xref: /openbmc/linux/drivers/md/raid10.c (revision 85ab3738)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "bitmap.h"
33 
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74 
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define	NR_RAID10_BIOS 256
79 
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91 
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93 
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99 
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 				int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109 
110 #define raid10_log(md, fmt, args...)				\
111 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112 
113 #include "raid1-10.c"
114 
115 /*
116  * for resync bio, r10bio pointer can be retrieved from the per-bio
117  * 'struct resync_pages'.
118  */
119 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120 {
121 	return get_resync_pages(bio)->raid_bio;
122 }
123 
124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
125 {
126 	struct r10conf *conf = data;
127 	int size = offsetof(struct r10bio, devs[conf->copies]);
128 
129 	/* allocate a r10bio with room for raid_disks entries in the
130 	 * bios array */
131 	return kzalloc(size, gfp_flags);
132 }
133 
134 static void r10bio_pool_free(void *r10_bio, void *data)
135 {
136 	kfree(r10_bio);
137 }
138 
139 /* amount of memory to reserve for resync requests */
140 #define RESYNC_WINDOW (1024*1024)
141 /* maximum number of concurrent requests, memory permitting */
142 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
143 
144 /*
145  * When performing a resync, we need to read and compare, so
146  * we need as many pages are there are copies.
147  * When performing a recovery, we need 2 bios, one for read,
148  * one for write (we recover only one drive per r10buf)
149  *
150  */
151 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
152 {
153 	struct r10conf *conf = data;
154 	struct r10bio *r10_bio;
155 	struct bio *bio;
156 	int j;
157 	int nalloc, nalloc_rp;
158 	struct resync_pages *rps;
159 
160 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
161 	if (!r10_bio)
162 		return NULL;
163 
164 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
165 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
166 		nalloc = conf->copies; /* resync */
167 	else
168 		nalloc = 2; /* recovery */
169 
170 	/* allocate once for all bios */
171 	if (!conf->have_replacement)
172 		nalloc_rp = nalloc;
173 	else
174 		nalloc_rp = nalloc * 2;
175 	rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
176 	if (!rps)
177 		goto out_free_r10bio;
178 
179 	/*
180 	 * Allocate bios.
181 	 */
182 	for (j = nalloc ; j-- ; ) {
183 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
184 		if (!bio)
185 			goto out_free_bio;
186 		r10_bio->devs[j].bio = bio;
187 		if (!conf->have_replacement)
188 			continue;
189 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
190 		if (!bio)
191 			goto out_free_bio;
192 		r10_bio->devs[j].repl_bio = bio;
193 	}
194 	/*
195 	 * Allocate RESYNC_PAGES data pages and attach them
196 	 * where needed.
197 	 */
198 	for (j = 0; j < nalloc; j++) {
199 		struct bio *rbio = r10_bio->devs[j].repl_bio;
200 		struct resync_pages *rp, *rp_repl;
201 
202 		rp = &rps[j];
203 		if (rbio)
204 			rp_repl = &rps[nalloc + j];
205 
206 		bio = r10_bio->devs[j].bio;
207 
208 		if (!j || test_bit(MD_RECOVERY_SYNC,
209 				   &conf->mddev->recovery)) {
210 			if (resync_alloc_pages(rp, gfp_flags))
211 				goto out_free_pages;
212 		} else {
213 			memcpy(rp, &rps[0], sizeof(*rp));
214 			resync_get_all_pages(rp);
215 		}
216 
217 		rp->raid_bio = r10_bio;
218 		bio->bi_private = rp;
219 		if (rbio) {
220 			memcpy(rp_repl, rp, sizeof(*rp));
221 			rbio->bi_private = rp_repl;
222 		}
223 	}
224 
225 	return r10_bio;
226 
227 out_free_pages:
228 	while (--j >= 0)
229 		resync_free_pages(&rps[j * 2]);
230 
231 	j = 0;
232 out_free_bio:
233 	for ( ; j < nalloc; j++) {
234 		if (r10_bio->devs[j].bio)
235 			bio_put(r10_bio->devs[j].bio);
236 		if (r10_bio->devs[j].repl_bio)
237 			bio_put(r10_bio->devs[j].repl_bio);
238 	}
239 	kfree(rps);
240 out_free_r10bio:
241 	r10bio_pool_free(r10_bio, conf);
242 	return NULL;
243 }
244 
245 static void r10buf_pool_free(void *__r10_bio, void *data)
246 {
247 	struct r10conf *conf = data;
248 	struct r10bio *r10bio = __r10_bio;
249 	int j;
250 	struct resync_pages *rp = NULL;
251 
252 	for (j = conf->copies; j--; ) {
253 		struct bio *bio = r10bio->devs[j].bio;
254 
255 		rp = get_resync_pages(bio);
256 		resync_free_pages(rp);
257 		bio_put(bio);
258 
259 		bio = r10bio->devs[j].repl_bio;
260 		if (bio)
261 			bio_put(bio);
262 	}
263 
264 	/* resync pages array stored in the 1st bio's .bi_private */
265 	kfree(rp);
266 
267 	r10bio_pool_free(r10bio, conf);
268 }
269 
270 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
271 {
272 	int i;
273 
274 	for (i = 0; i < conf->copies; i++) {
275 		struct bio **bio = & r10_bio->devs[i].bio;
276 		if (!BIO_SPECIAL(*bio))
277 			bio_put(*bio);
278 		*bio = NULL;
279 		bio = &r10_bio->devs[i].repl_bio;
280 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
281 			bio_put(*bio);
282 		*bio = NULL;
283 	}
284 }
285 
286 static void free_r10bio(struct r10bio *r10_bio)
287 {
288 	struct r10conf *conf = r10_bio->mddev->private;
289 
290 	put_all_bios(conf, r10_bio);
291 	mempool_free(r10_bio, conf->r10bio_pool);
292 }
293 
294 static void put_buf(struct r10bio *r10_bio)
295 {
296 	struct r10conf *conf = r10_bio->mddev->private;
297 
298 	mempool_free(r10_bio, conf->r10buf_pool);
299 
300 	lower_barrier(conf);
301 }
302 
303 static void reschedule_retry(struct r10bio *r10_bio)
304 {
305 	unsigned long flags;
306 	struct mddev *mddev = r10_bio->mddev;
307 	struct r10conf *conf = mddev->private;
308 
309 	spin_lock_irqsave(&conf->device_lock, flags);
310 	list_add(&r10_bio->retry_list, &conf->retry_list);
311 	conf->nr_queued ++;
312 	spin_unlock_irqrestore(&conf->device_lock, flags);
313 
314 	/* wake up frozen array... */
315 	wake_up(&conf->wait_barrier);
316 
317 	md_wakeup_thread(mddev->thread);
318 }
319 
320 /*
321  * raid_end_bio_io() is called when we have finished servicing a mirrored
322  * operation and are ready to return a success/failure code to the buffer
323  * cache layer.
324  */
325 static void raid_end_bio_io(struct r10bio *r10_bio)
326 {
327 	struct bio *bio = r10_bio->master_bio;
328 	struct r10conf *conf = r10_bio->mddev->private;
329 
330 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
331 		bio->bi_status = BLK_STS_IOERR;
332 
333 	bio_endio(bio);
334 	/*
335 	 * Wake up any possible resync thread that waits for the device
336 	 * to go idle.
337 	 */
338 	allow_barrier(conf);
339 
340 	free_r10bio(r10_bio);
341 }
342 
343 /*
344  * Update disk head position estimator based on IRQ completion info.
345  */
346 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
347 {
348 	struct r10conf *conf = r10_bio->mddev->private;
349 
350 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
351 		r10_bio->devs[slot].addr + (r10_bio->sectors);
352 }
353 
354 /*
355  * Find the disk number which triggered given bio
356  */
357 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
358 			 struct bio *bio, int *slotp, int *replp)
359 {
360 	int slot;
361 	int repl = 0;
362 
363 	for (slot = 0; slot < conf->copies; slot++) {
364 		if (r10_bio->devs[slot].bio == bio)
365 			break;
366 		if (r10_bio->devs[slot].repl_bio == bio) {
367 			repl = 1;
368 			break;
369 		}
370 	}
371 
372 	BUG_ON(slot == conf->copies);
373 	update_head_pos(slot, r10_bio);
374 
375 	if (slotp)
376 		*slotp = slot;
377 	if (replp)
378 		*replp = repl;
379 	return r10_bio->devs[slot].devnum;
380 }
381 
382 static void raid10_end_read_request(struct bio *bio)
383 {
384 	int uptodate = !bio->bi_status;
385 	struct r10bio *r10_bio = bio->bi_private;
386 	int slot, dev;
387 	struct md_rdev *rdev;
388 	struct r10conf *conf = r10_bio->mddev->private;
389 
390 	slot = r10_bio->read_slot;
391 	dev = r10_bio->devs[slot].devnum;
392 	rdev = r10_bio->devs[slot].rdev;
393 	/*
394 	 * this branch is our 'one mirror IO has finished' event handler:
395 	 */
396 	update_head_pos(slot, r10_bio);
397 
398 	if (uptodate) {
399 		/*
400 		 * Set R10BIO_Uptodate in our master bio, so that
401 		 * we will return a good error code to the higher
402 		 * levels even if IO on some other mirrored buffer fails.
403 		 *
404 		 * The 'master' represents the composite IO operation to
405 		 * user-side. So if something waits for IO, then it will
406 		 * wait for the 'master' bio.
407 		 */
408 		set_bit(R10BIO_Uptodate, &r10_bio->state);
409 	} else {
410 		/* If all other devices that store this block have
411 		 * failed, we want to return the error upwards rather
412 		 * than fail the last device.  Here we redefine
413 		 * "uptodate" to mean "Don't want to retry"
414 		 */
415 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
416 			     rdev->raid_disk))
417 			uptodate = 1;
418 	}
419 	if (uptodate) {
420 		raid_end_bio_io(r10_bio);
421 		rdev_dec_pending(rdev, conf->mddev);
422 	} else {
423 		/*
424 		 * oops, read error - keep the refcount on the rdev
425 		 */
426 		char b[BDEVNAME_SIZE];
427 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
428 				   mdname(conf->mddev),
429 				   bdevname(rdev->bdev, b),
430 				   (unsigned long long)r10_bio->sector);
431 		set_bit(R10BIO_ReadError, &r10_bio->state);
432 		reschedule_retry(r10_bio);
433 	}
434 }
435 
436 static void close_write(struct r10bio *r10_bio)
437 {
438 	/* clear the bitmap if all writes complete successfully */
439 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
440 			r10_bio->sectors,
441 			!test_bit(R10BIO_Degraded, &r10_bio->state),
442 			0);
443 	md_write_end(r10_bio->mddev);
444 }
445 
446 static void one_write_done(struct r10bio *r10_bio)
447 {
448 	if (atomic_dec_and_test(&r10_bio->remaining)) {
449 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
450 			reschedule_retry(r10_bio);
451 		else {
452 			close_write(r10_bio);
453 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
454 				reschedule_retry(r10_bio);
455 			else
456 				raid_end_bio_io(r10_bio);
457 		}
458 	}
459 }
460 
461 static void raid10_end_write_request(struct bio *bio)
462 {
463 	struct r10bio *r10_bio = bio->bi_private;
464 	int dev;
465 	int dec_rdev = 1;
466 	struct r10conf *conf = r10_bio->mddev->private;
467 	int slot, repl;
468 	struct md_rdev *rdev = NULL;
469 	struct bio *to_put = NULL;
470 	bool discard_error;
471 
472 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
473 
474 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
475 
476 	if (repl)
477 		rdev = conf->mirrors[dev].replacement;
478 	if (!rdev) {
479 		smp_rmb();
480 		repl = 0;
481 		rdev = conf->mirrors[dev].rdev;
482 	}
483 	/*
484 	 * this branch is our 'one mirror IO has finished' event handler:
485 	 */
486 	if (bio->bi_status && !discard_error) {
487 		if (repl)
488 			/* Never record new bad blocks to replacement,
489 			 * just fail it.
490 			 */
491 			md_error(rdev->mddev, rdev);
492 		else {
493 			set_bit(WriteErrorSeen,	&rdev->flags);
494 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
495 				set_bit(MD_RECOVERY_NEEDED,
496 					&rdev->mddev->recovery);
497 
498 			dec_rdev = 0;
499 			if (test_bit(FailFast, &rdev->flags) &&
500 			    (bio->bi_opf & MD_FAILFAST)) {
501 				md_error(rdev->mddev, rdev);
502 				if (!test_bit(Faulty, &rdev->flags))
503 					/* This is the only remaining device,
504 					 * We need to retry the write without
505 					 * FailFast
506 					 */
507 					set_bit(R10BIO_WriteError, &r10_bio->state);
508 				else {
509 					r10_bio->devs[slot].bio = NULL;
510 					to_put = bio;
511 					dec_rdev = 1;
512 				}
513 			} else
514 				set_bit(R10BIO_WriteError, &r10_bio->state);
515 		}
516 	} else {
517 		/*
518 		 * Set R10BIO_Uptodate in our master bio, so that
519 		 * we will return a good error code for to the higher
520 		 * levels even if IO on some other mirrored buffer fails.
521 		 *
522 		 * The 'master' represents the composite IO operation to
523 		 * user-side. So if something waits for IO, then it will
524 		 * wait for the 'master' bio.
525 		 */
526 		sector_t first_bad;
527 		int bad_sectors;
528 
529 		/*
530 		 * Do not set R10BIO_Uptodate if the current device is
531 		 * rebuilding or Faulty. This is because we cannot use
532 		 * such device for properly reading the data back (we could
533 		 * potentially use it, if the current write would have felt
534 		 * before rdev->recovery_offset, but for simplicity we don't
535 		 * check this here.
536 		 */
537 		if (test_bit(In_sync, &rdev->flags) &&
538 		    !test_bit(Faulty, &rdev->flags))
539 			set_bit(R10BIO_Uptodate, &r10_bio->state);
540 
541 		/* Maybe we can clear some bad blocks. */
542 		if (is_badblock(rdev,
543 				r10_bio->devs[slot].addr,
544 				r10_bio->sectors,
545 				&first_bad, &bad_sectors) && !discard_error) {
546 			bio_put(bio);
547 			if (repl)
548 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
549 			else
550 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
551 			dec_rdev = 0;
552 			set_bit(R10BIO_MadeGood, &r10_bio->state);
553 		}
554 	}
555 
556 	/*
557 	 *
558 	 * Let's see if all mirrored write operations have finished
559 	 * already.
560 	 */
561 	one_write_done(r10_bio);
562 	if (dec_rdev)
563 		rdev_dec_pending(rdev, conf->mddev);
564 	if (to_put)
565 		bio_put(to_put);
566 }
567 
568 /*
569  * RAID10 layout manager
570  * As well as the chunksize and raid_disks count, there are two
571  * parameters: near_copies and far_copies.
572  * near_copies * far_copies must be <= raid_disks.
573  * Normally one of these will be 1.
574  * If both are 1, we get raid0.
575  * If near_copies == raid_disks, we get raid1.
576  *
577  * Chunks are laid out in raid0 style with near_copies copies of the
578  * first chunk, followed by near_copies copies of the next chunk and
579  * so on.
580  * If far_copies > 1, then after 1/far_copies of the array has been assigned
581  * as described above, we start again with a device offset of near_copies.
582  * So we effectively have another copy of the whole array further down all
583  * the drives, but with blocks on different drives.
584  * With this layout, and block is never stored twice on the one device.
585  *
586  * raid10_find_phys finds the sector offset of a given virtual sector
587  * on each device that it is on.
588  *
589  * raid10_find_virt does the reverse mapping, from a device and a
590  * sector offset to a virtual address
591  */
592 
593 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
594 {
595 	int n,f;
596 	sector_t sector;
597 	sector_t chunk;
598 	sector_t stripe;
599 	int dev;
600 	int slot = 0;
601 	int last_far_set_start, last_far_set_size;
602 
603 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
604 	last_far_set_start *= geo->far_set_size;
605 
606 	last_far_set_size = geo->far_set_size;
607 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
608 
609 	/* now calculate first sector/dev */
610 	chunk = r10bio->sector >> geo->chunk_shift;
611 	sector = r10bio->sector & geo->chunk_mask;
612 
613 	chunk *= geo->near_copies;
614 	stripe = chunk;
615 	dev = sector_div(stripe, geo->raid_disks);
616 	if (geo->far_offset)
617 		stripe *= geo->far_copies;
618 
619 	sector += stripe << geo->chunk_shift;
620 
621 	/* and calculate all the others */
622 	for (n = 0; n < geo->near_copies; n++) {
623 		int d = dev;
624 		int set;
625 		sector_t s = sector;
626 		r10bio->devs[slot].devnum = d;
627 		r10bio->devs[slot].addr = s;
628 		slot++;
629 
630 		for (f = 1; f < geo->far_copies; f++) {
631 			set = d / geo->far_set_size;
632 			d += geo->near_copies;
633 
634 			if ((geo->raid_disks % geo->far_set_size) &&
635 			    (d > last_far_set_start)) {
636 				d -= last_far_set_start;
637 				d %= last_far_set_size;
638 				d += last_far_set_start;
639 			} else {
640 				d %= geo->far_set_size;
641 				d += geo->far_set_size * set;
642 			}
643 			s += geo->stride;
644 			r10bio->devs[slot].devnum = d;
645 			r10bio->devs[slot].addr = s;
646 			slot++;
647 		}
648 		dev++;
649 		if (dev >= geo->raid_disks) {
650 			dev = 0;
651 			sector += (geo->chunk_mask + 1);
652 		}
653 	}
654 }
655 
656 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
657 {
658 	struct geom *geo = &conf->geo;
659 
660 	if (conf->reshape_progress != MaxSector &&
661 	    ((r10bio->sector >= conf->reshape_progress) !=
662 	     conf->mddev->reshape_backwards)) {
663 		set_bit(R10BIO_Previous, &r10bio->state);
664 		geo = &conf->prev;
665 	} else
666 		clear_bit(R10BIO_Previous, &r10bio->state);
667 
668 	__raid10_find_phys(geo, r10bio);
669 }
670 
671 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
672 {
673 	sector_t offset, chunk, vchunk;
674 	/* Never use conf->prev as this is only called during resync
675 	 * or recovery, so reshape isn't happening
676 	 */
677 	struct geom *geo = &conf->geo;
678 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
679 	int far_set_size = geo->far_set_size;
680 	int last_far_set_start;
681 
682 	if (geo->raid_disks % geo->far_set_size) {
683 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
684 		last_far_set_start *= geo->far_set_size;
685 
686 		if (dev >= last_far_set_start) {
687 			far_set_size = geo->far_set_size;
688 			far_set_size += (geo->raid_disks % geo->far_set_size);
689 			far_set_start = last_far_set_start;
690 		}
691 	}
692 
693 	offset = sector & geo->chunk_mask;
694 	if (geo->far_offset) {
695 		int fc;
696 		chunk = sector >> geo->chunk_shift;
697 		fc = sector_div(chunk, geo->far_copies);
698 		dev -= fc * geo->near_copies;
699 		if (dev < far_set_start)
700 			dev += far_set_size;
701 	} else {
702 		while (sector >= geo->stride) {
703 			sector -= geo->stride;
704 			if (dev < (geo->near_copies + far_set_start))
705 				dev += far_set_size - geo->near_copies;
706 			else
707 				dev -= geo->near_copies;
708 		}
709 		chunk = sector >> geo->chunk_shift;
710 	}
711 	vchunk = chunk * geo->raid_disks + dev;
712 	sector_div(vchunk, geo->near_copies);
713 	return (vchunk << geo->chunk_shift) + offset;
714 }
715 
716 /*
717  * This routine returns the disk from which the requested read should
718  * be done. There is a per-array 'next expected sequential IO' sector
719  * number - if this matches on the next IO then we use the last disk.
720  * There is also a per-disk 'last know head position' sector that is
721  * maintained from IRQ contexts, both the normal and the resync IO
722  * completion handlers update this position correctly. If there is no
723  * perfect sequential match then we pick the disk whose head is closest.
724  *
725  * If there are 2 mirrors in the same 2 devices, performance degrades
726  * because position is mirror, not device based.
727  *
728  * The rdev for the device selected will have nr_pending incremented.
729  */
730 
731 /*
732  * FIXME: possibly should rethink readbalancing and do it differently
733  * depending on near_copies / far_copies geometry.
734  */
735 static struct md_rdev *read_balance(struct r10conf *conf,
736 				    struct r10bio *r10_bio,
737 				    int *max_sectors)
738 {
739 	const sector_t this_sector = r10_bio->sector;
740 	int disk, slot;
741 	int sectors = r10_bio->sectors;
742 	int best_good_sectors;
743 	sector_t new_distance, best_dist;
744 	struct md_rdev *best_rdev, *rdev = NULL;
745 	int do_balance;
746 	int best_slot;
747 	struct geom *geo = &conf->geo;
748 
749 	raid10_find_phys(conf, r10_bio);
750 	rcu_read_lock();
751 	sectors = r10_bio->sectors;
752 	best_slot = -1;
753 	best_rdev = NULL;
754 	best_dist = MaxSector;
755 	best_good_sectors = 0;
756 	do_balance = 1;
757 	clear_bit(R10BIO_FailFast, &r10_bio->state);
758 	/*
759 	 * Check if we can balance. We can balance on the whole
760 	 * device if no resync is going on (recovery is ok), or below
761 	 * the resync window. We take the first readable disk when
762 	 * above the resync window.
763 	 */
764 	if (conf->mddev->recovery_cp < MaxSector
765 	    && (this_sector + sectors >= conf->next_resync))
766 		do_balance = 0;
767 
768 	for (slot = 0; slot < conf->copies ; slot++) {
769 		sector_t first_bad;
770 		int bad_sectors;
771 		sector_t dev_sector;
772 
773 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
774 			continue;
775 		disk = r10_bio->devs[slot].devnum;
776 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
777 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
778 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
779 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
780 		if (rdev == NULL ||
781 		    test_bit(Faulty, &rdev->flags))
782 			continue;
783 		if (!test_bit(In_sync, &rdev->flags) &&
784 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
785 			continue;
786 
787 		dev_sector = r10_bio->devs[slot].addr;
788 		if (is_badblock(rdev, dev_sector, sectors,
789 				&first_bad, &bad_sectors)) {
790 			if (best_dist < MaxSector)
791 				/* Already have a better slot */
792 				continue;
793 			if (first_bad <= dev_sector) {
794 				/* Cannot read here.  If this is the
795 				 * 'primary' device, then we must not read
796 				 * beyond 'bad_sectors' from another device.
797 				 */
798 				bad_sectors -= (dev_sector - first_bad);
799 				if (!do_balance && sectors > bad_sectors)
800 					sectors = bad_sectors;
801 				if (best_good_sectors > sectors)
802 					best_good_sectors = sectors;
803 			} else {
804 				sector_t good_sectors =
805 					first_bad - dev_sector;
806 				if (good_sectors > best_good_sectors) {
807 					best_good_sectors = good_sectors;
808 					best_slot = slot;
809 					best_rdev = rdev;
810 				}
811 				if (!do_balance)
812 					/* Must read from here */
813 					break;
814 			}
815 			continue;
816 		} else
817 			best_good_sectors = sectors;
818 
819 		if (!do_balance)
820 			break;
821 
822 		if (best_slot >= 0)
823 			/* At least 2 disks to choose from so failfast is OK */
824 			set_bit(R10BIO_FailFast, &r10_bio->state);
825 		/* This optimisation is debatable, and completely destroys
826 		 * sequential read speed for 'far copies' arrays.  So only
827 		 * keep it for 'near' arrays, and review those later.
828 		 */
829 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
830 			new_distance = 0;
831 
832 		/* for far > 1 always use the lowest address */
833 		else if (geo->far_copies > 1)
834 			new_distance = r10_bio->devs[slot].addr;
835 		else
836 			new_distance = abs(r10_bio->devs[slot].addr -
837 					   conf->mirrors[disk].head_position);
838 		if (new_distance < best_dist) {
839 			best_dist = new_distance;
840 			best_slot = slot;
841 			best_rdev = rdev;
842 		}
843 	}
844 	if (slot >= conf->copies) {
845 		slot = best_slot;
846 		rdev = best_rdev;
847 	}
848 
849 	if (slot >= 0) {
850 		atomic_inc(&rdev->nr_pending);
851 		r10_bio->read_slot = slot;
852 	} else
853 		rdev = NULL;
854 	rcu_read_unlock();
855 	*max_sectors = best_good_sectors;
856 
857 	return rdev;
858 }
859 
860 static int raid10_congested(struct mddev *mddev, int bits)
861 {
862 	struct r10conf *conf = mddev->private;
863 	int i, ret = 0;
864 
865 	if ((bits & (1 << WB_async_congested)) &&
866 	    conf->pending_count >= max_queued_requests)
867 		return 1;
868 
869 	rcu_read_lock();
870 	for (i = 0;
871 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
872 		     && ret == 0;
873 	     i++) {
874 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
875 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
876 			struct request_queue *q = bdev_get_queue(rdev->bdev);
877 
878 			ret |= bdi_congested(q->backing_dev_info, bits);
879 		}
880 	}
881 	rcu_read_unlock();
882 	return ret;
883 }
884 
885 static void flush_pending_writes(struct r10conf *conf)
886 {
887 	/* Any writes that have been queued but are awaiting
888 	 * bitmap updates get flushed here.
889 	 */
890 	spin_lock_irq(&conf->device_lock);
891 
892 	if (conf->pending_bio_list.head) {
893 		struct bio *bio;
894 		bio = bio_list_get(&conf->pending_bio_list);
895 		conf->pending_count = 0;
896 		spin_unlock_irq(&conf->device_lock);
897 		/* flush any pending bitmap writes to disk
898 		 * before proceeding w/ I/O */
899 		bitmap_unplug(conf->mddev->bitmap);
900 		wake_up(&conf->wait_barrier);
901 
902 		while (bio) { /* submit pending writes */
903 			struct bio *next = bio->bi_next;
904 			struct md_rdev *rdev = (void*)bio->bi_bdev;
905 			bio->bi_next = NULL;
906 			bio->bi_bdev = rdev->bdev;
907 			if (test_bit(Faulty, &rdev->flags)) {
908 				bio_io_error(bio);
909 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
910 					    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
911 				/* Just ignore it */
912 				bio_endio(bio);
913 			else
914 				generic_make_request(bio);
915 			bio = next;
916 		}
917 	} else
918 		spin_unlock_irq(&conf->device_lock);
919 }
920 
921 /* Barriers....
922  * Sometimes we need to suspend IO while we do something else,
923  * either some resync/recovery, or reconfigure the array.
924  * To do this we raise a 'barrier'.
925  * The 'barrier' is a counter that can be raised multiple times
926  * to count how many activities are happening which preclude
927  * normal IO.
928  * We can only raise the barrier if there is no pending IO.
929  * i.e. if nr_pending == 0.
930  * We choose only to raise the barrier if no-one is waiting for the
931  * barrier to go down.  This means that as soon as an IO request
932  * is ready, no other operations which require a barrier will start
933  * until the IO request has had a chance.
934  *
935  * So: regular IO calls 'wait_barrier'.  When that returns there
936  *    is no backgroup IO happening,  It must arrange to call
937  *    allow_barrier when it has finished its IO.
938  * backgroup IO calls must call raise_barrier.  Once that returns
939  *    there is no normal IO happeing.  It must arrange to call
940  *    lower_barrier when the particular background IO completes.
941  */
942 
943 static void raise_barrier(struct r10conf *conf, int force)
944 {
945 	BUG_ON(force && !conf->barrier);
946 	spin_lock_irq(&conf->resync_lock);
947 
948 	/* Wait until no block IO is waiting (unless 'force') */
949 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
950 			    conf->resync_lock);
951 
952 	/* block any new IO from starting */
953 	conf->barrier++;
954 
955 	/* Now wait for all pending IO to complete */
956 	wait_event_lock_irq(conf->wait_barrier,
957 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
958 			    conf->resync_lock);
959 
960 	spin_unlock_irq(&conf->resync_lock);
961 }
962 
963 static void lower_barrier(struct r10conf *conf)
964 {
965 	unsigned long flags;
966 	spin_lock_irqsave(&conf->resync_lock, flags);
967 	conf->barrier--;
968 	spin_unlock_irqrestore(&conf->resync_lock, flags);
969 	wake_up(&conf->wait_barrier);
970 }
971 
972 static void wait_barrier(struct r10conf *conf)
973 {
974 	spin_lock_irq(&conf->resync_lock);
975 	if (conf->barrier) {
976 		conf->nr_waiting++;
977 		/* Wait for the barrier to drop.
978 		 * However if there are already pending
979 		 * requests (preventing the barrier from
980 		 * rising completely), and the
981 		 * pre-process bio queue isn't empty,
982 		 * then don't wait, as we need to empty
983 		 * that queue to get the nr_pending
984 		 * count down.
985 		 */
986 		raid10_log(conf->mddev, "wait barrier");
987 		wait_event_lock_irq(conf->wait_barrier,
988 				    !conf->barrier ||
989 				    (atomic_read(&conf->nr_pending) &&
990 				     current->bio_list &&
991 				     (!bio_list_empty(&current->bio_list[0]) ||
992 				      !bio_list_empty(&current->bio_list[1]))),
993 				    conf->resync_lock);
994 		conf->nr_waiting--;
995 		if (!conf->nr_waiting)
996 			wake_up(&conf->wait_barrier);
997 	}
998 	atomic_inc(&conf->nr_pending);
999 	spin_unlock_irq(&conf->resync_lock);
1000 }
1001 
1002 static void allow_barrier(struct r10conf *conf)
1003 {
1004 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1005 			(conf->array_freeze_pending))
1006 		wake_up(&conf->wait_barrier);
1007 }
1008 
1009 static void freeze_array(struct r10conf *conf, int extra)
1010 {
1011 	/* stop syncio and normal IO and wait for everything to
1012 	 * go quiet.
1013 	 * We increment barrier and nr_waiting, and then
1014 	 * wait until nr_pending match nr_queued+extra
1015 	 * This is called in the context of one normal IO request
1016 	 * that has failed. Thus any sync request that might be pending
1017 	 * will be blocked by nr_pending, and we need to wait for
1018 	 * pending IO requests to complete or be queued for re-try.
1019 	 * Thus the number queued (nr_queued) plus this request (extra)
1020 	 * must match the number of pending IOs (nr_pending) before
1021 	 * we continue.
1022 	 */
1023 	spin_lock_irq(&conf->resync_lock);
1024 	conf->array_freeze_pending++;
1025 	conf->barrier++;
1026 	conf->nr_waiting++;
1027 	wait_event_lock_irq_cmd(conf->wait_barrier,
1028 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1029 				conf->resync_lock,
1030 				flush_pending_writes(conf));
1031 
1032 	conf->array_freeze_pending--;
1033 	spin_unlock_irq(&conf->resync_lock);
1034 }
1035 
1036 static void unfreeze_array(struct r10conf *conf)
1037 {
1038 	/* reverse the effect of the freeze */
1039 	spin_lock_irq(&conf->resync_lock);
1040 	conf->barrier--;
1041 	conf->nr_waiting--;
1042 	wake_up(&conf->wait_barrier);
1043 	spin_unlock_irq(&conf->resync_lock);
1044 }
1045 
1046 static sector_t choose_data_offset(struct r10bio *r10_bio,
1047 				   struct md_rdev *rdev)
1048 {
1049 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1050 	    test_bit(R10BIO_Previous, &r10_bio->state))
1051 		return rdev->data_offset;
1052 	else
1053 		return rdev->new_data_offset;
1054 }
1055 
1056 struct raid10_plug_cb {
1057 	struct blk_plug_cb	cb;
1058 	struct bio_list		pending;
1059 	int			pending_cnt;
1060 };
1061 
1062 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1063 {
1064 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1065 						   cb);
1066 	struct mddev *mddev = plug->cb.data;
1067 	struct r10conf *conf = mddev->private;
1068 	struct bio *bio;
1069 
1070 	if (from_schedule || current->bio_list) {
1071 		spin_lock_irq(&conf->device_lock);
1072 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1073 		conf->pending_count += plug->pending_cnt;
1074 		spin_unlock_irq(&conf->device_lock);
1075 		wake_up(&conf->wait_barrier);
1076 		md_wakeup_thread(mddev->thread);
1077 		kfree(plug);
1078 		return;
1079 	}
1080 
1081 	/* we aren't scheduling, so we can do the write-out directly. */
1082 	bio = bio_list_get(&plug->pending);
1083 	bitmap_unplug(mddev->bitmap);
1084 	wake_up(&conf->wait_barrier);
1085 
1086 	while (bio) { /* submit pending writes */
1087 		struct bio *next = bio->bi_next;
1088 		struct md_rdev *rdev = (void*)bio->bi_bdev;
1089 		bio->bi_next = NULL;
1090 		bio->bi_bdev = rdev->bdev;
1091 		if (test_bit(Faulty, &rdev->flags)) {
1092 			bio_io_error(bio);
1093 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1094 				    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1095 			/* Just ignore it */
1096 			bio_endio(bio);
1097 		else
1098 			generic_make_request(bio);
1099 		bio = next;
1100 	}
1101 	kfree(plug);
1102 }
1103 
1104 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1105 				struct r10bio *r10_bio)
1106 {
1107 	struct r10conf *conf = mddev->private;
1108 	struct bio *read_bio;
1109 	const int op = bio_op(bio);
1110 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1111 	int max_sectors;
1112 	sector_t sectors;
1113 	struct md_rdev *rdev;
1114 	char b[BDEVNAME_SIZE];
1115 	int slot = r10_bio->read_slot;
1116 	struct md_rdev *err_rdev = NULL;
1117 	gfp_t gfp = GFP_NOIO;
1118 
1119 	if (r10_bio->devs[slot].rdev) {
1120 		/*
1121 		 * This is an error retry, but we cannot
1122 		 * safely dereference the rdev in the r10_bio,
1123 		 * we must use the one in conf.
1124 		 * If it has already been disconnected (unlikely)
1125 		 * we lose the device name in error messages.
1126 		 */
1127 		int disk;
1128 		/*
1129 		 * As we are blocking raid10, it is a little safer to
1130 		 * use __GFP_HIGH.
1131 		 */
1132 		gfp = GFP_NOIO | __GFP_HIGH;
1133 
1134 		rcu_read_lock();
1135 		disk = r10_bio->devs[slot].devnum;
1136 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1137 		if (err_rdev)
1138 			bdevname(err_rdev->bdev, b);
1139 		else {
1140 			strcpy(b, "???");
1141 			/* This never gets dereferenced */
1142 			err_rdev = r10_bio->devs[slot].rdev;
1143 		}
1144 		rcu_read_unlock();
1145 	}
1146 	/*
1147 	 * Register the new request and wait if the reconstruction
1148 	 * thread has put up a bar for new requests.
1149 	 * Continue immediately if no resync is active currently.
1150 	 */
1151 	wait_barrier(conf);
1152 
1153 	sectors = r10_bio->sectors;
1154 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1155 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1156 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1157 		/*
1158 		 * IO spans the reshape position.  Need to wait for reshape to
1159 		 * pass
1160 		 */
1161 		raid10_log(conf->mddev, "wait reshape");
1162 		allow_barrier(conf);
1163 		wait_event(conf->wait_barrier,
1164 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1165 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1166 			   sectors);
1167 		wait_barrier(conf);
1168 	}
1169 
1170 	rdev = read_balance(conf, r10_bio, &max_sectors);
1171 	if (!rdev) {
1172 		if (err_rdev) {
1173 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1174 					    mdname(mddev), b,
1175 					    (unsigned long long)r10_bio->sector);
1176 		}
1177 		raid_end_bio_io(r10_bio);
1178 		return;
1179 	}
1180 	if (err_rdev)
1181 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1182 				   mdname(mddev),
1183 				   bdevname(rdev->bdev, b),
1184 				   (unsigned long long)r10_bio->sector);
1185 	if (max_sectors < bio_sectors(bio)) {
1186 		struct bio *split = bio_split(bio, max_sectors,
1187 					      gfp, conf->bio_split);
1188 		bio_chain(split, bio);
1189 		generic_make_request(bio);
1190 		bio = split;
1191 		r10_bio->master_bio = bio;
1192 		r10_bio->sectors = max_sectors;
1193 	}
1194 	slot = r10_bio->read_slot;
1195 
1196 	read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1197 
1198 	r10_bio->devs[slot].bio = read_bio;
1199 	r10_bio->devs[slot].rdev = rdev;
1200 
1201 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1202 		choose_data_offset(r10_bio, rdev);
1203 	read_bio->bi_bdev = rdev->bdev;
1204 	read_bio->bi_end_io = raid10_end_read_request;
1205 	bio_set_op_attrs(read_bio, op, do_sync);
1206 	if (test_bit(FailFast, &rdev->flags) &&
1207 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1208 	        read_bio->bi_opf |= MD_FAILFAST;
1209 	read_bio->bi_private = r10_bio;
1210 
1211 	if (mddev->gendisk)
1212 	        trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1213 	                              read_bio, disk_devt(mddev->gendisk),
1214 	                              r10_bio->sector);
1215 	generic_make_request(read_bio);
1216 	return;
1217 }
1218 
1219 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1220 				  struct bio *bio, bool replacement,
1221 				  int n_copy)
1222 {
1223 	const int op = bio_op(bio);
1224 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1225 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1226 	unsigned long flags;
1227 	struct blk_plug_cb *cb;
1228 	struct raid10_plug_cb *plug = NULL;
1229 	struct r10conf *conf = mddev->private;
1230 	struct md_rdev *rdev;
1231 	int devnum = r10_bio->devs[n_copy].devnum;
1232 	struct bio *mbio;
1233 
1234 	if (replacement) {
1235 		rdev = conf->mirrors[devnum].replacement;
1236 		if (rdev == NULL) {
1237 			/* Replacement just got moved to main 'rdev' */
1238 			smp_mb();
1239 			rdev = conf->mirrors[devnum].rdev;
1240 		}
1241 	} else
1242 		rdev = conf->mirrors[devnum].rdev;
1243 
1244 	mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1245 	if (replacement)
1246 		r10_bio->devs[n_copy].repl_bio = mbio;
1247 	else
1248 		r10_bio->devs[n_copy].bio = mbio;
1249 
1250 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1251 				   choose_data_offset(r10_bio, rdev));
1252 	mbio->bi_bdev = rdev->bdev;
1253 	mbio->bi_end_io	= raid10_end_write_request;
1254 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1255 	if (!replacement && test_bit(FailFast,
1256 				     &conf->mirrors[devnum].rdev->flags)
1257 			 && enough(conf, devnum))
1258 		mbio->bi_opf |= MD_FAILFAST;
1259 	mbio->bi_private = r10_bio;
1260 
1261 	if (conf->mddev->gendisk)
1262 		trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1263 				      mbio, disk_devt(conf->mddev->gendisk),
1264 				      r10_bio->sector);
1265 	/* flush_pending_writes() needs access to the rdev so...*/
1266 	mbio->bi_bdev = (void *)rdev;
1267 
1268 	atomic_inc(&r10_bio->remaining);
1269 
1270 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1271 	if (cb)
1272 		plug = container_of(cb, struct raid10_plug_cb, cb);
1273 	else
1274 		plug = NULL;
1275 	if (plug) {
1276 		bio_list_add(&plug->pending, mbio);
1277 		plug->pending_cnt++;
1278 	} else {
1279 		spin_lock_irqsave(&conf->device_lock, flags);
1280 		bio_list_add(&conf->pending_bio_list, mbio);
1281 		conf->pending_count++;
1282 		spin_unlock_irqrestore(&conf->device_lock, flags);
1283 		md_wakeup_thread(mddev->thread);
1284 	}
1285 }
1286 
1287 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1288 				 struct r10bio *r10_bio)
1289 {
1290 	struct r10conf *conf = mddev->private;
1291 	int i;
1292 	struct md_rdev *blocked_rdev;
1293 	sector_t sectors;
1294 	int max_sectors;
1295 
1296 	/*
1297 	 * Register the new request and wait if the reconstruction
1298 	 * thread has put up a bar for new requests.
1299 	 * Continue immediately if no resync is active currently.
1300 	 */
1301 	wait_barrier(conf);
1302 
1303 	sectors = r10_bio->sectors;
1304 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1305 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1306 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1307 		/*
1308 		 * IO spans the reshape position.  Need to wait for reshape to
1309 		 * pass
1310 		 */
1311 		raid10_log(conf->mddev, "wait reshape");
1312 		allow_barrier(conf);
1313 		wait_event(conf->wait_barrier,
1314 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1315 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1316 			   sectors);
1317 		wait_barrier(conf);
1318 	}
1319 
1320 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1321 	    (mddev->reshape_backwards
1322 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1323 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1324 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1325 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1326 		/* Need to update reshape_position in metadata */
1327 		mddev->reshape_position = conf->reshape_progress;
1328 		set_mask_bits(&mddev->sb_flags, 0,
1329 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1330 		md_wakeup_thread(mddev->thread);
1331 		raid10_log(conf->mddev, "wait reshape metadata");
1332 		wait_event(mddev->sb_wait,
1333 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1334 
1335 		conf->reshape_safe = mddev->reshape_position;
1336 	}
1337 
1338 	if (conf->pending_count >= max_queued_requests) {
1339 		md_wakeup_thread(mddev->thread);
1340 		raid10_log(mddev, "wait queued");
1341 		wait_event(conf->wait_barrier,
1342 			   conf->pending_count < max_queued_requests);
1343 	}
1344 	/* first select target devices under rcu_lock and
1345 	 * inc refcount on their rdev.  Record them by setting
1346 	 * bios[x] to bio
1347 	 * If there are known/acknowledged bad blocks on any device
1348 	 * on which we have seen a write error, we want to avoid
1349 	 * writing to those blocks.  This potentially requires several
1350 	 * writes to write around the bad blocks.  Each set of writes
1351 	 * gets its own r10_bio with a set of bios attached.
1352 	 */
1353 
1354 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1355 	raid10_find_phys(conf, r10_bio);
1356 retry_write:
1357 	blocked_rdev = NULL;
1358 	rcu_read_lock();
1359 	max_sectors = r10_bio->sectors;
1360 
1361 	for (i = 0;  i < conf->copies; i++) {
1362 		int d = r10_bio->devs[i].devnum;
1363 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1364 		struct md_rdev *rrdev = rcu_dereference(
1365 			conf->mirrors[d].replacement);
1366 		if (rdev == rrdev)
1367 			rrdev = NULL;
1368 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1369 			atomic_inc(&rdev->nr_pending);
1370 			blocked_rdev = rdev;
1371 			break;
1372 		}
1373 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1374 			atomic_inc(&rrdev->nr_pending);
1375 			blocked_rdev = rrdev;
1376 			break;
1377 		}
1378 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1379 			rdev = NULL;
1380 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1381 			rrdev = NULL;
1382 
1383 		r10_bio->devs[i].bio = NULL;
1384 		r10_bio->devs[i].repl_bio = NULL;
1385 
1386 		if (!rdev && !rrdev) {
1387 			set_bit(R10BIO_Degraded, &r10_bio->state);
1388 			continue;
1389 		}
1390 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1391 			sector_t first_bad;
1392 			sector_t dev_sector = r10_bio->devs[i].addr;
1393 			int bad_sectors;
1394 			int is_bad;
1395 
1396 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1397 					     &first_bad, &bad_sectors);
1398 			if (is_bad < 0) {
1399 				/* Mustn't write here until the bad block
1400 				 * is acknowledged
1401 				 */
1402 				atomic_inc(&rdev->nr_pending);
1403 				set_bit(BlockedBadBlocks, &rdev->flags);
1404 				blocked_rdev = rdev;
1405 				break;
1406 			}
1407 			if (is_bad && first_bad <= dev_sector) {
1408 				/* Cannot write here at all */
1409 				bad_sectors -= (dev_sector - first_bad);
1410 				if (bad_sectors < max_sectors)
1411 					/* Mustn't write more than bad_sectors
1412 					 * to other devices yet
1413 					 */
1414 					max_sectors = bad_sectors;
1415 				/* We don't set R10BIO_Degraded as that
1416 				 * only applies if the disk is missing,
1417 				 * so it might be re-added, and we want to
1418 				 * know to recover this chunk.
1419 				 * In this case the device is here, and the
1420 				 * fact that this chunk is not in-sync is
1421 				 * recorded in the bad block log.
1422 				 */
1423 				continue;
1424 			}
1425 			if (is_bad) {
1426 				int good_sectors = first_bad - dev_sector;
1427 				if (good_sectors < max_sectors)
1428 					max_sectors = good_sectors;
1429 			}
1430 		}
1431 		if (rdev) {
1432 			r10_bio->devs[i].bio = bio;
1433 			atomic_inc(&rdev->nr_pending);
1434 		}
1435 		if (rrdev) {
1436 			r10_bio->devs[i].repl_bio = bio;
1437 			atomic_inc(&rrdev->nr_pending);
1438 		}
1439 	}
1440 	rcu_read_unlock();
1441 
1442 	if (unlikely(blocked_rdev)) {
1443 		/* Have to wait for this device to get unblocked, then retry */
1444 		int j;
1445 		int d;
1446 
1447 		for (j = 0; j < i; j++) {
1448 			if (r10_bio->devs[j].bio) {
1449 				d = r10_bio->devs[j].devnum;
1450 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1451 			}
1452 			if (r10_bio->devs[j].repl_bio) {
1453 				struct md_rdev *rdev;
1454 				d = r10_bio->devs[j].devnum;
1455 				rdev = conf->mirrors[d].replacement;
1456 				if (!rdev) {
1457 					/* Race with remove_disk */
1458 					smp_mb();
1459 					rdev = conf->mirrors[d].rdev;
1460 				}
1461 				rdev_dec_pending(rdev, mddev);
1462 			}
1463 		}
1464 		allow_barrier(conf);
1465 		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1466 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1467 		wait_barrier(conf);
1468 		goto retry_write;
1469 	}
1470 
1471 	if (max_sectors < r10_bio->sectors)
1472 		r10_bio->sectors = max_sectors;
1473 
1474 	if (r10_bio->sectors < bio_sectors(bio)) {
1475 		struct bio *split = bio_split(bio, r10_bio->sectors,
1476 					      GFP_NOIO, conf->bio_split);
1477 		bio_chain(split, bio);
1478 		generic_make_request(bio);
1479 		bio = split;
1480 		r10_bio->master_bio = bio;
1481 	}
1482 
1483 	atomic_set(&r10_bio->remaining, 1);
1484 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1485 
1486 	for (i = 0; i < conf->copies; i++) {
1487 		if (r10_bio->devs[i].bio)
1488 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1489 		if (r10_bio->devs[i].repl_bio)
1490 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1491 	}
1492 	one_write_done(r10_bio);
1493 }
1494 
1495 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1496 {
1497 	struct r10conf *conf = mddev->private;
1498 	struct r10bio *r10_bio;
1499 
1500 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1501 
1502 	r10_bio->master_bio = bio;
1503 	r10_bio->sectors = sectors;
1504 
1505 	r10_bio->mddev = mddev;
1506 	r10_bio->sector = bio->bi_iter.bi_sector;
1507 	r10_bio->state = 0;
1508 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1509 
1510 	if (bio_data_dir(bio) == READ)
1511 		raid10_read_request(mddev, bio, r10_bio);
1512 	else
1513 		raid10_write_request(mddev, bio, r10_bio);
1514 }
1515 
1516 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1517 {
1518 	struct r10conf *conf = mddev->private;
1519 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1520 	int chunk_sects = chunk_mask + 1;
1521 	int sectors = bio_sectors(bio);
1522 
1523 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1524 		md_flush_request(mddev, bio);
1525 		return true;
1526 	}
1527 
1528 	if (!md_write_start(mddev, bio))
1529 		return false;
1530 
1531 	/*
1532 	 * If this request crosses a chunk boundary, we need to split
1533 	 * it.
1534 	 */
1535 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1536 		     sectors > chunk_sects
1537 		     && (conf->geo.near_copies < conf->geo.raid_disks
1538 			 || conf->prev.near_copies <
1539 			 conf->prev.raid_disks)))
1540 		sectors = chunk_sects -
1541 			(bio->bi_iter.bi_sector &
1542 			 (chunk_sects - 1));
1543 	__make_request(mddev, bio, sectors);
1544 
1545 	/* In case raid10d snuck in to freeze_array */
1546 	wake_up(&conf->wait_barrier);
1547 	return true;
1548 }
1549 
1550 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1551 {
1552 	struct r10conf *conf = mddev->private;
1553 	int i;
1554 
1555 	if (conf->geo.near_copies < conf->geo.raid_disks)
1556 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1557 	if (conf->geo.near_copies > 1)
1558 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1559 	if (conf->geo.far_copies > 1) {
1560 		if (conf->geo.far_offset)
1561 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1562 		else
1563 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1564 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1565 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1566 	}
1567 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1568 					conf->geo.raid_disks - mddev->degraded);
1569 	rcu_read_lock();
1570 	for (i = 0; i < conf->geo.raid_disks; i++) {
1571 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1572 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1573 	}
1574 	rcu_read_unlock();
1575 	seq_printf(seq, "]");
1576 }
1577 
1578 /* check if there are enough drives for
1579  * every block to appear on atleast one.
1580  * Don't consider the device numbered 'ignore'
1581  * as we might be about to remove it.
1582  */
1583 static int _enough(struct r10conf *conf, int previous, int ignore)
1584 {
1585 	int first = 0;
1586 	int has_enough = 0;
1587 	int disks, ncopies;
1588 	if (previous) {
1589 		disks = conf->prev.raid_disks;
1590 		ncopies = conf->prev.near_copies;
1591 	} else {
1592 		disks = conf->geo.raid_disks;
1593 		ncopies = conf->geo.near_copies;
1594 	}
1595 
1596 	rcu_read_lock();
1597 	do {
1598 		int n = conf->copies;
1599 		int cnt = 0;
1600 		int this = first;
1601 		while (n--) {
1602 			struct md_rdev *rdev;
1603 			if (this != ignore &&
1604 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1605 			    test_bit(In_sync, &rdev->flags))
1606 				cnt++;
1607 			this = (this+1) % disks;
1608 		}
1609 		if (cnt == 0)
1610 			goto out;
1611 		first = (first + ncopies) % disks;
1612 	} while (first != 0);
1613 	has_enough = 1;
1614 out:
1615 	rcu_read_unlock();
1616 	return has_enough;
1617 }
1618 
1619 static int enough(struct r10conf *conf, int ignore)
1620 {
1621 	/* when calling 'enough', both 'prev' and 'geo' must
1622 	 * be stable.
1623 	 * This is ensured if ->reconfig_mutex or ->device_lock
1624 	 * is held.
1625 	 */
1626 	return _enough(conf, 0, ignore) &&
1627 		_enough(conf, 1, ignore);
1628 }
1629 
1630 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1631 {
1632 	char b[BDEVNAME_SIZE];
1633 	struct r10conf *conf = mddev->private;
1634 	unsigned long flags;
1635 
1636 	/*
1637 	 * If it is not operational, then we have already marked it as dead
1638 	 * else if it is the last working disks, ignore the error, let the
1639 	 * next level up know.
1640 	 * else mark the drive as failed
1641 	 */
1642 	spin_lock_irqsave(&conf->device_lock, flags);
1643 	if (test_bit(In_sync, &rdev->flags)
1644 	    && !enough(conf, rdev->raid_disk)) {
1645 		/*
1646 		 * Don't fail the drive, just return an IO error.
1647 		 */
1648 		spin_unlock_irqrestore(&conf->device_lock, flags);
1649 		return;
1650 	}
1651 	if (test_and_clear_bit(In_sync, &rdev->flags))
1652 		mddev->degraded++;
1653 	/*
1654 	 * If recovery is running, make sure it aborts.
1655 	 */
1656 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1657 	set_bit(Blocked, &rdev->flags);
1658 	set_bit(Faulty, &rdev->flags);
1659 	set_mask_bits(&mddev->sb_flags, 0,
1660 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1661 	spin_unlock_irqrestore(&conf->device_lock, flags);
1662 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1663 		"md/raid10:%s: Operation continuing on %d devices.\n",
1664 		mdname(mddev), bdevname(rdev->bdev, b),
1665 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1666 }
1667 
1668 static void print_conf(struct r10conf *conf)
1669 {
1670 	int i;
1671 	struct md_rdev *rdev;
1672 
1673 	pr_debug("RAID10 conf printout:\n");
1674 	if (!conf) {
1675 		pr_debug("(!conf)\n");
1676 		return;
1677 	}
1678 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1679 		 conf->geo.raid_disks);
1680 
1681 	/* This is only called with ->reconfix_mutex held, so
1682 	 * rcu protection of rdev is not needed */
1683 	for (i = 0; i < conf->geo.raid_disks; i++) {
1684 		char b[BDEVNAME_SIZE];
1685 		rdev = conf->mirrors[i].rdev;
1686 		if (rdev)
1687 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1688 				 i, !test_bit(In_sync, &rdev->flags),
1689 				 !test_bit(Faulty, &rdev->flags),
1690 				 bdevname(rdev->bdev,b));
1691 	}
1692 }
1693 
1694 static void close_sync(struct r10conf *conf)
1695 {
1696 	wait_barrier(conf);
1697 	allow_barrier(conf);
1698 
1699 	mempool_destroy(conf->r10buf_pool);
1700 	conf->r10buf_pool = NULL;
1701 }
1702 
1703 static int raid10_spare_active(struct mddev *mddev)
1704 {
1705 	int i;
1706 	struct r10conf *conf = mddev->private;
1707 	struct raid10_info *tmp;
1708 	int count = 0;
1709 	unsigned long flags;
1710 
1711 	/*
1712 	 * Find all non-in_sync disks within the RAID10 configuration
1713 	 * and mark them in_sync
1714 	 */
1715 	for (i = 0; i < conf->geo.raid_disks; i++) {
1716 		tmp = conf->mirrors + i;
1717 		if (tmp->replacement
1718 		    && tmp->replacement->recovery_offset == MaxSector
1719 		    && !test_bit(Faulty, &tmp->replacement->flags)
1720 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1721 			/* Replacement has just become active */
1722 			if (!tmp->rdev
1723 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1724 				count++;
1725 			if (tmp->rdev) {
1726 				/* Replaced device not technically faulty,
1727 				 * but we need to be sure it gets removed
1728 				 * and never re-added.
1729 				 */
1730 				set_bit(Faulty, &tmp->rdev->flags);
1731 				sysfs_notify_dirent_safe(
1732 					tmp->rdev->sysfs_state);
1733 			}
1734 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1735 		} else if (tmp->rdev
1736 			   && tmp->rdev->recovery_offset == MaxSector
1737 			   && !test_bit(Faulty, &tmp->rdev->flags)
1738 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1739 			count++;
1740 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1741 		}
1742 	}
1743 	spin_lock_irqsave(&conf->device_lock, flags);
1744 	mddev->degraded -= count;
1745 	spin_unlock_irqrestore(&conf->device_lock, flags);
1746 
1747 	print_conf(conf);
1748 	return count;
1749 }
1750 
1751 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1752 {
1753 	struct r10conf *conf = mddev->private;
1754 	int err = -EEXIST;
1755 	int mirror;
1756 	int first = 0;
1757 	int last = conf->geo.raid_disks - 1;
1758 
1759 	if (mddev->recovery_cp < MaxSector)
1760 		/* only hot-add to in-sync arrays, as recovery is
1761 		 * very different from resync
1762 		 */
1763 		return -EBUSY;
1764 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1765 		return -EINVAL;
1766 
1767 	if (md_integrity_add_rdev(rdev, mddev))
1768 		return -ENXIO;
1769 
1770 	if (rdev->raid_disk >= 0)
1771 		first = last = rdev->raid_disk;
1772 
1773 	if (rdev->saved_raid_disk >= first &&
1774 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1775 		mirror = rdev->saved_raid_disk;
1776 	else
1777 		mirror = first;
1778 	for ( ; mirror <= last ; mirror++) {
1779 		struct raid10_info *p = &conf->mirrors[mirror];
1780 		if (p->recovery_disabled == mddev->recovery_disabled)
1781 			continue;
1782 		if (p->rdev) {
1783 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1784 			    p->replacement != NULL)
1785 				continue;
1786 			clear_bit(In_sync, &rdev->flags);
1787 			set_bit(Replacement, &rdev->flags);
1788 			rdev->raid_disk = mirror;
1789 			err = 0;
1790 			if (mddev->gendisk)
1791 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1792 						  rdev->data_offset << 9);
1793 			conf->fullsync = 1;
1794 			rcu_assign_pointer(p->replacement, rdev);
1795 			break;
1796 		}
1797 
1798 		if (mddev->gendisk)
1799 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1800 					  rdev->data_offset << 9);
1801 
1802 		p->head_position = 0;
1803 		p->recovery_disabled = mddev->recovery_disabled - 1;
1804 		rdev->raid_disk = mirror;
1805 		err = 0;
1806 		if (rdev->saved_raid_disk != mirror)
1807 			conf->fullsync = 1;
1808 		rcu_assign_pointer(p->rdev, rdev);
1809 		break;
1810 	}
1811 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1812 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1813 
1814 	print_conf(conf);
1815 	return err;
1816 }
1817 
1818 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1819 {
1820 	struct r10conf *conf = mddev->private;
1821 	int err = 0;
1822 	int number = rdev->raid_disk;
1823 	struct md_rdev **rdevp;
1824 	struct raid10_info *p = conf->mirrors + number;
1825 
1826 	print_conf(conf);
1827 	if (rdev == p->rdev)
1828 		rdevp = &p->rdev;
1829 	else if (rdev == p->replacement)
1830 		rdevp = &p->replacement;
1831 	else
1832 		return 0;
1833 
1834 	if (test_bit(In_sync, &rdev->flags) ||
1835 	    atomic_read(&rdev->nr_pending)) {
1836 		err = -EBUSY;
1837 		goto abort;
1838 	}
1839 	/* Only remove non-faulty devices if recovery
1840 	 * is not possible.
1841 	 */
1842 	if (!test_bit(Faulty, &rdev->flags) &&
1843 	    mddev->recovery_disabled != p->recovery_disabled &&
1844 	    (!p->replacement || p->replacement == rdev) &&
1845 	    number < conf->geo.raid_disks &&
1846 	    enough(conf, -1)) {
1847 		err = -EBUSY;
1848 		goto abort;
1849 	}
1850 	*rdevp = NULL;
1851 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1852 		synchronize_rcu();
1853 		if (atomic_read(&rdev->nr_pending)) {
1854 			/* lost the race, try later */
1855 			err = -EBUSY;
1856 			*rdevp = rdev;
1857 			goto abort;
1858 		}
1859 	}
1860 	if (p->replacement) {
1861 		/* We must have just cleared 'rdev' */
1862 		p->rdev = p->replacement;
1863 		clear_bit(Replacement, &p->replacement->flags);
1864 		smp_mb(); /* Make sure other CPUs may see both as identical
1865 			   * but will never see neither -- if they are careful.
1866 			   */
1867 		p->replacement = NULL;
1868 	}
1869 
1870 	clear_bit(WantReplacement, &rdev->flags);
1871 	err = md_integrity_register(mddev);
1872 
1873 abort:
1874 
1875 	print_conf(conf);
1876 	return err;
1877 }
1878 
1879 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1880 {
1881 	struct r10conf *conf = r10_bio->mddev->private;
1882 
1883 	if (!bio->bi_status)
1884 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1885 	else
1886 		/* The write handler will notice the lack of
1887 		 * R10BIO_Uptodate and record any errors etc
1888 		 */
1889 		atomic_add(r10_bio->sectors,
1890 			   &conf->mirrors[d].rdev->corrected_errors);
1891 
1892 	/* for reconstruct, we always reschedule after a read.
1893 	 * for resync, only after all reads
1894 	 */
1895 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1896 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1897 	    atomic_dec_and_test(&r10_bio->remaining)) {
1898 		/* we have read all the blocks,
1899 		 * do the comparison in process context in raid10d
1900 		 */
1901 		reschedule_retry(r10_bio);
1902 	}
1903 }
1904 
1905 static void end_sync_read(struct bio *bio)
1906 {
1907 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1908 	struct r10conf *conf = r10_bio->mddev->private;
1909 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1910 
1911 	__end_sync_read(r10_bio, bio, d);
1912 }
1913 
1914 static void end_reshape_read(struct bio *bio)
1915 {
1916 	/* reshape read bio isn't allocated from r10buf_pool */
1917 	struct r10bio *r10_bio = bio->bi_private;
1918 
1919 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1920 }
1921 
1922 static void end_sync_request(struct r10bio *r10_bio)
1923 {
1924 	struct mddev *mddev = r10_bio->mddev;
1925 
1926 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1927 		if (r10_bio->master_bio == NULL) {
1928 			/* the primary of several recovery bios */
1929 			sector_t s = r10_bio->sectors;
1930 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1931 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1932 				reschedule_retry(r10_bio);
1933 			else
1934 				put_buf(r10_bio);
1935 			md_done_sync(mddev, s, 1);
1936 			break;
1937 		} else {
1938 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1939 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1940 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1941 				reschedule_retry(r10_bio);
1942 			else
1943 				put_buf(r10_bio);
1944 			r10_bio = r10_bio2;
1945 		}
1946 	}
1947 }
1948 
1949 static void end_sync_write(struct bio *bio)
1950 {
1951 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1952 	struct mddev *mddev = r10_bio->mddev;
1953 	struct r10conf *conf = mddev->private;
1954 	int d;
1955 	sector_t first_bad;
1956 	int bad_sectors;
1957 	int slot;
1958 	int repl;
1959 	struct md_rdev *rdev = NULL;
1960 
1961 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1962 	if (repl)
1963 		rdev = conf->mirrors[d].replacement;
1964 	else
1965 		rdev = conf->mirrors[d].rdev;
1966 
1967 	if (bio->bi_status) {
1968 		if (repl)
1969 			md_error(mddev, rdev);
1970 		else {
1971 			set_bit(WriteErrorSeen, &rdev->flags);
1972 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1973 				set_bit(MD_RECOVERY_NEEDED,
1974 					&rdev->mddev->recovery);
1975 			set_bit(R10BIO_WriteError, &r10_bio->state);
1976 		}
1977 	} else if (is_badblock(rdev,
1978 			     r10_bio->devs[slot].addr,
1979 			     r10_bio->sectors,
1980 			     &first_bad, &bad_sectors))
1981 		set_bit(R10BIO_MadeGood, &r10_bio->state);
1982 
1983 	rdev_dec_pending(rdev, mddev);
1984 
1985 	end_sync_request(r10_bio);
1986 }
1987 
1988 /*
1989  * Note: sync and recover and handled very differently for raid10
1990  * This code is for resync.
1991  * For resync, we read through virtual addresses and read all blocks.
1992  * If there is any error, we schedule a write.  The lowest numbered
1993  * drive is authoritative.
1994  * However requests come for physical address, so we need to map.
1995  * For every physical address there are raid_disks/copies virtual addresses,
1996  * which is always are least one, but is not necessarly an integer.
1997  * This means that a physical address can span multiple chunks, so we may
1998  * have to submit multiple io requests for a single sync request.
1999  */
2000 /*
2001  * We check if all blocks are in-sync and only write to blocks that
2002  * aren't in sync
2003  */
2004 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2005 {
2006 	struct r10conf *conf = mddev->private;
2007 	int i, first;
2008 	struct bio *tbio, *fbio;
2009 	int vcnt;
2010 	struct page **tpages, **fpages;
2011 
2012 	atomic_set(&r10_bio->remaining, 1);
2013 
2014 	/* find the first device with a block */
2015 	for (i=0; i<conf->copies; i++)
2016 		if (!r10_bio->devs[i].bio->bi_status)
2017 			break;
2018 
2019 	if (i == conf->copies)
2020 		goto done;
2021 
2022 	first = i;
2023 	fbio = r10_bio->devs[i].bio;
2024 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2025 	fbio->bi_iter.bi_idx = 0;
2026 	fpages = get_resync_pages(fbio)->pages;
2027 
2028 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2029 	/* now find blocks with errors */
2030 	for (i=0 ; i < conf->copies ; i++) {
2031 		int  j, d;
2032 		struct md_rdev *rdev;
2033 		struct resync_pages *rp;
2034 
2035 		tbio = r10_bio->devs[i].bio;
2036 
2037 		if (tbio->bi_end_io != end_sync_read)
2038 			continue;
2039 		if (i == first)
2040 			continue;
2041 
2042 		tpages = get_resync_pages(tbio)->pages;
2043 		d = r10_bio->devs[i].devnum;
2044 		rdev = conf->mirrors[d].rdev;
2045 		if (!r10_bio->devs[i].bio->bi_status) {
2046 			/* We know that the bi_io_vec layout is the same for
2047 			 * both 'first' and 'i', so we just compare them.
2048 			 * All vec entries are PAGE_SIZE;
2049 			 */
2050 			int sectors = r10_bio->sectors;
2051 			for (j = 0; j < vcnt; j++) {
2052 				int len = PAGE_SIZE;
2053 				if (sectors < (len / 512))
2054 					len = sectors * 512;
2055 				if (memcmp(page_address(fpages[j]),
2056 					   page_address(tpages[j]),
2057 					   len))
2058 					break;
2059 				sectors -= len/512;
2060 			}
2061 			if (j == vcnt)
2062 				continue;
2063 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2064 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2065 				/* Don't fix anything. */
2066 				continue;
2067 		} else if (test_bit(FailFast, &rdev->flags)) {
2068 			/* Just give up on this device */
2069 			md_error(rdev->mddev, rdev);
2070 			continue;
2071 		}
2072 		/* Ok, we need to write this bio, either to correct an
2073 		 * inconsistency or to correct an unreadable block.
2074 		 * First we need to fixup bv_offset, bv_len and
2075 		 * bi_vecs, as the read request might have corrupted these
2076 		 */
2077 		rp = get_resync_pages(tbio);
2078 		bio_reset(tbio);
2079 
2080 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2081 
2082 		rp->raid_bio = r10_bio;
2083 		tbio->bi_private = rp;
2084 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2085 		tbio->bi_end_io = end_sync_write;
2086 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2087 
2088 		bio_copy_data(tbio, fbio);
2089 
2090 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2091 		atomic_inc(&r10_bio->remaining);
2092 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2093 
2094 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2095 			tbio->bi_opf |= MD_FAILFAST;
2096 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2097 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2098 		generic_make_request(tbio);
2099 	}
2100 
2101 	/* Now write out to any replacement devices
2102 	 * that are active
2103 	 */
2104 	for (i = 0; i < conf->copies; i++) {
2105 		int d;
2106 
2107 		tbio = r10_bio->devs[i].repl_bio;
2108 		if (!tbio || !tbio->bi_end_io)
2109 			continue;
2110 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2111 		    && r10_bio->devs[i].bio != fbio)
2112 			bio_copy_data(tbio, fbio);
2113 		d = r10_bio->devs[i].devnum;
2114 		atomic_inc(&r10_bio->remaining);
2115 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2116 			     bio_sectors(tbio));
2117 		generic_make_request(tbio);
2118 	}
2119 
2120 done:
2121 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2122 		md_done_sync(mddev, r10_bio->sectors, 1);
2123 		put_buf(r10_bio);
2124 	}
2125 }
2126 
2127 /*
2128  * Now for the recovery code.
2129  * Recovery happens across physical sectors.
2130  * We recover all non-is_sync drives by finding the virtual address of
2131  * each, and then choose a working drive that also has that virt address.
2132  * There is a separate r10_bio for each non-in_sync drive.
2133  * Only the first two slots are in use. The first for reading,
2134  * The second for writing.
2135  *
2136  */
2137 static void fix_recovery_read_error(struct r10bio *r10_bio)
2138 {
2139 	/* We got a read error during recovery.
2140 	 * We repeat the read in smaller page-sized sections.
2141 	 * If a read succeeds, write it to the new device or record
2142 	 * a bad block if we cannot.
2143 	 * If a read fails, record a bad block on both old and
2144 	 * new devices.
2145 	 */
2146 	struct mddev *mddev = r10_bio->mddev;
2147 	struct r10conf *conf = mddev->private;
2148 	struct bio *bio = r10_bio->devs[0].bio;
2149 	sector_t sect = 0;
2150 	int sectors = r10_bio->sectors;
2151 	int idx = 0;
2152 	int dr = r10_bio->devs[0].devnum;
2153 	int dw = r10_bio->devs[1].devnum;
2154 	struct page **pages = get_resync_pages(bio)->pages;
2155 
2156 	while (sectors) {
2157 		int s = sectors;
2158 		struct md_rdev *rdev;
2159 		sector_t addr;
2160 		int ok;
2161 
2162 		if (s > (PAGE_SIZE>>9))
2163 			s = PAGE_SIZE >> 9;
2164 
2165 		rdev = conf->mirrors[dr].rdev;
2166 		addr = r10_bio->devs[0].addr + sect,
2167 		ok = sync_page_io(rdev,
2168 				  addr,
2169 				  s << 9,
2170 				  pages[idx],
2171 				  REQ_OP_READ, 0, false);
2172 		if (ok) {
2173 			rdev = conf->mirrors[dw].rdev;
2174 			addr = r10_bio->devs[1].addr + sect;
2175 			ok = sync_page_io(rdev,
2176 					  addr,
2177 					  s << 9,
2178 					  pages[idx],
2179 					  REQ_OP_WRITE, 0, false);
2180 			if (!ok) {
2181 				set_bit(WriteErrorSeen, &rdev->flags);
2182 				if (!test_and_set_bit(WantReplacement,
2183 						      &rdev->flags))
2184 					set_bit(MD_RECOVERY_NEEDED,
2185 						&rdev->mddev->recovery);
2186 			}
2187 		}
2188 		if (!ok) {
2189 			/* We don't worry if we cannot set a bad block -
2190 			 * it really is bad so there is no loss in not
2191 			 * recording it yet
2192 			 */
2193 			rdev_set_badblocks(rdev, addr, s, 0);
2194 
2195 			if (rdev != conf->mirrors[dw].rdev) {
2196 				/* need bad block on destination too */
2197 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2198 				addr = r10_bio->devs[1].addr + sect;
2199 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2200 				if (!ok) {
2201 					/* just abort the recovery */
2202 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2203 						  mdname(mddev));
2204 
2205 					conf->mirrors[dw].recovery_disabled
2206 						= mddev->recovery_disabled;
2207 					set_bit(MD_RECOVERY_INTR,
2208 						&mddev->recovery);
2209 					break;
2210 				}
2211 			}
2212 		}
2213 
2214 		sectors -= s;
2215 		sect += s;
2216 		idx++;
2217 	}
2218 }
2219 
2220 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2221 {
2222 	struct r10conf *conf = mddev->private;
2223 	int d;
2224 	struct bio *wbio, *wbio2;
2225 
2226 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2227 		fix_recovery_read_error(r10_bio);
2228 		end_sync_request(r10_bio);
2229 		return;
2230 	}
2231 
2232 	/*
2233 	 * share the pages with the first bio
2234 	 * and submit the write request
2235 	 */
2236 	d = r10_bio->devs[1].devnum;
2237 	wbio = r10_bio->devs[1].bio;
2238 	wbio2 = r10_bio->devs[1].repl_bio;
2239 	/* Need to test wbio2->bi_end_io before we call
2240 	 * generic_make_request as if the former is NULL,
2241 	 * the latter is free to free wbio2.
2242 	 */
2243 	if (wbio2 && !wbio2->bi_end_io)
2244 		wbio2 = NULL;
2245 	if (wbio->bi_end_io) {
2246 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2247 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2248 		generic_make_request(wbio);
2249 	}
2250 	if (wbio2) {
2251 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2252 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2253 			     bio_sectors(wbio2));
2254 		generic_make_request(wbio2);
2255 	}
2256 }
2257 
2258 /*
2259  * Used by fix_read_error() to decay the per rdev read_errors.
2260  * We halve the read error count for every hour that has elapsed
2261  * since the last recorded read error.
2262  *
2263  */
2264 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2265 {
2266 	long cur_time_mon;
2267 	unsigned long hours_since_last;
2268 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2269 
2270 	cur_time_mon = ktime_get_seconds();
2271 
2272 	if (rdev->last_read_error == 0) {
2273 		/* first time we've seen a read error */
2274 		rdev->last_read_error = cur_time_mon;
2275 		return;
2276 	}
2277 
2278 	hours_since_last = (long)(cur_time_mon -
2279 			    rdev->last_read_error) / 3600;
2280 
2281 	rdev->last_read_error = cur_time_mon;
2282 
2283 	/*
2284 	 * if hours_since_last is > the number of bits in read_errors
2285 	 * just set read errors to 0. We do this to avoid
2286 	 * overflowing the shift of read_errors by hours_since_last.
2287 	 */
2288 	if (hours_since_last >= 8 * sizeof(read_errors))
2289 		atomic_set(&rdev->read_errors, 0);
2290 	else
2291 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2292 }
2293 
2294 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2295 			    int sectors, struct page *page, int rw)
2296 {
2297 	sector_t first_bad;
2298 	int bad_sectors;
2299 
2300 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2301 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2302 		return -1;
2303 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2304 		/* success */
2305 		return 1;
2306 	if (rw == WRITE) {
2307 		set_bit(WriteErrorSeen, &rdev->flags);
2308 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2309 			set_bit(MD_RECOVERY_NEEDED,
2310 				&rdev->mddev->recovery);
2311 	}
2312 	/* need to record an error - either for the block or the device */
2313 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2314 		md_error(rdev->mddev, rdev);
2315 	return 0;
2316 }
2317 
2318 /*
2319  * This is a kernel thread which:
2320  *
2321  *	1.	Retries failed read operations on working mirrors.
2322  *	2.	Updates the raid superblock when problems encounter.
2323  *	3.	Performs writes following reads for array synchronising.
2324  */
2325 
2326 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2327 {
2328 	int sect = 0; /* Offset from r10_bio->sector */
2329 	int sectors = r10_bio->sectors;
2330 	struct md_rdev*rdev;
2331 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2332 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2333 
2334 	/* still own a reference to this rdev, so it cannot
2335 	 * have been cleared recently.
2336 	 */
2337 	rdev = conf->mirrors[d].rdev;
2338 
2339 	if (test_bit(Faulty, &rdev->flags))
2340 		/* drive has already been failed, just ignore any
2341 		   more fix_read_error() attempts */
2342 		return;
2343 
2344 	check_decay_read_errors(mddev, rdev);
2345 	atomic_inc(&rdev->read_errors);
2346 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2347 		char b[BDEVNAME_SIZE];
2348 		bdevname(rdev->bdev, b);
2349 
2350 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2351 			  mdname(mddev), b,
2352 			  atomic_read(&rdev->read_errors), max_read_errors);
2353 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2354 			  mdname(mddev), b);
2355 		md_error(mddev, rdev);
2356 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2357 		return;
2358 	}
2359 
2360 	while(sectors) {
2361 		int s = sectors;
2362 		int sl = r10_bio->read_slot;
2363 		int success = 0;
2364 		int start;
2365 
2366 		if (s > (PAGE_SIZE>>9))
2367 			s = PAGE_SIZE >> 9;
2368 
2369 		rcu_read_lock();
2370 		do {
2371 			sector_t first_bad;
2372 			int bad_sectors;
2373 
2374 			d = r10_bio->devs[sl].devnum;
2375 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2376 			if (rdev &&
2377 			    test_bit(In_sync, &rdev->flags) &&
2378 			    !test_bit(Faulty, &rdev->flags) &&
2379 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2380 					&first_bad, &bad_sectors) == 0) {
2381 				atomic_inc(&rdev->nr_pending);
2382 				rcu_read_unlock();
2383 				success = sync_page_io(rdev,
2384 						       r10_bio->devs[sl].addr +
2385 						       sect,
2386 						       s<<9,
2387 						       conf->tmppage,
2388 						       REQ_OP_READ, 0, false);
2389 				rdev_dec_pending(rdev, mddev);
2390 				rcu_read_lock();
2391 				if (success)
2392 					break;
2393 			}
2394 			sl++;
2395 			if (sl == conf->copies)
2396 				sl = 0;
2397 		} while (!success && sl != r10_bio->read_slot);
2398 		rcu_read_unlock();
2399 
2400 		if (!success) {
2401 			/* Cannot read from anywhere, just mark the block
2402 			 * as bad on the first device to discourage future
2403 			 * reads.
2404 			 */
2405 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2406 			rdev = conf->mirrors[dn].rdev;
2407 
2408 			if (!rdev_set_badblocks(
2409 				    rdev,
2410 				    r10_bio->devs[r10_bio->read_slot].addr
2411 				    + sect,
2412 				    s, 0)) {
2413 				md_error(mddev, rdev);
2414 				r10_bio->devs[r10_bio->read_slot].bio
2415 					= IO_BLOCKED;
2416 			}
2417 			break;
2418 		}
2419 
2420 		start = sl;
2421 		/* write it back and re-read */
2422 		rcu_read_lock();
2423 		while (sl != r10_bio->read_slot) {
2424 			char b[BDEVNAME_SIZE];
2425 
2426 			if (sl==0)
2427 				sl = conf->copies;
2428 			sl--;
2429 			d = r10_bio->devs[sl].devnum;
2430 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2431 			if (!rdev ||
2432 			    test_bit(Faulty, &rdev->flags) ||
2433 			    !test_bit(In_sync, &rdev->flags))
2434 				continue;
2435 
2436 			atomic_inc(&rdev->nr_pending);
2437 			rcu_read_unlock();
2438 			if (r10_sync_page_io(rdev,
2439 					     r10_bio->devs[sl].addr +
2440 					     sect,
2441 					     s, conf->tmppage, WRITE)
2442 			    == 0) {
2443 				/* Well, this device is dead */
2444 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2445 					  mdname(mddev), s,
2446 					  (unsigned long long)(
2447 						  sect +
2448 						  choose_data_offset(r10_bio,
2449 								     rdev)),
2450 					  bdevname(rdev->bdev, b));
2451 				pr_notice("md/raid10:%s: %s: failing drive\n",
2452 					  mdname(mddev),
2453 					  bdevname(rdev->bdev, b));
2454 			}
2455 			rdev_dec_pending(rdev, mddev);
2456 			rcu_read_lock();
2457 		}
2458 		sl = start;
2459 		while (sl != r10_bio->read_slot) {
2460 			char b[BDEVNAME_SIZE];
2461 
2462 			if (sl==0)
2463 				sl = conf->copies;
2464 			sl--;
2465 			d = r10_bio->devs[sl].devnum;
2466 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2467 			if (!rdev ||
2468 			    test_bit(Faulty, &rdev->flags) ||
2469 			    !test_bit(In_sync, &rdev->flags))
2470 				continue;
2471 
2472 			atomic_inc(&rdev->nr_pending);
2473 			rcu_read_unlock();
2474 			switch (r10_sync_page_io(rdev,
2475 					     r10_bio->devs[sl].addr +
2476 					     sect,
2477 					     s, conf->tmppage,
2478 						 READ)) {
2479 			case 0:
2480 				/* Well, this device is dead */
2481 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2482 				       mdname(mddev), s,
2483 				       (unsigned long long)(
2484 					       sect +
2485 					       choose_data_offset(r10_bio, rdev)),
2486 				       bdevname(rdev->bdev, b));
2487 				pr_notice("md/raid10:%s: %s: failing drive\n",
2488 				       mdname(mddev),
2489 				       bdevname(rdev->bdev, b));
2490 				break;
2491 			case 1:
2492 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2493 				       mdname(mddev), s,
2494 				       (unsigned long long)(
2495 					       sect +
2496 					       choose_data_offset(r10_bio, rdev)),
2497 				       bdevname(rdev->bdev, b));
2498 				atomic_add(s, &rdev->corrected_errors);
2499 			}
2500 
2501 			rdev_dec_pending(rdev, mddev);
2502 			rcu_read_lock();
2503 		}
2504 		rcu_read_unlock();
2505 
2506 		sectors -= s;
2507 		sect += s;
2508 	}
2509 }
2510 
2511 static int narrow_write_error(struct r10bio *r10_bio, int i)
2512 {
2513 	struct bio *bio = r10_bio->master_bio;
2514 	struct mddev *mddev = r10_bio->mddev;
2515 	struct r10conf *conf = mddev->private;
2516 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2517 	/* bio has the data to be written to slot 'i' where
2518 	 * we just recently had a write error.
2519 	 * We repeatedly clone the bio and trim down to one block,
2520 	 * then try the write.  Where the write fails we record
2521 	 * a bad block.
2522 	 * It is conceivable that the bio doesn't exactly align with
2523 	 * blocks.  We must handle this.
2524 	 *
2525 	 * We currently own a reference to the rdev.
2526 	 */
2527 
2528 	int block_sectors;
2529 	sector_t sector;
2530 	int sectors;
2531 	int sect_to_write = r10_bio->sectors;
2532 	int ok = 1;
2533 
2534 	if (rdev->badblocks.shift < 0)
2535 		return 0;
2536 
2537 	block_sectors = roundup(1 << rdev->badblocks.shift,
2538 				bdev_logical_block_size(rdev->bdev) >> 9);
2539 	sector = r10_bio->sector;
2540 	sectors = ((r10_bio->sector + block_sectors)
2541 		   & ~(sector_t)(block_sectors - 1))
2542 		- sector;
2543 
2544 	while (sect_to_write) {
2545 		struct bio *wbio;
2546 		sector_t wsector;
2547 		if (sectors > sect_to_write)
2548 			sectors = sect_to_write;
2549 		/* Write at 'sector' for 'sectors' */
2550 		wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2551 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2552 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2553 		wbio->bi_iter.bi_sector = wsector +
2554 				   choose_data_offset(r10_bio, rdev);
2555 		wbio->bi_bdev = rdev->bdev;
2556 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2557 
2558 		if (submit_bio_wait(wbio) < 0)
2559 			/* Failure! */
2560 			ok = rdev_set_badblocks(rdev, wsector,
2561 						sectors, 0)
2562 				&& ok;
2563 
2564 		bio_put(wbio);
2565 		sect_to_write -= sectors;
2566 		sector += sectors;
2567 		sectors = block_sectors;
2568 	}
2569 	return ok;
2570 }
2571 
2572 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2573 {
2574 	int slot = r10_bio->read_slot;
2575 	struct bio *bio;
2576 	struct r10conf *conf = mddev->private;
2577 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2578 	dev_t bio_dev;
2579 	sector_t bio_last_sector;
2580 
2581 	/* we got a read error. Maybe the drive is bad.  Maybe just
2582 	 * the block and we can fix it.
2583 	 * We freeze all other IO, and try reading the block from
2584 	 * other devices.  When we find one, we re-write
2585 	 * and check it that fixes the read error.
2586 	 * This is all done synchronously while the array is
2587 	 * frozen.
2588 	 */
2589 	bio = r10_bio->devs[slot].bio;
2590 	bio_dev = bio->bi_bdev->bd_dev;
2591 	bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors;
2592 	bio_put(bio);
2593 	r10_bio->devs[slot].bio = NULL;
2594 
2595 	if (mddev->ro)
2596 		r10_bio->devs[slot].bio = IO_BLOCKED;
2597 	else if (!test_bit(FailFast, &rdev->flags)) {
2598 		freeze_array(conf, 1);
2599 		fix_read_error(conf, mddev, r10_bio);
2600 		unfreeze_array(conf);
2601 	} else
2602 		md_error(mddev, rdev);
2603 
2604 	rdev_dec_pending(rdev, mddev);
2605 	allow_barrier(conf);
2606 	r10_bio->state = 0;
2607 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2608 }
2609 
2610 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2611 {
2612 	/* Some sort of write request has finished and it
2613 	 * succeeded in writing where we thought there was a
2614 	 * bad block.  So forget the bad block.
2615 	 * Or possibly if failed and we need to record
2616 	 * a bad block.
2617 	 */
2618 	int m;
2619 	struct md_rdev *rdev;
2620 
2621 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2622 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2623 		for (m = 0; m < conf->copies; m++) {
2624 			int dev = r10_bio->devs[m].devnum;
2625 			rdev = conf->mirrors[dev].rdev;
2626 			if (r10_bio->devs[m].bio == NULL)
2627 				continue;
2628 			if (!r10_bio->devs[m].bio->bi_status) {
2629 				rdev_clear_badblocks(
2630 					rdev,
2631 					r10_bio->devs[m].addr,
2632 					r10_bio->sectors, 0);
2633 			} else {
2634 				if (!rdev_set_badblocks(
2635 					    rdev,
2636 					    r10_bio->devs[m].addr,
2637 					    r10_bio->sectors, 0))
2638 					md_error(conf->mddev, rdev);
2639 			}
2640 			rdev = conf->mirrors[dev].replacement;
2641 			if (r10_bio->devs[m].repl_bio == NULL)
2642 				continue;
2643 
2644 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2645 				rdev_clear_badblocks(
2646 					rdev,
2647 					r10_bio->devs[m].addr,
2648 					r10_bio->sectors, 0);
2649 			} else {
2650 				if (!rdev_set_badblocks(
2651 					    rdev,
2652 					    r10_bio->devs[m].addr,
2653 					    r10_bio->sectors, 0))
2654 					md_error(conf->mddev, rdev);
2655 			}
2656 		}
2657 		put_buf(r10_bio);
2658 	} else {
2659 		bool fail = false;
2660 		for (m = 0; m < conf->copies; m++) {
2661 			int dev = r10_bio->devs[m].devnum;
2662 			struct bio *bio = r10_bio->devs[m].bio;
2663 			rdev = conf->mirrors[dev].rdev;
2664 			if (bio == IO_MADE_GOOD) {
2665 				rdev_clear_badblocks(
2666 					rdev,
2667 					r10_bio->devs[m].addr,
2668 					r10_bio->sectors, 0);
2669 				rdev_dec_pending(rdev, conf->mddev);
2670 			} else if (bio != NULL && bio->bi_status) {
2671 				fail = true;
2672 				if (!narrow_write_error(r10_bio, m)) {
2673 					md_error(conf->mddev, rdev);
2674 					set_bit(R10BIO_Degraded,
2675 						&r10_bio->state);
2676 				}
2677 				rdev_dec_pending(rdev, conf->mddev);
2678 			}
2679 			bio = r10_bio->devs[m].repl_bio;
2680 			rdev = conf->mirrors[dev].replacement;
2681 			if (rdev && bio == IO_MADE_GOOD) {
2682 				rdev_clear_badblocks(
2683 					rdev,
2684 					r10_bio->devs[m].addr,
2685 					r10_bio->sectors, 0);
2686 				rdev_dec_pending(rdev, conf->mddev);
2687 			}
2688 		}
2689 		if (fail) {
2690 			spin_lock_irq(&conf->device_lock);
2691 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2692 			conf->nr_queued++;
2693 			spin_unlock_irq(&conf->device_lock);
2694 			/*
2695 			 * In case freeze_array() is waiting for condition
2696 			 * nr_pending == nr_queued + extra to be true.
2697 			 */
2698 			wake_up(&conf->wait_barrier);
2699 			md_wakeup_thread(conf->mddev->thread);
2700 		} else {
2701 			if (test_bit(R10BIO_WriteError,
2702 				     &r10_bio->state))
2703 				close_write(r10_bio);
2704 			raid_end_bio_io(r10_bio);
2705 		}
2706 	}
2707 }
2708 
2709 static void raid10d(struct md_thread *thread)
2710 {
2711 	struct mddev *mddev = thread->mddev;
2712 	struct r10bio *r10_bio;
2713 	unsigned long flags;
2714 	struct r10conf *conf = mddev->private;
2715 	struct list_head *head = &conf->retry_list;
2716 	struct blk_plug plug;
2717 
2718 	md_check_recovery(mddev);
2719 
2720 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2721 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2722 		LIST_HEAD(tmp);
2723 		spin_lock_irqsave(&conf->device_lock, flags);
2724 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2725 			while (!list_empty(&conf->bio_end_io_list)) {
2726 				list_move(conf->bio_end_io_list.prev, &tmp);
2727 				conf->nr_queued--;
2728 			}
2729 		}
2730 		spin_unlock_irqrestore(&conf->device_lock, flags);
2731 		while (!list_empty(&tmp)) {
2732 			r10_bio = list_first_entry(&tmp, struct r10bio,
2733 						   retry_list);
2734 			list_del(&r10_bio->retry_list);
2735 			if (mddev->degraded)
2736 				set_bit(R10BIO_Degraded, &r10_bio->state);
2737 
2738 			if (test_bit(R10BIO_WriteError,
2739 				     &r10_bio->state))
2740 				close_write(r10_bio);
2741 			raid_end_bio_io(r10_bio);
2742 		}
2743 	}
2744 
2745 	blk_start_plug(&plug);
2746 	for (;;) {
2747 
2748 		flush_pending_writes(conf);
2749 
2750 		spin_lock_irqsave(&conf->device_lock, flags);
2751 		if (list_empty(head)) {
2752 			spin_unlock_irqrestore(&conf->device_lock, flags);
2753 			break;
2754 		}
2755 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2756 		list_del(head->prev);
2757 		conf->nr_queued--;
2758 		spin_unlock_irqrestore(&conf->device_lock, flags);
2759 
2760 		mddev = r10_bio->mddev;
2761 		conf = mddev->private;
2762 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2763 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2764 			handle_write_completed(conf, r10_bio);
2765 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2766 			reshape_request_write(mddev, r10_bio);
2767 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2768 			sync_request_write(mddev, r10_bio);
2769 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2770 			recovery_request_write(mddev, r10_bio);
2771 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2772 			handle_read_error(mddev, r10_bio);
2773 		else
2774 			WARN_ON_ONCE(1);
2775 
2776 		cond_resched();
2777 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2778 			md_check_recovery(mddev);
2779 	}
2780 	blk_finish_plug(&plug);
2781 }
2782 
2783 static int init_resync(struct r10conf *conf)
2784 {
2785 	int buffs;
2786 	int i;
2787 
2788 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2789 	BUG_ON(conf->r10buf_pool);
2790 	conf->have_replacement = 0;
2791 	for (i = 0; i < conf->geo.raid_disks; i++)
2792 		if (conf->mirrors[i].replacement)
2793 			conf->have_replacement = 1;
2794 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2795 	if (!conf->r10buf_pool)
2796 		return -ENOMEM;
2797 	conf->next_resync = 0;
2798 	return 0;
2799 }
2800 
2801 /*
2802  * perform a "sync" on one "block"
2803  *
2804  * We need to make sure that no normal I/O request - particularly write
2805  * requests - conflict with active sync requests.
2806  *
2807  * This is achieved by tracking pending requests and a 'barrier' concept
2808  * that can be installed to exclude normal IO requests.
2809  *
2810  * Resync and recovery are handled very differently.
2811  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2812  *
2813  * For resync, we iterate over virtual addresses, read all copies,
2814  * and update if there are differences.  If only one copy is live,
2815  * skip it.
2816  * For recovery, we iterate over physical addresses, read a good
2817  * value for each non-in_sync drive, and over-write.
2818  *
2819  * So, for recovery we may have several outstanding complex requests for a
2820  * given address, one for each out-of-sync device.  We model this by allocating
2821  * a number of r10_bio structures, one for each out-of-sync device.
2822  * As we setup these structures, we collect all bio's together into a list
2823  * which we then process collectively to add pages, and then process again
2824  * to pass to generic_make_request.
2825  *
2826  * The r10_bio structures are linked using a borrowed master_bio pointer.
2827  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2828  * has its remaining count decremented to 0, the whole complex operation
2829  * is complete.
2830  *
2831  */
2832 
2833 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2834 			     int *skipped)
2835 {
2836 	struct r10conf *conf = mddev->private;
2837 	struct r10bio *r10_bio;
2838 	struct bio *biolist = NULL, *bio;
2839 	sector_t max_sector, nr_sectors;
2840 	int i;
2841 	int max_sync;
2842 	sector_t sync_blocks;
2843 	sector_t sectors_skipped = 0;
2844 	int chunks_skipped = 0;
2845 	sector_t chunk_mask = conf->geo.chunk_mask;
2846 	int page_idx = 0;
2847 
2848 	if (!conf->r10buf_pool)
2849 		if (init_resync(conf))
2850 			return 0;
2851 
2852 	/*
2853 	 * Allow skipping a full rebuild for incremental assembly
2854 	 * of a clean array, like RAID1 does.
2855 	 */
2856 	if (mddev->bitmap == NULL &&
2857 	    mddev->recovery_cp == MaxSector &&
2858 	    mddev->reshape_position == MaxSector &&
2859 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2860 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2861 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2862 	    conf->fullsync == 0) {
2863 		*skipped = 1;
2864 		return mddev->dev_sectors - sector_nr;
2865 	}
2866 
2867  skipped:
2868 	max_sector = mddev->dev_sectors;
2869 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2870 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2871 		max_sector = mddev->resync_max_sectors;
2872 	if (sector_nr >= max_sector) {
2873 		/* If we aborted, we need to abort the
2874 		 * sync on the 'current' bitmap chucks (there can
2875 		 * be several when recovering multiple devices).
2876 		 * as we may have started syncing it but not finished.
2877 		 * We can find the current address in
2878 		 * mddev->curr_resync, but for recovery,
2879 		 * we need to convert that to several
2880 		 * virtual addresses.
2881 		 */
2882 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2883 			end_reshape(conf);
2884 			close_sync(conf);
2885 			return 0;
2886 		}
2887 
2888 		if (mddev->curr_resync < max_sector) { /* aborted */
2889 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2890 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2891 						&sync_blocks, 1);
2892 			else for (i = 0; i < conf->geo.raid_disks; i++) {
2893 				sector_t sect =
2894 					raid10_find_virt(conf, mddev->curr_resync, i);
2895 				bitmap_end_sync(mddev->bitmap, sect,
2896 						&sync_blocks, 1);
2897 			}
2898 		} else {
2899 			/* completed sync */
2900 			if ((!mddev->bitmap || conf->fullsync)
2901 			    && conf->have_replacement
2902 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2903 				/* Completed a full sync so the replacements
2904 				 * are now fully recovered.
2905 				 */
2906 				rcu_read_lock();
2907 				for (i = 0; i < conf->geo.raid_disks; i++) {
2908 					struct md_rdev *rdev =
2909 						rcu_dereference(conf->mirrors[i].replacement);
2910 					if (rdev)
2911 						rdev->recovery_offset = MaxSector;
2912 				}
2913 				rcu_read_unlock();
2914 			}
2915 			conf->fullsync = 0;
2916 		}
2917 		bitmap_close_sync(mddev->bitmap);
2918 		close_sync(conf);
2919 		*skipped = 1;
2920 		return sectors_skipped;
2921 	}
2922 
2923 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2924 		return reshape_request(mddev, sector_nr, skipped);
2925 
2926 	if (chunks_skipped >= conf->geo.raid_disks) {
2927 		/* if there has been nothing to do on any drive,
2928 		 * then there is nothing to do at all..
2929 		 */
2930 		*skipped = 1;
2931 		return (max_sector - sector_nr) + sectors_skipped;
2932 	}
2933 
2934 	if (max_sector > mddev->resync_max)
2935 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2936 
2937 	/* make sure whole request will fit in a chunk - if chunks
2938 	 * are meaningful
2939 	 */
2940 	if (conf->geo.near_copies < conf->geo.raid_disks &&
2941 	    max_sector > (sector_nr | chunk_mask))
2942 		max_sector = (sector_nr | chunk_mask) + 1;
2943 
2944 	/*
2945 	 * If there is non-resync activity waiting for a turn, then let it
2946 	 * though before starting on this new sync request.
2947 	 */
2948 	if (conf->nr_waiting)
2949 		schedule_timeout_uninterruptible(1);
2950 
2951 	/* Again, very different code for resync and recovery.
2952 	 * Both must result in an r10bio with a list of bios that
2953 	 * have bi_end_io, bi_sector, bi_bdev set,
2954 	 * and bi_private set to the r10bio.
2955 	 * For recovery, we may actually create several r10bios
2956 	 * with 2 bios in each, that correspond to the bios in the main one.
2957 	 * In this case, the subordinate r10bios link back through a
2958 	 * borrowed master_bio pointer, and the counter in the master
2959 	 * includes a ref from each subordinate.
2960 	 */
2961 	/* First, we decide what to do and set ->bi_end_io
2962 	 * To end_sync_read if we want to read, and
2963 	 * end_sync_write if we will want to write.
2964 	 */
2965 
2966 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2967 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2968 		/* recovery... the complicated one */
2969 		int j;
2970 		r10_bio = NULL;
2971 
2972 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2973 			int still_degraded;
2974 			struct r10bio *rb2;
2975 			sector_t sect;
2976 			int must_sync;
2977 			int any_working;
2978 			struct raid10_info *mirror = &conf->mirrors[i];
2979 			struct md_rdev *mrdev, *mreplace;
2980 
2981 			rcu_read_lock();
2982 			mrdev = rcu_dereference(mirror->rdev);
2983 			mreplace = rcu_dereference(mirror->replacement);
2984 
2985 			if ((mrdev == NULL ||
2986 			     test_bit(Faulty, &mrdev->flags) ||
2987 			     test_bit(In_sync, &mrdev->flags)) &&
2988 			    (mreplace == NULL ||
2989 			     test_bit(Faulty, &mreplace->flags))) {
2990 				rcu_read_unlock();
2991 				continue;
2992 			}
2993 
2994 			still_degraded = 0;
2995 			/* want to reconstruct this device */
2996 			rb2 = r10_bio;
2997 			sect = raid10_find_virt(conf, sector_nr, i);
2998 			if (sect >= mddev->resync_max_sectors) {
2999 				/* last stripe is not complete - don't
3000 				 * try to recover this sector.
3001 				 */
3002 				rcu_read_unlock();
3003 				continue;
3004 			}
3005 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3006 				mreplace = NULL;
3007 			/* Unless we are doing a full sync, or a replacement
3008 			 * we only need to recover the block if it is set in
3009 			 * the bitmap
3010 			 */
3011 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3012 						      &sync_blocks, 1);
3013 			if (sync_blocks < max_sync)
3014 				max_sync = sync_blocks;
3015 			if (!must_sync &&
3016 			    mreplace == NULL &&
3017 			    !conf->fullsync) {
3018 				/* yep, skip the sync_blocks here, but don't assume
3019 				 * that there will never be anything to do here
3020 				 */
3021 				chunks_skipped = -1;
3022 				rcu_read_unlock();
3023 				continue;
3024 			}
3025 			atomic_inc(&mrdev->nr_pending);
3026 			if (mreplace)
3027 				atomic_inc(&mreplace->nr_pending);
3028 			rcu_read_unlock();
3029 
3030 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3031 			r10_bio->state = 0;
3032 			raise_barrier(conf, rb2 != NULL);
3033 			atomic_set(&r10_bio->remaining, 0);
3034 
3035 			r10_bio->master_bio = (struct bio*)rb2;
3036 			if (rb2)
3037 				atomic_inc(&rb2->remaining);
3038 			r10_bio->mddev = mddev;
3039 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3040 			r10_bio->sector = sect;
3041 
3042 			raid10_find_phys(conf, r10_bio);
3043 
3044 			/* Need to check if the array will still be
3045 			 * degraded
3046 			 */
3047 			rcu_read_lock();
3048 			for (j = 0; j < conf->geo.raid_disks; j++) {
3049 				struct md_rdev *rdev = rcu_dereference(
3050 					conf->mirrors[j].rdev);
3051 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3052 					still_degraded = 1;
3053 					break;
3054 				}
3055 			}
3056 
3057 			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3058 						      &sync_blocks, still_degraded);
3059 
3060 			any_working = 0;
3061 			for (j=0; j<conf->copies;j++) {
3062 				int k;
3063 				int d = r10_bio->devs[j].devnum;
3064 				sector_t from_addr, to_addr;
3065 				struct md_rdev *rdev =
3066 					rcu_dereference(conf->mirrors[d].rdev);
3067 				sector_t sector, first_bad;
3068 				int bad_sectors;
3069 				if (!rdev ||
3070 				    !test_bit(In_sync, &rdev->flags))
3071 					continue;
3072 				/* This is where we read from */
3073 				any_working = 1;
3074 				sector = r10_bio->devs[j].addr;
3075 
3076 				if (is_badblock(rdev, sector, max_sync,
3077 						&first_bad, &bad_sectors)) {
3078 					if (first_bad > sector)
3079 						max_sync = first_bad - sector;
3080 					else {
3081 						bad_sectors -= (sector
3082 								- first_bad);
3083 						if (max_sync > bad_sectors)
3084 							max_sync = bad_sectors;
3085 						continue;
3086 					}
3087 				}
3088 				bio = r10_bio->devs[0].bio;
3089 				bio->bi_next = biolist;
3090 				biolist = bio;
3091 				bio->bi_end_io = end_sync_read;
3092 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3093 				if (test_bit(FailFast, &rdev->flags))
3094 					bio->bi_opf |= MD_FAILFAST;
3095 				from_addr = r10_bio->devs[j].addr;
3096 				bio->bi_iter.bi_sector = from_addr +
3097 					rdev->data_offset;
3098 				bio->bi_bdev = rdev->bdev;
3099 				atomic_inc(&rdev->nr_pending);
3100 				/* and we write to 'i' (if not in_sync) */
3101 
3102 				for (k=0; k<conf->copies; k++)
3103 					if (r10_bio->devs[k].devnum == i)
3104 						break;
3105 				BUG_ON(k == conf->copies);
3106 				to_addr = r10_bio->devs[k].addr;
3107 				r10_bio->devs[0].devnum = d;
3108 				r10_bio->devs[0].addr = from_addr;
3109 				r10_bio->devs[1].devnum = i;
3110 				r10_bio->devs[1].addr = to_addr;
3111 
3112 				if (!test_bit(In_sync, &mrdev->flags)) {
3113 					bio = r10_bio->devs[1].bio;
3114 					bio->bi_next = biolist;
3115 					biolist = bio;
3116 					bio->bi_end_io = end_sync_write;
3117 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3118 					bio->bi_iter.bi_sector = to_addr
3119 						+ mrdev->data_offset;
3120 					bio->bi_bdev = mrdev->bdev;
3121 					atomic_inc(&r10_bio->remaining);
3122 				} else
3123 					r10_bio->devs[1].bio->bi_end_io = NULL;
3124 
3125 				/* and maybe write to replacement */
3126 				bio = r10_bio->devs[1].repl_bio;
3127 				if (bio)
3128 					bio->bi_end_io = NULL;
3129 				/* Note: if mreplace != NULL, then bio
3130 				 * cannot be NULL as r10buf_pool_alloc will
3131 				 * have allocated it.
3132 				 * So the second test here is pointless.
3133 				 * But it keeps semantic-checkers happy, and
3134 				 * this comment keeps human reviewers
3135 				 * happy.
3136 				 */
3137 				if (mreplace == NULL || bio == NULL ||
3138 				    test_bit(Faulty, &mreplace->flags))
3139 					break;
3140 				bio->bi_next = biolist;
3141 				biolist = bio;
3142 				bio->bi_end_io = end_sync_write;
3143 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3144 				bio->bi_iter.bi_sector = to_addr +
3145 					mreplace->data_offset;
3146 				bio->bi_bdev = mreplace->bdev;
3147 				atomic_inc(&r10_bio->remaining);
3148 				break;
3149 			}
3150 			rcu_read_unlock();
3151 			if (j == conf->copies) {
3152 				/* Cannot recover, so abort the recovery or
3153 				 * record a bad block */
3154 				if (any_working) {
3155 					/* problem is that there are bad blocks
3156 					 * on other device(s)
3157 					 */
3158 					int k;
3159 					for (k = 0; k < conf->copies; k++)
3160 						if (r10_bio->devs[k].devnum == i)
3161 							break;
3162 					if (!test_bit(In_sync,
3163 						      &mrdev->flags)
3164 					    && !rdev_set_badblocks(
3165 						    mrdev,
3166 						    r10_bio->devs[k].addr,
3167 						    max_sync, 0))
3168 						any_working = 0;
3169 					if (mreplace &&
3170 					    !rdev_set_badblocks(
3171 						    mreplace,
3172 						    r10_bio->devs[k].addr,
3173 						    max_sync, 0))
3174 						any_working = 0;
3175 				}
3176 				if (!any_working)  {
3177 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3178 							      &mddev->recovery))
3179 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3180 						       mdname(mddev));
3181 					mirror->recovery_disabled
3182 						= mddev->recovery_disabled;
3183 				}
3184 				put_buf(r10_bio);
3185 				if (rb2)
3186 					atomic_dec(&rb2->remaining);
3187 				r10_bio = rb2;
3188 				rdev_dec_pending(mrdev, mddev);
3189 				if (mreplace)
3190 					rdev_dec_pending(mreplace, mddev);
3191 				break;
3192 			}
3193 			rdev_dec_pending(mrdev, mddev);
3194 			if (mreplace)
3195 				rdev_dec_pending(mreplace, mddev);
3196 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3197 				/* Only want this if there is elsewhere to
3198 				 * read from. 'j' is currently the first
3199 				 * readable copy.
3200 				 */
3201 				int targets = 1;
3202 				for (; j < conf->copies; j++) {
3203 					int d = r10_bio->devs[j].devnum;
3204 					if (conf->mirrors[d].rdev &&
3205 					    test_bit(In_sync,
3206 						      &conf->mirrors[d].rdev->flags))
3207 						targets++;
3208 				}
3209 				if (targets == 1)
3210 					r10_bio->devs[0].bio->bi_opf
3211 						&= ~MD_FAILFAST;
3212 			}
3213 		}
3214 		if (biolist == NULL) {
3215 			while (r10_bio) {
3216 				struct r10bio *rb2 = r10_bio;
3217 				r10_bio = (struct r10bio*) rb2->master_bio;
3218 				rb2->master_bio = NULL;
3219 				put_buf(rb2);
3220 			}
3221 			goto giveup;
3222 		}
3223 	} else {
3224 		/* resync. Schedule a read for every block at this virt offset */
3225 		int count = 0;
3226 
3227 		bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3228 
3229 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3230 				       &sync_blocks, mddev->degraded) &&
3231 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3232 						 &mddev->recovery)) {
3233 			/* We can skip this block */
3234 			*skipped = 1;
3235 			return sync_blocks + sectors_skipped;
3236 		}
3237 		if (sync_blocks < max_sync)
3238 			max_sync = sync_blocks;
3239 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3240 		r10_bio->state = 0;
3241 
3242 		r10_bio->mddev = mddev;
3243 		atomic_set(&r10_bio->remaining, 0);
3244 		raise_barrier(conf, 0);
3245 		conf->next_resync = sector_nr;
3246 
3247 		r10_bio->master_bio = NULL;
3248 		r10_bio->sector = sector_nr;
3249 		set_bit(R10BIO_IsSync, &r10_bio->state);
3250 		raid10_find_phys(conf, r10_bio);
3251 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3252 
3253 		for (i = 0; i < conf->copies; i++) {
3254 			int d = r10_bio->devs[i].devnum;
3255 			sector_t first_bad, sector;
3256 			int bad_sectors;
3257 			struct md_rdev *rdev;
3258 
3259 			if (r10_bio->devs[i].repl_bio)
3260 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3261 
3262 			bio = r10_bio->devs[i].bio;
3263 			bio->bi_status = BLK_STS_IOERR;
3264 			rcu_read_lock();
3265 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3266 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3267 				rcu_read_unlock();
3268 				continue;
3269 			}
3270 			sector = r10_bio->devs[i].addr;
3271 			if (is_badblock(rdev, sector, max_sync,
3272 					&first_bad, &bad_sectors)) {
3273 				if (first_bad > sector)
3274 					max_sync = first_bad - sector;
3275 				else {
3276 					bad_sectors -= (sector - first_bad);
3277 					if (max_sync > bad_sectors)
3278 						max_sync = bad_sectors;
3279 					rcu_read_unlock();
3280 					continue;
3281 				}
3282 			}
3283 			atomic_inc(&rdev->nr_pending);
3284 			atomic_inc(&r10_bio->remaining);
3285 			bio->bi_next = biolist;
3286 			biolist = bio;
3287 			bio->bi_end_io = end_sync_read;
3288 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3289 			if (test_bit(FailFast, &rdev->flags))
3290 				bio->bi_opf |= MD_FAILFAST;
3291 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3292 			bio->bi_bdev = rdev->bdev;
3293 			count++;
3294 
3295 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3296 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3297 				rcu_read_unlock();
3298 				continue;
3299 			}
3300 			atomic_inc(&rdev->nr_pending);
3301 
3302 			/* Need to set up for writing to the replacement */
3303 			bio = r10_bio->devs[i].repl_bio;
3304 			bio->bi_status = BLK_STS_IOERR;
3305 
3306 			sector = r10_bio->devs[i].addr;
3307 			bio->bi_next = biolist;
3308 			biolist = bio;
3309 			bio->bi_end_io = end_sync_write;
3310 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3311 			if (test_bit(FailFast, &rdev->flags))
3312 				bio->bi_opf |= MD_FAILFAST;
3313 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3314 			bio->bi_bdev = rdev->bdev;
3315 			count++;
3316 			rcu_read_unlock();
3317 		}
3318 
3319 		if (count < 2) {
3320 			for (i=0; i<conf->copies; i++) {
3321 				int d = r10_bio->devs[i].devnum;
3322 				if (r10_bio->devs[i].bio->bi_end_io)
3323 					rdev_dec_pending(conf->mirrors[d].rdev,
3324 							 mddev);
3325 				if (r10_bio->devs[i].repl_bio &&
3326 				    r10_bio->devs[i].repl_bio->bi_end_io)
3327 					rdev_dec_pending(
3328 						conf->mirrors[d].replacement,
3329 						mddev);
3330 			}
3331 			put_buf(r10_bio);
3332 			biolist = NULL;
3333 			goto giveup;
3334 		}
3335 	}
3336 
3337 	nr_sectors = 0;
3338 	if (sector_nr + max_sync < max_sector)
3339 		max_sector = sector_nr + max_sync;
3340 	do {
3341 		struct page *page;
3342 		int len = PAGE_SIZE;
3343 		if (sector_nr + (len>>9) > max_sector)
3344 			len = (max_sector - sector_nr) << 9;
3345 		if (len == 0)
3346 			break;
3347 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3348 			struct resync_pages *rp = get_resync_pages(bio);
3349 			page = resync_fetch_page(rp, page_idx);
3350 			/*
3351 			 * won't fail because the vec table is big enough
3352 			 * to hold all these pages
3353 			 */
3354 			bio_add_page(bio, page, len, 0);
3355 		}
3356 		nr_sectors += len>>9;
3357 		sector_nr += len>>9;
3358 	} while (++page_idx < RESYNC_PAGES);
3359 	r10_bio->sectors = nr_sectors;
3360 
3361 	while (biolist) {
3362 		bio = biolist;
3363 		biolist = biolist->bi_next;
3364 
3365 		bio->bi_next = NULL;
3366 		r10_bio = get_resync_r10bio(bio);
3367 		r10_bio->sectors = nr_sectors;
3368 
3369 		if (bio->bi_end_io == end_sync_read) {
3370 			md_sync_acct(bio->bi_bdev, nr_sectors);
3371 			bio->bi_status = 0;
3372 			generic_make_request(bio);
3373 		}
3374 	}
3375 
3376 	if (sectors_skipped)
3377 		/* pretend they weren't skipped, it makes
3378 		 * no important difference in this case
3379 		 */
3380 		md_done_sync(mddev, sectors_skipped, 1);
3381 
3382 	return sectors_skipped + nr_sectors;
3383  giveup:
3384 	/* There is nowhere to write, so all non-sync
3385 	 * drives must be failed or in resync, all drives
3386 	 * have a bad block, so try the next chunk...
3387 	 */
3388 	if (sector_nr + max_sync < max_sector)
3389 		max_sector = sector_nr + max_sync;
3390 
3391 	sectors_skipped += (max_sector - sector_nr);
3392 	chunks_skipped ++;
3393 	sector_nr = max_sector;
3394 	goto skipped;
3395 }
3396 
3397 static sector_t
3398 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3399 {
3400 	sector_t size;
3401 	struct r10conf *conf = mddev->private;
3402 
3403 	if (!raid_disks)
3404 		raid_disks = min(conf->geo.raid_disks,
3405 				 conf->prev.raid_disks);
3406 	if (!sectors)
3407 		sectors = conf->dev_sectors;
3408 
3409 	size = sectors >> conf->geo.chunk_shift;
3410 	sector_div(size, conf->geo.far_copies);
3411 	size = size * raid_disks;
3412 	sector_div(size, conf->geo.near_copies);
3413 
3414 	return size << conf->geo.chunk_shift;
3415 }
3416 
3417 static void calc_sectors(struct r10conf *conf, sector_t size)
3418 {
3419 	/* Calculate the number of sectors-per-device that will
3420 	 * actually be used, and set conf->dev_sectors and
3421 	 * conf->stride
3422 	 */
3423 
3424 	size = size >> conf->geo.chunk_shift;
3425 	sector_div(size, conf->geo.far_copies);
3426 	size = size * conf->geo.raid_disks;
3427 	sector_div(size, conf->geo.near_copies);
3428 	/* 'size' is now the number of chunks in the array */
3429 	/* calculate "used chunks per device" */
3430 	size = size * conf->copies;
3431 
3432 	/* We need to round up when dividing by raid_disks to
3433 	 * get the stride size.
3434 	 */
3435 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3436 
3437 	conf->dev_sectors = size << conf->geo.chunk_shift;
3438 
3439 	if (conf->geo.far_offset)
3440 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3441 	else {
3442 		sector_div(size, conf->geo.far_copies);
3443 		conf->geo.stride = size << conf->geo.chunk_shift;
3444 	}
3445 }
3446 
3447 enum geo_type {geo_new, geo_old, geo_start};
3448 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3449 {
3450 	int nc, fc, fo;
3451 	int layout, chunk, disks;
3452 	switch (new) {
3453 	case geo_old:
3454 		layout = mddev->layout;
3455 		chunk = mddev->chunk_sectors;
3456 		disks = mddev->raid_disks - mddev->delta_disks;
3457 		break;
3458 	case geo_new:
3459 		layout = mddev->new_layout;
3460 		chunk = mddev->new_chunk_sectors;
3461 		disks = mddev->raid_disks;
3462 		break;
3463 	default: /* avoid 'may be unused' warnings */
3464 	case geo_start: /* new when starting reshape - raid_disks not
3465 			 * updated yet. */
3466 		layout = mddev->new_layout;
3467 		chunk = mddev->new_chunk_sectors;
3468 		disks = mddev->raid_disks + mddev->delta_disks;
3469 		break;
3470 	}
3471 	if (layout >> 19)
3472 		return -1;
3473 	if (chunk < (PAGE_SIZE >> 9) ||
3474 	    !is_power_of_2(chunk))
3475 		return -2;
3476 	nc = layout & 255;
3477 	fc = (layout >> 8) & 255;
3478 	fo = layout & (1<<16);
3479 	geo->raid_disks = disks;
3480 	geo->near_copies = nc;
3481 	geo->far_copies = fc;
3482 	geo->far_offset = fo;
3483 	switch (layout >> 17) {
3484 	case 0:	/* original layout.  simple but not always optimal */
3485 		geo->far_set_size = disks;
3486 		break;
3487 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3488 		 * actually using this, but leave code here just in case.*/
3489 		geo->far_set_size = disks/fc;
3490 		WARN(geo->far_set_size < fc,
3491 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3492 		break;
3493 	case 2: /* "improved" layout fixed to match documentation */
3494 		geo->far_set_size = fc * nc;
3495 		break;
3496 	default: /* Not a valid layout */
3497 		return -1;
3498 	}
3499 	geo->chunk_mask = chunk - 1;
3500 	geo->chunk_shift = ffz(~chunk);
3501 	return nc*fc;
3502 }
3503 
3504 static struct r10conf *setup_conf(struct mddev *mddev)
3505 {
3506 	struct r10conf *conf = NULL;
3507 	int err = -EINVAL;
3508 	struct geom geo;
3509 	int copies;
3510 
3511 	copies = setup_geo(&geo, mddev, geo_new);
3512 
3513 	if (copies == -2) {
3514 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3515 			mdname(mddev), PAGE_SIZE);
3516 		goto out;
3517 	}
3518 
3519 	if (copies < 2 || copies > mddev->raid_disks) {
3520 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3521 			mdname(mddev), mddev->new_layout);
3522 		goto out;
3523 	}
3524 
3525 	err = -ENOMEM;
3526 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3527 	if (!conf)
3528 		goto out;
3529 
3530 	/* FIXME calc properly */
3531 	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3532 							    max(0,-mddev->delta_disks)),
3533 				GFP_KERNEL);
3534 	if (!conf->mirrors)
3535 		goto out;
3536 
3537 	conf->tmppage = alloc_page(GFP_KERNEL);
3538 	if (!conf->tmppage)
3539 		goto out;
3540 
3541 	conf->geo = geo;
3542 	conf->copies = copies;
3543 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3544 					   r10bio_pool_free, conf);
3545 	if (!conf->r10bio_pool)
3546 		goto out;
3547 
3548 	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
3549 	if (!conf->bio_split)
3550 		goto out;
3551 
3552 	calc_sectors(conf, mddev->dev_sectors);
3553 	if (mddev->reshape_position == MaxSector) {
3554 		conf->prev = conf->geo;
3555 		conf->reshape_progress = MaxSector;
3556 	} else {
3557 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3558 			err = -EINVAL;
3559 			goto out;
3560 		}
3561 		conf->reshape_progress = mddev->reshape_position;
3562 		if (conf->prev.far_offset)
3563 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3564 		else
3565 			/* far_copies must be 1 */
3566 			conf->prev.stride = conf->dev_sectors;
3567 	}
3568 	conf->reshape_safe = conf->reshape_progress;
3569 	spin_lock_init(&conf->device_lock);
3570 	INIT_LIST_HEAD(&conf->retry_list);
3571 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3572 
3573 	spin_lock_init(&conf->resync_lock);
3574 	init_waitqueue_head(&conf->wait_barrier);
3575 	atomic_set(&conf->nr_pending, 0);
3576 
3577 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3578 	if (!conf->thread)
3579 		goto out;
3580 
3581 	conf->mddev = mddev;
3582 	return conf;
3583 
3584  out:
3585 	if (conf) {
3586 		mempool_destroy(conf->r10bio_pool);
3587 		kfree(conf->mirrors);
3588 		safe_put_page(conf->tmppage);
3589 		if (conf->bio_split)
3590 			bioset_free(conf->bio_split);
3591 		kfree(conf);
3592 	}
3593 	return ERR_PTR(err);
3594 }
3595 
3596 static int raid10_run(struct mddev *mddev)
3597 {
3598 	struct r10conf *conf;
3599 	int i, disk_idx, chunk_size;
3600 	struct raid10_info *disk;
3601 	struct md_rdev *rdev;
3602 	sector_t size;
3603 	sector_t min_offset_diff = 0;
3604 	int first = 1;
3605 	bool discard_supported = false;
3606 
3607 	if (mddev_init_writes_pending(mddev) < 0)
3608 		return -ENOMEM;
3609 
3610 	if (mddev->private == NULL) {
3611 		conf = setup_conf(mddev);
3612 		if (IS_ERR(conf))
3613 			return PTR_ERR(conf);
3614 		mddev->private = conf;
3615 	}
3616 	conf = mddev->private;
3617 	if (!conf)
3618 		goto out;
3619 
3620 	mddev->thread = conf->thread;
3621 	conf->thread = NULL;
3622 
3623 	chunk_size = mddev->chunk_sectors << 9;
3624 	if (mddev->queue) {
3625 		blk_queue_max_discard_sectors(mddev->queue,
3626 					      mddev->chunk_sectors);
3627 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3628 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3629 		blk_queue_io_min(mddev->queue, chunk_size);
3630 		if (conf->geo.raid_disks % conf->geo.near_copies)
3631 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3632 		else
3633 			blk_queue_io_opt(mddev->queue, chunk_size *
3634 					 (conf->geo.raid_disks / conf->geo.near_copies));
3635 	}
3636 
3637 	rdev_for_each(rdev, mddev) {
3638 		long long diff;
3639 
3640 		disk_idx = rdev->raid_disk;
3641 		if (disk_idx < 0)
3642 			continue;
3643 		if (disk_idx >= conf->geo.raid_disks &&
3644 		    disk_idx >= conf->prev.raid_disks)
3645 			continue;
3646 		disk = conf->mirrors + disk_idx;
3647 
3648 		if (test_bit(Replacement, &rdev->flags)) {
3649 			if (disk->replacement)
3650 				goto out_free_conf;
3651 			disk->replacement = rdev;
3652 		} else {
3653 			if (disk->rdev)
3654 				goto out_free_conf;
3655 			disk->rdev = rdev;
3656 		}
3657 		diff = (rdev->new_data_offset - rdev->data_offset);
3658 		if (!mddev->reshape_backwards)
3659 			diff = -diff;
3660 		if (diff < 0)
3661 			diff = 0;
3662 		if (first || diff < min_offset_diff)
3663 			min_offset_diff = diff;
3664 
3665 		if (mddev->gendisk)
3666 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3667 					  rdev->data_offset << 9);
3668 
3669 		disk->head_position = 0;
3670 
3671 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3672 			discard_supported = true;
3673 		first = 0;
3674 	}
3675 
3676 	if (mddev->queue) {
3677 		if (discard_supported)
3678 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3679 						mddev->queue);
3680 		else
3681 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3682 						  mddev->queue);
3683 	}
3684 	/* need to check that every block has at least one working mirror */
3685 	if (!enough(conf, -1)) {
3686 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3687 		       mdname(mddev));
3688 		goto out_free_conf;
3689 	}
3690 
3691 	if (conf->reshape_progress != MaxSector) {
3692 		/* must ensure that shape change is supported */
3693 		if (conf->geo.far_copies != 1 &&
3694 		    conf->geo.far_offset == 0)
3695 			goto out_free_conf;
3696 		if (conf->prev.far_copies != 1 &&
3697 		    conf->prev.far_offset == 0)
3698 			goto out_free_conf;
3699 	}
3700 
3701 	mddev->degraded = 0;
3702 	for (i = 0;
3703 	     i < conf->geo.raid_disks
3704 		     || i < conf->prev.raid_disks;
3705 	     i++) {
3706 
3707 		disk = conf->mirrors + i;
3708 
3709 		if (!disk->rdev && disk->replacement) {
3710 			/* The replacement is all we have - use it */
3711 			disk->rdev = disk->replacement;
3712 			disk->replacement = NULL;
3713 			clear_bit(Replacement, &disk->rdev->flags);
3714 		}
3715 
3716 		if (!disk->rdev ||
3717 		    !test_bit(In_sync, &disk->rdev->flags)) {
3718 			disk->head_position = 0;
3719 			mddev->degraded++;
3720 			if (disk->rdev &&
3721 			    disk->rdev->saved_raid_disk < 0)
3722 				conf->fullsync = 1;
3723 		}
3724 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3725 	}
3726 
3727 	if (mddev->recovery_cp != MaxSector)
3728 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3729 			  mdname(mddev));
3730 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3731 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3732 		conf->geo.raid_disks);
3733 	/*
3734 	 * Ok, everything is just fine now
3735 	 */
3736 	mddev->dev_sectors = conf->dev_sectors;
3737 	size = raid10_size(mddev, 0, 0);
3738 	md_set_array_sectors(mddev, size);
3739 	mddev->resync_max_sectors = size;
3740 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3741 
3742 	if (mddev->queue) {
3743 		int stripe = conf->geo.raid_disks *
3744 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3745 
3746 		/* Calculate max read-ahead size.
3747 		 * We need to readahead at least twice a whole stripe....
3748 		 * maybe...
3749 		 */
3750 		stripe /= conf->geo.near_copies;
3751 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3752 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3753 	}
3754 
3755 	if (md_integrity_register(mddev))
3756 		goto out_free_conf;
3757 
3758 	if (conf->reshape_progress != MaxSector) {
3759 		unsigned long before_length, after_length;
3760 
3761 		before_length = ((1 << conf->prev.chunk_shift) *
3762 				 conf->prev.far_copies);
3763 		after_length = ((1 << conf->geo.chunk_shift) *
3764 				conf->geo.far_copies);
3765 
3766 		if (max(before_length, after_length) > min_offset_diff) {
3767 			/* This cannot work */
3768 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3769 			goto out_free_conf;
3770 		}
3771 		conf->offset_diff = min_offset_diff;
3772 
3773 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3774 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3775 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3776 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3777 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3778 							"reshape");
3779 	}
3780 
3781 	return 0;
3782 
3783 out_free_conf:
3784 	md_unregister_thread(&mddev->thread);
3785 	mempool_destroy(conf->r10bio_pool);
3786 	safe_put_page(conf->tmppage);
3787 	kfree(conf->mirrors);
3788 	kfree(conf);
3789 	mddev->private = NULL;
3790 out:
3791 	return -EIO;
3792 }
3793 
3794 static void raid10_free(struct mddev *mddev, void *priv)
3795 {
3796 	struct r10conf *conf = priv;
3797 
3798 	mempool_destroy(conf->r10bio_pool);
3799 	safe_put_page(conf->tmppage);
3800 	kfree(conf->mirrors);
3801 	kfree(conf->mirrors_old);
3802 	kfree(conf->mirrors_new);
3803 	if (conf->bio_split)
3804 		bioset_free(conf->bio_split);
3805 	kfree(conf);
3806 }
3807 
3808 static void raid10_quiesce(struct mddev *mddev, int state)
3809 {
3810 	struct r10conf *conf = mddev->private;
3811 
3812 	switch(state) {
3813 	case 1:
3814 		raise_barrier(conf, 0);
3815 		break;
3816 	case 0:
3817 		lower_barrier(conf);
3818 		break;
3819 	}
3820 }
3821 
3822 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3823 {
3824 	/* Resize of 'far' arrays is not supported.
3825 	 * For 'near' and 'offset' arrays we can set the
3826 	 * number of sectors used to be an appropriate multiple
3827 	 * of the chunk size.
3828 	 * For 'offset', this is far_copies*chunksize.
3829 	 * For 'near' the multiplier is the LCM of
3830 	 * near_copies and raid_disks.
3831 	 * So if far_copies > 1 && !far_offset, fail.
3832 	 * Else find LCM(raid_disks, near_copy)*far_copies and
3833 	 * multiply by chunk_size.  Then round to this number.
3834 	 * This is mostly done by raid10_size()
3835 	 */
3836 	struct r10conf *conf = mddev->private;
3837 	sector_t oldsize, size;
3838 
3839 	if (mddev->reshape_position != MaxSector)
3840 		return -EBUSY;
3841 
3842 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3843 		return -EINVAL;
3844 
3845 	oldsize = raid10_size(mddev, 0, 0);
3846 	size = raid10_size(mddev, sectors, 0);
3847 	if (mddev->external_size &&
3848 	    mddev->array_sectors > size)
3849 		return -EINVAL;
3850 	if (mddev->bitmap) {
3851 		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3852 		if (ret)
3853 			return ret;
3854 	}
3855 	md_set_array_sectors(mddev, size);
3856 	if (sectors > mddev->dev_sectors &&
3857 	    mddev->recovery_cp > oldsize) {
3858 		mddev->recovery_cp = oldsize;
3859 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3860 	}
3861 	calc_sectors(conf, sectors);
3862 	mddev->dev_sectors = conf->dev_sectors;
3863 	mddev->resync_max_sectors = size;
3864 	return 0;
3865 }
3866 
3867 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3868 {
3869 	struct md_rdev *rdev;
3870 	struct r10conf *conf;
3871 
3872 	if (mddev->degraded > 0) {
3873 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3874 			mdname(mddev));
3875 		return ERR_PTR(-EINVAL);
3876 	}
3877 	sector_div(size, devs);
3878 
3879 	/* Set new parameters */
3880 	mddev->new_level = 10;
3881 	/* new layout: far_copies = 1, near_copies = 2 */
3882 	mddev->new_layout = (1<<8) + 2;
3883 	mddev->new_chunk_sectors = mddev->chunk_sectors;
3884 	mddev->delta_disks = mddev->raid_disks;
3885 	mddev->raid_disks *= 2;
3886 	/* make sure it will be not marked as dirty */
3887 	mddev->recovery_cp = MaxSector;
3888 	mddev->dev_sectors = size;
3889 
3890 	conf = setup_conf(mddev);
3891 	if (!IS_ERR(conf)) {
3892 		rdev_for_each(rdev, mddev)
3893 			if (rdev->raid_disk >= 0) {
3894 				rdev->new_raid_disk = rdev->raid_disk * 2;
3895 				rdev->sectors = size;
3896 			}
3897 		conf->barrier = 1;
3898 	}
3899 
3900 	return conf;
3901 }
3902 
3903 static void *raid10_takeover(struct mddev *mddev)
3904 {
3905 	struct r0conf *raid0_conf;
3906 
3907 	/* raid10 can take over:
3908 	 *  raid0 - providing it has only two drives
3909 	 */
3910 	if (mddev->level == 0) {
3911 		/* for raid0 takeover only one zone is supported */
3912 		raid0_conf = mddev->private;
3913 		if (raid0_conf->nr_strip_zones > 1) {
3914 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
3915 				mdname(mddev));
3916 			return ERR_PTR(-EINVAL);
3917 		}
3918 		return raid10_takeover_raid0(mddev,
3919 			raid0_conf->strip_zone->zone_end,
3920 			raid0_conf->strip_zone->nb_dev);
3921 	}
3922 	return ERR_PTR(-EINVAL);
3923 }
3924 
3925 static int raid10_check_reshape(struct mddev *mddev)
3926 {
3927 	/* Called when there is a request to change
3928 	 * - layout (to ->new_layout)
3929 	 * - chunk size (to ->new_chunk_sectors)
3930 	 * - raid_disks (by delta_disks)
3931 	 * or when trying to restart a reshape that was ongoing.
3932 	 *
3933 	 * We need to validate the request and possibly allocate
3934 	 * space if that might be an issue later.
3935 	 *
3936 	 * Currently we reject any reshape of a 'far' mode array,
3937 	 * allow chunk size to change if new is generally acceptable,
3938 	 * allow raid_disks to increase, and allow
3939 	 * a switch between 'near' mode and 'offset' mode.
3940 	 */
3941 	struct r10conf *conf = mddev->private;
3942 	struct geom geo;
3943 
3944 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3945 		return -EINVAL;
3946 
3947 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3948 		/* mustn't change number of copies */
3949 		return -EINVAL;
3950 	if (geo.far_copies > 1 && !geo.far_offset)
3951 		/* Cannot switch to 'far' mode */
3952 		return -EINVAL;
3953 
3954 	if (mddev->array_sectors & geo.chunk_mask)
3955 			/* not factor of array size */
3956 			return -EINVAL;
3957 
3958 	if (!enough(conf, -1))
3959 		return -EINVAL;
3960 
3961 	kfree(conf->mirrors_new);
3962 	conf->mirrors_new = NULL;
3963 	if (mddev->delta_disks > 0) {
3964 		/* allocate new 'mirrors' list */
3965 		conf->mirrors_new = kzalloc(
3966 			sizeof(struct raid10_info)
3967 			*(mddev->raid_disks +
3968 			  mddev->delta_disks),
3969 			GFP_KERNEL);
3970 		if (!conf->mirrors_new)
3971 			return -ENOMEM;
3972 	}
3973 	return 0;
3974 }
3975 
3976 /*
3977  * Need to check if array has failed when deciding whether to:
3978  *  - start an array
3979  *  - remove non-faulty devices
3980  *  - add a spare
3981  *  - allow a reshape
3982  * This determination is simple when no reshape is happening.
3983  * However if there is a reshape, we need to carefully check
3984  * both the before and after sections.
3985  * This is because some failed devices may only affect one
3986  * of the two sections, and some non-in_sync devices may
3987  * be insync in the section most affected by failed devices.
3988  */
3989 static int calc_degraded(struct r10conf *conf)
3990 {
3991 	int degraded, degraded2;
3992 	int i;
3993 
3994 	rcu_read_lock();
3995 	degraded = 0;
3996 	/* 'prev' section first */
3997 	for (i = 0; i < conf->prev.raid_disks; i++) {
3998 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3999 		if (!rdev || test_bit(Faulty, &rdev->flags))
4000 			degraded++;
4001 		else if (!test_bit(In_sync, &rdev->flags))
4002 			/* When we can reduce the number of devices in
4003 			 * an array, this might not contribute to
4004 			 * 'degraded'.  It does now.
4005 			 */
4006 			degraded++;
4007 	}
4008 	rcu_read_unlock();
4009 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4010 		return degraded;
4011 	rcu_read_lock();
4012 	degraded2 = 0;
4013 	for (i = 0; i < conf->geo.raid_disks; i++) {
4014 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4015 		if (!rdev || test_bit(Faulty, &rdev->flags))
4016 			degraded2++;
4017 		else if (!test_bit(In_sync, &rdev->flags)) {
4018 			/* If reshape is increasing the number of devices,
4019 			 * this section has already been recovered, so
4020 			 * it doesn't contribute to degraded.
4021 			 * else it does.
4022 			 */
4023 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4024 				degraded2++;
4025 		}
4026 	}
4027 	rcu_read_unlock();
4028 	if (degraded2 > degraded)
4029 		return degraded2;
4030 	return degraded;
4031 }
4032 
4033 static int raid10_start_reshape(struct mddev *mddev)
4034 {
4035 	/* A 'reshape' has been requested. This commits
4036 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4037 	 * This also checks if there are enough spares and adds them
4038 	 * to the array.
4039 	 * We currently require enough spares to make the final
4040 	 * array non-degraded.  We also require that the difference
4041 	 * between old and new data_offset - on each device - is
4042 	 * enough that we never risk over-writing.
4043 	 */
4044 
4045 	unsigned long before_length, after_length;
4046 	sector_t min_offset_diff = 0;
4047 	int first = 1;
4048 	struct geom new;
4049 	struct r10conf *conf = mddev->private;
4050 	struct md_rdev *rdev;
4051 	int spares = 0;
4052 	int ret;
4053 
4054 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4055 		return -EBUSY;
4056 
4057 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4058 		return -EINVAL;
4059 
4060 	before_length = ((1 << conf->prev.chunk_shift) *
4061 			 conf->prev.far_copies);
4062 	after_length = ((1 << conf->geo.chunk_shift) *
4063 			conf->geo.far_copies);
4064 
4065 	rdev_for_each(rdev, mddev) {
4066 		if (!test_bit(In_sync, &rdev->flags)
4067 		    && !test_bit(Faulty, &rdev->flags))
4068 			spares++;
4069 		if (rdev->raid_disk >= 0) {
4070 			long long diff = (rdev->new_data_offset
4071 					  - rdev->data_offset);
4072 			if (!mddev->reshape_backwards)
4073 				diff = -diff;
4074 			if (diff < 0)
4075 				diff = 0;
4076 			if (first || diff < min_offset_diff)
4077 				min_offset_diff = diff;
4078 			first = 0;
4079 		}
4080 	}
4081 
4082 	if (max(before_length, after_length) > min_offset_diff)
4083 		return -EINVAL;
4084 
4085 	if (spares < mddev->delta_disks)
4086 		return -EINVAL;
4087 
4088 	conf->offset_diff = min_offset_diff;
4089 	spin_lock_irq(&conf->device_lock);
4090 	if (conf->mirrors_new) {
4091 		memcpy(conf->mirrors_new, conf->mirrors,
4092 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4093 		smp_mb();
4094 		kfree(conf->mirrors_old);
4095 		conf->mirrors_old = conf->mirrors;
4096 		conf->mirrors = conf->mirrors_new;
4097 		conf->mirrors_new = NULL;
4098 	}
4099 	setup_geo(&conf->geo, mddev, geo_start);
4100 	smp_mb();
4101 	if (mddev->reshape_backwards) {
4102 		sector_t size = raid10_size(mddev, 0, 0);
4103 		if (size < mddev->array_sectors) {
4104 			spin_unlock_irq(&conf->device_lock);
4105 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4106 				mdname(mddev));
4107 			return -EINVAL;
4108 		}
4109 		mddev->resync_max_sectors = size;
4110 		conf->reshape_progress = size;
4111 	} else
4112 		conf->reshape_progress = 0;
4113 	conf->reshape_safe = conf->reshape_progress;
4114 	spin_unlock_irq(&conf->device_lock);
4115 
4116 	if (mddev->delta_disks && mddev->bitmap) {
4117 		ret = bitmap_resize(mddev->bitmap,
4118 				    raid10_size(mddev, 0,
4119 						conf->geo.raid_disks),
4120 				    0, 0);
4121 		if (ret)
4122 			goto abort;
4123 	}
4124 	if (mddev->delta_disks > 0) {
4125 		rdev_for_each(rdev, mddev)
4126 			if (rdev->raid_disk < 0 &&
4127 			    !test_bit(Faulty, &rdev->flags)) {
4128 				if (raid10_add_disk(mddev, rdev) == 0) {
4129 					if (rdev->raid_disk >=
4130 					    conf->prev.raid_disks)
4131 						set_bit(In_sync, &rdev->flags);
4132 					else
4133 						rdev->recovery_offset = 0;
4134 
4135 					if (sysfs_link_rdev(mddev, rdev))
4136 						/* Failure here  is OK */;
4137 				}
4138 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4139 				   && !test_bit(Faulty, &rdev->flags)) {
4140 				/* This is a spare that was manually added */
4141 				set_bit(In_sync, &rdev->flags);
4142 			}
4143 	}
4144 	/* When a reshape changes the number of devices,
4145 	 * ->degraded is measured against the larger of the
4146 	 * pre and  post numbers.
4147 	 */
4148 	spin_lock_irq(&conf->device_lock);
4149 	mddev->degraded = calc_degraded(conf);
4150 	spin_unlock_irq(&conf->device_lock);
4151 	mddev->raid_disks = conf->geo.raid_disks;
4152 	mddev->reshape_position = conf->reshape_progress;
4153 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4154 
4155 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4156 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4157 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4158 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4159 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4160 
4161 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4162 						"reshape");
4163 	if (!mddev->sync_thread) {
4164 		ret = -EAGAIN;
4165 		goto abort;
4166 	}
4167 	conf->reshape_checkpoint = jiffies;
4168 	md_wakeup_thread(mddev->sync_thread);
4169 	md_new_event(mddev);
4170 	return 0;
4171 
4172 abort:
4173 	mddev->recovery = 0;
4174 	spin_lock_irq(&conf->device_lock);
4175 	conf->geo = conf->prev;
4176 	mddev->raid_disks = conf->geo.raid_disks;
4177 	rdev_for_each(rdev, mddev)
4178 		rdev->new_data_offset = rdev->data_offset;
4179 	smp_wmb();
4180 	conf->reshape_progress = MaxSector;
4181 	conf->reshape_safe = MaxSector;
4182 	mddev->reshape_position = MaxSector;
4183 	spin_unlock_irq(&conf->device_lock);
4184 	return ret;
4185 }
4186 
4187 /* Calculate the last device-address that could contain
4188  * any block from the chunk that includes the array-address 's'
4189  * and report the next address.
4190  * i.e. the address returned will be chunk-aligned and after
4191  * any data that is in the chunk containing 's'.
4192  */
4193 static sector_t last_dev_address(sector_t s, struct geom *geo)
4194 {
4195 	s = (s | geo->chunk_mask) + 1;
4196 	s >>= geo->chunk_shift;
4197 	s *= geo->near_copies;
4198 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4199 	s *= geo->far_copies;
4200 	s <<= geo->chunk_shift;
4201 	return s;
4202 }
4203 
4204 /* Calculate the first device-address that could contain
4205  * any block from the chunk that includes the array-address 's'.
4206  * This too will be the start of a chunk
4207  */
4208 static sector_t first_dev_address(sector_t s, struct geom *geo)
4209 {
4210 	s >>= geo->chunk_shift;
4211 	s *= geo->near_copies;
4212 	sector_div(s, geo->raid_disks);
4213 	s *= geo->far_copies;
4214 	s <<= geo->chunk_shift;
4215 	return s;
4216 }
4217 
4218 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4219 				int *skipped)
4220 {
4221 	/* We simply copy at most one chunk (smallest of old and new)
4222 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4223 	 * or we hit a bad block or something.
4224 	 * This might mean we pause for normal IO in the middle of
4225 	 * a chunk, but that is not a problem as mddev->reshape_position
4226 	 * can record any location.
4227 	 *
4228 	 * If we will want to write to a location that isn't
4229 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4230 	 * we need to flush all reshape requests and update the metadata.
4231 	 *
4232 	 * When reshaping forwards (e.g. to more devices), we interpret
4233 	 * 'safe' as the earliest block which might not have been copied
4234 	 * down yet.  We divide this by previous stripe size and multiply
4235 	 * by previous stripe length to get lowest device offset that we
4236 	 * cannot write to yet.
4237 	 * We interpret 'sector_nr' as an address that we want to write to.
4238 	 * From this we use last_device_address() to find where we might
4239 	 * write to, and first_device_address on the  'safe' position.
4240 	 * If this 'next' write position is after the 'safe' position,
4241 	 * we must update the metadata to increase the 'safe' position.
4242 	 *
4243 	 * When reshaping backwards, we round in the opposite direction
4244 	 * and perform the reverse test:  next write position must not be
4245 	 * less than current safe position.
4246 	 *
4247 	 * In all this the minimum difference in data offsets
4248 	 * (conf->offset_diff - always positive) allows a bit of slack,
4249 	 * so next can be after 'safe', but not by more than offset_diff
4250 	 *
4251 	 * We need to prepare all the bios here before we start any IO
4252 	 * to ensure the size we choose is acceptable to all devices.
4253 	 * The means one for each copy for write-out and an extra one for
4254 	 * read-in.
4255 	 * We store the read-in bio in ->master_bio and the others in
4256 	 * ->devs[x].bio and ->devs[x].repl_bio.
4257 	 */
4258 	struct r10conf *conf = mddev->private;
4259 	struct r10bio *r10_bio;
4260 	sector_t next, safe, last;
4261 	int max_sectors;
4262 	int nr_sectors;
4263 	int s;
4264 	struct md_rdev *rdev;
4265 	int need_flush = 0;
4266 	struct bio *blist;
4267 	struct bio *bio, *read_bio;
4268 	int sectors_done = 0;
4269 	struct page **pages;
4270 
4271 	if (sector_nr == 0) {
4272 		/* If restarting in the middle, skip the initial sectors */
4273 		if (mddev->reshape_backwards &&
4274 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4275 			sector_nr = (raid10_size(mddev, 0, 0)
4276 				     - conf->reshape_progress);
4277 		} else if (!mddev->reshape_backwards &&
4278 			   conf->reshape_progress > 0)
4279 			sector_nr = conf->reshape_progress;
4280 		if (sector_nr) {
4281 			mddev->curr_resync_completed = sector_nr;
4282 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4283 			*skipped = 1;
4284 			return sector_nr;
4285 		}
4286 	}
4287 
4288 	/* We don't use sector_nr to track where we are up to
4289 	 * as that doesn't work well for ->reshape_backwards.
4290 	 * So just use ->reshape_progress.
4291 	 */
4292 	if (mddev->reshape_backwards) {
4293 		/* 'next' is the earliest device address that we might
4294 		 * write to for this chunk in the new layout
4295 		 */
4296 		next = first_dev_address(conf->reshape_progress - 1,
4297 					 &conf->geo);
4298 
4299 		/* 'safe' is the last device address that we might read from
4300 		 * in the old layout after a restart
4301 		 */
4302 		safe = last_dev_address(conf->reshape_safe - 1,
4303 					&conf->prev);
4304 
4305 		if (next + conf->offset_diff < safe)
4306 			need_flush = 1;
4307 
4308 		last = conf->reshape_progress - 1;
4309 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4310 					       & conf->prev.chunk_mask);
4311 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4312 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4313 	} else {
4314 		/* 'next' is after the last device address that we
4315 		 * might write to for this chunk in the new layout
4316 		 */
4317 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4318 
4319 		/* 'safe' is the earliest device address that we might
4320 		 * read from in the old layout after a restart
4321 		 */
4322 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4323 
4324 		/* Need to update metadata if 'next' might be beyond 'safe'
4325 		 * as that would possibly corrupt data
4326 		 */
4327 		if (next > safe + conf->offset_diff)
4328 			need_flush = 1;
4329 
4330 		sector_nr = conf->reshape_progress;
4331 		last  = sector_nr | (conf->geo.chunk_mask
4332 				     & conf->prev.chunk_mask);
4333 
4334 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4335 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4336 	}
4337 
4338 	if (need_flush ||
4339 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4340 		/* Need to update reshape_position in metadata */
4341 		wait_barrier(conf);
4342 		mddev->reshape_position = conf->reshape_progress;
4343 		if (mddev->reshape_backwards)
4344 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4345 				- conf->reshape_progress;
4346 		else
4347 			mddev->curr_resync_completed = conf->reshape_progress;
4348 		conf->reshape_checkpoint = jiffies;
4349 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4350 		md_wakeup_thread(mddev->thread);
4351 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4352 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4353 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4354 			allow_barrier(conf);
4355 			return sectors_done;
4356 		}
4357 		conf->reshape_safe = mddev->reshape_position;
4358 		allow_barrier(conf);
4359 	}
4360 
4361 read_more:
4362 	/* Now schedule reads for blocks from sector_nr to last */
4363 	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4364 	r10_bio->state = 0;
4365 	raise_barrier(conf, sectors_done != 0);
4366 	atomic_set(&r10_bio->remaining, 0);
4367 	r10_bio->mddev = mddev;
4368 	r10_bio->sector = sector_nr;
4369 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4370 	r10_bio->sectors = last - sector_nr + 1;
4371 	rdev = read_balance(conf, r10_bio, &max_sectors);
4372 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4373 
4374 	if (!rdev) {
4375 		/* Cannot read from here, so need to record bad blocks
4376 		 * on all the target devices.
4377 		 */
4378 		// FIXME
4379 		mempool_free(r10_bio, conf->r10buf_pool);
4380 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4381 		return sectors_done;
4382 	}
4383 
4384 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4385 
4386 	read_bio->bi_bdev = rdev->bdev;
4387 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4388 			       + rdev->data_offset);
4389 	read_bio->bi_private = r10_bio;
4390 	read_bio->bi_end_io = end_reshape_read;
4391 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4392 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4393 	read_bio->bi_status = 0;
4394 	read_bio->bi_vcnt = 0;
4395 	read_bio->bi_iter.bi_size = 0;
4396 	r10_bio->master_bio = read_bio;
4397 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4398 
4399 	/* Now find the locations in the new layout */
4400 	__raid10_find_phys(&conf->geo, r10_bio);
4401 
4402 	blist = read_bio;
4403 	read_bio->bi_next = NULL;
4404 
4405 	rcu_read_lock();
4406 	for (s = 0; s < conf->copies*2; s++) {
4407 		struct bio *b;
4408 		int d = r10_bio->devs[s/2].devnum;
4409 		struct md_rdev *rdev2;
4410 		if (s&1) {
4411 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4412 			b = r10_bio->devs[s/2].repl_bio;
4413 		} else {
4414 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4415 			b = r10_bio->devs[s/2].bio;
4416 		}
4417 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4418 			continue;
4419 
4420 		b->bi_bdev = rdev2->bdev;
4421 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4422 			rdev2->new_data_offset;
4423 		b->bi_end_io = end_reshape_write;
4424 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4425 		b->bi_next = blist;
4426 		blist = b;
4427 	}
4428 
4429 	/* Now add as many pages as possible to all of these bios. */
4430 
4431 	nr_sectors = 0;
4432 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4433 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4434 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4435 		int len = (max_sectors - s) << 9;
4436 		if (len > PAGE_SIZE)
4437 			len = PAGE_SIZE;
4438 		for (bio = blist; bio ; bio = bio->bi_next) {
4439 			/*
4440 			 * won't fail because the vec table is big enough
4441 			 * to hold all these pages
4442 			 */
4443 			bio_add_page(bio, page, len, 0);
4444 		}
4445 		sector_nr += len >> 9;
4446 		nr_sectors += len >> 9;
4447 	}
4448 	rcu_read_unlock();
4449 	r10_bio->sectors = nr_sectors;
4450 
4451 	/* Now submit the read */
4452 	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4453 	atomic_inc(&r10_bio->remaining);
4454 	read_bio->bi_next = NULL;
4455 	generic_make_request(read_bio);
4456 	sector_nr += nr_sectors;
4457 	sectors_done += nr_sectors;
4458 	if (sector_nr <= last)
4459 		goto read_more;
4460 
4461 	/* Now that we have done the whole section we can
4462 	 * update reshape_progress
4463 	 */
4464 	if (mddev->reshape_backwards)
4465 		conf->reshape_progress -= sectors_done;
4466 	else
4467 		conf->reshape_progress += sectors_done;
4468 
4469 	return sectors_done;
4470 }
4471 
4472 static void end_reshape_request(struct r10bio *r10_bio);
4473 static int handle_reshape_read_error(struct mddev *mddev,
4474 				     struct r10bio *r10_bio);
4475 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4476 {
4477 	/* Reshape read completed.  Hopefully we have a block
4478 	 * to write out.
4479 	 * If we got a read error then we do sync 1-page reads from
4480 	 * elsewhere until we find the data - or give up.
4481 	 */
4482 	struct r10conf *conf = mddev->private;
4483 	int s;
4484 
4485 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4486 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4487 			/* Reshape has been aborted */
4488 			md_done_sync(mddev, r10_bio->sectors, 0);
4489 			return;
4490 		}
4491 
4492 	/* We definitely have the data in the pages, schedule the
4493 	 * writes.
4494 	 */
4495 	atomic_set(&r10_bio->remaining, 1);
4496 	for (s = 0; s < conf->copies*2; s++) {
4497 		struct bio *b;
4498 		int d = r10_bio->devs[s/2].devnum;
4499 		struct md_rdev *rdev;
4500 		rcu_read_lock();
4501 		if (s&1) {
4502 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4503 			b = r10_bio->devs[s/2].repl_bio;
4504 		} else {
4505 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4506 			b = r10_bio->devs[s/2].bio;
4507 		}
4508 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4509 			rcu_read_unlock();
4510 			continue;
4511 		}
4512 		atomic_inc(&rdev->nr_pending);
4513 		rcu_read_unlock();
4514 		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4515 		atomic_inc(&r10_bio->remaining);
4516 		b->bi_next = NULL;
4517 		generic_make_request(b);
4518 	}
4519 	end_reshape_request(r10_bio);
4520 }
4521 
4522 static void end_reshape(struct r10conf *conf)
4523 {
4524 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4525 		return;
4526 
4527 	spin_lock_irq(&conf->device_lock);
4528 	conf->prev = conf->geo;
4529 	md_finish_reshape(conf->mddev);
4530 	smp_wmb();
4531 	conf->reshape_progress = MaxSector;
4532 	conf->reshape_safe = MaxSector;
4533 	spin_unlock_irq(&conf->device_lock);
4534 
4535 	/* read-ahead size must cover two whole stripes, which is
4536 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4537 	 */
4538 	if (conf->mddev->queue) {
4539 		int stripe = conf->geo.raid_disks *
4540 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4541 		stripe /= conf->geo.near_copies;
4542 		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4543 			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4544 	}
4545 	conf->fullsync = 0;
4546 }
4547 
4548 static int handle_reshape_read_error(struct mddev *mddev,
4549 				     struct r10bio *r10_bio)
4550 {
4551 	/* Use sync reads to get the blocks from somewhere else */
4552 	int sectors = r10_bio->sectors;
4553 	struct r10conf *conf = mddev->private;
4554 	struct {
4555 		struct r10bio r10_bio;
4556 		struct r10dev devs[conf->copies];
4557 	} on_stack;
4558 	struct r10bio *r10b = &on_stack.r10_bio;
4559 	int slot = 0;
4560 	int idx = 0;
4561 	struct page **pages;
4562 
4563 	/* reshape IOs share pages from .devs[0].bio */
4564 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4565 
4566 	r10b->sector = r10_bio->sector;
4567 	__raid10_find_phys(&conf->prev, r10b);
4568 
4569 	while (sectors) {
4570 		int s = sectors;
4571 		int success = 0;
4572 		int first_slot = slot;
4573 
4574 		if (s > (PAGE_SIZE >> 9))
4575 			s = PAGE_SIZE >> 9;
4576 
4577 		rcu_read_lock();
4578 		while (!success) {
4579 			int d = r10b->devs[slot].devnum;
4580 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4581 			sector_t addr;
4582 			if (rdev == NULL ||
4583 			    test_bit(Faulty, &rdev->flags) ||
4584 			    !test_bit(In_sync, &rdev->flags))
4585 				goto failed;
4586 
4587 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4588 			atomic_inc(&rdev->nr_pending);
4589 			rcu_read_unlock();
4590 			success = sync_page_io(rdev,
4591 					       addr,
4592 					       s << 9,
4593 					       pages[idx],
4594 					       REQ_OP_READ, 0, false);
4595 			rdev_dec_pending(rdev, mddev);
4596 			rcu_read_lock();
4597 			if (success)
4598 				break;
4599 		failed:
4600 			slot++;
4601 			if (slot >= conf->copies)
4602 				slot = 0;
4603 			if (slot == first_slot)
4604 				break;
4605 		}
4606 		rcu_read_unlock();
4607 		if (!success) {
4608 			/* couldn't read this block, must give up */
4609 			set_bit(MD_RECOVERY_INTR,
4610 				&mddev->recovery);
4611 			return -EIO;
4612 		}
4613 		sectors -= s;
4614 		idx++;
4615 	}
4616 	return 0;
4617 }
4618 
4619 static void end_reshape_write(struct bio *bio)
4620 {
4621 	struct r10bio *r10_bio = get_resync_r10bio(bio);
4622 	struct mddev *mddev = r10_bio->mddev;
4623 	struct r10conf *conf = mddev->private;
4624 	int d;
4625 	int slot;
4626 	int repl;
4627 	struct md_rdev *rdev = NULL;
4628 
4629 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4630 	if (repl)
4631 		rdev = conf->mirrors[d].replacement;
4632 	if (!rdev) {
4633 		smp_mb();
4634 		rdev = conf->mirrors[d].rdev;
4635 	}
4636 
4637 	if (bio->bi_status) {
4638 		/* FIXME should record badblock */
4639 		md_error(mddev, rdev);
4640 	}
4641 
4642 	rdev_dec_pending(rdev, mddev);
4643 	end_reshape_request(r10_bio);
4644 }
4645 
4646 static void end_reshape_request(struct r10bio *r10_bio)
4647 {
4648 	if (!atomic_dec_and_test(&r10_bio->remaining))
4649 		return;
4650 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4651 	bio_put(r10_bio->master_bio);
4652 	put_buf(r10_bio);
4653 }
4654 
4655 static void raid10_finish_reshape(struct mddev *mddev)
4656 {
4657 	struct r10conf *conf = mddev->private;
4658 
4659 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4660 		return;
4661 
4662 	if (mddev->delta_disks > 0) {
4663 		sector_t size = raid10_size(mddev, 0, 0);
4664 		md_set_array_sectors(mddev, size);
4665 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4666 			mddev->recovery_cp = mddev->resync_max_sectors;
4667 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4668 		}
4669 		mddev->resync_max_sectors = size;
4670 		if (mddev->queue) {
4671 			set_capacity(mddev->gendisk, mddev->array_sectors);
4672 			revalidate_disk(mddev->gendisk);
4673 		}
4674 	} else {
4675 		int d;
4676 		rcu_read_lock();
4677 		for (d = conf->geo.raid_disks ;
4678 		     d < conf->geo.raid_disks - mddev->delta_disks;
4679 		     d++) {
4680 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4681 			if (rdev)
4682 				clear_bit(In_sync, &rdev->flags);
4683 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4684 			if (rdev)
4685 				clear_bit(In_sync, &rdev->flags);
4686 		}
4687 		rcu_read_unlock();
4688 	}
4689 	mddev->layout = mddev->new_layout;
4690 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4691 	mddev->reshape_position = MaxSector;
4692 	mddev->delta_disks = 0;
4693 	mddev->reshape_backwards = 0;
4694 }
4695 
4696 static struct md_personality raid10_personality =
4697 {
4698 	.name		= "raid10",
4699 	.level		= 10,
4700 	.owner		= THIS_MODULE,
4701 	.make_request	= raid10_make_request,
4702 	.run		= raid10_run,
4703 	.free		= raid10_free,
4704 	.status		= raid10_status,
4705 	.error_handler	= raid10_error,
4706 	.hot_add_disk	= raid10_add_disk,
4707 	.hot_remove_disk= raid10_remove_disk,
4708 	.spare_active	= raid10_spare_active,
4709 	.sync_request	= raid10_sync_request,
4710 	.quiesce	= raid10_quiesce,
4711 	.size		= raid10_size,
4712 	.resize		= raid10_resize,
4713 	.takeover	= raid10_takeover,
4714 	.check_reshape	= raid10_check_reshape,
4715 	.start_reshape	= raid10_start_reshape,
4716 	.finish_reshape	= raid10_finish_reshape,
4717 	.congested	= raid10_congested,
4718 };
4719 
4720 static int __init raid_init(void)
4721 {
4722 	return register_md_personality(&raid10_personality);
4723 }
4724 
4725 static void raid_exit(void)
4726 {
4727 	unregister_md_personality(&raid10_personality);
4728 }
4729 
4730 module_init(raid_init);
4731 module_exit(raid_exit);
4732 MODULE_LICENSE("GPL");
4733 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4734 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4735 MODULE_ALIAS("md-raid10");
4736 MODULE_ALIAS("md-level-10");
4737 
4738 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4739