xref: /openbmc/linux/drivers/md/raid10.c (revision 82ced6fd)
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/delay.h>
22 #include <linux/blkdev.h>
23 #include <linux/seq_file.h>
24 #include "md.h"
25 #include "raid10.h"
26 #include "bitmap.h"
27 
28 /*
29  * RAID10 provides a combination of RAID0 and RAID1 functionality.
30  * The layout of data is defined by
31  *    chunk_size
32  *    raid_disks
33  *    near_copies (stored in low byte of layout)
34  *    far_copies (stored in second byte of layout)
35  *    far_offset (stored in bit 16 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.
38  * Each device is divided into far_copies sections.
39  * In each section, chunks are laid out in a style similar to raid0, but
40  * near_copies copies of each chunk is stored (each on a different drive).
41  * The starting device for each section is offset near_copies from the starting
42  * device of the previous section.
43  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
44  * drive.
45  * near_copies and far_copies must be at least one, and their product is at most
46  * raid_disks.
47  *
48  * If far_offset is true, then the far_copies are handled a bit differently.
49  * The copies are still in different stripes, but instead of be very far apart
50  * on disk, there are adjacent stripes.
51  */
52 
53 /*
54  * Number of guaranteed r10bios in case of extreme VM load:
55  */
56 #define	NR_RAID10_BIOS 256
57 
58 static void unplug_slaves(mddev_t *mddev);
59 
60 static void allow_barrier(conf_t *conf);
61 static void lower_barrier(conf_t *conf);
62 
63 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
64 {
65 	conf_t *conf = data;
66 	r10bio_t *r10_bio;
67 	int size = offsetof(struct r10bio_s, devs[conf->copies]);
68 
69 	/* allocate a r10bio with room for raid_disks entries in the bios array */
70 	r10_bio = kzalloc(size, gfp_flags);
71 	if (!r10_bio)
72 		unplug_slaves(conf->mddev);
73 
74 	return r10_bio;
75 }
76 
77 static void r10bio_pool_free(void *r10_bio, void *data)
78 {
79 	kfree(r10_bio);
80 }
81 
82 /* Maximum size of each resync request */
83 #define RESYNC_BLOCK_SIZE (64*1024)
84 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
85 /* amount of memory to reserve for resync requests */
86 #define RESYNC_WINDOW (1024*1024)
87 /* maximum number of concurrent requests, memory permitting */
88 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
89 
90 /*
91  * When performing a resync, we need to read and compare, so
92  * we need as many pages are there are copies.
93  * When performing a recovery, we need 2 bios, one for read,
94  * one for write (we recover only one drive per r10buf)
95  *
96  */
97 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99 	conf_t *conf = data;
100 	struct page *page;
101 	r10bio_t *r10_bio;
102 	struct bio *bio;
103 	int i, j;
104 	int nalloc;
105 
106 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
107 	if (!r10_bio) {
108 		unplug_slaves(conf->mddev);
109 		return NULL;
110 	}
111 
112 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
113 		nalloc = conf->copies; /* resync */
114 	else
115 		nalloc = 2; /* recovery */
116 
117 	/*
118 	 * Allocate bios.
119 	 */
120 	for (j = nalloc ; j-- ; ) {
121 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
122 		if (!bio)
123 			goto out_free_bio;
124 		r10_bio->devs[j].bio = bio;
125 	}
126 	/*
127 	 * Allocate RESYNC_PAGES data pages and attach them
128 	 * where needed.
129 	 */
130 	for (j = 0 ; j < nalloc; j++) {
131 		bio = r10_bio->devs[j].bio;
132 		for (i = 0; i < RESYNC_PAGES; i++) {
133 			page = alloc_page(gfp_flags);
134 			if (unlikely(!page))
135 				goto out_free_pages;
136 
137 			bio->bi_io_vec[i].bv_page = page;
138 		}
139 	}
140 
141 	return r10_bio;
142 
143 out_free_pages:
144 	for ( ; i > 0 ; i--)
145 		safe_put_page(bio->bi_io_vec[i-1].bv_page);
146 	while (j--)
147 		for (i = 0; i < RESYNC_PAGES ; i++)
148 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
149 	j = -1;
150 out_free_bio:
151 	while ( ++j < nalloc )
152 		bio_put(r10_bio->devs[j].bio);
153 	r10bio_pool_free(r10_bio, conf);
154 	return NULL;
155 }
156 
157 static void r10buf_pool_free(void *__r10_bio, void *data)
158 {
159 	int i;
160 	conf_t *conf = data;
161 	r10bio_t *r10bio = __r10_bio;
162 	int j;
163 
164 	for (j=0; j < conf->copies; j++) {
165 		struct bio *bio = r10bio->devs[j].bio;
166 		if (bio) {
167 			for (i = 0; i < RESYNC_PAGES; i++) {
168 				safe_put_page(bio->bi_io_vec[i].bv_page);
169 				bio->bi_io_vec[i].bv_page = NULL;
170 			}
171 			bio_put(bio);
172 		}
173 	}
174 	r10bio_pool_free(r10bio, conf);
175 }
176 
177 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
178 {
179 	int i;
180 
181 	for (i = 0; i < conf->copies; i++) {
182 		struct bio **bio = & r10_bio->devs[i].bio;
183 		if (*bio && *bio != IO_BLOCKED)
184 			bio_put(*bio);
185 		*bio = NULL;
186 	}
187 }
188 
189 static void free_r10bio(r10bio_t *r10_bio)
190 {
191 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
192 
193 	/*
194 	 * Wake up any possible resync thread that waits for the device
195 	 * to go idle.
196 	 */
197 	allow_barrier(conf);
198 
199 	put_all_bios(conf, r10_bio);
200 	mempool_free(r10_bio, conf->r10bio_pool);
201 }
202 
203 static void put_buf(r10bio_t *r10_bio)
204 {
205 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
206 
207 	mempool_free(r10_bio, conf->r10buf_pool);
208 
209 	lower_barrier(conf);
210 }
211 
212 static void reschedule_retry(r10bio_t *r10_bio)
213 {
214 	unsigned long flags;
215 	mddev_t *mddev = r10_bio->mddev;
216 	conf_t *conf = mddev_to_conf(mddev);
217 
218 	spin_lock_irqsave(&conf->device_lock, flags);
219 	list_add(&r10_bio->retry_list, &conf->retry_list);
220 	conf->nr_queued ++;
221 	spin_unlock_irqrestore(&conf->device_lock, flags);
222 
223 	/* wake up frozen array... */
224 	wake_up(&conf->wait_barrier);
225 
226 	md_wakeup_thread(mddev->thread);
227 }
228 
229 /*
230  * raid_end_bio_io() is called when we have finished servicing a mirrored
231  * operation and are ready to return a success/failure code to the buffer
232  * cache layer.
233  */
234 static void raid_end_bio_io(r10bio_t *r10_bio)
235 {
236 	struct bio *bio = r10_bio->master_bio;
237 
238 	bio_endio(bio,
239 		test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
240 	free_r10bio(r10_bio);
241 }
242 
243 /*
244  * Update disk head position estimator based on IRQ completion info.
245  */
246 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
247 {
248 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
249 
250 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
251 		r10_bio->devs[slot].addr + (r10_bio->sectors);
252 }
253 
254 static void raid10_end_read_request(struct bio *bio, int error)
255 {
256 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
257 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
258 	int slot, dev;
259 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
260 
261 
262 	slot = r10_bio->read_slot;
263 	dev = r10_bio->devs[slot].devnum;
264 	/*
265 	 * this branch is our 'one mirror IO has finished' event handler:
266 	 */
267 	update_head_pos(slot, r10_bio);
268 
269 	if (uptodate) {
270 		/*
271 		 * Set R10BIO_Uptodate in our master bio, so that
272 		 * we will return a good error code to the higher
273 		 * levels even if IO on some other mirrored buffer fails.
274 		 *
275 		 * The 'master' represents the composite IO operation to
276 		 * user-side. So if something waits for IO, then it will
277 		 * wait for the 'master' bio.
278 		 */
279 		set_bit(R10BIO_Uptodate, &r10_bio->state);
280 		raid_end_bio_io(r10_bio);
281 	} else {
282 		/*
283 		 * oops, read error:
284 		 */
285 		char b[BDEVNAME_SIZE];
286 		if (printk_ratelimit())
287 			printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
288 			       bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
289 		reschedule_retry(r10_bio);
290 	}
291 
292 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
293 }
294 
295 static void raid10_end_write_request(struct bio *bio, int error)
296 {
297 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
298 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
299 	int slot, dev;
300 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
301 
302 	for (slot = 0; slot < conf->copies; slot++)
303 		if (r10_bio->devs[slot].bio == bio)
304 			break;
305 	dev = r10_bio->devs[slot].devnum;
306 
307 	/*
308 	 * this branch is our 'one mirror IO has finished' event handler:
309 	 */
310 	if (!uptodate) {
311 		md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
312 		/* an I/O failed, we can't clear the bitmap */
313 		set_bit(R10BIO_Degraded, &r10_bio->state);
314 	} else
315 		/*
316 		 * Set R10BIO_Uptodate in our master bio, so that
317 		 * we will return a good error code for to the higher
318 		 * levels even if IO on some other mirrored buffer fails.
319 		 *
320 		 * The 'master' represents the composite IO operation to
321 		 * user-side. So if something waits for IO, then it will
322 		 * wait for the 'master' bio.
323 		 */
324 		set_bit(R10BIO_Uptodate, &r10_bio->state);
325 
326 	update_head_pos(slot, r10_bio);
327 
328 	/*
329 	 *
330 	 * Let's see if all mirrored write operations have finished
331 	 * already.
332 	 */
333 	if (atomic_dec_and_test(&r10_bio->remaining)) {
334 		/* clear the bitmap if all writes complete successfully */
335 		bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
336 				r10_bio->sectors,
337 				!test_bit(R10BIO_Degraded, &r10_bio->state),
338 				0);
339 		md_write_end(r10_bio->mddev);
340 		raid_end_bio_io(r10_bio);
341 	}
342 
343 	rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
344 }
345 
346 
347 /*
348  * RAID10 layout manager
349  * Aswell as the chunksize and raid_disks count, there are two
350  * parameters: near_copies and far_copies.
351  * near_copies * far_copies must be <= raid_disks.
352  * Normally one of these will be 1.
353  * If both are 1, we get raid0.
354  * If near_copies == raid_disks, we get raid1.
355  *
356  * Chunks are layed out in raid0 style with near_copies copies of the
357  * first chunk, followed by near_copies copies of the next chunk and
358  * so on.
359  * If far_copies > 1, then after 1/far_copies of the array has been assigned
360  * as described above, we start again with a device offset of near_copies.
361  * So we effectively have another copy of the whole array further down all
362  * the drives, but with blocks on different drives.
363  * With this layout, and block is never stored twice on the one device.
364  *
365  * raid10_find_phys finds the sector offset of a given virtual sector
366  * on each device that it is on.
367  *
368  * raid10_find_virt does the reverse mapping, from a device and a
369  * sector offset to a virtual address
370  */
371 
372 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
373 {
374 	int n,f;
375 	sector_t sector;
376 	sector_t chunk;
377 	sector_t stripe;
378 	int dev;
379 
380 	int slot = 0;
381 
382 	/* now calculate first sector/dev */
383 	chunk = r10bio->sector >> conf->chunk_shift;
384 	sector = r10bio->sector & conf->chunk_mask;
385 
386 	chunk *= conf->near_copies;
387 	stripe = chunk;
388 	dev = sector_div(stripe, conf->raid_disks);
389 	if (conf->far_offset)
390 		stripe *= conf->far_copies;
391 
392 	sector += stripe << conf->chunk_shift;
393 
394 	/* and calculate all the others */
395 	for (n=0; n < conf->near_copies; n++) {
396 		int d = dev;
397 		sector_t s = sector;
398 		r10bio->devs[slot].addr = sector;
399 		r10bio->devs[slot].devnum = d;
400 		slot++;
401 
402 		for (f = 1; f < conf->far_copies; f++) {
403 			d += conf->near_copies;
404 			if (d >= conf->raid_disks)
405 				d -= conf->raid_disks;
406 			s += conf->stride;
407 			r10bio->devs[slot].devnum = d;
408 			r10bio->devs[slot].addr = s;
409 			slot++;
410 		}
411 		dev++;
412 		if (dev >= conf->raid_disks) {
413 			dev = 0;
414 			sector += (conf->chunk_mask + 1);
415 		}
416 	}
417 	BUG_ON(slot != conf->copies);
418 }
419 
420 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
421 {
422 	sector_t offset, chunk, vchunk;
423 
424 	offset = sector & conf->chunk_mask;
425 	if (conf->far_offset) {
426 		int fc;
427 		chunk = sector >> conf->chunk_shift;
428 		fc = sector_div(chunk, conf->far_copies);
429 		dev -= fc * conf->near_copies;
430 		if (dev < 0)
431 			dev += conf->raid_disks;
432 	} else {
433 		while (sector >= conf->stride) {
434 			sector -= conf->stride;
435 			if (dev < conf->near_copies)
436 				dev += conf->raid_disks - conf->near_copies;
437 			else
438 				dev -= conf->near_copies;
439 		}
440 		chunk = sector >> conf->chunk_shift;
441 	}
442 	vchunk = chunk * conf->raid_disks + dev;
443 	sector_div(vchunk, conf->near_copies);
444 	return (vchunk << conf->chunk_shift) + offset;
445 }
446 
447 /**
448  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
449  *	@q: request queue
450  *	@bvm: properties of new bio
451  *	@biovec: the request that could be merged to it.
452  *
453  *	Return amount of bytes we can accept at this offset
454  *      If near_copies == raid_disk, there are no striping issues,
455  *      but in that case, the function isn't called at all.
456  */
457 static int raid10_mergeable_bvec(struct request_queue *q,
458 				 struct bvec_merge_data *bvm,
459 				 struct bio_vec *biovec)
460 {
461 	mddev_t *mddev = q->queuedata;
462 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
463 	int max;
464 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
465 	unsigned int bio_sectors = bvm->bi_size >> 9;
466 
467 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
468 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
469 	if (max <= biovec->bv_len && bio_sectors == 0)
470 		return biovec->bv_len;
471 	else
472 		return max;
473 }
474 
475 /*
476  * This routine returns the disk from which the requested read should
477  * be done. There is a per-array 'next expected sequential IO' sector
478  * number - if this matches on the next IO then we use the last disk.
479  * There is also a per-disk 'last know head position' sector that is
480  * maintained from IRQ contexts, both the normal and the resync IO
481  * completion handlers update this position correctly. If there is no
482  * perfect sequential match then we pick the disk whose head is closest.
483  *
484  * If there are 2 mirrors in the same 2 devices, performance degrades
485  * because position is mirror, not device based.
486  *
487  * The rdev for the device selected will have nr_pending incremented.
488  */
489 
490 /*
491  * FIXME: possibly should rethink readbalancing and do it differently
492  * depending on near_copies / far_copies geometry.
493  */
494 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
495 {
496 	const unsigned long this_sector = r10_bio->sector;
497 	int disk, slot, nslot;
498 	const int sectors = r10_bio->sectors;
499 	sector_t new_distance, current_distance;
500 	mdk_rdev_t *rdev;
501 
502 	raid10_find_phys(conf, r10_bio);
503 	rcu_read_lock();
504 	/*
505 	 * Check if we can balance. We can balance on the whole
506 	 * device if no resync is going on (recovery is ok), or below
507 	 * the resync window. We take the first readable disk when
508 	 * above the resync window.
509 	 */
510 	if (conf->mddev->recovery_cp < MaxSector
511 	    && (this_sector + sectors >= conf->next_resync)) {
512 		/* make sure that disk is operational */
513 		slot = 0;
514 		disk = r10_bio->devs[slot].devnum;
515 
516 		while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
517 		       r10_bio->devs[slot].bio == IO_BLOCKED ||
518 		       !test_bit(In_sync, &rdev->flags)) {
519 			slot++;
520 			if (slot == conf->copies) {
521 				slot = 0;
522 				disk = -1;
523 				break;
524 			}
525 			disk = r10_bio->devs[slot].devnum;
526 		}
527 		goto rb_out;
528 	}
529 
530 
531 	/* make sure the disk is operational */
532 	slot = 0;
533 	disk = r10_bio->devs[slot].devnum;
534 	while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
535 	       r10_bio->devs[slot].bio == IO_BLOCKED ||
536 	       !test_bit(In_sync, &rdev->flags)) {
537 		slot ++;
538 		if (slot == conf->copies) {
539 			disk = -1;
540 			goto rb_out;
541 		}
542 		disk = r10_bio->devs[slot].devnum;
543 	}
544 
545 
546 	current_distance = abs(r10_bio->devs[slot].addr -
547 			       conf->mirrors[disk].head_position);
548 
549 	/* Find the disk whose head is closest,
550 	 * or - for far > 1 - find the closest to partition beginning */
551 
552 	for (nslot = slot; nslot < conf->copies; nslot++) {
553 		int ndisk = r10_bio->devs[nslot].devnum;
554 
555 
556 		if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
557 		    r10_bio->devs[nslot].bio == IO_BLOCKED ||
558 		    !test_bit(In_sync, &rdev->flags))
559 			continue;
560 
561 		/* This optimisation is debatable, and completely destroys
562 		 * sequential read speed for 'far copies' arrays.  So only
563 		 * keep it for 'near' arrays, and review those later.
564 		 */
565 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
566 			disk = ndisk;
567 			slot = nslot;
568 			break;
569 		}
570 
571 		/* for far > 1 always use the lowest address */
572 		if (conf->far_copies > 1)
573 			new_distance = r10_bio->devs[nslot].addr;
574 		else
575 			new_distance = abs(r10_bio->devs[nslot].addr -
576 					   conf->mirrors[ndisk].head_position);
577 		if (new_distance < current_distance) {
578 			current_distance = new_distance;
579 			disk = ndisk;
580 			slot = nslot;
581 		}
582 	}
583 
584 rb_out:
585 	r10_bio->read_slot = slot;
586 /*	conf->next_seq_sect = this_sector + sectors;*/
587 
588 	if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
589 		atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
590 	else
591 		disk = -1;
592 	rcu_read_unlock();
593 
594 	return disk;
595 }
596 
597 static void unplug_slaves(mddev_t *mddev)
598 {
599 	conf_t *conf = mddev_to_conf(mddev);
600 	int i;
601 
602 	rcu_read_lock();
603 	for (i=0; i<mddev->raid_disks; i++) {
604 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
605 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
606 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
607 
608 			atomic_inc(&rdev->nr_pending);
609 			rcu_read_unlock();
610 
611 			blk_unplug(r_queue);
612 
613 			rdev_dec_pending(rdev, mddev);
614 			rcu_read_lock();
615 		}
616 	}
617 	rcu_read_unlock();
618 }
619 
620 static void raid10_unplug(struct request_queue *q)
621 {
622 	mddev_t *mddev = q->queuedata;
623 
624 	unplug_slaves(q->queuedata);
625 	md_wakeup_thread(mddev->thread);
626 }
627 
628 static int raid10_congested(void *data, int bits)
629 {
630 	mddev_t *mddev = data;
631 	conf_t *conf = mddev_to_conf(mddev);
632 	int i, ret = 0;
633 
634 	rcu_read_lock();
635 	for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
636 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
637 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
638 			struct request_queue *q = bdev_get_queue(rdev->bdev);
639 
640 			ret |= bdi_congested(&q->backing_dev_info, bits);
641 		}
642 	}
643 	rcu_read_unlock();
644 	return ret;
645 }
646 
647 static int flush_pending_writes(conf_t *conf)
648 {
649 	/* Any writes that have been queued but are awaiting
650 	 * bitmap updates get flushed here.
651 	 * We return 1 if any requests were actually submitted.
652 	 */
653 	int rv = 0;
654 
655 	spin_lock_irq(&conf->device_lock);
656 
657 	if (conf->pending_bio_list.head) {
658 		struct bio *bio;
659 		bio = bio_list_get(&conf->pending_bio_list);
660 		blk_remove_plug(conf->mddev->queue);
661 		spin_unlock_irq(&conf->device_lock);
662 		/* flush any pending bitmap writes to disk
663 		 * before proceeding w/ I/O */
664 		bitmap_unplug(conf->mddev->bitmap);
665 
666 		while (bio) { /* submit pending writes */
667 			struct bio *next = bio->bi_next;
668 			bio->bi_next = NULL;
669 			generic_make_request(bio);
670 			bio = next;
671 		}
672 		rv = 1;
673 	} else
674 		spin_unlock_irq(&conf->device_lock);
675 	return rv;
676 }
677 /* Barriers....
678  * Sometimes we need to suspend IO while we do something else,
679  * either some resync/recovery, or reconfigure the array.
680  * To do this we raise a 'barrier'.
681  * The 'barrier' is a counter that can be raised multiple times
682  * to count how many activities are happening which preclude
683  * normal IO.
684  * We can only raise the barrier if there is no pending IO.
685  * i.e. if nr_pending == 0.
686  * We choose only to raise the barrier if no-one is waiting for the
687  * barrier to go down.  This means that as soon as an IO request
688  * is ready, no other operations which require a barrier will start
689  * until the IO request has had a chance.
690  *
691  * So: regular IO calls 'wait_barrier'.  When that returns there
692  *    is no backgroup IO happening,  It must arrange to call
693  *    allow_barrier when it has finished its IO.
694  * backgroup IO calls must call raise_barrier.  Once that returns
695  *    there is no normal IO happeing.  It must arrange to call
696  *    lower_barrier when the particular background IO completes.
697  */
698 
699 static void raise_barrier(conf_t *conf, int force)
700 {
701 	BUG_ON(force && !conf->barrier);
702 	spin_lock_irq(&conf->resync_lock);
703 
704 	/* Wait until no block IO is waiting (unless 'force') */
705 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
706 			    conf->resync_lock,
707 			    raid10_unplug(conf->mddev->queue));
708 
709 	/* block any new IO from starting */
710 	conf->barrier++;
711 
712 	/* No wait for all pending IO to complete */
713 	wait_event_lock_irq(conf->wait_barrier,
714 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
715 			    conf->resync_lock,
716 			    raid10_unplug(conf->mddev->queue));
717 
718 	spin_unlock_irq(&conf->resync_lock);
719 }
720 
721 static void lower_barrier(conf_t *conf)
722 {
723 	unsigned long flags;
724 	spin_lock_irqsave(&conf->resync_lock, flags);
725 	conf->barrier--;
726 	spin_unlock_irqrestore(&conf->resync_lock, flags);
727 	wake_up(&conf->wait_barrier);
728 }
729 
730 static void wait_barrier(conf_t *conf)
731 {
732 	spin_lock_irq(&conf->resync_lock);
733 	if (conf->barrier) {
734 		conf->nr_waiting++;
735 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
736 				    conf->resync_lock,
737 				    raid10_unplug(conf->mddev->queue));
738 		conf->nr_waiting--;
739 	}
740 	conf->nr_pending++;
741 	spin_unlock_irq(&conf->resync_lock);
742 }
743 
744 static void allow_barrier(conf_t *conf)
745 {
746 	unsigned long flags;
747 	spin_lock_irqsave(&conf->resync_lock, flags);
748 	conf->nr_pending--;
749 	spin_unlock_irqrestore(&conf->resync_lock, flags);
750 	wake_up(&conf->wait_barrier);
751 }
752 
753 static void freeze_array(conf_t *conf)
754 {
755 	/* stop syncio and normal IO and wait for everything to
756 	 * go quiet.
757 	 * We increment barrier and nr_waiting, and then
758 	 * wait until nr_pending match nr_queued+1
759 	 * This is called in the context of one normal IO request
760 	 * that has failed. Thus any sync request that might be pending
761 	 * will be blocked by nr_pending, and we need to wait for
762 	 * pending IO requests to complete or be queued for re-try.
763 	 * Thus the number queued (nr_queued) plus this request (1)
764 	 * must match the number of pending IOs (nr_pending) before
765 	 * we continue.
766 	 */
767 	spin_lock_irq(&conf->resync_lock);
768 	conf->barrier++;
769 	conf->nr_waiting++;
770 	wait_event_lock_irq(conf->wait_barrier,
771 			    conf->nr_pending == conf->nr_queued+1,
772 			    conf->resync_lock,
773 			    ({ flush_pending_writes(conf);
774 			       raid10_unplug(conf->mddev->queue); }));
775 	spin_unlock_irq(&conf->resync_lock);
776 }
777 
778 static void unfreeze_array(conf_t *conf)
779 {
780 	/* reverse the effect of the freeze */
781 	spin_lock_irq(&conf->resync_lock);
782 	conf->barrier--;
783 	conf->nr_waiting--;
784 	wake_up(&conf->wait_barrier);
785 	spin_unlock_irq(&conf->resync_lock);
786 }
787 
788 static int make_request(struct request_queue *q, struct bio * bio)
789 {
790 	mddev_t *mddev = q->queuedata;
791 	conf_t *conf = mddev_to_conf(mddev);
792 	mirror_info_t *mirror;
793 	r10bio_t *r10_bio;
794 	struct bio *read_bio;
795 	int cpu;
796 	int i;
797 	int chunk_sects = conf->chunk_mask + 1;
798 	const int rw = bio_data_dir(bio);
799 	const int do_sync = bio_sync(bio);
800 	struct bio_list bl;
801 	unsigned long flags;
802 	mdk_rdev_t *blocked_rdev;
803 
804 	if (unlikely(bio_barrier(bio))) {
805 		bio_endio(bio, -EOPNOTSUPP);
806 		return 0;
807 	}
808 
809 	/* If this request crosses a chunk boundary, we need to
810 	 * split it.  This will only happen for 1 PAGE (or less) requests.
811 	 */
812 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
813 		      > chunk_sects &&
814 		    conf->near_copies < conf->raid_disks)) {
815 		struct bio_pair *bp;
816 		/* Sanity check -- queue functions should prevent this happening */
817 		if (bio->bi_vcnt != 1 ||
818 		    bio->bi_idx != 0)
819 			goto bad_map;
820 		/* This is a one page bio that upper layers
821 		 * refuse to split for us, so we need to split it.
822 		 */
823 		bp = bio_split(bio,
824 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
825 		if (make_request(q, &bp->bio1))
826 			generic_make_request(&bp->bio1);
827 		if (make_request(q, &bp->bio2))
828 			generic_make_request(&bp->bio2);
829 
830 		bio_pair_release(bp);
831 		return 0;
832 	bad_map:
833 		printk("raid10_make_request bug: can't convert block across chunks"
834 		       " or bigger than %dk %llu %d\n", chunk_sects/2,
835 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
836 
837 		bio_io_error(bio);
838 		return 0;
839 	}
840 
841 	md_write_start(mddev, bio);
842 
843 	/*
844 	 * Register the new request and wait if the reconstruction
845 	 * thread has put up a bar for new requests.
846 	 * Continue immediately if no resync is active currently.
847 	 */
848 	wait_barrier(conf);
849 
850 	cpu = part_stat_lock();
851 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
852 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
853 		      bio_sectors(bio));
854 	part_stat_unlock();
855 
856 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
857 
858 	r10_bio->master_bio = bio;
859 	r10_bio->sectors = bio->bi_size >> 9;
860 
861 	r10_bio->mddev = mddev;
862 	r10_bio->sector = bio->bi_sector;
863 	r10_bio->state = 0;
864 
865 	if (rw == READ) {
866 		/*
867 		 * read balancing logic:
868 		 */
869 		int disk = read_balance(conf, r10_bio);
870 		int slot = r10_bio->read_slot;
871 		if (disk < 0) {
872 			raid_end_bio_io(r10_bio);
873 			return 0;
874 		}
875 		mirror = conf->mirrors + disk;
876 
877 		read_bio = bio_clone(bio, GFP_NOIO);
878 
879 		r10_bio->devs[slot].bio = read_bio;
880 
881 		read_bio->bi_sector = r10_bio->devs[slot].addr +
882 			mirror->rdev->data_offset;
883 		read_bio->bi_bdev = mirror->rdev->bdev;
884 		read_bio->bi_end_io = raid10_end_read_request;
885 		read_bio->bi_rw = READ | do_sync;
886 		read_bio->bi_private = r10_bio;
887 
888 		generic_make_request(read_bio);
889 		return 0;
890 	}
891 
892 	/*
893 	 * WRITE:
894 	 */
895 	/* first select target devices under rcu_lock and
896 	 * inc refcount on their rdev.  Record them by setting
897 	 * bios[x] to bio
898 	 */
899 	raid10_find_phys(conf, r10_bio);
900  retry_write:
901 	blocked_rdev = NULL;
902 	rcu_read_lock();
903 	for (i = 0;  i < conf->copies; i++) {
904 		int d = r10_bio->devs[i].devnum;
905 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
906 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
907 			atomic_inc(&rdev->nr_pending);
908 			blocked_rdev = rdev;
909 			break;
910 		}
911 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
912 			atomic_inc(&rdev->nr_pending);
913 			r10_bio->devs[i].bio = bio;
914 		} else {
915 			r10_bio->devs[i].bio = NULL;
916 			set_bit(R10BIO_Degraded, &r10_bio->state);
917 		}
918 	}
919 	rcu_read_unlock();
920 
921 	if (unlikely(blocked_rdev)) {
922 		/* Have to wait for this device to get unblocked, then retry */
923 		int j;
924 		int d;
925 
926 		for (j = 0; j < i; j++)
927 			if (r10_bio->devs[j].bio) {
928 				d = r10_bio->devs[j].devnum;
929 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
930 			}
931 		allow_barrier(conf);
932 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
933 		wait_barrier(conf);
934 		goto retry_write;
935 	}
936 
937 	atomic_set(&r10_bio->remaining, 0);
938 
939 	bio_list_init(&bl);
940 	for (i = 0; i < conf->copies; i++) {
941 		struct bio *mbio;
942 		int d = r10_bio->devs[i].devnum;
943 		if (!r10_bio->devs[i].bio)
944 			continue;
945 
946 		mbio = bio_clone(bio, GFP_NOIO);
947 		r10_bio->devs[i].bio = mbio;
948 
949 		mbio->bi_sector	= r10_bio->devs[i].addr+
950 			conf->mirrors[d].rdev->data_offset;
951 		mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
952 		mbio->bi_end_io	= raid10_end_write_request;
953 		mbio->bi_rw = WRITE | do_sync;
954 		mbio->bi_private = r10_bio;
955 
956 		atomic_inc(&r10_bio->remaining);
957 		bio_list_add(&bl, mbio);
958 	}
959 
960 	if (unlikely(!atomic_read(&r10_bio->remaining))) {
961 		/* the array is dead */
962 		md_write_end(mddev);
963 		raid_end_bio_io(r10_bio);
964 		return 0;
965 	}
966 
967 	bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
968 	spin_lock_irqsave(&conf->device_lock, flags);
969 	bio_list_merge(&conf->pending_bio_list, &bl);
970 	blk_plug_device(mddev->queue);
971 	spin_unlock_irqrestore(&conf->device_lock, flags);
972 
973 	/* In case raid10d snuck in to freeze_array */
974 	wake_up(&conf->wait_barrier);
975 
976 	if (do_sync)
977 		md_wakeup_thread(mddev->thread);
978 
979 	return 0;
980 }
981 
982 static void status(struct seq_file *seq, mddev_t *mddev)
983 {
984 	conf_t *conf = mddev_to_conf(mddev);
985 	int i;
986 
987 	if (conf->near_copies < conf->raid_disks)
988 		seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
989 	if (conf->near_copies > 1)
990 		seq_printf(seq, " %d near-copies", conf->near_copies);
991 	if (conf->far_copies > 1) {
992 		if (conf->far_offset)
993 			seq_printf(seq, " %d offset-copies", conf->far_copies);
994 		else
995 			seq_printf(seq, " %d far-copies", conf->far_copies);
996 	}
997 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
998 					conf->raid_disks - mddev->degraded);
999 	for (i = 0; i < conf->raid_disks; i++)
1000 		seq_printf(seq, "%s",
1001 			      conf->mirrors[i].rdev &&
1002 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1003 	seq_printf(seq, "]");
1004 }
1005 
1006 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1007 {
1008 	char b[BDEVNAME_SIZE];
1009 	conf_t *conf = mddev_to_conf(mddev);
1010 
1011 	/*
1012 	 * If it is not operational, then we have already marked it as dead
1013 	 * else if it is the last working disks, ignore the error, let the
1014 	 * next level up know.
1015 	 * else mark the drive as failed
1016 	 */
1017 	if (test_bit(In_sync, &rdev->flags)
1018 	    && conf->raid_disks-mddev->degraded == 1)
1019 		/*
1020 		 * Don't fail the drive, just return an IO error.
1021 		 * The test should really be more sophisticated than
1022 		 * "working_disks == 1", but it isn't critical, and
1023 		 * can wait until we do more sophisticated "is the drive
1024 		 * really dead" tests...
1025 		 */
1026 		return;
1027 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1028 		unsigned long flags;
1029 		spin_lock_irqsave(&conf->device_lock, flags);
1030 		mddev->degraded++;
1031 		spin_unlock_irqrestore(&conf->device_lock, flags);
1032 		/*
1033 		 * if recovery is running, make sure it aborts.
1034 		 */
1035 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1036 	}
1037 	set_bit(Faulty, &rdev->flags);
1038 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1039 	printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1040 		"raid10: Operation continuing on %d devices.\n",
1041 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1042 }
1043 
1044 static void print_conf(conf_t *conf)
1045 {
1046 	int i;
1047 	mirror_info_t *tmp;
1048 
1049 	printk("RAID10 conf printout:\n");
1050 	if (!conf) {
1051 		printk("(!conf)\n");
1052 		return;
1053 	}
1054 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1055 		conf->raid_disks);
1056 
1057 	for (i = 0; i < conf->raid_disks; i++) {
1058 		char b[BDEVNAME_SIZE];
1059 		tmp = conf->mirrors + i;
1060 		if (tmp->rdev)
1061 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1062 				i, !test_bit(In_sync, &tmp->rdev->flags),
1063 			        !test_bit(Faulty, &tmp->rdev->flags),
1064 				bdevname(tmp->rdev->bdev,b));
1065 	}
1066 }
1067 
1068 static void close_sync(conf_t *conf)
1069 {
1070 	wait_barrier(conf);
1071 	allow_barrier(conf);
1072 
1073 	mempool_destroy(conf->r10buf_pool);
1074 	conf->r10buf_pool = NULL;
1075 }
1076 
1077 /* check if there are enough drives for
1078  * every block to appear on atleast one
1079  */
1080 static int enough(conf_t *conf)
1081 {
1082 	int first = 0;
1083 
1084 	do {
1085 		int n = conf->copies;
1086 		int cnt = 0;
1087 		while (n--) {
1088 			if (conf->mirrors[first].rdev)
1089 				cnt++;
1090 			first = (first+1) % conf->raid_disks;
1091 		}
1092 		if (cnt == 0)
1093 			return 0;
1094 	} while (first != 0);
1095 	return 1;
1096 }
1097 
1098 static int raid10_spare_active(mddev_t *mddev)
1099 {
1100 	int i;
1101 	conf_t *conf = mddev->private;
1102 	mirror_info_t *tmp;
1103 
1104 	/*
1105 	 * Find all non-in_sync disks within the RAID10 configuration
1106 	 * and mark them in_sync
1107 	 */
1108 	for (i = 0; i < conf->raid_disks; i++) {
1109 		tmp = conf->mirrors + i;
1110 		if (tmp->rdev
1111 		    && !test_bit(Faulty, &tmp->rdev->flags)
1112 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1113 			unsigned long flags;
1114 			spin_lock_irqsave(&conf->device_lock, flags);
1115 			mddev->degraded--;
1116 			spin_unlock_irqrestore(&conf->device_lock, flags);
1117 		}
1118 	}
1119 
1120 	print_conf(conf);
1121 	return 0;
1122 }
1123 
1124 
1125 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1126 {
1127 	conf_t *conf = mddev->private;
1128 	int err = -EEXIST;
1129 	int mirror;
1130 	mirror_info_t *p;
1131 	int first = 0;
1132 	int last = mddev->raid_disks - 1;
1133 
1134 	if (mddev->recovery_cp < MaxSector)
1135 		/* only hot-add to in-sync arrays, as recovery is
1136 		 * very different from resync
1137 		 */
1138 		return -EBUSY;
1139 	if (!enough(conf))
1140 		return -EINVAL;
1141 
1142 	if (rdev->raid_disk >= 0)
1143 		first = last = rdev->raid_disk;
1144 
1145 	if (rdev->saved_raid_disk >= 0 &&
1146 	    rdev->saved_raid_disk >= first &&
1147 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1148 		mirror = rdev->saved_raid_disk;
1149 	else
1150 		mirror = first;
1151 	for ( ; mirror <= last ; mirror++)
1152 		if ( !(p=conf->mirrors+mirror)->rdev) {
1153 
1154 			blk_queue_stack_limits(mddev->queue,
1155 					       rdev->bdev->bd_disk->queue);
1156 			/* as we don't honour merge_bvec_fn, we must never risk
1157 			 * violating it, so limit ->max_sector to one PAGE, as
1158 			 * a one page request is never in violation.
1159 			 */
1160 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1161 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1162 				mddev->queue->max_sectors = (PAGE_SIZE>>9);
1163 
1164 			p->head_position = 0;
1165 			rdev->raid_disk = mirror;
1166 			err = 0;
1167 			if (rdev->saved_raid_disk != mirror)
1168 				conf->fullsync = 1;
1169 			rcu_assign_pointer(p->rdev, rdev);
1170 			break;
1171 		}
1172 
1173 	print_conf(conf);
1174 	return err;
1175 }
1176 
1177 static int raid10_remove_disk(mddev_t *mddev, int number)
1178 {
1179 	conf_t *conf = mddev->private;
1180 	int err = 0;
1181 	mdk_rdev_t *rdev;
1182 	mirror_info_t *p = conf->mirrors+ number;
1183 
1184 	print_conf(conf);
1185 	rdev = p->rdev;
1186 	if (rdev) {
1187 		if (test_bit(In_sync, &rdev->flags) ||
1188 		    atomic_read(&rdev->nr_pending)) {
1189 			err = -EBUSY;
1190 			goto abort;
1191 		}
1192 		/* Only remove faulty devices in recovery
1193 		 * is not possible.
1194 		 */
1195 		if (!test_bit(Faulty, &rdev->flags) &&
1196 		    enough(conf)) {
1197 			err = -EBUSY;
1198 			goto abort;
1199 		}
1200 		p->rdev = NULL;
1201 		synchronize_rcu();
1202 		if (atomic_read(&rdev->nr_pending)) {
1203 			/* lost the race, try later */
1204 			err = -EBUSY;
1205 			p->rdev = rdev;
1206 		}
1207 	}
1208 abort:
1209 
1210 	print_conf(conf);
1211 	return err;
1212 }
1213 
1214 
1215 static void end_sync_read(struct bio *bio, int error)
1216 {
1217 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1218 	conf_t *conf = mddev_to_conf(r10_bio->mddev);
1219 	int i,d;
1220 
1221 	for (i=0; i<conf->copies; i++)
1222 		if (r10_bio->devs[i].bio == bio)
1223 			break;
1224 	BUG_ON(i == conf->copies);
1225 	update_head_pos(i, r10_bio);
1226 	d = r10_bio->devs[i].devnum;
1227 
1228 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1229 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1230 	else {
1231 		atomic_add(r10_bio->sectors,
1232 			   &conf->mirrors[d].rdev->corrected_errors);
1233 		if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1234 			md_error(r10_bio->mddev,
1235 				 conf->mirrors[d].rdev);
1236 	}
1237 
1238 	/* for reconstruct, we always reschedule after a read.
1239 	 * for resync, only after all reads
1240 	 */
1241 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1242 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1243 	    atomic_dec_and_test(&r10_bio->remaining)) {
1244 		/* we have read all the blocks,
1245 		 * do the comparison in process context in raid10d
1246 		 */
1247 		reschedule_retry(r10_bio);
1248 	}
1249 }
1250 
1251 static void end_sync_write(struct bio *bio, int error)
1252 {
1253 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1254 	r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1255 	mddev_t *mddev = r10_bio->mddev;
1256 	conf_t *conf = mddev_to_conf(mddev);
1257 	int i,d;
1258 
1259 	for (i = 0; i < conf->copies; i++)
1260 		if (r10_bio->devs[i].bio == bio)
1261 			break;
1262 	d = r10_bio->devs[i].devnum;
1263 
1264 	if (!uptodate)
1265 		md_error(mddev, conf->mirrors[d].rdev);
1266 
1267 	update_head_pos(i, r10_bio);
1268 
1269 	rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1270 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1271 		if (r10_bio->master_bio == NULL) {
1272 			/* the primary of several recovery bios */
1273 			sector_t s = r10_bio->sectors;
1274 			put_buf(r10_bio);
1275 			md_done_sync(mddev, s, 1);
1276 			break;
1277 		} else {
1278 			r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1279 			put_buf(r10_bio);
1280 			r10_bio = r10_bio2;
1281 		}
1282 	}
1283 }
1284 
1285 /*
1286  * Note: sync and recover and handled very differently for raid10
1287  * This code is for resync.
1288  * For resync, we read through virtual addresses and read all blocks.
1289  * If there is any error, we schedule a write.  The lowest numbered
1290  * drive is authoritative.
1291  * However requests come for physical address, so we need to map.
1292  * For every physical address there are raid_disks/copies virtual addresses,
1293  * which is always are least one, but is not necessarly an integer.
1294  * This means that a physical address can span multiple chunks, so we may
1295  * have to submit multiple io requests for a single sync request.
1296  */
1297 /*
1298  * We check if all blocks are in-sync and only write to blocks that
1299  * aren't in sync
1300  */
1301 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1302 {
1303 	conf_t *conf = mddev_to_conf(mddev);
1304 	int i, first;
1305 	struct bio *tbio, *fbio;
1306 
1307 	atomic_set(&r10_bio->remaining, 1);
1308 
1309 	/* find the first device with a block */
1310 	for (i=0; i<conf->copies; i++)
1311 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1312 			break;
1313 
1314 	if (i == conf->copies)
1315 		goto done;
1316 
1317 	first = i;
1318 	fbio = r10_bio->devs[i].bio;
1319 
1320 	/* now find blocks with errors */
1321 	for (i=0 ; i < conf->copies ; i++) {
1322 		int  j, d;
1323 		int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1324 
1325 		tbio = r10_bio->devs[i].bio;
1326 
1327 		if (tbio->bi_end_io != end_sync_read)
1328 			continue;
1329 		if (i == first)
1330 			continue;
1331 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1332 			/* We know that the bi_io_vec layout is the same for
1333 			 * both 'first' and 'i', so we just compare them.
1334 			 * All vec entries are PAGE_SIZE;
1335 			 */
1336 			for (j = 0; j < vcnt; j++)
1337 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1338 					   page_address(tbio->bi_io_vec[j].bv_page),
1339 					   PAGE_SIZE))
1340 					break;
1341 			if (j == vcnt)
1342 				continue;
1343 			mddev->resync_mismatches += r10_bio->sectors;
1344 		}
1345 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1346 			/* Don't fix anything. */
1347 			continue;
1348 		/* Ok, we need to write this bio
1349 		 * First we need to fixup bv_offset, bv_len and
1350 		 * bi_vecs, as the read request might have corrupted these
1351 		 */
1352 		tbio->bi_vcnt = vcnt;
1353 		tbio->bi_size = r10_bio->sectors << 9;
1354 		tbio->bi_idx = 0;
1355 		tbio->bi_phys_segments = 0;
1356 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1357 		tbio->bi_flags |= 1 << BIO_UPTODATE;
1358 		tbio->bi_next = NULL;
1359 		tbio->bi_rw = WRITE;
1360 		tbio->bi_private = r10_bio;
1361 		tbio->bi_sector = r10_bio->devs[i].addr;
1362 
1363 		for (j=0; j < vcnt ; j++) {
1364 			tbio->bi_io_vec[j].bv_offset = 0;
1365 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1366 
1367 			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1368 			       page_address(fbio->bi_io_vec[j].bv_page),
1369 			       PAGE_SIZE);
1370 		}
1371 		tbio->bi_end_io = end_sync_write;
1372 
1373 		d = r10_bio->devs[i].devnum;
1374 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1375 		atomic_inc(&r10_bio->remaining);
1376 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1377 
1378 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1379 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1380 		generic_make_request(tbio);
1381 	}
1382 
1383 done:
1384 	if (atomic_dec_and_test(&r10_bio->remaining)) {
1385 		md_done_sync(mddev, r10_bio->sectors, 1);
1386 		put_buf(r10_bio);
1387 	}
1388 }
1389 
1390 /*
1391  * Now for the recovery code.
1392  * Recovery happens across physical sectors.
1393  * We recover all non-is_sync drives by finding the virtual address of
1394  * each, and then choose a working drive that also has that virt address.
1395  * There is a separate r10_bio for each non-in_sync drive.
1396  * Only the first two slots are in use. The first for reading,
1397  * The second for writing.
1398  *
1399  */
1400 
1401 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1402 {
1403 	conf_t *conf = mddev_to_conf(mddev);
1404 	int i, d;
1405 	struct bio *bio, *wbio;
1406 
1407 
1408 	/* move the pages across to the second bio
1409 	 * and submit the write request
1410 	 */
1411 	bio = r10_bio->devs[0].bio;
1412 	wbio = r10_bio->devs[1].bio;
1413 	for (i=0; i < wbio->bi_vcnt; i++) {
1414 		struct page *p = bio->bi_io_vec[i].bv_page;
1415 		bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1416 		wbio->bi_io_vec[i].bv_page = p;
1417 	}
1418 	d = r10_bio->devs[1].devnum;
1419 
1420 	atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1421 	md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1422 	if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1423 		generic_make_request(wbio);
1424 	else
1425 		bio_endio(wbio, -EIO);
1426 }
1427 
1428 
1429 /*
1430  * This is a kernel thread which:
1431  *
1432  *	1.	Retries failed read operations on working mirrors.
1433  *	2.	Updates the raid superblock when problems encounter.
1434  *	3.	Performs writes following reads for array synchronising.
1435  */
1436 
1437 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1438 {
1439 	int sect = 0; /* Offset from r10_bio->sector */
1440 	int sectors = r10_bio->sectors;
1441 	mdk_rdev_t*rdev;
1442 	while(sectors) {
1443 		int s = sectors;
1444 		int sl = r10_bio->read_slot;
1445 		int success = 0;
1446 		int start;
1447 
1448 		if (s > (PAGE_SIZE>>9))
1449 			s = PAGE_SIZE >> 9;
1450 
1451 		rcu_read_lock();
1452 		do {
1453 			int d = r10_bio->devs[sl].devnum;
1454 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1455 			if (rdev &&
1456 			    test_bit(In_sync, &rdev->flags)) {
1457 				atomic_inc(&rdev->nr_pending);
1458 				rcu_read_unlock();
1459 				success = sync_page_io(rdev->bdev,
1460 						       r10_bio->devs[sl].addr +
1461 						       sect + rdev->data_offset,
1462 						       s<<9,
1463 						       conf->tmppage, READ);
1464 				rdev_dec_pending(rdev, mddev);
1465 				rcu_read_lock();
1466 				if (success)
1467 					break;
1468 			}
1469 			sl++;
1470 			if (sl == conf->copies)
1471 				sl = 0;
1472 		} while (!success && sl != r10_bio->read_slot);
1473 		rcu_read_unlock();
1474 
1475 		if (!success) {
1476 			/* Cannot read from anywhere -- bye bye array */
1477 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1478 			md_error(mddev, conf->mirrors[dn].rdev);
1479 			break;
1480 		}
1481 
1482 		start = sl;
1483 		/* write it back and re-read */
1484 		rcu_read_lock();
1485 		while (sl != r10_bio->read_slot) {
1486 			int d;
1487 			if (sl==0)
1488 				sl = conf->copies;
1489 			sl--;
1490 			d = r10_bio->devs[sl].devnum;
1491 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1492 			if (rdev &&
1493 			    test_bit(In_sync, &rdev->flags)) {
1494 				atomic_inc(&rdev->nr_pending);
1495 				rcu_read_unlock();
1496 				atomic_add(s, &rdev->corrected_errors);
1497 				if (sync_page_io(rdev->bdev,
1498 						 r10_bio->devs[sl].addr +
1499 						 sect + rdev->data_offset,
1500 						 s<<9, conf->tmppage, WRITE)
1501 				    == 0)
1502 					/* Well, this device is dead */
1503 					md_error(mddev, rdev);
1504 				rdev_dec_pending(rdev, mddev);
1505 				rcu_read_lock();
1506 			}
1507 		}
1508 		sl = start;
1509 		while (sl != r10_bio->read_slot) {
1510 			int d;
1511 			if (sl==0)
1512 				sl = conf->copies;
1513 			sl--;
1514 			d = r10_bio->devs[sl].devnum;
1515 			rdev = rcu_dereference(conf->mirrors[d].rdev);
1516 			if (rdev &&
1517 			    test_bit(In_sync, &rdev->flags)) {
1518 				char b[BDEVNAME_SIZE];
1519 				atomic_inc(&rdev->nr_pending);
1520 				rcu_read_unlock();
1521 				if (sync_page_io(rdev->bdev,
1522 						 r10_bio->devs[sl].addr +
1523 						 sect + rdev->data_offset,
1524 						 s<<9, conf->tmppage, READ) == 0)
1525 					/* Well, this device is dead */
1526 					md_error(mddev, rdev);
1527 				else
1528 					printk(KERN_INFO
1529 					       "raid10:%s: read error corrected"
1530 					       " (%d sectors at %llu on %s)\n",
1531 					       mdname(mddev), s,
1532 					       (unsigned long long)(sect+
1533 					            rdev->data_offset),
1534 					       bdevname(rdev->bdev, b));
1535 
1536 				rdev_dec_pending(rdev, mddev);
1537 				rcu_read_lock();
1538 			}
1539 		}
1540 		rcu_read_unlock();
1541 
1542 		sectors -= s;
1543 		sect += s;
1544 	}
1545 }
1546 
1547 static void raid10d(mddev_t *mddev)
1548 {
1549 	r10bio_t *r10_bio;
1550 	struct bio *bio;
1551 	unsigned long flags;
1552 	conf_t *conf = mddev_to_conf(mddev);
1553 	struct list_head *head = &conf->retry_list;
1554 	int unplug=0;
1555 	mdk_rdev_t *rdev;
1556 
1557 	md_check_recovery(mddev);
1558 
1559 	for (;;) {
1560 		char b[BDEVNAME_SIZE];
1561 
1562 		unplug += flush_pending_writes(conf);
1563 
1564 		spin_lock_irqsave(&conf->device_lock, flags);
1565 		if (list_empty(head)) {
1566 			spin_unlock_irqrestore(&conf->device_lock, flags);
1567 			break;
1568 		}
1569 		r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1570 		list_del(head->prev);
1571 		conf->nr_queued--;
1572 		spin_unlock_irqrestore(&conf->device_lock, flags);
1573 
1574 		mddev = r10_bio->mddev;
1575 		conf = mddev_to_conf(mddev);
1576 		if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1577 			sync_request_write(mddev, r10_bio);
1578 			unplug = 1;
1579 		} else 	if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1580 			recovery_request_write(mddev, r10_bio);
1581 			unplug = 1;
1582 		} else {
1583 			int mirror;
1584 			/* we got a read error. Maybe the drive is bad.  Maybe just
1585 			 * the block and we can fix it.
1586 			 * We freeze all other IO, and try reading the block from
1587 			 * other devices.  When we find one, we re-write
1588 			 * and check it that fixes the read error.
1589 			 * This is all done synchronously while the array is
1590 			 * frozen.
1591 			 */
1592 			if (mddev->ro == 0) {
1593 				freeze_array(conf);
1594 				fix_read_error(conf, mddev, r10_bio);
1595 				unfreeze_array(conf);
1596 			}
1597 
1598 			bio = r10_bio->devs[r10_bio->read_slot].bio;
1599 			r10_bio->devs[r10_bio->read_slot].bio =
1600 				mddev->ro ? IO_BLOCKED : NULL;
1601 			mirror = read_balance(conf, r10_bio);
1602 			if (mirror == -1) {
1603 				printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1604 				       " read error for block %llu\n",
1605 				       bdevname(bio->bi_bdev,b),
1606 				       (unsigned long long)r10_bio->sector);
1607 				raid_end_bio_io(r10_bio);
1608 				bio_put(bio);
1609 			} else {
1610 				const int do_sync = bio_sync(r10_bio->master_bio);
1611 				bio_put(bio);
1612 				rdev = conf->mirrors[mirror].rdev;
1613 				if (printk_ratelimit())
1614 					printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1615 					       " another mirror\n",
1616 					       bdevname(rdev->bdev,b),
1617 					       (unsigned long long)r10_bio->sector);
1618 				bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1619 				r10_bio->devs[r10_bio->read_slot].bio = bio;
1620 				bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1621 					+ rdev->data_offset;
1622 				bio->bi_bdev = rdev->bdev;
1623 				bio->bi_rw = READ | do_sync;
1624 				bio->bi_private = r10_bio;
1625 				bio->bi_end_io = raid10_end_read_request;
1626 				unplug = 1;
1627 				generic_make_request(bio);
1628 			}
1629 		}
1630 	}
1631 	if (unplug)
1632 		unplug_slaves(mddev);
1633 }
1634 
1635 
1636 static int init_resync(conf_t *conf)
1637 {
1638 	int buffs;
1639 
1640 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1641 	BUG_ON(conf->r10buf_pool);
1642 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1643 	if (!conf->r10buf_pool)
1644 		return -ENOMEM;
1645 	conf->next_resync = 0;
1646 	return 0;
1647 }
1648 
1649 /*
1650  * perform a "sync" on one "block"
1651  *
1652  * We need to make sure that no normal I/O request - particularly write
1653  * requests - conflict with active sync requests.
1654  *
1655  * This is achieved by tracking pending requests and a 'barrier' concept
1656  * that can be installed to exclude normal IO requests.
1657  *
1658  * Resync and recovery are handled very differently.
1659  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1660  *
1661  * For resync, we iterate over virtual addresses, read all copies,
1662  * and update if there are differences.  If only one copy is live,
1663  * skip it.
1664  * For recovery, we iterate over physical addresses, read a good
1665  * value for each non-in_sync drive, and over-write.
1666  *
1667  * So, for recovery we may have several outstanding complex requests for a
1668  * given address, one for each out-of-sync device.  We model this by allocating
1669  * a number of r10_bio structures, one for each out-of-sync device.
1670  * As we setup these structures, we collect all bio's together into a list
1671  * which we then process collectively to add pages, and then process again
1672  * to pass to generic_make_request.
1673  *
1674  * The r10_bio structures are linked using a borrowed master_bio pointer.
1675  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1676  * has its remaining count decremented to 0, the whole complex operation
1677  * is complete.
1678  *
1679  */
1680 
1681 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1682 {
1683 	conf_t *conf = mddev_to_conf(mddev);
1684 	r10bio_t *r10_bio;
1685 	struct bio *biolist = NULL, *bio;
1686 	sector_t max_sector, nr_sectors;
1687 	int disk;
1688 	int i;
1689 	int max_sync;
1690 	int sync_blocks;
1691 
1692 	sector_t sectors_skipped = 0;
1693 	int chunks_skipped = 0;
1694 
1695 	if (!conf->r10buf_pool)
1696 		if (init_resync(conf))
1697 			return 0;
1698 
1699  skipped:
1700 	max_sector = mddev->dev_sectors;
1701 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1702 		max_sector = mddev->resync_max_sectors;
1703 	if (sector_nr >= max_sector) {
1704 		/* If we aborted, we need to abort the
1705 		 * sync on the 'current' bitmap chucks (there can
1706 		 * be several when recovering multiple devices).
1707 		 * as we may have started syncing it but not finished.
1708 		 * We can find the current address in
1709 		 * mddev->curr_resync, but for recovery,
1710 		 * we need to convert that to several
1711 		 * virtual addresses.
1712 		 */
1713 		if (mddev->curr_resync < max_sector) { /* aborted */
1714 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1715 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1716 						&sync_blocks, 1);
1717 			else for (i=0; i<conf->raid_disks; i++) {
1718 				sector_t sect =
1719 					raid10_find_virt(conf, mddev->curr_resync, i);
1720 				bitmap_end_sync(mddev->bitmap, sect,
1721 						&sync_blocks, 1);
1722 			}
1723 		} else /* completed sync */
1724 			conf->fullsync = 0;
1725 
1726 		bitmap_close_sync(mddev->bitmap);
1727 		close_sync(conf);
1728 		*skipped = 1;
1729 		return sectors_skipped;
1730 	}
1731 	if (chunks_skipped >= conf->raid_disks) {
1732 		/* if there has been nothing to do on any drive,
1733 		 * then there is nothing to do at all..
1734 		 */
1735 		*skipped = 1;
1736 		return (max_sector - sector_nr) + sectors_skipped;
1737 	}
1738 
1739 	if (max_sector > mddev->resync_max)
1740 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1741 
1742 	/* make sure whole request will fit in a chunk - if chunks
1743 	 * are meaningful
1744 	 */
1745 	if (conf->near_copies < conf->raid_disks &&
1746 	    max_sector > (sector_nr | conf->chunk_mask))
1747 		max_sector = (sector_nr | conf->chunk_mask) + 1;
1748 	/*
1749 	 * If there is non-resync activity waiting for us then
1750 	 * put in a delay to throttle resync.
1751 	 */
1752 	if (!go_faster && conf->nr_waiting)
1753 		msleep_interruptible(1000);
1754 
1755 	/* Again, very different code for resync and recovery.
1756 	 * Both must result in an r10bio with a list of bios that
1757 	 * have bi_end_io, bi_sector, bi_bdev set,
1758 	 * and bi_private set to the r10bio.
1759 	 * For recovery, we may actually create several r10bios
1760 	 * with 2 bios in each, that correspond to the bios in the main one.
1761 	 * In this case, the subordinate r10bios link back through a
1762 	 * borrowed master_bio pointer, and the counter in the master
1763 	 * includes a ref from each subordinate.
1764 	 */
1765 	/* First, we decide what to do and set ->bi_end_io
1766 	 * To end_sync_read if we want to read, and
1767 	 * end_sync_write if we will want to write.
1768 	 */
1769 
1770 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1771 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1772 		/* recovery... the complicated one */
1773 		int i, j, k;
1774 		r10_bio = NULL;
1775 
1776 		for (i=0 ; i<conf->raid_disks; i++)
1777 			if (conf->mirrors[i].rdev &&
1778 			    !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1779 				int still_degraded = 0;
1780 				/* want to reconstruct this device */
1781 				r10bio_t *rb2 = r10_bio;
1782 				sector_t sect = raid10_find_virt(conf, sector_nr, i);
1783 				int must_sync;
1784 				/* Unless we are doing a full sync, we only need
1785 				 * to recover the block if it is set in the bitmap
1786 				 */
1787 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1788 							      &sync_blocks, 1);
1789 				if (sync_blocks < max_sync)
1790 					max_sync = sync_blocks;
1791 				if (!must_sync &&
1792 				    !conf->fullsync) {
1793 					/* yep, skip the sync_blocks here, but don't assume
1794 					 * that there will never be anything to do here
1795 					 */
1796 					chunks_skipped = -1;
1797 					continue;
1798 				}
1799 
1800 				r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1801 				raise_barrier(conf, rb2 != NULL);
1802 				atomic_set(&r10_bio->remaining, 0);
1803 
1804 				r10_bio->master_bio = (struct bio*)rb2;
1805 				if (rb2)
1806 					atomic_inc(&rb2->remaining);
1807 				r10_bio->mddev = mddev;
1808 				set_bit(R10BIO_IsRecover, &r10_bio->state);
1809 				r10_bio->sector = sect;
1810 
1811 				raid10_find_phys(conf, r10_bio);
1812 
1813 				/* Need to check if the array will still be
1814 				 * degraded
1815 				 */
1816 				for (j=0; j<conf->raid_disks; j++)
1817 					if (conf->mirrors[j].rdev == NULL ||
1818 					    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1819 						still_degraded = 1;
1820 						break;
1821 					}
1822 
1823 				must_sync = bitmap_start_sync(mddev->bitmap, sect,
1824 							      &sync_blocks, still_degraded);
1825 
1826 				for (j=0; j<conf->copies;j++) {
1827 					int d = r10_bio->devs[j].devnum;
1828 					if (conf->mirrors[d].rdev &&
1829 					    test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1830 						/* This is where we read from */
1831 						bio = r10_bio->devs[0].bio;
1832 						bio->bi_next = biolist;
1833 						biolist = bio;
1834 						bio->bi_private = r10_bio;
1835 						bio->bi_end_io = end_sync_read;
1836 						bio->bi_rw = READ;
1837 						bio->bi_sector = r10_bio->devs[j].addr +
1838 							conf->mirrors[d].rdev->data_offset;
1839 						bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1840 						atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1841 						atomic_inc(&r10_bio->remaining);
1842 						/* and we write to 'i' */
1843 
1844 						for (k=0; k<conf->copies; k++)
1845 							if (r10_bio->devs[k].devnum == i)
1846 								break;
1847 						BUG_ON(k == conf->copies);
1848 						bio = r10_bio->devs[1].bio;
1849 						bio->bi_next = biolist;
1850 						biolist = bio;
1851 						bio->bi_private = r10_bio;
1852 						bio->bi_end_io = end_sync_write;
1853 						bio->bi_rw = WRITE;
1854 						bio->bi_sector = r10_bio->devs[k].addr +
1855 							conf->mirrors[i].rdev->data_offset;
1856 						bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1857 
1858 						r10_bio->devs[0].devnum = d;
1859 						r10_bio->devs[1].devnum = i;
1860 
1861 						break;
1862 					}
1863 				}
1864 				if (j == conf->copies) {
1865 					/* Cannot recover, so abort the recovery */
1866 					put_buf(r10_bio);
1867 					if (rb2)
1868 						atomic_dec(&rb2->remaining);
1869 					r10_bio = rb2;
1870 					if (!test_and_set_bit(MD_RECOVERY_INTR,
1871 							      &mddev->recovery))
1872 						printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1873 						       mdname(mddev));
1874 					break;
1875 				}
1876 			}
1877 		if (biolist == NULL) {
1878 			while (r10_bio) {
1879 				r10bio_t *rb2 = r10_bio;
1880 				r10_bio = (r10bio_t*) rb2->master_bio;
1881 				rb2->master_bio = NULL;
1882 				put_buf(rb2);
1883 			}
1884 			goto giveup;
1885 		}
1886 	} else {
1887 		/* resync. Schedule a read for every block at this virt offset */
1888 		int count = 0;
1889 
1890 		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1891 
1892 		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1893 				       &sync_blocks, mddev->degraded) &&
1894 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1895 			/* We can skip this block */
1896 			*skipped = 1;
1897 			return sync_blocks + sectors_skipped;
1898 		}
1899 		if (sync_blocks < max_sync)
1900 			max_sync = sync_blocks;
1901 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1902 
1903 		r10_bio->mddev = mddev;
1904 		atomic_set(&r10_bio->remaining, 0);
1905 		raise_barrier(conf, 0);
1906 		conf->next_resync = sector_nr;
1907 
1908 		r10_bio->master_bio = NULL;
1909 		r10_bio->sector = sector_nr;
1910 		set_bit(R10BIO_IsSync, &r10_bio->state);
1911 		raid10_find_phys(conf, r10_bio);
1912 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1913 
1914 		for (i=0; i<conf->copies; i++) {
1915 			int d = r10_bio->devs[i].devnum;
1916 			bio = r10_bio->devs[i].bio;
1917 			bio->bi_end_io = NULL;
1918 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
1919 			if (conf->mirrors[d].rdev == NULL ||
1920 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1921 				continue;
1922 			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1923 			atomic_inc(&r10_bio->remaining);
1924 			bio->bi_next = biolist;
1925 			biolist = bio;
1926 			bio->bi_private = r10_bio;
1927 			bio->bi_end_io = end_sync_read;
1928 			bio->bi_rw = READ;
1929 			bio->bi_sector = r10_bio->devs[i].addr +
1930 				conf->mirrors[d].rdev->data_offset;
1931 			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1932 			count++;
1933 		}
1934 
1935 		if (count < 2) {
1936 			for (i=0; i<conf->copies; i++) {
1937 				int d = r10_bio->devs[i].devnum;
1938 				if (r10_bio->devs[i].bio->bi_end_io)
1939 					rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1940 			}
1941 			put_buf(r10_bio);
1942 			biolist = NULL;
1943 			goto giveup;
1944 		}
1945 	}
1946 
1947 	for (bio = biolist; bio ; bio=bio->bi_next) {
1948 
1949 		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1950 		if (bio->bi_end_io)
1951 			bio->bi_flags |= 1 << BIO_UPTODATE;
1952 		bio->bi_vcnt = 0;
1953 		bio->bi_idx = 0;
1954 		bio->bi_phys_segments = 0;
1955 		bio->bi_size = 0;
1956 	}
1957 
1958 	nr_sectors = 0;
1959 	if (sector_nr + max_sync < max_sector)
1960 		max_sector = sector_nr + max_sync;
1961 	do {
1962 		struct page *page;
1963 		int len = PAGE_SIZE;
1964 		disk = 0;
1965 		if (sector_nr + (len>>9) > max_sector)
1966 			len = (max_sector - sector_nr) << 9;
1967 		if (len == 0)
1968 			break;
1969 		for (bio= biolist ; bio ; bio=bio->bi_next) {
1970 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1971 			if (bio_add_page(bio, page, len, 0) == 0) {
1972 				/* stop here */
1973 				struct bio *bio2;
1974 				bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1975 				for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1976 					/* remove last page from this bio */
1977 					bio2->bi_vcnt--;
1978 					bio2->bi_size -= len;
1979 					bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1980 				}
1981 				goto bio_full;
1982 			}
1983 			disk = i;
1984 		}
1985 		nr_sectors += len>>9;
1986 		sector_nr += len>>9;
1987 	} while (biolist->bi_vcnt < RESYNC_PAGES);
1988  bio_full:
1989 	r10_bio->sectors = nr_sectors;
1990 
1991 	while (biolist) {
1992 		bio = biolist;
1993 		biolist = biolist->bi_next;
1994 
1995 		bio->bi_next = NULL;
1996 		r10_bio = bio->bi_private;
1997 		r10_bio->sectors = nr_sectors;
1998 
1999 		if (bio->bi_end_io == end_sync_read) {
2000 			md_sync_acct(bio->bi_bdev, nr_sectors);
2001 			generic_make_request(bio);
2002 		}
2003 	}
2004 
2005 	if (sectors_skipped)
2006 		/* pretend they weren't skipped, it makes
2007 		 * no important difference in this case
2008 		 */
2009 		md_done_sync(mddev, sectors_skipped, 1);
2010 
2011 	return sectors_skipped + nr_sectors;
2012  giveup:
2013 	/* There is nowhere to write, so all non-sync
2014 	 * drives must be failed, so try the next chunk...
2015 	 */
2016 	if (sector_nr + max_sync < max_sector)
2017 		max_sector = sector_nr + max_sync;
2018 
2019 	sectors_skipped += (max_sector - sector_nr);
2020 	chunks_skipped ++;
2021 	sector_nr = max_sector;
2022 	goto skipped;
2023 }
2024 
2025 static sector_t
2026 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2027 {
2028 	sector_t size;
2029 	conf_t *conf = mddev_to_conf(mddev);
2030 
2031 	if (!raid_disks)
2032 		raid_disks = mddev->raid_disks;
2033 	if (!sectors)
2034 		sectors = mddev->dev_sectors;
2035 
2036 	size = sectors >> conf->chunk_shift;
2037 	sector_div(size, conf->far_copies);
2038 	size = size * raid_disks;
2039 	sector_div(size, conf->near_copies);
2040 
2041 	return size << conf->chunk_shift;
2042 }
2043 
2044 static int run(mddev_t *mddev)
2045 {
2046 	conf_t *conf;
2047 	int i, disk_idx;
2048 	mirror_info_t *disk;
2049 	mdk_rdev_t *rdev;
2050 	int nc, fc, fo;
2051 	sector_t stride, size;
2052 
2053 	if (mddev->chunk_size < PAGE_SIZE) {
2054 		printk(KERN_ERR "md/raid10: chunk size must be "
2055 		       "at least PAGE_SIZE(%ld).\n", PAGE_SIZE);
2056 		return -EINVAL;
2057 	}
2058 
2059 	nc = mddev->layout & 255;
2060 	fc = (mddev->layout >> 8) & 255;
2061 	fo = mddev->layout & (1<<16);
2062 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2063 	    (mddev->layout >> 17)) {
2064 		printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2065 		       mdname(mddev), mddev->layout);
2066 		goto out;
2067 	}
2068 	/*
2069 	 * copy the already verified devices into our private RAID10
2070 	 * bookkeeping area. [whatever we allocate in run(),
2071 	 * should be freed in stop()]
2072 	 */
2073 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2074 	mddev->private = conf;
2075 	if (!conf) {
2076 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2077 			mdname(mddev));
2078 		goto out;
2079 	}
2080 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2081 				 GFP_KERNEL);
2082 	if (!conf->mirrors) {
2083 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2084 		       mdname(mddev));
2085 		goto out_free_conf;
2086 	}
2087 
2088 	conf->tmppage = alloc_page(GFP_KERNEL);
2089 	if (!conf->tmppage)
2090 		goto out_free_conf;
2091 
2092 	conf->mddev = mddev;
2093 	conf->raid_disks = mddev->raid_disks;
2094 	conf->near_copies = nc;
2095 	conf->far_copies = fc;
2096 	conf->copies = nc*fc;
2097 	conf->far_offset = fo;
2098 	conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2099 	conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2100 	size = mddev->dev_sectors >> conf->chunk_shift;
2101 	sector_div(size, fc);
2102 	size = size * conf->raid_disks;
2103 	sector_div(size, nc);
2104 	/* 'size' is now the number of chunks in the array */
2105 	/* calculate "used chunks per device" in 'stride' */
2106 	stride = size * conf->copies;
2107 
2108 	/* We need to round up when dividing by raid_disks to
2109 	 * get the stride size.
2110 	 */
2111 	stride += conf->raid_disks - 1;
2112 	sector_div(stride, conf->raid_disks);
2113 	mddev->dev_sectors = stride << conf->chunk_shift;
2114 
2115 	if (fo)
2116 		stride = 1;
2117 	else
2118 		sector_div(stride, fc);
2119 	conf->stride = stride << conf->chunk_shift;
2120 
2121 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2122 						r10bio_pool_free, conf);
2123 	if (!conf->r10bio_pool) {
2124 		printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2125 			mdname(mddev));
2126 		goto out_free_conf;
2127 	}
2128 
2129 	spin_lock_init(&conf->device_lock);
2130 	mddev->queue->queue_lock = &conf->device_lock;
2131 
2132 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2133 		disk_idx = rdev->raid_disk;
2134 		if (disk_idx >= mddev->raid_disks
2135 		    || disk_idx < 0)
2136 			continue;
2137 		disk = conf->mirrors + disk_idx;
2138 
2139 		disk->rdev = rdev;
2140 
2141 		blk_queue_stack_limits(mddev->queue,
2142 				       rdev->bdev->bd_disk->queue);
2143 		/* as we don't honour merge_bvec_fn, we must never risk
2144 		 * violating it, so limit ->max_sector to one PAGE, as
2145 		 * a one page request is never in violation.
2146 		 */
2147 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2148 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
2149 			mddev->queue->max_sectors = (PAGE_SIZE>>9);
2150 
2151 		disk->head_position = 0;
2152 	}
2153 	INIT_LIST_HEAD(&conf->retry_list);
2154 
2155 	spin_lock_init(&conf->resync_lock);
2156 	init_waitqueue_head(&conf->wait_barrier);
2157 
2158 	/* need to check that every block has at least one working mirror */
2159 	if (!enough(conf)) {
2160 		printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2161 		       mdname(mddev));
2162 		goto out_free_conf;
2163 	}
2164 
2165 	mddev->degraded = 0;
2166 	for (i = 0; i < conf->raid_disks; i++) {
2167 
2168 		disk = conf->mirrors + i;
2169 
2170 		if (!disk->rdev ||
2171 		    !test_bit(In_sync, &disk->rdev->flags)) {
2172 			disk->head_position = 0;
2173 			mddev->degraded++;
2174 			if (disk->rdev)
2175 				conf->fullsync = 1;
2176 		}
2177 	}
2178 
2179 
2180 	mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2181 	if (!mddev->thread) {
2182 		printk(KERN_ERR
2183 		       "raid10: couldn't allocate thread for %s\n",
2184 		       mdname(mddev));
2185 		goto out_free_conf;
2186 	}
2187 
2188 	printk(KERN_INFO
2189 		"raid10: raid set %s active with %d out of %d devices\n",
2190 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2191 		mddev->raid_disks);
2192 	/*
2193 	 * Ok, everything is just fine now
2194 	 */
2195 	md_set_array_sectors(mddev, raid10_size(mddev, 0, 0));
2196 	mddev->resync_max_sectors = raid10_size(mddev, 0, 0);
2197 
2198 	mddev->queue->unplug_fn = raid10_unplug;
2199 	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2200 	mddev->queue->backing_dev_info.congested_data = mddev;
2201 
2202 	/* Calculate max read-ahead size.
2203 	 * We need to readahead at least twice a whole stripe....
2204 	 * maybe...
2205 	 */
2206 	{
2207 		int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2208 		stripe /= conf->near_copies;
2209 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2210 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2211 	}
2212 
2213 	if (conf->near_copies < mddev->raid_disks)
2214 		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2215 	return 0;
2216 
2217 out_free_conf:
2218 	if (conf->r10bio_pool)
2219 		mempool_destroy(conf->r10bio_pool);
2220 	safe_put_page(conf->tmppage);
2221 	kfree(conf->mirrors);
2222 	kfree(conf);
2223 	mddev->private = NULL;
2224 out:
2225 	return -EIO;
2226 }
2227 
2228 static int stop(mddev_t *mddev)
2229 {
2230 	conf_t *conf = mddev_to_conf(mddev);
2231 
2232 	raise_barrier(conf, 0);
2233 	lower_barrier(conf);
2234 
2235 	md_unregister_thread(mddev->thread);
2236 	mddev->thread = NULL;
2237 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2238 	if (conf->r10bio_pool)
2239 		mempool_destroy(conf->r10bio_pool);
2240 	kfree(conf->mirrors);
2241 	kfree(conf);
2242 	mddev->private = NULL;
2243 	return 0;
2244 }
2245 
2246 static void raid10_quiesce(mddev_t *mddev, int state)
2247 {
2248 	conf_t *conf = mddev_to_conf(mddev);
2249 
2250 	switch(state) {
2251 	case 1:
2252 		raise_barrier(conf, 0);
2253 		break;
2254 	case 0:
2255 		lower_barrier(conf);
2256 		break;
2257 	}
2258 	if (mddev->thread) {
2259 		if (mddev->bitmap)
2260 			mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2261 		else
2262 			mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2263 		md_wakeup_thread(mddev->thread);
2264 	}
2265 }
2266 
2267 static struct mdk_personality raid10_personality =
2268 {
2269 	.name		= "raid10",
2270 	.level		= 10,
2271 	.owner		= THIS_MODULE,
2272 	.make_request	= make_request,
2273 	.run		= run,
2274 	.stop		= stop,
2275 	.status		= status,
2276 	.error_handler	= error,
2277 	.hot_add_disk	= raid10_add_disk,
2278 	.hot_remove_disk= raid10_remove_disk,
2279 	.spare_active	= raid10_spare_active,
2280 	.sync_request	= sync_request,
2281 	.quiesce	= raid10_quiesce,
2282 	.size		= raid10_size,
2283 };
2284 
2285 static int __init raid_init(void)
2286 {
2287 	return register_md_personality(&raid10_personality);
2288 }
2289 
2290 static void raid_exit(void)
2291 {
2292 	unregister_md_personality(&raid10_personality);
2293 }
2294 
2295 module_init(raid_init);
2296 module_exit(raid_exit);
2297 MODULE_LICENSE("GPL");
2298 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2299 MODULE_ALIAS("md-raid10");
2300 MODULE_ALIAS("md-level-10");
2301