xref: /openbmc/linux/drivers/md/raid10.c (revision c62d3cd0ddd629606a3830aa22e9dcc6c2a0d3bf)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "md-bitmap.h"
33 
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74 
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define	NR_RAID10_BIOS 256
79 
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91 
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93 
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99 
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 				int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109 
110 #define raid10_log(md, fmt, args...)				\
111 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112 
113 #include "raid1-10.c"
114 
115 /*
116  * for resync bio, r10bio pointer can be retrieved from the per-bio
117  * 'struct resync_pages'.
118  */
119 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120 {
121 	return get_resync_pages(bio)->raid_bio;
122 }
123 
124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
125 {
126 	struct r10conf *conf = data;
127 	int size = offsetof(struct r10bio, devs[conf->copies]);
128 
129 	/* allocate a r10bio with room for raid_disks entries in the
130 	 * bios array */
131 	return kzalloc(size, gfp_flags);
132 }
133 
134 static void r10bio_pool_free(void *r10_bio, void *data)
135 {
136 	kfree(r10_bio);
137 }
138 
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 /* amount of memory to reserve for resync requests */
141 #define RESYNC_WINDOW (1024*1024)
142 /* maximum number of concurrent requests, memory permitting */
143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
144 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
146 
147 /*
148  * When performing a resync, we need to read and compare, so
149  * we need as many pages are there are copies.
150  * When performing a recovery, we need 2 bios, one for read,
151  * one for write (we recover only one drive per r10buf)
152  *
153  */
154 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
155 {
156 	struct r10conf *conf = data;
157 	struct r10bio *r10_bio;
158 	struct bio *bio;
159 	int j;
160 	int nalloc, nalloc_rp;
161 	struct resync_pages *rps;
162 
163 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
164 	if (!r10_bio)
165 		return NULL;
166 
167 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
168 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
169 		nalloc = conf->copies; /* resync */
170 	else
171 		nalloc = 2; /* recovery */
172 
173 	/* allocate once for all bios */
174 	if (!conf->have_replacement)
175 		nalloc_rp = nalloc;
176 	else
177 		nalloc_rp = nalloc * 2;
178 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
179 	if (!rps)
180 		goto out_free_r10bio;
181 
182 	/*
183 	 * Allocate bios.
184 	 */
185 	for (j = nalloc ; j-- ; ) {
186 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
187 		if (!bio)
188 			goto out_free_bio;
189 		r10_bio->devs[j].bio = bio;
190 		if (!conf->have_replacement)
191 			continue;
192 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
193 		if (!bio)
194 			goto out_free_bio;
195 		r10_bio->devs[j].repl_bio = bio;
196 	}
197 	/*
198 	 * Allocate RESYNC_PAGES data pages and attach them
199 	 * where needed.
200 	 */
201 	for (j = 0; j < nalloc; j++) {
202 		struct bio *rbio = r10_bio->devs[j].repl_bio;
203 		struct resync_pages *rp, *rp_repl;
204 
205 		rp = &rps[j];
206 		if (rbio)
207 			rp_repl = &rps[nalloc + j];
208 
209 		bio = r10_bio->devs[j].bio;
210 
211 		if (!j || test_bit(MD_RECOVERY_SYNC,
212 				   &conf->mddev->recovery)) {
213 			if (resync_alloc_pages(rp, gfp_flags))
214 				goto out_free_pages;
215 		} else {
216 			memcpy(rp, &rps[0], sizeof(*rp));
217 			resync_get_all_pages(rp);
218 		}
219 
220 		rp->raid_bio = r10_bio;
221 		bio->bi_private = rp;
222 		if (rbio) {
223 			memcpy(rp_repl, rp, sizeof(*rp));
224 			rbio->bi_private = rp_repl;
225 		}
226 	}
227 
228 	return r10_bio;
229 
230 out_free_pages:
231 	while (--j >= 0)
232 		resync_free_pages(&rps[j * 2]);
233 
234 	j = 0;
235 out_free_bio:
236 	for ( ; j < nalloc; j++) {
237 		if (r10_bio->devs[j].bio)
238 			bio_put(r10_bio->devs[j].bio);
239 		if (r10_bio->devs[j].repl_bio)
240 			bio_put(r10_bio->devs[j].repl_bio);
241 	}
242 	kfree(rps);
243 out_free_r10bio:
244 	r10bio_pool_free(r10_bio, conf);
245 	return NULL;
246 }
247 
248 static void r10buf_pool_free(void *__r10_bio, void *data)
249 {
250 	struct r10conf *conf = data;
251 	struct r10bio *r10bio = __r10_bio;
252 	int j;
253 	struct resync_pages *rp = NULL;
254 
255 	for (j = conf->copies; j--; ) {
256 		struct bio *bio = r10bio->devs[j].bio;
257 
258 		if (bio) {
259 			rp = get_resync_pages(bio);
260 			resync_free_pages(rp);
261 			bio_put(bio);
262 		}
263 
264 		bio = r10bio->devs[j].repl_bio;
265 		if (bio)
266 			bio_put(bio);
267 	}
268 
269 	/* resync pages array stored in the 1st bio's .bi_private */
270 	kfree(rp);
271 
272 	r10bio_pool_free(r10bio, conf);
273 }
274 
275 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
276 {
277 	int i;
278 
279 	for (i = 0; i < conf->copies; i++) {
280 		struct bio **bio = & r10_bio->devs[i].bio;
281 		if (!BIO_SPECIAL(*bio))
282 			bio_put(*bio);
283 		*bio = NULL;
284 		bio = &r10_bio->devs[i].repl_bio;
285 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
286 			bio_put(*bio);
287 		*bio = NULL;
288 	}
289 }
290 
291 static void free_r10bio(struct r10bio *r10_bio)
292 {
293 	struct r10conf *conf = r10_bio->mddev->private;
294 
295 	put_all_bios(conf, r10_bio);
296 	mempool_free(r10_bio, &conf->r10bio_pool);
297 }
298 
299 static void put_buf(struct r10bio *r10_bio)
300 {
301 	struct r10conf *conf = r10_bio->mddev->private;
302 
303 	mempool_free(r10_bio, &conf->r10buf_pool);
304 
305 	lower_barrier(conf);
306 }
307 
308 static void reschedule_retry(struct r10bio *r10_bio)
309 {
310 	unsigned long flags;
311 	struct mddev *mddev = r10_bio->mddev;
312 	struct r10conf *conf = mddev->private;
313 
314 	spin_lock_irqsave(&conf->device_lock, flags);
315 	list_add(&r10_bio->retry_list, &conf->retry_list);
316 	conf->nr_queued ++;
317 	spin_unlock_irqrestore(&conf->device_lock, flags);
318 
319 	/* wake up frozen array... */
320 	wake_up(&conf->wait_barrier);
321 
322 	md_wakeup_thread(mddev->thread);
323 }
324 
325 /*
326  * raid_end_bio_io() is called when we have finished servicing a mirrored
327  * operation and are ready to return a success/failure code to the buffer
328  * cache layer.
329  */
330 static void raid_end_bio_io(struct r10bio *r10_bio)
331 {
332 	struct bio *bio = r10_bio->master_bio;
333 	struct r10conf *conf = r10_bio->mddev->private;
334 
335 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
336 		bio->bi_status = BLK_STS_IOERR;
337 
338 	bio_endio(bio);
339 	/*
340 	 * Wake up any possible resync thread that waits for the device
341 	 * to go idle.
342 	 */
343 	allow_barrier(conf);
344 
345 	free_r10bio(r10_bio);
346 }
347 
348 /*
349  * Update disk head position estimator based on IRQ completion info.
350  */
351 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
352 {
353 	struct r10conf *conf = r10_bio->mddev->private;
354 
355 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
356 		r10_bio->devs[slot].addr + (r10_bio->sectors);
357 }
358 
359 /*
360  * Find the disk number which triggered given bio
361  */
362 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
363 			 struct bio *bio, int *slotp, int *replp)
364 {
365 	int slot;
366 	int repl = 0;
367 
368 	for (slot = 0; slot < conf->copies; slot++) {
369 		if (r10_bio->devs[slot].bio == bio)
370 			break;
371 		if (r10_bio->devs[slot].repl_bio == bio) {
372 			repl = 1;
373 			break;
374 		}
375 	}
376 
377 	BUG_ON(slot == conf->copies);
378 	update_head_pos(slot, r10_bio);
379 
380 	if (slotp)
381 		*slotp = slot;
382 	if (replp)
383 		*replp = repl;
384 	return r10_bio->devs[slot].devnum;
385 }
386 
387 static void raid10_end_read_request(struct bio *bio)
388 {
389 	int uptodate = !bio->bi_status;
390 	struct r10bio *r10_bio = bio->bi_private;
391 	int slot;
392 	struct md_rdev *rdev;
393 	struct r10conf *conf = r10_bio->mddev->private;
394 
395 	slot = r10_bio->read_slot;
396 	rdev = r10_bio->devs[slot].rdev;
397 	/*
398 	 * this branch is our 'one mirror IO has finished' event handler:
399 	 */
400 	update_head_pos(slot, r10_bio);
401 
402 	if (uptodate) {
403 		/*
404 		 * Set R10BIO_Uptodate in our master bio, so that
405 		 * we will return a good error code to the higher
406 		 * levels even if IO on some other mirrored buffer fails.
407 		 *
408 		 * The 'master' represents the composite IO operation to
409 		 * user-side. So if something waits for IO, then it will
410 		 * wait for the 'master' bio.
411 		 */
412 		set_bit(R10BIO_Uptodate, &r10_bio->state);
413 	} else {
414 		/* If all other devices that store this block have
415 		 * failed, we want to return the error upwards rather
416 		 * than fail the last device.  Here we redefine
417 		 * "uptodate" to mean "Don't want to retry"
418 		 */
419 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
420 			     rdev->raid_disk))
421 			uptodate = 1;
422 	}
423 	if (uptodate) {
424 		raid_end_bio_io(r10_bio);
425 		rdev_dec_pending(rdev, conf->mddev);
426 	} else {
427 		/*
428 		 * oops, read error - keep the refcount on the rdev
429 		 */
430 		char b[BDEVNAME_SIZE];
431 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
432 				   mdname(conf->mddev),
433 				   bdevname(rdev->bdev, b),
434 				   (unsigned long long)r10_bio->sector);
435 		set_bit(R10BIO_ReadError, &r10_bio->state);
436 		reschedule_retry(r10_bio);
437 	}
438 }
439 
440 static void close_write(struct r10bio *r10_bio)
441 {
442 	/* clear the bitmap if all writes complete successfully */
443 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
444 			   r10_bio->sectors,
445 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
446 			   0);
447 	md_write_end(r10_bio->mddev);
448 }
449 
450 static void one_write_done(struct r10bio *r10_bio)
451 {
452 	if (atomic_dec_and_test(&r10_bio->remaining)) {
453 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
454 			reschedule_retry(r10_bio);
455 		else {
456 			close_write(r10_bio);
457 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
458 				reschedule_retry(r10_bio);
459 			else
460 				raid_end_bio_io(r10_bio);
461 		}
462 	}
463 }
464 
465 static void raid10_end_write_request(struct bio *bio)
466 {
467 	struct r10bio *r10_bio = bio->bi_private;
468 	int dev;
469 	int dec_rdev = 1;
470 	struct r10conf *conf = r10_bio->mddev->private;
471 	int slot, repl;
472 	struct md_rdev *rdev = NULL;
473 	struct bio *to_put = NULL;
474 	bool discard_error;
475 
476 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
477 
478 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
479 
480 	if (repl)
481 		rdev = conf->mirrors[dev].replacement;
482 	if (!rdev) {
483 		smp_rmb();
484 		repl = 0;
485 		rdev = conf->mirrors[dev].rdev;
486 	}
487 	/*
488 	 * this branch is our 'one mirror IO has finished' event handler:
489 	 */
490 	if (bio->bi_status && !discard_error) {
491 		if (repl)
492 			/* Never record new bad blocks to replacement,
493 			 * just fail it.
494 			 */
495 			md_error(rdev->mddev, rdev);
496 		else {
497 			set_bit(WriteErrorSeen,	&rdev->flags);
498 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
499 				set_bit(MD_RECOVERY_NEEDED,
500 					&rdev->mddev->recovery);
501 
502 			dec_rdev = 0;
503 			if (test_bit(FailFast, &rdev->flags) &&
504 			    (bio->bi_opf & MD_FAILFAST)) {
505 				md_error(rdev->mddev, rdev);
506 				if (!test_bit(Faulty, &rdev->flags))
507 					/* This is the only remaining device,
508 					 * We need to retry the write without
509 					 * FailFast
510 					 */
511 					set_bit(R10BIO_WriteError, &r10_bio->state);
512 				else {
513 					r10_bio->devs[slot].bio = NULL;
514 					to_put = bio;
515 					dec_rdev = 1;
516 				}
517 			} else
518 				set_bit(R10BIO_WriteError, &r10_bio->state);
519 		}
520 	} else {
521 		/*
522 		 * Set R10BIO_Uptodate in our master bio, so that
523 		 * we will return a good error code for to the higher
524 		 * levels even if IO on some other mirrored buffer fails.
525 		 *
526 		 * The 'master' represents the composite IO operation to
527 		 * user-side. So if something waits for IO, then it will
528 		 * wait for the 'master' bio.
529 		 */
530 		sector_t first_bad;
531 		int bad_sectors;
532 
533 		/*
534 		 * Do not set R10BIO_Uptodate if the current device is
535 		 * rebuilding or Faulty. This is because we cannot use
536 		 * such device for properly reading the data back (we could
537 		 * potentially use it, if the current write would have felt
538 		 * before rdev->recovery_offset, but for simplicity we don't
539 		 * check this here.
540 		 */
541 		if (test_bit(In_sync, &rdev->flags) &&
542 		    !test_bit(Faulty, &rdev->flags))
543 			set_bit(R10BIO_Uptodate, &r10_bio->state);
544 
545 		/* Maybe we can clear some bad blocks. */
546 		if (is_badblock(rdev,
547 				r10_bio->devs[slot].addr,
548 				r10_bio->sectors,
549 				&first_bad, &bad_sectors) && !discard_error) {
550 			bio_put(bio);
551 			if (repl)
552 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
553 			else
554 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
555 			dec_rdev = 0;
556 			set_bit(R10BIO_MadeGood, &r10_bio->state);
557 		}
558 	}
559 
560 	/*
561 	 *
562 	 * Let's see if all mirrored write operations have finished
563 	 * already.
564 	 */
565 	one_write_done(r10_bio);
566 	if (dec_rdev)
567 		rdev_dec_pending(rdev, conf->mddev);
568 	if (to_put)
569 		bio_put(to_put);
570 }
571 
572 /*
573  * RAID10 layout manager
574  * As well as the chunksize and raid_disks count, there are two
575  * parameters: near_copies and far_copies.
576  * near_copies * far_copies must be <= raid_disks.
577  * Normally one of these will be 1.
578  * If both are 1, we get raid0.
579  * If near_copies == raid_disks, we get raid1.
580  *
581  * Chunks are laid out in raid0 style with near_copies copies of the
582  * first chunk, followed by near_copies copies of the next chunk and
583  * so on.
584  * If far_copies > 1, then after 1/far_copies of the array has been assigned
585  * as described above, we start again with a device offset of near_copies.
586  * So we effectively have another copy of the whole array further down all
587  * the drives, but with blocks on different drives.
588  * With this layout, and block is never stored twice on the one device.
589  *
590  * raid10_find_phys finds the sector offset of a given virtual sector
591  * on each device that it is on.
592  *
593  * raid10_find_virt does the reverse mapping, from a device and a
594  * sector offset to a virtual address
595  */
596 
597 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
598 {
599 	int n,f;
600 	sector_t sector;
601 	sector_t chunk;
602 	sector_t stripe;
603 	int dev;
604 	int slot = 0;
605 	int last_far_set_start, last_far_set_size;
606 
607 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
608 	last_far_set_start *= geo->far_set_size;
609 
610 	last_far_set_size = geo->far_set_size;
611 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
612 
613 	/* now calculate first sector/dev */
614 	chunk = r10bio->sector >> geo->chunk_shift;
615 	sector = r10bio->sector & geo->chunk_mask;
616 
617 	chunk *= geo->near_copies;
618 	stripe = chunk;
619 	dev = sector_div(stripe, geo->raid_disks);
620 	if (geo->far_offset)
621 		stripe *= geo->far_copies;
622 
623 	sector += stripe << geo->chunk_shift;
624 
625 	/* and calculate all the others */
626 	for (n = 0; n < geo->near_copies; n++) {
627 		int d = dev;
628 		int set;
629 		sector_t s = sector;
630 		r10bio->devs[slot].devnum = d;
631 		r10bio->devs[slot].addr = s;
632 		slot++;
633 
634 		for (f = 1; f < geo->far_copies; f++) {
635 			set = d / geo->far_set_size;
636 			d += geo->near_copies;
637 
638 			if ((geo->raid_disks % geo->far_set_size) &&
639 			    (d > last_far_set_start)) {
640 				d -= last_far_set_start;
641 				d %= last_far_set_size;
642 				d += last_far_set_start;
643 			} else {
644 				d %= geo->far_set_size;
645 				d += geo->far_set_size * set;
646 			}
647 			s += geo->stride;
648 			r10bio->devs[slot].devnum = d;
649 			r10bio->devs[slot].addr = s;
650 			slot++;
651 		}
652 		dev++;
653 		if (dev >= geo->raid_disks) {
654 			dev = 0;
655 			sector += (geo->chunk_mask + 1);
656 		}
657 	}
658 }
659 
660 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
661 {
662 	struct geom *geo = &conf->geo;
663 
664 	if (conf->reshape_progress != MaxSector &&
665 	    ((r10bio->sector >= conf->reshape_progress) !=
666 	     conf->mddev->reshape_backwards)) {
667 		set_bit(R10BIO_Previous, &r10bio->state);
668 		geo = &conf->prev;
669 	} else
670 		clear_bit(R10BIO_Previous, &r10bio->state);
671 
672 	__raid10_find_phys(geo, r10bio);
673 }
674 
675 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
676 {
677 	sector_t offset, chunk, vchunk;
678 	/* Never use conf->prev as this is only called during resync
679 	 * or recovery, so reshape isn't happening
680 	 */
681 	struct geom *geo = &conf->geo;
682 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
683 	int far_set_size = geo->far_set_size;
684 	int last_far_set_start;
685 
686 	if (geo->raid_disks % geo->far_set_size) {
687 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
688 		last_far_set_start *= geo->far_set_size;
689 
690 		if (dev >= last_far_set_start) {
691 			far_set_size = geo->far_set_size;
692 			far_set_size += (geo->raid_disks % geo->far_set_size);
693 			far_set_start = last_far_set_start;
694 		}
695 	}
696 
697 	offset = sector & geo->chunk_mask;
698 	if (geo->far_offset) {
699 		int fc;
700 		chunk = sector >> geo->chunk_shift;
701 		fc = sector_div(chunk, geo->far_copies);
702 		dev -= fc * geo->near_copies;
703 		if (dev < far_set_start)
704 			dev += far_set_size;
705 	} else {
706 		while (sector >= geo->stride) {
707 			sector -= geo->stride;
708 			if (dev < (geo->near_copies + far_set_start))
709 				dev += far_set_size - geo->near_copies;
710 			else
711 				dev -= geo->near_copies;
712 		}
713 		chunk = sector >> geo->chunk_shift;
714 	}
715 	vchunk = chunk * geo->raid_disks + dev;
716 	sector_div(vchunk, geo->near_copies);
717 	return (vchunk << geo->chunk_shift) + offset;
718 }
719 
720 /*
721  * This routine returns the disk from which the requested read should
722  * be done. There is a per-array 'next expected sequential IO' sector
723  * number - if this matches on the next IO then we use the last disk.
724  * There is also a per-disk 'last know head position' sector that is
725  * maintained from IRQ contexts, both the normal and the resync IO
726  * completion handlers update this position correctly. If there is no
727  * perfect sequential match then we pick the disk whose head is closest.
728  *
729  * If there are 2 mirrors in the same 2 devices, performance degrades
730  * because position is mirror, not device based.
731  *
732  * The rdev for the device selected will have nr_pending incremented.
733  */
734 
735 /*
736  * FIXME: possibly should rethink readbalancing and do it differently
737  * depending on near_copies / far_copies geometry.
738  */
739 static struct md_rdev *read_balance(struct r10conf *conf,
740 				    struct r10bio *r10_bio,
741 				    int *max_sectors)
742 {
743 	const sector_t this_sector = r10_bio->sector;
744 	int disk, slot;
745 	int sectors = r10_bio->sectors;
746 	int best_good_sectors;
747 	sector_t new_distance, best_dist;
748 	struct md_rdev *best_rdev, *rdev = NULL;
749 	int do_balance;
750 	int best_slot;
751 	struct geom *geo = &conf->geo;
752 
753 	raid10_find_phys(conf, r10_bio);
754 	rcu_read_lock();
755 	best_slot = -1;
756 	best_rdev = NULL;
757 	best_dist = MaxSector;
758 	best_good_sectors = 0;
759 	do_balance = 1;
760 	clear_bit(R10BIO_FailFast, &r10_bio->state);
761 	/*
762 	 * Check if we can balance. We can balance on the whole
763 	 * device if no resync is going on (recovery is ok), or below
764 	 * the resync window. We take the first readable disk when
765 	 * above the resync window.
766 	 */
767 	if ((conf->mddev->recovery_cp < MaxSector
768 	     && (this_sector + sectors >= conf->next_resync)) ||
769 	    (mddev_is_clustered(conf->mddev) &&
770 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
771 					    this_sector + sectors)))
772 		do_balance = 0;
773 
774 	for (slot = 0; slot < conf->copies ; slot++) {
775 		sector_t first_bad;
776 		int bad_sectors;
777 		sector_t dev_sector;
778 
779 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
780 			continue;
781 		disk = r10_bio->devs[slot].devnum;
782 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
783 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
784 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
785 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
786 		if (rdev == NULL ||
787 		    test_bit(Faulty, &rdev->flags))
788 			continue;
789 		if (!test_bit(In_sync, &rdev->flags) &&
790 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
791 			continue;
792 
793 		dev_sector = r10_bio->devs[slot].addr;
794 		if (is_badblock(rdev, dev_sector, sectors,
795 				&first_bad, &bad_sectors)) {
796 			if (best_dist < MaxSector)
797 				/* Already have a better slot */
798 				continue;
799 			if (first_bad <= dev_sector) {
800 				/* Cannot read here.  If this is the
801 				 * 'primary' device, then we must not read
802 				 * beyond 'bad_sectors' from another device.
803 				 */
804 				bad_sectors -= (dev_sector - first_bad);
805 				if (!do_balance && sectors > bad_sectors)
806 					sectors = bad_sectors;
807 				if (best_good_sectors > sectors)
808 					best_good_sectors = sectors;
809 			} else {
810 				sector_t good_sectors =
811 					first_bad - dev_sector;
812 				if (good_sectors > best_good_sectors) {
813 					best_good_sectors = good_sectors;
814 					best_slot = slot;
815 					best_rdev = rdev;
816 				}
817 				if (!do_balance)
818 					/* Must read from here */
819 					break;
820 			}
821 			continue;
822 		} else
823 			best_good_sectors = sectors;
824 
825 		if (!do_balance)
826 			break;
827 
828 		if (best_slot >= 0)
829 			/* At least 2 disks to choose from so failfast is OK */
830 			set_bit(R10BIO_FailFast, &r10_bio->state);
831 		/* This optimisation is debatable, and completely destroys
832 		 * sequential read speed for 'far copies' arrays.  So only
833 		 * keep it for 'near' arrays, and review those later.
834 		 */
835 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
836 			new_distance = 0;
837 
838 		/* for far > 1 always use the lowest address */
839 		else if (geo->far_copies > 1)
840 			new_distance = r10_bio->devs[slot].addr;
841 		else
842 			new_distance = abs(r10_bio->devs[slot].addr -
843 					   conf->mirrors[disk].head_position);
844 		if (new_distance < best_dist) {
845 			best_dist = new_distance;
846 			best_slot = slot;
847 			best_rdev = rdev;
848 		}
849 	}
850 	if (slot >= conf->copies) {
851 		slot = best_slot;
852 		rdev = best_rdev;
853 	}
854 
855 	if (slot >= 0) {
856 		atomic_inc(&rdev->nr_pending);
857 		r10_bio->read_slot = slot;
858 	} else
859 		rdev = NULL;
860 	rcu_read_unlock();
861 	*max_sectors = best_good_sectors;
862 
863 	return rdev;
864 }
865 
866 static int raid10_congested(struct mddev *mddev, int bits)
867 {
868 	struct r10conf *conf = mddev->private;
869 	int i, ret = 0;
870 
871 	if ((bits & (1 << WB_async_congested)) &&
872 	    conf->pending_count >= max_queued_requests)
873 		return 1;
874 
875 	rcu_read_lock();
876 	for (i = 0;
877 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
878 		     && ret == 0;
879 	     i++) {
880 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
881 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
882 			struct request_queue *q = bdev_get_queue(rdev->bdev);
883 
884 			ret |= bdi_congested(q->backing_dev_info, bits);
885 		}
886 	}
887 	rcu_read_unlock();
888 	return ret;
889 }
890 
891 static void flush_pending_writes(struct r10conf *conf)
892 {
893 	/* Any writes that have been queued but are awaiting
894 	 * bitmap updates get flushed here.
895 	 */
896 	spin_lock_irq(&conf->device_lock);
897 
898 	if (conf->pending_bio_list.head) {
899 		struct blk_plug plug;
900 		struct bio *bio;
901 
902 		bio = bio_list_get(&conf->pending_bio_list);
903 		conf->pending_count = 0;
904 		spin_unlock_irq(&conf->device_lock);
905 
906 		/*
907 		 * As this is called in a wait_event() loop (see freeze_array),
908 		 * current->state might be TASK_UNINTERRUPTIBLE which will
909 		 * cause a warning when we prepare to wait again.  As it is
910 		 * rare that this path is taken, it is perfectly safe to force
911 		 * us to go around the wait_event() loop again, so the warning
912 		 * is a false-positive. Silence the warning by resetting
913 		 * thread state
914 		 */
915 		__set_current_state(TASK_RUNNING);
916 
917 		blk_start_plug(&plug);
918 		/* flush any pending bitmap writes to disk
919 		 * before proceeding w/ I/O */
920 		md_bitmap_unplug(conf->mddev->bitmap);
921 		wake_up(&conf->wait_barrier);
922 
923 		while (bio) { /* submit pending writes */
924 			struct bio *next = bio->bi_next;
925 			struct md_rdev *rdev = (void*)bio->bi_disk;
926 			bio->bi_next = NULL;
927 			bio_set_dev(bio, rdev->bdev);
928 			if (test_bit(Faulty, &rdev->flags)) {
929 				bio_io_error(bio);
930 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
931 					    !blk_queue_discard(bio->bi_disk->queue)))
932 				/* Just ignore it */
933 				bio_endio(bio);
934 			else
935 				generic_make_request(bio);
936 			bio = next;
937 		}
938 		blk_finish_plug(&plug);
939 	} else
940 		spin_unlock_irq(&conf->device_lock);
941 }
942 
943 /* Barriers....
944  * Sometimes we need to suspend IO while we do something else,
945  * either some resync/recovery, or reconfigure the array.
946  * To do this we raise a 'barrier'.
947  * The 'barrier' is a counter that can be raised multiple times
948  * to count how many activities are happening which preclude
949  * normal IO.
950  * We can only raise the barrier if there is no pending IO.
951  * i.e. if nr_pending == 0.
952  * We choose only to raise the barrier if no-one is waiting for the
953  * barrier to go down.  This means that as soon as an IO request
954  * is ready, no other operations which require a barrier will start
955  * until the IO request has had a chance.
956  *
957  * So: regular IO calls 'wait_barrier'.  When that returns there
958  *    is no backgroup IO happening,  It must arrange to call
959  *    allow_barrier when it has finished its IO.
960  * backgroup IO calls must call raise_barrier.  Once that returns
961  *    there is no normal IO happeing.  It must arrange to call
962  *    lower_barrier when the particular background IO completes.
963  */
964 
965 static void raise_barrier(struct r10conf *conf, int force)
966 {
967 	BUG_ON(force && !conf->barrier);
968 	spin_lock_irq(&conf->resync_lock);
969 
970 	/* Wait until no block IO is waiting (unless 'force') */
971 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
972 			    conf->resync_lock);
973 
974 	/* block any new IO from starting */
975 	conf->barrier++;
976 
977 	/* Now wait for all pending IO to complete */
978 	wait_event_lock_irq(conf->wait_barrier,
979 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
980 			    conf->resync_lock);
981 
982 	spin_unlock_irq(&conf->resync_lock);
983 }
984 
985 static void lower_barrier(struct r10conf *conf)
986 {
987 	unsigned long flags;
988 	spin_lock_irqsave(&conf->resync_lock, flags);
989 	conf->barrier--;
990 	spin_unlock_irqrestore(&conf->resync_lock, flags);
991 	wake_up(&conf->wait_barrier);
992 }
993 
994 static void wait_barrier(struct r10conf *conf)
995 {
996 	spin_lock_irq(&conf->resync_lock);
997 	if (conf->barrier) {
998 		conf->nr_waiting++;
999 		/* Wait for the barrier to drop.
1000 		 * However if there are already pending
1001 		 * requests (preventing the barrier from
1002 		 * rising completely), and the
1003 		 * pre-process bio queue isn't empty,
1004 		 * then don't wait, as we need to empty
1005 		 * that queue to get the nr_pending
1006 		 * count down.
1007 		 */
1008 		raid10_log(conf->mddev, "wait barrier");
1009 		wait_event_lock_irq(conf->wait_barrier,
1010 				    !conf->barrier ||
1011 				    (atomic_read(&conf->nr_pending) &&
1012 				     current->bio_list &&
1013 				     (!bio_list_empty(&current->bio_list[0]) ||
1014 				      !bio_list_empty(&current->bio_list[1]))),
1015 				    conf->resync_lock);
1016 		conf->nr_waiting--;
1017 		if (!conf->nr_waiting)
1018 			wake_up(&conf->wait_barrier);
1019 	}
1020 	atomic_inc(&conf->nr_pending);
1021 	spin_unlock_irq(&conf->resync_lock);
1022 }
1023 
1024 static void allow_barrier(struct r10conf *conf)
1025 {
1026 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1027 			(conf->array_freeze_pending))
1028 		wake_up(&conf->wait_barrier);
1029 }
1030 
1031 static void freeze_array(struct r10conf *conf, int extra)
1032 {
1033 	/* stop syncio and normal IO and wait for everything to
1034 	 * go quiet.
1035 	 * We increment barrier and nr_waiting, and then
1036 	 * wait until nr_pending match nr_queued+extra
1037 	 * This is called in the context of one normal IO request
1038 	 * that has failed. Thus any sync request that might be pending
1039 	 * will be blocked by nr_pending, and we need to wait for
1040 	 * pending IO requests to complete or be queued for re-try.
1041 	 * Thus the number queued (nr_queued) plus this request (extra)
1042 	 * must match the number of pending IOs (nr_pending) before
1043 	 * we continue.
1044 	 */
1045 	spin_lock_irq(&conf->resync_lock);
1046 	conf->array_freeze_pending++;
1047 	conf->barrier++;
1048 	conf->nr_waiting++;
1049 	wait_event_lock_irq_cmd(conf->wait_barrier,
1050 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1051 				conf->resync_lock,
1052 				flush_pending_writes(conf));
1053 
1054 	conf->array_freeze_pending--;
1055 	spin_unlock_irq(&conf->resync_lock);
1056 }
1057 
1058 static void unfreeze_array(struct r10conf *conf)
1059 {
1060 	/* reverse the effect of the freeze */
1061 	spin_lock_irq(&conf->resync_lock);
1062 	conf->barrier--;
1063 	conf->nr_waiting--;
1064 	wake_up(&conf->wait_barrier);
1065 	spin_unlock_irq(&conf->resync_lock);
1066 }
1067 
1068 static sector_t choose_data_offset(struct r10bio *r10_bio,
1069 				   struct md_rdev *rdev)
1070 {
1071 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1072 	    test_bit(R10BIO_Previous, &r10_bio->state))
1073 		return rdev->data_offset;
1074 	else
1075 		return rdev->new_data_offset;
1076 }
1077 
1078 struct raid10_plug_cb {
1079 	struct blk_plug_cb	cb;
1080 	struct bio_list		pending;
1081 	int			pending_cnt;
1082 };
1083 
1084 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1085 {
1086 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1087 						   cb);
1088 	struct mddev *mddev = plug->cb.data;
1089 	struct r10conf *conf = mddev->private;
1090 	struct bio *bio;
1091 
1092 	if (from_schedule || current->bio_list) {
1093 		spin_lock_irq(&conf->device_lock);
1094 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1095 		conf->pending_count += plug->pending_cnt;
1096 		spin_unlock_irq(&conf->device_lock);
1097 		wake_up(&conf->wait_barrier);
1098 		md_wakeup_thread(mddev->thread);
1099 		kfree(plug);
1100 		return;
1101 	}
1102 
1103 	/* we aren't scheduling, so we can do the write-out directly. */
1104 	bio = bio_list_get(&plug->pending);
1105 	md_bitmap_unplug(mddev->bitmap);
1106 	wake_up(&conf->wait_barrier);
1107 
1108 	while (bio) { /* submit pending writes */
1109 		struct bio *next = bio->bi_next;
1110 		struct md_rdev *rdev = (void*)bio->bi_disk;
1111 		bio->bi_next = NULL;
1112 		bio_set_dev(bio, rdev->bdev);
1113 		if (test_bit(Faulty, &rdev->flags)) {
1114 			bio_io_error(bio);
1115 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1116 				    !blk_queue_discard(bio->bi_disk->queue)))
1117 			/* Just ignore it */
1118 			bio_endio(bio);
1119 		else
1120 			generic_make_request(bio);
1121 		bio = next;
1122 	}
1123 	kfree(plug);
1124 }
1125 
1126 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1127 				struct r10bio *r10_bio)
1128 {
1129 	struct r10conf *conf = mddev->private;
1130 	struct bio *read_bio;
1131 	const int op = bio_op(bio);
1132 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1133 	int max_sectors;
1134 	sector_t sectors;
1135 	struct md_rdev *rdev;
1136 	char b[BDEVNAME_SIZE];
1137 	int slot = r10_bio->read_slot;
1138 	struct md_rdev *err_rdev = NULL;
1139 	gfp_t gfp = GFP_NOIO;
1140 
1141 	if (r10_bio->devs[slot].rdev) {
1142 		/*
1143 		 * This is an error retry, but we cannot
1144 		 * safely dereference the rdev in the r10_bio,
1145 		 * we must use the one in conf.
1146 		 * If it has already been disconnected (unlikely)
1147 		 * we lose the device name in error messages.
1148 		 */
1149 		int disk;
1150 		/*
1151 		 * As we are blocking raid10, it is a little safer to
1152 		 * use __GFP_HIGH.
1153 		 */
1154 		gfp = GFP_NOIO | __GFP_HIGH;
1155 
1156 		rcu_read_lock();
1157 		disk = r10_bio->devs[slot].devnum;
1158 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1159 		if (err_rdev)
1160 			bdevname(err_rdev->bdev, b);
1161 		else {
1162 			strcpy(b, "???");
1163 			/* This never gets dereferenced */
1164 			err_rdev = r10_bio->devs[slot].rdev;
1165 		}
1166 		rcu_read_unlock();
1167 	}
1168 	/*
1169 	 * Register the new request and wait if the reconstruction
1170 	 * thread has put up a bar for new requests.
1171 	 * Continue immediately if no resync is active currently.
1172 	 */
1173 	wait_barrier(conf);
1174 
1175 	sectors = r10_bio->sectors;
1176 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1177 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1178 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1179 		/*
1180 		 * IO spans the reshape position.  Need to wait for reshape to
1181 		 * pass
1182 		 */
1183 		raid10_log(conf->mddev, "wait reshape");
1184 		allow_barrier(conf);
1185 		wait_event(conf->wait_barrier,
1186 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1187 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1188 			   sectors);
1189 		wait_barrier(conf);
1190 	}
1191 
1192 	rdev = read_balance(conf, r10_bio, &max_sectors);
1193 	if (!rdev) {
1194 		if (err_rdev) {
1195 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1196 					    mdname(mddev), b,
1197 					    (unsigned long long)r10_bio->sector);
1198 		}
1199 		raid_end_bio_io(r10_bio);
1200 		return;
1201 	}
1202 	if (err_rdev)
1203 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1204 				   mdname(mddev),
1205 				   bdevname(rdev->bdev, b),
1206 				   (unsigned long long)r10_bio->sector);
1207 	if (max_sectors < bio_sectors(bio)) {
1208 		struct bio *split = bio_split(bio, max_sectors,
1209 					      gfp, &conf->bio_split);
1210 		bio_chain(split, bio);
1211 		generic_make_request(bio);
1212 		bio = split;
1213 		r10_bio->master_bio = bio;
1214 		r10_bio->sectors = max_sectors;
1215 	}
1216 	slot = r10_bio->read_slot;
1217 
1218 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1219 
1220 	r10_bio->devs[slot].bio = read_bio;
1221 	r10_bio->devs[slot].rdev = rdev;
1222 
1223 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1224 		choose_data_offset(r10_bio, rdev);
1225 	bio_set_dev(read_bio, rdev->bdev);
1226 	read_bio->bi_end_io = raid10_end_read_request;
1227 	bio_set_op_attrs(read_bio, op, do_sync);
1228 	if (test_bit(FailFast, &rdev->flags) &&
1229 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1230 	        read_bio->bi_opf |= MD_FAILFAST;
1231 	read_bio->bi_private = r10_bio;
1232 
1233 	if (mddev->gendisk)
1234 	        trace_block_bio_remap(read_bio->bi_disk->queue,
1235 	                              read_bio, disk_devt(mddev->gendisk),
1236 	                              r10_bio->sector);
1237 	generic_make_request(read_bio);
1238 	return;
1239 }
1240 
1241 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1242 				  struct bio *bio, bool replacement,
1243 				  int n_copy)
1244 {
1245 	const int op = bio_op(bio);
1246 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1247 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1248 	unsigned long flags;
1249 	struct blk_plug_cb *cb;
1250 	struct raid10_plug_cb *plug = NULL;
1251 	struct r10conf *conf = mddev->private;
1252 	struct md_rdev *rdev;
1253 	int devnum = r10_bio->devs[n_copy].devnum;
1254 	struct bio *mbio;
1255 
1256 	if (replacement) {
1257 		rdev = conf->mirrors[devnum].replacement;
1258 		if (rdev == NULL) {
1259 			/* Replacement just got moved to main 'rdev' */
1260 			smp_mb();
1261 			rdev = conf->mirrors[devnum].rdev;
1262 		}
1263 	} else
1264 		rdev = conf->mirrors[devnum].rdev;
1265 
1266 	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1267 	if (replacement)
1268 		r10_bio->devs[n_copy].repl_bio = mbio;
1269 	else
1270 		r10_bio->devs[n_copy].bio = mbio;
1271 
1272 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1273 				   choose_data_offset(r10_bio, rdev));
1274 	bio_set_dev(mbio, rdev->bdev);
1275 	mbio->bi_end_io	= raid10_end_write_request;
1276 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1277 	if (!replacement && test_bit(FailFast,
1278 				     &conf->mirrors[devnum].rdev->flags)
1279 			 && enough(conf, devnum))
1280 		mbio->bi_opf |= MD_FAILFAST;
1281 	mbio->bi_private = r10_bio;
1282 
1283 	if (conf->mddev->gendisk)
1284 		trace_block_bio_remap(mbio->bi_disk->queue,
1285 				      mbio, disk_devt(conf->mddev->gendisk),
1286 				      r10_bio->sector);
1287 	/* flush_pending_writes() needs access to the rdev so...*/
1288 	mbio->bi_disk = (void *)rdev;
1289 
1290 	atomic_inc(&r10_bio->remaining);
1291 
1292 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1293 	if (cb)
1294 		plug = container_of(cb, struct raid10_plug_cb, cb);
1295 	else
1296 		plug = NULL;
1297 	if (plug) {
1298 		bio_list_add(&plug->pending, mbio);
1299 		plug->pending_cnt++;
1300 	} else {
1301 		spin_lock_irqsave(&conf->device_lock, flags);
1302 		bio_list_add(&conf->pending_bio_list, mbio);
1303 		conf->pending_count++;
1304 		spin_unlock_irqrestore(&conf->device_lock, flags);
1305 		md_wakeup_thread(mddev->thread);
1306 	}
1307 }
1308 
1309 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1310 				 struct r10bio *r10_bio)
1311 {
1312 	struct r10conf *conf = mddev->private;
1313 	int i;
1314 	struct md_rdev *blocked_rdev;
1315 	sector_t sectors;
1316 	int max_sectors;
1317 
1318 	if ((mddev_is_clustered(mddev) &&
1319 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1320 					    bio->bi_iter.bi_sector,
1321 					    bio_end_sector(bio)))) {
1322 		DEFINE_WAIT(w);
1323 		for (;;) {
1324 			prepare_to_wait(&conf->wait_barrier,
1325 					&w, TASK_IDLE);
1326 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1327 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1328 				break;
1329 			schedule();
1330 		}
1331 		finish_wait(&conf->wait_barrier, &w);
1332 	}
1333 
1334 	/*
1335 	 * Register the new request and wait if the reconstruction
1336 	 * thread has put up a bar for new requests.
1337 	 * Continue immediately if no resync is active currently.
1338 	 */
1339 	wait_barrier(conf);
1340 
1341 	sectors = r10_bio->sectors;
1342 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1343 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1344 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1345 		/*
1346 		 * IO spans the reshape position.  Need to wait for reshape to
1347 		 * pass
1348 		 */
1349 		raid10_log(conf->mddev, "wait reshape");
1350 		allow_barrier(conf);
1351 		wait_event(conf->wait_barrier,
1352 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1353 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1354 			   sectors);
1355 		wait_barrier(conf);
1356 	}
1357 
1358 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1359 	    (mddev->reshape_backwards
1360 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1361 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1362 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1363 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1364 		/* Need to update reshape_position in metadata */
1365 		mddev->reshape_position = conf->reshape_progress;
1366 		set_mask_bits(&mddev->sb_flags, 0,
1367 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1368 		md_wakeup_thread(mddev->thread);
1369 		raid10_log(conf->mddev, "wait reshape metadata");
1370 		wait_event(mddev->sb_wait,
1371 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1372 
1373 		conf->reshape_safe = mddev->reshape_position;
1374 	}
1375 
1376 	if (conf->pending_count >= max_queued_requests) {
1377 		md_wakeup_thread(mddev->thread);
1378 		raid10_log(mddev, "wait queued");
1379 		wait_event(conf->wait_barrier,
1380 			   conf->pending_count < max_queued_requests);
1381 	}
1382 	/* first select target devices under rcu_lock and
1383 	 * inc refcount on their rdev.  Record them by setting
1384 	 * bios[x] to bio
1385 	 * If there are known/acknowledged bad blocks on any device
1386 	 * on which we have seen a write error, we want to avoid
1387 	 * writing to those blocks.  This potentially requires several
1388 	 * writes to write around the bad blocks.  Each set of writes
1389 	 * gets its own r10_bio with a set of bios attached.
1390 	 */
1391 
1392 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1393 	raid10_find_phys(conf, r10_bio);
1394 retry_write:
1395 	blocked_rdev = NULL;
1396 	rcu_read_lock();
1397 	max_sectors = r10_bio->sectors;
1398 
1399 	for (i = 0;  i < conf->copies; i++) {
1400 		int d = r10_bio->devs[i].devnum;
1401 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1402 		struct md_rdev *rrdev = rcu_dereference(
1403 			conf->mirrors[d].replacement);
1404 		if (rdev == rrdev)
1405 			rrdev = NULL;
1406 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1407 			atomic_inc(&rdev->nr_pending);
1408 			blocked_rdev = rdev;
1409 			break;
1410 		}
1411 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1412 			atomic_inc(&rrdev->nr_pending);
1413 			blocked_rdev = rrdev;
1414 			break;
1415 		}
1416 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1417 			rdev = NULL;
1418 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1419 			rrdev = NULL;
1420 
1421 		r10_bio->devs[i].bio = NULL;
1422 		r10_bio->devs[i].repl_bio = NULL;
1423 
1424 		if (!rdev && !rrdev) {
1425 			set_bit(R10BIO_Degraded, &r10_bio->state);
1426 			continue;
1427 		}
1428 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1429 			sector_t first_bad;
1430 			sector_t dev_sector = r10_bio->devs[i].addr;
1431 			int bad_sectors;
1432 			int is_bad;
1433 
1434 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1435 					     &first_bad, &bad_sectors);
1436 			if (is_bad < 0) {
1437 				/* Mustn't write here until the bad block
1438 				 * is acknowledged
1439 				 */
1440 				atomic_inc(&rdev->nr_pending);
1441 				set_bit(BlockedBadBlocks, &rdev->flags);
1442 				blocked_rdev = rdev;
1443 				break;
1444 			}
1445 			if (is_bad && first_bad <= dev_sector) {
1446 				/* Cannot write here at all */
1447 				bad_sectors -= (dev_sector - first_bad);
1448 				if (bad_sectors < max_sectors)
1449 					/* Mustn't write more than bad_sectors
1450 					 * to other devices yet
1451 					 */
1452 					max_sectors = bad_sectors;
1453 				/* We don't set R10BIO_Degraded as that
1454 				 * only applies if the disk is missing,
1455 				 * so it might be re-added, and we want to
1456 				 * know to recover this chunk.
1457 				 * In this case the device is here, and the
1458 				 * fact that this chunk is not in-sync is
1459 				 * recorded in the bad block log.
1460 				 */
1461 				continue;
1462 			}
1463 			if (is_bad) {
1464 				int good_sectors = first_bad - dev_sector;
1465 				if (good_sectors < max_sectors)
1466 					max_sectors = good_sectors;
1467 			}
1468 		}
1469 		if (rdev) {
1470 			r10_bio->devs[i].bio = bio;
1471 			atomic_inc(&rdev->nr_pending);
1472 		}
1473 		if (rrdev) {
1474 			r10_bio->devs[i].repl_bio = bio;
1475 			atomic_inc(&rrdev->nr_pending);
1476 		}
1477 	}
1478 	rcu_read_unlock();
1479 
1480 	if (unlikely(blocked_rdev)) {
1481 		/* Have to wait for this device to get unblocked, then retry */
1482 		int j;
1483 		int d;
1484 
1485 		for (j = 0; j < i; j++) {
1486 			if (r10_bio->devs[j].bio) {
1487 				d = r10_bio->devs[j].devnum;
1488 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1489 			}
1490 			if (r10_bio->devs[j].repl_bio) {
1491 				struct md_rdev *rdev;
1492 				d = r10_bio->devs[j].devnum;
1493 				rdev = conf->mirrors[d].replacement;
1494 				if (!rdev) {
1495 					/* Race with remove_disk */
1496 					smp_mb();
1497 					rdev = conf->mirrors[d].rdev;
1498 				}
1499 				rdev_dec_pending(rdev, mddev);
1500 			}
1501 		}
1502 		allow_barrier(conf);
1503 		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1504 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1505 		wait_barrier(conf);
1506 		goto retry_write;
1507 	}
1508 
1509 	if (max_sectors < r10_bio->sectors)
1510 		r10_bio->sectors = max_sectors;
1511 
1512 	if (r10_bio->sectors < bio_sectors(bio)) {
1513 		struct bio *split = bio_split(bio, r10_bio->sectors,
1514 					      GFP_NOIO, &conf->bio_split);
1515 		bio_chain(split, bio);
1516 		generic_make_request(bio);
1517 		bio = split;
1518 		r10_bio->master_bio = bio;
1519 	}
1520 
1521 	atomic_set(&r10_bio->remaining, 1);
1522 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1523 
1524 	for (i = 0; i < conf->copies; i++) {
1525 		if (r10_bio->devs[i].bio)
1526 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1527 		if (r10_bio->devs[i].repl_bio)
1528 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1529 	}
1530 	one_write_done(r10_bio);
1531 }
1532 
1533 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1534 {
1535 	struct r10conf *conf = mddev->private;
1536 	struct r10bio *r10_bio;
1537 
1538 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1539 
1540 	r10_bio->master_bio = bio;
1541 	r10_bio->sectors = sectors;
1542 
1543 	r10_bio->mddev = mddev;
1544 	r10_bio->sector = bio->bi_iter.bi_sector;
1545 	r10_bio->state = 0;
1546 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1547 
1548 	if (bio_data_dir(bio) == READ)
1549 		raid10_read_request(mddev, bio, r10_bio);
1550 	else
1551 		raid10_write_request(mddev, bio, r10_bio);
1552 }
1553 
1554 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1555 {
1556 	struct r10conf *conf = mddev->private;
1557 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1558 	int chunk_sects = chunk_mask + 1;
1559 	int sectors = bio_sectors(bio);
1560 
1561 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1562 		md_flush_request(mddev, bio);
1563 		return true;
1564 	}
1565 
1566 	if (!md_write_start(mddev, bio))
1567 		return false;
1568 
1569 	/*
1570 	 * If this request crosses a chunk boundary, we need to split
1571 	 * it.
1572 	 */
1573 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1574 		     sectors > chunk_sects
1575 		     && (conf->geo.near_copies < conf->geo.raid_disks
1576 			 || conf->prev.near_copies <
1577 			 conf->prev.raid_disks)))
1578 		sectors = chunk_sects -
1579 			(bio->bi_iter.bi_sector &
1580 			 (chunk_sects - 1));
1581 	__make_request(mddev, bio, sectors);
1582 
1583 	/* In case raid10d snuck in to freeze_array */
1584 	wake_up(&conf->wait_barrier);
1585 	return true;
1586 }
1587 
1588 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1589 {
1590 	struct r10conf *conf = mddev->private;
1591 	int i;
1592 
1593 	if (conf->geo.near_copies < conf->geo.raid_disks)
1594 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1595 	if (conf->geo.near_copies > 1)
1596 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1597 	if (conf->geo.far_copies > 1) {
1598 		if (conf->geo.far_offset)
1599 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1600 		else
1601 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1602 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1603 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1604 	}
1605 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1606 					conf->geo.raid_disks - mddev->degraded);
1607 	rcu_read_lock();
1608 	for (i = 0; i < conf->geo.raid_disks; i++) {
1609 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1610 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1611 	}
1612 	rcu_read_unlock();
1613 	seq_printf(seq, "]");
1614 }
1615 
1616 /* check if there are enough drives for
1617  * every block to appear on atleast one.
1618  * Don't consider the device numbered 'ignore'
1619  * as we might be about to remove it.
1620  */
1621 static int _enough(struct r10conf *conf, int previous, int ignore)
1622 {
1623 	int first = 0;
1624 	int has_enough = 0;
1625 	int disks, ncopies;
1626 	if (previous) {
1627 		disks = conf->prev.raid_disks;
1628 		ncopies = conf->prev.near_copies;
1629 	} else {
1630 		disks = conf->geo.raid_disks;
1631 		ncopies = conf->geo.near_copies;
1632 	}
1633 
1634 	rcu_read_lock();
1635 	do {
1636 		int n = conf->copies;
1637 		int cnt = 0;
1638 		int this = first;
1639 		while (n--) {
1640 			struct md_rdev *rdev;
1641 			if (this != ignore &&
1642 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1643 			    test_bit(In_sync, &rdev->flags))
1644 				cnt++;
1645 			this = (this+1) % disks;
1646 		}
1647 		if (cnt == 0)
1648 			goto out;
1649 		first = (first + ncopies) % disks;
1650 	} while (first != 0);
1651 	has_enough = 1;
1652 out:
1653 	rcu_read_unlock();
1654 	return has_enough;
1655 }
1656 
1657 static int enough(struct r10conf *conf, int ignore)
1658 {
1659 	/* when calling 'enough', both 'prev' and 'geo' must
1660 	 * be stable.
1661 	 * This is ensured if ->reconfig_mutex or ->device_lock
1662 	 * is held.
1663 	 */
1664 	return _enough(conf, 0, ignore) &&
1665 		_enough(conf, 1, ignore);
1666 }
1667 
1668 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1669 {
1670 	char b[BDEVNAME_SIZE];
1671 	struct r10conf *conf = mddev->private;
1672 	unsigned long flags;
1673 
1674 	/*
1675 	 * If it is not operational, then we have already marked it as dead
1676 	 * else if it is the last working disks, ignore the error, let the
1677 	 * next level up know.
1678 	 * else mark the drive as failed
1679 	 */
1680 	spin_lock_irqsave(&conf->device_lock, flags);
1681 	if (test_bit(In_sync, &rdev->flags)
1682 	    && !enough(conf, rdev->raid_disk)) {
1683 		/*
1684 		 * Don't fail the drive, just return an IO error.
1685 		 */
1686 		spin_unlock_irqrestore(&conf->device_lock, flags);
1687 		return;
1688 	}
1689 	if (test_and_clear_bit(In_sync, &rdev->flags))
1690 		mddev->degraded++;
1691 	/*
1692 	 * If recovery is running, make sure it aborts.
1693 	 */
1694 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1695 	set_bit(Blocked, &rdev->flags);
1696 	set_bit(Faulty, &rdev->flags);
1697 	set_mask_bits(&mddev->sb_flags, 0,
1698 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1699 	spin_unlock_irqrestore(&conf->device_lock, flags);
1700 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1701 		"md/raid10:%s: Operation continuing on %d devices.\n",
1702 		mdname(mddev), bdevname(rdev->bdev, b),
1703 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1704 }
1705 
1706 static void print_conf(struct r10conf *conf)
1707 {
1708 	int i;
1709 	struct md_rdev *rdev;
1710 
1711 	pr_debug("RAID10 conf printout:\n");
1712 	if (!conf) {
1713 		pr_debug("(!conf)\n");
1714 		return;
1715 	}
1716 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1717 		 conf->geo.raid_disks);
1718 
1719 	/* This is only called with ->reconfix_mutex held, so
1720 	 * rcu protection of rdev is not needed */
1721 	for (i = 0; i < conf->geo.raid_disks; i++) {
1722 		char b[BDEVNAME_SIZE];
1723 		rdev = conf->mirrors[i].rdev;
1724 		if (rdev)
1725 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1726 				 i, !test_bit(In_sync, &rdev->flags),
1727 				 !test_bit(Faulty, &rdev->flags),
1728 				 bdevname(rdev->bdev,b));
1729 	}
1730 }
1731 
1732 static void close_sync(struct r10conf *conf)
1733 {
1734 	wait_barrier(conf);
1735 	allow_barrier(conf);
1736 
1737 	mempool_exit(&conf->r10buf_pool);
1738 }
1739 
1740 static int raid10_spare_active(struct mddev *mddev)
1741 {
1742 	int i;
1743 	struct r10conf *conf = mddev->private;
1744 	struct raid10_info *tmp;
1745 	int count = 0;
1746 	unsigned long flags;
1747 
1748 	/*
1749 	 * Find all non-in_sync disks within the RAID10 configuration
1750 	 * and mark them in_sync
1751 	 */
1752 	for (i = 0; i < conf->geo.raid_disks; i++) {
1753 		tmp = conf->mirrors + i;
1754 		if (tmp->replacement
1755 		    && tmp->replacement->recovery_offset == MaxSector
1756 		    && !test_bit(Faulty, &tmp->replacement->flags)
1757 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1758 			/* Replacement has just become active */
1759 			if (!tmp->rdev
1760 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1761 				count++;
1762 			if (tmp->rdev) {
1763 				/* Replaced device not technically faulty,
1764 				 * but we need to be sure it gets removed
1765 				 * and never re-added.
1766 				 */
1767 				set_bit(Faulty, &tmp->rdev->flags);
1768 				sysfs_notify_dirent_safe(
1769 					tmp->rdev->sysfs_state);
1770 			}
1771 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1772 		} else if (tmp->rdev
1773 			   && tmp->rdev->recovery_offset == MaxSector
1774 			   && !test_bit(Faulty, &tmp->rdev->flags)
1775 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1776 			count++;
1777 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1778 		}
1779 	}
1780 	spin_lock_irqsave(&conf->device_lock, flags);
1781 	mddev->degraded -= count;
1782 	spin_unlock_irqrestore(&conf->device_lock, flags);
1783 
1784 	print_conf(conf);
1785 	return count;
1786 }
1787 
1788 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1789 {
1790 	struct r10conf *conf = mddev->private;
1791 	int err = -EEXIST;
1792 	int mirror;
1793 	int first = 0;
1794 	int last = conf->geo.raid_disks - 1;
1795 
1796 	if (mddev->recovery_cp < MaxSector)
1797 		/* only hot-add to in-sync arrays, as recovery is
1798 		 * very different from resync
1799 		 */
1800 		return -EBUSY;
1801 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1802 		return -EINVAL;
1803 
1804 	if (md_integrity_add_rdev(rdev, mddev))
1805 		return -ENXIO;
1806 
1807 	if (rdev->raid_disk >= 0)
1808 		first = last = rdev->raid_disk;
1809 
1810 	if (rdev->saved_raid_disk >= first &&
1811 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1812 		mirror = rdev->saved_raid_disk;
1813 	else
1814 		mirror = first;
1815 	for ( ; mirror <= last ; mirror++) {
1816 		struct raid10_info *p = &conf->mirrors[mirror];
1817 		if (p->recovery_disabled == mddev->recovery_disabled)
1818 			continue;
1819 		if (p->rdev) {
1820 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1821 			    p->replacement != NULL)
1822 				continue;
1823 			clear_bit(In_sync, &rdev->flags);
1824 			set_bit(Replacement, &rdev->flags);
1825 			rdev->raid_disk = mirror;
1826 			err = 0;
1827 			if (mddev->gendisk)
1828 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1829 						  rdev->data_offset << 9);
1830 			conf->fullsync = 1;
1831 			rcu_assign_pointer(p->replacement, rdev);
1832 			break;
1833 		}
1834 
1835 		if (mddev->gendisk)
1836 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1837 					  rdev->data_offset << 9);
1838 
1839 		p->head_position = 0;
1840 		p->recovery_disabled = mddev->recovery_disabled - 1;
1841 		rdev->raid_disk = mirror;
1842 		err = 0;
1843 		if (rdev->saved_raid_disk != mirror)
1844 			conf->fullsync = 1;
1845 		rcu_assign_pointer(p->rdev, rdev);
1846 		break;
1847 	}
1848 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1849 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1850 
1851 	print_conf(conf);
1852 	return err;
1853 }
1854 
1855 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1856 {
1857 	struct r10conf *conf = mddev->private;
1858 	int err = 0;
1859 	int number = rdev->raid_disk;
1860 	struct md_rdev **rdevp;
1861 	struct raid10_info *p = conf->mirrors + number;
1862 
1863 	print_conf(conf);
1864 	if (rdev == p->rdev)
1865 		rdevp = &p->rdev;
1866 	else if (rdev == p->replacement)
1867 		rdevp = &p->replacement;
1868 	else
1869 		return 0;
1870 
1871 	if (test_bit(In_sync, &rdev->flags) ||
1872 	    atomic_read(&rdev->nr_pending)) {
1873 		err = -EBUSY;
1874 		goto abort;
1875 	}
1876 	/* Only remove non-faulty devices if recovery
1877 	 * is not possible.
1878 	 */
1879 	if (!test_bit(Faulty, &rdev->flags) &&
1880 	    mddev->recovery_disabled != p->recovery_disabled &&
1881 	    (!p->replacement || p->replacement == rdev) &&
1882 	    number < conf->geo.raid_disks &&
1883 	    enough(conf, -1)) {
1884 		err = -EBUSY;
1885 		goto abort;
1886 	}
1887 	*rdevp = NULL;
1888 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1889 		synchronize_rcu();
1890 		if (atomic_read(&rdev->nr_pending)) {
1891 			/* lost the race, try later */
1892 			err = -EBUSY;
1893 			*rdevp = rdev;
1894 			goto abort;
1895 		}
1896 	}
1897 	if (p->replacement) {
1898 		/* We must have just cleared 'rdev' */
1899 		p->rdev = p->replacement;
1900 		clear_bit(Replacement, &p->replacement->flags);
1901 		smp_mb(); /* Make sure other CPUs may see both as identical
1902 			   * but will never see neither -- if they are careful.
1903 			   */
1904 		p->replacement = NULL;
1905 	}
1906 
1907 	clear_bit(WantReplacement, &rdev->flags);
1908 	err = md_integrity_register(mddev);
1909 
1910 abort:
1911 
1912 	print_conf(conf);
1913 	return err;
1914 }
1915 
1916 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1917 {
1918 	struct r10conf *conf = r10_bio->mddev->private;
1919 
1920 	if (!bio->bi_status)
1921 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1922 	else
1923 		/* The write handler will notice the lack of
1924 		 * R10BIO_Uptodate and record any errors etc
1925 		 */
1926 		atomic_add(r10_bio->sectors,
1927 			   &conf->mirrors[d].rdev->corrected_errors);
1928 
1929 	/* for reconstruct, we always reschedule after a read.
1930 	 * for resync, only after all reads
1931 	 */
1932 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1933 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1934 	    atomic_dec_and_test(&r10_bio->remaining)) {
1935 		/* we have read all the blocks,
1936 		 * do the comparison in process context in raid10d
1937 		 */
1938 		reschedule_retry(r10_bio);
1939 	}
1940 }
1941 
1942 static void end_sync_read(struct bio *bio)
1943 {
1944 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1945 	struct r10conf *conf = r10_bio->mddev->private;
1946 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1947 
1948 	__end_sync_read(r10_bio, bio, d);
1949 }
1950 
1951 static void end_reshape_read(struct bio *bio)
1952 {
1953 	/* reshape read bio isn't allocated from r10buf_pool */
1954 	struct r10bio *r10_bio = bio->bi_private;
1955 
1956 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1957 }
1958 
1959 static void end_sync_request(struct r10bio *r10_bio)
1960 {
1961 	struct mddev *mddev = r10_bio->mddev;
1962 
1963 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1964 		if (r10_bio->master_bio == NULL) {
1965 			/* the primary of several recovery bios */
1966 			sector_t s = r10_bio->sectors;
1967 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1968 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1969 				reschedule_retry(r10_bio);
1970 			else
1971 				put_buf(r10_bio);
1972 			md_done_sync(mddev, s, 1);
1973 			break;
1974 		} else {
1975 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1976 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1977 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1978 				reschedule_retry(r10_bio);
1979 			else
1980 				put_buf(r10_bio);
1981 			r10_bio = r10_bio2;
1982 		}
1983 	}
1984 }
1985 
1986 static void end_sync_write(struct bio *bio)
1987 {
1988 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1989 	struct mddev *mddev = r10_bio->mddev;
1990 	struct r10conf *conf = mddev->private;
1991 	int d;
1992 	sector_t first_bad;
1993 	int bad_sectors;
1994 	int slot;
1995 	int repl;
1996 	struct md_rdev *rdev = NULL;
1997 
1998 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1999 	if (repl)
2000 		rdev = conf->mirrors[d].replacement;
2001 	else
2002 		rdev = conf->mirrors[d].rdev;
2003 
2004 	if (bio->bi_status) {
2005 		if (repl)
2006 			md_error(mddev, rdev);
2007 		else {
2008 			set_bit(WriteErrorSeen, &rdev->flags);
2009 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2010 				set_bit(MD_RECOVERY_NEEDED,
2011 					&rdev->mddev->recovery);
2012 			set_bit(R10BIO_WriteError, &r10_bio->state);
2013 		}
2014 	} else if (is_badblock(rdev,
2015 			     r10_bio->devs[slot].addr,
2016 			     r10_bio->sectors,
2017 			     &first_bad, &bad_sectors))
2018 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2019 
2020 	rdev_dec_pending(rdev, mddev);
2021 
2022 	end_sync_request(r10_bio);
2023 }
2024 
2025 /*
2026  * Note: sync and recover and handled very differently for raid10
2027  * This code is for resync.
2028  * For resync, we read through virtual addresses and read all blocks.
2029  * If there is any error, we schedule a write.  The lowest numbered
2030  * drive is authoritative.
2031  * However requests come for physical address, so we need to map.
2032  * For every physical address there are raid_disks/copies virtual addresses,
2033  * which is always are least one, but is not necessarly an integer.
2034  * This means that a physical address can span multiple chunks, so we may
2035  * have to submit multiple io requests for a single sync request.
2036  */
2037 /*
2038  * We check if all blocks are in-sync and only write to blocks that
2039  * aren't in sync
2040  */
2041 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2042 {
2043 	struct r10conf *conf = mddev->private;
2044 	int i, first;
2045 	struct bio *tbio, *fbio;
2046 	int vcnt;
2047 	struct page **tpages, **fpages;
2048 
2049 	atomic_set(&r10_bio->remaining, 1);
2050 
2051 	/* find the first device with a block */
2052 	for (i=0; i<conf->copies; i++)
2053 		if (!r10_bio->devs[i].bio->bi_status)
2054 			break;
2055 
2056 	if (i == conf->copies)
2057 		goto done;
2058 
2059 	first = i;
2060 	fbio = r10_bio->devs[i].bio;
2061 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2062 	fbio->bi_iter.bi_idx = 0;
2063 	fpages = get_resync_pages(fbio)->pages;
2064 
2065 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2066 	/* now find blocks with errors */
2067 	for (i=0 ; i < conf->copies ; i++) {
2068 		int  j, d;
2069 		struct md_rdev *rdev;
2070 		struct resync_pages *rp;
2071 
2072 		tbio = r10_bio->devs[i].bio;
2073 
2074 		if (tbio->bi_end_io != end_sync_read)
2075 			continue;
2076 		if (i == first)
2077 			continue;
2078 
2079 		tpages = get_resync_pages(tbio)->pages;
2080 		d = r10_bio->devs[i].devnum;
2081 		rdev = conf->mirrors[d].rdev;
2082 		if (!r10_bio->devs[i].bio->bi_status) {
2083 			/* We know that the bi_io_vec layout is the same for
2084 			 * both 'first' and 'i', so we just compare them.
2085 			 * All vec entries are PAGE_SIZE;
2086 			 */
2087 			int sectors = r10_bio->sectors;
2088 			for (j = 0; j < vcnt; j++) {
2089 				int len = PAGE_SIZE;
2090 				if (sectors < (len / 512))
2091 					len = sectors * 512;
2092 				if (memcmp(page_address(fpages[j]),
2093 					   page_address(tpages[j]),
2094 					   len))
2095 					break;
2096 				sectors -= len/512;
2097 			}
2098 			if (j == vcnt)
2099 				continue;
2100 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2101 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2102 				/* Don't fix anything. */
2103 				continue;
2104 		} else if (test_bit(FailFast, &rdev->flags)) {
2105 			/* Just give up on this device */
2106 			md_error(rdev->mddev, rdev);
2107 			continue;
2108 		}
2109 		/* Ok, we need to write this bio, either to correct an
2110 		 * inconsistency or to correct an unreadable block.
2111 		 * First we need to fixup bv_offset, bv_len and
2112 		 * bi_vecs, as the read request might have corrupted these
2113 		 */
2114 		rp = get_resync_pages(tbio);
2115 		bio_reset(tbio);
2116 
2117 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2118 
2119 		rp->raid_bio = r10_bio;
2120 		tbio->bi_private = rp;
2121 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2122 		tbio->bi_end_io = end_sync_write;
2123 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2124 
2125 		bio_copy_data(tbio, fbio);
2126 
2127 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2128 		atomic_inc(&r10_bio->remaining);
2129 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2130 
2131 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2132 			tbio->bi_opf |= MD_FAILFAST;
2133 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2134 		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2135 		generic_make_request(tbio);
2136 	}
2137 
2138 	/* Now write out to any replacement devices
2139 	 * that are active
2140 	 */
2141 	for (i = 0; i < conf->copies; i++) {
2142 		int d;
2143 
2144 		tbio = r10_bio->devs[i].repl_bio;
2145 		if (!tbio || !tbio->bi_end_io)
2146 			continue;
2147 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2148 		    && r10_bio->devs[i].bio != fbio)
2149 			bio_copy_data(tbio, fbio);
2150 		d = r10_bio->devs[i].devnum;
2151 		atomic_inc(&r10_bio->remaining);
2152 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2153 			     bio_sectors(tbio));
2154 		generic_make_request(tbio);
2155 	}
2156 
2157 done:
2158 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2159 		md_done_sync(mddev, r10_bio->sectors, 1);
2160 		put_buf(r10_bio);
2161 	}
2162 }
2163 
2164 /*
2165  * Now for the recovery code.
2166  * Recovery happens across physical sectors.
2167  * We recover all non-is_sync drives by finding the virtual address of
2168  * each, and then choose a working drive that also has that virt address.
2169  * There is a separate r10_bio for each non-in_sync drive.
2170  * Only the first two slots are in use. The first for reading,
2171  * The second for writing.
2172  *
2173  */
2174 static void fix_recovery_read_error(struct r10bio *r10_bio)
2175 {
2176 	/* We got a read error during recovery.
2177 	 * We repeat the read in smaller page-sized sections.
2178 	 * If a read succeeds, write it to the new device or record
2179 	 * a bad block if we cannot.
2180 	 * If a read fails, record a bad block on both old and
2181 	 * new devices.
2182 	 */
2183 	struct mddev *mddev = r10_bio->mddev;
2184 	struct r10conf *conf = mddev->private;
2185 	struct bio *bio = r10_bio->devs[0].bio;
2186 	sector_t sect = 0;
2187 	int sectors = r10_bio->sectors;
2188 	int idx = 0;
2189 	int dr = r10_bio->devs[0].devnum;
2190 	int dw = r10_bio->devs[1].devnum;
2191 	struct page **pages = get_resync_pages(bio)->pages;
2192 
2193 	while (sectors) {
2194 		int s = sectors;
2195 		struct md_rdev *rdev;
2196 		sector_t addr;
2197 		int ok;
2198 
2199 		if (s > (PAGE_SIZE>>9))
2200 			s = PAGE_SIZE >> 9;
2201 
2202 		rdev = conf->mirrors[dr].rdev;
2203 		addr = r10_bio->devs[0].addr + sect,
2204 		ok = sync_page_io(rdev,
2205 				  addr,
2206 				  s << 9,
2207 				  pages[idx],
2208 				  REQ_OP_READ, 0, false);
2209 		if (ok) {
2210 			rdev = conf->mirrors[dw].rdev;
2211 			addr = r10_bio->devs[1].addr + sect;
2212 			ok = sync_page_io(rdev,
2213 					  addr,
2214 					  s << 9,
2215 					  pages[idx],
2216 					  REQ_OP_WRITE, 0, false);
2217 			if (!ok) {
2218 				set_bit(WriteErrorSeen, &rdev->flags);
2219 				if (!test_and_set_bit(WantReplacement,
2220 						      &rdev->flags))
2221 					set_bit(MD_RECOVERY_NEEDED,
2222 						&rdev->mddev->recovery);
2223 			}
2224 		}
2225 		if (!ok) {
2226 			/* We don't worry if we cannot set a bad block -
2227 			 * it really is bad so there is no loss in not
2228 			 * recording it yet
2229 			 */
2230 			rdev_set_badblocks(rdev, addr, s, 0);
2231 
2232 			if (rdev != conf->mirrors[dw].rdev) {
2233 				/* need bad block on destination too */
2234 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2235 				addr = r10_bio->devs[1].addr + sect;
2236 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2237 				if (!ok) {
2238 					/* just abort the recovery */
2239 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2240 						  mdname(mddev));
2241 
2242 					conf->mirrors[dw].recovery_disabled
2243 						= mddev->recovery_disabled;
2244 					set_bit(MD_RECOVERY_INTR,
2245 						&mddev->recovery);
2246 					break;
2247 				}
2248 			}
2249 		}
2250 
2251 		sectors -= s;
2252 		sect += s;
2253 		idx++;
2254 	}
2255 }
2256 
2257 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2258 {
2259 	struct r10conf *conf = mddev->private;
2260 	int d;
2261 	struct bio *wbio, *wbio2;
2262 
2263 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2264 		fix_recovery_read_error(r10_bio);
2265 		end_sync_request(r10_bio);
2266 		return;
2267 	}
2268 
2269 	/*
2270 	 * share the pages with the first bio
2271 	 * and submit the write request
2272 	 */
2273 	d = r10_bio->devs[1].devnum;
2274 	wbio = r10_bio->devs[1].bio;
2275 	wbio2 = r10_bio->devs[1].repl_bio;
2276 	/* Need to test wbio2->bi_end_io before we call
2277 	 * generic_make_request as if the former is NULL,
2278 	 * the latter is free to free wbio2.
2279 	 */
2280 	if (wbio2 && !wbio2->bi_end_io)
2281 		wbio2 = NULL;
2282 	if (wbio->bi_end_io) {
2283 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2284 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2285 		generic_make_request(wbio);
2286 	}
2287 	if (wbio2) {
2288 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2289 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2290 			     bio_sectors(wbio2));
2291 		generic_make_request(wbio2);
2292 	}
2293 }
2294 
2295 /*
2296  * Used by fix_read_error() to decay the per rdev read_errors.
2297  * We halve the read error count for every hour that has elapsed
2298  * since the last recorded read error.
2299  *
2300  */
2301 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2302 {
2303 	long cur_time_mon;
2304 	unsigned long hours_since_last;
2305 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2306 
2307 	cur_time_mon = ktime_get_seconds();
2308 
2309 	if (rdev->last_read_error == 0) {
2310 		/* first time we've seen a read error */
2311 		rdev->last_read_error = cur_time_mon;
2312 		return;
2313 	}
2314 
2315 	hours_since_last = (long)(cur_time_mon -
2316 			    rdev->last_read_error) / 3600;
2317 
2318 	rdev->last_read_error = cur_time_mon;
2319 
2320 	/*
2321 	 * if hours_since_last is > the number of bits in read_errors
2322 	 * just set read errors to 0. We do this to avoid
2323 	 * overflowing the shift of read_errors by hours_since_last.
2324 	 */
2325 	if (hours_since_last >= 8 * sizeof(read_errors))
2326 		atomic_set(&rdev->read_errors, 0);
2327 	else
2328 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2329 }
2330 
2331 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2332 			    int sectors, struct page *page, int rw)
2333 {
2334 	sector_t first_bad;
2335 	int bad_sectors;
2336 
2337 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2338 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2339 		return -1;
2340 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2341 		/* success */
2342 		return 1;
2343 	if (rw == WRITE) {
2344 		set_bit(WriteErrorSeen, &rdev->flags);
2345 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2346 			set_bit(MD_RECOVERY_NEEDED,
2347 				&rdev->mddev->recovery);
2348 	}
2349 	/* need to record an error - either for the block or the device */
2350 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2351 		md_error(rdev->mddev, rdev);
2352 	return 0;
2353 }
2354 
2355 /*
2356  * This is a kernel thread which:
2357  *
2358  *	1.	Retries failed read operations on working mirrors.
2359  *	2.	Updates the raid superblock when problems encounter.
2360  *	3.	Performs writes following reads for array synchronising.
2361  */
2362 
2363 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2364 {
2365 	int sect = 0; /* Offset from r10_bio->sector */
2366 	int sectors = r10_bio->sectors;
2367 	struct md_rdev *rdev;
2368 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2369 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2370 
2371 	/* still own a reference to this rdev, so it cannot
2372 	 * have been cleared recently.
2373 	 */
2374 	rdev = conf->mirrors[d].rdev;
2375 
2376 	if (test_bit(Faulty, &rdev->flags))
2377 		/* drive has already been failed, just ignore any
2378 		   more fix_read_error() attempts */
2379 		return;
2380 
2381 	check_decay_read_errors(mddev, rdev);
2382 	atomic_inc(&rdev->read_errors);
2383 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2384 		char b[BDEVNAME_SIZE];
2385 		bdevname(rdev->bdev, b);
2386 
2387 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2388 			  mdname(mddev), b,
2389 			  atomic_read(&rdev->read_errors), max_read_errors);
2390 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2391 			  mdname(mddev), b);
2392 		md_error(mddev, rdev);
2393 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2394 		return;
2395 	}
2396 
2397 	while(sectors) {
2398 		int s = sectors;
2399 		int sl = r10_bio->read_slot;
2400 		int success = 0;
2401 		int start;
2402 
2403 		if (s > (PAGE_SIZE>>9))
2404 			s = PAGE_SIZE >> 9;
2405 
2406 		rcu_read_lock();
2407 		do {
2408 			sector_t first_bad;
2409 			int bad_sectors;
2410 
2411 			d = r10_bio->devs[sl].devnum;
2412 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2413 			if (rdev &&
2414 			    test_bit(In_sync, &rdev->flags) &&
2415 			    !test_bit(Faulty, &rdev->flags) &&
2416 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2417 					&first_bad, &bad_sectors) == 0) {
2418 				atomic_inc(&rdev->nr_pending);
2419 				rcu_read_unlock();
2420 				success = sync_page_io(rdev,
2421 						       r10_bio->devs[sl].addr +
2422 						       sect,
2423 						       s<<9,
2424 						       conf->tmppage,
2425 						       REQ_OP_READ, 0, false);
2426 				rdev_dec_pending(rdev, mddev);
2427 				rcu_read_lock();
2428 				if (success)
2429 					break;
2430 			}
2431 			sl++;
2432 			if (sl == conf->copies)
2433 				sl = 0;
2434 		} while (!success && sl != r10_bio->read_slot);
2435 		rcu_read_unlock();
2436 
2437 		if (!success) {
2438 			/* Cannot read from anywhere, just mark the block
2439 			 * as bad on the first device to discourage future
2440 			 * reads.
2441 			 */
2442 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2443 			rdev = conf->mirrors[dn].rdev;
2444 
2445 			if (!rdev_set_badblocks(
2446 				    rdev,
2447 				    r10_bio->devs[r10_bio->read_slot].addr
2448 				    + sect,
2449 				    s, 0)) {
2450 				md_error(mddev, rdev);
2451 				r10_bio->devs[r10_bio->read_slot].bio
2452 					= IO_BLOCKED;
2453 			}
2454 			break;
2455 		}
2456 
2457 		start = sl;
2458 		/* write it back and re-read */
2459 		rcu_read_lock();
2460 		while (sl != r10_bio->read_slot) {
2461 			char b[BDEVNAME_SIZE];
2462 
2463 			if (sl==0)
2464 				sl = conf->copies;
2465 			sl--;
2466 			d = r10_bio->devs[sl].devnum;
2467 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2468 			if (!rdev ||
2469 			    test_bit(Faulty, &rdev->flags) ||
2470 			    !test_bit(In_sync, &rdev->flags))
2471 				continue;
2472 
2473 			atomic_inc(&rdev->nr_pending);
2474 			rcu_read_unlock();
2475 			if (r10_sync_page_io(rdev,
2476 					     r10_bio->devs[sl].addr +
2477 					     sect,
2478 					     s, conf->tmppage, WRITE)
2479 			    == 0) {
2480 				/* Well, this device is dead */
2481 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2482 					  mdname(mddev), s,
2483 					  (unsigned long long)(
2484 						  sect +
2485 						  choose_data_offset(r10_bio,
2486 								     rdev)),
2487 					  bdevname(rdev->bdev, b));
2488 				pr_notice("md/raid10:%s: %s: failing drive\n",
2489 					  mdname(mddev),
2490 					  bdevname(rdev->bdev, b));
2491 			}
2492 			rdev_dec_pending(rdev, mddev);
2493 			rcu_read_lock();
2494 		}
2495 		sl = start;
2496 		while (sl != r10_bio->read_slot) {
2497 			char b[BDEVNAME_SIZE];
2498 
2499 			if (sl==0)
2500 				sl = conf->copies;
2501 			sl--;
2502 			d = r10_bio->devs[sl].devnum;
2503 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2504 			if (!rdev ||
2505 			    test_bit(Faulty, &rdev->flags) ||
2506 			    !test_bit(In_sync, &rdev->flags))
2507 				continue;
2508 
2509 			atomic_inc(&rdev->nr_pending);
2510 			rcu_read_unlock();
2511 			switch (r10_sync_page_io(rdev,
2512 					     r10_bio->devs[sl].addr +
2513 					     sect,
2514 					     s, conf->tmppage,
2515 						 READ)) {
2516 			case 0:
2517 				/* Well, this device is dead */
2518 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2519 				       mdname(mddev), s,
2520 				       (unsigned long long)(
2521 					       sect +
2522 					       choose_data_offset(r10_bio, rdev)),
2523 				       bdevname(rdev->bdev, b));
2524 				pr_notice("md/raid10:%s: %s: failing drive\n",
2525 				       mdname(mddev),
2526 				       bdevname(rdev->bdev, b));
2527 				break;
2528 			case 1:
2529 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2530 				       mdname(mddev), s,
2531 				       (unsigned long long)(
2532 					       sect +
2533 					       choose_data_offset(r10_bio, rdev)),
2534 				       bdevname(rdev->bdev, b));
2535 				atomic_add(s, &rdev->corrected_errors);
2536 			}
2537 
2538 			rdev_dec_pending(rdev, mddev);
2539 			rcu_read_lock();
2540 		}
2541 		rcu_read_unlock();
2542 
2543 		sectors -= s;
2544 		sect += s;
2545 	}
2546 }
2547 
2548 static int narrow_write_error(struct r10bio *r10_bio, int i)
2549 {
2550 	struct bio *bio = r10_bio->master_bio;
2551 	struct mddev *mddev = r10_bio->mddev;
2552 	struct r10conf *conf = mddev->private;
2553 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2554 	/* bio has the data to be written to slot 'i' where
2555 	 * we just recently had a write error.
2556 	 * We repeatedly clone the bio and trim down to one block,
2557 	 * then try the write.  Where the write fails we record
2558 	 * a bad block.
2559 	 * It is conceivable that the bio doesn't exactly align with
2560 	 * blocks.  We must handle this.
2561 	 *
2562 	 * We currently own a reference to the rdev.
2563 	 */
2564 
2565 	int block_sectors;
2566 	sector_t sector;
2567 	int sectors;
2568 	int sect_to_write = r10_bio->sectors;
2569 	int ok = 1;
2570 
2571 	if (rdev->badblocks.shift < 0)
2572 		return 0;
2573 
2574 	block_sectors = roundup(1 << rdev->badblocks.shift,
2575 				bdev_logical_block_size(rdev->bdev) >> 9);
2576 	sector = r10_bio->sector;
2577 	sectors = ((r10_bio->sector + block_sectors)
2578 		   & ~(sector_t)(block_sectors - 1))
2579 		- sector;
2580 
2581 	while (sect_to_write) {
2582 		struct bio *wbio;
2583 		sector_t wsector;
2584 		if (sectors > sect_to_write)
2585 			sectors = sect_to_write;
2586 		/* Write at 'sector' for 'sectors' */
2587 		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2588 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2589 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2590 		wbio->bi_iter.bi_sector = wsector +
2591 				   choose_data_offset(r10_bio, rdev);
2592 		bio_set_dev(wbio, rdev->bdev);
2593 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2594 
2595 		if (submit_bio_wait(wbio) < 0)
2596 			/* Failure! */
2597 			ok = rdev_set_badblocks(rdev, wsector,
2598 						sectors, 0)
2599 				&& ok;
2600 
2601 		bio_put(wbio);
2602 		sect_to_write -= sectors;
2603 		sector += sectors;
2604 		sectors = block_sectors;
2605 	}
2606 	return ok;
2607 }
2608 
2609 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2610 {
2611 	int slot = r10_bio->read_slot;
2612 	struct bio *bio;
2613 	struct r10conf *conf = mddev->private;
2614 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2615 
2616 	/* we got a read error. Maybe the drive is bad.  Maybe just
2617 	 * the block and we can fix it.
2618 	 * We freeze all other IO, and try reading the block from
2619 	 * other devices.  When we find one, we re-write
2620 	 * and check it that fixes the read error.
2621 	 * This is all done synchronously while the array is
2622 	 * frozen.
2623 	 */
2624 	bio = r10_bio->devs[slot].bio;
2625 	bio_put(bio);
2626 	r10_bio->devs[slot].bio = NULL;
2627 
2628 	if (mddev->ro)
2629 		r10_bio->devs[slot].bio = IO_BLOCKED;
2630 	else if (!test_bit(FailFast, &rdev->flags)) {
2631 		freeze_array(conf, 1);
2632 		fix_read_error(conf, mddev, r10_bio);
2633 		unfreeze_array(conf);
2634 	} else
2635 		md_error(mddev, rdev);
2636 
2637 	rdev_dec_pending(rdev, mddev);
2638 	allow_barrier(conf);
2639 	r10_bio->state = 0;
2640 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2641 }
2642 
2643 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2644 {
2645 	/* Some sort of write request has finished and it
2646 	 * succeeded in writing where we thought there was a
2647 	 * bad block.  So forget the bad block.
2648 	 * Or possibly if failed and we need to record
2649 	 * a bad block.
2650 	 */
2651 	int m;
2652 	struct md_rdev *rdev;
2653 
2654 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2655 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2656 		for (m = 0; m < conf->copies; m++) {
2657 			int dev = r10_bio->devs[m].devnum;
2658 			rdev = conf->mirrors[dev].rdev;
2659 			if (r10_bio->devs[m].bio == NULL ||
2660 				r10_bio->devs[m].bio->bi_end_io == NULL)
2661 				continue;
2662 			if (!r10_bio->devs[m].bio->bi_status) {
2663 				rdev_clear_badblocks(
2664 					rdev,
2665 					r10_bio->devs[m].addr,
2666 					r10_bio->sectors, 0);
2667 			} else {
2668 				if (!rdev_set_badblocks(
2669 					    rdev,
2670 					    r10_bio->devs[m].addr,
2671 					    r10_bio->sectors, 0))
2672 					md_error(conf->mddev, rdev);
2673 			}
2674 			rdev = conf->mirrors[dev].replacement;
2675 			if (r10_bio->devs[m].repl_bio == NULL ||
2676 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2677 				continue;
2678 
2679 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2680 				rdev_clear_badblocks(
2681 					rdev,
2682 					r10_bio->devs[m].addr,
2683 					r10_bio->sectors, 0);
2684 			} else {
2685 				if (!rdev_set_badblocks(
2686 					    rdev,
2687 					    r10_bio->devs[m].addr,
2688 					    r10_bio->sectors, 0))
2689 					md_error(conf->mddev, rdev);
2690 			}
2691 		}
2692 		put_buf(r10_bio);
2693 	} else {
2694 		bool fail = false;
2695 		for (m = 0; m < conf->copies; m++) {
2696 			int dev = r10_bio->devs[m].devnum;
2697 			struct bio *bio = r10_bio->devs[m].bio;
2698 			rdev = conf->mirrors[dev].rdev;
2699 			if (bio == IO_MADE_GOOD) {
2700 				rdev_clear_badblocks(
2701 					rdev,
2702 					r10_bio->devs[m].addr,
2703 					r10_bio->sectors, 0);
2704 				rdev_dec_pending(rdev, conf->mddev);
2705 			} else if (bio != NULL && bio->bi_status) {
2706 				fail = true;
2707 				if (!narrow_write_error(r10_bio, m)) {
2708 					md_error(conf->mddev, rdev);
2709 					set_bit(R10BIO_Degraded,
2710 						&r10_bio->state);
2711 				}
2712 				rdev_dec_pending(rdev, conf->mddev);
2713 			}
2714 			bio = r10_bio->devs[m].repl_bio;
2715 			rdev = conf->mirrors[dev].replacement;
2716 			if (rdev && bio == IO_MADE_GOOD) {
2717 				rdev_clear_badblocks(
2718 					rdev,
2719 					r10_bio->devs[m].addr,
2720 					r10_bio->sectors, 0);
2721 				rdev_dec_pending(rdev, conf->mddev);
2722 			}
2723 		}
2724 		if (fail) {
2725 			spin_lock_irq(&conf->device_lock);
2726 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2727 			conf->nr_queued++;
2728 			spin_unlock_irq(&conf->device_lock);
2729 			/*
2730 			 * In case freeze_array() is waiting for condition
2731 			 * nr_pending == nr_queued + extra to be true.
2732 			 */
2733 			wake_up(&conf->wait_barrier);
2734 			md_wakeup_thread(conf->mddev->thread);
2735 		} else {
2736 			if (test_bit(R10BIO_WriteError,
2737 				     &r10_bio->state))
2738 				close_write(r10_bio);
2739 			raid_end_bio_io(r10_bio);
2740 		}
2741 	}
2742 }
2743 
2744 static void raid10d(struct md_thread *thread)
2745 {
2746 	struct mddev *mddev = thread->mddev;
2747 	struct r10bio *r10_bio;
2748 	unsigned long flags;
2749 	struct r10conf *conf = mddev->private;
2750 	struct list_head *head = &conf->retry_list;
2751 	struct blk_plug plug;
2752 
2753 	md_check_recovery(mddev);
2754 
2755 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2756 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2757 		LIST_HEAD(tmp);
2758 		spin_lock_irqsave(&conf->device_lock, flags);
2759 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2760 			while (!list_empty(&conf->bio_end_io_list)) {
2761 				list_move(conf->bio_end_io_list.prev, &tmp);
2762 				conf->nr_queued--;
2763 			}
2764 		}
2765 		spin_unlock_irqrestore(&conf->device_lock, flags);
2766 		while (!list_empty(&tmp)) {
2767 			r10_bio = list_first_entry(&tmp, struct r10bio,
2768 						   retry_list);
2769 			list_del(&r10_bio->retry_list);
2770 			if (mddev->degraded)
2771 				set_bit(R10BIO_Degraded, &r10_bio->state);
2772 
2773 			if (test_bit(R10BIO_WriteError,
2774 				     &r10_bio->state))
2775 				close_write(r10_bio);
2776 			raid_end_bio_io(r10_bio);
2777 		}
2778 	}
2779 
2780 	blk_start_plug(&plug);
2781 	for (;;) {
2782 
2783 		flush_pending_writes(conf);
2784 
2785 		spin_lock_irqsave(&conf->device_lock, flags);
2786 		if (list_empty(head)) {
2787 			spin_unlock_irqrestore(&conf->device_lock, flags);
2788 			break;
2789 		}
2790 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2791 		list_del(head->prev);
2792 		conf->nr_queued--;
2793 		spin_unlock_irqrestore(&conf->device_lock, flags);
2794 
2795 		mddev = r10_bio->mddev;
2796 		conf = mddev->private;
2797 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2798 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2799 			handle_write_completed(conf, r10_bio);
2800 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2801 			reshape_request_write(mddev, r10_bio);
2802 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2803 			sync_request_write(mddev, r10_bio);
2804 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2805 			recovery_request_write(mddev, r10_bio);
2806 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2807 			handle_read_error(mddev, r10_bio);
2808 		else
2809 			WARN_ON_ONCE(1);
2810 
2811 		cond_resched();
2812 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2813 			md_check_recovery(mddev);
2814 	}
2815 	blk_finish_plug(&plug);
2816 }
2817 
2818 static int init_resync(struct r10conf *conf)
2819 {
2820 	int ret, buffs, i;
2821 
2822 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2823 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
2824 	conf->have_replacement = 0;
2825 	for (i = 0; i < conf->geo.raid_disks; i++)
2826 		if (conf->mirrors[i].replacement)
2827 			conf->have_replacement = 1;
2828 	ret = mempool_init(&conf->r10buf_pool, buffs,
2829 			   r10buf_pool_alloc, r10buf_pool_free, conf);
2830 	if (ret)
2831 		return ret;
2832 	conf->next_resync = 0;
2833 	return 0;
2834 }
2835 
2836 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2837 {
2838 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2839 	struct rsync_pages *rp;
2840 	struct bio *bio;
2841 	int nalloc;
2842 	int i;
2843 
2844 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2845 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2846 		nalloc = conf->copies; /* resync */
2847 	else
2848 		nalloc = 2; /* recovery */
2849 
2850 	for (i = 0; i < nalloc; i++) {
2851 		bio = r10bio->devs[i].bio;
2852 		rp = bio->bi_private;
2853 		bio_reset(bio);
2854 		bio->bi_private = rp;
2855 		bio = r10bio->devs[i].repl_bio;
2856 		if (bio) {
2857 			rp = bio->bi_private;
2858 			bio_reset(bio);
2859 			bio->bi_private = rp;
2860 		}
2861 	}
2862 	return r10bio;
2863 }
2864 
2865 /*
2866  * Set cluster_sync_high since we need other nodes to add the
2867  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2868  */
2869 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2870 {
2871 	sector_t window_size;
2872 	int extra_chunk, chunks;
2873 
2874 	/*
2875 	 * First, here we define "stripe" as a unit which across
2876 	 * all member devices one time, so we get chunks by use
2877 	 * raid_disks / near_copies. Otherwise, if near_copies is
2878 	 * close to raid_disks, then resync window could increases
2879 	 * linearly with the increase of raid_disks, which means
2880 	 * we will suspend a really large IO window while it is not
2881 	 * necessary. If raid_disks is not divisible by near_copies,
2882 	 * an extra chunk is needed to ensure the whole "stripe" is
2883 	 * covered.
2884 	 */
2885 
2886 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2887 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2888 		extra_chunk = 0;
2889 	else
2890 		extra_chunk = 1;
2891 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2892 
2893 	/*
2894 	 * At least use a 32M window to align with raid1's resync window
2895 	 */
2896 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2897 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2898 
2899 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2900 }
2901 
2902 /*
2903  * perform a "sync" on one "block"
2904  *
2905  * We need to make sure that no normal I/O request - particularly write
2906  * requests - conflict with active sync requests.
2907  *
2908  * This is achieved by tracking pending requests and a 'barrier' concept
2909  * that can be installed to exclude normal IO requests.
2910  *
2911  * Resync and recovery are handled very differently.
2912  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2913  *
2914  * For resync, we iterate over virtual addresses, read all copies,
2915  * and update if there are differences.  If only one copy is live,
2916  * skip it.
2917  * For recovery, we iterate over physical addresses, read a good
2918  * value for each non-in_sync drive, and over-write.
2919  *
2920  * So, for recovery we may have several outstanding complex requests for a
2921  * given address, one for each out-of-sync device.  We model this by allocating
2922  * a number of r10_bio structures, one for each out-of-sync device.
2923  * As we setup these structures, we collect all bio's together into a list
2924  * which we then process collectively to add pages, and then process again
2925  * to pass to generic_make_request.
2926  *
2927  * The r10_bio structures are linked using a borrowed master_bio pointer.
2928  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2929  * has its remaining count decremented to 0, the whole complex operation
2930  * is complete.
2931  *
2932  */
2933 
2934 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2935 			     int *skipped)
2936 {
2937 	struct r10conf *conf = mddev->private;
2938 	struct r10bio *r10_bio;
2939 	struct bio *biolist = NULL, *bio;
2940 	sector_t max_sector, nr_sectors;
2941 	int i;
2942 	int max_sync;
2943 	sector_t sync_blocks;
2944 	sector_t sectors_skipped = 0;
2945 	int chunks_skipped = 0;
2946 	sector_t chunk_mask = conf->geo.chunk_mask;
2947 	int page_idx = 0;
2948 
2949 	if (!mempool_initialized(&conf->r10buf_pool))
2950 		if (init_resync(conf))
2951 			return 0;
2952 
2953 	/*
2954 	 * Allow skipping a full rebuild for incremental assembly
2955 	 * of a clean array, like RAID1 does.
2956 	 */
2957 	if (mddev->bitmap == NULL &&
2958 	    mddev->recovery_cp == MaxSector &&
2959 	    mddev->reshape_position == MaxSector &&
2960 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2961 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2962 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2963 	    conf->fullsync == 0) {
2964 		*skipped = 1;
2965 		return mddev->dev_sectors - sector_nr;
2966 	}
2967 
2968  skipped:
2969 	max_sector = mddev->dev_sectors;
2970 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2971 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2972 		max_sector = mddev->resync_max_sectors;
2973 	if (sector_nr >= max_sector) {
2974 		conf->cluster_sync_low = 0;
2975 		conf->cluster_sync_high = 0;
2976 
2977 		/* If we aborted, we need to abort the
2978 		 * sync on the 'current' bitmap chucks (there can
2979 		 * be several when recovering multiple devices).
2980 		 * as we may have started syncing it but not finished.
2981 		 * We can find the current address in
2982 		 * mddev->curr_resync, but for recovery,
2983 		 * we need to convert that to several
2984 		 * virtual addresses.
2985 		 */
2986 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2987 			end_reshape(conf);
2988 			close_sync(conf);
2989 			return 0;
2990 		}
2991 
2992 		if (mddev->curr_resync < max_sector) { /* aborted */
2993 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2994 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2995 						   &sync_blocks, 1);
2996 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2997 				sector_t sect =
2998 					raid10_find_virt(conf, mddev->curr_resync, i);
2999 				md_bitmap_end_sync(mddev->bitmap, sect,
3000 						   &sync_blocks, 1);
3001 			}
3002 		} else {
3003 			/* completed sync */
3004 			if ((!mddev->bitmap || conf->fullsync)
3005 			    && conf->have_replacement
3006 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3007 				/* Completed a full sync so the replacements
3008 				 * are now fully recovered.
3009 				 */
3010 				rcu_read_lock();
3011 				for (i = 0; i < conf->geo.raid_disks; i++) {
3012 					struct md_rdev *rdev =
3013 						rcu_dereference(conf->mirrors[i].replacement);
3014 					if (rdev)
3015 						rdev->recovery_offset = MaxSector;
3016 				}
3017 				rcu_read_unlock();
3018 			}
3019 			conf->fullsync = 0;
3020 		}
3021 		md_bitmap_close_sync(mddev->bitmap);
3022 		close_sync(conf);
3023 		*skipped = 1;
3024 		return sectors_skipped;
3025 	}
3026 
3027 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3028 		return reshape_request(mddev, sector_nr, skipped);
3029 
3030 	if (chunks_skipped >= conf->geo.raid_disks) {
3031 		/* if there has been nothing to do on any drive,
3032 		 * then there is nothing to do at all..
3033 		 */
3034 		*skipped = 1;
3035 		return (max_sector - sector_nr) + sectors_skipped;
3036 	}
3037 
3038 	if (max_sector > mddev->resync_max)
3039 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3040 
3041 	/* make sure whole request will fit in a chunk - if chunks
3042 	 * are meaningful
3043 	 */
3044 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3045 	    max_sector > (sector_nr | chunk_mask))
3046 		max_sector = (sector_nr | chunk_mask) + 1;
3047 
3048 	/*
3049 	 * If there is non-resync activity waiting for a turn, then let it
3050 	 * though before starting on this new sync request.
3051 	 */
3052 	if (conf->nr_waiting)
3053 		schedule_timeout_uninterruptible(1);
3054 
3055 	/* Again, very different code for resync and recovery.
3056 	 * Both must result in an r10bio with a list of bios that
3057 	 * have bi_end_io, bi_sector, bi_disk set,
3058 	 * and bi_private set to the r10bio.
3059 	 * For recovery, we may actually create several r10bios
3060 	 * with 2 bios in each, that correspond to the bios in the main one.
3061 	 * In this case, the subordinate r10bios link back through a
3062 	 * borrowed master_bio pointer, and the counter in the master
3063 	 * includes a ref from each subordinate.
3064 	 */
3065 	/* First, we decide what to do and set ->bi_end_io
3066 	 * To end_sync_read if we want to read, and
3067 	 * end_sync_write if we will want to write.
3068 	 */
3069 
3070 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3071 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3072 		/* recovery... the complicated one */
3073 		int j;
3074 		r10_bio = NULL;
3075 
3076 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3077 			int still_degraded;
3078 			struct r10bio *rb2;
3079 			sector_t sect;
3080 			int must_sync;
3081 			int any_working;
3082 			struct raid10_info *mirror = &conf->mirrors[i];
3083 			struct md_rdev *mrdev, *mreplace;
3084 
3085 			rcu_read_lock();
3086 			mrdev = rcu_dereference(mirror->rdev);
3087 			mreplace = rcu_dereference(mirror->replacement);
3088 
3089 			if ((mrdev == NULL ||
3090 			     test_bit(Faulty, &mrdev->flags) ||
3091 			     test_bit(In_sync, &mrdev->flags)) &&
3092 			    (mreplace == NULL ||
3093 			     test_bit(Faulty, &mreplace->flags))) {
3094 				rcu_read_unlock();
3095 				continue;
3096 			}
3097 
3098 			still_degraded = 0;
3099 			/* want to reconstruct this device */
3100 			rb2 = r10_bio;
3101 			sect = raid10_find_virt(conf, sector_nr, i);
3102 			if (sect >= mddev->resync_max_sectors) {
3103 				/* last stripe is not complete - don't
3104 				 * try to recover this sector.
3105 				 */
3106 				rcu_read_unlock();
3107 				continue;
3108 			}
3109 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3110 				mreplace = NULL;
3111 			/* Unless we are doing a full sync, or a replacement
3112 			 * we only need to recover the block if it is set in
3113 			 * the bitmap
3114 			 */
3115 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3116 							 &sync_blocks, 1);
3117 			if (sync_blocks < max_sync)
3118 				max_sync = sync_blocks;
3119 			if (!must_sync &&
3120 			    mreplace == NULL &&
3121 			    !conf->fullsync) {
3122 				/* yep, skip the sync_blocks here, but don't assume
3123 				 * that there will never be anything to do here
3124 				 */
3125 				chunks_skipped = -1;
3126 				rcu_read_unlock();
3127 				continue;
3128 			}
3129 			atomic_inc(&mrdev->nr_pending);
3130 			if (mreplace)
3131 				atomic_inc(&mreplace->nr_pending);
3132 			rcu_read_unlock();
3133 
3134 			r10_bio = raid10_alloc_init_r10buf(conf);
3135 			r10_bio->state = 0;
3136 			raise_barrier(conf, rb2 != NULL);
3137 			atomic_set(&r10_bio->remaining, 0);
3138 
3139 			r10_bio->master_bio = (struct bio*)rb2;
3140 			if (rb2)
3141 				atomic_inc(&rb2->remaining);
3142 			r10_bio->mddev = mddev;
3143 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3144 			r10_bio->sector = sect;
3145 
3146 			raid10_find_phys(conf, r10_bio);
3147 
3148 			/* Need to check if the array will still be
3149 			 * degraded
3150 			 */
3151 			rcu_read_lock();
3152 			for (j = 0; j < conf->geo.raid_disks; j++) {
3153 				struct md_rdev *rdev = rcu_dereference(
3154 					conf->mirrors[j].rdev);
3155 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3156 					still_degraded = 1;
3157 					break;
3158 				}
3159 			}
3160 
3161 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3162 							 &sync_blocks, still_degraded);
3163 
3164 			any_working = 0;
3165 			for (j=0; j<conf->copies;j++) {
3166 				int k;
3167 				int d = r10_bio->devs[j].devnum;
3168 				sector_t from_addr, to_addr;
3169 				struct md_rdev *rdev =
3170 					rcu_dereference(conf->mirrors[d].rdev);
3171 				sector_t sector, first_bad;
3172 				int bad_sectors;
3173 				if (!rdev ||
3174 				    !test_bit(In_sync, &rdev->flags))
3175 					continue;
3176 				/* This is where we read from */
3177 				any_working = 1;
3178 				sector = r10_bio->devs[j].addr;
3179 
3180 				if (is_badblock(rdev, sector, max_sync,
3181 						&first_bad, &bad_sectors)) {
3182 					if (first_bad > sector)
3183 						max_sync = first_bad - sector;
3184 					else {
3185 						bad_sectors -= (sector
3186 								- first_bad);
3187 						if (max_sync > bad_sectors)
3188 							max_sync = bad_sectors;
3189 						continue;
3190 					}
3191 				}
3192 				bio = r10_bio->devs[0].bio;
3193 				bio->bi_next = biolist;
3194 				biolist = bio;
3195 				bio->bi_end_io = end_sync_read;
3196 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3197 				if (test_bit(FailFast, &rdev->flags))
3198 					bio->bi_opf |= MD_FAILFAST;
3199 				from_addr = r10_bio->devs[j].addr;
3200 				bio->bi_iter.bi_sector = from_addr +
3201 					rdev->data_offset;
3202 				bio_set_dev(bio, rdev->bdev);
3203 				atomic_inc(&rdev->nr_pending);
3204 				/* and we write to 'i' (if not in_sync) */
3205 
3206 				for (k=0; k<conf->copies; k++)
3207 					if (r10_bio->devs[k].devnum == i)
3208 						break;
3209 				BUG_ON(k == conf->copies);
3210 				to_addr = r10_bio->devs[k].addr;
3211 				r10_bio->devs[0].devnum = d;
3212 				r10_bio->devs[0].addr = from_addr;
3213 				r10_bio->devs[1].devnum = i;
3214 				r10_bio->devs[1].addr = to_addr;
3215 
3216 				if (!test_bit(In_sync, &mrdev->flags)) {
3217 					bio = r10_bio->devs[1].bio;
3218 					bio->bi_next = biolist;
3219 					biolist = bio;
3220 					bio->bi_end_io = end_sync_write;
3221 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3222 					bio->bi_iter.bi_sector = to_addr
3223 						+ mrdev->data_offset;
3224 					bio_set_dev(bio, mrdev->bdev);
3225 					atomic_inc(&r10_bio->remaining);
3226 				} else
3227 					r10_bio->devs[1].bio->bi_end_io = NULL;
3228 
3229 				/* and maybe write to replacement */
3230 				bio = r10_bio->devs[1].repl_bio;
3231 				if (bio)
3232 					bio->bi_end_io = NULL;
3233 				/* Note: if mreplace != NULL, then bio
3234 				 * cannot be NULL as r10buf_pool_alloc will
3235 				 * have allocated it.
3236 				 * So the second test here is pointless.
3237 				 * But it keeps semantic-checkers happy, and
3238 				 * this comment keeps human reviewers
3239 				 * happy.
3240 				 */
3241 				if (mreplace == NULL || bio == NULL ||
3242 				    test_bit(Faulty, &mreplace->flags))
3243 					break;
3244 				bio->bi_next = biolist;
3245 				biolist = bio;
3246 				bio->bi_end_io = end_sync_write;
3247 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3248 				bio->bi_iter.bi_sector = to_addr +
3249 					mreplace->data_offset;
3250 				bio_set_dev(bio, mreplace->bdev);
3251 				atomic_inc(&r10_bio->remaining);
3252 				break;
3253 			}
3254 			rcu_read_unlock();
3255 			if (j == conf->copies) {
3256 				/* Cannot recover, so abort the recovery or
3257 				 * record a bad block */
3258 				if (any_working) {
3259 					/* problem is that there are bad blocks
3260 					 * on other device(s)
3261 					 */
3262 					int k;
3263 					for (k = 0; k < conf->copies; k++)
3264 						if (r10_bio->devs[k].devnum == i)
3265 							break;
3266 					if (!test_bit(In_sync,
3267 						      &mrdev->flags)
3268 					    && !rdev_set_badblocks(
3269 						    mrdev,
3270 						    r10_bio->devs[k].addr,
3271 						    max_sync, 0))
3272 						any_working = 0;
3273 					if (mreplace &&
3274 					    !rdev_set_badblocks(
3275 						    mreplace,
3276 						    r10_bio->devs[k].addr,
3277 						    max_sync, 0))
3278 						any_working = 0;
3279 				}
3280 				if (!any_working)  {
3281 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3282 							      &mddev->recovery))
3283 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3284 						       mdname(mddev));
3285 					mirror->recovery_disabled
3286 						= mddev->recovery_disabled;
3287 				}
3288 				put_buf(r10_bio);
3289 				if (rb2)
3290 					atomic_dec(&rb2->remaining);
3291 				r10_bio = rb2;
3292 				rdev_dec_pending(mrdev, mddev);
3293 				if (mreplace)
3294 					rdev_dec_pending(mreplace, mddev);
3295 				break;
3296 			}
3297 			rdev_dec_pending(mrdev, mddev);
3298 			if (mreplace)
3299 				rdev_dec_pending(mreplace, mddev);
3300 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3301 				/* Only want this if there is elsewhere to
3302 				 * read from. 'j' is currently the first
3303 				 * readable copy.
3304 				 */
3305 				int targets = 1;
3306 				for (; j < conf->copies; j++) {
3307 					int d = r10_bio->devs[j].devnum;
3308 					if (conf->mirrors[d].rdev &&
3309 					    test_bit(In_sync,
3310 						      &conf->mirrors[d].rdev->flags))
3311 						targets++;
3312 				}
3313 				if (targets == 1)
3314 					r10_bio->devs[0].bio->bi_opf
3315 						&= ~MD_FAILFAST;
3316 			}
3317 		}
3318 		if (biolist == NULL) {
3319 			while (r10_bio) {
3320 				struct r10bio *rb2 = r10_bio;
3321 				r10_bio = (struct r10bio*) rb2->master_bio;
3322 				rb2->master_bio = NULL;
3323 				put_buf(rb2);
3324 			}
3325 			goto giveup;
3326 		}
3327 	} else {
3328 		/* resync. Schedule a read for every block at this virt offset */
3329 		int count = 0;
3330 
3331 		/*
3332 		 * Since curr_resync_completed could probably not update in
3333 		 * time, and we will set cluster_sync_low based on it.
3334 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3335 		 * safety reason, which ensures curr_resync_completed is
3336 		 * updated in bitmap_cond_end_sync.
3337 		 */
3338 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3339 					mddev_is_clustered(mddev) &&
3340 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3341 
3342 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3343 					  &sync_blocks, mddev->degraded) &&
3344 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3345 						 &mddev->recovery)) {
3346 			/* We can skip this block */
3347 			*skipped = 1;
3348 			return sync_blocks + sectors_skipped;
3349 		}
3350 		if (sync_blocks < max_sync)
3351 			max_sync = sync_blocks;
3352 		r10_bio = raid10_alloc_init_r10buf(conf);
3353 		r10_bio->state = 0;
3354 
3355 		r10_bio->mddev = mddev;
3356 		atomic_set(&r10_bio->remaining, 0);
3357 		raise_barrier(conf, 0);
3358 		conf->next_resync = sector_nr;
3359 
3360 		r10_bio->master_bio = NULL;
3361 		r10_bio->sector = sector_nr;
3362 		set_bit(R10BIO_IsSync, &r10_bio->state);
3363 		raid10_find_phys(conf, r10_bio);
3364 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3365 
3366 		for (i = 0; i < conf->copies; i++) {
3367 			int d = r10_bio->devs[i].devnum;
3368 			sector_t first_bad, sector;
3369 			int bad_sectors;
3370 			struct md_rdev *rdev;
3371 
3372 			if (r10_bio->devs[i].repl_bio)
3373 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3374 
3375 			bio = r10_bio->devs[i].bio;
3376 			bio->bi_status = BLK_STS_IOERR;
3377 			rcu_read_lock();
3378 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3379 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3380 				rcu_read_unlock();
3381 				continue;
3382 			}
3383 			sector = r10_bio->devs[i].addr;
3384 			if (is_badblock(rdev, sector, max_sync,
3385 					&first_bad, &bad_sectors)) {
3386 				if (first_bad > sector)
3387 					max_sync = first_bad - sector;
3388 				else {
3389 					bad_sectors -= (sector - first_bad);
3390 					if (max_sync > bad_sectors)
3391 						max_sync = bad_sectors;
3392 					rcu_read_unlock();
3393 					continue;
3394 				}
3395 			}
3396 			atomic_inc(&rdev->nr_pending);
3397 			atomic_inc(&r10_bio->remaining);
3398 			bio->bi_next = biolist;
3399 			biolist = bio;
3400 			bio->bi_end_io = end_sync_read;
3401 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3402 			if (test_bit(FailFast, &rdev->flags))
3403 				bio->bi_opf |= MD_FAILFAST;
3404 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3405 			bio_set_dev(bio, rdev->bdev);
3406 			count++;
3407 
3408 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3409 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3410 				rcu_read_unlock();
3411 				continue;
3412 			}
3413 			atomic_inc(&rdev->nr_pending);
3414 
3415 			/* Need to set up for writing to the replacement */
3416 			bio = r10_bio->devs[i].repl_bio;
3417 			bio->bi_status = BLK_STS_IOERR;
3418 
3419 			sector = r10_bio->devs[i].addr;
3420 			bio->bi_next = biolist;
3421 			biolist = bio;
3422 			bio->bi_end_io = end_sync_write;
3423 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3424 			if (test_bit(FailFast, &rdev->flags))
3425 				bio->bi_opf |= MD_FAILFAST;
3426 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3427 			bio_set_dev(bio, rdev->bdev);
3428 			count++;
3429 			rcu_read_unlock();
3430 		}
3431 
3432 		if (count < 2) {
3433 			for (i=0; i<conf->copies; i++) {
3434 				int d = r10_bio->devs[i].devnum;
3435 				if (r10_bio->devs[i].bio->bi_end_io)
3436 					rdev_dec_pending(conf->mirrors[d].rdev,
3437 							 mddev);
3438 				if (r10_bio->devs[i].repl_bio &&
3439 				    r10_bio->devs[i].repl_bio->bi_end_io)
3440 					rdev_dec_pending(
3441 						conf->mirrors[d].replacement,
3442 						mddev);
3443 			}
3444 			put_buf(r10_bio);
3445 			biolist = NULL;
3446 			goto giveup;
3447 		}
3448 	}
3449 
3450 	nr_sectors = 0;
3451 	if (sector_nr + max_sync < max_sector)
3452 		max_sector = sector_nr + max_sync;
3453 	do {
3454 		struct page *page;
3455 		int len = PAGE_SIZE;
3456 		if (sector_nr + (len>>9) > max_sector)
3457 			len = (max_sector - sector_nr) << 9;
3458 		if (len == 0)
3459 			break;
3460 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3461 			struct resync_pages *rp = get_resync_pages(bio);
3462 			page = resync_fetch_page(rp, page_idx);
3463 			/*
3464 			 * won't fail because the vec table is big enough
3465 			 * to hold all these pages
3466 			 */
3467 			bio_add_page(bio, page, len, 0);
3468 		}
3469 		nr_sectors += len>>9;
3470 		sector_nr += len>>9;
3471 	} while (++page_idx < RESYNC_PAGES);
3472 	r10_bio->sectors = nr_sectors;
3473 
3474 	if (mddev_is_clustered(mddev) &&
3475 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3476 		/* It is resync not recovery */
3477 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3478 			conf->cluster_sync_low = mddev->curr_resync_completed;
3479 			raid10_set_cluster_sync_high(conf);
3480 			/* Send resync message */
3481 			md_cluster_ops->resync_info_update(mddev,
3482 						conf->cluster_sync_low,
3483 						conf->cluster_sync_high);
3484 		}
3485 	} else if (mddev_is_clustered(mddev)) {
3486 		/* This is recovery not resync */
3487 		sector_t sect_va1, sect_va2;
3488 		bool broadcast_msg = false;
3489 
3490 		for (i = 0; i < conf->geo.raid_disks; i++) {
3491 			/*
3492 			 * sector_nr is a device address for recovery, so we
3493 			 * need translate it to array address before compare
3494 			 * with cluster_sync_high.
3495 			 */
3496 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3497 
3498 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3499 				broadcast_msg = true;
3500 				/*
3501 				 * curr_resync_completed is similar as
3502 				 * sector_nr, so make the translation too.
3503 				 */
3504 				sect_va2 = raid10_find_virt(conf,
3505 					mddev->curr_resync_completed, i);
3506 
3507 				if (conf->cluster_sync_low == 0 ||
3508 				    conf->cluster_sync_low > sect_va2)
3509 					conf->cluster_sync_low = sect_va2;
3510 			}
3511 		}
3512 		if (broadcast_msg) {
3513 			raid10_set_cluster_sync_high(conf);
3514 			md_cluster_ops->resync_info_update(mddev,
3515 						conf->cluster_sync_low,
3516 						conf->cluster_sync_high);
3517 		}
3518 	}
3519 
3520 	while (biolist) {
3521 		bio = biolist;
3522 		biolist = biolist->bi_next;
3523 
3524 		bio->bi_next = NULL;
3525 		r10_bio = get_resync_r10bio(bio);
3526 		r10_bio->sectors = nr_sectors;
3527 
3528 		if (bio->bi_end_io == end_sync_read) {
3529 			md_sync_acct_bio(bio, nr_sectors);
3530 			bio->bi_status = 0;
3531 			generic_make_request(bio);
3532 		}
3533 	}
3534 
3535 	if (sectors_skipped)
3536 		/* pretend they weren't skipped, it makes
3537 		 * no important difference in this case
3538 		 */
3539 		md_done_sync(mddev, sectors_skipped, 1);
3540 
3541 	return sectors_skipped + nr_sectors;
3542  giveup:
3543 	/* There is nowhere to write, so all non-sync
3544 	 * drives must be failed or in resync, all drives
3545 	 * have a bad block, so try the next chunk...
3546 	 */
3547 	if (sector_nr + max_sync < max_sector)
3548 		max_sector = sector_nr + max_sync;
3549 
3550 	sectors_skipped += (max_sector - sector_nr);
3551 	chunks_skipped ++;
3552 	sector_nr = max_sector;
3553 	goto skipped;
3554 }
3555 
3556 static sector_t
3557 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3558 {
3559 	sector_t size;
3560 	struct r10conf *conf = mddev->private;
3561 
3562 	if (!raid_disks)
3563 		raid_disks = min(conf->geo.raid_disks,
3564 				 conf->prev.raid_disks);
3565 	if (!sectors)
3566 		sectors = conf->dev_sectors;
3567 
3568 	size = sectors >> conf->geo.chunk_shift;
3569 	sector_div(size, conf->geo.far_copies);
3570 	size = size * raid_disks;
3571 	sector_div(size, conf->geo.near_copies);
3572 
3573 	return size << conf->geo.chunk_shift;
3574 }
3575 
3576 static void calc_sectors(struct r10conf *conf, sector_t size)
3577 {
3578 	/* Calculate the number of sectors-per-device that will
3579 	 * actually be used, and set conf->dev_sectors and
3580 	 * conf->stride
3581 	 */
3582 
3583 	size = size >> conf->geo.chunk_shift;
3584 	sector_div(size, conf->geo.far_copies);
3585 	size = size * conf->geo.raid_disks;
3586 	sector_div(size, conf->geo.near_copies);
3587 	/* 'size' is now the number of chunks in the array */
3588 	/* calculate "used chunks per device" */
3589 	size = size * conf->copies;
3590 
3591 	/* We need to round up when dividing by raid_disks to
3592 	 * get the stride size.
3593 	 */
3594 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3595 
3596 	conf->dev_sectors = size << conf->geo.chunk_shift;
3597 
3598 	if (conf->geo.far_offset)
3599 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3600 	else {
3601 		sector_div(size, conf->geo.far_copies);
3602 		conf->geo.stride = size << conf->geo.chunk_shift;
3603 	}
3604 }
3605 
3606 enum geo_type {geo_new, geo_old, geo_start};
3607 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3608 {
3609 	int nc, fc, fo;
3610 	int layout, chunk, disks;
3611 	switch (new) {
3612 	case geo_old:
3613 		layout = mddev->layout;
3614 		chunk = mddev->chunk_sectors;
3615 		disks = mddev->raid_disks - mddev->delta_disks;
3616 		break;
3617 	case geo_new:
3618 		layout = mddev->new_layout;
3619 		chunk = mddev->new_chunk_sectors;
3620 		disks = mddev->raid_disks;
3621 		break;
3622 	default: /* avoid 'may be unused' warnings */
3623 	case geo_start: /* new when starting reshape - raid_disks not
3624 			 * updated yet. */
3625 		layout = mddev->new_layout;
3626 		chunk = mddev->new_chunk_sectors;
3627 		disks = mddev->raid_disks + mddev->delta_disks;
3628 		break;
3629 	}
3630 	if (layout >> 19)
3631 		return -1;
3632 	if (chunk < (PAGE_SIZE >> 9) ||
3633 	    !is_power_of_2(chunk))
3634 		return -2;
3635 	nc = layout & 255;
3636 	fc = (layout >> 8) & 255;
3637 	fo = layout & (1<<16);
3638 	geo->raid_disks = disks;
3639 	geo->near_copies = nc;
3640 	geo->far_copies = fc;
3641 	geo->far_offset = fo;
3642 	switch (layout >> 17) {
3643 	case 0:	/* original layout.  simple but not always optimal */
3644 		geo->far_set_size = disks;
3645 		break;
3646 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3647 		 * actually using this, but leave code here just in case.*/
3648 		geo->far_set_size = disks/fc;
3649 		WARN(geo->far_set_size < fc,
3650 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3651 		break;
3652 	case 2: /* "improved" layout fixed to match documentation */
3653 		geo->far_set_size = fc * nc;
3654 		break;
3655 	default: /* Not a valid layout */
3656 		return -1;
3657 	}
3658 	geo->chunk_mask = chunk - 1;
3659 	geo->chunk_shift = ffz(~chunk);
3660 	return nc*fc;
3661 }
3662 
3663 static struct r10conf *setup_conf(struct mddev *mddev)
3664 {
3665 	struct r10conf *conf = NULL;
3666 	int err = -EINVAL;
3667 	struct geom geo;
3668 	int copies;
3669 
3670 	copies = setup_geo(&geo, mddev, geo_new);
3671 
3672 	if (copies == -2) {
3673 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3674 			mdname(mddev), PAGE_SIZE);
3675 		goto out;
3676 	}
3677 
3678 	if (copies < 2 || copies > mddev->raid_disks) {
3679 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3680 			mdname(mddev), mddev->new_layout);
3681 		goto out;
3682 	}
3683 
3684 	err = -ENOMEM;
3685 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3686 	if (!conf)
3687 		goto out;
3688 
3689 	/* FIXME calc properly */
3690 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3691 				sizeof(struct raid10_info),
3692 				GFP_KERNEL);
3693 	if (!conf->mirrors)
3694 		goto out;
3695 
3696 	conf->tmppage = alloc_page(GFP_KERNEL);
3697 	if (!conf->tmppage)
3698 		goto out;
3699 
3700 	conf->geo = geo;
3701 	conf->copies = copies;
3702 	err = mempool_init(&conf->r10bio_pool, NR_RAID10_BIOS, r10bio_pool_alloc,
3703 			   r10bio_pool_free, conf);
3704 	if (err)
3705 		goto out;
3706 
3707 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3708 	if (err)
3709 		goto out;
3710 
3711 	calc_sectors(conf, mddev->dev_sectors);
3712 	if (mddev->reshape_position == MaxSector) {
3713 		conf->prev = conf->geo;
3714 		conf->reshape_progress = MaxSector;
3715 	} else {
3716 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3717 			err = -EINVAL;
3718 			goto out;
3719 		}
3720 		conf->reshape_progress = mddev->reshape_position;
3721 		if (conf->prev.far_offset)
3722 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3723 		else
3724 			/* far_copies must be 1 */
3725 			conf->prev.stride = conf->dev_sectors;
3726 	}
3727 	conf->reshape_safe = conf->reshape_progress;
3728 	spin_lock_init(&conf->device_lock);
3729 	INIT_LIST_HEAD(&conf->retry_list);
3730 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3731 
3732 	spin_lock_init(&conf->resync_lock);
3733 	init_waitqueue_head(&conf->wait_barrier);
3734 	atomic_set(&conf->nr_pending, 0);
3735 
3736 	err = -ENOMEM;
3737 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3738 	if (!conf->thread)
3739 		goto out;
3740 
3741 	conf->mddev = mddev;
3742 	return conf;
3743 
3744  out:
3745 	if (conf) {
3746 		mempool_exit(&conf->r10bio_pool);
3747 		kfree(conf->mirrors);
3748 		safe_put_page(conf->tmppage);
3749 		bioset_exit(&conf->bio_split);
3750 		kfree(conf);
3751 	}
3752 	return ERR_PTR(err);
3753 }
3754 
3755 static int raid10_run(struct mddev *mddev)
3756 {
3757 	struct r10conf *conf;
3758 	int i, disk_idx, chunk_size;
3759 	struct raid10_info *disk;
3760 	struct md_rdev *rdev;
3761 	sector_t size;
3762 	sector_t min_offset_diff = 0;
3763 	int first = 1;
3764 	bool discard_supported = false;
3765 
3766 	if (mddev_init_writes_pending(mddev) < 0)
3767 		return -ENOMEM;
3768 
3769 	if (mddev->private == NULL) {
3770 		conf = setup_conf(mddev);
3771 		if (IS_ERR(conf))
3772 			return PTR_ERR(conf);
3773 		mddev->private = conf;
3774 	}
3775 	conf = mddev->private;
3776 	if (!conf)
3777 		goto out;
3778 
3779 	if (mddev_is_clustered(conf->mddev)) {
3780 		int fc, fo;
3781 
3782 		fc = (mddev->layout >> 8) & 255;
3783 		fo = mddev->layout & (1<<16);
3784 		if (fc > 1 || fo > 0) {
3785 			pr_err("only near layout is supported by clustered"
3786 				" raid10\n");
3787 			goto out_free_conf;
3788 		}
3789 	}
3790 
3791 	mddev->thread = conf->thread;
3792 	conf->thread = NULL;
3793 
3794 	chunk_size = mddev->chunk_sectors << 9;
3795 	if (mddev->queue) {
3796 		blk_queue_max_discard_sectors(mddev->queue,
3797 					      mddev->chunk_sectors);
3798 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3799 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3800 		blk_queue_io_min(mddev->queue, chunk_size);
3801 		if (conf->geo.raid_disks % conf->geo.near_copies)
3802 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3803 		else
3804 			blk_queue_io_opt(mddev->queue, chunk_size *
3805 					 (conf->geo.raid_disks / conf->geo.near_copies));
3806 	}
3807 
3808 	rdev_for_each(rdev, mddev) {
3809 		long long diff;
3810 
3811 		disk_idx = rdev->raid_disk;
3812 		if (disk_idx < 0)
3813 			continue;
3814 		if (disk_idx >= conf->geo.raid_disks &&
3815 		    disk_idx >= conf->prev.raid_disks)
3816 			continue;
3817 		disk = conf->mirrors + disk_idx;
3818 
3819 		if (test_bit(Replacement, &rdev->flags)) {
3820 			if (disk->replacement)
3821 				goto out_free_conf;
3822 			disk->replacement = rdev;
3823 		} else {
3824 			if (disk->rdev)
3825 				goto out_free_conf;
3826 			disk->rdev = rdev;
3827 		}
3828 		diff = (rdev->new_data_offset - rdev->data_offset);
3829 		if (!mddev->reshape_backwards)
3830 			diff = -diff;
3831 		if (diff < 0)
3832 			diff = 0;
3833 		if (first || diff < min_offset_diff)
3834 			min_offset_diff = diff;
3835 
3836 		if (mddev->gendisk)
3837 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3838 					  rdev->data_offset << 9);
3839 
3840 		disk->head_position = 0;
3841 
3842 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3843 			discard_supported = true;
3844 		first = 0;
3845 	}
3846 
3847 	if (mddev->queue) {
3848 		if (discard_supported)
3849 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3850 						mddev->queue);
3851 		else
3852 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3853 						  mddev->queue);
3854 	}
3855 	/* need to check that every block has at least one working mirror */
3856 	if (!enough(conf, -1)) {
3857 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3858 		       mdname(mddev));
3859 		goto out_free_conf;
3860 	}
3861 
3862 	if (conf->reshape_progress != MaxSector) {
3863 		/* must ensure that shape change is supported */
3864 		if (conf->geo.far_copies != 1 &&
3865 		    conf->geo.far_offset == 0)
3866 			goto out_free_conf;
3867 		if (conf->prev.far_copies != 1 &&
3868 		    conf->prev.far_offset == 0)
3869 			goto out_free_conf;
3870 	}
3871 
3872 	mddev->degraded = 0;
3873 	for (i = 0;
3874 	     i < conf->geo.raid_disks
3875 		     || i < conf->prev.raid_disks;
3876 	     i++) {
3877 
3878 		disk = conf->mirrors + i;
3879 
3880 		if (!disk->rdev && disk->replacement) {
3881 			/* The replacement is all we have - use it */
3882 			disk->rdev = disk->replacement;
3883 			disk->replacement = NULL;
3884 			clear_bit(Replacement, &disk->rdev->flags);
3885 		}
3886 
3887 		if (!disk->rdev ||
3888 		    !test_bit(In_sync, &disk->rdev->flags)) {
3889 			disk->head_position = 0;
3890 			mddev->degraded++;
3891 			if (disk->rdev &&
3892 			    disk->rdev->saved_raid_disk < 0)
3893 				conf->fullsync = 1;
3894 		}
3895 
3896 		if (disk->replacement &&
3897 		    !test_bit(In_sync, &disk->replacement->flags) &&
3898 		    disk->replacement->saved_raid_disk < 0) {
3899 			conf->fullsync = 1;
3900 		}
3901 
3902 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3903 	}
3904 
3905 	if (mddev->recovery_cp != MaxSector)
3906 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3907 			  mdname(mddev));
3908 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3909 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3910 		conf->geo.raid_disks);
3911 	/*
3912 	 * Ok, everything is just fine now
3913 	 */
3914 	mddev->dev_sectors = conf->dev_sectors;
3915 	size = raid10_size(mddev, 0, 0);
3916 	md_set_array_sectors(mddev, size);
3917 	mddev->resync_max_sectors = size;
3918 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3919 
3920 	if (mddev->queue) {
3921 		int stripe = conf->geo.raid_disks *
3922 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3923 
3924 		/* Calculate max read-ahead size.
3925 		 * We need to readahead at least twice a whole stripe....
3926 		 * maybe...
3927 		 */
3928 		stripe /= conf->geo.near_copies;
3929 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3930 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3931 	}
3932 
3933 	if (md_integrity_register(mddev))
3934 		goto out_free_conf;
3935 
3936 	if (conf->reshape_progress != MaxSector) {
3937 		unsigned long before_length, after_length;
3938 
3939 		before_length = ((1 << conf->prev.chunk_shift) *
3940 				 conf->prev.far_copies);
3941 		after_length = ((1 << conf->geo.chunk_shift) *
3942 				conf->geo.far_copies);
3943 
3944 		if (max(before_length, after_length) > min_offset_diff) {
3945 			/* This cannot work */
3946 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3947 			goto out_free_conf;
3948 		}
3949 		conf->offset_diff = min_offset_diff;
3950 
3951 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3952 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3953 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3954 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3955 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3956 							"reshape");
3957 	}
3958 
3959 	return 0;
3960 
3961 out_free_conf:
3962 	md_unregister_thread(&mddev->thread);
3963 	mempool_exit(&conf->r10bio_pool);
3964 	safe_put_page(conf->tmppage);
3965 	kfree(conf->mirrors);
3966 	kfree(conf);
3967 	mddev->private = NULL;
3968 out:
3969 	return -EIO;
3970 }
3971 
3972 static void raid10_free(struct mddev *mddev, void *priv)
3973 {
3974 	struct r10conf *conf = priv;
3975 
3976 	mempool_exit(&conf->r10bio_pool);
3977 	safe_put_page(conf->tmppage);
3978 	kfree(conf->mirrors);
3979 	kfree(conf->mirrors_old);
3980 	kfree(conf->mirrors_new);
3981 	bioset_exit(&conf->bio_split);
3982 	kfree(conf);
3983 }
3984 
3985 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3986 {
3987 	struct r10conf *conf = mddev->private;
3988 
3989 	if (quiesce)
3990 		raise_barrier(conf, 0);
3991 	else
3992 		lower_barrier(conf);
3993 }
3994 
3995 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3996 {
3997 	/* Resize of 'far' arrays is not supported.
3998 	 * For 'near' and 'offset' arrays we can set the
3999 	 * number of sectors used to be an appropriate multiple
4000 	 * of the chunk size.
4001 	 * For 'offset', this is far_copies*chunksize.
4002 	 * For 'near' the multiplier is the LCM of
4003 	 * near_copies and raid_disks.
4004 	 * So if far_copies > 1 && !far_offset, fail.
4005 	 * Else find LCM(raid_disks, near_copy)*far_copies and
4006 	 * multiply by chunk_size.  Then round to this number.
4007 	 * This is mostly done by raid10_size()
4008 	 */
4009 	struct r10conf *conf = mddev->private;
4010 	sector_t oldsize, size;
4011 
4012 	if (mddev->reshape_position != MaxSector)
4013 		return -EBUSY;
4014 
4015 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4016 		return -EINVAL;
4017 
4018 	oldsize = raid10_size(mddev, 0, 0);
4019 	size = raid10_size(mddev, sectors, 0);
4020 	if (mddev->external_size &&
4021 	    mddev->array_sectors > size)
4022 		return -EINVAL;
4023 	if (mddev->bitmap) {
4024 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4025 		if (ret)
4026 			return ret;
4027 	}
4028 	md_set_array_sectors(mddev, size);
4029 	if (sectors > mddev->dev_sectors &&
4030 	    mddev->recovery_cp > oldsize) {
4031 		mddev->recovery_cp = oldsize;
4032 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4033 	}
4034 	calc_sectors(conf, sectors);
4035 	mddev->dev_sectors = conf->dev_sectors;
4036 	mddev->resync_max_sectors = size;
4037 	return 0;
4038 }
4039 
4040 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4041 {
4042 	struct md_rdev *rdev;
4043 	struct r10conf *conf;
4044 
4045 	if (mddev->degraded > 0) {
4046 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4047 			mdname(mddev));
4048 		return ERR_PTR(-EINVAL);
4049 	}
4050 	sector_div(size, devs);
4051 
4052 	/* Set new parameters */
4053 	mddev->new_level = 10;
4054 	/* new layout: far_copies = 1, near_copies = 2 */
4055 	mddev->new_layout = (1<<8) + 2;
4056 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4057 	mddev->delta_disks = mddev->raid_disks;
4058 	mddev->raid_disks *= 2;
4059 	/* make sure it will be not marked as dirty */
4060 	mddev->recovery_cp = MaxSector;
4061 	mddev->dev_sectors = size;
4062 
4063 	conf = setup_conf(mddev);
4064 	if (!IS_ERR(conf)) {
4065 		rdev_for_each(rdev, mddev)
4066 			if (rdev->raid_disk >= 0) {
4067 				rdev->new_raid_disk = rdev->raid_disk * 2;
4068 				rdev->sectors = size;
4069 			}
4070 		conf->barrier = 1;
4071 	}
4072 
4073 	return conf;
4074 }
4075 
4076 static void *raid10_takeover(struct mddev *mddev)
4077 {
4078 	struct r0conf *raid0_conf;
4079 
4080 	/* raid10 can take over:
4081 	 *  raid0 - providing it has only two drives
4082 	 */
4083 	if (mddev->level == 0) {
4084 		/* for raid0 takeover only one zone is supported */
4085 		raid0_conf = mddev->private;
4086 		if (raid0_conf->nr_strip_zones > 1) {
4087 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4088 				mdname(mddev));
4089 			return ERR_PTR(-EINVAL);
4090 		}
4091 		return raid10_takeover_raid0(mddev,
4092 			raid0_conf->strip_zone->zone_end,
4093 			raid0_conf->strip_zone->nb_dev);
4094 	}
4095 	return ERR_PTR(-EINVAL);
4096 }
4097 
4098 static int raid10_check_reshape(struct mddev *mddev)
4099 {
4100 	/* Called when there is a request to change
4101 	 * - layout (to ->new_layout)
4102 	 * - chunk size (to ->new_chunk_sectors)
4103 	 * - raid_disks (by delta_disks)
4104 	 * or when trying to restart a reshape that was ongoing.
4105 	 *
4106 	 * We need to validate the request and possibly allocate
4107 	 * space if that might be an issue later.
4108 	 *
4109 	 * Currently we reject any reshape of a 'far' mode array,
4110 	 * allow chunk size to change if new is generally acceptable,
4111 	 * allow raid_disks to increase, and allow
4112 	 * a switch between 'near' mode and 'offset' mode.
4113 	 */
4114 	struct r10conf *conf = mddev->private;
4115 	struct geom geo;
4116 
4117 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4118 		return -EINVAL;
4119 
4120 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4121 		/* mustn't change number of copies */
4122 		return -EINVAL;
4123 	if (geo.far_copies > 1 && !geo.far_offset)
4124 		/* Cannot switch to 'far' mode */
4125 		return -EINVAL;
4126 
4127 	if (mddev->array_sectors & geo.chunk_mask)
4128 			/* not factor of array size */
4129 			return -EINVAL;
4130 
4131 	if (!enough(conf, -1))
4132 		return -EINVAL;
4133 
4134 	kfree(conf->mirrors_new);
4135 	conf->mirrors_new = NULL;
4136 	if (mddev->delta_disks > 0) {
4137 		/* allocate new 'mirrors' list */
4138 		conf->mirrors_new =
4139 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4140 				sizeof(struct raid10_info),
4141 				GFP_KERNEL);
4142 		if (!conf->mirrors_new)
4143 			return -ENOMEM;
4144 	}
4145 	return 0;
4146 }
4147 
4148 /*
4149  * Need to check if array has failed when deciding whether to:
4150  *  - start an array
4151  *  - remove non-faulty devices
4152  *  - add a spare
4153  *  - allow a reshape
4154  * This determination is simple when no reshape is happening.
4155  * However if there is a reshape, we need to carefully check
4156  * both the before and after sections.
4157  * This is because some failed devices may only affect one
4158  * of the two sections, and some non-in_sync devices may
4159  * be insync in the section most affected by failed devices.
4160  */
4161 static int calc_degraded(struct r10conf *conf)
4162 {
4163 	int degraded, degraded2;
4164 	int i;
4165 
4166 	rcu_read_lock();
4167 	degraded = 0;
4168 	/* 'prev' section first */
4169 	for (i = 0; i < conf->prev.raid_disks; i++) {
4170 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4171 		if (!rdev || test_bit(Faulty, &rdev->flags))
4172 			degraded++;
4173 		else if (!test_bit(In_sync, &rdev->flags))
4174 			/* When we can reduce the number of devices in
4175 			 * an array, this might not contribute to
4176 			 * 'degraded'.  It does now.
4177 			 */
4178 			degraded++;
4179 	}
4180 	rcu_read_unlock();
4181 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4182 		return degraded;
4183 	rcu_read_lock();
4184 	degraded2 = 0;
4185 	for (i = 0; i < conf->geo.raid_disks; i++) {
4186 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4187 		if (!rdev || test_bit(Faulty, &rdev->flags))
4188 			degraded2++;
4189 		else if (!test_bit(In_sync, &rdev->flags)) {
4190 			/* If reshape is increasing the number of devices,
4191 			 * this section has already been recovered, so
4192 			 * it doesn't contribute to degraded.
4193 			 * else it does.
4194 			 */
4195 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4196 				degraded2++;
4197 		}
4198 	}
4199 	rcu_read_unlock();
4200 	if (degraded2 > degraded)
4201 		return degraded2;
4202 	return degraded;
4203 }
4204 
4205 static int raid10_start_reshape(struct mddev *mddev)
4206 {
4207 	/* A 'reshape' has been requested. This commits
4208 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4209 	 * This also checks if there are enough spares and adds them
4210 	 * to the array.
4211 	 * We currently require enough spares to make the final
4212 	 * array non-degraded.  We also require that the difference
4213 	 * between old and new data_offset - on each device - is
4214 	 * enough that we never risk over-writing.
4215 	 */
4216 
4217 	unsigned long before_length, after_length;
4218 	sector_t min_offset_diff = 0;
4219 	int first = 1;
4220 	struct geom new;
4221 	struct r10conf *conf = mddev->private;
4222 	struct md_rdev *rdev;
4223 	int spares = 0;
4224 	int ret;
4225 
4226 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4227 		return -EBUSY;
4228 
4229 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4230 		return -EINVAL;
4231 
4232 	before_length = ((1 << conf->prev.chunk_shift) *
4233 			 conf->prev.far_copies);
4234 	after_length = ((1 << conf->geo.chunk_shift) *
4235 			conf->geo.far_copies);
4236 
4237 	rdev_for_each(rdev, mddev) {
4238 		if (!test_bit(In_sync, &rdev->flags)
4239 		    && !test_bit(Faulty, &rdev->flags))
4240 			spares++;
4241 		if (rdev->raid_disk >= 0) {
4242 			long long diff = (rdev->new_data_offset
4243 					  - rdev->data_offset);
4244 			if (!mddev->reshape_backwards)
4245 				diff = -diff;
4246 			if (diff < 0)
4247 				diff = 0;
4248 			if (first || diff < min_offset_diff)
4249 				min_offset_diff = diff;
4250 			first = 0;
4251 		}
4252 	}
4253 
4254 	if (max(before_length, after_length) > min_offset_diff)
4255 		return -EINVAL;
4256 
4257 	if (spares < mddev->delta_disks)
4258 		return -EINVAL;
4259 
4260 	conf->offset_diff = min_offset_diff;
4261 	spin_lock_irq(&conf->device_lock);
4262 	if (conf->mirrors_new) {
4263 		memcpy(conf->mirrors_new, conf->mirrors,
4264 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4265 		smp_mb();
4266 		kfree(conf->mirrors_old);
4267 		conf->mirrors_old = conf->mirrors;
4268 		conf->mirrors = conf->mirrors_new;
4269 		conf->mirrors_new = NULL;
4270 	}
4271 	setup_geo(&conf->geo, mddev, geo_start);
4272 	smp_mb();
4273 	if (mddev->reshape_backwards) {
4274 		sector_t size = raid10_size(mddev, 0, 0);
4275 		if (size < mddev->array_sectors) {
4276 			spin_unlock_irq(&conf->device_lock);
4277 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4278 				mdname(mddev));
4279 			return -EINVAL;
4280 		}
4281 		mddev->resync_max_sectors = size;
4282 		conf->reshape_progress = size;
4283 	} else
4284 		conf->reshape_progress = 0;
4285 	conf->reshape_safe = conf->reshape_progress;
4286 	spin_unlock_irq(&conf->device_lock);
4287 
4288 	if (mddev->delta_disks && mddev->bitmap) {
4289 		ret = md_bitmap_resize(mddev->bitmap,
4290 				       raid10_size(mddev, 0, conf->geo.raid_disks),
4291 				       0, 0);
4292 		if (ret)
4293 			goto abort;
4294 	}
4295 	if (mddev->delta_disks > 0) {
4296 		rdev_for_each(rdev, mddev)
4297 			if (rdev->raid_disk < 0 &&
4298 			    !test_bit(Faulty, &rdev->flags)) {
4299 				if (raid10_add_disk(mddev, rdev) == 0) {
4300 					if (rdev->raid_disk >=
4301 					    conf->prev.raid_disks)
4302 						set_bit(In_sync, &rdev->flags);
4303 					else
4304 						rdev->recovery_offset = 0;
4305 
4306 					if (sysfs_link_rdev(mddev, rdev))
4307 						/* Failure here  is OK */;
4308 				}
4309 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4310 				   && !test_bit(Faulty, &rdev->flags)) {
4311 				/* This is a spare that was manually added */
4312 				set_bit(In_sync, &rdev->flags);
4313 			}
4314 	}
4315 	/* When a reshape changes the number of devices,
4316 	 * ->degraded is measured against the larger of the
4317 	 * pre and  post numbers.
4318 	 */
4319 	spin_lock_irq(&conf->device_lock);
4320 	mddev->degraded = calc_degraded(conf);
4321 	spin_unlock_irq(&conf->device_lock);
4322 	mddev->raid_disks = conf->geo.raid_disks;
4323 	mddev->reshape_position = conf->reshape_progress;
4324 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4325 
4326 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4327 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4328 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4329 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4330 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4331 
4332 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4333 						"reshape");
4334 	if (!mddev->sync_thread) {
4335 		ret = -EAGAIN;
4336 		goto abort;
4337 	}
4338 	conf->reshape_checkpoint = jiffies;
4339 	md_wakeup_thread(mddev->sync_thread);
4340 	md_new_event(mddev);
4341 	return 0;
4342 
4343 abort:
4344 	mddev->recovery = 0;
4345 	spin_lock_irq(&conf->device_lock);
4346 	conf->geo = conf->prev;
4347 	mddev->raid_disks = conf->geo.raid_disks;
4348 	rdev_for_each(rdev, mddev)
4349 		rdev->new_data_offset = rdev->data_offset;
4350 	smp_wmb();
4351 	conf->reshape_progress = MaxSector;
4352 	conf->reshape_safe = MaxSector;
4353 	mddev->reshape_position = MaxSector;
4354 	spin_unlock_irq(&conf->device_lock);
4355 	return ret;
4356 }
4357 
4358 /* Calculate the last device-address that could contain
4359  * any block from the chunk that includes the array-address 's'
4360  * and report the next address.
4361  * i.e. the address returned will be chunk-aligned and after
4362  * any data that is in the chunk containing 's'.
4363  */
4364 static sector_t last_dev_address(sector_t s, struct geom *geo)
4365 {
4366 	s = (s | geo->chunk_mask) + 1;
4367 	s >>= geo->chunk_shift;
4368 	s *= geo->near_copies;
4369 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4370 	s *= geo->far_copies;
4371 	s <<= geo->chunk_shift;
4372 	return s;
4373 }
4374 
4375 /* Calculate the first device-address that could contain
4376  * any block from the chunk that includes the array-address 's'.
4377  * This too will be the start of a chunk
4378  */
4379 static sector_t first_dev_address(sector_t s, struct geom *geo)
4380 {
4381 	s >>= geo->chunk_shift;
4382 	s *= geo->near_copies;
4383 	sector_div(s, geo->raid_disks);
4384 	s *= geo->far_copies;
4385 	s <<= geo->chunk_shift;
4386 	return s;
4387 }
4388 
4389 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4390 				int *skipped)
4391 {
4392 	/* We simply copy at most one chunk (smallest of old and new)
4393 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4394 	 * or we hit a bad block or something.
4395 	 * This might mean we pause for normal IO in the middle of
4396 	 * a chunk, but that is not a problem as mddev->reshape_position
4397 	 * can record any location.
4398 	 *
4399 	 * If we will want to write to a location that isn't
4400 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4401 	 * we need to flush all reshape requests and update the metadata.
4402 	 *
4403 	 * When reshaping forwards (e.g. to more devices), we interpret
4404 	 * 'safe' as the earliest block which might not have been copied
4405 	 * down yet.  We divide this by previous stripe size and multiply
4406 	 * by previous stripe length to get lowest device offset that we
4407 	 * cannot write to yet.
4408 	 * We interpret 'sector_nr' as an address that we want to write to.
4409 	 * From this we use last_device_address() to find where we might
4410 	 * write to, and first_device_address on the  'safe' position.
4411 	 * If this 'next' write position is after the 'safe' position,
4412 	 * we must update the metadata to increase the 'safe' position.
4413 	 *
4414 	 * When reshaping backwards, we round in the opposite direction
4415 	 * and perform the reverse test:  next write position must not be
4416 	 * less than current safe position.
4417 	 *
4418 	 * In all this the minimum difference in data offsets
4419 	 * (conf->offset_diff - always positive) allows a bit of slack,
4420 	 * so next can be after 'safe', but not by more than offset_diff
4421 	 *
4422 	 * We need to prepare all the bios here before we start any IO
4423 	 * to ensure the size we choose is acceptable to all devices.
4424 	 * The means one for each copy for write-out and an extra one for
4425 	 * read-in.
4426 	 * We store the read-in bio in ->master_bio and the others in
4427 	 * ->devs[x].bio and ->devs[x].repl_bio.
4428 	 */
4429 	struct r10conf *conf = mddev->private;
4430 	struct r10bio *r10_bio;
4431 	sector_t next, safe, last;
4432 	int max_sectors;
4433 	int nr_sectors;
4434 	int s;
4435 	struct md_rdev *rdev;
4436 	int need_flush = 0;
4437 	struct bio *blist;
4438 	struct bio *bio, *read_bio;
4439 	int sectors_done = 0;
4440 	struct page **pages;
4441 
4442 	if (sector_nr == 0) {
4443 		/* If restarting in the middle, skip the initial sectors */
4444 		if (mddev->reshape_backwards &&
4445 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4446 			sector_nr = (raid10_size(mddev, 0, 0)
4447 				     - conf->reshape_progress);
4448 		} else if (!mddev->reshape_backwards &&
4449 			   conf->reshape_progress > 0)
4450 			sector_nr = conf->reshape_progress;
4451 		if (sector_nr) {
4452 			mddev->curr_resync_completed = sector_nr;
4453 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4454 			*skipped = 1;
4455 			return sector_nr;
4456 		}
4457 	}
4458 
4459 	/* We don't use sector_nr to track where we are up to
4460 	 * as that doesn't work well for ->reshape_backwards.
4461 	 * So just use ->reshape_progress.
4462 	 */
4463 	if (mddev->reshape_backwards) {
4464 		/* 'next' is the earliest device address that we might
4465 		 * write to for this chunk in the new layout
4466 		 */
4467 		next = first_dev_address(conf->reshape_progress - 1,
4468 					 &conf->geo);
4469 
4470 		/* 'safe' is the last device address that we might read from
4471 		 * in the old layout after a restart
4472 		 */
4473 		safe = last_dev_address(conf->reshape_safe - 1,
4474 					&conf->prev);
4475 
4476 		if (next + conf->offset_diff < safe)
4477 			need_flush = 1;
4478 
4479 		last = conf->reshape_progress - 1;
4480 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4481 					       & conf->prev.chunk_mask);
4482 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4483 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4484 	} else {
4485 		/* 'next' is after the last device address that we
4486 		 * might write to for this chunk in the new layout
4487 		 */
4488 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4489 
4490 		/* 'safe' is the earliest device address that we might
4491 		 * read from in the old layout after a restart
4492 		 */
4493 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4494 
4495 		/* Need to update metadata if 'next' might be beyond 'safe'
4496 		 * as that would possibly corrupt data
4497 		 */
4498 		if (next > safe + conf->offset_diff)
4499 			need_flush = 1;
4500 
4501 		sector_nr = conf->reshape_progress;
4502 		last  = sector_nr | (conf->geo.chunk_mask
4503 				     & conf->prev.chunk_mask);
4504 
4505 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4506 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4507 	}
4508 
4509 	if (need_flush ||
4510 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4511 		/* Need to update reshape_position in metadata */
4512 		wait_barrier(conf);
4513 		mddev->reshape_position = conf->reshape_progress;
4514 		if (mddev->reshape_backwards)
4515 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4516 				- conf->reshape_progress;
4517 		else
4518 			mddev->curr_resync_completed = conf->reshape_progress;
4519 		conf->reshape_checkpoint = jiffies;
4520 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4521 		md_wakeup_thread(mddev->thread);
4522 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4523 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4524 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4525 			allow_barrier(conf);
4526 			return sectors_done;
4527 		}
4528 		conf->reshape_safe = mddev->reshape_position;
4529 		allow_barrier(conf);
4530 	}
4531 
4532 read_more:
4533 	/* Now schedule reads for blocks from sector_nr to last */
4534 	r10_bio = raid10_alloc_init_r10buf(conf);
4535 	r10_bio->state = 0;
4536 	raise_barrier(conf, sectors_done != 0);
4537 	atomic_set(&r10_bio->remaining, 0);
4538 	r10_bio->mddev = mddev;
4539 	r10_bio->sector = sector_nr;
4540 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4541 	r10_bio->sectors = last - sector_nr + 1;
4542 	rdev = read_balance(conf, r10_bio, &max_sectors);
4543 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4544 
4545 	if (!rdev) {
4546 		/* Cannot read from here, so need to record bad blocks
4547 		 * on all the target devices.
4548 		 */
4549 		// FIXME
4550 		mempool_free(r10_bio, &conf->r10buf_pool);
4551 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4552 		return sectors_done;
4553 	}
4554 
4555 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4556 
4557 	bio_set_dev(read_bio, rdev->bdev);
4558 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4559 			       + rdev->data_offset);
4560 	read_bio->bi_private = r10_bio;
4561 	read_bio->bi_end_io = end_reshape_read;
4562 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4563 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4564 	read_bio->bi_status = 0;
4565 	read_bio->bi_vcnt = 0;
4566 	read_bio->bi_iter.bi_size = 0;
4567 	r10_bio->master_bio = read_bio;
4568 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4569 
4570 	/* Now find the locations in the new layout */
4571 	__raid10_find_phys(&conf->geo, r10_bio);
4572 
4573 	blist = read_bio;
4574 	read_bio->bi_next = NULL;
4575 
4576 	rcu_read_lock();
4577 	for (s = 0; s < conf->copies*2; s++) {
4578 		struct bio *b;
4579 		int d = r10_bio->devs[s/2].devnum;
4580 		struct md_rdev *rdev2;
4581 		if (s&1) {
4582 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4583 			b = r10_bio->devs[s/2].repl_bio;
4584 		} else {
4585 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4586 			b = r10_bio->devs[s/2].bio;
4587 		}
4588 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4589 			continue;
4590 
4591 		bio_set_dev(b, rdev2->bdev);
4592 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4593 			rdev2->new_data_offset;
4594 		b->bi_end_io = end_reshape_write;
4595 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4596 		b->bi_next = blist;
4597 		blist = b;
4598 	}
4599 
4600 	/* Now add as many pages as possible to all of these bios. */
4601 
4602 	nr_sectors = 0;
4603 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4604 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4605 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4606 		int len = (max_sectors - s) << 9;
4607 		if (len > PAGE_SIZE)
4608 			len = PAGE_SIZE;
4609 		for (bio = blist; bio ; bio = bio->bi_next) {
4610 			/*
4611 			 * won't fail because the vec table is big enough
4612 			 * to hold all these pages
4613 			 */
4614 			bio_add_page(bio, page, len, 0);
4615 		}
4616 		sector_nr += len >> 9;
4617 		nr_sectors += len >> 9;
4618 	}
4619 	rcu_read_unlock();
4620 	r10_bio->sectors = nr_sectors;
4621 
4622 	/* Now submit the read */
4623 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4624 	atomic_inc(&r10_bio->remaining);
4625 	read_bio->bi_next = NULL;
4626 	generic_make_request(read_bio);
4627 	sector_nr += nr_sectors;
4628 	sectors_done += nr_sectors;
4629 	if (sector_nr <= last)
4630 		goto read_more;
4631 
4632 	/* Now that we have done the whole section we can
4633 	 * update reshape_progress
4634 	 */
4635 	if (mddev->reshape_backwards)
4636 		conf->reshape_progress -= sectors_done;
4637 	else
4638 		conf->reshape_progress += sectors_done;
4639 
4640 	return sectors_done;
4641 }
4642 
4643 static void end_reshape_request(struct r10bio *r10_bio);
4644 static int handle_reshape_read_error(struct mddev *mddev,
4645 				     struct r10bio *r10_bio);
4646 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4647 {
4648 	/* Reshape read completed.  Hopefully we have a block
4649 	 * to write out.
4650 	 * If we got a read error then we do sync 1-page reads from
4651 	 * elsewhere until we find the data - or give up.
4652 	 */
4653 	struct r10conf *conf = mddev->private;
4654 	int s;
4655 
4656 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4657 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4658 			/* Reshape has been aborted */
4659 			md_done_sync(mddev, r10_bio->sectors, 0);
4660 			return;
4661 		}
4662 
4663 	/* We definitely have the data in the pages, schedule the
4664 	 * writes.
4665 	 */
4666 	atomic_set(&r10_bio->remaining, 1);
4667 	for (s = 0; s < conf->copies*2; s++) {
4668 		struct bio *b;
4669 		int d = r10_bio->devs[s/2].devnum;
4670 		struct md_rdev *rdev;
4671 		rcu_read_lock();
4672 		if (s&1) {
4673 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4674 			b = r10_bio->devs[s/2].repl_bio;
4675 		} else {
4676 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4677 			b = r10_bio->devs[s/2].bio;
4678 		}
4679 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4680 			rcu_read_unlock();
4681 			continue;
4682 		}
4683 		atomic_inc(&rdev->nr_pending);
4684 		rcu_read_unlock();
4685 		md_sync_acct_bio(b, r10_bio->sectors);
4686 		atomic_inc(&r10_bio->remaining);
4687 		b->bi_next = NULL;
4688 		generic_make_request(b);
4689 	}
4690 	end_reshape_request(r10_bio);
4691 }
4692 
4693 static void end_reshape(struct r10conf *conf)
4694 {
4695 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4696 		return;
4697 
4698 	spin_lock_irq(&conf->device_lock);
4699 	conf->prev = conf->geo;
4700 	md_finish_reshape(conf->mddev);
4701 	smp_wmb();
4702 	conf->reshape_progress = MaxSector;
4703 	conf->reshape_safe = MaxSector;
4704 	spin_unlock_irq(&conf->device_lock);
4705 
4706 	/* read-ahead size must cover two whole stripes, which is
4707 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4708 	 */
4709 	if (conf->mddev->queue) {
4710 		int stripe = conf->geo.raid_disks *
4711 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4712 		stripe /= conf->geo.near_copies;
4713 		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4714 			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4715 	}
4716 	conf->fullsync = 0;
4717 }
4718 
4719 static int handle_reshape_read_error(struct mddev *mddev,
4720 				     struct r10bio *r10_bio)
4721 {
4722 	/* Use sync reads to get the blocks from somewhere else */
4723 	int sectors = r10_bio->sectors;
4724 	struct r10conf *conf = mddev->private;
4725 	struct r10bio *r10b;
4726 	int slot = 0;
4727 	int idx = 0;
4728 	struct page **pages;
4729 
4730 	r10b = kmalloc(sizeof(*r10b) +
4731 	       sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4732 	if (!r10b) {
4733 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4734 		return -ENOMEM;
4735 	}
4736 
4737 	/* reshape IOs share pages from .devs[0].bio */
4738 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4739 
4740 	r10b->sector = r10_bio->sector;
4741 	__raid10_find_phys(&conf->prev, r10b);
4742 
4743 	while (sectors) {
4744 		int s = sectors;
4745 		int success = 0;
4746 		int first_slot = slot;
4747 
4748 		if (s > (PAGE_SIZE >> 9))
4749 			s = PAGE_SIZE >> 9;
4750 
4751 		rcu_read_lock();
4752 		while (!success) {
4753 			int d = r10b->devs[slot].devnum;
4754 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4755 			sector_t addr;
4756 			if (rdev == NULL ||
4757 			    test_bit(Faulty, &rdev->flags) ||
4758 			    !test_bit(In_sync, &rdev->flags))
4759 				goto failed;
4760 
4761 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4762 			atomic_inc(&rdev->nr_pending);
4763 			rcu_read_unlock();
4764 			success = sync_page_io(rdev,
4765 					       addr,
4766 					       s << 9,
4767 					       pages[idx],
4768 					       REQ_OP_READ, 0, false);
4769 			rdev_dec_pending(rdev, mddev);
4770 			rcu_read_lock();
4771 			if (success)
4772 				break;
4773 		failed:
4774 			slot++;
4775 			if (slot >= conf->copies)
4776 				slot = 0;
4777 			if (slot == first_slot)
4778 				break;
4779 		}
4780 		rcu_read_unlock();
4781 		if (!success) {
4782 			/* couldn't read this block, must give up */
4783 			set_bit(MD_RECOVERY_INTR,
4784 				&mddev->recovery);
4785 			kfree(r10b);
4786 			return -EIO;
4787 		}
4788 		sectors -= s;
4789 		idx++;
4790 	}
4791 	kfree(r10b);
4792 	return 0;
4793 }
4794 
4795 static void end_reshape_write(struct bio *bio)
4796 {
4797 	struct r10bio *r10_bio = get_resync_r10bio(bio);
4798 	struct mddev *mddev = r10_bio->mddev;
4799 	struct r10conf *conf = mddev->private;
4800 	int d;
4801 	int slot;
4802 	int repl;
4803 	struct md_rdev *rdev = NULL;
4804 
4805 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4806 	if (repl)
4807 		rdev = conf->mirrors[d].replacement;
4808 	if (!rdev) {
4809 		smp_mb();
4810 		rdev = conf->mirrors[d].rdev;
4811 	}
4812 
4813 	if (bio->bi_status) {
4814 		/* FIXME should record badblock */
4815 		md_error(mddev, rdev);
4816 	}
4817 
4818 	rdev_dec_pending(rdev, mddev);
4819 	end_reshape_request(r10_bio);
4820 }
4821 
4822 static void end_reshape_request(struct r10bio *r10_bio)
4823 {
4824 	if (!atomic_dec_and_test(&r10_bio->remaining))
4825 		return;
4826 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4827 	bio_put(r10_bio->master_bio);
4828 	put_buf(r10_bio);
4829 }
4830 
4831 static void raid10_finish_reshape(struct mddev *mddev)
4832 {
4833 	struct r10conf *conf = mddev->private;
4834 
4835 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4836 		return;
4837 
4838 	if (mddev->delta_disks > 0) {
4839 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4840 			mddev->recovery_cp = mddev->resync_max_sectors;
4841 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4842 		}
4843 		mddev->resync_max_sectors = mddev->array_sectors;
4844 	} else {
4845 		int d;
4846 		rcu_read_lock();
4847 		for (d = conf->geo.raid_disks ;
4848 		     d < conf->geo.raid_disks - mddev->delta_disks;
4849 		     d++) {
4850 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4851 			if (rdev)
4852 				clear_bit(In_sync, &rdev->flags);
4853 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4854 			if (rdev)
4855 				clear_bit(In_sync, &rdev->flags);
4856 		}
4857 		rcu_read_unlock();
4858 	}
4859 	mddev->layout = mddev->new_layout;
4860 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4861 	mddev->reshape_position = MaxSector;
4862 	mddev->delta_disks = 0;
4863 	mddev->reshape_backwards = 0;
4864 }
4865 
4866 static struct md_personality raid10_personality =
4867 {
4868 	.name		= "raid10",
4869 	.level		= 10,
4870 	.owner		= THIS_MODULE,
4871 	.make_request	= raid10_make_request,
4872 	.run		= raid10_run,
4873 	.free		= raid10_free,
4874 	.status		= raid10_status,
4875 	.error_handler	= raid10_error,
4876 	.hot_add_disk	= raid10_add_disk,
4877 	.hot_remove_disk= raid10_remove_disk,
4878 	.spare_active	= raid10_spare_active,
4879 	.sync_request	= raid10_sync_request,
4880 	.quiesce	= raid10_quiesce,
4881 	.size		= raid10_size,
4882 	.resize		= raid10_resize,
4883 	.takeover	= raid10_takeover,
4884 	.check_reshape	= raid10_check_reshape,
4885 	.start_reshape	= raid10_start_reshape,
4886 	.finish_reshape	= raid10_finish_reshape,
4887 	.congested	= raid10_congested,
4888 };
4889 
4890 static int __init raid_init(void)
4891 {
4892 	return register_md_personality(&raid10_personality);
4893 }
4894 
4895 static void raid_exit(void)
4896 {
4897 	unregister_md_personality(&raid10_personality);
4898 }
4899 
4900 module_init(raid_init);
4901 module_exit(raid_exit);
4902 MODULE_LICENSE("GPL");
4903 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4904 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4905 MODULE_ALIAS("md-raid10");
4906 MODULE_ALIAS("md-level-10");
4907 
4908 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4909