1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 #include "raid10.h" 23 #include "raid0.h" 24 #include "md-bitmap.h" 25 26 /* 27 * RAID10 provides a combination of RAID0 and RAID1 functionality. 28 * The layout of data is defined by 29 * chunk_size 30 * raid_disks 31 * near_copies (stored in low byte of layout) 32 * far_copies (stored in second byte of layout) 33 * far_offset (stored in bit 16 of layout ) 34 * use_far_sets (stored in bit 17 of layout ) 35 * use_far_sets_bugfixed (stored in bit 18 of layout ) 36 * 37 * The data to be stored is divided into chunks using chunksize. Each device 38 * is divided into far_copies sections. In each section, chunks are laid out 39 * in a style similar to raid0, but near_copies copies of each chunk is stored 40 * (each on a different drive). The starting device for each section is offset 41 * near_copies from the starting device of the previous section. Thus there 42 * are (near_copies * far_copies) of each chunk, and each is on a different 43 * drive. near_copies and far_copies must be at least one, and their product 44 * is at most raid_disks. 45 * 46 * If far_offset is true, then the far_copies are handled a bit differently. 47 * The copies are still in different stripes, but instead of being very far 48 * apart on disk, there are adjacent stripes. 49 * 50 * The far and offset algorithms are handled slightly differently if 51 * 'use_far_sets' is true. In this case, the array's devices are grouped into 52 * sets that are (near_copies * far_copies) in size. The far copied stripes 53 * are still shifted by 'near_copies' devices, but this shifting stays confined 54 * to the set rather than the entire array. This is done to improve the number 55 * of device combinations that can fail without causing the array to fail. 56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 57 * on a device): 58 * A B C D A B C D E 59 * ... ... 60 * D A B C E A B C D 61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 62 * [A B] [C D] [A B] [C D E] 63 * |...| |...| |...| | ... | 64 * [B A] [D C] [B A] [E C D] 65 */ 66 67 static void allow_barrier(struct r10conf *conf); 68 static void lower_barrier(struct r10conf *conf); 69 static int _enough(struct r10conf *conf, int previous, int ignore); 70 static int enough(struct r10conf *conf, int ignore); 71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 72 int *skipped); 73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 74 static void end_reshape_write(struct bio *bio); 75 static void end_reshape(struct r10conf *conf); 76 77 #define raid10_log(md, fmt, args...) \ 78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 79 80 #include "raid1-10.c" 81 82 /* 83 * for resync bio, r10bio pointer can be retrieved from the per-bio 84 * 'struct resync_pages'. 85 */ 86 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 87 { 88 return get_resync_pages(bio)->raid_bio; 89 } 90 91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 92 { 93 struct r10conf *conf = data; 94 int size = offsetof(struct r10bio, devs[conf->copies]); 95 96 /* allocate a r10bio with room for raid_disks entries in the 97 * bios array */ 98 return kzalloc(size, gfp_flags); 99 } 100 101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 102 /* amount of memory to reserve for resync requests */ 103 #define RESYNC_WINDOW (1024*1024) 104 /* maximum number of concurrent requests, memory permitting */ 105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 108 109 /* 110 * When performing a resync, we need to read and compare, so 111 * we need as many pages are there are copies. 112 * When performing a recovery, we need 2 bios, one for read, 113 * one for write (we recover only one drive per r10buf) 114 * 115 */ 116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 117 { 118 struct r10conf *conf = data; 119 struct r10bio *r10_bio; 120 struct bio *bio; 121 int j; 122 int nalloc, nalloc_rp; 123 struct resync_pages *rps; 124 125 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 126 if (!r10_bio) 127 return NULL; 128 129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 131 nalloc = conf->copies; /* resync */ 132 else 133 nalloc = 2; /* recovery */ 134 135 /* allocate once for all bios */ 136 if (!conf->have_replacement) 137 nalloc_rp = nalloc; 138 else 139 nalloc_rp = nalloc * 2; 140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 141 if (!rps) 142 goto out_free_r10bio; 143 144 /* 145 * Allocate bios. 146 */ 147 for (j = nalloc ; j-- ; ) { 148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 149 if (!bio) 150 goto out_free_bio; 151 r10_bio->devs[j].bio = bio; 152 if (!conf->have_replacement) 153 continue; 154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 155 if (!bio) 156 goto out_free_bio; 157 r10_bio->devs[j].repl_bio = bio; 158 } 159 /* 160 * Allocate RESYNC_PAGES data pages and attach them 161 * where needed. 162 */ 163 for (j = 0; j < nalloc; j++) { 164 struct bio *rbio = r10_bio->devs[j].repl_bio; 165 struct resync_pages *rp, *rp_repl; 166 167 rp = &rps[j]; 168 if (rbio) 169 rp_repl = &rps[nalloc + j]; 170 171 bio = r10_bio->devs[j].bio; 172 173 if (!j || test_bit(MD_RECOVERY_SYNC, 174 &conf->mddev->recovery)) { 175 if (resync_alloc_pages(rp, gfp_flags)) 176 goto out_free_pages; 177 } else { 178 memcpy(rp, &rps[0], sizeof(*rp)); 179 resync_get_all_pages(rp); 180 } 181 182 rp->raid_bio = r10_bio; 183 bio->bi_private = rp; 184 if (rbio) { 185 memcpy(rp_repl, rp, sizeof(*rp)); 186 rbio->bi_private = rp_repl; 187 } 188 } 189 190 return r10_bio; 191 192 out_free_pages: 193 while (--j >= 0) 194 resync_free_pages(&rps[j]); 195 196 j = 0; 197 out_free_bio: 198 for ( ; j < nalloc; j++) { 199 if (r10_bio->devs[j].bio) 200 bio_put(r10_bio->devs[j].bio); 201 if (r10_bio->devs[j].repl_bio) 202 bio_put(r10_bio->devs[j].repl_bio); 203 } 204 kfree(rps); 205 out_free_r10bio: 206 rbio_pool_free(r10_bio, conf); 207 return NULL; 208 } 209 210 static void r10buf_pool_free(void *__r10_bio, void *data) 211 { 212 struct r10conf *conf = data; 213 struct r10bio *r10bio = __r10_bio; 214 int j; 215 struct resync_pages *rp = NULL; 216 217 for (j = conf->copies; j--; ) { 218 struct bio *bio = r10bio->devs[j].bio; 219 220 if (bio) { 221 rp = get_resync_pages(bio); 222 resync_free_pages(rp); 223 bio_put(bio); 224 } 225 226 bio = r10bio->devs[j].repl_bio; 227 if (bio) 228 bio_put(bio); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r10bio, conf); 235 } 236 237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->copies; i++) { 242 struct bio **bio = & r10_bio->devs[i].bio; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 bio = &r10_bio->devs[i].repl_bio; 247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 } 251 } 252 253 static void free_r10bio(struct r10bio *r10_bio) 254 { 255 struct r10conf *conf = r10_bio->mddev->private; 256 257 put_all_bios(conf, r10_bio); 258 mempool_free(r10_bio, &conf->r10bio_pool); 259 } 260 261 static void put_buf(struct r10bio *r10_bio) 262 { 263 struct r10conf *conf = r10_bio->mddev->private; 264 265 mempool_free(r10_bio, &conf->r10buf_pool); 266 267 lower_barrier(conf); 268 } 269 270 static void reschedule_retry(struct r10bio *r10_bio) 271 { 272 unsigned long flags; 273 struct mddev *mddev = r10_bio->mddev; 274 struct r10conf *conf = mddev->private; 275 276 spin_lock_irqsave(&conf->device_lock, flags); 277 list_add(&r10_bio->retry_list, &conf->retry_list); 278 conf->nr_queued ++; 279 spin_unlock_irqrestore(&conf->device_lock, flags); 280 281 /* wake up frozen array... */ 282 wake_up(&conf->wait_barrier); 283 284 md_wakeup_thread(mddev->thread); 285 } 286 287 /* 288 * raid_end_bio_io() is called when we have finished servicing a mirrored 289 * operation and are ready to return a success/failure code to the buffer 290 * cache layer. 291 */ 292 static void raid_end_bio_io(struct r10bio *r10_bio) 293 { 294 struct bio *bio = r10_bio->master_bio; 295 struct r10conf *conf = r10_bio->mddev->private; 296 297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 298 bio->bi_status = BLK_STS_IOERR; 299 300 bio_endio(bio); 301 /* 302 * Wake up any possible resync thread that waits for the device 303 * to go idle. 304 */ 305 allow_barrier(conf); 306 307 free_r10bio(r10_bio); 308 } 309 310 /* 311 * Update disk head position estimator based on IRQ completion info. 312 */ 313 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 314 { 315 struct r10conf *conf = r10_bio->mddev->private; 316 317 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 318 r10_bio->devs[slot].addr + (r10_bio->sectors); 319 } 320 321 /* 322 * Find the disk number which triggered given bio 323 */ 324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 325 struct bio *bio, int *slotp, int *replp) 326 { 327 int slot; 328 int repl = 0; 329 330 for (slot = 0; slot < conf->copies; slot++) { 331 if (r10_bio->devs[slot].bio == bio) 332 break; 333 if (r10_bio->devs[slot].repl_bio == bio) { 334 repl = 1; 335 break; 336 } 337 } 338 339 BUG_ON(slot == conf->copies); 340 update_head_pos(slot, r10_bio); 341 342 if (slotp) 343 *slotp = slot; 344 if (replp) 345 *replp = repl; 346 return r10_bio->devs[slot].devnum; 347 } 348 349 static void raid10_end_read_request(struct bio *bio) 350 { 351 int uptodate = !bio->bi_status; 352 struct r10bio *r10_bio = bio->bi_private; 353 int slot; 354 struct md_rdev *rdev; 355 struct r10conf *conf = r10_bio->mddev->private; 356 357 slot = r10_bio->read_slot; 358 rdev = r10_bio->devs[slot].rdev; 359 /* 360 * this branch is our 'one mirror IO has finished' event handler: 361 */ 362 update_head_pos(slot, r10_bio); 363 364 if (uptodate) { 365 /* 366 * Set R10BIO_Uptodate in our master bio, so that 367 * we will return a good error code to the higher 368 * levels even if IO on some other mirrored buffer fails. 369 * 370 * The 'master' represents the composite IO operation to 371 * user-side. So if something waits for IO, then it will 372 * wait for the 'master' bio. 373 */ 374 set_bit(R10BIO_Uptodate, &r10_bio->state); 375 } else { 376 /* If all other devices that store this block have 377 * failed, we want to return the error upwards rather 378 * than fail the last device. Here we redefine 379 * "uptodate" to mean "Don't want to retry" 380 */ 381 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 382 rdev->raid_disk)) 383 uptodate = 1; 384 } 385 if (uptodate) { 386 raid_end_bio_io(r10_bio); 387 rdev_dec_pending(rdev, conf->mddev); 388 } else { 389 /* 390 * oops, read error - keep the refcount on the rdev 391 */ 392 char b[BDEVNAME_SIZE]; 393 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 394 mdname(conf->mddev), 395 bdevname(rdev->bdev, b), 396 (unsigned long long)r10_bio->sector); 397 set_bit(R10BIO_ReadError, &r10_bio->state); 398 reschedule_retry(r10_bio); 399 } 400 } 401 402 static void close_write(struct r10bio *r10_bio) 403 { 404 /* clear the bitmap if all writes complete successfully */ 405 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 406 r10_bio->sectors, 407 !test_bit(R10BIO_Degraded, &r10_bio->state), 408 0); 409 md_write_end(r10_bio->mddev); 410 } 411 412 static void one_write_done(struct r10bio *r10_bio) 413 { 414 if (atomic_dec_and_test(&r10_bio->remaining)) { 415 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 416 reschedule_retry(r10_bio); 417 else { 418 close_write(r10_bio); 419 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 420 reschedule_retry(r10_bio); 421 else 422 raid_end_bio_io(r10_bio); 423 } 424 } 425 } 426 427 static void raid10_end_write_request(struct bio *bio) 428 { 429 struct r10bio *r10_bio = bio->bi_private; 430 int dev; 431 int dec_rdev = 1; 432 struct r10conf *conf = r10_bio->mddev->private; 433 int slot, repl; 434 struct md_rdev *rdev = NULL; 435 struct bio *to_put = NULL; 436 bool discard_error; 437 438 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 439 440 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 441 442 if (repl) 443 rdev = conf->mirrors[dev].replacement; 444 if (!rdev) { 445 smp_rmb(); 446 repl = 0; 447 rdev = conf->mirrors[dev].rdev; 448 } 449 /* 450 * this branch is our 'one mirror IO has finished' event handler: 451 */ 452 if (bio->bi_status && !discard_error) { 453 if (repl) 454 /* Never record new bad blocks to replacement, 455 * just fail it. 456 */ 457 md_error(rdev->mddev, rdev); 458 else { 459 set_bit(WriteErrorSeen, &rdev->flags); 460 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 461 set_bit(MD_RECOVERY_NEEDED, 462 &rdev->mddev->recovery); 463 464 dec_rdev = 0; 465 if (test_bit(FailFast, &rdev->flags) && 466 (bio->bi_opf & MD_FAILFAST)) { 467 md_error(rdev->mddev, rdev); 468 } 469 470 /* 471 * When the device is faulty, it is not necessary to 472 * handle write error. 473 * For failfast, this is the only remaining device, 474 * We need to retry the write without FailFast. 475 */ 476 if (!test_bit(Faulty, &rdev->flags)) 477 set_bit(R10BIO_WriteError, &r10_bio->state); 478 else { 479 r10_bio->devs[slot].bio = NULL; 480 to_put = bio; 481 dec_rdev = 1; 482 } 483 } 484 } else { 485 /* 486 * Set R10BIO_Uptodate in our master bio, so that 487 * we will return a good error code for to the higher 488 * levels even if IO on some other mirrored buffer fails. 489 * 490 * The 'master' represents the composite IO operation to 491 * user-side. So if something waits for IO, then it will 492 * wait for the 'master' bio. 493 */ 494 sector_t first_bad; 495 int bad_sectors; 496 497 /* 498 * Do not set R10BIO_Uptodate if the current device is 499 * rebuilding or Faulty. This is because we cannot use 500 * such device for properly reading the data back (we could 501 * potentially use it, if the current write would have felt 502 * before rdev->recovery_offset, but for simplicity we don't 503 * check this here. 504 */ 505 if (test_bit(In_sync, &rdev->flags) && 506 !test_bit(Faulty, &rdev->flags)) 507 set_bit(R10BIO_Uptodate, &r10_bio->state); 508 509 /* Maybe we can clear some bad blocks. */ 510 if (is_badblock(rdev, 511 r10_bio->devs[slot].addr, 512 r10_bio->sectors, 513 &first_bad, &bad_sectors) && !discard_error) { 514 bio_put(bio); 515 if (repl) 516 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 517 else 518 r10_bio->devs[slot].bio = IO_MADE_GOOD; 519 dec_rdev = 0; 520 set_bit(R10BIO_MadeGood, &r10_bio->state); 521 } 522 } 523 524 /* 525 * 526 * Let's see if all mirrored write operations have finished 527 * already. 528 */ 529 one_write_done(r10_bio); 530 if (dec_rdev) 531 rdev_dec_pending(rdev, conf->mddev); 532 if (to_put) 533 bio_put(to_put); 534 } 535 536 /* 537 * RAID10 layout manager 538 * As well as the chunksize and raid_disks count, there are two 539 * parameters: near_copies and far_copies. 540 * near_copies * far_copies must be <= raid_disks. 541 * Normally one of these will be 1. 542 * If both are 1, we get raid0. 543 * If near_copies == raid_disks, we get raid1. 544 * 545 * Chunks are laid out in raid0 style with near_copies copies of the 546 * first chunk, followed by near_copies copies of the next chunk and 547 * so on. 548 * If far_copies > 1, then after 1/far_copies of the array has been assigned 549 * as described above, we start again with a device offset of near_copies. 550 * So we effectively have another copy of the whole array further down all 551 * the drives, but with blocks on different drives. 552 * With this layout, and block is never stored twice on the one device. 553 * 554 * raid10_find_phys finds the sector offset of a given virtual sector 555 * on each device that it is on. 556 * 557 * raid10_find_virt does the reverse mapping, from a device and a 558 * sector offset to a virtual address 559 */ 560 561 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 562 { 563 int n,f; 564 sector_t sector; 565 sector_t chunk; 566 sector_t stripe; 567 int dev; 568 int slot = 0; 569 int last_far_set_start, last_far_set_size; 570 571 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 572 last_far_set_start *= geo->far_set_size; 573 574 last_far_set_size = geo->far_set_size; 575 last_far_set_size += (geo->raid_disks % geo->far_set_size); 576 577 /* now calculate first sector/dev */ 578 chunk = r10bio->sector >> geo->chunk_shift; 579 sector = r10bio->sector & geo->chunk_mask; 580 581 chunk *= geo->near_copies; 582 stripe = chunk; 583 dev = sector_div(stripe, geo->raid_disks); 584 if (geo->far_offset) 585 stripe *= geo->far_copies; 586 587 sector += stripe << geo->chunk_shift; 588 589 /* and calculate all the others */ 590 for (n = 0; n < geo->near_copies; n++) { 591 int d = dev; 592 int set; 593 sector_t s = sector; 594 r10bio->devs[slot].devnum = d; 595 r10bio->devs[slot].addr = s; 596 slot++; 597 598 for (f = 1; f < geo->far_copies; f++) { 599 set = d / geo->far_set_size; 600 d += geo->near_copies; 601 602 if ((geo->raid_disks % geo->far_set_size) && 603 (d > last_far_set_start)) { 604 d -= last_far_set_start; 605 d %= last_far_set_size; 606 d += last_far_set_start; 607 } else { 608 d %= geo->far_set_size; 609 d += geo->far_set_size * set; 610 } 611 s += geo->stride; 612 r10bio->devs[slot].devnum = d; 613 r10bio->devs[slot].addr = s; 614 slot++; 615 } 616 dev++; 617 if (dev >= geo->raid_disks) { 618 dev = 0; 619 sector += (geo->chunk_mask + 1); 620 } 621 } 622 } 623 624 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 625 { 626 struct geom *geo = &conf->geo; 627 628 if (conf->reshape_progress != MaxSector && 629 ((r10bio->sector >= conf->reshape_progress) != 630 conf->mddev->reshape_backwards)) { 631 set_bit(R10BIO_Previous, &r10bio->state); 632 geo = &conf->prev; 633 } else 634 clear_bit(R10BIO_Previous, &r10bio->state); 635 636 __raid10_find_phys(geo, r10bio); 637 } 638 639 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 640 { 641 sector_t offset, chunk, vchunk; 642 /* Never use conf->prev as this is only called during resync 643 * or recovery, so reshape isn't happening 644 */ 645 struct geom *geo = &conf->geo; 646 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 647 int far_set_size = geo->far_set_size; 648 int last_far_set_start; 649 650 if (geo->raid_disks % geo->far_set_size) { 651 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 652 last_far_set_start *= geo->far_set_size; 653 654 if (dev >= last_far_set_start) { 655 far_set_size = geo->far_set_size; 656 far_set_size += (geo->raid_disks % geo->far_set_size); 657 far_set_start = last_far_set_start; 658 } 659 } 660 661 offset = sector & geo->chunk_mask; 662 if (geo->far_offset) { 663 int fc; 664 chunk = sector >> geo->chunk_shift; 665 fc = sector_div(chunk, geo->far_copies); 666 dev -= fc * geo->near_copies; 667 if (dev < far_set_start) 668 dev += far_set_size; 669 } else { 670 while (sector >= geo->stride) { 671 sector -= geo->stride; 672 if (dev < (geo->near_copies + far_set_start)) 673 dev += far_set_size - geo->near_copies; 674 else 675 dev -= geo->near_copies; 676 } 677 chunk = sector >> geo->chunk_shift; 678 } 679 vchunk = chunk * geo->raid_disks + dev; 680 sector_div(vchunk, geo->near_copies); 681 return (vchunk << geo->chunk_shift) + offset; 682 } 683 684 /* 685 * This routine returns the disk from which the requested read should 686 * be done. There is a per-array 'next expected sequential IO' sector 687 * number - if this matches on the next IO then we use the last disk. 688 * There is also a per-disk 'last know head position' sector that is 689 * maintained from IRQ contexts, both the normal and the resync IO 690 * completion handlers update this position correctly. If there is no 691 * perfect sequential match then we pick the disk whose head is closest. 692 * 693 * If there are 2 mirrors in the same 2 devices, performance degrades 694 * because position is mirror, not device based. 695 * 696 * The rdev for the device selected will have nr_pending incremented. 697 */ 698 699 /* 700 * FIXME: possibly should rethink readbalancing and do it differently 701 * depending on near_copies / far_copies geometry. 702 */ 703 static struct md_rdev *read_balance(struct r10conf *conf, 704 struct r10bio *r10_bio, 705 int *max_sectors) 706 { 707 const sector_t this_sector = r10_bio->sector; 708 int disk, slot; 709 int sectors = r10_bio->sectors; 710 int best_good_sectors; 711 sector_t new_distance, best_dist; 712 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 713 int do_balance; 714 int best_dist_slot, best_pending_slot; 715 bool has_nonrot_disk = false; 716 unsigned int min_pending; 717 struct geom *geo = &conf->geo; 718 719 raid10_find_phys(conf, r10_bio); 720 rcu_read_lock(); 721 best_dist_slot = -1; 722 min_pending = UINT_MAX; 723 best_dist_rdev = NULL; 724 best_pending_rdev = NULL; 725 best_dist = MaxSector; 726 best_good_sectors = 0; 727 do_balance = 1; 728 clear_bit(R10BIO_FailFast, &r10_bio->state); 729 /* 730 * Check if we can balance. We can balance on the whole 731 * device if no resync is going on (recovery is ok), or below 732 * the resync window. We take the first readable disk when 733 * above the resync window. 734 */ 735 if ((conf->mddev->recovery_cp < MaxSector 736 && (this_sector + sectors >= conf->next_resync)) || 737 (mddev_is_clustered(conf->mddev) && 738 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 739 this_sector + sectors))) 740 do_balance = 0; 741 742 for (slot = 0; slot < conf->copies ; slot++) { 743 sector_t first_bad; 744 int bad_sectors; 745 sector_t dev_sector; 746 unsigned int pending; 747 bool nonrot; 748 749 if (r10_bio->devs[slot].bio == IO_BLOCKED) 750 continue; 751 disk = r10_bio->devs[slot].devnum; 752 rdev = rcu_dereference(conf->mirrors[disk].replacement); 753 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 754 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 755 rdev = rcu_dereference(conf->mirrors[disk].rdev); 756 if (rdev == NULL || 757 test_bit(Faulty, &rdev->flags)) 758 continue; 759 if (!test_bit(In_sync, &rdev->flags) && 760 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 761 continue; 762 763 dev_sector = r10_bio->devs[slot].addr; 764 if (is_badblock(rdev, dev_sector, sectors, 765 &first_bad, &bad_sectors)) { 766 if (best_dist < MaxSector) 767 /* Already have a better slot */ 768 continue; 769 if (first_bad <= dev_sector) { 770 /* Cannot read here. If this is the 771 * 'primary' device, then we must not read 772 * beyond 'bad_sectors' from another device. 773 */ 774 bad_sectors -= (dev_sector - first_bad); 775 if (!do_balance && sectors > bad_sectors) 776 sectors = bad_sectors; 777 if (best_good_sectors > sectors) 778 best_good_sectors = sectors; 779 } else { 780 sector_t good_sectors = 781 first_bad - dev_sector; 782 if (good_sectors > best_good_sectors) { 783 best_good_sectors = good_sectors; 784 best_dist_slot = slot; 785 best_dist_rdev = rdev; 786 } 787 if (!do_balance) 788 /* Must read from here */ 789 break; 790 } 791 continue; 792 } else 793 best_good_sectors = sectors; 794 795 if (!do_balance) 796 break; 797 798 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 799 has_nonrot_disk |= nonrot; 800 pending = atomic_read(&rdev->nr_pending); 801 if (min_pending > pending && nonrot) { 802 min_pending = pending; 803 best_pending_slot = slot; 804 best_pending_rdev = rdev; 805 } 806 807 if (best_dist_slot >= 0) 808 /* At least 2 disks to choose from so failfast is OK */ 809 set_bit(R10BIO_FailFast, &r10_bio->state); 810 /* This optimisation is debatable, and completely destroys 811 * sequential read speed for 'far copies' arrays. So only 812 * keep it for 'near' arrays, and review those later. 813 */ 814 if (geo->near_copies > 1 && !pending) 815 new_distance = 0; 816 817 /* for far > 1 always use the lowest address */ 818 else if (geo->far_copies > 1) 819 new_distance = r10_bio->devs[slot].addr; 820 else 821 new_distance = abs(r10_bio->devs[slot].addr - 822 conf->mirrors[disk].head_position); 823 824 if (new_distance < best_dist) { 825 best_dist = new_distance; 826 best_dist_slot = slot; 827 best_dist_rdev = rdev; 828 } 829 } 830 if (slot >= conf->copies) { 831 if (has_nonrot_disk) { 832 slot = best_pending_slot; 833 rdev = best_pending_rdev; 834 } else { 835 slot = best_dist_slot; 836 rdev = best_dist_rdev; 837 } 838 } 839 840 if (slot >= 0) { 841 atomic_inc(&rdev->nr_pending); 842 r10_bio->read_slot = slot; 843 } else 844 rdev = NULL; 845 rcu_read_unlock(); 846 *max_sectors = best_good_sectors; 847 848 return rdev; 849 } 850 851 static void flush_pending_writes(struct r10conf *conf) 852 { 853 /* Any writes that have been queued but are awaiting 854 * bitmap updates get flushed here. 855 */ 856 spin_lock_irq(&conf->device_lock); 857 858 if (conf->pending_bio_list.head) { 859 struct blk_plug plug; 860 struct bio *bio; 861 862 bio = bio_list_get(&conf->pending_bio_list); 863 conf->pending_count = 0; 864 spin_unlock_irq(&conf->device_lock); 865 866 /* 867 * As this is called in a wait_event() loop (see freeze_array), 868 * current->state might be TASK_UNINTERRUPTIBLE which will 869 * cause a warning when we prepare to wait again. As it is 870 * rare that this path is taken, it is perfectly safe to force 871 * us to go around the wait_event() loop again, so the warning 872 * is a false-positive. Silence the warning by resetting 873 * thread state 874 */ 875 __set_current_state(TASK_RUNNING); 876 877 blk_start_plug(&plug); 878 /* flush any pending bitmap writes to disk 879 * before proceeding w/ I/O */ 880 md_bitmap_unplug(conf->mddev->bitmap); 881 wake_up(&conf->wait_barrier); 882 883 while (bio) { /* submit pending writes */ 884 struct bio *next = bio->bi_next; 885 struct md_rdev *rdev = (void*)bio->bi_disk; 886 bio->bi_next = NULL; 887 bio_set_dev(bio, rdev->bdev); 888 if (test_bit(Faulty, &rdev->flags)) { 889 bio_io_error(bio); 890 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 891 !blk_queue_discard(bio->bi_disk->queue))) 892 /* Just ignore it */ 893 bio_endio(bio); 894 else 895 submit_bio_noacct(bio); 896 bio = next; 897 } 898 blk_finish_plug(&plug); 899 } else 900 spin_unlock_irq(&conf->device_lock); 901 } 902 903 /* Barriers.... 904 * Sometimes we need to suspend IO while we do something else, 905 * either some resync/recovery, or reconfigure the array. 906 * To do this we raise a 'barrier'. 907 * The 'barrier' is a counter that can be raised multiple times 908 * to count how many activities are happening which preclude 909 * normal IO. 910 * We can only raise the barrier if there is no pending IO. 911 * i.e. if nr_pending == 0. 912 * We choose only to raise the barrier if no-one is waiting for the 913 * barrier to go down. This means that as soon as an IO request 914 * is ready, no other operations which require a barrier will start 915 * until the IO request has had a chance. 916 * 917 * So: regular IO calls 'wait_barrier'. When that returns there 918 * is no backgroup IO happening, It must arrange to call 919 * allow_barrier when it has finished its IO. 920 * backgroup IO calls must call raise_barrier. Once that returns 921 * there is no normal IO happeing. It must arrange to call 922 * lower_barrier when the particular background IO completes. 923 */ 924 925 static void raise_barrier(struct r10conf *conf, int force) 926 { 927 BUG_ON(force && !conf->barrier); 928 spin_lock_irq(&conf->resync_lock); 929 930 /* Wait until no block IO is waiting (unless 'force') */ 931 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 932 conf->resync_lock); 933 934 /* block any new IO from starting */ 935 conf->barrier++; 936 937 /* Now wait for all pending IO to complete */ 938 wait_event_lock_irq(conf->wait_barrier, 939 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 940 conf->resync_lock); 941 942 spin_unlock_irq(&conf->resync_lock); 943 } 944 945 static void lower_barrier(struct r10conf *conf) 946 { 947 unsigned long flags; 948 spin_lock_irqsave(&conf->resync_lock, flags); 949 conf->barrier--; 950 spin_unlock_irqrestore(&conf->resync_lock, flags); 951 wake_up(&conf->wait_barrier); 952 } 953 954 static void wait_barrier(struct r10conf *conf) 955 { 956 spin_lock_irq(&conf->resync_lock); 957 if (conf->barrier) { 958 struct bio_list *bio_list = current->bio_list; 959 conf->nr_waiting++; 960 /* Wait for the barrier to drop. 961 * However if there are already pending 962 * requests (preventing the barrier from 963 * rising completely), and the 964 * pre-process bio queue isn't empty, 965 * then don't wait, as we need to empty 966 * that queue to get the nr_pending 967 * count down. 968 */ 969 raid10_log(conf->mddev, "wait barrier"); 970 wait_event_lock_irq(conf->wait_barrier, 971 !conf->barrier || 972 (atomic_read(&conf->nr_pending) && 973 bio_list && 974 (!bio_list_empty(&bio_list[0]) || 975 !bio_list_empty(&bio_list[1]))) || 976 /* move on if recovery thread is 977 * blocked by us 978 */ 979 (conf->mddev->thread->tsk == current && 980 test_bit(MD_RECOVERY_RUNNING, 981 &conf->mddev->recovery) && 982 conf->nr_queued > 0), 983 conf->resync_lock); 984 conf->nr_waiting--; 985 if (!conf->nr_waiting) 986 wake_up(&conf->wait_barrier); 987 } 988 atomic_inc(&conf->nr_pending); 989 spin_unlock_irq(&conf->resync_lock); 990 } 991 992 static void allow_barrier(struct r10conf *conf) 993 { 994 if ((atomic_dec_and_test(&conf->nr_pending)) || 995 (conf->array_freeze_pending)) 996 wake_up(&conf->wait_barrier); 997 } 998 999 static void freeze_array(struct r10conf *conf, int extra) 1000 { 1001 /* stop syncio and normal IO and wait for everything to 1002 * go quiet. 1003 * We increment barrier and nr_waiting, and then 1004 * wait until nr_pending match nr_queued+extra 1005 * This is called in the context of one normal IO request 1006 * that has failed. Thus any sync request that might be pending 1007 * will be blocked by nr_pending, and we need to wait for 1008 * pending IO requests to complete or be queued for re-try. 1009 * Thus the number queued (nr_queued) plus this request (extra) 1010 * must match the number of pending IOs (nr_pending) before 1011 * we continue. 1012 */ 1013 spin_lock_irq(&conf->resync_lock); 1014 conf->array_freeze_pending++; 1015 conf->barrier++; 1016 conf->nr_waiting++; 1017 wait_event_lock_irq_cmd(conf->wait_barrier, 1018 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1019 conf->resync_lock, 1020 flush_pending_writes(conf)); 1021 1022 conf->array_freeze_pending--; 1023 spin_unlock_irq(&conf->resync_lock); 1024 } 1025 1026 static void unfreeze_array(struct r10conf *conf) 1027 { 1028 /* reverse the effect of the freeze */ 1029 spin_lock_irq(&conf->resync_lock); 1030 conf->barrier--; 1031 conf->nr_waiting--; 1032 wake_up(&conf->wait_barrier); 1033 spin_unlock_irq(&conf->resync_lock); 1034 } 1035 1036 static sector_t choose_data_offset(struct r10bio *r10_bio, 1037 struct md_rdev *rdev) 1038 { 1039 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1040 test_bit(R10BIO_Previous, &r10_bio->state)) 1041 return rdev->data_offset; 1042 else 1043 return rdev->new_data_offset; 1044 } 1045 1046 struct raid10_plug_cb { 1047 struct blk_plug_cb cb; 1048 struct bio_list pending; 1049 int pending_cnt; 1050 }; 1051 1052 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1053 { 1054 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1055 cb); 1056 struct mddev *mddev = plug->cb.data; 1057 struct r10conf *conf = mddev->private; 1058 struct bio *bio; 1059 1060 if (from_schedule || current->bio_list) { 1061 spin_lock_irq(&conf->device_lock); 1062 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1063 conf->pending_count += plug->pending_cnt; 1064 spin_unlock_irq(&conf->device_lock); 1065 wake_up(&conf->wait_barrier); 1066 md_wakeup_thread(mddev->thread); 1067 kfree(plug); 1068 return; 1069 } 1070 1071 /* we aren't scheduling, so we can do the write-out directly. */ 1072 bio = bio_list_get(&plug->pending); 1073 md_bitmap_unplug(mddev->bitmap); 1074 wake_up(&conf->wait_barrier); 1075 1076 while (bio) { /* submit pending writes */ 1077 struct bio *next = bio->bi_next; 1078 struct md_rdev *rdev = (void*)bio->bi_disk; 1079 bio->bi_next = NULL; 1080 bio_set_dev(bio, rdev->bdev); 1081 if (test_bit(Faulty, &rdev->flags)) { 1082 bio_io_error(bio); 1083 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1084 !blk_queue_discard(bio->bi_disk->queue))) 1085 /* Just ignore it */ 1086 bio_endio(bio); 1087 else 1088 submit_bio_noacct(bio); 1089 bio = next; 1090 } 1091 kfree(plug); 1092 } 1093 1094 /* 1095 * 1. Register the new request and wait if the reconstruction thread has put 1096 * up a bar for new requests. Continue immediately if no resync is active 1097 * currently. 1098 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1099 */ 1100 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1101 struct bio *bio, sector_t sectors) 1102 { 1103 wait_barrier(conf); 1104 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1105 bio->bi_iter.bi_sector < conf->reshape_progress && 1106 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1107 raid10_log(conf->mddev, "wait reshape"); 1108 allow_barrier(conf); 1109 wait_event(conf->wait_barrier, 1110 conf->reshape_progress <= bio->bi_iter.bi_sector || 1111 conf->reshape_progress >= bio->bi_iter.bi_sector + 1112 sectors); 1113 wait_barrier(conf); 1114 } 1115 } 1116 1117 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1118 struct r10bio *r10_bio) 1119 { 1120 struct r10conf *conf = mddev->private; 1121 struct bio *read_bio; 1122 const int op = bio_op(bio); 1123 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1124 int max_sectors; 1125 struct md_rdev *rdev; 1126 char b[BDEVNAME_SIZE]; 1127 int slot = r10_bio->read_slot; 1128 struct md_rdev *err_rdev = NULL; 1129 gfp_t gfp = GFP_NOIO; 1130 1131 if (slot >= 0 && r10_bio->devs[slot].rdev) { 1132 /* 1133 * This is an error retry, but we cannot 1134 * safely dereference the rdev in the r10_bio, 1135 * we must use the one in conf. 1136 * If it has already been disconnected (unlikely) 1137 * we lose the device name in error messages. 1138 */ 1139 int disk; 1140 /* 1141 * As we are blocking raid10, it is a little safer to 1142 * use __GFP_HIGH. 1143 */ 1144 gfp = GFP_NOIO | __GFP_HIGH; 1145 1146 rcu_read_lock(); 1147 disk = r10_bio->devs[slot].devnum; 1148 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1149 if (err_rdev) 1150 bdevname(err_rdev->bdev, b); 1151 else { 1152 strcpy(b, "???"); 1153 /* This never gets dereferenced */ 1154 err_rdev = r10_bio->devs[slot].rdev; 1155 } 1156 rcu_read_unlock(); 1157 } 1158 1159 regular_request_wait(mddev, conf, bio, r10_bio->sectors); 1160 rdev = read_balance(conf, r10_bio, &max_sectors); 1161 if (!rdev) { 1162 if (err_rdev) { 1163 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1164 mdname(mddev), b, 1165 (unsigned long long)r10_bio->sector); 1166 } 1167 raid_end_bio_io(r10_bio); 1168 return; 1169 } 1170 if (err_rdev) 1171 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1172 mdname(mddev), 1173 bdevname(rdev->bdev, b), 1174 (unsigned long long)r10_bio->sector); 1175 if (max_sectors < bio_sectors(bio)) { 1176 struct bio *split = bio_split(bio, max_sectors, 1177 gfp, &conf->bio_split); 1178 bio_chain(split, bio); 1179 allow_barrier(conf); 1180 submit_bio_noacct(bio); 1181 wait_barrier(conf); 1182 bio = split; 1183 r10_bio->master_bio = bio; 1184 r10_bio->sectors = max_sectors; 1185 } 1186 slot = r10_bio->read_slot; 1187 1188 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1189 1190 r10_bio->devs[slot].bio = read_bio; 1191 r10_bio->devs[slot].rdev = rdev; 1192 1193 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1194 choose_data_offset(r10_bio, rdev); 1195 bio_set_dev(read_bio, rdev->bdev); 1196 read_bio->bi_end_io = raid10_end_read_request; 1197 bio_set_op_attrs(read_bio, op, do_sync); 1198 if (test_bit(FailFast, &rdev->flags) && 1199 test_bit(R10BIO_FailFast, &r10_bio->state)) 1200 read_bio->bi_opf |= MD_FAILFAST; 1201 read_bio->bi_private = r10_bio; 1202 1203 if (mddev->gendisk) 1204 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1205 r10_bio->sector); 1206 submit_bio_noacct(read_bio); 1207 return; 1208 } 1209 1210 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1211 struct bio *bio, bool replacement, 1212 int n_copy) 1213 { 1214 const int op = bio_op(bio); 1215 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1216 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1217 unsigned long flags; 1218 struct blk_plug_cb *cb; 1219 struct raid10_plug_cb *plug = NULL; 1220 struct r10conf *conf = mddev->private; 1221 struct md_rdev *rdev; 1222 int devnum = r10_bio->devs[n_copy].devnum; 1223 struct bio *mbio; 1224 1225 if (replacement) { 1226 rdev = conf->mirrors[devnum].replacement; 1227 if (rdev == NULL) { 1228 /* Replacement just got moved to main 'rdev' */ 1229 smp_mb(); 1230 rdev = conf->mirrors[devnum].rdev; 1231 } 1232 } else 1233 rdev = conf->mirrors[devnum].rdev; 1234 1235 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1236 if (replacement) 1237 r10_bio->devs[n_copy].repl_bio = mbio; 1238 else 1239 r10_bio->devs[n_copy].bio = mbio; 1240 1241 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1242 choose_data_offset(r10_bio, rdev)); 1243 bio_set_dev(mbio, rdev->bdev); 1244 mbio->bi_end_io = raid10_end_write_request; 1245 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1246 if (!replacement && test_bit(FailFast, 1247 &conf->mirrors[devnum].rdev->flags) 1248 && enough(conf, devnum)) 1249 mbio->bi_opf |= MD_FAILFAST; 1250 mbio->bi_private = r10_bio; 1251 1252 if (conf->mddev->gendisk) 1253 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk), 1254 r10_bio->sector); 1255 /* flush_pending_writes() needs access to the rdev so...*/ 1256 mbio->bi_disk = (void *)rdev; 1257 1258 atomic_inc(&r10_bio->remaining); 1259 1260 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1261 if (cb) 1262 plug = container_of(cb, struct raid10_plug_cb, cb); 1263 else 1264 plug = NULL; 1265 if (plug) { 1266 bio_list_add(&plug->pending, mbio); 1267 plug->pending_cnt++; 1268 } else { 1269 spin_lock_irqsave(&conf->device_lock, flags); 1270 bio_list_add(&conf->pending_bio_list, mbio); 1271 conf->pending_count++; 1272 spin_unlock_irqrestore(&conf->device_lock, flags); 1273 md_wakeup_thread(mddev->thread); 1274 } 1275 } 1276 1277 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1278 struct r10bio *r10_bio) 1279 { 1280 struct r10conf *conf = mddev->private; 1281 int i; 1282 struct md_rdev *blocked_rdev; 1283 sector_t sectors; 1284 int max_sectors; 1285 1286 if ((mddev_is_clustered(mddev) && 1287 md_cluster_ops->area_resyncing(mddev, WRITE, 1288 bio->bi_iter.bi_sector, 1289 bio_end_sector(bio)))) { 1290 DEFINE_WAIT(w); 1291 for (;;) { 1292 prepare_to_wait(&conf->wait_barrier, 1293 &w, TASK_IDLE); 1294 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1295 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1296 break; 1297 schedule(); 1298 } 1299 finish_wait(&conf->wait_barrier, &w); 1300 } 1301 1302 sectors = r10_bio->sectors; 1303 regular_request_wait(mddev, conf, bio, sectors); 1304 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1305 (mddev->reshape_backwards 1306 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1307 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1308 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1309 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1310 /* Need to update reshape_position in metadata */ 1311 mddev->reshape_position = conf->reshape_progress; 1312 set_mask_bits(&mddev->sb_flags, 0, 1313 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1314 md_wakeup_thread(mddev->thread); 1315 raid10_log(conf->mddev, "wait reshape metadata"); 1316 wait_event(mddev->sb_wait, 1317 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1318 1319 conf->reshape_safe = mddev->reshape_position; 1320 } 1321 1322 if (conf->pending_count >= max_queued_requests) { 1323 md_wakeup_thread(mddev->thread); 1324 raid10_log(mddev, "wait queued"); 1325 wait_event(conf->wait_barrier, 1326 conf->pending_count < max_queued_requests); 1327 } 1328 /* first select target devices under rcu_lock and 1329 * inc refcount on their rdev. Record them by setting 1330 * bios[x] to bio 1331 * If there are known/acknowledged bad blocks on any device 1332 * on which we have seen a write error, we want to avoid 1333 * writing to those blocks. This potentially requires several 1334 * writes to write around the bad blocks. Each set of writes 1335 * gets its own r10_bio with a set of bios attached. 1336 */ 1337 1338 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1339 raid10_find_phys(conf, r10_bio); 1340 retry_write: 1341 blocked_rdev = NULL; 1342 rcu_read_lock(); 1343 max_sectors = r10_bio->sectors; 1344 1345 for (i = 0; i < conf->copies; i++) { 1346 int d = r10_bio->devs[i].devnum; 1347 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1348 struct md_rdev *rrdev = rcu_dereference( 1349 conf->mirrors[d].replacement); 1350 if (rdev == rrdev) 1351 rrdev = NULL; 1352 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1353 atomic_inc(&rdev->nr_pending); 1354 blocked_rdev = rdev; 1355 break; 1356 } 1357 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1358 atomic_inc(&rrdev->nr_pending); 1359 blocked_rdev = rrdev; 1360 break; 1361 } 1362 if (rdev && (test_bit(Faulty, &rdev->flags))) 1363 rdev = NULL; 1364 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1365 rrdev = NULL; 1366 1367 r10_bio->devs[i].bio = NULL; 1368 r10_bio->devs[i].repl_bio = NULL; 1369 1370 if (!rdev && !rrdev) { 1371 set_bit(R10BIO_Degraded, &r10_bio->state); 1372 continue; 1373 } 1374 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1375 sector_t first_bad; 1376 sector_t dev_sector = r10_bio->devs[i].addr; 1377 int bad_sectors; 1378 int is_bad; 1379 1380 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1381 &first_bad, &bad_sectors); 1382 if (is_bad < 0) { 1383 /* Mustn't write here until the bad block 1384 * is acknowledged 1385 */ 1386 atomic_inc(&rdev->nr_pending); 1387 set_bit(BlockedBadBlocks, &rdev->flags); 1388 blocked_rdev = rdev; 1389 break; 1390 } 1391 if (is_bad && first_bad <= dev_sector) { 1392 /* Cannot write here at all */ 1393 bad_sectors -= (dev_sector - first_bad); 1394 if (bad_sectors < max_sectors) 1395 /* Mustn't write more than bad_sectors 1396 * to other devices yet 1397 */ 1398 max_sectors = bad_sectors; 1399 /* We don't set R10BIO_Degraded as that 1400 * only applies if the disk is missing, 1401 * so it might be re-added, and we want to 1402 * know to recover this chunk. 1403 * In this case the device is here, and the 1404 * fact that this chunk is not in-sync is 1405 * recorded in the bad block log. 1406 */ 1407 continue; 1408 } 1409 if (is_bad) { 1410 int good_sectors = first_bad - dev_sector; 1411 if (good_sectors < max_sectors) 1412 max_sectors = good_sectors; 1413 } 1414 } 1415 if (rdev) { 1416 r10_bio->devs[i].bio = bio; 1417 atomic_inc(&rdev->nr_pending); 1418 } 1419 if (rrdev) { 1420 r10_bio->devs[i].repl_bio = bio; 1421 atomic_inc(&rrdev->nr_pending); 1422 } 1423 } 1424 rcu_read_unlock(); 1425 1426 if (unlikely(blocked_rdev)) { 1427 /* Have to wait for this device to get unblocked, then retry */ 1428 int j; 1429 int d; 1430 1431 for (j = 0; j < i; j++) { 1432 if (r10_bio->devs[j].bio) { 1433 d = r10_bio->devs[j].devnum; 1434 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1435 } 1436 if (r10_bio->devs[j].repl_bio) { 1437 struct md_rdev *rdev; 1438 d = r10_bio->devs[j].devnum; 1439 rdev = conf->mirrors[d].replacement; 1440 if (!rdev) { 1441 /* Race with remove_disk */ 1442 smp_mb(); 1443 rdev = conf->mirrors[d].rdev; 1444 } 1445 rdev_dec_pending(rdev, mddev); 1446 } 1447 } 1448 allow_barrier(conf); 1449 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1450 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1451 wait_barrier(conf); 1452 goto retry_write; 1453 } 1454 1455 if (max_sectors < r10_bio->sectors) 1456 r10_bio->sectors = max_sectors; 1457 1458 if (r10_bio->sectors < bio_sectors(bio)) { 1459 struct bio *split = bio_split(bio, r10_bio->sectors, 1460 GFP_NOIO, &conf->bio_split); 1461 bio_chain(split, bio); 1462 allow_barrier(conf); 1463 submit_bio_noacct(bio); 1464 wait_barrier(conf); 1465 bio = split; 1466 r10_bio->master_bio = bio; 1467 } 1468 1469 atomic_set(&r10_bio->remaining, 1); 1470 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1471 1472 for (i = 0; i < conf->copies; i++) { 1473 if (r10_bio->devs[i].bio) 1474 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1475 if (r10_bio->devs[i].repl_bio) 1476 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1477 } 1478 one_write_done(r10_bio); 1479 } 1480 1481 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1482 { 1483 struct r10conf *conf = mddev->private; 1484 struct r10bio *r10_bio; 1485 1486 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1487 1488 r10_bio->master_bio = bio; 1489 r10_bio->sectors = sectors; 1490 1491 r10_bio->mddev = mddev; 1492 r10_bio->sector = bio->bi_iter.bi_sector; 1493 r10_bio->state = 0; 1494 r10_bio->read_slot = -1; 1495 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies); 1496 1497 if (bio_data_dir(bio) == READ) 1498 raid10_read_request(mddev, bio, r10_bio); 1499 else 1500 raid10_write_request(mddev, bio, r10_bio); 1501 } 1502 1503 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1504 { 1505 struct r10conf *conf = mddev->private; 1506 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1507 int chunk_sects = chunk_mask + 1; 1508 int sectors = bio_sectors(bio); 1509 1510 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1511 && md_flush_request(mddev, bio)) 1512 return true; 1513 1514 if (!md_write_start(mddev, bio)) 1515 return false; 1516 1517 /* 1518 * If this request crosses a chunk boundary, we need to split 1519 * it. 1520 */ 1521 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1522 sectors > chunk_sects 1523 && (conf->geo.near_copies < conf->geo.raid_disks 1524 || conf->prev.near_copies < 1525 conf->prev.raid_disks))) 1526 sectors = chunk_sects - 1527 (bio->bi_iter.bi_sector & 1528 (chunk_sects - 1)); 1529 __make_request(mddev, bio, sectors); 1530 1531 /* In case raid10d snuck in to freeze_array */ 1532 wake_up(&conf->wait_barrier); 1533 return true; 1534 } 1535 1536 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1537 { 1538 struct r10conf *conf = mddev->private; 1539 int i; 1540 1541 if (conf->geo.near_copies < conf->geo.raid_disks) 1542 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1543 if (conf->geo.near_copies > 1) 1544 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1545 if (conf->geo.far_copies > 1) { 1546 if (conf->geo.far_offset) 1547 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1548 else 1549 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1550 if (conf->geo.far_set_size != conf->geo.raid_disks) 1551 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1552 } 1553 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1554 conf->geo.raid_disks - mddev->degraded); 1555 rcu_read_lock(); 1556 for (i = 0; i < conf->geo.raid_disks; i++) { 1557 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1558 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1559 } 1560 rcu_read_unlock(); 1561 seq_printf(seq, "]"); 1562 } 1563 1564 /* check if there are enough drives for 1565 * every block to appear on atleast one. 1566 * Don't consider the device numbered 'ignore' 1567 * as we might be about to remove it. 1568 */ 1569 static int _enough(struct r10conf *conf, int previous, int ignore) 1570 { 1571 int first = 0; 1572 int has_enough = 0; 1573 int disks, ncopies; 1574 if (previous) { 1575 disks = conf->prev.raid_disks; 1576 ncopies = conf->prev.near_copies; 1577 } else { 1578 disks = conf->geo.raid_disks; 1579 ncopies = conf->geo.near_copies; 1580 } 1581 1582 rcu_read_lock(); 1583 do { 1584 int n = conf->copies; 1585 int cnt = 0; 1586 int this = first; 1587 while (n--) { 1588 struct md_rdev *rdev; 1589 if (this != ignore && 1590 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1591 test_bit(In_sync, &rdev->flags)) 1592 cnt++; 1593 this = (this+1) % disks; 1594 } 1595 if (cnt == 0) 1596 goto out; 1597 first = (first + ncopies) % disks; 1598 } while (first != 0); 1599 has_enough = 1; 1600 out: 1601 rcu_read_unlock(); 1602 return has_enough; 1603 } 1604 1605 static int enough(struct r10conf *conf, int ignore) 1606 { 1607 /* when calling 'enough', both 'prev' and 'geo' must 1608 * be stable. 1609 * This is ensured if ->reconfig_mutex or ->device_lock 1610 * is held. 1611 */ 1612 return _enough(conf, 0, ignore) && 1613 _enough(conf, 1, ignore); 1614 } 1615 1616 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1617 { 1618 char b[BDEVNAME_SIZE]; 1619 struct r10conf *conf = mddev->private; 1620 unsigned long flags; 1621 1622 /* 1623 * If it is not operational, then we have already marked it as dead 1624 * else if it is the last working disks with "fail_last_dev == false", 1625 * ignore the error, let the next level up know. 1626 * else mark the drive as failed 1627 */ 1628 spin_lock_irqsave(&conf->device_lock, flags); 1629 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1630 && !enough(conf, rdev->raid_disk)) { 1631 /* 1632 * Don't fail the drive, just return an IO error. 1633 */ 1634 spin_unlock_irqrestore(&conf->device_lock, flags); 1635 return; 1636 } 1637 if (test_and_clear_bit(In_sync, &rdev->flags)) 1638 mddev->degraded++; 1639 /* 1640 * If recovery is running, make sure it aborts. 1641 */ 1642 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1643 set_bit(Blocked, &rdev->flags); 1644 set_bit(Faulty, &rdev->flags); 1645 set_mask_bits(&mddev->sb_flags, 0, 1646 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1647 spin_unlock_irqrestore(&conf->device_lock, flags); 1648 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1649 "md/raid10:%s: Operation continuing on %d devices.\n", 1650 mdname(mddev), bdevname(rdev->bdev, b), 1651 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1652 } 1653 1654 static void print_conf(struct r10conf *conf) 1655 { 1656 int i; 1657 struct md_rdev *rdev; 1658 1659 pr_debug("RAID10 conf printout:\n"); 1660 if (!conf) { 1661 pr_debug("(!conf)\n"); 1662 return; 1663 } 1664 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1665 conf->geo.raid_disks); 1666 1667 /* This is only called with ->reconfix_mutex held, so 1668 * rcu protection of rdev is not needed */ 1669 for (i = 0; i < conf->geo.raid_disks; i++) { 1670 char b[BDEVNAME_SIZE]; 1671 rdev = conf->mirrors[i].rdev; 1672 if (rdev) 1673 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1674 i, !test_bit(In_sync, &rdev->flags), 1675 !test_bit(Faulty, &rdev->flags), 1676 bdevname(rdev->bdev,b)); 1677 } 1678 } 1679 1680 static void close_sync(struct r10conf *conf) 1681 { 1682 wait_barrier(conf); 1683 allow_barrier(conf); 1684 1685 mempool_exit(&conf->r10buf_pool); 1686 } 1687 1688 static int raid10_spare_active(struct mddev *mddev) 1689 { 1690 int i; 1691 struct r10conf *conf = mddev->private; 1692 struct raid10_info *tmp; 1693 int count = 0; 1694 unsigned long flags; 1695 1696 /* 1697 * Find all non-in_sync disks within the RAID10 configuration 1698 * and mark them in_sync 1699 */ 1700 for (i = 0; i < conf->geo.raid_disks; i++) { 1701 tmp = conf->mirrors + i; 1702 if (tmp->replacement 1703 && tmp->replacement->recovery_offset == MaxSector 1704 && !test_bit(Faulty, &tmp->replacement->flags) 1705 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1706 /* Replacement has just become active */ 1707 if (!tmp->rdev 1708 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1709 count++; 1710 if (tmp->rdev) { 1711 /* Replaced device not technically faulty, 1712 * but we need to be sure it gets removed 1713 * and never re-added. 1714 */ 1715 set_bit(Faulty, &tmp->rdev->flags); 1716 sysfs_notify_dirent_safe( 1717 tmp->rdev->sysfs_state); 1718 } 1719 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1720 } else if (tmp->rdev 1721 && tmp->rdev->recovery_offset == MaxSector 1722 && !test_bit(Faulty, &tmp->rdev->flags) 1723 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1724 count++; 1725 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1726 } 1727 } 1728 spin_lock_irqsave(&conf->device_lock, flags); 1729 mddev->degraded -= count; 1730 spin_unlock_irqrestore(&conf->device_lock, flags); 1731 1732 print_conf(conf); 1733 return count; 1734 } 1735 1736 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1737 { 1738 struct r10conf *conf = mddev->private; 1739 int err = -EEXIST; 1740 int mirror; 1741 int first = 0; 1742 int last = conf->geo.raid_disks - 1; 1743 1744 if (mddev->recovery_cp < MaxSector) 1745 /* only hot-add to in-sync arrays, as recovery is 1746 * very different from resync 1747 */ 1748 return -EBUSY; 1749 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1750 return -EINVAL; 1751 1752 if (md_integrity_add_rdev(rdev, mddev)) 1753 return -ENXIO; 1754 1755 if (rdev->raid_disk >= 0) 1756 first = last = rdev->raid_disk; 1757 1758 if (rdev->saved_raid_disk >= first && 1759 rdev->saved_raid_disk < conf->geo.raid_disks && 1760 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1761 mirror = rdev->saved_raid_disk; 1762 else 1763 mirror = first; 1764 for ( ; mirror <= last ; mirror++) { 1765 struct raid10_info *p = &conf->mirrors[mirror]; 1766 if (p->recovery_disabled == mddev->recovery_disabled) 1767 continue; 1768 if (p->rdev) { 1769 if (!test_bit(WantReplacement, &p->rdev->flags) || 1770 p->replacement != NULL) 1771 continue; 1772 clear_bit(In_sync, &rdev->flags); 1773 set_bit(Replacement, &rdev->flags); 1774 rdev->raid_disk = mirror; 1775 err = 0; 1776 if (mddev->gendisk) 1777 disk_stack_limits(mddev->gendisk, rdev->bdev, 1778 rdev->data_offset << 9); 1779 conf->fullsync = 1; 1780 rcu_assign_pointer(p->replacement, rdev); 1781 break; 1782 } 1783 1784 if (mddev->gendisk) 1785 disk_stack_limits(mddev->gendisk, rdev->bdev, 1786 rdev->data_offset << 9); 1787 1788 p->head_position = 0; 1789 p->recovery_disabled = mddev->recovery_disabled - 1; 1790 rdev->raid_disk = mirror; 1791 err = 0; 1792 if (rdev->saved_raid_disk != mirror) 1793 conf->fullsync = 1; 1794 rcu_assign_pointer(p->rdev, rdev); 1795 break; 1796 } 1797 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1798 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1799 1800 print_conf(conf); 1801 return err; 1802 } 1803 1804 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1805 { 1806 struct r10conf *conf = mddev->private; 1807 int err = 0; 1808 int number = rdev->raid_disk; 1809 struct md_rdev **rdevp; 1810 struct raid10_info *p = conf->mirrors + number; 1811 1812 print_conf(conf); 1813 if (rdev == p->rdev) 1814 rdevp = &p->rdev; 1815 else if (rdev == p->replacement) 1816 rdevp = &p->replacement; 1817 else 1818 return 0; 1819 1820 if (test_bit(In_sync, &rdev->flags) || 1821 atomic_read(&rdev->nr_pending)) { 1822 err = -EBUSY; 1823 goto abort; 1824 } 1825 /* Only remove non-faulty devices if recovery 1826 * is not possible. 1827 */ 1828 if (!test_bit(Faulty, &rdev->flags) && 1829 mddev->recovery_disabled != p->recovery_disabled && 1830 (!p->replacement || p->replacement == rdev) && 1831 number < conf->geo.raid_disks && 1832 enough(conf, -1)) { 1833 err = -EBUSY; 1834 goto abort; 1835 } 1836 *rdevp = NULL; 1837 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1838 synchronize_rcu(); 1839 if (atomic_read(&rdev->nr_pending)) { 1840 /* lost the race, try later */ 1841 err = -EBUSY; 1842 *rdevp = rdev; 1843 goto abort; 1844 } 1845 } 1846 if (p->replacement) { 1847 /* We must have just cleared 'rdev' */ 1848 p->rdev = p->replacement; 1849 clear_bit(Replacement, &p->replacement->flags); 1850 smp_mb(); /* Make sure other CPUs may see both as identical 1851 * but will never see neither -- if they are careful. 1852 */ 1853 p->replacement = NULL; 1854 } 1855 1856 clear_bit(WantReplacement, &rdev->flags); 1857 err = md_integrity_register(mddev); 1858 1859 abort: 1860 1861 print_conf(conf); 1862 return err; 1863 } 1864 1865 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 1866 { 1867 struct r10conf *conf = r10_bio->mddev->private; 1868 1869 if (!bio->bi_status) 1870 set_bit(R10BIO_Uptodate, &r10_bio->state); 1871 else 1872 /* The write handler will notice the lack of 1873 * R10BIO_Uptodate and record any errors etc 1874 */ 1875 atomic_add(r10_bio->sectors, 1876 &conf->mirrors[d].rdev->corrected_errors); 1877 1878 /* for reconstruct, we always reschedule after a read. 1879 * for resync, only after all reads 1880 */ 1881 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1882 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1883 atomic_dec_and_test(&r10_bio->remaining)) { 1884 /* we have read all the blocks, 1885 * do the comparison in process context in raid10d 1886 */ 1887 reschedule_retry(r10_bio); 1888 } 1889 } 1890 1891 static void end_sync_read(struct bio *bio) 1892 { 1893 struct r10bio *r10_bio = get_resync_r10bio(bio); 1894 struct r10conf *conf = r10_bio->mddev->private; 1895 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1896 1897 __end_sync_read(r10_bio, bio, d); 1898 } 1899 1900 static void end_reshape_read(struct bio *bio) 1901 { 1902 /* reshape read bio isn't allocated from r10buf_pool */ 1903 struct r10bio *r10_bio = bio->bi_private; 1904 1905 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 1906 } 1907 1908 static void end_sync_request(struct r10bio *r10_bio) 1909 { 1910 struct mddev *mddev = r10_bio->mddev; 1911 1912 while (atomic_dec_and_test(&r10_bio->remaining)) { 1913 if (r10_bio->master_bio == NULL) { 1914 /* the primary of several recovery bios */ 1915 sector_t s = r10_bio->sectors; 1916 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1917 test_bit(R10BIO_WriteError, &r10_bio->state)) 1918 reschedule_retry(r10_bio); 1919 else 1920 put_buf(r10_bio); 1921 md_done_sync(mddev, s, 1); 1922 break; 1923 } else { 1924 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1925 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1926 test_bit(R10BIO_WriteError, &r10_bio->state)) 1927 reschedule_retry(r10_bio); 1928 else 1929 put_buf(r10_bio); 1930 r10_bio = r10_bio2; 1931 } 1932 } 1933 } 1934 1935 static void end_sync_write(struct bio *bio) 1936 { 1937 struct r10bio *r10_bio = get_resync_r10bio(bio); 1938 struct mddev *mddev = r10_bio->mddev; 1939 struct r10conf *conf = mddev->private; 1940 int d; 1941 sector_t first_bad; 1942 int bad_sectors; 1943 int slot; 1944 int repl; 1945 struct md_rdev *rdev = NULL; 1946 1947 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1948 if (repl) 1949 rdev = conf->mirrors[d].replacement; 1950 else 1951 rdev = conf->mirrors[d].rdev; 1952 1953 if (bio->bi_status) { 1954 if (repl) 1955 md_error(mddev, rdev); 1956 else { 1957 set_bit(WriteErrorSeen, &rdev->flags); 1958 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1959 set_bit(MD_RECOVERY_NEEDED, 1960 &rdev->mddev->recovery); 1961 set_bit(R10BIO_WriteError, &r10_bio->state); 1962 } 1963 } else if (is_badblock(rdev, 1964 r10_bio->devs[slot].addr, 1965 r10_bio->sectors, 1966 &first_bad, &bad_sectors)) 1967 set_bit(R10BIO_MadeGood, &r10_bio->state); 1968 1969 rdev_dec_pending(rdev, mddev); 1970 1971 end_sync_request(r10_bio); 1972 } 1973 1974 /* 1975 * Note: sync and recover and handled very differently for raid10 1976 * This code is for resync. 1977 * For resync, we read through virtual addresses and read all blocks. 1978 * If there is any error, we schedule a write. The lowest numbered 1979 * drive is authoritative. 1980 * However requests come for physical address, so we need to map. 1981 * For every physical address there are raid_disks/copies virtual addresses, 1982 * which is always are least one, but is not necessarly an integer. 1983 * This means that a physical address can span multiple chunks, so we may 1984 * have to submit multiple io requests for a single sync request. 1985 */ 1986 /* 1987 * We check if all blocks are in-sync and only write to blocks that 1988 * aren't in sync 1989 */ 1990 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1991 { 1992 struct r10conf *conf = mddev->private; 1993 int i, first; 1994 struct bio *tbio, *fbio; 1995 int vcnt; 1996 struct page **tpages, **fpages; 1997 1998 atomic_set(&r10_bio->remaining, 1); 1999 2000 /* find the first device with a block */ 2001 for (i=0; i<conf->copies; i++) 2002 if (!r10_bio->devs[i].bio->bi_status) 2003 break; 2004 2005 if (i == conf->copies) 2006 goto done; 2007 2008 first = i; 2009 fbio = r10_bio->devs[i].bio; 2010 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2011 fbio->bi_iter.bi_idx = 0; 2012 fpages = get_resync_pages(fbio)->pages; 2013 2014 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2015 /* now find blocks with errors */ 2016 for (i=0 ; i < conf->copies ; i++) { 2017 int j, d; 2018 struct md_rdev *rdev; 2019 struct resync_pages *rp; 2020 2021 tbio = r10_bio->devs[i].bio; 2022 2023 if (tbio->bi_end_io != end_sync_read) 2024 continue; 2025 if (i == first) 2026 continue; 2027 2028 tpages = get_resync_pages(tbio)->pages; 2029 d = r10_bio->devs[i].devnum; 2030 rdev = conf->mirrors[d].rdev; 2031 if (!r10_bio->devs[i].bio->bi_status) { 2032 /* We know that the bi_io_vec layout is the same for 2033 * both 'first' and 'i', so we just compare them. 2034 * All vec entries are PAGE_SIZE; 2035 */ 2036 int sectors = r10_bio->sectors; 2037 for (j = 0; j < vcnt; j++) { 2038 int len = PAGE_SIZE; 2039 if (sectors < (len / 512)) 2040 len = sectors * 512; 2041 if (memcmp(page_address(fpages[j]), 2042 page_address(tpages[j]), 2043 len)) 2044 break; 2045 sectors -= len/512; 2046 } 2047 if (j == vcnt) 2048 continue; 2049 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2050 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2051 /* Don't fix anything. */ 2052 continue; 2053 } else if (test_bit(FailFast, &rdev->flags)) { 2054 /* Just give up on this device */ 2055 md_error(rdev->mddev, rdev); 2056 continue; 2057 } 2058 /* Ok, we need to write this bio, either to correct an 2059 * inconsistency or to correct an unreadable block. 2060 * First we need to fixup bv_offset, bv_len and 2061 * bi_vecs, as the read request might have corrupted these 2062 */ 2063 rp = get_resync_pages(tbio); 2064 bio_reset(tbio); 2065 2066 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2067 2068 rp->raid_bio = r10_bio; 2069 tbio->bi_private = rp; 2070 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2071 tbio->bi_end_io = end_sync_write; 2072 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2073 2074 bio_copy_data(tbio, fbio); 2075 2076 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2077 atomic_inc(&r10_bio->remaining); 2078 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2079 2080 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2081 tbio->bi_opf |= MD_FAILFAST; 2082 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2083 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev); 2084 submit_bio_noacct(tbio); 2085 } 2086 2087 /* Now write out to any replacement devices 2088 * that are active 2089 */ 2090 for (i = 0; i < conf->copies; i++) { 2091 int d; 2092 2093 tbio = r10_bio->devs[i].repl_bio; 2094 if (!tbio || !tbio->bi_end_io) 2095 continue; 2096 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2097 && r10_bio->devs[i].bio != fbio) 2098 bio_copy_data(tbio, fbio); 2099 d = r10_bio->devs[i].devnum; 2100 atomic_inc(&r10_bio->remaining); 2101 md_sync_acct(conf->mirrors[d].replacement->bdev, 2102 bio_sectors(tbio)); 2103 submit_bio_noacct(tbio); 2104 } 2105 2106 done: 2107 if (atomic_dec_and_test(&r10_bio->remaining)) { 2108 md_done_sync(mddev, r10_bio->sectors, 1); 2109 put_buf(r10_bio); 2110 } 2111 } 2112 2113 /* 2114 * Now for the recovery code. 2115 * Recovery happens across physical sectors. 2116 * We recover all non-is_sync drives by finding the virtual address of 2117 * each, and then choose a working drive that also has that virt address. 2118 * There is a separate r10_bio for each non-in_sync drive. 2119 * Only the first two slots are in use. The first for reading, 2120 * The second for writing. 2121 * 2122 */ 2123 static void fix_recovery_read_error(struct r10bio *r10_bio) 2124 { 2125 /* We got a read error during recovery. 2126 * We repeat the read in smaller page-sized sections. 2127 * If a read succeeds, write it to the new device or record 2128 * a bad block if we cannot. 2129 * If a read fails, record a bad block on both old and 2130 * new devices. 2131 */ 2132 struct mddev *mddev = r10_bio->mddev; 2133 struct r10conf *conf = mddev->private; 2134 struct bio *bio = r10_bio->devs[0].bio; 2135 sector_t sect = 0; 2136 int sectors = r10_bio->sectors; 2137 int idx = 0; 2138 int dr = r10_bio->devs[0].devnum; 2139 int dw = r10_bio->devs[1].devnum; 2140 struct page **pages = get_resync_pages(bio)->pages; 2141 2142 while (sectors) { 2143 int s = sectors; 2144 struct md_rdev *rdev; 2145 sector_t addr; 2146 int ok; 2147 2148 if (s > (PAGE_SIZE>>9)) 2149 s = PAGE_SIZE >> 9; 2150 2151 rdev = conf->mirrors[dr].rdev; 2152 addr = r10_bio->devs[0].addr + sect, 2153 ok = sync_page_io(rdev, 2154 addr, 2155 s << 9, 2156 pages[idx], 2157 REQ_OP_READ, 0, false); 2158 if (ok) { 2159 rdev = conf->mirrors[dw].rdev; 2160 addr = r10_bio->devs[1].addr + sect; 2161 ok = sync_page_io(rdev, 2162 addr, 2163 s << 9, 2164 pages[idx], 2165 REQ_OP_WRITE, 0, false); 2166 if (!ok) { 2167 set_bit(WriteErrorSeen, &rdev->flags); 2168 if (!test_and_set_bit(WantReplacement, 2169 &rdev->flags)) 2170 set_bit(MD_RECOVERY_NEEDED, 2171 &rdev->mddev->recovery); 2172 } 2173 } 2174 if (!ok) { 2175 /* We don't worry if we cannot set a bad block - 2176 * it really is bad so there is no loss in not 2177 * recording it yet 2178 */ 2179 rdev_set_badblocks(rdev, addr, s, 0); 2180 2181 if (rdev != conf->mirrors[dw].rdev) { 2182 /* need bad block on destination too */ 2183 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2184 addr = r10_bio->devs[1].addr + sect; 2185 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2186 if (!ok) { 2187 /* just abort the recovery */ 2188 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2189 mdname(mddev)); 2190 2191 conf->mirrors[dw].recovery_disabled 2192 = mddev->recovery_disabled; 2193 set_bit(MD_RECOVERY_INTR, 2194 &mddev->recovery); 2195 break; 2196 } 2197 } 2198 } 2199 2200 sectors -= s; 2201 sect += s; 2202 idx++; 2203 } 2204 } 2205 2206 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2207 { 2208 struct r10conf *conf = mddev->private; 2209 int d; 2210 struct bio *wbio, *wbio2; 2211 2212 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2213 fix_recovery_read_error(r10_bio); 2214 end_sync_request(r10_bio); 2215 return; 2216 } 2217 2218 /* 2219 * share the pages with the first bio 2220 * and submit the write request 2221 */ 2222 d = r10_bio->devs[1].devnum; 2223 wbio = r10_bio->devs[1].bio; 2224 wbio2 = r10_bio->devs[1].repl_bio; 2225 /* Need to test wbio2->bi_end_io before we call 2226 * submit_bio_noacct as if the former is NULL, 2227 * the latter is free to free wbio2. 2228 */ 2229 if (wbio2 && !wbio2->bi_end_io) 2230 wbio2 = NULL; 2231 if (wbio->bi_end_io) { 2232 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2233 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2234 submit_bio_noacct(wbio); 2235 } 2236 if (wbio2) { 2237 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2238 md_sync_acct(conf->mirrors[d].replacement->bdev, 2239 bio_sectors(wbio2)); 2240 submit_bio_noacct(wbio2); 2241 } 2242 } 2243 2244 /* 2245 * Used by fix_read_error() to decay the per rdev read_errors. 2246 * We halve the read error count for every hour that has elapsed 2247 * since the last recorded read error. 2248 * 2249 */ 2250 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2251 { 2252 long cur_time_mon; 2253 unsigned long hours_since_last; 2254 unsigned int read_errors = atomic_read(&rdev->read_errors); 2255 2256 cur_time_mon = ktime_get_seconds(); 2257 2258 if (rdev->last_read_error == 0) { 2259 /* first time we've seen a read error */ 2260 rdev->last_read_error = cur_time_mon; 2261 return; 2262 } 2263 2264 hours_since_last = (long)(cur_time_mon - 2265 rdev->last_read_error) / 3600; 2266 2267 rdev->last_read_error = cur_time_mon; 2268 2269 /* 2270 * if hours_since_last is > the number of bits in read_errors 2271 * just set read errors to 0. We do this to avoid 2272 * overflowing the shift of read_errors by hours_since_last. 2273 */ 2274 if (hours_since_last >= 8 * sizeof(read_errors)) 2275 atomic_set(&rdev->read_errors, 0); 2276 else 2277 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2278 } 2279 2280 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2281 int sectors, struct page *page, int rw) 2282 { 2283 sector_t first_bad; 2284 int bad_sectors; 2285 2286 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2287 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2288 return -1; 2289 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2290 /* success */ 2291 return 1; 2292 if (rw == WRITE) { 2293 set_bit(WriteErrorSeen, &rdev->flags); 2294 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2295 set_bit(MD_RECOVERY_NEEDED, 2296 &rdev->mddev->recovery); 2297 } 2298 /* need to record an error - either for the block or the device */ 2299 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2300 md_error(rdev->mddev, rdev); 2301 return 0; 2302 } 2303 2304 /* 2305 * This is a kernel thread which: 2306 * 2307 * 1. Retries failed read operations on working mirrors. 2308 * 2. Updates the raid superblock when problems encounter. 2309 * 3. Performs writes following reads for array synchronising. 2310 */ 2311 2312 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2313 { 2314 int sect = 0; /* Offset from r10_bio->sector */ 2315 int sectors = r10_bio->sectors; 2316 struct md_rdev *rdev; 2317 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2318 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2319 2320 /* still own a reference to this rdev, so it cannot 2321 * have been cleared recently. 2322 */ 2323 rdev = conf->mirrors[d].rdev; 2324 2325 if (test_bit(Faulty, &rdev->flags)) 2326 /* drive has already been failed, just ignore any 2327 more fix_read_error() attempts */ 2328 return; 2329 2330 check_decay_read_errors(mddev, rdev); 2331 atomic_inc(&rdev->read_errors); 2332 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2333 char b[BDEVNAME_SIZE]; 2334 bdevname(rdev->bdev, b); 2335 2336 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2337 mdname(mddev), b, 2338 atomic_read(&rdev->read_errors), max_read_errors); 2339 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2340 mdname(mddev), b); 2341 md_error(mddev, rdev); 2342 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2343 return; 2344 } 2345 2346 while(sectors) { 2347 int s = sectors; 2348 int sl = r10_bio->read_slot; 2349 int success = 0; 2350 int start; 2351 2352 if (s > (PAGE_SIZE>>9)) 2353 s = PAGE_SIZE >> 9; 2354 2355 rcu_read_lock(); 2356 do { 2357 sector_t first_bad; 2358 int bad_sectors; 2359 2360 d = r10_bio->devs[sl].devnum; 2361 rdev = rcu_dereference(conf->mirrors[d].rdev); 2362 if (rdev && 2363 test_bit(In_sync, &rdev->flags) && 2364 !test_bit(Faulty, &rdev->flags) && 2365 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2366 &first_bad, &bad_sectors) == 0) { 2367 atomic_inc(&rdev->nr_pending); 2368 rcu_read_unlock(); 2369 success = sync_page_io(rdev, 2370 r10_bio->devs[sl].addr + 2371 sect, 2372 s<<9, 2373 conf->tmppage, 2374 REQ_OP_READ, 0, false); 2375 rdev_dec_pending(rdev, mddev); 2376 rcu_read_lock(); 2377 if (success) 2378 break; 2379 } 2380 sl++; 2381 if (sl == conf->copies) 2382 sl = 0; 2383 } while (!success && sl != r10_bio->read_slot); 2384 rcu_read_unlock(); 2385 2386 if (!success) { 2387 /* Cannot read from anywhere, just mark the block 2388 * as bad on the first device to discourage future 2389 * reads. 2390 */ 2391 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2392 rdev = conf->mirrors[dn].rdev; 2393 2394 if (!rdev_set_badblocks( 2395 rdev, 2396 r10_bio->devs[r10_bio->read_slot].addr 2397 + sect, 2398 s, 0)) { 2399 md_error(mddev, rdev); 2400 r10_bio->devs[r10_bio->read_slot].bio 2401 = IO_BLOCKED; 2402 } 2403 break; 2404 } 2405 2406 start = sl; 2407 /* write it back and re-read */ 2408 rcu_read_lock(); 2409 while (sl != r10_bio->read_slot) { 2410 char b[BDEVNAME_SIZE]; 2411 2412 if (sl==0) 2413 sl = conf->copies; 2414 sl--; 2415 d = r10_bio->devs[sl].devnum; 2416 rdev = rcu_dereference(conf->mirrors[d].rdev); 2417 if (!rdev || 2418 test_bit(Faulty, &rdev->flags) || 2419 !test_bit(In_sync, &rdev->flags)) 2420 continue; 2421 2422 atomic_inc(&rdev->nr_pending); 2423 rcu_read_unlock(); 2424 if (r10_sync_page_io(rdev, 2425 r10_bio->devs[sl].addr + 2426 sect, 2427 s, conf->tmppage, WRITE) 2428 == 0) { 2429 /* Well, this device is dead */ 2430 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2431 mdname(mddev), s, 2432 (unsigned long long)( 2433 sect + 2434 choose_data_offset(r10_bio, 2435 rdev)), 2436 bdevname(rdev->bdev, b)); 2437 pr_notice("md/raid10:%s: %s: failing drive\n", 2438 mdname(mddev), 2439 bdevname(rdev->bdev, b)); 2440 } 2441 rdev_dec_pending(rdev, mddev); 2442 rcu_read_lock(); 2443 } 2444 sl = start; 2445 while (sl != r10_bio->read_slot) { 2446 char b[BDEVNAME_SIZE]; 2447 2448 if (sl==0) 2449 sl = conf->copies; 2450 sl--; 2451 d = r10_bio->devs[sl].devnum; 2452 rdev = rcu_dereference(conf->mirrors[d].rdev); 2453 if (!rdev || 2454 test_bit(Faulty, &rdev->flags) || 2455 !test_bit(In_sync, &rdev->flags)) 2456 continue; 2457 2458 atomic_inc(&rdev->nr_pending); 2459 rcu_read_unlock(); 2460 switch (r10_sync_page_io(rdev, 2461 r10_bio->devs[sl].addr + 2462 sect, 2463 s, conf->tmppage, 2464 READ)) { 2465 case 0: 2466 /* Well, this device is dead */ 2467 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2468 mdname(mddev), s, 2469 (unsigned long long)( 2470 sect + 2471 choose_data_offset(r10_bio, rdev)), 2472 bdevname(rdev->bdev, b)); 2473 pr_notice("md/raid10:%s: %s: failing drive\n", 2474 mdname(mddev), 2475 bdevname(rdev->bdev, b)); 2476 break; 2477 case 1: 2478 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2479 mdname(mddev), s, 2480 (unsigned long long)( 2481 sect + 2482 choose_data_offset(r10_bio, rdev)), 2483 bdevname(rdev->bdev, b)); 2484 atomic_add(s, &rdev->corrected_errors); 2485 } 2486 2487 rdev_dec_pending(rdev, mddev); 2488 rcu_read_lock(); 2489 } 2490 rcu_read_unlock(); 2491 2492 sectors -= s; 2493 sect += s; 2494 } 2495 } 2496 2497 static int narrow_write_error(struct r10bio *r10_bio, int i) 2498 { 2499 struct bio *bio = r10_bio->master_bio; 2500 struct mddev *mddev = r10_bio->mddev; 2501 struct r10conf *conf = mddev->private; 2502 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2503 /* bio has the data to be written to slot 'i' where 2504 * we just recently had a write error. 2505 * We repeatedly clone the bio and trim down to one block, 2506 * then try the write. Where the write fails we record 2507 * a bad block. 2508 * It is conceivable that the bio doesn't exactly align with 2509 * blocks. We must handle this. 2510 * 2511 * We currently own a reference to the rdev. 2512 */ 2513 2514 int block_sectors; 2515 sector_t sector; 2516 int sectors; 2517 int sect_to_write = r10_bio->sectors; 2518 int ok = 1; 2519 2520 if (rdev->badblocks.shift < 0) 2521 return 0; 2522 2523 block_sectors = roundup(1 << rdev->badblocks.shift, 2524 bdev_logical_block_size(rdev->bdev) >> 9); 2525 sector = r10_bio->sector; 2526 sectors = ((r10_bio->sector + block_sectors) 2527 & ~(sector_t)(block_sectors - 1)) 2528 - sector; 2529 2530 while (sect_to_write) { 2531 struct bio *wbio; 2532 sector_t wsector; 2533 if (sectors > sect_to_write) 2534 sectors = sect_to_write; 2535 /* Write at 'sector' for 'sectors' */ 2536 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 2537 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2538 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2539 wbio->bi_iter.bi_sector = wsector + 2540 choose_data_offset(r10_bio, rdev); 2541 bio_set_dev(wbio, rdev->bdev); 2542 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2543 2544 if (submit_bio_wait(wbio) < 0) 2545 /* Failure! */ 2546 ok = rdev_set_badblocks(rdev, wsector, 2547 sectors, 0) 2548 && ok; 2549 2550 bio_put(wbio); 2551 sect_to_write -= sectors; 2552 sector += sectors; 2553 sectors = block_sectors; 2554 } 2555 return ok; 2556 } 2557 2558 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2559 { 2560 int slot = r10_bio->read_slot; 2561 struct bio *bio; 2562 struct r10conf *conf = mddev->private; 2563 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2564 2565 /* we got a read error. Maybe the drive is bad. Maybe just 2566 * the block and we can fix it. 2567 * We freeze all other IO, and try reading the block from 2568 * other devices. When we find one, we re-write 2569 * and check it that fixes the read error. 2570 * This is all done synchronously while the array is 2571 * frozen. 2572 */ 2573 bio = r10_bio->devs[slot].bio; 2574 bio_put(bio); 2575 r10_bio->devs[slot].bio = NULL; 2576 2577 if (mddev->ro) 2578 r10_bio->devs[slot].bio = IO_BLOCKED; 2579 else if (!test_bit(FailFast, &rdev->flags)) { 2580 freeze_array(conf, 1); 2581 fix_read_error(conf, mddev, r10_bio); 2582 unfreeze_array(conf); 2583 } else 2584 md_error(mddev, rdev); 2585 2586 rdev_dec_pending(rdev, mddev); 2587 allow_barrier(conf); 2588 r10_bio->state = 0; 2589 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2590 } 2591 2592 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2593 { 2594 /* Some sort of write request has finished and it 2595 * succeeded in writing where we thought there was a 2596 * bad block. So forget the bad block. 2597 * Or possibly if failed and we need to record 2598 * a bad block. 2599 */ 2600 int m; 2601 struct md_rdev *rdev; 2602 2603 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2604 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2605 for (m = 0; m < conf->copies; m++) { 2606 int dev = r10_bio->devs[m].devnum; 2607 rdev = conf->mirrors[dev].rdev; 2608 if (r10_bio->devs[m].bio == NULL || 2609 r10_bio->devs[m].bio->bi_end_io == NULL) 2610 continue; 2611 if (!r10_bio->devs[m].bio->bi_status) { 2612 rdev_clear_badblocks( 2613 rdev, 2614 r10_bio->devs[m].addr, 2615 r10_bio->sectors, 0); 2616 } else { 2617 if (!rdev_set_badblocks( 2618 rdev, 2619 r10_bio->devs[m].addr, 2620 r10_bio->sectors, 0)) 2621 md_error(conf->mddev, rdev); 2622 } 2623 rdev = conf->mirrors[dev].replacement; 2624 if (r10_bio->devs[m].repl_bio == NULL || 2625 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2626 continue; 2627 2628 if (!r10_bio->devs[m].repl_bio->bi_status) { 2629 rdev_clear_badblocks( 2630 rdev, 2631 r10_bio->devs[m].addr, 2632 r10_bio->sectors, 0); 2633 } else { 2634 if (!rdev_set_badblocks( 2635 rdev, 2636 r10_bio->devs[m].addr, 2637 r10_bio->sectors, 0)) 2638 md_error(conf->mddev, rdev); 2639 } 2640 } 2641 put_buf(r10_bio); 2642 } else { 2643 bool fail = false; 2644 for (m = 0; m < conf->copies; m++) { 2645 int dev = r10_bio->devs[m].devnum; 2646 struct bio *bio = r10_bio->devs[m].bio; 2647 rdev = conf->mirrors[dev].rdev; 2648 if (bio == IO_MADE_GOOD) { 2649 rdev_clear_badblocks( 2650 rdev, 2651 r10_bio->devs[m].addr, 2652 r10_bio->sectors, 0); 2653 rdev_dec_pending(rdev, conf->mddev); 2654 } else if (bio != NULL && bio->bi_status) { 2655 fail = true; 2656 if (!narrow_write_error(r10_bio, m)) { 2657 md_error(conf->mddev, rdev); 2658 set_bit(R10BIO_Degraded, 2659 &r10_bio->state); 2660 } 2661 rdev_dec_pending(rdev, conf->mddev); 2662 } 2663 bio = r10_bio->devs[m].repl_bio; 2664 rdev = conf->mirrors[dev].replacement; 2665 if (rdev && bio == IO_MADE_GOOD) { 2666 rdev_clear_badblocks( 2667 rdev, 2668 r10_bio->devs[m].addr, 2669 r10_bio->sectors, 0); 2670 rdev_dec_pending(rdev, conf->mddev); 2671 } 2672 } 2673 if (fail) { 2674 spin_lock_irq(&conf->device_lock); 2675 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2676 conf->nr_queued++; 2677 spin_unlock_irq(&conf->device_lock); 2678 /* 2679 * In case freeze_array() is waiting for condition 2680 * nr_pending == nr_queued + extra to be true. 2681 */ 2682 wake_up(&conf->wait_barrier); 2683 md_wakeup_thread(conf->mddev->thread); 2684 } else { 2685 if (test_bit(R10BIO_WriteError, 2686 &r10_bio->state)) 2687 close_write(r10_bio); 2688 raid_end_bio_io(r10_bio); 2689 } 2690 } 2691 } 2692 2693 static void raid10d(struct md_thread *thread) 2694 { 2695 struct mddev *mddev = thread->mddev; 2696 struct r10bio *r10_bio; 2697 unsigned long flags; 2698 struct r10conf *conf = mddev->private; 2699 struct list_head *head = &conf->retry_list; 2700 struct blk_plug plug; 2701 2702 md_check_recovery(mddev); 2703 2704 if (!list_empty_careful(&conf->bio_end_io_list) && 2705 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2706 LIST_HEAD(tmp); 2707 spin_lock_irqsave(&conf->device_lock, flags); 2708 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2709 while (!list_empty(&conf->bio_end_io_list)) { 2710 list_move(conf->bio_end_io_list.prev, &tmp); 2711 conf->nr_queued--; 2712 } 2713 } 2714 spin_unlock_irqrestore(&conf->device_lock, flags); 2715 while (!list_empty(&tmp)) { 2716 r10_bio = list_first_entry(&tmp, struct r10bio, 2717 retry_list); 2718 list_del(&r10_bio->retry_list); 2719 if (mddev->degraded) 2720 set_bit(R10BIO_Degraded, &r10_bio->state); 2721 2722 if (test_bit(R10BIO_WriteError, 2723 &r10_bio->state)) 2724 close_write(r10_bio); 2725 raid_end_bio_io(r10_bio); 2726 } 2727 } 2728 2729 blk_start_plug(&plug); 2730 for (;;) { 2731 2732 flush_pending_writes(conf); 2733 2734 spin_lock_irqsave(&conf->device_lock, flags); 2735 if (list_empty(head)) { 2736 spin_unlock_irqrestore(&conf->device_lock, flags); 2737 break; 2738 } 2739 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2740 list_del(head->prev); 2741 conf->nr_queued--; 2742 spin_unlock_irqrestore(&conf->device_lock, flags); 2743 2744 mddev = r10_bio->mddev; 2745 conf = mddev->private; 2746 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2747 test_bit(R10BIO_WriteError, &r10_bio->state)) 2748 handle_write_completed(conf, r10_bio); 2749 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2750 reshape_request_write(mddev, r10_bio); 2751 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2752 sync_request_write(mddev, r10_bio); 2753 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2754 recovery_request_write(mddev, r10_bio); 2755 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2756 handle_read_error(mddev, r10_bio); 2757 else 2758 WARN_ON_ONCE(1); 2759 2760 cond_resched(); 2761 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2762 md_check_recovery(mddev); 2763 } 2764 blk_finish_plug(&plug); 2765 } 2766 2767 static int init_resync(struct r10conf *conf) 2768 { 2769 int ret, buffs, i; 2770 2771 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2772 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 2773 conf->have_replacement = 0; 2774 for (i = 0; i < conf->geo.raid_disks; i++) 2775 if (conf->mirrors[i].replacement) 2776 conf->have_replacement = 1; 2777 ret = mempool_init(&conf->r10buf_pool, buffs, 2778 r10buf_pool_alloc, r10buf_pool_free, conf); 2779 if (ret) 2780 return ret; 2781 conf->next_resync = 0; 2782 return 0; 2783 } 2784 2785 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 2786 { 2787 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 2788 struct rsync_pages *rp; 2789 struct bio *bio; 2790 int nalloc; 2791 int i; 2792 2793 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 2794 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 2795 nalloc = conf->copies; /* resync */ 2796 else 2797 nalloc = 2; /* recovery */ 2798 2799 for (i = 0; i < nalloc; i++) { 2800 bio = r10bio->devs[i].bio; 2801 rp = bio->bi_private; 2802 bio_reset(bio); 2803 bio->bi_private = rp; 2804 bio = r10bio->devs[i].repl_bio; 2805 if (bio) { 2806 rp = bio->bi_private; 2807 bio_reset(bio); 2808 bio->bi_private = rp; 2809 } 2810 } 2811 return r10bio; 2812 } 2813 2814 /* 2815 * Set cluster_sync_high since we need other nodes to add the 2816 * range [cluster_sync_low, cluster_sync_high] to suspend list. 2817 */ 2818 static void raid10_set_cluster_sync_high(struct r10conf *conf) 2819 { 2820 sector_t window_size; 2821 int extra_chunk, chunks; 2822 2823 /* 2824 * First, here we define "stripe" as a unit which across 2825 * all member devices one time, so we get chunks by use 2826 * raid_disks / near_copies. Otherwise, if near_copies is 2827 * close to raid_disks, then resync window could increases 2828 * linearly with the increase of raid_disks, which means 2829 * we will suspend a really large IO window while it is not 2830 * necessary. If raid_disks is not divisible by near_copies, 2831 * an extra chunk is needed to ensure the whole "stripe" is 2832 * covered. 2833 */ 2834 2835 chunks = conf->geo.raid_disks / conf->geo.near_copies; 2836 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 2837 extra_chunk = 0; 2838 else 2839 extra_chunk = 1; 2840 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 2841 2842 /* 2843 * At least use a 32M window to align with raid1's resync window 2844 */ 2845 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 2846 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 2847 2848 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 2849 } 2850 2851 /* 2852 * perform a "sync" on one "block" 2853 * 2854 * We need to make sure that no normal I/O request - particularly write 2855 * requests - conflict with active sync requests. 2856 * 2857 * This is achieved by tracking pending requests and a 'barrier' concept 2858 * that can be installed to exclude normal IO requests. 2859 * 2860 * Resync and recovery are handled very differently. 2861 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2862 * 2863 * For resync, we iterate over virtual addresses, read all copies, 2864 * and update if there are differences. If only one copy is live, 2865 * skip it. 2866 * For recovery, we iterate over physical addresses, read a good 2867 * value for each non-in_sync drive, and over-write. 2868 * 2869 * So, for recovery we may have several outstanding complex requests for a 2870 * given address, one for each out-of-sync device. We model this by allocating 2871 * a number of r10_bio structures, one for each out-of-sync device. 2872 * As we setup these structures, we collect all bio's together into a list 2873 * which we then process collectively to add pages, and then process again 2874 * to pass to submit_bio_noacct. 2875 * 2876 * The r10_bio structures are linked using a borrowed master_bio pointer. 2877 * This link is counted in ->remaining. When the r10_bio that points to NULL 2878 * has its remaining count decremented to 0, the whole complex operation 2879 * is complete. 2880 * 2881 */ 2882 2883 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 2884 int *skipped) 2885 { 2886 struct r10conf *conf = mddev->private; 2887 struct r10bio *r10_bio; 2888 struct bio *biolist = NULL, *bio; 2889 sector_t max_sector, nr_sectors; 2890 int i; 2891 int max_sync; 2892 sector_t sync_blocks; 2893 sector_t sectors_skipped = 0; 2894 int chunks_skipped = 0; 2895 sector_t chunk_mask = conf->geo.chunk_mask; 2896 int page_idx = 0; 2897 2898 if (!mempool_initialized(&conf->r10buf_pool)) 2899 if (init_resync(conf)) 2900 return 0; 2901 2902 /* 2903 * Allow skipping a full rebuild for incremental assembly 2904 * of a clean array, like RAID1 does. 2905 */ 2906 if (mddev->bitmap == NULL && 2907 mddev->recovery_cp == MaxSector && 2908 mddev->reshape_position == MaxSector && 2909 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2910 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2911 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2912 conf->fullsync == 0) { 2913 *skipped = 1; 2914 return mddev->dev_sectors - sector_nr; 2915 } 2916 2917 skipped: 2918 max_sector = mddev->dev_sectors; 2919 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2920 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2921 max_sector = mddev->resync_max_sectors; 2922 if (sector_nr >= max_sector) { 2923 conf->cluster_sync_low = 0; 2924 conf->cluster_sync_high = 0; 2925 2926 /* If we aborted, we need to abort the 2927 * sync on the 'current' bitmap chucks (there can 2928 * be several when recovering multiple devices). 2929 * as we may have started syncing it but not finished. 2930 * We can find the current address in 2931 * mddev->curr_resync, but for recovery, 2932 * we need to convert that to several 2933 * virtual addresses. 2934 */ 2935 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2936 end_reshape(conf); 2937 close_sync(conf); 2938 return 0; 2939 } 2940 2941 if (mddev->curr_resync < max_sector) { /* aborted */ 2942 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2943 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2944 &sync_blocks, 1); 2945 else for (i = 0; i < conf->geo.raid_disks; i++) { 2946 sector_t sect = 2947 raid10_find_virt(conf, mddev->curr_resync, i); 2948 md_bitmap_end_sync(mddev->bitmap, sect, 2949 &sync_blocks, 1); 2950 } 2951 } else { 2952 /* completed sync */ 2953 if ((!mddev->bitmap || conf->fullsync) 2954 && conf->have_replacement 2955 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2956 /* Completed a full sync so the replacements 2957 * are now fully recovered. 2958 */ 2959 rcu_read_lock(); 2960 for (i = 0; i < conf->geo.raid_disks; i++) { 2961 struct md_rdev *rdev = 2962 rcu_dereference(conf->mirrors[i].replacement); 2963 if (rdev) 2964 rdev->recovery_offset = MaxSector; 2965 } 2966 rcu_read_unlock(); 2967 } 2968 conf->fullsync = 0; 2969 } 2970 md_bitmap_close_sync(mddev->bitmap); 2971 close_sync(conf); 2972 *skipped = 1; 2973 return sectors_skipped; 2974 } 2975 2976 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2977 return reshape_request(mddev, sector_nr, skipped); 2978 2979 if (chunks_skipped >= conf->geo.raid_disks) { 2980 /* if there has been nothing to do on any drive, 2981 * then there is nothing to do at all.. 2982 */ 2983 *skipped = 1; 2984 return (max_sector - sector_nr) + sectors_skipped; 2985 } 2986 2987 if (max_sector > mddev->resync_max) 2988 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2989 2990 /* make sure whole request will fit in a chunk - if chunks 2991 * are meaningful 2992 */ 2993 if (conf->geo.near_copies < conf->geo.raid_disks && 2994 max_sector > (sector_nr | chunk_mask)) 2995 max_sector = (sector_nr | chunk_mask) + 1; 2996 2997 /* 2998 * If there is non-resync activity waiting for a turn, then let it 2999 * though before starting on this new sync request. 3000 */ 3001 if (conf->nr_waiting) 3002 schedule_timeout_uninterruptible(1); 3003 3004 /* Again, very different code for resync and recovery. 3005 * Both must result in an r10bio with a list of bios that 3006 * have bi_end_io, bi_sector, bi_disk set, 3007 * and bi_private set to the r10bio. 3008 * For recovery, we may actually create several r10bios 3009 * with 2 bios in each, that correspond to the bios in the main one. 3010 * In this case, the subordinate r10bios link back through a 3011 * borrowed master_bio pointer, and the counter in the master 3012 * includes a ref from each subordinate. 3013 */ 3014 /* First, we decide what to do and set ->bi_end_io 3015 * To end_sync_read if we want to read, and 3016 * end_sync_write if we will want to write. 3017 */ 3018 3019 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3020 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3021 /* recovery... the complicated one */ 3022 int j; 3023 r10_bio = NULL; 3024 3025 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3026 int still_degraded; 3027 struct r10bio *rb2; 3028 sector_t sect; 3029 int must_sync; 3030 int any_working; 3031 int need_recover = 0; 3032 int need_replace = 0; 3033 struct raid10_info *mirror = &conf->mirrors[i]; 3034 struct md_rdev *mrdev, *mreplace; 3035 3036 rcu_read_lock(); 3037 mrdev = rcu_dereference(mirror->rdev); 3038 mreplace = rcu_dereference(mirror->replacement); 3039 3040 if (mrdev != NULL && 3041 !test_bit(Faulty, &mrdev->flags) && 3042 !test_bit(In_sync, &mrdev->flags)) 3043 need_recover = 1; 3044 if (mreplace != NULL && 3045 !test_bit(Faulty, &mreplace->flags)) 3046 need_replace = 1; 3047 3048 if (!need_recover && !need_replace) { 3049 rcu_read_unlock(); 3050 continue; 3051 } 3052 3053 still_degraded = 0; 3054 /* want to reconstruct this device */ 3055 rb2 = r10_bio; 3056 sect = raid10_find_virt(conf, sector_nr, i); 3057 if (sect >= mddev->resync_max_sectors) { 3058 /* last stripe is not complete - don't 3059 * try to recover this sector. 3060 */ 3061 rcu_read_unlock(); 3062 continue; 3063 } 3064 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3065 mreplace = NULL; 3066 /* Unless we are doing a full sync, or a replacement 3067 * we only need to recover the block if it is set in 3068 * the bitmap 3069 */ 3070 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3071 &sync_blocks, 1); 3072 if (sync_blocks < max_sync) 3073 max_sync = sync_blocks; 3074 if (!must_sync && 3075 mreplace == NULL && 3076 !conf->fullsync) { 3077 /* yep, skip the sync_blocks here, but don't assume 3078 * that there will never be anything to do here 3079 */ 3080 chunks_skipped = -1; 3081 rcu_read_unlock(); 3082 continue; 3083 } 3084 atomic_inc(&mrdev->nr_pending); 3085 if (mreplace) 3086 atomic_inc(&mreplace->nr_pending); 3087 rcu_read_unlock(); 3088 3089 r10_bio = raid10_alloc_init_r10buf(conf); 3090 r10_bio->state = 0; 3091 raise_barrier(conf, rb2 != NULL); 3092 atomic_set(&r10_bio->remaining, 0); 3093 3094 r10_bio->master_bio = (struct bio*)rb2; 3095 if (rb2) 3096 atomic_inc(&rb2->remaining); 3097 r10_bio->mddev = mddev; 3098 set_bit(R10BIO_IsRecover, &r10_bio->state); 3099 r10_bio->sector = sect; 3100 3101 raid10_find_phys(conf, r10_bio); 3102 3103 /* Need to check if the array will still be 3104 * degraded 3105 */ 3106 rcu_read_lock(); 3107 for (j = 0; j < conf->geo.raid_disks; j++) { 3108 struct md_rdev *rdev = rcu_dereference( 3109 conf->mirrors[j].rdev); 3110 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3111 still_degraded = 1; 3112 break; 3113 } 3114 } 3115 3116 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3117 &sync_blocks, still_degraded); 3118 3119 any_working = 0; 3120 for (j=0; j<conf->copies;j++) { 3121 int k; 3122 int d = r10_bio->devs[j].devnum; 3123 sector_t from_addr, to_addr; 3124 struct md_rdev *rdev = 3125 rcu_dereference(conf->mirrors[d].rdev); 3126 sector_t sector, first_bad; 3127 int bad_sectors; 3128 if (!rdev || 3129 !test_bit(In_sync, &rdev->flags)) 3130 continue; 3131 /* This is where we read from */ 3132 any_working = 1; 3133 sector = r10_bio->devs[j].addr; 3134 3135 if (is_badblock(rdev, sector, max_sync, 3136 &first_bad, &bad_sectors)) { 3137 if (first_bad > sector) 3138 max_sync = first_bad - sector; 3139 else { 3140 bad_sectors -= (sector 3141 - first_bad); 3142 if (max_sync > bad_sectors) 3143 max_sync = bad_sectors; 3144 continue; 3145 } 3146 } 3147 bio = r10_bio->devs[0].bio; 3148 bio->bi_next = biolist; 3149 biolist = bio; 3150 bio->bi_end_io = end_sync_read; 3151 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3152 if (test_bit(FailFast, &rdev->flags)) 3153 bio->bi_opf |= MD_FAILFAST; 3154 from_addr = r10_bio->devs[j].addr; 3155 bio->bi_iter.bi_sector = from_addr + 3156 rdev->data_offset; 3157 bio_set_dev(bio, rdev->bdev); 3158 atomic_inc(&rdev->nr_pending); 3159 /* and we write to 'i' (if not in_sync) */ 3160 3161 for (k=0; k<conf->copies; k++) 3162 if (r10_bio->devs[k].devnum == i) 3163 break; 3164 BUG_ON(k == conf->copies); 3165 to_addr = r10_bio->devs[k].addr; 3166 r10_bio->devs[0].devnum = d; 3167 r10_bio->devs[0].addr = from_addr; 3168 r10_bio->devs[1].devnum = i; 3169 r10_bio->devs[1].addr = to_addr; 3170 3171 if (need_recover) { 3172 bio = r10_bio->devs[1].bio; 3173 bio->bi_next = biolist; 3174 biolist = bio; 3175 bio->bi_end_io = end_sync_write; 3176 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3177 bio->bi_iter.bi_sector = to_addr 3178 + mrdev->data_offset; 3179 bio_set_dev(bio, mrdev->bdev); 3180 atomic_inc(&r10_bio->remaining); 3181 } else 3182 r10_bio->devs[1].bio->bi_end_io = NULL; 3183 3184 /* and maybe write to replacement */ 3185 bio = r10_bio->devs[1].repl_bio; 3186 if (bio) 3187 bio->bi_end_io = NULL; 3188 /* Note: if need_replace, then bio 3189 * cannot be NULL as r10buf_pool_alloc will 3190 * have allocated it. 3191 */ 3192 if (!need_replace) 3193 break; 3194 bio->bi_next = biolist; 3195 biolist = bio; 3196 bio->bi_end_io = end_sync_write; 3197 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3198 bio->bi_iter.bi_sector = to_addr + 3199 mreplace->data_offset; 3200 bio_set_dev(bio, mreplace->bdev); 3201 atomic_inc(&r10_bio->remaining); 3202 break; 3203 } 3204 rcu_read_unlock(); 3205 if (j == conf->copies) { 3206 /* Cannot recover, so abort the recovery or 3207 * record a bad block */ 3208 if (any_working) { 3209 /* problem is that there are bad blocks 3210 * on other device(s) 3211 */ 3212 int k; 3213 for (k = 0; k < conf->copies; k++) 3214 if (r10_bio->devs[k].devnum == i) 3215 break; 3216 if (!test_bit(In_sync, 3217 &mrdev->flags) 3218 && !rdev_set_badblocks( 3219 mrdev, 3220 r10_bio->devs[k].addr, 3221 max_sync, 0)) 3222 any_working = 0; 3223 if (mreplace && 3224 !rdev_set_badblocks( 3225 mreplace, 3226 r10_bio->devs[k].addr, 3227 max_sync, 0)) 3228 any_working = 0; 3229 } 3230 if (!any_working) { 3231 if (!test_and_set_bit(MD_RECOVERY_INTR, 3232 &mddev->recovery)) 3233 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3234 mdname(mddev)); 3235 mirror->recovery_disabled 3236 = mddev->recovery_disabled; 3237 } 3238 put_buf(r10_bio); 3239 if (rb2) 3240 atomic_dec(&rb2->remaining); 3241 r10_bio = rb2; 3242 rdev_dec_pending(mrdev, mddev); 3243 if (mreplace) 3244 rdev_dec_pending(mreplace, mddev); 3245 break; 3246 } 3247 rdev_dec_pending(mrdev, mddev); 3248 if (mreplace) 3249 rdev_dec_pending(mreplace, mddev); 3250 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3251 /* Only want this if there is elsewhere to 3252 * read from. 'j' is currently the first 3253 * readable copy. 3254 */ 3255 int targets = 1; 3256 for (; j < conf->copies; j++) { 3257 int d = r10_bio->devs[j].devnum; 3258 if (conf->mirrors[d].rdev && 3259 test_bit(In_sync, 3260 &conf->mirrors[d].rdev->flags)) 3261 targets++; 3262 } 3263 if (targets == 1) 3264 r10_bio->devs[0].bio->bi_opf 3265 &= ~MD_FAILFAST; 3266 } 3267 } 3268 if (biolist == NULL) { 3269 while (r10_bio) { 3270 struct r10bio *rb2 = r10_bio; 3271 r10_bio = (struct r10bio*) rb2->master_bio; 3272 rb2->master_bio = NULL; 3273 put_buf(rb2); 3274 } 3275 goto giveup; 3276 } 3277 } else { 3278 /* resync. Schedule a read for every block at this virt offset */ 3279 int count = 0; 3280 3281 /* 3282 * Since curr_resync_completed could probably not update in 3283 * time, and we will set cluster_sync_low based on it. 3284 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3285 * safety reason, which ensures curr_resync_completed is 3286 * updated in bitmap_cond_end_sync. 3287 */ 3288 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3289 mddev_is_clustered(mddev) && 3290 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3291 3292 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3293 &sync_blocks, mddev->degraded) && 3294 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3295 &mddev->recovery)) { 3296 /* We can skip this block */ 3297 *skipped = 1; 3298 return sync_blocks + sectors_skipped; 3299 } 3300 if (sync_blocks < max_sync) 3301 max_sync = sync_blocks; 3302 r10_bio = raid10_alloc_init_r10buf(conf); 3303 r10_bio->state = 0; 3304 3305 r10_bio->mddev = mddev; 3306 atomic_set(&r10_bio->remaining, 0); 3307 raise_barrier(conf, 0); 3308 conf->next_resync = sector_nr; 3309 3310 r10_bio->master_bio = NULL; 3311 r10_bio->sector = sector_nr; 3312 set_bit(R10BIO_IsSync, &r10_bio->state); 3313 raid10_find_phys(conf, r10_bio); 3314 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3315 3316 for (i = 0; i < conf->copies; i++) { 3317 int d = r10_bio->devs[i].devnum; 3318 sector_t first_bad, sector; 3319 int bad_sectors; 3320 struct md_rdev *rdev; 3321 3322 if (r10_bio->devs[i].repl_bio) 3323 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3324 3325 bio = r10_bio->devs[i].bio; 3326 bio->bi_status = BLK_STS_IOERR; 3327 rcu_read_lock(); 3328 rdev = rcu_dereference(conf->mirrors[d].rdev); 3329 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3330 rcu_read_unlock(); 3331 continue; 3332 } 3333 sector = r10_bio->devs[i].addr; 3334 if (is_badblock(rdev, sector, max_sync, 3335 &first_bad, &bad_sectors)) { 3336 if (first_bad > sector) 3337 max_sync = first_bad - sector; 3338 else { 3339 bad_sectors -= (sector - first_bad); 3340 if (max_sync > bad_sectors) 3341 max_sync = bad_sectors; 3342 rcu_read_unlock(); 3343 continue; 3344 } 3345 } 3346 atomic_inc(&rdev->nr_pending); 3347 atomic_inc(&r10_bio->remaining); 3348 bio->bi_next = biolist; 3349 biolist = bio; 3350 bio->bi_end_io = end_sync_read; 3351 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3352 if (test_bit(FailFast, &rdev->flags)) 3353 bio->bi_opf |= MD_FAILFAST; 3354 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3355 bio_set_dev(bio, rdev->bdev); 3356 count++; 3357 3358 rdev = rcu_dereference(conf->mirrors[d].replacement); 3359 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3360 rcu_read_unlock(); 3361 continue; 3362 } 3363 atomic_inc(&rdev->nr_pending); 3364 3365 /* Need to set up for writing to the replacement */ 3366 bio = r10_bio->devs[i].repl_bio; 3367 bio->bi_status = BLK_STS_IOERR; 3368 3369 sector = r10_bio->devs[i].addr; 3370 bio->bi_next = biolist; 3371 biolist = bio; 3372 bio->bi_end_io = end_sync_write; 3373 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3374 if (test_bit(FailFast, &rdev->flags)) 3375 bio->bi_opf |= MD_FAILFAST; 3376 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3377 bio_set_dev(bio, rdev->bdev); 3378 count++; 3379 rcu_read_unlock(); 3380 } 3381 3382 if (count < 2) { 3383 for (i=0; i<conf->copies; i++) { 3384 int d = r10_bio->devs[i].devnum; 3385 if (r10_bio->devs[i].bio->bi_end_io) 3386 rdev_dec_pending(conf->mirrors[d].rdev, 3387 mddev); 3388 if (r10_bio->devs[i].repl_bio && 3389 r10_bio->devs[i].repl_bio->bi_end_io) 3390 rdev_dec_pending( 3391 conf->mirrors[d].replacement, 3392 mddev); 3393 } 3394 put_buf(r10_bio); 3395 biolist = NULL; 3396 goto giveup; 3397 } 3398 } 3399 3400 nr_sectors = 0; 3401 if (sector_nr + max_sync < max_sector) 3402 max_sector = sector_nr + max_sync; 3403 do { 3404 struct page *page; 3405 int len = PAGE_SIZE; 3406 if (sector_nr + (len>>9) > max_sector) 3407 len = (max_sector - sector_nr) << 9; 3408 if (len == 0) 3409 break; 3410 for (bio= biolist ; bio ; bio=bio->bi_next) { 3411 struct resync_pages *rp = get_resync_pages(bio); 3412 page = resync_fetch_page(rp, page_idx); 3413 /* 3414 * won't fail because the vec table is big enough 3415 * to hold all these pages 3416 */ 3417 bio_add_page(bio, page, len, 0); 3418 } 3419 nr_sectors += len>>9; 3420 sector_nr += len>>9; 3421 } while (++page_idx < RESYNC_PAGES); 3422 r10_bio->sectors = nr_sectors; 3423 3424 if (mddev_is_clustered(mddev) && 3425 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3426 /* It is resync not recovery */ 3427 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3428 conf->cluster_sync_low = mddev->curr_resync_completed; 3429 raid10_set_cluster_sync_high(conf); 3430 /* Send resync message */ 3431 md_cluster_ops->resync_info_update(mddev, 3432 conf->cluster_sync_low, 3433 conf->cluster_sync_high); 3434 } 3435 } else if (mddev_is_clustered(mddev)) { 3436 /* This is recovery not resync */ 3437 sector_t sect_va1, sect_va2; 3438 bool broadcast_msg = false; 3439 3440 for (i = 0; i < conf->geo.raid_disks; i++) { 3441 /* 3442 * sector_nr is a device address for recovery, so we 3443 * need translate it to array address before compare 3444 * with cluster_sync_high. 3445 */ 3446 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3447 3448 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3449 broadcast_msg = true; 3450 /* 3451 * curr_resync_completed is similar as 3452 * sector_nr, so make the translation too. 3453 */ 3454 sect_va2 = raid10_find_virt(conf, 3455 mddev->curr_resync_completed, i); 3456 3457 if (conf->cluster_sync_low == 0 || 3458 conf->cluster_sync_low > sect_va2) 3459 conf->cluster_sync_low = sect_va2; 3460 } 3461 } 3462 if (broadcast_msg) { 3463 raid10_set_cluster_sync_high(conf); 3464 md_cluster_ops->resync_info_update(mddev, 3465 conf->cluster_sync_low, 3466 conf->cluster_sync_high); 3467 } 3468 } 3469 3470 while (biolist) { 3471 bio = biolist; 3472 biolist = biolist->bi_next; 3473 3474 bio->bi_next = NULL; 3475 r10_bio = get_resync_r10bio(bio); 3476 r10_bio->sectors = nr_sectors; 3477 3478 if (bio->bi_end_io == end_sync_read) { 3479 md_sync_acct_bio(bio, nr_sectors); 3480 bio->bi_status = 0; 3481 submit_bio_noacct(bio); 3482 } 3483 } 3484 3485 if (sectors_skipped) 3486 /* pretend they weren't skipped, it makes 3487 * no important difference in this case 3488 */ 3489 md_done_sync(mddev, sectors_skipped, 1); 3490 3491 return sectors_skipped + nr_sectors; 3492 giveup: 3493 /* There is nowhere to write, so all non-sync 3494 * drives must be failed or in resync, all drives 3495 * have a bad block, so try the next chunk... 3496 */ 3497 if (sector_nr + max_sync < max_sector) 3498 max_sector = sector_nr + max_sync; 3499 3500 sectors_skipped += (max_sector - sector_nr); 3501 chunks_skipped ++; 3502 sector_nr = max_sector; 3503 goto skipped; 3504 } 3505 3506 static sector_t 3507 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3508 { 3509 sector_t size; 3510 struct r10conf *conf = mddev->private; 3511 3512 if (!raid_disks) 3513 raid_disks = min(conf->geo.raid_disks, 3514 conf->prev.raid_disks); 3515 if (!sectors) 3516 sectors = conf->dev_sectors; 3517 3518 size = sectors >> conf->geo.chunk_shift; 3519 sector_div(size, conf->geo.far_copies); 3520 size = size * raid_disks; 3521 sector_div(size, conf->geo.near_copies); 3522 3523 return size << conf->geo.chunk_shift; 3524 } 3525 3526 static void calc_sectors(struct r10conf *conf, sector_t size) 3527 { 3528 /* Calculate the number of sectors-per-device that will 3529 * actually be used, and set conf->dev_sectors and 3530 * conf->stride 3531 */ 3532 3533 size = size >> conf->geo.chunk_shift; 3534 sector_div(size, conf->geo.far_copies); 3535 size = size * conf->geo.raid_disks; 3536 sector_div(size, conf->geo.near_copies); 3537 /* 'size' is now the number of chunks in the array */ 3538 /* calculate "used chunks per device" */ 3539 size = size * conf->copies; 3540 3541 /* We need to round up when dividing by raid_disks to 3542 * get the stride size. 3543 */ 3544 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3545 3546 conf->dev_sectors = size << conf->geo.chunk_shift; 3547 3548 if (conf->geo.far_offset) 3549 conf->geo.stride = 1 << conf->geo.chunk_shift; 3550 else { 3551 sector_div(size, conf->geo.far_copies); 3552 conf->geo.stride = size << conf->geo.chunk_shift; 3553 } 3554 } 3555 3556 enum geo_type {geo_new, geo_old, geo_start}; 3557 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3558 { 3559 int nc, fc, fo; 3560 int layout, chunk, disks; 3561 switch (new) { 3562 case geo_old: 3563 layout = mddev->layout; 3564 chunk = mddev->chunk_sectors; 3565 disks = mddev->raid_disks - mddev->delta_disks; 3566 break; 3567 case geo_new: 3568 layout = mddev->new_layout; 3569 chunk = mddev->new_chunk_sectors; 3570 disks = mddev->raid_disks; 3571 break; 3572 default: /* avoid 'may be unused' warnings */ 3573 case geo_start: /* new when starting reshape - raid_disks not 3574 * updated yet. */ 3575 layout = mddev->new_layout; 3576 chunk = mddev->new_chunk_sectors; 3577 disks = mddev->raid_disks + mddev->delta_disks; 3578 break; 3579 } 3580 if (layout >> 19) 3581 return -1; 3582 if (chunk < (PAGE_SIZE >> 9) || 3583 !is_power_of_2(chunk)) 3584 return -2; 3585 nc = layout & 255; 3586 fc = (layout >> 8) & 255; 3587 fo = layout & (1<<16); 3588 geo->raid_disks = disks; 3589 geo->near_copies = nc; 3590 geo->far_copies = fc; 3591 geo->far_offset = fo; 3592 switch (layout >> 17) { 3593 case 0: /* original layout. simple but not always optimal */ 3594 geo->far_set_size = disks; 3595 break; 3596 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3597 * actually using this, but leave code here just in case.*/ 3598 geo->far_set_size = disks/fc; 3599 WARN(geo->far_set_size < fc, 3600 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3601 break; 3602 case 2: /* "improved" layout fixed to match documentation */ 3603 geo->far_set_size = fc * nc; 3604 break; 3605 default: /* Not a valid layout */ 3606 return -1; 3607 } 3608 geo->chunk_mask = chunk - 1; 3609 geo->chunk_shift = ffz(~chunk); 3610 return nc*fc; 3611 } 3612 3613 static struct r10conf *setup_conf(struct mddev *mddev) 3614 { 3615 struct r10conf *conf = NULL; 3616 int err = -EINVAL; 3617 struct geom geo; 3618 int copies; 3619 3620 copies = setup_geo(&geo, mddev, geo_new); 3621 3622 if (copies == -2) { 3623 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3624 mdname(mddev), PAGE_SIZE); 3625 goto out; 3626 } 3627 3628 if (copies < 2 || copies > mddev->raid_disks) { 3629 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3630 mdname(mddev), mddev->new_layout); 3631 goto out; 3632 } 3633 3634 err = -ENOMEM; 3635 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3636 if (!conf) 3637 goto out; 3638 3639 /* FIXME calc properly */ 3640 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3641 sizeof(struct raid10_info), 3642 GFP_KERNEL); 3643 if (!conf->mirrors) 3644 goto out; 3645 3646 conf->tmppage = alloc_page(GFP_KERNEL); 3647 if (!conf->tmppage) 3648 goto out; 3649 3650 conf->geo = geo; 3651 conf->copies = copies; 3652 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 3653 rbio_pool_free, conf); 3654 if (err) 3655 goto out; 3656 3657 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3658 if (err) 3659 goto out; 3660 3661 calc_sectors(conf, mddev->dev_sectors); 3662 if (mddev->reshape_position == MaxSector) { 3663 conf->prev = conf->geo; 3664 conf->reshape_progress = MaxSector; 3665 } else { 3666 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3667 err = -EINVAL; 3668 goto out; 3669 } 3670 conf->reshape_progress = mddev->reshape_position; 3671 if (conf->prev.far_offset) 3672 conf->prev.stride = 1 << conf->prev.chunk_shift; 3673 else 3674 /* far_copies must be 1 */ 3675 conf->prev.stride = conf->dev_sectors; 3676 } 3677 conf->reshape_safe = conf->reshape_progress; 3678 spin_lock_init(&conf->device_lock); 3679 INIT_LIST_HEAD(&conf->retry_list); 3680 INIT_LIST_HEAD(&conf->bio_end_io_list); 3681 3682 spin_lock_init(&conf->resync_lock); 3683 init_waitqueue_head(&conf->wait_barrier); 3684 atomic_set(&conf->nr_pending, 0); 3685 3686 err = -ENOMEM; 3687 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3688 if (!conf->thread) 3689 goto out; 3690 3691 conf->mddev = mddev; 3692 return conf; 3693 3694 out: 3695 if (conf) { 3696 mempool_exit(&conf->r10bio_pool); 3697 kfree(conf->mirrors); 3698 safe_put_page(conf->tmppage); 3699 bioset_exit(&conf->bio_split); 3700 kfree(conf); 3701 } 3702 return ERR_PTR(err); 3703 } 3704 3705 static void raid10_set_io_opt(struct r10conf *conf) 3706 { 3707 int raid_disks = conf->geo.raid_disks; 3708 3709 if (!(conf->geo.raid_disks % conf->geo.near_copies)) 3710 raid_disks /= conf->geo.near_copies; 3711 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) * 3712 raid_disks); 3713 } 3714 3715 static int raid10_run(struct mddev *mddev) 3716 { 3717 struct r10conf *conf; 3718 int i, disk_idx; 3719 struct raid10_info *disk; 3720 struct md_rdev *rdev; 3721 sector_t size; 3722 sector_t min_offset_diff = 0; 3723 int first = 1; 3724 bool discard_supported = false; 3725 3726 if (mddev_init_writes_pending(mddev) < 0) 3727 return -ENOMEM; 3728 3729 if (mddev->private == NULL) { 3730 conf = setup_conf(mddev); 3731 if (IS_ERR(conf)) 3732 return PTR_ERR(conf); 3733 mddev->private = conf; 3734 } 3735 conf = mddev->private; 3736 if (!conf) 3737 goto out; 3738 3739 if (mddev_is_clustered(conf->mddev)) { 3740 int fc, fo; 3741 3742 fc = (mddev->layout >> 8) & 255; 3743 fo = mddev->layout & (1<<16); 3744 if (fc > 1 || fo > 0) { 3745 pr_err("only near layout is supported by clustered" 3746 " raid10\n"); 3747 goto out_free_conf; 3748 } 3749 } 3750 3751 mddev->thread = conf->thread; 3752 conf->thread = NULL; 3753 3754 if (mddev->queue) { 3755 blk_queue_max_discard_sectors(mddev->queue, 3756 mddev->chunk_sectors); 3757 blk_queue_max_write_same_sectors(mddev->queue, 0); 3758 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3759 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9); 3760 raid10_set_io_opt(conf); 3761 } 3762 3763 rdev_for_each(rdev, mddev) { 3764 long long diff; 3765 3766 disk_idx = rdev->raid_disk; 3767 if (disk_idx < 0) 3768 continue; 3769 if (disk_idx >= conf->geo.raid_disks && 3770 disk_idx >= conf->prev.raid_disks) 3771 continue; 3772 disk = conf->mirrors + disk_idx; 3773 3774 if (test_bit(Replacement, &rdev->flags)) { 3775 if (disk->replacement) 3776 goto out_free_conf; 3777 disk->replacement = rdev; 3778 } else { 3779 if (disk->rdev) 3780 goto out_free_conf; 3781 disk->rdev = rdev; 3782 } 3783 diff = (rdev->new_data_offset - rdev->data_offset); 3784 if (!mddev->reshape_backwards) 3785 diff = -diff; 3786 if (diff < 0) 3787 diff = 0; 3788 if (first || diff < min_offset_diff) 3789 min_offset_diff = diff; 3790 3791 if (mddev->gendisk) 3792 disk_stack_limits(mddev->gendisk, rdev->bdev, 3793 rdev->data_offset << 9); 3794 3795 disk->head_position = 0; 3796 3797 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3798 discard_supported = true; 3799 first = 0; 3800 } 3801 3802 if (mddev->queue) { 3803 if (discard_supported) 3804 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3805 mddev->queue); 3806 else 3807 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3808 mddev->queue); 3809 } 3810 /* need to check that every block has at least one working mirror */ 3811 if (!enough(conf, -1)) { 3812 pr_err("md/raid10:%s: not enough operational mirrors.\n", 3813 mdname(mddev)); 3814 goto out_free_conf; 3815 } 3816 3817 if (conf->reshape_progress != MaxSector) { 3818 /* must ensure that shape change is supported */ 3819 if (conf->geo.far_copies != 1 && 3820 conf->geo.far_offset == 0) 3821 goto out_free_conf; 3822 if (conf->prev.far_copies != 1 && 3823 conf->prev.far_offset == 0) 3824 goto out_free_conf; 3825 } 3826 3827 mddev->degraded = 0; 3828 for (i = 0; 3829 i < conf->geo.raid_disks 3830 || i < conf->prev.raid_disks; 3831 i++) { 3832 3833 disk = conf->mirrors + i; 3834 3835 if (!disk->rdev && disk->replacement) { 3836 /* The replacement is all we have - use it */ 3837 disk->rdev = disk->replacement; 3838 disk->replacement = NULL; 3839 clear_bit(Replacement, &disk->rdev->flags); 3840 } 3841 3842 if (!disk->rdev || 3843 !test_bit(In_sync, &disk->rdev->flags)) { 3844 disk->head_position = 0; 3845 mddev->degraded++; 3846 if (disk->rdev && 3847 disk->rdev->saved_raid_disk < 0) 3848 conf->fullsync = 1; 3849 } 3850 3851 if (disk->replacement && 3852 !test_bit(In_sync, &disk->replacement->flags) && 3853 disk->replacement->saved_raid_disk < 0) { 3854 conf->fullsync = 1; 3855 } 3856 3857 disk->recovery_disabled = mddev->recovery_disabled - 1; 3858 } 3859 3860 if (mddev->recovery_cp != MaxSector) 3861 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 3862 mdname(mddev)); 3863 pr_info("md/raid10:%s: active with %d out of %d devices\n", 3864 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3865 conf->geo.raid_disks); 3866 /* 3867 * Ok, everything is just fine now 3868 */ 3869 mddev->dev_sectors = conf->dev_sectors; 3870 size = raid10_size(mddev, 0, 0); 3871 md_set_array_sectors(mddev, size); 3872 mddev->resync_max_sectors = size; 3873 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3874 3875 if (md_integrity_register(mddev)) 3876 goto out_free_conf; 3877 3878 if (conf->reshape_progress != MaxSector) { 3879 unsigned long before_length, after_length; 3880 3881 before_length = ((1 << conf->prev.chunk_shift) * 3882 conf->prev.far_copies); 3883 after_length = ((1 << conf->geo.chunk_shift) * 3884 conf->geo.far_copies); 3885 3886 if (max(before_length, after_length) > min_offset_diff) { 3887 /* This cannot work */ 3888 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 3889 goto out_free_conf; 3890 } 3891 conf->offset_diff = min_offset_diff; 3892 3893 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3894 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3895 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3896 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3897 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3898 "reshape"); 3899 if (!mddev->sync_thread) 3900 goto out_free_conf; 3901 } 3902 3903 return 0; 3904 3905 out_free_conf: 3906 md_unregister_thread(&mddev->thread); 3907 mempool_exit(&conf->r10bio_pool); 3908 safe_put_page(conf->tmppage); 3909 kfree(conf->mirrors); 3910 kfree(conf); 3911 mddev->private = NULL; 3912 out: 3913 return -EIO; 3914 } 3915 3916 static void raid10_free(struct mddev *mddev, void *priv) 3917 { 3918 struct r10conf *conf = priv; 3919 3920 mempool_exit(&conf->r10bio_pool); 3921 safe_put_page(conf->tmppage); 3922 kfree(conf->mirrors); 3923 kfree(conf->mirrors_old); 3924 kfree(conf->mirrors_new); 3925 bioset_exit(&conf->bio_split); 3926 kfree(conf); 3927 } 3928 3929 static void raid10_quiesce(struct mddev *mddev, int quiesce) 3930 { 3931 struct r10conf *conf = mddev->private; 3932 3933 if (quiesce) 3934 raise_barrier(conf, 0); 3935 else 3936 lower_barrier(conf); 3937 } 3938 3939 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3940 { 3941 /* Resize of 'far' arrays is not supported. 3942 * For 'near' and 'offset' arrays we can set the 3943 * number of sectors used to be an appropriate multiple 3944 * of the chunk size. 3945 * For 'offset', this is far_copies*chunksize. 3946 * For 'near' the multiplier is the LCM of 3947 * near_copies and raid_disks. 3948 * So if far_copies > 1 && !far_offset, fail. 3949 * Else find LCM(raid_disks, near_copy)*far_copies and 3950 * multiply by chunk_size. Then round to this number. 3951 * This is mostly done by raid10_size() 3952 */ 3953 struct r10conf *conf = mddev->private; 3954 sector_t oldsize, size; 3955 3956 if (mddev->reshape_position != MaxSector) 3957 return -EBUSY; 3958 3959 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3960 return -EINVAL; 3961 3962 oldsize = raid10_size(mddev, 0, 0); 3963 size = raid10_size(mddev, sectors, 0); 3964 if (mddev->external_size && 3965 mddev->array_sectors > size) 3966 return -EINVAL; 3967 if (mddev->bitmap) { 3968 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 3969 if (ret) 3970 return ret; 3971 } 3972 md_set_array_sectors(mddev, size); 3973 if (sectors > mddev->dev_sectors && 3974 mddev->recovery_cp > oldsize) { 3975 mddev->recovery_cp = oldsize; 3976 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3977 } 3978 calc_sectors(conf, sectors); 3979 mddev->dev_sectors = conf->dev_sectors; 3980 mddev->resync_max_sectors = size; 3981 return 0; 3982 } 3983 3984 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 3985 { 3986 struct md_rdev *rdev; 3987 struct r10conf *conf; 3988 3989 if (mddev->degraded > 0) { 3990 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 3991 mdname(mddev)); 3992 return ERR_PTR(-EINVAL); 3993 } 3994 sector_div(size, devs); 3995 3996 /* Set new parameters */ 3997 mddev->new_level = 10; 3998 /* new layout: far_copies = 1, near_copies = 2 */ 3999 mddev->new_layout = (1<<8) + 2; 4000 mddev->new_chunk_sectors = mddev->chunk_sectors; 4001 mddev->delta_disks = mddev->raid_disks; 4002 mddev->raid_disks *= 2; 4003 /* make sure it will be not marked as dirty */ 4004 mddev->recovery_cp = MaxSector; 4005 mddev->dev_sectors = size; 4006 4007 conf = setup_conf(mddev); 4008 if (!IS_ERR(conf)) { 4009 rdev_for_each(rdev, mddev) 4010 if (rdev->raid_disk >= 0) { 4011 rdev->new_raid_disk = rdev->raid_disk * 2; 4012 rdev->sectors = size; 4013 } 4014 conf->barrier = 1; 4015 } 4016 4017 return conf; 4018 } 4019 4020 static void *raid10_takeover(struct mddev *mddev) 4021 { 4022 struct r0conf *raid0_conf; 4023 4024 /* raid10 can take over: 4025 * raid0 - providing it has only two drives 4026 */ 4027 if (mddev->level == 0) { 4028 /* for raid0 takeover only one zone is supported */ 4029 raid0_conf = mddev->private; 4030 if (raid0_conf->nr_strip_zones > 1) { 4031 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4032 mdname(mddev)); 4033 return ERR_PTR(-EINVAL); 4034 } 4035 return raid10_takeover_raid0(mddev, 4036 raid0_conf->strip_zone->zone_end, 4037 raid0_conf->strip_zone->nb_dev); 4038 } 4039 return ERR_PTR(-EINVAL); 4040 } 4041 4042 static int raid10_check_reshape(struct mddev *mddev) 4043 { 4044 /* Called when there is a request to change 4045 * - layout (to ->new_layout) 4046 * - chunk size (to ->new_chunk_sectors) 4047 * - raid_disks (by delta_disks) 4048 * or when trying to restart a reshape that was ongoing. 4049 * 4050 * We need to validate the request and possibly allocate 4051 * space if that might be an issue later. 4052 * 4053 * Currently we reject any reshape of a 'far' mode array, 4054 * allow chunk size to change if new is generally acceptable, 4055 * allow raid_disks to increase, and allow 4056 * a switch between 'near' mode and 'offset' mode. 4057 */ 4058 struct r10conf *conf = mddev->private; 4059 struct geom geo; 4060 4061 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4062 return -EINVAL; 4063 4064 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4065 /* mustn't change number of copies */ 4066 return -EINVAL; 4067 if (geo.far_copies > 1 && !geo.far_offset) 4068 /* Cannot switch to 'far' mode */ 4069 return -EINVAL; 4070 4071 if (mddev->array_sectors & geo.chunk_mask) 4072 /* not factor of array size */ 4073 return -EINVAL; 4074 4075 if (!enough(conf, -1)) 4076 return -EINVAL; 4077 4078 kfree(conf->mirrors_new); 4079 conf->mirrors_new = NULL; 4080 if (mddev->delta_disks > 0) { 4081 /* allocate new 'mirrors' list */ 4082 conf->mirrors_new = 4083 kcalloc(mddev->raid_disks + mddev->delta_disks, 4084 sizeof(struct raid10_info), 4085 GFP_KERNEL); 4086 if (!conf->mirrors_new) 4087 return -ENOMEM; 4088 } 4089 return 0; 4090 } 4091 4092 /* 4093 * Need to check if array has failed when deciding whether to: 4094 * - start an array 4095 * - remove non-faulty devices 4096 * - add a spare 4097 * - allow a reshape 4098 * This determination is simple when no reshape is happening. 4099 * However if there is a reshape, we need to carefully check 4100 * both the before and after sections. 4101 * This is because some failed devices may only affect one 4102 * of the two sections, and some non-in_sync devices may 4103 * be insync in the section most affected by failed devices. 4104 */ 4105 static int calc_degraded(struct r10conf *conf) 4106 { 4107 int degraded, degraded2; 4108 int i; 4109 4110 rcu_read_lock(); 4111 degraded = 0; 4112 /* 'prev' section first */ 4113 for (i = 0; i < conf->prev.raid_disks; i++) { 4114 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4115 if (!rdev || test_bit(Faulty, &rdev->flags)) 4116 degraded++; 4117 else if (!test_bit(In_sync, &rdev->flags)) 4118 /* When we can reduce the number of devices in 4119 * an array, this might not contribute to 4120 * 'degraded'. It does now. 4121 */ 4122 degraded++; 4123 } 4124 rcu_read_unlock(); 4125 if (conf->geo.raid_disks == conf->prev.raid_disks) 4126 return degraded; 4127 rcu_read_lock(); 4128 degraded2 = 0; 4129 for (i = 0; i < conf->geo.raid_disks; i++) { 4130 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4131 if (!rdev || test_bit(Faulty, &rdev->flags)) 4132 degraded2++; 4133 else if (!test_bit(In_sync, &rdev->flags)) { 4134 /* If reshape is increasing the number of devices, 4135 * this section has already been recovered, so 4136 * it doesn't contribute to degraded. 4137 * else it does. 4138 */ 4139 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4140 degraded2++; 4141 } 4142 } 4143 rcu_read_unlock(); 4144 if (degraded2 > degraded) 4145 return degraded2; 4146 return degraded; 4147 } 4148 4149 static int raid10_start_reshape(struct mddev *mddev) 4150 { 4151 /* A 'reshape' has been requested. This commits 4152 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4153 * This also checks if there are enough spares and adds them 4154 * to the array. 4155 * We currently require enough spares to make the final 4156 * array non-degraded. We also require that the difference 4157 * between old and new data_offset - on each device - is 4158 * enough that we never risk over-writing. 4159 */ 4160 4161 unsigned long before_length, after_length; 4162 sector_t min_offset_diff = 0; 4163 int first = 1; 4164 struct geom new; 4165 struct r10conf *conf = mddev->private; 4166 struct md_rdev *rdev; 4167 int spares = 0; 4168 int ret; 4169 4170 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4171 return -EBUSY; 4172 4173 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4174 return -EINVAL; 4175 4176 before_length = ((1 << conf->prev.chunk_shift) * 4177 conf->prev.far_copies); 4178 after_length = ((1 << conf->geo.chunk_shift) * 4179 conf->geo.far_copies); 4180 4181 rdev_for_each(rdev, mddev) { 4182 if (!test_bit(In_sync, &rdev->flags) 4183 && !test_bit(Faulty, &rdev->flags)) 4184 spares++; 4185 if (rdev->raid_disk >= 0) { 4186 long long diff = (rdev->new_data_offset 4187 - rdev->data_offset); 4188 if (!mddev->reshape_backwards) 4189 diff = -diff; 4190 if (diff < 0) 4191 diff = 0; 4192 if (first || diff < min_offset_diff) 4193 min_offset_diff = diff; 4194 first = 0; 4195 } 4196 } 4197 4198 if (max(before_length, after_length) > min_offset_diff) 4199 return -EINVAL; 4200 4201 if (spares < mddev->delta_disks) 4202 return -EINVAL; 4203 4204 conf->offset_diff = min_offset_diff; 4205 spin_lock_irq(&conf->device_lock); 4206 if (conf->mirrors_new) { 4207 memcpy(conf->mirrors_new, conf->mirrors, 4208 sizeof(struct raid10_info)*conf->prev.raid_disks); 4209 smp_mb(); 4210 kfree(conf->mirrors_old); 4211 conf->mirrors_old = conf->mirrors; 4212 conf->mirrors = conf->mirrors_new; 4213 conf->mirrors_new = NULL; 4214 } 4215 setup_geo(&conf->geo, mddev, geo_start); 4216 smp_mb(); 4217 if (mddev->reshape_backwards) { 4218 sector_t size = raid10_size(mddev, 0, 0); 4219 if (size < mddev->array_sectors) { 4220 spin_unlock_irq(&conf->device_lock); 4221 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4222 mdname(mddev)); 4223 return -EINVAL; 4224 } 4225 mddev->resync_max_sectors = size; 4226 conf->reshape_progress = size; 4227 } else 4228 conf->reshape_progress = 0; 4229 conf->reshape_safe = conf->reshape_progress; 4230 spin_unlock_irq(&conf->device_lock); 4231 4232 if (mddev->delta_disks && mddev->bitmap) { 4233 struct mdp_superblock_1 *sb = NULL; 4234 sector_t oldsize, newsize; 4235 4236 oldsize = raid10_size(mddev, 0, 0); 4237 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4238 4239 if (!mddev_is_clustered(mddev)) { 4240 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4241 if (ret) 4242 goto abort; 4243 else 4244 goto out; 4245 } 4246 4247 rdev_for_each(rdev, mddev) { 4248 if (rdev->raid_disk > -1 && 4249 !test_bit(Faulty, &rdev->flags)) 4250 sb = page_address(rdev->sb_page); 4251 } 4252 4253 /* 4254 * some node is already performing reshape, and no need to 4255 * call md_bitmap_resize again since it should be called when 4256 * receiving BITMAP_RESIZE msg 4257 */ 4258 if ((sb && (le32_to_cpu(sb->feature_map) & 4259 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4260 goto out; 4261 4262 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4263 if (ret) 4264 goto abort; 4265 4266 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4267 if (ret) { 4268 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4269 goto abort; 4270 } 4271 } 4272 out: 4273 if (mddev->delta_disks > 0) { 4274 rdev_for_each(rdev, mddev) 4275 if (rdev->raid_disk < 0 && 4276 !test_bit(Faulty, &rdev->flags)) { 4277 if (raid10_add_disk(mddev, rdev) == 0) { 4278 if (rdev->raid_disk >= 4279 conf->prev.raid_disks) 4280 set_bit(In_sync, &rdev->flags); 4281 else 4282 rdev->recovery_offset = 0; 4283 4284 /* Failure here is OK */ 4285 sysfs_link_rdev(mddev, rdev); 4286 } 4287 } else if (rdev->raid_disk >= conf->prev.raid_disks 4288 && !test_bit(Faulty, &rdev->flags)) { 4289 /* This is a spare that was manually added */ 4290 set_bit(In_sync, &rdev->flags); 4291 } 4292 } 4293 /* When a reshape changes the number of devices, 4294 * ->degraded is measured against the larger of the 4295 * pre and post numbers. 4296 */ 4297 spin_lock_irq(&conf->device_lock); 4298 mddev->degraded = calc_degraded(conf); 4299 spin_unlock_irq(&conf->device_lock); 4300 mddev->raid_disks = conf->geo.raid_disks; 4301 mddev->reshape_position = conf->reshape_progress; 4302 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4303 4304 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4305 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4306 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4307 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4308 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4309 4310 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4311 "reshape"); 4312 if (!mddev->sync_thread) { 4313 ret = -EAGAIN; 4314 goto abort; 4315 } 4316 conf->reshape_checkpoint = jiffies; 4317 md_wakeup_thread(mddev->sync_thread); 4318 md_new_event(mddev); 4319 return 0; 4320 4321 abort: 4322 mddev->recovery = 0; 4323 spin_lock_irq(&conf->device_lock); 4324 conf->geo = conf->prev; 4325 mddev->raid_disks = conf->geo.raid_disks; 4326 rdev_for_each(rdev, mddev) 4327 rdev->new_data_offset = rdev->data_offset; 4328 smp_wmb(); 4329 conf->reshape_progress = MaxSector; 4330 conf->reshape_safe = MaxSector; 4331 mddev->reshape_position = MaxSector; 4332 spin_unlock_irq(&conf->device_lock); 4333 return ret; 4334 } 4335 4336 /* Calculate the last device-address that could contain 4337 * any block from the chunk that includes the array-address 's' 4338 * and report the next address. 4339 * i.e. the address returned will be chunk-aligned and after 4340 * any data that is in the chunk containing 's'. 4341 */ 4342 static sector_t last_dev_address(sector_t s, struct geom *geo) 4343 { 4344 s = (s | geo->chunk_mask) + 1; 4345 s >>= geo->chunk_shift; 4346 s *= geo->near_copies; 4347 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4348 s *= geo->far_copies; 4349 s <<= geo->chunk_shift; 4350 return s; 4351 } 4352 4353 /* Calculate the first device-address that could contain 4354 * any block from the chunk that includes the array-address 's'. 4355 * This too will be the start of a chunk 4356 */ 4357 static sector_t first_dev_address(sector_t s, struct geom *geo) 4358 { 4359 s >>= geo->chunk_shift; 4360 s *= geo->near_copies; 4361 sector_div(s, geo->raid_disks); 4362 s *= geo->far_copies; 4363 s <<= geo->chunk_shift; 4364 return s; 4365 } 4366 4367 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4368 int *skipped) 4369 { 4370 /* We simply copy at most one chunk (smallest of old and new) 4371 * at a time, possibly less if that exceeds RESYNC_PAGES, 4372 * or we hit a bad block or something. 4373 * This might mean we pause for normal IO in the middle of 4374 * a chunk, but that is not a problem as mddev->reshape_position 4375 * can record any location. 4376 * 4377 * If we will want to write to a location that isn't 4378 * yet recorded as 'safe' (i.e. in metadata on disk) then 4379 * we need to flush all reshape requests and update the metadata. 4380 * 4381 * When reshaping forwards (e.g. to more devices), we interpret 4382 * 'safe' as the earliest block which might not have been copied 4383 * down yet. We divide this by previous stripe size and multiply 4384 * by previous stripe length to get lowest device offset that we 4385 * cannot write to yet. 4386 * We interpret 'sector_nr' as an address that we want to write to. 4387 * From this we use last_device_address() to find where we might 4388 * write to, and first_device_address on the 'safe' position. 4389 * If this 'next' write position is after the 'safe' position, 4390 * we must update the metadata to increase the 'safe' position. 4391 * 4392 * When reshaping backwards, we round in the opposite direction 4393 * and perform the reverse test: next write position must not be 4394 * less than current safe position. 4395 * 4396 * In all this the minimum difference in data offsets 4397 * (conf->offset_diff - always positive) allows a bit of slack, 4398 * so next can be after 'safe', but not by more than offset_diff 4399 * 4400 * We need to prepare all the bios here before we start any IO 4401 * to ensure the size we choose is acceptable to all devices. 4402 * The means one for each copy for write-out and an extra one for 4403 * read-in. 4404 * We store the read-in bio in ->master_bio and the others in 4405 * ->devs[x].bio and ->devs[x].repl_bio. 4406 */ 4407 struct r10conf *conf = mddev->private; 4408 struct r10bio *r10_bio; 4409 sector_t next, safe, last; 4410 int max_sectors; 4411 int nr_sectors; 4412 int s; 4413 struct md_rdev *rdev; 4414 int need_flush = 0; 4415 struct bio *blist; 4416 struct bio *bio, *read_bio; 4417 int sectors_done = 0; 4418 struct page **pages; 4419 4420 if (sector_nr == 0) { 4421 /* If restarting in the middle, skip the initial sectors */ 4422 if (mddev->reshape_backwards && 4423 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4424 sector_nr = (raid10_size(mddev, 0, 0) 4425 - conf->reshape_progress); 4426 } else if (!mddev->reshape_backwards && 4427 conf->reshape_progress > 0) 4428 sector_nr = conf->reshape_progress; 4429 if (sector_nr) { 4430 mddev->curr_resync_completed = sector_nr; 4431 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4432 *skipped = 1; 4433 return sector_nr; 4434 } 4435 } 4436 4437 /* We don't use sector_nr to track where we are up to 4438 * as that doesn't work well for ->reshape_backwards. 4439 * So just use ->reshape_progress. 4440 */ 4441 if (mddev->reshape_backwards) { 4442 /* 'next' is the earliest device address that we might 4443 * write to for this chunk in the new layout 4444 */ 4445 next = first_dev_address(conf->reshape_progress - 1, 4446 &conf->geo); 4447 4448 /* 'safe' is the last device address that we might read from 4449 * in the old layout after a restart 4450 */ 4451 safe = last_dev_address(conf->reshape_safe - 1, 4452 &conf->prev); 4453 4454 if (next + conf->offset_diff < safe) 4455 need_flush = 1; 4456 4457 last = conf->reshape_progress - 1; 4458 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4459 & conf->prev.chunk_mask); 4460 if (sector_nr + RESYNC_SECTORS < last) 4461 sector_nr = last + 1 - RESYNC_SECTORS; 4462 } else { 4463 /* 'next' is after the last device address that we 4464 * might write to for this chunk in the new layout 4465 */ 4466 next = last_dev_address(conf->reshape_progress, &conf->geo); 4467 4468 /* 'safe' is the earliest device address that we might 4469 * read from in the old layout after a restart 4470 */ 4471 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4472 4473 /* Need to update metadata if 'next' might be beyond 'safe' 4474 * as that would possibly corrupt data 4475 */ 4476 if (next > safe + conf->offset_diff) 4477 need_flush = 1; 4478 4479 sector_nr = conf->reshape_progress; 4480 last = sector_nr | (conf->geo.chunk_mask 4481 & conf->prev.chunk_mask); 4482 4483 if (sector_nr + RESYNC_SECTORS <= last) 4484 last = sector_nr + RESYNC_SECTORS - 1; 4485 } 4486 4487 if (need_flush || 4488 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4489 /* Need to update reshape_position in metadata */ 4490 wait_barrier(conf); 4491 mddev->reshape_position = conf->reshape_progress; 4492 if (mddev->reshape_backwards) 4493 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4494 - conf->reshape_progress; 4495 else 4496 mddev->curr_resync_completed = conf->reshape_progress; 4497 conf->reshape_checkpoint = jiffies; 4498 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4499 md_wakeup_thread(mddev->thread); 4500 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4501 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4502 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4503 allow_barrier(conf); 4504 return sectors_done; 4505 } 4506 conf->reshape_safe = mddev->reshape_position; 4507 allow_barrier(conf); 4508 } 4509 4510 raise_barrier(conf, 0); 4511 read_more: 4512 /* Now schedule reads for blocks from sector_nr to last */ 4513 r10_bio = raid10_alloc_init_r10buf(conf); 4514 r10_bio->state = 0; 4515 raise_barrier(conf, 1); 4516 atomic_set(&r10_bio->remaining, 0); 4517 r10_bio->mddev = mddev; 4518 r10_bio->sector = sector_nr; 4519 set_bit(R10BIO_IsReshape, &r10_bio->state); 4520 r10_bio->sectors = last - sector_nr + 1; 4521 rdev = read_balance(conf, r10_bio, &max_sectors); 4522 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4523 4524 if (!rdev) { 4525 /* Cannot read from here, so need to record bad blocks 4526 * on all the target devices. 4527 */ 4528 // FIXME 4529 mempool_free(r10_bio, &conf->r10buf_pool); 4530 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4531 return sectors_done; 4532 } 4533 4534 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4535 4536 bio_set_dev(read_bio, rdev->bdev); 4537 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4538 + rdev->data_offset); 4539 read_bio->bi_private = r10_bio; 4540 read_bio->bi_end_io = end_reshape_read; 4541 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4542 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4543 read_bio->bi_status = 0; 4544 read_bio->bi_vcnt = 0; 4545 read_bio->bi_iter.bi_size = 0; 4546 r10_bio->master_bio = read_bio; 4547 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4548 4549 /* 4550 * Broadcast RESYNC message to other nodes, so all nodes would not 4551 * write to the region to avoid conflict. 4552 */ 4553 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4554 struct mdp_superblock_1 *sb = NULL; 4555 int sb_reshape_pos = 0; 4556 4557 conf->cluster_sync_low = sector_nr; 4558 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4559 sb = page_address(rdev->sb_page); 4560 if (sb) { 4561 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4562 /* 4563 * Set cluster_sync_low again if next address for array 4564 * reshape is less than cluster_sync_low. Since we can't 4565 * update cluster_sync_low until it has finished reshape. 4566 */ 4567 if (sb_reshape_pos < conf->cluster_sync_low) 4568 conf->cluster_sync_low = sb_reshape_pos; 4569 } 4570 4571 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4572 conf->cluster_sync_high); 4573 } 4574 4575 /* Now find the locations in the new layout */ 4576 __raid10_find_phys(&conf->geo, r10_bio); 4577 4578 blist = read_bio; 4579 read_bio->bi_next = NULL; 4580 4581 rcu_read_lock(); 4582 for (s = 0; s < conf->copies*2; s++) { 4583 struct bio *b; 4584 int d = r10_bio->devs[s/2].devnum; 4585 struct md_rdev *rdev2; 4586 if (s&1) { 4587 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4588 b = r10_bio->devs[s/2].repl_bio; 4589 } else { 4590 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4591 b = r10_bio->devs[s/2].bio; 4592 } 4593 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4594 continue; 4595 4596 bio_set_dev(b, rdev2->bdev); 4597 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4598 rdev2->new_data_offset; 4599 b->bi_end_io = end_reshape_write; 4600 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4601 b->bi_next = blist; 4602 blist = b; 4603 } 4604 4605 /* Now add as many pages as possible to all of these bios. */ 4606 4607 nr_sectors = 0; 4608 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4609 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4610 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4611 int len = (max_sectors - s) << 9; 4612 if (len > PAGE_SIZE) 4613 len = PAGE_SIZE; 4614 for (bio = blist; bio ; bio = bio->bi_next) { 4615 /* 4616 * won't fail because the vec table is big enough 4617 * to hold all these pages 4618 */ 4619 bio_add_page(bio, page, len, 0); 4620 } 4621 sector_nr += len >> 9; 4622 nr_sectors += len >> 9; 4623 } 4624 rcu_read_unlock(); 4625 r10_bio->sectors = nr_sectors; 4626 4627 /* Now submit the read */ 4628 md_sync_acct_bio(read_bio, r10_bio->sectors); 4629 atomic_inc(&r10_bio->remaining); 4630 read_bio->bi_next = NULL; 4631 submit_bio_noacct(read_bio); 4632 sectors_done += nr_sectors; 4633 if (sector_nr <= last) 4634 goto read_more; 4635 4636 lower_barrier(conf); 4637 4638 /* Now that we have done the whole section we can 4639 * update reshape_progress 4640 */ 4641 if (mddev->reshape_backwards) 4642 conf->reshape_progress -= sectors_done; 4643 else 4644 conf->reshape_progress += sectors_done; 4645 4646 return sectors_done; 4647 } 4648 4649 static void end_reshape_request(struct r10bio *r10_bio); 4650 static int handle_reshape_read_error(struct mddev *mddev, 4651 struct r10bio *r10_bio); 4652 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4653 { 4654 /* Reshape read completed. Hopefully we have a block 4655 * to write out. 4656 * If we got a read error then we do sync 1-page reads from 4657 * elsewhere until we find the data - or give up. 4658 */ 4659 struct r10conf *conf = mddev->private; 4660 int s; 4661 4662 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4663 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4664 /* Reshape has been aborted */ 4665 md_done_sync(mddev, r10_bio->sectors, 0); 4666 return; 4667 } 4668 4669 /* We definitely have the data in the pages, schedule the 4670 * writes. 4671 */ 4672 atomic_set(&r10_bio->remaining, 1); 4673 for (s = 0; s < conf->copies*2; s++) { 4674 struct bio *b; 4675 int d = r10_bio->devs[s/2].devnum; 4676 struct md_rdev *rdev; 4677 rcu_read_lock(); 4678 if (s&1) { 4679 rdev = rcu_dereference(conf->mirrors[d].replacement); 4680 b = r10_bio->devs[s/2].repl_bio; 4681 } else { 4682 rdev = rcu_dereference(conf->mirrors[d].rdev); 4683 b = r10_bio->devs[s/2].bio; 4684 } 4685 if (!rdev || test_bit(Faulty, &rdev->flags)) { 4686 rcu_read_unlock(); 4687 continue; 4688 } 4689 atomic_inc(&rdev->nr_pending); 4690 rcu_read_unlock(); 4691 md_sync_acct_bio(b, r10_bio->sectors); 4692 atomic_inc(&r10_bio->remaining); 4693 b->bi_next = NULL; 4694 submit_bio_noacct(b); 4695 } 4696 end_reshape_request(r10_bio); 4697 } 4698 4699 static void end_reshape(struct r10conf *conf) 4700 { 4701 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4702 return; 4703 4704 spin_lock_irq(&conf->device_lock); 4705 conf->prev = conf->geo; 4706 md_finish_reshape(conf->mddev); 4707 smp_wmb(); 4708 conf->reshape_progress = MaxSector; 4709 conf->reshape_safe = MaxSector; 4710 spin_unlock_irq(&conf->device_lock); 4711 4712 if (conf->mddev->queue) 4713 raid10_set_io_opt(conf); 4714 conf->fullsync = 0; 4715 } 4716 4717 static void raid10_update_reshape_pos(struct mddev *mddev) 4718 { 4719 struct r10conf *conf = mddev->private; 4720 sector_t lo, hi; 4721 4722 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 4723 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 4724 || mddev->reshape_position == MaxSector) 4725 conf->reshape_progress = mddev->reshape_position; 4726 else 4727 WARN_ON_ONCE(1); 4728 } 4729 4730 static int handle_reshape_read_error(struct mddev *mddev, 4731 struct r10bio *r10_bio) 4732 { 4733 /* Use sync reads to get the blocks from somewhere else */ 4734 int sectors = r10_bio->sectors; 4735 struct r10conf *conf = mddev->private; 4736 struct r10bio *r10b; 4737 int slot = 0; 4738 int idx = 0; 4739 struct page **pages; 4740 4741 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 4742 if (!r10b) { 4743 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4744 return -ENOMEM; 4745 } 4746 4747 /* reshape IOs share pages from .devs[0].bio */ 4748 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4749 4750 r10b->sector = r10_bio->sector; 4751 __raid10_find_phys(&conf->prev, r10b); 4752 4753 while (sectors) { 4754 int s = sectors; 4755 int success = 0; 4756 int first_slot = slot; 4757 4758 if (s > (PAGE_SIZE >> 9)) 4759 s = PAGE_SIZE >> 9; 4760 4761 rcu_read_lock(); 4762 while (!success) { 4763 int d = r10b->devs[slot].devnum; 4764 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4765 sector_t addr; 4766 if (rdev == NULL || 4767 test_bit(Faulty, &rdev->flags) || 4768 !test_bit(In_sync, &rdev->flags)) 4769 goto failed; 4770 4771 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4772 atomic_inc(&rdev->nr_pending); 4773 rcu_read_unlock(); 4774 success = sync_page_io(rdev, 4775 addr, 4776 s << 9, 4777 pages[idx], 4778 REQ_OP_READ, 0, false); 4779 rdev_dec_pending(rdev, mddev); 4780 rcu_read_lock(); 4781 if (success) 4782 break; 4783 failed: 4784 slot++; 4785 if (slot >= conf->copies) 4786 slot = 0; 4787 if (slot == first_slot) 4788 break; 4789 } 4790 rcu_read_unlock(); 4791 if (!success) { 4792 /* couldn't read this block, must give up */ 4793 set_bit(MD_RECOVERY_INTR, 4794 &mddev->recovery); 4795 kfree(r10b); 4796 return -EIO; 4797 } 4798 sectors -= s; 4799 idx++; 4800 } 4801 kfree(r10b); 4802 return 0; 4803 } 4804 4805 static void end_reshape_write(struct bio *bio) 4806 { 4807 struct r10bio *r10_bio = get_resync_r10bio(bio); 4808 struct mddev *mddev = r10_bio->mddev; 4809 struct r10conf *conf = mddev->private; 4810 int d; 4811 int slot; 4812 int repl; 4813 struct md_rdev *rdev = NULL; 4814 4815 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4816 if (repl) 4817 rdev = conf->mirrors[d].replacement; 4818 if (!rdev) { 4819 smp_mb(); 4820 rdev = conf->mirrors[d].rdev; 4821 } 4822 4823 if (bio->bi_status) { 4824 /* FIXME should record badblock */ 4825 md_error(mddev, rdev); 4826 } 4827 4828 rdev_dec_pending(rdev, mddev); 4829 end_reshape_request(r10_bio); 4830 } 4831 4832 static void end_reshape_request(struct r10bio *r10_bio) 4833 { 4834 if (!atomic_dec_and_test(&r10_bio->remaining)) 4835 return; 4836 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4837 bio_put(r10_bio->master_bio); 4838 put_buf(r10_bio); 4839 } 4840 4841 static void raid10_finish_reshape(struct mddev *mddev) 4842 { 4843 struct r10conf *conf = mddev->private; 4844 4845 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4846 return; 4847 4848 if (mddev->delta_disks > 0) { 4849 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4850 mddev->recovery_cp = mddev->resync_max_sectors; 4851 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4852 } 4853 mddev->resync_max_sectors = mddev->array_sectors; 4854 } else { 4855 int d; 4856 rcu_read_lock(); 4857 for (d = conf->geo.raid_disks ; 4858 d < conf->geo.raid_disks - mddev->delta_disks; 4859 d++) { 4860 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4861 if (rdev) 4862 clear_bit(In_sync, &rdev->flags); 4863 rdev = rcu_dereference(conf->mirrors[d].replacement); 4864 if (rdev) 4865 clear_bit(In_sync, &rdev->flags); 4866 } 4867 rcu_read_unlock(); 4868 } 4869 mddev->layout = mddev->new_layout; 4870 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4871 mddev->reshape_position = MaxSector; 4872 mddev->delta_disks = 0; 4873 mddev->reshape_backwards = 0; 4874 } 4875 4876 static struct md_personality raid10_personality = 4877 { 4878 .name = "raid10", 4879 .level = 10, 4880 .owner = THIS_MODULE, 4881 .make_request = raid10_make_request, 4882 .run = raid10_run, 4883 .free = raid10_free, 4884 .status = raid10_status, 4885 .error_handler = raid10_error, 4886 .hot_add_disk = raid10_add_disk, 4887 .hot_remove_disk= raid10_remove_disk, 4888 .spare_active = raid10_spare_active, 4889 .sync_request = raid10_sync_request, 4890 .quiesce = raid10_quiesce, 4891 .size = raid10_size, 4892 .resize = raid10_resize, 4893 .takeover = raid10_takeover, 4894 .check_reshape = raid10_check_reshape, 4895 .start_reshape = raid10_start_reshape, 4896 .finish_reshape = raid10_finish_reshape, 4897 .update_reshape_pos = raid10_update_reshape_pos, 4898 }; 4899 4900 static int __init raid_init(void) 4901 { 4902 return register_md_personality(&raid10_personality); 4903 } 4904 4905 static void raid_exit(void) 4906 { 4907 unregister_md_personality(&raid10_personality); 4908 } 4909 4910 module_init(raid_init); 4911 module_exit(raid_exit); 4912 MODULE_LICENSE("GPL"); 4913 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4914 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4915 MODULE_ALIAS("md-raid10"); 4916 MODULE_ALIAS("md-level-10"); 4917 4918 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4919