1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include "dm-bio-list.h" 22 #include <linux/raid/raid10.h> 23 #include <linux/raid/bitmap.h> 24 25 /* 26 * RAID10 provides a combination of RAID0 and RAID1 functionality. 27 * The layout of data is defined by 28 * chunk_size 29 * raid_disks 30 * near_copies (stored in low byte of layout) 31 * far_copies (stored in second byte of layout) 32 * far_offset (stored in bit 16 of layout ) 33 * 34 * The data to be stored is divided into chunks using chunksize. 35 * Each device is divided into far_copies sections. 36 * In each section, chunks are laid out in a style similar to raid0, but 37 * near_copies copies of each chunk is stored (each on a different drive). 38 * The starting device for each section is offset near_copies from the starting 39 * device of the previous section. 40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 41 * drive. 42 * near_copies and far_copies must be at least one, and their product is at most 43 * raid_disks. 44 * 45 * If far_offset is true, then the far_copies are handled a bit differently. 46 * The copies are still in different stripes, but instead of be very far apart 47 * on disk, there are adjacent stripes. 48 */ 49 50 /* 51 * Number of guaranteed r10bios in case of extreme VM load: 52 */ 53 #define NR_RAID10_BIOS 256 54 55 static void unplug_slaves(mddev_t *mddev); 56 57 static void allow_barrier(conf_t *conf); 58 static void lower_barrier(conf_t *conf); 59 60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 61 { 62 conf_t *conf = data; 63 r10bio_t *r10_bio; 64 int size = offsetof(struct r10bio_s, devs[conf->copies]); 65 66 /* allocate a r10bio with room for raid_disks entries in the bios array */ 67 r10_bio = kzalloc(size, gfp_flags); 68 if (!r10_bio) 69 unplug_slaves(conf->mddev); 70 71 return r10_bio; 72 } 73 74 static void r10bio_pool_free(void *r10_bio, void *data) 75 { 76 kfree(r10_bio); 77 } 78 79 #define RESYNC_BLOCK_SIZE (64*1024) 80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 83 #define RESYNC_WINDOW (2048*1024) 84 85 /* 86 * When performing a resync, we need to read and compare, so 87 * we need as many pages are there are copies. 88 * When performing a recovery, we need 2 bios, one for read, 89 * one for write (we recover only one drive per r10buf) 90 * 91 */ 92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 conf_t *conf = data; 95 struct page *page; 96 r10bio_t *r10_bio; 97 struct bio *bio; 98 int i, j; 99 int nalloc; 100 101 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 102 if (!r10_bio) { 103 unplug_slaves(conf->mddev); 104 return NULL; 105 } 106 107 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 108 nalloc = conf->copies; /* resync */ 109 else 110 nalloc = 2; /* recovery */ 111 112 /* 113 * Allocate bios. 114 */ 115 for (j = nalloc ; j-- ; ) { 116 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 117 if (!bio) 118 goto out_free_bio; 119 r10_bio->devs[j].bio = bio; 120 } 121 /* 122 * Allocate RESYNC_PAGES data pages and attach them 123 * where needed. 124 */ 125 for (j = 0 ; j < nalloc; j++) { 126 bio = r10_bio->devs[j].bio; 127 for (i = 0; i < RESYNC_PAGES; i++) { 128 page = alloc_page(gfp_flags); 129 if (unlikely(!page)) 130 goto out_free_pages; 131 132 bio->bi_io_vec[i].bv_page = page; 133 } 134 } 135 136 return r10_bio; 137 138 out_free_pages: 139 for ( ; i > 0 ; i--) 140 safe_put_page(bio->bi_io_vec[i-1].bv_page); 141 while (j--) 142 for (i = 0; i < RESYNC_PAGES ; i++) 143 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 144 j = -1; 145 out_free_bio: 146 while ( ++j < nalloc ) 147 bio_put(r10_bio->devs[j].bio); 148 r10bio_pool_free(r10_bio, conf); 149 return NULL; 150 } 151 152 static void r10buf_pool_free(void *__r10_bio, void *data) 153 { 154 int i; 155 conf_t *conf = data; 156 r10bio_t *r10bio = __r10_bio; 157 int j; 158 159 for (j=0; j < conf->copies; j++) { 160 struct bio *bio = r10bio->devs[j].bio; 161 if (bio) { 162 for (i = 0; i < RESYNC_PAGES; i++) { 163 safe_put_page(bio->bi_io_vec[i].bv_page); 164 bio->bi_io_vec[i].bv_page = NULL; 165 } 166 bio_put(bio); 167 } 168 } 169 r10bio_pool_free(r10bio, conf); 170 } 171 172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 173 { 174 int i; 175 176 for (i = 0; i < conf->copies; i++) { 177 struct bio **bio = & r10_bio->devs[i].bio; 178 if (*bio && *bio != IO_BLOCKED) 179 bio_put(*bio); 180 *bio = NULL; 181 } 182 } 183 184 static void free_r10bio(r10bio_t *r10_bio) 185 { 186 conf_t *conf = mddev_to_conf(r10_bio->mddev); 187 188 /* 189 * Wake up any possible resync thread that waits for the device 190 * to go idle. 191 */ 192 allow_barrier(conf); 193 194 put_all_bios(conf, r10_bio); 195 mempool_free(r10_bio, conf->r10bio_pool); 196 } 197 198 static void put_buf(r10bio_t *r10_bio) 199 { 200 conf_t *conf = mddev_to_conf(r10_bio->mddev); 201 202 mempool_free(r10_bio, conf->r10buf_pool); 203 204 lower_barrier(conf); 205 } 206 207 static void reschedule_retry(r10bio_t *r10_bio) 208 { 209 unsigned long flags; 210 mddev_t *mddev = r10_bio->mddev; 211 conf_t *conf = mddev_to_conf(mddev); 212 213 spin_lock_irqsave(&conf->device_lock, flags); 214 list_add(&r10_bio->retry_list, &conf->retry_list); 215 conf->nr_queued ++; 216 spin_unlock_irqrestore(&conf->device_lock, flags); 217 218 md_wakeup_thread(mddev->thread); 219 } 220 221 /* 222 * raid_end_bio_io() is called when we have finished servicing a mirrored 223 * operation and are ready to return a success/failure code to the buffer 224 * cache layer. 225 */ 226 static void raid_end_bio_io(r10bio_t *r10_bio) 227 { 228 struct bio *bio = r10_bio->master_bio; 229 230 bio_endio(bio, 231 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 232 free_r10bio(r10_bio); 233 } 234 235 /* 236 * Update disk head position estimator based on IRQ completion info. 237 */ 238 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 239 { 240 conf_t *conf = mddev_to_conf(r10_bio->mddev); 241 242 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 243 r10_bio->devs[slot].addr + (r10_bio->sectors); 244 } 245 246 static void raid10_end_read_request(struct bio *bio, int error) 247 { 248 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 249 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 250 int slot, dev; 251 conf_t *conf = mddev_to_conf(r10_bio->mddev); 252 253 254 slot = r10_bio->read_slot; 255 dev = r10_bio->devs[slot].devnum; 256 /* 257 * this branch is our 'one mirror IO has finished' event handler: 258 */ 259 update_head_pos(slot, r10_bio); 260 261 if (uptodate) { 262 /* 263 * Set R10BIO_Uptodate in our master bio, so that 264 * we will return a good error code to the higher 265 * levels even if IO on some other mirrored buffer fails. 266 * 267 * The 'master' represents the composite IO operation to 268 * user-side. So if something waits for IO, then it will 269 * wait for the 'master' bio. 270 */ 271 set_bit(R10BIO_Uptodate, &r10_bio->state); 272 raid_end_bio_io(r10_bio); 273 } else { 274 /* 275 * oops, read error: 276 */ 277 char b[BDEVNAME_SIZE]; 278 if (printk_ratelimit()) 279 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 280 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 281 reschedule_retry(r10_bio); 282 } 283 284 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 285 } 286 287 static void raid10_end_write_request(struct bio *bio, int error) 288 { 289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 290 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 291 int slot, dev; 292 conf_t *conf = mddev_to_conf(r10_bio->mddev); 293 294 for (slot = 0; slot < conf->copies; slot++) 295 if (r10_bio->devs[slot].bio == bio) 296 break; 297 dev = r10_bio->devs[slot].devnum; 298 299 /* 300 * this branch is our 'one mirror IO has finished' event handler: 301 */ 302 if (!uptodate) { 303 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 304 /* an I/O failed, we can't clear the bitmap */ 305 set_bit(R10BIO_Degraded, &r10_bio->state); 306 } else 307 /* 308 * Set R10BIO_Uptodate in our master bio, so that 309 * we will return a good error code for to the higher 310 * levels even if IO on some other mirrored buffer fails. 311 * 312 * The 'master' represents the composite IO operation to 313 * user-side. So if something waits for IO, then it will 314 * wait for the 'master' bio. 315 */ 316 set_bit(R10BIO_Uptodate, &r10_bio->state); 317 318 update_head_pos(slot, r10_bio); 319 320 /* 321 * 322 * Let's see if all mirrored write operations have finished 323 * already. 324 */ 325 if (atomic_dec_and_test(&r10_bio->remaining)) { 326 /* clear the bitmap if all writes complete successfully */ 327 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 328 r10_bio->sectors, 329 !test_bit(R10BIO_Degraded, &r10_bio->state), 330 0); 331 md_write_end(r10_bio->mddev); 332 raid_end_bio_io(r10_bio); 333 } 334 335 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 336 } 337 338 339 /* 340 * RAID10 layout manager 341 * Aswell as the chunksize and raid_disks count, there are two 342 * parameters: near_copies and far_copies. 343 * near_copies * far_copies must be <= raid_disks. 344 * Normally one of these will be 1. 345 * If both are 1, we get raid0. 346 * If near_copies == raid_disks, we get raid1. 347 * 348 * Chunks are layed out in raid0 style with near_copies copies of the 349 * first chunk, followed by near_copies copies of the next chunk and 350 * so on. 351 * If far_copies > 1, then after 1/far_copies of the array has been assigned 352 * as described above, we start again with a device offset of near_copies. 353 * So we effectively have another copy of the whole array further down all 354 * the drives, but with blocks on different drives. 355 * With this layout, and block is never stored twice on the one device. 356 * 357 * raid10_find_phys finds the sector offset of a given virtual sector 358 * on each device that it is on. 359 * 360 * raid10_find_virt does the reverse mapping, from a device and a 361 * sector offset to a virtual address 362 */ 363 364 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 365 { 366 int n,f; 367 sector_t sector; 368 sector_t chunk; 369 sector_t stripe; 370 int dev; 371 372 int slot = 0; 373 374 /* now calculate first sector/dev */ 375 chunk = r10bio->sector >> conf->chunk_shift; 376 sector = r10bio->sector & conf->chunk_mask; 377 378 chunk *= conf->near_copies; 379 stripe = chunk; 380 dev = sector_div(stripe, conf->raid_disks); 381 if (conf->far_offset) 382 stripe *= conf->far_copies; 383 384 sector += stripe << conf->chunk_shift; 385 386 /* and calculate all the others */ 387 for (n=0; n < conf->near_copies; n++) { 388 int d = dev; 389 sector_t s = sector; 390 r10bio->devs[slot].addr = sector; 391 r10bio->devs[slot].devnum = d; 392 slot++; 393 394 for (f = 1; f < conf->far_copies; f++) { 395 d += conf->near_copies; 396 if (d >= conf->raid_disks) 397 d -= conf->raid_disks; 398 s += conf->stride; 399 r10bio->devs[slot].devnum = d; 400 r10bio->devs[slot].addr = s; 401 slot++; 402 } 403 dev++; 404 if (dev >= conf->raid_disks) { 405 dev = 0; 406 sector += (conf->chunk_mask + 1); 407 } 408 } 409 BUG_ON(slot != conf->copies); 410 } 411 412 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 413 { 414 sector_t offset, chunk, vchunk; 415 416 offset = sector & conf->chunk_mask; 417 if (conf->far_offset) { 418 int fc; 419 chunk = sector >> conf->chunk_shift; 420 fc = sector_div(chunk, conf->far_copies); 421 dev -= fc * conf->near_copies; 422 if (dev < 0) 423 dev += conf->raid_disks; 424 } else { 425 while (sector >= conf->stride) { 426 sector -= conf->stride; 427 if (dev < conf->near_copies) 428 dev += conf->raid_disks - conf->near_copies; 429 else 430 dev -= conf->near_copies; 431 } 432 chunk = sector >> conf->chunk_shift; 433 } 434 vchunk = chunk * conf->raid_disks + dev; 435 sector_div(vchunk, conf->near_copies); 436 return (vchunk << conf->chunk_shift) + offset; 437 } 438 439 /** 440 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 441 * @q: request queue 442 * @bvm: properties of new bio 443 * @biovec: the request that could be merged to it. 444 * 445 * Return amount of bytes we can accept at this offset 446 * If near_copies == raid_disk, there are no striping issues, 447 * but in that case, the function isn't called at all. 448 */ 449 static int raid10_mergeable_bvec(struct request_queue *q, 450 struct bvec_merge_data *bvm, 451 struct bio_vec *biovec) 452 { 453 mddev_t *mddev = q->queuedata; 454 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 455 int max; 456 unsigned int chunk_sectors = mddev->chunk_size >> 9; 457 unsigned int bio_sectors = bvm->bi_size >> 9; 458 459 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 460 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 461 if (max <= biovec->bv_len && bio_sectors == 0) 462 return biovec->bv_len; 463 else 464 return max; 465 } 466 467 /* 468 * This routine returns the disk from which the requested read should 469 * be done. There is a per-array 'next expected sequential IO' sector 470 * number - if this matches on the next IO then we use the last disk. 471 * There is also a per-disk 'last know head position' sector that is 472 * maintained from IRQ contexts, both the normal and the resync IO 473 * completion handlers update this position correctly. If there is no 474 * perfect sequential match then we pick the disk whose head is closest. 475 * 476 * If there are 2 mirrors in the same 2 devices, performance degrades 477 * because position is mirror, not device based. 478 * 479 * The rdev for the device selected will have nr_pending incremented. 480 */ 481 482 /* 483 * FIXME: possibly should rethink readbalancing and do it differently 484 * depending on near_copies / far_copies geometry. 485 */ 486 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 487 { 488 const unsigned long this_sector = r10_bio->sector; 489 int disk, slot, nslot; 490 const int sectors = r10_bio->sectors; 491 sector_t new_distance, current_distance; 492 mdk_rdev_t *rdev; 493 494 raid10_find_phys(conf, r10_bio); 495 rcu_read_lock(); 496 /* 497 * Check if we can balance. We can balance on the whole 498 * device if no resync is going on (recovery is ok), or below 499 * the resync window. We take the first readable disk when 500 * above the resync window. 501 */ 502 if (conf->mddev->recovery_cp < MaxSector 503 && (this_sector + sectors >= conf->next_resync)) { 504 /* make sure that disk is operational */ 505 slot = 0; 506 disk = r10_bio->devs[slot].devnum; 507 508 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 509 r10_bio->devs[slot].bio == IO_BLOCKED || 510 !test_bit(In_sync, &rdev->flags)) { 511 slot++; 512 if (slot == conf->copies) { 513 slot = 0; 514 disk = -1; 515 break; 516 } 517 disk = r10_bio->devs[slot].devnum; 518 } 519 goto rb_out; 520 } 521 522 523 /* make sure the disk is operational */ 524 slot = 0; 525 disk = r10_bio->devs[slot].devnum; 526 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 527 r10_bio->devs[slot].bio == IO_BLOCKED || 528 !test_bit(In_sync, &rdev->flags)) { 529 slot ++; 530 if (slot == conf->copies) { 531 disk = -1; 532 goto rb_out; 533 } 534 disk = r10_bio->devs[slot].devnum; 535 } 536 537 538 current_distance = abs(r10_bio->devs[slot].addr - 539 conf->mirrors[disk].head_position); 540 541 /* Find the disk whose head is closest, 542 * or - for far > 1 - find the closest to partition beginning */ 543 544 for (nslot = slot; nslot < conf->copies; nslot++) { 545 int ndisk = r10_bio->devs[nslot].devnum; 546 547 548 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 549 r10_bio->devs[nslot].bio == IO_BLOCKED || 550 !test_bit(In_sync, &rdev->flags)) 551 continue; 552 553 /* This optimisation is debatable, and completely destroys 554 * sequential read speed for 'far copies' arrays. So only 555 * keep it for 'near' arrays, and review those later. 556 */ 557 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 558 disk = ndisk; 559 slot = nslot; 560 break; 561 } 562 563 /* for far > 1 always use the lowest address */ 564 if (conf->far_copies > 1) 565 new_distance = r10_bio->devs[nslot].addr; 566 else 567 new_distance = abs(r10_bio->devs[nslot].addr - 568 conf->mirrors[ndisk].head_position); 569 if (new_distance < current_distance) { 570 current_distance = new_distance; 571 disk = ndisk; 572 slot = nslot; 573 } 574 } 575 576 rb_out: 577 r10_bio->read_slot = slot; 578 /* conf->next_seq_sect = this_sector + sectors;*/ 579 580 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 581 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 582 else 583 disk = -1; 584 rcu_read_unlock(); 585 586 return disk; 587 } 588 589 static void unplug_slaves(mddev_t *mddev) 590 { 591 conf_t *conf = mddev_to_conf(mddev); 592 int i; 593 594 rcu_read_lock(); 595 for (i=0; i<mddev->raid_disks; i++) { 596 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 597 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 598 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 599 600 atomic_inc(&rdev->nr_pending); 601 rcu_read_unlock(); 602 603 blk_unplug(r_queue); 604 605 rdev_dec_pending(rdev, mddev); 606 rcu_read_lock(); 607 } 608 } 609 rcu_read_unlock(); 610 } 611 612 static void raid10_unplug(struct request_queue *q) 613 { 614 mddev_t *mddev = q->queuedata; 615 616 unplug_slaves(q->queuedata); 617 md_wakeup_thread(mddev->thread); 618 } 619 620 static int raid10_congested(void *data, int bits) 621 { 622 mddev_t *mddev = data; 623 conf_t *conf = mddev_to_conf(mddev); 624 int i, ret = 0; 625 626 rcu_read_lock(); 627 for (i = 0; i < mddev->raid_disks && ret == 0; i++) { 628 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 629 if (rdev && !test_bit(Faulty, &rdev->flags)) { 630 struct request_queue *q = bdev_get_queue(rdev->bdev); 631 632 ret |= bdi_congested(&q->backing_dev_info, bits); 633 } 634 } 635 rcu_read_unlock(); 636 return ret; 637 } 638 639 static int flush_pending_writes(conf_t *conf) 640 { 641 /* Any writes that have been queued but are awaiting 642 * bitmap updates get flushed here. 643 * We return 1 if any requests were actually submitted. 644 */ 645 int rv = 0; 646 647 spin_lock_irq(&conf->device_lock); 648 649 if (conf->pending_bio_list.head) { 650 struct bio *bio; 651 bio = bio_list_get(&conf->pending_bio_list); 652 blk_remove_plug(conf->mddev->queue); 653 spin_unlock_irq(&conf->device_lock); 654 /* flush any pending bitmap writes to disk 655 * before proceeding w/ I/O */ 656 bitmap_unplug(conf->mddev->bitmap); 657 658 while (bio) { /* submit pending writes */ 659 struct bio *next = bio->bi_next; 660 bio->bi_next = NULL; 661 generic_make_request(bio); 662 bio = next; 663 } 664 rv = 1; 665 } else 666 spin_unlock_irq(&conf->device_lock); 667 return rv; 668 } 669 /* Barriers.... 670 * Sometimes we need to suspend IO while we do something else, 671 * either some resync/recovery, or reconfigure the array. 672 * To do this we raise a 'barrier'. 673 * The 'barrier' is a counter that can be raised multiple times 674 * to count how many activities are happening which preclude 675 * normal IO. 676 * We can only raise the barrier if there is no pending IO. 677 * i.e. if nr_pending == 0. 678 * We choose only to raise the barrier if no-one is waiting for the 679 * barrier to go down. This means that as soon as an IO request 680 * is ready, no other operations which require a barrier will start 681 * until the IO request has had a chance. 682 * 683 * So: regular IO calls 'wait_barrier'. When that returns there 684 * is no backgroup IO happening, It must arrange to call 685 * allow_barrier when it has finished its IO. 686 * backgroup IO calls must call raise_barrier. Once that returns 687 * there is no normal IO happeing. It must arrange to call 688 * lower_barrier when the particular background IO completes. 689 */ 690 #define RESYNC_DEPTH 32 691 692 static void raise_barrier(conf_t *conf, int force) 693 { 694 BUG_ON(force && !conf->barrier); 695 spin_lock_irq(&conf->resync_lock); 696 697 /* Wait until no block IO is waiting (unless 'force') */ 698 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 699 conf->resync_lock, 700 raid10_unplug(conf->mddev->queue)); 701 702 /* block any new IO from starting */ 703 conf->barrier++; 704 705 /* No wait for all pending IO to complete */ 706 wait_event_lock_irq(conf->wait_barrier, 707 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 708 conf->resync_lock, 709 raid10_unplug(conf->mddev->queue)); 710 711 spin_unlock_irq(&conf->resync_lock); 712 } 713 714 static void lower_barrier(conf_t *conf) 715 { 716 unsigned long flags; 717 spin_lock_irqsave(&conf->resync_lock, flags); 718 conf->barrier--; 719 spin_unlock_irqrestore(&conf->resync_lock, flags); 720 wake_up(&conf->wait_barrier); 721 } 722 723 static void wait_barrier(conf_t *conf) 724 { 725 spin_lock_irq(&conf->resync_lock); 726 if (conf->barrier) { 727 conf->nr_waiting++; 728 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 729 conf->resync_lock, 730 raid10_unplug(conf->mddev->queue)); 731 conf->nr_waiting--; 732 } 733 conf->nr_pending++; 734 spin_unlock_irq(&conf->resync_lock); 735 } 736 737 static void allow_barrier(conf_t *conf) 738 { 739 unsigned long flags; 740 spin_lock_irqsave(&conf->resync_lock, flags); 741 conf->nr_pending--; 742 spin_unlock_irqrestore(&conf->resync_lock, flags); 743 wake_up(&conf->wait_barrier); 744 } 745 746 static void freeze_array(conf_t *conf) 747 { 748 /* stop syncio and normal IO and wait for everything to 749 * go quiet. 750 * We increment barrier and nr_waiting, and then 751 * wait until nr_pending match nr_queued+1 752 * This is called in the context of one normal IO request 753 * that has failed. Thus any sync request that might be pending 754 * will be blocked by nr_pending, and we need to wait for 755 * pending IO requests to complete or be queued for re-try. 756 * Thus the number queued (nr_queued) plus this request (1) 757 * must match the number of pending IOs (nr_pending) before 758 * we continue. 759 */ 760 spin_lock_irq(&conf->resync_lock); 761 conf->barrier++; 762 conf->nr_waiting++; 763 wait_event_lock_irq(conf->wait_barrier, 764 conf->nr_pending == conf->nr_queued+1, 765 conf->resync_lock, 766 ({ flush_pending_writes(conf); 767 raid10_unplug(conf->mddev->queue); })); 768 spin_unlock_irq(&conf->resync_lock); 769 } 770 771 static void unfreeze_array(conf_t *conf) 772 { 773 /* reverse the effect of the freeze */ 774 spin_lock_irq(&conf->resync_lock); 775 conf->barrier--; 776 conf->nr_waiting--; 777 wake_up(&conf->wait_barrier); 778 spin_unlock_irq(&conf->resync_lock); 779 } 780 781 static int make_request(struct request_queue *q, struct bio * bio) 782 { 783 mddev_t *mddev = q->queuedata; 784 conf_t *conf = mddev_to_conf(mddev); 785 mirror_info_t *mirror; 786 r10bio_t *r10_bio; 787 struct bio *read_bio; 788 int i; 789 int chunk_sects = conf->chunk_mask + 1; 790 const int rw = bio_data_dir(bio); 791 const int do_sync = bio_sync(bio); 792 struct bio_list bl; 793 unsigned long flags; 794 mdk_rdev_t *blocked_rdev; 795 796 if (unlikely(bio_barrier(bio))) { 797 bio_endio(bio, -EOPNOTSUPP); 798 return 0; 799 } 800 801 /* If this request crosses a chunk boundary, we need to 802 * split it. This will only happen for 1 PAGE (or less) requests. 803 */ 804 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 805 > chunk_sects && 806 conf->near_copies < conf->raid_disks)) { 807 struct bio_pair *bp; 808 /* Sanity check -- queue functions should prevent this happening */ 809 if (bio->bi_vcnt != 1 || 810 bio->bi_idx != 0) 811 goto bad_map; 812 /* This is a one page bio that upper layers 813 * refuse to split for us, so we need to split it. 814 */ 815 bp = bio_split(bio, bio_split_pool, 816 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 817 if (make_request(q, &bp->bio1)) 818 generic_make_request(&bp->bio1); 819 if (make_request(q, &bp->bio2)) 820 generic_make_request(&bp->bio2); 821 822 bio_pair_release(bp); 823 return 0; 824 bad_map: 825 printk("raid10_make_request bug: can't convert block across chunks" 826 " or bigger than %dk %llu %d\n", chunk_sects/2, 827 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 828 829 bio_io_error(bio); 830 return 0; 831 } 832 833 md_write_start(mddev, bio); 834 835 /* 836 * Register the new request and wait if the reconstruction 837 * thread has put up a bar for new requests. 838 * Continue immediately if no resync is active currently. 839 */ 840 wait_barrier(conf); 841 842 disk_stat_inc(mddev->gendisk, ios[rw]); 843 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 844 845 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 846 847 r10_bio->master_bio = bio; 848 r10_bio->sectors = bio->bi_size >> 9; 849 850 r10_bio->mddev = mddev; 851 r10_bio->sector = bio->bi_sector; 852 r10_bio->state = 0; 853 854 if (rw == READ) { 855 /* 856 * read balancing logic: 857 */ 858 int disk = read_balance(conf, r10_bio); 859 int slot = r10_bio->read_slot; 860 if (disk < 0) { 861 raid_end_bio_io(r10_bio); 862 return 0; 863 } 864 mirror = conf->mirrors + disk; 865 866 read_bio = bio_clone(bio, GFP_NOIO); 867 868 r10_bio->devs[slot].bio = read_bio; 869 870 read_bio->bi_sector = r10_bio->devs[slot].addr + 871 mirror->rdev->data_offset; 872 read_bio->bi_bdev = mirror->rdev->bdev; 873 read_bio->bi_end_io = raid10_end_read_request; 874 read_bio->bi_rw = READ | do_sync; 875 read_bio->bi_private = r10_bio; 876 877 generic_make_request(read_bio); 878 return 0; 879 } 880 881 /* 882 * WRITE: 883 */ 884 /* first select target devices under rcu_lock and 885 * inc refcount on their rdev. Record them by setting 886 * bios[x] to bio 887 */ 888 raid10_find_phys(conf, r10_bio); 889 retry_write: 890 blocked_rdev = NULL; 891 rcu_read_lock(); 892 for (i = 0; i < conf->copies; i++) { 893 int d = r10_bio->devs[i].devnum; 894 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 895 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 896 atomic_inc(&rdev->nr_pending); 897 blocked_rdev = rdev; 898 break; 899 } 900 if (rdev && !test_bit(Faulty, &rdev->flags)) { 901 atomic_inc(&rdev->nr_pending); 902 r10_bio->devs[i].bio = bio; 903 } else { 904 r10_bio->devs[i].bio = NULL; 905 set_bit(R10BIO_Degraded, &r10_bio->state); 906 } 907 } 908 rcu_read_unlock(); 909 910 if (unlikely(blocked_rdev)) { 911 /* Have to wait for this device to get unblocked, then retry */ 912 int j; 913 int d; 914 915 for (j = 0; j < i; j++) 916 if (r10_bio->devs[j].bio) { 917 d = r10_bio->devs[j].devnum; 918 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 919 } 920 allow_barrier(conf); 921 md_wait_for_blocked_rdev(blocked_rdev, mddev); 922 wait_barrier(conf); 923 goto retry_write; 924 } 925 926 atomic_set(&r10_bio->remaining, 0); 927 928 bio_list_init(&bl); 929 for (i = 0; i < conf->copies; i++) { 930 struct bio *mbio; 931 int d = r10_bio->devs[i].devnum; 932 if (!r10_bio->devs[i].bio) 933 continue; 934 935 mbio = bio_clone(bio, GFP_NOIO); 936 r10_bio->devs[i].bio = mbio; 937 938 mbio->bi_sector = r10_bio->devs[i].addr+ 939 conf->mirrors[d].rdev->data_offset; 940 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 941 mbio->bi_end_io = raid10_end_write_request; 942 mbio->bi_rw = WRITE | do_sync; 943 mbio->bi_private = r10_bio; 944 945 atomic_inc(&r10_bio->remaining); 946 bio_list_add(&bl, mbio); 947 } 948 949 if (unlikely(!atomic_read(&r10_bio->remaining))) { 950 /* the array is dead */ 951 md_write_end(mddev); 952 raid_end_bio_io(r10_bio); 953 return 0; 954 } 955 956 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 957 spin_lock_irqsave(&conf->device_lock, flags); 958 bio_list_merge(&conf->pending_bio_list, &bl); 959 blk_plug_device(mddev->queue); 960 spin_unlock_irqrestore(&conf->device_lock, flags); 961 962 /* In case raid10d snuck in to freeze_array */ 963 wake_up(&conf->wait_barrier); 964 965 if (do_sync) 966 md_wakeup_thread(mddev->thread); 967 968 return 0; 969 } 970 971 static void status(struct seq_file *seq, mddev_t *mddev) 972 { 973 conf_t *conf = mddev_to_conf(mddev); 974 int i; 975 976 if (conf->near_copies < conf->raid_disks) 977 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 978 if (conf->near_copies > 1) 979 seq_printf(seq, " %d near-copies", conf->near_copies); 980 if (conf->far_copies > 1) { 981 if (conf->far_offset) 982 seq_printf(seq, " %d offset-copies", conf->far_copies); 983 else 984 seq_printf(seq, " %d far-copies", conf->far_copies); 985 } 986 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 987 conf->raid_disks - mddev->degraded); 988 for (i = 0; i < conf->raid_disks; i++) 989 seq_printf(seq, "%s", 990 conf->mirrors[i].rdev && 991 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 992 seq_printf(seq, "]"); 993 } 994 995 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 996 { 997 char b[BDEVNAME_SIZE]; 998 conf_t *conf = mddev_to_conf(mddev); 999 1000 /* 1001 * If it is not operational, then we have already marked it as dead 1002 * else if it is the last working disks, ignore the error, let the 1003 * next level up know. 1004 * else mark the drive as failed 1005 */ 1006 if (test_bit(In_sync, &rdev->flags) 1007 && conf->raid_disks-mddev->degraded == 1) 1008 /* 1009 * Don't fail the drive, just return an IO error. 1010 * The test should really be more sophisticated than 1011 * "working_disks == 1", but it isn't critical, and 1012 * can wait until we do more sophisticated "is the drive 1013 * really dead" tests... 1014 */ 1015 return; 1016 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1017 unsigned long flags; 1018 spin_lock_irqsave(&conf->device_lock, flags); 1019 mddev->degraded++; 1020 spin_unlock_irqrestore(&conf->device_lock, flags); 1021 /* 1022 * if recovery is running, make sure it aborts. 1023 */ 1024 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1025 } 1026 set_bit(Faulty, &rdev->flags); 1027 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1028 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n" 1029 "raid10: Operation continuing on %d devices.\n", 1030 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1031 } 1032 1033 static void print_conf(conf_t *conf) 1034 { 1035 int i; 1036 mirror_info_t *tmp; 1037 1038 printk("RAID10 conf printout:\n"); 1039 if (!conf) { 1040 printk("(!conf)\n"); 1041 return; 1042 } 1043 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1044 conf->raid_disks); 1045 1046 for (i = 0; i < conf->raid_disks; i++) { 1047 char b[BDEVNAME_SIZE]; 1048 tmp = conf->mirrors + i; 1049 if (tmp->rdev) 1050 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1051 i, !test_bit(In_sync, &tmp->rdev->flags), 1052 !test_bit(Faulty, &tmp->rdev->flags), 1053 bdevname(tmp->rdev->bdev,b)); 1054 } 1055 } 1056 1057 static void close_sync(conf_t *conf) 1058 { 1059 wait_barrier(conf); 1060 allow_barrier(conf); 1061 1062 mempool_destroy(conf->r10buf_pool); 1063 conf->r10buf_pool = NULL; 1064 } 1065 1066 /* check if there are enough drives for 1067 * every block to appear on atleast one 1068 */ 1069 static int enough(conf_t *conf) 1070 { 1071 int first = 0; 1072 1073 do { 1074 int n = conf->copies; 1075 int cnt = 0; 1076 while (n--) { 1077 if (conf->mirrors[first].rdev) 1078 cnt++; 1079 first = (first+1) % conf->raid_disks; 1080 } 1081 if (cnt == 0) 1082 return 0; 1083 } while (first != 0); 1084 return 1; 1085 } 1086 1087 static int raid10_spare_active(mddev_t *mddev) 1088 { 1089 int i; 1090 conf_t *conf = mddev->private; 1091 mirror_info_t *tmp; 1092 1093 /* 1094 * Find all non-in_sync disks within the RAID10 configuration 1095 * and mark them in_sync 1096 */ 1097 for (i = 0; i < conf->raid_disks; i++) { 1098 tmp = conf->mirrors + i; 1099 if (tmp->rdev 1100 && !test_bit(Faulty, &tmp->rdev->flags) 1101 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1102 unsigned long flags; 1103 spin_lock_irqsave(&conf->device_lock, flags); 1104 mddev->degraded--; 1105 spin_unlock_irqrestore(&conf->device_lock, flags); 1106 } 1107 } 1108 1109 print_conf(conf); 1110 return 0; 1111 } 1112 1113 1114 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1115 { 1116 conf_t *conf = mddev->private; 1117 int err = -EEXIST; 1118 int mirror; 1119 mirror_info_t *p; 1120 int first = 0; 1121 int last = mddev->raid_disks - 1; 1122 1123 if (mddev->recovery_cp < MaxSector) 1124 /* only hot-add to in-sync arrays, as recovery is 1125 * very different from resync 1126 */ 1127 return -EBUSY; 1128 if (!enough(conf)) 1129 return -EINVAL; 1130 1131 if (rdev->raid_disk) 1132 first = last = rdev->raid_disk; 1133 1134 if (rdev->saved_raid_disk >= 0 && 1135 rdev->saved_raid_disk >= first && 1136 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1137 mirror = rdev->saved_raid_disk; 1138 else 1139 mirror = first; 1140 for ( ; mirror <= last ; mirror++) 1141 if ( !(p=conf->mirrors+mirror)->rdev) { 1142 1143 blk_queue_stack_limits(mddev->queue, 1144 rdev->bdev->bd_disk->queue); 1145 /* as we don't honour merge_bvec_fn, we must never risk 1146 * violating it, so limit ->max_sector to one PAGE, as 1147 * a one page request is never in violation. 1148 */ 1149 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1150 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1151 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1152 1153 p->head_position = 0; 1154 rdev->raid_disk = mirror; 1155 err = 0; 1156 if (rdev->saved_raid_disk != mirror) 1157 conf->fullsync = 1; 1158 rcu_assign_pointer(p->rdev, rdev); 1159 break; 1160 } 1161 1162 print_conf(conf); 1163 return err; 1164 } 1165 1166 static int raid10_remove_disk(mddev_t *mddev, int number) 1167 { 1168 conf_t *conf = mddev->private; 1169 int err = 0; 1170 mdk_rdev_t *rdev; 1171 mirror_info_t *p = conf->mirrors+ number; 1172 1173 print_conf(conf); 1174 rdev = p->rdev; 1175 if (rdev) { 1176 if (test_bit(In_sync, &rdev->flags) || 1177 atomic_read(&rdev->nr_pending)) { 1178 err = -EBUSY; 1179 goto abort; 1180 } 1181 /* Only remove faulty devices in recovery 1182 * is not possible. 1183 */ 1184 if (!test_bit(Faulty, &rdev->flags) && 1185 enough(conf)) { 1186 err = -EBUSY; 1187 goto abort; 1188 } 1189 p->rdev = NULL; 1190 synchronize_rcu(); 1191 if (atomic_read(&rdev->nr_pending)) { 1192 /* lost the race, try later */ 1193 err = -EBUSY; 1194 p->rdev = rdev; 1195 } 1196 } 1197 abort: 1198 1199 print_conf(conf); 1200 return err; 1201 } 1202 1203 1204 static void end_sync_read(struct bio *bio, int error) 1205 { 1206 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1207 conf_t *conf = mddev_to_conf(r10_bio->mddev); 1208 int i,d; 1209 1210 for (i=0; i<conf->copies; i++) 1211 if (r10_bio->devs[i].bio == bio) 1212 break; 1213 BUG_ON(i == conf->copies); 1214 update_head_pos(i, r10_bio); 1215 d = r10_bio->devs[i].devnum; 1216 1217 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1218 set_bit(R10BIO_Uptodate, &r10_bio->state); 1219 else { 1220 atomic_add(r10_bio->sectors, 1221 &conf->mirrors[d].rdev->corrected_errors); 1222 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1223 md_error(r10_bio->mddev, 1224 conf->mirrors[d].rdev); 1225 } 1226 1227 /* for reconstruct, we always reschedule after a read. 1228 * for resync, only after all reads 1229 */ 1230 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1231 atomic_dec_and_test(&r10_bio->remaining)) { 1232 /* we have read all the blocks, 1233 * do the comparison in process context in raid10d 1234 */ 1235 reschedule_retry(r10_bio); 1236 } 1237 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1238 } 1239 1240 static void end_sync_write(struct bio *bio, int error) 1241 { 1242 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1243 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1244 mddev_t *mddev = r10_bio->mddev; 1245 conf_t *conf = mddev_to_conf(mddev); 1246 int i,d; 1247 1248 for (i = 0; i < conf->copies; i++) 1249 if (r10_bio->devs[i].bio == bio) 1250 break; 1251 d = r10_bio->devs[i].devnum; 1252 1253 if (!uptodate) 1254 md_error(mddev, conf->mirrors[d].rdev); 1255 1256 update_head_pos(i, r10_bio); 1257 1258 while (atomic_dec_and_test(&r10_bio->remaining)) { 1259 if (r10_bio->master_bio == NULL) { 1260 /* the primary of several recovery bios */ 1261 md_done_sync(mddev, r10_bio->sectors, 1); 1262 put_buf(r10_bio); 1263 break; 1264 } else { 1265 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1266 put_buf(r10_bio); 1267 r10_bio = r10_bio2; 1268 } 1269 } 1270 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1271 } 1272 1273 /* 1274 * Note: sync and recover and handled very differently for raid10 1275 * This code is for resync. 1276 * For resync, we read through virtual addresses and read all blocks. 1277 * If there is any error, we schedule a write. The lowest numbered 1278 * drive is authoritative. 1279 * However requests come for physical address, so we need to map. 1280 * For every physical address there are raid_disks/copies virtual addresses, 1281 * which is always are least one, but is not necessarly an integer. 1282 * This means that a physical address can span multiple chunks, so we may 1283 * have to submit multiple io requests for a single sync request. 1284 */ 1285 /* 1286 * We check if all blocks are in-sync and only write to blocks that 1287 * aren't in sync 1288 */ 1289 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1290 { 1291 conf_t *conf = mddev_to_conf(mddev); 1292 int i, first; 1293 struct bio *tbio, *fbio; 1294 1295 atomic_set(&r10_bio->remaining, 1); 1296 1297 /* find the first device with a block */ 1298 for (i=0; i<conf->copies; i++) 1299 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1300 break; 1301 1302 if (i == conf->copies) 1303 goto done; 1304 1305 first = i; 1306 fbio = r10_bio->devs[i].bio; 1307 1308 /* now find blocks with errors */ 1309 for (i=0 ; i < conf->copies ; i++) { 1310 int j, d; 1311 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1312 1313 tbio = r10_bio->devs[i].bio; 1314 1315 if (tbio->bi_end_io != end_sync_read) 1316 continue; 1317 if (i == first) 1318 continue; 1319 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1320 /* We know that the bi_io_vec layout is the same for 1321 * both 'first' and 'i', so we just compare them. 1322 * All vec entries are PAGE_SIZE; 1323 */ 1324 for (j = 0; j < vcnt; j++) 1325 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1326 page_address(tbio->bi_io_vec[j].bv_page), 1327 PAGE_SIZE)) 1328 break; 1329 if (j == vcnt) 1330 continue; 1331 mddev->resync_mismatches += r10_bio->sectors; 1332 } 1333 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1334 /* Don't fix anything. */ 1335 continue; 1336 /* Ok, we need to write this bio 1337 * First we need to fixup bv_offset, bv_len and 1338 * bi_vecs, as the read request might have corrupted these 1339 */ 1340 tbio->bi_vcnt = vcnt; 1341 tbio->bi_size = r10_bio->sectors << 9; 1342 tbio->bi_idx = 0; 1343 tbio->bi_phys_segments = 0; 1344 tbio->bi_hw_segments = 0; 1345 tbio->bi_hw_front_size = 0; 1346 tbio->bi_hw_back_size = 0; 1347 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1348 tbio->bi_flags |= 1 << BIO_UPTODATE; 1349 tbio->bi_next = NULL; 1350 tbio->bi_rw = WRITE; 1351 tbio->bi_private = r10_bio; 1352 tbio->bi_sector = r10_bio->devs[i].addr; 1353 1354 for (j=0; j < vcnt ; j++) { 1355 tbio->bi_io_vec[j].bv_offset = 0; 1356 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1357 1358 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1359 page_address(fbio->bi_io_vec[j].bv_page), 1360 PAGE_SIZE); 1361 } 1362 tbio->bi_end_io = end_sync_write; 1363 1364 d = r10_bio->devs[i].devnum; 1365 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1366 atomic_inc(&r10_bio->remaining); 1367 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1368 1369 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1370 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1371 generic_make_request(tbio); 1372 } 1373 1374 done: 1375 if (atomic_dec_and_test(&r10_bio->remaining)) { 1376 md_done_sync(mddev, r10_bio->sectors, 1); 1377 put_buf(r10_bio); 1378 } 1379 } 1380 1381 /* 1382 * Now for the recovery code. 1383 * Recovery happens across physical sectors. 1384 * We recover all non-is_sync drives by finding the virtual address of 1385 * each, and then choose a working drive that also has that virt address. 1386 * There is a separate r10_bio for each non-in_sync drive. 1387 * Only the first two slots are in use. The first for reading, 1388 * The second for writing. 1389 * 1390 */ 1391 1392 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1393 { 1394 conf_t *conf = mddev_to_conf(mddev); 1395 int i, d; 1396 struct bio *bio, *wbio; 1397 1398 1399 /* move the pages across to the second bio 1400 * and submit the write request 1401 */ 1402 bio = r10_bio->devs[0].bio; 1403 wbio = r10_bio->devs[1].bio; 1404 for (i=0; i < wbio->bi_vcnt; i++) { 1405 struct page *p = bio->bi_io_vec[i].bv_page; 1406 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1407 wbio->bi_io_vec[i].bv_page = p; 1408 } 1409 d = r10_bio->devs[1].devnum; 1410 1411 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1412 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1413 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1414 generic_make_request(wbio); 1415 else 1416 bio_endio(wbio, -EIO); 1417 } 1418 1419 1420 /* 1421 * This is a kernel thread which: 1422 * 1423 * 1. Retries failed read operations on working mirrors. 1424 * 2. Updates the raid superblock when problems encounter. 1425 * 3. Performs writes following reads for array synchronising. 1426 */ 1427 1428 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1429 { 1430 int sect = 0; /* Offset from r10_bio->sector */ 1431 int sectors = r10_bio->sectors; 1432 mdk_rdev_t*rdev; 1433 while(sectors) { 1434 int s = sectors; 1435 int sl = r10_bio->read_slot; 1436 int success = 0; 1437 int start; 1438 1439 if (s > (PAGE_SIZE>>9)) 1440 s = PAGE_SIZE >> 9; 1441 1442 rcu_read_lock(); 1443 do { 1444 int d = r10_bio->devs[sl].devnum; 1445 rdev = rcu_dereference(conf->mirrors[d].rdev); 1446 if (rdev && 1447 test_bit(In_sync, &rdev->flags)) { 1448 atomic_inc(&rdev->nr_pending); 1449 rcu_read_unlock(); 1450 success = sync_page_io(rdev->bdev, 1451 r10_bio->devs[sl].addr + 1452 sect + rdev->data_offset, 1453 s<<9, 1454 conf->tmppage, READ); 1455 rdev_dec_pending(rdev, mddev); 1456 rcu_read_lock(); 1457 if (success) 1458 break; 1459 } 1460 sl++; 1461 if (sl == conf->copies) 1462 sl = 0; 1463 } while (!success && sl != r10_bio->read_slot); 1464 rcu_read_unlock(); 1465 1466 if (!success) { 1467 /* Cannot read from anywhere -- bye bye array */ 1468 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1469 md_error(mddev, conf->mirrors[dn].rdev); 1470 break; 1471 } 1472 1473 start = sl; 1474 /* write it back and re-read */ 1475 rcu_read_lock(); 1476 while (sl != r10_bio->read_slot) { 1477 int d; 1478 if (sl==0) 1479 sl = conf->copies; 1480 sl--; 1481 d = r10_bio->devs[sl].devnum; 1482 rdev = rcu_dereference(conf->mirrors[d].rdev); 1483 if (rdev && 1484 test_bit(In_sync, &rdev->flags)) { 1485 atomic_inc(&rdev->nr_pending); 1486 rcu_read_unlock(); 1487 atomic_add(s, &rdev->corrected_errors); 1488 if (sync_page_io(rdev->bdev, 1489 r10_bio->devs[sl].addr + 1490 sect + rdev->data_offset, 1491 s<<9, conf->tmppage, WRITE) 1492 == 0) 1493 /* Well, this device is dead */ 1494 md_error(mddev, rdev); 1495 rdev_dec_pending(rdev, mddev); 1496 rcu_read_lock(); 1497 } 1498 } 1499 sl = start; 1500 while (sl != r10_bio->read_slot) { 1501 int d; 1502 if (sl==0) 1503 sl = conf->copies; 1504 sl--; 1505 d = r10_bio->devs[sl].devnum; 1506 rdev = rcu_dereference(conf->mirrors[d].rdev); 1507 if (rdev && 1508 test_bit(In_sync, &rdev->flags)) { 1509 char b[BDEVNAME_SIZE]; 1510 atomic_inc(&rdev->nr_pending); 1511 rcu_read_unlock(); 1512 if (sync_page_io(rdev->bdev, 1513 r10_bio->devs[sl].addr + 1514 sect + rdev->data_offset, 1515 s<<9, conf->tmppage, READ) == 0) 1516 /* Well, this device is dead */ 1517 md_error(mddev, rdev); 1518 else 1519 printk(KERN_INFO 1520 "raid10:%s: read error corrected" 1521 " (%d sectors at %llu on %s)\n", 1522 mdname(mddev), s, 1523 (unsigned long long)(sect+ 1524 rdev->data_offset), 1525 bdevname(rdev->bdev, b)); 1526 1527 rdev_dec_pending(rdev, mddev); 1528 rcu_read_lock(); 1529 } 1530 } 1531 rcu_read_unlock(); 1532 1533 sectors -= s; 1534 sect += s; 1535 } 1536 } 1537 1538 static void raid10d(mddev_t *mddev) 1539 { 1540 r10bio_t *r10_bio; 1541 struct bio *bio; 1542 unsigned long flags; 1543 conf_t *conf = mddev_to_conf(mddev); 1544 struct list_head *head = &conf->retry_list; 1545 int unplug=0; 1546 mdk_rdev_t *rdev; 1547 1548 md_check_recovery(mddev); 1549 1550 for (;;) { 1551 char b[BDEVNAME_SIZE]; 1552 1553 unplug += flush_pending_writes(conf); 1554 1555 spin_lock_irqsave(&conf->device_lock, flags); 1556 if (list_empty(head)) { 1557 spin_unlock_irqrestore(&conf->device_lock, flags); 1558 break; 1559 } 1560 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1561 list_del(head->prev); 1562 conf->nr_queued--; 1563 spin_unlock_irqrestore(&conf->device_lock, flags); 1564 1565 mddev = r10_bio->mddev; 1566 conf = mddev_to_conf(mddev); 1567 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1568 sync_request_write(mddev, r10_bio); 1569 unplug = 1; 1570 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1571 recovery_request_write(mddev, r10_bio); 1572 unplug = 1; 1573 } else { 1574 int mirror; 1575 /* we got a read error. Maybe the drive is bad. Maybe just 1576 * the block and we can fix it. 1577 * We freeze all other IO, and try reading the block from 1578 * other devices. When we find one, we re-write 1579 * and check it that fixes the read error. 1580 * This is all done synchronously while the array is 1581 * frozen. 1582 */ 1583 if (mddev->ro == 0) { 1584 freeze_array(conf); 1585 fix_read_error(conf, mddev, r10_bio); 1586 unfreeze_array(conf); 1587 } 1588 1589 bio = r10_bio->devs[r10_bio->read_slot].bio; 1590 r10_bio->devs[r10_bio->read_slot].bio = 1591 mddev->ro ? IO_BLOCKED : NULL; 1592 mirror = read_balance(conf, r10_bio); 1593 if (mirror == -1) { 1594 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1595 " read error for block %llu\n", 1596 bdevname(bio->bi_bdev,b), 1597 (unsigned long long)r10_bio->sector); 1598 raid_end_bio_io(r10_bio); 1599 bio_put(bio); 1600 } else { 1601 const int do_sync = bio_sync(r10_bio->master_bio); 1602 bio_put(bio); 1603 rdev = conf->mirrors[mirror].rdev; 1604 if (printk_ratelimit()) 1605 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1606 " another mirror\n", 1607 bdevname(rdev->bdev,b), 1608 (unsigned long long)r10_bio->sector); 1609 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1610 r10_bio->devs[r10_bio->read_slot].bio = bio; 1611 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1612 + rdev->data_offset; 1613 bio->bi_bdev = rdev->bdev; 1614 bio->bi_rw = READ | do_sync; 1615 bio->bi_private = r10_bio; 1616 bio->bi_end_io = raid10_end_read_request; 1617 unplug = 1; 1618 generic_make_request(bio); 1619 } 1620 } 1621 } 1622 if (unplug) 1623 unplug_slaves(mddev); 1624 } 1625 1626 1627 static int init_resync(conf_t *conf) 1628 { 1629 int buffs; 1630 1631 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1632 BUG_ON(conf->r10buf_pool); 1633 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1634 if (!conf->r10buf_pool) 1635 return -ENOMEM; 1636 conf->next_resync = 0; 1637 return 0; 1638 } 1639 1640 /* 1641 * perform a "sync" on one "block" 1642 * 1643 * We need to make sure that no normal I/O request - particularly write 1644 * requests - conflict with active sync requests. 1645 * 1646 * This is achieved by tracking pending requests and a 'barrier' concept 1647 * that can be installed to exclude normal IO requests. 1648 * 1649 * Resync and recovery are handled very differently. 1650 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1651 * 1652 * For resync, we iterate over virtual addresses, read all copies, 1653 * and update if there are differences. If only one copy is live, 1654 * skip it. 1655 * For recovery, we iterate over physical addresses, read a good 1656 * value for each non-in_sync drive, and over-write. 1657 * 1658 * So, for recovery we may have several outstanding complex requests for a 1659 * given address, one for each out-of-sync device. We model this by allocating 1660 * a number of r10_bio structures, one for each out-of-sync device. 1661 * As we setup these structures, we collect all bio's together into a list 1662 * which we then process collectively to add pages, and then process again 1663 * to pass to generic_make_request. 1664 * 1665 * The r10_bio structures are linked using a borrowed master_bio pointer. 1666 * This link is counted in ->remaining. When the r10_bio that points to NULL 1667 * has its remaining count decremented to 0, the whole complex operation 1668 * is complete. 1669 * 1670 */ 1671 1672 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1673 { 1674 conf_t *conf = mddev_to_conf(mddev); 1675 r10bio_t *r10_bio; 1676 struct bio *biolist = NULL, *bio; 1677 sector_t max_sector, nr_sectors; 1678 int disk; 1679 int i; 1680 int max_sync; 1681 int sync_blocks; 1682 1683 sector_t sectors_skipped = 0; 1684 int chunks_skipped = 0; 1685 1686 if (!conf->r10buf_pool) 1687 if (init_resync(conf)) 1688 return 0; 1689 1690 skipped: 1691 max_sector = mddev->size << 1; 1692 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1693 max_sector = mddev->resync_max_sectors; 1694 if (sector_nr >= max_sector) { 1695 /* If we aborted, we need to abort the 1696 * sync on the 'current' bitmap chucks (there can 1697 * be several when recovering multiple devices). 1698 * as we may have started syncing it but not finished. 1699 * We can find the current address in 1700 * mddev->curr_resync, but for recovery, 1701 * we need to convert that to several 1702 * virtual addresses. 1703 */ 1704 if (mddev->curr_resync < max_sector) { /* aborted */ 1705 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1706 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1707 &sync_blocks, 1); 1708 else for (i=0; i<conf->raid_disks; i++) { 1709 sector_t sect = 1710 raid10_find_virt(conf, mddev->curr_resync, i); 1711 bitmap_end_sync(mddev->bitmap, sect, 1712 &sync_blocks, 1); 1713 } 1714 } else /* completed sync */ 1715 conf->fullsync = 0; 1716 1717 bitmap_close_sync(mddev->bitmap); 1718 close_sync(conf); 1719 *skipped = 1; 1720 return sectors_skipped; 1721 } 1722 if (chunks_skipped >= conf->raid_disks) { 1723 /* if there has been nothing to do on any drive, 1724 * then there is nothing to do at all.. 1725 */ 1726 *skipped = 1; 1727 return (max_sector - sector_nr) + sectors_skipped; 1728 } 1729 1730 if (max_sector > mddev->resync_max) 1731 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1732 1733 /* make sure whole request will fit in a chunk - if chunks 1734 * are meaningful 1735 */ 1736 if (conf->near_copies < conf->raid_disks && 1737 max_sector > (sector_nr | conf->chunk_mask)) 1738 max_sector = (sector_nr | conf->chunk_mask) + 1; 1739 /* 1740 * If there is non-resync activity waiting for us then 1741 * put in a delay to throttle resync. 1742 */ 1743 if (!go_faster && conf->nr_waiting) 1744 msleep_interruptible(1000); 1745 1746 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1747 1748 /* Again, very different code for resync and recovery. 1749 * Both must result in an r10bio with a list of bios that 1750 * have bi_end_io, bi_sector, bi_bdev set, 1751 * and bi_private set to the r10bio. 1752 * For recovery, we may actually create several r10bios 1753 * with 2 bios in each, that correspond to the bios in the main one. 1754 * In this case, the subordinate r10bios link back through a 1755 * borrowed master_bio pointer, and the counter in the master 1756 * includes a ref from each subordinate. 1757 */ 1758 /* First, we decide what to do and set ->bi_end_io 1759 * To end_sync_read if we want to read, and 1760 * end_sync_write if we will want to write. 1761 */ 1762 1763 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1764 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1765 /* recovery... the complicated one */ 1766 int i, j, k; 1767 r10_bio = NULL; 1768 1769 for (i=0 ; i<conf->raid_disks; i++) 1770 if (conf->mirrors[i].rdev && 1771 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1772 int still_degraded = 0; 1773 /* want to reconstruct this device */ 1774 r10bio_t *rb2 = r10_bio; 1775 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1776 int must_sync; 1777 /* Unless we are doing a full sync, we only need 1778 * to recover the block if it is set in the bitmap 1779 */ 1780 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1781 &sync_blocks, 1); 1782 if (sync_blocks < max_sync) 1783 max_sync = sync_blocks; 1784 if (!must_sync && 1785 !conf->fullsync) { 1786 /* yep, skip the sync_blocks here, but don't assume 1787 * that there will never be anything to do here 1788 */ 1789 chunks_skipped = -1; 1790 continue; 1791 } 1792 1793 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1794 raise_barrier(conf, rb2 != NULL); 1795 atomic_set(&r10_bio->remaining, 0); 1796 1797 r10_bio->master_bio = (struct bio*)rb2; 1798 if (rb2) 1799 atomic_inc(&rb2->remaining); 1800 r10_bio->mddev = mddev; 1801 set_bit(R10BIO_IsRecover, &r10_bio->state); 1802 r10_bio->sector = sect; 1803 1804 raid10_find_phys(conf, r10_bio); 1805 /* Need to check if this section will still be 1806 * degraded 1807 */ 1808 for (j=0; j<conf->copies;j++) { 1809 int d = r10_bio->devs[j].devnum; 1810 if (conf->mirrors[d].rdev == NULL || 1811 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) { 1812 still_degraded = 1; 1813 break; 1814 } 1815 } 1816 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1817 &sync_blocks, still_degraded); 1818 1819 for (j=0; j<conf->copies;j++) { 1820 int d = r10_bio->devs[j].devnum; 1821 if (conf->mirrors[d].rdev && 1822 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1823 /* This is where we read from */ 1824 bio = r10_bio->devs[0].bio; 1825 bio->bi_next = biolist; 1826 biolist = bio; 1827 bio->bi_private = r10_bio; 1828 bio->bi_end_io = end_sync_read; 1829 bio->bi_rw = READ; 1830 bio->bi_sector = r10_bio->devs[j].addr + 1831 conf->mirrors[d].rdev->data_offset; 1832 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1833 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1834 atomic_inc(&r10_bio->remaining); 1835 /* and we write to 'i' */ 1836 1837 for (k=0; k<conf->copies; k++) 1838 if (r10_bio->devs[k].devnum == i) 1839 break; 1840 BUG_ON(k == conf->copies); 1841 bio = r10_bio->devs[1].bio; 1842 bio->bi_next = biolist; 1843 biolist = bio; 1844 bio->bi_private = r10_bio; 1845 bio->bi_end_io = end_sync_write; 1846 bio->bi_rw = WRITE; 1847 bio->bi_sector = r10_bio->devs[k].addr + 1848 conf->mirrors[i].rdev->data_offset; 1849 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1850 1851 r10_bio->devs[0].devnum = d; 1852 r10_bio->devs[1].devnum = i; 1853 1854 break; 1855 } 1856 } 1857 if (j == conf->copies) { 1858 /* Cannot recover, so abort the recovery */ 1859 put_buf(r10_bio); 1860 if (rb2) 1861 atomic_dec(&rb2->remaining); 1862 r10_bio = rb2; 1863 if (!test_and_set_bit(MD_RECOVERY_INTR, 1864 &mddev->recovery)) 1865 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1866 mdname(mddev)); 1867 break; 1868 } 1869 } 1870 if (biolist == NULL) { 1871 while (r10_bio) { 1872 r10bio_t *rb2 = r10_bio; 1873 r10_bio = (r10bio_t*) rb2->master_bio; 1874 rb2->master_bio = NULL; 1875 put_buf(rb2); 1876 } 1877 goto giveup; 1878 } 1879 } else { 1880 /* resync. Schedule a read for every block at this virt offset */ 1881 int count = 0; 1882 1883 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1884 &sync_blocks, mddev->degraded) && 1885 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1886 /* We can skip this block */ 1887 *skipped = 1; 1888 return sync_blocks + sectors_skipped; 1889 } 1890 if (sync_blocks < max_sync) 1891 max_sync = sync_blocks; 1892 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1893 1894 r10_bio->mddev = mddev; 1895 atomic_set(&r10_bio->remaining, 0); 1896 raise_barrier(conf, 0); 1897 conf->next_resync = sector_nr; 1898 1899 r10_bio->master_bio = NULL; 1900 r10_bio->sector = sector_nr; 1901 set_bit(R10BIO_IsSync, &r10_bio->state); 1902 raid10_find_phys(conf, r10_bio); 1903 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1904 1905 for (i=0; i<conf->copies; i++) { 1906 int d = r10_bio->devs[i].devnum; 1907 bio = r10_bio->devs[i].bio; 1908 bio->bi_end_io = NULL; 1909 clear_bit(BIO_UPTODATE, &bio->bi_flags); 1910 if (conf->mirrors[d].rdev == NULL || 1911 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1912 continue; 1913 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1914 atomic_inc(&r10_bio->remaining); 1915 bio->bi_next = biolist; 1916 biolist = bio; 1917 bio->bi_private = r10_bio; 1918 bio->bi_end_io = end_sync_read; 1919 bio->bi_rw = READ; 1920 bio->bi_sector = r10_bio->devs[i].addr + 1921 conf->mirrors[d].rdev->data_offset; 1922 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1923 count++; 1924 } 1925 1926 if (count < 2) { 1927 for (i=0; i<conf->copies; i++) { 1928 int d = r10_bio->devs[i].devnum; 1929 if (r10_bio->devs[i].bio->bi_end_io) 1930 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1931 } 1932 put_buf(r10_bio); 1933 biolist = NULL; 1934 goto giveup; 1935 } 1936 } 1937 1938 for (bio = biolist; bio ; bio=bio->bi_next) { 1939 1940 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1941 if (bio->bi_end_io) 1942 bio->bi_flags |= 1 << BIO_UPTODATE; 1943 bio->bi_vcnt = 0; 1944 bio->bi_idx = 0; 1945 bio->bi_phys_segments = 0; 1946 bio->bi_hw_segments = 0; 1947 bio->bi_size = 0; 1948 } 1949 1950 nr_sectors = 0; 1951 if (sector_nr + max_sync < max_sector) 1952 max_sector = sector_nr + max_sync; 1953 do { 1954 struct page *page; 1955 int len = PAGE_SIZE; 1956 disk = 0; 1957 if (sector_nr + (len>>9) > max_sector) 1958 len = (max_sector - sector_nr) << 9; 1959 if (len == 0) 1960 break; 1961 for (bio= biolist ; bio ; bio=bio->bi_next) { 1962 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1963 if (bio_add_page(bio, page, len, 0) == 0) { 1964 /* stop here */ 1965 struct bio *bio2; 1966 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1967 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1968 /* remove last page from this bio */ 1969 bio2->bi_vcnt--; 1970 bio2->bi_size -= len; 1971 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1972 } 1973 goto bio_full; 1974 } 1975 disk = i; 1976 } 1977 nr_sectors += len>>9; 1978 sector_nr += len>>9; 1979 } while (biolist->bi_vcnt < RESYNC_PAGES); 1980 bio_full: 1981 r10_bio->sectors = nr_sectors; 1982 1983 while (biolist) { 1984 bio = biolist; 1985 biolist = biolist->bi_next; 1986 1987 bio->bi_next = NULL; 1988 r10_bio = bio->bi_private; 1989 r10_bio->sectors = nr_sectors; 1990 1991 if (bio->bi_end_io == end_sync_read) { 1992 md_sync_acct(bio->bi_bdev, nr_sectors); 1993 generic_make_request(bio); 1994 } 1995 } 1996 1997 if (sectors_skipped) 1998 /* pretend they weren't skipped, it makes 1999 * no important difference in this case 2000 */ 2001 md_done_sync(mddev, sectors_skipped, 1); 2002 2003 return sectors_skipped + nr_sectors; 2004 giveup: 2005 /* There is nowhere to write, so all non-sync 2006 * drives must be failed, so try the next chunk... 2007 */ 2008 { 2009 sector_t sec = max_sector - sector_nr; 2010 sectors_skipped += sec; 2011 chunks_skipped ++; 2012 sector_nr = max_sector; 2013 goto skipped; 2014 } 2015 } 2016 2017 static int run(mddev_t *mddev) 2018 { 2019 conf_t *conf; 2020 int i, disk_idx; 2021 mirror_info_t *disk; 2022 mdk_rdev_t *rdev; 2023 struct list_head *tmp; 2024 int nc, fc, fo; 2025 sector_t stride, size; 2026 2027 if (mddev->chunk_size == 0) { 2028 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n"); 2029 return -EINVAL; 2030 } 2031 2032 nc = mddev->layout & 255; 2033 fc = (mddev->layout >> 8) & 255; 2034 fo = mddev->layout & (1<<16); 2035 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2036 (mddev->layout >> 17)) { 2037 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 2038 mdname(mddev), mddev->layout); 2039 goto out; 2040 } 2041 /* 2042 * copy the already verified devices into our private RAID10 2043 * bookkeeping area. [whatever we allocate in run(), 2044 * should be freed in stop()] 2045 */ 2046 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2047 mddev->private = conf; 2048 if (!conf) { 2049 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2050 mdname(mddev)); 2051 goto out; 2052 } 2053 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2054 GFP_KERNEL); 2055 if (!conf->mirrors) { 2056 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2057 mdname(mddev)); 2058 goto out_free_conf; 2059 } 2060 2061 conf->tmppage = alloc_page(GFP_KERNEL); 2062 if (!conf->tmppage) 2063 goto out_free_conf; 2064 2065 conf->mddev = mddev; 2066 conf->raid_disks = mddev->raid_disks; 2067 conf->near_copies = nc; 2068 conf->far_copies = fc; 2069 conf->copies = nc*fc; 2070 conf->far_offset = fo; 2071 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 2072 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 2073 size = mddev->size >> (conf->chunk_shift-1); 2074 sector_div(size, fc); 2075 size = size * conf->raid_disks; 2076 sector_div(size, nc); 2077 /* 'size' is now the number of chunks in the array */ 2078 /* calculate "used chunks per device" in 'stride' */ 2079 stride = size * conf->copies; 2080 2081 /* We need to round up when dividing by raid_disks to 2082 * get the stride size. 2083 */ 2084 stride += conf->raid_disks - 1; 2085 sector_div(stride, conf->raid_disks); 2086 mddev->size = stride << (conf->chunk_shift-1); 2087 2088 if (fo) 2089 stride = 1; 2090 else 2091 sector_div(stride, fc); 2092 conf->stride = stride << conf->chunk_shift; 2093 2094 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2095 r10bio_pool_free, conf); 2096 if (!conf->r10bio_pool) { 2097 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 2098 mdname(mddev)); 2099 goto out_free_conf; 2100 } 2101 2102 spin_lock_init(&conf->device_lock); 2103 mddev->queue->queue_lock = &conf->device_lock; 2104 2105 rdev_for_each(rdev, tmp, mddev) { 2106 disk_idx = rdev->raid_disk; 2107 if (disk_idx >= mddev->raid_disks 2108 || disk_idx < 0) 2109 continue; 2110 disk = conf->mirrors + disk_idx; 2111 2112 disk->rdev = rdev; 2113 2114 blk_queue_stack_limits(mddev->queue, 2115 rdev->bdev->bd_disk->queue); 2116 /* as we don't honour merge_bvec_fn, we must never risk 2117 * violating it, so limit ->max_sector to one PAGE, as 2118 * a one page request is never in violation. 2119 */ 2120 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 2121 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 2122 mddev->queue->max_sectors = (PAGE_SIZE>>9); 2123 2124 disk->head_position = 0; 2125 } 2126 INIT_LIST_HEAD(&conf->retry_list); 2127 2128 spin_lock_init(&conf->resync_lock); 2129 init_waitqueue_head(&conf->wait_barrier); 2130 2131 /* need to check that every block has at least one working mirror */ 2132 if (!enough(conf)) { 2133 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 2134 mdname(mddev)); 2135 goto out_free_conf; 2136 } 2137 2138 mddev->degraded = 0; 2139 for (i = 0; i < conf->raid_disks; i++) { 2140 2141 disk = conf->mirrors + i; 2142 2143 if (!disk->rdev || 2144 !test_bit(In_sync, &disk->rdev->flags)) { 2145 disk->head_position = 0; 2146 mddev->degraded++; 2147 if (disk->rdev) 2148 conf->fullsync = 1; 2149 } 2150 } 2151 2152 2153 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 2154 if (!mddev->thread) { 2155 printk(KERN_ERR 2156 "raid10: couldn't allocate thread for %s\n", 2157 mdname(mddev)); 2158 goto out_free_conf; 2159 } 2160 2161 printk(KERN_INFO 2162 "raid10: raid set %s active with %d out of %d devices\n", 2163 mdname(mddev), mddev->raid_disks - mddev->degraded, 2164 mddev->raid_disks); 2165 /* 2166 * Ok, everything is just fine now 2167 */ 2168 mddev->array_sectors = size << conf->chunk_shift; 2169 mddev->resync_max_sectors = size << conf->chunk_shift; 2170 2171 mddev->queue->unplug_fn = raid10_unplug; 2172 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2173 mddev->queue->backing_dev_info.congested_data = mddev; 2174 2175 /* Calculate max read-ahead size. 2176 * We need to readahead at least twice a whole stripe.... 2177 * maybe... 2178 */ 2179 { 2180 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE); 2181 stripe /= conf->near_copies; 2182 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2183 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2184 } 2185 2186 if (conf->near_copies < mddev->raid_disks) 2187 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2188 return 0; 2189 2190 out_free_conf: 2191 if (conf->r10bio_pool) 2192 mempool_destroy(conf->r10bio_pool); 2193 safe_put_page(conf->tmppage); 2194 kfree(conf->mirrors); 2195 kfree(conf); 2196 mddev->private = NULL; 2197 out: 2198 return -EIO; 2199 } 2200 2201 static int stop(mddev_t *mddev) 2202 { 2203 conf_t *conf = mddev_to_conf(mddev); 2204 2205 md_unregister_thread(mddev->thread); 2206 mddev->thread = NULL; 2207 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2208 if (conf->r10bio_pool) 2209 mempool_destroy(conf->r10bio_pool); 2210 kfree(conf->mirrors); 2211 kfree(conf); 2212 mddev->private = NULL; 2213 return 0; 2214 } 2215 2216 static void raid10_quiesce(mddev_t *mddev, int state) 2217 { 2218 conf_t *conf = mddev_to_conf(mddev); 2219 2220 switch(state) { 2221 case 1: 2222 raise_barrier(conf, 0); 2223 break; 2224 case 0: 2225 lower_barrier(conf); 2226 break; 2227 } 2228 if (mddev->thread) { 2229 if (mddev->bitmap) 2230 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 2231 else 2232 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 2233 md_wakeup_thread(mddev->thread); 2234 } 2235 } 2236 2237 static struct mdk_personality raid10_personality = 2238 { 2239 .name = "raid10", 2240 .level = 10, 2241 .owner = THIS_MODULE, 2242 .make_request = make_request, 2243 .run = run, 2244 .stop = stop, 2245 .status = status, 2246 .error_handler = error, 2247 .hot_add_disk = raid10_add_disk, 2248 .hot_remove_disk= raid10_remove_disk, 2249 .spare_active = raid10_spare_active, 2250 .sync_request = sync_request, 2251 .quiesce = raid10_quiesce, 2252 }; 2253 2254 static int __init raid_init(void) 2255 { 2256 return register_md_personality(&raid10_personality); 2257 } 2258 2259 static void raid_exit(void) 2260 { 2261 unregister_md_personality(&raid10_personality); 2262 } 2263 2264 module_init(raid_init); 2265 module_exit(raid_exit); 2266 MODULE_LICENSE("GPL"); 2267 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2268 MODULE_ALIAS("md-raid10"); 2269 MODULE_ALIAS("md-level-10"); 2270