1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for further copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/module.h> 25 #include <linux/seq_file.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include "md.h" 29 #include "raid10.h" 30 #include "raid0.h" 31 #include "bitmap.h" 32 33 /* 34 * RAID10 provides a combination of RAID0 and RAID1 functionality. 35 * The layout of data is defined by 36 * chunk_size 37 * raid_disks 38 * near_copies (stored in low byte of layout) 39 * far_copies (stored in second byte of layout) 40 * far_offset (stored in bit 16 of layout ) 41 * use_far_sets (stored in bit 17 of layout ) 42 * use_far_sets_bugfixed (stored in bit 18 of layout ) 43 * 44 * The data to be stored is divided into chunks using chunksize. Each device 45 * is divided into far_copies sections. In each section, chunks are laid out 46 * in a style similar to raid0, but near_copies copies of each chunk is stored 47 * (each on a different drive). The starting device for each section is offset 48 * near_copies from the starting device of the previous section. Thus there 49 * are (near_copies * far_copies) of each chunk, and each is on a different 50 * drive. near_copies and far_copies must be at least one, and their product 51 * is at most raid_disks. 52 * 53 * If far_offset is true, then the far_copies are handled a bit differently. 54 * The copies are still in different stripes, but instead of being very far 55 * apart on disk, there are adjacent stripes. 56 * 57 * The far and offset algorithms are handled slightly differently if 58 * 'use_far_sets' is true. In this case, the array's devices are grouped into 59 * sets that are (near_copies * far_copies) in size. The far copied stripes 60 * are still shifted by 'near_copies' devices, but this shifting stays confined 61 * to the set rather than the entire array. This is done to improve the number 62 * of device combinations that can fail without causing the array to fail. 63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk 64 * on a device): 65 * A B C D A B C D E 66 * ... ... 67 * D A B C E A B C D 68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): 69 * [A B] [C D] [A B] [C D E] 70 * |...| |...| |...| | ... | 71 * [B A] [D C] [B A] [E C D] 72 */ 73 74 /* 75 * Number of guaranteed r10bios in case of extreme VM load: 76 */ 77 #define NR_RAID10_BIOS 256 78 79 /* when we get a read error on a read-only array, we redirect to another 80 * device without failing the first device, or trying to over-write to 81 * correct the read error. To keep track of bad blocks on a per-bio 82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 83 */ 84 #define IO_BLOCKED ((struct bio *)1) 85 /* When we successfully write to a known bad-block, we need to remove the 86 * bad-block marking which must be done from process context. So we record 87 * the success by setting devs[n].bio to IO_MADE_GOOD 88 */ 89 #define IO_MADE_GOOD ((struct bio *)2) 90 91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 92 93 /* When there are this many requests queued to be written by 94 * the raid10 thread, we become 'congested' to provide back-pressure 95 * for writeback. 96 */ 97 static int max_queued_requests = 1024; 98 99 static void allow_barrier(struct r10conf *conf); 100 static void lower_barrier(struct r10conf *conf); 101 static int _enough(struct r10conf *conf, int previous, int ignore); 102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 103 int *skipped); 104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); 105 static void end_reshape_write(struct bio *bio); 106 static void end_reshape(struct r10conf *conf); 107 108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 109 { 110 struct r10conf *conf = data; 111 int size = offsetof(struct r10bio, devs[conf->copies]); 112 113 /* allocate a r10bio with room for raid_disks entries in the 114 * bios array */ 115 return kzalloc(size, gfp_flags); 116 } 117 118 static void r10bio_pool_free(void *r10_bio, void *data) 119 { 120 kfree(r10_bio); 121 } 122 123 /* Maximum size of each resync request */ 124 #define RESYNC_BLOCK_SIZE (64*1024) 125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 126 /* amount of memory to reserve for resync requests */ 127 #define RESYNC_WINDOW (1024*1024) 128 /* maximum number of concurrent requests, memory permitting */ 129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 130 131 /* 132 * When performing a resync, we need to read and compare, so 133 * we need as many pages are there are copies. 134 * When performing a recovery, we need 2 bios, one for read, 135 * one for write (we recover only one drive per r10buf) 136 * 137 */ 138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 139 { 140 struct r10conf *conf = data; 141 struct page *page; 142 struct r10bio *r10_bio; 143 struct bio *bio; 144 int i, j; 145 int nalloc; 146 147 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 148 if (!r10_bio) 149 return NULL; 150 151 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || 152 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) 153 nalloc = conf->copies; /* resync */ 154 else 155 nalloc = 2; /* recovery */ 156 157 /* 158 * Allocate bios. 159 */ 160 for (j = nalloc ; j-- ; ) { 161 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 162 if (!bio) 163 goto out_free_bio; 164 r10_bio->devs[j].bio = bio; 165 if (!conf->have_replacement) 166 continue; 167 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 168 if (!bio) 169 goto out_free_bio; 170 r10_bio->devs[j].repl_bio = bio; 171 } 172 /* 173 * Allocate RESYNC_PAGES data pages and attach them 174 * where needed. 175 */ 176 for (j = 0 ; j < nalloc; j++) { 177 struct bio *rbio = r10_bio->devs[j].repl_bio; 178 bio = r10_bio->devs[j].bio; 179 for (i = 0; i < RESYNC_PAGES; i++) { 180 if (j > 0 && !test_bit(MD_RECOVERY_SYNC, 181 &conf->mddev->recovery)) { 182 /* we can share bv_page's during recovery 183 * and reshape */ 184 struct bio *rbio = r10_bio->devs[0].bio; 185 page = rbio->bi_io_vec[i].bv_page; 186 get_page(page); 187 } else 188 page = alloc_page(gfp_flags); 189 if (unlikely(!page)) 190 goto out_free_pages; 191 192 bio->bi_io_vec[i].bv_page = page; 193 if (rbio) 194 rbio->bi_io_vec[i].bv_page = page; 195 } 196 } 197 198 return r10_bio; 199 200 out_free_pages: 201 for ( ; i > 0 ; i--) 202 safe_put_page(bio->bi_io_vec[i-1].bv_page); 203 while (j--) 204 for (i = 0; i < RESYNC_PAGES ; i++) 205 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 206 j = 0; 207 out_free_bio: 208 for ( ; j < nalloc; j++) { 209 if (r10_bio->devs[j].bio) 210 bio_put(r10_bio->devs[j].bio); 211 if (r10_bio->devs[j].repl_bio) 212 bio_put(r10_bio->devs[j].repl_bio); 213 } 214 r10bio_pool_free(r10_bio, conf); 215 return NULL; 216 } 217 218 static void r10buf_pool_free(void *__r10_bio, void *data) 219 { 220 int i; 221 struct r10conf *conf = data; 222 struct r10bio *r10bio = __r10_bio; 223 int j; 224 225 for (j=0; j < conf->copies; j++) { 226 struct bio *bio = r10bio->devs[j].bio; 227 if (bio) { 228 for (i = 0; i < RESYNC_PAGES; i++) { 229 safe_put_page(bio->bi_io_vec[i].bv_page); 230 bio->bi_io_vec[i].bv_page = NULL; 231 } 232 bio_put(bio); 233 } 234 bio = r10bio->devs[j].repl_bio; 235 if (bio) 236 bio_put(bio); 237 } 238 r10bio_pool_free(r10bio, conf); 239 } 240 241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) 242 { 243 int i; 244 245 for (i = 0; i < conf->copies; i++) { 246 struct bio **bio = & r10_bio->devs[i].bio; 247 if (!BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 bio = &r10_bio->devs[i].repl_bio; 251 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) 252 bio_put(*bio); 253 *bio = NULL; 254 } 255 } 256 257 static void free_r10bio(struct r10bio *r10_bio) 258 { 259 struct r10conf *conf = r10_bio->mddev->private; 260 261 put_all_bios(conf, r10_bio); 262 mempool_free(r10_bio, conf->r10bio_pool); 263 } 264 265 static void put_buf(struct r10bio *r10_bio) 266 { 267 struct r10conf *conf = r10_bio->mddev->private; 268 269 mempool_free(r10_bio, conf->r10buf_pool); 270 271 lower_barrier(conf); 272 } 273 274 static void reschedule_retry(struct r10bio *r10_bio) 275 { 276 unsigned long flags; 277 struct mddev *mddev = r10_bio->mddev; 278 struct r10conf *conf = mddev->private; 279 280 spin_lock_irqsave(&conf->device_lock, flags); 281 list_add(&r10_bio->retry_list, &conf->retry_list); 282 conf->nr_queued ++; 283 spin_unlock_irqrestore(&conf->device_lock, flags); 284 285 /* wake up frozen array... */ 286 wake_up(&conf->wait_barrier); 287 288 md_wakeup_thread(mddev->thread); 289 } 290 291 /* 292 * raid_end_bio_io() is called when we have finished servicing a mirrored 293 * operation and are ready to return a success/failure code to the buffer 294 * cache layer. 295 */ 296 static void raid_end_bio_io(struct r10bio *r10_bio) 297 { 298 struct bio *bio = r10_bio->master_bio; 299 int done; 300 struct r10conf *conf = r10_bio->mddev->private; 301 302 if (bio->bi_phys_segments) { 303 unsigned long flags; 304 spin_lock_irqsave(&conf->device_lock, flags); 305 bio->bi_phys_segments--; 306 done = (bio->bi_phys_segments == 0); 307 spin_unlock_irqrestore(&conf->device_lock, flags); 308 } else 309 done = 1; 310 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 311 bio->bi_error = -EIO; 312 if (done) { 313 bio_endio(bio); 314 /* 315 * Wake up any possible resync thread that waits for the device 316 * to go idle. 317 */ 318 allow_barrier(conf); 319 } 320 free_r10bio(r10_bio); 321 } 322 323 /* 324 * Update disk head position estimator based on IRQ completion info. 325 */ 326 static inline void update_head_pos(int slot, struct r10bio *r10_bio) 327 { 328 struct r10conf *conf = r10_bio->mddev->private; 329 330 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 331 r10_bio->devs[slot].addr + (r10_bio->sectors); 332 } 333 334 /* 335 * Find the disk number which triggered given bio 336 */ 337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, 338 struct bio *bio, int *slotp, int *replp) 339 { 340 int slot; 341 int repl = 0; 342 343 for (slot = 0; slot < conf->copies; slot++) { 344 if (r10_bio->devs[slot].bio == bio) 345 break; 346 if (r10_bio->devs[slot].repl_bio == bio) { 347 repl = 1; 348 break; 349 } 350 } 351 352 BUG_ON(slot == conf->copies); 353 update_head_pos(slot, r10_bio); 354 355 if (slotp) 356 *slotp = slot; 357 if (replp) 358 *replp = repl; 359 return r10_bio->devs[slot].devnum; 360 } 361 362 static void raid10_end_read_request(struct bio *bio) 363 { 364 int uptodate = !bio->bi_error; 365 struct r10bio *r10_bio = bio->bi_private; 366 int slot, dev; 367 struct md_rdev *rdev; 368 struct r10conf *conf = r10_bio->mddev->private; 369 370 slot = r10_bio->read_slot; 371 dev = r10_bio->devs[slot].devnum; 372 rdev = r10_bio->devs[slot].rdev; 373 /* 374 * this branch is our 'one mirror IO has finished' event handler: 375 */ 376 update_head_pos(slot, r10_bio); 377 378 if (uptodate) { 379 /* 380 * Set R10BIO_Uptodate in our master bio, so that 381 * we will return a good error code to the higher 382 * levels even if IO on some other mirrored buffer fails. 383 * 384 * The 'master' represents the composite IO operation to 385 * user-side. So if something waits for IO, then it will 386 * wait for the 'master' bio. 387 */ 388 set_bit(R10BIO_Uptodate, &r10_bio->state); 389 } else { 390 /* If all other devices that store this block have 391 * failed, we want to return the error upwards rather 392 * than fail the last device. Here we redefine 393 * "uptodate" to mean "Don't want to retry" 394 */ 395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), 396 rdev->raid_disk)) 397 uptodate = 1; 398 } 399 if (uptodate) { 400 raid_end_bio_io(r10_bio); 401 rdev_dec_pending(rdev, conf->mddev); 402 } else { 403 /* 404 * oops, read error - keep the refcount on the rdev 405 */ 406 char b[BDEVNAME_SIZE]; 407 printk_ratelimited(KERN_ERR 408 "md/raid10:%s: %s: rescheduling sector %llu\n", 409 mdname(conf->mddev), 410 bdevname(rdev->bdev, b), 411 (unsigned long long)r10_bio->sector); 412 set_bit(R10BIO_ReadError, &r10_bio->state); 413 reschedule_retry(r10_bio); 414 } 415 } 416 417 static void close_write(struct r10bio *r10_bio) 418 { 419 /* clear the bitmap if all writes complete successfully */ 420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 421 r10_bio->sectors, 422 !test_bit(R10BIO_Degraded, &r10_bio->state), 423 0); 424 md_write_end(r10_bio->mddev); 425 } 426 427 static void one_write_done(struct r10bio *r10_bio) 428 { 429 if (atomic_dec_and_test(&r10_bio->remaining)) { 430 if (test_bit(R10BIO_WriteError, &r10_bio->state)) 431 reschedule_retry(r10_bio); 432 else { 433 close_write(r10_bio); 434 if (test_bit(R10BIO_MadeGood, &r10_bio->state)) 435 reschedule_retry(r10_bio); 436 else 437 raid_end_bio_io(r10_bio); 438 } 439 } 440 } 441 442 static void raid10_end_write_request(struct bio *bio) 443 { 444 struct r10bio *r10_bio = bio->bi_private; 445 int dev; 446 int dec_rdev = 1; 447 struct r10conf *conf = r10_bio->mddev->private; 448 int slot, repl; 449 struct md_rdev *rdev = NULL; 450 bool discard_error; 451 452 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD; 453 454 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 455 456 if (repl) 457 rdev = conf->mirrors[dev].replacement; 458 if (!rdev) { 459 smp_rmb(); 460 repl = 0; 461 rdev = conf->mirrors[dev].rdev; 462 } 463 /* 464 * this branch is our 'one mirror IO has finished' event handler: 465 */ 466 if (bio->bi_error && !discard_error) { 467 if (repl) 468 /* Never record new bad blocks to replacement, 469 * just fail it. 470 */ 471 md_error(rdev->mddev, rdev); 472 else { 473 set_bit(WriteErrorSeen, &rdev->flags); 474 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 475 set_bit(MD_RECOVERY_NEEDED, 476 &rdev->mddev->recovery); 477 set_bit(R10BIO_WriteError, &r10_bio->state); 478 dec_rdev = 0; 479 } 480 } else { 481 /* 482 * Set R10BIO_Uptodate in our master bio, so that 483 * we will return a good error code for to the higher 484 * levels even if IO on some other mirrored buffer fails. 485 * 486 * The 'master' represents the composite IO operation to 487 * user-side. So if something waits for IO, then it will 488 * wait for the 'master' bio. 489 */ 490 sector_t first_bad; 491 int bad_sectors; 492 493 /* 494 * Do not set R10BIO_Uptodate if the current device is 495 * rebuilding or Faulty. This is because we cannot use 496 * such device for properly reading the data back (we could 497 * potentially use it, if the current write would have felt 498 * before rdev->recovery_offset, but for simplicity we don't 499 * check this here. 500 */ 501 if (test_bit(In_sync, &rdev->flags) && 502 !test_bit(Faulty, &rdev->flags)) 503 set_bit(R10BIO_Uptodate, &r10_bio->state); 504 505 /* Maybe we can clear some bad blocks. */ 506 if (is_badblock(rdev, 507 r10_bio->devs[slot].addr, 508 r10_bio->sectors, 509 &first_bad, &bad_sectors) && !discard_error) { 510 bio_put(bio); 511 if (repl) 512 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; 513 else 514 r10_bio->devs[slot].bio = IO_MADE_GOOD; 515 dec_rdev = 0; 516 set_bit(R10BIO_MadeGood, &r10_bio->state); 517 } 518 } 519 520 /* 521 * 522 * Let's see if all mirrored write operations have finished 523 * already. 524 */ 525 one_write_done(r10_bio); 526 if (dec_rdev) 527 rdev_dec_pending(rdev, conf->mddev); 528 } 529 530 /* 531 * RAID10 layout manager 532 * As well as the chunksize and raid_disks count, there are two 533 * parameters: near_copies and far_copies. 534 * near_copies * far_copies must be <= raid_disks. 535 * Normally one of these will be 1. 536 * If both are 1, we get raid0. 537 * If near_copies == raid_disks, we get raid1. 538 * 539 * Chunks are laid out in raid0 style with near_copies copies of the 540 * first chunk, followed by near_copies copies of the next chunk and 541 * so on. 542 * If far_copies > 1, then after 1/far_copies of the array has been assigned 543 * as described above, we start again with a device offset of near_copies. 544 * So we effectively have another copy of the whole array further down all 545 * the drives, but with blocks on different drives. 546 * With this layout, and block is never stored twice on the one device. 547 * 548 * raid10_find_phys finds the sector offset of a given virtual sector 549 * on each device that it is on. 550 * 551 * raid10_find_virt does the reverse mapping, from a device and a 552 * sector offset to a virtual address 553 */ 554 555 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) 556 { 557 int n,f; 558 sector_t sector; 559 sector_t chunk; 560 sector_t stripe; 561 int dev; 562 int slot = 0; 563 int last_far_set_start, last_far_set_size; 564 565 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 566 last_far_set_start *= geo->far_set_size; 567 568 last_far_set_size = geo->far_set_size; 569 last_far_set_size += (geo->raid_disks % geo->far_set_size); 570 571 /* now calculate first sector/dev */ 572 chunk = r10bio->sector >> geo->chunk_shift; 573 sector = r10bio->sector & geo->chunk_mask; 574 575 chunk *= geo->near_copies; 576 stripe = chunk; 577 dev = sector_div(stripe, geo->raid_disks); 578 if (geo->far_offset) 579 stripe *= geo->far_copies; 580 581 sector += stripe << geo->chunk_shift; 582 583 /* and calculate all the others */ 584 for (n = 0; n < geo->near_copies; n++) { 585 int d = dev; 586 int set; 587 sector_t s = sector; 588 r10bio->devs[slot].devnum = d; 589 r10bio->devs[slot].addr = s; 590 slot++; 591 592 for (f = 1; f < geo->far_copies; f++) { 593 set = d / geo->far_set_size; 594 d += geo->near_copies; 595 596 if ((geo->raid_disks % geo->far_set_size) && 597 (d > last_far_set_start)) { 598 d -= last_far_set_start; 599 d %= last_far_set_size; 600 d += last_far_set_start; 601 } else { 602 d %= geo->far_set_size; 603 d += geo->far_set_size * set; 604 } 605 s += geo->stride; 606 r10bio->devs[slot].devnum = d; 607 r10bio->devs[slot].addr = s; 608 slot++; 609 } 610 dev++; 611 if (dev >= geo->raid_disks) { 612 dev = 0; 613 sector += (geo->chunk_mask + 1); 614 } 615 } 616 } 617 618 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) 619 { 620 struct geom *geo = &conf->geo; 621 622 if (conf->reshape_progress != MaxSector && 623 ((r10bio->sector >= conf->reshape_progress) != 624 conf->mddev->reshape_backwards)) { 625 set_bit(R10BIO_Previous, &r10bio->state); 626 geo = &conf->prev; 627 } else 628 clear_bit(R10BIO_Previous, &r10bio->state); 629 630 __raid10_find_phys(geo, r10bio); 631 } 632 633 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) 634 { 635 sector_t offset, chunk, vchunk; 636 /* Never use conf->prev as this is only called during resync 637 * or recovery, so reshape isn't happening 638 */ 639 struct geom *geo = &conf->geo; 640 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; 641 int far_set_size = geo->far_set_size; 642 int last_far_set_start; 643 644 if (geo->raid_disks % geo->far_set_size) { 645 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; 646 last_far_set_start *= geo->far_set_size; 647 648 if (dev >= last_far_set_start) { 649 far_set_size = geo->far_set_size; 650 far_set_size += (geo->raid_disks % geo->far_set_size); 651 far_set_start = last_far_set_start; 652 } 653 } 654 655 offset = sector & geo->chunk_mask; 656 if (geo->far_offset) { 657 int fc; 658 chunk = sector >> geo->chunk_shift; 659 fc = sector_div(chunk, geo->far_copies); 660 dev -= fc * geo->near_copies; 661 if (dev < far_set_start) 662 dev += far_set_size; 663 } else { 664 while (sector >= geo->stride) { 665 sector -= geo->stride; 666 if (dev < (geo->near_copies + far_set_start)) 667 dev += far_set_size - geo->near_copies; 668 else 669 dev -= geo->near_copies; 670 } 671 chunk = sector >> geo->chunk_shift; 672 } 673 vchunk = chunk * geo->raid_disks + dev; 674 sector_div(vchunk, geo->near_copies); 675 return (vchunk << geo->chunk_shift) + offset; 676 } 677 678 /* 679 * This routine returns the disk from which the requested read should 680 * be done. There is a per-array 'next expected sequential IO' sector 681 * number - if this matches on the next IO then we use the last disk. 682 * There is also a per-disk 'last know head position' sector that is 683 * maintained from IRQ contexts, both the normal and the resync IO 684 * completion handlers update this position correctly. If there is no 685 * perfect sequential match then we pick the disk whose head is closest. 686 * 687 * If there are 2 mirrors in the same 2 devices, performance degrades 688 * because position is mirror, not device based. 689 * 690 * The rdev for the device selected will have nr_pending incremented. 691 */ 692 693 /* 694 * FIXME: possibly should rethink readbalancing and do it differently 695 * depending on near_copies / far_copies geometry. 696 */ 697 static struct md_rdev *read_balance(struct r10conf *conf, 698 struct r10bio *r10_bio, 699 int *max_sectors) 700 { 701 const sector_t this_sector = r10_bio->sector; 702 int disk, slot; 703 int sectors = r10_bio->sectors; 704 int best_good_sectors; 705 sector_t new_distance, best_dist; 706 struct md_rdev *best_rdev, *rdev = NULL; 707 int do_balance; 708 int best_slot; 709 struct geom *geo = &conf->geo; 710 711 raid10_find_phys(conf, r10_bio); 712 rcu_read_lock(); 713 sectors = r10_bio->sectors; 714 best_slot = -1; 715 best_rdev = NULL; 716 best_dist = MaxSector; 717 best_good_sectors = 0; 718 do_balance = 1; 719 /* 720 * Check if we can balance. We can balance on the whole 721 * device if no resync is going on (recovery is ok), or below 722 * the resync window. We take the first readable disk when 723 * above the resync window. 724 */ 725 if (conf->mddev->recovery_cp < MaxSector 726 && (this_sector + sectors >= conf->next_resync)) 727 do_balance = 0; 728 729 for (slot = 0; slot < conf->copies ; slot++) { 730 sector_t first_bad; 731 int bad_sectors; 732 sector_t dev_sector; 733 734 if (r10_bio->devs[slot].bio == IO_BLOCKED) 735 continue; 736 disk = r10_bio->devs[slot].devnum; 737 rdev = rcu_dereference(conf->mirrors[disk].replacement); 738 if (rdev == NULL || test_bit(Faulty, &rdev->flags) || 739 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 740 rdev = rcu_dereference(conf->mirrors[disk].rdev); 741 if (rdev == NULL || 742 test_bit(Faulty, &rdev->flags)) 743 continue; 744 if (!test_bit(In_sync, &rdev->flags) && 745 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) 746 continue; 747 748 dev_sector = r10_bio->devs[slot].addr; 749 if (is_badblock(rdev, dev_sector, sectors, 750 &first_bad, &bad_sectors)) { 751 if (best_dist < MaxSector) 752 /* Already have a better slot */ 753 continue; 754 if (first_bad <= dev_sector) { 755 /* Cannot read here. If this is the 756 * 'primary' device, then we must not read 757 * beyond 'bad_sectors' from another device. 758 */ 759 bad_sectors -= (dev_sector - first_bad); 760 if (!do_balance && sectors > bad_sectors) 761 sectors = bad_sectors; 762 if (best_good_sectors > sectors) 763 best_good_sectors = sectors; 764 } else { 765 sector_t good_sectors = 766 first_bad - dev_sector; 767 if (good_sectors > best_good_sectors) { 768 best_good_sectors = good_sectors; 769 best_slot = slot; 770 best_rdev = rdev; 771 } 772 if (!do_balance) 773 /* Must read from here */ 774 break; 775 } 776 continue; 777 } else 778 best_good_sectors = sectors; 779 780 if (!do_balance) 781 break; 782 783 /* This optimisation is debatable, and completely destroys 784 * sequential read speed for 'far copies' arrays. So only 785 * keep it for 'near' arrays, and review those later. 786 */ 787 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) 788 break; 789 790 /* for far > 1 always use the lowest address */ 791 if (geo->far_copies > 1) 792 new_distance = r10_bio->devs[slot].addr; 793 else 794 new_distance = abs(r10_bio->devs[slot].addr - 795 conf->mirrors[disk].head_position); 796 if (new_distance < best_dist) { 797 best_dist = new_distance; 798 best_slot = slot; 799 best_rdev = rdev; 800 } 801 } 802 if (slot >= conf->copies) { 803 slot = best_slot; 804 rdev = best_rdev; 805 } 806 807 if (slot >= 0) { 808 atomic_inc(&rdev->nr_pending); 809 r10_bio->read_slot = slot; 810 } else 811 rdev = NULL; 812 rcu_read_unlock(); 813 *max_sectors = best_good_sectors; 814 815 return rdev; 816 } 817 818 static int raid10_congested(struct mddev *mddev, int bits) 819 { 820 struct r10conf *conf = mddev->private; 821 int i, ret = 0; 822 823 if ((bits & (1 << WB_async_congested)) && 824 conf->pending_count >= max_queued_requests) 825 return 1; 826 827 rcu_read_lock(); 828 for (i = 0; 829 (i < conf->geo.raid_disks || i < conf->prev.raid_disks) 830 && ret == 0; 831 i++) { 832 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 833 if (rdev && !test_bit(Faulty, &rdev->flags)) { 834 struct request_queue *q = bdev_get_queue(rdev->bdev); 835 836 ret |= bdi_congested(&q->backing_dev_info, bits); 837 } 838 } 839 rcu_read_unlock(); 840 return ret; 841 } 842 843 static void flush_pending_writes(struct r10conf *conf) 844 { 845 /* Any writes that have been queued but are awaiting 846 * bitmap updates get flushed here. 847 */ 848 spin_lock_irq(&conf->device_lock); 849 850 if (conf->pending_bio_list.head) { 851 struct bio *bio; 852 bio = bio_list_get(&conf->pending_bio_list); 853 conf->pending_count = 0; 854 spin_unlock_irq(&conf->device_lock); 855 /* flush any pending bitmap writes to disk 856 * before proceeding w/ I/O */ 857 bitmap_unplug(conf->mddev->bitmap); 858 wake_up(&conf->wait_barrier); 859 860 while (bio) { /* submit pending writes */ 861 struct bio *next = bio->bi_next; 862 bio->bi_next = NULL; 863 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 864 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 865 /* Just ignore it */ 866 bio_endio(bio); 867 else 868 generic_make_request(bio); 869 bio = next; 870 } 871 } else 872 spin_unlock_irq(&conf->device_lock); 873 } 874 875 /* Barriers.... 876 * Sometimes we need to suspend IO while we do something else, 877 * either some resync/recovery, or reconfigure the array. 878 * To do this we raise a 'barrier'. 879 * The 'barrier' is a counter that can be raised multiple times 880 * to count how many activities are happening which preclude 881 * normal IO. 882 * We can only raise the barrier if there is no pending IO. 883 * i.e. if nr_pending == 0. 884 * We choose only to raise the barrier if no-one is waiting for the 885 * barrier to go down. This means that as soon as an IO request 886 * is ready, no other operations which require a barrier will start 887 * until the IO request has had a chance. 888 * 889 * So: regular IO calls 'wait_barrier'. When that returns there 890 * is no backgroup IO happening, It must arrange to call 891 * allow_barrier when it has finished its IO. 892 * backgroup IO calls must call raise_barrier. Once that returns 893 * there is no normal IO happeing. It must arrange to call 894 * lower_barrier when the particular background IO completes. 895 */ 896 897 static void raise_barrier(struct r10conf *conf, int force) 898 { 899 BUG_ON(force && !conf->barrier); 900 spin_lock_irq(&conf->resync_lock); 901 902 /* Wait until no block IO is waiting (unless 'force') */ 903 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 904 conf->resync_lock); 905 906 /* block any new IO from starting */ 907 conf->barrier++; 908 909 /* Now wait for all pending IO to complete */ 910 wait_event_lock_irq(conf->wait_barrier, 911 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH, 912 conf->resync_lock); 913 914 spin_unlock_irq(&conf->resync_lock); 915 } 916 917 static void lower_barrier(struct r10conf *conf) 918 { 919 unsigned long flags; 920 spin_lock_irqsave(&conf->resync_lock, flags); 921 conf->barrier--; 922 spin_unlock_irqrestore(&conf->resync_lock, flags); 923 wake_up(&conf->wait_barrier); 924 } 925 926 static void wait_barrier(struct r10conf *conf) 927 { 928 spin_lock_irq(&conf->resync_lock); 929 if (conf->barrier) { 930 conf->nr_waiting++; 931 /* Wait for the barrier to drop. 932 * However if there are already pending 933 * requests (preventing the barrier from 934 * rising completely), and the 935 * pre-process bio queue isn't empty, 936 * then don't wait, as we need to empty 937 * that queue to get the nr_pending 938 * count down. 939 */ 940 wait_event_lock_irq(conf->wait_barrier, 941 !conf->barrier || 942 (atomic_read(&conf->nr_pending) && 943 current->bio_list && 944 !bio_list_empty(current->bio_list)), 945 conf->resync_lock); 946 conf->nr_waiting--; 947 if (!conf->nr_waiting) 948 wake_up(&conf->wait_barrier); 949 } 950 atomic_inc(&conf->nr_pending); 951 spin_unlock_irq(&conf->resync_lock); 952 } 953 954 static void allow_barrier(struct r10conf *conf) 955 { 956 if ((atomic_dec_and_test(&conf->nr_pending)) || 957 (conf->array_freeze_pending)) 958 wake_up(&conf->wait_barrier); 959 } 960 961 static void freeze_array(struct r10conf *conf, int extra) 962 { 963 /* stop syncio and normal IO and wait for everything to 964 * go quiet. 965 * We increment barrier and nr_waiting, and then 966 * wait until nr_pending match nr_queued+extra 967 * This is called in the context of one normal IO request 968 * that has failed. Thus any sync request that might be pending 969 * will be blocked by nr_pending, and we need to wait for 970 * pending IO requests to complete or be queued for re-try. 971 * Thus the number queued (nr_queued) plus this request (extra) 972 * must match the number of pending IOs (nr_pending) before 973 * we continue. 974 */ 975 spin_lock_irq(&conf->resync_lock); 976 conf->array_freeze_pending++; 977 conf->barrier++; 978 conf->nr_waiting++; 979 wait_event_lock_irq_cmd(conf->wait_barrier, 980 atomic_read(&conf->nr_pending) == conf->nr_queued+extra, 981 conf->resync_lock, 982 flush_pending_writes(conf)); 983 984 conf->array_freeze_pending--; 985 spin_unlock_irq(&conf->resync_lock); 986 } 987 988 static void unfreeze_array(struct r10conf *conf) 989 { 990 /* reverse the effect of the freeze */ 991 spin_lock_irq(&conf->resync_lock); 992 conf->barrier--; 993 conf->nr_waiting--; 994 wake_up(&conf->wait_barrier); 995 spin_unlock_irq(&conf->resync_lock); 996 } 997 998 static sector_t choose_data_offset(struct r10bio *r10_bio, 999 struct md_rdev *rdev) 1000 { 1001 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || 1002 test_bit(R10BIO_Previous, &r10_bio->state)) 1003 return rdev->data_offset; 1004 else 1005 return rdev->new_data_offset; 1006 } 1007 1008 struct raid10_plug_cb { 1009 struct blk_plug_cb cb; 1010 struct bio_list pending; 1011 int pending_cnt; 1012 }; 1013 1014 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) 1015 { 1016 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, 1017 cb); 1018 struct mddev *mddev = plug->cb.data; 1019 struct r10conf *conf = mddev->private; 1020 struct bio *bio; 1021 1022 if (from_schedule || current->bio_list) { 1023 spin_lock_irq(&conf->device_lock); 1024 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1025 conf->pending_count += plug->pending_cnt; 1026 spin_unlock_irq(&conf->device_lock); 1027 wake_up(&conf->wait_barrier); 1028 md_wakeup_thread(mddev->thread); 1029 kfree(plug); 1030 return; 1031 } 1032 1033 /* we aren't scheduling, so we can do the write-out directly. */ 1034 bio = bio_list_get(&plug->pending); 1035 bitmap_unplug(mddev->bitmap); 1036 wake_up(&conf->wait_barrier); 1037 1038 while (bio) { /* submit pending writes */ 1039 struct bio *next = bio->bi_next; 1040 bio->bi_next = NULL; 1041 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1042 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1043 /* Just ignore it */ 1044 bio_endio(bio); 1045 else 1046 generic_make_request(bio); 1047 bio = next; 1048 } 1049 kfree(plug); 1050 } 1051 1052 static void __make_request(struct mddev *mddev, struct bio *bio) 1053 { 1054 struct r10conf *conf = mddev->private; 1055 struct r10bio *r10_bio; 1056 struct bio *read_bio; 1057 int i; 1058 const int op = bio_op(bio); 1059 const int rw = bio_data_dir(bio); 1060 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1061 const unsigned long do_fua = (bio->bi_opf & REQ_FUA); 1062 unsigned long flags; 1063 struct md_rdev *blocked_rdev; 1064 struct blk_plug_cb *cb; 1065 struct raid10_plug_cb *plug = NULL; 1066 int sectors_handled; 1067 int max_sectors; 1068 int sectors; 1069 1070 md_write_start(mddev, bio); 1071 1072 /* 1073 * Register the new request and wait if the reconstruction 1074 * thread has put up a bar for new requests. 1075 * Continue immediately if no resync is active currently. 1076 */ 1077 wait_barrier(conf); 1078 1079 sectors = bio_sectors(bio); 1080 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1081 bio->bi_iter.bi_sector < conf->reshape_progress && 1082 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { 1083 /* IO spans the reshape position. Need to wait for 1084 * reshape to pass 1085 */ 1086 allow_barrier(conf); 1087 wait_event(conf->wait_barrier, 1088 conf->reshape_progress <= bio->bi_iter.bi_sector || 1089 conf->reshape_progress >= bio->bi_iter.bi_sector + 1090 sectors); 1091 wait_barrier(conf); 1092 } 1093 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 1094 bio_data_dir(bio) == WRITE && 1095 (mddev->reshape_backwards 1096 ? (bio->bi_iter.bi_sector < conf->reshape_safe && 1097 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) 1098 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && 1099 bio->bi_iter.bi_sector < conf->reshape_progress))) { 1100 /* Need to update reshape_position in metadata */ 1101 mddev->reshape_position = conf->reshape_progress; 1102 set_mask_bits(&mddev->flags, 0, 1103 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING)); 1104 md_wakeup_thread(mddev->thread); 1105 wait_event(mddev->sb_wait, 1106 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 1107 1108 conf->reshape_safe = mddev->reshape_position; 1109 } 1110 1111 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1112 1113 r10_bio->master_bio = bio; 1114 r10_bio->sectors = sectors; 1115 1116 r10_bio->mddev = mddev; 1117 r10_bio->sector = bio->bi_iter.bi_sector; 1118 r10_bio->state = 0; 1119 1120 /* We might need to issue multiple reads to different 1121 * devices if there are bad blocks around, so we keep 1122 * track of the number of reads in bio->bi_phys_segments. 1123 * If this is 0, there is only one r10_bio and no locking 1124 * will be needed when the request completes. If it is 1125 * non-zero, then it is the number of not-completed requests. 1126 */ 1127 bio->bi_phys_segments = 0; 1128 bio_clear_flag(bio, BIO_SEG_VALID); 1129 1130 if (rw == READ) { 1131 /* 1132 * read balancing logic: 1133 */ 1134 struct md_rdev *rdev; 1135 int slot; 1136 1137 read_again: 1138 rdev = read_balance(conf, r10_bio, &max_sectors); 1139 if (!rdev) { 1140 raid_end_bio_io(r10_bio); 1141 return; 1142 } 1143 slot = r10_bio->read_slot; 1144 1145 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1146 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector, 1147 max_sectors); 1148 1149 r10_bio->devs[slot].bio = read_bio; 1150 r10_bio->devs[slot].rdev = rdev; 1151 1152 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + 1153 choose_data_offset(r10_bio, rdev); 1154 read_bio->bi_bdev = rdev->bdev; 1155 read_bio->bi_end_io = raid10_end_read_request; 1156 bio_set_op_attrs(read_bio, op, do_sync); 1157 read_bio->bi_private = r10_bio; 1158 1159 if (max_sectors < r10_bio->sectors) { 1160 /* Could not read all from this device, so we will 1161 * need another r10_bio. 1162 */ 1163 sectors_handled = (r10_bio->sector + max_sectors 1164 - bio->bi_iter.bi_sector); 1165 r10_bio->sectors = max_sectors; 1166 spin_lock_irq(&conf->device_lock); 1167 if (bio->bi_phys_segments == 0) 1168 bio->bi_phys_segments = 2; 1169 else 1170 bio->bi_phys_segments++; 1171 spin_unlock_irq(&conf->device_lock); 1172 /* Cannot call generic_make_request directly 1173 * as that will be queued in __generic_make_request 1174 * and subsequent mempool_alloc might block 1175 * waiting for it. so hand bio over to raid10d. 1176 */ 1177 reschedule_retry(r10_bio); 1178 1179 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1180 1181 r10_bio->master_bio = bio; 1182 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1183 r10_bio->state = 0; 1184 r10_bio->mddev = mddev; 1185 r10_bio->sector = bio->bi_iter.bi_sector + 1186 sectors_handled; 1187 goto read_again; 1188 } else 1189 generic_make_request(read_bio); 1190 return; 1191 } 1192 1193 /* 1194 * WRITE: 1195 */ 1196 if (conf->pending_count >= max_queued_requests) { 1197 md_wakeup_thread(mddev->thread); 1198 wait_event(conf->wait_barrier, 1199 conf->pending_count < max_queued_requests); 1200 } 1201 /* first select target devices under rcu_lock and 1202 * inc refcount on their rdev. Record them by setting 1203 * bios[x] to bio 1204 * If there are known/acknowledged bad blocks on any device 1205 * on which we have seen a write error, we want to avoid 1206 * writing to those blocks. This potentially requires several 1207 * writes to write around the bad blocks. Each set of writes 1208 * gets its own r10_bio with a set of bios attached. The number 1209 * of r10_bios is recored in bio->bi_phys_segments just as with 1210 * the read case. 1211 */ 1212 1213 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ 1214 raid10_find_phys(conf, r10_bio); 1215 retry_write: 1216 blocked_rdev = NULL; 1217 rcu_read_lock(); 1218 max_sectors = r10_bio->sectors; 1219 1220 for (i = 0; i < conf->copies; i++) { 1221 int d = r10_bio->devs[i].devnum; 1222 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 1223 struct md_rdev *rrdev = rcu_dereference( 1224 conf->mirrors[d].replacement); 1225 if (rdev == rrdev) 1226 rrdev = NULL; 1227 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1228 atomic_inc(&rdev->nr_pending); 1229 blocked_rdev = rdev; 1230 break; 1231 } 1232 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { 1233 atomic_inc(&rrdev->nr_pending); 1234 blocked_rdev = rrdev; 1235 break; 1236 } 1237 if (rdev && (test_bit(Faulty, &rdev->flags))) 1238 rdev = NULL; 1239 if (rrdev && (test_bit(Faulty, &rrdev->flags))) 1240 rrdev = NULL; 1241 1242 r10_bio->devs[i].bio = NULL; 1243 r10_bio->devs[i].repl_bio = NULL; 1244 1245 if (!rdev && !rrdev) { 1246 set_bit(R10BIO_Degraded, &r10_bio->state); 1247 continue; 1248 } 1249 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { 1250 sector_t first_bad; 1251 sector_t dev_sector = r10_bio->devs[i].addr; 1252 int bad_sectors; 1253 int is_bad; 1254 1255 is_bad = is_badblock(rdev, dev_sector, 1256 max_sectors, 1257 &first_bad, &bad_sectors); 1258 if (is_bad < 0) { 1259 /* Mustn't write here until the bad block 1260 * is acknowledged 1261 */ 1262 atomic_inc(&rdev->nr_pending); 1263 set_bit(BlockedBadBlocks, &rdev->flags); 1264 blocked_rdev = rdev; 1265 break; 1266 } 1267 if (is_bad && first_bad <= dev_sector) { 1268 /* Cannot write here at all */ 1269 bad_sectors -= (dev_sector - first_bad); 1270 if (bad_sectors < max_sectors) 1271 /* Mustn't write more than bad_sectors 1272 * to other devices yet 1273 */ 1274 max_sectors = bad_sectors; 1275 /* We don't set R10BIO_Degraded as that 1276 * only applies if the disk is missing, 1277 * so it might be re-added, and we want to 1278 * know to recover this chunk. 1279 * In this case the device is here, and the 1280 * fact that this chunk is not in-sync is 1281 * recorded in the bad block log. 1282 */ 1283 continue; 1284 } 1285 if (is_bad) { 1286 int good_sectors = first_bad - dev_sector; 1287 if (good_sectors < max_sectors) 1288 max_sectors = good_sectors; 1289 } 1290 } 1291 if (rdev) { 1292 r10_bio->devs[i].bio = bio; 1293 atomic_inc(&rdev->nr_pending); 1294 } 1295 if (rrdev) { 1296 r10_bio->devs[i].repl_bio = bio; 1297 atomic_inc(&rrdev->nr_pending); 1298 } 1299 } 1300 rcu_read_unlock(); 1301 1302 if (unlikely(blocked_rdev)) { 1303 /* Have to wait for this device to get unblocked, then retry */ 1304 int j; 1305 int d; 1306 1307 for (j = 0; j < i; j++) { 1308 if (r10_bio->devs[j].bio) { 1309 d = r10_bio->devs[j].devnum; 1310 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1311 } 1312 if (r10_bio->devs[j].repl_bio) { 1313 struct md_rdev *rdev; 1314 d = r10_bio->devs[j].devnum; 1315 rdev = conf->mirrors[d].replacement; 1316 if (!rdev) { 1317 /* Race with remove_disk */ 1318 smp_mb(); 1319 rdev = conf->mirrors[d].rdev; 1320 } 1321 rdev_dec_pending(rdev, mddev); 1322 } 1323 } 1324 allow_barrier(conf); 1325 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1326 wait_barrier(conf); 1327 goto retry_write; 1328 } 1329 1330 if (max_sectors < r10_bio->sectors) { 1331 /* We are splitting this into multiple parts, so 1332 * we need to prepare for allocating another r10_bio. 1333 */ 1334 r10_bio->sectors = max_sectors; 1335 spin_lock_irq(&conf->device_lock); 1336 if (bio->bi_phys_segments == 0) 1337 bio->bi_phys_segments = 2; 1338 else 1339 bio->bi_phys_segments++; 1340 spin_unlock_irq(&conf->device_lock); 1341 } 1342 sectors_handled = r10_bio->sector + max_sectors - 1343 bio->bi_iter.bi_sector; 1344 1345 atomic_set(&r10_bio->remaining, 1); 1346 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); 1347 1348 for (i = 0; i < conf->copies; i++) { 1349 struct bio *mbio; 1350 int d = r10_bio->devs[i].devnum; 1351 if (r10_bio->devs[i].bio) { 1352 struct md_rdev *rdev = conf->mirrors[d].rdev; 1353 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1354 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, 1355 max_sectors); 1356 r10_bio->devs[i].bio = mbio; 1357 1358 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ 1359 choose_data_offset(r10_bio, 1360 rdev)); 1361 mbio->bi_bdev = rdev->bdev; 1362 mbio->bi_end_io = raid10_end_write_request; 1363 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1364 mbio->bi_private = r10_bio; 1365 1366 atomic_inc(&r10_bio->remaining); 1367 1368 cb = blk_check_plugged(raid10_unplug, mddev, 1369 sizeof(*plug)); 1370 if (cb) 1371 plug = container_of(cb, struct raid10_plug_cb, 1372 cb); 1373 else 1374 plug = NULL; 1375 spin_lock_irqsave(&conf->device_lock, flags); 1376 if (plug) { 1377 bio_list_add(&plug->pending, mbio); 1378 plug->pending_cnt++; 1379 } else { 1380 bio_list_add(&conf->pending_bio_list, mbio); 1381 conf->pending_count++; 1382 } 1383 spin_unlock_irqrestore(&conf->device_lock, flags); 1384 if (!plug) 1385 md_wakeup_thread(mddev->thread); 1386 } 1387 1388 if (r10_bio->devs[i].repl_bio) { 1389 struct md_rdev *rdev = conf->mirrors[d].replacement; 1390 if (rdev == NULL) { 1391 /* Replacement just got moved to main 'rdev' */ 1392 smp_mb(); 1393 rdev = conf->mirrors[d].rdev; 1394 } 1395 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1396 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, 1397 max_sectors); 1398 r10_bio->devs[i].repl_bio = mbio; 1399 1400 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr + 1401 choose_data_offset( 1402 r10_bio, rdev)); 1403 mbio->bi_bdev = rdev->bdev; 1404 mbio->bi_end_io = raid10_end_write_request; 1405 bio_set_op_attrs(mbio, op, do_sync | do_fua); 1406 mbio->bi_private = r10_bio; 1407 1408 atomic_inc(&r10_bio->remaining); 1409 spin_lock_irqsave(&conf->device_lock, flags); 1410 bio_list_add(&conf->pending_bio_list, mbio); 1411 conf->pending_count++; 1412 spin_unlock_irqrestore(&conf->device_lock, flags); 1413 if (!mddev_check_plugged(mddev)) 1414 md_wakeup_thread(mddev->thread); 1415 } 1416 } 1417 1418 /* Don't remove the bias on 'remaining' (one_write_done) until 1419 * after checking if we need to go around again. 1420 */ 1421 1422 if (sectors_handled < bio_sectors(bio)) { 1423 one_write_done(r10_bio); 1424 /* We need another r10_bio. It has already been counted 1425 * in bio->bi_phys_segments. 1426 */ 1427 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 1428 1429 r10_bio->master_bio = bio; 1430 r10_bio->sectors = bio_sectors(bio) - sectors_handled; 1431 1432 r10_bio->mddev = mddev; 1433 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1434 r10_bio->state = 0; 1435 goto retry_write; 1436 } 1437 one_write_done(r10_bio); 1438 } 1439 1440 static void raid10_make_request(struct mddev *mddev, struct bio *bio) 1441 { 1442 struct r10conf *conf = mddev->private; 1443 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); 1444 int chunk_sects = chunk_mask + 1; 1445 1446 struct bio *split; 1447 1448 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1449 md_flush_request(mddev, bio); 1450 return; 1451 } 1452 1453 do { 1454 1455 /* 1456 * If this request crosses a chunk boundary, we need to split 1457 * it. 1458 */ 1459 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + 1460 bio_sectors(bio) > chunk_sects 1461 && (conf->geo.near_copies < conf->geo.raid_disks 1462 || conf->prev.near_copies < 1463 conf->prev.raid_disks))) { 1464 split = bio_split(bio, chunk_sects - 1465 (bio->bi_iter.bi_sector & 1466 (chunk_sects - 1)), 1467 GFP_NOIO, fs_bio_set); 1468 bio_chain(split, bio); 1469 } else { 1470 split = bio; 1471 } 1472 1473 __make_request(mddev, split); 1474 } while (split != bio); 1475 1476 /* In case raid10d snuck in to freeze_array */ 1477 wake_up(&conf->wait_barrier); 1478 } 1479 1480 static void raid10_status(struct seq_file *seq, struct mddev *mddev) 1481 { 1482 struct r10conf *conf = mddev->private; 1483 int i; 1484 1485 if (conf->geo.near_copies < conf->geo.raid_disks) 1486 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1487 if (conf->geo.near_copies > 1) 1488 seq_printf(seq, " %d near-copies", conf->geo.near_copies); 1489 if (conf->geo.far_copies > 1) { 1490 if (conf->geo.far_offset) 1491 seq_printf(seq, " %d offset-copies", conf->geo.far_copies); 1492 else 1493 seq_printf(seq, " %d far-copies", conf->geo.far_copies); 1494 if (conf->geo.far_set_size != conf->geo.raid_disks) 1495 seq_printf(seq, " %d devices per set", conf->geo.far_set_size); 1496 } 1497 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, 1498 conf->geo.raid_disks - mddev->degraded); 1499 rcu_read_lock(); 1500 for (i = 0; i < conf->geo.raid_disks; i++) { 1501 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1502 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1503 } 1504 rcu_read_unlock(); 1505 seq_printf(seq, "]"); 1506 } 1507 1508 /* check if there are enough drives for 1509 * every block to appear on atleast one. 1510 * Don't consider the device numbered 'ignore' 1511 * as we might be about to remove it. 1512 */ 1513 static int _enough(struct r10conf *conf, int previous, int ignore) 1514 { 1515 int first = 0; 1516 int has_enough = 0; 1517 int disks, ncopies; 1518 if (previous) { 1519 disks = conf->prev.raid_disks; 1520 ncopies = conf->prev.near_copies; 1521 } else { 1522 disks = conf->geo.raid_disks; 1523 ncopies = conf->geo.near_copies; 1524 } 1525 1526 rcu_read_lock(); 1527 do { 1528 int n = conf->copies; 1529 int cnt = 0; 1530 int this = first; 1531 while (n--) { 1532 struct md_rdev *rdev; 1533 if (this != ignore && 1534 (rdev = rcu_dereference(conf->mirrors[this].rdev)) && 1535 test_bit(In_sync, &rdev->flags)) 1536 cnt++; 1537 this = (this+1) % disks; 1538 } 1539 if (cnt == 0) 1540 goto out; 1541 first = (first + ncopies) % disks; 1542 } while (first != 0); 1543 has_enough = 1; 1544 out: 1545 rcu_read_unlock(); 1546 return has_enough; 1547 } 1548 1549 static int enough(struct r10conf *conf, int ignore) 1550 { 1551 /* when calling 'enough', both 'prev' and 'geo' must 1552 * be stable. 1553 * This is ensured if ->reconfig_mutex or ->device_lock 1554 * is held. 1555 */ 1556 return _enough(conf, 0, ignore) && 1557 _enough(conf, 1, ignore); 1558 } 1559 1560 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev) 1561 { 1562 char b[BDEVNAME_SIZE]; 1563 struct r10conf *conf = mddev->private; 1564 unsigned long flags; 1565 1566 /* 1567 * If it is not operational, then we have already marked it as dead 1568 * else if it is the last working disks, ignore the error, let the 1569 * next level up know. 1570 * else mark the drive as failed 1571 */ 1572 spin_lock_irqsave(&conf->device_lock, flags); 1573 if (test_bit(In_sync, &rdev->flags) 1574 && !enough(conf, rdev->raid_disk)) { 1575 /* 1576 * Don't fail the drive, just return an IO error. 1577 */ 1578 spin_unlock_irqrestore(&conf->device_lock, flags); 1579 return; 1580 } 1581 if (test_and_clear_bit(In_sync, &rdev->flags)) 1582 mddev->degraded++; 1583 /* 1584 * If recovery is running, make sure it aborts. 1585 */ 1586 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1587 set_bit(Blocked, &rdev->flags); 1588 set_bit(Faulty, &rdev->flags); 1589 set_mask_bits(&mddev->flags, 0, 1590 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING)); 1591 spin_unlock_irqrestore(&conf->device_lock, flags); 1592 printk(KERN_ALERT 1593 "md/raid10:%s: Disk failure on %s, disabling device.\n" 1594 "md/raid10:%s: Operation continuing on %d devices.\n", 1595 mdname(mddev), bdevname(rdev->bdev, b), 1596 mdname(mddev), conf->geo.raid_disks - mddev->degraded); 1597 } 1598 1599 static void print_conf(struct r10conf *conf) 1600 { 1601 int i; 1602 struct md_rdev *rdev; 1603 1604 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1605 if (!conf) { 1606 printk(KERN_DEBUG "(!conf)\n"); 1607 return; 1608 } 1609 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, 1610 conf->geo.raid_disks); 1611 1612 /* This is only called with ->reconfix_mutex held, so 1613 * rcu protection of rdev is not needed */ 1614 for (i = 0; i < conf->geo.raid_disks; i++) { 1615 char b[BDEVNAME_SIZE]; 1616 rdev = conf->mirrors[i].rdev; 1617 if (rdev) 1618 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1619 i, !test_bit(In_sync, &rdev->flags), 1620 !test_bit(Faulty, &rdev->flags), 1621 bdevname(rdev->bdev,b)); 1622 } 1623 } 1624 1625 static void close_sync(struct r10conf *conf) 1626 { 1627 wait_barrier(conf); 1628 allow_barrier(conf); 1629 1630 mempool_destroy(conf->r10buf_pool); 1631 conf->r10buf_pool = NULL; 1632 } 1633 1634 static int raid10_spare_active(struct mddev *mddev) 1635 { 1636 int i; 1637 struct r10conf *conf = mddev->private; 1638 struct raid10_info *tmp; 1639 int count = 0; 1640 unsigned long flags; 1641 1642 /* 1643 * Find all non-in_sync disks within the RAID10 configuration 1644 * and mark them in_sync 1645 */ 1646 for (i = 0; i < conf->geo.raid_disks; i++) { 1647 tmp = conf->mirrors + i; 1648 if (tmp->replacement 1649 && tmp->replacement->recovery_offset == MaxSector 1650 && !test_bit(Faulty, &tmp->replacement->flags) 1651 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 1652 /* Replacement has just become active */ 1653 if (!tmp->rdev 1654 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 1655 count++; 1656 if (tmp->rdev) { 1657 /* Replaced device not technically faulty, 1658 * but we need to be sure it gets removed 1659 * and never re-added. 1660 */ 1661 set_bit(Faulty, &tmp->rdev->flags); 1662 sysfs_notify_dirent_safe( 1663 tmp->rdev->sysfs_state); 1664 } 1665 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 1666 } else if (tmp->rdev 1667 && tmp->rdev->recovery_offset == MaxSector 1668 && !test_bit(Faulty, &tmp->rdev->flags) 1669 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1670 count++; 1671 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 1672 } 1673 } 1674 spin_lock_irqsave(&conf->device_lock, flags); 1675 mddev->degraded -= count; 1676 spin_unlock_irqrestore(&conf->device_lock, flags); 1677 1678 print_conf(conf); 1679 return count; 1680 } 1681 1682 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1683 { 1684 struct r10conf *conf = mddev->private; 1685 int err = -EEXIST; 1686 int mirror; 1687 int first = 0; 1688 int last = conf->geo.raid_disks - 1; 1689 1690 if (mddev->recovery_cp < MaxSector) 1691 /* only hot-add to in-sync arrays, as recovery is 1692 * very different from resync 1693 */ 1694 return -EBUSY; 1695 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) 1696 return -EINVAL; 1697 1698 if (md_integrity_add_rdev(rdev, mddev)) 1699 return -ENXIO; 1700 1701 if (rdev->raid_disk >= 0) 1702 first = last = rdev->raid_disk; 1703 1704 if (rdev->saved_raid_disk >= first && 1705 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1706 mirror = rdev->saved_raid_disk; 1707 else 1708 mirror = first; 1709 for ( ; mirror <= last ; mirror++) { 1710 struct raid10_info *p = &conf->mirrors[mirror]; 1711 if (p->recovery_disabled == mddev->recovery_disabled) 1712 continue; 1713 if (p->rdev) { 1714 if (!test_bit(WantReplacement, &p->rdev->flags) || 1715 p->replacement != NULL) 1716 continue; 1717 clear_bit(In_sync, &rdev->flags); 1718 set_bit(Replacement, &rdev->flags); 1719 rdev->raid_disk = mirror; 1720 err = 0; 1721 if (mddev->gendisk) 1722 disk_stack_limits(mddev->gendisk, rdev->bdev, 1723 rdev->data_offset << 9); 1724 conf->fullsync = 1; 1725 rcu_assign_pointer(p->replacement, rdev); 1726 break; 1727 } 1728 1729 if (mddev->gendisk) 1730 disk_stack_limits(mddev->gendisk, rdev->bdev, 1731 rdev->data_offset << 9); 1732 1733 p->head_position = 0; 1734 p->recovery_disabled = mddev->recovery_disabled - 1; 1735 rdev->raid_disk = mirror; 1736 err = 0; 1737 if (rdev->saved_raid_disk != mirror) 1738 conf->fullsync = 1; 1739 rcu_assign_pointer(p->rdev, rdev); 1740 break; 1741 } 1742 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1743 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1744 1745 print_conf(conf); 1746 return err; 1747 } 1748 1749 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1750 { 1751 struct r10conf *conf = mddev->private; 1752 int err = 0; 1753 int number = rdev->raid_disk; 1754 struct md_rdev **rdevp; 1755 struct raid10_info *p = conf->mirrors + number; 1756 1757 print_conf(conf); 1758 if (rdev == p->rdev) 1759 rdevp = &p->rdev; 1760 else if (rdev == p->replacement) 1761 rdevp = &p->replacement; 1762 else 1763 return 0; 1764 1765 if (test_bit(In_sync, &rdev->flags) || 1766 atomic_read(&rdev->nr_pending)) { 1767 err = -EBUSY; 1768 goto abort; 1769 } 1770 /* Only remove non-faulty devices if recovery 1771 * is not possible. 1772 */ 1773 if (!test_bit(Faulty, &rdev->flags) && 1774 mddev->recovery_disabled != p->recovery_disabled && 1775 (!p->replacement || p->replacement == rdev) && 1776 number < conf->geo.raid_disks && 1777 enough(conf, -1)) { 1778 err = -EBUSY; 1779 goto abort; 1780 } 1781 *rdevp = NULL; 1782 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1783 synchronize_rcu(); 1784 if (atomic_read(&rdev->nr_pending)) { 1785 /* lost the race, try later */ 1786 err = -EBUSY; 1787 *rdevp = rdev; 1788 goto abort; 1789 } 1790 } 1791 if (p->replacement) { 1792 /* We must have just cleared 'rdev' */ 1793 p->rdev = p->replacement; 1794 clear_bit(Replacement, &p->replacement->flags); 1795 smp_mb(); /* Make sure other CPUs may see both as identical 1796 * but will never see neither -- if they are careful. 1797 */ 1798 p->replacement = NULL; 1799 clear_bit(WantReplacement, &rdev->flags); 1800 } else 1801 /* We might have just remove the Replacement as faulty 1802 * Clear the flag just in case 1803 */ 1804 clear_bit(WantReplacement, &rdev->flags); 1805 1806 err = md_integrity_register(mddev); 1807 1808 abort: 1809 1810 print_conf(conf); 1811 return err; 1812 } 1813 1814 static void end_sync_read(struct bio *bio) 1815 { 1816 struct r10bio *r10_bio = bio->bi_private; 1817 struct r10conf *conf = r10_bio->mddev->private; 1818 int d; 1819 1820 if (bio == r10_bio->master_bio) { 1821 /* this is a reshape read */ 1822 d = r10_bio->read_slot; /* really the read dev */ 1823 } else 1824 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); 1825 1826 if (!bio->bi_error) 1827 set_bit(R10BIO_Uptodate, &r10_bio->state); 1828 else 1829 /* The write handler will notice the lack of 1830 * R10BIO_Uptodate and record any errors etc 1831 */ 1832 atomic_add(r10_bio->sectors, 1833 &conf->mirrors[d].rdev->corrected_errors); 1834 1835 /* for reconstruct, we always reschedule after a read. 1836 * for resync, only after all reads 1837 */ 1838 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1839 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1840 atomic_dec_and_test(&r10_bio->remaining)) { 1841 /* we have read all the blocks, 1842 * do the comparison in process context in raid10d 1843 */ 1844 reschedule_retry(r10_bio); 1845 } 1846 } 1847 1848 static void end_sync_request(struct r10bio *r10_bio) 1849 { 1850 struct mddev *mddev = r10_bio->mddev; 1851 1852 while (atomic_dec_and_test(&r10_bio->remaining)) { 1853 if (r10_bio->master_bio == NULL) { 1854 /* the primary of several recovery bios */ 1855 sector_t s = r10_bio->sectors; 1856 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1857 test_bit(R10BIO_WriteError, &r10_bio->state)) 1858 reschedule_retry(r10_bio); 1859 else 1860 put_buf(r10_bio); 1861 md_done_sync(mddev, s, 1); 1862 break; 1863 } else { 1864 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; 1865 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 1866 test_bit(R10BIO_WriteError, &r10_bio->state)) 1867 reschedule_retry(r10_bio); 1868 else 1869 put_buf(r10_bio); 1870 r10_bio = r10_bio2; 1871 } 1872 } 1873 } 1874 1875 static void end_sync_write(struct bio *bio) 1876 { 1877 struct r10bio *r10_bio = bio->bi_private; 1878 struct mddev *mddev = r10_bio->mddev; 1879 struct r10conf *conf = mddev->private; 1880 int d; 1881 sector_t first_bad; 1882 int bad_sectors; 1883 int slot; 1884 int repl; 1885 struct md_rdev *rdev = NULL; 1886 1887 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 1888 if (repl) 1889 rdev = conf->mirrors[d].replacement; 1890 else 1891 rdev = conf->mirrors[d].rdev; 1892 1893 if (bio->bi_error) { 1894 if (repl) 1895 md_error(mddev, rdev); 1896 else { 1897 set_bit(WriteErrorSeen, &rdev->flags); 1898 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1899 set_bit(MD_RECOVERY_NEEDED, 1900 &rdev->mddev->recovery); 1901 set_bit(R10BIO_WriteError, &r10_bio->state); 1902 } 1903 } else if (is_badblock(rdev, 1904 r10_bio->devs[slot].addr, 1905 r10_bio->sectors, 1906 &first_bad, &bad_sectors)) 1907 set_bit(R10BIO_MadeGood, &r10_bio->state); 1908 1909 rdev_dec_pending(rdev, mddev); 1910 1911 end_sync_request(r10_bio); 1912 } 1913 1914 /* 1915 * Note: sync and recover and handled very differently for raid10 1916 * This code is for resync. 1917 * For resync, we read through virtual addresses and read all blocks. 1918 * If there is any error, we schedule a write. The lowest numbered 1919 * drive is authoritative. 1920 * However requests come for physical address, so we need to map. 1921 * For every physical address there are raid_disks/copies virtual addresses, 1922 * which is always are least one, but is not necessarly an integer. 1923 * This means that a physical address can span multiple chunks, so we may 1924 * have to submit multiple io requests for a single sync request. 1925 */ 1926 /* 1927 * We check if all blocks are in-sync and only write to blocks that 1928 * aren't in sync 1929 */ 1930 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) 1931 { 1932 struct r10conf *conf = mddev->private; 1933 int i, first; 1934 struct bio *tbio, *fbio; 1935 int vcnt; 1936 1937 atomic_set(&r10_bio->remaining, 1); 1938 1939 /* find the first device with a block */ 1940 for (i=0; i<conf->copies; i++) 1941 if (!r10_bio->devs[i].bio->bi_error) 1942 break; 1943 1944 if (i == conf->copies) 1945 goto done; 1946 1947 first = i; 1948 fbio = r10_bio->devs[i].bio; 1949 fbio->bi_iter.bi_size = r10_bio->sectors << 9; 1950 fbio->bi_iter.bi_idx = 0; 1951 1952 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); 1953 /* now find blocks with errors */ 1954 for (i=0 ; i < conf->copies ; i++) { 1955 int j, d; 1956 1957 tbio = r10_bio->devs[i].bio; 1958 1959 if (tbio->bi_end_io != end_sync_read) 1960 continue; 1961 if (i == first) 1962 continue; 1963 if (!r10_bio->devs[i].bio->bi_error) { 1964 /* We know that the bi_io_vec layout is the same for 1965 * both 'first' and 'i', so we just compare them. 1966 * All vec entries are PAGE_SIZE; 1967 */ 1968 int sectors = r10_bio->sectors; 1969 for (j = 0; j < vcnt; j++) { 1970 int len = PAGE_SIZE; 1971 if (sectors < (len / 512)) 1972 len = sectors * 512; 1973 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1974 page_address(tbio->bi_io_vec[j].bv_page), 1975 len)) 1976 break; 1977 sectors -= len/512; 1978 } 1979 if (j == vcnt) 1980 continue; 1981 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); 1982 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1983 /* Don't fix anything. */ 1984 continue; 1985 } 1986 /* Ok, we need to write this bio, either to correct an 1987 * inconsistency or to correct an unreadable block. 1988 * First we need to fixup bv_offset, bv_len and 1989 * bi_vecs, as the read request might have corrupted these 1990 */ 1991 bio_reset(tbio); 1992 1993 tbio->bi_vcnt = vcnt; 1994 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size; 1995 tbio->bi_private = r10_bio; 1996 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; 1997 tbio->bi_end_io = end_sync_write; 1998 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0); 1999 2000 bio_copy_data(tbio, fbio); 2001 2002 d = r10_bio->devs[i].devnum; 2003 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2004 atomic_inc(&r10_bio->remaining); 2005 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); 2006 2007 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; 2008 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 2009 generic_make_request(tbio); 2010 } 2011 2012 /* Now write out to any replacement devices 2013 * that are active 2014 */ 2015 for (i = 0; i < conf->copies; i++) { 2016 int d; 2017 2018 tbio = r10_bio->devs[i].repl_bio; 2019 if (!tbio || !tbio->bi_end_io) 2020 continue; 2021 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write 2022 && r10_bio->devs[i].bio != fbio) 2023 bio_copy_data(tbio, fbio); 2024 d = r10_bio->devs[i].devnum; 2025 atomic_inc(&r10_bio->remaining); 2026 md_sync_acct(conf->mirrors[d].replacement->bdev, 2027 bio_sectors(tbio)); 2028 generic_make_request(tbio); 2029 } 2030 2031 done: 2032 if (atomic_dec_and_test(&r10_bio->remaining)) { 2033 md_done_sync(mddev, r10_bio->sectors, 1); 2034 put_buf(r10_bio); 2035 } 2036 } 2037 2038 /* 2039 * Now for the recovery code. 2040 * Recovery happens across physical sectors. 2041 * We recover all non-is_sync drives by finding the virtual address of 2042 * each, and then choose a working drive that also has that virt address. 2043 * There is a separate r10_bio for each non-in_sync drive. 2044 * Only the first two slots are in use. The first for reading, 2045 * The second for writing. 2046 * 2047 */ 2048 static void fix_recovery_read_error(struct r10bio *r10_bio) 2049 { 2050 /* We got a read error during recovery. 2051 * We repeat the read in smaller page-sized sections. 2052 * If a read succeeds, write it to the new device or record 2053 * a bad block if we cannot. 2054 * If a read fails, record a bad block on both old and 2055 * new devices. 2056 */ 2057 struct mddev *mddev = r10_bio->mddev; 2058 struct r10conf *conf = mddev->private; 2059 struct bio *bio = r10_bio->devs[0].bio; 2060 sector_t sect = 0; 2061 int sectors = r10_bio->sectors; 2062 int idx = 0; 2063 int dr = r10_bio->devs[0].devnum; 2064 int dw = r10_bio->devs[1].devnum; 2065 2066 while (sectors) { 2067 int s = sectors; 2068 struct md_rdev *rdev; 2069 sector_t addr; 2070 int ok; 2071 2072 if (s > (PAGE_SIZE>>9)) 2073 s = PAGE_SIZE >> 9; 2074 2075 rdev = conf->mirrors[dr].rdev; 2076 addr = r10_bio->devs[0].addr + sect, 2077 ok = sync_page_io(rdev, 2078 addr, 2079 s << 9, 2080 bio->bi_io_vec[idx].bv_page, 2081 REQ_OP_READ, 0, false); 2082 if (ok) { 2083 rdev = conf->mirrors[dw].rdev; 2084 addr = r10_bio->devs[1].addr + sect; 2085 ok = sync_page_io(rdev, 2086 addr, 2087 s << 9, 2088 bio->bi_io_vec[idx].bv_page, 2089 REQ_OP_WRITE, 0, false); 2090 if (!ok) { 2091 set_bit(WriteErrorSeen, &rdev->flags); 2092 if (!test_and_set_bit(WantReplacement, 2093 &rdev->flags)) 2094 set_bit(MD_RECOVERY_NEEDED, 2095 &rdev->mddev->recovery); 2096 } 2097 } 2098 if (!ok) { 2099 /* We don't worry if we cannot set a bad block - 2100 * it really is bad so there is no loss in not 2101 * recording it yet 2102 */ 2103 rdev_set_badblocks(rdev, addr, s, 0); 2104 2105 if (rdev != conf->mirrors[dw].rdev) { 2106 /* need bad block on destination too */ 2107 struct md_rdev *rdev2 = conf->mirrors[dw].rdev; 2108 addr = r10_bio->devs[1].addr + sect; 2109 ok = rdev_set_badblocks(rdev2, addr, s, 0); 2110 if (!ok) { 2111 /* just abort the recovery */ 2112 printk(KERN_NOTICE 2113 "md/raid10:%s: recovery aborted" 2114 " due to read error\n", 2115 mdname(mddev)); 2116 2117 conf->mirrors[dw].recovery_disabled 2118 = mddev->recovery_disabled; 2119 set_bit(MD_RECOVERY_INTR, 2120 &mddev->recovery); 2121 break; 2122 } 2123 } 2124 } 2125 2126 sectors -= s; 2127 sect += s; 2128 idx++; 2129 } 2130 } 2131 2132 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) 2133 { 2134 struct r10conf *conf = mddev->private; 2135 int d; 2136 struct bio *wbio, *wbio2; 2137 2138 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { 2139 fix_recovery_read_error(r10_bio); 2140 end_sync_request(r10_bio); 2141 return; 2142 } 2143 2144 /* 2145 * share the pages with the first bio 2146 * and submit the write request 2147 */ 2148 d = r10_bio->devs[1].devnum; 2149 wbio = r10_bio->devs[1].bio; 2150 wbio2 = r10_bio->devs[1].repl_bio; 2151 /* Need to test wbio2->bi_end_io before we call 2152 * generic_make_request as if the former is NULL, 2153 * the latter is free to free wbio2. 2154 */ 2155 if (wbio2 && !wbio2->bi_end_io) 2156 wbio2 = NULL; 2157 if (wbio->bi_end_io) { 2158 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2159 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); 2160 generic_make_request(wbio); 2161 } 2162 if (wbio2) { 2163 atomic_inc(&conf->mirrors[d].replacement->nr_pending); 2164 md_sync_acct(conf->mirrors[d].replacement->bdev, 2165 bio_sectors(wbio2)); 2166 generic_make_request(wbio2); 2167 } 2168 } 2169 2170 /* 2171 * Used by fix_read_error() to decay the per rdev read_errors. 2172 * We halve the read error count for every hour that has elapsed 2173 * since the last recorded read error. 2174 * 2175 */ 2176 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 2177 { 2178 long cur_time_mon; 2179 unsigned long hours_since_last; 2180 unsigned int read_errors = atomic_read(&rdev->read_errors); 2181 2182 cur_time_mon = ktime_get_seconds(); 2183 2184 if (rdev->last_read_error == 0) { 2185 /* first time we've seen a read error */ 2186 rdev->last_read_error = cur_time_mon; 2187 return; 2188 } 2189 2190 hours_since_last = (long)(cur_time_mon - 2191 rdev->last_read_error) / 3600; 2192 2193 rdev->last_read_error = cur_time_mon; 2194 2195 /* 2196 * if hours_since_last is > the number of bits in read_errors 2197 * just set read errors to 0. We do this to avoid 2198 * overflowing the shift of read_errors by hours_since_last. 2199 */ 2200 if (hours_since_last >= 8 * sizeof(read_errors)) 2201 atomic_set(&rdev->read_errors, 0); 2202 else 2203 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 2204 } 2205 2206 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, 2207 int sectors, struct page *page, int rw) 2208 { 2209 sector_t first_bad; 2210 int bad_sectors; 2211 2212 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) 2213 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) 2214 return -1; 2215 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 2216 /* success */ 2217 return 1; 2218 if (rw == WRITE) { 2219 set_bit(WriteErrorSeen, &rdev->flags); 2220 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2221 set_bit(MD_RECOVERY_NEEDED, 2222 &rdev->mddev->recovery); 2223 } 2224 /* need to record an error - either for the block or the device */ 2225 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2226 md_error(rdev->mddev, rdev); 2227 return 0; 2228 } 2229 2230 /* 2231 * This is a kernel thread which: 2232 * 2233 * 1. Retries failed read operations on working mirrors. 2234 * 2. Updates the raid superblock when problems encounter. 2235 * 3. Performs writes following reads for array synchronising. 2236 */ 2237 2238 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) 2239 { 2240 int sect = 0; /* Offset from r10_bio->sector */ 2241 int sectors = r10_bio->sectors; 2242 struct md_rdev*rdev; 2243 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 2244 int d = r10_bio->devs[r10_bio->read_slot].devnum; 2245 2246 /* still own a reference to this rdev, so it cannot 2247 * have been cleared recently. 2248 */ 2249 rdev = conf->mirrors[d].rdev; 2250 2251 if (test_bit(Faulty, &rdev->flags)) 2252 /* drive has already been failed, just ignore any 2253 more fix_read_error() attempts */ 2254 return; 2255 2256 check_decay_read_errors(mddev, rdev); 2257 atomic_inc(&rdev->read_errors); 2258 if (atomic_read(&rdev->read_errors) > max_read_errors) { 2259 char b[BDEVNAME_SIZE]; 2260 bdevname(rdev->bdev, b); 2261 2262 printk(KERN_NOTICE 2263 "md/raid10:%s: %s: Raid device exceeded " 2264 "read_error threshold [cur %d:max %d]\n", 2265 mdname(mddev), b, 2266 atomic_read(&rdev->read_errors), max_read_errors); 2267 printk(KERN_NOTICE 2268 "md/raid10:%s: %s: Failing raid device\n", 2269 mdname(mddev), b); 2270 md_error(mddev, rdev); 2271 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; 2272 return; 2273 } 2274 2275 while(sectors) { 2276 int s = sectors; 2277 int sl = r10_bio->read_slot; 2278 int success = 0; 2279 int start; 2280 2281 if (s > (PAGE_SIZE>>9)) 2282 s = PAGE_SIZE >> 9; 2283 2284 rcu_read_lock(); 2285 do { 2286 sector_t first_bad; 2287 int bad_sectors; 2288 2289 d = r10_bio->devs[sl].devnum; 2290 rdev = rcu_dereference(conf->mirrors[d].rdev); 2291 if (rdev && 2292 test_bit(In_sync, &rdev->flags) && 2293 !test_bit(Faulty, &rdev->flags) && 2294 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, 2295 &first_bad, &bad_sectors) == 0) { 2296 atomic_inc(&rdev->nr_pending); 2297 rcu_read_unlock(); 2298 success = sync_page_io(rdev, 2299 r10_bio->devs[sl].addr + 2300 sect, 2301 s<<9, 2302 conf->tmppage, 2303 REQ_OP_READ, 0, false); 2304 rdev_dec_pending(rdev, mddev); 2305 rcu_read_lock(); 2306 if (success) 2307 break; 2308 } 2309 sl++; 2310 if (sl == conf->copies) 2311 sl = 0; 2312 } while (!success && sl != r10_bio->read_slot); 2313 rcu_read_unlock(); 2314 2315 if (!success) { 2316 /* Cannot read from anywhere, just mark the block 2317 * as bad on the first device to discourage future 2318 * reads. 2319 */ 2320 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 2321 rdev = conf->mirrors[dn].rdev; 2322 2323 if (!rdev_set_badblocks( 2324 rdev, 2325 r10_bio->devs[r10_bio->read_slot].addr 2326 + sect, 2327 s, 0)) { 2328 md_error(mddev, rdev); 2329 r10_bio->devs[r10_bio->read_slot].bio 2330 = IO_BLOCKED; 2331 } 2332 break; 2333 } 2334 2335 start = sl; 2336 /* write it back and re-read */ 2337 rcu_read_lock(); 2338 while (sl != r10_bio->read_slot) { 2339 char b[BDEVNAME_SIZE]; 2340 2341 if (sl==0) 2342 sl = conf->copies; 2343 sl--; 2344 d = r10_bio->devs[sl].devnum; 2345 rdev = rcu_dereference(conf->mirrors[d].rdev); 2346 if (!rdev || 2347 test_bit(Faulty, &rdev->flags) || 2348 !test_bit(In_sync, &rdev->flags)) 2349 continue; 2350 2351 atomic_inc(&rdev->nr_pending); 2352 rcu_read_unlock(); 2353 if (r10_sync_page_io(rdev, 2354 r10_bio->devs[sl].addr + 2355 sect, 2356 s, conf->tmppage, WRITE) 2357 == 0) { 2358 /* Well, this device is dead */ 2359 printk(KERN_NOTICE 2360 "md/raid10:%s: read correction " 2361 "write failed" 2362 " (%d sectors at %llu on %s)\n", 2363 mdname(mddev), s, 2364 (unsigned long long)( 2365 sect + 2366 choose_data_offset(r10_bio, 2367 rdev)), 2368 bdevname(rdev->bdev, b)); 2369 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2370 "drive\n", 2371 mdname(mddev), 2372 bdevname(rdev->bdev, b)); 2373 } 2374 rdev_dec_pending(rdev, mddev); 2375 rcu_read_lock(); 2376 } 2377 sl = start; 2378 while (sl != r10_bio->read_slot) { 2379 char b[BDEVNAME_SIZE]; 2380 2381 if (sl==0) 2382 sl = conf->copies; 2383 sl--; 2384 d = r10_bio->devs[sl].devnum; 2385 rdev = rcu_dereference(conf->mirrors[d].rdev); 2386 if (!rdev || 2387 test_bit(Faulty, &rdev->flags) || 2388 !test_bit(In_sync, &rdev->flags)) 2389 continue; 2390 2391 atomic_inc(&rdev->nr_pending); 2392 rcu_read_unlock(); 2393 switch (r10_sync_page_io(rdev, 2394 r10_bio->devs[sl].addr + 2395 sect, 2396 s, conf->tmppage, 2397 READ)) { 2398 case 0: 2399 /* Well, this device is dead */ 2400 printk(KERN_NOTICE 2401 "md/raid10:%s: unable to read back " 2402 "corrected sectors" 2403 " (%d sectors at %llu on %s)\n", 2404 mdname(mddev), s, 2405 (unsigned long long)( 2406 sect + 2407 choose_data_offset(r10_bio, rdev)), 2408 bdevname(rdev->bdev, b)); 2409 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 2410 "drive\n", 2411 mdname(mddev), 2412 bdevname(rdev->bdev, b)); 2413 break; 2414 case 1: 2415 printk(KERN_INFO 2416 "md/raid10:%s: read error corrected" 2417 " (%d sectors at %llu on %s)\n", 2418 mdname(mddev), s, 2419 (unsigned long long)( 2420 sect + 2421 choose_data_offset(r10_bio, rdev)), 2422 bdevname(rdev->bdev, b)); 2423 atomic_add(s, &rdev->corrected_errors); 2424 } 2425 2426 rdev_dec_pending(rdev, mddev); 2427 rcu_read_lock(); 2428 } 2429 rcu_read_unlock(); 2430 2431 sectors -= s; 2432 sect += s; 2433 } 2434 } 2435 2436 static int narrow_write_error(struct r10bio *r10_bio, int i) 2437 { 2438 struct bio *bio = r10_bio->master_bio; 2439 struct mddev *mddev = r10_bio->mddev; 2440 struct r10conf *conf = mddev->private; 2441 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; 2442 /* bio has the data to be written to slot 'i' where 2443 * we just recently had a write error. 2444 * We repeatedly clone the bio and trim down to one block, 2445 * then try the write. Where the write fails we record 2446 * a bad block. 2447 * It is conceivable that the bio doesn't exactly align with 2448 * blocks. We must handle this. 2449 * 2450 * We currently own a reference to the rdev. 2451 */ 2452 2453 int block_sectors; 2454 sector_t sector; 2455 int sectors; 2456 int sect_to_write = r10_bio->sectors; 2457 int ok = 1; 2458 2459 if (rdev->badblocks.shift < 0) 2460 return 0; 2461 2462 block_sectors = roundup(1 << rdev->badblocks.shift, 2463 bdev_logical_block_size(rdev->bdev) >> 9); 2464 sector = r10_bio->sector; 2465 sectors = ((r10_bio->sector + block_sectors) 2466 & ~(sector_t)(block_sectors - 1)) 2467 - sector; 2468 2469 while (sect_to_write) { 2470 struct bio *wbio; 2471 sector_t wsector; 2472 if (sectors > sect_to_write) 2473 sectors = sect_to_write; 2474 /* Write at 'sector' for 'sectors' */ 2475 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 2476 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); 2477 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector); 2478 wbio->bi_iter.bi_sector = wsector + 2479 choose_data_offset(r10_bio, rdev); 2480 wbio->bi_bdev = rdev->bdev; 2481 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2482 2483 if (submit_bio_wait(wbio) < 0) 2484 /* Failure! */ 2485 ok = rdev_set_badblocks(rdev, wsector, 2486 sectors, 0) 2487 && ok; 2488 2489 bio_put(wbio); 2490 sect_to_write -= sectors; 2491 sector += sectors; 2492 sectors = block_sectors; 2493 } 2494 return ok; 2495 } 2496 2497 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) 2498 { 2499 int slot = r10_bio->read_slot; 2500 struct bio *bio; 2501 struct r10conf *conf = mddev->private; 2502 struct md_rdev *rdev = r10_bio->devs[slot].rdev; 2503 char b[BDEVNAME_SIZE]; 2504 unsigned long do_sync; 2505 int max_sectors; 2506 2507 /* we got a read error. Maybe the drive is bad. Maybe just 2508 * the block and we can fix it. 2509 * We freeze all other IO, and try reading the block from 2510 * other devices. When we find one, we re-write 2511 * and check it that fixes the read error. 2512 * This is all done synchronously while the array is 2513 * frozen. 2514 */ 2515 bio = r10_bio->devs[slot].bio; 2516 bdevname(bio->bi_bdev, b); 2517 bio_put(bio); 2518 r10_bio->devs[slot].bio = NULL; 2519 2520 if (mddev->ro == 0) { 2521 freeze_array(conf, 1); 2522 fix_read_error(conf, mddev, r10_bio); 2523 unfreeze_array(conf); 2524 } else 2525 r10_bio->devs[slot].bio = IO_BLOCKED; 2526 2527 rdev_dec_pending(rdev, mddev); 2528 2529 read_more: 2530 rdev = read_balance(conf, r10_bio, &max_sectors); 2531 if (rdev == NULL) { 2532 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 2533 " read error for block %llu\n", 2534 mdname(mddev), b, 2535 (unsigned long long)r10_bio->sector); 2536 raid_end_bio_io(r10_bio); 2537 return; 2538 } 2539 2540 do_sync = (r10_bio->master_bio->bi_opf & REQ_SYNC); 2541 slot = r10_bio->read_slot; 2542 printk_ratelimited( 2543 KERN_ERR 2544 "md/raid10:%s: %s: redirecting " 2545 "sector %llu to another mirror\n", 2546 mdname(mddev), 2547 bdevname(rdev->bdev, b), 2548 (unsigned long long)r10_bio->sector); 2549 bio = bio_clone_mddev(r10_bio->master_bio, 2550 GFP_NOIO, mddev); 2551 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors); 2552 r10_bio->devs[slot].bio = bio; 2553 r10_bio->devs[slot].rdev = rdev; 2554 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr 2555 + choose_data_offset(r10_bio, rdev); 2556 bio->bi_bdev = rdev->bdev; 2557 bio_set_op_attrs(bio, REQ_OP_READ, do_sync); 2558 bio->bi_private = r10_bio; 2559 bio->bi_end_io = raid10_end_read_request; 2560 if (max_sectors < r10_bio->sectors) { 2561 /* Drat - have to split this up more */ 2562 struct bio *mbio = r10_bio->master_bio; 2563 int sectors_handled = 2564 r10_bio->sector + max_sectors 2565 - mbio->bi_iter.bi_sector; 2566 r10_bio->sectors = max_sectors; 2567 spin_lock_irq(&conf->device_lock); 2568 if (mbio->bi_phys_segments == 0) 2569 mbio->bi_phys_segments = 2; 2570 else 2571 mbio->bi_phys_segments++; 2572 spin_unlock_irq(&conf->device_lock); 2573 generic_make_request(bio); 2574 2575 r10_bio = mempool_alloc(conf->r10bio_pool, 2576 GFP_NOIO); 2577 r10_bio->master_bio = mbio; 2578 r10_bio->sectors = bio_sectors(mbio) - sectors_handled; 2579 r10_bio->state = 0; 2580 set_bit(R10BIO_ReadError, 2581 &r10_bio->state); 2582 r10_bio->mddev = mddev; 2583 r10_bio->sector = mbio->bi_iter.bi_sector 2584 + sectors_handled; 2585 2586 goto read_more; 2587 } else 2588 generic_make_request(bio); 2589 } 2590 2591 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) 2592 { 2593 /* Some sort of write request has finished and it 2594 * succeeded in writing where we thought there was a 2595 * bad block. So forget the bad block. 2596 * Or possibly if failed and we need to record 2597 * a bad block. 2598 */ 2599 int m; 2600 struct md_rdev *rdev; 2601 2602 if (test_bit(R10BIO_IsSync, &r10_bio->state) || 2603 test_bit(R10BIO_IsRecover, &r10_bio->state)) { 2604 for (m = 0; m < conf->copies; m++) { 2605 int dev = r10_bio->devs[m].devnum; 2606 rdev = conf->mirrors[dev].rdev; 2607 if (r10_bio->devs[m].bio == NULL) 2608 continue; 2609 if (!r10_bio->devs[m].bio->bi_error) { 2610 rdev_clear_badblocks( 2611 rdev, 2612 r10_bio->devs[m].addr, 2613 r10_bio->sectors, 0); 2614 } else { 2615 if (!rdev_set_badblocks( 2616 rdev, 2617 r10_bio->devs[m].addr, 2618 r10_bio->sectors, 0)) 2619 md_error(conf->mddev, rdev); 2620 } 2621 rdev = conf->mirrors[dev].replacement; 2622 if (r10_bio->devs[m].repl_bio == NULL) 2623 continue; 2624 2625 if (!r10_bio->devs[m].repl_bio->bi_error) { 2626 rdev_clear_badblocks( 2627 rdev, 2628 r10_bio->devs[m].addr, 2629 r10_bio->sectors, 0); 2630 } else { 2631 if (!rdev_set_badblocks( 2632 rdev, 2633 r10_bio->devs[m].addr, 2634 r10_bio->sectors, 0)) 2635 md_error(conf->mddev, rdev); 2636 } 2637 } 2638 put_buf(r10_bio); 2639 } else { 2640 bool fail = false; 2641 for (m = 0; m < conf->copies; m++) { 2642 int dev = r10_bio->devs[m].devnum; 2643 struct bio *bio = r10_bio->devs[m].bio; 2644 rdev = conf->mirrors[dev].rdev; 2645 if (bio == IO_MADE_GOOD) { 2646 rdev_clear_badblocks( 2647 rdev, 2648 r10_bio->devs[m].addr, 2649 r10_bio->sectors, 0); 2650 rdev_dec_pending(rdev, conf->mddev); 2651 } else if (bio != NULL && bio->bi_error) { 2652 fail = true; 2653 if (!narrow_write_error(r10_bio, m)) { 2654 md_error(conf->mddev, rdev); 2655 set_bit(R10BIO_Degraded, 2656 &r10_bio->state); 2657 } 2658 rdev_dec_pending(rdev, conf->mddev); 2659 } 2660 bio = r10_bio->devs[m].repl_bio; 2661 rdev = conf->mirrors[dev].replacement; 2662 if (rdev && bio == IO_MADE_GOOD) { 2663 rdev_clear_badblocks( 2664 rdev, 2665 r10_bio->devs[m].addr, 2666 r10_bio->sectors, 0); 2667 rdev_dec_pending(rdev, conf->mddev); 2668 } 2669 } 2670 if (fail) { 2671 spin_lock_irq(&conf->device_lock); 2672 list_add(&r10_bio->retry_list, &conf->bio_end_io_list); 2673 conf->nr_queued++; 2674 spin_unlock_irq(&conf->device_lock); 2675 md_wakeup_thread(conf->mddev->thread); 2676 } else { 2677 if (test_bit(R10BIO_WriteError, 2678 &r10_bio->state)) 2679 close_write(r10_bio); 2680 raid_end_bio_io(r10_bio); 2681 } 2682 } 2683 } 2684 2685 static void raid10d(struct md_thread *thread) 2686 { 2687 struct mddev *mddev = thread->mddev; 2688 struct r10bio *r10_bio; 2689 unsigned long flags; 2690 struct r10conf *conf = mddev->private; 2691 struct list_head *head = &conf->retry_list; 2692 struct blk_plug plug; 2693 2694 md_check_recovery(mddev); 2695 2696 if (!list_empty_careful(&conf->bio_end_io_list) && 2697 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 2698 LIST_HEAD(tmp); 2699 spin_lock_irqsave(&conf->device_lock, flags); 2700 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 2701 while (!list_empty(&conf->bio_end_io_list)) { 2702 list_move(conf->bio_end_io_list.prev, &tmp); 2703 conf->nr_queued--; 2704 } 2705 } 2706 spin_unlock_irqrestore(&conf->device_lock, flags); 2707 while (!list_empty(&tmp)) { 2708 r10_bio = list_first_entry(&tmp, struct r10bio, 2709 retry_list); 2710 list_del(&r10_bio->retry_list); 2711 if (mddev->degraded) 2712 set_bit(R10BIO_Degraded, &r10_bio->state); 2713 2714 if (test_bit(R10BIO_WriteError, 2715 &r10_bio->state)) 2716 close_write(r10_bio); 2717 raid_end_bio_io(r10_bio); 2718 } 2719 } 2720 2721 blk_start_plug(&plug); 2722 for (;;) { 2723 2724 flush_pending_writes(conf); 2725 2726 spin_lock_irqsave(&conf->device_lock, flags); 2727 if (list_empty(head)) { 2728 spin_unlock_irqrestore(&conf->device_lock, flags); 2729 break; 2730 } 2731 r10_bio = list_entry(head->prev, struct r10bio, retry_list); 2732 list_del(head->prev); 2733 conf->nr_queued--; 2734 spin_unlock_irqrestore(&conf->device_lock, flags); 2735 2736 mddev = r10_bio->mddev; 2737 conf = mddev->private; 2738 if (test_bit(R10BIO_MadeGood, &r10_bio->state) || 2739 test_bit(R10BIO_WriteError, &r10_bio->state)) 2740 handle_write_completed(conf, r10_bio); 2741 else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) 2742 reshape_request_write(mddev, r10_bio); 2743 else if (test_bit(R10BIO_IsSync, &r10_bio->state)) 2744 sync_request_write(mddev, r10_bio); 2745 else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) 2746 recovery_request_write(mddev, r10_bio); 2747 else if (test_bit(R10BIO_ReadError, &r10_bio->state)) 2748 handle_read_error(mddev, r10_bio); 2749 else { 2750 /* just a partial read to be scheduled from a 2751 * separate context 2752 */ 2753 int slot = r10_bio->read_slot; 2754 generic_make_request(r10_bio->devs[slot].bio); 2755 } 2756 2757 cond_resched(); 2758 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2759 md_check_recovery(mddev); 2760 } 2761 blk_finish_plug(&plug); 2762 } 2763 2764 static int init_resync(struct r10conf *conf) 2765 { 2766 int buffs; 2767 int i; 2768 2769 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2770 BUG_ON(conf->r10buf_pool); 2771 conf->have_replacement = 0; 2772 for (i = 0; i < conf->geo.raid_disks; i++) 2773 if (conf->mirrors[i].replacement) 2774 conf->have_replacement = 1; 2775 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 2776 if (!conf->r10buf_pool) 2777 return -ENOMEM; 2778 conf->next_resync = 0; 2779 return 0; 2780 } 2781 2782 /* 2783 * perform a "sync" on one "block" 2784 * 2785 * We need to make sure that no normal I/O request - particularly write 2786 * requests - conflict with active sync requests. 2787 * 2788 * This is achieved by tracking pending requests and a 'barrier' concept 2789 * that can be installed to exclude normal IO requests. 2790 * 2791 * Resync and recovery are handled very differently. 2792 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 2793 * 2794 * For resync, we iterate over virtual addresses, read all copies, 2795 * and update if there are differences. If only one copy is live, 2796 * skip it. 2797 * For recovery, we iterate over physical addresses, read a good 2798 * value for each non-in_sync drive, and over-write. 2799 * 2800 * So, for recovery we may have several outstanding complex requests for a 2801 * given address, one for each out-of-sync device. We model this by allocating 2802 * a number of r10_bio structures, one for each out-of-sync device. 2803 * As we setup these structures, we collect all bio's together into a list 2804 * which we then process collectively to add pages, and then process again 2805 * to pass to generic_make_request. 2806 * 2807 * The r10_bio structures are linked using a borrowed master_bio pointer. 2808 * This link is counted in ->remaining. When the r10_bio that points to NULL 2809 * has its remaining count decremented to 0, the whole complex operation 2810 * is complete. 2811 * 2812 */ 2813 2814 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr, 2815 int *skipped) 2816 { 2817 struct r10conf *conf = mddev->private; 2818 struct r10bio *r10_bio; 2819 struct bio *biolist = NULL, *bio; 2820 sector_t max_sector, nr_sectors; 2821 int i; 2822 int max_sync; 2823 sector_t sync_blocks; 2824 sector_t sectors_skipped = 0; 2825 int chunks_skipped = 0; 2826 sector_t chunk_mask = conf->geo.chunk_mask; 2827 2828 if (!conf->r10buf_pool) 2829 if (init_resync(conf)) 2830 return 0; 2831 2832 /* 2833 * Allow skipping a full rebuild for incremental assembly 2834 * of a clean array, like RAID1 does. 2835 */ 2836 if (mddev->bitmap == NULL && 2837 mddev->recovery_cp == MaxSector && 2838 mddev->reshape_position == MaxSector && 2839 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2840 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2841 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2842 conf->fullsync == 0) { 2843 *skipped = 1; 2844 return mddev->dev_sectors - sector_nr; 2845 } 2846 2847 skipped: 2848 max_sector = mddev->dev_sectors; 2849 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 2850 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2851 max_sector = mddev->resync_max_sectors; 2852 if (sector_nr >= max_sector) { 2853 /* If we aborted, we need to abort the 2854 * sync on the 'current' bitmap chucks (there can 2855 * be several when recovering multiple devices). 2856 * as we may have started syncing it but not finished. 2857 * We can find the current address in 2858 * mddev->curr_resync, but for recovery, 2859 * we need to convert that to several 2860 * virtual addresses. 2861 */ 2862 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 2863 end_reshape(conf); 2864 close_sync(conf); 2865 return 0; 2866 } 2867 2868 if (mddev->curr_resync < max_sector) { /* aborted */ 2869 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2870 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2871 &sync_blocks, 1); 2872 else for (i = 0; i < conf->geo.raid_disks; i++) { 2873 sector_t sect = 2874 raid10_find_virt(conf, mddev->curr_resync, i); 2875 bitmap_end_sync(mddev->bitmap, sect, 2876 &sync_blocks, 1); 2877 } 2878 } else { 2879 /* completed sync */ 2880 if ((!mddev->bitmap || conf->fullsync) 2881 && conf->have_replacement 2882 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2883 /* Completed a full sync so the replacements 2884 * are now fully recovered. 2885 */ 2886 rcu_read_lock(); 2887 for (i = 0; i < conf->geo.raid_disks; i++) { 2888 struct md_rdev *rdev = 2889 rcu_dereference(conf->mirrors[i].replacement); 2890 if (rdev) 2891 rdev->recovery_offset = MaxSector; 2892 } 2893 rcu_read_unlock(); 2894 } 2895 conf->fullsync = 0; 2896 } 2897 bitmap_close_sync(mddev->bitmap); 2898 close_sync(conf); 2899 *skipped = 1; 2900 return sectors_skipped; 2901 } 2902 2903 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2904 return reshape_request(mddev, sector_nr, skipped); 2905 2906 if (chunks_skipped >= conf->geo.raid_disks) { 2907 /* if there has been nothing to do on any drive, 2908 * then there is nothing to do at all.. 2909 */ 2910 *skipped = 1; 2911 return (max_sector - sector_nr) + sectors_skipped; 2912 } 2913 2914 if (max_sector > mddev->resync_max) 2915 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2916 2917 /* make sure whole request will fit in a chunk - if chunks 2918 * are meaningful 2919 */ 2920 if (conf->geo.near_copies < conf->geo.raid_disks && 2921 max_sector > (sector_nr | chunk_mask)) 2922 max_sector = (sector_nr | chunk_mask) + 1; 2923 2924 /* 2925 * If there is non-resync activity waiting for a turn, then let it 2926 * though before starting on this new sync request. 2927 */ 2928 if (conf->nr_waiting) 2929 schedule_timeout_uninterruptible(1); 2930 2931 /* Again, very different code for resync and recovery. 2932 * Both must result in an r10bio with a list of bios that 2933 * have bi_end_io, bi_sector, bi_bdev set, 2934 * and bi_private set to the r10bio. 2935 * For recovery, we may actually create several r10bios 2936 * with 2 bios in each, that correspond to the bios in the main one. 2937 * In this case, the subordinate r10bios link back through a 2938 * borrowed master_bio pointer, and the counter in the master 2939 * includes a ref from each subordinate. 2940 */ 2941 /* First, we decide what to do and set ->bi_end_io 2942 * To end_sync_read if we want to read, and 2943 * end_sync_write if we will want to write. 2944 */ 2945 2946 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 2947 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2948 /* recovery... the complicated one */ 2949 int j; 2950 r10_bio = NULL; 2951 2952 for (i = 0 ; i < conf->geo.raid_disks; i++) { 2953 int still_degraded; 2954 struct r10bio *rb2; 2955 sector_t sect; 2956 int must_sync; 2957 int any_working; 2958 struct raid10_info *mirror = &conf->mirrors[i]; 2959 struct md_rdev *mrdev, *mreplace; 2960 2961 rcu_read_lock(); 2962 mrdev = rcu_dereference(mirror->rdev); 2963 mreplace = rcu_dereference(mirror->replacement); 2964 2965 if ((mrdev == NULL || 2966 test_bit(Faulty, &mrdev->flags) || 2967 test_bit(In_sync, &mrdev->flags)) && 2968 (mreplace == NULL || 2969 test_bit(Faulty, &mreplace->flags))) { 2970 rcu_read_unlock(); 2971 continue; 2972 } 2973 2974 still_degraded = 0; 2975 /* want to reconstruct this device */ 2976 rb2 = r10_bio; 2977 sect = raid10_find_virt(conf, sector_nr, i); 2978 if (sect >= mddev->resync_max_sectors) { 2979 /* last stripe is not complete - don't 2980 * try to recover this sector. 2981 */ 2982 rcu_read_unlock(); 2983 continue; 2984 } 2985 if (mreplace && test_bit(Faulty, &mreplace->flags)) 2986 mreplace = NULL; 2987 /* Unless we are doing a full sync, or a replacement 2988 * we only need to recover the block if it is set in 2989 * the bitmap 2990 */ 2991 must_sync = bitmap_start_sync(mddev->bitmap, sect, 2992 &sync_blocks, 1); 2993 if (sync_blocks < max_sync) 2994 max_sync = sync_blocks; 2995 if (!must_sync && 2996 mreplace == NULL && 2997 !conf->fullsync) { 2998 /* yep, skip the sync_blocks here, but don't assume 2999 * that there will never be anything to do here 3000 */ 3001 chunks_skipped = -1; 3002 rcu_read_unlock(); 3003 continue; 3004 } 3005 atomic_inc(&mrdev->nr_pending); 3006 if (mreplace) 3007 atomic_inc(&mreplace->nr_pending); 3008 rcu_read_unlock(); 3009 3010 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3011 r10_bio->state = 0; 3012 raise_barrier(conf, rb2 != NULL); 3013 atomic_set(&r10_bio->remaining, 0); 3014 3015 r10_bio->master_bio = (struct bio*)rb2; 3016 if (rb2) 3017 atomic_inc(&rb2->remaining); 3018 r10_bio->mddev = mddev; 3019 set_bit(R10BIO_IsRecover, &r10_bio->state); 3020 r10_bio->sector = sect; 3021 3022 raid10_find_phys(conf, r10_bio); 3023 3024 /* Need to check if the array will still be 3025 * degraded 3026 */ 3027 rcu_read_lock(); 3028 for (j = 0; j < conf->geo.raid_disks; j++) { 3029 struct md_rdev *rdev = rcu_dereference( 3030 conf->mirrors[j].rdev); 3031 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3032 still_degraded = 1; 3033 break; 3034 } 3035 } 3036 3037 must_sync = bitmap_start_sync(mddev->bitmap, sect, 3038 &sync_blocks, still_degraded); 3039 3040 any_working = 0; 3041 for (j=0; j<conf->copies;j++) { 3042 int k; 3043 int d = r10_bio->devs[j].devnum; 3044 sector_t from_addr, to_addr; 3045 struct md_rdev *rdev = 3046 rcu_dereference(conf->mirrors[d].rdev); 3047 sector_t sector, first_bad; 3048 int bad_sectors; 3049 if (!rdev || 3050 !test_bit(In_sync, &rdev->flags)) 3051 continue; 3052 /* This is where we read from */ 3053 any_working = 1; 3054 sector = r10_bio->devs[j].addr; 3055 3056 if (is_badblock(rdev, sector, max_sync, 3057 &first_bad, &bad_sectors)) { 3058 if (first_bad > sector) 3059 max_sync = first_bad - sector; 3060 else { 3061 bad_sectors -= (sector 3062 - first_bad); 3063 if (max_sync > bad_sectors) 3064 max_sync = bad_sectors; 3065 continue; 3066 } 3067 } 3068 bio = r10_bio->devs[0].bio; 3069 bio_reset(bio); 3070 bio->bi_next = biolist; 3071 biolist = bio; 3072 bio->bi_private = r10_bio; 3073 bio->bi_end_io = end_sync_read; 3074 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3075 from_addr = r10_bio->devs[j].addr; 3076 bio->bi_iter.bi_sector = from_addr + 3077 rdev->data_offset; 3078 bio->bi_bdev = rdev->bdev; 3079 atomic_inc(&rdev->nr_pending); 3080 /* and we write to 'i' (if not in_sync) */ 3081 3082 for (k=0; k<conf->copies; k++) 3083 if (r10_bio->devs[k].devnum == i) 3084 break; 3085 BUG_ON(k == conf->copies); 3086 to_addr = r10_bio->devs[k].addr; 3087 r10_bio->devs[0].devnum = d; 3088 r10_bio->devs[0].addr = from_addr; 3089 r10_bio->devs[1].devnum = i; 3090 r10_bio->devs[1].addr = to_addr; 3091 3092 if (!test_bit(In_sync, &mrdev->flags)) { 3093 bio = r10_bio->devs[1].bio; 3094 bio_reset(bio); 3095 bio->bi_next = biolist; 3096 biolist = bio; 3097 bio->bi_private = r10_bio; 3098 bio->bi_end_io = end_sync_write; 3099 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3100 bio->bi_iter.bi_sector = to_addr 3101 + mrdev->data_offset; 3102 bio->bi_bdev = mrdev->bdev; 3103 atomic_inc(&r10_bio->remaining); 3104 } else 3105 r10_bio->devs[1].bio->bi_end_io = NULL; 3106 3107 /* and maybe write to replacement */ 3108 bio = r10_bio->devs[1].repl_bio; 3109 if (bio) 3110 bio->bi_end_io = NULL; 3111 /* Note: if mreplace != NULL, then bio 3112 * cannot be NULL as r10buf_pool_alloc will 3113 * have allocated it. 3114 * So the second test here is pointless. 3115 * But it keeps semantic-checkers happy, and 3116 * this comment keeps human reviewers 3117 * happy. 3118 */ 3119 if (mreplace == NULL || bio == NULL || 3120 test_bit(Faulty, &mreplace->flags)) 3121 break; 3122 bio_reset(bio); 3123 bio->bi_next = biolist; 3124 biolist = bio; 3125 bio->bi_private = r10_bio; 3126 bio->bi_end_io = end_sync_write; 3127 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3128 bio->bi_iter.bi_sector = to_addr + 3129 mreplace->data_offset; 3130 bio->bi_bdev = mreplace->bdev; 3131 atomic_inc(&r10_bio->remaining); 3132 break; 3133 } 3134 rcu_read_unlock(); 3135 if (j == conf->copies) { 3136 /* Cannot recover, so abort the recovery or 3137 * record a bad block */ 3138 if (any_working) { 3139 /* problem is that there are bad blocks 3140 * on other device(s) 3141 */ 3142 int k; 3143 for (k = 0; k < conf->copies; k++) 3144 if (r10_bio->devs[k].devnum == i) 3145 break; 3146 if (!test_bit(In_sync, 3147 &mrdev->flags) 3148 && !rdev_set_badblocks( 3149 mrdev, 3150 r10_bio->devs[k].addr, 3151 max_sync, 0)) 3152 any_working = 0; 3153 if (mreplace && 3154 !rdev_set_badblocks( 3155 mreplace, 3156 r10_bio->devs[k].addr, 3157 max_sync, 0)) 3158 any_working = 0; 3159 } 3160 if (!any_working) { 3161 if (!test_and_set_bit(MD_RECOVERY_INTR, 3162 &mddev->recovery)) 3163 printk(KERN_INFO "md/raid10:%s: insufficient " 3164 "working devices for recovery.\n", 3165 mdname(mddev)); 3166 mirror->recovery_disabled 3167 = mddev->recovery_disabled; 3168 } 3169 put_buf(r10_bio); 3170 if (rb2) 3171 atomic_dec(&rb2->remaining); 3172 r10_bio = rb2; 3173 rdev_dec_pending(mrdev, mddev); 3174 if (mreplace) 3175 rdev_dec_pending(mreplace, mddev); 3176 break; 3177 } 3178 rdev_dec_pending(mrdev, mddev); 3179 if (mreplace) 3180 rdev_dec_pending(mreplace, mddev); 3181 } 3182 if (biolist == NULL) { 3183 while (r10_bio) { 3184 struct r10bio *rb2 = r10_bio; 3185 r10_bio = (struct r10bio*) rb2->master_bio; 3186 rb2->master_bio = NULL; 3187 put_buf(rb2); 3188 } 3189 goto giveup; 3190 } 3191 } else { 3192 /* resync. Schedule a read for every block at this virt offset */ 3193 int count = 0; 3194 3195 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0); 3196 3197 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 3198 &sync_blocks, mddev->degraded) && 3199 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, 3200 &mddev->recovery)) { 3201 /* We can skip this block */ 3202 *skipped = 1; 3203 return sync_blocks + sectors_skipped; 3204 } 3205 if (sync_blocks < max_sync) 3206 max_sync = sync_blocks; 3207 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 3208 r10_bio->state = 0; 3209 3210 r10_bio->mddev = mddev; 3211 atomic_set(&r10_bio->remaining, 0); 3212 raise_barrier(conf, 0); 3213 conf->next_resync = sector_nr; 3214 3215 r10_bio->master_bio = NULL; 3216 r10_bio->sector = sector_nr; 3217 set_bit(R10BIO_IsSync, &r10_bio->state); 3218 raid10_find_phys(conf, r10_bio); 3219 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; 3220 3221 for (i = 0; i < conf->copies; i++) { 3222 int d = r10_bio->devs[i].devnum; 3223 sector_t first_bad, sector; 3224 int bad_sectors; 3225 struct md_rdev *rdev; 3226 3227 if (r10_bio->devs[i].repl_bio) 3228 r10_bio->devs[i].repl_bio->bi_end_io = NULL; 3229 3230 bio = r10_bio->devs[i].bio; 3231 bio_reset(bio); 3232 bio->bi_error = -EIO; 3233 rcu_read_lock(); 3234 rdev = rcu_dereference(conf->mirrors[d].rdev); 3235 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3236 rcu_read_unlock(); 3237 continue; 3238 } 3239 sector = r10_bio->devs[i].addr; 3240 if (is_badblock(rdev, sector, max_sync, 3241 &first_bad, &bad_sectors)) { 3242 if (first_bad > sector) 3243 max_sync = first_bad - sector; 3244 else { 3245 bad_sectors -= (sector - first_bad); 3246 if (max_sync > bad_sectors) 3247 max_sync = bad_sectors; 3248 rcu_read_unlock(); 3249 continue; 3250 } 3251 } 3252 atomic_inc(&rdev->nr_pending); 3253 atomic_inc(&r10_bio->remaining); 3254 bio->bi_next = biolist; 3255 biolist = bio; 3256 bio->bi_private = r10_bio; 3257 bio->bi_end_io = end_sync_read; 3258 bio_set_op_attrs(bio, REQ_OP_READ, 0); 3259 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3260 bio->bi_bdev = rdev->bdev; 3261 count++; 3262 3263 rdev = rcu_dereference(conf->mirrors[d].replacement); 3264 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) { 3265 rcu_read_unlock(); 3266 continue; 3267 } 3268 atomic_inc(&rdev->nr_pending); 3269 rcu_read_unlock(); 3270 3271 /* Need to set up for writing to the replacement */ 3272 bio = r10_bio->devs[i].repl_bio; 3273 bio_reset(bio); 3274 bio->bi_error = -EIO; 3275 3276 sector = r10_bio->devs[i].addr; 3277 bio->bi_next = biolist; 3278 biolist = bio; 3279 bio->bi_private = r10_bio; 3280 bio->bi_end_io = end_sync_write; 3281 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 3282 bio->bi_iter.bi_sector = sector + rdev->data_offset; 3283 bio->bi_bdev = rdev->bdev; 3284 count++; 3285 } 3286 3287 if (count < 2) { 3288 for (i=0; i<conf->copies; i++) { 3289 int d = r10_bio->devs[i].devnum; 3290 if (r10_bio->devs[i].bio->bi_end_io) 3291 rdev_dec_pending(conf->mirrors[d].rdev, 3292 mddev); 3293 if (r10_bio->devs[i].repl_bio && 3294 r10_bio->devs[i].repl_bio->bi_end_io) 3295 rdev_dec_pending( 3296 conf->mirrors[d].replacement, 3297 mddev); 3298 } 3299 put_buf(r10_bio); 3300 biolist = NULL; 3301 goto giveup; 3302 } 3303 } 3304 3305 nr_sectors = 0; 3306 if (sector_nr + max_sync < max_sector) 3307 max_sector = sector_nr + max_sync; 3308 do { 3309 struct page *page; 3310 int len = PAGE_SIZE; 3311 if (sector_nr + (len>>9) > max_sector) 3312 len = (max_sector - sector_nr) << 9; 3313 if (len == 0) 3314 break; 3315 for (bio= biolist ; bio ; bio=bio->bi_next) { 3316 struct bio *bio2; 3317 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 3318 if (bio_add_page(bio, page, len, 0)) 3319 continue; 3320 3321 /* stop here */ 3322 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 3323 for (bio2 = biolist; 3324 bio2 && bio2 != bio; 3325 bio2 = bio2->bi_next) { 3326 /* remove last page from this bio */ 3327 bio2->bi_vcnt--; 3328 bio2->bi_iter.bi_size -= len; 3329 bio_clear_flag(bio2, BIO_SEG_VALID); 3330 } 3331 goto bio_full; 3332 } 3333 nr_sectors += len>>9; 3334 sector_nr += len>>9; 3335 } while (biolist->bi_vcnt < RESYNC_PAGES); 3336 bio_full: 3337 r10_bio->sectors = nr_sectors; 3338 3339 while (biolist) { 3340 bio = biolist; 3341 biolist = biolist->bi_next; 3342 3343 bio->bi_next = NULL; 3344 r10_bio = bio->bi_private; 3345 r10_bio->sectors = nr_sectors; 3346 3347 if (bio->bi_end_io == end_sync_read) { 3348 md_sync_acct(bio->bi_bdev, nr_sectors); 3349 bio->bi_error = 0; 3350 generic_make_request(bio); 3351 } 3352 } 3353 3354 if (sectors_skipped) 3355 /* pretend they weren't skipped, it makes 3356 * no important difference in this case 3357 */ 3358 md_done_sync(mddev, sectors_skipped, 1); 3359 3360 return sectors_skipped + nr_sectors; 3361 giveup: 3362 /* There is nowhere to write, so all non-sync 3363 * drives must be failed or in resync, all drives 3364 * have a bad block, so try the next chunk... 3365 */ 3366 if (sector_nr + max_sync < max_sector) 3367 max_sector = sector_nr + max_sync; 3368 3369 sectors_skipped += (max_sector - sector_nr); 3370 chunks_skipped ++; 3371 sector_nr = max_sector; 3372 goto skipped; 3373 } 3374 3375 static sector_t 3376 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3377 { 3378 sector_t size; 3379 struct r10conf *conf = mddev->private; 3380 3381 if (!raid_disks) 3382 raid_disks = min(conf->geo.raid_disks, 3383 conf->prev.raid_disks); 3384 if (!sectors) 3385 sectors = conf->dev_sectors; 3386 3387 size = sectors >> conf->geo.chunk_shift; 3388 sector_div(size, conf->geo.far_copies); 3389 size = size * raid_disks; 3390 sector_div(size, conf->geo.near_copies); 3391 3392 return size << conf->geo.chunk_shift; 3393 } 3394 3395 static void calc_sectors(struct r10conf *conf, sector_t size) 3396 { 3397 /* Calculate the number of sectors-per-device that will 3398 * actually be used, and set conf->dev_sectors and 3399 * conf->stride 3400 */ 3401 3402 size = size >> conf->geo.chunk_shift; 3403 sector_div(size, conf->geo.far_copies); 3404 size = size * conf->geo.raid_disks; 3405 sector_div(size, conf->geo.near_copies); 3406 /* 'size' is now the number of chunks in the array */ 3407 /* calculate "used chunks per device" */ 3408 size = size * conf->copies; 3409 3410 /* We need to round up when dividing by raid_disks to 3411 * get the stride size. 3412 */ 3413 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); 3414 3415 conf->dev_sectors = size << conf->geo.chunk_shift; 3416 3417 if (conf->geo.far_offset) 3418 conf->geo.stride = 1 << conf->geo.chunk_shift; 3419 else { 3420 sector_div(size, conf->geo.far_copies); 3421 conf->geo.stride = size << conf->geo.chunk_shift; 3422 } 3423 } 3424 3425 enum geo_type {geo_new, geo_old, geo_start}; 3426 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) 3427 { 3428 int nc, fc, fo; 3429 int layout, chunk, disks; 3430 switch (new) { 3431 case geo_old: 3432 layout = mddev->layout; 3433 chunk = mddev->chunk_sectors; 3434 disks = mddev->raid_disks - mddev->delta_disks; 3435 break; 3436 case geo_new: 3437 layout = mddev->new_layout; 3438 chunk = mddev->new_chunk_sectors; 3439 disks = mddev->raid_disks; 3440 break; 3441 default: /* avoid 'may be unused' warnings */ 3442 case geo_start: /* new when starting reshape - raid_disks not 3443 * updated yet. */ 3444 layout = mddev->new_layout; 3445 chunk = mddev->new_chunk_sectors; 3446 disks = mddev->raid_disks + mddev->delta_disks; 3447 break; 3448 } 3449 if (layout >> 19) 3450 return -1; 3451 if (chunk < (PAGE_SIZE >> 9) || 3452 !is_power_of_2(chunk)) 3453 return -2; 3454 nc = layout & 255; 3455 fc = (layout >> 8) & 255; 3456 fo = layout & (1<<16); 3457 geo->raid_disks = disks; 3458 geo->near_copies = nc; 3459 geo->far_copies = fc; 3460 geo->far_offset = fo; 3461 switch (layout >> 17) { 3462 case 0: /* original layout. simple but not always optimal */ 3463 geo->far_set_size = disks; 3464 break; 3465 case 1: /* "improved" layout which was buggy. Hopefully no-one is 3466 * actually using this, but leave code here just in case.*/ 3467 geo->far_set_size = disks/fc; 3468 WARN(geo->far_set_size < fc, 3469 "This RAID10 layout does not provide data safety - please backup and create new array\n"); 3470 break; 3471 case 2: /* "improved" layout fixed to match documentation */ 3472 geo->far_set_size = fc * nc; 3473 break; 3474 default: /* Not a valid layout */ 3475 return -1; 3476 } 3477 geo->chunk_mask = chunk - 1; 3478 geo->chunk_shift = ffz(~chunk); 3479 return nc*fc; 3480 } 3481 3482 static struct r10conf *setup_conf(struct mddev *mddev) 3483 { 3484 struct r10conf *conf = NULL; 3485 int err = -EINVAL; 3486 struct geom geo; 3487 int copies; 3488 3489 copies = setup_geo(&geo, mddev, geo_new); 3490 3491 if (copies == -2) { 3492 printk(KERN_ERR "md/raid10:%s: chunk size must be " 3493 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 3494 mdname(mddev), PAGE_SIZE); 3495 goto out; 3496 } 3497 3498 if (copies < 2 || copies > mddev->raid_disks) { 3499 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 3500 mdname(mddev), mddev->new_layout); 3501 goto out; 3502 } 3503 3504 err = -ENOMEM; 3505 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); 3506 if (!conf) 3507 goto out; 3508 3509 /* FIXME calc properly */ 3510 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + 3511 max(0,-mddev->delta_disks)), 3512 GFP_KERNEL); 3513 if (!conf->mirrors) 3514 goto out; 3515 3516 conf->tmppage = alloc_page(GFP_KERNEL); 3517 if (!conf->tmppage) 3518 goto out; 3519 3520 conf->geo = geo; 3521 conf->copies = copies; 3522 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 3523 r10bio_pool_free, conf); 3524 if (!conf->r10bio_pool) 3525 goto out; 3526 3527 calc_sectors(conf, mddev->dev_sectors); 3528 if (mddev->reshape_position == MaxSector) { 3529 conf->prev = conf->geo; 3530 conf->reshape_progress = MaxSector; 3531 } else { 3532 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { 3533 err = -EINVAL; 3534 goto out; 3535 } 3536 conf->reshape_progress = mddev->reshape_position; 3537 if (conf->prev.far_offset) 3538 conf->prev.stride = 1 << conf->prev.chunk_shift; 3539 else 3540 /* far_copies must be 1 */ 3541 conf->prev.stride = conf->dev_sectors; 3542 } 3543 conf->reshape_safe = conf->reshape_progress; 3544 spin_lock_init(&conf->device_lock); 3545 INIT_LIST_HEAD(&conf->retry_list); 3546 INIT_LIST_HEAD(&conf->bio_end_io_list); 3547 3548 spin_lock_init(&conf->resync_lock); 3549 init_waitqueue_head(&conf->wait_barrier); 3550 atomic_set(&conf->nr_pending, 0); 3551 3552 conf->thread = md_register_thread(raid10d, mddev, "raid10"); 3553 if (!conf->thread) 3554 goto out; 3555 3556 conf->mddev = mddev; 3557 return conf; 3558 3559 out: 3560 if (err == -ENOMEM) 3561 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 3562 mdname(mddev)); 3563 if (conf) { 3564 mempool_destroy(conf->r10bio_pool); 3565 kfree(conf->mirrors); 3566 safe_put_page(conf->tmppage); 3567 kfree(conf); 3568 } 3569 return ERR_PTR(err); 3570 } 3571 3572 static int raid10_run(struct mddev *mddev) 3573 { 3574 struct r10conf *conf; 3575 int i, disk_idx, chunk_size; 3576 struct raid10_info *disk; 3577 struct md_rdev *rdev; 3578 sector_t size; 3579 sector_t min_offset_diff = 0; 3580 int first = 1; 3581 bool discard_supported = false; 3582 3583 if (mddev->private == NULL) { 3584 conf = setup_conf(mddev); 3585 if (IS_ERR(conf)) 3586 return PTR_ERR(conf); 3587 mddev->private = conf; 3588 } 3589 conf = mddev->private; 3590 if (!conf) 3591 goto out; 3592 3593 mddev->thread = conf->thread; 3594 conf->thread = NULL; 3595 3596 chunk_size = mddev->chunk_sectors << 9; 3597 if (mddev->queue) { 3598 blk_queue_max_discard_sectors(mddev->queue, 3599 mddev->chunk_sectors); 3600 blk_queue_max_write_same_sectors(mddev->queue, 0); 3601 blk_queue_io_min(mddev->queue, chunk_size); 3602 if (conf->geo.raid_disks % conf->geo.near_copies) 3603 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); 3604 else 3605 blk_queue_io_opt(mddev->queue, chunk_size * 3606 (conf->geo.raid_disks / conf->geo.near_copies)); 3607 } 3608 3609 rdev_for_each(rdev, mddev) { 3610 long long diff; 3611 struct request_queue *q; 3612 3613 disk_idx = rdev->raid_disk; 3614 if (disk_idx < 0) 3615 continue; 3616 if (disk_idx >= conf->geo.raid_disks && 3617 disk_idx >= conf->prev.raid_disks) 3618 continue; 3619 disk = conf->mirrors + disk_idx; 3620 3621 if (test_bit(Replacement, &rdev->flags)) { 3622 if (disk->replacement) 3623 goto out_free_conf; 3624 disk->replacement = rdev; 3625 } else { 3626 if (disk->rdev) 3627 goto out_free_conf; 3628 disk->rdev = rdev; 3629 } 3630 q = bdev_get_queue(rdev->bdev); 3631 diff = (rdev->new_data_offset - rdev->data_offset); 3632 if (!mddev->reshape_backwards) 3633 diff = -diff; 3634 if (diff < 0) 3635 diff = 0; 3636 if (first || diff < min_offset_diff) 3637 min_offset_diff = diff; 3638 3639 if (mddev->gendisk) 3640 disk_stack_limits(mddev->gendisk, rdev->bdev, 3641 rdev->data_offset << 9); 3642 3643 disk->head_position = 0; 3644 3645 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3646 discard_supported = true; 3647 } 3648 3649 if (mddev->queue) { 3650 if (discard_supported) 3651 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3652 mddev->queue); 3653 else 3654 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3655 mddev->queue); 3656 } 3657 /* need to check that every block has at least one working mirror */ 3658 if (!enough(conf, -1)) { 3659 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 3660 mdname(mddev)); 3661 goto out_free_conf; 3662 } 3663 3664 if (conf->reshape_progress != MaxSector) { 3665 /* must ensure that shape change is supported */ 3666 if (conf->geo.far_copies != 1 && 3667 conf->geo.far_offset == 0) 3668 goto out_free_conf; 3669 if (conf->prev.far_copies != 1 && 3670 conf->prev.far_offset == 0) 3671 goto out_free_conf; 3672 } 3673 3674 mddev->degraded = 0; 3675 for (i = 0; 3676 i < conf->geo.raid_disks 3677 || i < conf->prev.raid_disks; 3678 i++) { 3679 3680 disk = conf->mirrors + i; 3681 3682 if (!disk->rdev && disk->replacement) { 3683 /* The replacement is all we have - use it */ 3684 disk->rdev = disk->replacement; 3685 disk->replacement = NULL; 3686 clear_bit(Replacement, &disk->rdev->flags); 3687 } 3688 3689 if (!disk->rdev || 3690 !test_bit(In_sync, &disk->rdev->flags)) { 3691 disk->head_position = 0; 3692 mddev->degraded++; 3693 if (disk->rdev && 3694 disk->rdev->saved_raid_disk < 0) 3695 conf->fullsync = 1; 3696 } 3697 disk->recovery_disabled = mddev->recovery_disabled - 1; 3698 } 3699 3700 if (mddev->recovery_cp != MaxSector) 3701 printk(KERN_NOTICE "md/raid10:%s: not clean" 3702 " -- starting background reconstruction\n", 3703 mdname(mddev)); 3704 printk(KERN_INFO 3705 "md/raid10:%s: active with %d out of %d devices\n", 3706 mdname(mddev), conf->geo.raid_disks - mddev->degraded, 3707 conf->geo.raid_disks); 3708 /* 3709 * Ok, everything is just fine now 3710 */ 3711 mddev->dev_sectors = conf->dev_sectors; 3712 size = raid10_size(mddev, 0, 0); 3713 md_set_array_sectors(mddev, size); 3714 mddev->resync_max_sectors = size; 3715 3716 if (mddev->queue) { 3717 int stripe = conf->geo.raid_disks * 3718 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 3719 3720 /* Calculate max read-ahead size. 3721 * We need to readahead at least twice a whole stripe.... 3722 * maybe... 3723 */ 3724 stripe /= conf->geo.near_copies; 3725 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 3726 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 3727 } 3728 3729 if (md_integrity_register(mddev)) 3730 goto out_free_conf; 3731 3732 if (conf->reshape_progress != MaxSector) { 3733 unsigned long before_length, after_length; 3734 3735 before_length = ((1 << conf->prev.chunk_shift) * 3736 conf->prev.far_copies); 3737 after_length = ((1 << conf->geo.chunk_shift) * 3738 conf->geo.far_copies); 3739 3740 if (max(before_length, after_length) > min_offset_diff) { 3741 /* This cannot work */ 3742 printk("md/raid10: offset difference not enough to continue reshape\n"); 3743 goto out_free_conf; 3744 } 3745 conf->offset_diff = min_offset_diff; 3746 3747 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3748 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3749 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 3750 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3751 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 3752 "reshape"); 3753 } 3754 3755 return 0; 3756 3757 out_free_conf: 3758 md_unregister_thread(&mddev->thread); 3759 mempool_destroy(conf->r10bio_pool); 3760 safe_put_page(conf->tmppage); 3761 kfree(conf->mirrors); 3762 kfree(conf); 3763 mddev->private = NULL; 3764 out: 3765 return -EIO; 3766 } 3767 3768 static void raid10_free(struct mddev *mddev, void *priv) 3769 { 3770 struct r10conf *conf = priv; 3771 3772 mempool_destroy(conf->r10bio_pool); 3773 safe_put_page(conf->tmppage); 3774 kfree(conf->mirrors); 3775 kfree(conf->mirrors_old); 3776 kfree(conf->mirrors_new); 3777 kfree(conf); 3778 } 3779 3780 static void raid10_quiesce(struct mddev *mddev, int state) 3781 { 3782 struct r10conf *conf = mddev->private; 3783 3784 switch(state) { 3785 case 1: 3786 raise_barrier(conf, 0); 3787 break; 3788 case 0: 3789 lower_barrier(conf); 3790 break; 3791 } 3792 } 3793 3794 static int raid10_resize(struct mddev *mddev, sector_t sectors) 3795 { 3796 /* Resize of 'far' arrays is not supported. 3797 * For 'near' and 'offset' arrays we can set the 3798 * number of sectors used to be an appropriate multiple 3799 * of the chunk size. 3800 * For 'offset', this is far_copies*chunksize. 3801 * For 'near' the multiplier is the LCM of 3802 * near_copies and raid_disks. 3803 * So if far_copies > 1 && !far_offset, fail. 3804 * Else find LCM(raid_disks, near_copy)*far_copies and 3805 * multiply by chunk_size. Then round to this number. 3806 * This is mostly done by raid10_size() 3807 */ 3808 struct r10conf *conf = mddev->private; 3809 sector_t oldsize, size; 3810 3811 if (mddev->reshape_position != MaxSector) 3812 return -EBUSY; 3813 3814 if (conf->geo.far_copies > 1 && !conf->geo.far_offset) 3815 return -EINVAL; 3816 3817 oldsize = raid10_size(mddev, 0, 0); 3818 size = raid10_size(mddev, sectors, 0); 3819 if (mddev->external_size && 3820 mddev->array_sectors > size) 3821 return -EINVAL; 3822 if (mddev->bitmap) { 3823 int ret = bitmap_resize(mddev->bitmap, size, 0, 0); 3824 if (ret) 3825 return ret; 3826 } 3827 md_set_array_sectors(mddev, size); 3828 if (mddev->queue) { 3829 set_capacity(mddev->gendisk, mddev->array_sectors); 3830 revalidate_disk(mddev->gendisk); 3831 } 3832 if (sectors > mddev->dev_sectors && 3833 mddev->recovery_cp > oldsize) { 3834 mddev->recovery_cp = oldsize; 3835 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3836 } 3837 calc_sectors(conf, sectors); 3838 mddev->dev_sectors = conf->dev_sectors; 3839 mddev->resync_max_sectors = size; 3840 return 0; 3841 } 3842 3843 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) 3844 { 3845 struct md_rdev *rdev; 3846 struct r10conf *conf; 3847 3848 if (mddev->degraded > 0) { 3849 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 3850 mdname(mddev)); 3851 return ERR_PTR(-EINVAL); 3852 } 3853 sector_div(size, devs); 3854 3855 /* Set new parameters */ 3856 mddev->new_level = 10; 3857 /* new layout: far_copies = 1, near_copies = 2 */ 3858 mddev->new_layout = (1<<8) + 2; 3859 mddev->new_chunk_sectors = mddev->chunk_sectors; 3860 mddev->delta_disks = mddev->raid_disks; 3861 mddev->raid_disks *= 2; 3862 /* make sure it will be not marked as dirty */ 3863 mddev->recovery_cp = MaxSector; 3864 mddev->dev_sectors = size; 3865 3866 conf = setup_conf(mddev); 3867 if (!IS_ERR(conf)) { 3868 rdev_for_each(rdev, mddev) 3869 if (rdev->raid_disk >= 0) { 3870 rdev->new_raid_disk = rdev->raid_disk * 2; 3871 rdev->sectors = size; 3872 } 3873 conf->barrier = 1; 3874 } 3875 3876 return conf; 3877 } 3878 3879 static void *raid10_takeover(struct mddev *mddev) 3880 { 3881 struct r0conf *raid0_conf; 3882 3883 /* raid10 can take over: 3884 * raid0 - providing it has only two drives 3885 */ 3886 if (mddev->level == 0) { 3887 /* for raid0 takeover only one zone is supported */ 3888 raid0_conf = mddev->private; 3889 if (raid0_conf->nr_strip_zones > 1) { 3890 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 3891 " with more than one zone.\n", 3892 mdname(mddev)); 3893 return ERR_PTR(-EINVAL); 3894 } 3895 return raid10_takeover_raid0(mddev, 3896 raid0_conf->strip_zone->zone_end, 3897 raid0_conf->strip_zone->nb_dev); 3898 } 3899 return ERR_PTR(-EINVAL); 3900 } 3901 3902 static int raid10_check_reshape(struct mddev *mddev) 3903 { 3904 /* Called when there is a request to change 3905 * - layout (to ->new_layout) 3906 * - chunk size (to ->new_chunk_sectors) 3907 * - raid_disks (by delta_disks) 3908 * or when trying to restart a reshape that was ongoing. 3909 * 3910 * We need to validate the request and possibly allocate 3911 * space if that might be an issue later. 3912 * 3913 * Currently we reject any reshape of a 'far' mode array, 3914 * allow chunk size to change if new is generally acceptable, 3915 * allow raid_disks to increase, and allow 3916 * a switch between 'near' mode and 'offset' mode. 3917 */ 3918 struct r10conf *conf = mddev->private; 3919 struct geom geo; 3920 3921 if (conf->geo.far_copies != 1 && !conf->geo.far_offset) 3922 return -EINVAL; 3923 3924 if (setup_geo(&geo, mddev, geo_start) != conf->copies) 3925 /* mustn't change number of copies */ 3926 return -EINVAL; 3927 if (geo.far_copies > 1 && !geo.far_offset) 3928 /* Cannot switch to 'far' mode */ 3929 return -EINVAL; 3930 3931 if (mddev->array_sectors & geo.chunk_mask) 3932 /* not factor of array size */ 3933 return -EINVAL; 3934 3935 if (!enough(conf, -1)) 3936 return -EINVAL; 3937 3938 kfree(conf->mirrors_new); 3939 conf->mirrors_new = NULL; 3940 if (mddev->delta_disks > 0) { 3941 /* allocate new 'mirrors' list */ 3942 conf->mirrors_new = kzalloc( 3943 sizeof(struct raid10_info) 3944 *(mddev->raid_disks + 3945 mddev->delta_disks), 3946 GFP_KERNEL); 3947 if (!conf->mirrors_new) 3948 return -ENOMEM; 3949 } 3950 return 0; 3951 } 3952 3953 /* 3954 * Need to check if array has failed when deciding whether to: 3955 * - start an array 3956 * - remove non-faulty devices 3957 * - add a spare 3958 * - allow a reshape 3959 * This determination is simple when no reshape is happening. 3960 * However if there is a reshape, we need to carefully check 3961 * both the before and after sections. 3962 * This is because some failed devices may only affect one 3963 * of the two sections, and some non-in_sync devices may 3964 * be insync in the section most affected by failed devices. 3965 */ 3966 static int calc_degraded(struct r10conf *conf) 3967 { 3968 int degraded, degraded2; 3969 int i; 3970 3971 rcu_read_lock(); 3972 degraded = 0; 3973 /* 'prev' section first */ 3974 for (i = 0; i < conf->prev.raid_disks; i++) { 3975 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3976 if (!rdev || test_bit(Faulty, &rdev->flags)) 3977 degraded++; 3978 else if (!test_bit(In_sync, &rdev->flags)) 3979 /* When we can reduce the number of devices in 3980 * an array, this might not contribute to 3981 * 'degraded'. It does now. 3982 */ 3983 degraded++; 3984 } 3985 rcu_read_unlock(); 3986 if (conf->geo.raid_disks == conf->prev.raid_disks) 3987 return degraded; 3988 rcu_read_lock(); 3989 degraded2 = 0; 3990 for (i = 0; i < conf->geo.raid_disks; i++) { 3991 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 3992 if (!rdev || test_bit(Faulty, &rdev->flags)) 3993 degraded2++; 3994 else if (!test_bit(In_sync, &rdev->flags)) { 3995 /* If reshape is increasing the number of devices, 3996 * this section has already been recovered, so 3997 * it doesn't contribute to degraded. 3998 * else it does. 3999 */ 4000 if (conf->geo.raid_disks <= conf->prev.raid_disks) 4001 degraded2++; 4002 } 4003 } 4004 rcu_read_unlock(); 4005 if (degraded2 > degraded) 4006 return degraded2; 4007 return degraded; 4008 } 4009 4010 static int raid10_start_reshape(struct mddev *mddev) 4011 { 4012 /* A 'reshape' has been requested. This commits 4013 * the various 'new' fields and sets MD_RECOVER_RESHAPE 4014 * This also checks if there are enough spares and adds them 4015 * to the array. 4016 * We currently require enough spares to make the final 4017 * array non-degraded. We also require that the difference 4018 * between old and new data_offset - on each device - is 4019 * enough that we never risk over-writing. 4020 */ 4021 4022 unsigned long before_length, after_length; 4023 sector_t min_offset_diff = 0; 4024 int first = 1; 4025 struct geom new; 4026 struct r10conf *conf = mddev->private; 4027 struct md_rdev *rdev; 4028 int spares = 0; 4029 int ret; 4030 4031 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4032 return -EBUSY; 4033 4034 if (setup_geo(&new, mddev, geo_start) != conf->copies) 4035 return -EINVAL; 4036 4037 before_length = ((1 << conf->prev.chunk_shift) * 4038 conf->prev.far_copies); 4039 after_length = ((1 << conf->geo.chunk_shift) * 4040 conf->geo.far_copies); 4041 4042 rdev_for_each(rdev, mddev) { 4043 if (!test_bit(In_sync, &rdev->flags) 4044 && !test_bit(Faulty, &rdev->flags)) 4045 spares++; 4046 if (rdev->raid_disk >= 0) { 4047 long long diff = (rdev->new_data_offset 4048 - rdev->data_offset); 4049 if (!mddev->reshape_backwards) 4050 diff = -diff; 4051 if (diff < 0) 4052 diff = 0; 4053 if (first || diff < min_offset_diff) 4054 min_offset_diff = diff; 4055 } 4056 } 4057 4058 if (max(before_length, after_length) > min_offset_diff) 4059 return -EINVAL; 4060 4061 if (spares < mddev->delta_disks) 4062 return -EINVAL; 4063 4064 conf->offset_diff = min_offset_diff; 4065 spin_lock_irq(&conf->device_lock); 4066 if (conf->mirrors_new) { 4067 memcpy(conf->mirrors_new, conf->mirrors, 4068 sizeof(struct raid10_info)*conf->prev.raid_disks); 4069 smp_mb(); 4070 kfree(conf->mirrors_old); 4071 conf->mirrors_old = conf->mirrors; 4072 conf->mirrors = conf->mirrors_new; 4073 conf->mirrors_new = NULL; 4074 } 4075 setup_geo(&conf->geo, mddev, geo_start); 4076 smp_mb(); 4077 if (mddev->reshape_backwards) { 4078 sector_t size = raid10_size(mddev, 0, 0); 4079 if (size < mddev->array_sectors) { 4080 spin_unlock_irq(&conf->device_lock); 4081 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", 4082 mdname(mddev)); 4083 return -EINVAL; 4084 } 4085 mddev->resync_max_sectors = size; 4086 conf->reshape_progress = size; 4087 } else 4088 conf->reshape_progress = 0; 4089 conf->reshape_safe = conf->reshape_progress; 4090 spin_unlock_irq(&conf->device_lock); 4091 4092 if (mddev->delta_disks && mddev->bitmap) { 4093 ret = bitmap_resize(mddev->bitmap, 4094 raid10_size(mddev, 0, 4095 conf->geo.raid_disks), 4096 0, 0); 4097 if (ret) 4098 goto abort; 4099 } 4100 if (mddev->delta_disks > 0) { 4101 rdev_for_each(rdev, mddev) 4102 if (rdev->raid_disk < 0 && 4103 !test_bit(Faulty, &rdev->flags)) { 4104 if (raid10_add_disk(mddev, rdev) == 0) { 4105 if (rdev->raid_disk >= 4106 conf->prev.raid_disks) 4107 set_bit(In_sync, &rdev->flags); 4108 else 4109 rdev->recovery_offset = 0; 4110 4111 if (sysfs_link_rdev(mddev, rdev)) 4112 /* Failure here is OK */; 4113 } 4114 } else if (rdev->raid_disk >= conf->prev.raid_disks 4115 && !test_bit(Faulty, &rdev->flags)) { 4116 /* This is a spare that was manually added */ 4117 set_bit(In_sync, &rdev->flags); 4118 } 4119 } 4120 /* When a reshape changes the number of devices, 4121 * ->degraded is measured against the larger of the 4122 * pre and post numbers. 4123 */ 4124 spin_lock_irq(&conf->device_lock); 4125 mddev->degraded = calc_degraded(conf); 4126 spin_unlock_irq(&conf->device_lock); 4127 mddev->raid_disks = conf->geo.raid_disks; 4128 mddev->reshape_position = conf->reshape_progress; 4129 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4130 4131 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4132 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4133 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 4134 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 4135 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4136 4137 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 4138 "reshape"); 4139 if (!mddev->sync_thread) { 4140 ret = -EAGAIN; 4141 goto abort; 4142 } 4143 conf->reshape_checkpoint = jiffies; 4144 md_wakeup_thread(mddev->sync_thread); 4145 md_new_event(mddev); 4146 return 0; 4147 4148 abort: 4149 mddev->recovery = 0; 4150 spin_lock_irq(&conf->device_lock); 4151 conf->geo = conf->prev; 4152 mddev->raid_disks = conf->geo.raid_disks; 4153 rdev_for_each(rdev, mddev) 4154 rdev->new_data_offset = rdev->data_offset; 4155 smp_wmb(); 4156 conf->reshape_progress = MaxSector; 4157 conf->reshape_safe = MaxSector; 4158 mddev->reshape_position = MaxSector; 4159 spin_unlock_irq(&conf->device_lock); 4160 return ret; 4161 } 4162 4163 /* Calculate the last device-address that could contain 4164 * any block from the chunk that includes the array-address 's' 4165 * and report the next address. 4166 * i.e. the address returned will be chunk-aligned and after 4167 * any data that is in the chunk containing 's'. 4168 */ 4169 static sector_t last_dev_address(sector_t s, struct geom *geo) 4170 { 4171 s = (s | geo->chunk_mask) + 1; 4172 s >>= geo->chunk_shift; 4173 s *= geo->near_copies; 4174 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); 4175 s *= geo->far_copies; 4176 s <<= geo->chunk_shift; 4177 return s; 4178 } 4179 4180 /* Calculate the first device-address that could contain 4181 * any block from the chunk that includes the array-address 's'. 4182 * This too will be the start of a chunk 4183 */ 4184 static sector_t first_dev_address(sector_t s, struct geom *geo) 4185 { 4186 s >>= geo->chunk_shift; 4187 s *= geo->near_copies; 4188 sector_div(s, geo->raid_disks); 4189 s *= geo->far_copies; 4190 s <<= geo->chunk_shift; 4191 return s; 4192 } 4193 4194 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, 4195 int *skipped) 4196 { 4197 /* We simply copy at most one chunk (smallest of old and new) 4198 * at a time, possibly less if that exceeds RESYNC_PAGES, 4199 * or we hit a bad block or something. 4200 * This might mean we pause for normal IO in the middle of 4201 * a chunk, but that is not a problem as mddev->reshape_position 4202 * can record any location. 4203 * 4204 * If we will want to write to a location that isn't 4205 * yet recorded as 'safe' (i.e. in metadata on disk) then 4206 * we need to flush all reshape requests and update the metadata. 4207 * 4208 * When reshaping forwards (e.g. to more devices), we interpret 4209 * 'safe' as the earliest block which might not have been copied 4210 * down yet. We divide this by previous stripe size and multiply 4211 * by previous stripe length to get lowest device offset that we 4212 * cannot write to yet. 4213 * We interpret 'sector_nr' as an address that we want to write to. 4214 * From this we use last_device_address() to find where we might 4215 * write to, and first_device_address on the 'safe' position. 4216 * If this 'next' write position is after the 'safe' position, 4217 * we must update the metadata to increase the 'safe' position. 4218 * 4219 * When reshaping backwards, we round in the opposite direction 4220 * and perform the reverse test: next write position must not be 4221 * less than current safe position. 4222 * 4223 * In all this the minimum difference in data offsets 4224 * (conf->offset_diff - always positive) allows a bit of slack, 4225 * so next can be after 'safe', but not by more than offset_diff 4226 * 4227 * We need to prepare all the bios here before we start any IO 4228 * to ensure the size we choose is acceptable to all devices. 4229 * The means one for each copy for write-out and an extra one for 4230 * read-in. 4231 * We store the read-in bio in ->master_bio and the others in 4232 * ->devs[x].bio and ->devs[x].repl_bio. 4233 */ 4234 struct r10conf *conf = mddev->private; 4235 struct r10bio *r10_bio; 4236 sector_t next, safe, last; 4237 int max_sectors; 4238 int nr_sectors; 4239 int s; 4240 struct md_rdev *rdev; 4241 int need_flush = 0; 4242 struct bio *blist; 4243 struct bio *bio, *read_bio; 4244 int sectors_done = 0; 4245 4246 if (sector_nr == 0) { 4247 /* If restarting in the middle, skip the initial sectors */ 4248 if (mddev->reshape_backwards && 4249 conf->reshape_progress < raid10_size(mddev, 0, 0)) { 4250 sector_nr = (raid10_size(mddev, 0, 0) 4251 - conf->reshape_progress); 4252 } else if (!mddev->reshape_backwards && 4253 conf->reshape_progress > 0) 4254 sector_nr = conf->reshape_progress; 4255 if (sector_nr) { 4256 mddev->curr_resync_completed = sector_nr; 4257 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 4258 *skipped = 1; 4259 return sector_nr; 4260 } 4261 } 4262 4263 /* We don't use sector_nr to track where we are up to 4264 * as that doesn't work well for ->reshape_backwards. 4265 * So just use ->reshape_progress. 4266 */ 4267 if (mddev->reshape_backwards) { 4268 /* 'next' is the earliest device address that we might 4269 * write to for this chunk in the new layout 4270 */ 4271 next = first_dev_address(conf->reshape_progress - 1, 4272 &conf->geo); 4273 4274 /* 'safe' is the last device address that we might read from 4275 * in the old layout after a restart 4276 */ 4277 safe = last_dev_address(conf->reshape_safe - 1, 4278 &conf->prev); 4279 4280 if (next + conf->offset_diff < safe) 4281 need_flush = 1; 4282 4283 last = conf->reshape_progress - 1; 4284 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask 4285 & conf->prev.chunk_mask); 4286 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) 4287 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; 4288 } else { 4289 /* 'next' is after the last device address that we 4290 * might write to for this chunk in the new layout 4291 */ 4292 next = last_dev_address(conf->reshape_progress, &conf->geo); 4293 4294 /* 'safe' is the earliest device address that we might 4295 * read from in the old layout after a restart 4296 */ 4297 safe = first_dev_address(conf->reshape_safe, &conf->prev); 4298 4299 /* Need to update metadata if 'next' might be beyond 'safe' 4300 * as that would possibly corrupt data 4301 */ 4302 if (next > safe + conf->offset_diff) 4303 need_flush = 1; 4304 4305 sector_nr = conf->reshape_progress; 4306 last = sector_nr | (conf->geo.chunk_mask 4307 & conf->prev.chunk_mask); 4308 4309 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) 4310 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; 4311 } 4312 4313 if (need_flush || 4314 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 4315 /* Need to update reshape_position in metadata */ 4316 wait_barrier(conf); 4317 mddev->reshape_position = conf->reshape_progress; 4318 if (mddev->reshape_backwards) 4319 mddev->curr_resync_completed = raid10_size(mddev, 0, 0) 4320 - conf->reshape_progress; 4321 else 4322 mddev->curr_resync_completed = conf->reshape_progress; 4323 conf->reshape_checkpoint = jiffies; 4324 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4325 md_wakeup_thread(mddev->thread); 4326 wait_event(mddev->sb_wait, mddev->flags == 0 || 4327 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 4328 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 4329 allow_barrier(conf); 4330 return sectors_done; 4331 } 4332 conf->reshape_safe = mddev->reshape_position; 4333 allow_barrier(conf); 4334 } 4335 4336 read_more: 4337 /* Now schedule reads for blocks from sector_nr to last */ 4338 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 4339 r10_bio->state = 0; 4340 raise_barrier(conf, sectors_done != 0); 4341 atomic_set(&r10_bio->remaining, 0); 4342 r10_bio->mddev = mddev; 4343 r10_bio->sector = sector_nr; 4344 set_bit(R10BIO_IsReshape, &r10_bio->state); 4345 r10_bio->sectors = last - sector_nr + 1; 4346 rdev = read_balance(conf, r10_bio, &max_sectors); 4347 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); 4348 4349 if (!rdev) { 4350 /* Cannot read from here, so need to record bad blocks 4351 * on all the target devices. 4352 */ 4353 // FIXME 4354 mempool_free(r10_bio, conf->r10buf_pool); 4355 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4356 return sectors_done; 4357 } 4358 4359 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); 4360 4361 read_bio->bi_bdev = rdev->bdev; 4362 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr 4363 + rdev->data_offset); 4364 read_bio->bi_private = r10_bio; 4365 read_bio->bi_end_io = end_sync_read; 4366 bio_set_op_attrs(read_bio, REQ_OP_READ, 0); 4367 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); 4368 read_bio->bi_error = 0; 4369 read_bio->bi_vcnt = 0; 4370 read_bio->bi_iter.bi_size = 0; 4371 r10_bio->master_bio = read_bio; 4372 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; 4373 4374 /* Now find the locations in the new layout */ 4375 __raid10_find_phys(&conf->geo, r10_bio); 4376 4377 blist = read_bio; 4378 read_bio->bi_next = NULL; 4379 4380 rcu_read_lock(); 4381 for (s = 0; s < conf->copies*2; s++) { 4382 struct bio *b; 4383 int d = r10_bio->devs[s/2].devnum; 4384 struct md_rdev *rdev2; 4385 if (s&1) { 4386 rdev2 = rcu_dereference(conf->mirrors[d].replacement); 4387 b = r10_bio->devs[s/2].repl_bio; 4388 } else { 4389 rdev2 = rcu_dereference(conf->mirrors[d].rdev); 4390 b = r10_bio->devs[s/2].bio; 4391 } 4392 if (!rdev2 || test_bit(Faulty, &rdev2->flags)) 4393 continue; 4394 4395 bio_reset(b); 4396 b->bi_bdev = rdev2->bdev; 4397 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + 4398 rdev2->new_data_offset; 4399 b->bi_private = r10_bio; 4400 b->bi_end_io = end_reshape_write; 4401 bio_set_op_attrs(b, REQ_OP_WRITE, 0); 4402 b->bi_next = blist; 4403 blist = b; 4404 } 4405 4406 /* Now add as many pages as possible to all of these bios. */ 4407 4408 nr_sectors = 0; 4409 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { 4410 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; 4411 int len = (max_sectors - s) << 9; 4412 if (len > PAGE_SIZE) 4413 len = PAGE_SIZE; 4414 for (bio = blist; bio ; bio = bio->bi_next) { 4415 struct bio *bio2; 4416 if (bio_add_page(bio, page, len, 0)) 4417 continue; 4418 4419 /* Didn't fit, must stop */ 4420 for (bio2 = blist; 4421 bio2 && bio2 != bio; 4422 bio2 = bio2->bi_next) { 4423 /* Remove last page from this bio */ 4424 bio2->bi_vcnt--; 4425 bio2->bi_iter.bi_size -= len; 4426 bio_clear_flag(bio2, BIO_SEG_VALID); 4427 } 4428 goto bio_full; 4429 } 4430 sector_nr += len >> 9; 4431 nr_sectors += len >> 9; 4432 } 4433 bio_full: 4434 rcu_read_unlock(); 4435 r10_bio->sectors = nr_sectors; 4436 4437 /* Now submit the read */ 4438 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); 4439 atomic_inc(&r10_bio->remaining); 4440 read_bio->bi_next = NULL; 4441 generic_make_request(read_bio); 4442 sector_nr += nr_sectors; 4443 sectors_done += nr_sectors; 4444 if (sector_nr <= last) 4445 goto read_more; 4446 4447 /* Now that we have done the whole section we can 4448 * update reshape_progress 4449 */ 4450 if (mddev->reshape_backwards) 4451 conf->reshape_progress -= sectors_done; 4452 else 4453 conf->reshape_progress += sectors_done; 4454 4455 return sectors_done; 4456 } 4457 4458 static void end_reshape_request(struct r10bio *r10_bio); 4459 static int handle_reshape_read_error(struct mddev *mddev, 4460 struct r10bio *r10_bio); 4461 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) 4462 { 4463 /* Reshape read completed. Hopefully we have a block 4464 * to write out. 4465 * If we got a read error then we do sync 1-page reads from 4466 * elsewhere until we find the data - or give up. 4467 */ 4468 struct r10conf *conf = mddev->private; 4469 int s; 4470 4471 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) 4472 if (handle_reshape_read_error(mddev, r10_bio) < 0) { 4473 /* Reshape has been aborted */ 4474 md_done_sync(mddev, r10_bio->sectors, 0); 4475 return; 4476 } 4477 4478 /* We definitely have the data in the pages, schedule the 4479 * writes. 4480 */ 4481 atomic_set(&r10_bio->remaining, 1); 4482 for (s = 0; s < conf->copies*2; s++) { 4483 struct bio *b; 4484 int d = r10_bio->devs[s/2].devnum; 4485 struct md_rdev *rdev; 4486 rcu_read_lock(); 4487 if (s&1) { 4488 rdev = rcu_dereference(conf->mirrors[d].replacement); 4489 b = r10_bio->devs[s/2].repl_bio; 4490 } else { 4491 rdev = rcu_dereference(conf->mirrors[d].rdev); 4492 b = r10_bio->devs[s/2].bio; 4493 } 4494 if (!rdev || test_bit(Faulty, &rdev->flags)) { 4495 rcu_read_unlock(); 4496 continue; 4497 } 4498 atomic_inc(&rdev->nr_pending); 4499 rcu_read_unlock(); 4500 md_sync_acct(b->bi_bdev, r10_bio->sectors); 4501 atomic_inc(&r10_bio->remaining); 4502 b->bi_next = NULL; 4503 generic_make_request(b); 4504 } 4505 end_reshape_request(r10_bio); 4506 } 4507 4508 static void end_reshape(struct r10conf *conf) 4509 { 4510 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) 4511 return; 4512 4513 spin_lock_irq(&conf->device_lock); 4514 conf->prev = conf->geo; 4515 md_finish_reshape(conf->mddev); 4516 smp_wmb(); 4517 conf->reshape_progress = MaxSector; 4518 conf->reshape_safe = MaxSector; 4519 spin_unlock_irq(&conf->device_lock); 4520 4521 /* read-ahead size must cover two whole stripes, which is 4522 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 4523 */ 4524 if (conf->mddev->queue) { 4525 int stripe = conf->geo.raid_disks * 4526 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); 4527 stripe /= conf->geo.near_copies; 4528 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 4529 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 4530 } 4531 conf->fullsync = 0; 4532 } 4533 4534 static int handle_reshape_read_error(struct mddev *mddev, 4535 struct r10bio *r10_bio) 4536 { 4537 /* Use sync reads to get the blocks from somewhere else */ 4538 int sectors = r10_bio->sectors; 4539 struct r10conf *conf = mddev->private; 4540 struct { 4541 struct r10bio r10_bio; 4542 struct r10dev devs[conf->copies]; 4543 } on_stack; 4544 struct r10bio *r10b = &on_stack.r10_bio; 4545 int slot = 0; 4546 int idx = 0; 4547 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; 4548 4549 r10b->sector = r10_bio->sector; 4550 __raid10_find_phys(&conf->prev, r10b); 4551 4552 while (sectors) { 4553 int s = sectors; 4554 int success = 0; 4555 int first_slot = slot; 4556 4557 if (s > (PAGE_SIZE >> 9)) 4558 s = PAGE_SIZE >> 9; 4559 4560 rcu_read_lock(); 4561 while (!success) { 4562 int d = r10b->devs[slot].devnum; 4563 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4564 sector_t addr; 4565 if (rdev == NULL || 4566 test_bit(Faulty, &rdev->flags) || 4567 !test_bit(In_sync, &rdev->flags)) 4568 goto failed; 4569 4570 addr = r10b->devs[slot].addr + idx * PAGE_SIZE; 4571 atomic_inc(&rdev->nr_pending); 4572 rcu_read_unlock(); 4573 success = sync_page_io(rdev, 4574 addr, 4575 s << 9, 4576 bvec[idx].bv_page, 4577 REQ_OP_READ, 0, false); 4578 rdev_dec_pending(rdev, mddev); 4579 rcu_read_lock(); 4580 if (success) 4581 break; 4582 failed: 4583 slot++; 4584 if (slot >= conf->copies) 4585 slot = 0; 4586 if (slot == first_slot) 4587 break; 4588 } 4589 rcu_read_unlock(); 4590 if (!success) { 4591 /* couldn't read this block, must give up */ 4592 set_bit(MD_RECOVERY_INTR, 4593 &mddev->recovery); 4594 return -EIO; 4595 } 4596 sectors -= s; 4597 idx++; 4598 } 4599 return 0; 4600 } 4601 4602 static void end_reshape_write(struct bio *bio) 4603 { 4604 struct r10bio *r10_bio = bio->bi_private; 4605 struct mddev *mddev = r10_bio->mddev; 4606 struct r10conf *conf = mddev->private; 4607 int d; 4608 int slot; 4609 int repl; 4610 struct md_rdev *rdev = NULL; 4611 4612 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); 4613 if (repl) 4614 rdev = conf->mirrors[d].replacement; 4615 if (!rdev) { 4616 smp_mb(); 4617 rdev = conf->mirrors[d].rdev; 4618 } 4619 4620 if (bio->bi_error) { 4621 /* FIXME should record badblock */ 4622 md_error(mddev, rdev); 4623 } 4624 4625 rdev_dec_pending(rdev, mddev); 4626 end_reshape_request(r10_bio); 4627 } 4628 4629 static void end_reshape_request(struct r10bio *r10_bio) 4630 { 4631 if (!atomic_dec_and_test(&r10_bio->remaining)) 4632 return; 4633 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); 4634 bio_put(r10_bio->master_bio); 4635 put_buf(r10_bio); 4636 } 4637 4638 static void raid10_finish_reshape(struct mddev *mddev) 4639 { 4640 struct r10conf *conf = mddev->private; 4641 4642 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 4643 return; 4644 4645 if (mddev->delta_disks > 0) { 4646 sector_t size = raid10_size(mddev, 0, 0); 4647 md_set_array_sectors(mddev, size); 4648 if (mddev->recovery_cp > mddev->resync_max_sectors) { 4649 mddev->recovery_cp = mddev->resync_max_sectors; 4650 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4651 } 4652 mddev->resync_max_sectors = size; 4653 if (mddev->queue) { 4654 set_capacity(mddev->gendisk, mddev->array_sectors); 4655 revalidate_disk(mddev->gendisk); 4656 } 4657 } else { 4658 int d; 4659 rcu_read_lock(); 4660 for (d = conf->geo.raid_disks ; 4661 d < conf->geo.raid_disks - mddev->delta_disks; 4662 d++) { 4663 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); 4664 if (rdev) 4665 clear_bit(In_sync, &rdev->flags); 4666 rdev = rcu_dereference(conf->mirrors[d].replacement); 4667 if (rdev) 4668 clear_bit(In_sync, &rdev->flags); 4669 } 4670 rcu_read_unlock(); 4671 } 4672 mddev->layout = mddev->new_layout; 4673 mddev->chunk_sectors = 1 << conf->geo.chunk_shift; 4674 mddev->reshape_position = MaxSector; 4675 mddev->delta_disks = 0; 4676 mddev->reshape_backwards = 0; 4677 } 4678 4679 static struct md_personality raid10_personality = 4680 { 4681 .name = "raid10", 4682 .level = 10, 4683 .owner = THIS_MODULE, 4684 .make_request = raid10_make_request, 4685 .run = raid10_run, 4686 .free = raid10_free, 4687 .status = raid10_status, 4688 .error_handler = raid10_error, 4689 .hot_add_disk = raid10_add_disk, 4690 .hot_remove_disk= raid10_remove_disk, 4691 .spare_active = raid10_spare_active, 4692 .sync_request = raid10_sync_request, 4693 .quiesce = raid10_quiesce, 4694 .size = raid10_size, 4695 .resize = raid10_resize, 4696 .takeover = raid10_takeover, 4697 .check_reshape = raid10_check_reshape, 4698 .start_reshape = raid10_start_reshape, 4699 .finish_reshape = raid10_finish_reshape, 4700 .congested = raid10_congested, 4701 }; 4702 4703 static int __init raid_init(void) 4704 { 4705 return register_md_personality(&raid10_personality); 4706 } 4707 4708 static void raid_exit(void) 4709 { 4710 unregister_md_personality(&raid10_personality); 4711 } 4712 4713 module_init(raid_init); 4714 module_exit(raid_exit); 4715 MODULE_LICENSE("GPL"); 4716 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 4717 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 4718 MODULE_ALIAS("md-raid10"); 4719 MODULE_ALIAS("md-level-10"); 4720 4721 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 4722