1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 #include "raid10.h" 23 #include "raid0.h" 24 #include "md-bitmap.h" 25 26 /* 27 * RAID10 provides a combination of RAID0 and RAID1 functionality. 28 * The layout of data is defined by 29 * chunk_size 30 * raid_disks 31 * near_copies (stored in low byte of layout) 32 * far_copies (stored in second byte of layout) 33 * far_offset (stored in bit 16 of layout ) 34 * use_far_sets (stored in bit 17 of layout ) 35 * use_far_sets_bugfixed (stored in bit 18 of layout ) 36 * 37 * The data to be stored is divided into chunks using chunksize. Each device 38 * is divided into far_copies sections. In each section, chunks are laid out 39 * in a style similar to raid0, but near_copies copies of each chunk is stored 40 * (each on a different drive). The starting device for each section is offset 41 * near_copies from the starting device of the previous section. Thus there 42 * are (near_copies * far_copies) of each chunk, and each is on a different 43 * drive. near_copies and far_copies must be at least one, and their product 44 * is at most raid_disks. 45 * 46 * If far_offset is true, then the far_copies are handled a bit differently. 47 * The copies are still in different stripes, but instead of being very far 48 * apart on disk, there are adjacent stripes. 49 * 50 * The far and offset algorithms are handled slightly differently if 51 * 'use_far_sets' is true. In this case, the array's devices are grouped into 52 * sets that are (near_copies * far_copies) in size. The far copied stripes 53 * are still shifted by 'near_copies' devices, but this shifting stays confined 54 * to the set rather than the entire array. This is done to improve the number 55 * of device combinations that can fail without causing the array to fail. 56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 57 * on a device): 58 * A B C D A B C D E 59 * ... ... 60 * D A B C E A B C D 61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 62 * [A B] [C D] [A B] [C D E] 63 * |...| |...| |...| | ... | 64 * [B A] [D C] [B A] [E C D] 65 */ 66 67 static void allow_barrier(struct r10conf *conf); 68 static void lower_barrier(struct r10conf *conf); 69 static int _enough(struct r10conf *conf, int previous, int ignore); 70 static int enough(struct r10conf *conf, int ignore); 71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 72 int *skipped); 73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 74 static void end_reshape_write(struct bio *bio); 75 static void end_reshape(struct r10conf *conf); 76 77 #define raid10_log(md, fmt, args...) \ 78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 79 80 #include "raid1-10.c" 81 82 /* 83 * for resync bio, r10bio pointer can be retrieved from the per-bio 84 * 'struct resync_pages'. 85 */ 86 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 87 { 88 return get_resync_pages(bio)->raid_bio; 89 } 90 91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 92 { 93 struct r10conf *conf = data; 94 int size = offsetof(struct r10bio, devs[conf->copies]); 95 96 /* allocate a r10bio with room for raid_disks entries in the 97 * bios array */ 98 return kzalloc(size, gfp_flags); 99 } 100 101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 102 /* amount of memory to reserve for resync requests */ 103 #define RESYNC_WINDOW (1024*1024) 104 /* maximum number of concurrent requests, memory permitting */ 105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 108 109 /* 110 * When performing a resync, we need to read and compare, so 111 * we need as many pages are there are copies. 112 * When performing a recovery, we need 2 bios, one for read, 113 * one for write (we recover only one drive per r10buf) 114 * 115 */ 116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 117 { 118 struct r10conf *conf = data; 119 struct r10bio *r10_bio; 120 struct bio *bio; 121 int j; 122 int nalloc, nalloc_rp; 123 struct resync_pages *rps; 124 125 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 126 if (!r10_bio) 127 return NULL; 128 129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 131 nalloc = conf->copies; /* resync */ 132 else 133 nalloc = 2; /* recovery */ 134 135 /* allocate once for all bios */ 136 if (!conf->have_replacement) 137 nalloc_rp = nalloc; 138 else 139 nalloc_rp = nalloc * 2; 140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 141 if (!rps) 142 goto out_free_r10bio; 143 144 /* 145 * Allocate bios. 146 */ 147 for (j = nalloc ; j-- ; ) { 148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 149 if (!bio) 150 goto out_free_bio; 151 r10_bio->devs[j].bio = bio; 152 if (!conf->have_replacement) 153 continue; 154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 155 if (!bio) 156 goto out_free_bio; 157 r10_bio->devs[j].repl_bio = bio; 158 } 159 /* 160 * Allocate RESYNC_PAGES data pages and attach them 161 * where needed. 162 */ 163 for (j = 0; j < nalloc; j++) { 164 struct bio *rbio = r10_bio->devs[j].repl_bio; 165 struct resync_pages *rp, *rp_repl; 166 167 rp = &rps[j]; 168 if (rbio) 169 rp_repl = &rps[nalloc + j]; 170 171 bio = r10_bio->devs[j].bio; 172 173 if (!j || test_bit(MD_RECOVERY_SYNC, 174 &conf->mddev->recovery)) { 175 if (resync_alloc_pages(rp, gfp_flags)) 176 goto out_free_pages; 177 } else { 178 memcpy(rp, &rps[0], sizeof(*rp)); 179 resync_get_all_pages(rp); 180 } 181 182 rp->raid_bio = r10_bio; 183 bio->bi_private = rp; 184 if (rbio) { 185 memcpy(rp_repl, rp, sizeof(*rp)); 186 rbio->bi_private = rp_repl; 187 } 188 } 189 190 return r10_bio; 191 192 out_free_pages: 193 while (--j >= 0) 194 resync_free_pages(&rps[j]); 195 196 j = 0; 197 out_free_bio: 198 for ( ; j < nalloc; j++) { 199 if (r10_bio->devs[j].bio) 200 bio_put(r10_bio->devs[j].bio); 201 if (r10_bio->devs[j].repl_bio) 202 bio_put(r10_bio->devs[j].repl_bio); 203 } 204 kfree(rps); 205 out_free_r10bio: 206 rbio_pool_free(r10_bio, conf); 207 return NULL; 208 } 209 210 static void r10buf_pool_free(void *__r10_bio, void *data) 211 { 212 struct r10conf *conf = data; 213 struct r10bio *r10bio = __r10_bio; 214 int j; 215 struct resync_pages *rp = NULL; 216 217 for (j = conf->copies; j--; ) { 218 struct bio *bio = r10bio->devs[j].bio; 219 220 if (bio) { 221 rp = get_resync_pages(bio); 222 resync_free_pages(rp); 223 bio_put(bio); 224 } 225 226 bio = r10bio->devs[j].repl_bio; 227 if (bio) 228 bio_put(bio); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r10bio, conf); 235 } 236 237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->copies; i++) { 242 struct bio **bio = & r10_bio->devs[i].bio; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 bio = &r10_bio->devs[i].repl_bio; 247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 } 251 } 252 253 static void free_r10bio(struct r10bio *r10_bio) 254 { 255 struct r10conf *conf = r10_bio->mddev->private; 256 257 put_all_bios(conf, r10_bio); 258 mempool_free(r10_bio, &conf->r10bio_pool); 259 } 260 261 static void put_buf(struct r10bio *r10_bio) 262 { 263 struct r10conf *conf = r10_bio->mddev->private; 264 265 mempool_free(r10_bio, &conf->r10buf_pool); 266 267 lower_barrier(conf); 268 } 269 270 static void reschedule_retry(struct r10bio *r10_bio) 271 { 272 unsigned long flags; 273 struct mddev *mddev = r10_bio->mddev; 274 struct r10conf *conf = mddev->private; 275 276 spin_lock_irqsave(&conf->device_lock, flags); 277 list_add(&r10_bio->retry_list, &conf->retry_list); 278 conf->nr_queued ++; 279 spin_unlock_irqrestore(&conf->device_lock, flags); 280 281 /* wake up frozen array... */ 282 wake_up(&conf->wait_barrier); 283 284 md_wakeup_thread(mddev->thread); 285 } 286 287 /* 288 * raid_end_bio_io() is called when we have finished servicing a mirrored 289 * operation and are ready to return a success/failure code to the buffer 290 * cache layer. 291 */ 292 static void raid_end_bio_io(struct r10bio *r10_bio) 293 { 294 struct bio *bio = r10_bio->master_bio; 295 struct r10conf *conf = r10_bio->mddev->private; 296 297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 298 bio->bi_status = BLK_STS_IOERR; 299 300 bio_endio(bio); 301 /* 302 * Wake up any possible resync thread that waits for the device 303 * to go idle. 304 */ 305 allow_barrier(conf); 306 307 free_r10bio(r10_bio); 308 } 309 310 /* 311 * Update disk head position estimator based on IRQ completion info. 312 */ 313 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 314 { 315 struct r10conf *conf = r10_bio->mddev->private; 316 317 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 318 r10_bio->devs[slot].addr + (r10_bio->sectors); 319 } 320 321 /* 322 * Find the disk number which triggered given bio 323 */ 324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 325 struct bio *bio, int *slotp, int *replp) 326 { 327 int slot; 328 int repl = 0; 329 330 for (slot = 0; slot < conf->copies; slot++) { 331 if (r10_bio->devs[slot].bio == bio) 332 break; 333 if (r10_bio->devs[slot].repl_bio == bio) { 334 repl = 1; 335 break; 336 } 337 } 338 339 BUG_ON(slot == conf->copies); 340 update_head_pos(slot, r10_bio); 341 342 if (slotp) 343 *slotp = slot; 344 if (replp) 345 *replp = repl; 346 return r10_bio->devs[slot].devnum; 347 } 348 349 static void raid10_end_read_request(struct bio *bio) 350 { 351 int uptodate = !bio->bi_status; 352 struct r10bio *r10_bio = bio->bi_private; 353 int slot; 354 struct md_rdev *rdev; 355 struct r10conf *conf = r10_bio->mddev->private; 356 357 slot = r10_bio->read_slot; 358 rdev = r10_bio->devs[slot].rdev; 359 /* 360 * this branch is our 'one mirror IO has finished' event handler: 361 */ 362 update_head_pos(slot, r10_bio); 363 364 if (uptodate) { 365 /* 366 * Set R10BIO_Uptodate in our master bio, so that 367 * we will return a good error code to the higher 368 * levels even if IO on some other mirrored buffer fails. 369 * 370 * The 'master' represents the composite IO operation to 371 * user-side. So if something waits for IO, then it will 372 * wait for the 'master' bio. 373 */ 374 set_bit(R10BIO_Uptodate, &r10_bio->state); 375 } else { 376 /* If all other devices that store this block have 377 * failed, we want to return the error upwards rather 378 * than fail the last device. Here we redefine 379 * "uptodate" to mean "Don't want to retry" 380 */ 381 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 382 rdev->raid_disk)) 383 uptodate = 1; 384 } 385 if (uptodate) { 386 raid_end_bio_io(r10_bio); 387 rdev_dec_pending(rdev, conf->mddev); 388 } else { 389 /* 390 * oops, read error - keep the refcount on the rdev 391 */ 392 char b[BDEVNAME_SIZE]; 393 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 394 mdname(conf->mddev), 395 bdevname(rdev->bdev, b), 396 (unsigned long long)r10_bio->sector); 397 set_bit(R10BIO_ReadError, &r10_bio->state); 398 reschedule_retry(r10_bio); 399 } 400 } 401 402 static void close_write(struct r10bio *r10_bio) 403 { 404 /* clear the bitmap if all writes complete successfully */ 405 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 406 r10_bio->sectors, 407 !test_bit(R10BIO_Degraded, &r10_bio->state), 408 0); 409 md_write_end(r10_bio->mddev); 410 } 411 412 static void one_write_done(struct r10bio *r10_bio) 413 { 414 if (atomic_dec_and_test(&r10_bio->remaining)) { 415 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 416 reschedule_retry(r10_bio); 417 else { 418 close_write(r10_bio); 419 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 420 reschedule_retry(r10_bio); 421 else 422 raid_end_bio_io(r10_bio); 423 } 424 } 425 } 426 427 static void raid10_end_write_request(struct bio *bio) 428 { 429 struct r10bio *r10_bio = bio->bi_private; 430 int dev; 431 int dec_rdev = 1; 432 struct r10conf *conf = r10_bio->mddev->private; 433 int slot, repl; 434 struct md_rdev *rdev = NULL; 435 struct bio *to_put = NULL; 436 bool discard_error; 437 438 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 439 440 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 441 442 if (repl) 443 rdev = conf->mirrors[dev].replacement; 444 if (!rdev) { 445 smp_rmb(); 446 repl = 0; 447 rdev = conf->mirrors[dev].rdev; 448 } 449 /* 450 * this branch is our 'one mirror IO has finished' event handler: 451 */ 452 if (bio->bi_status && !discard_error) { 453 if (repl) 454 /* Never record new bad blocks to replacement, 455 * just fail it. 456 */ 457 md_error(rdev->mddev, rdev); 458 else { 459 set_bit(WriteErrorSeen, &rdev->flags); 460 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 461 set_bit(MD_RECOVERY_NEEDED, 462 &rdev->mddev->recovery); 463 464 dec_rdev = 0; 465 if (test_bit(FailFast, &rdev->flags) && 466 (bio->bi_opf & MD_FAILFAST)) { 467 md_error(rdev->mddev, rdev); 468 } 469 470 /* 471 * When the device is faulty, it is not necessary to 472 * handle write error. 473 * For failfast, this is the only remaining device, 474 * We need to retry the write without FailFast. 475 */ 476 if (!test_bit(Faulty, &rdev->flags)) 477 set_bit(R10BIO_WriteError, &r10_bio->state); 478 else { 479 r10_bio->devs[slot].bio = NULL; 480 to_put = bio; 481 dec_rdev = 1; 482 } 483 } 484 } else { 485 /* 486 * Set R10BIO_Uptodate in our master bio, so that 487 * we will return a good error code for to the higher 488 * levels even if IO on some other mirrored buffer fails. 489 * 490 * The 'master' represents the composite IO operation to 491 * user-side. So if something waits for IO, then it will 492 * wait for the 'master' bio. 493 */ 494 sector_t first_bad; 495 int bad_sectors; 496 497 /* 498 * Do not set R10BIO_Uptodate if the current device is 499 * rebuilding or Faulty. This is because we cannot use 500 * such device for properly reading the data back (we could 501 * potentially use it, if the current write would have felt 502 * before rdev->recovery_offset, but for simplicity we don't 503 * check this here. 504 */ 505 if (test_bit(In_sync, &rdev->flags) && 506 !test_bit(Faulty, &rdev->flags)) 507 set_bit(R10BIO_Uptodate, &r10_bio->state); 508 509 /* Maybe we can clear some bad blocks. */ 510 if (is_badblock(rdev, 511 r10_bio->devs[slot].addr, 512 r10_bio->sectors, 513 &first_bad, &bad_sectors) && !discard_error) { 514 bio_put(bio); 515 if (repl) 516 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 517 else 518 r10_bio->devs[slot].bio = IO_MADE_GOOD; 519 dec_rdev = 0; 520 set_bit(R10BIO_MadeGood, &r10_bio->state); 521 } 522 } 523 524 /* 525 * 526 * Let's see if all mirrored write operations have finished 527 * already. 528 */ 529 one_write_done(r10_bio); 530 if (dec_rdev) 531 rdev_dec_pending(rdev, conf->mddev); 532 if (to_put) 533 bio_put(to_put); 534 } 535 536 /* 537 * RAID10 layout manager 538 * As well as the chunksize and raid_disks count, there are two 539 * parameters: near_copies and far_copies. 540 * near_copies * far_copies must be <= raid_disks. 541 * Normally one of these will be 1. 542 * If both are 1, we get raid0. 543 * If near_copies == raid_disks, we get raid1. 544 * 545 * Chunks are laid out in raid0 style with near_copies copies of the 546 * first chunk, followed by near_copies copies of the next chunk and 547 * so on. 548 * If far_copies > 1, then after 1/far_copies of the array has been assigned 549 * as described above, we start again with a device offset of near_copies. 550 * So we effectively have another copy of the whole array further down all 551 * the drives, but with blocks on different drives. 552 * With this layout, and block is never stored twice on the one device. 553 * 554 * raid10_find_phys finds the sector offset of a given virtual sector 555 * on each device that it is on. 556 * 557 * raid10_find_virt does the reverse mapping, from a device and a 558 * sector offset to a virtual address 559 */ 560 561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 562 { 563 int n,f; 564 sector_t sector; 565 sector_t chunk; 566 sector_t stripe; 567 int dev; 568 int slot = 0; 569 int last_far_set_start, last_far_set_size; 570 571 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 572 last_far_set_start *= geo->far_set_size; 573 574 last_far_set_size = geo->far_set_size; 575 last_far_set_size += (geo->raid_disks % geo->far_set_size); 576 577 /* now calculate first sector/dev */ 578 chunk = r10bio->sector >> geo->chunk_shift; 579 sector = r10bio->sector & geo->chunk_mask; 580 581 chunk *= geo->near_copies; 582 stripe = chunk; 583 dev = sector_div(stripe, geo->raid_disks); 584 if (geo->far_offset) 585 stripe *= geo->far_copies; 586 587 sector += stripe << geo->chunk_shift; 588 589 /* and calculate all the others */ 590 for (n = 0; n < geo->near_copies; n++) { 591 int d = dev; 592 int set; 593 sector_t s = sector; 594 r10bio->devs[slot].devnum = d; 595 r10bio->devs[slot].addr = s; 596 slot++; 597 598 for (f = 1; f < geo->far_copies; f++) { 599 set = d / geo->far_set_size; 600 d += geo->near_copies; 601 602 if ((geo->raid_disks % geo->far_set_size) && 603 (d > last_far_set_start)) { 604 d -= last_far_set_start; 605 d %= last_far_set_size; 606 d += last_far_set_start; 607 } else { 608 d %= geo->far_set_size; 609 d += geo->far_set_size * set; 610 } 611 s += geo->stride; 612 r10bio->devs[slot].devnum = d; 613 r10bio->devs[slot].addr = s; 614 slot++; 615 } 616 dev++; 617 if (dev >= geo->raid_disks) { 618 dev = 0; 619 sector += (geo->chunk_mask + 1); 620 } 621 } 622 } 623 624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 625 { 626 struct geom *geo = &conf->geo; 627 628 if (conf->reshape_progress != MaxSector && 629 ((r10bio->sector >= conf->reshape_progress) != 630 conf->mddev->reshape_backwards)) { 631 set_bit(R10BIO_Previous, &r10bio->state); 632 geo = &conf->prev; 633 } else 634 clear_bit(R10BIO_Previous, &r10bio->state); 635 636 __raid10_find_phys(geo, r10bio); 637 } 638 639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 640 { 641 sector_t offset, chunk, vchunk; 642 /* Never use conf->prev as this is only called during resync 643 * or recovery, so reshape isn't happening 644 */ 645 struct geom *geo = &conf->geo; 646 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 647 int far_set_size = geo->far_set_size; 648 int last_far_set_start; 649 650 if (geo->raid_disks % geo->far_set_size) { 651 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 652 last_far_set_start *= geo->far_set_size; 653 654 if (dev >= last_far_set_start) { 655 far_set_size = geo->far_set_size; 656 far_set_size += (geo->raid_disks % geo->far_set_size); 657 far_set_start = last_far_set_start; 658 } 659 } 660 661 offset = sector & geo->chunk_mask; 662 if (geo->far_offset) { 663 int fc; 664 chunk = sector >> geo->chunk_shift; 665 fc = sector_div(chunk, geo->far_copies); 666 dev -= fc * geo->near_copies; 667 if (dev < far_set_start) 668 dev += far_set_size; 669 } else { 670 while (sector >= geo->stride) { 671 sector -= geo->stride; 672 if (dev < (geo->near_copies + far_set_start)) 673 dev += far_set_size - geo->near_copies; 674 else 675 dev -= geo->near_copies; 676 } 677 chunk = sector >> geo->chunk_shift; 678 } 679 vchunk = chunk * geo->raid_disks + dev; 680 sector_div(vchunk, geo->near_copies); 681 return (vchunk << geo->chunk_shift) + offset; 682 } 683 684 /* 685 * This routine returns the disk from which the requested read should 686 * be done. There is a per-array 'next expected sequential IO' sector 687 * number - if this matches on the next IO then we use the last disk. 688 * There is also a per-disk 'last know head position' sector that is 689 * maintained from IRQ contexts, both the normal and the resync IO 690 * completion handlers update this position correctly. If there is no 691 * perfect sequential match then we pick the disk whose head is closest. 692 * 693 * If there are 2 mirrors in the same 2 devices, performance degrades 694 * because position is mirror, not device based. 695 * 696 * The rdev for the device selected will have nr_pending incremented. 697 */ 698 699 /* 700 * FIXME: possibly should rethink readbalancing and do it differently 701 * depending on near_copies / far_copies geometry. 702 */ 703 static struct md_rdev *read_balance(struct r10conf *conf, 704 struct r10bio *r10_bio, 705 int *max_sectors) 706 { 707 const sector_t this_sector = r10_bio->sector; 708 int disk, slot; 709 int sectors = r10_bio->sectors; 710 int best_good_sectors; 711 sector_t new_distance, best_dist; 712 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 713 int do_balance; 714 int best_dist_slot, best_pending_slot; 715 bool has_nonrot_disk = false; 716 unsigned int min_pending; 717 struct geom *geo = &conf->geo; 718 719 raid10_find_phys(conf, r10_bio); 720 rcu_read_lock(); 721 best_dist_slot = -1; 722 min_pending = UINT_MAX; 723 best_dist_rdev = NULL; 724 best_pending_rdev = NULL; 725 best_dist = MaxSector; 726 best_good_sectors = 0; 727 do_balance = 1; 728 clear_bit(R10BIO_FailFast, &r10_bio->state); 729 /* 730 * Check if we can balance. We can balance on the whole 731 * device if no resync is going on (recovery is ok), or below 732 * the resync window. We take the first readable disk when 733 * above the resync window. 734 */ 735 if ((conf->mddev->recovery_cp < MaxSector 736 && (this_sector + sectors >= conf->next_resync)) || 737 (mddev_is_clustered(conf->mddev) && 738 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 739 this_sector + sectors))) 740 do_balance = 0; 741 742 for (slot = 0; slot < conf->copies ; slot++) { 743 sector_t first_bad; 744 int bad_sectors; 745 sector_t dev_sector; 746 unsigned int pending; 747 bool nonrot; 748 749 if (r10_bio->devs[slot].bio == IO_BLOCKED) 750 continue; 751 disk = r10_bio->devs[slot].devnum; 752 rdev = rcu_dereference(conf->mirrors[disk].replacement); 753 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 754 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 755 rdev = rcu_dereference(conf->mirrors[disk].rdev); 756 if (rdev == NULL || 757 test_bit(Faulty, &rdev->flags)) 758 continue; 759 if (!test_bit(In_sync, &rdev->flags) && 760 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 761 continue; 762 763 dev_sector = r10_bio->devs[slot].addr; 764 if (is_badblock(rdev, dev_sector, sectors, 765 &first_bad, &bad_sectors)) { 766 if (best_dist < MaxSector) 767 /* Already have a better slot */ 768 continue; 769 if (first_bad <= dev_sector) { 770 /* Cannot read here. If this is the 771 * 'primary' device, then we must not read 772 * beyond 'bad_sectors' from another device. 773 */ 774 bad_sectors -= (dev_sector - first_bad); 775 if (!do_balance && sectors > bad_sectors) 776 sectors = bad_sectors; 777 if (best_good_sectors > sectors) 778 best_good_sectors = sectors; 779 } else { 780 sector_t good_sectors = 781 first_bad - dev_sector; 782 if (good_sectors > best_good_sectors) { 783 best_good_sectors = good_sectors; 784 best_dist_slot = slot; 785 best_dist_rdev = rdev; 786 } 787 if (!do_balance) 788 /* Must read from here */ 789 break; 790 } 791 continue; 792 } else 793 best_good_sectors = sectors; 794 795 if (!do_balance) 796 break; 797 798 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 799 has_nonrot_disk |= nonrot; 800 pending = atomic_read(&rdev->nr_pending); 801 if (min_pending > pending && nonrot) { 802 min_pending = pending; 803 best_pending_slot = slot; 804 best_pending_rdev = rdev; 805 } 806 807 if (best_dist_slot >= 0) 808 /* At least 2 disks to choose from so failfast is OK */ 809 set_bit(R10BIO_FailFast, &r10_bio->state); 810 /* This optimisation is debatable, and completely destroys 811 * sequential read speed for 'far copies' arrays. So only 812 * keep it for 'near' arrays, and review those later. 813 */ 814 if (geo->near_copies > 1 && !pending) 815 new_distance = 0; 816 817 /* for far > 1 always use the lowest address */ 818 else if (geo->far_copies > 1) 819 new_distance = r10_bio->devs[slot].addr; 820 else 821 new_distance = abs(r10_bio->devs[slot].addr - 822 conf->mirrors[disk].head_position); 823 824 if (new_distance < best_dist) { 825 best_dist = new_distance; 826 best_dist_slot = slot; 827 best_dist_rdev = rdev; 828 } 829 } 830 if (slot >= conf->copies) { 831 if (has_nonrot_disk) { 832 slot = best_pending_slot; 833 rdev = best_pending_rdev; 834 } else { 835 slot = best_dist_slot; 836 rdev = best_dist_rdev; 837 } 838 } 839 840 if (slot >= 0) { 841 atomic_inc(&rdev->nr_pending); 842 r10_bio->read_slot = slot; 843 } else 844 rdev = NULL; 845 rcu_read_unlock(); 846 *max_sectors = best_good_sectors; 847 848 return rdev; 849 } 850 851 static void flush_pending_writes(struct r10conf *conf) 852 { 853 /* Any writes that have been queued but are awaiting 854 * bitmap updates get flushed here. 855 */ 856 spin_lock_irq(&conf->device_lock); 857 858 if (conf->pending_bio_list.head) { 859 struct blk_plug plug; 860 struct bio *bio; 861 862 bio = bio_list_get(&conf->pending_bio_list); 863 conf->pending_count = 0; 864 spin_unlock_irq(&conf->device_lock); 865 866 /* 867 * As this is called in a wait_event() loop (see freeze_array), 868 * current->state might be TASK_UNINTERRUPTIBLE which will 869 * cause a warning when we prepare to wait again. As it is 870 * rare that this path is taken, it is perfectly safe to force 871 * us to go around the wait_event() loop again, so the warning 872 * is a false-positive. Silence the warning by resetting 873 * thread state 874 */ 875 __set_current_state(TASK_RUNNING); 876 877 blk_start_plug(&plug); 878 /* flush any pending bitmap writes to disk 879 * before proceeding w/ I/O */ 880 md_bitmap_unplug(conf->mddev->bitmap); 881 wake_up(&conf->wait_barrier); 882 883 while (bio) { /* submit pending writes */ 884 struct bio *next = bio->bi_next; 885 struct md_rdev *rdev = (void*)bio->bi_disk; 886 bio->bi_next = NULL; 887 bio_set_dev(bio, rdev->bdev); 888 if (test_bit(Faulty, &rdev->flags)) { 889 bio_io_error(bio); 890 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 891 !blk_queue_discard(bio->bi_disk->queue))) 892 /* Just ignore it */ 893 bio_endio(bio); 894 else 895 submit_bio_noacct(bio); 896 bio = next; 897 } 898 blk_finish_plug(&plug); 899 } else 900 spin_unlock_irq(&conf->device_lock); 901 } 902 903 /* Barriers.... 904 * Sometimes we need to suspend IO while we do something else, 905 * either some resync/recovery, or reconfigure the array. 906 * To do this we raise a 'barrier'. 907 * The 'barrier' is a counter that can be raised multiple times 908 * to count how many activities are happening which preclude 909 * normal IO. 910 * We can only raise the barrier if there is no pending IO. 911 * i.e. if nr_pending == 0. 912 * We choose only to raise the barrier if no-one is waiting for the 913 * barrier to go down. This means that as soon as an IO request 914 * is ready, no other operations which require a barrier will start 915 * until the IO request has had a chance. 916 * 917 * So: regular IO calls 'wait_barrier'. When that returns there 918 * is no backgroup IO happening, It must arrange to call 919 * allow_barrier when it has finished its IO. 920 * backgroup IO calls must call raise_barrier. Once that returns 921 * there is no normal IO happeing. It must arrange to call 922 * lower_barrier when the particular background IO completes. 923 */ 924 925 static void raise_barrier(struct r10conf *conf, int force) 926 { 927 BUG_ON(force && !conf->barrier); 928 spin_lock_irq(&conf->resync_lock); 929 930 /* Wait until no block IO is waiting (unless 'force') */ 931 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 932 conf->resync_lock); 933 934 /* block any new IO from starting */ 935 conf->barrier++; 936 937 /* Now wait for all pending IO to complete */ 938 wait_event_lock_irq(conf->wait_barrier, 939 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 940 conf->resync_lock); 941 942 spin_unlock_irq(&conf->resync_lock); 943 } 944 945 static void lower_barrier(struct r10conf *conf) 946 { 947 unsigned long flags; 948 spin_lock_irqsave(&conf->resync_lock, flags); 949 conf->barrier--; 950 spin_unlock_irqrestore(&conf->resync_lock, flags); 951 wake_up(&conf->wait_barrier); 952 } 953 954 static void wait_barrier(struct r10conf *conf) 955 { 956 spin_lock_irq(&conf->resync_lock); 957 if (conf->barrier) { 958 struct bio_list *bio_list = current->bio_list; 959 conf->nr_waiting++; 960 /* Wait for the barrier to drop. 961 * However if there are already pending 962 * requests (preventing the barrier from 963 * rising completely), and the 964 * pre-process bio queue isn't empty, 965 * then don't wait, as we need to empty 966 * that queue to get the nr_pending 967 * count down. 968 */ 969 raid10_log(conf->mddev, "wait barrier"); 970 wait_event_lock_irq(conf->wait_barrier, 971 !conf->barrier || 972 (atomic_read(&conf->nr_pending) && 973 bio_list && 974 (!bio_list_empty(&bio_list[0]) || 975 !bio_list_empty(&bio_list[1]))) || 976 /* move on if recovery thread is 977 * blocked by us 978 */ 979 (conf->mddev->thread->tsk == current && 980 test_bit(MD_RECOVERY_RUNNING, 981 &conf->mddev->recovery) && 982 conf->nr_queued > 0), 983 conf->resync_lock); 984 conf->nr_waiting--; 985 if (!conf->nr_waiting) 986 wake_up(&conf->wait_barrier); 987 } 988 atomic_inc(&conf->nr_pending); 989 spin_unlock_irq(&conf->resync_lock); 990 } 991 992 static void allow_barrier(struct r10conf *conf) 993 { 994 if ((atomic_dec_and_test(&conf->nr_pending)) || 995 (conf->array_freeze_pending)) 996 wake_up(&conf->wait_barrier); 997 } 998 999 static void freeze_array(struct r10conf *conf, int extra) 1000 { 1001 /* stop syncio and normal IO and wait for everything to 1002 * go quiet. 1003 * We increment barrier and nr_waiting, and then 1004 * wait until nr_pending match nr_queued+extra 1005 * This is called in the context of one normal IO request 1006 * that has failed. Thus any sync request that might be pending 1007 * will be blocked by nr_pending, and we need to wait for 1008 * pending IO requests to complete or be queued for re-try. 1009 * Thus the number queued (nr_queued) plus this request (extra) 1010 * must match the number of pending IOs (nr_pending) before 1011 * we continue. 1012 */ 1013 spin_lock_irq(&conf->resync_lock); 1014 conf->array_freeze_pending++; 1015 conf->barrier++; 1016 conf->nr_waiting++; 1017 wait_event_lock_irq_cmd(conf->wait_barrier, 1018 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1019 conf->resync_lock, 1020 flush_pending_writes(conf)); 1021 1022 conf->array_freeze_pending--; 1023 spin_unlock_irq(&conf->resync_lock); 1024 } 1025 1026 static void unfreeze_array(struct r10conf *conf) 1027 { 1028 /* reverse the effect of the freeze */ 1029 spin_lock_irq(&conf->resync_lock); 1030 conf->barrier--; 1031 conf->nr_waiting--; 1032 wake_up(&conf->wait_barrier); 1033 spin_unlock_irq(&conf->resync_lock); 1034 } 1035 1036 static sector_t choose_data_offset(struct r10bio *r10_bio, 1037 struct md_rdev *rdev) 1038 { 1039 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1040 test_bit(R10BIO_Previous, &r10_bio->state)) 1041 return rdev->data_offset; 1042 else 1043 return rdev->new_data_offset; 1044 } 1045 1046 struct raid10_plug_cb { 1047 struct blk_plug_cb cb; 1048 struct bio_list pending; 1049 int pending_cnt; 1050 }; 1051 1052 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1053 { 1054 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1055 cb); 1056 struct mddev *mddev = plug->cb.data; 1057 struct r10conf *conf = mddev->private; 1058 struct bio *bio; 1059 1060 if (from_schedule || current->bio_list) { 1061 spin_lock_irq(&conf->device_lock); 1062 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1063 conf->pending_count += plug->pending_cnt; 1064 spin_unlock_irq(&conf->device_lock); 1065 wake_up(&conf->wait_barrier); 1066 md_wakeup_thread(mddev->thread); 1067 kfree(plug); 1068 return; 1069 } 1070 1071 /* we aren't scheduling, so we can do the write-out directly. */ 1072 bio = bio_list_get(&plug->pending); 1073 md_bitmap_unplug(mddev->bitmap); 1074 wake_up(&conf->wait_barrier); 1075 1076 while (bio) { /* submit pending writes */ 1077 struct bio *next = bio->bi_next; 1078 struct md_rdev *rdev = (void*)bio->bi_disk; 1079 bio->bi_next = NULL; 1080 bio_set_dev(bio, rdev->bdev); 1081 if (test_bit(Faulty, &rdev->flags)) { 1082 bio_io_error(bio); 1083 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1084 !blk_queue_discard(bio->bi_disk->queue))) 1085 /* Just ignore it */ 1086 bio_endio(bio); 1087 else 1088 submit_bio_noacct(bio); 1089 bio = next; 1090 } 1091 kfree(plug); 1092 } 1093 1094 /* 1095 * 1. Register the new request and wait if the reconstruction thread has put 1096 * up a bar for new requests. Continue immediately if no resync is active 1097 * currently. 1098 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1099 */ 1100 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1101 struct bio *bio, sector_t sectors) 1102 { 1103 wait_barrier(conf); 1104 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1105 bio->bi_iter.bi_sector < conf->reshape_progress && 1106 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1107 raid10_log(conf->mddev, "wait reshape"); 1108 allow_barrier(conf); 1109 wait_event(conf->wait_barrier, 1110 conf->reshape_progress <= bio->bi_iter.bi_sector || 1111 conf->reshape_progress >= bio->bi_iter.bi_sector + 1112 sectors); 1113 wait_barrier(conf); 1114 } 1115 } 1116 1117 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1118 struct r10bio *r10_bio) 1119 { 1120 struct r10conf *conf = mddev->private; 1121 struct bio *read_bio; 1122 const int op = bio_op(bio); 1123 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1124 int max_sectors; 1125 struct md_rdev *rdev; 1126 char b[BDEVNAME_SIZE]; 1127 int slot = r10_bio->read_slot; 1128 struct md_rdev *err_rdev = NULL; 1129 gfp_t gfp = GFP_NOIO; 1130 1131 if (r10_bio->devs[slot].rdev) { 1132 /* 1133 * This is an error retry, but we cannot 1134 * safely dereference the rdev in the r10_bio, 1135 * we must use the one in conf. 1136 * If it has already been disconnected (unlikely) 1137 * we lose the device name in error messages. 1138 */ 1139 int disk; 1140 /* 1141 * As we are blocking raid10, it is a little safer to 1142 * use __GFP_HIGH. 1143 */ 1144 gfp = GFP_NOIO | __GFP_HIGH; 1145 1146 rcu_read_lock(); 1147 disk = r10_bio->devs[slot].devnum; 1148 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1149 if (err_rdev) 1150 bdevname(err_rdev->bdev, b); 1151 else { 1152 strcpy(b, "???"); 1153 /* This never gets dereferenced */ 1154 err_rdev = r10_bio->devs[slot].rdev; 1155 } 1156 rcu_read_unlock(); 1157 } 1158 1159 regular_request_wait(mddev, conf, bio, r10_bio->sectors); 1160 rdev = read_balance(conf, r10_bio, &max_sectors); 1161 if (!rdev) { 1162 if (err_rdev) { 1163 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1164 mdname(mddev), b, 1165 (unsigned long long)r10_bio->sector); 1166 } 1167 raid_end_bio_io(r10_bio); 1168 return; 1169 } 1170 if (err_rdev) 1171 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1172 mdname(mddev), 1173 bdevname(rdev->bdev, b), 1174 (unsigned long long)r10_bio->sector); 1175 if (max_sectors < bio_sectors(bio)) { 1176 struct bio *split = bio_split(bio, max_sectors, 1177 gfp, &conf->bio_split); 1178 bio_chain(split, bio); 1179 allow_barrier(conf); 1180 submit_bio_noacct(bio); 1181 wait_barrier(conf); 1182 bio = split; 1183 r10_bio->master_bio = bio; 1184 r10_bio->sectors = max_sectors; 1185 } 1186 slot = r10_bio->read_slot; 1187 1188 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1189 1190 r10_bio->devs[slot].bio = read_bio; 1191 r10_bio->devs[slot].rdev = rdev; 1192 1193 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1194 choose_data_offset(r10_bio, rdev); 1195 bio_set_dev(read_bio, rdev->bdev); 1196 read_bio->bi_end_io = raid10_end_read_request; 1197 bio_set_op_attrs(read_bio, op, do_sync); 1198 if (test_bit(FailFast, &rdev->flags) && 1199 test_bit(R10BIO_FailFast, &r10_bio->state)) 1200 read_bio->bi_opf |= MD_FAILFAST; 1201 read_bio->bi_private = r10_bio; 1202 1203 if (mddev->gendisk) 1204 trace_block_bio_remap(read_bio->bi_disk->queue, 1205 read_bio, disk_devt(mddev->gendisk), 1206 r10_bio->sector); 1207 submit_bio_noacct(read_bio); 1208 return; 1209 } 1210 1211 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1212 struct bio *bio, bool replacement, 1213 int n_copy) 1214 { 1215 const int op = bio_op(bio); 1216 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1217 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1218 unsigned long flags; 1219 struct blk_plug_cb *cb; 1220 struct raid10_plug_cb *plug = NULL; 1221 struct r10conf *conf = mddev->private; 1222 struct md_rdev *rdev; 1223 int devnum = r10_bio->devs[n_copy].devnum; 1224 struct bio *mbio; 1225 1226 if (replacement) { 1227 rdev = conf->mirrors[devnum].replacement; 1228 if (rdev == NULL) { 1229 /* Replacement just got moved to main 'rdev' */ 1230 smp_mb(); 1231 rdev = conf->mirrors[devnum].rdev; 1232 } 1233 } else 1234 rdev = conf->mirrors[devnum].rdev; 1235 1236 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1237 if (replacement) 1238 r10_bio->devs[n_copy].repl_bio = mbio; 1239 else 1240 r10_bio->devs[n_copy].bio = mbio; 1241 1242 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1243 choose_data_offset(r10_bio, rdev)); 1244 bio_set_dev(mbio, rdev->bdev); 1245 mbio->bi_end_io = raid10_end_write_request; 1246 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1247 if (!replacement && test_bit(FailFast, 1248 &conf->mirrors[devnum].rdev->flags) 1249 && enough(conf, devnum)) 1250 mbio->bi_opf |= MD_FAILFAST; 1251 mbio->bi_private = r10_bio; 1252 1253 if (conf->mddev->gendisk) 1254 trace_block_bio_remap(mbio->bi_disk->queue, 1255 mbio, disk_devt(conf->mddev->gendisk), 1256 r10_bio->sector); 1257 /* flush_pending_writes() needs access to the rdev so...*/ 1258 mbio->bi_disk = (void *)rdev; 1259 1260 atomic_inc(&r10_bio->remaining); 1261 1262 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1263 if (cb) 1264 plug = container_of(cb, struct raid10_plug_cb, cb); 1265 else 1266 plug = NULL; 1267 if (plug) { 1268 bio_list_add(&plug->pending, mbio); 1269 plug->pending_cnt++; 1270 } else { 1271 spin_lock_irqsave(&conf->device_lock, flags); 1272 bio_list_add(&conf->pending_bio_list, mbio); 1273 conf->pending_count++; 1274 spin_unlock_irqrestore(&conf->device_lock, flags); 1275 md_wakeup_thread(mddev->thread); 1276 } 1277 } 1278 1279 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1280 struct r10bio *r10_bio) 1281 { 1282 struct r10conf *conf = mddev->private; 1283 int i; 1284 struct md_rdev *blocked_rdev; 1285 sector_t sectors; 1286 int max_sectors; 1287 1288 if ((mddev_is_clustered(mddev) && 1289 md_cluster_ops->area_resyncing(mddev, WRITE, 1290 bio->bi_iter.bi_sector, 1291 bio_end_sector(bio)))) { 1292 DEFINE_WAIT(w); 1293 for (;;) { 1294 prepare_to_wait(&conf->wait_barrier, 1295 &w, TASK_IDLE); 1296 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1297 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1298 break; 1299 schedule(); 1300 } 1301 finish_wait(&conf->wait_barrier, &w); 1302 } 1303 1304 sectors = r10_bio->sectors; 1305 regular_request_wait(mddev, conf, bio, sectors); 1306 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1307 (mddev->reshape_backwards 1308 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1309 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1310 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1311 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1312 /* Need to update reshape_position in metadata */ 1313 mddev->reshape_position = conf->reshape_progress; 1314 set_mask_bits(&mddev->sb_flags, 0, 1315 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1316 md_wakeup_thread(mddev->thread); 1317 raid10_log(conf->mddev, "wait reshape metadata"); 1318 wait_event(mddev->sb_wait, 1319 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1320 1321 conf->reshape_safe = mddev->reshape_position; 1322 } 1323 1324 if (conf->pending_count >= max_queued_requests) { 1325 md_wakeup_thread(mddev->thread); 1326 raid10_log(mddev, "wait queued"); 1327 wait_event(conf->wait_barrier, 1328 conf->pending_count < max_queued_requests); 1329 } 1330 /* first select target devices under rcu_lock and 1331 * inc refcount on their rdev. Record them by setting 1332 * bios[x] to bio 1333 * If there are known/acknowledged bad blocks on any device 1334 * on which we have seen a write error, we want to avoid 1335 * writing to those blocks. This potentially requires several 1336 * writes to write around the bad blocks. Each set of writes 1337 * gets its own r10_bio with a set of bios attached. 1338 */ 1339 1340 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1341 raid10_find_phys(conf, r10_bio); 1342 retry_write: 1343 blocked_rdev = NULL; 1344 rcu_read_lock(); 1345 max_sectors = r10_bio->sectors; 1346 1347 for (i = 0; i < conf->copies; i++) { 1348 int d = r10_bio->devs[i].devnum; 1349 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1350 struct md_rdev *rrdev = rcu_dereference( 1351 conf->mirrors[d].replacement); 1352 if (rdev == rrdev) 1353 rrdev = NULL; 1354 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1355 atomic_inc(&rdev->nr_pending); 1356 blocked_rdev = rdev; 1357 break; 1358 } 1359 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1360 atomic_inc(&rrdev->nr_pending); 1361 blocked_rdev = rrdev; 1362 break; 1363 } 1364 if (rdev && (test_bit(Faulty, &rdev->flags))) 1365 rdev = NULL; 1366 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1367 rrdev = NULL; 1368 1369 r10_bio->devs[i].bio = NULL; 1370 r10_bio->devs[i].repl_bio = NULL; 1371 1372 if (!rdev && !rrdev) { 1373 set_bit(R10BIO_Degraded, &r10_bio->state); 1374 continue; 1375 } 1376 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1377 sector_t first_bad; 1378 sector_t dev_sector = r10_bio->devs[i].addr; 1379 int bad_sectors; 1380 int is_bad; 1381 1382 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1383 &first_bad, &bad_sectors); 1384 if (is_bad < 0) { 1385 /* Mustn't write here until the bad block 1386 * is acknowledged 1387 */ 1388 atomic_inc(&rdev->nr_pending); 1389 set_bit(BlockedBadBlocks, &rdev->flags); 1390 blocked_rdev = rdev; 1391 break; 1392 } 1393 if (is_bad && first_bad <= dev_sector) { 1394 /* Cannot write here at all */ 1395 bad_sectors -= (dev_sector - first_bad); 1396 if (bad_sectors < max_sectors) 1397 /* Mustn't write more than bad_sectors 1398 * to other devices yet 1399 */ 1400 max_sectors = bad_sectors; 1401 /* We don't set R10BIO_Degraded as that 1402 * only applies if the disk is missing, 1403 * so it might be re-added, and we want to 1404 * know to recover this chunk. 1405 * In this case the device is here, and the 1406 * fact that this chunk is not in-sync is 1407 * recorded in the bad block log. 1408 */ 1409 continue; 1410 } 1411 if (is_bad) { 1412 int good_sectors = first_bad - dev_sector; 1413 if (good_sectors < max_sectors) 1414 max_sectors = good_sectors; 1415 } 1416 } 1417 if (rdev) { 1418 r10_bio->devs[i].bio = bio; 1419 atomic_inc(&rdev->nr_pending); 1420 } 1421 if (rrdev) { 1422 r10_bio->devs[i].repl_bio = bio; 1423 atomic_inc(&rrdev->nr_pending); 1424 } 1425 } 1426 rcu_read_unlock(); 1427 1428 if (unlikely(blocked_rdev)) { 1429 /* Have to wait for this device to get unblocked, then retry */ 1430 int j; 1431 int d; 1432 1433 for (j = 0; j < i; j++) { 1434 if (r10_bio->devs[j].bio) { 1435 d = r10_bio->devs[j].devnum; 1436 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1437 } 1438 if (r10_bio->devs[j].repl_bio) { 1439 struct md_rdev *rdev; 1440 d = r10_bio->devs[j].devnum; 1441 rdev = conf->mirrors[d].replacement; 1442 if (!rdev) { 1443 /* Race with remove_disk */ 1444 smp_mb(); 1445 rdev = conf->mirrors[d].rdev; 1446 } 1447 rdev_dec_pending(rdev, mddev); 1448 } 1449 } 1450 allow_barrier(conf); 1451 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1452 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1453 wait_barrier(conf); 1454 goto retry_write; 1455 } 1456 1457 if (max_sectors < r10_bio->sectors) 1458 r10_bio->sectors = max_sectors; 1459 1460 if (r10_bio->sectors < bio_sectors(bio)) { 1461 struct bio *split = bio_split(bio, r10_bio->sectors, 1462 GFP_NOIO, &conf->bio_split); 1463 bio_chain(split, bio); 1464 allow_barrier(conf); 1465 submit_bio_noacct(bio); 1466 wait_barrier(conf); 1467 bio = split; 1468 r10_bio->master_bio = bio; 1469 } 1470 1471 atomic_set(&r10_bio->remaining, 1); 1472 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1473 1474 for (i = 0; i < conf->copies; i++) { 1475 if (r10_bio->devs[i].bio) 1476 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1477 if (r10_bio->devs[i].repl_bio) 1478 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1479 } 1480 one_write_done(r10_bio); 1481 } 1482 1483 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1484 { 1485 struct r10conf *conf = mddev->private; 1486 struct r10bio *r10_bio; 1487 1488 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1489 1490 r10_bio->master_bio = bio; 1491 r10_bio->sectors = sectors; 1492 1493 r10_bio->mddev = mddev; 1494 r10_bio->sector = bio->bi_iter.bi_sector; 1495 r10_bio->state = 0; 1496 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies); 1497 1498 if (bio_data_dir(bio) == READ) 1499 raid10_read_request(mddev, bio, r10_bio); 1500 else 1501 raid10_write_request(mddev, bio, r10_bio); 1502 } 1503 1504 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1505 { 1506 struct r10conf *conf = mddev->private; 1507 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1508 int chunk_sects = chunk_mask + 1; 1509 int sectors = bio_sectors(bio); 1510 1511 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1512 && md_flush_request(mddev, bio)) 1513 return true; 1514 1515 if (!md_write_start(mddev, bio)) 1516 return false; 1517 1518 /* 1519 * If this request crosses a chunk boundary, we need to split 1520 * it. 1521 */ 1522 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1523 sectors > chunk_sects 1524 && (conf->geo.near_copies < conf->geo.raid_disks 1525 || conf->prev.near_copies < 1526 conf->prev.raid_disks))) 1527 sectors = chunk_sects - 1528 (bio->bi_iter.bi_sector & 1529 (chunk_sects - 1)); 1530 __make_request(mddev, bio, sectors); 1531 1532 /* In case raid10d snuck in to freeze_array */ 1533 wake_up(&conf->wait_barrier); 1534 return true; 1535 } 1536 1537 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1538 { 1539 struct r10conf *conf = mddev->private; 1540 int i; 1541 1542 if (conf->geo.near_copies < conf->geo.raid_disks) 1543 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1544 if (conf->geo.near_copies > 1) 1545 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1546 if (conf->geo.far_copies > 1) { 1547 if (conf->geo.far_offset) 1548 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1549 else 1550 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1551 if (conf->geo.far_set_size != conf->geo.raid_disks) 1552 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1553 } 1554 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1555 conf->geo.raid_disks - mddev->degraded); 1556 rcu_read_lock(); 1557 for (i = 0; i < conf->geo.raid_disks; i++) { 1558 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1559 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1560 } 1561 rcu_read_unlock(); 1562 seq_printf(seq, "]"); 1563 } 1564 1565 /* check if there are enough drives for 1566 * every block to appear on atleast one. 1567 * Don't consider the device numbered 'ignore' 1568 * as we might be about to remove it. 1569 */ 1570 static int _enough(struct r10conf *conf, int previous, int ignore) 1571 { 1572 int first = 0; 1573 int has_enough = 0; 1574 int disks, ncopies; 1575 if (previous) { 1576 disks = conf->prev.raid_disks; 1577 ncopies = conf->prev.near_copies; 1578 } else { 1579 disks = conf->geo.raid_disks; 1580 ncopies = conf->geo.near_copies; 1581 } 1582 1583 rcu_read_lock(); 1584 do { 1585 int n = conf->copies; 1586 int cnt = 0; 1587 int this = first; 1588 while (n--) { 1589 struct md_rdev *rdev; 1590 if (this != ignore && 1591 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1592 test_bit(In_sync, &rdev->flags)) 1593 cnt++; 1594 this = (this+1) % disks; 1595 } 1596 if (cnt == 0) 1597 goto out; 1598 first = (first + ncopies) % disks; 1599 } while (first != 0); 1600 has_enough = 1; 1601 out: 1602 rcu_read_unlock(); 1603 return has_enough; 1604 } 1605 1606 static int enough(struct r10conf *conf, int ignore) 1607 { 1608 /* when calling 'enough', both 'prev' and 'geo' must 1609 * be stable. 1610 * This is ensured if ->reconfig_mutex or ->device_lock 1611 * is held. 1612 */ 1613 return _enough(conf, 0, ignore) && 1614 _enough(conf, 1, ignore); 1615 } 1616 1617 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1618 { 1619 char b[BDEVNAME_SIZE]; 1620 struct r10conf *conf = mddev->private; 1621 unsigned long flags; 1622 1623 /* 1624 * If it is not operational, then we have already marked it as dead 1625 * else if it is the last working disks with "fail_last_dev == false", 1626 * ignore the error, let the next level up know. 1627 * else mark the drive as failed 1628 */ 1629 spin_lock_irqsave(&conf->device_lock, flags); 1630 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1631 && !enough(conf, rdev->raid_disk)) { 1632 /* 1633 * Don't fail the drive, just return an IO error. 1634 */ 1635 spin_unlock_irqrestore(&conf->device_lock, flags); 1636 return; 1637 } 1638 if (test_and_clear_bit(In_sync, &rdev->flags)) 1639 mddev->degraded++; 1640 /* 1641 * If recovery is running, make sure it aborts. 1642 */ 1643 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1644 set_bit(Blocked, &rdev->flags); 1645 set_bit(Faulty, &rdev->flags); 1646 set_mask_bits(&mddev->sb_flags, 0, 1647 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1648 spin_unlock_irqrestore(&conf->device_lock, flags); 1649 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1650 "md/raid10:%s: Operation continuing on %d devices.\n", 1651 mdname(mddev), bdevname(rdev->bdev, b), 1652 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1653 } 1654 1655 static void print_conf(struct r10conf *conf) 1656 { 1657 int i; 1658 struct md_rdev *rdev; 1659 1660 pr_debug("RAID10 conf printout:\n"); 1661 if (!conf) { 1662 pr_debug("(!conf)\n"); 1663 return; 1664 } 1665 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1666 conf->geo.raid_disks); 1667 1668 /* This is only called with ->reconfix_mutex held, so 1669 * rcu protection of rdev is not needed */ 1670 for (i = 0; i < conf->geo.raid_disks; i++) { 1671 char b[BDEVNAME_SIZE]; 1672 rdev = conf->mirrors[i].rdev; 1673 if (rdev) 1674 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1675 i, !test_bit(In_sync, &rdev->flags), 1676 !test_bit(Faulty, &rdev->flags), 1677 bdevname(rdev->bdev,b)); 1678 } 1679 } 1680 1681 static void close_sync(struct r10conf *conf) 1682 { 1683 wait_barrier(conf); 1684 allow_barrier(conf); 1685 1686 mempool_exit(&conf->r10buf_pool); 1687 } 1688 1689 static int raid10_spare_active(struct mddev *mddev) 1690 { 1691 int i; 1692 struct r10conf *conf = mddev->private; 1693 struct raid10_info *tmp; 1694 int count = 0; 1695 unsigned long flags; 1696 1697 /* 1698 * Find all non-in_sync disks within the RAID10 configuration 1699 * and mark them in_sync 1700 */ 1701 for (i = 0; i < conf->geo.raid_disks; i++) { 1702 tmp = conf->mirrors + i; 1703 if (tmp->replacement 1704 && tmp->replacement->recovery_offset == MaxSector 1705 && !test_bit(Faulty, &tmp->replacement->flags) 1706 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1707 /* Replacement has just become active */ 1708 if (!tmp->rdev 1709 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1710 count++; 1711 if (tmp->rdev) { 1712 /* Replaced device not technically faulty, 1713 * but we need to be sure it gets removed 1714 * and never re-added. 1715 */ 1716 set_bit(Faulty, &tmp->rdev->flags); 1717 sysfs_notify_dirent_safe( 1718 tmp->rdev->sysfs_state); 1719 } 1720 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1721 } else if (tmp->rdev 1722 && tmp->rdev->recovery_offset == MaxSector 1723 && !test_bit(Faulty, &tmp->rdev->flags) 1724 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1725 count++; 1726 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1727 } 1728 } 1729 spin_lock_irqsave(&conf->device_lock, flags); 1730 mddev->degraded -= count; 1731 spin_unlock_irqrestore(&conf->device_lock, flags); 1732 1733 print_conf(conf); 1734 return count; 1735 } 1736 1737 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1738 { 1739 struct r10conf *conf = mddev->private; 1740 int err = -EEXIST; 1741 int mirror; 1742 int first = 0; 1743 int last = conf->geo.raid_disks - 1; 1744 1745 if (mddev->recovery_cp < MaxSector) 1746 /* only hot-add to in-sync arrays, as recovery is 1747 * very different from resync 1748 */ 1749 return -EBUSY; 1750 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1751 return -EINVAL; 1752 1753 if (md_integrity_add_rdev(rdev, mddev)) 1754 return -ENXIO; 1755 1756 if (rdev->raid_disk >= 0) 1757 first = last = rdev->raid_disk; 1758 1759 if (rdev->saved_raid_disk >= first && 1760 rdev->saved_raid_disk < conf->geo.raid_disks && 1761 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1762 mirror = rdev->saved_raid_disk; 1763 else 1764 mirror = first; 1765 for ( ; mirror <= last ; mirror++) { 1766 struct raid10_info *p = &conf->mirrors[mirror]; 1767 if (p->recovery_disabled == mddev->recovery_disabled) 1768 continue; 1769 if (p->rdev) { 1770 if (!test_bit(WantReplacement, &p->rdev->flags) || 1771 p->replacement != NULL) 1772 continue; 1773 clear_bit(In_sync, &rdev->flags); 1774 set_bit(Replacement, &rdev->flags); 1775 rdev->raid_disk = mirror; 1776 err = 0; 1777 if (mddev->gendisk) 1778 disk_stack_limits(mddev->gendisk, rdev->bdev, 1779 rdev->data_offset << 9); 1780 conf->fullsync = 1; 1781 rcu_assign_pointer(p->replacement, rdev); 1782 break; 1783 } 1784 1785 if (mddev->gendisk) 1786 disk_stack_limits(mddev->gendisk, rdev->bdev, 1787 rdev->data_offset << 9); 1788 1789 p->head_position = 0; 1790 p->recovery_disabled = mddev->recovery_disabled - 1; 1791 rdev->raid_disk = mirror; 1792 err = 0; 1793 if (rdev->saved_raid_disk != mirror) 1794 conf->fullsync = 1; 1795 rcu_assign_pointer(p->rdev, rdev); 1796 break; 1797 } 1798 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1799 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1800 1801 print_conf(conf); 1802 return err; 1803 } 1804 1805 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1806 { 1807 struct r10conf *conf = mddev->private; 1808 int err = 0; 1809 int number = rdev->raid_disk; 1810 struct md_rdev **rdevp; 1811 struct raid10_info *p = conf->mirrors + number; 1812 1813 print_conf(conf); 1814 if (rdev == p->rdev) 1815 rdevp = &p->rdev; 1816 else if (rdev == p->replacement) 1817 rdevp = &p->replacement; 1818 else 1819 return 0; 1820 1821 if (test_bit(In_sync, &rdev->flags) || 1822 atomic_read(&rdev->nr_pending)) { 1823 err = -EBUSY; 1824 goto abort; 1825 } 1826 /* Only remove non-faulty devices if recovery 1827 * is not possible. 1828 */ 1829 if (!test_bit(Faulty, &rdev->flags) && 1830 mddev->recovery_disabled != p->recovery_disabled && 1831 (!p->replacement || p->replacement == rdev) && 1832 number < conf->geo.raid_disks && 1833 enough(conf, -1)) { 1834 err = -EBUSY; 1835 goto abort; 1836 } 1837 *rdevp = NULL; 1838 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1839 synchronize_rcu(); 1840 if (atomic_read(&rdev->nr_pending)) { 1841 /* lost the race, try later */ 1842 err = -EBUSY; 1843 *rdevp = rdev; 1844 goto abort; 1845 } 1846 } 1847 if (p->replacement) { 1848 /* We must have just cleared 'rdev' */ 1849 p->rdev = p->replacement; 1850 clear_bit(Replacement, &p->replacement->flags); 1851 smp_mb(); /* Make sure other CPUs may see both as identical 1852 * but will never see neither -- if they are careful. 1853 */ 1854 p->replacement = NULL; 1855 } 1856 1857 clear_bit(WantReplacement, &rdev->flags); 1858 err = md_integrity_register(mddev); 1859 1860 abort: 1861 1862 print_conf(conf); 1863 return err; 1864 } 1865 1866 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 1867 { 1868 struct r10conf *conf = r10_bio->mddev->private; 1869 1870 if (!bio->bi_status) 1871 set_bit(R10BIO_Uptodate, &r10_bio->state); 1872 else 1873 /* The write handler will notice the lack of 1874 * R10BIO_Uptodate and record any errors etc 1875 */ 1876 atomic_add(r10_bio->sectors, 1877 &conf->mirrors[d].rdev->corrected_errors); 1878 1879 /* for reconstruct, we always reschedule after a read. 1880 * for resync, only after all reads 1881 */ 1882 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1883 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1884 atomic_dec_and_test(&r10_bio->remaining)) { 1885 /* we have read all the blocks, 1886 * do the comparison in process context in raid10d 1887 */ 1888 reschedule_retry(r10_bio); 1889 } 1890 } 1891 1892 static void end_sync_read(struct bio *bio) 1893 { 1894 struct r10bio *r10_bio = get_resync_r10bio(bio); 1895 struct r10conf *conf = r10_bio->mddev->private; 1896 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1897 1898 __end_sync_read(r10_bio, bio, d); 1899 } 1900 1901 static void end_reshape_read(struct bio *bio) 1902 { 1903 /* reshape read bio isn't allocated from r10buf_pool */ 1904 struct r10bio *r10_bio = bio->bi_private; 1905 1906 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 1907 } 1908 1909 static void end_sync_request(struct r10bio *r10_bio) 1910 { 1911 struct mddev *mddev = r10_bio->mddev; 1912 1913 while (atomic_dec_and_test(&r10_bio->remaining)) { 1914 if (r10_bio->master_bio == NULL) { 1915 /* the primary of several recovery bios */ 1916 sector_t s = r10_bio->sectors; 1917 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1918 test_bit(R10BIO_WriteError, &r10_bio->state)) 1919 reschedule_retry(r10_bio); 1920 else 1921 put_buf(r10_bio); 1922 md_done_sync(mddev, s, 1); 1923 break; 1924 } else { 1925 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1926 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1927 test_bit(R10BIO_WriteError, &r10_bio->state)) 1928 reschedule_retry(r10_bio); 1929 else 1930 put_buf(r10_bio); 1931 r10_bio = r10_bio2; 1932 } 1933 } 1934 } 1935 1936 static void end_sync_write(struct bio *bio) 1937 { 1938 struct r10bio *r10_bio = get_resync_r10bio(bio); 1939 struct mddev *mddev = r10_bio->mddev; 1940 struct r10conf *conf = mddev->private; 1941 int d; 1942 sector_t first_bad; 1943 int bad_sectors; 1944 int slot; 1945 int repl; 1946 struct md_rdev *rdev = NULL; 1947 1948 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1949 if (repl) 1950 rdev = conf->mirrors[d].replacement; 1951 else 1952 rdev = conf->mirrors[d].rdev; 1953 1954 if (bio->bi_status) { 1955 if (repl) 1956 md_error(mddev, rdev); 1957 else { 1958 set_bit(WriteErrorSeen, &rdev->flags); 1959 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1960 set_bit(MD_RECOVERY_NEEDED, 1961 &rdev->mddev->recovery); 1962 set_bit(R10BIO_WriteError, &r10_bio->state); 1963 } 1964 } else if (is_badblock(rdev, 1965 r10_bio->devs[slot].addr, 1966 r10_bio->sectors, 1967 &first_bad, &bad_sectors)) 1968 set_bit(R10BIO_MadeGood, &r10_bio->state); 1969 1970 rdev_dec_pending(rdev, mddev); 1971 1972 end_sync_request(r10_bio); 1973 } 1974 1975 /* 1976 * Note: sync and recover and handled very differently for raid10 1977 * This code is for resync. 1978 * For resync, we read through virtual addresses and read all blocks. 1979 * If there is any error, we schedule a write. The lowest numbered 1980 * drive is authoritative. 1981 * However requests come for physical address, so we need to map. 1982 * For every physical address there are raid_disks/copies virtual addresses, 1983 * which is always are least one, but is not necessarly an integer. 1984 * This means that a physical address can span multiple chunks, so we may 1985 * have to submit multiple io requests for a single sync request. 1986 */ 1987 /* 1988 * We check if all blocks are in-sync and only write to blocks that 1989 * aren't in sync 1990 */ 1991 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1992 { 1993 struct r10conf *conf = mddev->private; 1994 int i, first; 1995 struct bio *tbio, *fbio; 1996 int vcnt; 1997 struct page **tpages, **fpages; 1998 1999 atomic_set(&r10_bio->remaining, 1); 2000 2001 /* find the first device with a block */ 2002 for (i=0; i<conf->copies; i++) 2003 if (!r10_bio->devs[i].bio->bi_status) 2004 break; 2005 2006 if (i == conf->copies) 2007 goto done; 2008 2009 first = i; 2010 fbio = r10_bio->devs[i].bio; 2011 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2012 fbio->bi_iter.bi_idx = 0; 2013 fpages = get_resync_pages(fbio)->pages; 2014 2015 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2016 /* now find blocks with errors */ 2017 for (i=0 ; i < conf->copies ; i++) { 2018 int j, d; 2019 struct md_rdev *rdev; 2020 struct resync_pages *rp; 2021 2022 tbio = r10_bio->devs[i].bio; 2023 2024 if (tbio->bi_end_io != end_sync_read) 2025 continue; 2026 if (i == first) 2027 continue; 2028 2029 tpages = get_resync_pages(tbio)->pages; 2030 d = r10_bio->devs[i].devnum; 2031 rdev = conf->mirrors[d].rdev; 2032 if (!r10_bio->devs[i].bio->bi_status) { 2033 /* We know that the bi_io_vec layout is the same for 2034 * both 'first' and 'i', so we just compare them. 2035 * All vec entries are PAGE_SIZE; 2036 */ 2037 int sectors = r10_bio->sectors; 2038 for (j = 0; j < vcnt; j++) { 2039 int len = PAGE_SIZE; 2040 if (sectors < (len / 512)) 2041 len = sectors * 512; 2042 if (memcmp(page_address(fpages[j]), 2043 page_address(tpages[j]), 2044 len)) 2045 break; 2046 sectors -= len/512; 2047 } 2048 if (j == vcnt) 2049 continue; 2050 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2051 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2052 /* Don't fix anything. */ 2053 continue; 2054 } else if (test_bit(FailFast, &rdev->flags)) { 2055 /* Just give up on this device */ 2056 md_error(rdev->mddev, rdev); 2057 continue; 2058 } 2059 /* Ok, we need to write this bio, either to correct an 2060 * inconsistency or to correct an unreadable block. 2061 * First we need to fixup bv_offset, bv_len and 2062 * bi_vecs, as the read request might have corrupted these 2063 */ 2064 rp = get_resync_pages(tbio); 2065 bio_reset(tbio); 2066 2067 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2068 2069 rp->raid_bio = r10_bio; 2070 tbio->bi_private = rp; 2071 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2072 tbio->bi_end_io = end_sync_write; 2073 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2074 2075 bio_copy_data(tbio, fbio); 2076 2077 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2078 atomic_inc(&r10_bio->remaining); 2079 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2080 2081 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2082 tbio->bi_opf |= MD_FAILFAST; 2083 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2084 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev); 2085 submit_bio_noacct(tbio); 2086 } 2087 2088 /* Now write out to any replacement devices 2089 * that are active 2090 */ 2091 for (i = 0; i < conf->copies; i++) { 2092 int d; 2093 2094 tbio = r10_bio->devs[i].repl_bio; 2095 if (!tbio || !tbio->bi_end_io) 2096 continue; 2097 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2098 && r10_bio->devs[i].bio != fbio) 2099 bio_copy_data(tbio, fbio); 2100 d = r10_bio->devs[i].devnum; 2101 atomic_inc(&r10_bio->remaining); 2102 md_sync_acct(conf->mirrors[d].replacement->bdev, 2103 bio_sectors(tbio)); 2104 submit_bio_noacct(tbio); 2105 } 2106 2107 done: 2108 if (atomic_dec_and_test(&r10_bio->remaining)) { 2109 md_done_sync(mddev, r10_bio->sectors, 1); 2110 put_buf(r10_bio); 2111 } 2112 } 2113 2114 /* 2115 * Now for the recovery code. 2116 * Recovery happens across physical sectors. 2117 * We recover all non-is_sync drives by finding the virtual address of 2118 * each, and then choose a working drive that also has that virt address. 2119 * There is a separate r10_bio for each non-in_sync drive. 2120 * Only the first two slots are in use. The first for reading, 2121 * The second for writing. 2122 * 2123 */ 2124 static void fix_recovery_read_error(struct r10bio *r10_bio) 2125 { 2126 /* We got a read error during recovery. 2127 * We repeat the read in smaller page-sized sections. 2128 * If a read succeeds, write it to the new device or record 2129 * a bad block if we cannot. 2130 * If a read fails, record a bad block on both old and 2131 * new devices. 2132 */ 2133 struct mddev *mddev = r10_bio->mddev; 2134 struct r10conf *conf = mddev->private; 2135 struct bio *bio = r10_bio->devs[0].bio; 2136 sector_t sect = 0; 2137 int sectors = r10_bio->sectors; 2138 int idx = 0; 2139 int dr = r10_bio->devs[0].devnum; 2140 int dw = r10_bio->devs[1].devnum; 2141 struct page **pages = get_resync_pages(bio)->pages; 2142 2143 while (sectors) { 2144 int s = sectors; 2145 struct md_rdev *rdev; 2146 sector_t addr; 2147 int ok; 2148 2149 if (s > (PAGE_SIZE>>9)) 2150 s = PAGE_SIZE >> 9; 2151 2152 rdev = conf->mirrors[dr].rdev; 2153 addr = r10_bio->devs[0].addr + sect, 2154 ok = sync_page_io(rdev, 2155 addr, 2156 s << 9, 2157 pages[idx], 2158 REQ_OP_READ, 0, false); 2159 if (ok) { 2160 rdev = conf->mirrors[dw].rdev; 2161 addr = r10_bio->devs[1].addr + sect; 2162 ok = sync_page_io(rdev, 2163 addr, 2164 s << 9, 2165 pages[idx], 2166 REQ_OP_WRITE, 0, false); 2167 if (!ok) { 2168 set_bit(WriteErrorSeen, &rdev->flags); 2169 if (!test_and_set_bit(WantReplacement, 2170 &rdev->flags)) 2171 set_bit(MD_RECOVERY_NEEDED, 2172 &rdev->mddev->recovery); 2173 } 2174 } 2175 if (!ok) { 2176 /* We don't worry if we cannot set a bad block - 2177 * it really is bad so there is no loss in not 2178 * recording it yet 2179 */ 2180 rdev_set_badblocks(rdev, addr, s, 0); 2181 2182 if (rdev != conf->mirrors[dw].rdev) { 2183 /* need bad block on destination too */ 2184 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2185 addr = r10_bio->devs[1].addr + sect; 2186 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2187 if (!ok) { 2188 /* just abort the recovery */ 2189 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2190 mdname(mddev)); 2191 2192 conf->mirrors[dw].recovery_disabled 2193 = mddev->recovery_disabled; 2194 set_bit(MD_RECOVERY_INTR, 2195 &mddev->recovery); 2196 break; 2197 } 2198 } 2199 } 2200 2201 sectors -= s; 2202 sect += s; 2203 idx++; 2204 } 2205 } 2206 2207 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2208 { 2209 struct r10conf *conf = mddev->private; 2210 int d; 2211 struct bio *wbio, *wbio2; 2212 2213 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2214 fix_recovery_read_error(r10_bio); 2215 end_sync_request(r10_bio); 2216 return; 2217 } 2218 2219 /* 2220 * share the pages with the first bio 2221 * and submit the write request 2222 */ 2223 d = r10_bio->devs[1].devnum; 2224 wbio = r10_bio->devs[1].bio; 2225 wbio2 = r10_bio->devs[1].repl_bio; 2226 /* Need to test wbio2->bi_end_io before we call 2227 * submit_bio_noacct as if the former is NULL, 2228 * the latter is free to free wbio2. 2229 */ 2230 if (wbio2 && !wbio2->bi_end_io) 2231 wbio2 = NULL; 2232 if (wbio->bi_end_io) { 2233 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2234 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2235 submit_bio_noacct(wbio); 2236 } 2237 if (wbio2) { 2238 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2239 md_sync_acct(conf->mirrors[d].replacement->bdev, 2240 bio_sectors(wbio2)); 2241 submit_bio_noacct(wbio2); 2242 } 2243 } 2244 2245 /* 2246 * Used by fix_read_error() to decay the per rdev read_errors. 2247 * We halve the read error count for every hour that has elapsed 2248 * since the last recorded read error. 2249 * 2250 */ 2251 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2252 { 2253 long cur_time_mon; 2254 unsigned long hours_since_last; 2255 unsigned int read_errors = atomic_read(&rdev->read_errors); 2256 2257 cur_time_mon = ktime_get_seconds(); 2258 2259 if (rdev->last_read_error == 0) { 2260 /* first time we've seen a read error */ 2261 rdev->last_read_error = cur_time_mon; 2262 return; 2263 } 2264 2265 hours_since_last = (long)(cur_time_mon - 2266 rdev->last_read_error) / 3600; 2267 2268 rdev->last_read_error = cur_time_mon; 2269 2270 /* 2271 * if hours_since_last is > the number of bits in read_errors 2272 * just set read errors to 0. We do this to avoid 2273 * overflowing the shift of read_errors by hours_since_last. 2274 */ 2275 if (hours_since_last >= 8 * sizeof(read_errors)) 2276 atomic_set(&rdev->read_errors, 0); 2277 else 2278 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2279 } 2280 2281 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2282 int sectors, struct page *page, int rw) 2283 { 2284 sector_t first_bad; 2285 int bad_sectors; 2286 2287 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2288 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2289 return -1; 2290 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2291 /* success */ 2292 return 1; 2293 if (rw == WRITE) { 2294 set_bit(WriteErrorSeen, &rdev->flags); 2295 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2296 set_bit(MD_RECOVERY_NEEDED, 2297 &rdev->mddev->recovery); 2298 } 2299 /* need to record an error - either for the block or the device */ 2300 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2301 md_error(rdev->mddev, rdev); 2302 return 0; 2303 } 2304 2305 /* 2306 * This is a kernel thread which: 2307 * 2308 * 1. Retries failed read operations on working mirrors. 2309 * 2. Updates the raid superblock when problems encounter. 2310 * 3. Performs writes following reads for array synchronising. 2311 */ 2312 2313 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2314 { 2315 int sect = 0; /* Offset from r10_bio->sector */ 2316 int sectors = r10_bio->sectors; 2317 struct md_rdev *rdev; 2318 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2319 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2320 2321 /* still own a reference to this rdev, so it cannot 2322 * have been cleared recently. 2323 */ 2324 rdev = conf->mirrors[d].rdev; 2325 2326 if (test_bit(Faulty, &rdev->flags)) 2327 /* drive has already been failed, just ignore any 2328 more fix_read_error() attempts */ 2329 return; 2330 2331 check_decay_read_errors(mddev, rdev); 2332 atomic_inc(&rdev->read_errors); 2333 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2334 char b[BDEVNAME_SIZE]; 2335 bdevname(rdev->bdev, b); 2336 2337 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2338 mdname(mddev), b, 2339 atomic_read(&rdev->read_errors), max_read_errors); 2340 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2341 mdname(mddev), b); 2342 md_error(mddev, rdev); 2343 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2344 return; 2345 } 2346 2347 while(sectors) { 2348 int s = sectors; 2349 int sl = r10_bio->read_slot; 2350 int success = 0; 2351 int start; 2352 2353 if (s > (PAGE_SIZE>>9)) 2354 s = PAGE_SIZE >> 9; 2355 2356 rcu_read_lock(); 2357 do { 2358 sector_t first_bad; 2359 int bad_sectors; 2360 2361 d = r10_bio->devs[sl].devnum; 2362 rdev = rcu_dereference(conf->mirrors[d].rdev); 2363 if (rdev && 2364 test_bit(In_sync, &rdev->flags) && 2365 !test_bit(Faulty, &rdev->flags) && 2366 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2367 &first_bad, &bad_sectors) == 0) { 2368 atomic_inc(&rdev->nr_pending); 2369 rcu_read_unlock(); 2370 success = sync_page_io(rdev, 2371 r10_bio->devs[sl].addr + 2372 sect, 2373 s<<9, 2374 conf->tmppage, 2375 REQ_OP_READ, 0, false); 2376 rdev_dec_pending(rdev, mddev); 2377 rcu_read_lock(); 2378 if (success) 2379 break; 2380 } 2381 sl++; 2382 if (sl == conf->copies) 2383 sl = 0; 2384 } while (!success && sl != r10_bio->read_slot); 2385 rcu_read_unlock(); 2386 2387 if (!success) { 2388 /* Cannot read from anywhere, just mark the block 2389 * as bad on the first device to discourage future 2390 * reads. 2391 */ 2392 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2393 rdev = conf->mirrors[dn].rdev; 2394 2395 if (!rdev_set_badblocks( 2396 rdev, 2397 r10_bio->devs[r10_bio->read_slot].addr 2398 + sect, 2399 s, 0)) { 2400 md_error(mddev, rdev); 2401 r10_bio->devs[r10_bio->read_slot].bio 2402 = IO_BLOCKED; 2403 } 2404 break; 2405 } 2406 2407 start = sl; 2408 /* write it back and re-read */ 2409 rcu_read_lock(); 2410 while (sl != r10_bio->read_slot) { 2411 char b[BDEVNAME_SIZE]; 2412 2413 if (sl==0) 2414 sl = conf->copies; 2415 sl--; 2416 d = r10_bio->devs[sl].devnum; 2417 rdev = rcu_dereference(conf->mirrors[d].rdev); 2418 if (!rdev || 2419 test_bit(Faulty, &rdev->flags) || 2420 !test_bit(In_sync, &rdev->flags)) 2421 continue; 2422 2423 atomic_inc(&rdev->nr_pending); 2424 rcu_read_unlock(); 2425 if (r10_sync_page_io(rdev, 2426 r10_bio->devs[sl].addr + 2427 sect, 2428 s, conf->tmppage, WRITE) 2429 == 0) { 2430 /* Well, this device is dead */ 2431 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2432 mdname(mddev), s, 2433 (unsigned long long)( 2434 sect + 2435 choose_data_offset(r10_bio, 2436 rdev)), 2437 bdevname(rdev->bdev, b)); 2438 pr_notice("md/raid10:%s: %s: failing drive\n", 2439 mdname(mddev), 2440 bdevname(rdev->bdev, b)); 2441 } 2442 rdev_dec_pending(rdev, mddev); 2443 rcu_read_lock(); 2444 } 2445 sl = start; 2446 while (sl != r10_bio->read_slot) { 2447 char b[BDEVNAME_SIZE]; 2448 2449 if (sl==0) 2450 sl = conf->copies; 2451 sl--; 2452 d = r10_bio->devs[sl].devnum; 2453 rdev = rcu_dereference(conf->mirrors[d].rdev); 2454 if (!rdev || 2455 test_bit(Faulty, &rdev->flags) || 2456 !test_bit(In_sync, &rdev->flags)) 2457 continue; 2458 2459 atomic_inc(&rdev->nr_pending); 2460 rcu_read_unlock(); 2461 switch (r10_sync_page_io(rdev, 2462 r10_bio->devs[sl].addr + 2463 sect, 2464 s, conf->tmppage, 2465 READ)) { 2466 case 0: 2467 /* Well, this device is dead */ 2468 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2469 mdname(mddev), s, 2470 (unsigned long long)( 2471 sect + 2472 choose_data_offset(r10_bio, rdev)), 2473 bdevname(rdev->bdev, b)); 2474 pr_notice("md/raid10:%s: %s: failing drive\n", 2475 mdname(mddev), 2476 bdevname(rdev->bdev, b)); 2477 break; 2478 case 1: 2479 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2480 mdname(mddev), s, 2481 (unsigned long long)( 2482 sect + 2483 choose_data_offset(r10_bio, rdev)), 2484 bdevname(rdev->bdev, b)); 2485 atomic_add(s, &rdev->corrected_errors); 2486 } 2487 2488 rdev_dec_pending(rdev, mddev); 2489 rcu_read_lock(); 2490 } 2491 rcu_read_unlock(); 2492 2493 sectors -= s; 2494 sect += s; 2495 } 2496 } 2497 2498 static int narrow_write_error(struct r10bio *r10_bio, int i) 2499 { 2500 struct bio *bio = r10_bio->master_bio; 2501 struct mddev *mddev = r10_bio->mddev; 2502 struct r10conf *conf = mddev->private; 2503 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2504 /* bio has the data to be written to slot 'i' where 2505 * we just recently had a write error. 2506 * We repeatedly clone the bio and trim down to one block, 2507 * then try the write. Where the write fails we record 2508 * a bad block. 2509 * It is conceivable that the bio doesn't exactly align with 2510 * blocks. We must handle this. 2511 * 2512 * We currently own a reference to the rdev. 2513 */ 2514 2515 int block_sectors; 2516 sector_t sector; 2517 int sectors; 2518 int sect_to_write = r10_bio->sectors; 2519 int ok = 1; 2520 2521 if (rdev->badblocks.shift < 0) 2522 return 0; 2523 2524 block_sectors = roundup(1 << rdev->badblocks.shift, 2525 bdev_logical_block_size(rdev->bdev) >> 9); 2526 sector = r10_bio->sector; 2527 sectors = ((r10_bio->sector + block_sectors) 2528 & ~(sector_t)(block_sectors - 1)) 2529 - sector; 2530 2531 while (sect_to_write) { 2532 struct bio *wbio; 2533 sector_t wsector; 2534 if (sectors > sect_to_write) 2535 sectors = sect_to_write; 2536 /* Write at 'sector' for 'sectors' */ 2537 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 2538 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2539 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2540 wbio->bi_iter.bi_sector = wsector + 2541 choose_data_offset(r10_bio, rdev); 2542 bio_set_dev(wbio, rdev->bdev); 2543 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2544 2545 if (submit_bio_wait(wbio) < 0) 2546 /* Failure! */ 2547 ok = rdev_set_badblocks(rdev, wsector, 2548 sectors, 0) 2549 && ok; 2550 2551 bio_put(wbio); 2552 sect_to_write -= sectors; 2553 sector += sectors; 2554 sectors = block_sectors; 2555 } 2556 return ok; 2557 } 2558 2559 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2560 { 2561 int slot = r10_bio->read_slot; 2562 struct bio *bio; 2563 struct r10conf *conf = mddev->private; 2564 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2565 2566 /* we got a read error. Maybe the drive is bad. Maybe just 2567 * the block and we can fix it. 2568 * We freeze all other IO, and try reading the block from 2569 * other devices. When we find one, we re-write 2570 * and check it that fixes the read error. 2571 * This is all done synchronously while the array is 2572 * frozen. 2573 */ 2574 bio = r10_bio->devs[slot].bio; 2575 bio_put(bio); 2576 r10_bio->devs[slot].bio = NULL; 2577 2578 if (mddev->ro) 2579 r10_bio->devs[slot].bio = IO_BLOCKED; 2580 else if (!test_bit(FailFast, &rdev->flags)) { 2581 freeze_array(conf, 1); 2582 fix_read_error(conf, mddev, r10_bio); 2583 unfreeze_array(conf); 2584 } else 2585 md_error(mddev, rdev); 2586 2587 rdev_dec_pending(rdev, mddev); 2588 allow_barrier(conf); 2589 r10_bio->state = 0; 2590 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2591 } 2592 2593 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2594 { 2595 /* Some sort of write request has finished and it 2596 * succeeded in writing where we thought there was a 2597 * bad block. So forget the bad block. 2598 * Or possibly if failed and we need to record 2599 * a bad block. 2600 */ 2601 int m; 2602 struct md_rdev *rdev; 2603 2604 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2605 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2606 for (m = 0; m < conf->copies; m++) { 2607 int dev = r10_bio->devs[m].devnum; 2608 rdev = conf->mirrors[dev].rdev; 2609 if (r10_bio->devs[m].bio == NULL || 2610 r10_bio->devs[m].bio->bi_end_io == NULL) 2611 continue; 2612 if (!r10_bio->devs[m].bio->bi_status) { 2613 rdev_clear_badblocks( 2614 rdev, 2615 r10_bio->devs[m].addr, 2616 r10_bio->sectors, 0); 2617 } else { 2618 if (!rdev_set_badblocks( 2619 rdev, 2620 r10_bio->devs[m].addr, 2621 r10_bio->sectors, 0)) 2622 md_error(conf->mddev, rdev); 2623 } 2624 rdev = conf->mirrors[dev].replacement; 2625 if (r10_bio->devs[m].repl_bio == NULL || 2626 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2627 continue; 2628 2629 if (!r10_bio->devs[m].repl_bio->bi_status) { 2630 rdev_clear_badblocks( 2631 rdev, 2632 r10_bio->devs[m].addr, 2633 r10_bio->sectors, 0); 2634 } else { 2635 if (!rdev_set_badblocks( 2636 rdev, 2637 r10_bio->devs[m].addr, 2638 r10_bio->sectors, 0)) 2639 md_error(conf->mddev, rdev); 2640 } 2641 } 2642 put_buf(r10_bio); 2643 } else { 2644 bool fail = false; 2645 for (m = 0; m < conf->copies; m++) { 2646 int dev = r10_bio->devs[m].devnum; 2647 struct bio *bio = r10_bio->devs[m].bio; 2648 rdev = conf->mirrors[dev].rdev; 2649 if (bio == IO_MADE_GOOD) { 2650 rdev_clear_badblocks( 2651 rdev, 2652 r10_bio->devs[m].addr, 2653 r10_bio->sectors, 0); 2654 rdev_dec_pending(rdev, conf->mddev); 2655 } else if (bio != NULL && bio->bi_status) { 2656 fail = true; 2657 if (!narrow_write_error(r10_bio, m)) { 2658 md_error(conf->mddev, rdev); 2659 set_bit(R10BIO_Degraded, 2660 &r10_bio->state); 2661 } 2662 rdev_dec_pending(rdev, conf->mddev); 2663 } 2664 bio = r10_bio->devs[m].repl_bio; 2665 rdev = conf->mirrors[dev].replacement; 2666 if (rdev && bio == IO_MADE_GOOD) { 2667 rdev_clear_badblocks( 2668 rdev, 2669 r10_bio->devs[m].addr, 2670 r10_bio->sectors, 0); 2671 rdev_dec_pending(rdev, conf->mddev); 2672 } 2673 } 2674 if (fail) { 2675 spin_lock_irq(&conf->device_lock); 2676 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2677 conf->nr_queued++; 2678 spin_unlock_irq(&conf->device_lock); 2679 /* 2680 * In case freeze_array() is waiting for condition 2681 * nr_pending == nr_queued + extra to be true. 2682 */ 2683 wake_up(&conf->wait_barrier); 2684 md_wakeup_thread(conf->mddev->thread); 2685 } else { 2686 if (test_bit(R10BIO_WriteError, 2687 &r10_bio->state)) 2688 close_write(r10_bio); 2689 raid_end_bio_io(r10_bio); 2690 } 2691 } 2692 } 2693 2694 static void raid10d(struct md_thread *thread) 2695 { 2696 struct mddev *mddev = thread->mddev; 2697 struct r10bio *r10_bio; 2698 unsigned long flags; 2699 struct r10conf *conf = mddev->private; 2700 struct list_head *head = &conf->retry_list; 2701 struct blk_plug plug; 2702 2703 md_check_recovery(mddev); 2704 2705 if (!list_empty_careful(&conf->bio_end_io_list) && 2706 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2707 LIST_HEAD(tmp); 2708 spin_lock_irqsave(&conf->device_lock, flags); 2709 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2710 while (!list_empty(&conf->bio_end_io_list)) { 2711 list_move(conf->bio_end_io_list.prev, &tmp); 2712 conf->nr_queued--; 2713 } 2714 } 2715 spin_unlock_irqrestore(&conf->device_lock, flags); 2716 while (!list_empty(&tmp)) { 2717 r10_bio = list_first_entry(&tmp, struct r10bio, 2718 retry_list); 2719 list_del(&r10_bio->retry_list); 2720 if (mddev->degraded) 2721 set_bit(R10BIO_Degraded, &r10_bio->state); 2722 2723 if (test_bit(R10BIO_WriteError, 2724 &r10_bio->state)) 2725 close_write(r10_bio); 2726 raid_end_bio_io(r10_bio); 2727 } 2728 } 2729 2730 blk_start_plug(&plug); 2731 for (;;) { 2732 2733 flush_pending_writes(conf); 2734 2735 spin_lock_irqsave(&conf->device_lock, flags); 2736 if (list_empty(head)) { 2737 spin_unlock_irqrestore(&conf->device_lock, flags); 2738 break; 2739 } 2740 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2741 list_del(head->prev); 2742 conf->nr_queued--; 2743 spin_unlock_irqrestore(&conf->device_lock, flags); 2744 2745 mddev = r10_bio->mddev; 2746 conf = mddev->private; 2747 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2748 test_bit(R10BIO_WriteError, &r10_bio->state)) 2749 handle_write_completed(conf, r10_bio); 2750 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2751 reshape_request_write(mddev, r10_bio); 2752 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2753 sync_request_write(mddev, r10_bio); 2754 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2755 recovery_request_write(mddev, r10_bio); 2756 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2757 handle_read_error(mddev, r10_bio); 2758 else 2759 WARN_ON_ONCE(1); 2760 2761 cond_resched(); 2762 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2763 md_check_recovery(mddev); 2764 } 2765 blk_finish_plug(&plug); 2766 } 2767 2768 static int init_resync(struct r10conf *conf) 2769 { 2770 int ret, buffs, i; 2771 2772 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2773 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 2774 conf->have_replacement = 0; 2775 for (i = 0; i < conf->geo.raid_disks; i++) 2776 if (conf->mirrors[i].replacement) 2777 conf->have_replacement = 1; 2778 ret = mempool_init(&conf->r10buf_pool, buffs, 2779 r10buf_pool_alloc, r10buf_pool_free, conf); 2780 if (ret) 2781 return ret; 2782 conf->next_resync = 0; 2783 return 0; 2784 } 2785 2786 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 2787 { 2788 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 2789 struct rsync_pages *rp; 2790 struct bio *bio; 2791 int nalloc; 2792 int i; 2793 2794 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 2795 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 2796 nalloc = conf->copies; /* resync */ 2797 else 2798 nalloc = 2; /* recovery */ 2799 2800 for (i = 0; i < nalloc; i++) { 2801 bio = r10bio->devs[i].bio; 2802 rp = bio->bi_private; 2803 bio_reset(bio); 2804 bio->bi_private = rp; 2805 bio = r10bio->devs[i].repl_bio; 2806 if (bio) { 2807 rp = bio->bi_private; 2808 bio_reset(bio); 2809 bio->bi_private = rp; 2810 } 2811 } 2812 return r10bio; 2813 } 2814 2815 /* 2816 * Set cluster_sync_high since we need other nodes to add the 2817 * range [cluster_sync_low, cluster_sync_high] to suspend list. 2818 */ 2819 static void raid10_set_cluster_sync_high(struct r10conf *conf) 2820 { 2821 sector_t window_size; 2822 int extra_chunk, chunks; 2823 2824 /* 2825 * First, here we define "stripe" as a unit which across 2826 * all member devices one time, so we get chunks by use 2827 * raid_disks / near_copies. Otherwise, if near_copies is 2828 * close to raid_disks, then resync window could increases 2829 * linearly with the increase of raid_disks, which means 2830 * we will suspend a really large IO window while it is not 2831 * necessary. If raid_disks is not divisible by near_copies, 2832 * an extra chunk is needed to ensure the whole "stripe" is 2833 * covered. 2834 */ 2835 2836 chunks = conf->geo.raid_disks / conf->geo.near_copies; 2837 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 2838 extra_chunk = 0; 2839 else 2840 extra_chunk = 1; 2841 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 2842 2843 /* 2844 * At least use a 32M window to align with raid1's resync window 2845 */ 2846 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 2847 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 2848 2849 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 2850 } 2851 2852 /* 2853 * perform a "sync" on one "block" 2854 * 2855 * We need to make sure that no normal I/O request - particularly write 2856 * requests - conflict with active sync requests. 2857 * 2858 * This is achieved by tracking pending requests and a 'barrier' concept 2859 * that can be installed to exclude normal IO requests. 2860 * 2861 * Resync and recovery are handled very differently. 2862 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2863 * 2864 * For resync, we iterate over virtual addresses, read all copies, 2865 * and update if there are differences. If only one copy is live, 2866 * skip it. 2867 * For recovery, we iterate over physical addresses, read a good 2868 * value for each non-in_sync drive, and over-write. 2869 * 2870 * So, for recovery we may have several outstanding complex requests for a 2871 * given address, one for each out-of-sync device. We model this by allocating 2872 * a number of r10_bio structures, one for each out-of-sync device. 2873 * As we setup these structures, we collect all bio's together into a list 2874 * which we then process collectively to add pages, and then process again 2875 * to pass to submit_bio_noacct. 2876 * 2877 * The r10_bio structures are linked using a borrowed master_bio pointer. 2878 * This link is counted in ->remaining. When the r10_bio that points to NULL 2879 * has its remaining count decremented to 0, the whole complex operation 2880 * is complete. 2881 * 2882 */ 2883 2884 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 2885 int *skipped) 2886 { 2887 struct r10conf *conf = mddev->private; 2888 struct r10bio *r10_bio; 2889 struct bio *biolist = NULL, *bio; 2890 sector_t max_sector, nr_sectors; 2891 int i; 2892 int max_sync; 2893 sector_t sync_blocks; 2894 sector_t sectors_skipped = 0; 2895 int chunks_skipped = 0; 2896 sector_t chunk_mask = conf->geo.chunk_mask; 2897 int page_idx = 0; 2898 2899 if (!mempool_initialized(&conf->r10buf_pool)) 2900 if (init_resync(conf)) 2901 return 0; 2902 2903 /* 2904 * Allow skipping a full rebuild for incremental assembly 2905 * of a clean array, like RAID1 does. 2906 */ 2907 if (mddev->bitmap == NULL && 2908 mddev->recovery_cp == MaxSector && 2909 mddev->reshape_position == MaxSector && 2910 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2911 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2912 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2913 conf->fullsync == 0) { 2914 *skipped = 1; 2915 return mddev->dev_sectors - sector_nr; 2916 } 2917 2918 skipped: 2919 max_sector = mddev->dev_sectors; 2920 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2921 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2922 max_sector = mddev->resync_max_sectors; 2923 if (sector_nr >= max_sector) { 2924 conf->cluster_sync_low = 0; 2925 conf->cluster_sync_high = 0; 2926 2927 /* If we aborted, we need to abort the 2928 * sync on the 'current' bitmap chucks (there can 2929 * be several when recovering multiple devices). 2930 * as we may have started syncing it but not finished. 2931 * We can find the current address in 2932 * mddev->curr_resync, but for recovery, 2933 * we need to convert that to several 2934 * virtual addresses. 2935 */ 2936 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2937 end_reshape(conf); 2938 close_sync(conf); 2939 return 0; 2940 } 2941 2942 if (mddev->curr_resync < max_sector) { /* aborted */ 2943 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2944 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2945 &sync_blocks, 1); 2946 else for (i = 0; i < conf->geo.raid_disks; i++) { 2947 sector_t sect = 2948 raid10_find_virt(conf, mddev->curr_resync, i); 2949 md_bitmap_end_sync(mddev->bitmap, sect, 2950 &sync_blocks, 1); 2951 } 2952 } else { 2953 /* completed sync */ 2954 if ((!mddev->bitmap || conf->fullsync) 2955 && conf->have_replacement 2956 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2957 /* Completed a full sync so the replacements 2958 * are now fully recovered. 2959 */ 2960 rcu_read_lock(); 2961 for (i = 0; i < conf->geo.raid_disks; i++) { 2962 struct md_rdev *rdev = 2963 rcu_dereference(conf->mirrors[i].replacement); 2964 if (rdev) 2965 rdev->recovery_offset = MaxSector; 2966 } 2967 rcu_read_unlock(); 2968 } 2969 conf->fullsync = 0; 2970 } 2971 md_bitmap_close_sync(mddev->bitmap); 2972 close_sync(conf); 2973 *skipped = 1; 2974 return sectors_skipped; 2975 } 2976 2977 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2978 return reshape_request(mddev, sector_nr, skipped); 2979 2980 if (chunks_skipped >= conf->geo.raid_disks) { 2981 /* if there has been nothing to do on any drive, 2982 * then there is nothing to do at all.. 2983 */ 2984 *skipped = 1; 2985 return (max_sector - sector_nr) + sectors_skipped; 2986 } 2987 2988 if (max_sector > mddev->resync_max) 2989 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2990 2991 /* make sure whole request will fit in a chunk - if chunks 2992 * are meaningful 2993 */ 2994 if (conf->geo.near_copies < conf->geo.raid_disks && 2995 max_sector > (sector_nr | chunk_mask)) 2996 max_sector = (sector_nr | chunk_mask) + 1; 2997 2998 /* 2999 * If there is non-resync activity waiting for a turn, then let it 3000 * though before starting on this new sync request. 3001 */ 3002 if (conf->nr_waiting) 3003 schedule_timeout_uninterruptible(1); 3004 3005 /* Again, very different code for resync and recovery. 3006 * Both must result in an r10bio with a list of bios that 3007 * have bi_end_io, bi_sector, bi_disk set, 3008 * and bi_private set to the r10bio. 3009 * For recovery, we may actually create several r10bios 3010 * with 2 bios in each, that correspond to the bios in the main one. 3011 * In this case, the subordinate r10bios link back through a 3012 * borrowed master_bio pointer, and the counter in the master 3013 * includes a ref from each subordinate. 3014 */ 3015 /* First, we decide what to do and set ->bi_end_io 3016 * To end_sync_read if we want to read, and 3017 * end_sync_write if we will want to write. 3018 */ 3019 3020 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3021 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3022 /* recovery... the complicated one */ 3023 int j; 3024 r10_bio = NULL; 3025 3026 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3027 int still_degraded; 3028 struct r10bio *rb2; 3029 sector_t sect; 3030 int must_sync; 3031 int any_working; 3032 int need_recover = 0; 3033 int need_replace = 0; 3034 struct raid10_info *mirror = &conf->mirrors[i]; 3035 struct md_rdev *mrdev, *mreplace; 3036 3037 rcu_read_lock(); 3038 mrdev = rcu_dereference(mirror->rdev); 3039 mreplace = rcu_dereference(mirror->replacement); 3040 3041 if (mrdev != NULL && 3042 !test_bit(Faulty, &mrdev->flags) && 3043 !test_bit(In_sync, &mrdev->flags)) 3044 need_recover = 1; 3045 if (mreplace != NULL && 3046 !test_bit(Faulty, &mreplace->flags)) 3047 need_replace = 1; 3048 3049 if (!need_recover && !need_replace) { 3050 rcu_read_unlock(); 3051 continue; 3052 } 3053 3054 still_degraded = 0; 3055 /* want to reconstruct this device */ 3056 rb2 = r10_bio; 3057 sect = raid10_find_virt(conf, sector_nr, i); 3058 if (sect >= mddev->resync_max_sectors) { 3059 /* last stripe is not complete - don't 3060 * try to recover this sector. 3061 */ 3062 rcu_read_unlock(); 3063 continue; 3064 } 3065 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3066 mreplace = NULL; 3067 /* Unless we are doing a full sync, or a replacement 3068 * we only need to recover the block if it is set in 3069 * the bitmap 3070 */ 3071 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3072 &sync_blocks, 1); 3073 if (sync_blocks < max_sync) 3074 max_sync = sync_blocks; 3075 if (!must_sync && 3076 mreplace == NULL && 3077 !conf->fullsync) { 3078 /* yep, skip the sync_blocks here, but don't assume 3079 * that there will never be anything to do here 3080 */ 3081 chunks_skipped = -1; 3082 rcu_read_unlock(); 3083 continue; 3084 } 3085 atomic_inc(&mrdev->nr_pending); 3086 if (mreplace) 3087 atomic_inc(&mreplace->nr_pending); 3088 rcu_read_unlock(); 3089 3090 r10_bio = raid10_alloc_init_r10buf(conf); 3091 r10_bio->state = 0; 3092 raise_barrier(conf, rb2 != NULL); 3093 atomic_set(&r10_bio->remaining, 0); 3094 3095 r10_bio->master_bio = (struct bio*)rb2; 3096 if (rb2) 3097 atomic_inc(&rb2->remaining); 3098 r10_bio->mddev = mddev; 3099 set_bit(R10BIO_IsRecover, &r10_bio->state); 3100 r10_bio->sector = sect; 3101 3102 raid10_find_phys(conf, r10_bio); 3103 3104 /* Need to check if the array will still be 3105 * degraded 3106 */ 3107 rcu_read_lock(); 3108 for (j = 0; j < conf->geo.raid_disks; j++) { 3109 struct md_rdev *rdev = rcu_dereference( 3110 conf->mirrors[j].rdev); 3111 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3112 still_degraded = 1; 3113 break; 3114 } 3115 } 3116 3117 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3118 &sync_blocks, still_degraded); 3119 3120 any_working = 0; 3121 for (j=0; j<conf->copies;j++) { 3122 int k; 3123 int d = r10_bio->devs[j].devnum; 3124 sector_t from_addr, to_addr; 3125 struct md_rdev *rdev = 3126 rcu_dereference(conf->mirrors[d].rdev); 3127 sector_t sector, first_bad; 3128 int bad_sectors; 3129 if (!rdev || 3130 !test_bit(In_sync, &rdev->flags)) 3131 continue; 3132 /* This is where we read from */ 3133 any_working = 1; 3134 sector = r10_bio->devs[j].addr; 3135 3136 if (is_badblock(rdev, sector, max_sync, 3137 &first_bad, &bad_sectors)) { 3138 if (first_bad > sector) 3139 max_sync = first_bad - sector; 3140 else { 3141 bad_sectors -= (sector 3142 - first_bad); 3143 if (max_sync > bad_sectors) 3144 max_sync = bad_sectors; 3145 continue; 3146 } 3147 } 3148 bio = r10_bio->devs[0].bio; 3149 bio->bi_next = biolist; 3150 biolist = bio; 3151 bio->bi_end_io = end_sync_read; 3152 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3153 if (test_bit(FailFast, &rdev->flags)) 3154 bio->bi_opf |= MD_FAILFAST; 3155 from_addr = r10_bio->devs[j].addr; 3156 bio->bi_iter.bi_sector = from_addr + 3157 rdev->data_offset; 3158 bio_set_dev(bio, rdev->bdev); 3159 atomic_inc(&rdev->nr_pending); 3160 /* and we write to 'i' (if not in_sync) */ 3161 3162 for (k=0; k<conf->copies; k++) 3163 if (r10_bio->devs[k].devnum == i) 3164 break; 3165 BUG_ON(k == conf->copies); 3166 to_addr = r10_bio->devs[k].addr; 3167 r10_bio->devs[0].devnum = d; 3168 r10_bio->devs[0].addr = from_addr; 3169 r10_bio->devs[1].devnum = i; 3170 r10_bio->devs[1].addr = to_addr; 3171 3172 if (need_recover) { 3173 bio = r10_bio->devs[1].bio; 3174 bio->bi_next = biolist; 3175 biolist = bio; 3176 bio->bi_end_io = end_sync_write; 3177 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3178 bio->bi_iter.bi_sector = to_addr 3179 + mrdev->data_offset; 3180 bio_set_dev(bio, mrdev->bdev); 3181 atomic_inc(&r10_bio->remaining); 3182 } else 3183 r10_bio->devs[1].bio->bi_end_io = NULL; 3184 3185 /* and maybe write to replacement */ 3186 bio = r10_bio->devs[1].repl_bio; 3187 if (bio) 3188 bio->bi_end_io = NULL; 3189 /* Note: if need_replace, then bio 3190 * cannot be NULL as r10buf_pool_alloc will 3191 * have allocated it. 3192 */ 3193 if (!need_replace) 3194 break; 3195 bio->bi_next = biolist; 3196 biolist = bio; 3197 bio->bi_end_io = end_sync_write; 3198 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3199 bio->bi_iter.bi_sector = to_addr + 3200 mreplace->data_offset; 3201 bio_set_dev(bio, mreplace->bdev); 3202 atomic_inc(&r10_bio->remaining); 3203 break; 3204 } 3205 rcu_read_unlock(); 3206 if (j == conf->copies) { 3207 /* Cannot recover, so abort the recovery or 3208 * record a bad block */ 3209 if (any_working) { 3210 /* problem is that there are bad blocks 3211 * on other device(s) 3212 */ 3213 int k; 3214 for (k = 0; k < conf->copies; k++) 3215 if (r10_bio->devs[k].devnum == i) 3216 break; 3217 if (!test_bit(In_sync, 3218 &mrdev->flags) 3219 && !rdev_set_badblocks( 3220 mrdev, 3221 r10_bio->devs[k].addr, 3222 max_sync, 0)) 3223 any_working = 0; 3224 if (mreplace && 3225 !rdev_set_badblocks( 3226 mreplace, 3227 r10_bio->devs[k].addr, 3228 max_sync, 0)) 3229 any_working = 0; 3230 } 3231 if (!any_working) { 3232 if (!test_and_set_bit(MD_RECOVERY_INTR, 3233 &mddev->recovery)) 3234 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3235 mdname(mddev)); 3236 mirror->recovery_disabled 3237 = mddev->recovery_disabled; 3238 } 3239 put_buf(r10_bio); 3240 if (rb2) 3241 atomic_dec(&rb2->remaining); 3242 r10_bio = rb2; 3243 rdev_dec_pending(mrdev, mddev); 3244 if (mreplace) 3245 rdev_dec_pending(mreplace, mddev); 3246 break; 3247 } 3248 rdev_dec_pending(mrdev, mddev); 3249 if (mreplace) 3250 rdev_dec_pending(mreplace, mddev); 3251 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3252 /* Only want this if there is elsewhere to 3253 * read from. 'j' is currently the first 3254 * readable copy. 3255 */ 3256 int targets = 1; 3257 for (; j < conf->copies; j++) { 3258 int d = r10_bio->devs[j].devnum; 3259 if (conf->mirrors[d].rdev && 3260 test_bit(In_sync, 3261 &conf->mirrors[d].rdev->flags)) 3262 targets++; 3263 } 3264 if (targets == 1) 3265 r10_bio->devs[0].bio->bi_opf 3266 &= ~MD_FAILFAST; 3267 } 3268 } 3269 if (biolist == NULL) { 3270 while (r10_bio) { 3271 struct r10bio *rb2 = r10_bio; 3272 r10_bio = (struct r10bio*) rb2->master_bio; 3273 rb2->master_bio = NULL; 3274 put_buf(rb2); 3275 } 3276 goto giveup; 3277 } 3278 } else { 3279 /* resync. Schedule a read for every block at this virt offset */ 3280 int count = 0; 3281 3282 /* 3283 * Since curr_resync_completed could probably not update in 3284 * time, and we will set cluster_sync_low based on it. 3285 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3286 * safety reason, which ensures curr_resync_completed is 3287 * updated in bitmap_cond_end_sync. 3288 */ 3289 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3290 mddev_is_clustered(mddev) && 3291 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3292 3293 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3294 &sync_blocks, mddev->degraded) && 3295 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3296 &mddev->recovery)) { 3297 /* We can skip this block */ 3298 *skipped = 1; 3299 return sync_blocks + sectors_skipped; 3300 } 3301 if (sync_blocks < max_sync) 3302 max_sync = sync_blocks; 3303 r10_bio = raid10_alloc_init_r10buf(conf); 3304 r10_bio->state = 0; 3305 3306 r10_bio->mddev = mddev; 3307 atomic_set(&r10_bio->remaining, 0); 3308 raise_barrier(conf, 0); 3309 conf->next_resync = sector_nr; 3310 3311 r10_bio->master_bio = NULL; 3312 r10_bio->sector = sector_nr; 3313 set_bit(R10BIO_IsSync, &r10_bio->state); 3314 raid10_find_phys(conf, r10_bio); 3315 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3316 3317 for (i = 0; i < conf->copies; i++) { 3318 int d = r10_bio->devs[i].devnum; 3319 sector_t first_bad, sector; 3320 int bad_sectors; 3321 struct md_rdev *rdev; 3322 3323 if (r10_bio->devs[i].repl_bio) 3324 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3325 3326 bio = r10_bio->devs[i].bio; 3327 bio->bi_status = BLK_STS_IOERR; 3328 rcu_read_lock(); 3329 rdev = rcu_dereference(conf->mirrors[d].rdev); 3330 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3331 rcu_read_unlock(); 3332 continue; 3333 } 3334 sector = r10_bio->devs[i].addr; 3335 if (is_badblock(rdev, sector, max_sync, 3336 &first_bad, &bad_sectors)) { 3337 if (first_bad > sector) 3338 max_sync = first_bad - sector; 3339 else { 3340 bad_sectors -= (sector - first_bad); 3341 if (max_sync > bad_sectors) 3342 max_sync = bad_sectors; 3343 rcu_read_unlock(); 3344 continue; 3345 } 3346 } 3347 atomic_inc(&rdev->nr_pending); 3348 atomic_inc(&r10_bio->remaining); 3349 bio->bi_next = biolist; 3350 biolist = bio; 3351 bio->bi_end_io = end_sync_read; 3352 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3353 if (test_bit(FailFast, &rdev->flags)) 3354 bio->bi_opf |= MD_FAILFAST; 3355 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3356 bio_set_dev(bio, rdev->bdev); 3357 count++; 3358 3359 rdev = rcu_dereference(conf->mirrors[d].replacement); 3360 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3361 rcu_read_unlock(); 3362 continue; 3363 } 3364 atomic_inc(&rdev->nr_pending); 3365 3366 /* Need to set up for writing to the replacement */ 3367 bio = r10_bio->devs[i].repl_bio; 3368 bio->bi_status = BLK_STS_IOERR; 3369 3370 sector = r10_bio->devs[i].addr; 3371 bio->bi_next = biolist; 3372 biolist = bio; 3373 bio->bi_end_io = end_sync_write; 3374 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3375 if (test_bit(FailFast, &rdev->flags)) 3376 bio->bi_opf |= MD_FAILFAST; 3377 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3378 bio_set_dev(bio, rdev->bdev); 3379 count++; 3380 rcu_read_unlock(); 3381 } 3382 3383 if (count < 2) { 3384 for (i=0; i<conf->copies; i++) { 3385 int d = r10_bio->devs[i].devnum; 3386 if (r10_bio->devs[i].bio->bi_end_io) 3387 rdev_dec_pending(conf->mirrors[d].rdev, 3388 mddev); 3389 if (r10_bio->devs[i].repl_bio && 3390 r10_bio->devs[i].repl_bio->bi_end_io) 3391 rdev_dec_pending( 3392 conf->mirrors[d].replacement, 3393 mddev); 3394 } 3395 put_buf(r10_bio); 3396 biolist = NULL; 3397 goto giveup; 3398 } 3399 } 3400 3401 nr_sectors = 0; 3402 if (sector_nr + max_sync < max_sector) 3403 max_sector = sector_nr + max_sync; 3404 do { 3405 struct page *page; 3406 int len = PAGE_SIZE; 3407 if (sector_nr + (len>>9) > max_sector) 3408 len = (max_sector - sector_nr) << 9; 3409 if (len == 0) 3410 break; 3411 for (bio= biolist ; bio ; bio=bio->bi_next) { 3412 struct resync_pages *rp = get_resync_pages(bio); 3413 page = resync_fetch_page(rp, page_idx); 3414 /* 3415 * won't fail because the vec table is big enough 3416 * to hold all these pages 3417 */ 3418 bio_add_page(bio, page, len, 0); 3419 } 3420 nr_sectors += len>>9; 3421 sector_nr += len>>9; 3422 } while (++page_idx < RESYNC_PAGES); 3423 r10_bio->sectors = nr_sectors; 3424 3425 if (mddev_is_clustered(mddev) && 3426 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3427 /* It is resync not recovery */ 3428 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3429 conf->cluster_sync_low = mddev->curr_resync_completed; 3430 raid10_set_cluster_sync_high(conf); 3431 /* Send resync message */ 3432 md_cluster_ops->resync_info_update(mddev, 3433 conf->cluster_sync_low, 3434 conf->cluster_sync_high); 3435 } 3436 } else if (mddev_is_clustered(mddev)) { 3437 /* This is recovery not resync */ 3438 sector_t sect_va1, sect_va2; 3439 bool broadcast_msg = false; 3440 3441 for (i = 0; i < conf->geo.raid_disks; i++) { 3442 /* 3443 * sector_nr is a device address for recovery, so we 3444 * need translate it to array address before compare 3445 * with cluster_sync_high. 3446 */ 3447 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3448 3449 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3450 broadcast_msg = true; 3451 /* 3452 * curr_resync_completed is similar as 3453 * sector_nr, so make the translation too. 3454 */ 3455 sect_va2 = raid10_find_virt(conf, 3456 mddev->curr_resync_completed, i); 3457 3458 if (conf->cluster_sync_low == 0 || 3459 conf->cluster_sync_low > sect_va2) 3460 conf->cluster_sync_low = sect_va2; 3461 } 3462 } 3463 if (broadcast_msg) { 3464 raid10_set_cluster_sync_high(conf); 3465 md_cluster_ops->resync_info_update(mddev, 3466 conf->cluster_sync_low, 3467 conf->cluster_sync_high); 3468 } 3469 } 3470 3471 while (biolist) { 3472 bio = biolist; 3473 biolist = biolist->bi_next; 3474 3475 bio->bi_next = NULL; 3476 r10_bio = get_resync_r10bio(bio); 3477 r10_bio->sectors = nr_sectors; 3478 3479 if (bio->bi_end_io == end_sync_read) { 3480 md_sync_acct_bio(bio, nr_sectors); 3481 bio->bi_status = 0; 3482 submit_bio_noacct(bio); 3483 } 3484 } 3485 3486 if (sectors_skipped) 3487 /* pretend they weren't skipped, it makes 3488 * no important difference in this case 3489 */ 3490 md_done_sync(mddev, sectors_skipped, 1); 3491 3492 return sectors_skipped + nr_sectors; 3493 giveup: 3494 /* There is nowhere to write, so all non-sync 3495 * drives must be failed or in resync, all drives 3496 * have a bad block, so try the next chunk... 3497 */ 3498 if (sector_nr + max_sync < max_sector) 3499 max_sector = sector_nr + max_sync; 3500 3501 sectors_skipped += (max_sector - sector_nr); 3502 chunks_skipped ++; 3503 sector_nr = max_sector; 3504 goto skipped; 3505 } 3506 3507 static sector_t 3508 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3509 { 3510 sector_t size; 3511 struct r10conf *conf = mddev->private; 3512 3513 if (!raid_disks) 3514 raid_disks = min(conf->geo.raid_disks, 3515 conf->prev.raid_disks); 3516 if (!sectors) 3517 sectors = conf->dev_sectors; 3518 3519 size = sectors >> conf->geo.chunk_shift; 3520 sector_div(size, conf->geo.far_copies); 3521 size = size * raid_disks; 3522 sector_div(size, conf->geo.near_copies); 3523 3524 return size << conf->geo.chunk_shift; 3525 } 3526 3527 static void calc_sectors(struct r10conf *conf, sector_t size) 3528 { 3529 /* Calculate the number of sectors-per-device that will 3530 * actually be used, and set conf->dev_sectors and 3531 * conf->stride 3532 */ 3533 3534 size = size >> conf->geo.chunk_shift; 3535 sector_div(size, conf->geo.far_copies); 3536 size = size * conf->geo.raid_disks; 3537 sector_div(size, conf->geo.near_copies); 3538 /* 'size' is now the number of chunks in the array */ 3539 /* calculate "used chunks per device" */ 3540 size = size * conf->copies; 3541 3542 /* We need to round up when dividing by raid_disks to 3543 * get the stride size. 3544 */ 3545 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3546 3547 conf->dev_sectors = size << conf->geo.chunk_shift; 3548 3549 if (conf->geo.far_offset) 3550 conf->geo.stride = 1 << conf->geo.chunk_shift; 3551 else { 3552 sector_div(size, conf->geo.far_copies); 3553 conf->geo.stride = size << conf->geo.chunk_shift; 3554 } 3555 } 3556 3557 enum geo_type {geo_new, geo_old, geo_start}; 3558 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3559 { 3560 int nc, fc, fo; 3561 int layout, chunk, disks; 3562 switch (new) { 3563 case geo_old: 3564 layout = mddev->layout; 3565 chunk = mddev->chunk_sectors; 3566 disks = mddev->raid_disks - mddev->delta_disks; 3567 break; 3568 case geo_new: 3569 layout = mddev->new_layout; 3570 chunk = mddev->new_chunk_sectors; 3571 disks = mddev->raid_disks; 3572 break; 3573 default: /* avoid 'may be unused' warnings */ 3574 case geo_start: /* new when starting reshape - raid_disks not 3575 * updated yet. */ 3576 layout = mddev->new_layout; 3577 chunk = mddev->new_chunk_sectors; 3578 disks = mddev->raid_disks + mddev->delta_disks; 3579 break; 3580 } 3581 if (layout >> 19) 3582 return -1; 3583 if (chunk < (PAGE_SIZE >> 9) || 3584 !is_power_of_2(chunk)) 3585 return -2; 3586 nc = layout & 255; 3587 fc = (layout >> 8) & 255; 3588 fo = layout & (1<<16); 3589 geo->raid_disks = disks; 3590 geo->near_copies = nc; 3591 geo->far_copies = fc; 3592 geo->far_offset = fo; 3593 switch (layout >> 17) { 3594 case 0: /* original layout. simple but not always optimal */ 3595 geo->far_set_size = disks; 3596 break; 3597 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3598 * actually using this, but leave code here just in case.*/ 3599 geo->far_set_size = disks/fc; 3600 WARN(geo->far_set_size < fc, 3601 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3602 break; 3603 case 2: /* "improved" layout fixed to match documentation */ 3604 geo->far_set_size = fc * nc; 3605 break; 3606 default: /* Not a valid layout */ 3607 return -1; 3608 } 3609 geo->chunk_mask = chunk - 1; 3610 geo->chunk_shift = ffz(~chunk); 3611 return nc*fc; 3612 } 3613 3614 static struct r10conf *setup_conf(struct mddev *mddev) 3615 { 3616 struct r10conf *conf = NULL; 3617 int err = -EINVAL; 3618 struct geom geo; 3619 int copies; 3620 3621 copies = setup_geo(&geo, mddev, geo_new); 3622 3623 if (copies == -2) { 3624 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3625 mdname(mddev), PAGE_SIZE); 3626 goto out; 3627 } 3628 3629 if (copies < 2 || copies > mddev->raid_disks) { 3630 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3631 mdname(mddev), mddev->new_layout); 3632 goto out; 3633 } 3634 3635 err = -ENOMEM; 3636 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3637 if (!conf) 3638 goto out; 3639 3640 /* FIXME calc properly */ 3641 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3642 sizeof(struct raid10_info), 3643 GFP_KERNEL); 3644 if (!conf->mirrors) 3645 goto out; 3646 3647 conf->tmppage = alloc_page(GFP_KERNEL); 3648 if (!conf->tmppage) 3649 goto out; 3650 3651 conf->geo = geo; 3652 conf->copies = copies; 3653 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 3654 rbio_pool_free, conf); 3655 if (err) 3656 goto out; 3657 3658 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3659 if (err) 3660 goto out; 3661 3662 calc_sectors(conf, mddev->dev_sectors); 3663 if (mddev->reshape_position == MaxSector) { 3664 conf->prev = conf->geo; 3665 conf->reshape_progress = MaxSector; 3666 } else { 3667 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3668 err = -EINVAL; 3669 goto out; 3670 } 3671 conf->reshape_progress = mddev->reshape_position; 3672 if (conf->prev.far_offset) 3673 conf->prev.stride = 1 << conf->prev.chunk_shift; 3674 else 3675 /* far_copies must be 1 */ 3676 conf->prev.stride = conf->dev_sectors; 3677 } 3678 conf->reshape_safe = conf->reshape_progress; 3679 spin_lock_init(&conf->device_lock); 3680 INIT_LIST_HEAD(&conf->retry_list); 3681 INIT_LIST_HEAD(&conf->bio_end_io_list); 3682 3683 spin_lock_init(&conf->resync_lock); 3684 init_waitqueue_head(&conf->wait_barrier); 3685 atomic_set(&conf->nr_pending, 0); 3686 3687 err = -ENOMEM; 3688 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3689 if (!conf->thread) 3690 goto out; 3691 3692 conf->mddev = mddev; 3693 return conf; 3694 3695 out: 3696 if (conf) { 3697 mempool_exit(&conf->r10bio_pool); 3698 kfree(conf->mirrors); 3699 safe_put_page(conf->tmppage); 3700 bioset_exit(&conf->bio_split); 3701 kfree(conf); 3702 } 3703 return ERR_PTR(err); 3704 } 3705 3706 static int raid10_run(struct mddev *mddev) 3707 { 3708 struct r10conf *conf; 3709 int i, disk_idx, chunk_size; 3710 struct raid10_info *disk; 3711 struct md_rdev *rdev; 3712 sector_t size; 3713 sector_t min_offset_diff = 0; 3714 int first = 1; 3715 bool discard_supported = false; 3716 3717 if (mddev_init_writes_pending(mddev) < 0) 3718 return -ENOMEM; 3719 3720 if (mddev->private == NULL) { 3721 conf = setup_conf(mddev); 3722 if (IS_ERR(conf)) 3723 return PTR_ERR(conf); 3724 mddev->private = conf; 3725 } 3726 conf = mddev->private; 3727 if (!conf) 3728 goto out; 3729 3730 if (mddev_is_clustered(conf->mddev)) { 3731 int fc, fo; 3732 3733 fc = (mddev->layout >> 8) & 255; 3734 fo = mddev->layout & (1<<16); 3735 if (fc > 1 || fo > 0) { 3736 pr_err("only near layout is supported by clustered" 3737 " raid10\n"); 3738 goto out_free_conf; 3739 } 3740 } 3741 3742 mddev->thread = conf->thread; 3743 conf->thread = NULL; 3744 3745 chunk_size = mddev->chunk_sectors << 9; 3746 if (mddev->queue) { 3747 blk_queue_max_discard_sectors(mddev->queue, 3748 mddev->chunk_sectors); 3749 blk_queue_max_write_same_sectors(mddev->queue, 0); 3750 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3751 blk_queue_io_min(mddev->queue, chunk_size); 3752 if (conf->geo.raid_disks % conf->geo.near_copies) 3753 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3754 else 3755 blk_queue_io_opt(mddev->queue, chunk_size * 3756 (conf->geo.raid_disks / conf->geo.near_copies)); 3757 } 3758 3759 rdev_for_each(rdev, mddev) { 3760 long long diff; 3761 3762 disk_idx = rdev->raid_disk; 3763 if (disk_idx < 0) 3764 continue; 3765 if (disk_idx >= conf->geo.raid_disks && 3766 disk_idx >= conf->prev.raid_disks) 3767 continue; 3768 disk = conf->mirrors + disk_idx; 3769 3770 if (test_bit(Replacement, &rdev->flags)) { 3771 if (disk->replacement) 3772 goto out_free_conf; 3773 disk->replacement = rdev; 3774 } else { 3775 if (disk->rdev) 3776 goto out_free_conf; 3777 disk->rdev = rdev; 3778 } 3779 diff = (rdev->new_data_offset - rdev->data_offset); 3780 if (!mddev->reshape_backwards) 3781 diff = -diff; 3782 if (diff < 0) 3783 diff = 0; 3784 if (first || diff < min_offset_diff) 3785 min_offset_diff = diff; 3786 3787 if (mddev->gendisk) 3788 disk_stack_limits(mddev->gendisk, rdev->bdev, 3789 rdev->data_offset << 9); 3790 3791 disk->head_position = 0; 3792 3793 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3794 discard_supported = true; 3795 first = 0; 3796 } 3797 3798 if (mddev->queue) { 3799 if (discard_supported) 3800 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3801 mddev->queue); 3802 else 3803 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3804 mddev->queue); 3805 } 3806 /* need to check that every block has at least one working mirror */ 3807 if (!enough(conf, -1)) { 3808 pr_err("md/raid10:%s: not enough operational mirrors.\n", 3809 mdname(mddev)); 3810 goto out_free_conf; 3811 } 3812 3813 if (conf->reshape_progress != MaxSector) { 3814 /* must ensure that shape change is supported */ 3815 if (conf->geo.far_copies != 1 && 3816 conf->geo.far_offset == 0) 3817 goto out_free_conf; 3818 if (conf->prev.far_copies != 1 && 3819 conf->prev.far_offset == 0) 3820 goto out_free_conf; 3821 } 3822 3823 mddev->degraded = 0; 3824 for (i = 0; 3825 i < conf->geo.raid_disks 3826 || i < conf->prev.raid_disks; 3827 i++) { 3828 3829 disk = conf->mirrors + i; 3830 3831 if (!disk->rdev && disk->replacement) { 3832 /* The replacement is all we have - use it */ 3833 disk->rdev = disk->replacement; 3834 disk->replacement = NULL; 3835 clear_bit(Replacement, &disk->rdev->flags); 3836 } 3837 3838 if (!disk->rdev || 3839 !test_bit(In_sync, &disk->rdev->flags)) { 3840 disk->head_position = 0; 3841 mddev->degraded++; 3842 if (disk->rdev && 3843 disk->rdev->saved_raid_disk < 0) 3844 conf->fullsync = 1; 3845 } 3846 3847 if (disk->replacement && 3848 !test_bit(In_sync, &disk->replacement->flags) && 3849 disk->replacement->saved_raid_disk < 0) { 3850 conf->fullsync = 1; 3851 } 3852 3853 disk->recovery_disabled = mddev->recovery_disabled - 1; 3854 } 3855 3856 if (mddev->recovery_cp != MaxSector) 3857 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 3858 mdname(mddev)); 3859 pr_info("md/raid10:%s: active with %d out of %d devices\n", 3860 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3861 conf->geo.raid_disks); 3862 /* 3863 * Ok, everything is just fine now 3864 */ 3865 mddev->dev_sectors = conf->dev_sectors; 3866 size = raid10_size(mddev, 0, 0); 3867 md_set_array_sectors(mddev, size); 3868 mddev->resync_max_sectors = size; 3869 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3870 3871 if (mddev->queue) { 3872 int stripe = conf->geo.raid_disks * 3873 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3874 3875 /* Calculate max read-ahead size. 3876 * We need to readahead at least twice a whole stripe.... 3877 * maybe... 3878 */ 3879 stripe /= conf->geo.near_copies; 3880 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 3881 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 3882 } 3883 3884 if (md_integrity_register(mddev)) 3885 goto out_free_conf; 3886 3887 if (conf->reshape_progress != MaxSector) { 3888 unsigned long before_length, after_length; 3889 3890 before_length = ((1 << conf->prev.chunk_shift) * 3891 conf->prev.far_copies); 3892 after_length = ((1 << conf->geo.chunk_shift) * 3893 conf->geo.far_copies); 3894 3895 if (max(before_length, after_length) > min_offset_diff) { 3896 /* This cannot work */ 3897 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 3898 goto out_free_conf; 3899 } 3900 conf->offset_diff = min_offset_diff; 3901 3902 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3903 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3904 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3905 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3906 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3907 "reshape"); 3908 if (!mddev->sync_thread) 3909 goto out_free_conf; 3910 } 3911 3912 return 0; 3913 3914 out_free_conf: 3915 md_unregister_thread(&mddev->thread); 3916 mempool_exit(&conf->r10bio_pool); 3917 safe_put_page(conf->tmppage); 3918 kfree(conf->mirrors); 3919 kfree(conf); 3920 mddev->private = NULL; 3921 out: 3922 return -EIO; 3923 } 3924 3925 static void raid10_free(struct mddev *mddev, void *priv) 3926 { 3927 struct r10conf *conf = priv; 3928 3929 mempool_exit(&conf->r10bio_pool); 3930 safe_put_page(conf->tmppage); 3931 kfree(conf->mirrors); 3932 kfree(conf->mirrors_old); 3933 kfree(conf->mirrors_new); 3934 bioset_exit(&conf->bio_split); 3935 kfree(conf); 3936 } 3937 3938 static void raid10_quiesce(struct mddev *mddev, int quiesce) 3939 { 3940 struct r10conf *conf = mddev->private; 3941 3942 if (quiesce) 3943 raise_barrier(conf, 0); 3944 else 3945 lower_barrier(conf); 3946 } 3947 3948 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3949 { 3950 /* Resize of 'far' arrays is not supported. 3951 * For 'near' and 'offset' arrays we can set the 3952 * number of sectors used to be an appropriate multiple 3953 * of the chunk size. 3954 * For 'offset', this is far_copies*chunksize. 3955 * For 'near' the multiplier is the LCM of 3956 * near_copies and raid_disks. 3957 * So if far_copies > 1 && !far_offset, fail. 3958 * Else find LCM(raid_disks, near_copy)*far_copies and 3959 * multiply by chunk_size. Then round to this number. 3960 * This is mostly done by raid10_size() 3961 */ 3962 struct r10conf *conf = mddev->private; 3963 sector_t oldsize, size; 3964 3965 if (mddev->reshape_position != MaxSector) 3966 return -EBUSY; 3967 3968 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3969 return -EINVAL; 3970 3971 oldsize = raid10_size(mddev, 0, 0); 3972 size = raid10_size(mddev, sectors, 0); 3973 if (mddev->external_size && 3974 mddev->array_sectors > size) 3975 return -EINVAL; 3976 if (mddev->bitmap) { 3977 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 3978 if (ret) 3979 return ret; 3980 } 3981 md_set_array_sectors(mddev, size); 3982 if (sectors > mddev->dev_sectors && 3983 mddev->recovery_cp > oldsize) { 3984 mddev->recovery_cp = oldsize; 3985 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3986 } 3987 calc_sectors(conf, sectors); 3988 mddev->dev_sectors = conf->dev_sectors; 3989 mddev->resync_max_sectors = size; 3990 return 0; 3991 } 3992 3993 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 3994 { 3995 struct md_rdev *rdev; 3996 struct r10conf *conf; 3997 3998 if (mddev->degraded > 0) { 3999 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4000 mdname(mddev)); 4001 return ERR_PTR(-EINVAL); 4002 } 4003 sector_div(size, devs); 4004 4005 /* Set new parameters */ 4006 mddev->new_level = 10; 4007 /* new layout: far_copies = 1, near_copies = 2 */ 4008 mddev->new_layout = (1<<8) + 2; 4009 mddev->new_chunk_sectors = mddev->chunk_sectors; 4010 mddev->delta_disks = mddev->raid_disks; 4011 mddev->raid_disks *= 2; 4012 /* make sure it will be not marked as dirty */ 4013 mddev->recovery_cp = MaxSector; 4014 mddev->dev_sectors = size; 4015 4016 conf = setup_conf(mddev); 4017 if (!IS_ERR(conf)) { 4018 rdev_for_each(rdev, mddev) 4019 if (rdev->raid_disk >= 0) { 4020 rdev->new_raid_disk = rdev->raid_disk * 2; 4021 rdev->sectors = size; 4022 } 4023 conf->barrier = 1; 4024 } 4025 4026 return conf; 4027 } 4028 4029 static void *raid10_takeover(struct mddev *mddev) 4030 { 4031 struct r0conf *raid0_conf; 4032 4033 /* raid10 can take over: 4034 * raid0 - providing it has only two drives 4035 */ 4036 if (mddev->level == 0) { 4037 /* for raid0 takeover only one zone is supported */ 4038 raid0_conf = mddev->private; 4039 if (raid0_conf->nr_strip_zones > 1) { 4040 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4041 mdname(mddev)); 4042 return ERR_PTR(-EINVAL); 4043 } 4044 return raid10_takeover_raid0(mddev, 4045 raid0_conf->strip_zone->zone_end, 4046 raid0_conf->strip_zone->nb_dev); 4047 } 4048 return ERR_PTR(-EINVAL); 4049 } 4050 4051 static int raid10_check_reshape(struct mddev *mddev) 4052 { 4053 /* Called when there is a request to change 4054 * - layout (to ->new_layout) 4055 * - chunk size (to ->new_chunk_sectors) 4056 * - raid_disks (by delta_disks) 4057 * or when trying to restart a reshape that was ongoing. 4058 * 4059 * We need to validate the request and possibly allocate 4060 * space if that might be an issue later. 4061 * 4062 * Currently we reject any reshape of a 'far' mode array, 4063 * allow chunk size to change if new is generally acceptable, 4064 * allow raid_disks to increase, and allow 4065 * a switch between 'near' mode and 'offset' mode. 4066 */ 4067 struct r10conf *conf = mddev->private; 4068 struct geom geo; 4069 4070 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4071 return -EINVAL; 4072 4073 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4074 /* mustn't change number of copies */ 4075 return -EINVAL; 4076 if (geo.far_copies > 1 && !geo.far_offset) 4077 /* Cannot switch to 'far' mode */ 4078 return -EINVAL; 4079 4080 if (mddev->array_sectors & geo.chunk_mask) 4081 /* not factor of array size */ 4082 return -EINVAL; 4083 4084 if (!enough(conf, -1)) 4085 return -EINVAL; 4086 4087 kfree(conf->mirrors_new); 4088 conf->mirrors_new = NULL; 4089 if (mddev->delta_disks > 0) { 4090 /* allocate new 'mirrors' list */ 4091 conf->mirrors_new = 4092 kcalloc(mddev->raid_disks + mddev->delta_disks, 4093 sizeof(struct raid10_info), 4094 GFP_KERNEL); 4095 if (!conf->mirrors_new) 4096 return -ENOMEM; 4097 } 4098 return 0; 4099 } 4100 4101 /* 4102 * Need to check if array has failed when deciding whether to: 4103 * - start an array 4104 * - remove non-faulty devices 4105 * - add a spare 4106 * - allow a reshape 4107 * This determination is simple when no reshape is happening. 4108 * However if there is a reshape, we need to carefully check 4109 * both the before and after sections. 4110 * This is because some failed devices may only affect one 4111 * of the two sections, and some non-in_sync devices may 4112 * be insync in the section most affected by failed devices. 4113 */ 4114 static int calc_degraded(struct r10conf *conf) 4115 { 4116 int degraded, degraded2; 4117 int i; 4118 4119 rcu_read_lock(); 4120 degraded = 0; 4121 /* 'prev' section first */ 4122 for (i = 0; i < conf->prev.raid_disks; i++) { 4123 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4124 if (!rdev || test_bit(Faulty, &rdev->flags)) 4125 degraded++; 4126 else if (!test_bit(In_sync, &rdev->flags)) 4127 /* When we can reduce the number of devices in 4128 * an array, this might not contribute to 4129 * 'degraded'. It does now. 4130 */ 4131 degraded++; 4132 } 4133 rcu_read_unlock(); 4134 if (conf->geo.raid_disks == conf->prev.raid_disks) 4135 return degraded; 4136 rcu_read_lock(); 4137 degraded2 = 0; 4138 for (i = 0; i < conf->geo.raid_disks; i++) { 4139 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4140 if (!rdev || test_bit(Faulty, &rdev->flags)) 4141 degraded2++; 4142 else if (!test_bit(In_sync, &rdev->flags)) { 4143 /* If reshape is increasing the number of devices, 4144 * this section has already been recovered, so 4145 * it doesn't contribute to degraded. 4146 * else it does. 4147 */ 4148 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4149 degraded2++; 4150 } 4151 } 4152 rcu_read_unlock(); 4153 if (degraded2 > degraded) 4154 return degraded2; 4155 return degraded; 4156 } 4157 4158 static int raid10_start_reshape(struct mddev *mddev) 4159 { 4160 /* A 'reshape' has been requested. This commits 4161 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4162 * This also checks if there are enough spares and adds them 4163 * to the array. 4164 * We currently require enough spares to make the final 4165 * array non-degraded. We also require that the difference 4166 * between old and new data_offset - on each device - is 4167 * enough that we never risk over-writing. 4168 */ 4169 4170 unsigned long before_length, after_length; 4171 sector_t min_offset_diff = 0; 4172 int first = 1; 4173 struct geom new; 4174 struct r10conf *conf = mddev->private; 4175 struct md_rdev *rdev; 4176 int spares = 0; 4177 int ret; 4178 4179 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4180 return -EBUSY; 4181 4182 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4183 return -EINVAL; 4184 4185 before_length = ((1 << conf->prev.chunk_shift) * 4186 conf->prev.far_copies); 4187 after_length = ((1 << conf->geo.chunk_shift) * 4188 conf->geo.far_copies); 4189 4190 rdev_for_each(rdev, mddev) { 4191 if (!test_bit(In_sync, &rdev->flags) 4192 && !test_bit(Faulty, &rdev->flags)) 4193 spares++; 4194 if (rdev->raid_disk >= 0) { 4195 long long diff = (rdev->new_data_offset 4196 - rdev->data_offset); 4197 if (!mddev->reshape_backwards) 4198 diff = -diff; 4199 if (diff < 0) 4200 diff = 0; 4201 if (first || diff < min_offset_diff) 4202 min_offset_diff = diff; 4203 first = 0; 4204 } 4205 } 4206 4207 if (max(before_length, after_length) > min_offset_diff) 4208 return -EINVAL; 4209 4210 if (spares < mddev->delta_disks) 4211 return -EINVAL; 4212 4213 conf->offset_diff = min_offset_diff; 4214 spin_lock_irq(&conf->device_lock); 4215 if (conf->mirrors_new) { 4216 memcpy(conf->mirrors_new, conf->mirrors, 4217 sizeof(struct raid10_info)*conf->prev.raid_disks); 4218 smp_mb(); 4219 kfree(conf->mirrors_old); 4220 conf->mirrors_old = conf->mirrors; 4221 conf->mirrors = conf->mirrors_new; 4222 conf->mirrors_new = NULL; 4223 } 4224 setup_geo(&conf->geo, mddev, geo_start); 4225 smp_mb(); 4226 if (mddev->reshape_backwards) { 4227 sector_t size = raid10_size(mddev, 0, 0); 4228 if (size < mddev->array_sectors) { 4229 spin_unlock_irq(&conf->device_lock); 4230 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4231 mdname(mddev)); 4232 return -EINVAL; 4233 } 4234 mddev->resync_max_sectors = size; 4235 conf->reshape_progress = size; 4236 } else 4237 conf->reshape_progress = 0; 4238 conf->reshape_safe = conf->reshape_progress; 4239 spin_unlock_irq(&conf->device_lock); 4240 4241 if (mddev->delta_disks && mddev->bitmap) { 4242 struct mdp_superblock_1 *sb = NULL; 4243 sector_t oldsize, newsize; 4244 4245 oldsize = raid10_size(mddev, 0, 0); 4246 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4247 4248 if (!mddev_is_clustered(mddev)) { 4249 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4250 if (ret) 4251 goto abort; 4252 else 4253 goto out; 4254 } 4255 4256 rdev_for_each(rdev, mddev) { 4257 if (rdev->raid_disk > -1 && 4258 !test_bit(Faulty, &rdev->flags)) 4259 sb = page_address(rdev->sb_page); 4260 } 4261 4262 /* 4263 * some node is already performing reshape, and no need to 4264 * call md_bitmap_resize again since it should be called when 4265 * receiving BITMAP_RESIZE msg 4266 */ 4267 if ((sb && (le32_to_cpu(sb->feature_map) & 4268 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4269 goto out; 4270 4271 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4272 if (ret) 4273 goto abort; 4274 4275 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4276 if (ret) { 4277 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4278 goto abort; 4279 } 4280 } 4281 out: 4282 if (mddev->delta_disks > 0) { 4283 rdev_for_each(rdev, mddev) 4284 if (rdev->raid_disk < 0 && 4285 !test_bit(Faulty, &rdev->flags)) { 4286 if (raid10_add_disk(mddev, rdev) == 0) { 4287 if (rdev->raid_disk >= 4288 conf->prev.raid_disks) 4289 set_bit(In_sync, &rdev->flags); 4290 else 4291 rdev->recovery_offset = 0; 4292 4293 /* Failure here is OK */ 4294 sysfs_link_rdev(mddev, rdev); 4295 } 4296 } else if (rdev->raid_disk >= conf->prev.raid_disks 4297 && !test_bit(Faulty, &rdev->flags)) { 4298 /* This is a spare that was manually added */ 4299 set_bit(In_sync, &rdev->flags); 4300 } 4301 } 4302 /* When a reshape changes the number of devices, 4303 * ->degraded is measured against the larger of the 4304 * pre and post numbers. 4305 */ 4306 spin_lock_irq(&conf->device_lock); 4307 mddev->degraded = calc_degraded(conf); 4308 spin_unlock_irq(&conf->device_lock); 4309 mddev->raid_disks = conf->geo.raid_disks; 4310 mddev->reshape_position = conf->reshape_progress; 4311 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4312 4313 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4314 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4315 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4316 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4317 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4318 4319 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4320 "reshape"); 4321 if (!mddev->sync_thread) { 4322 ret = -EAGAIN; 4323 goto abort; 4324 } 4325 conf->reshape_checkpoint = jiffies; 4326 md_wakeup_thread(mddev->sync_thread); 4327 md_new_event(mddev); 4328 return 0; 4329 4330 abort: 4331 mddev->recovery = 0; 4332 spin_lock_irq(&conf->device_lock); 4333 conf->geo = conf->prev; 4334 mddev->raid_disks = conf->geo.raid_disks; 4335 rdev_for_each(rdev, mddev) 4336 rdev->new_data_offset = rdev->data_offset; 4337 smp_wmb(); 4338 conf->reshape_progress = MaxSector; 4339 conf->reshape_safe = MaxSector; 4340 mddev->reshape_position = MaxSector; 4341 spin_unlock_irq(&conf->device_lock); 4342 return ret; 4343 } 4344 4345 /* Calculate the last device-address that could contain 4346 * any block from the chunk that includes the array-address 's' 4347 * and report the next address. 4348 * i.e. the address returned will be chunk-aligned and after 4349 * any data that is in the chunk containing 's'. 4350 */ 4351 static sector_t last_dev_address(sector_t s, struct geom *geo) 4352 { 4353 s = (s | geo->chunk_mask) + 1; 4354 s >>= geo->chunk_shift; 4355 s *= geo->near_copies; 4356 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4357 s *= geo->far_copies; 4358 s <<= geo->chunk_shift; 4359 return s; 4360 } 4361 4362 /* Calculate the first device-address that could contain 4363 * any block from the chunk that includes the array-address 's'. 4364 * This too will be the start of a chunk 4365 */ 4366 static sector_t first_dev_address(sector_t s, struct geom *geo) 4367 { 4368 s >>= geo->chunk_shift; 4369 s *= geo->near_copies; 4370 sector_div(s, geo->raid_disks); 4371 s *= geo->far_copies; 4372 s <<= geo->chunk_shift; 4373 return s; 4374 } 4375 4376 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4377 int *skipped) 4378 { 4379 /* We simply copy at most one chunk (smallest of old and new) 4380 * at a time, possibly less if that exceeds RESYNC_PAGES, 4381 * or we hit a bad block or something. 4382 * This might mean we pause for normal IO in the middle of 4383 * a chunk, but that is not a problem as mddev->reshape_position 4384 * can record any location. 4385 * 4386 * If we will want to write to a location that isn't 4387 * yet recorded as 'safe' (i.e. in metadata on disk) then 4388 * we need to flush all reshape requests and update the metadata. 4389 * 4390 * When reshaping forwards (e.g. to more devices), we interpret 4391 * 'safe' as the earliest block which might not have been copied 4392 * down yet. We divide this by previous stripe size and multiply 4393 * by previous stripe length to get lowest device offset that we 4394 * cannot write to yet. 4395 * We interpret 'sector_nr' as an address that we want to write to. 4396 * From this we use last_device_address() to find where we might 4397 * write to, and first_device_address on the 'safe' position. 4398 * If this 'next' write position is after the 'safe' position, 4399 * we must update the metadata to increase the 'safe' position. 4400 * 4401 * When reshaping backwards, we round in the opposite direction 4402 * and perform the reverse test: next write position must not be 4403 * less than current safe position. 4404 * 4405 * In all this the minimum difference in data offsets 4406 * (conf->offset_diff - always positive) allows a bit of slack, 4407 * so next can be after 'safe', but not by more than offset_diff 4408 * 4409 * We need to prepare all the bios here before we start any IO 4410 * to ensure the size we choose is acceptable to all devices. 4411 * The means one for each copy for write-out and an extra one for 4412 * read-in. 4413 * We store the read-in bio in ->master_bio and the others in 4414 * ->devs[x].bio and ->devs[x].repl_bio. 4415 */ 4416 struct r10conf *conf = mddev->private; 4417 struct r10bio *r10_bio; 4418 sector_t next, safe, last; 4419 int max_sectors; 4420 int nr_sectors; 4421 int s; 4422 struct md_rdev *rdev; 4423 int need_flush = 0; 4424 struct bio *blist; 4425 struct bio *bio, *read_bio; 4426 int sectors_done = 0; 4427 struct page **pages; 4428 4429 if (sector_nr == 0) { 4430 /* If restarting in the middle, skip the initial sectors */ 4431 if (mddev->reshape_backwards && 4432 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4433 sector_nr = (raid10_size(mddev, 0, 0) 4434 - conf->reshape_progress); 4435 } else if (!mddev->reshape_backwards && 4436 conf->reshape_progress > 0) 4437 sector_nr = conf->reshape_progress; 4438 if (sector_nr) { 4439 mddev->curr_resync_completed = sector_nr; 4440 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4441 *skipped = 1; 4442 return sector_nr; 4443 } 4444 } 4445 4446 /* We don't use sector_nr to track where we are up to 4447 * as that doesn't work well for ->reshape_backwards. 4448 * So just use ->reshape_progress. 4449 */ 4450 if (mddev->reshape_backwards) { 4451 /* 'next' is the earliest device address that we might 4452 * write to for this chunk in the new layout 4453 */ 4454 next = first_dev_address(conf->reshape_progress - 1, 4455 &conf->geo); 4456 4457 /* 'safe' is the last device address that we might read from 4458 * in the old layout after a restart 4459 */ 4460 safe = last_dev_address(conf->reshape_safe - 1, 4461 &conf->prev); 4462 4463 if (next + conf->offset_diff < safe) 4464 need_flush = 1; 4465 4466 last = conf->reshape_progress - 1; 4467 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4468 & conf->prev.chunk_mask); 4469 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4470 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4471 } else { 4472 /* 'next' is after the last device address that we 4473 * might write to for this chunk in the new layout 4474 */ 4475 next = last_dev_address(conf->reshape_progress, &conf->geo); 4476 4477 /* 'safe' is the earliest device address that we might 4478 * read from in the old layout after a restart 4479 */ 4480 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4481 4482 /* Need to update metadata if 'next' might be beyond 'safe' 4483 * as that would possibly corrupt data 4484 */ 4485 if (next > safe + conf->offset_diff) 4486 need_flush = 1; 4487 4488 sector_nr = conf->reshape_progress; 4489 last = sector_nr | (conf->geo.chunk_mask 4490 & conf->prev.chunk_mask); 4491 4492 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4493 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4494 } 4495 4496 if (need_flush || 4497 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4498 /* Need to update reshape_position in metadata */ 4499 wait_barrier(conf); 4500 mddev->reshape_position = conf->reshape_progress; 4501 if (mddev->reshape_backwards) 4502 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4503 - conf->reshape_progress; 4504 else 4505 mddev->curr_resync_completed = conf->reshape_progress; 4506 conf->reshape_checkpoint = jiffies; 4507 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4508 md_wakeup_thread(mddev->thread); 4509 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4510 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4511 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4512 allow_barrier(conf); 4513 return sectors_done; 4514 } 4515 conf->reshape_safe = mddev->reshape_position; 4516 allow_barrier(conf); 4517 } 4518 4519 raise_barrier(conf, 0); 4520 read_more: 4521 /* Now schedule reads for blocks from sector_nr to last */ 4522 r10_bio = raid10_alloc_init_r10buf(conf); 4523 r10_bio->state = 0; 4524 raise_barrier(conf, 1); 4525 atomic_set(&r10_bio->remaining, 0); 4526 r10_bio->mddev = mddev; 4527 r10_bio->sector = sector_nr; 4528 set_bit(R10BIO_IsReshape, &r10_bio->state); 4529 r10_bio->sectors = last - sector_nr + 1; 4530 rdev = read_balance(conf, r10_bio, &max_sectors); 4531 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4532 4533 if (!rdev) { 4534 /* Cannot read from here, so need to record bad blocks 4535 * on all the target devices. 4536 */ 4537 // FIXME 4538 mempool_free(r10_bio, &conf->r10buf_pool); 4539 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4540 return sectors_done; 4541 } 4542 4543 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4544 4545 bio_set_dev(read_bio, rdev->bdev); 4546 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4547 + rdev->data_offset); 4548 read_bio->bi_private = r10_bio; 4549 read_bio->bi_end_io = end_reshape_read; 4550 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4551 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4552 read_bio->bi_status = 0; 4553 read_bio->bi_vcnt = 0; 4554 read_bio->bi_iter.bi_size = 0; 4555 r10_bio->master_bio = read_bio; 4556 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4557 4558 /* 4559 * Broadcast RESYNC message to other nodes, so all nodes would not 4560 * write to the region to avoid conflict. 4561 */ 4562 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4563 struct mdp_superblock_1 *sb = NULL; 4564 int sb_reshape_pos = 0; 4565 4566 conf->cluster_sync_low = sector_nr; 4567 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4568 sb = page_address(rdev->sb_page); 4569 if (sb) { 4570 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4571 /* 4572 * Set cluster_sync_low again if next address for array 4573 * reshape is less than cluster_sync_low. Since we can't 4574 * update cluster_sync_low until it has finished reshape. 4575 */ 4576 if (sb_reshape_pos < conf->cluster_sync_low) 4577 conf->cluster_sync_low = sb_reshape_pos; 4578 } 4579 4580 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4581 conf->cluster_sync_high); 4582 } 4583 4584 /* Now find the locations in the new layout */ 4585 __raid10_find_phys(&conf->geo, r10_bio); 4586 4587 blist = read_bio; 4588 read_bio->bi_next = NULL; 4589 4590 rcu_read_lock(); 4591 for (s = 0; s < conf->copies*2; s++) { 4592 struct bio *b; 4593 int d = r10_bio->devs[s/2].devnum; 4594 struct md_rdev *rdev2; 4595 if (s&1) { 4596 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4597 b = r10_bio->devs[s/2].repl_bio; 4598 } else { 4599 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4600 b = r10_bio->devs[s/2].bio; 4601 } 4602 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4603 continue; 4604 4605 bio_set_dev(b, rdev2->bdev); 4606 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4607 rdev2->new_data_offset; 4608 b->bi_end_io = end_reshape_write; 4609 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4610 b->bi_next = blist; 4611 blist = b; 4612 } 4613 4614 /* Now add as many pages as possible to all of these bios. */ 4615 4616 nr_sectors = 0; 4617 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4618 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4619 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4620 int len = (max_sectors - s) << 9; 4621 if (len > PAGE_SIZE) 4622 len = PAGE_SIZE; 4623 for (bio = blist; bio ; bio = bio->bi_next) { 4624 /* 4625 * won't fail because the vec table is big enough 4626 * to hold all these pages 4627 */ 4628 bio_add_page(bio, page, len, 0); 4629 } 4630 sector_nr += len >> 9; 4631 nr_sectors += len >> 9; 4632 } 4633 rcu_read_unlock(); 4634 r10_bio->sectors = nr_sectors; 4635 4636 /* Now submit the read */ 4637 md_sync_acct_bio(read_bio, r10_bio->sectors); 4638 atomic_inc(&r10_bio->remaining); 4639 read_bio->bi_next = NULL; 4640 submit_bio_noacct(read_bio); 4641 sectors_done += nr_sectors; 4642 if (sector_nr <= last) 4643 goto read_more; 4644 4645 lower_barrier(conf); 4646 4647 /* Now that we have done the whole section we can 4648 * update reshape_progress 4649 */ 4650 if (mddev->reshape_backwards) 4651 conf->reshape_progress -= sectors_done; 4652 else 4653 conf->reshape_progress += sectors_done; 4654 4655 return sectors_done; 4656 } 4657 4658 static void end_reshape_request(struct r10bio *r10_bio); 4659 static int handle_reshape_read_error(struct mddev *mddev, 4660 struct r10bio *r10_bio); 4661 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4662 { 4663 /* Reshape read completed. Hopefully we have a block 4664 * to write out. 4665 * If we got a read error then we do sync 1-page reads from 4666 * elsewhere until we find the data - or give up. 4667 */ 4668 struct r10conf *conf = mddev->private; 4669 int s; 4670 4671 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4672 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4673 /* Reshape has been aborted */ 4674 md_done_sync(mddev, r10_bio->sectors, 0); 4675 return; 4676 } 4677 4678 /* We definitely have the data in the pages, schedule the 4679 * writes. 4680 */ 4681 atomic_set(&r10_bio->remaining, 1); 4682 for (s = 0; s < conf->copies*2; s++) { 4683 struct bio *b; 4684 int d = r10_bio->devs[s/2].devnum; 4685 struct md_rdev *rdev; 4686 rcu_read_lock(); 4687 if (s&1) { 4688 rdev = rcu_dereference(conf->mirrors[d].replacement); 4689 b = r10_bio->devs[s/2].repl_bio; 4690 } else { 4691 rdev = rcu_dereference(conf->mirrors[d].rdev); 4692 b = r10_bio->devs[s/2].bio; 4693 } 4694 if (!rdev || test_bit(Faulty, &rdev->flags)) { 4695 rcu_read_unlock(); 4696 continue; 4697 } 4698 atomic_inc(&rdev->nr_pending); 4699 rcu_read_unlock(); 4700 md_sync_acct_bio(b, r10_bio->sectors); 4701 atomic_inc(&r10_bio->remaining); 4702 b->bi_next = NULL; 4703 submit_bio_noacct(b); 4704 } 4705 end_reshape_request(r10_bio); 4706 } 4707 4708 static void end_reshape(struct r10conf *conf) 4709 { 4710 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4711 return; 4712 4713 spin_lock_irq(&conf->device_lock); 4714 conf->prev = conf->geo; 4715 md_finish_reshape(conf->mddev); 4716 smp_wmb(); 4717 conf->reshape_progress = MaxSector; 4718 conf->reshape_safe = MaxSector; 4719 spin_unlock_irq(&conf->device_lock); 4720 4721 /* read-ahead size must cover two whole stripes, which is 4722 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4723 */ 4724 if (conf->mddev->queue) { 4725 int stripe = conf->geo.raid_disks * 4726 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4727 stripe /= conf->geo.near_copies; 4728 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 4729 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 4730 } 4731 conf->fullsync = 0; 4732 } 4733 4734 static void raid10_update_reshape_pos(struct mddev *mddev) 4735 { 4736 struct r10conf *conf = mddev->private; 4737 sector_t lo, hi; 4738 4739 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 4740 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 4741 || mddev->reshape_position == MaxSector) 4742 conf->reshape_progress = mddev->reshape_position; 4743 else 4744 WARN_ON_ONCE(1); 4745 } 4746 4747 static int handle_reshape_read_error(struct mddev *mddev, 4748 struct r10bio *r10_bio) 4749 { 4750 /* Use sync reads to get the blocks from somewhere else */ 4751 int sectors = r10_bio->sectors; 4752 struct r10conf *conf = mddev->private; 4753 struct r10bio *r10b; 4754 int slot = 0; 4755 int idx = 0; 4756 struct page **pages; 4757 4758 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 4759 if (!r10b) { 4760 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4761 return -ENOMEM; 4762 } 4763 4764 /* reshape IOs share pages from .devs[0].bio */ 4765 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4766 4767 r10b->sector = r10_bio->sector; 4768 __raid10_find_phys(&conf->prev, r10b); 4769 4770 while (sectors) { 4771 int s = sectors; 4772 int success = 0; 4773 int first_slot = slot; 4774 4775 if (s > (PAGE_SIZE >> 9)) 4776 s = PAGE_SIZE >> 9; 4777 4778 rcu_read_lock(); 4779 while (!success) { 4780 int d = r10b->devs[slot].devnum; 4781 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4782 sector_t addr; 4783 if (rdev == NULL || 4784 test_bit(Faulty, &rdev->flags) || 4785 !test_bit(In_sync, &rdev->flags)) 4786 goto failed; 4787 4788 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4789 atomic_inc(&rdev->nr_pending); 4790 rcu_read_unlock(); 4791 success = sync_page_io(rdev, 4792 addr, 4793 s << 9, 4794 pages[idx], 4795 REQ_OP_READ, 0, false); 4796 rdev_dec_pending(rdev, mddev); 4797 rcu_read_lock(); 4798 if (success) 4799 break; 4800 failed: 4801 slot++; 4802 if (slot >= conf->copies) 4803 slot = 0; 4804 if (slot == first_slot) 4805 break; 4806 } 4807 rcu_read_unlock(); 4808 if (!success) { 4809 /* couldn't read this block, must give up */ 4810 set_bit(MD_RECOVERY_INTR, 4811 &mddev->recovery); 4812 kfree(r10b); 4813 return -EIO; 4814 } 4815 sectors -= s; 4816 idx++; 4817 } 4818 kfree(r10b); 4819 return 0; 4820 } 4821 4822 static void end_reshape_write(struct bio *bio) 4823 { 4824 struct r10bio *r10_bio = get_resync_r10bio(bio); 4825 struct mddev *mddev = r10_bio->mddev; 4826 struct r10conf *conf = mddev->private; 4827 int d; 4828 int slot; 4829 int repl; 4830 struct md_rdev *rdev = NULL; 4831 4832 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4833 if (repl) 4834 rdev = conf->mirrors[d].replacement; 4835 if (!rdev) { 4836 smp_mb(); 4837 rdev = conf->mirrors[d].rdev; 4838 } 4839 4840 if (bio->bi_status) { 4841 /* FIXME should record badblock */ 4842 md_error(mddev, rdev); 4843 } 4844 4845 rdev_dec_pending(rdev, mddev); 4846 end_reshape_request(r10_bio); 4847 } 4848 4849 static void end_reshape_request(struct r10bio *r10_bio) 4850 { 4851 if (!atomic_dec_and_test(&r10_bio->remaining)) 4852 return; 4853 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4854 bio_put(r10_bio->master_bio); 4855 put_buf(r10_bio); 4856 } 4857 4858 static void raid10_finish_reshape(struct mddev *mddev) 4859 { 4860 struct r10conf *conf = mddev->private; 4861 4862 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4863 return; 4864 4865 if (mddev->delta_disks > 0) { 4866 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4867 mddev->recovery_cp = mddev->resync_max_sectors; 4868 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4869 } 4870 mddev->resync_max_sectors = mddev->array_sectors; 4871 } else { 4872 int d; 4873 rcu_read_lock(); 4874 for (d = conf->geo.raid_disks ; 4875 d < conf->geo.raid_disks - mddev->delta_disks; 4876 d++) { 4877 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4878 if (rdev) 4879 clear_bit(In_sync, &rdev->flags); 4880 rdev = rcu_dereference(conf->mirrors[d].replacement); 4881 if (rdev) 4882 clear_bit(In_sync, &rdev->flags); 4883 } 4884 rcu_read_unlock(); 4885 } 4886 mddev->layout = mddev->new_layout; 4887 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4888 mddev->reshape_position = MaxSector; 4889 mddev->delta_disks = 0; 4890 mddev->reshape_backwards = 0; 4891 } 4892 4893 static struct md_personality raid10_personality = 4894 { 4895 .name = "raid10", 4896 .level = 10, 4897 .owner = THIS_MODULE, 4898 .make_request = raid10_make_request, 4899 .run = raid10_run, 4900 .free = raid10_free, 4901 .status = raid10_status, 4902 .error_handler = raid10_error, 4903 .hot_add_disk = raid10_add_disk, 4904 .hot_remove_disk= raid10_remove_disk, 4905 .spare_active = raid10_spare_active, 4906 .sync_request = raid10_sync_request, 4907 .quiesce = raid10_quiesce, 4908 .size = raid10_size, 4909 .resize = raid10_resize, 4910 .takeover = raid10_takeover, 4911 .check_reshape = raid10_check_reshape, 4912 .start_reshape = raid10_start_reshape, 4913 .finish_reshape = raid10_finish_reshape, 4914 .update_reshape_pos = raid10_update_reshape_pos, 4915 }; 4916 4917 static int __init raid_init(void) 4918 { 4919 return register_md_personality(&raid10_personality); 4920 } 4921 4922 static void raid_exit(void) 4923 { 4924 unregister_md_personality(&raid10_personality); 4925 } 4926 4927 module_init(raid_init); 4928 module_exit(raid_exit); 4929 MODULE_LICENSE("GPL"); 4930 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4931 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4932 MODULE_ALIAS("md-raid10"); 4933 MODULE_ALIAS("md-level-10"); 4934 4935 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4936