1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 #include "raid10.h" 23 #include "raid0.h" 24 #include "md-bitmap.h" 25 26 /* 27 * RAID10 provides a combination of RAID0 and RAID1 functionality. 28 * The layout of data is defined by 29 * chunk_size 30 * raid_disks 31 * near_copies (stored in low byte of layout) 32 * far_copies (stored in second byte of layout) 33 * far_offset (stored in bit 16 of layout ) 34 * use_far_sets (stored in bit 17 of layout ) 35 * use_far_sets_bugfixed (stored in bit 18 of layout ) 36 * 37 * The data to be stored is divided into chunks using chunksize. Each device 38 * is divided into far_copies sections. In each section, chunks are laid out 39 * in a style similar to raid0, but near_copies copies of each chunk is stored 40 * (each on a different drive). The starting device for each section is offset 41 * near_copies from the starting device of the previous section. Thus there 42 * are (near_copies * far_copies) of each chunk, and each is on a different 43 * drive. near_copies and far_copies must be at least one, and their product 44 * is at most raid_disks. 45 * 46 * If far_offset is true, then the far_copies are handled a bit differently. 47 * The copies are still in different stripes, but instead of being very far 48 * apart on disk, there are adjacent stripes. 49 * 50 * The far and offset algorithms are handled slightly differently if 51 * 'use_far_sets' is true. In this case, the array's devices are grouped into 52 * sets that are (near_copies * far_copies) in size. The far copied stripes 53 * are still shifted by 'near_copies' devices, but this shifting stays confined 54 * to the set rather than the entire array. This is done to improve the number 55 * of device combinations that can fail without causing the array to fail. 56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 57 * on a device): 58 * A B C D A B C D E 59 * ... ... 60 * D A B C E A B C D 61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 62 * [A B] [C D] [A B] [C D E] 63 * |...| |...| |...| | ... | 64 * [B A] [D C] [B A] [E C D] 65 */ 66 67 /* 68 * Number of guaranteed r10bios in case of extreme VM load: 69 */ 70 #define NR_RAID10_BIOS 256 71 72 /* when we get a read error on a read-only array, we redirect to another 73 * device without failing the first device, or trying to over-write to 74 * correct the read error. To keep track of bad blocks on a per-bio 75 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 76 */ 77 #define IO_BLOCKED ((struct bio *)1) 78 /* When we successfully write to a known bad-block, we need to remove the 79 * bad-block marking which must be done from process context. So we record 80 * the success by setting devs[n].bio to IO_MADE_GOOD 81 */ 82 #define IO_MADE_GOOD ((struct bio *)2) 83 84 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 85 86 /* When there are this many requests queued to be written by 87 * the raid10 thread, we become 'congested' to provide back-pressure 88 * for writeback. 89 */ 90 static int max_queued_requests = 1024; 91 92 static void allow_barrier(struct r10conf *conf); 93 static void lower_barrier(struct r10conf *conf); 94 static int _enough(struct r10conf *conf, int previous, int ignore); 95 static int enough(struct r10conf *conf, int ignore); 96 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 97 int *skipped); 98 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 99 static void end_reshape_write(struct bio *bio); 100 static void end_reshape(struct r10conf *conf); 101 102 #define raid10_log(md, fmt, args...) \ 103 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 104 105 #include "raid1-10.c" 106 107 /* 108 * for resync bio, r10bio pointer can be retrieved from the per-bio 109 * 'struct resync_pages'. 110 */ 111 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 112 { 113 return get_resync_pages(bio)->raid_bio; 114 } 115 116 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 117 { 118 struct r10conf *conf = data; 119 int size = offsetof(struct r10bio, devs[conf->copies]); 120 121 /* allocate a r10bio with room for raid_disks entries in the 122 * bios array */ 123 return kzalloc(size, gfp_flags); 124 } 125 126 static void r10bio_pool_free(void *r10_bio, void *data) 127 { 128 kfree(r10_bio); 129 } 130 131 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 132 /* amount of memory to reserve for resync requests */ 133 #define RESYNC_WINDOW (1024*1024) 134 /* maximum number of concurrent requests, memory permitting */ 135 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 136 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 137 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 138 139 /* 140 * When performing a resync, we need to read and compare, so 141 * we need as many pages are there are copies. 142 * When performing a recovery, we need 2 bios, one for read, 143 * one for write (we recover only one drive per r10buf) 144 * 145 */ 146 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 147 { 148 struct r10conf *conf = data; 149 struct r10bio *r10_bio; 150 struct bio *bio; 151 int j; 152 int nalloc, nalloc_rp; 153 struct resync_pages *rps; 154 155 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 156 if (!r10_bio) 157 return NULL; 158 159 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 160 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 161 nalloc = conf->copies; /* resync */ 162 else 163 nalloc = 2; /* recovery */ 164 165 /* allocate once for all bios */ 166 if (!conf->have_replacement) 167 nalloc_rp = nalloc; 168 else 169 nalloc_rp = nalloc * 2; 170 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 171 if (!rps) 172 goto out_free_r10bio; 173 174 /* 175 * Allocate bios. 176 */ 177 for (j = nalloc ; j-- ; ) { 178 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 179 if (!bio) 180 goto out_free_bio; 181 r10_bio->devs[j].bio = bio; 182 if (!conf->have_replacement) 183 continue; 184 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 185 if (!bio) 186 goto out_free_bio; 187 r10_bio->devs[j].repl_bio = bio; 188 } 189 /* 190 * Allocate RESYNC_PAGES data pages and attach them 191 * where needed. 192 */ 193 for (j = 0; j < nalloc; j++) { 194 struct bio *rbio = r10_bio->devs[j].repl_bio; 195 struct resync_pages *rp, *rp_repl; 196 197 rp = &rps[j]; 198 if (rbio) 199 rp_repl = &rps[nalloc + j]; 200 201 bio = r10_bio->devs[j].bio; 202 203 if (!j || test_bit(MD_RECOVERY_SYNC, 204 &conf->mddev->recovery)) { 205 if (resync_alloc_pages(rp, gfp_flags)) 206 goto out_free_pages; 207 } else { 208 memcpy(rp, &rps[0], sizeof(*rp)); 209 resync_get_all_pages(rp); 210 } 211 212 rp->raid_bio = r10_bio; 213 bio->bi_private = rp; 214 if (rbio) { 215 memcpy(rp_repl, rp, sizeof(*rp)); 216 rbio->bi_private = rp_repl; 217 } 218 } 219 220 return r10_bio; 221 222 out_free_pages: 223 while (--j >= 0) 224 resync_free_pages(&rps[j * 2]); 225 226 j = 0; 227 out_free_bio: 228 for ( ; j < nalloc; j++) { 229 if (r10_bio->devs[j].bio) 230 bio_put(r10_bio->devs[j].bio); 231 if (r10_bio->devs[j].repl_bio) 232 bio_put(r10_bio->devs[j].repl_bio); 233 } 234 kfree(rps); 235 out_free_r10bio: 236 r10bio_pool_free(r10_bio, conf); 237 return NULL; 238 } 239 240 static void r10buf_pool_free(void *__r10_bio, void *data) 241 { 242 struct r10conf *conf = data; 243 struct r10bio *r10bio = __r10_bio; 244 int j; 245 struct resync_pages *rp = NULL; 246 247 for (j = conf->copies; j--; ) { 248 struct bio *bio = r10bio->devs[j].bio; 249 250 if (bio) { 251 rp = get_resync_pages(bio); 252 resync_free_pages(rp); 253 bio_put(bio); 254 } 255 256 bio = r10bio->devs[j].repl_bio; 257 if (bio) 258 bio_put(bio); 259 } 260 261 /* resync pages array stored in the 1st bio's .bi_private */ 262 kfree(rp); 263 264 r10bio_pool_free(r10bio, conf); 265 } 266 267 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 268 { 269 int i; 270 271 for (i = 0; i < conf->copies; i++) { 272 struct bio **bio = & r10_bio->devs[i].bio; 273 if (!BIO_SPECIAL(*bio)) 274 bio_put(*bio); 275 *bio = NULL; 276 bio = &r10_bio->devs[i].repl_bio; 277 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 278 bio_put(*bio); 279 *bio = NULL; 280 } 281 } 282 283 static void free_r10bio(struct r10bio *r10_bio) 284 { 285 struct r10conf *conf = r10_bio->mddev->private; 286 287 put_all_bios(conf, r10_bio); 288 mempool_free(r10_bio, &conf->r10bio_pool); 289 } 290 291 static void put_buf(struct r10bio *r10_bio) 292 { 293 struct r10conf *conf = r10_bio->mddev->private; 294 295 mempool_free(r10_bio, &conf->r10buf_pool); 296 297 lower_barrier(conf); 298 } 299 300 static void reschedule_retry(struct r10bio *r10_bio) 301 { 302 unsigned long flags; 303 struct mddev *mddev = r10_bio->mddev; 304 struct r10conf *conf = mddev->private; 305 306 spin_lock_irqsave(&conf->device_lock, flags); 307 list_add(&r10_bio->retry_list, &conf->retry_list); 308 conf->nr_queued ++; 309 spin_unlock_irqrestore(&conf->device_lock, flags); 310 311 /* wake up frozen array... */ 312 wake_up(&conf->wait_barrier); 313 314 md_wakeup_thread(mddev->thread); 315 } 316 317 /* 318 * raid_end_bio_io() is called when we have finished servicing a mirrored 319 * operation and are ready to return a success/failure code to the buffer 320 * cache layer. 321 */ 322 static void raid_end_bio_io(struct r10bio *r10_bio) 323 { 324 struct bio *bio = r10_bio->master_bio; 325 struct r10conf *conf = r10_bio->mddev->private; 326 327 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 328 bio->bi_status = BLK_STS_IOERR; 329 330 bio_endio(bio); 331 /* 332 * Wake up any possible resync thread that waits for the device 333 * to go idle. 334 */ 335 allow_barrier(conf); 336 337 free_r10bio(r10_bio); 338 } 339 340 /* 341 * Update disk head position estimator based on IRQ completion info. 342 */ 343 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 344 { 345 struct r10conf *conf = r10_bio->mddev->private; 346 347 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 348 r10_bio->devs[slot].addr + (r10_bio->sectors); 349 } 350 351 /* 352 * Find the disk number which triggered given bio 353 */ 354 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 355 struct bio *bio, int *slotp, int *replp) 356 { 357 int slot; 358 int repl = 0; 359 360 for (slot = 0; slot < conf->copies; slot++) { 361 if (r10_bio->devs[slot].bio == bio) 362 break; 363 if (r10_bio->devs[slot].repl_bio == bio) { 364 repl = 1; 365 break; 366 } 367 } 368 369 BUG_ON(slot == conf->copies); 370 update_head_pos(slot, r10_bio); 371 372 if (slotp) 373 *slotp = slot; 374 if (replp) 375 *replp = repl; 376 return r10_bio->devs[slot].devnum; 377 } 378 379 static void raid10_end_read_request(struct bio *bio) 380 { 381 int uptodate = !bio->bi_status; 382 struct r10bio *r10_bio = bio->bi_private; 383 int slot; 384 struct md_rdev *rdev; 385 struct r10conf *conf = r10_bio->mddev->private; 386 387 slot = r10_bio->read_slot; 388 rdev = r10_bio->devs[slot].rdev; 389 /* 390 * this branch is our 'one mirror IO has finished' event handler: 391 */ 392 update_head_pos(slot, r10_bio); 393 394 if (uptodate) { 395 /* 396 * Set R10BIO_Uptodate in our master bio, so that 397 * we will return a good error code to the higher 398 * levels even if IO on some other mirrored buffer fails. 399 * 400 * The 'master' represents the composite IO operation to 401 * user-side. So if something waits for IO, then it will 402 * wait for the 'master' bio. 403 */ 404 set_bit(R10BIO_Uptodate, &r10_bio->state); 405 } else { 406 /* If all other devices that store this block have 407 * failed, we want to return the error upwards rather 408 * than fail the last device. Here we redefine 409 * "uptodate" to mean "Don't want to retry" 410 */ 411 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 412 rdev->raid_disk)) 413 uptodate = 1; 414 } 415 if (uptodate) { 416 raid_end_bio_io(r10_bio); 417 rdev_dec_pending(rdev, conf->mddev); 418 } else { 419 /* 420 * oops, read error - keep the refcount on the rdev 421 */ 422 char b[BDEVNAME_SIZE]; 423 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 424 mdname(conf->mddev), 425 bdevname(rdev->bdev, b), 426 (unsigned long long)r10_bio->sector); 427 set_bit(R10BIO_ReadError, &r10_bio->state); 428 reschedule_retry(r10_bio); 429 } 430 } 431 432 static void close_write(struct r10bio *r10_bio) 433 { 434 /* clear the bitmap if all writes complete successfully */ 435 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 436 r10_bio->sectors, 437 !test_bit(R10BIO_Degraded, &r10_bio->state), 438 0); 439 md_write_end(r10_bio->mddev); 440 } 441 442 static void one_write_done(struct r10bio *r10_bio) 443 { 444 if (atomic_dec_and_test(&r10_bio->remaining)) { 445 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 446 reschedule_retry(r10_bio); 447 else { 448 close_write(r10_bio); 449 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 450 reschedule_retry(r10_bio); 451 else 452 raid_end_bio_io(r10_bio); 453 } 454 } 455 } 456 457 static void raid10_end_write_request(struct bio *bio) 458 { 459 struct r10bio *r10_bio = bio->bi_private; 460 int dev; 461 int dec_rdev = 1; 462 struct r10conf *conf = r10_bio->mddev->private; 463 int slot, repl; 464 struct md_rdev *rdev = NULL; 465 struct bio *to_put = NULL; 466 bool discard_error; 467 468 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 469 470 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 471 472 if (repl) 473 rdev = conf->mirrors[dev].replacement; 474 if (!rdev) { 475 smp_rmb(); 476 repl = 0; 477 rdev = conf->mirrors[dev].rdev; 478 } 479 /* 480 * this branch is our 'one mirror IO has finished' event handler: 481 */ 482 if (bio->bi_status && !discard_error) { 483 if (repl) 484 /* Never record new bad blocks to replacement, 485 * just fail it. 486 */ 487 md_error(rdev->mddev, rdev); 488 else { 489 set_bit(WriteErrorSeen, &rdev->flags); 490 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 491 set_bit(MD_RECOVERY_NEEDED, 492 &rdev->mddev->recovery); 493 494 dec_rdev = 0; 495 if (test_bit(FailFast, &rdev->flags) && 496 (bio->bi_opf & MD_FAILFAST)) { 497 md_error(rdev->mddev, rdev); 498 if (!test_bit(Faulty, &rdev->flags)) 499 /* This is the only remaining device, 500 * We need to retry the write without 501 * FailFast 502 */ 503 set_bit(R10BIO_WriteError, &r10_bio->state); 504 else { 505 r10_bio->devs[slot].bio = NULL; 506 to_put = bio; 507 dec_rdev = 1; 508 } 509 } else 510 set_bit(R10BIO_WriteError, &r10_bio->state); 511 } 512 } else { 513 /* 514 * Set R10BIO_Uptodate in our master bio, so that 515 * we will return a good error code for to the higher 516 * levels even if IO on some other mirrored buffer fails. 517 * 518 * The 'master' represents the composite IO operation to 519 * user-side. So if something waits for IO, then it will 520 * wait for the 'master' bio. 521 */ 522 sector_t first_bad; 523 int bad_sectors; 524 525 /* 526 * Do not set R10BIO_Uptodate if the current device is 527 * rebuilding or Faulty. This is because we cannot use 528 * such device for properly reading the data back (we could 529 * potentially use it, if the current write would have felt 530 * before rdev->recovery_offset, but for simplicity we don't 531 * check this here. 532 */ 533 if (test_bit(In_sync, &rdev->flags) && 534 !test_bit(Faulty, &rdev->flags)) 535 set_bit(R10BIO_Uptodate, &r10_bio->state); 536 537 /* Maybe we can clear some bad blocks. */ 538 if (is_badblock(rdev, 539 r10_bio->devs[slot].addr, 540 r10_bio->sectors, 541 &first_bad, &bad_sectors) && !discard_error) { 542 bio_put(bio); 543 if (repl) 544 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 545 else 546 r10_bio->devs[slot].bio = IO_MADE_GOOD; 547 dec_rdev = 0; 548 set_bit(R10BIO_MadeGood, &r10_bio->state); 549 } 550 } 551 552 /* 553 * 554 * Let's see if all mirrored write operations have finished 555 * already. 556 */ 557 one_write_done(r10_bio); 558 if (dec_rdev) 559 rdev_dec_pending(rdev, conf->mddev); 560 if (to_put) 561 bio_put(to_put); 562 } 563 564 /* 565 * RAID10 layout manager 566 * As well as the chunksize and raid_disks count, there are two 567 * parameters: near_copies and far_copies. 568 * near_copies * far_copies must be <= raid_disks. 569 * Normally one of these will be 1. 570 * If both are 1, we get raid0. 571 * If near_copies == raid_disks, we get raid1. 572 * 573 * Chunks are laid out in raid0 style with near_copies copies of the 574 * first chunk, followed by near_copies copies of the next chunk and 575 * so on. 576 * If far_copies > 1, then after 1/far_copies of the array has been assigned 577 * as described above, we start again with a device offset of near_copies. 578 * So we effectively have another copy of the whole array further down all 579 * the drives, but with blocks on different drives. 580 * With this layout, and block is never stored twice on the one device. 581 * 582 * raid10_find_phys finds the sector offset of a given virtual sector 583 * on each device that it is on. 584 * 585 * raid10_find_virt does the reverse mapping, from a device and a 586 * sector offset to a virtual address 587 */ 588 589 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 590 { 591 int n,f; 592 sector_t sector; 593 sector_t chunk; 594 sector_t stripe; 595 int dev; 596 int slot = 0; 597 int last_far_set_start, last_far_set_size; 598 599 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 600 last_far_set_start *= geo->far_set_size; 601 602 last_far_set_size = geo->far_set_size; 603 last_far_set_size += (geo->raid_disks % geo->far_set_size); 604 605 /* now calculate first sector/dev */ 606 chunk = r10bio->sector >> geo->chunk_shift; 607 sector = r10bio->sector & geo->chunk_mask; 608 609 chunk *= geo->near_copies; 610 stripe = chunk; 611 dev = sector_div(stripe, geo->raid_disks); 612 if (geo->far_offset) 613 stripe *= geo->far_copies; 614 615 sector += stripe << geo->chunk_shift; 616 617 /* and calculate all the others */ 618 for (n = 0; n < geo->near_copies; n++) { 619 int d = dev; 620 int set; 621 sector_t s = sector; 622 r10bio->devs[slot].devnum = d; 623 r10bio->devs[slot].addr = s; 624 slot++; 625 626 for (f = 1; f < geo->far_copies; f++) { 627 set = d / geo->far_set_size; 628 d += geo->near_copies; 629 630 if ((geo->raid_disks % geo->far_set_size) && 631 (d > last_far_set_start)) { 632 d -= last_far_set_start; 633 d %= last_far_set_size; 634 d += last_far_set_start; 635 } else { 636 d %= geo->far_set_size; 637 d += geo->far_set_size * set; 638 } 639 s += geo->stride; 640 r10bio->devs[slot].devnum = d; 641 r10bio->devs[slot].addr = s; 642 slot++; 643 } 644 dev++; 645 if (dev >= geo->raid_disks) { 646 dev = 0; 647 sector += (geo->chunk_mask + 1); 648 } 649 } 650 } 651 652 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 653 { 654 struct geom *geo = &conf->geo; 655 656 if (conf->reshape_progress != MaxSector && 657 ((r10bio->sector >= conf->reshape_progress) != 658 conf->mddev->reshape_backwards)) { 659 set_bit(R10BIO_Previous, &r10bio->state); 660 geo = &conf->prev; 661 } else 662 clear_bit(R10BIO_Previous, &r10bio->state); 663 664 __raid10_find_phys(geo, r10bio); 665 } 666 667 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 668 { 669 sector_t offset, chunk, vchunk; 670 /* Never use conf->prev as this is only called during resync 671 * or recovery, so reshape isn't happening 672 */ 673 struct geom *geo = &conf->geo; 674 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 675 int far_set_size = geo->far_set_size; 676 int last_far_set_start; 677 678 if (geo->raid_disks % geo->far_set_size) { 679 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 680 last_far_set_start *= geo->far_set_size; 681 682 if (dev >= last_far_set_start) { 683 far_set_size = geo->far_set_size; 684 far_set_size += (geo->raid_disks % geo->far_set_size); 685 far_set_start = last_far_set_start; 686 } 687 } 688 689 offset = sector & geo->chunk_mask; 690 if (geo->far_offset) { 691 int fc; 692 chunk = sector >> geo->chunk_shift; 693 fc = sector_div(chunk, geo->far_copies); 694 dev -= fc * geo->near_copies; 695 if (dev < far_set_start) 696 dev += far_set_size; 697 } else { 698 while (sector >= geo->stride) { 699 sector -= geo->stride; 700 if (dev < (geo->near_copies + far_set_start)) 701 dev += far_set_size - geo->near_copies; 702 else 703 dev -= geo->near_copies; 704 } 705 chunk = sector >> geo->chunk_shift; 706 } 707 vchunk = chunk * geo->raid_disks + dev; 708 sector_div(vchunk, geo->near_copies); 709 return (vchunk << geo->chunk_shift) + offset; 710 } 711 712 /* 713 * This routine returns the disk from which the requested read should 714 * be done. There is a per-array 'next expected sequential IO' sector 715 * number - if this matches on the next IO then we use the last disk. 716 * There is also a per-disk 'last know head position' sector that is 717 * maintained from IRQ contexts, both the normal and the resync IO 718 * completion handlers update this position correctly. If there is no 719 * perfect sequential match then we pick the disk whose head is closest. 720 * 721 * If there are 2 mirrors in the same 2 devices, performance degrades 722 * because position is mirror, not device based. 723 * 724 * The rdev for the device selected will have nr_pending incremented. 725 */ 726 727 /* 728 * FIXME: possibly should rethink readbalancing and do it differently 729 * depending on near_copies / far_copies geometry. 730 */ 731 static struct md_rdev *read_balance(struct r10conf *conf, 732 struct r10bio *r10_bio, 733 int *max_sectors) 734 { 735 const sector_t this_sector = r10_bio->sector; 736 int disk, slot; 737 int sectors = r10_bio->sectors; 738 int best_good_sectors; 739 sector_t new_distance, best_dist; 740 struct md_rdev *best_rdev, *rdev = NULL; 741 int do_balance; 742 int best_slot; 743 struct geom *geo = &conf->geo; 744 745 raid10_find_phys(conf, r10_bio); 746 rcu_read_lock(); 747 best_slot = -1; 748 best_rdev = NULL; 749 best_dist = MaxSector; 750 best_good_sectors = 0; 751 do_balance = 1; 752 clear_bit(R10BIO_FailFast, &r10_bio->state); 753 /* 754 * Check if we can balance. We can balance on the whole 755 * device if no resync is going on (recovery is ok), or below 756 * the resync window. We take the first readable disk when 757 * above the resync window. 758 */ 759 if ((conf->mddev->recovery_cp < MaxSector 760 && (this_sector + sectors >= conf->next_resync)) || 761 (mddev_is_clustered(conf->mddev) && 762 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 763 this_sector + sectors))) 764 do_balance = 0; 765 766 for (slot = 0; slot < conf->copies ; slot++) { 767 sector_t first_bad; 768 int bad_sectors; 769 sector_t dev_sector; 770 771 if (r10_bio->devs[slot].bio == IO_BLOCKED) 772 continue; 773 disk = r10_bio->devs[slot].devnum; 774 rdev = rcu_dereference(conf->mirrors[disk].replacement); 775 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 776 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 777 rdev = rcu_dereference(conf->mirrors[disk].rdev); 778 if (rdev == NULL || 779 test_bit(Faulty, &rdev->flags)) 780 continue; 781 if (!test_bit(In_sync, &rdev->flags) && 782 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 783 continue; 784 785 dev_sector = r10_bio->devs[slot].addr; 786 if (is_badblock(rdev, dev_sector, sectors, 787 &first_bad, &bad_sectors)) { 788 if (best_dist < MaxSector) 789 /* Already have a better slot */ 790 continue; 791 if (first_bad <= dev_sector) { 792 /* Cannot read here. If this is the 793 * 'primary' device, then we must not read 794 * beyond 'bad_sectors' from another device. 795 */ 796 bad_sectors -= (dev_sector - first_bad); 797 if (!do_balance && sectors > bad_sectors) 798 sectors = bad_sectors; 799 if (best_good_sectors > sectors) 800 best_good_sectors = sectors; 801 } else { 802 sector_t good_sectors = 803 first_bad - dev_sector; 804 if (good_sectors > best_good_sectors) { 805 best_good_sectors = good_sectors; 806 best_slot = slot; 807 best_rdev = rdev; 808 } 809 if (!do_balance) 810 /* Must read from here */ 811 break; 812 } 813 continue; 814 } else 815 best_good_sectors = sectors; 816 817 if (!do_balance) 818 break; 819 820 if (best_slot >= 0) 821 /* At least 2 disks to choose from so failfast is OK */ 822 set_bit(R10BIO_FailFast, &r10_bio->state); 823 /* This optimisation is debatable, and completely destroys 824 * sequential read speed for 'far copies' arrays. So only 825 * keep it for 'near' arrays, and review those later. 826 */ 827 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 828 new_distance = 0; 829 830 /* for far > 1 always use the lowest address */ 831 else if (geo->far_copies > 1) 832 new_distance = r10_bio->devs[slot].addr; 833 else 834 new_distance = abs(r10_bio->devs[slot].addr - 835 conf->mirrors[disk].head_position); 836 if (new_distance < best_dist) { 837 best_dist = new_distance; 838 best_slot = slot; 839 best_rdev = rdev; 840 } 841 } 842 if (slot >= conf->copies) { 843 slot = best_slot; 844 rdev = best_rdev; 845 } 846 847 if (slot >= 0) { 848 atomic_inc(&rdev->nr_pending); 849 r10_bio->read_slot = slot; 850 } else 851 rdev = NULL; 852 rcu_read_unlock(); 853 *max_sectors = best_good_sectors; 854 855 return rdev; 856 } 857 858 static int raid10_congested(struct mddev *mddev, int bits) 859 { 860 struct r10conf *conf = mddev->private; 861 int i, ret = 0; 862 863 if ((bits & (1 << WB_async_congested)) && 864 conf->pending_count >= max_queued_requests) 865 return 1; 866 867 rcu_read_lock(); 868 for (i = 0; 869 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 870 && ret == 0; 871 i++) { 872 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 873 if (rdev && !test_bit(Faulty, &rdev->flags)) { 874 struct request_queue *q = bdev_get_queue(rdev->bdev); 875 876 ret |= bdi_congested(q->backing_dev_info, bits); 877 } 878 } 879 rcu_read_unlock(); 880 return ret; 881 } 882 883 static void flush_pending_writes(struct r10conf *conf) 884 { 885 /* Any writes that have been queued but are awaiting 886 * bitmap updates get flushed here. 887 */ 888 spin_lock_irq(&conf->device_lock); 889 890 if (conf->pending_bio_list.head) { 891 struct blk_plug plug; 892 struct bio *bio; 893 894 bio = bio_list_get(&conf->pending_bio_list); 895 conf->pending_count = 0; 896 spin_unlock_irq(&conf->device_lock); 897 898 /* 899 * As this is called in a wait_event() loop (see freeze_array), 900 * current->state might be TASK_UNINTERRUPTIBLE which will 901 * cause a warning when we prepare to wait again. As it is 902 * rare that this path is taken, it is perfectly safe to force 903 * us to go around the wait_event() loop again, so the warning 904 * is a false-positive. Silence the warning by resetting 905 * thread state 906 */ 907 __set_current_state(TASK_RUNNING); 908 909 blk_start_plug(&plug); 910 /* flush any pending bitmap writes to disk 911 * before proceeding w/ I/O */ 912 md_bitmap_unplug(conf->mddev->bitmap); 913 wake_up(&conf->wait_barrier); 914 915 while (bio) { /* submit pending writes */ 916 struct bio *next = bio->bi_next; 917 struct md_rdev *rdev = (void*)bio->bi_disk; 918 bio->bi_next = NULL; 919 bio_set_dev(bio, rdev->bdev); 920 if (test_bit(Faulty, &rdev->flags)) { 921 bio_io_error(bio); 922 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 923 !blk_queue_discard(bio->bi_disk->queue))) 924 /* Just ignore it */ 925 bio_endio(bio); 926 else 927 generic_make_request(bio); 928 bio = next; 929 } 930 blk_finish_plug(&plug); 931 } else 932 spin_unlock_irq(&conf->device_lock); 933 } 934 935 /* Barriers.... 936 * Sometimes we need to suspend IO while we do something else, 937 * either some resync/recovery, or reconfigure the array. 938 * To do this we raise a 'barrier'. 939 * The 'barrier' is a counter that can be raised multiple times 940 * to count how many activities are happening which preclude 941 * normal IO. 942 * We can only raise the barrier if there is no pending IO. 943 * i.e. if nr_pending == 0. 944 * We choose only to raise the barrier if no-one is waiting for the 945 * barrier to go down. This means that as soon as an IO request 946 * is ready, no other operations which require a barrier will start 947 * until the IO request has had a chance. 948 * 949 * So: regular IO calls 'wait_barrier'. When that returns there 950 * is no backgroup IO happening, It must arrange to call 951 * allow_barrier when it has finished its IO. 952 * backgroup IO calls must call raise_barrier. Once that returns 953 * there is no normal IO happeing. It must arrange to call 954 * lower_barrier when the particular background IO completes. 955 */ 956 957 static void raise_barrier(struct r10conf *conf, int force) 958 { 959 BUG_ON(force && !conf->barrier); 960 spin_lock_irq(&conf->resync_lock); 961 962 /* Wait until no block IO is waiting (unless 'force') */ 963 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 964 conf->resync_lock); 965 966 /* block any new IO from starting */ 967 conf->barrier++; 968 969 /* Now wait for all pending IO to complete */ 970 wait_event_lock_irq(conf->wait_barrier, 971 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 972 conf->resync_lock); 973 974 spin_unlock_irq(&conf->resync_lock); 975 } 976 977 static void lower_barrier(struct r10conf *conf) 978 { 979 unsigned long flags; 980 spin_lock_irqsave(&conf->resync_lock, flags); 981 conf->barrier--; 982 spin_unlock_irqrestore(&conf->resync_lock, flags); 983 wake_up(&conf->wait_barrier); 984 } 985 986 static void wait_barrier(struct r10conf *conf) 987 { 988 spin_lock_irq(&conf->resync_lock); 989 if (conf->barrier) { 990 conf->nr_waiting++; 991 /* Wait for the barrier to drop. 992 * However if there are already pending 993 * requests (preventing the barrier from 994 * rising completely), and the 995 * pre-process bio queue isn't empty, 996 * then don't wait, as we need to empty 997 * that queue to get the nr_pending 998 * count down. 999 */ 1000 raid10_log(conf->mddev, "wait barrier"); 1001 wait_event_lock_irq(conf->wait_barrier, 1002 !conf->barrier || 1003 (atomic_read(&conf->nr_pending) && 1004 current->bio_list && 1005 (!bio_list_empty(¤t->bio_list[0]) || 1006 !bio_list_empty(¤t->bio_list[1]))), 1007 conf->resync_lock); 1008 conf->nr_waiting--; 1009 if (!conf->nr_waiting) 1010 wake_up(&conf->wait_barrier); 1011 } 1012 atomic_inc(&conf->nr_pending); 1013 spin_unlock_irq(&conf->resync_lock); 1014 } 1015 1016 static void allow_barrier(struct r10conf *conf) 1017 { 1018 if ((atomic_dec_and_test(&conf->nr_pending)) || 1019 (conf->array_freeze_pending)) 1020 wake_up(&conf->wait_barrier); 1021 } 1022 1023 static void freeze_array(struct r10conf *conf, int extra) 1024 { 1025 /* stop syncio and normal IO and wait for everything to 1026 * go quiet. 1027 * We increment barrier and nr_waiting, and then 1028 * wait until nr_pending match nr_queued+extra 1029 * This is called in the context of one normal IO request 1030 * that has failed. Thus any sync request that might be pending 1031 * will be blocked by nr_pending, and we need to wait for 1032 * pending IO requests to complete or be queued for re-try. 1033 * Thus the number queued (nr_queued) plus this request (extra) 1034 * must match the number of pending IOs (nr_pending) before 1035 * we continue. 1036 */ 1037 spin_lock_irq(&conf->resync_lock); 1038 conf->array_freeze_pending++; 1039 conf->barrier++; 1040 conf->nr_waiting++; 1041 wait_event_lock_irq_cmd(conf->wait_barrier, 1042 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1043 conf->resync_lock, 1044 flush_pending_writes(conf)); 1045 1046 conf->array_freeze_pending--; 1047 spin_unlock_irq(&conf->resync_lock); 1048 } 1049 1050 static void unfreeze_array(struct r10conf *conf) 1051 { 1052 /* reverse the effect of the freeze */ 1053 spin_lock_irq(&conf->resync_lock); 1054 conf->barrier--; 1055 conf->nr_waiting--; 1056 wake_up(&conf->wait_barrier); 1057 spin_unlock_irq(&conf->resync_lock); 1058 } 1059 1060 static sector_t choose_data_offset(struct r10bio *r10_bio, 1061 struct md_rdev *rdev) 1062 { 1063 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1064 test_bit(R10BIO_Previous, &r10_bio->state)) 1065 return rdev->data_offset; 1066 else 1067 return rdev->new_data_offset; 1068 } 1069 1070 struct raid10_plug_cb { 1071 struct blk_plug_cb cb; 1072 struct bio_list pending; 1073 int pending_cnt; 1074 }; 1075 1076 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1077 { 1078 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1079 cb); 1080 struct mddev *mddev = plug->cb.data; 1081 struct r10conf *conf = mddev->private; 1082 struct bio *bio; 1083 1084 if (from_schedule || current->bio_list) { 1085 spin_lock_irq(&conf->device_lock); 1086 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1087 conf->pending_count += plug->pending_cnt; 1088 spin_unlock_irq(&conf->device_lock); 1089 wake_up(&conf->wait_barrier); 1090 md_wakeup_thread(mddev->thread); 1091 kfree(plug); 1092 return; 1093 } 1094 1095 /* we aren't scheduling, so we can do the write-out directly. */ 1096 bio = bio_list_get(&plug->pending); 1097 md_bitmap_unplug(mddev->bitmap); 1098 wake_up(&conf->wait_barrier); 1099 1100 while (bio) { /* submit pending writes */ 1101 struct bio *next = bio->bi_next; 1102 struct md_rdev *rdev = (void*)bio->bi_disk; 1103 bio->bi_next = NULL; 1104 bio_set_dev(bio, rdev->bdev); 1105 if (test_bit(Faulty, &rdev->flags)) { 1106 bio_io_error(bio); 1107 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1108 !blk_queue_discard(bio->bi_disk->queue))) 1109 /* Just ignore it */ 1110 bio_endio(bio); 1111 else 1112 generic_make_request(bio); 1113 bio = next; 1114 } 1115 kfree(plug); 1116 } 1117 1118 /* 1119 * 1. Register the new request and wait if the reconstruction thread has put 1120 * up a bar for new requests. Continue immediately if no resync is active 1121 * currently. 1122 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1123 */ 1124 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1125 struct bio *bio, sector_t sectors) 1126 { 1127 wait_barrier(conf); 1128 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1129 bio->bi_iter.bi_sector < conf->reshape_progress && 1130 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1131 raid10_log(conf->mddev, "wait reshape"); 1132 allow_barrier(conf); 1133 wait_event(conf->wait_barrier, 1134 conf->reshape_progress <= bio->bi_iter.bi_sector || 1135 conf->reshape_progress >= bio->bi_iter.bi_sector + 1136 sectors); 1137 wait_barrier(conf); 1138 } 1139 } 1140 1141 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1142 struct r10bio *r10_bio) 1143 { 1144 struct r10conf *conf = mddev->private; 1145 struct bio *read_bio; 1146 const int op = bio_op(bio); 1147 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1148 int max_sectors; 1149 struct md_rdev *rdev; 1150 char b[BDEVNAME_SIZE]; 1151 int slot = r10_bio->read_slot; 1152 struct md_rdev *err_rdev = NULL; 1153 gfp_t gfp = GFP_NOIO; 1154 1155 if (r10_bio->devs[slot].rdev) { 1156 /* 1157 * This is an error retry, but we cannot 1158 * safely dereference the rdev in the r10_bio, 1159 * we must use the one in conf. 1160 * If it has already been disconnected (unlikely) 1161 * we lose the device name in error messages. 1162 */ 1163 int disk; 1164 /* 1165 * As we are blocking raid10, it is a little safer to 1166 * use __GFP_HIGH. 1167 */ 1168 gfp = GFP_NOIO | __GFP_HIGH; 1169 1170 rcu_read_lock(); 1171 disk = r10_bio->devs[slot].devnum; 1172 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1173 if (err_rdev) 1174 bdevname(err_rdev->bdev, b); 1175 else { 1176 strcpy(b, "???"); 1177 /* This never gets dereferenced */ 1178 err_rdev = r10_bio->devs[slot].rdev; 1179 } 1180 rcu_read_unlock(); 1181 } 1182 1183 regular_request_wait(mddev, conf, bio, r10_bio->sectors); 1184 rdev = read_balance(conf, r10_bio, &max_sectors); 1185 if (!rdev) { 1186 if (err_rdev) { 1187 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1188 mdname(mddev), b, 1189 (unsigned long long)r10_bio->sector); 1190 } 1191 raid_end_bio_io(r10_bio); 1192 return; 1193 } 1194 if (err_rdev) 1195 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1196 mdname(mddev), 1197 bdevname(rdev->bdev, b), 1198 (unsigned long long)r10_bio->sector); 1199 if (max_sectors < bio_sectors(bio)) { 1200 struct bio *split = bio_split(bio, max_sectors, 1201 gfp, &conf->bio_split); 1202 bio_chain(split, bio); 1203 allow_barrier(conf); 1204 generic_make_request(bio); 1205 wait_barrier(conf); 1206 bio = split; 1207 r10_bio->master_bio = bio; 1208 r10_bio->sectors = max_sectors; 1209 } 1210 slot = r10_bio->read_slot; 1211 1212 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1213 1214 r10_bio->devs[slot].bio = read_bio; 1215 r10_bio->devs[slot].rdev = rdev; 1216 1217 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1218 choose_data_offset(r10_bio, rdev); 1219 bio_set_dev(read_bio, rdev->bdev); 1220 read_bio->bi_end_io = raid10_end_read_request; 1221 bio_set_op_attrs(read_bio, op, do_sync); 1222 if (test_bit(FailFast, &rdev->flags) && 1223 test_bit(R10BIO_FailFast, &r10_bio->state)) 1224 read_bio->bi_opf |= MD_FAILFAST; 1225 read_bio->bi_private = r10_bio; 1226 1227 if (mddev->gendisk) 1228 trace_block_bio_remap(read_bio->bi_disk->queue, 1229 read_bio, disk_devt(mddev->gendisk), 1230 r10_bio->sector); 1231 generic_make_request(read_bio); 1232 return; 1233 } 1234 1235 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1236 struct bio *bio, bool replacement, 1237 int n_copy) 1238 { 1239 const int op = bio_op(bio); 1240 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1241 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1242 unsigned long flags; 1243 struct blk_plug_cb *cb; 1244 struct raid10_plug_cb *plug = NULL; 1245 struct r10conf *conf = mddev->private; 1246 struct md_rdev *rdev; 1247 int devnum = r10_bio->devs[n_copy].devnum; 1248 struct bio *mbio; 1249 1250 if (replacement) { 1251 rdev = conf->mirrors[devnum].replacement; 1252 if (rdev == NULL) { 1253 /* Replacement just got moved to main 'rdev' */ 1254 smp_mb(); 1255 rdev = conf->mirrors[devnum].rdev; 1256 } 1257 } else 1258 rdev = conf->mirrors[devnum].rdev; 1259 1260 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1261 if (replacement) 1262 r10_bio->devs[n_copy].repl_bio = mbio; 1263 else 1264 r10_bio->devs[n_copy].bio = mbio; 1265 1266 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1267 choose_data_offset(r10_bio, rdev)); 1268 bio_set_dev(mbio, rdev->bdev); 1269 mbio->bi_end_io = raid10_end_write_request; 1270 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1271 if (!replacement && test_bit(FailFast, 1272 &conf->mirrors[devnum].rdev->flags) 1273 && enough(conf, devnum)) 1274 mbio->bi_opf |= MD_FAILFAST; 1275 mbio->bi_private = r10_bio; 1276 1277 if (conf->mddev->gendisk) 1278 trace_block_bio_remap(mbio->bi_disk->queue, 1279 mbio, disk_devt(conf->mddev->gendisk), 1280 r10_bio->sector); 1281 /* flush_pending_writes() needs access to the rdev so...*/ 1282 mbio->bi_disk = (void *)rdev; 1283 1284 atomic_inc(&r10_bio->remaining); 1285 1286 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1287 if (cb) 1288 plug = container_of(cb, struct raid10_plug_cb, cb); 1289 else 1290 plug = NULL; 1291 if (plug) { 1292 bio_list_add(&plug->pending, mbio); 1293 plug->pending_cnt++; 1294 } else { 1295 spin_lock_irqsave(&conf->device_lock, flags); 1296 bio_list_add(&conf->pending_bio_list, mbio); 1297 conf->pending_count++; 1298 spin_unlock_irqrestore(&conf->device_lock, flags); 1299 md_wakeup_thread(mddev->thread); 1300 } 1301 } 1302 1303 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1304 struct r10bio *r10_bio) 1305 { 1306 struct r10conf *conf = mddev->private; 1307 int i; 1308 struct md_rdev *blocked_rdev; 1309 sector_t sectors; 1310 int max_sectors; 1311 1312 if ((mddev_is_clustered(mddev) && 1313 md_cluster_ops->area_resyncing(mddev, WRITE, 1314 bio->bi_iter.bi_sector, 1315 bio_end_sector(bio)))) { 1316 DEFINE_WAIT(w); 1317 for (;;) { 1318 prepare_to_wait(&conf->wait_barrier, 1319 &w, TASK_IDLE); 1320 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1321 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1322 break; 1323 schedule(); 1324 } 1325 finish_wait(&conf->wait_barrier, &w); 1326 } 1327 1328 sectors = r10_bio->sectors; 1329 regular_request_wait(mddev, conf, bio, sectors); 1330 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1331 (mddev->reshape_backwards 1332 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1333 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1334 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1335 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1336 /* Need to update reshape_position in metadata */ 1337 mddev->reshape_position = conf->reshape_progress; 1338 set_mask_bits(&mddev->sb_flags, 0, 1339 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1340 md_wakeup_thread(mddev->thread); 1341 raid10_log(conf->mddev, "wait reshape metadata"); 1342 wait_event(mddev->sb_wait, 1343 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1344 1345 conf->reshape_safe = mddev->reshape_position; 1346 } 1347 1348 if (conf->pending_count >= max_queued_requests) { 1349 md_wakeup_thread(mddev->thread); 1350 raid10_log(mddev, "wait queued"); 1351 wait_event(conf->wait_barrier, 1352 conf->pending_count < max_queued_requests); 1353 } 1354 /* first select target devices under rcu_lock and 1355 * inc refcount on their rdev. Record them by setting 1356 * bios[x] to bio 1357 * If there are known/acknowledged bad blocks on any device 1358 * on which we have seen a write error, we want to avoid 1359 * writing to those blocks. This potentially requires several 1360 * writes to write around the bad blocks. Each set of writes 1361 * gets its own r10_bio with a set of bios attached. 1362 */ 1363 1364 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1365 raid10_find_phys(conf, r10_bio); 1366 retry_write: 1367 blocked_rdev = NULL; 1368 rcu_read_lock(); 1369 max_sectors = r10_bio->sectors; 1370 1371 for (i = 0; i < conf->copies; i++) { 1372 int d = r10_bio->devs[i].devnum; 1373 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1374 struct md_rdev *rrdev = rcu_dereference( 1375 conf->mirrors[d].replacement); 1376 if (rdev == rrdev) 1377 rrdev = NULL; 1378 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1379 atomic_inc(&rdev->nr_pending); 1380 blocked_rdev = rdev; 1381 break; 1382 } 1383 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1384 atomic_inc(&rrdev->nr_pending); 1385 blocked_rdev = rrdev; 1386 break; 1387 } 1388 if (rdev && (test_bit(Faulty, &rdev->flags))) 1389 rdev = NULL; 1390 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1391 rrdev = NULL; 1392 1393 r10_bio->devs[i].bio = NULL; 1394 r10_bio->devs[i].repl_bio = NULL; 1395 1396 if (!rdev && !rrdev) { 1397 set_bit(R10BIO_Degraded, &r10_bio->state); 1398 continue; 1399 } 1400 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1401 sector_t first_bad; 1402 sector_t dev_sector = r10_bio->devs[i].addr; 1403 int bad_sectors; 1404 int is_bad; 1405 1406 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1407 &first_bad, &bad_sectors); 1408 if (is_bad < 0) { 1409 /* Mustn't write here until the bad block 1410 * is acknowledged 1411 */ 1412 atomic_inc(&rdev->nr_pending); 1413 set_bit(BlockedBadBlocks, &rdev->flags); 1414 blocked_rdev = rdev; 1415 break; 1416 } 1417 if (is_bad && first_bad <= dev_sector) { 1418 /* Cannot write here at all */ 1419 bad_sectors -= (dev_sector - first_bad); 1420 if (bad_sectors < max_sectors) 1421 /* Mustn't write more than bad_sectors 1422 * to other devices yet 1423 */ 1424 max_sectors = bad_sectors; 1425 /* We don't set R10BIO_Degraded as that 1426 * only applies if the disk is missing, 1427 * so it might be re-added, and we want to 1428 * know to recover this chunk. 1429 * In this case the device is here, and the 1430 * fact that this chunk is not in-sync is 1431 * recorded in the bad block log. 1432 */ 1433 continue; 1434 } 1435 if (is_bad) { 1436 int good_sectors = first_bad - dev_sector; 1437 if (good_sectors < max_sectors) 1438 max_sectors = good_sectors; 1439 } 1440 } 1441 if (rdev) { 1442 r10_bio->devs[i].bio = bio; 1443 atomic_inc(&rdev->nr_pending); 1444 } 1445 if (rrdev) { 1446 r10_bio->devs[i].repl_bio = bio; 1447 atomic_inc(&rrdev->nr_pending); 1448 } 1449 } 1450 rcu_read_unlock(); 1451 1452 if (unlikely(blocked_rdev)) { 1453 /* Have to wait for this device to get unblocked, then retry */ 1454 int j; 1455 int d; 1456 1457 for (j = 0; j < i; j++) { 1458 if (r10_bio->devs[j].bio) { 1459 d = r10_bio->devs[j].devnum; 1460 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1461 } 1462 if (r10_bio->devs[j].repl_bio) { 1463 struct md_rdev *rdev; 1464 d = r10_bio->devs[j].devnum; 1465 rdev = conf->mirrors[d].replacement; 1466 if (!rdev) { 1467 /* Race with remove_disk */ 1468 smp_mb(); 1469 rdev = conf->mirrors[d].rdev; 1470 } 1471 rdev_dec_pending(rdev, mddev); 1472 } 1473 } 1474 allow_barrier(conf); 1475 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1476 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1477 wait_barrier(conf); 1478 goto retry_write; 1479 } 1480 1481 if (max_sectors < r10_bio->sectors) 1482 r10_bio->sectors = max_sectors; 1483 1484 if (r10_bio->sectors < bio_sectors(bio)) { 1485 struct bio *split = bio_split(bio, r10_bio->sectors, 1486 GFP_NOIO, &conf->bio_split); 1487 bio_chain(split, bio); 1488 allow_barrier(conf); 1489 generic_make_request(bio); 1490 wait_barrier(conf); 1491 bio = split; 1492 r10_bio->master_bio = bio; 1493 } 1494 1495 atomic_set(&r10_bio->remaining, 1); 1496 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1497 1498 for (i = 0; i < conf->copies; i++) { 1499 if (r10_bio->devs[i].bio) 1500 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1501 if (r10_bio->devs[i].repl_bio) 1502 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1503 } 1504 one_write_done(r10_bio); 1505 } 1506 1507 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1508 { 1509 struct r10conf *conf = mddev->private; 1510 struct r10bio *r10_bio; 1511 1512 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1513 1514 r10_bio->master_bio = bio; 1515 r10_bio->sectors = sectors; 1516 1517 r10_bio->mddev = mddev; 1518 r10_bio->sector = bio->bi_iter.bi_sector; 1519 r10_bio->state = 0; 1520 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies); 1521 1522 if (bio_data_dir(bio) == READ) 1523 raid10_read_request(mddev, bio, r10_bio); 1524 else 1525 raid10_write_request(mddev, bio, r10_bio); 1526 } 1527 1528 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1529 { 1530 struct r10conf *conf = mddev->private; 1531 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1532 int chunk_sects = chunk_mask + 1; 1533 int sectors = bio_sectors(bio); 1534 1535 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1536 md_flush_request(mddev, bio); 1537 return true; 1538 } 1539 1540 if (!md_write_start(mddev, bio)) 1541 return false; 1542 1543 /* 1544 * If this request crosses a chunk boundary, we need to split 1545 * it. 1546 */ 1547 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1548 sectors > chunk_sects 1549 && (conf->geo.near_copies < conf->geo.raid_disks 1550 || conf->prev.near_copies < 1551 conf->prev.raid_disks))) 1552 sectors = chunk_sects - 1553 (bio->bi_iter.bi_sector & 1554 (chunk_sects - 1)); 1555 __make_request(mddev, bio, sectors); 1556 1557 /* In case raid10d snuck in to freeze_array */ 1558 wake_up(&conf->wait_barrier); 1559 return true; 1560 } 1561 1562 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1563 { 1564 struct r10conf *conf = mddev->private; 1565 int i; 1566 1567 if (conf->geo.near_copies < conf->geo.raid_disks) 1568 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1569 if (conf->geo.near_copies > 1) 1570 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1571 if (conf->geo.far_copies > 1) { 1572 if (conf->geo.far_offset) 1573 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1574 else 1575 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1576 if (conf->geo.far_set_size != conf->geo.raid_disks) 1577 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1578 } 1579 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1580 conf->geo.raid_disks - mddev->degraded); 1581 rcu_read_lock(); 1582 for (i = 0; i < conf->geo.raid_disks; i++) { 1583 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1584 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1585 } 1586 rcu_read_unlock(); 1587 seq_printf(seq, "]"); 1588 } 1589 1590 /* check if there are enough drives for 1591 * every block to appear on atleast one. 1592 * Don't consider the device numbered 'ignore' 1593 * as we might be about to remove it. 1594 */ 1595 static int _enough(struct r10conf *conf, int previous, int ignore) 1596 { 1597 int first = 0; 1598 int has_enough = 0; 1599 int disks, ncopies; 1600 if (previous) { 1601 disks = conf->prev.raid_disks; 1602 ncopies = conf->prev.near_copies; 1603 } else { 1604 disks = conf->geo.raid_disks; 1605 ncopies = conf->geo.near_copies; 1606 } 1607 1608 rcu_read_lock(); 1609 do { 1610 int n = conf->copies; 1611 int cnt = 0; 1612 int this = first; 1613 while (n--) { 1614 struct md_rdev *rdev; 1615 if (this != ignore && 1616 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1617 test_bit(In_sync, &rdev->flags)) 1618 cnt++; 1619 this = (this+1) % disks; 1620 } 1621 if (cnt == 0) 1622 goto out; 1623 first = (first + ncopies) % disks; 1624 } while (first != 0); 1625 has_enough = 1; 1626 out: 1627 rcu_read_unlock(); 1628 return has_enough; 1629 } 1630 1631 static int enough(struct r10conf *conf, int ignore) 1632 { 1633 /* when calling 'enough', both 'prev' and 'geo' must 1634 * be stable. 1635 * This is ensured if ->reconfig_mutex or ->device_lock 1636 * is held. 1637 */ 1638 return _enough(conf, 0, ignore) && 1639 _enough(conf, 1, ignore); 1640 } 1641 1642 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1643 { 1644 char b[BDEVNAME_SIZE]; 1645 struct r10conf *conf = mddev->private; 1646 unsigned long flags; 1647 1648 /* 1649 * If it is not operational, then we have already marked it as dead 1650 * else if it is the last working disks, ignore the error, let the 1651 * next level up know. 1652 * else mark the drive as failed 1653 */ 1654 spin_lock_irqsave(&conf->device_lock, flags); 1655 if (test_bit(In_sync, &rdev->flags) 1656 && !enough(conf, rdev->raid_disk)) { 1657 /* 1658 * Don't fail the drive, just return an IO error. 1659 */ 1660 spin_unlock_irqrestore(&conf->device_lock, flags); 1661 return; 1662 } 1663 if (test_and_clear_bit(In_sync, &rdev->flags)) 1664 mddev->degraded++; 1665 /* 1666 * If recovery is running, make sure it aborts. 1667 */ 1668 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1669 set_bit(Blocked, &rdev->flags); 1670 set_bit(Faulty, &rdev->flags); 1671 set_mask_bits(&mddev->sb_flags, 0, 1672 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1673 spin_unlock_irqrestore(&conf->device_lock, flags); 1674 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1675 "md/raid10:%s: Operation continuing on %d devices.\n", 1676 mdname(mddev), bdevname(rdev->bdev, b), 1677 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1678 } 1679 1680 static void print_conf(struct r10conf *conf) 1681 { 1682 int i; 1683 struct md_rdev *rdev; 1684 1685 pr_debug("RAID10 conf printout:\n"); 1686 if (!conf) { 1687 pr_debug("(!conf)\n"); 1688 return; 1689 } 1690 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1691 conf->geo.raid_disks); 1692 1693 /* This is only called with ->reconfix_mutex held, so 1694 * rcu protection of rdev is not needed */ 1695 for (i = 0; i < conf->geo.raid_disks; i++) { 1696 char b[BDEVNAME_SIZE]; 1697 rdev = conf->mirrors[i].rdev; 1698 if (rdev) 1699 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1700 i, !test_bit(In_sync, &rdev->flags), 1701 !test_bit(Faulty, &rdev->flags), 1702 bdevname(rdev->bdev,b)); 1703 } 1704 } 1705 1706 static void close_sync(struct r10conf *conf) 1707 { 1708 wait_barrier(conf); 1709 allow_barrier(conf); 1710 1711 mempool_exit(&conf->r10buf_pool); 1712 } 1713 1714 static int raid10_spare_active(struct mddev *mddev) 1715 { 1716 int i; 1717 struct r10conf *conf = mddev->private; 1718 struct raid10_info *tmp; 1719 int count = 0; 1720 unsigned long flags; 1721 1722 /* 1723 * Find all non-in_sync disks within the RAID10 configuration 1724 * and mark them in_sync 1725 */ 1726 for (i = 0; i < conf->geo.raid_disks; i++) { 1727 tmp = conf->mirrors + i; 1728 if (tmp->replacement 1729 && tmp->replacement->recovery_offset == MaxSector 1730 && !test_bit(Faulty, &tmp->replacement->flags) 1731 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1732 /* Replacement has just become active */ 1733 if (!tmp->rdev 1734 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1735 count++; 1736 if (tmp->rdev) { 1737 /* Replaced device not technically faulty, 1738 * but we need to be sure it gets removed 1739 * and never re-added. 1740 */ 1741 set_bit(Faulty, &tmp->rdev->flags); 1742 sysfs_notify_dirent_safe( 1743 tmp->rdev->sysfs_state); 1744 } 1745 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1746 } else if (tmp->rdev 1747 && tmp->rdev->recovery_offset == MaxSector 1748 && !test_bit(Faulty, &tmp->rdev->flags) 1749 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1750 count++; 1751 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1752 } 1753 } 1754 spin_lock_irqsave(&conf->device_lock, flags); 1755 mddev->degraded -= count; 1756 spin_unlock_irqrestore(&conf->device_lock, flags); 1757 1758 print_conf(conf); 1759 return count; 1760 } 1761 1762 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1763 { 1764 struct r10conf *conf = mddev->private; 1765 int err = -EEXIST; 1766 int mirror; 1767 int first = 0; 1768 int last = conf->geo.raid_disks - 1; 1769 1770 if (mddev->recovery_cp < MaxSector) 1771 /* only hot-add to in-sync arrays, as recovery is 1772 * very different from resync 1773 */ 1774 return -EBUSY; 1775 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1776 return -EINVAL; 1777 1778 if (md_integrity_add_rdev(rdev, mddev)) 1779 return -ENXIO; 1780 1781 if (rdev->raid_disk >= 0) 1782 first = last = rdev->raid_disk; 1783 1784 if (rdev->saved_raid_disk >= first && 1785 rdev->saved_raid_disk < conf->geo.raid_disks && 1786 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1787 mirror = rdev->saved_raid_disk; 1788 else 1789 mirror = first; 1790 for ( ; mirror <= last ; mirror++) { 1791 struct raid10_info *p = &conf->mirrors[mirror]; 1792 if (p->recovery_disabled == mddev->recovery_disabled) 1793 continue; 1794 if (p->rdev) { 1795 if (!test_bit(WantReplacement, &p->rdev->flags) || 1796 p->replacement != NULL) 1797 continue; 1798 clear_bit(In_sync, &rdev->flags); 1799 set_bit(Replacement, &rdev->flags); 1800 rdev->raid_disk = mirror; 1801 err = 0; 1802 if (mddev->gendisk) 1803 disk_stack_limits(mddev->gendisk, rdev->bdev, 1804 rdev->data_offset << 9); 1805 conf->fullsync = 1; 1806 rcu_assign_pointer(p->replacement, rdev); 1807 break; 1808 } 1809 1810 if (mddev->gendisk) 1811 disk_stack_limits(mddev->gendisk, rdev->bdev, 1812 rdev->data_offset << 9); 1813 1814 p->head_position = 0; 1815 p->recovery_disabled = mddev->recovery_disabled - 1; 1816 rdev->raid_disk = mirror; 1817 err = 0; 1818 if (rdev->saved_raid_disk != mirror) 1819 conf->fullsync = 1; 1820 rcu_assign_pointer(p->rdev, rdev); 1821 break; 1822 } 1823 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1824 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1825 1826 print_conf(conf); 1827 return err; 1828 } 1829 1830 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1831 { 1832 struct r10conf *conf = mddev->private; 1833 int err = 0; 1834 int number = rdev->raid_disk; 1835 struct md_rdev **rdevp; 1836 struct raid10_info *p = conf->mirrors + number; 1837 1838 print_conf(conf); 1839 if (rdev == p->rdev) 1840 rdevp = &p->rdev; 1841 else if (rdev == p->replacement) 1842 rdevp = &p->replacement; 1843 else 1844 return 0; 1845 1846 if (test_bit(In_sync, &rdev->flags) || 1847 atomic_read(&rdev->nr_pending)) { 1848 err = -EBUSY; 1849 goto abort; 1850 } 1851 /* Only remove non-faulty devices if recovery 1852 * is not possible. 1853 */ 1854 if (!test_bit(Faulty, &rdev->flags) && 1855 mddev->recovery_disabled != p->recovery_disabled && 1856 (!p->replacement || p->replacement == rdev) && 1857 number < conf->geo.raid_disks && 1858 enough(conf, -1)) { 1859 err = -EBUSY; 1860 goto abort; 1861 } 1862 *rdevp = NULL; 1863 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1864 synchronize_rcu(); 1865 if (atomic_read(&rdev->nr_pending)) { 1866 /* lost the race, try later */ 1867 err = -EBUSY; 1868 *rdevp = rdev; 1869 goto abort; 1870 } 1871 } 1872 if (p->replacement) { 1873 /* We must have just cleared 'rdev' */ 1874 p->rdev = p->replacement; 1875 clear_bit(Replacement, &p->replacement->flags); 1876 smp_mb(); /* Make sure other CPUs may see both as identical 1877 * but will never see neither -- if they are careful. 1878 */ 1879 p->replacement = NULL; 1880 } 1881 1882 clear_bit(WantReplacement, &rdev->flags); 1883 err = md_integrity_register(mddev); 1884 1885 abort: 1886 1887 print_conf(conf); 1888 return err; 1889 } 1890 1891 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 1892 { 1893 struct r10conf *conf = r10_bio->mddev->private; 1894 1895 if (!bio->bi_status) 1896 set_bit(R10BIO_Uptodate, &r10_bio->state); 1897 else 1898 /* The write handler will notice the lack of 1899 * R10BIO_Uptodate and record any errors etc 1900 */ 1901 atomic_add(r10_bio->sectors, 1902 &conf->mirrors[d].rdev->corrected_errors); 1903 1904 /* for reconstruct, we always reschedule after a read. 1905 * for resync, only after all reads 1906 */ 1907 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1908 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1909 atomic_dec_and_test(&r10_bio->remaining)) { 1910 /* we have read all the blocks, 1911 * do the comparison in process context in raid10d 1912 */ 1913 reschedule_retry(r10_bio); 1914 } 1915 } 1916 1917 static void end_sync_read(struct bio *bio) 1918 { 1919 struct r10bio *r10_bio = get_resync_r10bio(bio); 1920 struct r10conf *conf = r10_bio->mddev->private; 1921 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1922 1923 __end_sync_read(r10_bio, bio, d); 1924 } 1925 1926 static void end_reshape_read(struct bio *bio) 1927 { 1928 /* reshape read bio isn't allocated from r10buf_pool */ 1929 struct r10bio *r10_bio = bio->bi_private; 1930 1931 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 1932 } 1933 1934 static void end_sync_request(struct r10bio *r10_bio) 1935 { 1936 struct mddev *mddev = r10_bio->mddev; 1937 1938 while (atomic_dec_and_test(&r10_bio->remaining)) { 1939 if (r10_bio->master_bio == NULL) { 1940 /* the primary of several recovery bios */ 1941 sector_t s = r10_bio->sectors; 1942 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1943 test_bit(R10BIO_WriteError, &r10_bio->state)) 1944 reschedule_retry(r10_bio); 1945 else 1946 put_buf(r10_bio); 1947 md_done_sync(mddev, s, 1); 1948 break; 1949 } else { 1950 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1951 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1952 test_bit(R10BIO_WriteError, &r10_bio->state)) 1953 reschedule_retry(r10_bio); 1954 else 1955 put_buf(r10_bio); 1956 r10_bio = r10_bio2; 1957 } 1958 } 1959 } 1960 1961 static void end_sync_write(struct bio *bio) 1962 { 1963 struct r10bio *r10_bio = get_resync_r10bio(bio); 1964 struct mddev *mddev = r10_bio->mddev; 1965 struct r10conf *conf = mddev->private; 1966 int d; 1967 sector_t first_bad; 1968 int bad_sectors; 1969 int slot; 1970 int repl; 1971 struct md_rdev *rdev = NULL; 1972 1973 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1974 if (repl) 1975 rdev = conf->mirrors[d].replacement; 1976 else 1977 rdev = conf->mirrors[d].rdev; 1978 1979 if (bio->bi_status) { 1980 if (repl) 1981 md_error(mddev, rdev); 1982 else { 1983 set_bit(WriteErrorSeen, &rdev->flags); 1984 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1985 set_bit(MD_RECOVERY_NEEDED, 1986 &rdev->mddev->recovery); 1987 set_bit(R10BIO_WriteError, &r10_bio->state); 1988 } 1989 } else if (is_badblock(rdev, 1990 r10_bio->devs[slot].addr, 1991 r10_bio->sectors, 1992 &first_bad, &bad_sectors)) 1993 set_bit(R10BIO_MadeGood, &r10_bio->state); 1994 1995 rdev_dec_pending(rdev, mddev); 1996 1997 end_sync_request(r10_bio); 1998 } 1999 2000 /* 2001 * Note: sync and recover and handled very differently for raid10 2002 * This code is for resync. 2003 * For resync, we read through virtual addresses and read all blocks. 2004 * If there is any error, we schedule a write. The lowest numbered 2005 * drive is authoritative. 2006 * However requests come for physical address, so we need to map. 2007 * For every physical address there are raid_disks/copies virtual addresses, 2008 * which is always are least one, but is not necessarly an integer. 2009 * This means that a physical address can span multiple chunks, so we may 2010 * have to submit multiple io requests for a single sync request. 2011 */ 2012 /* 2013 * We check if all blocks are in-sync and only write to blocks that 2014 * aren't in sync 2015 */ 2016 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2017 { 2018 struct r10conf *conf = mddev->private; 2019 int i, first; 2020 struct bio *tbio, *fbio; 2021 int vcnt; 2022 struct page **tpages, **fpages; 2023 2024 atomic_set(&r10_bio->remaining, 1); 2025 2026 /* find the first device with a block */ 2027 for (i=0; i<conf->copies; i++) 2028 if (!r10_bio->devs[i].bio->bi_status) 2029 break; 2030 2031 if (i == conf->copies) 2032 goto done; 2033 2034 first = i; 2035 fbio = r10_bio->devs[i].bio; 2036 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2037 fbio->bi_iter.bi_idx = 0; 2038 fpages = get_resync_pages(fbio)->pages; 2039 2040 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2041 /* now find blocks with errors */ 2042 for (i=0 ; i < conf->copies ; i++) { 2043 int j, d; 2044 struct md_rdev *rdev; 2045 struct resync_pages *rp; 2046 2047 tbio = r10_bio->devs[i].bio; 2048 2049 if (tbio->bi_end_io != end_sync_read) 2050 continue; 2051 if (i == first) 2052 continue; 2053 2054 tpages = get_resync_pages(tbio)->pages; 2055 d = r10_bio->devs[i].devnum; 2056 rdev = conf->mirrors[d].rdev; 2057 if (!r10_bio->devs[i].bio->bi_status) { 2058 /* We know that the bi_io_vec layout is the same for 2059 * both 'first' and 'i', so we just compare them. 2060 * All vec entries are PAGE_SIZE; 2061 */ 2062 int sectors = r10_bio->sectors; 2063 for (j = 0; j < vcnt; j++) { 2064 int len = PAGE_SIZE; 2065 if (sectors < (len / 512)) 2066 len = sectors * 512; 2067 if (memcmp(page_address(fpages[j]), 2068 page_address(tpages[j]), 2069 len)) 2070 break; 2071 sectors -= len/512; 2072 } 2073 if (j == vcnt) 2074 continue; 2075 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2076 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2077 /* Don't fix anything. */ 2078 continue; 2079 } else if (test_bit(FailFast, &rdev->flags)) { 2080 /* Just give up on this device */ 2081 md_error(rdev->mddev, rdev); 2082 continue; 2083 } 2084 /* Ok, we need to write this bio, either to correct an 2085 * inconsistency or to correct an unreadable block. 2086 * First we need to fixup bv_offset, bv_len and 2087 * bi_vecs, as the read request might have corrupted these 2088 */ 2089 rp = get_resync_pages(tbio); 2090 bio_reset(tbio); 2091 2092 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2093 2094 rp->raid_bio = r10_bio; 2095 tbio->bi_private = rp; 2096 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2097 tbio->bi_end_io = end_sync_write; 2098 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2099 2100 bio_copy_data(tbio, fbio); 2101 2102 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2103 atomic_inc(&r10_bio->remaining); 2104 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2105 2106 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2107 tbio->bi_opf |= MD_FAILFAST; 2108 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2109 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev); 2110 generic_make_request(tbio); 2111 } 2112 2113 /* Now write out to any replacement devices 2114 * that are active 2115 */ 2116 for (i = 0; i < conf->copies; i++) { 2117 int d; 2118 2119 tbio = r10_bio->devs[i].repl_bio; 2120 if (!tbio || !tbio->bi_end_io) 2121 continue; 2122 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2123 && r10_bio->devs[i].bio != fbio) 2124 bio_copy_data(tbio, fbio); 2125 d = r10_bio->devs[i].devnum; 2126 atomic_inc(&r10_bio->remaining); 2127 md_sync_acct(conf->mirrors[d].replacement->bdev, 2128 bio_sectors(tbio)); 2129 generic_make_request(tbio); 2130 } 2131 2132 done: 2133 if (atomic_dec_and_test(&r10_bio->remaining)) { 2134 md_done_sync(mddev, r10_bio->sectors, 1); 2135 put_buf(r10_bio); 2136 } 2137 } 2138 2139 /* 2140 * Now for the recovery code. 2141 * Recovery happens across physical sectors. 2142 * We recover all non-is_sync drives by finding the virtual address of 2143 * each, and then choose a working drive that also has that virt address. 2144 * There is a separate r10_bio for each non-in_sync drive. 2145 * Only the first two slots are in use. The first for reading, 2146 * The second for writing. 2147 * 2148 */ 2149 static void fix_recovery_read_error(struct r10bio *r10_bio) 2150 { 2151 /* We got a read error during recovery. 2152 * We repeat the read in smaller page-sized sections. 2153 * If a read succeeds, write it to the new device or record 2154 * a bad block if we cannot. 2155 * If a read fails, record a bad block on both old and 2156 * new devices. 2157 */ 2158 struct mddev *mddev = r10_bio->mddev; 2159 struct r10conf *conf = mddev->private; 2160 struct bio *bio = r10_bio->devs[0].bio; 2161 sector_t sect = 0; 2162 int sectors = r10_bio->sectors; 2163 int idx = 0; 2164 int dr = r10_bio->devs[0].devnum; 2165 int dw = r10_bio->devs[1].devnum; 2166 struct page **pages = get_resync_pages(bio)->pages; 2167 2168 while (sectors) { 2169 int s = sectors; 2170 struct md_rdev *rdev; 2171 sector_t addr; 2172 int ok; 2173 2174 if (s > (PAGE_SIZE>>9)) 2175 s = PAGE_SIZE >> 9; 2176 2177 rdev = conf->mirrors[dr].rdev; 2178 addr = r10_bio->devs[0].addr + sect, 2179 ok = sync_page_io(rdev, 2180 addr, 2181 s << 9, 2182 pages[idx], 2183 REQ_OP_READ, 0, false); 2184 if (ok) { 2185 rdev = conf->mirrors[dw].rdev; 2186 addr = r10_bio->devs[1].addr + sect; 2187 ok = sync_page_io(rdev, 2188 addr, 2189 s << 9, 2190 pages[idx], 2191 REQ_OP_WRITE, 0, false); 2192 if (!ok) { 2193 set_bit(WriteErrorSeen, &rdev->flags); 2194 if (!test_and_set_bit(WantReplacement, 2195 &rdev->flags)) 2196 set_bit(MD_RECOVERY_NEEDED, 2197 &rdev->mddev->recovery); 2198 } 2199 } 2200 if (!ok) { 2201 /* We don't worry if we cannot set a bad block - 2202 * it really is bad so there is no loss in not 2203 * recording it yet 2204 */ 2205 rdev_set_badblocks(rdev, addr, s, 0); 2206 2207 if (rdev != conf->mirrors[dw].rdev) { 2208 /* need bad block on destination too */ 2209 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2210 addr = r10_bio->devs[1].addr + sect; 2211 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2212 if (!ok) { 2213 /* just abort the recovery */ 2214 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2215 mdname(mddev)); 2216 2217 conf->mirrors[dw].recovery_disabled 2218 = mddev->recovery_disabled; 2219 set_bit(MD_RECOVERY_INTR, 2220 &mddev->recovery); 2221 break; 2222 } 2223 } 2224 } 2225 2226 sectors -= s; 2227 sect += s; 2228 idx++; 2229 } 2230 } 2231 2232 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2233 { 2234 struct r10conf *conf = mddev->private; 2235 int d; 2236 struct bio *wbio, *wbio2; 2237 2238 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2239 fix_recovery_read_error(r10_bio); 2240 end_sync_request(r10_bio); 2241 return; 2242 } 2243 2244 /* 2245 * share the pages with the first bio 2246 * and submit the write request 2247 */ 2248 d = r10_bio->devs[1].devnum; 2249 wbio = r10_bio->devs[1].bio; 2250 wbio2 = r10_bio->devs[1].repl_bio; 2251 /* Need to test wbio2->bi_end_io before we call 2252 * generic_make_request as if the former is NULL, 2253 * the latter is free to free wbio2. 2254 */ 2255 if (wbio2 && !wbio2->bi_end_io) 2256 wbio2 = NULL; 2257 if (wbio->bi_end_io) { 2258 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2259 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2260 generic_make_request(wbio); 2261 } 2262 if (wbio2) { 2263 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2264 md_sync_acct(conf->mirrors[d].replacement->bdev, 2265 bio_sectors(wbio2)); 2266 generic_make_request(wbio2); 2267 } 2268 } 2269 2270 /* 2271 * Used by fix_read_error() to decay the per rdev read_errors. 2272 * We halve the read error count for every hour that has elapsed 2273 * since the last recorded read error. 2274 * 2275 */ 2276 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2277 { 2278 long cur_time_mon; 2279 unsigned long hours_since_last; 2280 unsigned int read_errors = atomic_read(&rdev->read_errors); 2281 2282 cur_time_mon = ktime_get_seconds(); 2283 2284 if (rdev->last_read_error == 0) { 2285 /* first time we've seen a read error */ 2286 rdev->last_read_error = cur_time_mon; 2287 return; 2288 } 2289 2290 hours_since_last = (long)(cur_time_mon - 2291 rdev->last_read_error) / 3600; 2292 2293 rdev->last_read_error = cur_time_mon; 2294 2295 /* 2296 * if hours_since_last is > the number of bits in read_errors 2297 * just set read errors to 0. We do this to avoid 2298 * overflowing the shift of read_errors by hours_since_last. 2299 */ 2300 if (hours_since_last >= 8 * sizeof(read_errors)) 2301 atomic_set(&rdev->read_errors, 0); 2302 else 2303 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2304 } 2305 2306 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2307 int sectors, struct page *page, int rw) 2308 { 2309 sector_t first_bad; 2310 int bad_sectors; 2311 2312 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2313 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2314 return -1; 2315 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2316 /* success */ 2317 return 1; 2318 if (rw == WRITE) { 2319 set_bit(WriteErrorSeen, &rdev->flags); 2320 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2321 set_bit(MD_RECOVERY_NEEDED, 2322 &rdev->mddev->recovery); 2323 } 2324 /* need to record an error - either for the block or the device */ 2325 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2326 md_error(rdev->mddev, rdev); 2327 return 0; 2328 } 2329 2330 /* 2331 * This is a kernel thread which: 2332 * 2333 * 1. Retries failed read operations on working mirrors. 2334 * 2. Updates the raid superblock when problems encounter. 2335 * 3. Performs writes following reads for array synchronising. 2336 */ 2337 2338 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2339 { 2340 int sect = 0; /* Offset from r10_bio->sector */ 2341 int sectors = r10_bio->sectors; 2342 struct md_rdev *rdev; 2343 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2344 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2345 2346 /* still own a reference to this rdev, so it cannot 2347 * have been cleared recently. 2348 */ 2349 rdev = conf->mirrors[d].rdev; 2350 2351 if (test_bit(Faulty, &rdev->flags)) 2352 /* drive has already been failed, just ignore any 2353 more fix_read_error() attempts */ 2354 return; 2355 2356 check_decay_read_errors(mddev, rdev); 2357 atomic_inc(&rdev->read_errors); 2358 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2359 char b[BDEVNAME_SIZE]; 2360 bdevname(rdev->bdev, b); 2361 2362 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2363 mdname(mddev), b, 2364 atomic_read(&rdev->read_errors), max_read_errors); 2365 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2366 mdname(mddev), b); 2367 md_error(mddev, rdev); 2368 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2369 return; 2370 } 2371 2372 while(sectors) { 2373 int s = sectors; 2374 int sl = r10_bio->read_slot; 2375 int success = 0; 2376 int start; 2377 2378 if (s > (PAGE_SIZE>>9)) 2379 s = PAGE_SIZE >> 9; 2380 2381 rcu_read_lock(); 2382 do { 2383 sector_t first_bad; 2384 int bad_sectors; 2385 2386 d = r10_bio->devs[sl].devnum; 2387 rdev = rcu_dereference(conf->mirrors[d].rdev); 2388 if (rdev && 2389 test_bit(In_sync, &rdev->flags) && 2390 !test_bit(Faulty, &rdev->flags) && 2391 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2392 &first_bad, &bad_sectors) == 0) { 2393 atomic_inc(&rdev->nr_pending); 2394 rcu_read_unlock(); 2395 success = sync_page_io(rdev, 2396 r10_bio->devs[sl].addr + 2397 sect, 2398 s<<9, 2399 conf->tmppage, 2400 REQ_OP_READ, 0, false); 2401 rdev_dec_pending(rdev, mddev); 2402 rcu_read_lock(); 2403 if (success) 2404 break; 2405 } 2406 sl++; 2407 if (sl == conf->copies) 2408 sl = 0; 2409 } while (!success && sl != r10_bio->read_slot); 2410 rcu_read_unlock(); 2411 2412 if (!success) { 2413 /* Cannot read from anywhere, just mark the block 2414 * as bad on the first device to discourage future 2415 * reads. 2416 */ 2417 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2418 rdev = conf->mirrors[dn].rdev; 2419 2420 if (!rdev_set_badblocks( 2421 rdev, 2422 r10_bio->devs[r10_bio->read_slot].addr 2423 + sect, 2424 s, 0)) { 2425 md_error(mddev, rdev); 2426 r10_bio->devs[r10_bio->read_slot].bio 2427 = IO_BLOCKED; 2428 } 2429 break; 2430 } 2431 2432 start = sl; 2433 /* write it back and re-read */ 2434 rcu_read_lock(); 2435 while (sl != r10_bio->read_slot) { 2436 char b[BDEVNAME_SIZE]; 2437 2438 if (sl==0) 2439 sl = conf->copies; 2440 sl--; 2441 d = r10_bio->devs[sl].devnum; 2442 rdev = rcu_dereference(conf->mirrors[d].rdev); 2443 if (!rdev || 2444 test_bit(Faulty, &rdev->flags) || 2445 !test_bit(In_sync, &rdev->flags)) 2446 continue; 2447 2448 atomic_inc(&rdev->nr_pending); 2449 rcu_read_unlock(); 2450 if (r10_sync_page_io(rdev, 2451 r10_bio->devs[sl].addr + 2452 sect, 2453 s, conf->tmppage, WRITE) 2454 == 0) { 2455 /* Well, this device is dead */ 2456 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2457 mdname(mddev), s, 2458 (unsigned long long)( 2459 sect + 2460 choose_data_offset(r10_bio, 2461 rdev)), 2462 bdevname(rdev->bdev, b)); 2463 pr_notice("md/raid10:%s: %s: failing drive\n", 2464 mdname(mddev), 2465 bdevname(rdev->bdev, b)); 2466 } 2467 rdev_dec_pending(rdev, mddev); 2468 rcu_read_lock(); 2469 } 2470 sl = start; 2471 while (sl != r10_bio->read_slot) { 2472 char b[BDEVNAME_SIZE]; 2473 2474 if (sl==0) 2475 sl = conf->copies; 2476 sl--; 2477 d = r10_bio->devs[sl].devnum; 2478 rdev = rcu_dereference(conf->mirrors[d].rdev); 2479 if (!rdev || 2480 test_bit(Faulty, &rdev->flags) || 2481 !test_bit(In_sync, &rdev->flags)) 2482 continue; 2483 2484 atomic_inc(&rdev->nr_pending); 2485 rcu_read_unlock(); 2486 switch (r10_sync_page_io(rdev, 2487 r10_bio->devs[sl].addr + 2488 sect, 2489 s, conf->tmppage, 2490 READ)) { 2491 case 0: 2492 /* Well, this device is dead */ 2493 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2494 mdname(mddev), s, 2495 (unsigned long long)( 2496 sect + 2497 choose_data_offset(r10_bio, rdev)), 2498 bdevname(rdev->bdev, b)); 2499 pr_notice("md/raid10:%s: %s: failing drive\n", 2500 mdname(mddev), 2501 bdevname(rdev->bdev, b)); 2502 break; 2503 case 1: 2504 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2505 mdname(mddev), s, 2506 (unsigned long long)( 2507 sect + 2508 choose_data_offset(r10_bio, rdev)), 2509 bdevname(rdev->bdev, b)); 2510 atomic_add(s, &rdev->corrected_errors); 2511 } 2512 2513 rdev_dec_pending(rdev, mddev); 2514 rcu_read_lock(); 2515 } 2516 rcu_read_unlock(); 2517 2518 sectors -= s; 2519 sect += s; 2520 } 2521 } 2522 2523 static int narrow_write_error(struct r10bio *r10_bio, int i) 2524 { 2525 struct bio *bio = r10_bio->master_bio; 2526 struct mddev *mddev = r10_bio->mddev; 2527 struct r10conf *conf = mddev->private; 2528 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2529 /* bio has the data to be written to slot 'i' where 2530 * we just recently had a write error. 2531 * We repeatedly clone the bio and trim down to one block, 2532 * then try the write. Where the write fails we record 2533 * a bad block. 2534 * It is conceivable that the bio doesn't exactly align with 2535 * blocks. We must handle this. 2536 * 2537 * We currently own a reference to the rdev. 2538 */ 2539 2540 int block_sectors; 2541 sector_t sector; 2542 int sectors; 2543 int sect_to_write = r10_bio->sectors; 2544 int ok = 1; 2545 2546 if (rdev->badblocks.shift < 0) 2547 return 0; 2548 2549 block_sectors = roundup(1 << rdev->badblocks.shift, 2550 bdev_logical_block_size(rdev->bdev) >> 9); 2551 sector = r10_bio->sector; 2552 sectors = ((r10_bio->sector + block_sectors) 2553 & ~(sector_t)(block_sectors - 1)) 2554 - sector; 2555 2556 while (sect_to_write) { 2557 struct bio *wbio; 2558 sector_t wsector; 2559 if (sectors > sect_to_write) 2560 sectors = sect_to_write; 2561 /* Write at 'sector' for 'sectors' */ 2562 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 2563 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2564 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2565 wbio->bi_iter.bi_sector = wsector + 2566 choose_data_offset(r10_bio, rdev); 2567 bio_set_dev(wbio, rdev->bdev); 2568 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2569 2570 if (submit_bio_wait(wbio) < 0) 2571 /* Failure! */ 2572 ok = rdev_set_badblocks(rdev, wsector, 2573 sectors, 0) 2574 && ok; 2575 2576 bio_put(wbio); 2577 sect_to_write -= sectors; 2578 sector += sectors; 2579 sectors = block_sectors; 2580 } 2581 return ok; 2582 } 2583 2584 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2585 { 2586 int slot = r10_bio->read_slot; 2587 struct bio *bio; 2588 struct r10conf *conf = mddev->private; 2589 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2590 2591 /* we got a read error. Maybe the drive is bad. Maybe just 2592 * the block and we can fix it. 2593 * We freeze all other IO, and try reading the block from 2594 * other devices. When we find one, we re-write 2595 * and check it that fixes the read error. 2596 * This is all done synchronously while the array is 2597 * frozen. 2598 */ 2599 bio = r10_bio->devs[slot].bio; 2600 bio_put(bio); 2601 r10_bio->devs[slot].bio = NULL; 2602 2603 if (mddev->ro) 2604 r10_bio->devs[slot].bio = IO_BLOCKED; 2605 else if (!test_bit(FailFast, &rdev->flags)) { 2606 freeze_array(conf, 1); 2607 fix_read_error(conf, mddev, r10_bio); 2608 unfreeze_array(conf); 2609 } else 2610 md_error(mddev, rdev); 2611 2612 rdev_dec_pending(rdev, mddev); 2613 allow_barrier(conf); 2614 r10_bio->state = 0; 2615 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2616 } 2617 2618 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2619 { 2620 /* Some sort of write request has finished and it 2621 * succeeded in writing where we thought there was a 2622 * bad block. So forget the bad block. 2623 * Or possibly if failed and we need to record 2624 * a bad block. 2625 */ 2626 int m; 2627 struct md_rdev *rdev; 2628 2629 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2630 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2631 for (m = 0; m < conf->copies; m++) { 2632 int dev = r10_bio->devs[m].devnum; 2633 rdev = conf->mirrors[dev].rdev; 2634 if (r10_bio->devs[m].bio == NULL || 2635 r10_bio->devs[m].bio->bi_end_io == NULL) 2636 continue; 2637 if (!r10_bio->devs[m].bio->bi_status) { 2638 rdev_clear_badblocks( 2639 rdev, 2640 r10_bio->devs[m].addr, 2641 r10_bio->sectors, 0); 2642 } else { 2643 if (!rdev_set_badblocks( 2644 rdev, 2645 r10_bio->devs[m].addr, 2646 r10_bio->sectors, 0)) 2647 md_error(conf->mddev, rdev); 2648 } 2649 rdev = conf->mirrors[dev].replacement; 2650 if (r10_bio->devs[m].repl_bio == NULL || 2651 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2652 continue; 2653 2654 if (!r10_bio->devs[m].repl_bio->bi_status) { 2655 rdev_clear_badblocks( 2656 rdev, 2657 r10_bio->devs[m].addr, 2658 r10_bio->sectors, 0); 2659 } else { 2660 if (!rdev_set_badblocks( 2661 rdev, 2662 r10_bio->devs[m].addr, 2663 r10_bio->sectors, 0)) 2664 md_error(conf->mddev, rdev); 2665 } 2666 } 2667 put_buf(r10_bio); 2668 } else { 2669 bool fail = false; 2670 for (m = 0; m < conf->copies; m++) { 2671 int dev = r10_bio->devs[m].devnum; 2672 struct bio *bio = r10_bio->devs[m].bio; 2673 rdev = conf->mirrors[dev].rdev; 2674 if (bio == IO_MADE_GOOD) { 2675 rdev_clear_badblocks( 2676 rdev, 2677 r10_bio->devs[m].addr, 2678 r10_bio->sectors, 0); 2679 rdev_dec_pending(rdev, conf->mddev); 2680 } else if (bio != NULL && bio->bi_status) { 2681 fail = true; 2682 if (!narrow_write_error(r10_bio, m)) { 2683 md_error(conf->mddev, rdev); 2684 set_bit(R10BIO_Degraded, 2685 &r10_bio->state); 2686 } 2687 rdev_dec_pending(rdev, conf->mddev); 2688 } 2689 bio = r10_bio->devs[m].repl_bio; 2690 rdev = conf->mirrors[dev].replacement; 2691 if (rdev && bio == IO_MADE_GOOD) { 2692 rdev_clear_badblocks( 2693 rdev, 2694 r10_bio->devs[m].addr, 2695 r10_bio->sectors, 0); 2696 rdev_dec_pending(rdev, conf->mddev); 2697 } 2698 } 2699 if (fail) { 2700 spin_lock_irq(&conf->device_lock); 2701 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2702 conf->nr_queued++; 2703 spin_unlock_irq(&conf->device_lock); 2704 /* 2705 * In case freeze_array() is waiting for condition 2706 * nr_pending == nr_queued + extra to be true. 2707 */ 2708 wake_up(&conf->wait_barrier); 2709 md_wakeup_thread(conf->mddev->thread); 2710 } else { 2711 if (test_bit(R10BIO_WriteError, 2712 &r10_bio->state)) 2713 close_write(r10_bio); 2714 raid_end_bio_io(r10_bio); 2715 } 2716 } 2717 } 2718 2719 static void raid10d(struct md_thread *thread) 2720 { 2721 struct mddev *mddev = thread->mddev; 2722 struct r10bio *r10_bio; 2723 unsigned long flags; 2724 struct r10conf *conf = mddev->private; 2725 struct list_head *head = &conf->retry_list; 2726 struct blk_plug plug; 2727 2728 md_check_recovery(mddev); 2729 2730 if (!list_empty_careful(&conf->bio_end_io_list) && 2731 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2732 LIST_HEAD(tmp); 2733 spin_lock_irqsave(&conf->device_lock, flags); 2734 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2735 while (!list_empty(&conf->bio_end_io_list)) { 2736 list_move(conf->bio_end_io_list.prev, &tmp); 2737 conf->nr_queued--; 2738 } 2739 } 2740 spin_unlock_irqrestore(&conf->device_lock, flags); 2741 while (!list_empty(&tmp)) { 2742 r10_bio = list_first_entry(&tmp, struct r10bio, 2743 retry_list); 2744 list_del(&r10_bio->retry_list); 2745 if (mddev->degraded) 2746 set_bit(R10BIO_Degraded, &r10_bio->state); 2747 2748 if (test_bit(R10BIO_WriteError, 2749 &r10_bio->state)) 2750 close_write(r10_bio); 2751 raid_end_bio_io(r10_bio); 2752 } 2753 } 2754 2755 blk_start_plug(&plug); 2756 for (;;) { 2757 2758 flush_pending_writes(conf); 2759 2760 spin_lock_irqsave(&conf->device_lock, flags); 2761 if (list_empty(head)) { 2762 spin_unlock_irqrestore(&conf->device_lock, flags); 2763 break; 2764 } 2765 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2766 list_del(head->prev); 2767 conf->nr_queued--; 2768 spin_unlock_irqrestore(&conf->device_lock, flags); 2769 2770 mddev = r10_bio->mddev; 2771 conf = mddev->private; 2772 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2773 test_bit(R10BIO_WriteError, &r10_bio->state)) 2774 handle_write_completed(conf, r10_bio); 2775 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2776 reshape_request_write(mddev, r10_bio); 2777 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2778 sync_request_write(mddev, r10_bio); 2779 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2780 recovery_request_write(mddev, r10_bio); 2781 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2782 handle_read_error(mddev, r10_bio); 2783 else 2784 WARN_ON_ONCE(1); 2785 2786 cond_resched(); 2787 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2788 md_check_recovery(mddev); 2789 } 2790 blk_finish_plug(&plug); 2791 } 2792 2793 static int init_resync(struct r10conf *conf) 2794 { 2795 int ret, buffs, i; 2796 2797 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2798 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 2799 conf->have_replacement = 0; 2800 for (i = 0; i < conf->geo.raid_disks; i++) 2801 if (conf->mirrors[i].replacement) 2802 conf->have_replacement = 1; 2803 ret = mempool_init(&conf->r10buf_pool, buffs, 2804 r10buf_pool_alloc, r10buf_pool_free, conf); 2805 if (ret) 2806 return ret; 2807 conf->next_resync = 0; 2808 return 0; 2809 } 2810 2811 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 2812 { 2813 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 2814 struct rsync_pages *rp; 2815 struct bio *bio; 2816 int nalloc; 2817 int i; 2818 2819 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 2820 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 2821 nalloc = conf->copies; /* resync */ 2822 else 2823 nalloc = 2; /* recovery */ 2824 2825 for (i = 0; i < nalloc; i++) { 2826 bio = r10bio->devs[i].bio; 2827 rp = bio->bi_private; 2828 bio_reset(bio); 2829 bio->bi_private = rp; 2830 bio = r10bio->devs[i].repl_bio; 2831 if (bio) { 2832 rp = bio->bi_private; 2833 bio_reset(bio); 2834 bio->bi_private = rp; 2835 } 2836 } 2837 return r10bio; 2838 } 2839 2840 /* 2841 * Set cluster_sync_high since we need other nodes to add the 2842 * range [cluster_sync_low, cluster_sync_high] to suspend list. 2843 */ 2844 static void raid10_set_cluster_sync_high(struct r10conf *conf) 2845 { 2846 sector_t window_size; 2847 int extra_chunk, chunks; 2848 2849 /* 2850 * First, here we define "stripe" as a unit which across 2851 * all member devices one time, so we get chunks by use 2852 * raid_disks / near_copies. Otherwise, if near_copies is 2853 * close to raid_disks, then resync window could increases 2854 * linearly with the increase of raid_disks, which means 2855 * we will suspend a really large IO window while it is not 2856 * necessary. If raid_disks is not divisible by near_copies, 2857 * an extra chunk is needed to ensure the whole "stripe" is 2858 * covered. 2859 */ 2860 2861 chunks = conf->geo.raid_disks / conf->geo.near_copies; 2862 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 2863 extra_chunk = 0; 2864 else 2865 extra_chunk = 1; 2866 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 2867 2868 /* 2869 * At least use a 32M window to align with raid1's resync window 2870 */ 2871 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 2872 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 2873 2874 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 2875 } 2876 2877 /* 2878 * perform a "sync" on one "block" 2879 * 2880 * We need to make sure that no normal I/O request - particularly write 2881 * requests - conflict with active sync requests. 2882 * 2883 * This is achieved by tracking pending requests and a 'barrier' concept 2884 * that can be installed to exclude normal IO requests. 2885 * 2886 * Resync and recovery are handled very differently. 2887 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2888 * 2889 * For resync, we iterate over virtual addresses, read all copies, 2890 * and update if there are differences. If only one copy is live, 2891 * skip it. 2892 * For recovery, we iterate over physical addresses, read a good 2893 * value for each non-in_sync drive, and over-write. 2894 * 2895 * So, for recovery we may have several outstanding complex requests for a 2896 * given address, one for each out-of-sync device. We model this by allocating 2897 * a number of r10_bio structures, one for each out-of-sync device. 2898 * As we setup these structures, we collect all bio's together into a list 2899 * which we then process collectively to add pages, and then process again 2900 * to pass to generic_make_request. 2901 * 2902 * The r10_bio structures are linked using a borrowed master_bio pointer. 2903 * This link is counted in ->remaining. When the r10_bio that points to NULL 2904 * has its remaining count decremented to 0, the whole complex operation 2905 * is complete. 2906 * 2907 */ 2908 2909 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 2910 int *skipped) 2911 { 2912 struct r10conf *conf = mddev->private; 2913 struct r10bio *r10_bio; 2914 struct bio *biolist = NULL, *bio; 2915 sector_t max_sector, nr_sectors; 2916 int i; 2917 int max_sync; 2918 sector_t sync_blocks; 2919 sector_t sectors_skipped = 0; 2920 int chunks_skipped = 0; 2921 sector_t chunk_mask = conf->geo.chunk_mask; 2922 int page_idx = 0; 2923 2924 if (!mempool_initialized(&conf->r10buf_pool)) 2925 if (init_resync(conf)) 2926 return 0; 2927 2928 /* 2929 * Allow skipping a full rebuild for incremental assembly 2930 * of a clean array, like RAID1 does. 2931 */ 2932 if (mddev->bitmap == NULL && 2933 mddev->recovery_cp == MaxSector && 2934 mddev->reshape_position == MaxSector && 2935 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2936 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2937 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2938 conf->fullsync == 0) { 2939 *skipped = 1; 2940 return mddev->dev_sectors - sector_nr; 2941 } 2942 2943 skipped: 2944 max_sector = mddev->dev_sectors; 2945 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2946 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2947 max_sector = mddev->resync_max_sectors; 2948 if (sector_nr >= max_sector) { 2949 conf->cluster_sync_low = 0; 2950 conf->cluster_sync_high = 0; 2951 2952 /* If we aborted, we need to abort the 2953 * sync on the 'current' bitmap chucks (there can 2954 * be several when recovering multiple devices). 2955 * as we may have started syncing it but not finished. 2956 * We can find the current address in 2957 * mddev->curr_resync, but for recovery, 2958 * we need to convert that to several 2959 * virtual addresses. 2960 */ 2961 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2962 end_reshape(conf); 2963 close_sync(conf); 2964 return 0; 2965 } 2966 2967 if (mddev->curr_resync < max_sector) { /* aborted */ 2968 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2969 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2970 &sync_blocks, 1); 2971 else for (i = 0; i < conf->geo.raid_disks; i++) { 2972 sector_t sect = 2973 raid10_find_virt(conf, mddev->curr_resync, i); 2974 md_bitmap_end_sync(mddev->bitmap, sect, 2975 &sync_blocks, 1); 2976 } 2977 } else { 2978 /* completed sync */ 2979 if ((!mddev->bitmap || conf->fullsync) 2980 && conf->have_replacement 2981 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2982 /* Completed a full sync so the replacements 2983 * are now fully recovered. 2984 */ 2985 rcu_read_lock(); 2986 for (i = 0; i < conf->geo.raid_disks; i++) { 2987 struct md_rdev *rdev = 2988 rcu_dereference(conf->mirrors[i].replacement); 2989 if (rdev) 2990 rdev->recovery_offset = MaxSector; 2991 } 2992 rcu_read_unlock(); 2993 } 2994 conf->fullsync = 0; 2995 } 2996 md_bitmap_close_sync(mddev->bitmap); 2997 close_sync(conf); 2998 *skipped = 1; 2999 return sectors_skipped; 3000 } 3001 3002 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3003 return reshape_request(mddev, sector_nr, skipped); 3004 3005 if (chunks_skipped >= conf->geo.raid_disks) { 3006 /* if there has been nothing to do on any drive, 3007 * then there is nothing to do at all.. 3008 */ 3009 *skipped = 1; 3010 return (max_sector - sector_nr) + sectors_skipped; 3011 } 3012 3013 if (max_sector > mddev->resync_max) 3014 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3015 3016 /* make sure whole request will fit in a chunk - if chunks 3017 * are meaningful 3018 */ 3019 if (conf->geo.near_copies < conf->geo.raid_disks && 3020 max_sector > (sector_nr | chunk_mask)) 3021 max_sector = (sector_nr | chunk_mask) + 1; 3022 3023 /* 3024 * If there is non-resync activity waiting for a turn, then let it 3025 * though before starting on this new sync request. 3026 */ 3027 if (conf->nr_waiting) 3028 schedule_timeout_uninterruptible(1); 3029 3030 /* Again, very different code for resync and recovery. 3031 * Both must result in an r10bio with a list of bios that 3032 * have bi_end_io, bi_sector, bi_disk set, 3033 * and bi_private set to the r10bio. 3034 * For recovery, we may actually create several r10bios 3035 * with 2 bios in each, that correspond to the bios in the main one. 3036 * In this case, the subordinate r10bios link back through a 3037 * borrowed master_bio pointer, and the counter in the master 3038 * includes a ref from each subordinate. 3039 */ 3040 /* First, we decide what to do and set ->bi_end_io 3041 * To end_sync_read if we want to read, and 3042 * end_sync_write if we will want to write. 3043 */ 3044 3045 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3046 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3047 /* recovery... the complicated one */ 3048 int j; 3049 r10_bio = NULL; 3050 3051 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3052 int still_degraded; 3053 struct r10bio *rb2; 3054 sector_t sect; 3055 int must_sync; 3056 int any_working; 3057 int need_recover = 0; 3058 int need_replace = 0; 3059 struct raid10_info *mirror = &conf->mirrors[i]; 3060 struct md_rdev *mrdev, *mreplace; 3061 3062 rcu_read_lock(); 3063 mrdev = rcu_dereference(mirror->rdev); 3064 mreplace = rcu_dereference(mirror->replacement); 3065 3066 if (mrdev != NULL && 3067 !test_bit(Faulty, &mrdev->flags) && 3068 !test_bit(In_sync, &mrdev->flags)) 3069 need_recover = 1; 3070 if (mreplace != NULL && 3071 !test_bit(Faulty, &mreplace->flags)) 3072 need_replace = 1; 3073 3074 if (!need_recover && !need_replace) { 3075 rcu_read_unlock(); 3076 continue; 3077 } 3078 3079 still_degraded = 0; 3080 /* want to reconstruct this device */ 3081 rb2 = r10_bio; 3082 sect = raid10_find_virt(conf, sector_nr, i); 3083 if (sect >= mddev->resync_max_sectors) { 3084 /* last stripe is not complete - don't 3085 * try to recover this sector. 3086 */ 3087 rcu_read_unlock(); 3088 continue; 3089 } 3090 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3091 mreplace = NULL; 3092 /* Unless we are doing a full sync, or a replacement 3093 * we only need to recover the block if it is set in 3094 * the bitmap 3095 */ 3096 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3097 &sync_blocks, 1); 3098 if (sync_blocks < max_sync) 3099 max_sync = sync_blocks; 3100 if (!must_sync && 3101 mreplace == NULL && 3102 !conf->fullsync) { 3103 /* yep, skip the sync_blocks here, but don't assume 3104 * that there will never be anything to do here 3105 */ 3106 chunks_skipped = -1; 3107 rcu_read_unlock(); 3108 continue; 3109 } 3110 atomic_inc(&mrdev->nr_pending); 3111 if (mreplace) 3112 atomic_inc(&mreplace->nr_pending); 3113 rcu_read_unlock(); 3114 3115 r10_bio = raid10_alloc_init_r10buf(conf); 3116 r10_bio->state = 0; 3117 raise_barrier(conf, rb2 != NULL); 3118 atomic_set(&r10_bio->remaining, 0); 3119 3120 r10_bio->master_bio = (struct bio*)rb2; 3121 if (rb2) 3122 atomic_inc(&rb2->remaining); 3123 r10_bio->mddev = mddev; 3124 set_bit(R10BIO_IsRecover, &r10_bio->state); 3125 r10_bio->sector = sect; 3126 3127 raid10_find_phys(conf, r10_bio); 3128 3129 /* Need to check if the array will still be 3130 * degraded 3131 */ 3132 rcu_read_lock(); 3133 for (j = 0; j < conf->geo.raid_disks; j++) { 3134 struct md_rdev *rdev = rcu_dereference( 3135 conf->mirrors[j].rdev); 3136 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3137 still_degraded = 1; 3138 break; 3139 } 3140 } 3141 3142 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3143 &sync_blocks, still_degraded); 3144 3145 any_working = 0; 3146 for (j=0; j<conf->copies;j++) { 3147 int k; 3148 int d = r10_bio->devs[j].devnum; 3149 sector_t from_addr, to_addr; 3150 struct md_rdev *rdev = 3151 rcu_dereference(conf->mirrors[d].rdev); 3152 sector_t sector, first_bad; 3153 int bad_sectors; 3154 if (!rdev || 3155 !test_bit(In_sync, &rdev->flags)) 3156 continue; 3157 /* This is where we read from */ 3158 any_working = 1; 3159 sector = r10_bio->devs[j].addr; 3160 3161 if (is_badblock(rdev, sector, max_sync, 3162 &first_bad, &bad_sectors)) { 3163 if (first_bad > sector) 3164 max_sync = first_bad - sector; 3165 else { 3166 bad_sectors -= (sector 3167 - first_bad); 3168 if (max_sync > bad_sectors) 3169 max_sync = bad_sectors; 3170 continue; 3171 } 3172 } 3173 bio = r10_bio->devs[0].bio; 3174 bio->bi_next = biolist; 3175 biolist = bio; 3176 bio->bi_end_io = end_sync_read; 3177 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3178 if (test_bit(FailFast, &rdev->flags)) 3179 bio->bi_opf |= MD_FAILFAST; 3180 from_addr = r10_bio->devs[j].addr; 3181 bio->bi_iter.bi_sector = from_addr + 3182 rdev->data_offset; 3183 bio_set_dev(bio, rdev->bdev); 3184 atomic_inc(&rdev->nr_pending); 3185 /* and we write to 'i' (if not in_sync) */ 3186 3187 for (k=0; k<conf->copies; k++) 3188 if (r10_bio->devs[k].devnum == i) 3189 break; 3190 BUG_ON(k == conf->copies); 3191 to_addr = r10_bio->devs[k].addr; 3192 r10_bio->devs[0].devnum = d; 3193 r10_bio->devs[0].addr = from_addr; 3194 r10_bio->devs[1].devnum = i; 3195 r10_bio->devs[1].addr = to_addr; 3196 3197 if (need_recover) { 3198 bio = r10_bio->devs[1].bio; 3199 bio->bi_next = biolist; 3200 biolist = bio; 3201 bio->bi_end_io = end_sync_write; 3202 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3203 bio->bi_iter.bi_sector = to_addr 3204 + mrdev->data_offset; 3205 bio_set_dev(bio, mrdev->bdev); 3206 atomic_inc(&r10_bio->remaining); 3207 } else 3208 r10_bio->devs[1].bio->bi_end_io = NULL; 3209 3210 /* and maybe write to replacement */ 3211 bio = r10_bio->devs[1].repl_bio; 3212 if (bio) 3213 bio->bi_end_io = NULL; 3214 /* Note: if need_replace, then bio 3215 * cannot be NULL as r10buf_pool_alloc will 3216 * have allocated it. 3217 */ 3218 if (!need_replace) 3219 break; 3220 bio->bi_next = biolist; 3221 biolist = bio; 3222 bio->bi_end_io = end_sync_write; 3223 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3224 bio->bi_iter.bi_sector = to_addr + 3225 mreplace->data_offset; 3226 bio_set_dev(bio, mreplace->bdev); 3227 atomic_inc(&r10_bio->remaining); 3228 break; 3229 } 3230 rcu_read_unlock(); 3231 if (j == conf->copies) { 3232 /* Cannot recover, so abort the recovery or 3233 * record a bad block */ 3234 if (any_working) { 3235 /* problem is that there are bad blocks 3236 * on other device(s) 3237 */ 3238 int k; 3239 for (k = 0; k < conf->copies; k++) 3240 if (r10_bio->devs[k].devnum == i) 3241 break; 3242 if (!test_bit(In_sync, 3243 &mrdev->flags) 3244 && !rdev_set_badblocks( 3245 mrdev, 3246 r10_bio->devs[k].addr, 3247 max_sync, 0)) 3248 any_working = 0; 3249 if (mreplace && 3250 !rdev_set_badblocks( 3251 mreplace, 3252 r10_bio->devs[k].addr, 3253 max_sync, 0)) 3254 any_working = 0; 3255 } 3256 if (!any_working) { 3257 if (!test_and_set_bit(MD_RECOVERY_INTR, 3258 &mddev->recovery)) 3259 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3260 mdname(mddev)); 3261 mirror->recovery_disabled 3262 = mddev->recovery_disabled; 3263 } 3264 put_buf(r10_bio); 3265 if (rb2) 3266 atomic_dec(&rb2->remaining); 3267 r10_bio = rb2; 3268 rdev_dec_pending(mrdev, mddev); 3269 if (mreplace) 3270 rdev_dec_pending(mreplace, mddev); 3271 break; 3272 } 3273 rdev_dec_pending(mrdev, mddev); 3274 if (mreplace) 3275 rdev_dec_pending(mreplace, mddev); 3276 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3277 /* Only want this if there is elsewhere to 3278 * read from. 'j' is currently the first 3279 * readable copy. 3280 */ 3281 int targets = 1; 3282 for (; j < conf->copies; j++) { 3283 int d = r10_bio->devs[j].devnum; 3284 if (conf->mirrors[d].rdev && 3285 test_bit(In_sync, 3286 &conf->mirrors[d].rdev->flags)) 3287 targets++; 3288 } 3289 if (targets == 1) 3290 r10_bio->devs[0].bio->bi_opf 3291 &= ~MD_FAILFAST; 3292 } 3293 } 3294 if (biolist == NULL) { 3295 while (r10_bio) { 3296 struct r10bio *rb2 = r10_bio; 3297 r10_bio = (struct r10bio*) rb2->master_bio; 3298 rb2->master_bio = NULL; 3299 put_buf(rb2); 3300 } 3301 goto giveup; 3302 } 3303 } else { 3304 /* resync. Schedule a read for every block at this virt offset */ 3305 int count = 0; 3306 3307 /* 3308 * Since curr_resync_completed could probably not update in 3309 * time, and we will set cluster_sync_low based on it. 3310 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3311 * safety reason, which ensures curr_resync_completed is 3312 * updated in bitmap_cond_end_sync. 3313 */ 3314 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3315 mddev_is_clustered(mddev) && 3316 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3317 3318 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3319 &sync_blocks, mddev->degraded) && 3320 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3321 &mddev->recovery)) { 3322 /* We can skip this block */ 3323 *skipped = 1; 3324 return sync_blocks + sectors_skipped; 3325 } 3326 if (sync_blocks < max_sync) 3327 max_sync = sync_blocks; 3328 r10_bio = raid10_alloc_init_r10buf(conf); 3329 r10_bio->state = 0; 3330 3331 r10_bio->mddev = mddev; 3332 atomic_set(&r10_bio->remaining, 0); 3333 raise_barrier(conf, 0); 3334 conf->next_resync = sector_nr; 3335 3336 r10_bio->master_bio = NULL; 3337 r10_bio->sector = sector_nr; 3338 set_bit(R10BIO_IsSync, &r10_bio->state); 3339 raid10_find_phys(conf, r10_bio); 3340 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3341 3342 for (i = 0; i < conf->copies; i++) { 3343 int d = r10_bio->devs[i].devnum; 3344 sector_t first_bad, sector; 3345 int bad_sectors; 3346 struct md_rdev *rdev; 3347 3348 if (r10_bio->devs[i].repl_bio) 3349 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3350 3351 bio = r10_bio->devs[i].bio; 3352 bio->bi_status = BLK_STS_IOERR; 3353 rcu_read_lock(); 3354 rdev = rcu_dereference(conf->mirrors[d].rdev); 3355 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3356 rcu_read_unlock(); 3357 continue; 3358 } 3359 sector = r10_bio->devs[i].addr; 3360 if (is_badblock(rdev, sector, max_sync, 3361 &first_bad, &bad_sectors)) { 3362 if (first_bad > sector) 3363 max_sync = first_bad - sector; 3364 else { 3365 bad_sectors -= (sector - first_bad); 3366 if (max_sync > bad_sectors) 3367 max_sync = bad_sectors; 3368 rcu_read_unlock(); 3369 continue; 3370 } 3371 } 3372 atomic_inc(&rdev->nr_pending); 3373 atomic_inc(&r10_bio->remaining); 3374 bio->bi_next = biolist; 3375 biolist = bio; 3376 bio->bi_end_io = end_sync_read; 3377 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3378 if (test_bit(FailFast, &rdev->flags)) 3379 bio->bi_opf |= MD_FAILFAST; 3380 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3381 bio_set_dev(bio, rdev->bdev); 3382 count++; 3383 3384 rdev = rcu_dereference(conf->mirrors[d].replacement); 3385 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3386 rcu_read_unlock(); 3387 continue; 3388 } 3389 atomic_inc(&rdev->nr_pending); 3390 3391 /* Need to set up for writing to the replacement */ 3392 bio = r10_bio->devs[i].repl_bio; 3393 bio->bi_status = BLK_STS_IOERR; 3394 3395 sector = r10_bio->devs[i].addr; 3396 bio->bi_next = biolist; 3397 biolist = bio; 3398 bio->bi_end_io = end_sync_write; 3399 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3400 if (test_bit(FailFast, &rdev->flags)) 3401 bio->bi_opf |= MD_FAILFAST; 3402 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3403 bio_set_dev(bio, rdev->bdev); 3404 count++; 3405 rcu_read_unlock(); 3406 } 3407 3408 if (count < 2) { 3409 for (i=0; i<conf->copies; i++) { 3410 int d = r10_bio->devs[i].devnum; 3411 if (r10_bio->devs[i].bio->bi_end_io) 3412 rdev_dec_pending(conf->mirrors[d].rdev, 3413 mddev); 3414 if (r10_bio->devs[i].repl_bio && 3415 r10_bio->devs[i].repl_bio->bi_end_io) 3416 rdev_dec_pending( 3417 conf->mirrors[d].replacement, 3418 mddev); 3419 } 3420 put_buf(r10_bio); 3421 biolist = NULL; 3422 goto giveup; 3423 } 3424 } 3425 3426 nr_sectors = 0; 3427 if (sector_nr + max_sync < max_sector) 3428 max_sector = sector_nr + max_sync; 3429 do { 3430 struct page *page; 3431 int len = PAGE_SIZE; 3432 if (sector_nr + (len>>9) > max_sector) 3433 len = (max_sector - sector_nr) << 9; 3434 if (len == 0) 3435 break; 3436 for (bio= biolist ; bio ; bio=bio->bi_next) { 3437 struct resync_pages *rp = get_resync_pages(bio); 3438 page = resync_fetch_page(rp, page_idx); 3439 /* 3440 * won't fail because the vec table is big enough 3441 * to hold all these pages 3442 */ 3443 bio_add_page(bio, page, len, 0); 3444 } 3445 nr_sectors += len>>9; 3446 sector_nr += len>>9; 3447 } while (++page_idx < RESYNC_PAGES); 3448 r10_bio->sectors = nr_sectors; 3449 3450 if (mddev_is_clustered(mddev) && 3451 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3452 /* It is resync not recovery */ 3453 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3454 conf->cluster_sync_low = mddev->curr_resync_completed; 3455 raid10_set_cluster_sync_high(conf); 3456 /* Send resync message */ 3457 md_cluster_ops->resync_info_update(mddev, 3458 conf->cluster_sync_low, 3459 conf->cluster_sync_high); 3460 } 3461 } else if (mddev_is_clustered(mddev)) { 3462 /* This is recovery not resync */ 3463 sector_t sect_va1, sect_va2; 3464 bool broadcast_msg = false; 3465 3466 for (i = 0; i < conf->geo.raid_disks; i++) { 3467 /* 3468 * sector_nr is a device address for recovery, so we 3469 * need translate it to array address before compare 3470 * with cluster_sync_high. 3471 */ 3472 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3473 3474 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3475 broadcast_msg = true; 3476 /* 3477 * curr_resync_completed is similar as 3478 * sector_nr, so make the translation too. 3479 */ 3480 sect_va2 = raid10_find_virt(conf, 3481 mddev->curr_resync_completed, i); 3482 3483 if (conf->cluster_sync_low == 0 || 3484 conf->cluster_sync_low > sect_va2) 3485 conf->cluster_sync_low = sect_va2; 3486 } 3487 } 3488 if (broadcast_msg) { 3489 raid10_set_cluster_sync_high(conf); 3490 md_cluster_ops->resync_info_update(mddev, 3491 conf->cluster_sync_low, 3492 conf->cluster_sync_high); 3493 } 3494 } 3495 3496 while (biolist) { 3497 bio = biolist; 3498 biolist = biolist->bi_next; 3499 3500 bio->bi_next = NULL; 3501 r10_bio = get_resync_r10bio(bio); 3502 r10_bio->sectors = nr_sectors; 3503 3504 if (bio->bi_end_io == end_sync_read) { 3505 md_sync_acct_bio(bio, nr_sectors); 3506 bio->bi_status = 0; 3507 generic_make_request(bio); 3508 } 3509 } 3510 3511 if (sectors_skipped) 3512 /* pretend they weren't skipped, it makes 3513 * no important difference in this case 3514 */ 3515 md_done_sync(mddev, sectors_skipped, 1); 3516 3517 return sectors_skipped + nr_sectors; 3518 giveup: 3519 /* There is nowhere to write, so all non-sync 3520 * drives must be failed or in resync, all drives 3521 * have a bad block, so try the next chunk... 3522 */ 3523 if (sector_nr + max_sync < max_sector) 3524 max_sector = sector_nr + max_sync; 3525 3526 sectors_skipped += (max_sector - sector_nr); 3527 chunks_skipped ++; 3528 sector_nr = max_sector; 3529 goto skipped; 3530 } 3531 3532 static sector_t 3533 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3534 { 3535 sector_t size; 3536 struct r10conf *conf = mddev->private; 3537 3538 if (!raid_disks) 3539 raid_disks = min(conf->geo.raid_disks, 3540 conf->prev.raid_disks); 3541 if (!sectors) 3542 sectors = conf->dev_sectors; 3543 3544 size = sectors >> conf->geo.chunk_shift; 3545 sector_div(size, conf->geo.far_copies); 3546 size = size * raid_disks; 3547 sector_div(size, conf->geo.near_copies); 3548 3549 return size << conf->geo.chunk_shift; 3550 } 3551 3552 static void calc_sectors(struct r10conf *conf, sector_t size) 3553 { 3554 /* Calculate the number of sectors-per-device that will 3555 * actually be used, and set conf->dev_sectors and 3556 * conf->stride 3557 */ 3558 3559 size = size >> conf->geo.chunk_shift; 3560 sector_div(size, conf->geo.far_copies); 3561 size = size * conf->geo.raid_disks; 3562 sector_div(size, conf->geo.near_copies); 3563 /* 'size' is now the number of chunks in the array */ 3564 /* calculate "used chunks per device" */ 3565 size = size * conf->copies; 3566 3567 /* We need to round up when dividing by raid_disks to 3568 * get the stride size. 3569 */ 3570 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3571 3572 conf->dev_sectors = size << conf->geo.chunk_shift; 3573 3574 if (conf->geo.far_offset) 3575 conf->geo.stride = 1 << conf->geo.chunk_shift; 3576 else { 3577 sector_div(size, conf->geo.far_copies); 3578 conf->geo.stride = size << conf->geo.chunk_shift; 3579 } 3580 } 3581 3582 enum geo_type {geo_new, geo_old, geo_start}; 3583 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3584 { 3585 int nc, fc, fo; 3586 int layout, chunk, disks; 3587 switch (new) { 3588 case geo_old: 3589 layout = mddev->layout; 3590 chunk = mddev->chunk_sectors; 3591 disks = mddev->raid_disks - mddev->delta_disks; 3592 break; 3593 case geo_new: 3594 layout = mddev->new_layout; 3595 chunk = mddev->new_chunk_sectors; 3596 disks = mddev->raid_disks; 3597 break; 3598 default: /* avoid 'may be unused' warnings */ 3599 case geo_start: /* new when starting reshape - raid_disks not 3600 * updated yet. */ 3601 layout = mddev->new_layout; 3602 chunk = mddev->new_chunk_sectors; 3603 disks = mddev->raid_disks + mddev->delta_disks; 3604 break; 3605 } 3606 if (layout >> 19) 3607 return -1; 3608 if (chunk < (PAGE_SIZE >> 9) || 3609 !is_power_of_2(chunk)) 3610 return -2; 3611 nc = layout & 255; 3612 fc = (layout >> 8) & 255; 3613 fo = layout & (1<<16); 3614 geo->raid_disks = disks; 3615 geo->near_copies = nc; 3616 geo->far_copies = fc; 3617 geo->far_offset = fo; 3618 switch (layout >> 17) { 3619 case 0: /* original layout. simple but not always optimal */ 3620 geo->far_set_size = disks; 3621 break; 3622 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3623 * actually using this, but leave code here just in case.*/ 3624 geo->far_set_size = disks/fc; 3625 WARN(geo->far_set_size < fc, 3626 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3627 break; 3628 case 2: /* "improved" layout fixed to match documentation */ 3629 geo->far_set_size = fc * nc; 3630 break; 3631 default: /* Not a valid layout */ 3632 return -1; 3633 } 3634 geo->chunk_mask = chunk - 1; 3635 geo->chunk_shift = ffz(~chunk); 3636 return nc*fc; 3637 } 3638 3639 static struct r10conf *setup_conf(struct mddev *mddev) 3640 { 3641 struct r10conf *conf = NULL; 3642 int err = -EINVAL; 3643 struct geom geo; 3644 int copies; 3645 3646 copies = setup_geo(&geo, mddev, geo_new); 3647 3648 if (copies == -2) { 3649 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3650 mdname(mddev), PAGE_SIZE); 3651 goto out; 3652 } 3653 3654 if (copies < 2 || copies > mddev->raid_disks) { 3655 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3656 mdname(mddev), mddev->new_layout); 3657 goto out; 3658 } 3659 3660 err = -ENOMEM; 3661 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3662 if (!conf) 3663 goto out; 3664 3665 /* FIXME calc properly */ 3666 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3667 sizeof(struct raid10_info), 3668 GFP_KERNEL); 3669 if (!conf->mirrors) 3670 goto out; 3671 3672 conf->tmppage = alloc_page(GFP_KERNEL); 3673 if (!conf->tmppage) 3674 goto out; 3675 3676 conf->geo = geo; 3677 conf->copies = copies; 3678 err = mempool_init(&conf->r10bio_pool, NR_RAID10_BIOS, r10bio_pool_alloc, 3679 r10bio_pool_free, conf); 3680 if (err) 3681 goto out; 3682 3683 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3684 if (err) 3685 goto out; 3686 3687 calc_sectors(conf, mddev->dev_sectors); 3688 if (mddev->reshape_position == MaxSector) { 3689 conf->prev = conf->geo; 3690 conf->reshape_progress = MaxSector; 3691 } else { 3692 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3693 err = -EINVAL; 3694 goto out; 3695 } 3696 conf->reshape_progress = mddev->reshape_position; 3697 if (conf->prev.far_offset) 3698 conf->prev.stride = 1 << conf->prev.chunk_shift; 3699 else 3700 /* far_copies must be 1 */ 3701 conf->prev.stride = conf->dev_sectors; 3702 } 3703 conf->reshape_safe = conf->reshape_progress; 3704 spin_lock_init(&conf->device_lock); 3705 INIT_LIST_HEAD(&conf->retry_list); 3706 INIT_LIST_HEAD(&conf->bio_end_io_list); 3707 3708 spin_lock_init(&conf->resync_lock); 3709 init_waitqueue_head(&conf->wait_barrier); 3710 atomic_set(&conf->nr_pending, 0); 3711 3712 err = -ENOMEM; 3713 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3714 if (!conf->thread) 3715 goto out; 3716 3717 conf->mddev = mddev; 3718 return conf; 3719 3720 out: 3721 if (conf) { 3722 mempool_exit(&conf->r10bio_pool); 3723 kfree(conf->mirrors); 3724 safe_put_page(conf->tmppage); 3725 bioset_exit(&conf->bio_split); 3726 kfree(conf); 3727 } 3728 return ERR_PTR(err); 3729 } 3730 3731 static int raid10_run(struct mddev *mddev) 3732 { 3733 struct r10conf *conf; 3734 int i, disk_idx, chunk_size; 3735 struct raid10_info *disk; 3736 struct md_rdev *rdev; 3737 sector_t size; 3738 sector_t min_offset_diff = 0; 3739 int first = 1; 3740 bool discard_supported = false; 3741 3742 if (mddev_init_writes_pending(mddev) < 0) 3743 return -ENOMEM; 3744 3745 if (mddev->private == NULL) { 3746 conf = setup_conf(mddev); 3747 if (IS_ERR(conf)) 3748 return PTR_ERR(conf); 3749 mddev->private = conf; 3750 } 3751 conf = mddev->private; 3752 if (!conf) 3753 goto out; 3754 3755 if (mddev_is_clustered(conf->mddev)) { 3756 int fc, fo; 3757 3758 fc = (mddev->layout >> 8) & 255; 3759 fo = mddev->layout & (1<<16); 3760 if (fc > 1 || fo > 0) { 3761 pr_err("only near layout is supported by clustered" 3762 " raid10\n"); 3763 goto out_free_conf; 3764 } 3765 } 3766 3767 mddev->thread = conf->thread; 3768 conf->thread = NULL; 3769 3770 chunk_size = mddev->chunk_sectors << 9; 3771 if (mddev->queue) { 3772 blk_queue_max_discard_sectors(mddev->queue, 3773 mddev->chunk_sectors); 3774 blk_queue_max_write_same_sectors(mddev->queue, 0); 3775 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3776 blk_queue_io_min(mddev->queue, chunk_size); 3777 if (conf->geo.raid_disks % conf->geo.near_copies) 3778 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3779 else 3780 blk_queue_io_opt(mddev->queue, chunk_size * 3781 (conf->geo.raid_disks / conf->geo.near_copies)); 3782 } 3783 3784 rdev_for_each(rdev, mddev) { 3785 long long diff; 3786 3787 disk_idx = rdev->raid_disk; 3788 if (disk_idx < 0) 3789 continue; 3790 if (disk_idx >= conf->geo.raid_disks && 3791 disk_idx >= conf->prev.raid_disks) 3792 continue; 3793 disk = conf->mirrors + disk_idx; 3794 3795 if (test_bit(Replacement, &rdev->flags)) { 3796 if (disk->replacement) 3797 goto out_free_conf; 3798 disk->replacement = rdev; 3799 } else { 3800 if (disk->rdev) 3801 goto out_free_conf; 3802 disk->rdev = rdev; 3803 } 3804 diff = (rdev->new_data_offset - rdev->data_offset); 3805 if (!mddev->reshape_backwards) 3806 diff = -diff; 3807 if (diff < 0) 3808 diff = 0; 3809 if (first || diff < min_offset_diff) 3810 min_offset_diff = diff; 3811 3812 if (mddev->gendisk) 3813 disk_stack_limits(mddev->gendisk, rdev->bdev, 3814 rdev->data_offset << 9); 3815 3816 disk->head_position = 0; 3817 3818 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3819 discard_supported = true; 3820 first = 0; 3821 } 3822 3823 if (mddev->queue) { 3824 if (discard_supported) 3825 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3826 mddev->queue); 3827 else 3828 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3829 mddev->queue); 3830 } 3831 /* need to check that every block has at least one working mirror */ 3832 if (!enough(conf, -1)) { 3833 pr_err("md/raid10:%s: not enough operational mirrors.\n", 3834 mdname(mddev)); 3835 goto out_free_conf; 3836 } 3837 3838 if (conf->reshape_progress != MaxSector) { 3839 /* must ensure that shape change is supported */ 3840 if (conf->geo.far_copies != 1 && 3841 conf->geo.far_offset == 0) 3842 goto out_free_conf; 3843 if (conf->prev.far_copies != 1 && 3844 conf->prev.far_offset == 0) 3845 goto out_free_conf; 3846 } 3847 3848 mddev->degraded = 0; 3849 for (i = 0; 3850 i < conf->geo.raid_disks 3851 || i < conf->prev.raid_disks; 3852 i++) { 3853 3854 disk = conf->mirrors + i; 3855 3856 if (!disk->rdev && disk->replacement) { 3857 /* The replacement is all we have - use it */ 3858 disk->rdev = disk->replacement; 3859 disk->replacement = NULL; 3860 clear_bit(Replacement, &disk->rdev->flags); 3861 } 3862 3863 if (!disk->rdev || 3864 !test_bit(In_sync, &disk->rdev->flags)) { 3865 disk->head_position = 0; 3866 mddev->degraded++; 3867 if (disk->rdev && 3868 disk->rdev->saved_raid_disk < 0) 3869 conf->fullsync = 1; 3870 } 3871 3872 if (disk->replacement && 3873 !test_bit(In_sync, &disk->replacement->flags) && 3874 disk->replacement->saved_raid_disk < 0) { 3875 conf->fullsync = 1; 3876 } 3877 3878 disk->recovery_disabled = mddev->recovery_disabled - 1; 3879 } 3880 3881 if (mddev->recovery_cp != MaxSector) 3882 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 3883 mdname(mddev)); 3884 pr_info("md/raid10:%s: active with %d out of %d devices\n", 3885 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3886 conf->geo.raid_disks); 3887 /* 3888 * Ok, everything is just fine now 3889 */ 3890 mddev->dev_sectors = conf->dev_sectors; 3891 size = raid10_size(mddev, 0, 0); 3892 md_set_array_sectors(mddev, size); 3893 mddev->resync_max_sectors = size; 3894 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3895 3896 if (mddev->queue) { 3897 int stripe = conf->geo.raid_disks * 3898 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3899 3900 /* Calculate max read-ahead size. 3901 * We need to readahead at least twice a whole stripe.... 3902 * maybe... 3903 */ 3904 stripe /= conf->geo.near_copies; 3905 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 3906 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 3907 } 3908 3909 if (md_integrity_register(mddev)) 3910 goto out_free_conf; 3911 3912 if (conf->reshape_progress != MaxSector) { 3913 unsigned long before_length, after_length; 3914 3915 before_length = ((1 << conf->prev.chunk_shift) * 3916 conf->prev.far_copies); 3917 after_length = ((1 << conf->geo.chunk_shift) * 3918 conf->geo.far_copies); 3919 3920 if (max(before_length, after_length) > min_offset_diff) { 3921 /* This cannot work */ 3922 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 3923 goto out_free_conf; 3924 } 3925 conf->offset_diff = min_offset_diff; 3926 3927 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3928 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3929 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3930 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3931 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3932 "reshape"); 3933 if (!mddev->sync_thread) 3934 goto out_free_conf; 3935 } 3936 3937 return 0; 3938 3939 out_free_conf: 3940 md_unregister_thread(&mddev->thread); 3941 mempool_exit(&conf->r10bio_pool); 3942 safe_put_page(conf->tmppage); 3943 kfree(conf->mirrors); 3944 kfree(conf); 3945 mddev->private = NULL; 3946 out: 3947 return -EIO; 3948 } 3949 3950 static void raid10_free(struct mddev *mddev, void *priv) 3951 { 3952 struct r10conf *conf = priv; 3953 3954 mempool_exit(&conf->r10bio_pool); 3955 safe_put_page(conf->tmppage); 3956 kfree(conf->mirrors); 3957 kfree(conf->mirrors_old); 3958 kfree(conf->mirrors_new); 3959 bioset_exit(&conf->bio_split); 3960 kfree(conf); 3961 } 3962 3963 static void raid10_quiesce(struct mddev *mddev, int quiesce) 3964 { 3965 struct r10conf *conf = mddev->private; 3966 3967 if (quiesce) 3968 raise_barrier(conf, 0); 3969 else 3970 lower_barrier(conf); 3971 } 3972 3973 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3974 { 3975 /* Resize of 'far' arrays is not supported. 3976 * For 'near' and 'offset' arrays we can set the 3977 * number of sectors used to be an appropriate multiple 3978 * of the chunk size. 3979 * For 'offset', this is far_copies*chunksize. 3980 * For 'near' the multiplier is the LCM of 3981 * near_copies and raid_disks. 3982 * So if far_copies > 1 && !far_offset, fail. 3983 * Else find LCM(raid_disks, near_copy)*far_copies and 3984 * multiply by chunk_size. Then round to this number. 3985 * This is mostly done by raid10_size() 3986 */ 3987 struct r10conf *conf = mddev->private; 3988 sector_t oldsize, size; 3989 3990 if (mddev->reshape_position != MaxSector) 3991 return -EBUSY; 3992 3993 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3994 return -EINVAL; 3995 3996 oldsize = raid10_size(mddev, 0, 0); 3997 size = raid10_size(mddev, sectors, 0); 3998 if (mddev->external_size && 3999 mddev->array_sectors > size) 4000 return -EINVAL; 4001 if (mddev->bitmap) { 4002 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 4003 if (ret) 4004 return ret; 4005 } 4006 md_set_array_sectors(mddev, size); 4007 if (sectors > mddev->dev_sectors && 4008 mddev->recovery_cp > oldsize) { 4009 mddev->recovery_cp = oldsize; 4010 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4011 } 4012 calc_sectors(conf, sectors); 4013 mddev->dev_sectors = conf->dev_sectors; 4014 mddev->resync_max_sectors = size; 4015 return 0; 4016 } 4017 4018 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4019 { 4020 struct md_rdev *rdev; 4021 struct r10conf *conf; 4022 4023 if (mddev->degraded > 0) { 4024 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4025 mdname(mddev)); 4026 return ERR_PTR(-EINVAL); 4027 } 4028 sector_div(size, devs); 4029 4030 /* Set new parameters */ 4031 mddev->new_level = 10; 4032 /* new layout: far_copies = 1, near_copies = 2 */ 4033 mddev->new_layout = (1<<8) + 2; 4034 mddev->new_chunk_sectors = mddev->chunk_sectors; 4035 mddev->delta_disks = mddev->raid_disks; 4036 mddev->raid_disks *= 2; 4037 /* make sure it will be not marked as dirty */ 4038 mddev->recovery_cp = MaxSector; 4039 mddev->dev_sectors = size; 4040 4041 conf = setup_conf(mddev); 4042 if (!IS_ERR(conf)) { 4043 rdev_for_each(rdev, mddev) 4044 if (rdev->raid_disk >= 0) { 4045 rdev->new_raid_disk = rdev->raid_disk * 2; 4046 rdev->sectors = size; 4047 } 4048 conf->barrier = 1; 4049 } 4050 4051 return conf; 4052 } 4053 4054 static void *raid10_takeover(struct mddev *mddev) 4055 { 4056 struct r0conf *raid0_conf; 4057 4058 /* raid10 can take over: 4059 * raid0 - providing it has only two drives 4060 */ 4061 if (mddev->level == 0) { 4062 /* for raid0 takeover only one zone is supported */ 4063 raid0_conf = mddev->private; 4064 if (raid0_conf->nr_strip_zones > 1) { 4065 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4066 mdname(mddev)); 4067 return ERR_PTR(-EINVAL); 4068 } 4069 return raid10_takeover_raid0(mddev, 4070 raid0_conf->strip_zone->zone_end, 4071 raid0_conf->strip_zone->nb_dev); 4072 } 4073 return ERR_PTR(-EINVAL); 4074 } 4075 4076 static int raid10_check_reshape(struct mddev *mddev) 4077 { 4078 /* Called when there is a request to change 4079 * - layout (to ->new_layout) 4080 * - chunk size (to ->new_chunk_sectors) 4081 * - raid_disks (by delta_disks) 4082 * or when trying to restart a reshape that was ongoing. 4083 * 4084 * We need to validate the request and possibly allocate 4085 * space if that might be an issue later. 4086 * 4087 * Currently we reject any reshape of a 'far' mode array, 4088 * allow chunk size to change if new is generally acceptable, 4089 * allow raid_disks to increase, and allow 4090 * a switch between 'near' mode and 'offset' mode. 4091 */ 4092 struct r10conf *conf = mddev->private; 4093 struct geom geo; 4094 4095 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4096 return -EINVAL; 4097 4098 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4099 /* mustn't change number of copies */ 4100 return -EINVAL; 4101 if (geo.far_copies > 1 && !geo.far_offset) 4102 /* Cannot switch to 'far' mode */ 4103 return -EINVAL; 4104 4105 if (mddev->array_sectors & geo.chunk_mask) 4106 /* not factor of array size */ 4107 return -EINVAL; 4108 4109 if (!enough(conf, -1)) 4110 return -EINVAL; 4111 4112 kfree(conf->mirrors_new); 4113 conf->mirrors_new = NULL; 4114 if (mddev->delta_disks > 0) { 4115 /* allocate new 'mirrors' list */ 4116 conf->mirrors_new = 4117 kcalloc(mddev->raid_disks + mddev->delta_disks, 4118 sizeof(struct raid10_info), 4119 GFP_KERNEL); 4120 if (!conf->mirrors_new) 4121 return -ENOMEM; 4122 } 4123 return 0; 4124 } 4125 4126 /* 4127 * Need to check if array has failed when deciding whether to: 4128 * - start an array 4129 * - remove non-faulty devices 4130 * - add a spare 4131 * - allow a reshape 4132 * This determination is simple when no reshape is happening. 4133 * However if there is a reshape, we need to carefully check 4134 * both the before and after sections. 4135 * This is because some failed devices may only affect one 4136 * of the two sections, and some non-in_sync devices may 4137 * be insync in the section most affected by failed devices. 4138 */ 4139 static int calc_degraded(struct r10conf *conf) 4140 { 4141 int degraded, degraded2; 4142 int i; 4143 4144 rcu_read_lock(); 4145 degraded = 0; 4146 /* 'prev' section first */ 4147 for (i = 0; i < conf->prev.raid_disks; i++) { 4148 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4149 if (!rdev || test_bit(Faulty, &rdev->flags)) 4150 degraded++; 4151 else if (!test_bit(In_sync, &rdev->flags)) 4152 /* When we can reduce the number of devices in 4153 * an array, this might not contribute to 4154 * 'degraded'. It does now. 4155 */ 4156 degraded++; 4157 } 4158 rcu_read_unlock(); 4159 if (conf->geo.raid_disks == conf->prev.raid_disks) 4160 return degraded; 4161 rcu_read_lock(); 4162 degraded2 = 0; 4163 for (i = 0; i < conf->geo.raid_disks; i++) { 4164 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4165 if (!rdev || test_bit(Faulty, &rdev->flags)) 4166 degraded2++; 4167 else if (!test_bit(In_sync, &rdev->flags)) { 4168 /* If reshape is increasing the number of devices, 4169 * this section has already been recovered, so 4170 * it doesn't contribute to degraded. 4171 * else it does. 4172 */ 4173 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4174 degraded2++; 4175 } 4176 } 4177 rcu_read_unlock(); 4178 if (degraded2 > degraded) 4179 return degraded2; 4180 return degraded; 4181 } 4182 4183 static int raid10_start_reshape(struct mddev *mddev) 4184 { 4185 /* A 'reshape' has been requested. This commits 4186 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4187 * This also checks if there are enough spares and adds them 4188 * to the array. 4189 * We currently require enough spares to make the final 4190 * array non-degraded. We also require that the difference 4191 * between old and new data_offset - on each device - is 4192 * enough that we never risk over-writing. 4193 */ 4194 4195 unsigned long before_length, after_length; 4196 sector_t min_offset_diff = 0; 4197 int first = 1; 4198 struct geom new; 4199 struct r10conf *conf = mddev->private; 4200 struct md_rdev *rdev; 4201 int spares = 0; 4202 int ret; 4203 4204 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4205 return -EBUSY; 4206 4207 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4208 return -EINVAL; 4209 4210 before_length = ((1 << conf->prev.chunk_shift) * 4211 conf->prev.far_copies); 4212 after_length = ((1 << conf->geo.chunk_shift) * 4213 conf->geo.far_copies); 4214 4215 rdev_for_each(rdev, mddev) { 4216 if (!test_bit(In_sync, &rdev->flags) 4217 && !test_bit(Faulty, &rdev->flags)) 4218 spares++; 4219 if (rdev->raid_disk >= 0) { 4220 long long diff = (rdev->new_data_offset 4221 - rdev->data_offset); 4222 if (!mddev->reshape_backwards) 4223 diff = -diff; 4224 if (diff < 0) 4225 diff = 0; 4226 if (first || diff < min_offset_diff) 4227 min_offset_diff = diff; 4228 first = 0; 4229 } 4230 } 4231 4232 if (max(before_length, after_length) > min_offset_diff) 4233 return -EINVAL; 4234 4235 if (spares < mddev->delta_disks) 4236 return -EINVAL; 4237 4238 conf->offset_diff = min_offset_diff; 4239 spin_lock_irq(&conf->device_lock); 4240 if (conf->mirrors_new) { 4241 memcpy(conf->mirrors_new, conf->mirrors, 4242 sizeof(struct raid10_info)*conf->prev.raid_disks); 4243 smp_mb(); 4244 kfree(conf->mirrors_old); 4245 conf->mirrors_old = conf->mirrors; 4246 conf->mirrors = conf->mirrors_new; 4247 conf->mirrors_new = NULL; 4248 } 4249 setup_geo(&conf->geo, mddev, geo_start); 4250 smp_mb(); 4251 if (mddev->reshape_backwards) { 4252 sector_t size = raid10_size(mddev, 0, 0); 4253 if (size < mddev->array_sectors) { 4254 spin_unlock_irq(&conf->device_lock); 4255 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4256 mdname(mddev)); 4257 return -EINVAL; 4258 } 4259 mddev->resync_max_sectors = size; 4260 conf->reshape_progress = size; 4261 } else 4262 conf->reshape_progress = 0; 4263 conf->reshape_safe = conf->reshape_progress; 4264 spin_unlock_irq(&conf->device_lock); 4265 4266 if (mddev->delta_disks && mddev->bitmap) { 4267 struct mdp_superblock_1 *sb = NULL; 4268 sector_t oldsize, newsize; 4269 4270 oldsize = raid10_size(mddev, 0, 0); 4271 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4272 4273 if (!mddev_is_clustered(mddev)) { 4274 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4275 if (ret) 4276 goto abort; 4277 else 4278 goto out; 4279 } 4280 4281 rdev_for_each(rdev, mddev) { 4282 if (rdev->raid_disk > -1 && 4283 !test_bit(Faulty, &rdev->flags)) 4284 sb = page_address(rdev->sb_page); 4285 } 4286 4287 /* 4288 * some node is already performing reshape, and no need to 4289 * call md_bitmap_resize again since it should be called when 4290 * receiving BITMAP_RESIZE msg 4291 */ 4292 if ((sb && (le32_to_cpu(sb->feature_map) & 4293 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4294 goto out; 4295 4296 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4297 if (ret) 4298 goto abort; 4299 4300 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4301 if (ret) { 4302 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4303 goto abort; 4304 } 4305 } 4306 out: 4307 if (mddev->delta_disks > 0) { 4308 rdev_for_each(rdev, mddev) 4309 if (rdev->raid_disk < 0 && 4310 !test_bit(Faulty, &rdev->flags)) { 4311 if (raid10_add_disk(mddev, rdev) == 0) { 4312 if (rdev->raid_disk >= 4313 conf->prev.raid_disks) 4314 set_bit(In_sync, &rdev->flags); 4315 else 4316 rdev->recovery_offset = 0; 4317 4318 if (sysfs_link_rdev(mddev, rdev)) 4319 /* Failure here is OK */; 4320 } 4321 } else if (rdev->raid_disk >= conf->prev.raid_disks 4322 && !test_bit(Faulty, &rdev->flags)) { 4323 /* This is a spare that was manually added */ 4324 set_bit(In_sync, &rdev->flags); 4325 } 4326 } 4327 /* When a reshape changes the number of devices, 4328 * ->degraded is measured against the larger of the 4329 * pre and post numbers. 4330 */ 4331 spin_lock_irq(&conf->device_lock); 4332 mddev->degraded = calc_degraded(conf); 4333 spin_unlock_irq(&conf->device_lock); 4334 mddev->raid_disks = conf->geo.raid_disks; 4335 mddev->reshape_position = conf->reshape_progress; 4336 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4337 4338 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4339 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4340 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4341 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4342 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4343 4344 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4345 "reshape"); 4346 if (!mddev->sync_thread) { 4347 ret = -EAGAIN; 4348 goto abort; 4349 } 4350 conf->reshape_checkpoint = jiffies; 4351 md_wakeup_thread(mddev->sync_thread); 4352 md_new_event(mddev); 4353 return 0; 4354 4355 abort: 4356 mddev->recovery = 0; 4357 spin_lock_irq(&conf->device_lock); 4358 conf->geo = conf->prev; 4359 mddev->raid_disks = conf->geo.raid_disks; 4360 rdev_for_each(rdev, mddev) 4361 rdev->new_data_offset = rdev->data_offset; 4362 smp_wmb(); 4363 conf->reshape_progress = MaxSector; 4364 conf->reshape_safe = MaxSector; 4365 mddev->reshape_position = MaxSector; 4366 spin_unlock_irq(&conf->device_lock); 4367 return ret; 4368 } 4369 4370 /* Calculate the last device-address that could contain 4371 * any block from the chunk that includes the array-address 's' 4372 * and report the next address. 4373 * i.e. the address returned will be chunk-aligned and after 4374 * any data that is in the chunk containing 's'. 4375 */ 4376 static sector_t last_dev_address(sector_t s, struct geom *geo) 4377 { 4378 s = (s | geo->chunk_mask) + 1; 4379 s >>= geo->chunk_shift; 4380 s *= geo->near_copies; 4381 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4382 s *= geo->far_copies; 4383 s <<= geo->chunk_shift; 4384 return s; 4385 } 4386 4387 /* Calculate the first device-address that could contain 4388 * any block from the chunk that includes the array-address 's'. 4389 * This too will be the start of a chunk 4390 */ 4391 static sector_t first_dev_address(sector_t s, struct geom *geo) 4392 { 4393 s >>= geo->chunk_shift; 4394 s *= geo->near_copies; 4395 sector_div(s, geo->raid_disks); 4396 s *= geo->far_copies; 4397 s <<= geo->chunk_shift; 4398 return s; 4399 } 4400 4401 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4402 int *skipped) 4403 { 4404 /* We simply copy at most one chunk (smallest of old and new) 4405 * at a time, possibly less if that exceeds RESYNC_PAGES, 4406 * or we hit a bad block or something. 4407 * This might mean we pause for normal IO in the middle of 4408 * a chunk, but that is not a problem as mddev->reshape_position 4409 * can record any location. 4410 * 4411 * If we will want to write to a location that isn't 4412 * yet recorded as 'safe' (i.e. in metadata on disk) then 4413 * we need to flush all reshape requests and update the metadata. 4414 * 4415 * When reshaping forwards (e.g. to more devices), we interpret 4416 * 'safe' as the earliest block which might not have been copied 4417 * down yet. We divide this by previous stripe size and multiply 4418 * by previous stripe length to get lowest device offset that we 4419 * cannot write to yet. 4420 * We interpret 'sector_nr' as an address that we want to write to. 4421 * From this we use last_device_address() to find where we might 4422 * write to, and first_device_address on the 'safe' position. 4423 * If this 'next' write position is after the 'safe' position, 4424 * we must update the metadata to increase the 'safe' position. 4425 * 4426 * When reshaping backwards, we round in the opposite direction 4427 * and perform the reverse test: next write position must not be 4428 * less than current safe position. 4429 * 4430 * In all this the minimum difference in data offsets 4431 * (conf->offset_diff - always positive) allows a bit of slack, 4432 * so next can be after 'safe', but not by more than offset_diff 4433 * 4434 * We need to prepare all the bios here before we start any IO 4435 * to ensure the size we choose is acceptable to all devices. 4436 * The means one for each copy for write-out and an extra one for 4437 * read-in. 4438 * We store the read-in bio in ->master_bio and the others in 4439 * ->devs[x].bio and ->devs[x].repl_bio. 4440 */ 4441 struct r10conf *conf = mddev->private; 4442 struct r10bio *r10_bio; 4443 sector_t next, safe, last; 4444 int max_sectors; 4445 int nr_sectors; 4446 int s; 4447 struct md_rdev *rdev; 4448 int need_flush = 0; 4449 struct bio *blist; 4450 struct bio *bio, *read_bio; 4451 int sectors_done = 0; 4452 struct page **pages; 4453 4454 if (sector_nr == 0) { 4455 /* If restarting in the middle, skip the initial sectors */ 4456 if (mddev->reshape_backwards && 4457 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4458 sector_nr = (raid10_size(mddev, 0, 0) 4459 - conf->reshape_progress); 4460 } else if (!mddev->reshape_backwards && 4461 conf->reshape_progress > 0) 4462 sector_nr = conf->reshape_progress; 4463 if (sector_nr) { 4464 mddev->curr_resync_completed = sector_nr; 4465 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4466 *skipped = 1; 4467 return sector_nr; 4468 } 4469 } 4470 4471 /* We don't use sector_nr to track where we are up to 4472 * as that doesn't work well for ->reshape_backwards. 4473 * So just use ->reshape_progress. 4474 */ 4475 if (mddev->reshape_backwards) { 4476 /* 'next' is the earliest device address that we might 4477 * write to for this chunk in the new layout 4478 */ 4479 next = first_dev_address(conf->reshape_progress - 1, 4480 &conf->geo); 4481 4482 /* 'safe' is the last device address that we might read from 4483 * in the old layout after a restart 4484 */ 4485 safe = last_dev_address(conf->reshape_safe - 1, 4486 &conf->prev); 4487 4488 if (next + conf->offset_diff < safe) 4489 need_flush = 1; 4490 4491 last = conf->reshape_progress - 1; 4492 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4493 & conf->prev.chunk_mask); 4494 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4495 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4496 } else { 4497 /* 'next' is after the last device address that we 4498 * might write to for this chunk in the new layout 4499 */ 4500 next = last_dev_address(conf->reshape_progress, &conf->geo); 4501 4502 /* 'safe' is the earliest device address that we might 4503 * read from in the old layout after a restart 4504 */ 4505 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4506 4507 /* Need to update metadata if 'next' might be beyond 'safe' 4508 * as that would possibly corrupt data 4509 */ 4510 if (next > safe + conf->offset_diff) 4511 need_flush = 1; 4512 4513 sector_nr = conf->reshape_progress; 4514 last = sector_nr | (conf->geo.chunk_mask 4515 & conf->prev.chunk_mask); 4516 4517 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4518 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4519 } 4520 4521 if (need_flush || 4522 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4523 /* Need to update reshape_position in metadata */ 4524 wait_barrier(conf); 4525 mddev->reshape_position = conf->reshape_progress; 4526 if (mddev->reshape_backwards) 4527 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4528 - conf->reshape_progress; 4529 else 4530 mddev->curr_resync_completed = conf->reshape_progress; 4531 conf->reshape_checkpoint = jiffies; 4532 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4533 md_wakeup_thread(mddev->thread); 4534 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4535 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4536 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4537 allow_barrier(conf); 4538 return sectors_done; 4539 } 4540 conf->reshape_safe = mddev->reshape_position; 4541 allow_barrier(conf); 4542 } 4543 4544 raise_barrier(conf, 0); 4545 read_more: 4546 /* Now schedule reads for blocks from sector_nr to last */ 4547 r10_bio = raid10_alloc_init_r10buf(conf); 4548 r10_bio->state = 0; 4549 raise_barrier(conf, 1); 4550 atomic_set(&r10_bio->remaining, 0); 4551 r10_bio->mddev = mddev; 4552 r10_bio->sector = sector_nr; 4553 set_bit(R10BIO_IsReshape, &r10_bio->state); 4554 r10_bio->sectors = last - sector_nr + 1; 4555 rdev = read_balance(conf, r10_bio, &max_sectors); 4556 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4557 4558 if (!rdev) { 4559 /* Cannot read from here, so need to record bad blocks 4560 * on all the target devices. 4561 */ 4562 // FIXME 4563 mempool_free(r10_bio, &conf->r10buf_pool); 4564 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4565 return sectors_done; 4566 } 4567 4568 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4569 4570 bio_set_dev(read_bio, rdev->bdev); 4571 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4572 + rdev->data_offset); 4573 read_bio->bi_private = r10_bio; 4574 read_bio->bi_end_io = end_reshape_read; 4575 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4576 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4577 read_bio->bi_status = 0; 4578 read_bio->bi_vcnt = 0; 4579 read_bio->bi_iter.bi_size = 0; 4580 r10_bio->master_bio = read_bio; 4581 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4582 4583 /* 4584 * Broadcast RESYNC message to other nodes, so all nodes would not 4585 * write to the region to avoid conflict. 4586 */ 4587 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4588 struct mdp_superblock_1 *sb = NULL; 4589 int sb_reshape_pos = 0; 4590 4591 conf->cluster_sync_low = sector_nr; 4592 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4593 sb = page_address(rdev->sb_page); 4594 if (sb) { 4595 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4596 /* 4597 * Set cluster_sync_low again if next address for array 4598 * reshape is less than cluster_sync_low. Since we can't 4599 * update cluster_sync_low until it has finished reshape. 4600 */ 4601 if (sb_reshape_pos < conf->cluster_sync_low) 4602 conf->cluster_sync_low = sb_reshape_pos; 4603 } 4604 4605 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4606 conf->cluster_sync_high); 4607 } 4608 4609 /* Now find the locations in the new layout */ 4610 __raid10_find_phys(&conf->geo, r10_bio); 4611 4612 blist = read_bio; 4613 read_bio->bi_next = NULL; 4614 4615 rcu_read_lock(); 4616 for (s = 0; s < conf->copies*2; s++) { 4617 struct bio *b; 4618 int d = r10_bio->devs[s/2].devnum; 4619 struct md_rdev *rdev2; 4620 if (s&1) { 4621 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4622 b = r10_bio->devs[s/2].repl_bio; 4623 } else { 4624 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4625 b = r10_bio->devs[s/2].bio; 4626 } 4627 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4628 continue; 4629 4630 bio_set_dev(b, rdev2->bdev); 4631 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4632 rdev2->new_data_offset; 4633 b->bi_end_io = end_reshape_write; 4634 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4635 b->bi_next = blist; 4636 blist = b; 4637 } 4638 4639 /* Now add as many pages as possible to all of these bios. */ 4640 4641 nr_sectors = 0; 4642 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4643 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4644 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4645 int len = (max_sectors - s) << 9; 4646 if (len > PAGE_SIZE) 4647 len = PAGE_SIZE; 4648 for (bio = blist; bio ; bio = bio->bi_next) { 4649 /* 4650 * won't fail because the vec table is big enough 4651 * to hold all these pages 4652 */ 4653 bio_add_page(bio, page, len, 0); 4654 } 4655 sector_nr += len >> 9; 4656 nr_sectors += len >> 9; 4657 } 4658 rcu_read_unlock(); 4659 r10_bio->sectors = nr_sectors; 4660 4661 /* Now submit the read */ 4662 md_sync_acct_bio(read_bio, r10_bio->sectors); 4663 atomic_inc(&r10_bio->remaining); 4664 read_bio->bi_next = NULL; 4665 generic_make_request(read_bio); 4666 sectors_done += nr_sectors; 4667 if (sector_nr <= last) 4668 goto read_more; 4669 4670 lower_barrier(conf); 4671 4672 /* Now that we have done the whole section we can 4673 * update reshape_progress 4674 */ 4675 if (mddev->reshape_backwards) 4676 conf->reshape_progress -= sectors_done; 4677 else 4678 conf->reshape_progress += sectors_done; 4679 4680 return sectors_done; 4681 } 4682 4683 static void end_reshape_request(struct r10bio *r10_bio); 4684 static int handle_reshape_read_error(struct mddev *mddev, 4685 struct r10bio *r10_bio); 4686 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4687 { 4688 /* Reshape read completed. Hopefully we have a block 4689 * to write out. 4690 * If we got a read error then we do sync 1-page reads from 4691 * elsewhere until we find the data - or give up. 4692 */ 4693 struct r10conf *conf = mddev->private; 4694 int s; 4695 4696 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4697 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4698 /* Reshape has been aborted */ 4699 md_done_sync(mddev, r10_bio->sectors, 0); 4700 return; 4701 } 4702 4703 /* We definitely have the data in the pages, schedule the 4704 * writes. 4705 */ 4706 atomic_set(&r10_bio->remaining, 1); 4707 for (s = 0; s < conf->copies*2; s++) { 4708 struct bio *b; 4709 int d = r10_bio->devs[s/2].devnum; 4710 struct md_rdev *rdev; 4711 rcu_read_lock(); 4712 if (s&1) { 4713 rdev = rcu_dereference(conf->mirrors[d].replacement); 4714 b = r10_bio->devs[s/2].repl_bio; 4715 } else { 4716 rdev = rcu_dereference(conf->mirrors[d].rdev); 4717 b = r10_bio->devs[s/2].bio; 4718 } 4719 if (!rdev || test_bit(Faulty, &rdev->flags)) { 4720 rcu_read_unlock(); 4721 continue; 4722 } 4723 atomic_inc(&rdev->nr_pending); 4724 rcu_read_unlock(); 4725 md_sync_acct_bio(b, r10_bio->sectors); 4726 atomic_inc(&r10_bio->remaining); 4727 b->bi_next = NULL; 4728 generic_make_request(b); 4729 } 4730 end_reshape_request(r10_bio); 4731 } 4732 4733 static void end_reshape(struct r10conf *conf) 4734 { 4735 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4736 return; 4737 4738 spin_lock_irq(&conf->device_lock); 4739 conf->prev = conf->geo; 4740 md_finish_reshape(conf->mddev); 4741 smp_wmb(); 4742 conf->reshape_progress = MaxSector; 4743 conf->reshape_safe = MaxSector; 4744 spin_unlock_irq(&conf->device_lock); 4745 4746 /* read-ahead size must cover two whole stripes, which is 4747 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4748 */ 4749 if (conf->mddev->queue) { 4750 int stripe = conf->geo.raid_disks * 4751 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4752 stripe /= conf->geo.near_copies; 4753 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 4754 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 4755 } 4756 conf->fullsync = 0; 4757 } 4758 4759 static void raid10_update_reshape_pos(struct mddev *mddev) 4760 { 4761 struct r10conf *conf = mddev->private; 4762 sector_t lo, hi; 4763 4764 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 4765 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 4766 || mddev->reshape_position == MaxSector) 4767 conf->reshape_progress = mddev->reshape_position; 4768 else 4769 WARN_ON_ONCE(1); 4770 } 4771 4772 static int handle_reshape_read_error(struct mddev *mddev, 4773 struct r10bio *r10_bio) 4774 { 4775 /* Use sync reads to get the blocks from somewhere else */ 4776 int sectors = r10_bio->sectors; 4777 struct r10conf *conf = mddev->private; 4778 struct r10bio *r10b; 4779 int slot = 0; 4780 int idx = 0; 4781 struct page **pages; 4782 4783 r10b = kmalloc(sizeof(*r10b) + 4784 sizeof(struct r10dev) * conf->copies, GFP_NOIO); 4785 if (!r10b) { 4786 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4787 return -ENOMEM; 4788 } 4789 4790 /* reshape IOs share pages from .devs[0].bio */ 4791 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4792 4793 r10b->sector = r10_bio->sector; 4794 __raid10_find_phys(&conf->prev, r10b); 4795 4796 while (sectors) { 4797 int s = sectors; 4798 int success = 0; 4799 int first_slot = slot; 4800 4801 if (s > (PAGE_SIZE >> 9)) 4802 s = PAGE_SIZE >> 9; 4803 4804 rcu_read_lock(); 4805 while (!success) { 4806 int d = r10b->devs[slot].devnum; 4807 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4808 sector_t addr; 4809 if (rdev == NULL || 4810 test_bit(Faulty, &rdev->flags) || 4811 !test_bit(In_sync, &rdev->flags)) 4812 goto failed; 4813 4814 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4815 atomic_inc(&rdev->nr_pending); 4816 rcu_read_unlock(); 4817 success = sync_page_io(rdev, 4818 addr, 4819 s << 9, 4820 pages[idx], 4821 REQ_OP_READ, 0, false); 4822 rdev_dec_pending(rdev, mddev); 4823 rcu_read_lock(); 4824 if (success) 4825 break; 4826 failed: 4827 slot++; 4828 if (slot >= conf->copies) 4829 slot = 0; 4830 if (slot == first_slot) 4831 break; 4832 } 4833 rcu_read_unlock(); 4834 if (!success) { 4835 /* couldn't read this block, must give up */ 4836 set_bit(MD_RECOVERY_INTR, 4837 &mddev->recovery); 4838 kfree(r10b); 4839 return -EIO; 4840 } 4841 sectors -= s; 4842 idx++; 4843 } 4844 kfree(r10b); 4845 return 0; 4846 } 4847 4848 static void end_reshape_write(struct bio *bio) 4849 { 4850 struct r10bio *r10_bio = get_resync_r10bio(bio); 4851 struct mddev *mddev = r10_bio->mddev; 4852 struct r10conf *conf = mddev->private; 4853 int d; 4854 int slot; 4855 int repl; 4856 struct md_rdev *rdev = NULL; 4857 4858 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4859 if (repl) 4860 rdev = conf->mirrors[d].replacement; 4861 if (!rdev) { 4862 smp_mb(); 4863 rdev = conf->mirrors[d].rdev; 4864 } 4865 4866 if (bio->bi_status) { 4867 /* FIXME should record badblock */ 4868 md_error(mddev, rdev); 4869 } 4870 4871 rdev_dec_pending(rdev, mddev); 4872 end_reshape_request(r10_bio); 4873 } 4874 4875 static void end_reshape_request(struct r10bio *r10_bio) 4876 { 4877 if (!atomic_dec_and_test(&r10_bio->remaining)) 4878 return; 4879 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4880 bio_put(r10_bio->master_bio); 4881 put_buf(r10_bio); 4882 } 4883 4884 static void raid10_finish_reshape(struct mddev *mddev) 4885 { 4886 struct r10conf *conf = mddev->private; 4887 4888 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4889 return; 4890 4891 if (mddev->delta_disks > 0) { 4892 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4893 mddev->recovery_cp = mddev->resync_max_sectors; 4894 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4895 } 4896 mddev->resync_max_sectors = mddev->array_sectors; 4897 } else { 4898 int d; 4899 rcu_read_lock(); 4900 for (d = conf->geo.raid_disks ; 4901 d < conf->geo.raid_disks - mddev->delta_disks; 4902 d++) { 4903 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4904 if (rdev) 4905 clear_bit(In_sync, &rdev->flags); 4906 rdev = rcu_dereference(conf->mirrors[d].replacement); 4907 if (rdev) 4908 clear_bit(In_sync, &rdev->flags); 4909 } 4910 rcu_read_unlock(); 4911 } 4912 mddev->layout = mddev->new_layout; 4913 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4914 mddev->reshape_position = MaxSector; 4915 mddev->delta_disks = 0; 4916 mddev->reshape_backwards = 0; 4917 } 4918 4919 static struct md_personality raid10_personality = 4920 { 4921 .name = "raid10", 4922 .level = 10, 4923 .owner = THIS_MODULE, 4924 .make_request = raid10_make_request, 4925 .run = raid10_run, 4926 .free = raid10_free, 4927 .status = raid10_status, 4928 .error_handler = raid10_error, 4929 .hot_add_disk = raid10_add_disk, 4930 .hot_remove_disk= raid10_remove_disk, 4931 .spare_active = raid10_spare_active, 4932 .sync_request = raid10_sync_request, 4933 .quiesce = raid10_quiesce, 4934 .size = raid10_size, 4935 .resize = raid10_resize, 4936 .takeover = raid10_takeover, 4937 .check_reshape = raid10_check_reshape, 4938 .start_reshape = raid10_start_reshape, 4939 .finish_reshape = raid10_finish_reshape, 4940 .update_reshape_pos = raid10_update_reshape_pos, 4941 .congested = raid10_congested, 4942 }; 4943 4944 static int __init raid_init(void) 4945 { 4946 return register_md_personality(&raid10_personality); 4947 } 4948 4949 static void raid_exit(void) 4950 { 4951 unregister_md_personality(&raid10_personality); 4952 } 4953 4954 module_init(raid_init); 4955 module_exit(raid_exit); 4956 MODULE_LICENSE("GPL"); 4957 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4958 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4959 MODULE_ALIAS("md-raid10"); 4960 MODULE_ALIAS("md-level-10"); 4961 4962 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4963