1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * use_far_sets (stored in bit 17 of layout ) 42 * 43 * The data to be stored is divided into chunks using chunksize. Each device 44 * is divided into far_copies sections. In each section, chunks are laid out 45 * in a style similar to raid0, but near_copies copies of each chunk is stored 46 * (each on a different drive). The starting device for each section is offset 47 * near_copies from the starting device of the previous section. Thus there 48 * are (near_copies * far_copies) of each chunk, and each is on a different 49 * drive. near_copies and far_copies must be at least one, and their product 50 * is at most raid_disks. 51 * 52 * If far_offset is true, then the far_copies are handled a bit differently. 53 * The copies are still in different stripes, but instead of being very far 54 * apart on disk, there are adjacent stripes. 55 * 56 * The far and offset algorithms are handled slightly differently if 57 * 'use_far_sets' is true. In this case, the array's devices are grouped into 58 * sets that are (near_copies * far_copies) in size. The far copied stripes 59 * are still shifted by 'near_copies' devices, but this shifting stays confined 60 * to the set rather than the entire array. This is done to improve the number 61 * of device combinations that can fail without causing the array to fail. 62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 63 * on a device): 64 * A B C D A B C D E 65 * ... ... 66 * D A B C E A B C D 67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 68 * [A B] [C D] [A B] [C D E] 69 * |...| |...| |...| | ... | 70 * [B A] [D C] [B A] [E C D] 71 */ 72 73 /* 74 * Number of guaranteed r10bios in case of extreme VM load: 75 */ 76 #define NR_RAID10_BIOS 256 77 78 /* when we get a read error on a read-only array, we redirect to another 79 * device without failing the first device, or trying to over-write to 80 * correct the read error. To keep track of bad blocks on a per-bio 81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 82 */ 83 #define IO_BLOCKED ((struct bio *)1) 84 /* When we successfully write to a known bad-block, we need to remove the 85 * bad-block marking which must be done from process context. So we record 86 * the success by setting devs[n].bio to IO_MADE_GOOD 87 */ 88 #define IO_MADE_GOOD ((struct bio *)2) 89 90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 91 92 /* When there are this many requests queued to be written by 93 * the raid10 thread, we become 'congested' to provide back-pressure 94 * for writeback. 95 */ 96 static int max_queued_requests = 1024; 97 98 static void allow_barrier(struct r10conf *conf); 99 static void lower_barrier(struct r10conf *conf); 100 static int _enough(struct r10conf *conf, int previous, int ignore); 101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 102 int *skipped); 103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 104 static void end_reshape_write(struct bio *bio, int error); 105 static void end_reshape(struct r10conf *conf); 106 107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 108 { 109 struct r10conf *conf = data; 110 int size = offsetof(struct r10bio, devs[conf->copies]); 111 112 /* allocate a r10bio with room for raid_disks entries in the 113 * bios array */ 114 return kzalloc(size, gfp_flags); 115 } 116 117 static void r10bio_pool_free(void *r10_bio, void *data) 118 { 119 kfree(r10_bio); 120 } 121 122 /* Maximum size of each resync request */ 123 #define RESYNC_BLOCK_SIZE (64*1024) 124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 125 /* amount of memory to reserve for resync requests */ 126 #define RESYNC_WINDOW (1024*1024) 127 /* maximum number of concurrent requests, memory permitting */ 128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 129 130 /* 131 * When performing a resync, we need to read and compare, so 132 * we need as many pages are there are copies. 133 * When performing a recovery, we need 2 bios, one for read, 134 * one for write (we recover only one drive per r10buf) 135 * 136 */ 137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 138 { 139 struct r10conf *conf = data; 140 struct page *page; 141 struct r10bio *r10_bio; 142 struct bio *bio; 143 int i, j; 144 int nalloc; 145 146 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 147 if (!r10_bio) 148 return NULL; 149 150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 152 nalloc = conf->copies; /* resync */ 153 else 154 nalloc = 2; /* recovery */ 155 156 /* 157 * Allocate bios. 158 */ 159 for (j = nalloc ; j-- ; ) { 160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 161 if (!bio) 162 goto out_free_bio; 163 r10_bio->devs[j].bio = bio; 164 if (!conf->have_replacement) 165 continue; 166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 167 if (!bio) 168 goto out_free_bio; 169 r10_bio->devs[j].repl_bio = bio; 170 } 171 /* 172 * Allocate RESYNC_PAGES data pages and attach them 173 * where needed. 174 */ 175 for (j = 0 ; j < nalloc; j++) { 176 struct bio *rbio = r10_bio->devs[j].repl_bio; 177 bio = r10_bio->devs[j].bio; 178 for (i = 0; i < RESYNC_PAGES; i++) { 179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 180 &conf->mddev->recovery)) { 181 /* we can share bv_page's during recovery 182 * and reshape */ 183 struct bio *rbio = r10_bio->devs[0].bio; 184 page = rbio->bi_io_vec[i].bv_page; 185 get_page(page); 186 } else 187 page = alloc_page(gfp_flags); 188 if (unlikely(!page)) 189 goto out_free_pages; 190 191 bio->bi_io_vec[i].bv_page = page; 192 if (rbio) 193 rbio->bi_io_vec[i].bv_page = page; 194 } 195 } 196 197 return r10_bio; 198 199 out_free_pages: 200 for ( ; i > 0 ; i--) 201 safe_put_page(bio->bi_io_vec[i-1].bv_page); 202 while (j--) 203 for (i = 0; i < RESYNC_PAGES ; i++) 204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 205 j = 0; 206 out_free_bio: 207 for ( ; j < nalloc; j++) { 208 if (r10_bio->devs[j].bio) 209 bio_put(r10_bio->devs[j].bio); 210 if (r10_bio->devs[j].repl_bio) 211 bio_put(r10_bio->devs[j].repl_bio); 212 } 213 r10bio_pool_free(r10_bio, conf); 214 return NULL; 215 } 216 217 static void r10buf_pool_free(void *__r10_bio, void *data) 218 { 219 int i; 220 struct r10conf *conf = data; 221 struct r10bio *r10bio = __r10_bio; 222 int j; 223 224 for (j=0; j < conf->copies; j++) { 225 struct bio *bio = r10bio->devs[j].bio; 226 if (bio) { 227 for (i = 0; i < RESYNC_PAGES; i++) { 228 safe_put_page(bio->bi_io_vec[i].bv_page); 229 bio->bi_io_vec[i].bv_page = NULL; 230 } 231 bio_put(bio); 232 } 233 bio = r10bio->devs[j].repl_bio; 234 if (bio) 235 bio_put(bio); 236 } 237 r10bio_pool_free(r10bio, conf); 238 } 239 240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 241 { 242 int i; 243 244 for (i = 0; i < conf->copies; i++) { 245 struct bio **bio = & r10_bio->devs[i].bio; 246 if (!BIO_SPECIAL(*bio)) 247 bio_put(*bio); 248 *bio = NULL; 249 bio = &r10_bio->devs[i].repl_bio; 250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 251 bio_put(*bio); 252 *bio = NULL; 253 } 254 } 255 256 static void free_r10bio(struct r10bio *r10_bio) 257 { 258 struct r10conf *conf = r10_bio->mddev->private; 259 260 put_all_bios(conf, r10_bio); 261 mempool_free(r10_bio, conf->r10bio_pool); 262 } 263 264 static void put_buf(struct r10bio *r10_bio) 265 { 266 struct r10conf *conf = r10_bio->mddev->private; 267 268 mempool_free(r10_bio, conf->r10buf_pool); 269 270 lower_barrier(conf); 271 } 272 273 static void reschedule_retry(struct r10bio *r10_bio) 274 { 275 unsigned long flags; 276 struct mddev *mddev = r10_bio->mddev; 277 struct r10conf *conf = mddev->private; 278 279 spin_lock_irqsave(&conf->device_lock, flags); 280 list_add(&r10_bio->retry_list, &conf->retry_list); 281 conf->nr_queued ++; 282 spin_unlock_irqrestore(&conf->device_lock, flags); 283 284 /* wake up frozen array... */ 285 wake_up(&conf->wait_barrier); 286 287 md_wakeup_thread(mddev->thread); 288 } 289 290 /* 291 * raid_end_bio_io() is called when we have finished servicing a mirrored 292 * operation and are ready to return a success/failure code to the buffer 293 * cache layer. 294 */ 295 static void raid_end_bio_io(struct r10bio *r10_bio) 296 { 297 struct bio *bio = r10_bio->master_bio; 298 int done; 299 struct r10conf *conf = r10_bio->mddev->private; 300 301 if (bio->bi_phys_segments) { 302 unsigned long flags; 303 spin_lock_irqsave(&conf->device_lock, flags); 304 bio->bi_phys_segments--; 305 done = (bio->bi_phys_segments == 0); 306 spin_unlock_irqrestore(&conf->device_lock, flags); 307 } else 308 done = 1; 309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 310 clear_bit(BIO_UPTODATE, &bio->bi_flags); 311 if (done) { 312 bio_endio(bio, 0); 313 /* 314 * Wake up any possible resync thread that waits for the device 315 * to go idle. 316 */ 317 allow_barrier(conf); 318 } 319 free_r10bio(r10_bio); 320 } 321 322 /* 323 * Update disk head position estimator based on IRQ completion info. 324 */ 325 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 326 { 327 struct r10conf *conf = r10_bio->mddev->private; 328 329 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 330 r10_bio->devs[slot].addr + (r10_bio->sectors); 331 } 332 333 /* 334 * Find the disk number which triggered given bio 335 */ 336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 337 struct bio *bio, int *slotp, int *replp) 338 { 339 int slot; 340 int repl = 0; 341 342 for (slot = 0; slot < conf->copies; slot++) { 343 if (r10_bio->devs[slot].bio == bio) 344 break; 345 if (r10_bio->devs[slot].repl_bio == bio) { 346 repl = 1; 347 break; 348 } 349 } 350 351 BUG_ON(slot == conf->copies); 352 update_head_pos(slot, r10_bio); 353 354 if (slotp) 355 *slotp = slot; 356 if (replp) 357 *replp = repl; 358 return r10_bio->devs[slot].devnum; 359 } 360 361 static void raid10_end_read_request(struct bio *bio, int error) 362 { 363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 364 struct r10bio *r10_bio = bio->bi_private; 365 int slot, dev; 366 struct md_rdev *rdev; 367 struct r10conf *conf = r10_bio->mddev->private; 368 369 370 slot = r10_bio->read_slot; 371 dev = r10_bio->devs[slot].devnum; 372 rdev = r10_bio->devs[slot].rdev; 373 /* 374 * this branch is our 'one mirror IO has finished' event handler: 375 */ 376 update_head_pos(slot, r10_bio); 377 378 if (uptodate) { 379 /* 380 * Set R10BIO_Uptodate in our master bio, so that 381 * we will return a good error code to the higher 382 * levels even if IO on some other mirrored buffer fails. 383 * 384 * The 'master' represents the composite IO operation to 385 * user-side. So if something waits for IO, then it will 386 * wait for the 'master' bio. 387 */ 388 set_bit(R10BIO_Uptodate, &r10_bio->state); 389 } else { 390 /* If all other devices that store this block have 391 * failed, we want to return the error upwards rather 392 * than fail the last device. Here we redefine 393 * "uptodate" to mean "Don't want to retry" 394 */ 395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 396 rdev->raid_disk)) 397 uptodate = 1; 398 } 399 if (uptodate) { 400 raid_end_bio_io(r10_bio); 401 rdev_dec_pending(rdev, conf->mddev); 402 } else { 403 /* 404 * oops, read error - keep the refcount on the rdev 405 */ 406 char b[BDEVNAME_SIZE]; 407 printk_ratelimited(KERN_ERR 408 "md/raid10:%s: %s: rescheduling sector %llu\n", 409 mdname(conf->mddev), 410 bdevname(rdev->bdev, b), 411 (unsigned long long)r10_bio->sector); 412 set_bit(R10BIO_ReadError, &r10_bio->state); 413 reschedule_retry(r10_bio); 414 } 415 } 416 417 static void close_write(struct r10bio *r10_bio) 418 { 419 /* clear the bitmap if all writes complete successfully */ 420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 421 r10_bio->sectors, 422 !test_bit(R10BIO_Degraded, &r10_bio->state), 423 0); 424 md_write_end(r10_bio->mddev); 425 } 426 427 static void one_write_done(struct r10bio *r10_bio) 428 { 429 if (atomic_dec_and_test(&r10_bio->remaining)) { 430 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 431 reschedule_retry(r10_bio); 432 else { 433 close_write(r10_bio); 434 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 435 reschedule_retry(r10_bio); 436 else 437 raid_end_bio_io(r10_bio); 438 } 439 } 440 } 441 442 static void raid10_end_write_request(struct bio *bio, int error) 443 { 444 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 445 struct r10bio *r10_bio = bio->bi_private; 446 int dev; 447 int dec_rdev = 1; 448 struct r10conf *conf = r10_bio->mddev->private; 449 int slot, repl; 450 struct md_rdev *rdev = NULL; 451 452 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 453 454 if (repl) 455 rdev = conf->mirrors[dev].replacement; 456 if (!rdev) { 457 smp_rmb(); 458 repl = 0; 459 rdev = conf->mirrors[dev].rdev; 460 } 461 /* 462 * this branch is our 'one mirror IO has finished' event handler: 463 */ 464 if (!uptodate) { 465 if (repl) 466 /* Never record new bad blocks to replacement, 467 * just fail it. 468 */ 469 md_error(rdev->mddev, rdev); 470 else { 471 set_bit(WriteErrorSeen, &rdev->flags); 472 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 473 set_bit(MD_RECOVERY_NEEDED, 474 &rdev->mddev->recovery); 475 set_bit(R10BIO_WriteError, &r10_bio->state); 476 dec_rdev = 0; 477 } 478 } else { 479 /* 480 * Set R10BIO_Uptodate in our master bio, so that 481 * we will return a good error code for to the higher 482 * levels even if IO on some other mirrored buffer fails. 483 * 484 * The 'master' represents the composite IO operation to 485 * user-side. So if something waits for IO, then it will 486 * wait for the 'master' bio. 487 */ 488 sector_t first_bad; 489 int bad_sectors; 490 491 /* 492 * Do not set R10BIO_Uptodate if the current device is 493 * rebuilding or Faulty. This is because we cannot use 494 * such device for properly reading the data back (we could 495 * potentially use it, if the current write would have felt 496 * before rdev->recovery_offset, but for simplicity we don't 497 * check this here. 498 */ 499 if (test_bit(In_sync, &rdev->flags) && 500 !test_bit(Faulty, &rdev->flags)) 501 set_bit(R10BIO_Uptodate, &r10_bio->state); 502 503 /* Maybe we can clear some bad blocks. */ 504 if (is_badblock(rdev, 505 r10_bio->devs[slot].addr, 506 r10_bio->sectors, 507 &first_bad, &bad_sectors)) { 508 bio_put(bio); 509 if (repl) 510 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 511 else 512 r10_bio->devs[slot].bio = IO_MADE_GOOD; 513 dec_rdev = 0; 514 set_bit(R10BIO_MadeGood, &r10_bio->state); 515 } 516 } 517 518 /* 519 * 520 * Let's see if all mirrored write operations have finished 521 * already. 522 */ 523 one_write_done(r10_bio); 524 if (dec_rdev) 525 rdev_dec_pending(rdev, conf->mddev); 526 } 527 528 /* 529 * RAID10 layout manager 530 * As well as the chunksize and raid_disks count, there are two 531 * parameters: near_copies and far_copies. 532 * near_copies * far_copies must be <= raid_disks. 533 * Normally one of these will be 1. 534 * If both are 1, we get raid0. 535 * If near_copies == raid_disks, we get raid1. 536 * 537 * Chunks are laid out in raid0 style with near_copies copies of the 538 * first chunk, followed by near_copies copies of the next chunk and 539 * so on. 540 * If far_copies > 1, then after 1/far_copies of the array has been assigned 541 * as described above, we start again with a device offset of near_copies. 542 * So we effectively have another copy of the whole array further down all 543 * the drives, but with blocks on different drives. 544 * With this layout, and block is never stored twice on the one device. 545 * 546 * raid10_find_phys finds the sector offset of a given virtual sector 547 * on each device that it is on. 548 * 549 * raid10_find_virt does the reverse mapping, from a device and a 550 * sector offset to a virtual address 551 */ 552 553 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 554 { 555 int n,f; 556 sector_t sector; 557 sector_t chunk; 558 sector_t stripe; 559 int dev; 560 int slot = 0; 561 int last_far_set_start, last_far_set_size; 562 563 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 564 last_far_set_start *= geo->far_set_size; 565 566 last_far_set_size = geo->far_set_size; 567 last_far_set_size += (geo->raid_disks % geo->far_set_size); 568 569 /* now calculate first sector/dev */ 570 chunk = r10bio->sector >> geo->chunk_shift; 571 sector = r10bio->sector & geo->chunk_mask; 572 573 chunk *= geo->near_copies; 574 stripe = chunk; 575 dev = sector_div(stripe, geo->raid_disks); 576 if (geo->far_offset) 577 stripe *= geo->far_copies; 578 579 sector += stripe << geo->chunk_shift; 580 581 /* and calculate all the others */ 582 for (n = 0; n < geo->near_copies; n++) { 583 int d = dev; 584 int set; 585 sector_t s = sector; 586 r10bio->devs[slot].devnum = d; 587 r10bio->devs[slot].addr = s; 588 slot++; 589 590 for (f = 1; f < geo->far_copies; f++) { 591 set = d / geo->far_set_size; 592 d += geo->near_copies; 593 594 if ((geo->raid_disks % geo->far_set_size) && 595 (d > last_far_set_start)) { 596 d -= last_far_set_start; 597 d %= last_far_set_size; 598 d += last_far_set_start; 599 } else { 600 d %= geo->far_set_size; 601 d += geo->far_set_size * set; 602 } 603 s += geo->stride; 604 r10bio->devs[slot].devnum = d; 605 r10bio->devs[slot].addr = s; 606 slot++; 607 } 608 dev++; 609 if (dev >= geo->raid_disks) { 610 dev = 0; 611 sector += (geo->chunk_mask + 1); 612 } 613 } 614 } 615 616 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 617 { 618 struct geom *geo = &conf->geo; 619 620 if (conf->reshape_progress != MaxSector && 621 ((r10bio->sector >= conf->reshape_progress) != 622 conf->mddev->reshape_backwards)) { 623 set_bit(R10BIO_Previous, &r10bio->state); 624 geo = &conf->prev; 625 } else 626 clear_bit(R10BIO_Previous, &r10bio->state); 627 628 __raid10_find_phys(geo, r10bio); 629 } 630 631 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 632 { 633 sector_t offset, chunk, vchunk; 634 /* Never use conf->prev as this is only called during resync 635 * or recovery, so reshape isn't happening 636 */ 637 struct geom *geo = &conf->geo; 638 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 639 int far_set_size = geo->far_set_size; 640 int last_far_set_start; 641 642 if (geo->raid_disks % geo->far_set_size) { 643 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 644 last_far_set_start *= geo->far_set_size; 645 646 if (dev >= last_far_set_start) { 647 far_set_size = geo->far_set_size; 648 far_set_size += (geo->raid_disks % geo->far_set_size); 649 far_set_start = last_far_set_start; 650 } 651 } 652 653 offset = sector & geo->chunk_mask; 654 if (geo->far_offset) { 655 int fc; 656 chunk = sector >> geo->chunk_shift; 657 fc = sector_div(chunk, geo->far_copies); 658 dev -= fc * geo->near_copies; 659 if (dev < far_set_start) 660 dev += far_set_size; 661 } else { 662 while (sector >= geo->stride) { 663 sector -= geo->stride; 664 if (dev < (geo->near_copies + far_set_start)) 665 dev += far_set_size - geo->near_copies; 666 else 667 dev -= geo->near_copies; 668 } 669 chunk = sector >> geo->chunk_shift; 670 } 671 vchunk = chunk * geo->raid_disks + dev; 672 sector_div(vchunk, geo->near_copies); 673 return (vchunk << geo->chunk_shift) + offset; 674 } 675 676 /** 677 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 678 * @q: request queue 679 * @bvm: properties of new bio 680 * @biovec: the request that could be merged to it. 681 * 682 * Return amount of bytes we can accept at this offset 683 * This requires checking for end-of-chunk if near_copies != raid_disks, 684 * and for subordinate merge_bvec_fns if merge_check_needed. 685 */ 686 static int raid10_mergeable_bvec(struct request_queue *q, 687 struct bvec_merge_data *bvm, 688 struct bio_vec *biovec) 689 { 690 struct mddev *mddev = q->queuedata; 691 struct r10conf *conf = mddev->private; 692 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 693 int max; 694 unsigned int chunk_sectors; 695 unsigned int bio_sectors = bvm->bi_size >> 9; 696 struct geom *geo = &conf->geo; 697 698 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1; 699 if (conf->reshape_progress != MaxSector && 700 ((sector >= conf->reshape_progress) != 701 conf->mddev->reshape_backwards)) 702 geo = &conf->prev; 703 704 if (geo->near_copies < geo->raid_disks) { 705 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) 706 + bio_sectors)) << 9; 707 if (max < 0) 708 /* bio_add cannot handle a negative return */ 709 max = 0; 710 if (max <= biovec->bv_len && bio_sectors == 0) 711 return biovec->bv_len; 712 } else 713 max = biovec->bv_len; 714 715 if (mddev->merge_check_needed) { 716 struct { 717 struct r10bio r10_bio; 718 struct r10dev devs[conf->copies]; 719 } on_stack; 720 struct r10bio *r10_bio = &on_stack.r10_bio; 721 int s; 722 if (conf->reshape_progress != MaxSector) { 723 /* Cannot give any guidance during reshape */ 724 if (max <= biovec->bv_len && bio_sectors == 0) 725 return biovec->bv_len; 726 return 0; 727 } 728 r10_bio->sector = sector; 729 raid10_find_phys(conf, r10_bio); 730 rcu_read_lock(); 731 for (s = 0; s < conf->copies; s++) { 732 int disk = r10_bio->devs[s].devnum; 733 struct md_rdev *rdev = rcu_dereference( 734 conf->mirrors[disk].rdev); 735 if (rdev && !test_bit(Faulty, &rdev->flags)) { 736 struct request_queue *q = 737 bdev_get_queue(rdev->bdev); 738 if (q->merge_bvec_fn) { 739 bvm->bi_sector = r10_bio->devs[s].addr 740 + rdev->data_offset; 741 bvm->bi_bdev = rdev->bdev; 742 max = min(max, q->merge_bvec_fn( 743 q, bvm, biovec)); 744 } 745 } 746 rdev = rcu_dereference(conf->mirrors[disk].replacement); 747 if (rdev && !test_bit(Faulty, &rdev->flags)) { 748 struct request_queue *q = 749 bdev_get_queue(rdev->bdev); 750 if (q->merge_bvec_fn) { 751 bvm->bi_sector = r10_bio->devs[s].addr 752 + rdev->data_offset; 753 bvm->bi_bdev = rdev->bdev; 754 max = min(max, q->merge_bvec_fn( 755 q, bvm, biovec)); 756 } 757 } 758 } 759 rcu_read_unlock(); 760 } 761 return max; 762 } 763 764 /* 765 * This routine returns the disk from which the requested read should 766 * be done. There is a per-array 'next expected sequential IO' sector 767 * number - if this matches on the next IO then we use the last disk. 768 * There is also a per-disk 'last know head position' sector that is 769 * maintained from IRQ contexts, both the normal and the resync IO 770 * completion handlers update this position correctly. If there is no 771 * perfect sequential match then we pick the disk whose head is closest. 772 * 773 * If there are 2 mirrors in the same 2 devices, performance degrades 774 * because position is mirror, not device based. 775 * 776 * The rdev for the device selected will have nr_pending incremented. 777 */ 778 779 /* 780 * FIXME: possibly should rethink readbalancing and do it differently 781 * depending on near_copies / far_copies geometry. 782 */ 783 static struct md_rdev *read_balance(struct r10conf *conf, 784 struct r10bio *r10_bio, 785 int *max_sectors) 786 { 787 const sector_t this_sector = r10_bio->sector; 788 int disk, slot; 789 int sectors = r10_bio->sectors; 790 int best_good_sectors; 791 sector_t new_distance, best_dist; 792 struct md_rdev *best_rdev, *rdev = NULL; 793 int do_balance; 794 int best_slot; 795 struct geom *geo = &conf->geo; 796 797 raid10_find_phys(conf, r10_bio); 798 rcu_read_lock(); 799 retry: 800 sectors = r10_bio->sectors; 801 best_slot = -1; 802 best_rdev = NULL; 803 best_dist = MaxSector; 804 best_good_sectors = 0; 805 do_balance = 1; 806 /* 807 * Check if we can balance. We can balance on the whole 808 * device if no resync is going on (recovery is ok), or below 809 * the resync window. We take the first readable disk when 810 * above the resync window. 811 */ 812 if (conf->mddev->recovery_cp < MaxSector 813 && (this_sector + sectors >= conf->next_resync)) 814 do_balance = 0; 815 816 for (slot = 0; slot < conf->copies ; slot++) { 817 sector_t first_bad; 818 int bad_sectors; 819 sector_t dev_sector; 820 821 if (r10_bio->devs[slot].bio == IO_BLOCKED) 822 continue; 823 disk = r10_bio->devs[slot].devnum; 824 rdev = rcu_dereference(conf->mirrors[disk].replacement); 825 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 826 test_bit(Unmerged, &rdev->flags) || 827 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 828 rdev = rcu_dereference(conf->mirrors[disk].rdev); 829 if (rdev == NULL || 830 test_bit(Faulty, &rdev->flags) || 831 test_bit(Unmerged, &rdev->flags)) 832 continue; 833 if (!test_bit(In_sync, &rdev->flags) && 834 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 835 continue; 836 837 dev_sector = r10_bio->devs[slot].addr; 838 if (is_badblock(rdev, dev_sector, sectors, 839 &first_bad, &bad_sectors)) { 840 if (best_dist < MaxSector) 841 /* Already have a better slot */ 842 continue; 843 if (first_bad <= dev_sector) { 844 /* Cannot read here. If this is the 845 * 'primary' device, then we must not read 846 * beyond 'bad_sectors' from another device. 847 */ 848 bad_sectors -= (dev_sector - first_bad); 849 if (!do_balance && sectors > bad_sectors) 850 sectors = bad_sectors; 851 if (best_good_sectors > sectors) 852 best_good_sectors = sectors; 853 } else { 854 sector_t good_sectors = 855 first_bad - dev_sector; 856 if (good_sectors > best_good_sectors) { 857 best_good_sectors = good_sectors; 858 best_slot = slot; 859 best_rdev = rdev; 860 } 861 if (!do_balance) 862 /* Must read from here */ 863 break; 864 } 865 continue; 866 } else 867 best_good_sectors = sectors; 868 869 if (!do_balance) 870 break; 871 872 /* This optimisation is debatable, and completely destroys 873 * sequential read speed for 'far copies' arrays. So only 874 * keep it for 'near' arrays, and review those later. 875 */ 876 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 877 break; 878 879 /* for far > 1 always use the lowest address */ 880 if (geo->far_copies > 1) 881 new_distance = r10_bio->devs[slot].addr; 882 else 883 new_distance = abs(r10_bio->devs[slot].addr - 884 conf->mirrors[disk].head_position); 885 if (new_distance < best_dist) { 886 best_dist = new_distance; 887 best_slot = slot; 888 best_rdev = rdev; 889 } 890 } 891 if (slot >= conf->copies) { 892 slot = best_slot; 893 rdev = best_rdev; 894 } 895 896 if (slot >= 0) { 897 atomic_inc(&rdev->nr_pending); 898 if (test_bit(Faulty, &rdev->flags)) { 899 /* Cannot risk returning a device that failed 900 * before we inc'ed nr_pending 901 */ 902 rdev_dec_pending(rdev, conf->mddev); 903 goto retry; 904 } 905 r10_bio->read_slot = slot; 906 } else 907 rdev = NULL; 908 rcu_read_unlock(); 909 *max_sectors = best_good_sectors; 910 911 return rdev; 912 } 913 914 int md_raid10_congested(struct mddev *mddev, int bits) 915 { 916 struct r10conf *conf = mddev->private; 917 int i, ret = 0; 918 919 if ((bits & (1 << BDI_async_congested)) && 920 conf->pending_count >= max_queued_requests) 921 return 1; 922 923 rcu_read_lock(); 924 for (i = 0; 925 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 926 && ret == 0; 927 i++) { 928 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 929 if (rdev && !test_bit(Faulty, &rdev->flags)) { 930 struct request_queue *q = bdev_get_queue(rdev->bdev); 931 932 ret |= bdi_congested(&q->backing_dev_info, bits); 933 } 934 } 935 rcu_read_unlock(); 936 return ret; 937 } 938 EXPORT_SYMBOL_GPL(md_raid10_congested); 939 940 static int raid10_congested(void *data, int bits) 941 { 942 struct mddev *mddev = data; 943 944 return mddev_congested(mddev, bits) || 945 md_raid10_congested(mddev, bits); 946 } 947 948 static void flush_pending_writes(struct r10conf *conf) 949 { 950 /* Any writes that have been queued but are awaiting 951 * bitmap updates get flushed here. 952 */ 953 spin_lock_irq(&conf->device_lock); 954 955 if (conf->pending_bio_list.head) { 956 struct bio *bio; 957 bio = bio_list_get(&conf->pending_bio_list); 958 conf->pending_count = 0; 959 spin_unlock_irq(&conf->device_lock); 960 /* flush any pending bitmap writes to disk 961 * before proceeding w/ I/O */ 962 bitmap_unplug(conf->mddev->bitmap); 963 wake_up(&conf->wait_barrier); 964 965 while (bio) { /* submit pending writes */ 966 struct bio *next = bio->bi_next; 967 bio->bi_next = NULL; 968 if (unlikely((bio->bi_rw & REQ_DISCARD) && 969 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 970 /* Just ignore it */ 971 bio_endio(bio, 0); 972 else 973 generic_make_request(bio); 974 bio = next; 975 } 976 } else 977 spin_unlock_irq(&conf->device_lock); 978 } 979 980 /* Barriers.... 981 * Sometimes we need to suspend IO while we do something else, 982 * either some resync/recovery, or reconfigure the array. 983 * To do this we raise a 'barrier'. 984 * The 'barrier' is a counter that can be raised multiple times 985 * to count how many activities are happening which preclude 986 * normal IO. 987 * We can only raise the barrier if there is no pending IO. 988 * i.e. if nr_pending == 0. 989 * We choose only to raise the barrier if no-one is waiting for the 990 * barrier to go down. This means that as soon as an IO request 991 * is ready, no other operations which require a barrier will start 992 * until the IO request has had a chance. 993 * 994 * So: regular IO calls 'wait_barrier'. When that returns there 995 * is no backgroup IO happening, It must arrange to call 996 * allow_barrier when it has finished its IO. 997 * backgroup IO calls must call raise_barrier. Once that returns 998 * there is no normal IO happeing. It must arrange to call 999 * lower_barrier when the particular background IO completes. 1000 */ 1001 1002 static void raise_barrier(struct r10conf *conf, int force) 1003 { 1004 BUG_ON(force && !conf->barrier); 1005 spin_lock_irq(&conf->resync_lock); 1006 1007 /* Wait until no block IO is waiting (unless 'force') */ 1008 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 1009 conf->resync_lock); 1010 1011 /* block any new IO from starting */ 1012 conf->barrier++; 1013 1014 /* Now wait for all pending IO to complete */ 1015 wait_event_lock_irq(conf->wait_barrier, 1016 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 1017 conf->resync_lock); 1018 1019 spin_unlock_irq(&conf->resync_lock); 1020 } 1021 1022 static void lower_barrier(struct r10conf *conf) 1023 { 1024 unsigned long flags; 1025 spin_lock_irqsave(&conf->resync_lock, flags); 1026 conf->barrier--; 1027 spin_unlock_irqrestore(&conf->resync_lock, flags); 1028 wake_up(&conf->wait_barrier); 1029 } 1030 1031 static void wait_barrier(struct r10conf *conf) 1032 { 1033 spin_lock_irq(&conf->resync_lock); 1034 if (conf->barrier) { 1035 conf->nr_waiting++; 1036 /* Wait for the barrier to drop. 1037 * However if there are already pending 1038 * requests (preventing the barrier from 1039 * rising completely), and the 1040 * pre-process bio queue isn't empty, 1041 * then don't wait, as we need to empty 1042 * that queue to get the nr_pending 1043 * count down. 1044 */ 1045 wait_event_lock_irq(conf->wait_barrier, 1046 !conf->barrier || 1047 (conf->nr_pending && 1048 current->bio_list && 1049 !bio_list_empty(current->bio_list)), 1050 conf->resync_lock); 1051 conf->nr_waiting--; 1052 } 1053 conf->nr_pending++; 1054 spin_unlock_irq(&conf->resync_lock); 1055 } 1056 1057 static void allow_barrier(struct r10conf *conf) 1058 { 1059 unsigned long flags; 1060 spin_lock_irqsave(&conf->resync_lock, flags); 1061 conf->nr_pending--; 1062 spin_unlock_irqrestore(&conf->resync_lock, flags); 1063 wake_up(&conf->wait_barrier); 1064 } 1065 1066 static void freeze_array(struct r10conf *conf, int extra) 1067 { 1068 /* stop syncio and normal IO and wait for everything to 1069 * go quiet. 1070 * We increment barrier and nr_waiting, and then 1071 * wait until nr_pending match nr_queued+extra 1072 * This is called in the context of one normal IO request 1073 * that has failed. Thus any sync request that might be pending 1074 * will be blocked by nr_pending, and we need to wait for 1075 * pending IO requests to complete or be queued for re-try. 1076 * Thus the number queued (nr_queued) plus this request (extra) 1077 * must match the number of pending IOs (nr_pending) before 1078 * we continue. 1079 */ 1080 spin_lock_irq(&conf->resync_lock); 1081 conf->barrier++; 1082 conf->nr_waiting++; 1083 wait_event_lock_irq_cmd(conf->wait_barrier, 1084 conf->nr_pending == conf->nr_queued+extra, 1085 conf->resync_lock, 1086 flush_pending_writes(conf)); 1087 1088 spin_unlock_irq(&conf->resync_lock); 1089 } 1090 1091 static void unfreeze_array(struct r10conf *conf) 1092 { 1093 /* reverse the effect of the freeze */ 1094 spin_lock_irq(&conf->resync_lock); 1095 conf->barrier--; 1096 conf->nr_waiting--; 1097 wake_up(&conf->wait_barrier); 1098 spin_unlock_irq(&conf->resync_lock); 1099 } 1100 1101 static sector_t choose_data_offset(struct r10bio *r10_bio, 1102 struct md_rdev *rdev) 1103 { 1104 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1105 test_bit(R10BIO_Previous, &r10_bio->state)) 1106 return rdev->data_offset; 1107 else 1108 return rdev->new_data_offset; 1109 } 1110 1111 struct raid10_plug_cb { 1112 struct blk_plug_cb cb; 1113 struct bio_list pending; 1114 int pending_cnt; 1115 }; 1116 1117 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1118 { 1119 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1120 cb); 1121 struct mddev *mddev = plug->cb.data; 1122 struct r10conf *conf = mddev->private; 1123 struct bio *bio; 1124 1125 if (from_schedule || current->bio_list) { 1126 spin_lock_irq(&conf->device_lock); 1127 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1128 conf->pending_count += plug->pending_cnt; 1129 spin_unlock_irq(&conf->device_lock); 1130 wake_up(&conf->wait_barrier); 1131 md_wakeup_thread(mddev->thread); 1132 kfree(plug); 1133 return; 1134 } 1135 1136 /* we aren't scheduling, so we can do the write-out directly. */ 1137 bio = bio_list_get(&plug->pending); 1138 bitmap_unplug(mddev->bitmap); 1139 wake_up(&conf->wait_barrier); 1140 1141 while (bio) { /* submit pending writes */ 1142 struct bio *next = bio->bi_next; 1143 bio->bi_next = NULL; 1144 if (unlikely((bio->bi_rw & REQ_DISCARD) && 1145 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1146 /* Just ignore it */ 1147 bio_endio(bio, 0); 1148 else 1149 generic_make_request(bio); 1150 bio = next; 1151 } 1152 kfree(plug); 1153 } 1154 1155 static void __make_request(struct mddev *mddev, struct bio *bio) 1156 { 1157 struct r10conf *conf = mddev->private; 1158 struct r10bio *r10_bio; 1159 struct bio *read_bio; 1160 int i; 1161 const int rw = bio_data_dir(bio); 1162 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1163 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 1164 const unsigned long do_discard = (bio->bi_rw 1165 & (REQ_DISCARD | REQ_SECURE)); 1166 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1167 unsigned long flags; 1168 struct md_rdev *blocked_rdev; 1169 struct blk_plug_cb *cb; 1170 struct raid10_plug_cb *plug = NULL; 1171 int sectors_handled; 1172 int max_sectors; 1173 int sectors; 1174 1175 sectors = bio_sectors(bio); 1176 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1177 bio->bi_iter.bi_sector < conf->reshape_progress && 1178 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1179 /* IO spans the reshape position. Need to wait for 1180 * reshape to pass 1181 */ 1182 allow_barrier(conf); 1183 wait_event(conf->wait_barrier, 1184 conf->reshape_progress <= bio->bi_iter.bi_sector || 1185 conf->reshape_progress >= bio->bi_iter.bi_sector + 1186 sectors); 1187 wait_barrier(conf); 1188 } 1189 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1190 bio_data_dir(bio) == WRITE && 1191 (mddev->reshape_backwards 1192 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1193 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1194 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1195 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1196 /* Need to update reshape_position in metadata */ 1197 mddev->reshape_position = conf->reshape_progress; 1198 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1199 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1200 md_wakeup_thread(mddev->thread); 1201 wait_event(mddev->sb_wait, 1202 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1203 1204 conf->reshape_safe = mddev->reshape_position; 1205 } 1206 1207 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1208 1209 r10_bio->master_bio = bio; 1210 r10_bio->sectors = sectors; 1211 1212 r10_bio->mddev = mddev; 1213 r10_bio->sector = bio->bi_iter.bi_sector; 1214 r10_bio->state = 0; 1215 1216 /* We might need to issue multiple reads to different 1217 * devices if there are bad blocks around, so we keep 1218 * track of the number of reads in bio->bi_phys_segments. 1219 * If this is 0, there is only one r10_bio and no locking 1220 * will be needed when the request completes. If it is 1221 * non-zero, then it is the number of not-completed requests. 1222 */ 1223 bio->bi_phys_segments = 0; 1224 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1225 1226 if (rw == READ) { 1227 /* 1228 * read balancing logic: 1229 */ 1230 struct md_rdev *rdev; 1231 int slot; 1232 1233 read_again: 1234 rdev = read_balance(conf, r10_bio, &max_sectors); 1235 if (!rdev) { 1236 raid_end_bio_io(r10_bio); 1237 return; 1238 } 1239 slot = r10_bio->read_slot; 1240 1241 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1242 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector, 1243 max_sectors); 1244 1245 r10_bio->devs[slot].bio = read_bio; 1246 r10_bio->devs[slot].rdev = rdev; 1247 1248 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1249 choose_data_offset(r10_bio, rdev); 1250 read_bio->bi_bdev = rdev->bdev; 1251 read_bio->bi_end_io = raid10_end_read_request; 1252 read_bio->bi_rw = READ | do_sync; 1253 read_bio->bi_private = r10_bio; 1254 1255 if (max_sectors < r10_bio->sectors) { 1256 /* Could not read all from this device, so we will 1257 * need another r10_bio. 1258 */ 1259 sectors_handled = (r10_bio->sector + max_sectors 1260 - bio->bi_iter.bi_sector); 1261 r10_bio->sectors = max_sectors; 1262 spin_lock_irq(&conf->device_lock); 1263 if (bio->bi_phys_segments == 0) 1264 bio->bi_phys_segments = 2; 1265 else 1266 bio->bi_phys_segments++; 1267 spin_unlock_irq(&conf->device_lock); 1268 /* Cannot call generic_make_request directly 1269 * as that will be queued in __generic_make_request 1270 * and subsequent mempool_alloc might block 1271 * waiting for it. so hand bio over to raid10d. 1272 */ 1273 reschedule_retry(r10_bio); 1274 1275 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1276 1277 r10_bio->master_bio = bio; 1278 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1279 r10_bio->state = 0; 1280 r10_bio->mddev = mddev; 1281 r10_bio->sector = bio->bi_iter.bi_sector + 1282 sectors_handled; 1283 goto read_again; 1284 } else 1285 generic_make_request(read_bio); 1286 return; 1287 } 1288 1289 /* 1290 * WRITE: 1291 */ 1292 if (conf->pending_count >= max_queued_requests) { 1293 md_wakeup_thread(mddev->thread); 1294 wait_event(conf->wait_barrier, 1295 conf->pending_count < max_queued_requests); 1296 } 1297 /* first select target devices under rcu_lock and 1298 * inc refcount on their rdev. Record them by setting 1299 * bios[x] to bio 1300 * If there are known/acknowledged bad blocks on any device 1301 * on which we have seen a write error, we want to avoid 1302 * writing to those blocks. This potentially requires several 1303 * writes to write around the bad blocks. Each set of writes 1304 * gets its own r10_bio with a set of bios attached. The number 1305 * of r10_bios is recored in bio->bi_phys_segments just as with 1306 * the read case. 1307 */ 1308 1309 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1310 raid10_find_phys(conf, r10_bio); 1311 retry_write: 1312 blocked_rdev = NULL; 1313 rcu_read_lock(); 1314 max_sectors = r10_bio->sectors; 1315 1316 for (i = 0; i < conf->copies; i++) { 1317 int d = r10_bio->devs[i].devnum; 1318 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1319 struct md_rdev *rrdev = rcu_dereference( 1320 conf->mirrors[d].replacement); 1321 if (rdev == rrdev) 1322 rrdev = NULL; 1323 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1324 atomic_inc(&rdev->nr_pending); 1325 blocked_rdev = rdev; 1326 break; 1327 } 1328 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1329 atomic_inc(&rrdev->nr_pending); 1330 blocked_rdev = rrdev; 1331 break; 1332 } 1333 if (rdev && (test_bit(Faulty, &rdev->flags) 1334 || test_bit(Unmerged, &rdev->flags))) 1335 rdev = NULL; 1336 if (rrdev && (test_bit(Faulty, &rrdev->flags) 1337 || test_bit(Unmerged, &rrdev->flags))) 1338 rrdev = NULL; 1339 1340 r10_bio->devs[i].bio = NULL; 1341 r10_bio->devs[i].repl_bio = NULL; 1342 1343 if (!rdev && !rrdev) { 1344 set_bit(R10BIO_Degraded, &r10_bio->state); 1345 continue; 1346 } 1347 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1348 sector_t first_bad; 1349 sector_t dev_sector = r10_bio->devs[i].addr; 1350 int bad_sectors; 1351 int is_bad; 1352 1353 is_bad = is_badblock(rdev, dev_sector, 1354 max_sectors, 1355 &first_bad, &bad_sectors); 1356 if (is_bad < 0) { 1357 /* Mustn't write here until the bad block 1358 * is acknowledged 1359 */ 1360 atomic_inc(&rdev->nr_pending); 1361 set_bit(BlockedBadBlocks, &rdev->flags); 1362 blocked_rdev = rdev; 1363 break; 1364 } 1365 if (is_bad && first_bad <= dev_sector) { 1366 /* Cannot write here at all */ 1367 bad_sectors -= (dev_sector - first_bad); 1368 if (bad_sectors < max_sectors) 1369 /* Mustn't write more than bad_sectors 1370 * to other devices yet 1371 */ 1372 max_sectors = bad_sectors; 1373 /* We don't set R10BIO_Degraded as that 1374 * only applies if the disk is missing, 1375 * so it might be re-added, and we want to 1376 * know to recover this chunk. 1377 * In this case the device is here, and the 1378 * fact that this chunk is not in-sync is 1379 * recorded in the bad block log. 1380 */ 1381 continue; 1382 } 1383 if (is_bad) { 1384 int good_sectors = first_bad - dev_sector; 1385 if (good_sectors < max_sectors) 1386 max_sectors = good_sectors; 1387 } 1388 } 1389 if (rdev) { 1390 r10_bio->devs[i].bio = bio; 1391 atomic_inc(&rdev->nr_pending); 1392 } 1393 if (rrdev) { 1394 r10_bio->devs[i].repl_bio = bio; 1395 atomic_inc(&rrdev->nr_pending); 1396 } 1397 } 1398 rcu_read_unlock(); 1399 1400 if (unlikely(blocked_rdev)) { 1401 /* Have to wait for this device to get unblocked, then retry */ 1402 int j; 1403 int d; 1404 1405 for (j = 0; j < i; j++) { 1406 if (r10_bio->devs[j].bio) { 1407 d = r10_bio->devs[j].devnum; 1408 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1409 } 1410 if (r10_bio->devs[j].repl_bio) { 1411 struct md_rdev *rdev; 1412 d = r10_bio->devs[j].devnum; 1413 rdev = conf->mirrors[d].replacement; 1414 if (!rdev) { 1415 /* Race with remove_disk */ 1416 smp_mb(); 1417 rdev = conf->mirrors[d].rdev; 1418 } 1419 rdev_dec_pending(rdev, mddev); 1420 } 1421 } 1422 allow_barrier(conf); 1423 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1424 wait_barrier(conf); 1425 goto retry_write; 1426 } 1427 1428 if (max_sectors < r10_bio->sectors) { 1429 /* We are splitting this into multiple parts, so 1430 * we need to prepare for allocating another r10_bio. 1431 */ 1432 r10_bio->sectors = max_sectors; 1433 spin_lock_irq(&conf->device_lock); 1434 if (bio->bi_phys_segments == 0) 1435 bio->bi_phys_segments = 2; 1436 else 1437 bio->bi_phys_segments++; 1438 spin_unlock_irq(&conf->device_lock); 1439 } 1440 sectors_handled = r10_bio->sector + max_sectors - 1441 bio->bi_iter.bi_sector; 1442 1443 atomic_set(&r10_bio->remaining, 1); 1444 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1445 1446 for (i = 0; i < conf->copies; i++) { 1447 struct bio *mbio; 1448 int d = r10_bio->devs[i].devnum; 1449 if (r10_bio->devs[i].bio) { 1450 struct md_rdev *rdev = conf->mirrors[d].rdev; 1451 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1452 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, 1453 max_sectors); 1454 r10_bio->devs[i].bio = mbio; 1455 1456 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ 1457 choose_data_offset(r10_bio, 1458 rdev)); 1459 mbio->bi_bdev = rdev->bdev; 1460 mbio->bi_end_io = raid10_end_write_request; 1461 mbio->bi_rw = 1462 WRITE | do_sync | do_fua | do_discard | do_same; 1463 mbio->bi_private = r10_bio; 1464 1465 atomic_inc(&r10_bio->remaining); 1466 1467 cb = blk_check_plugged(raid10_unplug, mddev, 1468 sizeof(*plug)); 1469 if (cb) 1470 plug = container_of(cb, struct raid10_plug_cb, 1471 cb); 1472 else 1473 plug = NULL; 1474 spin_lock_irqsave(&conf->device_lock, flags); 1475 if (plug) { 1476 bio_list_add(&plug->pending, mbio); 1477 plug->pending_cnt++; 1478 } else { 1479 bio_list_add(&conf->pending_bio_list, mbio); 1480 conf->pending_count++; 1481 } 1482 spin_unlock_irqrestore(&conf->device_lock, flags); 1483 if (!plug) 1484 md_wakeup_thread(mddev->thread); 1485 } 1486 1487 if (r10_bio->devs[i].repl_bio) { 1488 struct md_rdev *rdev = conf->mirrors[d].replacement; 1489 if (rdev == NULL) { 1490 /* Replacement just got moved to main 'rdev' */ 1491 smp_mb(); 1492 rdev = conf->mirrors[d].rdev; 1493 } 1494 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1495 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, 1496 max_sectors); 1497 r10_bio->devs[i].repl_bio = mbio; 1498 1499 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr + 1500 choose_data_offset( 1501 r10_bio, rdev)); 1502 mbio->bi_bdev = rdev->bdev; 1503 mbio->bi_end_io = raid10_end_write_request; 1504 mbio->bi_rw = 1505 WRITE | do_sync | do_fua | do_discard | do_same; 1506 mbio->bi_private = r10_bio; 1507 1508 atomic_inc(&r10_bio->remaining); 1509 spin_lock_irqsave(&conf->device_lock, flags); 1510 bio_list_add(&conf->pending_bio_list, mbio); 1511 conf->pending_count++; 1512 spin_unlock_irqrestore(&conf->device_lock, flags); 1513 if (!mddev_check_plugged(mddev)) 1514 md_wakeup_thread(mddev->thread); 1515 } 1516 } 1517 1518 /* Don't remove the bias on 'remaining' (one_write_done) until 1519 * after checking if we need to go around again. 1520 */ 1521 1522 if (sectors_handled < bio_sectors(bio)) { 1523 one_write_done(r10_bio); 1524 /* We need another r10_bio. It has already been counted 1525 * in bio->bi_phys_segments. 1526 */ 1527 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1528 1529 r10_bio->master_bio = bio; 1530 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1531 1532 r10_bio->mddev = mddev; 1533 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1534 r10_bio->state = 0; 1535 goto retry_write; 1536 } 1537 one_write_done(r10_bio); 1538 } 1539 1540 static void make_request(struct mddev *mddev, struct bio *bio) 1541 { 1542 struct r10conf *conf = mddev->private; 1543 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1544 int chunk_sects = chunk_mask + 1; 1545 1546 struct bio *split; 1547 1548 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 1549 md_flush_request(mddev, bio); 1550 return; 1551 } 1552 1553 md_write_start(mddev, bio); 1554 1555 /* 1556 * Register the new request and wait if the reconstruction 1557 * thread has put up a bar for new requests. 1558 * Continue immediately if no resync is active currently. 1559 */ 1560 wait_barrier(conf); 1561 1562 do { 1563 1564 /* 1565 * If this request crosses a chunk boundary, we need to split 1566 * it. 1567 */ 1568 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1569 bio_sectors(bio) > chunk_sects 1570 && (conf->geo.near_copies < conf->geo.raid_disks 1571 || conf->prev.near_copies < 1572 conf->prev.raid_disks))) { 1573 split = bio_split(bio, chunk_sects - 1574 (bio->bi_iter.bi_sector & 1575 (chunk_sects - 1)), 1576 GFP_NOIO, fs_bio_set); 1577 bio_chain(split, bio); 1578 } else { 1579 split = bio; 1580 } 1581 1582 __make_request(mddev, split); 1583 } while (split != bio); 1584 1585 /* In case raid10d snuck in to freeze_array */ 1586 wake_up(&conf->wait_barrier); 1587 } 1588 1589 static void status(struct seq_file *seq, struct mddev *mddev) 1590 { 1591 struct r10conf *conf = mddev->private; 1592 int i; 1593 1594 if (conf->geo.near_copies < conf->geo.raid_disks) 1595 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1596 if (conf->geo.near_copies > 1) 1597 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1598 if (conf->geo.far_copies > 1) { 1599 if (conf->geo.far_offset) 1600 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1601 else 1602 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1603 } 1604 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1605 conf->geo.raid_disks - mddev->degraded); 1606 for (i = 0; i < conf->geo.raid_disks; i++) 1607 seq_printf(seq, "%s", 1608 conf->mirrors[i].rdev && 1609 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1610 seq_printf(seq, "]"); 1611 } 1612 1613 /* check if there are enough drives for 1614 * every block to appear on atleast one. 1615 * Don't consider the device numbered 'ignore' 1616 * as we might be about to remove it. 1617 */ 1618 static int _enough(struct r10conf *conf, int previous, int ignore) 1619 { 1620 int first = 0; 1621 int has_enough = 0; 1622 int disks, ncopies; 1623 if (previous) { 1624 disks = conf->prev.raid_disks; 1625 ncopies = conf->prev.near_copies; 1626 } else { 1627 disks = conf->geo.raid_disks; 1628 ncopies = conf->geo.near_copies; 1629 } 1630 1631 rcu_read_lock(); 1632 do { 1633 int n = conf->copies; 1634 int cnt = 0; 1635 int this = first; 1636 while (n--) { 1637 struct md_rdev *rdev; 1638 if (this != ignore && 1639 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1640 test_bit(In_sync, &rdev->flags)) 1641 cnt++; 1642 this = (this+1) % disks; 1643 } 1644 if (cnt == 0) 1645 goto out; 1646 first = (first + ncopies) % disks; 1647 } while (first != 0); 1648 has_enough = 1; 1649 out: 1650 rcu_read_unlock(); 1651 return has_enough; 1652 } 1653 1654 static int enough(struct r10conf *conf, int ignore) 1655 { 1656 /* when calling 'enough', both 'prev' and 'geo' must 1657 * be stable. 1658 * This is ensured if ->reconfig_mutex or ->device_lock 1659 * is held. 1660 */ 1661 return _enough(conf, 0, ignore) && 1662 _enough(conf, 1, ignore); 1663 } 1664 1665 static void error(struct mddev *mddev, struct md_rdev *rdev) 1666 { 1667 char b[BDEVNAME_SIZE]; 1668 struct r10conf *conf = mddev->private; 1669 unsigned long flags; 1670 1671 /* 1672 * If it is not operational, then we have already marked it as dead 1673 * else if it is the last working disks, ignore the error, let the 1674 * next level up know. 1675 * else mark the drive as failed 1676 */ 1677 spin_lock_irqsave(&conf->device_lock, flags); 1678 if (test_bit(In_sync, &rdev->flags) 1679 && !enough(conf, rdev->raid_disk)) { 1680 /* 1681 * Don't fail the drive, just return an IO error. 1682 */ 1683 spin_unlock_irqrestore(&conf->device_lock, flags); 1684 return; 1685 } 1686 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1687 mddev->degraded++; 1688 /* 1689 * if recovery is running, make sure it aborts. 1690 */ 1691 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1692 } 1693 set_bit(Blocked, &rdev->flags); 1694 set_bit(Faulty, &rdev->flags); 1695 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1696 spin_unlock_irqrestore(&conf->device_lock, flags); 1697 printk(KERN_ALERT 1698 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1699 "md/raid10:%s: Operation continuing on %d devices.\n", 1700 mdname(mddev), bdevname(rdev->bdev, b), 1701 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1702 } 1703 1704 static void print_conf(struct r10conf *conf) 1705 { 1706 int i; 1707 struct raid10_info *tmp; 1708 1709 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1710 if (!conf) { 1711 printk(KERN_DEBUG "(!conf)\n"); 1712 return; 1713 } 1714 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1715 conf->geo.raid_disks); 1716 1717 for (i = 0; i < conf->geo.raid_disks; i++) { 1718 char b[BDEVNAME_SIZE]; 1719 tmp = conf->mirrors + i; 1720 if (tmp->rdev) 1721 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1722 i, !test_bit(In_sync, &tmp->rdev->flags), 1723 !test_bit(Faulty, &tmp->rdev->flags), 1724 bdevname(tmp->rdev->bdev,b)); 1725 } 1726 } 1727 1728 static void close_sync(struct r10conf *conf) 1729 { 1730 wait_barrier(conf); 1731 allow_barrier(conf); 1732 1733 mempool_destroy(conf->r10buf_pool); 1734 conf->r10buf_pool = NULL; 1735 } 1736 1737 static int raid10_spare_active(struct mddev *mddev) 1738 { 1739 int i; 1740 struct r10conf *conf = mddev->private; 1741 struct raid10_info *tmp; 1742 int count = 0; 1743 unsigned long flags; 1744 1745 /* 1746 * Find all non-in_sync disks within the RAID10 configuration 1747 * and mark them in_sync 1748 */ 1749 for (i = 0; i < conf->geo.raid_disks; i++) { 1750 tmp = conf->mirrors + i; 1751 if (tmp->replacement 1752 && tmp->replacement->recovery_offset == MaxSector 1753 && !test_bit(Faulty, &tmp->replacement->flags) 1754 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1755 /* Replacement has just become active */ 1756 if (!tmp->rdev 1757 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1758 count++; 1759 if (tmp->rdev) { 1760 /* Replaced device not technically faulty, 1761 * but we need to be sure it gets removed 1762 * and never re-added. 1763 */ 1764 set_bit(Faulty, &tmp->rdev->flags); 1765 sysfs_notify_dirent_safe( 1766 tmp->rdev->sysfs_state); 1767 } 1768 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1769 } else if (tmp->rdev 1770 && tmp->rdev->recovery_offset == MaxSector 1771 && !test_bit(Faulty, &tmp->rdev->flags) 1772 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1773 count++; 1774 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1775 } 1776 } 1777 spin_lock_irqsave(&conf->device_lock, flags); 1778 mddev->degraded -= count; 1779 spin_unlock_irqrestore(&conf->device_lock, flags); 1780 1781 print_conf(conf); 1782 return count; 1783 } 1784 1785 1786 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1787 { 1788 struct r10conf *conf = mddev->private; 1789 int err = -EEXIST; 1790 int mirror; 1791 int first = 0; 1792 int last = conf->geo.raid_disks - 1; 1793 struct request_queue *q = bdev_get_queue(rdev->bdev); 1794 1795 if (mddev->recovery_cp < MaxSector) 1796 /* only hot-add to in-sync arrays, as recovery is 1797 * very different from resync 1798 */ 1799 return -EBUSY; 1800 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1801 return -EINVAL; 1802 1803 if (rdev->raid_disk >= 0) 1804 first = last = rdev->raid_disk; 1805 1806 if (q->merge_bvec_fn) { 1807 set_bit(Unmerged, &rdev->flags); 1808 mddev->merge_check_needed = 1; 1809 } 1810 1811 if (rdev->saved_raid_disk >= first && 1812 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1813 mirror = rdev->saved_raid_disk; 1814 else 1815 mirror = first; 1816 for ( ; mirror <= last ; mirror++) { 1817 struct raid10_info *p = &conf->mirrors[mirror]; 1818 if (p->recovery_disabled == mddev->recovery_disabled) 1819 continue; 1820 if (p->rdev) { 1821 if (!test_bit(WantReplacement, &p->rdev->flags) || 1822 p->replacement != NULL) 1823 continue; 1824 clear_bit(In_sync, &rdev->flags); 1825 set_bit(Replacement, &rdev->flags); 1826 rdev->raid_disk = mirror; 1827 err = 0; 1828 if (mddev->gendisk) 1829 disk_stack_limits(mddev->gendisk, rdev->bdev, 1830 rdev->data_offset << 9); 1831 conf->fullsync = 1; 1832 rcu_assign_pointer(p->replacement, rdev); 1833 break; 1834 } 1835 1836 if (mddev->gendisk) 1837 disk_stack_limits(mddev->gendisk, rdev->bdev, 1838 rdev->data_offset << 9); 1839 1840 p->head_position = 0; 1841 p->recovery_disabled = mddev->recovery_disabled - 1; 1842 rdev->raid_disk = mirror; 1843 err = 0; 1844 if (rdev->saved_raid_disk != mirror) 1845 conf->fullsync = 1; 1846 rcu_assign_pointer(p->rdev, rdev); 1847 break; 1848 } 1849 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1850 /* Some requests might not have seen this new 1851 * merge_bvec_fn. We must wait for them to complete 1852 * before merging the device fully. 1853 * First we make sure any code which has tested 1854 * our function has submitted the request, then 1855 * we wait for all outstanding requests to complete. 1856 */ 1857 synchronize_sched(); 1858 freeze_array(conf, 0); 1859 unfreeze_array(conf); 1860 clear_bit(Unmerged, &rdev->flags); 1861 } 1862 md_integrity_add_rdev(rdev, mddev); 1863 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1864 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1865 1866 print_conf(conf); 1867 return err; 1868 } 1869 1870 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1871 { 1872 struct r10conf *conf = mddev->private; 1873 int err = 0; 1874 int number = rdev->raid_disk; 1875 struct md_rdev **rdevp; 1876 struct raid10_info *p = conf->mirrors + number; 1877 1878 print_conf(conf); 1879 if (rdev == p->rdev) 1880 rdevp = &p->rdev; 1881 else if (rdev == p->replacement) 1882 rdevp = &p->replacement; 1883 else 1884 return 0; 1885 1886 if (test_bit(In_sync, &rdev->flags) || 1887 atomic_read(&rdev->nr_pending)) { 1888 err = -EBUSY; 1889 goto abort; 1890 } 1891 /* Only remove faulty devices if recovery 1892 * is not possible. 1893 */ 1894 if (!test_bit(Faulty, &rdev->flags) && 1895 mddev->recovery_disabled != p->recovery_disabled && 1896 (!p->replacement || p->replacement == rdev) && 1897 number < conf->geo.raid_disks && 1898 enough(conf, -1)) { 1899 err = -EBUSY; 1900 goto abort; 1901 } 1902 *rdevp = NULL; 1903 synchronize_rcu(); 1904 if (atomic_read(&rdev->nr_pending)) { 1905 /* lost the race, try later */ 1906 err = -EBUSY; 1907 *rdevp = rdev; 1908 goto abort; 1909 } else if (p->replacement) { 1910 /* We must have just cleared 'rdev' */ 1911 p->rdev = p->replacement; 1912 clear_bit(Replacement, &p->replacement->flags); 1913 smp_mb(); /* Make sure other CPUs may see both as identical 1914 * but will never see neither -- if they are careful. 1915 */ 1916 p->replacement = NULL; 1917 clear_bit(WantReplacement, &rdev->flags); 1918 } else 1919 /* We might have just remove the Replacement as faulty 1920 * Clear the flag just in case 1921 */ 1922 clear_bit(WantReplacement, &rdev->flags); 1923 1924 err = md_integrity_register(mddev); 1925 1926 abort: 1927 1928 print_conf(conf); 1929 return err; 1930 } 1931 1932 1933 static void end_sync_read(struct bio *bio, int error) 1934 { 1935 struct r10bio *r10_bio = bio->bi_private; 1936 struct r10conf *conf = r10_bio->mddev->private; 1937 int d; 1938 1939 if (bio == r10_bio->master_bio) { 1940 /* this is a reshape read */ 1941 d = r10_bio->read_slot; /* really the read dev */ 1942 } else 1943 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1944 1945 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1946 set_bit(R10BIO_Uptodate, &r10_bio->state); 1947 else 1948 /* The write handler will notice the lack of 1949 * R10BIO_Uptodate and record any errors etc 1950 */ 1951 atomic_add(r10_bio->sectors, 1952 &conf->mirrors[d].rdev->corrected_errors); 1953 1954 /* for reconstruct, we always reschedule after a read. 1955 * for resync, only after all reads 1956 */ 1957 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1958 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1959 atomic_dec_and_test(&r10_bio->remaining)) { 1960 /* we have read all the blocks, 1961 * do the comparison in process context in raid10d 1962 */ 1963 reschedule_retry(r10_bio); 1964 } 1965 } 1966 1967 static void end_sync_request(struct r10bio *r10_bio) 1968 { 1969 struct mddev *mddev = r10_bio->mddev; 1970 1971 while (atomic_dec_and_test(&r10_bio->remaining)) { 1972 if (r10_bio->master_bio == NULL) { 1973 /* the primary of several recovery bios */ 1974 sector_t s = r10_bio->sectors; 1975 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1976 test_bit(R10BIO_WriteError, &r10_bio->state)) 1977 reschedule_retry(r10_bio); 1978 else 1979 put_buf(r10_bio); 1980 md_done_sync(mddev, s, 1); 1981 break; 1982 } else { 1983 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1984 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1985 test_bit(R10BIO_WriteError, &r10_bio->state)) 1986 reschedule_retry(r10_bio); 1987 else 1988 put_buf(r10_bio); 1989 r10_bio = r10_bio2; 1990 } 1991 } 1992 } 1993 1994 static void end_sync_write(struct bio *bio, int error) 1995 { 1996 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1997 struct r10bio *r10_bio = bio->bi_private; 1998 struct mddev *mddev = r10_bio->mddev; 1999 struct r10conf *conf = mddev->private; 2000 int d; 2001 sector_t first_bad; 2002 int bad_sectors; 2003 int slot; 2004 int repl; 2005 struct md_rdev *rdev = NULL; 2006 2007 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2008 if (repl) 2009 rdev = conf->mirrors[d].replacement; 2010 else 2011 rdev = conf->mirrors[d].rdev; 2012 2013 if (!uptodate) { 2014 if (repl) 2015 md_error(mddev, rdev); 2016 else { 2017 set_bit(WriteErrorSeen, &rdev->flags); 2018 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2019 set_bit(MD_RECOVERY_NEEDED, 2020 &rdev->mddev->recovery); 2021 set_bit(R10BIO_WriteError, &r10_bio->state); 2022 } 2023 } else if (is_badblock(rdev, 2024 r10_bio->devs[slot].addr, 2025 r10_bio->sectors, 2026 &first_bad, &bad_sectors)) 2027 set_bit(R10BIO_MadeGood, &r10_bio->state); 2028 2029 rdev_dec_pending(rdev, mddev); 2030 2031 end_sync_request(r10_bio); 2032 } 2033 2034 /* 2035 * Note: sync and recover and handled very differently for raid10 2036 * This code is for resync. 2037 * For resync, we read through virtual addresses and read all blocks. 2038 * If there is any error, we schedule a write. The lowest numbered 2039 * drive is authoritative. 2040 * However requests come for physical address, so we need to map. 2041 * For every physical address there are raid_disks/copies virtual addresses, 2042 * which is always are least one, but is not necessarly an integer. 2043 * This means that a physical address can span multiple chunks, so we may 2044 * have to submit multiple io requests for a single sync request. 2045 */ 2046 /* 2047 * We check if all blocks are in-sync and only write to blocks that 2048 * aren't in sync 2049 */ 2050 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2051 { 2052 struct r10conf *conf = mddev->private; 2053 int i, first; 2054 struct bio *tbio, *fbio; 2055 int vcnt; 2056 2057 atomic_set(&r10_bio->remaining, 1); 2058 2059 /* find the first device with a block */ 2060 for (i=0; i<conf->copies; i++) 2061 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 2062 break; 2063 2064 if (i == conf->copies) 2065 goto done; 2066 2067 first = i; 2068 fbio = r10_bio->devs[i].bio; 2069 2070 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2071 /* now find blocks with errors */ 2072 for (i=0 ; i < conf->copies ; i++) { 2073 int j, d; 2074 2075 tbio = r10_bio->devs[i].bio; 2076 2077 if (tbio->bi_end_io != end_sync_read) 2078 continue; 2079 if (i == first) 2080 continue; 2081 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 2082 /* We know that the bi_io_vec layout is the same for 2083 * both 'first' and 'i', so we just compare them. 2084 * All vec entries are PAGE_SIZE; 2085 */ 2086 int sectors = r10_bio->sectors; 2087 for (j = 0; j < vcnt; j++) { 2088 int len = PAGE_SIZE; 2089 if (sectors < (len / 512)) 2090 len = sectors * 512; 2091 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 2092 page_address(tbio->bi_io_vec[j].bv_page), 2093 len)) 2094 break; 2095 sectors -= len/512; 2096 } 2097 if (j == vcnt) 2098 continue; 2099 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2100 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2101 /* Don't fix anything. */ 2102 continue; 2103 } 2104 /* Ok, we need to write this bio, either to correct an 2105 * inconsistency or to correct an unreadable block. 2106 * First we need to fixup bv_offset, bv_len and 2107 * bi_vecs, as the read request might have corrupted these 2108 */ 2109 bio_reset(tbio); 2110 2111 tbio->bi_vcnt = vcnt; 2112 tbio->bi_iter.bi_size = r10_bio->sectors << 9; 2113 tbio->bi_rw = WRITE; 2114 tbio->bi_private = r10_bio; 2115 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2116 2117 for (j=0; j < vcnt ; j++) { 2118 tbio->bi_io_vec[j].bv_offset = 0; 2119 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 2120 2121 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2122 page_address(fbio->bi_io_vec[j].bv_page), 2123 PAGE_SIZE); 2124 } 2125 tbio->bi_end_io = end_sync_write; 2126 2127 d = r10_bio->devs[i].devnum; 2128 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2129 atomic_inc(&r10_bio->remaining); 2130 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2131 2132 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2133 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2134 generic_make_request(tbio); 2135 } 2136 2137 /* Now write out to any replacement devices 2138 * that are active 2139 */ 2140 for (i = 0; i < conf->copies; i++) { 2141 int j, d; 2142 2143 tbio = r10_bio->devs[i].repl_bio; 2144 if (!tbio || !tbio->bi_end_io) 2145 continue; 2146 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2147 && r10_bio->devs[i].bio != fbio) 2148 for (j = 0; j < vcnt; j++) 2149 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2150 page_address(fbio->bi_io_vec[j].bv_page), 2151 PAGE_SIZE); 2152 d = r10_bio->devs[i].devnum; 2153 atomic_inc(&r10_bio->remaining); 2154 md_sync_acct(conf->mirrors[d].replacement->bdev, 2155 bio_sectors(tbio)); 2156 generic_make_request(tbio); 2157 } 2158 2159 done: 2160 if (atomic_dec_and_test(&r10_bio->remaining)) { 2161 md_done_sync(mddev, r10_bio->sectors, 1); 2162 put_buf(r10_bio); 2163 } 2164 } 2165 2166 /* 2167 * Now for the recovery code. 2168 * Recovery happens across physical sectors. 2169 * We recover all non-is_sync drives by finding the virtual address of 2170 * each, and then choose a working drive that also has that virt address. 2171 * There is a separate r10_bio for each non-in_sync drive. 2172 * Only the first two slots are in use. The first for reading, 2173 * The second for writing. 2174 * 2175 */ 2176 static void fix_recovery_read_error(struct r10bio *r10_bio) 2177 { 2178 /* We got a read error during recovery. 2179 * We repeat the read in smaller page-sized sections. 2180 * If a read succeeds, write it to the new device or record 2181 * a bad block if we cannot. 2182 * If a read fails, record a bad block on both old and 2183 * new devices. 2184 */ 2185 struct mddev *mddev = r10_bio->mddev; 2186 struct r10conf *conf = mddev->private; 2187 struct bio *bio = r10_bio->devs[0].bio; 2188 sector_t sect = 0; 2189 int sectors = r10_bio->sectors; 2190 int idx = 0; 2191 int dr = r10_bio->devs[0].devnum; 2192 int dw = r10_bio->devs[1].devnum; 2193 2194 while (sectors) { 2195 int s = sectors; 2196 struct md_rdev *rdev; 2197 sector_t addr; 2198 int ok; 2199 2200 if (s > (PAGE_SIZE>>9)) 2201 s = PAGE_SIZE >> 9; 2202 2203 rdev = conf->mirrors[dr].rdev; 2204 addr = r10_bio->devs[0].addr + sect, 2205 ok = sync_page_io(rdev, 2206 addr, 2207 s << 9, 2208 bio->bi_io_vec[idx].bv_page, 2209 READ, false); 2210 if (ok) { 2211 rdev = conf->mirrors[dw].rdev; 2212 addr = r10_bio->devs[1].addr + sect; 2213 ok = sync_page_io(rdev, 2214 addr, 2215 s << 9, 2216 bio->bi_io_vec[idx].bv_page, 2217 WRITE, false); 2218 if (!ok) { 2219 set_bit(WriteErrorSeen, &rdev->flags); 2220 if (!test_and_set_bit(WantReplacement, 2221 &rdev->flags)) 2222 set_bit(MD_RECOVERY_NEEDED, 2223 &rdev->mddev->recovery); 2224 } 2225 } 2226 if (!ok) { 2227 /* We don't worry if we cannot set a bad block - 2228 * it really is bad so there is no loss in not 2229 * recording it yet 2230 */ 2231 rdev_set_badblocks(rdev, addr, s, 0); 2232 2233 if (rdev != conf->mirrors[dw].rdev) { 2234 /* need bad block on destination too */ 2235 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2236 addr = r10_bio->devs[1].addr + sect; 2237 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2238 if (!ok) { 2239 /* just abort the recovery */ 2240 printk(KERN_NOTICE 2241 "md/raid10:%s: recovery aborted" 2242 " due to read error\n", 2243 mdname(mddev)); 2244 2245 conf->mirrors[dw].recovery_disabled 2246 = mddev->recovery_disabled; 2247 set_bit(MD_RECOVERY_INTR, 2248 &mddev->recovery); 2249 break; 2250 } 2251 } 2252 } 2253 2254 sectors -= s; 2255 sect += s; 2256 idx++; 2257 } 2258 } 2259 2260 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2261 { 2262 struct r10conf *conf = mddev->private; 2263 int d; 2264 struct bio *wbio, *wbio2; 2265 2266 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2267 fix_recovery_read_error(r10_bio); 2268 end_sync_request(r10_bio); 2269 return; 2270 } 2271 2272 /* 2273 * share the pages with the first bio 2274 * and submit the write request 2275 */ 2276 d = r10_bio->devs[1].devnum; 2277 wbio = r10_bio->devs[1].bio; 2278 wbio2 = r10_bio->devs[1].repl_bio; 2279 /* Need to test wbio2->bi_end_io before we call 2280 * generic_make_request as if the former is NULL, 2281 * the latter is free to free wbio2. 2282 */ 2283 if (wbio2 && !wbio2->bi_end_io) 2284 wbio2 = NULL; 2285 if (wbio->bi_end_io) { 2286 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2287 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2288 generic_make_request(wbio); 2289 } 2290 if (wbio2) { 2291 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2292 md_sync_acct(conf->mirrors[d].replacement->bdev, 2293 bio_sectors(wbio2)); 2294 generic_make_request(wbio2); 2295 } 2296 } 2297 2298 2299 /* 2300 * Used by fix_read_error() to decay the per rdev read_errors. 2301 * We halve the read error count for every hour that has elapsed 2302 * since the last recorded read error. 2303 * 2304 */ 2305 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2306 { 2307 struct timespec cur_time_mon; 2308 unsigned long hours_since_last; 2309 unsigned int read_errors = atomic_read(&rdev->read_errors); 2310 2311 ktime_get_ts(&cur_time_mon); 2312 2313 if (rdev->last_read_error.tv_sec == 0 && 2314 rdev->last_read_error.tv_nsec == 0) { 2315 /* first time we've seen a read error */ 2316 rdev->last_read_error = cur_time_mon; 2317 return; 2318 } 2319 2320 hours_since_last = (cur_time_mon.tv_sec - 2321 rdev->last_read_error.tv_sec) / 3600; 2322 2323 rdev->last_read_error = cur_time_mon; 2324 2325 /* 2326 * if hours_since_last is > the number of bits in read_errors 2327 * just set read errors to 0. We do this to avoid 2328 * overflowing the shift of read_errors by hours_since_last. 2329 */ 2330 if (hours_since_last >= 8 * sizeof(read_errors)) 2331 atomic_set(&rdev->read_errors, 0); 2332 else 2333 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2334 } 2335 2336 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2337 int sectors, struct page *page, int rw) 2338 { 2339 sector_t first_bad; 2340 int bad_sectors; 2341 2342 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2343 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2344 return -1; 2345 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2346 /* success */ 2347 return 1; 2348 if (rw == WRITE) { 2349 set_bit(WriteErrorSeen, &rdev->flags); 2350 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2351 set_bit(MD_RECOVERY_NEEDED, 2352 &rdev->mddev->recovery); 2353 } 2354 /* need to record an error - either for the block or the device */ 2355 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2356 md_error(rdev->mddev, rdev); 2357 return 0; 2358 } 2359 2360 /* 2361 * This is a kernel thread which: 2362 * 2363 * 1. Retries failed read operations on working mirrors. 2364 * 2. Updates the raid superblock when problems encounter. 2365 * 3. Performs writes following reads for array synchronising. 2366 */ 2367 2368 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2369 { 2370 int sect = 0; /* Offset from r10_bio->sector */ 2371 int sectors = r10_bio->sectors; 2372 struct md_rdev*rdev; 2373 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2374 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2375 2376 /* still own a reference to this rdev, so it cannot 2377 * have been cleared recently. 2378 */ 2379 rdev = conf->mirrors[d].rdev; 2380 2381 if (test_bit(Faulty, &rdev->flags)) 2382 /* drive has already been failed, just ignore any 2383 more fix_read_error() attempts */ 2384 return; 2385 2386 check_decay_read_errors(mddev, rdev); 2387 atomic_inc(&rdev->read_errors); 2388 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2389 char b[BDEVNAME_SIZE]; 2390 bdevname(rdev->bdev, b); 2391 2392 printk(KERN_NOTICE 2393 "md/raid10:%s: %s: Raid device exceeded " 2394 "read_error threshold [cur %d:max %d]\n", 2395 mdname(mddev), b, 2396 atomic_read(&rdev->read_errors), max_read_errors); 2397 printk(KERN_NOTICE 2398 "md/raid10:%s: %s: Failing raid device\n", 2399 mdname(mddev), b); 2400 md_error(mddev, conf->mirrors[d].rdev); 2401 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2402 return; 2403 } 2404 2405 while(sectors) { 2406 int s = sectors; 2407 int sl = r10_bio->read_slot; 2408 int success = 0; 2409 int start; 2410 2411 if (s > (PAGE_SIZE>>9)) 2412 s = PAGE_SIZE >> 9; 2413 2414 rcu_read_lock(); 2415 do { 2416 sector_t first_bad; 2417 int bad_sectors; 2418 2419 d = r10_bio->devs[sl].devnum; 2420 rdev = rcu_dereference(conf->mirrors[d].rdev); 2421 if (rdev && 2422 !test_bit(Unmerged, &rdev->flags) && 2423 test_bit(In_sync, &rdev->flags) && 2424 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2425 &first_bad, &bad_sectors) == 0) { 2426 atomic_inc(&rdev->nr_pending); 2427 rcu_read_unlock(); 2428 success = sync_page_io(rdev, 2429 r10_bio->devs[sl].addr + 2430 sect, 2431 s<<9, 2432 conf->tmppage, READ, false); 2433 rdev_dec_pending(rdev, mddev); 2434 rcu_read_lock(); 2435 if (success) 2436 break; 2437 } 2438 sl++; 2439 if (sl == conf->copies) 2440 sl = 0; 2441 } while (!success && sl != r10_bio->read_slot); 2442 rcu_read_unlock(); 2443 2444 if (!success) { 2445 /* Cannot read from anywhere, just mark the block 2446 * as bad on the first device to discourage future 2447 * reads. 2448 */ 2449 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2450 rdev = conf->mirrors[dn].rdev; 2451 2452 if (!rdev_set_badblocks( 2453 rdev, 2454 r10_bio->devs[r10_bio->read_slot].addr 2455 + sect, 2456 s, 0)) { 2457 md_error(mddev, rdev); 2458 r10_bio->devs[r10_bio->read_slot].bio 2459 = IO_BLOCKED; 2460 } 2461 break; 2462 } 2463 2464 start = sl; 2465 /* write it back and re-read */ 2466 rcu_read_lock(); 2467 while (sl != r10_bio->read_slot) { 2468 char b[BDEVNAME_SIZE]; 2469 2470 if (sl==0) 2471 sl = conf->copies; 2472 sl--; 2473 d = r10_bio->devs[sl].devnum; 2474 rdev = rcu_dereference(conf->mirrors[d].rdev); 2475 if (!rdev || 2476 test_bit(Unmerged, &rdev->flags) || 2477 !test_bit(In_sync, &rdev->flags)) 2478 continue; 2479 2480 atomic_inc(&rdev->nr_pending); 2481 rcu_read_unlock(); 2482 if (r10_sync_page_io(rdev, 2483 r10_bio->devs[sl].addr + 2484 sect, 2485 s, conf->tmppage, WRITE) 2486 == 0) { 2487 /* Well, this device is dead */ 2488 printk(KERN_NOTICE 2489 "md/raid10:%s: read correction " 2490 "write failed" 2491 " (%d sectors at %llu on %s)\n", 2492 mdname(mddev), s, 2493 (unsigned long long)( 2494 sect + 2495 choose_data_offset(r10_bio, 2496 rdev)), 2497 bdevname(rdev->bdev, b)); 2498 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2499 "drive\n", 2500 mdname(mddev), 2501 bdevname(rdev->bdev, b)); 2502 } 2503 rdev_dec_pending(rdev, mddev); 2504 rcu_read_lock(); 2505 } 2506 sl = start; 2507 while (sl != r10_bio->read_slot) { 2508 char b[BDEVNAME_SIZE]; 2509 2510 if (sl==0) 2511 sl = conf->copies; 2512 sl--; 2513 d = r10_bio->devs[sl].devnum; 2514 rdev = rcu_dereference(conf->mirrors[d].rdev); 2515 if (!rdev || 2516 !test_bit(In_sync, &rdev->flags)) 2517 continue; 2518 2519 atomic_inc(&rdev->nr_pending); 2520 rcu_read_unlock(); 2521 switch (r10_sync_page_io(rdev, 2522 r10_bio->devs[sl].addr + 2523 sect, 2524 s, conf->tmppage, 2525 READ)) { 2526 case 0: 2527 /* Well, this device is dead */ 2528 printk(KERN_NOTICE 2529 "md/raid10:%s: unable to read back " 2530 "corrected sectors" 2531 " (%d sectors at %llu on %s)\n", 2532 mdname(mddev), s, 2533 (unsigned long long)( 2534 sect + 2535 choose_data_offset(r10_bio, rdev)), 2536 bdevname(rdev->bdev, b)); 2537 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2538 "drive\n", 2539 mdname(mddev), 2540 bdevname(rdev->bdev, b)); 2541 break; 2542 case 1: 2543 printk(KERN_INFO 2544 "md/raid10:%s: read error corrected" 2545 " (%d sectors at %llu on %s)\n", 2546 mdname(mddev), s, 2547 (unsigned long long)( 2548 sect + 2549 choose_data_offset(r10_bio, rdev)), 2550 bdevname(rdev->bdev, b)); 2551 atomic_add(s, &rdev->corrected_errors); 2552 } 2553 2554 rdev_dec_pending(rdev, mddev); 2555 rcu_read_lock(); 2556 } 2557 rcu_read_unlock(); 2558 2559 sectors -= s; 2560 sect += s; 2561 } 2562 } 2563 2564 static int narrow_write_error(struct r10bio *r10_bio, int i) 2565 { 2566 struct bio *bio = r10_bio->master_bio; 2567 struct mddev *mddev = r10_bio->mddev; 2568 struct r10conf *conf = mddev->private; 2569 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2570 /* bio has the data to be written to slot 'i' where 2571 * we just recently had a write error. 2572 * We repeatedly clone the bio and trim down to one block, 2573 * then try the write. Where the write fails we record 2574 * a bad block. 2575 * It is conceivable that the bio doesn't exactly align with 2576 * blocks. We must handle this. 2577 * 2578 * We currently own a reference to the rdev. 2579 */ 2580 2581 int block_sectors; 2582 sector_t sector; 2583 int sectors; 2584 int sect_to_write = r10_bio->sectors; 2585 int ok = 1; 2586 2587 if (rdev->badblocks.shift < 0) 2588 return 0; 2589 2590 block_sectors = 1 << rdev->badblocks.shift; 2591 sector = r10_bio->sector; 2592 sectors = ((r10_bio->sector + block_sectors) 2593 & ~(sector_t)(block_sectors - 1)) 2594 - sector; 2595 2596 while (sect_to_write) { 2597 struct bio *wbio; 2598 if (sectors > sect_to_write) 2599 sectors = sect_to_write; 2600 /* Write at 'sector' for 'sectors' */ 2601 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2602 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2603 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ 2604 choose_data_offset(r10_bio, rdev) + 2605 (sector - r10_bio->sector)); 2606 wbio->bi_bdev = rdev->bdev; 2607 if (submit_bio_wait(WRITE, wbio) == 0) 2608 /* Failure! */ 2609 ok = rdev_set_badblocks(rdev, sector, 2610 sectors, 0) 2611 && ok; 2612 2613 bio_put(wbio); 2614 sect_to_write -= sectors; 2615 sector += sectors; 2616 sectors = block_sectors; 2617 } 2618 return ok; 2619 } 2620 2621 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2622 { 2623 int slot = r10_bio->read_slot; 2624 struct bio *bio; 2625 struct r10conf *conf = mddev->private; 2626 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2627 char b[BDEVNAME_SIZE]; 2628 unsigned long do_sync; 2629 int max_sectors; 2630 2631 /* we got a read error. Maybe the drive is bad. Maybe just 2632 * the block and we can fix it. 2633 * We freeze all other IO, and try reading the block from 2634 * other devices. When we find one, we re-write 2635 * and check it that fixes the read error. 2636 * This is all done synchronously while the array is 2637 * frozen. 2638 */ 2639 bio = r10_bio->devs[slot].bio; 2640 bdevname(bio->bi_bdev, b); 2641 bio_put(bio); 2642 r10_bio->devs[slot].bio = NULL; 2643 2644 if (mddev->ro == 0) { 2645 freeze_array(conf, 1); 2646 fix_read_error(conf, mddev, r10_bio); 2647 unfreeze_array(conf); 2648 } else 2649 r10_bio->devs[slot].bio = IO_BLOCKED; 2650 2651 rdev_dec_pending(rdev, mddev); 2652 2653 read_more: 2654 rdev = read_balance(conf, r10_bio, &max_sectors); 2655 if (rdev == NULL) { 2656 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2657 " read error for block %llu\n", 2658 mdname(mddev), b, 2659 (unsigned long long)r10_bio->sector); 2660 raid_end_bio_io(r10_bio); 2661 return; 2662 } 2663 2664 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2665 slot = r10_bio->read_slot; 2666 printk_ratelimited( 2667 KERN_ERR 2668 "md/raid10:%s: %s: redirecting " 2669 "sector %llu to another mirror\n", 2670 mdname(mddev), 2671 bdevname(rdev->bdev, b), 2672 (unsigned long long)r10_bio->sector); 2673 bio = bio_clone_mddev(r10_bio->master_bio, 2674 GFP_NOIO, mddev); 2675 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors); 2676 r10_bio->devs[slot].bio = bio; 2677 r10_bio->devs[slot].rdev = rdev; 2678 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr 2679 + choose_data_offset(r10_bio, rdev); 2680 bio->bi_bdev = rdev->bdev; 2681 bio->bi_rw = READ | do_sync; 2682 bio->bi_private = r10_bio; 2683 bio->bi_end_io = raid10_end_read_request; 2684 if (max_sectors < r10_bio->sectors) { 2685 /* Drat - have to split this up more */ 2686 struct bio *mbio = r10_bio->master_bio; 2687 int sectors_handled = 2688 r10_bio->sector + max_sectors 2689 - mbio->bi_iter.bi_sector; 2690 r10_bio->sectors = max_sectors; 2691 spin_lock_irq(&conf->device_lock); 2692 if (mbio->bi_phys_segments == 0) 2693 mbio->bi_phys_segments = 2; 2694 else 2695 mbio->bi_phys_segments++; 2696 spin_unlock_irq(&conf->device_lock); 2697 generic_make_request(bio); 2698 2699 r10_bio = mempool_alloc(conf->r10bio_pool, 2700 GFP_NOIO); 2701 r10_bio->master_bio = mbio; 2702 r10_bio->sectors = bio_sectors(mbio) - sectors_handled; 2703 r10_bio->state = 0; 2704 set_bit(R10BIO_ReadError, 2705 &r10_bio->state); 2706 r10_bio->mddev = mddev; 2707 r10_bio->sector = mbio->bi_iter.bi_sector 2708 + sectors_handled; 2709 2710 goto read_more; 2711 } else 2712 generic_make_request(bio); 2713 } 2714 2715 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2716 { 2717 /* Some sort of write request has finished and it 2718 * succeeded in writing where we thought there was a 2719 * bad block. So forget the bad block. 2720 * Or possibly if failed and we need to record 2721 * a bad block. 2722 */ 2723 int m; 2724 struct md_rdev *rdev; 2725 2726 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2727 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2728 for (m = 0; m < conf->copies; m++) { 2729 int dev = r10_bio->devs[m].devnum; 2730 rdev = conf->mirrors[dev].rdev; 2731 if (r10_bio->devs[m].bio == NULL) 2732 continue; 2733 if (test_bit(BIO_UPTODATE, 2734 &r10_bio->devs[m].bio->bi_flags)) { 2735 rdev_clear_badblocks( 2736 rdev, 2737 r10_bio->devs[m].addr, 2738 r10_bio->sectors, 0); 2739 } else { 2740 if (!rdev_set_badblocks( 2741 rdev, 2742 r10_bio->devs[m].addr, 2743 r10_bio->sectors, 0)) 2744 md_error(conf->mddev, rdev); 2745 } 2746 rdev = conf->mirrors[dev].replacement; 2747 if (r10_bio->devs[m].repl_bio == NULL) 2748 continue; 2749 if (test_bit(BIO_UPTODATE, 2750 &r10_bio->devs[m].repl_bio->bi_flags)) { 2751 rdev_clear_badblocks( 2752 rdev, 2753 r10_bio->devs[m].addr, 2754 r10_bio->sectors, 0); 2755 } else { 2756 if (!rdev_set_badblocks( 2757 rdev, 2758 r10_bio->devs[m].addr, 2759 r10_bio->sectors, 0)) 2760 md_error(conf->mddev, rdev); 2761 } 2762 } 2763 put_buf(r10_bio); 2764 } else { 2765 for (m = 0; m < conf->copies; m++) { 2766 int dev = r10_bio->devs[m].devnum; 2767 struct bio *bio = r10_bio->devs[m].bio; 2768 rdev = conf->mirrors[dev].rdev; 2769 if (bio == IO_MADE_GOOD) { 2770 rdev_clear_badblocks( 2771 rdev, 2772 r10_bio->devs[m].addr, 2773 r10_bio->sectors, 0); 2774 rdev_dec_pending(rdev, conf->mddev); 2775 } else if (bio != NULL && 2776 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2777 if (!narrow_write_error(r10_bio, m)) { 2778 md_error(conf->mddev, rdev); 2779 set_bit(R10BIO_Degraded, 2780 &r10_bio->state); 2781 } 2782 rdev_dec_pending(rdev, conf->mddev); 2783 } 2784 bio = r10_bio->devs[m].repl_bio; 2785 rdev = conf->mirrors[dev].replacement; 2786 if (rdev && bio == IO_MADE_GOOD) { 2787 rdev_clear_badblocks( 2788 rdev, 2789 r10_bio->devs[m].addr, 2790 r10_bio->sectors, 0); 2791 rdev_dec_pending(rdev, conf->mddev); 2792 } 2793 } 2794 if (test_bit(R10BIO_WriteError, 2795 &r10_bio->state)) 2796 close_write(r10_bio); 2797 raid_end_bio_io(r10_bio); 2798 } 2799 } 2800 2801 static void raid10d(struct md_thread *thread) 2802 { 2803 struct mddev *mddev = thread->mddev; 2804 struct r10bio *r10_bio; 2805 unsigned long flags; 2806 struct r10conf *conf = mddev->private; 2807 struct list_head *head = &conf->retry_list; 2808 struct blk_plug plug; 2809 2810 md_check_recovery(mddev); 2811 2812 blk_start_plug(&plug); 2813 for (;;) { 2814 2815 flush_pending_writes(conf); 2816 2817 spin_lock_irqsave(&conf->device_lock, flags); 2818 if (list_empty(head)) { 2819 spin_unlock_irqrestore(&conf->device_lock, flags); 2820 break; 2821 } 2822 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2823 list_del(head->prev); 2824 conf->nr_queued--; 2825 spin_unlock_irqrestore(&conf->device_lock, flags); 2826 2827 mddev = r10_bio->mddev; 2828 conf = mddev->private; 2829 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2830 test_bit(R10BIO_WriteError, &r10_bio->state)) 2831 handle_write_completed(conf, r10_bio); 2832 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2833 reshape_request_write(mddev, r10_bio); 2834 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2835 sync_request_write(mddev, r10_bio); 2836 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2837 recovery_request_write(mddev, r10_bio); 2838 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2839 handle_read_error(mddev, r10_bio); 2840 else { 2841 /* just a partial read to be scheduled from a 2842 * separate context 2843 */ 2844 int slot = r10_bio->read_slot; 2845 generic_make_request(r10_bio->devs[slot].bio); 2846 } 2847 2848 cond_resched(); 2849 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2850 md_check_recovery(mddev); 2851 } 2852 blk_finish_plug(&plug); 2853 } 2854 2855 2856 static int init_resync(struct r10conf *conf) 2857 { 2858 int buffs; 2859 int i; 2860 2861 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2862 BUG_ON(conf->r10buf_pool); 2863 conf->have_replacement = 0; 2864 for (i = 0; i < conf->geo.raid_disks; i++) 2865 if (conf->mirrors[i].replacement) 2866 conf->have_replacement = 1; 2867 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2868 if (!conf->r10buf_pool) 2869 return -ENOMEM; 2870 conf->next_resync = 0; 2871 return 0; 2872 } 2873 2874 /* 2875 * perform a "sync" on one "block" 2876 * 2877 * We need to make sure that no normal I/O request - particularly write 2878 * requests - conflict with active sync requests. 2879 * 2880 * This is achieved by tracking pending requests and a 'barrier' concept 2881 * that can be installed to exclude normal IO requests. 2882 * 2883 * Resync and recovery are handled very differently. 2884 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2885 * 2886 * For resync, we iterate over virtual addresses, read all copies, 2887 * and update if there are differences. If only one copy is live, 2888 * skip it. 2889 * For recovery, we iterate over physical addresses, read a good 2890 * value for each non-in_sync drive, and over-write. 2891 * 2892 * So, for recovery we may have several outstanding complex requests for a 2893 * given address, one for each out-of-sync device. We model this by allocating 2894 * a number of r10_bio structures, one for each out-of-sync device. 2895 * As we setup these structures, we collect all bio's together into a list 2896 * which we then process collectively to add pages, and then process again 2897 * to pass to generic_make_request. 2898 * 2899 * The r10_bio structures are linked using a borrowed master_bio pointer. 2900 * This link is counted in ->remaining. When the r10_bio that points to NULL 2901 * has its remaining count decremented to 0, the whole complex operation 2902 * is complete. 2903 * 2904 */ 2905 2906 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2907 int *skipped, int go_faster) 2908 { 2909 struct r10conf *conf = mddev->private; 2910 struct r10bio *r10_bio; 2911 struct bio *biolist = NULL, *bio; 2912 sector_t max_sector, nr_sectors; 2913 int i; 2914 int max_sync; 2915 sector_t sync_blocks; 2916 sector_t sectors_skipped = 0; 2917 int chunks_skipped = 0; 2918 sector_t chunk_mask = conf->geo.chunk_mask; 2919 2920 if (!conf->r10buf_pool) 2921 if (init_resync(conf)) 2922 return 0; 2923 2924 /* 2925 * Allow skipping a full rebuild for incremental assembly 2926 * of a clean array, like RAID1 does. 2927 */ 2928 if (mddev->bitmap == NULL && 2929 mddev->recovery_cp == MaxSector && 2930 mddev->reshape_position == MaxSector && 2931 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2932 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2933 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2934 conf->fullsync == 0) { 2935 *skipped = 1; 2936 return mddev->dev_sectors - sector_nr; 2937 } 2938 2939 skipped: 2940 max_sector = mddev->dev_sectors; 2941 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2942 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2943 max_sector = mddev->resync_max_sectors; 2944 if (sector_nr >= max_sector) { 2945 /* If we aborted, we need to abort the 2946 * sync on the 'current' bitmap chucks (there can 2947 * be several when recovering multiple devices). 2948 * as we may have started syncing it but not finished. 2949 * We can find the current address in 2950 * mddev->curr_resync, but for recovery, 2951 * we need to convert that to several 2952 * virtual addresses. 2953 */ 2954 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2955 end_reshape(conf); 2956 return 0; 2957 } 2958 2959 if (mddev->curr_resync < max_sector) { /* aborted */ 2960 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2961 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2962 &sync_blocks, 1); 2963 else for (i = 0; i < conf->geo.raid_disks; i++) { 2964 sector_t sect = 2965 raid10_find_virt(conf, mddev->curr_resync, i); 2966 bitmap_end_sync(mddev->bitmap, sect, 2967 &sync_blocks, 1); 2968 } 2969 } else { 2970 /* completed sync */ 2971 if ((!mddev->bitmap || conf->fullsync) 2972 && conf->have_replacement 2973 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2974 /* Completed a full sync so the replacements 2975 * are now fully recovered. 2976 */ 2977 for (i = 0; i < conf->geo.raid_disks; i++) 2978 if (conf->mirrors[i].replacement) 2979 conf->mirrors[i].replacement 2980 ->recovery_offset 2981 = MaxSector; 2982 } 2983 conf->fullsync = 0; 2984 } 2985 bitmap_close_sync(mddev->bitmap); 2986 close_sync(conf); 2987 *skipped = 1; 2988 return sectors_skipped; 2989 } 2990 2991 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2992 return reshape_request(mddev, sector_nr, skipped); 2993 2994 if (chunks_skipped >= conf->geo.raid_disks) { 2995 /* if there has been nothing to do on any drive, 2996 * then there is nothing to do at all.. 2997 */ 2998 *skipped = 1; 2999 return (max_sector - sector_nr) + sectors_skipped; 3000 } 3001 3002 if (max_sector > mddev->resync_max) 3003 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3004 3005 /* make sure whole request will fit in a chunk - if chunks 3006 * are meaningful 3007 */ 3008 if (conf->geo.near_copies < conf->geo.raid_disks && 3009 max_sector > (sector_nr | chunk_mask)) 3010 max_sector = (sector_nr | chunk_mask) + 1; 3011 /* 3012 * If there is non-resync activity waiting for us then 3013 * put in a delay to throttle resync. 3014 */ 3015 if (!go_faster && conf->nr_waiting) 3016 msleep_interruptible(1000); 3017 3018 /* Again, very different code for resync and recovery. 3019 * Both must result in an r10bio with a list of bios that 3020 * have bi_end_io, bi_sector, bi_bdev set, 3021 * and bi_private set to the r10bio. 3022 * For recovery, we may actually create several r10bios 3023 * with 2 bios in each, that correspond to the bios in the main one. 3024 * In this case, the subordinate r10bios link back through a 3025 * borrowed master_bio pointer, and the counter in the master 3026 * includes a ref from each subordinate. 3027 */ 3028 /* First, we decide what to do and set ->bi_end_io 3029 * To end_sync_read if we want to read, and 3030 * end_sync_write if we will want to write. 3031 */ 3032 3033 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3034 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3035 /* recovery... the complicated one */ 3036 int j; 3037 r10_bio = NULL; 3038 3039 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3040 int still_degraded; 3041 struct r10bio *rb2; 3042 sector_t sect; 3043 int must_sync; 3044 int any_working; 3045 struct raid10_info *mirror = &conf->mirrors[i]; 3046 3047 if ((mirror->rdev == NULL || 3048 test_bit(In_sync, &mirror->rdev->flags)) 3049 && 3050 (mirror->replacement == NULL || 3051 test_bit(Faulty, 3052 &mirror->replacement->flags))) 3053 continue; 3054 3055 still_degraded = 0; 3056 /* want to reconstruct this device */ 3057 rb2 = r10_bio; 3058 sect = raid10_find_virt(conf, sector_nr, i); 3059 if (sect >= mddev->resync_max_sectors) { 3060 /* last stripe is not complete - don't 3061 * try to recover this sector. 3062 */ 3063 continue; 3064 } 3065 /* Unless we are doing a full sync, or a replacement 3066 * we only need to recover the block if it is set in 3067 * the bitmap 3068 */ 3069 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3070 &sync_blocks, 1); 3071 if (sync_blocks < max_sync) 3072 max_sync = sync_blocks; 3073 if (!must_sync && 3074 mirror->replacement == NULL && 3075 !conf->fullsync) { 3076 /* yep, skip the sync_blocks here, but don't assume 3077 * that there will never be anything to do here 3078 */ 3079 chunks_skipped = -1; 3080 continue; 3081 } 3082 3083 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3084 raise_barrier(conf, rb2 != NULL); 3085 atomic_set(&r10_bio->remaining, 0); 3086 3087 r10_bio->master_bio = (struct bio*)rb2; 3088 if (rb2) 3089 atomic_inc(&rb2->remaining); 3090 r10_bio->mddev = mddev; 3091 set_bit(R10BIO_IsRecover, &r10_bio->state); 3092 r10_bio->sector = sect; 3093 3094 raid10_find_phys(conf, r10_bio); 3095 3096 /* Need to check if the array will still be 3097 * degraded 3098 */ 3099 for (j = 0; j < conf->geo.raid_disks; j++) 3100 if (conf->mirrors[j].rdev == NULL || 3101 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 3102 still_degraded = 1; 3103 break; 3104 } 3105 3106 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3107 &sync_blocks, still_degraded); 3108 3109 any_working = 0; 3110 for (j=0; j<conf->copies;j++) { 3111 int k; 3112 int d = r10_bio->devs[j].devnum; 3113 sector_t from_addr, to_addr; 3114 struct md_rdev *rdev; 3115 sector_t sector, first_bad; 3116 int bad_sectors; 3117 if (!conf->mirrors[d].rdev || 3118 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 3119 continue; 3120 /* This is where we read from */ 3121 any_working = 1; 3122 rdev = conf->mirrors[d].rdev; 3123 sector = r10_bio->devs[j].addr; 3124 3125 if (is_badblock(rdev, sector, max_sync, 3126 &first_bad, &bad_sectors)) { 3127 if (first_bad > sector) 3128 max_sync = first_bad - sector; 3129 else { 3130 bad_sectors -= (sector 3131 - first_bad); 3132 if (max_sync > bad_sectors) 3133 max_sync = bad_sectors; 3134 continue; 3135 } 3136 } 3137 bio = r10_bio->devs[0].bio; 3138 bio_reset(bio); 3139 bio->bi_next = biolist; 3140 biolist = bio; 3141 bio->bi_private = r10_bio; 3142 bio->bi_end_io = end_sync_read; 3143 bio->bi_rw = READ; 3144 from_addr = r10_bio->devs[j].addr; 3145 bio->bi_iter.bi_sector = from_addr + 3146 rdev->data_offset; 3147 bio->bi_bdev = rdev->bdev; 3148 atomic_inc(&rdev->nr_pending); 3149 /* and we write to 'i' (if not in_sync) */ 3150 3151 for (k=0; k<conf->copies; k++) 3152 if (r10_bio->devs[k].devnum == i) 3153 break; 3154 BUG_ON(k == conf->copies); 3155 to_addr = r10_bio->devs[k].addr; 3156 r10_bio->devs[0].devnum = d; 3157 r10_bio->devs[0].addr = from_addr; 3158 r10_bio->devs[1].devnum = i; 3159 r10_bio->devs[1].addr = to_addr; 3160 3161 rdev = mirror->rdev; 3162 if (!test_bit(In_sync, &rdev->flags)) { 3163 bio = r10_bio->devs[1].bio; 3164 bio_reset(bio); 3165 bio->bi_next = biolist; 3166 biolist = bio; 3167 bio->bi_private = r10_bio; 3168 bio->bi_end_io = end_sync_write; 3169 bio->bi_rw = WRITE; 3170 bio->bi_iter.bi_sector = to_addr 3171 + rdev->data_offset; 3172 bio->bi_bdev = rdev->bdev; 3173 atomic_inc(&r10_bio->remaining); 3174 } else 3175 r10_bio->devs[1].bio->bi_end_io = NULL; 3176 3177 /* and maybe write to replacement */ 3178 bio = r10_bio->devs[1].repl_bio; 3179 if (bio) 3180 bio->bi_end_io = NULL; 3181 rdev = mirror->replacement; 3182 /* Note: if rdev != NULL, then bio 3183 * cannot be NULL as r10buf_pool_alloc will 3184 * have allocated it. 3185 * So the second test here is pointless. 3186 * But it keeps semantic-checkers happy, and 3187 * this comment keeps human reviewers 3188 * happy. 3189 */ 3190 if (rdev == NULL || bio == NULL || 3191 test_bit(Faulty, &rdev->flags)) 3192 break; 3193 bio_reset(bio); 3194 bio->bi_next = biolist; 3195 biolist = bio; 3196 bio->bi_private = r10_bio; 3197 bio->bi_end_io = end_sync_write; 3198 bio->bi_rw = WRITE; 3199 bio->bi_iter.bi_sector = to_addr + 3200 rdev->data_offset; 3201 bio->bi_bdev = rdev->bdev; 3202 atomic_inc(&r10_bio->remaining); 3203 break; 3204 } 3205 if (j == conf->copies) { 3206 /* Cannot recover, so abort the recovery or 3207 * record a bad block */ 3208 if (any_working) { 3209 /* problem is that there are bad blocks 3210 * on other device(s) 3211 */ 3212 int k; 3213 for (k = 0; k < conf->copies; k++) 3214 if (r10_bio->devs[k].devnum == i) 3215 break; 3216 if (!test_bit(In_sync, 3217 &mirror->rdev->flags) 3218 && !rdev_set_badblocks( 3219 mirror->rdev, 3220 r10_bio->devs[k].addr, 3221 max_sync, 0)) 3222 any_working = 0; 3223 if (mirror->replacement && 3224 !rdev_set_badblocks( 3225 mirror->replacement, 3226 r10_bio->devs[k].addr, 3227 max_sync, 0)) 3228 any_working = 0; 3229 } 3230 if (!any_working) { 3231 if (!test_and_set_bit(MD_RECOVERY_INTR, 3232 &mddev->recovery)) 3233 printk(KERN_INFO "md/raid10:%s: insufficient " 3234 "working devices for recovery.\n", 3235 mdname(mddev)); 3236 mirror->recovery_disabled 3237 = mddev->recovery_disabled; 3238 } 3239 put_buf(r10_bio); 3240 if (rb2) 3241 atomic_dec(&rb2->remaining); 3242 r10_bio = rb2; 3243 break; 3244 } 3245 } 3246 if (biolist == NULL) { 3247 while (r10_bio) { 3248 struct r10bio *rb2 = r10_bio; 3249 r10_bio = (struct r10bio*) rb2->master_bio; 3250 rb2->master_bio = NULL; 3251 put_buf(rb2); 3252 } 3253 goto giveup; 3254 } 3255 } else { 3256 /* resync. Schedule a read for every block at this virt offset */ 3257 int count = 0; 3258 3259 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3260 3261 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3262 &sync_blocks, mddev->degraded) && 3263 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3264 &mddev->recovery)) { 3265 /* We can skip this block */ 3266 *skipped = 1; 3267 return sync_blocks + sectors_skipped; 3268 } 3269 if (sync_blocks < max_sync) 3270 max_sync = sync_blocks; 3271 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3272 3273 r10_bio->mddev = mddev; 3274 atomic_set(&r10_bio->remaining, 0); 3275 raise_barrier(conf, 0); 3276 conf->next_resync = sector_nr; 3277 3278 r10_bio->master_bio = NULL; 3279 r10_bio->sector = sector_nr; 3280 set_bit(R10BIO_IsSync, &r10_bio->state); 3281 raid10_find_phys(conf, r10_bio); 3282 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3283 3284 for (i = 0; i < conf->copies; i++) { 3285 int d = r10_bio->devs[i].devnum; 3286 sector_t first_bad, sector; 3287 int bad_sectors; 3288 3289 if (r10_bio->devs[i].repl_bio) 3290 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3291 3292 bio = r10_bio->devs[i].bio; 3293 bio_reset(bio); 3294 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3295 if (conf->mirrors[d].rdev == NULL || 3296 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3297 continue; 3298 sector = r10_bio->devs[i].addr; 3299 if (is_badblock(conf->mirrors[d].rdev, 3300 sector, max_sync, 3301 &first_bad, &bad_sectors)) { 3302 if (first_bad > sector) 3303 max_sync = first_bad - sector; 3304 else { 3305 bad_sectors -= (sector - first_bad); 3306 if (max_sync > bad_sectors) 3307 max_sync = bad_sectors; 3308 continue; 3309 } 3310 } 3311 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3312 atomic_inc(&r10_bio->remaining); 3313 bio->bi_next = biolist; 3314 biolist = bio; 3315 bio->bi_private = r10_bio; 3316 bio->bi_end_io = end_sync_read; 3317 bio->bi_rw = READ; 3318 bio->bi_iter.bi_sector = sector + 3319 conf->mirrors[d].rdev->data_offset; 3320 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3321 count++; 3322 3323 if (conf->mirrors[d].replacement == NULL || 3324 test_bit(Faulty, 3325 &conf->mirrors[d].replacement->flags)) 3326 continue; 3327 3328 /* Need to set up for writing to the replacement */ 3329 bio = r10_bio->devs[i].repl_bio; 3330 bio_reset(bio); 3331 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3332 3333 sector = r10_bio->devs[i].addr; 3334 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3335 bio->bi_next = biolist; 3336 biolist = bio; 3337 bio->bi_private = r10_bio; 3338 bio->bi_end_io = end_sync_write; 3339 bio->bi_rw = WRITE; 3340 bio->bi_iter.bi_sector = sector + 3341 conf->mirrors[d].replacement->data_offset; 3342 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3343 count++; 3344 } 3345 3346 if (count < 2) { 3347 for (i=0; i<conf->copies; i++) { 3348 int d = r10_bio->devs[i].devnum; 3349 if (r10_bio->devs[i].bio->bi_end_io) 3350 rdev_dec_pending(conf->mirrors[d].rdev, 3351 mddev); 3352 if (r10_bio->devs[i].repl_bio && 3353 r10_bio->devs[i].repl_bio->bi_end_io) 3354 rdev_dec_pending( 3355 conf->mirrors[d].replacement, 3356 mddev); 3357 } 3358 put_buf(r10_bio); 3359 biolist = NULL; 3360 goto giveup; 3361 } 3362 } 3363 3364 nr_sectors = 0; 3365 if (sector_nr + max_sync < max_sector) 3366 max_sector = sector_nr + max_sync; 3367 do { 3368 struct page *page; 3369 int len = PAGE_SIZE; 3370 if (sector_nr + (len>>9) > max_sector) 3371 len = (max_sector - sector_nr) << 9; 3372 if (len == 0) 3373 break; 3374 for (bio= biolist ; bio ; bio=bio->bi_next) { 3375 struct bio *bio2; 3376 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3377 if (bio_add_page(bio, page, len, 0)) 3378 continue; 3379 3380 /* stop here */ 3381 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3382 for (bio2 = biolist; 3383 bio2 && bio2 != bio; 3384 bio2 = bio2->bi_next) { 3385 /* remove last page from this bio */ 3386 bio2->bi_vcnt--; 3387 bio2->bi_iter.bi_size -= len; 3388 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 3389 } 3390 goto bio_full; 3391 } 3392 nr_sectors += len>>9; 3393 sector_nr += len>>9; 3394 } while (biolist->bi_vcnt < RESYNC_PAGES); 3395 bio_full: 3396 r10_bio->sectors = nr_sectors; 3397 3398 while (biolist) { 3399 bio = biolist; 3400 biolist = biolist->bi_next; 3401 3402 bio->bi_next = NULL; 3403 r10_bio = bio->bi_private; 3404 r10_bio->sectors = nr_sectors; 3405 3406 if (bio->bi_end_io == end_sync_read) { 3407 md_sync_acct(bio->bi_bdev, nr_sectors); 3408 set_bit(BIO_UPTODATE, &bio->bi_flags); 3409 generic_make_request(bio); 3410 } 3411 } 3412 3413 if (sectors_skipped) 3414 /* pretend they weren't skipped, it makes 3415 * no important difference in this case 3416 */ 3417 md_done_sync(mddev, sectors_skipped, 1); 3418 3419 return sectors_skipped + nr_sectors; 3420 giveup: 3421 /* There is nowhere to write, so all non-sync 3422 * drives must be failed or in resync, all drives 3423 * have a bad block, so try the next chunk... 3424 */ 3425 if (sector_nr + max_sync < max_sector) 3426 max_sector = sector_nr + max_sync; 3427 3428 sectors_skipped += (max_sector - sector_nr); 3429 chunks_skipped ++; 3430 sector_nr = max_sector; 3431 goto skipped; 3432 } 3433 3434 static sector_t 3435 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3436 { 3437 sector_t size; 3438 struct r10conf *conf = mddev->private; 3439 3440 if (!raid_disks) 3441 raid_disks = min(conf->geo.raid_disks, 3442 conf->prev.raid_disks); 3443 if (!sectors) 3444 sectors = conf->dev_sectors; 3445 3446 size = sectors >> conf->geo.chunk_shift; 3447 sector_div(size, conf->geo.far_copies); 3448 size = size * raid_disks; 3449 sector_div(size, conf->geo.near_copies); 3450 3451 return size << conf->geo.chunk_shift; 3452 } 3453 3454 static void calc_sectors(struct r10conf *conf, sector_t size) 3455 { 3456 /* Calculate the number of sectors-per-device that will 3457 * actually be used, and set conf->dev_sectors and 3458 * conf->stride 3459 */ 3460 3461 size = size >> conf->geo.chunk_shift; 3462 sector_div(size, conf->geo.far_copies); 3463 size = size * conf->geo.raid_disks; 3464 sector_div(size, conf->geo.near_copies); 3465 /* 'size' is now the number of chunks in the array */ 3466 /* calculate "used chunks per device" */ 3467 size = size * conf->copies; 3468 3469 /* We need to round up when dividing by raid_disks to 3470 * get the stride size. 3471 */ 3472 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3473 3474 conf->dev_sectors = size << conf->geo.chunk_shift; 3475 3476 if (conf->geo.far_offset) 3477 conf->geo.stride = 1 << conf->geo.chunk_shift; 3478 else { 3479 sector_div(size, conf->geo.far_copies); 3480 conf->geo.stride = size << conf->geo.chunk_shift; 3481 } 3482 } 3483 3484 enum geo_type {geo_new, geo_old, geo_start}; 3485 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3486 { 3487 int nc, fc, fo; 3488 int layout, chunk, disks; 3489 switch (new) { 3490 case geo_old: 3491 layout = mddev->layout; 3492 chunk = mddev->chunk_sectors; 3493 disks = mddev->raid_disks - mddev->delta_disks; 3494 break; 3495 case geo_new: 3496 layout = mddev->new_layout; 3497 chunk = mddev->new_chunk_sectors; 3498 disks = mddev->raid_disks; 3499 break; 3500 default: /* avoid 'may be unused' warnings */ 3501 case geo_start: /* new when starting reshape - raid_disks not 3502 * updated yet. */ 3503 layout = mddev->new_layout; 3504 chunk = mddev->new_chunk_sectors; 3505 disks = mddev->raid_disks + mddev->delta_disks; 3506 break; 3507 } 3508 if (layout >> 18) 3509 return -1; 3510 if (chunk < (PAGE_SIZE >> 9) || 3511 !is_power_of_2(chunk)) 3512 return -2; 3513 nc = layout & 255; 3514 fc = (layout >> 8) & 255; 3515 fo = layout & (1<<16); 3516 geo->raid_disks = disks; 3517 geo->near_copies = nc; 3518 geo->far_copies = fc; 3519 geo->far_offset = fo; 3520 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks; 3521 geo->chunk_mask = chunk - 1; 3522 geo->chunk_shift = ffz(~chunk); 3523 return nc*fc; 3524 } 3525 3526 static struct r10conf *setup_conf(struct mddev *mddev) 3527 { 3528 struct r10conf *conf = NULL; 3529 int err = -EINVAL; 3530 struct geom geo; 3531 int copies; 3532 3533 copies = setup_geo(&geo, mddev, geo_new); 3534 3535 if (copies == -2) { 3536 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3537 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3538 mdname(mddev), PAGE_SIZE); 3539 goto out; 3540 } 3541 3542 if (copies < 2 || copies > mddev->raid_disks) { 3543 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3544 mdname(mddev), mddev->new_layout); 3545 goto out; 3546 } 3547 3548 err = -ENOMEM; 3549 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3550 if (!conf) 3551 goto out; 3552 3553 /* FIXME calc properly */ 3554 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3555 max(0,-mddev->delta_disks)), 3556 GFP_KERNEL); 3557 if (!conf->mirrors) 3558 goto out; 3559 3560 conf->tmppage = alloc_page(GFP_KERNEL); 3561 if (!conf->tmppage) 3562 goto out; 3563 3564 conf->geo = geo; 3565 conf->copies = copies; 3566 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3567 r10bio_pool_free, conf); 3568 if (!conf->r10bio_pool) 3569 goto out; 3570 3571 calc_sectors(conf, mddev->dev_sectors); 3572 if (mddev->reshape_position == MaxSector) { 3573 conf->prev = conf->geo; 3574 conf->reshape_progress = MaxSector; 3575 } else { 3576 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3577 err = -EINVAL; 3578 goto out; 3579 } 3580 conf->reshape_progress = mddev->reshape_position; 3581 if (conf->prev.far_offset) 3582 conf->prev.stride = 1 << conf->prev.chunk_shift; 3583 else 3584 /* far_copies must be 1 */ 3585 conf->prev.stride = conf->dev_sectors; 3586 } 3587 spin_lock_init(&conf->device_lock); 3588 INIT_LIST_HEAD(&conf->retry_list); 3589 3590 spin_lock_init(&conf->resync_lock); 3591 init_waitqueue_head(&conf->wait_barrier); 3592 3593 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3594 if (!conf->thread) 3595 goto out; 3596 3597 conf->mddev = mddev; 3598 return conf; 3599 3600 out: 3601 if (err == -ENOMEM) 3602 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3603 mdname(mddev)); 3604 if (conf) { 3605 if (conf->r10bio_pool) 3606 mempool_destroy(conf->r10bio_pool); 3607 kfree(conf->mirrors); 3608 safe_put_page(conf->tmppage); 3609 kfree(conf); 3610 } 3611 return ERR_PTR(err); 3612 } 3613 3614 static int run(struct mddev *mddev) 3615 { 3616 struct r10conf *conf; 3617 int i, disk_idx, chunk_size; 3618 struct raid10_info *disk; 3619 struct md_rdev *rdev; 3620 sector_t size; 3621 sector_t min_offset_diff = 0; 3622 int first = 1; 3623 bool discard_supported = false; 3624 3625 if (mddev->private == NULL) { 3626 conf = setup_conf(mddev); 3627 if (IS_ERR(conf)) 3628 return PTR_ERR(conf); 3629 mddev->private = conf; 3630 } 3631 conf = mddev->private; 3632 if (!conf) 3633 goto out; 3634 3635 mddev->thread = conf->thread; 3636 conf->thread = NULL; 3637 3638 chunk_size = mddev->chunk_sectors << 9; 3639 if (mddev->queue) { 3640 blk_queue_max_discard_sectors(mddev->queue, 3641 mddev->chunk_sectors); 3642 blk_queue_max_write_same_sectors(mddev->queue, 0); 3643 blk_queue_io_min(mddev->queue, chunk_size); 3644 if (conf->geo.raid_disks % conf->geo.near_copies) 3645 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3646 else 3647 blk_queue_io_opt(mddev->queue, chunk_size * 3648 (conf->geo.raid_disks / conf->geo.near_copies)); 3649 } 3650 3651 rdev_for_each(rdev, mddev) { 3652 long long diff; 3653 struct request_queue *q; 3654 3655 disk_idx = rdev->raid_disk; 3656 if (disk_idx < 0) 3657 continue; 3658 if (disk_idx >= conf->geo.raid_disks && 3659 disk_idx >= conf->prev.raid_disks) 3660 continue; 3661 disk = conf->mirrors + disk_idx; 3662 3663 if (test_bit(Replacement, &rdev->flags)) { 3664 if (disk->replacement) 3665 goto out_free_conf; 3666 disk->replacement = rdev; 3667 } else { 3668 if (disk->rdev) 3669 goto out_free_conf; 3670 disk->rdev = rdev; 3671 } 3672 q = bdev_get_queue(rdev->bdev); 3673 if (q->merge_bvec_fn) 3674 mddev->merge_check_needed = 1; 3675 diff = (rdev->new_data_offset - rdev->data_offset); 3676 if (!mddev->reshape_backwards) 3677 diff = -diff; 3678 if (diff < 0) 3679 diff = 0; 3680 if (first || diff < min_offset_diff) 3681 min_offset_diff = diff; 3682 3683 if (mddev->gendisk) 3684 disk_stack_limits(mddev->gendisk, rdev->bdev, 3685 rdev->data_offset << 9); 3686 3687 disk->head_position = 0; 3688 3689 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3690 discard_supported = true; 3691 } 3692 3693 if (mddev->queue) { 3694 if (discard_supported) 3695 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3696 mddev->queue); 3697 else 3698 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3699 mddev->queue); 3700 } 3701 /* need to check that every block has at least one working mirror */ 3702 if (!enough(conf, -1)) { 3703 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3704 mdname(mddev)); 3705 goto out_free_conf; 3706 } 3707 3708 if (conf->reshape_progress != MaxSector) { 3709 /* must ensure that shape change is supported */ 3710 if (conf->geo.far_copies != 1 && 3711 conf->geo.far_offset == 0) 3712 goto out_free_conf; 3713 if (conf->prev.far_copies != 1 && 3714 conf->prev.far_offset == 0) 3715 goto out_free_conf; 3716 } 3717 3718 mddev->degraded = 0; 3719 for (i = 0; 3720 i < conf->geo.raid_disks 3721 || i < conf->prev.raid_disks; 3722 i++) { 3723 3724 disk = conf->mirrors + i; 3725 3726 if (!disk->rdev && disk->replacement) { 3727 /* The replacement is all we have - use it */ 3728 disk->rdev = disk->replacement; 3729 disk->replacement = NULL; 3730 clear_bit(Replacement, &disk->rdev->flags); 3731 } 3732 3733 if (!disk->rdev || 3734 !test_bit(In_sync, &disk->rdev->flags)) { 3735 disk->head_position = 0; 3736 mddev->degraded++; 3737 if (disk->rdev && 3738 disk->rdev->saved_raid_disk < 0) 3739 conf->fullsync = 1; 3740 } 3741 disk->recovery_disabled = mddev->recovery_disabled - 1; 3742 } 3743 3744 if (mddev->recovery_cp != MaxSector) 3745 printk(KERN_NOTICE "md/raid10:%s: not clean" 3746 " -- starting background reconstruction\n", 3747 mdname(mddev)); 3748 printk(KERN_INFO 3749 "md/raid10:%s: active with %d out of %d devices\n", 3750 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3751 conf->geo.raid_disks); 3752 /* 3753 * Ok, everything is just fine now 3754 */ 3755 mddev->dev_sectors = conf->dev_sectors; 3756 size = raid10_size(mddev, 0, 0); 3757 md_set_array_sectors(mddev, size); 3758 mddev->resync_max_sectors = size; 3759 3760 if (mddev->queue) { 3761 int stripe = conf->geo.raid_disks * 3762 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3763 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 3764 mddev->queue->backing_dev_info.congested_data = mddev; 3765 3766 /* Calculate max read-ahead size. 3767 * We need to readahead at least twice a whole stripe.... 3768 * maybe... 3769 */ 3770 stripe /= conf->geo.near_copies; 3771 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3772 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3773 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 3774 } 3775 3776 3777 if (md_integrity_register(mddev)) 3778 goto out_free_conf; 3779 3780 if (conf->reshape_progress != MaxSector) { 3781 unsigned long before_length, after_length; 3782 3783 before_length = ((1 << conf->prev.chunk_shift) * 3784 conf->prev.far_copies); 3785 after_length = ((1 << conf->geo.chunk_shift) * 3786 conf->geo.far_copies); 3787 3788 if (max(before_length, after_length) > min_offset_diff) { 3789 /* This cannot work */ 3790 printk("md/raid10: offset difference not enough to continue reshape\n"); 3791 goto out_free_conf; 3792 } 3793 conf->offset_diff = min_offset_diff; 3794 3795 conf->reshape_safe = conf->reshape_progress; 3796 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3797 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3798 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3799 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3800 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3801 "reshape"); 3802 } 3803 3804 return 0; 3805 3806 out_free_conf: 3807 md_unregister_thread(&mddev->thread); 3808 if (conf->r10bio_pool) 3809 mempool_destroy(conf->r10bio_pool); 3810 safe_put_page(conf->tmppage); 3811 kfree(conf->mirrors); 3812 kfree(conf); 3813 mddev->private = NULL; 3814 out: 3815 return -EIO; 3816 } 3817 3818 static int stop(struct mddev *mddev) 3819 { 3820 struct r10conf *conf = mddev->private; 3821 3822 raise_barrier(conf, 0); 3823 lower_barrier(conf); 3824 3825 md_unregister_thread(&mddev->thread); 3826 if (mddev->queue) 3827 /* the unplug fn references 'conf'*/ 3828 blk_sync_queue(mddev->queue); 3829 3830 if (conf->r10bio_pool) 3831 mempool_destroy(conf->r10bio_pool); 3832 safe_put_page(conf->tmppage); 3833 kfree(conf->mirrors); 3834 kfree(conf); 3835 mddev->private = NULL; 3836 return 0; 3837 } 3838 3839 static void raid10_quiesce(struct mddev *mddev, int state) 3840 { 3841 struct r10conf *conf = mddev->private; 3842 3843 switch(state) { 3844 case 1: 3845 raise_barrier(conf, 0); 3846 break; 3847 case 0: 3848 lower_barrier(conf); 3849 break; 3850 } 3851 } 3852 3853 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3854 { 3855 /* Resize of 'far' arrays is not supported. 3856 * For 'near' and 'offset' arrays we can set the 3857 * number of sectors used to be an appropriate multiple 3858 * of the chunk size. 3859 * For 'offset', this is far_copies*chunksize. 3860 * For 'near' the multiplier is the LCM of 3861 * near_copies and raid_disks. 3862 * So if far_copies > 1 && !far_offset, fail. 3863 * Else find LCM(raid_disks, near_copy)*far_copies and 3864 * multiply by chunk_size. Then round to this number. 3865 * This is mostly done by raid10_size() 3866 */ 3867 struct r10conf *conf = mddev->private; 3868 sector_t oldsize, size; 3869 3870 if (mddev->reshape_position != MaxSector) 3871 return -EBUSY; 3872 3873 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3874 return -EINVAL; 3875 3876 oldsize = raid10_size(mddev, 0, 0); 3877 size = raid10_size(mddev, sectors, 0); 3878 if (mddev->external_size && 3879 mddev->array_sectors > size) 3880 return -EINVAL; 3881 if (mddev->bitmap) { 3882 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3883 if (ret) 3884 return ret; 3885 } 3886 md_set_array_sectors(mddev, size); 3887 set_capacity(mddev->gendisk, mddev->array_sectors); 3888 revalidate_disk(mddev->gendisk); 3889 if (sectors > mddev->dev_sectors && 3890 mddev->recovery_cp > oldsize) { 3891 mddev->recovery_cp = oldsize; 3892 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3893 } 3894 calc_sectors(conf, sectors); 3895 mddev->dev_sectors = conf->dev_sectors; 3896 mddev->resync_max_sectors = size; 3897 return 0; 3898 } 3899 3900 static void *raid10_takeover_raid0(struct mddev *mddev) 3901 { 3902 struct md_rdev *rdev; 3903 struct r10conf *conf; 3904 3905 if (mddev->degraded > 0) { 3906 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3907 mdname(mddev)); 3908 return ERR_PTR(-EINVAL); 3909 } 3910 3911 /* Set new parameters */ 3912 mddev->new_level = 10; 3913 /* new layout: far_copies = 1, near_copies = 2 */ 3914 mddev->new_layout = (1<<8) + 2; 3915 mddev->new_chunk_sectors = mddev->chunk_sectors; 3916 mddev->delta_disks = mddev->raid_disks; 3917 mddev->raid_disks *= 2; 3918 /* make sure it will be not marked as dirty */ 3919 mddev->recovery_cp = MaxSector; 3920 3921 conf = setup_conf(mddev); 3922 if (!IS_ERR(conf)) { 3923 rdev_for_each(rdev, mddev) 3924 if (rdev->raid_disk >= 0) 3925 rdev->new_raid_disk = rdev->raid_disk * 2; 3926 conf->barrier = 1; 3927 } 3928 3929 return conf; 3930 } 3931 3932 static void *raid10_takeover(struct mddev *mddev) 3933 { 3934 struct r0conf *raid0_conf; 3935 3936 /* raid10 can take over: 3937 * raid0 - providing it has only two drives 3938 */ 3939 if (mddev->level == 0) { 3940 /* for raid0 takeover only one zone is supported */ 3941 raid0_conf = mddev->private; 3942 if (raid0_conf->nr_strip_zones > 1) { 3943 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3944 " with more than one zone.\n", 3945 mdname(mddev)); 3946 return ERR_PTR(-EINVAL); 3947 } 3948 return raid10_takeover_raid0(mddev); 3949 } 3950 return ERR_PTR(-EINVAL); 3951 } 3952 3953 static int raid10_check_reshape(struct mddev *mddev) 3954 { 3955 /* Called when there is a request to change 3956 * - layout (to ->new_layout) 3957 * - chunk size (to ->new_chunk_sectors) 3958 * - raid_disks (by delta_disks) 3959 * or when trying to restart a reshape that was ongoing. 3960 * 3961 * We need to validate the request and possibly allocate 3962 * space if that might be an issue later. 3963 * 3964 * Currently we reject any reshape of a 'far' mode array, 3965 * allow chunk size to change if new is generally acceptable, 3966 * allow raid_disks to increase, and allow 3967 * a switch between 'near' mode and 'offset' mode. 3968 */ 3969 struct r10conf *conf = mddev->private; 3970 struct geom geo; 3971 3972 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3973 return -EINVAL; 3974 3975 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3976 /* mustn't change number of copies */ 3977 return -EINVAL; 3978 if (geo.far_copies > 1 && !geo.far_offset) 3979 /* Cannot switch to 'far' mode */ 3980 return -EINVAL; 3981 3982 if (mddev->array_sectors & geo.chunk_mask) 3983 /* not factor of array size */ 3984 return -EINVAL; 3985 3986 if (!enough(conf, -1)) 3987 return -EINVAL; 3988 3989 kfree(conf->mirrors_new); 3990 conf->mirrors_new = NULL; 3991 if (mddev->delta_disks > 0) { 3992 /* allocate new 'mirrors' list */ 3993 conf->mirrors_new = kzalloc( 3994 sizeof(struct raid10_info) 3995 *(mddev->raid_disks + 3996 mddev->delta_disks), 3997 GFP_KERNEL); 3998 if (!conf->mirrors_new) 3999 return -ENOMEM; 4000 } 4001 return 0; 4002 } 4003 4004 /* 4005 * Need to check if array has failed when deciding whether to: 4006 * - start an array 4007 * - remove non-faulty devices 4008 * - add a spare 4009 * - allow a reshape 4010 * This determination is simple when no reshape is happening. 4011 * However if there is a reshape, we need to carefully check 4012 * both the before and after sections. 4013 * This is because some failed devices may only affect one 4014 * of the two sections, and some non-in_sync devices may 4015 * be insync in the section most affected by failed devices. 4016 */ 4017 static int calc_degraded(struct r10conf *conf) 4018 { 4019 int degraded, degraded2; 4020 int i; 4021 4022 rcu_read_lock(); 4023 degraded = 0; 4024 /* 'prev' section first */ 4025 for (i = 0; i < conf->prev.raid_disks; i++) { 4026 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4027 if (!rdev || test_bit(Faulty, &rdev->flags)) 4028 degraded++; 4029 else if (!test_bit(In_sync, &rdev->flags)) 4030 /* When we can reduce the number of devices in 4031 * an array, this might not contribute to 4032 * 'degraded'. It does now. 4033 */ 4034 degraded++; 4035 } 4036 rcu_read_unlock(); 4037 if (conf->geo.raid_disks == conf->prev.raid_disks) 4038 return degraded; 4039 rcu_read_lock(); 4040 degraded2 = 0; 4041 for (i = 0; i < conf->geo.raid_disks; i++) { 4042 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4043 if (!rdev || test_bit(Faulty, &rdev->flags)) 4044 degraded2++; 4045 else if (!test_bit(In_sync, &rdev->flags)) { 4046 /* If reshape is increasing the number of devices, 4047 * this section has already been recovered, so 4048 * it doesn't contribute to degraded. 4049 * else it does. 4050 */ 4051 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4052 degraded2++; 4053 } 4054 } 4055 rcu_read_unlock(); 4056 if (degraded2 > degraded) 4057 return degraded2; 4058 return degraded; 4059 } 4060 4061 static int raid10_start_reshape(struct mddev *mddev) 4062 { 4063 /* A 'reshape' has been requested. This commits 4064 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4065 * This also checks if there are enough spares and adds them 4066 * to the array. 4067 * We currently require enough spares to make the final 4068 * array non-degraded. We also require that the difference 4069 * between old and new data_offset - on each device - is 4070 * enough that we never risk over-writing. 4071 */ 4072 4073 unsigned long before_length, after_length; 4074 sector_t min_offset_diff = 0; 4075 int first = 1; 4076 struct geom new; 4077 struct r10conf *conf = mddev->private; 4078 struct md_rdev *rdev; 4079 int spares = 0; 4080 int ret; 4081 4082 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4083 return -EBUSY; 4084 4085 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4086 return -EINVAL; 4087 4088 before_length = ((1 << conf->prev.chunk_shift) * 4089 conf->prev.far_copies); 4090 after_length = ((1 << conf->geo.chunk_shift) * 4091 conf->geo.far_copies); 4092 4093 rdev_for_each(rdev, mddev) { 4094 if (!test_bit(In_sync, &rdev->flags) 4095 && !test_bit(Faulty, &rdev->flags)) 4096 spares++; 4097 if (rdev->raid_disk >= 0) { 4098 long long diff = (rdev->new_data_offset 4099 - rdev->data_offset); 4100 if (!mddev->reshape_backwards) 4101 diff = -diff; 4102 if (diff < 0) 4103 diff = 0; 4104 if (first || diff < min_offset_diff) 4105 min_offset_diff = diff; 4106 } 4107 } 4108 4109 if (max(before_length, after_length) > min_offset_diff) 4110 return -EINVAL; 4111 4112 if (spares < mddev->delta_disks) 4113 return -EINVAL; 4114 4115 conf->offset_diff = min_offset_diff; 4116 spin_lock_irq(&conf->device_lock); 4117 if (conf->mirrors_new) { 4118 memcpy(conf->mirrors_new, conf->mirrors, 4119 sizeof(struct raid10_info)*conf->prev.raid_disks); 4120 smp_mb(); 4121 kfree(conf->mirrors_old); /* FIXME and elsewhere */ 4122 conf->mirrors_old = conf->mirrors; 4123 conf->mirrors = conf->mirrors_new; 4124 conf->mirrors_new = NULL; 4125 } 4126 setup_geo(&conf->geo, mddev, geo_start); 4127 smp_mb(); 4128 if (mddev->reshape_backwards) { 4129 sector_t size = raid10_size(mddev, 0, 0); 4130 if (size < mddev->array_sectors) { 4131 spin_unlock_irq(&conf->device_lock); 4132 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 4133 mdname(mddev)); 4134 return -EINVAL; 4135 } 4136 mddev->resync_max_sectors = size; 4137 conf->reshape_progress = size; 4138 } else 4139 conf->reshape_progress = 0; 4140 spin_unlock_irq(&conf->device_lock); 4141 4142 if (mddev->delta_disks && mddev->bitmap) { 4143 ret = bitmap_resize(mddev->bitmap, 4144 raid10_size(mddev, 0, 4145 conf->geo.raid_disks), 4146 0, 0); 4147 if (ret) 4148 goto abort; 4149 } 4150 if (mddev->delta_disks > 0) { 4151 rdev_for_each(rdev, mddev) 4152 if (rdev->raid_disk < 0 && 4153 !test_bit(Faulty, &rdev->flags)) { 4154 if (raid10_add_disk(mddev, rdev) == 0) { 4155 if (rdev->raid_disk >= 4156 conf->prev.raid_disks) 4157 set_bit(In_sync, &rdev->flags); 4158 else 4159 rdev->recovery_offset = 0; 4160 4161 if (sysfs_link_rdev(mddev, rdev)) 4162 /* Failure here is OK */; 4163 } 4164 } else if (rdev->raid_disk >= conf->prev.raid_disks 4165 && !test_bit(Faulty, &rdev->flags)) { 4166 /* This is a spare that was manually added */ 4167 set_bit(In_sync, &rdev->flags); 4168 } 4169 } 4170 /* When a reshape changes the number of devices, 4171 * ->degraded is measured against the larger of the 4172 * pre and post numbers. 4173 */ 4174 spin_lock_irq(&conf->device_lock); 4175 mddev->degraded = calc_degraded(conf); 4176 spin_unlock_irq(&conf->device_lock); 4177 mddev->raid_disks = conf->geo.raid_disks; 4178 mddev->reshape_position = conf->reshape_progress; 4179 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4180 4181 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4182 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4183 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4184 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4185 4186 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4187 "reshape"); 4188 if (!mddev->sync_thread) { 4189 ret = -EAGAIN; 4190 goto abort; 4191 } 4192 conf->reshape_checkpoint = jiffies; 4193 md_wakeup_thread(mddev->sync_thread); 4194 md_new_event(mddev); 4195 return 0; 4196 4197 abort: 4198 mddev->recovery = 0; 4199 spin_lock_irq(&conf->device_lock); 4200 conf->geo = conf->prev; 4201 mddev->raid_disks = conf->geo.raid_disks; 4202 rdev_for_each(rdev, mddev) 4203 rdev->new_data_offset = rdev->data_offset; 4204 smp_wmb(); 4205 conf->reshape_progress = MaxSector; 4206 mddev->reshape_position = MaxSector; 4207 spin_unlock_irq(&conf->device_lock); 4208 return ret; 4209 } 4210 4211 /* Calculate the last device-address that could contain 4212 * any block from the chunk that includes the array-address 's' 4213 * and report the next address. 4214 * i.e. the address returned will be chunk-aligned and after 4215 * any data that is in the chunk containing 's'. 4216 */ 4217 static sector_t last_dev_address(sector_t s, struct geom *geo) 4218 { 4219 s = (s | geo->chunk_mask) + 1; 4220 s >>= geo->chunk_shift; 4221 s *= geo->near_copies; 4222 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4223 s *= geo->far_copies; 4224 s <<= geo->chunk_shift; 4225 return s; 4226 } 4227 4228 /* Calculate the first device-address that could contain 4229 * any block from the chunk that includes the array-address 's'. 4230 * This too will be the start of a chunk 4231 */ 4232 static sector_t first_dev_address(sector_t s, struct geom *geo) 4233 { 4234 s >>= geo->chunk_shift; 4235 s *= geo->near_copies; 4236 sector_div(s, geo->raid_disks); 4237 s *= geo->far_copies; 4238 s <<= geo->chunk_shift; 4239 return s; 4240 } 4241 4242 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4243 int *skipped) 4244 { 4245 /* We simply copy at most one chunk (smallest of old and new) 4246 * at a time, possibly less if that exceeds RESYNC_PAGES, 4247 * or we hit a bad block or something. 4248 * This might mean we pause for normal IO in the middle of 4249 * a chunk, but that is not a problem was mddev->reshape_position 4250 * can record any location. 4251 * 4252 * If we will want to write to a location that isn't 4253 * yet recorded as 'safe' (i.e. in metadata on disk) then 4254 * we need to flush all reshape requests and update the metadata. 4255 * 4256 * When reshaping forwards (e.g. to more devices), we interpret 4257 * 'safe' as the earliest block which might not have been copied 4258 * down yet. We divide this by previous stripe size and multiply 4259 * by previous stripe length to get lowest device offset that we 4260 * cannot write to yet. 4261 * We interpret 'sector_nr' as an address that we want to write to. 4262 * From this we use last_device_address() to find where we might 4263 * write to, and first_device_address on the 'safe' position. 4264 * If this 'next' write position is after the 'safe' position, 4265 * we must update the metadata to increase the 'safe' position. 4266 * 4267 * When reshaping backwards, we round in the opposite direction 4268 * and perform the reverse test: next write position must not be 4269 * less than current safe position. 4270 * 4271 * In all this the minimum difference in data offsets 4272 * (conf->offset_diff - always positive) allows a bit of slack, 4273 * so next can be after 'safe', but not by more than offset_disk 4274 * 4275 * We need to prepare all the bios here before we start any IO 4276 * to ensure the size we choose is acceptable to all devices. 4277 * The means one for each copy for write-out and an extra one for 4278 * read-in. 4279 * We store the read-in bio in ->master_bio and the others in 4280 * ->devs[x].bio and ->devs[x].repl_bio. 4281 */ 4282 struct r10conf *conf = mddev->private; 4283 struct r10bio *r10_bio; 4284 sector_t next, safe, last; 4285 int max_sectors; 4286 int nr_sectors; 4287 int s; 4288 struct md_rdev *rdev; 4289 int need_flush = 0; 4290 struct bio *blist; 4291 struct bio *bio, *read_bio; 4292 int sectors_done = 0; 4293 4294 if (sector_nr == 0) { 4295 /* If restarting in the middle, skip the initial sectors */ 4296 if (mddev->reshape_backwards && 4297 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4298 sector_nr = (raid10_size(mddev, 0, 0) 4299 - conf->reshape_progress); 4300 } else if (!mddev->reshape_backwards && 4301 conf->reshape_progress > 0) 4302 sector_nr = conf->reshape_progress; 4303 if (sector_nr) { 4304 mddev->curr_resync_completed = sector_nr; 4305 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4306 *skipped = 1; 4307 return sector_nr; 4308 } 4309 } 4310 4311 /* We don't use sector_nr to track where we are up to 4312 * as that doesn't work well for ->reshape_backwards. 4313 * So just use ->reshape_progress. 4314 */ 4315 if (mddev->reshape_backwards) { 4316 /* 'next' is the earliest device address that we might 4317 * write to for this chunk in the new layout 4318 */ 4319 next = first_dev_address(conf->reshape_progress - 1, 4320 &conf->geo); 4321 4322 /* 'safe' is the last device address that we might read from 4323 * in the old layout after a restart 4324 */ 4325 safe = last_dev_address(conf->reshape_safe - 1, 4326 &conf->prev); 4327 4328 if (next + conf->offset_diff < safe) 4329 need_flush = 1; 4330 4331 last = conf->reshape_progress - 1; 4332 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4333 & conf->prev.chunk_mask); 4334 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4335 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4336 } else { 4337 /* 'next' is after the last device address that we 4338 * might write to for this chunk in the new layout 4339 */ 4340 next = last_dev_address(conf->reshape_progress, &conf->geo); 4341 4342 /* 'safe' is the earliest device address that we might 4343 * read from in the old layout after a restart 4344 */ 4345 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4346 4347 /* Need to update metadata if 'next' might be beyond 'safe' 4348 * as that would possibly corrupt data 4349 */ 4350 if (next > safe + conf->offset_diff) 4351 need_flush = 1; 4352 4353 sector_nr = conf->reshape_progress; 4354 last = sector_nr | (conf->geo.chunk_mask 4355 & conf->prev.chunk_mask); 4356 4357 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4358 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4359 } 4360 4361 if (need_flush || 4362 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4363 /* Need to update reshape_position in metadata */ 4364 wait_barrier(conf); 4365 mddev->reshape_position = conf->reshape_progress; 4366 if (mddev->reshape_backwards) 4367 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4368 - conf->reshape_progress; 4369 else 4370 mddev->curr_resync_completed = conf->reshape_progress; 4371 conf->reshape_checkpoint = jiffies; 4372 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4373 md_wakeup_thread(mddev->thread); 4374 wait_event(mddev->sb_wait, mddev->flags == 0 || 4375 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4376 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4377 allow_barrier(conf); 4378 return sectors_done; 4379 } 4380 conf->reshape_safe = mddev->reshape_position; 4381 allow_barrier(conf); 4382 } 4383 4384 read_more: 4385 /* Now schedule reads for blocks from sector_nr to last */ 4386 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4387 raise_barrier(conf, sectors_done != 0); 4388 atomic_set(&r10_bio->remaining, 0); 4389 r10_bio->mddev = mddev; 4390 r10_bio->sector = sector_nr; 4391 set_bit(R10BIO_IsReshape, &r10_bio->state); 4392 r10_bio->sectors = last - sector_nr + 1; 4393 rdev = read_balance(conf, r10_bio, &max_sectors); 4394 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4395 4396 if (!rdev) { 4397 /* Cannot read from here, so need to record bad blocks 4398 * on all the target devices. 4399 */ 4400 // FIXME 4401 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4402 return sectors_done; 4403 } 4404 4405 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4406 4407 read_bio->bi_bdev = rdev->bdev; 4408 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4409 + rdev->data_offset); 4410 read_bio->bi_private = r10_bio; 4411 read_bio->bi_end_io = end_sync_read; 4412 read_bio->bi_rw = READ; 4413 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1); 4414 read_bio->bi_flags |= 1 << BIO_UPTODATE; 4415 read_bio->bi_vcnt = 0; 4416 read_bio->bi_iter.bi_size = 0; 4417 r10_bio->master_bio = read_bio; 4418 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4419 4420 /* Now find the locations in the new layout */ 4421 __raid10_find_phys(&conf->geo, r10_bio); 4422 4423 blist = read_bio; 4424 read_bio->bi_next = NULL; 4425 4426 for (s = 0; s < conf->copies*2; s++) { 4427 struct bio *b; 4428 int d = r10_bio->devs[s/2].devnum; 4429 struct md_rdev *rdev2; 4430 if (s&1) { 4431 rdev2 = conf->mirrors[d].replacement; 4432 b = r10_bio->devs[s/2].repl_bio; 4433 } else { 4434 rdev2 = conf->mirrors[d].rdev; 4435 b = r10_bio->devs[s/2].bio; 4436 } 4437 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4438 continue; 4439 4440 bio_reset(b); 4441 b->bi_bdev = rdev2->bdev; 4442 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4443 rdev2->new_data_offset; 4444 b->bi_private = r10_bio; 4445 b->bi_end_io = end_reshape_write; 4446 b->bi_rw = WRITE; 4447 b->bi_next = blist; 4448 blist = b; 4449 } 4450 4451 /* Now add as many pages as possible to all of these bios. */ 4452 4453 nr_sectors = 0; 4454 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4455 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4456 int len = (max_sectors - s) << 9; 4457 if (len > PAGE_SIZE) 4458 len = PAGE_SIZE; 4459 for (bio = blist; bio ; bio = bio->bi_next) { 4460 struct bio *bio2; 4461 if (bio_add_page(bio, page, len, 0)) 4462 continue; 4463 4464 /* Didn't fit, must stop */ 4465 for (bio2 = blist; 4466 bio2 && bio2 != bio; 4467 bio2 = bio2->bi_next) { 4468 /* Remove last page from this bio */ 4469 bio2->bi_vcnt--; 4470 bio2->bi_iter.bi_size -= len; 4471 bio2->bi_flags &= ~(1<<BIO_SEG_VALID); 4472 } 4473 goto bio_full; 4474 } 4475 sector_nr += len >> 9; 4476 nr_sectors += len >> 9; 4477 } 4478 bio_full: 4479 r10_bio->sectors = nr_sectors; 4480 4481 /* Now submit the read */ 4482 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4483 atomic_inc(&r10_bio->remaining); 4484 read_bio->bi_next = NULL; 4485 generic_make_request(read_bio); 4486 sector_nr += nr_sectors; 4487 sectors_done += nr_sectors; 4488 if (sector_nr <= last) 4489 goto read_more; 4490 4491 /* Now that we have done the whole section we can 4492 * update reshape_progress 4493 */ 4494 if (mddev->reshape_backwards) 4495 conf->reshape_progress -= sectors_done; 4496 else 4497 conf->reshape_progress += sectors_done; 4498 4499 return sectors_done; 4500 } 4501 4502 static void end_reshape_request(struct r10bio *r10_bio); 4503 static int handle_reshape_read_error(struct mddev *mddev, 4504 struct r10bio *r10_bio); 4505 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4506 { 4507 /* Reshape read completed. Hopefully we have a block 4508 * to write out. 4509 * If we got a read error then we do sync 1-page reads from 4510 * elsewhere until we find the data - or give up. 4511 */ 4512 struct r10conf *conf = mddev->private; 4513 int s; 4514 4515 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4516 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4517 /* Reshape has been aborted */ 4518 md_done_sync(mddev, r10_bio->sectors, 0); 4519 return; 4520 } 4521 4522 /* We definitely have the data in the pages, schedule the 4523 * writes. 4524 */ 4525 atomic_set(&r10_bio->remaining, 1); 4526 for (s = 0; s < conf->copies*2; s++) { 4527 struct bio *b; 4528 int d = r10_bio->devs[s/2].devnum; 4529 struct md_rdev *rdev; 4530 if (s&1) { 4531 rdev = conf->mirrors[d].replacement; 4532 b = r10_bio->devs[s/2].repl_bio; 4533 } else { 4534 rdev = conf->mirrors[d].rdev; 4535 b = r10_bio->devs[s/2].bio; 4536 } 4537 if (!rdev || test_bit(Faulty, &rdev->flags)) 4538 continue; 4539 atomic_inc(&rdev->nr_pending); 4540 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4541 atomic_inc(&r10_bio->remaining); 4542 b->bi_next = NULL; 4543 generic_make_request(b); 4544 } 4545 end_reshape_request(r10_bio); 4546 } 4547 4548 static void end_reshape(struct r10conf *conf) 4549 { 4550 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4551 return; 4552 4553 spin_lock_irq(&conf->device_lock); 4554 conf->prev = conf->geo; 4555 md_finish_reshape(conf->mddev); 4556 smp_wmb(); 4557 conf->reshape_progress = MaxSector; 4558 spin_unlock_irq(&conf->device_lock); 4559 4560 /* read-ahead size must cover two whole stripes, which is 4561 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4562 */ 4563 if (conf->mddev->queue) { 4564 int stripe = conf->geo.raid_disks * 4565 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4566 stripe /= conf->geo.near_copies; 4567 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4568 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4569 } 4570 conf->fullsync = 0; 4571 } 4572 4573 4574 static int handle_reshape_read_error(struct mddev *mddev, 4575 struct r10bio *r10_bio) 4576 { 4577 /* Use sync reads to get the blocks from somewhere else */ 4578 int sectors = r10_bio->sectors; 4579 struct r10conf *conf = mddev->private; 4580 struct { 4581 struct r10bio r10_bio; 4582 struct r10dev devs[conf->copies]; 4583 } on_stack; 4584 struct r10bio *r10b = &on_stack.r10_bio; 4585 int slot = 0; 4586 int idx = 0; 4587 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4588 4589 r10b->sector = r10_bio->sector; 4590 __raid10_find_phys(&conf->prev, r10b); 4591 4592 while (sectors) { 4593 int s = sectors; 4594 int success = 0; 4595 int first_slot = slot; 4596 4597 if (s > (PAGE_SIZE >> 9)) 4598 s = PAGE_SIZE >> 9; 4599 4600 while (!success) { 4601 int d = r10b->devs[slot].devnum; 4602 struct md_rdev *rdev = conf->mirrors[d].rdev; 4603 sector_t addr; 4604 if (rdev == NULL || 4605 test_bit(Faulty, &rdev->flags) || 4606 !test_bit(In_sync, &rdev->flags)) 4607 goto failed; 4608 4609 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4610 success = sync_page_io(rdev, 4611 addr, 4612 s << 9, 4613 bvec[idx].bv_page, 4614 READ, false); 4615 if (success) 4616 break; 4617 failed: 4618 slot++; 4619 if (slot >= conf->copies) 4620 slot = 0; 4621 if (slot == first_slot) 4622 break; 4623 } 4624 if (!success) { 4625 /* couldn't read this block, must give up */ 4626 set_bit(MD_RECOVERY_INTR, 4627 &mddev->recovery); 4628 return -EIO; 4629 } 4630 sectors -= s; 4631 idx++; 4632 } 4633 return 0; 4634 } 4635 4636 static void end_reshape_write(struct bio *bio, int error) 4637 { 4638 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 4639 struct r10bio *r10_bio = bio->bi_private; 4640 struct mddev *mddev = r10_bio->mddev; 4641 struct r10conf *conf = mddev->private; 4642 int d; 4643 int slot; 4644 int repl; 4645 struct md_rdev *rdev = NULL; 4646 4647 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4648 if (repl) 4649 rdev = conf->mirrors[d].replacement; 4650 if (!rdev) { 4651 smp_mb(); 4652 rdev = conf->mirrors[d].rdev; 4653 } 4654 4655 if (!uptodate) { 4656 /* FIXME should record badblock */ 4657 md_error(mddev, rdev); 4658 } 4659 4660 rdev_dec_pending(rdev, mddev); 4661 end_reshape_request(r10_bio); 4662 } 4663 4664 static void end_reshape_request(struct r10bio *r10_bio) 4665 { 4666 if (!atomic_dec_and_test(&r10_bio->remaining)) 4667 return; 4668 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4669 bio_put(r10_bio->master_bio); 4670 put_buf(r10_bio); 4671 } 4672 4673 static void raid10_finish_reshape(struct mddev *mddev) 4674 { 4675 struct r10conf *conf = mddev->private; 4676 4677 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4678 return; 4679 4680 if (mddev->delta_disks > 0) { 4681 sector_t size = raid10_size(mddev, 0, 0); 4682 md_set_array_sectors(mddev, size); 4683 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4684 mddev->recovery_cp = mddev->resync_max_sectors; 4685 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4686 } 4687 mddev->resync_max_sectors = size; 4688 set_capacity(mddev->gendisk, mddev->array_sectors); 4689 revalidate_disk(mddev->gendisk); 4690 } else { 4691 int d; 4692 for (d = conf->geo.raid_disks ; 4693 d < conf->geo.raid_disks - mddev->delta_disks; 4694 d++) { 4695 struct md_rdev *rdev = conf->mirrors[d].rdev; 4696 if (rdev) 4697 clear_bit(In_sync, &rdev->flags); 4698 rdev = conf->mirrors[d].replacement; 4699 if (rdev) 4700 clear_bit(In_sync, &rdev->flags); 4701 } 4702 } 4703 mddev->layout = mddev->new_layout; 4704 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4705 mddev->reshape_position = MaxSector; 4706 mddev->delta_disks = 0; 4707 mddev->reshape_backwards = 0; 4708 } 4709 4710 static struct md_personality raid10_personality = 4711 { 4712 .name = "raid10", 4713 .level = 10, 4714 .owner = THIS_MODULE, 4715 .make_request = make_request, 4716 .run = run, 4717 .stop = stop, 4718 .status = status, 4719 .error_handler = error, 4720 .hot_add_disk = raid10_add_disk, 4721 .hot_remove_disk= raid10_remove_disk, 4722 .spare_active = raid10_spare_active, 4723 .sync_request = sync_request, 4724 .quiesce = raid10_quiesce, 4725 .size = raid10_size, 4726 .resize = raid10_resize, 4727 .takeover = raid10_takeover, 4728 .check_reshape = raid10_check_reshape, 4729 .start_reshape = raid10_start_reshape, 4730 .finish_reshape = raid10_finish_reshape, 4731 }; 4732 4733 static int __init raid_init(void) 4734 { 4735 return register_md_personality(&raid10_personality); 4736 } 4737 4738 static void raid_exit(void) 4739 { 4740 unregister_md_personality(&raid10_personality); 4741 } 4742 4743 module_init(raid_init); 4744 module_exit(raid_exit); 4745 MODULE_LICENSE("GPL"); 4746 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4747 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4748 MODULE_ALIAS("md-raid10"); 4749 MODULE_ALIAS("md-level-10"); 4750 4751 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4752