1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * 42 * The data to be stored is divided into chunks using chunksize. 43 * Each device is divided into far_copies sections. 44 * In each section, chunks are laid out in a style similar to raid0, but 45 * near_copies copies of each chunk is stored (each on a different drive). 46 * The starting device for each section is offset near_copies from the starting 47 * device of the previous section. 48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 49 * drive. 50 * near_copies and far_copies must be at least one, and their product is at most 51 * raid_disks. 52 * 53 * If far_offset is true, then the far_copies are handled a bit differently. 54 * The copies are still in different stripes, but instead of be very far apart 55 * on disk, there are adjacent stripes. 56 */ 57 58 /* 59 * Number of guaranteed r10bios in case of extreme VM load: 60 */ 61 #define NR_RAID10_BIOS 256 62 63 /* when we get a read error on a read-only array, we redirect to another 64 * device without failing the first device, or trying to over-write to 65 * correct the read error. To keep track of bad blocks on a per-bio 66 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 67 */ 68 #define IO_BLOCKED ((struct bio *)1) 69 /* When we successfully write to a known bad-block, we need to remove the 70 * bad-block marking which must be done from process context. So we record 71 * the success by setting devs[n].bio to IO_MADE_GOOD 72 */ 73 #define IO_MADE_GOOD ((struct bio *)2) 74 75 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 76 77 /* When there are this many requests queued to be written by 78 * the raid10 thread, we become 'congested' to provide back-pressure 79 * for writeback. 80 */ 81 static int max_queued_requests = 1024; 82 83 static void allow_barrier(struct r10conf *conf); 84 static void lower_barrier(struct r10conf *conf); 85 static int enough(struct r10conf *conf, int ignore); 86 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 87 int *skipped); 88 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 89 static void end_reshape_write(struct bio *bio, int error); 90 static void end_reshape(struct r10conf *conf); 91 92 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 struct r10conf *conf = data; 95 int size = offsetof(struct r10bio, devs[conf->copies]); 96 97 /* allocate a r10bio with room for raid_disks entries in the 98 * bios array */ 99 return kzalloc(size, gfp_flags); 100 } 101 102 static void r10bio_pool_free(void *r10_bio, void *data) 103 { 104 kfree(r10_bio); 105 } 106 107 /* Maximum size of each resync request */ 108 #define RESYNC_BLOCK_SIZE (64*1024) 109 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 110 /* amount of memory to reserve for resync requests */ 111 #define RESYNC_WINDOW (1024*1024) 112 /* maximum number of concurrent requests, memory permitting */ 113 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 114 115 /* 116 * When performing a resync, we need to read and compare, so 117 * we need as many pages are there are copies. 118 * When performing a recovery, we need 2 bios, one for read, 119 * one for write (we recover only one drive per r10buf) 120 * 121 */ 122 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 123 { 124 struct r10conf *conf = data; 125 struct page *page; 126 struct r10bio *r10_bio; 127 struct bio *bio; 128 int i, j; 129 int nalloc; 130 131 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 132 if (!r10_bio) 133 return NULL; 134 135 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 136 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 137 nalloc = conf->copies; /* resync */ 138 else 139 nalloc = 2; /* recovery */ 140 141 /* 142 * Allocate bios. 143 */ 144 for (j = nalloc ; j-- ; ) { 145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 146 if (!bio) 147 goto out_free_bio; 148 r10_bio->devs[j].bio = bio; 149 if (!conf->have_replacement) 150 continue; 151 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 152 if (!bio) 153 goto out_free_bio; 154 r10_bio->devs[j].repl_bio = bio; 155 } 156 /* 157 * Allocate RESYNC_PAGES data pages and attach them 158 * where needed. 159 */ 160 for (j = 0 ; j < nalloc; j++) { 161 struct bio *rbio = r10_bio->devs[j].repl_bio; 162 bio = r10_bio->devs[j].bio; 163 for (i = 0; i < RESYNC_PAGES; i++) { 164 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 165 &conf->mddev->recovery)) { 166 /* we can share bv_page's during recovery 167 * and reshape */ 168 struct bio *rbio = r10_bio->devs[0].bio; 169 page = rbio->bi_io_vec[i].bv_page; 170 get_page(page); 171 } else 172 page = alloc_page(gfp_flags); 173 if (unlikely(!page)) 174 goto out_free_pages; 175 176 bio->bi_io_vec[i].bv_page = page; 177 if (rbio) 178 rbio->bi_io_vec[i].bv_page = page; 179 } 180 } 181 182 return r10_bio; 183 184 out_free_pages: 185 for ( ; i > 0 ; i--) 186 safe_put_page(bio->bi_io_vec[i-1].bv_page); 187 while (j--) 188 for (i = 0; i < RESYNC_PAGES ; i++) 189 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 190 j = 0; 191 out_free_bio: 192 for ( ; j < nalloc; j++) { 193 if (r10_bio->devs[j].bio) 194 bio_put(r10_bio->devs[j].bio); 195 if (r10_bio->devs[j].repl_bio) 196 bio_put(r10_bio->devs[j].repl_bio); 197 } 198 r10bio_pool_free(r10_bio, conf); 199 return NULL; 200 } 201 202 static void r10buf_pool_free(void *__r10_bio, void *data) 203 { 204 int i; 205 struct r10conf *conf = data; 206 struct r10bio *r10bio = __r10_bio; 207 int j; 208 209 for (j=0; j < conf->copies; j++) { 210 struct bio *bio = r10bio->devs[j].bio; 211 if (bio) { 212 for (i = 0; i < RESYNC_PAGES; i++) { 213 safe_put_page(bio->bi_io_vec[i].bv_page); 214 bio->bi_io_vec[i].bv_page = NULL; 215 } 216 bio_put(bio); 217 } 218 bio = r10bio->devs[j].repl_bio; 219 if (bio) 220 bio_put(bio); 221 } 222 r10bio_pool_free(r10bio, conf); 223 } 224 225 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 226 { 227 int i; 228 229 for (i = 0; i < conf->copies; i++) { 230 struct bio **bio = & r10_bio->devs[i].bio; 231 if (!BIO_SPECIAL(*bio)) 232 bio_put(*bio); 233 *bio = NULL; 234 bio = &r10_bio->devs[i].repl_bio; 235 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 236 bio_put(*bio); 237 *bio = NULL; 238 } 239 } 240 241 static void free_r10bio(struct r10bio *r10_bio) 242 { 243 struct r10conf *conf = r10_bio->mddev->private; 244 245 put_all_bios(conf, r10_bio); 246 mempool_free(r10_bio, conf->r10bio_pool); 247 } 248 249 static void put_buf(struct r10bio *r10_bio) 250 { 251 struct r10conf *conf = r10_bio->mddev->private; 252 253 mempool_free(r10_bio, conf->r10buf_pool); 254 255 lower_barrier(conf); 256 } 257 258 static void reschedule_retry(struct r10bio *r10_bio) 259 { 260 unsigned long flags; 261 struct mddev *mddev = r10_bio->mddev; 262 struct r10conf *conf = mddev->private; 263 264 spin_lock_irqsave(&conf->device_lock, flags); 265 list_add(&r10_bio->retry_list, &conf->retry_list); 266 conf->nr_queued ++; 267 spin_unlock_irqrestore(&conf->device_lock, flags); 268 269 /* wake up frozen array... */ 270 wake_up(&conf->wait_barrier); 271 272 md_wakeup_thread(mddev->thread); 273 } 274 275 /* 276 * raid_end_bio_io() is called when we have finished servicing a mirrored 277 * operation and are ready to return a success/failure code to the buffer 278 * cache layer. 279 */ 280 static void raid_end_bio_io(struct r10bio *r10_bio) 281 { 282 struct bio *bio = r10_bio->master_bio; 283 int done; 284 struct r10conf *conf = r10_bio->mddev->private; 285 286 if (bio->bi_phys_segments) { 287 unsigned long flags; 288 spin_lock_irqsave(&conf->device_lock, flags); 289 bio->bi_phys_segments--; 290 done = (bio->bi_phys_segments == 0); 291 spin_unlock_irqrestore(&conf->device_lock, flags); 292 } else 293 done = 1; 294 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 295 clear_bit(BIO_UPTODATE, &bio->bi_flags); 296 if (done) { 297 bio_endio(bio, 0); 298 /* 299 * Wake up any possible resync thread that waits for the device 300 * to go idle. 301 */ 302 allow_barrier(conf); 303 } 304 free_r10bio(r10_bio); 305 } 306 307 /* 308 * Update disk head position estimator based on IRQ completion info. 309 */ 310 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 311 { 312 struct r10conf *conf = r10_bio->mddev->private; 313 314 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 315 r10_bio->devs[slot].addr + (r10_bio->sectors); 316 } 317 318 /* 319 * Find the disk number which triggered given bio 320 */ 321 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 322 struct bio *bio, int *slotp, int *replp) 323 { 324 int slot; 325 int repl = 0; 326 327 for (slot = 0; slot < conf->copies; slot++) { 328 if (r10_bio->devs[slot].bio == bio) 329 break; 330 if (r10_bio->devs[slot].repl_bio == bio) { 331 repl = 1; 332 break; 333 } 334 } 335 336 BUG_ON(slot == conf->copies); 337 update_head_pos(slot, r10_bio); 338 339 if (slotp) 340 *slotp = slot; 341 if (replp) 342 *replp = repl; 343 return r10_bio->devs[slot].devnum; 344 } 345 346 static void raid10_end_read_request(struct bio *bio, int error) 347 { 348 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 349 struct r10bio *r10_bio = bio->bi_private; 350 int slot, dev; 351 struct md_rdev *rdev; 352 struct r10conf *conf = r10_bio->mddev->private; 353 354 355 slot = r10_bio->read_slot; 356 dev = r10_bio->devs[slot].devnum; 357 rdev = r10_bio->devs[slot].rdev; 358 /* 359 * this branch is our 'one mirror IO has finished' event handler: 360 */ 361 update_head_pos(slot, r10_bio); 362 363 if (uptodate) { 364 /* 365 * Set R10BIO_Uptodate in our master bio, so that 366 * we will return a good error code to the higher 367 * levels even if IO on some other mirrored buffer fails. 368 * 369 * The 'master' represents the composite IO operation to 370 * user-side. So if something waits for IO, then it will 371 * wait for the 'master' bio. 372 */ 373 set_bit(R10BIO_Uptodate, &r10_bio->state); 374 } else { 375 /* If all other devices that store this block have 376 * failed, we want to return the error upwards rather 377 * than fail the last device. Here we redefine 378 * "uptodate" to mean "Don't want to retry" 379 */ 380 unsigned long flags; 381 spin_lock_irqsave(&conf->device_lock, flags); 382 if (!enough(conf, rdev->raid_disk)) 383 uptodate = 1; 384 spin_unlock_irqrestore(&conf->device_lock, flags); 385 } 386 if (uptodate) { 387 raid_end_bio_io(r10_bio); 388 rdev_dec_pending(rdev, conf->mddev); 389 } else { 390 /* 391 * oops, read error - keep the refcount on the rdev 392 */ 393 char b[BDEVNAME_SIZE]; 394 printk_ratelimited(KERN_ERR 395 "md/raid10:%s: %s: rescheduling sector %llu\n", 396 mdname(conf->mddev), 397 bdevname(rdev->bdev, b), 398 (unsigned long long)r10_bio->sector); 399 set_bit(R10BIO_ReadError, &r10_bio->state); 400 reschedule_retry(r10_bio); 401 } 402 } 403 404 static void close_write(struct r10bio *r10_bio) 405 { 406 /* clear the bitmap if all writes complete successfully */ 407 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 408 r10_bio->sectors, 409 !test_bit(R10BIO_Degraded, &r10_bio->state), 410 0); 411 md_write_end(r10_bio->mddev); 412 } 413 414 static void one_write_done(struct r10bio *r10_bio) 415 { 416 if (atomic_dec_and_test(&r10_bio->remaining)) { 417 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 418 reschedule_retry(r10_bio); 419 else { 420 close_write(r10_bio); 421 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 422 reschedule_retry(r10_bio); 423 else 424 raid_end_bio_io(r10_bio); 425 } 426 } 427 } 428 429 static void raid10_end_write_request(struct bio *bio, int error) 430 { 431 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 432 struct r10bio *r10_bio = bio->bi_private; 433 int dev; 434 int dec_rdev = 1; 435 struct r10conf *conf = r10_bio->mddev->private; 436 int slot, repl; 437 struct md_rdev *rdev = NULL; 438 439 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 440 441 if (repl) 442 rdev = conf->mirrors[dev].replacement; 443 if (!rdev) { 444 smp_rmb(); 445 repl = 0; 446 rdev = conf->mirrors[dev].rdev; 447 } 448 /* 449 * this branch is our 'one mirror IO has finished' event handler: 450 */ 451 if (!uptodate) { 452 if (repl) 453 /* Never record new bad blocks to replacement, 454 * just fail it. 455 */ 456 md_error(rdev->mddev, rdev); 457 else { 458 set_bit(WriteErrorSeen, &rdev->flags); 459 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 460 set_bit(MD_RECOVERY_NEEDED, 461 &rdev->mddev->recovery); 462 set_bit(R10BIO_WriteError, &r10_bio->state); 463 dec_rdev = 0; 464 } 465 } else { 466 /* 467 * Set R10BIO_Uptodate in our master bio, so that 468 * we will return a good error code for to the higher 469 * levels even if IO on some other mirrored buffer fails. 470 * 471 * The 'master' represents the composite IO operation to 472 * user-side. So if something waits for IO, then it will 473 * wait for the 'master' bio. 474 */ 475 sector_t first_bad; 476 int bad_sectors; 477 478 set_bit(R10BIO_Uptodate, &r10_bio->state); 479 480 /* Maybe we can clear some bad blocks. */ 481 if (is_badblock(rdev, 482 r10_bio->devs[slot].addr, 483 r10_bio->sectors, 484 &first_bad, &bad_sectors)) { 485 bio_put(bio); 486 if (repl) 487 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 488 else 489 r10_bio->devs[slot].bio = IO_MADE_GOOD; 490 dec_rdev = 0; 491 set_bit(R10BIO_MadeGood, &r10_bio->state); 492 } 493 } 494 495 /* 496 * 497 * Let's see if all mirrored write operations have finished 498 * already. 499 */ 500 one_write_done(r10_bio); 501 if (dec_rdev) 502 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 503 } 504 505 /* 506 * RAID10 layout manager 507 * As well as the chunksize and raid_disks count, there are two 508 * parameters: near_copies and far_copies. 509 * near_copies * far_copies must be <= raid_disks. 510 * Normally one of these will be 1. 511 * If both are 1, we get raid0. 512 * If near_copies == raid_disks, we get raid1. 513 * 514 * Chunks are laid out in raid0 style with near_copies copies of the 515 * first chunk, followed by near_copies copies of the next chunk and 516 * so on. 517 * If far_copies > 1, then after 1/far_copies of the array has been assigned 518 * as described above, we start again with a device offset of near_copies. 519 * So we effectively have another copy of the whole array further down all 520 * the drives, but with blocks on different drives. 521 * With this layout, and block is never stored twice on the one device. 522 * 523 * raid10_find_phys finds the sector offset of a given virtual sector 524 * on each device that it is on. 525 * 526 * raid10_find_virt does the reverse mapping, from a device and a 527 * sector offset to a virtual address 528 */ 529 530 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 531 { 532 int n,f; 533 sector_t sector; 534 sector_t chunk; 535 sector_t stripe; 536 int dev; 537 int slot = 0; 538 539 /* now calculate first sector/dev */ 540 chunk = r10bio->sector >> geo->chunk_shift; 541 sector = r10bio->sector & geo->chunk_mask; 542 543 chunk *= geo->near_copies; 544 stripe = chunk; 545 dev = sector_div(stripe, geo->raid_disks); 546 if (geo->far_offset) 547 stripe *= geo->far_copies; 548 549 sector += stripe << geo->chunk_shift; 550 551 /* and calculate all the others */ 552 for (n = 0; n < geo->near_copies; n++) { 553 int d = dev; 554 sector_t s = sector; 555 r10bio->devs[slot].addr = sector; 556 r10bio->devs[slot].devnum = d; 557 slot++; 558 559 for (f = 1; f < geo->far_copies; f++) { 560 d += geo->near_copies; 561 if (d >= geo->raid_disks) 562 d -= geo->raid_disks; 563 s += geo->stride; 564 r10bio->devs[slot].devnum = d; 565 r10bio->devs[slot].addr = s; 566 slot++; 567 } 568 dev++; 569 if (dev >= geo->raid_disks) { 570 dev = 0; 571 sector += (geo->chunk_mask + 1); 572 } 573 } 574 } 575 576 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 577 { 578 struct geom *geo = &conf->geo; 579 580 if (conf->reshape_progress != MaxSector && 581 ((r10bio->sector >= conf->reshape_progress) != 582 conf->mddev->reshape_backwards)) { 583 set_bit(R10BIO_Previous, &r10bio->state); 584 geo = &conf->prev; 585 } else 586 clear_bit(R10BIO_Previous, &r10bio->state); 587 588 __raid10_find_phys(geo, r10bio); 589 } 590 591 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 592 { 593 sector_t offset, chunk, vchunk; 594 /* Never use conf->prev as this is only called during resync 595 * or recovery, so reshape isn't happening 596 */ 597 struct geom *geo = &conf->geo; 598 599 offset = sector & geo->chunk_mask; 600 if (geo->far_offset) { 601 int fc; 602 chunk = sector >> geo->chunk_shift; 603 fc = sector_div(chunk, geo->far_copies); 604 dev -= fc * geo->near_copies; 605 if (dev < 0) 606 dev += geo->raid_disks; 607 } else { 608 while (sector >= geo->stride) { 609 sector -= geo->stride; 610 if (dev < geo->near_copies) 611 dev += geo->raid_disks - geo->near_copies; 612 else 613 dev -= geo->near_copies; 614 } 615 chunk = sector >> geo->chunk_shift; 616 } 617 vchunk = chunk * geo->raid_disks + dev; 618 sector_div(vchunk, geo->near_copies); 619 return (vchunk << geo->chunk_shift) + offset; 620 } 621 622 /** 623 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 624 * @q: request queue 625 * @bvm: properties of new bio 626 * @biovec: the request that could be merged to it. 627 * 628 * Return amount of bytes we can accept at this offset 629 * This requires checking for end-of-chunk if near_copies != raid_disks, 630 * and for subordinate merge_bvec_fns if merge_check_needed. 631 */ 632 static int raid10_mergeable_bvec(struct request_queue *q, 633 struct bvec_merge_data *bvm, 634 struct bio_vec *biovec) 635 { 636 struct mddev *mddev = q->queuedata; 637 struct r10conf *conf = mddev->private; 638 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 639 int max; 640 unsigned int chunk_sectors; 641 unsigned int bio_sectors = bvm->bi_size >> 9; 642 struct geom *geo = &conf->geo; 643 644 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1; 645 if (conf->reshape_progress != MaxSector && 646 ((sector >= conf->reshape_progress) != 647 conf->mddev->reshape_backwards)) 648 geo = &conf->prev; 649 650 if (geo->near_copies < geo->raid_disks) { 651 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) 652 + bio_sectors)) << 9; 653 if (max < 0) 654 /* bio_add cannot handle a negative return */ 655 max = 0; 656 if (max <= biovec->bv_len && bio_sectors == 0) 657 return biovec->bv_len; 658 } else 659 max = biovec->bv_len; 660 661 if (mddev->merge_check_needed) { 662 struct { 663 struct r10bio r10_bio; 664 struct r10dev devs[conf->copies]; 665 } on_stack; 666 struct r10bio *r10_bio = &on_stack.r10_bio; 667 int s; 668 if (conf->reshape_progress != MaxSector) { 669 /* Cannot give any guidance during reshape */ 670 if (max <= biovec->bv_len && bio_sectors == 0) 671 return biovec->bv_len; 672 return 0; 673 } 674 r10_bio->sector = sector; 675 raid10_find_phys(conf, r10_bio); 676 rcu_read_lock(); 677 for (s = 0; s < conf->copies; s++) { 678 int disk = r10_bio->devs[s].devnum; 679 struct md_rdev *rdev = rcu_dereference( 680 conf->mirrors[disk].rdev); 681 if (rdev && !test_bit(Faulty, &rdev->flags)) { 682 struct request_queue *q = 683 bdev_get_queue(rdev->bdev); 684 if (q->merge_bvec_fn) { 685 bvm->bi_sector = r10_bio->devs[s].addr 686 + rdev->data_offset; 687 bvm->bi_bdev = rdev->bdev; 688 max = min(max, q->merge_bvec_fn( 689 q, bvm, biovec)); 690 } 691 } 692 rdev = rcu_dereference(conf->mirrors[disk].replacement); 693 if (rdev && !test_bit(Faulty, &rdev->flags)) { 694 struct request_queue *q = 695 bdev_get_queue(rdev->bdev); 696 if (q->merge_bvec_fn) { 697 bvm->bi_sector = r10_bio->devs[s].addr 698 + rdev->data_offset; 699 bvm->bi_bdev = rdev->bdev; 700 max = min(max, q->merge_bvec_fn( 701 q, bvm, biovec)); 702 } 703 } 704 } 705 rcu_read_unlock(); 706 } 707 return max; 708 } 709 710 /* 711 * This routine returns the disk from which the requested read should 712 * be done. There is a per-array 'next expected sequential IO' sector 713 * number - if this matches on the next IO then we use the last disk. 714 * There is also a per-disk 'last know head position' sector that is 715 * maintained from IRQ contexts, both the normal and the resync IO 716 * completion handlers update this position correctly. If there is no 717 * perfect sequential match then we pick the disk whose head is closest. 718 * 719 * If there are 2 mirrors in the same 2 devices, performance degrades 720 * because position is mirror, not device based. 721 * 722 * The rdev for the device selected will have nr_pending incremented. 723 */ 724 725 /* 726 * FIXME: possibly should rethink readbalancing and do it differently 727 * depending on near_copies / far_copies geometry. 728 */ 729 static struct md_rdev *read_balance(struct r10conf *conf, 730 struct r10bio *r10_bio, 731 int *max_sectors) 732 { 733 const sector_t this_sector = r10_bio->sector; 734 int disk, slot; 735 int sectors = r10_bio->sectors; 736 int best_good_sectors; 737 sector_t new_distance, best_dist; 738 struct md_rdev *best_rdev, *rdev = NULL; 739 int do_balance; 740 int best_slot; 741 struct geom *geo = &conf->geo; 742 743 raid10_find_phys(conf, r10_bio); 744 rcu_read_lock(); 745 retry: 746 sectors = r10_bio->sectors; 747 best_slot = -1; 748 best_rdev = NULL; 749 best_dist = MaxSector; 750 best_good_sectors = 0; 751 do_balance = 1; 752 /* 753 * Check if we can balance. We can balance on the whole 754 * device if no resync is going on (recovery is ok), or below 755 * the resync window. We take the first readable disk when 756 * above the resync window. 757 */ 758 if (conf->mddev->recovery_cp < MaxSector 759 && (this_sector + sectors >= conf->next_resync)) 760 do_balance = 0; 761 762 for (slot = 0; slot < conf->copies ; slot++) { 763 sector_t first_bad; 764 int bad_sectors; 765 sector_t dev_sector; 766 767 if (r10_bio->devs[slot].bio == IO_BLOCKED) 768 continue; 769 disk = r10_bio->devs[slot].devnum; 770 rdev = rcu_dereference(conf->mirrors[disk].replacement); 771 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 772 test_bit(Unmerged, &rdev->flags) || 773 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 774 rdev = rcu_dereference(conf->mirrors[disk].rdev); 775 if (rdev == NULL || 776 test_bit(Faulty, &rdev->flags) || 777 test_bit(Unmerged, &rdev->flags)) 778 continue; 779 if (!test_bit(In_sync, &rdev->flags) && 780 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 781 continue; 782 783 dev_sector = r10_bio->devs[slot].addr; 784 if (is_badblock(rdev, dev_sector, sectors, 785 &first_bad, &bad_sectors)) { 786 if (best_dist < MaxSector) 787 /* Already have a better slot */ 788 continue; 789 if (first_bad <= dev_sector) { 790 /* Cannot read here. If this is the 791 * 'primary' device, then we must not read 792 * beyond 'bad_sectors' from another device. 793 */ 794 bad_sectors -= (dev_sector - first_bad); 795 if (!do_balance && sectors > bad_sectors) 796 sectors = bad_sectors; 797 if (best_good_sectors > sectors) 798 best_good_sectors = sectors; 799 } else { 800 sector_t good_sectors = 801 first_bad - dev_sector; 802 if (good_sectors > best_good_sectors) { 803 best_good_sectors = good_sectors; 804 best_slot = slot; 805 best_rdev = rdev; 806 } 807 if (!do_balance) 808 /* Must read from here */ 809 break; 810 } 811 continue; 812 } else 813 best_good_sectors = sectors; 814 815 if (!do_balance) 816 break; 817 818 /* This optimisation is debatable, and completely destroys 819 * sequential read speed for 'far copies' arrays. So only 820 * keep it for 'near' arrays, and review those later. 821 */ 822 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 823 break; 824 825 /* for far > 1 always use the lowest address */ 826 if (geo->far_copies > 1) 827 new_distance = r10_bio->devs[slot].addr; 828 else 829 new_distance = abs(r10_bio->devs[slot].addr - 830 conf->mirrors[disk].head_position); 831 if (new_distance < best_dist) { 832 best_dist = new_distance; 833 best_slot = slot; 834 best_rdev = rdev; 835 } 836 } 837 if (slot >= conf->copies) { 838 slot = best_slot; 839 rdev = best_rdev; 840 } 841 842 if (slot >= 0) { 843 atomic_inc(&rdev->nr_pending); 844 if (test_bit(Faulty, &rdev->flags)) { 845 /* Cannot risk returning a device that failed 846 * before we inc'ed nr_pending 847 */ 848 rdev_dec_pending(rdev, conf->mddev); 849 goto retry; 850 } 851 r10_bio->read_slot = slot; 852 } else 853 rdev = NULL; 854 rcu_read_unlock(); 855 *max_sectors = best_good_sectors; 856 857 return rdev; 858 } 859 860 int md_raid10_congested(struct mddev *mddev, int bits) 861 { 862 struct r10conf *conf = mddev->private; 863 int i, ret = 0; 864 865 if ((bits & (1 << BDI_async_congested)) && 866 conf->pending_count >= max_queued_requests) 867 return 1; 868 869 rcu_read_lock(); 870 for (i = 0; 871 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 872 && ret == 0; 873 i++) { 874 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 875 if (rdev && !test_bit(Faulty, &rdev->flags)) { 876 struct request_queue *q = bdev_get_queue(rdev->bdev); 877 878 ret |= bdi_congested(&q->backing_dev_info, bits); 879 } 880 } 881 rcu_read_unlock(); 882 return ret; 883 } 884 EXPORT_SYMBOL_GPL(md_raid10_congested); 885 886 static int raid10_congested(void *data, int bits) 887 { 888 struct mddev *mddev = data; 889 890 return mddev_congested(mddev, bits) || 891 md_raid10_congested(mddev, bits); 892 } 893 894 static void flush_pending_writes(struct r10conf *conf) 895 { 896 /* Any writes that have been queued but are awaiting 897 * bitmap updates get flushed here. 898 */ 899 spin_lock_irq(&conf->device_lock); 900 901 if (conf->pending_bio_list.head) { 902 struct bio *bio; 903 bio = bio_list_get(&conf->pending_bio_list); 904 conf->pending_count = 0; 905 spin_unlock_irq(&conf->device_lock); 906 /* flush any pending bitmap writes to disk 907 * before proceeding w/ I/O */ 908 bitmap_unplug(conf->mddev->bitmap); 909 wake_up(&conf->wait_barrier); 910 911 while (bio) { /* submit pending writes */ 912 struct bio *next = bio->bi_next; 913 bio->bi_next = NULL; 914 generic_make_request(bio); 915 bio = next; 916 } 917 } else 918 spin_unlock_irq(&conf->device_lock); 919 } 920 921 /* Barriers.... 922 * Sometimes we need to suspend IO while we do something else, 923 * either some resync/recovery, or reconfigure the array. 924 * To do this we raise a 'barrier'. 925 * The 'barrier' is a counter that can be raised multiple times 926 * to count how many activities are happening which preclude 927 * normal IO. 928 * We can only raise the barrier if there is no pending IO. 929 * i.e. if nr_pending == 0. 930 * We choose only to raise the barrier if no-one is waiting for the 931 * barrier to go down. This means that as soon as an IO request 932 * is ready, no other operations which require a barrier will start 933 * until the IO request has had a chance. 934 * 935 * So: regular IO calls 'wait_barrier'. When that returns there 936 * is no backgroup IO happening, It must arrange to call 937 * allow_barrier when it has finished its IO. 938 * backgroup IO calls must call raise_barrier. Once that returns 939 * there is no normal IO happeing. It must arrange to call 940 * lower_barrier when the particular background IO completes. 941 */ 942 943 static void raise_barrier(struct r10conf *conf, int force) 944 { 945 BUG_ON(force && !conf->barrier); 946 spin_lock_irq(&conf->resync_lock); 947 948 /* Wait until no block IO is waiting (unless 'force') */ 949 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 950 conf->resync_lock, ); 951 952 /* block any new IO from starting */ 953 conf->barrier++; 954 955 /* Now wait for all pending IO to complete */ 956 wait_event_lock_irq(conf->wait_barrier, 957 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 958 conf->resync_lock, ); 959 960 spin_unlock_irq(&conf->resync_lock); 961 } 962 963 static void lower_barrier(struct r10conf *conf) 964 { 965 unsigned long flags; 966 spin_lock_irqsave(&conf->resync_lock, flags); 967 conf->barrier--; 968 spin_unlock_irqrestore(&conf->resync_lock, flags); 969 wake_up(&conf->wait_barrier); 970 } 971 972 static void wait_barrier(struct r10conf *conf) 973 { 974 spin_lock_irq(&conf->resync_lock); 975 if (conf->barrier) { 976 conf->nr_waiting++; 977 /* Wait for the barrier to drop. 978 * However if there are already pending 979 * requests (preventing the barrier from 980 * rising completely), and the 981 * pre-process bio queue isn't empty, 982 * then don't wait, as we need to empty 983 * that queue to get the nr_pending 984 * count down. 985 */ 986 wait_event_lock_irq(conf->wait_barrier, 987 !conf->barrier || 988 (conf->nr_pending && 989 current->bio_list && 990 !bio_list_empty(current->bio_list)), 991 conf->resync_lock, 992 ); 993 conf->nr_waiting--; 994 } 995 conf->nr_pending++; 996 spin_unlock_irq(&conf->resync_lock); 997 } 998 999 static void allow_barrier(struct r10conf *conf) 1000 { 1001 unsigned long flags; 1002 spin_lock_irqsave(&conf->resync_lock, flags); 1003 conf->nr_pending--; 1004 spin_unlock_irqrestore(&conf->resync_lock, flags); 1005 wake_up(&conf->wait_barrier); 1006 } 1007 1008 static void freeze_array(struct r10conf *conf) 1009 { 1010 /* stop syncio and normal IO and wait for everything to 1011 * go quiet. 1012 * We increment barrier and nr_waiting, and then 1013 * wait until nr_pending match nr_queued+1 1014 * This is called in the context of one normal IO request 1015 * that has failed. Thus any sync request that might be pending 1016 * will be blocked by nr_pending, and we need to wait for 1017 * pending IO requests to complete or be queued for re-try. 1018 * Thus the number queued (nr_queued) plus this request (1) 1019 * must match the number of pending IOs (nr_pending) before 1020 * we continue. 1021 */ 1022 spin_lock_irq(&conf->resync_lock); 1023 conf->barrier++; 1024 conf->nr_waiting++; 1025 wait_event_lock_irq(conf->wait_barrier, 1026 conf->nr_pending == conf->nr_queued+1, 1027 conf->resync_lock, 1028 flush_pending_writes(conf)); 1029 1030 spin_unlock_irq(&conf->resync_lock); 1031 } 1032 1033 static void unfreeze_array(struct r10conf *conf) 1034 { 1035 /* reverse the effect of the freeze */ 1036 spin_lock_irq(&conf->resync_lock); 1037 conf->barrier--; 1038 conf->nr_waiting--; 1039 wake_up(&conf->wait_barrier); 1040 spin_unlock_irq(&conf->resync_lock); 1041 } 1042 1043 static sector_t choose_data_offset(struct r10bio *r10_bio, 1044 struct md_rdev *rdev) 1045 { 1046 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1047 test_bit(R10BIO_Previous, &r10_bio->state)) 1048 return rdev->data_offset; 1049 else 1050 return rdev->new_data_offset; 1051 } 1052 1053 static void make_request(struct mddev *mddev, struct bio * bio) 1054 { 1055 struct r10conf *conf = mddev->private; 1056 struct r10bio *r10_bio; 1057 struct bio *read_bio; 1058 int i; 1059 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1060 int chunk_sects = chunk_mask + 1; 1061 const int rw = bio_data_dir(bio); 1062 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1063 const unsigned long do_fua = (bio->bi_rw & REQ_FUA); 1064 unsigned long flags; 1065 struct md_rdev *blocked_rdev; 1066 int sectors_handled; 1067 int max_sectors; 1068 int sectors; 1069 1070 if (unlikely(bio->bi_rw & REQ_FLUSH)) { 1071 md_flush_request(mddev, bio); 1072 return; 1073 } 1074 1075 /* If this request crosses a chunk boundary, we need to 1076 * split it. This will only happen for 1 PAGE (or less) requests. 1077 */ 1078 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9) 1079 > chunk_sects 1080 && (conf->geo.near_copies < conf->geo.raid_disks 1081 || conf->prev.near_copies < conf->prev.raid_disks))) { 1082 struct bio_pair *bp; 1083 /* Sanity check -- queue functions should prevent this happening */ 1084 if (bio->bi_vcnt != 1 || 1085 bio->bi_idx != 0) 1086 goto bad_map; 1087 /* This is a one page bio that upper layers 1088 * refuse to split for us, so we need to split it. 1089 */ 1090 bp = bio_split(bio, 1091 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 1092 1093 /* Each of these 'make_request' calls will call 'wait_barrier'. 1094 * If the first succeeds but the second blocks due to the resync 1095 * thread raising the barrier, we will deadlock because the 1096 * IO to the underlying device will be queued in generic_make_request 1097 * and will never complete, so will never reduce nr_pending. 1098 * So increment nr_waiting here so no new raise_barriers will 1099 * succeed, and so the second wait_barrier cannot block. 1100 */ 1101 spin_lock_irq(&conf->resync_lock); 1102 conf->nr_waiting++; 1103 spin_unlock_irq(&conf->resync_lock); 1104 1105 make_request(mddev, &bp->bio1); 1106 make_request(mddev, &bp->bio2); 1107 1108 spin_lock_irq(&conf->resync_lock); 1109 conf->nr_waiting--; 1110 wake_up(&conf->wait_barrier); 1111 spin_unlock_irq(&conf->resync_lock); 1112 1113 bio_pair_release(bp); 1114 return; 1115 bad_map: 1116 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 1117 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 1118 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 1119 1120 bio_io_error(bio); 1121 return; 1122 } 1123 1124 md_write_start(mddev, bio); 1125 1126 /* 1127 * Register the new request and wait if the reconstruction 1128 * thread has put up a bar for new requests. 1129 * Continue immediately if no resync is active currently. 1130 */ 1131 wait_barrier(conf); 1132 1133 sectors = bio->bi_size >> 9; 1134 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1135 bio->bi_sector < conf->reshape_progress && 1136 bio->bi_sector + sectors > conf->reshape_progress) { 1137 /* IO spans the reshape position. Need to wait for 1138 * reshape to pass 1139 */ 1140 allow_barrier(conf); 1141 wait_event(conf->wait_barrier, 1142 conf->reshape_progress <= bio->bi_sector || 1143 conf->reshape_progress >= bio->bi_sector + sectors); 1144 wait_barrier(conf); 1145 } 1146 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1147 bio_data_dir(bio) == WRITE && 1148 (mddev->reshape_backwards 1149 ? (bio->bi_sector < conf->reshape_safe && 1150 bio->bi_sector + sectors > conf->reshape_progress) 1151 : (bio->bi_sector + sectors > conf->reshape_safe && 1152 bio->bi_sector < conf->reshape_progress))) { 1153 /* Need to update reshape_position in metadata */ 1154 mddev->reshape_position = conf->reshape_progress; 1155 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1156 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1157 md_wakeup_thread(mddev->thread); 1158 wait_event(mddev->sb_wait, 1159 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1160 1161 conf->reshape_safe = mddev->reshape_position; 1162 } 1163 1164 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1165 1166 r10_bio->master_bio = bio; 1167 r10_bio->sectors = sectors; 1168 1169 r10_bio->mddev = mddev; 1170 r10_bio->sector = bio->bi_sector; 1171 r10_bio->state = 0; 1172 1173 /* We might need to issue multiple reads to different 1174 * devices if there are bad blocks around, so we keep 1175 * track of the number of reads in bio->bi_phys_segments. 1176 * If this is 0, there is only one r10_bio and no locking 1177 * will be needed when the request completes. If it is 1178 * non-zero, then it is the number of not-completed requests. 1179 */ 1180 bio->bi_phys_segments = 0; 1181 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1182 1183 if (rw == READ) { 1184 /* 1185 * read balancing logic: 1186 */ 1187 struct md_rdev *rdev; 1188 int slot; 1189 1190 read_again: 1191 rdev = read_balance(conf, r10_bio, &max_sectors); 1192 if (!rdev) { 1193 raid_end_bio_io(r10_bio); 1194 return; 1195 } 1196 slot = r10_bio->read_slot; 1197 1198 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1199 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, 1200 max_sectors); 1201 1202 r10_bio->devs[slot].bio = read_bio; 1203 r10_bio->devs[slot].rdev = rdev; 1204 1205 read_bio->bi_sector = r10_bio->devs[slot].addr + 1206 choose_data_offset(r10_bio, rdev); 1207 read_bio->bi_bdev = rdev->bdev; 1208 read_bio->bi_end_io = raid10_end_read_request; 1209 read_bio->bi_rw = READ | do_sync; 1210 read_bio->bi_private = r10_bio; 1211 1212 if (max_sectors < r10_bio->sectors) { 1213 /* Could not read all from this device, so we will 1214 * need another r10_bio. 1215 */ 1216 sectors_handled = (r10_bio->sectors + max_sectors 1217 - bio->bi_sector); 1218 r10_bio->sectors = max_sectors; 1219 spin_lock_irq(&conf->device_lock); 1220 if (bio->bi_phys_segments == 0) 1221 bio->bi_phys_segments = 2; 1222 else 1223 bio->bi_phys_segments++; 1224 spin_unlock(&conf->device_lock); 1225 /* Cannot call generic_make_request directly 1226 * as that will be queued in __generic_make_request 1227 * and subsequent mempool_alloc might block 1228 * waiting for it. so hand bio over to raid10d. 1229 */ 1230 reschedule_retry(r10_bio); 1231 1232 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1233 1234 r10_bio->master_bio = bio; 1235 r10_bio->sectors = ((bio->bi_size >> 9) 1236 - sectors_handled); 1237 r10_bio->state = 0; 1238 r10_bio->mddev = mddev; 1239 r10_bio->sector = bio->bi_sector + sectors_handled; 1240 goto read_again; 1241 } else 1242 generic_make_request(read_bio); 1243 return; 1244 } 1245 1246 /* 1247 * WRITE: 1248 */ 1249 if (conf->pending_count >= max_queued_requests) { 1250 md_wakeup_thread(mddev->thread); 1251 wait_event(conf->wait_barrier, 1252 conf->pending_count < max_queued_requests); 1253 } 1254 /* first select target devices under rcu_lock and 1255 * inc refcount on their rdev. Record them by setting 1256 * bios[x] to bio 1257 * If there are known/acknowledged bad blocks on any device 1258 * on which we have seen a write error, we want to avoid 1259 * writing to those blocks. This potentially requires several 1260 * writes to write around the bad blocks. Each set of writes 1261 * gets its own r10_bio with a set of bios attached. The number 1262 * of r10_bios is recored in bio->bi_phys_segments just as with 1263 * the read case. 1264 */ 1265 1266 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1267 raid10_find_phys(conf, r10_bio); 1268 retry_write: 1269 blocked_rdev = NULL; 1270 rcu_read_lock(); 1271 max_sectors = r10_bio->sectors; 1272 1273 for (i = 0; i < conf->copies; i++) { 1274 int d = r10_bio->devs[i].devnum; 1275 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1276 struct md_rdev *rrdev = rcu_dereference( 1277 conf->mirrors[d].replacement); 1278 if (rdev == rrdev) 1279 rrdev = NULL; 1280 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1281 atomic_inc(&rdev->nr_pending); 1282 blocked_rdev = rdev; 1283 break; 1284 } 1285 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1286 atomic_inc(&rrdev->nr_pending); 1287 blocked_rdev = rrdev; 1288 break; 1289 } 1290 if (rrdev && (test_bit(Faulty, &rrdev->flags) 1291 || test_bit(Unmerged, &rrdev->flags))) 1292 rrdev = NULL; 1293 1294 r10_bio->devs[i].bio = NULL; 1295 r10_bio->devs[i].repl_bio = NULL; 1296 if (!rdev || test_bit(Faulty, &rdev->flags) || 1297 test_bit(Unmerged, &rdev->flags)) { 1298 set_bit(R10BIO_Degraded, &r10_bio->state); 1299 continue; 1300 } 1301 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1302 sector_t first_bad; 1303 sector_t dev_sector = r10_bio->devs[i].addr; 1304 int bad_sectors; 1305 int is_bad; 1306 1307 is_bad = is_badblock(rdev, dev_sector, 1308 max_sectors, 1309 &first_bad, &bad_sectors); 1310 if (is_bad < 0) { 1311 /* Mustn't write here until the bad block 1312 * is acknowledged 1313 */ 1314 atomic_inc(&rdev->nr_pending); 1315 set_bit(BlockedBadBlocks, &rdev->flags); 1316 blocked_rdev = rdev; 1317 break; 1318 } 1319 if (is_bad && first_bad <= dev_sector) { 1320 /* Cannot write here at all */ 1321 bad_sectors -= (dev_sector - first_bad); 1322 if (bad_sectors < max_sectors) 1323 /* Mustn't write more than bad_sectors 1324 * to other devices yet 1325 */ 1326 max_sectors = bad_sectors; 1327 /* We don't set R10BIO_Degraded as that 1328 * only applies if the disk is missing, 1329 * so it might be re-added, and we want to 1330 * know to recover this chunk. 1331 * In this case the device is here, and the 1332 * fact that this chunk is not in-sync is 1333 * recorded in the bad block log. 1334 */ 1335 continue; 1336 } 1337 if (is_bad) { 1338 int good_sectors = first_bad - dev_sector; 1339 if (good_sectors < max_sectors) 1340 max_sectors = good_sectors; 1341 } 1342 } 1343 r10_bio->devs[i].bio = bio; 1344 atomic_inc(&rdev->nr_pending); 1345 if (rrdev) { 1346 r10_bio->devs[i].repl_bio = bio; 1347 atomic_inc(&rrdev->nr_pending); 1348 } 1349 } 1350 rcu_read_unlock(); 1351 1352 if (unlikely(blocked_rdev)) { 1353 /* Have to wait for this device to get unblocked, then retry */ 1354 int j; 1355 int d; 1356 1357 for (j = 0; j < i; j++) { 1358 if (r10_bio->devs[j].bio) { 1359 d = r10_bio->devs[j].devnum; 1360 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1361 } 1362 if (r10_bio->devs[j].repl_bio) { 1363 struct md_rdev *rdev; 1364 d = r10_bio->devs[j].devnum; 1365 rdev = conf->mirrors[d].replacement; 1366 if (!rdev) { 1367 /* Race with remove_disk */ 1368 smp_mb(); 1369 rdev = conf->mirrors[d].rdev; 1370 } 1371 rdev_dec_pending(rdev, mddev); 1372 } 1373 } 1374 allow_barrier(conf); 1375 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1376 wait_barrier(conf); 1377 goto retry_write; 1378 } 1379 1380 if (max_sectors < r10_bio->sectors) { 1381 /* We are splitting this into multiple parts, so 1382 * we need to prepare for allocating another r10_bio. 1383 */ 1384 r10_bio->sectors = max_sectors; 1385 spin_lock_irq(&conf->device_lock); 1386 if (bio->bi_phys_segments == 0) 1387 bio->bi_phys_segments = 2; 1388 else 1389 bio->bi_phys_segments++; 1390 spin_unlock_irq(&conf->device_lock); 1391 } 1392 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; 1393 1394 atomic_set(&r10_bio->remaining, 1); 1395 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1396 1397 for (i = 0; i < conf->copies; i++) { 1398 struct bio *mbio; 1399 int d = r10_bio->devs[i].devnum; 1400 if (!r10_bio->devs[i].bio) 1401 continue; 1402 1403 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1404 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1405 max_sectors); 1406 r10_bio->devs[i].bio = mbio; 1407 1408 mbio->bi_sector = (r10_bio->devs[i].addr+ 1409 choose_data_offset(r10_bio, 1410 conf->mirrors[d].rdev)); 1411 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1412 mbio->bi_end_io = raid10_end_write_request; 1413 mbio->bi_rw = WRITE | do_sync | do_fua; 1414 mbio->bi_private = r10_bio; 1415 1416 atomic_inc(&r10_bio->remaining); 1417 spin_lock_irqsave(&conf->device_lock, flags); 1418 bio_list_add(&conf->pending_bio_list, mbio); 1419 conf->pending_count++; 1420 spin_unlock_irqrestore(&conf->device_lock, flags); 1421 if (!mddev_check_plugged(mddev)) 1422 md_wakeup_thread(mddev->thread); 1423 1424 if (!r10_bio->devs[i].repl_bio) 1425 continue; 1426 1427 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1428 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, 1429 max_sectors); 1430 r10_bio->devs[i].repl_bio = mbio; 1431 1432 /* We are actively writing to the original device 1433 * so it cannot disappear, so the replacement cannot 1434 * become NULL here 1435 */ 1436 mbio->bi_sector = (r10_bio->devs[i].addr + 1437 choose_data_offset( 1438 r10_bio, 1439 conf->mirrors[d].replacement)); 1440 mbio->bi_bdev = conf->mirrors[d].replacement->bdev; 1441 mbio->bi_end_io = raid10_end_write_request; 1442 mbio->bi_rw = WRITE | do_sync | do_fua; 1443 mbio->bi_private = r10_bio; 1444 1445 atomic_inc(&r10_bio->remaining); 1446 spin_lock_irqsave(&conf->device_lock, flags); 1447 bio_list_add(&conf->pending_bio_list, mbio); 1448 conf->pending_count++; 1449 spin_unlock_irqrestore(&conf->device_lock, flags); 1450 if (!mddev_check_plugged(mddev)) 1451 md_wakeup_thread(mddev->thread); 1452 } 1453 1454 /* Don't remove the bias on 'remaining' (one_write_done) until 1455 * after checking if we need to go around again. 1456 */ 1457 1458 if (sectors_handled < (bio->bi_size >> 9)) { 1459 one_write_done(r10_bio); 1460 /* We need another r10_bio. It has already been counted 1461 * in bio->bi_phys_segments. 1462 */ 1463 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1464 1465 r10_bio->master_bio = bio; 1466 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1467 1468 r10_bio->mddev = mddev; 1469 r10_bio->sector = bio->bi_sector + sectors_handled; 1470 r10_bio->state = 0; 1471 goto retry_write; 1472 } 1473 one_write_done(r10_bio); 1474 1475 /* In case raid10d snuck in to freeze_array */ 1476 wake_up(&conf->wait_barrier); 1477 } 1478 1479 static void status(struct seq_file *seq, struct mddev *mddev) 1480 { 1481 struct r10conf *conf = mddev->private; 1482 int i; 1483 1484 if (conf->geo.near_copies < conf->geo.raid_disks) 1485 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1486 if (conf->geo.near_copies > 1) 1487 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1488 if (conf->geo.far_copies > 1) { 1489 if (conf->geo.far_offset) 1490 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1491 else 1492 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1493 } 1494 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1495 conf->geo.raid_disks - mddev->degraded); 1496 for (i = 0; i < conf->geo.raid_disks; i++) 1497 seq_printf(seq, "%s", 1498 conf->mirrors[i].rdev && 1499 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1500 seq_printf(seq, "]"); 1501 } 1502 1503 /* check if there are enough drives for 1504 * every block to appear on atleast one. 1505 * Don't consider the device numbered 'ignore' 1506 * as we might be about to remove it. 1507 */ 1508 static int _enough(struct r10conf *conf, struct geom *geo, int ignore) 1509 { 1510 int first = 0; 1511 1512 do { 1513 int n = conf->copies; 1514 int cnt = 0; 1515 while (n--) { 1516 if (conf->mirrors[first].rdev && 1517 first != ignore) 1518 cnt++; 1519 first = (first+1) % geo->raid_disks; 1520 } 1521 if (cnt == 0) 1522 return 0; 1523 } while (first != 0); 1524 return 1; 1525 } 1526 1527 static int enough(struct r10conf *conf, int ignore) 1528 { 1529 return _enough(conf, &conf->geo, ignore) && 1530 _enough(conf, &conf->prev, ignore); 1531 } 1532 1533 static void error(struct mddev *mddev, struct md_rdev *rdev) 1534 { 1535 char b[BDEVNAME_SIZE]; 1536 struct r10conf *conf = mddev->private; 1537 1538 /* 1539 * If it is not operational, then we have already marked it as dead 1540 * else if it is the last working disks, ignore the error, let the 1541 * next level up know. 1542 * else mark the drive as failed 1543 */ 1544 if (test_bit(In_sync, &rdev->flags) 1545 && !enough(conf, rdev->raid_disk)) 1546 /* 1547 * Don't fail the drive, just return an IO error. 1548 */ 1549 return; 1550 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1551 unsigned long flags; 1552 spin_lock_irqsave(&conf->device_lock, flags); 1553 mddev->degraded++; 1554 spin_unlock_irqrestore(&conf->device_lock, flags); 1555 /* 1556 * if recovery is running, make sure it aborts. 1557 */ 1558 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1559 } 1560 set_bit(Blocked, &rdev->flags); 1561 set_bit(Faulty, &rdev->flags); 1562 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1563 printk(KERN_ALERT 1564 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1565 "md/raid10:%s: Operation continuing on %d devices.\n", 1566 mdname(mddev), bdevname(rdev->bdev, b), 1567 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1568 } 1569 1570 static void print_conf(struct r10conf *conf) 1571 { 1572 int i; 1573 struct raid10_info *tmp; 1574 1575 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1576 if (!conf) { 1577 printk(KERN_DEBUG "(!conf)\n"); 1578 return; 1579 } 1580 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1581 conf->geo.raid_disks); 1582 1583 for (i = 0; i < conf->geo.raid_disks; i++) { 1584 char b[BDEVNAME_SIZE]; 1585 tmp = conf->mirrors + i; 1586 if (tmp->rdev) 1587 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1588 i, !test_bit(In_sync, &tmp->rdev->flags), 1589 !test_bit(Faulty, &tmp->rdev->flags), 1590 bdevname(tmp->rdev->bdev,b)); 1591 } 1592 } 1593 1594 static void close_sync(struct r10conf *conf) 1595 { 1596 wait_barrier(conf); 1597 allow_barrier(conf); 1598 1599 mempool_destroy(conf->r10buf_pool); 1600 conf->r10buf_pool = NULL; 1601 } 1602 1603 static int raid10_spare_active(struct mddev *mddev) 1604 { 1605 int i; 1606 struct r10conf *conf = mddev->private; 1607 struct raid10_info *tmp; 1608 int count = 0; 1609 unsigned long flags; 1610 1611 /* 1612 * Find all non-in_sync disks within the RAID10 configuration 1613 * and mark them in_sync 1614 */ 1615 for (i = 0; i < conf->geo.raid_disks; i++) { 1616 tmp = conf->mirrors + i; 1617 if (tmp->replacement 1618 && tmp->replacement->recovery_offset == MaxSector 1619 && !test_bit(Faulty, &tmp->replacement->flags) 1620 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1621 /* Replacement has just become active */ 1622 if (!tmp->rdev 1623 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1624 count++; 1625 if (tmp->rdev) { 1626 /* Replaced device not technically faulty, 1627 * but we need to be sure it gets removed 1628 * and never re-added. 1629 */ 1630 set_bit(Faulty, &tmp->rdev->flags); 1631 sysfs_notify_dirent_safe( 1632 tmp->rdev->sysfs_state); 1633 } 1634 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1635 } else if (tmp->rdev 1636 && !test_bit(Faulty, &tmp->rdev->flags) 1637 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1638 count++; 1639 sysfs_notify_dirent(tmp->rdev->sysfs_state); 1640 } 1641 } 1642 spin_lock_irqsave(&conf->device_lock, flags); 1643 mddev->degraded -= count; 1644 spin_unlock_irqrestore(&conf->device_lock, flags); 1645 1646 print_conf(conf); 1647 return count; 1648 } 1649 1650 1651 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1652 { 1653 struct r10conf *conf = mddev->private; 1654 int err = -EEXIST; 1655 int mirror; 1656 int first = 0; 1657 int last = conf->geo.raid_disks - 1; 1658 struct request_queue *q = bdev_get_queue(rdev->bdev); 1659 1660 if (mddev->recovery_cp < MaxSector) 1661 /* only hot-add to in-sync arrays, as recovery is 1662 * very different from resync 1663 */ 1664 return -EBUSY; 1665 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1)) 1666 return -EINVAL; 1667 1668 if (rdev->raid_disk >= 0) 1669 first = last = rdev->raid_disk; 1670 1671 if (q->merge_bvec_fn) { 1672 set_bit(Unmerged, &rdev->flags); 1673 mddev->merge_check_needed = 1; 1674 } 1675 1676 if (rdev->saved_raid_disk >= first && 1677 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1678 mirror = rdev->saved_raid_disk; 1679 else 1680 mirror = first; 1681 for ( ; mirror <= last ; mirror++) { 1682 struct raid10_info *p = &conf->mirrors[mirror]; 1683 if (p->recovery_disabled == mddev->recovery_disabled) 1684 continue; 1685 if (p->rdev) { 1686 if (!test_bit(WantReplacement, &p->rdev->flags) || 1687 p->replacement != NULL) 1688 continue; 1689 clear_bit(In_sync, &rdev->flags); 1690 set_bit(Replacement, &rdev->flags); 1691 rdev->raid_disk = mirror; 1692 err = 0; 1693 disk_stack_limits(mddev->gendisk, rdev->bdev, 1694 rdev->data_offset << 9); 1695 conf->fullsync = 1; 1696 rcu_assign_pointer(p->replacement, rdev); 1697 break; 1698 } 1699 1700 disk_stack_limits(mddev->gendisk, rdev->bdev, 1701 rdev->data_offset << 9); 1702 1703 p->head_position = 0; 1704 p->recovery_disabled = mddev->recovery_disabled - 1; 1705 rdev->raid_disk = mirror; 1706 err = 0; 1707 if (rdev->saved_raid_disk != mirror) 1708 conf->fullsync = 1; 1709 rcu_assign_pointer(p->rdev, rdev); 1710 break; 1711 } 1712 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1713 /* Some requests might not have seen this new 1714 * merge_bvec_fn. We must wait for them to complete 1715 * before merging the device fully. 1716 * First we make sure any code which has tested 1717 * our function has submitted the request, then 1718 * we wait for all outstanding requests to complete. 1719 */ 1720 synchronize_sched(); 1721 raise_barrier(conf, 0); 1722 lower_barrier(conf); 1723 clear_bit(Unmerged, &rdev->flags); 1724 } 1725 md_integrity_add_rdev(rdev, mddev); 1726 print_conf(conf); 1727 return err; 1728 } 1729 1730 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1731 { 1732 struct r10conf *conf = mddev->private; 1733 int err = 0; 1734 int number = rdev->raid_disk; 1735 struct md_rdev **rdevp; 1736 struct raid10_info *p = conf->mirrors + number; 1737 1738 print_conf(conf); 1739 if (rdev == p->rdev) 1740 rdevp = &p->rdev; 1741 else if (rdev == p->replacement) 1742 rdevp = &p->replacement; 1743 else 1744 return 0; 1745 1746 if (test_bit(In_sync, &rdev->flags) || 1747 atomic_read(&rdev->nr_pending)) { 1748 err = -EBUSY; 1749 goto abort; 1750 } 1751 /* Only remove faulty devices if recovery 1752 * is not possible. 1753 */ 1754 if (!test_bit(Faulty, &rdev->flags) && 1755 mddev->recovery_disabled != p->recovery_disabled && 1756 (!p->replacement || p->replacement == rdev) && 1757 number < conf->geo.raid_disks && 1758 enough(conf, -1)) { 1759 err = -EBUSY; 1760 goto abort; 1761 } 1762 *rdevp = NULL; 1763 synchronize_rcu(); 1764 if (atomic_read(&rdev->nr_pending)) { 1765 /* lost the race, try later */ 1766 err = -EBUSY; 1767 *rdevp = rdev; 1768 goto abort; 1769 } else if (p->replacement) { 1770 /* We must have just cleared 'rdev' */ 1771 p->rdev = p->replacement; 1772 clear_bit(Replacement, &p->replacement->flags); 1773 smp_mb(); /* Make sure other CPUs may see both as identical 1774 * but will never see neither -- if they are careful. 1775 */ 1776 p->replacement = NULL; 1777 clear_bit(WantReplacement, &rdev->flags); 1778 } else 1779 /* We might have just remove the Replacement as faulty 1780 * Clear the flag just in case 1781 */ 1782 clear_bit(WantReplacement, &rdev->flags); 1783 1784 err = md_integrity_register(mddev); 1785 1786 abort: 1787 1788 print_conf(conf); 1789 return err; 1790 } 1791 1792 1793 static void end_sync_read(struct bio *bio, int error) 1794 { 1795 struct r10bio *r10_bio = bio->bi_private; 1796 struct r10conf *conf = r10_bio->mddev->private; 1797 int d; 1798 1799 if (bio == r10_bio->master_bio) { 1800 /* this is a reshape read */ 1801 d = r10_bio->read_slot; /* really the read dev */ 1802 } else 1803 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1804 1805 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1806 set_bit(R10BIO_Uptodate, &r10_bio->state); 1807 else 1808 /* The write handler will notice the lack of 1809 * R10BIO_Uptodate and record any errors etc 1810 */ 1811 atomic_add(r10_bio->sectors, 1812 &conf->mirrors[d].rdev->corrected_errors); 1813 1814 /* for reconstruct, we always reschedule after a read. 1815 * for resync, only after all reads 1816 */ 1817 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1818 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1819 atomic_dec_and_test(&r10_bio->remaining)) { 1820 /* we have read all the blocks, 1821 * do the comparison in process context in raid10d 1822 */ 1823 reschedule_retry(r10_bio); 1824 } 1825 } 1826 1827 static void end_sync_request(struct r10bio *r10_bio) 1828 { 1829 struct mddev *mddev = r10_bio->mddev; 1830 1831 while (atomic_dec_and_test(&r10_bio->remaining)) { 1832 if (r10_bio->master_bio == NULL) { 1833 /* the primary of several recovery bios */ 1834 sector_t s = r10_bio->sectors; 1835 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1836 test_bit(R10BIO_WriteError, &r10_bio->state)) 1837 reschedule_retry(r10_bio); 1838 else 1839 put_buf(r10_bio); 1840 md_done_sync(mddev, s, 1); 1841 break; 1842 } else { 1843 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1844 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1845 test_bit(R10BIO_WriteError, &r10_bio->state)) 1846 reschedule_retry(r10_bio); 1847 else 1848 put_buf(r10_bio); 1849 r10_bio = r10_bio2; 1850 } 1851 } 1852 } 1853 1854 static void end_sync_write(struct bio *bio, int error) 1855 { 1856 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1857 struct r10bio *r10_bio = bio->bi_private; 1858 struct mddev *mddev = r10_bio->mddev; 1859 struct r10conf *conf = mddev->private; 1860 int d; 1861 sector_t first_bad; 1862 int bad_sectors; 1863 int slot; 1864 int repl; 1865 struct md_rdev *rdev = NULL; 1866 1867 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1868 if (repl) 1869 rdev = conf->mirrors[d].replacement; 1870 else 1871 rdev = conf->mirrors[d].rdev; 1872 1873 if (!uptodate) { 1874 if (repl) 1875 md_error(mddev, rdev); 1876 else { 1877 set_bit(WriteErrorSeen, &rdev->flags); 1878 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1879 set_bit(MD_RECOVERY_NEEDED, 1880 &rdev->mddev->recovery); 1881 set_bit(R10BIO_WriteError, &r10_bio->state); 1882 } 1883 } else if (is_badblock(rdev, 1884 r10_bio->devs[slot].addr, 1885 r10_bio->sectors, 1886 &first_bad, &bad_sectors)) 1887 set_bit(R10BIO_MadeGood, &r10_bio->state); 1888 1889 rdev_dec_pending(rdev, mddev); 1890 1891 end_sync_request(r10_bio); 1892 } 1893 1894 /* 1895 * Note: sync and recover and handled very differently for raid10 1896 * This code is for resync. 1897 * For resync, we read through virtual addresses and read all blocks. 1898 * If there is any error, we schedule a write. The lowest numbered 1899 * drive is authoritative. 1900 * However requests come for physical address, so we need to map. 1901 * For every physical address there are raid_disks/copies virtual addresses, 1902 * which is always are least one, but is not necessarly an integer. 1903 * This means that a physical address can span multiple chunks, so we may 1904 * have to submit multiple io requests for a single sync request. 1905 */ 1906 /* 1907 * We check if all blocks are in-sync and only write to blocks that 1908 * aren't in sync 1909 */ 1910 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1911 { 1912 struct r10conf *conf = mddev->private; 1913 int i, first; 1914 struct bio *tbio, *fbio; 1915 int vcnt; 1916 1917 atomic_set(&r10_bio->remaining, 1); 1918 1919 /* find the first device with a block */ 1920 for (i=0; i<conf->copies; i++) 1921 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1922 break; 1923 1924 if (i == conf->copies) 1925 goto done; 1926 1927 first = i; 1928 fbio = r10_bio->devs[i].bio; 1929 1930 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 1931 /* now find blocks with errors */ 1932 for (i=0 ; i < conf->copies ; i++) { 1933 int j, d; 1934 1935 tbio = r10_bio->devs[i].bio; 1936 1937 if (tbio->bi_end_io != end_sync_read) 1938 continue; 1939 if (i == first) 1940 continue; 1941 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1942 /* We know that the bi_io_vec layout is the same for 1943 * both 'first' and 'i', so we just compare them. 1944 * All vec entries are PAGE_SIZE; 1945 */ 1946 for (j = 0; j < vcnt; j++) 1947 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1948 page_address(tbio->bi_io_vec[j].bv_page), 1949 fbio->bi_io_vec[j].bv_len)) 1950 break; 1951 if (j == vcnt) 1952 continue; 1953 mddev->resync_mismatches += r10_bio->sectors; 1954 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1955 /* Don't fix anything. */ 1956 continue; 1957 } 1958 /* Ok, we need to write this bio, either to correct an 1959 * inconsistency or to correct an unreadable block. 1960 * First we need to fixup bv_offset, bv_len and 1961 * bi_vecs, as the read request might have corrupted these 1962 */ 1963 tbio->bi_vcnt = vcnt; 1964 tbio->bi_size = r10_bio->sectors << 9; 1965 tbio->bi_idx = 0; 1966 tbio->bi_phys_segments = 0; 1967 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1968 tbio->bi_flags |= 1 << BIO_UPTODATE; 1969 tbio->bi_next = NULL; 1970 tbio->bi_rw = WRITE; 1971 tbio->bi_private = r10_bio; 1972 tbio->bi_sector = r10_bio->devs[i].addr; 1973 1974 for (j=0; j < vcnt ; j++) { 1975 tbio->bi_io_vec[j].bv_offset = 0; 1976 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1977 1978 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1979 page_address(fbio->bi_io_vec[j].bv_page), 1980 PAGE_SIZE); 1981 } 1982 tbio->bi_end_io = end_sync_write; 1983 1984 d = r10_bio->devs[i].devnum; 1985 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1986 atomic_inc(&r10_bio->remaining); 1987 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1988 1989 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1990 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1991 generic_make_request(tbio); 1992 } 1993 1994 /* Now write out to any replacement devices 1995 * that are active 1996 */ 1997 for (i = 0; i < conf->copies; i++) { 1998 int j, d; 1999 2000 tbio = r10_bio->devs[i].repl_bio; 2001 if (!tbio || !tbio->bi_end_io) 2002 continue; 2003 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2004 && r10_bio->devs[i].bio != fbio) 2005 for (j = 0; j < vcnt; j++) 2006 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 2007 page_address(fbio->bi_io_vec[j].bv_page), 2008 PAGE_SIZE); 2009 d = r10_bio->devs[i].devnum; 2010 atomic_inc(&r10_bio->remaining); 2011 md_sync_acct(conf->mirrors[d].replacement->bdev, 2012 tbio->bi_size >> 9); 2013 generic_make_request(tbio); 2014 } 2015 2016 done: 2017 if (atomic_dec_and_test(&r10_bio->remaining)) { 2018 md_done_sync(mddev, r10_bio->sectors, 1); 2019 put_buf(r10_bio); 2020 } 2021 } 2022 2023 /* 2024 * Now for the recovery code. 2025 * Recovery happens across physical sectors. 2026 * We recover all non-is_sync drives by finding the virtual address of 2027 * each, and then choose a working drive that also has that virt address. 2028 * There is a separate r10_bio for each non-in_sync drive. 2029 * Only the first two slots are in use. The first for reading, 2030 * The second for writing. 2031 * 2032 */ 2033 static void fix_recovery_read_error(struct r10bio *r10_bio) 2034 { 2035 /* We got a read error during recovery. 2036 * We repeat the read in smaller page-sized sections. 2037 * If a read succeeds, write it to the new device or record 2038 * a bad block if we cannot. 2039 * If a read fails, record a bad block on both old and 2040 * new devices. 2041 */ 2042 struct mddev *mddev = r10_bio->mddev; 2043 struct r10conf *conf = mddev->private; 2044 struct bio *bio = r10_bio->devs[0].bio; 2045 sector_t sect = 0; 2046 int sectors = r10_bio->sectors; 2047 int idx = 0; 2048 int dr = r10_bio->devs[0].devnum; 2049 int dw = r10_bio->devs[1].devnum; 2050 2051 while (sectors) { 2052 int s = sectors; 2053 struct md_rdev *rdev; 2054 sector_t addr; 2055 int ok; 2056 2057 if (s > (PAGE_SIZE>>9)) 2058 s = PAGE_SIZE >> 9; 2059 2060 rdev = conf->mirrors[dr].rdev; 2061 addr = r10_bio->devs[0].addr + sect, 2062 ok = sync_page_io(rdev, 2063 addr, 2064 s << 9, 2065 bio->bi_io_vec[idx].bv_page, 2066 READ, false); 2067 if (ok) { 2068 rdev = conf->mirrors[dw].rdev; 2069 addr = r10_bio->devs[1].addr + sect; 2070 ok = sync_page_io(rdev, 2071 addr, 2072 s << 9, 2073 bio->bi_io_vec[idx].bv_page, 2074 WRITE, false); 2075 if (!ok) { 2076 set_bit(WriteErrorSeen, &rdev->flags); 2077 if (!test_and_set_bit(WantReplacement, 2078 &rdev->flags)) 2079 set_bit(MD_RECOVERY_NEEDED, 2080 &rdev->mddev->recovery); 2081 } 2082 } 2083 if (!ok) { 2084 /* We don't worry if we cannot set a bad block - 2085 * it really is bad so there is no loss in not 2086 * recording it yet 2087 */ 2088 rdev_set_badblocks(rdev, addr, s, 0); 2089 2090 if (rdev != conf->mirrors[dw].rdev) { 2091 /* need bad block on destination too */ 2092 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2093 addr = r10_bio->devs[1].addr + sect; 2094 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2095 if (!ok) { 2096 /* just abort the recovery */ 2097 printk(KERN_NOTICE 2098 "md/raid10:%s: recovery aborted" 2099 " due to read error\n", 2100 mdname(mddev)); 2101 2102 conf->mirrors[dw].recovery_disabled 2103 = mddev->recovery_disabled; 2104 set_bit(MD_RECOVERY_INTR, 2105 &mddev->recovery); 2106 break; 2107 } 2108 } 2109 } 2110 2111 sectors -= s; 2112 sect += s; 2113 idx++; 2114 } 2115 } 2116 2117 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2118 { 2119 struct r10conf *conf = mddev->private; 2120 int d; 2121 struct bio *wbio, *wbio2; 2122 2123 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2124 fix_recovery_read_error(r10_bio); 2125 end_sync_request(r10_bio); 2126 return; 2127 } 2128 2129 /* 2130 * share the pages with the first bio 2131 * and submit the write request 2132 */ 2133 d = r10_bio->devs[1].devnum; 2134 wbio = r10_bio->devs[1].bio; 2135 wbio2 = r10_bio->devs[1].repl_bio; 2136 if (wbio->bi_end_io) { 2137 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2138 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 2139 generic_make_request(wbio); 2140 } 2141 if (wbio2 && wbio2->bi_end_io) { 2142 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2143 md_sync_acct(conf->mirrors[d].replacement->bdev, 2144 wbio2->bi_size >> 9); 2145 generic_make_request(wbio2); 2146 } 2147 } 2148 2149 2150 /* 2151 * Used by fix_read_error() to decay the per rdev read_errors. 2152 * We halve the read error count for every hour that has elapsed 2153 * since the last recorded read error. 2154 * 2155 */ 2156 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2157 { 2158 struct timespec cur_time_mon; 2159 unsigned long hours_since_last; 2160 unsigned int read_errors = atomic_read(&rdev->read_errors); 2161 2162 ktime_get_ts(&cur_time_mon); 2163 2164 if (rdev->last_read_error.tv_sec == 0 && 2165 rdev->last_read_error.tv_nsec == 0) { 2166 /* first time we've seen a read error */ 2167 rdev->last_read_error = cur_time_mon; 2168 return; 2169 } 2170 2171 hours_since_last = (cur_time_mon.tv_sec - 2172 rdev->last_read_error.tv_sec) / 3600; 2173 2174 rdev->last_read_error = cur_time_mon; 2175 2176 /* 2177 * if hours_since_last is > the number of bits in read_errors 2178 * just set read errors to 0. We do this to avoid 2179 * overflowing the shift of read_errors by hours_since_last. 2180 */ 2181 if (hours_since_last >= 8 * sizeof(read_errors)) 2182 atomic_set(&rdev->read_errors, 0); 2183 else 2184 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2185 } 2186 2187 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2188 int sectors, struct page *page, int rw) 2189 { 2190 sector_t first_bad; 2191 int bad_sectors; 2192 2193 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2194 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2195 return -1; 2196 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2197 /* success */ 2198 return 1; 2199 if (rw == WRITE) { 2200 set_bit(WriteErrorSeen, &rdev->flags); 2201 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2202 set_bit(MD_RECOVERY_NEEDED, 2203 &rdev->mddev->recovery); 2204 } 2205 /* need to record an error - either for the block or the device */ 2206 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2207 md_error(rdev->mddev, rdev); 2208 return 0; 2209 } 2210 2211 /* 2212 * This is a kernel thread which: 2213 * 2214 * 1. Retries failed read operations on working mirrors. 2215 * 2. Updates the raid superblock when problems encounter. 2216 * 3. Performs writes following reads for array synchronising. 2217 */ 2218 2219 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2220 { 2221 int sect = 0; /* Offset from r10_bio->sector */ 2222 int sectors = r10_bio->sectors; 2223 struct md_rdev*rdev; 2224 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2225 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2226 2227 /* still own a reference to this rdev, so it cannot 2228 * have been cleared recently. 2229 */ 2230 rdev = conf->mirrors[d].rdev; 2231 2232 if (test_bit(Faulty, &rdev->flags)) 2233 /* drive has already been failed, just ignore any 2234 more fix_read_error() attempts */ 2235 return; 2236 2237 check_decay_read_errors(mddev, rdev); 2238 atomic_inc(&rdev->read_errors); 2239 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2240 char b[BDEVNAME_SIZE]; 2241 bdevname(rdev->bdev, b); 2242 2243 printk(KERN_NOTICE 2244 "md/raid10:%s: %s: Raid device exceeded " 2245 "read_error threshold [cur %d:max %d]\n", 2246 mdname(mddev), b, 2247 atomic_read(&rdev->read_errors), max_read_errors); 2248 printk(KERN_NOTICE 2249 "md/raid10:%s: %s: Failing raid device\n", 2250 mdname(mddev), b); 2251 md_error(mddev, conf->mirrors[d].rdev); 2252 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2253 return; 2254 } 2255 2256 while(sectors) { 2257 int s = sectors; 2258 int sl = r10_bio->read_slot; 2259 int success = 0; 2260 int start; 2261 2262 if (s > (PAGE_SIZE>>9)) 2263 s = PAGE_SIZE >> 9; 2264 2265 rcu_read_lock(); 2266 do { 2267 sector_t first_bad; 2268 int bad_sectors; 2269 2270 d = r10_bio->devs[sl].devnum; 2271 rdev = rcu_dereference(conf->mirrors[d].rdev); 2272 if (rdev && 2273 !test_bit(Unmerged, &rdev->flags) && 2274 test_bit(In_sync, &rdev->flags) && 2275 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2276 &first_bad, &bad_sectors) == 0) { 2277 atomic_inc(&rdev->nr_pending); 2278 rcu_read_unlock(); 2279 success = sync_page_io(rdev, 2280 r10_bio->devs[sl].addr + 2281 sect, 2282 s<<9, 2283 conf->tmppage, READ, false); 2284 rdev_dec_pending(rdev, mddev); 2285 rcu_read_lock(); 2286 if (success) 2287 break; 2288 } 2289 sl++; 2290 if (sl == conf->copies) 2291 sl = 0; 2292 } while (!success && sl != r10_bio->read_slot); 2293 rcu_read_unlock(); 2294 2295 if (!success) { 2296 /* Cannot read from anywhere, just mark the block 2297 * as bad on the first device to discourage future 2298 * reads. 2299 */ 2300 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2301 rdev = conf->mirrors[dn].rdev; 2302 2303 if (!rdev_set_badblocks( 2304 rdev, 2305 r10_bio->devs[r10_bio->read_slot].addr 2306 + sect, 2307 s, 0)) { 2308 md_error(mddev, rdev); 2309 r10_bio->devs[r10_bio->read_slot].bio 2310 = IO_BLOCKED; 2311 } 2312 break; 2313 } 2314 2315 start = sl; 2316 /* write it back and re-read */ 2317 rcu_read_lock(); 2318 while (sl != r10_bio->read_slot) { 2319 char b[BDEVNAME_SIZE]; 2320 2321 if (sl==0) 2322 sl = conf->copies; 2323 sl--; 2324 d = r10_bio->devs[sl].devnum; 2325 rdev = rcu_dereference(conf->mirrors[d].rdev); 2326 if (!rdev || 2327 test_bit(Unmerged, &rdev->flags) || 2328 !test_bit(In_sync, &rdev->flags)) 2329 continue; 2330 2331 atomic_inc(&rdev->nr_pending); 2332 rcu_read_unlock(); 2333 if (r10_sync_page_io(rdev, 2334 r10_bio->devs[sl].addr + 2335 sect, 2336 s, conf->tmppage, WRITE) 2337 == 0) { 2338 /* Well, this device is dead */ 2339 printk(KERN_NOTICE 2340 "md/raid10:%s: read correction " 2341 "write failed" 2342 " (%d sectors at %llu on %s)\n", 2343 mdname(mddev), s, 2344 (unsigned long long)( 2345 sect + 2346 choose_data_offset(r10_bio, 2347 rdev)), 2348 bdevname(rdev->bdev, b)); 2349 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2350 "drive\n", 2351 mdname(mddev), 2352 bdevname(rdev->bdev, b)); 2353 } 2354 rdev_dec_pending(rdev, mddev); 2355 rcu_read_lock(); 2356 } 2357 sl = start; 2358 while (sl != r10_bio->read_slot) { 2359 char b[BDEVNAME_SIZE]; 2360 2361 if (sl==0) 2362 sl = conf->copies; 2363 sl--; 2364 d = r10_bio->devs[sl].devnum; 2365 rdev = rcu_dereference(conf->mirrors[d].rdev); 2366 if (!rdev || 2367 !test_bit(In_sync, &rdev->flags)) 2368 continue; 2369 2370 atomic_inc(&rdev->nr_pending); 2371 rcu_read_unlock(); 2372 switch (r10_sync_page_io(rdev, 2373 r10_bio->devs[sl].addr + 2374 sect, 2375 s, conf->tmppage, 2376 READ)) { 2377 case 0: 2378 /* Well, this device is dead */ 2379 printk(KERN_NOTICE 2380 "md/raid10:%s: unable to read back " 2381 "corrected sectors" 2382 " (%d sectors at %llu on %s)\n", 2383 mdname(mddev), s, 2384 (unsigned long long)( 2385 sect + 2386 choose_data_offset(r10_bio, rdev)), 2387 bdevname(rdev->bdev, b)); 2388 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2389 "drive\n", 2390 mdname(mddev), 2391 bdevname(rdev->bdev, b)); 2392 break; 2393 case 1: 2394 printk(KERN_INFO 2395 "md/raid10:%s: read error corrected" 2396 " (%d sectors at %llu on %s)\n", 2397 mdname(mddev), s, 2398 (unsigned long long)( 2399 sect + 2400 choose_data_offset(r10_bio, rdev)), 2401 bdevname(rdev->bdev, b)); 2402 atomic_add(s, &rdev->corrected_errors); 2403 } 2404 2405 rdev_dec_pending(rdev, mddev); 2406 rcu_read_lock(); 2407 } 2408 rcu_read_unlock(); 2409 2410 sectors -= s; 2411 sect += s; 2412 } 2413 } 2414 2415 static void bi_complete(struct bio *bio, int error) 2416 { 2417 complete((struct completion *)bio->bi_private); 2418 } 2419 2420 static int submit_bio_wait(int rw, struct bio *bio) 2421 { 2422 struct completion event; 2423 rw |= REQ_SYNC; 2424 2425 init_completion(&event); 2426 bio->bi_private = &event; 2427 bio->bi_end_io = bi_complete; 2428 submit_bio(rw, bio); 2429 wait_for_completion(&event); 2430 2431 return test_bit(BIO_UPTODATE, &bio->bi_flags); 2432 } 2433 2434 static int narrow_write_error(struct r10bio *r10_bio, int i) 2435 { 2436 struct bio *bio = r10_bio->master_bio; 2437 struct mddev *mddev = r10_bio->mddev; 2438 struct r10conf *conf = mddev->private; 2439 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2440 /* bio has the data to be written to slot 'i' where 2441 * we just recently had a write error. 2442 * We repeatedly clone the bio and trim down to one block, 2443 * then try the write. Where the write fails we record 2444 * a bad block. 2445 * It is conceivable that the bio doesn't exactly align with 2446 * blocks. We must handle this. 2447 * 2448 * We currently own a reference to the rdev. 2449 */ 2450 2451 int block_sectors; 2452 sector_t sector; 2453 int sectors; 2454 int sect_to_write = r10_bio->sectors; 2455 int ok = 1; 2456 2457 if (rdev->badblocks.shift < 0) 2458 return 0; 2459 2460 block_sectors = 1 << rdev->badblocks.shift; 2461 sector = r10_bio->sector; 2462 sectors = ((r10_bio->sector + block_sectors) 2463 & ~(sector_t)(block_sectors - 1)) 2464 - sector; 2465 2466 while (sect_to_write) { 2467 struct bio *wbio; 2468 if (sectors > sect_to_write) 2469 sectors = sect_to_write; 2470 /* Write at 'sector' for 'sectors' */ 2471 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2472 md_trim_bio(wbio, sector - bio->bi_sector, sectors); 2473 wbio->bi_sector = (r10_bio->devs[i].addr+ 2474 choose_data_offset(r10_bio, rdev) + 2475 (sector - r10_bio->sector)); 2476 wbio->bi_bdev = rdev->bdev; 2477 if (submit_bio_wait(WRITE, wbio) == 0) 2478 /* Failure! */ 2479 ok = rdev_set_badblocks(rdev, sector, 2480 sectors, 0) 2481 && ok; 2482 2483 bio_put(wbio); 2484 sect_to_write -= sectors; 2485 sector += sectors; 2486 sectors = block_sectors; 2487 } 2488 return ok; 2489 } 2490 2491 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2492 { 2493 int slot = r10_bio->read_slot; 2494 struct bio *bio; 2495 struct r10conf *conf = mddev->private; 2496 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2497 char b[BDEVNAME_SIZE]; 2498 unsigned long do_sync; 2499 int max_sectors; 2500 2501 /* we got a read error. Maybe the drive is bad. Maybe just 2502 * the block and we can fix it. 2503 * We freeze all other IO, and try reading the block from 2504 * other devices. When we find one, we re-write 2505 * and check it that fixes the read error. 2506 * This is all done synchronously while the array is 2507 * frozen. 2508 */ 2509 bio = r10_bio->devs[slot].bio; 2510 bdevname(bio->bi_bdev, b); 2511 bio_put(bio); 2512 r10_bio->devs[slot].bio = NULL; 2513 2514 if (mddev->ro == 0) { 2515 freeze_array(conf); 2516 fix_read_error(conf, mddev, r10_bio); 2517 unfreeze_array(conf); 2518 } else 2519 r10_bio->devs[slot].bio = IO_BLOCKED; 2520 2521 rdev_dec_pending(rdev, mddev); 2522 2523 read_more: 2524 rdev = read_balance(conf, r10_bio, &max_sectors); 2525 if (rdev == NULL) { 2526 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2527 " read error for block %llu\n", 2528 mdname(mddev), b, 2529 (unsigned long long)r10_bio->sector); 2530 raid_end_bio_io(r10_bio); 2531 return; 2532 } 2533 2534 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); 2535 slot = r10_bio->read_slot; 2536 printk_ratelimited( 2537 KERN_ERR 2538 "md/raid10:%s: %s: redirecting " 2539 "sector %llu to another mirror\n", 2540 mdname(mddev), 2541 bdevname(rdev->bdev, b), 2542 (unsigned long long)r10_bio->sector); 2543 bio = bio_clone_mddev(r10_bio->master_bio, 2544 GFP_NOIO, mddev); 2545 md_trim_bio(bio, 2546 r10_bio->sector - bio->bi_sector, 2547 max_sectors); 2548 r10_bio->devs[slot].bio = bio; 2549 r10_bio->devs[slot].rdev = rdev; 2550 bio->bi_sector = r10_bio->devs[slot].addr 2551 + choose_data_offset(r10_bio, rdev); 2552 bio->bi_bdev = rdev->bdev; 2553 bio->bi_rw = READ | do_sync; 2554 bio->bi_private = r10_bio; 2555 bio->bi_end_io = raid10_end_read_request; 2556 if (max_sectors < r10_bio->sectors) { 2557 /* Drat - have to split this up more */ 2558 struct bio *mbio = r10_bio->master_bio; 2559 int sectors_handled = 2560 r10_bio->sector + max_sectors 2561 - mbio->bi_sector; 2562 r10_bio->sectors = max_sectors; 2563 spin_lock_irq(&conf->device_lock); 2564 if (mbio->bi_phys_segments == 0) 2565 mbio->bi_phys_segments = 2; 2566 else 2567 mbio->bi_phys_segments++; 2568 spin_unlock_irq(&conf->device_lock); 2569 generic_make_request(bio); 2570 2571 r10_bio = mempool_alloc(conf->r10bio_pool, 2572 GFP_NOIO); 2573 r10_bio->master_bio = mbio; 2574 r10_bio->sectors = (mbio->bi_size >> 9) 2575 - sectors_handled; 2576 r10_bio->state = 0; 2577 set_bit(R10BIO_ReadError, 2578 &r10_bio->state); 2579 r10_bio->mddev = mddev; 2580 r10_bio->sector = mbio->bi_sector 2581 + sectors_handled; 2582 2583 goto read_more; 2584 } else 2585 generic_make_request(bio); 2586 } 2587 2588 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2589 { 2590 /* Some sort of write request has finished and it 2591 * succeeded in writing where we thought there was a 2592 * bad block. So forget the bad block. 2593 * Or possibly if failed and we need to record 2594 * a bad block. 2595 */ 2596 int m; 2597 struct md_rdev *rdev; 2598 2599 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2600 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2601 for (m = 0; m < conf->copies; m++) { 2602 int dev = r10_bio->devs[m].devnum; 2603 rdev = conf->mirrors[dev].rdev; 2604 if (r10_bio->devs[m].bio == NULL) 2605 continue; 2606 if (test_bit(BIO_UPTODATE, 2607 &r10_bio->devs[m].bio->bi_flags)) { 2608 rdev_clear_badblocks( 2609 rdev, 2610 r10_bio->devs[m].addr, 2611 r10_bio->sectors, 0); 2612 } else { 2613 if (!rdev_set_badblocks( 2614 rdev, 2615 r10_bio->devs[m].addr, 2616 r10_bio->sectors, 0)) 2617 md_error(conf->mddev, rdev); 2618 } 2619 rdev = conf->mirrors[dev].replacement; 2620 if (r10_bio->devs[m].repl_bio == NULL) 2621 continue; 2622 if (test_bit(BIO_UPTODATE, 2623 &r10_bio->devs[m].repl_bio->bi_flags)) { 2624 rdev_clear_badblocks( 2625 rdev, 2626 r10_bio->devs[m].addr, 2627 r10_bio->sectors, 0); 2628 } else { 2629 if (!rdev_set_badblocks( 2630 rdev, 2631 r10_bio->devs[m].addr, 2632 r10_bio->sectors, 0)) 2633 md_error(conf->mddev, rdev); 2634 } 2635 } 2636 put_buf(r10_bio); 2637 } else { 2638 for (m = 0; m < conf->copies; m++) { 2639 int dev = r10_bio->devs[m].devnum; 2640 struct bio *bio = r10_bio->devs[m].bio; 2641 rdev = conf->mirrors[dev].rdev; 2642 if (bio == IO_MADE_GOOD) { 2643 rdev_clear_badblocks( 2644 rdev, 2645 r10_bio->devs[m].addr, 2646 r10_bio->sectors, 0); 2647 rdev_dec_pending(rdev, conf->mddev); 2648 } else if (bio != NULL && 2649 !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2650 if (!narrow_write_error(r10_bio, m)) { 2651 md_error(conf->mddev, rdev); 2652 set_bit(R10BIO_Degraded, 2653 &r10_bio->state); 2654 } 2655 rdev_dec_pending(rdev, conf->mddev); 2656 } 2657 bio = r10_bio->devs[m].repl_bio; 2658 rdev = conf->mirrors[dev].replacement; 2659 if (rdev && bio == IO_MADE_GOOD) { 2660 rdev_clear_badblocks( 2661 rdev, 2662 r10_bio->devs[m].addr, 2663 r10_bio->sectors, 0); 2664 rdev_dec_pending(rdev, conf->mddev); 2665 } 2666 } 2667 if (test_bit(R10BIO_WriteError, 2668 &r10_bio->state)) 2669 close_write(r10_bio); 2670 raid_end_bio_io(r10_bio); 2671 } 2672 } 2673 2674 static void raid10d(struct mddev *mddev) 2675 { 2676 struct r10bio *r10_bio; 2677 unsigned long flags; 2678 struct r10conf *conf = mddev->private; 2679 struct list_head *head = &conf->retry_list; 2680 struct blk_plug plug; 2681 2682 md_check_recovery(mddev); 2683 2684 blk_start_plug(&plug); 2685 for (;;) { 2686 2687 flush_pending_writes(conf); 2688 2689 spin_lock_irqsave(&conf->device_lock, flags); 2690 if (list_empty(head)) { 2691 spin_unlock_irqrestore(&conf->device_lock, flags); 2692 break; 2693 } 2694 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2695 list_del(head->prev); 2696 conf->nr_queued--; 2697 spin_unlock_irqrestore(&conf->device_lock, flags); 2698 2699 mddev = r10_bio->mddev; 2700 conf = mddev->private; 2701 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2702 test_bit(R10BIO_WriteError, &r10_bio->state)) 2703 handle_write_completed(conf, r10_bio); 2704 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2705 reshape_request_write(mddev, r10_bio); 2706 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2707 sync_request_write(mddev, r10_bio); 2708 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2709 recovery_request_write(mddev, r10_bio); 2710 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2711 handle_read_error(mddev, r10_bio); 2712 else { 2713 /* just a partial read to be scheduled from a 2714 * separate context 2715 */ 2716 int slot = r10_bio->read_slot; 2717 generic_make_request(r10_bio->devs[slot].bio); 2718 } 2719 2720 cond_resched(); 2721 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2722 md_check_recovery(mddev); 2723 } 2724 blk_finish_plug(&plug); 2725 } 2726 2727 2728 static int init_resync(struct r10conf *conf) 2729 { 2730 int buffs; 2731 int i; 2732 2733 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2734 BUG_ON(conf->r10buf_pool); 2735 conf->have_replacement = 0; 2736 for (i = 0; i < conf->geo.raid_disks; i++) 2737 if (conf->mirrors[i].replacement) 2738 conf->have_replacement = 1; 2739 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2740 if (!conf->r10buf_pool) 2741 return -ENOMEM; 2742 conf->next_resync = 0; 2743 return 0; 2744 } 2745 2746 /* 2747 * perform a "sync" on one "block" 2748 * 2749 * We need to make sure that no normal I/O request - particularly write 2750 * requests - conflict with active sync requests. 2751 * 2752 * This is achieved by tracking pending requests and a 'barrier' concept 2753 * that can be installed to exclude normal IO requests. 2754 * 2755 * Resync and recovery are handled very differently. 2756 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2757 * 2758 * For resync, we iterate over virtual addresses, read all copies, 2759 * and update if there are differences. If only one copy is live, 2760 * skip it. 2761 * For recovery, we iterate over physical addresses, read a good 2762 * value for each non-in_sync drive, and over-write. 2763 * 2764 * So, for recovery we may have several outstanding complex requests for a 2765 * given address, one for each out-of-sync device. We model this by allocating 2766 * a number of r10_bio structures, one for each out-of-sync device. 2767 * As we setup these structures, we collect all bio's together into a list 2768 * which we then process collectively to add pages, and then process again 2769 * to pass to generic_make_request. 2770 * 2771 * The r10_bio structures are linked using a borrowed master_bio pointer. 2772 * This link is counted in ->remaining. When the r10_bio that points to NULL 2773 * has its remaining count decremented to 0, the whole complex operation 2774 * is complete. 2775 * 2776 */ 2777 2778 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, 2779 int *skipped, int go_faster) 2780 { 2781 struct r10conf *conf = mddev->private; 2782 struct r10bio *r10_bio; 2783 struct bio *biolist = NULL, *bio; 2784 sector_t max_sector, nr_sectors; 2785 int i; 2786 int max_sync; 2787 sector_t sync_blocks; 2788 sector_t sectors_skipped = 0; 2789 int chunks_skipped = 0; 2790 sector_t chunk_mask = conf->geo.chunk_mask; 2791 2792 if (!conf->r10buf_pool) 2793 if (init_resync(conf)) 2794 return 0; 2795 2796 skipped: 2797 max_sector = mddev->dev_sectors; 2798 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2799 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2800 max_sector = mddev->resync_max_sectors; 2801 if (sector_nr >= max_sector) { 2802 /* If we aborted, we need to abort the 2803 * sync on the 'current' bitmap chucks (there can 2804 * be several when recovering multiple devices). 2805 * as we may have started syncing it but not finished. 2806 * We can find the current address in 2807 * mddev->curr_resync, but for recovery, 2808 * we need to convert that to several 2809 * virtual addresses. 2810 */ 2811 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2812 end_reshape(conf); 2813 return 0; 2814 } 2815 2816 if (mddev->curr_resync < max_sector) { /* aborted */ 2817 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2818 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2819 &sync_blocks, 1); 2820 else for (i = 0; i < conf->geo.raid_disks; i++) { 2821 sector_t sect = 2822 raid10_find_virt(conf, mddev->curr_resync, i); 2823 bitmap_end_sync(mddev->bitmap, sect, 2824 &sync_blocks, 1); 2825 } 2826 } else { 2827 /* completed sync */ 2828 if ((!mddev->bitmap || conf->fullsync) 2829 && conf->have_replacement 2830 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2831 /* Completed a full sync so the replacements 2832 * are now fully recovered. 2833 */ 2834 for (i = 0; i < conf->geo.raid_disks; i++) 2835 if (conf->mirrors[i].replacement) 2836 conf->mirrors[i].replacement 2837 ->recovery_offset 2838 = MaxSector; 2839 } 2840 conf->fullsync = 0; 2841 } 2842 bitmap_close_sync(mddev->bitmap); 2843 close_sync(conf); 2844 *skipped = 1; 2845 return sectors_skipped; 2846 } 2847 2848 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2849 return reshape_request(mddev, sector_nr, skipped); 2850 2851 if (chunks_skipped >= conf->geo.raid_disks) { 2852 /* if there has been nothing to do on any drive, 2853 * then there is nothing to do at all.. 2854 */ 2855 *skipped = 1; 2856 return (max_sector - sector_nr) + sectors_skipped; 2857 } 2858 2859 if (max_sector > mddev->resync_max) 2860 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2861 2862 /* make sure whole request will fit in a chunk - if chunks 2863 * are meaningful 2864 */ 2865 if (conf->geo.near_copies < conf->geo.raid_disks && 2866 max_sector > (sector_nr | chunk_mask)) 2867 max_sector = (sector_nr | chunk_mask) + 1; 2868 /* 2869 * If there is non-resync activity waiting for us then 2870 * put in a delay to throttle resync. 2871 */ 2872 if (!go_faster && conf->nr_waiting) 2873 msleep_interruptible(1000); 2874 2875 /* Again, very different code for resync and recovery. 2876 * Both must result in an r10bio with a list of bios that 2877 * have bi_end_io, bi_sector, bi_bdev set, 2878 * and bi_private set to the r10bio. 2879 * For recovery, we may actually create several r10bios 2880 * with 2 bios in each, that correspond to the bios in the main one. 2881 * In this case, the subordinate r10bios link back through a 2882 * borrowed master_bio pointer, and the counter in the master 2883 * includes a ref from each subordinate. 2884 */ 2885 /* First, we decide what to do and set ->bi_end_io 2886 * To end_sync_read if we want to read, and 2887 * end_sync_write if we will want to write. 2888 */ 2889 2890 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2891 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2892 /* recovery... the complicated one */ 2893 int j; 2894 r10_bio = NULL; 2895 2896 for (i = 0 ; i < conf->geo.raid_disks; i++) { 2897 int still_degraded; 2898 struct r10bio *rb2; 2899 sector_t sect; 2900 int must_sync; 2901 int any_working; 2902 struct raid10_info *mirror = &conf->mirrors[i]; 2903 2904 if ((mirror->rdev == NULL || 2905 test_bit(In_sync, &mirror->rdev->flags)) 2906 && 2907 (mirror->replacement == NULL || 2908 test_bit(Faulty, 2909 &mirror->replacement->flags))) 2910 continue; 2911 2912 still_degraded = 0; 2913 /* want to reconstruct this device */ 2914 rb2 = r10_bio; 2915 sect = raid10_find_virt(conf, sector_nr, i); 2916 if (sect >= mddev->resync_max_sectors) { 2917 /* last stripe is not complete - don't 2918 * try to recover this sector. 2919 */ 2920 continue; 2921 } 2922 /* Unless we are doing a full sync, or a replacement 2923 * we only need to recover the block if it is set in 2924 * the bitmap 2925 */ 2926 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2927 &sync_blocks, 1); 2928 if (sync_blocks < max_sync) 2929 max_sync = sync_blocks; 2930 if (!must_sync && 2931 mirror->replacement == NULL && 2932 !conf->fullsync) { 2933 /* yep, skip the sync_blocks here, but don't assume 2934 * that there will never be anything to do here 2935 */ 2936 chunks_skipped = -1; 2937 continue; 2938 } 2939 2940 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2941 raise_barrier(conf, rb2 != NULL); 2942 atomic_set(&r10_bio->remaining, 0); 2943 2944 r10_bio->master_bio = (struct bio*)rb2; 2945 if (rb2) 2946 atomic_inc(&rb2->remaining); 2947 r10_bio->mddev = mddev; 2948 set_bit(R10BIO_IsRecover, &r10_bio->state); 2949 r10_bio->sector = sect; 2950 2951 raid10_find_phys(conf, r10_bio); 2952 2953 /* Need to check if the array will still be 2954 * degraded 2955 */ 2956 for (j = 0; j < conf->geo.raid_disks; j++) 2957 if (conf->mirrors[j].rdev == NULL || 2958 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 2959 still_degraded = 1; 2960 break; 2961 } 2962 2963 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2964 &sync_blocks, still_degraded); 2965 2966 any_working = 0; 2967 for (j=0; j<conf->copies;j++) { 2968 int k; 2969 int d = r10_bio->devs[j].devnum; 2970 sector_t from_addr, to_addr; 2971 struct md_rdev *rdev; 2972 sector_t sector, first_bad; 2973 int bad_sectors; 2974 if (!conf->mirrors[d].rdev || 2975 !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) 2976 continue; 2977 /* This is where we read from */ 2978 any_working = 1; 2979 rdev = conf->mirrors[d].rdev; 2980 sector = r10_bio->devs[j].addr; 2981 2982 if (is_badblock(rdev, sector, max_sync, 2983 &first_bad, &bad_sectors)) { 2984 if (first_bad > sector) 2985 max_sync = first_bad - sector; 2986 else { 2987 bad_sectors -= (sector 2988 - first_bad); 2989 if (max_sync > bad_sectors) 2990 max_sync = bad_sectors; 2991 continue; 2992 } 2993 } 2994 bio = r10_bio->devs[0].bio; 2995 bio->bi_next = biolist; 2996 biolist = bio; 2997 bio->bi_private = r10_bio; 2998 bio->bi_end_io = end_sync_read; 2999 bio->bi_rw = READ; 3000 from_addr = r10_bio->devs[j].addr; 3001 bio->bi_sector = from_addr + rdev->data_offset; 3002 bio->bi_bdev = rdev->bdev; 3003 atomic_inc(&rdev->nr_pending); 3004 /* and we write to 'i' (if not in_sync) */ 3005 3006 for (k=0; k<conf->copies; k++) 3007 if (r10_bio->devs[k].devnum == i) 3008 break; 3009 BUG_ON(k == conf->copies); 3010 to_addr = r10_bio->devs[k].addr; 3011 r10_bio->devs[0].devnum = d; 3012 r10_bio->devs[0].addr = from_addr; 3013 r10_bio->devs[1].devnum = i; 3014 r10_bio->devs[1].addr = to_addr; 3015 3016 rdev = mirror->rdev; 3017 if (!test_bit(In_sync, &rdev->flags)) { 3018 bio = r10_bio->devs[1].bio; 3019 bio->bi_next = biolist; 3020 biolist = bio; 3021 bio->bi_private = r10_bio; 3022 bio->bi_end_io = end_sync_write; 3023 bio->bi_rw = WRITE; 3024 bio->bi_sector = to_addr 3025 + rdev->data_offset; 3026 bio->bi_bdev = rdev->bdev; 3027 atomic_inc(&r10_bio->remaining); 3028 } else 3029 r10_bio->devs[1].bio->bi_end_io = NULL; 3030 3031 /* and maybe write to replacement */ 3032 bio = r10_bio->devs[1].repl_bio; 3033 if (bio) 3034 bio->bi_end_io = NULL; 3035 rdev = mirror->replacement; 3036 /* Note: if rdev != NULL, then bio 3037 * cannot be NULL as r10buf_pool_alloc will 3038 * have allocated it. 3039 * So the second test here is pointless. 3040 * But it keeps semantic-checkers happy, and 3041 * this comment keeps human reviewers 3042 * happy. 3043 */ 3044 if (rdev == NULL || bio == NULL || 3045 test_bit(Faulty, &rdev->flags)) 3046 break; 3047 bio->bi_next = biolist; 3048 biolist = bio; 3049 bio->bi_private = r10_bio; 3050 bio->bi_end_io = end_sync_write; 3051 bio->bi_rw = WRITE; 3052 bio->bi_sector = to_addr + rdev->data_offset; 3053 bio->bi_bdev = rdev->bdev; 3054 atomic_inc(&r10_bio->remaining); 3055 break; 3056 } 3057 if (j == conf->copies) { 3058 /* Cannot recover, so abort the recovery or 3059 * record a bad block */ 3060 put_buf(r10_bio); 3061 if (rb2) 3062 atomic_dec(&rb2->remaining); 3063 r10_bio = rb2; 3064 if (any_working) { 3065 /* problem is that there are bad blocks 3066 * on other device(s) 3067 */ 3068 int k; 3069 for (k = 0; k < conf->copies; k++) 3070 if (r10_bio->devs[k].devnum == i) 3071 break; 3072 if (!test_bit(In_sync, 3073 &mirror->rdev->flags) 3074 && !rdev_set_badblocks( 3075 mirror->rdev, 3076 r10_bio->devs[k].addr, 3077 max_sync, 0)) 3078 any_working = 0; 3079 if (mirror->replacement && 3080 !rdev_set_badblocks( 3081 mirror->replacement, 3082 r10_bio->devs[k].addr, 3083 max_sync, 0)) 3084 any_working = 0; 3085 } 3086 if (!any_working) { 3087 if (!test_and_set_bit(MD_RECOVERY_INTR, 3088 &mddev->recovery)) 3089 printk(KERN_INFO "md/raid10:%s: insufficient " 3090 "working devices for recovery.\n", 3091 mdname(mddev)); 3092 mirror->recovery_disabled 3093 = mddev->recovery_disabled; 3094 } 3095 break; 3096 } 3097 } 3098 if (biolist == NULL) { 3099 while (r10_bio) { 3100 struct r10bio *rb2 = r10_bio; 3101 r10_bio = (struct r10bio*) rb2->master_bio; 3102 rb2->master_bio = NULL; 3103 put_buf(rb2); 3104 } 3105 goto giveup; 3106 } 3107 } else { 3108 /* resync. Schedule a read for every block at this virt offset */ 3109 int count = 0; 3110 3111 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 3112 3113 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3114 &sync_blocks, mddev->degraded) && 3115 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3116 &mddev->recovery)) { 3117 /* We can skip this block */ 3118 *skipped = 1; 3119 return sync_blocks + sectors_skipped; 3120 } 3121 if (sync_blocks < max_sync) 3122 max_sync = sync_blocks; 3123 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3124 3125 r10_bio->mddev = mddev; 3126 atomic_set(&r10_bio->remaining, 0); 3127 raise_barrier(conf, 0); 3128 conf->next_resync = sector_nr; 3129 3130 r10_bio->master_bio = NULL; 3131 r10_bio->sector = sector_nr; 3132 set_bit(R10BIO_IsSync, &r10_bio->state); 3133 raid10_find_phys(conf, r10_bio); 3134 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3135 3136 for (i = 0; i < conf->copies; i++) { 3137 int d = r10_bio->devs[i].devnum; 3138 sector_t first_bad, sector; 3139 int bad_sectors; 3140 3141 if (r10_bio->devs[i].repl_bio) 3142 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3143 3144 bio = r10_bio->devs[i].bio; 3145 bio->bi_end_io = NULL; 3146 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3147 if (conf->mirrors[d].rdev == NULL || 3148 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 3149 continue; 3150 sector = r10_bio->devs[i].addr; 3151 if (is_badblock(conf->mirrors[d].rdev, 3152 sector, max_sync, 3153 &first_bad, &bad_sectors)) { 3154 if (first_bad > sector) 3155 max_sync = first_bad - sector; 3156 else { 3157 bad_sectors -= (sector - first_bad); 3158 if (max_sync > bad_sectors) 3159 max_sync = max_sync; 3160 continue; 3161 } 3162 } 3163 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3164 atomic_inc(&r10_bio->remaining); 3165 bio->bi_next = biolist; 3166 biolist = bio; 3167 bio->bi_private = r10_bio; 3168 bio->bi_end_io = end_sync_read; 3169 bio->bi_rw = READ; 3170 bio->bi_sector = sector + 3171 conf->mirrors[d].rdev->data_offset; 3172 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 3173 count++; 3174 3175 if (conf->mirrors[d].replacement == NULL || 3176 test_bit(Faulty, 3177 &conf->mirrors[d].replacement->flags)) 3178 continue; 3179 3180 /* Need to set up for writing to the replacement */ 3181 bio = r10_bio->devs[i].repl_bio; 3182 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3183 3184 sector = r10_bio->devs[i].addr; 3185 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 3186 bio->bi_next = biolist; 3187 biolist = bio; 3188 bio->bi_private = r10_bio; 3189 bio->bi_end_io = end_sync_write; 3190 bio->bi_rw = WRITE; 3191 bio->bi_sector = sector + 3192 conf->mirrors[d].replacement->data_offset; 3193 bio->bi_bdev = conf->mirrors[d].replacement->bdev; 3194 count++; 3195 } 3196 3197 if (count < 2) { 3198 for (i=0; i<conf->copies; i++) { 3199 int d = r10_bio->devs[i].devnum; 3200 if (r10_bio->devs[i].bio->bi_end_io) 3201 rdev_dec_pending(conf->mirrors[d].rdev, 3202 mddev); 3203 if (r10_bio->devs[i].repl_bio && 3204 r10_bio->devs[i].repl_bio->bi_end_io) 3205 rdev_dec_pending( 3206 conf->mirrors[d].replacement, 3207 mddev); 3208 } 3209 put_buf(r10_bio); 3210 biolist = NULL; 3211 goto giveup; 3212 } 3213 } 3214 3215 for (bio = biolist; bio ; bio=bio->bi_next) { 3216 3217 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 3218 if (bio->bi_end_io) 3219 bio->bi_flags |= 1 << BIO_UPTODATE; 3220 bio->bi_vcnt = 0; 3221 bio->bi_idx = 0; 3222 bio->bi_phys_segments = 0; 3223 bio->bi_size = 0; 3224 } 3225 3226 nr_sectors = 0; 3227 if (sector_nr + max_sync < max_sector) 3228 max_sector = sector_nr + max_sync; 3229 do { 3230 struct page *page; 3231 int len = PAGE_SIZE; 3232 if (sector_nr + (len>>9) > max_sector) 3233 len = (max_sector - sector_nr) << 9; 3234 if (len == 0) 3235 break; 3236 for (bio= biolist ; bio ; bio=bio->bi_next) { 3237 struct bio *bio2; 3238 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3239 if (bio_add_page(bio, page, len, 0)) 3240 continue; 3241 3242 /* stop here */ 3243 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3244 for (bio2 = biolist; 3245 bio2 && bio2 != bio; 3246 bio2 = bio2->bi_next) { 3247 /* remove last page from this bio */ 3248 bio2->bi_vcnt--; 3249 bio2->bi_size -= len; 3250 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 3251 } 3252 goto bio_full; 3253 } 3254 nr_sectors += len>>9; 3255 sector_nr += len>>9; 3256 } while (biolist->bi_vcnt < RESYNC_PAGES); 3257 bio_full: 3258 r10_bio->sectors = nr_sectors; 3259 3260 while (biolist) { 3261 bio = biolist; 3262 biolist = biolist->bi_next; 3263 3264 bio->bi_next = NULL; 3265 r10_bio = bio->bi_private; 3266 r10_bio->sectors = nr_sectors; 3267 3268 if (bio->bi_end_io == end_sync_read) { 3269 md_sync_acct(bio->bi_bdev, nr_sectors); 3270 generic_make_request(bio); 3271 } 3272 } 3273 3274 if (sectors_skipped) 3275 /* pretend they weren't skipped, it makes 3276 * no important difference in this case 3277 */ 3278 md_done_sync(mddev, sectors_skipped, 1); 3279 3280 return sectors_skipped + nr_sectors; 3281 giveup: 3282 /* There is nowhere to write, so all non-sync 3283 * drives must be failed or in resync, all drives 3284 * have a bad block, so try the next chunk... 3285 */ 3286 if (sector_nr + max_sync < max_sector) 3287 max_sector = sector_nr + max_sync; 3288 3289 sectors_skipped += (max_sector - sector_nr); 3290 chunks_skipped ++; 3291 sector_nr = max_sector; 3292 goto skipped; 3293 } 3294 3295 static sector_t 3296 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3297 { 3298 sector_t size; 3299 struct r10conf *conf = mddev->private; 3300 3301 if (!raid_disks) 3302 raid_disks = min(conf->geo.raid_disks, 3303 conf->prev.raid_disks); 3304 if (!sectors) 3305 sectors = conf->dev_sectors; 3306 3307 size = sectors >> conf->geo.chunk_shift; 3308 sector_div(size, conf->geo.far_copies); 3309 size = size * raid_disks; 3310 sector_div(size, conf->geo.near_copies); 3311 3312 return size << conf->geo.chunk_shift; 3313 } 3314 3315 static void calc_sectors(struct r10conf *conf, sector_t size) 3316 { 3317 /* Calculate the number of sectors-per-device that will 3318 * actually be used, and set conf->dev_sectors and 3319 * conf->stride 3320 */ 3321 3322 size = size >> conf->geo.chunk_shift; 3323 sector_div(size, conf->geo.far_copies); 3324 size = size * conf->geo.raid_disks; 3325 sector_div(size, conf->geo.near_copies); 3326 /* 'size' is now the number of chunks in the array */ 3327 /* calculate "used chunks per device" */ 3328 size = size * conf->copies; 3329 3330 /* We need to round up when dividing by raid_disks to 3331 * get the stride size. 3332 */ 3333 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3334 3335 conf->dev_sectors = size << conf->geo.chunk_shift; 3336 3337 if (conf->geo.far_offset) 3338 conf->geo.stride = 1 << conf->geo.chunk_shift; 3339 else { 3340 sector_div(size, conf->geo.far_copies); 3341 conf->geo.stride = size << conf->geo.chunk_shift; 3342 } 3343 } 3344 3345 enum geo_type {geo_new, geo_old, geo_start}; 3346 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3347 { 3348 int nc, fc, fo; 3349 int layout, chunk, disks; 3350 switch (new) { 3351 case geo_old: 3352 layout = mddev->layout; 3353 chunk = mddev->chunk_sectors; 3354 disks = mddev->raid_disks - mddev->delta_disks; 3355 break; 3356 case geo_new: 3357 layout = mddev->new_layout; 3358 chunk = mddev->new_chunk_sectors; 3359 disks = mddev->raid_disks; 3360 break; 3361 default: /* avoid 'may be unused' warnings */ 3362 case geo_start: /* new when starting reshape - raid_disks not 3363 * updated yet. */ 3364 layout = mddev->new_layout; 3365 chunk = mddev->new_chunk_sectors; 3366 disks = mddev->raid_disks + mddev->delta_disks; 3367 break; 3368 } 3369 if (layout >> 17) 3370 return -1; 3371 if (chunk < (PAGE_SIZE >> 9) || 3372 !is_power_of_2(chunk)) 3373 return -2; 3374 nc = layout & 255; 3375 fc = (layout >> 8) & 255; 3376 fo = layout & (1<<16); 3377 geo->raid_disks = disks; 3378 geo->near_copies = nc; 3379 geo->far_copies = fc; 3380 geo->far_offset = fo; 3381 geo->chunk_mask = chunk - 1; 3382 geo->chunk_shift = ffz(~chunk); 3383 return nc*fc; 3384 } 3385 3386 static struct r10conf *setup_conf(struct mddev *mddev) 3387 { 3388 struct r10conf *conf = NULL; 3389 int err = -EINVAL; 3390 struct geom geo; 3391 int copies; 3392 3393 copies = setup_geo(&geo, mddev, geo_new); 3394 3395 if (copies == -2) { 3396 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3397 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3398 mdname(mddev), PAGE_SIZE); 3399 goto out; 3400 } 3401 3402 if (copies < 2 || copies > mddev->raid_disks) { 3403 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3404 mdname(mddev), mddev->new_layout); 3405 goto out; 3406 } 3407 3408 err = -ENOMEM; 3409 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3410 if (!conf) 3411 goto out; 3412 3413 /* FIXME calc properly */ 3414 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3415 max(0,mddev->delta_disks)), 3416 GFP_KERNEL); 3417 if (!conf->mirrors) 3418 goto out; 3419 3420 conf->tmppage = alloc_page(GFP_KERNEL); 3421 if (!conf->tmppage) 3422 goto out; 3423 3424 conf->geo = geo; 3425 conf->copies = copies; 3426 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3427 r10bio_pool_free, conf); 3428 if (!conf->r10bio_pool) 3429 goto out; 3430 3431 calc_sectors(conf, mddev->dev_sectors); 3432 if (mddev->reshape_position == MaxSector) { 3433 conf->prev = conf->geo; 3434 conf->reshape_progress = MaxSector; 3435 } else { 3436 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3437 err = -EINVAL; 3438 goto out; 3439 } 3440 conf->reshape_progress = mddev->reshape_position; 3441 if (conf->prev.far_offset) 3442 conf->prev.stride = 1 << conf->prev.chunk_shift; 3443 else 3444 /* far_copies must be 1 */ 3445 conf->prev.stride = conf->dev_sectors; 3446 } 3447 spin_lock_init(&conf->device_lock); 3448 INIT_LIST_HEAD(&conf->retry_list); 3449 3450 spin_lock_init(&conf->resync_lock); 3451 init_waitqueue_head(&conf->wait_barrier); 3452 3453 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3454 if (!conf->thread) 3455 goto out; 3456 3457 conf->mddev = mddev; 3458 return conf; 3459 3460 out: 3461 if (err == -ENOMEM) 3462 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3463 mdname(mddev)); 3464 if (conf) { 3465 if (conf->r10bio_pool) 3466 mempool_destroy(conf->r10bio_pool); 3467 kfree(conf->mirrors); 3468 safe_put_page(conf->tmppage); 3469 kfree(conf); 3470 } 3471 return ERR_PTR(err); 3472 } 3473 3474 static int run(struct mddev *mddev) 3475 { 3476 struct r10conf *conf; 3477 int i, disk_idx, chunk_size; 3478 struct raid10_info *disk; 3479 struct md_rdev *rdev; 3480 sector_t size; 3481 sector_t min_offset_diff = 0; 3482 int first = 1; 3483 3484 if (mddev->private == NULL) { 3485 conf = setup_conf(mddev); 3486 if (IS_ERR(conf)) 3487 return PTR_ERR(conf); 3488 mddev->private = conf; 3489 } 3490 conf = mddev->private; 3491 if (!conf) 3492 goto out; 3493 3494 mddev->thread = conf->thread; 3495 conf->thread = NULL; 3496 3497 chunk_size = mddev->chunk_sectors << 9; 3498 if (mddev->queue) { 3499 blk_queue_io_min(mddev->queue, chunk_size); 3500 if (conf->geo.raid_disks % conf->geo.near_copies) 3501 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3502 else 3503 blk_queue_io_opt(mddev->queue, chunk_size * 3504 (conf->geo.raid_disks / conf->geo.near_copies)); 3505 } 3506 3507 rdev_for_each(rdev, mddev) { 3508 long long diff; 3509 struct request_queue *q; 3510 3511 disk_idx = rdev->raid_disk; 3512 if (disk_idx < 0) 3513 continue; 3514 if (disk_idx >= conf->geo.raid_disks && 3515 disk_idx >= conf->prev.raid_disks) 3516 continue; 3517 disk = conf->mirrors + disk_idx; 3518 3519 if (test_bit(Replacement, &rdev->flags)) { 3520 if (disk->replacement) 3521 goto out_free_conf; 3522 disk->replacement = rdev; 3523 } else { 3524 if (disk->rdev) 3525 goto out_free_conf; 3526 disk->rdev = rdev; 3527 } 3528 q = bdev_get_queue(rdev->bdev); 3529 if (q->merge_bvec_fn) 3530 mddev->merge_check_needed = 1; 3531 diff = (rdev->new_data_offset - rdev->data_offset); 3532 if (!mddev->reshape_backwards) 3533 diff = -diff; 3534 if (diff < 0) 3535 diff = 0; 3536 if (first || diff < min_offset_diff) 3537 min_offset_diff = diff; 3538 3539 if (mddev->gendisk) 3540 disk_stack_limits(mddev->gendisk, rdev->bdev, 3541 rdev->data_offset << 9); 3542 3543 disk->head_position = 0; 3544 } 3545 3546 /* need to check that every block has at least one working mirror */ 3547 if (!enough(conf, -1)) { 3548 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3549 mdname(mddev)); 3550 goto out_free_conf; 3551 } 3552 3553 if (conf->reshape_progress != MaxSector) { 3554 /* must ensure that shape change is supported */ 3555 if (conf->geo.far_copies != 1 && 3556 conf->geo.far_offset == 0) 3557 goto out_free_conf; 3558 if (conf->prev.far_copies != 1 && 3559 conf->geo.far_offset == 0) 3560 goto out_free_conf; 3561 } 3562 3563 mddev->degraded = 0; 3564 for (i = 0; 3565 i < conf->geo.raid_disks 3566 || i < conf->prev.raid_disks; 3567 i++) { 3568 3569 disk = conf->mirrors + i; 3570 3571 if (!disk->rdev && disk->replacement) { 3572 /* The replacement is all we have - use it */ 3573 disk->rdev = disk->replacement; 3574 disk->replacement = NULL; 3575 clear_bit(Replacement, &disk->rdev->flags); 3576 } 3577 3578 if (!disk->rdev || 3579 !test_bit(In_sync, &disk->rdev->flags)) { 3580 disk->head_position = 0; 3581 mddev->degraded++; 3582 if (disk->rdev) 3583 conf->fullsync = 1; 3584 } 3585 disk->recovery_disabled = mddev->recovery_disabled - 1; 3586 } 3587 3588 if (mddev->recovery_cp != MaxSector) 3589 printk(KERN_NOTICE "md/raid10:%s: not clean" 3590 " -- starting background reconstruction\n", 3591 mdname(mddev)); 3592 printk(KERN_INFO 3593 "md/raid10:%s: active with %d out of %d devices\n", 3594 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3595 conf->geo.raid_disks); 3596 /* 3597 * Ok, everything is just fine now 3598 */ 3599 mddev->dev_sectors = conf->dev_sectors; 3600 size = raid10_size(mddev, 0, 0); 3601 md_set_array_sectors(mddev, size); 3602 mddev->resync_max_sectors = size; 3603 3604 if (mddev->queue) { 3605 int stripe = conf->geo.raid_disks * 3606 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3607 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 3608 mddev->queue->backing_dev_info.congested_data = mddev; 3609 3610 /* Calculate max read-ahead size. 3611 * We need to readahead at least twice a whole stripe.... 3612 * maybe... 3613 */ 3614 stripe /= conf->geo.near_copies; 3615 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3616 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3617 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 3618 } 3619 3620 3621 if (md_integrity_register(mddev)) 3622 goto out_free_conf; 3623 3624 if (conf->reshape_progress != MaxSector) { 3625 unsigned long before_length, after_length; 3626 3627 before_length = ((1 << conf->prev.chunk_shift) * 3628 conf->prev.far_copies); 3629 after_length = ((1 << conf->geo.chunk_shift) * 3630 conf->geo.far_copies); 3631 3632 if (max(before_length, after_length) > min_offset_diff) { 3633 /* This cannot work */ 3634 printk("md/raid10: offset difference not enough to continue reshape\n"); 3635 goto out_free_conf; 3636 } 3637 conf->offset_diff = min_offset_diff; 3638 3639 conf->reshape_safe = conf->reshape_progress; 3640 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3641 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3642 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3643 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3644 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3645 "reshape"); 3646 } 3647 3648 return 0; 3649 3650 out_free_conf: 3651 md_unregister_thread(&mddev->thread); 3652 if (conf->r10bio_pool) 3653 mempool_destroy(conf->r10bio_pool); 3654 safe_put_page(conf->tmppage); 3655 kfree(conf->mirrors); 3656 kfree(conf); 3657 mddev->private = NULL; 3658 out: 3659 return -EIO; 3660 } 3661 3662 static int stop(struct mddev *mddev) 3663 { 3664 struct r10conf *conf = mddev->private; 3665 3666 raise_barrier(conf, 0); 3667 lower_barrier(conf); 3668 3669 md_unregister_thread(&mddev->thread); 3670 if (mddev->queue) 3671 /* the unplug fn references 'conf'*/ 3672 blk_sync_queue(mddev->queue); 3673 3674 if (conf->r10bio_pool) 3675 mempool_destroy(conf->r10bio_pool); 3676 kfree(conf->mirrors); 3677 kfree(conf); 3678 mddev->private = NULL; 3679 return 0; 3680 } 3681 3682 static void raid10_quiesce(struct mddev *mddev, int state) 3683 { 3684 struct r10conf *conf = mddev->private; 3685 3686 switch(state) { 3687 case 1: 3688 raise_barrier(conf, 0); 3689 break; 3690 case 0: 3691 lower_barrier(conf); 3692 break; 3693 } 3694 } 3695 3696 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3697 { 3698 /* Resize of 'far' arrays is not supported. 3699 * For 'near' and 'offset' arrays we can set the 3700 * number of sectors used to be an appropriate multiple 3701 * of the chunk size. 3702 * For 'offset', this is far_copies*chunksize. 3703 * For 'near' the multiplier is the LCM of 3704 * near_copies and raid_disks. 3705 * So if far_copies > 1 && !far_offset, fail. 3706 * Else find LCM(raid_disks, near_copy)*far_copies and 3707 * multiply by chunk_size. Then round to this number. 3708 * This is mostly done by raid10_size() 3709 */ 3710 struct r10conf *conf = mddev->private; 3711 sector_t oldsize, size; 3712 3713 if (mddev->reshape_position != MaxSector) 3714 return -EBUSY; 3715 3716 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3717 return -EINVAL; 3718 3719 oldsize = raid10_size(mddev, 0, 0); 3720 size = raid10_size(mddev, sectors, 0); 3721 if (mddev->external_size && 3722 mddev->array_sectors > size) 3723 return -EINVAL; 3724 if (mddev->bitmap) { 3725 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3726 if (ret) 3727 return ret; 3728 } 3729 md_set_array_sectors(mddev, size); 3730 set_capacity(mddev->gendisk, mddev->array_sectors); 3731 revalidate_disk(mddev->gendisk); 3732 if (sectors > mddev->dev_sectors && 3733 mddev->recovery_cp > oldsize) { 3734 mddev->recovery_cp = oldsize; 3735 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3736 } 3737 calc_sectors(conf, sectors); 3738 mddev->dev_sectors = conf->dev_sectors; 3739 mddev->resync_max_sectors = size; 3740 return 0; 3741 } 3742 3743 static void *raid10_takeover_raid0(struct mddev *mddev) 3744 { 3745 struct md_rdev *rdev; 3746 struct r10conf *conf; 3747 3748 if (mddev->degraded > 0) { 3749 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3750 mdname(mddev)); 3751 return ERR_PTR(-EINVAL); 3752 } 3753 3754 /* Set new parameters */ 3755 mddev->new_level = 10; 3756 /* new layout: far_copies = 1, near_copies = 2 */ 3757 mddev->new_layout = (1<<8) + 2; 3758 mddev->new_chunk_sectors = mddev->chunk_sectors; 3759 mddev->delta_disks = mddev->raid_disks; 3760 mddev->raid_disks *= 2; 3761 /* make sure it will be not marked as dirty */ 3762 mddev->recovery_cp = MaxSector; 3763 3764 conf = setup_conf(mddev); 3765 if (!IS_ERR(conf)) { 3766 rdev_for_each(rdev, mddev) 3767 if (rdev->raid_disk >= 0) 3768 rdev->new_raid_disk = rdev->raid_disk * 2; 3769 conf->barrier = 1; 3770 } 3771 3772 return conf; 3773 } 3774 3775 static void *raid10_takeover(struct mddev *mddev) 3776 { 3777 struct r0conf *raid0_conf; 3778 3779 /* raid10 can take over: 3780 * raid0 - providing it has only two drives 3781 */ 3782 if (mddev->level == 0) { 3783 /* for raid0 takeover only one zone is supported */ 3784 raid0_conf = mddev->private; 3785 if (raid0_conf->nr_strip_zones > 1) { 3786 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3787 " with more than one zone.\n", 3788 mdname(mddev)); 3789 return ERR_PTR(-EINVAL); 3790 } 3791 return raid10_takeover_raid0(mddev); 3792 } 3793 return ERR_PTR(-EINVAL); 3794 } 3795 3796 static int raid10_check_reshape(struct mddev *mddev) 3797 { 3798 /* Called when there is a request to change 3799 * - layout (to ->new_layout) 3800 * - chunk size (to ->new_chunk_sectors) 3801 * - raid_disks (by delta_disks) 3802 * or when trying to restart a reshape that was ongoing. 3803 * 3804 * We need to validate the request and possibly allocate 3805 * space if that might be an issue later. 3806 * 3807 * Currently we reject any reshape of a 'far' mode array, 3808 * allow chunk size to change if new is generally acceptable, 3809 * allow raid_disks to increase, and allow 3810 * a switch between 'near' mode and 'offset' mode. 3811 */ 3812 struct r10conf *conf = mddev->private; 3813 struct geom geo; 3814 3815 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3816 return -EINVAL; 3817 3818 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3819 /* mustn't change number of copies */ 3820 return -EINVAL; 3821 if (geo.far_copies > 1 && !geo.far_offset) 3822 /* Cannot switch to 'far' mode */ 3823 return -EINVAL; 3824 3825 if (mddev->array_sectors & geo.chunk_mask) 3826 /* not factor of array size */ 3827 return -EINVAL; 3828 3829 if (!enough(conf, -1)) 3830 return -EINVAL; 3831 3832 kfree(conf->mirrors_new); 3833 conf->mirrors_new = NULL; 3834 if (mddev->delta_disks > 0) { 3835 /* allocate new 'mirrors' list */ 3836 conf->mirrors_new = kzalloc( 3837 sizeof(struct raid10_info) 3838 *(mddev->raid_disks + 3839 mddev->delta_disks), 3840 GFP_KERNEL); 3841 if (!conf->mirrors_new) 3842 return -ENOMEM; 3843 } 3844 return 0; 3845 } 3846 3847 /* 3848 * Need to check if array has failed when deciding whether to: 3849 * - start an array 3850 * - remove non-faulty devices 3851 * - add a spare 3852 * - allow a reshape 3853 * This determination is simple when no reshape is happening. 3854 * However if there is a reshape, we need to carefully check 3855 * both the before and after sections. 3856 * This is because some failed devices may only affect one 3857 * of the two sections, and some non-in_sync devices may 3858 * be insync in the section most affected by failed devices. 3859 */ 3860 static int calc_degraded(struct r10conf *conf) 3861 { 3862 int degraded, degraded2; 3863 int i; 3864 3865 rcu_read_lock(); 3866 degraded = 0; 3867 /* 'prev' section first */ 3868 for (i = 0; i < conf->prev.raid_disks; i++) { 3869 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3870 if (!rdev || test_bit(Faulty, &rdev->flags)) 3871 degraded++; 3872 else if (!test_bit(In_sync, &rdev->flags)) 3873 /* When we can reduce the number of devices in 3874 * an array, this might not contribute to 3875 * 'degraded'. It does now. 3876 */ 3877 degraded++; 3878 } 3879 rcu_read_unlock(); 3880 if (conf->geo.raid_disks == conf->prev.raid_disks) 3881 return degraded; 3882 rcu_read_lock(); 3883 degraded2 = 0; 3884 for (i = 0; i < conf->geo.raid_disks; i++) { 3885 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3886 if (!rdev || test_bit(Faulty, &rdev->flags)) 3887 degraded2++; 3888 else if (!test_bit(In_sync, &rdev->flags)) { 3889 /* If reshape is increasing the number of devices, 3890 * this section has already been recovered, so 3891 * it doesn't contribute to degraded. 3892 * else it does. 3893 */ 3894 if (conf->geo.raid_disks <= conf->prev.raid_disks) 3895 degraded2++; 3896 } 3897 } 3898 rcu_read_unlock(); 3899 if (degraded2 > degraded) 3900 return degraded2; 3901 return degraded; 3902 } 3903 3904 static int raid10_start_reshape(struct mddev *mddev) 3905 { 3906 /* A 'reshape' has been requested. This commits 3907 * the various 'new' fields and sets MD_RECOVER_RESHAPE 3908 * This also checks if there are enough spares and adds them 3909 * to the array. 3910 * We currently require enough spares to make the final 3911 * array non-degraded. We also require that the difference 3912 * between old and new data_offset - on each device - is 3913 * enough that we never risk over-writing. 3914 */ 3915 3916 unsigned long before_length, after_length; 3917 sector_t min_offset_diff = 0; 3918 int first = 1; 3919 struct geom new; 3920 struct r10conf *conf = mddev->private; 3921 struct md_rdev *rdev; 3922 int spares = 0; 3923 int ret; 3924 3925 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3926 return -EBUSY; 3927 3928 if (setup_geo(&new, mddev, geo_start) != conf->copies) 3929 return -EINVAL; 3930 3931 before_length = ((1 << conf->prev.chunk_shift) * 3932 conf->prev.far_copies); 3933 after_length = ((1 << conf->geo.chunk_shift) * 3934 conf->geo.far_copies); 3935 3936 rdev_for_each(rdev, mddev) { 3937 if (!test_bit(In_sync, &rdev->flags) 3938 && !test_bit(Faulty, &rdev->flags)) 3939 spares++; 3940 if (rdev->raid_disk >= 0) { 3941 long long diff = (rdev->new_data_offset 3942 - rdev->data_offset); 3943 if (!mddev->reshape_backwards) 3944 diff = -diff; 3945 if (diff < 0) 3946 diff = 0; 3947 if (first || diff < min_offset_diff) 3948 min_offset_diff = diff; 3949 } 3950 } 3951 3952 if (max(before_length, after_length) > min_offset_diff) 3953 return -EINVAL; 3954 3955 if (spares < mddev->delta_disks) 3956 return -EINVAL; 3957 3958 conf->offset_diff = min_offset_diff; 3959 spin_lock_irq(&conf->device_lock); 3960 if (conf->mirrors_new) { 3961 memcpy(conf->mirrors_new, conf->mirrors, 3962 sizeof(struct raid10_info)*conf->prev.raid_disks); 3963 smp_mb(); 3964 kfree(conf->mirrors_old); /* FIXME and elsewhere */ 3965 conf->mirrors_old = conf->mirrors; 3966 conf->mirrors = conf->mirrors_new; 3967 conf->mirrors_new = NULL; 3968 } 3969 setup_geo(&conf->geo, mddev, geo_start); 3970 smp_mb(); 3971 if (mddev->reshape_backwards) { 3972 sector_t size = raid10_size(mddev, 0, 0); 3973 if (size < mddev->array_sectors) { 3974 spin_unlock_irq(&conf->device_lock); 3975 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 3976 mdname(mddev)); 3977 return -EINVAL; 3978 } 3979 mddev->resync_max_sectors = size; 3980 conf->reshape_progress = size; 3981 } else 3982 conf->reshape_progress = 0; 3983 spin_unlock_irq(&conf->device_lock); 3984 3985 if (mddev->delta_disks && mddev->bitmap) { 3986 ret = bitmap_resize(mddev->bitmap, 3987 raid10_size(mddev, 0, 3988 conf->geo.raid_disks), 3989 0, 0); 3990 if (ret) 3991 goto abort; 3992 } 3993 if (mddev->delta_disks > 0) { 3994 rdev_for_each(rdev, mddev) 3995 if (rdev->raid_disk < 0 && 3996 !test_bit(Faulty, &rdev->flags)) { 3997 if (raid10_add_disk(mddev, rdev) == 0) { 3998 if (rdev->raid_disk >= 3999 conf->prev.raid_disks) 4000 set_bit(In_sync, &rdev->flags); 4001 else 4002 rdev->recovery_offset = 0; 4003 4004 if (sysfs_link_rdev(mddev, rdev)) 4005 /* Failure here is OK */; 4006 } 4007 } else if (rdev->raid_disk >= conf->prev.raid_disks 4008 && !test_bit(Faulty, &rdev->flags)) { 4009 /* This is a spare that was manually added */ 4010 set_bit(In_sync, &rdev->flags); 4011 } 4012 } 4013 /* When a reshape changes the number of devices, 4014 * ->degraded is measured against the larger of the 4015 * pre and post numbers. 4016 */ 4017 spin_lock_irq(&conf->device_lock); 4018 mddev->degraded = calc_degraded(conf); 4019 spin_unlock_irq(&conf->device_lock); 4020 mddev->raid_disks = conf->geo.raid_disks; 4021 mddev->reshape_position = conf->reshape_progress; 4022 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4023 4024 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4025 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4026 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4027 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4028 4029 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4030 "reshape"); 4031 if (!mddev->sync_thread) { 4032 ret = -EAGAIN; 4033 goto abort; 4034 } 4035 conf->reshape_checkpoint = jiffies; 4036 md_wakeup_thread(mddev->sync_thread); 4037 md_new_event(mddev); 4038 return 0; 4039 4040 abort: 4041 mddev->recovery = 0; 4042 spin_lock_irq(&conf->device_lock); 4043 conf->geo = conf->prev; 4044 mddev->raid_disks = conf->geo.raid_disks; 4045 rdev_for_each(rdev, mddev) 4046 rdev->new_data_offset = rdev->data_offset; 4047 smp_wmb(); 4048 conf->reshape_progress = MaxSector; 4049 mddev->reshape_position = MaxSector; 4050 spin_unlock_irq(&conf->device_lock); 4051 return ret; 4052 } 4053 4054 /* Calculate the last device-address that could contain 4055 * any block from the chunk that includes the array-address 's' 4056 * and report the next address. 4057 * i.e. the address returned will be chunk-aligned and after 4058 * any data that is in the chunk containing 's'. 4059 */ 4060 static sector_t last_dev_address(sector_t s, struct geom *geo) 4061 { 4062 s = (s | geo->chunk_mask) + 1; 4063 s >>= geo->chunk_shift; 4064 s *= geo->near_copies; 4065 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4066 s *= geo->far_copies; 4067 s <<= geo->chunk_shift; 4068 return s; 4069 } 4070 4071 /* Calculate the first device-address that could contain 4072 * any block from the chunk that includes the array-address 's'. 4073 * This too will be the start of a chunk 4074 */ 4075 static sector_t first_dev_address(sector_t s, struct geom *geo) 4076 { 4077 s >>= geo->chunk_shift; 4078 s *= geo->near_copies; 4079 sector_div(s, geo->raid_disks); 4080 s *= geo->far_copies; 4081 s <<= geo->chunk_shift; 4082 return s; 4083 } 4084 4085 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4086 int *skipped) 4087 { 4088 /* We simply copy at most one chunk (smallest of old and new) 4089 * at a time, possibly less if that exceeds RESYNC_PAGES, 4090 * or we hit a bad block or something. 4091 * This might mean we pause for normal IO in the middle of 4092 * a chunk, but that is not a problem was mddev->reshape_position 4093 * can record any location. 4094 * 4095 * If we will want to write to a location that isn't 4096 * yet recorded as 'safe' (i.e. in metadata on disk) then 4097 * we need to flush all reshape requests and update the metadata. 4098 * 4099 * When reshaping forwards (e.g. to more devices), we interpret 4100 * 'safe' as the earliest block which might not have been copied 4101 * down yet. We divide this by previous stripe size and multiply 4102 * by previous stripe length to get lowest device offset that we 4103 * cannot write to yet. 4104 * We interpret 'sector_nr' as an address that we want to write to. 4105 * From this we use last_device_address() to find where we might 4106 * write to, and first_device_address on the 'safe' position. 4107 * If this 'next' write position is after the 'safe' position, 4108 * we must update the metadata to increase the 'safe' position. 4109 * 4110 * When reshaping backwards, we round in the opposite direction 4111 * and perform the reverse test: next write position must not be 4112 * less than current safe position. 4113 * 4114 * In all this the minimum difference in data offsets 4115 * (conf->offset_diff - always positive) allows a bit of slack, 4116 * so next can be after 'safe', but not by more than offset_disk 4117 * 4118 * We need to prepare all the bios here before we start any IO 4119 * to ensure the size we choose is acceptable to all devices. 4120 * The means one for each copy for write-out and an extra one for 4121 * read-in. 4122 * We store the read-in bio in ->master_bio and the others in 4123 * ->devs[x].bio and ->devs[x].repl_bio. 4124 */ 4125 struct r10conf *conf = mddev->private; 4126 struct r10bio *r10_bio; 4127 sector_t next, safe, last; 4128 int max_sectors; 4129 int nr_sectors; 4130 int s; 4131 struct md_rdev *rdev; 4132 int need_flush = 0; 4133 struct bio *blist; 4134 struct bio *bio, *read_bio; 4135 int sectors_done = 0; 4136 4137 if (sector_nr == 0) { 4138 /* If restarting in the middle, skip the initial sectors */ 4139 if (mddev->reshape_backwards && 4140 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4141 sector_nr = (raid10_size(mddev, 0, 0) 4142 - conf->reshape_progress); 4143 } else if (!mddev->reshape_backwards && 4144 conf->reshape_progress > 0) 4145 sector_nr = conf->reshape_progress; 4146 if (sector_nr) { 4147 mddev->curr_resync_completed = sector_nr; 4148 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4149 *skipped = 1; 4150 return sector_nr; 4151 } 4152 } 4153 4154 /* We don't use sector_nr to track where we are up to 4155 * as that doesn't work well for ->reshape_backwards. 4156 * So just use ->reshape_progress. 4157 */ 4158 if (mddev->reshape_backwards) { 4159 /* 'next' is the earliest device address that we might 4160 * write to for this chunk in the new layout 4161 */ 4162 next = first_dev_address(conf->reshape_progress - 1, 4163 &conf->geo); 4164 4165 /* 'safe' is the last device address that we might read from 4166 * in the old layout after a restart 4167 */ 4168 safe = last_dev_address(conf->reshape_safe - 1, 4169 &conf->prev); 4170 4171 if (next + conf->offset_diff < safe) 4172 need_flush = 1; 4173 4174 last = conf->reshape_progress - 1; 4175 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4176 & conf->prev.chunk_mask); 4177 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4178 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4179 } else { 4180 /* 'next' is after the last device address that we 4181 * might write to for this chunk in the new layout 4182 */ 4183 next = last_dev_address(conf->reshape_progress, &conf->geo); 4184 4185 /* 'safe' is the earliest device address that we might 4186 * read from in the old layout after a restart 4187 */ 4188 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4189 4190 /* Need to update metadata if 'next' might be beyond 'safe' 4191 * as that would possibly corrupt data 4192 */ 4193 if (next > safe + conf->offset_diff) 4194 need_flush = 1; 4195 4196 sector_nr = conf->reshape_progress; 4197 last = sector_nr | (conf->geo.chunk_mask 4198 & conf->prev.chunk_mask); 4199 4200 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4201 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4202 } 4203 4204 if (need_flush || 4205 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4206 /* Need to update reshape_position in metadata */ 4207 wait_barrier(conf); 4208 mddev->reshape_position = conf->reshape_progress; 4209 if (mddev->reshape_backwards) 4210 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4211 - conf->reshape_progress; 4212 else 4213 mddev->curr_resync_completed = conf->reshape_progress; 4214 conf->reshape_checkpoint = jiffies; 4215 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4216 md_wakeup_thread(mddev->thread); 4217 wait_event(mddev->sb_wait, mddev->flags == 0 || 4218 kthread_should_stop()); 4219 conf->reshape_safe = mddev->reshape_position; 4220 allow_barrier(conf); 4221 } 4222 4223 read_more: 4224 /* Now schedule reads for blocks from sector_nr to last */ 4225 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4226 raise_barrier(conf, sectors_done != 0); 4227 atomic_set(&r10_bio->remaining, 0); 4228 r10_bio->mddev = mddev; 4229 r10_bio->sector = sector_nr; 4230 set_bit(R10BIO_IsReshape, &r10_bio->state); 4231 r10_bio->sectors = last - sector_nr + 1; 4232 rdev = read_balance(conf, r10_bio, &max_sectors); 4233 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4234 4235 if (!rdev) { 4236 /* Cannot read from here, so need to record bad blocks 4237 * on all the target devices. 4238 */ 4239 // FIXME 4240 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4241 return sectors_done; 4242 } 4243 4244 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4245 4246 read_bio->bi_bdev = rdev->bdev; 4247 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4248 + rdev->data_offset); 4249 read_bio->bi_private = r10_bio; 4250 read_bio->bi_end_io = end_sync_read; 4251 read_bio->bi_rw = READ; 4252 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1); 4253 read_bio->bi_flags |= 1 << BIO_UPTODATE; 4254 read_bio->bi_vcnt = 0; 4255 read_bio->bi_idx = 0; 4256 read_bio->bi_size = 0; 4257 r10_bio->master_bio = read_bio; 4258 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4259 4260 /* Now find the locations in the new layout */ 4261 __raid10_find_phys(&conf->geo, r10_bio); 4262 4263 blist = read_bio; 4264 read_bio->bi_next = NULL; 4265 4266 for (s = 0; s < conf->copies*2; s++) { 4267 struct bio *b; 4268 int d = r10_bio->devs[s/2].devnum; 4269 struct md_rdev *rdev2; 4270 if (s&1) { 4271 rdev2 = conf->mirrors[d].replacement; 4272 b = r10_bio->devs[s/2].repl_bio; 4273 } else { 4274 rdev2 = conf->mirrors[d].rdev; 4275 b = r10_bio->devs[s/2].bio; 4276 } 4277 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4278 continue; 4279 b->bi_bdev = rdev2->bdev; 4280 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset; 4281 b->bi_private = r10_bio; 4282 b->bi_end_io = end_reshape_write; 4283 b->bi_rw = WRITE; 4284 b->bi_flags &= ~(BIO_POOL_MASK - 1); 4285 b->bi_flags |= 1 << BIO_UPTODATE; 4286 b->bi_next = blist; 4287 b->bi_vcnt = 0; 4288 b->bi_idx = 0; 4289 b->bi_size = 0; 4290 blist = b; 4291 } 4292 4293 /* Now add as many pages as possible to all of these bios. */ 4294 4295 nr_sectors = 0; 4296 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4297 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4298 int len = (max_sectors - s) << 9; 4299 if (len > PAGE_SIZE) 4300 len = PAGE_SIZE; 4301 for (bio = blist; bio ; bio = bio->bi_next) { 4302 struct bio *bio2; 4303 if (bio_add_page(bio, page, len, 0)) 4304 continue; 4305 4306 /* Didn't fit, must stop */ 4307 for (bio2 = blist; 4308 bio2 && bio2 != bio; 4309 bio2 = bio2->bi_next) { 4310 /* Remove last page from this bio */ 4311 bio2->bi_vcnt--; 4312 bio2->bi_size -= len; 4313 bio2->bi_flags &= ~(1<<BIO_SEG_VALID); 4314 } 4315 goto bio_full; 4316 } 4317 sector_nr += len >> 9; 4318 nr_sectors += len >> 9; 4319 } 4320 bio_full: 4321 r10_bio->sectors = nr_sectors; 4322 4323 /* Now submit the read */ 4324 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4325 atomic_inc(&r10_bio->remaining); 4326 read_bio->bi_next = NULL; 4327 generic_make_request(read_bio); 4328 sector_nr += nr_sectors; 4329 sectors_done += nr_sectors; 4330 if (sector_nr <= last) 4331 goto read_more; 4332 4333 /* Now that we have done the whole section we can 4334 * update reshape_progress 4335 */ 4336 if (mddev->reshape_backwards) 4337 conf->reshape_progress -= sectors_done; 4338 else 4339 conf->reshape_progress += sectors_done; 4340 4341 return sectors_done; 4342 } 4343 4344 static void end_reshape_request(struct r10bio *r10_bio); 4345 static int handle_reshape_read_error(struct mddev *mddev, 4346 struct r10bio *r10_bio); 4347 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4348 { 4349 /* Reshape read completed. Hopefully we have a block 4350 * to write out. 4351 * If we got a read error then we do sync 1-page reads from 4352 * elsewhere until we find the data - or give up. 4353 */ 4354 struct r10conf *conf = mddev->private; 4355 int s; 4356 4357 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4358 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4359 /* Reshape has been aborted */ 4360 md_done_sync(mddev, r10_bio->sectors, 0); 4361 return; 4362 } 4363 4364 /* We definitely have the data in the pages, schedule the 4365 * writes. 4366 */ 4367 atomic_set(&r10_bio->remaining, 1); 4368 for (s = 0; s < conf->copies*2; s++) { 4369 struct bio *b; 4370 int d = r10_bio->devs[s/2].devnum; 4371 struct md_rdev *rdev; 4372 if (s&1) { 4373 rdev = conf->mirrors[d].replacement; 4374 b = r10_bio->devs[s/2].repl_bio; 4375 } else { 4376 rdev = conf->mirrors[d].rdev; 4377 b = r10_bio->devs[s/2].bio; 4378 } 4379 if (!rdev || test_bit(Faulty, &rdev->flags)) 4380 continue; 4381 atomic_inc(&rdev->nr_pending); 4382 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4383 atomic_inc(&r10_bio->remaining); 4384 b->bi_next = NULL; 4385 generic_make_request(b); 4386 } 4387 end_reshape_request(r10_bio); 4388 } 4389 4390 static void end_reshape(struct r10conf *conf) 4391 { 4392 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4393 return; 4394 4395 spin_lock_irq(&conf->device_lock); 4396 conf->prev = conf->geo; 4397 md_finish_reshape(conf->mddev); 4398 smp_wmb(); 4399 conf->reshape_progress = MaxSector; 4400 spin_unlock_irq(&conf->device_lock); 4401 4402 /* read-ahead size must cover two whole stripes, which is 4403 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4404 */ 4405 if (conf->mddev->queue) { 4406 int stripe = conf->geo.raid_disks * 4407 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4408 stripe /= conf->geo.near_copies; 4409 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4410 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4411 } 4412 conf->fullsync = 0; 4413 } 4414 4415 4416 static int handle_reshape_read_error(struct mddev *mddev, 4417 struct r10bio *r10_bio) 4418 { 4419 /* Use sync reads to get the blocks from somewhere else */ 4420 int sectors = r10_bio->sectors; 4421 struct r10conf *conf = mddev->private; 4422 struct { 4423 struct r10bio r10_bio; 4424 struct r10dev devs[conf->copies]; 4425 } on_stack; 4426 struct r10bio *r10b = &on_stack.r10_bio; 4427 int slot = 0; 4428 int idx = 0; 4429 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4430 4431 r10b->sector = r10_bio->sector; 4432 __raid10_find_phys(&conf->prev, r10b); 4433 4434 while (sectors) { 4435 int s = sectors; 4436 int success = 0; 4437 int first_slot = slot; 4438 4439 if (s > (PAGE_SIZE >> 9)) 4440 s = PAGE_SIZE >> 9; 4441 4442 while (!success) { 4443 int d = r10b->devs[slot].devnum; 4444 struct md_rdev *rdev = conf->mirrors[d].rdev; 4445 sector_t addr; 4446 if (rdev == NULL || 4447 test_bit(Faulty, &rdev->flags) || 4448 !test_bit(In_sync, &rdev->flags)) 4449 goto failed; 4450 4451 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4452 success = sync_page_io(rdev, 4453 addr, 4454 s << 9, 4455 bvec[idx].bv_page, 4456 READ, false); 4457 if (success) 4458 break; 4459 failed: 4460 slot++; 4461 if (slot >= conf->copies) 4462 slot = 0; 4463 if (slot == first_slot) 4464 break; 4465 } 4466 if (!success) { 4467 /* couldn't read this block, must give up */ 4468 set_bit(MD_RECOVERY_INTR, 4469 &mddev->recovery); 4470 return -EIO; 4471 } 4472 sectors -= s; 4473 idx++; 4474 } 4475 return 0; 4476 } 4477 4478 static void end_reshape_write(struct bio *bio, int error) 4479 { 4480 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 4481 struct r10bio *r10_bio = bio->bi_private; 4482 struct mddev *mddev = r10_bio->mddev; 4483 struct r10conf *conf = mddev->private; 4484 int d; 4485 int slot; 4486 int repl; 4487 struct md_rdev *rdev = NULL; 4488 4489 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4490 if (repl) 4491 rdev = conf->mirrors[d].replacement; 4492 if (!rdev) { 4493 smp_mb(); 4494 rdev = conf->mirrors[d].rdev; 4495 } 4496 4497 if (!uptodate) { 4498 /* FIXME should record badblock */ 4499 md_error(mddev, rdev); 4500 } 4501 4502 rdev_dec_pending(rdev, mddev); 4503 end_reshape_request(r10_bio); 4504 } 4505 4506 static void end_reshape_request(struct r10bio *r10_bio) 4507 { 4508 if (!atomic_dec_and_test(&r10_bio->remaining)) 4509 return; 4510 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4511 bio_put(r10_bio->master_bio); 4512 put_buf(r10_bio); 4513 } 4514 4515 static void raid10_finish_reshape(struct mddev *mddev) 4516 { 4517 struct r10conf *conf = mddev->private; 4518 4519 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4520 return; 4521 4522 if (mddev->delta_disks > 0) { 4523 sector_t size = raid10_size(mddev, 0, 0); 4524 md_set_array_sectors(mddev, size); 4525 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4526 mddev->recovery_cp = mddev->resync_max_sectors; 4527 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4528 } 4529 mddev->resync_max_sectors = size; 4530 set_capacity(mddev->gendisk, mddev->array_sectors); 4531 revalidate_disk(mddev->gendisk); 4532 } else { 4533 int d; 4534 for (d = conf->geo.raid_disks ; 4535 d < conf->geo.raid_disks - mddev->delta_disks; 4536 d++) { 4537 struct md_rdev *rdev = conf->mirrors[d].rdev; 4538 if (rdev) 4539 clear_bit(In_sync, &rdev->flags); 4540 rdev = conf->mirrors[d].replacement; 4541 if (rdev) 4542 clear_bit(In_sync, &rdev->flags); 4543 } 4544 } 4545 mddev->layout = mddev->new_layout; 4546 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4547 mddev->reshape_position = MaxSector; 4548 mddev->delta_disks = 0; 4549 mddev->reshape_backwards = 0; 4550 } 4551 4552 static struct md_personality raid10_personality = 4553 { 4554 .name = "raid10", 4555 .level = 10, 4556 .owner = THIS_MODULE, 4557 .make_request = make_request, 4558 .run = run, 4559 .stop = stop, 4560 .status = status, 4561 .error_handler = error, 4562 .hot_add_disk = raid10_add_disk, 4563 .hot_remove_disk= raid10_remove_disk, 4564 .spare_active = raid10_spare_active, 4565 .sync_request = sync_request, 4566 .quiesce = raid10_quiesce, 4567 .size = raid10_size, 4568 .resize = raid10_resize, 4569 .takeover = raid10_takeover, 4570 .check_reshape = raid10_check_reshape, 4571 .start_reshape = raid10_start_reshape, 4572 .finish_reshape = raid10_finish_reshape, 4573 }; 4574 4575 static int __init raid_init(void) 4576 { 4577 return register_md_personality(&raid10_personality); 4578 } 4579 4580 static void raid_exit(void) 4581 { 4582 unregister_md_personality(&raid10_personality); 4583 } 4584 4585 module_init(raid_init); 4586 module_exit(raid_exit); 4587 MODULE_LICENSE("GPL"); 4588 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4589 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4590 MODULE_ALIAS("md-raid10"); 4591 MODULE_ALIAS("md-level-10"); 4592 4593 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4594