xref: /openbmc/linux/drivers/md/raid10.c (revision a80de066)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25 
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66 
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 				int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76 
77 #define raid10_log(md, fmt, args...)				\
78 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79 
80 #include "raid1-10.c"
81 
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88 	return get_resync_pages(bio)->raid_bio;
89 }
90 
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93 	struct r10conf *conf = data;
94 	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
95 
96 	/* allocate a r10bio with room for raid_disks entries in the
97 	 * bios array */
98 	return kzalloc(size, gfp_flags);
99 }
100 
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108 
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 	struct r10conf *conf = data;
119 	struct r10bio *r10_bio;
120 	struct bio *bio;
121 	int j;
122 	int nalloc, nalloc_rp;
123 	struct resync_pages *rps;
124 
125 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126 	if (!r10_bio)
127 		return NULL;
128 
129 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 		nalloc = conf->copies; /* resync */
132 	else
133 		nalloc = 2; /* recovery */
134 
135 	/* allocate once for all bios */
136 	if (!conf->have_replacement)
137 		nalloc_rp = nalloc;
138 	else
139 		nalloc_rp = nalloc * 2;
140 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141 	if (!rps)
142 		goto out_free_r10bio;
143 
144 	/*
145 	 * Allocate bios.
146 	 */
147 	for (j = nalloc ; j-- ; ) {
148 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
149 		if (!bio)
150 			goto out_free_bio;
151 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
152 		r10_bio->devs[j].bio = bio;
153 		if (!conf->have_replacement)
154 			continue;
155 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
156 		if (!bio)
157 			goto out_free_bio;
158 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
159 		r10_bio->devs[j].repl_bio = bio;
160 	}
161 	/*
162 	 * Allocate RESYNC_PAGES data pages and attach them
163 	 * where needed.
164 	 */
165 	for (j = 0; j < nalloc; j++) {
166 		struct bio *rbio = r10_bio->devs[j].repl_bio;
167 		struct resync_pages *rp, *rp_repl;
168 
169 		rp = &rps[j];
170 		if (rbio)
171 			rp_repl = &rps[nalloc + j];
172 
173 		bio = r10_bio->devs[j].bio;
174 
175 		if (!j || test_bit(MD_RECOVERY_SYNC,
176 				   &conf->mddev->recovery)) {
177 			if (resync_alloc_pages(rp, gfp_flags))
178 				goto out_free_pages;
179 		} else {
180 			memcpy(rp, &rps[0], sizeof(*rp));
181 			resync_get_all_pages(rp);
182 		}
183 
184 		rp->raid_bio = r10_bio;
185 		bio->bi_private = rp;
186 		if (rbio) {
187 			memcpy(rp_repl, rp, sizeof(*rp));
188 			rbio->bi_private = rp_repl;
189 		}
190 	}
191 
192 	return r10_bio;
193 
194 out_free_pages:
195 	while (--j >= 0)
196 		resync_free_pages(&rps[j]);
197 
198 	j = 0;
199 out_free_bio:
200 	for ( ; j < nalloc; j++) {
201 		if (r10_bio->devs[j].bio)
202 			bio_uninit(r10_bio->devs[j].bio);
203 		kfree(r10_bio->devs[j].bio);
204 		if (r10_bio->devs[j].repl_bio)
205 			bio_uninit(r10_bio->devs[j].repl_bio);
206 		kfree(r10_bio->devs[j].repl_bio);
207 	}
208 	kfree(rps);
209 out_free_r10bio:
210 	rbio_pool_free(r10_bio, conf);
211 	return NULL;
212 }
213 
214 static void r10buf_pool_free(void *__r10_bio, void *data)
215 {
216 	struct r10conf *conf = data;
217 	struct r10bio *r10bio = __r10_bio;
218 	int j;
219 	struct resync_pages *rp = NULL;
220 
221 	for (j = conf->copies; j--; ) {
222 		struct bio *bio = r10bio->devs[j].bio;
223 
224 		if (bio) {
225 			rp = get_resync_pages(bio);
226 			resync_free_pages(rp);
227 			bio_uninit(bio);
228 			kfree(bio);
229 		}
230 
231 		bio = r10bio->devs[j].repl_bio;
232 		if (bio) {
233 			bio_uninit(bio);
234 			kfree(bio);
235 		}
236 	}
237 
238 	/* resync pages array stored in the 1st bio's .bi_private */
239 	kfree(rp);
240 
241 	rbio_pool_free(r10bio, conf);
242 }
243 
244 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
245 {
246 	int i;
247 
248 	for (i = 0; i < conf->geo.raid_disks; i++) {
249 		struct bio **bio = & r10_bio->devs[i].bio;
250 		if (!BIO_SPECIAL(*bio))
251 			bio_put(*bio);
252 		*bio = NULL;
253 		bio = &r10_bio->devs[i].repl_bio;
254 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
255 			bio_put(*bio);
256 		*bio = NULL;
257 	}
258 }
259 
260 static void free_r10bio(struct r10bio *r10_bio)
261 {
262 	struct r10conf *conf = r10_bio->mddev->private;
263 
264 	put_all_bios(conf, r10_bio);
265 	mempool_free(r10_bio, &conf->r10bio_pool);
266 }
267 
268 static void put_buf(struct r10bio *r10_bio)
269 {
270 	struct r10conf *conf = r10_bio->mddev->private;
271 
272 	mempool_free(r10_bio, &conf->r10buf_pool);
273 
274 	lower_barrier(conf);
275 }
276 
277 static void reschedule_retry(struct r10bio *r10_bio)
278 {
279 	unsigned long flags;
280 	struct mddev *mddev = r10_bio->mddev;
281 	struct r10conf *conf = mddev->private;
282 
283 	spin_lock_irqsave(&conf->device_lock, flags);
284 	list_add(&r10_bio->retry_list, &conf->retry_list);
285 	conf->nr_queued ++;
286 	spin_unlock_irqrestore(&conf->device_lock, flags);
287 
288 	/* wake up frozen array... */
289 	wake_up(&conf->wait_barrier);
290 
291 	md_wakeup_thread(mddev->thread);
292 }
293 
294 /*
295  * raid_end_bio_io() is called when we have finished servicing a mirrored
296  * operation and are ready to return a success/failure code to the buffer
297  * cache layer.
298  */
299 static void raid_end_bio_io(struct r10bio *r10_bio)
300 {
301 	struct bio *bio = r10_bio->master_bio;
302 	struct r10conf *conf = r10_bio->mddev->private;
303 
304 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
305 		bio->bi_status = BLK_STS_IOERR;
306 
307 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
308 		bio_end_io_acct(bio, r10_bio->start_time);
309 	bio_endio(bio);
310 	/*
311 	 * Wake up any possible resync thread that waits for the device
312 	 * to go idle.
313 	 */
314 	allow_barrier(conf);
315 
316 	free_r10bio(r10_bio);
317 }
318 
319 /*
320  * Update disk head position estimator based on IRQ completion info.
321  */
322 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
323 {
324 	struct r10conf *conf = r10_bio->mddev->private;
325 
326 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
327 		r10_bio->devs[slot].addr + (r10_bio->sectors);
328 }
329 
330 /*
331  * Find the disk number which triggered given bio
332  */
333 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
334 			 struct bio *bio, int *slotp, int *replp)
335 {
336 	int slot;
337 	int repl = 0;
338 
339 	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
340 		if (r10_bio->devs[slot].bio == bio)
341 			break;
342 		if (r10_bio->devs[slot].repl_bio == bio) {
343 			repl = 1;
344 			break;
345 		}
346 	}
347 
348 	update_head_pos(slot, r10_bio);
349 
350 	if (slotp)
351 		*slotp = slot;
352 	if (replp)
353 		*replp = repl;
354 	return r10_bio->devs[slot].devnum;
355 }
356 
357 static void raid10_end_read_request(struct bio *bio)
358 {
359 	int uptodate = !bio->bi_status;
360 	struct r10bio *r10_bio = bio->bi_private;
361 	int slot;
362 	struct md_rdev *rdev;
363 	struct r10conf *conf = r10_bio->mddev->private;
364 
365 	slot = r10_bio->read_slot;
366 	rdev = r10_bio->devs[slot].rdev;
367 	/*
368 	 * this branch is our 'one mirror IO has finished' event handler:
369 	 */
370 	update_head_pos(slot, r10_bio);
371 
372 	if (uptodate) {
373 		/*
374 		 * Set R10BIO_Uptodate in our master bio, so that
375 		 * we will return a good error code to the higher
376 		 * levels even if IO on some other mirrored buffer fails.
377 		 *
378 		 * The 'master' represents the composite IO operation to
379 		 * user-side. So if something waits for IO, then it will
380 		 * wait for the 'master' bio.
381 		 */
382 		set_bit(R10BIO_Uptodate, &r10_bio->state);
383 	} else {
384 		/* If all other devices that store this block have
385 		 * failed, we want to return the error upwards rather
386 		 * than fail the last device.  Here we redefine
387 		 * "uptodate" to mean "Don't want to retry"
388 		 */
389 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
390 			     rdev->raid_disk))
391 			uptodate = 1;
392 	}
393 	if (uptodate) {
394 		raid_end_bio_io(r10_bio);
395 		rdev_dec_pending(rdev, conf->mddev);
396 	} else {
397 		/*
398 		 * oops, read error - keep the refcount on the rdev
399 		 */
400 		pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
401 				   mdname(conf->mddev),
402 				   rdev->bdev,
403 				   (unsigned long long)r10_bio->sector);
404 		set_bit(R10BIO_ReadError, &r10_bio->state);
405 		reschedule_retry(r10_bio);
406 	}
407 }
408 
409 static void close_write(struct r10bio *r10_bio)
410 {
411 	/* clear the bitmap if all writes complete successfully */
412 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
413 			   r10_bio->sectors,
414 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
415 			   0);
416 	md_write_end(r10_bio->mddev);
417 }
418 
419 static void one_write_done(struct r10bio *r10_bio)
420 {
421 	if (atomic_dec_and_test(&r10_bio->remaining)) {
422 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
423 			reschedule_retry(r10_bio);
424 		else {
425 			close_write(r10_bio);
426 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
427 				reschedule_retry(r10_bio);
428 			else
429 				raid_end_bio_io(r10_bio);
430 		}
431 	}
432 }
433 
434 static void raid10_end_write_request(struct bio *bio)
435 {
436 	struct r10bio *r10_bio = bio->bi_private;
437 	int dev;
438 	int dec_rdev = 1;
439 	struct r10conf *conf = r10_bio->mddev->private;
440 	int slot, repl;
441 	struct md_rdev *rdev = NULL;
442 	struct bio *to_put = NULL;
443 	bool discard_error;
444 
445 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
446 
447 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
448 
449 	if (repl)
450 		rdev = conf->mirrors[dev].replacement;
451 	if (!rdev) {
452 		smp_rmb();
453 		repl = 0;
454 		rdev = conf->mirrors[dev].rdev;
455 	}
456 	/*
457 	 * this branch is our 'one mirror IO has finished' event handler:
458 	 */
459 	if (bio->bi_status && !discard_error) {
460 		if (repl)
461 			/* Never record new bad blocks to replacement,
462 			 * just fail it.
463 			 */
464 			md_error(rdev->mddev, rdev);
465 		else {
466 			set_bit(WriteErrorSeen,	&rdev->flags);
467 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
468 				set_bit(MD_RECOVERY_NEEDED,
469 					&rdev->mddev->recovery);
470 
471 			dec_rdev = 0;
472 			if (test_bit(FailFast, &rdev->flags) &&
473 			    (bio->bi_opf & MD_FAILFAST)) {
474 				md_error(rdev->mddev, rdev);
475 			}
476 
477 			/*
478 			 * When the device is faulty, it is not necessary to
479 			 * handle write error.
480 			 */
481 			if (!test_bit(Faulty, &rdev->flags))
482 				set_bit(R10BIO_WriteError, &r10_bio->state);
483 			else {
484 				/* Fail the request */
485 				set_bit(R10BIO_Degraded, &r10_bio->state);
486 				r10_bio->devs[slot].bio = NULL;
487 				to_put = bio;
488 				dec_rdev = 1;
489 			}
490 		}
491 	} else {
492 		/*
493 		 * Set R10BIO_Uptodate in our master bio, so that
494 		 * we will return a good error code for to the higher
495 		 * levels even if IO on some other mirrored buffer fails.
496 		 *
497 		 * The 'master' represents the composite IO operation to
498 		 * user-side. So if something waits for IO, then it will
499 		 * wait for the 'master' bio.
500 		 */
501 		sector_t first_bad;
502 		int bad_sectors;
503 
504 		/*
505 		 * Do not set R10BIO_Uptodate if the current device is
506 		 * rebuilding or Faulty. This is because we cannot use
507 		 * such device for properly reading the data back (we could
508 		 * potentially use it, if the current write would have felt
509 		 * before rdev->recovery_offset, but for simplicity we don't
510 		 * check this here.
511 		 */
512 		if (test_bit(In_sync, &rdev->flags) &&
513 		    !test_bit(Faulty, &rdev->flags))
514 			set_bit(R10BIO_Uptodate, &r10_bio->state);
515 
516 		/* Maybe we can clear some bad blocks. */
517 		if (is_badblock(rdev,
518 				r10_bio->devs[slot].addr,
519 				r10_bio->sectors,
520 				&first_bad, &bad_sectors) && !discard_error) {
521 			bio_put(bio);
522 			if (repl)
523 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
524 			else
525 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
526 			dec_rdev = 0;
527 			set_bit(R10BIO_MadeGood, &r10_bio->state);
528 		}
529 	}
530 
531 	/*
532 	 *
533 	 * Let's see if all mirrored write operations have finished
534 	 * already.
535 	 */
536 	one_write_done(r10_bio);
537 	if (dec_rdev)
538 		rdev_dec_pending(rdev, conf->mddev);
539 	if (to_put)
540 		bio_put(to_put);
541 }
542 
543 /*
544  * RAID10 layout manager
545  * As well as the chunksize and raid_disks count, there are two
546  * parameters: near_copies and far_copies.
547  * near_copies * far_copies must be <= raid_disks.
548  * Normally one of these will be 1.
549  * If both are 1, we get raid0.
550  * If near_copies == raid_disks, we get raid1.
551  *
552  * Chunks are laid out in raid0 style with near_copies copies of the
553  * first chunk, followed by near_copies copies of the next chunk and
554  * so on.
555  * If far_copies > 1, then after 1/far_copies of the array has been assigned
556  * as described above, we start again with a device offset of near_copies.
557  * So we effectively have another copy of the whole array further down all
558  * the drives, but with blocks on different drives.
559  * With this layout, and block is never stored twice on the one device.
560  *
561  * raid10_find_phys finds the sector offset of a given virtual sector
562  * on each device that it is on.
563  *
564  * raid10_find_virt does the reverse mapping, from a device and a
565  * sector offset to a virtual address
566  */
567 
568 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
569 {
570 	int n,f;
571 	sector_t sector;
572 	sector_t chunk;
573 	sector_t stripe;
574 	int dev;
575 	int slot = 0;
576 	int last_far_set_start, last_far_set_size;
577 
578 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
579 	last_far_set_start *= geo->far_set_size;
580 
581 	last_far_set_size = geo->far_set_size;
582 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
583 
584 	/* now calculate first sector/dev */
585 	chunk = r10bio->sector >> geo->chunk_shift;
586 	sector = r10bio->sector & geo->chunk_mask;
587 
588 	chunk *= geo->near_copies;
589 	stripe = chunk;
590 	dev = sector_div(stripe, geo->raid_disks);
591 	if (geo->far_offset)
592 		stripe *= geo->far_copies;
593 
594 	sector += stripe << geo->chunk_shift;
595 
596 	/* and calculate all the others */
597 	for (n = 0; n < geo->near_copies; n++) {
598 		int d = dev;
599 		int set;
600 		sector_t s = sector;
601 		r10bio->devs[slot].devnum = d;
602 		r10bio->devs[slot].addr = s;
603 		slot++;
604 
605 		for (f = 1; f < geo->far_copies; f++) {
606 			set = d / geo->far_set_size;
607 			d += geo->near_copies;
608 
609 			if ((geo->raid_disks % geo->far_set_size) &&
610 			    (d > last_far_set_start)) {
611 				d -= last_far_set_start;
612 				d %= last_far_set_size;
613 				d += last_far_set_start;
614 			} else {
615 				d %= geo->far_set_size;
616 				d += geo->far_set_size * set;
617 			}
618 			s += geo->stride;
619 			r10bio->devs[slot].devnum = d;
620 			r10bio->devs[slot].addr = s;
621 			slot++;
622 		}
623 		dev++;
624 		if (dev >= geo->raid_disks) {
625 			dev = 0;
626 			sector += (geo->chunk_mask + 1);
627 		}
628 	}
629 }
630 
631 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
632 {
633 	struct geom *geo = &conf->geo;
634 
635 	if (conf->reshape_progress != MaxSector &&
636 	    ((r10bio->sector >= conf->reshape_progress) !=
637 	     conf->mddev->reshape_backwards)) {
638 		set_bit(R10BIO_Previous, &r10bio->state);
639 		geo = &conf->prev;
640 	} else
641 		clear_bit(R10BIO_Previous, &r10bio->state);
642 
643 	__raid10_find_phys(geo, r10bio);
644 }
645 
646 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
647 {
648 	sector_t offset, chunk, vchunk;
649 	/* Never use conf->prev as this is only called during resync
650 	 * or recovery, so reshape isn't happening
651 	 */
652 	struct geom *geo = &conf->geo;
653 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
654 	int far_set_size = geo->far_set_size;
655 	int last_far_set_start;
656 
657 	if (geo->raid_disks % geo->far_set_size) {
658 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
659 		last_far_set_start *= geo->far_set_size;
660 
661 		if (dev >= last_far_set_start) {
662 			far_set_size = geo->far_set_size;
663 			far_set_size += (geo->raid_disks % geo->far_set_size);
664 			far_set_start = last_far_set_start;
665 		}
666 	}
667 
668 	offset = sector & geo->chunk_mask;
669 	if (geo->far_offset) {
670 		int fc;
671 		chunk = sector >> geo->chunk_shift;
672 		fc = sector_div(chunk, geo->far_copies);
673 		dev -= fc * geo->near_copies;
674 		if (dev < far_set_start)
675 			dev += far_set_size;
676 	} else {
677 		while (sector >= geo->stride) {
678 			sector -= geo->stride;
679 			if (dev < (geo->near_copies + far_set_start))
680 				dev += far_set_size - geo->near_copies;
681 			else
682 				dev -= geo->near_copies;
683 		}
684 		chunk = sector >> geo->chunk_shift;
685 	}
686 	vchunk = chunk * geo->raid_disks + dev;
687 	sector_div(vchunk, geo->near_copies);
688 	return (vchunk << geo->chunk_shift) + offset;
689 }
690 
691 /*
692  * This routine returns the disk from which the requested read should
693  * be done. There is a per-array 'next expected sequential IO' sector
694  * number - if this matches on the next IO then we use the last disk.
695  * There is also a per-disk 'last know head position' sector that is
696  * maintained from IRQ contexts, both the normal and the resync IO
697  * completion handlers update this position correctly. If there is no
698  * perfect sequential match then we pick the disk whose head is closest.
699  *
700  * If there are 2 mirrors in the same 2 devices, performance degrades
701  * because position is mirror, not device based.
702  *
703  * The rdev for the device selected will have nr_pending incremented.
704  */
705 
706 /*
707  * FIXME: possibly should rethink readbalancing and do it differently
708  * depending on near_copies / far_copies geometry.
709  */
710 static struct md_rdev *read_balance(struct r10conf *conf,
711 				    struct r10bio *r10_bio,
712 				    int *max_sectors)
713 {
714 	const sector_t this_sector = r10_bio->sector;
715 	int disk, slot;
716 	int sectors = r10_bio->sectors;
717 	int best_good_sectors;
718 	sector_t new_distance, best_dist;
719 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
720 	int do_balance;
721 	int best_dist_slot, best_pending_slot;
722 	bool has_nonrot_disk = false;
723 	unsigned int min_pending;
724 	struct geom *geo = &conf->geo;
725 
726 	raid10_find_phys(conf, r10_bio);
727 	rcu_read_lock();
728 	best_dist_slot = -1;
729 	min_pending = UINT_MAX;
730 	best_dist_rdev = NULL;
731 	best_pending_rdev = NULL;
732 	best_dist = MaxSector;
733 	best_good_sectors = 0;
734 	do_balance = 1;
735 	clear_bit(R10BIO_FailFast, &r10_bio->state);
736 	/*
737 	 * Check if we can balance. We can balance on the whole
738 	 * device if no resync is going on (recovery is ok), or below
739 	 * the resync window. We take the first readable disk when
740 	 * above the resync window.
741 	 */
742 	if ((conf->mddev->recovery_cp < MaxSector
743 	     && (this_sector + sectors >= conf->next_resync)) ||
744 	    (mddev_is_clustered(conf->mddev) &&
745 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
746 					    this_sector + sectors)))
747 		do_balance = 0;
748 
749 	for (slot = 0; slot < conf->copies ; slot++) {
750 		sector_t first_bad;
751 		int bad_sectors;
752 		sector_t dev_sector;
753 		unsigned int pending;
754 		bool nonrot;
755 
756 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
757 			continue;
758 		disk = r10_bio->devs[slot].devnum;
759 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
760 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
761 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
762 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
763 		if (rdev == NULL ||
764 		    test_bit(Faulty, &rdev->flags))
765 			continue;
766 		if (!test_bit(In_sync, &rdev->flags) &&
767 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
768 			continue;
769 
770 		dev_sector = r10_bio->devs[slot].addr;
771 		if (is_badblock(rdev, dev_sector, sectors,
772 				&first_bad, &bad_sectors)) {
773 			if (best_dist < MaxSector)
774 				/* Already have a better slot */
775 				continue;
776 			if (first_bad <= dev_sector) {
777 				/* Cannot read here.  If this is the
778 				 * 'primary' device, then we must not read
779 				 * beyond 'bad_sectors' from another device.
780 				 */
781 				bad_sectors -= (dev_sector - first_bad);
782 				if (!do_balance && sectors > bad_sectors)
783 					sectors = bad_sectors;
784 				if (best_good_sectors > sectors)
785 					best_good_sectors = sectors;
786 			} else {
787 				sector_t good_sectors =
788 					first_bad - dev_sector;
789 				if (good_sectors > best_good_sectors) {
790 					best_good_sectors = good_sectors;
791 					best_dist_slot = slot;
792 					best_dist_rdev = rdev;
793 				}
794 				if (!do_balance)
795 					/* Must read from here */
796 					break;
797 			}
798 			continue;
799 		} else
800 			best_good_sectors = sectors;
801 
802 		if (!do_balance)
803 			break;
804 
805 		nonrot = bdev_nonrot(rdev->bdev);
806 		has_nonrot_disk |= nonrot;
807 		pending = atomic_read(&rdev->nr_pending);
808 		if (min_pending > pending && nonrot) {
809 			min_pending = pending;
810 			best_pending_slot = slot;
811 			best_pending_rdev = rdev;
812 		}
813 
814 		if (best_dist_slot >= 0)
815 			/* At least 2 disks to choose from so failfast is OK */
816 			set_bit(R10BIO_FailFast, &r10_bio->state);
817 		/* This optimisation is debatable, and completely destroys
818 		 * sequential read speed for 'far copies' arrays.  So only
819 		 * keep it for 'near' arrays, and review those later.
820 		 */
821 		if (geo->near_copies > 1 && !pending)
822 			new_distance = 0;
823 
824 		/* for far > 1 always use the lowest address */
825 		else if (geo->far_copies > 1)
826 			new_distance = r10_bio->devs[slot].addr;
827 		else
828 			new_distance = abs(r10_bio->devs[slot].addr -
829 					   conf->mirrors[disk].head_position);
830 
831 		if (new_distance < best_dist) {
832 			best_dist = new_distance;
833 			best_dist_slot = slot;
834 			best_dist_rdev = rdev;
835 		}
836 	}
837 	if (slot >= conf->copies) {
838 		if (has_nonrot_disk) {
839 			slot = best_pending_slot;
840 			rdev = best_pending_rdev;
841 		} else {
842 			slot = best_dist_slot;
843 			rdev = best_dist_rdev;
844 		}
845 	}
846 
847 	if (slot >= 0) {
848 		atomic_inc(&rdev->nr_pending);
849 		r10_bio->read_slot = slot;
850 	} else
851 		rdev = NULL;
852 	rcu_read_unlock();
853 	*max_sectors = best_good_sectors;
854 
855 	return rdev;
856 }
857 
858 static void flush_pending_writes(struct r10conf *conf)
859 {
860 	/* Any writes that have been queued but are awaiting
861 	 * bitmap updates get flushed here.
862 	 */
863 	spin_lock_irq(&conf->device_lock);
864 
865 	if (conf->pending_bio_list.head) {
866 		struct blk_plug plug;
867 		struct bio *bio;
868 
869 		bio = bio_list_get(&conf->pending_bio_list);
870 		spin_unlock_irq(&conf->device_lock);
871 
872 		/*
873 		 * As this is called in a wait_event() loop (see freeze_array),
874 		 * current->state might be TASK_UNINTERRUPTIBLE which will
875 		 * cause a warning when we prepare to wait again.  As it is
876 		 * rare that this path is taken, it is perfectly safe to force
877 		 * us to go around the wait_event() loop again, so the warning
878 		 * is a false-positive. Silence the warning by resetting
879 		 * thread state
880 		 */
881 		__set_current_state(TASK_RUNNING);
882 
883 		blk_start_plug(&plug);
884 		/* flush any pending bitmap writes to disk
885 		 * before proceeding w/ I/O */
886 		md_bitmap_unplug(conf->mddev->bitmap);
887 		wake_up(&conf->wait_barrier);
888 
889 		while (bio) { /* submit pending writes */
890 			struct bio *next = bio->bi_next;
891 			struct md_rdev *rdev = (void*)bio->bi_bdev;
892 			bio->bi_next = NULL;
893 			bio_set_dev(bio, rdev->bdev);
894 			if (test_bit(Faulty, &rdev->flags)) {
895 				bio_io_error(bio);
896 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
897 					    !bdev_max_discard_sectors(bio->bi_bdev)))
898 				/* Just ignore it */
899 				bio_endio(bio);
900 			else
901 				submit_bio_noacct(bio);
902 			bio = next;
903 		}
904 		blk_finish_plug(&plug);
905 	} else
906 		spin_unlock_irq(&conf->device_lock);
907 }
908 
909 /* Barriers....
910  * Sometimes we need to suspend IO while we do something else,
911  * either some resync/recovery, or reconfigure the array.
912  * To do this we raise a 'barrier'.
913  * The 'barrier' is a counter that can be raised multiple times
914  * to count how many activities are happening which preclude
915  * normal IO.
916  * We can only raise the barrier if there is no pending IO.
917  * i.e. if nr_pending == 0.
918  * We choose only to raise the barrier if no-one is waiting for the
919  * barrier to go down.  This means that as soon as an IO request
920  * is ready, no other operations which require a barrier will start
921  * until the IO request has had a chance.
922  *
923  * So: regular IO calls 'wait_barrier'.  When that returns there
924  *    is no backgroup IO happening,  It must arrange to call
925  *    allow_barrier when it has finished its IO.
926  * backgroup IO calls must call raise_barrier.  Once that returns
927  *    there is no normal IO happeing.  It must arrange to call
928  *    lower_barrier when the particular background IO completes.
929  */
930 
931 static void raise_barrier(struct r10conf *conf, int force)
932 {
933 	BUG_ON(force && !conf->barrier);
934 	spin_lock_irq(&conf->resync_lock);
935 
936 	/* Wait until no block IO is waiting (unless 'force') */
937 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
938 			    conf->resync_lock);
939 
940 	/* block any new IO from starting */
941 	conf->barrier++;
942 
943 	/* Now wait for all pending IO to complete */
944 	wait_event_lock_irq(conf->wait_barrier,
945 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
946 			    conf->resync_lock);
947 
948 	spin_unlock_irq(&conf->resync_lock);
949 }
950 
951 static void lower_barrier(struct r10conf *conf)
952 {
953 	unsigned long flags;
954 	spin_lock_irqsave(&conf->resync_lock, flags);
955 	conf->barrier--;
956 	spin_unlock_irqrestore(&conf->resync_lock, flags);
957 	wake_up(&conf->wait_barrier);
958 }
959 
960 static bool wait_barrier(struct r10conf *conf, bool nowait)
961 {
962 	bool ret = true;
963 
964 	spin_lock_irq(&conf->resync_lock);
965 	if (conf->barrier) {
966 		struct bio_list *bio_list = current->bio_list;
967 		conf->nr_waiting++;
968 		/* Wait for the barrier to drop.
969 		 * However if there are already pending
970 		 * requests (preventing the barrier from
971 		 * rising completely), and the
972 		 * pre-process bio queue isn't empty,
973 		 * then don't wait, as we need to empty
974 		 * that queue to get the nr_pending
975 		 * count down.
976 		 */
977 		/* Return false when nowait flag is set */
978 		if (nowait) {
979 			ret = false;
980 		} else {
981 			raid10_log(conf->mddev, "wait barrier");
982 			wait_event_lock_irq(conf->wait_barrier,
983 					    !conf->barrier ||
984 					    (atomic_read(&conf->nr_pending) &&
985 					     bio_list &&
986 					     (!bio_list_empty(&bio_list[0]) ||
987 					      !bio_list_empty(&bio_list[1]))) ||
988 					     /* move on if recovery thread is
989 					      * blocked by us
990 					      */
991 					     (conf->mddev->thread->tsk == current &&
992 					      test_bit(MD_RECOVERY_RUNNING,
993 						       &conf->mddev->recovery) &&
994 					      conf->nr_queued > 0),
995 					    conf->resync_lock);
996 		}
997 		conf->nr_waiting--;
998 		if (!conf->nr_waiting)
999 			wake_up(&conf->wait_barrier);
1000 	}
1001 	/* Only increment nr_pending when we wait */
1002 	if (ret)
1003 		atomic_inc(&conf->nr_pending);
1004 	spin_unlock_irq(&conf->resync_lock);
1005 	return ret;
1006 }
1007 
1008 static void allow_barrier(struct r10conf *conf)
1009 {
1010 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1011 			(conf->array_freeze_pending))
1012 		wake_up(&conf->wait_barrier);
1013 }
1014 
1015 static void freeze_array(struct r10conf *conf, int extra)
1016 {
1017 	/* stop syncio and normal IO and wait for everything to
1018 	 * go quiet.
1019 	 * We increment barrier and nr_waiting, and then
1020 	 * wait until nr_pending match nr_queued+extra
1021 	 * This is called in the context of one normal IO request
1022 	 * that has failed. Thus any sync request that might be pending
1023 	 * will be blocked by nr_pending, and we need to wait for
1024 	 * pending IO requests to complete or be queued for re-try.
1025 	 * Thus the number queued (nr_queued) plus this request (extra)
1026 	 * must match the number of pending IOs (nr_pending) before
1027 	 * we continue.
1028 	 */
1029 	spin_lock_irq(&conf->resync_lock);
1030 	conf->array_freeze_pending++;
1031 	conf->barrier++;
1032 	conf->nr_waiting++;
1033 	wait_event_lock_irq_cmd(conf->wait_barrier,
1034 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1035 				conf->resync_lock,
1036 				flush_pending_writes(conf));
1037 
1038 	conf->array_freeze_pending--;
1039 	spin_unlock_irq(&conf->resync_lock);
1040 }
1041 
1042 static void unfreeze_array(struct r10conf *conf)
1043 {
1044 	/* reverse the effect of the freeze */
1045 	spin_lock_irq(&conf->resync_lock);
1046 	conf->barrier--;
1047 	conf->nr_waiting--;
1048 	wake_up(&conf->wait_barrier);
1049 	spin_unlock_irq(&conf->resync_lock);
1050 }
1051 
1052 static sector_t choose_data_offset(struct r10bio *r10_bio,
1053 				   struct md_rdev *rdev)
1054 {
1055 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1056 	    test_bit(R10BIO_Previous, &r10_bio->state))
1057 		return rdev->data_offset;
1058 	else
1059 		return rdev->new_data_offset;
1060 }
1061 
1062 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1063 {
1064 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1065 	struct mddev *mddev = plug->cb.data;
1066 	struct r10conf *conf = mddev->private;
1067 	struct bio *bio;
1068 
1069 	if (from_schedule || current->bio_list) {
1070 		spin_lock_irq(&conf->device_lock);
1071 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1072 		spin_unlock_irq(&conf->device_lock);
1073 		wake_up(&conf->wait_barrier);
1074 		md_wakeup_thread(mddev->thread);
1075 		kfree(plug);
1076 		return;
1077 	}
1078 
1079 	/* we aren't scheduling, so we can do the write-out directly. */
1080 	bio = bio_list_get(&plug->pending);
1081 	md_bitmap_unplug(mddev->bitmap);
1082 	wake_up(&conf->wait_barrier);
1083 
1084 	while (bio) { /* submit pending writes */
1085 		struct bio *next = bio->bi_next;
1086 		struct md_rdev *rdev = (void*)bio->bi_bdev;
1087 		bio->bi_next = NULL;
1088 		bio_set_dev(bio, rdev->bdev);
1089 		if (test_bit(Faulty, &rdev->flags)) {
1090 			bio_io_error(bio);
1091 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1092 				    !bdev_max_discard_sectors(bio->bi_bdev)))
1093 			/* Just ignore it */
1094 			bio_endio(bio);
1095 		else
1096 			submit_bio_noacct(bio);
1097 		bio = next;
1098 	}
1099 	kfree(plug);
1100 }
1101 
1102 /*
1103  * 1. Register the new request and wait if the reconstruction thread has put
1104  * up a bar for new requests. Continue immediately if no resync is active
1105  * currently.
1106  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1107  */
1108 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1109 				 struct bio *bio, sector_t sectors)
1110 {
1111 	/* Bail out if REQ_NOWAIT is set for the bio */
1112 	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1113 		bio_wouldblock_error(bio);
1114 		return false;
1115 	}
1116 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1117 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1118 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1119 		allow_barrier(conf);
1120 		if (bio->bi_opf & REQ_NOWAIT) {
1121 			bio_wouldblock_error(bio);
1122 			return false;
1123 		}
1124 		raid10_log(conf->mddev, "wait reshape");
1125 		wait_event(conf->wait_barrier,
1126 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1127 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1128 			   sectors);
1129 		wait_barrier(conf, false);
1130 	}
1131 	return true;
1132 }
1133 
1134 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1135 				struct r10bio *r10_bio)
1136 {
1137 	struct r10conf *conf = mddev->private;
1138 	struct bio *read_bio;
1139 	const enum req_op op = bio_op(bio);
1140 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1141 	int max_sectors;
1142 	struct md_rdev *rdev;
1143 	char b[BDEVNAME_SIZE];
1144 	int slot = r10_bio->read_slot;
1145 	struct md_rdev *err_rdev = NULL;
1146 	gfp_t gfp = GFP_NOIO;
1147 
1148 	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1149 		/*
1150 		 * This is an error retry, but we cannot
1151 		 * safely dereference the rdev in the r10_bio,
1152 		 * we must use the one in conf.
1153 		 * If it has already been disconnected (unlikely)
1154 		 * we lose the device name in error messages.
1155 		 */
1156 		int disk;
1157 		/*
1158 		 * As we are blocking raid10, it is a little safer to
1159 		 * use __GFP_HIGH.
1160 		 */
1161 		gfp = GFP_NOIO | __GFP_HIGH;
1162 
1163 		rcu_read_lock();
1164 		disk = r10_bio->devs[slot].devnum;
1165 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1166 		if (err_rdev)
1167 			snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1168 		else {
1169 			strcpy(b, "???");
1170 			/* This never gets dereferenced */
1171 			err_rdev = r10_bio->devs[slot].rdev;
1172 		}
1173 		rcu_read_unlock();
1174 	}
1175 
1176 	if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1177 		return;
1178 	rdev = read_balance(conf, r10_bio, &max_sectors);
1179 	if (!rdev) {
1180 		if (err_rdev) {
1181 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1182 					    mdname(mddev), b,
1183 					    (unsigned long long)r10_bio->sector);
1184 		}
1185 		raid_end_bio_io(r10_bio);
1186 		return;
1187 	}
1188 	if (err_rdev)
1189 		pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1190 				   mdname(mddev),
1191 				   rdev->bdev,
1192 				   (unsigned long long)r10_bio->sector);
1193 	if (max_sectors < bio_sectors(bio)) {
1194 		struct bio *split = bio_split(bio, max_sectors,
1195 					      gfp, &conf->bio_split);
1196 		bio_chain(split, bio);
1197 		allow_barrier(conf);
1198 		submit_bio_noacct(bio);
1199 		wait_barrier(conf, false);
1200 		bio = split;
1201 		r10_bio->master_bio = bio;
1202 		r10_bio->sectors = max_sectors;
1203 	}
1204 	slot = r10_bio->read_slot;
1205 
1206 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1207 		r10_bio->start_time = bio_start_io_acct(bio);
1208 	read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1209 
1210 	r10_bio->devs[slot].bio = read_bio;
1211 	r10_bio->devs[slot].rdev = rdev;
1212 
1213 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1214 		choose_data_offset(r10_bio, rdev);
1215 	read_bio->bi_end_io = raid10_end_read_request;
1216 	bio_set_op_attrs(read_bio, op, do_sync);
1217 	if (test_bit(FailFast, &rdev->flags) &&
1218 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1219 	        read_bio->bi_opf |= MD_FAILFAST;
1220 	read_bio->bi_private = r10_bio;
1221 
1222 	if (mddev->gendisk)
1223 	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1224 	                              r10_bio->sector);
1225 	submit_bio_noacct(read_bio);
1226 	return;
1227 }
1228 
1229 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1230 				  struct bio *bio, bool replacement,
1231 				  int n_copy)
1232 {
1233 	const enum req_op op = bio_op(bio);
1234 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1235 	const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1236 	unsigned long flags;
1237 	struct blk_plug_cb *cb;
1238 	struct raid1_plug_cb *plug = NULL;
1239 	struct r10conf *conf = mddev->private;
1240 	struct md_rdev *rdev;
1241 	int devnum = r10_bio->devs[n_copy].devnum;
1242 	struct bio *mbio;
1243 
1244 	if (replacement) {
1245 		rdev = conf->mirrors[devnum].replacement;
1246 		if (rdev == NULL) {
1247 			/* Replacement just got moved to main 'rdev' */
1248 			smp_mb();
1249 			rdev = conf->mirrors[devnum].rdev;
1250 		}
1251 	} else
1252 		rdev = conf->mirrors[devnum].rdev;
1253 
1254 	mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1255 	if (replacement)
1256 		r10_bio->devs[n_copy].repl_bio = mbio;
1257 	else
1258 		r10_bio->devs[n_copy].bio = mbio;
1259 
1260 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1261 				   choose_data_offset(r10_bio, rdev));
1262 	mbio->bi_end_io	= raid10_end_write_request;
1263 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1264 	if (!replacement && test_bit(FailFast,
1265 				     &conf->mirrors[devnum].rdev->flags)
1266 			 && enough(conf, devnum))
1267 		mbio->bi_opf |= MD_FAILFAST;
1268 	mbio->bi_private = r10_bio;
1269 
1270 	if (conf->mddev->gendisk)
1271 		trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1272 				      r10_bio->sector);
1273 	/* flush_pending_writes() needs access to the rdev so...*/
1274 	mbio->bi_bdev = (void *)rdev;
1275 
1276 	atomic_inc(&r10_bio->remaining);
1277 
1278 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1279 	if (cb)
1280 		plug = container_of(cb, struct raid1_plug_cb, cb);
1281 	else
1282 		plug = NULL;
1283 	if (plug) {
1284 		bio_list_add(&plug->pending, mbio);
1285 	} else {
1286 		spin_lock_irqsave(&conf->device_lock, flags);
1287 		bio_list_add(&conf->pending_bio_list, mbio);
1288 		spin_unlock_irqrestore(&conf->device_lock, flags);
1289 		md_wakeup_thread(mddev->thread);
1290 	}
1291 }
1292 
1293 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1294 {
1295 	int i;
1296 	struct r10conf *conf = mddev->private;
1297 	struct md_rdev *blocked_rdev;
1298 
1299 retry_wait:
1300 	blocked_rdev = NULL;
1301 	rcu_read_lock();
1302 	for (i = 0; i < conf->copies; i++) {
1303 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1304 		struct md_rdev *rrdev = rcu_dereference(
1305 			conf->mirrors[i].replacement);
1306 		if (rdev == rrdev)
1307 			rrdev = NULL;
1308 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1309 			atomic_inc(&rdev->nr_pending);
1310 			blocked_rdev = rdev;
1311 			break;
1312 		}
1313 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1314 			atomic_inc(&rrdev->nr_pending);
1315 			blocked_rdev = rrdev;
1316 			break;
1317 		}
1318 
1319 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1320 			sector_t first_bad;
1321 			sector_t dev_sector = r10_bio->devs[i].addr;
1322 			int bad_sectors;
1323 			int is_bad;
1324 
1325 			/*
1326 			 * Discard request doesn't care the write result
1327 			 * so it doesn't need to wait blocked disk here.
1328 			 */
1329 			if (!r10_bio->sectors)
1330 				continue;
1331 
1332 			is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1333 					     &first_bad, &bad_sectors);
1334 			if (is_bad < 0) {
1335 				/*
1336 				 * Mustn't write here until the bad block
1337 				 * is acknowledged
1338 				 */
1339 				atomic_inc(&rdev->nr_pending);
1340 				set_bit(BlockedBadBlocks, &rdev->flags);
1341 				blocked_rdev = rdev;
1342 				break;
1343 			}
1344 		}
1345 	}
1346 	rcu_read_unlock();
1347 
1348 	if (unlikely(blocked_rdev)) {
1349 		/* Have to wait for this device to get unblocked, then retry */
1350 		allow_barrier(conf);
1351 		raid10_log(conf->mddev, "%s wait rdev %d blocked",
1352 				__func__, blocked_rdev->raid_disk);
1353 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1354 		wait_barrier(conf, false);
1355 		goto retry_wait;
1356 	}
1357 }
1358 
1359 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1360 				 struct r10bio *r10_bio)
1361 {
1362 	struct r10conf *conf = mddev->private;
1363 	int i;
1364 	sector_t sectors;
1365 	int max_sectors;
1366 
1367 	if ((mddev_is_clustered(mddev) &&
1368 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1369 					    bio->bi_iter.bi_sector,
1370 					    bio_end_sector(bio)))) {
1371 		DEFINE_WAIT(w);
1372 		/* Bail out if REQ_NOWAIT is set for the bio */
1373 		if (bio->bi_opf & REQ_NOWAIT) {
1374 			bio_wouldblock_error(bio);
1375 			return;
1376 		}
1377 		for (;;) {
1378 			prepare_to_wait(&conf->wait_barrier,
1379 					&w, TASK_IDLE);
1380 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1381 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1382 				break;
1383 			schedule();
1384 		}
1385 		finish_wait(&conf->wait_barrier, &w);
1386 	}
1387 
1388 	sectors = r10_bio->sectors;
1389 	if (!regular_request_wait(mddev, conf, bio, sectors))
1390 		return;
1391 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1392 	    (mddev->reshape_backwards
1393 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1394 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1395 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1396 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1397 		/* Need to update reshape_position in metadata */
1398 		mddev->reshape_position = conf->reshape_progress;
1399 		set_mask_bits(&mddev->sb_flags, 0,
1400 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1401 		md_wakeup_thread(mddev->thread);
1402 		if (bio->bi_opf & REQ_NOWAIT) {
1403 			allow_barrier(conf);
1404 			bio_wouldblock_error(bio);
1405 			return;
1406 		}
1407 		raid10_log(conf->mddev, "wait reshape metadata");
1408 		wait_event(mddev->sb_wait,
1409 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1410 
1411 		conf->reshape_safe = mddev->reshape_position;
1412 	}
1413 
1414 	/* first select target devices under rcu_lock and
1415 	 * inc refcount on their rdev.  Record them by setting
1416 	 * bios[x] to bio
1417 	 * If there are known/acknowledged bad blocks on any device
1418 	 * on which we have seen a write error, we want to avoid
1419 	 * writing to those blocks.  This potentially requires several
1420 	 * writes to write around the bad blocks.  Each set of writes
1421 	 * gets its own r10_bio with a set of bios attached.
1422 	 */
1423 
1424 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1425 	raid10_find_phys(conf, r10_bio);
1426 
1427 	wait_blocked_dev(mddev, r10_bio);
1428 
1429 	rcu_read_lock();
1430 	max_sectors = r10_bio->sectors;
1431 
1432 	for (i = 0;  i < conf->copies; i++) {
1433 		int d = r10_bio->devs[i].devnum;
1434 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1435 		struct md_rdev *rrdev = rcu_dereference(
1436 			conf->mirrors[d].replacement);
1437 		if (rdev == rrdev)
1438 			rrdev = NULL;
1439 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1440 			rdev = NULL;
1441 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1442 			rrdev = NULL;
1443 
1444 		r10_bio->devs[i].bio = NULL;
1445 		r10_bio->devs[i].repl_bio = NULL;
1446 
1447 		if (!rdev && !rrdev) {
1448 			set_bit(R10BIO_Degraded, &r10_bio->state);
1449 			continue;
1450 		}
1451 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1452 			sector_t first_bad;
1453 			sector_t dev_sector = r10_bio->devs[i].addr;
1454 			int bad_sectors;
1455 			int is_bad;
1456 
1457 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1458 					     &first_bad, &bad_sectors);
1459 			if (is_bad && first_bad <= dev_sector) {
1460 				/* Cannot write here at all */
1461 				bad_sectors -= (dev_sector - first_bad);
1462 				if (bad_sectors < max_sectors)
1463 					/* Mustn't write more than bad_sectors
1464 					 * to other devices yet
1465 					 */
1466 					max_sectors = bad_sectors;
1467 				/* We don't set R10BIO_Degraded as that
1468 				 * only applies if the disk is missing,
1469 				 * so it might be re-added, and we want to
1470 				 * know to recover this chunk.
1471 				 * In this case the device is here, and the
1472 				 * fact that this chunk is not in-sync is
1473 				 * recorded in the bad block log.
1474 				 */
1475 				continue;
1476 			}
1477 			if (is_bad) {
1478 				int good_sectors = first_bad - dev_sector;
1479 				if (good_sectors < max_sectors)
1480 					max_sectors = good_sectors;
1481 			}
1482 		}
1483 		if (rdev) {
1484 			r10_bio->devs[i].bio = bio;
1485 			atomic_inc(&rdev->nr_pending);
1486 		}
1487 		if (rrdev) {
1488 			r10_bio->devs[i].repl_bio = bio;
1489 			atomic_inc(&rrdev->nr_pending);
1490 		}
1491 	}
1492 	rcu_read_unlock();
1493 
1494 	if (max_sectors < r10_bio->sectors)
1495 		r10_bio->sectors = max_sectors;
1496 
1497 	if (r10_bio->sectors < bio_sectors(bio)) {
1498 		struct bio *split = bio_split(bio, r10_bio->sectors,
1499 					      GFP_NOIO, &conf->bio_split);
1500 		bio_chain(split, bio);
1501 		allow_barrier(conf);
1502 		submit_bio_noacct(bio);
1503 		wait_barrier(conf, false);
1504 		bio = split;
1505 		r10_bio->master_bio = bio;
1506 	}
1507 
1508 	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1509 		r10_bio->start_time = bio_start_io_acct(bio);
1510 	atomic_set(&r10_bio->remaining, 1);
1511 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1512 
1513 	for (i = 0; i < conf->copies; i++) {
1514 		if (r10_bio->devs[i].bio)
1515 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1516 		if (r10_bio->devs[i].repl_bio)
1517 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1518 	}
1519 	one_write_done(r10_bio);
1520 }
1521 
1522 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1523 {
1524 	struct r10conf *conf = mddev->private;
1525 	struct r10bio *r10_bio;
1526 
1527 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1528 
1529 	r10_bio->master_bio = bio;
1530 	r10_bio->sectors = sectors;
1531 
1532 	r10_bio->mddev = mddev;
1533 	r10_bio->sector = bio->bi_iter.bi_sector;
1534 	r10_bio->state = 0;
1535 	r10_bio->read_slot = -1;
1536 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1537 			conf->geo.raid_disks);
1538 
1539 	if (bio_data_dir(bio) == READ)
1540 		raid10_read_request(mddev, bio, r10_bio);
1541 	else
1542 		raid10_write_request(mddev, bio, r10_bio);
1543 }
1544 
1545 static void raid_end_discard_bio(struct r10bio *r10bio)
1546 {
1547 	struct r10conf *conf = r10bio->mddev->private;
1548 	struct r10bio *first_r10bio;
1549 
1550 	while (atomic_dec_and_test(&r10bio->remaining)) {
1551 
1552 		allow_barrier(conf);
1553 
1554 		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1555 			first_r10bio = (struct r10bio *)r10bio->master_bio;
1556 			free_r10bio(r10bio);
1557 			r10bio = first_r10bio;
1558 		} else {
1559 			md_write_end(r10bio->mddev);
1560 			bio_endio(r10bio->master_bio);
1561 			free_r10bio(r10bio);
1562 			break;
1563 		}
1564 	}
1565 }
1566 
1567 static void raid10_end_discard_request(struct bio *bio)
1568 {
1569 	struct r10bio *r10_bio = bio->bi_private;
1570 	struct r10conf *conf = r10_bio->mddev->private;
1571 	struct md_rdev *rdev = NULL;
1572 	int dev;
1573 	int slot, repl;
1574 
1575 	/*
1576 	 * We don't care the return value of discard bio
1577 	 */
1578 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1579 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1580 
1581 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1582 	if (repl)
1583 		rdev = conf->mirrors[dev].replacement;
1584 	if (!rdev) {
1585 		/*
1586 		 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1587 		 * replacement before setting replacement to NULL. It can read
1588 		 * rdev first without barrier protect even replacment is NULL
1589 		 */
1590 		smp_rmb();
1591 		rdev = conf->mirrors[dev].rdev;
1592 	}
1593 
1594 	raid_end_discard_bio(r10_bio);
1595 	rdev_dec_pending(rdev, conf->mddev);
1596 }
1597 
1598 /*
1599  * There are some limitations to handle discard bio
1600  * 1st, the discard size is bigger than stripe_size*2.
1601  * 2st, if the discard bio spans reshape progress, we use the old way to
1602  * handle discard bio
1603  */
1604 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1605 {
1606 	struct r10conf *conf = mddev->private;
1607 	struct geom *geo = &conf->geo;
1608 	int far_copies = geo->far_copies;
1609 	bool first_copy = true;
1610 	struct r10bio *r10_bio, *first_r10bio;
1611 	struct bio *split;
1612 	int disk;
1613 	sector_t chunk;
1614 	unsigned int stripe_size;
1615 	unsigned int stripe_data_disks;
1616 	sector_t split_size;
1617 	sector_t bio_start, bio_end;
1618 	sector_t first_stripe_index, last_stripe_index;
1619 	sector_t start_disk_offset;
1620 	unsigned int start_disk_index;
1621 	sector_t end_disk_offset;
1622 	unsigned int end_disk_index;
1623 	unsigned int remainder;
1624 
1625 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1626 		return -EAGAIN;
1627 
1628 	if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1629 		bio_wouldblock_error(bio);
1630 		return 0;
1631 	}
1632 	wait_barrier(conf, false);
1633 
1634 	/*
1635 	 * Check reshape again to avoid reshape happens after checking
1636 	 * MD_RECOVERY_RESHAPE and before wait_barrier
1637 	 */
1638 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1639 		goto out;
1640 
1641 	if (geo->near_copies)
1642 		stripe_data_disks = geo->raid_disks / geo->near_copies +
1643 					geo->raid_disks % geo->near_copies;
1644 	else
1645 		stripe_data_disks = geo->raid_disks;
1646 
1647 	stripe_size = stripe_data_disks << geo->chunk_shift;
1648 
1649 	bio_start = bio->bi_iter.bi_sector;
1650 	bio_end = bio_end_sector(bio);
1651 
1652 	/*
1653 	 * Maybe one discard bio is smaller than strip size or across one
1654 	 * stripe and discard region is larger than one stripe size. For far
1655 	 * offset layout, if the discard region is not aligned with stripe
1656 	 * size, there is hole when we submit discard bio to member disk.
1657 	 * For simplicity, we only handle discard bio which discard region
1658 	 * is bigger than stripe_size * 2
1659 	 */
1660 	if (bio_sectors(bio) < stripe_size*2)
1661 		goto out;
1662 
1663 	/*
1664 	 * Keep bio aligned with strip size.
1665 	 */
1666 	div_u64_rem(bio_start, stripe_size, &remainder);
1667 	if (remainder) {
1668 		split_size = stripe_size - remainder;
1669 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1670 		bio_chain(split, bio);
1671 		allow_barrier(conf);
1672 		/* Resend the fist split part */
1673 		submit_bio_noacct(split);
1674 		wait_barrier(conf, false);
1675 	}
1676 	div_u64_rem(bio_end, stripe_size, &remainder);
1677 	if (remainder) {
1678 		split_size = bio_sectors(bio) - remainder;
1679 		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1680 		bio_chain(split, bio);
1681 		allow_barrier(conf);
1682 		/* Resend the second split part */
1683 		submit_bio_noacct(bio);
1684 		bio = split;
1685 		wait_barrier(conf, false);
1686 	}
1687 
1688 	bio_start = bio->bi_iter.bi_sector;
1689 	bio_end = bio_end_sector(bio);
1690 
1691 	/*
1692 	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1693 	 * One stripe contains the chunks from all member disk (one chunk from
1694 	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1695 	 */
1696 	chunk = bio_start >> geo->chunk_shift;
1697 	chunk *= geo->near_copies;
1698 	first_stripe_index = chunk;
1699 	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1700 	if (geo->far_offset)
1701 		first_stripe_index *= geo->far_copies;
1702 	start_disk_offset = (bio_start & geo->chunk_mask) +
1703 				(first_stripe_index << geo->chunk_shift);
1704 
1705 	chunk = bio_end >> geo->chunk_shift;
1706 	chunk *= geo->near_copies;
1707 	last_stripe_index = chunk;
1708 	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1709 	if (geo->far_offset)
1710 		last_stripe_index *= geo->far_copies;
1711 	end_disk_offset = (bio_end & geo->chunk_mask) +
1712 				(last_stripe_index << geo->chunk_shift);
1713 
1714 retry_discard:
1715 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1716 	r10_bio->mddev = mddev;
1717 	r10_bio->state = 0;
1718 	r10_bio->sectors = 0;
1719 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1720 	wait_blocked_dev(mddev, r10_bio);
1721 
1722 	/*
1723 	 * For far layout it needs more than one r10bio to cover all regions.
1724 	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1725 	 * to record the discard bio. Other r10bio->master_bio record the first
1726 	 * r10bio. The first r10bio only release after all other r10bios finish.
1727 	 * The discard bio returns only first r10bio finishes
1728 	 */
1729 	if (first_copy) {
1730 		r10_bio->master_bio = bio;
1731 		set_bit(R10BIO_Discard, &r10_bio->state);
1732 		first_copy = false;
1733 		first_r10bio = r10_bio;
1734 	} else
1735 		r10_bio->master_bio = (struct bio *)first_r10bio;
1736 
1737 	/*
1738 	 * first select target devices under rcu_lock and
1739 	 * inc refcount on their rdev.  Record them by setting
1740 	 * bios[x] to bio
1741 	 */
1742 	rcu_read_lock();
1743 	for (disk = 0; disk < geo->raid_disks; disk++) {
1744 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1745 		struct md_rdev *rrdev = rcu_dereference(
1746 			conf->mirrors[disk].replacement);
1747 
1748 		r10_bio->devs[disk].bio = NULL;
1749 		r10_bio->devs[disk].repl_bio = NULL;
1750 
1751 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1752 			rdev = NULL;
1753 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1754 			rrdev = NULL;
1755 		if (!rdev && !rrdev)
1756 			continue;
1757 
1758 		if (rdev) {
1759 			r10_bio->devs[disk].bio = bio;
1760 			atomic_inc(&rdev->nr_pending);
1761 		}
1762 		if (rrdev) {
1763 			r10_bio->devs[disk].repl_bio = bio;
1764 			atomic_inc(&rrdev->nr_pending);
1765 		}
1766 	}
1767 	rcu_read_unlock();
1768 
1769 	atomic_set(&r10_bio->remaining, 1);
1770 	for (disk = 0; disk < geo->raid_disks; disk++) {
1771 		sector_t dev_start, dev_end;
1772 		struct bio *mbio, *rbio = NULL;
1773 
1774 		/*
1775 		 * Now start to calculate the start and end address for each disk.
1776 		 * The space between dev_start and dev_end is the discard region.
1777 		 *
1778 		 * For dev_start, it needs to consider three conditions:
1779 		 * 1st, the disk is before start_disk, you can imagine the disk in
1780 		 * the next stripe. So the dev_start is the start address of next
1781 		 * stripe.
1782 		 * 2st, the disk is after start_disk, it means the disk is at the
1783 		 * same stripe of first disk
1784 		 * 3st, the first disk itself, we can use start_disk_offset directly
1785 		 */
1786 		if (disk < start_disk_index)
1787 			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1788 		else if (disk > start_disk_index)
1789 			dev_start = first_stripe_index * mddev->chunk_sectors;
1790 		else
1791 			dev_start = start_disk_offset;
1792 
1793 		if (disk < end_disk_index)
1794 			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1795 		else if (disk > end_disk_index)
1796 			dev_end = last_stripe_index * mddev->chunk_sectors;
1797 		else
1798 			dev_end = end_disk_offset;
1799 
1800 		/*
1801 		 * It only handles discard bio which size is >= stripe size, so
1802 		 * dev_end > dev_start all the time.
1803 		 * It doesn't need to use rcu lock to get rdev here. We already
1804 		 * add rdev->nr_pending in the first loop.
1805 		 */
1806 		if (r10_bio->devs[disk].bio) {
1807 			struct md_rdev *rdev = conf->mirrors[disk].rdev;
1808 			mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1809 					       &mddev->bio_set);
1810 			mbio->bi_end_io = raid10_end_discard_request;
1811 			mbio->bi_private = r10_bio;
1812 			r10_bio->devs[disk].bio = mbio;
1813 			r10_bio->devs[disk].devnum = disk;
1814 			atomic_inc(&r10_bio->remaining);
1815 			md_submit_discard_bio(mddev, rdev, mbio,
1816 					dev_start + choose_data_offset(r10_bio, rdev),
1817 					dev_end - dev_start);
1818 			bio_endio(mbio);
1819 		}
1820 		if (r10_bio->devs[disk].repl_bio) {
1821 			struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1822 			rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1823 					       &mddev->bio_set);
1824 			rbio->bi_end_io = raid10_end_discard_request;
1825 			rbio->bi_private = r10_bio;
1826 			r10_bio->devs[disk].repl_bio = rbio;
1827 			r10_bio->devs[disk].devnum = disk;
1828 			atomic_inc(&r10_bio->remaining);
1829 			md_submit_discard_bio(mddev, rrdev, rbio,
1830 					dev_start + choose_data_offset(r10_bio, rrdev),
1831 					dev_end - dev_start);
1832 			bio_endio(rbio);
1833 		}
1834 	}
1835 
1836 	if (!geo->far_offset && --far_copies) {
1837 		first_stripe_index += geo->stride >> geo->chunk_shift;
1838 		start_disk_offset += geo->stride;
1839 		last_stripe_index += geo->stride >> geo->chunk_shift;
1840 		end_disk_offset += geo->stride;
1841 		atomic_inc(&first_r10bio->remaining);
1842 		raid_end_discard_bio(r10_bio);
1843 		wait_barrier(conf, false);
1844 		goto retry_discard;
1845 	}
1846 
1847 	raid_end_discard_bio(r10_bio);
1848 
1849 	return 0;
1850 out:
1851 	allow_barrier(conf);
1852 	return -EAGAIN;
1853 }
1854 
1855 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1856 {
1857 	struct r10conf *conf = mddev->private;
1858 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1859 	int chunk_sects = chunk_mask + 1;
1860 	int sectors = bio_sectors(bio);
1861 
1862 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1863 	    && md_flush_request(mddev, bio))
1864 		return true;
1865 
1866 	if (!md_write_start(mddev, bio))
1867 		return false;
1868 
1869 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1870 		if (!raid10_handle_discard(mddev, bio))
1871 			return true;
1872 
1873 	/*
1874 	 * If this request crosses a chunk boundary, we need to split
1875 	 * it.
1876 	 */
1877 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1878 		     sectors > chunk_sects
1879 		     && (conf->geo.near_copies < conf->geo.raid_disks
1880 			 || conf->prev.near_copies <
1881 			 conf->prev.raid_disks)))
1882 		sectors = chunk_sects -
1883 			(bio->bi_iter.bi_sector &
1884 			 (chunk_sects - 1));
1885 	__make_request(mddev, bio, sectors);
1886 
1887 	/* In case raid10d snuck in to freeze_array */
1888 	wake_up(&conf->wait_barrier);
1889 	return true;
1890 }
1891 
1892 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1893 {
1894 	struct r10conf *conf = mddev->private;
1895 	int i;
1896 
1897 	if (conf->geo.near_copies < conf->geo.raid_disks)
1898 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1899 	if (conf->geo.near_copies > 1)
1900 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1901 	if (conf->geo.far_copies > 1) {
1902 		if (conf->geo.far_offset)
1903 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1904 		else
1905 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1906 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1907 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1908 	}
1909 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1910 					conf->geo.raid_disks - mddev->degraded);
1911 	rcu_read_lock();
1912 	for (i = 0; i < conf->geo.raid_disks; i++) {
1913 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1914 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1915 	}
1916 	rcu_read_unlock();
1917 	seq_printf(seq, "]");
1918 }
1919 
1920 /* check if there are enough drives for
1921  * every block to appear on atleast one.
1922  * Don't consider the device numbered 'ignore'
1923  * as we might be about to remove it.
1924  */
1925 static int _enough(struct r10conf *conf, int previous, int ignore)
1926 {
1927 	int first = 0;
1928 	int has_enough = 0;
1929 	int disks, ncopies;
1930 	if (previous) {
1931 		disks = conf->prev.raid_disks;
1932 		ncopies = conf->prev.near_copies;
1933 	} else {
1934 		disks = conf->geo.raid_disks;
1935 		ncopies = conf->geo.near_copies;
1936 	}
1937 
1938 	rcu_read_lock();
1939 	do {
1940 		int n = conf->copies;
1941 		int cnt = 0;
1942 		int this = first;
1943 		while (n--) {
1944 			struct md_rdev *rdev;
1945 			if (this != ignore &&
1946 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1947 			    test_bit(In_sync, &rdev->flags))
1948 				cnt++;
1949 			this = (this+1) % disks;
1950 		}
1951 		if (cnt == 0)
1952 			goto out;
1953 		first = (first + ncopies) % disks;
1954 	} while (first != 0);
1955 	has_enough = 1;
1956 out:
1957 	rcu_read_unlock();
1958 	return has_enough;
1959 }
1960 
1961 static int enough(struct r10conf *conf, int ignore)
1962 {
1963 	/* when calling 'enough', both 'prev' and 'geo' must
1964 	 * be stable.
1965 	 * This is ensured if ->reconfig_mutex or ->device_lock
1966 	 * is held.
1967 	 */
1968 	return _enough(conf, 0, ignore) &&
1969 		_enough(conf, 1, ignore);
1970 }
1971 
1972 /**
1973  * raid10_error() - RAID10 error handler.
1974  * @mddev: affected md device.
1975  * @rdev: member device to fail.
1976  *
1977  * The routine acknowledges &rdev failure and determines new @mddev state.
1978  * If it failed, then:
1979  *	- &MD_BROKEN flag is set in &mddev->flags.
1980  * Otherwise, it must be degraded:
1981  *	- recovery is interrupted.
1982  *	- &mddev->degraded is bumped.
1983 
1984  * @rdev is marked as &Faulty excluding case when array is failed and
1985  * &mddev->fail_last_dev is off.
1986  */
1987 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1988 {
1989 	struct r10conf *conf = mddev->private;
1990 	unsigned long flags;
1991 
1992 	spin_lock_irqsave(&conf->device_lock, flags);
1993 
1994 	if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
1995 		set_bit(MD_BROKEN, &mddev->flags);
1996 
1997 		if (!mddev->fail_last_dev) {
1998 			spin_unlock_irqrestore(&conf->device_lock, flags);
1999 			return;
2000 		}
2001 	}
2002 	if (test_and_clear_bit(In_sync, &rdev->flags))
2003 		mddev->degraded++;
2004 
2005 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2006 	set_bit(Blocked, &rdev->flags);
2007 	set_bit(Faulty, &rdev->flags);
2008 	set_mask_bits(&mddev->sb_flags, 0,
2009 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2010 	spin_unlock_irqrestore(&conf->device_lock, flags);
2011 	pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2012 		"md/raid10:%s: Operation continuing on %d devices.\n",
2013 		mdname(mddev), rdev->bdev,
2014 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2015 }
2016 
2017 static void print_conf(struct r10conf *conf)
2018 {
2019 	int i;
2020 	struct md_rdev *rdev;
2021 
2022 	pr_debug("RAID10 conf printout:\n");
2023 	if (!conf) {
2024 		pr_debug("(!conf)\n");
2025 		return;
2026 	}
2027 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2028 		 conf->geo.raid_disks);
2029 
2030 	/* This is only called with ->reconfix_mutex held, so
2031 	 * rcu protection of rdev is not needed */
2032 	for (i = 0; i < conf->geo.raid_disks; i++) {
2033 		rdev = conf->mirrors[i].rdev;
2034 		if (rdev)
2035 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2036 				 i, !test_bit(In_sync, &rdev->flags),
2037 				 !test_bit(Faulty, &rdev->flags),
2038 				 rdev->bdev);
2039 	}
2040 }
2041 
2042 static void close_sync(struct r10conf *conf)
2043 {
2044 	wait_barrier(conf, false);
2045 	allow_barrier(conf);
2046 
2047 	mempool_exit(&conf->r10buf_pool);
2048 }
2049 
2050 static int raid10_spare_active(struct mddev *mddev)
2051 {
2052 	int i;
2053 	struct r10conf *conf = mddev->private;
2054 	struct raid10_info *tmp;
2055 	int count = 0;
2056 	unsigned long flags;
2057 
2058 	/*
2059 	 * Find all non-in_sync disks within the RAID10 configuration
2060 	 * and mark them in_sync
2061 	 */
2062 	for (i = 0; i < conf->geo.raid_disks; i++) {
2063 		tmp = conf->mirrors + i;
2064 		if (tmp->replacement
2065 		    && tmp->replacement->recovery_offset == MaxSector
2066 		    && !test_bit(Faulty, &tmp->replacement->flags)
2067 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2068 			/* Replacement has just become active */
2069 			if (!tmp->rdev
2070 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2071 				count++;
2072 			if (tmp->rdev) {
2073 				/* Replaced device not technically faulty,
2074 				 * but we need to be sure it gets removed
2075 				 * and never re-added.
2076 				 */
2077 				set_bit(Faulty, &tmp->rdev->flags);
2078 				sysfs_notify_dirent_safe(
2079 					tmp->rdev->sysfs_state);
2080 			}
2081 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2082 		} else if (tmp->rdev
2083 			   && tmp->rdev->recovery_offset == MaxSector
2084 			   && !test_bit(Faulty, &tmp->rdev->flags)
2085 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2086 			count++;
2087 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2088 		}
2089 	}
2090 	spin_lock_irqsave(&conf->device_lock, flags);
2091 	mddev->degraded -= count;
2092 	spin_unlock_irqrestore(&conf->device_lock, flags);
2093 
2094 	print_conf(conf);
2095 	return count;
2096 }
2097 
2098 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2099 {
2100 	struct r10conf *conf = mddev->private;
2101 	int err = -EEXIST;
2102 	int mirror;
2103 	int first = 0;
2104 	int last = conf->geo.raid_disks - 1;
2105 
2106 	if (mddev->recovery_cp < MaxSector)
2107 		/* only hot-add to in-sync arrays, as recovery is
2108 		 * very different from resync
2109 		 */
2110 		return -EBUSY;
2111 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2112 		return -EINVAL;
2113 
2114 	if (md_integrity_add_rdev(rdev, mddev))
2115 		return -ENXIO;
2116 
2117 	if (rdev->raid_disk >= 0)
2118 		first = last = rdev->raid_disk;
2119 
2120 	if (rdev->saved_raid_disk >= first &&
2121 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2122 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2123 		mirror = rdev->saved_raid_disk;
2124 	else
2125 		mirror = first;
2126 	for ( ; mirror <= last ; mirror++) {
2127 		struct raid10_info *p = &conf->mirrors[mirror];
2128 		if (p->recovery_disabled == mddev->recovery_disabled)
2129 			continue;
2130 		if (p->rdev) {
2131 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
2132 			    p->replacement != NULL)
2133 				continue;
2134 			clear_bit(In_sync, &rdev->flags);
2135 			set_bit(Replacement, &rdev->flags);
2136 			rdev->raid_disk = mirror;
2137 			err = 0;
2138 			if (mddev->gendisk)
2139 				disk_stack_limits(mddev->gendisk, rdev->bdev,
2140 						  rdev->data_offset << 9);
2141 			conf->fullsync = 1;
2142 			rcu_assign_pointer(p->replacement, rdev);
2143 			break;
2144 		}
2145 
2146 		if (mddev->gendisk)
2147 			disk_stack_limits(mddev->gendisk, rdev->bdev,
2148 					  rdev->data_offset << 9);
2149 
2150 		p->head_position = 0;
2151 		p->recovery_disabled = mddev->recovery_disabled - 1;
2152 		rdev->raid_disk = mirror;
2153 		err = 0;
2154 		if (rdev->saved_raid_disk != mirror)
2155 			conf->fullsync = 1;
2156 		rcu_assign_pointer(p->rdev, rdev);
2157 		break;
2158 	}
2159 
2160 	print_conf(conf);
2161 	return err;
2162 }
2163 
2164 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2165 {
2166 	struct r10conf *conf = mddev->private;
2167 	int err = 0;
2168 	int number = rdev->raid_disk;
2169 	struct md_rdev **rdevp;
2170 	struct raid10_info *p;
2171 
2172 	print_conf(conf);
2173 	if (unlikely(number >= mddev->raid_disks))
2174 		return 0;
2175 	p = conf->mirrors + number;
2176 	if (rdev == p->rdev)
2177 		rdevp = &p->rdev;
2178 	else if (rdev == p->replacement)
2179 		rdevp = &p->replacement;
2180 	else
2181 		return 0;
2182 
2183 	if (test_bit(In_sync, &rdev->flags) ||
2184 	    atomic_read(&rdev->nr_pending)) {
2185 		err = -EBUSY;
2186 		goto abort;
2187 	}
2188 	/* Only remove non-faulty devices if recovery
2189 	 * is not possible.
2190 	 */
2191 	if (!test_bit(Faulty, &rdev->flags) &&
2192 	    mddev->recovery_disabled != p->recovery_disabled &&
2193 	    (!p->replacement || p->replacement == rdev) &&
2194 	    number < conf->geo.raid_disks &&
2195 	    enough(conf, -1)) {
2196 		err = -EBUSY;
2197 		goto abort;
2198 	}
2199 	*rdevp = NULL;
2200 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2201 		synchronize_rcu();
2202 		if (atomic_read(&rdev->nr_pending)) {
2203 			/* lost the race, try later */
2204 			err = -EBUSY;
2205 			*rdevp = rdev;
2206 			goto abort;
2207 		}
2208 	}
2209 	if (p->replacement) {
2210 		/* We must have just cleared 'rdev' */
2211 		p->rdev = p->replacement;
2212 		clear_bit(Replacement, &p->replacement->flags);
2213 		smp_mb(); /* Make sure other CPUs may see both as identical
2214 			   * but will never see neither -- if they are careful.
2215 			   */
2216 		p->replacement = NULL;
2217 	}
2218 
2219 	clear_bit(WantReplacement, &rdev->flags);
2220 	err = md_integrity_register(mddev);
2221 
2222 abort:
2223 
2224 	print_conf(conf);
2225 	return err;
2226 }
2227 
2228 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2229 {
2230 	struct r10conf *conf = r10_bio->mddev->private;
2231 
2232 	if (!bio->bi_status)
2233 		set_bit(R10BIO_Uptodate, &r10_bio->state);
2234 	else
2235 		/* The write handler will notice the lack of
2236 		 * R10BIO_Uptodate and record any errors etc
2237 		 */
2238 		atomic_add(r10_bio->sectors,
2239 			   &conf->mirrors[d].rdev->corrected_errors);
2240 
2241 	/* for reconstruct, we always reschedule after a read.
2242 	 * for resync, only after all reads
2243 	 */
2244 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2245 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2246 	    atomic_dec_and_test(&r10_bio->remaining)) {
2247 		/* we have read all the blocks,
2248 		 * do the comparison in process context in raid10d
2249 		 */
2250 		reschedule_retry(r10_bio);
2251 	}
2252 }
2253 
2254 static void end_sync_read(struct bio *bio)
2255 {
2256 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2257 	struct r10conf *conf = r10_bio->mddev->private;
2258 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2259 
2260 	__end_sync_read(r10_bio, bio, d);
2261 }
2262 
2263 static void end_reshape_read(struct bio *bio)
2264 {
2265 	/* reshape read bio isn't allocated from r10buf_pool */
2266 	struct r10bio *r10_bio = bio->bi_private;
2267 
2268 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2269 }
2270 
2271 static void end_sync_request(struct r10bio *r10_bio)
2272 {
2273 	struct mddev *mddev = r10_bio->mddev;
2274 
2275 	while (atomic_dec_and_test(&r10_bio->remaining)) {
2276 		if (r10_bio->master_bio == NULL) {
2277 			/* the primary of several recovery bios */
2278 			sector_t s = r10_bio->sectors;
2279 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2280 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2281 				reschedule_retry(r10_bio);
2282 			else
2283 				put_buf(r10_bio);
2284 			md_done_sync(mddev, s, 1);
2285 			break;
2286 		} else {
2287 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2288 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2289 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2290 				reschedule_retry(r10_bio);
2291 			else
2292 				put_buf(r10_bio);
2293 			r10_bio = r10_bio2;
2294 		}
2295 	}
2296 }
2297 
2298 static void end_sync_write(struct bio *bio)
2299 {
2300 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2301 	struct mddev *mddev = r10_bio->mddev;
2302 	struct r10conf *conf = mddev->private;
2303 	int d;
2304 	sector_t first_bad;
2305 	int bad_sectors;
2306 	int slot;
2307 	int repl;
2308 	struct md_rdev *rdev = NULL;
2309 
2310 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2311 	if (repl)
2312 		rdev = conf->mirrors[d].replacement;
2313 	else
2314 		rdev = conf->mirrors[d].rdev;
2315 
2316 	if (bio->bi_status) {
2317 		if (repl)
2318 			md_error(mddev, rdev);
2319 		else {
2320 			set_bit(WriteErrorSeen, &rdev->flags);
2321 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2322 				set_bit(MD_RECOVERY_NEEDED,
2323 					&rdev->mddev->recovery);
2324 			set_bit(R10BIO_WriteError, &r10_bio->state);
2325 		}
2326 	} else if (is_badblock(rdev,
2327 			     r10_bio->devs[slot].addr,
2328 			     r10_bio->sectors,
2329 			     &first_bad, &bad_sectors))
2330 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2331 
2332 	rdev_dec_pending(rdev, mddev);
2333 
2334 	end_sync_request(r10_bio);
2335 }
2336 
2337 /*
2338  * Note: sync and recover and handled very differently for raid10
2339  * This code is for resync.
2340  * For resync, we read through virtual addresses and read all blocks.
2341  * If there is any error, we schedule a write.  The lowest numbered
2342  * drive is authoritative.
2343  * However requests come for physical address, so we need to map.
2344  * For every physical address there are raid_disks/copies virtual addresses,
2345  * which is always are least one, but is not necessarly an integer.
2346  * This means that a physical address can span multiple chunks, so we may
2347  * have to submit multiple io requests for a single sync request.
2348  */
2349 /*
2350  * We check if all blocks are in-sync and only write to blocks that
2351  * aren't in sync
2352  */
2353 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2354 {
2355 	struct r10conf *conf = mddev->private;
2356 	int i, first;
2357 	struct bio *tbio, *fbio;
2358 	int vcnt;
2359 	struct page **tpages, **fpages;
2360 
2361 	atomic_set(&r10_bio->remaining, 1);
2362 
2363 	/* find the first device with a block */
2364 	for (i=0; i<conf->copies; i++)
2365 		if (!r10_bio->devs[i].bio->bi_status)
2366 			break;
2367 
2368 	if (i == conf->copies)
2369 		goto done;
2370 
2371 	first = i;
2372 	fbio = r10_bio->devs[i].bio;
2373 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2374 	fbio->bi_iter.bi_idx = 0;
2375 	fpages = get_resync_pages(fbio)->pages;
2376 
2377 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2378 	/* now find blocks with errors */
2379 	for (i=0 ; i < conf->copies ; i++) {
2380 		int  j, d;
2381 		struct md_rdev *rdev;
2382 		struct resync_pages *rp;
2383 
2384 		tbio = r10_bio->devs[i].bio;
2385 
2386 		if (tbio->bi_end_io != end_sync_read)
2387 			continue;
2388 		if (i == first)
2389 			continue;
2390 
2391 		tpages = get_resync_pages(tbio)->pages;
2392 		d = r10_bio->devs[i].devnum;
2393 		rdev = conf->mirrors[d].rdev;
2394 		if (!r10_bio->devs[i].bio->bi_status) {
2395 			/* We know that the bi_io_vec layout is the same for
2396 			 * both 'first' and 'i', so we just compare them.
2397 			 * All vec entries are PAGE_SIZE;
2398 			 */
2399 			int sectors = r10_bio->sectors;
2400 			for (j = 0; j < vcnt; j++) {
2401 				int len = PAGE_SIZE;
2402 				if (sectors < (len / 512))
2403 					len = sectors * 512;
2404 				if (memcmp(page_address(fpages[j]),
2405 					   page_address(tpages[j]),
2406 					   len))
2407 					break;
2408 				sectors -= len/512;
2409 			}
2410 			if (j == vcnt)
2411 				continue;
2412 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2413 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2414 				/* Don't fix anything. */
2415 				continue;
2416 		} else if (test_bit(FailFast, &rdev->flags)) {
2417 			/* Just give up on this device */
2418 			md_error(rdev->mddev, rdev);
2419 			continue;
2420 		}
2421 		/* Ok, we need to write this bio, either to correct an
2422 		 * inconsistency or to correct an unreadable block.
2423 		 * First we need to fixup bv_offset, bv_len and
2424 		 * bi_vecs, as the read request might have corrupted these
2425 		 */
2426 		rp = get_resync_pages(tbio);
2427 		bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2428 
2429 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2430 
2431 		rp->raid_bio = r10_bio;
2432 		tbio->bi_private = rp;
2433 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2434 		tbio->bi_end_io = end_sync_write;
2435 
2436 		bio_copy_data(tbio, fbio);
2437 
2438 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2439 		atomic_inc(&r10_bio->remaining);
2440 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2441 
2442 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2443 			tbio->bi_opf |= MD_FAILFAST;
2444 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2445 		submit_bio_noacct(tbio);
2446 	}
2447 
2448 	/* Now write out to any replacement devices
2449 	 * that are active
2450 	 */
2451 	for (i = 0; i < conf->copies; i++) {
2452 		int d;
2453 
2454 		tbio = r10_bio->devs[i].repl_bio;
2455 		if (!tbio || !tbio->bi_end_io)
2456 			continue;
2457 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2458 		    && r10_bio->devs[i].bio != fbio)
2459 			bio_copy_data(tbio, fbio);
2460 		d = r10_bio->devs[i].devnum;
2461 		atomic_inc(&r10_bio->remaining);
2462 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2463 			     bio_sectors(tbio));
2464 		submit_bio_noacct(tbio);
2465 	}
2466 
2467 done:
2468 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2469 		md_done_sync(mddev, r10_bio->sectors, 1);
2470 		put_buf(r10_bio);
2471 	}
2472 }
2473 
2474 /*
2475  * Now for the recovery code.
2476  * Recovery happens across physical sectors.
2477  * We recover all non-is_sync drives by finding the virtual address of
2478  * each, and then choose a working drive that also has that virt address.
2479  * There is a separate r10_bio for each non-in_sync drive.
2480  * Only the first two slots are in use. The first for reading,
2481  * The second for writing.
2482  *
2483  */
2484 static void fix_recovery_read_error(struct r10bio *r10_bio)
2485 {
2486 	/* We got a read error during recovery.
2487 	 * We repeat the read in smaller page-sized sections.
2488 	 * If a read succeeds, write it to the new device or record
2489 	 * a bad block if we cannot.
2490 	 * If a read fails, record a bad block on both old and
2491 	 * new devices.
2492 	 */
2493 	struct mddev *mddev = r10_bio->mddev;
2494 	struct r10conf *conf = mddev->private;
2495 	struct bio *bio = r10_bio->devs[0].bio;
2496 	sector_t sect = 0;
2497 	int sectors = r10_bio->sectors;
2498 	int idx = 0;
2499 	int dr = r10_bio->devs[0].devnum;
2500 	int dw = r10_bio->devs[1].devnum;
2501 	struct page **pages = get_resync_pages(bio)->pages;
2502 
2503 	while (sectors) {
2504 		int s = sectors;
2505 		struct md_rdev *rdev;
2506 		sector_t addr;
2507 		int ok;
2508 
2509 		if (s > (PAGE_SIZE>>9))
2510 			s = PAGE_SIZE >> 9;
2511 
2512 		rdev = conf->mirrors[dr].rdev;
2513 		addr = r10_bio->devs[0].addr + sect,
2514 		ok = sync_page_io(rdev,
2515 				  addr,
2516 				  s << 9,
2517 				  pages[idx],
2518 				  REQ_OP_READ, false);
2519 		if (ok) {
2520 			rdev = conf->mirrors[dw].rdev;
2521 			addr = r10_bio->devs[1].addr + sect;
2522 			ok = sync_page_io(rdev,
2523 					  addr,
2524 					  s << 9,
2525 					  pages[idx],
2526 					  REQ_OP_WRITE, false);
2527 			if (!ok) {
2528 				set_bit(WriteErrorSeen, &rdev->flags);
2529 				if (!test_and_set_bit(WantReplacement,
2530 						      &rdev->flags))
2531 					set_bit(MD_RECOVERY_NEEDED,
2532 						&rdev->mddev->recovery);
2533 			}
2534 		}
2535 		if (!ok) {
2536 			/* We don't worry if we cannot set a bad block -
2537 			 * it really is bad so there is no loss in not
2538 			 * recording it yet
2539 			 */
2540 			rdev_set_badblocks(rdev, addr, s, 0);
2541 
2542 			if (rdev != conf->mirrors[dw].rdev) {
2543 				/* need bad block on destination too */
2544 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2545 				addr = r10_bio->devs[1].addr + sect;
2546 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2547 				if (!ok) {
2548 					/* just abort the recovery */
2549 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2550 						  mdname(mddev));
2551 
2552 					conf->mirrors[dw].recovery_disabled
2553 						= mddev->recovery_disabled;
2554 					set_bit(MD_RECOVERY_INTR,
2555 						&mddev->recovery);
2556 					break;
2557 				}
2558 			}
2559 		}
2560 
2561 		sectors -= s;
2562 		sect += s;
2563 		idx++;
2564 	}
2565 }
2566 
2567 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2568 {
2569 	struct r10conf *conf = mddev->private;
2570 	int d;
2571 	struct bio *wbio, *wbio2;
2572 
2573 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2574 		fix_recovery_read_error(r10_bio);
2575 		end_sync_request(r10_bio);
2576 		return;
2577 	}
2578 
2579 	/*
2580 	 * share the pages with the first bio
2581 	 * and submit the write request
2582 	 */
2583 	d = r10_bio->devs[1].devnum;
2584 	wbio = r10_bio->devs[1].bio;
2585 	wbio2 = r10_bio->devs[1].repl_bio;
2586 	/* Need to test wbio2->bi_end_io before we call
2587 	 * submit_bio_noacct as if the former is NULL,
2588 	 * the latter is free to free wbio2.
2589 	 */
2590 	if (wbio2 && !wbio2->bi_end_io)
2591 		wbio2 = NULL;
2592 	if (wbio->bi_end_io) {
2593 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2594 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2595 		submit_bio_noacct(wbio);
2596 	}
2597 	if (wbio2) {
2598 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2599 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2600 			     bio_sectors(wbio2));
2601 		submit_bio_noacct(wbio2);
2602 	}
2603 }
2604 
2605 /*
2606  * Used by fix_read_error() to decay the per rdev read_errors.
2607  * We halve the read error count for every hour that has elapsed
2608  * since the last recorded read error.
2609  *
2610  */
2611 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2612 {
2613 	long cur_time_mon;
2614 	unsigned long hours_since_last;
2615 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2616 
2617 	cur_time_mon = ktime_get_seconds();
2618 
2619 	if (rdev->last_read_error == 0) {
2620 		/* first time we've seen a read error */
2621 		rdev->last_read_error = cur_time_mon;
2622 		return;
2623 	}
2624 
2625 	hours_since_last = (long)(cur_time_mon -
2626 			    rdev->last_read_error) / 3600;
2627 
2628 	rdev->last_read_error = cur_time_mon;
2629 
2630 	/*
2631 	 * if hours_since_last is > the number of bits in read_errors
2632 	 * just set read errors to 0. We do this to avoid
2633 	 * overflowing the shift of read_errors by hours_since_last.
2634 	 */
2635 	if (hours_since_last >= 8 * sizeof(read_errors))
2636 		atomic_set(&rdev->read_errors, 0);
2637 	else
2638 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2639 }
2640 
2641 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2642 			    int sectors, struct page *page, enum req_op op)
2643 {
2644 	sector_t first_bad;
2645 	int bad_sectors;
2646 
2647 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2648 	    && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2649 		return -1;
2650 	if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2651 		/* success */
2652 		return 1;
2653 	if (op == REQ_OP_WRITE) {
2654 		set_bit(WriteErrorSeen, &rdev->flags);
2655 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2656 			set_bit(MD_RECOVERY_NEEDED,
2657 				&rdev->mddev->recovery);
2658 	}
2659 	/* need to record an error - either for the block or the device */
2660 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2661 		md_error(rdev->mddev, rdev);
2662 	return 0;
2663 }
2664 
2665 /*
2666  * This is a kernel thread which:
2667  *
2668  *	1.	Retries failed read operations on working mirrors.
2669  *	2.	Updates the raid superblock when problems encounter.
2670  *	3.	Performs writes following reads for array synchronising.
2671  */
2672 
2673 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2674 {
2675 	int sect = 0; /* Offset from r10_bio->sector */
2676 	int sectors = r10_bio->sectors;
2677 	struct md_rdev *rdev;
2678 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2679 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2680 
2681 	/* still own a reference to this rdev, so it cannot
2682 	 * have been cleared recently.
2683 	 */
2684 	rdev = conf->mirrors[d].rdev;
2685 
2686 	if (test_bit(Faulty, &rdev->flags))
2687 		/* drive has already been failed, just ignore any
2688 		   more fix_read_error() attempts */
2689 		return;
2690 
2691 	check_decay_read_errors(mddev, rdev);
2692 	atomic_inc(&rdev->read_errors);
2693 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2694 		pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2695 			  mdname(mddev), rdev->bdev,
2696 			  atomic_read(&rdev->read_errors), max_read_errors);
2697 		pr_notice("md/raid10:%s: %pg: Failing raid device\n",
2698 			  mdname(mddev), rdev->bdev);
2699 		md_error(mddev, rdev);
2700 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2701 		return;
2702 	}
2703 
2704 	while(sectors) {
2705 		int s = sectors;
2706 		int sl = r10_bio->read_slot;
2707 		int success = 0;
2708 		int start;
2709 
2710 		if (s > (PAGE_SIZE>>9))
2711 			s = PAGE_SIZE >> 9;
2712 
2713 		rcu_read_lock();
2714 		do {
2715 			sector_t first_bad;
2716 			int bad_sectors;
2717 
2718 			d = r10_bio->devs[sl].devnum;
2719 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2720 			if (rdev &&
2721 			    test_bit(In_sync, &rdev->flags) &&
2722 			    !test_bit(Faulty, &rdev->flags) &&
2723 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2724 					&first_bad, &bad_sectors) == 0) {
2725 				atomic_inc(&rdev->nr_pending);
2726 				rcu_read_unlock();
2727 				success = sync_page_io(rdev,
2728 						       r10_bio->devs[sl].addr +
2729 						       sect,
2730 						       s<<9,
2731 						       conf->tmppage,
2732 						       REQ_OP_READ, false);
2733 				rdev_dec_pending(rdev, mddev);
2734 				rcu_read_lock();
2735 				if (success)
2736 					break;
2737 			}
2738 			sl++;
2739 			if (sl == conf->copies)
2740 				sl = 0;
2741 		} while (!success && sl != r10_bio->read_slot);
2742 		rcu_read_unlock();
2743 
2744 		if (!success) {
2745 			/* Cannot read from anywhere, just mark the block
2746 			 * as bad on the first device to discourage future
2747 			 * reads.
2748 			 */
2749 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2750 			rdev = conf->mirrors[dn].rdev;
2751 
2752 			if (!rdev_set_badblocks(
2753 				    rdev,
2754 				    r10_bio->devs[r10_bio->read_slot].addr
2755 				    + sect,
2756 				    s, 0)) {
2757 				md_error(mddev, rdev);
2758 				r10_bio->devs[r10_bio->read_slot].bio
2759 					= IO_BLOCKED;
2760 			}
2761 			break;
2762 		}
2763 
2764 		start = sl;
2765 		/* write it back and re-read */
2766 		rcu_read_lock();
2767 		while (sl != r10_bio->read_slot) {
2768 			if (sl==0)
2769 				sl = conf->copies;
2770 			sl--;
2771 			d = r10_bio->devs[sl].devnum;
2772 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2773 			if (!rdev ||
2774 			    test_bit(Faulty, &rdev->flags) ||
2775 			    !test_bit(In_sync, &rdev->flags))
2776 				continue;
2777 
2778 			atomic_inc(&rdev->nr_pending);
2779 			rcu_read_unlock();
2780 			if (r10_sync_page_io(rdev,
2781 					     r10_bio->devs[sl].addr +
2782 					     sect,
2783 					     s, conf->tmppage, REQ_OP_WRITE)
2784 			    == 0) {
2785 				/* Well, this device is dead */
2786 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2787 					  mdname(mddev), s,
2788 					  (unsigned long long)(
2789 						  sect +
2790 						  choose_data_offset(r10_bio,
2791 								     rdev)),
2792 					  rdev->bdev);
2793 				pr_notice("md/raid10:%s: %pg: failing drive\n",
2794 					  mdname(mddev),
2795 					  rdev->bdev);
2796 			}
2797 			rdev_dec_pending(rdev, mddev);
2798 			rcu_read_lock();
2799 		}
2800 		sl = start;
2801 		while (sl != r10_bio->read_slot) {
2802 			if (sl==0)
2803 				sl = conf->copies;
2804 			sl--;
2805 			d = r10_bio->devs[sl].devnum;
2806 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2807 			if (!rdev ||
2808 			    test_bit(Faulty, &rdev->flags) ||
2809 			    !test_bit(In_sync, &rdev->flags))
2810 				continue;
2811 
2812 			atomic_inc(&rdev->nr_pending);
2813 			rcu_read_unlock();
2814 			switch (r10_sync_page_io(rdev,
2815 					     r10_bio->devs[sl].addr +
2816 					     sect,
2817 					     s, conf->tmppage, REQ_OP_READ)) {
2818 			case 0:
2819 				/* Well, this device is dead */
2820 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2821 				       mdname(mddev), s,
2822 				       (unsigned long long)(
2823 					       sect +
2824 					       choose_data_offset(r10_bio, rdev)),
2825 				       rdev->bdev);
2826 				pr_notice("md/raid10:%s: %pg: failing drive\n",
2827 				       mdname(mddev),
2828 				       rdev->bdev);
2829 				break;
2830 			case 1:
2831 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2832 				       mdname(mddev), s,
2833 				       (unsigned long long)(
2834 					       sect +
2835 					       choose_data_offset(r10_bio, rdev)),
2836 				       rdev->bdev);
2837 				atomic_add(s, &rdev->corrected_errors);
2838 			}
2839 
2840 			rdev_dec_pending(rdev, mddev);
2841 			rcu_read_lock();
2842 		}
2843 		rcu_read_unlock();
2844 
2845 		sectors -= s;
2846 		sect += s;
2847 	}
2848 }
2849 
2850 static int narrow_write_error(struct r10bio *r10_bio, int i)
2851 {
2852 	struct bio *bio = r10_bio->master_bio;
2853 	struct mddev *mddev = r10_bio->mddev;
2854 	struct r10conf *conf = mddev->private;
2855 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2856 	/* bio has the data to be written to slot 'i' where
2857 	 * we just recently had a write error.
2858 	 * We repeatedly clone the bio and trim down to one block,
2859 	 * then try the write.  Where the write fails we record
2860 	 * a bad block.
2861 	 * It is conceivable that the bio doesn't exactly align with
2862 	 * blocks.  We must handle this.
2863 	 *
2864 	 * We currently own a reference to the rdev.
2865 	 */
2866 
2867 	int block_sectors;
2868 	sector_t sector;
2869 	int sectors;
2870 	int sect_to_write = r10_bio->sectors;
2871 	int ok = 1;
2872 
2873 	if (rdev->badblocks.shift < 0)
2874 		return 0;
2875 
2876 	block_sectors = roundup(1 << rdev->badblocks.shift,
2877 				bdev_logical_block_size(rdev->bdev) >> 9);
2878 	sector = r10_bio->sector;
2879 	sectors = ((r10_bio->sector + block_sectors)
2880 		   & ~(sector_t)(block_sectors - 1))
2881 		- sector;
2882 
2883 	while (sect_to_write) {
2884 		struct bio *wbio;
2885 		sector_t wsector;
2886 		if (sectors > sect_to_write)
2887 			sectors = sect_to_write;
2888 		/* Write at 'sector' for 'sectors' */
2889 		wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2890 				       &mddev->bio_set);
2891 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2892 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2893 		wbio->bi_iter.bi_sector = wsector +
2894 				   choose_data_offset(r10_bio, rdev);
2895 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2896 
2897 		if (submit_bio_wait(wbio) < 0)
2898 			/* Failure! */
2899 			ok = rdev_set_badblocks(rdev, wsector,
2900 						sectors, 0)
2901 				&& ok;
2902 
2903 		bio_put(wbio);
2904 		sect_to_write -= sectors;
2905 		sector += sectors;
2906 		sectors = block_sectors;
2907 	}
2908 	return ok;
2909 }
2910 
2911 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2912 {
2913 	int slot = r10_bio->read_slot;
2914 	struct bio *bio;
2915 	struct r10conf *conf = mddev->private;
2916 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2917 
2918 	/* we got a read error. Maybe the drive is bad.  Maybe just
2919 	 * the block and we can fix it.
2920 	 * We freeze all other IO, and try reading the block from
2921 	 * other devices.  When we find one, we re-write
2922 	 * and check it that fixes the read error.
2923 	 * This is all done synchronously while the array is
2924 	 * frozen.
2925 	 */
2926 	bio = r10_bio->devs[slot].bio;
2927 	bio_put(bio);
2928 	r10_bio->devs[slot].bio = NULL;
2929 
2930 	if (mddev->ro)
2931 		r10_bio->devs[slot].bio = IO_BLOCKED;
2932 	else if (!test_bit(FailFast, &rdev->flags)) {
2933 		freeze_array(conf, 1);
2934 		fix_read_error(conf, mddev, r10_bio);
2935 		unfreeze_array(conf);
2936 	} else
2937 		md_error(mddev, rdev);
2938 
2939 	rdev_dec_pending(rdev, mddev);
2940 	allow_barrier(conf);
2941 	r10_bio->state = 0;
2942 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2943 }
2944 
2945 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2946 {
2947 	/* Some sort of write request has finished and it
2948 	 * succeeded in writing where we thought there was a
2949 	 * bad block.  So forget the bad block.
2950 	 * Or possibly if failed and we need to record
2951 	 * a bad block.
2952 	 */
2953 	int m;
2954 	struct md_rdev *rdev;
2955 
2956 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2957 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2958 		for (m = 0; m < conf->copies; m++) {
2959 			int dev = r10_bio->devs[m].devnum;
2960 			rdev = conf->mirrors[dev].rdev;
2961 			if (r10_bio->devs[m].bio == NULL ||
2962 				r10_bio->devs[m].bio->bi_end_io == NULL)
2963 				continue;
2964 			if (!r10_bio->devs[m].bio->bi_status) {
2965 				rdev_clear_badblocks(
2966 					rdev,
2967 					r10_bio->devs[m].addr,
2968 					r10_bio->sectors, 0);
2969 			} else {
2970 				if (!rdev_set_badblocks(
2971 					    rdev,
2972 					    r10_bio->devs[m].addr,
2973 					    r10_bio->sectors, 0))
2974 					md_error(conf->mddev, rdev);
2975 			}
2976 			rdev = conf->mirrors[dev].replacement;
2977 			if (r10_bio->devs[m].repl_bio == NULL ||
2978 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2979 				continue;
2980 
2981 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2982 				rdev_clear_badblocks(
2983 					rdev,
2984 					r10_bio->devs[m].addr,
2985 					r10_bio->sectors, 0);
2986 			} else {
2987 				if (!rdev_set_badblocks(
2988 					    rdev,
2989 					    r10_bio->devs[m].addr,
2990 					    r10_bio->sectors, 0))
2991 					md_error(conf->mddev, rdev);
2992 			}
2993 		}
2994 		put_buf(r10_bio);
2995 	} else {
2996 		bool fail = false;
2997 		for (m = 0; m < conf->copies; m++) {
2998 			int dev = r10_bio->devs[m].devnum;
2999 			struct bio *bio = r10_bio->devs[m].bio;
3000 			rdev = conf->mirrors[dev].rdev;
3001 			if (bio == IO_MADE_GOOD) {
3002 				rdev_clear_badblocks(
3003 					rdev,
3004 					r10_bio->devs[m].addr,
3005 					r10_bio->sectors, 0);
3006 				rdev_dec_pending(rdev, conf->mddev);
3007 			} else if (bio != NULL && bio->bi_status) {
3008 				fail = true;
3009 				if (!narrow_write_error(r10_bio, m)) {
3010 					md_error(conf->mddev, rdev);
3011 					set_bit(R10BIO_Degraded,
3012 						&r10_bio->state);
3013 				}
3014 				rdev_dec_pending(rdev, conf->mddev);
3015 			}
3016 			bio = r10_bio->devs[m].repl_bio;
3017 			rdev = conf->mirrors[dev].replacement;
3018 			if (rdev && bio == IO_MADE_GOOD) {
3019 				rdev_clear_badblocks(
3020 					rdev,
3021 					r10_bio->devs[m].addr,
3022 					r10_bio->sectors, 0);
3023 				rdev_dec_pending(rdev, conf->mddev);
3024 			}
3025 		}
3026 		if (fail) {
3027 			spin_lock_irq(&conf->device_lock);
3028 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3029 			conf->nr_queued++;
3030 			spin_unlock_irq(&conf->device_lock);
3031 			/*
3032 			 * In case freeze_array() is waiting for condition
3033 			 * nr_pending == nr_queued + extra to be true.
3034 			 */
3035 			wake_up(&conf->wait_barrier);
3036 			md_wakeup_thread(conf->mddev->thread);
3037 		} else {
3038 			if (test_bit(R10BIO_WriteError,
3039 				     &r10_bio->state))
3040 				close_write(r10_bio);
3041 			raid_end_bio_io(r10_bio);
3042 		}
3043 	}
3044 }
3045 
3046 static void raid10d(struct md_thread *thread)
3047 {
3048 	struct mddev *mddev = thread->mddev;
3049 	struct r10bio *r10_bio;
3050 	unsigned long flags;
3051 	struct r10conf *conf = mddev->private;
3052 	struct list_head *head = &conf->retry_list;
3053 	struct blk_plug plug;
3054 
3055 	md_check_recovery(mddev);
3056 
3057 	if (!list_empty_careful(&conf->bio_end_io_list) &&
3058 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3059 		LIST_HEAD(tmp);
3060 		spin_lock_irqsave(&conf->device_lock, flags);
3061 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3062 			while (!list_empty(&conf->bio_end_io_list)) {
3063 				list_move(conf->bio_end_io_list.prev, &tmp);
3064 				conf->nr_queued--;
3065 			}
3066 		}
3067 		spin_unlock_irqrestore(&conf->device_lock, flags);
3068 		while (!list_empty(&tmp)) {
3069 			r10_bio = list_first_entry(&tmp, struct r10bio,
3070 						   retry_list);
3071 			list_del(&r10_bio->retry_list);
3072 			if (mddev->degraded)
3073 				set_bit(R10BIO_Degraded, &r10_bio->state);
3074 
3075 			if (test_bit(R10BIO_WriteError,
3076 				     &r10_bio->state))
3077 				close_write(r10_bio);
3078 			raid_end_bio_io(r10_bio);
3079 		}
3080 	}
3081 
3082 	blk_start_plug(&plug);
3083 	for (;;) {
3084 
3085 		flush_pending_writes(conf);
3086 
3087 		spin_lock_irqsave(&conf->device_lock, flags);
3088 		if (list_empty(head)) {
3089 			spin_unlock_irqrestore(&conf->device_lock, flags);
3090 			break;
3091 		}
3092 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3093 		list_del(head->prev);
3094 		conf->nr_queued--;
3095 		spin_unlock_irqrestore(&conf->device_lock, flags);
3096 
3097 		mddev = r10_bio->mddev;
3098 		conf = mddev->private;
3099 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3100 		    test_bit(R10BIO_WriteError, &r10_bio->state))
3101 			handle_write_completed(conf, r10_bio);
3102 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3103 			reshape_request_write(mddev, r10_bio);
3104 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3105 			sync_request_write(mddev, r10_bio);
3106 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3107 			recovery_request_write(mddev, r10_bio);
3108 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3109 			handle_read_error(mddev, r10_bio);
3110 		else
3111 			WARN_ON_ONCE(1);
3112 
3113 		cond_resched();
3114 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3115 			md_check_recovery(mddev);
3116 	}
3117 	blk_finish_plug(&plug);
3118 }
3119 
3120 static int init_resync(struct r10conf *conf)
3121 {
3122 	int ret, buffs, i;
3123 
3124 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3125 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3126 	conf->have_replacement = 0;
3127 	for (i = 0; i < conf->geo.raid_disks; i++)
3128 		if (conf->mirrors[i].replacement)
3129 			conf->have_replacement = 1;
3130 	ret = mempool_init(&conf->r10buf_pool, buffs,
3131 			   r10buf_pool_alloc, r10buf_pool_free, conf);
3132 	if (ret)
3133 		return ret;
3134 	conf->next_resync = 0;
3135 	return 0;
3136 }
3137 
3138 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3139 {
3140 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3141 	struct rsync_pages *rp;
3142 	struct bio *bio;
3143 	int nalloc;
3144 	int i;
3145 
3146 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3147 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3148 		nalloc = conf->copies; /* resync */
3149 	else
3150 		nalloc = 2; /* recovery */
3151 
3152 	for (i = 0; i < nalloc; i++) {
3153 		bio = r10bio->devs[i].bio;
3154 		rp = bio->bi_private;
3155 		bio_reset(bio, NULL, 0);
3156 		bio->bi_private = rp;
3157 		bio = r10bio->devs[i].repl_bio;
3158 		if (bio) {
3159 			rp = bio->bi_private;
3160 			bio_reset(bio, NULL, 0);
3161 			bio->bi_private = rp;
3162 		}
3163 	}
3164 	return r10bio;
3165 }
3166 
3167 /*
3168  * Set cluster_sync_high since we need other nodes to add the
3169  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3170  */
3171 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3172 {
3173 	sector_t window_size;
3174 	int extra_chunk, chunks;
3175 
3176 	/*
3177 	 * First, here we define "stripe" as a unit which across
3178 	 * all member devices one time, so we get chunks by use
3179 	 * raid_disks / near_copies. Otherwise, if near_copies is
3180 	 * close to raid_disks, then resync window could increases
3181 	 * linearly with the increase of raid_disks, which means
3182 	 * we will suspend a really large IO window while it is not
3183 	 * necessary. If raid_disks is not divisible by near_copies,
3184 	 * an extra chunk is needed to ensure the whole "stripe" is
3185 	 * covered.
3186 	 */
3187 
3188 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3189 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3190 		extra_chunk = 0;
3191 	else
3192 		extra_chunk = 1;
3193 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3194 
3195 	/*
3196 	 * At least use a 32M window to align with raid1's resync window
3197 	 */
3198 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3199 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3200 
3201 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3202 }
3203 
3204 /*
3205  * perform a "sync" on one "block"
3206  *
3207  * We need to make sure that no normal I/O request - particularly write
3208  * requests - conflict with active sync requests.
3209  *
3210  * This is achieved by tracking pending requests and a 'barrier' concept
3211  * that can be installed to exclude normal IO requests.
3212  *
3213  * Resync and recovery are handled very differently.
3214  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3215  *
3216  * For resync, we iterate over virtual addresses, read all copies,
3217  * and update if there are differences.  If only one copy is live,
3218  * skip it.
3219  * For recovery, we iterate over physical addresses, read a good
3220  * value for each non-in_sync drive, and over-write.
3221  *
3222  * So, for recovery we may have several outstanding complex requests for a
3223  * given address, one for each out-of-sync device.  We model this by allocating
3224  * a number of r10_bio structures, one for each out-of-sync device.
3225  * As we setup these structures, we collect all bio's together into a list
3226  * which we then process collectively to add pages, and then process again
3227  * to pass to submit_bio_noacct.
3228  *
3229  * The r10_bio structures are linked using a borrowed master_bio pointer.
3230  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3231  * has its remaining count decremented to 0, the whole complex operation
3232  * is complete.
3233  *
3234  */
3235 
3236 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3237 			     int *skipped)
3238 {
3239 	struct r10conf *conf = mddev->private;
3240 	struct r10bio *r10_bio;
3241 	struct bio *biolist = NULL, *bio;
3242 	sector_t max_sector, nr_sectors;
3243 	int i;
3244 	int max_sync;
3245 	sector_t sync_blocks;
3246 	sector_t sectors_skipped = 0;
3247 	int chunks_skipped = 0;
3248 	sector_t chunk_mask = conf->geo.chunk_mask;
3249 	int page_idx = 0;
3250 
3251 	if (!mempool_initialized(&conf->r10buf_pool))
3252 		if (init_resync(conf))
3253 			return 0;
3254 
3255 	/*
3256 	 * Allow skipping a full rebuild for incremental assembly
3257 	 * of a clean array, like RAID1 does.
3258 	 */
3259 	if (mddev->bitmap == NULL &&
3260 	    mddev->recovery_cp == MaxSector &&
3261 	    mddev->reshape_position == MaxSector &&
3262 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3263 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3264 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3265 	    conf->fullsync == 0) {
3266 		*skipped = 1;
3267 		return mddev->dev_sectors - sector_nr;
3268 	}
3269 
3270  skipped:
3271 	max_sector = mddev->dev_sectors;
3272 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3273 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3274 		max_sector = mddev->resync_max_sectors;
3275 	if (sector_nr >= max_sector) {
3276 		conf->cluster_sync_low = 0;
3277 		conf->cluster_sync_high = 0;
3278 
3279 		/* If we aborted, we need to abort the
3280 		 * sync on the 'current' bitmap chucks (there can
3281 		 * be several when recovering multiple devices).
3282 		 * as we may have started syncing it but not finished.
3283 		 * We can find the current address in
3284 		 * mddev->curr_resync, but for recovery,
3285 		 * we need to convert that to several
3286 		 * virtual addresses.
3287 		 */
3288 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3289 			end_reshape(conf);
3290 			close_sync(conf);
3291 			return 0;
3292 		}
3293 
3294 		if (mddev->curr_resync < max_sector) { /* aborted */
3295 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3296 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3297 						   &sync_blocks, 1);
3298 			else for (i = 0; i < conf->geo.raid_disks; i++) {
3299 				sector_t sect =
3300 					raid10_find_virt(conf, mddev->curr_resync, i);
3301 				md_bitmap_end_sync(mddev->bitmap, sect,
3302 						   &sync_blocks, 1);
3303 			}
3304 		} else {
3305 			/* completed sync */
3306 			if ((!mddev->bitmap || conf->fullsync)
3307 			    && conf->have_replacement
3308 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3309 				/* Completed a full sync so the replacements
3310 				 * are now fully recovered.
3311 				 */
3312 				rcu_read_lock();
3313 				for (i = 0; i < conf->geo.raid_disks; i++) {
3314 					struct md_rdev *rdev =
3315 						rcu_dereference(conf->mirrors[i].replacement);
3316 					if (rdev)
3317 						rdev->recovery_offset = MaxSector;
3318 				}
3319 				rcu_read_unlock();
3320 			}
3321 			conf->fullsync = 0;
3322 		}
3323 		md_bitmap_close_sync(mddev->bitmap);
3324 		close_sync(conf);
3325 		*skipped = 1;
3326 		return sectors_skipped;
3327 	}
3328 
3329 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3330 		return reshape_request(mddev, sector_nr, skipped);
3331 
3332 	if (chunks_skipped >= conf->geo.raid_disks) {
3333 		/* if there has been nothing to do on any drive,
3334 		 * then there is nothing to do at all..
3335 		 */
3336 		*skipped = 1;
3337 		return (max_sector - sector_nr) + sectors_skipped;
3338 	}
3339 
3340 	if (max_sector > mddev->resync_max)
3341 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3342 
3343 	/* make sure whole request will fit in a chunk - if chunks
3344 	 * are meaningful
3345 	 */
3346 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3347 	    max_sector > (sector_nr | chunk_mask))
3348 		max_sector = (sector_nr | chunk_mask) + 1;
3349 
3350 	/*
3351 	 * If there is non-resync activity waiting for a turn, then let it
3352 	 * though before starting on this new sync request.
3353 	 */
3354 	if (conf->nr_waiting)
3355 		schedule_timeout_uninterruptible(1);
3356 
3357 	/* Again, very different code for resync and recovery.
3358 	 * Both must result in an r10bio with a list of bios that
3359 	 * have bi_end_io, bi_sector, bi_bdev set,
3360 	 * and bi_private set to the r10bio.
3361 	 * For recovery, we may actually create several r10bios
3362 	 * with 2 bios in each, that correspond to the bios in the main one.
3363 	 * In this case, the subordinate r10bios link back through a
3364 	 * borrowed master_bio pointer, and the counter in the master
3365 	 * includes a ref from each subordinate.
3366 	 */
3367 	/* First, we decide what to do and set ->bi_end_io
3368 	 * To end_sync_read if we want to read, and
3369 	 * end_sync_write if we will want to write.
3370 	 */
3371 
3372 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3373 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3374 		/* recovery... the complicated one */
3375 		int j;
3376 		r10_bio = NULL;
3377 
3378 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3379 			int still_degraded;
3380 			struct r10bio *rb2;
3381 			sector_t sect;
3382 			int must_sync;
3383 			int any_working;
3384 			int need_recover = 0;
3385 			int need_replace = 0;
3386 			struct raid10_info *mirror = &conf->mirrors[i];
3387 			struct md_rdev *mrdev, *mreplace;
3388 
3389 			rcu_read_lock();
3390 			mrdev = rcu_dereference(mirror->rdev);
3391 			mreplace = rcu_dereference(mirror->replacement);
3392 
3393 			if (mrdev != NULL &&
3394 			    !test_bit(Faulty, &mrdev->flags) &&
3395 			    !test_bit(In_sync, &mrdev->flags))
3396 				need_recover = 1;
3397 			if (mreplace != NULL &&
3398 			    !test_bit(Faulty, &mreplace->flags))
3399 				need_replace = 1;
3400 
3401 			if (!need_recover && !need_replace) {
3402 				rcu_read_unlock();
3403 				continue;
3404 			}
3405 
3406 			still_degraded = 0;
3407 			/* want to reconstruct this device */
3408 			rb2 = r10_bio;
3409 			sect = raid10_find_virt(conf, sector_nr, i);
3410 			if (sect >= mddev->resync_max_sectors) {
3411 				/* last stripe is not complete - don't
3412 				 * try to recover this sector.
3413 				 */
3414 				rcu_read_unlock();
3415 				continue;
3416 			}
3417 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3418 				mreplace = NULL;
3419 			/* Unless we are doing a full sync, or a replacement
3420 			 * we only need to recover the block if it is set in
3421 			 * the bitmap
3422 			 */
3423 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3424 							 &sync_blocks, 1);
3425 			if (sync_blocks < max_sync)
3426 				max_sync = sync_blocks;
3427 			if (!must_sync &&
3428 			    mreplace == NULL &&
3429 			    !conf->fullsync) {
3430 				/* yep, skip the sync_blocks here, but don't assume
3431 				 * that there will never be anything to do here
3432 				 */
3433 				chunks_skipped = -1;
3434 				rcu_read_unlock();
3435 				continue;
3436 			}
3437 			atomic_inc(&mrdev->nr_pending);
3438 			if (mreplace)
3439 				atomic_inc(&mreplace->nr_pending);
3440 			rcu_read_unlock();
3441 
3442 			r10_bio = raid10_alloc_init_r10buf(conf);
3443 			r10_bio->state = 0;
3444 			raise_barrier(conf, rb2 != NULL);
3445 			atomic_set(&r10_bio->remaining, 0);
3446 
3447 			r10_bio->master_bio = (struct bio*)rb2;
3448 			if (rb2)
3449 				atomic_inc(&rb2->remaining);
3450 			r10_bio->mddev = mddev;
3451 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3452 			r10_bio->sector = sect;
3453 
3454 			raid10_find_phys(conf, r10_bio);
3455 
3456 			/* Need to check if the array will still be
3457 			 * degraded
3458 			 */
3459 			rcu_read_lock();
3460 			for (j = 0; j < conf->geo.raid_disks; j++) {
3461 				struct md_rdev *rdev = rcu_dereference(
3462 					conf->mirrors[j].rdev);
3463 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3464 					still_degraded = 1;
3465 					break;
3466 				}
3467 			}
3468 
3469 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3470 							 &sync_blocks, still_degraded);
3471 
3472 			any_working = 0;
3473 			for (j=0; j<conf->copies;j++) {
3474 				int k;
3475 				int d = r10_bio->devs[j].devnum;
3476 				sector_t from_addr, to_addr;
3477 				struct md_rdev *rdev =
3478 					rcu_dereference(conf->mirrors[d].rdev);
3479 				sector_t sector, first_bad;
3480 				int bad_sectors;
3481 				if (!rdev ||
3482 				    !test_bit(In_sync, &rdev->flags))
3483 					continue;
3484 				/* This is where we read from */
3485 				any_working = 1;
3486 				sector = r10_bio->devs[j].addr;
3487 
3488 				if (is_badblock(rdev, sector, max_sync,
3489 						&first_bad, &bad_sectors)) {
3490 					if (first_bad > sector)
3491 						max_sync = first_bad - sector;
3492 					else {
3493 						bad_sectors -= (sector
3494 								- first_bad);
3495 						if (max_sync > bad_sectors)
3496 							max_sync = bad_sectors;
3497 						continue;
3498 					}
3499 				}
3500 				bio = r10_bio->devs[0].bio;
3501 				bio->bi_next = biolist;
3502 				biolist = bio;
3503 				bio->bi_end_io = end_sync_read;
3504 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3505 				if (test_bit(FailFast, &rdev->flags))
3506 					bio->bi_opf |= MD_FAILFAST;
3507 				from_addr = r10_bio->devs[j].addr;
3508 				bio->bi_iter.bi_sector = from_addr +
3509 					rdev->data_offset;
3510 				bio_set_dev(bio, rdev->bdev);
3511 				atomic_inc(&rdev->nr_pending);
3512 				/* and we write to 'i' (if not in_sync) */
3513 
3514 				for (k=0; k<conf->copies; k++)
3515 					if (r10_bio->devs[k].devnum == i)
3516 						break;
3517 				BUG_ON(k == conf->copies);
3518 				to_addr = r10_bio->devs[k].addr;
3519 				r10_bio->devs[0].devnum = d;
3520 				r10_bio->devs[0].addr = from_addr;
3521 				r10_bio->devs[1].devnum = i;
3522 				r10_bio->devs[1].addr = to_addr;
3523 
3524 				if (need_recover) {
3525 					bio = r10_bio->devs[1].bio;
3526 					bio->bi_next = biolist;
3527 					biolist = bio;
3528 					bio->bi_end_io = end_sync_write;
3529 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3530 					bio->bi_iter.bi_sector = to_addr
3531 						+ mrdev->data_offset;
3532 					bio_set_dev(bio, mrdev->bdev);
3533 					atomic_inc(&r10_bio->remaining);
3534 				} else
3535 					r10_bio->devs[1].bio->bi_end_io = NULL;
3536 
3537 				/* and maybe write to replacement */
3538 				bio = r10_bio->devs[1].repl_bio;
3539 				if (bio)
3540 					bio->bi_end_io = NULL;
3541 				/* Note: if need_replace, then bio
3542 				 * cannot be NULL as r10buf_pool_alloc will
3543 				 * have allocated it.
3544 				 */
3545 				if (!need_replace)
3546 					break;
3547 				bio->bi_next = biolist;
3548 				biolist = bio;
3549 				bio->bi_end_io = end_sync_write;
3550 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3551 				bio->bi_iter.bi_sector = to_addr +
3552 					mreplace->data_offset;
3553 				bio_set_dev(bio, mreplace->bdev);
3554 				atomic_inc(&r10_bio->remaining);
3555 				break;
3556 			}
3557 			rcu_read_unlock();
3558 			if (j == conf->copies) {
3559 				/* Cannot recover, so abort the recovery or
3560 				 * record a bad block */
3561 				if (any_working) {
3562 					/* problem is that there are bad blocks
3563 					 * on other device(s)
3564 					 */
3565 					int k;
3566 					for (k = 0; k < conf->copies; k++)
3567 						if (r10_bio->devs[k].devnum == i)
3568 							break;
3569 					if (!test_bit(In_sync,
3570 						      &mrdev->flags)
3571 					    && !rdev_set_badblocks(
3572 						    mrdev,
3573 						    r10_bio->devs[k].addr,
3574 						    max_sync, 0))
3575 						any_working = 0;
3576 					if (mreplace &&
3577 					    !rdev_set_badblocks(
3578 						    mreplace,
3579 						    r10_bio->devs[k].addr,
3580 						    max_sync, 0))
3581 						any_working = 0;
3582 				}
3583 				if (!any_working)  {
3584 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3585 							      &mddev->recovery))
3586 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3587 						       mdname(mddev));
3588 					mirror->recovery_disabled
3589 						= mddev->recovery_disabled;
3590 				}
3591 				put_buf(r10_bio);
3592 				if (rb2)
3593 					atomic_dec(&rb2->remaining);
3594 				r10_bio = rb2;
3595 				rdev_dec_pending(mrdev, mddev);
3596 				if (mreplace)
3597 					rdev_dec_pending(mreplace, mddev);
3598 				break;
3599 			}
3600 			rdev_dec_pending(mrdev, mddev);
3601 			if (mreplace)
3602 				rdev_dec_pending(mreplace, mddev);
3603 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3604 				/* Only want this if there is elsewhere to
3605 				 * read from. 'j' is currently the first
3606 				 * readable copy.
3607 				 */
3608 				int targets = 1;
3609 				for (; j < conf->copies; j++) {
3610 					int d = r10_bio->devs[j].devnum;
3611 					if (conf->mirrors[d].rdev &&
3612 					    test_bit(In_sync,
3613 						      &conf->mirrors[d].rdev->flags))
3614 						targets++;
3615 				}
3616 				if (targets == 1)
3617 					r10_bio->devs[0].bio->bi_opf
3618 						&= ~MD_FAILFAST;
3619 			}
3620 		}
3621 		if (biolist == NULL) {
3622 			while (r10_bio) {
3623 				struct r10bio *rb2 = r10_bio;
3624 				r10_bio = (struct r10bio*) rb2->master_bio;
3625 				rb2->master_bio = NULL;
3626 				put_buf(rb2);
3627 			}
3628 			goto giveup;
3629 		}
3630 	} else {
3631 		/* resync. Schedule a read for every block at this virt offset */
3632 		int count = 0;
3633 
3634 		/*
3635 		 * Since curr_resync_completed could probably not update in
3636 		 * time, and we will set cluster_sync_low based on it.
3637 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3638 		 * safety reason, which ensures curr_resync_completed is
3639 		 * updated in bitmap_cond_end_sync.
3640 		 */
3641 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3642 					mddev_is_clustered(mddev) &&
3643 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3644 
3645 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3646 					  &sync_blocks, mddev->degraded) &&
3647 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3648 						 &mddev->recovery)) {
3649 			/* We can skip this block */
3650 			*skipped = 1;
3651 			return sync_blocks + sectors_skipped;
3652 		}
3653 		if (sync_blocks < max_sync)
3654 			max_sync = sync_blocks;
3655 		r10_bio = raid10_alloc_init_r10buf(conf);
3656 		r10_bio->state = 0;
3657 
3658 		r10_bio->mddev = mddev;
3659 		atomic_set(&r10_bio->remaining, 0);
3660 		raise_barrier(conf, 0);
3661 		conf->next_resync = sector_nr;
3662 
3663 		r10_bio->master_bio = NULL;
3664 		r10_bio->sector = sector_nr;
3665 		set_bit(R10BIO_IsSync, &r10_bio->state);
3666 		raid10_find_phys(conf, r10_bio);
3667 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3668 
3669 		for (i = 0; i < conf->copies; i++) {
3670 			int d = r10_bio->devs[i].devnum;
3671 			sector_t first_bad, sector;
3672 			int bad_sectors;
3673 			struct md_rdev *rdev;
3674 
3675 			if (r10_bio->devs[i].repl_bio)
3676 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3677 
3678 			bio = r10_bio->devs[i].bio;
3679 			bio->bi_status = BLK_STS_IOERR;
3680 			rcu_read_lock();
3681 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3682 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3683 				rcu_read_unlock();
3684 				continue;
3685 			}
3686 			sector = r10_bio->devs[i].addr;
3687 			if (is_badblock(rdev, sector, max_sync,
3688 					&first_bad, &bad_sectors)) {
3689 				if (first_bad > sector)
3690 					max_sync = first_bad - sector;
3691 				else {
3692 					bad_sectors -= (sector - first_bad);
3693 					if (max_sync > bad_sectors)
3694 						max_sync = bad_sectors;
3695 					rcu_read_unlock();
3696 					continue;
3697 				}
3698 			}
3699 			atomic_inc(&rdev->nr_pending);
3700 			atomic_inc(&r10_bio->remaining);
3701 			bio->bi_next = biolist;
3702 			biolist = bio;
3703 			bio->bi_end_io = end_sync_read;
3704 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3705 			if (test_bit(FailFast, &rdev->flags))
3706 				bio->bi_opf |= MD_FAILFAST;
3707 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3708 			bio_set_dev(bio, rdev->bdev);
3709 			count++;
3710 
3711 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3712 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3713 				rcu_read_unlock();
3714 				continue;
3715 			}
3716 			atomic_inc(&rdev->nr_pending);
3717 
3718 			/* Need to set up for writing to the replacement */
3719 			bio = r10_bio->devs[i].repl_bio;
3720 			bio->bi_status = BLK_STS_IOERR;
3721 
3722 			sector = r10_bio->devs[i].addr;
3723 			bio->bi_next = biolist;
3724 			biolist = bio;
3725 			bio->bi_end_io = end_sync_write;
3726 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3727 			if (test_bit(FailFast, &rdev->flags))
3728 				bio->bi_opf |= MD_FAILFAST;
3729 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3730 			bio_set_dev(bio, rdev->bdev);
3731 			count++;
3732 			rcu_read_unlock();
3733 		}
3734 
3735 		if (count < 2) {
3736 			for (i=0; i<conf->copies; i++) {
3737 				int d = r10_bio->devs[i].devnum;
3738 				if (r10_bio->devs[i].bio->bi_end_io)
3739 					rdev_dec_pending(conf->mirrors[d].rdev,
3740 							 mddev);
3741 				if (r10_bio->devs[i].repl_bio &&
3742 				    r10_bio->devs[i].repl_bio->bi_end_io)
3743 					rdev_dec_pending(
3744 						conf->mirrors[d].replacement,
3745 						mddev);
3746 			}
3747 			put_buf(r10_bio);
3748 			biolist = NULL;
3749 			goto giveup;
3750 		}
3751 	}
3752 
3753 	nr_sectors = 0;
3754 	if (sector_nr + max_sync < max_sector)
3755 		max_sector = sector_nr + max_sync;
3756 	do {
3757 		struct page *page;
3758 		int len = PAGE_SIZE;
3759 		if (sector_nr + (len>>9) > max_sector)
3760 			len = (max_sector - sector_nr) << 9;
3761 		if (len == 0)
3762 			break;
3763 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3764 			struct resync_pages *rp = get_resync_pages(bio);
3765 			page = resync_fetch_page(rp, page_idx);
3766 			/*
3767 			 * won't fail because the vec table is big enough
3768 			 * to hold all these pages
3769 			 */
3770 			bio_add_page(bio, page, len, 0);
3771 		}
3772 		nr_sectors += len>>9;
3773 		sector_nr += len>>9;
3774 	} while (++page_idx < RESYNC_PAGES);
3775 	r10_bio->sectors = nr_sectors;
3776 
3777 	if (mddev_is_clustered(mddev) &&
3778 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3779 		/* It is resync not recovery */
3780 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3781 			conf->cluster_sync_low = mddev->curr_resync_completed;
3782 			raid10_set_cluster_sync_high(conf);
3783 			/* Send resync message */
3784 			md_cluster_ops->resync_info_update(mddev,
3785 						conf->cluster_sync_low,
3786 						conf->cluster_sync_high);
3787 		}
3788 	} else if (mddev_is_clustered(mddev)) {
3789 		/* This is recovery not resync */
3790 		sector_t sect_va1, sect_va2;
3791 		bool broadcast_msg = false;
3792 
3793 		for (i = 0; i < conf->geo.raid_disks; i++) {
3794 			/*
3795 			 * sector_nr is a device address for recovery, so we
3796 			 * need translate it to array address before compare
3797 			 * with cluster_sync_high.
3798 			 */
3799 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3800 
3801 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3802 				broadcast_msg = true;
3803 				/*
3804 				 * curr_resync_completed is similar as
3805 				 * sector_nr, so make the translation too.
3806 				 */
3807 				sect_va2 = raid10_find_virt(conf,
3808 					mddev->curr_resync_completed, i);
3809 
3810 				if (conf->cluster_sync_low == 0 ||
3811 				    conf->cluster_sync_low > sect_va2)
3812 					conf->cluster_sync_low = sect_va2;
3813 			}
3814 		}
3815 		if (broadcast_msg) {
3816 			raid10_set_cluster_sync_high(conf);
3817 			md_cluster_ops->resync_info_update(mddev,
3818 						conf->cluster_sync_low,
3819 						conf->cluster_sync_high);
3820 		}
3821 	}
3822 
3823 	while (biolist) {
3824 		bio = biolist;
3825 		biolist = biolist->bi_next;
3826 
3827 		bio->bi_next = NULL;
3828 		r10_bio = get_resync_r10bio(bio);
3829 		r10_bio->sectors = nr_sectors;
3830 
3831 		if (bio->bi_end_io == end_sync_read) {
3832 			md_sync_acct_bio(bio, nr_sectors);
3833 			bio->bi_status = 0;
3834 			submit_bio_noacct(bio);
3835 		}
3836 	}
3837 
3838 	if (sectors_skipped)
3839 		/* pretend they weren't skipped, it makes
3840 		 * no important difference in this case
3841 		 */
3842 		md_done_sync(mddev, sectors_skipped, 1);
3843 
3844 	return sectors_skipped + nr_sectors;
3845  giveup:
3846 	/* There is nowhere to write, so all non-sync
3847 	 * drives must be failed or in resync, all drives
3848 	 * have a bad block, so try the next chunk...
3849 	 */
3850 	if (sector_nr + max_sync < max_sector)
3851 		max_sector = sector_nr + max_sync;
3852 
3853 	sectors_skipped += (max_sector - sector_nr);
3854 	chunks_skipped ++;
3855 	sector_nr = max_sector;
3856 	goto skipped;
3857 }
3858 
3859 static sector_t
3860 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3861 {
3862 	sector_t size;
3863 	struct r10conf *conf = mddev->private;
3864 
3865 	if (!raid_disks)
3866 		raid_disks = min(conf->geo.raid_disks,
3867 				 conf->prev.raid_disks);
3868 	if (!sectors)
3869 		sectors = conf->dev_sectors;
3870 
3871 	size = sectors >> conf->geo.chunk_shift;
3872 	sector_div(size, conf->geo.far_copies);
3873 	size = size * raid_disks;
3874 	sector_div(size, conf->geo.near_copies);
3875 
3876 	return size << conf->geo.chunk_shift;
3877 }
3878 
3879 static void calc_sectors(struct r10conf *conf, sector_t size)
3880 {
3881 	/* Calculate the number of sectors-per-device that will
3882 	 * actually be used, and set conf->dev_sectors and
3883 	 * conf->stride
3884 	 */
3885 
3886 	size = size >> conf->geo.chunk_shift;
3887 	sector_div(size, conf->geo.far_copies);
3888 	size = size * conf->geo.raid_disks;
3889 	sector_div(size, conf->geo.near_copies);
3890 	/* 'size' is now the number of chunks in the array */
3891 	/* calculate "used chunks per device" */
3892 	size = size * conf->copies;
3893 
3894 	/* We need to round up when dividing by raid_disks to
3895 	 * get the stride size.
3896 	 */
3897 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3898 
3899 	conf->dev_sectors = size << conf->geo.chunk_shift;
3900 
3901 	if (conf->geo.far_offset)
3902 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3903 	else {
3904 		sector_div(size, conf->geo.far_copies);
3905 		conf->geo.stride = size << conf->geo.chunk_shift;
3906 	}
3907 }
3908 
3909 enum geo_type {geo_new, geo_old, geo_start};
3910 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3911 {
3912 	int nc, fc, fo;
3913 	int layout, chunk, disks;
3914 	switch (new) {
3915 	case geo_old:
3916 		layout = mddev->layout;
3917 		chunk = mddev->chunk_sectors;
3918 		disks = mddev->raid_disks - mddev->delta_disks;
3919 		break;
3920 	case geo_new:
3921 		layout = mddev->new_layout;
3922 		chunk = mddev->new_chunk_sectors;
3923 		disks = mddev->raid_disks;
3924 		break;
3925 	default: /* avoid 'may be unused' warnings */
3926 	case geo_start: /* new when starting reshape - raid_disks not
3927 			 * updated yet. */
3928 		layout = mddev->new_layout;
3929 		chunk = mddev->new_chunk_sectors;
3930 		disks = mddev->raid_disks + mddev->delta_disks;
3931 		break;
3932 	}
3933 	if (layout >> 19)
3934 		return -1;
3935 	if (chunk < (PAGE_SIZE >> 9) ||
3936 	    !is_power_of_2(chunk))
3937 		return -2;
3938 	nc = layout & 255;
3939 	fc = (layout >> 8) & 255;
3940 	fo = layout & (1<<16);
3941 	geo->raid_disks = disks;
3942 	geo->near_copies = nc;
3943 	geo->far_copies = fc;
3944 	geo->far_offset = fo;
3945 	switch (layout >> 17) {
3946 	case 0:	/* original layout.  simple but not always optimal */
3947 		geo->far_set_size = disks;
3948 		break;
3949 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3950 		 * actually using this, but leave code here just in case.*/
3951 		geo->far_set_size = disks/fc;
3952 		WARN(geo->far_set_size < fc,
3953 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3954 		break;
3955 	case 2: /* "improved" layout fixed to match documentation */
3956 		geo->far_set_size = fc * nc;
3957 		break;
3958 	default: /* Not a valid layout */
3959 		return -1;
3960 	}
3961 	geo->chunk_mask = chunk - 1;
3962 	geo->chunk_shift = ffz(~chunk);
3963 	return nc*fc;
3964 }
3965 
3966 static struct r10conf *setup_conf(struct mddev *mddev)
3967 {
3968 	struct r10conf *conf = NULL;
3969 	int err = -EINVAL;
3970 	struct geom geo;
3971 	int copies;
3972 
3973 	copies = setup_geo(&geo, mddev, geo_new);
3974 
3975 	if (copies == -2) {
3976 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3977 			mdname(mddev), PAGE_SIZE);
3978 		goto out;
3979 	}
3980 
3981 	if (copies < 2 || copies > mddev->raid_disks) {
3982 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3983 			mdname(mddev), mddev->new_layout);
3984 		goto out;
3985 	}
3986 
3987 	err = -ENOMEM;
3988 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3989 	if (!conf)
3990 		goto out;
3991 
3992 	/* FIXME calc properly */
3993 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3994 				sizeof(struct raid10_info),
3995 				GFP_KERNEL);
3996 	if (!conf->mirrors)
3997 		goto out;
3998 
3999 	conf->tmppage = alloc_page(GFP_KERNEL);
4000 	if (!conf->tmppage)
4001 		goto out;
4002 
4003 	conf->geo = geo;
4004 	conf->copies = copies;
4005 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4006 			   rbio_pool_free, conf);
4007 	if (err)
4008 		goto out;
4009 
4010 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4011 	if (err)
4012 		goto out;
4013 
4014 	calc_sectors(conf, mddev->dev_sectors);
4015 	if (mddev->reshape_position == MaxSector) {
4016 		conf->prev = conf->geo;
4017 		conf->reshape_progress = MaxSector;
4018 	} else {
4019 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4020 			err = -EINVAL;
4021 			goto out;
4022 		}
4023 		conf->reshape_progress = mddev->reshape_position;
4024 		if (conf->prev.far_offset)
4025 			conf->prev.stride = 1 << conf->prev.chunk_shift;
4026 		else
4027 			/* far_copies must be 1 */
4028 			conf->prev.stride = conf->dev_sectors;
4029 	}
4030 	conf->reshape_safe = conf->reshape_progress;
4031 	spin_lock_init(&conf->device_lock);
4032 	INIT_LIST_HEAD(&conf->retry_list);
4033 	INIT_LIST_HEAD(&conf->bio_end_io_list);
4034 
4035 	spin_lock_init(&conf->resync_lock);
4036 	init_waitqueue_head(&conf->wait_barrier);
4037 	atomic_set(&conf->nr_pending, 0);
4038 
4039 	err = -ENOMEM;
4040 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
4041 	if (!conf->thread)
4042 		goto out;
4043 
4044 	conf->mddev = mddev;
4045 	return conf;
4046 
4047  out:
4048 	if (conf) {
4049 		mempool_exit(&conf->r10bio_pool);
4050 		kfree(conf->mirrors);
4051 		safe_put_page(conf->tmppage);
4052 		bioset_exit(&conf->bio_split);
4053 		kfree(conf);
4054 	}
4055 	return ERR_PTR(err);
4056 }
4057 
4058 static void raid10_set_io_opt(struct r10conf *conf)
4059 {
4060 	int raid_disks = conf->geo.raid_disks;
4061 
4062 	if (!(conf->geo.raid_disks % conf->geo.near_copies))
4063 		raid_disks /= conf->geo.near_copies;
4064 	blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4065 			 raid_disks);
4066 }
4067 
4068 static int raid10_run(struct mddev *mddev)
4069 {
4070 	struct r10conf *conf;
4071 	int i, disk_idx;
4072 	struct raid10_info *disk;
4073 	struct md_rdev *rdev;
4074 	sector_t size;
4075 	sector_t min_offset_diff = 0;
4076 	int first = 1;
4077 
4078 	if (mddev_init_writes_pending(mddev) < 0)
4079 		return -ENOMEM;
4080 
4081 	if (mddev->private == NULL) {
4082 		conf = setup_conf(mddev);
4083 		if (IS_ERR(conf))
4084 			return PTR_ERR(conf);
4085 		mddev->private = conf;
4086 	}
4087 	conf = mddev->private;
4088 	if (!conf)
4089 		goto out;
4090 
4091 	if (mddev_is_clustered(conf->mddev)) {
4092 		int fc, fo;
4093 
4094 		fc = (mddev->layout >> 8) & 255;
4095 		fo = mddev->layout & (1<<16);
4096 		if (fc > 1 || fo > 0) {
4097 			pr_err("only near layout is supported by clustered"
4098 				" raid10\n");
4099 			goto out_free_conf;
4100 		}
4101 	}
4102 
4103 	mddev->thread = conf->thread;
4104 	conf->thread = NULL;
4105 
4106 	if (mddev->queue) {
4107 		blk_queue_max_discard_sectors(mddev->queue,
4108 					      UINT_MAX);
4109 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4110 		blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4111 		raid10_set_io_opt(conf);
4112 	}
4113 
4114 	rdev_for_each(rdev, mddev) {
4115 		long long diff;
4116 
4117 		disk_idx = rdev->raid_disk;
4118 		if (disk_idx < 0)
4119 			continue;
4120 		if (disk_idx >= conf->geo.raid_disks &&
4121 		    disk_idx >= conf->prev.raid_disks)
4122 			continue;
4123 		disk = conf->mirrors + disk_idx;
4124 
4125 		if (test_bit(Replacement, &rdev->flags)) {
4126 			if (disk->replacement)
4127 				goto out_free_conf;
4128 			disk->replacement = rdev;
4129 		} else {
4130 			if (disk->rdev)
4131 				goto out_free_conf;
4132 			disk->rdev = rdev;
4133 		}
4134 		diff = (rdev->new_data_offset - rdev->data_offset);
4135 		if (!mddev->reshape_backwards)
4136 			diff = -diff;
4137 		if (diff < 0)
4138 			diff = 0;
4139 		if (first || diff < min_offset_diff)
4140 			min_offset_diff = diff;
4141 
4142 		if (mddev->gendisk)
4143 			disk_stack_limits(mddev->gendisk, rdev->bdev,
4144 					  rdev->data_offset << 9);
4145 
4146 		disk->head_position = 0;
4147 		first = 0;
4148 	}
4149 
4150 	/* need to check that every block has at least one working mirror */
4151 	if (!enough(conf, -1)) {
4152 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4153 		       mdname(mddev));
4154 		goto out_free_conf;
4155 	}
4156 
4157 	if (conf->reshape_progress != MaxSector) {
4158 		/* must ensure that shape change is supported */
4159 		if (conf->geo.far_copies != 1 &&
4160 		    conf->geo.far_offset == 0)
4161 			goto out_free_conf;
4162 		if (conf->prev.far_copies != 1 &&
4163 		    conf->prev.far_offset == 0)
4164 			goto out_free_conf;
4165 	}
4166 
4167 	mddev->degraded = 0;
4168 	for (i = 0;
4169 	     i < conf->geo.raid_disks
4170 		     || i < conf->prev.raid_disks;
4171 	     i++) {
4172 
4173 		disk = conf->mirrors + i;
4174 
4175 		if (!disk->rdev && disk->replacement) {
4176 			/* The replacement is all we have - use it */
4177 			disk->rdev = disk->replacement;
4178 			disk->replacement = NULL;
4179 			clear_bit(Replacement, &disk->rdev->flags);
4180 		}
4181 
4182 		if (!disk->rdev ||
4183 		    !test_bit(In_sync, &disk->rdev->flags)) {
4184 			disk->head_position = 0;
4185 			mddev->degraded++;
4186 			if (disk->rdev &&
4187 			    disk->rdev->saved_raid_disk < 0)
4188 				conf->fullsync = 1;
4189 		}
4190 
4191 		if (disk->replacement &&
4192 		    !test_bit(In_sync, &disk->replacement->flags) &&
4193 		    disk->replacement->saved_raid_disk < 0) {
4194 			conf->fullsync = 1;
4195 		}
4196 
4197 		disk->recovery_disabled = mddev->recovery_disabled - 1;
4198 	}
4199 
4200 	if (mddev->recovery_cp != MaxSector)
4201 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4202 			  mdname(mddev));
4203 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4204 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4205 		conf->geo.raid_disks);
4206 	/*
4207 	 * Ok, everything is just fine now
4208 	 */
4209 	mddev->dev_sectors = conf->dev_sectors;
4210 	size = raid10_size(mddev, 0, 0);
4211 	md_set_array_sectors(mddev, size);
4212 	mddev->resync_max_sectors = size;
4213 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4214 
4215 	if (md_integrity_register(mddev))
4216 		goto out_free_conf;
4217 
4218 	if (conf->reshape_progress != MaxSector) {
4219 		unsigned long before_length, after_length;
4220 
4221 		before_length = ((1 << conf->prev.chunk_shift) *
4222 				 conf->prev.far_copies);
4223 		after_length = ((1 << conf->geo.chunk_shift) *
4224 				conf->geo.far_copies);
4225 
4226 		if (max(before_length, after_length) > min_offset_diff) {
4227 			/* This cannot work */
4228 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4229 			goto out_free_conf;
4230 		}
4231 		conf->offset_diff = min_offset_diff;
4232 
4233 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4234 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4235 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4236 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4237 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4238 							"reshape");
4239 		if (!mddev->sync_thread)
4240 			goto out_free_conf;
4241 	}
4242 
4243 	return 0;
4244 
4245 out_free_conf:
4246 	md_unregister_thread(&mddev->thread);
4247 	mempool_exit(&conf->r10bio_pool);
4248 	safe_put_page(conf->tmppage);
4249 	kfree(conf->mirrors);
4250 	kfree(conf);
4251 	mddev->private = NULL;
4252 out:
4253 	return -EIO;
4254 }
4255 
4256 static void raid10_free(struct mddev *mddev, void *priv)
4257 {
4258 	struct r10conf *conf = priv;
4259 
4260 	mempool_exit(&conf->r10bio_pool);
4261 	safe_put_page(conf->tmppage);
4262 	kfree(conf->mirrors);
4263 	kfree(conf->mirrors_old);
4264 	kfree(conf->mirrors_new);
4265 	bioset_exit(&conf->bio_split);
4266 	kfree(conf);
4267 }
4268 
4269 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4270 {
4271 	struct r10conf *conf = mddev->private;
4272 
4273 	if (quiesce)
4274 		raise_barrier(conf, 0);
4275 	else
4276 		lower_barrier(conf);
4277 }
4278 
4279 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4280 {
4281 	/* Resize of 'far' arrays is not supported.
4282 	 * For 'near' and 'offset' arrays we can set the
4283 	 * number of sectors used to be an appropriate multiple
4284 	 * of the chunk size.
4285 	 * For 'offset', this is far_copies*chunksize.
4286 	 * For 'near' the multiplier is the LCM of
4287 	 * near_copies and raid_disks.
4288 	 * So if far_copies > 1 && !far_offset, fail.
4289 	 * Else find LCM(raid_disks, near_copy)*far_copies and
4290 	 * multiply by chunk_size.  Then round to this number.
4291 	 * This is mostly done by raid10_size()
4292 	 */
4293 	struct r10conf *conf = mddev->private;
4294 	sector_t oldsize, size;
4295 
4296 	if (mddev->reshape_position != MaxSector)
4297 		return -EBUSY;
4298 
4299 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4300 		return -EINVAL;
4301 
4302 	oldsize = raid10_size(mddev, 0, 0);
4303 	size = raid10_size(mddev, sectors, 0);
4304 	if (mddev->external_size &&
4305 	    mddev->array_sectors > size)
4306 		return -EINVAL;
4307 	if (mddev->bitmap) {
4308 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4309 		if (ret)
4310 			return ret;
4311 	}
4312 	md_set_array_sectors(mddev, size);
4313 	if (sectors > mddev->dev_sectors &&
4314 	    mddev->recovery_cp > oldsize) {
4315 		mddev->recovery_cp = oldsize;
4316 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4317 	}
4318 	calc_sectors(conf, sectors);
4319 	mddev->dev_sectors = conf->dev_sectors;
4320 	mddev->resync_max_sectors = size;
4321 	return 0;
4322 }
4323 
4324 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4325 {
4326 	struct md_rdev *rdev;
4327 	struct r10conf *conf;
4328 
4329 	if (mddev->degraded > 0) {
4330 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4331 			mdname(mddev));
4332 		return ERR_PTR(-EINVAL);
4333 	}
4334 	sector_div(size, devs);
4335 
4336 	/* Set new parameters */
4337 	mddev->new_level = 10;
4338 	/* new layout: far_copies = 1, near_copies = 2 */
4339 	mddev->new_layout = (1<<8) + 2;
4340 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4341 	mddev->delta_disks = mddev->raid_disks;
4342 	mddev->raid_disks *= 2;
4343 	/* make sure it will be not marked as dirty */
4344 	mddev->recovery_cp = MaxSector;
4345 	mddev->dev_sectors = size;
4346 
4347 	conf = setup_conf(mddev);
4348 	if (!IS_ERR(conf)) {
4349 		rdev_for_each(rdev, mddev)
4350 			if (rdev->raid_disk >= 0) {
4351 				rdev->new_raid_disk = rdev->raid_disk * 2;
4352 				rdev->sectors = size;
4353 			}
4354 		conf->barrier = 1;
4355 	}
4356 
4357 	return conf;
4358 }
4359 
4360 static void *raid10_takeover(struct mddev *mddev)
4361 {
4362 	struct r0conf *raid0_conf;
4363 
4364 	/* raid10 can take over:
4365 	 *  raid0 - providing it has only two drives
4366 	 */
4367 	if (mddev->level == 0) {
4368 		/* for raid0 takeover only one zone is supported */
4369 		raid0_conf = mddev->private;
4370 		if (raid0_conf->nr_strip_zones > 1) {
4371 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4372 				mdname(mddev));
4373 			return ERR_PTR(-EINVAL);
4374 		}
4375 		return raid10_takeover_raid0(mddev,
4376 			raid0_conf->strip_zone->zone_end,
4377 			raid0_conf->strip_zone->nb_dev);
4378 	}
4379 	return ERR_PTR(-EINVAL);
4380 }
4381 
4382 static int raid10_check_reshape(struct mddev *mddev)
4383 {
4384 	/* Called when there is a request to change
4385 	 * - layout (to ->new_layout)
4386 	 * - chunk size (to ->new_chunk_sectors)
4387 	 * - raid_disks (by delta_disks)
4388 	 * or when trying to restart a reshape that was ongoing.
4389 	 *
4390 	 * We need to validate the request and possibly allocate
4391 	 * space if that might be an issue later.
4392 	 *
4393 	 * Currently we reject any reshape of a 'far' mode array,
4394 	 * allow chunk size to change if new is generally acceptable,
4395 	 * allow raid_disks to increase, and allow
4396 	 * a switch between 'near' mode and 'offset' mode.
4397 	 */
4398 	struct r10conf *conf = mddev->private;
4399 	struct geom geo;
4400 
4401 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4402 		return -EINVAL;
4403 
4404 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4405 		/* mustn't change number of copies */
4406 		return -EINVAL;
4407 	if (geo.far_copies > 1 && !geo.far_offset)
4408 		/* Cannot switch to 'far' mode */
4409 		return -EINVAL;
4410 
4411 	if (mddev->array_sectors & geo.chunk_mask)
4412 			/* not factor of array size */
4413 			return -EINVAL;
4414 
4415 	if (!enough(conf, -1))
4416 		return -EINVAL;
4417 
4418 	kfree(conf->mirrors_new);
4419 	conf->mirrors_new = NULL;
4420 	if (mddev->delta_disks > 0) {
4421 		/* allocate new 'mirrors' list */
4422 		conf->mirrors_new =
4423 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4424 				sizeof(struct raid10_info),
4425 				GFP_KERNEL);
4426 		if (!conf->mirrors_new)
4427 			return -ENOMEM;
4428 	}
4429 	return 0;
4430 }
4431 
4432 /*
4433  * Need to check if array has failed when deciding whether to:
4434  *  - start an array
4435  *  - remove non-faulty devices
4436  *  - add a spare
4437  *  - allow a reshape
4438  * This determination is simple when no reshape is happening.
4439  * However if there is a reshape, we need to carefully check
4440  * both the before and after sections.
4441  * This is because some failed devices may only affect one
4442  * of the two sections, and some non-in_sync devices may
4443  * be insync in the section most affected by failed devices.
4444  */
4445 static int calc_degraded(struct r10conf *conf)
4446 {
4447 	int degraded, degraded2;
4448 	int i;
4449 
4450 	rcu_read_lock();
4451 	degraded = 0;
4452 	/* 'prev' section first */
4453 	for (i = 0; i < conf->prev.raid_disks; i++) {
4454 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4455 		if (!rdev || test_bit(Faulty, &rdev->flags))
4456 			degraded++;
4457 		else if (!test_bit(In_sync, &rdev->flags))
4458 			/* When we can reduce the number of devices in
4459 			 * an array, this might not contribute to
4460 			 * 'degraded'.  It does now.
4461 			 */
4462 			degraded++;
4463 	}
4464 	rcu_read_unlock();
4465 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4466 		return degraded;
4467 	rcu_read_lock();
4468 	degraded2 = 0;
4469 	for (i = 0; i < conf->geo.raid_disks; i++) {
4470 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4471 		if (!rdev || test_bit(Faulty, &rdev->flags))
4472 			degraded2++;
4473 		else if (!test_bit(In_sync, &rdev->flags)) {
4474 			/* If reshape is increasing the number of devices,
4475 			 * this section has already been recovered, so
4476 			 * it doesn't contribute to degraded.
4477 			 * else it does.
4478 			 */
4479 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4480 				degraded2++;
4481 		}
4482 	}
4483 	rcu_read_unlock();
4484 	if (degraded2 > degraded)
4485 		return degraded2;
4486 	return degraded;
4487 }
4488 
4489 static int raid10_start_reshape(struct mddev *mddev)
4490 {
4491 	/* A 'reshape' has been requested. This commits
4492 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4493 	 * This also checks if there are enough spares and adds them
4494 	 * to the array.
4495 	 * We currently require enough spares to make the final
4496 	 * array non-degraded.  We also require that the difference
4497 	 * between old and new data_offset - on each device - is
4498 	 * enough that we never risk over-writing.
4499 	 */
4500 
4501 	unsigned long before_length, after_length;
4502 	sector_t min_offset_diff = 0;
4503 	int first = 1;
4504 	struct geom new;
4505 	struct r10conf *conf = mddev->private;
4506 	struct md_rdev *rdev;
4507 	int spares = 0;
4508 	int ret;
4509 
4510 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4511 		return -EBUSY;
4512 
4513 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4514 		return -EINVAL;
4515 
4516 	before_length = ((1 << conf->prev.chunk_shift) *
4517 			 conf->prev.far_copies);
4518 	after_length = ((1 << conf->geo.chunk_shift) *
4519 			conf->geo.far_copies);
4520 
4521 	rdev_for_each(rdev, mddev) {
4522 		if (!test_bit(In_sync, &rdev->flags)
4523 		    && !test_bit(Faulty, &rdev->flags))
4524 			spares++;
4525 		if (rdev->raid_disk >= 0) {
4526 			long long diff = (rdev->new_data_offset
4527 					  - rdev->data_offset);
4528 			if (!mddev->reshape_backwards)
4529 				diff = -diff;
4530 			if (diff < 0)
4531 				diff = 0;
4532 			if (first || diff < min_offset_diff)
4533 				min_offset_diff = diff;
4534 			first = 0;
4535 		}
4536 	}
4537 
4538 	if (max(before_length, after_length) > min_offset_diff)
4539 		return -EINVAL;
4540 
4541 	if (spares < mddev->delta_disks)
4542 		return -EINVAL;
4543 
4544 	conf->offset_diff = min_offset_diff;
4545 	spin_lock_irq(&conf->device_lock);
4546 	if (conf->mirrors_new) {
4547 		memcpy(conf->mirrors_new, conf->mirrors,
4548 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4549 		smp_mb();
4550 		kfree(conf->mirrors_old);
4551 		conf->mirrors_old = conf->mirrors;
4552 		conf->mirrors = conf->mirrors_new;
4553 		conf->mirrors_new = NULL;
4554 	}
4555 	setup_geo(&conf->geo, mddev, geo_start);
4556 	smp_mb();
4557 	if (mddev->reshape_backwards) {
4558 		sector_t size = raid10_size(mddev, 0, 0);
4559 		if (size < mddev->array_sectors) {
4560 			spin_unlock_irq(&conf->device_lock);
4561 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4562 				mdname(mddev));
4563 			return -EINVAL;
4564 		}
4565 		mddev->resync_max_sectors = size;
4566 		conf->reshape_progress = size;
4567 	} else
4568 		conf->reshape_progress = 0;
4569 	conf->reshape_safe = conf->reshape_progress;
4570 	spin_unlock_irq(&conf->device_lock);
4571 
4572 	if (mddev->delta_disks && mddev->bitmap) {
4573 		struct mdp_superblock_1 *sb = NULL;
4574 		sector_t oldsize, newsize;
4575 
4576 		oldsize = raid10_size(mddev, 0, 0);
4577 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4578 
4579 		if (!mddev_is_clustered(mddev)) {
4580 			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4581 			if (ret)
4582 				goto abort;
4583 			else
4584 				goto out;
4585 		}
4586 
4587 		rdev_for_each(rdev, mddev) {
4588 			if (rdev->raid_disk > -1 &&
4589 			    !test_bit(Faulty, &rdev->flags))
4590 				sb = page_address(rdev->sb_page);
4591 		}
4592 
4593 		/*
4594 		 * some node is already performing reshape, and no need to
4595 		 * call md_bitmap_resize again since it should be called when
4596 		 * receiving BITMAP_RESIZE msg
4597 		 */
4598 		if ((sb && (le32_to_cpu(sb->feature_map) &
4599 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4600 			goto out;
4601 
4602 		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4603 		if (ret)
4604 			goto abort;
4605 
4606 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4607 		if (ret) {
4608 			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4609 			goto abort;
4610 		}
4611 	}
4612 out:
4613 	if (mddev->delta_disks > 0) {
4614 		rdev_for_each(rdev, mddev)
4615 			if (rdev->raid_disk < 0 &&
4616 			    !test_bit(Faulty, &rdev->flags)) {
4617 				if (raid10_add_disk(mddev, rdev) == 0) {
4618 					if (rdev->raid_disk >=
4619 					    conf->prev.raid_disks)
4620 						set_bit(In_sync, &rdev->flags);
4621 					else
4622 						rdev->recovery_offset = 0;
4623 
4624 					/* Failure here is OK */
4625 					sysfs_link_rdev(mddev, rdev);
4626 				}
4627 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4628 				   && !test_bit(Faulty, &rdev->flags)) {
4629 				/* This is a spare that was manually added */
4630 				set_bit(In_sync, &rdev->flags);
4631 			}
4632 	}
4633 	/* When a reshape changes the number of devices,
4634 	 * ->degraded is measured against the larger of the
4635 	 * pre and  post numbers.
4636 	 */
4637 	spin_lock_irq(&conf->device_lock);
4638 	mddev->degraded = calc_degraded(conf);
4639 	spin_unlock_irq(&conf->device_lock);
4640 	mddev->raid_disks = conf->geo.raid_disks;
4641 	mddev->reshape_position = conf->reshape_progress;
4642 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4643 
4644 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4645 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4646 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4647 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4648 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4649 
4650 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4651 						"reshape");
4652 	if (!mddev->sync_thread) {
4653 		ret = -EAGAIN;
4654 		goto abort;
4655 	}
4656 	conf->reshape_checkpoint = jiffies;
4657 	md_wakeup_thread(mddev->sync_thread);
4658 	md_new_event();
4659 	return 0;
4660 
4661 abort:
4662 	mddev->recovery = 0;
4663 	spin_lock_irq(&conf->device_lock);
4664 	conf->geo = conf->prev;
4665 	mddev->raid_disks = conf->geo.raid_disks;
4666 	rdev_for_each(rdev, mddev)
4667 		rdev->new_data_offset = rdev->data_offset;
4668 	smp_wmb();
4669 	conf->reshape_progress = MaxSector;
4670 	conf->reshape_safe = MaxSector;
4671 	mddev->reshape_position = MaxSector;
4672 	spin_unlock_irq(&conf->device_lock);
4673 	return ret;
4674 }
4675 
4676 /* Calculate the last device-address that could contain
4677  * any block from the chunk that includes the array-address 's'
4678  * and report the next address.
4679  * i.e. the address returned will be chunk-aligned and after
4680  * any data that is in the chunk containing 's'.
4681  */
4682 static sector_t last_dev_address(sector_t s, struct geom *geo)
4683 {
4684 	s = (s | geo->chunk_mask) + 1;
4685 	s >>= geo->chunk_shift;
4686 	s *= geo->near_copies;
4687 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4688 	s *= geo->far_copies;
4689 	s <<= geo->chunk_shift;
4690 	return s;
4691 }
4692 
4693 /* Calculate the first device-address that could contain
4694  * any block from the chunk that includes the array-address 's'.
4695  * This too will be the start of a chunk
4696  */
4697 static sector_t first_dev_address(sector_t s, struct geom *geo)
4698 {
4699 	s >>= geo->chunk_shift;
4700 	s *= geo->near_copies;
4701 	sector_div(s, geo->raid_disks);
4702 	s *= geo->far_copies;
4703 	s <<= geo->chunk_shift;
4704 	return s;
4705 }
4706 
4707 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4708 				int *skipped)
4709 {
4710 	/* We simply copy at most one chunk (smallest of old and new)
4711 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4712 	 * or we hit a bad block or something.
4713 	 * This might mean we pause for normal IO in the middle of
4714 	 * a chunk, but that is not a problem as mddev->reshape_position
4715 	 * can record any location.
4716 	 *
4717 	 * If we will want to write to a location that isn't
4718 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4719 	 * we need to flush all reshape requests and update the metadata.
4720 	 *
4721 	 * When reshaping forwards (e.g. to more devices), we interpret
4722 	 * 'safe' as the earliest block which might not have been copied
4723 	 * down yet.  We divide this by previous stripe size and multiply
4724 	 * by previous stripe length to get lowest device offset that we
4725 	 * cannot write to yet.
4726 	 * We interpret 'sector_nr' as an address that we want to write to.
4727 	 * From this we use last_device_address() to find where we might
4728 	 * write to, and first_device_address on the  'safe' position.
4729 	 * If this 'next' write position is after the 'safe' position,
4730 	 * we must update the metadata to increase the 'safe' position.
4731 	 *
4732 	 * When reshaping backwards, we round in the opposite direction
4733 	 * and perform the reverse test:  next write position must not be
4734 	 * less than current safe position.
4735 	 *
4736 	 * In all this the minimum difference in data offsets
4737 	 * (conf->offset_diff - always positive) allows a bit of slack,
4738 	 * so next can be after 'safe', but not by more than offset_diff
4739 	 *
4740 	 * We need to prepare all the bios here before we start any IO
4741 	 * to ensure the size we choose is acceptable to all devices.
4742 	 * The means one for each copy for write-out and an extra one for
4743 	 * read-in.
4744 	 * We store the read-in bio in ->master_bio and the others in
4745 	 * ->devs[x].bio and ->devs[x].repl_bio.
4746 	 */
4747 	struct r10conf *conf = mddev->private;
4748 	struct r10bio *r10_bio;
4749 	sector_t next, safe, last;
4750 	int max_sectors;
4751 	int nr_sectors;
4752 	int s;
4753 	struct md_rdev *rdev;
4754 	int need_flush = 0;
4755 	struct bio *blist;
4756 	struct bio *bio, *read_bio;
4757 	int sectors_done = 0;
4758 	struct page **pages;
4759 
4760 	if (sector_nr == 0) {
4761 		/* If restarting in the middle, skip the initial sectors */
4762 		if (mddev->reshape_backwards &&
4763 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4764 			sector_nr = (raid10_size(mddev, 0, 0)
4765 				     - conf->reshape_progress);
4766 		} else if (!mddev->reshape_backwards &&
4767 			   conf->reshape_progress > 0)
4768 			sector_nr = conf->reshape_progress;
4769 		if (sector_nr) {
4770 			mddev->curr_resync_completed = sector_nr;
4771 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4772 			*skipped = 1;
4773 			return sector_nr;
4774 		}
4775 	}
4776 
4777 	/* We don't use sector_nr to track where we are up to
4778 	 * as that doesn't work well for ->reshape_backwards.
4779 	 * So just use ->reshape_progress.
4780 	 */
4781 	if (mddev->reshape_backwards) {
4782 		/* 'next' is the earliest device address that we might
4783 		 * write to for this chunk in the new layout
4784 		 */
4785 		next = first_dev_address(conf->reshape_progress - 1,
4786 					 &conf->geo);
4787 
4788 		/* 'safe' is the last device address that we might read from
4789 		 * in the old layout after a restart
4790 		 */
4791 		safe = last_dev_address(conf->reshape_safe - 1,
4792 					&conf->prev);
4793 
4794 		if (next + conf->offset_diff < safe)
4795 			need_flush = 1;
4796 
4797 		last = conf->reshape_progress - 1;
4798 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4799 					       & conf->prev.chunk_mask);
4800 		if (sector_nr + RESYNC_SECTORS < last)
4801 			sector_nr = last + 1 - RESYNC_SECTORS;
4802 	} else {
4803 		/* 'next' is after the last device address that we
4804 		 * might write to for this chunk in the new layout
4805 		 */
4806 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4807 
4808 		/* 'safe' is the earliest device address that we might
4809 		 * read from in the old layout after a restart
4810 		 */
4811 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4812 
4813 		/* Need to update metadata if 'next' might be beyond 'safe'
4814 		 * as that would possibly corrupt data
4815 		 */
4816 		if (next > safe + conf->offset_diff)
4817 			need_flush = 1;
4818 
4819 		sector_nr = conf->reshape_progress;
4820 		last  = sector_nr | (conf->geo.chunk_mask
4821 				     & conf->prev.chunk_mask);
4822 
4823 		if (sector_nr + RESYNC_SECTORS <= last)
4824 			last = sector_nr + RESYNC_SECTORS - 1;
4825 	}
4826 
4827 	if (need_flush ||
4828 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4829 		/* Need to update reshape_position in metadata */
4830 		wait_barrier(conf, false);
4831 		mddev->reshape_position = conf->reshape_progress;
4832 		if (mddev->reshape_backwards)
4833 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4834 				- conf->reshape_progress;
4835 		else
4836 			mddev->curr_resync_completed = conf->reshape_progress;
4837 		conf->reshape_checkpoint = jiffies;
4838 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4839 		md_wakeup_thread(mddev->thread);
4840 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4841 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4842 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4843 			allow_barrier(conf);
4844 			return sectors_done;
4845 		}
4846 		conf->reshape_safe = mddev->reshape_position;
4847 		allow_barrier(conf);
4848 	}
4849 
4850 	raise_barrier(conf, 0);
4851 read_more:
4852 	/* Now schedule reads for blocks from sector_nr to last */
4853 	r10_bio = raid10_alloc_init_r10buf(conf);
4854 	r10_bio->state = 0;
4855 	raise_barrier(conf, 1);
4856 	atomic_set(&r10_bio->remaining, 0);
4857 	r10_bio->mddev = mddev;
4858 	r10_bio->sector = sector_nr;
4859 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4860 	r10_bio->sectors = last - sector_nr + 1;
4861 	rdev = read_balance(conf, r10_bio, &max_sectors);
4862 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4863 
4864 	if (!rdev) {
4865 		/* Cannot read from here, so need to record bad blocks
4866 		 * on all the target devices.
4867 		 */
4868 		// FIXME
4869 		mempool_free(r10_bio, &conf->r10buf_pool);
4870 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4871 		return sectors_done;
4872 	}
4873 
4874 	read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4875 				    GFP_KERNEL, &mddev->bio_set);
4876 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4877 			       + rdev->data_offset);
4878 	read_bio->bi_private = r10_bio;
4879 	read_bio->bi_end_io = end_reshape_read;
4880 	r10_bio->master_bio = read_bio;
4881 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4882 
4883 	/*
4884 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4885 	 * write to the region to avoid conflict.
4886 	*/
4887 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4888 		struct mdp_superblock_1 *sb = NULL;
4889 		int sb_reshape_pos = 0;
4890 
4891 		conf->cluster_sync_low = sector_nr;
4892 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4893 		sb = page_address(rdev->sb_page);
4894 		if (sb) {
4895 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4896 			/*
4897 			 * Set cluster_sync_low again if next address for array
4898 			 * reshape is less than cluster_sync_low. Since we can't
4899 			 * update cluster_sync_low until it has finished reshape.
4900 			 */
4901 			if (sb_reshape_pos < conf->cluster_sync_low)
4902 				conf->cluster_sync_low = sb_reshape_pos;
4903 		}
4904 
4905 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4906 							  conf->cluster_sync_high);
4907 	}
4908 
4909 	/* Now find the locations in the new layout */
4910 	__raid10_find_phys(&conf->geo, r10_bio);
4911 
4912 	blist = read_bio;
4913 	read_bio->bi_next = NULL;
4914 
4915 	rcu_read_lock();
4916 	for (s = 0; s < conf->copies*2; s++) {
4917 		struct bio *b;
4918 		int d = r10_bio->devs[s/2].devnum;
4919 		struct md_rdev *rdev2;
4920 		if (s&1) {
4921 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4922 			b = r10_bio->devs[s/2].repl_bio;
4923 		} else {
4924 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4925 			b = r10_bio->devs[s/2].bio;
4926 		}
4927 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4928 			continue;
4929 
4930 		bio_set_dev(b, rdev2->bdev);
4931 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4932 			rdev2->new_data_offset;
4933 		b->bi_end_io = end_reshape_write;
4934 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4935 		b->bi_next = blist;
4936 		blist = b;
4937 	}
4938 
4939 	/* Now add as many pages as possible to all of these bios. */
4940 
4941 	nr_sectors = 0;
4942 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4943 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4944 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4945 		int len = (max_sectors - s) << 9;
4946 		if (len > PAGE_SIZE)
4947 			len = PAGE_SIZE;
4948 		for (bio = blist; bio ; bio = bio->bi_next) {
4949 			/*
4950 			 * won't fail because the vec table is big enough
4951 			 * to hold all these pages
4952 			 */
4953 			bio_add_page(bio, page, len, 0);
4954 		}
4955 		sector_nr += len >> 9;
4956 		nr_sectors += len >> 9;
4957 	}
4958 	rcu_read_unlock();
4959 	r10_bio->sectors = nr_sectors;
4960 
4961 	/* Now submit the read */
4962 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4963 	atomic_inc(&r10_bio->remaining);
4964 	read_bio->bi_next = NULL;
4965 	submit_bio_noacct(read_bio);
4966 	sectors_done += nr_sectors;
4967 	if (sector_nr <= last)
4968 		goto read_more;
4969 
4970 	lower_barrier(conf);
4971 
4972 	/* Now that we have done the whole section we can
4973 	 * update reshape_progress
4974 	 */
4975 	if (mddev->reshape_backwards)
4976 		conf->reshape_progress -= sectors_done;
4977 	else
4978 		conf->reshape_progress += sectors_done;
4979 
4980 	return sectors_done;
4981 }
4982 
4983 static void end_reshape_request(struct r10bio *r10_bio);
4984 static int handle_reshape_read_error(struct mddev *mddev,
4985 				     struct r10bio *r10_bio);
4986 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4987 {
4988 	/* Reshape read completed.  Hopefully we have a block
4989 	 * to write out.
4990 	 * If we got a read error then we do sync 1-page reads from
4991 	 * elsewhere until we find the data - or give up.
4992 	 */
4993 	struct r10conf *conf = mddev->private;
4994 	int s;
4995 
4996 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4997 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4998 			/* Reshape has been aborted */
4999 			md_done_sync(mddev, r10_bio->sectors, 0);
5000 			return;
5001 		}
5002 
5003 	/* We definitely have the data in the pages, schedule the
5004 	 * writes.
5005 	 */
5006 	atomic_set(&r10_bio->remaining, 1);
5007 	for (s = 0; s < conf->copies*2; s++) {
5008 		struct bio *b;
5009 		int d = r10_bio->devs[s/2].devnum;
5010 		struct md_rdev *rdev;
5011 		rcu_read_lock();
5012 		if (s&1) {
5013 			rdev = rcu_dereference(conf->mirrors[d].replacement);
5014 			b = r10_bio->devs[s/2].repl_bio;
5015 		} else {
5016 			rdev = rcu_dereference(conf->mirrors[d].rdev);
5017 			b = r10_bio->devs[s/2].bio;
5018 		}
5019 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
5020 			rcu_read_unlock();
5021 			continue;
5022 		}
5023 		atomic_inc(&rdev->nr_pending);
5024 		rcu_read_unlock();
5025 		md_sync_acct_bio(b, r10_bio->sectors);
5026 		atomic_inc(&r10_bio->remaining);
5027 		b->bi_next = NULL;
5028 		submit_bio_noacct(b);
5029 	}
5030 	end_reshape_request(r10_bio);
5031 }
5032 
5033 static void end_reshape(struct r10conf *conf)
5034 {
5035 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5036 		return;
5037 
5038 	spin_lock_irq(&conf->device_lock);
5039 	conf->prev = conf->geo;
5040 	md_finish_reshape(conf->mddev);
5041 	smp_wmb();
5042 	conf->reshape_progress = MaxSector;
5043 	conf->reshape_safe = MaxSector;
5044 	spin_unlock_irq(&conf->device_lock);
5045 
5046 	if (conf->mddev->queue)
5047 		raid10_set_io_opt(conf);
5048 	conf->fullsync = 0;
5049 }
5050 
5051 static void raid10_update_reshape_pos(struct mddev *mddev)
5052 {
5053 	struct r10conf *conf = mddev->private;
5054 	sector_t lo, hi;
5055 
5056 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5057 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5058 	    || mddev->reshape_position == MaxSector)
5059 		conf->reshape_progress = mddev->reshape_position;
5060 	else
5061 		WARN_ON_ONCE(1);
5062 }
5063 
5064 static int handle_reshape_read_error(struct mddev *mddev,
5065 				     struct r10bio *r10_bio)
5066 {
5067 	/* Use sync reads to get the blocks from somewhere else */
5068 	int sectors = r10_bio->sectors;
5069 	struct r10conf *conf = mddev->private;
5070 	struct r10bio *r10b;
5071 	int slot = 0;
5072 	int idx = 0;
5073 	struct page **pages;
5074 
5075 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5076 	if (!r10b) {
5077 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5078 		return -ENOMEM;
5079 	}
5080 
5081 	/* reshape IOs share pages from .devs[0].bio */
5082 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5083 
5084 	r10b->sector = r10_bio->sector;
5085 	__raid10_find_phys(&conf->prev, r10b);
5086 
5087 	while (sectors) {
5088 		int s = sectors;
5089 		int success = 0;
5090 		int first_slot = slot;
5091 
5092 		if (s > (PAGE_SIZE >> 9))
5093 			s = PAGE_SIZE >> 9;
5094 
5095 		rcu_read_lock();
5096 		while (!success) {
5097 			int d = r10b->devs[slot].devnum;
5098 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5099 			sector_t addr;
5100 			if (rdev == NULL ||
5101 			    test_bit(Faulty, &rdev->flags) ||
5102 			    !test_bit(In_sync, &rdev->flags))
5103 				goto failed;
5104 
5105 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5106 			atomic_inc(&rdev->nr_pending);
5107 			rcu_read_unlock();
5108 			success = sync_page_io(rdev,
5109 					       addr,
5110 					       s << 9,
5111 					       pages[idx],
5112 					       REQ_OP_READ, false);
5113 			rdev_dec_pending(rdev, mddev);
5114 			rcu_read_lock();
5115 			if (success)
5116 				break;
5117 		failed:
5118 			slot++;
5119 			if (slot >= conf->copies)
5120 				slot = 0;
5121 			if (slot == first_slot)
5122 				break;
5123 		}
5124 		rcu_read_unlock();
5125 		if (!success) {
5126 			/* couldn't read this block, must give up */
5127 			set_bit(MD_RECOVERY_INTR,
5128 				&mddev->recovery);
5129 			kfree(r10b);
5130 			return -EIO;
5131 		}
5132 		sectors -= s;
5133 		idx++;
5134 	}
5135 	kfree(r10b);
5136 	return 0;
5137 }
5138 
5139 static void end_reshape_write(struct bio *bio)
5140 {
5141 	struct r10bio *r10_bio = get_resync_r10bio(bio);
5142 	struct mddev *mddev = r10_bio->mddev;
5143 	struct r10conf *conf = mddev->private;
5144 	int d;
5145 	int slot;
5146 	int repl;
5147 	struct md_rdev *rdev = NULL;
5148 
5149 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5150 	if (repl)
5151 		rdev = conf->mirrors[d].replacement;
5152 	if (!rdev) {
5153 		smp_mb();
5154 		rdev = conf->mirrors[d].rdev;
5155 	}
5156 
5157 	if (bio->bi_status) {
5158 		/* FIXME should record badblock */
5159 		md_error(mddev, rdev);
5160 	}
5161 
5162 	rdev_dec_pending(rdev, mddev);
5163 	end_reshape_request(r10_bio);
5164 }
5165 
5166 static void end_reshape_request(struct r10bio *r10_bio)
5167 {
5168 	if (!atomic_dec_and_test(&r10_bio->remaining))
5169 		return;
5170 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5171 	bio_put(r10_bio->master_bio);
5172 	put_buf(r10_bio);
5173 }
5174 
5175 static void raid10_finish_reshape(struct mddev *mddev)
5176 {
5177 	struct r10conf *conf = mddev->private;
5178 
5179 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5180 		return;
5181 
5182 	if (mddev->delta_disks > 0) {
5183 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
5184 			mddev->recovery_cp = mddev->resync_max_sectors;
5185 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5186 		}
5187 		mddev->resync_max_sectors = mddev->array_sectors;
5188 	} else {
5189 		int d;
5190 		rcu_read_lock();
5191 		for (d = conf->geo.raid_disks ;
5192 		     d < conf->geo.raid_disks - mddev->delta_disks;
5193 		     d++) {
5194 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5195 			if (rdev)
5196 				clear_bit(In_sync, &rdev->flags);
5197 			rdev = rcu_dereference(conf->mirrors[d].replacement);
5198 			if (rdev)
5199 				clear_bit(In_sync, &rdev->flags);
5200 		}
5201 		rcu_read_unlock();
5202 	}
5203 	mddev->layout = mddev->new_layout;
5204 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5205 	mddev->reshape_position = MaxSector;
5206 	mddev->delta_disks = 0;
5207 	mddev->reshape_backwards = 0;
5208 }
5209 
5210 static struct md_personality raid10_personality =
5211 {
5212 	.name		= "raid10",
5213 	.level		= 10,
5214 	.owner		= THIS_MODULE,
5215 	.make_request	= raid10_make_request,
5216 	.run		= raid10_run,
5217 	.free		= raid10_free,
5218 	.status		= raid10_status,
5219 	.error_handler	= raid10_error,
5220 	.hot_add_disk	= raid10_add_disk,
5221 	.hot_remove_disk= raid10_remove_disk,
5222 	.spare_active	= raid10_spare_active,
5223 	.sync_request	= raid10_sync_request,
5224 	.quiesce	= raid10_quiesce,
5225 	.size		= raid10_size,
5226 	.resize		= raid10_resize,
5227 	.takeover	= raid10_takeover,
5228 	.check_reshape	= raid10_check_reshape,
5229 	.start_reshape	= raid10_start_reshape,
5230 	.finish_reshape	= raid10_finish_reshape,
5231 	.update_reshape_pos = raid10_update_reshape_pos,
5232 };
5233 
5234 static int __init raid_init(void)
5235 {
5236 	return register_md_personality(&raid10_personality);
5237 }
5238 
5239 static void raid_exit(void)
5240 {
5241 	unregister_md_personality(&raid10_personality);
5242 }
5243 
5244 module_init(raid_init);
5245 module_exit(raid_exit);
5246 MODULE_LICENSE("GPL");
5247 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5248 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5249 MODULE_ALIAS("md-raid10");
5250 MODULE_ALIAS("md-level-10");
5251