we need to suspend IO while we do something else, 923 * either some resync/recovery, or reconfigure the array. 924 * To do this we raise a 'barrier'. 925 * The 'barrier' is a counter that can be raised multiple times 926 * to count how many activities are happening which preclude 927 * normal IO. 928 * We can only raise the barrier if there is no pending IO. 929 * i.e. if nr_pending == 0. 930 * We choose only to raise the barrier if no-one is waiting for the 931 * barrier to go down. This means that as soon as an IO request 932 * is ready, no other operations which require a barrier will start 933 * until the IO request has had a chance. 934 * 935 * So: regular IO calls 'wait_barrier'. When that returns there 936 * is no backgroup IO happening, It must arrange to call 937 * allow_barrier when it has finished its IO. 938 * backgroup IO calls must call raise_barrier. Once that returns 939 * there is no normal IO happeing. It must arrange to call 940 * lower_barrier when the particular background IO completes. 941 */ 942 943 static void raise_barrier(struct r10conf *conf, int force) 944 { 945 BUG_ON(force && !conf->barrier); 946 spin_lock_irq(&conf->resync_lock); 947 948 /* Wait until no block IO is waiting (unless 'force') */ 949 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 950 conf->resync_lock); 951 952 /* block any new IO from starting */ 953 conf->barrier++; 954 955 /* Now wait for all pending IO to complete */ 956 wait_event_lock_irq(conf->wait_barrier, 957 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 958 conf->resync_lock); 959 960 spin_unlock_irq(&conf->resync_lock); 961 } 962 963 static void lower_barrier(struct r10conf *conf) 964 { 965 unsigned long flags; 966 spin_lock_irqsave(&conf->resync_lock, flags); 967 conf->barrier--; 968 spin_unlock_irqrestore(&conf->resync_lock, flags); 969 wake_up(&conf->wait_barrier); 970 } 971 972 static void wait_barrier(struct r10conf *conf) 973 { 974 spin_lock_irq(&conf->resync_lock); 975 if (conf->barrier) { 976 conf->nr_waiting++; 977 /* Wait for the barrier to drop. 978 * However if there are already pending 979 * requests (preventing the barrier from 980 * rising completely), and the 981 * pre-process bio queue isn't empty, 982 * then don't wait, as we need to empty 983 * that queue to get the nr_pending 984 * count down. 985 */ 986 raid10_log(conf->mddev, "wait barrier"); 987 wait_event_lock_irq(conf->wait_barrier, 988 !conf->barrier || 989 (atomic_read(&conf->nr_pending) && 990 current->bio_list && 991 (!bio_list_empty(¤t->bio_list[0]) || 992 !bio_list_empty(¤t->bio_list[1]))), 993 conf->resync_lock); 994 conf->nr_waiting--; 995 if (!conf->nr_waiting) 996 wake_up(&conf->wait_barrier); 997 } 998 atomic_inc(&conf->nr_pending); 999 spin_unlock_irq(&conf->resync_lock); 1000 } 1001 1002 static void allow_barrier(struct r10conf *conf) 1003 { 1004 if ((atomic_dec_and_test(&conf->nr_pending)) || 1005 (conf->array_freeze_pending)) 1006 wake_up(&conf->wait_barrier); 1007 } 1008 1009 static void freeze_array(struct r10conf *conf, int extra) 1010 { 1011 /* stop syncio and normal IO and wait for everything to 1012 * go quiet. 1013 * We increment barrier and nr_waiting, and then 1014 * wait until nr_pending match nr_queued+extra 1015 * This is called in the context of one normal IO request 1016 * that has failed. Thus any sync request that might be pending 1017 * will be blocked by nr_pending, and we need to wait for 1018 * pending IO requests to complete or be queued for re-try. 1019 * Thus the number queued (nr_queued) plus this request (extra) 1020 * must match the number of pending IOs (nr_pending) before 1021 * we continue. 1022 */ 1023 spin_lock_irq(&conf->resync_lock); 1024 conf->array_freeze_pending++; 1025 conf->barrier++; 1026 conf->nr_waiting++; 1027 wait_event_lock_irq_cmd(conf->wait_barrier, 1028 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1029 conf->resync_lock, 1030 flush_pending_writes(conf)); 1031 1032 conf->array_freeze_pending--; 1033 spin_unlock_irq(&conf->resync_lock); 1034 } 1035 1036 static void unfreeze_array(struct r10conf *conf) 1037 { 1038 /* reverse the effect of the freeze */ 1039 spin_lock_irq(&conf->resync_lock); 1040 conf->barrier--; 1041 conf->nr_waiting--; 1042 wake_up(&conf->wait_barrier); 1043 spin_unlock_irq(&conf->resync_lock); 1044 } 1045 1046 static sector_t choose_data_offset(struct r10bio *r10_bio, 1047 struct md_rdev *rdev) 1048 { 1049 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1050 test_bit(R10BIO_Previous, &r10_bio->state)) 1051 return rdev->data_offset; 1052 else 1053 return rdev->new_data_offset; 1054 } 1055 1056 struct raid10_plug_cb { 1057 struct blk_plug_cb cb; 1058 struct bio_list pending; 1059 int pending_cnt; 1060 }; 1061 1062 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1063 { 1064 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1065 cb); 1066 struct mddev *mddev = plug->cb.data; 1067 struct r10conf *conf = mddev->private; 1068 struct bio *bio; 1069 1070 if (from_schedule || current->bio_list) { 1071 spin_lock_irq(&conf->device_lock); 1072 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1073 conf->pending_count += plug->pending_cnt; 1074 spin_unlock_irq(&conf->device_lock); 1075 wake_up(&conf->wait_barrier); 1076 md_wakeup_thread(mddev->thread); 1077 kfree(plug); 1078 return; 1079 } 1080 1081 /* we aren't scheduling, so we can do the write-out directly. */ 1082 bio = bio_list_get(&plug->pending); 1083 bitmap_unplug(mddev->bitmap); 1084 wake_up(&conf->wait_barrier); 1085 1086 while (bio) { /* submit pending writes */ 1087 struct bio *next = bio->bi_next; 1088 struct md_rdev *rdev = (void*)bio->bi_disk; 1089 bio->bi_next = NULL; 1090 bio_set_dev(bio, rdev->bdev); 1091 if (test_bit(Faulty, &rdev->flags)) { 1092 bio_io_error(bio); 1093 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1094 !blk_queue_discard(bio->bi_disk->queue))) 1095 /* Just ignore it */ 1096 bio_endio(bio); 1097 else 1098 generic_make_request(bio); 1099 bio = next; 1100 } 1101 kfree(plug); 1102 } 1103 1104 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1105 struct r10bio *r10_bio) 1106 { 1107 struct r10conf *conf = mddev->private; 1108 struct bio *read_bio; 1109 const int op = bio_op(bio); 1110 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1111 int max_sectors; 1112 sector_t sectors; 1113 struct md_rdev *rdev; 1114 char b[BDEVNAME_SIZE]; 1115 int slot = r10_bio->read_slot; 1116 struct md_rdev *err_rdev = NULL; 1117 gfp_t gfp = GFP_NOIO; 1118 1119 if (r10_bio->devs[slot].rdev) { 1120 /* 1121 * This is an error retry, but we cannot 1122 * safely dereference the rdev in the r10_bio, 1123 * we must use the one in conf. 1124 * If it has already been disconnected (unlikely) 1125 * we lose the device name in error messages. 1126 */ 1127 int disk; 1128 /* 1129 * As we are blocking raid10, it is a little safer to 1130 * use __GFP_HIGH. 1131 */ 1132 gfp = GFP_NOIO | __GFP_HIGH; 1133 1134 rcu_read_lock(); 1135 disk = r10_bio->devs[slot].devnum; 1136 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1137 if (err_rdev) 1138 bdevname(err_rdev->bdev, b); 1139 else { 1140 strcpy(b, "???"); 1141 /* This never gets dereferenced */ 1142 err_rdev = r10_bio->devs[slot].rdev; 1143 } 1144 rcu_read_unlock(); 1145 } 1146 /* 1147 * Register the new request and wait if the reconstruction 1148 * thread has put up a bar for new requests. 1149 * Continue immediately if no resync is active currently. 1150 */ 1151 wait_barrier(conf); 1152 1153 sectors = r10_bio->sectors; 1154 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1155 bio->bi_iter.bi_sector < conf->reshape_progress && 1156 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1157 /* 1158 * IO spans the reshape position. Need to wait for reshape to 1159 * pass 1160 */ 1161 raid10_log(conf->mddev, "wait reshape"); 1162 allow_barrier(conf); 1163 wait_event(conf->wait_barrier, 1164 conf->reshape_progress <= bio->bi_iter.bi_sector || 1165 conf->reshape_progress >= bio->bi_iter.bi_sector + 1166 sectors); 1167 wait_barrier(conf); 1168 } 1169 1170 rdev = read_balance(conf, r10_bio, &max_sectors); 1171 if (!rdev) { 1172 if (err_rdev) { 1173 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1174 mdname(mddev), b, 1175 (unsigned long long)r10_bio->sector); 1176 } 1177 raid_end_bio_io(r10_bio); 1178 return; 1179 } 1180 if (err_rdev) 1181 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1182 mdname(mddev), 1183 bdevname(rdev->bdev, b), 1184 (unsigned long long)r10_bio->sector); 1185 if (max_sectors < bio_sectors(bio)) { 1186 struct bio *split = bio_split(bio, max_sectors, 1187 gfp, conf->bio_split); 1188 bio_chain(split, bio); 1189 generic_make_request(bio); 1190 bio = split; 1191 r10_bio->master_bio = bio; 1192 r10_bio->sectors = max_sectors; 1193 } 1194 slot = r10_bio->read_slot; 1195 1196 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set); 1197 1198 r10_bio->devs[slot].bio = read_bio; 1199 r10_bio->devs[slot].rdev = rdev; 1200 1201 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1202 choose_data_offset(r10_bio, rdev); 1203 bio_set_dev(read_bio, rdev->bdev); 1204 read_bio->bi_end_io = raid10_end_read_request; 1205 bio_set_op_attrs(read_bio, op, do_sync); 1206 if (test_bit(FailFast, &rdev->flags) && 1207 test_bit(R10BIO_FailFast, &r10_bio->state)) 1208 read_bio->bi_opf |= MD_FAILFAST; 1209 read_bio->bi_private = r10_bio; 1210 1211 if (mddev->gendisk) 1212 trace_block_bio_remap(read_bio->bi_disk->queue, 1213 read_bio, disk_devt(mddev->gendisk), 1214 r10_bio->sector); 1215 generic_make_request(read_bio); 1216 return; 1217 } 1218 1219 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1220 struct bio *bio, bool replacement, 1221 int n_copy) 1222 { 1223 const int op = bio_op(bio); 1224 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1225 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1226 unsigned long flags; 1227 struct blk_plug_cb *cb; 1228 struct raid10_plug_cb *plug = NULL; 1229 struct r10conf *conf = mddev->private; 1230 struct md_rdev *rdev; 1231 int devnum = r10_bio->devs[n_copy].devnum; 1232 struct bio *mbio; 1233 1234 if (replacement) { 1235 rdev = conf->mirrors[devnum].replacement; 1236 if (rdev == NULL) { 1237 /* Replacement just got moved to main 'rdev' */ 1238 smp_mb(); 1239 rdev = conf->mirrors[devnum].rdev; 1240 } 1241 } else 1242 rdev = conf->mirrors[devnum].rdev; 1243 1244 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 1245 if (replacement) 1246 r10_bio->devs[n_copy].repl_bio = mbio; 1247 else 1248 r10_bio->devs[n_copy].bio = mbio; 1249 1250 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1251 choose_data_offset(r10_bio, rdev)); 1252 bio_set_dev(mbio, rdev->bdev); 1253 mbio->bi_end_io = raid10_end_write_request; 1254 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1255 if (!replacement && test_bit(FailFast, 1256 &conf->mirrors[devnum].rdev->flags) 1257 && enough(conf, devnum)) 1258 mbio->bi_opf |= MD_FAILFAST; 1259 mbio->bi_private = r10_bio; 1260 1261 if (conf->mddev->gendisk) 1262 trace_block_bio_remap(mbio->bi_disk->queue, 1263 mbio, disk_devt(conf->mddev->gendisk), 1264 r10_bio->sector); 1265 /* flush_pending_writes() needs access to the rdev so...*/ 1266 mbio->bi_disk = (void *)rdev; 1267 1268 atomic_inc(&r10_bio->remaining); 1269 1270 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1271 if (cb) 1272 plug = container_of(cb, struct raid10_plug_cb, cb); 1273 else 1274 plug = NULL; 1275 if (plug) { 1276 bio_list_add(&plug->pending, mbio); 1277 plug->pending_cnt++; 1278 } else { 1279 spin_lock_irqsave(&conf->device_lock, flags); 1280 bio_list_add(&conf->pending_bio_list, mbio); 1281 conf->pending_count++; 1282 spin_unlock_irqrestore(&conf->device_lock, flags); 1283 md_wakeup_thread(mddev->thread); 1284 } 1285 } 1286 1287 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1288 struct r10bio *r10_bio) 1289 { 1290 struct r10conf *conf = mddev->private; 1291 int i; 1292 struct md_rdev *blocked_rdev; 1293 sector_t sectors; 1294 int max_sectors; 1295 1296 /* 1297 * Register the new request and wait if the reconstruction 1298 * thread has put up a bar for new requests. 1299 * Continue immediately if no resync is active currently. 1300 */ 1301 wait_barrier(conf); 1302 1303 sectors = r10_bio->sectors; 1304 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1305 bio->bi_iter.bi_sector < conf->reshape_progress && 1306 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1307 /* 1308 * IO spans the reshape position. Need to wait for reshape to 1309 * pass 1310 */ 1311 raid10_log(conf->mddev, "wait reshape"); 1312 allow_barrier(conf); 1313 wait_event(conf->wait_barrier, 1314 conf->reshape_progress <= bio->bi_iter.bi_sector || 1315 conf->reshape_progress >= bio->bi_iter.bi_sector + 1316 sectors); 1317 wait_barrier(conf); 1318 } 1319 1320 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1321 (mddev->reshape_backwards 1322 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1323 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1324 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1325 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1326 /* Need to update reshape_position in metadata */ 1327 mddev->reshape_position = conf->reshape_progress; 1328 set_mask_bits(&mddev->sb_flags, 0, 1329 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1330 md_wakeup_thread(mddev->thread); 1331 raid10_log(conf->mddev, "wait reshape metadata"); 1332 wait_event(mddev->sb_wait, 1333 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1334 1335 conf->reshape_safe = mddev->reshape_position; 1336 } 1337 1338 if (conf->pending_count >= max_queued_requests) { 1339 md_wakeup_thread(mddev->thread); 1340 raid10_log(mddev, "wait queued"); 1341 wait_event(conf->wait_barrier, 1342 conf->pending_count < max_queued_requests); 1343 } 1344 /* first select target devices under rcu_lock and 1345 * inc refcount on their rdev. Record them by setting 1346 * bios[x] to bio 1347 * If there are known/acknowledged bad blocks on any device 1348 * on which we have seen a write error, we want to avoid 1349 * writing to those blocks. This potentially requires several 1350 * writes to write around the bad blocks. Each set of writes 1351 * gets its own r10_bio with a set of bios attached. 1352 */ 1353 1354 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1355 raid10_find_phys(conf, r10_bio); 1356 retry_write: 1357 blocked_rdev = NULL; 1358 rcu_read_lock(); 1359 max_sectors = r10_bio->sectors; 1360 1361 for (i = 0; i < conf->copies; i++) { 1362 int d = r10_bio->devs[i].devnum; 1363 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1364 struct md_rdev *rrdev = rcu_dereference( 1365 conf->mirrors[d].replacement); 1366 if (rdev == rrdev) 1367 rrdev = NULL; 1368 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1369 atomic_inc(&rdev->nr_pending); 1370 blocked_rdev = rdev; 1371 break; 1372 } 1373 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1374 atomic_inc(&rrdev->nr_pending); 1375 blocked_rdev = rrdev; 1376 break; 1377 } 1378 if (rdev && (test_bit(Faulty, &rdev->flags))) 1379 rdev = NULL; 1380 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1381 rrdev = NULL; 1382 1383 r10_bio->devs[i].bio = NULL; 1384 r10_bio->devs[i].repl_bio = NULL; 1385 1386 if (!rdev && !rrdev) { 1387 set_bit(R10BIO_Degraded, &r10_bio->state); 1388 continue; 1389 } 1390 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1391 sector_t first_bad; 1392 sector_t dev_sector = r10_bio->devs[i].addr; 1393 int bad_sectors; 1394 int is_bad; 1395 1396 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1397 &first_bad, &bad_sectors); 1398 if (is_bad < 0) { 1399 /* Mustn't write here until the bad block 1400 * is acknowledged 1401 */ 1402 atomic_inc(&rdev->nr_pending); 1403 set_bit(BlockedBadBlocks, &rdev->flags); 1404 blocked_rdev = rdev; 1405 break; 1406 } 1407 if (is_bad && first_bad <= dev_sector) { 1408 /* Cannot write here at all */ 1409 bad_sectors -= (dev_sector - first_bad); 1410 if (bad_sectors < max_sectors) 1411 /* Mustn't write more than bad_sectors 1412 * to other devices yet 1413 */ 1414 max_sectors = bad_sectors; 1415 /* We don't set R10BIO_Degraded as that 1416 * only applies if the disk is missing, 1417 * so it might be re-added, and we want to 1418 * know to recover this chunk. 1419 * In this case the device is here, and the 1420 * fact that this chunk is not in-sync is 1421 * recorded in the bad block log. 1422 */ 1423 continue; 1424 } 1425 if (is_bad) { 1426 int good_sectors = first_bad - dev_sector; 1427 if (good_sectors < max_sectors) 1428 max_sectors = good_sectors; 1429 } 1430 } 1431 if (rdev) { 1432 r10_bio->devs[i].bio = bio; 1433 atomic_inc(&rdev->nr_pending); 1434 } 1435 if (rrdev) { 1436 r10_bio->devs[i].repl_bio = bio; 1437 atomic_inc(&rrdev->nr_pending); 1438 } 1439 } 1440 rcu_read_unlock(); 1441 1442 if (unlikely(blocked_rdev)) { 1443 /* Have to wait for this device to get unblocked, then retry */ 1444 int j; 1445 int d; 1446 1447 for (j = 0; j < i; j++) { 1448 if (r10_bio->devs[j].bio) { 1449 d = r10_bio->devs[j].devnum; 1450 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1451 } 1452 if (r10_bio->devs[j].repl_bio) { 1453 struct md_rdev *rdev; 1454 d = r10_bio->devs[j].devnum; 1455 rdev = conf->mirrors[d].replacement; 1456 if (!rdev) { 1457 /* Race with remove_disk */ 1458 smp_mb(); 1459 rdev = conf->mirrors[d].rdev; 1460 } 1461 rdev_dec_pending(rdev, mddev); 1462 } 1463 } 1464 allow_barrier(conf); 1465 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1466 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1467 wait_barrier(conf); 1468 goto retry_write; 1469 } 1470 1471 if (max_sectors < r10_bio->sectors) 1472 r10_bio->sectors = max_sectors; 1473 1474 if (r10_bio->sectors < bio_sectors(bio)) { 1475 struct bio *split = bio_split(bio, r10_bio->sectors, 1476 GFP_NOIO, conf->bio_split); 1477 bio_chain(split, bio); 1478 generic_make_request(bio); 1479 bio = split; 1480 r10_bio->master_bio = bio; 1481 } 1482 1483 atomic_set(&r10_bio->remaining, 1); 1484 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1485 1486 for (i = 0; i < conf->copies; i++) { 1487 if (r10_bio->devs[i].bio) 1488 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1489 if (r10_bio->devs[i].repl_bio) 1490 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1491 } 1492 one_write_done(r10_bio); 1493 } 1494 1495 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1496 { 1497 struct r10conf *conf = mddev->private; 1498 struct r10bio *r10_bio; 1499 1500 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1501 1502 r10_bio->master_bio = bio; 1503 r10_bio->sectors = sectors; 1504 1505 r10_bio->mddev = mddev; 1506 r10_bio->sector = bio->bi_iter.bi_sector; 1507 r10_bio->state = 0; 1508 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies); 1509 1510 if (bio_data_dir(bio) == READ) 1511 raid10_read_request(mddev, bio, r10_bio); 1512 else 1513 raid10_write_request(mddev, bio, r10_bio); 1514 } 1515 1516 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1517 { 1518 struct r10conf *conf = mddev->private; 1519 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1520 int chunk_sects = chunk_mask + 1; 1521 int sectors = bio_sectors(bio); 1522 1523 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1524 md_flush_request(mddev, bio); 1525 return true; 1526 } 1527 1528 if (!md_write_start(mddev, bio)) 1529 return false; 1530 1531 /* 1532 * If this request crosses a chunk boundary, we need to split 1533 * it. 1534 */ 1535 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1536 sectors > chunk_sects 1537 && (conf->geo.near_copies < conf->geo.raid_disks 1538 || conf->prev.near_copies < 1539 conf->prev.raid_disks))) 1540 sectors = chunk_sects - 1541 (bio->bi_iter.bi_sector & 1542 (chunk_sects - 1)); 1543 __make_request(mddev, bio, sectors); 1544 1545 /* In case raid10d snuck in to freeze_array */ 1546 wake_up(&conf->wait_barrier); 1547 return true; 1548 } 1549 1550 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1551 { 1552 struct r10conf *conf = mddev->private; 1553 int i; 1554 1555 if (conf->geo.near_copies < conf->geo.raid_disks) 1556 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1557 if (conf->geo.near_copies > 1) 1558 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1559 if (conf->geo.far_copies > 1) { 1560 if (conf->geo.far_offset) 1561 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1562 else 1563 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1564 if (conf->geo.far_set_size != conf->geo.raid_disks) 1565 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1566 } 1567 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1568 conf->geo.raid_disks - mddev->degraded); 1569 rcu_read_lock(); 1570 for (i = 0; i < conf->geo.raid_disks; i++) { 1571 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1572 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1573 } 1574 rcu_read_unlock(); 1575 seq_printf(seq, "]"); 1576 } 1577 1578 /* check if there are enough drives for 1579 * every block to appear on atleast one. 1580 * Don't consider the device numbered 'ignore' 1581 * as we might be about to remove it. 1582 */ 1583 static int _enough(struct r10conf *conf, int previous, int ignore) 1584 { 1585 int first = 0; 1586 int has_enough = 0; 1587 int disks, ncopies; 1588 if (previous) { 1589 disks = conf->prev.raid_disks; 1590 ncopies = conf->prev.near_copies; 1591 } else { 1592 disks = conf->geo.raid_disks; 1593 ncopies = conf->geo.near_copies; 1594 } 1595 1596 rcu_read_lock(); 1597 do { 1598 int n = conf->copies; 1599 int cnt = 0; 1600 int this = first; 1601 while (n--) { 1602 struct md_rdev *rdev; 1603 if (this != ignore && 1604 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1605 test_bit(In_sync, &rdev->flags)) 1606 cnt++; 1607 this = (this+1) % disks; 1608 } 1609 if (cnt == 0) 1610 goto out; 1611 first = (first + ncopies) % disks; 1612 } while (first != 0); 1613 has_enough = 1; 1614 out: 1615 rcu_read_unlock(); 1616 return has_enough; 1617 } 1618 1619 static int enough(struct r10conf *conf, int ignore) 1620 { 1621 /* when calling 'enough', both 'prev' and 'geo' must 1622 * be stable. 1623 * This is ensured if ->reconfig_mutex or ->device_lock 1624 * is held. 1625 */ 1626 return _enough(conf, 0, ignore) && 1627 _enough(conf, 1, ignore); 1628 } 1629 1630 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1631 { 1632 char b[BDEVNAME_SIZE]; 1633 struct r10conf *conf = mddev->private; 1634 unsigned long flags; 1635 1636 /* 1637 * If it is not operational, then we have already marked it as dead 1638 * else if it is the last working disks, ignore the error, let the 1639 * next level up know. 1640 * else mark the drive as failed 1641 */ 1642 spin_lock_irqsave(&conf->device_lock, flags); 1643 if (test_bit(In_sync, &rdev->flags) 1644 && !enough(conf, rdev->raid_disk)) { 1645 /* 1646 * Don't fail the drive, just return an IO error. 1647 */ 1648 spin_unlock_irqrestore(&conf->device_lock, flags); 1649 return; 1650 } 1651 if (test_and_clear_bit(In_sync, &rdev->flags)) 1652 mddev->degraded++; 1653 /* 1654 * If recovery is running, make sure it aborts. 1655 */ 1656 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1657 set_bit(Blocked, &rdev->flags); 1658 set_bit(Faulty, &rdev->flags); 1659 set_mask_bits(&mddev->sb_flags, 0, 1660 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1661 spin_unlock_irqrestore(&conf->device_lock, flags); 1662 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1663 "md/raid10:%s: Operation continuing on %d devices.\n", 1664 mdname(mddev), bdevname(rdev->bdev, b), 1665 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1666 } 1667 1668 static void print_conf(struct r10conf *conf) 1669 { 1670 int i; 1671 struct md_rdev *rdev; 1672 1673 pr_debug("RAID10 conf printout:\n"); 1674 if (!conf) { 1675 pr_debug("(!conf)\n"); 1676 return; 1677 } 1678 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1679 conf->geo.raid_disks); 1680 1681 /* This is only called with ->reconfix_mutex held, so 1682 * rcu protection of rdev is not needed */ 1683 for (i = 0; i < conf->geo.raid_disks; i++) { 1684 char b[BDEVNAME_SIZE]; 1685 rdev = conf->mirrors[i].rdev; 1686 if (rdev) 1687 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1688 i, !test_bit(In_sync, &rdev->flags), 1689 !test_bit(Faulty, &rdev->flags), 1690 bdevname(rdev->bdev,b)); 1691 } 1692 } 1693 1694 static void close_sync(struct r10conf *conf) 1695 { 1696 wait_barrier(conf); 1697 allow_barrier(conf); 1698 1699 mempool_destroy(conf->r10buf_pool); 1700 conf->r10buf_pool = NULL; 1701 } 1702 1703 static int raid10_spare_active(struct mddev *mddev) 1704 { 1705 int i; 1706 struct r10conf *conf = mddev->private; 1707 struct raid10_info *tmp; 1708 int count = 0; 1709 unsigned long flags; 1710 1711 /* 1712 * Find all non-in_sync disks within the RAID10 configuration 1713 * and mark them in_sync 1714 */ 1715 for (i = 0; i < conf->geo.raid_disks; i++) { 1716 tmp = conf->mirrors + i; 1717 if (tmp->replacement 1718 && tmp->replacement->recovery_offset == MaxSector 1719 && !test_bit(Faulty, &tmp->replacement->flags) 1720 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1721 /* Replacement has just become active */ 1722 if (!tmp->rdev 1723 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1724 count++; 1725 if (tmp->rdev) { 1726 /* Replaced device not technically faulty, 1727 * but we need to be sure it gets removed 1728 * and never re-added. 1729 */ 1730 set_bit(Faulty, &tmp->rdev->flags); 1731 sysfs_notify_dirent_safe( 1732 tmp->rdev->sysfs_state); 1733 } 1734 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1735 } else if (tmp->rdev 1736 && tmp->rdev->recovery_offset == MaxSector 1737 && !test_bit(Faulty, &tmp->rdev->flags) 1738 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1739 count++; 1740 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1741 } 1742 } 1743 spin_lock_irqsave(&conf->device_lock, flags); 1744 mddev->degraded -= count; 1745 spin_unlock_irqrestore(&conf->device_lock, flags); 1746 1747 print_conf(conf); 1748 return count; 1749 } 1750 1751 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1752 { 1753 struct r10conf *conf = mddev->private; 1754 int err = -EEXIST; 1755 int mirror; 1756 int first = 0; 1757 int last = conf->geo.raid_disks - 1; 1758 1759 if (mddev->recovery_cp < MaxSector) 1760 /* only hot-add to in-sync arrays, as recovery is 1761 * very different from resync 1762 */ 1763 return -EBUSY; 1764 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1765 return -EINVAL; 1766 1767 if (md_integrity_add_rdev(rdev, mddev)) 1768 return -ENXIO; 1769 1770 if (rdev->raid_disk >= 0) 1771 first = last = rdev->raid_disk; 1772 1773 if (rdev->saved_raid_disk >= first && 1774 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1775 mirror = rdev->saved_raid_disk; 1776 else 1777 mirror = first; 1778 for ( ; mirror <= last ; mirror++) { 1779 struct raid10_info *p = &conf->mirrors[mirror]; 1780 if (p->recovery_disabled == mddev->recovery_disabled) 1781 continue; 1782 if (p->rdev) { 1783 if (!test_bit(WantReplacement, &p->rdev->flags) || 1784 p->replacement != NULL) 1785 continue; 1786 clear_bit(In_sync, &rdev->flags); 1787 set_bit(Replacement, &rdev->flags); 1788 rdev->raid_disk = mirror; 1789 err = 0; 1790 if (mddev->gendisk) 1791 disk_stack_limits(mddev->gendisk, rdev->bdev, 1792 rdev->data_offset << 9); 1793 conf->fullsync = 1; 1794 rcu_assign_pointer(p->replacement, rdev); 1795 break; 1796 } 1797 1798 if (mddev->gendisk) 1799 disk_stack_limits(mddev->gendisk, rdev->bdev, 1800 rdev->data_offset << 9); 1801 1802 p->head_position = 0; 1803 p->recovery_disabled = mddev->recovery_disabled - 1; 1804 rdev->raid_disk = mirror; 1805 err = 0; 1806 if (rdev->saved_raid_disk != mirror) 1807 conf->fullsync = 1; 1808 rcu_assign_pointer(p->rdev, rdev); 1809 break; 1810 } 1811 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1812 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1813 1814 print_conf(conf); 1815 return err; 1816 } 1817 1818 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1819 { 1820 struct r10conf *conf = mddev->private; 1821 int err = 0; 1822 int number = rdev->raid_disk; 1823 struct md_rdev **rdevp; 1824 struct raid10_info *p = conf->mirrors + number; 1825 1826 print_conf(conf); 1827 if (rdev == p->rdev) 1828 rdevp = &p->rdev; 1829 else if (rdev == p->replacement) 1830 rdevp = &p->replacement; 1831 else 1832 return 0; 1833 1834 if (test_bit(In_sync, &rdev->flags) || 1835 atomic_read(&rdev->nr_pending)) { 1836 err = -EBUSY; 1837 goto abort; 1838 } 1839 /* Only remove non-faulty devices if recovery 1840 * is not possible. 1841 */ 1842 if (!test_bit(Faulty, &rdev->flags) && 1843 mddev->recovery_disabled != p->recovery_disabled && 1844 (!p->replacement || p->replacement == rdev) && 1845 number < conf->geo.raid_disks && 1846 enough(conf, -1)) { 1847 err = -EBUSY; 1848 goto abort; 1849 } 1850 *rdevp = NULL; 1851 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1852 synchronize_rcu(); 1853 if (atomic_read(&rdev->nr_pending)) { 1854 /* lost the race, try later */ 1855 err = -EBUSY; 1856 *rdevp = rdev; 1857 goto abort; 1858 } 1859 } 1860 if (p->replacement) { 1861 /* We must have just cleared 'rdev' */ 1862 p->rdev = p->replacement; 1863 clear_bit(Replacement, &p->replacement->flags); 1864 smp_mb(); /* Make sure other CPUs may see both as identical 1865 * but will never see neither -- if they are careful. 1866 */ 1867 p->replacement = NULL; 1868 } 1869 1870 clear_bit(WantReplacement, &rdev->flags); 1871 err = md_integrity_register(mddev); 1872 1873 abort: 1874 1875 print_conf(conf); 1876 return err; 1877 } 1878 1879 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 1880 { 1881 struct r10conf *conf = r10_bio->mddev->private; 1882 1883 if (!bio->bi_status) 1884 set_bit(R10BIO_Uptodate, &r10_bio->state); 1885 else 1886 /* The write handler will notice the lack of 1887 * R10BIO_Uptodate and record any errors etc 1888 */ 1889 atomic_add(r10_bio->sectors, 1890 &conf->mirrors[d].rdev->corrected_errors); 1891 1892 /* for reconstruct, we always reschedule after a read. 1893 * for resync, only after all reads 1894 */ 1895 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1896 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1897 atomic_dec_and_test(&r10_bio->remaining)) { 1898 /* we have read all the blocks, 1899 * do the comparison in process context in raid10d 1900 */ 1901 reschedule_retry(r10_bio); 1902 } 1903 } 1904 1905 static void end_sync_read(struct bio *bio) 1906 { 1907 struct r10bio *r10_bio = get_resync_r10bio(bio); 1908 struct r10conf *conf = r10_bio->mddev->private; 1909 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1910 1911 __end_sync_read(r10_bio, bio, d); 1912 } 1913 1914 static void end_reshape_read(struct bio *bio) 1915 { 1916 /* reshape read bio isn't allocated from r10buf_pool */ 1917 struct r10bio *r10_bio = bio->bi_private; 1918 1919 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 1920 } 1921 1922 static void end_sync_request(struct r10bio *r10_bio) 1923 { 1924 struct mddev *mddev = r10_bio->mddev; 1925 1926 while (atomic_dec_and_test(&r10_bio->remaining)) { 1927 if (r10_bio->master_bio == NULL) { 1928 /* the primary of several recovery bios */ 1929 sector_t s = r10_bio->sectors; 1930 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1931 test_bit(R10BIO_WriteError, &r10_bio->state)) 1932 reschedule_retry(r10_bio); 1933 else 1934 put_buf(r10_bio); 1935 md_done_sync(mddev, s, 1); 1936 break; 1937 } else { 1938 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1939 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1940 test_bit(R10BIO_WriteError, &r10_bio->state)) 1941 reschedule_retry(r10_bio); 1942 else 1943 put_buf(r10_bio); 1944 r10_bio = r10_bio2; 1945 } 1946 } 1947 } 1948 1949 static void end_sync_write(struct bio *bio) 1950 { 1951 struct r10bio *r10_bio = get_resync_r10bio(bio); 1952 struct mddev *mddev = r10_bio->mddev; 1953 struct r10conf *conf = mddev->private; 1954 int d; 1955 sector_t first_bad; 1956 int bad_sectors; 1957 int slot; 1958 int repl; 1959 struct md_rdev *rdev = NULL; 1960 1961 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1962 if (repl) 1963 rdev = conf->mirrors[d].replacement; 1964 else 1965 rdev = conf->mirrors[d].rdev; 1966 1967 if (bio->bi_status) { 1968 if (repl) 1969 md_error(mddev, rdev); 1970 else { 1971 set_bit(WriteErrorSeen, &rdev->flags); 1972 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1973 set_bit(MD_RECOVERY_NEEDED, 1974 &rdev->mddev->recovery); 1975 set_bit(R10BIO_WriteError, &r10_bio->state); 1976 } 1977 } else if (is_badblock(rdev, 1978 r10_bio->devs[slot].addr, 1979 r10_bio->sectors, 1980 &first_bad, &bad_sectors)) 1981 set_bit(R10BIO_MadeGood, &r10_bio->state); 1982 1983 rdev_dec_pending(rdev, mddev); 1984 1985 end_sync_request(r10_bio); 1986 } 1987 1988 /* 1989 * Note: sync and recover and handled very differently for raid10 1990 * This code is for resync. 1991 * For resync, we read through virtual addresses and read all blocks. 1992 * If there is any error, we schedule a write. The lowest numbered 1993 * drive is authoritative. 1994 * However requests come for physical address, so we need to map. 1995 * For every physical address there are raid_disks/copies virtual addresses, 1996 * which is always are least one, but is not necessarly an integer. 1997 * This means that a physical address can span multiple chunks, so we may 1998 * have to submit multiple io requests for a single sync request. 1999 */ 2000 /* 2001 * We check if all blocks are in-sync and only write to blocks that 2002 * aren't in sync 2003 */ 2004 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2005 { 2006 struct r10conf *conf = mddev->private; 2007 int i, first; 2008 struct bio *tbio, *fbio; 2009 int vcnt; 2010 struct page **tpages, **fpages; 2011 2012 atomic_set(&r10_bio->remaining, 1); 2013 2014 /* find the first device with a block */ 2015 for (i=0; i<conf->copies; i++) 2016 if (!r10_bio->devs[i].bio->bi_status) 2017 break; 2018 2019 if (i == conf->copies) 2020 goto done; 2021 2022 first = i; 2023 fbio = r10_bio->devs[i].bio; 2024 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2025 fbio->bi_iter.bi_idx = 0; 2026 fpages = get_resync_pages(fbio)->pages; 2027 2028 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2029 /* now find blocks with errors */ 2030 for (i=0 ; i < conf->copies ; i++) { 2031 int j, d; 2032 struct md_rdev *rdev; 2033 struct resync_pages *rp; 2034 2035 tbio = r10_bio->devs[i].bio; 2036 2037 if (tbio->bi_end_io != end_sync_read) 2038 continue; 2039 if (i == first) 2040 continue; 2041 2042 tpages = get_resync_pages(tbio)->pages; 2043 d = r10_bio->devs[i].devnum; 2044 rdev = conf->mirrors[d].rdev; 2045 if (!r10_bio->devs[i].bio->bi_status) { 2046 /* We know that the bi_io_vec layout is the same for 2047 * both 'first' and 'i', so we just compare them. 2048 * All vec entries are PAGE_SIZE; 2049 */ 2050 int sectors = r10_bio->sectors; 2051 for (j = 0; j < vcnt; j++) { 2052 int len = PAGE_SIZE; 2053 if (sectors < (len / 512)) 2054 len = sectors * 512; 2055 if (memcmp(page_address(fpages[j]), 2056 page_address(tpages[j]), 2057 len)) 2058 break; 2059 sectors -= len/512; 2060 } 2061 if (j == vcnt) 2062 continue; 2063 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2064 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2065 /* Don't fix anything. */ 2066 continue; 2067 } else if (test_bit(FailFast, &rdev->flags)) { 2068 /* Just give up on this device */ 2069 md_error(rdev->mddev, rdev); 2070 continue; 2071 } 2072 /* Ok, we need to write this bio, either to correct an 2073 * inconsistency or to correct an unreadable block. 2074 * First we need to fixup bv_offset, bv_len and 2075 * bi_vecs, as the read request might have corrupted these 2076 */ 2077 rp = get_resync_pages(tbio); 2078 bio_reset(tbio); 2079 2080 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2081 2082 rp->raid_bio = r10_bio; 2083 tbio->bi_private = rp; 2084 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2085 tbio->bi_end_io = end_sync_write; 2086 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2087 2088 bio_copy_data(tbio, fbio); 2089 2090 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2091 atomic_inc(&r10_bio->remaining); 2092 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2093 2094 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2095 tbio->bi_opf |= MD_FAILFAST; 2096 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2097 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev); 2098 generic_make_request(tbio); 2099 } 2100 2101 /* Now write out to any replacement devices 2102 * that are active 2103 */ 2104 for (i = 0; i < conf->copies; i++) { 2105 int d; 2106 2107 tbio = r10_bio->devs[i].repl_bio; 2108 if (!tbio || !tbio->bi_end_io) 2109 continue; 2110 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2111 && r10_bio->devs[i].bio != fbio) 2112 bio_copy_data(tbio, fbio); 2113 d = r10_bio->devs[i].devnum; 2114 atomic_inc(&r10_bio->remaining); 2115 md_sync_acct(conf->mirrors[d].replacement->bdev, 2116 bio_sectors(tbio)); 2117 generic_make_request(tbio); 2118 } 2119 2120 done: 2121 if (atomic_dec_and_test(&r10_bio->remaining)) { 2122 md_done_sync(mddev, r10_bio->sectors, 1); 2123 put_buf(r10_bio); 2124 } 2125 } 2126 2127 /* 2128 * Now for the recovery code. 2129 * Recovery happens across physical sectors. 2130 * We recover all non-is_sync drives by finding the virtual address of 2131 * each, and then choose a working drive that also has that virt address. 2132 * There is a separate r10_bio for each non-in_sync drive. 2133 * Only the first two slots are in use. The first for reading, 2134 * The second for writing. 2135 * 2136 */ 2137 static void fix_recovery_read_error(struct r10bio *r10_bio) 2138 { 2139 /* We got a read error during recovery. 2140 * We repeat the read in smaller page-sized sections. 2141 * If a read succeeds, write it to the new device or record 2142 * a bad block if we cannot. 2143 * If a read fails, record a bad block on both old and 2144 * new devices. 2145 */ 2146 struct mddev *mddev = r10_bio->mddev; 2147 struct r10conf *conf = mddev->private; 2148 struct bio *bio = r10_bio->devs[0].bio; 2149 sector_t sect = 0; 2150 int sectors = r10_bio->sectors; 2151 int idx = 0; 2152 int dr = r10_bio->devs[0].devnum; 2153 int dw = r10_bio->devs[1].devnum; 2154 struct page **pages = get_resync_pages(bio)->pages; 2155 2156 while (sectors) { 2157 int s = sectors; 2158 struct md_rdev *rdev; 2159 sector_t addr; 2160 int ok; 2161 2162 if (s > (PAGE_SIZE>>9)) 2163 s = PAGE_SIZE >> 9; 2164 2165 rdev = conf->mirrors[dr].rdev; 2166 addr = r10_bio->devs[0].addr + sect, 2167 ok = sync_page_io(rdev, 2168 addr, 2169 s << 9, 2170 pages[idx], 2171 REQ_OP_READ, 0, false); 2172 if (ok) { 2173 rdev = conf->mirrors[dw].rdev; 2174 addr = r10_bio->devs[1].addr + sect; 2175 ok = sync_page_io(rdev, 2176 addr, 2177 s << 9, 2178 pages[idx], 2179 REQ_OP_WRITE, 0, false); 2180 if (!ok) { 2181 set_bit(WriteErrorSeen, &rdev->flags); 2182 if (!test_and_set_bit(WantReplacement, 2183 &rdev->flags)) 2184 set_bit(MD_RECOVERY_NEEDED, 2185 &rdev->mddev->recovery); 2186 } 2187 } 2188 if (!ok) { 2189 /* We don't worry if we cannot set a bad block - 2190 * it really is bad so there is no loss in not 2191 * recording it yet 2192 */ 2193 rdev_set_badblocks(rdev, addr, s, 0); 2194 2195 if (rdev != conf->mirrors[dw].rdev) { 2196 /* need bad block on destination too */ 2197 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2198 addr = r10_bio->devs[1].addr + sect; 2199 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2200 if (!ok) { 2201 /* just abort the recovery */ 2202 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2203 mdname(mddev)); 2204 2205 conf->mirrors[dw].recovery_disabled 2206 = mddev->recovery_disabled; 2207 set_bit(MD_RECOVERY_INTR, 2208 &mddev->recovery); 2209 break; 2210 } 2211 } 2212 } 2213 2214 sectors -= s; 2215 sect += s; 2216 idx++; 2217 } 2218 } 2219 2220 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2221 { 2222 struct r10conf *conf = mddev->private; 2223 int d; 2224 struct bio *wbio, *wbio2; 2225 2226 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2227 fix_recovery_read_error(r10_bio); 2228 end_sync_request(r10_bio); 2229 return; 2230 } 2231 2232 /* 2233 * share the pages with the first bio 2234 * and submit the write request 2235 */ 2236 d = r10_bio->devs[1].devnum; 2237 wbio = r10_bio->devs[1].bio; 2238 wbio2 = r10_bio->devs[1].repl_bio; 2239 /* Need to test wbio2->bi_end_io before we call 2240 * generic_make_request as if the former is NULL, 2241 * the latter is free to free wbio2. 2242 */ 2243 if (wbio2 && !wbio2->bi_end_io) 2244 wbio2 = NULL; 2245 if (wbio->bi_end_io) { 2246 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2247 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2248 generic_make_request(wbio); 2249 } 2250 if (wbio2) { 2251 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2252 md_sync_acct(conf->mirrors[d].replacement->bdev, 2253 bio_sectors(wbio2)); 2254 generic_make_request(wbio2); 2255 } 2256 } 2257 2258 /* 2259 * Used by fix_read_error() to decay the per rdev read_errors. 2260 * We halve the read error count for every hour that has elapsed 2261 * since the last recorded read error. 2262 * 2263 */ 2264 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2265 { 2266 long cur_time_mon; 2267 unsigned long hours_since_last; 2268 unsigned int read_errors = atomic_read(&rdev->read_errors); 2269 2270 cur_time_mon = ktime_get_seconds(); 2271 2272 if (rdev->last_read_error == 0) { 2273 /* first time we've seen a read error */ 2274 rdev->last_read_error = cur_time_mon; 2275 return; 2276 } 2277 2278 hours_since_last = (long)(cur_time_mon - 2279 rdev->last_read_error) / 3600; 2280 2281 rdev->last_read_error = cur_time_mon; 2282 2283 /* 2284 * if hours_since_last is > the number of bits in read_errors 2285 * just set read errors to 0. We do this to avoid 2286 * overflowing the shift of read_errors by hours_since_last. 2287 */ 2288 if (hours_since_last >= 8 * sizeof(read_errors)) 2289 atomic_set(&rdev->read_errors, 0); 2290 else 2291 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2292 } 2293 2294 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2295 int sectors, struct page *page, int rw) 2296 { 2297 sector_t first_bad; 2298 int bad_sectors; 2299 2300 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2301 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2302 return -1; 2303 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2304 /* success */ 2305 return 1; 2306 if (rw == WRITE) { 2307 set_bit(WriteErrorSeen, &rdev->flags); 2308 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2309 set_bit(MD_RECOVERY_NEEDED, 2310 &rdev->mddev->recovery); 2311 } 2312 /* need to record an error - either for the block or the device */ 2313 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2314 md_error(rdev->mddev, rdev); 2315 return 0; 2316 } 2317 2318 /* 2319 * This is a kernel thread which: 2320 * 2321 * 1. Retries failed read operations on working mirrors. 2322 * 2. Updates the raid superblock when problems encounter. 2323 * 3. Performs writes following reads for array synchronising. 2324 */ 2325 2326 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2327 { 2328 int sect = 0; /* Offset from r10_bio->sector */ 2329 int sectors = r10_bio->sectors; 2330 struct md_rdev*rdev; 2331 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2332 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2333 2334 /* still own a reference to this rdev, so it cannot 2335 * have been cleared recently. 2336 */ 2337 rdev = conf->mirrors[d].rdev; 2338 2339 if (test_bit(Faulty, &rdev->flags)) 2340 /* drive has already been failed, just ignore any 2341 more fix_read_error() attempts */ 2342 return; 2343 2344 check_decay_read_errors(mddev, rdev); 2345 atomic_inc(&rdev->read_errors); 2346 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2347 char b[BDEVNAME_SIZE]; 2348 bdevname(rdev->bdev, b); 2349 2350 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2351 mdname(mddev), b, 2352 atomic_read(&rdev->read_errors), max_read_errors); 2353 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2354 mdname(mddev), b); 2355 md_error(mddev, rdev); 2356 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2357 return; 2358 } 2359 2360 while(sectors) { 2361 int s = sectors; 2362 int sl = r10_bio->read_slot; 2363 int success = 0; 2364 int start; 2365 2366 if (s > (PAGE_SIZE>>9)) 2367 s = PAGE_SIZE >> 9; 2368 2369 rcu_read_lock(); 2370 do { 2371 sector_t first_bad; 2372 int bad_sectors; 2373 2374 d = r10_bio->devs[sl].devnum; 2375 rdev = rcu_dereference(conf->mirrors[d].rdev); 2376 if (rdev && 2377 test_bit(In_sync, &rdev->flags) && 2378 !test_bit(Faulty, &rdev->flags) && 2379 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2380 &first_bad, &bad_sectors) == 0) { 2381 atomic_inc(&rdev->nr_pending); 2382 rcu_read_unlock(); 2383 success = sync_page_io(rdev, 2384 r10_bio->devs[sl].addr + 2385 sect, 2386 s<<9, 2387 conf->tmppage, 2388 REQ_OP_READ, 0, false); 2389 rdev_dec_pending(rdev, mddev); 2390 rcu_read_lock(); 2391 if (success) 2392 break; 2393 } 2394 sl++; 2395 if (sl == conf->copies) 2396 sl = 0; 2397 } while (!success && sl != r10_bio->read_slot); 2398 rcu_read_unlock(); 2399 2400 if (!success) { 2401 /* Cannot read from anywhere, just mark the block 2402 * as bad on the first device to discourage future 2403 * reads. 2404 */ 2405 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2406 rdev = conf->mirrors[dn].rdev; 2407 2408 if (!rdev_set_badblocks( 2409 rdev, 2410 r10_bio->devs[r10_bio->read_slot].addr 2411 + sect, 2412 s, 0)) { 2413 md_error(mddev, rdev); 2414 r10_bio->devs[r10_bio->read_slot].bio 2415 = IO_BLOCKED; 2416 } 2417 break; 2418 } 2419 2420 start = sl; 2421 /* write it back and re-read */ 2422 rcu_read_lock(); 2423 while (sl != r10_bio->read_slot) { 2424 char b[BDEVNAME_SIZE]; 2425 2426 if (sl==0) 2427 sl = conf->copies; 2428 sl--; 2429 d = r10_bio->devs[sl].devnum; 2430 rdev = rcu_dereference(conf->mirrors[d].rdev); 2431 if (!rdev || 2432 test_bit(Faulty, &rdev->flags) || 2433 !test_bit(In_sync, &rdev->flags)) 2434 continue; 2435 2436 atomic_inc(&rdev->nr_pending); 2437 rcu_read_unlock(); 2438 if (r10_sync_page_io(rdev, 2439 r10_bio->devs[sl].addr + 2440 sect, 2441 s, conf->tmppage, WRITE) 2442 == 0) { 2443 /* Well, this device is dead */ 2444 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2445 mdname(mddev), s, 2446 (unsigned long long)( 2447 sect + 2448 choose_data_offset(r10_bio, 2449 rdev)), 2450 bdevname(rdev->bdev, b)); 2451 pr_notice("md/raid10:%s: %s: failing drive\n", 2452 mdname(mddev), 2453 bdevname(rdev->bdev, b)); 2454 } 2455 rdev_dec_pending(rdev, mddev); 2456 rcu_read_lock(); 2457 } 2458 sl = start; 2459 while (sl != r10_bio->read_slot) { 2460 char b[BDEVNAME_SIZE]; 2461 2462 if (sl==0) 2463 sl = conf->copies; 2464 sl--; 2465 d = r10_bio->devs[sl].devnum; 2466 rdev = rcu_dereference(conf->mirrors[d].rdev); 2467 if (!rdev || 2468 test_bit(Faulty, &rdev->flags) || 2469 !test_bit(In_sync, &rdev->flags)) 2470 continue; 2471 2472 atomic_inc(&rdev->nr_pending); 2473 rcu_read_unlock(); 2474 switch (r10_sync_page_io(rdev, 2475 r10_bio->devs[sl].addr + 2476 sect, 2477 s, conf->tmppage, 2478 READ)) { 2479 case 0: 2480 /* Well, this device is dead */ 2481 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2482 mdname(mddev), s, 2483 (unsigned long long)( 2484 sect + 2485 choose_data_offset(r10_bio, rdev)), 2486 bdevname(rdev->bdev, b)); 2487 pr_notice("md/raid10:%s: %s: failing drive\n", 2488 mdname(mddev), 2489 bdevname(rdev->bdev, b)); 2490 break; 2491 case 1: 2492 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2493 mdname(mddev), s, 2494 (unsigned long long)( 2495 sect + 2496 choose_data_offset(r10_bio, rdev)), 2497 bdevname(rdev->bdev, b)); 2498 atomic_add(s, &rdev->corrected_errors); 2499 } 2500 2501 rdev_dec_pending(rdev, mddev); 2502 rcu_read_lock(); 2503 } 2504 rcu_read_unlock(); 2505 2506 sectors -= s; 2507 sect += s; 2508 } 2509 } 2510 2511 static int narrow_write_error(struct r10bio *r10_bio, int i) 2512 { 2513 struct bio *bio = r10_bio->master_bio; 2514 struct mddev *mddev = r10_bio->mddev; 2515 struct r10conf *conf = mddev->private; 2516 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2517 /* bio has the data to be written to slot 'i' where 2518 * we just recently had a write error. 2519 * We repeatedly clone the bio and trim down to one block, 2520 * then try the write. Where the write fails we record 2521 * a bad block. 2522 * It is conceivable that the bio doesn't exactly align with 2523 * blocks. We must handle this. 2524 * 2525 * We currently own a reference to the rdev. 2526 */ 2527 2528 int block_sectors; 2529 sector_t sector; 2530 int sectors; 2531 int sect_to_write = r10_bio->sectors; 2532 int ok = 1; 2533 2534 if (rdev->badblocks.shift < 0) 2535 return 0; 2536 2537 block_sectors = roundup(1 << rdev->badblocks.shift, 2538 bdev_logical_block_size(rdev->bdev) >> 9); 2539 sector = r10_bio->sector; 2540 sectors = ((r10_bio->sector + block_sectors) 2541 & ~(sector_t)(block_sectors - 1)) 2542 - sector; 2543 2544 while (sect_to_write) { 2545 struct bio *wbio; 2546 sector_t wsector; 2547 if (sectors > sect_to_write) 2548 sectors = sect_to_write; 2549 /* Write at 'sector' for 'sectors' */ 2550 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 2551 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2552 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2553 wbio->bi_iter.bi_sector = wsector + 2554 choose_data_offset(r10_bio, rdev); 2555 bio_set_dev(wbio, rdev->bdev); 2556 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2557 2558 if (submit_bio_wait(wbio) < 0) 2559 /* Failure! */ 2560 ok = rdev_set_badblocks(rdev, wsector, 2561 sectors, 0) 2562 && ok; 2563 2564 bio_put(wbio); 2565 sect_to_write -= sectors; 2566 sector += sectors; 2567 sectors = block_sectors; 2568 } 2569 return ok; 2570 } 2571 2572 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2573 { 2574 int slot = r10_bio->read_slot; 2575 struct bio *bio; 2576 struct r10conf *conf = mddev->private; 2577 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2578 sector_t bio_last_sector; 2579 2580 /* we got a read error. Maybe the drive is bad. Maybe just 2581 * the block and we can fix it. 2582 * We freeze all other IO, and try reading the block from 2583 * other devices. When we find one, we re-write 2584 * and check it that fixes the read error. 2585 * This is all done synchronously while the array is 2586 * frozen. 2587 */ 2588 bio = r10_bio->devs[slot].bio; 2589 bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors; 2590 bio_put(bio); 2591 r10_bio->devs[slot].bio = NULL; 2592 2593 if (mddev->ro) 2594 r10_bio->devs[slot].bio = IO_BLOCKED; 2595 else if (!test_bit(FailFast, &rdev->flags)) { 2596 freeze_array(conf, 1); 2597 fix_read_error(conf, mddev, r10_bio); 2598 unfreeze_array(conf); 2599 } else 2600 md_error(mddev, rdev); 2601 2602 rdev_dec_pending(rdev, mddev); 2603 allow_barrier(conf); 2604 r10_bio->state = 0; 2605 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2606 } 2607 2608 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2609 { 2610 /* Some sort of write request has finished and it 2611 * succeeded in writing where we thought there was a 2612 * bad block. So forget the bad block. 2613 * Or possibly if failed and we need to record 2614 * a bad block. 2615 */ 2616 int m; 2617 struct md_rdev *rdev; 2618 2619 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2620 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2621 for (m = 0; m < conf->copies; m++) { 2622 int dev = r10_bio->devs[m].devnum; 2623 rdev = conf->mirrors[dev].rdev; 2624 if (r10_bio->devs[m].bio == NULL) 2625 continue; 2626 if (!r10_bio->devs[m].bio->bi_status) { 2627 rdev_clear_badblocks( 2628 rdev, 2629 r10_bio->devs[m].addr, 2630 r10_bio->sectors, 0); 2631 } else { 2632 if (!rdev_set_badblocks( 2633 rdev, 2634 r10_bio->devs[m].addr, 2635 r10_bio->sectors, 0)) 2636 md_error(conf->mddev, rdev); 2637 } 2638 rdev = conf->mirrors[dev].replacement; 2639 if (r10_bio->devs[m].repl_bio == NULL) 2640 continue; 2641 2642 if (!r10_bio->devs[m].repl_bio->bi_status) { 2643 rdev_clear_badblocks( 2644 rdev, 2645 r10_bio->devs[m].addr, 2646 r10_bio->sectors, 0); 2647 } else { 2648 if (!rdev_set_badblocks( 2649 rdev, 2650 r10_bio->devs[m].addr, 2651 r10_bio->sectors, 0)) 2652 md_error(conf->mddev, rdev); 2653 } 2654 } 2655 put_buf(r10_bio); 2656 } else { 2657 bool fail = false; 2658 for (m = 0; m < conf->copies; m++) { 2659 int dev = r10_bio->devs[m].devnum; 2660 struct bio *bio = r10_bio->devs[m].bio; 2661 rdev = conf->mirrors[dev].rdev; 2662 if (bio == IO_MADE_GOOD) { 2663 rdev_clear_badblocks( 2664 rdev, 2665 r10_bio->devs[m].addr, 2666 r10_bio->sectors, 0); 2667 rdev_dec_pending(rdev, conf->mddev); 2668 } else if (bio != NULL && bio->bi_status) { 2669 fail = true; 2670 if (!narrow_write_error(r10_bio, m)) { 2671 md_error(conf->mddev, rdev); 2672 set_bit(R10BIO_Degraded, 2673 &r10_bio->state); 2674 } 2675 rdev_dec_pending(rdev, conf->mddev); 2676 } 2677 bio = r10_bio->devs[m].repl_bio; 2678 rdev = conf->mirrors[dev].replacement; 2679 if (rdev && bio == IO_MADE_GOOD) { 2680 rdev_clear_badblocks( 2681 rdev, 2682 r10_bio->devs[m].addr, 2683 r10_bio->sectors, 0); 2684 rdev_dec_pending(rdev, conf->mddev); 2685 } 2686 } 2687 if (fail) { 2688 spin_lock_irq(&conf->device_lock); 2689 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2690 conf->nr_queued++; 2691 spin_unlock_irq(&conf->device_lock); 2692 /* 2693 * In case freeze_array() is waiting for condition 2694 * nr_pending == nr_queued + extra to be true. 2695 */ 2696 wake_up(&conf->wait_barrier); 2697 md_wakeup_thread(conf->mddev->thread); 2698 } else { 2699 if (test_bit(R10BIO_WriteError, 2700 &r10_bio->state)) 2701 close_write(r10_bio); 2702 raid_end_bio_io(r10_bio); 2703 } 2704 } 2705 } 2706 2707 static void raid10d(struct md_thread *thread) 2708 { 2709 struct mddev *mddev = thread->mddev; 2710 struct r10bio *r10_bio; 2711 unsigned long flags; 2712 struct r10conf *conf = mddev->private; 2713 struct list_head *head = &conf->retry_list; 2714 struct blk_plug plug; 2715 2716 md_check_recovery(mddev); 2717 2718 if (!list_empty_careful(&conf->bio_end_io_list) && 2719 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2720 LIST_HEAD(tmp); 2721 spin_lock_irqsave(&conf->device_lock, flags); 2722 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2723 while (!list_empty(&conf->bio_end_io_list)) { 2724 list_move(conf->bio_end_io_list.prev, &tmp); 2725 conf->nr_queued--; 2726 } 2727 } 2728 spin_unlock_irqrestore(&conf->device_lock, flags); 2729 while (!list_empty(&tmp)) { 2730 r10_bio = list_first_entry(&tmp, struct r10bio, 2731 retry_list); 2732 list_del(&r10_bio->retry_list); 2733 if (mddev->degraded) 2734 set_bit(R10BIO_Degraded, &r10_bio->state); 2735 2736 if (test_bit(R10BIO_WriteError, 2737 &r10_bio->state)) 2738 close_write(r10_bio); 2739 raid_end_bio_io(r10_bio); 2740 } 2741 } 2742 2743 blk_start_plug(&plug); 2744 for (;;) { 2745 2746 flush_pending_writes(conf); 2747 2748 spin_lock_irqsave(&conf->device_lock, flags); 2749 if (list_empty(head)) { 2750 spin_unlock_irqrestore(&conf->device_lock, flags); 2751 break; 2752 } 2753 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2754 list_del(head->prev); 2755 conf->nr_queued--; 2756 spin_unlock_irqrestore(&conf->device_lock, flags); 2757 2758 mddev = r10_bio->mddev; 2759 conf = mddev->private; 2760 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2761 test_bit(R10BIO_WriteError, &r10_bio->state)) 2762 handle_write_completed(conf, r10_bio); 2763 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2764 reshape_request_write(mddev, r10_bio); 2765 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2766 sync_request_write(mddev, r10_bio); 2767 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2768 recovery_request_write(mddev, r10_bio); 2769 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2770 handle_read_error(mddev, r10_bio); 2771 else 2772 WARN_ON_ONCE(1); 2773 2774 cond_resched(); 2775 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2776 md_check_recovery(mddev); 2777 } 2778 blk_finish_plug(&plug); 2779 } 2780 2781 static int init_resync(struct r10conf *conf) 2782 { 2783 int buffs; 2784 int i; 2785 2786 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2787 BUG_ON(conf->r10buf_pool); 2788 conf->have_replacement = 0; 2789 for (i = 0; i < conf->geo.raid_disks; i++) 2790 if (conf->mirrors[i].replacement) 2791 conf->have_replacement = 1; 2792 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2793 if (!conf->r10buf_pool) 2794 return -ENOMEM; 2795 conf->next_resync = 0; 2796 return 0; 2797 } 2798 2799 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 2800 { 2801 struct r10bio *r10bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2802 struct rsync_pages *rp; 2803 struct bio *bio; 2804 int nalloc; 2805 int i; 2806 2807 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 2808 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 2809 nalloc = conf->copies; /* resync */ 2810 else 2811 nalloc = 2; /* recovery */ 2812 2813 for (i = 0; i < nalloc; i++) { 2814 bio = r10bio->devs[i].bio; 2815 rp = bio->bi_private; 2816 bio_reset(bio); 2817 bio->bi_private = rp; 2818 bio = r10bio->devs[i].repl_bio; 2819 if (bio) { 2820 rp = bio->bi_private; 2821 bio_reset(bio); 2822 bio->bi_private = rp; 2823 } 2824 } 2825 return r10bio; 2826 } 2827 2828 /* 2829 * perform a "sync" on one "block" 2830 * 2831 * We need to make sure that no normal I/O request - particularly write 2832 * requests - conflict with active sync requests. 2833 * 2834 * This is achieved by tracking pending requests and a 'barrier' concept 2835 * that can be installed to exclude normal IO requests. 2836 * 2837 * Resync and recovery are handled very differently. 2838 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2839 * 2840 * For resync, we iterate over virtual addresses, read all copies, 2841 * and update if there are differences. If only one copy is live, 2842 * skip it. 2843 * For recovery, we iterate over physical addresses, read a good 2844 * value for each non-in_sync drive, and over-write. 2845 * 2846 * So, for recovery we may have several outstanding complex requests for a 2847 * given address, one for each out-of-sync device. We model this by allocating 2848 * a number of r10_bio structures, one for each out-of-sync device. 2849 * As we setup these structures, we collect all bio's together into a list 2850 * which we then process collectively to add pages, and then process again 2851 * to pass to generic_make_request. 2852 * 2853 * The r10_bio structures are linked using a borrowed master_bio pointer. 2854 * This link is counted in ->remaining. When the r10_bio that points to NULL 2855 * has its remaining count decremented to 0, the whole complex operation 2856 * is complete. 2857 * 2858 */ 2859 2860 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 2861 int *skipped) 2862 { 2863 struct r10conf *conf = mddev->private; 2864 struct r10bio *r10_bio; 2865 struct bio *biolist = NULL, *bio; 2866 sector_t max_sector, nr_sectors; 2867 int i; 2868 int max_sync; 2869 sector_t sync_blocks; 2870 sector_t sectors_skipped = 0; 2871 int chunks_skipped = 0; 2872 sector_t chunk_mask = conf->geo.chunk_mask; 2873 int page_idx = 0; 2874 2875 if (!conf->r10buf_pool) 2876 if (init_resync(conf)) 2877 return 0; 2878 2879 /* 2880 * Allow skipping a full rebuild for incremental assembly 2881 * of a clean array, like RAID1 does. 2882 */ 2883 if (mddev->bitmap == NULL && 2884 mddev->recovery_cp == MaxSector && 2885 mddev->reshape_position == MaxSector && 2886 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2887 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2888 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2889 conf->fullsync == 0) { 2890 *skipped = 1; 2891 return mddev->dev_sectors - sector_nr; 2892 } 2893 2894 skipped: 2895 max_sector = mddev->dev_sectors; 2896 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2897 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2898 max_sector = mddev->resync_max_sectors; 2899 if (sector_nr >= max_sector) { 2900 /* If we aborted, we need to abort the 2901 * sync on the 'current' bitmap chucks (there can 2902 * be several when recovering multiple devices). 2903 * as we may have started syncing it but not finished. 2904 * We can find the current address in 2905 * mddev->curr_resync, but for recovery, 2906 * we need to convert that to several 2907 * virtual addresses. 2908 */ 2909 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2910 end_reshape(conf); 2911 close_sync(conf); 2912 return 0; 2913 } 2914 2915 if (mddev->curr_resync < max_sector) { /* aborted */ 2916 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2917 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2918 &sync_blocks, 1); 2919 else for (i = 0; i < conf->geo.raid_disks; i++) { 2920 sector_t sect = 2921 raid10_find_virt(conf, mddev->curr_resync, i); 2922 bitmap_end_sync(mddev->bitmap, sect, 2923 &sync_blocks, 1); 2924 } 2925 } else { 2926 /* completed sync */ 2927 if ((!mddev->bitmap || conf->fullsync) 2928 && conf->have_replacement 2929 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2930 /* Completed a full sync so the replacements 2931 * are now fully recovered. 2932 */ 2933 rcu_read_lock(); 2934 for (i = 0; i < conf->geo.raid_disks; i++) { 2935 struct md_rdev *rdev = 2936 rcu_dereference(conf->mirrors[i].replacement); 2937 if (rdev) 2938 rdev->recovery_offset = MaxSector; 2939 } 2940 rcu_read_unlock(); 2941 } 2942 conf->fullsync = 0; 2943 } 2944 bitmap_close_sync(mddev->bitmap); 2945 close_sync(conf); 2946 *skipped = 1; 2947 return sectors_skipped; 2948 } 2949 2950 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2951 return reshape_request(mddev, sector_nr, skipped); 2952 2953 if (chunks_skipped >= conf->geo.raid_disks) { 2954 /* if there has been nothing to do on any drive, 2955 * then there is nothing to do at all.. 2956 */ 2957 *skipped = 1; 2958 return (max_sector - sector_nr) + sectors_skipped; 2959 } 2960 2961 if (max_sector > mddev->resync_max) 2962 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2963 2964 /* make sure whole request will fit in a chunk - if chunks 2965 * are meaningful 2966 */ 2967 if (conf->geo.near_copies < conf->geo.raid_disks && 2968 max_sector > (sector_nr | chunk_mask)) 2969 max_sector = (sector_nr | chunk_mask) + 1; 2970 2971 /* 2972 * If there is non-resync activity waiting for a turn, then let it 2973 * though before starting on this new sync request. 2974 */ 2975 if (conf->nr_waiting) 2976 schedule_timeout_uninterruptible(1); 2977 2978 /* Again, very different code for resync and recovery. 2979 * Both must result in an r10bio with a list of bios that 2980 * have bi_end_io, bi_sector, bi_disk set, 2981 * and bi_private set to the r10bio. 2982 * For recovery, we may actually create several r10bios 2983 * with 2 bios in each, that correspond to the bios in the main one. 2984 * In this case, the subordinate r10bios link back through a 2985 * borrowed master_bio pointer, and the counter in the master 2986 * includes a ref from each subordinate. 2987 */ 2988 /* First, we decide what to do and set ->bi_end_io 2989 * To end_sync_read if we want to read, and 2990 * end_sync_write if we will want to write. 2991 */ 2992 2993 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2994 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2995 /* recovery... the complicated one */ 2996 int j; 2997 r10_bio = NULL; 2998 2999 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3000 int still_degraded; 3001 struct r10bio *rb2; 3002 sector_t sect; 3003 int must_sync; 3004 int any_working; 3005 struct raid10_info *mirror = &conf->mirrors[i]; 3006 struct md_rdev *mrdev, *mreplace; 3007 3008 rcu_read_lock(); 3009 mrdev = rcu_dereference(mirror->rdev); 3010 mreplace = rcu_dereference(mirror->replacement); 3011 3012 if ((mrdev == NULL || 3013 test_bit(Faulty, &mrdev->flags) || 3014 test_bit(In_sync, &mrdev->flags)) && 3015 (mreplace == NULL || 3016 test_bit(Faulty, &mreplace->flags))) { 3017 rcu_read_unlock(); 3018 continue; 3019 } 3020 3021 still_degraded = 0; 3022 /* want to reconstruct this device */ 3023 rb2 = r10_bio; 3024 sect = raid10_find_virt(conf, sector_nr, i); 3025 if (sect >= mddev->resync_max_sectors) { 3026 /* last stripe is not complete - don't 3027 * try to recover this sector. 3028 */ 3029 rcu_read_unlock(); 3030 continue; 3031 } 3032 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3033 mreplace = NULL; 3034 /* Unless we are doing a full sync, or a replacement 3035 * we only need to recover the block if it is set in 3036 * the bitmap 3037 */ 3038 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3039 &sync_blocks, 1); 3040 if (sync_blocks < max_sync) 3041 max_sync = sync_blocks; 3042 if (!must_sync && 3043 mreplace == NULL && 3044 !conf->fullsync) { 3045 /* yep, skip the sync_blocks here, but don't assume 3046 * that there will never be anything to do here 3047 */ 3048 chunks_skipped = -1; 3049 rcu_read_unlock(); 3050 continue; 3051 } 3052 atomic_inc(&mrdev->nr_pending); 3053 if (mreplace) 3054 atomic_inc(&mreplace->nr_pending); 3055 rcu_read_unlock(); 3056 3057 r10_bio = raid10_alloc_init_r10buf(conf); 3058 r10_bio->state = 0; 3059 raise_barrier(conf, rb2 != NULL); 3060 atomic_set(&r10_bio->remaining, 0); 3061 3062 r10_bio->master_bio = (struct bio*)rb2; 3063 if (rb2) 3064 atomic_inc(&rb2->remaining); 3065 r10_bio->mddev = mddev; 3066 set_bit(R10BIO_IsRecover, &r10_bio->state); 3067 r10_bio->sector = sect; 3068 3069 raid10_find_phys(conf, r10_bio); 3070 3071 /* Need to check if the array will still be 3072 * degraded 3073 */ 3074 rcu_read_lock(); 3075 for (j = 0; j < conf->geo.raid_disks; j++) { 3076 struct md_rdev *rdev = rcu_dereference( 3077 conf->mirrors[j].rdev); 3078 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3079 still_degraded = 1; 3080 break; 3081 } 3082 } 3083 3084 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3085 &sync_blocks, still_degraded); 3086 3087 any_working = 0; 3088 for (j=0; j<conf->copies;j++) { 3089 int k; 3090 int d = r10_bio->devs[j].devnum; 3091 sector_t from_addr, to_addr; 3092 struct md_rdev *rdev = 3093 rcu_dereference(conf->mirrors[d].rdev); 3094 sector_t sector, first_bad; 3095 int bad_sectors; 3096 if (!rdev || 3097 !test_bit(In_sync, &rdev->flags)) 3098 continue; 3099 /* This is where we read from */ 3100 any_working = 1; 3101 sector = r10_bio->devs[j].addr; 3102 3103 if (is_badblock(rdev, sector, max_sync, 3104 &first_bad, &bad_sectors)) { 3105 if (first_bad > sector) 3106 max_sync = first_bad - sector; 3107 else { 3108 bad_sectors -= (sector 3109 - first_bad); 3110 if (max_sync > bad_sectors) 3111 max_sync = bad_sectors; 3112 continue; 3113 } 3114 } 3115 bio = r10_bio->devs[0].bio; 3116 bio->bi_next = biolist; 3117 biolist = bio; 3118 bio->bi_end_io = end_sync_read; 3119 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3120 if (test_bit(FailFast, &rdev->flags)) 3121 bio->bi_opf |= MD_FAILFAST; 3122 from_addr = r10_bio->devs[j].addr; 3123 bio->bi_iter.bi_sector = from_addr + 3124 rdev->data_offset; 3125 bio_set_dev(bio, rdev->bdev); 3126 atomic_inc(&rdev->nr_pending); 3127 /* and we write to 'i' (if not in_sync) */ 3128 3129 for (k=0; k<conf->copies; k++) 3130 if (r10_bio->devs[k].devnum == i) 3131 break; 3132 BUG_ON(k == conf->copies); 3133 to_addr = r10_bio->devs[k].addr; 3134 r10_bio->devs[0].devnum = d; 3135 r10_bio->devs[0].addr = from_addr; 3136 r10_bio->devs[1].devnum = i; 3137 r10_bio->devs[1].addr = to_addr; 3138 3139 if (!test_bit(In_sync, &mrdev->flags)) { 3140 bio = r10_bio->devs[1].bio; 3141 bio->bi_next = biolist; 3142 biolist = bio; 3143 bio->bi_end_io = end_sync_write; 3144 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3145 bio->bi_iter.bi_sector = to_addr 3146 + mrdev->data_offset; 3147 bio_set_dev(bio, mrdev->bdev); 3148 atomic_inc(&r10_bio->remaining); 3149 } else 3150 r10_bio->devs[1].bio->bi_end_io = NULL; 3151 3152 /* and maybe write to replacement */ 3153 bio = r10_bio->devs[1].repl_bio; 3154 if (bio) 3155 bio->bi_end_io = NULL; 3156 /* Note: if mreplace != NULL, then bio 3157 * cannot be NULL as r10buf_pool_alloc will 3158 * have allocated it. 3159 * So the second test here is pointless. 3160 * But it keeps semantic-checkers happy, and 3161 * this comment keeps human reviewers 3162 * happy. 3163 */ 3164 if (mreplace == NULL || bio == NULL || 3165 test_bit(Faulty, &mreplace->flags)) 3166 break; 3167 bio->bi_next = biolist; 3168 biolist = bio; 3169 bio->bi_end_io = end_sync_write; 3170 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3171 bio->bi_iter.bi_sector = to_addr + 3172 mreplace->data_offset; 3173 bio_set_dev(bio, mreplace->bdev); 3174 atomic_inc(&r10_bio->remaining); 3175 break; 3176 } 3177 rcu_read_unlock(); 3178 if (j == conf->copies) { 3179 /* Cannot recover, so abort the recovery or 3180 * record a bad block */ 3181 if (any_working) { 3182 /* problem is that there are bad blocks 3183 * on other device(s) 3184 */ 3185 int k; 3186 for (k = 0; k < conf->copies; k++) 3187 if (r10_bio->devs[k].devnum == i) 3188 break; 3189 if (!test_bit(In_sync, 3190 &mrdev->flags) 3191 && !rdev_set_badblocks( 3192 mrdev, 3193 r10_bio->devs[k].addr, 3194 max_sync, 0)) 3195 any_working = 0; 3196 if (mreplace && 3197 !rdev_set_badblocks( 3198 mreplace, 3199 r10_bio->devs[k].addr, 3200 max_sync, 0)) 3201 any_working = 0; 3202 } 3203 if (!any_working) { 3204 if (!test_and_set_bit(MD_RECOVERY_INTR, 3205 &mddev->recovery)) 3206 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3207 mdname(mddev)); 3208 mirror->recovery_disabled 3209 = mddev->recovery_disabled; 3210 } 3211 put_buf(r10_bio); 3212 if (rb2) 3213 atomic_dec(&rb2->remaining); 3214 r10_bio = rb2; 3215 rdev_dec_pending(mrdev, mddev); 3216 if (mreplace) 3217 rdev_dec_pending(mreplace, mddev); 3218 break; 3219 } 3220 rdev_dec_pending(mrdev, mddev); 3221 if (mreplace) 3222 rdev_dec_pending(mreplace, mddev); 3223 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3224 /* Only want this if there is elsewhere to 3225 * read from. 'j' is currently the first 3226 * readable copy. 3227 */ 3228 int targets = 1; 3229 for (; j < conf->copies; j++) { 3230 int d = r10_bio->devs[j].devnum; 3231 if (conf->mirrors[d].rdev && 3232 test_bit(In_sync, 3233 &conf->mirrors[d].rdev->flags)) 3234 targets++; 3235 } 3236 if (targets == 1) 3237 r10_bio->devs[0].bio->bi_opf 3238 &= ~MD_FAILFAST; 3239 } 3240 } 3241 if (biolist == NULL) { 3242 while (r10_bio) { 3243 struct r10bio *rb2 = r10_bio; 3244 r10_bio = (struct r10bio*) rb2->master_bio; 3245 rb2->master_bio = NULL; 3246 put_buf(rb2); 3247 } 3248 goto giveup; 3249 } 3250 } else { 3251 /* resync. Schedule a read for every block at this virt offset */ 3252 int count = 0; 3253 3254 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0); 3255 3256 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3257 &sync_blocks, mddev->degraded) && 3258 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3259 &mddev->recovery)) { 3260 /* We can skip this block */ 3261 *skipped = 1; 3262 return sync_blocks + sectors_skipped; 3263 } 3264 if (sync_blocks < max_sync) 3265 max_sync = sync_blocks; 3266 r10_bio = raid10_alloc_init_r10buf(conf); 3267 r10_bio->state = 0; 3268 3269 r10_bio->mddev = mddev; 3270 atomic_set(&r10_bio->remaining, 0); 3271 raise_barrier(conf, 0); 3272 conf->next_resync = sector_nr; 3273 3274 r10_bio->master_bio = NULL; 3275 r10_bio->sector = sector_nr; 3276 set_bit(R10BIO_IsSync, &r10_bio->state); 3277 raid10_find_phys(conf, r10_bio); 3278 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3279 3280 for (i = 0; i < conf->copies; i++) { 3281 int d = r10_bio->devs[i].devnum; 3282 sector_t first_bad, sector; 3283 int bad_sectors; 3284 struct md_rdev *rdev; 3285 3286 if (r10_bio->devs[i].repl_bio) 3287 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3288 3289 bio = r10_bio->devs[i].bio; 3290 bio->bi_status = BLK_STS_IOERR; 3291 rcu_read_lock(); 3292 rdev = rcu_dereference(conf->mirrors[d].rdev); 3293 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3294 rcu_read_unlock(); 3295 continue; 3296 } 3297 sector = r10_bio->devs[i].addr; 3298 if (is_badblock(rdev, sector, max_sync, 3299 &first_bad, &bad_sectors)) { 3300 if (first_bad > sector) 3301 max_sync = first_bad - sector; 3302 else { 3303 bad_sectors -= (sector - first_bad); 3304 if (max_sync > bad_sectors) 3305 max_sync = bad_sectors; 3306 rcu_read_unlock(); 3307 continue; 3308 } 3309 } 3310 atomic_inc(&rdev->nr_pending); 3311 atomic_inc(&r10_bio->remaining); 3312 bio->bi_next = biolist; 3313 biolist = bio; 3314 bio->bi_end_io = end_sync_read; 3315 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3316 if (test_bit(FailFast, &rdev->flags)) 3317 bio->bi_opf |= MD_FAILFAST; 3318 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3319 bio_set_dev(bio, rdev->bdev); 3320 count++; 3321 3322 rdev = rcu_dereference(conf->mirrors[d].replacement); 3323 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3324 rcu_read_unlock(); 3325 continue; 3326 } 3327 atomic_inc(&rdev->nr_pending); 3328 3329 /* Need to set up for writing to the replacement */ 3330 bio = r10_bio->devs[i].repl_bio; 3331 bio->bi_status = BLK_STS_IOERR; 3332 3333 sector = r10_bio->devs[i].addr; 3334 bio->bi_next = biolist; 3335 biolist = bio; 3336 bio->bi_end_io = end_sync_write; 3337 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3338 if (test_bit(FailFast, &rdev->flags)) 3339 bio->bi_opf |= MD_FAILFAST; 3340 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3341 bio_set_dev(bio, rdev->bdev); 3342 count++; 3343 rcu_read_unlock(); 3344 } 3345 3346 if (count < 2) { 3347 for (i=0; i<conf->copies; i++) { 3348 int d = r10_bio->devs[i].devnum; 3349 if (r10_bio->devs[i].bio->bi_end_io) 3350 rdev_dec_pending(conf->mirrors[d].rdev, 3351 mddev); 3352 if (r10_bio->devs[i].repl_bio && 3353 r10_bio->devs[i].repl_bio->bi_end_io) 3354 rdev_dec_pending( 3355 conf->mirrors[d].replacement, 3356 mddev); 3357 } 3358 put_buf(r10_bio); 3359 biolist = NULL; 3360 goto giveup; 3361 } 3362 } 3363 3364 nr_sectors = 0; 3365 if (sector_nr + max_sync < max_sector) 3366 max_sector = sector_nr + max_sync; 3367 do { 3368 struct page *page; 3369 int len = PAGE_SIZE; 3370 if (sector_nr + (len>>9) > max_sector) 3371 len = (max_sector - sector_nr) << 9; 3372 if (len == 0) 3373 break; 3374 for (bio= biolist ; bio ; bio=bio->bi_next) { 3375 struct resync_pages *rp = get_resync_pages(bio); 3376 page = resync_fetch_page(rp, page_idx); 3377 /* 3378 * won't fail because the vec table is big enough 3379 * to hold all these pages 3380 */ 3381 bio_add_page(bio, page, len, 0); 3382 } 3383 nr_sectors += len>>9; 3384 sector_nr += len>>9; 3385 } while (++page_idx < RESYNC_PAGES); 3386 r10_bio->sectors = nr_sectors; 3387 3388 while (biolist) { 3389 bio = biolist; 3390 biolist = biolist->bi_next; 3391 3392 bio->bi_next = NULL; 3393 r10_bio = get_resync_r10bio(bio); 3394 r10_bio->sectors = nr_sectors; 3395 3396 if (bio->bi_end_io == end_sync_read) { 3397 md_sync_acct_bio(bio, nr_sectors); 3398 bio->bi_status = 0; 3399 generic_make_request(bio); 3400 } 3401 } 3402 3403 if (sectors_skipped) 3404 /* pretend they weren't skipped, it makes 3405 * no important difference in this case 3406 */ 3407 md_done_sync(mddev, sectors_skipped, 1); 3408 3409 return sectors_skipped + nr_sectors; 3410 giveup: 3411 /* There is nowhere to write, so all non-sync 3412 * drives must be failed or in resync, all drives 3413 * have a bad block, so try the next chunk... 3414 */ 3415 if (sector_nr + max_sync < max_sector) 3416 max_sector = sector_nr + max_sync; 3417 3418 sectors_skipped += (max_sector - sector_nr); 3419 chunks_skipped ++; 3420 sector_nr = max_sector; 3421 goto skipped; 3422 } 3423 3424 static sector_t 3425 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3426 { 3427 sector_t size; 3428 struct r10conf *conf = mddev->private; 3429 3430 if (!raid_disks) 3431 raid_disks = min(conf->geo.raid_disks, 3432 conf->prev.raid_disks); 3433 if (!sectors) 3434 sectors = conf->dev_sectors; 3435 3436 size = sectors >> conf->geo.chunk_shift; 3437 sector_div(size, conf->geo.far_copies); 3438 size = size * raid_disks; 3439 sector_div(size, conf->geo.near_copies); 3440 3441 return size << conf->geo.chunk_shift; 3442 } 3443 3444 static void calc_sectors(struct r10conf *conf, sector_t size) 3445 { 3446 /* Calculate the number of sectors-per-device that will 3447 * actually be used, and set conf->dev_sectors and 3448 * conf->stride 3449 */ 3450 3451 size = size >> conf->geo.chunk_shift; 3452 sector_div(size, conf->geo.far_copies); 3453 size = size * conf->geo.raid_disks; 3454 sector_div(size, conf->geo.near_copies); 3455 /* 'size' is now the number of chunks in the array */ 3456 /* calculate "used chunks per device" */ 3457 size = size * conf->copies; 3458 3459 /* We need to round up when dividing by raid_disks to 3460 * get the stride size. 3461 */ 3462 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3463 3464 conf->dev_sectors = size << conf->geo.chunk_shift; 3465 3466 if (conf->geo.far_offset) 3467 conf->geo.stride = 1 << conf->geo.chunk_shift; 3468 else { 3469 sector_div(size, conf->geo.far_copies); 3470 conf->geo.stride = size << conf->geo.chunk_shift; 3471 } 3472 } 3473 3474 enum geo_type {geo_new, geo_old, geo_start}; 3475 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3476 { 3477 int nc, fc, fo; 3478 int layout, chunk, disks; 3479 switch (new) { 3480 case geo_old: 3481 layout = mddev->layout; 3482 chunk = mddev->chunk_sectors; 3483 disks = mddev->raid_disks - mddev->delta_disks; 3484 break; 3485 case geo_new: 3486 layout = mddev->new_layout; 3487 chunk = mddev->new_chunk_sectors; 3488 disks = mddev->raid_disks; 3489 break; 3490 default: /* avoid 'may be unused' warnings */ 3491 case geo_start: /* new when starting reshape - raid_disks not 3492 * updated yet. */ 3493 layout = mddev->new_layout; 3494 chunk = mddev->new_chunk_sectors; 3495 disks = mddev->raid_disks + mddev->delta_disks; 3496 break; 3497 } 3498 if (layout >> 19) 3499 return -1; 3500 if (chunk < (PAGE_SIZE >> 9) || 3501 !is_power_of_2(chunk)) 3502 return -2; 3503 nc = layout & 255; 3504 fc = (layout >> 8) & 255; 3505 fo = layout & (1<<16); 3506 geo->raid_disks = disks; 3507 geo->near_copies = nc; 3508 geo->far_copies = fc; 3509 geo->far_offset = fo; 3510 switch (layout >> 17) { 3511 case 0: /* original layout. simple but not always optimal */ 3512 geo->far_set_size = disks; 3513 break; 3514 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3515 * actually using this, but leave code here just in case.*/ 3516 geo->far_set_size = disks/fc; 3517 WARN(geo->far_set_size < fc, 3518 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3519 break; 3520 case 2: /* "improved" layout fixed to match documentation */ 3521 geo->far_set_size = fc * nc; 3522 break; 3523 default: /* Not a valid layout */ 3524 return -1; 3525 } 3526 geo->chunk_mask = chunk - 1; 3527 geo->chunk_shift = ffz(~chunk); 3528 return nc*fc; 3529 } 3530 3531 static struct r10conf *setup_conf(struct mddev *mddev) 3532 { 3533 struct r10conf *conf = NULL; 3534 int err = -EINVAL; 3535 struct geom geo; 3536 int copies; 3537 3538 copies = setup_geo(&geo, mddev, geo_new); 3539 3540 if (copies == -2) { 3541 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3542 mdname(mddev), PAGE_SIZE); 3543 goto out; 3544 } 3545 3546 if (copies < 2 || copies > mddev->raid_disks) { 3547 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3548 mdname(mddev), mddev->new_layout); 3549 goto out; 3550 } 3551 3552 err = -ENOMEM; 3553 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3554 if (!conf) 3555 goto out; 3556 3557 /* FIXME calc properly */ 3558 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3559 max(0,-mddev->delta_disks)), 3560 GFP_KERNEL); 3561 if (!conf->mirrors) 3562 goto out; 3563 3564 conf->tmppage = alloc_page(GFP_KERNEL); 3565 if (!conf->tmppage) 3566 goto out; 3567 3568 conf->geo = geo; 3569 conf->copies = copies; 3570 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3571 r10bio_pool_free, conf); 3572 if (!conf->r10bio_pool) 3573 goto out; 3574 3575 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0); 3576 if (!conf->bio_split) 3577 goto out; 3578 3579 calc_sectors(conf, mddev->dev_sectors); 3580 if (mddev->reshape_position == MaxSector) { 3581 conf->prev = conf->geo; 3582 conf->reshape_progress = MaxSector; 3583 } else { 3584 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3585 err = -EINVAL; 3586 goto out; 3587 } 3588 conf->reshape_progress = mddev->reshape_position; 3589 if (conf->prev.far_offset) 3590 conf->prev.stride = 1 << conf->prev.chunk_shift; 3591 else 3592 /* far_copies must be 1 */ 3593 conf->prev.stride = conf->dev_sectors; 3594 } 3595 conf->reshape_safe = conf->reshape_progress; 3596 spin_lock_init(&conf->device_lock); 3597 INIT_LIST_HEAD(&conf->retry_list); 3598 INIT_LIST_HEAD(&conf->bio_end_io_list); 3599 3600 spin_lock_init(&conf->resync_lock); 3601 init_waitqueue_head(&conf->wait_barrier); 3602 atomic_set(&conf->nr_pending, 0); 3603 3604 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3605 if (!conf->thread) 3606 goto out; 3607 3608 conf->mddev = mddev; 3609 return conf; 3610 3611 out: 3612 if (conf) { 3613 mempool_destroy(conf->r10bio_pool); 3614 kfree(conf->mirrors); 3615 safe_put_page(conf->tmppage); 3616 if (conf->bio_split) 3617 bioset_free(conf->bio_split); 3618 kfree(conf); 3619 } 3620 return ERR_PTR(err); 3621 } 3622 3623 static int raid10_run(struct mddev *mddev) 3624 { 3625 struct r10conf *conf; 3626 int i, disk_idx, chunk_size; 3627 struct raid10_info *disk; 3628 struct md_rdev *rdev; 3629 sector_t size; 3630 sector_t min_offset_diff = 0; 3631 int first = 1; 3632 bool discard_supported = false; 3633 3634 if (mddev_init_writes_pending(mddev) < 0) 3635 return -ENOMEM; 3636 3637 if (mddev->private == NULL) { 3638 conf = setup_conf(mddev); 3639 if (IS_ERR(conf)) 3640 return PTR_ERR(conf); 3641 mddev->private = conf; 3642 } 3643 conf = mddev->private; 3644 if (!conf) 3645 goto out; 3646 3647 mddev->thread = conf->thread; 3648 conf->thread = NULL; 3649 3650 chunk_size = mddev->chunk_sectors << 9; 3651 if (mddev->queue) { 3652 blk_queue_max_discard_sectors(mddev->queue, 3653 mddev->chunk_sectors); 3654 blk_queue_max_write_same_sectors(mddev->queue, 0); 3655 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3656 blk_queue_io_min(mddev->queue, chunk_size); 3657 if (conf->geo.raid_disks % conf->geo.near_copies) 3658 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3659 else 3660 blk_queue_io_opt(mddev->queue, chunk_size * 3661 (conf->geo.raid_disks / conf->geo.near_copies)); 3662 } 3663 3664 rdev_for_each(rdev, mddev) { 3665 long long diff; 3666 3667 disk_idx = rdev->raid_disk; 3668 if (disk_idx < 0) 3669 continue; 3670 if (disk_idx >= conf->geo.raid_disks && 3671 disk_idx >= conf->prev.raid_disks) 3672 continue; 3673 disk = conf->mirrors + disk_idx; 3674 3675 if (test_bit(Replacement, &rdev->flags)) { 3676 if (disk->replacement) 3677 goto out_free_conf; 3678 disk->replacement = rdev; 3679 } else { 3680 if (disk->rdev) 3681 goto out_free_conf; 3682 disk->rdev = rdev; 3683 } 3684 diff = (rdev->new_data_offset - rdev->data_offset); 3685 if (!mddev->reshape_backwards) 3686 diff = -diff; 3687 if (diff < 0) 3688 diff = 0; 3689 if (first || diff < min_offset_diff) 3690 min_offset_diff = diff; 3691 3692 if (mddev->gendisk) 3693 disk_stack_limits(mddev->gendisk, rdev->bdev, 3694 rdev->data_offset << 9); 3695 3696 disk->head_position = 0; 3697 3698 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3699 discard_supported = true; 3700 first = 0; 3701 } 3702 3703 if (mddev->queue) { 3704 if (discard_supported) 3705 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3706 mddev->queue); 3707 else 3708 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3709 mddev->queue); 3710 } 3711 /* need to check that every block has at least one working mirror */ 3712 if (!enough(conf, -1)) { 3713 pr_err("md/raid10:%s: not enough operational mirrors.\n", 3714 mdname(mddev)); 3715 goto out_free_conf; 3716 } 3717 3718 if (conf->reshape_progress != MaxSector) { 3719 /* must ensure that shape change is supported */ 3720 if (conf->geo.far_copies != 1 && 3721 conf->geo.far_offset == 0) 3722 goto out_free_conf; 3723 if (conf->prev.far_copies != 1 && 3724 conf->prev.far_offset == 0) 3725 goto out_free_conf; 3726 } 3727 3728 mddev->degraded = 0; 3729 for (i = 0; 3730 i < conf->geo.raid_disks 3731 || i < conf->prev.raid_disks; 3732 i++) { 3733 3734 disk = conf->mirrors + i; 3735 3736 if (!disk->rdev && disk->replacement) { 3737 /* The replacement is all we have - use it */ 3738 disk->rdev = disk->replacement; 3739 disk->replacement = NULL; 3740 clear_bit(Replacement, &disk->rdev->flags); 3741 } 3742 3743 if (!disk->rdev || 3744 !test_bit(In_sync, &disk->rdev->flags)) { 3745 disk->head_position = 0; 3746 mddev->degraded++; 3747 if (disk->rdev && 3748 disk->rdev->saved_raid_disk < 0) 3749 conf->fullsync = 1; 3750 } 3751 disk->recovery_disabled = mddev->recovery_disabled - 1; 3752 } 3753 3754 if (mddev->recovery_cp != MaxSector) 3755 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 3756 mdname(mddev)); 3757 pr_info("md/raid10:%s: active with %d out of %d devices\n", 3758 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3759 conf->geo.raid_disks); 3760 /* 3761 * Ok, everything is just fine now 3762 */ 3763 mddev->dev_sectors = conf->dev_sectors; 3764 size = raid10_size(mddev, 0, 0); 3765 md_set_array_sectors(mddev, size); 3766 mddev->resync_max_sectors = size; 3767 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3768 3769 if (mddev->queue) { 3770 int stripe = conf->geo.raid_disks * 3771 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3772 3773 /* Calculate max read-ahead size. 3774 * We need to readahead at least twice a whole stripe.... 3775 * maybe... 3776 */ 3777 stripe /= conf->geo.near_copies; 3778 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 3779 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 3780 } 3781 3782 if (md_integrity_register(mddev)) 3783 goto out_free_conf; 3784 3785 if (conf->reshape_progress != MaxSector) { 3786 unsigned long before_length, after_length; 3787 3788 before_length = ((1 << conf->prev.chunk_shift) * 3789 conf->prev.far_copies); 3790 after_length = ((1 << conf->geo.chunk_shift) * 3791 conf->geo.far_copies); 3792 3793 if (max(before_length, after_length) > min_offset_diff) { 3794 /* This cannot work */ 3795 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 3796 goto out_free_conf; 3797 } 3798 conf->offset_diff = min_offset_diff; 3799 3800 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3801 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3802 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3803 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3804 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3805 "reshape"); 3806 } 3807 3808 return 0; 3809 3810 out_free_conf: 3811 md_unregister_thread(&mddev->thread); 3812 mempool_destroy(conf->r10bio_pool); 3813 safe_put_page(conf->tmppage); 3814 kfree(conf->mirrors); 3815 kfree(conf); 3816 mddev->private = NULL; 3817 out: 3818 return -EIO; 3819 } 3820 3821 static void raid10_free(struct mddev *mddev, void *priv) 3822 { 3823 struct r10conf *conf = priv; 3824 3825 mempool_destroy(conf->r10bio_pool); 3826 safe_put_page(conf->tmppage); 3827 kfree(conf->mirrors); 3828 kfree(conf->mirrors_old); 3829 kfree(conf->mirrors_new); 3830 if (conf->bio_split) 3831 bioset_free(conf->bio_split); 3832 kfree(conf); 3833 } 3834 3835 static void raid10_quiesce(struct mddev *mddev, int state) 3836 { 3837 struct r10conf *conf = mddev->private; 3838 3839 switch(state) { 3840 case 1: 3841 raise_barrier(conf, 0); 3842 break; 3843 case 0: 3844 lower_barrier(conf); 3845 break; 3846 } 3847 } 3848 3849 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3850 { 3851 /* Resize of 'far' arrays is not supported. 3852 * For 'near' and 'offset' arrays we can set the 3853 * number of sectors used to be an appropriate multiple 3854 * of the chunk size. 3855 * For 'offset', this is far_copies*chunksize. 3856 * For 'near' the multiplier is the LCM of 3857 * near_copies and raid_disks. 3858 * So if far_copies > 1 && !far_offset, fail. 3859 * Else find LCM(raid_disks, near_copy)*far_copies and 3860 * multiply by chunk_size. Then round to this number. 3861 * This is mostly done by raid10_size() 3862 */ 3863 struct r10conf *conf = mddev->private; 3864 sector_t oldsize, size; 3865 3866 if (mddev->reshape_position != MaxSector) 3867 return -EBUSY; 3868 3869 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3870 return -EINVAL; 3871 3872 oldsize = raid10_size(mddev, 0, 0); 3873 size = raid10_size(mddev, sectors, 0); 3874 if (mddev->external_size && 3875 mddev->array_sectors > size) 3876 return -EINVAL; 3877 if (mddev->bitmap) { 3878 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3879 if (ret) 3880 return ret; 3881 } 3882 md_set_array_sectors(mddev, size); 3883 if (sectors > mddev->dev_sectors && 3884 mddev->recovery_cp > oldsize) { 3885 mddev->recovery_cp = oldsize; 3886 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3887 } 3888 calc_sectors(conf, sectors); 3889 mddev->dev_sectors = conf->dev_sectors; 3890 mddev->resync_max_sectors = size; 3891 return 0; 3892 } 3893 3894 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 3895 { 3896 struct md_rdev *rdev; 3897 struct r10conf *conf; 3898 3899 if (mddev->degraded > 0) { 3900 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 3901 mdname(mddev)); 3902 return ERR_PTR(-EINVAL); 3903 } 3904 sector_div(size, devs); 3905 3906 /* Set new parameters */ 3907 mddev->new_level = 10; 3908 /* new layout: far_copies = 1, near_copies = 2 */ 3909 mddev->new_layout = (1<<8) + 2; 3910 mddev->new_chunk_sectors = mddev->chunk_sectors; 3911 mddev->delta_disks = mddev->raid_disks; 3912 mddev->raid_disks *= 2; 3913 /* make sure it will be not marked as dirty */ 3914 mddev->recovery_cp = MaxSector; 3915 mddev->dev_sectors = size; 3916 3917 conf = setup_conf(mddev); 3918 if (!IS_ERR(conf)) { 3919 rdev_for_each(rdev, mddev) 3920 if (rdev->raid_disk >= 0) { 3921 rdev->new_raid_disk = rdev->raid_disk * 2; 3922 rdev->sectors = size; 3923 } 3924 conf->barrier = 1; 3925 } 3926 3927 return conf; 3928 } 3929 3930 static void *raid10_takeover(struct mddev *mddev) 3931 { 3932 struct r0conf *raid0_conf; 3933 3934 /* raid10 can take over: 3935 * raid0 - providing it has only two drives 3936 */ 3937 if (mddev->level == 0) { 3938 /* for raid0 takeover only one zone is supported */ 3939 raid0_conf = mddev->private; 3940 if (raid0_conf->nr_strip_zones > 1) { 3941 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 3942 mdname(mddev)); 3943 return ERR_PTR(-EINVAL); 3944 } 3945 return raid10_takeover_raid0(mddev, 3946 raid0_conf->strip_zone->zone_end, 3947 raid0_conf->strip_zone->nb_dev); 3948 } 3949 return ERR_PTR(-EINVAL); 3950 } 3951 3952 static int raid10_check_reshape(struct mddev *mddev) 3953 { 3954 /* Called when there is a request to change 3955 * - layout (to ->new_layout) 3956 * - chunk size (to ->new_chunk_sectors) 3957 * - raid_disks (by delta_disks) 3958 * or when trying to restart a reshape that was ongoing. 3959 * 3960 * We need to validate the request and possibly allocate 3961 * space if that might be an issue later. 3962 * 3963 * Currently we reject any reshape of a 'far' mode array, 3964 * allow chunk size to change if new is generally acceptable, 3965 * allow raid_disks to increase, and allow 3966 * a switch between 'near' mode and 'offset' mode. 3967 */ 3968 struct r10conf *conf = mddev->private; 3969 struct geom geo; 3970 3971 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3972 return -EINVAL; 3973 3974 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3975 /* mustn't change number of copies */ 3976 return -EINVAL; 3977 if (geo.far_copies > 1 && !geo.far_offset) 3978 /* Cannot switch to 'far' mode */ 3979 return -EINVAL; 3980 3981 if (mddev->array_sectors & geo.chunk_mask) 3982 /* not factor of array size */ 3983 return -EINVAL; 3984 3985 if (!enough(conf, -1)) 3986 return -EINVAL; 3987 3988 kfree(conf->mirrors_new); 3989 conf->mirrors_new = NULL; 3990 if (mddev->delta_disks > 0) { 3991 /* allocate new 'mirrors' list */ 3992 conf->mirrors_new = kzalloc( 3993 sizeof(struct raid10_info) 3994 *(mddev->raid_disks + 3995 mddev->delta_disks), 3996 GFP_KERNEL); 3997 if (!conf->mirrors_new) 3998 return -ENOMEM; 3999 } 4000 return 0; 4001 } 4002 4003 /* 4004 * Need to check if array has failed when deciding whether to: 4005 * - start an array 4006 * - remove non-faulty devices 4007 * - add a spare 4008 * - allow a reshape 4009 * This determination is simple when no reshape is happening. 4010 * However if there is a reshape, we need to carefully check 4011 * both the before and after sections. 4012 * This is because some failed devices may only affect one 4013 * of the two sections, and some non-in_sync devices may 4014 * be insync in the section most affected by failed devices. 4015 */ 4016 static int calc_degraded(struct r10conf *conf) 4017 { 4018 int degraded, degraded2; 4019 int i; 4020 4021 rcu_read_lock(); 4022 degraded = 0; 4023 /* 'prev' section first */ 4024 for (i = 0; i < conf->prev.raid_disks; i++) { 4025 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4026 if (!rdev || test_bit(Faulty, &rdev->flags)) 4027 degraded++; 4028 else if (!test_bit(In_sync, &rdev->flags)) 4029 /* When we can reduce the number of devices in 4030 * an array, this might not contribute to 4031 * 'degraded'. It does now. 4032 */ 4033 degraded++; 4034 } 4035 rcu_read_unlock(); 4036 if (conf->geo.raid_disks == conf->prev.raid_disks) 4037 return degraded; 4038 rcu_read_lock(); 4039 degraded2 = 0; 4040 for (i = 0; i < conf->geo.raid_disks; i++) { 4041 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4042 if (!rdev || test_bit(Faulty, &rdev->flags)) 4043 degraded2++; 4044 else if (!test_bit(In_sync, &rdev->flags)) { 4045 /* If reshape is increasing the number of devices, 4046 * this section has already been recovered, so 4047 * it doesn't contribute to degraded. 4048 * else it does. 4049 */ 4050 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4051 degraded2++; 4052 } 4053 } 4054 rcu_read_unlock(); 4055 if (degraded2 > degraded) 4056 return degraded2; 4057 return degraded; 4058 } 4059 4060 static int raid10_start_reshape(struct mddev *mddev) 4061 { 4062 /* A 'reshape' has been requested. This commits 4063 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4064 * This also checks if there are enough spares and adds them 4065 * to the array. 4066 * We currently require enough spares to make the final 4067 * array non-degraded. We also require that the difference 4068 * between old and new data_offset - on each device - is 4069 * enough that we never risk over-writing. 4070 */ 4071 4072 unsigned long before_length, after_length; 4073 sector_t min_offset_diff = 0; 4074 int first = 1; 4075 struct geom new; 4076 struct r10conf *conf = mddev->private; 4077 struct md_rdev *rdev; 4078 int spares = 0; 4079 int ret; 4080 4081 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4082 return -EBUSY; 4083 4084 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4085 return -EINVAL; 4086 4087 before_length = ((1 << conf->prev.chunk_shift) * 4088 conf->prev.far_copies); 4089 after_length = ((1 << conf->geo.chunk_shift) * 4090 conf->geo.far_copies); 4091 4092 rdev_for_each(rdev, mddev) { 4093 if (!test_bit(In_sync, &rdev->flags) 4094 && !test_bit(Faulty, &rdev->flags)) 4095 spares++; 4096 if (rdev->raid_disk >= 0) { 4097 long long diff = (rdev->new_data_offset 4098 - rdev->data_offset); 4099 if (!mddev->reshape_backwards) 4100 diff = -diff; 4101 if (diff < 0) 4102 diff = 0; 4103 if (first || diff < min_offset_diff) 4104 min_offset_diff = diff; 4105 first = 0; 4106 } 4107 } 4108 4109 if (max(before_length, after_length) > min_offset_diff) 4110 return -EINVAL; 4111 4112 if (spares < mddev->delta_disks) 4113 return -EINVAL; 4114 4115 conf->offset_diff = min_offset_diff; 4116 spin_lock_irq(&conf->device_lock); 4117 if (conf->mirrors_new) { 4118 memcpy(conf->mirrors_new, conf->mirrors, 4119 sizeof(struct raid10_info)*conf->prev.raid_disks); 4120 smp_mb(); 4121 kfree(conf->mirrors_old); 4122 conf->mirrors_old = conf->mirrors; 4123 conf->mirrors = conf->mirrors_new; 4124 conf->mirrors_new = NULL; 4125 } 4126 setup_geo(&conf->geo, mddev, geo_start); 4127 smp_mb(); 4128 if (mddev->reshape_backwards) { 4129 sector_t size = raid10_size(mddev, 0, 0); 4130 if (size < mddev->array_sectors) { 4131 spin_unlock_irq(&conf->device_lock); 4132 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4133 mdname(mddev)); 4134 return -EINVAL; 4135 } 4136 mddev->resync_max_sectors = size; 4137 conf->reshape_progress = size; 4138 } else 4139 conf->reshape_progress = 0; 4140 conf->reshape_safe = conf->reshape_progress; 4141 spin_unlock_irq(&conf->device_lock); 4142 4143 if (mddev->delta_disks && mddev->bitmap) { 4144 ret = bitmap_resize(mddev->bitmap, 4145 raid10_size(mddev, 0, 4146 conf->geo.raid_disks), 4147 0, 0); 4148 if (ret) 4149 goto abort; 4150 } 4151 if (mddev->delta_disks > 0) { 4152 rdev_for_each(rdev, mddev) 4153 if (rdev->raid_disk < 0 && 4154 !test_bit(Faulty, &rdev->flags)) { 4155 if (raid10_add_disk(mddev, rdev) == 0) { 4156 if (rdev->raid_disk >= 4157 conf->prev.raid_disks) 4158 set_bit(In_sync, &rdev->flags); 4159 else 4160 rdev->recovery_offset = 0; 4161 4162 if (sysfs_link_rdev(mddev, rdev)) 4163 /* Failure here is OK */; 4164 } 4165 } else if (rdev->raid_disk >= conf->prev.raid_disks 4166 && !test_bit(Faulty, &rdev->flags)) { 4167 /* This is a spare that was manually added */ 4168 set_bit(In_sync, &rdev->flags); 4169 } 4170 } 4171 /* When a reshape changes the number of devices, 4172 * ->degraded is measured against the larger of the 4173 * pre and post numbers. 4174 */ 4175 spin_lock_irq(&conf->device_lock); 4176 mddev->degraded = calc_degraded(conf); 4177 spin_unlock_irq(&conf->device_lock); 4178 mddev->raid_disks = conf->geo.raid_disks; 4179 mddev->reshape_position = conf->reshape_progress; 4180 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4181 4182 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4183 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4184 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4185 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4186 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4187 4188 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4189 "reshape"); 4190 if (!mddev->sync_thread) { 4191 ret = -EAGAIN; 4192 goto abort; 4193 } 4194 conf->reshape_checkpoint = jiffies; 4195 md_wakeup_thread(mddev->sync_thread); 4196 md_new_event(mddev); 4197 return 0; 4198 4199 abort: 4200 mddev->recovery = 0; 4201 spin_lock_irq(&conf->device_lock); 4202 conf->geo = conf->prev; 4203 mddev->raid_disks = conf->geo.raid_disks; 4204 rdev_for_each(rdev, mddev) 4205 rdev->new_data_offset = rdev->data_offset; 4206 smp_wmb(); 4207 conf->reshape_progress = MaxSector; 4208 conf->reshape_safe = MaxSector; 4209 mddev->reshape_position = MaxSector; 4210 spin_unlock_irq(&conf->device_lock); 4211 return ret; 4212 } 4213 4214 /* Calculate the last device-address that could contain 4215 * any block from the chunk that includes the array-address 's' 4216 * and report the next address. 4217 * i.e. the address returned will be chunk-aligned and after 4218 * any data that is in the chunk containing 's'. 4219 */ 4220 static sector_t last_dev_address(sector_t s, struct geom *geo) 4221 { 4222 s = (s | geo->chunk_mask) + 1; 4223 s >>= geo->chunk_shift; 4224 s *= geo->near_copies; 4225 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4226 s *= geo->far_copies; 4227 s <<= geo->chunk_shift; 4228 return s; 4229 } 4230 4231 /* Calculate the first device-address that could contain 4232 * any block from the chunk that includes the array-address 's'. 4233 * This too will be the start of a chunk 4234 */ 4235 static sector_t first_dev_address(sector_t s, struct geom *geo) 4236 { 4237 s >>= geo->chunk_shift; 4238 s *= geo->near_copies; 4239 sector_div(s, geo->raid_disks); 4240 s *= geo->far_copies; 4241 s <<= geo->chunk_shift; 4242 return s; 4243 } 4244 4245 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4246 int *skipped) 4247 { 4248 /* We simply copy at most one chunk (smallest of old and new) 4249 * at a time, possibly less if that exceeds RESYNC_PAGES, 4250 * or we hit a bad block or something. 4251 * This might mean we pause for normal IO in the middle of 4252 * a chunk, but that is not a problem as mddev->reshape_position 4253 * can record any location. 4254 * 4255 * If we will want to write to a location that isn't 4256 * yet recorded as 'safe' (i.e. in metadata on disk) then 4257 * we need to flush all reshape requests and update the metadata. 4258 * 4259 * When reshaping forwards (e.g. to more devices), we interpret 4260 * 'safe' as the earliest block which might not have been copied 4261 * down yet. We divide this by previous stripe size and multiply 4262 * by previous stripe length to get lowest device offset that we 4263 * cannot write to yet. 4264 * We interpret 'sector_nr' as an address that we want to write to. 4265 * From this we use last_device_address() to find where we might 4266 * write to, and first_device_address on the 'safe' position. 4267 * If this 'next' write position is after the 'safe' position, 4268 * we must update the metadata to increase the 'safe' position. 4269 * 4270 * When reshaping backwards, we round in the opposite direction 4271 * and perform the reverse test: next write position must not be 4272 * less than current safe position. 4273 * 4274 * In all this the minimum difference in data offsets 4275 * (conf->offset_diff - always positive) allows a bit of slack, 4276 * so next can be after 'safe', but not by more than offset_diff 4277 * 4278 * We need to prepare all the bios here before we start any IO 4279 * to ensure the size we choose is acceptable to all devices. 4280 * The means one for each copy for write-out and an extra one for 4281 * read-in. 4282 * We store the read-in bio in ->master_bio and the others in 4283 * ->devs[x].bio and ->devs[x].repl_bio. 4284 */ 4285 struct r10conf *conf = mddev->private; 4286 struct r10bio *r10_bio; 4287 sector_t next, safe, last; 4288 int max_sectors; 4289 int nr_sectors; 4290 int s; 4291 struct md_rdev *rdev; 4292 int need_flush = 0; 4293 struct bio *blist; 4294 struct bio *bio, *read_bio; 4295 int sectors_done = 0; 4296 struct page **pages; 4297 4298 if (sector_nr == 0) { 4299 /* If restarting in the middle, skip the initial sectors */ 4300 if (mddev->reshape_backwards && 4301 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4302 sector_nr = (raid10_size(mddev, 0, 0) 4303 - conf->reshape_progress); 4304 } else if (!mddev->reshape_backwards && 4305 conf->reshape_progress > 0) 4306 sector_nr = conf->reshape_progress; 4307 if (sector_nr) { 4308 mddev->curr_resync_completed = sector_nr; 4309 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4310 *skipped = 1; 4311 return sector_nr; 4312 } 4313 } 4314 4315 /* We don't use sector_nr to track where we are up to 4316 * as that doesn't work well for ->reshape_backwards. 4317 * So just use ->reshape_progress. 4318 */ 4319 if (mddev->reshape_backwards) { 4320 /* 'next' is the earliest device address that we might 4321 * write to for this chunk in the new layout 4322 */ 4323 next = first_dev_address(conf->reshape_progress - 1, 4324 &conf->geo); 4325 4326 /* 'safe' is the last device address that we might read from 4327 * in the old layout after a restart 4328 */ 4329 safe = last_dev_address(conf->reshape_safe - 1, 4330 &conf->prev); 4331 4332 if (next + conf->offset_diff < safe) 4333 need_flush = 1; 4334 4335 last = conf->reshape_progress - 1; 4336 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4337 & conf->prev.chunk_mask); 4338 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4339 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4340 } else { 4341 /* 'next' is after the last device address that we 4342 * might write to for this chunk in the new layout 4343 */ 4344 next = last_dev_address(conf->reshape_progress, &conf->geo); 4345 4346 /* 'safe' is the earliest device address that we might 4347 * read from in the old layout after a restart 4348 */ 4349 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4350 4351 /* Need to update metadata if 'next' might be beyond 'safe' 4352 * as that would possibly corrupt data 4353 */ 4354 if (next > safe + conf->offset_diff) 4355 need_flush = 1; 4356 4357 sector_nr = conf->reshape_progress; 4358 last = sector_nr | (conf->geo.chunk_mask 4359 & conf->prev.chunk_mask); 4360 4361 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4362 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4363 } 4364 4365 if (need_flush || 4366 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4367 /* Need to update reshape_position in metadata */ 4368 wait_barrier(conf); 4369 mddev->reshape_position = conf->reshape_progress; 4370 if (mddev->reshape_backwards) 4371 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4372 - conf->reshape_progress; 4373 else 4374 mddev->curr_resync_completed = conf->reshape_progress; 4375 conf->reshape_checkpoint = jiffies; 4376 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4377 md_wakeup_thread(mddev->thread); 4378 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4379 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4380 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4381 allow_barrier(conf); 4382 return sectors_done; 4383 } 4384 conf->reshape_safe = mddev->reshape_position; 4385 allow_barrier(conf); 4386 } 4387 4388 read_more: 4389 /* Now schedule reads for blocks from sector_nr to last */ 4390 r10_bio = raid10_alloc_init_r10buf(conf); 4391 r10_bio->state = 0; 4392 raise_barrier(conf, sectors_done != 0); 4393 atomic_set(&r10_bio->remaining, 0); 4394 r10_bio->mddev = mddev; 4395 r10_bio->sector = sector_nr; 4396 set_bit(R10BIO_IsReshape, &r10_bio->state); 4397 r10_bio->sectors = last - sector_nr + 1; 4398 rdev = read_balance(conf, r10_bio, &max_sectors); 4399 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4400 4401 if (!rdev) { 4402 /* Cannot read from here, so need to record bad blocks 4403 * on all the target devices. 4404 */ 4405 // FIXME 4406 mempool_free(r10_bio, conf->r10buf_pool); 4407 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4408 return sectors_done; 4409 } 4410 4411 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4412 4413 bio_set_dev(read_bio, rdev->bdev); 4414 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4415 + rdev->data_offset); 4416 read_bio->bi_private = r10_bio; 4417 read_bio->bi_end_io = end_reshape_read; 4418 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4419 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4420 read_bio->bi_status = 0; 4421 read_bio->bi_vcnt = 0; 4422 read_bio->bi_iter.bi_size = 0; 4423 r10_bio->master_bio = read_bio; 4424 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4425 4426 /* Now find the locations in the new layout */ 4427 __raid10_find_phys(&conf->geo, r10_bio); 4428 4429 blist = read_bio; 4430 read_bio->bi_next = NULL; 4431 4432 rcu_read_lock(); 4433 for (s = 0; s < conf->copies*2; s++) { 4434 struct bio *b; 4435 int d = r10_bio->devs[s/2].devnum; 4436 struct md_rdev *rdev2; 4437 if (s&1) { 4438 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4439 b = r10_bio->devs[s/2].repl_bio; 4440 } else { 4441 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4442 b = r10_bio->devs[s/2].bio; 4443 } 4444 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4445 continue; 4446 4447 bio_set_dev(b, rdev2->bdev); 4448 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4449 rdev2->new_data_offset; 4450 b->bi_end_io = end_reshape_write; 4451 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4452 b->bi_next = blist; 4453 blist = b; 4454 } 4455 4456 /* Now add as many pages as possible to all of these bios. */ 4457 4458 nr_sectors = 0; 4459 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4460 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4461 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4462 int len = (max_sectors - s) << 9; 4463 if (len > PAGE_SIZE) 4464 len = PAGE_SIZE; 4465 for (bio = blist; bio ; bio = bio->bi_next) { 4466 /* 4467 * won't fail because the vec table is big enough 4468 * to hold all these pages 4469 */ 4470 bio_add_page(bio, page, len, 0); 4471 } 4472 sector_nr += len >> 9; 4473 nr_sectors += len >> 9; 4474 } 4475 rcu_read_unlock(); 4476 r10_bio->sectors = nr_sectors; 4477 4478 /* Now submit the read */ 4479 md_sync_acct_bio(read_bio, r10_bio->sectors); 4480 atomic_inc(&r10_bio->remaining); 4481 read_bio->bi_next = NULL; 4482 generic_make_request(read_bio); 4483 sector_nr += nr_sectors; 4484 sectors_done += nr_sectors; 4485 if (sector_nr <= last) 4486 goto read_more; 4487 4488 /* Now that we have done the whole section we can 4489 * update reshape_progress 4490 */ 4491 if (mddev->reshape_backwards) 4492 conf->reshape_progress -= sectors_done; 4493 else 4494 conf->reshape_progress += sectors_done; 4495 4496 return sectors_done; 4497 } 4498 4499 static void end_reshape_request(struct r10bio *r10_bio); 4500 static int handle_reshape_read_error(struct mddev *mddev, 4501 struct r10bio *r10_bio); 4502 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4503 { 4504 /* Reshape read completed. Hopefully we have a block 4505 * to write out. 4506 * If we got a read error then we do sync 1-page reads from 4507 * elsewhere until we find the data - or give up. 4508 */ 4509 struct r10conf *conf = mddev->private; 4510 int s; 4511 4512 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4513 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4514 /* Reshape has been aborted */ 4515 md_done_sync(mddev, r10_bio->sectors, 0); 4516 return; 4517 } 4518 4519 /* We definitely have the data in the pages, schedule the 4520 * writes. 4521 */ 4522 atomic_set(&r10_bio->remaining, 1); 4523 for (s = 0; s < conf->copies*2; s++) { 4524 struct bio *b; 4525 int d = r10_bio->devs[s/2].devnum; 4526 struct md_rdev *rdev; 4527 rcu_read_lock(); 4528 if (s&1) { 4529 rdev = rcu_dereference(conf->mirrors[d].replacement); 4530 b = r10_bio->devs[s/2].repl_bio; 4531 } else { 4532 rdev = rcu_dereference(conf->mirrors[d].rdev); 4533 b = r10_bio->devs[s/2].bio; 4534 } 4535 if (!rdev || test_bit(Faulty, &rdev->flags)) { 4536 rcu_read_unlock(); 4537 continue; 4538 } 4539 atomic_inc(&rdev->nr_pending); 4540 rcu_read_unlock(); 4541 md_sync_acct_bio(b, r10_bio->sectors); 4542 atomic_inc(&r10_bio->remaining); 4543 b->bi_next = NULL; 4544 generic_make_request(b); 4545 } 4546 end_reshape_request(r10_bio); 4547 } 4548 4549 static void end_reshape(struct r10conf *conf) 4550 { 4551 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4552 return; 4553 4554 spin_lock_irq(&conf->device_lock); 4555 conf->prev = conf->geo; 4556 md_finish_reshape(conf->mddev); 4557 smp_wmb(); 4558 conf->reshape_progress = MaxSector; 4559 conf->reshape_safe = MaxSector; 4560 spin_unlock_irq(&conf->device_lock); 4561 4562 /* read-ahead size must cover two whole stripes, which is 4563 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4564 */ 4565 if (conf->mddev->queue) { 4566 int stripe = conf->geo.raid_disks * 4567 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4568 stripe /= conf->geo.near_copies; 4569 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 4570 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 4571 } 4572 conf->fullsync = 0; 4573 } 4574 4575 static int handle_reshape_read_error(struct mddev *mddev, 4576 struct r10bio *r10_bio) 4577 { 4578 /* Use sync reads to get the blocks from somewhere else */ 4579 int sectors = r10_bio->sectors; 4580 struct r10conf *conf = mddev->private; 4581 struct { 4582 struct r10bio r10_bio; 4583 struct r10dev devs[conf->copies]; 4584 } on_stack; 4585 struct r10bio *r10b = &on_stack.r10_bio; 4586 int slot = 0; 4587 int idx = 0; 4588 struct page **pages; 4589 4590 /* reshape IOs share pages from .devs[0].bio */ 4591 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4592 4593 r10b->sector = r10_bio->sector; 4594 __raid10_find_phys(&conf->prev, r10b); 4595 4596 while (sectors) { 4597 int s = sectors; 4598 int success = 0; 4599 int first_slot = slot; 4600 4601 if (s > (PAGE_SIZE >> 9)) 4602 s = PAGE_SIZE >> 9; 4603 4604 rcu_read_lock(); 4605 while (!success) { 4606 int d = r10b->devs[slot].devnum; 4607 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4608 sector_t addr; 4609 if (rdev == NULL || 4610 test_bit(Faulty, &rdev->flags) || 4611 !test_bit(In_sync, &rdev->flags)) 4612 goto failed; 4613 4614 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4615 atomic_inc(&rdev->nr_pending); 4616 rcu_read_unlock(); 4617 success = sync_page_io(rdev, 4618 addr, 4619 s << 9, 4620 pages[idx], 4621 REQ_OP_READ, 0, false); 4622 rdev_dec_pending(rdev, mddev); 4623 rcu_read_lock(); 4624 if (success) 4625 break; 4626 failed: 4627 slot++; 4628 if (slot >= conf->copies) 4629 slot = 0; 4630 if (slot == first_slot) 4631 break; 4632 } 4633 rcu_read_unlock(); 4634 if (!success) { 4635 /* couldn't read this block, must give up */ 4636 set_bit(MD_RECOVERY_INTR, 4637 &mddev->recovery); 4638 return -EIO; 4639 } 4640 sectors -= s; 4641 idx++; 4642 } 4643 return 0; 4644 } 4645 4646 static void end_reshape_write(struct bio *bio) 4647 { 4648 struct r10bio *r10_bio = get_resync_r10bio(bio); 4649 struct mddev *mddev = r10_bio->mddev; 4650 struct r10conf *conf = mddev->private; 4651 int d; 4652 int slot; 4653 int repl; 4654 struct md_rdev *rdev = NULL; 4655 4656 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4657 if (repl) 4658 rdev = conf->mirrors[d].replacement; 4659 if (!rdev) { 4660 smp_mb(); 4661 rdev = conf->mirrors[d].rdev; 4662 } 4663 4664 if (bio->bi_status) { 4665 /* FIXME should record badblock */ 4666 md_error(mddev, rdev); 4667 } 4668 4669 rdev_dec_pending(rdev, mddev); 4670 end_reshape_request(r10_bio); 4671 } 4672 4673 static void end_reshape_request(struct r10bio *r10_bio) 4674 { 4675 if (!atomic_dec_and_test(&r10_bio->remaining)) 4676 return; 4677 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4678 bio_put(r10_bio->master_bio); 4679 put_buf(r10_bio); 4680 } 4681 4682 static void raid10_finish_reshape(struct mddev *mddev) 4683 { 4684 struct r10conf *conf = mddev->private; 4685 4686 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4687 return; 4688 4689 if (mddev->delta_disks > 0) { 4690 sector_t size = raid10_size(mddev, 0, 0); 4691 md_set_array_sectors(mddev, size); 4692 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4693 mddev->recovery_cp = mddev->resync_max_sectors; 4694 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4695 } 4696 mddev->resync_max_sectors = size; 4697 if (mddev->queue) { 4698 set_capacity(mddev->gendisk, mddev->array_sectors); 4699 revalidate_disk(mddev->gendisk); 4700 } 4701 } else { 4702 int d; 4703 rcu_read_lock(); 4704 for (d = conf->geo.raid_disks ; 4705 d < conf->geo.raid_disks - mddev->delta_disks; 4706 d++) { 4707 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4708 if (rdev) 4709 clear_bit(In_sync, &rdev->flags); 4710 rdev = rcu_dereference(conf->mirrors[d].replacement); 4711 if (rdev) 4712 clear_bit(In_sync, &rdev->flags); 4713 } 4714 rcu_read_unlock(); 4715 } 4716 mddev->layout = mddev->new_layout; 4717 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4718 mddev->reshape_position = MaxSector; 4719 mddev->delta_disks = 0; 4720 mddev->reshape_backwards = 0; 4721 } 4722 4723 static struct md_personality raid10_personality = 4724 { 4725 .name = "raid10", 4726 .level = 10, 4727 .owner = THIS_MODULE, 4728 .make_request = raid10_make_request, 4729 .run = raid10_run, 4730 .free = raid10_free, 4731 .status = raid10_status, 4732 .error_handler = raid10_error, 4733 .hot_add_disk = raid10_add_disk, 4734 .hot_remove_disk= raid10_remove_disk, 4735 .spare_active = raid10_spare_active, 4736 .sync_request = raid10_sync_request, 4737 .quiesce = raid10_quiesce, 4738 .size = raid10_size, 4739 .resize = raid10_resize, 4740 .takeover = raid10_takeover, 4741 .check_reshape = raid10_check_reshape, 4742 .start_reshape = raid10_start_reshape, 4743 .finish_reshape = raid10_finish_reshape, 4744 .congested = raid10_congested, 4745 }; 4746 4747 static int __init raid_init(void) 4748 { 4749 return register_md_personality(&raid10_personality); 4750 } 4751 4752 static void raid_exit(void) 4753 { 4754 unregister_md_personality(&raid10_personality); 4755 } 4756 4757 module_init(raid_init); 4758 module_exit(raid_exit); 4759 MODULE_LICENSE("GPL"); 4760 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4761 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4762 MODULE_ALIAS("md-raid10"); 4763 MODULE_ALIAS("md-level-10"); 4764 4765 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4766