xref: /openbmc/linux/drivers/md/raid10.c (revision bef7a78d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25 
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66 
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 				int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76 
77 #define raid10_log(md, fmt, args...)				\
78 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79 
80 #include "raid1-10.c"
81 
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88 	return get_resync_pages(bio)->raid_bio;
89 }
90 
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93 	struct r10conf *conf = data;
94 	int size = offsetof(struct r10bio, devs[conf->copies]);
95 
96 	/* allocate a r10bio with room for raid_disks entries in the
97 	 * bios array */
98 	return kzalloc(size, gfp_flags);
99 }
100 
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108 
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 	struct r10conf *conf = data;
119 	struct r10bio *r10_bio;
120 	struct bio *bio;
121 	int j;
122 	int nalloc, nalloc_rp;
123 	struct resync_pages *rps;
124 
125 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126 	if (!r10_bio)
127 		return NULL;
128 
129 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 		nalloc = conf->copies; /* resync */
132 	else
133 		nalloc = 2; /* recovery */
134 
135 	/* allocate once for all bios */
136 	if (!conf->have_replacement)
137 		nalloc_rp = nalloc;
138 	else
139 		nalloc_rp = nalloc * 2;
140 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141 	if (!rps)
142 		goto out_free_r10bio;
143 
144 	/*
145 	 * Allocate bios.
146 	 */
147 	for (j = nalloc ; j-- ; ) {
148 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149 		if (!bio)
150 			goto out_free_bio;
151 		r10_bio->devs[j].bio = bio;
152 		if (!conf->have_replacement)
153 			continue;
154 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155 		if (!bio)
156 			goto out_free_bio;
157 		r10_bio->devs[j].repl_bio = bio;
158 	}
159 	/*
160 	 * Allocate RESYNC_PAGES data pages and attach them
161 	 * where needed.
162 	 */
163 	for (j = 0; j < nalloc; j++) {
164 		struct bio *rbio = r10_bio->devs[j].repl_bio;
165 		struct resync_pages *rp, *rp_repl;
166 
167 		rp = &rps[j];
168 		if (rbio)
169 			rp_repl = &rps[nalloc + j];
170 
171 		bio = r10_bio->devs[j].bio;
172 
173 		if (!j || test_bit(MD_RECOVERY_SYNC,
174 				   &conf->mddev->recovery)) {
175 			if (resync_alloc_pages(rp, gfp_flags))
176 				goto out_free_pages;
177 		} else {
178 			memcpy(rp, &rps[0], sizeof(*rp));
179 			resync_get_all_pages(rp);
180 		}
181 
182 		rp->raid_bio = r10_bio;
183 		bio->bi_private = rp;
184 		if (rbio) {
185 			memcpy(rp_repl, rp, sizeof(*rp));
186 			rbio->bi_private = rp_repl;
187 		}
188 	}
189 
190 	return r10_bio;
191 
192 out_free_pages:
193 	while (--j >= 0)
194 		resync_free_pages(&rps[j]);
195 
196 	j = 0;
197 out_free_bio:
198 	for ( ; j < nalloc; j++) {
199 		if (r10_bio->devs[j].bio)
200 			bio_put(r10_bio->devs[j].bio);
201 		if (r10_bio->devs[j].repl_bio)
202 			bio_put(r10_bio->devs[j].repl_bio);
203 	}
204 	kfree(rps);
205 out_free_r10bio:
206 	rbio_pool_free(r10_bio, conf);
207 	return NULL;
208 }
209 
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212 	struct r10conf *conf = data;
213 	struct r10bio *r10bio = __r10_bio;
214 	int j;
215 	struct resync_pages *rp = NULL;
216 
217 	for (j = conf->copies; j--; ) {
218 		struct bio *bio = r10bio->devs[j].bio;
219 
220 		if (bio) {
221 			rp = get_resync_pages(bio);
222 			resync_free_pages(rp);
223 			bio_put(bio);
224 		}
225 
226 		bio = r10bio->devs[j].repl_bio;
227 		if (bio)
228 			bio_put(bio);
229 	}
230 
231 	/* resync pages array stored in the 1st bio's .bi_private */
232 	kfree(rp);
233 
234 	rbio_pool_free(r10bio, conf);
235 }
236 
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239 	int i;
240 
241 	for (i = 0; i < conf->copies; i++) {
242 		struct bio **bio = & r10_bio->devs[i].bio;
243 		if (!BIO_SPECIAL(*bio))
244 			bio_put(*bio);
245 		*bio = NULL;
246 		bio = &r10_bio->devs[i].repl_bio;
247 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 	}
251 }
252 
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255 	struct r10conf *conf = r10_bio->mddev->private;
256 
257 	put_all_bios(conf, r10_bio);
258 	mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260 
261 static void put_buf(struct r10bio *r10_bio)
262 {
263 	struct r10conf *conf = r10_bio->mddev->private;
264 
265 	mempool_free(r10_bio, &conf->r10buf_pool);
266 
267 	lower_barrier(conf);
268 }
269 
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272 	unsigned long flags;
273 	struct mddev *mddev = r10_bio->mddev;
274 	struct r10conf *conf = mddev->private;
275 
276 	spin_lock_irqsave(&conf->device_lock, flags);
277 	list_add(&r10_bio->retry_list, &conf->retry_list);
278 	conf->nr_queued ++;
279 	spin_unlock_irqrestore(&conf->device_lock, flags);
280 
281 	/* wake up frozen array... */
282 	wake_up(&conf->wait_barrier);
283 
284 	md_wakeup_thread(mddev->thread);
285 }
286 
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294 	struct bio *bio = r10_bio->master_bio;
295 	struct r10conf *conf = r10_bio->mddev->private;
296 
297 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298 		bio->bi_status = BLK_STS_IOERR;
299 
300 	bio_endio(bio);
301 	/*
302 	 * Wake up any possible resync thread that waits for the device
303 	 * to go idle.
304 	 */
305 	allow_barrier(conf);
306 
307 	free_r10bio(r10_bio);
308 }
309 
310 /*
311  * Update disk head position estimator based on IRQ completion info.
312  */
313 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314 {
315 	struct r10conf *conf = r10_bio->mddev->private;
316 
317 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318 		r10_bio->devs[slot].addr + (r10_bio->sectors);
319 }
320 
321 /*
322  * Find the disk number which triggered given bio
323  */
324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325 			 struct bio *bio, int *slotp, int *replp)
326 {
327 	int slot;
328 	int repl = 0;
329 
330 	for (slot = 0; slot < conf->copies; slot++) {
331 		if (r10_bio->devs[slot].bio == bio)
332 			break;
333 		if (r10_bio->devs[slot].repl_bio == bio) {
334 			repl = 1;
335 			break;
336 		}
337 	}
338 
339 	BUG_ON(slot == conf->copies);
340 	update_head_pos(slot, r10_bio);
341 
342 	if (slotp)
343 		*slotp = slot;
344 	if (replp)
345 		*replp = repl;
346 	return r10_bio->devs[slot].devnum;
347 }
348 
349 static void raid10_end_read_request(struct bio *bio)
350 {
351 	int uptodate = !bio->bi_status;
352 	struct r10bio *r10_bio = bio->bi_private;
353 	int slot;
354 	struct md_rdev *rdev;
355 	struct r10conf *conf = r10_bio->mddev->private;
356 
357 	slot = r10_bio->read_slot;
358 	rdev = r10_bio->devs[slot].rdev;
359 	/*
360 	 * this branch is our 'one mirror IO has finished' event handler:
361 	 */
362 	update_head_pos(slot, r10_bio);
363 
364 	if (uptodate) {
365 		/*
366 		 * Set R10BIO_Uptodate in our master bio, so that
367 		 * we will return a good error code to the higher
368 		 * levels even if IO on some other mirrored buffer fails.
369 		 *
370 		 * The 'master' represents the composite IO operation to
371 		 * user-side. So if something waits for IO, then it will
372 		 * wait for the 'master' bio.
373 		 */
374 		set_bit(R10BIO_Uptodate, &r10_bio->state);
375 	} else {
376 		/* If all other devices that store this block have
377 		 * failed, we want to return the error upwards rather
378 		 * than fail the last device.  Here we redefine
379 		 * "uptodate" to mean "Don't want to retry"
380 		 */
381 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
382 			     rdev->raid_disk))
383 			uptodate = 1;
384 	}
385 	if (uptodate) {
386 		raid_end_bio_io(r10_bio);
387 		rdev_dec_pending(rdev, conf->mddev);
388 	} else {
389 		/*
390 		 * oops, read error - keep the refcount on the rdev
391 		 */
392 		char b[BDEVNAME_SIZE];
393 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
394 				   mdname(conf->mddev),
395 				   bdevname(rdev->bdev, b),
396 				   (unsigned long long)r10_bio->sector);
397 		set_bit(R10BIO_ReadError, &r10_bio->state);
398 		reschedule_retry(r10_bio);
399 	}
400 }
401 
402 static void close_write(struct r10bio *r10_bio)
403 {
404 	/* clear the bitmap if all writes complete successfully */
405 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
406 			   r10_bio->sectors,
407 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
408 			   0);
409 	md_write_end(r10_bio->mddev);
410 }
411 
412 static void one_write_done(struct r10bio *r10_bio)
413 {
414 	if (atomic_dec_and_test(&r10_bio->remaining)) {
415 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
416 			reschedule_retry(r10_bio);
417 		else {
418 			close_write(r10_bio);
419 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
420 				reschedule_retry(r10_bio);
421 			else
422 				raid_end_bio_io(r10_bio);
423 		}
424 	}
425 }
426 
427 static void raid10_end_write_request(struct bio *bio)
428 {
429 	struct r10bio *r10_bio = bio->bi_private;
430 	int dev;
431 	int dec_rdev = 1;
432 	struct r10conf *conf = r10_bio->mddev->private;
433 	int slot, repl;
434 	struct md_rdev *rdev = NULL;
435 	struct bio *to_put = NULL;
436 	bool discard_error;
437 
438 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
439 
440 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
441 
442 	if (repl)
443 		rdev = conf->mirrors[dev].replacement;
444 	if (!rdev) {
445 		smp_rmb();
446 		repl = 0;
447 		rdev = conf->mirrors[dev].rdev;
448 	}
449 	/*
450 	 * this branch is our 'one mirror IO has finished' event handler:
451 	 */
452 	if (bio->bi_status && !discard_error) {
453 		if (repl)
454 			/* Never record new bad blocks to replacement,
455 			 * just fail it.
456 			 */
457 			md_error(rdev->mddev, rdev);
458 		else {
459 			set_bit(WriteErrorSeen,	&rdev->flags);
460 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
461 				set_bit(MD_RECOVERY_NEEDED,
462 					&rdev->mddev->recovery);
463 
464 			dec_rdev = 0;
465 			if (test_bit(FailFast, &rdev->flags) &&
466 			    (bio->bi_opf & MD_FAILFAST)) {
467 				md_error(rdev->mddev, rdev);
468 			}
469 
470 			/*
471 			 * When the device is faulty, it is not necessary to
472 			 * handle write error.
473 			 * For failfast, this is the only remaining device,
474 			 * We need to retry the write without FailFast.
475 			 */
476 			if (!test_bit(Faulty, &rdev->flags))
477 				set_bit(R10BIO_WriteError, &r10_bio->state);
478 			else {
479 				r10_bio->devs[slot].bio = NULL;
480 				to_put = bio;
481 				dec_rdev = 1;
482 			}
483 		}
484 	} else {
485 		/*
486 		 * Set R10BIO_Uptodate in our master bio, so that
487 		 * we will return a good error code for to the higher
488 		 * levels even if IO on some other mirrored buffer fails.
489 		 *
490 		 * The 'master' represents the composite IO operation to
491 		 * user-side. So if something waits for IO, then it will
492 		 * wait for the 'master' bio.
493 		 */
494 		sector_t first_bad;
495 		int bad_sectors;
496 
497 		/*
498 		 * Do not set R10BIO_Uptodate if the current device is
499 		 * rebuilding or Faulty. This is because we cannot use
500 		 * such device for properly reading the data back (we could
501 		 * potentially use it, if the current write would have felt
502 		 * before rdev->recovery_offset, but for simplicity we don't
503 		 * check this here.
504 		 */
505 		if (test_bit(In_sync, &rdev->flags) &&
506 		    !test_bit(Faulty, &rdev->flags))
507 			set_bit(R10BIO_Uptodate, &r10_bio->state);
508 
509 		/* Maybe we can clear some bad blocks. */
510 		if (is_badblock(rdev,
511 				r10_bio->devs[slot].addr,
512 				r10_bio->sectors,
513 				&first_bad, &bad_sectors) && !discard_error) {
514 			bio_put(bio);
515 			if (repl)
516 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
517 			else
518 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
519 			dec_rdev = 0;
520 			set_bit(R10BIO_MadeGood, &r10_bio->state);
521 		}
522 	}
523 
524 	/*
525 	 *
526 	 * Let's see if all mirrored write operations have finished
527 	 * already.
528 	 */
529 	one_write_done(r10_bio);
530 	if (dec_rdev)
531 		rdev_dec_pending(rdev, conf->mddev);
532 	if (to_put)
533 		bio_put(to_put);
534 }
535 
536 /*
537  * RAID10 layout manager
538  * As well as the chunksize and raid_disks count, there are two
539  * parameters: near_copies and far_copies.
540  * near_copies * far_copies must be <= raid_disks.
541  * Normally one of these will be 1.
542  * If both are 1, we get raid0.
543  * If near_copies == raid_disks, we get raid1.
544  *
545  * Chunks are laid out in raid0 style with near_copies copies of the
546  * first chunk, followed by near_copies copies of the next chunk and
547  * so on.
548  * If far_copies > 1, then after 1/far_copies of the array has been assigned
549  * as described above, we start again with a device offset of near_copies.
550  * So we effectively have another copy of the whole array further down all
551  * the drives, but with blocks on different drives.
552  * With this layout, and block is never stored twice on the one device.
553  *
554  * raid10_find_phys finds the sector offset of a given virtual sector
555  * on each device that it is on.
556  *
557  * raid10_find_virt does the reverse mapping, from a device and a
558  * sector offset to a virtual address
559  */
560 
561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
562 {
563 	int n,f;
564 	sector_t sector;
565 	sector_t chunk;
566 	sector_t stripe;
567 	int dev;
568 	int slot = 0;
569 	int last_far_set_start, last_far_set_size;
570 
571 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
572 	last_far_set_start *= geo->far_set_size;
573 
574 	last_far_set_size = geo->far_set_size;
575 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
576 
577 	/* now calculate first sector/dev */
578 	chunk = r10bio->sector >> geo->chunk_shift;
579 	sector = r10bio->sector & geo->chunk_mask;
580 
581 	chunk *= geo->near_copies;
582 	stripe = chunk;
583 	dev = sector_div(stripe, geo->raid_disks);
584 	if (geo->far_offset)
585 		stripe *= geo->far_copies;
586 
587 	sector += stripe << geo->chunk_shift;
588 
589 	/* and calculate all the others */
590 	for (n = 0; n < geo->near_copies; n++) {
591 		int d = dev;
592 		int set;
593 		sector_t s = sector;
594 		r10bio->devs[slot].devnum = d;
595 		r10bio->devs[slot].addr = s;
596 		slot++;
597 
598 		for (f = 1; f < geo->far_copies; f++) {
599 			set = d / geo->far_set_size;
600 			d += geo->near_copies;
601 
602 			if ((geo->raid_disks % geo->far_set_size) &&
603 			    (d > last_far_set_start)) {
604 				d -= last_far_set_start;
605 				d %= last_far_set_size;
606 				d += last_far_set_start;
607 			} else {
608 				d %= geo->far_set_size;
609 				d += geo->far_set_size * set;
610 			}
611 			s += geo->stride;
612 			r10bio->devs[slot].devnum = d;
613 			r10bio->devs[slot].addr = s;
614 			slot++;
615 		}
616 		dev++;
617 		if (dev >= geo->raid_disks) {
618 			dev = 0;
619 			sector += (geo->chunk_mask + 1);
620 		}
621 	}
622 }
623 
624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
625 {
626 	struct geom *geo = &conf->geo;
627 
628 	if (conf->reshape_progress != MaxSector &&
629 	    ((r10bio->sector >= conf->reshape_progress) !=
630 	     conf->mddev->reshape_backwards)) {
631 		set_bit(R10BIO_Previous, &r10bio->state);
632 		geo = &conf->prev;
633 	} else
634 		clear_bit(R10BIO_Previous, &r10bio->state);
635 
636 	__raid10_find_phys(geo, r10bio);
637 }
638 
639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
640 {
641 	sector_t offset, chunk, vchunk;
642 	/* Never use conf->prev as this is only called during resync
643 	 * or recovery, so reshape isn't happening
644 	 */
645 	struct geom *geo = &conf->geo;
646 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
647 	int far_set_size = geo->far_set_size;
648 	int last_far_set_start;
649 
650 	if (geo->raid_disks % geo->far_set_size) {
651 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
652 		last_far_set_start *= geo->far_set_size;
653 
654 		if (dev >= last_far_set_start) {
655 			far_set_size = geo->far_set_size;
656 			far_set_size += (geo->raid_disks % geo->far_set_size);
657 			far_set_start = last_far_set_start;
658 		}
659 	}
660 
661 	offset = sector & geo->chunk_mask;
662 	if (geo->far_offset) {
663 		int fc;
664 		chunk = sector >> geo->chunk_shift;
665 		fc = sector_div(chunk, geo->far_copies);
666 		dev -= fc * geo->near_copies;
667 		if (dev < far_set_start)
668 			dev += far_set_size;
669 	} else {
670 		while (sector >= geo->stride) {
671 			sector -= geo->stride;
672 			if (dev < (geo->near_copies + far_set_start))
673 				dev += far_set_size - geo->near_copies;
674 			else
675 				dev -= geo->near_copies;
676 		}
677 		chunk = sector >> geo->chunk_shift;
678 	}
679 	vchunk = chunk * geo->raid_disks + dev;
680 	sector_div(vchunk, geo->near_copies);
681 	return (vchunk << geo->chunk_shift) + offset;
682 }
683 
684 /*
685  * This routine returns the disk from which the requested read should
686  * be done. There is a per-array 'next expected sequential IO' sector
687  * number - if this matches on the next IO then we use the last disk.
688  * There is also a per-disk 'last know head position' sector that is
689  * maintained from IRQ contexts, both the normal and the resync IO
690  * completion handlers update this position correctly. If there is no
691  * perfect sequential match then we pick the disk whose head is closest.
692  *
693  * If there are 2 mirrors in the same 2 devices, performance degrades
694  * because position is mirror, not device based.
695  *
696  * The rdev for the device selected will have nr_pending incremented.
697  */
698 
699 /*
700  * FIXME: possibly should rethink readbalancing and do it differently
701  * depending on near_copies / far_copies geometry.
702  */
703 static struct md_rdev *read_balance(struct r10conf *conf,
704 				    struct r10bio *r10_bio,
705 				    int *max_sectors)
706 {
707 	const sector_t this_sector = r10_bio->sector;
708 	int disk, slot;
709 	int sectors = r10_bio->sectors;
710 	int best_good_sectors;
711 	sector_t new_distance, best_dist;
712 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
713 	int do_balance;
714 	int best_dist_slot, best_pending_slot;
715 	bool has_nonrot_disk = false;
716 	unsigned int min_pending;
717 	struct geom *geo = &conf->geo;
718 
719 	raid10_find_phys(conf, r10_bio);
720 	rcu_read_lock();
721 	best_dist_slot = -1;
722 	min_pending = UINT_MAX;
723 	best_dist_rdev = NULL;
724 	best_pending_rdev = NULL;
725 	best_dist = MaxSector;
726 	best_good_sectors = 0;
727 	do_balance = 1;
728 	clear_bit(R10BIO_FailFast, &r10_bio->state);
729 	/*
730 	 * Check if we can balance. We can balance on the whole
731 	 * device if no resync is going on (recovery is ok), or below
732 	 * the resync window. We take the first readable disk when
733 	 * above the resync window.
734 	 */
735 	if ((conf->mddev->recovery_cp < MaxSector
736 	     && (this_sector + sectors >= conf->next_resync)) ||
737 	    (mddev_is_clustered(conf->mddev) &&
738 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
739 					    this_sector + sectors)))
740 		do_balance = 0;
741 
742 	for (slot = 0; slot < conf->copies ; slot++) {
743 		sector_t first_bad;
744 		int bad_sectors;
745 		sector_t dev_sector;
746 		unsigned int pending;
747 		bool nonrot;
748 
749 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
750 			continue;
751 		disk = r10_bio->devs[slot].devnum;
752 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
753 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
755 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
756 		if (rdev == NULL ||
757 		    test_bit(Faulty, &rdev->flags))
758 			continue;
759 		if (!test_bit(In_sync, &rdev->flags) &&
760 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
761 			continue;
762 
763 		dev_sector = r10_bio->devs[slot].addr;
764 		if (is_badblock(rdev, dev_sector, sectors,
765 				&first_bad, &bad_sectors)) {
766 			if (best_dist < MaxSector)
767 				/* Already have a better slot */
768 				continue;
769 			if (first_bad <= dev_sector) {
770 				/* Cannot read here.  If this is the
771 				 * 'primary' device, then we must not read
772 				 * beyond 'bad_sectors' from another device.
773 				 */
774 				bad_sectors -= (dev_sector - first_bad);
775 				if (!do_balance && sectors > bad_sectors)
776 					sectors = bad_sectors;
777 				if (best_good_sectors > sectors)
778 					best_good_sectors = sectors;
779 			} else {
780 				sector_t good_sectors =
781 					first_bad - dev_sector;
782 				if (good_sectors > best_good_sectors) {
783 					best_good_sectors = good_sectors;
784 					best_dist_slot = slot;
785 					best_dist_rdev = rdev;
786 				}
787 				if (!do_balance)
788 					/* Must read from here */
789 					break;
790 			}
791 			continue;
792 		} else
793 			best_good_sectors = sectors;
794 
795 		if (!do_balance)
796 			break;
797 
798 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
799 		has_nonrot_disk |= nonrot;
800 		pending = atomic_read(&rdev->nr_pending);
801 		if (min_pending > pending && nonrot) {
802 			min_pending = pending;
803 			best_pending_slot = slot;
804 			best_pending_rdev = rdev;
805 		}
806 
807 		if (best_dist_slot >= 0)
808 			/* At least 2 disks to choose from so failfast is OK */
809 			set_bit(R10BIO_FailFast, &r10_bio->state);
810 		/* This optimisation is debatable, and completely destroys
811 		 * sequential read speed for 'far copies' arrays.  So only
812 		 * keep it for 'near' arrays, and review those later.
813 		 */
814 		if (geo->near_copies > 1 && !pending)
815 			new_distance = 0;
816 
817 		/* for far > 1 always use the lowest address */
818 		else if (geo->far_copies > 1)
819 			new_distance = r10_bio->devs[slot].addr;
820 		else
821 			new_distance = abs(r10_bio->devs[slot].addr -
822 					   conf->mirrors[disk].head_position);
823 
824 		if (new_distance < best_dist) {
825 			best_dist = new_distance;
826 			best_dist_slot = slot;
827 			best_dist_rdev = rdev;
828 		}
829 	}
830 	if (slot >= conf->copies) {
831 		if (has_nonrot_disk) {
832 			slot = best_pending_slot;
833 			rdev = best_pending_rdev;
834 		} else {
835 			slot = best_dist_slot;
836 			rdev = best_dist_rdev;
837 		}
838 	}
839 
840 	if (slot >= 0) {
841 		atomic_inc(&rdev->nr_pending);
842 		r10_bio->read_slot = slot;
843 	} else
844 		rdev = NULL;
845 	rcu_read_unlock();
846 	*max_sectors = best_good_sectors;
847 
848 	return rdev;
849 }
850 
851 static void flush_pending_writes(struct r10conf *conf)
852 {
853 	/* Any writes that have been queued but are awaiting
854 	 * bitmap updates get flushed here.
855 	 */
856 	spin_lock_irq(&conf->device_lock);
857 
858 	if (conf->pending_bio_list.head) {
859 		struct blk_plug plug;
860 		struct bio *bio;
861 
862 		bio = bio_list_get(&conf->pending_bio_list);
863 		conf->pending_count = 0;
864 		spin_unlock_irq(&conf->device_lock);
865 
866 		/*
867 		 * As this is called in a wait_event() loop (see freeze_array),
868 		 * current->state might be TASK_UNINTERRUPTIBLE which will
869 		 * cause a warning when we prepare to wait again.  As it is
870 		 * rare that this path is taken, it is perfectly safe to force
871 		 * us to go around the wait_event() loop again, so the warning
872 		 * is a false-positive. Silence the warning by resetting
873 		 * thread state
874 		 */
875 		__set_current_state(TASK_RUNNING);
876 
877 		blk_start_plug(&plug);
878 		/* flush any pending bitmap writes to disk
879 		 * before proceeding w/ I/O */
880 		md_bitmap_unplug(conf->mddev->bitmap);
881 		wake_up(&conf->wait_barrier);
882 
883 		while (bio) { /* submit pending writes */
884 			struct bio *next = bio->bi_next;
885 			struct md_rdev *rdev = (void*)bio->bi_disk;
886 			bio->bi_next = NULL;
887 			bio_set_dev(bio, rdev->bdev);
888 			if (test_bit(Faulty, &rdev->flags)) {
889 				bio_io_error(bio);
890 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
891 					    !blk_queue_discard(bio->bi_disk->queue)))
892 				/* Just ignore it */
893 				bio_endio(bio);
894 			else
895 				submit_bio_noacct(bio);
896 			bio = next;
897 		}
898 		blk_finish_plug(&plug);
899 	} else
900 		spin_unlock_irq(&conf->device_lock);
901 }
902 
903 /* Barriers....
904  * Sometimes we need to suspend IO while we do something else,
905  * either some resync/recovery, or reconfigure the array.
906  * To do this we raise a 'barrier'.
907  * The 'barrier' is a counter that can be raised multiple times
908  * to count how many activities are happening which preclude
909  * normal IO.
910  * We can only raise the barrier if there is no pending IO.
911  * i.e. if nr_pending == 0.
912  * We choose only to raise the barrier if no-one is waiting for the
913  * barrier to go down.  This means that as soon as an IO request
914  * is ready, no other operations which require a barrier will start
915  * until the IO request has had a chance.
916  *
917  * So: regular IO calls 'wait_barrier'.  When that returns there
918  *    is no backgroup IO happening,  It must arrange to call
919  *    allow_barrier when it has finished its IO.
920  * backgroup IO calls must call raise_barrier.  Once that returns
921  *    there is no normal IO happeing.  It must arrange to call
922  *    lower_barrier when the particular background IO completes.
923  */
924 
925 static void raise_barrier(struct r10conf *conf, int force)
926 {
927 	BUG_ON(force && !conf->barrier);
928 	spin_lock_irq(&conf->resync_lock);
929 
930 	/* Wait until no block IO is waiting (unless 'force') */
931 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
932 			    conf->resync_lock);
933 
934 	/* block any new IO from starting */
935 	conf->barrier++;
936 
937 	/* Now wait for all pending IO to complete */
938 	wait_event_lock_irq(conf->wait_barrier,
939 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
940 			    conf->resync_lock);
941 
942 	spin_unlock_irq(&conf->resync_lock);
943 }
944 
945 static void lower_barrier(struct r10conf *conf)
946 {
947 	unsigned long flags;
948 	spin_lock_irqsave(&conf->resync_lock, flags);
949 	conf->barrier--;
950 	spin_unlock_irqrestore(&conf->resync_lock, flags);
951 	wake_up(&conf->wait_barrier);
952 }
953 
954 static void wait_barrier(struct r10conf *conf)
955 {
956 	spin_lock_irq(&conf->resync_lock);
957 	if (conf->barrier) {
958 		struct bio_list *bio_list = current->bio_list;
959 		conf->nr_waiting++;
960 		/* Wait for the barrier to drop.
961 		 * However if there are already pending
962 		 * requests (preventing the barrier from
963 		 * rising completely), and the
964 		 * pre-process bio queue isn't empty,
965 		 * then don't wait, as we need to empty
966 		 * that queue to get the nr_pending
967 		 * count down.
968 		 */
969 		raid10_log(conf->mddev, "wait barrier");
970 		wait_event_lock_irq(conf->wait_barrier,
971 				    !conf->barrier ||
972 				    (atomic_read(&conf->nr_pending) &&
973 				     bio_list &&
974 				     (!bio_list_empty(&bio_list[0]) ||
975 				      !bio_list_empty(&bio_list[1]))) ||
976 				     /* move on if recovery thread is
977 				      * blocked by us
978 				      */
979 				     (conf->mddev->thread->tsk == current &&
980 				      test_bit(MD_RECOVERY_RUNNING,
981 					       &conf->mddev->recovery) &&
982 				      conf->nr_queued > 0),
983 				    conf->resync_lock);
984 		conf->nr_waiting--;
985 		if (!conf->nr_waiting)
986 			wake_up(&conf->wait_barrier);
987 	}
988 	atomic_inc(&conf->nr_pending);
989 	spin_unlock_irq(&conf->resync_lock);
990 }
991 
992 static void allow_barrier(struct r10conf *conf)
993 {
994 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
995 			(conf->array_freeze_pending))
996 		wake_up(&conf->wait_barrier);
997 }
998 
999 static void freeze_array(struct r10conf *conf, int extra)
1000 {
1001 	/* stop syncio and normal IO and wait for everything to
1002 	 * go quiet.
1003 	 * We increment barrier and nr_waiting, and then
1004 	 * wait until nr_pending match nr_queued+extra
1005 	 * This is called in the context of one normal IO request
1006 	 * that has failed. Thus any sync request that might be pending
1007 	 * will be blocked by nr_pending, and we need to wait for
1008 	 * pending IO requests to complete or be queued for re-try.
1009 	 * Thus the number queued (nr_queued) plus this request (extra)
1010 	 * must match the number of pending IOs (nr_pending) before
1011 	 * we continue.
1012 	 */
1013 	spin_lock_irq(&conf->resync_lock);
1014 	conf->array_freeze_pending++;
1015 	conf->barrier++;
1016 	conf->nr_waiting++;
1017 	wait_event_lock_irq_cmd(conf->wait_barrier,
1018 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1019 				conf->resync_lock,
1020 				flush_pending_writes(conf));
1021 
1022 	conf->array_freeze_pending--;
1023 	spin_unlock_irq(&conf->resync_lock);
1024 }
1025 
1026 static void unfreeze_array(struct r10conf *conf)
1027 {
1028 	/* reverse the effect of the freeze */
1029 	spin_lock_irq(&conf->resync_lock);
1030 	conf->barrier--;
1031 	conf->nr_waiting--;
1032 	wake_up(&conf->wait_barrier);
1033 	spin_unlock_irq(&conf->resync_lock);
1034 }
1035 
1036 static sector_t choose_data_offset(struct r10bio *r10_bio,
1037 				   struct md_rdev *rdev)
1038 {
1039 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1040 	    test_bit(R10BIO_Previous, &r10_bio->state))
1041 		return rdev->data_offset;
1042 	else
1043 		return rdev->new_data_offset;
1044 }
1045 
1046 struct raid10_plug_cb {
1047 	struct blk_plug_cb	cb;
1048 	struct bio_list		pending;
1049 	int			pending_cnt;
1050 };
1051 
1052 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1053 {
1054 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1055 						   cb);
1056 	struct mddev *mddev = plug->cb.data;
1057 	struct r10conf *conf = mddev->private;
1058 	struct bio *bio;
1059 
1060 	if (from_schedule || current->bio_list) {
1061 		spin_lock_irq(&conf->device_lock);
1062 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1063 		conf->pending_count += plug->pending_cnt;
1064 		spin_unlock_irq(&conf->device_lock);
1065 		wake_up(&conf->wait_barrier);
1066 		md_wakeup_thread(mddev->thread);
1067 		kfree(plug);
1068 		return;
1069 	}
1070 
1071 	/* we aren't scheduling, so we can do the write-out directly. */
1072 	bio = bio_list_get(&plug->pending);
1073 	md_bitmap_unplug(mddev->bitmap);
1074 	wake_up(&conf->wait_barrier);
1075 
1076 	while (bio) { /* submit pending writes */
1077 		struct bio *next = bio->bi_next;
1078 		struct md_rdev *rdev = (void*)bio->bi_disk;
1079 		bio->bi_next = NULL;
1080 		bio_set_dev(bio, rdev->bdev);
1081 		if (test_bit(Faulty, &rdev->flags)) {
1082 			bio_io_error(bio);
1083 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1084 				    !blk_queue_discard(bio->bi_disk->queue)))
1085 			/* Just ignore it */
1086 			bio_endio(bio);
1087 		else
1088 			submit_bio_noacct(bio);
1089 		bio = next;
1090 	}
1091 	kfree(plug);
1092 }
1093 
1094 /*
1095  * 1. Register the new request and wait if the reconstruction thread has put
1096  * up a bar for new requests. Continue immediately if no resync is active
1097  * currently.
1098  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1099  */
1100 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1101 				 struct bio *bio, sector_t sectors)
1102 {
1103 	wait_barrier(conf);
1104 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1105 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1106 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1107 		raid10_log(conf->mddev, "wait reshape");
1108 		allow_barrier(conf);
1109 		wait_event(conf->wait_barrier,
1110 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1111 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1112 			   sectors);
1113 		wait_barrier(conf);
1114 	}
1115 }
1116 
1117 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1118 				struct r10bio *r10_bio)
1119 {
1120 	struct r10conf *conf = mddev->private;
1121 	struct bio *read_bio;
1122 	const int op = bio_op(bio);
1123 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1124 	int max_sectors;
1125 	struct md_rdev *rdev;
1126 	char b[BDEVNAME_SIZE];
1127 	int slot = r10_bio->read_slot;
1128 	struct md_rdev *err_rdev = NULL;
1129 	gfp_t gfp = GFP_NOIO;
1130 
1131 	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1132 		/*
1133 		 * This is an error retry, but we cannot
1134 		 * safely dereference the rdev in the r10_bio,
1135 		 * we must use the one in conf.
1136 		 * If it has already been disconnected (unlikely)
1137 		 * we lose the device name in error messages.
1138 		 */
1139 		int disk;
1140 		/*
1141 		 * As we are blocking raid10, it is a little safer to
1142 		 * use __GFP_HIGH.
1143 		 */
1144 		gfp = GFP_NOIO | __GFP_HIGH;
1145 
1146 		rcu_read_lock();
1147 		disk = r10_bio->devs[slot].devnum;
1148 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1149 		if (err_rdev)
1150 			bdevname(err_rdev->bdev, b);
1151 		else {
1152 			strcpy(b, "???");
1153 			/* This never gets dereferenced */
1154 			err_rdev = r10_bio->devs[slot].rdev;
1155 		}
1156 		rcu_read_unlock();
1157 	}
1158 
1159 	regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1160 	rdev = read_balance(conf, r10_bio, &max_sectors);
1161 	if (!rdev) {
1162 		if (err_rdev) {
1163 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1164 					    mdname(mddev), b,
1165 					    (unsigned long long)r10_bio->sector);
1166 		}
1167 		raid_end_bio_io(r10_bio);
1168 		return;
1169 	}
1170 	if (err_rdev)
1171 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1172 				   mdname(mddev),
1173 				   bdevname(rdev->bdev, b),
1174 				   (unsigned long long)r10_bio->sector);
1175 	if (max_sectors < bio_sectors(bio)) {
1176 		struct bio *split = bio_split(bio, max_sectors,
1177 					      gfp, &conf->bio_split);
1178 		bio_chain(split, bio);
1179 		allow_barrier(conf);
1180 		submit_bio_noacct(bio);
1181 		wait_barrier(conf);
1182 		bio = split;
1183 		r10_bio->master_bio = bio;
1184 		r10_bio->sectors = max_sectors;
1185 	}
1186 	slot = r10_bio->read_slot;
1187 
1188 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1189 
1190 	r10_bio->devs[slot].bio = read_bio;
1191 	r10_bio->devs[slot].rdev = rdev;
1192 
1193 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1194 		choose_data_offset(r10_bio, rdev);
1195 	bio_set_dev(read_bio, rdev->bdev);
1196 	read_bio->bi_end_io = raid10_end_read_request;
1197 	bio_set_op_attrs(read_bio, op, do_sync);
1198 	if (test_bit(FailFast, &rdev->flags) &&
1199 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1200 	        read_bio->bi_opf |= MD_FAILFAST;
1201 	read_bio->bi_private = r10_bio;
1202 
1203 	if (mddev->gendisk)
1204 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1205 	                              r10_bio->sector);
1206 	submit_bio_noacct(read_bio);
1207 	return;
1208 }
1209 
1210 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1211 				  struct bio *bio, bool replacement,
1212 				  int n_copy)
1213 {
1214 	const int op = bio_op(bio);
1215 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1216 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1217 	unsigned long flags;
1218 	struct blk_plug_cb *cb;
1219 	struct raid10_plug_cb *plug = NULL;
1220 	struct r10conf *conf = mddev->private;
1221 	struct md_rdev *rdev;
1222 	int devnum = r10_bio->devs[n_copy].devnum;
1223 	struct bio *mbio;
1224 
1225 	if (replacement) {
1226 		rdev = conf->mirrors[devnum].replacement;
1227 		if (rdev == NULL) {
1228 			/* Replacement just got moved to main 'rdev' */
1229 			smp_mb();
1230 			rdev = conf->mirrors[devnum].rdev;
1231 		}
1232 	} else
1233 		rdev = conf->mirrors[devnum].rdev;
1234 
1235 	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1236 	if (replacement)
1237 		r10_bio->devs[n_copy].repl_bio = mbio;
1238 	else
1239 		r10_bio->devs[n_copy].bio = mbio;
1240 
1241 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1242 				   choose_data_offset(r10_bio, rdev));
1243 	bio_set_dev(mbio, rdev->bdev);
1244 	mbio->bi_end_io	= raid10_end_write_request;
1245 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1246 	if (!replacement && test_bit(FailFast,
1247 				     &conf->mirrors[devnum].rdev->flags)
1248 			 && enough(conf, devnum))
1249 		mbio->bi_opf |= MD_FAILFAST;
1250 	mbio->bi_private = r10_bio;
1251 
1252 	if (conf->mddev->gendisk)
1253 		trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1254 				      r10_bio->sector);
1255 	/* flush_pending_writes() needs access to the rdev so...*/
1256 	mbio->bi_disk = (void *)rdev;
1257 
1258 	atomic_inc(&r10_bio->remaining);
1259 
1260 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1261 	if (cb)
1262 		plug = container_of(cb, struct raid10_plug_cb, cb);
1263 	else
1264 		plug = NULL;
1265 	if (plug) {
1266 		bio_list_add(&plug->pending, mbio);
1267 		plug->pending_cnt++;
1268 	} else {
1269 		spin_lock_irqsave(&conf->device_lock, flags);
1270 		bio_list_add(&conf->pending_bio_list, mbio);
1271 		conf->pending_count++;
1272 		spin_unlock_irqrestore(&conf->device_lock, flags);
1273 		md_wakeup_thread(mddev->thread);
1274 	}
1275 }
1276 
1277 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1278 				 struct r10bio *r10_bio)
1279 {
1280 	struct r10conf *conf = mddev->private;
1281 	int i;
1282 	struct md_rdev *blocked_rdev;
1283 	sector_t sectors;
1284 	int max_sectors;
1285 
1286 	if ((mddev_is_clustered(mddev) &&
1287 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1288 					    bio->bi_iter.bi_sector,
1289 					    bio_end_sector(bio)))) {
1290 		DEFINE_WAIT(w);
1291 		for (;;) {
1292 			prepare_to_wait(&conf->wait_barrier,
1293 					&w, TASK_IDLE);
1294 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1295 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1296 				break;
1297 			schedule();
1298 		}
1299 		finish_wait(&conf->wait_barrier, &w);
1300 	}
1301 
1302 	sectors = r10_bio->sectors;
1303 	regular_request_wait(mddev, conf, bio, sectors);
1304 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1305 	    (mddev->reshape_backwards
1306 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1307 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1308 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1309 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1310 		/* Need to update reshape_position in metadata */
1311 		mddev->reshape_position = conf->reshape_progress;
1312 		set_mask_bits(&mddev->sb_flags, 0,
1313 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1314 		md_wakeup_thread(mddev->thread);
1315 		raid10_log(conf->mddev, "wait reshape metadata");
1316 		wait_event(mddev->sb_wait,
1317 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1318 
1319 		conf->reshape_safe = mddev->reshape_position;
1320 	}
1321 
1322 	if (conf->pending_count >= max_queued_requests) {
1323 		md_wakeup_thread(mddev->thread);
1324 		raid10_log(mddev, "wait queued");
1325 		wait_event(conf->wait_barrier,
1326 			   conf->pending_count < max_queued_requests);
1327 	}
1328 	/* first select target devices under rcu_lock and
1329 	 * inc refcount on their rdev.  Record them by setting
1330 	 * bios[x] to bio
1331 	 * If there are known/acknowledged bad blocks on any device
1332 	 * on which we have seen a write error, we want to avoid
1333 	 * writing to those blocks.  This potentially requires several
1334 	 * writes to write around the bad blocks.  Each set of writes
1335 	 * gets its own r10_bio with a set of bios attached.
1336 	 */
1337 
1338 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1339 	raid10_find_phys(conf, r10_bio);
1340 retry_write:
1341 	blocked_rdev = NULL;
1342 	rcu_read_lock();
1343 	max_sectors = r10_bio->sectors;
1344 
1345 	for (i = 0;  i < conf->copies; i++) {
1346 		int d = r10_bio->devs[i].devnum;
1347 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1348 		struct md_rdev *rrdev = rcu_dereference(
1349 			conf->mirrors[d].replacement);
1350 		if (rdev == rrdev)
1351 			rrdev = NULL;
1352 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1353 			atomic_inc(&rdev->nr_pending);
1354 			blocked_rdev = rdev;
1355 			break;
1356 		}
1357 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1358 			atomic_inc(&rrdev->nr_pending);
1359 			blocked_rdev = rrdev;
1360 			break;
1361 		}
1362 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1363 			rdev = NULL;
1364 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1365 			rrdev = NULL;
1366 
1367 		r10_bio->devs[i].bio = NULL;
1368 		r10_bio->devs[i].repl_bio = NULL;
1369 
1370 		if (!rdev && !rrdev) {
1371 			set_bit(R10BIO_Degraded, &r10_bio->state);
1372 			continue;
1373 		}
1374 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1375 			sector_t first_bad;
1376 			sector_t dev_sector = r10_bio->devs[i].addr;
1377 			int bad_sectors;
1378 			int is_bad;
1379 
1380 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1381 					     &first_bad, &bad_sectors);
1382 			if (is_bad < 0) {
1383 				/* Mustn't write here until the bad block
1384 				 * is acknowledged
1385 				 */
1386 				atomic_inc(&rdev->nr_pending);
1387 				set_bit(BlockedBadBlocks, &rdev->flags);
1388 				blocked_rdev = rdev;
1389 				break;
1390 			}
1391 			if (is_bad && first_bad <= dev_sector) {
1392 				/* Cannot write here at all */
1393 				bad_sectors -= (dev_sector - first_bad);
1394 				if (bad_sectors < max_sectors)
1395 					/* Mustn't write more than bad_sectors
1396 					 * to other devices yet
1397 					 */
1398 					max_sectors = bad_sectors;
1399 				/* We don't set R10BIO_Degraded as that
1400 				 * only applies if the disk is missing,
1401 				 * so it might be re-added, and we want to
1402 				 * know to recover this chunk.
1403 				 * In this case the device is here, and the
1404 				 * fact that this chunk is not in-sync is
1405 				 * recorded in the bad block log.
1406 				 */
1407 				continue;
1408 			}
1409 			if (is_bad) {
1410 				int good_sectors = first_bad - dev_sector;
1411 				if (good_sectors < max_sectors)
1412 					max_sectors = good_sectors;
1413 			}
1414 		}
1415 		if (rdev) {
1416 			r10_bio->devs[i].bio = bio;
1417 			atomic_inc(&rdev->nr_pending);
1418 		}
1419 		if (rrdev) {
1420 			r10_bio->devs[i].repl_bio = bio;
1421 			atomic_inc(&rrdev->nr_pending);
1422 		}
1423 	}
1424 	rcu_read_unlock();
1425 
1426 	if (unlikely(blocked_rdev)) {
1427 		/* Have to wait for this device to get unblocked, then retry */
1428 		int j;
1429 		int d;
1430 
1431 		for (j = 0; j < i; j++) {
1432 			if (r10_bio->devs[j].bio) {
1433 				d = r10_bio->devs[j].devnum;
1434 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1435 			}
1436 			if (r10_bio->devs[j].repl_bio) {
1437 				struct md_rdev *rdev;
1438 				d = r10_bio->devs[j].devnum;
1439 				rdev = conf->mirrors[d].replacement;
1440 				if (!rdev) {
1441 					/* Race with remove_disk */
1442 					smp_mb();
1443 					rdev = conf->mirrors[d].rdev;
1444 				}
1445 				rdev_dec_pending(rdev, mddev);
1446 			}
1447 		}
1448 		allow_barrier(conf);
1449 		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1450 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1451 		wait_barrier(conf);
1452 		goto retry_write;
1453 	}
1454 
1455 	if (max_sectors < r10_bio->sectors)
1456 		r10_bio->sectors = max_sectors;
1457 
1458 	if (r10_bio->sectors < bio_sectors(bio)) {
1459 		struct bio *split = bio_split(bio, r10_bio->sectors,
1460 					      GFP_NOIO, &conf->bio_split);
1461 		bio_chain(split, bio);
1462 		allow_barrier(conf);
1463 		submit_bio_noacct(bio);
1464 		wait_barrier(conf);
1465 		bio = split;
1466 		r10_bio->master_bio = bio;
1467 	}
1468 
1469 	atomic_set(&r10_bio->remaining, 1);
1470 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1471 
1472 	for (i = 0; i < conf->copies; i++) {
1473 		if (r10_bio->devs[i].bio)
1474 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1475 		if (r10_bio->devs[i].repl_bio)
1476 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1477 	}
1478 	one_write_done(r10_bio);
1479 }
1480 
1481 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1482 {
1483 	struct r10conf *conf = mddev->private;
1484 	struct r10bio *r10_bio;
1485 
1486 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1487 
1488 	r10_bio->master_bio = bio;
1489 	r10_bio->sectors = sectors;
1490 
1491 	r10_bio->mddev = mddev;
1492 	r10_bio->sector = bio->bi_iter.bi_sector;
1493 	r10_bio->state = 0;
1494 	r10_bio->read_slot = -1;
1495 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1496 
1497 	if (bio_data_dir(bio) == READ)
1498 		raid10_read_request(mddev, bio, r10_bio);
1499 	else
1500 		raid10_write_request(mddev, bio, r10_bio);
1501 }
1502 
1503 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1504 {
1505 	struct r10conf *conf = mddev->private;
1506 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1507 	int chunk_sects = chunk_mask + 1;
1508 	int sectors = bio_sectors(bio);
1509 
1510 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1511 	    && md_flush_request(mddev, bio))
1512 		return true;
1513 
1514 	if (!md_write_start(mddev, bio))
1515 		return false;
1516 
1517 	/*
1518 	 * If this request crosses a chunk boundary, we need to split
1519 	 * it.
1520 	 */
1521 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1522 		     sectors > chunk_sects
1523 		     && (conf->geo.near_copies < conf->geo.raid_disks
1524 			 || conf->prev.near_copies <
1525 			 conf->prev.raid_disks)))
1526 		sectors = chunk_sects -
1527 			(bio->bi_iter.bi_sector &
1528 			 (chunk_sects - 1));
1529 	__make_request(mddev, bio, sectors);
1530 
1531 	/* In case raid10d snuck in to freeze_array */
1532 	wake_up(&conf->wait_barrier);
1533 	return true;
1534 }
1535 
1536 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1537 {
1538 	struct r10conf *conf = mddev->private;
1539 	int i;
1540 
1541 	if (conf->geo.near_copies < conf->geo.raid_disks)
1542 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1543 	if (conf->geo.near_copies > 1)
1544 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1545 	if (conf->geo.far_copies > 1) {
1546 		if (conf->geo.far_offset)
1547 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1548 		else
1549 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1550 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1551 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1552 	}
1553 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1554 					conf->geo.raid_disks - mddev->degraded);
1555 	rcu_read_lock();
1556 	for (i = 0; i < conf->geo.raid_disks; i++) {
1557 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1558 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1559 	}
1560 	rcu_read_unlock();
1561 	seq_printf(seq, "]");
1562 }
1563 
1564 /* check if there are enough drives for
1565  * every block to appear on atleast one.
1566  * Don't consider the device numbered 'ignore'
1567  * as we might be about to remove it.
1568  */
1569 static int _enough(struct r10conf *conf, int previous, int ignore)
1570 {
1571 	int first = 0;
1572 	int has_enough = 0;
1573 	int disks, ncopies;
1574 	if (previous) {
1575 		disks = conf->prev.raid_disks;
1576 		ncopies = conf->prev.near_copies;
1577 	} else {
1578 		disks = conf->geo.raid_disks;
1579 		ncopies = conf->geo.near_copies;
1580 	}
1581 
1582 	rcu_read_lock();
1583 	do {
1584 		int n = conf->copies;
1585 		int cnt = 0;
1586 		int this = first;
1587 		while (n--) {
1588 			struct md_rdev *rdev;
1589 			if (this != ignore &&
1590 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1591 			    test_bit(In_sync, &rdev->flags))
1592 				cnt++;
1593 			this = (this+1) % disks;
1594 		}
1595 		if (cnt == 0)
1596 			goto out;
1597 		first = (first + ncopies) % disks;
1598 	} while (first != 0);
1599 	has_enough = 1;
1600 out:
1601 	rcu_read_unlock();
1602 	return has_enough;
1603 }
1604 
1605 static int enough(struct r10conf *conf, int ignore)
1606 {
1607 	/* when calling 'enough', both 'prev' and 'geo' must
1608 	 * be stable.
1609 	 * This is ensured if ->reconfig_mutex or ->device_lock
1610 	 * is held.
1611 	 */
1612 	return _enough(conf, 0, ignore) &&
1613 		_enough(conf, 1, ignore);
1614 }
1615 
1616 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1617 {
1618 	char b[BDEVNAME_SIZE];
1619 	struct r10conf *conf = mddev->private;
1620 	unsigned long flags;
1621 
1622 	/*
1623 	 * If it is not operational, then we have already marked it as dead
1624 	 * else if it is the last working disks with "fail_last_dev == false",
1625 	 * ignore the error, let the next level up know.
1626 	 * else mark the drive as failed
1627 	 */
1628 	spin_lock_irqsave(&conf->device_lock, flags);
1629 	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1630 	    && !enough(conf, rdev->raid_disk)) {
1631 		/*
1632 		 * Don't fail the drive, just return an IO error.
1633 		 */
1634 		spin_unlock_irqrestore(&conf->device_lock, flags);
1635 		return;
1636 	}
1637 	if (test_and_clear_bit(In_sync, &rdev->flags))
1638 		mddev->degraded++;
1639 	/*
1640 	 * If recovery is running, make sure it aborts.
1641 	 */
1642 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1643 	set_bit(Blocked, &rdev->flags);
1644 	set_bit(Faulty, &rdev->flags);
1645 	set_mask_bits(&mddev->sb_flags, 0,
1646 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1647 	spin_unlock_irqrestore(&conf->device_lock, flags);
1648 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1649 		"md/raid10:%s: Operation continuing on %d devices.\n",
1650 		mdname(mddev), bdevname(rdev->bdev, b),
1651 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1652 }
1653 
1654 static void print_conf(struct r10conf *conf)
1655 {
1656 	int i;
1657 	struct md_rdev *rdev;
1658 
1659 	pr_debug("RAID10 conf printout:\n");
1660 	if (!conf) {
1661 		pr_debug("(!conf)\n");
1662 		return;
1663 	}
1664 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1665 		 conf->geo.raid_disks);
1666 
1667 	/* This is only called with ->reconfix_mutex held, so
1668 	 * rcu protection of rdev is not needed */
1669 	for (i = 0; i < conf->geo.raid_disks; i++) {
1670 		char b[BDEVNAME_SIZE];
1671 		rdev = conf->mirrors[i].rdev;
1672 		if (rdev)
1673 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1674 				 i, !test_bit(In_sync, &rdev->flags),
1675 				 !test_bit(Faulty, &rdev->flags),
1676 				 bdevname(rdev->bdev,b));
1677 	}
1678 }
1679 
1680 static void close_sync(struct r10conf *conf)
1681 {
1682 	wait_barrier(conf);
1683 	allow_barrier(conf);
1684 
1685 	mempool_exit(&conf->r10buf_pool);
1686 }
1687 
1688 static int raid10_spare_active(struct mddev *mddev)
1689 {
1690 	int i;
1691 	struct r10conf *conf = mddev->private;
1692 	struct raid10_info *tmp;
1693 	int count = 0;
1694 	unsigned long flags;
1695 
1696 	/*
1697 	 * Find all non-in_sync disks within the RAID10 configuration
1698 	 * and mark them in_sync
1699 	 */
1700 	for (i = 0; i < conf->geo.raid_disks; i++) {
1701 		tmp = conf->mirrors + i;
1702 		if (tmp->replacement
1703 		    && tmp->replacement->recovery_offset == MaxSector
1704 		    && !test_bit(Faulty, &tmp->replacement->flags)
1705 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1706 			/* Replacement has just become active */
1707 			if (!tmp->rdev
1708 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1709 				count++;
1710 			if (tmp->rdev) {
1711 				/* Replaced device not technically faulty,
1712 				 * but we need to be sure it gets removed
1713 				 * and never re-added.
1714 				 */
1715 				set_bit(Faulty, &tmp->rdev->flags);
1716 				sysfs_notify_dirent_safe(
1717 					tmp->rdev->sysfs_state);
1718 			}
1719 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1720 		} else if (tmp->rdev
1721 			   && tmp->rdev->recovery_offset == MaxSector
1722 			   && !test_bit(Faulty, &tmp->rdev->flags)
1723 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1724 			count++;
1725 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1726 		}
1727 	}
1728 	spin_lock_irqsave(&conf->device_lock, flags);
1729 	mddev->degraded -= count;
1730 	spin_unlock_irqrestore(&conf->device_lock, flags);
1731 
1732 	print_conf(conf);
1733 	return count;
1734 }
1735 
1736 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1737 {
1738 	struct r10conf *conf = mddev->private;
1739 	int err = -EEXIST;
1740 	int mirror;
1741 	int first = 0;
1742 	int last = conf->geo.raid_disks - 1;
1743 
1744 	if (mddev->recovery_cp < MaxSector)
1745 		/* only hot-add to in-sync arrays, as recovery is
1746 		 * very different from resync
1747 		 */
1748 		return -EBUSY;
1749 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1750 		return -EINVAL;
1751 
1752 	if (md_integrity_add_rdev(rdev, mddev))
1753 		return -ENXIO;
1754 
1755 	if (rdev->raid_disk >= 0)
1756 		first = last = rdev->raid_disk;
1757 
1758 	if (rdev->saved_raid_disk >= first &&
1759 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
1760 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1761 		mirror = rdev->saved_raid_disk;
1762 	else
1763 		mirror = first;
1764 	for ( ; mirror <= last ; mirror++) {
1765 		struct raid10_info *p = &conf->mirrors[mirror];
1766 		if (p->recovery_disabled == mddev->recovery_disabled)
1767 			continue;
1768 		if (p->rdev) {
1769 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1770 			    p->replacement != NULL)
1771 				continue;
1772 			clear_bit(In_sync, &rdev->flags);
1773 			set_bit(Replacement, &rdev->flags);
1774 			rdev->raid_disk = mirror;
1775 			err = 0;
1776 			if (mddev->gendisk)
1777 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1778 						  rdev->data_offset << 9);
1779 			conf->fullsync = 1;
1780 			rcu_assign_pointer(p->replacement, rdev);
1781 			break;
1782 		}
1783 
1784 		if (mddev->gendisk)
1785 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1786 					  rdev->data_offset << 9);
1787 
1788 		p->head_position = 0;
1789 		p->recovery_disabled = mddev->recovery_disabled - 1;
1790 		rdev->raid_disk = mirror;
1791 		err = 0;
1792 		if (rdev->saved_raid_disk != mirror)
1793 			conf->fullsync = 1;
1794 		rcu_assign_pointer(p->rdev, rdev);
1795 		break;
1796 	}
1797 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1798 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1799 
1800 	print_conf(conf);
1801 	return err;
1802 }
1803 
1804 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1805 {
1806 	struct r10conf *conf = mddev->private;
1807 	int err = 0;
1808 	int number = rdev->raid_disk;
1809 	struct md_rdev **rdevp;
1810 	struct raid10_info *p = conf->mirrors + number;
1811 
1812 	print_conf(conf);
1813 	if (rdev == p->rdev)
1814 		rdevp = &p->rdev;
1815 	else if (rdev == p->replacement)
1816 		rdevp = &p->replacement;
1817 	else
1818 		return 0;
1819 
1820 	if (test_bit(In_sync, &rdev->flags) ||
1821 	    atomic_read(&rdev->nr_pending)) {
1822 		err = -EBUSY;
1823 		goto abort;
1824 	}
1825 	/* Only remove non-faulty devices if recovery
1826 	 * is not possible.
1827 	 */
1828 	if (!test_bit(Faulty, &rdev->flags) &&
1829 	    mddev->recovery_disabled != p->recovery_disabled &&
1830 	    (!p->replacement || p->replacement == rdev) &&
1831 	    number < conf->geo.raid_disks &&
1832 	    enough(conf, -1)) {
1833 		err = -EBUSY;
1834 		goto abort;
1835 	}
1836 	*rdevp = NULL;
1837 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1838 		synchronize_rcu();
1839 		if (atomic_read(&rdev->nr_pending)) {
1840 			/* lost the race, try later */
1841 			err = -EBUSY;
1842 			*rdevp = rdev;
1843 			goto abort;
1844 		}
1845 	}
1846 	if (p->replacement) {
1847 		/* We must have just cleared 'rdev' */
1848 		p->rdev = p->replacement;
1849 		clear_bit(Replacement, &p->replacement->flags);
1850 		smp_mb(); /* Make sure other CPUs may see both as identical
1851 			   * but will never see neither -- if they are careful.
1852 			   */
1853 		p->replacement = NULL;
1854 	}
1855 
1856 	clear_bit(WantReplacement, &rdev->flags);
1857 	err = md_integrity_register(mddev);
1858 
1859 abort:
1860 
1861 	print_conf(conf);
1862 	return err;
1863 }
1864 
1865 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1866 {
1867 	struct r10conf *conf = r10_bio->mddev->private;
1868 
1869 	if (!bio->bi_status)
1870 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1871 	else
1872 		/* The write handler will notice the lack of
1873 		 * R10BIO_Uptodate and record any errors etc
1874 		 */
1875 		atomic_add(r10_bio->sectors,
1876 			   &conf->mirrors[d].rdev->corrected_errors);
1877 
1878 	/* for reconstruct, we always reschedule after a read.
1879 	 * for resync, only after all reads
1880 	 */
1881 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1882 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1883 	    atomic_dec_and_test(&r10_bio->remaining)) {
1884 		/* we have read all the blocks,
1885 		 * do the comparison in process context in raid10d
1886 		 */
1887 		reschedule_retry(r10_bio);
1888 	}
1889 }
1890 
1891 static void end_sync_read(struct bio *bio)
1892 {
1893 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1894 	struct r10conf *conf = r10_bio->mddev->private;
1895 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1896 
1897 	__end_sync_read(r10_bio, bio, d);
1898 }
1899 
1900 static void end_reshape_read(struct bio *bio)
1901 {
1902 	/* reshape read bio isn't allocated from r10buf_pool */
1903 	struct r10bio *r10_bio = bio->bi_private;
1904 
1905 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1906 }
1907 
1908 static void end_sync_request(struct r10bio *r10_bio)
1909 {
1910 	struct mddev *mddev = r10_bio->mddev;
1911 
1912 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1913 		if (r10_bio->master_bio == NULL) {
1914 			/* the primary of several recovery bios */
1915 			sector_t s = r10_bio->sectors;
1916 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1917 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1918 				reschedule_retry(r10_bio);
1919 			else
1920 				put_buf(r10_bio);
1921 			md_done_sync(mddev, s, 1);
1922 			break;
1923 		} else {
1924 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1925 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1926 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1927 				reschedule_retry(r10_bio);
1928 			else
1929 				put_buf(r10_bio);
1930 			r10_bio = r10_bio2;
1931 		}
1932 	}
1933 }
1934 
1935 static void end_sync_write(struct bio *bio)
1936 {
1937 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1938 	struct mddev *mddev = r10_bio->mddev;
1939 	struct r10conf *conf = mddev->private;
1940 	int d;
1941 	sector_t first_bad;
1942 	int bad_sectors;
1943 	int slot;
1944 	int repl;
1945 	struct md_rdev *rdev = NULL;
1946 
1947 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1948 	if (repl)
1949 		rdev = conf->mirrors[d].replacement;
1950 	else
1951 		rdev = conf->mirrors[d].rdev;
1952 
1953 	if (bio->bi_status) {
1954 		if (repl)
1955 			md_error(mddev, rdev);
1956 		else {
1957 			set_bit(WriteErrorSeen, &rdev->flags);
1958 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1959 				set_bit(MD_RECOVERY_NEEDED,
1960 					&rdev->mddev->recovery);
1961 			set_bit(R10BIO_WriteError, &r10_bio->state);
1962 		}
1963 	} else if (is_badblock(rdev,
1964 			     r10_bio->devs[slot].addr,
1965 			     r10_bio->sectors,
1966 			     &first_bad, &bad_sectors))
1967 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1968 
1969 	rdev_dec_pending(rdev, mddev);
1970 
1971 	end_sync_request(r10_bio);
1972 }
1973 
1974 /*
1975  * Note: sync and recover and handled very differently for raid10
1976  * This code is for resync.
1977  * For resync, we read through virtual addresses and read all blocks.
1978  * If there is any error, we schedule a write.  The lowest numbered
1979  * drive is authoritative.
1980  * However requests come for physical address, so we need to map.
1981  * For every physical address there are raid_disks/copies virtual addresses,
1982  * which is always are least one, but is not necessarly an integer.
1983  * This means that a physical address can span multiple chunks, so we may
1984  * have to submit multiple io requests for a single sync request.
1985  */
1986 /*
1987  * We check if all blocks are in-sync and only write to blocks that
1988  * aren't in sync
1989  */
1990 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1991 {
1992 	struct r10conf *conf = mddev->private;
1993 	int i, first;
1994 	struct bio *tbio, *fbio;
1995 	int vcnt;
1996 	struct page **tpages, **fpages;
1997 
1998 	atomic_set(&r10_bio->remaining, 1);
1999 
2000 	/* find the first device with a block */
2001 	for (i=0; i<conf->copies; i++)
2002 		if (!r10_bio->devs[i].bio->bi_status)
2003 			break;
2004 
2005 	if (i == conf->copies)
2006 		goto done;
2007 
2008 	first = i;
2009 	fbio = r10_bio->devs[i].bio;
2010 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2011 	fbio->bi_iter.bi_idx = 0;
2012 	fpages = get_resync_pages(fbio)->pages;
2013 
2014 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2015 	/* now find blocks with errors */
2016 	for (i=0 ; i < conf->copies ; i++) {
2017 		int  j, d;
2018 		struct md_rdev *rdev;
2019 		struct resync_pages *rp;
2020 
2021 		tbio = r10_bio->devs[i].bio;
2022 
2023 		if (tbio->bi_end_io != end_sync_read)
2024 			continue;
2025 		if (i == first)
2026 			continue;
2027 
2028 		tpages = get_resync_pages(tbio)->pages;
2029 		d = r10_bio->devs[i].devnum;
2030 		rdev = conf->mirrors[d].rdev;
2031 		if (!r10_bio->devs[i].bio->bi_status) {
2032 			/* We know that the bi_io_vec layout is the same for
2033 			 * both 'first' and 'i', so we just compare them.
2034 			 * All vec entries are PAGE_SIZE;
2035 			 */
2036 			int sectors = r10_bio->sectors;
2037 			for (j = 0; j < vcnt; j++) {
2038 				int len = PAGE_SIZE;
2039 				if (sectors < (len / 512))
2040 					len = sectors * 512;
2041 				if (memcmp(page_address(fpages[j]),
2042 					   page_address(tpages[j]),
2043 					   len))
2044 					break;
2045 				sectors -= len/512;
2046 			}
2047 			if (j == vcnt)
2048 				continue;
2049 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2050 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2051 				/* Don't fix anything. */
2052 				continue;
2053 		} else if (test_bit(FailFast, &rdev->flags)) {
2054 			/* Just give up on this device */
2055 			md_error(rdev->mddev, rdev);
2056 			continue;
2057 		}
2058 		/* Ok, we need to write this bio, either to correct an
2059 		 * inconsistency or to correct an unreadable block.
2060 		 * First we need to fixup bv_offset, bv_len and
2061 		 * bi_vecs, as the read request might have corrupted these
2062 		 */
2063 		rp = get_resync_pages(tbio);
2064 		bio_reset(tbio);
2065 
2066 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2067 
2068 		rp->raid_bio = r10_bio;
2069 		tbio->bi_private = rp;
2070 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2071 		tbio->bi_end_io = end_sync_write;
2072 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2073 
2074 		bio_copy_data(tbio, fbio);
2075 
2076 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2077 		atomic_inc(&r10_bio->remaining);
2078 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2079 
2080 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2081 			tbio->bi_opf |= MD_FAILFAST;
2082 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2083 		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2084 		submit_bio_noacct(tbio);
2085 	}
2086 
2087 	/* Now write out to any replacement devices
2088 	 * that are active
2089 	 */
2090 	for (i = 0; i < conf->copies; i++) {
2091 		int d;
2092 
2093 		tbio = r10_bio->devs[i].repl_bio;
2094 		if (!tbio || !tbio->bi_end_io)
2095 			continue;
2096 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2097 		    && r10_bio->devs[i].bio != fbio)
2098 			bio_copy_data(tbio, fbio);
2099 		d = r10_bio->devs[i].devnum;
2100 		atomic_inc(&r10_bio->remaining);
2101 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2102 			     bio_sectors(tbio));
2103 		submit_bio_noacct(tbio);
2104 	}
2105 
2106 done:
2107 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2108 		md_done_sync(mddev, r10_bio->sectors, 1);
2109 		put_buf(r10_bio);
2110 	}
2111 }
2112 
2113 /*
2114  * Now for the recovery code.
2115  * Recovery happens across physical sectors.
2116  * We recover all non-is_sync drives by finding the virtual address of
2117  * each, and then choose a working drive that also has that virt address.
2118  * There is a separate r10_bio for each non-in_sync drive.
2119  * Only the first two slots are in use. The first for reading,
2120  * The second for writing.
2121  *
2122  */
2123 static void fix_recovery_read_error(struct r10bio *r10_bio)
2124 {
2125 	/* We got a read error during recovery.
2126 	 * We repeat the read in smaller page-sized sections.
2127 	 * If a read succeeds, write it to the new device or record
2128 	 * a bad block if we cannot.
2129 	 * If a read fails, record a bad block on both old and
2130 	 * new devices.
2131 	 */
2132 	struct mddev *mddev = r10_bio->mddev;
2133 	struct r10conf *conf = mddev->private;
2134 	struct bio *bio = r10_bio->devs[0].bio;
2135 	sector_t sect = 0;
2136 	int sectors = r10_bio->sectors;
2137 	int idx = 0;
2138 	int dr = r10_bio->devs[0].devnum;
2139 	int dw = r10_bio->devs[1].devnum;
2140 	struct page **pages = get_resync_pages(bio)->pages;
2141 
2142 	while (sectors) {
2143 		int s = sectors;
2144 		struct md_rdev *rdev;
2145 		sector_t addr;
2146 		int ok;
2147 
2148 		if (s > (PAGE_SIZE>>9))
2149 			s = PAGE_SIZE >> 9;
2150 
2151 		rdev = conf->mirrors[dr].rdev;
2152 		addr = r10_bio->devs[0].addr + sect,
2153 		ok = sync_page_io(rdev,
2154 				  addr,
2155 				  s << 9,
2156 				  pages[idx],
2157 				  REQ_OP_READ, 0, false);
2158 		if (ok) {
2159 			rdev = conf->mirrors[dw].rdev;
2160 			addr = r10_bio->devs[1].addr + sect;
2161 			ok = sync_page_io(rdev,
2162 					  addr,
2163 					  s << 9,
2164 					  pages[idx],
2165 					  REQ_OP_WRITE, 0, false);
2166 			if (!ok) {
2167 				set_bit(WriteErrorSeen, &rdev->flags);
2168 				if (!test_and_set_bit(WantReplacement,
2169 						      &rdev->flags))
2170 					set_bit(MD_RECOVERY_NEEDED,
2171 						&rdev->mddev->recovery);
2172 			}
2173 		}
2174 		if (!ok) {
2175 			/* We don't worry if we cannot set a bad block -
2176 			 * it really is bad so there is no loss in not
2177 			 * recording it yet
2178 			 */
2179 			rdev_set_badblocks(rdev, addr, s, 0);
2180 
2181 			if (rdev != conf->mirrors[dw].rdev) {
2182 				/* need bad block on destination too */
2183 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2184 				addr = r10_bio->devs[1].addr + sect;
2185 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2186 				if (!ok) {
2187 					/* just abort the recovery */
2188 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2189 						  mdname(mddev));
2190 
2191 					conf->mirrors[dw].recovery_disabled
2192 						= mddev->recovery_disabled;
2193 					set_bit(MD_RECOVERY_INTR,
2194 						&mddev->recovery);
2195 					break;
2196 				}
2197 			}
2198 		}
2199 
2200 		sectors -= s;
2201 		sect += s;
2202 		idx++;
2203 	}
2204 }
2205 
2206 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2207 {
2208 	struct r10conf *conf = mddev->private;
2209 	int d;
2210 	struct bio *wbio, *wbio2;
2211 
2212 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2213 		fix_recovery_read_error(r10_bio);
2214 		end_sync_request(r10_bio);
2215 		return;
2216 	}
2217 
2218 	/*
2219 	 * share the pages with the first bio
2220 	 * and submit the write request
2221 	 */
2222 	d = r10_bio->devs[1].devnum;
2223 	wbio = r10_bio->devs[1].bio;
2224 	wbio2 = r10_bio->devs[1].repl_bio;
2225 	/* Need to test wbio2->bi_end_io before we call
2226 	 * submit_bio_noacct as if the former is NULL,
2227 	 * the latter is free to free wbio2.
2228 	 */
2229 	if (wbio2 && !wbio2->bi_end_io)
2230 		wbio2 = NULL;
2231 	if (wbio->bi_end_io) {
2232 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2233 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2234 		submit_bio_noacct(wbio);
2235 	}
2236 	if (wbio2) {
2237 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2238 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2239 			     bio_sectors(wbio2));
2240 		submit_bio_noacct(wbio2);
2241 	}
2242 }
2243 
2244 /*
2245  * Used by fix_read_error() to decay the per rdev read_errors.
2246  * We halve the read error count for every hour that has elapsed
2247  * since the last recorded read error.
2248  *
2249  */
2250 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2251 {
2252 	long cur_time_mon;
2253 	unsigned long hours_since_last;
2254 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2255 
2256 	cur_time_mon = ktime_get_seconds();
2257 
2258 	if (rdev->last_read_error == 0) {
2259 		/* first time we've seen a read error */
2260 		rdev->last_read_error = cur_time_mon;
2261 		return;
2262 	}
2263 
2264 	hours_since_last = (long)(cur_time_mon -
2265 			    rdev->last_read_error) / 3600;
2266 
2267 	rdev->last_read_error = cur_time_mon;
2268 
2269 	/*
2270 	 * if hours_since_last is > the number of bits in read_errors
2271 	 * just set read errors to 0. We do this to avoid
2272 	 * overflowing the shift of read_errors by hours_since_last.
2273 	 */
2274 	if (hours_since_last >= 8 * sizeof(read_errors))
2275 		atomic_set(&rdev->read_errors, 0);
2276 	else
2277 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2278 }
2279 
2280 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2281 			    int sectors, struct page *page, int rw)
2282 {
2283 	sector_t first_bad;
2284 	int bad_sectors;
2285 
2286 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2287 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2288 		return -1;
2289 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2290 		/* success */
2291 		return 1;
2292 	if (rw == WRITE) {
2293 		set_bit(WriteErrorSeen, &rdev->flags);
2294 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2295 			set_bit(MD_RECOVERY_NEEDED,
2296 				&rdev->mddev->recovery);
2297 	}
2298 	/* need to record an error - either for the block or the device */
2299 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2300 		md_error(rdev->mddev, rdev);
2301 	return 0;
2302 }
2303 
2304 /*
2305  * This is a kernel thread which:
2306  *
2307  *	1.	Retries failed read operations on working mirrors.
2308  *	2.	Updates the raid superblock when problems encounter.
2309  *	3.	Performs writes following reads for array synchronising.
2310  */
2311 
2312 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2313 {
2314 	int sect = 0; /* Offset from r10_bio->sector */
2315 	int sectors = r10_bio->sectors;
2316 	struct md_rdev *rdev;
2317 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2318 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2319 
2320 	/* still own a reference to this rdev, so it cannot
2321 	 * have been cleared recently.
2322 	 */
2323 	rdev = conf->mirrors[d].rdev;
2324 
2325 	if (test_bit(Faulty, &rdev->flags))
2326 		/* drive has already been failed, just ignore any
2327 		   more fix_read_error() attempts */
2328 		return;
2329 
2330 	check_decay_read_errors(mddev, rdev);
2331 	atomic_inc(&rdev->read_errors);
2332 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2333 		char b[BDEVNAME_SIZE];
2334 		bdevname(rdev->bdev, b);
2335 
2336 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2337 			  mdname(mddev), b,
2338 			  atomic_read(&rdev->read_errors), max_read_errors);
2339 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2340 			  mdname(mddev), b);
2341 		md_error(mddev, rdev);
2342 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2343 		return;
2344 	}
2345 
2346 	while(sectors) {
2347 		int s = sectors;
2348 		int sl = r10_bio->read_slot;
2349 		int success = 0;
2350 		int start;
2351 
2352 		if (s > (PAGE_SIZE>>9))
2353 			s = PAGE_SIZE >> 9;
2354 
2355 		rcu_read_lock();
2356 		do {
2357 			sector_t first_bad;
2358 			int bad_sectors;
2359 
2360 			d = r10_bio->devs[sl].devnum;
2361 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2362 			if (rdev &&
2363 			    test_bit(In_sync, &rdev->flags) &&
2364 			    !test_bit(Faulty, &rdev->flags) &&
2365 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2366 					&first_bad, &bad_sectors) == 0) {
2367 				atomic_inc(&rdev->nr_pending);
2368 				rcu_read_unlock();
2369 				success = sync_page_io(rdev,
2370 						       r10_bio->devs[sl].addr +
2371 						       sect,
2372 						       s<<9,
2373 						       conf->tmppage,
2374 						       REQ_OP_READ, 0, false);
2375 				rdev_dec_pending(rdev, mddev);
2376 				rcu_read_lock();
2377 				if (success)
2378 					break;
2379 			}
2380 			sl++;
2381 			if (sl == conf->copies)
2382 				sl = 0;
2383 		} while (!success && sl != r10_bio->read_slot);
2384 		rcu_read_unlock();
2385 
2386 		if (!success) {
2387 			/* Cannot read from anywhere, just mark the block
2388 			 * as bad on the first device to discourage future
2389 			 * reads.
2390 			 */
2391 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2392 			rdev = conf->mirrors[dn].rdev;
2393 
2394 			if (!rdev_set_badblocks(
2395 				    rdev,
2396 				    r10_bio->devs[r10_bio->read_slot].addr
2397 				    + sect,
2398 				    s, 0)) {
2399 				md_error(mddev, rdev);
2400 				r10_bio->devs[r10_bio->read_slot].bio
2401 					= IO_BLOCKED;
2402 			}
2403 			break;
2404 		}
2405 
2406 		start = sl;
2407 		/* write it back and re-read */
2408 		rcu_read_lock();
2409 		while (sl != r10_bio->read_slot) {
2410 			char b[BDEVNAME_SIZE];
2411 
2412 			if (sl==0)
2413 				sl = conf->copies;
2414 			sl--;
2415 			d = r10_bio->devs[sl].devnum;
2416 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2417 			if (!rdev ||
2418 			    test_bit(Faulty, &rdev->flags) ||
2419 			    !test_bit(In_sync, &rdev->flags))
2420 				continue;
2421 
2422 			atomic_inc(&rdev->nr_pending);
2423 			rcu_read_unlock();
2424 			if (r10_sync_page_io(rdev,
2425 					     r10_bio->devs[sl].addr +
2426 					     sect,
2427 					     s, conf->tmppage, WRITE)
2428 			    == 0) {
2429 				/* Well, this device is dead */
2430 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2431 					  mdname(mddev), s,
2432 					  (unsigned long long)(
2433 						  sect +
2434 						  choose_data_offset(r10_bio,
2435 								     rdev)),
2436 					  bdevname(rdev->bdev, b));
2437 				pr_notice("md/raid10:%s: %s: failing drive\n",
2438 					  mdname(mddev),
2439 					  bdevname(rdev->bdev, b));
2440 			}
2441 			rdev_dec_pending(rdev, mddev);
2442 			rcu_read_lock();
2443 		}
2444 		sl = start;
2445 		while (sl != r10_bio->read_slot) {
2446 			char b[BDEVNAME_SIZE];
2447 
2448 			if (sl==0)
2449 				sl = conf->copies;
2450 			sl--;
2451 			d = r10_bio->devs[sl].devnum;
2452 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2453 			if (!rdev ||
2454 			    test_bit(Faulty, &rdev->flags) ||
2455 			    !test_bit(In_sync, &rdev->flags))
2456 				continue;
2457 
2458 			atomic_inc(&rdev->nr_pending);
2459 			rcu_read_unlock();
2460 			switch (r10_sync_page_io(rdev,
2461 					     r10_bio->devs[sl].addr +
2462 					     sect,
2463 					     s, conf->tmppage,
2464 						 READ)) {
2465 			case 0:
2466 				/* Well, this device is dead */
2467 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2468 				       mdname(mddev), s,
2469 				       (unsigned long long)(
2470 					       sect +
2471 					       choose_data_offset(r10_bio, rdev)),
2472 				       bdevname(rdev->bdev, b));
2473 				pr_notice("md/raid10:%s: %s: failing drive\n",
2474 				       mdname(mddev),
2475 				       bdevname(rdev->bdev, b));
2476 				break;
2477 			case 1:
2478 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2479 				       mdname(mddev), s,
2480 				       (unsigned long long)(
2481 					       sect +
2482 					       choose_data_offset(r10_bio, rdev)),
2483 				       bdevname(rdev->bdev, b));
2484 				atomic_add(s, &rdev->corrected_errors);
2485 			}
2486 
2487 			rdev_dec_pending(rdev, mddev);
2488 			rcu_read_lock();
2489 		}
2490 		rcu_read_unlock();
2491 
2492 		sectors -= s;
2493 		sect += s;
2494 	}
2495 }
2496 
2497 static int narrow_write_error(struct r10bio *r10_bio, int i)
2498 {
2499 	struct bio *bio = r10_bio->master_bio;
2500 	struct mddev *mddev = r10_bio->mddev;
2501 	struct r10conf *conf = mddev->private;
2502 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2503 	/* bio has the data to be written to slot 'i' where
2504 	 * we just recently had a write error.
2505 	 * We repeatedly clone the bio and trim down to one block,
2506 	 * then try the write.  Where the write fails we record
2507 	 * a bad block.
2508 	 * It is conceivable that the bio doesn't exactly align with
2509 	 * blocks.  We must handle this.
2510 	 *
2511 	 * We currently own a reference to the rdev.
2512 	 */
2513 
2514 	int block_sectors;
2515 	sector_t sector;
2516 	int sectors;
2517 	int sect_to_write = r10_bio->sectors;
2518 	int ok = 1;
2519 
2520 	if (rdev->badblocks.shift < 0)
2521 		return 0;
2522 
2523 	block_sectors = roundup(1 << rdev->badblocks.shift,
2524 				bdev_logical_block_size(rdev->bdev) >> 9);
2525 	sector = r10_bio->sector;
2526 	sectors = ((r10_bio->sector + block_sectors)
2527 		   & ~(sector_t)(block_sectors - 1))
2528 		- sector;
2529 
2530 	while (sect_to_write) {
2531 		struct bio *wbio;
2532 		sector_t wsector;
2533 		if (sectors > sect_to_write)
2534 			sectors = sect_to_write;
2535 		/* Write at 'sector' for 'sectors' */
2536 		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2537 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2538 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2539 		wbio->bi_iter.bi_sector = wsector +
2540 				   choose_data_offset(r10_bio, rdev);
2541 		bio_set_dev(wbio, rdev->bdev);
2542 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2543 
2544 		if (submit_bio_wait(wbio) < 0)
2545 			/* Failure! */
2546 			ok = rdev_set_badblocks(rdev, wsector,
2547 						sectors, 0)
2548 				&& ok;
2549 
2550 		bio_put(wbio);
2551 		sect_to_write -= sectors;
2552 		sector += sectors;
2553 		sectors = block_sectors;
2554 	}
2555 	return ok;
2556 }
2557 
2558 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2559 {
2560 	int slot = r10_bio->read_slot;
2561 	struct bio *bio;
2562 	struct r10conf *conf = mddev->private;
2563 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2564 
2565 	/* we got a read error. Maybe the drive is bad.  Maybe just
2566 	 * the block and we can fix it.
2567 	 * We freeze all other IO, and try reading the block from
2568 	 * other devices.  When we find one, we re-write
2569 	 * and check it that fixes the read error.
2570 	 * This is all done synchronously while the array is
2571 	 * frozen.
2572 	 */
2573 	bio = r10_bio->devs[slot].bio;
2574 	bio_put(bio);
2575 	r10_bio->devs[slot].bio = NULL;
2576 
2577 	if (mddev->ro)
2578 		r10_bio->devs[slot].bio = IO_BLOCKED;
2579 	else if (!test_bit(FailFast, &rdev->flags)) {
2580 		freeze_array(conf, 1);
2581 		fix_read_error(conf, mddev, r10_bio);
2582 		unfreeze_array(conf);
2583 	} else
2584 		md_error(mddev, rdev);
2585 
2586 	rdev_dec_pending(rdev, mddev);
2587 	allow_barrier(conf);
2588 	r10_bio->state = 0;
2589 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2590 }
2591 
2592 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2593 {
2594 	/* Some sort of write request has finished and it
2595 	 * succeeded in writing where we thought there was a
2596 	 * bad block.  So forget the bad block.
2597 	 * Or possibly if failed and we need to record
2598 	 * a bad block.
2599 	 */
2600 	int m;
2601 	struct md_rdev *rdev;
2602 
2603 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2604 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2605 		for (m = 0; m < conf->copies; m++) {
2606 			int dev = r10_bio->devs[m].devnum;
2607 			rdev = conf->mirrors[dev].rdev;
2608 			if (r10_bio->devs[m].bio == NULL ||
2609 				r10_bio->devs[m].bio->bi_end_io == NULL)
2610 				continue;
2611 			if (!r10_bio->devs[m].bio->bi_status) {
2612 				rdev_clear_badblocks(
2613 					rdev,
2614 					r10_bio->devs[m].addr,
2615 					r10_bio->sectors, 0);
2616 			} else {
2617 				if (!rdev_set_badblocks(
2618 					    rdev,
2619 					    r10_bio->devs[m].addr,
2620 					    r10_bio->sectors, 0))
2621 					md_error(conf->mddev, rdev);
2622 			}
2623 			rdev = conf->mirrors[dev].replacement;
2624 			if (r10_bio->devs[m].repl_bio == NULL ||
2625 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2626 				continue;
2627 
2628 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2629 				rdev_clear_badblocks(
2630 					rdev,
2631 					r10_bio->devs[m].addr,
2632 					r10_bio->sectors, 0);
2633 			} else {
2634 				if (!rdev_set_badblocks(
2635 					    rdev,
2636 					    r10_bio->devs[m].addr,
2637 					    r10_bio->sectors, 0))
2638 					md_error(conf->mddev, rdev);
2639 			}
2640 		}
2641 		put_buf(r10_bio);
2642 	} else {
2643 		bool fail = false;
2644 		for (m = 0; m < conf->copies; m++) {
2645 			int dev = r10_bio->devs[m].devnum;
2646 			struct bio *bio = r10_bio->devs[m].bio;
2647 			rdev = conf->mirrors[dev].rdev;
2648 			if (bio == IO_MADE_GOOD) {
2649 				rdev_clear_badblocks(
2650 					rdev,
2651 					r10_bio->devs[m].addr,
2652 					r10_bio->sectors, 0);
2653 				rdev_dec_pending(rdev, conf->mddev);
2654 			} else if (bio != NULL && bio->bi_status) {
2655 				fail = true;
2656 				if (!narrow_write_error(r10_bio, m)) {
2657 					md_error(conf->mddev, rdev);
2658 					set_bit(R10BIO_Degraded,
2659 						&r10_bio->state);
2660 				}
2661 				rdev_dec_pending(rdev, conf->mddev);
2662 			}
2663 			bio = r10_bio->devs[m].repl_bio;
2664 			rdev = conf->mirrors[dev].replacement;
2665 			if (rdev && bio == IO_MADE_GOOD) {
2666 				rdev_clear_badblocks(
2667 					rdev,
2668 					r10_bio->devs[m].addr,
2669 					r10_bio->sectors, 0);
2670 				rdev_dec_pending(rdev, conf->mddev);
2671 			}
2672 		}
2673 		if (fail) {
2674 			spin_lock_irq(&conf->device_lock);
2675 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2676 			conf->nr_queued++;
2677 			spin_unlock_irq(&conf->device_lock);
2678 			/*
2679 			 * In case freeze_array() is waiting for condition
2680 			 * nr_pending == nr_queued + extra to be true.
2681 			 */
2682 			wake_up(&conf->wait_barrier);
2683 			md_wakeup_thread(conf->mddev->thread);
2684 		} else {
2685 			if (test_bit(R10BIO_WriteError,
2686 				     &r10_bio->state))
2687 				close_write(r10_bio);
2688 			raid_end_bio_io(r10_bio);
2689 		}
2690 	}
2691 }
2692 
2693 static void raid10d(struct md_thread *thread)
2694 {
2695 	struct mddev *mddev = thread->mddev;
2696 	struct r10bio *r10_bio;
2697 	unsigned long flags;
2698 	struct r10conf *conf = mddev->private;
2699 	struct list_head *head = &conf->retry_list;
2700 	struct blk_plug plug;
2701 
2702 	md_check_recovery(mddev);
2703 
2704 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2705 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2706 		LIST_HEAD(tmp);
2707 		spin_lock_irqsave(&conf->device_lock, flags);
2708 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2709 			while (!list_empty(&conf->bio_end_io_list)) {
2710 				list_move(conf->bio_end_io_list.prev, &tmp);
2711 				conf->nr_queued--;
2712 			}
2713 		}
2714 		spin_unlock_irqrestore(&conf->device_lock, flags);
2715 		while (!list_empty(&tmp)) {
2716 			r10_bio = list_first_entry(&tmp, struct r10bio,
2717 						   retry_list);
2718 			list_del(&r10_bio->retry_list);
2719 			if (mddev->degraded)
2720 				set_bit(R10BIO_Degraded, &r10_bio->state);
2721 
2722 			if (test_bit(R10BIO_WriteError,
2723 				     &r10_bio->state))
2724 				close_write(r10_bio);
2725 			raid_end_bio_io(r10_bio);
2726 		}
2727 	}
2728 
2729 	blk_start_plug(&plug);
2730 	for (;;) {
2731 
2732 		flush_pending_writes(conf);
2733 
2734 		spin_lock_irqsave(&conf->device_lock, flags);
2735 		if (list_empty(head)) {
2736 			spin_unlock_irqrestore(&conf->device_lock, flags);
2737 			break;
2738 		}
2739 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2740 		list_del(head->prev);
2741 		conf->nr_queued--;
2742 		spin_unlock_irqrestore(&conf->device_lock, flags);
2743 
2744 		mddev = r10_bio->mddev;
2745 		conf = mddev->private;
2746 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2747 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2748 			handle_write_completed(conf, r10_bio);
2749 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2750 			reshape_request_write(mddev, r10_bio);
2751 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2752 			sync_request_write(mddev, r10_bio);
2753 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2754 			recovery_request_write(mddev, r10_bio);
2755 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2756 			handle_read_error(mddev, r10_bio);
2757 		else
2758 			WARN_ON_ONCE(1);
2759 
2760 		cond_resched();
2761 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2762 			md_check_recovery(mddev);
2763 	}
2764 	blk_finish_plug(&plug);
2765 }
2766 
2767 static int init_resync(struct r10conf *conf)
2768 {
2769 	int ret, buffs, i;
2770 
2771 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2772 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
2773 	conf->have_replacement = 0;
2774 	for (i = 0; i < conf->geo.raid_disks; i++)
2775 		if (conf->mirrors[i].replacement)
2776 			conf->have_replacement = 1;
2777 	ret = mempool_init(&conf->r10buf_pool, buffs,
2778 			   r10buf_pool_alloc, r10buf_pool_free, conf);
2779 	if (ret)
2780 		return ret;
2781 	conf->next_resync = 0;
2782 	return 0;
2783 }
2784 
2785 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2786 {
2787 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2788 	struct rsync_pages *rp;
2789 	struct bio *bio;
2790 	int nalloc;
2791 	int i;
2792 
2793 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2794 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2795 		nalloc = conf->copies; /* resync */
2796 	else
2797 		nalloc = 2; /* recovery */
2798 
2799 	for (i = 0; i < nalloc; i++) {
2800 		bio = r10bio->devs[i].bio;
2801 		rp = bio->bi_private;
2802 		bio_reset(bio);
2803 		bio->bi_private = rp;
2804 		bio = r10bio->devs[i].repl_bio;
2805 		if (bio) {
2806 			rp = bio->bi_private;
2807 			bio_reset(bio);
2808 			bio->bi_private = rp;
2809 		}
2810 	}
2811 	return r10bio;
2812 }
2813 
2814 /*
2815  * Set cluster_sync_high since we need other nodes to add the
2816  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2817  */
2818 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2819 {
2820 	sector_t window_size;
2821 	int extra_chunk, chunks;
2822 
2823 	/*
2824 	 * First, here we define "stripe" as a unit which across
2825 	 * all member devices one time, so we get chunks by use
2826 	 * raid_disks / near_copies. Otherwise, if near_copies is
2827 	 * close to raid_disks, then resync window could increases
2828 	 * linearly with the increase of raid_disks, which means
2829 	 * we will suspend a really large IO window while it is not
2830 	 * necessary. If raid_disks is not divisible by near_copies,
2831 	 * an extra chunk is needed to ensure the whole "stripe" is
2832 	 * covered.
2833 	 */
2834 
2835 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2836 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2837 		extra_chunk = 0;
2838 	else
2839 		extra_chunk = 1;
2840 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2841 
2842 	/*
2843 	 * At least use a 32M window to align with raid1's resync window
2844 	 */
2845 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2846 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2847 
2848 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2849 }
2850 
2851 /*
2852  * perform a "sync" on one "block"
2853  *
2854  * We need to make sure that no normal I/O request - particularly write
2855  * requests - conflict with active sync requests.
2856  *
2857  * This is achieved by tracking pending requests and a 'barrier' concept
2858  * that can be installed to exclude normal IO requests.
2859  *
2860  * Resync and recovery are handled very differently.
2861  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2862  *
2863  * For resync, we iterate over virtual addresses, read all copies,
2864  * and update if there are differences.  If only one copy is live,
2865  * skip it.
2866  * For recovery, we iterate over physical addresses, read a good
2867  * value for each non-in_sync drive, and over-write.
2868  *
2869  * So, for recovery we may have several outstanding complex requests for a
2870  * given address, one for each out-of-sync device.  We model this by allocating
2871  * a number of r10_bio structures, one for each out-of-sync device.
2872  * As we setup these structures, we collect all bio's together into a list
2873  * which we then process collectively to add pages, and then process again
2874  * to pass to submit_bio_noacct.
2875  *
2876  * The r10_bio structures are linked using a borrowed master_bio pointer.
2877  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2878  * has its remaining count decremented to 0, the whole complex operation
2879  * is complete.
2880  *
2881  */
2882 
2883 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2884 			     int *skipped)
2885 {
2886 	struct r10conf *conf = mddev->private;
2887 	struct r10bio *r10_bio;
2888 	struct bio *biolist = NULL, *bio;
2889 	sector_t max_sector, nr_sectors;
2890 	int i;
2891 	int max_sync;
2892 	sector_t sync_blocks;
2893 	sector_t sectors_skipped = 0;
2894 	int chunks_skipped = 0;
2895 	sector_t chunk_mask = conf->geo.chunk_mask;
2896 	int page_idx = 0;
2897 
2898 	if (!mempool_initialized(&conf->r10buf_pool))
2899 		if (init_resync(conf))
2900 			return 0;
2901 
2902 	/*
2903 	 * Allow skipping a full rebuild for incremental assembly
2904 	 * of a clean array, like RAID1 does.
2905 	 */
2906 	if (mddev->bitmap == NULL &&
2907 	    mddev->recovery_cp == MaxSector &&
2908 	    mddev->reshape_position == MaxSector &&
2909 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2910 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2911 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2912 	    conf->fullsync == 0) {
2913 		*skipped = 1;
2914 		return mddev->dev_sectors - sector_nr;
2915 	}
2916 
2917  skipped:
2918 	max_sector = mddev->dev_sectors;
2919 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2920 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2921 		max_sector = mddev->resync_max_sectors;
2922 	if (sector_nr >= max_sector) {
2923 		conf->cluster_sync_low = 0;
2924 		conf->cluster_sync_high = 0;
2925 
2926 		/* If we aborted, we need to abort the
2927 		 * sync on the 'current' bitmap chucks (there can
2928 		 * be several when recovering multiple devices).
2929 		 * as we may have started syncing it but not finished.
2930 		 * We can find the current address in
2931 		 * mddev->curr_resync, but for recovery,
2932 		 * we need to convert that to several
2933 		 * virtual addresses.
2934 		 */
2935 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2936 			end_reshape(conf);
2937 			close_sync(conf);
2938 			return 0;
2939 		}
2940 
2941 		if (mddev->curr_resync < max_sector) { /* aborted */
2942 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2943 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2944 						   &sync_blocks, 1);
2945 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2946 				sector_t sect =
2947 					raid10_find_virt(conf, mddev->curr_resync, i);
2948 				md_bitmap_end_sync(mddev->bitmap, sect,
2949 						   &sync_blocks, 1);
2950 			}
2951 		} else {
2952 			/* completed sync */
2953 			if ((!mddev->bitmap || conf->fullsync)
2954 			    && conf->have_replacement
2955 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2956 				/* Completed a full sync so the replacements
2957 				 * are now fully recovered.
2958 				 */
2959 				rcu_read_lock();
2960 				for (i = 0; i < conf->geo.raid_disks; i++) {
2961 					struct md_rdev *rdev =
2962 						rcu_dereference(conf->mirrors[i].replacement);
2963 					if (rdev)
2964 						rdev->recovery_offset = MaxSector;
2965 				}
2966 				rcu_read_unlock();
2967 			}
2968 			conf->fullsync = 0;
2969 		}
2970 		md_bitmap_close_sync(mddev->bitmap);
2971 		close_sync(conf);
2972 		*skipped = 1;
2973 		return sectors_skipped;
2974 	}
2975 
2976 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2977 		return reshape_request(mddev, sector_nr, skipped);
2978 
2979 	if (chunks_skipped >= conf->geo.raid_disks) {
2980 		/* if there has been nothing to do on any drive,
2981 		 * then there is nothing to do at all..
2982 		 */
2983 		*skipped = 1;
2984 		return (max_sector - sector_nr) + sectors_skipped;
2985 	}
2986 
2987 	if (max_sector > mddev->resync_max)
2988 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2989 
2990 	/* make sure whole request will fit in a chunk - if chunks
2991 	 * are meaningful
2992 	 */
2993 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2994 	    max_sector > (sector_nr | chunk_mask))
2995 		max_sector = (sector_nr | chunk_mask) + 1;
2996 
2997 	/*
2998 	 * If there is non-resync activity waiting for a turn, then let it
2999 	 * though before starting on this new sync request.
3000 	 */
3001 	if (conf->nr_waiting)
3002 		schedule_timeout_uninterruptible(1);
3003 
3004 	/* Again, very different code for resync and recovery.
3005 	 * Both must result in an r10bio with a list of bios that
3006 	 * have bi_end_io, bi_sector, bi_disk set,
3007 	 * and bi_private set to the r10bio.
3008 	 * For recovery, we may actually create several r10bios
3009 	 * with 2 bios in each, that correspond to the bios in the main one.
3010 	 * In this case, the subordinate r10bios link back through a
3011 	 * borrowed master_bio pointer, and the counter in the master
3012 	 * includes a ref from each subordinate.
3013 	 */
3014 	/* First, we decide what to do and set ->bi_end_io
3015 	 * To end_sync_read if we want to read, and
3016 	 * end_sync_write if we will want to write.
3017 	 */
3018 
3019 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3020 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3021 		/* recovery... the complicated one */
3022 		int j;
3023 		r10_bio = NULL;
3024 
3025 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3026 			int still_degraded;
3027 			struct r10bio *rb2;
3028 			sector_t sect;
3029 			int must_sync;
3030 			int any_working;
3031 			int need_recover = 0;
3032 			int need_replace = 0;
3033 			struct raid10_info *mirror = &conf->mirrors[i];
3034 			struct md_rdev *mrdev, *mreplace;
3035 
3036 			rcu_read_lock();
3037 			mrdev = rcu_dereference(mirror->rdev);
3038 			mreplace = rcu_dereference(mirror->replacement);
3039 
3040 			if (mrdev != NULL &&
3041 			    !test_bit(Faulty, &mrdev->flags) &&
3042 			    !test_bit(In_sync, &mrdev->flags))
3043 				need_recover = 1;
3044 			if (mreplace != NULL &&
3045 			    !test_bit(Faulty, &mreplace->flags))
3046 				need_replace = 1;
3047 
3048 			if (!need_recover && !need_replace) {
3049 				rcu_read_unlock();
3050 				continue;
3051 			}
3052 
3053 			still_degraded = 0;
3054 			/* want to reconstruct this device */
3055 			rb2 = r10_bio;
3056 			sect = raid10_find_virt(conf, sector_nr, i);
3057 			if (sect >= mddev->resync_max_sectors) {
3058 				/* last stripe is not complete - don't
3059 				 * try to recover this sector.
3060 				 */
3061 				rcu_read_unlock();
3062 				continue;
3063 			}
3064 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3065 				mreplace = NULL;
3066 			/* Unless we are doing a full sync, or a replacement
3067 			 * we only need to recover the block if it is set in
3068 			 * the bitmap
3069 			 */
3070 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3071 							 &sync_blocks, 1);
3072 			if (sync_blocks < max_sync)
3073 				max_sync = sync_blocks;
3074 			if (!must_sync &&
3075 			    mreplace == NULL &&
3076 			    !conf->fullsync) {
3077 				/* yep, skip the sync_blocks here, but don't assume
3078 				 * that there will never be anything to do here
3079 				 */
3080 				chunks_skipped = -1;
3081 				rcu_read_unlock();
3082 				continue;
3083 			}
3084 			atomic_inc(&mrdev->nr_pending);
3085 			if (mreplace)
3086 				atomic_inc(&mreplace->nr_pending);
3087 			rcu_read_unlock();
3088 
3089 			r10_bio = raid10_alloc_init_r10buf(conf);
3090 			r10_bio->state = 0;
3091 			raise_barrier(conf, rb2 != NULL);
3092 			atomic_set(&r10_bio->remaining, 0);
3093 
3094 			r10_bio->master_bio = (struct bio*)rb2;
3095 			if (rb2)
3096 				atomic_inc(&rb2->remaining);
3097 			r10_bio->mddev = mddev;
3098 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3099 			r10_bio->sector = sect;
3100 
3101 			raid10_find_phys(conf, r10_bio);
3102 
3103 			/* Need to check if the array will still be
3104 			 * degraded
3105 			 */
3106 			rcu_read_lock();
3107 			for (j = 0; j < conf->geo.raid_disks; j++) {
3108 				struct md_rdev *rdev = rcu_dereference(
3109 					conf->mirrors[j].rdev);
3110 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3111 					still_degraded = 1;
3112 					break;
3113 				}
3114 			}
3115 
3116 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3117 							 &sync_blocks, still_degraded);
3118 
3119 			any_working = 0;
3120 			for (j=0; j<conf->copies;j++) {
3121 				int k;
3122 				int d = r10_bio->devs[j].devnum;
3123 				sector_t from_addr, to_addr;
3124 				struct md_rdev *rdev =
3125 					rcu_dereference(conf->mirrors[d].rdev);
3126 				sector_t sector, first_bad;
3127 				int bad_sectors;
3128 				if (!rdev ||
3129 				    !test_bit(In_sync, &rdev->flags))
3130 					continue;
3131 				/* This is where we read from */
3132 				any_working = 1;
3133 				sector = r10_bio->devs[j].addr;
3134 
3135 				if (is_badblock(rdev, sector, max_sync,
3136 						&first_bad, &bad_sectors)) {
3137 					if (first_bad > sector)
3138 						max_sync = first_bad - sector;
3139 					else {
3140 						bad_sectors -= (sector
3141 								- first_bad);
3142 						if (max_sync > bad_sectors)
3143 							max_sync = bad_sectors;
3144 						continue;
3145 					}
3146 				}
3147 				bio = r10_bio->devs[0].bio;
3148 				bio->bi_next = biolist;
3149 				biolist = bio;
3150 				bio->bi_end_io = end_sync_read;
3151 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3152 				if (test_bit(FailFast, &rdev->flags))
3153 					bio->bi_opf |= MD_FAILFAST;
3154 				from_addr = r10_bio->devs[j].addr;
3155 				bio->bi_iter.bi_sector = from_addr +
3156 					rdev->data_offset;
3157 				bio_set_dev(bio, rdev->bdev);
3158 				atomic_inc(&rdev->nr_pending);
3159 				/* and we write to 'i' (if not in_sync) */
3160 
3161 				for (k=0; k<conf->copies; k++)
3162 					if (r10_bio->devs[k].devnum == i)
3163 						break;
3164 				BUG_ON(k == conf->copies);
3165 				to_addr = r10_bio->devs[k].addr;
3166 				r10_bio->devs[0].devnum = d;
3167 				r10_bio->devs[0].addr = from_addr;
3168 				r10_bio->devs[1].devnum = i;
3169 				r10_bio->devs[1].addr = to_addr;
3170 
3171 				if (need_recover) {
3172 					bio = r10_bio->devs[1].bio;
3173 					bio->bi_next = biolist;
3174 					biolist = bio;
3175 					bio->bi_end_io = end_sync_write;
3176 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3177 					bio->bi_iter.bi_sector = to_addr
3178 						+ mrdev->data_offset;
3179 					bio_set_dev(bio, mrdev->bdev);
3180 					atomic_inc(&r10_bio->remaining);
3181 				} else
3182 					r10_bio->devs[1].bio->bi_end_io = NULL;
3183 
3184 				/* and maybe write to replacement */
3185 				bio = r10_bio->devs[1].repl_bio;
3186 				if (bio)
3187 					bio->bi_end_io = NULL;
3188 				/* Note: if need_replace, then bio
3189 				 * cannot be NULL as r10buf_pool_alloc will
3190 				 * have allocated it.
3191 				 */
3192 				if (!need_replace)
3193 					break;
3194 				bio->bi_next = biolist;
3195 				biolist = bio;
3196 				bio->bi_end_io = end_sync_write;
3197 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3198 				bio->bi_iter.bi_sector = to_addr +
3199 					mreplace->data_offset;
3200 				bio_set_dev(bio, mreplace->bdev);
3201 				atomic_inc(&r10_bio->remaining);
3202 				break;
3203 			}
3204 			rcu_read_unlock();
3205 			if (j == conf->copies) {
3206 				/* Cannot recover, so abort the recovery or
3207 				 * record a bad block */
3208 				if (any_working) {
3209 					/* problem is that there are bad blocks
3210 					 * on other device(s)
3211 					 */
3212 					int k;
3213 					for (k = 0; k < conf->copies; k++)
3214 						if (r10_bio->devs[k].devnum == i)
3215 							break;
3216 					if (!test_bit(In_sync,
3217 						      &mrdev->flags)
3218 					    && !rdev_set_badblocks(
3219 						    mrdev,
3220 						    r10_bio->devs[k].addr,
3221 						    max_sync, 0))
3222 						any_working = 0;
3223 					if (mreplace &&
3224 					    !rdev_set_badblocks(
3225 						    mreplace,
3226 						    r10_bio->devs[k].addr,
3227 						    max_sync, 0))
3228 						any_working = 0;
3229 				}
3230 				if (!any_working)  {
3231 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3232 							      &mddev->recovery))
3233 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3234 						       mdname(mddev));
3235 					mirror->recovery_disabled
3236 						= mddev->recovery_disabled;
3237 				}
3238 				put_buf(r10_bio);
3239 				if (rb2)
3240 					atomic_dec(&rb2->remaining);
3241 				r10_bio = rb2;
3242 				rdev_dec_pending(mrdev, mddev);
3243 				if (mreplace)
3244 					rdev_dec_pending(mreplace, mddev);
3245 				break;
3246 			}
3247 			rdev_dec_pending(mrdev, mddev);
3248 			if (mreplace)
3249 				rdev_dec_pending(mreplace, mddev);
3250 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3251 				/* Only want this if there is elsewhere to
3252 				 * read from. 'j' is currently the first
3253 				 * readable copy.
3254 				 */
3255 				int targets = 1;
3256 				for (; j < conf->copies; j++) {
3257 					int d = r10_bio->devs[j].devnum;
3258 					if (conf->mirrors[d].rdev &&
3259 					    test_bit(In_sync,
3260 						      &conf->mirrors[d].rdev->flags))
3261 						targets++;
3262 				}
3263 				if (targets == 1)
3264 					r10_bio->devs[0].bio->bi_opf
3265 						&= ~MD_FAILFAST;
3266 			}
3267 		}
3268 		if (biolist == NULL) {
3269 			while (r10_bio) {
3270 				struct r10bio *rb2 = r10_bio;
3271 				r10_bio = (struct r10bio*) rb2->master_bio;
3272 				rb2->master_bio = NULL;
3273 				put_buf(rb2);
3274 			}
3275 			goto giveup;
3276 		}
3277 	} else {
3278 		/* resync. Schedule a read for every block at this virt offset */
3279 		int count = 0;
3280 
3281 		/*
3282 		 * Since curr_resync_completed could probably not update in
3283 		 * time, and we will set cluster_sync_low based on it.
3284 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3285 		 * safety reason, which ensures curr_resync_completed is
3286 		 * updated in bitmap_cond_end_sync.
3287 		 */
3288 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3289 					mddev_is_clustered(mddev) &&
3290 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3291 
3292 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3293 					  &sync_blocks, mddev->degraded) &&
3294 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3295 						 &mddev->recovery)) {
3296 			/* We can skip this block */
3297 			*skipped = 1;
3298 			return sync_blocks + sectors_skipped;
3299 		}
3300 		if (sync_blocks < max_sync)
3301 			max_sync = sync_blocks;
3302 		r10_bio = raid10_alloc_init_r10buf(conf);
3303 		r10_bio->state = 0;
3304 
3305 		r10_bio->mddev = mddev;
3306 		atomic_set(&r10_bio->remaining, 0);
3307 		raise_barrier(conf, 0);
3308 		conf->next_resync = sector_nr;
3309 
3310 		r10_bio->master_bio = NULL;
3311 		r10_bio->sector = sector_nr;
3312 		set_bit(R10BIO_IsSync, &r10_bio->state);
3313 		raid10_find_phys(conf, r10_bio);
3314 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3315 
3316 		for (i = 0; i < conf->copies; i++) {
3317 			int d = r10_bio->devs[i].devnum;
3318 			sector_t first_bad, sector;
3319 			int bad_sectors;
3320 			struct md_rdev *rdev;
3321 
3322 			if (r10_bio->devs[i].repl_bio)
3323 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3324 
3325 			bio = r10_bio->devs[i].bio;
3326 			bio->bi_status = BLK_STS_IOERR;
3327 			rcu_read_lock();
3328 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3329 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3330 				rcu_read_unlock();
3331 				continue;
3332 			}
3333 			sector = r10_bio->devs[i].addr;
3334 			if (is_badblock(rdev, sector, max_sync,
3335 					&first_bad, &bad_sectors)) {
3336 				if (first_bad > sector)
3337 					max_sync = first_bad - sector;
3338 				else {
3339 					bad_sectors -= (sector - first_bad);
3340 					if (max_sync > bad_sectors)
3341 						max_sync = bad_sectors;
3342 					rcu_read_unlock();
3343 					continue;
3344 				}
3345 			}
3346 			atomic_inc(&rdev->nr_pending);
3347 			atomic_inc(&r10_bio->remaining);
3348 			bio->bi_next = biolist;
3349 			biolist = bio;
3350 			bio->bi_end_io = end_sync_read;
3351 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3352 			if (test_bit(FailFast, &rdev->flags))
3353 				bio->bi_opf |= MD_FAILFAST;
3354 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3355 			bio_set_dev(bio, rdev->bdev);
3356 			count++;
3357 
3358 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3359 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3360 				rcu_read_unlock();
3361 				continue;
3362 			}
3363 			atomic_inc(&rdev->nr_pending);
3364 
3365 			/* Need to set up for writing to the replacement */
3366 			bio = r10_bio->devs[i].repl_bio;
3367 			bio->bi_status = BLK_STS_IOERR;
3368 
3369 			sector = r10_bio->devs[i].addr;
3370 			bio->bi_next = biolist;
3371 			biolist = bio;
3372 			bio->bi_end_io = end_sync_write;
3373 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3374 			if (test_bit(FailFast, &rdev->flags))
3375 				bio->bi_opf |= MD_FAILFAST;
3376 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3377 			bio_set_dev(bio, rdev->bdev);
3378 			count++;
3379 			rcu_read_unlock();
3380 		}
3381 
3382 		if (count < 2) {
3383 			for (i=0; i<conf->copies; i++) {
3384 				int d = r10_bio->devs[i].devnum;
3385 				if (r10_bio->devs[i].bio->bi_end_io)
3386 					rdev_dec_pending(conf->mirrors[d].rdev,
3387 							 mddev);
3388 				if (r10_bio->devs[i].repl_bio &&
3389 				    r10_bio->devs[i].repl_bio->bi_end_io)
3390 					rdev_dec_pending(
3391 						conf->mirrors[d].replacement,
3392 						mddev);
3393 			}
3394 			put_buf(r10_bio);
3395 			biolist = NULL;
3396 			goto giveup;
3397 		}
3398 	}
3399 
3400 	nr_sectors = 0;
3401 	if (sector_nr + max_sync < max_sector)
3402 		max_sector = sector_nr + max_sync;
3403 	do {
3404 		struct page *page;
3405 		int len = PAGE_SIZE;
3406 		if (sector_nr + (len>>9) > max_sector)
3407 			len = (max_sector - sector_nr) << 9;
3408 		if (len == 0)
3409 			break;
3410 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3411 			struct resync_pages *rp = get_resync_pages(bio);
3412 			page = resync_fetch_page(rp, page_idx);
3413 			/*
3414 			 * won't fail because the vec table is big enough
3415 			 * to hold all these pages
3416 			 */
3417 			bio_add_page(bio, page, len, 0);
3418 		}
3419 		nr_sectors += len>>9;
3420 		sector_nr += len>>9;
3421 	} while (++page_idx < RESYNC_PAGES);
3422 	r10_bio->sectors = nr_sectors;
3423 
3424 	if (mddev_is_clustered(mddev) &&
3425 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3426 		/* It is resync not recovery */
3427 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3428 			conf->cluster_sync_low = mddev->curr_resync_completed;
3429 			raid10_set_cluster_sync_high(conf);
3430 			/* Send resync message */
3431 			md_cluster_ops->resync_info_update(mddev,
3432 						conf->cluster_sync_low,
3433 						conf->cluster_sync_high);
3434 		}
3435 	} else if (mddev_is_clustered(mddev)) {
3436 		/* This is recovery not resync */
3437 		sector_t sect_va1, sect_va2;
3438 		bool broadcast_msg = false;
3439 
3440 		for (i = 0; i < conf->geo.raid_disks; i++) {
3441 			/*
3442 			 * sector_nr is a device address for recovery, so we
3443 			 * need translate it to array address before compare
3444 			 * with cluster_sync_high.
3445 			 */
3446 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3447 
3448 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3449 				broadcast_msg = true;
3450 				/*
3451 				 * curr_resync_completed is similar as
3452 				 * sector_nr, so make the translation too.
3453 				 */
3454 				sect_va2 = raid10_find_virt(conf,
3455 					mddev->curr_resync_completed, i);
3456 
3457 				if (conf->cluster_sync_low == 0 ||
3458 				    conf->cluster_sync_low > sect_va2)
3459 					conf->cluster_sync_low = sect_va2;
3460 			}
3461 		}
3462 		if (broadcast_msg) {
3463 			raid10_set_cluster_sync_high(conf);
3464 			md_cluster_ops->resync_info_update(mddev,
3465 						conf->cluster_sync_low,
3466 						conf->cluster_sync_high);
3467 		}
3468 	}
3469 
3470 	while (biolist) {
3471 		bio = biolist;
3472 		biolist = biolist->bi_next;
3473 
3474 		bio->bi_next = NULL;
3475 		r10_bio = get_resync_r10bio(bio);
3476 		r10_bio->sectors = nr_sectors;
3477 
3478 		if (bio->bi_end_io == end_sync_read) {
3479 			md_sync_acct_bio(bio, nr_sectors);
3480 			bio->bi_status = 0;
3481 			submit_bio_noacct(bio);
3482 		}
3483 	}
3484 
3485 	if (sectors_skipped)
3486 		/* pretend they weren't skipped, it makes
3487 		 * no important difference in this case
3488 		 */
3489 		md_done_sync(mddev, sectors_skipped, 1);
3490 
3491 	return sectors_skipped + nr_sectors;
3492  giveup:
3493 	/* There is nowhere to write, so all non-sync
3494 	 * drives must be failed or in resync, all drives
3495 	 * have a bad block, so try the next chunk...
3496 	 */
3497 	if (sector_nr + max_sync < max_sector)
3498 		max_sector = sector_nr + max_sync;
3499 
3500 	sectors_skipped += (max_sector - sector_nr);
3501 	chunks_skipped ++;
3502 	sector_nr = max_sector;
3503 	goto skipped;
3504 }
3505 
3506 static sector_t
3507 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3508 {
3509 	sector_t size;
3510 	struct r10conf *conf = mddev->private;
3511 
3512 	if (!raid_disks)
3513 		raid_disks = min(conf->geo.raid_disks,
3514 				 conf->prev.raid_disks);
3515 	if (!sectors)
3516 		sectors = conf->dev_sectors;
3517 
3518 	size = sectors >> conf->geo.chunk_shift;
3519 	sector_div(size, conf->geo.far_copies);
3520 	size = size * raid_disks;
3521 	sector_div(size, conf->geo.near_copies);
3522 
3523 	return size << conf->geo.chunk_shift;
3524 }
3525 
3526 static void calc_sectors(struct r10conf *conf, sector_t size)
3527 {
3528 	/* Calculate the number of sectors-per-device that will
3529 	 * actually be used, and set conf->dev_sectors and
3530 	 * conf->stride
3531 	 */
3532 
3533 	size = size >> conf->geo.chunk_shift;
3534 	sector_div(size, conf->geo.far_copies);
3535 	size = size * conf->geo.raid_disks;
3536 	sector_div(size, conf->geo.near_copies);
3537 	/* 'size' is now the number of chunks in the array */
3538 	/* calculate "used chunks per device" */
3539 	size = size * conf->copies;
3540 
3541 	/* We need to round up when dividing by raid_disks to
3542 	 * get the stride size.
3543 	 */
3544 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3545 
3546 	conf->dev_sectors = size << conf->geo.chunk_shift;
3547 
3548 	if (conf->geo.far_offset)
3549 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3550 	else {
3551 		sector_div(size, conf->geo.far_copies);
3552 		conf->geo.stride = size << conf->geo.chunk_shift;
3553 	}
3554 }
3555 
3556 enum geo_type {geo_new, geo_old, geo_start};
3557 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3558 {
3559 	int nc, fc, fo;
3560 	int layout, chunk, disks;
3561 	switch (new) {
3562 	case geo_old:
3563 		layout = mddev->layout;
3564 		chunk = mddev->chunk_sectors;
3565 		disks = mddev->raid_disks - mddev->delta_disks;
3566 		break;
3567 	case geo_new:
3568 		layout = mddev->new_layout;
3569 		chunk = mddev->new_chunk_sectors;
3570 		disks = mddev->raid_disks;
3571 		break;
3572 	default: /* avoid 'may be unused' warnings */
3573 	case geo_start: /* new when starting reshape - raid_disks not
3574 			 * updated yet. */
3575 		layout = mddev->new_layout;
3576 		chunk = mddev->new_chunk_sectors;
3577 		disks = mddev->raid_disks + mddev->delta_disks;
3578 		break;
3579 	}
3580 	if (layout >> 19)
3581 		return -1;
3582 	if (chunk < (PAGE_SIZE >> 9) ||
3583 	    !is_power_of_2(chunk))
3584 		return -2;
3585 	nc = layout & 255;
3586 	fc = (layout >> 8) & 255;
3587 	fo = layout & (1<<16);
3588 	geo->raid_disks = disks;
3589 	geo->near_copies = nc;
3590 	geo->far_copies = fc;
3591 	geo->far_offset = fo;
3592 	switch (layout >> 17) {
3593 	case 0:	/* original layout.  simple but not always optimal */
3594 		geo->far_set_size = disks;
3595 		break;
3596 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3597 		 * actually using this, but leave code here just in case.*/
3598 		geo->far_set_size = disks/fc;
3599 		WARN(geo->far_set_size < fc,
3600 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3601 		break;
3602 	case 2: /* "improved" layout fixed to match documentation */
3603 		geo->far_set_size = fc * nc;
3604 		break;
3605 	default: /* Not a valid layout */
3606 		return -1;
3607 	}
3608 	geo->chunk_mask = chunk - 1;
3609 	geo->chunk_shift = ffz(~chunk);
3610 	return nc*fc;
3611 }
3612 
3613 static struct r10conf *setup_conf(struct mddev *mddev)
3614 {
3615 	struct r10conf *conf = NULL;
3616 	int err = -EINVAL;
3617 	struct geom geo;
3618 	int copies;
3619 
3620 	copies = setup_geo(&geo, mddev, geo_new);
3621 
3622 	if (copies == -2) {
3623 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3624 			mdname(mddev), PAGE_SIZE);
3625 		goto out;
3626 	}
3627 
3628 	if (copies < 2 || copies > mddev->raid_disks) {
3629 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3630 			mdname(mddev), mddev->new_layout);
3631 		goto out;
3632 	}
3633 
3634 	err = -ENOMEM;
3635 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3636 	if (!conf)
3637 		goto out;
3638 
3639 	/* FIXME calc properly */
3640 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3641 				sizeof(struct raid10_info),
3642 				GFP_KERNEL);
3643 	if (!conf->mirrors)
3644 		goto out;
3645 
3646 	conf->tmppage = alloc_page(GFP_KERNEL);
3647 	if (!conf->tmppage)
3648 		goto out;
3649 
3650 	conf->geo = geo;
3651 	conf->copies = copies;
3652 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3653 			   rbio_pool_free, conf);
3654 	if (err)
3655 		goto out;
3656 
3657 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3658 	if (err)
3659 		goto out;
3660 
3661 	calc_sectors(conf, mddev->dev_sectors);
3662 	if (mddev->reshape_position == MaxSector) {
3663 		conf->prev = conf->geo;
3664 		conf->reshape_progress = MaxSector;
3665 	} else {
3666 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3667 			err = -EINVAL;
3668 			goto out;
3669 		}
3670 		conf->reshape_progress = mddev->reshape_position;
3671 		if (conf->prev.far_offset)
3672 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3673 		else
3674 			/* far_copies must be 1 */
3675 			conf->prev.stride = conf->dev_sectors;
3676 	}
3677 	conf->reshape_safe = conf->reshape_progress;
3678 	spin_lock_init(&conf->device_lock);
3679 	INIT_LIST_HEAD(&conf->retry_list);
3680 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3681 
3682 	spin_lock_init(&conf->resync_lock);
3683 	init_waitqueue_head(&conf->wait_barrier);
3684 	atomic_set(&conf->nr_pending, 0);
3685 
3686 	err = -ENOMEM;
3687 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3688 	if (!conf->thread)
3689 		goto out;
3690 
3691 	conf->mddev = mddev;
3692 	return conf;
3693 
3694  out:
3695 	if (conf) {
3696 		mempool_exit(&conf->r10bio_pool);
3697 		kfree(conf->mirrors);
3698 		safe_put_page(conf->tmppage);
3699 		bioset_exit(&conf->bio_split);
3700 		kfree(conf);
3701 	}
3702 	return ERR_PTR(err);
3703 }
3704 
3705 static void raid10_set_io_opt(struct r10conf *conf)
3706 {
3707 	int raid_disks = conf->geo.raid_disks;
3708 
3709 	if (!(conf->geo.raid_disks % conf->geo.near_copies))
3710 		raid_disks /= conf->geo.near_copies;
3711 	blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
3712 			 raid_disks);
3713 }
3714 
3715 static int raid10_run(struct mddev *mddev)
3716 {
3717 	struct r10conf *conf;
3718 	int i, disk_idx;
3719 	struct raid10_info *disk;
3720 	struct md_rdev *rdev;
3721 	sector_t size;
3722 	sector_t min_offset_diff = 0;
3723 	int first = 1;
3724 	bool discard_supported = false;
3725 
3726 	if (mddev_init_writes_pending(mddev) < 0)
3727 		return -ENOMEM;
3728 
3729 	if (mddev->private == NULL) {
3730 		conf = setup_conf(mddev);
3731 		if (IS_ERR(conf))
3732 			return PTR_ERR(conf);
3733 		mddev->private = conf;
3734 	}
3735 	conf = mddev->private;
3736 	if (!conf)
3737 		goto out;
3738 
3739 	if (mddev_is_clustered(conf->mddev)) {
3740 		int fc, fo;
3741 
3742 		fc = (mddev->layout >> 8) & 255;
3743 		fo = mddev->layout & (1<<16);
3744 		if (fc > 1 || fo > 0) {
3745 			pr_err("only near layout is supported by clustered"
3746 				" raid10\n");
3747 			goto out_free_conf;
3748 		}
3749 	}
3750 
3751 	mddev->thread = conf->thread;
3752 	conf->thread = NULL;
3753 
3754 	if (mddev->queue) {
3755 		blk_queue_max_discard_sectors(mddev->queue,
3756 					      mddev->chunk_sectors);
3757 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3758 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3759 		blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
3760 		raid10_set_io_opt(conf);
3761 	}
3762 
3763 	rdev_for_each(rdev, mddev) {
3764 		long long diff;
3765 
3766 		disk_idx = rdev->raid_disk;
3767 		if (disk_idx < 0)
3768 			continue;
3769 		if (disk_idx >= conf->geo.raid_disks &&
3770 		    disk_idx >= conf->prev.raid_disks)
3771 			continue;
3772 		disk = conf->mirrors + disk_idx;
3773 
3774 		if (test_bit(Replacement, &rdev->flags)) {
3775 			if (disk->replacement)
3776 				goto out_free_conf;
3777 			disk->replacement = rdev;
3778 		} else {
3779 			if (disk->rdev)
3780 				goto out_free_conf;
3781 			disk->rdev = rdev;
3782 		}
3783 		diff = (rdev->new_data_offset - rdev->data_offset);
3784 		if (!mddev->reshape_backwards)
3785 			diff = -diff;
3786 		if (diff < 0)
3787 			diff = 0;
3788 		if (first || diff < min_offset_diff)
3789 			min_offset_diff = diff;
3790 
3791 		if (mddev->gendisk)
3792 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3793 					  rdev->data_offset << 9);
3794 
3795 		disk->head_position = 0;
3796 
3797 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3798 			discard_supported = true;
3799 		first = 0;
3800 	}
3801 
3802 	if (mddev->queue) {
3803 		if (discard_supported)
3804 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3805 						mddev->queue);
3806 		else
3807 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3808 						  mddev->queue);
3809 	}
3810 	/* need to check that every block has at least one working mirror */
3811 	if (!enough(conf, -1)) {
3812 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3813 		       mdname(mddev));
3814 		goto out_free_conf;
3815 	}
3816 
3817 	if (conf->reshape_progress != MaxSector) {
3818 		/* must ensure that shape change is supported */
3819 		if (conf->geo.far_copies != 1 &&
3820 		    conf->geo.far_offset == 0)
3821 			goto out_free_conf;
3822 		if (conf->prev.far_copies != 1 &&
3823 		    conf->prev.far_offset == 0)
3824 			goto out_free_conf;
3825 	}
3826 
3827 	mddev->degraded = 0;
3828 	for (i = 0;
3829 	     i < conf->geo.raid_disks
3830 		     || i < conf->prev.raid_disks;
3831 	     i++) {
3832 
3833 		disk = conf->mirrors + i;
3834 
3835 		if (!disk->rdev && disk->replacement) {
3836 			/* The replacement is all we have - use it */
3837 			disk->rdev = disk->replacement;
3838 			disk->replacement = NULL;
3839 			clear_bit(Replacement, &disk->rdev->flags);
3840 		}
3841 
3842 		if (!disk->rdev ||
3843 		    !test_bit(In_sync, &disk->rdev->flags)) {
3844 			disk->head_position = 0;
3845 			mddev->degraded++;
3846 			if (disk->rdev &&
3847 			    disk->rdev->saved_raid_disk < 0)
3848 				conf->fullsync = 1;
3849 		}
3850 
3851 		if (disk->replacement &&
3852 		    !test_bit(In_sync, &disk->replacement->flags) &&
3853 		    disk->replacement->saved_raid_disk < 0) {
3854 			conf->fullsync = 1;
3855 		}
3856 
3857 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3858 	}
3859 
3860 	if (mddev->recovery_cp != MaxSector)
3861 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3862 			  mdname(mddev));
3863 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3864 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3865 		conf->geo.raid_disks);
3866 	/*
3867 	 * Ok, everything is just fine now
3868 	 */
3869 	mddev->dev_sectors = conf->dev_sectors;
3870 	size = raid10_size(mddev, 0, 0);
3871 	md_set_array_sectors(mddev, size);
3872 	mddev->resync_max_sectors = size;
3873 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3874 
3875 	if (md_integrity_register(mddev))
3876 		goto out_free_conf;
3877 
3878 	if (conf->reshape_progress != MaxSector) {
3879 		unsigned long before_length, after_length;
3880 
3881 		before_length = ((1 << conf->prev.chunk_shift) *
3882 				 conf->prev.far_copies);
3883 		after_length = ((1 << conf->geo.chunk_shift) *
3884 				conf->geo.far_copies);
3885 
3886 		if (max(before_length, after_length) > min_offset_diff) {
3887 			/* This cannot work */
3888 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3889 			goto out_free_conf;
3890 		}
3891 		conf->offset_diff = min_offset_diff;
3892 
3893 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3894 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3895 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3896 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3897 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3898 							"reshape");
3899 		if (!mddev->sync_thread)
3900 			goto out_free_conf;
3901 	}
3902 
3903 	return 0;
3904 
3905 out_free_conf:
3906 	md_unregister_thread(&mddev->thread);
3907 	mempool_exit(&conf->r10bio_pool);
3908 	safe_put_page(conf->tmppage);
3909 	kfree(conf->mirrors);
3910 	kfree(conf);
3911 	mddev->private = NULL;
3912 out:
3913 	return -EIO;
3914 }
3915 
3916 static void raid10_free(struct mddev *mddev, void *priv)
3917 {
3918 	struct r10conf *conf = priv;
3919 
3920 	mempool_exit(&conf->r10bio_pool);
3921 	safe_put_page(conf->tmppage);
3922 	kfree(conf->mirrors);
3923 	kfree(conf->mirrors_old);
3924 	kfree(conf->mirrors_new);
3925 	bioset_exit(&conf->bio_split);
3926 	kfree(conf);
3927 }
3928 
3929 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3930 {
3931 	struct r10conf *conf = mddev->private;
3932 
3933 	if (quiesce)
3934 		raise_barrier(conf, 0);
3935 	else
3936 		lower_barrier(conf);
3937 }
3938 
3939 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3940 {
3941 	/* Resize of 'far' arrays is not supported.
3942 	 * For 'near' and 'offset' arrays we can set the
3943 	 * number of sectors used to be an appropriate multiple
3944 	 * of the chunk size.
3945 	 * For 'offset', this is far_copies*chunksize.
3946 	 * For 'near' the multiplier is the LCM of
3947 	 * near_copies and raid_disks.
3948 	 * So if far_copies > 1 && !far_offset, fail.
3949 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3950 	 * multiply by chunk_size.  Then round to this number.
3951 	 * This is mostly done by raid10_size()
3952 	 */
3953 	struct r10conf *conf = mddev->private;
3954 	sector_t oldsize, size;
3955 
3956 	if (mddev->reshape_position != MaxSector)
3957 		return -EBUSY;
3958 
3959 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3960 		return -EINVAL;
3961 
3962 	oldsize = raid10_size(mddev, 0, 0);
3963 	size = raid10_size(mddev, sectors, 0);
3964 	if (mddev->external_size &&
3965 	    mddev->array_sectors > size)
3966 		return -EINVAL;
3967 	if (mddev->bitmap) {
3968 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3969 		if (ret)
3970 			return ret;
3971 	}
3972 	md_set_array_sectors(mddev, size);
3973 	if (sectors > mddev->dev_sectors &&
3974 	    mddev->recovery_cp > oldsize) {
3975 		mddev->recovery_cp = oldsize;
3976 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3977 	}
3978 	calc_sectors(conf, sectors);
3979 	mddev->dev_sectors = conf->dev_sectors;
3980 	mddev->resync_max_sectors = size;
3981 	return 0;
3982 }
3983 
3984 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3985 {
3986 	struct md_rdev *rdev;
3987 	struct r10conf *conf;
3988 
3989 	if (mddev->degraded > 0) {
3990 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3991 			mdname(mddev));
3992 		return ERR_PTR(-EINVAL);
3993 	}
3994 	sector_div(size, devs);
3995 
3996 	/* Set new parameters */
3997 	mddev->new_level = 10;
3998 	/* new layout: far_copies = 1, near_copies = 2 */
3999 	mddev->new_layout = (1<<8) + 2;
4000 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4001 	mddev->delta_disks = mddev->raid_disks;
4002 	mddev->raid_disks *= 2;
4003 	/* make sure it will be not marked as dirty */
4004 	mddev->recovery_cp = MaxSector;
4005 	mddev->dev_sectors = size;
4006 
4007 	conf = setup_conf(mddev);
4008 	if (!IS_ERR(conf)) {
4009 		rdev_for_each(rdev, mddev)
4010 			if (rdev->raid_disk >= 0) {
4011 				rdev->new_raid_disk = rdev->raid_disk * 2;
4012 				rdev->sectors = size;
4013 			}
4014 		conf->barrier = 1;
4015 	}
4016 
4017 	return conf;
4018 }
4019 
4020 static void *raid10_takeover(struct mddev *mddev)
4021 {
4022 	struct r0conf *raid0_conf;
4023 
4024 	/* raid10 can take over:
4025 	 *  raid0 - providing it has only two drives
4026 	 */
4027 	if (mddev->level == 0) {
4028 		/* for raid0 takeover only one zone is supported */
4029 		raid0_conf = mddev->private;
4030 		if (raid0_conf->nr_strip_zones > 1) {
4031 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4032 				mdname(mddev));
4033 			return ERR_PTR(-EINVAL);
4034 		}
4035 		return raid10_takeover_raid0(mddev,
4036 			raid0_conf->strip_zone->zone_end,
4037 			raid0_conf->strip_zone->nb_dev);
4038 	}
4039 	return ERR_PTR(-EINVAL);
4040 }
4041 
4042 static int raid10_check_reshape(struct mddev *mddev)
4043 {
4044 	/* Called when there is a request to change
4045 	 * - layout (to ->new_layout)
4046 	 * - chunk size (to ->new_chunk_sectors)
4047 	 * - raid_disks (by delta_disks)
4048 	 * or when trying to restart a reshape that was ongoing.
4049 	 *
4050 	 * We need to validate the request and possibly allocate
4051 	 * space if that might be an issue later.
4052 	 *
4053 	 * Currently we reject any reshape of a 'far' mode array,
4054 	 * allow chunk size to change if new is generally acceptable,
4055 	 * allow raid_disks to increase, and allow
4056 	 * a switch between 'near' mode and 'offset' mode.
4057 	 */
4058 	struct r10conf *conf = mddev->private;
4059 	struct geom geo;
4060 
4061 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4062 		return -EINVAL;
4063 
4064 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4065 		/* mustn't change number of copies */
4066 		return -EINVAL;
4067 	if (geo.far_copies > 1 && !geo.far_offset)
4068 		/* Cannot switch to 'far' mode */
4069 		return -EINVAL;
4070 
4071 	if (mddev->array_sectors & geo.chunk_mask)
4072 			/* not factor of array size */
4073 			return -EINVAL;
4074 
4075 	if (!enough(conf, -1))
4076 		return -EINVAL;
4077 
4078 	kfree(conf->mirrors_new);
4079 	conf->mirrors_new = NULL;
4080 	if (mddev->delta_disks > 0) {
4081 		/* allocate new 'mirrors' list */
4082 		conf->mirrors_new =
4083 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4084 				sizeof(struct raid10_info),
4085 				GFP_KERNEL);
4086 		if (!conf->mirrors_new)
4087 			return -ENOMEM;
4088 	}
4089 	return 0;
4090 }
4091 
4092 /*
4093  * Need to check if array has failed when deciding whether to:
4094  *  - start an array
4095  *  - remove non-faulty devices
4096  *  - add a spare
4097  *  - allow a reshape
4098  * This determination is simple when no reshape is happening.
4099  * However if there is a reshape, we need to carefully check
4100  * both the before and after sections.
4101  * This is because some failed devices may only affect one
4102  * of the two sections, and some non-in_sync devices may
4103  * be insync in the section most affected by failed devices.
4104  */
4105 static int calc_degraded(struct r10conf *conf)
4106 {
4107 	int degraded, degraded2;
4108 	int i;
4109 
4110 	rcu_read_lock();
4111 	degraded = 0;
4112 	/* 'prev' section first */
4113 	for (i = 0; i < conf->prev.raid_disks; i++) {
4114 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4115 		if (!rdev || test_bit(Faulty, &rdev->flags))
4116 			degraded++;
4117 		else if (!test_bit(In_sync, &rdev->flags))
4118 			/* When we can reduce the number of devices in
4119 			 * an array, this might not contribute to
4120 			 * 'degraded'.  It does now.
4121 			 */
4122 			degraded++;
4123 	}
4124 	rcu_read_unlock();
4125 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4126 		return degraded;
4127 	rcu_read_lock();
4128 	degraded2 = 0;
4129 	for (i = 0; i < conf->geo.raid_disks; i++) {
4130 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4131 		if (!rdev || test_bit(Faulty, &rdev->flags))
4132 			degraded2++;
4133 		else if (!test_bit(In_sync, &rdev->flags)) {
4134 			/* If reshape is increasing the number of devices,
4135 			 * this section has already been recovered, so
4136 			 * it doesn't contribute to degraded.
4137 			 * else it does.
4138 			 */
4139 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4140 				degraded2++;
4141 		}
4142 	}
4143 	rcu_read_unlock();
4144 	if (degraded2 > degraded)
4145 		return degraded2;
4146 	return degraded;
4147 }
4148 
4149 static int raid10_start_reshape(struct mddev *mddev)
4150 {
4151 	/* A 'reshape' has been requested. This commits
4152 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4153 	 * This also checks if there are enough spares and adds them
4154 	 * to the array.
4155 	 * We currently require enough spares to make the final
4156 	 * array non-degraded.  We also require that the difference
4157 	 * between old and new data_offset - on each device - is
4158 	 * enough that we never risk over-writing.
4159 	 */
4160 
4161 	unsigned long before_length, after_length;
4162 	sector_t min_offset_diff = 0;
4163 	int first = 1;
4164 	struct geom new;
4165 	struct r10conf *conf = mddev->private;
4166 	struct md_rdev *rdev;
4167 	int spares = 0;
4168 	int ret;
4169 
4170 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4171 		return -EBUSY;
4172 
4173 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4174 		return -EINVAL;
4175 
4176 	before_length = ((1 << conf->prev.chunk_shift) *
4177 			 conf->prev.far_copies);
4178 	after_length = ((1 << conf->geo.chunk_shift) *
4179 			conf->geo.far_copies);
4180 
4181 	rdev_for_each(rdev, mddev) {
4182 		if (!test_bit(In_sync, &rdev->flags)
4183 		    && !test_bit(Faulty, &rdev->flags))
4184 			spares++;
4185 		if (rdev->raid_disk >= 0) {
4186 			long long diff = (rdev->new_data_offset
4187 					  - rdev->data_offset);
4188 			if (!mddev->reshape_backwards)
4189 				diff = -diff;
4190 			if (diff < 0)
4191 				diff = 0;
4192 			if (first || diff < min_offset_diff)
4193 				min_offset_diff = diff;
4194 			first = 0;
4195 		}
4196 	}
4197 
4198 	if (max(before_length, after_length) > min_offset_diff)
4199 		return -EINVAL;
4200 
4201 	if (spares < mddev->delta_disks)
4202 		return -EINVAL;
4203 
4204 	conf->offset_diff = min_offset_diff;
4205 	spin_lock_irq(&conf->device_lock);
4206 	if (conf->mirrors_new) {
4207 		memcpy(conf->mirrors_new, conf->mirrors,
4208 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4209 		smp_mb();
4210 		kfree(conf->mirrors_old);
4211 		conf->mirrors_old = conf->mirrors;
4212 		conf->mirrors = conf->mirrors_new;
4213 		conf->mirrors_new = NULL;
4214 	}
4215 	setup_geo(&conf->geo, mddev, geo_start);
4216 	smp_mb();
4217 	if (mddev->reshape_backwards) {
4218 		sector_t size = raid10_size(mddev, 0, 0);
4219 		if (size < mddev->array_sectors) {
4220 			spin_unlock_irq(&conf->device_lock);
4221 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4222 				mdname(mddev));
4223 			return -EINVAL;
4224 		}
4225 		mddev->resync_max_sectors = size;
4226 		conf->reshape_progress = size;
4227 	} else
4228 		conf->reshape_progress = 0;
4229 	conf->reshape_safe = conf->reshape_progress;
4230 	spin_unlock_irq(&conf->device_lock);
4231 
4232 	if (mddev->delta_disks && mddev->bitmap) {
4233 		struct mdp_superblock_1 *sb = NULL;
4234 		sector_t oldsize, newsize;
4235 
4236 		oldsize = raid10_size(mddev, 0, 0);
4237 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4238 
4239 		if (!mddev_is_clustered(mddev)) {
4240 			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4241 			if (ret)
4242 				goto abort;
4243 			else
4244 				goto out;
4245 		}
4246 
4247 		rdev_for_each(rdev, mddev) {
4248 			if (rdev->raid_disk > -1 &&
4249 			    !test_bit(Faulty, &rdev->flags))
4250 				sb = page_address(rdev->sb_page);
4251 		}
4252 
4253 		/*
4254 		 * some node is already performing reshape, and no need to
4255 		 * call md_bitmap_resize again since it should be called when
4256 		 * receiving BITMAP_RESIZE msg
4257 		 */
4258 		if ((sb && (le32_to_cpu(sb->feature_map) &
4259 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4260 			goto out;
4261 
4262 		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4263 		if (ret)
4264 			goto abort;
4265 
4266 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4267 		if (ret) {
4268 			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4269 			goto abort;
4270 		}
4271 	}
4272 out:
4273 	if (mddev->delta_disks > 0) {
4274 		rdev_for_each(rdev, mddev)
4275 			if (rdev->raid_disk < 0 &&
4276 			    !test_bit(Faulty, &rdev->flags)) {
4277 				if (raid10_add_disk(mddev, rdev) == 0) {
4278 					if (rdev->raid_disk >=
4279 					    conf->prev.raid_disks)
4280 						set_bit(In_sync, &rdev->flags);
4281 					else
4282 						rdev->recovery_offset = 0;
4283 
4284 					/* Failure here is OK */
4285 					sysfs_link_rdev(mddev, rdev);
4286 				}
4287 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4288 				   && !test_bit(Faulty, &rdev->flags)) {
4289 				/* This is a spare that was manually added */
4290 				set_bit(In_sync, &rdev->flags);
4291 			}
4292 	}
4293 	/* When a reshape changes the number of devices,
4294 	 * ->degraded is measured against the larger of the
4295 	 * pre and  post numbers.
4296 	 */
4297 	spin_lock_irq(&conf->device_lock);
4298 	mddev->degraded = calc_degraded(conf);
4299 	spin_unlock_irq(&conf->device_lock);
4300 	mddev->raid_disks = conf->geo.raid_disks;
4301 	mddev->reshape_position = conf->reshape_progress;
4302 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4303 
4304 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4305 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4306 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4307 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4308 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4309 
4310 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4311 						"reshape");
4312 	if (!mddev->sync_thread) {
4313 		ret = -EAGAIN;
4314 		goto abort;
4315 	}
4316 	conf->reshape_checkpoint = jiffies;
4317 	md_wakeup_thread(mddev->sync_thread);
4318 	md_new_event(mddev);
4319 	return 0;
4320 
4321 abort:
4322 	mddev->recovery = 0;
4323 	spin_lock_irq(&conf->device_lock);
4324 	conf->geo = conf->prev;
4325 	mddev->raid_disks = conf->geo.raid_disks;
4326 	rdev_for_each(rdev, mddev)
4327 		rdev->new_data_offset = rdev->data_offset;
4328 	smp_wmb();
4329 	conf->reshape_progress = MaxSector;
4330 	conf->reshape_safe = MaxSector;
4331 	mddev->reshape_position = MaxSector;
4332 	spin_unlock_irq(&conf->device_lock);
4333 	return ret;
4334 }
4335 
4336 /* Calculate the last device-address that could contain
4337  * any block from the chunk that includes the array-address 's'
4338  * and report the next address.
4339  * i.e. the address returned will be chunk-aligned and after
4340  * any data that is in the chunk containing 's'.
4341  */
4342 static sector_t last_dev_address(sector_t s, struct geom *geo)
4343 {
4344 	s = (s | geo->chunk_mask) + 1;
4345 	s >>= geo->chunk_shift;
4346 	s *= geo->near_copies;
4347 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4348 	s *= geo->far_copies;
4349 	s <<= geo->chunk_shift;
4350 	return s;
4351 }
4352 
4353 /* Calculate the first device-address that could contain
4354  * any block from the chunk that includes the array-address 's'.
4355  * This too will be the start of a chunk
4356  */
4357 static sector_t first_dev_address(sector_t s, struct geom *geo)
4358 {
4359 	s >>= geo->chunk_shift;
4360 	s *= geo->near_copies;
4361 	sector_div(s, geo->raid_disks);
4362 	s *= geo->far_copies;
4363 	s <<= geo->chunk_shift;
4364 	return s;
4365 }
4366 
4367 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4368 				int *skipped)
4369 {
4370 	/* We simply copy at most one chunk (smallest of old and new)
4371 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4372 	 * or we hit a bad block or something.
4373 	 * This might mean we pause for normal IO in the middle of
4374 	 * a chunk, but that is not a problem as mddev->reshape_position
4375 	 * can record any location.
4376 	 *
4377 	 * If we will want to write to a location that isn't
4378 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4379 	 * we need to flush all reshape requests and update the metadata.
4380 	 *
4381 	 * When reshaping forwards (e.g. to more devices), we interpret
4382 	 * 'safe' as the earliest block which might not have been copied
4383 	 * down yet.  We divide this by previous stripe size and multiply
4384 	 * by previous stripe length to get lowest device offset that we
4385 	 * cannot write to yet.
4386 	 * We interpret 'sector_nr' as an address that we want to write to.
4387 	 * From this we use last_device_address() to find where we might
4388 	 * write to, and first_device_address on the  'safe' position.
4389 	 * If this 'next' write position is after the 'safe' position,
4390 	 * we must update the metadata to increase the 'safe' position.
4391 	 *
4392 	 * When reshaping backwards, we round in the opposite direction
4393 	 * and perform the reverse test:  next write position must not be
4394 	 * less than current safe position.
4395 	 *
4396 	 * In all this the minimum difference in data offsets
4397 	 * (conf->offset_diff - always positive) allows a bit of slack,
4398 	 * so next can be after 'safe', but not by more than offset_diff
4399 	 *
4400 	 * We need to prepare all the bios here before we start any IO
4401 	 * to ensure the size we choose is acceptable to all devices.
4402 	 * The means one for each copy for write-out and an extra one for
4403 	 * read-in.
4404 	 * We store the read-in bio in ->master_bio and the others in
4405 	 * ->devs[x].bio and ->devs[x].repl_bio.
4406 	 */
4407 	struct r10conf *conf = mddev->private;
4408 	struct r10bio *r10_bio;
4409 	sector_t next, safe, last;
4410 	int max_sectors;
4411 	int nr_sectors;
4412 	int s;
4413 	struct md_rdev *rdev;
4414 	int need_flush = 0;
4415 	struct bio *blist;
4416 	struct bio *bio, *read_bio;
4417 	int sectors_done = 0;
4418 	struct page **pages;
4419 
4420 	if (sector_nr == 0) {
4421 		/* If restarting in the middle, skip the initial sectors */
4422 		if (mddev->reshape_backwards &&
4423 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4424 			sector_nr = (raid10_size(mddev, 0, 0)
4425 				     - conf->reshape_progress);
4426 		} else if (!mddev->reshape_backwards &&
4427 			   conf->reshape_progress > 0)
4428 			sector_nr = conf->reshape_progress;
4429 		if (sector_nr) {
4430 			mddev->curr_resync_completed = sector_nr;
4431 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4432 			*skipped = 1;
4433 			return sector_nr;
4434 		}
4435 	}
4436 
4437 	/* We don't use sector_nr to track where we are up to
4438 	 * as that doesn't work well for ->reshape_backwards.
4439 	 * So just use ->reshape_progress.
4440 	 */
4441 	if (mddev->reshape_backwards) {
4442 		/* 'next' is the earliest device address that we might
4443 		 * write to for this chunk in the new layout
4444 		 */
4445 		next = first_dev_address(conf->reshape_progress - 1,
4446 					 &conf->geo);
4447 
4448 		/* 'safe' is the last device address that we might read from
4449 		 * in the old layout after a restart
4450 		 */
4451 		safe = last_dev_address(conf->reshape_safe - 1,
4452 					&conf->prev);
4453 
4454 		if (next + conf->offset_diff < safe)
4455 			need_flush = 1;
4456 
4457 		last = conf->reshape_progress - 1;
4458 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4459 					       & conf->prev.chunk_mask);
4460 		if (sector_nr + RESYNC_SECTORS < last)
4461 			sector_nr = last + 1 - RESYNC_SECTORS;
4462 	} else {
4463 		/* 'next' is after the last device address that we
4464 		 * might write to for this chunk in the new layout
4465 		 */
4466 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4467 
4468 		/* 'safe' is the earliest device address that we might
4469 		 * read from in the old layout after a restart
4470 		 */
4471 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4472 
4473 		/* Need to update metadata if 'next' might be beyond 'safe'
4474 		 * as that would possibly corrupt data
4475 		 */
4476 		if (next > safe + conf->offset_diff)
4477 			need_flush = 1;
4478 
4479 		sector_nr = conf->reshape_progress;
4480 		last  = sector_nr | (conf->geo.chunk_mask
4481 				     & conf->prev.chunk_mask);
4482 
4483 		if (sector_nr + RESYNC_SECTORS <= last)
4484 			last = sector_nr + RESYNC_SECTORS - 1;
4485 	}
4486 
4487 	if (need_flush ||
4488 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4489 		/* Need to update reshape_position in metadata */
4490 		wait_barrier(conf);
4491 		mddev->reshape_position = conf->reshape_progress;
4492 		if (mddev->reshape_backwards)
4493 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4494 				- conf->reshape_progress;
4495 		else
4496 			mddev->curr_resync_completed = conf->reshape_progress;
4497 		conf->reshape_checkpoint = jiffies;
4498 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4499 		md_wakeup_thread(mddev->thread);
4500 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4501 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4502 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4503 			allow_barrier(conf);
4504 			return sectors_done;
4505 		}
4506 		conf->reshape_safe = mddev->reshape_position;
4507 		allow_barrier(conf);
4508 	}
4509 
4510 	raise_barrier(conf, 0);
4511 read_more:
4512 	/* Now schedule reads for blocks from sector_nr to last */
4513 	r10_bio = raid10_alloc_init_r10buf(conf);
4514 	r10_bio->state = 0;
4515 	raise_barrier(conf, 1);
4516 	atomic_set(&r10_bio->remaining, 0);
4517 	r10_bio->mddev = mddev;
4518 	r10_bio->sector = sector_nr;
4519 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4520 	r10_bio->sectors = last - sector_nr + 1;
4521 	rdev = read_balance(conf, r10_bio, &max_sectors);
4522 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4523 
4524 	if (!rdev) {
4525 		/* Cannot read from here, so need to record bad blocks
4526 		 * on all the target devices.
4527 		 */
4528 		// FIXME
4529 		mempool_free(r10_bio, &conf->r10buf_pool);
4530 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4531 		return sectors_done;
4532 	}
4533 
4534 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4535 
4536 	bio_set_dev(read_bio, rdev->bdev);
4537 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4538 			       + rdev->data_offset);
4539 	read_bio->bi_private = r10_bio;
4540 	read_bio->bi_end_io = end_reshape_read;
4541 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4542 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4543 	read_bio->bi_status = 0;
4544 	read_bio->bi_vcnt = 0;
4545 	read_bio->bi_iter.bi_size = 0;
4546 	r10_bio->master_bio = read_bio;
4547 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4548 
4549 	/*
4550 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4551 	 * write to the region to avoid conflict.
4552 	*/
4553 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4554 		struct mdp_superblock_1 *sb = NULL;
4555 		int sb_reshape_pos = 0;
4556 
4557 		conf->cluster_sync_low = sector_nr;
4558 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4559 		sb = page_address(rdev->sb_page);
4560 		if (sb) {
4561 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4562 			/*
4563 			 * Set cluster_sync_low again if next address for array
4564 			 * reshape is less than cluster_sync_low. Since we can't
4565 			 * update cluster_sync_low until it has finished reshape.
4566 			 */
4567 			if (sb_reshape_pos < conf->cluster_sync_low)
4568 				conf->cluster_sync_low = sb_reshape_pos;
4569 		}
4570 
4571 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4572 							  conf->cluster_sync_high);
4573 	}
4574 
4575 	/* Now find the locations in the new layout */
4576 	__raid10_find_phys(&conf->geo, r10_bio);
4577 
4578 	blist = read_bio;
4579 	read_bio->bi_next = NULL;
4580 
4581 	rcu_read_lock();
4582 	for (s = 0; s < conf->copies*2; s++) {
4583 		struct bio *b;
4584 		int d = r10_bio->devs[s/2].devnum;
4585 		struct md_rdev *rdev2;
4586 		if (s&1) {
4587 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4588 			b = r10_bio->devs[s/2].repl_bio;
4589 		} else {
4590 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4591 			b = r10_bio->devs[s/2].bio;
4592 		}
4593 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4594 			continue;
4595 
4596 		bio_set_dev(b, rdev2->bdev);
4597 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4598 			rdev2->new_data_offset;
4599 		b->bi_end_io = end_reshape_write;
4600 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4601 		b->bi_next = blist;
4602 		blist = b;
4603 	}
4604 
4605 	/* Now add as many pages as possible to all of these bios. */
4606 
4607 	nr_sectors = 0;
4608 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4609 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4610 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4611 		int len = (max_sectors - s) << 9;
4612 		if (len > PAGE_SIZE)
4613 			len = PAGE_SIZE;
4614 		for (bio = blist; bio ; bio = bio->bi_next) {
4615 			/*
4616 			 * won't fail because the vec table is big enough
4617 			 * to hold all these pages
4618 			 */
4619 			bio_add_page(bio, page, len, 0);
4620 		}
4621 		sector_nr += len >> 9;
4622 		nr_sectors += len >> 9;
4623 	}
4624 	rcu_read_unlock();
4625 	r10_bio->sectors = nr_sectors;
4626 
4627 	/* Now submit the read */
4628 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4629 	atomic_inc(&r10_bio->remaining);
4630 	read_bio->bi_next = NULL;
4631 	submit_bio_noacct(read_bio);
4632 	sectors_done += nr_sectors;
4633 	if (sector_nr <= last)
4634 		goto read_more;
4635 
4636 	lower_barrier(conf);
4637 
4638 	/* Now that we have done the whole section we can
4639 	 * update reshape_progress
4640 	 */
4641 	if (mddev->reshape_backwards)
4642 		conf->reshape_progress -= sectors_done;
4643 	else
4644 		conf->reshape_progress += sectors_done;
4645 
4646 	return sectors_done;
4647 }
4648 
4649 static void end_reshape_request(struct r10bio *r10_bio);
4650 static int handle_reshape_read_error(struct mddev *mddev,
4651 				     struct r10bio *r10_bio);
4652 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4653 {
4654 	/* Reshape read completed.  Hopefully we have a block
4655 	 * to write out.
4656 	 * If we got a read error then we do sync 1-page reads from
4657 	 * elsewhere until we find the data - or give up.
4658 	 */
4659 	struct r10conf *conf = mddev->private;
4660 	int s;
4661 
4662 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4663 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4664 			/* Reshape has been aborted */
4665 			md_done_sync(mddev, r10_bio->sectors, 0);
4666 			return;
4667 		}
4668 
4669 	/* We definitely have the data in the pages, schedule the
4670 	 * writes.
4671 	 */
4672 	atomic_set(&r10_bio->remaining, 1);
4673 	for (s = 0; s < conf->copies*2; s++) {
4674 		struct bio *b;
4675 		int d = r10_bio->devs[s/2].devnum;
4676 		struct md_rdev *rdev;
4677 		rcu_read_lock();
4678 		if (s&1) {
4679 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4680 			b = r10_bio->devs[s/2].repl_bio;
4681 		} else {
4682 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4683 			b = r10_bio->devs[s/2].bio;
4684 		}
4685 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4686 			rcu_read_unlock();
4687 			continue;
4688 		}
4689 		atomic_inc(&rdev->nr_pending);
4690 		rcu_read_unlock();
4691 		md_sync_acct_bio(b, r10_bio->sectors);
4692 		atomic_inc(&r10_bio->remaining);
4693 		b->bi_next = NULL;
4694 		submit_bio_noacct(b);
4695 	}
4696 	end_reshape_request(r10_bio);
4697 }
4698 
4699 static void end_reshape(struct r10conf *conf)
4700 {
4701 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4702 		return;
4703 
4704 	spin_lock_irq(&conf->device_lock);
4705 	conf->prev = conf->geo;
4706 	md_finish_reshape(conf->mddev);
4707 	smp_wmb();
4708 	conf->reshape_progress = MaxSector;
4709 	conf->reshape_safe = MaxSector;
4710 	spin_unlock_irq(&conf->device_lock);
4711 
4712 	if (conf->mddev->queue)
4713 		raid10_set_io_opt(conf);
4714 	conf->fullsync = 0;
4715 }
4716 
4717 static void raid10_update_reshape_pos(struct mddev *mddev)
4718 {
4719 	struct r10conf *conf = mddev->private;
4720 	sector_t lo, hi;
4721 
4722 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4723 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4724 	    || mddev->reshape_position == MaxSector)
4725 		conf->reshape_progress = mddev->reshape_position;
4726 	else
4727 		WARN_ON_ONCE(1);
4728 }
4729 
4730 static int handle_reshape_read_error(struct mddev *mddev,
4731 				     struct r10bio *r10_bio)
4732 {
4733 	/* Use sync reads to get the blocks from somewhere else */
4734 	int sectors = r10_bio->sectors;
4735 	struct r10conf *conf = mddev->private;
4736 	struct r10bio *r10b;
4737 	int slot = 0;
4738 	int idx = 0;
4739 	struct page **pages;
4740 
4741 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4742 	if (!r10b) {
4743 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4744 		return -ENOMEM;
4745 	}
4746 
4747 	/* reshape IOs share pages from .devs[0].bio */
4748 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4749 
4750 	r10b->sector = r10_bio->sector;
4751 	__raid10_find_phys(&conf->prev, r10b);
4752 
4753 	while (sectors) {
4754 		int s = sectors;
4755 		int success = 0;
4756 		int first_slot = slot;
4757 
4758 		if (s > (PAGE_SIZE >> 9))
4759 			s = PAGE_SIZE >> 9;
4760 
4761 		rcu_read_lock();
4762 		while (!success) {
4763 			int d = r10b->devs[slot].devnum;
4764 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4765 			sector_t addr;
4766 			if (rdev == NULL ||
4767 			    test_bit(Faulty, &rdev->flags) ||
4768 			    !test_bit(In_sync, &rdev->flags))
4769 				goto failed;
4770 
4771 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4772 			atomic_inc(&rdev->nr_pending);
4773 			rcu_read_unlock();
4774 			success = sync_page_io(rdev,
4775 					       addr,
4776 					       s << 9,
4777 					       pages[idx],
4778 					       REQ_OP_READ, 0, false);
4779 			rdev_dec_pending(rdev, mddev);
4780 			rcu_read_lock();
4781 			if (success)
4782 				break;
4783 		failed:
4784 			slot++;
4785 			if (slot >= conf->copies)
4786 				slot = 0;
4787 			if (slot == first_slot)
4788 				break;
4789 		}
4790 		rcu_read_unlock();
4791 		if (!success) {
4792 			/* couldn't read this block, must give up */
4793 			set_bit(MD_RECOVERY_INTR,
4794 				&mddev->recovery);
4795 			kfree(r10b);
4796 			return -EIO;
4797 		}
4798 		sectors -= s;
4799 		idx++;
4800 	}
4801 	kfree(r10b);
4802 	return 0;
4803 }
4804 
4805 static void end_reshape_write(struct bio *bio)
4806 {
4807 	struct r10bio *r10_bio = get_resync_r10bio(bio);
4808 	struct mddev *mddev = r10_bio->mddev;
4809 	struct r10conf *conf = mddev->private;
4810 	int d;
4811 	int slot;
4812 	int repl;
4813 	struct md_rdev *rdev = NULL;
4814 
4815 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4816 	if (repl)
4817 		rdev = conf->mirrors[d].replacement;
4818 	if (!rdev) {
4819 		smp_mb();
4820 		rdev = conf->mirrors[d].rdev;
4821 	}
4822 
4823 	if (bio->bi_status) {
4824 		/* FIXME should record badblock */
4825 		md_error(mddev, rdev);
4826 	}
4827 
4828 	rdev_dec_pending(rdev, mddev);
4829 	end_reshape_request(r10_bio);
4830 }
4831 
4832 static void end_reshape_request(struct r10bio *r10_bio)
4833 {
4834 	if (!atomic_dec_and_test(&r10_bio->remaining))
4835 		return;
4836 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4837 	bio_put(r10_bio->master_bio);
4838 	put_buf(r10_bio);
4839 }
4840 
4841 static void raid10_finish_reshape(struct mddev *mddev)
4842 {
4843 	struct r10conf *conf = mddev->private;
4844 
4845 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4846 		return;
4847 
4848 	if (mddev->delta_disks > 0) {
4849 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4850 			mddev->recovery_cp = mddev->resync_max_sectors;
4851 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4852 		}
4853 		mddev->resync_max_sectors = mddev->array_sectors;
4854 	} else {
4855 		int d;
4856 		rcu_read_lock();
4857 		for (d = conf->geo.raid_disks ;
4858 		     d < conf->geo.raid_disks - mddev->delta_disks;
4859 		     d++) {
4860 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4861 			if (rdev)
4862 				clear_bit(In_sync, &rdev->flags);
4863 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4864 			if (rdev)
4865 				clear_bit(In_sync, &rdev->flags);
4866 		}
4867 		rcu_read_unlock();
4868 	}
4869 	mddev->layout = mddev->new_layout;
4870 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4871 	mddev->reshape_position = MaxSector;
4872 	mddev->delta_disks = 0;
4873 	mddev->reshape_backwards = 0;
4874 }
4875 
4876 static struct md_personality raid10_personality =
4877 {
4878 	.name		= "raid10",
4879 	.level		= 10,
4880 	.owner		= THIS_MODULE,
4881 	.make_request	= raid10_make_request,
4882 	.run		= raid10_run,
4883 	.free		= raid10_free,
4884 	.status		= raid10_status,
4885 	.error_handler	= raid10_error,
4886 	.hot_add_disk	= raid10_add_disk,
4887 	.hot_remove_disk= raid10_remove_disk,
4888 	.spare_active	= raid10_spare_active,
4889 	.sync_request	= raid10_sync_request,
4890 	.quiesce	= raid10_quiesce,
4891 	.size		= raid10_size,
4892 	.resize		= raid10_resize,
4893 	.takeover	= raid10_takeover,
4894 	.check_reshape	= raid10_check_reshape,
4895 	.start_reshape	= raid10_start_reshape,
4896 	.finish_reshape	= raid10_finish_reshape,
4897 	.update_reshape_pos = raid10_update_reshape_pos,
4898 };
4899 
4900 static int __init raid_init(void)
4901 {
4902 	return register_md_personality(&raid10_personality);
4903 }
4904 
4905 static void raid_exit(void)
4906 {
4907 	unregister_md_personality(&raid10_personality);
4908 }
4909 
4910 module_init(raid_init);
4911 module_exit(raid_exit);
4912 MODULE_LICENSE("GPL");
4913 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4914 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4915 MODULE_ALIAS("md-raid10");
4916 MODULE_ALIAS("md-level-10");
4917 
4918 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4919