1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid10.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 2000-2004 Neil Brown 6 * 7 * RAID-10 support for md. 8 * 9 * Base on code in raid1.c. See raid1.c for further copyright information. 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/delay.h> 14 #include <linux/blkdev.h> 15 #include <linux/module.h> 16 #include <linux/seq_file.h> 17 #include <linux/ratelimit.h> 18 #include <linux/kthread.h> 19 #include <linux/raid/md_p.h> 20 #include <trace/events/block.h> 21 #include "md.h" 22 #include "raid10.h" 23 #include "raid0.h" 24 #include "md-bitmap.h" 25 26 /* 27 * RAID10 provides a combination of RAID0 and RAID1 functionality. 28 * The layout of data is defined by 29 * chunk_size 30 * raid_disks 31 * near_copies (stored in low byte of layout) 32 * far_copies (stored in second byte of layout) 33 * far_offset (stored in bit 16 of layout ) 34 * use_far_sets (stored in bit 17 of layout ) 35 * use_far_sets_bugfixed (stored in bit 18 of layout ) 36 * 37 * The data to be stored is divided into chunks using chunksize. Each device 38 * is divided into far_copies sections. In each section, chunks are laid out 39 * in a style similar to raid0, but near_copies copies of each chunk is stored 40 * (each on a different drive). The starting device for each section is offset 41 * near_copies from the starting device of the previous section. Thus there 42 * are (near_copies * far_copies) of each chunk, and each is on a different 43 * drive. near_copies and far_copies must be at least one, and their product 44 * is at most raid_disks. 45 * 46 * If far_offset is true, then the far_copies are handled a bit differently. 47 * The copies are still in different stripes, but instead of being very far 48 * apart on disk, there are adjacent stripes. 49 * 50 * The far and offset algorithms are handled slightly differently if 51 * 'use_far_sets' is true. In this case, the array's devices are grouped into 52 * sets that are (near_copies * far_copies) in size. The far copied stripes 53 * are still shifted by 'near_copies' devices, but this shifting stays confined 54 * to the set rather than the entire array. This is done to improve the number 55 * of device combinations that can fail without causing the array to fail. 56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 57 * on a device): 58 * A B C D A B C D E 59 * ... ... 60 * D A B C E A B C D 61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 62 * [A B] [C D] [A B] [C D E] 63 * |...| |...| |...| | ... | 64 * [B A] [D C] [B A] [E C D] 65 */ 66 67 static void allow_barrier(struct r10conf *conf); 68 static void lower_barrier(struct r10conf *conf); 69 static int _enough(struct r10conf *conf, int previous, int ignore); 70 static int enough(struct r10conf *conf, int ignore); 71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 72 int *skipped); 73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 74 static void end_reshape_write(struct bio *bio); 75 static void end_reshape(struct r10conf *conf); 76 77 #define raid10_log(md, fmt, args...) \ 78 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0) 79 80 #include "raid1-10.c" 81 82 /* 83 * for resync bio, r10bio pointer can be retrieved from the per-bio 84 * 'struct resync_pages'. 85 */ 86 static inline struct r10bio *get_resync_r10bio(struct bio *bio) 87 { 88 return get_resync_pages(bio)->raid_bio; 89 } 90 91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 92 { 93 struct r10conf *conf = data; 94 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]); 95 96 /* allocate a r10bio with room for raid_disks entries in the 97 * bios array */ 98 return kzalloc(size, gfp_flags); 99 } 100 101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 102 /* amount of memory to reserve for resync requests */ 103 #define RESYNC_WINDOW (1024*1024) 104 /* maximum number of concurrent requests, memory permitting */ 105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW) 107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 108 109 /* 110 * When performing a resync, we need to read and compare, so 111 * we need as many pages are there are copies. 112 * When performing a recovery, we need 2 bios, one for read, 113 * one for write (we recover only one drive per r10buf) 114 * 115 */ 116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 117 { 118 struct r10conf *conf = data; 119 struct r10bio *r10_bio; 120 struct bio *bio; 121 int j; 122 int nalloc, nalloc_rp; 123 struct resync_pages *rps; 124 125 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 126 if (!r10_bio) 127 return NULL; 128 129 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 130 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 131 nalloc = conf->copies; /* resync */ 132 else 133 nalloc = 2; /* recovery */ 134 135 /* allocate once for all bios */ 136 if (!conf->have_replacement) 137 nalloc_rp = nalloc; 138 else 139 nalloc_rp = nalloc * 2; 140 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags); 141 if (!rps) 142 goto out_free_r10bio; 143 144 /* 145 * Allocate bios. 146 */ 147 for (j = nalloc ; j-- ; ) { 148 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 149 if (!bio) 150 goto out_free_bio; 151 r10_bio->devs[j].bio = bio; 152 if (!conf->have_replacement) 153 continue; 154 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 155 if (!bio) 156 goto out_free_bio; 157 r10_bio->devs[j].repl_bio = bio; 158 } 159 /* 160 * Allocate RESYNC_PAGES data pages and attach them 161 * where needed. 162 */ 163 for (j = 0; j < nalloc; j++) { 164 struct bio *rbio = r10_bio->devs[j].repl_bio; 165 struct resync_pages *rp, *rp_repl; 166 167 rp = &rps[j]; 168 if (rbio) 169 rp_repl = &rps[nalloc + j]; 170 171 bio = r10_bio->devs[j].bio; 172 173 if (!j || test_bit(MD_RECOVERY_SYNC, 174 &conf->mddev->recovery)) { 175 if (resync_alloc_pages(rp, gfp_flags)) 176 goto out_free_pages; 177 } else { 178 memcpy(rp, &rps[0], sizeof(*rp)); 179 resync_get_all_pages(rp); 180 } 181 182 rp->raid_bio = r10_bio; 183 bio->bi_private = rp; 184 if (rbio) { 185 memcpy(rp_repl, rp, sizeof(*rp)); 186 rbio->bi_private = rp_repl; 187 } 188 } 189 190 return r10_bio; 191 192 out_free_pages: 193 while (--j >= 0) 194 resync_free_pages(&rps[j]); 195 196 j = 0; 197 out_free_bio: 198 for ( ; j < nalloc; j++) { 199 if (r10_bio->devs[j].bio) 200 bio_put(r10_bio->devs[j].bio); 201 if (r10_bio->devs[j].repl_bio) 202 bio_put(r10_bio->devs[j].repl_bio); 203 } 204 kfree(rps); 205 out_free_r10bio: 206 rbio_pool_free(r10_bio, conf); 207 return NULL; 208 } 209 210 static void r10buf_pool_free(void *__r10_bio, void *data) 211 { 212 struct r10conf *conf = data; 213 struct r10bio *r10bio = __r10_bio; 214 int j; 215 struct resync_pages *rp = NULL; 216 217 for (j = conf->copies; j--; ) { 218 struct bio *bio = r10bio->devs[j].bio; 219 220 if (bio) { 221 rp = get_resync_pages(bio); 222 resync_free_pages(rp); 223 bio_put(bio); 224 } 225 226 bio = r10bio->devs[j].repl_bio; 227 if (bio) 228 bio_put(bio); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r10bio, conf); 235 } 236 237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->geo.raid_disks; i++) { 242 struct bio **bio = & r10_bio->devs[i].bio; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 bio = &r10_bio->devs[i].repl_bio; 247 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 } 251 } 252 253 static void free_r10bio(struct r10bio *r10_bio) 254 { 255 struct r10conf *conf = r10_bio->mddev->private; 256 257 put_all_bios(conf, r10_bio); 258 mempool_free(r10_bio, &conf->r10bio_pool); 259 } 260 261 static void put_buf(struct r10bio *r10_bio) 262 { 263 struct r10conf *conf = r10_bio->mddev->private; 264 265 mempool_free(r10_bio, &conf->r10buf_pool); 266 267 lower_barrier(conf); 268 } 269 270 static void reschedule_retry(struct r10bio *r10_bio) 271 { 272 unsigned long flags; 273 struct mddev *mddev = r10_bio->mddev; 274 struct r10conf *conf = mddev->private; 275 276 spin_lock_irqsave(&conf->device_lock, flags); 277 list_add(&r10_bio->retry_list, &conf->retry_list); 278 conf->nr_queued ++; 279 spin_unlock_irqrestore(&conf->device_lock, flags); 280 281 /* wake up frozen array... */ 282 wake_up(&conf->wait_barrier); 283 284 md_wakeup_thread(mddev->thread); 285 } 286 287 /* 288 * raid_end_bio_io() is called when we have finished servicing a mirrored 289 * operation and are ready to return a success/failure code to the buffer 290 * cache layer. 291 */ 292 static void raid_end_bio_io(struct r10bio *r10_bio) 293 { 294 struct bio *bio = r10_bio->master_bio; 295 struct r10conf *conf = r10_bio->mddev->private; 296 297 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 298 bio->bi_status = BLK_STS_IOERR; 299 300 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 301 bio_end_io_acct(bio, r10_bio->start_time); 302 bio_endio(bio); 303 /* 304 * Wake up any possible resync thread that waits for the device 305 * to go idle. 306 */ 307 allow_barrier(conf); 308 309 free_r10bio(r10_bio); 310 } 311 312 /* 313 * Update disk head position estimator based on IRQ completion info. 314 */ 315 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 316 { 317 struct r10conf *conf = r10_bio->mddev->private; 318 319 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 320 r10_bio->devs[slot].addr + (r10_bio->sectors); 321 } 322 323 /* 324 * Find the disk number which triggered given bio 325 */ 326 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 327 struct bio *bio, int *slotp, int *replp) 328 { 329 int slot; 330 int repl = 0; 331 332 for (slot = 0; slot < conf->geo.raid_disks; slot++) { 333 if (r10_bio->devs[slot].bio == bio) 334 break; 335 if (r10_bio->devs[slot].repl_bio == bio) { 336 repl = 1; 337 break; 338 } 339 } 340 341 update_head_pos(slot, r10_bio); 342 343 if (slotp) 344 *slotp = slot; 345 if (replp) 346 *replp = repl; 347 return r10_bio->devs[slot].devnum; 348 } 349 350 static void raid10_end_read_request(struct bio *bio) 351 { 352 int uptodate = !bio->bi_status; 353 struct r10bio *r10_bio = bio->bi_private; 354 int slot; 355 struct md_rdev *rdev; 356 struct r10conf *conf = r10_bio->mddev->private; 357 358 slot = r10_bio->read_slot; 359 rdev = r10_bio->devs[slot].rdev; 360 /* 361 * this branch is our 'one mirror IO has finished' event handler: 362 */ 363 update_head_pos(slot, r10_bio); 364 365 if (uptodate) { 366 /* 367 * Set R10BIO_Uptodate in our master bio, so that 368 * we will return a good error code to the higher 369 * levels even if IO on some other mirrored buffer fails. 370 * 371 * The 'master' represents the composite IO operation to 372 * user-side. So if something waits for IO, then it will 373 * wait for the 'master' bio. 374 */ 375 set_bit(R10BIO_Uptodate, &r10_bio->state); 376 } else { 377 /* If all other devices that store this block have 378 * failed, we want to return the error upwards rather 379 * than fail the last device. Here we redefine 380 * "uptodate" to mean "Don't want to retry" 381 */ 382 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 383 rdev->raid_disk)) 384 uptodate = 1; 385 } 386 if (uptodate) { 387 raid_end_bio_io(r10_bio); 388 rdev_dec_pending(rdev, conf->mddev); 389 } else { 390 /* 391 * oops, read error - keep the refcount on the rdev 392 */ 393 char b[BDEVNAME_SIZE]; 394 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n", 395 mdname(conf->mddev), 396 bdevname(rdev->bdev, b), 397 (unsigned long long)r10_bio->sector); 398 set_bit(R10BIO_ReadError, &r10_bio->state); 399 reschedule_retry(r10_bio); 400 } 401 } 402 403 static void close_write(struct r10bio *r10_bio) 404 { 405 /* clear the bitmap if all writes complete successfully */ 406 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 407 r10_bio->sectors, 408 !test_bit(R10BIO_Degraded, &r10_bio->state), 409 0); 410 md_write_end(r10_bio->mddev); 411 } 412 413 static void one_write_done(struct r10bio *r10_bio) 414 { 415 if (atomic_dec_and_test(&r10_bio->remaining)) { 416 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 417 reschedule_retry(r10_bio); 418 else { 419 close_write(r10_bio); 420 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 421 reschedule_retry(r10_bio); 422 else 423 raid_end_bio_io(r10_bio); 424 } 425 } 426 } 427 428 static void raid10_end_write_request(struct bio *bio) 429 { 430 struct r10bio *r10_bio = bio->bi_private; 431 int dev; 432 int dec_rdev = 1; 433 struct r10conf *conf = r10_bio->mddev->private; 434 int slot, repl; 435 struct md_rdev *rdev = NULL; 436 struct bio *to_put = NULL; 437 bool discard_error; 438 439 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 440 441 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 442 443 if (repl) 444 rdev = conf->mirrors[dev].replacement; 445 if (!rdev) { 446 smp_rmb(); 447 repl = 0; 448 rdev = conf->mirrors[dev].rdev; 449 } 450 /* 451 * this branch is our 'one mirror IO has finished' event handler: 452 */ 453 if (bio->bi_status && !discard_error) { 454 if (repl) 455 /* Never record new bad blocks to replacement, 456 * just fail it. 457 */ 458 md_error(rdev->mddev, rdev); 459 else { 460 set_bit(WriteErrorSeen, &rdev->flags); 461 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 462 set_bit(MD_RECOVERY_NEEDED, 463 &rdev->mddev->recovery); 464 465 dec_rdev = 0; 466 if (test_bit(FailFast, &rdev->flags) && 467 (bio->bi_opf & MD_FAILFAST)) { 468 md_error(rdev->mddev, rdev); 469 } 470 471 /* 472 * When the device is faulty, it is not necessary to 473 * handle write error. 474 */ 475 if (!test_bit(Faulty, &rdev->flags)) 476 set_bit(R10BIO_WriteError, &r10_bio->state); 477 else { 478 /* Fail the request */ 479 set_bit(R10BIO_Degraded, &r10_bio->state); 480 r10_bio->devs[slot].bio = NULL; 481 to_put = bio; 482 dec_rdev = 1; 483 } 484 } 485 } else { 486 /* 487 * Set R10BIO_Uptodate in our master bio, so that 488 * we will return a good error code for to the higher 489 * levels even if IO on some other mirrored buffer fails. 490 * 491 * The 'master' represents the composite IO operation to 492 * user-side. So if something waits for IO, then it will 493 * wait for the 'master' bio. 494 */ 495 sector_t first_bad; 496 int bad_sectors; 497 498 /* 499 * Do not set R10BIO_Uptodate if the current device is 500 * rebuilding or Faulty. This is because we cannot use 501 * such device for properly reading the data back (we could 502 * potentially use it, if the current write would have felt 503 * before rdev->recovery_offset, but for simplicity we don't 504 * check this here. 505 */ 506 if (test_bit(In_sync, &rdev->flags) && 507 !test_bit(Faulty, &rdev->flags)) 508 set_bit(R10BIO_Uptodate, &r10_bio->state); 509 510 /* Maybe we can clear some bad blocks. */ 511 if (is_badblock(rdev, 512 r10_bio->devs[slot].addr, 513 r10_bio->sectors, 514 &first_bad, &bad_sectors) && !discard_error) { 515 bio_put(bio); 516 if (repl) 517 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 518 else 519 r10_bio->devs[slot].bio = IO_MADE_GOOD; 520 dec_rdev = 0; 521 set_bit(R10BIO_MadeGood, &r10_bio->state); 522 } 523 } 524 525 /* 526 * 527 * Let's see if all mirrored write operations have finished 528 * already. 529 */ 530 one_write_done(r10_bio); 531 if (dec_rdev) 532 rdev_dec_pending(rdev, conf->mddev); 533 if (to_put) 534 bio_put(to_put); 535 } 536 537 /* 538 * RAID10 layout manager 539 * As well as the chunksize and raid_disks count, there are two 540 * parameters: near_copies and far_copies. 541 * near_copies * far_copies must be <= raid_disks. 542 * Normally one of these will be 1. 543 * If both are 1, we get raid0. 544 * If near_copies == raid_disks, we get raid1. 545 * 546 * Chunks are laid out in raid0 style with near_copies copies of the 547 * first chunk, followed by near_copies copies of the next chunk and 548 * so on. 549 * If far_copies > 1, then after 1/far_copies of the array has been assigned 550 * as described above, we start again with a device offset of near_copies. 551 * So we effectively have another copy of the whole array further down all 552 * the drives, but with blocks on different drives. 553 * With this layout, and block is never stored twice on the one device. 554 * 555 * raid10_find_phys finds the sector offset of a given virtual sector 556 * on each device that it is on. 557 * 558 * raid10_find_virt does the reverse mapping, from a device and a 559 * sector offset to a virtual address 560 */ 561 562 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 563 { 564 int n,f; 565 sector_t sector; 566 sector_t chunk; 567 sector_t stripe; 568 int dev; 569 int slot = 0; 570 int last_far_set_start, last_far_set_size; 571 572 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 573 last_far_set_start *= geo->far_set_size; 574 575 last_far_set_size = geo->far_set_size; 576 last_far_set_size += (geo->raid_disks % geo->far_set_size); 577 578 /* now calculate first sector/dev */ 579 chunk = r10bio->sector >> geo->chunk_shift; 580 sector = r10bio->sector & geo->chunk_mask; 581 582 chunk *= geo->near_copies; 583 stripe = chunk; 584 dev = sector_div(stripe, geo->raid_disks); 585 if (geo->far_offset) 586 stripe *= geo->far_copies; 587 588 sector += stripe << geo->chunk_shift; 589 590 /* and calculate all the others */ 591 for (n = 0; n < geo->near_copies; n++) { 592 int d = dev; 593 int set; 594 sector_t s = sector; 595 r10bio->devs[slot].devnum = d; 596 r10bio->devs[slot].addr = s; 597 slot++; 598 599 for (f = 1; f < geo->far_copies; f++) { 600 set = d / geo->far_set_size; 601 d += geo->near_copies; 602 603 if ((geo->raid_disks % geo->far_set_size) && 604 (d > last_far_set_start)) { 605 d -= last_far_set_start; 606 d %= last_far_set_size; 607 d += last_far_set_start; 608 } else { 609 d %= geo->far_set_size; 610 d += geo->far_set_size * set; 611 } 612 s += geo->stride; 613 r10bio->devs[slot].devnum = d; 614 r10bio->devs[slot].addr = s; 615 slot++; 616 } 617 dev++; 618 if (dev >= geo->raid_disks) { 619 dev = 0; 620 sector += (geo->chunk_mask + 1); 621 } 622 } 623 } 624 625 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 626 { 627 struct geom *geo = &conf->geo; 628 629 if (conf->reshape_progress != MaxSector && 630 ((r10bio->sector >= conf->reshape_progress) != 631 conf->mddev->reshape_backwards)) { 632 set_bit(R10BIO_Previous, &r10bio->state); 633 geo = &conf->prev; 634 } else 635 clear_bit(R10BIO_Previous, &r10bio->state); 636 637 __raid10_find_phys(geo, r10bio); 638 } 639 640 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 641 { 642 sector_t offset, chunk, vchunk; 643 /* Never use conf->prev as this is only called during resync 644 * or recovery, so reshape isn't happening 645 */ 646 struct geom *geo = &conf->geo; 647 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 648 int far_set_size = geo->far_set_size; 649 int last_far_set_start; 650 651 if (geo->raid_disks % geo->far_set_size) { 652 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 653 last_far_set_start *= geo->far_set_size; 654 655 if (dev >= last_far_set_start) { 656 far_set_size = geo->far_set_size; 657 far_set_size += (geo->raid_disks % geo->far_set_size); 658 far_set_start = last_far_set_start; 659 } 660 } 661 662 offset = sector & geo->chunk_mask; 663 if (geo->far_offset) { 664 int fc; 665 chunk = sector >> geo->chunk_shift; 666 fc = sector_div(chunk, geo->far_copies); 667 dev -= fc * geo->near_copies; 668 if (dev < far_set_start) 669 dev += far_set_size; 670 } else { 671 while (sector >= geo->stride) { 672 sector -= geo->stride; 673 if (dev < (geo->near_copies + far_set_start)) 674 dev += far_set_size - geo->near_copies; 675 else 676 dev -= geo->near_copies; 677 } 678 chunk = sector >> geo->chunk_shift; 679 } 680 vchunk = chunk * geo->raid_disks + dev; 681 sector_div(vchunk, geo->near_copies); 682 return (vchunk << geo->chunk_shift) + offset; 683 } 684 685 /* 686 * This routine returns the disk from which the requested read should 687 * be done. There is a per-array 'next expected sequential IO' sector 688 * number - if this matches on the next IO then we use the last disk. 689 * There is also a per-disk 'last know head position' sector that is 690 * maintained from IRQ contexts, both the normal and the resync IO 691 * completion handlers update this position correctly. If there is no 692 * perfect sequential match then we pick the disk whose head is closest. 693 * 694 * If there are 2 mirrors in the same 2 devices, performance degrades 695 * because position is mirror, not device based. 696 * 697 * The rdev for the device selected will have nr_pending incremented. 698 */ 699 700 /* 701 * FIXME: possibly should rethink readbalancing and do it differently 702 * depending on near_copies / far_copies geometry. 703 */ 704 static struct md_rdev *read_balance(struct r10conf *conf, 705 struct r10bio *r10_bio, 706 int *max_sectors) 707 { 708 const sector_t this_sector = r10_bio->sector; 709 int disk, slot; 710 int sectors = r10_bio->sectors; 711 int best_good_sectors; 712 sector_t new_distance, best_dist; 713 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL; 714 int do_balance; 715 int best_dist_slot, best_pending_slot; 716 bool has_nonrot_disk = false; 717 unsigned int min_pending; 718 struct geom *geo = &conf->geo; 719 720 raid10_find_phys(conf, r10_bio); 721 rcu_read_lock(); 722 best_dist_slot = -1; 723 min_pending = UINT_MAX; 724 best_dist_rdev = NULL; 725 best_pending_rdev = NULL; 726 best_dist = MaxSector; 727 best_good_sectors = 0; 728 do_balance = 1; 729 clear_bit(R10BIO_FailFast, &r10_bio->state); 730 /* 731 * Check if we can balance. We can balance on the whole 732 * device if no resync is going on (recovery is ok), or below 733 * the resync window. We take the first readable disk when 734 * above the resync window. 735 */ 736 if ((conf->mddev->recovery_cp < MaxSector 737 && (this_sector + sectors >= conf->next_resync)) || 738 (mddev_is_clustered(conf->mddev) && 739 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 740 this_sector + sectors))) 741 do_balance = 0; 742 743 for (slot = 0; slot < conf->copies ; slot++) { 744 sector_t first_bad; 745 int bad_sectors; 746 sector_t dev_sector; 747 unsigned int pending; 748 bool nonrot; 749 750 if (r10_bio->devs[slot].bio == IO_BLOCKED) 751 continue; 752 disk = r10_bio->devs[slot].devnum; 753 rdev = rcu_dereference(conf->mirrors[disk].replacement); 754 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 755 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 756 rdev = rcu_dereference(conf->mirrors[disk].rdev); 757 if (rdev == NULL || 758 test_bit(Faulty, &rdev->flags)) 759 continue; 760 if (!test_bit(In_sync, &rdev->flags) && 761 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 762 continue; 763 764 dev_sector = r10_bio->devs[slot].addr; 765 if (is_badblock(rdev, dev_sector, sectors, 766 &first_bad, &bad_sectors)) { 767 if (best_dist < MaxSector) 768 /* Already have a better slot */ 769 continue; 770 if (first_bad <= dev_sector) { 771 /* Cannot read here. If this is the 772 * 'primary' device, then we must not read 773 * beyond 'bad_sectors' from another device. 774 */ 775 bad_sectors -= (dev_sector - first_bad); 776 if (!do_balance && sectors > bad_sectors) 777 sectors = bad_sectors; 778 if (best_good_sectors > sectors) 779 best_good_sectors = sectors; 780 } else { 781 sector_t good_sectors = 782 first_bad - dev_sector; 783 if (good_sectors > best_good_sectors) { 784 best_good_sectors = good_sectors; 785 best_dist_slot = slot; 786 best_dist_rdev = rdev; 787 } 788 if (!do_balance) 789 /* Must read from here */ 790 break; 791 } 792 continue; 793 } else 794 best_good_sectors = sectors; 795 796 if (!do_balance) 797 break; 798 799 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 800 has_nonrot_disk |= nonrot; 801 pending = atomic_read(&rdev->nr_pending); 802 if (min_pending > pending && nonrot) { 803 min_pending = pending; 804 best_pending_slot = slot; 805 best_pending_rdev = rdev; 806 } 807 808 if (best_dist_slot >= 0) 809 /* At least 2 disks to choose from so failfast is OK */ 810 set_bit(R10BIO_FailFast, &r10_bio->state); 811 /* This optimisation is debatable, and completely destroys 812 * sequential read speed for 'far copies' arrays. So only 813 * keep it for 'near' arrays, and review those later. 814 */ 815 if (geo->near_copies > 1 && !pending) 816 new_distance = 0; 817 818 /* for far > 1 always use the lowest address */ 819 else if (geo->far_copies > 1) 820 new_distance = r10_bio->devs[slot].addr; 821 else 822 new_distance = abs(r10_bio->devs[slot].addr - 823 conf->mirrors[disk].head_position); 824 825 if (new_distance < best_dist) { 826 best_dist = new_distance; 827 best_dist_slot = slot; 828 best_dist_rdev = rdev; 829 } 830 } 831 if (slot >= conf->copies) { 832 if (has_nonrot_disk) { 833 slot = best_pending_slot; 834 rdev = best_pending_rdev; 835 } else { 836 slot = best_dist_slot; 837 rdev = best_dist_rdev; 838 } 839 } 840 841 if (slot >= 0) { 842 atomic_inc(&rdev->nr_pending); 843 r10_bio->read_slot = slot; 844 } else 845 rdev = NULL; 846 rcu_read_unlock(); 847 *max_sectors = best_good_sectors; 848 849 return rdev; 850 } 851 852 static void flush_pending_writes(struct r10conf *conf) 853 { 854 /* Any writes that have been queued but are awaiting 855 * bitmap updates get flushed here. 856 */ 857 spin_lock_irq(&conf->device_lock); 858 859 if (conf->pending_bio_list.head) { 860 struct blk_plug plug; 861 struct bio *bio; 862 863 bio = bio_list_get(&conf->pending_bio_list); 864 conf->pending_count = 0; 865 spin_unlock_irq(&conf->device_lock); 866 867 /* 868 * As this is called in a wait_event() loop (see freeze_array), 869 * current->state might be TASK_UNINTERRUPTIBLE which will 870 * cause a warning when we prepare to wait again. As it is 871 * rare that this path is taken, it is perfectly safe to force 872 * us to go around the wait_event() loop again, so the warning 873 * is a false-positive. Silence the warning by resetting 874 * thread state 875 */ 876 __set_current_state(TASK_RUNNING); 877 878 blk_start_plug(&plug); 879 /* flush any pending bitmap writes to disk 880 * before proceeding w/ I/O */ 881 md_bitmap_unplug(conf->mddev->bitmap); 882 wake_up(&conf->wait_barrier); 883 884 while (bio) { /* submit pending writes */ 885 struct bio *next = bio->bi_next; 886 struct md_rdev *rdev = (void*)bio->bi_bdev; 887 bio->bi_next = NULL; 888 bio_set_dev(bio, rdev->bdev); 889 if (test_bit(Faulty, &rdev->flags)) { 890 bio_io_error(bio); 891 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 892 !blk_queue_discard(bio->bi_bdev->bd_disk->queue))) 893 /* Just ignore it */ 894 bio_endio(bio); 895 else 896 submit_bio_noacct(bio); 897 bio = next; 898 } 899 blk_finish_plug(&plug); 900 } else 901 spin_unlock_irq(&conf->device_lock); 902 } 903 904 /* Barriers.... 905 * Sometimes we need to suspend IO while we do something else, 906 * either some resync/recovery, or reconfigure the array. 907 * To do this we raise a 'barrier'. 908 * The 'barrier' is a counter that can be raised multiple times 909 * to count how many activities are happening which preclude 910 * normal IO. 911 * We can only raise the barrier if there is no pending IO. 912 * i.e. if nr_pending == 0. 913 * We choose only to raise the barrier if no-one is waiting for the 914 * barrier to go down. This means that as soon as an IO request 915 * is ready, no other operations which require a barrier will start 916 * until the IO request has had a chance. 917 * 918 * So: regular IO calls 'wait_barrier'. When that returns there 919 * is no backgroup IO happening, It must arrange to call 920 * allow_barrier when it has finished its IO. 921 * backgroup IO calls must call raise_barrier. Once that returns 922 * there is no normal IO happeing. It must arrange to call 923 * lower_barrier when the particular background IO completes. 924 */ 925 926 static void raise_barrier(struct r10conf *conf, int force) 927 { 928 BUG_ON(force && !conf->barrier); 929 spin_lock_irq(&conf->resync_lock); 930 931 /* Wait until no block IO is waiting (unless 'force') */ 932 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 933 conf->resync_lock); 934 935 /* block any new IO from starting */ 936 conf->barrier++; 937 938 /* Now wait for all pending IO to complete */ 939 wait_event_lock_irq(conf->wait_barrier, 940 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 941 conf->resync_lock); 942 943 spin_unlock_irq(&conf->resync_lock); 944 } 945 946 static void lower_barrier(struct r10conf *conf) 947 { 948 unsigned long flags; 949 spin_lock_irqsave(&conf->resync_lock, flags); 950 conf->barrier--; 951 spin_unlock_irqrestore(&conf->resync_lock, flags); 952 wake_up(&conf->wait_barrier); 953 } 954 955 static void wait_barrier(struct r10conf *conf) 956 { 957 spin_lock_irq(&conf->resync_lock); 958 if (conf->barrier) { 959 struct bio_list *bio_list = current->bio_list; 960 conf->nr_waiting++; 961 /* Wait for the barrier to drop. 962 * However if there are already pending 963 * requests (preventing the barrier from 964 * rising completely), and the 965 * pre-process bio queue isn't empty, 966 * then don't wait, as we need to empty 967 * that queue to get the nr_pending 968 * count down. 969 */ 970 raid10_log(conf->mddev, "wait barrier"); 971 wait_event_lock_irq(conf->wait_barrier, 972 !conf->barrier || 973 (atomic_read(&conf->nr_pending) && 974 bio_list && 975 (!bio_list_empty(&bio_list[0]) || 976 !bio_list_empty(&bio_list[1]))) || 977 /* move on if recovery thread is 978 * blocked by us 979 */ 980 (conf->mddev->thread->tsk == current && 981 test_bit(MD_RECOVERY_RUNNING, 982 &conf->mddev->recovery) && 983 conf->nr_queued > 0), 984 conf->resync_lock); 985 conf->nr_waiting--; 986 if (!conf->nr_waiting) 987 wake_up(&conf->wait_barrier); 988 } 989 atomic_inc(&conf->nr_pending); 990 spin_unlock_irq(&conf->resync_lock); 991 } 992 993 static void allow_barrier(struct r10conf *conf) 994 { 995 if ((atomic_dec_and_test(&conf->nr_pending)) || 996 (conf->array_freeze_pending)) 997 wake_up(&conf->wait_barrier); 998 } 999 1000 static void freeze_array(struct r10conf *conf, int extra) 1001 { 1002 /* stop syncio and normal IO and wait for everything to 1003 * go quiet. 1004 * We increment barrier and nr_waiting, and then 1005 * wait until nr_pending match nr_queued+extra 1006 * This is called in the context of one normal IO request 1007 * that has failed. Thus any sync request that might be pending 1008 * will be blocked by nr_pending, and we need to wait for 1009 * pending IO requests to complete or be queued for re-try. 1010 * Thus the number queued (nr_queued) plus this request (extra) 1011 * must match the number of pending IOs (nr_pending) before 1012 * we continue. 1013 */ 1014 spin_lock_irq(&conf->resync_lock); 1015 conf->array_freeze_pending++; 1016 conf->barrier++; 1017 conf->nr_waiting++; 1018 wait_event_lock_irq_cmd(conf->wait_barrier, 1019 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 1020 conf->resync_lock, 1021 flush_pending_writes(conf)); 1022 1023 conf->array_freeze_pending--; 1024 spin_unlock_irq(&conf->resync_lock); 1025 } 1026 1027 static void unfreeze_array(struct r10conf *conf) 1028 { 1029 /* reverse the effect of the freeze */ 1030 spin_lock_irq(&conf->resync_lock); 1031 conf->barrier--; 1032 conf->nr_waiting--; 1033 wake_up(&conf->wait_barrier); 1034 spin_unlock_irq(&conf->resync_lock); 1035 } 1036 1037 static sector_t choose_data_offset(struct r10bio *r10_bio, 1038 struct md_rdev *rdev) 1039 { 1040 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1041 test_bit(R10BIO_Previous, &r10_bio->state)) 1042 return rdev->data_offset; 1043 else 1044 return rdev->new_data_offset; 1045 } 1046 1047 struct raid10_plug_cb { 1048 struct blk_plug_cb cb; 1049 struct bio_list pending; 1050 int pending_cnt; 1051 }; 1052 1053 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1054 { 1055 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1056 cb); 1057 struct mddev *mddev = plug->cb.data; 1058 struct r10conf *conf = mddev->private; 1059 struct bio *bio; 1060 1061 if (from_schedule || current->bio_list) { 1062 spin_lock_irq(&conf->device_lock); 1063 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1064 conf->pending_count += plug->pending_cnt; 1065 spin_unlock_irq(&conf->device_lock); 1066 wake_up(&conf->wait_barrier); 1067 md_wakeup_thread(mddev->thread); 1068 kfree(plug); 1069 return; 1070 } 1071 1072 /* we aren't scheduling, so we can do the write-out directly. */ 1073 bio = bio_list_get(&plug->pending); 1074 md_bitmap_unplug(mddev->bitmap); 1075 wake_up(&conf->wait_barrier); 1076 1077 while (bio) { /* submit pending writes */ 1078 struct bio *next = bio->bi_next; 1079 struct md_rdev *rdev = (void*)bio->bi_bdev; 1080 bio->bi_next = NULL; 1081 bio_set_dev(bio, rdev->bdev); 1082 if (test_bit(Faulty, &rdev->flags)) { 1083 bio_io_error(bio); 1084 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1085 !blk_queue_discard(bio->bi_bdev->bd_disk->queue))) 1086 /* Just ignore it */ 1087 bio_endio(bio); 1088 else 1089 submit_bio_noacct(bio); 1090 bio = next; 1091 } 1092 kfree(plug); 1093 } 1094 1095 /* 1096 * 1. Register the new request and wait if the reconstruction thread has put 1097 * up a bar for new requests. Continue immediately if no resync is active 1098 * currently. 1099 * 2. If IO spans the reshape position. Need to wait for reshape to pass. 1100 */ 1101 static void regular_request_wait(struct mddev *mddev, struct r10conf *conf, 1102 struct bio *bio, sector_t sectors) 1103 { 1104 wait_barrier(conf); 1105 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1106 bio->bi_iter.bi_sector < conf->reshape_progress && 1107 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1108 raid10_log(conf->mddev, "wait reshape"); 1109 allow_barrier(conf); 1110 wait_event(conf->wait_barrier, 1111 conf->reshape_progress <= bio->bi_iter.bi_sector || 1112 conf->reshape_progress >= bio->bi_iter.bi_sector + 1113 sectors); 1114 wait_barrier(conf); 1115 } 1116 } 1117 1118 static void raid10_read_request(struct mddev *mddev, struct bio *bio, 1119 struct r10bio *r10_bio) 1120 { 1121 struct r10conf *conf = mddev->private; 1122 struct bio *read_bio; 1123 const int op = bio_op(bio); 1124 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1125 int max_sectors; 1126 struct md_rdev *rdev; 1127 char b[BDEVNAME_SIZE]; 1128 int slot = r10_bio->read_slot; 1129 struct md_rdev *err_rdev = NULL; 1130 gfp_t gfp = GFP_NOIO; 1131 1132 if (slot >= 0 && r10_bio->devs[slot].rdev) { 1133 /* 1134 * This is an error retry, but we cannot 1135 * safely dereference the rdev in the r10_bio, 1136 * we must use the one in conf. 1137 * If it has already been disconnected (unlikely) 1138 * we lose the device name in error messages. 1139 */ 1140 int disk; 1141 /* 1142 * As we are blocking raid10, it is a little safer to 1143 * use __GFP_HIGH. 1144 */ 1145 gfp = GFP_NOIO | __GFP_HIGH; 1146 1147 rcu_read_lock(); 1148 disk = r10_bio->devs[slot].devnum; 1149 err_rdev = rcu_dereference(conf->mirrors[disk].rdev); 1150 if (err_rdev) 1151 bdevname(err_rdev->bdev, b); 1152 else { 1153 strcpy(b, "???"); 1154 /* This never gets dereferenced */ 1155 err_rdev = r10_bio->devs[slot].rdev; 1156 } 1157 rcu_read_unlock(); 1158 } 1159 1160 regular_request_wait(mddev, conf, bio, r10_bio->sectors); 1161 rdev = read_balance(conf, r10_bio, &max_sectors); 1162 if (!rdev) { 1163 if (err_rdev) { 1164 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n", 1165 mdname(mddev), b, 1166 (unsigned long long)r10_bio->sector); 1167 } 1168 raid_end_bio_io(r10_bio); 1169 return; 1170 } 1171 if (err_rdev) 1172 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n", 1173 mdname(mddev), 1174 bdevname(rdev->bdev, b), 1175 (unsigned long long)r10_bio->sector); 1176 if (max_sectors < bio_sectors(bio)) { 1177 struct bio *split = bio_split(bio, max_sectors, 1178 gfp, &conf->bio_split); 1179 bio_chain(split, bio); 1180 allow_barrier(conf); 1181 submit_bio_noacct(bio); 1182 wait_barrier(conf); 1183 bio = split; 1184 r10_bio->master_bio = bio; 1185 r10_bio->sectors = max_sectors; 1186 } 1187 slot = r10_bio->read_slot; 1188 1189 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1190 r10_bio->start_time = bio_start_io_acct(bio); 1191 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1192 1193 r10_bio->devs[slot].bio = read_bio; 1194 r10_bio->devs[slot].rdev = rdev; 1195 1196 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1197 choose_data_offset(r10_bio, rdev); 1198 bio_set_dev(read_bio, rdev->bdev); 1199 read_bio->bi_end_io = raid10_end_read_request; 1200 bio_set_op_attrs(read_bio, op, do_sync); 1201 if (test_bit(FailFast, &rdev->flags) && 1202 test_bit(R10BIO_FailFast, &r10_bio->state)) 1203 read_bio->bi_opf |= MD_FAILFAST; 1204 read_bio->bi_private = r10_bio; 1205 1206 if (mddev->gendisk) 1207 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1208 r10_bio->sector); 1209 submit_bio_noacct(read_bio); 1210 return; 1211 } 1212 1213 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio, 1214 struct bio *bio, bool replacement, 1215 int n_copy) 1216 { 1217 const int op = bio_op(bio); 1218 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1219 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1220 unsigned long flags; 1221 struct blk_plug_cb *cb; 1222 struct raid10_plug_cb *plug = NULL; 1223 struct r10conf *conf = mddev->private; 1224 struct md_rdev *rdev; 1225 int devnum = r10_bio->devs[n_copy].devnum; 1226 struct bio *mbio; 1227 1228 if (replacement) { 1229 rdev = conf->mirrors[devnum].replacement; 1230 if (rdev == NULL) { 1231 /* Replacement just got moved to main 'rdev' */ 1232 smp_mb(); 1233 rdev = conf->mirrors[devnum].rdev; 1234 } 1235 } else 1236 rdev = conf->mirrors[devnum].rdev; 1237 1238 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1239 if (replacement) 1240 r10_bio->devs[n_copy].repl_bio = mbio; 1241 else 1242 r10_bio->devs[n_copy].bio = mbio; 1243 1244 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr + 1245 choose_data_offset(r10_bio, rdev)); 1246 bio_set_dev(mbio, rdev->bdev); 1247 mbio->bi_end_io = raid10_end_write_request; 1248 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1249 if (!replacement && test_bit(FailFast, 1250 &conf->mirrors[devnum].rdev->flags) 1251 && enough(conf, devnum)) 1252 mbio->bi_opf |= MD_FAILFAST; 1253 mbio->bi_private = r10_bio; 1254 1255 if (conf->mddev->gendisk) 1256 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk), 1257 r10_bio->sector); 1258 /* flush_pending_writes() needs access to the rdev so...*/ 1259 mbio->bi_bdev = (void *)rdev; 1260 1261 atomic_inc(&r10_bio->remaining); 1262 1263 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug)); 1264 if (cb) 1265 plug = container_of(cb, struct raid10_plug_cb, cb); 1266 else 1267 plug = NULL; 1268 if (plug) { 1269 bio_list_add(&plug->pending, mbio); 1270 plug->pending_cnt++; 1271 } else { 1272 spin_lock_irqsave(&conf->device_lock, flags); 1273 bio_list_add(&conf->pending_bio_list, mbio); 1274 conf->pending_count++; 1275 spin_unlock_irqrestore(&conf->device_lock, flags); 1276 md_wakeup_thread(mddev->thread); 1277 } 1278 } 1279 1280 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio) 1281 { 1282 int i; 1283 struct r10conf *conf = mddev->private; 1284 struct md_rdev *blocked_rdev; 1285 1286 retry_wait: 1287 blocked_rdev = NULL; 1288 rcu_read_lock(); 1289 for (i = 0; i < conf->copies; i++) { 1290 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1291 struct md_rdev *rrdev = rcu_dereference( 1292 conf->mirrors[i].replacement); 1293 if (rdev == rrdev) 1294 rrdev = NULL; 1295 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1296 atomic_inc(&rdev->nr_pending); 1297 blocked_rdev = rdev; 1298 break; 1299 } 1300 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1301 atomic_inc(&rrdev->nr_pending); 1302 blocked_rdev = rrdev; 1303 break; 1304 } 1305 1306 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1307 sector_t first_bad; 1308 sector_t dev_sector = r10_bio->devs[i].addr; 1309 int bad_sectors; 1310 int is_bad; 1311 1312 /* 1313 * Discard request doesn't care the write result 1314 * so it doesn't need to wait blocked disk here. 1315 */ 1316 if (!r10_bio->sectors) 1317 continue; 1318 1319 is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors, 1320 &first_bad, &bad_sectors); 1321 if (is_bad < 0) { 1322 /* 1323 * Mustn't write here until the bad block 1324 * is acknowledged 1325 */ 1326 atomic_inc(&rdev->nr_pending); 1327 set_bit(BlockedBadBlocks, &rdev->flags); 1328 blocked_rdev = rdev; 1329 break; 1330 } 1331 } 1332 } 1333 rcu_read_unlock(); 1334 1335 if (unlikely(blocked_rdev)) { 1336 /* Have to wait for this device to get unblocked, then retry */ 1337 allow_barrier(conf); 1338 raid10_log(conf->mddev, "%s wait rdev %d blocked", 1339 __func__, blocked_rdev->raid_disk); 1340 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1341 wait_barrier(conf); 1342 goto retry_wait; 1343 } 1344 } 1345 1346 static void raid10_write_request(struct mddev *mddev, struct bio *bio, 1347 struct r10bio *r10_bio) 1348 { 1349 struct r10conf *conf = mddev->private; 1350 int i; 1351 sector_t sectors; 1352 int max_sectors; 1353 1354 if ((mddev_is_clustered(mddev) && 1355 md_cluster_ops->area_resyncing(mddev, WRITE, 1356 bio->bi_iter.bi_sector, 1357 bio_end_sector(bio)))) { 1358 DEFINE_WAIT(w); 1359 for (;;) { 1360 prepare_to_wait(&conf->wait_barrier, 1361 &w, TASK_IDLE); 1362 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1363 bio->bi_iter.bi_sector, bio_end_sector(bio))) 1364 break; 1365 schedule(); 1366 } 1367 finish_wait(&conf->wait_barrier, &w); 1368 } 1369 1370 sectors = r10_bio->sectors; 1371 regular_request_wait(mddev, conf, bio, sectors); 1372 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1373 (mddev->reshape_backwards 1374 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1375 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1376 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1377 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1378 /* Need to update reshape_position in metadata */ 1379 mddev->reshape_position = conf->reshape_progress; 1380 set_mask_bits(&mddev->sb_flags, 0, 1381 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1382 md_wakeup_thread(mddev->thread); 1383 raid10_log(conf->mddev, "wait reshape metadata"); 1384 wait_event(mddev->sb_wait, 1385 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 1386 1387 conf->reshape_safe = mddev->reshape_position; 1388 } 1389 1390 if (conf->pending_count >= max_queued_requests) { 1391 md_wakeup_thread(mddev->thread); 1392 raid10_log(mddev, "wait queued"); 1393 wait_event(conf->wait_barrier, 1394 conf->pending_count < max_queued_requests); 1395 } 1396 /* first select target devices under rcu_lock and 1397 * inc refcount on their rdev. Record them by setting 1398 * bios[x] to bio 1399 * If there are known/acknowledged bad blocks on any device 1400 * on which we have seen a write error, we want to avoid 1401 * writing to those blocks. This potentially requires several 1402 * writes to write around the bad blocks. Each set of writes 1403 * gets its own r10_bio with a set of bios attached. 1404 */ 1405 1406 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1407 raid10_find_phys(conf, r10_bio); 1408 1409 wait_blocked_dev(mddev, r10_bio); 1410 1411 rcu_read_lock(); 1412 max_sectors = r10_bio->sectors; 1413 1414 for (i = 0; i < conf->copies; i++) { 1415 int d = r10_bio->devs[i].devnum; 1416 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1417 struct md_rdev *rrdev = rcu_dereference( 1418 conf->mirrors[d].replacement); 1419 if (rdev == rrdev) 1420 rrdev = NULL; 1421 if (rdev && (test_bit(Faulty, &rdev->flags))) 1422 rdev = NULL; 1423 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1424 rrdev = NULL; 1425 1426 r10_bio->devs[i].bio = NULL; 1427 r10_bio->devs[i].repl_bio = NULL; 1428 1429 if (!rdev && !rrdev) { 1430 set_bit(R10BIO_Degraded, &r10_bio->state); 1431 continue; 1432 } 1433 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1434 sector_t first_bad; 1435 sector_t dev_sector = r10_bio->devs[i].addr; 1436 int bad_sectors; 1437 int is_bad; 1438 1439 is_bad = is_badblock(rdev, dev_sector, max_sectors, 1440 &first_bad, &bad_sectors); 1441 if (is_bad && first_bad <= dev_sector) { 1442 /* Cannot write here at all */ 1443 bad_sectors -= (dev_sector - first_bad); 1444 if (bad_sectors < max_sectors) 1445 /* Mustn't write more than bad_sectors 1446 * to other devices yet 1447 */ 1448 max_sectors = bad_sectors; 1449 /* We don't set R10BIO_Degraded as that 1450 * only applies if the disk is missing, 1451 * so it might be re-added, and we want to 1452 * know to recover this chunk. 1453 * In this case the device is here, and the 1454 * fact that this chunk is not in-sync is 1455 * recorded in the bad block log. 1456 */ 1457 continue; 1458 } 1459 if (is_bad) { 1460 int good_sectors = first_bad - dev_sector; 1461 if (good_sectors < max_sectors) 1462 max_sectors = good_sectors; 1463 } 1464 } 1465 if (rdev) { 1466 r10_bio->devs[i].bio = bio; 1467 atomic_inc(&rdev->nr_pending); 1468 } 1469 if (rrdev) { 1470 r10_bio->devs[i].repl_bio = bio; 1471 atomic_inc(&rrdev->nr_pending); 1472 } 1473 } 1474 rcu_read_unlock(); 1475 1476 if (max_sectors < r10_bio->sectors) 1477 r10_bio->sectors = max_sectors; 1478 1479 if (r10_bio->sectors < bio_sectors(bio)) { 1480 struct bio *split = bio_split(bio, r10_bio->sectors, 1481 GFP_NOIO, &conf->bio_split); 1482 bio_chain(split, bio); 1483 allow_barrier(conf); 1484 submit_bio_noacct(bio); 1485 wait_barrier(conf); 1486 bio = split; 1487 r10_bio->master_bio = bio; 1488 } 1489 1490 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1491 r10_bio->start_time = bio_start_io_acct(bio); 1492 atomic_set(&r10_bio->remaining, 1); 1493 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1494 1495 for (i = 0; i < conf->copies; i++) { 1496 if (r10_bio->devs[i].bio) 1497 raid10_write_one_disk(mddev, r10_bio, bio, false, i); 1498 if (r10_bio->devs[i].repl_bio) 1499 raid10_write_one_disk(mddev, r10_bio, bio, true, i); 1500 } 1501 one_write_done(r10_bio); 1502 } 1503 1504 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors) 1505 { 1506 struct r10conf *conf = mddev->private; 1507 struct r10bio *r10_bio; 1508 1509 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1510 1511 r10_bio->master_bio = bio; 1512 r10_bio->sectors = sectors; 1513 1514 r10_bio->mddev = mddev; 1515 r10_bio->sector = bio->bi_iter.bi_sector; 1516 r10_bio->state = 0; 1517 r10_bio->read_slot = -1; 1518 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * 1519 conf->geo.raid_disks); 1520 1521 if (bio_data_dir(bio) == READ) 1522 raid10_read_request(mddev, bio, r10_bio); 1523 else 1524 raid10_write_request(mddev, bio, r10_bio); 1525 } 1526 1527 static void raid_end_discard_bio(struct r10bio *r10bio) 1528 { 1529 struct r10conf *conf = r10bio->mddev->private; 1530 struct r10bio *first_r10bio; 1531 1532 while (atomic_dec_and_test(&r10bio->remaining)) { 1533 1534 allow_barrier(conf); 1535 1536 if (!test_bit(R10BIO_Discard, &r10bio->state)) { 1537 first_r10bio = (struct r10bio *)r10bio->master_bio; 1538 free_r10bio(r10bio); 1539 r10bio = first_r10bio; 1540 } else { 1541 md_write_end(r10bio->mddev); 1542 bio_endio(r10bio->master_bio); 1543 free_r10bio(r10bio); 1544 break; 1545 } 1546 } 1547 } 1548 1549 static void raid10_end_discard_request(struct bio *bio) 1550 { 1551 struct r10bio *r10_bio = bio->bi_private; 1552 struct r10conf *conf = r10_bio->mddev->private; 1553 struct md_rdev *rdev = NULL; 1554 int dev; 1555 int slot, repl; 1556 1557 /* 1558 * We don't care the return value of discard bio 1559 */ 1560 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 1561 set_bit(R10BIO_Uptodate, &r10_bio->state); 1562 1563 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1564 if (repl) 1565 rdev = conf->mirrors[dev].replacement; 1566 if (!rdev) { 1567 /* 1568 * raid10_remove_disk uses smp_mb to make sure rdev is set to 1569 * replacement before setting replacement to NULL. It can read 1570 * rdev first without barrier protect even replacment is NULL 1571 */ 1572 smp_rmb(); 1573 rdev = conf->mirrors[dev].rdev; 1574 } 1575 1576 raid_end_discard_bio(r10_bio); 1577 rdev_dec_pending(rdev, conf->mddev); 1578 } 1579 1580 /* 1581 * There are some limitations to handle discard bio 1582 * 1st, the discard size is bigger than stripe_size*2. 1583 * 2st, if the discard bio spans reshape progress, we use the old way to 1584 * handle discard bio 1585 */ 1586 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio) 1587 { 1588 struct r10conf *conf = mddev->private; 1589 struct geom *geo = &conf->geo; 1590 int far_copies = geo->far_copies; 1591 bool first_copy = true; 1592 struct r10bio *r10_bio, *first_r10bio; 1593 struct bio *split; 1594 int disk; 1595 sector_t chunk; 1596 unsigned int stripe_size; 1597 unsigned int stripe_data_disks; 1598 sector_t split_size; 1599 sector_t bio_start, bio_end; 1600 sector_t first_stripe_index, last_stripe_index; 1601 sector_t start_disk_offset; 1602 unsigned int start_disk_index; 1603 sector_t end_disk_offset; 1604 unsigned int end_disk_index; 1605 unsigned int remainder; 1606 1607 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1608 return -EAGAIN; 1609 1610 wait_barrier(conf); 1611 1612 /* 1613 * Check reshape again to avoid reshape happens after checking 1614 * MD_RECOVERY_RESHAPE and before wait_barrier 1615 */ 1616 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 1617 goto out; 1618 1619 if (geo->near_copies) 1620 stripe_data_disks = geo->raid_disks / geo->near_copies + 1621 geo->raid_disks % geo->near_copies; 1622 else 1623 stripe_data_disks = geo->raid_disks; 1624 1625 stripe_size = stripe_data_disks << geo->chunk_shift; 1626 1627 bio_start = bio->bi_iter.bi_sector; 1628 bio_end = bio_end_sector(bio); 1629 1630 /* 1631 * Maybe one discard bio is smaller than strip size or across one 1632 * stripe and discard region is larger than one stripe size. For far 1633 * offset layout, if the discard region is not aligned with stripe 1634 * size, there is hole when we submit discard bio to member disk. 1635 * For simplicity, we only handle discard bio which discard region 1636 * is bigger than stripe_size * 2 1637 */ 1638 if (bio_sectors(bio) < stripe_size*2) 1639 goto out; 1640 1641 /* 1642 * Keep bio aligned with strip size. 1643 */ 1644 div_u64_rem(bio_start, stripe_size, &remainder); 1645 if (remainder) { 1646 split_size = stripe_size - remainder; 1647 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1648 bio_chain(split, bio); 1649 allow_barrier(conf); 1650 /* Resend the fist split part */ 1651 submit_bio_noacct(split); 1652 wait_barrier(conf); 1653 } 1654 div_u64_rem(bio_end, stripe_size, &remainder); 1655 if (remainder) { 1656 split_size = bio_sectors(bio) - remainder; 1657 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split); 1658 bio_chain(split, bio); 1659 allow_barrier(conf); 1660 /* Resend the second split part */ 1661 submit_bio_noacct(bio); 1662 bio = split; 1663 wait_barrier(conf); 1664 } 1665 1666 bio_start = bio->bi_iter.bi_sector; 1667 bio_end = bio_end_sector(bio); 1668 1669 /* 1670 * Raid10 uses chunk as the unit to store data. It's similar like raid0. 1671 * One stripe contains the chunks from all member disk (one chunk from 1672 * one disk at the same HBA address). For layout detail, see 'man md 4' 1673 */ 1674 chunk = bio_start >> geo->chunk_shift; 1675 chunk *= geo->near_copies; 1676 first_stripe_index = chunk; 1677 start_disk_index = sector_div(first_stripe_index, geo->raid_disks); 1678 if (geo->far_offset) 1679 first_stripe_index *= geo->far_copies; 1680 start_disk_offset = (bio_start & geo->chunk_mask) + 1681 (first_stripe_index << geo->chunk_shift); 1682 1683 chunk = bio_end >> geo->chunk_shift; 1684 chunk *= geo->near_copies; 1685 last_stripe_index = chunk; 1686 end_disk_index = sector_div(last_stripe_index, geo->raid_disks); 1687 if (geo->far_offset) 1688 last_stripe_index *= geo->far_copies; 1689 end_disk_offset = (bio_end & geo->chunk_mask) + 1690 (last_stripe_index << geo->chunk_shift); 1691 1692 retry_discard: 1693 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO); 1694 r10_bio->mddev = mddev; 1695 r10_bio->state = 0; 1696 r10_bio->sectors = 0; 1697 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks); 1698 wait_blocked_dev(mddev, r10_bio); 1699 1700 /* 1701 * For far layout it needs more than one r10bio to cover all regions. 1702 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio 1703 * to record the discard bio. Other r10bio->master_bio record the first 1704 * r10bio. The first r10bio only release after all other r10bios finish. 1705 * The discard bio returns only first r10bio finishes 1706 */ 1707 if (first_copy) { 1708 r10_bio->master_bio = bio; 1709 set_bit(R10BIO_Discard, &r10_bio->state); 1710 first_copy = false; 1711 first_r10bio = r10_bio; 1712 } else 1713 r10_bio->master_bio = (struct bio *)first_r10bio; 1714 1715 /* 1716 * first select target devices under rcu_lock and 1717 * inc refcount on their rdev. Record them by setting 1718 * bios[x] to bio 1719 */ 1720 rcu_read_lock(); 1721 for (disk = 0; disk < geo->raid_disks; disk++) { 1722 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev); 1723 struct md_rdev *rrdev = rcu_dereference( 1724 conf->mirrors[disk].replacement); 1725 1726 r10_bio->devs[disk].bio = NULL; 1727 r10_bio->devs[disk].repl_bio = NULL; 1728 1729 if (rdev && (test_bit(Faulty, &rdev->flags))) 1730 rdev = NULL; 1731 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1732 rrdev = NULL; 1733 if (!rdev && !rrdev) 1734 continue; 1735 1736 if (rdev) { 1737 r10_bio->devs[disk].bio = bio; 1738 atomic_inc(&rdev->nr_pending); 1739 } 1740 if (rrdev) { 1741 r10_bio->devs[disk].repl_bio = bio; 1742 atomic_inc(&rrdev->nr_pending); 1743 } 1744 } 1745 rcu_read_unlock(); 1746 1747 atomic_set(&r10_bio->remaining, 1); 1748 for (disk = 0; disk < geo->raid_disks; disk++) { 1749 sector_t dev_start, dev_end; 1750 struct bio *mbio, *rbio = NULL; 1751 1752 /* 1753 * Now start to calculate the start and end address for each disk. 1754 * The space between dev_start and dev_end is the discard region. 1755 * 1756 * For dev_start, it needs to consider three conditions: 1757 * 1st, the disk is before start_disk, you can imagine the disk in 1758 * the next stripe. So the dev_start is the start address of next 1759 * stripe. 1760 * 2st, the disk is after start_disk, it means the disk is at the 1761 * same stripe of first disk 1762 * 3st, the first disk itself, we can use start_disk_offset directly 1763 */ 1764 if (disk < start_disk_index) 1765 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors; 1766 else if (disk > start_disk_index) 1767 dev_start = first_stripe_index * mddev->chunk_sectors; 1768 else 1769 dev_start = start_disk_offset; 1770 1771 if (disk < end_disk_index) 1772 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors; 1773 else if (disk > end_disk_index) 1774 dev_end = last_stripe_index * mddev->chunk_sectors; 1775 else 1776 dev_end = end_disk_offset; 1777 1778 /* 1779 * It only handles discard bio which size is >= stripe size, so 1780 * dev_end > dev_start all the time. 1781 * It doesn't need to use rcu lock to get rdev here. We already 1782 * add rdev->nr_pending in the first loop. 1783 */ 1784 if (r10_bio->devs[disk].bio) { 1785 struct md_rdev *rdev = conf->mirrors[disk].rdev; 1786 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1787 mbio->bi_end_io = raid10_end_discard_request; 1788 mbio->bi_private = r10_bio; 1789 r10_bio->devs[disk].bio = mbio; 1790 r10_bio->devs[disk].devnum = disk; 1791 atomic_inc(&r10_bio->remaining); 1792 md_submit_discard_bio(mddev, rdev, mbio, 1793 dev_start + choose_data_offset(r10_bio, rdev), 1794 dev_end - dev_start); 1795 bio_endio(mbio); 1796 } 1797 if (r10_bio->devs[disk].repl_bio) { 1798 struct md_rdev *rrdev = conf->mirrors[disk].replacement; 1799 rbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1800 rbio->bi_end_io = raid10_end_discard_request; 1801 rbio->bi_private = r10_bio; 1802 r10_bio->devs[disk].repl_bio = rbio; 1803 r10_bio->devs[disk].devnum = disk; 1804 atomic_inc(&r10_bio->remaining); 1805 md_submit_discard_bio(mddev, rrdev, rbio, 1806 dev_start + choose_data_offset(r10_bio, rrdev), 1807 dev_end - dev_start); 1808 bio_endio(rbio); 1809 } 1810 } 1811 1812 if (!geo->far_offset && --far_copies) { 1813 first_stripe_index += geo->stride >> geo->chunk_shift; 1814 start_disk_offset += geo->stride; 1815 last_stripe_index += geo->stride >> geo->chunk_shift; 1816 end_disk_offset += geo->stride; 1817 atomic_inc(&first_r10bio->remaining); 1818 raid_end_discard_bio(r10_bio); 1819 wait_barrier(conf); 1820 goto retry_discard; 1821 } 1822 1823 raid_end_discard_bio(r10_bio); 1824 1825 return 0; 1826 out: 1827 allow_barrier(conf); 1828 return -EAGAIN; 1829 } 1830 1831 static bool raid10_make_request(struct mddev *mddev, struct bio *bio) 1832 { 1833 struct r10conf *conf = mddev->private; 1834 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1835 int chunk_sects = chunk_mask + 1; 1836 int sectors = bio_sectors(bio); 1837 1838 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1839 && md_flush_request(mddev, bio)) 1840 return true; 1841 1842 if (!md_write_start(mddev, bio)) 1843 return false; 1844 1845 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1846 if (!raid10_handle_discard(mddev, bio)) 1847 return true; 1848 1849 /* 1850 * If this request crosses a chunk boundary, we need to split 1851 * it. 1852 */ 1853 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1854 sectors > chunk_sects 1855 && (conf->geo.near_copies < conf->geo.raid_disks 1856 || conf->prev.near_copies < 1857 conf->prev.raid_disks))) 1858 sectors = chunk_sects - 1859 (bio->bi_iter.bi_sector & 1860 (chunk_sects - 1)); 1861 __make_request(mddev, bio, sectors); 1862 1863 /* In case raid10d snuck in to freeze_array */ 1864 wake_up(&conf->wait_barrier); 1865 return true; 1866 } 1867 1868 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1869 { 1870 struct r10conf *conf = mddev->private; 1871 int i; 1872 1873 if (conf->geo.near_copies < conf->geo.raid_disks) 1874 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1875 if (conf->geo.near_copies > 1) 1876 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1877 if (conf->geo.far_copies > 1) { 1878 if (conf->geo.far_offset) 1879 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1880 else 1881 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1882 if (conf->geo.far_set_size != conf->geo.raid_disks) 1883 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1884 } 1885 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1886 conf->geo.raid_disks - mddev->degraded); 1887 rcu_read_lock(); 1888 for (i = 0; i < conf->geo.raid_disks; i++) { 1889 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1890 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1891 } 1892 rcu_read_unlock(); 1893 seq_printf(seq, "]"); 1894 } 1895 1896 /* check if there are enough drives for 1897 * every block to appear on atleast one. 1898 * Don't consider the device numbered 'ignore' 1899 * as we might be about to remove it. 1900 */ 1901 static int _enough(struct r10conf *conf, int previous, int ignore) 1902 { 1903 int first = 0; 1904 int has_enough = 0; 1905 int disks, ncopies; 1906 if (previous) { 1907 disks = conf->prev.raid_disks; 1908 ncopies = conf->prev.near_copies; 1909 } else { 1910 disks = conf->geo.raid_disks; 1911 ncopies = conf->geo.near_copies; 1912 } 1913 1914 rcu_read_lock(); 1915 do { 1916 int n = conf->copies; 1917 int cnt = 0; 1918 int this = first; 1919 while (n--) { 1920 struct md_rdev *rdev; 1921 if (this != ignore && 1922 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1923 test_bit(In_sync, &rdev->flags)) 1924 cnt++; 1925 this = (this+1) % disks; 1926 } 1927 if (cnt == 0) 1928 goto out; 1929 first = (first + ncopies) % disks; 1930 } while (first != 0); 1931 has_enough = 1; 1932 out: 1933 rcu_read_unlock(); 1934 return has_enough; 1935 } 1936 1937 static int enough(struct r10conf *conf, int ignore) 1938 { 1939 /* when calling 'enough', both 'prev' and 'geo' must 1940 * be stable. 1941 * This is ensured if ->reconfig_mutex or ->device_lock 1942 * is held. 1943 */ 1944 return _enough(conf, 0, ignore) && 1945 _enough(conf, 1, ignore); 1946 } 1947 1948 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1949 { 1950 char b[BDEVNAME_SIZE]; 1951 struct r10conf *conf = mddev->private; 1952 unsigned long flags; 1953 1954 /* 1955 * If it is not operational, then we have already marked it as dead 1956 * else if it is the last working disks with "fail_last_dev == false", 1957 * ignore the error, let the next level up know. 1958 * else mark the drive as failed 1959 */ 1960 spin_lock_irqsave(&conf->device_lock, flags); 1961 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1962 && !enough(conf, rdev->raid_disk)) { 1963 /* 1964 * Don't fail the drive, just return an IO error. 1965 */ 1966 spin_unlock_irqrestore(&conf->device_lock, flags); 1967 return; 1968 } 1969 if (test_and_clear_bit(In_sync, &rdev->flags)) 1970 mddev->degraded++; 1971 /* 1972 * If recovery is running, make sure it aborts. 1973 */ 1974 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1975 set_bit(Blocked, &rdev->flags); 1976 set_bit(Faulty, &rdev->flags); 1977 set_mask_bits(&mddev->sb_flags, 0, 1978 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1979 spin_unlock_irqrestore(&conf->device_lock, flags); 1980 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n" 1981 "md/raid10:%s: Operation continuing on %d devices.\n", 1982 mdname(mddev), bdevname(rdev->bdev, b), 1983 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1984 } 1985 1986 static void print_conf(struct r10conf *conf) 1987 { 1988 int i; 1989 struct md_rdev *rdev; 1990 1991 pr_debug("RAID10 conf printout:\n"); 1992 if (!conf) { 1993 pr_debug("(!conf)\n"); 1994 return; 1995 } 1996 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1997 conf->geo.raid_disks); 1998 1999 /* This is only called with ->reconfix_mutex held, so 2000 * rcu protection of rdev is not needed */ 2001 for (i = 0; i < conf->geo.raid_disks; i++) { 2002 char b[BDEVNAME_SIZE]; 2003 rdev = conf->mirrors[i].rdev; 2004 if (rdev) 2005 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 2006 i, !test_bit(In_sync, &rdev->flags), 2007 !test_bit(Faulty, &rdev->flags), 2008 bdevname(rdev->bdev,b)); 2009 } 2010 } 2011 2012 static void close_sync(struct r10conf *conf) 2013 { 2014 wait_barrier(conf); 2015 allow_barrier(conf); 2016 2017 mempool_exit(&conf->r10buf_pool); 2018 } 2019 2020 static int raid10_spare_active(struct mddev *mddev) 2021 { 2022 int i; 2023 struct r10conf *conf = mddev->private; 2024 struct raid10_info *tmp; 2025 int count = 0; 2026 unsigned long flags; 2027 2028 /* 2029 * Find all non-in_sync disks within the RAID10 configuration 2030 * and mark them in_sync 2031 */ 2032 for (i = 0; i < conf->geo.raid_disks; i++) { 2033 tmp = conf->mirrors + i; 2034 if (tmp->replacement 2035 && tmp->replacement->recovery_offset == MaxSector 2036 && !test_bit(Faulty, &tmp->replacement->flags) 2037 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 2038 /* Replacement has just become active */ 2039 if (!tmp->rdev 2040 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 2041 count++; 2042 if (tmp->rdev) { 2043 /* Replaced device not technically faulty, 2044 * but we need to be sure it gets removed 2045 * and never re-added. 2046 */ 2047 set_bit(Faulty, &tmp->rdev->flags); 2048 sysfs_notify_dirent_safe( 2049 tmp->rdev->sysfs_state); 2050 } 2051 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 2052 } else if (tmp->rdev 2053 && tmp->rdev->recovery_offset == MaxSector 2054 && !test_bit(Faulty, &tmp->rdev->flags) 2055 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 2056 count++; 2057 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 2058 } 2059 } 2060 spin_lock_irqsave(&conf->device_lock, flags); 2061 mddev->degraded -= count; 2062 spin_unlock_irqrestore(&conf->device_lock, flags); 2063 2064 print_conf(conf); 2065 return count; 2066 } 2067 2068 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 2069 { 2070 struct r10conf *conf = mddev->private; 2071 int err = -EEXIST; 2072 int mirror; 2073 int first = 0; 2074 int last = conf->geo.raid_disks - 1; 2075 2076 if (mddev->recovery_cp < MaxSector) 2077 /* only hot-add to in-sync arrays, as recovery is 2078 * very different from resync 2079 */ 2080 return -EBUSY; 2081 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 2082 return -EINVAL; 2083 2084 if (md_integrity_add_rdev(rdev, mddev)) 2085 return -ENXIO; 2086 2087 if (rdev->raid_disk >= 0) 2088 first = last = rdev->raid_disk; 2089 2090 if (rdev->saved_raid_disk >= first && 2091 rdev->saved_raid_disk < conf->geo.raid_disks && 2092 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 2093 mirror = rdev->saved_raid_disk; 2094 else 2095 mirror = first; 2096 for ( ; mirror <= last ; mirror++) { 2097 struct raid10_info *p = &conf->mirrors[mirror]; 2098 if (p->recovery_disabled == mddev->recovery_disabled) 2099 continue; 2100 if (p->rdev) { 2101 if (!test_bit(WantReplacement, &p->rdev->flags) || 2102 p->replacement != NULL) 2103 continue; 2104 clear_bit(In_sync, &rdev->flags); 2105 set_bit(Replacement, &rdev->flags); 2106 rdev->raid_disk = mirror; 2107 err = 0; 2108 if (mddev->gendisk) 2109 disk_stack_limits(mddev->gendisk, rdev->bdev, 2110 rdev->data_offset << 9); 2111 conf->fullsync = 1; 2112 rcu_assign_pointer(p->replacement, rdev); 2113 break; 2114 } 2115 2116 if (mddev->gendisk) 2117 disk_stack_limits(mddev->gendisk, rdev->bdev, 2118 rdev->data_offset << 9); 2119 2120 p->head_position = 0; 2121 p->recovery_disabled = mddev->recovery_disabled - 1; 2122 rdev->raid_disk = mirror; 2123 err = 0; 2124 if (rdev->saved_raid_disk != mirror) 2125 conf->fullsync = 1; 2126 rcu_assign_pointer(p->rdev, rdev); 2127 break; 2128 } 2129 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 2130 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 2131 2132 print_conf(conf); 2133 return err; 2134 } 2135 2136 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 2137 { 2138 struct r10conf *conf = mddev->private; 2139 int err = 0; 2140 int number = rdev->raid_disk; 2141 struct md_rdev **rdevp; 2142 struct raid10_info *p = conf->mirrors + number; 2143 2144 print_conf(conf); 2145 if (rdev == p->rdev) 2146 rdevp = &p->rdev; 2147 else if (rdev == p->replacement) 2148 rdevp = &p->replacement; 2149 else 2150 return 0; 2151 2152 if (test_bit(In_sync, &rdev->flags) || 2153 atomic_read(&rdev->nr_pending)) { 2154 err = -EBUSY; 2155 goto abort; 2156 } 2157 /* Only remove non-faulty devices if recovery 2158 * is not possible. 2159 */ 2160 if (!test_bit(Faulty, &rdev->flags) && 2161 mddev->recovery_disabled != p->recovery_disabled && 2162 (!p->replacement || p->replacement == rdev) && 2163 number < conf->geo.raid_disks && 2164 enough(conf, -1)) { 2165 err = -EBUSY; 2166 goto abort; 2167 } 2168 *rdevp = NULL; 2169 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 2170 synchronize_rcu(); 2171 if (atomic_read(&rdev->nr_pending)) { 2172 /* lost the race, try later */ 2173 err = -EBUSY; 2174 *rdevp = rdev; 2175 goto abort; 2176 } 2177 } 2178 if (p->replacement) { 2179 /* We must have just cleared 'rdev' */ 2180 p->rdev = p->replacement; 2181 clear_bit(Replacement, &p->replacement->flags); 2182 smp_mb(); /* Make sure other CPUs may see both as identical 2183 * but will never see neither -- if they are careful. 2184 */ 2185 p->replacement = NULL; 2186 } 2187 2188 clear_bit(WantReplacement, &rdev->flags); 2189 err = md_integrity_register(mddev); 2190 2191 abort: 2192 2193 print_conf(conf); 2194 return err; 2195 } 2196 2197 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d) 2198 { 2199 struct r10conf *conf = r10_bio->mddev->private; 2200 2201 if (!bio->bi_status) 2202 set_bit(R10BIO_Uptodate, &r10_bio->state); 2203 else 2204 /* The write handler will notice the lack of 2205 * R10BIO_Uptodate and record any errors etc 2206 */ 2207 atomic_add(r10_bio->sectors, 2208 &conf->mirrors[d].rdev->corrected_errors); 2209 2210 /* for reconstruct, we always reschedule after a read. 2211 * for resync, only after all reads 2212 */ 2213 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 2214 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 2215 atomic_dec_and_test(&r10_bio->remaining)) { 2216 /* we have read all the blocks, 2217 * do the comparison in process context in raid10d 2218 */ 2219 reschedule_retry(r10_bio); 2220 } 2221 } 2222 2223 static void end_sync_read(struct bio *bio) 2224 { 2225 struct r10bio *r10_bio = get_resync_r10bio(bio); 2226 struct r10conf *conf = r10_bio->mddev->private; 2227 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 2228 2229 __end_sync_read(r10_bio, bio, d); 2230 } 2231 2232 static void end_reshape_read(struct bio *bio) 2233 { 2234 /* reshape read bio isn't allocated from r10buf_pool */ 2235 struct r10bio *r10_bio = bio->bi_private; 2236 2237 __end_sync_read(r10_bio, bio, r10_bio->read_slot); 2238 } 2239 2240 static void end_sync_request(struct r10bio *r10_bio) 2241 { 2242 struct mddev *mddev = r10_bio->mddev; 2243 2244 while (atomic_dec_and_test(&r10_bio->remaining)) { 2245 if (r10_bio->master_bio == NULL) { 2246 /* the primary of several recovery bios */ 2247 sector_t s = r10_bio->sectors; 2248 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2249 test_bit(R10BIO_WriteError, &r10_bio->state)) 2250 reschedule_retry(r10_bio); 2251 else 2252 put_buf(r10_bio); 2253 md_done_sync(mddev, s, 1); 2254 break; 2255 } else { 2256 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 2257 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2258 test_bit(R10BIO_WriteError, &r10_bio->state)) 2259 reschedule_retry(r10_bio); 2260 else 2261 put_buf(r10_bio); 2262 r10_bio = r10_bio2; 2263 } 2264 } 2265 } 2266 2267 static void end_sync_write(struct bio *bio) 2268 { 2269 struct r10bio *r10_bio = get_resync_r10bio(bio); 2270 struct mddev *mddev = r10_bio->mddev; 2271 struct r10conf *conf = mddev->private; 2272 int d; 2273 sector_t first_bad; 2274 int bad_sectors; 2275 int slot; 2276 int repl; 2277 struct md_rdev *rdev = NULL; 2278 2279 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 2280 if (repl) 2281 rdev = conf->mirrors[d].replacement; 2282 else 2283 rdev = conf->mirrors[d].rdev; 2284 2285 if (bio->bi_status) { 2286 if (repl) 2287 md_error(mddev, rdev); 2288 else { 2289 set_bit(WriteErrorSeen, &rdev->flags); 2290 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2291 set_bit(MD_RECOVERY_NEEDED, 2292 &rdev->mddev->recovery); 2293 set_bit(R10BIO_WriteError, &r10_bio->state); 2294 } 2295 } else if (is_badblock(rdev, 2296 r10_bio->devs[slot].addr, 2297 r10_bio->sectors, 2298 &first_bad, &bad_sectors)) 2299 set_bit(R10BIO_MadeGood, &r10_bio->state); 2300 2301 rdev_dec_pending(rdev, mddev); 2302 2303 end_sync_request(r10_bio); 2304 } 2305 2306 /* 2307 * Note: sync and recover and handled very differently for raid10 2308 * This code is for resync. 2309 * For resync, we read through virtual addresses and read all blocks. 2310 * If there is any error, we schedule a write. The lowest numbered 2311 * drive is authoritative. 2312 * However requests come for physical address, so we need to map. 2313 * For every physical address there are raid_disks/copies virtual addresses, 2314 * which is always are least one, but is not necessarly an integer. 2315 * This means that a physical address can span multiple chunks, so we may 2316 * have to submit multiple io requests for a single sync request. 2317 */ 2318 /* 2319 * We check if all blocks are in-sync and only write to blocks that 2320 * aren't in sync 2321 */ 2322 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2323 { 2324 struct r10conf *conf = mddev->private; 2325 int i, first; 2326 struct bio *tbio, *fbio; 2327 int vcnt; 2328 struct page **tpages, **fpages; 2329 2330 atomic_set(&r10_bio->remaining, 1); 2331 2332 /* find the first device with a block */ 2333 for (i=0; i<conf->copies; i++) 2334 if (!r10_bio->devs[i].bio->bi_status) 2335 break; 2336 2337 if (i == conf->copies) 2338 goto done; 2339 2340 first = i; 2341 fbio = r10_bio->devs[i].bio; 2342 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 2343 fbio->bi_iter.bi_idx = 0; 2344 fpages = get_resync_pages(fbio)->pages; 2345 2346 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 2347 /* now find blocks with errors */ 2348 for (i=0 ; i < conf->copies ; i++) { 2349 int j, d; 2350 struct md_rdev *rdev; 2351 struct resync_pages *rp; 2352 2353 tbio = r10_bio->devs[i].bio; 2354 2355 if (tbio->bi_end_io != end_sync_read) 2356 continue; 2357 if (i == first) 2358 continue; 2359 2360 tpages = get_resync_pages(tbio)->pages; 2361 d = r10_bio->devs[i].devnum; 2362 rdev = conf->mirrors[d].rdev; 2363 if (!r10_bio->devs[i].bio->bi_status) { 2364 /* We know that the bi_io_vec layout is the same for 2365 * both 'first' and 'i', so we just compare them. 2366 * All vec entries are PAGE_SIZE; 2367 */ 2368 int sectors = r10_bio->sectors; 2369 for (j = 0; j < vcnt; j++) { 2370 int len = PAGE_SIZE; 2371 if (sectors < (len / 512)) 2372 len = sectors * 512; 2373 if (memcmp(page_address(fpages[j]), 2374 page_address(tpages[j]), 2375 len)) 2376 break; 2377 sectors -= len/512; 2378 } 2379 if (j == vcnt) 2380 continue; 2381 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 2382 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2383 /* Don't fix anything. */ 2384 continue; 2385 } else if (test_bit(FailFast, &rdev->flags)) { 2386 /* Just give up on this device */ 2387 md_error(rdev->mddev, rdev); 2388 continue; 2389 } 2390 /* Ok, we need to write this bio, either to correct an 2391 * inconsistency or to correct an unreadable block. 2392 * First we need to fixup bv_offset, bv_len and 2393 * bi_vecs, as the read request might have corrupted these 2394 */ 2395 rp = get_resync_pages(tbio); 2396 bio_reset(tbio); 2397 2398 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size); 2399 2400 rp->raid_bio = r10_bio; 2401 tbio->bi_private = rp; 2402 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 2403 tbio->bi_end_io = end_sync_write; 2404 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 2405 2406 bio_copy_data(tbio, fbio); 2407 2408 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2409 atomic_inc(&r10_bio->remaining); 2410 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2411 2412 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags)) 2413 tbio->bi_opf |= MD_FAILFAST; 2414 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2415 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev); 2416 submit_bio_noacct(tbio); 2417 } 2418 2419 /* Now write out to any replacement devices 2420 * that are active 2421 */ 2422 for (i = 0; i < conf->copies; i++) { 2423 int d; 2424 2425 tbio = r10_bio->devs[i].repl_bio; 2426 if (!tbio || !tbio->bi_end_io) 2427 continue; 2428 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2429 && r10_bio->devs[i].bio != fbio) 2430 bio_copy_data(tbio, fbio); 2431 d = r10_bio->devs[i].devnum; 2432 atomic_inc(&r10_bio->remaining); 2433 md_sync_acct(conf->mirrors[d].replacement->bdev, 2434 bio_sectors(tbio)); 2435 submit_bio_noacct(tbio); 2436 } 2437 2438 done: 2439 if (atomic_dec_and_test(&r10_bio->remaining)) { 2440 md_done_sync(mddev, r10_bio->sectors, 1); 2441 put_buf(r10_bio); 2442 } 2443 } 2444 2445 /* 2446 * Now for the recovery code. 2447 * Recovery happens across physical sectors. 2448 * We recover all non-is_sync drives by finding the virtual address of 2449 * each, and then choose a working drive that also has that virt address. 2450 * There is a separate r10_bio for each non-in_sync drive. 2451 * Only the first two slots are in use. The first for reading, 2452 * The second for writing. 2453 * 2454 */ 2455 static void fix_recovery_read_error(struct r10bio *r10_bio) 2456 { 2457 /* We got a read error during recovery. 2458 * We repeat the read in smaller page-sized sections. 2459 * If a read succeeds, write it to the new device or record 2460 * a bad block if we cannot. 2461 * If a read fails, record a bad block on both old and 2462 * new devices. 2463 */ 2464 struct mddev *mddev = r10_bio->mddev; 2465 struct r10conf *conf = mddev->private; 2466 struct bio *bio = r10_bio->devs[0].bio; 2467 sector_t sect = 0; 2468 int sectors = r10_bio->sectors; 2469 int idx = 0; 2470 int dr = r10_bio->devs[0].devnum; 2471 int dw = r10_bio->devs[1].devnum; 2472 struct page **pages = get_resync_pages(bio)->pages; 2473 2474 while (sectors) { 2475 int s = sectors; 2476 struct md_rdev *rdev; 2477 sector_t addr; 2478 int ok; 2479 2480 if (s > (PAGE_SIZE>>9)) 2481 s = PAGE_SIZE >> 9; 2482 2483 rdev = conf->mirrors[dr].rdev; 2484 addr = r10_bio->devs[0].addr + sect, 2485 ok = sync_page_io(rdev, 2486 addr, 2487 s << 9, 2488 pages[idx], 2489 REQ_OP_READ, 0, false); 2490 if (ok) { 2491 rdev = conf->mirrors[dw].rdev; 2492 addr = r10_bio->devs[1].addr + sect; 2493 ok = sync_page_io(rdev, 2494 addr, 2495 s << 9, 2496 pages[idx], 2497 REQ_OP_WRITE, 0, false); 2498 if (!ok) { 2499 set_bit(WriteErrorSeen, &rdev->flags); 2500 if (!test_and_set_bit(WantReplacement, 2501 &rdev->flags)) 2502 set_bit(MD_RECOVERY_NEEDED, 2503 &rdev->mddev->recovery); 2504 } 2505 } 2506 if (!ok) { 2507 /* We don't worry if we cannot set a bad block - 2508 * it really is bad so there is no loss in not 2509 * recording it yet 2510 */ 2511 rdev_set_badblocks(rdev, addr, s, 0); 2512 2513 if (rdev != conf->mirrors[dw].rdev) { 2514 /* need bad block on destination too */ 2515 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2516 addr = r10_bio->devs[1].addr + sect; 2517 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2518 if (!ok) { 2519 /* just abort the recovery */ 2520 pr_notice("md/raid10:%s: recovery aborted due to read error\n", 2521 mdname(mddev)); 2522 2523 conf->mirrors[dw].recovery_disabled 2524 = mddev->recovery_disabled; 2525 set_bit(MD_RECOVERY_INTR, 2526 &mddev->recovery); 2527 break; 2528 } 2529 } 2530 } 2531 2532 sectors -= s; 2533 sect += s; 2534 idx++; 2535 } 2536 } 2537 2538 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2539 { 2540 struct r10conf *conf = mddev->private; 2541 int d; 2542 struct bio *wbio, *wbio2; 2543 2544 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2545 fix_recovery_read_error(r10_bio); 2546 end_sync_request(r10_bio); 2547 return; 2548 } 2549 2550 /* 2551 * share the pages with the first bio 2552 * and submit the write request 2553 */ 2554 d = r10_bio->devs[1].devnum; 2555 wbio = r10_bio->devs[1].bio; 2556 wbio2 = r10_bio->devs[1].repl_bio; 2557 /* Need to test wbio2->bi_end_io before we call 2558 * submit_bio_noacct as if the former is NULL, 2559 * the latter is free to free wbio2. 2560 */ 2561 if (wbio2 && !wbio2->bi_end_io) 2562 wbio2 = NULL; 2563 if (wbio->bi_end_io) { 2564 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2565 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2566 submit_bio_noacct(wbio); 2567 } 2568 if (wbio2) { 2569 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2570 md_sync_acct(conf->mirrors[d].replacement->bdev, 2571 bio_sectors(wbio2)); 2572 submit_bio_noacct(wbio2); 2573 } 2574 } 2575 2576 /* 2577 * Used by fix_read_error() to decay the per rdev read_errors. 2578 * We halve the read error count for every hour that has elapsed 2579 * since the last recorded read error. 2580 * 2581 */ 2582 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2583 { 2584 long cur_time_mon; 2585 unsigned long hours_since_last; 2586 unsigned int read_errors = atomic_read(&rdev->read_errors); 2587 2588 cur_time_mon = ktime_get_seconds(); 2589 2590 if (rdev->last_read_error == 0) { 2591 /* first time we've seen a read error */ 2592 rdev->last_read_error = cur_time_mon; 2593 return; 2594 } 2595 2596 hours_since_last = (long)(cur_time_mon - 2597 rdev->last_read_error) / 3600; 2598 2599 rdev->last_read_error = cur_time_mon; 2600 2601 /* 2602 * if hours_since_last is > the number of bits in read_errors 2603 * just set read errors to 0. We do this to avoid 2604 * overflowing the shift of read_errors by hours_since_last. 2605 */ 2606 if (hours_since_last >= 8 * sizeof(read_errors)) 2607 atomic_set(&rdev->read_errors, 0); 2608 else 2609 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2610 } 2611 2612 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2613 int sectors, struct page *page, int rw) 2614 { 2615 sector_t first_bad; 2616 int bad_sectors; 2617 2618 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2619 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2620 return -1; 2621 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2622 /* success */ 2623 return 1; 2624 if (rw == WRITE) { 2625 set_bit(WriteErrorSeen, &rdev->flags); 2626 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2627 set_bit(MD_RECOVERY_NEEDED, 2628 &rdev->mddev->recovery); 2629 } 2630 /* need to record an error - either for the block or the device */ 2631 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2632 md_error(rdev->mddev, rdev); 2633 return 0; 2634 } 2635 2636 /* 2637 * This is a kernel thread which: 2638 * 2639 * 1. Retries failed read operations on working mirrors. 2640 * 2. Updates the raid superblock when problems encounter. 2641 * 3. Performs writes following reads for array synchronising. 2642 */ 2643 2644 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2645 { 2646 int sect = 0; /* Offset from r10_bio->sector */ 2647 int sectors = r10_bio->sectors; 2648 struct md_rdev *rdev; 2649 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2650 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2651 2652 /* still own a reference to this rdev, so it cannot 2653 * have been cleared recently. 2654 */ 2655 rdev = conf->mirrors[d].rdev; 2656 2657 if (test_bit(Faulty, &rdev->flags)) 2658 /* drive has already been failed, just ignore any 2659 more fix_read_error() attempts */ 2660 return; 2661 2662 check_decay_read_errors(mddev, rdev); 2663 atomic_inc(&rdev->read_errors); 2664 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2665 char b[BDEVNAME_SIZE]; 2666 bdevname(rdev->bdev, b); 2667 2668 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n", 2669 mdname(mddev), b, 2670 atomic_read(&rdev->read_errors), max_read_errors); 2671 pr_notice("md/raid10:%s: %s: Failing raid device\n", 2672 mdname(mddev), b); 2673 md_error(mddev, rdev); 2674 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2675 return; 2676 } 2677 2678 while(sectors) { 2679 int s = sectors; 2680 int sl = r10_bio->read_slot; 2681 int success = 0; 2682 int start; 2683 2684 if (s > (PAGE_SIZE>>9)) 2685 s = PAGE_SIZE >> 9; 2686 2687 rcu_read_lock(); 2688 do { 2689 sector_t first_bad; 2690 int bad_sectors; 2691 2692 d = r10_bio->devs[sl].devnum; 2693 rdev = rcu_dereference(conf->mirrors[d].rdev); 2694 if (rdev && 2695 test_bit(In_sync, &rdev->flags) && 2696 !test_bit(Faulty, &rdev->flags) && 2697 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2698 &first_bad, &bad_sectors) == 0) { 2699 atomic_inc(&rdev->nr_pending); 2700 rcu_read_unlock(); 2701 success = sync_page_io(rdev, 2702 r10_bio->devs[sl].addr + 2703 sect, 2704 s<<9, 2705 conf->tmppage, 2706 REQ_OP_READ, 0, false); 2707 rdev_dec_pending(rdev, mddev); 2708 rcu_read_lock(); 2709 if (success) 2710 break; 2711 } 2712 sl++; 2713 if (sl == conf->copies) 2714 sl = 0; 2715 } while (!success && sl != r10_bio->read_slot); 2716 rcu_read_unlock(); 2717 2718 if (!success) { 2719 /* Cannot read from anywhere, just mark the block 2720 * as bad on the first device to discourage future 2721 * reads. 2722 */ 2723 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2724 rdev = conf->mirrors[dn].rdev; 2725 2726 if (!rdev_set_badblocks( 2727 rdev, 2728 r10_bio->devs[r10_bio->read_slot].addr 2729 + sect, 2730 s, 0)) { 2731 md_error(mddev, rdev); 2732 r10_bio->devs[r10_bio->read_slot].bio 2733 = IO_BLOCKED; 2734 } 2735 break; 2736 } 2737 2738 start = sl; 2739 /* write it back and re-read */ 2740 rcu_read_lock(); 2741 while (sl != r10_bio->read_slot) { 2742 char b[BDEVNAME_SIZE]; 2743 2744 if (sl==0) 2745 sl = conf->copies; 2746 sl--; 2747 d = r10_bio->devs[sl].devnum; 2748 rdev = rcu_dereference(conf->mirrors[d].rdev); 2749 if (!rdev || 2750 test_bit(Faulty, &rdev->flags) || 2751 !test_bit(In_sync, &rdev->flags)) 2752 continue; 2753 2754 atomic_inc(&rdev->nr_pending); 2755 rcu_read_unlock(); 2756 if (r10_sync_page_io(rdev, 2757 r10_bio->devs[sl].addr + 2758 sect, 2759 s, conf->tmppage, WRITE) 2760 == 0) { 2761 /* Well, this device is dead */ 2762 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n", 2763 mdname(mddev), s, 2764 (unsigned long long)( 2765 sect + 2766 choose_data_offset(r10_bio, 2767 rdev)), 2768 bdevname(rdev->bdev, b)); 2769 pr_notice("md/raid10:%s: %s: failing drive\n", 2770 mdname(mddev), 2771 bdevname(rdev->bdev, b)); 2772 } 2773 rdev_dec_pending(rdev, mddev); 2774 rcu_read_lock(); 2775 } 2776 sl = start; 2777 while (sl != r10_bio->read_slot) { 2778 char b[BDEVNAME_SIZE]; 2779 2780 if (sl==0) 2781 sl = conf->copies; 2782 sl--; 2783 d = r10_bio->devs[sl].devnum; 2784 rdev = rcu_dereference(conf->mirrors[d].rdev); 2785 if (!rdev || 2786 test_bit(Faulty, &rdev->flags) || 2787 !test_bit(In_sync, &rdev->flags)) 2788 continue; 2789 2790 atomic_inc(&rdev->nr_pending); 2791 rcu_read_unlock(); 2792 switch (r10_sync_page_io(rdev, 2793 r10_bio->devs[sl].addr + 2794 sect, 2795 s, conf->tmppage, 2796 READ)) { 2797 case 0: 2798 /* Well, this device is dead */ 2799 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n", 2800 mdname(mddev), s, 2801 (unsigned long long)( 2802 sect + 2803 choose_data_offset(r10_bio, rdev)), 2804 bdevname(rdev->bdev, b)); 2805 pr_notice("md/raid10:%s: %s: failing drive\n", 2806 mdname(mddev), 2807 bdevname(rdev->bdev, b)); 2808 break; 2809 case 1: 2810 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n", 2811 mdname(mddev), s, 2812 (unsigned long long)( 2813 sect + 2814 choose_data_offset(r10_bio, rdev)), 2815 bdevname(rdev->bdev, b)); 2816 atomic_add(s, &rdev->corrected_errors); 2817 } 2818 2819 rdev_dec_pending(rdev, mddev); 2820 rcu_read_lock(); 2821 } 2822 rcu_read_unlock(); 2823 2824 sectors -= s; 2825 sect += s; 2826 } 2827 } 2828 2829 static int narrow_write_error(struct r10bio *r10_bio, int i) 2830 { 2831 struct bio *bio = r10_bio->master_bio; 2832 struct mddev *mddev = r10_bio->mddev; 2833 struct r10conf *conf = mddev->private; 2834 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2835 /* bio has the data to be written to slot 'i' where 2836 * we just recently had a write error. 2837 * We repeatedly clone the bio and trim down to one block, 2838 * then try the write. Where the write fails we record 2839 * a bad block. 2840 * It is conceivable that the bio doesn't exactly align with 2841 * blocks. We must handle this. 2842 * 2843 * We currently own a reference to the rdev. 2844 */ 2845 2846 int block_sectors; 2847 sector_t sector; 2848 int sectors; 2849 int sect_to_write = r10_bio->sectors; 2850 int ok = 1; 2851 2852 if (rdev->badblocks.shift < 0) 2853 return 0; 2854 2855 block_sectors = roundup(1 << rdev->badblocks.shift, 2856 bdev_logical_block_size(rdev->bdev) >> 9); 2857 sector = r10_bio->sector; 2858 sectors = ((r10_bio->sector + block_sectors) 2859 & ~(sector_t)(block_sectors - 1)) 2860 - sector; 2861 2862 while (sect_to_write) { 2863 struct bio *wbio; 2864 sector_t wsector; 2865 if (sectors > sect_to_write) 2866 sectors = sect_to_write; 2867 /* Write at 'sector' for 'sectors' */ 2868 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 2869 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2870 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2871 wbio->bi_iter.bi_sector = wsector + 2872 choose_data_offset(r10_bio, rdev); 2873 bio_set_dev(wbio, rdev->bdev); 2874 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2875 2876 if (submit_bio_wait(wbio) < 0) 2877 /* Failure! */ 2878 ok = rdev_set_badblocks(rdev, wsector, 2879 sectors, 0) 2880 && ok; 2881 2882 bio_put(wbio); 2883 sect_to_write -= sectors; 2884 sector += sectors; 2885 sectors = block_sectors; 2886 } 2887 return ok; 2888 } 2889 2890 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2891 { 2892 int slot = r10_bio->read_slot; 2893 struct bio *bio; 2894 struct r10conf *conf = mddev->private; 2895 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2896 2897 /* we got a read error. Maybe the drive is bad. Maybe just 2898 * the block and we can fix it. 2899 * We freeze all other IO, and try reading the block from 2900 * other devices. When we find one, we re-write 2901 * and check it that fixes the read error. 2902 * This is all done synchronously while the array is 2903 * frozen. 2904 */ 2905 bio = r10_bio->devs[slot].bio; 2906 bio_put(bio); 2907 r10_bio->devs[slot].bio = NULL; 2908 2909 if (mddev->ro) 2910 r10_bio->devs[slot].bio = IO_BLOCKED; 2911 else if (!test_bit(FailFast, &rdev->flags)) { 2912 freeze_array(conf, 1); 2913 fix_read_error(conf, mddev, r10_bio); 2914 unfreeze_array(conf); 2915 } else 2916 md_error(mddev, rdev); 2917 2918 rdev_dec_pending(rdev, mddev); 2919 allow_barrier(conf); 2920 r10_bio->state = 0; 2921 raid10_read_request(mddev, r10_bio->master_bio, r10_bio); 2922 } 2923 2924 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2925 { 2926 /* Some sort of write request has finished and it 2927 * succeeded in writing where we thought there was a 2928 * bad block. So forget the bad block. 2929 * Or possibly if failed and we need to record 2930 * a bad block. 2931 */ 2932 int m; 2933 struct md_rdev *rdev; 2934 2935 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2936 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2937 for (m = 0; m < conf->copies; m++) { 2938 int dev = r10_bio->devs[m].devnum; 2939 rdev = conf->mirrors[dev].rdev; 2940 if (r10_bio->devs[m].bio == NULL || 2941 r10_bio->devs[m].bio->bi_end_io == NULL) 2942 continue; 2943 if (!r10_bio->devs[m].bio->bi_status) { 2944 rdev_clear_badblocks( 2945 rdev, 2946 r10_bio->devs[m].addr, 2947 r10_bio->sectors, 0); 2948 } else { 2949 if (!rdev_set_badblocks( 2950 rdev, 2951 r10_bio->devs[m].addr, 2952 r10_bio->sectors, 0)) 2953 md_error(conf->mddev, rdev); 2954 } 2955 rdev = conf->mirrors[dev].replacement; 2956 if (r10_bio->devs[m].repl_bio == NULL || 2957 r10_bio->devs[m].repl_bio->bi_end_io == NULL) 2958 continue; 2959 2960 if (!r10_bio->devs[m].repl_bio->bi_status) { 2961 rdev_clear_badblocks( 2962 rdev, 2963 r10_bio->devs[m].addr, 2964 r10_bio->sectors, 0); 2965 } else { 2966 if (!rdev_set_badblocks( 2967 rdev, 2968 r10_bio->devs[m].addr, 2969 r10_bio->sectors, 0)) 2970 md_error(conf->mddev, rdev); 2971 } 2972 } 2973 put_buf(r10_bio); 2974 } else { 2975 bool fail = false; 2976 for (m = 0; m < conf->copies; m++) { 2977 int dev = r10_bio->devs[m].devnum; 2978 struct bio *bio = r10_bio->devs[m].bio; 2979 rdev = conf->mirrors[dev].rdev; 2980 if (bio == IO_MADE_GOOD) { 2981 rdev_clear_badblocks( 2982 rdev, 2983 r10_bio->devs[m].addr, 2984 r10_bio->sectors, 0); 2985 rdev_dec_pending(rdev, conf->mddev); 2986 } else if (bio != NULL && bio->bi_status) { 2987 fail = true; 2988 if (!narrow_write_error(r10_bio, m)) { 2989 md_error(conf->mddev, rdev); 2990 set_bit(R10BIO_Degraded, 2991 &r10_bio->state); 2992 } 2993 rdev_dec_pending(rdev, conf->mddev); 2994 } 2995 bio = r10_bio->devs[m].repl_bio; 2996 rdev = conf->mirrors[dev].replacement; 2997 if (rdev && bio == IO_MADE_GOOD) { 2998 rdev_clear_badblocks( 2999 rdev, 3000 r10_bio->devs[m].addr, 3001 r10_bio->sectors, 0); 3002 rdev_dec_pending(rdev, conf->mddev); 3003 } 3004 } 3005 if (fail) { 3006 spin_lock_irq(&conf->device_lock); 3007 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 3008 conf->nr_queued++; 3009 spin_unlock_irq(&conf->device_lock); 3010 /* 3011 * In case freeze_array() is waiting for condition 3012 * nr_pending == nr_queued + extra to be true. 3013 */ 3014 wake_up(&conf->wait_barrier); 3015 md_wakeup_thread(conf->mddev->thread); 3016 } else { 3017 if (test_bit(R10BIO_WriteError, 3018 &r10_bio->state)) 3019 close_write(r10_bio); 3020 raid_end_bio_io(r10_bio); 3021 } 3022 } 3023 } 3024 3025 static void raid10d(struct md_thread *thread) 3026 { 3027 struct mddev *mddev = thread->mddev; 3028 struct r10bio *r10_bio; 3029 unsigned long flags; 3030 struct r10conf *conf = mddev->private; 3031 struct list_head *head = &conf->retry_list; 3032 struct blk_plug plug; 3033 3034 md_check_recovery(mddev); 3035 3036 if (!list_empty_careful(&conf->bio_end_io_list) && 3037 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3038 LIST_HEAD(tmp); 3039 spin_lock_irqsave(&conf->device_lock, flags); 3040 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 3041 while (!list_empty(&conf->bio_end_io_list)) { 3042 list_move(conf->bio_end_io_list.prev, &tmp); 3043 conf->nr_queued--; 3044 } 3045 } 3046 spin_unlock_irqrestore(&conf->device_lock, flags); 3047 while (!list_empty(&tmp)) { 3048 r10_bio = list_first_entry(&tmp, struct r10bio, 3049 retry_list); 3050 list_del(&r10_bio->retry_list); 3051 if (mddev->degraded) 3052 set_bit(R10BIO_Degraded, &r10_bio->state); 3053 3054 if (test_bit(R10BIO_WriteError, 3055 &r10_bio->state)) 3056 close_write(r10_bio); 3057 raid_end_bio_io(r10_bio); 3058 } 3059 } 3060 3061 blk_start_plug(&plug); 3062 for (;;) { 3063 3064 flush_pending_writes(conf); 3065 3066 spin_lock_irqsave(&conf->device_lock, flags); 3067 if (list_empty(head)) { 3068 spin_unlock_irqrestore(&conf->device_lock, flags); 3069 break; 3070 } 3071 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 3072 list_del(head->prev); 3073 conf->nr_queued--; 3074 spin_unlock_irqrestore(&conf->device_lock, flags); 3075 3076 mddev = r10_bio->mddev; 3077 conf = mddev->private; 3078 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 3079 test_bit(R10BIO_WriteError, &r10_bio->state)) 3080 handle_write_completed(conf, r10_bio); 3081 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 3082 reshape_request_write(mddev, r10_bio); 3083 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 3084 sync_request_write(mddev, r10_bio); 3085 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 3086 recovery_request_write(mddev, r10_bio); 3087 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 3088 handle_read_error(mddev, r10_bio); 3089 else 3090 WARN_ON_ONCE(1); 3091 3092 cond_resched(); 3093 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 3094 md_check_recovery(mddev); 3095 } 3096 blk_finish_plug(&plug); 3097 } 3098 3099 static int init_resync(struct r10conf *conf) 3100 { 3101 int ret, buffs, i; 3102 3103 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 3104 BUG_ON(mempool_initialized(&conf->r10buf_pool)); 3105 conf->have_replacement = 0; 3106 for (i = 0; i < conf->geo.raid_disks; i++) 3107 if (conf->mirrors[i].replacement) 3108 conf->have_replacement = 1; 3109 ret = mempool_init(&conf->r10buf_pool, buffs, 3110 r10buf_pool_alloc, r10buf_pool_free, conf); 3111 if (ret) 3112 return ret; 3113 conf->next_resync = 0; 3114 return 0; 3115 } 3116 3117 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf) 3118 { 3119 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO); 3120 struct rsync_pages *rp; 3121 struct bio *bio; 3122 int nalloc; 3123 int i; 3124 3125 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 3126 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 3127 nalloc = conf->copies; /* resync */ 3128 else 3129 nalloc = 2; /* recovery */ 3130 3131 for (i = 0; i < nalloc; i++) { 3132 bio = r10bio->devs[i].bio; 3133 rp = bio->bi_private; 3134 bio_reset(bio); 3135 bio->bi_private = rp; 3136 bio = r10bio->devs[i].repl_bio; 3137 if (bio) { 3138 rp = bio->bi_private; 3139 bio_reset(bio); 3140 bio->bi_private = rp; 3141 } 3142 } 3143 return r10bio; 3144 } 3145 3146 /* 3147 * Set cluster_sync_high since we need other nodes to add the 3148 * range [cluster_sync_low, cluster_sync_high] to suspend list. 3149 */ 3150 static void raid10_set_cluster_sync_high(struct r10conf *conf) 3151 { 3152 sector_t window_size; 3153 int extra_chunk, chunks; 3154 3155 /* 3156 * First, here we define "stripe" as a unit which across 3157 * all member devices one time, so we get chunks by use 3158 * raid_disks / near_copies. Otherwise, if near_copies is 3159 * close to raid_disks, then resync window could increases 3160 * linearly with the increase of raid_disks, which means 3161 * we will suspend a really large IO window while it is not 3162 * necessary. If raid_disks is not divisible by near_copies, 3163 * an extra chunk is needed to ensure the whole "stripe" is 3164 * covered. 3165 */ 3166 3167 chunks = conf->geo.raid_disks / conf->geo.near_copies; 3168 if (conf->geo.raid_disks % conf->geo.near_copies == 0) 3169 extra_chunk = 0; 3170 else 3171 extra_chunk = 1; 3172 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors; 3173 3174 /* 3175 * At least use a 32M window to align with raid1's resync window 3176 */ 3177 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ? 3178 CLUSTER_RESYNC_WINDOW_SECTORS : window_size; 3179 3180 conf->cluster_sync_high = conf->cluster_sync_low + window_size; 3181 } 3182 3183 /* 3184 * perform a "sync" on one "block" 3185 * 3186 * We need to make sure that no normal I/O request - particularly write 3187 * requests - conflict with active sync requests. 3188 * 3189 * This is achieved by tracking pending requests and a 'barrier' concept 3190 * that can be installed to exclude normal IO requests. 3191 * 3192 * Resync and recovery are handled very differently. 3193 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 3194 * 3195 * For resync, we iterate over virtual addresses, read all copies, 3196 * and update if there are differences. If only one copy is live, 3197 * skip it. 3198 * For recovery, we iterate over physical addresses, read a good 3199 * value for each non-in_sync drive, and over-write. 3200 * 3201 * So, for recovery we may have several outstanding complex requests for a 3202 * given address, one for each out-of-sync device. We model this by allocating 3203 * a number of r10_bio structures, one for each out-of-sync device. 3204 * As we setup these structures, we collect all bio's together into a list 3205 * which we then process collectively to add pages, and then process again 3206 * to pass to submit_bio_noacct. 3207 * 3208 * The r10_bio structures are linked using a borrowed master_bio pointer. 3209 * This link is counted in ->remaining. When the r10_bio that points to NULL 3210 * has its remaining count decremented to 0, the whole complex operation 3211 * is complete. 3212 * 3213 */ 3214 3215 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 3216 int *skipped) 3217 { 3218 struct r10conf *conf = mddev->private; 3219 struct r10bio *r10_bio; 3220 struct bio *biolist = NULL, *bio; 3221 sector_t max_sector, nr_sectors; 3222 int i; 3223 int max_sync; 3224 sector_t sync_blocks; 3225 sector_t sectors_skipped = 0; 3226 int chunks_skipped = 0; 3227 sector_t chunk_mask = conf->geo.chunk_mask; 3228 int page_idx = 0; 3229 3230 if (!mempool_initialized(&conf->r10buf_pool)) 3231 if (init_resync(conf)) 3232 return 0; 3233 3234 /* 3235 * Allow skipping a full rebuild for incremental assembly 3236 * of a clean array, like RAID1 does. 3237 */ 3238 if (mddev->bitmap == NULL && 3239 mddev->recovery_cp == MaxSector && 3240 mddev->reshape_position == MaxSector && 3241 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 3242 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 3243 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 3244 conf->fullsync == 0) { 3245 *skipped = 1; 3246 return mddev->dev_sectors - sector_nr; 3247 } 3248 3249 skipped: 3250 max_sector = mddev->dev_sectors; 3251 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 3252 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3253 max_sector = mddev->resync_max_sectors; 3254 if (sector_nr >= max_sector) { 3255 conf->cluster_sync_low = 0; 3256 conf->cluster_sync_high = 0; 3257 3258 /* If we aborted, we need to abort the 3259 * sync on the 'current' bitmap chucks (there can 3260 * be several when recovering multiple devices). 3261 * as we may have started syncing it but not finished. 3262 * We can find the current address in 3263 * mddev->curr_resync, but for recovery, 3264 * we need to convert that to several 3265 * virtual addresses. 3266 */ 3267 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 3268 end_reshape(conf); 3269 close_sync(conf); 3270 return 0; 3271 } 3272 3273 if (mddev->curr_resync < max_sector) { /* aborted */ 3274 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3275 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 3276 &sync_blocks, 1); 3277 else for (i = 0; i < conf->geo.raid_disks; i++) { 3278 sector_t sect = 3279 raid10_find_virt(conf, mddev->curr_resync, i); 3280 md_bitmap_end_sync(mddev->bitmap, sect, 3281 &sync_blocks, 1); 3282 } 3283 } else { 3284 /* completed sync */ 3285 if ((!mddev->bitmap || conf->fullsync) 3286 && conf->have_replacement 3287 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3288 /* Completed a full sync so the replacements 3289 * are now fully recovered. 3290 */ 3291 rcu_read_lock(); 3292 for (i = 0; i < conf->geo.raid_disks; i++) { 3293 struct md_rdev *rdev = 3294 rcu_dereference(conf->mirrors[i].replacement); 3295 if (rdev) 3296 rdev->recovery_offset = MaxSector; 3297 } 3298 rcu_read_unlock(); 3299 } 3300 conf->fullsync = 0; 3301 } 3302 md_bitmap_close_sync(mddev->bitmap); 3303 close_sync(conf); 3304 *skipped = 1; 3305 return sectors_skipped; 3306 } 3307 3308 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3309 return reshape_request(mddev, sector_nr, skipped); 3310 3311 if (chunks_skipped >= conf->geo.raid_disks) { 3312 /* if there has been nothing to do on any drive, 3313 * then there is nothing to do at all.. 3314 */ 3315 *skipped = 1; 3316 return (max_sector - sector_nr) + sectors_skipped; 3317 } 3318 3319 if (max_sector > mddev->resync_max) 3320 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3321 3322 /* make sure whole request will fit in a chunk - if chunks 3323 * are meaningful 3324 */ 3325 if (conf->geo.near_copies < conf->geo.raid_disks && 3326 max_sector > (sector_nr | chunk_mask)) 3327 max_sector = (sector_nr | chunk_mask) + 1; 3328 3329 /* 3330 * If there is non-resync activity waiting for a turn, then let it 3331 * though before starting on this new sync request. 3332 */ 3333 if (conf->nr_waiting) 3334 schedule_timeout_uninterruptible(1); 3335 3336 /* Again, very different code for resync and recovery. 3337 * Both must result in an r10bio with a list of bios that 3338 * have bi_end_io, bi_sector, bi_bdev set, 3339 * and bi_private set to the r10bio. 3340 * For recovery, we may actually create several r10bios 3341 * with 2 bios in each, that correspond to the bios in the main one. 3342 * In this case, the subordinate r10bios link back through a 3343 * borrowed master_bio pointer, and the counter in the master 3344 * includes a ref from each subordinate. 3345 */ 3346 /* First, we decide what to do and set ->bi_end_io 3347 * To end_sync_read if we want to read, and 3348 * end_sync_write if we will want to write. 3349 */ 3350 3351 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 3352 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3353 /* recovery... the complicated one */ 3354 int j; 3355 r10_bio = NULL; 3356 3357 for (i = 0 ; i < conf->geo.raid_disks; i++) { 3358 int still_degraded; 3359 struct r10bio *rb2; 3360 sector_t sect; 3361 int must_sync; 3362 int any_working; 3363 int need_recover = 0; 3364 int need_replace = 0; 3365 struct raid10_info *mirror = &conf->mirrors[i]; 3366 struct md_rdev *mrdev, *mreplace; 3367 3368 rcu_read_lock(); 3369 mrdev = rcu_dereference(mirror->rdev); 3370 mreplace = rcu_dereference(mirror->replacement); 3371 3372 if (mrdev != NULL && 3373 !test_bit(Faulty, &mrdev->flags) && 3374 !test_bit(In_sync, &mrdev->flags)) 3375 need_recover = 1; 3376 if (mreplace != NULL && 3377 !test_bit(Faulty, &mreplace->flags)) 3378 need_replace = 1; 3379 3380 if (!need_recover && !need_replace) { 3381 rcu_read_unlock(); 3382 continue; 3383 } 3384 3385 still_degraded = 0; 3386 /* want to reconstruct this device */ 3387 rb2 = r10_bio; 3388 sect = raid10_find_virt(conf, sector_nr, i); 3389 if (sect >= mddev->resync_max_sectors) { 3390 /* last stripe is not complete - don't 3391 * try to recover this sector. 3392 */ 3393 rcu_read_unlock(); 3394 continue; 3395 } 3396 if (mreplace && test_bit(Faulty, &mreplace->flags)) 3397 mreplace = NULL; 3398 /* Unless we are doing a full sync, or a replacement 3399 * we only need to recover the block if it is set in 3400 * the bitmap 3401 */ 3402 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3403 &sync_blocks, 1); 3404 if (sync_blocks < max_sync) 3405 max_sync = sync_blocks; 3406 if (!must_sync && 3407 mreplace == NULL && 3408 !conf->fullsync) { 3409 /* yep, skip the sync_blocks here, but don't assume 3410 * that there will never be anything to do here 3411 */ 3412 chunks_skipped = -1; 3413 rcu_read_unlock(); 3414 continue; 3415 } 3416 atomic_inc(&mrdev->nr_pending); 3417 if (mreplace) 3418 atomic_inc(&mreplace->nr_pending); 3419 rcu_read_unlock(); 3420 3421 r10_bio = raid10_alloc_init_r10buf(conf); 3422 r10_bio->state = 0; 3423 raise_barrier(conf, rb2 != NULL); 3424 atomic_set(&r10_bio->remaining, 0); 3425 3426 r10_bio->master_bio = (struct bio*)rb2; 3427 if (rb2) 3428 atomic_inc(&rb2->remaining); 3429 r10_bio->mddev = mddev; 3430 set_bit(R10BIO_IsRecover, &r10_bio->state); 3431 r10_bio->sector = sect; 3432 3433 raid10_find_phys(conf, r10_bio); 3434 3435 /* Need to check if the array will still be 3436 * degraded 3437 */ 3438 rcu_read_lock(); 3439 for (j = 0; j < conf->geo.raid_disks; j++) { 3440 struct md_rdev *rdev = rcu_dereference( 3441 conf->mirrors[j].rdev); 3442 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3443 still_degraded = 1; 3444 break; 3445 } 3446 } 3447 3448 must_sync = md_bitmap_start_sync(mddev->bitmap, sect, 3449 &sync_blocks, still_degraded); 3450 3451 any_working = 0; 3452 for (j=0; j<conf->copies;j++) { 3453 int k; 3454 int d = r10_bio->devs[j].devnum; 3455 sector_t from_addr, to_addr; 3456 struct md_rdev *rdev = 3457 rcu_dereference(conf->mirrors[d].rdev); 3458 sector_t sector, first_bad; 3459 int bad_sectors; 3460 if (!rdev || 3461 !test_bit(In_sync, &rdev->flags)) 3462 continue; 3463 /* This is where we read from */ 3464 any_working = 1; 3465 sector = r10_bio->devs[j].addr; 3466 3467 if (is_badblock(rdev, sector, max_sync, 3468 &first_bad, &bad_sectors)) { 3469 if (first_bad > sector) 3470 max_sync = first_bad - sector; 3471 else { 3472 bad_sectors -= (sector 3473 - first_bad); 3474 if (max_sync > bad_sectors) 3475 max_sync = bad_sectors; 3476 continue; 3477 } 3478 } 3479 bio = r10_bio->devs[0].bio; 3480 bio->bi_next = biolist; 3481 biolist = bio; 3482 bio->bi_end_io = end_sync_read; 3483 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3484 if (test_bit(FailFast, &rdev->flags)) 3485 bio->bi_opf |= MD_FAILFAST; 3486 from_addr = r10_bio->devs[j].addr; 3487 bio->bi_iter.bi_sector = from_addr + 3488 rdev->data_offset; 3489 bio_set_dev(bio, rdev->bdev); 3490 atomic_inc(&rdev->nr_pending); 3491 /* and we write to 'i' (if not in_sync) */ 3492 3493 for (k=0; k<conf->copies; k++) 3494 if (r10_bio->devs[k].devnum == i) 3495 break; 3496 BUG_ON(k == conf->copies); 3497 to_addr = r10_bio->devs[k].addr; 3498 r10_bio->devs[0].devnum = d; 3499 r10_bio->devs[0].addr = from_addr; 3500 r10_bio->devs[1].devnum = i; 3501 r10_bio->devs[1].addr = to_addr; 3502 3503 if (need_recover) { 3504 bio = r10_bio->devs[1].bio; 3505 bio->bi_next = biolist; 3506 biolist = bio; 3507 bio->bi_end_io = end_sync_write; 3508 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3509 bio->bi_iter.bi_sector = to_addr 3510 + mrdev->data_offset; 3511 bio_set_dev(bio, mrdev->bdev); 3512 atomic_inc(&r10_bio->remaining); 3513 } else 3514 r10_bio->devs[1].bio->bi_end_io = NULL; 3515 3516 /* and maybe write to replacement */ 3517 bio = r10_bio->devs[1].repl_bio; 3518 if (bio) 3519 bio->bi_end_io = NULL; 3520 /* Note: if need_replace, then bio 3521 * cannot be NULL as r10buf_pool_alloc will 3522 * have allocated it. 3523 */ 3524 if (!need_replace) 3525 break; 3526 bio->bi_next = biolist; 3527 biolist = bio; 3528 bio->bi_end_io = end_sync_write; 3529 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3530 bio->bi_iter.bi_sector = to_addr + 3531 mreplace->data_offset; 3532 bio_set_dev(bio, mreplace->bdev); 3533 atomic_inc(&r10_bio->remaining); 3534 break; 3535 } 3536 rcu_read_unlock(); 3537 if (j == conf->copies) { 3538 /* Cannot recover, so abort the recovery or 3539 * record a bad block */ 3540 if (any_working) { 3541 /* problem is that there are bad blocks 3542 * on other device(s) 3543 */ 3544 int k; 3545 for (k = 0; k < conf->copies; k++) 3546 if (r10_bio->devs[k].devnum == i) 3547 break; 3548 if (!test_bit(In_sync, 3549 &mrdev->flags) 3550 && !rdev_set_badblocks( 3551 mrdev, 3552 r10_bio->devs[k].addr, 3553 max_sync, 0)) 3554 any_working = 0; 3555 if (mreplace && 3556 !rdev_set_badblocks( 3557 mreplace, 3558 r10_bio->devs[k].addr, 3559 max_sync, 0)) 3560 any_working = 0; 3561 } 3562 if (!any_working) { 3563 if (!test_and_set_bit(MD_RECOVERY_INTR, 3564 &mddev->recovery)) 3565 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n", 3566 mdname(mddev)); 3567 mirror->recovery_disabled 3568 = mddev->recovery_disabled; 3569 } 3570 put_buf(r10_bio); 3571 if (rb2) 3572 atomic_dec(&rb2->remaining); 3573 r10_bio = rb2; 3574 rdev_dec_pending(mrdev, mddev); 3575 if (mreplace) 3576 rdev_dec_pending(mreplace, mddev); 3577 break; 3578 } 3579 rdev_dec_pending(mrdev, mddev); 3580 if (mreplace) 3581 rdev_dec_pending(mreplace, mddev); 3582 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) { 3583 /* Only want this if there is elsewhere to 3584 * read from. 'j' is currently the first 3585 * readable copy. 3586 */ 3587 int targets = 1; 3588 for (; j < conf->copies; j++) { 3589 int d = r10_bio->devs[j].devnum; 3590 if (conf->mirrors[d].rdev && 3591 test_bit(In_sync, 3592 &conf->mirrors[d].rdev->flags)) 3593 targets++; 3594 } 3595 if (targets == 1) 3596 r10_bio->devs[0].bio->bi_opf 3597 &= ~MD_FAILFAST; 3598 } 3599 } 3600 if (biolist == NULL) { 3601 while (r10_bio) { 3602 struct r10bio *rb2 = r10_bio; 3603 r10_bio = (struct r10bio*) rb2->master_bio; 3604 rb2->master_bio = NULL; 3605 put_buf(rb2); 3606 } 3607 goto giveup; 3608 } 3609 } else { 3610 /* resync. Schedule a read for every block at this virt offset */ 3611 int count = 0; 3612 3613 /* 3614 * Since curr_resync_completed could probably not update in 3615 * time, and we will set cluster_sync_low based on it. 3616 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for 3617 * safety reason, which ensures curr_resync_completed is 3618 * updated in bitmap_cond_end_sync. 3619 */ 3620 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 3621 mddev_is_clustered(mddev) && 3622 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 3623 3624 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 3625 &sync_blocks, mddev->degraded) && 3626 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3627 &mddev->recovery)) { 3628 /* We can skip this block */ 3629 *skipped = 1; 3630 return sync_blocks + sectors_skipped; 3631 } 3632 if (sync_blocks < max_sync) 3633 max_sync = sync_blocks; 3634 r10_bio = raid10_alloc_init_r10buf(conf); 3635 r10_bio->state = 0; 3636 3637 r10_bio->mddev = mddev; 3638 atomic_set(&r10_bio->remaining, 0); 3639 raise_barrier(conf, 0); 3640 conf->next_resync = sector_nr; 3641 3642 r10_bio->master_bio = NULL; 3643 r10_bio->sector = sector_nr; 3644 set_bit(R10BIO_IsSync, &r10_bio->state); 3645 raid10_find_phys(conf, r10_bio); 3646 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3647 3648 for (i = 0; i < conf->copies; i++) { 3649 int d = r10_bio->devs[i].devnum; 3650 sector_t first_bad, sector; 3651 int bad_sectors; 3652 struct md_rdev *rdev; 3653 3654 if (r10_bio->devs[i].repl_bio) 3655 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3656 3657 bio = r10_bio->devs[i].bio; 3658 bio->bi_status = BLK_STS_IOERR; 3659 rcu_read_lock(); 3660 rdev = rcu_dereference(conf->mirrors[d].rdev); 3661 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3662 rcu_read_unlock(); 3663 continue; 3664 } 3665 sector = r10_bio->devs[i].addr; 3666 if (is_badblock(rdev, sector, max_sync, 3667 &first_bad, &bad_sectors)) { 3668 if (first_bad > sector) 3669 max_sync = first_bad - sector; 3670 else { 3671 bad_sectors -= (sector - first_bad); 3672 if (max_sync > bad_sectors) 3673 max_sync = bad_sectors; 3674 rcu_read_unlock(); 3675 continue; 3676 } 3677 } 3678 atomic_inc(&rdev->nr_pending); 3679 atomic_inc(&r10_bio->remaining); 3680 bio->bi_next = biolist; 3681 biolist = bio; 3682 bio->bi_end_io = end_sync_read; 3683 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3684 if (test_bit(FailFast, &rdev->flags)) 3685 bio->bi_opf |= MD_FAILFAST; 3686 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3687 bio_set_dev(bio, rdev->bdev); 3688 count++; 3689 3690 rdev = rcu_dereference(conf->mirrors[d].replacement); 3691 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3692 rcu_read_unlock(); 3693 continue; 3694 } 3695 atomic_inc(&rdev->nr_pending); 3696 3697 /* Need to set up for writing to the replacement */ 3698 bio = r10_bio->devs[i].repl_bio; 3699 bio->bi_status = BLK_STS_IOERR; 3700 3701 sector = r10_bio->devs[i].addr; 3702 bio->bi_next = biolist; 3703 biolist = bio; 3704 bio->bi_end_io = end_sync_write; 3705 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3706 if (test_bit(FailFast, &rdev->flags)) 3707 bio->bi_opf |= MD_FAILFAST; 3708 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3709 bio_set_dev(bio, rdev->bdev); 3710 count++; 3711 rcu_read_unlock(); 3712 } 3713 3714 if (count < 2) { 3715 for (i=0; i<conf->copies; i++) { 3716 int d = r10_bio->devs[i].devnum; 3717 if (r10_bio->devs[i].bio->bi_end_io) 3718 rdev_dec_pending(conf->mirrors[d].rdev, 3719 mddev); 3720 if (r10_bio->devs[i].repl_bio && 3721 r10_bio->devs[i].repl_bio->bi_end_io) 3722 rdev_dec_pending( 3723 conf->mirrors[d].replacement, 3724 mddev); 3725 } 3726 put_buf(r10_bio); 3727 biolist = NULL; 3728 goto giveup; 3729 } 3730 } 3731 3732 nr_sectors = 0; 3733 if (sector_nr + max_sync < max_sector) 3734 max_sector = sector_nr + max_sync; 3735 do { 3736 struct page *page; 3737 int len = PAGE_SIZE; 3738 if (sector_nr + (len>>9) > max_sector) 3739 len = (max_sector - sector_nr) << 9; 3740 if (len == 0) 3741 break; 3742 for (bio= biolist ; bio ; bio=bio->bi_next) { 3743 struct resync_pages *rp = get_resync_pages(bio); 3744 page = resync_fetch_page(rp, page_idx); 3745 /* 3746 * won't fail because the vec table is big enough 3747 * to hold all these pages 3748 */ 3749 bio_add_page(bio, page, len, 0); 3750 } 3751 nr_sectors += len>>9; 3752 sector_nr += len>>9; 3753 } while (++page_idx < RESYNC_PAGES); 3754 r10_bio->sectors = nr_sectors; 3755 3756 if (mddev_is_clustered(mddev) && 3757 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3758 /* It is resync not recovery */ 3759 if (conf->cluster_sync_high < sector_nr + nr_sectors) { 3760 conf->cluster_sync_low = mddev->curr_resync_completed; 3761 raid10_set_cluster_sync_high(conf); 3762 /* Send resync message */ 3763 md_cluster_ops->resync_info_update(mddev, 3764 conf->cluster_sync_low, 3765 conf->cluster_sync_high); 3766 } 3767 } else if (mddev_is_clustered(mddev)) { 3768 /* This is recovery not resync */ 3769 sector_t sect_va1, sect_va2; 3770 bool broadcast_msg = false; 3771 3772 for (i = 0; i < conf->geo.raid_disks; i++) { 3773 /* 3774 * sector_nr is a device address for recovery, so we 3775 * need translate it to array address before compare 3776 * with cluster_sync_high. 3777 */ 3778 sect_va1 = raid10_find_virt(conf, sector_nr, i); 3779 3780 if (conf->cluster_sync_high < sect_va1 + nr_sectors) { 3781 broadcast_msg = true; 3782 /* 3783 * curr_resync_completed is similar as 3784 * sector_nr, so make the translation too. 3785 */ 3786 sect_va2 = raid10_find_virt(conf, 3787 mddev->curr_resync_completed, i); 3788 3789 if (conf->cluster_sync_low == 0 || 3790 conf->cluster_sync_low > sect_va2) 3791 conf->cluster_sync_low = sect_va2; 3792 } 3793 } 3794 if (broadcast_msg) { 3795 raid10_set_cluster_sync_high(conf); 3796 md_cluster_ops->resync_info_update(mddev, 3797 conf->cluster_sync_low, 3798 conf->cluster_sync_high); 3799 } 3800 } 3801 3802 while (biolist) { 3803 bio = biolist; 3804 biolist = biolist->bi_next; 3805 3806 bio->bi_next = NULL; 3807 r10_bio = get_resync_r10bio(bio); 3808 r10_bio->sectors = nr_sectors; 3809 3810 if (bio->bi_end_io == end_sync_read) { 3811 md_sync_acct_bio(bio, nr_sectors); 3812 bio->bi_status = 0; 3813 submit_bio_noacct(bio); 3814 } 3815 } 3816 3817 if (sectors_skipped) 3818 /* pretend they weren't skipped, it makes 3819 * no important difference in this case 3820 */ 3821 md_done_sync(mddev, sectors_skipped, 1); 3822 3823 return sectors_skipped + nr_sectors; 3824 giveup: 3825 /* There is nowhere to write, so all non-sync 3826 * drives must be failed or in resync, all drives 3827 * have a bad block, so try the next chunk... 3828 */ 3829 if (sector_nr + max_sync < max_sector) 3830 max_sector = sector_nr + max_sync; 3831 3832 sectors_skipped += (max_sector - sector_nr); 3833 chunks_skipped ++; 3834 sector_nr = max_sector; 3835 goto skipped; 3836 } 3837 3838 static sector_t 3839 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3840 { 3841 sector_t size; 3842 struct r10conf *conf = mddev->private; 3843 3844 if (!raid_disks) 3845 raid_disks = min(conf->geo.raid_disks, 3846 conf->prev.raid_disks); 3847 if (!sectors) 3848 sectors = conf->dev_sectors; 3849 3850 size = sectors >> conf->geo.chunk_shift; 3851 sector_div(size, conf->geo.far_copies); 3852 size = size * raid_disks; 3853 sector_div(size, conf->geo.near_copies); 3854 3855 return size << conf->geo.chunk_shift; 3856 } 3857 3858 static void calc_sectors(struct r10conf *conf, sector_t size) 3859 { 3860 /* Calculate the number of sectors-per-device that will 3861 * actually be used, and set conf->dev_sectors and 3862 * conf->stride 3863 */ 3864 3865 size = size >> conf->geo.chunk_shift; 3866 sector_div(size, conf->geo.far_copies); 3867 size = size * conf->geo.raid_disks; 3868 sector_div(size, conf->geo.near_copies); 3869 /* 'size' is now the number of chunks in the array */ 3870 /* calculate "used chunks per device" */ 3871 size = size * conf->copies; 3872 3873 /* We need to round up when dividing by raid_disks to 3874 * get the stride size. 3875 */ 3876 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3877 3878 conf->dev_sectors = size << conf->geo.chunk_shift; 3879 3880 if (conf->geo.far_offset) 3881 conf->geo.stride = 1 << conf->geo.chunk_shift; 3882 else { 3883 sector_div(size, conf->geo.far_copies); 3884 conf->geo.stride = size << conf->geo.chunk_shift; 3885 } 3886 } 3887 3888 enum geo_type {geo_new, geo_old, geo_start}; 3889 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3890 { 3891 int nc, fc, fo; 3892 int layout, chunk, disks; 3893 switch (new) { 3894 case geo_old: 3895 layout = mddev->layout; 3896 chunk = mddev->chunk_sectors; 3897 disks = mddev->raid_disks - mddev->delta_disks; 3898 break; 3899 case geo_new: 3900 layout = mddev->new_layout; 3901 chunk = mddev->new_chunk_sectors; 3902 disks = mddev->raid_disks; 3903 break; 3904 default: /* avoid 'may be unused' warnings */ 3905 case geo_start: /* new when starting reshape - raid_disks not 3906 * updated yet. */ 3907 layout = mddev->new_layout; 3908 chunk = mddev->new_chunk_sectors; 3909 disks = mddev->raid_disks + mddev->delta_disks; 3910 break; 3911 } 3912 if (layout >> 19) 3913 return -1; 3914 if (chunk < (PAGE_SIZE >> 9) || 3915 !is_power_of_2(chunk)) 3916 return -2; 3917 nc = layout & 255; 3918 fc = (layout >> 8) & 255; 3919 fo = layout & (1<<16); 3920 geo->raid_disks = disks; 3921 geo->near_copies = nc; 3922 geo->far_copies = fc; 3923 geo->far_offset = fo; 3924 switch (layout >> 17) { 3925 case 0: /* original layout. simple but not always optimal */ 3926 geo->far_set_size = disks; 3927 break; 3928 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3929 * actually using this, but leave code here just in case.*/ 3930 geo->far_set_size = disks/fc; 3931 WARN(geo->far_set_size < fc, 3932 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3933 break; 3934 case 2: /* "improved" layout fixed to match documentation */ 3935 geo->far_set_size = fc * nc; 3936 break; 3937 default: /* Not a valid layout */ 3938 return -1; 3939 } 3940 geo->chunk_mask = chunk - 1; 3941 geo->chunk_shift = ffz(~chunk); 3942 return nc*fc; 3943 } 3944 3945 static struct r10conf *setup_conf(struct mddev *mddev) 3946 { 3947 struct r10conf *conf = NULL; 3948 int err = -EINVAL; 3949 struct geom geo; 3950 int copies; 3951 3952 copies = setup_geo(&geo, mddev, geo_new); 3953 3954 if (copies == -2) { 3955 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n", 3956 mdname(mddev), PAGE_SIZE); 3957 goto out; 3958 } 3959 3960 if (copies < 2 || copies > mddev->raid_disks) { 3961 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3962 mdname(mddev), mddev->new_layout); 3963 goto out; 3964 } 3965 3966 err = -ENOMEM; 3967 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3968 if (!conf) 3969 goto out; 3970 3971 /* FIXME calc properly */ 3972 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks), 3973 sizeof(struct raid10_info), 3974 GFP_KERNEL); 3975 if (!conf->mirrors) 3976 goto out; 3977 3978 conf->tmppage = alloc_page(GFP_KERNEL); 3979 if (!conf->tmppage) 3980 goto out; 3981 3982 conf->geo = geo; 3983 conf->copies = copies; 3984 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc, 3985 rbio_pool_free, conf); 3986 if (err) 3987 goto out; 3988 3989 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3990 if (err) 3991 goto out; 3992 3993 calc_sectors(conf, mddev->dev_sectors); 3994 if (mddev->reshape_position == MaxSector) { 3995 conf->prev = conf->geo; 3996 conf->reshape_progress = MaxSector; 3997 } else { 3998 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3999 err = -EINVAL; 4000 goto out; 4001 } 4002 conf->reshape_progress = mddev->reshape_position; 4003 if (conf->prev.far_offset) 4004 conf->prev.stride = 1 << conf->prev.chunk_shift; 4005 else 4006 /* far_copies must be 1 */ 4007 conf->prev.stride = conf->dev_sectors; 4008 } 4009 conf->reshape_safe = conf->reshape_progress; 4010 spin_lock_init(&conf->device_lock); 4011 INIT_LIST_HEAD(&conf->retry_list); 4012 INIT_LIST_HEAD(&conf->bio_end_io_list); 4013 4014 spin_lock_init(&conf->resync_lock); 4015 init_waitqueue_head(&conf->wait_barrier); 4016 atomic_set(&conf->nr_pending, 0); 4017 4018 err = -ENOMEM; 4019 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 4020 if (!conf->thread) 4021 goto out; 4022 4023 conf->mddev = mddev; 4024 return conf; 4025 4026 out: 4027 if (conf) { 4028 mempool_exit(&conf->r10bio_pool); 4029 kfree(conf->mirrors); 4030 safe_put_page(conf->tmppage); 4031 bioset_exit(&conf->bio_split); 4032 kfree(conf); 4033 } 4034 return ERR_PTR(err); 4035 } 4036 4037 static void raid10_set_io_opt(struct r10conf *conf) 4038 { 4039 int raid_disks = conf->geo.raid_disks; 4040 4041 if (!(conf->geo.raid_disks % conf->geo.near_copies)) 4042 raid_disks /= conf->geo.near_copies; 4043 blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) * 4044 raid_disks); 4045 } 4046 4047 static int raid10_run(struct mddev *mddev) 4048 { 4049 struct r10conf *conf; 4050 int i, disk_idx; 4051 struct raid10_info *disk; 4052 struct md_rdev *rdev; 4053 sector_t size; 4054 sector_t min_offset_diff = 0; 4055 int first = 1; 4056 bool discard_supported = false; 4057 4058 if (mddev_init_writes_pending(mddev) < 0) 4059 return -ENOMEM; 4060 4061 if (mddev->private == NULL) { 4062 conf = setup_conf(mddev); 4063 if (IS_ERR(conf)) 4064 return PTR_ERR(conf); 4065 mddev->private = conf; 4066 } 4067 conf = mddev->private; 4068 if (!conf) 4069 goto out; 4070 4071 if (mddev_is_clustered(conf->mddev)) { 4072 int fc, fo; 4073 4074 fc = (mddev->layout >> 8) & 255; 4075 fo = mddev->layout & (1<<16); 4076 if (fc > 1 || fo > 0) { 4077 pr_err("only near layout is supported by clustered" 4078 " raid10\n"); 4079 goto out_free_conf; 4080 } 4081 } 4082 4083 mddev->thread = conf->thread; 4084 conf->thread = NULL; 4085 4086 if (mddev->queue) { 4087 blk_queue_max_discard_sectors(mddev->queue, 4088 UINT_MAX); 4089 blk_queue_max_write_same_sectors(mddev->queue, 0); 4090 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 4091 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9); 4092 raid10_set_io_opt(conf); 4093 } 4094 4095 rdev_for_each(rdev, mddev) { 4096 long long diff; 4097 4098 disk_idx = rdev->raid_disk; 4099 if (disk_idx < 0) 4100 continue; 4101 if (disk_idx >= conf->geo.raid_disks && 4102 disk_idx >= conf->prev.raid_disks) 4103 continue; 4104 disk = conf->mirrors + disk_idx; 4105 4106 if (test_bit(Replacement, &rdev->flags)) { 4107 if (disk->replacement) 4108 goto out_free_conf; 4109 disk->replacement = rdev; 4110 } else { 4111 if (disk->rdev) 4112 goto out_free_conf; 4113 disk->rdev = rdev; 4114 } 4115 diff = (rdev->new_data_offset - rdev->data_offset); 4116 if (!mddev->reshape_backwards) 4117 diff = -diff; 4118 if (diff < 0) 4119 diff = 0; 4120 if (first || diff < min_offset_diff) 4121 min_offset_diff = diff; 4122 4123 if (mddev->gendisk) 4124 disk_stack_limits(mddev->gendisk, rdev->bdev, 4125 rdev->data_offset << 9); 4126 4127 disk->head_position = 0; 4128 4129 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 4130 discard_supported = true; 4131 first = 0; 4132 } 4133 4134 if (mddev->queue) { 4135 if (discard_supported) 4136 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 4137 mddev->queue); 4138 else 4139 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 4140 mddev->queue); 4141 } 4142 /* need to check that every block has at least one working mirror */ 4143 if (!enough(conf, -1)) { 4144 pr_err("md/raid10:%s: not enough operational mirrors.\n", 4145 mdname(mddev)); 4146 goto out_free_conf; 4147 } 4148 4149 if (conf->reshape_progress != MaxSector) { 4150 /* must ensure that shape change is supported */ 4151 if (conf->geo.far_copies != 1 && 4152 conf->geo.far_offset == 0) 4153 goto out_free_conf; 4154 if (conf->prev.far_copies != 1 && 4155 conf->prev.far_offset == 0) 4156 goto out_free_conf; 4157 } 4158 4159 mddev->degraded = 0; 4160 for (i = 0; 4161 i < conf->geo.raid_disks 4162 || i < conf->prev.raid_disks; 4163 i++) { 4164 4165 disk = conf->mirrors + i; 4166 4167 if (!disk->rdev && disk->replacement) { 4168 /* The replacement is all we have - use it */ 4169 disk->rdev = disk->replacement; 4170 disk->replacement = NULL; 4171 clear_bit(Replacement, &disk->rdev->flags); 4172 } 4173 4174 if (!disk->rdev || 4175 !test_bit(In_sync, &disk->rdev->flags)) { 4176 disk->head_position = 0; 4177 mddev->degraded++; 4178 if (disk->rdev && 4179 disk->rdev->saved_raid_disk < 0) 4180 conf->fullsync = 1; 4181 } 4182 4183 if (disk->replacement && 4184 !test_bit(In_sync, &disk->replacement->flags) && 4185 disk->replacement->saved_raid_disk < 0) { 4186 conf->fullsync = 1; 4187 } 4188 4189 disk->recovery_disabled = mddev->recovery_disabled - 1; 4190 } 4191 4192 if (mddev->recovery_cp != MaxSector) 4193 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n", 4194 mdname(mddev)); 4195 pr_info("md/raid10:%s: active with %d out of %d devices\n", 4196 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 4197 conf->geo.raid_disks); 4198 /* 4199 * Ok, everything is just fine now 4200 */ 4201 mddev->dev_sectors = conf->dev_sectors; 4202 size = raid10_size(mddev, 0, 0); 4203 md_set_array_sectors(mddev, size); 4204 mddev->resync_max_sectors = size; 4205 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 4206 4207 if (md_integrity_register(mddev)) 4208 goto out_free_conf; 4209 4210 if (conf->reshape_progress != MaxSector) { 4211 unsigned long before_length, after_length; 4212 4213 before_length = ((1 << conf->prev.chunk_shift) * 4214 conf->prev.far_copies); 4215 after_length = ((1 << conf->geo.chunk_shift) * 4216 conf->geo.far_copies); 4217 4218 if (max(before_length, after_length) > min_offset_diff) { 4219 /* This cannot work */ 4220 pr_warn("md/raid10: offset difference not enough to continue reshape\n"); 4221 goto out_free_conf; 4222 } 4223 conf->offset_diff = min_offset_diff; 4224 4225 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4226 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4227 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4228 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4229 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4230 "reshape"); 4231 if (!mddev->sync_thread) 4232 goto out_free_conf; 4233 } 4234 4235 return 0; 4236 4237 out_free_conf: 4238 md_unregister_thread(&mddev->thread); 4239 mempool_exit(&conf->r10bio_pool); 4240 safe_put_page(conf->tmppage); 4241 kfree(conf->mirrors); 4242 kfree(conf); 4243 mddev->private = NULL; 4244 out: 4245 return -EIO; 4246 } 4247 4248 static void raid10_free(struct mddev *mddev, void *priv) 4249 { 4250 struct r10conf *conf = priv; 4251 4252 mempool_exit(&conf->r10bio_pool); 4253 safe_put_page(conf->tmppage); 4254 kfree(conf->mirrors); 4255 kfree(conf->mirrors_old); 4256 kfree(conf->mirrors_new); 4257 bioset_exit(&conf->bio_split); 4258 kfree(conf); 4259 } 4260 4261 static void raid10_quiesce(struct mddev *mddev, int quiesce) 4262 { 4263 struct r10conf *conf = mddev->private; 4264 4265 if (quiesce) 4266 raise_barrier(conf, 0); 4267 else 4268 lower_barrier(conf); 4269 } 4270 4271 static int raid10_resize(struct mddev *mddev, sector_t sectors) 4272 { 4273 /* Resize of 'far' arrays is not supported. 4274 * For 'near' and 'offset' arrays we can set the 4275 * number of sectors used to be an appropriate multiple 4276 * of the chunk size. 4277 * For 'offset', this is far_copies*chunksize. 4278 * For 'near' the multiplier is the LCM of 4279 * near_copies and raid_disks. 4280 * So if far_copies > 1 && !far_offset, fail. 4281 * Else find LCM(raid_disks, near_copy)*far_copies and 4282 * multiply by chunk_size. Then round to this number. 4283 * This is mostly done by raid10_size() 4284 */ 4285 struct r10conf *conf = mddev->private; 4286 sector_t oldsize, size; 4287 4288 if (mddev->reshape_position != MaxSector) 4289 return -EBUSY; 4290 4291 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 4292 return -EINVAL; 4293 4294 oldsize = raid10_size(mddev, 0, 0); 4295 size = raid10_size(mddev, sectors, 0); 4296 if (mddev->external_size && 4297 mddev->array_sectors > size) 4298 return -EINVAL; 4299 if (mddev->bitmap) { 4300 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0); 4301 if (ret) 4302 return ret; 4303 } 4304 md_set_array_sectors(mddev, size); 4305 if (sectors > mddev->dev_sectors && 4306 mddev->recovery_cp > oldsize) { 4307 mddev->recovery_cp = oldsize; 4308 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4309 } 4310 calc_sectors(conf, sectors); 4311 mddev->dev_sectors = conf->dev_sectors; 4312 mddev->resync_max_sectors = size; 4313 return 0; 4314 } 4315 4316 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 4317 { 4318 struct md_rdev *rdev; 4319 struct r10conf *conf; 4320 4321 if (mddev->degraded > 0) { 4322 pr_warn("md/raid10:%s: Error: degraded raid0!\n", 4323 mdname(mddev)); 4324 return ERR_PTR(-EINVAL); 4325 } 4326 sector_div(size, devs); 4327 4328 /* Set new parameters */ 4329 mddev->new_level = 10; 4330 /* new layout: far_copies = 1, near_copies = 2 */ 4331 mddev->new_layout = (1<<8) + 2; 4332 mddev->new_chunk_sectors = mddev->chunk_sectors; 4333 mddev->delta_disks = mddev->raid_disks; 4334 mddev->raid_disks *= 2; 4335 /* make sure it will be not marked as dirty */ 4336 mddev->recovery_cp = MaxSector; 4337 mddev->dev_sectors = size; 4338 4339 conf = setup_conf(mddev); 4340 if (!IS_ERR(conf)) { 4341 rdev_for_each(rdev, mddev) 4342 if (rdev->raid_disk >= 0) { 4343 rdev->new_raid_disk = rdev->raid_disk * 2; 4344 rdev->sectors = size; 4345 } 4346 conf->barrier = 1; 4347 } 4348 4349 return conf; 4350 } 4351 4352 static void *raid10_takeover(struct mddev *mddev) 4353 { 4354 struct r0conf *raid0_conf; 4355 4356 /* raid10 can take over: 4357 * raid0 - providing it has only two drives 4358 */ 4359 if (mddev->level == 0) { 4360 /* for raid0 takeover only one zone is supported */ 4361 raid0_conf = mddev->private; 4362 if (raid0_conf->nr_strip_zones > 1) { 4363 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n", 4364 mdname(mddev)); 4365 return ERR_PTR(-EINVAL); 4366 } 4367 return raid10_takeover_raid0(mddev, 4368 raid0_conf->strip_zone->zone_end, 4369 raid0_conf->strip_zone->nb_dev); 4370 } 4371 return ERR_PTR(-EINVAL); 4372 } 4373 4374 static int raid10_check_reshape(struct mddev *mddev) 4375 { 4376 /* Called when there is a request to change 4377 * - layout (to ->new_layout) 4378 * - chunk size (to ->new_chunk_sectors) 4379 * - raid_disks (by delta_disks) 4380 * or when trying to restart a reshape that was ongoing. 4381 * 4382 * We need to validate the request and possibly allocate 4383 * space if that might be an issue later. 4384 * 4385 * Currently we reject any reshape of a 'far' mode array, 4386 * allow chunk size to change if new is generally acceptable, 4387 * allow raid_disks to increase, and allow 4388 * a switch between 'near' mode and 'offset' mode. 4389 */ 4390 struct r10conf *conf = mddev->private; 4391 struct geom geo; 4392 4393 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 4394 return -EINVAL; 4395 4396 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 4397 /* mustn't change number of copies */ 4398 return -EINVAL; 4399 if (geo.far_copies > 1 && !geo.far_offset) 4400 /* Cannot switch to 'far' mode */ 4401 return -EINVAL; 4402 4403 if (mddev->array_sectors & geo.chunk_mask) 4404 /* not factor of array size */ 4405 return -EINVAL; 4406 4407 if (!enough(conf, -1)) 4408 return -EINVAL; 4409 4410 kfree(conf->mirrors_new); 4411 conf->mirrors_new = NULL; 4412 if (mddev->delta_disks > 0) { 4413 /* allocate new 'mirrors' list */ 4414 conf->mirrors_new = 4415 kcalloc(mddev->raid_disks + mddev->delta_disks, 4416 sizeof(struct raid10_info), 4417 GFP_KERNEL); 4418 if (!conf->mirrors_new) 4419 return -ENOMEM; 4420 } 4421 return 0; 4422 } 4423 4424 /* 4425 * Need to check if array has failed when deciding whether to: 4426 * - start an array 4427 * - remove non-faulty devices 4428 * - add a spare 4429 * - allow a reshape 4430 * This determination is simple when no reshape is happening. 4431 * However if there is a reshape, we need to carefully check 4432 * both the before and after sections. 4433 * This is because some failed devices may only affect one 4434 * of the two sections, and some non-in_sync devices may 4435 * be insync in the section most affected by failed devices. 4436 */ 4437 static int calc_degraded(struct r10conf *conf) 4438 { 4439 int degraded, degraded2; 4440 int i; 4441 4442 rcu_read_lock(); 4443 degraded = 0; 4444 /* 'prev' section first */ 4445 for (i = 0; i < conf->prev.raid_disks; i++) { 4446 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4447 if (!rdev || test_bit(Faulty, &rdev->flags)) 4448 degraded++; 4449 else if (!test_bit(In_sync, &rdev->flags)) 4450 /* When we can reduce the number of devices in 4451 * an array, this might not contribute to 4452 * 'degraded'. It does now. 4453 */ 4454 degraded++; 4455 } 4456 rcu_read_unlock(); 4457 if (conf->geo.raid_disks == conf->prev.raid_disks) 4458 return degraded; 4459 rcu_read_lock(); 4460 degraded2 = 0; 4461 for (i = 0; i < conf->geo.raid_disks; i++) { 4462 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 4463 if (!rdev || test_bit(Faulty, &rdev->flags)) 4464 degraded2++; 4465 else if (!test_bit(In_sync, &rdev->flags)) { 4466 /* If reshape is increasing the number of devices, 4467 * this section has already been recovered, so 4468 * it doesn't contribute to degraded. 4469 * else it does. 4470 */ 4471 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4472 degraded2++; 4473 } 4474 } 4475 rcu_read_unlock(); 4476 if (degraded2 > degraded) 4477 return degraded2; 4478 return degraded; 4479 } 4480 4481 static int raid10_start_reshape(struct mddev *mddev) 4482 { 4483 /* A 'reshape' has been requested. This commits 4484 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4485 * This also checks if there are enough spares and adds them 4486 * to the array. 4487 * We currently require enough spares to make the final 4488 * array non-degraded. We also require that the difference 4489 * between old and new data_offset - on each device - is 4490 * enough that we never risk over-writing. 4491 */ 4492 4493 unsigned long before_length, after_length; 4494 sector_t min_offset_diff = 0; 4495 int first = 1; 4496 struct geom new; 4497 struct r10conf *conf = mddev->private; 4498 struct md_rdev *rdev; 4499 int spares = 0; 4500 int ret; 4501 4502 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4503 return -EBUSY; 4504 4505 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4506 return -EINVAL; 4507 4508 before_length = ((1 << conf->prev.chunk_shift) * 4509 conf->prev.far_copies); 4510 after_length = ((1 << conf->geo.chunk_shift) * 4511 conf->geo.far_copies); 4512 4513 rdev_for_each(rdev, mddev) { 4514 if (!test_bit(In_sync, &rdev->flags) 4515 && !test_bit(Faulty, &rdev->flags)) 4516 spares++; 4517 if (rdev->raid_disk >= 0) { 4518 long long diff = (rdev->new_data_offset 4519 - rdev->data_offset); 4520 if (!mddev->reshape_backwards) 4521 diff = -diff; 4522 if (diff < 0) 4523 diff = 0; 4524 if (first || diff < min_offset_diff) 4525 min_offset_diff = diff; 4526 first = 0; 4527 } 4528 } 4529 4530 if (max(before_length, after_length) > min_offset_diff) 4531 return -EINVAL; 4532 4533 if (spares < mddev->delta_disks) 4534 return -EINVAL; 4535 4536 conf->offset_diff = min_offset_diff; 4537 spin_lock_irq(&conf->device_lock); 4538 if (conf->mirrors_new) { 4539 memcpy(conf->mirrors_new, conf->mirrors, 4540 sizeof(struct raid10_info)*conf->prev.raid_disks); 4541 smp_mb(); 4542 kfree(conf->mirrors_old); 4543 conf->mirrors_old = conf->mirrors; 4544 conf->mirrors = conf->mirrors_new; 4545 conf->mirrors_new = NULL; 4546 } 4547 setup_geo(&conf->geo, mddev, geo_start); 4548 smp_mb(); 4549 if (mddev->reshape_backwards) { 4550 sector_t size = raid10_size(mddev, 0, 0); 4551 if (size < mddev->array_sectors) { 4552 spin_unlock_irq(&conf->device_lock); 4553 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n", 4554 mdname(mddev)); 4555 return -EINVAL; 4556 } 4557 mddev->resync_max_sectors = size; 4558 conf->reshape_progress = size; 4559 } else 4560 conf->reshape_progress = 0; 4561 conf->reshape_safe = conf->reshape_progress; 4562 spin_unlock_irq(&conf->device_lock); 4563 4564 if (mddev->delta_disks && mddev->bitmap) { 4565 struct mdp_superblock_1 *sb = NULL; 4566 sector_t oldsize, newsize; 4567 4568 oldsize = raid10_size(mddev, 0, 0); 4569 newsize = raid10_size(mddev, 0, conf->geo.raid_disks); 4570 4571 if (!mddev_is_clustered(mddev)) { 4572 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4573 if (ret) 4574 goto abort; 4575 else 4576 goto out; 4577 } 4578 4579 rdev_for_each(rdev, mddev) { 4580 if (rdev->raid_disk > -1 && 4581 !test_bit(Faulty, &rdev->flags)) 4582 sb = page_address(rdev->sb_page); 4583 } 4584 4585 /* 4586 * some node is already performing reshape, and no need to 4587 * call md_bitmap_resize again since it should be called when 4588 * receiving BITMAP_RESIZE msg 4589 */ 4590 if ((sb && (le32_to_cpu(sb->feature_map) & 4591 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize)) 4592 goto out; 4593 4594 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 4595 if (ret) 4596 goto abort; 4597 4598 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize); 4599 if (ret) { 4600 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0); 4601 goto abort; 4602 } 4603 } 4604 out: 4605 if (mddev->delta_disks > 0) { 4606 rdev_for_each(rdev, mddev) 4607 if (rdev->raid_disk < 0 && 4608 !test_bit(Faulty, &rdev->flags)) { 4609 if (raid10_add_disk(mddev, rdev) == 0) { 4610 if (rdev->raid_disk >= 4611 conf->prev.raid_disks) 4612 set_bit(In_sync, &rdev->flags); 4613 else 4614 rdev->recovery_offset = 0; 4615 4616 /* Failure here is OK */ 4617 sysfs_link_rdev(mddev, rdev); 4618 } 4619 } else if (rdev->raid_disk >= conf->prev.raid_disks 4620 && !test_bit(Faulty, &rdev->flags)) { 4621 /* This is a spare that was manually added */ 4622 set_bit(In_sync, &rdev->flags); 4623 } 4624 } 4625 /* When a reshape changes the number of devices, 4626 * ->degraded is measured against the larger of the 4627 * pre and post numbers. 4628 */ 4629 spin_lock_irq(&conf->device_lock); 4630 mddev->degraded = calc_degraded(conf); 4631 spin_unlock_irq(&conf->device_lock); 4632 mddev->raid_disks = conf->geo.raid_disks; 4633 mddev->reshape_position = conf->reshape_progress; 4634 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4635 4636 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4637 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4638 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4639 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4640 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4641 4642 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4643 "reshape"); 4644 if (!mddev->sync_thread) { 4645 ret = -EAGAIN; 4646 goto abort; 4647 } 4648 conf->reshape_checkpoint = jiffies; 4649 md_wakeup_thread(mddev->sync_thread); 4650 md_new_event(mddev); 4651 return 0; 4652 4653 abort: 4654 mddev->recovery = 0; 4655 spin_lock_irq(&conf->device_lock); 4656 conf->geo = conf->prev; 4657 mddev->raid_disks = conf->geo.raid_disks; 4658 rdev_for_each(rdev, mddev) 4659 rdev->new_data_offset = rdev->data_offset; 4660 smp_wmb(); 4661 conf->reshape_progress = MaxSector; 4662 conf->reshape_safe = MaxSector; 4663 mddev->reshape_position = MaxSector; 4664 spin_unlock_irq(&conf->device_lock); 4665 return ret; 4666 } 4667 4668 /* Calculate the last device-address that could contain 4669 * any block from the chunk that includes the array-address 's' 4670 * and report the next address. 4671 * i.e. the address returned will be chunk-aligned and after 4672 * any data that is in the chunk containing 's'. 4673 */ 4674 static sector_t last_dev_address(sector_t s, struct geom *geo) 4675 { 4676 s = (s | geo->chunk_mask) + 1; 4677 s >>= geo->chunk_shift; 4678 s *= geo->near_copies; 4679 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4680 s *= geo->far_copies; 4681 s <<= geo->chunk_shift; 4682 return s; 4683 } 4684 4685 /* Calculate the first device-address that could contain 4686 * any block from the chunk that includes the array-address 's'. 4687 * This too will be the start of a chunk 4688 */ 4689 static sector_t first_dev_address(sector_t s, struct geom *geo) 4690 { 4691 s >>= geo->chunk_shift; 4692 s *= geo->near_copies; 4693 sector_div(s, geo->raid_disks); 4694 s *= geo->far_copies; 4695 s <<= geo->chunk_shift; 4696 return s; 4697 } 4698 4699 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4700 int *skipped) 4701 { 4702 /* We simply copy at most one chunk (smallest of old and new) 4703 * at a time, possibly less if that exceeds RESYNC_PAGES, 4704 * or we hit a bad block or something. 4705 * This might mean we pause for normal IO in the middle of 4706 * a chunk, but that is not a problem as mddev->reshape_position 4707 * can record any location. 4708 * 4709 * If we will want to write to a location that isn't 4710 * yet recorded as 'safe' (i.e. in metadata on disk) then 4711 * we need to flush all reshape requests and update the metadata. 4712 * 4713 * When reshaping forwards (e.g. to more devices), we interpret 4714 * 'safe' as the earliest block which might not have been copied 4715 * down yet. We divide this by previous stripe size and multiply 4716 * by previous stripe length to get lowest device offset that we 4717 * cannot write to yet. 4718 * We interpret 'sector_nr' as an address that we want to write to. 4719 * From this we use last_device_address() to find where we might 4720 * write to, and first_device_address on the 'safe' position. 4721 * If this 'next' write position is after the 'safe' position, 4722 * we must update the metadata to increase the 'safe' position. 4723 * 4724 * When reshaping backwards, we round in the opposite direction 4725 * and perform the reverse test: next write position must not be 4726 * less than current safe position. 4727 * 4728 * In all this the minimum difference in data offsets 4729 * (conf->offset_diff - always positive) allows a bit of slack, 4730 * so next can be after 'safe', but not by more than offset_diff 4731 * 4732 * We need to prepare all the bios here before we start any IO 4733 * to ensure the size we choose is acceptable to all devices. 4734 * The means one for each copy for write-out and an extra one for 4735 * read-in. 4736 * We store the read-in bio in ->master_bio and the others in 4737 * ->devs[x].bio and ->devs[x].repl_bio. 4738 */ 4739 struct r10conf *conf = mddev->private; 4740 struct r10bio *r10_bio; 4741 sector_t next, safe, last; 4742 int max_sectors; 4743 int nr_sectors; 4744 int s; 4745 struct md_rdev *rdev; 4746 int need_flush = 0; 4747 struct bio *blist; 4748 struct bio *bio, *read_bio; 4749 int sectors_done = 0; 4750 struct page **pages; 4751 4752 if (sector_nr == 0) { 4753 /* If restarting in the middle, skip the initial sectors */ 4754 if (mddev->reshape_backwards && 4755 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4756 sector_nr = (raid10_size(mddev, 0, 0) 4757 - conf->reshape_progress); 4758 } else if (!mddev->reshape_backwards && 4759 conf->reshape_progress > 0) 4760 sector_nr = conf->reshape_progress; 4761 if (sector_nr) { 4762 mddev->curr_resync_completed = sector_nr; 4763 sysfs_notify_dirent_safe(mddev->sysfs_completed); 4764 *skipped = 1; 4765 return sector_nr; 4766 } 4767 } 4768 4769 /* We don't use sector_nr to track where we are up to 4770 * as that doesn't work well for ->reshape_backwards. 4771 * So just use ->reshape_progress. 4772 */ 4773 if (mddev->reshape_backwards) { 4774 /* 'next' is the earliest device address that we might 4775 * write to for this chunk in the new layout 4776 */ 4777 next = first_dev_address(conf->reshape_progress - 1, 4778 &conf->geo); 4779 4780 /* 'safe' is the last device address that we might read from 4781 * in the old layout after a restart 4782 */ 4783 safe = last_dev_address(conf->reshape_safe - 1, 4784 &conf->prev); 4785 4786 if (next + conf->offset_diff < safe) 4787 need_flush = 1; 4788 4789 last = conf->reshape_progress - 1; 4790 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4791 & conf->prev.chunk_mask); 4792 if (sector_nr + RESYNC_SECTORS < last) 4793 sector_nr = last + 1 - RESYNC_SECTORS; 4794 } else { 4795 /* 'next' is after the last device address that we 4796 * might write to for this chunk in the new layout 4797 */ 4798 next = last_dev_address(conf->reshape_progress, &conf->geo); 4799 4800 /* 'safe' is the earliest device address that we might 4801 * read from in the old layout after a restart 4802 */ 4803 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4804 4805 /* Need to update metadata if 'next' might be beyond 'safe' 4806 * as that would possibly corrupt data 4807 */ 4808 if (next > safe + conf->offset_diff) 4809 need_flush = 1; 4810 4811 sector_nr = conf->reshape_progress; 4812 last = sector_nr | (conf->geo.chunk_mask 4813 & conf->prev.chunk_mask); 4814 4815 if (sector_nr + RESYNC_SECTORS <= last) 4816 last = sector_nr + RESYNC_SECTORS - 1; 4817 } 4818 4819 if (need_flush || 4820 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4821 /* Need to update reshape_position in metadata */ 4822 wait_barrier(conf); 4823 mddev->reshape_position = conf->reshape_progress; 4824 if (mddev->reshape_backwards) 4825 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4826 - conf->reshape_progress; 4827 else 4828 mddev->curr_resync_completed = conf->reshape_progress; 4829 conf->reshape_checkpoint = jiffies; 4830 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4831 md_wakeup_thread(mddev->thread); 4832 wait_event(mddev->sb_wait, mddev->sb_flags == 0 || 4833 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4834 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4835 allow_barrier(conf); 4836 return sectors_done; 4837 } 4838 conf->reshape_safe = mddev->reshape_position; 4839 allow_barrier(conf); 4840 } 4841 4842 raise_barrier(conf, 0); 4843 read_more: 4844 /* Now schedule reads for blocks from sector_nr to last */ 4845 r10_bio = raid10_alloc_init_r10buf(conf); 4846 r10_bio->state = 0; 4847 raise_barrier(conf, 1); 4848 atomic_set(&r10_bio->remaining, 0); 4849 r10_bio->mddev = mddev; 4850 r10_bio->sector = sector_nr; 4851 set_bit(R10BIO_IsReshape, &r10_bio->state); 4852 r10_bio->sectors = last - sector_nr + 1; 4853 rdev = read_balance(conf, r10_bio, &max_sectors); 4854 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4855 4856 if (!rdev) { 4857 /* Cannot read from here, so need to record bad blocks 4858 * on all the target devices. 4859 */ 4860 // FIXME 4861 mempool_free(r10_bio, &conf->r10buf_pool); 4862 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4863 return sectors_done; 4864 } 4865 4866 read_bio = bio_alloc_bioset(GFP_KERNEL, RESYNC_PAGES, &mddev->bio_set); 4867 4868 bio_set_dev(read_bio, rdev->bdev); 4869 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4870 + rdev->data_offset); 4871 read_bio->bi_private = r10_bio; 4872 read_bio->bi_end_io = end_reshape_read; 4873 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4874 r10_bio->master_bio = read_bio; 4875 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4876 4877 /* 4878 * Broadcast RESYNC message to other nodes, so all nodes would not 4879 * write to the region to avoid conflict. 4880 */ 4881 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) { 4882 struct mdp_superblock_1 *sb = NULL; 4883 int sb_reshape_pos = 0; 4884 4885 conf->cluster_sync_low = sector_nr; 4886 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS; 4887 sb = page_address(rdev->sb_page); 4888 if (sb) { 4889 sb_reshape_pos = le64_to_cpu(sb->reshape_position); 4890 /* 4891 * Set cluster_sync_low again if next address for array 4892 * reshape is less than cluster_sync_low. Since we can't 4893 * update cluster_sync_low until it has finished reshape. 4894 */ 4895 if (sb_reshape_pos < conf->cluster_sync_low) 4896 conf->cluster_sync_low = sb_reshape_pos; 4897 } 4898 4899 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low, 4900 conf->cluster_sync_high); 4901 } 4902 4903 /* Now find the locations in the new layout */ 4904 __raid10_find_phys(&conf->geo, r10_bio); 4905 4906 blist = read_bio; 4907 read_bio->bi_next = NULL; 4908 4909 rcu_read_lock(); 4910 for (s = 0; s < conf->copies*2; s++) { 4911 struct bio *b; 4912 int d = r10_bio->devs[s/2].devnum; 4913 struct md_rdev *rdev2; 4914 if (s&1) { 4915 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4916 b = r10_bio->devs[s/2].repl_bio; 4917 } else { 4918 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4919 b = r10_bio->devs[s/2].bio; 4920 } 4921 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4922 continue; 4923 4924 bio_set_dev(b, rdev2->bdev); 4925 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4926 rdev2->new_data_offset; 4927 b->bi_end_io = end_reshape_write; 4928 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4929 b->bi_next = blist; 4930 blist = b; 4931 } 4932 4933 /* Now add as many pages as possible to all of these bios. */ 4934 4935 nr_sectors = 0; 4936 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 4937 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4938 struct page *page = pages[s / (PAGE_SIZE >> 9)]; 4939 int len = (max_sectors - s) << 9; 4940 if (len > PAGE_SIZE) 4941 len = PAGE_SIZE; 4942 for (bio = blist; bio ; bio = bio->bi_next) { 4943 /* 4944 * won't fail because the vec table is big enough 4945 * to hold all these pages 4946 */ 4947 bio_add_page(bio, page, len, 0); 4948 } 4949 sector_nr += len >> 9; 4950 nr_sectors += len >> 9; 4951 } 4952 rcu_read_unlock(); 4953 r10_bio->sectors = nr_sectors; 4954 4955 /* Now submit the read */ 4956 md_sync_acct_bio(read_bio, r10_bio->sectors); 4957 atomic_inc(&r10_bio->remaining); 4958 read_bio->bi_next = NULL; 4959 submit_bio_noacct(read_bio); 4960 sectors_done += nr_sectors; 4961 if (sector_nr <= last) 4962 goto read_more; 4963 4964 lower_barrier(conf); 4965 4966 /* Now that we have done the whole section we can 4967 * update reshape_progress 4968 */ 4969 if (mddev->reshape_backwards) 4970 conf->reshape_progress -= sectors_done; 4971 else 4972 conf->reshape_progress += sectors_done; 4973 4974 return sectors_done; 4975 } 4976 4977 static void end_reshape_request(struct r10bio *r10_bio); 4978 static int handle_reshape_read_error(struct mddev *mddev, 4979 struct r10bio *r10_bio); 4980 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4981 { 4982 /* Reshape read completed. Hopefully we have a block 4983 * to write out. 4984 * If we got a read error then we do sync 1-page reads from 4985 * elsewhere until we find the data - or give up. 4986 */ 4987 struct r10conf *conf = mddev->private; 4988 int s; 4989 4990 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4991 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4992 /* Reshape has been aborted */ 4993 md_done_sync(mddev, r10_bio->sectors, 0); 4994 return; 4995 } 4996 4997 /* We definitely have the data in the pages, schedule the 4998 * writes. 4999 */ 5000 atomic_set(&r10_bio->remaining, 1); 5001 for (s = 0; s < conf->copies*2; s++) { 5002 struct bio *b; 5003 int d = r10_bio->devs[s/2].devnum; 5004 struct md_rdev *rdev; 5005 rcu_read_lock(); 5006 if (s&1) { 5007 rdev = rcu_dereference(conf->mirrors[d].replacement); 5008 b = r10_bio->devs[s/2].repl_bio; 5009 } else { 5010 rdev = rcu_dereference(conf->mirrors[d].rdev); 5011 b = r10_bio->devs[s/2].bio; 5012 } 5013 if (!rdev || test_bit(Faulty, &rdev->flags)) { 5014 rcu_read_unlock(); 5015 continue; 5016 } 5017 atomic_inc(&rdev->nr_pending); 5018 rcu_read_unlock(); 5019 md_sync_acct_bio(b, r10_bio->sectors); 5020 atomic_inc(&r10_bio->remaining); 5021 b->bi_next = NULL; 5022 submit_bio_noacct(b); 5023 } 5024 end_reshape_request(r10_bio); 5025 } 5026 5027 static void end_reshape(struct r10conf *conf) 5028 { 5029 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 5030 return; 5031 5032 spin_lock_irq(&conf->device_lock); 5033 conf->prev = conf->geo; 5034 md_finish_reshape(conf->mddev); 5035 smp_wmb(); 5036 conf->reshape_progress = MaxSector; 5037 conf->reshape_safe = MaxSector; 5038 spin_unlock_irq(&conf->device_lock); 5039 5040 if (conf->mddev->queue) 5041 raid10_set_io_opt(conf); 5042 conf->fullsync = 0; 5043 } 5044 5045 static void raid10_update_reshape_pos(struct mddev *mddev) 5046 { 5047 struct r10conf *conf = mddev->private; 5048 sector_t lo, hi; 5049 5050 md_cluster_ops->resync_info_get(mddev, &lo, &hi); 5051 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo)) 5052 || mddev->reshape_position == MaxSector) 5053 conf->reshape_progress = mddev->reshape_position; 5054 else 5055 WARN_ON_ONCE(1); 5056 } 5057 5058 static int handle_reshape_read_error(struct mddev *mddev, 5059 struct r10bio *r10_bio) 5060 { 5061 /* Use sync reads to get the blocks from somewhere else */ 5062 int sectors = r10_bio->sectors; 5063 struct r10conf *conf = mddev->private; 5064 struct r10bio *r10b; 5065 int slot = 0; 5066 int idx = 0; 5067 struct page **pages; 5068 5069 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO); 5070 if (!r10b) { 5071 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5072 return -ENOMEM; 5073 } 5074 5075 /* reshape IOs share pages from .devs[0].bio */ 5076 pages = get_resync_pages(r10_bio->devs[0].bio)->pages; 5077 5078 r10b->sector = r10_bio->sector; 5079 __raid10_find_phys(&conf->prev, r10b); 5080 5081 while (sectors) { 5082 int s = sectors; 5083 int success = 0; 5084 int first_slot = slot; 5085 5086 if (s > (PAGE_SIZE >> 9)) 5087 s = PAGE_SIZE >> 9; 5088 5089 rcu_read_lock(); 5090 while (!success) { 5091 int d = r10b->devs[slot].devnum; 5092 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 5093 sector_t addr; 5094 if (rdev == NULL || 5095 test_bit(Faulty, &rdev->flags) || 5096 !test_bit(In_sync, &rdev->flags)) 5097 goto failed; 5098 5099 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 5100 atomic_inc(&rdev->nr_pending); 5101 rcu_read_unlock(); 5102 success = sync_page_io(rdev, 5103 addr, 5104 s << 9, 5105 pages[idx], 5106 REQ_OP_READ, 0, false); 5107 rdev_dec_pending(rdev, mddev); 5108 rcu_read_lock(); 5109 if (success) 5110 break; 5111 failed: 5112 slot++; 5113 if (slot >= conf->copies) 5114 slot = 0; 5115 if (slot == first_slot) 5116 break; 5117 } 5118 rcu_read_unlock(); 5119 if (!success) { 5120 /* couldn't read this block, must give up */ 5121 set_bit(MD_RECOVERY_INTR, 5122 &mddev->recovery); 5123 kfree(r10b); 5124 return -EIO; 5125 } 5126 sectors -= s; 5127 idx++; 5128 } 5129 kfree(r10b); 5130 return 0; 5131 } 5132 5133 static void end_reshape_write(struct bio *bio) 5134 { 5135 struct r10bio *r10_bio = get_resync_r10bio(bio); 5136 struct mddev *mddev = r10_bio->mddev; 5137 struct r10conf *conf = mddev->private; 5138 int d; 5139 int slot; 5140 int repl; 5141 struct md_rdev *rdev = NULL; 5142 5143 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 5144 if (repl) 5145 rdev = conf->mirrors[d].replacement; 5146 if (!rdev) { 5147 smp_mb(); 5148 rdev = conf->mirrors[d].rdev; 5149 } 5150 5151 if (bio->bi_status) { 5152 /* FIXME should record badblock */ 5153 md_error(mddev, rdev); 5154 } 5155 5156 rdev_dec_pending(rdev, mddev); 5157 end_reshape_request(r10_bio); 5158 } 5159 5160 static void end_reshape_request(struct r10bio *r10_bio) 5161 { 5162 if (!atomic_dec_and_test(&r10_bio->remaining)) 5163 return; 5164 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 5165 bio_put(r10_bio->master_bio); 5166 put_buf(r10_bio); 5167 } 5168 5169 static void raid10_finish_reshape(struct mddev *mddev) 5170 { 5171 struct r10conf *conf = mddev->private; 5172 5173 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5174 return; 5175 5176 if (mddev->delta_disks > 0) { 5177 if (mddev->recovery_cp > mddev->resync_max_sectors) { 5178 mddev->recovery_cp = mddev->resync_max_sectors; 5179 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5180 } 5181 mddev->resync_max_sectors = mddev->array_sectors; 5182 } else { 5183 int d; 5184 rcu_read_lock(); 5185 for (d = conf->geo.raid_disks ; 5186 d < conf->geo.raid_disks - mddev->delta_disks; 5187 d++) { 5188 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 5189 if (rdev) 5190 clear_bit(In_sync, &rdev->flags); 5191 rdev = rcu_dereference(conf->mirrors[d].replacement); 5192 if (rdev) 5193 clear_bit(In_sync, &rdev->flags); 5194 } 5195 rcu_read_unlock(); 5196 } 5197 mddev->layout = mddev->new_layout; 5198 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 5199 mddev->reshape_position = MaxSector; 5200 mddev->delta_disks = 0; 5201 mddev->reshape_backwards = 0; 5202 } 5203 5204 static struct md_personality raid10_personality = 5205 { 5206 .name = "raid10", 5207 .level = 10, 5208 .owner = THIS_MODULE, 5209 .make_request = raid10_make_request, 5210 .run = raid10_run, 5211 .free = raid10_free, 5212 .status = raid10_status, 5213 .error_handler = raid10_error, 5214 .hot_add_disk = raid10_add_disk, 5215 .hot_remove_disk= raid10_remove_disk, 5216 .spare_active = raid10_spare_active, 5217 .sync_request = raid10_sync_request, 5218 .quiesce = raid10_quiesce, 5219 .size = raid10_size, 5220 .resize = raid10_resize, 5221 .takeover = raid10_takeover, 5222 .check_reshape = raid10_check_reshape, 5223 .start_reshape = raid10_start_reshape, 5224 .finish_reshape = raid10_finish_reshape, 5225 .update_reshape_pos = raid10_update_reshape_pos, 5226 }; 5227 5228 static int __init raid_init(void) 5229 { 5230 return register_md_personality(&raid10_personality); 5231 } 5232 5233 static void raid_exit(void) 5234 { 5235 unregister_md_personality(&raid10_personality); 5236 } 5237 5238 module_init(raid_init); 5239 module_exit(raid_exit); 5240 MODULE_LICENSE("GPL"); 5241 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 5242 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 5243 MODULE_ALIAS("md-raid10"); 5244 MODULE_ALIAS("md-level-10"); 5245 5246 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 5247