xref: /openbmc/linux/drivers/md/raid10.c (revision a701d28e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25 
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66 
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72 				int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76 
77 #define raid10_log(md, fmt, args...)				\
78 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79 
80 #include "raid1-10.c"
81 
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88 	return get_resync_pages(bio)->raid_bio;
89 }
90 
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93 	struct r10conf *conf = data;
94 	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
95 
96 	/* allocate a r10bio with room for raid_disks entries in the
97 	 * bios array */
98 	return kzalloc(size, gfp_flags);
99 }
100 
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108 
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 	struct r10conf *conf = data;
119 	struct r10bio *r10_bio;
120 	struct bio *bio;
121 	int j;
122 	int nalloc, nalloc_rp;
123 	struct resync_pages *rps;
124 
125 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126 	if (!r10_bio)
127 		return NULL;
128 
129 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131 		nalloc = conf->copies; /* resync */
132 	else
133 		nalloc = 2; /* recovery */
134 
135 	/* allocate once for all bios */
136 	if (!conf->have_replacement)
137 		nalloc_rp = nalloc;
138 	else
139 		nalloc_rp = nalloc * 2;
140 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141 	if (!rps)
142 		goto out_free_r10bio;
143 
144 	/*
145 	 * Allocate bios.
146 	 */
147 	for (j = nalloc ; j-- ; ) {
148 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149 		if (!bio)
150 			goto out_free_bio;
151 		r10_bio->devs[j].bio = bio;
152 		if (!conf->have_replacement)
153 			continue;
154 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155 		if (!bio)
156 			goto out_free_bio;
157 		r10_bio->devs[j].repl_bio = bio;
158 	}
159 	/*
160 	 * Allocate RESYNC_PAGES data pages and attach them
161 	 * where needed.
162 	 */
163 	for (j = 0; j < nalloc; j++) {
164 		struct bio *rbio = r10_bio->devs[j].repl_bio;
165 		struct resync_pages *rp, *rp_repl;
166 
167 		rp = &rps[j];
168 		if (rbio)
169 			rp_repl = &rps[nalloc + j];
170 
171 		bio = r10_bio->devs[j].bio;
172 
173 		if (!j || test_bit(MD_RECOVERY_SYNC,
174 				   &conf->mddev->recovery)) {
175 			if (resync_alloc_pages(rp, gfp_flags))
176 				goto out_free_pages;
177 		} else {
178 			memcpy(rp, &rps[0], sizeof(*rp));
179 			resync_get_all_pages(rp);
180 		}
181 
182 		rp->raid_bio = r10_bio;
183 		bio->bi_private = rp;
184 		if (rbio) {
185 			memcpy(rp_repl, rp, sizeof(*rp));
186 			rbio->bi_private = rp_repl;
187 		}
188 	}
189 
190 	return r10_bio;
191 
192 out_free_pages:
193 	while (--j >= 0)
194 		resync_free_pages(&rps[j]);
195 
196 	j = 0;
197 out_free_bio:
198 	for ( ; j < nalloc; j++) {
199 		if (r10_bio->devs[j].bio)
200 			bio_put(r10_bio->devs[j].bio);
201 		if (r10_bio->devs[j].repl_bio)
202 			bio_put(r10_bio->devs[j].repl_bio);
203 	}
204 	kfree(rps);
205 out_free_r10bio:
206 	rbio_pool_free(r10_bio, conf);
207 	return NULL;
208 }
209 
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212 	struct r10conf *conf = data;
213 	struct r10bio *r10bio = __r10_bio;
214 	int j;
215 	struct resync_pages *rp = NULL;
216 
217 	for (j = conf->copies; j--; ) {
218 		struct bio *bio = r10bio->devs[j].bio;
219 
220 		if (bio) {
221 			rp = get_resync_pages(bio);
222 			resync_free_pages(rp);
223 			bio_put(bio);
224 		}
225 
226 		bio = r10bio->devs[j].repl_bio;
227 		if (bio)
228 			bio_put(bio);
229 	}
230 
231 	/* resync pages array stored in the 1st bio's .bi_private */
232 	kfree(rp);
233 
234 	rbio_pool_free(r10bio, conf);
235 }
236 
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239 	int i;
240 
241 	for (i = 0; i < conf->geo.raid_disks; i++) {
242 		struct bio **bio = & r10_bio->devs[i].bio;
243 		if (!BIO_SPECIAL(*bio))
244 			bio_put(*bio);
245 		*bio = NULL;
246 		bio = &r10_bio->devs[i].repl_bio;
247 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248 			bio_put(*bio);
249 		*bio = NULL;
250 	}
251 }
252 
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255 	struct r10conf *conf = r10_bio->mddev->private;
256 
257 	put_all_bios(conf, r10_bio);
258 	mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260 
261 static void put_buf(struct r10bio *r10_bio)
262 {
263 	struct r10conf *conf = r10_bio->mddev->private;
264 
265 	mempool_free(r10_bio, &conf->r10buf_pool);
266 
267 	lower_barrier(conf);
268 }
269 
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272 	unsigned long flags;
273 	struct mddev *mddev = r10_bio->mddev;
274 	struct r10conf *conf = mddev->private;
275 
276 	spin_lock_irqsave(&conf->device_lock, flags);
277 	list_add(&r10_bio->retry_list, &conf->retry_list);
278 	conf->nr_queued ++;
279 	spin_unlock_irqrestore(&conf->device_lock, flags);
280 
281 	/* wake up frozen array... */
282 	wake_up(&conf->wait_barrier);
283 
284 	md_wakeup_thread(mddev->thread);
285 }
286 
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294 	struct bio *bio = r10_bio->master_bio;
295 	struct r10conf *conf = r10_bio->mddev->private;
296 
297 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298 		bio->bi_status = BLK_STS_IOERR;
299 
300 	bio_endio(bio);
301 	/*
302 	 * Wake up any possible resync thread that waits for the device
303 	 * to go idle.
304 	 */
305 	allow_barrier(conf);
306 
307 	free_r10bio(r10_bio);
308 }
309 
310 /*
311  * Update disk head position estimator based on IRQ completion info.
312  */
313 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
314 {
315 	struct r10conf *conf = r10_bio->mddev->private;
316 
317 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
318 		r10_bio->devs[slot].addr + (r10_bio->sectors);
319 }
320 
321 /*
322  * Find the disk number which triggered given bio
323  */
324 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
325 			 struct bio *bio, int *slotp, int *replp)
326 {
327 	int slot;
328 	int repl = 0;
329 
330 	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
331 		if (r10_bio->devs[slot].bio == bio)
332 			break;
333 		if (r10_bio->devs[slot].repl_bio == bio) {
334 			repl = 1;
335 			break;
336 		}
337 	}
338 
339 	update_head_pos(slot, r10_bio);
340 
341 	if (slotp)
342 		*slotp = slot;
343 	if (replp)
344 		*replp = repl;
345 	return r10_bio->devs[slot].devnum;
346 }
347 
348 static void raid10_end_read_request(struct bio *bio)
349 {
350 	int uptodate = !bio->bi_status;
351 	struct r10bio *r10_bio = bio->bi_private;
352 	int slot;
353 	struct md_rdev *rdev;
354 	struct r10conf *conf = r10_bio->mddev->private;
355 
356 	slot = r10_bio->read_slot;
357 	rdev = r10_bio->devs[slot].rdev;
358 	/*
359 	 * this branch is our 'one mirror IO has finished' event handler:
360 	 */
361 	update_head_pos(slot, r10_bio);
362 
363 	if (uptodate) {
364 		/*
365 		 * Set R10BIO_Uptodate in our master bio, so that
366 		 * we will return a good error code to the higher
367 		 * levels even if IO on some other mirrored buffer fails.
368 		 *
369 		 * The 'master' represents the composite IO operation to
370 		 * user-side. So if something waits for IO, then it will
371 		 * wait for the 'master' bio.
372 		 */
373 		set_bit(R10BIO_Uptodate, &r10_bio->state);
374 	} else {
375 		/* If all other devices that store this block have
376 		 * failed, we want to return the error upwards rather
377 		 * than fail the last device.  Here we redefine
378 		 * "uptodate" to mean "Don't want to retry"
379 		 */
380 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
381 			     rdev->raid_disk))
382 			uptodate = 1;
383 	}
384 	if (uptodate) {
385 		raid_end_bio_io(r10_bio);
386 		rdev_dec_pending(rdev, conf->mddev);
387 	} else {
388 		/*
389 		 * oops, read error - keep the refcount on the rdev
390 		 */
391 		char b[BDEVNAME_SIZE];
392 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
393 				   mdname(conf->mddev),
394 				   bdevname(rdev->bdev, b),
395 				   (unsigned long long)r10_bio->sector);
396 		set_bit(R10BIO_ReadError, &r10_bio->state);
397 		reschedule_retry(r10_bio);
398 	}
399 }
400 
401 static void close_write(struct r10bio *r10_bio)
402 {
403 	/* clear the bitmap if all writes complete successfully */
404 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
405 			   r10_bio->sectors,
406 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
407 			   0);
408 	md_write_end(r10_bio->mddev);
409 }
410 
411 static void one_write_done(struct r10bio *r10_bio)
412 {
413 	if (atomic_dec_and_test(&r10_bio->remaining)) {
414 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
415 			reschedule_retry(r10_bio);
416 		else {
417 			close_write(r10_bio);
418 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
419 				reschedule_retry(r10_bio);
420 			else
421 				raid_end_bio_io(r10_bio);
422 		}
423 	}
424 }
425 
426 static void raid10_end_write_request(struct bio *bio)
427 {
428 	struct r10bio *r10_bio = bio->bi_private;
429 	int dev;
430 	int dec_rdev = 1;
431 	struct r10conf *conf = r10_bio->mddev->private;
432 	int slot, repl;
433 	struct md_rdev *rdev = NULL;
434 	struct bio *to_put = NULL;
435 	bool discard_error;
436 
437 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
438 
439 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
440 
441 	if (repl)
442 		rdev = conf->mirrors[dev].replacement;
443 	if (!rdev) {
444 		smp_rmb();
445 		repl = 0;
446 		rdev = conf->mirrors[dev].rdev;
447 	}
448 	/*
449 	 * this branch is our 'one mirror IO has finished' event handler:
450 	 */
451 	if (bio->bi_status && !discard_error) {
452 		if (repl)
453 			/* Never record new bad blocks to replacement,
454 			 * just fail it.
455 			 */
456 			md_error(rdev->mddev, rdev);
457 		else {
458 			set_bit(WriteErrorSeen,	&rdev->flags);
459 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
460 				set_bit(MD_RECOVERY_NEEDED,
461 					&rdev->mddev->recovery);
462 
463 			dec_rdev = 0;
464 			if (test_bit(FailFast, &rdev->flags) &&
465 			    (bio->bi_opf & MD_FAILFAST)) {
466 				md_error(rdev->mddev, rdev);
467 			}
468 
469 			/*
470 			 * When the device is faulty, it is not necessary to
471 			 * handle write error.
472 			 * For failfast, this is the only remaining device,
473 			 * We need to retry the write without FailFast.
474 			 */
475 			if (!test_bit(Faulty, &rdev->flags))
476 				set_bit(R10BIO_WriteError, &r10_bio->state);
477 			else {
478 				r10_bio->devs[slot].bio = NULL;
479 				to_put = bio;
480 				dec_rdev = 1;
481 			}
482 		}
483 	} else {
484 		/*
485 		 * Set R10BIO_Uptodate in our master bio, so that
486 		 * we will return a good error code for to the higher
487 		 * levels even if IO on some other mirrored buffer fails.
488 		 *
489 		 * The 'master' represents the composite IO operation to
490 		 * user-side. So if something waits for IO, then it will
491 		 * wait for the 'master' bio.
492 		 */
493 		sector_t first_bad;
494 		int bad_sectors;
495 
496 		/*
497 		 * Do not set R10BIO_Uptodate if the current device is
498 		 * rebuilding or Faulty. This is because we cannot use
499 		 * such device for properly reading the data back (we could
500 		 * potentially use it, if the current write would have felt
501 		 * before rdev->recovery_offset, but for simplicity we don't
502 		 * check this here.
503 		 */
504 		if (test_bit(In_sync, &rdev->flags) &&
505 		    !test_bit(Faulty, &rdev->flags))
506 			set_bit(R10BIO_Uptodate, &r10_bio->state);
507 
508 		/* Maybe we can clear some bad blocks. */
509 		if (is_badblock(rdev,
510 				r10_bio->devs[slot].addr,
511 				r10_bio->sectors,
512 				&first_bad, &bad_sectors) && !discard_error) {
513 			bio_put(bio);
514 			if (repl)
515 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
516 			else
517 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
518 			dec_rdev = 0;
519 			set_bit(R10BIO_MadeGood, &r10_bio->state);
520 		}
521 	}
522 
523 	/*
524 	 *
525 	 * Let's see if all mirrored write operations have finished
526 	 * already.
527 	 */
528 	one_write_done(r10_bio);
529 	if (dec_rdev)
530 		rdev_dec_pending(rdev, conf->mddev);
531 	if (to_put)
532 		bio_put(to_put);
533 }
534 
535 /*
536  * RAID10 layout manager
537  * As well as the chunksize and raid_disks count, there are two
538  * parameters: near_copies and far_copies.
539  * near_copies * far_copies must be <= raid_disks.
540  * Normally one of these will be 1.
541  * If both are 1, we get raid0.
542  * If near_copies == raid_disks, we get raid1.
543  *
544  * Chunks are laid out in raid0 style with near_copies copies of the
545  * first chunk, followed by near_copies copies of the next chunk and
546  * so on.
547  * If far_copies > 1, then after 1/far_copies of the array has been assigned
548  * as described above, we start again with a device offset of near_copies.
549  * So we effectively have another copy of the whole array further down all
550  * the drives, but with blocks on different drives.
551  * With this layout, and block is never stored twice on the one device.
552  *
553  * raid10_find_phys finds the sector offset of a given virtual sector
554  * on each device that it is on.
555  *
556  * raid10_find_virt does the reverse mapping, from a device and a
557  * sector offset to a virtual address
558  */
559 
560 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
561 {
562 	int n,f;
563 	sector_t sector;
564 	sector_t chunk;
565 	sector_t stripe;
566 	int dev;
567 	int slot = 0;
568 	int last_far_set_start, last_far_set_size;
569 
570 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
571 	last_far_set_start *= geo->far_set_size;
572 
573 	last_far_set_size = geo->far_set_size;
574 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
575 
576 	/* now calculate first sector/dev */
577 	chunk = r10bio->sector >> geo->chunk_shift;
578 	sector = r10bio->sector & geo->chunk_mask;
579 
580 	chunk *= geo->near_copies;
581 	stripe = chunk;
582 	dev = sector_div(stripe, geo->raid_disks);
583 	if (geo->far_offset)
584 		stripe *= geo->far_copies;
585 
586 	sector += stripe << geo->chunk_shift;
587 
588 	/* and calculate all the others */
589 	for (n = 0; n < geo->near_copies; n++) {
590 		int d = dev;
591 		int set;
592 		sector_t s = sector;
593 		r10bio->devs[slot].devnum = d;
594 		r10bio->devs[slot].addr = s;
595 		slot++;
596 
597 		for (f = 1; f < geo->far_copies; f++) {
598 			set = d / geo->far_set_size;
599 			d += geo->near_copies;
600 
601 			if ((geo->raid_disks % geo->far_set_size) &&
602 			    (d > last_far_set_start)) {
603 				d -= last_far_set_start;
604 				d %= last_far_set_size;
605 				d += last_far_set_start;
606 			} else {
607 				d %= geo->far_set_size;
608 				d += geo->far_set_size * set;
609 			}
610 			s += geo->stride;
611 			r10bio->devs[slot].devnum = d;
612 			r10bio->devs[slot].addr = s;
613 			slot++;
614 		}
615 		dev++;
616 		if (dev >= geo->raid_disks) {
617 			dev = 0;
618 			sector += (geo->chunk_mask + 1);
619 		}
620 	}
621 }
622 
623 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
624 {
625 	struct geom *geo = &conf->geo;
626 
627 	if (conf->reshape_progress != MaxSector &&
628 	    ((r10bio->sector >= conf->reshape_progress) !=
629 	     conf->mddev->reshape_backwards)) {
630 		set_bit(R10BIO_Previous, &r10bio->state);
631 		geo = &conf->prev;
632 	} else
633 		clear_bit(R10BIO_Previous, &r10bio->state);
634 
635 	__raid10_find_phys(geo, r10bio);
636 }
637 
638 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
639 {
640 	sector_t offset, chunk, vchunk;
641 	/* Never use conf->prev as this is only called during resync
642 	 * or recovery, so reshape isn't happening
643 	 */
644 	struct geom *geo = &conf->geo;
645 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
646 	int far_set_size = geo->far_set_size;
647 	int last_far_set_start;
648 
649 	if (geo->raid_disks % geo->far_set_size) {
650 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
651 		last_far_set_start *= geo->far_set_size;
652 
653 		if (dev >= last_far_set_start) {
654 			far_set_size = geo->far_set_size;
655 			far_set_size += (geo->raid_disks % geo->far_set_size);
656 			far_set_start = last_far_set_start;
657 		}
658 	}
659 
660 	offset = sector & geo->chunk_mask;
661 	if (geo->far_offset) {
662 		int fc;
663 		chunk = sector >> geo->chunk_shift;
664 		fc = sector_div(chunk, geo->far_copies);
665 		dev -= fc * geo->near_copies;
666 		if (dev < far_set_start)
667 			dev += far_set_size;
668 	} else {
669 		while (sector >= geo->stride) {
670 			sector -= geo->stride;
671 			if (dev < (geo->near_copies + far_set_start))
672 				dev += far_set_size - geo->near_copies;
673 			else
674 				dev -= geo->near_copies;
675 		}
676 		chunk = sector >> geo->chunk_shift;
677 	}
678 	vchunk = chunk * geo->raid_disks + dev;
679 	sector_div(vchunk, geo->near_copies);
680 	return (vchunk << geo->chunk_shift) + offset;
681 }
682 
683 /*
684  * This routine returns the disk from which the requested read should
685  * be done. There is a per-array 'next expected sequential IO' sector
686  * number - if this matches on the next IO then we use the last disk.
687  * There is also a per-disk 'last know head position' sector that is
688  * maintained from IRQ contexts, both the normal and the resync IO
689  * completion handlers update this position correctly. If there is no
690  * perfect sequential match then we pick the disk whose head is closest.
691  *
692  * If there are 2 mirrors in the same 2 devices, performance degrades
693  * because position is mirror, not device based.
694  *
695  * The rdev for the device selected will have nr_pending incremented.
696  */
697 
698 /*
699  * FIXME: possibly should rethink readbalancing and do it differently
700  * depending on near_copies / far_copies geometry.
701  */
702 static struct md_rdev *read_balance(struct r10conf *conf,
703 				    struct r10bio *r10_bio,
704 				    int *max_sectors)
705 {
706 	const sector_t this_sector = r10_bio->sector;
707 	int disk, slot;
708 	int sectors = r10_bio->sectors;
709 	int best_good_sectors;
710 	sector_t new_distance, best_dist;
711 	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
712 	int do_balance;
713 	int best_dist_slot, best_pending_slot;
714 	bool has_nonrot_disk = false;
715 	unsigned int min_pending;
716 	struct geom *geo = &conf->geo;
717 
718 	raid10_find_phys(conf, r10_bio);
719 	rcu_read_lock();
720 	best_dist_slot = -1;
721 	min_pending = UINT_MAX;
722 	best_dist_rdev = NULL;
723 	best_pending_rdev = NULL;
724 	best_dist = MaxSector;
725 	best_good_sectors = 0;
726 	do_balance = 1;
727 	clear_bit(R10BIO_FailFast, &r10_bio->state);
728 	/*
729 	 * Check if we can balance. We can balance on the whole
730 	 * device if no resync is going on (recovery is ok), or below
731 	 * the resync window. We take the first readable disk when
732 	 * above the resync window.
733 	 */
734 	if ((conf->mddev->recovery_cp < MaxSector
735 	     && (this_sector + sectors >= conf->next_resync)) ||
736 	    (mddev_is_clustered(conf->mddev) &&
737 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
738 					    this_sector + sectors)))
739 		do_balance = 0;
740 
741 	for (slot = 0; slot < conf->copies ; slot++) {
742 		sector_t first_bad;
743 		int bad_sectors;
744 		sector_t dev_sector;
745 		unsigned int pending;
746 		bool nonrot;
747 
748 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
749 			continue;
750 		disk = r10_bio->devs[slot].devnum;
751 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
752 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
753 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
754 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
755 		if (rdev == NULL ||
756 		    test_bit(Faulty, &rdev->flags))
757 			continue;
758 		if (!test_bit(In_sync, &rdev->flags) &&
759 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
760 			continue;
761 
762 		dev_sector = r10_bio->devs[slot].addr;
763 		if (is_badblock(rdev, dev_sector, sectors,
764 				&first_bad, &bad_sectors)) {
765 			if (best_dist < MaxSector)
766 				/* Already have a better slot */
767 				continue;
768 			if (first_bad <= dev_sector) {
769 				/* Cannot read here.  If this is the
770 				 * 'primary' device, then we must not read
771 				 * beyond 'bad_sectors' from another device.
772 				 */
773 				bad_sectors -= (dev_sector - first_bad);
774 				if (!do_balance && sectors > bad_sectors)
775 					sectors = bad_sectors;
776 				if (best_good_sectors > sectors)
777 					best_good_sectors = sectors;
778 			} else {
779 				sector_t good_sectors =
780 					first_bad - dev_sector;
781 				if (good_sectors > best_good_sectors) {
782 					best_good_sectors = good_sectors;
783 					best_dist_slot = slot;
784 					best_dist_rdev = rdev;
785 				}
786 				if (!do_balance)
787 					/* Must read from here */
788 					break;
789 			}
790 			continue;
791 		} else
792 			best_good_sectors = sectors;
793 
794 		if (!do_balance)
795 			break;
796 
797 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
798 		has_nonrot_disk |= nonrot;
799 		pending = atomic_read(&rdev->nr_pending);
800 		if (min_pending > pending && nonrot) {
801 			min_pending = pending;
802 			best_pending_slot = slot;
803 			best_pending_rdev = rdev;
804 		}
805 
806 		if (best_dist_slot >= 0)
807 			/* At least 2 disks to choose from so failfast is OK */
808 			set_bit(R10BIO_FailFast, &r10_bio->state);
809 		/* This optimisation is debatable, and completely destroys
810 		 * sequential read speed for 'far copies' arrays.  So only
811 		 * keep it for 'near' arrays, and review those later.
812 		 */
813 		if (geo->near_copies > 1 && !pending)
814 			new_distance = 0;
815 
816 		/* for far > 1 always use the lowest address */
817 		else if (geo->far_copies > 1)
818 			new_distance = r10_bio->devs[slot].addr;
819 		else
820 			new_distance = abs(r10_bio->devs[slot].addr -
821 					   conf->mirrors[disk].head_position);
822 
823 		if (new_distance < best_dist) {
824 			best_dist = new_distance;
825 			best_dist_slot = slot;
826 			best_dist_rdev = rdev;
827 		}
828 	}
829 	if (slot >= conf->copies) {
830 		if (has_nonrot_disk) {
831 			slot = best_pending_slot;
832 			rdev = best_pending_rdev;
833 		} else {
834 			slot = best_dist_slot;
835 			rdev = best_dist_rdev;
836 		}
837 	}
838 
839 	if (slot >= 0) {
840 		atomic_inc(&rdev->nr_pending);
841 		r10_bio->read_slot = slot;
842 	} else
843 		rdev = NULL;
844 	rcu_read_unlock();
845 	*max_sectors = best_good_sectors;
846 
847 	return rdev;
848 }
849 
850 static void flush_pending_writes(struct r10conf *conf)
851 {
852 	/* Any writes that have been queued but are awaiting
853 	 * bitmap updates get flushed here.
854 	 */
855 	spin_lock_irq(&conf->device_lock);
856 
857 	if (conf->pending_bio_list.head) {
858 		struct blk_plug plug;
859 		struct bio *bio;
860 
861 		bio = bio_list_get(&conf->pending_bio_list);
862 		conf->pending_count = 0;
863 		spin_unlock_irq(&conf->device_lock);
864 
865 		/*
866 		 * As this is called in a wait_event() loop (see freeze_array),
867 		 * current->state might be TASK_UNINTERRUPTIBLE which will
868 		 * cause a warning when we prepare to wait again.  As it is
869 		 * rare that this path is taken, it is perfectly safe to force
870 		 * us to go around the wait_event() loop again, so the warning
871 		 * is a false-positive. Silence the warning by resetting
872 		 * thread state
873 		 */
874 		__set_current_state(TASK_RUNNING);
875 
876 		blk_start_plug(&plug);
877 		/* flush any pending bitmap writes to disk
878 		 * before proceeding w/ I/O */
879 		md_bitmap_unplug(conf->mddev->bitmap);
880 		wake_up(&conf->wait_barrier);
881 
882 		while (bio) { /* submit pending writes */
883 			struct bio *next = bio->bi_next;
884 			struct md_rdev *rdev = (void*)bio->bi_disk;
885 			bio->bi_next = NULL;
886 			bio_set_dev(bio, rdev->bdev);
887 			if (test_bit(Faulty, &rdev->flags)) {
888 				bio_io_error(bio);
889 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
890 					    !blk_queue_discard(bio->bi_disk->queue)))
891 				/* Just ignore it */
892 				bio_endio(bio);
893 			else
894 				submit_bio_noacct(bio);
895 			bio = next;
896 		}
897 		blk_finish_plug(&plug);
898 	} else
899 		spin_unlock_irq(&conf->device_lock);
900 }
901 
902 /* Barriers....
903  * Sometimes we need to suspend IO while we do something else,
904  * either some resync/recovery, or reconfigure the array.
905  * To do this we raise a 'barrier'.
906  * The 'barrier' is a counter that can be raised multiple times
907  * to count how many activities are happening which preclude
908  * normal IO.
909  * We can only raise the barrier if there is no pending IO.
910  * i.e. if nr_pending == 0.
911  * We choose only to raise the barrier if no-one is waiting for the
912  * barrier to go down.  This means that as soon as an IO request
913  * is ready, no other operations which require a barrier will start
914  * until the IO request has had a chance.
915  *
916  * So: regular IO calls 'wait_barrier'.  When that returns there
917  *    is no backgroup IO happening,  It must arrange to call
918  *    allow_barrier when it has finished its IO.
919  * backgroup IO calls must call raise_barrier.  Once that returns
920  *    there is no normal IO happeing.  It must arrange to call
921  *    lower_barrier when the particular background IO completes.
922  */
923 
924 static void raise_barrier(struct r10conf *conf, int force)
925 {
926 	BUG_ON(force && !conf->barrier);
927 	spin_lock_irq(&conf->resync_lock);
928 
929 	/* Wait until no block IO is waiting (unless 'force') */
930 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
931 			    conf->resync_lock);
932 
933 	/* block any new IO from starting */
934 	conf->barrier++;
935 
936 	/* Now wait for all pending IO to complete */
937 	wait_event_lock_irq(conf->wait_barrier,
938 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
939 			    conf->resync_lock);
940 
941 	spin_unlock_irq(&conf->resync_lock);
942 }
943 
944 static void lower_barrier(struct r10conf *conf)
945 {
946 	unsigned long flags;
947 	spin_lock_irqsave(&conf->resync_lock, flags);
948 	conf->barrier--;
949 	spin_unlock_irqrestore(&conf->resync_lock, flags);
950 	wake_up(&conf->wait_barrier);
951 }
952 
953 static void wait_barrier(struct r10conf *conf)
954 {
955 	spin_lock_irq(&conf->resync_lock);
956 	if (conf->barrier) {
957 		struct bio_list *bio_list = current->bio_list;
958 		conf->nr_waiting++;
959 		/* Wait for the barrier to drop.
960 		 * However if there are already pending
961 		 * requests (preventing the barrier from
962 		 * rising completely), and the
963 		 * pre-process bio queue isn't empty,
964 		 * then don't wait, as we need to empty
965 		 * that queue to get the nr_pending
966 		 * count down.
967 		 */
968 		raid10_log(conf->mddev, "wait barrier");
969 		wait_event_lock_irq(conf->wait_barrier,
970 				    !conf->barrier ||
971 				    (atomic_read(&conf->nr_pending) &&
972 				     bio_list &&
973 				     (!bio_list_empty(&bio_list[0]) ||
974 				      !bio_list_empty(&bio_list[1]))) ||
975 				     /* move on if recovery thread is
976 				      * blocked by us
977 				      */
978 				     (conf->mddev->thread->tsk == current &&
979 				      test_bit(MD_RECOVERY_RUNNING,
980 					       &conf->mddev->recovery) &&
981 				      conf->nr_queued > 0),
982 				    conf->resync_lock);
983 		conf->nr_waiting--;
984 		if (!conf->nr_waiting)
985 			wake_up(&conf->wait_barrier);
986 	}
987 	atomic_inc(&conf->nr_pending);
988 	spin_unlock_irq(&conf->resync_lock);
989 }
990 
991 static void allow_barrier(struct r10conf *conf)
992 {
993 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
994 			(conf->array_freeze_pending))
995 		wake_up(&conf->wait_barrier);
996 }
997 
998 static void freeze_array(struct r10conf *conf, int extra)
999 {
1000 	/* stop syncio and normal IO and wait for everything to
1001 	 * go quiet.
1002 	 * We increment barrier and nr_waiting, and then
1003 	 * wait until nr_pending match nr_queued+extra
1004 	 * This is called in the context of one normal IO request
1005 	 * that has failed. Thus any sync request that might be pending
1006 	 * will be blocked by nr_pending, and we need to wait for
1007 	 * pending IO requests to complete or be queued for re-try.
1008 	 * Thus the number queued (nr_queued) plus this request (extra)
1009 	 * must match the number of pending IOs (nr_pending) before
1010 	 * we continue.
1011 	 */
1012 	spin_lock_irq(&conf->resync_lock);
1013 	conf->array_freeze_pending++;
1014 	conf->barrier++;
1015 	conf->nr_waiting++;
1016 	wait_event_lock_irq_cmd(conf->wait_barrier,
1017 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1018 				conf->resync_lock,
1019 				flush_pending_writes(conf));
1020 
1021 	conf->array_freeze_pending--;
1022 	spin_unlock_irq(&conf->resync_lock);
1023 }
1024 
1025 static void unfreeze_array(struct r10conf *conf)
1026 {
1027 	/* reverse the effect of the freeze */
1028 	spin_lock_irq(&conf->resync_lock);
1029 	conf->barrier--;
1030 	conf->nr_waiting--;
1031 	wake_up(&conf->wait_barrier);
1032 	spin_unlock_irq(&conf->resync_lock);
1033 }
1034 
1035 static sector_t choose_data_offset(struct r10bio *r10_bio,
1036 				   struct md_rdev *rdev)
1037 {
1038 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1039 	    test_bit(R10BIO_Previous, &r10_bio->state))
1040 		return rdev->data_offset;
1041 	else
1042 		return rdev->new_data_offset;
1043 }
1044 
1045 struct raid10_plug_cb {
1046 	struct blk_plug_cb	cb;
1047 	struct bio_list		pending;
1048 	int			pending_cnt;
1049 };
1050 
1051 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1052 {
1053 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1054 						   cb);
1055 	struct mddev *mddev = plug->cb.data;
1056 	struct r10conf *conf = mddev->private;
1057 	struct bio *bio;
1058 
1059 	if (from_schedule || current->bio_list) {
1060 		spin_lock_irq(&conf->device_lock);
1061 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1062 		conf->pending_count += plug->pending_cnt;
1063 		spin_unlock_irq(&conf->device_lock);
1064 		wake_up(&conf->wait_barrier);
1065 		md_wakeup_thread(mddev->thread);
1066 		kfree(plug);
1067 		return;
1068 	}
1069 
1070 	/* we aren't scheduling, so we can do the write-out directly. */
1071 	bio = bio_list_get(&plug->pending);
1072 	md_bitmap_unplug(mddev->bitmap);
1073 	wake_up(&conf->wait_barrier);
1074 
1075 	while (bio) { /* submit pending writes */
1076 		struct bio *next = bio->bi_next;
1077 		struct md_rdev *rdev = (void*)bio->bi_disk;
1078 		bio->bi_next = NULL;
1079 		bio_set_dev(bio, rdev->bdev);
1080 		if (test_bit(Faulty, &rdev->flags)) {
1081 			bio_io_error(bio);
1082 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1083 				    !blk_queue_discard(bio->bi_disk->queue)))
1084 			/* Just ignore it */
1085 			bio_endio(bio);
1086 		else
1087 			submit_bio_noacct(bio);
1088 		bio = next;
1089 	}
1090 	kfree(plug);
1091 }
1092 
1093 /*
1094  * 1. Register the new request and wait if the reconstruction thread has put
1095  * up a bar for new requests. Continue immediately if no resync is active
1096  * currently.
1097  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1098  */
1099 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1100 				 struct bio *bio, sector_t sectors)
1101 {
1102 	wait_barrier(conf);
1103 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1104 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1105 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1106 		raid10_log(conf->mddev, "wait reshape");
1107 		allow_barrier(conf);
1108 		wait_event(conf->wait_barrier,
1109 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1110 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1111 			   sectors);
1112 		wait_barrier(conf);
1113 	}
1114 }
1115 
1116 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1117 				struct r10bio *r10_bio)
1118 {
1119 	struct r10conf *conf = mddev->private;
1120 	struct bio *read_bio;
1121 	const int op = bio_op(bio);
1122 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1123 	int max_sectors;
1124 	struct md_rdev *rdev;
1125 	char b[BDEVNAME_SIZE];
1126 	int slot = r10_bio->read_slot;
1127 	struct md_rdev *err_rdev = NULL;
1128 	gfp_t gfp = GFP_NOIO;
1129 
1130 	if (r10_bio->devs[slot].rdev) {
1131 		/*
1132 		 * This is an error retry, but we cannot
1133 		 * safely dereference the rdev in the r10_bio,
1134 		 * we must use the one in conf.
1135 		 * If it has already been disconnected (unlikely)
1136 		 * we lose the device name in error messages.
1137 		 */
1138 		int disk;
1139 		/*
1140 		 * As we are blocking raid10, it is a little safer to
1141 		 * use __GFP_HIGH.
1142 		 */
1143 		gfp = GFP_NOIO | __GFP_HIGH;
1144 
1145 		rcu_read_lock();
1146 		disk = r10_bio->devs[slot].devnum;
1147 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1148 		if (err_rdev)
1149 			bdevname(err_rdev->bdev, b);
1150 		else {
1151 			strcpy(b, "???");
1152 			/* This never gets dereferenced */
1153 			err_rdev = r10_bio->devs[slot].rdev;
1154 		}
1155 		rcu_read_unlock();
1156 	}
1157 
1158 	regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1159 	rdev = read_balance(conf, r10_bio, &max_sectors);
1160 	if (!rdev) {
1161 		if (err_rdev) {
1162 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1163 					    mdname(mddev), b,
1164 					    (unsigned long long)r10_bio->sector);
1165 		}
1166 		raid_end_bio_io(r10_bio);
1167 		return;
1168 	}
1169 	if (err_rdev)
1170 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1171 				   mdname(mddev),
1172 				   bdevname(rdev->bdev, b),
1173 				   (unsigned long long)r10_bio->sector);
1174 	if (max_sectors < bio_sectors(bio)) {
1175 		struct bio *split = bio_split(bio, max_sectors,
1176 					      gfp, &conf->bio_split);
1177 		bio_chain(split, bio);
1178 		allow_barrier(conf);
1179 		submit_bio_noacct(bio);
1180 		wait_barrier(conf);
1181 		bio = split;
1182 		r10_bio->master_bio = bio;
1183 		r10_bio->sectors = max_sectors;
1184 	}
1185 	slot = r10_bio->read_slot;
1186 
1187 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1188 
1189 	r10_bio->devs[slot].bio = read_bio;
1190 	r10_bio->devs[slot].rdev = rdev;
1191 
1192 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1193 		choose_data_offset(r10_bio, rdev);
1194 	bio_set_dev(read_bio, rdev->bdev);
1195 	read_bio->bi_end_io = raid10_end_read_request;
1196 	bio_set_op_attrs(read_bio, op, do_sync);
1197 	if (test_bit(FailFast, &rdev->flags) &&
1198 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1199 	        read_bio->bi_opf |= MD_FAILFAST;
1200 	read_bio->bi_private = r10_bio;
1201 
1202 	if (mddev->gendisk)
1203 	        trace_block_bio_remap(read_bio->bi_disk->queue,
1204 	                              read_bio, disk_devt(mddev->gendisk),
1205 	                              r10_bio->sector);
1206 	submit_bio_noacct(read_bio);
1207 	return;
1208 }
1209 
1210 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1211 				  struct bio *bio, bool replacement,
1212 				  int n_copy)
1213 {
1214 	const int op = bio_op(bio);
1215 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1216 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1217 	unsigned long flags;
1218 	struct blk_plug_cb *cb;
1219 	struct raid10_plug_cb *plug = NULL;
1220 	struct r10conf *conf = mddev->private;
1221 	struct md_rdev *rdev;
1222 	int devnum = r10_bio->devs[n_copy].devnum;
1223 	struct bio *mbio;
1224 
1225 	if (replacement) {
1226 		rdev = conf->mirrors[devnum].replacement;
1227 		if (rdev == NULL) {
1228 			/* Replacement just got moved to main 'rdev' */
1229 			smp_mb();
1230 			rdev = conf->mirrors[devnum].rdev;
1231 		}
1232 	} else
1233 		rdev = conf->mirrors[devnum].rdev;
1234 
1235 	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1236 	if (replacement)
1237 		r10_bio->devs[n_copy].repl_bio = mbio;
1238 	else
1239 		r10_bio->devs[n_copy].bio = mbio;
1240 
1241 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1242 				   choose_data_offset(r10_bio, rdev));
1243 	bio_set_dev(mbio, rdev->bdev);
1244 	mbio->bi_end_io	= raid10_end_write_request;
1245 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1246 	if (!replacement && test_bit(FailFast,
1247 				     &conf->mirrors[devnum].rdev->flags)
1248 			 && enough(conf, devnum))
1249 		mbio->bi_opf |= MD_FAILFAST;
1250 	mbio->bi_private = r10_bio;
1251 
1252 	if (conf->mddev->gendisk)
1253 		trace_block_bio_remap(mbio->bi_disk->queue,
1254 				      mbio, disk_devt(conf->mddev->gendisk),
1255 				      r10_bio->sector);
1256 	/* flush_pending_writes() needs access to the rdev so...*/
1257 	mbio->bi_disk = (void *)rdev;
1258 
1259 	atomic_inc(&r10_bio->remaining);
1260 
1261 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1262 	if (cb)
1263 		plug = container_of(cb, struct raid10_plug_cb, cb);
1264 	else
1265 		plug = NULL;
1266 	if (plug) {
1267 		bio_list_add(&plug->pending, mbio);
1268 		plug->pending_cnt++;
1269 	} else {
1270 		spin_lock_irqsave(&conf->device_lock, flags);
1271 		bio_list_add(&conf->pending_bio_list, mbio);
1272 		conf->pending_count++;
1273 		spin_unlock_irqrestore(&conf->device_lock, flags);
1274 		md_wakeup_thread(mddev->thread);
1275 	}
1276 }
1277 
1278 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1279 {
1280 	int i;
1281 	struct r10conf *conf = mddev->private;
1282 	struct md_rdev *blocked_rdev;
1283 
1284 retry_wait:
1285 	blocked_rdev = NULL;
1286 	rcu_read_lock();
1287 	for (i = 0; i < conf->copies; i++) {
1288 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1289 		struct md_rdev *rrdev = rcu_dereference(
1290 			conf->mirrors[i].replacement);
1291 		if (rdev == rrdev)
1292 			rrdev = NULL;
1293 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1294 			atomic_inc(&rdev->nr_pending);
1295 			blocked_rdev = rdev;
1296 			break;
1297 		}
1298 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1299 			atomic_inc(&rrdev->nr_pending);
1300 			blocked_rdev = rrdev;
1301 			break;
1302 		}
1303 
1304 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1305 			sector_t first_bad;
1306 			sector_t dev_sector = r10_bio->devs[i].addr;
1307 			int bad_sectors;
1308 			int is_bad;
1309 
1310 			/* Discard request doesn't care the write result
1311 			 * so it doesn't need to wait blocked disk here.
1312 			 */
1313 			if (!r10_bio->sectors)
1314 				continue;
1315 
1316 			is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1317 					     &first_bad, &bad_sectors);
1318 			if (is_bad < 0) {
1319 				/* Mustn't write here until the bad block
1320 				 * is acknowledged
1321 				 */
1322 				atomic_inc(&rdev->nr_pending);
1323 				set_bit(BlockedBadBlocks, &rdev->flags);
1324 				blocked_rdev = rdev;
1325 				break;
1326 			}
1327 		}
1328 	}
1329 	rcu_read_unlock();
1330 
1331 	if (unlikely(blocked_rdev)) {
1332 		/* Have to wait for this device to get unblocked, then retry */
1333 		allow_barrier(conf);
1334 		raid10_log(conf->mddev, "%s wait rdev %d blocked",
1335 				__func__, blocked_rdev->raid_disk);
1336 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1337 		wait_barrier(conf);
1338 		goto retry_wait;
1339 	}
1340 }
1341 
1342 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1343 				 struct r10bio *r10_bio)
1344 {
1345 	struct r10conf *conf = mddev->private;
1346 	int i;
1347 	sector_t sectors;
1348 	int max_sectors;
1349 
1350 	if ((mddev_is_clustered(mddev) &&
1351 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1352 					    bio->bi_iter.bi_sector,
1353 					    bio_end_sector(bio)))) {
1354 		DEFINE_WAIT(w);
1355 		for (;;) {
1356 			prepare_to_wait(&conf->wait_barrier,
1357 					&w, TASK_IDLE);
1358 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1359 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1360 				break;
1361 			schedule();
1362 		}
1363 		finish_wait(&conf->wait_barrier, &w);
1364 	}
1365 
1366 	sectors = r10_bio->sectors;
1367 	regular_request_wait(mddev, conf, bio, sectors);
1368 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1369 	    (mddev->reshape_backwards
1370 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1371 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1372 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1373 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1374 		/* Need to update reshape_position in metadata */
1375 		mddev->reshape_position = conf->reshape_progress;
1376 		set_mask_bits(&mddev->sb_flags, 0,
1377 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1378 		md_wakeup_thread(mddev->thread);
1379 		raid10_log(conf->mddev, "wait reshape metadata");
1380 		wait_event(mddev->sb_wait,
1381 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1382 
1383 		conf->reshape_safe = mddev->reshape_position;
1384 	}
1385 
1386 	if (conf->pending_count >= max_queued_requests) {
1387 		md_wakeup_thread(mddev->thread);
1388 		raid10_log(mddev, "wait queued");
1389 		wait_event(conf->wait_barrier,
1390 			   conf->pending_count < max_queued_requests);
1391 	}
1392 	/* first select target devices under rcu_lock and
1393 	 * inc refcount on their rdev.  Record them by setting
1394 	 * bios[x] to bio
1395 	 * If there are known/acknowledged bad blocks on any device
1396 	 * on which we have seen a write error, we want to avoid
1397 	 * writing to those blocks.  This potentially requires several
1398 	 * writes to write around the bad blocks.  Each set of writes
1399 	 * gets its own r10_bio with a set of bios attached.
1400 	 */
1401 
1402 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1403 	raid10_find_phys(conf, r10_bio);
1404 
1405 	wait_blocked_dev(mddev, r10_bio);
1406 
1407 	rcu_read_lock();
1408 	max_sectors = r10_bio->sectors;
1409 
1410 	for (i = 0;  i < conf->copies; i++) {
1411 		int d = r10_bio->devs[i].devnum;
1412 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1413 		struct md_rdev *rrdev = rcu_dereference(
1414 			conf->mirrors[d].replacement);
1415 		if (rdev == rrdev)
1416 			rrdev = NULL;
1417 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1418 			rdev = NULL;
1419 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1420 			rrdev = NULL;
1421 
1422 		r10_bio->devs[i].bio = NULL;
1423 		r10_bio->devs[i].repl_bio = NULL;
1424 
1425 		if (!rdev && !rrdev) {
1426 			set_bit(R10BIO_Degraded, &r10_bio->state);
1427 			continue;
1428 		}
1429 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1430 			sector_t first_bad;
1431 			sector_t dev_sector = r10_bio->devs[i].addr;
1432 			int bad_sectors;
1433 			int is_bad;
1434 
1435 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1436 					     &first_bad, &bad_sectors);
1437 			if (is_bad && first_bad <= dev_sector) {
1438 				/* Cannot write here at all */
1439 				bad_sectors -= (dev_sector - first_bad);
1440 				if (bad_sectors < max_sectors)
1441 					/* Mustn't write more than bad_sectors
1442 					 * to other devices yet
1443 					 */
1444 					max_sectors = bad_sectors;
1445 				/* We don't set R10BIO_Degraded as that
1446 				 * only applies if the disk is missing,
1447 				 * so it might be re-added, and we want to
1448 				 * know to recover this chunk.
1449 				 * In this case the device is here, and the
1450 				 * fact that this chunk is not in-sync is
1451 				 * recorded in the bad block log.
1452 				 */
1453 				continue;
1454 			}
1455 			if (is_bad) {
1456 				int good_sectors = first_bad - dev_sector;
1457 				if (good_sectors < max_sectors)
1458 					max_sectors = good_sectors;
1459 			}
1460 		}
1461 		if (rdev) {
1462 			r10_bio->devs[i].bio = bio;
1463 			atomic_inc(&rdev->nr_pending);
1464 		}
1465 		if (rrdev) {
1466 			r10_bio->devs[i].repl_bio = bio;
1467 			atomic_inc(&rrdev->nr_pending);
1468 		}
1469 	}
1470 	rcu_read_unlock();
1471 
1472 	if (max_sectors < r10_bio->sectors)
1473 		r10_bio->sectors = max_sectors;
1474 
1475 	if (r10_bio->sectors < bio_sectors(bio)) {
1476 		struct bio *split = bio_split(bio, r10_bio->sectors,
1477 					      GFP_NOIO, &conf->bio_split);
1478 		bio_chain(split, bio);
1479 		allow_barrier(conf);
1480 		submit_bio_noacct(bio);
1481 		wait_barrier(conf);
1482 		bio = split;
1483 		r10_bio->master_bio = bio;
1484 	}
1485 
1486 	atomic_set(&r10_bio->remaining, 1);
1487 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1488 
1489 	for (i = 0; i < conf->copies; i++) {
1490 		if (r10_bio->devs[i].bio)
1491 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1492 		if (r10_bio->devs[i].repl_bio)
1493 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1494 	}
1495 	one_write_done(r10_bio);
1496 }
1497 
1498 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1499 {
1500 	struct r10conf *conf = mddev->private;
1501 	struct r10bio *r10_bio;
1502 
1503 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1504 
1505 	r10_bio->master_bio = bio;
1506 	r10_bio->sectors = sectors;
1507 
1508 	r10_bio->mddev = mddev;
1509 	r10_bio->sector = bio->bi_iter.bi_sector;
1510 	r10_bio->state = 0;
1511 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->geo.raid_disks);
1512 
1513 	if (bio_data_dir(bio) == READ)
1514 		raid10_read_request(mddev, bio, r10_bio);
1515 	else
1516 		raid10_write_request(mddev, bio, r10_bio);
1517 }
1518 
1519 static struct bio *raid10_split_bio(struct r10conf *conf,
1520 			struct bio *bio, sector_t sectors, bool want_first)
1521 {
1522 	struct bio *split;
1523 
1524 	split = bio_split(bio, sectors,	GFP_NOIO, &conf->bio_split);
1525 	bio_chain(split, bio);
1526 	allow_barrier(conf);
1527 	if (want_first) {
1528 		submit_bio_noacct(bio);
1529 		bio = split;
1530 	} else
1531 		submit_bio_noacct(split);
1532 	wait_barrier(conf);
1533 
1534 	return bio;
1535 }
1536 
1537 static void raid_end_discard_bio(struct r10bio *r10bio)
1538 {
1539 	struct r10conf *conf = r10bio->mddev->private;
1540 	struct r10bio *first_r10bio;
1541 
1542 	while (atomic_dec_and_test(&r10bio->remaining)) {
1543 
1544 		allow_barrier(conf);
1545 
1546 		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1547 			first_r10bio = (struct r10bio *)r10bio->master_bio;
1548 			free_r10bio(r10bio);
1549 			r10bio = first_r10bio;
1550 		} else {
1551 			md_write_end(r10bio->mddev);
1552 			bio_endio(r10bio->master_bio);
1553 			free_r10bio(r10bio);
1554 			break;
1555 		}
1556 	}
1557 }
1558 
1559 static void raid10_end_discard_request(struct bio *bio)
1560 {
1561 	struct r10bio *r10_bio = bio->bi_private;
1562 	struct r10conf *conf = r10_bio->mddev->private;
1563 	struct md_rdev *rdev = NULL;
1564 	int dev;
1565 	int slot, repl;
1566 
1567 	/*
1568 	 * We don't care the return value of discard bio
1569 	 */
1570 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1571 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1572 
1573 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1574 	if (repl)
1575 		rdev = conf->mirrors[dev].replacement;
1576 	if (!rdev) {
1577 		/* raid10_remove_disk uses smp_mb to make sure rdev is set to
1578 		 * replacement before setting replacement to NULL. It can read
1579 		 * rdev first without barrier protect even replacment is NULL
1580 		 */
1581 		smp_rmb();
1582 		rdev = conf->mirrors[dev].rdev;
1583 	}
1584 
1585 	raid_end_discard_bio(r10_bio);
1586 	rdev_dec_pending(rdev, conf->mddev);
1587 }
1588 
1589 /* There are some limitations to handle discard bio
1590  * 1st, the discard size is bigger than stripe_size*2.
1591  * 2st, if the discard bio spans reshape progress, we use the old way to
1592  * handle discard bio
1593  */
1594 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1595 {
1596 	struct r10conf *conf = mddev->private;
1597 	struct geom *geo = &conf->geo;
1598 	struct r10bio *r10_bio, *first_r10bio;
1599 	int far_copies = geo->far_copies;
1600 	bool first_copy = true;
1601 
1602 	int disk;
1603 	sector_t chunk;
1604 	unsigned int stripe_size;
1605 	sector_t split_size;
1606 
1607 	sector_t bio_start, bio_end;
1608 	sector_t first_stripe_index, last_stripe_index;
1609 	sector_t start_disk_offset;
1610 	unsigned int start_disk_index;
1611 	sector_t end_disk_offset;
1612 	unsigned int end_disk_index;
1613 	unsigned int remainder;
1614 
1615 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1616 		return -EAGAIN;
1617 
1618 	wait_barrier(conf);
1619 
1620 	/* Check reshape again to avoid reshape happens after checking
1621 	 * MD_RECOVERY_RESHAPE and before wait_barrier
1622 	 */
1623 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1624 		goto out;
1625 
1626 	stripe_size = geo->raid_disks << geo->chunk_shift;
1627 	bio_start = bio->bi_iter.bi_sector;
1628 	bio_end = bio_end_sector(bio);
1629 
1630 	/* Maybe one discard bio is smaller than strip size or across one stripe
1631 	 * and discard region is larger than one stripe size. For far offset layout,
1632 	 * if the discard region is not aligned with stripe size, there is hole
1633 	 * when we submit discard bio to member disk. For simplicity, we only
1634 	 * handle discard bio which discard region is bigger than stripe_size*2
1635 	 */
1636 	if (bio_sectors(bio) < stripe_size*2)
1637 		goto out;
1638 
1639 	/* For far and far offset layout, if bio is not aligned with stripe size,
1640 	 * it splits the part that is not aligned with strip size.
1641 	 */
1642 	div_u64_rem(bio_start, stripe_size, &remainder);
1643 	if ((far_copies > 1) && remainder) {
1644 		split_size = stripe_size - remainder;
1645 		bio = raid10_split_bio(conf, bio, split_size, false);
1646 	}
1647 	div_u64_rem(bio_end, stripe_size, &remainder);
1648 	if ((far_copies > 1) && remainder) {
1649 		split_size = bio_sectors(bio) - remainder;
1650 		bio = raid10_split_bio(conf, bio, split_size, true);
1651 	}
1652 
1653 	bio_start = bio->bi_iter.bi_sector;
1654 	bio_end = bio_end_sector(bio);
1655 
1656 	/* raid10 uses chunk as the unit to store data. It's similar like raid0.
1657 	 * One stripe contains the chunks from all member disk (one chunk from
1658 	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1659 	 */
1660 	chunk = bio_start >> geo->chunk_shift;
1661 	chunk *= geo->near_copies;
1662 	first_stripe_index = chunk;
1663 	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1664 	if (geo->far_offset)
1665 		first_stripe_index *= geo->far_copies;
1666 	start_disk_offset = (bio_start & geo->chunk_mask) +
1667 				(first_stripe_index << geo->chunk_shift);
1668 
1669 	chunk = bio_end >> geo->chunk_shift;
1670 	chunk *= geo->near_copies;
1671 	last_stripe_index = chunk;
1672 	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1673 	if (geo->far_offset)
1674 		last_stripe_index *= geo->far_copies;
1675 	end_disk_offset = (bio_end & geo->chunk_mask) +
1676 				(last_stripe_index << geo->chunk_shift);
1677 
1678 retry_discard:
1679 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1680 	r10_bio->mddev = mddev;
1681 	r10_bio->state = 0;
1682 	r10_bio->sectors = 0;
1683 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1684 	wait_blocked_dev(mddev, r10_bio);
1685 
1686 	/* For far layout it needs more than one r10bio to cover all regions.
1687 	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1688 	 * to record the discard bio. Other r10bio->master_bio record the first
1689 	 * r10bio. The first r10bio only release after all other r10bios finish.
1690 	 * The discard bio returns only first r10bio finishes
1691 	 */
1692 	if (first_copy) {
1693 		r10_bio->master_bio = bio;
1694 		set_bit(R10BIO_Discard, &r10_bio->state);
1695 		first_copy = false;
1696 		first_r10bio = r10_bio;
1697 	} else
1698 		r10_bio->master_bio = (struct bio *)first_r10bio;
1699 
1700 	rcu_read_lock();
1701 	for (disk = 0; disk < geo->raid_disks; disk++) {
1702 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1703 		struct md_rdev *rrdev = rcu_dereference(
1704 			conf->mirrors[disk].replacement);
1705 
1706 		r10_bio->devs[disk].bio = NULL;
1707 		r10_bio->devs[disk].repl_bio = NULL;
1708 
1709 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1710 			rdev = NULL;
1711 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1712 			rrdev = NULL;
1713 		if (!rdev && !rrdev)
1714 			continue;
1715 
1716 		if (rdev) {
1717 			r10_bio->devs[disk].bio = bio;
1718 			atomic_inc(&rdev->nr_pending);
1719 		}
1720 		if (rrdev) {
1721 			r10_bio->devs[disk].repl_bio = bio;
1722 			atomic_inc(&rrdev->nr_pending);
1723 		}
1724 	}
1725 	rcu_read_unlock();
1726 
1727 	atomic_set(&r10_bio->remaining, 1);
1728 	for (disk = 0; disk < geo->raid_disks; disk++) {
1729 		sector_t dev_start, dev_end;
1730 		struct bio *mbio, *rbio = NULL;
1731 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1732 		struct md_rdev *rrdev = rcu_dereference(
1733 			conf->mirrors[disk].replacement);
1734 
1735 		/*
1736 		 * Now start to calculate the start and end address for each disk.
1737 		 * The space between dev_start and dev_end is the discard region.
1738 		 *
1739 		 * For dev_start, it needs to consider three conditions:
1740 		 * 1st, the disk is before start_disk, you can imagine the disk in
1741 		 * the next stripe. So the dev_start is the start address of next
1742 		 * stripe.
1743 		 * 2st, the disk is after start_disk, it means the disk is at the
1744 		 * same stripe of first disk
1745 		 * 3st, the first disk itself, we can use start_disk_offset directly
1746 		 */
1747 		if (disk < start_disk_index)
1748 			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1749 		else if (disk > start_disk_index)
1750 			dev_start = first_stripe_index * mddev->chunk_sectors;
1751 		else
1752 			dev_start = start_disk_offset;
1753 
1754 		if (disk < end_disk_index)
1755 			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1756 		else if (disk > end_disk_index)
1757 			dev_end = last_stripe_index * mddev->chunk_sectors;
1758 		else
1759 			dev_end = end_disk_offset;
1760 
1761 		/* It only handles discard bio which size is >= stripe size, so
1762 		 * dev_end > dev_start all the time
1763 		 */
1764 		if (r10_bio->devs[disk].bio) {
1765 			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1766 			mbio->bi_end_io = raid10_end_discard_request;
1767 			mbio->bi_private = r10_bio;
1768 			r10_bio->devs[disk].bio = mbio;
1769 			r10_bio->devs[disk].devnum = disk;
1770 			atomic_inc(&r10_bio->remaining);
1771 			md_submit_discard_bio(mddev, rdev, mbio,
1772 					dev_start + choose_data_offset(r10_bio, rdev),
1773 					dev_end - dev_start);
1774 			bio_endio(mbio);
1775 		}
1776 		if (r10_bio->devs[disk].repl_bio) {
1777 			rbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1778 			rbio->bi_end_io = raid10_end_discard_request;
1779 			rbio->bi_private = r10_bio;
1780 			r10_bio->devs[disk].repl_bio = rbio;
1781 			r10_bio->devs[disk].devnum = disk;
1782 			atomic_inc(&r10_bio->remaining);
1783 			md_submit_discard_bio(mddev, rrdev, rbio,
1784 					dev_start + choose_data_offset(r10_bio, rrdev),
1785 					dev_end - dev_start);
1786 			bio_endio(rbio);
1787 		}
1788 	}
1789 
1790 	if (!geo->far_offset && --far_copies) {
1791 		first_stripe_index += geo->stride >> geo->chunk_shift;
1792 		start_disk_offset += geo->stride;
1793 		last_stripe_index += geo->stride >> geo->chunk_shift;
1794 		end_disk_offset += geo->stride;
1795 		atomic_inc(&first_r10bio->remaining);
1796 		raid_end_discard_bio(r10_bio);
1797 		wait_barrier(conf);
1798 		goto retry_discard;
1799 	}
1800 
1801 	raid_end_discard_bio(r10_bio);
1802 
1803 	return 0;
1804 out:
1805 	allow_barrier(conf);
1806 	return -EAGAIN;
1807 }
1808 
1809 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1810 {
1811 	struct r10conf *conf = mddev->private;
1812 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1813 	int chunk_sects = chunk_mask + 1;
1814 	int sectors = bio_sectors(bio);
1815 
1816 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1817 	    && md_flush_request(mddev, bio))
1818 		return true;
1819 
1820 	if (!md_write_start(mddev, bio))
1821 		return false;
1822 
1823 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1824 		if (!raid10_handle_discard(mddev, bio))
1825 			return true;
1826 
1827 	/*
1828 	 * If this request crosses a chunk boundary, we need to split
1829 	 * it.
1830 	 */
1831 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1832 		     sectors > chunk_sects
1833 		     && (conf->geo.near_copies < conf->geo.raid_disks
1834 			 || conf->prev.near_copies <
1835 			 conf->prev.raid_disks)))
1836 		sectors = chunk_sects -
1837 			(bio->bi_iter.bi_sector &
1838 			 (chunk_sects - 1));
1839 	__make_request(mddev, bio, sectors);
1840 
1841 	/* In case raid10d snuck in to freeze_array */
1842 	wake_up(&conf->wait_barrier);
1843 	return true;
1844 }
1845 
1846 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1847 {
1848 	struct r10conf *conf = mddev->private;
1849 	int i;
1850 
1851 	if (conf->geo.near_copies < conf->geo.raid_disks)
1852 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1853 	if (conf->geo.near_copies > 1)
1854 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1855 	if (conf->geo.far_copies > 1) {
1856 		if (conf->geo.far_offset)
1857 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1858 		else
1859 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1860 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1861 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1862 	}
1863 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1864 					conf->geo.raid_disks - mddev->degraded);
1865 	rcu_read_lock();
1866 	for (i = 0; i < conf->geo.raid_disks; i++) {
1867 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1868 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1869 	}
1870 	rcu_read_unlock();
1871 	seq_printf(seq, "]");
1872 }
1873 
1874 /* check if there are enough drives for
1875  * every block to appear on atleast one.
1876  * Don't consider the device numbered 'ignore'
1877  * as we might be about to remove it.
1878  */
1879 static int _enough(struct r10conf *conf, int previous, int ignore)
1880 {
1881 	int first = 0;
1882 	int has_enough = 0;
1883 	int disks, ncopies;
1884 	if (previous) {
1885 		disks = conf->prev.raid_disks;
1886 		ncopies = conf->prev.near_copies;
1887 	} else {
1888 		disks = conf->geo.raid_disks;
1889 		ncopies = conf->geo.near_copies;
1890 	}
1891 
1892 	rcu_read_lock();
1893 	do {
1894 		int n = conf->copies;
1895 		int cnt = 0;
1896 		int this = first;
1897 		while (n--) {
1898 			struct md_rdev *rdev;
1899 			if (this != ignore &&
1900 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1901 			    test_bit(In_sync, &rdev->flags))
1902 				cnt++;
1903 			this = (this+1) % disks;
1904 		}
1905 		if (cnt == 0)
1906 			goto out;
1907 		first = (first + ncopies) % disks;
1908 	} while (first != 0);
1909 	has_enough = 1;
1910 out:
1911 	rcu_read_unlock();
1912 	return has_enough;
1913 }
1914 
1915 static int enough(struct r10conf *conf, int ignore)
1916 {
1917 	/* when calling 'enough', both 'prev' and 'geo' must
1918 	 * be stable.
1919 	 * This is ensured if ->reconfig_mutex or ->device_lock
1920 	 * is held.
1921 	 */
1922 	return _enough(conf, 0, ignore) &&
1923 		_enough(conf, 1, ignore);
1924 }
1925 
1926 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1927 {
1928 	char b[BDEVNAME_SIZE];
1929 	struct r10conf *conf = mddev->private;
1930 	unsigned long flags;
1931 
1932 	/*
1933 	 * If it is not operational, then we have already marked it as dead
1934 	 * else if it is the last working disks with "fail_last_dev == false",
1935 	 * ignore the error, let the next level up know.
1936 	 * else mark the drive as failed
1937 	 */
1938 	spin_lock_irqsave(&conf->device_lock, flags);
1939 	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1940 	    && !enough(conf, rdev->raid_disk)) {
1941 		/*
1942 		 * Don't fail the drive, just return an IO error.
1943 		 */
1944 		spin_unlock_irqrestore(&conf->device_lock, flags);
1945 		return;
1946 	}
1947 	if (test_and_clear_bit(In_sync, &rdev->flags))
1948 		mddev->degraded++;
1949 	/*
1950 	 * If recovery is running, make sure it aborts.
1951 	 */
1952 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1953 	set_bit(Blocked, &rdev->flags);
1954 	set_bit(Faulty, &rdev->flags);
1955 	set_mask_bits(&mddev->sb_flags, 0,
1956 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1957 	spin_unlock_irqrestore(&conf->device_lock, flags);
1958 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1959 		"md/raid10:%s: Operation continuing on %d devices.\n",
1960 		mdname(mddev), bdevname(rdev->bdev, b),
1961 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1962 }
1963 
1964 static void print_conf(struct r10conf *conf)
1965 {
1966 	int i;
1967 	struct md_rdev *rdev;
1968 
1969 	pr_debug("RAID10 conf printout:\n");
1970 	if (!conf) {
1971 		pr_debug("(!conf)\n");
1972 		return;
1973 	}
1974 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1975 		 conf->geo.raid_disks);
1976 
1977 	/* This is only called with ->reconfix_mutex held, so
1978 	 * rcu protection of rdev is not needed */
1979 	for (i = 0; i < conf->geo.raid_disks; i++) {
1980 		char b[BDEVNAME_SIZE];
1981 		rdev = conf->mirrors[i].rdev;
1982 		if (rdev)
1983 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1984 				 i, !test_bit(In_sync, &rdev->flags),
1985 				 !test_bit(Faulty, &rdev->flags),
1986 				 bdevname(rdev->bdev,b));
1987 	}
1988 }
1989 
1990 static void close_sync(struct r10conf *conf)
1991 {
1992 	wait_barrier(conf);
1993 	allow_barrier(conf);
1994 
1995 	mempool_exit(&conf->r10buf_pool);
1996 }
1997 
1998 static int raid10_spare_active(struct mddev *mddev)
1999 {
2000 	int i;
2001 	struct r10conf *conf = mddev->private;
2002 	struct raid10_info *tmp;
2003 	int count = 0;
2004 	unsigned long flags;
2005 
2006 	/*
2007 	 * Find all non-in_sync disks within the RAID10 configuration
2008 	 * and mark them in_sync
2009 	 */
2010 	for (i = 0; i < conf->geo.raid_disks; i++) {
2011 		tmp = conf->mirrors + i;
2012 		if (tmp->replacement
2013 		    && tmp->replacement->recovery_offset == MaxSector
2014 		    && !test_bit(Faulty, &tmp->replacement->flags)
2015 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2016 			/* Replacement has just become active */
2017 			if (!tmp->rdev
2018 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2019 				count++;
2020 			if (tmp->rdev) {
2021 				/* Replaced device not technically faulty,
2022 				 * but we need to be sure it gets removed
2023 				 * and never re-added.
2024 				 */
2025 				set_bit(Faulty, &tmp->rdev->flags);
2026 				sysfs_notify_dirent_safe(
2027 					tmp->rdev->sysfs_state);
2028 			}
2029 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2030 		} else if (tmp->rdev
2031 			   && tmp->rdev->recovery_offset == MaxSector
2032 			   && !test_bit(Faulty, &tmp->rdev->flags)
2033 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2034 			count++;
2035 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2036 		}
2037 	}
2038 	spin_lock_irqsave(&conf->device_lock, flags);
2039 	mddev->degraded -= count;
2040 	spin_unlock_irqrestore(&conf->device_lock, flags);
2041 
2042 	print_conf(conf);
2043 	return count;
2044 }
2045 
2046 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2047 {
2048 	struct r10conf *conf = mddev->private;
2049 	int err = -EEXIST;
2050 	int mirror;
2051 	int first = 0;
2052 	int last = conf->geo.raid_disks - 1;
2053 
2054 	if (mddev->recovery_cp < MaxSector)
2055 		/* only hot-add to in-sync arrays, as recovery is
2056 		 * very different from resync
2057 		 */
2058 		return -EBUSY;
2059 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2060 		return -EINVAL;
2061 
2062 	if (md_integrity_add_rdev(rdev, mddev))
2063 		return -ENXIO;
2064 
2065 	if (rdev->raid_disk >= 0)
2066 		first = last = rdev->raid_disk;
2067 
2068 	if (rdev->saved_raid_disk >= first &&
2069 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2070 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2071 		mirror = rdev->saved_raid_disk;
2072 	else
2073 		mirror = first;
2074 	for ( ; mirror <= last ; mirror++) {
2075 		struct raid10_info *p = &conf->mirrors[mirror];
2076 		if (p->recovery_disabled == mddev->recovery_disabled)
2077 			continue;
2078 		if (p->rdev) {
2079 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
2080 			    p->replacement != NULL)
2081 				continue;
2082 			clear_bit(In_sync, &rdev->flags);
2083 			set_bit(Replacement, &rdev->flags);
2084 			rdev->raid_disk = mirror;
2085 			err = 0;
2086 			if (mddev->gendisk)
2087 				disk_stack_limits(mddev->gendisk, rdev->bdev,
2088 						  rdev->data_offset << 9);
2089 			conf->fullsync = 1;
2090 			rcu_assign_pointer(p->replacement, rdev);
2091 			break;
2092 		}
2093 
2094 		if (mddev->gendisk)
2095 			disk_stack_limits(mddev->gendisk, rdev->bdev,
2096 					  rdev->data_offset << 9);
2097 
2098 		p->head_position = 0;
2099 		p->recovery_disabled = mddev->recovery_disabled - 1;
2100 		rdev->raid_disk = mirror;
2101 		err = 0;
2102 		if (rdev->saved_raid_disk != mirror)
2103 			conf->fullsync = 1;
2104 		rcu_assign_pointer(p->rdev, rdev);
2105 		break;
2106 	}
2107 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2108 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
2109 
2110 	print_conf(conf);
2111 	return err;
2112 }
2113 
2114 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2115 {
2116 	struct r10conf *conf = mddev->private;
2117 	int err = 0;
2118 	int number = rdev->raid_disk;
2119 	struct md_rdev **rdevp;
2120 	struct raid10_info *p = conf->mirrors + number;
2121 
2122 	print_conf(conf);
2123 	if (rdev == p->rdev)
2124 		rdevp = &p->rdev;
2125 	else if (rdev == p->replacement)
2126 		rdevp = &p->replacement;
2127 	else
2128 		return 0;
2129 
2130 	if (test_bit(In_sync, &rdev->flags) ||
2131 	    atomic_read(&rdev->nr_pending)) {
2132 		err = -EBUSY;
2133 		goto abort;
2134 	}
2135 	/* Only remove non-faulty devices if recovery
2136 	 * is not possible.
2137 	 */
2138 	if (!test_bit(Faulty, &rdev->flags) &&
2139 	    mddev->recovery_disabled != p->recovery_disabled &&
2140 	    (!p->replacement || p->replacement == rdev) &&
2141 	    number < conf->geo.raid_disks &&
2142 	    enough(conf, -1)) {
2143 		err = -EBUSY;
2144 		goto abort;
2145 	}
2146 	*rdevp = NULL;
2147 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2148 		synchronize_rcu();
2149 		if (atomic_read(&rdev->nr_pending)) {
2150 			/* lost the race, try later */
2151 			err = -EBUSY;
2152 			*rdevp = rdev;
2153 			goto abort;
2154 		}
2155 	}
2156 	if (p->replacement) {
2157 		/* We must have just cleared 'rdev' */
2158 		p->rdev = p->replacement;
2159 		clear_bit(Replacement, &p->replacement->flags);
2160 		smp_mb(); /* Make sure other CPUs may see both as identical
2161 			   * but will never see neither -- if they are careful.
2162 			   */
2163 		p->replacement = NULL;
2164 	}
2165 
2166 	clear_bit(WantReplacement, &rdev->flags);
2167 	err = md_integrity_register(mddev);
2168 
2169 abort:
2170 
2171 	print_conf(conf);
2172 	return err;
2173 }
2174 
2175 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2176 {
2177 	struct r10conf *conf = r10_bio->mddev->private;
2178 
2179 	if (!bio->bi_status)
2180 		set_bit(R10BIO_Uptodate, &r10_bio->state);
2181 	else
2182 		/* The write handler will notice the lack of
2183 		 * R10BIO_Uptodate and record any errors etc
2184 		 */
2185 		atomic_add(r10_bio->sectors,
2186 			   &conf->mirrors[d].rdev->corrected_errors);
2187 
2188 	/* for reconstruct, we always reschedule after a read.
2189 	 * for resync, only after all reads
2190 	 */
2191 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2192 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2193 	    atomic_dec_and_test(&r10_bio->remaining)) {
2194 		/* we have read all the blocks,
2195 		 * do the comparison in process context in raid10d
2196 		 */
2197 		reschedule_retry(r10_bio);
2198 	}
2199 }
2200 
2201 static void end_sync_read(struct bio *bio)
2202 {
2203 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2204 	struct r10conf *conf = r10_bio->mddev->private;
2205 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2206 
2207 	__end_sync_read(r10_bio, bio, d);
2208 }
2209 
2210 static void end_reshape_read(struct bio *bio)
2211 {
2212 	/* reshape read bio isn't allocated from r10buf_pool */
2213 	struct r10bio *r10_bio = bio->bi_private;
2214 
2215 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2216 }
2217 
2218 static void end_sync_request(struct r10bio *r10_bio)
2219 {
2220 	struct mddev *mddev = r10_bio->mddev;
2221 
2222 	while (atomic_dec_and_test(&r10_bio->remaining)) {
2223 		if (r10_bio->master_bio == NULL) {
2224 			/* the primary of several recovery bios */
2225 			sector_t s = r10_bio->sectors;
2226 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2227 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2228 				reschedule_retry(r10_bio);
2229 			else
2230 				put_buf(r10_bio);
2231 			md_done_sync(mddev, s, 1);
2232 			break;
2233 		} else {
2234 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2235 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2236 			    test_bit(R10BIO_WriteError, &r10_bio->state))
2237 				reschedule_retry(r10_bio);
2238 			else
2239 				put_buf(r10_bio);
2240 			r10_bio = r10_bio2;
2241 		}
2242 	}
2243 }
2244 
2245 static void end_sync_write(struct bio *bio)
2246 {
2247 	struct r10bio *r10_bio = get_resync_r10bio(bio);
2248 	struct mddev *mddev = r10_bio->mddev;
2249 	struct r10conf *conf = mddev->private;
2250 	int d;
2251 	sector_t first_bad;
2252 	int bad_sectors;
2253 	int slot;
2254 	int repl;
2255 	struct md_rdev *rdev = NULL;
2256 
2257 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2258 	if (repl)
2259 		rdev = conf->mirrors[d].replacement;
2260 	else
2261 		rdev = conf->mirrors[d].rdev;
2262 
2263 	if (bio->bi_status) {
2264 		if (repl)
2265 			md_error(mddev, rdev);
2266 		else {
2267 			set_bit(WriteErrorSeen, &rdev->flags);
2268 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2269 				set_bit(MD_RECOVERY_NEEDED,
2270 					&rdev->mddev->recovery);
2271 			set_bit(R10BIO_WriteError, &r10_bio->state);
2272 		}
2273 	} else if (is_badblock(rdev,
2274 			     r10_bio->devs[slot].addr,
2275 			     r10_bio->sectors,
2276 			     &first_bad, &bad_sectors))
2277 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2278 
2279 	rdev_dec_pending(rdev, mddev);
2280 
2281 	end_sync_request(r10_bio);
2282 }
2283 
2284 /*
2285  * Note: sync and recover and handled very differently for raid10
2286  * This code is for resync.
2287  * For resync, we read through virtual addresses and read all blocks.
2288  * If there is any error, we schedule a write.  The lowest numbered
2289  * drive is authoritative.
2290  * However requests come for physical address, so we need to map.
2291  * For every physical address there are raid_disks/copies virtual addresses,
2292  * which is always are least one, but is not necessarly an integer.
2293  * This means that a physical address can span multiple chunks, so we may
2294  * have to submit multiple io requests for a single sync request.
2295  */
2296 /*
2297  * We check if all blocks are in-sync and only write to blocks that
2298  * aren't in sync
2299  */
2300 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2301 {
2302 	struct r10conf *conf = mddev->private;
2303 	int i, first;
2304 	struct bio *tbio, *fbio;
2305 	int vcnt;
2306 	struct page **tpages, **fpages;
2307 
2308 	atomic_set(&r10_bio->remaining, 1);
2309 
2310 	/* find the first device with a block */
2311 	for (i=0; i<conf->copies; i++)
2312 		if (!r10_bio->devs[i].bio->bi_status)
2313 			break;
2314 
2315 	if (i == conf->copies)
2316 		goto done;
2317 
2318 	first = i;
2319 	fbio = r10_bio->devs[i].bio;
2320 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2321 	fbio->bi_iter.bi_idx = 0;
2322 	fpages = get_resync_pages(fbio)->pages;
2323 
2324 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2325 	/* now find blocks with errors */
2326 	for (i=0 ; i < conf->copies ; i++) {
2327 		int  j, d;
2328 		struct md_rdev *rdev;
2329 		struct resync_pages *rp;
2330 
2331 		tbio = r10_bio->devs[i].bio;
2332 
2333 		if (tbio->bi_end_io != end_sync_read)
2334 			continue;
2335 		if (i == first)
2336 			continue;
2337 
2338 		tpages = get_resync_pages(tbio)->pages;
2339 		d = r10_bio->devs[i].devnum;
2340 		rdev = conf->mirrors[d].rdev;
2341 		if (!r10_bio->devs[i].bio->bi_status) {
2342 			/* We know that the bi_io_vec layout is the same for
2343 			 * both 'first' and 'i', so we just compare them.
2344 			 * All vec entries are PAGE_SIZE;
2345 			 */
2346 			int sectors = r10_bio->sectors;
2347 			for (j = 0; j < vcnt; j++) {
2348 				int len = PAGE_SIZE;
2349 				if (sectors < (len / 512))
2350 					len = sectors * 512;
2351 				if (memcmp(page_address(fpages[j]),
2352 					   page_address(tpages[j]),
2353 					   len))
2354 					break;
2355 				sectors -= len/512;
2356 			}
2357 			if (j == vcnt)
2358 				continue;
2359 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2360 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2361 				/* Don't fix anything. */
2362 				continue;
2363 		} else if (test_bit(FailFast, &rdev->flags)) {
2364 			/* Just give up on this device */
2365 			md_error(rdev->mddev, rdev);
2366 			continue;
2367 		}
2368 		/* Ok, we need to write this bio, either to correct an
2369 		 * inconsistency or to correct an unreadable block.
2370 		 * First we need to fixup bv_offset, bv_len and
2371 		 * bi_vecs, as the read request might have corrupted these
2372 		 */
2373 		rp = get_resync_pages(tbio);
2374 		bio_reset(tbio);
2375 
2376 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2377 
2378 		rp->raid_bio = r10_bio;
2379 		tbio->bi_private = rp;
2380 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2381 		tbio->bi_end_io = end_sync_write;
2382 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2383 
2384 		bio_copy_data(tbio, fbio);
2385 
2386 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2387 		atomic_inc(&r10_bio->remaining);
2388 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2389 
2390 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2391 			tbio->bi_opf |= MD_FAILFAST;
2392 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2393 		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2394 		submit_bio_noacct(tbio);
2395 	}
2396 
2397 	/* Now write out to any replacement devices
2398 	 * that are active
2399 	 */
2400 	for (i = 0; i < conf->copies; i++) {
2401 		int d;
2402 
2403 		tbio = r10_bio->devs[i].repl_bio;
2404 		if (!tbio || !tbio->bi_end_io)
2405 			continue;
2406 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2407 		    && r10_bio->devs[i].bio != fbio)
2408 			bio_copy_data(tbio, fbio);
2409 		d = r10_bio->devs[i].devnum;
2410 		atomic_inc(&r10_bio->remaining);
2411 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2412 			     bio_sectors(tbio));
2413 		submit_bio_noacct(tbio);
2414 	}
2415 
2416 done:
2417 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2418 		md_done_sync(mddev, r10_bio->sectors, 1);
2419 		put_buf(r10_bio);
2420 	}
2421 }
2422 
2423 /*
2424  * Now for the recovery code.
2425  * Recovery happens across physical sectors.
2426  * We recover all non-is_sync drives by finding the virtual address of
2427  * each, and then choose a working drive that also has that virt address.
2428  * There is a separate r10_bio for each non-in_sync drive.
2429  * Only the first two slots are in use. The first for reading,
2430  * The second for writing.
2431  *
2432  */
2433 static void fix_recovery_read_error(struct r10bio *r10_bio)
2434 {
2435 	/* We got a read error during recovery.
2436 	 * We repeat the read in smaller page-sized sections.
2437 	 * If a read succeeds, write it to the new device or record
2438 	 * a bad block if we cannot.
2439 	 * If a read fails, record a bad block on both old and
2440 	 * new devices.
2441 	 */
2442 	struct mddev *mddev = r10_bio->mddev;
2443 	struct r10conf *conf = mddev->private;
2444 	struct bio *bio = r10_bio->devs[0].bio;
2445 	sector_t sect = 0;
2446 	int sectors = r10_bio->sectors;
2447 	int idx = 0;
2448 	int dr = r10_bio->devs[0].devnum;
2449 	int dw = r10_bio->devs[1].devnum;
2450 	struct page **pages = get_resync_pages(bio)->pages;
2451 
2452 	while (sectors) {
2453 		int s = sectors;
2454 		struct md_rdev *rdev;
2455 		sector_t addr;
2456 		int ok;
2457 
2458 		if (s > (PAGE_SIZE>>9))
2459 			s = PAGE_SIZE >> 9;
2460 
2461 		rdev = conf->mirrors[dr].rdev;
2462 		addr = r10_bio->devs[0].addr + sect,
2463 		ok = sync_page_io(rdev,
2464 				  addr,
2465 				  s << 9,
2466 				  pages[idx],
2467 				  REQ_OP_READ, 0, false);
2468 		if (ok) {
2469 			rdev = conf->mirrors[dw].rdev;
2470 			addr = r10_bio->devs[1].addr + sect;
2471 			ok = sync_page_io(rdev,
2472 					  addr,
2473 					  s << 9,
2474 					  pages[idx],
2475 					  REQ_OP_WRITE, 0, false);
2476 			if (!ok) {
2477 				set_bit(WriteErrorSeen, &rdev->flags);
2478 				if (!test_and_set_bit(WantReplacement,
2479 						      &rdev->flags))
2480 					set_bit(MD_RECOVERY_NEEDED,
2481 						&rdev->mddev->recovery);
2482 			}
2483 		}
2484 		if (!ok) {
2485 			/* We don't worry if we cannot set a bad block -
2486 			 * it really is bad so there is no loss in not
2487 			 * recording it yet
2488 			 */
2489 			rdev_set_badblocks(rdev, addr, s, 0);
2490 
2491 			if (rdev != conf->mirrors[dw].rdev) {
2492 				/* need bad block on destination too */
2493 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2494 				addr = r10_bio->devs[1].addr + sect;
2495 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2496 				if (!ok) {
2497 					/* just abort the recovery */
2498 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2499 						  mdname(mddev));
2500 
2501 					conf->mirrors[dw].recovery_disabled
2502 						= mddev->recovery_disabled;
2503 					set_bit(MD_RECOVERY_INTR,
2504 						&mddev->recovery);
2505 					break;
2506 				}
2507 			}
2508 		}
2509 
2510 		sectors -= s;
2511 		sect += s;
2512 		idx++;
2513 	}
2514 }
2515 
2516 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2517 {
2518 	struct r10conf *conf = mddev->private;
2519 	int d;
2520 	struct bio *wbio, *wbio2;
2521 
2522 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2523 		fix_recovery_read_error(r10_bio);
2524 		end_sync_request(r10_bio);
2525 		return;
2526 	}
2527 
2528 	/*
2529 	 * share the pages with the first bio
2530 	 * and submit the write request
2531 	 */
2532 	d = r10_bio->devs[1].devnum;
2533 	wbio = r10_bio->devs[1].bio;
2534 	wbio2 = r10_bio->devs[1].repl_bio;
2535 	/* Need to test wbio2->bi_end_io before we call
2536 	 * submit_bio_noacct as if the former is NULL,
2537 	 * the latter is free to free wbio2.
2538 	 */
2539 	if (wbio2 && !wbio2->bi_end_io)
2540 		wbio2 = NULL;
2541 	if (wbio->bi_end_io) {
2542 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2543 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2544 		submit_bio_noacct(wbio);
2545 	}
2546 	if (wbio2) {
2547 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2548 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2549 			     bio_sectors(wbio2));
2550 		submit_bio_noacct(wbio2);
2551 	}
2552 }
2553 
2554 /*
2555  * Used by fix_read_error() to decay the per rdev read_errors.
2556  * We halve the read error count for every hour that has elapsed
2557  * since the last recorded read error.
2558  *
2559  */
2560 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2561 {
2562 	long cur_time_mon;
2563 	unsigned long hours_since_last;
2564 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2565 
2566 	cur_time_mon = ktime_get_seconds();
2567 
2568 	if (rdev->last_read_error == 0) {
2569 		/* first time we've seen a read error */
2570 		rdev->last_read_error = cur_time_mon;
2571 		return;
2572 	}
2573 
2574 	hours_since_last = (long)(cur_time_mon -
2575 			    rdev->last_read_error) / 3600;
2576 
2577 	rdev->last_read_error = cur_time_mon;
2578 
2579 	/*
2580 	 * if hours_since_last is > the number of bits in read_errors
2581 	 * just set read errors to 0. We do this to avoid
2582 	 * overflowing the shift of read_errors by hours_since_last.
2583 	 */
2584 	if (hours_since_last >= 8 * sizeof(read_errors))
2585 		atomic_set(&rdev->read_errors, 0);
2586 	else
2587 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2588 }
2589 
2590 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2591 			    int sectors, struct page *page, int rw)
2592 {
2593 	sector_t first_bad;
2594 	int bad_sectors;
2595 
2596 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2597 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2598 		return -1;
2599 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2600 		/* success */
2601 		return 1;
2602 	if (rw == WRITE) {
2603 		set_bit(WriteErrorSeen, &rdev->flags);
2604 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2605 			set_bit(MD_RECOVERY_NEEDED,
2606 				&rdev->mddev->recovery);
2607 	}
2608 	/* need to record an error - either for the block or the device */
2609 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2610 		md_error(rdev->mddev, rdev);
2611 	return 0;
2612 }
2613 
2614 /*
2615  * This is a kernel thread which:
2616  *
2617  *	1.	Retries failed read operations on working mirrors.
2618  *	2.	Updates the raid superblock when problems encounter.
2619  *	3.	Performs writes following reads for array synchronising.
2620  */
2621 
2622 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2623 {
2624 	int sect = 0; /* Offset from r10_bio->sector */
2625 	int sectors = r10_bio->sectors;
2626 	struct md_rdev *rdev;
2627 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2628 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2629 
2630 	/* still own a reference to this rdev, so it cannot
2631 	 * have been cleared recently.
2632 	 */
2633 	rdev = conf->mirrors[d].rdev;
2634 
2635 	if (test_bit(Faulty, &rdev->flags))
2636 		/* drive has already been failed, just ignore any
2637 		   more fix_read_error() attempts */
2638 		return;
2639 
2640 	check_decay_read_errors(mddev, rdev);
2641 	atomic_inc(&rdev->read_errors);
2642 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2643 		char b[BDEVNAME_SIZE];
2644 		bdevname(rdev->bdev, b);
2645 
2646 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2647 			  mdname(mddev), b,
2648 			  atomic_read(&rdev->read_errors), max_read_errors);
2649 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2650 			  mdname(mddev), b);
2651 		md_error(mddev, rdev);
2652 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2653 		return;
2654 	}
2655 
2656 	while(sectors) {
2657 		int s = sectors;
2658 		int sl = r10_bio->read_slot;
2659 		int success = 0;
2660 		int start;
2661 
2662 		if (s > (PAGE_SIZE>>9))
2663 			s = PAGE_SIZE >> 9;
2664 
2665 		rcu_read_lock();
2666 		do {
2667 			sector_t first_bad;
2668 			int bad_sectors;
2669 
2670 			d = r10_bio->devs[sl].devnum;
2671 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2672 			if (rdev &&
2673 			    test_bit(In_sync, &rdev->flags) &&
2674 			    !test_bit(Faulty, &rdev->flags) &&
2675 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2676 					&first_bad, &bad_sectors) == 0) {
2677 				atomic_inc(&rdev->nr_pending);
2678 				rcu_read_unlock();
2679 				success = sync_page_io(rdev,
2680 						       r10_bio->devs[sl].addr +
2681 						       sect,
2682 						       s<<9,
2683 						       conf->tmppage,
2684 						       REQ_OP_READ, 0, false);
2685 				rdev_dec_pending(rdev, mddev);
2686 				rcu_read_lock();
2687 				if (success)
2688 					break;
2689 			}
2690 			sl++;
2691 			if (sl == conf->copies)
2692 				sl = 0;
2693 		} while (!success && sl != r10_bio->read_slot);
2694 		rcu_read_unlock();
2695 
2696 		if (!success) {
2697 			/* Cannot read from anywhere, just mark the block
2698 			 * as bad on the first device to discourage future
2699 			 * reads.
2700 			 */
2701 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2702 			rdev = conf->mirrors[dn].rdev;
2703 
2704 			if (!rdev_set_badblocks(
2705 				    rdev,
2706 				    r10_bio->devs[r10_bio->read_slot].addr
2707 				    + sect,
2708 				    s, 0)) {
2709 				md_error(mddev, rdev);
2710 				r10_bio->devs[r10_bio->read_slot].bio
2711 					= IO_BLOCKED;
2712 			}
2713 			break;
2714 		}
2715 
2716 		start = sl;
2717 		/* write it back and re-read */
2718 		rcu_read_lock();
2719 		while (sl != r10_bio->read_slot) {
2720 			char b[BDEVNAME_SIZE];
2721 
2722 			if (sl==0)
2723 				sl = conf->copies;
2724 			sl--;
2725 			d = r10_bio->devs[sl].devnum;
2726 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2727 			if (!rdev ||
2728 			    test_bit(Faulty, &rdev->flags) ||
2729 			    !test_bit(In_sync, &rdev->flags))
2730 				continue;
2731 
2732 			atomic_inc(&rdev->nr_pending);
2733 			rcu_read_unlock();
2734 			if (r10_sync_page_io(rdev,
2735 					     r10_bio->devs[sl].addr +
2736 					     sect,
2737 					     s, conf->tmppage, WRITE)
2738 			    == 0) {
2739 				/* Well, this device is dead */
2740 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2741 					  mdname(mddev), s,
2742 					  (unsigned long long)(
2743 						  sect +
2744 						  choose_data_offset(r10_bio,
2745 								     rdev)),
2746 					  bdevname(rdev->bdev, b));
2747 				pr_notice("md/raid10:%s: %s: failing drive\n",
2748 					  mdname(mddev),
2749 					  bdevname(rdev->bdev, b));
2750 			}
2751 			rdev_dec_pending(rdev, mddev);
2752 			rcu_read_lock();
2753 		}
2754 		sl = start;
2755 		while (sl != r10_bio->read_slot) {
2756 			char b[BDEVNAME_SIZE];
2757 
2758 			if (sl==0)
2759 				sl = conf->copies;
2760 			sl--;
2761 			d = r10_bio->devs[sl].devnum;
2762 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2763 			if (!rdev ||
2764 			    test_bit(Faulty, &rdev->flags) ||
2765 			    !test_bit(In_sync, &rdev->flags))
2766 				continue;
2767 
2768 			atomic_inc(&rdev->nr_pending);
2769 			rcu_read_unlock();
2770 			switch (r10_sync_page_io(rdev,
2771 					     r10_bio->devs[sl].addr +
2772 					     sect,
2773 					     s, conf->tmppage,
2774 						 READ)) {
2775 			case 0:
2776 				/* Well, this device is dead */
2777 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2778 				       mdname(mddev), s,
2779 				       (unsigned long long)(
2780 					       sect +
2781 					       choose_data_offset(r10_bio, rdev)),
2782 				       bdevname(rdev->bdev, b));
2783 				pr_notice("md/raid10:%s: %s: failing drive\n",
2784 				       mdname(mddev),
2785 				       bdevname(rdev->bdev, b));
2786 				break;
2787 			case 1:
2788 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2789 				       mdname(mddev), s,
2790 				       (unsigned long long)(
2791 					       sect +
2792 					       choose_data_offset(r10_bio, rdev)),
2793 				       bdevname(rdev->bdev, b));
2794 				atomic_add(s, &rdev->corrected_errors);
2795 			}
2796 
2797 			rdev_dec_pending(rdev, mddev);
2798 			rcu_read_lock();
2799 		}
2800 		rcu_read_unlock();
2801 
2802 		sectors -= s;
2803 		sect += s;
2804 	}
2805 }
2806 
2807 static int narrow_write_error(struct r10bio *r10_bio, int i)
2808 {
2809 	struct bio *bio = r10_bio->master_bio;
2810 	struct mddev *mddev = r10_bio->mddev;
2811 	struct r10conf *conf = mddev->private;
2812 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2813 	/* bio has the data to be written to slot 'i' where
2814 	 * we just recently had a write error.
2815 	 * We repeatedly clone the bio and trim down to one block,
2816 	 * then try the write.  Where the write fails we record
2817 	 * a bad block.
2818 	 * It is conceivable that the bio doesn't exactly align with
2819 	 * blocks.  We must handle this.
2820 	 *
2821 	 * We currently own a reference to the rdev.
2822 	 */
2823 
2824 	int block_sectors;
2825 	sector_t sector;
2826 	int sectors;
2827 	int sect_to_write = r10_bio->sectors;
2828 	int ok = 1;
2829 
2830 	if (rdev->badblocks.shift < 0)
2831 		return 0;
2832 
2833 	block_sectors = roundup(1 << rdev->badblocks.shift,
2834 				bdev_logical_block_size(rdev->bdev) >> 9);
2835 	sector = r10_bio->sector;
2836 	sectors = ((r10_bio->sector + block_sectors)
2837 		   & ~(sector_t)(block_sectors - 1))
2838 		- sector;
2839 
2840 	while (sect_to_write) {
2841 		struct bio *wbio;
2842 		sector_t wsector;
2843 		if (sectors > sect_to_write)
2844 			sectors = sect_to_write;
2845 		/* Write at 'sector' for 'sectors' */
2846 		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2847 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2848 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2849 		wbio->bi_iter.bi_sector = wsector +
2850 				   choose_data_offset(r10_bio, rdev);
2851 		bio_set_dev(wbio, rdev->bdev);
2852 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2853 
2854 		if (submit_bio_wait(wbio) < 0)
2855 			/* Failure! */
2856 			ok = rdev_set_badblocks(rdev, wsector,
2857 						sectors, 0)
2858 				&& ok;
2859 
2860 		bio_put(wbio);
2861 		sect_to_write -= sectors;
2862 		sector += sectors;
2863 		sectors = block_sectors;
2864 	}
2865 	return ok;
2866 }
2867 
2868 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2869 {
2870 	int slot = r10_bio->read_slot;
2871 	struct bio *bio;
2872 	struct r10conf *conf = mddev->private;
2873 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2874 
2875 	/* we got a read error. Maybe the drive is bad.  Maybe just
2876 	 * the block and we can fix it.
2877 	 * We freeze all other IO, and try reading the block from
2878 	 * other devices.  When we find one, we re-write
2879 	 * and check it that fixes the read error.
2880 	 * This is all done synchronously while the array is
2881 	 * frozen.
2882 	 */
2883 	bio = r10_bio->devs[slot].bio;
2884 	bio_put(bio);
2885 	r10_bio->devs[slot].bio = NULL;
2886 
2887 	if (mddev->ro)
2888 		r10_bio->devs[slot].bio = IO_BLOCKED;
2889 	else if (!test_bit(FailFast, &rdev->flags)) {
2890 		freeze_array(conf, 1);
2891 		fix_read_error(conf, mddev, r10_bio);
2892 		unfreeze_array(conf);
2893 	} else
2894 		md_error(mddev, rdev);
2895 
2896 	rdev_dec_pending(rdev, mddev);
2897 	allow_barrier(conf);
2898 	r10_bio->state = 0;
2899 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2900 }
2901 
2902 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2903 {
2904 	/* Some sort of write request has finished and it
2905 	 * succeeded in writing where we thought there was a
2906 	 * bad block.  So forget the bad block.
2907 	 * Or possibly if failed and we need to record
2908 	 * a bad block.
2909 	 */
2910 	int m;
2911 	struct md_rdev *rdev;
2912 
2913 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2914 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2915 		for (m = 0; m < conf->copies; m++) {
2916 			int dev = r10_bio->devs[m].devnum;
2917 			rdev = conf->mirrors[dev].rdev;
2918 			if (r10_bio->devs[m].bio == NULL ||
2919 				r10_bio->devs[m].bio->bi_end_io == NULL)
2920 				continue;
2921 			if (!r10_bio->devs[m].bio->bi_status) {
2922 				rdev_clear_badblocks(
2923 					rdev,
2924 					r10_bio->devs[m].addr,
2925 					r10_bio->sectors, 0);
2926 			} else {
2927 				if (!rdev_set_badblocks(
2928 					    rdev,
2929 					    r10_bio->devs[m].addr,
2930 					    r10_bio->sectors, 0))
2931 					md_error(conf->mddev, rdev);
2932 			}
2933 			rdev = conf->mirrors[dev].replacement;
2934 			if (r10_bio->devs[m].repl_bio == NULL ||
2935 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2936 				continue;
2937 
2938 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2939 				rdev_clear_badblocks(
2940 					rdev,
2941 					r10_bio->devs[m].addr,
2942 					r10_bio->sectors, 0);
2943 			} else {
2944 				if (!rdev_set_badblocks(
2945 					    rdev,
2946 					    r10_bio->devs[m].addr,
2947 					    r10_bio->sectors, 0))
2948 					md_error(conf->mddev, rdev);
2949 			}
2950 		}
2951 		put_buf(r10_bio);
2952 	} else {
2953 		bool fail = false;
2954 		for (m = 0; m < conf->copies; m++) {
2955 			int dev = r10_bio->devs[m].devnum;
2956 			struct bio *bio = r10_bio->devs[m].bio;
2957 			rdev = conf->mirrors[dev].rdev;
2958 			if (bio == IO_MADE_GOOD) {
2959 				rdev_clear_badblocks(
2960 					rdev,
2961 					r10_bio->devs[m].addr,
2962 					r10_bio->sectors, 0);
2963 				rdev_dec_pending(rdev, conf->mddev);
2964 			} else if (bio != NULL && bio->bi_status) {
2965 				fail = true;
2966 				if (!narrow_write_error(r10_bio, m)) {
2967 					md_error(conf->mddev, rdev);
2968 					set_bit(R10BIO_Degraded,
2969 						&r10_bio->state);
2970 				}
2971 				rdev_dec_pending(rdev, conf->mddev);
2972 			}
2973 			bio = r10_bio->devs[m].repl_bio;
2974 			rdev = conf->mirrors[dev].replacement;
2975 			if (rdev && bio == IO_MADE_GOOD) {
2976 				rdev_clear_badblocks(
2977 					rdev,
2978 					r10_bio->devs[m].addr,
2979 					r10_bio->sectors, 0);
2980 				rdev_dec_pending(rdev, conf->mddev);
2981 			}
2982 		}
2983 		if (fail) {
2984 			spin_lock_irq(&conf->device_lock);
2985 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2986 			conf->nr_queued++;
2987 			spin_unlock_irq(&conf->device_lock);
2988 			/*
2989 			 * In case freeze_array() is waiting for condition
2990 			 * nr_pending == nr_queued + extra to be true.
2991 			 */
2992 			wake_up(&conf->wait_barrier);
2993 			md_wakeup_thread(conf->mddev->thread);
2994 		} else {
2995 			if (test_bit(R10BIO_WriteError,
2996 				     &r10_bio->state))
2997 				close_write(r10_bio);
2998 			raid_end_bio_io(r10_bio);
2999 		}
3000 	}
3001 }
3002 
3003 static void raid10d(struct md_thread *thread)
3004 {
3005 	struct mddev *mddev = thread->mddev;
3006 	struct r10bio *r10_bio;
3007 	unsigned long flags;
3008 	struct r10conf *conf = mddev->private;
3009 	struct list_head *head = &conf->retry_list;
3010 	struct blk_plug plug;
3011 
3012 	md_check_recovery(mddev);
3013 
3014 	if (!list_empty_careful(&conf->bio_end_io_list) &&
3015 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3016 		LIST_HEAD(tmp);
3017 		spin_lock_irqsave(&conf->device_lock, flags);
3018 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3019 			while (!list_empty(&conf->bio_end_io_list)) {
3020 				list_move(conf->bio_end_io_list.prev, &tmp);
3021 				conf->nr_queued--;
3022 			}
3023 		}
3024 		spin_unlock_irqrestore(&conf->device_lock, flags);
3025 		while (!list_empty(&tmp)) {
3026 			r10_bio = list_first_entry(&tmp, struct r10bio,
3027 						   retry_list);
3028 			list_del(&r10_bio->retry_list);
3029 			if (mddev->degraded)
3030 				set_bit(R10BIO_Degraded, &r10_bio->state);
3031 
3032 			if (test_bit(R10BIO_WriteError,
3033 				     &r10_bio->state))
3034 				close_write(r10_bio);
3035 			raid_end_bio_io(r10_bio);
3036 		}
3037 	}
3038 
3039 	blk_start_plug(&plug);
3040 	for (;;) {
3041 
3042 		flush_pending_writes(conf);
3043 
3044 		spin_lock_irqsave(&conf->device_lock, flags);
3045 		if (list_empty(head)) {
3046 			spin_unlock_irqrestore(&conf->device_lock, flags);
3047 			break;
3048 		}
3049 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3050 		list_del(head->prev);
3051 		conf->nr_queued--;
3052 		spin_unlock_irqrestore(&conf->device_lock, flags);
3053 
3054 		mddev = r10_bio->mddev;
3055 		conf = mddev->private;
3056 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3057 		    test_bit(R10BIO_WriteError, &r10_bio->state))
3058 			handle_write_completed(conf, r10_bio);
3059 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3060 			reshape_request_write(mddev, r10_bio);
3061 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3062 			sync_request_write(mddev, r10_bio);
3063 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3064 			recovery_request_write(mddev, r10_bio);
3065 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3066 			handle_read_error(mddev, r10_bio);
3067 		else
3068 			WARN_ON_ONCE(1);
3069 
3070 		cond_resched();
3071 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3072 			md_check_recovery(mddev);
3073 	}
3074 	blk_finish_plug(&plug);
3075 }
3076 
3077 static int init_resync(struct r10conf *conf)
3078 {
3079 	int ret, buffs, i;
3080 
3081 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3082 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3083 	conf->have_replacement = 0;
3084 	for (i = 0; i < conf->geo.raid_disks; i++)
3085 		if (conf->mirrors[i].replacement)
3086 			conf->have_replacement = 1;
3087 	ret = mempool_init(&conf->r10buf_pool, buffs,
3088 			   r10buf_pool_alloc, r10buf_pool_free, conf);
3089 	if (ret)
3090 		return ret;
3091 	conf->next_resync = 0;
3092 	return 0;
3093 }
3094 
3095 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3096 {
3097 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3098 	struct rsync_pages *rp;
3099 	struct bio *bio;
3100 	int nalloc;
3101 	int i;
3102 
3103 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3104 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3105 		nalloc = conf->copies; /* resync */
3106 	else
3107 		nalloc = 2; /* recovery */
3108 
3109 	for (i = 0; i < nalloc; i++) {
3110 		bio = r10bio->devs[i].bio;
3111 		rp = bio->bi_private;
3112 		bio_reset(bio);
3113 		bio->bi_private = rp;
3114 		bio = r10bio->devs[i].repl_bio;
3115 		if (bio) {
3116 			rp = bio->bi_private;
3117 			bio_reset(bio);
3118 			bio->bi_private = rp;
3119 		}
3120 	}
3121 	return r10bio;
3122 }
3123 
3124 /*
3125  * Set cluster_sync_high since we need other nodes to add the
3126  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3127  */
3128 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3129 {
3130 	sector_t window_size;
3131 	int extra_chunk, chunks;
3132 
3133 	/*
3134 	 * First, here we define "stripe" as a unit which across
3135 	 * all member devices one time, so we get chunks by use
3136 	 * raid_disks / near_copies. Otherwise, if near_copies is
3137 	 * close to raid_disks, then resync window could increases
3138 	 * linearly with the increase of raid_disks, which means
3139 	 * we will suspend a really large IO window while it is not
3140 	 * necessary. If raid_disks is not divisible by near_copies,
3141 	 * an extra chunk is needed to ensure the whole "stripe" is
3142 	 * covered.
3143 	 */
3144 
3145 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3146 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3147 		extra_chunk = 0;
3148 	else
3149 		extra_chunk = 1;
3150 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3151 
3152 	/*
3153 	 * At least use a 32M window to align with raid1's resync window
3154 	 */
3155 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3156 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3157 
3158 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3159 }
3160 
3161 /*
3162  * perform a "sync" on one "block"
3163  *
3164  * We need to make sure that no normal I/O request - particularly write
3165  * requests - conflict with active sync requests.
3166  *
3167  * This is achieved by tracking pending requests and a 'barrier' concept
3168  * that can be installed to exclude normal IO requests.
3169  *
3170  * Resync and recovery are handled very differently.
3171  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3172  *
3173  * For resync, we iterate over virtual addresses, read all copies,
3174  * and update if there are differences.  If only one copy is live,
3175  * skip it.
3176  * For recovery, we iterate over physical addresses, read a good
3177  * value for each non-in_sync drive, and over-write.
3178  *
3179  * So, for recovery we may have several outstanding complex requests for a
3180  * given address, one for each out-of-sync device.  We model this by allocating
3181  * a number of r10_bio structures, one for each out-of-sync device.
3182  * As we setup these structures, we collect all bio's together into a list
3183  * which we then process collectively to add pages, and then process again
3184  * to pass to submit_bio_noacct.
3185  *
3186  * The r10_bio structures are linked using a borrowed master_bio pointer.
3187  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3188  * has its remaining count decremented to 0, the whole complex operation
3189  * is complete.
3190  *
3191  */
3192 
3193 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3194 			     int *skipped)
3195 {
3196 	struct r10conf *conf = mddev->private;
3197 	struct r10bio *r10_bio;
3198 	struct bio *biolist = NULL, *bio;
3199 	sector_t max_sector, nr_sectors;
3200 	int i;
3201 	int max_sync;
3202 	sector_t sync_blocks;
3203 	sector_t sectors_skipped = 0;
3204 	int chunks_skipped = 0;
3205 	sector_t chunk_mask = conf->geo.chunk_mask;
3206 	int page_idx = 0;
3207 
3208 	if (!mempool_initialized(&conf->r10buf_pool))
3209 		if (init_resync(conf))
3210 			return 0;
3211 
3212 	/*
3213 	 * Allow skipping a full rebuild for incremental assembly
3214 	 * of a clean array, like RAID1 does.
3215 	 */
3216 	if (mddev->bitmap == NULL &&
3217 	    mddev->recovery_cp == MaxSector &&
3218 	    mddev->reshape_position == MaxSector &&
3219 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3220 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3221 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3222 	    conf->fullsync == 0) {
3223 		*skipped = 1;
3224 		return mddev->dev_sectors - sector_nr;
3225 	}
3226 
3227  skipped:
3228 	max_sector = mddev->dev_sectors;
3229 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3230 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3231 		max_sector = mddev->resync_max_sectors;
3232 	if (sector_nr >= max_sector) {
3233 		conf->cluster_sync_low = 0;
3234 		conf->cluster_sync_high = 0;
3235 
3236 		/* If we aborted, we need to abort the
3237 		 * sync on the 'current' bitmap chucks (there can
3238 		 * be several when recovering multiple devices).
3239 		 * as we may have started syncing it but not finished.
3240 		 * We can find the current address in
3241 		 * mddev->curr_resync, but for recovery,
3242 		 * we need to convert that to several
3243 		 * virtual addresses.
3244 		 */
3245 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3246 			end_reshape(conf);
3247 			close_sync(conf);
3248 			return 0;
3249 		}
3250 
3251 		if (mddev->curr_resync < max_sector) { /* aborted */
3252 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3253 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3254 						   &sync_blocks, 1);
3255 			else for (i = 0; i < conf->geo.raid_disks; i++) {
3256 				sector_t sect =
3257 					raid10_find_virt(conf, mddev->curr_resync, i);
3258 				md_bitmap_end_sync(mddev->bitmap, sect,
3259 						   &sync_blocks, 1);
3260 			}
3261 		} else {
3262 			/* completed sync */
3263 			if ((!mddev->bitmap || conf->fullsync)
3264 			    && conf->have_replacement
3265 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3266 				/* Completed a full sync so the replacements
3267 				 * are now fully recovered.
3268 				 */
3269 				rcu_read_lock();
3270 				for (i = 0; i < conf->geo.raid_disks; i++) {
3271 					struct md_rdev *rdev =
3272 						rcu_dereference(conf->mirrors[i].replacement);
3273 					if (rdev)
3274 						rdev->recovery_offset = MaxSector;
3275 				}
3276 				rcu_read_unlock();
3277 			}
3278 			conf->fullsync = 0;
3279 		}
3280 		md_bitmap_close_sync(mddev->bitmap);
3281 		close_sync(conf);
3282 		*skipped = 1;
3283 		return sectors_skipped;
3284 	}
3285 
3286 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3287 		return reshape_request(mddev, sector_nr, skipped);
3288 
3289 	if (chunks_skipped >= conf->geo.raid_disks) {
3290 		/* if there has been nothing to do on any drive,
3291 		 * then there is nothing to do at all..
3292 		 */
3293 		*skipped = 1;
3294 		return (max_sector - sector_nr) + sectors_skipped;
3295 	}
3296 
3297 	if (max_sector > mddev->resync_max)
3298 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3299 
3300 	/* make sure whole request will fit in a chunk - if chunks
3301 	 * are meaningful
3302 	 */
3303 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3304 	    max_sector > (sector_nr | chunk_mask))
3305 		max_sector = (sector_nr | chunk_mask) + 1;
3306 
3307 	/*
3308 	 * If there is non-resync activity waiting for a turn, then let it
3309 	 * though before starting on this new sync request.
3310 	 */
3311 	if (conf->nr_waiting)
3312 		schedule_timeout_uninterruptible(1);
3313 
3314 	/* Again, very different code for resync and recovery.
3315 	 * Both must result in an r10bio with a list of bios that
3316 	 * have bi_end_io, bi_sector, bi_disk set,
3317 	 * and bi_private set to the r10bio.
3318 	 * For recovery, we may actually create several r10bios
3319 	 * with 2 bios in each, that correspond to the bios in the main one.
3320 	 * In this case, the subordinate r10bios link back through a
3321 	 * borrowed master_bio pointer, and the counter in the master
3322 	 * includes a ref from each subordinate.
3323 	 */
3324 	/* First, we decide what to do and set ->bi_end_io
3325 	 * To end_sync_read if we want to read, and
3326 	 * end_sync_write if we will want to write.
3327 	 */
3328 
3329 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3330 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3331 		/* recovery... the complicated one */
3332 		int j;
3333 		r10_bio = NULL;
3334 
3335 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3336 			int still_degraded;
3337 			struct r10bio *rb2;
3338 			sector_t sect;
3339 			int must_sync;
3340 			int any_working;
3341 			int need_recover = 0;
3342 			int need_replace = 0;
3343 			struct raid10_info *mirror = &conf->mirrors[i];
3344 			struct md_rdev *mrdev, *mreplace;
3345 
3346 			rcu_read_lock();
3347 			mrdev = rcu_dereference(mirror->rdev);
3348 			mreplace = rcu_dereference(mirror->replacement);
3349 
3350 			if (mrdev != NULL &&
3351 			    !test_bit(Faulty, &mrdev->flags) &&
3352 			    !test_bit(In_sync, &mrdev->flags))
3353 				need_recover = 1;
3354 			if (mreplace != NULL &&
3355 			    !test_bit(Faulty, &mreplace->flags))
3356 				need_replace = 1;
3357 
3358 			if (!need_recover && !need_replace) {
3359 				rcu_read_unlock();
3360 				continue;
3361 			}
3362 
3363 			still_degraded = 0;
3364 			/* want to reconstruct this device */
3365 			rb2 = r10_bio;
3366 			sect = raid10_find_virt(conf, sector_nr, i);
3367 			if (sect >= mddev->resync_max_sectors) {
3368 				/* last stripe is not complete - don't
3369 				 * try to recover this sector.
3370 				 */
3371 				rcu_read_unlock();
3372 				continue;
3373 			}
3374 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3375 				mreplace = NULL;
3376 			/* Unless we are doing a full sync, or a replacement
3377 			 * we only need to recover the block if it is set in
3378 			 * the bitmap
3379 			 */
3380 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3381 							 &sync_blocks, 1);
3382 			if (sync_blocks < max_sync)
3383 				max_sync = sync_blocks;
3384 			if (!must_sync &&
3385 			    mreplace == NULL &&
3386 			    !conf->fullsync) {
3387 				/* yep, skip the sync_blocks here, but don't assume
3388 				 * that there will never be anything to do here
3389 				 */
3390 				chunks_skipped = -1;
3391 				rcu_read_unlock();
3392 				continue;
3393 			}
3394 			atomic_inc(&mrdev->nr_pending);
3395 			if (mreplace)
3396 				atomic_inc(&mreplace->nr_pending);
3397 			rcu_read_unlock();
3398 
3399 			r10_bio = raid10_alloc_init_r10buf(conf);
3400 			r10_bio->state = 0;
3401 			raise_barrier(conf, rb2 != NULL);
3402 			atomic_set(&r10_bio->remaining, 0);
3403 
3404 			r10_bio->master_bio = (struct bio*)rb2;
3405 			if (rb2)
3406 				atomic_inc(&rb2->remaining);
3407 			r10_bio->mddev = mddev;
3408 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3409 			r10_bio->sector = sect;
3410 
3411 			raid10_find_phys(conf, r10_bio);
3412 
3413 			/* Need to check if the array will still be
3414 			 * degraded
3415 			 */
3416 			rcu_read_lock();
3417 			for (j = 0; j < conf->geo.raid_disks; j++) {
3418 				struct md_rdev *rdev = rcu_dereference(
3419 					conf->mirrors[j].rdev);
3420 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3421 					still_degraded = 1;
3422 					break;
3423 				}
3424 			}
3425 
3426 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3427 							 &sync_blocks, still_degraded);
3428 
3429 			any_working = 0;
3430 			for (j=0; j<conf->copies;j++) {
3431 				int k;
3432 				int d = r10_bio->devs[j].devnum;
3433 				sector_t from_addr, to_addr;
3434 				struct md_rdev *rdev =
3435 					rcu_dereference(conf->mirrors[d].rdev);
3436 				sector_t sector, first_bad;
3437 				int bad_sectors;
3438 				if (!rdev ||
3439 				    !test_bit(In_sync, &rdev->flags))
3440 					continue;
3441 				/* This is where we read from */
3442 				any_working = 1;
3443 				sector = r10_bio->devs[j].addr;
3444 
3445 				if (is_badblock(rdev, sector, max_sync,
3446 						&first_bad, &bad_sectors)) {
3447 					if (first_bad > sector)
3448 						max_sync = first_bad - sector;
3449 					else {
3450 						bad_sectors -= (sector
3451 								- first_bad);
3452 						if (max_sync > bad_sectors)
3453 							max_sync = bad_sectors;
3454 						continue;
3455 					}
3456 				}
3457 				bio = r10_bio->devs[0].bio;
3458 				bio->bi_next = biolist;
3459 				biolist = bio;
3460 				bio->bi_end_io = end_sync_read;
3461 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3462 				if (test_bit(FailFast, &rdev->flags))
3463 					bio->bi_opf |= MD_FAILFAST;
3464 				from_addr = r10_bio->devs[j].addr;
3465 				bio->bi_iter.bi_sector = from_addr +
3466 					rdev->data_offset;
3467 				bio_set_dev(bio, rdev->bdev);
3468 				atomic_inc(&rdev->nr_pending);
3469 				/* and we write to 'i' (if not in_sync) */
3470 
3471 				for (k=0; k<conf->copies; k++)
3472 					if (r10_bio->devs[k].devnum == i)
3473 						break;
3474 				BUG_ON(k == conf->copies);
3475 				to_addr = r10_bio->devs[k].addr;
3476 				r10_bio->devs[0].devnum = d;
3477 				r10_bio->devs[0].addr = from_addr;
3478 				r10_bio->devs[1].devnum = i;
3479 				r10_bio->devs[1].addr = to_addr;
3480 
3481 				if (need_recover) {
3482 					bio = r10_bio->devs[1].bio;
3483 					bio->bi_next = biolist;
3484 					biolist = bio;
3485 					bio->bi_end_io = end_sync_write;
3486 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3487 					bio->bi_iter.bi_sector = to_addr
3488 						+ mrdev->data_offset;
3489 					bio_set_dev(bio, mrdev->bdev);
3490 					atomic_inc(&r10_bio->remaining);
3491 				} else
3492 					r10_bio->devs[1].bio->bi_end_io = NULL;
3493 
3494 				/* and maybe write to replacement */
3495 				bio = r10_bio->devs[1].repl_bio;
3496 				if (bio)
3497 					bio->bi_end_io = NULL;
3498 				/* Note: if need_replace, then bio
3499 				 * cannot be NULL as r10buf_pool_alloc will
3500 				 * have allocated it.
3501 				 */
3502 				if (!need_replace)
3503 					break;
3504 				bio->bi_next = biolist;
3505 				biolist = bio;
3506 				bio->bi_end_io = end_sync_write;
3507 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3508 				bio->bi_iter.bi_sector = to_addr +
3509 					mreplace->data_offset;
3510 				bio_set_dev(bio, mreplace->bdev);
3511 				atomic_inc(&r10_bio->remaining);
3512 				break;
3513 			}
3514 			rcu_read_unlock();
3515 			if (j == conf->copies) {
3516 				/* Cannot recover, so abort the recovery or
3517 				 * record a bad block */
3518 				if (any_working) {
3519 					/* problem is that there are bad blocks
3520 					 * on other device(s)
3521 					 */
3522 					int k;
3523 					for (k = 0; k < conf->copies; k++)
3524 						if (r10_bio->devs[k].devnum == i)
3525 							break;
3526 					if (!test_bit(In_sync,
3527 						      &mrdev->flags)
3528 					    && !rdev_set_badblocks(
3529 						    mrdev,
3530 						    r10_bio->devs[k].addr,
3531 						    max_sync, 0))
3532 						any_working = 0;
3533 					if (mreplace &&
3534 					    !rdev_set_badblocks(
3535 						    mreplace,
3536 						    r10_bio->devs[k].addr,
3537 						    max_sync, 0))
3538 						any_working = 0;
3539 				}
3540 				if (!any_working)  {
3541 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3542 							      &mddev->recovery))
3543 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3544 						       mdname(mddev));
3545 					mirror->recovery_disabled
3546 						= mddev->recovery_disabled;
3547 				}
3548 				put_buf(r10_bio);
3549 				if (rb2)
3550 					atomic_dec(&rb2->remaining);
3551 				r10_bio = rb2;
3552 				rdev_dec_pending(mrdev, mddev);
3553 				if (mreplace)
3554 					rdev_dec_pending(mreplace, mddev);
3555 				break;
3556 			}
3557 			rdev_dec_pending(mrdev, mddev);
3558 			if (mreplace)
3559 				rdev_dec_pending(mreplace, mddev);
3560 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3561 				/* Only want this if there is elsewhere to
3562 				 * read from. 'j' is currently the first
3563 				 * readable copy.
3564 				 */
3565 				int targets = 1;
3566 				for (; j < conf->copies; j++) {
3567 					int d = r10_bio->devs[j].devnum;
3568 					if (conf->mirrors[d].rdev &&
3569 					    test_bit(In_sync,
3570 						      &conf->mirrors[d].rdev->flags))
3571 						targets++;
3572 				}
3573 				if (targets == 1)
3574 					r10_bio->devs[0].bio->bi_opf
3575 						&= ~MD_FAILFAST;
3576 			}
3577 		}
3578 		if (biolist == NULL) {
3579 			while (r10_bio) {
3580 				struct r10bio *rb2 = r10_bio;
3581 				r10_bio = (struct r10bio*) rb2->master_bio;
3582 				rb2->master_bio = NULL;
3583 				put_buf(rb2);
3584 			}
3585 			goto giveup;
3586 		}
3587 	} else {
3588 		/* resync. Schedule a read for every block at this virt offset */
3589 		int count = 0;
3590 
3591 		/*
3592 		 * Since curr_resync_completed could probably not update in
3593 		 * time, and we will set cluster_sync_low based on it.
3594 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3595 		 * safety reason, which ensures curr_resync_completed is
3596 		 * updated in bitmap_cond_end_sync.
3597 		 */
3598 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3599 					mddev_is_clustered(mddev) &&
3600 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3601 
3602 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3603 					  &sync_blocks, mddev->degraded) &&
3604 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3605 						 &mddev->recovery)) {
3606 			/* We can skip this block */
3607 			*skipped = 1;
3608 			return sync_blocks + sectors_skipped;
3609 		}
3610 		if (sync_blocks < max_sync)
3611 			max_sync = sync_blocks;
3612 		r10_bio = raid10_alloc_init_r10buf(conf);
3613 		r10_bio->state = 0;
3614 
3615 		r10_bio->mddev = mddev;
3616 		atomic_set(&r10_bio->remaining, 0);
3617 		raise_barrier(conf, 0);
3618 		conf->next_resync = sector_nr;
3619 
3620 		r10_bio->master_bio = NULL;
3621 		r10_bio->sector = sector_nr;
3622 		set_bit(R10BIO_IsSync, &r10_bio->state);
3623 		raid10_find_phys(conf, r10_bio);
3624 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3625 
3626 		for (i = 0; i < conf->copies; i++) {
3627 			int d = r10_bio->devs[i].devnum;
3628 			sector_t first_bad, sector;
3629 			int bad_sectors;
3630 			struct md_rdev *rdev;
3631 
3632 			if (r10_bio->devs[i].repl_bio)
3633 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3634 
3635 			bio = r10_bio->devs[i].bio;
3636 			bio->bi_status = BLK_STS_IOERR;
3637 			rcu_read_lock();
3638 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3639 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3640 				rcu_read_unlock();
3641 				continue;
3642 			}
3643 			sector = r10_bio->devs[i].addr;
3644 			if (is_badblock(rdev, sector, max_sync,
3645 					&first_bad, &bad_sectors)) {
3646 				if (first_bad > sector)
3647 					max_sync = first_bad - sector;
3648 				else {
3649 					bad_sectors -= (sector - first_bad);
3650 					if (max_sync > bad_sectors)
3651 						max_sync = bad_sectors;
3652 					rcu_read_unlock();
3653 					continue;
3654 				}
3655 			}
3656 			atomic_inc(&rdev->nr_pending);
3657 			atomic_inc(&r10_bio->remaining);
3658 			bio->bi_next = biolist;
3659 			biolist = bio;
3660 			bio->bi_end_io = end_sync_read;
3661 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3662 			if (test_bit(FailFast, &rdev->flags))
3663 				bio->bi_opf |= MD_FAILFAST;
3664 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3665 			bio_set_dev(bio, rdev->bdev);
3666 			count++;
3667 
3668 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3669 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3670 				rcu_read_unlock();
3671 				continue;
3672 			}
3673 			atomic_inc(&rdev->nr_pending);
3674 
3675 			/* Need to set up for writing to the replacement */
3676 			bio = r10_bio->devs[i].repl_bio;
3677 			bio->bi_status = BLK_STS_IOERR;
3678 
3679 			sector = r10_bio->devs[i].addr;
3680 			bio->bi_next = biolist;
3681 			biolist = bio;
3682 			bio->bi_end_io = end_sync_write;
3683 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3684 			if (test_bit(FailFast, &rdev->flags))
3685 				bio->bi_opf |= MD_FAILFAST;
3686 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3687 			bio_set_dev(bio, rdev->bdev);
3688 			count++;
3689 			rcu_read_unlock();
3690 		}
3691 
3692 		if (count < 2) {
3693 			for (i=0; i<conf->copies; i++) {
3694 				int d = r10_bio->devs[i].devnum;
3695 				if (r10_bio->devs[i].bio->bi_end_io)
3696 					rdev_dec_pending(conf->mirrors[d].rdev,
3697 							 mddev);
3698 				if (r10_bio->devs[i].repl_bio &&
3699 				    r10_bio->devs[i].repl_bio->bi_end_io)
3700 					rdev_dec_pending(
3701 						conf->mirrors[d].replacement,
3702 						mddev);
3703 			}
3704 			put_buf(r10_bio);
3705 			biolist = NULL;
3706 			goto giveup;
3707 		}
3708 	}
3709 
3710 	nr_sectors = 0;
3711 	if (sector_nr + max_sync < max_sector)
3712 		max_sector = sector_nr + max_sync;
3713 	do {
3714 		struct page *page;
3715 		int len = PAGE_SIZE;
3716 		if (sector_nr + (len>>9) > max_sector)
3717 			len = (max_sector - sector_nr) << 9;
3718 		if (len == 0)
3719 			break;
3720 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3721 			struct resync_pages *rp = get_resync_pages(bio);
3722 			page = resync_fetch_page(rp, page_idx);
3723 			/*
3724 			 * won't fail because the vec table is big enough
3725 			 * to hold all these pages
3726 			 */
3727 			bio_add_page(bio, page, len, 0);
3728 		}
3729 		nr_sectors += len>>9;
3730 		sector_nr += len>>9;
3731 	} while (++page_idx < RESYNC_PAGES);
3732 	r10_bio->sectors = nr_sectors;
3733 
3734 	if (mddev_is_clustered(mddev) &&
3735 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3736 		/* It is resync not recovery */
3737 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3738 			conf->cluster_sync_low = mddev->curr_resync_completed;
3739 			raid10_set_cluster_sync_high(conf);
3740 			/* Send resync message */
3741 			md_cluster_ops->resync_info_update(mddev,
3742 						conf->cluster_sync_low,
3743 						conf->cluster_sync_high);
3744 		}
3745 	} else if (mddev_is_clustered(mddev)) {
3746 		/* This is recovery not resync */
3747 		sector_t sect_va1, sect_va2;
3748 		bool broadcast_msg = false;
3749 
3750 		for (i = 0; i < conf->geo.raid_disks; i++) {
3751 			/*
3752 			 * sector_nr is a device address for recovery, so we
3753 			 * need translate it to array address before compare
3754 			 * with cluster_sync_high.
3755 			 */
3756 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3757 
3758 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3759 				broadcast_msg = true;
3760 				/*
3761 				 * curr_resync_completed is similar as
3762 				 * sector_nr, so make the translation too.
3763 				 */
3764 				sect_va2 = raid10_find_virt(conf,
3765 					mddev->curr_resync_completed, i);
3766 
3767 				if (conf->cluster_sync_low == 0 ||
3768 				    conf->cluster_sync_low > sect_va2)
3769 					conf->cluster_sync_low = sect_va2;
3770 			}
3771 		}
3772 		if (broadcast_msg) {
3773 			raid10_set_cluster_sync_high(conf);
3774 			md_cluster_ops->resync_info_update(mddev,
3775 						conf->cluster_sync_low,
3776 						conf->cluster_sync_high);
3777 		}
3778 	}
3779 
3780 	while (biolist) {
3781 		bio = biolist;
3782 		biolist = biolist->bi_next;
3783 
3784 		bio->bi_next = NULL;
3785 		r10_bio = get_resync_r10bio(bio);
3786 		r10_bio->sectors = nr_sectors;
3787 
3788 		if (bio->bi_end_io == end_sync_read) {
3789 			md_sync_acct_bio(bio, nr_sectors);
3790 			bio->bi_status = 0;
3791 			submit_bio_noacct(bio);
3792 		}
3793 	}
3794 
3795 	if (sectors_skipped)
3796 		/* pretend they weren't skipped, it makes
3797 		 * no important difference in this case
3798 		 */
3799 		md_done_sync(mddev, sectors_skipped, 1);
3800 
3801 	return sectors_skipped + nr_sectors;
3802  giveup:
3803 	/* There is nowhere to write, so all non-sync
3804 	 * drives must be failed or in resync, all drives
3805 	 * have a bad block, so try the next chunk...
3806 	 */
3807 	if (sector_nr + max_sync < max_sector)
3808 		max_sector = sector_nr + max_sync;
3809 
3810 	sectors_skipped += (max_sector - sector_nr);
3811 	chunks_skipped ++;
3812 	sector_nr = max_sector;
3813 	goto skipped;
3814 }
3815 
3816 static sector_t
3817 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3818 {
3819 	sector_t size;
3820 	struct r10conf *conf = mddev->private;
3821 
3822 	if (!raid_disks)
3823 		raid_disks = min(conf->geo.raid_disks,
3824 				 conf->prev.raid_disks);
3825 	if (!sectors)
3826 		sectors = conf->dev_sectors;
3827 
3828 	size = sectors >> conf->geo.chunk_shift;
3829 	sector_div(size, conf->geo.far_copies);
3830 	size = size * raid_disks;
3831 	sector_div(size, conf->geo.near_copies);
3832 
3833 	return size << conf->geo.chunk_shift;
3834 }
3835 
3836 static void calc_sectors(struct r10conf *conf, sector_t size)
3837 {
3838 	/* Calculate the number of sectors-per-device that will
3839 	 * actually be used, and set conf->dev_sectors and
3840 	 * conf->stride
3841 	 */
3842 
3843 	size = size >> conf->geo.chunk_shift;
3844 	sector_div(size, conf->geo.far_copies);
3845 	size = size * conf->geo.raid_disks;
3846 	sector_div(size, conf->geo.near_copies);
3847 	/* 'size' is now the number of chunks in the array */
3848 	/* calculate "used chunks per device" */
3849 	size = size * conf->copies;
3850 
3851 	/* We need to round up when dividing by raid_disks to
3852 	 * get the stride size.
3853 	 */
3854 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3855 
3856 	conf->dev_sectors = size << conf->geo.chunk_shift;
3857 
3858 	if (conf->geo.far_offset)
3859 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3860 	else {
3861 		sector_div(size, conf->geo.far_copies);
3862 		conf->geo.stride = size << conf->geo.chunk_shift;
3863 	}
3864 }
3865 
3866 enum geo_type {geo_new, geo_old, geo_start};
3867 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3868 {
3869 	int nc, fc, fo;
3870 	int layout, chunk, disks;
3871 	switch (new) {
3872 	case geo_old:
3873 		layout = mddev->layout;
3874 		chunk = mddev->chunk_sectors;
3875 		disks = mddev->raid_disks - mddev->delta_disks;
3876 		break;
3877 	case geo_new:
3878 		layout = mddev->new_layout;
3879 		chunk = mddev->new_chunk_sectors;
3880 		disks = mddev->raid_disks;
3881 		break;
3882 	default: /* avoid 'may be unused' warnings */
3883 	case geo_start: /* new when starting reshape - raid_disks not
3884 			 * updated yet. */
3885 		layout = mddev->new_layout;
3886 		chunk = mddev->new_chunk_sectors;
3887 		disks = mddev->raid_disks + mddev->delta_disks;
3888 		break;
3889 	}
3890 	if (layout >> 19)
3891 		return -1;
3892 	if (chunk < (PAGE_SIZE >> 9) ||
3893 	    !is_power_of_2(chunk))
3894 		return -2;
3895 	nc = layout & 255;
3896 	fc = (layout >> 8) & 255;
3897 	fo = layout & (1<<16);
3898 	geo->raid_disks = disks;
3899 	geo->near_copies = nc;
3900 	geo->far_copies = fc;
3901 	geo->far_offset = fo;
3902 	switch (layout >> 17) {
3903 	case 0:	/* original layout.  simple but not always optimal */
3904 		geo->far_set_size = disks;
3905 		break;
3906 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3907 		 * actually using this, but leave code here just in case.*/
3908 		geo->far_set_size = disks/fc;
3909 		WARN(geo->far_set_size < fc,
3910 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3911 		break;
3912 	case 2: /* "improved" layout fixed to match documentation */
3913 		geo->far_set_size = fc * nc;
3914 		break;
3915 	default: /* Not a valid layout */
3916 		return -1;
3917 	}
3918 	geo->chunk_mask = chunk - 1;
3919 	geo->chunk_shift = ffz(~chunk);
3920 	return nc*fc;
3921 }
3922 
3923 static struct r10conf *setup_conf(struct mddev *mddev)
3924 {
3925 	struct r10conf *conf = NULL;
3926 	int err = -EINVAL;
3927 	struct geom geo;
3928 	int copies;
3929 
3930 	copies = setup_geo(&geo, mddev, geo_new);
3931 
3932 	if (copies == -2) {
3933 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3934 			mdname(mddev), PAGE_SIZE);
3935 		goto out;
3936 	}
3937 
3938 	if (copies < 2 || copies > mddev->raid_disks) {
3939 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3940 			mdname(mddev), mddev->new_layout);
3941 		goto out;
3942 	}
3943 
3944 	err = -ENOMEM;
3945 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3946 	if (!conf)
3947 		goto out;
3948 
3949 	/* FIXME calc properly */
3950 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3951 				sizeof(struct raid10_info),
3952 				GFP_KERNEL);
3953 	if (!conf->mirrors)
3954 		goto out;
3955 
3956 	conf->tmppage = alloc_page(GFP_KERNEL);
3957 	if (!conf->tmppage)
3958 		goto out;
3959 
3960 	conf->geo = geo;
3961 	conf->copies = copies;
3962 	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3963 			   rbio_pool_free, conf);
3964 	if (err)
3965 		goto out;
3966 
3967 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3968 	if (err)
3969 		goto out;
3970 
3971 	calc_sectors(conf, mddev->dev_sectors);
3972 	if (mddev->reshape_position == MaxSector) {
3973 		conf->prev = conf->geo;
3974 		conf->reshape_progress = MaxSector;
3975 	} else {
3976 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3977 			err = -EINVAL;
3978 			goto out;
3979 		}
3980 		conf->reshape_progress = mddev->reshape_position;
3981 		if (conf->prev.far_offset)
3982 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3983 		else
3984 			/* far_copies must be 1 */
3985 			conf->prev.stride = conf->dev_sectors;
3986 	}
3987 	conf->reshape_safe = conf->reshape_progress;
3988 	spin_lock_init(&conf->device_lock);
3989 	INIT_LIST_HEAD(&conf->retry_list);
3990 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3991 
3992 	spin_lock_init(&conf->resync_lock);
3993 	init_waitqueue_head(&conf->wait_barrier);
3994 	atomic_set(&conf->nr_pending, 0);
3995 
3996 	err = -ENOMEM;
3997 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3998 	if (!conf->thread)
3999 		goto out;
4000 
4001 	conf->mddev = mddev;
4002 	return conf;
4003 
4004  out:
4005 	if (conf) {
4006 		mempool_exit(&conf->r10bio_pool);
4007 		kfree(conf->mirrors);
4008 		safe_put_page(conf->tmppage);
4009 		bioset_exit(&conf->bio_split);
4010 		kfree(conf);
4011 	}
4012 	return ERR_PTR(err);
4013 }
4014 
4015 static void raid10_set_io_opt(struct r10conf *conf)
4016 {
4017 	int raid_disks = conf->geo.raid_disks;
4018 
4019 	if (!(conf->geo.raid_disks % conf->geo.near_copies))
4020 		raid_disks /= conf->geo.near_copies;
4021 	blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4022 			 raid_disks);
4023 }
4024 
4025 static int raid10_run(struct mddev *mddev)
4026 {
4027 	struct r10conf *conf;
4028 	int i, disk_idx;
4029 	struct raid10_info *disk;
4030 	struct md_rdev *rdev;
4031 	sector_t size;
4032 	sector_t min_offset_diff = 0;
4033 	int first = 1;
4034 	bool discard_supported = false;
4035 
4036 	if (mddev_init_writes_pending(mddev) < 0)
4037 		return -ENOMEM;
4038 
4039 	if (mddev->private == NULL) {
4040 		conf = setup_conf(mddev);
4041 		if (IS_ERR(conf))
4042 			return PTR_ERR(conf);
4043 		mddev->private = conf;
4044 	}
4045 	conf = mddev->private;
4046 	if (!conf)
4047 		goto out;
4048 
4049 	if (mddev_is_clustered(conf->mddev)) {
4050 		int fc, fo;
4051 
4052 		fc = (mddev->layout >> 8) & 255;
4053 		fo = mddev->layout & (1<<16);
4054 		if (fc > 1 || fo > 0) {
4055 			pr_err("only near layout is supported by clustered"
4056 				" raid10\n");
4057 			goto out_free_conf;
4058 		}
4059 	}
4060 
4061 	mddev->thread = conf->thread;
4062 	conf->thread = NULL;
4063 
4064 	if (mddev->queue) {
4065 		blk_queue_max_discard_sectors(mddev->queue,
4066 					      UINT_MAX);
4067 		blk_queue_max_write_same_sectors(mddev->queue, 0);
4068 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4069 		blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4070 		raid10_set_io_opt(conf);
4071 	}
4072 
4073 	rdev_for_each(rdev, mddev) {
4074 		long long diff;
4075 
4076 		disk_idx = rdev->raid_disk;
4077 		if (disk_idx < 0)
4078 			continue;
4079 		if (disk_idx >= conf->geo.raid_disks &&
4080 		    disk_idx >= conf->prev.raid_disks)
4081 			continue;
4082 		disk = conf->mirrors + disk_idx;
4083 
4084 		if (test_bit(Replacement, &rdev->flags)) {
4085 			if (disk->replacement)
4086 				goto out_free_conf;
4087 			disk->replacement = rdev;
4088 		} else {
4089 			if (disk->rdev)
4090 				goto out_free_conf;
4091 			disk->rdev = rdev;
4092 		}
4093 		diff = (rdev->new_data_offset - rdev->data_offset);
4094 		if (!mddev->reshape_backwards)
4095 			diff = -diff;
4096 		if (diff < 0)
4097 			diff = 0;
4098 		if (first || diff < min_offset_diff)
4099 			min_offset_diff = diff;
4100 
4101 		if (mddev->gendisk)
4102 			disk_stack_limits(mddev->gendisk, rdev->bdev,
4103 					  rdev->data_offset << 9);
4104 
4105 		disk->head_position = 0;
4106 
4107 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
4108 			discard_supported = true;
4109 		first = 0;
4110 	}
4111 
4112 	if (mddev->queue) {
4113 		if (discard_supported)
4114 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
4115 						mddev->queue);
4116 		else
4117 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
4118 						  mddev->queue);
4119 	}
4120 	/* need to check that every block has at least one working mirror */
4121 	if (!enough(conf, -1)) {
4122 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4123 		       mdname(mddev));
4124 		goto out_free_conf;
4125 	}
4126 
4127 	if (conf->reshape_progress != MaxSector) {
4128 		/* must ensure that shape change is supported */
4129 		if (conf->geo.far_copies != 1 &&
4130 		    conf->geo.far_offset == 0)
4131 			goto out_free_conf;
4132 		if (conf->prev.far_copies != 1 &&
4133 		    conf->prev.far_offset == 0)
4134 			goto out_free_conf;
4135 	}
4136 
4137 	mddev->degraded = 0;
4138 	for (i = 0;
4139 	     i < conf->geo.raid_disks
4140 		     || i < conf->prev.raid_disks;
4141 	     i++) {
4142 
4143 		disk = conf->mirrors + i;
4144 
4145 		if (!disk->rdev && disk->replacement) {
4146 			/* The replacement is all we have - use it */
4147 			disk->rdev = disk->replacement;
4148 			disk->replacement = NULL;
4149 			clear_bit(Replacement, &disk->rdev->flags);
4150 		}
4151 
4152 		if (!disk->rdev ||
4153 		    !test_bit(In_sync, &disk->rdev->flags)) {
4154 			disk->head_position = 0;
4155 			mddev->degraded++;
4156 			if (disk->rdev &&
4157 			    disk->rdev->saved_raid_disk < 0)
4158 				conf->fullsync = 1;
4159 		}
4160 
4161 		if (disk->replacement &&
4162 		    !test_bit(In_sync, &disk->replacement->flags) &&
4163 		    disk->replacement->saved_raid_disk < 0) {
4164 			conf->fullsync = 1;
4165 		}
4166 
4167 		disk->recovery_disabled = mddev->recovery_disabled - 1;
4168 	}
4169 
4170 	if (mddev->recovery_cp != MaxSector)
4171 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4172 			  mdname(mddev));
4173 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4174 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4175 		conf->geo.raid_disks);
4176 	/*
4177 	 * Ok, everything is just fine now
4178 	 */
4179 	mddev->dev_sectors = conf->dev_sectors;
4180 	size = raid10_size(mddev, 0, 0);
4181 	md_set_array_sectors(mddev, size);
4182 	mddev->resync_max_sectors = size;
4183 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4184 
4185 	if (md_integrity_register(mddev))
4186 		goto out_free_conf;
4187 
4188 	if (conf->reshape_progress != MaxSector) {
4189 		unsigned long before_length, after_length;
4190 
4191 		before_length = ((1 << conf->prev.chunk_shift) *
4192 				 conf->prev.far_copies);
4193 		after_length = ((1 << conf->geo.chunk_shift) *
4194 				conf->geo.far_copies);
4195 
4196 		if (max(before_length, after_length) > min_offset_diff) {
4197 			/* This cannot work */
4198 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4199 			goto out_free_conf;
4200 		}
4201 		conf->offset_diff = min_offset_diff;
4202 
4203 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4204 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4205 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4206 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4207 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4208 							"reshape");
4209 		if (!mddev->sync_thread)
4210 			goto out_free_conf;
4211 	}
4212 
4213 	return 0;
4214 
4215 out_free_conf:
4216 	md_unregister_thread(&mddev->thread);
4217 	mempool_exit(&conf->r10bio_pool);
4218 	safe_put_page(conf->tmppage);
4219 	kfree(conf->mirrors);
4220 	kfree(conf);
4221 	mddev->private = NULL;
4222 out:
4223 	return -EIO;
4224 }
4225 
4226 static void raid10_free(struct mddev *mddev, void *priv)
4227 {
4228 	struct r10conf *conf = priv;
4229 
4230 	mempool_exit(&conf->r10bio_pool);
4231 	safe_put_page(conf->tmppage);
4232 	kfree(conf->mirrors);
4233 	kfree(conf->mirrors_old);
4234 	kfree(conf->mirrors_new);
4235 	bioset_exit(&conf->bio_split);
4236 	kfree(conf);
4237 }
4238 
4239 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4240 {
4241 	struct r10conf *conf = mddev->private;
4242 
4243 	if (quiesce)
4244 		raise_barrier(conf, 0);
4245 	else
4246 		lower_barrier(conf);
4247 }
4248 
4249 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4250 {
4251 	/* Resize of 'far' arrays is not supported.
4252 	 * For 'near' and 'offset' arrays we can set the
4253 	 * number of sectors used to be an appropriate multiple
4254 	 * of the chunk size.
4255 	 * For 'offset', this is far_copies*chunksize.
4256 	 * For 'near' the multiplier is the LCM of
4257 	 * near_copies and raid_disks.
4258 	 * So if far_copies > 1 && !far_offset, fail.
4259 	 * Else find LCM(raid_disks, near_copy)*far_copies and
4260 	 * multiply by chunk_size.  Then round to this number.
4261 	 * This is mostly done by raid10_size()
4262 	 */
4263 	struct r10conf *conf = mddev->private;
4264 	sector_t oldsize, size;
4265 
4266 	if (mddev->reshape_position != MaxSector)
4267 		return -EBUSY;
4268 
4269 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4270 		return -EINVAL;
4271 
4272 	oldsize = raid10_size(mddev, 0, 0);
4273 	size = raid10_size(mddev, sectors, 0);
4274 	if (mddev->external_size &&
4275 	    mddev->array_sectors > size)
4276 		return -EINVAL;
4277 	if (mddev->bitmap) {
4278 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4279 		if (ret)
4280 			return ret;
4281 	}
4282 	md_set_array_sectors(mddev, size);
4283 	if (sectors > mddev->dev_sectors &&
4284 	    mddev->recovery_cp > oldsize) {
4285 		mddev->recovery_cp = oldsize;
4286 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4287 	}
4288 	calc_sectors(conf, sectors);
4289 	mddev->dev_sectors = conf->dev_sectors;
4290 	mddev->resync_max_sectors = size;
4291 	return 0;
4292 }
4293 
4294 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4295 {
4296 	struct md_rdev *rdev;
4297 	struct r10conf *conf;
4298 
4299 	if (mddev->degraded > 0) {
4300 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4301 			mdname(mddev));
4302 		return ERR_PTR(-EINVAL);
4303 	}
4304 	sector_div(size, devs);
4305 
4306 	/* Set new parameters */
4307 	mddev->new_level = 10;
4308 	/* new layout: far_copies = 1, near_copies = 2 */
4309 	mddev->new_layout = (1<<8) + 2;
4310 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4311 	mddev->delta_disks = mddev->raid_disks;
4312 	mddev->raid_disks *= 2;
4313 	/* make sure it will be not marked as dirty */
4314 	mddev->recovery_cp = MaxSector;
4315 	mddev->dev_sectors = size;
4316 
4317 	conf = setup_conf(mddev);
4318 	if (!IS_ERR(conf)) {
4319 		rdev_for_each(rdev, mddev)
4320 			if (rdev->raid_disk >= 0) {
4321 				rdev->new_raid_disk = rdev->raid_disk * 2;
4322 				rdev->sectors = size;
4323 			}
4324 		conf->barrier = 1;
4325 	}
4326 
4327 	return conf;
4328 }
4329 
4330 static void *raid10_takeover(struct mddev *mddev)
4331 {
4332 	struct r0conf *raid0_conf;
4333 
4334 	/* raid10 can take over:
4335 	 *  raid0 - providing it has only two drives
4336 	 */
4337 	if (mddev->level == 0) {
4338 		/* for raid0 takeover only one zone is supported */
4339 		raid0_conf = mddev->private;
4340 		if (raid0_conf->nr_strip_zones > 1) {
4341 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4342 				mdname(mddev));
4343 			return ERR_PTR(-EINVAL);
4344 		}
4345 		return raid10_takeover_raid0(mddev,
4346 			raid0_conf->strip_zone->zone_end,
4347 			raid0_conf->strip_zone->nb_dev);
4348 	}
4349 	return ERR_PTR(-EINVAL);
4350 }
4351 
4352 static int raid10_check_reshape(struct mddev *mddev)
4353 {
4354 	/* Called when there is a request to change
4355 	 * - layout (to ->new_layout)
4356 	 * - chunk size (to ->new_chunk_sectors)
4357 	 * - raid_disks (by delta_disks)
4358 	 * or when trying to restart a reshape that was ongoing.
4359 	 *
4360 	 * We need to validate the request and possibly allocate
4361 	 * space if that might be an issue later.
4362 	 *
4363 	 * Currently we reject any reshape of a 'far' mode array,
4364 	 * allow chunk size to change if new is generally acceptable,
4365 	 * allow raid_disks to increase, and allow
4366 	 * a switch between 'near' mode and 'offset' mode.
4367 	 */
4368 	struct r10conf *conf = mddev->private;
4369 	struct geom geo;
4370 
4371 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4372 		return -EINVAL;
4373 
4374 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4375 		/* mustn't change number of copies */
4376 		return -EINVAL;
4377 	if (geo.far_copies > 1 && !geo.far_offset)
4378 		/* Cannot switch to 'far' mode */
4379 		return -EINVAL;
4380 
4381 	if (mddev->array_sectors & geo.chunk_mask)
4382 			/* not factor of array size */
4383 			return -EINVAL;
4384 
4385 	if (!enough(conf, -1))
4386 		return -EINVAL;
4387 
4388 	kfree(conf->mirrors_new);
4389 	conf->mirrors_new = NULL;
4390 	if (mddev->delta_disks > 0) {
4391 		/* allocate new 'mirrors' list */
4392 		conf->mirrors_new =
4393 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4394 				sizeof(struct raid10_info),
4395 				GFP_KERNEL);
4396 		if (!conf->mirrors_new)
4397 			return -ENOMEM;
4398 	}
4399 	return 0;
4400 }
4401 
4402 /*
4403  * Need to check if array has failed when deciding whether to:
4404  *  - start an array
4405  *  - remove non-faulty devices
4406  *  - add a spare
4407  *  - allow a reshape
4408  * This determination is simple when no reshape is happening.
4409  * However if there is a reshape, we need to carefully check
4410  * both the before and after sections.
4411  * This is because some failed devices may only affect one
4412  * of the two sections, and some non-in_sync devices may
4413  * be insync in the section most affected by failed devices.
4414  */
4415 static int calc_degraded(struct r10conf *conf)
4416 {
4417 	int degraded, degraded2;
4418 	int i;
4419 
4420 	rcu_read_lock();
4421 	degraded = 0;
4422 	/* 'prev' section first */
4423 	for (i = 0; i < conf->prev.raid_disks; i++) {
4424 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4425 		if (!rdev || test_bit(Faulty, &rdev->flags))
4426 			degraded++;
4427 		else if (!test_bit(In_sync, &rdev->flags))
4428 			/* When we can reduce the number of devices in
4429 			 * an array, this might not contribute to
4430 			 * 'degraded'.  It does now.
4431 			 */
4432 			degraded++;
4433 	}
4434 	rcu_read_unlock();
4435 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4436 		return degraded;
4437 	rcu_read_lock();
4438 	degraded2 = 0;
4439 	for (i = 0; i < conf->geo.raid_disks; i++) {
4440 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4441 		if (!rdev || test_bit(Faulty, &rdev->flags))
4442 			degraded2++;
4443 		else if (!test_bit(In_sync, &rdev->flags)) {
4444 			/* If reshape is increasing the number of devices,
4445 			 * this section has already been recovered, so
4446 			 * it doesn't contribute to degraded.
4447 			 * else it does.
4448 			 */
4449 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4450 				degraded2++;
4451 		}
4452 	}
4453 	rcu_read_unlock();
4454 	if (degraded2 > degraded)
4455 		return degraded2;
4456 	return degraded;
4457 }
4458 
4459 static int raid10_start_reshape(struct mddev *mddev)
4460 {
4461 	/* A 'reshape' has been requested. This commits
4462 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4463 	 * This also checks if there are enough spares and adds them
4464 	 * to the array.
4465 	 * We currently require enough spares to make the final
4466 	 * array non-degraded.  We also require that the difference
4467 	 * between old and new data_offset - on each device - is
4468 	 * enough that we never risk over-writing.
4469 	 */
4470 
4471 	unsigned long before_length, after_length;
4472 	sector_t min_offset_diff = 0;
4473 	int first = 1;
4474 	struct geom new;
4475 	struct r10conf *conf = mddev->private;
4476 	struct md_rdev *rdev;
4477 	int spares = 0;
4478 	int ret;
4479 
4480 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4481 		return -EBUSY;
4482 
4483 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4484 		return -EINVAL;
4485 
4486 	before_length = ((1 << conf->prev.chunk_shift) *
4487 			 conf->prev.far_copies);
4488 	after_length = ((1 << conf->geo.chunk_shift) *
4489 			conf->geo.far_copies);
4490 
4491 	rdev_for_each(rdev, mddev) {
4492 		if (!test_bit(In_sync, &rdev->flags)
4493 		    && !test_bit(Faulty, &rdev->flags))
4494 			spares++;
4495 		if (rdev->raid_disk >= 0) {
4496 			long long diff = (rdev->new_data_offset
4497 					  - rdev->data_offset);
4498 			if (!mddev->reshape_backwards)
4499 				diff = -diff;
4500 			if (diff < 0)
4501 				diff = 0;
4502 			if (first || diff < min_offset_diff)
4503 				min_offset_diff = diff;
4504 			first = 0;
4505 		}
4506 	}
4507 
4508 	if (max(before_length, after_length) > min_offset_diff)
4509 		return -EINVAL;
4510 
4511 	if (spares < mddev->delta_disks)
4512 		return -EINVAL;
4513 
4514 	conf->offset_diff = min_offset_diff;
4515 	spin_lock_irq(&conf->device_lock);
4516 	if (conf->mirrors_new) {
4517 		memcpy(conf->mirrors_new, conf->mirrors,
4518 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4519 		smp_mb();
4520 		kfree(conf->mirrors_old);
4521 		conf->mirrors_old = conf->mirrors;
4522 		conf->mirrors = conf->mirrors_new;
4523 		conf->mirrors_new = NULL;
4524 	}
4525 	setup_geo(&conf->geo, mddev, geo_start);
4526 	smp_mb();
4527 	if (mddev->reshape_backwards) {
4528 		sector_t size = raid10_size(mddev, 0, 0);
4529 		if (size < mddev->array_sectors) {
4530 			spin_unlock_irq(&conf->device_lock);
4531 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4532 				mdname(mddev));
4533 			return -EINVAL;
4534 		}
4535 		mddev->resync_max_sectors = size;
4536 		conf->reshape_progress = size;
4537 	} else
4538 		conf->reshape_progress = 0;
4539 	conf->reshape_safe = conf->reshape_progress;
4540 	spin_unlock_irq(&conf->device_lock);
4541 
4542 	if (mddev->delta_disks && mddev->bitmap) {
4543 		struct mdp_superblock_1 *sb = NULL;
4544 		sector_t oldsize, newsize;
4545 
4546 		oldsize = raid10_size(mddev, 0, 0);
4547 		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4548 
4549 		if (!mddev_is_clustered(mddev)) {
4550 			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4551 			if (ret)
4552 				goto abort;
4553 			else
4554 				goto out;
4555 		}
4556 
4557 		rdev_for_each(rdev, mddev) {
4558 			if (rdev->raid_disk > -1 &&
4559 			    !test_bit(Faulty, &rdev->flags))
4560 				sb = page_address(rdev->sb_page);
4561 		}
4562 
4563 		/*
4564 		 * some node is already performing reshape, and no need to
4565 		 * call md_bitmap_resize again since it should be called when
4566 		 * receiving BITMAP_RESIZE msg
4567 		 */
4568 		if ((sb && (le32_to_cpu(sb->feature_map) &
4569 			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4570 			goto out;
4571 
4572 		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4573 		if (ret)
4574 			goto abort;
4575 
4576 		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4577 		if (ret) {
4578 			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4579 			goto abort;
4580 		}
4581 	}
4582 out:
4583 	if (mddev->delta_disks > 0) {
4584 		rdev_for_each(rdev, mddev)
4585 			if (rdev->raid_disk < 0 &&
4586 			    !test_bit(Faulty, &rdev->flags)) {
4587 				if (raid10_add_disk(mddev, rdev) == 0) {
4588 					if (rdev->raid_disk >=
4589 					    conf->prev.raid_disks)
4590 						set_bit(In_sync, &rdev->flags);
4591 					else
4592 						rdev->recovery_offset = 0;
4593 
4594 					/* Failure here is OK */
4595 					sysfs_link_rdev(mddev, rdev);
4596 				}
4597 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4598 				   && !test_bit(Faulty, &rdev->flags)) {
4599 				/* This is a spare that was manually added */
4600 				set_bit(In_sync, &rdev->flags);
4601 			}
4602 	}
4603 	/* When a reshape changes the number of devices,
4604 	 * ->degraded is measured against the larger of the
4605 	 * pre and  post numbers.
4606 	 */
4607 	spin_lock_irq(&conf->device_lock);
4608 	mddev->degraded = calc_degraded(conf);
4609 	spin_unlock_irq(&conf->device_lock);
4610 	mddev->raid_disks = conf->geo.raid_disks;
4611 	mddev->reshape_position = conf->reshape_progress;
4612 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4613 
4614 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4615 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4616 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4617 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4618 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4619 
4620 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4621 						"reshape");
4622 	if (!mddev->sync_thread) {
4623 		ret = -EAGAIN;
4624 		goto abort;
4625 	}
4626 	conf->reshape_checkpoint = jiffies;
4627 	md_wakeup_thread(mddev->sync_thread);
4628 	md_new_event(mddev);
4629 	return 0;
4630 
4631 abort:
4632 	mddev->recovery = 0;
4633 	spin_lock_irq(&conf->device_lock);
4634 	conf->geo = conf->prev;
4635 	mddev->raid_disks = conf->geo.raid_disks;
4636 	rdev_for_each(rdev, mddev)
4637 		rdev->new_data_offset = rdev->data_offset;
4638 	smp_wmb();
4639 	conf->reshape_progress = MaxSector;
4640 	conf->reshape_safe = MaxSector;
4641 	mddev->reshape_position = MaxSector;
4642 	spin_unlock_irq(&conf->device_lock);
4643 	return ret;
4644 }
4645 
4646 /* Calculate the last device-address that could contain
4647  * any block from the chunk that includes the array-address 's'
4648  * and report the next address.
4649  * i.e. the address returned will be chunk-aligned and after
4650  * any data that is in the chunk containing 's'.
4651  */
4652 static sector_t last_dev_address(sector_t s, struct geom *geo)
4653 {
4654 	s = (s | geo->chunk_mask) + 1;
4655 	s >>= geo->chunk_shift;
4656 	s *= geo->near_copies;
4657 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4658 	s *= geo->far_copies;
4659 	s <<= geo->chunk_shift;
4660 	return s;
4661 }
4662 
4663 /* Calculate the first device-address that could contain
4664  * any block from the chunk that includes the array-address 's'.
4665  * This too will be the start of a chunk
4666  */
4667 static sector_t first_dev_address(sector_t s, struct geom *geo)
4668 {
4669 	s >>= geo->chunk_shift;
4670 	s *= geo->near_copies;
4671 	sector_div(s, geo->raid_disks);
4672 	s *= geo->far_copies;
4673 	s <<= geo->chunk_shift;
4674 	return s;
4675 }
4676 
4677 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4678 				int *skipped)
4679 {
4680 	/* We simply copy at most one chunk (smallest of old and new)
4681 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4682 	 * or we hit a bad block or something.
4683 	 * This might mean we pause for normal IO in the middle of
4684 	 * a chunk, but that is not a problem as mddev->reshape_position
4685 	 * can record any location.
4686 	 *
4687 	 * If we will want to write to a location that isn't
4688 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4689 	 * we need to flush all reshape requests and update the metadata.
4690 	 *
4691 	 * When reshaping forwards (e.g. to more devices), we interpret
4692 	 * 'safe' as the earliest block which might not have been copied
4693 	 * down yet.  We divide this by previous stripe size and multiply
4694 	 * by previous stripe length to get lowest device offset that we
4695 	 * cannot write to yet.
4696 	 * We interpret 'sector_nr' as an address that we want to write to.
4697 	 * From this we use last_device_address() to find where we might
4698 	 * write to, and first_device_address on the  'safe' position.
4699 	 * If this 'next' write position is after the 'safe' position,
4700 	 * we must update the metadata to increase the 'safe' position.
4701 	 *
4702 	 * When reshaping backwards, we round in the opposite direction
4703 	 * and perform the reverse test:  next write position must not be
4704 	 * less than current safe position.
4705 	 *
4706 	 * In all this the minimum difference in data offsets
4707 	 * (conf->offset_diff - always positive) allows a bit of slack,
4708 	 * so next can be after 'safe', but not by more than offset_diff
4709 	 *
4710 	 * We need to prepare all the bios here before we start any IO
4711 	 * to ensure the size we choose is acceptable to all devices.
4712 	 * The means one for each copy for write-out and an extra one for
4713 	 * read-in.
4714 	 * We store the read-in bio in ->master_bio and the others in
4715 	 * ->devs[x].bio and ->devs[x].repl_bio.
4716 	 */
4717 	struct r10conf *conf = mddev->private;
4718 	struct r10bio *r10_bio;
4719 	sector_t next, safe, last;
4720 	int max_sectors;
4721 	int nr_sectors;
4722 	int s;
4723 	struct md_rdev *rdev;
4724 	int need_flush = 0;
4725 	struct bio *blist;
4726 	struct bio *bio, *read_bio;
4727 	int sectors_done = 0;
4728 	struct page **pages;
4729 
4730 	if (sector_nr == 0) {
4731 		/* If restarting in the middle, skip the initial sectors */
4732 		if (mddev->reshape_backwards &&
4733 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4734 			sector_nr = (raid10_size(mddev, 0, 0)
4735 				     - conf->reshape_progress);
4736 		} else if (!mddev->reshape_backwards &&
4737 			   conf->reshape_progress > 0)
4738 			sector_nr = conf->reshape_progress;
4739 		if (sector_nr) {
4740 			mddev->curr_resync_completed = sector_nr;
4741 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4742 			*skipped = 1;
4743 			return sector_nr;
4744 		}
4745 	}
4746 
4747 	/* We don't use sector_nr to track where we are up to
4748 	 * as that doesn't work well for ->reshape_backwards.
4749 	 * So just use ->reshape_progress.
4750 	 */
4751 	if (mddev->reshape_backwards) {
4752 		/* 'next' is the earliest device address that we might
4753 		 * write to for this chunk in the new layout
4754 		 */
4755 		next = first_dev_address(conf->reshape_progress - 1,
4756 					 &conf->geo);
4757 
4758 		/* 'safe' is the last device address that we might read from
4759 		 * in the old layout after a restart
4760 		 */
4761 		safe = last_dev_address(conf->reshape_safe - 1,
4762 					&conf->prev);
4763 
4764 		if (next + conf->offset_diff < safe)
4765 			need_flush = 1;
4766 
4767 		last = conf->reshape_progress - 1;
4768 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4769 					       & conf->prev.chunk_mask);
4770 		if (sector_nr + RESYNC_SECTORS < last)
4771 			sector_nr = last + 1 - RESYNC_SECTORS;
4772 	} else {
4773 		/* 'next' is after the last device address that we
4774 		 * might write to for this chunk in the new layout
4775 		 */
4776 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4777 
4778 		/* 'safe' is the earliest device address that we might
4779 		 * read from in the old layout after a restart
4780 		 */
4781 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4782 
4783 		/* Need to update metadata if 'next' might be beyond 'safe'
4784 		 * as that would possibly corrupt data
4785 		 */
4786 		if (next > safe + conf->offset_diff)
4787 			need_flush = 1;
4788 
4789 		sector_nr = conf->reshape_progress;
4790 		last  = sector_nr | (conf->geo.chunk_mask
4791 				     & conf->prev.chunk_mask);
4792 
4793 		if (sector_nr + RESYNC_SECTORS <= last)
4794 			last = sector_nr + RESYNC_SECTORS - 1;
4795 	}
4796 
4797 	if (need_flush ||
4798 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4799 		/* Need to update reshape_position in metadata */
4800 		wait_barrier(conf);
4801 		mddev->reshape_position = conf->reshape_progress;
4802 		if (mddev->reshape_backwards)
4803 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4804 				- conf->reshape_progress;
4805 		else
4806 			mddev->curr_resync_completed = conf->reshape_progress;
4807 		conf->reshape_checkpoint = jiffies;
4808 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4809 		md_wakeup_thread(mddev->thread);
4810 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4811 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4812 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4813 			allow_barrier(conf);
4814 			return sectors_done;
4815 		}
4816 		conf->reshape_safe = mddev->reshape_position;
4817 		allow_barrier(conf);
4818 	}
4819 
4820 	raise_barrier(conf, 0);
4821 read_more:
4822 	/* Now schedule reads for blocks from sector_nr to last */
4823 	r10_bio = raid10_alloc_init_r10buf(conf);
4824 	r10_bio->state = 0;
4825 	raise_barrier(conf, 1);
4826 	atomic_set(&r10_bio->remaining, 0);
4827 	r10_bio->mddev = mddev;
4828 	r10_bio->sector = sector_nr;
4829 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4830 	r10_bio->sectors = last - sector_nr + 1;
4831 	rdev = read_balance(conf, r10_bio, &max_sectors);
4832 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4833 
4834 	if (!rdev) {
4835 		/* Cannot read from here, so need to record bad blocks
4836 		 * on all the target devices.
4837 		 */
4838 		// FIXME
4839 		mempool_free(r10_bio, &conf->r10buf_pool);
4840 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4841 		return sectors_done;
4842 	}
4843 
4844 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4845 
4846 	bio_set_dev(read_bio, rdev->bdev);
4847 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4848 			       + rdev->data_offset);
4849 	read_bio->bi_private = r10_bio;
4850 	read_bio->bi_end_io = end_reshape_read;
4851 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4852 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4853 	read_bio->bi_status = 0;
4854 	read_bio->bi_vcnt = 0;
4855 	read_bio->bi_iter.bi_size = 0;
4856 	r10_bio->master_bio = read_bio;
4857 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4858 
4859 	/*
4860 	 * Broadcast RESYNC message to other nodes, so all nodes would not
4861 	 * write to the region to avoid conflict.
4862 	*/
4863 	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4864 		struct mdp_superblock_1 *sb = NULL;
4865 		int sb_reshape_pos = 0;
4866 
4867 		conf->cluster_sync_low = sector_nr;
4868 		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4869 		sb = page_address(rdev->sb_page);
4870 		if (sb) {
4871 			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4872 			/*
4873 			 * Set cluster_sync_low again if next address for array
4874 			 * reshape is less than cluster_sync_low. Since we can't
4875 			 * update cluster_sync_low until it has finished reshape.
4876 			 */
4877 			if (sb_reshape_pos < conf->cluster_sync_low)
4878 				conf->cluster_sync_low = sb_reshape_pos;
4879 		}
4880 
4881 		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4882 							  conf->cluster_sync_high);
4883 	}
4884 
4885 	/* Now find the locations in the new layout */
4886 	__raid10_find_phys(&conf->geo, r10_bio);
4887 
4888 	blist = read_bio;
4889 	read_bio->bi_next = NULL;
4890 
4891 	rcu_read_lock();
4892 	for (s = 0; s < conf->copies*2; s++) {
4893 		struct bio *b;
4894 		int d = r10_bio->devs[s/2].devnum;
4895 		struct md_rdev *rdev2;
4896 		if (s&1) {
4897 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4898 			b = r10_bio->devs[s/2].repl_bio;
4899 		} else {
4900 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4901 			b = r10_bio->devs[s/2].bio;
4902 		}
4903 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4904 			continue;
4905 
4906 		bio_set_dev(b, rdev2->bdev);
4907 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4908 			rdev2->new_data_offset;
4909 		b->bi_end_io = end_reshape_write;
4910 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4911 		b->bi_next = blist;
4912 		blist = b;
4913 	}
4914 
4915 	/* Now add as many pages as possible to all of these bios. */
4916 
4917 	nr_sectors = 0;
4918 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4919 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4920 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4921 		int len = (max_sectors - s) << 9;
4922 		if (len > PAGE_SIZE)
4923 			len = PAGE_SIZE;
4924 		for (bio = blist; bio ; bio = bio->bi_next) {
4925 			/*
4926 			 * won't fail because the vec table is big enough
4927 			 * to hold all these pages
4928 			 */
4929 			bio_add_page(bio, page, len, 0);
4930 		}
4931 		sector_nr += len >> 9;
4932 		nr_sectors += len >> 9;
4933 	}
4934 	rcu_read_unlock();
4935 	r10_bio->sectors = nr_sectors;
4936 
4937 	/* Now submit the read */
4938 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4939 	atomic_inc(&r10_bio->remaining);
4940 	read_bio->bi_next = NULL;
4941 	submit_bio_noacct(read_bio);
4942 	sectors_done += nr_sectors;
4943 	if (sector_nr <= last)
4944 		goto read_more;
4945 
4946 	lower_barrier(conf);
4947 
4948 	/* Now that we have done the whole section we can
4949 	 * update reshape_progress
4950 	 */
4951 	if (mddev->reshape_backwards)
4952 		conf->reshape_progress -= sectors_done;
4953 	else
4954 		conf->reshape_progress += sectors_done;
4955 
4956 	return sectors_done;
4957 }
4958 
4959 static void end_reshape_request(struct r10bio *r10_bio);
4960 static int handle_reshape_read_error(struct mddev *mddev,
4961 				     struct r10bio *r10_bio);
4962 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4963 {
4964 	/* Reshape read completed.  Hopefully we have a block
4965 	 * to write out.
4966 	 * If we got a read error then we do sync 1-page reads from
4967 	 * elsewhere until we find the data - or give up.
4968 	 */
4969 	struct r10conf *conf = mddev->private;
4970 	int s;
4971 
4972 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4973 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4974 			/* Reshape has been aborted */
4975 			md_done_sync(mddev, r10_bio->sectors, 0);
4976 			return;
4977 		}
4978 
4979 	/* We definitely have the data in the pages, schedule the
4980 	 * writes.
4981 	 */
4982 	atomic_set(&r10_bio->remaining, 1);
4983 	for (s = 0; s < conf->copies*2; s++) {
4984 		struct bio *b;
4985 		int d = r10_bio->devs[s/2].devnum;
4986 		struct md_rdev *rdev;
4987 		rcu_read_lock();
4988 		if (s&1) {
4989 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4990 			b = r10_bio->devs[s/2].repl_bio;
4991 		} else {
4992 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4993 			b = r10_bio->devs[s/2].bio;
4994 		}
4995 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4996 			rcu_read_unlock();
4997 			continue;
4998 		}
4999 		atomic_inc(&rdev->nr_pending);
5000 		rcu_read_unlock();
5001 		md_sync_acct_bio(b, r10_bio->sectors);
5002 		atomic_inc(&r10_bio->remaining);
5003 		b->bi_next = NULL;
5004 		submit_bio_noacct(b);
5005 	}
5006 	end_reshape_request(r10_bio);
5007 }
5008 
5009 static void end_reshape(struct r10conf *conf)
5010 {
5011 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5012 		return;
5013 
5014 	spin_lock_irq(&conf->device_lock);
5015 	conf->prev = conf->geo;
5016 	md_finish_reshape(conf->mddev);
5017 	smp_wmb();
5018 	conf->reshape_progress = MaxSector;
5019 	conf->reshape_safe = MaxSector;
5020 	spin_unlock_irq(&conf->device_lock);
5021 
5022 	if (conf->mddev->queue)
5023 		raid10_set_io_opt(conf);
5024 	conf->fullsync = 0;
5025 }
5026 
5027 static void raid10_update_reshape_pos(struct mddev *mddev)
5028 {
5029 	struct r10conf *conf = mddev->private;
5030 	sector_t lo, hi;
5031 
5032 	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5033 	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5034 	    || mddev->reshape_position == MaxSector)
5035 		conf->reshape_progress = mddev->reshape_position;
5036 	else
5037 		WARN_ON_ONCE(1);
5038 }
5039 
5040 static int handle_reshape_read_error(struct mddev *mddev,
5041 				     struct r10bio *r10_bio)
5042 {
5043 	/* Use sync reads to get the blocks from somewhere else */
5044 	int sectors = r10_bio->sectors;
5045 	struct r10conf *conf = mddev->private;
5046 	struct r10bio *r10b;
5047 	int slot = 0;
5048 	int idx = 0;
5049 	struct page **pages;
5050 
5051 	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5052 	if (!r10b) {
5053 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5054 		return -ENOMEM;
5055 	}
5056 
5057 	/* reshape IOs share pages from .devs[0].bio */
5058 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5059 
5060 	r10b->sector = r10_bio->sector;
5061 	__raid10_find_phys(&conf->prev, r10b);
5062 
5063 	while (sectors) {
5064 		int s = sectors;
5065 		int success = 0;
5066 		int first_slot = slot;
5067 
5068 		if (s > (PAGE_SIZE >> 9))
5069 			s = PAGE_SIZE >> 9;
5070 
5071 		rcu_read_lock();
5072 		while (!success) {
5073 			int d = r10b->devs[slot].devnum;
5074 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5075 			sector_t addr;
5076 			if (rdev == NULL ||
5077 			    test_bit(Faulty, &rdev->flags) ||
5078 			    !test_bit(In_sync, &rdev->flags))
5079 				goto failed;
5080 
5081 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5082 			atomic_inc(&rdev->nr_pending);
5083 			rcu_read_unlock();
5084 			success = sync_page_io(rdev,
5085 					       addr,
5086 					       s << 9,
5087 					       pages[idx],
5088 					       REQ_OP_READ, 0, false);
5089 			rdev_dec_pending(rdev, mddev);
5090 			rcu_read_lock();
5091 			if (success)
5092 				break;
5093 		failed:
5094 			slot++;
5095 			if (slot >= conf->copies)
5096 				slot = 0;
5097 			if (slot == first_slot)
5098 				break;
5099 		}
5100 		rcu_read_unlock();
5101 		if (!success) {
5102 			/* couldn't read this block, must give up */
5103 			set_bit(MD_RECOVERY_INTR,
5104 				&mddev->recovery);
5105 			kfree(r10b);
5106 			return -EIO;
5107 		}
5108 		sectors -= s;
5109 		idx++;
5110 	}
5111 	kfree(r10b);
5112 	return 0;
5113 }
5114 
5115 static void end_reshape_write(struct bio *bio)
5116 {
5117 	struct r10bio *r10_bio = get_resync_r10bio(bio);
5118 	struct mddev *mddev = r10_bio->mddev;
5119 	struct r10conf *conf = mddev->private;
5120 	int d;
5121 	int slot;
5122 	int repl;
5123 	struct md_rdev *rdev = NULL;
5124 
5125 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5126 	if (repl)
5127 		rdev = conf->mirrors[d].replacement;
5128 	if (!rdev) {
5129 		smp_mb();
5130 		rdev = conf->mirrors[d].rdev;
5131 	}
5132 
5133 	if (bio->bi_status) {
5134 		/* FIXME should record badblock */
5135 		md_error(mddev, rdev);
5136 	}
5137 
5138 	rdev_dec_pending(rdev, mddev);
5139 	end_reshape_request(r10_bio);
5140 }
5141 
5142 static void end_reshape_request(struct r10bio *r10_bio)
5143 {
5144 	if (!atomic_dec_and_test(&r10_bio->remaining))
5145 		return;
5146 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5147 	bio_put(r10_bio->master_bio);
5148 	put_buf(r10_bio);
5149 }
5150 
5151 static void raid10_finish_reshape(struct mddev *mddev)
5152 {
5153 	struct r10conf *conf = mddev->private;
5154 
5155 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5156 		return;
5157 
5158 	if (mddev->delta_disks > 0) {
5159 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
5160 			mddev->recovery_cp = mddev->resync_max_sectors;
5161 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5162 		}
5163 		mddev->resync_max_sectors = mddev->array_sectors;
5164 	} else {
5165 		int d;
5166 		rcu_read_lock();
5167 		for (d = conf->geo.raid_disks ;
5168 		     d < conf->geo.raid_disks - mddev->delta_disks;
5169 		     d++) {
5170 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5171 			if (rdev)
5172 				clear_bit(In_sync, &rdev->flags);
5173 			rdev = rcu_dereference(conf->mirrors[d].replacement);
5174 			if (rdev)
5175 				clear_bit(In_sync, &rdev->flags);
5176 		}
5177 		rcu_read_unlock();
5178 	}
5179 	mddev->layout = mddev->new_layout;
5180 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5181 	mddev->reshape_position = MaxSector;
5182 	mddev->delta_disks = 0;
5183 	mddev->reshape_backwards = 0;
5184 }
5185 
5186 static struct md_personality raid10_personality =
5187 {
5188 	.name		= "raid10",
5189 	.level		= 10,
5190 	.owner		= THIS_MODULE,
5191 	.make_request	= raid10_make_request,
5192 	.run		= raid10_run,
5193 	.free		= raid10_free,
5194 	.status		= raid10_status,
5195 	.error_handler	= raid10_error,
5196 	.hot_add_disk	= raid10_add_disk,
5197 	.hot_remove_disk= raid10_remove_disk,
5198 	.spare_active	= raid10_spare_active,
5199 	.sync_request	= raid10_sync_request,
5200 	.quiesce	= raid10_quiesce,
5201 	.size		= raid10_size,
5202 	.resize		= raid10_resize,
5203 	.takeover	= raid10_takeover,
5204 	.check_reshape	= raid10_check_reshape,
5205 	.start_reshape	= raid10_start_reshape,
5206 	.finish_reshape	= raid10_finish_reshape,
5207 	.update_reshape_pos = raid10_update_reshape_pos,
5208 };
5209 
5210 static int __init raid_init(void)
5211 {
5212 	return register_md_personality(&raid10_personality);
5213 }
5214 
5215 static void raid_exit(void)
5216 {
5217 	unregister_md_personality(&raid10_personality);
5218 }
5219 
5220 module_init(raid_init);
5221 module_exit(raid_exit);
5222 MODULE_LICENSE("GPL");
5223 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5224 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5225 MODULE_ALIAS("md-raid10");
5226 MODULE_ALIAS("md-level-10");
5227 
5228 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
5229