1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <trace/events/block.h> 29 #include "md.h" 30 #include "raid10.h" 31 #include "raid0.h" 32 #include "bitmap.h" 33 34 /* 35 * RAID10 provides a combination of RAID0 and RAID1 functionality. 36 * The layout of data is defined by 37 * chunk_size 38 * raid_disks 39 * near_copies (stored in low byte of layout) 40 * far_copies (stored in second byte of layout) 41 * far_offset (stored in bit 16 of layout ) 42 * use_far_sets (stored in bit 17 of layout ) 43 * use_far_sets_bugfixed (stored in bit 18 of layout ) 44 * 45 * The data to be stored is divided into chunks using chunksize. Each device 46 * is divided into far_copies sections. In each section, chunks are laid out 47 * in a style similar to raid0, but near_copies copies of each chunk is stored 48 * (each on a different drive). The starting device for each section is offset 49 * near_copies from the starting device of the previous section. Thus there 50 * are (near_copies * far_copies) of each chunk, and each is on a different 51 * drive. near_copies and far_copies must be at least one, and their product 52 * is at most raid_disks. 53 * 54 * If far_offset is true, then the far_copies are handled a bit differently. 55 * The copies are still in different stripes, but instead of being very far 56 * apart on disk, there are adjacent stripes. 57 * 58 * The far and offset algorithms are handled slightly differently if 59 * 'use_far_sets' is true. In this case, the array's devices are grouped into 60 * sets that are (near_copies * far_copies) in size. The far copied stripes 61 * are still shifted by 'near_copies' devices, but this shifting stays confined 62 * to the set rather than the entire array. This is done to improve the number 63 * of device combinations that can fail without causing the array to fail. 64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 65 * on a device): 66 * A B C D A B C D E 67 * ... ... 68 * D A B C E A B C D 69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 70 * [A B] [C D] [A B] [C D E] 71 * |...| |...| |...| | ... | 72 * [B A] [D C] [B A] [E C D] 73 */ 74 75 /* 76 * Number of guaranteed r10bios in case of extreme VM load: 77 */ 78 #define NR_RAID10_BIOS 256 79 80 /* when we get a read error on a read-only array, we redirect to another 81 * device without failing the first device, or trying to over-write to 82 * correct the read error. To keep track of bad blocks on a per-bio 83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 84 */ 85 #define IO_BLOCKED ((struct bio *)1) 86 /* When we successfully write to a known bad-block, we need to remove the 87 * bad-block marking which must be done from process context. So we record 88 * the success by setting devs[n].bio to IO_MADE_GOOD 89 */ 90 #define IO_MADE_GOOD ((struct bio *)2) 91 92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 93 94 /* When there are this many requests queued to be written by 95 * the raid10 thread, we become 'congested' to provide back-pressure 96 * for writeback. 97 */ 98 static int max_queued_requests = 1024; 99 100 static void allow_barrier(struct r10conf *conf); 101 static void lower_barrier(struct r10conf *conf); 102 static int _enough(struct r10conf *conf, int previous, int ignore); 103 static int enough(struct r10conf *conf, int ignore); 104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 105 int *skipped); 106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 107 static void end_reshape_write(struct bio *bio); 108 static void end_reshape(struct r10conf *conf); 109 110 #define raid10_log(md, fmt, args...) \ 111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 112 113 /* 114 * 'strct resync_pages' stores actual pages used for doing the resync 115 * IO, and it is per-bio, so make .bi_private points to it. 116 */ 117 static inline struct resync_pages *get_resync_pages(struct bio *bio) 118 { 119 return bio->bi_private; 120 } 121 122 /* 123 * for resync bio, r10bio pointer can be retrieved from the per-bio 124 * 'struct resync_pages'. 125 */ 126 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 127 { 128 return get_resync_pages(bio)->raid_bio; 129 } 130 131 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 132 { 133 struct r10conf *conf = data; 134 int size = offsetof(struct r10bio, devs[conf->copies]); 135 136 /* allocate a r10bio with room for raid_disks entries in the 137 * bios array */ 138 return kzalloc(size, gfp_flags); 139 } 140 141 static void r10bio_pool_free(void *r10_bio, void *data) 142 { 143 kfree(r10_bio); 144 } 145 146 /* amount of memory to reserve for resync requests */ 147 #define RESYNC_WINDOW (1024*1024) 148 /* maximum number of concurrent requests, memory permitting */ 149 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 150 151 /* 152 * When performing a resync, we need to read and compare, so 153 * we need as many pages are there are copies. 154 * When performing a recovery, we need 2 bios, one for read, 155 * one for write (we recover only one drive per r10buf) 156 * 157 */ 158 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 159 { 160 struct r10conf *conf = data; 161 struct r10bio *r10_bio; 162 struct bio *bio; 163 int j; 164 int nalloc, nalloc_rp; 165 struct resync_pages *rps; 166 167 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 168 if (!r10_bio) 169 return NULL; 170 171 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 172 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 173 nalloc = conf->copies; /* resync */ 174 else 175 nalloc = 2; /* recovery */ 176 177 /* allocate once for all bios */ 178 if (!conf->have_replacement) 179 nalloc_rp = nalloc; 180 else 181 nalloc_rp = nalloc * 2; 182 rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags); 183 if (!rps) 184 goto out_free_r10bio; 185 186 /* 187 * Allocate bios. 188 */ 189 for (j = nalloc ; j-- ; ) { 190 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 191 if (!bio) 192 goto out_free_bio; 193 r10_bio->devs[j].bio = bio; 194 if (!conf->have_replacement) 195 continue; 196 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 197 if (!bio) 198 goto out_free_bio; 199 r10_bio->devs[j].repl_bio = bio; 200 } 201 /* 202 * Allocate RESYNC_PAGES data pages and attach them 203 * where needed. 204 */ 205 for (j = 0; j < nalloc; j++) { 206 struct bio *rbio = r10_bio->devs[j].repl_bio; 207 struct resync_pages *rp, *rp_repl; 208 209 rp = &rps[j]; 210 if (rbio) 211 rp_repl = &rps[nalloc + j]; 212 213 bio = r10_bio->devs[j].bio; 214 215 if (!j || test_bit(MD_RECOVERY_SYNC, 216 &conf->mddev->recovery)) { 217 if (resync_alloc_pages(rp, gfp_flags)) 218 goto out_free_pages; 219 } else { 220 memcpy(rp, &rps[0], sizeof(*rp)); 221 resync_get_all_pages(rp); 222 } 223 224 rp->idx = 0; 225 rp->raid_bio = r10_bio; 226 bio->bi_private = rp; 227 if (rbio) { 228 memcpy(rp_repl, rp, sizeof(*rp)); 229 rbio->bi_private = rp_repl; 230 } 231 } 232 233 return r10_bio; 234 235 out_free_pages: 236 while (--j >= 0) 237 resync_free_pages(&rps[j * 2]); 238 239 j = 0; 240 out_free_bio: 241 for ( ; j < nalloc; j++) { 242 if (r10_bio->devs[j].bio) 243 bio_put(r10_bio->devs[j].bio); 244 if (r10_bio->devs[j].repl_bio) 245 bio_put(r10_bio->devs[j].repl_bio); 246 } 247 kfree(rps); 248 out_free_r10bio: 249 r10bio_pool_free(r10_bio, conf); 250 return NULL; 251 } 252 253 static void r10buf_pool_free(void *__r10_bio, void *data) 254 { 255 struct r10conf *conf = data; 256 struct r10bio *r10bio = __r10_bio; 257 int j; 258 struct resync_pages *rp = NULL; 259 260 for (j = conf->copies; j--; ) { 261 struct bio *bio = r10bio->devs[j].bio; 262 263 rp = get_resync_pages(bio); 264 resync_free_pages(rp); 265 bio_put(bio); 266 267 bio = r10bio->devs[j].repl_bio; 268 if (bio) 269 bio_put(bio); 270 } 271 272 /* resync pages array stored in the 1st bio's .bi_private */ 273 kfree(rp); 274 275 r10bio_pool_free(r10bio, conf); 276 } 277 278 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 279 { 280 int i; 281 282 for (i = 0; i < conf->copies; i++) { 283 struct bio **bio = & r10_bio->devs[i].bio; 284 if (!BIO_SPECIAL(*bio)) 285 bio_put(*bio); 286 *bio = NULL; 287 bio = &r10_bio->devs[i].repl_bio; 288 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 289 bio_put(*bio); 290 *bio = NULL; 291 } 292 } 293 294 static void free_r10bio(struct r10bio *r10_bio) 295 { 296 struct r10conf *conf = r10_bio->mddev->private; 297 298 put_all_bios(conf, r10_bio); 299 mempool_free(r10_bio, conf->r10bio_pool); 300 } 301 302 static void put_buf(struct r10bio *r10_bio) 303 { 304 struct r10conf *conf = r10_bio->mddev->private; 305 306 mempool_free(r10_bio, conf->r10buf_pool); 307 308 lower_barrier(conf); 309 } 310 311 static void reschedule_retry(struct r10bio *r10_bio) 312 { 313 unsigned long flags; 314 struct mddev *mddev = r10_bio->mddev; 315 struct r10conf *conf = mddev->private; 316 317 spin_lock_irqsave(&conf->device_lock, flags); 318 list_add(&r10_bio->retry_list, &conf->retry_list); 319 conf->nr_queued ++; 320 spin_unlock_irqrestore(&conf->device_lock, flags); 321 322 /* wake up frozen array... */ 323 wake_up(&conf->wait_barrier); 324 325 md_wakeup_thread(mddev->thread); 326 } 327 328 /* 329 * raid_end_bio_io() is called when we have finished servicing a mirrored 330 * operation and are ready to return a success/failure code to the buffer 331 * cache layer. 332 */ 333 static void raid_end_bio_io(struct r10bio *r10_bio) 334 { 335 struct bio *bio = r10_bio->master_bio; 336 struct r10conf *conf = r10_bio->mddev->private; 337 338 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 339 bio->bi_error = -EIO; 340 341 bio_endio(bio); 342 /* 343 * Wake up any possible resync thread that waits for the device 344 * to go idle. 345 */ 346 allow_barrier(conf); 347 348 free_r10bio(r10_bio); 349 } 350 351 /* 352 * Update disk head position estimator based on IRQ completion info. 353 */ 354 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 355 { 356 struct r10conf *conf = r10_bio->mddev->private; 357 358 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 359 r10_bio->devs[slot].addr + (r10_bio->sectors); 360 } 361 362 /* 363 * Find the disk number which triggered given bio 364 */ 365 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 366 struct bio *bio, int *slotp, int *replp) 367 { 368 int slot; 369 int repl = 0; 370 371 for (slot = 0; slot < conf->copies; slot++) { 372 if (r10_bio->devs[slot].bio == bio) 373 break; 374 if (r10_bio->devs[slot].repl_bio == bio) { 375 repl = 1; 376 break; 377 } 378 } 379 380 BUG_ON(slot == conf->copies); 381 update_head_pos(slot, r10_bio); 382 383 if (slotp) 384 *slotp = slot; 385 if (replp) 386 *replp = repl; 387 return r10_bio->devs[slot].devnum; 388 } 389 390 static void raid10_end_read_request(struct bio *bio) 391 { 392 int uptodate = !bio->bi_error; 393 struct r10bio *r10_bio = bio->bi_private; 394 int slot, dev; 395 struct md_rdev *rdev; 396 struct r10conf *conf = r10_bio->mddev->private; 397 398 slot = r10_bio->read_slot; 399 dev = r10_bio->devs[slot].devnum; 400 rdev = r10_bio->devs[slot].rdev; 401 /* 402 * this branch is our 'one mirror IO has finished' event handler: 403 */ 404 update_head_pos(slot, r10_bio); 405 406 if (uptodate) { 407 /* 408 * Set R10BIO_Uptodate in our master bio, so that 409 * we will return a good error code to the higher 410 * levels even if IO on some other mirrored buffer fails. 411 * 412 * The 'master' represents the composite IO operation to 413 * user-side. So if something waits for IO, then it will 414 * wait for the 'master' bio. 415 */ 416 set_bit(R10BIO_Uptodate, &r10_bio->state); 417 } else { 418 /* If all other devices that store this block have 419 * failed, we want to return the error upwards rather 420 * than fail the last device. Here we redefine 421 * "uptodate" to mean "Don't want to retry" 422 */ 423 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 424 rdev->raid_disk)) 425 uptodate = 1; 426 } 427 if (uptodate) { 428 raid_end_bio_io(r10_bio); 429 rdev_dec_pending(rdev, conf->mddev); 430 } else { 431 /* 432 * oops, read error - keep the refcount on the rdev 433 */ 434 char b[BDEVNAME_SIZE]; 435 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 436 mdname(conf->mddev), 437 bdevname(rdev->bdev, b), 438 (unsigned long long)r10_bio->sector); 439 set_bit(R10BIO_ReadError, &r10_bio->state); 440 reschedule_retry(r10_bio); 441 } 442 } 443 444 static void close_write(struct r10bio *r10_bio) 445 { 446 /* clear the bitmap if all writes complete successfully */ 447 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 448 r10_bio->sectors, 449 !test_bit(R10BIO_Degraded, &r10_bio->state), 450 0); 451 md_write_end(r10_bio->mddev); 452 } 453 454 static void one_write_done(struct r10bio *r10_bio) 455 { 456 if (atomic_dec_and_test(&r10_bio->remaining)) { 457 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 458 reschedule_retry(r10_bio); 459 else { 460 close_write(r10_bio); 461 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 462 reschedule_retry(r10_bio); 463 else 464 raid_end_bio_io(r10_bio); 465 } 466 } 467 } 468 469 static void raid10_end_write_request(struct bio *bio) 470 { 471 struct r10bio *r10_bio = bio->bi_private; 472 int dev; 473 int dec_rdev = 1; 474 struct r10conf *conf = r10_bio->mddev->private; 475 int slot, repl; 476 struct md_rdev *rdev = NULL; 477 struct bio *to_put = NULL; 478 bool discard_error; 479 480 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD; 481 482 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 483 484 if (repl) 485 rdev = conf->mirrors[dev].replacement; 486 if (!rdev) { 487 smp_rmb(); 488 repl = 0; 489 rdev = conf->mirrors[dev].rdev; 490 } 491 /* 492 * this branch is our 'one mirror IO has finished' event handler: 493 */ 494 if (bio->bi_error && !discard_error) { 495 if (repl) 496 /* Never record new bad blocks to replacement, 497 * just fail it. 498 */ 499 md_error(rdev->mddev, rdev); 500 else { 501 set_bit(WriteErrorSeen, &rdev->flags); 502 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 503 set_bit(MD_RECOVERY_NEEDED, 504 &rdev->mddev->recovery); 505 506 dec_rdev = 0; 507 if (test_bit(FailFast, &rdev->flags) && 508 (bio->bi_opf & MD_FAILFAST)) { 509 md_error(rdev->mddev, rdev); 510 if (!test_bit(Faulty, &rdev->flags)) 511 /* This is the only remaining device, 512 * We need to retry the write without 513 * FailFast 514 */ 515 set_bit(R10BIO_WriteError, &r10_bio->state); 516 else { 517 r10_bio->devs[slot].bio = NULL; 518 to_put = bio; 519 dec_rdev = 1; 520 } 521 } else 522 set_bit(R10BIO_WriteError, &r10_bio->state); 523 } 524 } else { 525 /* 526 * Set R10BIO_Uptodate in our master bio, so that 527 * we will return a good error code for to the higher 528 * levels even if IO on some other mirrored buffer fails. 529 * 530 * The 'master' represents the composite IO operation to 531 * user-side. So if something waits for IO, then it will 532 * wait for the 'master' bio. 533 */ 534 sector_t first_bad; 535 int bad_sectors; 536 537 /* 538 * Do not set R10BIO_Uptodate if the current device is 539 * rebuilding or Faulty. This is because we cannot use 540 * such device for properly reading the data back (we could 541 * potentially use it, if the current write would have felt 542 * before rdev->recovery_offset, but for simplicity we don't 543 * check this here. 544 */ 545 if (test_bit(In_sync, &rdev->flags) && 546 !test_bit(Faulty, &rdev->flags)) 547 set_bit(R10BIO_Uptodate, &r10_bio->state); 548 549 /* Maybe we can clear some bad blocks. */ 550 if (is_badblock(rdev, 551 r10_bio->devs[slot].addr, 552 r10_bio->sectors, 553 &first_bad, &bad_sectors) && !discard_error) { 554 bio_put(bio); 555 if (repl) 556 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 557 else 558 r10_bio->devs[slot].bio = IO_MADE_GOOD; 559 dec_rdev = 0; 560 set_bit(R10BIO_MadeGood, &r10_bio->state); 561 } 562 } 563 564 /* 565 * 566 * Let's see if all mirrored write operations have finished 567 * already. 568 */ 569 one_write_done(r10_bio); 570 if (dec_rdev) 571 rdev_dec_pending(rdev, conf->mddev); 572 if (to_put) 573 bio_put(to_put); 574 } 575 576 /* 577 * RAID10 layout manager 578 * As well as the chunksize and raid_disks count, there are two 579 * parameters: near_copies and far_copies. 580 * near_copies * far_copies must be <= raid_disks. 581 * Normally one of these will be 1. 582 * If both are 1, we get raid0. 583 * If near_copies == raid_disks, we get raid1. 584 * 585 * Chunks are laid out in raid0 style with near_copies copies of the 586 * first chunk, followed by near_copies copies of the next chunk and 587 * so on. 588 * If far_copies > 1, then after 1/far_copies of the array has been assigned 589 * as described above, we start again with a device offset of near_copies. 590 * So we effectively have another copy of the whole array further down all 591 * the drives, but with blocks on different drives. 592 * With this layout, and block is never stored twice on the one device. 593 * 594 * raid10_find_phys finds the sector offset of a given virtual sector 595 * on each device that it is on. 596 * 597 * raid10_find_virt does the reverse mapping, from a device and a 598 * sector offset to a virtual address 599 */ 600 601 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 602 { 603 int n,f; 604 sector_t sector; 605 sector_t chunk; 606 sector_t stripe; 607 int dev; 608 int slot = 0; 609 int last_far_set_start, last_far_set_size; 610 611 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 612 last_far_set_start *= geo->far_set_size; 613 614 last_far_set_size = geo->far_set_size; 615 last_far_set_size += (geo->raid_disks % geo->far_set_size); 616 617 /* now calculate first sector/dev */ 618 chunk = r10bio->sector >> geo->chunk_shift; 619 sector = r10bio->sector & geo->chunk_mask; 620 621 chunk *= geo->near_copies; 622 stripe = chunk; 623 dev = sector_div(stripe, geo->raid_disks); 624 if (geo->far_offset) 625 stripe *= geo->far_copies; 626 627 sector += stripe << geo->chunk_shift; 628 629 /* and calculate all the others */ 630 for (n = 0; n < geo->near_copies; n++) { 631 int d = dev; 632 int set; 633 sector_t s = sector; 634 r10bio->devs[slot].devnum = d; 635 r10bio->devs[slot].addr = s; 636 slot++; 637 638 for (f = 1; f < geo->far_copies; f++) { 639 set = d / geo->far_set_size; 640 d += geo->near_copies; 641 642 if ((geo->raid_disks % geo->far_set_size) && 643 (d > last_far_set_start)) { 644 d -= last_far_set_start; 645 d %= last_far_set_size; 646 d += last_far_set_start; 647 } else { 648 d %= geo->far_set_size; 649 d += geo->far_set_size * set; 650 } 651 s += geo->stride; 652 r10bio->devs[slot].devnum = d; 653 r10bio->devs[slot].addr = s; 654 slot++; 655 } 656 dev++; 657 if (dev >= geo->raid_disks) { 658 dev = 0; 659 sector += (geo->chunk_mask + 1); 660 } 661 } 662 } 663 664 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 665 { 666 struct geom *geo = &conf->geo; 667 668 if (conf->reshape_progress != MaxSector && 669 ((r10bio->sector >= conf->reshape_progress) != 670 conf->mddev->reshape_backwards)) { 671 set_bit(R10BIO_Previous, &r10bio->state); 672 geo = &conf->prev; 673 } else 674 clear_bit(R10BIO_Previous, &r10bio->state); 675 676 __raid10_find_phys(geo, r10bio); 677 } 678 679 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 680 { 681 sector_t offset, chunk, vchunk; 682 /* Never use conf->prev as this is only called during resync 683 * or recovery, so reshape isn't happening 684 */ 685 struct geom *geo = &conf->geo; 686 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 687 int far_set_size = geo->far_set_size; 688 int last_far_set_start; 689 690 if (geo->raid_disks % geo->far_set_size) { 691 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 692 last_far_set_start *= geo->far_set_size; 693 694 if (dev >= last_far_set_start) { 695 far_set_size = geo->far_set_size; 696 far_set_size += (geo->raid_disks % geo->far_set_size); 697 far_set_start = last_far_set_start; 698 } 699 } 700 701 offset = sector & geo->chunk_mask; 702 if (geo->far_offset) { 703 int fc; 704 chunk = sector >> geo->chunk_shift; 705 fc = sector_div(chunk, geo->far_copies); 706 dev -= fc * geo->near_copies; 707 if (dev < far_set_start) 708 dev += far_set_size; 709 } else { 710 while (sector >= geo->stride) { 711 sector -= geo->stride; 712 if (dev < (geo->near_copies + far_set_start)) 713 dev += far_set_size - geo->near_copies; 714 else 715 dev -= geo->near_copies; 716 } 717 chunk = sector >> geo->chunk_shift; 718 } 719 vchunk = chunk * geo->raid_disks + dev; 720 sector_div(vchunk, geo->near_copies); 721 return (vchunk << geo->chunk_shift) + offset; 722 } 723 724 /* 725 * This routine returns the disk from which the requested read should 726 * be done. There is a per-array 'next expected sequential IO' sector 727 * number - if this matches on the next IO then we use the last disk. 728 * There is also a per-disk 'last know head position' sector that is 729 * maintained from IRQ contexts, both the normal and the resync IO 730 * completion handlers update this position correctly. If there is no 731 * perfect sequential match then we pick the disk whose head is closest. 732 * 733 * If there are 2 mirrors in the same 2 devices, performance degrades 734 * because position is mirror, not device based. 735 * 736 * The rdev for the device selected will have nr_pending incremented. 737 */ 738 739 /* 740 * FIXME: possibly should rethink readbalancing and do it differently 741 * depending on near_copies / far_copies geometry. 742 */ 743 static struct md_rdev *read_balance(struct r10conf *conf, 744 struct r10bio *r10_bio, 745 int *max_sectors) 746 { 747 const sector_t this_sector = r10_bio->sector; 748 int disk, slot; 749 int sectors = r10_bio->sectors; 750 int best_good_sectors; 751 sector_t new_distance, best_dist; 752 struct md_rdev *best_rdev, *rdev = NULL; 753 int do_balance; 754 int best_slot; 755 struct geom *geo = &conf->geo; 756 757 raid10_find_phys(conf, r10_bio); 758 rcu_read_lock(); 759 sectors = r10_bio->sectors; 760 best_slot = -1; 761 best_rdev = NULL; 762 best_dist = MaxSector; 763 best_good_sectors = 0; 764 do_balance = 1; 765 clear_bit(R10BIO_FailFast, &r10_bio->state); 766 /* 767 * Check if we can balance. We can balance on the whole 768 * device if no resync is going on (recovery is ok), or below 769 * the resync window. We take the first readable disk when 770 * above the resync window. 771 */ 772 if (conf->mddev->recovery_cp < MaxSector 773 && (this_sector + sectors >= conf->next_resync)) 774 do_balance = 0; 775 776 for (slot = 0; slot < conf->copies ; slot++) { 777 sector_t first_bad; 778 int bad_sectors; 779 sector_t dev_sector; 780 781 if (r10_bio->devs[slot].bio == IO_BLOCKED) 782 continue; 783 disk = r10_bio->devs[slot].devnum; 784 rdev = rcu_dereference(conf->mirrors[disk].replacement); 785 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 786 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 787 rdev = rcu_dereference(conf->mirrors[disk].rdev); 788 if (rdev == NULL || 789 test_bit(Faulty, &rdev->flags)) 790 continue; 791 if (!test_bit(In_sync, &rdev->flags) && 792 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 793 continue; 794 795 dev_sector = r10_bio->devs[slot].addr; 796 if (is_badblock(rdev, dev_sector, sectors, 797 &first_bad, &bad_sectors)) { 798 if (best_dist < MaxSector) 799 /* Already have a better slot */ 800 continue; 801 if (first_bad <= dev_sector) { 802 /* Cannot read here. If this is the 803 * 'primary' device, then we must not read 804 * beyond 'bad_sectors' from another device. 805 */ 806 bad_sectors -= (dev_sector - first_bad); 807 if (!do_balance && sectors > bad_sectors) 808 sectors = bad_sectors; 809 if (best_good_sectors > sectors) 810 best_good_sectors = sectors; 811 } else { 812 sector_t good_sectors = 813 first_bad - dev_sector; 814 if (good_sectors > best_good_sectors) { 815 best_good_sectors = good_sectors; 816 best_slot = slot; 817 best_rdev = rdev; 818 } 819 if (!do_balance) 820 /* Must read from here */ 821 break; 822 } 823 continue; 824 } else 825 best_good_sectors = sectors; 826 827 if (!do_balance) 828 break; 829 830 if (best_slot >= 0) 831 /* At least 2 disks to choose from so failfast is OK */ 832 set_bit(R10BIO_FailFast, &r10_bio->state); 833 /* This optimisation is debatable, and completely destroys 834 * sequential read speed for 'far copies' arrays. So only 835 * keep it for 'near' arrays, and review those later. 836 */ 837 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 838 new_distance = 0; 839 840 /* for far > 1 always use the lowest address */ 841 else if (geo->far_copies > 1) 842 new_distance = r10_bio->devs[slot].addr; 843 else 844 new_distance = abs(r10_bio->devs[slot].addr - 845 conf->mirrors[disk].head_position); 846 if (new_distance < best_dist) { 847 best_dist = new_distance; 848 best_slot = slot; 849 best_rdev = rdev; 850 } 851 } 852 if (slot >= conf->copies) { 853 slot = best_slot; 854 rdev = best_rdev; 855 } 856 857 if (slot >= 0) { 858 atomic_inc(&rdev->nr_pending); 859 r10_bio->read_slot = slot; 860 } else 861 rdev = NULL; 862 rcu_read_unlock(); 863 *max_sectors = best_good_sectors; 864 865 return rdev; 866 } 867 868 static int raid10_congested(struct mddev *mddev, int bits) 869 { 870 struct r10conf *conf = mddev->private; 871 int i, ret = 0; 872 873 if ((bits & (1 << WB_async_congested)) && 874 conf->pending_count >= max_queued_requests) 875 return 1; 876 877 rcu_read_lock(); 878 for (i = 0; 879 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 880 && ret == 0; 881 i++) { 882 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 883 if (rdev && !test_bit(Faulty, &rdev->flags)) { 884 struct request_queue *q = bdev_get_queue(rdev->bdev); 885 886 ret |= bdi_congested(q->backing_dev_info, bits); 887 } 888 } 889 rcu_read_unlock(); 890 return ret; 891 } 892 893 static void flush_pending_writes(struct r10conf *conf) 894 { 895 /* Any writes that have been queued but are awaiting 896 * bitmap updates get flushed here. 897 */ 898 spin_lock_irq(&conf->device_lock); 899 900 if (conf->pending_bio_list.head) { 901 struct bio *bio; 902 bio = bio_list_get(&conf->pending_bio_list); 903 conf->pending_count = 0; 904 spin_unlock_irq(&conf->device_lock); 905 /* flush any pending bitmap writes to disk 906 * before proceeding w/ I/O */ 907 bitmap_unplug(conf->mddev->bitmap); 908 wake_up(&conf->wait_barrier); 909 910 while (bio) { /* submit pending writes */ 911 struct bio *next = bio->bi_next; 912 struct md_rdev *rdev = (void*)bio->bi_bdev; 913 bio->bi_next = NULL; 914 bio->bi_bdev = rdev->bdev; 915 if (test_bit(Faulty, &rdev->flags)) { 916 bio->bi_error = -EIO; 917 bio_endio(bio); 918 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 919 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 920 /* Just ignore it */ 921 bio_endio(bio); 922 else 923 generic_make_request(bio); 924 bio = next; 925 } 926 } else 927 spin_unlock_irq(&conf->device_lock); 928 } 929 930 /* Barriers.... 931 * Sometimes we need to suspend IO while we do something else, 932 * either some resync/recovery, or reconfigure the array. 933 * To do this we raise a 'barrier'. 934 * The 'barrier' is a counter that can be raised multiple times 935 * to count how many activities are happening which preclude 936 * normal IO. 937 * We can only raise the barrier if there is no pending IO. 938 * i.e. if nr_pending == 0. 939 * We choose only to raise the barrier if no-one is waiting for the 940 * barrier to go down. This means that as soon as an IO request 941 * is ready, no other operations which require a barrier will start 942 * until the IO request has had a chance. 943 * 944 * So: regular IO calls 'wait_barrier'. When that returns there 945 * is no backgroup IO happening, It must arrange to call 946 * allow_barrier when it has finished its IO. 947 * backgroup IO calls must call raise_barrier. Once that returns 948 * there is no normal IO happeing. It must arrange to call 949 * lower_barrier when the particular background IO completes. 950 */ 951 952 static void raise_barrier(struct r10conf *conf, int force) 953 { 954 BUG_ON(force && !conf->barrier); 955 spin_lock_irq(&conf->resync_lock); 956 957 /* Wait until no block IO is waiting (unless 'force') */ 958 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 959 conf->resync_lock); 960 961 /* block any new IO from starting */ 962 conf->barrier++; 963 964 /* Now wait for all pending IO to complete */ 965 wait_event_lock_irq(conf->wait_barrier, 966 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 967 conf->resync_lock); 968 969 spin_unlock_irq(&conf->resync_lock); 970 } 971 972 static void lower_barrier(struct r10conf *conf) 973 { 974 unsigned long flags; 975 spin_lock_irqsave(&conf->resync_lock, flags); 976 conf->barrier--; 977 spin_unlock_irqrestore(&conf->resync_lock, flags); 978 wake_up(&conf->wait_barrier); 979 } 980 981 static void wait_barrier(struct r10conf *conf) 982 { 983 spin_lock_irq(&conf->resync_lock); 984 if (conf->barrier) { 985 conf->nr_waiting++; 986 /* Wait for the barrier to drop. 987 * However if there are already pending 988 * requests (preventing the barrier from 989 * rising completely), and the 990 * pre-process bio queue isn't empty, 991 * then don't wait, as we need to empty 992 * that queue to get the nr_pending 993 * count down. 994 */ 995 raid10_log(conf->mddev, "wait barrier"); 996 wait_event_lock_irq(conf->wait_barrier, 997 !conf->barrier || 998 (atomic_read(&conf->nr_pending) && 999 current->bio_list && 1000 (!bio_list_empty(¤t->bio_list[0]) || 1001 !bio_list_empty(¤t->bio_list[1]))), 1002 conf->resync_lock); 1003 conf->nr_waiting--; 1004 if (!conf->nr_waiting) 1005 wake_up(&conf->wait_barrier); 1006 } 1007 atomic_inc(&conf->nr_pending); 1008 spin_unlock_irq(&conf->resync_lock); 1009 } 1010 1011 static void allow_barrier(struct r10conf *conf) 1012 { 1013 if ((atomic_dec_and_test(&conf->nr_pending)) || 1014 (conf->array_freeze_pending)) 1015 wake_up(&conf->wait_barrier); 1016 } 1017 1018 static void freeze_array(struct r10conf *conf, int extra) 1019 { 1020 /* stop syncio and normal IO and wait for everything to 1021 * go quiet. 1022 * We increment barrier and nr_waiting, and then 1023 * wait until nr_pending match nr_queued+extra 1024 * This is called in the context of one normal IO request 1025 * that has failed. Thus any sync request that might be pending 1026 * will be blocked by nr_pending, and we need to wait for 1027 * pending IO requests to complete or be queued for re-try. 1028 * Thus the number queued (nr_queued) plus this request (extra) 1029 * must match the number of pending IOs (nr_pending) before 1030 * we continue. 1031 */ 1032 spin_lock_irq(&conf->resync_lock); 1033 conf->array_freeze_pending++; 1034 conf->barrier++; 1035 conf->nr_waiting++; 1036 wait_event_lock_irq_cmd(conf->wait_barrier, 1037 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1038 conf->resync_lock, 1039 flush_pending_writes(conf)); 1040 1041 conf->array_freeze_pending--; 1042 spin_unlock_irq(&conf->resync_lock); 1043 } 1044 1045 static void unfreeze_array(struct r10conf *conf) 1046 { 1047 /* reverse the effect of the freeze */ 1048 spin_lock_irq(&conf->resync_lock); 1049 conf->barrier--; 1050 conf->nr_waiting--; 1051 wake_up(&conf->wait_barrier); 1052 spin_unlock_irq(&conf->resync_lock); 1053 } 1054 1055 static sector_t choose_data_offset(struct r10bio *r10_bio, 1056 struct md_rdev *rdev) 1057 { 1058 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1059 test_bit(R10BIO_Previous, &r10_bio->state)) 1060 return rdev->data_offset; 1061 else 1062 return rdev->new_data_offset; 1063 } 1064 1065 struct raid10_plug_cb { 1066 struct blk_plug_cb cb; 1067 struct bio_list pending; 1068 int pending_cnt; 1069 }; 1070 1071 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1072 { 1073 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1074 cb); 1075 struct mddev *mddev = plug->cb.data; 1076 struct r10conf *conf = mddev->private; 1077 struct bio *bio; 1078 1079 if (from_schedule || current->bio_list) { 1080 spin_lock_irq(&conf->device_lock); 1081 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1082 conf->pending_count += plug->pending_cnt; 1083 spin_unlock_irq(&conf->device_lock); 1084 wake_up(&conf->wait_barrier); 1085 md_wakeup_thread(mddev->thread); 1086 kfree(plug); 1087 return; 1088 } 1089 1090 /* we aren't scheduling, so we can do the write-out directly. */ 1091 bio = bio_list_get(&plug->pending); 1092 bitmap_unplug(mddev->bitmap); 1093 wake_up(&conf->wait_barrier); 1094 1095 while (bio) { /* submit pending writes */ 1096 struct bio *next = bio->bi_next; 1097 struct md_rdev *rdev = (void*)bio->bi_bdev; 1098 bio->bi_next = NULL; 1099 bio->bi_bdev = rdev->bdev; 1100 if (test_bit(Faulty, &rdev->flags)) { 1101 bio->bi_error = -EIO; 1102 bio_endio(bio); 1103 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1104 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1105 /* Just ignore it */ 1106 bio_endio(bio); 1107 else 1108 generic_make_request(bio); 1109 bio = next; 1110 } 1111 kfree(plug); 1112 } 1113 1114 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1115 struct r10bio *r10_bio) 1116 { 1117 struct r10conf *conf = mddev->private; 1118 struct bio *read_bio; 1119 const int op = bio_op(bio); 1120 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1121 int max_sectors; 1122 sector_t sectors; 1123 struct md_rdev *rdev; 1124 char b[BDEVNAME_SIZE]; 1125 int slot = r10_bio->read_slot; 1126 struct md_rdev *err_rdev = NULL; 1127 gfp_t gfp = GFP_NOIO; 1128 1129 if (r10_bio->devs[slot].rdev) { 1130 /* 1131 * This is an error retry, but we cannot 1132 * safely dereference the rdev in the r10_bio, 1133 * we must use the one in conf. 1134 * If it has already been disconnected (unlikely) 1135 * we lose the device name in error messages. 1136 */ 1137 int disk; 1138 /* 1139 * As we are blocking raid10, it is a little safer to 1140 * use __GFP_HIGH. 1141 */ 1142 gfp = GFP_NOIO | __GFP_HIGH; 1143 1144 rcu_read_lock(); 1145 disk = r10_bio->devs[slot].devnum; 1146 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1147 if (err_rdev) 1148 bdevname(err_rdev->bdev, b); 1149 else { 1150 strcpy(b, "???"); 1151 /* This never gets dereferenced */ 1152 err_rdev = r10_bio->devs[slot].rdev; 1153 } 1154 rcu_read_unlock(); 1155 } 1156 /* 1157 * Register the new request and wait if the reconstruction 1158 * thread has put up a bar for new requests. 1159 * Continue immediately if no resync is active currently. 1160 */ 1161 wait_barrier(conf); 1162 1163 sectors = r10_bio->sectors; 1164 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1165 bio->bi_iter.bi_sector < conf->reshape_progress && 1166 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1167 /* 1168 * IO spans the reshape position. Need to wait for reshape to 1169 * pass 1170 */ 1171 raid10_log(conf->mddev, "wait reshape"); 1172 allow_barrier(conf); 1173 wait_event(conf->wait_barrier, 1174 conf->reshape_progress <= bio->bi_iter.bi_sector || 1175 conf->reshape_progress >= bio->bi_iter.bi_sector + 1176 sectors); 1177 wait_barrier(conf); 1178 } 1179 1180 rdev = read_balance(conf, r10_bio, &max_sectors); 1181 if (!rdev) { 1182 if (err_rdev) { 1183 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1184 mdname(mddev), b, 1185 (unsigned long long)r10_bio->sector); 1186 } 1187 raid_end_bio_io(r10_bio); 1188 return; 1189 } 1190 if (err_rdev) 1191 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1192 mdname(mddev), 1193 bdevname(rdev->bdev, b), 1194 (unsigned long long)r10_bio->sector); 1195 if (max_sectors < bio_sectors(bio)) { 1196 struct bio *split = bio_split(bio, max_sectors, 1197 gfp, conf->bio_split); 1198 bio_chain(split, bio); 1199 generic_make_request(bio); 1200 bio = split; 1201 r10_bio->master_bio = bio; 1202 r10_bio->sectors = max_sectors; 1203 } 1204 slot = r10_bio->read_slot; 1205 1206 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set); 1207 1208 r10_bio->devs[slot].bio = read_bio; 1209 r10_bio->devs[slot].rdev = rdev; 1210 1211 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1212 choose_data_offset(r10_bio, rdev); 1213 read_bio->bi_bdev = rdev->bdev; 1214 read_bio->bi_end_io = raid10_end_read_request; 1215 bio_set_op_attrs(read_bio, op, do_sync); 1216 if (test_bit(FailFast, &rdev->flags) && 1217 test_bit(R10BIO_FailFast, &r10_bio->state)) 1218 read_bio->bi_opf |= MD_FAILFAST; 1219 read_bio->bi_private = r10_bio; 1220 1221 if (mddev->gendisk) 1222 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev), 1223 read_bio, disk_devt(mddev->gendisk), 1224 r10_bio->sector); 1225 generic_make_request(read_bio); 1226 return; 1227 } 1228 1229 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1230 struct bio *bio, bool replacement, 1231 int n_copy) 1232 { 1233 const int op = bio_op(bio); 1234 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1235 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1236 unsigned long flags; 1237 struct blk_plug_cb *cb; 1238 struct raid10_plug_cb *plug = NULL; 1239 struct r10conf *conf = mddev->private; 1240 struct md_rdev *rdev; 1241 int devnum = r10_bio->devs[n_copy].devnum; 1242 struct bio *mbio; 1243 1244 if (replacement) { 1245 rdev = conf->mirrors[devnum].replacement; 1246 if (rdev == NULL) { 1247 /* Replacement just got moved to main 'rdev' */ 1248 smp_mb(); 1249 rdev = conf->mirrors[devnum].rdev; 1250 } 1251 } else 1252 rdev = conf->mirrors[devnum].rdev; 1253 1254 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 1255 if (replacement) 1256 r10_bio->devs[n_copy].repl_bio = mbio; 1257 else 1258 r10_bio->devs[n_copy].bio = mbio; 1259 1260 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1261 choose_data_offset(r10_bio, rdev)); 1262 mbio->bi_bdev = rdev->bdev; 1263 mbio->bi_end_io = raid10_end_write_request; 1264 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1265 if (!replacement && test_bit(FailFast, 1266 &conf->mirrors[devnum].rdev->flags) 1267 && enough(conf, devnum)) 1268 mbio->bi_opf |= MD_FAILFAST; 1269 mbio->bi_private = r10_bio; 1270 1271 if (conf->mddev->gendisk) 1272 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev), 1273 mbio, disk_devt(conf->mddev->gendisk), 1274 r10_bio->sector); 1275 /* flush_pending_writes() needs access to the rdev so...*/ 1276 mbio->bi_bdev = (void *)rdev; 1277 1278 atomic_inc(&r10_bio->remaining); 1279 1280 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1281 if (cb) 1282 plug = container_of(cb, struct raid10_plug_cb, cb); 1283 else 1284 plug = NULL; 1285 if (plug) { 1286 bio_list_add(&plug->pending, mbio); 1287 plug->pending_cnt++; 1288 } else { 1289 spin_lock_irqsave(&conf->device_lock, flags); 1290 bio_list_add(&conf->pending_bio_list, mbio); 1291 conf->pending_count++; 1292 spin_unlock_irqrestore(&conf->device_lock, flags); 1293 md_wakeup_thread(mddev->thread); 1294 } 1295 } 1296 1297 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1298 struct r10bio *r10_bio) 1299 { 1300 struct r10conf *conf = mddev->private; 1301 int i; 1302 struct md_rdev *blocked_rdev; 1303 sector_t sectors; 1304 int max_sectors; 1305 1306 md_write_start(mddev, bio); 1307 1308 /* 1309 * Register the new request and wait if the reconstruction 1310 * thread has put up a bar for new requests. 1311 * Continue immediately if no resync is active currently. 1312 */ 1313 wait_barrier(conf); 1314 1315 sectors = r10_bio->sectors; 1316 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1317 bio->bi_iter.bi_sector < conf->reshape_progress && 1318 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1319 /* 1320 * IO spans the reshape position. Need to wait for reshape to 1321 * pass 1322 */ 1323 raid10_log(conf->mddev, "wait reshape"); 1324 allow_barrier(conf); 1325 wait_event(conf->wait_barrier, 1326 conf->reshape_progress <= bio->bi_iter.bi_sector || 1327 conf->reshape_progress >= bio->bi_iter.bi_sector + 1328 sectors); 1329 wait_barrier(conf); 1330 } 1331 1332 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1333 (mddev->reshape_backwards 1334 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1335 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1336 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1337 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1338 /* Need to update reshape_position in metadata */ 1339 mddev->reshape_position = conf->reshape_progress; 1340 set_mask_bits(&mddev->sb_flags, 0, 1341 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1342 md_wakeup_thread(mddev->thread); 1343 raid10_log(conf->mddev, "wait reshape metadata"); 1344 wait_event(mddev->sb_wait, 1345 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1346 1347 conf->reshape_safe = mddev->reshape_position; 1348 } 1349 1350 if (conf->pending_count >= max_queued_requests) { 1351 md_wakeup_thread(mddev->thread); 1352 raid10_log(mddev, "wait queued"); 1353 wait_event(conf->wait_barrier, 1354 conf->pending_count < max_queued_requests); 1355 } 1356 /* first select target devices under rcu_lock and 1357 * inc refcount on their rdev. Record them by setting 1358 * bios[x] to bio 1359 * If there are known/acknowledged bad blocks on any device 1360 * on which we have seen a write error, we want to avoid 1361 * writing to those blocks. This potentially requires several 1362 * writes to write around the bad blocks. Each set of writes 1363 * gets its own r10_bio with a set of bios attached. 1364 */ 1365 1366 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1367 raid10_find_phys(conf, r10_bio); 1368 retry_write: 1369 blocked_rdev = NULL; 1370 rcu_read_lock(); 1371 max_sectors = r10_bio->sectors; 1372 1373 for (i = 0; i < conf->copies; i++) { 1374 int d = r10_bio->devs[i].devnum; 1375 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1376 struct md_rdev *rrdev = rcu_dereference( 1377 conf->mirrors[d].replacement); 1378 if (rdev == rrdev) 1379 rrdev = NULL; 1380 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1381 atomic_inc(&rdev->nr_pending); 1382 blocked_rdev = rdev; 1383 break; 1384 } 1385 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1386 atomic_inc(&rrdev->nr_pending); 1387 blocked_rdev = rrdev; 1388 break; 1389 } 1390 if (rdev && (test_bit(Faulty, &rdev->flags))) 1391 rdev = NULL; 1392 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1393 rrdev = NULL; 1394 1395 r10_bio->devs[i].bio = NULL; 1396 r10_bio->devs[i].repl_bio = NULL; 1397 1398 if (!rdev && !rrdev) { 1399 set_bit(R10BIO_Degraded, &r10_bio->state); 1400 continue; 1401 } 1402 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1403 sector_t first_bad; 1404 sector_t dev_sector = r10_bio->devs[i].addr; 1405 int bad_sectors; 1406 int is_bad; 1407 1408 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1409 &first_bad, &bad_sectors); 1410 if (is_bad < 0) { 1411 /* Mustn't write here until the bad block 1412 * is acknowledged 1413 */ 1414 atomic_inc(&rdev->nr_pending); 1415 set_bit(BlockedBadBlocks, &rdev->flags); 1416 blocked_rdev = rdev; 1417 break; 1418 } 1419 if (is_bad && first_bad <= dev_sector) { 1420 /* Cannot write here at all */ 1421 bad_sectors -= (dev_sector - first_bad); 1422 if (bad_sectors < max_sectors) 1423 /* Mustn't write more than bad_sectors 1424 * to other devices yet 1425 */ 1426 max_sectors = bad_sectors; 1427 /* We don't set R10BIO_Degraded as that 1428 * only applies if the disk is missing, 1429 * so it might be re-added, and we want to 1430 * know to recover this chunk. 1431 * In this case the device is here, and the 1432 * fact that this chunk is not in-sync is 1433 * recorded in the bad block log. 1434 */ 1435 continue; 1436 } 1437 if (is_bad) { 1438 int good_sectors = first_bad - dev_sector; 1439 if (good_sectors < max_sectors) 1440 max_sectors = good_sectors; 1441 } 1442 } 1443 if (rdev) { 1444 r10_bio->devs[i].bio = bio; 1445 atomic_inc(&rdev->nr_pending); 1446 } 1447 if (rrdev) { 1448 r10_bio->devs[i].repl_bio = bio; 1449 atomic_inc(&rrdev->nr_pending); 1450 } 1451 } 1452 rcu_read_unlock(); 1453 1454 if (unlikely(blocked_rdev)) { 1455 /* Have to wait for this device to get unblocked, then retry */ 1456 int j; 1457 int d; 1458 1459 for (j = 0; j < i; j++) { 1460 if (r10_bio->devs[j].bio) { 1461 d = r10_bio->devs[j].devnum; 1462 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1463 } 1464 if (r10_bio->devs[j].repl_bio) { 1465 struct md_rdev *rdev; 1466 d = r10_bio->devs[j].devnum; 1467 rdev = conf->mirrors[d].replacement; 1468 if (!rdev) { 1469 /* Race with remove_disk */ 1470 smp_mb(); 1471 rdev = conf->mirrors[d].rdev; 1472 } 1473 rdev_dec_pending(rdev, mddev); 1474 } 1475 } 1476 allow_barrier(conf); 1477 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1478 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1479 wait_barrier(conf); 1480 goto retry_write; 1481 } 1482 1483 if (max_sectors < r10_bio->sectors) 1484 r10_bio->sectors = max_sectors; 1485 1486 if (r10_bio->sectors < bio_sectors(bio)) { 1487 struct bio *split = bio_split(bio, r10_bio->sectors, 1488 GFP_NOIO, conf->bio_split); 1489 bio_chain(split, bio); 1490 generic_make_request(bio); 1491 bio = split; 1492 r10_bio->master_bio = bio; 1493 } 1494 1495 atomic_set(&r10_bio->remaining, 1); 1496 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1497 1498 for (i = 0; i < conf->copies; i++) { 1499 if (r10_bio->devs[i].bio) 1500 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1501 if (r10_bio->devs[i].repl_bio) 1502 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1503 } 1504 one_write_done(r10_bio); 1505 } 1506 1507 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1508 { 1509 struct r10conf *conf = mddev->private; 1510 struct r10bio *r10_bio; 1511 1512 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1513 1514 r10_bio->master_bio = bio; 1515 r10_bio->sectors = sectors; 1516 1517 r10_bio->mddev = mddev; 1518 r10_bio->sector = bio->bi_iter.bi_sector; 1519 r10_bio->state = 0; 1520 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies); 1521 1522 if (bio_data_dir(bio) == READ) 1523 raid10_read_request(mddev, bio, r10_bio); 1524 else 1525 raid10_write_request(mddev, bio, r10_bio); 1526 } 1527 1528 static void raid10_make_request(struct mddev *mddev, struct bio *bio) 1529 { 1530 struct r10conf *conf = mddev->private; 1531 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1532 int chunk_sects = chunk_mask + 1; 1533 int sectors = bio_sectors(bio); 1534 1535 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1536 md_flush_request(mddev, bio); 1537 return; 1538 } 1539 1540 /* 1541 * If this request crosses a chunk boundary, we need to split 1542 * it. 1543 */ 1544 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1545 sectors > chunk_sects 1546 && (conf->geo.near_copies < conf->geo.raid_disks 1547 || conf->prev.near_copies < 1548 conf->prev.raid_disks))) 1549 sectors = chunk_sects - 1550 (bio->bi_iter.bi_sector & 1551 (chunk_sects - 1)); 1552 __make_request(mddev, bio, sectors); 1553 1554 /* In case raid10d snuck in to freeze_array */ 1555 wake_up(&conf->wait_barrier); 1556 } 1557 1558 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1559 { 1560 struct r10conf *conf = mddev->private; 1561 int i; 1562 1563 if (conf->geo.near_copies < conf->geo.raid_disks) 1564 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1565 if (conf->geo.near_copies > 1) 1566 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1567 if (conf->geo.far_copies > 1) { 1568 if (conf->geo.far_offset) 1569 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1570 else 1571 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1572 if (conf->geo.far_set_size != conf->geo.raid_disks) 1573 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1574 } 1575 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1576 conf->geo.raid_disks - mddev->degraded); 1577 rcu_read_lock(); 1578 for (i = 0; i < conf->geo.raid_disks; i++) { 1579 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1580 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1581 } 1582 rcu_read_unlock(); 1583 seq_printf(seq, "]"); 1584 } 1585 1586 /* check if there are enough drives for 1587 * every block to appear on atleast one. 1588 * Don't consider the device numbered 'ignore' 1589 * as we might be about to remove it. 1590 */ 1591 static int _enough(struct r10conf *conf, int previous, int ignore) 1592 { 1593 int first = 0; 1594 int has_enough = 0; 1595 int disks, ncopies; 1596 if (previous) { 1597 disks = conf->prev.raid_disks; 1598 ncopies = conf->prev.near_copies; 1599 } else { 1600 disks = conf->geo.raid_disks; 1601 ncopies = conf->geo.near_copies; 1602 } 1603 1604 rcu_read_lock(); 1605 do { 1606 int n = conf->copies; 1607 int cnt = 0; 1608 int this = first; 1609 while (n--) { 1610 struct md_rdev *rdev; 1611 if (this != ignore && 1612 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1613 test_bit(In_sync, &rdev->flags)) 1614 cnt++; 1615 this = (this+1) % disks; 1616 } 1617 if (cnt == 0) 1618 goto out; 1619 first = (first + ncopies) % disks; 1620 } while (first != 0); 1621 has_enough = 1; 1622 out: 1623 rcu_read_unlock(); 1624 return has_enough; 1625 } 1626 1627 static int enough(struct r10conf *conf, int ignore) 1628 { 1629 /* when calling 'enough', both 'prev' and 'geo' must 1630 * be stable. 1631 * This is ensured if ->reconfig_mutex or ->device_lock 1632 * is held. 1633 */ 1634 return _enough(conf, 0, ignore) && 1635 _enough(conf, 1, ignore); 1636 } 1637 1638 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1639 { 1640 char b[BDEVNAME_SIZE]; 1641 struct r10conf *conf = mddev->private; 1642 unsigned long flags; 1643 1644 /* 1645 * If it is not operational, then we have already marked it as dead 1646 * else if it is the last working disks, ignore the error, let the 1647 * next level up know. 1648 * else mark the drive as failed 1649 */ 1650 spin_lock_irqsave(&conf->device_lock, flags); 1651 if (test_bit(In_sync, &rdev->flags) 1652 && !enough(conf, rdev->raid_disk)) { 1653 /* 1654 * Don't fail the drive, just return an IO error. 1655 */ 1656 spin_unlock_irqrestore(&conf->device_lock, flags); 1657 return; 1658 } 1659 if (test_and_clear_bit(In_sync, &rdev->flags)) 1660 mddev->degraded++; 1661 /* 1662 * If recovery is running, make sure it aborts. 1663 */ 1664 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1665 set_bit(Blocked, &rdev->flags); 1666 set_bit(Faulty, &rdev->flags); 1667 set_mask_bits(&mddev->sb_flags, 0, 1668 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1669 spin_unlock_irqrestore(&conf->device_lock, flags); 1670 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1671 "md/raid10:%s: Operation continuing on %d devices.\n", 1672 mdname(mddev), bdevname(rdev->bdev, b), 1673 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1674 } 1675 1676 static void print_conf(struct r10conf *conf) 1677 { 1678 int i; 1679 struct md_rdev *rdev; 1680 1681 pr_debug("RAID10 conf printout:\n"); 1682 if (!conf) { 1683 pr_debug("(!conf)\n"); 1684 return; 1685 } 1686 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1687 conf->geo.raid_disks); 1688 1689 /* This is only called with ->reconfix_mutex held, so 1690 * rcu protection of rdev is not needed */ 1691 for (i = 0; i < conf->geo.raid_disks; i++) { 1692 char b[BDEVNAME_SIZE]; 1693 rdev = conf->mirrors[i].rdev; 1694 if (rdev) 1695 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1696 i, !test_bit(In_sync, &rdev->flags), 1697 !test_bit(Faulty, &rdev->flags), 1698 bdevname(rdev->bdev,b)); 1699 } 1700 } 1701 1702 static void close_sync(struct r10conf *conf) 1703 { 1704 wait_barrier(conf); 1705 allow_barrier(conf); 1706 1707 mempool_destroy(conf->r10buf_pool); 1708 conf->r10buf_pool = NULL; 1709 } 1710 1711 static int raid10_spare_active(struct mddev *mddev) 1712 { 1713 int i; 1714 struct r10conf *conf = mddev->private; 1715 struct raid10_info *tmp; 1716 int count = 0; 1717 unsigned long flags; 1718 1719 /* 1720 * Find all non-in_sync disks within the RAID10 configuration 1721 * and mark them in_sync 1722 */ 1723 for (i = 0; i < conf->geo.raid_disks; i++) { 1724 tmp = conf->mirrors + i; 1725 if (tmp->replacement 1726 && tmp->replacement->recovery_offset == MaxSector 1727 && !test_bit(Faulty, &tmp->replacement->flags) 1728 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1729 /* Replacement has just become active */ 1730 if (!tmp->rdev 1731 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1732 count++; 1733 if (tmp->rdev) { 1734 /* Replaced device not technically faulty, 1735 * but we need to be sure it gets removed 1736 * and never re-added. 1737 */ 1738 set_bit(Faulty, &tmp->rdev->flags); 1739 sysfs_notify_dirent_safe( 1740 tmp->rdev->sysfs_state); 1741 } 1742 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1743 } else if (tmp->rdev 1744 && tmp->rdev->recovery_offset == MaxSector 1745 && !test_bit(Faulty, &tmp->rdev->flags) 1746 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1747 count++; 1748 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1749 } 1750 } 1751 spin_lock_irqsave(&conf->device_lock, flags); 1752 mddev->degraded -= count; 1753 spin_unlock_irqrestore(&conf->device_lock, flags); 1754 1755 print_conf(conf); 1756 return count; 1757 } 1758 1759 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1760 { 1761 struct r10conf *conf = mddev->private; 1762 int err = -EEXIST; 1763 int mirror; 1764 int first = 0; 1765 int last = conf->geo.raid_disks - 1; 1766 1767 if (mddev->recovery_cp < MaxSector) 1768 /* only hot-add to in-sync arrays, as recovery is 1769 * very different from resync 1770 */ 1771 return -EBUSY; 1772 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1773 return -EINVAL; 1774 1775 if (md_integrity_add_rdev(rdev, mddev)) 1776 return -ENXIO; 1777 1778 if (rdev->raid_disk >= 0) 1779 first = last = rdev->raid_disk; 1780 1781 if (rdev->saved_raid_disk >= first && 1782 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1783 mirror = rdev->saved_raid_disk; 1784 else 1785 mirror = first; 1786 for ( ; mirror <= last ; mirror++) { 1787 struct raid10_info *p = &conf->mirrors[mirror]; 1788 if (p->recovery_disabled == mddev->recovery_disabled) 1789 continue; 1790 if (p->rdev) { 1791 if (!test_bit(WantReplacement, &p->rdev->flags) || 1792 p->replacement != NULL) 1793 continue; 1794 clear_bit(In_sync, &rdev->flags); 1795 set_bit(Replacement, &rdev->flags); 1796 rdev->raid_disk = mirror; 1797 err = 0; 1798 if (mddev->gendisk) 1799 disk_stack_limits(mddev->gendisk, rdev->bdev, 1800 rdev->data_offset << 9); 1801 conf->fullsync = 1; 1802 rcu_assign_pointer(p->replacement, rdev); 1803 break; 1804 } 1805 1806 if (mddev->gendisk) 1807 disk_stack_limits(mddev->gendisk, rdev->bdev, 1808 rdev->data_offset << 9); 1809 1810 p->head_position = 0; 1811 p->recovery_disabled = mddev->recovery_disabled - 1; 1812 rdev->raid_disk = mirror; 1813 err = 0; 1814 if (rdev->saved_raid_disk != mirror) 1815 conf->fullsync = 1; 1816 rcu_assign_pointer(p->rdev, rdev); 1817 break; 1818 } 1819 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1820 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1821 1822 print_conf(conf); 1823 return err; 1824 } 1825 1826 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1827 { 1828 struct r10conf *conf = mddev->private; 1829 int err = 0; 1830 int number = rdev->raid_disk; 1831 struct md_rdev **rdevp; 1832 struct raid10_info *p = conf->mirrors + number; 1833 1834 print_conf(conf); 1835 if (rdev == p->rdev) 1836 rdevp = &p->rdev; 1837 else if (rdev == p->replacement) 1838 rdevp = &p->replacement; 1839 else 1840 return 0; 1841 1842 if (test_bit(In_sync, &rdev->flags) || 1843 atomic_read(&rdev->nr_pending)) { 1844 err = -EBUSY; 1845 goto abort; 1846 } 1847 /* Only remove non-faulty devices if recovery 1848 * is not possible. 1849 */ 1850 if (!test_bit(Faulty, &rdev->flags) && 1851 mddev->recovery_disabled != p->recovery_disabled && 1852 (!p->replacement || p->replacement == rdev) && 1853 number < conf->geo.raid_disks && 1854 enough(conf, -1)) { 1855 err = -EBUSY; 1856 goto abort; 1857 } 1858 *rdevp = NULL; 1859 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1860 synchronize_rcu(); 1861 if (atomic_read(&rdev->nr_pending)) { 1862 /* lost the race, try later */ 1863 err = -EBUSY; 1864 *rdevp = rdev; 1865 goto abort; 1866 } 1867 } 1868 if (p->replacement) { 1869 /* We must have just cleared 'rdev' */ 1870 p->rdev = p->replacement; 1871 clear_bit(Replacement, &p->replacement->flags); 1872 smp_mb(); /* Make sure other CPUs may see both as identical 1873 * but will never see neither -- if they are careful. 1874 */ 1875 p->replacement = NULL; 1876 } 1877 1878 clear_bit(WantReplacement, &rdev->flags); 1879 err = md_integrity_register(mddev); 1880 1881 abort: 1882 1883 print_conf(conf); 1884 return err; 1885 } 1886 1887 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 1888 { 1889 struct r10conf *conf = r10_bio->mddev->private; 1890 1891 if (!bio->bi_error) 1892 set_bit(R10BIO_Uptodate, &r10_bio->state); 1893 else 1894 /* The write handler will notice the lack of 1895 * R10BIO_Uptodate and record any errors etc 1896 */ 1897 atomic_add(r10_bio->sectors, 1898 &conf->mirrors[d].rdev->corrected_errors); 1899 1900 /* for reconstruct, we always reschedule after a read. 1901 * for resync, only after all reads 1902 */ 1903 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1904 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1905 atomic_dec_and_test(&r10_bio->remaining)) { 1906 /* we have read all the blocks, 1907 * do the comparison in process context in raid10d 1908 */ 1909 reschedule_retry(r10_bio); 1910 } 1911 } 1912 1913 static void end_sync_read(struct bio *bio) 1914 { 1915 struct r10bio *r10_bio = get_resync_r10bio(bio); 1916 struct r10conf *conf = r10_bio->mddev->private; 1917 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1918 1919 __end_sync_read(r10_bio, bio, d); 1920 } 1921 1922 static void end_reshape_read(struct bio *bio) 1923 { 1924 /* reshape read bio isn't allocated from r10buf_pool */ 1925 struct r10bio *r10_bio = bio->bi_private; 1926 1927 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 1928 } 1929 1930 static void end_sync_request(struct r10bio *r10_bio) 1931 { 1932 struct mddev *mddev = r10_bio->mddev; 1933 1934 while (atomic_dec_and_test(&r10_bio->remaining)) { 1935 if (r10_bio->master_bio == NULL) { 1936 /* the primary of several recovery bios */ 1937 sector_t s = r10_bio->sectors; 1938 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1939 test_bit(R10BIO_WriteError, &r10_bio->state)) 1940 reschedule_retry(r10_bio); 1941 else 1942 put_buf(r10_bio); 1943 md_done_sync(mddev, s, 1); 1944 break; 1945 } else { 1946 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1947 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1948 test_bit(R10BIO_WriteError, &r10_bio->state)) 1949 reschedule_retry(r10_bio); 1950 else 1951 put_buf(r10_bio); 1952 r10_bio = r10_bio2; 1953 } 1954 } 1955 } 1956 1957 static void end_sync_write(struct bio *bio) 1958 { 1959 struct r10bio *r10_bio = get_resync_r10bio(bio); 1960 struct mddev *mddev = r10_bio->mddev; 1961 struct r10conf *conf = mddev->private; 1962 int d; 1963 sector_t first_bad; 1964 int bad_sectors; 1965 int slot; 1966 int repl; 1967 struct md_rdev *rdev = NULL; 1968 1969 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1970 if (repl) 1971 rdev = conf->mirrors[d].replacement; 1972 else 1973 rdev = conf->mirrors[d].rdev; 1974 1975 if (bio->bi_error) { 1976 if (repl) 1977 md_error(mddev, rdev); 1978 else { 1979 set_bit(WriteErrorSeen, &rdev->flags); 1980 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1981 set_bit(MD_RECOVERY_NEEDED, 1982 &rdev->mddev->recovery); 1983 set_bit(R10BIO_WriteError, &r10_bio->state); 1984 } 1985 } else if (is_badblock(rdev, 1986 r10_bio->devs[slot].addr, 1987 r10_bio->sectors, 1988 &first_bad, &bad_sectors)) 1989 set_bit(R10BIO_MadeGood, &r10_bio->state); 1990 1991 rdev_dec_pending(rdev, mddev); 1992 1993 end_sync_request(r10_bio); 1994 } 1995 1996 /* 1997 * Note: sync and recover and handled very differently for raid10 1998 * This code is for resync. 1999 * For resync, we read through virtual addresses and read all blocks. 2000 * If there is any error, we schedule a write. The lowest numbered 2001 * drive is authoritative. 2002 * However requests come for physical address, so we need to map. 2003 * For every physical address there are raid_disks/copies virtual addresses, 2004 * which is always are least one, but is not necessarly an integer. 2005 * This means that a physical address can span multiple chunks, so we may 2006 * have to submit multiple io requests for a single sync request. 2007 */ 2008 /* 2009 * We check if all blocks are in-sync and only write to blocks that 2010 * aren't in sync 2011 */ 2012 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2013 { 2014 struct r10conf *conf = mddev->private; 2015 int i, first; 2016 struct bio *tbio, *fbio; 2017 int vcnt; 2018 struct page **tpages, **fpages; 2019 2020 atomic_set(&r10_bio->remaining, 1); 2021 2022 /* find the first device with a block */ 2023 for (i=0; i<conf->copies; i++) 2024 if (!r10_bio->devs[i].bio->bi_error) 2025 break; 2026 2027 if (i == conf->copies) 2028 goto done; 2029 2030 first = i; 2031 fbio = r10_bio->devs[i].bio; 2032 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2033 fbio->bi_iter.bi_idx = 0; 2034 fpages = get_resync_pages(fbio)->pages; 2035 2036 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2037 /* now find blocks with errors */ 2038 for (i=0 ; i < conf->copies ; i++) { 2039 int j, d; 2040 struct md_rdev *rdev; 2041 struct resync_pages *rp; 2042 2043 tbio = r10_bio->devs[i].bio; 2044 2045 if (tbio->bi_end_io != end_sync_read) 2046 continue; 2047 if (i == first) 2048 continue; 2049 2050 tpages = get_resync_pages(tbio)->pages; 2051 d = r10_bio->devs[i].devnum; 2052 rdev = conf->mirrors[d].rdev; 2053 if (!r10_bio->devs[i].bio->bi_error) { 2054 /* We know that the bi_io_vec layout is the same for 2055 * both 'first' and 'i', so we just compare them. 2056 * All vec entries are PAGE_SIZE; 2057 */ 2058 int sectors = r10_bio->sectors; 2059 for (j = 0; j < vcnt; j++) { 2060 int len = PAGE_SIZE; 2061 if (sectors < (len / 512)) 2062 len = sectors * 512; 2063 if (memcmp(page_address(fpages[j]), 2064 page_address(tpages[j]), 2065 len)) 2066 break; 2067 sectors -= len/512; 2068 } 2069 if (j == vcnt) 2070 continue; 2071 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2072 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2073 /* Don't fix anything. */ 2074 continue; 2075 } else if (test_bit(FailFast, &rdev->flags)) { 2076 /* Just give up on this device */ 2077 md_error(rdev->mddev, rdev); 2078 continue; 2079 } 2080 /* Ok, we need to write this bio, either to correct an 2081 * inconsistency or to correct an unreadable block. 2082 * First we need to fixup bv_offset, bv_len and 2083 * bi_vecs, as the read request might have corrupted these 2084 */ 2085 rp = get_resync_pages(tbio); 2086 bio_reset(tbio); 2087 2088 tbio->bi_vcnt = vcnt; 2089 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size; 2090 rp->raid_bio = r10_bio; 2091 tbio->bi_private = rp; 2092 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2093 tbio->bi_end_io = end_sync_write; 2094 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2095 2096 bio_copy_data(tbio, fbio); 2097 2098 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2099 atomic_inc(&r10_bio->remaining); 2100 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2101 2102 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2103 tbio->bi_opf |= MD_FAILFAST; 2104 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2105 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2106 generic_make_request(tbio); 2107 } 2108 2109 /* Now write out to any replacement devices 2110 * that are active 2111 */ 2112 for (i = 0; i < conf->copies; i++) { 2113 int d; 2114 2115 tbio = r10_bio->devs[i].repl_bio; 2116 if (!tbio || !tbio->bi_end_io) 2117 continue; 2118 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2119 && r10_bio->devs[i].bio != fbio) 2120 bio_copy_data(tbio, fbio); 2121 d = r10_bio->devs[i].devnum; 2122 atomic_inc(&r10_bio->remaining); 2123 md_sync_acct(conf->mirrors[d].replacement->bdev, 2124 bio_sectors(tbio)); 2125 generic_make_request(tbio); 2126 } 2127 2128 done: 2129 if (atomic_dec_and_test(&r10_bio->remaining)) { 2130 md_done_sync(mddev, r10_bio->sectors, 1); 2131 put_buf(r10_bio); 2132 } 2133 } 2134 2135 /* 2136 * Now for the recovery code. 2137 * Recovery happens across physical sectors. 2138 * We recover all non-is_sync drives by finding the virtual address of 2139 * each, and then choose a working drive that also has that virt address. 2140 * There is a separate r10_bio for each non-in_sync drive. 2141 * Only the first two slots are in use. The first for reading, 2142 * The second for writing. 2143 * 2144 */ 2145 static void fix_recovery_read_error(struct r10bio *r10_bio) 2146 { 2147 /* We got a read error during recovery. 2148 * We repeat the read in smaller page-sized sections. 2149 * If a read succeeds, write it to the new device or record 2150 * a bad block if we cannot. 2151 * If a read fails, record a bad block on both old and 2152 * new devices. 2153 */ 2154 struct mddev *mddev = r10_bio->mddev; 2155 struct r10conf *conf = mddev->private; 2156 struct bio *bio = r10_bio->devs[0].bio; 2157 sector_t sect = 0; 2158 int sectors = r10_bio->sectors; 2159 int idx = 0; 2160 int dr = r10_bio->devs[0].devnum; 2161 int dw = r10_bio->devs[1].devnum; 2162 struct page **pages = get_resync_pages(bio)->pages; 2163 2164 while (sectors) { 2165 int s = sectors; 2166 struct md_rdev *rdev; 2167 sector_t addr; 2168 int ok; 2169 2170 if (s > (PAGE_SIZE>>9)) 2171 s = PAGE_SIZE >> 9; 2172 2173 rdev = conf->mirrors[dr].rdev; 2174 addr = r10_bio->devs[0].addr + sect, 2175 ok = sync_page_io(rdev, 2176 addr, 2177 s << 9, 2178 pages[idx], 2179 REQ_OP_READ, 0, false); 2180 if (ok) { 2181 rdev = conf->mirrors[dw].rdev; 2182 addr = r10_bio->devs[1].addr + sect; 2183 ok = sync_page_io(rdev, 2184 addr, 2185 s << 9, 2186 pages[idx], 2187 REQ_OP_WRITE, 0, false); 2188 if (!ok) { 2189 set_bit(WriteErrorSeen, &rdev->flags); 2190 if (!test_and_set_bit(WantReplacement, 2191 &rdev->flags)) 2192 set_bit(MD_RECOVERY_NEEDED, 2193 &rdev->mddev->recovery); 2194 } 2195 } 2196 if (!ok) { 2197 /* We don't worry if we cannot set a bad block - 2198 * it really is bad so there is no loss in not 2199 * recording it yet 2200 */ 2201 rdev_set_badblocks(rdev, addr, s, 0); 2202 2203 if (rdev != conf->mirrors[dw].rdev) { 2204 /* need bad block on destination too */ 2205 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2206 addr = r10_bio->devs[1].addr + sect; 2207 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2208 if (!ok) { 2209 /* just abort the recovery */ 2210 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2211 mdname(mddev)); 2212 2213 conf->mirrors[dw].recovery_disabled 2214 = mddev->recovery_disabled; 2215 set_bit(MD_RECOVERY_INTR, 2216 &mddev->recovery); 2217 break; 2218 } 2219 } 2220 } 2221 2222 sectors -= s; 2223 sect += s; 2224 idx++; 2225 } 2226 } 2227 2228 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2229 { 2230 struct r10conf *conf = mddev->private; 2231 int d; 2232 struct bio *wbio, *wbio2; 2233 2234 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2235 fix_recovery_read_error(r10_bio); 2236 end_sync_request(r10_bio); 2237 return; 2238 } 2239 2240 /* 2241 * share the pages with the first bio 2242 * and submit the write request 2243 */ 2244 d = r10_bio->devs[1].devnum; 2245 wbio = r10_bio->devs[1].bio; 2246 wbio2 = r10_bio->devs[1].repl_bio; 2247 /* Need to test wbio2->bi_end_io before we call 2248 * generic_make_request as if the former is NULL, 2249 * the latter is free to free wbio2. 2250 */ 2251 if (wbio2 && !wbio2->bi_end_io) 2252 wbio2 = NULL; 2253 if (wbio->bi_end_io) { 2254 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2255 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2256 generic_make_request(wbio); 2257 } 2258 if (wbio2) { 2259 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2260 md_sync_acct(conf->mirrors[d].replacement->bdev, 2261 bio_sectors(wbio2)); 2262 generic_make_request(wbio2); 2263 } 2264 } 2265 2266 /* 2267 * Used by fix_read_error() to decay the per rdev read_errors. 2268 * We halve the read error count for every hour that has elapsed 2269 * since the last recorded read error. 2270 * 2271 */ 2272 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2273 { 2274 long cur_time_mon; 2275 unsigned long hours_since_last; 2276 unsigned int read_errors = atomic_read(&rdev->read_errors); 2277 2278 cur_time_mon = ktime_get_seconds(); 2279 2280 if (rdev->last_read_error == 0) { 2281 /* first time we've seen a read error */ 2282 rdev->last_read_error = cur_time_mon; 2283 return; 2284 } 2285 2286 hours_since_last = (long)(cur_time_mon - 2287 rdev->last_read_error) / 3600; 2288 2289 rdev->last_read_error = cur_time_mon; 2290 2291 /* 2292 * if hours_since_last is > the number of bits in read_errors 2293 * just set read errors to 0. We do this to avoid 2294 * overflowing the shift of read_errors by hours_since_last. 2295 */ 2296 if (hours_since_last >= 8 * sizeof(read_errors)) 2297 atomic_set(&rdev->read_errors, 0); 2298 else 2299 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2300 } 2301 2302 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2303 int sectors, struct page *page, int rw) 2304 { 2305 sector_t first_bad; 2306 int bad_sectors; 2307 2308 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2309 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2310 return -1; 2311 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2312 /* success */ 2313 return 1; 2314 if (rw == WRITE) { 2315 set_bit(WriteErrorSeen, &rdev->flags); 2316 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2317 set_bit(MD_RECOVERY_NEEDED, 2318 &rdev->mddev->recovery); 2319 } 2320 /* need to record an error - either for the block or the device */ 2321 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2322 md_error(rdev->mddev, rdev); 2323 return 0; 2324 } 2325 2326 /* 2327 * This is a kernel thread which: 2328 * 2329 * 1. Retries failed read operations on working mirrors. 2330 * 2. Updates the raid superblock when problems encounter. 2331 * 3. Performs writes following reads for array synchronising. 2332 */ 2333 2334 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2335 { 2336 int sect = 0; /* Offset from r10_bio->sector */ 2337 int sectors = r10_bio->sectors; 2338 struct md_rdev*rdev; 2339 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2340 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2341 2342 /* still own a reference to this rdev, so it cannot 2343 * have been cleared recently. 2344 */ 2345 rdev = conf->mirrors[d].rdev; 2346 2347 if (test_bit(Faulty, &rdev->flags)) 2348 /* drive has already been failed, just ignore any 2349 more fix_read_error() attempts */ 2350 return; 2351 2352 check_decay_read_errors(mddev, rdev); 2353 atomic_inc(&rdev->read_errors); 2354 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2355 char b[BDEVNAME_SIZE]; 2356 bdevname(rdev->bdev, b); 2357 2358 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2359 mdname(mddev), b, 2360 atomic_read(&rdev->read_errors), max_read_errors); 2361 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2362 mdname(mddev), b); 2363 md_error(mddev, rdev); 2364 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2365 return; 2366 } 2367 2368 while(sectors) { 2369 int s = sectors; 2370 int sl = r10_bio->read_slot; 2371 int success = 0; 2372 int start; 2373 2374 if (s > (PAGE_SIZE>>9)) 2375 s = PAGE_SIZE >> 9; 2376 2377 rcu_read_lock(); 2378 do { 2379 sector_t first_bad; 2380 int bad_sectors; 2381 2382 d = r10_bio->devs[sl].devnum; 2383 rdev = rcu_dereference(conf->mirrors[d].rdev); 2384 if (rdev && 2385 test_bit(In_sync, &rdev->flags) && 2386 !test_bit(Faulty, &rdev->flags) && 2387 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2388 &first_bad, &bad_sectors) == 0) { 2389 atomic_inc(&rdev->nr_pending); 2390 rcu_read_unlock(); 2391 success = sync_page_io(rdev, 2392 r10_bio->devs[sl].addr + 2393 sect, 2394 s<<9, 2395 conf->tmppage, 2396 REQ_OP_READ, 0, false); 2397 rdev_dec_pending(rdev, mddev); 2398 rcu_read_lock(); 2399 if (success) 2400 break; 2401 } 2402 sl++; 2403 if (sl == conf->copies) 2404 sl = 0; 2405 } while (!success && sl != r10_bio->read_slot); 2406 rcu_read_unlock(); 2407 2408 if (!success) { 2409 /* Cannot read from anywhere, just mark the block 2410 * as bad on the first device to discourage future 2411 * reads. 2412 */ 2413 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2414 rdev = conf->mirrors[dn].rdev; 2415 2416 if (!rdev_set_badblocks( 2417 rdev, 2418 r10_bio->devs[r10_bio->read_slot].addr 2419 + sect, 2420 s, 0)) { 2421 md_error(mddev, rdev); 2422 r10_bio->devs[r10_bio->read_slot].bio 2423 = IO_BLOCKED; 2424 } 2425 break; 2426 } 2427 2428 start = sl; 2429 /* write it back and re-read */ 2430 rcu_read_lock(); 2431 while (sl != r10_bio->read_slot) { 2432 char b[BDEVNAME_SIZE]; 2433 2434 if (sl==0) 2435 sl = conf->copies; 2436 sl--; 2437 d = r10_bio->devs[sl].devnum; 2438 rdev = rcu_dereference(conf->mirrors[d].rdev); 2439 if (!rdev || 2440 test_bit(Faulty, &rdev->flags) || 2441 !test_bit(In_sync, &rdev->flags)) 2442 continue; 2443 2444 atomic_inc(&rdev->nr_pending); 2445 rcu_read_unlock(); 2446 if (r10_sync_page_io(rdev, 2447 r10_bio->devs[sl].addr + 2448 sect, 2449 s, conf->tmppage, WRITE) 2450 == 0) { 2451 /* Well, this device is dead */ 2452 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2453 mdname(mddev), s, 2454 (unsigned long long)( 2455 sect + 2456 choose_data_offset(r10_bio, 2457 rdev)), 2458 bdevname(rdev->bdev, b)); 2459 pr_notice("md/raid10:%s: %s: failing drive\n", 2460 mdname(mddev), 2461 bdevname(rdev->bdev, b)); 2462 } 2463 rdev_dec_pending(rdev, mddev); 2464 rcu_read_lock(); 2465 } 2466 sl = start; 2467 while (sl != r10_bio->read_slot) { 2468 char b[BDEVNAME_SIZE]; 2469 2470 if (sl==0) 2471 sl = conf->copies; 2472 sl--; 2473 d = r10_bio->devs[sl].devnum; 2474 rdev = rcu_dereference(conf->mirrors[d].rdev); 2475 if (!rdev || 2476 test_bit(Faulty, &rdev->flags) || 2477 !test_bit(In_sync, &rdev->flags)) 2478 continue; 2479 2480 atomic_inc(&rdev->nr_pending); 2481 rcu_read_unlock(); 2482 switch (r10_sync_page_io(rdev, 2483 r10_bio->devs[sl].addr + 2484 sect, 2485 s, conf->tmppage, 2486 READ)) { 2487 case 0: 2488 /* Well, this device is dead */ 2489 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2490 mdname(mddev), s, 2491 (unsigned long long)( 2492 sect + 2493 choose_data_offset(r10_bio, rdev)), 2494 bdevname(rdev->bdev, b)); 2495 pr_notice("md/raid10:%s: %s: failing drive\n", 2496 mdname(mddev), 2497 bdevname(rdev->bdev, b)); 2498 break; 2499 case 1: 2500 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2501 mdname(mddev), s, 2502 (unsigned long long)( 2503 sect + 2504 choose_data_offset(r10_bio, rdev)), 2505 bdevname(rdev->bdev, b)); 2506 atomic_add(s, &rdev->corrected_errors); 2507 } 2508 2509 rdev_dec_pending(rdev, mddev); 2510 rcu_read_lock(); 2511 } 2512 rcu_read_unlock(); 2513 2514 sectors -= s; 2515 sect += s; 2516 } 2517 } 2518 2519 static int narrow_write_error(struct r10bio *r10_bio, int i) 2520 { 2521 struct bio *bio = r10_bio->master_bio; 2522 struct mddev *mddev = r10_bio->mddev; 2523 struct r10conf *conf = mddev->private; 2524 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2525 /* bio has the data to be written to slot 'i' where 2526 * we just recently had a write error. 2527 * We repeatedly clone the bio and trim down to one block, 2528 * then try the write. Where the write fails we record 2529 * a bad block. 2530 * It is conceivable that the bio doesn't exactly align with 2531 * blocks. We must handle this. 2532 * 2533 * We currently own a reference to the rdev. 2534 */ 2535 2536 int block_sectors; 2537 sector_t sector; 2538 int sectors; 2539 int sect_to_write = r10_bio->sectors; 2540 int ok = 1; 2541 2542 if (rdev->badblocks.shift < 0) 2543 return 0; 2544 2545 block_sectors = roundup(1 << rdev->badblocks.shift, 2546 bdev_logical_block_size(rdev->bdev) >> 9); 2547 sector = r10_bio->sector; 2548 sectors = ((r10_bio->sector + block_sectors) 2549 & ~(sector_t)(block_sectors - 1)) 2550 - sector; 2551 2552 while (sect_to_write) { 2553 struct bio *wbio; 2554 sector_t wsector; 2555 if (sectors > sect_to_write) 2556 sectors = sect_to_write; 2557 /* Write at 'sector' for 'sectors' */ 2558 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 2559 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2560 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2561 wbio->bi_iter.bi_sector = wsector + 2562 choose_data_offset(r10_bio, rdev); 2563 wbio->bi_bdev = rdev->bdev; 2564 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2565 2566 if (submit_bio_wait(wbio) < 0) 2567 /* Failure! */ 2568 ok = rdev_set_badblocks(rdev, wsector, 2569 sectors, 0) 2570 && ok; 2571 2572 bio_put(wbio); 2573 sect_to_write -= sectors; 2574 sector += sectors; 2575 sectors = block_sectors; 2576 } 2577 return ok; 2578 } 2579 2580 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2581 { 2582 int slot = r10_bio->read_slot; 2583 struct bio *bio; 2584 struct r10conf *conf = mddev->private; 2585 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2586 dev_t bio_dev; 2587 sector_t bio_last_sector; 2588 2589 /* we got a read error. Maybe the drive is bad. Maybe just 2590 * the block and we can fix it. 2591 * We freeze all other IO, and try reading the block from 2592 * other devices. When we find one, we re-write 2593 * and check it that fixes the read error. 2594 * This is all done synchronously while the array is 2595 * frozen. 2596 */ 2597 bio = r10_bio->devs[slot].bio; 2598 bio_dev = bio->bi_bdev->bd_dev; 2599 bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors; 2600 bio_put(bio); 2601 r10_bio->devs[slot].bio = NULL; 2602 2603 if (mddev->ro) 2604 r10_bio->devs[slot].bio = IO_BLOCKED; 2605 else if (!test_bit(FailFast, &rdev->flags)) { 2606 freeze_array(conf, 1); 2607 fix_read_error(conf, mddev, r10_bio); 2608 unfreeze_array(conf); 2609 } else 2610 md_error(mddev, rdev); 2611 2612 rdev_dec_pending(rdev, mddev); 2613 allow_barrier(conf); 2614 r10_bio->state = 0; 2615 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2616 } 2617 2618 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2619 { 2620 /* Some sort of write request has finished and it 2621 * succeeded in writing where we thought there was a 2622 * bad block. So forget the bad block. 2623 * Or possibly if failed and we need to record 2624 * a bad block. 2625 */ 2626 int m; 2627 struct md_rdev *rdev; 2628 2629 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2630 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2631 for (m = 0; m < conf->copies; m++) { 2632 int dev = r10_bio->devs[m].devnum; 2633 rdev = conf->mirrors[dev].rdev; 2634 if (r10_bio->devs[m].bio == NULL) 2635 continue; 2636 if (!r10_bio->devs[m].bio->bi_error) { 2637 rdev_clear_badblocks( 2638 rdev, 2639 r10_bio->devs[m].addr, 2640 r10_bio->sectors, 0); 2641 } else { 2642 if (!rdev_set_badblocks( 2643 rdev, 2644 r10_bio->devs[m].addr, 2645 r10_bio->sectors, 0)) 2646 md_error(conf->mddev, rdev); 2647 } 2648 rdev = conf->mirrors[dev].replacement; 2649 if (r10_bio->devs[m].repl_bio == NULL) 2650 continue; 2651 2652 if (!r10_bio->devs[m].repl_bio->bi_error) { 2653 rdev_clear_badblocks( 2654 rdev, 2655 r10_bio->devs[m].addr, 2656 r10_bio->sectors, 0); 2657 } else { 2658 if (!rdev_set_badblocks( 2659 rdev, 2660 r10_bio->devs[m].addr, 2661 r10_bio->sectors, 0)) 2662 md_error(conf->mddev, rdev); 2663 } 2664 } 2665 put_buf(r10_bio); 2666 } else { 2667 bool fail = false; 2668 for (m = 0; m < conf->copies; m++) { 2669 int dev = r10_bio->devs[m].devnum; 2670 struct bio *bio = r10_bio->devs[m].bio; 2671 rdev = conf->mirrors[dev].rdev; 2672 if (bio == IO_MADE_GOOD) { 2673 rdev_clear_badblocks( 2674 rdev, 2675 r10_bio->devs[m].addr, 2676 r10_bio->sectors, 0); 2677 rdev_dec_pending(rdev, conf->mddev); 2678 } else if (bio != NULL && bio->bi_error) { 2679 fail = true; 2680 if (!narrow_write_error(r10_bio, m)) { 2681 md_error(conf->mddev, rdev); 2682 set_bit(R10BIO_Degraded, 2683 &r10_bio->state); 2684 } 2685 rdev_dec_pending(rdev, conf->mddev); 2686 } 2687 bio = r10_bio->devs[m].repl_bio; 2688 rdev = conf->mirrors[dev].replacement; 2689 if (rdev && bio == IO_MADE_GOOD) { 2690 rdev_clear_badblocks( 2691 rdev, 2692 r10_bio->devs[m].addr, 2693 r10_bio->sectors, 0); 2694 rdev_dec_pending(rdev, conf->mddev); 2695 } 2696 } 2697 if (fail) { 2698 spin_lock_irq(&conf->device_lock); 2699 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2700 conf->nr_queued++; 2701 spin_unlock_irq(&conf->device_lock); 2702 /* 2703 * In case freeze_array() is waiting for condition 2704 * nr_pending == nr_queued + extra to be true. 2705 */ 2706 wake_up(&conf->wait_barrier); 2707 md_wakeup_thread(conf->mddev->thread); 2708 } else { 2709 if (test_bit(R10BIO_WriteError, 2710 &r10_bio->state)) 2711 close_write(r10_bio); 2712 raid_end_bio_io(r10_bio); 2713 } 2714 } 2715 } 2716 2717 static void raid10d(struct md_thread *thread) 2718 { 2719 struct mddev *mddev = thread->mddev; 2720 struct r10bio *r10_bio; 2721 unsigned long flags; 2722 struct r10conf *conf = mddev->private; 2723 struct list_head *head = &conf->retry_list; 2724 struct blk_plug plug; 2725 2726 md_check_recovery(mddev); 2727 2728 if (!list_empty_careful(&conf->bio_end_io_list) && 2729 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2730 LIST_HEAD(tmp); 2731 spin_lock_irqsave(&conf->device_lock, flags); 2732 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2733 while (!list_empty(&conf->bio_end_io_list)) { 2734 list_move(conf->bio_end_io_list.prev, &tmp); 2735 conf->nr_queued--; 2736 } 2737 } 2738 spin_unlock_irqrestore(&conf->device_lock, flags); 2739 while (!list_empty(&tmp)) { 2740 r10_bio = list_first_entry(&tmp, struct r10bio, 2741 retry_list); 2742 list_del(&r10_bio->retry_list); 2743 if (mddev->degraded) 2744 set_bit(R10BIO_Degraded, &r10_bio->state); 2745 2746 if (test_bit(R10BIO_WriteError, 2747 &r10_bio->state)) 2748 close_write(r10_bio); 2749 raid_end_bio_io(r10_bio); 2750 } 2751 } 2752 2753 blk_start_plug(&plug); 2754 for (;;) { 2755 2756 flush_pending_writes(conf); 2757 2758 spin_lock_irqsave(&conf->device_lock, flags); 2759 if (list_empty(head)) { 2760 spin_unlock_irqrestore(&conf->device_lock, flags); 2761 break; 2762 } 2763 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2764 list_del(head->prev); 2765 conf->nr_queued--; 2766 spin_unlock_irqrestore(&conf->device_lock, flags); 2767 2768 mddev = r10_bio->mddev; 2769 conf = mddev->private; 2770 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2771 test_bit(R10BIO_WriteError, &r10_bio->state)) 2772 handle_write_completed(conf, r10_bio); 2773 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2774 reshape_request_write(mddev, r10_bio); 2775 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2776 sync_request_write(mddev, r10_bio); 2777 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2778 recovery_request_write(mddev, r10_bio); 2779 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2780 handle_read_error(mddev, r10_bio); 2781 else 2782 WARN_ON_ONCE(1); 2783 2784 cond_resched(); 2785 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2786 md_check_recovery(mddev); 2787 } 2788 blk_finish_plug(&plug); 2789 } 2790 2791 static int init_resync(struct r10conf *conf) 2792 { 2793 int buffs; 2794 int i; 2795 2796 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2797 BUG_ON(conf->r10buf_pool); 2798 conf->have_replacement = 0; 2799 for (i = 0; i < conf->geo.raid_disks; i++) 2800 if (conf->mirrors[i].replacement) 2801 conf->have_replacement = 1; 2802 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2803 if (!conf->r10buf_pool) 2804 return -ENOMEM; 2805 conf->next_resync = 0; 2806 return 0; 2807 } 2808 2809 /* 2810 * perform a "sync" on one "block" 2811 * 2812 * We need to make sure that no normal I/O request - particularly write 2813 * requests - conflict with active sync requests. 2814 * 2815 * This is achieved by tracking pending requests and a 'barrier' concept 2816 * that can be installed to exclude normal IO requests. 2817 * 2818 * Resync and recovery are handled very differently. 2819 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2820 * 2821 * For resync, we iterate over virtual addresses, read all copies, 2822 * and update if there are differences. If only one copy is live, 2823 * skip it. 2824 * For recovery, we iterate over physical addresses, read a good 2825 * value for each non-in_sync drive, and over-write. 2826 * 2827 * So, for recovery we may have several outstanding complex requests for a 2828 * given address, one for each out-of-sync device. We model this by allocating 2829 * a number of r10_bio structures, one for each out-of-sync device. 2830 * As we setup these structures, we collect all bio's together into a list 2831 * which we then process collectively to add pages, and then process again 2832 * to pass to generic_make_request. 2833 * 2834 * The r10_bio structures are linked using a borrowed master_bio pointer. 2835 * This link is counted in ->remaining. When the r10_bio that points to NULL 2836 * has its remaining count decremented to 0, the whole complex operation 2837 * is complete. 2838 * 2839 */ 2840 2841 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 2842 int *skipped) 2843 { 2844 struct r10conf *conf = mddev->private; 2845 struct r10bio *r10_bio; 2846 struct bio *biolist = NULL, *bio; 2847 sector_t max_sector, nr_sectors; 2848 int i; 2849 int max_sync; 2850 sector_t sync_blocks; 2851 sector_t sectors_skipped = 0; 2852 int chunks_skipped = 0; 2853 sector_t chunk_mask = conf->geo.chunk_mask; 2854 2855 if (!conf->r10buf_pool) 2856 if (init_resync(conf)) 2857 return 0; 2858 2859 /* 2860 * Allow skipping a full rebuild for incremental assembly 2861 * of a clean array, like RAID1 does. 2862 */ 2863 if (mddev->bitmap == NULL && 2864 mddev->recovery_cp == MaxSector && 2865 mddev->reshape_position == MaxSector && 2866 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2867 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2868 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2869 conf->fullsync == 0) { 2870 *skipped = 1; 2871 return mddev->dev_sectors - sector_nr; 2872 } 2873 2874 skipped: 2875 max_sector = mddev->dev_sectors; 2876 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2877 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2878 max_sector = mddev->resync_max_sectors; 2879 if (sector_nr >= max_sector) { 2880 /* If we aborted, we need to abort the 2881 * sync on the 'current' bitmap chucks (there can 2882 * be several when recovering multiple devices). 2883 * as we may have started syncing it but not finished. 2884 * We can find the current address in 2885 * mddev->curr_resync, but for recovery, 2886 * we need to convert that to several 2887 * virtual addresses. 2888 */ 2889 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2890 end_reshape(conf); 2891 close_sync(conf); 2892 return 0; 2893 } 2894 2895 if (mddev->curr_resync < max_sector) { /* aborted */ 2896 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2897 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2898 &sync_blocks, 1); 2899 else for (i = 0; i < conf->geo.raid_disks; i++) { 2900 sector_t sect = 2901 raid10_find_virt(conf, mddev->curr_resync, i); 2902 bitmap_end_sync(mddev->bitmap, sect, 2903 &sync_blocks, 1); 2904 } 2905 } else { 2906 /* completed sync */ 2907 if ((!mddev->bitmap || conf->fullsync) 2908 && conf->have_replacement 2909 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2910 /* Completed a full sync so the replacements 2911 * are now fully recovered. 2912 */ 2913 rcu_read_lock(); 2914 for (i = 0; i < conf->geo.raid_disks; i++) { 2915 struct md_rdev *rdev = 2916 rcu_dereference(conf->mirrors[i].replacement); 2917 if (rdev) 2918 rdev->recovery_offset = MaxSector; 2919 } 2920 rcu_read_unlock(); 2921 } 2922 conf->fullsync = 0; 2923 } 2924 bitmap_close_sync(mddev->bitmap); 2925 close_sync(conf); 2926 *skipped = 1; 2927 return sectors_skipped; 2928 } 2929 2930 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2931 return reshape_request(mddev, sector_nr, skipped); 2932 2933 if (chunks_skipped >= conf->geo.raid_disks) { 2934 /* if there has been nothing to do on any drive, 2935 * then there is nothing to do at all.. 2936 */ 2937 *skipped = 1; 2938 return (max_sector - sector_nr) + sectors_skipped; 2939 } 2940 2941 if (max_sector > mddev->resync_max) 2942 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2943 2944 /* make sure whole request will fit in a chunk - if chunks 2945 * are meaningful 2946 */ 2947 if (conf->geo.near_copies < conf->geo.raid_disks && 2948 max_sector > (sector_nr | chunk_mask)) 2949 max_sector = (sector_nr | chunk_mask) + 1; 2950 2951 /* 2952 * If there is non-resync activity waiting for a turn, then let it 2953 * though before starting on this new sync request. 2954 */ 2955 if (conf->nr_waiting) 2956 schedule_timeout_uninterruptible(1); 2957 2958 /* Again, very different code for resync and recovery. 2959 * Both must result in an r10bio with a list of bios that 2960 * have bi_end_io, bi_sector, bi_bdev set, 2961 * and bi_private set to the r10bio. 2962 * For recovery, we may actually create several r10bios 2963 * with 2 bios in each, that correspond to the bios in the main one. 2964 * In this case, the subordinate r10bios link back through a 2965 * borrowed master_bio pointer, and the counter in the master 2966 * includes a ref from each subordinate. 2967 */ 2968 /* First, we decide what to do and set ->bi_end_io 2969 * To end_sync_read if we want to read, and 2970 * end_sync_write if we will want to write. 2971 */ 2972 2973 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2974 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2975 /* recovery... the complicated one */ 2976 int j; 2977 r10_bio = NULL; 2978 2979 for (i = 0 ; i < conf->geo.raid_disks; i++) { 2980 int still_degraded; 2981 struct r10bio *rb2; 2982 sector_t sect; 2983 int must_sync; 2984 int any_working; 2985 struct raid10_info *mirror = &conf->mirrors[i]; 2986 struct md_rdev *mrdev, *mreplace; 2987 2988 rcu_read_lock(); 2989 mrdev = rcu_dereference(mirror->rdev); 2990 mreplace = rcu_dereference(mirror->replacement); 2991 2992 if ((mrdev == NULL || 2993 test_bit(Faulty, &mrdev->flags) || 2994 test_bit(In_sync, &mrdev->flags)) && 2995 (mreplace == NULL || 2996 test_bit(Faulty, &mreplace->flags))) { 2997 rcu_read_unlock(); 2998 continue; 2999 } 3000 3001 still_degraded = 0; 3002 /* want to reconstruct this device */ 3003 rb2 = r10_bio; 3004 sect = raid10_find_virt(conf, sector_nr, i); 3005 if (sect >= mddev->resync_max_sectors) { 3006 /* last stripe is not complete - don't 3007 * try to recover this sector. 3008 */ 3009 rcu_read_unlock(); 3010 continue; 3011 } 3012 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3013 mreplace = NULL; 3014 /* Unless we are doing a full sync, or a replacement 3015 * we only need to recover the block if it is set in 3016 * the bitmap 3017 */ 3018 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3019 &sync_blocks, 1); 3020 if (sync_blocks < max_sync) 3021 max_sync = sync_blocks; 3022 if (!must_sync && 3023 mreplace == NULL && 3024 !conf->fullsync) { 3025 /* yep, skip the sync_blocks here, but don't assume 3026 * that there will never be anything to do here 3027 */ 3028 chunks_skipped = -1; 3029 rcu_read_unlock(); 3030 continue; 3031 } 3032 atomic_inc(&mrdev->nr_pending); 3033 if (mreplace) 3034 atomic_inc(&mreplace->nr_pending); 3035 rcu_read_unlock(); 3036 3037 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3038 r10_bio->state = 0; 3039 raise_barrier(conf, rb2 != NULL); 3040 atomic_set(&r10_bio->remaining, 0); 3041 3042 r10_bio->master_bio = (struct bio*)rb2; 3043 if (rb2) 3044 atomic_inc(&rb2->remaining); 3045 r10_bio->mddev = mddev; 3046 set_bit(R10BIO_IsRecover, &r10_bio->state); 3047 r10_bio->sector = sect; 3048 3049 raid10_find_phys(conf, r10_bio); 3050 3051 /* Need to check if the array will still be 3052 * degraded 3053 */ 3054 rcu_read_lock(); 3055 for (j = 0; j < conf->geo.raid_disks; j++) { 3056 struct md_rdev *rdev = rcu_dereference( 3057 conf->mirrors[j].rdev); 3058 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3059 still_degraded = 1; 3060 break; 3061 } 3062 } 3063 3064 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3065 &sync_blocks, still_degraded); 3066 3067 any_working = 0; 3068 for (j=0; j<conf->copies;j++) { 3069 int k; 3070 int d = r10_bio->devs[j].devnum; 3071 sector_t from_addr, to_addr; 3072 struct md_rdev *rdev = 3073 rcu_dereference(conf->mirrors[d].rdev); 3074 sector_t sector, first_bad; 3075 int bad_sectors; 3076 if (!rdev || 3077 !test_bit(In_sync, &rdev->flags)) 3078 continue; 3079 /* This is where we read from */ 3080 any_working = 1; 3081 sector = r10_bio->devs[j].addr; 3082 3083 if (is_badblock(rdev, sector, max_sync, 3084 &first_bad, &bad_sectors)) { 3085 if (first_bad > sector) 3086 max_sync = first_bad - sector; 3087 else { 3088 bad_sectors -= (sector 3089 - first_bad); 3090 if (max_sync > bad_sectors) 3091 max_sync = bad_sectors; 3092 continue; 3093 } 3094 } 3095 bio = r10_bio->devs[0].bio; 3096 bio->bi_next = biolist; 3097 biolist = bio; 3098 bio->bi_end_io = end_sync_read; 3099 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3100 if (test_bit(FailFast, &rdev->flags)) 3101 bio->bi_opf |= MD_FAILFAST; 3102 from_addr = r10_bio->devs[j].addr; 3103 bio->bi_iter.bi_sector = from_addr + 3104 rdev->data_offset; 3105 bio->bi_bdev = rdev->bdev; 3106 atomic_inc(&rdev->nr_pending); 3107 /* and we write to 'i' (if not in_sync) */ 3108 3109 for (k=0; k<conf->copies; k++) 3110 if (r10_bio->devs[k].devnum == i) 3111 break; 3112 BUG_ON(k == conf->copies); 3113 to_addr = r10_bio->devs[k].addr; 3114 r10_bio->devs[0].devnum = d; 3115 r10_bio->devs[0].addr = from_addr; 3116 r10_bio->devs[1].devnum = i; 3117 r10_bio->devs[1].addr = to_addr; 3118 3119 if (!test_bit(In_sync, &mrdev->flags)) { 3120 bio = r10_bio->devs[1].bio; 3121 bio->bi_next = biolist; 3122 biolist = bio; 3123 bio->bi_end_io = end_sync_write; 3124 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3125 bio->bi_iter.bi_sector = to_addr 3126 + mrdev->data_offset; 3127 bio->bi_bdev = mrdev->bdev; 3128 atomic_inc(&r10_bio->remaining); 3129 } else 3130 r10_bio->devs[1].bio->bi_end_io = NULL; 3131 3132 /* and maybe write to replacement */ 3133 bio = r10_bio->devs[1].repl_bio; 3134 if (bio) 3135 bio->bi_end_io = NULL; 3136 /* Note: if mreplace != NULL, then bio 3137 * cannot be NULL as r10buf_pool_alloc will 3138 * have allocated it. 3139 * So the second test here is pointless. 3140 * But it keeps semantic-checkers happy, and 3141 * this comment keeps human reviewers 3142 * happy. 3143 */ 3144 if (mreplace == NULL || bio == NULL || 3145 test_bit(Faulty, &mreplace->flags)) 3146 break; 3147 bio->bi_next = biolist; 3148 biolist = bio; 3149 bio->bi_end_io = end_sync_write; 3150 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3151 bio->bi_iter.bi_sector = to_addr + 3152 mreplace->data_offset; 3153 bio->bi_bdev = mreplace->bdev; 3154 atomic_inc(&r10_bio->remaining); 3155 break; 3156 } 3157 rcu_read_unlock(); 3158 if (j == conf->copies) { 3159 /* Cannot recover, so abort the recovery or 3160 * record a bad block */ 3161 if (any_working) { 3162 /* problem is that there are bad blocks 3163 * on other device(s) 3164 */ 3165 int k; 3166 for (k = 0; k < conf->copies; k++) 3167 if (r10_bio->devs[k].devnum == i) 3168 break; 3169 if (!test_bit(In_sync, 3170 &mrdev->flags) 3171 && !rdev_set_badblocks( 3172 mrdev, 3173 r10_bio->devs[k].addr, 3174 max_sync, 0)) 3175 any_working = 0; 3176 if (mreplace && 3177 !rdev_set_badblocks( 3178 mreplace, 3179 r10_bio->devs[k].addr, 3180 max_sync, 0)) 3181 any_working = 0; 3182 } 3183 if (!any_working) { 3184 if (!test_and_set_bit(MD_RECOVERY_INTR, 3185 &mddev->recovery)) 3186 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3187 mdname(mddev)); 3188 mirror->recovery_disabled 3189 = mddev->recovery_disabled; 3190 } 3191 put_buf(r10_bio); 3192 if (rb2) 3193 atomic_dec(&rb2->remaining); 3194 r10_bio = rb2; 3195 rdev_dec_pending(mrdev, mddev); 3196 if (mreplace) 3197 rdev_dec_pending(mreplace, mddev); 3198 break; 3199 } 3200 rdev_dec_pending(mrdev, mddev); 3201 if (mreplace) 3202 rdev_dec_pending(mreplace, mddev); 3203 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3204 /* Only want this if there is elsewhere to 3205 * read from. 'j' is currently the first 3206 * readable copy. 3207 */ 3208 int targets = 1; 3209 for (; j < conf->copies; j++) { 3210 int d = r10_bio->devs[j].devnum; 3211 if (conf->mirrors[d].rdev && 3212 test_bit(In_sync, 3213 &conf->mirrors[d].rdev->flags)) 3214 targets++; 3215 } 3216 if (targets == 1) 3217 r10_bio->devs[0].bio->bi_opf 3218 &= ~MD_FAILFAST; 3219 } 3220 } 3221 if (biolist == NULL) { 3222 while (r10_bio) { 3223 struct r10bio *rb2 = r10_bio; 3224 r10_bio = (struct r10bio*) rb2->master_bio; 3225 rb2->master_bio = NULL; 3226 put_buf(rb2); 3227 } 3228 goto giveup; 3229 } 3230 } else { 3231 /* resync. Schedule a read for every block at this virt offset */ 3232 int count = 0; 3233 3234 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0); 3235 3236 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3237 &sync_blocks, mddev->degraded) && 3238 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3239 &mddev->recovery)) { 3240 /* We can skip this block */ 3241 *skipped = 1; 3242 return sync_blocks + sectors_skipped; 3243 } 3244 if (sync_blocks < max_sync) 3245 max_sync = sync_blocks; 3246 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3247 r10_bio->state = 0; 3248 3249 r10_bio->mddev = mddev; 3250 atomic_set(&r10_bio->remaining, 0); 3251 raise_barrier(conf, 0); 3252 conf->next_resync = sector_nr; 3253 3254 r10_bio->master_bio = NULL; 3255 r10_bio->sector = sector_nr; 3256 set_bit(R10BIO_IsSync, &r10_bio->state); 3257 raid10_find_phys(conf, r10_bio); 3258 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3259 3260 for (i = 0; i < conf->copies; i++) { 3261 int d = r10_bio->devs[i].devnum; 3262 sector_t first_bad, sector; 3263 int bad_sectors; 3264 struct md_rdev *rdev; 3265 3266 if (r10_bio->devs[i].repl_bio) 3267 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3268 3269 bio = r10_bio->devs[i].bio; 3270 bio->bi_error = -EIO; 3271 rcu_read_lock(); 3272 rdev = rcu_dereference(conf->mirrors[d].rdev); 3273 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3274 rcu_read_unlock(); 3275 continue; 3276 } 3277 sector = r10_bio->devs[i].addr; 3278 if (is_badblock(rdev, sector, max_sync, 3279 &first_bad, &bad_sectors)) { 3280 if (first_bad > sector) 3281 max_sync = first_bad - sector; 3282 else { 3283 bad_sectors -= (sector - first_bad); 3284 if (max_sync > bad_sectors) 3285 max_sync = bad_sectors; 3286 rcu_read_unlock(); 3287 continue; 3288 } 3289 } 3290 atomic_inc(&rdev->nr_pending); 3291 atomic_inc(&r10_bio->remaining); 3292 bio->bi_next = biolist; 3293 biolist = bio; 3294 bio->bi_end_io = end_sync_read; 3295 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3296 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 3297 bio->bi_opf |= MD_FAILFAST; 3298 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3299 bio->bi_bdev = rdev->bdev; 3300 count++; 3301 3302 rdev = rcu_dereference(conf->mirrors[d].replacement); 3303 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3304 rcu_read_unlock(); 3305 continue; 3306 } 3307 atomic_inc(&rdev->nr_pending); 3308 rcu_read_unlock(); 3309 3310 /* Need to set up for writing to the replacement */ 3311 bio = r10_bio->devs[i].repl_bio; 3312 bio->bi_error = -EIO; 3313 3314 sector = r10_bio->devs[i].addr; 3315 bio->bi_next = biolist; 3316 biolist = bio; 3317 bio->bi_end_io = end_sync_write; 3318 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3319 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 3320 bio->bi_opf |= MD_FAILFAST; 3321 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3322 bio->bi_bdev = rdev->bdev; 3323 count++; 3324 } 3325 3326 if (count < 2) { 3327 for (i=0; i<conf->copies; i++) { 3328 int d = r10_bio->devs[i].devnum; 3329 if (r10_bio->devs[i].bio->bi_end_io) 3330 rdev_dec_pending(conf->mirrors[d].rdev, 3331 mddev); 3332 if (r10_bio->devs[i].repl_bio && 3333 r10_bio->devs[i].repl_bio->bi_end_io) 3334 rdev_dec_pending( 3335 conf->mirrors[d].replacement, 3336 mddev); 3337 } 3338 put_buf(r10_bio); 3339 biolist = NULL; 3340 goto giveup; 3341 } 3342 } 3343 3344 nr_sectors = 0; 3345 if (sector_nr + max_sync < max_sector) 3346 max_sector = sector_nr + max_sync; 3347 do { 3348 struct page *page; 3349 int len = PAGE_SIZE; 3350 if (sector_nr + (len>>9) > max_sector) 3351 len = (max_sector - sector_nr) << 9; 3352 if (len == 0) 3353 break; 3354 for (bio= biolist ; bio ; bio=bio->bi_next) { 3355 struct resync_pages *rp = get_resync_pages(bio); 3356 page = resync_fetch_page(rp, rp->idx++); 3357 /* 3358 * won't fail because the vec table is big enough 3359 * to hold all these pages 3360 */ 3361 bio_add_page(bio, page, len, 0); 3362 } 3363 nr_sectors += len>>9; 3364 sector_nr += len>>9; 3365 } while (get_resync_pages(biolist)->idx < RESYNC_PAGES); 3366 r10_bio->sectors = nr_sectors; 3367 3368 while (biolist) { 3369 bio = biolist; 3370 biolist = biolist->bi_next; 3371 3372 bio->bi_next = NULL; 3373 r10_bio = get_resync_r10bio(bio); 3374 r10_bio->sectors = nr_sectors; 3375 3376 if (bio->bi_end_io == end_sync_read) { 3377 md_sync_acct(bio->bi_bdev, nr_sectors); 3378 bio->bi_error = 0; 3379 generic_make_request(bio); 3380 } 3381 } 3382 3383 if (sectors_skipped) 3384 /* pretend they weren't skipped, it makes 3385 * no important difference in this case 3386 */ 3387 md_done_sync(mddev, sectors_skipped, 1); 3388 3389 return sectors_skipped + nr_sectors; 3390 giveup: 3391 /* There is nowhere to write, so all non-sync 3392 * drives must be failed or in resync, all drives 3393 * have a bad block, so try the next chunk... 3394 */ 3395 if (sector_nr + max_sync < max_sector) 3396 max_sector = sector_nr + max_sync; 3397 3398 sectors_skipped += (max_sector - sector_nr); 3399 chunks_skipped ++; 3400 sector_nr = max_sector; 3401 goto skipped; 3402 } 3403 3404 static sector_t 3405 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3406 { 3407 sector_t size; 3408 struct r10conf *conf = mddev->private; 3409 3410 if (!raid_disks) 3411 raid_disks = min(conf->geo.raid_disks, 3412 conf->prev.raid_disks); 3413 if (!sectors) 3414 sectors = conf->dev_sectors; 3415 3416 size = sectors >> conf->geo.chunk_shift; 3417 sector_div(size, conf->geo.far_copies); 3418 size = size * raid_disks; 3419 sector_div(size, conf->geo.near_copies); 3420 3421 return size << conf->geo.chunk_shift; 3422 } 3423 3424 static void calc_sectors(struct r10conf *conf, sector_t size) 3425 { 3426 /* Calculate the number of sectors-per-device that will 3427 * actually be used, and set conf->dev_sectors and 3428 * conf->stride 3429 */ 3430 3431 size = size >> conf->geo.chunk_shift; 3432 sector_div(size, conf->geo.far_copies); 3433 size = size * conf->geo.raid_disks; 3434 sector_div(size, conf->geo.near_copies); 3435 /* 'size' is now the number of chunks in the array */ 3436 /* calculate "used chunks per device" */ 3437 size = size * conf->copies; 3438 3439 /* We need to round up when dividing by raid_disks to 3440 * get the stride size. 3441 */ 3442 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3443 3444 conf->dev_sectors = size << conf->geo.chunk_shift; 3445 3446 if (conf->geo.far_offset) 3447 conf->geo.stride = 1 << conf->geo.chunk_shift; 3448 else { 3449 sector_div(size, conf->geo.far_copies); 3450 conf->geo.stride = size << conf->geo.chunk_shift; 3451 } 3452 } 3453 3454 enum geo_type {geo_new, geo_old, geo_start}; 3455 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3456 { 3457 int nc, fc, fo; 3458 int layout, chunk, disks; 3459 switch (new) { 3460 case geo_old: 3461 layout = mddev->layout; 3462 chunk = mddev->chunk_sectors; 3463 disks = mddev->raid_disks - mddev->delta_disks; 3464 break; 3465 case geo_new: 3466 layout = mddev->new_layout; 3467 chunk = mddev->new_chunk_sectors; 3468 disks = mddev->raid_disks; 3469 break; 3470 default: /* avoid 'may be unused' warnings */ 3471 case geo_start: /* new when starting reshape - raid_disks not 3472 * updated yet. */ 3473 layout = mddev->new_layout; 3474 chunk = mddev->new_chunk_sectors; 3475 disks = mddev->raid_disks + mddev->delta_disks; 3476 break; 3477 } 3478 if (layout >> 19) 3479 return -1; 3480 if (chunk < (PAGE_SIZE >> 9) || 3481 !is_power_of_2(chunk)) 3482 return -2; 3483 nc = layout & 255; 3484 fc = (layout >> 8) & 255; 3485 fo = layout & (1<<16); 3486 geo->raid_disks = disks; 3487 geo->near_copies = nc; 3488 geo->far_copies = fc; 3489 geo->far_offset = fo; 3490 switch (layout >> 17) { 3491 case 0: /* original layout. simple but not always optimal */ 3492 geo->far_set_size = disks; 3493 break; 3494 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3495 * actually using this, but leave code here just in case.*/ 3496 geo->far_set_size = disks/fc; 3497 WARN(geo->far_set_size < fc, 3498 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3499 break; 3500 case 2: /* "improved" layout fixed to match documentation */ 3501 geo->far_set_size = fc * nc; 3502 break; 3503 default: /* Not a valid layout */ 3504 return -1; 3505 } 3506 geo->chunk_mask = chunk - 1; 3507 geo->chunk_shift = ffz(~chunk); 3508 return nc*fc; 3509 } 3510 3511 static struct r10conf *setup_conf(struct mddev *mddev) 3512 { 3513 struct r10conf *conf = NULL; 3514 int err = -EINVAL; 3515 struct geom geo; 3516 int copies; 3517 3518 copies = setup_geo(&geo, mddev, geo_new); 3519 3520 if (copies == -2) { 3521 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3522 mdname(mddev), PAGE_SIZE); 3523 goto out; 3524 } 3525 3526 if (copies < 2 || copies > mddev->raid_disks) { 3527 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3528 mdname(mddev), mddev->new_layout); 3529 goto out; 3530 } 3531 3532 err = -ENOMEM; 3533 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3534 if (!conf) 3535 goto out; 3536 3537 /* FIXME calc properly */ 3538 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3539 max(0,-mddev->delta_disks)), 3540 GFP_KERNEL); 3541 if (!conf->mirrors) 3542 goto out; 3543 3544 conf->tmppage = alloc_page(GFP_KERNEL); 3545 if (!conf->tmppage) 3546 goto out; 3547 3548 conf->geo = geo; 3549 conf->copies = copies; 3550 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3551 r10bio_pool_free, conf); 3552 if (!conf->r10bio_pool) 3553 goto out; 3554 3555 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0); 3556 if (!conf->bio_split) 3557 goto out; 3558 3559 calc_sectors(conf, mddev->dev_sectors); 3560 if (mddev->reshape_position == MaxSector) { 3561 conf->prev = conf->geo; 3562 conf->reshape_progress = MaxSector; 3563 } else { 3564 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3565 err = -EINVAL; 3566 goto out; 3567 } 3568 conf->reshape_progress = mddev->reshape_position; 3569 if (conf->prev.far_offset) 3570 conf->prev.stride = 1 << conf->prev.chunk_shift; 3571 else 3572 /* far_copies must be 1 */ 3573 conf->prev.stride = conf->dev_sectors; 3574 } 3575 conf->reshape_safe = conf->reshape_progress; 3576 spin_lock_init(&conf->device_lock); 3577 INIT_LIST_HEAD(&conf->retry_list); 3578 INIT_LIST_HEAD(&conf->bio_end_io_list); 3579 3580 spin_lock_init(&conf->resync_lock); 3581 init_waitqueue_head(&conf->wait_barrier); 3582 atomic_set(&conf->nr_pending, 0); 3583 3584 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3585 if (!conf->thread) 3586 goto out; 3587 3588 conf->mddev = mddev; 3589 return conf; 3590 3591 out: 3592 if (conf) { 3593 mempool_destroy(conf->r10bio_pool); 3594 kfree(conf->mirrors); 3595 safe_put_page(conf->tmppage); 3596 if (conf->bio_split) 3597 bioset_free(conf->bio_split); 3598 kfree(conf); 3599 } 3600 return ERR_PTR(err); 3601 } 3602 3603 static int raid10_run(struct mddev *mddev) 3604 { 3605 struct r10conf *conf; 3606 int i, disk_idx, chunk_size; 3607 struct raid10_info *disk; 3608 struct md_rdev *rdev; 3609 sector_t size; 3610 sector_t min_offset_diff = 0; 3611 int first = 1; 3612 bool discard_supported = false; 3613 3614 if (mddev->private == NULL) { 3615 conf = setup_conf(mddev); 3616 if (IS_ERR(conf)) 3617 return PTR_ERR(conf); 3618 mddev->private = conf; 3619 } 3620 conf = mddev->private; 3621 if (!conf) 3622 goto out; 3623 3624 mddev->thread = conf->thread; 3625 conf->thread = NULL; 3626 3627 chunk_size = mddev->chunk_sectors << 9; 3628 if (mddev->queue) { 3629 blk_queue_max_discard_sectors(mddev->queue, 3630 mddev->chunk_sectors); 3631 blk_queue_max_write_same_sectors(mddev->queue, 0); 3632 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3633 blk_queue_io_min(mddev->queue, chunk_size); 3634 if (conf->geo.raid_disks % conf->geo.near_copies) 3635 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3636 else 3637 blk_queue_io_opt(mddev->queue, chunk_size * 3638 (conf->geo.raid_disks / conf->geo.near_copies)); 3639 } 3640 3641 rdev_for_each(rdev, mddev) { 3642 long long diff; 3643 3644 disk_idx = rdev->raid_disk; 3645 if (disk_idx < 0) 3646 continue; 3647 if (disk_idx >= conf->geo.raid_disks && 3648 disk_idx >= conf->prev.raid_disks) 3649 continue; 3650 disk = conf->mirrors + disk_idx; 3651 3652 if (test_bit(Replacement, &rdev->flags)) { 3653 if (disk->replacement) 3654 goto out_free_conf; 3655 disk->replacement = rdev; 3656 } else { 3657 if (disk->rdev) 3658 goto out_free_conf; 3659 disk->rdev = rdev; 3660 } 3661 diff = (rdev->new_data_offset - rdev->data_offset); 3662 if (!mddev->reshape_backwards) 3663 diff = -diff; 3664 if (diff < 0) 3665 diff = 0; 3666 if (first || diff < min_offset_diff) 3667 min_offset_diff = diff; 3668 3669 if (mddev->gendisk) 3670 disk_stack_limits(mddev->gendisk, rdev->bdev, 3671 rdev->data_offset << 9); 3672 3673 disk->head_position = 0; 3674 3675 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3676 discard_supported = true; 3677 first = 0; 3678 } 3679 3680 if (mddev->queue) { 3681 if (discard_supported) 3682 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3683 mddev->queue); 3684 else 3685 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3686 mddev->queue); 3687 } 3688 /* need to check that every block has at least one working mirror */ 3689 if (!enough(conf, -1)) { 3690 pr_err("md/raid10:%s: not enough operational mirrors.\n", 3691 mdname(mddev)); 3692 goto out_free_conf; 3693 } 3694 3695 if (conf->reshape_progress != MaxSector) { 3696 /* must ensure that shape change is supported */ 3697 if (conf->geo.far_copies != 1 && 3698 conf->geo.far_offset == 0) 3699 goto out_free_conf; 3700 if (conf->prev.far_copies != 1 && 3701 conf->prev.far_offset == 0) 3702 goto out_free_conf; 3703 } 3704 3705 mddev->degraded = 0; 3706 for (i = 0; 3707 i < conf->geo.raid_disks 3708 || i < conf->prev.raid_disks; 3709 i++) { 3710 3711 disk = conf->mirrors + i; 3712 3713 if (!disk->rdev && disk->replacement) { 3714 /* The replacement is all we have - use it */ 3715 disk->rdev = disk->replacement; 3716 disk->replacement = NULL; 3717 clear_bit(Replacement, &disk->rdev->flags); 3718 } 3719 3720 if (!disk->rdev || 3721 !test_bit(In_sync, &disk->rdev->flags)) { 3722 disk->head_position = 0; 3723 mddev->degraded++; 3724 if (disk->rdev && 3725 disk->rdev->saved_raid_disk < 0) 3726 conf->fullsync = 1; 3727 } 3728 disk->recovery_disabled = mddev->recovery_disabled - 1; 3729 } 3730 3731 if (mddev->recovery_cp != MaxSector) 3732 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 3733 mdname(mddev)); 3734 pr_info("md/raid10:%s: active with %d out of %d devices\n", 3735 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3736 conf->geo.raid_disks); 3737 /* 3738 * Ok, everything is just fine now 3739 */ 3740 mddev->dev_sectors = conf->dev_sectors; 3741 size = raid10_size(mddev, 0, 0); 3742 md_set_array_sectors(mddev, size); 3743 mddev->resync_max_sectors = size; 3744 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3745 3746 if (mddev->queue) { 3747 int stripe = conf->geo.raid_disks * 3748 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3749 3750 /* Calculate max read-ahead size. 3751 * We need to readahead at least twice a whole stripe.... 3752 * maybe... 3753 */ 3754 stripe /= conf->geo.near_copies; 3755 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 3756 mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 3757 } 3758 3759 if (md_integrity_register(mddev)) 3760 goto out_free_conf; 3761 3762 if (conf->reshape_progress != MaxSector) { 3763 unsigned long before_length, after_length; 3764 3765 before_length = ((1 << conf->prev.chunk_shift) * 3766 conf->prev.far_copies); 3767 after_length = ((1 << conf->geo.chunk_shift) * 3768 conf->geo.far_copies); 3769 3770 if (max(before_length, after_length) > min_offset_diff) { 3771 /* This cannot work */ 3772 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 3773 goto out_free_conf; 3774 } 3775 conf->offset_diff = min_offset_diff; 3776 3777 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3778 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3779 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3780 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3781 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3782 "reshape"); 3783 } 3784 3785 return 0; 3786 3787 out_free_conf: 3788 md_unregister_thread(&mddev->thread); 3789 mempool_destroy(conf->r10bio_pool); 3790 safe_put_page(conf->tmppage); 3791 kfree(conf->mirrors); 3792 kfree(conf); 3793 mddev->private = NULL; 3794 out: 3795 return -EIO; 3796 } 3797 3798 static void raid10_free(struct mddev *mddev, void *priv) 3799 { 3800 struct r10conf *conf = priv; 3801 3802 mempool_destroy(conf->r10bio_pool); 3803 safe_put_page(conf->tmppage); 3804 kfree(conf->mirrors); 3805 kfree(conf->mirrors_old); 3806 kfree(conf->mirrors_new); 3807 if (conf->bio_split) 3808 bioset_free(conf->bio_split); 3809 kfree(conf); 3810 } 3811 3812 static void raid10_quiesce(struct mddev *mddev, int state) 3813 { 3814 struct r10conf *conf = mddev->private; 3815 3816 switch(state) { 3817 case 1: 3818 raise_barrier(conf, 0); 3819 break; 3820 case 0: 3821 lower_barrier(conf); 3822 break; 3823 } 3824 } 3825 3826 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3827 { 3828 /* Resize of 'far' arrays is not supported. 3829 * For 'near' and 'offset' arrays we can set the 3830 * number of sectors used to be an appropriate multiple 3831 * of the chunk size. 3832 * For 'offset', this is far_copies*chunksize. 3833 * For 'near' the multiplier is the LCM of 3834 * near_copies and raid_disks. 3835 * So if far_copies > 1 && !far_offset, fail. 3836 * Else find LCM(raid_disks, near_copy)*far_copies and 3837 * multiply by chunk_size. Then round to this number. 3838 * This is mostly done by raid10_size() 3839 */ 3840 struct r10conf *conf = mddev->private; 3841 sector_t oldsize, size; 3842 3843 if (mddev->reshape_position != MaxSector) 3844 return -EBUSY; 3845 3846 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3847 return -EINVAL; 3848 3849 oldsize = raid10_size(mddev, 0, 0); 3850 size = raid10_size(mddev, sectors, 0); 3851 if (mddev->external_size && 3852 mddev->array_sectors > size) 3853 return -EINVAL; 3854 if (mddev->bitmap) { 3855 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3856 if (ret) 3857 return ret; 3858 } 3859 md_set_array_sectors(mddev, size); 3860 if (sectors > mddev->dev_sectors && 3861 mddev->recovery_cp > oldsize) { 3862 mddev->recovery_cp = oldsize; 3863 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3864 } 3865 calc_sectors(conf, sectors); 3866 mddev->dev_sectors = conf->dev_sectors; 3867 mddev->resync_max_sectors = size; 3868 return 0; 3869 } 3870 3871 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 3872 { 3873 struct md_rdev *rdev; 3874 struct r10conf *conf; 3875 3876 if (mddev->degraded > 0) { 3877 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 3878 mdname(mddev)); 3879 return ERR_PTR(-EINVAL); 3880 } 3881 sector_div(size, devs); 3882 3883 /* Set new parameters */ 3884 mddev->new_level = 10; 3885 /* new layout: far_copies = 1, near_copies = 2 */ 3886 mddev->new_layout = (1<<8) + 2; 3887 mddev->new_chunk_sectors = mddev->chunk_sectors; 3888 mddev->delta_disks = mddev->raid_disks; 3889 mddev->raid_disks *= 2; 3890 /* make sure it will be not marked as dirty */ 3891 mddev->recovery_cp = MaxSector; 3892 mddev->dev_sectors = size; 3893 3894 conf = setup_conf(mddev); 3895 if (!IS_ERR(conf)) { 3896 rdev_for_each(rdev, mddev) 3897 if (rdev->raid_disk >= 0) { 3898 rdev->new_raid_disk = rdev->raid_disk * 2; 3899 rdev->sectors = size; 3900 } 3901 conf->barrier = 1; 3902 } 3903 3904 return conf; 3905 } 3906 3907 static void *raid10_takeover(struct mddev *mddev) 3908 { 3909 struct r0conf *raid0_conf; 3910 3911 /* raid10 can take over: 3912 * raid0 - providing it has only two drives 3913 */ 3914 if (mddev->level == 0) { 3915 /* for raid0 takeover only one zone is supported */ 3916 raid0_conf = mddev->private; 3917 if (raid0_conf->nr_strip_zones > 1) { 3918 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 3919 mdname(mddev)); 3920 return ERR_PTR(-EINVAL); 3921 } 3922 return raid10_takeover_raid0(mddev, 3923 raid0_conf->strip_zone->zone_end, 3924 raid0_conf->strip_zone->nb_dev); 3925 } 3926 return ERR_PTR(-EINVAL); 3927 } 3928 3929 static int raid10_check_reshape(struct mddev *mddev) 3930 { 3931 /* Called when there is a request to change 3932 * - layout (to ->new_layout) 3933 * - chunk size (to ->new_chunk_sectors) 3934 * - raid_disks (by delta_disks) 3935 * or when trying to restart a reshape that was ongoing. 3936 * 3937 * We need to validate the request and possibly allocate 3938 * space if that might be an issue later. 3939 * 3940 * Currently we reject any reshape of a 'far' mode array, 3941 * allow chunk size to change if new is generally acceptable, 3942 * allow raid_disks to increase, and allow 3943 * a switch between 'near' mode and 'offset' mode. 3944 */ 3945 struct r10conf *conf = mddev->private; 3946 struct geom geo; 3947 3948 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3949 return -EINVAL; 3950 3951 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3952 /* mustn't change number of copies */ 3953 return -EINVAL; 3954 if (geo.far_copies > 1 && !geo.far_offset) 3955 /* Cannot switch to 'far' mode */ 3956 return -EINVAL; 3957 3958 if (mddev->array_sectors & geo.chunk_mask) 3959 /* not factor of array size */ 3960 return -EINVAL; 3961 3962 if (!enough(conf, -1)) 3963 return -EINVAL; 3964 3965 kfree(conf->mirrors_new); 3966 conf->mirrors_new = NULL; 3967 if (mddev->delta_disks > 0) { 3968 /* allocate new 'mirrors' list */ 3969 conf->mirrors_new = kzalloc( 3970 sizeof(struct raid10_info) 3971 *(mddev->raid_disks + 3972 mddev->delta_disks), 3973 GFP_KERNEL); 3974 if (!conf->mirrors_new) 3975 return -ENOMEM; 3976 } 3977 return 0; 3978 } 3979 3980 /* 3981 * Need to check if array has failed when deciding whether to: 3982 * - start an array 3983 * - remove non-faulty devices 3984 * - add a spare 3985 * - allow a reshape 3986 * This determination is simple when no reshape is happening. 3987 * However if there is a reshape, we need to carefully check 3988 * both the before and after sections. 3989 * This is because some failed devices may only affect one 3990 * of the two sections, and some non-in_sync devices may 3991 * be insync in the section most affected by failed devices. 3992 */ 3993 static int calc_degraded(struct r10conf *conf) 3994 { 3995 int degraded, degraded2; 3996 int i; 3997 3998 rcu_read_lock(); 3999 degraded = 0; 4000 /* 'prev' section first */ 4001 for (i = 0; i < conf->prev.raid_disks; i++) { 4002 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4003 if (!rdev || test_bit(Faulty, &rdev->flags)) 4004 degraded++; 4005 else if (!test_bit(In_sync, &rdev->flags)) 4006 /* When we can reduce the number of devices in 4007 * an array, this might not contribute to 4008 * 'degraded'. It does now. 4009 */ 4010 degraded++; 4011 } 4012 rcu_read_unlock(); 4013 if (conf->geo.raid_disks == conf->prev.raid_disks) 4014 return degraded; 4015 rcu_read_lock(); 4016 degraded2 = 0; 4017 for (i = 0; i < conf->geo.raid_disks; i++) { 4018 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4019 if (!rdev || test_bit(Faulty, &rdev->flags)) 4020 degraded2++; 4021 else if (!test_bit(In_sync, &rdev->flags)) { 4022 /* If reshape is increasing the number of devices, 4023 * this section has already been recovered, so 4024 * it doesn't contribute to degraded. 4025 * else it does. 4026 */ 4027 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4028 degraded2++; 4029 } 4030 } 4031 rcu_read_unlock(); 4032 if (degraded2 > degraded) 4033 return degraded2; 4034 return degraded; 4035 } 4036 4037 static int raid10_start_reshape(struct mddev *mddev) 4038 { 4039 /* A 'reshape' has been requested. This commits 4040 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4041 * This also checks if there are enough spares and adds them 4042 * to the array. 4043 * We currently require enough spares to make the final 4044 * array non-degraded. We also require that the difference 4045 * between old and new data_offset - on each device - is 4046 * enough that we never risk over-writing. 4047 */ 4048 4049 unsigned long before_length, after_length; 4050 sector_t min_offset_diff = 0; 4051 int first = 1; 4052 struct geom new; 4053 struct r10conf *conf = mddev->private; 4054 struct md_rdev *rdev; 4055 int spares = 0; 4056 int ret; 4057 4058 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4059 return -EBUSY; 4060 4061 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4062 return -EINVAL; 4063 4064 before_length = ((1 << conf->prev.chunk_shift) * 4065 conf->prev.far_copies); 4066 after_length = ((1 << conf->geo.chunk_shift) * 4067 conf->geo.far_copies); 4068 4069 rdev_for_each(rdev, mddev) { 4070 if (!test_bit(In_sync, &rdev->flags) 4071 && !test_bit(Faulty, &rdev->flags)) 4072 spares++; 4073 if (rdev->raid_disk >= 0) { 4074 long long diff = (rdev->new_data_offset 4075 - rdev->data_offset); 4076 if (!mddev->reshape_backwards) 4077 diff = -diff; 4078 if (diff < 0) 4079 diff = 0; 4080 if (first || diff < min_offset_diff) 4081 min_offset_diff = diff; 4082 first = 0; 4083 } 4084 } 4085 4086 if (max(before_length, after_length) > min_offset_diff) 4087 return -EINVAL; 4088 4089 if (spares < mddev->delta_disks) 4090 return -EINVAL; 4091 4092 conf->offset_diff = min_offset_diff; 4093 spin_lock_irq(&conf->device_lock); 4094 if (conf->mirrors_new) { 4095 memcpy(conf->mirrors_new, conf->mirrors, 4096 sizeof(struct raid10_info)*conf->prev.raid_disks); 4097 smp_mb(); 4098 kfree(conf->mirrors_old); 4099 conf->mirrors_old = conf->mirrors; 4100 conf->mirrors = conf->mirrors_new; 4101 conf->mirrors_new = NULL; 4102 } 4103 setup_geo(&conf->geo, mddev, geo_start); 4104 smp_mb(); 4105 if (mddev->reshape_backwards) { 4106 sector_t size = raid10_size(mddev, 0, 0); 4107 if (size < mddev->array_sectors) { 4108 spin_unlock_irq(&conf->device_lock); 4109 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4110 mdname(mddev)); 4111 return -EINVAL; 4112 } 4113 mddev->resync_max_sectors = size; 4114 conf->reshape_progress = size; 4115 } else 4116 conf->reshape_progress = 0; 4117 conf->reshape_safe = conf->reshape_progress; 4118 spin_unlock_irq(&conf->device_lock); 4119 4120 if (mddev->delta_disks && mddev->bitmap) { 4121 ret = bitmap_resize(mddev->bitmap, 4122 raid10_size(mddev, 0, 4123 conf->geo.raid_disks), 4124 0, 0); 4125 if (ret) 4126 goto abort; 4127 } 4128 if (mddev->delta_disks > 0) { 4129 rdev_for_each(rdev, mddev) 4130 if (rdev->raid_disk < 0 && 4131 !test_bit(Faulty, &rdev->flags)) { 4132 if (raid10_add_disk(mddev, rdev) == 0) { 4133 if (rdev->raid_disk >= 4134 conf->prev.raid_disks) 4135 set_bit(In_sync, &rdev->flags); 4136 else 4137 rdev->recovery_offset = 0; 4138 4139 if (sysfs_link_rdev(mddev, rdev)) 4140 /* Failure here is OK */; 4141 } 4142 } else if (rdev->raid_disk >= conf->prev.raid_disks 4143 && !test_bit(Faulty, &rdev->flags)) { 4144 /* This is a spare that was manually added */ 4145 set_bit(In_sync, &rdev->flags); 4146 } 4147 } 4148 /* When a reshape changes the number of devices, 4149 * ->degraded is measured against the larger of the 4150 * pre and post numbers. 4151 */ 4152 spin_lock_irq(&conf->device_lock); 4153 mddev->degraded = calc_degraded(conf); 4154 spin_unlock_irq(&conf->device_lock); 4155 mddev->raid_disks = conf->geo.raid_disks; 4156 mddev->reshape_position = conf->reshape_progress; 4157 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4158 4159 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4160 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4161 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4162 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4163 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4164 4165 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4166 "reshape"); 4167 if (!mddev->sync_thread) { 4168 ret = -EAGAIN; 4169 goto abort; 4170 } 4171 conf->reshape_checkpoint = jiffies; 4172 md_wakeup_thread(mddev->sync_thread); 4173 md_new_event(mddev); 4174 return 0; 4175 4176 abort: 4177 mddev->recovery = 0; 4178 spin_lock_irq(&conf->device_lock); 4179 conf->geo = conf->prev; 4180 mddev->raid_disks = conf->geo.raid_disks; 4181 rdev_for_each(rdev, mddev) 4182 rdev->new_data_offset = rdev->data_offset; 4183 smp_wmb(); 4184 conf->reshape_progress = MaxSector; 4185 conf->reshape_safe = MaxSector; 4186 mddev->reshape_position = MaxSector; 4187 spin_unlock_irq(&conf->device_lock); 4188 return ret; 4189 } 4190 4191 /* Calculate the last device-address that could contain 4192 * any block from the chunk that includes the array-address 's' 4193 * and report the next address. 4194 * i.e. the address returned will be chunk-aligned and after 4195 * any data that is in the chunk containing 's'. 4196 */ 4197 static sector_t last_dev_address(sector_t s, struct geom *geo) 4198 { 4199 s = (s | geo->chunk_mask) + 1; 4200 s >>= geo->chunk_shift; 4201 s *= geo->near_copies; 4202 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4203 s *= geo->far_copies; 4204 s <<= geo->chunk_shift; 4205 return s; 4206 } 4207 4208 /* Calculate the first device-address that could contain 4209 * any block from the chunk that includes the array-address 's'. 4210 * This too will be the start of a chunk 4211 */ 4212 static sector_t first_dev_address(sector_t s, struct geom *geo) 4213 { 4214 s >>= geo->chunk_shift; 4215 s *= geo->near_copies; 4216 sector_div(s, geo->raid_disks); 4217 s *= geo->far_copies; 4218 s <<= geo->chunk_shift; 4219 return s; 4220 } 4221 4222 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4223 int *skipped) 4224 { 4225 /* We simply copy at most one chunk (smallest of old and new) 4226 * at a time, possibly less if that exceeds RESYNC_PAGES, 4227 * or we hit a bad block or something. 4228 * This might mean we pause for normal IO in the middle of 4229 * a chunk, but that is not a problem as mddev->reshape_position 4230 * can record any location. 4231 * 4232 * If we will want to write to a location that isn't 4233 * yet recorded as 'safe' (i.e. in metadata on disk) then 4234 * we need to flush all reshape requests and update the metadata. 4235 * 4236 * When reshaping forwards (e.g. to more devices), we interpret 4237 * 'safe' as the earliest block which might not have been copied 4238 * down yet. We divide this by previous stripe size and multiply 4239 * by previous stripe length to get lowest device offset that we 4240 * cannot write to yet. 4241 * We interpret 'sector_nr' as an address that we want to write to. 4242 * From this we use last_device_address() to find where we might 4243 * write to, and first_device_address on the 'safe' position. 4244 * If this 'next' write position is after the 'safe' position, 4245 * we must update the metadata to increase the 'safe' position. 4246 * 4247 * When reshaping backwards, we round in the opposite direction 4248 * and perform the reverse test: next write position must not be 4249 * less than current safe position. 4250 * 4251 * In all this the minimum difference in data offsets 4252 * (conf->offset_diff - always positive) allows a bit of slack, 4253 * so next can be after 'safe', but not by more than offset_diff 4254 * 4255 * We need to prepare all the bios here before we start any IO 4256 * to ensure the size we choose is acceptable to all devices. 4257 * The means one for each copy for write-out and an extra one for 4258 * read-in. 4259 * We store the read-in bio in ->master_bio and the others in 4260 * ->devs[x].bio and ->devs[x].repl_bio. 4261 */ 4262 struct r10conf *conf = mddev->private; 4263 struct r10bio *r10_bio; 4264 sector_t next, safe, last; 4265 int max_sectors; 4266 int nr_sectors; 4267 int s; 4268 struct md_rdev *rdev; 4269 int need_flush = 0; 4270 struct bio *blist; 4271 struct bio *bio, *read_bio; 4272 int sectors_done = 0; 4273 struct page **pages; 4274 4275 if (sector_nr == 0) { 4276 /* If restarting in the middle, skip the initial sectors */ 4277 if (mddev->reshape_backwards && 4278 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4279 sector_nr = (raid10_size(mddev, 0, 0) 4280 - conf->reshape_progress); 4281 } else if (!mddev->reshape_backwards && 4282 conf->reshape_progress > 0) 4283 sector_nr = conf->reshape_progress; 4284 if (sector_nr) { 4285 mddev->curr_resync_completed = sector_nr; 4286 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4287 *skipped = 1; 4288 return sector_nr; 4289 } 4290 } 4291 4292 /* We don't use sector_nr to track where we are up to 4293 * as that doesn't work well for ->reshape_backwards. 4294 * So just use ->reshape_progress. 4295 */ 4296 if (mddev->reshape_backwards) { 4297 /* 'next' is the earliest device address that we might 4298 * write to for this chunk in the new layout 4299 */ 4300 next = first_dev_address(conf->reshape_progress - 1, 4301 &conf->geo); 4302 4303 /* 'safe' is the last device address that we might read from 4304 * in the old layout after a restart 4305 */ 4306 safe = last_dev_address(conf->reshape_safe - 1, 4307 &conf->prev); 4308 4309 if (next + conf->offset_diff < safe) 4310 need_flush = 1; 4311 4312 last = conf->reshape_progress - 1; 4313 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4314 & conf->prev.chunk_mask); 4315 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4316 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4317 } else { 4318 /* 'next' is after the last device address that we 4319 * might write to for this chunk in the new layout 4320 */ 4321 next = last_dev_address(conf->reshape_progress, &conf->geo); 4322 4323 /* 'safe' is the earliest device address that we might 4324 * read from in the old layout after a restart 4325 */ 4326 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4327 4328 /* Need to update metadata if 'next' might be beyond 'safe' 4329 * as that would possibly corrupt data 4330 */ 4331 if (next > safe + conf->offset_diff) 4332 need_flush = 1; 4333 4334 sector_nr = conf->reshape_progress; 4335 last = sector_nr | (conf->geo.chunk_mask 4336 & conf->prev.chunk_mask); 4337 4338 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4339 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4340 } 4341 4342 if (need_flush || 4343 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4344 /* Need to update reshape_position in metadata */ 4345 wait_barrier(conf); 4346 mddev->reshape_position = conf->reshape_progress; 4347 if (mddev->reshape_backwards) 4348 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4349 - conf->reshape_progress; 4350 else 4351 mddev->curr_resync_completed = conf->reshape_progress; 4352 conf->reshape_checkpoint = jiffies; 4353 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4354 md_wakeup_thread(mddev->thread); 4355 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4356 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4357 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4358 allow_barrier(conf); 4359 return sectors_done; 4360 } 4361 conf->reshape_safe = mddev->reshape_position; 4362 allow_barrier(conf); 4363 } 4364 4365 read_more: 4366 /* Now schedule reads for blocks from sector_nr to last */ 4367 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4368 r10_bio->state = 0; 4369 raise_barrier(conf, sectors_done != 0); 4370 atomic_set(&r10_bio->remaining, 0); 4371 r10_bio->mddev = mddev; 4372 r10_bio->sector = sector_nr; 4373 set_bit(R10BIO_IsReshape, &r10_bio->state); 4374 r10_bio->sectors = last - sector_nr + 1; 4375 rdev = read_balance(conf, r10_bio, &max_sectors); 4376 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4377 4378 if (!rdev) { 4379 /* Cannot read from here, so need to record bad blocks 4380 * on all the target devices. 4381 */ 4382 // FIXME 4383 mempool_free(r10_bio, conf->r10buf_pool); 4384 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4385 return sectors_done; 4386 } 4387 4388 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4389 4390 read_bio->bi_bdev = rdev->bdev; 4391 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4392 + rdev->data_offset); 4393 read_bio->bi_private = r10_bio; 4394 read_bio->bi_end_io = end_reshape_read; 4395 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4396 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4397 read_bio->bi_error = 0; 4398 read_bio->bi_vcnt = 0; 4399 read_bio->bi_iter.bi_size = 0; 4400 r10_bio->master_bio = read_bio; 4401 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4402 4403 /* Now find the locations in the new layout */ 4404 __raid10_find_phys(&conf->geo, r10_bio); 4405 4406 blist = read_bio; 4407 read_bio->bi_next = NULL; 4408 4409 rcu_read_lock(); 4410 for (s = 0; s < conf->copies*2; s++) { 4411 struct bio *b; 4412 int d = r10_bio->devs[s/2].devnum; 4413 struct md_rdev *rdev2; 4414 if (s&1) { 4415 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4416 b = r10_bio->devs[s/2].repl_bio; 4417 } else { 4418 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4419 b = r10_bio->devs[s/2].bio; 4420 } 4421 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4422 continue; 4423 4424 b->bi_bdev = rdev2->bdev; 4425 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4426 rdev2->new_data_offset; 4427 b->bi_end_io = end_reshape_write; 4428 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4429 b->bi_next = blist; 4430 blist = b; 4431 } 4432 4433 /* Now add as many pages as possible to all of these bios. */ 4434 4435 nr_sectors = 0; 4436 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4437 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4438 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4439 int len = (max_sectors - s) << 9; 4440 if (len > PAGE_SIZE) 4441 len = PAGE_SIZE; 4442 for (bio = blist; bio ; bio = bio->bi_next) { 4443 /* 4444 * won't fail because the vec table is big enough 4445 * to hold all these pages 4446 */ 4447 bio_add_page(bio, page, len, 0); 4448 } 4449 sector_nr += len >> 9; 4450 nr_sectors += len >> 9; 4451 } 4452 rcu_read_unlock(); 4453 r10_bio->sectors = nr_sectors; 4454 4455 /* Now submit the read */ 4456 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4457 atomic_inc(&r10_bio->remaining); 4458 read_bio->bi_next = NULL; 4459 generic_make_request(read_bio); 4460 sector_nr += nr_sectors; 4461 sectors_done += nr_sectors; 4462 if (sector_nr <= last) 4463 goto read_more; 4464 4465 /* Now that we have done the whole section we can 4466 * update reshape_progress 4467 */ 4468 if (mddev->reshape_backwards) 4469 conf->reshape_progress -= sectors_done; 4470 else 4471 conf->reshape_progress += sectors_done; 4472 4473 return sectors_done; 4474 } 4475 4476 static void end_reshape_request(struct r10bio *r10_bio); 4477 static int handle_reshape_read_error(struct mddev *mddev, 4478 struct r10bio *r10_bio); 4479 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4480 { 4481 /* Reshape read completed. Hopefully we have a block 4482 * to write out. 4483 * If we got a read error then we do sync 1-page reads from 4484 * elsewhere until we find the data - or give up. 4485 */ 4486 struct r10conf *conf = mddev->private; 4487 int s; 4488 4489 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4490 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4491 /* Reshape has been aborted */ 4492 md_done_sync(mddev, r10_bio->sectors, 0); 4493 return; 4494 } 4495 4496 /* We definitely have the data in the pages, schedule the 4497 * writes. 4498 */ 4499 atomic_set(&r10_bio->remaining, 1); 4500 for (s = 0; s < conf->copies*2; s++) { 4501 struct bio *b; 4502 int d = r10_bio->devs[s/2].devnum; 4503 struct md_rdev *rdev; 4504 rcu_read_lock(); 4505 if (s&1) { 4506 rdev = rcu_dereference(conf->mirrors[d].replacement); 4507 b = r10_bio->devs[s/2].repl_bio; 4508 } else { 4509 rdev = rcu_dereference(conf->mirrors[d].rdev); 4510 b = r10_bio->devs[s/2].bio; 4511 } 4512 if (!rdev || test_bit(Faulty, &rdev->flags)) { 4513 rcu_read_unlock(); 4514 continue; 4515 } 4516 atomic_inc(&rdev->nr_pending); 4517 rcu_read_unlock(); 4518 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4519 atomic_inc(&r10_bio->remaining); 4520 b->bi_next = NULL; 4521 generic_make_request(b); 4522 } 4523 end_reshape_request(r10_bio); 4524 } 4525 4526 static void end_reshape(struct r10conf *conf) 4527 { 4528 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4529 return; 4530 4531 spin_lock_irq(&conf->device_lock); 4532 conf->prev = conf->geo; 4533 md_finish_reshape(conf->mddev); 4534 smp_wmb(); 4535 conf->reshape_progress = MaxSector; 4536 conf->reshape_safe = MaxSector; 4537 spin_unlock_irq(&conf->device_lock); 4538 4539 /* read-ahead size must cover two whole stripes, which is 4540 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4541 */ 4542 if (conf->mddev->queue) { 4543 int stripe = conf->geo.raid_disks * 4544 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4545 stripe /= conf->geo.near_copies; 4546 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) 4547 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; 4548 } 4549 conf->fullsync = 0; 4550 } 4551 4552 static int handle_reshape_read_error(struct mddev *mddev, 4553 struct r10bio *r10_bio) 4554 { 4555 /* Use sync reads to get the blocks from somewhere else */ 4556 int sectors = r10_bio->sectors; 4557 struct r10conf *conf = mddev->private; 4558 struct { 4559 struct r10bio r10_bio; 4560 struct r10dev devs[conf->copies]; 4561 } on_stack; 4562 struct r10bio *r10b = &on_stack.r10_bio; 4563 int slot = 0; 4564 int idx = 0; 4565 struct page **pages; 4566 4567 /* reshape IOs share pages from .devs[0].bio */ 4568 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4569 4570 r10b->sector = r10_bio->sector; 4571 __raid10_find_phys(&conf->prev, r10b); 4572 4573 while (sectors) { 4574 int s = sectors; 4575 int success = 0; 4576 int first_slot = slot; 4577 4578 if (s > (PAGE_SIZE >> 9)) 4579 s = PAGE_SIZE >> 9; 4580 4581 rcu_read_lock(); 4582 while (!success) { 4583 int d = r10b->devs[slot].devnum; 4584 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4585 sector_t addr; 4586 if (rdev == NULL || 4587 test_bit(Faulty, &rdev->flags) || 4588 !test_bit(In_sync, &rdev->flags)) 4589 goto failed; 4590 4591 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4592 atomic_inc(&rdev->nr_pending); 4593 rcu_read_unlock(); 4594 success = sync_page_io(rdev, 4595 addr, 4596 s << 9, 4597 pages[idx], 4598 REQ_OP_READ, 0, false); 4599 rdev_dec_pending(rdev, mddev); 4600 rcu_read_lock(); 4601 if (success) 4602 break; 4603 failed: 4604 slot++; 4605 if (slot >= conf->copies) 4606 slot = 0; 4607 if (slot == first_slot) 4608 break; 4609 } 4610 rcu_read_unlock(); 4611 if (!success) { 4612 /* couldn't read this block, must give up */ 4613 set_bit(MD_RECOVERY_INTR, 4614 &mddev->recovery); 4615 return -EIO; 4616 } 4617 sectors -= s; 4618 idx++; 4619 } 4620 return 0; 4621 } 4622 4623 static void end_reshape_write(struct bio *bio) 4624 { 4625 struct r10bio *r10_bio = get_resync_r10bio(bio); 4626 struct mddev *mddev = r10_bio->mddev; 4627 struct r10conf *conf = mddev->private; 4628 int d; 4629 int slot; 4630 int repl; 4631 struct md_rdev *rdev = NULL; 4632 4633 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4634 if (repl) 4635 rdev = conf->mirrors[d].replacement; 4636 if (!rdev) { 4637 smp_mb(); 4638 rdev = conf->mirrors[d].rdev; 4639 } 4640 4641 if (bio->bi_error) { 4642 /* FIXME should record badblock */ 4643 md_error(mddev, rdev); 4644 } 4645 4646 rdev_dec_pending(rdev, mddev); 4647 end_reshape_request(r10_bio); 4648 } 4649 4650 static void end_reshape_request(struct r10bio *r10_bio) 4651 { 4652 if (!atomic_dec_and_test(&r10_bio->remaining)) 4653 return; 4654 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4655 bio_put(r10_bio->master_bio); 4656 put_buf(r10_bio); 4657 } 4658 4659 static void raid10_finish_reshape(struct mddev *mddev) 4660 { 4661 struct r10conf *conf = mddev->private; 4662 4663 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4664 return; 4665 4666 if (mddev->delta_disks > 0) { 4667 sector_t size = raid10_size(mddev, 0, 0); 4668 md_set_array_sectors(mddev, size); 4669 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4670 mddev->recovery_cp = mddev->resync_max_sectors; 4671 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4672 } 4673 mddev->resync_max_sectors = size; 4674 if (mddev->queue) { 4675 set_capacity(mddev->gendisk, mddev->array_sectors); 4676 revalidate_disk(mddev->gendisk); 4677 } 4678 } else { 4679 int d; 4680 rcu_read_lock(); 4681 for (d = conf->geo.raid_disks ; 4682 d < conf->geo.raid_disks - mddev->delta_disks; 4683 d++) { 4684 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4685 if (rdev) 4686 clear_bit(In_sync, &rdev->flags); 4687 rdev = rcu_dereference(conf->mirrors[d].replacement); 4688 if (rdev) 4689 clear_bit(In_sync, &rdev->flags); 4690 } 4691 rcu_read_unlock(); 4692 } 4693 mddev->layout = mddev->new_layout; 4694 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4695 mddev->reshape_position = MaxSector; 4696 mddev->delta_disks = 0; 4697 mddev->reshape_backwards = 0; 4698 } 4699 4700 static struct md_personality raid10_personality = 4701 { 4702 .name = "raid10", 4703 .level = 10, 4704 .owner = THIS_MODULE, 4705 .make_request = raid10_make_request, 4706 .run = raid10_run, 4707 .free = raid10_free, 4708 .status = raid10_status, 4709 .error_handler = raid10_error, 4710 .hot_add_disk = raid10_add_disk, 4711 .hot_remove_disk= raid10_remove_disk, 4712 .spare_active = raid10_spare_active, 4713 .sync_request = raid10_sync_request, 4714 .quiesce = raid10_quiesce, 4715 .size = raid10_size, 4716 .resize = raid10_resize, 4717 .takeover = raid10_takeover, 4718 .check_reshape = raid10_check_reshape, 4719 .start_reshape = raid10_start_reshape, 4720 .finish_reshape = raid10_finish_reshape, 4721 .congested = raid10_congested, 4722 }; 4723 4724 static int __init raid_init(void) 4725 { 4726 return register_md_personality(&raid10_personality); 4727 } 4728 4729 static void raid_exit(void) 4730 { 4731 unregister_md_personality(&raid10_personality); 4732 } 4733 4734 module_init(raid_init); 4735 module_exit(raid_exit); 4736 MODULE_LICENSE("GPL"); 4737 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4738 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4739 MODULE_ALIAS("md-raid10"); 4740 MODULE_ALIAS("md-level-10"); 4741 4742 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4743