1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include "dm-bio-list.h" 22 #include <linux/raid/raid10.h> 23 #include <linux/raid/bitmap.h> 24 25 /* 26 * RAID10 provides a combination of RAID0 and RAID1 functionality. 27 * The layout of data is defined by 28 * chunk_size 29 * raid_disks 30 * near_copies (stored in low byte of layout) 31 * far_copies (stored in second byte of layout) 32 * 33 * The data to be stored is divided into chunks using chunksize. 34 * Each device is divided into far_copies sections. 35 * In each section, chunks are laid out in a style similar to raid0, but 36 * near_copies copies of each chunk is stored (each on a different drive). 37 * The starting device for each section is offset near_copies from the starting 38 * device of the previous section. 39 * Thus there are (near_copies*far_copies) of each chunk, and each is on a different 40 * drive. 41 * near_copies and far_copies must be at least one, and their product is at most 42 * raid_disks. 43 */ 44 45 /* 46 * Number of guaranteed r10bios in case of extreme VM load: 47 */ 48 #define NR_RAID10_BIOS 256 49 50 static void unplug_slaves(mddev_t *mddev); 51 52 static void allow_barrier(conf_t *conf); 53 static void lower_barrier(conf_t *conf); 54 55 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 56 { 57 conf_t *conf = data; 58 r10bio_t *r10_bio; 59 int size = offsetof(struct r10bio_s, devs[conf->copies]); 60 61 /* allocate a r10bio with room for raid_disks entries in the bios array */ 62 r10_bio = kzalloc(size, gfp_flags); 63 if (!r10_bio) 64 unplug_slaves(conf->mddev); 65 66 return r10_bio; 67 } 68 69 static void r10bio_pool_free(void *r10_bio, void *data) 70 { 71 kfree(r10_bio); 72 } 73 74 #define RESYNC_BLOCK_SIZE (64*1024) 75 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 76 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 77 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 78 #define RESYNC_WINDOW (2048*1024) 79 80 /* 81 * When performing a resync, we need to read and compare, so 82 * we need as many pages are there are copies. 83 * When performing a recovery, we need 2 bios, one for read, 84 * one for write (we recover only one drive per r10buf) 85 * 86 */ 87 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 88 { 89 conf_t *conf = data; 90 struct page *page; 91 r10bio_t *r10_bio; 92 struct bio *bio; 93 int i, j; 94 int nalloc; 95 96 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 97 if (!r10_bio) { 98 unplug_slaves(conf->mddev); 99 return NULL; 100 } 101 102 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 103 nalloc = conf->copies; /* resync */ 104 else 105 nalloc = 2; /* recovery */ 106 107 /* 108 * Allocate bios. 109 */ 110 for (j = nalloc ; j-- ; ) { 111 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 112 if (!bio) 113 goto out_free_bio; 114 r10_bio->devs[j].bio = bio; 115 } 116 /* 117 * Allocate RESYNC_PAGES data pages and attach them 118 * where needed. 119 */ 120 for (j = 0 ; j < nalloc; j++) { 121 bio = r10_bio->devs[j].bio; 122 for (i = 0; i < RESYNC_PAGES; i++) { 123 page = alloc_page(gfp_flags); 124 if (unlikely(!page)) 125 goto out_free_pages; 126 127 bio->bi_io_vec[i].bv_page = page; 128 } 129 } 130 131 return r10_bio; 132 133 out_free_pages: 134 for ( ; i > 0 ; i--) 135 safe_put_page(bio->bi_io_vec[i-1].bv_page); 136 while (j--) 137 for (i = 0; i < RESYNC_PAGES ; i++) 138 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 139 j = -1; 140 out_free_bio: 141 while ( ++j < nalloc ) 142 bio_put(r10_bio->devs[j].bio); 143 r10bio_pool_free(r10_bio, conf); 144 return NULL; 145 } 146 147 static void r10buf_pool_free(void *__r10_bio, void *data) 148 { 149 int i; 150 conf_t *conf = data; 151 r10bio_t *r10bio = __r10_bio; 152 int j; 153 154 for (j=0; j < conf->copies; j++) { 155 struct bio *bio = r10bio->devs[j].bio; 156 if (bio) { 157 for (i = 0; i < RESYNC_PAGES; i++) { 158 safe_put_page(bio->bi_io_vec[i].bv_page); 159 bio->bi_io_vec[i].bv_page = NULL; 160 } 161 bio_put(bio); 162 } 163 } 164 r10bio_pool_free(r10bio, conf); 165 } 166 167 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 168 { 169 int i; 170 171 for (i = 0; i < conf->copies; i++) { 172 struct bio **bio = & r10_bio->devs[i].bio; 173 if (*bio && *bio != IO_BLOCKED) 174 bio_put(*bio); 175 *bio = NULL; 176 } 177 } 178 179 static inline void free_r10bio(r10bio_t *r10_bio) 180 { 181 conf_t *conf = mddev_to_conf(r10_bio->mddev); 182 183 /* 184 * Wake up any possible resync thread that waits for the device 185 * to go idle. 186 */ 187 allow_barrier(conf); 188 189 put_all_bios(conf, r10_bio); 190 mempool_free(r10_bio, conf->r10bio_pool); 191 } 192 193 static inline void put_buf(r10bio_t *r10_bio) 194 { 195 conf_t *conf = mddev_to_conf(r10_bio->mddev); 196 197 mempool_free(r10_bio, conf->r10buf_pool); 198 199 lower_barrier(conf); 200 } 201 202 static void reschedule_retry(r10bio_t *r10_bio) 203 { 204 unsigned long flags; 205 mddev_t *mddev = r10_bio->mddev; 206 conf_t *conf = mddev_to_conf(mddev); 207 208 spin_lock_irqsave(&conf->device_lock, flags); 209 list_add(&r10_bio->retry_list, &conf->retry_list); 210 conf->nr_queued ++; 211 spin_unlock_irqrestore(&conf->device_lock, flags); 212 213 md_wakeup_thread(mddev->thread); 214 } 215 216 /* 217 * raid_end_bio_io() is called when we have finished servicing a mirrored 218 * operation and are ready to return a success/failure code to the buffer 219 * cache layer. 220 */ 221 static void raid_end_bio_io(r10bio_t *r10_bio) 222 { 223 struct bio *bio = r10_bio->master_bio; 224 225 bio_endio(bio, bio->bi_size, 226 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 227 free_r10bio(r10_bio); 228 } 229 230 /* 231 * Update disk head position estimator based on IRQ completion info. 232 */ 233 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 234 { 235 conf_t *conf = mddev_to_conf(r10_bio->mddev); 236 237 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 238 r10_bio->devs[slot].addr + (r10_bio->sectors); 239 } 240 241 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error) 242 { 243 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 244 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 245 int slot, dev; 246 conf_t *conf = mddev_to_conf(r10_bio->mddev); 247 248 if (bio->bi_size) 249 return 1; 250 251 slot = r10_bio->read_slot; 252 dev = r10_bio->devs[slot].devnum; 253 /* 254 * this branch is our 'one mirror IO has finished' event handler: 255 */ 256 update_head_pos(slot, r10_bio); 257 258 if (uptodate) { 259 /* 260 * Set R10BIO_Uptodate in our master bio, so that 261 * we will return a good error code to the higher 262 * levels even if IO on some other mirrored buffer fails. 263 * 264 * The 'master' represents the composite IO operation to 265 * user-side. So if something waits for IO, then it will 266 * wait for the 'master' bio. 267 */ 268 set_bit(R10BIO_Uptodate, &r10_bio->state); 269 raid_end_bio_io(r10_bio); 270 } else { 271 /* 272 * oops, read error: 273 */ 274 char b[BDEVNAME_SIZE]; 275 if (printk_ratelimit()) 276 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 277 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 278 reschedule_retry(r10_bio); 279 } 280 281 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 282 return 0; 283 } 284 285 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error) 286 { 287 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 288 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 289 int slot, dev; 290 conf_t *conf = mddev_to_conf(r10_bio->mddev); 291 292 if (bio->bi_size) 293 return 1; 294 295 for (slot = 0; slot < conf->copies; slot++) 296 if (r10_bio->devs[slot].bio == bio) 297 break; 298 dev = r10_bio->devs[slot].devnum; 299 300 /* 301 * this branch is our 'one mirror IO has finished' event handler: 302 */ 303 if (!uptodate) { 304 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 305 /* an I/O failed, we can't clear the bitmap */ 306 set_bit(R10BIO_Degraded, &r10_bio->state); 307 } else 308 /* 309 * Set R10BIO_Uptodate in our master bio, so that 310 * we will return a good error code for to the higher 311 * levels even if IO on some other mirrored buffer fails. 312 * 313 * The 'master' represents the composite IO operation to 314 * user-side. So if something waits for IO, then it will 315 * wait for the 'master' bio. 316 */ 317 set_bit(R10BIO_Uptodate, &r10_bio->state); 318 319 update_head_pos(slot, r10_bio); 320 321 /* 322 * 323 * Let's see if all mirrored write operations have finished 324 * already. 325 */ 326 if (atomic_dec_and_test(&r10_bio->remaining)) { 327 /* clear the bitmap if all writes complete successfully */ 328 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 329 r10_bio->sectors, 330 !test_bit(R10BIO_Degraded, &r10_bio->state), 331 0); 332 md_write_end(r10_bio->mddev); 333 raid_end_bio_io(r10_bio); 334 } 335 336 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 337 return 0; 338 } 339 340 341 /* 342 * RAID10 layout manager 343 * Aswell as the chunksize and raid_disks count, there are two 344 * parameters: near_copies and far_copies. 345 * near_copies * far_copies must be <= raid_disks. 346 * Normally one of these will be 1. 347 * If both are 1, we get raid0. 348 * If near_copies == raid_disks, we get raid1. 349 * 350 * Chunks are layed out in raid0 style with near_copies copies of the 351 * first chunk, followed by near_copies copies of the next chunk and 352 * so on. 353 * If far_copies > 1, then after 1/far_copies of the array has been assigned 354 * as described above, we start again with a device offset of near_copies. 355 * So we effectively have another copy of the whole array further down all 356 * the drives, but with blocks on different drives. 357 * With this layout, and block is never stored twice on the one device. 358 * 359 * raid10_find_phys finds the sector offset of a given virtual sector 360 * on each device that it is on. If a block isn't on a device, 361 * that entry in the array is set to MaxSector. 362 * 363 * raid10_find_virt does the reverse mapping, from a device and a 364 * sector offset to a virtual address 365 */ 366 367 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 368 { 369 int n,f; 370 sector_t sector; 371 sector_t chunk; 372 sector_t stripe; 373 int dev; 374 375 int slot = 0; 376 377 /* now calculate first sector/dev */ 378 chunk = r10bio->sector >> conf->chunk_shift; 379 sector = r10bio->sector & conf->chunk_mask; 380 381 chunk *= conf->near_copies; 382 stripe = chunk; 383 dev = sector_div(stripe, conf->raid_disks); 384 385 sector += stripe << conf->chunk_shift; 386 387 /* and calculate all the others */ 388 for (n=0; n < conf->near_copies; n++) { 389 int d = dev; 390 sector_t s = sector; 391 r10bio->devs[slot].addr = sector; 392 r10bio->devs[slot].devnum = d; 393 slot++; 394 395 for (f = 1; f < conf->far_copies; f++) { 396 d += conf->near_copies; 397 if (d >= conf->raid_disks) 398 d -= conf->raid_disks; 399 s += conf->stride; 400 r10bio->devs[slot].devnum = d; 401 r10bio->devs[slot].addr = s; 402 slot++; 403 } 404 dev++; 405 if (dev >= conf->raid_disks) { 406 dev = 0; 407 sector += (conf->chunk_mask + 1); 408 } 409 } 410 BUG_ON(slot != conf->copies); 411 } 412 413 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 414 { 415 sector_t offset, chunk, vchunk; 416 417 while (sector > conf->stride) { 418 sector -= conf->stride; 419 if (dev < conf->near_copies) 420 dev += conf->raid_disks - conf->near_copies; 421 else 422 dev -= conf->near_copies; 423 } 424 425 offset = sector & conf->chunk_mask; 426 chunk = sector >> conf->chunk_shift; 427 vchunk = chunk * conf->raid_disks + dev; 428 sector_div(vchunk, conf->near_copies); 429 return (vchunk << conf->chunk_shift) + offset; 430 } 431 432 /** 433 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 434 * @q: request queue 435 * @bio: the buffer head that's been built up so far 436 * @biovec: the request that could be merged to it. 437 * 438 * Return amount of bytes we can accept at this offset 439 * If near_copies == raid_disk, there are no striping issues, 440 * but in that case, the function isn't called at all. 441 */ 442 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio, 443 struct bio_vec *bio_vec) 444 { 445 mddev_t *mddev = q->queuedata; 446 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 447 int max; 448 unsigned int chunk_sectors = mddev->chunk_size >> 9; 449 unsigned int bio_sectors = bio->bi_size >> 9; 450 451 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 452 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 453 if (max <= bio_vec->bv_len && bio_sectors == 0) 454 return bio_vec->bv_len; 455 else 456 return max; 457 } 458 459 /* 460 * This routine returns the disk from which the requested read should 461 * be done. There is a per-array 'next expected sequential IO' sector 462 * number - if this matches on the next IO then we use the last disk. 463 * There is also a per-disk 'last know head position' sector that is 464 * maintained from IRQ contexts, both the normal and the resync IO 465 * completion handlers update this position correctly. If there is no 466 * perfect sequential match then we pick the disk whose head is closest. 467 * 468 * If there are 2 mirrors in the same 2 devices, performance degrades 469 * because position is mirror, not device based. 470 * 471 * The rdev for the device selected will have nr_pending incremented. 472 */ 473 474 /* 475 * FIXME: possibly should rethink readbalancing and do it differently 476 * depending on near_copies / far_copies geometry. 477 */ 478 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 479 { 480 const unsigned long this_sector = r10_bio->sector; 481 int disk, slot, nslot; 482 const int sectors = r10_bio->sectors; 483 sector_t new_distance, current_distance; 484 mdk_rdev_t *rdev; 485 486 raid10_find_phys(conf, r10_bio); 487 rcu_read_lock(); 488 /* 489 * Check if we can balance. We can balance on the whole 490 * device if no resync is going on (recovery is ok), or below 491 * the resync window. We take the first readable disk when 492 * above the resync window. 493 */ 494 if (conf->mddev->recovery_cp < MaxSector 495 && (this_sector + sectors >= conf->next_resync)) { 496 /* make sure that disk is operational */ 497 slot = 0; 498 disk = r10_bio->devs[slot].devnum; 499 500 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 501 r10_bio->devs[slot].bio == IO_BLOCKED || 502 !test_bit(In_sync, &rdev->flags)) { 503 slot++; 504 if (slot == conf->copies) { 505 slot = 0; 506 disk = -1; 507 break; 508 } 509 disk = r10_bio->devs[slot].devnum; 510 } 511 goto rb_out; 512 } 513 514 515 /* make sure the disk is operational */ 516 slot = 0; 517 disk = r10_bio->devs[slot].devnum; 518 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 519 r10_bio->devs[slot].bio == IO_BLOCKED || 520 !test_bit(In_sync, &rdev->flags)) { 521 slot ++; 522 if (slot == conf->copies) { 523 disk = -1; 524 goto rb_out; 525 } 526 disk = r10_bio->devs[slot].devnum; 527 } 528 529 530 current_distance = abs(r10_bio->devs[slot].addr - 531 conf->mirrors[disk].head_position); 532 533 /* Find the disk whose head is closest */ 534 535 for (nslot = slot; nslot < conf->copies; nslot++) { 536 int ndisk = r10_bio->devs[nslot].devnum; 537 538 539 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 540 r10_bio->devs[nslot].bio == IO_BLOCKED || 541 !test_bit(In_sync, &rdev->flags)) 542 continue; 543 544 /* This optimisation is debatable, and completely destroys 545 * sequential read speed for 'far copies' arrays. So only 546 * keep it for 'near' arrays, and review those later. 547 */ 548 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 549 disk = ndisk; 550 slot = nslot; 551 break; 552 } 553 new_distance = abs(r10_bio->devs[nslot].addr - 554 conf->mirrors[ndisk].head_position); 555 if (new_distance < current_distance) { 556 current_distance = new_distance; 557 disk = ndisk; 558 slot = nslot; 559 } 560 } 561 562 rb_out: 563 r10_bio->read_slot = slot; 564 /* conf->next_seq_sect = this_sector + sectors;*/ 565 566 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 567 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 568 rcu_read_unlock(); 569 570 return disk; 571 } 572 573 static void unplug_slaves(mddev_t *mddev) 574 { 575 conf_t *conf = mddev_to_conf(mddev); 576 int i; 577 578 rcu_read_lock(); 579 for (i=0; i<mddev->raid_disks; i++) { 580 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 581 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 582 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 583 584 atomic_inc(&rdev->nr_pending); 585 rcu_read_unlock(); 586 587 if (r_queue->unplug_fn) 588 r_queue->unplug_fn(r_queue); 589 590 rdev_dec_pending(rdev, mddev); 591 rcu_read_lock(); 592 } 593 } 594 rcu_read_unlock(); 595 } 596 597 static void raid10_unplug(request_queue_t *q) 598 { 599 mddev_t *mddev = q->queuedata; 600 601 unplug_slaves(q->queuedata); 602 md_wakeup_thread(mddev->thread); 603 } 604 605 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk, 606 sector_t *error_sector) 607 { 608 mddev_t *mddev = q->queuedata; 609 conf_t *conf = mddev_to_conf(mddev); 610 int i, ret = 0; 611 612 rcu_read_lock(); 613 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 614 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 615 if (rdev && !test_bit(Faulty, &rdev->flags)) { 616 struct block_device *bdev = rdev->bdev; 617 request_queue_t *r_queue = bdev_get_queue(bdev); 618 619 if (!r_queue->issue_flush_fn) 620 ret = -EOPNOTSUPP; 621 else { 622 atomic_inc(&rdev->nr_pending); 623 rcu_read_unlock(); 624 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 625 error_sector); 626 rdev_dec_pending(rdev, mddev); 627 rcu_read_lock(); 628 } 629 } 630 } 631 rcu_read_unlock(); 632 return ret; 633 } 634 635 /* Barriers.... 636 * Sometimes we need to suspend IO while we do something else, 637 * either some resync/recovery, or reconfigure the array. 638 * To do this we raise a 'barrier'. 639 * The 'barrier' is a counter that can be raised multiple times 640 * to count how many activities are happening which preclude 641 * normal IO. 642 * We can only raise the barrier if there is no pending IO. 643 * i.e. if nr_pending == 0. 644 * We choose only to raise the barrier if no-one is waiting for the 645 * barrier to go down. This means that as soon as an IO request 646 * is ready, no other operations which require a barrier will start 647 * until the IO request has had a chance. 648 * 649 * So: regular IO calls 'wait_barrier'. When that returns there 650 * is no backgroup IO happening, It must arrange to call 651 * allow_barrier when it has finished its IO. 652 * backgroup IO calls must call raise_barrier. Once that returns 653 * there is no normal IO happeing. It must arrange to call 654 * lower_barrier when the particular background IO completes. 655 */ 656 #define RESYNC_DEPTH 32 657 658 static void raise_barrier(conf_t *conf, int force) 659 { 660 BUG_ON(force && !conf->barrier); 661 spin_lock_irq(&conf->resync_lock); 662 663 /* Wait until no block IO is waiting (unless 'force') */ 664 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 665 conf->resync_lock, 666 raid10_unplug(conf->mddev->queue)); 667 668 /* block any new IO from starting */ 669 conf->barrier++; 670 671 /* No wait for all pending IO to complete */ 672 wait_event_lock_irq(conf->wait_barrier, 673 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 674 conf->resync_lock, 675 raid10_unplug(conf->mddev->queue)); 676 677 spin_unlock_irq(&conf->resync_lock); 678 } 679 680 static void lower_barrier(conf_t *conf) 681 { 682 unsigned long flags; 683 spin_lock_irqsave(&conf->resync_lock, flags); 684 conf->barrier--; 685 spin_unlock_irqrestore(&conf->resync_lock, flags); 686 wake_up(&conf->wait_barrier); 687 } 688 689 static void wait_barrier(conf_t *conf) 690 { 691 spin_lock_irq(&conf->resync_lock); 692 if (conf->barrier) { 693 conf->nr_waiting++; 694 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 695 conf->resync_lock, 696 raid10_unplug(conf->mddev->queue)); 697 conf->nr_waiting--; 698 } 699 conf->nr_pending++; 700 spin_unlock_irq(&conf->resync_lock); 701 } 702 703 static void allow_barrier(conf_t *conf) 704 { 705 unsigned long flags; 706 spin_lock_irqsave(&conf->resync_lock, flags); 707 conf->nr_pending--; 708 spin_unlock_irqrestore(&conf->resync_lock, flags); 709 wake_up(&conf->wait_barrier); 710 } 711 712 static void freeze_array(conf_t *conf) 713 { 714 /* stop syncio and normal IO and wait for everything to 715 * go quiet. 716 * We increment barrier and nr_waiting, and then 717 * wait until barrier+nr_pending match nr_queued+2 718 */ 719 spin_lock_irq(&conf->resync_lock); 720 conf->barrier++; 721 conf->nr_waiting++; 722 wait_event_lock_irq(conf->wait_barrier, 723 conf->barrier+conf->nr_pending == conf->nr_queued+2, 724 conf->resync_lock, 725 raid10_unplug(conf->mddev->queue)); 726 spin_unlock_irq(&conf->resync_lock); 727 } 728 729 static void unfreeze_array(conf_t *conf) 730 { 731 /* reverse the effect of the freeze */ 732 spin_lock_irq(&conf->resync_lock); 733 conf->barrier--; 734 conf->nr_waiting--; 735 wake_up(&conf->wait_barrier); 736 spin_unlock_irq(&conf->resync_lock); 737 } 738 739 static int make_request(request_queue_t *q, struct bio * bio) 740 { 741 mddev_t *mddev = q->queuedata; 742 conf_t *conf = mddev_to_conf(mddev); 743 mirror_info_t *mirror; 744 r10bio_t *r10_bio; 745 struct bio *read_bio; 746 int i; 747 int chunk_sects = conf->chunk_mask + 1; 748 const int rw = bio_data_dir(bio); 749 struct bio_list bl; 750 unsigned long flags; 751 752 if (unlikely(bio_barrier(bio))) { 753 bio_endio(bio, bio->bi_size, -EOPNOTSUPP); 754 return 0; 755 } 756 757 /* If this request crosses a chunk boundary, we need to 758 * split it. This will only happen for 1 PAGE (or less) requests. 759 */ 760 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 761 > chunk_sects && 762 conf->near_copies < conf->raid_disks)) { 763 struct bio_pair *bp; 764 /* Sanity check -- queue functions should prevent this happening */ 765 if (bio->bi_vcnt != 1 || 766 bio->bi_idx != 0) 767 goto bad_map; 768 /* This is a one page bio that upper layers 769 * refuse to split for us, so we need to split it. 770 */ 771 bp = bio_split(bio, bio_split_pool, 772 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 773 if (make_request(q, &bp->bio1)) 774 generic_make_request(&bp->bio1); 775 if (make_request(q, &bp->bio2)) 776 generic_make_request(&bp->bio2); 777 778 bio_pair_release(bp); 779 return 0; 780 bad_map: 781 printk("raid10_make_request bug: can't convert block across chunks" 782 " or bigger than %dk %llu %d\n", chunk_sects/2, 783 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 784 785 bio_io_error(bio, bio->bi_size); 786 return 0; 787 } 788 789 md_write_start(mddev, bio); 790 791 /* 792 * Register the new request and wait if the reconstruction 793 * thread has put up a bar for new requests. 794 * Continue immediately if no resync is active currently. 795 */ 796 wait_barrier(conf); 797 798 disk_stat_inc(mddev->gendisk, ios[rw]); 799 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 800 801 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 802 803 r10_bio->master_bio = bio; 804 r10_bio->sectors = bio->bi_size >> 9; 805 806 r10_bio->mddev = mddev; 807 r10_bio->sector = bio->bi_sector; 808 r10_bio->state = 0; 809 810 if (rw == READ) { 811 /* 812 * read balancing logic: 813 */ 814 int disk = read_balance(conf, r10_bio); 815 int slot = r10_bio->read_slot; 816 if (disk < 0) { 817 raid_end_bio_io(r10_bio); 818 return 0; 819 } 820 mirror = conf->mirrors + disk; 821 822 read_bio = bio_clone(bio, GFP_NOIO); 823 824 r10_bio->devs[slot].bio = read_bio; 825 826 read_bio->bi_sector = r10_bio->devs[slot].addr + 827 mirror->rdev->data_offset; 828 read_bio->bi_bdev = mirror->rdev->bdev; 829 read_bio->bi_end_io = raid10_end_read_request; 830 read_bio->bi_rw = READ; 831 read_bio->bi_private = r10_bio; 832 833 generic_make_request(read_bio); 834 return 0; 835 } 836 837 /* 838 * WRITE: 839 */ 840 /* first select target devices under spinlock and 841 * inc refcount on their rdev. Record them by setting 842 * bios[x] to bio 843 */ 844 raid10_find_phys(conf, r10_bio); 845 rcu_read_lock(); 846 for (i = 0; i < conf->copies; i++) { 847 int d = r10_bio->devs[i].devnum; 848 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 849 if (rdev && 850 !test_bit(Faulty, &rdev->flags)) { 851 atomic_inc(&rdev->nr_pending); 852 r10_bio->devs[i].bio = bio; 853 } else { 854 r10_bio->devs[i].bio = NULL; 855 set_bit(R10BIO_Degraded, &r10_bio->state); 856 } 857 } 858 rcu_read_unlock(); 859 860 atomic_set(&r10_bio->remaining, 0); 861 862 bio_list_init(&bl); 863 for (i = 0; i < conf->copies; i++) { 864 struct bio *mbio; 865 int d = r10_bio->devs[i].devnum; 866 if (!r10_bio->devs[i].bio) 867 continue; 868 869 mbio = bio_clone(bio, GFP_NOIO); 870 r10_bio->devs[i].bio = mbio; 871 872 mbio->bi_sector = r10_bio->devs[i].addr+ 873 conf->mirrors[d].rdev->data_offset; 874 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 875 mbio->bi_end_io = raid10_end_write_request; 876 mbio->bi_rw = WRITE; 877 mbio->bi_private = r10_bio; 878 879 atomic_inc(&r10_bio->remaining); 880 bio_list_add(&bl, mbio); 881 } 882 883 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 884 spin_lock_irqsave(&conf->device_lock, flags); 885 bio_list_merge(&conf->pending_bio_list, &bl); 886 blk_plug_device(mddev->queue); 887 spin_unlock_irqrestore(&conf->device_lock, flags); 888 889 return 0; 890 } 891 892 static void status(struct seq_file *seq, mddev_t *mddev) 893 { 894 conf_t *conf = mddev_to_conf(mddev); 895 int i; 896 897 if (conf->near_copies < conf->raid_disks) 898 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 899 if (conf->near_copies > 1) 900 seq_printf(seq, " %d near-copies", conf->near_copies); 901 if (conf->far_copies > 1) 902 seq_printf(seq, " %d far-copies", conf->far_copies); 903 904 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 905 conf->working_disks); 906 for (i = 0; i < conf->raid_disks; i++) 907 seq_printf(seq, "%s", 908 conf->mirrors[i].rdev && 909 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 910 seq_printf(seq, "]"); 911 } 912 913 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 914 { 915 char b[BDEVNAME_SIZE]; 916 conf_t *conf = mddev_to_conf(mddev); 917 918 /* 919 * If it is not operational, then we have already marked it as dead 920 * else if it is the last working disks, ignore the error, let the 921 * next level up know. 922 * else mark the drive as failed 923 */ 924 if (test_bit(In_sync, &rdev->flags) 925 && conf->working_disks == 1) 926 /* 927 * Don't fail the drive, just return an IO error. 928 * The test should really be more sophisticated than 929 * "working_disks == 1", but it isn't critical, and 930 * can wait until we do more sophisticated "is the drive 931 * really dead" tests... 932 */ 933 return; 934 if (test_bit(In_sync, &rdev->flags)) { 935 mddev->degraded++; 936 conf->working_disks--; 937 /* 938 * if recovery is running, make sure it aborts. 939 */ 940 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 941 } 942 clear_bit(In_sync, &rdev->flags); 943 set_bit(Faulty, &rdev->flags); 944 mddev->sb_dirty = 1; 945 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n" 946 " Operation continuing on %d devices\n", 947 bdevname(rdev->bdev,b), conf->working_disks); 948 } 949 950 static void print_conf(conf_t *conf) 951 { 952 int i; 953 mirror_info_t *tmp; 954 955 printk("RAID10 conf printout:\n"); 956 if (!conf) { 957 printk("(!conf)\n"); 958 return; 959 } 960 printk(" --- wd:%d rd:%d\n", conf->working_disks, 961 conf->raid_disks); 962 963 for (i = 0; i < conf->raid_disks; i++) { 964 char b[BDEVNAME_SIZE]; 965 tmp = conf->mirrors + i; 966 if (tmp->rdev) 967 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 968 i, !test_bit(In_sync, &tmp->rdev->flags), 969 !test_bit(Faulty, &tmp->rdev->flags), 970 bdevname(tmp->rdev->bdev,b)); 971 } 972 } 973 974 static void close_sync(conf_t *conf) 975 { 976 wait_barrier(conf); 977 allow_barrier(conf); 978 979 mempool_destroy(conf->r10buf_pool); 980 conf->r10buf_pool = NULL; 981 } 982 983 /* check if there are enough drives for 984 * every block to appear on atleast one 985 */ 986 static int enough(conf_t *conf) 987 { 988 int first = 0; 989 990 do { 991 int n = conf->copies; 992 int cnt = 0; 993 while (n--) { 994 if (conf->mirrors[first].rdev) 995 cnt++; 996 first = (first+1) % conf->raid_disks; 997 } 998 if (cnt == 0) 999 return 0; 1000 } while (first != 0); 1001 return 1; 1002 } 1003 1004 static int raid10_spare_active(mddev_t *mddev) 1005 { 1006 int i; 1007 conf_t *conf = mddev->private; 1008 mirror_info_t *tmp; 1009 1010 /* 1011 * Find all non-in_sync disks within the RAID10 configuration 1012 * and mark them in_sync 1013 */ 1014 for (i = 0; i < conf->raid_disks; i++) { 1015 tmp = conf->mirrors + i; 1016 if (tmp->rdev 1017 && !test_bit(Faulty, &tmp->rdev->flags) 1018 && !test_bit(In_sync, &tmp->rdev->flags)) { 1019 conf->working_disks++; 1020 mddev->degraded--; 1021 set_bit(In_sync, &tmp->rdev->flags); 1022 } 1023 } 1024 1025 print_conf(conf); 1026 return 0; 1027 } 1028 1029 1030 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1031 { 1032 conf_t *conf = mddev->private; 1033 int found = 0; 1034 int mirror; 1035 mirror_info_t *p; 1036 1037 if (mddev->recovery_cp < MaxSector) 1038 /* only hot-add to in-sync arrays, as recovery is 1039 * very different from resync 1040 */ 1041 return 0; 1042 if (!enough(conf)) 1043 return 0; 1044 1045 if (rdev->saved_raid_disk >= 0 && 1046 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1047 mirror = rdev->saved_raid_disk; 1048 else 1049 mirror = 0; 1050 for ( ; mirror < mddev->raid_disks; mirror++) 1051 if ( !(p=conf->mirrors+mirror)->rdev) { 1052 1053 blk_queue_stack_limits(mddev->queue, 1054 rdev->bdev->bd_disk->queue); 1055 /* as we don't honour merge_bvec_fn, we must never risk 1056 * violating it, so limit ->max_sector to one PAGE, as 1057 * a one page request is never in violation. 1058 */ 1059 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1060 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1061 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1062 1063 p->head_position = 0; 1064 rdev->raid_disk = mirror; 1065 found = 1; 1066 if (rdev->saved_raid_disk != mirror) 1067 conf->fullsync = 1; 1068 rcu_assign_pointer(p->rdev, rdev); 1069 break; 1070 } 1071 1072 print_conf(conf); 1073 return found; 1074 } 1075 1076 static int raid10_remove_disk(mddev_t *mddev, int number) 1077 { 1078 conf_t *conf = mddev->private; 1079 int err = 0; 1080 mdk_rdev_t *rdev; 1081 mirror_info_t *p = conf->mirrors+ number; 1082 1083 print_conf(conf); 1084 rdev = p->rdev; 1085 if (rdev) { 1086 if (test_bit(In_sync, &rdev->flags) || 1087 atomic_read(&rdev->nr_pending)) { 1088 err = -EBUSY; 1089 goto abort; 1090 } 1091 p->rdev = NULL; 1092 synchronize_rcu(); 1093 if (atomic_read(&rdev->nr_pending)) { 1094 /* lost the race, try later */ 1095 err = -EBUSY; 1096 p->rdev = rdev; 1097 } 1098 } 1099 abort: 1100 1101 print_conf(conf); 1102 return err; 1103 } 1104 1105 1106 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error) 1107 { 1108 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1109 conf_t *conf = mddev_to_conf(r10_bio->mddev); 1110 int i,d; 1111 1112 if (bio->bi_size) 1113 return 1; 1114 1115 for (i=0; i<conf->copies; i++) 1116 if (r10_bio->devs[i].bio == bio) 1117 break; 1118 if (i == conf->copies) 1119 BUG(); 1120 update_head_pos(i, r10_bio); 1121 d = r10_bio->devs[i].devnum; 1122 1123 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1124 set_bit(R10BIO_Uptodate, &r10_bio->state); 1125 else { 1126 atomic_add(r10_bio->sectors, 1127 &conf->mirrors[d].rdev->corrected_errors); 1128 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1129 md_error(r10_bio->mddev, 1130 conf->mirrors[d].rdev); 1131 } 1132 1133 /* for reconstruct, we always reschedule after a read. 1134 * for resync, only after all reads 1135 */ 1136 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1137 atomic_dec_and_test(&r10_bio->remaining)) { 1138 /* we have read all the blocks, 1139 * do the comparison in process context in raid10d 1140 */ 1141 reschedule_retry(r10_bio); 1142 } 1143 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1144 return 0; 1145 } 1146 1147 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error) 1148 { 1149 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1150 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1151 mddev_t *mddev = r10_bio->mddev; 1152 conf_t *conf = mddev_to_conf(mddev); 1153 int i,d; 1154 1155 if (bio->bi_size) 1156 return 1; 1157 1158 for (i = 0; i < conf->copies; i++) 1159 if (r10_bio->devs[i].bio == bio) 1160 break; 1161 d = r10_bio->devs[i].devnum; 1162 1163 if (!uptodate) 1164 md_error(mddev, conf->mirrors[d].rdev); 1165 update_head_pos(i, r10_bio); 1166 1167 while (atomic_dec_and_test(&r10_bio->remaining)) { 1168 if (r10_bio->master_bio == NULL) { 1169 /* the primary of several recovery bios */ 1170 md_done_sync(mddev, r10_bio->sectors, 1); 1171 put_buf(r10_bio); 1172 break; 1173 } else { 1174 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1175 put_buf(r10_bio); 1176 r10_bio = r10_bio2; 1177 } 1178 } 1179 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1180 return 0; 1181 } 1182 1183 /* 1184 * Note: sync and recover and handled very differently for raid10 1185 * This code is for resync. 1186 * For resync, we read through virtual addresses and read all blocks. 1187 * If there is any error, we schedule a write. The lowest numbered 1188 * drive is authoritative. 1189 * However requests come for physical address, so we need to map. 1190 * For every physical address there are raid_disks/copies virtual addresses, 1191 * which is always are least one, but is not necessarly an integer. 1192 * This means that a physical address can span multiple chunks, so we may 1193 * have to submit multiple io requests for a single sync request. 1194 */ 1195 /* 1196 * We check if all blocks are in-sync and only write to blocks that 1197 * aren't in sync 1198 */ 1199 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1200 { 1201 conf_t *conf = mddev_to_conf(mddev); 1202 int i, first; 1203 struct bio *tbio, *fbio; 1204 1205 atomic_set(&r10_bio->remaining, 1); 1206 1207 /* find the first device with a block */ 1208 for (i=0; i<conf->copies; i++) 1209 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1210 break; 1211 1212 if (i == conf->copies) 1213 goto done; 1214 1215 first = i; 1216 fbio = r10_bio->devs[i].bio; 1217 1218 /* now find blocks with errors */ 1219 for (i=0 ; i < conf->copies ; i++) { 1220 int j, d; 1221 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1222 1223 tbio = r10_bio->devs[i].bio; 1224 1225 if (tbio->bi_end_io != end_sync_read) 1226 continue; 1227 if (i == first) 1228 continue; 1229 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1230 /* We know that the bi_io_vec layout is the same for 1231 * both 'first' and 'i', so we just compare them. 1232 * All vec entries are PAGE_SIZE; 1233 */ 1234 for (j = 0; j < vcnt; j++) 1235 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1236 page_address(tbio->bi_io_vec[j].bv_page), 1237 PAGE_SIZE)) 1238 break; 1239 if (j == vcnt) 1240 continue; 1241 mddev->resync_mismatches += r10_bio->sectors; 1242 } 1243 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1244 /* Don't fix anything. */ 1245 continue; 1246 /* Ok, we need to write this bio 1247 * First we need to fixup bv_offset, bv_len and 1248 * bi_vecs, as the read request might have corrupted these 1249 */ 1250 tbio->bi_vcnt = vcnt; 1251 tbio->bi_size = r10_bio->sectors << 9; 1252 tbio->bi_idx = 0; 1253 tbio->bi_phys_segments = 0; 1254 tbio->bi_hw_segments = 0; 1255 tbio->bi_hw_front_size = 0; 1256 tbio->bi_hw_back_size = 0; 1257 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1258 tbio->bi_flags |= 1 << BIO_UPTODATE; 1259 tbio->bi_next = NULL; 1260 tbio->bi_rw = WRITE; 1261 tbio->bi_private = r10_bio; 1262 tbio->bi_sector = r10_bio->devs[i].addr; 1263 1264 for (j=0; j < vcnt ; j++) { 1265 tbio->bi_io_vec[j].bv_offset = 0; 1266 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1267 1268 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1269 page_address(fbio->bi_io_vec[j].bv_page), 1270 PAGE_SIZE); 1271 } 1272 tbio->bi_end_io = end_sync_write; 1273 1274 d = r10_bio->devs[i].devnum; 1275 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1276 atomic_inc(&r10_bio->remaining); 1277 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1278 1279 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1280 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1281 generic_make_request(tbio); 1282 } 1283 1284 done: 1285 if (atomic_dec_and_test(&r10_bio->remaining)) { 1286 md_done_sync(mddev, r10_bio->sectors, 1); 1287 put_buf(r10_bio); 1288 } 1289 } 1290 1291 /* 1292 * Now for the recovery code. 1293 * Recovery happens across physical sectors. 1294 * We recover all non-is_sync drives by finding the virtual address of 1295 * each, and then choose a working drive that also has that virt address. 1296 * There is a separate r10_bio for each non-in_sync drive. 1297 * Only the first two slots are in use. The first for reading, 1298 * The second for writing. 1299 * 1300 */ 1301 1302 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1303 { 1304 conf_t *conf = mddev_to_conf(mddev); 1305 int i, d; 1306 struct bio *bio, *wbio; 1307 1308 1309 /* move the pages across to the second bio 1310 * and submit the write request 1311 */ 1312 bio = r10_bio->devs[0].bio; 1313 wbio = r10_bio->devs[1].bio; 1314 for (i=0; i < wbio->bi_vcnt; i++) { 1315 struct page *p = bio->bi_io_vec[i].bv_page; 1316 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1317 wbio->bi_io_vec[i].bv_page = p; 1318 } 1319 d = r10_bio->devs[1].devnum; 1320 1321 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1322 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1323 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1324 generic_make_request(wbio); 1325 else 1326 bio_endio(wbio, wbio->bi_size, -EIO); 1327 } 1328 1329 1330 /* 1331 * This is a kernel thread which: 1332 * 1333 * 1. Retries failed read operations on working mirrors. 1334 * 2. Updates the raid superblock when problems encounter. 1335 * 3. Performs writes following reads for array syncronising. 1336 */ 1337 1338 static void raid10d(mddev_t *mddev) 1339 { 1340 r10bio_t *r10_bio; 1341 struct bio *bio; 1342 unsigned long flags; 1343 conf_t *conf = mddev_to_conf(mddev); 1344 struct list_head *head = &conf->retry_list; 1345 int unplug=0; 1346 mdk_rdev_t *rdev; 1347 1348 md_check_recovery(mddev); 1349 1350 for (;;) { 1351 char b[BDEVNAME_SIZE]; 1352 spin_lock_irqsave(&conf->device_lock, flags); 1353 1354 if (conf->pending_bio_list.head) { 1355 bio = bio_list_get(&conf->pending_bio_list); 1356 blk_remove_plug(mddev->queue); 1357 spin_unlock_irqrestore(&conf->device_lock, flags); 1358 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 1359 if (bitmap_unplug(mddev->bitmap) != 0) 1360 printk("%s: bitmap file write failed!\n", mdname(mddev)); 1361 1362 while (bio) { /* submit pending writes */ 1363 struct bio *next = bio->bi_next; 1364 bio->bi_next = NULL; 1365 generic_make_request(bio); 1366 bio = next; 1367 } 1368 unplug = 1; 1369 1370 continue; 1371 } 1372 1373 if (list_empty(head)) 1374 break; 1375 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1376 list_del(head->prev); 1377 conf->nr_queued--; 1378 spin_unlock_irqrestore(&conf->device_lock, flags); 1379 1380 mddev = r10_bio->mddev; 1381 conf = mddev_to_conf(mddev); 1382 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1383 sync_request_write(mddev, r10_bio); 1384 unplug = 1; 1385 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1386 recovery_request_write(mddev, r10_bio); 1387 unplug = 1; 1388 } else { 1389 int mirror; 1390 /* we got a read error. Maybe the drive is bad. Maybe just 1391 * the block and we can fix it. 1392 * We freeze all other IO, and try reading the block from 1393 * other devices. When we find one, we re-write 1394 * and check it that fixes the read error. 1395 * This is all done synchronously while the array is 1396 * frozen. 1397 */ 1398 int sect = 0; /* Offset from r10_bio->sector */ 1399 int sectors = r10_bio->sectors; 1400 freeze_array(conf); 1401 if (mddev->ro == 0) while(sectors) { 1402 int s = sectors; 1403 int sl = r10_bio->read_slot; 1404 int success = 0; 1405 1406 if (s > (PAGE_SIZE>>9)) 1407 s = PAGE_SIZE >> 9; 1408 1409 do { 1410 int d = r10_bio->devs[sl].devnum; 1411 rdev = conf->mirrors[d].rdev; 1412 if (rdev && 1413 test_bit(In_sync, &rdev->flags) && 1414 sync_page_io(rdev->bdev, 1415 r10_bio->devs[sl].addr + 1416 sect + rdev->data_offset, 1417 s<<9, 1418 conf->tmppage, READ)) 1419 success = 1; 1420 else { 1421 sl++; 1422 if (sl == conf->copies) 1423 sl = 0; 1424 } 1425 } while (!success && sl != r10_bio->read_slot); 1426 1427 if (success) { 1428 int start = sl; 1429 /* write it back and re-read */ 1430 while (sl != r10_bio->read_slot) { 1431 int d; 1432 if (sl==0) 1433 sl = conf->copies; 1434 sl--; 1435 d = r10_bio->devs[sl].devnum; 1436 rdev = conf->mirrors[d].rdev; 1437 atomic_add(s, &rdev->corrected_errors); 1438 if (rdev && 1439 test_bit(In_sync, &rdev->flags)) { 1440 if (sync_page_io(rdev->bdev, 1441 r10_bio->devs[sl].addr + 1442 sect + rdev->data_offset, 1443 s<<9, conf->tmppage, WRITE) == 0) 1444 /* Well, this device is dead */ 1445 md_error(mddev, rdev); 1446 } 1447 } 1448 sl = start; 1449 while (sl != r10_bio->read_slot) { 1450 int d; 1451 if (sl==0) 1452 sl = conf->copies; 1453 sl--; 1454 d = r10_bio->devs[sl].devnum; 1455 rdev = conf->mirrors[d].rdev; 1456 if (rdev && 1457 test_bit(In_sync, &rdev->flags)) { 1458 if (sync_page_io(rdev->bdev, 1459 r10_bio->devs[sl].addr + 1460 sect + rdev->data_offset, 1461 s<<9, conf->tmppage, READ) == 0) 1462 /* Well, this device is dead */ 1463 md_error(mddev, rdev); 1464 } 1465 } 1466 } else { 1467 /* Cannot read from anywhere -- bye bye array */ 1468 md_error(mddev, conf->mirrors[r10_bio->devs[r10_bio->read_slot].devnum].rdev); 1469 break; 1470 } 1471 sectors -= s; 1472 sect += s; 1473 } 1474 1475 unfreeze_array(conf); 1476 1477 bio = r10_bio->devs[r10_bio->read_slot].bio; 1478 r10_bio->devs[r10_bio->read_slot].bio = 1479 mddev->ro ? IO_BLOCKED : NULL; 1480 bio_put(bio); 1481 mirror = read_balance(conf, r10_bio); 1482 if (mirror == -1) { 1483 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1484 " read error for block %llu\n", 1485 bdevname(bio->bi_bdev,b), 1486 (unsigned long long)r10_bio->sector); 1487 raid_end_bio_io(r10_bio); 1488 } else { 1489 rdev = conf->mirrors[mirror].rdev; 1490 if (printk_ratelimit()) 1491 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1492 " another mirror\n", 1493 bdevname(rdev->bdev,b), 1494 (unsigned long long)r10_bio->sector); 1495 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1496 r10_bio->devs[r10_bio->read_slot].bio = bio; 1497 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1498 + rdev->data_offset; 1499 bio->bi_bdev = rdev->bdev; 1500 bio->bi_rw = READ; 1501 bio->bi_private = r10_bio; 1502 bio->bi_end_io = raid10_end_read_request; 1503 unplug = 1; 1504 generic_make_request(bio); 1505 } 1506 } 1507 } 1508 spin_unlock_irqrestore(&conf->device_lock, flags); 1509 if (unplug) 1510 unplug_slaves(mddev); 1511 } 1512 1513 1514 static int init_resync(conf_t *conf) 1515 { 1516 int buffs; 1517 1518 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1519 if (conf->r10buf_pool) 1520 BUG(); 1521 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1522 if (!conf->r10buf_pool) 1523 return -ENOMEM; 1524 conf->next_resync = 0; 1525 return 0; 1526 } 1527 1528 /* 1529 * perform a "sync" on one "block" 1530 * 1531 * We need to make sure that no normal I/O request - particularly write 1532 * requests - conflict with active sync requests. 1533 * 1534 * This is achieved by tracking pending requests and a 'barrier' concept 1535 * that can be installed to exclude normal IO requests. 1536 * 1537 * Resync and recovery are handled very differently. 1538 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1539 * 1540 * For resync, we iterate over virtual addresses, read all copies, 1541 * and update if there are differences. If only one copy is live, 1542 * skip it. 1543 * For recovery, we iterate over physical addresses, read a good 1544 * value for each non-in_sync drive, and over-write. 1545 * 1546 * So, for recovery we may have several outstanding complex requests for a 1547 * given address, one for each out-of-sync device. We model this by allocating 1548 * a number of r10_bio structures, one for each out-of-sync device. 1549 * As we setup these structures, we collect all bio's together into a list 1550 * which we then process collectively to add pages, and then process again 1551 * to pass to generic_make_request. 1552 * 1553 * The r10_bio structures are linked using a borrowed master_bio pointer. 1554 * This link is counted in ->remaining. When the r10_bio that points to NULL 1555 * has its remaining count decremented to 0, the whole complex operation 1556 * is complete. 1557 * 1558 */ 1559 1560 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1561 { 1562 conf_t *conf = mddev_to_conf(mddev); 1563 r10bio_t *r10_bio; 1564 struct bio *biolist = NULL, *bio; 1565 sector_t max_sector, nr_sectors; 1566 int disk; 1567 int i; 1568 int max_sync; 1569 int sync_blocks; 1570 1571 sector_t sectors_skipped = 0; 1572 int chunks_skipped = 0; 1573 1574 if (!conf->r10buf_pool) 1575 if (init_resync(conf)) 1576 return 0; 1577 1578 skipped: 1579 max_sector = mddev->size << 1; 1580 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1581 max_sector = mddev->resync_max_sectors; 1582 if (sector_nr >= max_sector) { 1583 /* If we aborted, we need to abort the 1584 * sync on the 'current' bitmap chucks (there can 1585 * be several when recovering multiple devices). 1586 * as we may have started syncing it but not finished. 1587 * We can find the current address in 1588 * mddev->curr_resync, but for recovery, 1589 * we need to convert that to several 1590 * virtual addresses. 1591 */ 1592 if (mddev->curr_resync < max_sector) { /* aborted */ 1593 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1594 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1595 &sync_blocks, 1); 1596 else for (i=0; i<conf->raid_disks; i++) { 1597 sector_t sect = 1598 raid10_find_virt(conf, mddev->curr_resync, i); 1599 bitmap_end_sync(mddev->bitmap, sect, 1600 &sync_blocks, 1); 1601 } 1602 } else /* completed sync */ 1603 conf->fullsync = 0; 1604 1605 bitmap_close_sync(mddev->bitmap); 1606 close_sync(conf); 1607 *skipped = 1; 1608 return sectors_skipped; 1609 } 1610 if (chunks_skipped >= conf->raid_disks) { 1611 /* if there has been nothing to do on any drive, 1612 * then there is nothing to do at all.. 1613 */ 1614 *skipped = 1; 1615 return (max_sector - sector_nr) + sectors_skipped; 1616 } 1617 1618 /* make sure whole request will fit in a chunk - if chunks 1619 * are meaningful 1620 */ 1621 if (conf->near_copies < conf->raid_disks && 1622 max_sector > (sector_nr | conf->chunk_mask)) 1623 max_sector = (sector_nr | conf->chunk_mask) + 1; 1624 /* 1625 * If there is non-resync activity waiting for us then 1626 * put in a delay to throttle resync. 1627 */ 1628 if (!go_faster && conf->nr_waiting) 1629 msleep_interruptible(1000); 1630 1631 /* Again, very different code for resync and recovery. 1632 * Both must result in an r10bio with a list of bios that 1633 * have bi_end_io, bi_sector, bi_bdev set, 1634 * and bi_private set to the r10bio. 1635 * For recovery, we may actually create several r10bios 1636 * with 2 bios in each, that correspond to the bios in the main one. 1637 * In this case, the subordinate r10bios link back through a 1638 * borrowed master_bio pointer, and the counter in the master 1639 * includes a ref from each subordinate. 1640 */ 1641 /* First, we decide what to do and set ->bi_end_io 1642 * To end_sync_read if we want to read, and 1643 * end_sync_write if we will want to write. 1644 */ 1645 1646 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1647 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1648 /* recovery... the complicated one */ 1649 int i, j, k; 1650 r10_bio = NULL; 1651 1652 for (i=0 ; i<conf->raid_disks; i++) 1653 if (conf->mirrors[i].rdev && 1654 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1655 int still_degraded = 0; 1656 /* want to reconstruct this device */ 1657 r10bio_t *rb2 = r10_bio; 1658 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1659 int must_sync; 1660 /* Unless we are doing a full sync, we only need 1661 * to recover the block if it is set in the bitmap 1662 */ 1663 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1664 &sync_blocks, 1); 1665 if (sync_blocks < max_sync) 1666 max_sync = sync_blocks; 1667 if (!must_sync && 1668 !conf->fullsync) { 1669 /* yep, skip the sync_blocks here, but don't assume 1670 * that there will never be anything to do here 1671 */ 1672 chunks_skipped = -1; 1673 continue; 1674 } 1675 1676 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1677 raise_barrier(conf, rb2 != NULL); 1678 atomic_set(&r10_bio->remaining, 0); 1679 1680 r10_bio->master_bio = (struct bio*)rb2; 1681 if (rb2) 1682 atomic_inc(&rb2->remaining); 1683 r10_bio->mddev = mddev; 1684 set_bit(R10BIO_IsRecover, &r10_bio->state); 1685 r10_bio->sector = sect; 1686 1687 raid10_find_phys(conf, r10_bio); 1688 /* Need to check if this section will still be 1689 * degraded 1690 */ 1691 for (j=0; j<conf->copies;j++) { 1692 int d = r10_bio->devs[j].devnum; 1693 if (conf->mirrors[d].rdev == NULL || 1694 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) { 1695 still_degraded = 1; 1696 break; 1697 } 1698 } 1699 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1700 &sync_blocks, still_degraded); 1701 1702 for (j=0; j<conf->copies;j++) { 1703 int d = r10_bio->devs[j].devnum; 1704 if (conf->mirrors[d].rdev && 1705 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1706 /* This is where we read from */ 1707 bio = r10_bio->devs[0].bio; 1708 bio->bi_next = biolist; 1709 biolist = bio; 1710 bio->bi_private = r10_bio; 1711 bio->bi_end_io = end_sync_read; 1712 bio->bi_rw = 0; 1713 bio->bi_sector = r10_bio->devs[j].addr + 1714 conf->mirrors[d].rdev->data_offset; 1715 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1716 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1717 atomic_inc(&r10_bio->remaining); 1718 /* and we write to 'i' */ 1719 1720 for (k=0; k<conf->copies; k++) 1721 if (r10_bio->devs[k].devnum == i) 1722 break; 1723 bio = r10_bio->devs[1].bio; 1724 bio->bi_next = biolist; 1725 biolist = bio; 1726 bio->bi_private = r10_bio; 1727 bio->bi_end_io = end_sync_write; 1728 bio->bi_rw = 1; 1729 bio->bi_sector = r10_bio->devs[k].addr + 1730 conf->mirrors[i].rdev->data_offset; 1731 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1732 1733 r10_bio->devs[0].devnum = d; 1734 r10_bio->devs[1].devnum = i; 1735 1736 break; 1737 } 1738 } 1739 if (j == conf->copies) { 1740 /* Cannot recover, so abort the recovery */ 1741 put_buf(r10_bio); 1742 r10_bio = rb2; 1743 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery)) 1744 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n", 1745 mdname(mddev)); 1746 break; 1747 } 1748 } 1749 if (biolist == NULL) { 1750 while (r10_bio) { 1751 r10bio_t *rb2 = r10_bio; 1752 r10_bio = (r10bio_t*) rb2->master_bio; 1753 rb2->master_bio = NULL; 1754 put_buf(rb2); 1755 } 1756 goto giveup; 1757 } 1758 } else { 1759 /* resync. Schedule a read for every block at this virt offset */ 1760 int count = 0; 1761 1762 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1763 &sync_blocks, mddev->degraded) && 1764 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1765 /* We can skip this block */ 1766 *skipped = 1; 1767 return sync_blocks + sectors_skipped; 1768 } 1769 if (sync_blocks < max_sync) 1770 max_sync = sync_blocks; 1771 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1772 1773 r10_bio->mddev = mddev; 1774 atomic_set(&r10_bio->remaining, 0); 1775 raise_barrier(conf, 0); 1776 conf->next_resync = sector_nr; 1777 1778 r10_bio->master_bio = NULL; 1779 r10_bio->sector = sector_nr; 1780 set_bit(R10BIO_IsSync, &r10_bio->state); 1781 raid10_find_phys(conf, r10_bio); 1782 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1783 1784 for (i=0; i<conf->copies; i++) { 1785 int d = r10_bio->devs[i].devnum; 1786 bio = r10_bio->devs[i].bio; 1787 bio->bi_end_io = NULL; 1788 if (conf->mirrors[d].rdev == NULL || 1789 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 1790 continue; 1791 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1792 atomic_inc(&r10_bio->remaining); 1793 bio->bi_next = biolist; 1794 biolist = bio; 1795 bio->bi_private = r10_bio; 1796 bio->bi_end_io = end_sync_read; 1797 bio->bi_rw = 0; 1798 bio->bi_sector = r10_bio->devs[i].addr + 1799 conf->mirrors[d].rdev->data_offset; 1800 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1801 count++; 1802 } 1803 1804 if (count < 2) { 1805 for (i=0; i<conf->copies; i++) { 1806 int d = r10_bio->devs[i].devnum; 1807 if (r10_bio->devs[i].bio->bi_end_io) 1808 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1809 } 1810 put_buf(r10_bio); 1811 biolist = NULL; 1812 goto giveup; 1813 } 1814 } 1815 1816 for (bio = biolist; bio ; bio=bio->bi_next) { 1817 1818 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1819 if (bio->bi_end_io) 1820 bio->bi_flags |= 1 << BIO_UPTODATE; 1821 bio->bi_vcnt = 0; 1822 bio->bi_idx = 0; 1823 bio->bi_phys_segments = 0; 1824 bio->bi_hw_segments = 0; 1825 bio->bi_size = 0; 1826 } 1827 1828 nr_sectors = 0; 1829 if (sector_nr + max_sync < max_sector) 1830 max_sector = sector_nr + max_sync; 1831 do { 1832 struct page *page; 1833 int len = PAGE_SIZE; 1834 disk = 0; 1835 if (sector_nr + (len>>9) > max_sector) 1836 len = (max_sector - sector_nr) << 9; 1837 if (len == 0) 1838 break; 1839 for (bio= biolist ; bio ; bio=bio->bi_next) { 1840 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1841 if (bio_add_page(bio, page, len, 0) == 0) { 1842 /* stop here */ 1843 struct bio *bio2; 1844 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1845 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1846 /* remove last page from this bio */ 1847 bio2->bi_vcnt--; 1848 bio2->bi_size -= len; 1849 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1850 } 1851 goto bio_full; 1852 } 1853 disk = i; 1854 } 1855 nr_sectors += len>>9; 1856 sector_nr += len>>9; 1857 } while (biolist->bi_vcnt < RESYNC_PAGES); 1858 bio_full: 1859 r10_bio->sectors = nr_sectors; 1860 1861 while (biolist) { 1862 bio = biolist; 1863 biolist = biolist->bi_next; 1864 1865 bio->bi_next = NULL; 1866 r10_bio = bio->bi_private; 1867 r10_bio->sectors = nr_sectors; 1868 1869 if (bio->bi_end_io == end_sync_read) { 1870 md_sync_acct(bio->bi_bdev, nr_sectors); 1871 generic_make_request(bio); 1872 } 1873 } 1874 1875 if (sectors_skipped) 1876 /* pretend they weren't skipped, it makes 1877 * no important difference in this case 1878 */ 1879 md_done_sync(mddev, sectors_skipped, 1); 1880 1881 return sectors_skipped + nr_sectors; 1882 giveup: 1883 /* There is nowhere to write, so all non-sync 1884 * drives must be failed, so try the next chunk... 1885 */ 1886 { 1887 sector_t sec = max_sector - sector_nr; 1888 sectors_skipped += sec; 1889 chunks_skipped ++; 1890 sector_nr = max_sector; 1891 goto skipped; 1892 } 1893 } 1894 1895 static int run(mddev_t *mddev) 1896 { 1897 conf_t *conf; 1898 int i, disk_idx; 1899 mirror_info_t *disk; 1900 mdk_rdev_t *rdev; 1901 struct list_head *tmp; 1902 int nc, fc; 1903 sector_t stride, size; 1904 1905 if (mddev->chunk_size == 0) { 1906 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n"); 1907 return -EINVAL; 1908 } 1909 1910 nc = mddev->layout & 255; 1911 fc = (mddev->layout >> 8) & 255; 1912 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 1913 (mddev->layout >> 16)) { 1914 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 1915 mdname(mddev), mddev->layout); 1916 goto out; 1917 } 1918 /* 1919 * copy the already verified devices into our private RAID10 1920 * bookkeeping area. [whatever we allocate in run(), 1921 * should be freed in stop()] 1922 */ 1923 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1924 mddev->private = conf; 1925 if (!conf) { 1926 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1927 mdname(mddev)); 1928 goto out; 1929 } 1930 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1931 GFP_KERNEL); 1932 if (!conf->mirrors) { 1933 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1934 mdname(mddev)); 1935 goto out_free_conf; 1936 } 1937 1938 conf->tmppage = alloc_page(GFP_KERNEL); 1939 if (!conf->tmppage) 1940 goto out_free_conf; 1941 1942 conf->near_copies = nc; 1943 conf->far_copies = fc; 1944 conf->copies = nc*fc; 1945 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 1946 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 1947 stride = mddev->size >> (conf->chunk_shift-1); 1948 sector_div(stride, fc); 1949 conf->stride = stride << conf->chunk_shift; 1950 1951 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 1952 r10bio_pool_free, conf); 1953 if (!conf->r10bio_pool) { 1954 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1955 mdname(mddev)); 1956 goto out_free_conf; 1957 } 1958 1959 ITERATE_RDEV(mddev, rdev, tmp) { 1960 disk_idx = rdev->raid_disk; 1961 if (disk_idx >= mddev->raid_disks 1962 || disk_idx < 0) 1963 continue; 1964 disk = conf->mirrors + disk_idx; 1965 1966 disk->rdev = rdev; 1967 1968 blk_queue_stack_limits(mddev->queue, 1969 rdev->bdev->bd_disk->queue); 1970 /* as we don't honour merge_bvec_fn, we must never risk 1971 * violating it, so limit ->max_sector to one PAGE, as 1972 * a one page request is never in violation. 1973 */ 1974 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1975 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1976 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1977 1978 disk->head_position = 0; 1979 if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags)) 1980 conf->working_disks++; 1981 } 1982 conf->raid_disks = mddev->raid_disks; 1983 conf->mddev = mddev; 1984 spin_lock_init(&conf->device_lock); 1985 INIT_LIST_HEAD(&conf->retry_list); 1986 1987 spin_lock_init(&conf->resync_lock); 1988 init_waitqueue_head(&conf->wait_barrier); 1989 1990 /* need to check that every block has at least one working mirror */ 1991 if (!enough(conf)) { 1992 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n", 1993 mdname(mddev)); 1994 goto out_free_conf; 1995 } 1996 1997 mddev->degraded = 0; 1998 for (i = 0; i < conf->raid_disks; i++) { 1999 2000 disk = conf->mirrors + i; 2001 2002 if (!disk->rdev) { 2003 disk->head_position = 0; 2004 mddev->degraded++; 2005 } 2006 } 2007 2008 2009 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 2010 if (!mddev->thread) { 2011 printk(KERN_ERR 2012 "raid10: couldn't allocate thread for %s\n", 2013 mdname(mddev)); 2014 goto out_free_conf; 2015 } 2016 2017 printk(KERN_INFO 2018 "raid10: raid set %s active with %d out of %d devices\n", 2019 mdname(mddev), mddev->raid_disks - mddev->degraded, 2020 mddev->raid_disks); 2021 /* 2022 * Ok, everything is just fine now 2023 */ 2024 size = conf->stride * conf->raid_disks; 2025 sector_div(size, conf->near_copies); 2026 mddev->array_size = size/2; 2027 mddev->resync_max_sectors = size; 2028 2029 mddev->queue->unplug_fn = raid10_unplug; 2030 mddev->queue->issue_flush_fn = raid10_issue_flush; 2031 2032 /* Calculate max read-ahead size. 2033 * We need to readahead at least twice a whole stripe.... 2034 * maybe... 2035 */ 2036 { 2037 int stripe = conf->raid_disks * mddev->chunk_size / PAGE_SIZE; 2038 stripe /= conf->near_copies; 2039 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2040 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2041 } 2042 2043 if (conf->near_copies < mddev->raid_disks) 2044 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2045 return 0; 2046 2047 out_free_conf: 2048 if (conf->r10bio_pool) 2049 mempool_destroy(conf->r10bio_pool); 2050 safe_put_page(conf->tmppage); 2051 kfree(conf->mirrors); 2052 kfree(conf); 2053 mddev->private = NULL; 2054 out: 2055 return -EIO; 2056 } 2057 2058 static int stop(mddev_t *mddev) 2059 { 2060 conf_t *conf = mddev_to_conf(mddev); 2061 2062 md_unregister_thread(mddev->thread); 2063 mddev->thread = NULL; 2064 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2065 if (conf->r10bio_pool) 2066 mempool_destroy(conf->r10bio_pool); 2067 kfree(conf->mirrors); 2068 kfree(conf); 2069 mddev->private = NULL; 2070 return 0; 2071 } 2072 2073 static void raid10_quiesce(mddev_t *mddev, int state) 2074 { 2075 conf_t *conf = mddev_to_conf(mddev); 2076 2077 switch(state) { 2078 case 1: 2079 raise_barrier(conf, 0); 2080 break; 2081 case 0: 2082 lower_barrier(conf); 2083 break; 2084 } 2085 if (mddev->thread) { 2086 if (mddev->bitmap) 2087 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ; 2088 else 2089 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT; 2090 md_wakeup_thread(mddev->thread); 2091 } 2092 } 2093 2094 static struct mdk_personality raid10_personality = 2095 { 2096 .name = "raid10", 2097 .level = 10, 2098 .owner = THIS_MODULE, 2099 .make_request = make_request, 2100 .run = run, 2101 .stop = stop, 2102 .status = status, 2103 .error_handler = error, 2104 .hot_add_disk = raid10_add_disk, 2105 .hot_remove_disk= raid10_remove_disk, 2106 .spare_active = raid10_spare_active, 2107 .sync_request = sync_request, 2108 .quiesce = raid10_quiesce, 2109 }; 2110 2111 static int __init raid_init(void) 2112 { 2113 return register_md_personality(&raid10_personality); 2114 } 2115 2116 static void raid_exit(void) 2117 { 2118 unregister_md_personality(&raid10_personality); 2119 } 2120 2121 module_init(raid_init); 2122 module_exit(raid_exit); 2123 MODULE_LICENSE("GPL"); 2124 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2125 MODULE_ALIAS("md-raid10"); 2126 MODULE_ALIAS("md-level-10"); 2127