xref: /openbmc/linux/drivers/md/raid10.c (revision 93d90ad7)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32 
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72 
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define	NR_RAID10_BIOS 256
77 
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89 
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91 
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97 
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 				int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106 
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 	struct r10conf *conf = data;
110 	int size = offsetof(struct r10bio, devs[conf->copies]);
111 
112 	/* allocate a r10bio with room for raid_disks entries in the
113 	 * bios array */
114 	return kzalloc(size, gfp_flags);
115 }
116 
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 	kfree(r10_bio);
120 }
121 
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129 
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 	struct r10conf *conf = data;
140 	struct page *page;
141 	struct r10bio *r10_bio;
142 	struct bio *bio;
143 	int i, j;
144 	int nalloc;
145 
146 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 	if (!r10_bio)
148 		return NULL;
149 
150 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 		nalloc = conf->copies; /* resync */
153 	else
154 		nalloc = 2; /* recovery */
155 
156 	/*
157 	 * Allocate bios.
158 	 */
159 	for (j = nalloc ; j-- ; ) {
160 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 		if (!bio)
162 			goto out_free_bio;
163 		r10_bio->devs[j].bio = bio;
164 		if (!conf->have_replacement)
165 			continue;
166 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 		if (!bio)
168 			goto out_free_bio;
169 		r10_bio->devs[j].repl_bio = bio;
170 	}
171 	/*
172 	 * Allocate RESYNC_PAGES data pages and attach them
173 	 * where needed.
174 	 */
175 	for (j = 0 ; j < nalloc; j++) {
176 		struct bio *rbio = r10_bio->devs[j].repl_bio;
177 		bio = r10_bio->devs[j].bio;
178 		for (i = 0; i < RESYNC_PAGES; i++) {
179 			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 					       &conf->mddev->recovery)) {
181 				/* we can share bv_page's during recovery
182 				 * and reshape */
183 				struct bio *rbio = r10_bio->devs[0].bio;
184 				page = rbio->bi_io_vec[i].bv_page;
185 				get_page(page);
186 			} else
187 				page = alloc_page(gfp_flags);
188 			if (unlikely(!page))
189 				goto out_free_pages;
190 
191 			bio->bi_io_vec[i].bv_page = page;
192 			if (rbio)
193 				rbio->bi_io_vec[i].bv_page = page;
194 		}
195 	}
196 
197 	return r10_bio;
198 
199 out_free_pages:
200 	for ( ; i > 0 ; i--)
201 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 	while (j--)
203 		for (i = 0; i < RESYNC_PAGES ; i++)
204 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 	j = 0;
206 out_free_bio:
207 	for ( ; j < nalloc; j++) {
208 		if (r10_bio->devs[j].bio)
209 			bio_put(r10_bio->devs[j].bio);
210 		if (r10_bio->devs[j].repl_bio)
211 			bio_put(r10_bio->devs[j].repl_bio);
212 	}
213 	r10bio_pool_free(r10_bio, conf);
214 	return NULL;
215 }
216 
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 	int i;
220 	struct r10conf *conf = data;
221 	struct r10bio *r10bio = __r10_bio;
222 	int j;
223 
224 	for (j=0; j < conf->copies; j++) {
225 		struct bio *bio = r10bio->devs[j].bio;
226 		if (bio) {
227 			for (i = 0; i < RESYNC_PAGES; i++) {
228 				safe_put_page(bio->bi_io_vec[i].bv_page);
229 				bio->bi_io_vec[i].bv_page = NULL;
230 			}
231 			bio_put(bio);
232 		}
233 		bio = r10bio->devs[j].repl_bio;
234 		if (bio)
235 			bio_put(bio);
236 	}
237 	r10bio_pool_free(r10bio, conf);
238 }
239 
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 	int i;
243 
244 	for (i = 0; i < conf->copies; i++) {
245 		struct bio **bio = & r10_bio->devs[i].bio;
246 		if (!BIO_SPECIAL(*bio))
247 			bio_put(*bio);
248 		*bio = NULL;
249 		bio = &r10_bio->devs[i].repl_bio;
250 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 			bio_put(*bio);
252 		*bio = NULL;
253 	}
254 }
255 
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 	struct r10conf *conf = r10_bio->mddev->private;
259 
260 	put_all_bios(conf, r10_bio);
261 	mempool_free(r10_bio, conf->r10bio_pool);
262 }
263 
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 	struct r10conf *conf = r10_bio->mddev->private;
267 
268 	mempool_free(r10_bio, conf->r10buf_pool);
269 
270 	lower_barrier(conf);
271 }
272 
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 	unsigned long flags;
276 	struct mddev *mddev = r10_bio->mddev;
277 	struct r10conf *conf = mddev->private;
278 
279 	spin_lock_irqsave(&conf->device_lock, flags);
280 	list_add(&r10_bio->retry_list, &conf->retry_list);
281 	conf->nr_queued ++;
282 	spin_unlock_irqrestore(&conf->device_lock, flags);
283 
284 	/* wake up frozen array... */
285 	wake_up(&conf->wait_barrier);
286 
287 	md_wakeup_thread(mddev->thread);
288 }
289 
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 	struct bio *bio = r10_bio->master_bio;
298 	int done;
299 	struct r10conf *conf = r10_bio->mddev->private;
300 
301 	if (bio->bi_phys_segments) {
302 		unsigned long flags;
303 		spin_lock_irqsave(&conf->device_lock, flags);
304 		bio->bi_phys_segments--;
305 		done = (bio->bi_phys_segments == 0);
306 		spin_unlock_irqrestore(&conf->device_lock, flags);
307 	} else
308 		done = 1;
309 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 	if (done) {
312 		bio_endio(bio, 0);
313 		/*
314 		 * Wake up any possible resync thread that waits for the device
315 		 * to go idle.
316 		 */
317 		allow_barrier(conf);
318 	}
319 	free_r10bio(r10_bio);
320 }
321 
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 	struct r10conf *conf = r10_bio->mddev->private;
328 
329 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 		r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332 
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 			 struct bio *bio, int *slotp, int *replp)
338 {
339 	int slot;
340 	int repl = 0;
341 
342 	for (slot = 0; slot < conf->copies; slot++) {
343 		if (r10_bio->devs[slot].bio == bio)
344 			break;
345 		if (r10_bio->devs[slot].repl_bio == bio) {
346 			repl = 1;
347 			break;
348 		}
349 	}
350 
351 	BUG_ON(slot == conf->copies);
352 	update_head_pos(slot, r10_bio);
353 
354 	if (slotp)
355 		*slotp = slot;
356 	if (replp)
357 		*replp = repl;
358 	return r10_bio->devs[slot].devnum;
359 }
360 
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 	struct r10bio *r10_bio = bio->bi_private;
365 	int slot, dev;
366 	struct md_rdev *rdev;
367 	struct r10conf *conf = r10_bio->mddev->private;
368 
369 	slot = r10_bio->read_slot;
370 	dev = r10_bio->devs[slot].devnum;
371 	rdev = r10_bio->devs[slot].rdev;
372 	/*
373 	 * this branch is our 'one mirror IO has finished' event handler:
374 	 */
375 	update_head_pos(slot, r10_bio);
376 
377 	if (uptodate) {
378 		/*
379 		 * Set R10BIO_Uptodate in our master bio, so that
380 		 * we will return a good error code to the higher
381 		 * levels even if IO on some other mirrored buffer fails.
382 		 *
383 		 * The 'master' represents the composite IO operation to
384 		 * user-side. So if something waits for IO, then it will
385 		 * wait for the 'master' bio.
386 		 */
387 		set_bit(R10BIO_Uptodate, &r10_bio->state);
388 	} else {
389 		/* If all other devices that store this block have
390 		 * failed, we want to return the error upwards rather
391 		 * than fail the last device.  Here we redefine
392 		 * "uptodate" to mean "Don't want to retry"
393 		 */
394 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
395 			     rdev->raid_disk))
396 			uptodate = 1;
397 	}
398 	if (uptodate) {
399 		raid_end_bio_io(r10_bio);
400 		rdev_dec_pending(rdev, conf->mddev);
401 	} else {
402 		/*
403 		 * oops, read error - keep the refcount on the rdev
404 		 */
405 		char b[BDEVNAME_SIZE];
406 		printk_ratelimited(KERN_ERR
407 				   "md/raid10:%s: %s: rescheduling sector %llu\n",
408 				   mdname(conf->mddev),
409 				   bdevname(rdev->bdev, b),
410 				   (unsigned long long)r10_bio->sector);
411 		set_bit(R10BIO_ReadError, &r10_bio->state);
412 		reschedule_retry(r10_bio);
413 	}
414 }
415 
416 static void close_write(struct r10bio *r10_bio)
417 {
418 	/* clear the bitmap if all writes complete successfully */
419 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
420 			r10_bio->sectors,
421 			!test_bit(R10BIO_Degraded, &r10_bio->state),
422 			0);
423 	md_write_end(r10_bio->mddev);
424 }
425 
426 static void one_write_done(struct r10bio *r10_bio)
427 {
428 	if (atomic_dec_and_test(&r10_bio->remaining)) {
429 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
430 			reschedule_retry(r10_bio);
431 		else {
432 			close_write(r10_bio);
433 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
434 				reschedule_retry(r10_bio);
435 			else
436 				raid_end_bio_io(r10_bio);
437 		}
438 	}
439 }
440 
441 static void raid10_end_write_request(struct bio *bio, int error)
442 {
443 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
444 	struct r10bio *r10_bio = bio->bi_private;
445 	int dev;
446 	int dec_rdev = 1;
447 	struct r10conf *conf = r10_bio->mddev->private;
448 	int slot, repl;
449 	struct md_rdev *rdev = NULL;
450 
451 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452 
453 	if (repl)
454 		rdev = conf->mirrors[dev].replacement;
455 	if (!rdev) {
456 		smp_rmb();
457 		repl = 0;
458 		rdev = conf->mirrors[dev].rdev;
459 	}
460 	/*
461 	 * this branch is our 'one mirror IO has finished' event handler:
462 	 */
463 	if (!uptodate) {
464 		if (repl)
465 			/* Never record new bad blocks to replacement,
466 			 * just fail it.
467 			 */
468 			md_error(rdev->mddev, rdev);
469 		else {
470 			set_bit(WriteErrorSeen,	&rdev->flags);
471 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 				set_bit(MD_RECOVERY_NEEDED,
473 					&rdev->mddev->recovery);
474 			set_bit(R10BIO_WriteError, &r10_bio->state);
475 			dec_rdev = 0;
476 		}
477 	} else {
478 		/*
479 		 * Set R10BIO_Uptodate in our master bio, so that
480 		 * we will return a good error code for to the higher
481 		 * levels even if IO on some other mirrored buffer fails.
482 		 *
483 		 * The 'master' represents the composite IO operation to
484 		 * user-side. So if something waits for IO, then it will
485 		 * wait for the 'master' bio.
486 		 */
487 		sector_t first_bad;
488 		int bad_sectors;
489 
490 		/*
491 		 * Do not set R10BIO_Uptodate if the current device is
492 		 * rebuilding or Faulty. This is because we cannot use
493 		 * such device for properly reading the data back (we could
494 		 * potentially use it, if the current write would have felt
495 		 * before rdev->recovery_offset, but for simplicity we don't
496 		 * check this here.
497 		 */
498 		if (test_bit(In_sync, &rdev->flags) &&
499 		    !test_bit(Faulty, &rdev->flags))
500 			set_bit(R10BIO_Uptodate, &r10_bio->state);
501 
502 		/* Maybe we can clear some bad blocks. */
503 		if (is_badblock(rdev,
504 				r10_bio->devs[slot].addr,
505 				r10_bio->sectors,
506 				&first_bad, &bad_sectors)) {
507 			bio_put(bio);
508 			if (repl)
509 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 			else
511 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
512 			dec_rdev = 0;
513 			set_bit(R10BIO_MadeGood, &r10_bio->state);
514 		}
515 	}
516 
517 	/*
518 	 *
519 	 * Let's see if all mirrored write operations have finished
520 	 * already.
521 	 */
522 	one_write_done(r10_bio);
523 	if (dec_rdev)
524 		rdev_dec_pending(rdev, conf->mddev);
525 }
526 
527 /*
528  * RAID10 layout manager
529  * As well as the chunksize and raid_disks count, there are two
530  * parameters: near_copies and far_copies.
531  * near_copies * far_copies must be <= raid_disks.
532  * Normally one of these will be 1.
533  * If both are 1, we get raid0.
534  * If near_copies == raid_disks, we get raid1.
535  *
536  * Chunks are laid out in raid0 style with near_copies copies of the
537  * first chunk, followed by near_copies copies of the next chunk and
538  * so on.
539  * If far_copies > 1, then after 1/far_copies of the array has been assigned
540  * as described above, we start again with a device offset of near_copies.
541  * So we effectively have another copy of the whole array further down all
542  * the drives, but with blocks on different drives.
543  * With this layout, and block is never stored twice on the one device.
544  *
545  * raid10_find_phys finds the sector offset of a given virtual sector
546  * on each device that it is on.
547  *
548  * raid10_find_virt does the reverse mapping, from a device and a
549  * sector offset to a virtual address
550  */
551 
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554 	int n,f;
555 	sector_t sector;
556 	sector_t chunk;
557 	sector_t stripe;
558 	int dev;
559 	int slot = 0;
560 	int last_far_set_start, last_far_set_size;
561 
562 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 	last_far_set_start *= geo->far_set_size;
564 
565 	last_far_set_size = geo->far_set_size;
566 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
567 
568 	/* now calculate first sector/dev */
569 	chunk = r10bio->sector >> geo->chunk_shift;
570 	sector = r10bio->sector & geo->chunk_mask;
571 
572 	chunk *= geo->near_copies;
573 	stripe = chunk;
574 	dev = sector_div(stripe, geo->raid_disks);
575 	if (geo->far_offset)
576 		stripe *= geo->far_copies;
577 
578 	sector += stripe << geo->chunk_shift;
579 
580 	/* and calculate all the others */
581 	for (n = 0; n < geo->near_copies; n++) {
582 		int d = dev;
583 		int set;
584 		sector_t s = sector;
585 		r10bio->devs[slot].devnum = d;
586 		r10bio->devs[slot].addr = s;
587 		slot++;
588 
589 		for (f = 1; f < geo->far_copies; f++) {
590 			set = d / geo->far_set_size;
591 			d += geo->near_copies;
592 
593 			if ((geo->raid_disks % geo->far_set_size) &&
594 			    (d > last_far_set_start)) {
595 				d -= last_far_set_start;
596 				d %= last_far_set_size;
597 				d += last_far_set_start;
598 			} else {
599 				d %= geo->far_set_size;
600 				d += geo->far_set_size * set;
601 			}
602 			s += geo->stride;
603 			r10bio->devs[slot].devnum = d;
604 			r10bio->devs[slot].addr = s;
605 			slot++;
606 		}
607 		dev++;
608 		if (dev >= geo->raid_disks) {
609 			dev = 0;
610 			sector += (geo->chunk_mask + 1);
611 		}
612 	}
613 }
614 
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617 	struct geom *geo = &conf->geo;
618 
619 	if (conf->reshape_progress != MaxSector &&
620 	    ((r10bio->sector >= conf->reshape_progress) !=
621 	     conf->mddev->reshape_backwards)) {
622 		set_bit(R10BIO_Previous, &r10bio->state);
623 		geo = &conf->prev;
624 	} else
625 		clear_bit(R10BIO_Previous, &r10bio->state);
626 
627 	__raid10_find_phys(geo, r10bio);
628 }
629 
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632 	sector_t offset, chunk, vchunk;
633 	/* Never use conf->prev as this is only called during resync
634 	 * or recovery, so reshape isn't happening
635 	 */
636 	struct geom *geo = &conf->geo;
637 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 	int far_set_size = geo->far_set_size;
639 	int last_far_set_start;
640 
641 	if (geo->raid_disks % geo->far_set_size) {
642 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 		last_far_set_start *= geo->far_set_size;
644 
645 		if (dev >= last_far_set_start) {
646 			far_set_size = geo->far_set_size;
647 			far_set_size += (geo->raid_disks % geo->far_set_size);
648 			far_set_start = last_far_set_start;
649 		}
650 	}
651 
652 	offset = sector & geo->chunk_mask;
653 	if (geo->far_offset) {
654 		int fc;
655 		chunk = sector >> geo->chunk_shift;
656 		fc = sector_div(chunk, geo->far_copies);
657 		dev -= fc * geo->near_copies;
658 		if (dev < far_set_start)
659 			dev += far_set_size;
660 	} else {
661 		while (sector >= geo->stride) {
662 			sector -= geo->stride;
663 			if (dev < (geo->near_copies + far_set_start))
664 				dev += far_set_size - geo->near_copies;
665 			else
666 				dev -= geo->near_copies;
667 		}
668 		chunk = sector >> geo->chunk_shift;
669 	}
670 	vchunk = chunk * geo->raid_disks + dev;
671 	sector_div(vchunk, geo->near_copies);
672 	return (vchunk << geo->chunk_shift) + offset;
673 }
674 
675 /**
676  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
677  *	@q: request queue
678  *	@bvm: properties of new bio
679  *	@biovec: the request that could be merged to it.
680  *
681  *	Return amount of bytes we can accept at this offset
682  *	This requires checking for end-of-chunk if near_copies != raid_disks,
683  *	and for subordinate merge_bvec_fns if merge_check_needed.
684  */
685 static int raid10_mergeable_bvec(struct request_queue *q,
686 				 struct bvec_merge_data *bvm,
687 				 struct bio_vec *biovec)
688 {
689 	struct mddev *mddev = q->queuedata;
690 	struct r10conf *conf = mddev->private;
691 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
692 	int max;
693 	unsigned int chunk_sectors;
694 	unsigned int bio_sectors = bvm->bi_size >> 9;
695 	struct geom *geo = &conf->geo;
696 
697 	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
698 	if (conf->reshape_progress != MaxSector &&
699 	    ((sector >= conf->reshape_progress) !=
700 	     conf->mddev->reshape_backwards))
701 		geo = &conf->prev;
702 
703 	if (geo->near_copies < geo->raid_disks) {
704 		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
705 					+ bio_sectors)) << 9;
706 		if (max < 0)
707 			/* bio_add cannot handle a negative return */
708 			max = 0;
709 		if (max <= biovec->bv_len && bio_sectors == 0)
710 			return biovec->bv_len;
711 	} else
712 		max = biovec->bv_len;
713 
714 	if (mddev->merge_check_needed) {
715 		struct {
716 			struct r10bio r10_bio;
717 			struct r10dev devs[conf->copies];
718 		} on_stack;
719 		struct r10bio *r10_bio = &on_stack.r10_bio;
720 		int s;
721 		if (conf->reshape_progress != MaxSector) {
722 			/* Cannot give any guidance during reshape */
723 			if (max <= biovec->bv_len && bio_sectors == 0)
724 				return biovec->bv_len;
725 			return 0;
726 		}
727 		r10_bio->sector = sector;
728 		raid10_find_phys(conf, r10_bio);
729 		rcu_read_lock();
730 		for (s = 0; s < conf->copies; s++) {
731 			int disk = r10_bio->devs[s].devnum;
732 			struct md_rdev *rdev = rcu_dereference(
733 				conf->mirrors[disk].rdev);
734 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
735 				struct request_queue *q =
736 					bdev_get_queue(rdev->bdev);
737 				if (q->merge_bvec_fn) {
738 					bvm->bi_sector = r10_bio->devs[s].addr
739 						+ rdev->data_offset;
740 					bvm->bi_bdev = rdev->bdev;
741 					max = min(max, q->merge_bvec_fn(
742 							  q, bvm, biovec));
743 				}
744 			}
745 			rdev = rcu_dereference(conf->mirrors[disk].replacement);
746 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
747 				struct request_queue *q =
748 					bdev_get_queue(rdev->bdev);
749 				if (q->merge_bvec_fn) {
750 					bvm->bi_sector = r10_bio->devs[s].addr
751 						+ rdev->data_offset;
752 					bvm->bi_bdev = rdev->bdev;
753 					max = min(max, q->merge_bvec_fn(
754 							  q, bvm, biovec));
755 				}
756 			}
757 		}
758 		rcu_read_unlock();
759 	}
760 	return max;
761 }
762 
763 /*
764  * This routine returns the disk from which the requested read should
765  * be done. There is a per-array 'next expected sequential IO' sector
766  * number - if this matches on the next IO then we use the last disk.
767  * There is also a per-disk 'last know head position' sector that is
768  * maintained from IRQ contexts, both the normal and the resync IO
769  * completion handlers update this position correctly. If there is no
770  * perfect sequential match then we pick the disk whose head is closest.
771  *
772  * If there are 2 mirrors in the same 2 devices, performance degrades
773  * because position is mirror, not device based.
774  *
775  * The rdev for the device selected will have nr_pending incremented.
776  */
777 
778 /*
779  * FIXME: possibly should rethink readbalancing and do it differently
780  * depending on near_copies / far_copies geometry.
781  */
782 static struct md_rdev *read_balance(struct r10conf *conf,
783 				    struct r10bio *r10_bio,
784 				    int *max_sectors)
785 {
786 	const sector_t this_sector = r10_bio->sector;
787 	int disk, slot;
788 	int sectors = r10_bio->sectors;
789 	int best_good_sectors;
790 	sector_t new_distance, best_dist;
791 	struct md_rdev *best_rdev, *rdev = NULL;
792 	int do_balance;
793 	int best_slot;
794 	struct geom *geo = &conf->geo;
795 
796 	raid10_find_phys(conf, r10_bio);
797 	rcu_read_lock();
798 retry:
799 	sectors = r10_bio->sectors;
800 	best_slot = -1;
801 	best_rdev = NULL;
802 	best_dist = MaxSector;
803 	best_good_sectors = 0;
804 	do_balance = 1;
805 	/*
806 	 * Check if we can balance. We can balance on the whole
807 	 * device if no resync is going on (recovery is ok), or below
808 	 * the resync window. We take the first readable disk when
809 	 * above the resync window.
810 	 */
811 	if (conf->mddev->recovery_cp < MaxSector
812 	    && (this_sector + sectors >= conf->next_resync))
813 		do_balance = 0;
814 
815 	for (slot = 0; slot < conf->copies ; slot++) {
816 		sector_t first_bad;
817 		int bad_sectors;
818 		sector_t dev_sector;
819 
820 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
821 			continue;
822 		disk = r10_bio->devs[slot].devnum;
823 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
824 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
825 		    test_bit(Unmerged, &rdev->flags) ||
826 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
827 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
828 		if (rdev == NULL ||
829 		    test_bit(Faulty, &rdev->flags) ||
830 		    test_bit(Unmerged, &rdev->flags))
831 			continue;
832 		if (!test_bit(In_sync, &rdev->flags) &&
833 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
834 			continue;
835 
836 		dev_sector = r10_bio->devs[slot].addr;
837 		if (is_badblock(rdev, dev_sector, sectors,
838 				&first_bad, &bad_sectors)) {
839 			if (best_dist < MaxSector)
840 				/* Already have a better slot */
841 				continue;
842 			if (first_bad <= dev_sector) {
843 				/* Cannot read here.  If this is the
844 				 * 'primary' device, then we must not read
845 				 * beyond 'bad_sectors' from another device.
846 				 */
847 				bad_sectors -= (dev_sector - first_bad);
848 				if (!do_balance && sectors > bad_sectors)
849 					sectors = bad_sectors;
850 				if (best_good_sectors > sectors)
851 					best_good_sectors = sectors;
852 			} else {
853 				sector_t good_sectors =
854 					first_bad - dev_sector;
855 				if (good_sectors > best_good_sectors) {
856 					best_good_sectors = good_sectors;
857 					best_slot = slot;
858 					best_rdev = rdev;
859 				}
860 				if (!do_balance)
861 					/* Must read from here */
862 					break;
863 			}
864 			continue;
865 		} else
866 			best_good_sectors = sectors;
867 
868 		if (!do_balance)
869 			break;
870 
871 		/* This optimisation is debatable, and completely destroys
872 		 * sequential read speed for 'far copies' arrays.  So only
873 		 * keep it for 'near' arrays, and review those later.
874 		 */
875 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
876 			break;
877 
878 		/* for far > 1 always use the lowest address */
879 		if (geo->far_copies > 1)
880 			new_distance = r10_bio->devs[slot].addr;
881 		else
882 			new_distance = abs(r10_bio->devs[slot].addr -
883 					   conf->mirrors[disk].head_position);
884 		if (new_distance < best_dist) {
885 			best_dist = new_distance;
886 			best_slot = slot;
887 			best_rdev = rdev;
888 		}
889 	}
890 	if (slot >= conf->copies) {
891 		slot = best_slot;
892 		rdev = best_rdev;
893 	}
894 
895 	if (slot >= 0) {
896 		atomic_inc(&rdev->nr_pending);
897 		if (test_bit(Faulty, &rdev->flags)) {
898 			/* Cannot risk returning a device that failed
899 			 * before we inc'ed nr_pending
900 			 */
901 			rdev_dec_pending(rdev, conf->mddev);
902 			goto retry;
903 		}
904 		r10_bio->read_slot = slot;
905 	} else
906 		rdev = NULL;
907 	rcu_read_unlock();
908 	*max_sectors = best_good_sectors;
909 
910 	return rdev;
911 }
912 
913 int md_raid10_congested(struct mddev *mddev, int bits)
914 {
915 	struct r10conf *conf = mddev->private;
916 	int i, ret = 0;
917 
918 	if ((bits & (1 << BDI_async_congested)) &&
919 	    conf->pending_count >= max_queued_requests)
920 		return 1;
921 
922 	rcu_read_lock();
923 	for (i = 0;
924 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
925 		     && ret == 0;
926 	     i++) {
927 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
928 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
929 			struct request_queue *q = bdev_get_queue(rdev->bdev);
930 
931 			ret |= bdi_congested(&q->backing_dev_info, bits);
932 		}
933 	}
934 	rcu_read_unlock();
935 	return ret;
936 }
937 EXPORT_SYMBOL_GPL(md_raid10_congested);
938 
939 static int raid10_congested(void *data, int bits)
940 {
941 	struct mddev *mddev = data;
942 
943 	return mddev_congested(mddev, bits) ||
944 		md_raid10_congested(mddev, bits);
945 }
946 
947 static void flush_pending_writes(struct r10conf *conf)
948 {
949 	/* Any writes that have been queued but are awaiting
950 	 * bitmap updates get flushed here.
951 	 */
952 	spin_lock_irq(&conf->device_lock);
953 
954 	if (conf->pending_bio_list.head) {
955 		struct bio *bio;
956 		bio = bio_list_get(&conf->pending_bio_list);
957 		conf->pending_count = 0;
958 		spin_unlock_irq(&conf->device_lock);
959 		/* flush any pending bitmap writes to disk
960 		 * before proceeding w/ I/O */
961 		bitmap_unplug(conf->mddev->bitmap);
962 		wake_up(&conf->wait_barrier);
963 
964 		while (bio) { /* submit pending writes */
965 			struct bio *next = bio->bi_next;
966 			bio->bi_next = NULL;
967 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
968 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
969 				/* Just ignore it */
970 				bio_endio(bio, 0);
971 			else
972 				generic_make_request(bio);
973 			bio = next;
974 		}
975 	} else
976 		spin_unlock_irq(&conf->device_lock);
977 }
978 
979 /* Barriers....
980  * Sometimes we need to suspend IO while we do something else,
981  * either some resync/recovery, or reconfigure the array.
982  * To do this we raise a 'barrier'.
983  * The 'barrier' is a counter that can be raised multiple times
984  * to count how many activities are happening which preclude
985  * normal IO.
986  * We can only raise the barrier if there is no pending IO.
987  * i.e. if nr_pending == 0.
988  * We choose only to raise the barrier if no-one is waiting for the
989  * barrier to go down.  This means that as soon as an IO request
990  * is ready, no other operations which require a barrier will start
991  * until the IO request has had a chance.
992  *
993  * So: regular IO calls 'wait_barrier'.  When that returns there
994  *    is no backgroup IO happening,  It must arrange to call
995  *    allow_barrier when it has finished its IO.
996  * backgroup IO calls must call raise_barrier.  Once that returns
997  *    there is no normal IO happeing.  It must arrange to call
998  *    lower_barrier when the particular background IO completes.
999  */
1000 
1001 static void raise_barrier(struct r10conf *conf, int force)
1002 {
1003 	BUG_ON(force && !conf->barrier);
1004 	spin_lock_irq(&conf->resync_lock);
1005 
1006 	/* Wait until no block IO is waiting (unless 'force') */
1007 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1008 			    conf->resync_lock);
1009 
1010 	/* block any new IO from starting */
1011 	conf->barrier++;
1012 
1013 	/* Now wait for all pending IO to complete */
1014 	wait_event_lock_irq(conf->wait_barrier,
1015 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1016 			    conf->resync_lock);
1017 
1018 	spin_unlock_irq(&conf->resync_lock);
1019 }
1020 
1021 static void lower_barrier(struct r10conf *conf)
1022 {
1023 	unsigned long flags;
1024 	spin_lock_irqsave(&conf->resync_lock, flags);
1025 	conf->barrier--;
1026 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1027 	wake_up(&conf->wait_barrier);
1028 }
1029 
1030 static void wait_barrier(struct r10conf *conf)
1031 {
1032 	spin_lock_irq(&conf->resync_lock);
1033 	if (conf->barrier) {
1034 		conf->nr_waiting++;
1035 		/* Wait for the barrier to drop.
1036 		 * However if there are already pending
1037 		 * requests (preventing the barrier from
1038 		 * rising completely), and the
1039 		 * pre-process bio queue isn't empty,
1040 		 * then don't wait, as we need to empty
1041 		 * that queue to get the nr_pending
1042 		 * count down.
1043 		 */
1044 		wait_event_lock_irq(conf->wait_barrier,
1045 				    !conf->barrier ||
1046 				    (conf->nr_pending &&
1047 				     current->bio_list &&
1048 				     !bio_list_empty(current->bio_list)),
1049 				    conf->resync_lock);
1050 		conf->nr_waiting--;
1051 	}
1052 	conf->nr_pending++;
1053 	spin_unlock_irq(&conf->resync_lock);
1054 }
1055 
1056 static void allow_barrier(struct r10conf *conf)
1057 {
1058 	unsigned long flags;
1059 	spin_lock_irqsave(&conf->resync_lock, flags);
1060 	conf->nr_pending--;
1061 	spin_unlock_irqrestore(&conf->resync_lock, flags);
1062 	wake_up(&conf->wait_barrier);
1063 }
1064 
1065 static void freeze_array(struct r10conf *conf, int extra)
1066 {
1067 	/* stop syncio and normal IO and wait for everything to
1068 	 * go quiet.
1069 	 * We increment barrier and nr_waiting, and then
1070 	 * wait until nr_pending match nr_queued+extra
1071 	 * This is called in the context of one normal IO request
1072 	 * that has failed. Thus any sync request that might be pending
1073 	 * will be blocked by nr_pending, and we need to wait for
1074 	 * pending IO requests to complete or be queued for re-try.
1075 	 * Thus the number queued (nr_queued) plus this request (extra)
1076 	 * must match the number of pending IOs (nr_pending) before
1077 	 * we continue.
1078 	 */
1079 	spin_lock_irq(&conf->resync_lock);
1080 	conf->barrier++;
1081 	conf->nr_waiting++;
1082 	wait_event_lock_irq_cmd(conf->wait_barrier,
1083 				conf->nr_pending == conf->nr_queued+extra,
1084 				conf->resync_lock,
1085 				flush_pending_writes(conf));
1086 
1087 	spin_unlock_irq(&conf->resync_lock);
1088 }
1089 
1090 static void unfreeze_array(struct r10conf *conf)
1091 {
1092 	/* reverse the effect of the freeze */
1093 	spin_lock_irq(&conf->resync_lock);
1094 	conf->barrier--;
1095 	conf->nr_waiting--;
1096 	wake_up(&conf->wait_barrier);
1097 	spin_unlock_irq(&conf->resync_lock);
1098 }
1099 
1100 static sector_t choose_data_offset(struct r10bio *r10_bio,
1101 				   struct md_rdev *rdev)
1102 {
1103 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1104 	    test_bit(R10BIO_Previous, &r10_bio->state))
1105 		return rdev->data_offset;
1106 	else
1107 		return rdev->new_data_offset;
1108 }
1109 
1110 struct raid10_plug_cb {
1111 	struct blk_plug_cb	cb;
1112 	struct bio_list		pending;
1113 	int			pending_cnt;
1114 };
1115 
1116 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1117 {
1118 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1119 						   cb);
1120 	struct mddev *mddev = plug->cb.data;
1121 	struct r10conf *conf = mddev->private;
1122 	struct bio *bio;
1123 
1124 	if (from_schedule || current->bio_list) {
1125 		spin_lock_irq(&conf->device_lock);
1126 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1127 		conf->pending_count += plug->pending_cnt;
1128 		spin_unlock_irq(&conf->device_lock);
1129 		wake_up(&conf->wait_barrier);
1130 		md_wakeup_thread(mddev->thread);
1131 		kfree(plug);
1132 		return;
1133 	}
1134 
1135 	/* we aren't scheduling, so we can do the write-out directly. */
1136 	bio = bio_list_get(&plug->pending);
1137 	bitmap_unplug(mddev->bitmap);
1138 	wake_up(&conf->wait_barrier);
1139 
1140 	while (bio) { /* submit pending writes */
1141 		struct bio *next = bio->bi_next;
1142 		bio->bi_next = NULL;
1143 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1144 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1145 			/* Just ignore it */
1146 			bio_endio(bio, 0);
1147 		else
1148 			generic_make_request(bio);
1149 		bio = next;
1150 	}
1151 	kfree(plug);
1152 }
1153 
1154 static void __make_request(struct mddev *mddev, struct bio *bio)
1155 {
1156 	struct r10conf *conf = mddev->private;
1157 	struct r10bio *r10_bio;
1158 	struct bio *read_bio;
1159 	int i;
1160 	const int rw = bio_data_dir(bio);
1161 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1162 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1163 	const unsigned long do_discard = (bio->bi_rw
1164 					  & (REQ_DISCARD | REQ_SECURE));
1165 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1166 	unsigned long flags;
1167 	struct md_rdev *blocked_rdev;
1168 	struct blk_plug_cb *cb;
1169 	struct raid10_plug_cb *plug = NULL;
1170 	int sectors_handled;
1171 	int max_sectors;
1172 	int sectors;
1173 
1174 	/*
1175 	 * Register the new request and wait if the reconstruction
1176 	 * thread has put up a bar for new requests.
1177 	 * Continue immediately if no resync is active currently.
1178 	 */
1179 	wait_barrier(conf);
1180 
1181 	sectors = bio_sectors(bio);
1182 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1183 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1184 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1185 		/* IO spans the reshape position.  Need to wait for
1186 		 * reshape to pass
1187 		 */
1188 		allow_barrier(conf);
1189 		wait_event(conf->wait_barrier,
1190 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1191 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1192 			   sectors);
1193 		wait_barrier(conf);
1194 	}
1195 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1196 	    bio_data_dir(bio) == WRITE &&
1197 	    (mddev->reshape_backwards
1198 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1199 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1200 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1201 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1202 		/* Need to update reshape_position in metadata */
1203 		mddev->reshape_position = conf->reshape_progress;
1204 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1205 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1206 		md_wakeup_thread(mddev->thread);
1207 		wait_event(mddev->sb_wait,
1208 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1209 
1210 		conf->reshape_safe = mddev->reshape_position;
1211 	}
1212 
1213 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1214 
1215 	r10_bio->master_bio = bio;
1216 	r10_bio->sectors = sectors;
1217 
1218 	r10_bio->mddev = mddev;
1219 	r10_bio->sector = bio->bi_iter.bi_sector;
1220 	r10_bio->state = 0;
1221 
1222 	/* We might need to issue multiple reads to different
1223 	 * devices if there are bad blocks around, so we keep
1224 	 * track of the number of reads in bio->bi_phys_segments.
1225 	 * If this is 0, there is only one r10_bio and no locking
1226 	 * will be needed when the request completes.  If it is
1227 	 * non-zero, then it is the number of not-completed requests.
1228 	 */
1229 	bio->bi_phys_segments = 0;
1230 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1231 
1232 	if (rw == READ) {
1233 		/*
1234 		 * read balancing logic:
1235 		 */
1236 		struct md_rdev *rdev;
1237 		int slot;
1238 
1239 read_again:
1240 		rdev = read_balance(conf, r10_bio, &max_sectors);
1241 		if (!rdev) {
1242 			raid_end_bio_io(r10_bio);
1243 			return;
1244 		}
1245 		slot = r10_bio->read_slot;
1246 
1247 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1248 		bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1249 			 max_sectors);
1250 
1251 		r10_bio->devs[slot].bio = read_bio;
1252 		r10_bio->devs[slot].rdev = rdev;
1253 
1254 		read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1255 			choose_data_offset(r10_bio, rdev);
1256 		read_bio->bi_bdev = rdev->bdev;
1257 		read_bio->bi_end_io = raid10_end_read_request;
1258 		read_bio->bi_rw = READ | do_sync;
1259 		read_bio->bi_private = r10_bio;
1260 
1261 		if (max_sectors < r10_bio->sectors) {
1262 			/* Could not read all from this device, so we will
1263 			 * need another r10_bio.
1264 			 */
1265 			sectors_handled = (r10_bio->sector + max_sectors
1266 					   - bio->bi_iter.bi_sector);
1267 			r10_bio->sectors = max_sectors;
1268 			spin_lock_irq(&conf->device_lock);
1269 			if (bio->bi_phys_segments == 0)
1270 				bio->bi_phys_segments = 2;
1271 			else
1272 				bio->bi_phys_segments++;
1273 			spin_unlock_irq(&conf->device_lock);
1274 			/* Cannot call generic_make_request directly
1275 			 * as that will be queued in __generic_make_request
1276 			 * and subsequent mempool_alloc might block
1277 			 * waiting for it.  so hand bio over to raid10d.
1278 			 */
1279 			reschedule_retry(r10_bio);
1280 
1281 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1282 
1283 			r10_bio->master_bio = bio;
1284 			r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1285 			r10_bio->state = 0;
1286 			r10_bio->mddev = mddev;
1287 			r10_bio->sector = bio->bi_iter.bi_sector +
1288 				sectors_handled;
1289 			goto read_again;
1290 		} else
1291 			generic_make_request(read_bio);
1292 		return;
1293 	}
1294 
1295 	/*
1296 	 * WRITE:
1297 	 */
1298 	if (conf->pending_count >= max_queued_requests) {
1299 		md_wakeup_thread(mddev->thread);
1300 		wait_event(conf->wait_barrier,
1301 			   conf->pending_count < max_queued_requests);
1302 	}
1303 	/* first select target devices under rcu_lock and
1304 	 * inc refcount on their rdev.  Record them by setting
1305 	 * bios[x] to bio
1306 	 * If there are known/acknowledged bad blocks on any device
1307 	 * on which we have seen a write error, we want to avoid
1308 	 * writing to those blocks.  This potentially requires several
1309 	 * writes to write around the bad blocks.  Each set of writes
1310 	 * gets its own r10_bio with a set of bios attached.  The number
1311 	 * of r10_bios is recored in bio->bi_phys_segments just as with
1312 	 * the read case.
1313 	 */
1314 
1315 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1316 	raid10_find_phys(conf, r10_bio);
1317 retry_write:
1318 	blocked_rdev = NULL;
1319 	rcu_read_lock();
1320 	max_sectors = r10_bio->sectors;
1321 
1322 	for (i = 0;  i < conf->copies; i++) {
1323 		int d = r10_bio->devs[i].devnum;
1324 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1325 		struct md_rdev *rrdev = rcu_dereference(
1326 			conf->mirrors[d].replacement);
1327 		if (rdev == rrdev)
1328 			rrdev = NULL;
1329 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1330 			atomic_inc(&rdev->nr_pending);
1331 			blocked_rdev = rdev;
1332 			break;
1333 		}
1334 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1335 			atomic_inc(&rrdev->nr_pending);
1336 			blocked_rdev = rrdev;
1337 			break;
1338 		}
1339 		if (rdev && (test_bit(Faulty, &rdev->flags)
1340 			     || test_bit(Unmerged, &rdev->flags)))
1341 			rdev = NULL;
1342 		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1343 			      || test_bit(Unmerged, &rrdev->flags)))
1344 			rrdev = NULL;
1345 
1346 		r10_bio->devs[i].bio = NULL;
1347 		r10_bio->devs[i].repl_bio = NULL;
1348 
1349 		if (!rdev && !rrdev) {
1350 			set_bit(R10BIO_Degraded, &r10_bio->state);
1351 			continue;
1352 		}
1353 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1354 			sector_t first_bad;
1355 			sector_t dev_sector = r10_bio->devs[i].addr;
1356 			int bad_sectors;
1357 			int is_bad;
1358 
1359 			is_bad = is_badblock(rdev, dev_sector,
1360 					     max_sectors,
1361 					     &first_bad, &bad_sectors);
1362 			if (is_bad < 0) {
1363 				/* Mustn't write here until the bad block
1364 				 * is acknowledged
1365 				 */
1366 				atomic_inc(&rdev->nr_pending);
1367 				set_bit(BlockedBadBlocks, &rdev->flags);
1368 				blocked_rdev = rdev;
1369 				break;
1370 			}
1371 			if (is_bad && first_bad <= dev_sector) {
1372 				/* Cannot write here at all */
1373 				bad_sectors -= (dev_sector - first_bad);
1374 				if (bad_sectors < max_sectors)
1375 					/* Mustn't write more than bad_sectors
1376 					 * to other devices yet
1377 					 */
1378 					max_sectors = bad_sectors;
1379 				/* We don't set R10BIO_Degraded as that
1380 				 * only applies if the disk is missing,
1381 				 * so it might be re-added, and we want to
1382 				 * know to recover this chunk.
1383 				 * In this case the device is here, and the
1384 				 * fact that this chunk is not in-sync is
1385 				 * recorded in the bad block log.
1386 				 */
1387 				continue;
1388 			}
1389 			if (is_bad) {
1390 				int good_sectors = first_bad - dev_sector;
1391 				if (good_sectors < max_sectors)
1392 					max_sectors = good_sectors;
1393 			}
1394 		}
1395 		if (rdev) {
1396 			r10_bio->devs[i].bio = bio;
1397 			atomic_inc(&rdev->nr_pending);
1398 		}
1399 		if (rrdev) {
1400 			r10_bio->devs[i].repl_bio = bio;
1401 			atomic_inc(&rrdev->nr_pending);
1402 		}
1403 	}
1404 	rcu_read_unlock();
1405 
1406 	if (unlikely(blocked_rdev)) {
1407 		/* Have to wait for this device to get unblocked, then retry */
1408 		int j;
1409 		int d;
1410 
1411 		for (j = 0; j < i; j++) {
1412 			if (r10_bio->devs[j].bio) {
1413 				d = r10_bio->devs[j].devnum;
1414 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1415 			}
1416 			if (r10_bio->devs[j].repl_bio) {
1417 				struct md_rdev *rdev;
1418 				d = r10_bio->devs[j].devnum;
1419 				rdev = conf->mirrors[d].replacement;
1420 				if (!rdev) {
1421 					/* Race with remove_disk */
1422 					smp_mb();
1423 					rdev = conf->mirrors[d].rdev;
1424 				}
1425 				rdev_dec_pending(rdev, mddev);
1426 			}
1427 		}
1428 		allow_barrier(conf);
1429 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1430 		wait_barrier(conf);
1431 		goto retry_write;
1432 	}
1433 
1434 	if (max_sectors < r10_bio->sectors) {
1435 		/* We are splitting this into multiple parts, so
1436 		 * we need to prepare for allocating another r10_bio.
1437 		 */
1438 		r10_bio->sectors = max_sectors;
1439 		spin_lock_irq(&conf->device_lock);
1440 		if (bio->bi_phys_segments == 0)
1441 			bio->bi_phys_segments = 2;
1442 		else
1443 			bio->bi_phys_segments++;
1444 		spin_unlock_irq(&conf->device_lock);
1445 	}
1446 	sectors_handled = r10_bio->sector + max_sectors -
1447 		bio->bi_iter.bi_sector;
1448 
1449 	atomic_set(&r10_bio->remaining, 1);
1450 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1451 
1452 	for (i = 0; i < conf->copies; i++) {
1453 		struct bio *mbio;
1454 		int d = r10_bio->devs[i].devnum;
1455 		if (r10_bio->devs[i].bio) {
1456 			struct md_rdev *rdev = conf->mirrors[d].rdev;
1457 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1458 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1459 				 max_sectors);
1460 			r10_bio->devs[i].bio = mbio;
1461 
1462 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr+
1463 					   choose_data_offset(r10_bio,
1464 							      rdev));
1465 			mbio->bi_bdev = rdev->bdev;
1466 			mbio->bi_end_io	= raid10_end_write_request;
1467 			mbio->bi_rw =
1468 				WRITE | do_sync | do_fua | do_discard | do_same;
1469 			mbio->bi_private = r10_bio;
1470 
1471 			atomic_inc(&r10_bio->remaining);
1472 
1473 			cb = blk_check_plugged(raid10_unplug, mddev,
1474 					       sizeof(*plug));
1475 			if (cb)
1476 				plug = container_of(cb, struct raid10_plug_cb,
1477 						    cb);
1478 			else
1479 				plug = NULL;
1480 			spin_lock_irqsave(&conf->device_lock, flags);
1481 			if (plug) {
1482 				bio_list_add(&plug->pending, mbio);
1483 				plug->pending_cnt++;
1484 			} else {
1485 				bio_list_add(&conf->pending_bio_list, mbio);
1486 				conf->pending_count++;
1487 			}
1488 			spin_unlock_irqrestore(&conf->device_lock, flags);
1489 			if (!plug)
1490 				md_wakeup_thread(mddev->thread);
1491 		}
1492 
1493 		if (r10_bio->devs[i].repl_bio) {
1494 			struct md_rdev *rdev = conf->mirrors[d].replacement;
1495 			if (rdev == NULL) {
1496 				/* Replacement just got moved to main 'rdev' */
1497 				smp_mb();
1498 				rdev = conf->mirrors[d].rdev;
1499 			}
1500 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1501 			bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1502 				 max_sectors);
1503 			r10_bio->devs[i].repl_bio = mbio;
1504 
1505 			mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr +
1506 					   choose_data_offset(
1507 						   r10_bio, rdev));
1508 			mbio->bi_bdev = rdev->bdev;
1509 			mbio->bi_end_io	= raid10_end_write_request;
1510 			mbio->bi_rw =
1511 				WRITE | do_sync | do_fua | do_discard | do_same;
1512 			mbio->bi_private = r10_bio;
1513 
1514 			atomic_inc(&r10_bio->remaining);
1515 			spin_lock_irqsave(&conf->device_lock, flags);
1516 			bio_list_add(&conf->pending_bio_list, mbio);
1517 			conf->pending_count++;
1518 			spin_unlock_irqrestore(&conf->device_lock, flags);
1519 			if (!mddev_check_plugged(mddev))
1520 				md_wakeup_thread(mddev->thread);
1521 		}
1522 	}
1523 
1524 	/* Don't remove the bias on 'remaining' (one_write_done) until
1525 	 * after checking if we need to go around again.
1526 	 */
1527 
1528 	if (sectors_handled < bio_sectors(bio)) {
1529 		one_write_done(r10_bio);
1530 		/* We need another r10_bio.  It has already been counted
1531 		 * in bio->bi_phys_segments.
1532 		 */
1533 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1534 
1535 		r10_bio->master_bio = bio;
1536 		r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1537 
1538 		r10_bio->mddev = mddev;
1539 		r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1540 		r10_bio->state = 0;
1541 		goto retry_write;
1542 	}
1543 	one_write_done(r10_bio);
1544 }
1545 
1546 static void make_request(struct mddev *mddev, struct bio *bio)
1547 {
1548 	struct r10conf *conf = mddev->private;
1549 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1550 	int chunk_sects = chunk_mask + 1;
1551 
1552 	struct bio *split;
1553 
1554 	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1555 		md_flush_request(mddev, bio);
1556 		return;
1557 	}
1558 
1559 	md_write_start(mddev, bio);
1560 
1561 	do {
1562 
1563 		/*
1564 		 * If this request crosses a chunk boundary, we need to split
1565 		 * it.
1566 		 */
1567 		if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1568 			     bio_sectors(bio) > chunk_sects
1569 			     && (conf->geo.near_copies < conf->geo.raid_disks
1570 				 || conf->prev.near_copies <
1571 				 conf->prev.raid_disks))) {
1572 			split = bio_split(bio, chunk_sects -
1573 					  (bio->bi_iter.bi_sector &
1574 					   (chunk_sects - 1)),
1575 					  GFP_NOIO, fs_bio_set);
1576 			bio_chain(split, bio);
1577 		} else {
1578 			split = bio;
1579 		}
1580 
1581 		__make_request(mddev, split);
1582 	} while (split != bio);
1583 
1584 	/* In case raid10d snuck in to freeze_array */
1585 	wake_up(&conf->wait_barrier);
1586 }
1587 
1588 static void status(struct seq_file *seq, struct mddev *mddev)
1589 {
1590 	struct r10conf *conf = mddev->private;
1591 	int i;
1592 
1593 	if (conf->geo.near_copies < conf->geo.raid_disks)
1594 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1595 	if (conf->geo.near_copies > 1)
1596 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1597 	if (conf->geo.far_copies > 1) {
1598 		if (conf->geo.far_offset)
1599 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1600 		else
1601 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1602 	}
1603 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1604 					conf->geo.raid_disks - mddev->degraded);
1605 	for (i = 0; i < conf->geo.raid_disks; i++)
1606 		seq_printf(seq, "%s",
1607 			      conf->mirrors[i].rdev &&
1608 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1609 	seq_printf(seq, "]");
1610 }
1611 
1612 /* check if there are enough drives for
1613  * every block to appear on atleast one.
1614  * Don't consider the device numbered 'ignore'
1615  * as we might be about to remove it.
1616  */
1617 static int _enough(struct r10conf *conf, int previous, int ignore)
1618 {
1619 	int first = 0;
1620 	int has_enough = 0;
1621 	int disks, ncopies;
1622 	if (previous) {
1623 		disks = conf->prev.raid_disks;
1624 		ncopies = conf->prev.near_copies;
1625 	} else {
1626 		disks = conf->geo.raid_disks;
1627 		ncopies = conf->geo.near_copies;
1628 	}
1629 
1630 	rcu_read_lock();
1631 	do {
1632 		int n = conf->copies;
1633 		int cnt = 0;
1634 		int this = first;
1635 		while (n--) {
1636 			struct md_rdev *rdev;
1637 			if (this != ignore &&
1638 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1639 			    test_bit(In_sync, &rdev->flags))
1640 				cnt++;
1641 			this = (this+1) % disks;
1642 		}
1643 		if (cnt == 0)
1644 			goto out;
1645 		first = (first + ncopies) % disks;
1646 	} while (first != 0);
1647 	has_enough = 1;
1648 out:
1649 	rcu_read_unlock();
1650 	return has_enough;
1651 }
1652 
1653 static int enough(struct r10conf *conf, int ignore)
1654 {
1655 	/* when calling 'enough', both 'prev' and 'geo' must
1656 	 * be stable.
1657 	 * This is ensured if ->reconfig_mutex or ->device_lock
1658 	 * is held.
1659 	 */
1660 	return _enough(conf, 0, ignore) &&
1661 		_enough(conf, 1, ignore);
1662 }
1663 
1664 static void error(struct mddev *mddev, struct md_rdev *rdev)
1665 {
1666 	char b[BDEVNAME_SIZE];
1667 	struct r10conf *conf = mddev->private;
1668 	unsigned long flags;
1669 
1670 	/*
1671 	 * If it is not operational, then we have already marked it as dead
1672 	 * else if it is the last working disks, ignore the error, let the
1673 	 * next level up know.
1674 	 * else mark the drive as failed
1675 	 */
1676 	spin_lock_irqsave(&conf->device_lock, flags);
1677 	if (test_bit(In_sync, &rdev->flags)
1678 	    && !enough(conf, rdev->raid_disk)) {
1679 		/*
1680 		 * Don't fail the drive, just return an IO error.
1681 		 */
1682 		spin_unlock_irqrestore(&conf->device_lock, flags);
1683 		return;
1684 	}
1685 	if (test_and_clear_bit(In_sync, &rdev->flags))
1686 		mddev->degraded++;
1687 	/*
1688 	 * If recovery is running, make sure it aborts.
1689 	 */
1690 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1691 	set_bit(Blocked, &rdev->flags);
1692 	set_bit(Faulty, &rdev->flags);
1693 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1694 	spin_unlock_irqrestore(&conf->device_lock, flags);
1695 	printk(KERN_ALERT
1696 	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1697 	       "md/raid10:%s: Operation continuing on %d devices.\n",
1698 	       mdname(mddev), bdevname(rdev->bdev, b),
1699 	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1700 }
1701 
1702 static void print_conf(struct r10conf *conf)
1703 {
1704 	int i;
1705 	struct raid10_info *tmp;
1706 
1707 	printk(KERN_DEBUG "RAID10 conf printout:\n");
1708 	if (!conf) {
1709 		printk(KERN_DEBUG "(!conf)\n");
1710 		return;
1711 	}
1712 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1713 		conf->geo.raid_disks);
1714 
1715 	for (i = 0; i < conf->geo.raid_disks; i++) {
1716 		char b[BDEVNAME_SIZE];
1717 		tmp = conf->mirrors + i;
1718 		if (tmp->rdev)
1719 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1720 				i, !test_bit(In_sync, &tmp->rdev->flags),
1721 			        !test_bit(Faulty, &tmp->rdev->flags),
1722 				bdevname(tmp->rdev->bdev,b));
1723 	}
1724 }
1725 
1726 static void close_sync(struct r10conf *conf)
1727 {
1728 	wait_barrier(conf);
1729 	allow_barrier(conf);
1730 
1731 	mempool_destroy(conf->r10buf_pool);
1732 	conf->r10buf_pool = NULL;
1733 }
1734 
1735 static int raid10_spare_active(struct mddev *mddev)
1736 {
1737 	int i;
1738 	struct r10conf *conf = mddev->private;
1739 	struct raid10_info *tmp;
1740 	int count = 0;
1741 	unsigned long flags;
1742 
1743 	/*
1744 	 * Find all non-in_sync disks within the RAID10 configuration
1745 	 * and mark them in_sync
1746 	 */
1747 	for (i = 0; i < conf->geo.raid_disks; i++) {
1748 		tmp = conf->mirrors + i;
1749 		if (tmp->replacement
1750 		    && tmp->replacement->recovery_offset == MaxSector
1751 		    && !test_bit(Faulty, &tmp->replacement->flags)
1752 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1753 			/* Replacement has just become active */
1754 			if (!tmp->rdev
1755 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1756 				count++;
1757 			if (tmp->rdev) {
1758 				/* Replaced device not technically faulty,
1759 				 * but we need to be sure it gets removed
1760 				 * and never re-added.
1761 				 */
1762 				set_bit(Faulty, &tmp->rdev->flags);
1763 				sysfs_notify_dirent_safe(
1764 					tmp->rdev->sysfs_state);
1765 			}
1766 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1767 		} else if (tmp->rdev
1768 			   && tmp->rdev->recovery_offset == MaxSector
1769 			   && !test_bit(Faulty, &tmp->rdev->flags)
1770 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1771 			count++;
1772 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1773 		}
1774 	}
1775 	spin_lock_irqsave(&conf->device_lock, flags);
1776 	mddev->degraded -= count;
1777 	spin_unlock_irqrestore(&conf->device_lock, flags);
1778 
1779 	print_conf(conf);
1780 	return count;
1781 }
1782 
1783 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1784 {
1785 	struct r10conf *conf = mddev->private;
1786 	int err = -EEXIST;
1787 	int mirror;
1788 	int first = 0;
1789 	int last = conf->geo.raid_disks - 1;
1790 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1791 
1792 	if (mddev->recovery_cp < MaxSector)
1793 		/* only hot-add to in-sync arrays, as recovery is
1794 		 * very different from resync
1795 		 */
1796 		return -EBUSY;
1797 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1798 		return -EINVAL;
1799 
1800 	if (rdev->raid_disk >= 0)
1801 		first = last = rdev->raid_disk;
1802 
1803 	if (q->merge_bvec_fn) {
1804 		set_bit(Unmerged, &rdev->flags);
1805 		mddev->merge_check_needed = 1;
1806 	}
1807 
1808 	if (rdev->saved_raid_disk >= first &&
1809 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1810 		mirror = rdev->saved_raid_disk;
1811 	else
1812 		mirror = first;
1813 	for ( ; mirror <= last ; mirror++) {
1814 		struct raid10_info *p = &conf->mirrors[mirror];
1815 		if (p->recovery_disabled == mddev->recovery_disabled)
1816 			continue;
1817 		if (p->rdev) {
1818 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1819 			    p->replacement != NULL)
1820 				continue;
1821 			clear_bit(In_sync, &rdev->flags);
1822 			set_bit(Replacement, &rdev->flags);
1823 			rdev->raid_disk = mirror;
1824 			err = 0;
1825 			if (mddev->gendisk)
1826 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1827 						  rdev->data_offset << 9);
1828 			conf->fullsync = 1;
1829 			rcu_assign_pointer(p->replacement, rdev);
1830 			break;
1831 		}
1832 
1833 		if (mddev->gendisk)
1834 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1835 					  rdev->data_offset << 9);
1836 
1837 		p->head_position = 0;
1838 		p->recovery_disabled = mddev->recovery_disabled - 1;
1839 		rdev->raid_disk = mirror;
1840 		err = 0;
1841 		if (rdev->saved_raid_disk != mirror)
1842 			conf->fullsync = 1;
1843 		rcu_assign_pointer(p->rdev, rdev);
1844 		break;
1845 	}
1846 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1847 		/* Some requests might not have seen this new
1848 		 * merge_bvec_fn.  We must wait for them to complete
1849 		 * before merging the device fully.
1850 		 * First we make sure any code which has tested
1851 		 * our function has submitted the request, then
1852 		 * we wait for all outstanding requests to complete.
1853 		 */
1854 		synchronize_sched();
1855 		freeze_array(conf, 0);
1856 		unfreeze_array(conf);
1857 		clear_bit(Unmerged, &rdev->flags);
1858 	}
1859 	md_integrity_add_rdev(rdev, mddev);
1860 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1861 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1862 
1863 	print_conf(conf);
1864 	return err;
1865 }
1866 
1867 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1868 {
1869 	struct r10conf *conf = mddev->private;
1870 	int err = 0;
1871 	int number = rdev->raid_disk;
1872 	struct md_rdev **rdevp;
1873 	struct raid10_info *p = conf->mirrors + number;
1874 
1875 	print_conf(conf);
1876 	if (rdev == p->rdev)
1877 		rdevp = &p->rdev;
1878 	else if (rdev == p->replacement)
1879 		rdevp = &p->replacement;
1880 	else
1881 		return 0;
1882 
1883 	if (test_bit(In_sync, &rdev->flags) ||
1884 	    atomic_read(&rdev->nr_pending)) {
1885 		err = -EBUSY;
1886 		goto abort;
1887 	}
1888 	/* Only remove faulty devices if recovery
1889 	 * is not possible.
1890 	 */
1891 	if (!test_bit(Faulty, &rdev->flags) &&
1892 	    mddev->recovery_disabled != p->recovery_disabled &&
1893 	    (!p->replacement || p->replacement == rdev) &&
1894 	    number < conf->geo.raid_disks &&
1895 	    enough(conf, -1)) {
1896 		err = -EBUSY;
1897 		goto abort;
1898 	}
1899 	*rdevp = NULL;
1900 	synchronize_rcu();
1901 	if (atomic_read(&rdev->nr_pending)) {
1902 		/* lost the race, try later */
1903 		err = -EBUSY;
1904 		*rdevp = rdev;
1905 		goto abort;
1906 	} else if (p->replacement) {
1907 		/* We must have just cleared 'rdev' */
1908 		p->rdev = p->replacement;
1909 		clear_bit(Replacement, &p->replacement->flags);
1910 		smp_mb(); /* Make sure other CPUs may see both as identical
1911 			   * but will never see neither -- if they are careful.
1912 			   */
1913 		p->replacement = NULL;
1914 		clear_bit(WantReplacement, &rdev->flags);
1915 	} else
1916 		/* We might have just remove the Replacement as faulty
1917 		 * Clear the flag just in case
1918 		 */
1919 		clear_bit(WantReplacement, &rdev->flags);
1920 
1921 	err = md_integrity_register(mddev);
1922 
1923 abort:
1924 
1925 	print_conf(conf);
1926 	return err;
1927 }
1928 
1929 static void end_sync_read(struct bio *bio, int error)
1930 {
1931 	struct r10bio *r10_bio = bio->bi_private;
1932 	struct r10conf *conf = r10_bio->mddev->private;
1933 	int d;
1934 
1935 	if (bio == r10_bio->master_bio) {
1936 		/* this is a reshape read */
1937 		d = r10_bio->read_slot; /* really the read dev */
1938 	} else
1939 		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1940 
1941 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1942 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1943 	else
1944 		/* The write handler will notice the lack of
1945 		 * R10BIO_Uptodate and record any errors etc
1946 		 */
1947 		atomic_add(r10_bio->sectors,
1948 			   &conf->mirrors[d].rdev->corrected_errors);
1949 
1950 	/* for reconstruct, we always reschedule after a read.
1951 	 * for resync, only after all reads
1952 	 */
1953 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1954 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1955 	    atomic_dec_and_test(&r10_bio->remaining)) {
1956 		/* we have read all the blocks,
1957 		 * do the comparison in process context in raid10d
1958 		 */
1959 		reschedule_retry(r10_bio);
1960 	}
1961 }
1962 
1963 static void end_sync_request(struct r10bio *r10_bio)
1964 {
1965 	struct mddev *mddev = r10_bio->mddev;
1966 
1967 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1968 		if (r10_bio->master_bio == NULL) {
1969 			/* the primary of several recovery bios */
1970 			sector_t s = r10_bio->sectors;
1971 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1972 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1973 				reschedule_retry(r10_bio);
1974 			else
1975 				put_buf(r10_bio);
1976 			md_done_sync(mddev, s, 1);
1977 			break;
1978 		} else {
1979 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1980 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1981 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1982 				reschedule_retry(r10_bio);
1983 			else
1984 				put_buf(r10_bio);
1985 			r10_bio = r10_bio2;
1986 		}
1987 	}
1988 }
1989 
1990 static void end_sync_write(struct bio *bio, int error)
1991 {
1992 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1993 	struct r10bio *r10_bio = bio->bi_private;
1994 	struct mddev *mddev = r10_bio->mddev;
1995 	struct r10conf *conf = mddev->private;
1996 	int d;
1997 	sector_t first_bad;
1998 	int bad_sectors;
1999 	int slot;
2000 	int repl;
2001 	struct md_rdev *rdev = NULL;
2002 
2003 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2004 	if (repl)
2005 		rdev = conf->mirrors[d].replacement;
2006 	else
2007 		rdev = conf->mirrors[d].rdev;
2008 
2009 	if (!uptodate) {
2010 		if (repl)
2011 			md_error(mddev, rdev);
2012 		else {
2013 			set_bit(WriteErrorSeen, &rdev->flags);
2014 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2015 				set_bit(MD_RECOVERY_NEEDED,
2016 					&rdev->mddev->recovery);
2017 			set_bit(R10BIO_WriteError, &r10_bio->state);
2018 		}
2019 	} else if (is_badblock(rdev,
2020 			     r10_bio->devs[slot].addr,
2021 			     r10_bio->sectors,
2022 			     &first_bad, &bad_sectors))
2023 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2024 
2025 	rdev_dec_pending(rdev, mddev);
2026 
2027 	end_sync_request(r10_bio);
2028 }
2029 
2030 /*
2031  * Note: sync and recover and handled very differently for raid10
2032  * This code is for resync.
2033  * For resync, we read through virtual addresses and read all blocks.
2034  * If there is any error, we schedule a write.  The lowest numbered
2035  * drive is authoritative.
2036  * However requests come for physical address, so we need to map.
2037  * For every physical address there are raid_disks/copies virtual addresses,
2038  * which is always are least one, but is not necessarly an integer.
2039  * This means that a physical address can span multiple chunks, so we may
2040  * have to submit multiple io requests for a single sync request.
2041  */
2042 /*
2043  * We check if all blocks are in-sync and only write to blocks that
2044  * aren't in sync
2045  */
2046 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2047 {
2048 	struct r10conf *conf = mddev->private;
2049 	int i, first;
2050 	struct bio *tbio, *fbio;
2051 	int vcnt;
2052 
2053 	atomic_set(&r10_bio->remaining, 1);
2054 
2055 	/* find the first device with a block */
2056 	for (i=0; i<conf->copies; i++)
2057 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2058 			break;
2059 
2060 	if (i == conf->copies)
2061 		goto done;
2062 
2063 	first = i;
2064 	fbio = r10_bio->devs[i].bio;
2065 
2066 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2067 	/* now find blocks with errors */
2068 	for (i=0 ; i < conf->copies ; i++) {
2069 		int  j, d;
2070 
2071 		tbio = r10_bio->devs[i].bio;
2072 
2073 		if (tbio->bi_end_io != end_sync_read)
2074 			continue;
2075 		if (i == first)
2076 			continue;
2077 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2078 			/* We know that the bi_io_vec layout is the same for
2079 			 * both 'first' and 'i', so we just compare them.
2080 			 * All vec entries are PAGE_SIZE;
2081 			 */
2082 			int sectors = r10_bio->sectors;
2083 			for (j = 0; j < vcnt; j++) {
2084 				int len = PAGE_SIZE;
2085 				if (sectors < (len / 512))
2086 					len = sectors * 512;
2087 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2088 					   page_address(tbio->bi_io_vec[j].bv_page),
2089 					   len))
2090 					break;
2091 				sectors -= len/512;
2092 			}
2093 			if (j == vcnt)
2094 				continue;
2095 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2096 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2097 				/* Don't fix anything. */
2098 				continue;
2099 		}
2100 		/* Ok, we need to write this bio, either to correct an
2101 		 * inconsistency or to correct an unreadable block.
2102 		 * First we need to fixup bv_offset, bv_len and
2103 		 * bi_vecs, as the read request might have corrupted these
2104 		 */
2105 		bio_reset(tbio);
2106 
2107 		tbio->bi_vcnt = vcnt;
2108 		tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2109 		tbio->bi_rw = WRITE;
2110 		tbio->bi_private = r10_bio;
2111 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2112 
2113 		for (j=0; j < vcnt ; j++) {
2114 			tbio->bi_io_vec[j].bv_offset = 0;
2115 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2116 
2117 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2118 			       page_address(fbio->bi_io_vec[j].bv_page),
2119 			       PAGE_SIZE);
2120 		}
2121 		tbio->bi_end_io = end_sync_write;
2122 
2123 		d = r10_bio->devs[i].devnum;
2124 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2125 		atomic_inc(&r10_bio->remaining);
2126 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2127 
2128 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2129 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2130 		generic_make_request(tbio);
2131 	}
2132 
2133 	/* Now write out to any replacement devices
2134 	 * that are active
2135 	 */
2136 	for (i = 0; i < conf->copies; i++) {
2137 		int j, d;
2138 
2139 		tbio = r10_bio->devs[i].repl_bio;
2140 		if (!tbio || !tbio->bi_end_io)
2141 			continue;
2142 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2143 		    && r10_bio->devs[i].bio != fbio)
2144 			for (j = 0; j < vcnt; j++)
2145 				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2146 				       page_address(fbio->bi_io_vec[j].bv_page),
2147 				       PAGE_SIZE);
2148 		d = r10_bio->devs[i].devnum;
2149 		atomic_inc(&r10_bio->remaining);
2150 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2151 			     bio_sectors(tbio));
2152 		generic_make_request(tbio);
2153 	}
2154 
2155 done:
2156 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2157 		md_done_sync(mddev, r10_bio->sectors, 1);
2158 		put_buf(r10_bio);
2159 	}
2160 }
2161 
2162 /*
2163  * Now for the recovery code.
2164  * Recovery happens across physical sectors.
2165  * We recover all non-is_sync drives by finding the virtual address of
2166  * each, and then choose a working drive that also has that virt address.
2167  * There is a separate r10_bio for each non-in_sync drive.
2168  * Only the first two slots are in use. The first for reading,
2169  * The second for writing.
2170  *
2171  */
2172 static void fix_recovery_read_error(struct r10bio *r10_bio)
2173 {
2174 	/* We got a read error during recovery.
2175 	 * We repeat the read in smaller page-sized sections.
2176 	 * If a read succeeds, write it to the new device or record
2177 	 * a bad block if we cannot.
2178 	 * If a read fails, record a bad block on both old and
2179 	 * new devices.
2180 	 */
2181 	struct mddev *mddev = r10_bio->mddev;
2182 	struct r10conf *conf = mddev->private;
2183 	struct bio *bio = r10_bio->devs[0].bio;
2184 	sector_t sect = 0;
2185 	int sectors = r10_bio->sectors;
2186 	int idx = 0;
2187 	int dr = r10_bio->devs[0].devnum;
2188 	int dw = r10_bio->devs[1].devnum;
2189 
2190 	while (sectors) {
2191 		int s = sectors;
2192 		struct md_rdev *rdev;
2193 		sector_t addr;
2194 		int ok;
2195 
2196 		if (s > (PAGE_SIZE>>9))
2197 			s = PAGE_SIZE >> 9;
2198 
2199 		rdev = conf->mirrors[dr].rdev;
2200 		addr = r10_bio->devs[0].addr + sect,
2201 		ok = sync_page_io(rdev,
2202 				  addr,
2203 				  s << 9,
2204 				  bio->bi_io_vec[idx].bv_page,
2205 				  READ, false);
2206 		if (ok) {
2207 			rdev = conf->mirrors[dw].rdev;
2208 			addr = r10_bio->devs[1].addr + sect;
2209 			ok = sync_page_io(rdev,
2210 					  addr,
2211 					  s << 9,
2212 					  bio->bi_io_vec[idx].bv_page,
2213 					  WRITE, false);
2214 			if (!ok) {
2215 				set_bit(WriteErrorSeen, &rdev->flags);
2216 				if (!test_and_set_bit(WantReplacement,
2217 						      &rdev->flags))
2218 					set_bit(MD_RECOVERY_NEEDED,
2219 						&rdev->mddev->recovery);
2220 			}
2221 		}
2222 		if (!ok) {
2223 			/* We don't worry if we cannot set a bad block -
2224 			 * it really is bad so there is no loss in not
2225 			 * recording it yet
2226 			 */
2227 			rdev_set_badblocks(rdev, addr, s, 0);
2228 
2229 			if (rdev != conf->mirrors[dw].rdev) {
2230 				/* need bad block on destination too */
2231 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2232 				addr = r10_bio->devs[1].addr + sect;
2233 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2234 				if (!ok) {
2235 					/* just abort the recovery */
2236 					printk(KERN_NOTICE
2237 					       "md/raid10:%s: recovery aborted"
2238 					       " due to read error\n",
2239 					       mdname(mddev));
2240 
2241 					conf->mirrors[dw].recovery_disabled
2242 						= mddev->recovery_disabled;
2243 					set_bit(MD_RECOVERY_INTR,
2244 						&mddev->recovery);
2245 					break;
2246 				}
2247 			}
2248 		}
2249 
2250 		sectors -= s;
2251 		sect += s;
2252 		idx++;
2253 	}
2254 }
2255 
2256 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2257 {
2258 	struct r10conf *conf = mddev->private;
2259 	int d;
2260 	struct bio *wbio, *wbio2;
2261 
2262 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2263 		fix_recovery_read_error(r10_bio);
2264 		end_sync_request(r10_bio);
2265 		return;
2266 	}
2267 
2268 	/*
2269 	 * share the pages with the first bio
2270 	 * and submit the write request
2271 	 */
2272 	d = r10_bio->devs[1].devnum;
2273 	wbio = r10_bio->devs[1].bio;
2274 	wbio2 = r10_bio->devs[1].repl_bio;
2275 	/* Need to test wbio2->bi_end_io before we call
2276 	 * generic_make_request as if the former is NULL,
2277 	 * the latter is free to free wbio2.
2278 	 */
2279 	if (wbio2 && !wbio2->bi_end_io)
2280 		wbio2 = NULL;
2281 	if (wbio->bi_end_io) {
2282 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2283 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2284 		generic_make_request(wbio);
2285 	}
2286 	if (wbio2) {
2287 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2288 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2289 			     bio_sectors(wbio2));
2290 		generic_make_request(wbio2);
2291 	}
2292 }
2293 
2294 /*
2295  * Used by fix_read_error() to decay the per rdev read_errors.
2296  * We halve the read error count for every hour that has elapsed
2297  * since the last recorded read error.
2298  *
2299  */
2300 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2301 {
2302 	struct timespec cur_time_mon;
2303 	unsigned long hours_since_last;
2304 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2305 
2306 	ktime_get_ts(&cur_time_mon);
2307 
2308 	if (rdev->last_read_error.tv_sec == 0 &&
2309 	    rdev->last_read_error.tv_nsec == 0) {
2310 		/* first time we've seen a read error */
2311 		rdev->last_read_error = cur_time_mon;
2312 		return;
2313 	}
2314 
2315 	hours_since_last = (cur_time_mon.tv_sec -
2316 			    rdev->last_read_error.tv_sec) / 3600;
2317 
2318 	rdev->last_read_error = cur_time_mon;
2319 
2320 	/*
2321 	 * if hours_since_last is > the number of bits in read_errors
2322 	 * just set read errors to 0. We do this to avoid
2323 	 * overflowing the shift of read_errors by hours_since_last.
2324 	 */
2325 	if (hours_since_last >= 8 * sizeof(read_errors))
2326 		atomic_set(&rdev->read_errors, 0);
2327 	else
2328 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2329 }
2330 
2331 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2332 			    int sectors, struct page *page, int rw)
2333 {
2334 	sector_t first_bad;
2335 	int bad_sectors;
2336 
2337 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2338 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2339 		return -1;
2340 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2341 		/* success */
2342 		return 1;
2343 	if (rw == WRITE) {
2344 		set_bit(WriteErrorSeen, &rdev->flags);
2345 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2346 			set_bit(MD_RECOVERY_NEEDED,
2347 				&rdev->mddev->recovery);
2348 	}
2349 	/* need to record an error - either for the block or the device */
2350 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2351 		md_error(rdev->mddev, rdev);
2352 	return 0;
2353 }
2354 
2355 /*
2356  * This is a kernel thread which:
2357  *
2358  *	1.	Retries failed read operations on working mirrors.
2359  *	2.	Updates the raid superblock when problems encounter.
2360  *	3.	Performs writes following reads for array synchronising.
2361  */
2362 
2363 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2364 {
2365 	int sect = 0; /* Offset from r10_bio->sector */
2366 	int sectors = r10_bio->sectors;
2367 	struct md_rdev*rdev;
2368 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2369 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2370 
2371 	/* still own a reference to this rdev, so it cannot
2372 	 * have been cleared recently.
2373 	 */
2374 	rdev = conf->mirrors[d].rdev;
2375 
2376 	if (test_bit(Faulty, &rdev->flags))
2377 		/* drive has already been failed, just ignore any
2378 		   more fix_read_error() attempts */
2379 		return;
2380 
2381 	check_decay_read_errors(mddev, rdev);
2382 	atomic_inc(&rdev->read_errors);
2383 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2384 		char b[BDEVNAME_SIZE];
2385 		bdevname(rdev->bdev, b);
2386 
2387 		printk(KERN_NOTICE
2388 		       "md/raid10:%s: %s: Raid device exceeded "
2389 		       "read_error threshold [cur %d:max %d]\n",
2390 		       mdname(mddev), b,
2391 		       atomic_read(&rdev->read_errors), max_read_errors);
2392 		printk(KERN_NOTICE
2393 		       "md/raid10:%s: %s: Failing raid device\n",
2394 		       mdname(mddev), b);
2395 		md_error(mddev, conf->mirrors[d].rdev);
2396 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2397 		return;
2398 	}
2399 
2400 	while(sectors) {
2401 		int s = sectors;
2402 		int sl = r10_bio->read_slot;
2403 		int success = 0;
2404 		int start;
2405 
2406 		if (s > (PAGE_SIZE>>9))
2407 			s = PAGE_SIZE >> 9;
2408 
2409 		rcu_read_lock();
2410 		do {
2411 			sector_t first_bad;
2412 			int bad_sectors;
2413 
2414 			d = r10_bio->devs[sl].devnum;
2415 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2416 			if (rdev &&
2417 			    !test_bit(Unmerged, &rdev->flags) &&
2418 			    test_bit(In_sync, &rdev->flags) &&
2419 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2420 					&first_bad, &bad_sectors) == 0) {
2421 				atomic_inc(&rdev->nr_pending);
2422 				rcu_read_unlock();
2423 				success = sync_page_io(rdev,
2424 						       r10_bio->devs[sl].addr +
2425 						       sect,
2426 						       s<<9,
2427 						       conf->tmppage, READ, false);
2428 				rdev_dec_pending(rdev, mddev);
2429 				rcu_read_lock();
2430 				if (success)
2431 					break;
2432 			}
2433 			sl++;
2434 			if (sl == conf->copies)
2435 				sl = 0;
2436 		} while (!success && sl != r10_bio->read_slot);
2437 		rcu_read_unlock();
2438 
2439 		if (!success) {
2440 			/* Cannot read from anywhere, just mark the block
2441 			 * as bad on the first device to discourage future
2442 			 * reads.
2443 			 */
2444 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2445 			rdev = conf->mirrors[dn].rdev;
2446 
2447 			if (!rdev_set_badblocks(
2448 				    rdev,
2449 				    r10_bio->devs[r10_bio->read_slot].addr
2450 				    + sect,
2451 				    s, 0)) {
2452 				md_error(mddev, rdev);
2453 				r10_bio->devs[r10_bio->read_slot].bio
2454 					= IO_BLOCKED;
2455 			}
2456 			break;
2457 		}
2458 
2459 		start = sl;
2460 		/* write it back and re-read */
2461 		rcu_read_lock();
2462 		while (sl != r10_bio->read_slot) {
2463 			char b[BDEVNAME_SIZE];
2464 
2465 			if (sl==0)
2466 				sl = conf->copies;
2467 			sl--;
2468 			d = r10_bio->devs[sl].devnum;
2469 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2470 			if (!rdev ||
2471 			    test_bit(Unmerged, &rdev->flags) ||
2472 			    !test_bit(In_sync, &rdev->flags))
2473 				continue;
2474 
2475 			atomic_inc(&rdev->nr_pending);
2476 			rcu_read_unlock();
2477 			if (r10_sync_page_io(rdev,
2478 					     r10_bio->devs[sl].addr +
2479 					     sect,
2480 					     s, conf->tmppage, WRITE)
2481 			    == 0) {
2482 				/* Well, this device is dead */
2483 				printk(KERN_NOTICE
2484 				       "md/raid10:%s: read correction "
2485 				       "write failed"
2486 				       " (%d sectors at %llu on %s)\n",
2487 				       mdname(mddev), s,
2488 				       (unsigned long long)(
2489 					       sect +
2490 					       choose_data_offset(r10_bio,
2491 								  rdev)),
2492 				       bdevname(rdev->bdev, b));
2493 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2494 				       "drive\n",
2495 				       mdname(mddev),
2496 				       bdevname(rdev->bdev, b));
2497 			}
2498 			rdev_dec_pending(rdev, mddev);
2499 			rcu_read_lock();
2500 		}
2501 		sl = start;
2502 		while (sl != r10_bio->read_slot) {
2503 			char b[BDEVNAME_SIZE];
2504 
2505 			if (sl==0)
2506 				sl = conf->copies;
2507 			sl--;
2508 			d = r10_bio->devs[sl].devnum;
2509 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2510 			if (!rdev ||
2511 			    !test_bit(In_sync, &rdev->flags))
2512 				continue;
2513 
2514 			atomic_inc(&rdev->nr_pending);
2515 			rcu_read_unlock();
2516 			switch (r10_sync_page_io(rdev,
2517 					     r10_bio->devs[sl].addr +
2518 					     sect,
2519 					     s, conf->tmppage,
2520 						 READ)) {
2521 			case 0:
2522 				/* Well, this device is dead */
2523 				printk(KERN_NOTICE
2524 				       "md/raid10:%s: unable to read back "
2525 				       "corrected sectors"
2526 				       " (%d sectors at %llu on %s)\n",
2527 				       mdname(mddev), s,
2528 				       (unsigned long long)(
2529 					       sect +
2530 					       choose_data_offset(r10_bio, rdev)),
2531 				       bdevname(rdev->bdev, b));
2532 				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2533 				       "drive\n",
2534 				       mdname(mddev),
2535 				       bdevname(rdev->bdev, b));
2536 				break;
2537 			case 1:
2538 				printk(KERN_INFO
2539 				       "md/raid10:%s: read error corrected"
2540 				       " (%d sectors at %llu on %s)\n",
2541 				       mdname(mddev), s,
2542 				       (unsigned long long)(
2543 					       sect +
2544 					       choose_data_offset(r10_bio, rdev)),
2545 				       bdevname(rdev->bdev, b));
2546 				atomic_add(s, &rdev->corrected_errors);
2547 			}
2548 
2549 			rdev_dec_pending(rdev, mddev);
2550 			rcu_read_lock();
2551 		}
2552 		rcu_read_unlock();
2553 
2554 		sectors -= s;
2555 		sect += s;
2556 	}
2557 }
2558 
2559 static int narrow_write_error(struct r10bio *r10_bio, int i)
2560 {
2561 	struct bio *bio = r10_bio->master_bio;
2562 	struct mddev *mddev = r10_bio->mddev;
2563 	struct r10conf *conf = mddev->private;
2564 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2565 	/* bio has the data to be written to slot 'i' where
2566 	 * we just recently had a write error.
2567 	 * We repeatedly clone the bio and trim down to one block,
2568 	 * then try the write.  Where the write fails we record
2569 	 * a bad block.
2570 	 * It is conceivable that the bio doesn't exactly align with
2571 	 * blocks.  We must handle this.
2572 	 *
2573 	 * We currently own a reference to the rdev.
2574 	 */
2575 
2576 	int block_sectors;
2577 	sector_t sector;
2578 	int sectors;
2579 	int sect_to_write = r10_bio->sectors;
2580 	int ok = 1;
2581 
2582 	if (rdev->badblocks.shift < 0)
2583 		return 0;
2584 
2585 	block_sectors = 1 << rdev->badblocks.shift;
2586 	sector = r10_bio->sector;
2587 	sectors = ((r10_bio->sector + block_sectors)
2588 		   & ~(sector_t)(block_sectors - 1))
2589 		- sector;
2590 
2591 	while (sect_to_write) {
2592 		struct bio *wbio;
2593 		if (sectors > sect_to_write)
2594 			sectors = sect_to_write;
2595 		/* Write at 'sector' for 'sectors' */
2596 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2597 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2598 		wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2599 				   choose_data_offset(r10_bio, rdev) +
2600 				   (sector - r10_bio->sector));
2601 		wbio->bi_bdev = rdev->bdev;
2602 		if (submit_bio_wait(WRITE, wbio) == 0)
2603 			/* Failure! */
2604 			ok = rdev_set_badblocks(rdev, sector,
2605 						sectors, 0)
2606 				&& ok;
2607 
2608 		bio_put(wbio);
2609 		sect_to_write -= sectors;
2610 		sector += sectors;
2611 		sectors = block_sectors;
2612 	}
2613 	return ok;
2614 }
2615 
2616 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2617 {
2618 	int slot = r10_bio->read_slot;
2619 	struct bio *bio;
2620 	struct r10conf *conf = mddev->private;
2621 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2622 	char b[BDEVNAME_SIZE];
2623 	unsigned long do_sync;
2624 	int max_sectors;
2625 
2626 	/* we got a read error. Maybe the drive is bad.  Maybe just
2627 	 * the block and we can fix it.
2628 	 * We freeze all other IO, and try reading the block from
2629 	 * other devices.  When we find one, we re-write
2630 	 * and check it that fixes the read error.
2631 	 * This is all done synchronously while the array is
2632 	 * frozen.
2633 	 */
2634 	bio = r10_bio->devs[slot].bio;
2635 	bdevname(bio->bi_bdev, b);
2636 	bio_put(bio);
2637 	r10_bio->devs[slot].bio = NULL;
2638 
2639 	if (mddev->ro == 0) {
2640 		freeze_array(conf, 1);
2641 		fix_read_error(conf, mddev, r10_bio);
2642 		unfreeze_array(conf);
2643 	} else
2644 		r10_bio->devs[slot].bio = IO_BLOCKED;
2645 
2646 	rdev_dec_pending(rdev, mddev);
2647 
2648 read_more:
2649 	rdev = read_balance(conf, r10_bio, &max_sectors);
2650 	if (rdev == NULL) {
2651 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2652 		       " read error for block %llu\n",
2653 		       mdname(mddev), b,
2654 		       (unsigned long long)r10_bio->sector);
2655 		raid_end_bio_io(r10_bio);
2656 		return;
2657 	}
2658 
2659 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2660 	slot = r10_bio->read_slot;
2661 	printk_ratelimited(
2662 		KERN_ERR
2663 		"md/raid10:%s: %s: redirecting "
2664 		"sector %llu to another mirror\n",
2665 		mdname(mddev),
2666 		bdevname(rdev->bdev, b),
2667 		(unsigned long long)r10_bio->sector);
2668 	bio = bio_clone_mddev(r10_bio->master_bio,
2669 			      GFP_NOIO, mddev);
2670 	bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2671 	r10_bio->devs[slot].bio = bio;
2672 	r10_bio->devs[slot].rdev = rdev;
2673 	bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2674 		+ choose_data_offset(r10_bio, rdev);
2675 	bio->bi_bdev = rdev->bdev;
2676 	bio->bi_rw = READ | do_sync;
2677 	bio->bi_private = r10_bio;
2678 	bio->bi_end_io = raid10_end_read_request;
2679 	if (max_sectors < r10_bio->sectors) {
2680 		/* Drat - have to split this up more */
2681 		struct bio *mbio = r10_bio->master_bio;
2682 		int sectors_handled =
2683 			r10_bio->sector + max_sectors
2684 			- mbio->bi_iter.bi_sector;
2685 		r10_bio->sectors = max_sectors;
2686 		spin_lock_irq(&conf->device_lock);
2687 		if (mbio->bi_phys_segments == 0)
2688 			mbio->bi_phys_segments = 2;
2689 		else
2690 			mbio->bi_phys_segments++;
2691 		spin_unlock_irq(&conf->device_lock);
2692 		generic_make_request(bio);
2693 
2694 		r10_bio = mempool_alloc(conf->r10bio_pool,
2695 					GFP_NOIO);
2696 		r10_bio->master_bio = mbio;
2697 		r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2698 		r10_bio->state = 0;
2699 		set_bit(R10BIO_ReadError,
2700 			&r10_bio->state);
2701 		r10_bio->mddev = mddev;
2702 		r10_bio->sector = mbio->bi_iter.bi_sector
2703 			+ sectors_handled;
2704 
2705 		goto read_more;
2706 	} else
2707 		generic_make_request(bio);
2708 }
2709 
2710 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2711 {
2712 	/* Some sort of write request has finished and it
2713 	 * succeeded in writing where we thought there was a
2714 	 * bad block.  So forget the bad block.
2715 	 * Or possibly if failed and we need to record
2716 	 * a bad block.
2717 	 */
2718 	int m;
2719 	struct md_rdev *rdev;
2720 
2721 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2722 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2723 		for (m = 0; m < conf->copies; m++) {
2724 			int dev = r10_bio->devs[m].devnum;
2725 			rdev = conf->mirrors[dev].rdev;
2726 			if (r10_bio->devs[m].bio == NULL)
2727 				continue;
2728 			if (test_bit(BIO_UPTODATE,
2729 				     &r10_bio->devs[m].bio->bi_flags)) {
2730 				rdev_clear_badblocks(
2731 					rdev,
2732 					r10_bio->devs[m].addr,
2733 					r10_bio->sectors, 0);
2734 			} else {
2735 				if (!rdev_set_badblocks(
2736 					    rdev,
2737 					    r10_bio->devs[m].addr,
2738 					    r10_bio->sectors, 0))
2739 					md_error(conf->mddev, rdev);
2740 			}
2741 			rdev = conf->mirrors[dev].replacement;
2742 			if (r10_bio->devs[m].repl_bio == NULL)
2743 				continue;
2744 			if (test_bit(BIO_UPTODATE,
2745 				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2746 				rdev_clear_badblocks(
2747 					rdev,
2748 					r10_bio->devs[m].addr,
2749 					r10_bio->sectors, 0);
2750 			} else {
2751 				if (!rdev_set_badblocks(
2752 					    rdev,
2753 					    r10_bio->devs[m].addr,
2754 					    r10_bio->sectors, 0))
2755 					md_error(conf->mddev, rdev);
2756 			}
2757 		}
2758 		put_buf(r10_bio);
2759 	} else {
2760 		for (m = 0; m < conf->copies; m++) {
2761 			int dev = r10_bio->devs[m].devnum;
2762 			struct bio *bio = r10_bio->devs[m].bio;
2763 			rdev = conf->mirrors[dev].rdev;
2764 			if (bio == IO_MADE_GOOD) {
2765 				rdev_clear_badblocks(
2766 					rdev,
2767 					r10_bio->devs[m].addr,
2768 					r10_bio->sectors, 0);
2769 				rdev_dec_pending(rdev, conf->mddev);
2770 			} else if (bio != NULL &&
2771 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2772 				if (!narrow_write_error(r10_bio, m)) {
2773 					md_error(conf->mddev, rdev);
2774 					set_bit(R10BIO_Degraded,
2775 						&r10_bio->state);
2776 				}
2777 				rdev_dec_pending(rdev, conf->mddev);
2778 			}
2779 			bio = r10_bio->devs[m].repl_bio;
2780 			rdev = conf->mirrors[dev].replacement;
2781 			if (rdev && bio == IO_MADE_GOOD) {
2782 				rdev_clear_badblocks(
2783 					rdev,
2784 					r10_bio->devs[m].addr,
2785 					r10_bio->sectors, 0);
2786 				rdev_dec_pending(rdev, conf->mddev);
2787 			}
2788 		}
2789 		if (test_bit(R10BIO_WriteError,
2790 			     &r10_bio->state))
2791 			close_write(r10_bio);
2792 		raid_end_bio_io(r10_bio);
2793 	}
2794 }
2795 
2796 static void raid10d(struct md_thread *thread)
2797 {
2798 	struct mddev *mddev = thread->mddev;
2799 	struct r10bio *r10_bio;
2800 	unsigned long flags;
2801 	struct r10conf *conf = mddev->private;
2802 	struct list_head *head = &conf->retry_list;
2803 	struct blk_plug plug;
2804 
2805 	md_check_recovery(mddev);
2806 
2807 	blk_start_plug(&plug);
2808 	for (;;) {
2809 
2810 		flush_pending_writes(conf);
2811 
2812 		spin_lock_irqsave(&conf->device_lock, flags);
2813 		if (list_empty(head)) {
2814 			spin_unlock_irqrestore(&conf->device_lock, flags);
2815 			break;
2816 		}
2817 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2818 		list_del(head->prev);
2819 		conf->nr_queued--;
2820 		spin_unlock_irqrestore(&conf->device_lock, flags);
2821 
2822 		mddev = r10_bio->mddev;
2823 		conf = mddev->private;
2824 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2825 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2826 			handle_write_completed(conf, r10_bio);
2827 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2828 			reshape_request_write(mddev, r10_bio);
2829 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2830 			sync_request_write(mddev, r10_bio);
2831 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2832 			recovery_request_write(mddev, r10_bio);
2833 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2834 			handle_read_error(mddev, r10_bio);
2835 		else {
2836 			/* just a partial read to be scheduled from a
2837 			 * separate context
2838 			 */
2839 			int slot = r10_bio->read_slot;
2840 			generic_make_request(r10_bio->devs[slot].bio);
2841 		}
2842 
2843 		cond_resched();
2844 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2845 			md_check_recovery(mddev);
2846 	}
2847 	blk_finish_plug(&plug);
2848 }
2849 
2850 static int init_resync(struct r10conf *conf)
2851 {
2852 	int buffs;
2853 	int i;
2854 
2855 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2856 	BUG_ON(conf->r10buf_pool);
2857 	conf->have_replacement = 0;
2858 	for (i = 0; i < conf->geo.raid_disks; i++)
2859 		if (conf->mirrors[i].replacement)
2860 			conf->have_replacement = 1;
2861 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2862 	if (!conf->r10buf_pool)
2863 		return -ENOMEM;
2864 	conf->next_resync = 0;
2865 	return 0;
2866 }
2867 
2868 /*
2869  * perform a "sync" on one "block"
2870  *
2871  * We need to make sure that no normal I/O request - particularly write
2872  * requests - conflict with active sync requests.
2873  *
2874  * This is achieved by tracking pending requests and a 'barrier' concept
2875  * that can be installed to exclude normal IO requests.
2876  *
2877  * Resync and recovery are handled very differently.
2878  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2879  *
2880  * For resync, we iterate over virtual addresses, read all copies,
2881  * and update if there are differences.  If only one copy is live,
2882  * skip it.
2883  * For recovery, we iterate over physical addresses, read a good
2884  * value for each non-in_sync drive, and over-write.
2885  *
2886  * So, for recovery we may have several outstanding complex requests for a
2887  * given address, one for each out-of-sync device.  We model this by allocating
2888  * a number of r10_bio structures, one for each out-of-sync device.
2889  * As we setup these structures, we collect all bio's together into a list
2890  * which we then process collectively to add pages, and then process again
2891  * to pass to generic_make_request.
2892  *
2893  * The r10_bio structures are linked using a borrowed master_bio pointer.
2894  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2895  * has its remaining count decremented to 0, the whole complex operation
2896  * is complete.
2897  *
2898  */
2899 
2900 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2901 			     int *skipped, int go_faster)
2902 {
2903 	struct r10conf *conf = mddev->private;
2904 	struct r10bio *r10_bio;
2905 	struct bio *biolist = NULL, *bio;
2906 	sector_t max_sector, nr_sectors;
2907 	int i;
2908 	int max_sync;
2909 	sector_t sync_blocks;
2910 	sector_t sectors_skipped = 0;
2911 	int chunks_skipped = 0;
2912 	sector_t chunk_mask = conf->geo.chunk_mask;
2913 
2914 	if (!conf->r10buf_pool)
2915 		if (init_resync(conf))
2916 			return 0;
2917 
2918 	/*
2919 	 * Allow skipping a full rebuild for incremental assembly
2920 	 * of a clean array, like RAID1 does.
2921 	 */
2922 	if (mddev->bitmap == NULL &&
2923 	    mddev->recovery_cp == MaxSector &&
2924 	    mddev->reshape_position == MaxSector &&
2925 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2926 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2927 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2928 	    conf->fullsync == 0) {
2929 		*skipped = 1;
2930 		return mddev->dev_sectors - sector_nr;
2931 	}
2932 
2933  skipped:
2934 	max_sector = mddev->dev_sectors;
2935 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2936 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2937 		max_sector = mddev->resync_max_sectors;
2938 	if (sector_nr >= max_sector) {
2939 		/* If we aborted, we need to abort the
2940 		 * sync on the 'current' bitmap chucks (there can
2941 		 * be several when recovering multiple devices).
2942 		 * as we may have started syncing it but not finished.
2943 		 * We can find the current address in
2944 		 * mddev->curr_resync, but for recovery,
2945 		 * we need to convert that to several
2946 		 * virtual addresses.
2947 		 */
2948 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2949 			end_reshape(conf);
2950 			close_sync(conf);
2951 			return 0;
2952 		}
2953 
2954 		if (mddev->curr_resync < max_sector) { /* aborted */
2955 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2956 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2957 						&sync_blocks, 1);
2958 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2959 				sector_t sect =
2960 					raid10_find_virt(conf, mddev->curr_resync, i);
2961 				bitmap_end_sync(mddev->bitmap, sect,
2962 						&sync_blocks, 1);
2963 			}
2964 		} else {
2965 			/* completed sync */
2966 			if ((!mddev->bitmap || conf->fullsync)
2967 			    && conf->have_replacement
2968 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2969 				/* Completed a full sync so the replacements
2970 				 * are now fully recovered.
2971 				 */
2972 				for (i = 0; i < conf->geo.raid_disks; i++)
2973 					if (conf->mirrors[i].replacement)
2974 						conf->mirrors[i].replacement
2975 							->recovery_offset
2976 							= MaxSector;
2977 			}
2978 			conf->fullsync = 0;
2979 		}
2980 		bitmap_close_sync(mddev->bitmap);
2981 		close_sync(conf);
2982 		*skipped = 1;
2983 		return sectors_skipped;
2984 	}
2985 
2986 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2987 		return reshape_request(mddev, sector_nr, skipped);
2988 
2989 	if (chunks_skipped >= conf->geo.raid_disks) {
2990 		/* if there has been nothing to do on any drive,
2991 		 * then there is nothing to do at all..
2992 		 */
2993 		*skipped = 1;
2994 		return (max_sector - sector_nr) + sectors_skipped;
2995 	}
2996 
2997 	if (max_sector > mddev->resync_max)
2998 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2999 
3000 	/* make sure whole request will fit in a chunk - if chunks
3001 	 * are meaningful
3002 	 */
3003 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3004 	    max_sector > (sector_nr | chunk_mask))
3005 		max_sector = (sector_nr | chunk_mask) + 1;
3006 	/*
3007 	 * If there is non-resync activity waiting for us then
3008 	 * put in a delay to throttle resync.
3009 	 */
3010 	if (!go_faster && conf->nr_waiting)
3011 		msleep_interruptible(1000);
3012 
3013 	/* Again, very different code for resync and recovery.
3014 	 * Both must result in an r10bio with a list of bios that
3015 	 * have bi_end_io, bi_sector, bi_bdev set,
3016 	 * and bi_private set to the r10bio.
3017 	 * For recovery, we may actually create several r10bios
3018 	 * with 2 bios in each, that correspond to the bios in the main one.
3019 	 * In this case, the subordinate r10bios link back through a
3020 	 * borrowed master_bio pointer, and the counter in the master
3021 	 * includes a ref from each subordinate.
3022 	 */
3023 	/* First, we decide what to do and set ->bi_end_io
3024 	 * To end_sync_read if we want to read, and
3025 	 * end_sync_write if we will want to write.
3026 	 */
3027 
3028 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3029 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3030 		/* recovery... the complicated one */
3031 		int j;
3032 		r10_bio = NULL;
3033 
3034 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3035 			int still_degraded;
3036 			struct r10bio *rb2;
3037 			sector_t sect;
3038 			int must_sync;
3039 			int any_working;
3040 			struct raid10_info *mirror = &conf->mirrors[i];
3041 
3042 			if ((mirror->rdev == NULL ||
3043 			     test_bit(In_sync, &mirror->rdev->flags))
3044 			    &&
3045 			    (mirror->replacement == NULL ||
3046 			     test_bit(Faulty,
3047 				      &mirror->replacement->flags)))
3048 				continue;
3049 
3050 			still_degraded = 0;
3051 			/* want to reconstruct this device */
3052 			rb2 = r10_bio;
3053 			sect = raid10_find_virt(conf, sector_nr, i);
3054 			if (sect >= mddev->resync_max_sectors) {
3055 				/* last stripe is not complete - don't
3056 				 * try to recover this sector.
3057 				 */
3058 				continue;
3059 			}
3060 			/* Unless we are doing a full sync, or a replacement
3061 			 * we only need to recover the block if it is set in
3062 			 * the bitmap
3063 			 */
3064 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3065 						      &sync_blocks, 1);
3066 			if (sync_blocks < max_sync)
3067 				max_sync = sync_blocks;
3068 			if (!must_sync &&
3069 			    mirror->replacement == NULL &&
3070 			    !conf->fullsync) {
3071 				/* yep, skip the sync_blocks here, but don't assume
3072 				 * that there will never be anything to do here
3073 				 */
3074 				chunks_skipped = -1;
3075 				continue;
3076 			}
3077 
3078 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3079 			r10_bio->state = 0;
3080 			raise_barrier(conf, rb2 != NULL);
3081 			atomic_set(&r10_bio->remaining, 0);
3082 
3083 			r10_bio->master_bio = (struct bio*)rb2;
3084 			if (rb2)
3085 				atomic_inc(&rb2->remaining);
3086 			r10_bio->mddev = mddev;
3087 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3088 			r10_bio->sector = sect;
3089 
3090 			raid10_find_phys(conf, r10_bio);
3091 
3092 			/* Need to check if the array will still be
3093 			 * degraded
3094 			 */
3095 			for (j = 0; j < conf->geo.raid_disks; j++)
3096 				if (conf->mirrors[j].rdev == NULL ||
3097 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3098 					still_degraded = 1;
3099 					break;
3100 				}
3101 
3102 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3103 						      &sync_blocks, still_degraded);
3104 
3105 			any_working = 0;
3106 			for (j=0; j<conf->copies;j++) {
3107 				int k;
3108 				int d = r10_bio->devs[j].devnum;
3109 				sector_t from_addr, to_addr;
3110 				struct md_rdev *rdev;
3111 				sector_t sector, first_bad;
3112 				int bad_sectors;
3113 				if (!conf->mirrors[d].rdev ||
3114 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3115 					continue;
3116 				/* This is where we read from */
3117 				any_working = 1;
3118 				rdev = conf->mirrors[d].rdev;
3119 				sector = r10_bio->devs[j].addr;
3120 
3121 				if (is_badblock(rdev, sector, max_sync,
3122 						&first_bad, &bad_sectors)) {
3123 					if (first_bad > sector)
3124 						max_sync = first_bad - sector;
3125 					else {
3126 						bad_sectors -= (sector
3127 								- first_bad);
3128 						if (max_sync > bad_sectors)
3129 							max_sync = bad_sectors;
3130 						continue;
3131 					}
3132 				}
3133 				bio = r10_bio->devs[0].bio;
3134 				bio_reset(bio);
3135 				bio->bi_next = biolist;
3136 				biolist = bio;
3137 				bio->bi_private = r10_bio;
3138 				bio->bi_end_io = end_sync_read;
3139 				bio->bi_rw = READ;
3140 				from_addr = r10_bio->devs[j].addr;
3141 				bio->bi_iter.bi_sector = from_addr +
3142 					rdev->data_offset;
3143 				bio->bi_bdev = rdev->bdev;
3144 				atomic_inc(&rdev->nr_pending);
3145 				/* and we write to 'i' (if not in_sync) */
3146 
3147 				for (k=0; k<conf->copies; k++)
3148 					if (r10_bio->devs[k].devnum == i)
3149 						break;
3150 				BUG_ON(k == conf->copies);
3151 				to_addr = r10_bio->devs[k].addr;
3152 				r10_bio->devs[0].devnum = d;
3153 				r10_bio->devs[0].addr = from_addr;
3154 				r10_bio->devs[1].devnum = i;
3155 				r10_bio->devs[1].addr = to_addr;
3156 
3157 				rdev = mirror->rdev;
3158 				if (!test_bit(In_sync, &rdev->flags)) {
3159 					bio = r10_bio->devs[1].bio;
3160 					bio_reset(bio);
3161 					bio->bi_next = biolist;
3162 					biolist = bio;
3163 					bio->bi_private = r10_bio;
3164 					bio->bi_end_io = end_sync_write;
3165 					bio->bi_rw = WRITE;
3166 					bio->bi_iter.bi_sector = to_addr
3167 						+ rdev->data_offset;
3168 					bio->bi_bdev = rdev->bdev;
3169 					atomic_inc(&r10_bio->remaining);
3170 				} else
3171 					r10_bio->devs[1].bio->bi_end_io = NULL;
3172 
3173 				/* and maybe write to replacement */
3174 				bio = r10_bio->devs[1].repl_bio;
3175 				if (bio)
3176 					bio->bi_end_io = NULL;
3177 				rdev = mirror->replacement;
3178 				/* Note: if rdev != NULL, then bio
3179 				 * cannot be NULL as r10buf_pool_alloc will
3180 				 * have allocated it.
3181 				 * So the second test here is pointless.
3182 				 * But it keeps semantic-checkers happy, and
3183 				 * this comment keeps human reviewers
3184 				 * happy.
3185 				 */
3186 				if (rdev == NULL || bio == NULL ||
3187 				    test_bit(Faulty, &rdev->flags))
3188 					break;
3189 				bio_reset(bio);
3190 				bio->bi_next = biolist;
3191 				biolist = bio;
3192 				bio->bi_private = r10_bio;
3193 				bio->bi_end_io = end_sync_write;
3194 				bio->bi_rw = WRITE;
3195 				bio->bi_iter.bi_sector = to_addr +
3196 					rdev->data_offset;
3197 				bio->bi_bdev = rdev->bdev;
3198 				atomic_inc(&r10_bio->remaining);
3199 				break;
3200 			}
3201 			if (j == conf->copies) {
3202 				/* Cannot recover, so abort the recovery or
3203 				 * record a bad block */
3204 				if (any_working) {
3205 					/* problem is that there are bad blocks
3206 					 * on other device(s)
3207 					 */
3208 					int k;
3209 					for (k = 0; k < conf->copies; k++)
3210 						if (r10_bio->devs[k].devnum == i)
3211 							break;
3212 					if (!test_bit(In_sync,
3213 						      &mirror->rdev->flags)
3214 					    && !rdev_set_badblocks(
3215 						    mirror->rdev,
3216 						    r10_bio->devs[k].addr,
3217 						    max_sync, 0))
3218 						any_working = 0;
3219 					if (mirror->replacement &&
3220 					    !rdev_set_badblocks(
3221 						    mirror->replacement,
3222 						    r10_bio->devs[k].addr,
3223 						    max_sync, 0))
3224 						any_working = 0;
3225 				}
3226 				if (!any_working)  {
3227 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3228 							      &mddev->recovery))
3229 						printk(KERN_INFO "md/raid10:%s: insufficient "
3230 						       "working devices for recovery.\n",
3231 						       mdname(mddev));
3232 					mirror->recovery_disabled
3233 						= mddev->recovery_disabled;
3234 				}
3235 				put_buf(r10_bio);
3236 				if (rb2)
3237 					atomic_dec(&rb2->remaining);
3238 				r10_bio = rb2;
3239 				break;
3240 			}
3241 		}
3242 		if (biolist == NULL) {
3243 			while (r10_bio) {
3244 				struct r10bio *rb2 = r10_bio;
3245 				r10_bio = (struct r10bio*) rb2->master_bio;
3246 				rb2->master_bio = NULL;
3247 				put_buf(rb2);
3248 			}
3249 			goto giveup;
3250 		}
3251 	} else {
3252 		/* resync. Schedule a read for every block at this virt offset */
3253 		int count = 0;
3254 
3255 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3256 
3257 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3258 				       &sync_blocks, mddev->degraded) &&
3259 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3260 						 &mddev->recovery)) {
3261 			/* We can skip this block */
3262 			*skipped = 1;
3263 			return sync_blocks + sectors_skipped;
3264 		}
3265 		if (sync_blocks < max_sync)
3266 			max_sync = sync_blocks;
3267 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3268 		r10_bio->state = 0;
3269 
3270 		r10_bio->mddev = mddev;
3271 		atomic_set(&r10_bio->remaining, 0);
3272 		raise_barrier(conf, 0);
3273 		conf->next_resync = sector_nr;
3274 
3275 		r10_bio->master_bio = NULL;
3276 		r10_bio->sector = sector_nr;
3277 		set_bit(R10BIO_IsSync, &r10_bio->state);
3278 		raid10_find_phys(conf, r10_bio);
3279 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3280 
3281 		for (i = 0; i < conf->copies; i++) {
3282 			int d = r10_bio->devs[i].devnum;
3283 			sector_t first_bad, sector;
3284 			int bad_sectors;
3285 
3286 			if (r10_bio->devs[i].repl_bio)
3287 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3288 
3289 			bio = r10_bio->devs[i].bio;
3290 			bio_reset(bio);
3291 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3292 			if (conf->mirrors[d].rdev == NULL ||
3293 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3294 				continue;
3295 			sector = r10_bio->devs[i].addr;
3296 			if (is_badblock(conf->mirrors[d].rdev,
3297 					sector, max_sync,
3298 					&first_bad, &bad_sectors)) {
3299 				if (first_bad > sector)
3300 					max_sync = first_bad - sector;
3301 				else {
3302 					bad_sectors -= (sector - first_bad);
3303 					if (max_sync > bad_sectors)
3304 						max_sync = bad_sectors;
3305 					continue;
3306 				}
3307 			}
3308 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3309 			atomic_inc(&r10_bio->remaining);
3310 			bio->bi_next = biolist;
3311 			biolist = bio;
3312 			bio->bi_private = r10_bio;
3313 			bio->bi_end_io = end_sync_read;
3314 			bio->bi_rw = READ;
3315 			bio->bi_iter.bi_sector = sector +
3316 				conf->mirrors[d].rdev->data_offset;
3317 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3318 			count++;
3319 
3320 			if (conf->mirrors[d].replacement == NULL ||
3321 			    test_bit(Faulty,
3322 				     &conf->mirrors[d].replacement->flags))
3323 				continue;
3324 
3325 			/* Need to set up for writing to the replacement */
3326 			bio = r10_bio->devs[i].repl_bio;
3327 			bio_reset(bio);
3328 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3329 
3330 			sector = r10_bio->devs[i].addr;
3331 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3332 			bio->bi_next = biolist;
3333 			biolist = bio;
3334 			bio->bi_private = r10_bio;
3335 			bio->bi_end_io = end_sync_write;
3336 			bio->bi_rw = WRITE;
3337 			bio->bi_iter.bi_sector = sector +
3338 				conf->mirrors[d].replacement->data_offset;
3339 			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3340 			count++;
3341 		}
3342 
3343 		if (count < 2) {
3344 			for (i=0; i<conf->copies; i++) {
3345 				int d = r10_bio->devs[i].devnum;
3346 				if (r10_bio->devs[i].bio->bi_end_io)
3347 					rdev_dec_pending(conf->mirrors[d].rdev,
3348 							 mddev);
3349 				if (r10_bio->devs[i].repl_bio &&
3350 				    r10_bio->devs[i].repl_bio->bi_end_io)
3351 					rdev_dec_pending(
3352 						conf->mirrors[d].replacement,
3353 						mddev);
3354 			}
3355 			put_buf(r10_bio);
3356 			biolist = NULL;
3357 			goto giveup;
3358 		}
3359 	}
3360 
3361 	nr_sectors = 0;
3362 	if (sector_nr + max_sync < max_sector)
3363 		max_sector = sector_nr + max_sync;
3364 	do {
3365 		struct page *page;
3366 		int len = PAGE_SIZE;
3367 		if (sector_nr + (len>>9) > max_sector)
3368 			len = (max_sector - sector_nr) << 9;
3369 		if (len == 0)
3370 			break;
3371 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3372 			struct bio *bio2;
3373 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3374 			if (bio_add_page(bio, page, len, 0))
3375 				continue;
3376 
3377 			/* stop here */
3378 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3379 			for (bio2 = biolist;
3380 			     bio2 && bio2 != bio;
3381 			     bio2 = bio2->bi_next) {
3382 				/* remove last page from this bio */
3383 				bio2->bi_vcnt--;
3384 				bio2->bi_iter.bi_size -= len;
3385 				__clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
3386 			}
3387 			goto bio_full;
3388 		}
3389 		nr_sectors += len>>9;
3390 		sector_nr += len>>9;
3391 	} while (biolist->bi_vcnt < RESYNC_PAGES);
3392  bio_full:
3393 	r10_bio->sectors = nr_sectors;
3394 
3395 	while (biolist) {
3396 		bio = biolist;
3397 		biolist = biolist->bi_next;
3398 
3399 		bio->bi_next = NULL;
3400 		r10_bio = bio->bi_private;
3401 		r10_bio->sectors = nr_sectors;
3402 
3403 		if (bio->bi_end_io == end_sync_read) {
3404 			md_sync_acct(bio->bi_bdev, nr_sectors);
3405 			set_bit(BIO_UPTODATE, &bio->bi_flags);
3406 			generic_make_request(bio);
3407 		}
3408 	}
3409 
3410 	if (sectors_skipped)
3411 		/* pretend they weren't skipped, it makes
3412 		 * no important difference in this case
3413 		 */
3414 		md_done_sync(mddev, sectors_skipped, 1);
3415 
3416 	return sectors_skipped + nr_sectors;
3417  giveup:
3418 	/* There is nowhere to write, so all non-sync
3419 	 * drives must be failed or in resync, all drives
3420 	 * have a bad block, so try the next chunk...
3421 	 */
3422 	if (sector_nr + max_sync < max_sector)
3423 		max_sector = sector_nr + max_sync;
3424 
3425 	sectors_skipped += (max_sector - sector_nr);
3426 	chunks_skipped ++;
3427 	sector_nr = max_sector;
3428 	goto skipped;
3429 }
3430 
3431 static sector_t
3432 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3433 {
3434 	sector_t size;
3435 	struct r10conf *conf = mddev->private;
3436 
3437 	if (!raid_disks)
3438 		raid_disks = min(conf->geo.raid_disks,
3439 				 conf->prev.raid_disks);
3440 	if (!sectors)
3441 		sectors = conf->dev_sectors;
3442 
3443 	size = sectors >> conf->geo.chunk_shift;
3444 	sector_div(size, conf->geo.far_copies);
3445 	size = size * raid_disks;
3446 	sector_div(size, conf->geo.near_copies);
3447 
3448 	return size << conf->geo.chunk_shift;
3449 }
3450 
3451 static void calc_sectors(struct r10conf *conf, sector_t size)
3452 {
3453 	/* Calculate the number of sectors-per-device that will
3454 	 * actually be used, and set conf->dev_sectors and
3455 	 * conf->stride
3456 	 */
3457 
3458 	size = size >> conf->geo.chunk_shift;
3459 	sector_div(size, conf->geo.far_copies);
3460 	size = size * conf->geo.raid_disks;
3461 	sector_div(size, conf->geo.near_copies);
3462 	/* 'size' is now the number of chunks in the array */
3463 	/* calculate "used chunks per device" */
3464 	size = size * conf->copies;
3465 
3466 	/* We need to round up when dividing by raid_disks to
3467 	 * get the stride size.
3468 	 */
3469 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3470 
3471 	conf->dev_sectors = size << conf->geo.chunk_shift;
3472 
3473 	if (conf->geo.far_offset)
3474 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3475 	else {
3476 		sector_div(size, conf->geo.far_copies);
3477 		conf->geo.stride = size << conf->geo.chunk_shift;
3478 	}
3479 }
3480 
3481 enum geo_type {geo_new, geo_old, geo_start};
3482 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3483 {
3484 	int nc, fc, fo;
3485 	int layout, chunk, disks;
3486 	switch (new) {
3487 	case geo_old:
3488 		layout = mddev->layout;
3489 		chunk = mddev->chunk_sectors;
3490 		disks = mddev->raid_disks - mddev->delta_disks;
3491 		break;
3492 	case geo_new:
3493 		layout = mddev->new_layout;
3494 		chunk = mddev->new_chunk_sectors;
3495 		disks = mddev->raid_disks;
3496 		break;
3497 	default: /* avoid 'may be unused' warnings */
3498 	case geo_start: /* new when starting reshape - raid_disks not
3499 			 * updated yet. */
3500 		layout = mddev->new_layout;
3501 		chunk = mddev->new_chunk_sectors;
3502 		disks = mddev->raid_disks + mddev->delta_disks;
3503 		break;
3504 	}
3505 	if (layout >> 18)
3506 		return -1;
3507 	if (chunk < (PAGE_SIZE >> 9) ||
3508 	    !is_power_of_2(chunk))
3509 		return -2;
3510 	nc = layout & 255;
3511 	fc = (layout >> 8) & 255;
3512 	fo = layout & (1<<16);
3513 	geo->raid_disks = disks;
3514 	geo->near_copies = nc;
3515 	geo->far_copies = fc;
3516 	geo->far_offset = fo;
3517 	geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3518 	geo->chunk_mask = chunk - 1;
3519 	geo->chunk_shift = ffz(~chunk);
3520 	return nc*fc;
3521 }
3522 
3523 static struct r10conf *setup_conf(struct mddev *mddev)
3524 {
3525 	struct r10conf *conf = NULL;
3526 	int err = -EINVAL;
3527 	struct geom geo;
3528 	int copies;
3529 
3530 	copies = setup_geo(&geo, mddev, geo_new);
3531 
3532 	if (copies == -2) {
3533 		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3534 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3535 		       mdname(mddev), PAGE_SIZE);
3536 		goto out;
3537 	}
3538 
3539 	if (copies < 2 || copies > mddev->raid_disks) {
3540 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3541 		       mdname(mddev), mddev->new_layout);
3542 		goto out;
3543 	}
3544 
3545 	err = -ENOMEM;
3546 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3547 	if (!conf)
3548 		goto out;
3549 
3550 	/* FIXME calc properly */
3551 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3552 							    max(0,-mddev->delta_disks)),
3553 				GFP_KERNEL);
3554 	if (!conf->mirrors)
3555 		goto out;
3556 
3557 	conf->tmppage = alloc_page(GFP_KERNEL);
3558 	if (!conf->tmppage)
3559 		goto out;
3560 
3561 	conf->geo = geo;
3562 	conf->copies = copies;
3563 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3564 					   r10bio_pool_free, conf);
3565 	if (!conf->r10bio_pool)
3566 		goto out;
3567 
3568 	calc_sectors(conf, mddev->dev_sectors);
3569 	if (mddev->reshape_position == MaxSector) {
3570 		conf->prev = conf->geo;
3571 		conf->reshape_progress = MaxSector;
3572 	} else {
3573 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3574 			err = -EINVAL;
3575 			goto out;
3576 		}
3577 		conf->reshape_progress = mddev->reshape_position;
3578 		if (conf->prev.far_offset)
3579 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3580 		else
3581 			/* far_copies must be 1 */
3582 			conf->prev.stride = conf->dev_sectors;
3583 	}
3584 	spin_lock_init(&conf->device_lock);
3585 	INIT_LIST_HEAD(&conf->retry_list);
3586 
3587 	spin_lock_init(&conf->resync_lock);
3588 	init_waitqueue_head(&conf->wait_barrier);
3589 
3590 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3591 	if (!conf->thread)
3592 		goto out;
3593 
3594 	conf->mddev = mddev;
3595 	return conf;
3596 
3597  out:
3598 	if (err == -ENOMEM)
3599 		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3600 		       mdname(mddev));
3601 	if (conf) {
3602 		if (conf->r10bio_pool)
3603 			mempool_destroy(conf->r10bio_pool);
3604 		kfree(conf->mirrors);
3605 		safe_put_page(conf->tmppage);
3606 		kfree(conf);
3607 	}
3608 	return ERR_PTR(err);
3609 }
3610 
3611 static int run(struct mddev *mddev)
3612 {
3613 	struct r10conf *conf;
3614 	int i, disk_idx, chunk_size;
3615 	struct raid10_info *disk;
3616 	struct md_rdev *rdev;
3617 	sector_t size;
3618 	sector_t min_offset_diff = 0;
3619 	int first = 1;
3620 	bool discard_supported = false;
3621 
3622 	if (mddev->private == NULL) {
3623 		conf = setup_conf(mddev);
3624 		if (IS_ERR(conf))
3625 			return PTR_ERR(conf);
3626 		mddev->private = conf;
3627 	}
3628 	conf = mddev->private;
3629 	if (!conf)
3630 		goto out;
3631 
3632 	mddev->thread = conf->thread;
3633 	conf->thread = NULL;
3634 
3635 	chunk_size = mddev->chunk_sectors << 9;
3636 	if (mddev->queue) {
3637 		blk_queue_max_discard_sectors(mddev->queue,
3638 					      mddev->chunk_sectors);
3639 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3640 		blk_queue_io_min(mddev->queue, chunk_size);
3641 		if (conf->geo.raid_disks % conf->geo.near_copies)
3642 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3643 		else
3644 			blk_queue_io_opt(mddev->queue, chunk_size *
3645 					 (conf->geo.raid_disks / conf->geo.near_copies));
3646 	}
3647 
3648 	rdev_for_each(rdev, mddev) {
3649 		long long diff;
3650 		struct request_queue *q;
3651 
3652 		disk_idx = rdev->raid_disk;
3653 		if (disk_idx < 0)
3654 			continue;
3655 		if (disk_idx >= conf->geo.raid_disks &&
3656 		    disk_idx >= conf->prev.raid_disks)
3657 			continue;
3658 		disk = conf->mirrors + disk_idx;
3659 
3660 		if (test_bit(Replacement, &rdev->flags)) {
3661 			if (disk->replacement)
3662 				goto out_free_conf;
3663 			disk->replacement = rdev;
3664 		} else {
3665 			if (disk->rdev)
3666 				goto out_free_conf;
3667 			disk->rdev = rdev;
3668 		}
3669 		q = bdev_get_queue(rdev->bdev);
3670 		if (q->merge_bvec_fn)
3671 			mddev->merge_check_needed = 1;
3672 		diff = (rdev->new_data_offset - rdev->data_offset);
3673 		if (!mddev->reshape_backwards)
3674 			diff = -diff;
3675 		if (diff < 0)
3676 			diff = 0;
3677 		if (first || diff < min_offset_diff)
3678 			min_offset_diff = diff;
3679 
3680 		if (mddev->gendisk)
3681 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3682 					  rdev->data_offset << 9);
3683 
3684 		disk->head_position = 0;
3685 
3686 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3687 			discard_supported = true;
3688 	}
3689 
3690 	if (mddev->queue) {
3691 		if (discard_supported)
3692 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3693 						mddev->queue);
3694 		else
3695 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3696 						  mddev->queue);
3697 	}
3698 	/* need to check that every block has at least one working mirror */
3699 	if (!enough(conf, -1)) {
3700 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3701 		       mdname(mddev));
3702 		goto out_free_conf;
3703 	}
3704 
3705 	if (conf->reshape_progress != MaxSector) {
3706 		/* must ensure that shape change is supported */
3707 		if (conf->geo.far_copies != 1 &&
3708 		    conf->geo.far_offset == 0)
3709 			goto out_free_conf;
3710 		if (conf->prev.far_copies != 1 &&
3711 		    conf->prev.far_offset == 0)
3712 			goto out_free_conf;
3713 	}
3714 
3715 	mddev->degraded = 0;
3716 	for (i = 0;
3717 	     i < conf->geo.raid_disks
3718 		     || i < conf->prev.raid_disks;
3719 	     i++) {
3720 
3721 		disk = conf->mirrors + i;
3722 
3723 		if (!disk->rdev && disk->replacement) {
3724 			/* The replacement is all we have - use it */
3725 			disk->rdev = disk->replacement;
3726 			disk->replacement = NULL;
3727 			clear_bit(Replacement, &disk->rdev->flags);
3728 		}
3729 
3730 		if (!disk->rdev ||
3731 		    !test_bit(In_sync, &disk->rdev->flags)) {
3732 			disk->head_position = 0;
3733 			mddev->degraded++;
3734 			if (disk->rdev &&
3735 			    disk->rdev->saved_raid_disk < 0)
3736 				conf->fullsync = 1;
3737 		}
3738 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3739 	}
3740 
3741 	if (mddev->recovery_cp != MaxSector)
3742 		printk(KERN_NOTICE "md/raid10:%s: not clean"
3743 		       " -- starting background reconstruction\n",
3744 		       mdname(mddev));
3745 	printk(KERN_INFO
3746 		"md/raid10:%s: active with %d out of %d devices\n",
3747 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3748 		conf->geo.raid_disks);
3749 	/*
3750 	 * Ok, everything is just fine now
3751 	 */
3752 	mddev->dev_sectors = conf->dev_sectors;
3753 	size = raid10_size(mddev, 0, 0);
3754 	md_set_array_sectors(mddev, size);
3755 	mddev->resync_max_sectors = size;
3756 
3757 	if (mddev->queue) {
3758 		int stripe = conf->geo.raid_disks *
3759 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3760 		mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3761 		mddev->queue->backing_dev_info.congested_data = mddev;
3762 
3763 		/* Calculate max read-ahead size.
3764 		 * We need to readahead at least twice a whole stripe....
3765 		 * maybe...
3766 		 */
3767 		stripe /= conf->geo.near_copies;
3768 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3769 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3770 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3771 	}
3772 
3773 	if (md_integrity_register(mddev))
3774 		goto out_free_conf;
3775 
3776 	if (conf->reshape_progress != MaxSector) {
3777 		unsigned long before_length, after_length;
3778 
3779 		before_length = ((1 << conf->prev.chunk_shift) *
3780 				 conf->prev.far_copies);
3781 		after_length = ((1 << conf->geo.chunk_shift) *
3782 				conf->geo.far_copies);
3783 
3784 		if (max(before_length, after_length) > min_offset_diff) {
3785 			/* This cannot work */
3786 			printk("md/raid10: offset difference not enough to continue reshape\n");
3787 			goto out_free_conf;
3788 		}
3789 		conf->offset_diff = min_offset_diff;
3790 
3791 		conf->reshape_safe = conf->reshape_progress;
3792 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3793 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3794 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3795 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3796 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3797 							"reshape");
3798 	}
3799 
3800 	return 0;
3801 
3802 out_free_conf:
3803 	md_unregister_thread(&mddev->thread);
3804 	if (conf->r10bio_pool)
3805 		mempool_destroy(conf->r10bio_pool);
3806 	safe_put_page(conf->tmppage);
3807 	kfree(conf->mirrors);
3808 	kfree(conf);
3809 	mddev->private = NULL;
3810 out:
3811 	return -EIO;
3812 }
3813 
3814 static int stop(struct mddev *mddev)
3815 {
3816 	struct r10conf *conf = mddev->private;
3817 
3818 	raise_barrier(conf, 0);
3819 	lower_barrier(conf);
3820 
3821 	md_unregister_thread(&mddev->thread);
3822 	if (mddev->queue)
3823 		/* the unplug fn references 'conf'*/
3824 		blk_sync_queue(mddev->queue);
3825 
3826 	if (conf->r10bio_pool)
3827 		mempool_destroy(conf->r10bio_pool);
3828 	safe_put_page(conf->tmppage);
3829 	kfree(conf->mirrors);
3830 	kfree(conf->mirrors_old);
3831 	kfree(conf->mirrors_new);
3832 	kfree(conf);
3833 	mddev->private = NULL;
3834 	return 0;
3835 }
3836 
3837 static void raid10_quiesce(struct mddev *mddev, int state)
3838 {
3839 	struct r10conf *conf = mddev->private;
3840 
3841 	switch(state) {
3842 	case 1:
3843 		raise_barrier(conf, 0);
3844 		break;
3845 	case 0:
3846 		lower_barrier(conf);
3847 		break;
3848 	}
3849 }
3850 
3851 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3852 {
3853 	/* Resize of 'far' arrays is not supported.
3854 	 * For 'near' and 'offset' arrays we can set the
3855 	 * number of sectors used to be an appropriate multiple
3856 	 * of the chunk size.
3857 	 * For 'offset', this is far_copies*chunksize.
3858 	 * For 'near' the multiplier is the LCM of
3859 	 * near_copies and raid_disks.
3860 	 * So if far_copies > 1 && !far_offset, fail.
3861 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3862 	 * multiply by chunk_size.  Then round to this number.
3863 	 * This is mostly done by raid10_size()
3864 	 */
3865 	struct r10conf *conf = mddev->private;
3866 	sector_t oldsize, size;
3867 
3868 	if (mddev->reshape_position != MaxSector)
3869 		return -EBUSY;
3870 
3871 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3872 		return -EINVAL;
3873 
3874 	oldsize = raid10_size(mddev, 0, 0);
3875 	size = raid10_size(mddev, sectors, 0);
3876 	if (mddev->external_size &&
3877 	    mddev->array_sectors > size)
3878 		return -EINVAL;
3879 	if (mddev->bitmap) {
3880 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3881 		if (ret)
3882 			return ret;
3883 	}
3884 	md_set_array_sectors(mddev, size);
3885 	set_capacity(mddev->gendisk, mddev->array_sectors);
3886 	revalidate_disk(mddev->gendisk);
3887 	if (sectors > mddev->dev_sectors &&
3888 	    mddev->recovery_cp > oldsize) {
3889 		mddev->recovery_cp = oldsize;
3890 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3891 	}
3892 	calc_sectors(conf, sectors);
3893 	mddev->dev_sectors = conf->dev_sectors;
3894 	mddev->resync_max_sectors = size;
3895 	return 0;
3896 }
3897 
3898 static void *raid10_takeover_raid0(struct mddev *mddev)
3899 {
3900 	struct md_rdev *rdev;
3901 	struct r10conf *conf;
3902 
3903 	if (mddev->degraded > 0) {
3904 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3905 		       mdname(mddev));
3906 		return ERR_PTR(-EINVAL);
3907 	}
3908 
3909 	/* Set new parameters */
3910 	mddev->new_level = 10;
3911 	/* new layout: far_copies = 1, near_copies = 2 */
3912 	mddev->new_layout = (1<<8) + 2;
3913 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3914 	mddev->delta_disks = mddev->raid_disks;
3915 	mddev->raid_disks *= 2;
3916 	/* make sure it will be not marked as dirty */
3917 	mddev->recovery_cp = MaxSector;
3918 
3919 	conf = setup_conf(mddev);
3920 	if (!IS_ERR(conf)) {
3921 		rdev_for_each(rdev, mddev)
3922 			if (rdev->raid_disk >= 0)
3923 				rdev->new_raid_disk = rdev->raid_disk * 2;
3924 		conf->barrier = 1;
3925 	}
3926 
3927 	return conf;
3928 }
3929 
3930 static void *raid10_takeover(struct mddev *mddev)
3931 {
3932 	struct r0conf *raid0_conf;
3933 
3934 	/* raid10 can take over:
3935 	 *  raid0 - providing it has only two drives
3936 	 */
3937 	if (mddev->level == 0) {
3938 		/* for raid0 takeover only one zone is supported */
3939 		raid0_conf = mddev->private;
3940 		if (raid0_conf->nr_strip_zones > 1) {
3941 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3942 			       " with more than one zone.\n",
3943 			       mdname(mddev));
3944 			return ERR_PTR(-EINVAL);
3945 		}
3946 		return raid10_takeover_raid0(mddev);
3947 	}
3948 	return ERR_PTR(-EINVAL);
3949 }
3950 
3951 static int raid10_check_reshape(struct mddev *mddev)
3952 {
3953 	/* Called when there is a request to change
3954 	 * - layout (to ->new_layout)
3955 	 * - chunk size (to ->new_chunk_sectors)
3956 	 * - raid_disks (by delta_disks)
3957 	 * or when trying to restart a reshape that was ongoing.
3958 	 *
3959 	 * We need to validate the request and possibly allocate
3960 	 * space if that might be an issue later.
3961 	 *
3962 	 * Currently we reject any reshape of a 'far' mode array,
3963 	 * allow chunk size to change if new is generally acceptable,
3964 	 * allow raid_disks to increase, and allow
3965 	 * a switch between 'near' mode and 'offset' mode.
3966 	 */
3967 	struct r10conf *conf = mddev->private;
3968 	struct geom geo;
3969 
3970 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3971 		return -EINVAL;
3972 
3973 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3974 		/* mustn't change number of copies */
3975 		return -EINVAL;
3976 	if (geo.far_copies > 1 && !geo.far_offset)
3977 		/* Cannot switch to 'far' mode */
3978 		return -EINVAL;
3979 
3980 	if (mddev->array_sectors & geo.chunk_mask)
3981 			/* not factor of array size */
3982 			return -EINVAL;
3983 
3984 	if (!enough(conf, -1))
3985 		return -EINVAL;
3986 
3987 	kfree(conf->mirrors_new);
3988 	conf->mirrors_new = NULL;
3989 	if (mddev->delta_disks > 0) {
3990 		/* allocate new 'mirrors' list */
3991 		conf->mirrors_new = kzalloc(
3992 			sizeof(struct raid10_info)
3993 			*(mddev->raid_disks +
3994 			  mddev->delta_disks),
3995 			GFP_KERNEL);
3996 		if (!conf->mirrors_new)
3997 			return -ENOMEM;
3998 	}
3999 	return 0;
4000 }
4001 
4002 /*
4003  * Need to check if array has failed when deciding whether to:
4004  *  - start an array
4005  *  - remove non-faulty devices
4006  *  - add a spare
4007  *  - allow a reshape
4008  * This determination is simple when no reshape is happening.
4009  * However if there is a reshape, we need to carefully check
4010  * both the before and after sections.
4011  * This is because some failed devices may only affect one
4012  * of the two sections, and some non-in_sync devices may
4013  * be insync in the section most affected by failed devices.
4014  */
4015 static int calc_degraded(struct r10conf *conf)
4016 {
4017 	int degraded, degraded2;
4018 	int i;
4019 
4020 	rcu_read_lock();
4021 	degraded = 0;
4022 	/* 'prev' section first */
4023 	for (i = 0; i < conf->prev.raid_disks; i++) {
4024 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4025 		if (!rdev || test_bit(Faulty, &rdev->flags))
4026 			degraded++;
4027 		else if (!test_bit(In_sync, &rdev->flags))
4028 			/* When we can reduce the number of devices in
4029 			 * an array, this might not contribute to
4030 			 * 'degraded'.  It does now.
4031 			 */
4032 			degraded++;
4033 	}
4034 	rcu_read_unlock();
4035 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4036 		return degraded;
4037 	rcu_read_lock();
4038 	degraded2 = 0;
4039 	for (i = 0; i < conf->geo.raid_disks; i++) {
4040 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4041 		if (!rdev || test_bit(Faulty, &rdev->flags))
4042 			degraded2++;
4043 		else if (!test_bit(In_sync, &rdev->flags)) {
4044 			/* If reshape is increasing the number of devices,
4045 			 * this section has already been recovered, so
4046 			 * it doesn't contribute to degraded.
4047 			 * else it does.
4048 			 */
4049 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4050 				degraded2++;
4051 		}
4052 	}
4053 	rcu_read_unlock();
4054 	if (degraded2 > degraded)
4055 		return degraded2;
4056 	return degraded;
4057 }
4058 
4059 static int raid10_start_reshape(struct mddev *mddev)
4060 {
4061 	/* A 'reshape' has been requested. This commits
4062 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4063 	 * This also checks if there are enough spares and adds them
4064 	 * to the array.
4065 	 * We currently require enough spares to make the final
4066 	 * array non-degraded.  We also require that the difference
4067 	 * between old and new data_offset - on each device - is
4068 	 * enough that we never risk over-writing.
4069 	 */
4070 
4071 	unsigned long before_length, after_length;
4072 	sector_t min_offset_diff = 0;
4073 	int first = 1;
4074 	struct geom new;
4075 	struct r10conf *conf = mddev->private;
4076 	struct md_rdev *rdev;
4077 	int spares = 0;
4078 	int ret;
4079 
4080 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4081 		return -EBUSY;
4082 
4083 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4084 		return -EINVAL;
4085 
4086 	before_length = ((1 << conf->prev.chunk_shift) *
4087 			 conf->prev.far_copies);
4088 	after_length = ((1 << conf->geo.chunk_shift) *
4089 			conf->geo.far_copies);
4090 
4091 	rdev_for_each(rdev, mddev) {
4092 		if (!test_bit(In_sync, &rdev->flags)
4093 		    && !test_bit(Faulty, &rdev->flags))
4094 			spares++;
4095 		if (rdev->raid_disk >= 0) {
4096 			long long diff = (rdev->new_data_offset
4097 					  - rdev->data_offset);
4098 			if (!mddev->reshape_backwards)
4099 				diff = -diff;
4100 			if (diff < 0)
4101 				diff = 0;
4102 			if (first || diff < min_offset_diff)
4103 				min_offset_diff = diff;
4104 		}
4105 	}
4106 
4107 	if (max(before_length, after_length) > min_offset_diff)
4108 		return -EINVAL;
4109 
4110 	if (spares < mddev->delta_disks)
4111 		return -EINVAL;
4112 
4113 	conf->offset_diff = min_offset_diff;
4114 	spin_lock_irq(&conf->device_lock);
4115 	if (conf->mirrors_new) {
4116 		memcpy(conf->mirrors_new, conf->mirrors,
4117 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4118 		smp_mb();
4119 		kfree(conf->mirrors_old);
4120 		conf->mirrors_old = conf->mirrors;
4121 		conf->mirrors = conf->mirrors_new;
4122 		conf->mirrors_new = NULL;
4123 	}
4124 	setup_geo(&conf->geo, mddev, geo_start);
4125 	smp_mb();
4126 	if (mddev->reshape_backwards) {
4127 		sector_t size = raid10_size(mddev, 0, 0);
4128 		if (size < mddev->array_sectors) {
4129 			spin_unlock_irq(&conf->device_lock);
4130 			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4131 			       mdname(mddev));
4132 			return -EINVAL;
4133 		}
4134 		mddev->resync_max_sectors = size;
4135 		conf->reshape_progress = size;
4136 	} else
4137 		conf->reshape_progress = 0;
4138 	spin_unlock_irq(&conf->device_lock);
4139 
4140 	if (mddev->delta_disks && mddev->bitmap) {
4141 		ret = bitmap_resize(mddev->bitmap,
4142 				    raid10_size(mddev, 0,
4143 						conf->geo.raid_disks),
4144 				    0, 0);
4145 		if (ret)
4146 			goto abort;
4147 	}
4148 	if (mddev->delta_disks > 0) {
4149 		rdev_for_each(rdev, mddev)
4150 			if (rdev->raid_disk < 0 &&
4151 			    !test_bit(Faulty, &rdev->flags)) {
4152 				if (raid10_add_disk(mddev, rdev) == 0) {
4153 					if (rdev->raid_disk >=
4154 					    conf->prev.raid_disks)
4155 						set_bit(In_sync, &rdev->flags);
4156 					else
4157 						rdev->recovery_offset = 0;
4158 
4159 					if (sysfs_link_rdev(mddev, rdev))
4160 						/* Failure here  is OK */;
4161 				}
4162 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4163 				   && !test_bit(Faulty, &rdev->flags)) {
4164 				/* This is a spare that was manually added */
4165 				set_bit(In_sync, &rdev->flags);
4166 			}
4167 	}
4168 	/* When a reshape changes the number of devices,
4169 	 * ->degraded is measured against the larger of the
4170 	 * pre and  post numbers.
4171 	 */
4172 	spin_lock_irq(&conf->device_lock);
4173 	mddev->degraded = calc_degraded(conf);
4174 	spin_unlock_irq(&conf->device_lock);
4175 	mddev->raid_disks = conf->geo.raid_disks;
4176 	mddev->reshape_position = conf->reshape_progress;
4177 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4178 
4179 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4180 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4181 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4182 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4183 
4184 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4185 						"reshape");
4186 	if (!mddev->sync_thread) {
4187 		ret = -EAGAIN;
4188 		goto abort;
4189 	}
4190 	conf->reshape_checkpoint = jiffies;
4191 	md_wakeup_thread(mddev->sync_thread);
4192 	md_new_event(mddev);
4193 	return 0;
4194 
4195 abort:
4196 	mddev->recovery = 0;
4197 	spin_lock_irq(&conf->device_lock);
4198 	conf->geo = conf->prev;
4199 	mddev->raid_disks = conf->geo.raid_disks;
4200 	rdev_for_each(rdev, mddev)
4201 		rdev->new_data_offset = rdev->data_offset;
4202 	smp_wmb();
4203 	conf->reshape_progress = MaxSector;
4204 	mddev->reshape_position = MaxSector;
4205 	spin_unlock_irq(&conf->device_lock);
4206 	return ret;
4207 }
4208 
4209 /* Calculate the last device-address that could contain
4210  * any block from the chunk that includes the array-address 's'
4211  * and report the next address.
4212  * i.e. the address returned will be chunk-aligned and after
4213  * any data that is in the chunk containing 's'.
4214  */
4215 static sector_t last_dev_address(sector_t s, struct geom *geo)
4216 {
4217 	s = (s | geo->chunk_mask) + 1;
4218 	s >>= geo->chunk_shift;
4219 	s *= geo->near_copies;
4220 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4221 	s *= geo->far_copies;
4222 	s <<= geo->chunk_shift;
4223 	return s;
4224 }
4225 
4226 /* Calculate the first device-address that could contain
4227  * any block from the chunk that includes the array-address 's'.
4228  * This too will be the start of a chunk
4229  */
4230 static sector_t first_dev_address(sector_t s, struct geom *geo)
4231 {
4232 	s >>= geo->chunk_shift;
4233 	s *= geo->near_copies;
4234 	sector_div(s, geo->raid_disks);
4235 	s *= geo->far_copies;
4236 	s <<= geo->chunk_shift;
4237 	return s;
4238 }
4239 
4240 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4241 				int *skipped)
4242 {
4243 	/* We simply copy at most one chunk (smallest of old and new)
4244 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4245 	 * or we hit a bad block or something.
4246 	 * This might mean we pause for normal IO in the middle of
4247 	 * a chunk, but that is not a problem was mddev->reshape_position
4248 	 * can record any location.
4249 	 *
4250 	 * If we will want to write to a location that isn't
4251 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4252 	 * we need to flush all reshape requests and update the metadata.
4253 	 *
4254 	 * When reshaping forwards (e.g. to more devices), we interpret
4255 	 * 'safe' as the earliest block which might not have been copied
4256 	 * down yet.  We divide this by previous stripe size and multiply
4257 	 * by previous stripe length to get lowest device offset that we
4258 	 * cannot write to yet.
4259 	 * We interpret 'sector_nr' as an address that we want to write to.
4260 	 * From this we use last_device_address() to find where we might
4261 	 * write to, and first_device_address on the  'safe' position.
4262 	 * If this 'next' write position is after the 'safe' position,
4263 	 * we must update the metadata to increase the 'safe' position.
4264 	 *
4265 	 * When reshaping backwards, we round in the opposite direction
4266 	 * and perform the reverse test:  next write position must not be
4267 	 * less than current safe position.
4268 	 *
4269 	 * In all this the minimum difference in data offsets
4270 	 * (conf->offset_diff - always positive) allows a bit of slack,
4271 	 * so next can be after 'safe', but not by more than offset_disk
4272 	 *
4273 	 * We need to prepare all the bios here before we start any IO
4274 	 * to ensure the size we choose is acceptable to all devices.
4275 	 * The means one for each copy for write-out and an extra one for
4276 	 * read-in.
4277 	 * We store the read-in bio in ->master_bio and the others in
4278 	 * ->devs[x].bio and ->devs[x].repl_bio.
4279 	 */
4280 	struct r10conf *conf = mddev->private;
4281 	struct r10bio *r10_bio;
4282 	sector_t next, safe, last;
4283 	int max_sectors;
4284 	int nr_sectors;
4285 	int s;
4286 	struct md_rdev *rdev;
4287 	int need_flush = 0;
4288 	struct bio *blist;
4289 	struct bio *bio, *read_bio;
4290 	int sectors_done = 0;
4291 
4292 	if (sector_nr == 0) {
4293 		/* If restarting in the middle, skip the initial sectors */
4294 		if (mddev->reshape_backwards &&
4295 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4296 			sector_nr = (raid10_size(mddev, 0, 0)
4297 				     - conf->reshape_progress);
4298 		} else if (!mddev->reshape_backwards &&
4299 			   conf->reshape_progress > 0)
4300 			sector_nr = conf->reshape_progress;
4301 		if (sector_nr) {
4302 			mddev->curr_resync_completed = sector_nr;
4303 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4304 			*skipped = 1;
4305 			return sector_nr;
4306 		}
4307 	}
4308 
4309 	/* We don't use sector_nr to track where we are up to
4310 	 * as that doesn't work well for ->reshape_backwards.
4311 	 * So just use ->reshape_progress.
4312 	 */
4313 	if (mddev->reshape_backwards) {
4314 		/* 'next' is the earliest device address that we might
4315 		 * write to for this chunk in the new layout
4316 		 */
4317 		next = first_dev_address(conf->reshape_progress - 1,
4318 					 &conf->geo);
4319 
4320 		/* 'safe' is the last device address that we might read from
4321 		 * in the old layout after a restart
4322 		 */
4323 		safe = last_dev_address(conf->reshape_safe - 1,
4324 					&conf->prev);
4325 
4326 		if (next + conf->offset_diff < safe)
4327 			need_flush = 1;
4328 
4329 		last = conf->reshape_progress - 1;
4330 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4331 					       & conf->prev.chunk_mask);
4332 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4333 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4334 	} else {
4335 		/* 'next' is after the last device address that we
4336 		 * might write to for this chunk in the new layout
4337 		 */
4338 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4339 
4340 		/* 'safe' is the earliest device address that we might
4341 		 * read from in the old layout after a restart
4342 		 */
4343 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4344 
4345 		/* Need to update metadata if 'next' might be beyond 'safe'
4346 		 * as that would possibly corrupt data
4347 		 */
4348 		if (next > safe + conf->offset_diff)
4349 			need_flush = 1;
4350 
4351 		sector_nr = conf->reshape_progress;
4352 		last  = sector_nr | (conf->geo.chunk_mask
4353 				     & conf->prev.chunk_mask);
4354 
4355 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4356 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4357 	}
4358 
4359 	if (need_flush ||
4360 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4361 		/* Need to update reshape_position in metadata */
4362 		wait_barrier(conf);
4363 		mddev->reshape_position = conf->reshape_progress;
4364 		if (mddev->reshape_backwards)
4365 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4366 				- conf->reshape_progress;
4367 		else
4368 			mddev->curr_resync_completed = conf->reshape_progress;
4369 		conf->reshape_checkpoint = jiffies;
4370 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4371 		md_wakeup_thread(mddev->thread);
4372 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4373 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4374 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4375 			allow_barrier(conf);
4376 			return sectors_done;
4377 		}
4378 		conf->reshape_safe = mddev->reshape_position;
4379 		allow_barrier(conf);
4380 	}
4381 
4382 read_more:
4383 	/* Now schedule reads for blocks from sector_nr to last */
4384 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4385 	r10_bio->state = 0;
4386 	raise_barrier(conf, sectors_done != 0);
4387 	atomic_set(&r10_bio->remaining, 0);
4388 	r10_bio->mddev = mddev;
4389 	r10_bio->sector = sector_nr;
4390 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4391 	r10_bio->sectors = last - sector_nr + 1;
4392 	rdev = read_balance(conf, r10_bio, &max_sectors);
4393 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4394 
4395 	if (!rdev) {
4396 		/* Cannot read from here, so need to record bad blocks
4397 		 * on all the target devices.
4398 		 */
4399 		// FIXME
4400 		mempool_free(r10_bio, conf->r10buf_pool);
4401 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4402 		return sectors_done;
4403 	}
4404 
4405 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4406 
4407 	read_bio->bi_bdev = rdev->bdev;
4408 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4409 			       + rdev->data_offset);
4410 	read_bio->bi_private = r10_bio;
4411 	read_bio->bi_end_io = end_sync_read;
4412 	read_bio->bi_rw = READ;
4413 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4414 	__set_bit(BIO_UPTODATE, &read_bio->bi_flags);
4415 	read_bio->bi_vcnt = 0;
4416 	read_bio->bi_iter.bi_size = 0;
4417 	r10_bio->master_bio = read_bio;
4418 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4419 
4420 	/* Now find the locations in the new layout */
4421 	__raid10_find_phys(&conf->geo, r10_bio);
4422 
4423 	blist = read_bio;
4424 	read_bio->bi_next = NULL;
4425 
4426 	for (s = 0; s < conf->copies*2; s++) {
4427 		struct bio *b;
4428 		int d = r10_bio->devs[s/2].devnum;
4429 		struct md_rdev *rdev2;
4430 		if (s&1) {
4431 			rdev2 = conf->mirrors[d].replacement;
4432 			b = r10_bio->devs[s/2].repl_bio;
4433 		} else {
4434 			rdev2 = conf->mirrors[d].rdev;
4435 			b = r10_bio->devs[s/2].bio;
4436 		}
4437 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4438 			continue;
4439 
4440 		bio_reset(b);
4441 		b->bi_bdev = rdev2->bdev;
4442 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4443 			rdev2->new_data_offset;
4444 		b->bi_private = r10_bio;
4445 		b->bi_end_io = end_reshape_write;
4446 		b->bi_rw = WRITE;
4447 		b->bi_next = blist;
4448 		blist = b;
4449 	}
4450 
4451 	/* Now add as many pages as possible to all of these bios. */
4452 
4453 	nr_sectors = 0;
4454 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4455 		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4456 		int len = (max_sectors - s) << 9;
4457 		if (len > PAGE_SIZE)
4458 			len = PAGE_SIZE;
4459 		for (bio = blist; bio ; bio = bio->bi_next) {
4460 			struct bio *bio2;
4461 			if (bio_add_page(bio, page, len, 0))
4462 				continue;
4463 
4464 			/* Didn't fit, must stop */
4465 			for (bio2 = blist;
4466 			     bio2 && bio2 != bio;
4467 			     bio2 = bio2->bi_next) {
4468 				/* Remove last page from this bio */
4469 				bio2->bi_vcnt--;
4470 				bio2->bi_iter.bi_size -= len;
4471 				__clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
4472 			}
4473 			goto bio_full;
4474 		}
4475 		sector_nr += len >> 9;
4476 		nr_sectors += len >> 9;
4477 	}
4478 bio_full:
4479 	r10_bio->sectors = nr_sectors;
4480 
4481 	/* Now submit the read */
4482 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4483 	atomic_inc(&r10_bio->remaining);
4484 	read_bio->bi_next = NULL;
4485 	generic_make_request(read_bio);
4486 	sector_nr += nr_sectors;
4487 	sectors_done += nr_sectors;
4488 	if (sector_nr <= last)
4489 		goto read_more;
4490 
4491 	/* Now that we have done the whole section we can
4492 	 * update reshape_progress
4493 	 */
4494 	if (mddev->reshape_backwards)
4495 		conf->reshape_progress -= sectors_done;
4496 	else
4497 		conf->reshape_progress += sectors_done;
4498 
4499 	return sectors_done;
4500 }
4501 
4502 static void end_reshape_request(struct r10bio *r10_bio);
4503 static int handle_reshape_read_error(struct mddev *mddev,
4504 				     struct r10bio *r10_bio);
4505 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4506 {
4507 	/* Reshape read completed.  Hopefully we have a block
4508 	 * to write out.
4509 	 * If we got a read error then we do sync 1-page reads from
4510 	 * elsewhere until we find the data - or give up.
4511 	 */
4512 	struct r10conf *conf = mddev->private;
4513 	int s;
4514 
4515 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4516 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4517 			/* Reshape has been aborted */
4518 			md_done_sync(mddev, r10_bio->sectors, 0);
4519 			return;
4520 		}
4521 
4522 	/* We definitely have the data in the pages, schedule the
4523 	 * writes.
4524 	 */
4525 	atomic_set(&r10_bio->remaining, 1);
4526 	for (s = 0; s < conf->copies*2; s++) {
4527 		struct bio *b;
4528 		int d = r10_bio->devs[s/2].devnum;
4529 		struct md_rdev *rdev;
4530 		if (s&1) {
4531 			rdev = conf->mirrors[d].replacement;
4532 			b = r10_bio->devs[s/2].repl_bio;
4533 		} else {
4534 			rdev = conf->mirrors[d].rdev;
4535 			b = r10_bio->devs[s/2].bio;
4536 		}
4537 		if (!rdev || test_bit(Faulty, &rdev->flags))
4538 			continue;
4539 		atomic_inc(&rdev->nr_pending);
4540 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4541 		atomic_inc(&r10_bio->remaining);
4542 		b->bi_next = NULL;
4543 		generic_make_request(b);
4544 	}
4545 	end_reshape_request(r10_bio);
4546 }
4547 
4548 static void end_reshape(struct r10conf *conf)
4549 {
4550 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4551 		return;
4552 
4553 	spin_lock_irq(&conf->device_lock);
4554 	conf->prev = conf->geo;
4555 	md_finish_reshape(conf->mddev);
4556 	smp_wmb();
4557 	conf->reshape_progress = MaxSector;
4558 	spin_unlock_irq(&conf->device_lock);
4559 
4560 	/* read-ahead size must cover two whole stripes, which is
4561 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4562 	 */
4563 	if (conf->mddev->queue) {
4564 		int stripe = conf->geo.raid_disks *
4565 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4566 		stripe /= conf->geo.near_copies;
4567 		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4568 			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4569 	}
4570 	conf->fullsync = 0;
4571 }
4572 
4573 static int handle_reshape_read_error(struct mddev *mddev,
4574 				     struct r10bio *r10_bio)
4575 {
4576 	/* Use sync reads to get the blocks from somewhere else */
4577 	int sectors = r10_bio->sectors;
4578 	struct r10conf *conf = mddev->private;
4579 	struct {
4580 		struct r10bio r10_bio;
4581 		struct r10dev devs[conf->copies];
4582 	} on_stack;
4583 	struct r10bio *r10b = &on_stack.r10_bio;
4584 	int slot = 0;
4585 	int idx = 0;
4586 	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4587 
4588 	r10b->sector = r10_bio->sector;
4589 	__raid10_find_phys(&conf->prev, r10b);
4590 
4591 	while (sectors) {
4592 		int s = sectors;
4593 		int success = 0;
4594 		int first_slot = slot;
4595 
4596 		if (s > (PAGE_SIZE >> 9))
4597 			s = PAGE_SIZE >> 9;
4598 
4599 		while (!success) {
4600 			int d = r10b->devs[slot].devnum;
4601 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4602 			sector_t addr;
4603 			if (rdev == NULL ||
4604 			    test_bit(Faulty, &rdev->flags) ||
4605 			    !test_bit(In_sync, &rdev->flags))
4606 				goto failed;
4607 
4608 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4609 			success = sync_page_io(rdev,
4610 					       addr,
4611 					       s << 9,
4612 					       bvec[idx].bv_page,
4613 					       READ, false);
4614 			if (success)
4615 				break;
4616 		failed:
4617 			slot++;
4618 			if (slot >= conf->copies)
4619 				slot = 0;
4620 			if (slot == first_slot)
4621 				break;
4622 		}
4623 		if (!success) {
4624 			/* couldn't read this block, must give up */
4625 			set_bit(MD_RECOVERY_INTR,
4626 				&mddev->recovery);
4627 			return -EIO;
4628 		}
4629 		sectors -= s;
4630 		idx++;
4631 	}
4632 	return 0;
4633 }
4634 
4635 static void end_reshape_write(struct bio *bio, int error)
4636 {
4637 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4638 	struct r10bio *r10_bio = bio->bi_private;
4639 	struct mddev *mddev = r10_bio->mddev;
4640 	struct r10conf *conf = mddev->private;
4641 	int d;
4642 	int slot;
4643 	int repl;
4644 	struct md_rdev *rdev = NULL;
4645 
4646 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4647 	if (repl)
4648 		rdev = conf->mirrors[d].replacement;
4649 	if (!rdev) {
4650 		smp_mb();
4651 		rdev = conf->mirrors[d].rdev;
4652 	}
4653 
4654 	if (!uptodate) {
4655 		/* FIXME should record badblock */
4656 		md_error(mddev, rdev);
4657 	}
4658 
4659 	rdev_dec_pending(rdev, mddev);
4660 	end_reshape_request(r10_bio);
4661 }
4662 
4663 static void end_reshape_request(struct r10bio *r10_bio)
4664 {
4665 	if (!atomic_dec_and_test(&r10_bio->remaining))
4666 		return;
4667 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4668 	bio_put(r10_bio->master_bio);
4669 	put_buf(r10_bio);
4670 }
4671 
4672 static void raid10_finish_reshape(struct mddev *mddev)
4673 {
4674 	struct r10conf *conf = mddev->private;
4675 
4676 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4677 		return;
4678 
4679 	if (mddev->delta_disks > 0) {
4680 		sector_t size = raid10_size(mddev, 0, 0);
4681 		md_set_array_sectors(mddev, size);
4682 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4683 			mddev->recovery_cp = mddev->resync_max_sectors;
4684 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4685 		}
4686 		mddev->resync_max_sectors = size;
4687 		set_capacity(mddev->gendisk, mddev->array_sectors);
4688 		revalidate_disk(mddev->gendisk);
4689 	} else {
4690 		int d;
4691 		for (d = conf->geo.raid_disks ;
4692 		     d < conf->geo.raid_disks - mddev->delta_disks;
4693 		     d++) {
4694 			struct md_rdev *rdev = conf->mirrors[d].rdev;
4695 			if (rdev)
4696 				clear_bit(In_sync, &rdev->flags);
4697 			rdev = conf->mirrors[d].replacement;
4698 			if (rdev)
4699 				clear_bit(In_sync, &rdev->flags);
4700 		}
4701 	}
4702 	mddev->layout = mddev->new_layout;
4703 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4704 	mddev->reshape_position = MaxSector;
4705 	mddev->delta_disks = 0;
4706 	mddev->reshape_backwards = 0;
4707 }
4708 
4709 static struct md_personality raid10_personality =
4710 {
4711 	.name		= "raid10",
4712 	.level		= 10,
4713 	.owner		= THIS_MODULE,
4714 	.make_request	= make_request,
4715 	.run		= run,
4716 	.stop		= stop,
4717 	.status		= status,
4718 	.error_handler	= error,
4719 	.hot_add_disk	= raid10_add_disk,
4720 	.hot_remove_disk= raid10_remove_disk,
4721 	.spare_active	= raid10_spare_active,
4722 	.sync_request	= sync_request,
4723 	.quiesce	= raid10_quiesce,
4724 	.size		= raid10_size,
4725 	.resize		= raid10_resize,
4726 	.takeover	= raid10_takeover,
4727 	.check_reshape	= raid10_check_reshape,
4728 	.start_reshape	= raid10_start_reshape,
4729 	.finish_reshape	= raid10_finish_reshape,
4730 };
4731 
4732 static int __init raid_init(void)
4733 {
4734 	return register_md_personality(&raid10_personality);
4735 }
4736 
4737 static void raid_exit(void)
4738 {
4739 	unregister_md_personality(&raid10_personality);
4740 }
4741 
4742 module_init(raid_init);
4743 module_exit(raid_exit);
4744 MODULE_LICENSE("GPL");
4745 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4746 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4747 MODULE_ALIAS("md-raid10");
4748 MODULE_ALIAS("md-level-10");
4749 
4750 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4751